. USER'S GUIDE TO
N 56K
VECTOR GRAPHIC SYSTEMS

USING MDOS

MDOS System Diskette version 8.5

USER'S GUIDE
Revision B

October 18, 1979

IMPORTANT: This manual is for MDOS System Diskettes 8.5 ONLY.

This manual AND Diskette 8.5 are for use only with systems having
56K of contiguous memory.

Please turn to the ERRATA following the title page.

To start up a system using MDOS, see first page of Chapter 2. -

Copyright 1979 Vector Graphic Inc.

~ """ “Copyright 1979 by Vector Graphic Inc.
All rights reserved.

Disclaimer
Vector Graphic makes no representations or warranties w1th respect to the
contents of this manual itself, whether or not the' product it describes is
covered by a warranty or. repair agreement ' Further, Vector Graphic reserves the
right to revise this publication and to make changes from time to time in the
content hereof without obligation of Vector Graphic to notify any person of such
revision or changes, except when an agreement to the contrary exists.

Revisions

The date of release and revision letter of each page herein appears at the
bottom of each page. Changes from the previous revision are marked with a bar
in the margin. The revision letter such as A or B changes if the MANUAL has
been improved but the PRODUCT itself has not been significantly modified. The
date of release and revision letter on the Title Page corresponds to that of the
page most recently revised. When the product itself is modified significantly,
the product will get a new revision number, as shown on the manual's title page,
and the manual will revert to revision A, as if it were treating a brand new
product. EACH MANUAL SHOULD ONLY BE USED WITH THE PRODUCT IDENTIFIED ON THE
TITLE PAGE.

Page

ERRATA

The following sheets describe the differences between the 8.4 MDOS manual
and the 8.5 manual. The change occurs because of a very significant change to
the system and the MDOS System Disk. Because of printing schedules, the manual
text is NOT modified. Please make the appropriate changes in the text. The
disk, however, is ready to use.

Most of the differences derive from inclusion in the system of a 64K RAM
board which provides the user with 56K of contiguous memory. (8K are not used.)
To accomplish this, all other boards having on-board memory have been
readdressed (Flashwriter, Disk Controller, and PROM/RAM boards). The Extended
Systems Monitor has been changed to accomodate this, and the version of the
Monitor used with the Flashwriter board has been enhanced in other ways as well.
The MDOS operating system and utilities have also been modified as required by
the change, and two new utilities added.

Change the following in the manual text:

If your system is a System B, the Extended Systems Monitor Executive will
prompt the operator with "MON>". In other systems, the Monitor prompt is still
"*%"_, Make this change in the text wherever you find it. It appears in many
places.

Change

1-1 The system has a 64K board, not a 48K board. The user has access to 56K of

1-9

this. .
Change the chart as follows:

FF4p-FFFF Monitor stack area (on PROM RAM board) . o

FCOP-FF3F RAM available to user (on PROM RAM board) ' = = °° o '
F800-FBFF Disk Bootstrap ROM and Disk Controller RAM ' T
FPO@-F7FF Flashwriter video buffer ‘ ‘ o - i
ECOg-EFFF 1K optional PROM

E80P-EBFF 1K optional PROM

EO@O-E7FF Extended Systems Monitor

3900-E000 56K available to user

1-1d Top of RAM is DFFF,

Rev. 8.5-B 10/18/79

1-11 Remove NOESCAPE, change FLASH7 to FLASH8, add UPDATE-RES and WORM utilities
(both type EC.)

'UPDATE-RES is used to convert MDOS System Diskettes 8.4 and before into
diskettes that can run on the Update-64 systems as the 8.5 diskette can. Simply
put the diskette you want to update in drive @ (remove any write protect tab),
put the 8.5 diskette in drive 1, and type 1:UPDATE-RES (return) while in the
MDOS Executive.

WORM is a utility which tests memory more thoroughly than any other test,
including MDIAG. It erases all of memory, so make sure you have saved your data
on a diskette before using it. To use, type WORM (return) while in the MDOS
Executive. . Allow it to repeat 5 times. It will report any errors in memory.

2-2 N causes E%ﬂ not Cﬂ%, to be dlsplayed 1f the system is working properly.

_2=3 'and 2—13 Some systems have a Bltstreamer I board and some systems have a
- B;tstxjeamer II board. All configuration instructions in Chapter II apply to the
Bitstreamer :I board.. Consult the Bitstreamer II manual or Vector Graphic or its
agents for instructions on interfacing with the Bitstreamer II. Basically, it
has -3 serial ports (2&3, 4&5, 6&7) each having a data and a status port address,
and 2 parallel ports (8 and 9.) Centronics drivers on the 8.5 MDOS Systems
Diskette w111 not work with Bitstreamer II.

2=17. Remove sectlon 2, 3 7. (This is because the only way now to cause a return of
control te the Extended Systems Monitor Executive is to press the RESET button
on the computer chassis.)

343"‘~Charrge ‘section 3.7 to explain: Depress RESET on the computer chassis to retur:.

control to the Monitor Executive. Control-Q, ESC, and control-X will not work.
3-4 Change the reference to "control-Q" to "RESET button."

Change the title of section 3.10 to "ENTERING MDOS AND M.BASIC COMMANDS."
Change the contents of the section to read "All operator entries to the MDOS and
M.BASIC Executives can be edited with the BACK SPACE, DEL, underscore, or
control-H keystrokes. Terminate every line by depressing the RETURN key. If

esired, press control-T at almost any time to reverse the video image to black
on white, or back again. Some other special keys, such as the arrow keys to
move the cursor, may affect the screen image, but do not use them while in the
MDOS or M.BASIC Executives because these keys may confuse the Executives. (Note
that other Executives, such as the Extended Systems Monitor Executive and the
Word Management System do allow use of some of these special keys.)"

4-1 Replace "ASSM"™ with "zZSM."

Rev. 8.5-B 16/18/79

REPAIR AGREEMENT

The Vector Graphic computer sold hereunder is sold "as is"™, with all
faults and without any warranty, either expressed or implied,
including any implied warranty of fitness for intended use or
merchantability. However, the above notwithstanding, VECTOR
GRAPHIC, INC., will, for a period of ninety (94) days following
delivery to customer, repair or replace any Vector Graphic computer
that is found to contain defects in materials or workmanship,
provided:

1. Such defect in material or workmanship existed at the
time the Vector Graphic computer left the VECTOR GRAPHIC, INC.,
factory;

2. VECTOR GRAPHIC, INC., is given notice of the precise
defect claimed within ten (18) days after its discovery;

3. The Vector Graphic computer is promptly returned to
VECTOR GRAPHIC, INC., at customer's expense, for examination by
VECTOR GRAPHIC, INC., to confirm the alleged defect, and for
subsequent repair or replacement if found to be in order.

Repair, replacement or correction of any defects in material or
workmanship which are discovered after expiration of the period set
forth above will be performed by VECTOR GRAPHIC, INC., at Buyer's
expense, provided the Vector Graphic computer is returned, also at
Buyer's expense, to VECTOR GRAPHIC, INC., for such repair,
replacement or correction. In performing any repair, replacement or
correction after expiration of the period set forth above, Buyer
will be charged in addition to the cost of parts the then-current
VECTOR GRAPHIC, INC., repair rate. At the present time the
applicable rate is $35.80 for the first hour, and $18.986 per hour
for every hour of work required thereafter. Prior to commencing any
repair, replacement or correction of defects in material or
workmanship discovered after expiration of the period for
no-cost-to-Buyer repairs, VECTOR GRAPHIC, INC., will submit to Buyer
a written estimate of the expected charges, and VECTOR GRAPHIC,
INC., will not commence repair until such time as the written
estimate of charges has been returned by Buyer to VECTOR GRAPHIC,
INC., signed by duly authorized representative authorizing VECTOR
GRAPHIC, INC., to commence with the repair work involved. VECTOR
GRAPHIC, INC., shall have no obligation to repair, replace or
correct any Vector Graphic computer until the written estimate has
been returned with approval to proceed, and VECTOR GRAPHIC, INC.,
may at its option also require prepayment of the estimated repair
charges prior to commencing work.

Repair Agreement void if the enclosed card is not returned to VECTOR
GRAPHIC, INC. within ten (18) days of end consumer purchase.

Revision 8.1 5/2/79

TABLE OF CONTENTS

SECTION I GENERAL INFORMATION

1.0 GENERAL DESCRIPTION OF SYSTEM AND SUBSYSTEMS

1.0.1 STANDARD HARDWARE AND SOFTIWARE
1.0.2 OPTIONAL COMPONENTS AND SOFTWARE

1.1 MICROPOLIS DISKETTE SUBSYSTEM SPECIFICATIONS
1.1.1 PERFORMANCE
1.1.2 DRIVE RELIABILITY

1.2 HEXADECIMAL NOTATION
1.3 OPERATING SYSTEM SOFTWARE

1 VECTOR GRAPHIC EXTENDED SYSTEMS MONITOR
2 PROGRAM DEVELOPMENT SOFTWARE

3 ELEMENTS OF MDOS

4 ELEMENTS OF M.BASIC

5 OTHER OPERATING SYSTEMS

6 RESIDENT PROGRAMS

FIGURE 1.1 MZ SOFIWARE STRUCTURE USING MDOS

FIGURE 1.2 MEMORY MAP FOR VECTOR GRAPHIC SYSTEMS
FIGURE 1.3 MEMORY MAP FOR MDOS AND M.BASIC

1.4 MDOS SYSTEM DISKETTE 1-11

SECTION TI INSTALLATION, CONFIGURING PERIPHERALS,

AND USE OF DISKEITES

2.1 INSTALLATION
2.2 CONFIGURING THE MZ (for mon-turnkey systems)
2

.2.0 MODIFYING THE RES MODULE
2.2.1 STANDARD CONFIGURATIONS

2.2.1.1 PRINTER: PARALLEL, CENTRONICS 700 SERIES

PROTOCOL
CONSOLE: SERIAL VIDEO TERMINAL

2.2.1.2 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR

TELETYPE PROTOCOL
CONSOLE: SERIAL VIDEC TERMINAL

2.2.1.3 PRINTER: PARALLEL, CENTRONICS 700 SERIES

PROTOCOL

CONSOLE: PARALLEL ASCII KEYBOARD, SEPARATE

VIDEO MONITOR

Rev. 8.3-A 7/1/79

PAGE

—_—
[}
——

—t — el
] [B |
o —

——d ek —t ek
] [I |

—t ok nd sond eond ad

=00 ~NounpPPL LW N [\

[}
o

—
1

—_

W

2-4

2-4

2-6

PAGE

2.2.1.4 PRINTER: PARALLEL, CENTRONICS 700 SERIES
PROTOCOL
CONSOLE: VECTOR GRAPHIC MINDLESS TERMINAL 2-7

2.2.1.5 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR
TELETYPE PROTOCOL
CONSOLE: PARALLEL ASCII KEYBOARD, SEPARATE
VIDEO MONITOR 2-8

2.2.1.6 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR
TELETYPE PROTOCOL
CONSOLE: VECTOR GRAPHIC MINDLESS TERMINAL 2-9

2.2.1.7 SERIAL PRINTING TERMINAL (HAS A KEYBOARD),
DIABLO 1610 OR TELETYPE PROTOCOL

AND A VIDEO MONITOR 2-10
2.2.1.8 SERIAL PRINTING TERMINAL (HAS A KEYBOARD),
DIABLO 1610 OR TELETYPE PROTOCOL

AND NO VIDEO 2-12

2.2.2 ADDING A STANDARD PRINTER TO AN EXISTING MZ
SYSTEM 2-13

2.2.3 NON-STANDARD CONFIGURATIONS 2-15
2.3 OTHER MODIFICATIONS TO SYSTEM SOFTWARE & HARDWARE

N
]

—_

wi

CHANGING TO 2 MHZ CLOCK RATE

CONNECTING ADDITIONAL DISK DRIVES

USING I/0 PORTS

CHANGING MEMORY ADDRESS AND I/0 PORT
ASSIGNMENTS OF BOARDS

SHORTENING BASIC

BASIC-ONLY DISKETTE

STOPPING ESC FROM RETURNING CONTROL TO THE
SYSTEMS MONITOR

FINALIZING THE PERSONALIZED SYSTEM DISKETTE

DISKETTE MEDIA

o« o o @
. o . L]
1t
—_—d -

e 6 L]
W wiw W LWWwww
[] L] []
[0 o] ~NOovun SO
{]
— — — — —

N
.

DESCRIPTION

IF YOU HAVE PROBLEMS WITH DISK ERRORS
HANDLING

LOADING AND UNLOADING

RECOVERY TECHNIQUES

REPLACEMENT AND BACK-UP OF DISKETTES
INITIALIZING DISKETTES

WRITE PROTECT FOR DISKETTES

. L] * [] [] []
o~younpwN =

UL L L
N DN — =

1
—
NN =200V W N OO0y ULt

ol AR o R S

N NNNNNNN? NN NN DN

5 1/4 INCH DISKETTE
HOW TO MOUNT WRITE PROTECT TAB

EE TR LT LY LY LY XY CN SO O TR ST CY CRE YN Y XY
S
71 01
NN
[} »
N —
. |
w

Rev. 8.3~A 7/1/79

PAGE
SECTION III DAY TO DAY OPERATIONS

3.0 SUMMARY OF NORMAL START UP PROCEDURE 3-1
3.1 SUMMARY OF PROMPTS 3-1
3.2 POWER-ON 3-1
3.2 LOAD MDOS 3-2
3.4 LOAD M.BASIC FROM MDOS 3-2
3.5 OTHER OPERATING SYSTEMS AND LANGUAGES 3-2
3.6 RETURNING TO MDOS FROM M.BASIC 3-3
3.7 RETURNING TO MONITOR FROM ANYPLACE 3-3

3.8 RETURNING TO MDOS (OR M.BASIC) FROM MONITOR IF
MDOS (OR M.BASIC) IS ALREADY IN MEMORY 3-4

3.9 RETURNING TO MDOS OR M.BASIC EXECUTIVE FROM

A ROUTINE RUNNING UNDER THAT EXECUTIVE 3-4
3.10 VIDEO COMMANDS 3-4
3.10.1 CLEAR SCREEN 3-4
3.10.2 SCROLL SCREEN UP ONE LINE 3-4
3.10.3 BACKSPACE CURSOR 3-4
3.10.4 CONVERT TO REVERSE VIDEO 3-5
3.10.5 TAB CURSOR 8 SPACES TO THE RIGHT 3-5
3.10.6 ELIMINATE CURSOR FROM THE SCREEN 3-5
3.10.7 MOVE CURSOR TO TOP OF SCREEN 3-5
3.10.8 MOVE CURSOR DOWN, UP, LEFT, OR RIGHT 3-5
3.10.9 RETURN CURSOR TO LEFT EDGE OF SCREEN 3-5
3-5

3.11 POWER-DOWN

SECTION IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.0 INTRODUCTION TO MDOS
4.1 THE MDOS EXECUTIVE

.1
.2 EXECUTIVE STATEMENT FORMAT
.Z CANCELING AN OPERATION

4

4

ENTERING EXECUTIVE COMMANDS 4=
4

4

DISPLAY CONTROL 4

Rev. 8.3-A 7/1/79

o~
md

AhrphpppppphrpPbPhpPppppPhpPRpPRPRAAPPPERRR

L) W P I N

SphpbppphhPpppRhpRprRRRARRARE w
WWwWwWwwWwwwinw—WwWwwwww
¢« * o e & & & o e s * & o o o
e ok ed e ok d ek d d o e d —d b

Rev. 7

—

et el el e el et ed e md od D e d e vl md md ek b b —d
. . s . R N s & o e s s & s e .

.1.5 EXPLICIT EXECUTIVE COMMANDS

E
5.1 THE COMP COMMAND
5.2 THE DUMP COMMAND
5.3 THE ENTR COMMAND
5.4 THE FILL COMMAND
5.5 THE MOVE COMMAND
5.6 THE SEAR COMMAND
5.7 THE SEARN COMMAND
5.8 THE CREATE COMMAND
5.9 THE DISP COMMAND
5.1 THE FILES COMMAND
.S.
5
5
5
5
5
5
5
5
5
5
5

11 THE FREE COMMAND

.12 THE SCRATCH COMMAND
.13 THE LOAD COMMAND
.14 THE SAVE COMMAND
.15 THE RENAME COMMAND
.16 TYPE COMMAND

.17 THE APP COMMAND
.18 THE ASSIGN COMMAND
.19 THE EXEC COMMAND
.20 THE MATH COMMAMD
.5.21 THE PROMPT COMMAND
.5.22 THE INIT COMMAND

MDOS DISK FILE I/0

.2.1 TRACK INDEXED FILE STORAGE

.2.2 FILE NAMES

.2.3 FILE PROTECTION AND TYPE DEFINITION

.2.4 FILE AND RECORD STRUCTURE

.2.5 FILE ACCESS METHODS

.2.6 COMPATIBILITY BETWEEN MDOS AND BASIC FILES

MDOS SHARED SUBROUTINES

CONSOLE AND PRINTER INPUT/QUTPUT SUBROUTINES

. » 3 *
WoONOOMPAWN—

@CIN - CONSOLE INPUT

@COUT - CONSOLE OUTPUT

@CBRK - CONSOLE BREAK CHECK

@CDIN - CONSOLE DEVICE INPUT

@CDOUT - CONSOLE DEVICE OUTPUT

@CDBRK - CONSOLE DEVICE BREAK CHECK
@CDINIT - CONSOLE DEVICE INITIALIZATION
@LOUT - LIST OUTPUT

BLATN - LIST ATTENTIONM

.19 @LDOUT - LIST DEVICE QUTPUT

.11 GLDATN - LIST DEVICE ATTENTION

.12 GLDINIT - LIST DEVICE INITIALIZATION

.13 @CCRLF -~ CONSOLE LINE FEED CARRIAGE RETURN
.14 GLCRLF ~ LIST LINE FEED CARRIAGE RETURN
.15 @ASSIGN - ASSIGN

3/78

R R R R e

PAGE

+
s

]
e et S PDOOUOVAANNENNOOONTTTO B R

N —t ot —

T T
L L
w w

Rev.

R S Lo B > > > pPappphpppphhppPArPp,LAN w RO N w B IR I R]
3 . . L] L3 - L[] L . . . L3 - 3 L[] - L] - L] .

.
wwww ~ W w Www W w WWWWWwWwWwWwWwLwwoww
e v e e o ¢ e e ¢ « a2 e e o e & e e o o

.16 @CILINE - CONSOLE INPUT LINE

.17 @HEXOUT - HEXADECIMAL OUTPUT

.18 GHEXADDOUT - HEXADECIMAL ADDRESS QUTPUT
.19 @HEXOUTSPC - HEXADECIMAL OUTPUT WITH SPACE
.29 @SPACEQUT - SPACE OUT

.21 GNLINEQOUT - NEW LINE OUTPUT

.22 GLINEOUT - LINE OUTPUT

(Y W W W W W W
e s s e & o &
JE R R S [P g p— |

TEXT LINE PARSING SUBROUTINES

@PARAM -~ PARAMETER

@SKIPSPACE - SKIP SPACES

@SCAN - SCAN

@SEAR - SEARCH

@AHEXTBIN - ASCII HEX TO BINARY

w WWwwww
e« % e
NN N
¢ s s e e
P wn —

THE FILE ACCESS ROUTINES

@CREATE - CREATE

@GFILESTAT - GET FILE STATUS

@DIRSEARCH - DIRECTORY SEARCH

@OPENFILE - OPEN A FILE

@CLOSEFILE - CLOSE A FILE

@RFILEINF - READ FILE INFORMATION

@SINXTRS - SET INDEX POSITION TO RECORD START

@RRECORDLEN - READ RECORD LENGTH

@RINXPOS - READ INDEX POSITION

.19 BSINXPOS - SET INDEX POSITION

.11 @INCINX - INCRZMENT INDEX POSITION

.12 @RFINXPOS - READ FROM INDEX POSITION

.13 @RFINXPOSI - READ FROM INDEX POSITION AND

INCREMENT INDEX

.14 GWTINXPOS - WRITE TO INDEX POSITION

.15 @WTINXPOSI - WRITE TO INDEX POSITION AND

INCREMENT INDEX

.16 GLOADDATA - LOAD DATA

.17 @SAVEDATA - SAVE DATA

.18 @DFINXPOSTEOR - DELETE FROM INDEX POSITION TO

END OF RECORD

.19 GDFINXPOS - DELETE FROM INDEX POSITION TO END OF
FILE

3.2p GINCRECPOS - INCREMENT RECORD POSITION

wooNOTLITA~WN —

w www ww wwwuwwwwuww:.uw
. - .

FILE MANAGEMENT SUBROUTINES

.4.1 @FREE - FREE

.4.2 GRENAME - RENAME

.4.3 @TYPE - FILE TYPE °

.4.4 OSCRATCH - SCRATCH A FILE

7 3/78

PAGE

4-21
4-21
4-21
4-21
4-21
4-22
4-22

4-22

4-22
4-23
4-23
4-23
4-24

+
N
o~

P R o] o h#hf#h##h###
W W W w W NN NN N
—t O [en R em) OWOWOWROOVNNNNOO

r P
]

w w
N —_—

4-32
4-32

4-32
4-32
4-33
4-33

Rev.

4.3.5 PHYSICAL DISK ACCESS ROUTINES

O O O S N O O O X
SO SO N

4.3.

w
(o)}

S S O N

O O O R
=r :

.3

SOOI

P PR

[e o]

W W ww

.9

WWwwwww

LWWwwwwww

wWwwwwww ~ LWwwww

@GETASEC ~ GET A SECTOR
@PUTASEC -~ PUT A SECTOR

@VERIFYSECTOR - VERIFY A SECTOR
5 Q@SEEKTRACK - SEEK TO A TRACK

5.1

5.2

.5.3 @WRITESECTGR - WRITE A SECTOR
5.4

5.

.5.6 QRESTOREDISK - RESTORE THE READ/WRITE HEAD

PROCESSOR ORIENTED UTILITY ROUTINES

@HLADDA - ADD A TO HL

@INXM - INCREMENT MEMORY

@LHLINDEXED - LOAD HL INDIRECT IMNDEXED

@LHLI - LOAD HL INDIRECT

@TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C
@TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC
@TRANSDHBCR - TRANSFER FROM DE TO HL FOR A COUNT OF
BC REVERSE

@TRANSFILENAME - TRANSFER A FILENAME

@FILLZER - FILL ZEROES

.19 @FILLSPC - FILL SPACES

.11 @FILLA - FILL FROM THE A REGISTER

.12 @COMPARE - COMPARE HL TO DE

[oa e o W é We)l [o, W o Weo W We We We, Y
QO 00 SNO W

EXTENDED 8089 INTEGER ARITHMETIC (16 BITS)

.7.1 GDEADDHL - BC=DE+HL
.7.2 @DESUBHL - BC=DE-HL
.7.3 @DEMULHL - BC=DE*HL
.7.4 @DEDIVHL - BC=DE/HL
.7.5 QDEMODHL - BC=DEZHL

MESSAGE OUTPUT SUBROUTINES

.8.7 GDISKERROR - DISK ERROR MESSAGES
.8.2 @CLOSEFILES - CLOSE ALL FILES
.8.3 QERRORMES - ERROR MESSAGES

.8.4 GMESSAGEQUT - MESSAGE OUTPUT

SYSTEM BUFFERS AND ENTRY POINTS

LINEEDIT -~ THE MDOS LINE EDITOR

4.1

.2
.3
.4 THE CLEAR COMMAND
.5 THE NAME COMMAND
.6 THE FILE COMMAND
.7 THE AUTO COMMAND

ENTERING LINES TO LINEEDIT
KEYING IN A NEW TEXT FILE
ENTERING LINEEDIT COMMANDS

3/78

Rev. 8.4-A 7/26/79

4.4.8 THE PROMPT COMMAND 4-46
4.4.9 THE LOAD COMMAND 8-46
4.4.19 THE APPEND COMMAND 4-46
4.4.11 THE SAVE COMMAND 4-47
4.4.12 THE RESAVE COMMAND 4-47
4.4.13 THE LIST COMMAND 4-48
4.4.14 THE LISTP COMMAND 4-42
4.4.15 THE PRINT COMMAND 4-49
4.4.16 THE PRINTP COMMAND 4-49
4.4.17 THE TAB COMMAND 4-49
4.4.18 THE DELT COMMAND 4-49
4.4.19 THE RENUM COMMAND 4-49
4.4.29 THE SEARCH COMMAND 4-50
4.4.21 THE SEARCHALL COMMAND 4-50
4.4.22 THE CHANGE COMMAND 4-51
4.4.23 THE CHANGEALL COMMAND 4-52
4.4.28 THE EDIT COMMAND 4-57
4.4.24.1 ADVANCING THE EDIT POINTER 4-52.3
4.4.24.2 CHANGING THE NEXT CHARACTER - C 4-521
4.4.24.3 DELETING THE NEXT CHARACTER - D 4-52.1
4.4.24.4 INSERTING CHARACTERS - I | 4-52.1
4.4.24.5 LISTING THE LINE IN THE EDIT BUFFER - L 4-52.1
4.4.24.6 SEARCHING TO A SPECIFIED CHARACTER - S 4-53
4.4.24.7 DELETING TO A SPECIFIED CHARACTER - K 4-53
4.4.24.8 QUITTING THE EDIT COMMAND MODE - Q 4-53
4.4.24.9 COMPLETING THE EDIT COMMAND 4-53
4.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT 4-53
4.4.26 LINEEDIT FILE STRUCTURE 4-54
4.5 ZSM - 7-80 ASSEMBLER 4-55
4.5.1 HOW TO RUN ZSM 3‘52
4.5.2 LANGUAGE ELEMENTS =5
4.5.2.1 CONSTANTS ﬁ‘gg
4.5.2.2 OPERATORS 428
4.5.2.3 REGISTERS :
4.5.2.4 PSEUDO-OPS =59
4.5.3 ASSEMBLY ERRORS o3
4.5.4 INSTRUCTION SET i et
4.5.5 TEST FILE FOR ZSM &

4.6 SYMSAVE UTILITY

4.7 FILECOPY UTILITY

4.8 DISKCOPY UTILITY

4.9 MDOS ERROR MESSAGES

4.10 COPYFILE UTILITY FOR SINGLE DISK
4.11 MICROPOLIS DEBUG

4.12 DEBUG~GEN UTILITY

SECTION V MICROPOLIS DISK EXTENDED BASIC

INTRODUCTION

0

1

.2 ENTERING A PROGRAM

3 IMMEDIATELY EXECUTED LINES

oo

wun

.3.7 THE EDIT COMMAND
5.3.2 THE RENUM COMMAND
.3.3 THE MERGE COMMAND

(8]

DELETE COMMAND

LIST COMMAND

SAVE COMMAND

LOAD COMMAND

DISPLAY COMMAND

SCRATCH COMMAND

.10 RUN COMMAND

.11 INTERRUPTING A RUNNING PROGRAM

WoOo~NOVO A~

.13 PROGRAM TRACING COMMANDS
.14 BASIC SYSTEM ERROR HANDLING
.15 BASIC. CHARACTER SET

.16 DATA

[EOEOEONOEOGEOROREGRG RS RS RS]

5.16.1 CONSTANMTS
5.16.2 VARIABLES
5.16.3 OUTPUT FORMATS

Rev. 8 9/78

ENTERING LINES TO THE BASIC INTERPRETER

.12 CONTINUING AN INTERRUPTED PROGRAM

PAGE

]
- — O VORI bW

NN O

gororororohoTovoh oty o n
1

[SaNO 6]
S |

—

5.17 OPERATORS

5.17.1 NUMERIC OPERATORS
5.17.2 STRING OPERATORS
5.17.3 RELATIONAL OPERATORS
5.17.4 LOGICAL OPERATORS

5.18 FUNCTIONS

5.18.1 INTRINSIC FUNCTIONS

5.18.1.1 NUMERIC FUNCTIONS

ABS
ATN
CoS
EXP
FIX
FRAC
INT
LN
LOG
MAX
MIN
MOD
RND
SGN
SIN
SQR
TAN

e 5.18.1.2 STRING FUNCTIONS

ASC
CHARS
FMT
INDEX
LEFT$
LEN
MID$
MAX
MIN
REPEATS
RIGHT$
STR$
VAL
VERIFY

5.18.1.3 SPECIAL FUNCTIONS

IN

PEEK
PGMSIZE
SPACELEFT

5.18.2 USER DEFINED FUNCTIONS

Rev. 8 9/78

| JNN IO O R R R |

oottt o n
_a__a-l._a__a_a.—a__aia__a__a__a__a__a_a__a_a
WO WO W W W00 00 0000000

mmmmmmmclnmmmmmm
oD NNDNNNND N D
— d d ad el d d ——d —t —t—d (OO O

5.19 Expressions

5.19.1 Evaluation of Expressions
5.19.2 Numeric Expressions
5.19.3 String Expressions
5.19.4 Logical Expressions

5.20 BASIC Statements

DATA

DEF FN
DEF FA
DIM

END

EXEC

FLOW

FOR

GOSUB
GOTO

0.1l IF..THEN
5.20.12 INPUT
5.20.13 LET
5.20.14 MEMEND
5.20.15 NEXT
5.20.16 NOFLOW
5.20.17 ON..GOTO
5.20.18 ON..GOSUB
5.20.19 OUT
5.20.20 POKE
5.20.21 PRINT
.20.22 READ
20,23 REM
20.24 RESTORE
.20.25 RETURN
.20.26 SIZES
2
2

« o o
NN
« . .«

[eNeoNeoNoNeoNoNoNolNoNe]
WO~ H WP

vuuuuunuuiuu un
« o » s e o o
.—l
[==]

0.27 STOP
.20.28 STRING

5.21° BASIC DISK FILE 1/0

5.21.1 Disk Files

5,21.2 Disk File Commands
5.21.2,1 DISPLAY
5.21.2.2 LOAD
5.21.2.3 PLOADG
5.21.2.4 SAVE
5.21.2.5 SCRATCH
5.21.2.6 CHAIN
5.21.2.7 LINK

Rev. 7 3/78

5-36

5-36
5-37
5-37
5-38
5-38
5-39
5-39
5-40
5-42
5-43
5-43
5-44

5-45
5-45
5=-45
5=45
5-46
5-46
5-46
5-47
5-49
5-49
5-49
5-49
5-50
5-50
5-50

Rev.

7 3/78

5.21.3 Disk I/C Statements

5.21

5.21.3.1 OPEN
5.21.3.2 PUT
5.21.3.3 GET
5.21.3.4 CLOSE
5.21.3.5 ATTRS
5.21.3.6 EOF
5.21.3.7 FREESPACE
5.21.3.8 GETSEEK
5.21.3.9 PUTSEEK
5.21.3.10 RENAME

ATTR
ERR
ERRS
NAME
RECGET
RECPUT
SIZE
TRACKS
FREETR

.4 Disk I/0 Functions

5.22 BASIC PRINT FILE OUTPUT

5.22.

5.22.

1 Printer Related Language Features

N oo ooo
. SN
)

NN
NN A WN—

Notes

OPEN

PUT
CLOSE
ENDPAGE
ASSIGN
LISTP
PAGESIZE

on Printer Related

Programming

22.2.1

.22.2.2
.22.2.3

.22.2.4

[S L ¥ 2 BN ¥) B8 L N 8 4)

.22.2.5

Separating Print Files
and Interactive Messages
Paginating Print Files
Spooling Print Files to
Disk for Later Qutput
Draining File Output to A
Null Device

Echoing of Terminal

Output to Printer

5-70

5-73
5-76

5-76
5-77

PAGE
SECTION VI DISK SUBSYSTEM THEORY AND DIRECT
PROGRAMMING

'
—

[}
—

FIGURE 6.1 5 1/4 INCH DISKETTE

INTRODUCTION

FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA
HARDWARE FUNDAMENTALS

CONTROLLER REGISTERS

DISK OPERATIONS

ERROR HANDLING

DISK DRIVER

[[}
PN —=OYWW
— O W

(o)W \We We \We We Yo

[] [] L] [] L] [] L)

aaunmpWNN—O

[e W e %o Wo W We Yo)) [\ NN)}
[}

APPENDICES

BASIC ERROR MESSAGES

BASIC UTILITY PROGRAM

ACCESSING DISKCOPY FROM BASIC

SUMMARY OF MDOS ERROR MESSAGES

RES.I1/0 SOURCE LISTING

MICROPOLIS DISK BOOTSTRAP

""FEATURES'" PROGRAM TO OPTIONALLY SHORTEN BASIC
INTERFACING TO A CENTRONICS PRINTER

TROUBLE SHOOTING IF MDOS DOES NOT LOAD

GAMES AND DISPLAYS ON THE MDOS SYSTEM DISKETTE
CHANGING MICROPOLIS BOOTSTRAP ROM AND DISK I/0 ADDRESS
CHANGING CLOCK RATE TO 2 MHZ

WRITING A CONSOLE PHYSICAL I/0 ROUTINE

WRITING A PRINTER PHYSICAL I/O0 ROUTINE
REASSEMBLING AND SAVING THE RES MODULE

MAP OF I/0 PORTS

MEMORY DIAGNOSTICS

ONoOZERHRGHIOAMEROO W P

Rev. 8.3-A 7/1/79

appendices
E-1 Add remark: RES.I/O has been altered for the re-arranged board addressing.

H-1

P-2

Hence, if you need it, list it using LINEEDIT, or assemble it using ZSM from the
8.5 MDOS System Diskette.

The instructions in this appendix only apply to the Bitstreamer I board.
Change C0090 to E@@8A.

Change FLASH7 to FLASHS.
and K-2 The standard location is from F88@-FBFF. A single jumper at W4 is the
standard.

If the system has a Bitstreamer II board controlling a printer, use éitstreamer
base address of @ for serial ports at 2 and 3, and use base address 4 for ports
6 and 7 (to control the printer.) (Do not worry about control of a serial
terminal, if used. This is handled by the Extended Systems Monitor.)

If controlling a printer out of a Bitstreamer II parallel port, then do not use
the standard drivers.

Add the following: Ports 8 and 9 are Bitstreamer II parallel ports. 40 is 64K
and 16K bank select. 10-14 are used by the Vector Graphic Precision Analog
Board. The Tarbell Disk uses FC as well as its other port addresses. -

Q-1 and Q=2 Change "48K" to "56K." To use the T command, enter T @000 DFFF. MAP

uses scratch pad FC@0 to FDFF in all systems now. Add explanation of WORM,
taken from the explanation above in this errata. A

Rev. 8.5-B 10/18/79

I GENERAL INFORMATION

1.0 GENERAL DESCRIPTION OF SYSTEM AND SUBSYSTEMS

Your system is a general purpose microprocessor based computer. It
is dellvered by Vector Graphic completely assembled and fully
tested, including both hardware and operatlng system software, and
including two quad density mini-floppy disk drives.

1.0.1 STANDARD HARDWARE AND SOFTWARE

1) Chassis with power supply and 18 slot fully shielded S-100
motherboard,;

2) 4 MHz Z-80 CPU board;

3) Two quad density Micropolis mini floppy disk drives, allowing
1232 256=-byte sectors per diskette.

4) Disk controller board;

5) Bitstreamer I/0 board;

6) 48K Dynamic RAM board;

7) PROM/RAM III board, with space for 12K of EPROM and the
ability to program EPROM's (see the PROM/RAM III board
manual).

8) The Vector Graphlc Extended Systems Monitor, on PROM;

9) Two coples of the MDOS System Diskette, each containing: .

a) The Vector Graphic-enhanced ﬁicropolis Disk Operating
System - MDOS - a complete floppy diskette operatlng
system, including a Z-80 Assembler, an editor, a debugger,
and several other utilities (see Ch.4);

b) Micropolis BASIC (see Ch. 5);

¢) A number of games and video displays (see Appendix J.)

1.0.2 OPTIONAL COMPONENTS AND SOFTWARE

Your MZ can be configured with various optional peripherals.
Section 2.2 of this manual lists the conflgurations of printers and
consoles considered "standard" for the MZ, and gives the components
such as interface boards and cables needed for each configuration.
In addition to the confilgurations discussed 1n Section 2.2, the
following components can optionally be added to an MZ:

1) Additional Bitstreamer I/0 board(s), such as the Bitstreamer
IT having three serial ports, two parallel ports, real-time

Rev. 8.4-4 T7/26/79 1-1

clock, and Z-80 interrupts.
2) Additional memory board(s);

3) Other S~100 compatible boards from Vector Graphic or other
sources.

4) 2 additional Micropolis mini-floppy disk drives;

5) Other operating system and language software.

Contact your dealer for more information on adding components
to the system.

1.1 MICROPOLIS FLOPPY DISKETTE SUBSYSTEM SPECIFICATIONS

l1.1.1 PERFORMANCE

Capacity per drive: 315K bytes, formatted
Transfer rate: 250K bits/second

Average rotational latency time: 100 milliseconds
Access time - track-to-track : 30 milliseconds
settling time: 10 milliseconds

Head load time: 75 milliseconds

Head positioner: stepper motor with lead-screw drive
Drive motor start time: 1 second

Rotational speed: 300 RPM

Recording density 5248 bits per inch (BPI)
Recording mode: MFM

Track density: 100 tracks per inch (TPI)

Surfaces used per diskette: 1

l.1.2 DRIVE RELIABILITY

MTBF 8000 hrs.

MTTR 0.5 hrs.

Media life . 3 X 10 EXP 6 passes on single track
Head life 10 EXP 4 hrs.

Soft error rate 1l in 10 EXP 9

Hard error rate l in 10 EXP 12

Seek error rate 1l in 10 EXP 6

1-2 Rev. 8.4-A T/26/79

1.2 HEXADECIMAL NOTATION

In this manual as in most microcomputer literature, the base 16
number system is used for all references to memory locations,
instruction codes, character codes, and so on. If you are not
familiar with it, you will soon find that the hexadecimal system 1is
the most natural way to express these numbers when dealing with a
computer that stores data as groups of 8 binary digits (bits) and
memory addresses as groups of 16 bits. Hex numbers will be
indicated by an upper case H following the digits. Remembering a
few key values will make things a great deal easier:

HEX NUMBER DECIMAL VALUE JARGON BINARY BITS

A 10 4

B 11 4

c 12 4

D 13 4

E 14 4

F 15 4

10 16 5
FF 255 8
100 256 9
3FF 1,023 10
400 1,024 1K 11
FFF 4,095 12
1000 4,096 4K 13
4000 16,384 16K 15
8000 32,768 32K 16
FFFF 65,535 64K-1 16

The familiar rules of arithmetic work just the same in hex as in
decimal:

10 HEX (TRIVIAL)
40)~ 400

or
16 DECIMAL (MORE DIFFICULT)

1.3 OPERATING SYSTEM SOFTWARE

1.3.1 VECTOR GRAPHIC EXTENDED SYSTEMS MONITOR

The first program the user comes into contact with after turning on
the system is the Vector Graphic Extended Systems Monitor.
(Exception: this is not true for MEMORITE systems.) It is entirely
stored on non-volatile PROM. Note that this use of the term
"Monitor" has a meaning entirely different than the term "monitor",
which refers to a piece of hardware, namely a stand-alone video
display. (NOTE: in the MEMORITE system, the Extended Systems

Rev. 8.1 2/5/79 1-3

Monitor is not encountered unless you press the RESET keg; or touch
the ESC key while the system is under control of MDOS or another

NON-word processing operating system.)

The Monitor consists of two parts: first, the Extended Systems
Monitor Executive, which allows the operator, through special
commands, to manipulate and display memory data and to jump to some
other program; second, a program used to control console I/O.

You know the Extended Systems Monitor Executive is in control of the
system when the Monitor prompt (*) appears on the left edge of the
screen. The operator is then expected to enter one of the commands
available for manipulating or displaying memory or jumping to
another program. Most often, the operator will use the command
which calls up a full operating system and then transfers control to
it, and out of the Monitor.

Regardless of whether executive is in control of the system at any
given time, the Monitor console I/O routines, though invisible to
the operator, are continually being called on to control the
console. (Exception: when MEMORITE or the Word Management System
are doing word processing, the Monitor is not used to control the
console. Instead, the word processing software in these two systems
handles this task.)

Some of the Monitor's features and commands are explained where

relevent in this manual. A complete description is included as a
separate manual with your system.

l.3.2 PROGRAM DEVELOPMENT SOFTWARE - "PDS"

The operating system found on the MDOS Systems Diskette included
with the system is the Micropolis Diskette Operating System (MDOS).
MDOS includes an assembly language program development package.
Also found on the MDOS Systems Diskette is Micropolis Disk Extended
BASIC (often called just M.BASIC). MDOS and M.BASIC together give
all the functions a programmer may need for the development of
either assembly language or BASIC programs.

l.3.3 ELEMENTS OF MDOS

MDOS consists of an executive program, a group of "shared"”
subroutines available to user programs as well as being used by
MDOS, and various utilities which include assembly language program
development tools.

The MDOS executive program allows the user to control computer
system operations from the system console. It provides commands for

memory management, file management, I/0O control and program
control.

The shared subroutines include those that provide for console and

printer character I/0, buffered line I/O, text line parameter
parsing, sequential and random file access, file management,

1-4 Rev. 8.1 2/5/79

physical diskette access, and 16 bit interger arithmetic. There are
also a number of processor oriented utility subroutines.

The MDOS utilities are:

ZSM - a two pass, 8080/8085/280 disk to disk assembler program.
LINEEDIT -~ a line number oriented assembly language text editor with
character~within-line edltlng and global search and change
capabilities.

FILECOPY - a utility that copies disk files.

DISKCOPY - a utility that makes an exact copy of an entire
diskette.

SYMSAVE - a utility that creates a source file of symbol equate
statements from the symbol table left in memory immediately after an
assembly by the ZSM assembler.

DEBUG - a utility that facilitates checkout and debugging of

8080/8085 machine language programs. It cannot be used if 280 code
which is not part of the 8080 set is used.

l.3.4 ELEMENTS OF M.BASIC

M.BASIC is a complete, self-contained software package that provides
total support for BASIC programming. When M.BASIC is loaded you
have at hand a powerful set of tools for developing, testing,
executing and maintaining BASIC programs.

Program lines may be as long as 250 characters in length and may
include multiple statements. The maximum line number is 65529.

M.BASIC has 12 immediate mode commands, including: SAVE a file,
LOAD a file, DISPLAY the file directory, SCRATCH a file, LIST a
program, DELETE lines from a program, RUN a program, CNTL/C to
interrupt a running program, CONT to continue an interrupted
program, CNTL/U to cancel an input line, and FLOW and NOFLOW to
enable and disable the flow trace debugging aid.

M.BASIC supports 6 distinct data types, including integers, integer
arrays, floating point numbers in the range 1lE-61 to 1lE62-1, string
arrays, floating point arrays, and character strings up to 250
characters long. Integer and floating point arrays may have up to 4
dimensions. String arrays may have up to 3 dimensions plus a length
parameter.

A unique SIZES statement enables you to select the precision of
numeric variables up to 60 digits for simple arithmetic and 20
digits for transcendental functions. The system defaults to 8
digits for real numbers and 6 for integers.

M.BASIC supports numeric operators for addition, subtraction,
multiplication, division, integer division, and exponentiation.

Rev. 8.1 2/5/79 1-5

There are relational operators to compare numbers or strings and the
logical operators AND, OR, and NOT. String concatenation is also
available.

Numeric functions include ABS, ATN, COS, EXP, FIX, FRAC, INT, LN,
LOG, MAX, MIN, MOD, RND, SGN, SQR, and TAN.

String functions include ASC, CHARS, FMT, INDEX, LEFTS$, LEN, MIDS,
MAX, MIN, REPEATS, RIGHTS, STRS, VAL, VERIFY.

The unigue FMT (X,Y$) function is the key to a powerful formatted
output capability. It returns a string which is the value of X
formatted per the image defined by format string Y¥S.

The DEF FN statement is provided to allow construction of user
defined functions. An assembly language function may be accessed by
using the DEF FA construction.

Standard statements in BASIC include CHAIN, DATA, DEF, DIM, EDIT,
END, EXEC, FOR-NEXT-STEP, GOSUB, GOTO, IF-THEN, INPUT, LET, MEMEND,
MERGE, NOFLOW, FLOW, ON-GOTO, ON-GOSUB, OUT, PLOADG, POKE, PRINT,
READ, REM, RENUM, RESTORE, RETURN, SIZES, STOP, and STRING.

The CHAIN is a true chain that passes variables from the current
program segment to next one loaded from disk.

EXEC is a unique statement that allows a string variable or constant
to be executed as if it were a predefined program line.

Data file programming in M.BASIC is simple. Files can be opened
simultaneously for both sequential and direct (random) access in
both read and write modes. Up to 10 files can be open at one time.
A CLEAR option allows a file to be opened for rewrite instead of
append. An END option provides an on-endfile-goto capability. An
ERROR option provides an on-error-goto capability.

Data is written to and read from files using GET and PUT statements
with variable lists that allow a mixture of numeric and string
variables.

The file I/O structure also extends to printer and console output
files to afford a high degree of device independence. Additional
options on the OPEN statement facilitate the pagination of output
reports.

Also provided is a BASIC Utility program that provides for
initializing diskettes, saving M.BASIC on a BASIC-only diskette, and
examining and changing RAM memory. In addition, there is a utility
called FEATURES which allows you to shorten M.BASIC by eliminating
some of the features needed only for program development, but not
for running production programs.

1.3.5 OTHER OPERATING SYSTEMS

Other operating systems and higher level languages are available

1-6 Rev. 8.1 2/5/79

from Vector Graphic. These will not be discussed here. (See the
literature accompanying this manual.) MDOS and M. BASIC meet the
needs of the large majority of users.

1l.3.6 RESIDENT PROGRAMS

MDOS and M.BASIC share the Extended Systems Monitor. They also
share a common program module called RES. This module contains
among other routines, the printer and diskette I/O routines, and
some of the console I/0 routines.

Also shared is the ROM resident Disk Bootstrap program, (which is
what the Monitor uses in order to call up MDOS), and the Disk

Controller, (which is simply memory space needed to handle the
diskette drives.)

These routines are always resident in the computer memory when
either MDOS or M.BASIC is running. For interested users, listings
will be found in Appendix E for the I/0 portion of RES, Appendix F
for the Disk Bootstrap program, and the Extended Systems Monitor
manual for the Monitor.

In contrast, MDOS and M.BASIC overlay each other; that is, they are
assigned the same area of memory; only one can be in memory at any
given time. Commands are provided for leaving one and calling up
the other.

Fig. 1.1 illustrates the relationships between the various system

programs. Programs which are always in memory when MDOS or M.BASIC
is used are in the center.

Fig. 1.2 gives the addresses of the various programs and important
memory locations in your system. No particular operating system is
shown.

Fig. 1.3 gives addresses for MDOS and M. BASIC. Note that this
operating system software fits into the unassigned memory area in
Fig. 1l.2. ’

Rev. 8.1 2/5/79 1-7

SHYY904d
JIsvd

43134dYIINI
JIsvy
a3an3aix3
ASIA

SINLINYLS F114
¥S10 NOWHOD

("1011u0H

01 Sayoueuq
0/1 tedtsAyd
afosuo))

0/1 ¥3INIYd GNV

3T10SNOD NOWWOI

37naoW S

Ad0J3114

JAVSHAS

401103

YITMISSY

— e aait m— op——

SHYY90Ud
NOILYJIddV
JIYNINYT
AT8WISSY

SASSIIAAY YITICRILNOD MSIa
pue ‘WOM dWII3I00E NSIA
saurinoa O/1 Ted1sAud stosuco
YITA "MOLINOW SWALSAS IANALXI

JATINIIX3
SOOW

SOOW 9NISN JUNLINYLS FYVYML40S ZW

I°T 34N914

2/5/79

8'1

Rev.

1-8

FIG 1.2 MEMORY MAP FOR VECTOR GRAPHIC SYSTEMS

Hex address

FFFF

E000
DF40

DC00

DA0O

D800
D000
CCoo

C3800

C400

co00

8000

0000

Rev. 8.1

Contents
8K RAM for user's programs, optional;
~ OR ,;5
’r High Resolution Video board, optional;
OR
Memorite PROM's, optional.
PR-2 stack area, not available to user.
RAM available to user.
Disk controller - first 3 bytes are addresses
used for mem. mapped disk I/0. Remaining are
unusable.
Disk Bootstrap ROM.
Flashwriter board video buffer, optional.
Memorite configuration PROM, optional.
EVIOS PROM, optional.
MZOS PROM, optional.
Extended Systems Monitor, including console
I/0 routines.
48K RAM, available to user.
-
T T

2/5/79

FIG 1.3 MEMORY

Hex address

MAP FCR MDOS AND M. BASIC

Contents

RAM memory for user's program

Starting point depends on whether MDOS or M. BASIC
is being used, and whether BASIC has been shortened.

2
&

MDOS, including all user callable routines not in RES Module;

OR

—t
M. BASIC Interpreter.

”~~
’

RES MODULE
End of RES Module.
LDOUT - Physical List Output Routine.
LDINIT - Physical List Initialization.
LDATN - Physical List Attention Check Routine.
CDINIT - Physical Console Initialization.
CDBRK - Physical Break Check Routine.
CDOUT - Physical Console Output Routine.
CDIN - rhysical Console Input Routine.
MCOS or M. BASIC warmstart (entry) location.
Beginning of RES Module code. ’
Beginning of RES Mcdule input buffer.

MDOS system stack, and used by Boot loader.

BFFF
-~
2800 if MDOS
5700 to
5D86 if BASIC
‘,-J
-
1599
1598
0627
0613
0611
060F
0604
0600
05F8
04E7
0281
0120
0la0
006a
0000

RAM available to user.

2/5/79

1.4 MDOS SYSTEM DISKETTE

This revision of the User's Guide to Vector Graphics Systems Using
MDOS corresponds to MDOS System Diskette 8.4, (and minor revisions
of it labeled 8.4.1, 8.4.2, etc.) Following is a list of the files
on this diskette:

(Under TYPE, "EC" means the file 1s stored in executable machine
language code and it will be executed 1immediately 1f you type 1its
name after the MDOS prompt. "AL" means the flle 1s stored 1n

assembly language source code.

You must first assemble 1t using ZSM

before 1t can be executed by the computer. "B" means the flle 1s

stored 1n the M.BASIC language.

M.BASIC interpreter explalned in chapter 5.)

It wlll be executed by using the

NAME DESCRIPTION TYPE
DIR The disk directory.
RES Machine language routines used by both MDOS .
and M.BASIC Do not delete it unless you
are modifying it.
MDOS MDOS executive and disk I/0O routines.
Do not delete this. See Appendix B
to create a BASIC-only diskette.
BASIC M.BASIC interpreter and disk I1/0. EC
See Chapter 5.
LINEEDIT Line edltor for writing assembly language. EC
programs. See Sectlon 4.4.
ZSM Assembler of Z-80 code prepared in extended EC
8080 mnemonics. See Section 4.5.
SYMSAVE Utility which creates a source file EC
of equate statements using the symbol
table resulting from an assembly.
See Section U4.6. Used occaslonally by
assembly language programmers.
FILECOPY Utility for copying a file from one drive EC
to another. See Secton 4.7. Used often.
DISKCOPY Utllity for copylng a disk from one drive to EC
another. See Section 4.8. Used often.
COPYFILE Utility for copying a file from one disk to EC
another, using the SAME drive, for systems
having only one drive. See Section 4.10.
DEBUG-GEN Utility used to generate the DEBUG utility EC
residing in a particular portion of
memory. See Section 4.11.
FEATURES Utllity used to shorten BASIC. EC

Rev. 8.4-A 7/26/79

See Appendix G.

1-11

NAME

DESCRIPTION TYPE

SYSQl, and
SYSQ2

UTILITY

RES.I/0

DIAB

DIABS
CENT
CENT4
DECW

DECW4
SAVERES

NOESCAPE

MDIAG
MAP

FLASHT

PROM
STARTREKG
CIVILWAR

LUNAR
FINANCE

Assembly language source code containing the AL
names of all MDOS shared subroutilnes,
equated to thelr addresses. Used
in assembly language programs calling those
routines. See Section 4.3. Used from time
to time by assembly language programmers.

A utility used to initilalize diskettes, create B
BASIC-only diskettes, and examine memory.

See Appendix B.

The source code file of the I/0 routines in AL
RES. Used to rewrite the I/0 routines 1if
using non-standard peripherals.

See Appendlices M, N, and O.

Routine for interfacing to Diablo-protocol EC
printers 1f the Biltstreamer board 1is
addressed for ports 0 - 3. Overlays
directly over RES in memory.

See Section 2.2.2. Not
needed after RES 1s saved on diskette.

Same as DIAB, but Bitstreamer 1s at 4 - 7. EC

Same as DIAB, but for Centronics printers. EC

Same as CENT, but Bitstreamer is at 4 - 7. EC

Same as DIAB, but for teletype-protocol EC
printers.

Same as DECW, but Biltstreamer 1is at 4 - 7. EC

Utility used to save on disk the machine EC

language version of the I/0 portion of the
RES Module. See Section 2.2.0. Not
needed after the RES Module 1s finalized.

Utllity which stops the ESC key from causing EC
control to be passed to the Systems Monitor.
See Section 2.3.7. Not needed after used
once.

Ut1lity used to check the computer's memory. EC
See Appendix Q. Do not delete this.

Utility which tells what kind of memory EC
(RAM, ROM or nothing) is in the system
at each address. See Appendix Q.

Useful when servicing a system.

Demonstration of the graphics capability of EC
the Flashwriter II board. See Appendix J.
Dealers use often.

Utility used with the PROM/RAM III board to EC
program EPROM's. See PROM/RAM III manual.

The Star Trek game. See Appendix J.

Dealers use often. Others 1f they like 1it.

Another game. See Appendix J.

Another game. See Appendix J.

Day-to-day financial calculations.

See Appendix J. Used often 1f you need it.

T ww w

1-12

Rev. 8.4-A 7/26/79

To obtain a list of the files on your diskette, to see what 1is
actually there, turn the machine on, mount the system diskette in
drive 0 (right-hand drive), type B after the Monitor prompt (*),

type FILES after the MDOS prompt (>), and then press the RETURN key.
The interaction looks like this on the screen:

*B

Vector MZ MDOS X.XX
>FILES

DIR 03 0000
RES 03 0014

The left-hand number refers to the file type, explained in Section
4.2.3. The right-hand number gives the length of the file in
sectors. Both numbers are in hexadecimal (base 16).

The list is long and will roll past the edge of the screen. To stop
it at any point, depress control-S (CTRL key and S at the same
time.) To start it up again, depress the spacebar.

If you have a printer which is up and running with your system, you
can print the directory by typing ASSIGN 2,3 (returmn), before you
type FILES. After the directory is printed, type ASSIGN 2,2

(return) to turn the printer off again. '"(return)" means press the
RETURN key.

Rev. 8.3-A 7/1/79 1-13

II INSTALLATION, CONFIGURING PERIPHERALS, AND USE OF DISKETTES

2.1 INSTALLATION

For turn-key systems (that is, all internal wiring and software
modifications have been done prior to delivery), just plug in
external cables to the sockets on the rear panel of the mainframe.
End users: if sockets are not labeled and choice is not obvious, ask
your dealer.

For non-turn-key systems, refer to Section 2.2 for directions on
setting up peripherals, interface boards, cables, and interface
software, For systems with which a printer will be used, it may be
desirable to first set the system up as if there were no printer,
test it as explained below, then complete the setting up procedures
for the printer. Section 2.2 separates the 2 stages.

When ready to test the system, do as follows:

l. Turn the power key on the front panel and then turn on
peripherals. The Monitor prompt * should appear on the
screen. (Exception: in MEMORITE systems, depress RESET on

the front panel after turning the power on. The Monitor
prompt should then appear.)

2. Enter N on the keyboard. This is a memory test which also
functions as a test of the console. After a few seconds a
hexadecimal number should appear. It indicates the first
memory address where no memory hardware is located. 1In
normal systems with 48K of RAM, the number should be C000.

3. Insert and mount the MDOS Personalized System Diskette in
drive 0. Drive 0 is the right-hand drive. The left-~hand
drive is drive 1. Refer to Section 2.4 for how to insert,
mount, and in general handle diskettes.

4. Enter B. This causes MDOS to be loaded and take control.
This will be indicated by the MDOS sign on message and the
MDOS prompt: >.

5. To test a separate printer, if any, first make sure there is
paper in the printer. Then, enter ASSIGN 2,3 (return),
followed by FILES (return). (The expression (return) always
means "press the RETURN key."). A list of the files on the
System Diskette will be printed.

When the system is working properly, refer to Chapter 3 for a
complete description of normal operating procedures, and to Section
2.4 for instructions on the handling and maintenance of diskettes.
Do not neglect either Section 2.4 or Chapter 3 as they contain
information which is not effectively acquired by trial and error
alone. Section 2.3 describes various modifications which can be
made to the hardware.

Rev. 8.1 2/5/79 2-1

alone. Sectlon 2.3 describes various modifications which can be
made to the hardware and systems software.

2.2 CONFIGURING THE MZ - THIS SECTION FOR NON-TURN-KEY SYSTEMS ONLY

2.2.0 MODIFYING THE RES MODULE

At various points 1in this chapter (or in related appendices) you
will be instructed to carry out procedures which modify the RES
Module. The most common of such procedures are the Software
Implementation Procedures found in section 2.2.1 under each of the
standard configurations. (These Software Implementation Procedures
are used only if a printer is implemented.)

To carry out any procedure which modifies the RES Module, turn the
system and all. peripherals on. In MEMORITE systems, depress the
RESET button next. Then insert and mount the Personalized MDOS
System Diskette 1in drive 0. Do not use the Master MDOS System
Diskette. This diskette should never be altered and only used for
emergency back-up. After the Monitor prompts with *, enter B. This
"boots up" MDOS, as indicated by the MDOS sign-on message and MDOS
prompt: >. Now proceed with the glven procedure.

Note that 1n all software procedures, "(return)" means "press the
RETURN key."

The user may be instructed to enter a command, such as DIAB4
(return). Whenever such a command 1s entered, the system will
respond by displaying the MDOS sign-on message agaln, or at least
the MDOS prompt >.

A step will be found which commands "Save the RES Module on
Personalized System Diskette." This 1s accomplished as follows:
Make sure the Personalized MDOS System Diskette 1s inserted and
mounted in drive 0. Then under MDOS type SAVERES (return). .The
drive should write on the diskette. The RES Module 1s now saved on
the Personalized MDOS System Diskette.

Important: You may want to do several different procedures, each of
which terminates with saving the RES Module. You are definitely
free to do any group of them at one sitting, and then save the RES
Module as described above ONCE at the end of the session, 1in order
to save trouble. Alternately, you may of course save the RES Module
after each such procedure, if desired.

Note: SAVERES is a utility which saves on diskette the I/0 portion
of the RES Module, in machine language form. The block of code
which 1s saved corresponds to the coede found in the source listing
called RES.I/O, plus a few bytes before and after. In the rare case
you have modified the RES Module outside of the I/0 portion, then
you must use the following alternate steps to save the RES Module:

Under MDOS, enter TYPE "RES" @ (return) SCRATCH "RES" (return) SAVE
"RES" 2B1 1598 3 (return).

Rev. 8.4-4 7/26/79 2=2

2.2.1 STANDARD CONFIGURATIONS

At this time, Vector Graphic supplies the interface hardware and
software to support several different configurations of main
peripheral devices, that is, printers, keyboards, video displays,
and terminals. This section is concerned with identifying these
standard configurations, and explaining how they are implemented.

If the peripheral device desired is not found among the standard
configurations, refer to Section 2.2.3.

The information is collected in the following pages. Each section
is concerned with one configuration. Each configuration is a
selected group of peripherals. Peripherals are listed as generic
types, (upper case lettering). Specific makes are given as examples,
(lower case lettering). The user is not limited to these examples,
but can use any model that falls within the given generic
description.

To use these charts, find the configuration desired. When ordering
an MZ or other Vector Graphic computer, order it with the components
listed as well as the peripherals desired if supplied by Vector
Graphic. (Since all systems are always delivered with one
Bitstreamer board and an I/0 cable, do not explicity order these
items.)

If no printer is being used, find the desired configuration ignoring
the type of printer listed. For this purpose, refer only to those
configurations whose headings are NOT preceded -by asterisks(¥%).

Then, only order the parts and carry out the steps shown WITHOUT
asterisks.

If a printer is being added to an existing system, find the desired
configuration, then only order the parts and carry out the steps
shown WITH an asterisk (*). To obtain a useful summary of the
issues involved with printers, see seciton 2.2.2

Some systems may already be partially configured at the factory or
by intermediaries, so that you need order and set up only the
components not already included. For example, "System B" is an MZ
with the Vector Graphic Mindless Terminal and Flashwriter II board.
All you have to add is a printer. Your choices would be the
~configurations in Sections 2.2.1.4 and 2.2.1.6 for Centronics or

Diablo-type printers respectively. MEMORITE is even simpler than a
- System B. Just do the Software Implementation procedure in Section
2.2.1.6, using the DIAB4 command.

Flashwriter Board: The charts refer to a "Flashwriter Board."
Order a Flashwriter I for 16 x 64 display and Flashwriter II for 80
X 24 display. When ordering an Extended Systems Monitor for use
with one of these boards, always state which it is for.

When your system and/or components are delivered, refer again to the

chart. Perform the implementation procedures listed in order to
implement the desired configuration.

Rev. 8.3-A 7/1/79 2-3

* 2.2.1.1 Printer: PARALLEL, CENTRONICS 700 SERIES PROTOCOL.
Console: SERIAL VIDEO TERMINAL.
Example: Parallel Centronics matrix printer (700 Series), and
Hazeltine terminal.
Interface Components Required
l. Option C Extended Systems Monitor, on PROM.
* 2. Centronics interfacing kit
3. Bitstreamer board and I/0 cable (no need to order;
included in system automatically.)
Hardware Implementation Procedures
* 1. 1Install the Centronics interfacing kit as instructed in
Appendix H. Make sure there is an I/O cable connected at
one end to J3 on the Bitstreamer board and at the other
end installed in one of the cutouts at the rear of the
mainframe.

2. Plug the external terminal cable into the socket on the
rear of the mainframe which is wired to the & pin molex
connector on the Bitstreamer board.

* 3. Plug the printer cable into the socket which is wired to
J3 on the Bitstreamer board.
Software Implementation Procedures
* 1. Under MDOS, enter CENT (return).
* 2. Save RES Module on Personalized System Diskette.
2.2.1.2 Printer: SERIAL, DIABLO 1610 OR TELETYPE PROTOCOL.
Console: SERIAL VIDEO TERMINAL.
Example: Printer: if Diablo protocol - Diablo 1610 or 1620,
Qume Sprint 5, or NEC Spinwriter; if Teletype protocol -

Decwriter

Interface

1.
2.

* 3.
* 4.

Hardware

* l.

r Teletype, or TI 810 or 820.
Console: Hazeltine terminal.

Components Required

Option C Extended Systems Monitor, on PROM
Bitstreamer board and I/0 cable (no need to order;
included in system automaticelly.)

A second Bitstreamer board

A second I/0 cable

Implementation Procedures

Jumper one of the Bitstreamer boards so that it is
readdressed for ports 4 - 7 rather than the original 0 -
l. Instructions will be found in the Bitstreamer User's

Rev. 8.1 2/5/79

Software

Rev.

8.1

Manual. This board will be used to control the printer.

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Connect one of the I/0 cables to J3 on one of the
Bitstreamer boards. 1Install the 25 pin socket on the
other end of the cable in a cutout at the rear of the
mainframe. .

Do step 4 for the second Bitstreamer and I/0 cable.

Plug the printer cable into the socket connected to the
readdressed Bitstreamer.

Plug the terminal cable into the socket connected to the
normal Bitstreamer. IMPORTANT: Some terminals will not
operate if they are connected to all 25 pins, because some
of the pins of J3 on the Bitstreamer have functions other
than serial communications. 1If your terminal does not
operate after connecting it to all pins, then connect only
the essential ones. Example: the Hazeltine 1400 will
function only if a 3-line cable is used, connecting, pins
2,3, and 7. A 25 pin ribbon connector will not work.
Other terminals may require additional pins, but again not
all 25. Refer to the Bitstreamer board manual if
necessary for definitions of each of the pins on the
backpanel connector.

Implementation Procedures
Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECW4
{(return). :

Save RES Module on Personalized System Diskette.

2/5/79 2-5

* 2.2.1.3

Printer: PARALLEL, CENTRONICS 700 SERIES PROTOCOL

Example:
Hitachi v

Interface

1.
2.
3.
4.
5.
* 6.
* 7.

Hardware

* l.

Console: PARALLEL ASCII KEYBOARD, SEPARATE VIDEO MONITOR.

Printer: Parallel Centronics matrix printer (Series 700)
Console: Vector Graphic stand-alone parallel keyboard and
ideo monitor.

Components Required

Option EV Extended Systems Monitor on PROM

Flashwriter board

I/0 cable

Video cable, for Flashwriter to rear panel

Video monitor to mainframe cable

Centronics interface kit

Bitstreamer board with I/0 cable (no need to order;
included in system automatically.)

Implementation Procedures

Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions
will be found in the Bitstreamer User's Manual.

Install the Centronics interfacing kit as instructed in
Appendix H. However, do not install the 6 pin molex
connector or the serial I/0 cable which come in the
Centronics interface kit. They are not needed and can be
set aside. Make sure that there is a regular I/O cable
connected to J3 on the Bitstreamer board and installed at
the other end in a cutout at the rear of the mainframe.
This socket will be used for the printer cable.

Connect the 2 pin socket at one end of the video cable to
the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board. The
socket should be positioned so that the inside wire is
connected to pin 1, and the-outside "shield" wire is
connected to pin 2 (ground). Install the circular socket
at the other end of the cable into one of the circular

cutouts at the rear of the mainframe.

Connect the 24 pin dip plug at one end of the second I/0
cable to J1 on the Flashwriter board. 1Install the 25 pin
socket at the other end in one of the cutouts at the rear
of the mainframe. This socket will be for the keyboard
cable.

Plug the printer cable into the appropriate sockets on the
rear of the mainframe.

Plug the external keyboard and monitor cables into the
appropriate sockets on the rear of the mainframe.

2-6 Rev. 8.1 2/5/79

Software Installation Procedures

* 1. Under MDOS, enter CENT4 (return).

* 2. Save RES module on Personalized System Diskette.

* 2.2.1.4 Printer: PARALLEL, CENTRONICS SERIES 700 PROTOCOL.
Console: VECTOR GRAPHIC MINDLESS TERMINAL.

Example: Parallel Centronics matrix printer (Series 700) and
Graphic Mindless Terminal.

Interface Components Required

1. Option EV Extended Systems Monitor on PROM

2. Flashwriter board

3. Mindless Terminal 3-part I/0 cable

4. External Mindless Terminal cable (or equivalent)
* 5. Centronics interface kit

* 6. Bitstreamer board with I/0 cable (no need to order;
included in system automatically.)

Hardware Implementation Procedures

Vector

* 1. Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions

will be found in the Bitstréamer User's Manual.

* 2. 1Install the Centronics interfacing kit as instructed in

Appendix H. However, do not install the 6 pin

molex

connector or the serial (3 wire) I/O cable which come in
the Centronics interface kit. They are not needed and can
be set aside. Make sure that there is a regular I/0 cable
connected to J3 on the Bitstreamer board and installed at
the other end in a cutout at the rear of the mainframe.

This socket will be used for the printer cable.

3. 1If not already done at the factory, install the Mindless
Terminal 3-part I/0 cable as instructed in the terminal's
documentation. The 3 parts are connected to the power
supply, the Flashwriter board video output pins, and the

Flashwriter board keyboard input socket (J1l).

At the

other end, the DB25 socket is installed in one of the

cutouts at the rear of the mainframe.

* 4. Plug the printer external cable into the respective
socket at the rear of the mainframe.

5. Plug the terminal external cable into the respective

socket at the rear of the mainframe.
Sof tware Installation Procedures

* 1. Under MDOS, enter CENT4 (return).

* 2.
Diskette.

Save RES module on Personalized System

2.2.1.5 Printer: SERIAL, DIABLO 1610 or TELETYPE PROTOCOL

Console: PARALLEL ASCII KEYBOARD, SEPARATE VIDEO MONITOR.

Example:

Printer: if Diablo protocol - Diablo 1610 or 1620,

Qume Sprint 5, or NEC Spinwriter; if Teletype protocol -
Decwriter, Teletype, or TI 810 or 820.

Console: a Vector Graphic stand-alone parallel

keyboard and Hitachi video monitor.

Interface

l.
2.
3.
4.
5.
* 6.

Hardware

1.

Components Required

Option EV Extended Systems Monitor on PROM
Flashwriter board

I/0 cable .

Video cable, Flashwriter to rear panel

Video monitor to mainframe cable

Bitstreamer board with I/O cable (no need to order;
included in system automatically.)

Implementation Procedures

If no printer is being used, remove the Bitstreamer
from the mainframe, and do not put it back in. It cannot
be in the system (unless readdressed as explained below.)

Jumper the Bitstreamer board so that it is readdressed for
ports 4 -~ 7 rather than the original 0 - 1. Instructions
will be found in the Bitstreamer User's Manual.

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left~-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Make sure that there is a regular I/0O cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

Connect the 2 pin socket at one end of the video cable to
the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board.
Install the circular socket at the other end of the cable

2~8 Rev. 8.1 2/5/79

into one of the circular cutouts at the rear of the
mainframe.

7. Connect the 24 pin dip plug at one end of the second I/O
cable to J1 on the Flashwriter board. 1Install the 25 pin
socket at the other end in one of the cutouts at the rear
of the mainframe. This socket will be for the keyboard
cable.

* 8. Plug the printer external cable into the appropriate
socket on the rear of the mainframe.

9. Plug the keyboard and monitor external cables in the
appropriate sockets on the rear of the mainframe.

Software Installation Procedures

* 1. Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECW4

(returnjy.
* 2. Save RES module on Personalized System Diskette

2.2.1.6 Printer: SERIAL, DIABLO 1610 or TELETYPE PROTOCOL.
Console: VECTOR GRAPHIC MINDLESS TERMINAL.

Example: Printer: if Diablo protocol - Diablo 1610 or 1620, Qume
Sprint 5, or NEC Sprinwriter; if Teletype protocol - Decwriter,
Teletype, or TI 810 or 820.

Console: Vector Graphic Mindless Terminal.

Interface Components Required

l. Option EV Extended Systems Monitor on PROM
2. Flashwriter board
3. Mindless Terminal 3-part I/0 cable
4. External Mindless Terminal cable (or equivalent)
* 5. Bitstreamer board with I/O cable (no need to order;
included in system automatically.)

Hardware Implementation Procedures

l. If no printer is being used, remove the Bitstreamer from

the mainframe. Do not put it back in. It cannot be in
the system.

* 2, Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions
will be found in the Bitstreamer User's Manual.

* 2. Make sure that the printer is set for its highest speed,

(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if

Rev. 8.1 2/5/79 2=-9

necessary. Some printers such as the Diablo regquire a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

* 4., Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

* 5, Make sure that there is a regular I/0 cable connected to
- J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket

will be used for the printer cable.

6. If not already done at the factory, install the Mindless
Terminal 3~part I/0 cable as instructed in the terminal's
documentation. The 3 parts are connected to the power
supply, the Flashwriter board video output pins, and the
Flashwriter board keyboard input socket (J1). At the
other end, the DB25 socket is installed in one of the
cutouts at the rear of the mainframe.

* 7. Plug the printer external cable into the respective socket
at the rear of the mainframe.

8. Plug the terminal external cable into its socket at the
rear of the mainframe.

Software Installation Procedures

* 1. Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECW4
{return).

* 2. Save RES module on Personalized System Diskette.

S * 2,2.1.7 SERIAL PRINTING TERMINAL (HAS A KEYBOARD), DIABLO 1610
OR TELETYPE PROTOCOL
AND X VIDEC MONITOR

Example: Printing terminal: if Diablo protocol - Diablo 1620, Qume
Sprint 5 with keyboard, or NEC Sprinwriter with keyboard; if
Teletype protocol - Decwriter, Teletype, or TI 810 or 820, with
keyboards;

Video monitor: Hitachi.

Interface Components Required

. Option CV Extended Systems Monitor on PROM

. Flashwriter board

Video cable, Flashwriter to rear panel

Video. Monitor to Mainframe cable

Bitstreamer board with I/0 cable (no need to order;
included in system automatically.)

Ul LU N =
.

2-10 Rev. 8.1 2/5/79

Hardware

* l.

Sof tware

Rev.

* l.

* 2.

8’1

Implementation Procedures

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting 1is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal «circuitry to increase from 300 baud to
1200 baud. '

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Make sure that there is a regular I/O cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

Disable the parallel port on the Flashwriter board. To do
this, simply remove chip U52 from the board, using a small
screw driver to pry it out of its socket. If U52 cannot
be easily located, refer to the Flashwriter User's
Manual.

- Connect the 2 pin socket at one end of the video cable to
the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board. The
socket should be positioned so that the inside wire is
connected to pin 1, and the outside "shield" wire is
connected to pin 2 (ground). Install the circular socket
at the other end of the cable into one of the circular
cutouts at the rear of the mainframe.

Plug the printer external cable into the socket on the
rear of the mainframe.

Plug the monitor external cable into the appropriate
socket on the rear of the mainframe.

Installation Procedures

Under MDOS, if printer uses Diablo protocol, enter DIAB
(return); if printer used Teletype protocol, enter DECW
(return).

Save RES module on Personalized Diskette.

2/5/79% 2-11

* 2.2.1.8 SERIAL PRINTING TERMINAL (HAS KEYBOARD), DIABLO 1610

Example:

OR TELETYPE PROTOCOL
NO V1DEO.

Printing terminal: if Diablo protocol - Diablo 1620, Qume

Sprint 5 with keyboard, or NEC Sprinwriter with keyboard; if
Teletype protocol - Decwriter, Teletype, or TI 810 or 820, with
keyboards;

Interface Components Required

1.

* 2.

Hardware

* 1.

Sof tware

* l.

* 3'

Option C Extended Systems Monitor on PROM

Bitstreamer board with I/0O cable (no need to order;
included in system automatically.)

Implementation Procedures

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo regquire a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Make sure that there is a regular I/O cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

Plug the printer cable into the socket at the rear of the
mainframe.

Implementation Procedures

Under MDOS, if printer uses Diablo protocol, enter DIAB
(return); if printer uses Teletype protocol, enter DECW
(return).

Save RES Module on Personalized System Diskette.

If printer uses Diablo protocol, then before each session
at the computer, as the first step after loading MDOS,
enter:

ASSIGN 2,3 (return)
ASSIGN 1,0 (return)

(Do not be concerned that while entering the second line,
the printer prints every character twice.)

2

12 Rev. 8.1 2/5/79

NOTE: Using the serial Diablo protocol printing terminals at 1200
baud with no video display is limited by the fact that no Extended
Systems Monitor commands which cause outputing more than about 40
characters can be used. (This is because serial output from the
Extended Systems Monitor does not use the Diablo protocol technique
of checking whether the printer can accept the next character. More
than 40 characters at 1200 baud will usually cause the printer's
buffer to overflow.) MDOS and M.BASIC commands do not cause the

same problem, so long as the above mentioned ASSIGN commands are
used prior to each session.

One way to solve this problem is to run the printer at 300 baud
(Bitstreamer at 300 baud too) and to use the DECW command rather
than the DIAB command before saving the RES module on the
Personalized System Diskette. In this case, the ASSIGN commands are
not needed. The drawback is slower printing.

2.2.2 ADDING A STANDARD PRINTER TO AN EXISTING SYSTEM

The information in this section concerns adding a printer to an
existing system, one which already has some kind of video dlsplay
and keyboard functlonlng. The logic behind this information is the

same as that used in sectlon 2.2.1, except that here it is presented
in summary form.

The printers presently considered standard for Vector Graphic
systems are:

Centronics Series 700 parallel matrix printers,
Diablo 1610 protocol serial printers, such as Diablo 1610, Qume
Sprint 5, or NEC Sprinwriter, and

Teletype protocol printers, such as Decwriter, Teletype, or TI
810 and 820.

There are many makes and models with protocols similar or identical
to the above. ©Some differences between makes of printers will not
make them incompatible with the Vector Graphic computers
necessarily, but it is recommended that the user try out with his
system any printer not listed above, before purchasing.

Adding a printer involves 3 steps:

) obtain the interface components, as well as the printer,
2) do hardware implementation procedures required, and
3) do software implementation procedures regquired.

INTERFACE COMPONENTS REQUIRED

l) Bitstreamer board and 1/0 cable. Generally, use the one which
came with your system. If it is beinyg used to control a serial
terminal now, it can be used in addition to control a parallel
printer such as a Centronics printer. However, if the present

Rev, 8.1 2/5/79 2-13

terminal is serial, and a SERIAL printer such as Diablo, Qume, or
Teletype is desired, a second Bitstreamer and I/O cable must be
ordered.

2) If a parallel Centronics protocol printer is to be implemented,
order a CENTRONICS INTERFACE KIT from Vector Graphic or an
authorized dealer.

HARDWARE IMPLEMENTATION

1) If the keyboard and video are controlled by a Flashwriter board,
or if both the printer and the video console are serial, then there
will be 2 interface boards in the system. When this is the case,
the Bitstreamer controlling the printer must be jumpered to respond
to port addresses 4 - 7 rather than 0 - 1. Instructions will be
found in the Bitstreamer User's Manual.

2) If the printer is a parallel printer using Centronics protocol,
make the modifications to the Bitstreamer board and install the
Centronics Interface Kit, both as described in Appendix H. Do all
the procedures in Appendix H if the keyboard and video are a serial
terminal such as Hazeltine. However, if the keyboard and video are
controlled by a Flashwriter board, then do not bother to install the
6-pin plug or the serial I/O cable.

3) If printer is serial, make sure it 1s set at its highest speed
(1200 baud if it is Diablo 1610 protocol.) Then make sure the
dipswitch on the upper left-hand corner of the Bitstreamer is set at
the same rate (chosen switch up, all others down.) Printer must be
set for MARK parity.

4) Make sure the the 24 pin dip plug on the I/O cable is inserted in
J3 on the Bitstreamer board and that the socket on the other end is
installed in one of the cutouts on the mainframe back panel. Then
plug the printer cable into that same socket on the back panel.

SOFTWARE IMPLEMENTATION

The RES Module on the MDOS System Diskettes is not configured for
any particular printer. However, a large number of versions of the
I/O0 portion of the RES Module are present on the diskettes. The
user need only overlay the desired version onto the RES Module
stored in memory, and then save the new RES Module onto the
Personalized System Diskette. The versions available as of this
release are:

CENT and CENT4 for parallel Centronics protocol printers

DIAB and DIAB4 for serial Diablo protocol printers

DECW and DECW4 for serial Teletype protocol printers

In each case, the version with a "4" attéched must be used if the

Bitstreamer has been readdressed for ports 4 -~ 7. Otherwise use the
version without a "4".

2-14 Rev. 8.1 2/5/79

To accomplish the overlay, simply enter the name of the file in
upper case letters following the MDOS prompt >. After the overlay is
done, indicated by another MDOS sign-on message appearing on the
screen, save the RES Module by entering the following commands under
MDOS:

TYPE "RES"™ 0 (return)
SCRATCH "RES" (return)
SAVE "RES" 2B8 146B 3 (return)

If the printer is not one of the above types, then a custom
interface routine must be written. See Appendix N.

2.2.3 NON-STANDARD CONFIGURATIONS

Any configuration of peripherals which includes a printer, video
unit, keyboard, or terminal different than those used in the
standard configqurations, is a non-standard configuration.

Hardware: In order to order and implement the interface hardware,
use the standard configuration procedures as models as far as is
possible.

Software: In many non-standard configurations, it will be necessary
to custom write a printer and/or console physical I/O routine. refer

to Appendix M for rewriting console I/0 and to Appendix N for
rewriting printer I/O.

2.3 MODIFYING THE SYSTEM HARDWARE

2.3.1 CHANGING TO 2 MHZ CLOCK RATE

Some non-Vector Graphic S-100 boards operate only at 2 MHz, the rate
of the original 8080 clock. Since the 2Z2-80 can operate at both
rates, you may desire to run the system at 2 MHz in order to include
such boards. Instructions will be found in Appendix L.

2.3.2 CONNECTING ADDTIONAL DISK DRIVES

2 Micropolis disk drives are standard equipment. Additional drives
may be added because the Micropolis software can addresss up to 4
drives. Contact your dealer or Vector Graphic in order to order.

Rev. 8.1 2/5/79 2-15

2.4 DISKETTE MEDIA

2.4.1 DESCRIPTION

The recording medium used with the MZ Micropolis diskette subsystem
is an industry standard 5 1/4-inch diskette (Fig 2.1l) in its
‘hard-sectored version with 16 sectors, each defined by a sector
hole. Thus, it has one index hole and 16 sector holes. Diskettes
of this type are available from computer stores or from other
computer supply sources. DO NOT USE DISKETTES WITH OTHER THAN 16
HARD SECTORS, OR THOSE WHICH ARE SOFT-~SECTORED (NO SECTOR HOLES).
THEY WILL NOT WORK.

2.4.2 HANDLING

1) The Micropolis flexible disk drive subsystem was designed to
take every reasonable precaution to protect your diskettes and the
data recorded on them. Examples of this care are the door interlock
which prevents mounting of the diskette until it is properly
inserted, and the automatic 5 second deselect feature which relieves
the head load pressure from the recording surface when the drive is
not in use.

Once the diskette is removed from the drive, it is your
responsibility to exercise the same care in handling and storing the
diskette to ensure its long service life. The following precautions
are guidelines for proper handling:

a) The exposed recording surface is easily contaminated =~ do
not touch or attempt to clean the surface. Do not smoke, eat or
drink while handling the diskette. Whenever the diskette is removed
from the drive, return it to its protective envelope.

b) The diskette is a thin oxide-coated plastic sheet which may
be damaged if handled carelessly. Do not place heavy objects on the
diskette; do not expose the diskette to excessive heat or sunlight;
do not use rubber bands or paper clips on the diskette; do not bend
or fold the diskette.

c) Do not write on the diskette labels with an erasable
pencil: graphite particles may contaminate the diskette or it may
be damaged by the force exerted in writing. A fiber-tip type of pen
is recommended. Return the diskette to its envelope before writing
on labels.

d) Information is recorded on the diskette as magnetized
"spots". Exposure of the diskette to magnetic fields or
ferromagnetic objects which may become magnetized may result in the
loss of information.

If a diskette is damaged or contaminated it should be replaced. If
a contaminated diskette is placed in the drive, the receiver and
read/write head may become contaminated and ruin other diskettes.

2) The auto-deselect will ensure reasonable diskette 1life. But, as

a rule you should unmount the diskette whenever it is not going to
be accessed for long periods of time. This will give added diskette
life and prolong the life of the drive motor.

2.4.3 LOADING AND UNLOADING

There are two stages of loading a diskette. First, insert the
diskette with label side upward for horizontal drives, or leftward
for vertical drives, and with the edge nearest to the read/write
head access hole going in first. 1Insert the diskette all the way,
until it clicks into place. At this point the diskette is said to
be "inserted" but not yet "mounted". The diskette may be left like
this for any length of time without decreasing its life. Power may
be turned on or off with the diskette in this condition. It is
recommended however that if a diskette will not be used for any
length of time it be returned to its envelope or other storage
file.

Second, the diskette is "mounted"™ by depressing the manual load
actuater on the disk drive slowly but firmly until it stays in the
mounted position. The drive will begin to turn and rotate the
diskette inside its jacket. If the load actuator cannot be fully
depressed, this indicates that the diskette was not inserted
completely or properly.

Power should NOT be turned on or off when a diskette is in the
mounted position. The consequence is from time to time the loss of
data on the diskette.

Once the diskette is mounted, it is accessible by software for
writing or reading. When a read or write operation is initiated,
you will hear an audible click from the drive unit and the red light
on the unit will glow, indicating that unit has been selected.
After the operation is complete, the unit will remain selected for 5
seconds. At the end of 5 seconds, the unit will be automatically
deselected: the red light will go out, and there will be another
click as the head load pad is raised off the surface of the
diskette. This automatic deselect feature is important in
lengthening the life-~-span of diskettes.

To dismount the diskette, press the load actuator down as far as it
will go, then release pressure. It will then open to the unmounted
position. This discontinues rotation of the diskette within its
jacket. In order to do your part as user in prolonging the life of
the diskette, observe the following rule: UNLOAD THE DISKETTE DURING
PERIODS IN WHICH IT IS NOT IN USE. This reduces wear of the
diskette against its jacket. Note that the diskette may be left
inserted, so long as it is unmounted, without shortening its life.

To remove the diskette, press the load activator upward (or leftward

in vertical drives). The diskette will be popped out (de-inserted)
and can now be removed.

Rev. 8.1 2/5/79 2-17

2.4.4 REPLACEMENT AND BACK-UP OF DISKETTES

The nature of floppy diskette drives is that the read-write head is
in contact with the diskette surface whenever the unit is selected,
resulting in gradual deterioration of the surface. <Continual
loading of the head on a single track will naturally result in its
deterioration before the rest of the diskette. The rotation of the
diskette within its jacket is an additional source of wear.

Backup: The BEST defense against loss of diskette-based data is
maintaining a back-up diskette for each diskette you use. In the
business world, this is considered dogma. Data is most often lost
due to damage to diskettes from accidental mis~handling; normal wear
is much less often a problem. The standard rule of thumb is as
follows: copy a front-line diskette on to its back-up whenever you
cannot afford to lose the information stored since you last backed
it up. This goes for programs as well as data. If you are
operating business programs such as inventory or accounts
receivable, maintain a regular back-up schedule, once a week or once
bi-weekly. 1In addition, your programs if possible should be written
so that an internal file of entries is maintained, and a printout of
entries made each day is produced. Then, if data is lost before it
can be copied on to the back-up, it is fairly easy to re-enter it,
using the back-up diskette as the starting point. In business
particularly, back-up diskettes and printouts of daily entries
should be stored in a safe place.

Replacement: In addition to being backed up, fregquently used
diskettes must be replaced from time to time. The intervals are
entirely dependent on the kind of usage. There are no accurate
predictions for diskette life~span, but 2000 to 3000 hours of
rotation is a reasonable estimate. A good suggestion therefore is
to replace such diskettes every 6 months. Data diskettes used
infrequently may never require replacement.

Failure of a diskette will be indicated by the inability of the
system to read a file which it normally has been able to read. MDOS

will report "PERM I/0O ERROR". With proper care, this should not
occur.

Replacing a diskette simply means copying it onto a new previously
unused diskette. The old diskette can be used for temporary
storage, or disposed of.

To copy diskettes use the Diskcopy Utility, see Section 4.3.

2-18 Rev. 8.1 2/5/79

2.4 DISKETTE MEDIA

2.4.1 DESCRIPTION

Use an industry standard 5 1/4-inch diskette (Fig 2.1) with 16
"hard" sectors. There will be 16 sector holes and 1 additional
index hole around the edge of the center hole. Get them from
computer stores or from other computer supply sources. DO NOT USE
DISKETTES WITH OTHER THAN 16 HARD SECTORS, OR THOSE WHICH ARE
SOFT-SECTORED (NO SECTOR HOLES). THEY WILL NOT WORK.

Without relation to price, some brands of diskettes do not work well
in the Micropolis high-density drives. Use one of the following

brands: Scotch, Dysan, or Maxell. Other brands will not be
reliable.

Individual diskettes may sometimes not work. Besides manufacturing
defects, we have occasionally found batches of diskettes with the
wrong number or sectors, and sometimes diskettes are manufactured
with 2 diskettes inside the jacket. Diskettes which do not work or
do not work reliably should be replaced immediately.

2.4.2 IF YOU HAVE PROBLEMS WITH DISK ERRORS

By a disk error, we are referring to errors reported on the screen
as "PERM I/O ERROR", indicating something wrong with the diskette or
drive. (The message is different in different operating systems.
Another uses '""CRC ERROR".) If your system generates such errors
often with different diskettes, take the following measures in the
order given:

a) Make sure the ocver to the mainfram is on. It is a
shield.

b) Switch to another of the suggested brands of diskettes.

c) 1If the errors persist, contact your dealer or service
representative.

2.4.3 HANDLING

Diskettes are easily damaged and contaminated. Please obey the
following rules without exception:

a) Do not touch or attempt to clean the inner surface.
b) Do not smoke, eat, or drink while handling the diskette.
c) Do not place heavy objects on the diskette.

d) Do not expose the diskette to excessive heat or sunlight.

Rev. 8.3-A 7/1/79 2-19

e) Do not use rubber bands or paper clips on the diskette.
f) Do not bend or fold the diskette.

g) Do not write on a diskette with a pencil. A fiber-tipped
pen is recommended. Return the diskette to its envelope before
writing on it.

h) Do not expose the diskette to magnetic fields.

i) After use, always return a diskette to its protective
envelope or other protective system such as plastic notebook pages
designed for diskettes.

i) Store diskettes in a vertical position, thus reducing
rubbing.

k) If a diskette is damaged or contaminated, replace it. 1If a
contaminated diskette is placed in the drive, the receiver and
read/write head may become contaminated and ruin other diskettes.

1) Unmount the diskette if it will not be accessed for a half
hour or more. If the interval is very long, remove it from the
drive and return it to its storage envelope.

2.4.4 LOADING AND UNLOADING

There are two stages of loading a diskette. First, insert the
diskette with label side leftward, with the edge nearest the exposed
area pointing inward. Insert the diskette until it clicks into
place. You should not have to push so hard that the diskette bends.
The diskette is now "inserted" but not yet "mounted". Although not
good practice for long periods, you may leave the diskette like this
any length of time, and even turn power on or off.

Second, to "mount" the diskette, push the door of the drive until
you feel increased resistence about half-way closed, then SLOW DOWN,
and push SLOWLY but surely until it stays in the mounted position.
The drive will begin to turn and rotate the diskette inside its
jacket. 1If you cannot fully close the door, the diskette is not
inserted properly.

Do NOT turn power on or off while a diskette is in the mounted
position. This will sometimes damage the diskette. However, 1f you
accidently do this, go ahead and use the diskette because it is

probably undamaged.

Once the diskette is mounted, it is accessible by software for
writing or reading. When the computer accesses tge diskette, you
will hear a click from the drive and its red light will glow. After
the operation is complete, the drive will remain on for 5 seconds.
You can be entering new material at the keyboard during this time.

At the end of 5 seconds, the red light will go out, and there will
be another click as the head load pad is raised off the surface of

2-20 Rev. 8.3-A 7/1/79

the diskette. This automatic deselect feature is imporant in
lengthening the life-span of diskettes.

To dismount the diskette, press the door further open as far as it
will go, then let it close. It will then release to the unmounted
position. This stops the rotation of the diskette. UNMOUNT THE
DISKETTE DURING PERIODS IN WHICH IT IS NOT IN USE. This reduces
wear of the diskette against its jacket. You may leave it inserted
withough shortening lifespan.

To remove a diskette, press the door lefward. The diskette will pop
out.

2.4.5 RECOVERY TECHNIQUES

If you repatedly get PERM 1/0 erros using one particular diskette,
then it is probably defective. This will sometimes happen with a
new diskette when you are initializing it or copying another
diskette to it. After several attempts, discard it or return it if
possible. Whenever you repeat a disk operation after an error,
always unload and reload the diskette, because it may be seated
incorrectly.

If an old diskette repeatedly gives errors, first repeat the
operation several times, unloading and reloading the diskette each
time. If there is still a problem, check the center hole. If it is
wrinkled, straighten it out with your fingers and then try again.
If you still get errors, try copying the diskette to another
diskette using the DISKCOPY utility in MDOS. If the error still
occurs, try switching source and destination drives. Some
combination of drives and repositioning of diskettes within drives
will almost always result in a successful copy. If you cannot copy
a diskette at all, then copy it file by file to another initialized
diskette using the MDOS COPYFILE utility. There will probably be

one file which does not copy, but if you are lucky, they will all be
good.

2.4.6 REPLACEMENT AND BACK-UP OF DISKETTES

As with any magnetic storage medium, the recording gradually
deterioreates over time. Even if a diskette is not damaged, it will
begin producing errors after sufficient use.

Backup: The BEST defense against loss of diskette-based data is
maintaining a back-up diskette for each diskette you use. In the
business world, this is considered dogma. Copy a diskette on to its
back-up whenever you cannot afford to lose the information stored
since you last backed it up. This goes for programs as well as
data. I1f you are operating business programs such as inventory or
accounts receivable, maintain a regular back-up schedule, once a
week or once bi-weekly. In addition, a transaction journal - that
is a printed copy of entries made each day into the system - is an

SXﬁfllent idea to build into business software as a last resort
ac "up .

ReV. 8-3-A 7/1/79 2-21

Replacement: In addition to being backed up, replace frequently used
diskettes by copying to a fresh diskette every 6 months. A good
suggestion is to use the back-up diskette, which is fairly fresh, as
the new front-line diskette, and to create a fresh back-up. Do not
wait until a frequently used diskette fails, before you replace it
with the back-up.

To copy diskettes, use the DISKCOPY utility. See Section 4.3

2.4.7 INITIALIZING DISKETTES

Previously unused diskettes must be initialized (also called
"formatted') before use. There are two routines in the Micropolis
software that can do this. Use either the INIT command in MDOS (see
4.1.5.22) or the F command in the BASIC UTILITY program operating
under M.BASIC. (see Appendix B). Their results are identical. DO
NOT INITIALIZE THE MDOS SYSTEM DISKETTES PROVIDED WITH THE SYSTEM,
OR ANY OTHER DISKETTE CONTAINING DESIRED INFORMATION. THIS DESTROYS
THEIR CONTENTS.

2.4.8 WRITE PROTECT FOR DISKETTES

Write protect tabs come in boxes of new diskettes. If you attach a
tab over the write protect cutout on a diskette as shown in Fig. 2.2
the disk drive will not allow you to erase or change any information
on the diskette. The tab may be removed later.

2-22 Rev. 8.3-A 7/1/79

. WRITE PROTECT TAB
WRITE ENABLE NOTCH FOLD QOVER SIDE OF DISK WRITE PROTECT TAB IN PLACE

N N

™ INDEX AND
i SECTOR HOLE

Figure 2.2 How To Mount Write Protect Tab

Rev. 8.3-A 7/1/79 2-23

III DAY TO DAY OPERATIONS FOR MDOS AND M.BASIC

3.0 SUMMARY OF NORMAL START UP PROCEDURE

==
e N N

Power-on the mainframe, then the peripherals.

If yours is a MEMORITE system, depress RESET key.
Insert and mount MDOS System diskette in drive 0.
Enter B on keyboard. MDOS comes on.

Enter BASIC (return) on keyboard. M.BASIC comes on.

(return) means press the RETURN key.

Please read the rest of this chapter thoroughly. The above does not
give all the information you need.

3.1 SUMMARY OF PROMPTS

When one of these prompts appears, 1t indicates the corresponding
system is loaded and its executive routine is waiting for operator

input.

* Monitor
> MDOS
READY M.BASIC

3.2 POWER-ON

1)

2)

3)
4)
5)

6)

No diskette may be in mounted position, (i.e. rotating)
but it may be inserted in drive.

Turn the power key on the mainframe. The RESET button
will light up. '

If yours 1s a MEMORITE system, depress the RESET button.
Switch on all desired peripherals.

Depress RESET on printer, if printer will be used and if
printer has one.

An asterisk and cursor will appear on the console
indicating the Extended Systems Monltor executive 1is
available for commands. A few Monitor commands are
covered in this chapter. The remaining will be found in
the Extended Systems Monitor manual. Look it over. Some
may be useful. Monitor commands can be entered at this
time or at any other time that the Monitor executive is

?a}led back into control, indicated by the Monitor prompt
*

Rev. 8.4-4 7/26/79 3-1

3.3 LOAD MDOS

1) Insert, if not done already, and mount an MDOS System
diskette in drive 0. In place of the MDOS System
diskette, you may substitute an M.BASIC-only diskette.

2) Enter B. MDOS will be loaded into memory and control will

be transferred to the MDOS executive. The screen will
look like this:

*B
Vector MZ MDOS X.XX
>

You may now enter MDOS commands (Chapter 4).

If MDOS should come up but does not, refer to Appendix I for
troubleshooting.

If a M.BASIC-only diskette was in drive 0, the screen will look like
this:

*B
MICROPOLIS BASIC VS. X.X.-COPYRIGHT 19XX
READY

In this case, you may begin entering M.BASIC commands immediately
(chapter 5) and skip Section 3.4. Section 2.3.6 discusses
BASIC-only diskettes.

3.4 LOAD M.BASIC FROM MDOS

You may work in MDOS for some time and then transfer control to
M.BASIC, or you may desire to go immediately to M.BASIC as your
first MDOS command. In either case, enter BASIC (return). The
screen will appear like this:

>BASIC
MICROPOLIS BASIC VS. X.X.-COPYRIGHT 19XX
READY

You may now enter M.BASIC commands. (Chapter 5).

3.5 OTHER OPERATING SYSTEMS AND LANGUAGES

This manual deals primarily with the MDOS operating system, as it is
normally delivered. For commands in other operating systems,
including how to load their associated BASIC's or other languages,

refer to the manuals for those systems, included if and when they
are ordered.

3-2 Rev. 8.3-A 7/1/79

3.6 RETURNING TO MDOS FROM M.BASIC

1) Make sure there is a System diskette with MDOS mounted in
drive O.

2) Enter LINK "MDOS" (return). (See Section 5.21.2.7 for how
LINK works and for other uses of LINK command).

3) Screen will look like this:

READY

LINK "MDOS"

Vector MZ MDOS X.XX
>

You may now enter MDOS commands.

To return to M.BASIC, enter BASIC (return) as usual (see Section
3.4.)

3.7 RETURNING TO MONITOR FROM ANYPLACE

1) Depress control-Q (hold CTRL key down while depressing Q);
or press the RESET key on the mainframe front panel.

Control-Q is preferred.

2) You may now enter Extended System Monitor commands.

NOTE: For systems without the version 3.1 Systems Monitor,
control-Q will not work when you try it. If you find this
to be the case, then either the ESC key or control-X WILL
work instead. To find out which will work in your system,
get MDOS running and try them. Control-X and the ESC key
each have a special function in the MDOS and M.BASIC
editors. If one of these causes a return to the Monitor,
then obviously, you cannot use that function in the MDOS
and M.BASIC editors. Make a mental note of this when
reading the MDOS and M.BASIC editor instructions. If ESC
or control-X causes a return to the Monitor instead of
control-Q then substitute it wherever control-Q appears in
this chapter.

Returning to the Monitor is useful when Monitor commands are needed
for trouble-shooting MDOS or M.BASIC programs. It is also used if
there is no other way to break out of an undesired loop or output
sequence in any program. Always use control-Q rather than RESET if
possible, because on extremely rare occasions, RESET may change some
of the contents of memory.

Control-Q will not work when certain special purpose programs are
operating. The most important of these are disk access routines,
and the Word Management System and MEMORITE word processing
software. RESET is necessary in these cases if you want to return
to the Monitor.

Rev. 8.3-A 7/1/79 3-3

Avoid using RESET to abort a disk write operation, if possible,
because if at that moment the directory is being written, then all
the data on the disk can be effectively lost. (The same holds true
if you dismount the disk at that time.)

In addition, aborting a disk read or write operation may leave the
file in an ''open" state, which can cause an error message next time
the drive is accessed. This can be cleared by executing the FILES
command in MDOS. Enter FILES (return), then return to your program
and access the disk.

The best advice is, in general, allow disk read and write operations

to go to their natural conclusions. Only abort if the operation is
looping indefinitely.

3.8 RETURNING TO MDOS (OR M.BASIC) FROM MONITOR IF MDOS (OR M.BASIC)
IS ALREADY IN MEMORY

This is the MDOS (or M.BASIC) warm-start command.

Depress J after the Monitor prompts with *.

3.9 RETURNING TO MDOS OR M.BASIC EXECUTIVE FROM WITHIN A ROUTINE
RUNNING UNDER THAT EXECUTIVE

Depress control-C. (Hold the CTRL key down while depressing C.

Response is MDOS prbmpt (>) if MDOS is the executive, or BASIC
prompt (READY) if BASIC is the executive.

Control-C is used to leave a routine at other than the normal end
point. Use it when the routine is waiting for any type of keyboard
input. It is sometimes also effective for interrupting an overly
long or unending stream of output.

If it does not work, then control-Q is the alternative. Since this

returns control to the Monitor, depress J then to return to MDOS or
M.BASIC.

3.10 VIDEO COMMANDS

This section is ONLY relevent to systems using memory mapped video,
such as the Vector Graphic Mindless Terminal. If a serial terminal
such as Hazeltine is used, then refer to the manual for that

terminal to find how you can control the screen image from the
keyboard.

These commands may also not work if another operating system, such
as CP/M is in control of the system. They will definitely not work
when word processing, using the Word Management System or MEMORITE,
is in control.

Most of the time, when the system is waiting for keyboard input,

3-4 ReV. 803-A 7/1/79

operator may perform the following operations on the screen image.
These commands are made possible by the Extended Systems Monitor.

For more information of a technical nature, refer to the Extended
Systems Monitor manual.

3.10.1 CLEAR SCREEN

Depress control-D.

3.10.2 SCROLL SCREEN UP ONE LINE

Depress control-J or LF key.

-

3.10.3 BACKSPACE CURSOR

Depress BACKSPACE key, underscore key, or control-H. Also, the DEL
key will have this effect LF MDOS or M.BASIC is running.

These commands will always work when MDOS or M.BASIC executives are

waiting for input, and when any M.BASIC program is waiting for
input.

In other situations, for example, when an assembly language program
is waiting for input, these commands may or may not work depending
on how the program in control was written.

3.10.4 CONVERT THE SYSTEM TO REVERSE VIDEO

For variation, you can cause the screen to display characters
black-on-white rather than white-on-black. Just depress control-T
(hold down CTRL key while depressing T) If you depress this again,
the vidéo will return to white-on-black. Characters already entered
will remain on the screen the way they were entered.

3.10.5 TAB CURSOR TO NEXT TAB LOCATION (EVERY 8 SPACES)

Depress TAB key or control-I1

3.10.6 ELIMINATE CURSOR FROM THE SCREEN

Depress control-N

3.10.7 MOVE CURSOR TO TOP OF SCREEN

Depress control-B

Rev. 8.3-A 7/1/79 3-5

3.10.8 MOVE CURSOR DOWN, UP, LEFT, OR RIGHT

Depress one of the keys with an arrow on it. If your keyboard has
no arrow keys, then depress control-R, control-U, control-W, or
control-Z to move cursor down, up, left, or right respectively.
However, Control-U and the up-arrow key will not work under while in
MDOS or M.BASIC, though it will work under certain machine language

programs and when 1in the Extended Systems Monitor echo mode (Y
command) .

3.10.9 RETURN CURSOR TO LEFT EDGE OF SCREEN

Depress RETURN key or control-M.

3.11 POWER-DOWN

1. Make sure you have stored on diskette all the programs and
data you wish to save.

2. Dismount all diskettes. They may be left inserted and
clicked in, so long as they are not mounted (rotating).

3. Turn off all”peripherals.

4. Turn the power key on the mainframe front panel.

Rev. 8.4-A 7/26/79 3-6

IV MICROPOLIS DISKETTE QPERATING SYSTEM

4.9 INTRODUCTION TO MDOS

Micropolis Program Development Software consists of two systems,
Micropolis BASIC which is discussed in Chapter V and the Micropolis
Diskette Operating System (MDOS). MDOS consists of an executive
program, a group of shared subroutines available to user programs,
and an assembly language program development package.

The MDOS executive program implements an interactive command language
that allows the user to control computer system operations from the
system console. It provides commands for memory management, file
management, I/0 control and program control.

MDOS contains a very large group of subroutines which can be called
from a user's application program. These subroutines provide for
consale and printer character 1/0, buffered line /0, text line
parameter parsing, sequential and random file access, file management,
physical diskette access, and 16 bit integer arithmetic. There are
also a number of processor orientad utility subroutines.

Six application programs make up the package that supports assembly
language program development. LINEEDIT facilitates the creation of
source files. ASSM is a two pass 8@8@/8@85 disk to disk assembler.
SYMSAVE creates a source file of equate statements from a latent

symbol table. FILECOPY is a utility for copying named files. DISKCOPY
is a utility for making literal copies of an entire diskette. DEBUG
provides facilities to locate and correct program bug's in machine
Tanguage programs.

4-1

Rev. 8 9/78

Rev,

4.1 THE MDOS EXECUTIVE

The MDOS executive program implements an interactive command language
that allows the operation of the microcomputer system to be controlled
from the system console. When MDOS is loaded it signs on with the
message

MICROPOLIS MDOS VS. X.X -~ COPYRIGHT 1978

>
[t is then waiting for an executive statement to be entered.

4.1.1 ENTERING EXECUTIVE COMMANDS

Executive statements are entered by typing characters in sequence on
the console keyboard. An executive statement is terminated by pressing
the RETURN key. Ouring the entry of a statement each character that is
typed is echoed by the executive on the console display. Two control
features may be used when entering a line.

1) when DEL or RUBOUT key is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The
executive is positioned to accept entry of a new line.

4.1.2 EXECUTIVE STATEMENT FORMAT

An executive statement has the following form:
[unit:INAME ["<ASCII>" “<ASCII>" ... "<ASCII>" <hex> <hex> ... <hex>]

The NAME in an executive statement may be the name of an explicit command
or the name of a disk file. MDOS has 23 explicit commands which are
discussed in this section. Explicit command names are uppercase only

and must not be preceded by any spaces. In addition, executable assembly
language programs can be loaded into memory and run by entering their
file NAME. This provides an implicit command capability that can be used
to extend the executives vocabulary. Implicit command filenames can be
up to ten ASCII characters in the code range 21 hex to 7E hex. Imbeded
spaces, double quotes, backarrows, and rubouts are not allowed in
implicit command filenames.

When an executive statement is entered the executive program searches
its table of explicit command names for a match with the NAME that was
input. If the NAME is found in the table of command names the statement
is executed immediately. If the NAME is not an explicit command name,
then the NAME is treated as an implicit command filename which must be

8.1 2/5/79 4-2

found on disk. Implicit command filenames may be prefixed by an optional
unit number. This specifies the disk drive on which the NAMEd file is to
be found. If no unit number is specified, unit @ is assumed. If a unit
number is specified it must be separated from the first character of the
NAME by a colon (:). The executive processes the implicit command filename
by searching the directory of the specified disk drive for the file. If
the file is found on the disk (and the file type is correct) the executive
Toads the program file into memory and transfers control, along with any
parameters in the executive statement, to the program. If the executive
does not find the file on the specified drive an error message is output

to the console stream: COMMAND NOT FOUND. If the file is found on the
disk but it is not an executable file an error message is output to the
console stream: WRONG FILE TYPE. See the section on file type definitions
for a detailed discussion of file types.

Executive statements consist of a NAME followed by parameters, as necessary.
Parameters can be ASCII or numeric. There can be up to four ASCII parameters
and up to four numeric parameters. There must be at l1east one space between
the NAME and any parameters. A1l parameters must be separated from each
other by at least one space. EIntry of an executive statement with too many
parameters of either type, or without the required spaces between fields

will result in a SYNTAX ERRCR.

ASCII parameters consist of from 8 to 1@ ASCII characters in the code range
2QH to 7EH except for 22H which is the double quote and 5FH and 7FH which
are interpreted as backspace requests by the logical console input routines.
ASCII parameters must be enclosed in double quotation marks. Entry of an
executive statement with unbalanced quotation marks or illegal characters

in an ASCII parameter will result in a SYNTAX ERROR.

ASCII parameters in executive statements are generally used to specify
disk filenames. In this usage a unit number may be prefixed to the ASCII

. filename within the quotation marks by typing the unit number followed by

a colon (:) followed by the filename. This indicates the disk drive unit

on which the file is to be found. If no unit is specified, unit 9 is
assumed. The digit of the unit specification and the colon are not included
in the 1@ character length restriction for ASCII parameters. For example,
“"DATAFILEO1” and "1:DATAFILEQ1" are both valid ASCII parameters in an
executive statement.

Numeric parameters in executive statements are unsigned hexadecimal values
from @ to FFFF. They represent such elements as memory addresses, filetypes,
and databytes. Entry of a numeric parameter with a value greater than FFFF
or with illegal characters will result in a SYNTAX ERROR.

4.1.3 CANCELLING AN OPERATION

A11 MDOS explicit commands and all application programs supplied by Micropolis
can be cancelled in progress by holding down the control key and typing a

C (CNTL/C) on the console keyboard. The operation will be terminated as soon
as the CNTL/C is recognized and the message CANCELLED will be output to the
console. Control is returned to the MDOS executive.

Rev. 7 3/78 4-3

4.1.4 DISPLAY CONTROL

A11 MDOS explicit commands and all application programs supplied by Micropolis
can be temporarily stopped in progress by holding down the control key and
typing an S (CNTL/S). The process will pause upon recognition of the CNTL/S.
Typing any key other than CNTL/S or CNTL/C will cause the process to resume.
This function is very useful in controlling commands and programs that output
displays at high speed. For example, the output of a DISP command may be
viewed at reading speed by stopping and resuming the output as necessary.

4.1.5 EXPLICIT EXECUTIVE COMMANDS

Command syntax for each of the MDOS explicit commands is illustrated in
this section with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
optional.

< > Symbol brackets. This space should be replaced by the item
described.

4.1.5.1 THE COMP_COMMAND

COMP <start addr. blockl> <end addr. blockl> <start addr. block2>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

>COMP 5000 5pQF 5819
5004 91 99 5914

The block of memory from 5298 to 5@@F is compared with the block of memory
from 5019 to 5@1F. One location fails to compare. Location 5@8@4 contains
1 while the corresponding location, 5@14, in the second block contains 9.

4.1.5.2 THE DUMP_COMMAND

DUMP <start addr.>[<end addr.>]

The DUMP command outputs to the system console a formatted hex display of
the contents of a block of memory. Sequential memory locations are shown

16 to a line with the memory address_at the left margin. If the optional end
address parameter is not entered, only one byte is displayed. Example:

>DUMP 5909 5911

5000 5P CPp 27 77 4F 33 4F CD 7D 9E 98 9P 6A FD 82 9@

5019 77 28

4.1.5.3 THE ENTR COMMAND

ENTR <start addr.>

4-4

Rev. 8 9/78

The ENTR command allows data to be entered intoc memory directly from the
console device. Example:

>ENTR 7909
>78 89
6F/

Three bytes were entered starting at location 70P@ hex. These were 78
at 7999, 89 at 7991, and 6F at location 7002.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each 1ine of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed

the standard backspacing and CNTL/X tools are available for line correction.
The last value on the last line must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.1.5.4 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example:

>FILL 7000 8099 9

Each byte of memory in the block from 7090 to 8P@@ is changed to a #9
by this command.

4.1.5.5 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

>MOVE 3990 4999 7009

Each byte in the memory block from 3P9P to 49@9 is copied into the
corresponding position in the memory block from 7008 to 8@00.

4.1.5.6 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

>SEAR 3009 3@2p OF
3094 9F
3918 9F

The block of memory from 3000 to 3928 is searched for all occurrences of
a 9F. Location 39P4 and location 3918 both contain 9F. No other
locations in the block contain 9F.

4-5
Rev. 7 3/78

4.1.5.7 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

>SEARN 3008 30919 67
3002 @9 67
3@8@6- 76 67

The block of memory from 3@99 to 3819 is searched for all non-matches with
the mask 67. Location 3882 contained a 9 rather than a 67, and 3096
contained a 76 rather than a 67.

4.1.5.8 THE CREATE COMMAND

CREATE “[unit:]<filename>" [<file type>]

The CREATE command creates a new file in the directory of the diskette

in the specified unit and allocates the initial track for the file. If
no unit is specified, unit @ is assumed. The second parameter optionally
gives the file a TYPE designation. If no type is specified the type is
defaulted to 2.

4.1.5.9 THE DISP COMMAND

DISP "[unit:]<filename>" [<record number>]

The DISP command outputs a formatted hex display of the data contents of
a file to the system console. The unit number indicates the disk drive

. on which the file is to be found. If no unit is specified, unit @ is
assumed. The optional record number indicates on which record in the file
the display is to begin. If no record number is specified, record 1 is
assumed. :

Each record is displayed with a header 1ine that contains the record
number, the address in memory where the record is to be loaded, and the
number of data bytes in the record. Data lines follow the record header.
Each data line has up to sixteen data bytes preceded by the index position
in the record of the first data byte on that line.

>DISP "1:TEST" 29

@929 3Cp9 p@22

@3 12 2A BD 76 8F ED 54 41 39 P 9P 32 BC CC 76 89
19 78 88 3B BB 88 54 58 56 99 88 32 31 39 9D 99 09

20 89 55
Pg2A 3C8P PPR3
P9 FF FF FF

fp28 3F@P 9P99

@ 45 43 4B 4C 31 37 38 9D 99
2@2C 2800 9PPQ

END-FILE

Rev. 8 9/78 4-6

The first line of the display shows the record number 29, the load

address 3C@@, and the length of the record 22 bytes (all in hex). The
header line is followed by three lines which display the data in record

29. Each data line starts with the index position of the first byte in the
line. It is followed by two spaces and then the data.

The next header is for record 2A which has a load address of 3C8@ and
contains @3 bytes of data.

Reéord 2B has a load address 3F@@ and contains @9 bytes of data.

The last header is for record 2C which has a load address of 2B@@ and a
record length of @. If the file is an executable object file (1ike ASSM
for example), the address in the zero length sector is the execution
address of the file. LOADing stops when the zero length sector is read.
If the file is a run type which is being implicitly loaded and run,
program control is transferred to the execution address.

4-6.1

Rev. 8 9/78

4.1.5.1p THE FILES COMMAND

FILES [<unit>]

The FILES command outputs a formatted display of the file information
in a diskette directory to the system console. The unit number
indicates which disk drive directory is to be displayed. If no unit is
specified, unit B s assumed. Example:

>FILES 1

DIR g3 pope
RES g3 9213
MDOS pF 9P1C
L INEEDIT 15 ppec
ASSM 15 9019
SYMSAVE 15 9923
FILECOPY 15 9993
DISKCOPY - PF 0p09
BASIC pF ppaB

The files on drive one are displayed on the console. The left column
contains the filename, the second column is the file type, and the
third column contains the number of sectors the file uses. A1l numbers
are in hex.

4.1.5.11 THE FREE COMMAND

FREE [<unit>] |

The FREE command outputs to the system console the number of tracks
left unallocated (free) on a diskette. The unit number indicates which
disk'drive. If no unit is specified, unit @ is assumed. Example:

" >FREE 1
@038

The diskette on drive one‘has 3B tracks available to be allocated.

4.1.5.12 THE SCRATCH COMMAND

SCRATCH "[unit:]<filename>"

The SCRATCH command removes a named file from the directory of a diskette
" and returns its allocated tracks to available status. Disk drive 9 is
assumed if no unit is specified.

Note: Some files cannot be SCRATCHed without first changing the file
TYPE (see 4.1.5.9 and 4.2.3).

Rev. 7 3/78

4.1.5.13 THE LOAD COMMAND

The LOAD command loads (reads) a named file" from a diskette into the computers
memory and then returns control to the MDOS executive. If no unit number
is specified, the file is expected to be found on unit 9.

The LOAD command can be used in conjunction with two categories of files,
0BJECT files and DATA files. The specific nature of the load that is
performed depends on the category of the specified file to be loaded. The
process of LOADing an O08JECT file is described in 4.1.5.13.1. The process
of LOADing a DATA file is described in 4.1.5.13.2.

The LOAD command can NOT be used to load a file in the OVERLAY category.

An OVERLAY file is defined as any file with a file type value in the range

@C - @F hex (see Section 4.2.3). An attempt to LOAD an OVERLAY file results
in the message WROMG FILE TYPE. OVERLAY files are not LOADable because

they generally imply the replacement of the MDOS module and require immediate
execution. Control cannot be returned to the MDOS executive and must be
transferred immediately to the newly overlayed program module. If there is

a necessity to LOAD an OVERLAY file into a memory area which does not
conflict with MDOS, this can be done by changing the file type to an OBJECT
type and then using an offset Toad per Section 4.1.5.13.1.

4.1.5.13.1 THE LOAD COMMAND FOR OBJECT FILES

An OBJECT file is defined as any file with a file type value in the range
3 - #B hex or 14 - 1B-hex. These ranges include ASSM object files, BASIC
'save memory' files, executable system files, and executable user files
(see Section 4.2.3).

The format of the LOAD command for OBJECT files is:
LOAD "[unit:] <filename>" [<start addr.>]

OBJECT files are LOADed by using the address and length information in the
header of each record of the file (see Section 4.2.4). This is called a
‘scatter load' because it permits records in the file to be loaded into
non-contiguous portions of memory depending on the associated addresses.
The LOAD is terminated when the first @ length record in the file is
encountered.

If the optional start address is not specified in the LOAD command, then
the load of an OBJECT file proceeds according to the following example.

The OBJECT file to be Toaded is "TEST".

DISP "TEST"

paep 280@ 9005

P@ 31 32 33 34 35
po01 2CPY 2994

@ 54 45 53 54

pep2 28p@ PPPP
END-FILE

Rev. 8 9/78 4-3

Tyning LOAD "TEST" loads two text strings into memory. The string "12345"
in record § is Toaded starting at 28@@ hex for five bytes. The test string
"TEST" in record 1 is loaded starting at 2CP@ hex for four bytes. The last
record contains a zero length sector which terminates the load of an OBJECT
type file. For an executable file the zero length sector contains the run
address which in this case is 2B@®@ hex. This file, however, could not be

a run file as it stands as there is no executable code.

If the load address of the first record is less than 2B@@ hex, the message
LOAD ADDRESS ERROR is displayed because file may not be loaded beneath the
MDOS application area.

If the optional start-address is specified in the LOAD command, then the
first record of the file is loaded starting at the specified address. The
load address in the record header of the first record is subtracted from
the start-address to produce an offset. When the records following the
first record of the file are loaded, the calculated offset is added to the
load address in the record header and the record is loaded starting at the
calculated address. This is called an 'offset scatter load'.

Using the file TEST in the example above, typing LOAD "TEST" 5@00@ loads the
string "12345" starting at memory location 5009 hex for five bytes. The

offset is calculated by subtracting the load address in the header of the first
record from the start-address. 5@09-2B@@=250@ hex. The string “TEST" is
loaded starting at 5198 hex for four bytes. The load address in the header

of the second record, 2C39 has the offset 250Q hex added to it and the result
is the offset-load address. .

If the optional start-address is less than 2B9P the message LOAD ADDRESS
ERROR 1is displayed.

4.1.5.13.2 THE LOAD COMMAND FOR DATA FILES

Any file which is not an OBJECT file and not an OVERLAY file is treated as

a DATA file by the LOAD command. DATA files thereby include file type values
in the ranges P-7, 19-13 hex, and 1C-FF hex. These ranges cover MDOS and
BASIC DATA files, ASSM and LINEEDIT source files, BASIC program files and all
of the unassigned file types (see Section 4.2.3).

The format of the LOAD command for DATA files is:

LOAD "[unit:] <filename>" <start addr.>

The start address parameter is mandatory. If a start address is not specified
a SYNTAX ERROR message will be displayed. If the start address is less than

2B@@ HEX a LOAD ADDRESS ERROR will result. This prevents accidental destruc-
tion of the operating system.

4-8.1

Rev. 8 9/78

Data is loaded starting at the specified address and continuing until the
number of records in the file as shown in the directory have been loaded.
The data is loaded into memory sequentially and contigquously. Only the
number of data bytes in each record are loaded. The LOAD command does not
pad records of less than 256 bytes. If a file were loaded at location
3P0 and the first record had only 4 data bytes in it, then the first data
byte from the next record would be loaded at location 3p34. Records with
zero length are skipped over. The load address in the sector header (see
Section 4.2.4) has no meaning when doing a data LOAD.

4.1.4.14 THE SAVE COMMAND

SAVE "[unit:]<filename>" <start addr.> <end addr.> [<file type>]
[<exec. addr.>]

The SAVE command saves (writes) a new file to a diskette from a block

of memory. The file is written sequentially from the memory start

address through the memory end address into full sequential records. If
no unit number is specified, the file is written to unit @. If a file
type is not specified the file type will be zero. If an execution address
is not specified, the execution address of the file will be set to the
start address of the memory block. Note that the type and execution
address parameters are position dependent such that if an execution address
is specified then a file type must also be present. Example:

>SAVE "1:NEWFILE" 2B0@ 3799 9 3989

A file is created on the diskette in drive one with the name NEWFILE

and the memory block from 2B@@ to 3799 is written to that file. The file
is given a type of @ and the execution address saved with the file is
3990. If no execution address had been specified then 2Bp@ would be
saved as the execution address.

4.1.5.15 THE RENAME COMMAND

RENAME “[unit:]<filename>" “<new name>"

The RENAME command changes the name of a diskette file to a specified
new name. If no unit number is specified, the file to be renamed is
expected to be found on unit @. Example:

>RENAME "1:0LDFILE"™ "NEWFILE™

The file named OLDFILE on the diskette in drive one is changed to NEWFILE

on the diskette in drive one. The file type is unchanged by the renaming
process.

Rev. 8 9/78 4-3.2

4.1.5.16 THE TYPE COMMAND

TYPE "[unit:]<filename>" <type>

The TYPE command changes the type designation of a specified file. The
type designation is a single hex byte. A definition of file types is
given in Section 4.2. Example:

>TYPE "1:PROGRAMX" 15

The type of the file PROGRAMX one disk drive one is changed to a value
of 15.

4.1.5.17 THE APP COMMAND

APP [“<ASCII>" "<ASCII>"..."<ASCII>"] [<hex> <hex>...<hex>]

The APP command transfers program control from the MDOS executive to

the start of the MDOS applications area at 2B@@ hex. It expects a valid
executable program to be in the applications area with its entry point

at the beginning. Up to four ASCII parameters and four hex parameters

can be passed to the program. For example, if you are doing several
assemblies, the assembler need only be read into memory once from diskette
as it does not change itself in the process of assembling a program.

After it is once in memory the APP command can be used to communicate with
the assembler. Example:

>APP "1:SOURCE" "OBJECT" "P"

If the assembler were already in memory, the above example would transfer
control and the necessary parameters to the program and the assembier
would assemble the source file called SOURCE from drive one; produce an
object file on drive zero called OBJECT; and output a paginated 1isting
on the print device.

The APP command functions 1ike the EXEC command in that it PUSHes the
address of the operating systems warm start entry point onto the system
stack. Therefore if the program in the applications area does not provide
its own stack, a RET would return control to the operating system.

4.1.5.18 THE ASSIGN COMMAND

ASSIGN <device #> <logical stream mask> [<width> <null count>]

The ASSIGN command is a dual purpose command which provides the ability
to specify the connections of physical output print devices to logical
output streams and the values for carriage width and nullcount of the
referenced physical device. The physical device number must be 1 or 2.
The Togical stream mask must be a @8,1,2, or 3. The device width and
nullcount must be numeric values in the range 1 to FF hex. The width
and nullcount parameters are optional. If width or nullcount are not
included, the values corresponding to the referenced physical device

4-9

Rev. 8 9/78

are not changed. If only the device width is included, then the
nullcount is left unchanged. However, if a nullcount is specified then
the width must be present as a place holder even if it is the same. If
the ASSIGN command contains only three parameters the third is always
the width.

Logical output stream number one consists of all output generated by
system messages, keyboard echoing and the output from any explicit
executive command. Logical output stream number two consists of all
output generated by LISTP and PRINTP commands in the line editor, and

by all listings in the assembler. The logical stream mask can be set to
a three to represent both logical output streams one and two, or to a
zero indicating that the device is to receive no output.

Physical device number one represents the display element of the
keyboard display device that is configured as the system console {see
Section 2.2.4.1 on terminal configuration). Physical device number two
represents the hard copy print device which is configured as the system
printer (see Section 2.2.4.3).

The output of a logical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to one,
both, or no logical streams. The ASSIGN command cancels any previous
assignment of the specified device.

In its initialized state the terminal is assigned to stream one only,
and the printer is assigned to stream two only. This state can be
restored by executing:

>ASSIGN 1 1

>ASSIGN 2 2

Rev.

When the console and printer devices are configured, each device has a
carriage width and nullcount parameter associated with it. These values
may be changed by specifying optional third and fourth parameters in an
appropriate ASSIGN command. The width parameter determines the maximum
number of characters on each line for the given device. When a line is
output that is longer than this value an autowrap feature is activated
and a carriage return and line feed is inserted at the appropriate point
so that the logical line is continued on the next device line. The

width can be changed on a given device by repeating the current assignment
with the new width parameter. For example, if the console were currently"
assigned to stream one with a width of 8@ characters (decimal), it could
be changed to a width of 72 characters (decimal) as follows:

>ASSIGN 1 1 48

72 decimal is 48 hex. This width assignment will stay in effect until
the width is specifically reassigned, or until the system is rebooted.

The nullcount may have to be changed to accommodate unbuffered character

serjal devices which may lose characters while the carriage is being
returned. The nullcount value is one greater than the actual number of

7 3/78 4-10

output nulls (ie. 1 will output no nulls). For example, if the printer
were currently assigned to stream two at 132 characters per line and

no nulls (nullcount=1), the number of output nulls could be changed to
five with the following command:

>ASSIGN 2 2 84 6

132 decimal is 84, and 6 will result in five nulls being output after a
carriage return.

Because the MDOS executive language has been designed to be interactive
it depends on the availability of a display device for system messages,
keyboard echoing, and display of command results. Therefore an interlock
is built into the system to ensure that stream one always has at least
one device assigned to it. If an ASSIGN command violates this condition,
then physical device one is automatically assigned to stream one as part
of the assignment being processed. Additionally if the print device
supports a printer attention condition (out of paper, motor off, etc.)
the system will force the assignment to an initial state (ASSIGN 1 1,
ASSIGN 2 2) if the printer signals that it needs attention. This ensures
that the attention message will be output to the console.

4.1.5.19 THE EXEC COMMAND

EXEC <address>

The EXEC command transfers processor control directly to the specified
memory address. It expects a valid program to begin at that address.
The address of the operating systems warm start entry point is PUSHed
onto the 8@8@'s hardware stack by the EXEC command. Therefore, if the
executed program does not set its cwn stack, a final RET in the program
will return to the operating system. This feature allows subroutines to
be exercised separate of the rest of a system under development.

4.1.5.20 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs 16 bit integer math functions on the two specified
hex numbers. It displays the sum, difference, product, quotient, and modulus.
Example:

>MATH 4 5
@0@9 FFFF 0014 0090 D004

The results are displayed from left to right: 4+5=9 ; 4-5=FFFF ; 4*5=14
; 4/5=0 (intiger division) and a remainder (modulus) of 4.

4.1.5.21 PROMPT "<ASCII>"

The PROMPT command sets the executive prompt string to the value of the
ASCII string. The string can be up to ten characters long. Spaces are

4-11

Rev. 8 9/78

not allowed. The prompt is initially > when the system is configured.
Example:

>PROMPT "**"

Jrok

The prompt is changed from > to a **

4.1.5.22 THE INIT COMMAND

INIT <unit>

The INIT command initializes a diskette in the specified drive. The
drive unit number must be specified. The INIT command formats the
diskette by writing an empty block with the correct track and sector
identification on every sector of the diskette and reading each sector

to verify the media. It creates a blank directory and places a system
loader on the diskette. The INIT command essentially cleans the diskette
of any data previously on the diskette and prepares it for new use.
Accidental use of the INIT command could destroy the entire content of

a diskette. Therefore, the system provides an interlock on this command.
After the command is entered, the system prompts ARE YOU SURE?. It waits
for a 'Y' or 'N' response to indicate yes or no. An 'N' cancels the
command without doing any damage. Example:

INIT 1
ARE YOU SURE?

The diskette on drive one will be initialized if a 'Y' is typed. Al1l

other replys will result in the command being canceled. Control returns
to the executive.

Rev. 7 3/78 4-12

4.2 MDOS DISK FILE I/0

MDOS implements a powerful and efficient method for storage and retrieval
of files on diskettes compatible with Micropolis disk subsystems. Track

P of each diskette contains a directory of the files on that diskette.

Each directory entry holds the name, protection attributes, type, length
and starting location for one file. Track P also contains a track map
index that Tists all unassigned tracks and all tracks assigned to each file
in the order of assignment. Files are stored on the remaining tracks of
the diskette using a track indexed architecture that allows files to grow
or shrink dynamically. Files may be accessed sequentially by byte or
record and directly (randomly) by record or byte within record.

4.2.1 TRACK INDEXED FILE STORAGE

The track indexed file storage scheme defines one track as the minimum
disk space consumed by a file. The maximum storage assignable to one
file is all tracks on the diskette (35 on MOD I subsystems and 77 on

MOD IT subsystems), except the directory track @. When MDOS creates a
new file it assigns one track to that file. Additional file space is
assigned to the file one track at a time as needed. Files are contiguous
within a track but not necessarily from track to track. If a file is
shortened, unused tracks are returned to available status. When a file
is deleted (scratched), all of its assigned tracks are freed for
reassignment.

Maintenance of the track map in the track indexed scheme operates as
follows. Whenever a file is opened for access MDOS reads the track map
from that files diskette into main memory. Any record in the file may
then be accessed with only one disk seek by appropriate reference thrcugh
the track map. File access operations that cause the file to be extended
or shortened by one track also cause the track map to be immediately
updated in memory and on disk. When the file is closed its directory
entry is rewritten to reflect any changes in the files size or status.

4.2.2 FILE NAMES

File names consist of from @ to 18 ASCII characters in the code range
2PH to 7EH except for 22H which is the double quote and SFH and 7FH
which are interpreted as backspace requests by the logical console
input routines.

A unit number may be prefixed to the filename by typing the unit number
followed by a colon (:) followed by the filename. This indicates the

disk drive unit on which the file is to be found. If no unit is specified,
unit @ is assumed. The digit of the unit specification and the colon

are not included in the 1@ character length restriction for ASCII para-
meters. For example, DATAFILEA1 and 1:DATAFILE®S! are both valid file
names.

If the file name is to be an implicit command in an executive statement
there are additional restrictions that apply. The file name may not
start with a blank. It may have no imbeded blanks and it may not exist
in the MDOS explicit command table.

Rev. 7 3/78

Files that are to be shared with BASIC must have valid BASIC file names.
BASIC file names can be up to 18 characters long and use the ASCII
characters from 2D hex through 5A hex except the colon (3A hex). This
should be kept in mind when creating file names for MDOS. The BASIC
file names are a subset of the MDOS file names and some incompatibility
can occur if care is not used.

4.2.3 FILE PROTECTION AND TYPE DEFINITION

MDOS provides two forms of file protection. A file can be write protected
or a file can be delete protected. MDOS also allows files to be classified
as to unique information content by assigning a type designation. A files’
access codes and type designation are combined in one byte of the files'
directory entry. The first two least significant bits of the file type
byte are bit encoded and specify file access restrictions. The access
codes are as follows:

BIT

19

g A normal read/write file
g1 A normal read only file

19 A permanent read/write file
11 A permanent read only file

A normal file can be read, written, and deleted from the diskette by
using the SCRATCH command (Section 4.1.2.5). A read only file can be
read or SCRATCHed but it cannot be written into. A permanent file can

be read or written but it cannot be SCRATCHed. A permanent read only
file can be read but it cannot be written into or SCRATCHed. Attempts

to SCRATCH a permanent file will result in the message PERM FILE.
Attempts to write into a read only file will result in the message READ
ONLY FILE. The TYPE command may be used to change the access codes of a
file if necessary. , '

Note that these access code safeguards are software features that will
only protect a file as long as the operating system has not been damaged.
Diskettes may be physically write protected by placing a write protect
tab over the slot in the upper right hand edge of the diskette. This
causes the write electronics in Micropolis disk subsystems to be disabled
when that diskette is loaded in a disk drive.

The most significant six bits of the file type byte specify the type of file.
This allows 64 different classifications of files each having four access
codes.

The codes @ through 7F hex are reserved for present and future system usage

and should not be assigned other meanings by the user. The codes from 8@
to FF hex are available to the user and are not used by the system.

Rev. 8 9/78 4-14

The executive, the assembler, and the editor check file types when called
upon to load, save, or resave a file. I[f the file type is not correct
the function will not take place. A table of file types follows:

TYPE CODE DESCRIPTION

INHEX .

89-03 MDOS & BASIC DATA FILES

94-97 EDITOR/ASSEMBLER SOURCE FILES
p8-28 ASSEMBLER OBJECT & BASIC 'SAVE MEMORY' FILES
aCc-oF EXECUTABLE OVERLAY FILES
19-13 BASIC PROGRAM FILES

14-17 EXECUTABLE SYSTEM FILES

18-18 EXECUTABLE USER FILES

1C-7F RESERVED FOR FUTURE EXPANSION
8p-FF AVAILABLE FOR USER DEFINITION

The line editor produces type 4 files. It can load type 4,5,6, and 7 files.
The assembler will only assemble type 4,5,6, and 7 files. It produces
type 8 files. '

Executable system files and user files may be loaded with the load command.
Any attempt to load a file below the application program area will result
in a LOAD ADDRESS ERROR. Executable overlay files may be loaded below the
application program area by typing the file name as an implicit executive
command. Any attempt to implicitly load a file that is not an overlay file
will result in the message WRONG FILE TYPE.

[t is not possible to load an overlay file without beginning its execution.
However, the entry point of the overlay could contain a jump to the MDOS
warmstart address. This would return control to MDOS immediately after
the overlay file was loaded, provided that the file did not overlay any
functional MDOS code.

4.2.4 FILE AND RECORD STRUCTURE

An MDOS file consists of a group of related records stored on a diskette.
The group is given a filename and type designation as described above.
These are stored in the file directory on track @ of the diskette.

Each record of an MDOS file begins with a two byte memory address followed
by a two byte length indicator. The remainder of the record consists of

P to 256 data bytes. The memory address tells MDOS where in memory to load
the data from that record. The length indicator tells MDOS how many valid
data bytes are in the record. A record needs a minimum block of 4 bytes
and a maximum block of 26@ bytes to be properly stored.

The records of a MDOS file are stored on the sectors of a diskette, one

for one. Micropolis disk subsystems write a physical sector that is 268
bytes Tong. The first 8 bytes of the sector are used for control purposes
strictly by the operating system. The remaining 26@ bytes are available

for a record. Short records, including @ length (empty) records are
possible. If a particular record has less than 256 data bytes the remainder
of the sector is not used. However, the record may be expanded at any

time by rewriting the sector to make use of the unused bytes..

4-15
Rev. 8 9/78

The object program file that corresponds to the following assembly
language program serves to illustrate the MDOS file and record structure.

ADDR B1 B2 B3 E LINE# LABEL OPCODE OPERAND
2000 1999 START ORG 4000H
apep 21 99 79 2000 LXI H,700¢H
4003 3099 DATA DS 19H
4013 99 4pP@ BYTE DB p

4214 5099 DATAI DS 19H
4924 9 690¢ BYTE] 0B 1

4925 C3 25 49 7000 BEGIN JMP $

4928 8009 END BEGIN

The first record of the object file has 4@P@ hex in the memory address
bytes in Intel low/high format. The record length bytes contain 9983,
indicating that the record has only three bytes of data. The three data
bytes are 21 P9 70. This record is written on the disk as one sector.
The second record of the object file has a memory address of 48913 and a
length of 9PP1, one byte of data P@. This record is also stored on the
disk as one sector. The third record has a memory address of 4924 and a
length of @@@4, four bytes of data @1 C3 25 4@. This record is stored
on the disk as one sector. A fourth record is written that has a memory
address 4825 and a length of 9PP@. This empty record marks the end of
the object file and its memory address holds the execution address
specified in the END statement.

The structure of this object file is standard for all MDOS executable

or memory load files. The file is allocated one entire track on the disk.
It contains eight data bytes spread across 3 sectors. The 4th and last
sector contains no data. Its memory address field holds the file

execution address. Given an executable file type, the records of this file
could be Toaded into memory at 4989, 4813 and 4024 by typing its name to
the executive. Direct processor control would transfer to 4025 to begin
program execution. This type of file is called a scatter loadable file .
because it can be loaded non-contiguously into main memory.

Note: The number of records in each MDOS file is included in the directory
entry for that file. This determines the end of file for data files.

Data files do not require a zero length record to mark their end because
there is no execution address for a data file. The special zero length
record is used with files that load into a range of memory and may require
an associated execution address. For these files the zero length record

is included in the record count in the files' directory entry.

4.2.5 FILE ACCESS METHODS

MDOS contains shared subroutines that allow user application programs to
access diskette files sequentially by byte or record and directly (randomly)
by record and byte within record.

A file may be written sequentially by writing a byte at a time and
incrementing the index position. The system buffers the bytes written

Rev. 8 9/78 4-16

until a full 256 byte record is constructed and then writes it to the

next sector in the file. The file space is automatically extended as
necessary. A file may also be written sequentially by repeatedly writing
blocks of data up to 256 bytes in length as one record and then incrementing
the record position to the next record. A file written in this manner

may have records of varying Tength up to 256 bytes.

A file may be read sequentially by reading a byte at a time and incrementing
the index position until the end of file is reached. . I[f the file contains
any short records the unused bytes at the end of the sectors of those records
will be automatically skiped by this byte sequential access. A file may

also be read sequentially a record at a time by starting at the first record,
reading the record length and then reading that number of bytes as a block,
incrementing the record position to the next record, and repeating the
process until the end of file is reached.

A specific record in a file may be accessed by setting the index position
directly to the start of that record. The record may then be read or written
either a byte at a time or as a block of bytes. A specific byte in a
directly accessed record may be read or written by first setting the index
position directly to that byte in the record. These techniques facilitate
the spot updating of a file.

4.2.6 COMPATIBILITY BETWEEN MDOS AND BASIC FILES

BASIC file names are a subset of MDOS file names. Therefore all BASIC files
can be handled by the MDOS file name parsing logic, but not all MDOS file
name can be handled by BASIC. Refer to the Section 4.2.2 on FILE NAMES for
a complete discussion.

BASIC data files contain records of from zero to 25@ bytes of data. The
file and record structure is the same as that used by MDOS as discussed

in Section 4.2.4. The two bytes at the start of the record which hold the
length of the record can never be greater than 258 if the file is to be
used by a BASIC program as a data file. BASIC will output an error message
to the console stream and stop the program if the record length is greater
than 25@. MDOS can create BASIC readable files as follows:

1880 * GET DATA TO BE WRITTEN INTO A BASIC COMPATABLE FILE

2000 MVI 8,250

3099 GET CALL GETDATE

3500 JC EXIT ;CLOSE FILE & EXIT
4000 CALL @WTINXPOSI

Saeg DCR B

6909 JNZ GET

7900 CALL @INCRECPOS

8090 JMP GET

This partial program illustrates a method for writing 25@ byte records.

For these records to be meaningfull to BASIC, the data must be seven bit
ASCII with the proper BASIC string delimiters (refer to the STRING statement
in the chapter on BASIC). The subroutine GETDATE is the users data acquisi-
tion routine which returns the carry flag set when the process is done.
@WTINXPOSI and @INCRECPOS are MDOS subroutines which are documented in Section
4.3.3. The method shown corresponds to the process for writing a file
sequentially by record as described in Section 4.2.5. '

4-17
Rev. 8 9/78

4.3 MDOS SHARED SUBROUTINES

MDOS provides the applications development programmer with many useful
subroutines that can be accessed directly from an applications program.
These subroutines provide for console and printer character 1/0, buffered
1ine 1/0, text line parameter parsing, sequential and random file access,
file management, physical diskette access, and 16 bit integer arithmetic.
There are also a number of processor oriented utility subroutines.

When you write an assembly language program, these subroutines can be
referenced by name; e.g. CALL @HLADDA. The PDS MASTER diskette contains
two files named SYSQ1 and SYSQ2. These are editor compatible source
files that contain the names of all of the MDOS shared subroutines
equated to their entry addresses. Application programs that reference
these routines by name should include the SYSQ1 and SYSQ2 files in their

assembly by using the assembler LINK pseudo-op, described in detail in
Section 4.5.

The following sections specify what arguments each subroutines expects,
what arguments each subroutine returns, and how it functions.

4.3.1 CONSOLE AND PRINTER INPUT/QUTPUT SUBROUTINES

Micropolis Program Development Software packages perform input and output
through the following subroutines. These routines link the system with
the device handlers described in Chapter Il under configuring for
supported devices.

The device handler routines start with a vector table whose address is
@CIOTABLE for the console, and @LIOTABLE for the printer. The routines
in this section enter the drivers by indirectly accessing these tables
using @CONSOLEADDR, and @LISTADDR which are buffers that hold pointers
to the actual location of GCIOTABLE and GLIOTABLE. By changing the two
bytes at locations @CONSOLEADDR or GLISTADDR the user can have special
purpose drivers in memory at the same time as the standard drivers.

4.3.1.1 GCIN - CONSQOLE INPUT

The @CIN routine waits for input from the system console. It strips
parity and changes ASCII codes 5F (backarrow) and 7F (rubout) into 08
(backspace). It returns the input character (7 bit ASCII) in the B
register, with the carry flag clear (NC). It preserves the HL, DE,
and C registers.

4.3.1.2 @COUT - CONSOLE OUTPUT

The @BCOUT routines waits until the console stream is ready and then outputs
a character. It changes carriage returns into a carriage return followed
by the number of nulls associjated with the device attached to the console
stream. It changes ASCII code #8 hex (backspace) into a 5F (backarrow).

If the wrap logic for the device assi%ned to the console stream is enabled
a line feed and a carriage return nulls sequence will be output when the

Rev. 8 9/78 4-18

number of characters on the line equals the width. Refer to the ASSIGN
command in the MDOS executive. It expects the character (7 bit ASCII)
in the B register. It returns the carry flag set (C) if a printer
attention condition occurs, and sets the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive. It
preserves the HL, DE, and BC registers.

4.3.1.3 GCBRK - CONSOLE CHECK BREAK

The @CBRK routine checks the console device for the input of a cancel
(control C), or a pause {control S). It returns the zero flag set (Z)
and the CANCELED message code in the A register if a CONTROL C (@3) is
input. It preserves the HL, DE, and C registers. On pause (control S)
the routine loops, waiting for another character to be input. Entry of
any character other than control S will terminate the pause and return
to the caller.

4.3.1.4 GCDIN - CONSOLE DEVICE INPUT

The @COIN routine waits for input from the console device. It returns the
character (8 bits including parity) in the B register, with the carry flag
clear (NC). It preserves the DE, HL, and C registers.

4.3.1.5 @CDOUT - CONSOLE DEVICE QUTPUT

The @CDOUT routine waits until the console device is ready to receive a
byte and then outputs it. It expects the byte for output in the B register.
%t preserves the DE, HL, and BC registers. It returns the carry flag clear
NC).

4.3.1.6 @CDBRK - CONSOLE DEVICE BREAK CHECK

The @CDBRK routine checks the console input ready status. If an input

is ready it gets the input. Otherwise it returns immediately. It retyrns
the zero flag set (Z) and the input character (8 bits including parity

in the B register if there was an input. It preserves the DE, HL, and C
registers. If there was no input the GCDBRK routine returns the zero flag
clear (NZ), and the B register is unchanged.

4.3.1.7 @CDINIT - CONSOLE DEVICE INITIALIZATION

The @CDINIT routine jnitializes the console interface device. [t preserves
the HL, DE, and BC registers. It returns the carry flag clear (NC).

4.3.1.8 @LOUT - LIST OUTPUT

The @LOUT routine waits until the 1ist stream is ready to receive and

then outputs a character. It changes carriage returns into a carriage
return followed by the number of nulls associated with the device attached
to the 1ist stream. It changes ASCII code @8 hex (backspace) into a 5F
(backarrow). If the wrap logic for the device assigned to the list stream

is enabled a 1ine feed and a carriage return nulls sequence will he output

4-19

Rev. 8 9/78

when the number of characters on the line equals the width. Refer to
the ASSIGN command in the MDOS executive. It expects the character

(7 bit ASCII) in the B register. It returns the carry flag set (C) if
a printer attention condition occurs, and sets the assignment to ASSIGN
1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive.
It preserves the HL, DE, and BC registers.

4.3.1.9 @LATN - LIST ATTENTION

The BLATN routine checks the list stream for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs,
and sets the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN
command in the MDOS executive. It preserves the HL, DE, and BC registers.

4.3.1.10 @LDOYT - LIST DEVICE QUTPUT

The @LDOUT routine waits until the 1ist device is ready to receive a byte
and then outputs it. It expects the byte for output in the B register.
It preserves the DE, HL, and BC registers. It returns the carry flag

set (C) if a printer attention occurs.

4.3.1.11 BLDATN - LIST DEVICE ATTENTION

The @LDATN routine checks the 1ist device for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs.
It preserves the HL, DE, and BC registers.

4.3.1.12 ELOINIT - LIST DEVICE INITIALIZATION

The-@LDINIT routine initializes the 1ist device. It preserves the HL, DE,
and BC registers. It returns the carry flag clear (NC). :

4.3.1.13 BCCRLF - CONSOLE LINE FEED CARRIAGE RETURM

The @CCRLF routine outputs a line feed carriage return and nulls to the
console stream. It returns the carry flag set (C) if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MDQS executive. It preserves the HL,
DE, and BC registers.

4.3.1.14 RLCRLF - LIST LINE FEED CARRIAGE RETURN

The BLCRLF routine outputs a line feed carriage return and nulls to the

1ist output Sstream. It returns the carry flag set (C) if a printer attentian
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MDOS executive. It preserves the HL,

DE, and BC registers.

4.3.1.15 RASSIGN - ASSIGN

The BASSIGN routine assigns the physical device to specified logical stream(s)
and sets the width and nullcount associated with the device. It expects the
physical device number in the E register, the logical stream mask in the D

Rev. 7 3/78 4-20

register, the width in the C register, the nullcount (nulls+l) in the B
register, and the number of parameters passed in the H register. No
registers are preserved. (Refer to the ASSIGN command in the executive for
a detailed discussion of physical device assignment to logical output
streams).

4.3.1.16 GCILINE - CONSQLE INPUT LINE

The @CILINE routine outputs a specified prompt message to the console

and then buffers up to 132 characters of input text from the console
device. It provides the standard backspace (rubout) and line cancel
(CNTL/X) controls during the line entry process. The text line input is
terminated by a carriage return. (Note: The carriage return is not echoed
to the console). It expects the address of a string of text to be output
as a prompt in the HL registers. The message pointed to must be properly
terminated with a byte code of @ through 1F hex or the high order eight

bit of the last byte set. It returns the input Tine in @INBUFF, and the
number of input characters including the terminating carriage return in the
B register. It preserves the HL, DE, and C registers. Any control char-
acters input during the line entry process are echoed to the console stream
but not entered into Q@INBUFF.

4.3.1.17 GHEXOUT - HEXADECIMAL OUTPUT

The @HEXOUT routine converts an unsigned 8 bit binary value in the A
register to a hex number and outputs the number to the console. It returns
the carry flag set (C) if a printer attention condition occurs, and changes
the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command
in the MDOS executive. It preserves the HL, DE, and C registers.

4.3.1.18 @GHEXADDOUT - HEXADECIMAL ADDRESS OUTPUT

The @HEXADDOUT routine converts an unsigned 16 bit binary value in the

HL registers to a hex number and outputs the number to the console followed
by one space character. It returns the carry flag set (C) if a printer
attention condition occurs, and changes the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGM command in the MDOS executive. It preserves
the HL, DE, and C registers.

4.3.1.19 GHEXOUTSPC - HEXADECIMAL OUTPUT WITH SPACE

The @HEXOUTSPC routine converts an unsigned 8 bit binary value in the
HL registers to a hex number and outputs the number to the console
followed by one space character. It returns the carry flag set (C) if
a printer attention condition occurs, and changes the assignment to
ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MDQS
executive. It preserves the HL, DE, and C registers.

4.3.1.20 @SPACEQUT - SPACE OUTPUT

The @SPACEOUT routine outputs a space (2@ hex) to the console stream.

It returns the carry flag set (C) if a printer attention condition occurs,
and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the
ASSIGN command in the MDOS executive. It preserves the HL, DE, and

C registers.

4-21

Rev. 8 9/78

4.3.1.21 ONLINEOUT - NEW LINE OUTPUT

The @NLINEOUT routine outputs a carriage return line feed and a line of
text to the console stream. It expects the address of the beginning of the
text Tine in the HL registers. The message pointed to must be properiy
terminated with a byte code in the range @ through 1F hex or the high

order eighth bit of the last byte set. It returns the carry flag

clear (NC) in all cases. It preserves the HL, DE, and C registers.

4.3.1.22 GLINEQUT - LINE OUTPUT

The @LINEOUT routine outputs a line of text to the console stream. It
expects the address of the beginning of the text line in the HL registers.
The message pointed to must be properly terminated with a byte code in
the range @ through 1F hex or the high order eighth bit of the last byte
set. It returns the carry flag clear (NC) in all cases. It preserves

the HL, DE, and C registers.

4.3.2 TEXT LINE PARSING SUBROUTINES

The following routines are used by the system to parse input command lines

for the MDOS executive. After the command has been entered into the input
buffer using @GCILINE, the @SCAN routine is used to locate the first space
after the command, and GSKIPSPACE skips to the first non-space character.

Then the @PARAM routine separates the command parameters into buffers according
to their type. @PARAM makes use of @SCAN, @SKIPSPACE, and @AHEXTBIN to do

its job. After the parameter types have been separated, the address of the
beginning of the input buffer is placed into @MASKADDR and the @SEAR routjine
searches the MDOS command table for a match. If the command is valid, the
@SEAR routine returns with the zero flag clear and @LHLI will get the function
from the table, which in this case is an address. Control is passed to the
command routine with a PCHL instruction. The command routine can retrieve

the parameters from the appropriate buffers with LHLD instructions.

The user can use these routines to parse applications program input lines
using similar logic.

4.3.2.1 RPARAM - PARAMETER

The BPARAM routine parses a text line. It separates parameters into ASCII,
numeric and unit numbers. It counts the number of occurrences of each
parameter type and places the count and each parameter in a separate buffer.
It expects the start address of the text to be parsed in the HL registers.
It returns ASCII narameters in GASCBUFF@ through BASCBUFF3.

It returns unit numbers in GDRIVEN® through @DRIVEN3.

Rev. 8 9/78 4-22

[t returns binary (numeric) parameters in @BBUFF@ through @BBUFF3.
It returns the number of ASCII parameters in @NASCPAR.

It returns the number of unit number parameters in @NDRVPAR.

It returns the number of binary parameters in @NBINPAR.

It returns the carry flag clear (NC) and the end of line address in the
HL registers if there were no errors.

It preserves the DE and BC registers.

If a parameter is in error the carry flag is set (C), the SYNTAX ERROR
code is in the A register, and the Tocation where the error occurred is
returned in the HL registers.

4.3.2.2 @SKIPSPACE - SKIP SPACES

The @SKIPSPACE routine skips spaces in a text line.

It expects the text line's start address in the HL register.

It returns the address in the HL registers of the first non-space character.
If the character is a control character the carry flag is set (C).

It preserves the DE and BC registers.

4.3.2.3 @SCAN - SCAN

The GBSCAN routine scans a text line for the first occurrence of a specified
character. :

[t expects the text line's starting address in the HL registers and the
mask character in the C register.

It returns the address in the HL register where the match occurred and
the number of characters passed over in the B register.

The carry flag is set (C) if the mask character was not found prior to
a control character.

It preserves the DE and C registers.

4.3.2.4 @SEAR - SEARCH

The QSEAR routine searches a table of argument-function pairs and returns

the address of the function associated with the argument. The last character
of the argument has the most significant bit set high. For example, an

ASCII A is 41 hex. If the most significant bit is set high it is a Cl hex.

4-23

Rev. 7 3/78

The argument is immediately followed by its function. The arguments can be
variable length but the functions must all be the same length. The end of
the table is marked by a @ following the last function.

It expects the table's start address in the HL reqgister and the argument
masks' starting address in @MASKADDR. The argument mask string must be
terminated by a space or control character. It expects the A register to
contain the size {number of bytes) of the functions in the table.

It returns the zero flag clear (NZ) and the address of the start of the
argument's function in the HL register.

The zero flag is set (Z) if the argument was not in the table. In this
case the HL registers contain the end of table address, je. the address of
the @ after the last functijon.

It preserves the DE and BC registers.

4.3.2.5 GAHEXTBIN - ASCIT HEX TO BINARY

The @AHEXTBIN routine converts a text string of unsigned hexadecimal digits
represented in ASCII code into a binary number. The string can be one to
four digits in length. It must end with a space or control character.

It expects the string's start address in the DE registers.

It returns a 16 bit binary number in the HL registers.

It returns the number of digits in the number in the B register.

It returns the DE registers pointing to the space or control character
that ends the text string.

It preserves the C register.

If the number is greater than four digits long or not a hex value, the
routine returns the carry flag clear {NC) and the illegal character's
address in the DE registers.

4.3.3 THE FILE ACCESS ROUTINES

The file access subroutines impliement the MDOS file access methods. described
in Section 4.2.5. They allow an open disk file to be accessed sequentially
by byte -or record and directly (randomly) by record and byte within record.

Before a file can be accessed it must be opened. To open a named file on
a specified disk unit the file must be assigned a logical file number

and a filebuffer. MDOS supports simultaneously open files numbered from
@ through 7. It makes available two resident filebuffers. Additional
filebuffers must be allocated in the memory space of the application
program. Each filebuffer requires 288 bytes of memory.

Rev. 7 3/78 4-24

When a file is opened the first record of the file is read into its
filebuffer. The record in the file buffer of a file at any given time
is called the current record of that file. Associated with the current
record of each open file is an update flag. Any access that modifies
the content of the current record will cause the update flag to be set.
If the update flag is set, any access that leads to the current record
being replaced by a new record will first cause the current record with
the modified content to be rewritten in place (updated) to the disk
file. If the update flag is not set, no update takes place before a new
record is read. Invoking a new record resets the update flag.

The current record of each open file has a record length which is written
with the record as described in Section 4.2.4. 1Its value may vary from

@ to 256. A P length record indicates an empty record that still occupies
one physical sector on the diskette. A 256 byte record is a full record
that cannot be extended.

The index position of the current racord is 2 logical pointer that marks

the next byte in the record to be accessed. The value of the index position
ranges from @ to 255. However, the index position may never be greater than
the length in a particular record. An index position of 2 indicates that
the next byte to be accessed is the first byte in a record. An index
position of 255 indicates that the next byte to be accessed is the last

byte in a full record.

if the index position in the current record is less than the current record
length, then it points to a valid byte positicn within the record. That

byte may be read or rewritten. If the index position is equal to the current
record length, then it points to the end of record (EOR) position which is
the first non valid byte position in a non full record. The EOR position

may he written but it may not be read.

Reading from the end of record position updates the current record to disk
as necessary and the next record in the file becomes the current record.
The index position is set to @ and the data is read from this position.
This allows files containing a mixture of non full records to be read
sequentially by byte.

If the end of record position is written to, the length of the current

record is increased by one and the position just writter becomes a valid

byte position. This allows data to be added to the end of a record extending
it up to its maximum length of 256 bytes. Note, however, that incrementing
the index position when it aiready has a value of 255 updates the current
record to disk as necessary and the next record of the file becomes the
current record. The index position will be set to @.

A new file may be written sequentially by byte by repeatedly writing to

the index position and incrementing the index position. This will produce
a file of full records with the possible exception of the last record. The
system automatically extends the amount of disk space allocated to a file
when enough new records are written to require another track.

4-25

Rev. 7 3/78

The current record of each open file also has a record position number
associated with it. The record position number specifies which record
the current record is in the file. The record position number may be
set or incremented. Setting the record position updates the current
record to disk as necessary and the specified record from the file is
read and becomes the current record. This provides a mechanism for
direct (random) access to any record in a file. Incrementing the record
position number updates the current record to disk as necessary and the
next record in the file is read and becomes the current record. This
function can be used to sequentially write a file of short/mixed length
records.

When processing of a file is complete, the file must be closed. Closing
a file updates the current record to disk as necessary and frees the
logical file number and the filebuffer for subsequent reallocation.

4.3.3.1 GCREATE - CREATE

The @CREATE routine creates a file of a specified type on a specified
disk unit. The created file has one track allocated to it and one empty
(@ Tength) record written to it. It is left open and ready for access
with the index position set to @ and the empty record as the current
record.

It expects the file number in the B register and the disk unit number in the
C register and the filename in @ASCIIBUFF.

It expects the file type in the D register and the start address of the
file buffer in the HL registers.

If the routine detects'an error it returns the carry flag set (C) and
the error message code in the A register.

It preserves the HL, DE, and BC registers.

4.3.3.2 @GFILESTAT - GET FILE STATUS

The @GFILESTAT routine checks the open/closed status of a file.
It expects the file number in the B register.

If the file is closed it returns with the zero flag set (Z) and the
“FILE NOT OPEN" message code in the A register.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

Rev. 8 9/78 4-26

4.3.3.3 GDIRSEARCH - DIRECTORY SEARCH

The @DIRSEARCH routine reads the directory of a specified disk unit to
determine if a specified file exists.

It expects the unit number in the C register and the file name in
@ASCIIBUFF. ’

It returns the zero flag clear (NZ) and the "FILE NOT FOUND" message
code in the A register if the file is not in the directory.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.4 GOPENFILE - OPEN A FILE

The @OPENFILE routine opens a file for processing. It assigns a specified
logical file number and filebuffer to the file.

It expects the file name in @ASCIIBUFF, the file number in the B register,
and the drive number in the C register.

It expects the address of the file buffer in the HL registers.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.5 @CLOSEFILE - CLOSE A FILE

The @CLOSEFILE routine updates the current record to disk as necessary
and frees the logical file number and the filebuffer for subsequent
reallocation.

It expects the file number in the B register.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.6 GRFILEINF - READ FILE INFORMATION

The @RFILEINF routine gets the disk unit number, the number of records
in the file, the file type, and the record position number of the
current record.

It expects the file number in the B register.

4-27

Rev. 7 3/78

It returns the file type in the B register and the disk unit number in
the C register.

It returns the number of records in the file in the DE registers.

It returns the record position number of the current record in the HL
registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.7 @SINXTRS - SET INDEX POSITION TO RECORD START

The @SINXTRS routine updates the current record to disk as necessary
and reads a specified record which becomes the current record. The
index position is set to §.

It expects the file number in the B register and the record number in
the HL registers.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.8 GRRECORDLEN - READ RECORD LENGTH

The @RRECORDLEN routine gets the length of the current record in a file.
It expects the file number in the B register.

It returns the length of the record in the HL registers.

It preserves the DE and BC registers.

If the routine detects an error it returns the carry f1ag.setA(C) and
the error message code in the A register.

4.3.3.9 BRINXPOS - READ INDEX POSITIDN

The @RINXPOS routine gets the index position of the current record of a
file.

It expects the file number in the B register.
It returns the index position in the C register.
It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

Rev. 7 3/78 4-28

4.3.3.19 @SINXPOS - SET INDEX POSITION

The @SINXPOS routine sets the index position within the current record
in a file.

It expects the file number in the B register and the index position 1in
the C register.

[t preserves the HL, DE, BC registers.

If the routine detacts an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.11 @INCINX - INCREMENT INDEX POSITIOM

The G@INCINX routine increments the index position in the current record
of a file. If the increment would result in a value greater than the
current record length, then the current record is updated to disk as
necessary and the next record of the file becomes the current record
and the index position is set to 8.

[t expects the file number in the B register.

It returns the zero flag set (Z) if the index position is in the same
record. X

It returns the zero flag clear (NZ) if the index position is in a new
record.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.12 GRFINXPOS - READ FROM INDEX POSITION

The @RFINXPOS routine reads the data byte pointed to by the index position
in-the current record of a file. If the index position is at the EOR
position the current record is updated to disk as necessary and the next
record of the file becomes the current record. The index position is

set to # and the data is read from this position.

It expects the file number in the B register.

It returns the data in the C register. -

It returns the zero flag set (Z) if the data is from the same record.

It returns the zero flag clear (NZ) {f the data is from a new record,

It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set (C} and
the error message code in the A register.

4-29

Rev. 7 3/78

4.3.3.13 GRFINXPOSI - READ FROM INDEX POSITION AND INCREMENT INDEX

The @RFINXPOSI reads the data byte pointed to by the index position in
the current record of a file and then increments the index pesition. If
the original index position is at the EOR position, the current record
is updated to disk as necessary and the next record of the file becomes
the current record. The index position is set to D and the data is read
from that position. Then the increment takes place. If the increment
‘would result in a value greater than the current record length, the
current record is updated to disk as necessary and the next record from
the file becomes the current record. Thne index position is set to P in
that case.

It expects the file number in B.

It returns the data in the C register.

It returns the zero flag set (Z) if the data is from the same record.
It returns the zero flag clear (NZ) if the data is from a new record.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.14 @WTINXPOSv H”NRITE TO _INDEX POSITION

The @WTINXPOS routine writes to the index position in the current record

of a file. If the index position is the EOR position the record length is
extended by one.

It expects the data in the C register, and the filenumber in the B .
register.

It preserves the HL, DE, BC registers

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It returns the zero flag set (Z) if the data is from the
same record.

It returns the zero flag clear (NZ) if the data is from a
new record.

4.3.3.15 @WTINXPOSI - WRITE TO INDEX POSITION AND INCREMENT INDEX

The @WTINXPOSI routine writes to the index position in the current record
and then increments the index position. If the index position is the

EOR position the current record length is extended by one. If the incre-
ment would result in an index greater than 255, then the current record

Rev., 8.1 2/5/79 4-31

is updated to disk as necessary and the next record in the file becomes
the current record. The index position is set to § in this case.

It expects the data in the C register, and the filenumber in the B register.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

[t returns the zero flag set (Z) if the data is from the same record.
[t returns the zero flag clear (NZ) if the data is from a new record.

4.3.3.16 @LOADDATA - LQAD DATA

The @LOADDATA routine loads a block of data into memory starting from

the index position in the current record and continuing from a specified

number of bytes. It advances the index position like a repeated sequence of
reads and increments.

It expects the file number in the B register.
It expects the start address of the memory block in the HL registers.
It expects the block size in the DE registers.

It returns the zera flag set (Z) if the last byte read is from the
same record as the first byte.

[t returns the zero flag clear (NZ) if the last byte read is from a new
record.

[t preserves the HL, DE, BC registers.

I[f the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

After a call to @LOADDATA the buffer @MEMORYPNTR contains the address

of the memory byte immediately after the last memory byte loaded.

For example, if 5 bytes are loaded into 4@@@H through 49@4H, then

@MEMORYPNTR contains the address 4@@5H in standard low~high format. This

is useful in cases where the number of bytes loaded is less than the number
of bytes requested because an end of file is encountered during the @LOADDATA.

4.3.3.17 BSAVEDATA - SAVE DATA

The Q@SAVEDATA routine writes a block of memory to a file starting at
the index position of the current record and continuing for a specified
number of bytes. It advances the index position like a repeated
sequence of writes and increments.

[t expects the file number in the B register.

Rev. 8.1 2/5/79 4-31

It expects the start address of the memory block in the HL registers.
It expects the number of bytes in the memory block in the DE registers.
It preserves the HL, DE, BC ragisters.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It returns the zero flag set (Z) if the last byte read is from the same
record as the first byte.

It returns the zero flag clear (NZ) if the last byte read is from a new
record.

After a call to @SAVEDATA the buffer BMEMORYPNTR contains the address of the
memory byte jmmediately after the last memory byte saved. For example, if 5
bytes are saved from 4980H to 48P4H then @MEMORYPNTR contains 4005H in
standard low-high format. This is useful in cases where a DISK FULL
condition causes less bytes to saved than are requested in the call to
@SAVEDATA.

4.3.3.18 GDFINXPOSTEOR - DELETE_FROM INOEX POSITION TQ END OF RECORD
The @DFINXPOSTEOR routine deletes from the index position to the end of
the current record by making the record length equal to the value of
the index position. '

It expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

Rev. 8.1 2/5/79 4-31A

4.3.3.19 @DFINXPOS - DELETE FROM INDEX POSITION TO END OF FILE

The @DFINXPOS routine deletes from the index position to the end of the
file by making the number of records in the file equal to the record
position number of the current record and the current record length
equal to the value of the index position. Any tracks no longer required
by the file due to the deletion are freed for subsequent reallocation

to other files.

It expects the file number in the B register.
[t preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.2 @INCRECPOS - INCREMENT RECORD POSITION

The @INCRECPOS routine updates the current record to disk as necessary,
reads in the next record which becomes the current record and sets the
index position to @. If the current record is the last record in the
file, the file is automatically extended by one record.

[t expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4 FILE MANAGEMENT SUBROUTINES

In addition to accessing named files on the disk it becomes necessary

on occasion to perform housekesping functions such as removing old files,
changing file types and names, and determining the amount of space left

on a disk for additional files. These functions are available as executive
commands, and are also provided as subroutines that may be used directly

by applications programs. A

4.3.4.1 @FREE - FREE

The @FREE foutine returns the number of tracks left on a diskette that
are free and available for allocation to a file.

It expects the unit number in the C register.
It returns the number of free tracks in the HL registers.

If the routine detects an error it returns the carry flag set (C) and_
the error message code in the A register.

4.3.4.2 RRENAME - RENAME

The @RENAME routine renames a file on a diskette.

4-32
Rev. 7 3/78

It expects the file number in the B register.
It expects the new name in @ASCIIBUFF.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.3 @TYPE - FILE TYPE

The @TYPE routine changes the type (attributes) of a file. See Section
4.2.3 for type definitions.

It expects the file number in the B register.
It expects the new file type in the C register.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.4 @SCRATCH - SCRATCH A FILE

The BSCRATCH routine deletes a specified file from a specified disk unit.
It expects the unit number in the C register.

It expects the file name in @ASCIIBUFF.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5 PHYSICAL DISK ACCESS ROUTINES

The physical disk access subroutines are the most primitive level of
access provided within the MDOS context. They allow a diskette to be
treated as a collection of logical blocks independent of the MDOS file
system and provide access to a specified logical block on a specified
track of a diskette.

Micropolis MOD I disk subsystems write 35 tracks on one side of a diskette.
The MOD II subsystems write 77 tracks on one side of a diskette. A track
in either subsystem is divided into 16 sectors each of which contains 268
bytes. Tracks numbered @ through 34 or 76 are written concentrically
inward toward the center of the diskette. The physical sectors on a track
are numbered from P through 15.

4-33

Rev. 7 3/78

Diskettes initialized by and formatted for use with MDOS have the track
number written in the first byte and the physical sector number written
in the second byte of each sector of a track. These bytes are maintained
exclusively by the operating system.

The remaining 266 bytes of a sector are accessible as a logical block
by the MDOS physical disk access routines. In order to enhance access
time to multiple blocks, MDOS maps logically sequential blocks onto the
physical sectors of a track in a staggered pattern as shown.

LOGICAL BLOCKS 12345 6 7 8 91011121314 1516
PHYSICAL SECTORS @ 2468141214 1 3 5 7 9111315

The physical disk access routines automatically access the correct
physical sector that corresponds to the logical block that is specified.
If it is necessary to access the sectors of a track in true physically
sequential order, the application program must use the table above to
unmap the sectors. For example, to access sector @ followed by sector 1
the program would have to specify logical block 1 followed by logical
block 9.

Note that the record structure of MDOS files as detailed in Section
4.2.4 must be preserved if the physical disk access routines are used
to operate on such records.

4.3.5.1 BGETASEC - GET A SECTOR

The @GETASEC routine gets (reads) a sector from a specified disk unit
into a specified memory buffer given the track and logical block numbers.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block number
in the E register.

It expects the address in the HL register of the start of a 266 byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.2 GPUTASEC - PUT A SECTOR

The @PUTASEC routine puts (writes) from a specified memory buffer to a
sector on a specified disk unit given the track and logical block numbers.
Before it writes the sector it reads the header information of the target
sector-2 to verify that it will be writing on the correct sector. This

is called a preread. It requires that the preread sector be readable.

It expects the unit number in the C register.

It expects the track number in the D reg1ster and the logical block number
in the E register.

Rev. 7 3/78 4-34

It expects the address in the HL register of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.3 GWRITESECTOR - WRITE A SECTOR

The GWRITESECTOR routine writes from a specified memory buffer to a
sector on a specified disk unit given the track number and logical block
number. It does not do a preread before writing. This allows a sector
to be written on an uninitialized track or a track on which the preread
sector is unreadable.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block
number in the E register.

It expects the address in the HL registers of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.4 GVERIFYSECTOR - VERIFY A SECTOR

The @VERIFYSECTOR routine verifies the validity of the header information
and checksum of a sector on a specified disk unit. '

It expects the unit number in the C register.

It expects the track number in the D register and the logical block
number in the E register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.5 @SEEKTRACK -~ SEEK TO A TRACK

The @SEEKTRACK routine moves the read/write head to a specified track on
a specified disk unit.

It expects the unit number in the C register.
It expects the track number in the D register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.6 @RESTOREDISK - RESTORE THE READ/WRITE HEAD

The @RESTOREDISK routine positions the read/write head to track zero of
a specified disk unit.

4-35
Rev. 7 3/78

It expects the unit number in the C register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.6 PROCESSOR ORIENTED UTILITY ROUTINES

These subroutines effectively extend the instruction set of the 808@ to
provide for some commonly required operations.

When parentheses enclose an item in the following subse~tions, this
indicates the contents of the memory location specified by the value
within the parentheses. For example, HL=(HL) means that the HL register
pair is replaced with the bytes at the address in HL and HL+1. If the

HL registers contain the address 4@¢@ hex, and at location 4828 there is
a @1, and at location 4891 there is a P2, then the HL register would be
replaced by 9201 hex. The low byte goes into L and the high byte into H.

4.3.6.1 GHLADDA - ADD A TO HL

The GHLADDA routine adds the unsigned 8 bit value in the A register to
the unsigned 16 bit value in the HL registers.

It expects a value in the HL, and the A registers.
It returns HL=HL+A.
[t preserves the DE and BC registers.

4.3.6.2 @INXM - INCREMENT MEMORY

The @INXM routine increments a memory pair pointed to by the HL registers.
[t is similar to an INR M instruction but it operates on a byte pair

(16 bits) in memory.

It expects the address of the memory pair in the HL registers.

It preserves the DE and BC registers and the PSW.

4.3.6.3 GLHLINDEXED - LOAD HL INDIRECT INDEXED

The GLHLINDEXED routine loads the HL registers indirect from the location
pointed to by the HL registers indexed by the A register.

It expects the address in the HL registers, and the index in the A register.
It returns HL=(HL+2*A).

It preserves the DE and BC registers.

Rev. 8 9/78 4-36

4.3.6.4 GLHLI - LOAD HL INDIRECT

The GLHLI routine loads the HL registers with the content of the byte
pair pointed to by the HL registers.

It expects an address in the HL registers. ~
It returns HL = (HL).
It preserves the BC and DE registers.

4.3.6.5 GTRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C

The BTRANSDHC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the C register. It begins at the start of each block and working to
the end.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL reg1sters and
the number of bytes to copy in the C register.

It returns {HL+@...+C) = (DE+p...+C).

It preserves the B register.

4.3.6.6 @TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC

The @TRANSDHBC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length

in the BC registers. It begins at the start of each block and works to
the end.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+P...+BC) = (DE+§...+BC).

4.3.6.7 GTRANSDHBCR - TRANSFER FROM DE TO HL FOR A COUNT OF BC REVERSE

The @TRANSDHBCR routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the BC registers. It begins at the end of each block and working to
the beginning.

It expects the start address of the source block in the DE registars
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+BC....+@). = (DE+BC....+p).

4-37

Rev. 7 3/78

4.3.6.8 GTRANSFILENAME - TRANSFER A FILENAME

The @TRANSFILENAME routine copies a filename from one of the ASCII
buffers (@ASCBUFF@ through @ASCBUFF3) to the @ASCIIBUFF.

It expects the @ASCBUFF number (ie. @ to 3) in the C register.
It preserves the HL, DE, and BC registers.

4.3.6.9 @FILLZER - FILL ZEROES

The @FILLZER routine fills a block of memory up to 256 bytes in length
with zeros.

It expects the start address of the memory block in the HL registers
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.10@FILLSPC - FILL SPACES

The @FILLSPC routine fills a block of memory up to 256 bytes in length
with spaces (hex 28).

It expects the start address of the memory block in the HL registers
and the number of bytes to fill in the B register.

It preserves the OE and C registers.

4.3.6.11 @FILLA - FILL FROM THE A REGISTER

The @FILLA routine fills a block of memory up to 256 bytes in length
with the value specified in the A register.

It expects the start address of the memory block in the HL registers,
the number of bytes to fill in the B register, and a fill value in the
A register.

1t preserves the DE and C registers.

4.3.6.12 GCOMPARE - COMPARE HL TO DE

The @COMPARE routine compares the value in the HL registers to the
value in the DE registers.

It expects a value in the DE register and the value to compare it to in

the HL register. The forms are like an 8@8@ CMP B instruction yhere OE
is analogous to the A register and HL is analogous to the B register.

Rev. 7 3/78 4-38

It returns the following sense:

DE = HL zero flag set (Z), carry flag clear {(NC)
DE > HL zero flag clear (NZ), carry flag clear (NC)
DE < HL zero flag clear (NZ), carry flag set (C)
DE >=HL zero flag any state, carry flag clear (NC)

It preserves the HL, DE, and BC registers.

4.3.7 EXTENDED 8@8@ INTEGER ARITHMETIC (16 BITS)

These routines extend the capability of the 8@8@ to allow 16 bit unsigned
integer addition, subtraction, multiplication, and division (quotient,
and modulus).

The result of all of these routines is returned in the BC registers. The
HL and DE registers are preserved. With the exception of GDEDIVHL and
@DEMOPHL (divide and modulus routines), the carry flag is returned set (C)
if a carry or borrow occurred. The divide and modulus routines return the
carry unchanged.

4.3.7.1 GDEADDHL - BC=DE+HL

The @DEADDHL routine performs 16 bit unsigned integer addition.
It expects the addend in the DE register and the augend in the HL registers.

It returns the sum in the BC registers and the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.2 @DESUBHL - BC=DE-HL

The Q@DESUBHL routine performs 16 bit unsigned integer subtraction using
twos compliment addition.

It expects the minuend in the DE registers the subtrahend in the HL registers.

It returns the difference in the BC registers as a twos compliment number
and the carry clear (NC) unless a borrow into the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.3 @DEMULHL - BC=DE*HL

The @DEMULHL routine performs 16 bit unsigned integer multiplication.
It expects the multiplicand in the DE registers and the multiplier in the
HL registers.

4-39

Rev. 7 3/78

It returns the product in the BC registers and the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.4 GDEDIVHL - BC=DE/HL

The GDEDIVHL routine performs 16 bit unsigned integer division.

It expects the dividend in the DE registers and the divisor in the HL registers.
It returns the integer quotient in the BC registers.

It preserves the HL and DE registers.

4.3.7.5 GDEMODHL - BC=DEZHL

The @DEMODHL routine performs 16 bit unsigned integer division and returns
the modulus (remainder) of the operation.

It expects the dividend in the DE registers and the divisor in the HL registers.
It returns the remainder of the division in the BC registers.
It preserves the HL and DE registers.

Example: 5/2=2 and a remainder of 1. The quotient is the result of @DEDIVHL
and the modulus (or remainder) is the result of @DEMODHL.

4.3.8 MESSAGE OUTPUT SUBROUTINES

These routines provide a simple means for outputing standard messages.

Some of the routines access the system messages while others allow the user

to set up a table of applications messages. The system messages are described
in Section 4.8.

4.3.8.1 @DISKERROR - BISK ERROR MESSAGES

The @DISKERROR routine outputs system error messages related to disk operation.
The routine closes all open disk files, outputs the appropriate error message
to the console stream, and returns control to the MDQS executive which resets
the 8@88 stack to the MDOS system stack.

[t will output the appropriate error messages as detected by FILE MANAGEMENT
and PHYSICAL DISK ACCESS routines (Sections 4.3.3 and 4.3.4) when they return
a carry set (C) condition and an error message code in the A register.

It expects the error message code in the A register.

It DOES NOT RETURN.

Rev. 7 3/78 4-40

4.3.8.2 @CLOSEFILES ~ CLOSE ALL FILES

The @CLOSEFILES routine closes all open files using the standard system
file close routines. Any errors that are encountered will be reported on
the console device.

It always returns the carry flag clear (NC).

It preserves the HL, DE and BC registers.
4.3.8.3 @ERRORMES - ERROR MESSAGES

The BERRORMES routine performs similarly to @DISKERROR except that it does
not close all open files and it does return to the calling routine on exit.

It expects the error message code in the A register.
It preserves the C register.

4.3.8.4 @MESSAGEOUT - MESSAGE QUTPUT

The @MESSAGEOUT routine is a generalized message-table output routine.

The user can provide his own applications message table and use this routine
to output the messages to the console stream. The table may have variable
length messages with imbedded blanks. Each message can be terminated with

a control character or a character with the most significant bit set high.
The control character will not be output. The character with the eighth

bit high will be output after the bit is stripped. For example, an ASCII A
is hex 41. C1 hex is an ASCII A with the most significant bit high.

It expects the message table's address in the HL registers.

It expects the message's code in the A register. The code corresponds
to the message's location in_the table. ie., # is the first message, 5
is the sixth etc.

It preserves the C register.

4.3.9 SYSTEM BUFFERS AND ENTRY PQINTS

These are miscellaneous entry points and buffers already described in detail
in conjunction with other subroutines.

@CONSOLEADDR - Contains the location of ®CIOTABLE

@LISTADD - Contains the']pcation of @LIOTABLE

@CIOTABLE - Start address of the console input/output vector table
@LIOTABLE - Start address of the 1ist input/output vector table
@PCON - Start address of physical console driver routines

@PLIST - Start address of physical list driver routines

4-4]
Rev. 8 9/78

@WARMSTART - Warm start entry point; initializes console and list devices,
and prints the MDOS signon message.

@MDOSEXECUTIVE - Entry point for MDOS executive. Outputs the current MDOS
executive prompt and initializes the MDOS stack. This entry does not output
the signon message.

@FILEBUFFERG and @FILEBUFFER1 - @FILEBUFFER@ and @FILEBUFFER] are 288 byte
buffers used by the system for file access. They may be used as applications
program file buffers. See the section on FILE ACCESS ROUTINES.

@APROGRAM - Address of the start of the applications area. The APP command
transfers program control to this address. Al1l file types except overlay
(PC-9F hex) must have load addresses greater than or equal to SBAPROGRAM ar
a LOAD ADDRESS ERROR will occur when an attempt is made to load the file.

@MASKADDR - A two byte pointer used by the @SEAR routine. @MASKADDR points
to the address of the mask string.

@PARAMLEN - A one byte parameter used by the ®SEAR routine. It contains
the length of the functions in the table to be searched.

@MDOSRETURN - Applications programs that have not changed the I/0 initializa-
tion return to this entry point instead of QWARMSTART. @MDOSRETURN outputs

the MDOS signon message and initializes the MDOS stack but does not reinitialize
the I/0 handlers.

The following buffers are used by the @PARAM routine and are discussed in
detail there.

1) One byte buffers which holds the number of specified parameters.
@NDRVYPAR @NASCPAR @NBINPAR
2) Ten byte buffers which holds ASCII parameters.

GASCBUFFP @ASCBUFF1
@ASCBUFF2 GASCBUFF3

3) One byte buffers which holds disk unit number parameters.

@DRIVEND @DRIVENT
@DRIVEN2 @DRIVEN3

4) Two byte buffers which holds binary parameters.

@BBUFF2 @BBUFF1
@BBUFF2 ~ @BBUFF3

@ASCIIBUFF - @ASCIIBUFF is a ten byte buffer which holds filenames for
the @CREATE, @RENAME, @SCRATCH, and @TRANSFILENAME routines.

@INBUFF -~ @INBUFF is the system input buffer. It is 132 bytes long.

Rev. 7 3/78 4-42

4.4 LINEEDIT - THE MDOS LINE EDITOR

LINEEDIT is an MDOS application program which provides assistance in
creating and maintaining assembly language source program files that
are compatible with the MDOS 8088/8p85 assembler. It may also be used
as a limited general text editor.

LINEEDIT is invoked by typing LINEEDIT in response to an MDOS executive
prompt or by typing the command LOAD "LINEEDIT" followed by the command
APP. It signs on with the message MDOS LINE EDITOR VS. X.X.

The user interacts with LINEEDIT through the system console. Lines
entered at the keyboard may be text lines which are stored in the edit
buffer or commands for LINEEDIT to execute. The general editing process
consists of three parts.

1) Placing a text file into the edit buffer by entering it a line
at a time from the keyboard or by loading an existing file from
disk.

2) Modifying the text file in the edit buffer by adding, changing,
and deleting lines.

3) Storing the file in the edit buffer onto a disk.

How to use LINEEDIT to carry out this process is described in the
following sections.

4.4.1 ENTERING LINES TO LINEEDIT

After signing on LINEEDIT waits for a line to be input. A line consists

of not more than 132 characters typed in sequence. The entry of a line

is terminated by pressing the RETURN key. During the entry of a line

each character that is typed is echoed by LINEEDIT on the console display.
If more than 132 characters are typed prior to the RETURN, LINEEDIT will
stop echoing characters and only honor a valid control function such as the
RETURN. Characters which may be entered into a text 1ine are ASCII
characters in the code range 28H to 7EH with the exception of the backarrow
(5FH). LINEEDIT also uses the MDOS console output system to keep track

of the character count as a line is typed and automatically output a
carriage return/line feed combination when the count exceeds the width of
the display device. This combination is not included in the line count.

Two control features may be used when entering a line.
1) When DEL or RUBOUT key is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed

to the terminal display for each character deleted. Neither the
deleted characters nor the backarrow are included in the line count.

Rev. 81. 2/5/79 4-43

Rev.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return/line
feed combination is echoed to the terminal display. LINEEDIT is
positioned to accept entry of a new line.

4.4.2 KEYING IN A NEW TEXT FILE

LINEEDIT recognizes a line as a text file line by the presence of a
leading line number. Each 1ine number must be in the range 9 to 9999. A
text file is entered one line at a time using the normal line entry
procedure. As each line is entered LINEEDIT stores it in the edit buffer
which it maintains in the computer system's main memory. Text lines are
stored in the edit buffer in numeric order by line number. The lines in
the buffer at any given time constitute the current text file.

To insert a new line in the current text file, type in the new line
including the line number. LINEEDIT will automatically place the new
line in the program buffer in proper sequence according to its line number.

To replace an existing line in the current text file enter the line number
and the new text. The new line will automatically replace the old Tine
that has the same line number in the current text file.

To delete one existing program line in the current text file type the
line number and press the return key. The corresponding line will be
eliminated from the current text file. Note that multiple lines may also
be eliminated by using the DELT command as described in Section 4.4.18.

Consecutive text lines may be entered conveniently by using LINEEDIT's
automatic line numbering feature. Prior to typing the first character
of a new line, you can cause the 'next' line number to be generated for
you by pressing the space bar one time. The 'next' line number will echo
to the terminal display and LINEEDIT will then be waiting for the first,
text character of that line. See Section 4.4.7 on the AUTO command to
specify the increment that determines the 'next' line number.

4.4.3 ENTERING LINEEDIT COMMANDS

Whenever a line is typed which does not begin with a Tine number,
LINEEDIT attempts to interpret this line as a command. If the line is
not recognizeable as a LINEEDIT command, the message COMMAND NOT FOUND
will be displayed.” LINEEDIT commands are single words or abbreviations
followed by parameters if required. A1l LINEEDIT commands are uppercase
only. If the command requires one or more parameters, there must be at
least one space between the command word and the first parameter and
between each parameter. Parameters may be ASCII or numeric. ASCII
parameters must be enclosed in double quotation marks except for within
the SEARCH and CHANGE command dialogues. Numeric parameters are entered
in decimal. LINEEDIT offers commands to facilitate the management of
the editing process.

7 3/78 4-44

4.4.4 THE CLEAR COMMAND

The edit buffer may be initialized to an empty state by using the CLEAR
command. This command has no parameters. It is entered by typing CLEAR
and pressing the return key.

Entering a CLEAR command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the contents of the current text file has
not been stored on disk since it was last altered. When the message appears
the current text file is not yet lost. To override this warning type Y

and press the return key. The CLEAR command will be processed. Otherwise
type N and press the return key. The message CANCELLED will be displayed
and LINEEDIT will be waiting for an alternate command.

When the CLEAR command is processed, LINEEDIT will display the message
FILE NOT NAMED followed by two hex numbers which indicate that the edit
buffer is empty and unnamed.

4.4.5 THE NAME COMMAND

The current text file in the edit buffer may be named or renamed by using
the NAME command. NAME “filename" is the general form of this command.
The filename may be any valid MDOS filename. No disk drive unit number
should be specified since this name is to be associated with the current
text file in the edit buffer which is in the main system memory. When the
NAME command is executed, LINEEDIT will display the new filename followed
by two hex numbers which represent the beginning and ending addresses of-
the current text file in memory. A text file may be keyed into the edit
buffer before it is named. However, it cannot be stored on disk without
being named.

4.4.6 THE FILE COMMAND

The name of the current text file and its address T1imits in memory can

be determined by using the FILE command. This command has no parameters.
It is entered by typing FILE and pressing the return key. The name of the
current text file will be displayed, followed by two hex numbers which are
the starting and ending memory addresses of the current text file. If the
current text file has not been named, the message FILE NOT NAMED will be
displayed in place of the filename.

4.4.7 THE AUTO COMMAND

LINEEDIT's automatic line numbering facility adds a fixed increment to
the last entered line number in order to compute the 'next' automatic
1ine number. When LINEEDIT is started this increment value is set at a
default of 1. This value may be changed by using the AUTO command. The
general form of the command is AUTO number. The increment will be set
to the decimal value of number.

4-45

Rev. 7 3/78

4.4.8 THE PROMPT COMMAND

When LINEEDIT is started its prompt message is null. After processing

an input line, it simply echoes a carriage return/line feed combination,
and waits for a new input with the cursor at the left margin of the
terminal display. A prompt character or message can be specified for
LINEEDIT by using the PROMPT command. PROMPT "message" is the general
form of this command. The message may be from 1 to 18 characters in
length and include any characters valid in a text line. It must be
enclosed in double quotes as shown. When the PROMPT command is executed,
LINEEDIT will immediately display the new prompt at the left of the
terminal display and be positioned waiting for a new input line. The
LINEEDIT prompt may be restored to its initialized state by typing PROMPT
and pressing the return key.

4.4.9 THE LOAD COMMAND

A text file may be loaded intoc the edit buffer from disk by using the
LOAD command. LOAD "unit number:filename" is the general form of the
command. The double quotes must be used as shown. The filename must be
a valid MDOS filename. The unit number is optional. If it is supplied,
it must consist of a single digit from @ to 3 followed by a colon (:).
[t designates the disk unit on which the specified file is to be found.
I[f no unit number is specified, unit @ is assumed.

When a text file is successfully loaded, it replaces the contents of the
edit buffer and all text from the previous text file in the buffer is
lost. The name of the current text file becomes the name of the disk
file that was loaded, not including the unit number.

Entering a LOAD command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the current text file has not been storad
on disk since it was last altered. When the message appears, the current
text file is not yet lost. To override this warning type Y and press the
return key. The LOAD command will be processed. Otherwise, type N and
press the return key. The message CANCELLED will be displayed and LINEEDIT
will be waiting for an alternate command.

Entering a LOAD command may result in the message FILE BUFFER OVERFLOW.
See Appendix D for an explanation of this condition.

4.4.10 THE APPEND COMMAND

A text file may be loaded from disk and appended to the end of the current
text file in the edit buffer by using the APPEND command. APPEND "unit
number:filename" is the general form of this command. The double quotes
must be used as shown. The filename must be a valid MDOS filename. The
unit number is optional. If it is supplied, it must consist of a single
digit from 2 to 3 followed by a colon (:). It designates the disk unit

on which the specified file is to be found. If no unit number is specified,
unit @ is assumed.

Rev. 7 3/78 4-48

When an APPEND is executed, the text file from disk is concatenated onto
the end of the text file which was already in the edit buffer. The text
lines of the appended file are not merged into the existing file in order
by 1ine number. The appended file may contain 1line numbers which conflict
with the existing file. For these reasons it is important to use the RENUM
command immediately after a successful APPEND.

The name of the current text file in the edit buffer is not affected by
an APPEND.

Entering an APPEND command may result in the message WRONG FILE TYPE.
This is an indication that the requested file has an attribute type
different than 4 through 7. These are the only valid source file types
acceptable to LINEEDIT and the assembler,

Entering an APPEND command may result in the message FILE BUFFER OVERFLOW.
This is an indication that the amount of system memory available for the
edit buffer is not enough to hold the additional file which was requested.
When this condition occurs, the requested file is not appended but the
existing is retained without change.

4.4.11 THE SAVE COMMAND

The current text file in the edit buffer may be stored on disk as a new
disk file by using the SAVE command. The general form of this command

is SAVE unit number. The unit number is optional. If it is supplied, it
must consist of a single digit from § to 3. It designates the disk unit
on which the current text file is to be stored. If no unit number is
specified, unit @ is assumed.

The name of the current text file in the edit buffer is used to create

an entry in the directory of the specified disk and the text file is
stored on the disk under that name. If the name already exists on the
specified disk a DUPLICATE NAME message will result, and nothing will be
written to disk. The edit buffer is unchanged. The file may be SAVEd by
first changing its NAME to one that doesn’t conflict or by using the
RESAYE command if appropriate.

A file created by the SAVE command is given the attribute type 4 which
marks it as an editor/assembler source file.

4.4.12 THE RESAVE COMMAND

The current text file in the edit buffer may replace an existing file
or disk by using the RESAVE command. The general form of this command
is RESAVE unit number. The unit number is optional. If it is supplied,
it must consist of a single digit from § to 3. It designates the disk
unit on which the existing file to be replaced is found. If no unit
number is specified, unit @ is assumed.

The directory of the specified disk unit is searched for a filename
which matches the name of the current text file in the edit buffer. The
current text file is written over that file on the disk. If no match is

4-47

Rev. 7 3/78

found, the message FILE NOT FOUND will be displayed. The current text
file can be saved as a new file by using the SAVE command. If the file
matched on disk has a type other than 4 through 7, the message WRONG
FILE TYPE will be displayed. Text source files must have a source file
type.

4.4.13 THE LIST COMMAND

A formatted display of lines in the current text file can be output to

the system console by using the LIST command. The forms of this command
are LIST, LIST linenumberl, and LIST linenumberl linenumber2. The display
will begin with linenumberl or the next highest and continue through
1inenumber? or the next lowest. If linenumberl and linenumber2 are the
same, only one line will be displayed. If linenumber2 is less than
1inenumberl, nothing will be displayed. If linenumber2 is not supplied,
the display will begin with linenumberl or the next highest, and continue
through the last line currently in the current text file. If no line
numbers are supplied, the entire edit buffer will be displayed.

The LIST command produces a formatted display of the text lines that is
oriented to 8@8p assembly language source text. The format is defined

as four fields each beginning at a specific tab location. The first field
begins at the left margin and displays the line number as a 4 digit number.
The second field is the label field. It consists of all characters in the -
text 1ine through the first space or colon (:) that occurs. The third

field is the opcode and operands field. The opcode consists of all
characters following the label field through the next occurrence of a space.
The operand consists of all characters following the opcode through the

next occurrence of a space. The fourth field is the comment field. It
begins with a semicolon (;) following the space that terminates the operands
and continues to the end of the text iine.

Refer to the TAB command to change the tab settings which determine the .
placement of the fields for the LIST format. When using the LIST command

with general text editing, it is advisable to set the tabs to 1 1 1. This
effectively removes the tabulation effects which are designed for assembly
language source text.

4.4.14 THE LISTP COMMAND

A formatted display of lines in the current text file can be output to
the system printer by using the LISTP command. The forms of this command
are LISTP, LISTP linenumberl, and LISTP 1inenumberl 1inenumber?2.

The LISTP command functions the same as the LIST command except that output
is directed to the system printer instead of the system console.

Rev. 7 3/78 4-48

4.4.15 THE PRINT COMMAND

A literal (unformatted) display of lines in the current text file can be.
output to the system console by using the PRINT command. The forms of this
command are PRINT, PRINT linenumberl, and PRINT linenumberl 1inenumber?.
The Tinenumber specifications in the PRINT command function the same as

in the LIST command.

The PRINT command displays text lines as they are stored in the edit buffer
but without the Tine numbers so that general text may be displayed just as
it was entered. If an unformatted display of assembly language source

text is desired, it can be obtained by setting the tabs to 1 1 1 and using
the LIST command.

4.4.16 THE PRINTP COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system printer by using the PRINTP command. The forms of
this command are PRINTP, PRINTP 1inenumberi, and PRINTP 1inenumberl
1inenumber2.

The PRINTP command functions the same as the PRINT command except that
output is directed to the system printer instead of the system console.

4.4.17 THE TAB COMMAND

The tab settings that determine the placement of the fieids for the LIST
and LISTP format may be changed by using the TAB command. TAB numberl
number2 number3 is the form of this command. The first number is the
column at which the opcode field begins. The second number is the column
at which the operand field begins. The third number is the column at which
the comment field begins.

The initial and default vaiues of the TAB parameters are 15, 22, 36 decimal.
The settings may be reset to these values by typing TAB without any para-
meters. Missing parameters are set to the default if possibie or the value
of the preceding parameter if that parameter is greater than the default
value for that tab column. If TAB 17 were typed the tab setting would be
17, 22, 36. TAB 25 would set the tabs to 25, 25, 36.

4.4.18 THE DELT COMMAND

A group of consecutive lines may be deleted from the current text file

by using the DELT command. The forms of this command are DELT 1linenumberl,
and DELT linenumberl linenumber2. Lines will be deieted from 1inenumber]

or the next highest that exists, through linenumber2 or the next Towest that
exists. If Tinenumber2 is less than linenumberl nothing will be deleted.

If they are equal only that line will be deleted. If only linenumberl is
specified then only that line will be deleted. The edit buffer is
automatically compressed whenever lines are deleted.

Rev. 8 9/78 4-49

4.4.19 THE RENUM COMMAND

A1l or part of the lines in the current text file can be renumbered by
using the RENUM command. The forms of this command are RENUM, RENUM
startingnumber, RENUM startingnumber increment, and RENUM startingnumber
increment first-line-to-change. RENUM takes the line number of the first
line to change and sets it equal to the starting number. The line number
of each line after the first line to change is then set to the value of
the preceding new line number plus the increment value. If no first line
to change is specified, the first line in the edit buffer is assumed. If
no increment value is specified, the valua 18 is used. If no starting
number is specified, the value @ is used. Typing RENUM alone will produce
a text file numbered from @ by 19's.

Entering a RENUM command may result in the message LINE NUMBER OVERFLOW.
This is an indication that the renumbering attempt lead to a line number
greater than 9999. When this occurs the edit buffer is left in a partially
renumbered state. Lines up to the overflow point have been renumbered but
the ones after that point retain their old value. A RENUM with a smaller
increment value should be executed immediately to correct this condition.

4.4.20 THE SEARCH COMMAND

Lines in the current text file that contain a specified string of text
can be located and displayed by using the SEARCH command. The forms of
this command are SEARCH, SEARCH linenumberl, or SEARCH 1inenumber]
Tinenumber2. SEARCH without a linenumber specified will search the whole
buffer. SEARCH 1inenumberl will search from the line number specified

to the end of the buffer. SEARCH linenumberl linenumber2 will search the
buffer starting at the first line specified through the second line
specified.

When the SEARCH command is entered, LINEEDIT will respond with the prompt
SEARCH MASK ?. A string of up to 132 legal text line characters can be
entered. The entry is terminated by pressing the return key. LINEEDIT
searches through the lines in the current text file looking for the first
occurrence within each 1ine of a substring that matches the specified search
mask. It examines every line except those lines that begin with an asterisk
(*). Every examined line that contains a match is displayed on the system
console. This display is a literal (unformatted) display including the line
number. Lines with a leading asterisk (*) are considered comment lines in
assembly language source text. Refer to the SEARCHALL command to operate

on comment lines.

The SEARCH command also provides a universal match character capability.
Each question mark (?) that is entered in the search mask string is treated
as a match for any character in that position. For example, the search
mask A?I will match all three character substrings that begin with A and
end with I. Note that this capability means that question marks (?)
included in the text cannot be explicitly searched for.

If no lines in the current text file contain a match to the specified
search mask, the message STRING NOT FOUND will be displayed.

Rev. 8 9/78 4-50

4.4.21 THE SEARCHALL COMMAND

A1l 1ines in the current text file that contain a specified string of
text, including those lines that begin with an asterisk (*) can be located
and displayed by using the SEARCHALL command.

The forms of this command are SEARCHALL, SEARCHALL Tinenumberl, or SEARCHALL
Tinenumberl linenumber?. SEARCHALL without a 1linenumber specified will
search the whole buffer. SEARCHALL linenumberl will search from the Tine
number specified to the end of the buffer. SEARCHALL Tinenumberl 1inenumber2
will search the buffer starting at the first 1ine specified through the
second line specified. The SEARCHALL command functions the same as the
SEARCH command except that all text lines including those that begin with

an asterisk (*) are included in the search.

4.4.22 THE CHANGE COMMAND

The first occurrences of a specified string in 1ines of the current text

file can be replaced with a different string of same or different length

by using the CHANGE command. The forms of this command are CHANGE, CHANGE
Tinenumberl, or CHANGE 1inenumberl Jinenumber2. CHANGE without a 1inenumber
specified will change all 1ines in the buffer. CHANGE 1inenumberl will
change lines from the 1ine number specified to the end of the buffer. CHANGE
1inenumberl 1inenumber2 will change lines in the buffer starting at the

first line specified through the second 1ine specified.

CHANGE operates on all lines within the specified range except lines starting
with an asterisk (*) or semicolon (;). These lines are considered comment
tines in assembly language source text. Refer to the CHANGEALL command to
operate on comment lines.

When the CHANGE command is entered, LINEEDIT will respond with the prompt
SEARCH MASK ?. A string of up to 132 legal text line characters may be
entered. The entry is terminated by pressing the return key. If no lines
in the current text file contain a match to the specified search mask, the
message STRING NOT FOUND will be displayed. Otherwise, LINEEDIT will then
respond with the prompt CHANGE TO ?. Another string of up to 132 legal
text string characters can be entered. The entry is terminated by pressing
the return key. LINEEDIT searches through lines in the current text file
Tooking for the first occurrence within each line of a substring that matches
the specified search mask. It replaces such occurrences with the specified
change-to string, adjusting line and buffer lenath accordingly. Each line
as changed is displayed on the console without tabs expanded.

The CHANGE command also respects the universal match character capability
as described under the SEARCH command. If the search mask contains one or
more question marks (?) these characters positions will match any character
in the search process, and the matched substring will then be replaced by
the change-to string. Example:

Rev. 8 9/78 4-51

LIST

19 S1GLABEL1A

2 S2@LABEL2A

39 BLABEL3

CHANGE

SEARCH MASK ? S?@
CHANGE TO ? @
19 @LABEL1A

29 GLABEL2A

The change-to string may also contain question marks (?). This provides the
ability to retain specified character positions in the search string while
making changes on either or both sides of the retained character. Example:

LIST

19 TAGB1A

2P TAGOFF

39 TAG22A

CHANGE

SEARCH MASK ? TAG??A
CHANGE TO ? LABEL??B
19 LABELQ1B

3@ LABEL228

Lines 19 and 3@ have been changed while 1ine 20 is unchanged because it
did not match the search string. The TAG at the beginning and the A at
the end of lines 1@ and 3@ have been changed. The #1 in line 18 and the
22 in line 3@ have been retained.

4.4.23 THE CHANGEALL CDMMAND

The first occurrences of a specified string in all lines of the current
text file, including those lines that begin with an asterisk (*), or
semicolon (;) can be replaced with a different string of same or different
length by using the CHANGEALL command. The forms of this command are
CHANGEALL, CHANGEALL 1linenumberl, or CHANGEALL 1inenumberl 1inenumber2.
When the CHANGEALL command is entered it functions the same as the CHANGE
command, except that all text lines including those that begin with an
asterisk (*) are included in the search.

4.4.24 THE EDIT COMMAND

The text within a specified 1ine in the current text file can be changed
without retyping the entire line by using the EDIT command. EDIT 1linenumber
is the form of this command. If the specified linenumber is not found in
the current text file, the message LINE NOT FOUND is displayed. LINEEDIT
processes an EDIT command by copying the specified 1ine into a special
editing buffer and displaying the line number at the left margin of the
console. An invisible edit pointer is set to point to the first character
in the text line after the space that terminates the Tine number. LINEEDIT
is now in the EDIT command mode. A separate set of single key commands is
available for editing a line in the special edit buffer.

Rev. 8 9/78 4-52

4.4.24.1 ADVANCING THE EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text line immediately after the one that is displayed. The entire
line can be displayed in this manner.

4.4.24.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a ¢ or C, followed by the new character.

The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

4.4.24.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (/). The edit pointer is left
pointing at the character immediately after the deleted character.

4.4.24.4 INSERTING CHARACTERS - I

Characters may be inserted into the line or at the end of the line by
typing an i or I followed by the characters to be inserted. The
insertion begins immediately before the character pointed to by

the edit pointer. Characters are inserted in sequence as typed until
the insert mode is terminated by. depressing the ESC key. The edit
pointer remains pointing to the same character that it pointed to when
the insertion began. The insert mode may also be terminated by pressing
the return key. This also terminates the EDIT command and replaces the
line in the current text file with the newly edited version from the
special editing buffer.

4.4.24.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position

of the -edit pointer to the end of the line may be displayed by typing

an 1 or L. The characters are displayed on the console followed by

a carriage return-line feed. The line number is reprinted at the left
margin of the console display and the edit pointer is reset to the beginning
position. This command is useful to see what the 1ine looks like before
editing is completed. It may also be useful to use this command immediately
after entering the original EDIT command. This would display the line

about to be edited without exiting the editing mode.

4-52.1

4.4.24.6 SEARCHING TQ A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the
first occurrence of a specified character by typing an s or S

followed by the character to search for. The characters from the position
of the edit pointer up to but not including the searched for character

are printed on the console. The edit pointer is left pointing at the
first occurrence of che searched for character. If the search argument
does not exist in the line then the entire line is printed and the edit
pointer is positioned at the end of the line.

4.4.24.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer pasition
up to but not including a specified search character can be deleted by
typing a k or K followed by the search character. The deleted
characters are displayed on the console, enclosed in backslashes (/).
If the search argument does not exist in the edit line, then all the
characters from the edit pointer to the end of the line are deleted.
The edit pointer is left pointing at the search character or at the end
of the line.

4.4.24.8 QUITTING THE EDIT COMMAND MODE - Q

The EDIT command may be aborted without changing the line in the current
text file by typing a q or Q. The partially edited line in the

special editing buffer is abandoned. MNo changes are made to the line in
the current text file. LINEEDIT is ready to accept a new command.

4.4.24.9 COMPLETING THE EDIT COMMAND - THE RETURN KEY

The line in the special editing buffer can replace the line in the current
text file at any point by pressing the return key. This terminates the
EDIT command in a normal manner.

4.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT

Control of the computer system can be returned from LINEEDIT to the MDOS
executive by using the DOS command. This command has no parameters. It
is entered by typing DOS and pressing the return key. Control is

returned to the MDOS executive which signs on with the message MICROPOLIS
MDOS VS. X.X. LINEEDIT remains in the system application program area and
the contents of the current text file are not disturbed unless some action
taken from the executive destroys these areas. Entering an APP command to
the executive would return control to LINEEDIT.

Entering the DOS command may result in the message FILE ON DISK NOT UPCATED,
PROCEED?. This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears the current
text file is not yet lost. To override this warning type Y and press the
return key. The DOS command will be processed. Otherwise type N and press
the return key. The message CANCELLED will be displayed and LINEEDIT will
be waiting for an alternate command.

Rev. 8 9/78 4-53

4.4.26 LINEEDIT FILE STRUCTURE

The current text file in the LINEEDIT edit buffer has the foilowing
format. Each line begins with a byte that contains a count of the number
of bytes in the line. The count includes the count byte and the carriage
return at the end of the line. The count byte is followed by four bytes
that hold the digits of the line number in ASCII. The line number can
range from Q@@P to 9999. At least one space {20 hex) follows the line
number. The remainder of the line can contain from § to 125 characters
followed by a carriage return. The shortest 1ine contains 6 bytes. The
longest line contains 132 bytes. The characters of the source program
appear in the line exactly as they were typed during input. ASSM and
LINEEDIT require only one space between elements of an assembly statement.
Additional spaces are ignored. Therefore, there is no reason to type in
more than the minimum number of spaces when entering a source program.
After the carriage return that terminates the last line of the current text
file there is a byte that contains a @1 to mark the end of the file.

The current text file is written to a disk file just as it appears in

the edit buffer. A1l records in the disk file with the possible exception
of the last one are full records. A text line may span two records. ‘The
following logic could be used in an MDOS application program designed to
process an editor source file.

1008 START CALL @RFINXPOSI
2000 DCR c

3009 JZ ENDOFFILE
4009 MVI 0,9 '
5000 MOV E,C

6000 . LXI H,BUFFER
7900 CALL @LOADDATA
80@p *PROCESS THE LINE IN THE BUFFER

9000 JMP START

The @RFINXPOS routine gets the line count byte into the C register. If
the count is @1 the end of the file has been reached. Otherwise, all
program 1ines have a line length of no less than 6. The line length is
moved into the DE registers (D=p) and the buffer address is placed into
the HL registers. The GLOADDATA routine starts at the index position

and loads the next DE bytes into the buffer which leaves the index position
pointing to the line count byte of the next text line. The program can
then process the text line and loop back to get the next line.

Rev. 7 3/78 4-54

4.5 ZSM - Z-8@ ASSEMBLER

ZSM is an MDOS program to convert Z-80 assembly language source code
into object code, which consists of a sequence of binary codes that
can be loaded into the computer's memory and executed. ZSM takes
the place of ASSM, the earlier 8080/8085 assembler for MDOS. Any
references in this manual to ASSM should be understood as references
to ZSM.

As input ZSM expects a type 4, 5, 6, or 7 text file, such as that
produced by LINEEDIT. The output file produced will be a type 8
file. This type of file may be scatter loaded into memory, meaning
that it need not be contiguous code; rather, it can be several
groups of individual code.

Note that this is a disk assembler, so memory size is not a
constraint on the size of file that may be assembled.

ZSM is a copyrighted piece of software. Any reproduction or
redistribution of it or this manual is expressly forbidden.

4.5.1 HOW TO RUN ZSM

ZSM is invoked from the MDOS executive by typing its name, followed
by the assembly parameters. The format is as follows:

>Z5M "<source filename>" "<object filename>" "<options>" [<offset>]

The <source filename> must be the assembly language source program
as explained above. The <object filename> is the name of the output

file. It must be included, but may be blank if the S or M option,
below, 1is used.

The <options> are instructions to ZSM pertaining to how to assemble
the program. The number of options specified varies with what is
desired and may be blank, but the field must nevertheless be
included. The options are as follows.

E Only lines containing éssembly errors will be listed.

P The assembly listing will be paginated.

S The assembly listing will be produced, but no object code.

M The object code will be written into memory, not to a disk
file.

L The line numbers from the source file will not appear on the
listing.

T The symbol table created by ZSM will be printed following

the listing.
"SM" is the only combination not allowable, since they are mutually

exclusive. 1If they are both present, though, the S option will
prevail.

Rev. 8.1 2/5/79 4-55

The <offset> parameter indicates an offset to be added before the
object code is placed into memory (via the M option). For example,
it would be impossible to assemble a program into memory at 2B@#,
since that is where ZSM resides. Therefore, to put a program into
memory that was designed to run at 2B@g#, you would have to specify
an offset, for example 30¢6. This would result in code destined for
2B@0 to be actually put into memory at 5A@0 (2B@¢ + 3600).

Here are some examples of valid commands:

l. 2ZSM "SFILE"™ "OFILE"™ ""
2. ZSM "SFILE" "" "PTS"

3. 2ZSM "SFILE" "" "ML" 30090
4. 2ZSM “SFILE"™ "OFILE" "E"

Line 1 would assemble SFILE into the file OFILE, and produce a
normal listing. Line 2 would assemble SFILE, producing a paginated
listing including a symbol table, but not produce an object file.
Line 3 would assemble SFILE, putting the object code into memory
with an offset of 3000; it would produce no object file; and it
would produce a normal listing, but without line numbers. Line 4
would assemble SFILE into the file OFILE, and only list those lines
(if any) containing errors.

Assembling a file with the M option in such a way that the operating
system or assembler would be overwritten will cause a 'Load address
error'. Including the wrong number of parameters in the command
line, or forgetting a quote symbol, will cause a 'Syntax error'.
Specifying an object file which already exists will cause a
'Duplicate name' error, meaning there already exists a file with
that name. Either SCRATCH that file, or select a new name for the
object file.

4.5.2 LANGUAGE ELEMENTS

The source file has a general format as follows:
LABEL: OPCODE OPERANDS ;comments
The #### represents the four digit line number assigned each line by

the line editor. Although the line number itself is ignored, it

“must™ be present, and must be four characters long, followed by a
space.

The LABEL is optional. 1If present, it will be entered into the
symbol table. Whether or not it is present, its position must be
followed by a space or colon. That is,

#4#% LABEL OPC or #### LABEL: OPC or #### OPC

are valid, while

###¢ opcC

is not.

4-56 Rev. 8.1 2/5/79

Labels may include any of the following characters:

ABCDEPFPGHIJKLMNOPQRSTUVWXY Z
abcdefghijklmnopgqrstuvwzsxyz2
g 123456789¢€. [1{r\]|*>"~-

To avoid ambiguity, however, the first character may not be . or
@-9. In addition, a label may be of any length up to 47 characters.
All characters are significant. In normal use, though, up to 12
characters should suffice; and over 14 characters will look a little
strange on the listing.

The OPCODE must either be a Z-88 opcode or a pseudo-op. Both are
explained later.

The OPERANDS vary. There can be any number of them, depending on
whether they are operands for an opcode or a pseudo-op. There are
also instances where there are no operands, and therefore this field
can, in some cases, be omitted. If more operands are supplied that
are needed, the extras are ignored.

The COMMENT field is totally ignored by the assembler, except for
printing it on the listing. Comments are used only for
documentation or clarity, and can be omitted altogether. If
present, comments should be preceeded by a semicolon (;). The
semicolon will cause a TAB to the third TAB setting, whereas its
absence will result in the comment appearing immediately to the
right of the operand field.

There is one exception to the above format, and that is the case of
an all-comment line. If the first character of the line (after the
line number and space) is either an asterisk (*) or semicolon, the
entire line will be treated as a comment.

4.5.2.1 CONSTANTS

ZSM provides for constants of two varieties, numeric and ASCII.

ASCII constants are indicated by enclosing the appropriate character
in single quotes ('). Any ASCII character can appear between the
quotes, except for (1) control characters, having an ASCII code of
under 28 hex; (2) the single quote character, ASCII code 27 hex; (3)
the underscore character , ASCII code SF hex; and (4) the DEL
character, 7F hex. -

Numeric constants may be in any of four bases - 2, 8, 18, and 1l6. A
specific base is indicated as follows:

###H indicates hexadecimal (base 16) - for example 1C7H
#4##Q indicates octal (base 8) - for example 62Q
###B indicates binary (base 2) - for example 10141B

###D or just ### indicates decimal (base 18) - for example 193D or
193

Rev. 8.1 2/5/79 4-57

Regardless of base, all numeric constants “must™ begin with a digit,
§-9. (This is to prevent ambiguity with labels.) Thus A87 hex
would have to be written as OGA@7H.

There is one special numeric constant, denoted by the symbol §S.
This constant is always equal to the address of the current line;
that is, the memory location that the current line will be written
into when it is loaded. ©Note that this reflects the address of the
beginning of the current line, “not™ the next line (as in some
assemblers). As an example, consider that

go10 JMP $

would cause an infinite loop, since it would jump to itself.

4.5.2.2 OPERATORS

ZSM recognizes 10 operators. They are as follows:

addition

subtraction, or negative (as in -1)
multiplication

division

modulo (remainder of d1v151on)

logical AND

logical OR

logical EXCLUSIVE-OR

rotate right (119101B>3 yields 101110B)
rotate left (1110110B<1 yields 1181141B)

AV oo~ ¥ | +

All arithmetic operators treat their operands as unsigned 16~bit
quantities, and answers are truncated to 16 bits. All logical
operators perform their function on a bit-by-bit basis, and - they
also treat their operands as 16-bit values.

Operators combine with constants to form expressions. In an
expression, all operators are evaluated in a strict left-to-right
order, with no precedence of operators.

Thus consider the following situation:

TEST has been assigned the value 1000H.
INC has been assigned the value 6.

The expression encountered is TEST*6+INC!7<8.

The procedure would be TEST*6 (60@0@H) +INC (6P@6H) !7 (6007H) <8
(8760H) . Thus the resulting value is 764H.

4.5.2.3 REGISTERS

The Z-8¢ has a number of registers, all of which have a specific
symbolic reference. ZSM supports these referencels, as follows.

4-58 Rev. 8.1 2/5/79

register designation

register B - B Also called BC for register-pair instructions
register C - C

register D - D Also called DE for register-pair instructions
register E - E

register H - H Also called HL for register-pair instructions
register L - L

accumulator- A

memory - M Also called (HL), but 2ZSM does not allow this.
A & flags - PSW Program Status Word, may also be called AF
Stack Ptr - SP

Index reg X- IX Also may be called X for brevity
Index reg Y- IY Also may be called Y for brevity

Of course, the Z-8¢ also has registers A', B', Cc', D', E', H', L',

F', PC, I, and R, but these are never explicitly referred to in an
instruction, so no special designation is needed.

4.5.2.4 PSEUDO-CPS

ZSM supports a large number of pseudo-ops. They will be explained
now.

ORG Set origin

The ORG pseudo-op specifies where the object code is to be put.
Assembled code and data is assembled starting at the address
specified as the operand to the ORG psuedo-op, and proceeds upward,
until the end of the program or another ORG. A program can contain
as many ORGs as desired. Since ORG is handled in pass 1, any symbol
appearing in the operand must already be defined.

LINK Link to a file

The LINK pseudo-op allows separate program files on the disk to be
'linked together' and assembled as one file. The LINK operand is a
source file name, enclosed in single gquotes. No drive specification
is needed for the LINK file, as all units will be searched (starting
with the unit the original source file is on) to locate the file.
If the file is not found, a 'File not found' error will be issued,
and the assembly aborted.

Linking to a file is like a subroutine; that is, when the linked-to
file is exhausted, assembly of the original program will continue
from where it was left off at. For example,

8010 LXI H,4000H
2020 LINK 'TEST'
2039 MoV A, M

will cause the entirety of the file TEST to be assembled between the
LXI and the MOV,

Files that are linked to must not contain an END pseudo-op.

Rev., 8.1 2/5/79 4-59

END End of assembly

The END pseudo-op indicates to ZSM that the end of the program has
been reached. As such, it may be omitted, since the physical end of
a program has the same effect.

In addition, though, an operand may be included. This operand, if
present, indicates the starting address of the program. This
address is not where the program is loaded, but instead where
execution will begin. This allows the program to begin execution at
any point in memory, rather than the beginning of the program. If
this is omitted, then the beginning of the program is used as the
starting address.

In order for the starting address to be effective, the object file
would be changed to an implicit command file under MDOS (type
gC-gF).

EQU Equate

The EQU pseudo-op simply equates the label associated with it to the
value of the operands.

g914 TEN EQU 19
#0829 TWENTY EQU 2*19

The above code would cause the label TEN to have the value 18, and
TWENTY to have the value 24.

REQ Request value

The REQ pseudo-op is similar to the EQU pseudo-op, only instead of
an explicit value being specified, the system console is prompted
for the value. The prompt is specified as the operand. For

example,
@g18 TEST REQ '"Input:’
Would cause the message

Input:

to be displayed on the console during pass 1 of the assembly. The
operator must then type the value to be associated with the label.
For example, if the operator had typed '56H' in response to the
prompt, then TEST would have a value of 56 hex.

PRT Print

The PRT pseudo-op allows information to be displayed on the console
during pass 2. 1If operands are present, they are displayed,

otherwise, just a carriage return/linefeed is printed. For
example,

4-640 Rev. 8.1 2/5/79

9010 TEST EQU 70004
2020 PRT 'This is a test ',TEST

would cause
This is a test 7008

to be printed on the console during pass 2.

TAB Tab settings

The TAB pseudo-op changes the tab settings for the assembly listing.
Normally, they are at positions 15, 22, and 36. If it is desired to
change them, then the TAB pseudo-op is used. It expects three
operands, one for each tab setting. If a particular operand is
zero, then that position is set to the default. The three settings

represent the location of the opcode, operand, and comment fields
respectively.

NLIST No list

The NLIST pseudo-op will cause code following it not to be listed.
Note that this overrides any options which may have been specified
in the command string; If the E option was used, nothing will be
listed (errors or not) after a NLIST.

LIST List

The LIST pseudo-op cancels the effect of the NLIST pseudo-op. If
there has been no NLIST, then this has no effect.

FORM Form feed

The FORM pseudo-op produces a formfeed in the listing when
encountered.

IPF If false - conditional assembly

The block of code following the IFF pseudo-op will be assembled only
if the operand evaluates to 4.

IFT If true - conditional assembly
The block of code following the IFT pseudo-op will be assembled only

if the operand evaluates to anything other than 4.

ENDIF End of IF block

Rev. 8.1 2/5/79 4-61

The ENDIF pseudo-op is used to mark the end of an IFT or IFF block.

DB Define byte
The DB pseudo-op assigns its operands to successive memory
locations. Either numeric or ASCII operands may be present, but

either one must evaluate to only 8 bits. This means that only one
ASCII character may be included per operand. For example,

g@214 LOCATION DB l,2¢H,118B,'D',TEST,14
would put each operand into a successive memory location.

'2' is a special case of the DB pseudo-op, and it is equivalent to
DB 4. For example,

2210 XXX Z and
2013 XXX DB 2

are equivalent.

DW Define word

The DW pseudo-op is basically similar to DB, only it defines two
bytes at a time, rather than 1. Also, the two bytes are in Intel
standard low/high format.

DD Define data

The DD pseudo-op is exactly like DW, only the two bytes are put in
high/low format.

DT Define text

The DT pseudo-op allows ASCII text to be put into memory. The
desired text must be enclosed by single quotes. For example,

$@l10 TEST DT 'ABCDEF'

would produce the following object code: 41 42 43 44 45 46 (hex).

DTH Define text terminated high

The DTH pseudo-op is like DT, only the last character is ORed with

80H before it is written out. 1In the above example, the last byte
would be C6 hex.

DTZ Define text terminated with zero

The DTZ pseudo-op is like DT also, only it causes a byte of 88 to be

4-62 Rev, 8.1 2/5/79

appended to the text string. Thus the example would be 41 42 43 44
45 46 00.

DS Define storage

The DS pseudo-op causes the assembler to skip over the number of
bytes specified by the operand. Since the object file is scatter
loaded, the area skipped over will remain undisturbed.

FILL f£ill storage

The FILL pseudo-op is similar to DS, only it fills the area with a
constant, rather that skipping over it. The constant to £ill with
is specified with the second operand. For example,

0010 FILL 5,3

would produce the output

03 93 93 23 23.

4.5.3 ASSEMBLY ERRORS

There are ten assembly errors. Note that an error doesn't
necessarily cause the program to assemble wrong, particularly if the
error is a syntax error in something like a TAB statement.
Nevertheless, all errors should be avoided.

The errors are as follows.

A Argument error - This is caused by an invalid character in an
operand field, or an ASCII constant which is out of range.

D Duplicate label error - This indicates that a symbolic name
was used more than once as a label. The first wvalue will be used.

J Jump error - This indicates a relative jump (JR, JRZ, JRNZ,
JRC, JRNC, DJINZ) to a label which is out of range. The relative
jump should be replaced with an absolute one.

L Label error - This is caused by a label which contains invalid
characters.
M Missing label error - This indicates that an EQU or REQ

pseudo-op was encountered, but there was no label on the line.
Obviously, a label is necessary for either of these.

0 Opcode error - This is caused by an illegal or missing
opcode.
R Register error - This indicates that an illegal value was

found where a register was expected.

Rev. 8.1 2/5/79 4-63

S Syntax error - This is caused by missing operands or improper
use of operators.

U Undefined symbol error - This indicates that a symbol was
used, but that the symbol has not been defined.

v Value error - This indicates that the value computed is out of

range for the operation being used, specifically a two-byte
instruction, or a DB.

4.5.4 INSTRUCTION SET

ZSM supports the complete Z-88 instruction set, using the TDL-style
mnemonics. These mnemonics represent the Z-8¢ instruction set as a
logical superset of the 8988 mnemonics. The reason that these
'superset' mnemonics were chosen over the Zilog mnemonics is for
ease of use. All 8880 programs will run unmodified on ZSM, but they
wouldn't on a Zilog-mnemonic assembler. In addition, someone
familiar with 8088 mnemonics will find the superset easy to learn,
since they are a logical extension of 8088 mnemonics.

One thing that is important to grasp is how indexing is handled.
Under Zilog mnemonics, an operand might appear as (IX+d) where d is
the offset and IX is the index register. Under ZSM, it would be
d(X). Thus instead of

0210 LD HL, (IX+12)
the following notation is used:
80109 LXI H,12(X)

The same is true of IY, only it would appear as (Y) instead of . (X).
In addition, an offset of zero may be omitted entirely. That is,
(IX+9) needn't be written as #(X), it can simply be (X).

The next sections outline the instruction set. It is not meant as a
tutorial on the Z-88, but rather a guide to the specific mnemonics
used. Following that is a test program. 1If you have a Mostek or
Zilog Z-88 Programming Manual, notice that in the back is an
alphabetic list of all possible instructions. That list is in Zilog
mnemonics. The test program herein is an exact duplicate of that
list, only in the superset mnemonics. You are not expected to enter
and assemble this program, but to use it as reference for the
mnemomics.

In the following section, certain general conventions are used.
They are as follows:

n an 8 bit value

nn a 16 bit value

d an 8 bit value, specifically a displacement

r register, such as A, B, ¢, D, E, H, L, M, d(X), d(Y)

I one of the index registers, IX or 1Y (abbreviated X or Y)
rp register pair, .such as B, D, H, SP, PSw, IX, IY

4-64 Rev. 8.1 2/5/79

Rev, 8.1

a bit,

2/5/79

value @ - 7

4-65

<.
s

8 bit load group

Instruction

MOV
MOV
MOV
MOV
MOV

MVI
MVI
MVI

LDA
STA

LDAX
STAX

LDAI
LDAR
LDIA
LDRA

16 bit load group

Instruction

LXI

LBCD
SBCD
LDED
SDED
LHLD
SHLD
LSPD
SSPD
LIXD
SIXD
LIYD
SIYD

SPHL
SPIX
SPIY

PUSH
POP

rp,nn

nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn

rp
rp

Zilog equivalent

LD
LD
LD
LD
LD

LD
LD
LD

LD
LD

LD
LD

LD
LD
LD
LD

2ilog equivalent

LD

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD

LD

PUSH
POP

r,r
r,(HL)
r,(I+d)
(1) ,r
(I+d),r

r,n
(HL),n

(I+d),n

A,(nn)
(nn) ,A

A,(rp)
(rp),A

rp,nn

BC,(nn)
(nn),BC
DE,{(nn)
(nn) ,DE
HL, (nn)
(nn) ,HL
SP,(nn)
(nn),SP
IX,(nn)
(nn),IX
1Y, (nn)
{nn),IY

SP,HL
SP,IX
SP,IY

rp
rp

Rev. 8.1

2/5/79

Exchange, block transfer, and search group

Instruction

XCHG
EXAF
EXX

XTHL
XTIX
XTIY

LDI
LDIR
LDD
LDDR

CCl
CCIR
CCcD
CCDR

Input / Qutput group

Instruction

IN n
QuT n

INP r
QUTP r

INI
INIR
IND
INDR

ouTI1
QUTIR
QUTD
QUTDR

8.1 2/5/79

Zilog equivalent

EX
EX
EXX
EX
EX
EX

LDI
LDIR
LDD
LDDR

CPI
CPIR
CPD
CPDR

DE,HL
AF ,AF'

(SP),HL
(sp),IX
(sp),IY

Zilog equivalent

IN
ouT

IN
UT

INI
INIR
IND
INDR

QUTI
OTIR
OUTD
OTDR

Y

8 bit airthmetic/logical group

Instruction Zilog equivalent
ADD r ADD A,r
ADD M ADD A, (HL)
ADD da(1) ADD A,(I+d)
AD1 n ADD A,n
ADC r ADC A,r
ACI n ADC A,n

(references to M and d(I) are like ADD)

SUB r : SUB A,r

SUl n SUB . A,n

SBB r SBC A,r

SB1 n SBC A,n

ANA r AND A,r

ANI n AND A,n

ORA r OR A,r

OR1 n OR A,n

XRA r XOR A,r

XR1 n : XOR A,n

CMP r cp A,r

cpl n cP A,n

INR r INC r

DCR r DEC r T

b bit arithmetic group

Instruction Zilog equivalent
DAD rp ADD HL,rp
DADC rp ADC HL,rp
DSBC rp SBC HL,rp
DADX rp ADD IX,rp
DADY rp . ADD IY,rp
INX rp INC rp
DCX rp DFC rp

4-67A Rev. 8.1 2/5/79

General purpose arithmetic and control group

Instruction Zilog equivalent
DAA DAA
CMA CPL
NEG NEG
cMC CCF
STC SCF
NOP NOP
HLT YALT
DI DI
EI El
IMO IM 0
IM1 IM 1
IM2 IM

Rev. 8.1 2/5/79 4-67B

D

Rotate and shift group

Instruction Zilog equivalent

RLC RLCA

RAL RLA

RRC RRCA

RAR RRA

RLCR r RLC r

RLCR M RLC (HL)

RLCR d(I) RLC (I+d)
(references to M and d{I) are like RLCR)

RALR r RL r

RRCR r RRC r

RARR r RR r

SLAR r SLA r

SRAR r SRa r

SRLR r SRL r

RLD ' RLD

RRD) h RRD

Bit manipulation group

Instruction Zilog equivalent
BIT b,r BIT b,r
BIT b,M BIT b, (BL)
BIT b,d(1) BIT b, (I+d)
RES b,r RES b,r

(references to M and d(1) are like BIT)
SET b,r SET b,r

4-67C Rev. 8.1 2/5/79

Jump, call, and return group

Instruction Zilog equivalent
JMP nn JP nn

JZ nn JP Z,nn
JNZ nn JP NZ,an
JC nn JP C,on
JNC nn JP NC,nn
JPO nn {(or JNO) JP PO,nn
JPE ‘nn {or JO) JP PE,nn
JM nn JP M,nn
JP nn JP P,nn
JR nn {or JMPR) JR d

JRZ nn JR Z,d
JRNZ nn JR NZ,d
JRC nn JR c,d
JRNC nn JR NC,d
DJNZ nn DJNZ d
PCHL JP (HL)
PCIX - JP (IX)
PCIY JP (1Y)
CALL nn CALL nn

Cz nn - CALL Z,nn
CNZ nn ’ CALL NZ,nn
CcC nn CALL C,nn
CNC nn CALL NC,nn
CP0 nn (or CNO) CALL PO,nn_
CPE nn (or CO) CALL PE,nn
CM nn CALL M;nn
cp nn CALL P,nn
RET RET

RZ RET YA

RNZ RET NZ

RC RET C

RNC RET NC
RPO (or RNO) RET PO
RPE {or RO) RET PE

RM RET M

RP RET P
RET1 RETI

RETN RETN

RST n RST m (m =8 ® n)

Th
H'y

L]
an
o'y
vh
(X)ANI'h
(X)ANT'h
Ry
qum
a's
0'¢
't
v'e
(X)ANI'E
(X)ANI‘E
H'E
1e
n'e
a‘z
a‘e

&
1
vz
(K)aNI‘2
(X)aNTI'2
R'2
1
H'L

[]
at
21

[]
ol
(K)ANI'L
(X)QNI*}
W'y
10
H'O
a‘o
a'o
2
‘o
v'o
(X)aNT'‘o
(X)aNI'o
H'D
N
pueaadg

2 93eyq

118

114
114
118
114
114
114
114
1l1d
114

114
114
114
119
114
114
114
114
11d
114

114
114
114
114
114
114
114
11d
114
l1d

114
114
114
114
114
114
118
114
114
118

114
114
114
114
l1d
114
114
114
114
118

INV

podo

-

-

oh0O"Y
[}

18qe1]

2o
1110
oL10
6010
ao0L0
Lolo
9010
5010
holo
toto
colo
1010
ooLo
6600
8600
1600
9600
5600
1600
£600
2600
1600
0600
6800
8800
1800
9800
5800
h800
£800
2800
1800
0800
6.00
8L00
LL0O
9.00
SL00
hloo
£L00
2L00
1,00
0.00
6900
8900
1900
9900
$900
h900
€900
€900
1900
0900
6500
8500
LS00

99 S0
99 S0

36 S0
a5 60

96 S0
96 S0

a S0
an S0

9 S0
9 S0

59
h9
€9
29
19
09
L9
a0
a0
99

as
a6
as
Vs
66
8s
46
40
49
35

1
hs
£6
2s
16
0s
LS
a0
a0
99

ah
oh
ah
vh
6
gh
dh
b
€42
ah

Sh
hh
En
ch
Lk
Oh
Lt
b
42
9h

0¢

Ut 3 ha t49 249

ik]
:h)
42
42
0]
42
43
as
aa
42

1 1o]
42
42
[0o]
[1]
1 1o]
49
a4
ad
1]

0]
2 o]
;0]
19}
190}
0]
0]
ad

[:20]

1 1o]
49
42
1 1o]
;0]
0]
;0]
as
ad
:h]

0]
40
;0]
€40
€0
42
K]
as
aa
:h]

93

2300
0300
3400
2400
vaoo
gd00
9400
2400
avoo
avoo
Jvoo
yvoo
gvoo
9v00
kY00
2voo
0ovoo
3600
V600
9600
h600
1600
2600
0600
3800
3800
V800
8800
9800
2800
3.00
3400
3400
V.00
8L00

9.00
hL00
2Loo
0L00
2900
¥900
9900
1900
h900
2900
0900
3500
3600
¥500
8600
9500
2600
3400
Jh00
34100
k00

Jappy

| edeq

«NOQAN I 2

(X)aNI
(X)QNI
H

Q
172}

d

«TOAEMT TR QAR NAQAA XN OO >

(X)aNI

—~
e
-
a
=
= =

(-9

«MOAOA@MITISZDMATN

(X)ANI
(X)aNI
H

SUOTIONJ]SUT T8 Sasn STUL

pueaadg

VNV
VNV
VNV
YNV
VNV
VNV
VNV
VNY
VNV
VNV omoc.«

xava
xava
xava
xava
xava
Xava
Xxava
xava
ava
ava
ava
ava
Iav
aav
aav
aav
aav
aav
aav
aaqv
aay
aav
aagv w—cc.«

Java
aava
aJava
aava
oV
aav
aav
aav
aav
aav
aav
aav
aav
aav
aav 0000°

11968e4g ateaN 4Aq
HSZ J0J o113 3801

e e ra cm s sm

podg 1eqe

9500
5500
h500
£600
2500
1600
0500
6100
g8h00
Lh00
9400
Sh00
hk00
£h00
2h00
1100
0h00
6£00
8E00
LE00
9€00
SE00
h€00
££00
2£00
LE00
0£00
6200
8200
1200
9200
6200
he00
€200
2200
1200
0200
6100
8100
L100
9100
sL00
w100
£100
2100
1100
0100
6000
8000
L000
9000
5000
®000
£000
2000
1000

S0 9V
S0 9V

6€
62
61
60
6¢
62
61
60

02

S0 99
S0 98

vl
v9
Vs
Vh
0e

50 3g
S0 38

1)
hv

ey
1y
ov
Ly
ad
aa
9V

ad
as
a4
as
aa
aa
aa
aa
6€
62
61
60
93
1]
h8
tg
29
18

Lg

aa
98

qa
a3
ag
a3
a0
as
a8

Ve
68
80
4
ad
ag

38

6100
8n00
Lh00
9500
)
100
€100
0100
ae0o
€00
9£00
VE00
ge0o
9£00
1E00
2€00
0£00
3200
9200
g200
V200
6200
8200
9200
6200
n200
€200
2200
1200
0200
4100
2100
6100
8100
8100
9100
h100
2100
0100
3000
a0go
600
4000
Y000
6000
8000
L000
h000
1000
0000
0000
0000
0000
0000
0000
0000

eut] 3 nd td 24 14 JPpV

2/5/79

8.l

Rev.

4-67 E

dNI
dNI
dNI
dNT
dNI
dNT

NI
dNI

®«ZAaOoao W

ZHI
IHI
OHI

1TH

xx3

OHOX

avy3

XI1X

XIiX

THIX

13

SI1a+¢ ZNrQ

Id

Q.
2]

Xod
Ll
Xaa
X2a
peoli}
H3q
Hoq
X2q
¥Ooq
424
xoa
¥oq
4oa
(X)aNI Hod
(X)aNI ¥oa

« D NOAQAE T T >

yva

YHO

¥120

120

L (oe)

add

N 140
‘puedadp podg

n e3ed

g910°v
[}

G910°V

a610°Y

asio°v
6G10°

- - om

8slo’ v
H

N:—o.«

Iwio“v

o:—o.«

geELo’y

19qe

hc20
£2e0
720
12ee
0cea
6120
glee
w120
9120
Gleo
nico
£120
2120
1120
0l20
6020
8020
1020
9020
§020
1020
£020
2020
1020
0020
6610
8610
L610
9610
5610
w610
€610
2610
1610
0610
6810
g8l0
Lglo
9810
Ggto
hglo
€gLo
2glo
iglo
0glo
6410
8L10
Lilo
9410
GLlo
helo
£L10
rAAN(]
lLeto
0Lio
6910

S0
S0

219
0s
th
Ch
02
Qe

35
96
9t

32

;4
14

19
tv
6d
6v

e

au1 3 wd £3 29

a3
a3
a3
a3
a3
a3
aa
a3

a3
a3
a3

9L

6d
a3
80
ad
ad
£3

a4
0
€4

g€
ae
ad
aa
14
G2
at

St
ao

S0
at
a4
aa
Gt

ie
42
a3
a3

a3
a3

g

-

L PR

6LL0
iLlo
GLL0
IFAN
tito
4910
a91o
4910
910
6910
L910
G910
G910
h9to
h910
£910
2910
1910
4610
asio
610
asto
asto
asto
6510
6510
85t o
8sto
Lsto
9610
hetlo
eslo
1610
0s10
dhto
alo
ahlo
onto
anio
vhio
6nto0
9Kt 0
Ento
ehio
Zhto
thto
thio
okt o
ohto
3tio
J8t0
VELo
8LL0
gELo
9t10

Jppy

=

«mn oOoad

(X)an1
{(X)aNI

N N

(X)aN
(X)aN

T - @OQ &

(x)a
(x)a

- -

-
E-V-RV- V- lr- - V- J- Av- -]

ZzZ X
Ermtt €« QO QWX

Pal' AR M e NV a VA NV a NV Vo IV

(X)AN
(X)aN

X~ ®<@OQE I

pueas i

§f edes

aHd
dHD
dWd
dHD
dHd
dHd
dHD
dHd
dHd
dHWd

IWI

22
042
3dd
dd
IND
710
JND
RO

2

1149
114
114
119
119
114
114
118
119
114

114
118
114
113
119
118
114
114
119
119

114
118
118
118
118
118
119
114
116
114

podQ

J010°V Lh1O
[}

-
2]
[hal
-
(=]

-
=
N
—
(=]

12deq 8uT~

S0
S0

G0
S0
S0
S0
S0
S0
S0
S0
S0

dL so
L 60

9L G0
9L 50

39 S0
39 S0

rd £9

3q
34

g8
98
88
88
88
88
88
09
98

al
o
gl
V.
6L
1]
i
:)
a9
3l

sl
wl
el
2L
1L
0L
LL
[o]
:ts)
9e

a9
29
49
V9
69
89
49
i)
: 1)
39

ce

20
h3
e
hd
hd
a9
ha
24
aa

[o]
40
40
ik}
a0
a0
a2
ad
aa
a2

)

tfiy
210
tE10
ot10
4210
3210
6210
g2io0
geLo
Lz2to
L2110
helo
1210
Jito
a110
gito
St10
2iio
4010
J010
Joto
voto
goto
9010
5010
2010
00t0
3300
vdoo
9400
©d00
400
2400
0300
3300
3300
Y300
9300
9300
2300
3700
3400
2400
vaoo
8av0
9d00
Q00
2300
0000
3200
va00
9200
®J00
h300

Jppy

4-67 F

8.1 2/5/79

Rev.

9 98ey

(XA)YANT'D
(X)aNT‘D
W'D

NN‘D
NN

I QOO M
oMo nom@O@@m@amaA

(X)aN
(X)aN

(X)aNI
(X)ant’
:-

-~
- N IR

=
=

NN
NN
NN
NN
NN
NH

N*(X)AONI
7 (X)ANT
H'(X)ANI
3°(X)aNI
a'(X)aNI
2 (X)aNI
q'(X)aNI
V' (X)aNI

N'(X)ONI
7' (X)aNy
H'(X)aNy

pueaado

ACH
AOKH
AOH

188!
o497

IAK
AOH
AOH
AOH
AOH
AOH
AOH
AOH
AOH
AOR
AOH

4val
IAW
AOH
Ival
AOH
AOH
ACH
ACH
AOH
AOH
va1l
ACH
AOH
ACH
xval
xvail

adss
daxis
axis
aTHs
a3as
ao8s

YIS

IAH
ACH
AOH
AOH
AOH
AOH
AOH
AOH

IAH
AOH
AOR

podo

<=Nc.«

m:No.«

mmmo.«

vieo'y
&

0020°Y

L0y
'

19qe1

IS 50
GEEC G0
HeEeo
1374
ceEo <o
L0 G0 8§
1133]
62¢0
g2to
i2€0
9zk0
62€0
hcEo
£2€0
22t0
12£0 S0
02¢0 S0
61€0
g1€o0
JART}
91£0
SLE0
H1€0
£1E0
2LEo0
11£0
0L£0
60£0
Q0L0
LOEO S0
90£0 S0
G0L0 S0
noto
£0E0
20¢0
10€0
00£0 S0 98
6620 SO 88
8620 SO @8
1620 S0
9620 S0 98
6620 SO 88
h620 S0
£620
2620 0¢ SO
1620 S0
0620 S0
6820 S0
8820 S0
Lgeo S0
9820 S0
5920 S0
hg2o
£gc0 02 S0
2820 50
1820 S0
auy] 3 Ha £9

3n
3h

Bl
fh

0e

9h
9%

46

1S

88
L
3L

£L
44
ee
88
£s
£
88

9t
SL
bl
€L
2L
1L
0L
LL

9¢
SL
hi

2g

a4
ag
ar

10
a3

90
Sh
hh
Eh
Zh
ik
Oh
Ly
ad
aa

9h

a3
k13
al,
a3
L
aL
Vi
6L
8L
al
vE
ad
aa
al
Vi
Vo

a3l
ad
aa
(44
a3
a3
et

a4
ad
ad
ad
a4
ad
a4
ad

aa
ag
aa

aheo
dhco
vheo
¥4heo
Lh2o
£nco
€120
Lheo
oneo
Jeeo
3tco
geco
at20
agzo0
VE20
Lte2o
nezo
£€20
£€eo
L€20
4220
3220
J220
8220
veeo
6220
gceo
Leeo
9220
geeo
0220
aieo
al1eo0
a12o
vizo
vi20
9120
2Leo
3020
4020
L020
£020
0020
0020
2410
6dlo0
9410
tdlo
0410
as’io
valo
Lo
L310
€310
0310
aalo

1ppy

2

&

2

T3t (X)aNT
a*(x)anl
2t (X)aNT
g‘ (X)aNI
V' (X)aNT

DAXEZILXLIE

«@MOAQK T a=

[Z
—
a
+
-

SI1q+$

SIa+$-

SIa+¢
a sIa+$

NN
NN
NN
NN
NN
NN
NN
NN
NN

ds

-« @M OO)T >

(X)aNI
(x)aut
W

pueasdg

(")

aBed

AOH
AOW
AOH
AOH
AOK
TAR
AOH
AOH
AOH
AOH
AOH
AOH
AOH
XvVis
XVis

e
INdr
INUP

e

[1y
odr
aar

ZNC
LLIY
ONC
He
ar
K124
X134
THOd

YINI
INI

HANI
NI

XNI
UNI
XNI
XNI
XNI
UNI
4NI
NI
UNI
4NI
ANI

UNI
UNI
UNI
UNI

podo

ngzo
6.20
Q.20
20
qLe0
65:.20
h.20
£.20
2120
1420
0420
6320
9920
L920
£210°V 9920
t 6920
h920
£920
2920
1920
6810°V 0920
t 6520
8620
1520
9520
6520
1520
£620
2620
1620
0620
6h20
gheco
661L0°Y Lh2o
! 920
Sheo
wheo
Eneo
1610°Y 2heo
t Lheo
0heo
6£20
gteco
L£20
9£20
GE20
he20
£€20
2€20
1£20
0£20
6220
9220
1220
9220
2,10°V 6220

50
<0
50
S0
S0

S0
S0
S0
S0

S0
S0

S0

S0

S0
S0

£
2L
1L
0L
Li
0e

3¢
S
2
2
3e

88
88
88
88

88
88

88
88

63
63

°d
eV
ve

vy

134
€2

hE
13

aa
aa
ad
aa
aq
9t
SL
hi
17
2l
(72
0L
1L
4!
20

8e
02
o€
8l
213

¥)
23
va
ed
2d
£0
ea
vd
va
ad
aa
63

a3
a3
a3
ai

13
Je
a4
aa
£e
he
bl
£l
i
70
to
ho
ot
a4
aa
hE

1sqe1 2uy] 3 4 £9 29 19

vain
«aio
wato
talo
3010
2010
a2l0
Yalo
6210
8210
Lo1o
9310
SJ10
hato
£210
€310
1o10
4410
aeLo
84d10
6410
6810
9g10
£dl0
odl0
avio
yvio
Lvi0
nvio
Lvio
3610
2610
V6l 0
6610
6610
1610
G610
€610
1610
1610
0610
4810
agLo
g8i0
vgLo
6810
8810
1810
9810
6810
K810
£g10
2810
dL10
JAN]
aLl0

Jppy

8.1 2/5/79

Rev.

4-67G

! LEN T4

Pogneo
N lno o . . .
1 awne e 07 £ hdcy X T L6E0 <0 @9 12 40 G.
§ 4o oo ma mu mumm NN aXI1 6620°¥ Mamc 30 A ¥7 40 6620
1 dune £hO q - bato 6620
a4 4100 o MM Mw wwwm VIa) 620°¥ £PE0 Lh 03 1620
2 dlno Znne &h a3 V320 . fage Lozo
g d4Ino LERG Lk a3 43 NNCH O TXT 98£0 S0 88 12 7620
Y 4100 0320°¥ OhhO 6L a3 Mmmm NN aTn 1620°¥ mmmo 50 g8 vz 1620
032 . ! ngeo 1620
! 6En0 9320 : N'H o
. IAH 13:11¢ 0z 92 4820
¥1lno _ 8EnO £d a3 w320 1'H AOH 29€0 $9 3920
¥aLno 2320°V LEn0 84 a3 2320 W' AW 1€o n9 0820
¢ OM:O K]
N THO SEno 02 94 mwwm M.w ACH 09£0 £9 0820
1 vHO HERO cq dazo o._ ACH 6LEO 29 9820
H vuo £€H0 P N AOH gLE0 L9 vgzo
td 3020 a'M AOH iLEO 09 6
3 Vo 2En0 €@ 0020 . 9 o020
a vyo 1€£h0 26 0020 v ACH 9Lt0 L9 8820
9 w0 0EN0 19 8020 SOOI Ao s 30 99 a4 See0
a o 6240 b (X)QRI'H AOW | hugo S0 99 aa 2920
v vio Qzho La 6020 HH AW 1920°Y £L€0 99 1820
(X)ONI vHo Lzwo S0 98 a4 9420 ‘ teleo 1§20
(X)aNI VYo 9210 %0 98 Qg £420 “~m IAW 1LE0 02 31 4dle0
H V§o 2020°¥ G20 94 2020 =.w »mn Mwmm MM NMMM
! .
> heno 2d20 ‘
dON 1G20°V €240 00 1020 3. AH 89¢0 g5 9l20
! zzno 1020 o ACH 190 ¥S 8120
N 49207V 1240 nh 03 4920 3 Aon %560 5 670
! 0Zho 4920 ¢
v'a AoH h9€0 S
4107 6140 g a3 ‘ 45 gL20
101 aLbo O (Ranra A £9€0 50 35 a4 5420
¥3a7 Tir O o Boe L3 ACH _29E0 S0 35 aq 2120
aal 1320°¥ 9140 gv a3 1920 ACH 1120 « 190 a6 1 L20
! Gino 1320 NN'a m ¢ 09t0 1120
NS IXT niho %0 88 LE D20 . 6sto S0 88 Ll 3920
X14S €110 64 04 200 NN 03a1 ¥920°V §SE0 SO B8 ES 03 V920
XIdS 20 64 Qg 0220 N'a I LAFA] v920
THdS) 64 4920 1'a Pt 95E0 02 91 8920
NN Qds? 9920°V OLWO SO 69 AL 03 €620 Ha AW vt ve sz
* 6010 gdz0 ‘
Va1 6d20° ¥ 90n0 dn a3 6820 M.M »mu mmmm MM mwmm
! LOKO q ‘ .
NI 9010 0z 3z La%0 va how o b5 £9e0
R Aow hCHO %9 070 Aavazm.m s s & soos
1AM £0r0 49 7920 (X)aNT" A gneo S0 95 ad 3520
a’ AOH 2040 Vo €820 zz.a AOH . into S0 95 dd €520
21 AW 10K0 69 2820 a AM ¥620°¥ 9E0 95 ¥520
a'1 AOH 00K0 89 1820 N3 ‘ Gnto v520
V1 AW 66£0 49 0820 Y e . 02 30 9520
(X)ONI'T AOW 2650 <0 30 a4 a¥eo e AOH Ento an 1920
(X)ONI'T AOW L6€0 S0 39 Qa ¥v20 g Zneo I 9520
W'l AW 6Y20°¥ 96€0 39 6v20 a'o A w"mu m" ”mmm
: ! 6650 6V. '
NN'E O IXD n6E0 S0 90 12 ad m<mm m.w »mu Mmmw M” mmmm
NN a1 1V20°'V £E6E0 GO 99 ¥Z a4 LV2D LA ¢} L££0 a% 1520
uedad d
pueJadp podp 19qe 2u1) 3 #d €3 26 19 JPPY pueasdg podg 18qeq Sur1 T 49 € 24 LG PPV

n afe
, s L 9Zmy

4-67H

2/5/79

8.1

Rev.

BN acDOO@ I J
- e e oaa
[N

(X)an
(X)aN

- - - = = a
WD BN O N v [Y-R- Q- RV RV V- V- V- I V)

(X)an
(X)aN

EHMHas@QOA @I
- - m = ma. - -

(X)aN
(X)aN

- €O QRN

o o mae e =
FITITITIFTTITTITZI

(X)aN
(X)aN

MmO QK T

@ X
BalaNial

pueuadp

o1 98ey

odH
ady
dH
ZNY
ONH
L]
oL}
134

S3Y
say
Say
S34
S3y
S34
S3H
S34
S34
S3y

S3Y
S3y
S3y
S3y
S3u
S3y

S34
S

Say
S3y

S3H
S3y
S3Y
S3H
Say
s34
S3y
S3y
S3Y
S3y

S3y
S34
S3y
S3y
Say
S3y
SAY
S3y
S3y
s3Iy

S3d
S3y
s3d

poado

0aco
foco

-
[~
[aal
[Ya)
[~

-
@
(=1
["a)
(=]

13qe aus

2

ag
o ¢
ag
ve
68
gq
44

34 G0 42
3d S0 82

38

|
he
1:!
2q
14
od
Lg

94 S0 €2
94 60 €2

94

v
qy
vy
6V
gy
av

v 60 490
v S0 €2

L

S0 €0
S0 92

03
3
04
02
oq
o4

62

42
a3
47
43
43
42
42
ad
ad
8]

o)
1 }]
0]
[3]
o]
o]
92
a4
aag

43
42
40
a0
80
a2
a0
ad
ag
o]

a3
€0
o]
a2
43

42
a4
ag
a0
43
a2

18

Lago
0af 0
J40£0
30€0
@gotu
20€0
a4of 0
vofo
{1 0]
820
92£0
hot0
20t0
02£0
34L0
bo :141]
:1:1540]
haeo
28£0
28£0
O] 140]
IvED
JVED
vvEo
gveo
9vEQ
hveo
0vEQ
26£0
V6£0
V6E0
86¢£0
96£0
h6€0
26£0
06£0
3e£0
28£0
88t0
hgeo
2gto
2gto
0gto

3LEo -

L0
ViED
8Lto
9Lt0
hiE0
oLto
J4to
V9to
V9o
890
99£0
k9to

Jppy

VAN

Q-

Q-

ﬂ.

3 <-
M.

LX)ANT’

I.

[aalaa o ale ol o W s Wo]

- -

(X)aN
(X)aN

- @OA =
N NN NNN N NN

(X)aN
(X)aN

T~ ac@QOAQ@NmI J
- . - -

CCOCOCOOCCOCOC

(X)aN
(X)aN

T -« OAQE I
-

;

MS

QT >0 MO T XD

MSd

cuesadq

¢ 3Zeas

Sy
Say
S
S
Sy
£34
SAY

S3d
S3y
S34
s34
bl
S3M
S3y
Sy
534
say

S3y
S
s34
Sy
Sy
S3y
Sy
S3y
S3y
s3y

S3y
S3y
S3H
s34
byt
S3y
XL
s34
S3y
S3y

HSNd
HSNd
HSNd
HSNd
HSN4
HSNd
dod
d0d
dod
d0d
d0d
d0d

11no
arno

podo

vdzo’

.-t

9420°V

1aqe"

O
£0G0
a0s0
1050
0050
6610
86h0
610
2610
S610
h6h0
£6h0
26h0
16h0
06K0
6810
g8ho
Lgn0
9840
s8N0
hgho
£gho
2gho
Lgho
0gho
6440
gLho
LikO
9Lh0
SLh0
hino
£Lh0
eLho
1Lh0
0LhO
6940
/9410
L9K0
9940
5910
LELTY
€940
2940
1940
09k0
6G64h0
SHO
LSho
95h0
SShO
hShO
£Gh0
2Sh0
3.1}
0640
En40

36 S0
36 SO

96 S0
96 S0

38 G0
dg S0

98 S0
98 SO

Y6
€6
g6
46
a0
M)
36

56
w6
£6
26
16
06
L6
a2
40
96

ag
a8

Ve
69
a8
48
i
40
ag

s9
hg

c8
19
09

)
40

x|

]

13
13

£y
ay

2urT 7 w@ €3 29

20
th)
a0
92
a4
aa
40

:h)
40
a2
€0
90
a2
a0
ad
ag
)

40
40
a0
90
40
)
a0
ad
aag
:h]

]
42

40
4
o]
a0
a0
ad
aa

ad
ag
S3
Sa
G0
Gd
ad
ag
13
ta

1d

29¢0
09£0
35£0
J26£0
gsto0
hSEO
2SE0
26t0
0S£0
InEo
o
VhED
gheo
9hEO
hh€o
on€o
JLE0
VEEO
VEEO
8EE0
9¢€0
heeo
2E€0
0£E0
q2€0
280
82to
h2E0
220
22to
02¢0
€0
31€0
Vi£0
gLeo
91£0
higEo
01€0
20€0
VOED
VOto
g0£0
90£0
S0£0
hoto
£0EG
20E0
00E0
3420
a420
2426
€420
vdzo
vizo
gdz20
9326

JpPY

8.1 2/5/79

Rev.

4-67 1

=
~

(X)ON
(X)aN

L-maeDOoO W
- -
——— = == =

@O MT 2
n e & n = =
QOO0 OCOC

(X)aN
(X)an

X o -

-
(%2}

@aax

<= OV TIET

(X)aR1
(X)ONI

x

QN WO

puesadn

2l afeyg

138
138
138
138
138
13s
138
138
13s
13s

138
138
138
13§
13§
138
138
13S
13§
13S

LS

J4s4d
J4asa
a4sa
J4asa

188
q98s
qds
qa4s
qgas
aas
q4as
q98s
q4s
a4as
ags

154
1sy
1sy
IsH
1Sy
pAY}
1Sy
15y

ayy

pLL]

podo

oo:o.«

d6h0°Y
1

smro.«

bsso.«

mm:o.«
aEwo’yv

otho”

. g oa

19qe]

FrAL
1,00
0,00
6q0Q
f990
990
9900
$990
1990
£990
2990
1990
0990
6690
9690
L590
9590
6590
#S90
£690
2590
1590
0590
6190
gh90
L1990
9490
S5h90
hh90
£En90
ch9o
Lh90
0490
6£90
8£90
L£90
9£90
G£90
hE90
££90
2£90
LE90
0£90
6290
8290
L290
9290
6290
7290
£290
2290
1290
0290
6190
8190
190

o0

Q2
o]
q42
Vo
€2
f2
40
33 60 €@
32 60 €D
30

]
LB

2d
12
0J
L2
92 S0 42
9J 60 €2
93

2L
29
2s
ch

0z

S0 36
S0 36

L9

o]

42
a0
a2
9
a9
a2
42
ad
ag
1)

1)
42
o]
| 1o]
42
42
42
a4
qa
497

LE

a3
a3
a3
a3

3q
a6
a6
a6
V6
66
86
d46
ad
ag
36

44
Ld
43
L3
4a
Lq
40
L)

a3

40

out] 3 »q €9 29 18

v6ho
0610
R0
J9h0
vgho
geno
9@¢h0
hano
2gh0
340
Viho
8Lh0
aLho
9Lh0
Wih0
2Lh0
oin0
39h0
940
Yoho
9940
29410
0940
0940
4540
3640
aswo
a6n0
6640
LGYh0
LShO
GGhO
®SHho
E£GhO
26ho
16ho
o1 T4)
duho
Inho
ghh0
ghho
Lkho
Lyho
9Hho
Shho
ko
11 1]
Zhho
thh0
OwhO
dERQ
JERO
agno
agno
2EH0
otho

JopY

-t

L& =N

< 3

{X)an:
(X)ANI

=30 AQAWNT I

-
>
>
[=]
=
—

(x)ant

x

«ao0amT g

(X)aNI
(X)aNIT

<= o0 WX

(A)aNT
(X)aNI

ruedsadg

1y a8es

yoHy
youy
"IN
HoHy
HOuH
youuy
youH
youy
youy
youy

yvy

gyvy
yyvy
Hyve
uyvy
yyvy
Huvy
quvy
LEAL]
yyvy
yuvy

an
M

L]
o
¥
yo
¥OM
Ll L]
4o

U
oM
4o

WY

dvu
Hwy
Hvy
4TvH
¥y
¥V
yve
vy
gy
vy

R13Y
1134

pa:}

pado

heho'v

mN:c.«

a040°V
s

60n0°V
'

moao.«

odeo°v
[}

J3to°y
'

nnmc.«

mamo.«

12qe

atgp
gtac
®ia0
gLog
clog
1100
otao0
6020
2090
090
9090
5090
h090
£090
2090
1090
0090
6650
8660
1660
9650
G660
h650
£650
2650
1650
0650
6050
850
L89S0
9650
S850
HRSs0
£850
2850
1950
0890
6L50
8L50
LLSO
9.50
GLSO
wLS0
£L50
2LS0
1450
0L50
6950
8960
1960
9960
6950
7950
£960
2950
1950

30 SO
3o SO

3L so
3t 6o

90 $0
90 40

9t S0
91 S0

a0
J0
a0
vo
60
90
do
49

30

at
a1
gt
vi
61
gt
d1
a2
42
]}

49

S0
ho
to
20
10
00
Lo
42
)
90

Si
ht
£l
4
Li
oL
Ll
492
42
91

Sh
ah

auTy 3 he €9 29

{

L]
42
42
92
[3le)
ad
aa
42

o]
€42
42
o]
40
42
[Je]
a4
aa
42

Q3

Lo

40
:Je)
a0
0]
€40
it}
€

aa
€2

L1

a2
42
i)
[Jeo]
2 }o)
o)
a2
a3
aa
42

a3
a3

g2

0
9t HO
hEwO
ZEho
0tho
32h0
veno
9CHO
hZho
heno
£2h0
£2ho
12ho
JLho
aitwo
gal1h0
6140
Li%o
SLho
LLho
daoho
a0n0
aon0
6040
60h0
8040
go40
9040
Hoho
20h0
00hO
34E0
24£0
v4eo
94£0
Z3£0
0dE0
0d€o0
Jato
J3to
q3to
d3%0
63€0
L3to
G3t0
£3to0
13t0
adgo
60£0
LaeQ
Lago
Saco
£aco
£aco
200

JppY

4-67J

2/5/79

8.1

Rev,

(XYaNg

—_
¢ >
-
aa
-
= QOO W -2

X

«emOoWwx

(X)anI
(X)aNI

x

w1 °%eq

vux
AL A

I0s
ans
an0s
ans
ans
ans
ans
ans
ans
ans
ans

HTHS
HIHS
4TS
4 S
HS
4THS
HHS
HTHS
LI
HS

HVHS
Hyus
HvHas
HYHS
HvHs
HYus
HVYHS
HVUS
Hvus
Hvys

HvIS
Hvis
Hy1S
HvIs
Hvis
Hvis
VIS
HvIs
Hy1S
Vs

138
138
138
13s
13s
13s
138
13

podo

he0
QLS0° Y mﬁrc
¢ 2g.0
10
0.0
@PPO
Ri.0
Lid0
9..0
SLuo
i
£L:0
2Li0
A9S0° VY 1Li0
! 0LL0
69L0
89.0
L9i0
99.L0
§9.0
79L0
£€9.0
29.0
1940
0650°VY 09.0
¢ 66L0
8sL0
LSL0
9G6.i0
SSL0
hsL0
£SL0
F4]
16L0
06.0
8ES0°V 6KLO
t gnlo
Lhi0
9hi0
SKio
whio
£he0
chLo
Lhi0
04 L0
6EL0
0260°V 8.0
¢ LELo
9t L0
SELD
hELO
£ELO
2t.0
1.0
0f L0
62.0

S0 3y

0e

56 96
50 96

at
ot
ag
vE
6¢
113
4¢
3t 60 @D
3€ 60 4D
at

az
2
g4e
ve
62
8c
de
32 S0 40
32 60 €2
32

52
he
134
ee
Ie
0e¢
Lz
92 S0 €92
92 60 €0
92
ad
4
K]
vd
64
g4
a3
34 50 90

13qe] aut] 3 K9 €4 24

aa
v

9a
S6
n6
£6
26
16
06
L6
a4
aad
96

490
1]
a2
42
42
40
40
a4
aa
40

0]
40
g0
5]
0]
40
5]
ad
aa
42

42
42
42
42
a0
a2
k]
ad
ca
40

6.50
8.50
.50
9,50
G.S0
his0
£.50
2450
1450
0.50
4950
2960
6950
8960
8960
9960
7950
2950
0950
34650
0650
¥S650
9550
2660
0550
0650
Inso
IhS0
¥4/S0
ghso
9RSO
LLETY
2hs0
33£S0
VESO
gESO
g£s0
9£60
hESO
2860
0£50
3260
3250
¥260
9260
2260
0260
0250
3160
o150
Yis0
8160
9160
wiso
2160
3060

Jppy

VX)ANT L
]

x
~

_J.

T~ @O W T
OO O OO O OO OO

(X)an
(X)aw

nunnuuunuonunuounn

(x)aN
(X)aN

T -tHe DO W=

(X)aN
(X)an

LalhalaalsaRoalaalaalealeaNsal B i i g g g g

T - QOO @I

T OQMmMXIJ

13§
138
138
13§
138
138
13s
138
13S
138

13§
13§
13s
138
13s
13s
13§
138
13§
13§

13s
138
13s
13s
13s
13s
13
138
13s
138

13s
13s
138
13S
13s
138
138
138
13s

podo

el
L2i0
cZL0
G2.0
#2.0
£2.0
22i0
12L0
0cLo
610
gLLo
L L0
91L0
6lio
hi L0
£1.0
cLLo
1.0
0ilo
60L0
g0L0
LoLo
90L0
S0Lo
w0L0
£0L0
20L0
1o0l0
00L0
6690
8690
L690
9690
6690
1690
£690
2690
1690
0690
6890
B8RI0
1890
9890
5890
hg90
€990
2g9c
187)
0890
6.90
fiy0
Lig0
9490
5L90
wi90
£.90

.-

34 60 €0
a4

G4
hd
€4
24
14
0d
Ld
94 S0 80
94 S0 €
94

a3
23
g3
v3
63
93
43
33 50 €2
33 60 42
33

S3
h3
€3
23
13
03
L3
93 S0 80
93 S0 40
93

aa
aa
4a
va
6d

3a S0 80
3@ S0 492

sa
hd
£a
ea
1a
0d
La
90 S0 €2
9d 60 80

129e7 5uT7 3 Ke £89 24

ada
k]

12
3]
a0
92
42
42
1]
ad
ad
a0

42
10}
40
40
g0
490
a0
ad
aa
a0

0]
g0
0]
42
5]
g0
%]
aa
aa
0]

ad
42
42
42
0]
0]
0]
asd
aa
42

5]
a0
0]
5]
42
)
:k}
a4
aa

v¥0s0
80s0
2050
9050
h0so
20S0
0050
3440
2440
LELT
94h0
23n0
0440
0dh0
33h0
230
vawo
83h0
93n0
®#AKO
23no
3ano
vano
8dh0
gano
9ak0
hdho
2aho
0ano
3080
oN0
¥ono
9Jh0
2Jh0
0240
0oho
Jano0
J4h0
varo
84r0
94k0
haho
F4: L 11]
avho
¥VhO
8vHo
gvio
9V¥H0
hvho
2vho
0vhO
a6h0
o640
V640
9640
26h0

Jppy

8.1 2/5/79

Rev.

4-67K

Addr

057C
057F
0580
0581
0582
0583
0584
0585
0586
0588
0588
0588
0588
0588
0584
058A
0584
0584

B1

AF
A8
A9

AB
AC

EE

00

Rev. 8.1

B2 B3 B4 E Line Label

AE 05

20

0020
00

0005
0030

2/5/79

7

0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800

0801 ;
0802 A.058a

Oped

XRA
XRA
XRA
XRA
XRA
IRA
XRA
iRA
XRI

ZCOoEmoOws>

; Now for the definitions

H
N
NN

IND
DIs

EQU
DW

EQU
EQU

END

4-67L

20H
0
5
30H

4.6 SYMSAVE UTILITY

The SYMSAVE utility is an applications program that may be used to create
an equate batch from a symbol table left in memory immediately after an
assembly. This equate batch is stored as an editor source file -and can
be edited by the 'ine editor and assembled by the assembler. The program
is invoked from the MDOS executive by typing SYMSAVE followed by an ASCII
filename parameter enclosed in double quotes and an optional ASCII mask
string enclosed in double quotes.

(unit: JSYMSAVE "<filename>" ["<mask string>"]

The mask string can be up to ten characters long. It is used to save only
those symbols in the symbol table that start with the specified mask string.

Example:

ADDR B1 B2 B3 E LINE LABEL OPCODE OPERAND
000 1000 ORG 47P0H
4900 C3 99 49 2009 START JMP $

4993 M 3PP@ DATAI DB il

4094 P2 4999 DATA2 DR p2

4pp5 93 5009 DATA3 DB g3

4996 6PP9 FINISH END START

Immediately after the above program is assembled, the symbol table is still
resident in memory. To create a disk file of symbols from the above assembly
type:

SYMSAVE “TEST"

The file TEST that SYMSAVE creates is an editor compatible source file
which looks as follows:

@901 START EQU 4000H
pp@a2 DATAI EQU 490 3H
P93 DATA2 EQU 4094H
#0934 DATA3 EQU 4p@5H

PP@S FINISH EQU 4906H

If only the data symbols were required, the mask string parameter can be
used as follows:

SYMSAVE "TEST1" "DATA"

The file TEST1 looks as follows:

g0@1 DATA1 EQU 4903H
pop2 DATAZ EQU 4904H
PP@3 DATA3 EQU 4P@5H

This file contains only the symbols which start with the string DATA.

Rev. 7 3/78 4-68

A symbol equate file can be used in other programs by using the assembler
LINK pseudo-op. ‘

Example:

ABDR B1 B2 B3 E LINE LABEL *0PCODE OPERAND

20002 1800 LINK 'TEST!
poga 2000 ORG FINISH
49p6 3E D1 3p9@ BEGIN MVI A,DATAl
4998 32 93 49 4000 STA DATA2
49p8 C3 99 49 5000 JMP START
400E 6000 END BEGIN

By linking the equate batch file with the new program segment all of the
symbols defined in the first program segment can be referenced in the new
program segment.

4.7 FILECOPY UTILITY

The FILECOPY utility is an applications program that allows files to be
copied from one disk to another or onto the same disk under a different
filename. To improve speed in the process of copying a file, it uses

all available memory after the end of the program as a buffer. To invoke
the program from the MDOS executive type FILECOPY followed by a filename
enclosed in double quotes and an optional newfilename enclosed in double
quotes or a unit number- by itself if the copied file is to have the same
name as the original.’

[unit:]FILECOPY "<[unit:]filename>" "<[unit:]newfilename>"

or

Cunit:JFILECOPY "<[unit:]filename>" <unit number>

FILECOPY exits to the MDOS executive when it is done or if it encounters

an error condition. The copied file has the same filetype as the original.
Any file can be copied regardless of type or origin. This includes BASIC
data and program files. Attempting to copy a file onto the same disk
without specifying a newfilename results in a DUPLICATE NAME error.

4.3 DISKCOPY UTILITY

DISKCORY is a special overlay utility that writes an absolute binary copy
of one disk onto another. The utility overlays MDOS or BASIC. It uses
all available memory during the copying process. The more memory in a
system the faster the copying process. On average it takes about two
minutes to copy and verify all 315k bytes of a MOD II disk. To invoke the
utility from the MDOS executive, type:

DISKCOPY

A sign-on message is'output:

MICROPOLIS DISKCOPY VS X.X - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SQURCE) DISKETTE
?

4-69
Rev. 7 3(78

DISKCOPY waits until the unit number is entered. When a number between
@ and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until <.e unit number (f# to 3) is entered. It then prompts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

B

and waits for a Y. A note of CAUTION, we strongly recommend placing a
write protect tab on the original (source) diskette. [t is possible to

put the wrong diskette in the wrong drive or type the wrong unit numbers.
If your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying,
the process can be temporarily halted between read source and write
destination cycles by typing a control S. The process is restarted by typing
any other key except a control C.

The control C will cancel the entry or copy process and prompt:

CANCELLED
MORE ?

If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM DISKETTE IN UNIT 2
TYPE Y WHEN READY
?

When a Y is typed the disk in unit @ is rebooted. If it's an MDOS diskette
MDOS is booted. If the disk in unit @ is a BASIC only disk or some other
bootable system, it will be booted in and sign on. DISKCOPY is overlayed
by the incoming system and is no longer in memory.

When the disk has been copied and verified correctly DISKCOPY outputs:

GOOD CoPY
MORE ?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:
PERM I/0 ERROR ON DESTINATION DISKETTE

or

PERM I/0 ERROR ON SOURCE DISKETTE

indicating where the error occurred.

Rev. 7 3/78 4-70

It is possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. 1In this case it is imperative that the
original diskette be write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks
from the source disk as can be contained in main memory and then pause.
When the select indicator 1ight goes out, remove the source diskette and
insert the destination diskette. Press the return key and as soon as the
select indicator 1ight comes on type a control S again. When the select
indicator 1ight goes out again, the data from the source disk has been
written to the destination disk and one complete cycle is finished. This
process is repeated, swaping the source and destination disks in and out
until the entire disk is copied. After the last data is written onto the
destination disk, the program goes directly into a verifying process and
will not pause until this is over. When the source is placed back into the
drive and the return key is pressed the system will prompt: GQOD COPY or
output an error message as discussed above. At this point the copy is
complete.

4.9 ERROR MESSAGES

This section is a summary of the error messages generated by the MDOS
shared subroutines. The shared subroutines return an error code in the
A register when an error exit occurs. These codes can be passed to the-
error message output routines to generate the proper error message.

Example:
A file is created by the following BASIC program:

19 DIM A$(248)

20 Z$=CHAR$(13):REM CARRIAGE RET

3@ OPEN 1 "N:TEXTFILE":REM NEW FILE

4@ INPUT A$:REM GET A LINE OF TEXT FROM CONSOLE

50 IF A$="EXIT" THEN 8@:REM END INPUT BY TYPING EXIT
6@ PUT 1 AS+Z$:REM CONCATENATE CARR RTN AT END

79 GOTO 4P:REM LOOP TILL EXIT

8@ CLOSE 1

99 END

This BASIC program writes one text line per record. Each line is
terminated with a carriage return.

The file can be read by the following assembly lanquage routine. Assume
it has been assembled and given the name READ and an executable file type
of 15. Typing READ "TEXTFILE" loads and executes the program.

4-71

Rev. 7 3/78

poog
PP
pp2p

pB3@ START

pp4p
po5P
pp6D
2079
pp8p
9999
P19
p119
2129
P13p
2149
p159
p16p
P179
p1ap
P19
p229
p219

p229 NEXTCHR

p23p
9249
g25p
2260
p279
p28p
p299
P30
@319 EXIT
g32p
9330
9349
#3590

Note the handling of the errors in lines

319-349.

Rev. 8 9/78

cz.
CALL
JMP
CPI
JZ
STC
JMP
END

‘sYsQu'
'sysn2!
GAPROGRAM
@CCRLF
@NASCPAR

A
@ERRORMES
C,D
@TRANSFILENAME
B,D
@DRIVEN®D
C,A
H,@FILEBUFFERD
@OPENFILE
@DISKERROR
@RFILEINF
@DISKERROR
A,B

@FCH

A

A,17
@DISKERROR
B,?
@RFINXPOSI
EXIT

B,C

A,B

@0H

®CCRLF
@CouT
NEXTCHR

2
@CLOSEFILE

@DISKERROR
START

4-72

;MDOS EQUATE BATCH

;MDOS EQUATE BATCH
;APPLICATIONS AREA
;CARRIAGE RETURN LINEFEED
;NUMBER OF ASCII PARAMETERS
;IF ZERO

; ERROR

;@ASCBUFFQ

;MOVE INTO @ASCIIBUFFER
;FILE NUMBER

;UNIT NUMBER

; INTO C FOR OPEN

;USE SYSTEM BUFFER 9
;OPEN THE FILE

; IF ERROR CODE IN A
;CHECK THE FILE TYPE

;IF ERROR CODE IN A

;FILE TYPE

;TYPE NOT ATTRIBUTES
;BASIC DATA FILES=0
;WRONG FILE TYPE MESSAGE
;ERROR

;FILE NUMBER

;READ FILE BYTE AT A TIME
;END? OR ERROR?
;CHARACTER FOR OUTPUT
;INTO A FOR COMPARE
;CARRIAGE RET END OF LINE
;IF CR DO CR LF

;0THER CHR JUST OQUTPUT
;LOOP TILL END-FILE
;END-FILE?

;CLOSE AMD RETURN TO MDOS
;ERROR

;ERROR MESSAGE IN A

63, 149, 160, 219, 249, and

The errar codes are summarized below.

the error messages.

CODE# MESSAGE

') SYNTAX ERROR

1 PERM I/0 ERR

2 END-FILE

3 DISK FULL

4 FILE NOT FOUND

5 DUPLICATE NAME

6 PARM ERR

7 DRIVE NOT UP

8 PERM FILE

9 WRITE PROTECT

19 FILE NOT OPEN

1 COMMAND NOT FOUND
12 BAD FILE #

13 FILE OPEN

14 READ ONLY FILE

15 BAD RECORD #

16 CANCELLED

17 WRONG FILE TYPE
18 INDEX PAST EOR

19 LOAD ADDRESS ERROR

Rev. 8 9/78

4-73

See appendix D for definitions of

4.19 COPYFILE UTILITY

The COPYFILE utility is an applications program that allows files to be
copied from one disk to another on a system with only one disk drive.
The utility uses all the available memory after the end of the COPYFILE
program as a buffer. To invoke the program from MDOS type COPYFILE
followed by a filename:

[unit:] COPYFILE “<[unit:] filename>"
The COPYFILE program signs on:

INSERT SOURCE DISKETTE INTO DRIVE 9
ARE YOU READY?

The system waits for a capital Y to be typed. Any other input is ignored
except a control C which returns control to MDOS. When a Y is typed the
COPYFILE program loads as much of the source file into memory as it can
and then prompts:

INSERT DESTINATION DISKETTE INTO DRIVE 2
ARE YOU READY?

Take the source diskette out of your drive and put the destination diskette
into the drive. When ready type a capital Y. Any other input is ignored
except a control C which returns control to MDOS. The COPYFILE program
creates a file on the.destination disk with the same name and filetype as
the source file. It then writes the file from memory onto the destination
diskette.

If the files is longer than can be held in memory at one time the COPYFILE
program will prompt: ‘

INSERT SOURCE DISKETTE INTO DRIVE 2
ARE YOU READY?

The same procedure as above must be repeated until the whole file has been
copied. When the copy is complete the COPYFILE program returns to MDOS
which prompts:

>

If the COPYFILE program encounters any errors it displays the proper error
message and returns to MDOS.

COPYFILE can copy any type or length file. This includes BASIC data and
program files.

474 Rev. 8 9/78

4.11 DEBUG - THE PDS 8@8@/3@85 PROGRAM DEBUGGER

Micropolis DEBUG is a utility program which facilitates checkout and
debugging of 8080/8@85 machine language programs. It provides an
environment in which the performance of a program can be monitored by
starting and stopping program execution at user-specified points and by
examining and/or changing the contents of relevant machine registers and

memory locations. DEBUG cannot be used with non-808 480 code.

OEBUG and the program to be monitored must co-reside in the main system
memory. Before DEBUG can be used an executable version must be obtained that
uses a 4K block of memory which does not conflict with the program to be
debugged. The process of creating an executable version of DEBUG configured
for a specific memory space is described in Section 4.12.

DEBUG is invoked from the MDOS executive by typing the name of a configured
DEBUG-XX version as created by the DEBUG-GEN utility (see Section 4.12).
Example: ‘

>DEBUG-70
MICROPOLIS DEBUG VS. X.X - COPYRIGHT 1978

DEBUG signs on and displays an asterisk (*) which is the DEBUG Executive
prompt. Program execution control and machine state examination and
modification are performed by entering appropriate commands to the DEBUG
Executive.

The program may be executed one instruction at a time (referred to as
"single-stepping") with the machine state displayed after each step.
Alternatively, the results of a program segment may be examined by placing
a breakpoint at the end of the segment. When execution of the program
is started, it will execute in real time until the breakpoint is reached.
Control of the computer is then returned to the DEBUG Executive and the
user may examine the contents of memory and the machine registers.

4.11.1 THE DEBUG EXECUTIVE

Operation of DEBUG facilities is controled by the DEBUG Executive. The
executive prompts the user for a command with the character '#'.

Executive statements are entered by typing characters in sequence on the
console keyboard. An executive statement is terminated by pressing the
RETURN key. During the entry of a statement each character that is typed
is echoed by the executive on the console display. Two control features
may be used when entering a line.

1) - When DEL or BACKSPACE is pressed the next previously typed

character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

Rev. 8.3-A 7/1/79 4-75

2) Holding down the control key and typing X {CNTL/X) will cause
all of the current line to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The executive
is positioned to accept entry of a new line.

An executive statement has the following form:
NAME [<hex> <hex>...<hex>]

The NAME in an executive statement is the name of one of the DEBUG commands.
Command names are uppercase only and must not be preceded by any spaces.

If the command name is not recognized by DEBUG a SYNTAX error message is
displayed.

Executive statements consist of a NAME followed by up to four numeric
parameters. There must be at least one space between the NAME and any
parameters. All parameters must be separated from each other by at least
one space. Entry of an executive statement with too many parameters or
without the required spaces between fields will result in a SYNTAX error.

Numeric parameters in executive statements are unsigned hexadecimal values
from @ to FFFF. They represent such elements as memory addresses and
register values. Entry of a numeric parameter with a value greater than
FFFF or with illegal characters will result in a SYNTAX error.

4.11.2 DEBUG MEMORY RELATED COMMANDS

The DEBUG memory related commands are similar to those available under the
MDOS executive (see Section 4.1) with the exeception of the LIST command
which is unique to the DEBUG context. The syntax of these commands is
illustrated with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
optional.

< > Symbol brackets. This space should be replaced by the item described.

4.11.2.1 THE DUMP COMMAND

DUMP <start addr.> [<end addr.>]

The DUMP command outputs a formatted hex display of the contents of a block

of memory. Sequential memory locations are shown 16 to a line with the memory
address at the left margin. If the <end addr.> is not entered only one byte
is displayed. Example:

* DUMP 50¢9 5911
5000 5@ CP 27 77 4F 33 4F CD 7D 9E 93 @@ 6A FD 82 90
5¢19 77 2B

Notice that memory bytes are printed out in groups of four so that addresses
inside the line may be more easily computed. The grouping follows the address.

* DUMP 5092 5P1F
5pp2 27 77 4F 33 4F CD 7D 9E 98 p@ 6A FD 32 99
501@ 77 28 54 56 F4 3E 23 2A 34 87 19 3D 21 2C 2A 28

Rev. 8 9/78 4-76

4.11.2.2 THE ENTR COMMAND

ENTR <start addr.>

The ENTR command allows data to be entered into memory directly from the
console device. Example:

*ENTR 7009
*78 89
6F/

Three bytes were entered starting at location 79@8@ hex. These were 78
at 7009, 89 at 7¢@1, and 6F at location 7992.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each line of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed

the standard backspacing and CNTL/X tools are available for line correction.
The Tast value on the last line must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.11.2.3 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example:

*FILL 7900 8099 ¢

Each byte of memory in the block from 79P@ to 8@@P is changed to a 99
by this command.

4.11.2.4 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

* MOVE 30090 4900 7009

Each byte in the memory block from 3989 to 4908 is copied into the
corresponding position in the memory block from 7899 to 8099.

Rev. 8 9/78 - 4-77

4.11.2.5 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

* SEAR 3pp9 3p2@ 9F
3904 9F
3318 9F

The block of memory from 3000 to 302@ is searched for all occurrences of
a 9F. Location 3P@4 and location 3P18 both contain 9F. No other
locations in the block contain 9F.

4.11.2.6 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

* SEARN 3999 3911 67
3002 99 67
3096 76 67

The block of memory from 3@@Q to 3919 is searched for all non-matches
with the mask 67. Location 3@@2 contained a 9 rather than a 67, and
3PP@6 contained a 76 rather than a 67.

4.11.2.7 THE COMP_COMMAND

COMP <start addr. blockl> <end addr. blockl> <start addr. block2>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

* COMP 5009 5pQF 5019
5024 91 P9 5214

The block of memory from 50P@ to SPAF is compared with the block of memory
from 5019 to 5@1F. One location fails to compare. Location 5894 contains
P1 while the corresponding location, 5@14, in the second block contains 9.

4.11.2.8 THE LIST COMMAND

LIST <start addr.> <end addr.>

The LIST command displays the 8P8@/8885 mnemonic form of the bytes contained
in the specified memory block.

* DUMP 399@ 3008
3998 CA p2 37 B7 C3 1A 37 CB

Rev. 8.1 9/78 4-78

*LIST 3000 3098
3gep JZ 3792

3993 ORA A
3@94 JMP 371A
3pp8 CB *

The memory block from 399 to 3907 contains three 3@89/8885 instructions.
The byte following the third instruction is not a valid 308@/8885 instruction.
This is indicated by the '*' following its value.

4.11.3 DEBUG MACHINE REGISTER AND FLAG COMMANDS

The DEBUG commands in this category are used in conjunction with DEBUG's
program execution control features during the process of monitoring a
programs performance. Whenever the program execution is paused and the
DEBUG Executive is waiting for a command, it is possible to disptay and/or
alter the state of the 8@980/8@85 registers and flags as they are relative
to the last instruction executed in the program being monitored.

4.11.3.1 THE DISR COMMAND

DISR

The DISR command displays the contents of the processor registers and flags
along with the next instruction to be executed. In addition the contents
of memory at locations addressed by register pairs (e.g. at the address .
contained in BC) along with the word on the top of the stack are displayed.
Example: '

*DISR
A FLAGS BC DE HL SP @B @D @H @SP

PP ZCMEH 929 000P 00D 1234 PP PP 39 9909
pPPa LXI SP,1234

The second 1line of the display indicates the processor state. The columns
@B, @D, @H and @SP indicate the contents of memory at the addresses contained
in the respective register pairs. The flag values are indicated by the
presence or absence of a character in the FLAGS column. The Z character
indicates a zero condition, the C character a carry condition, the M
character a negative sign condition (in the SIGN flag), the E character an
even-parity condition and the H character a half-carry condition. Absence

of any character indicates the opposite condition on the same flag.

The third 1ine displays the address and mnemonic of the next instruction

to be executed. The address of the instruction corresponds to the current
value of the 8983 program counter (PC) register in the context of the program
that DEBUG is monitoring. The instruction is the one that will be executed
next by a single step operation or when program execution is resumed by

using a command such as the CONT or RET commands. Note that the state of

the registers and flags as displayed by the DISR command reflects their
values BEFORE the next instruction shown on the third line is executed.

Rev. 8.1 9/78 4-79

4.11.3.2 REGISTER SETTING COMMANDS

REGISTERNAME <hex number>

The register setting commands allow the contents of the 8@89/8985 processor
registers to be set to a specified value prior to the execution of the next
instruction in the program being monitored. The general format of a register
setting command is a register name followed by a hex data value.

The following register names may be used:

A°B C D E H L
BC DE HL SP PC @sP

The first line shows 8 bit registers and the second line shows 16 bit
registers. PC is the program counter. Q@SP designatec the 16 bit word on
top of the machine stack.

The following examples would change the program counter value to 6@F3, the
A register value to 7, and the value at the top of the stack to C172.

*PC 6pF3
*A 7
*@sp €172

4.11.3.3 FLAG SETTING COMMANDS

The flag setting commands allow the states of the 8@8p/8@R5 processor flags
to be set or reset prior to the execution of next instruction in the program
being monitored. The commands set the flag state according to the mnemonic
form used in assembly language. The commands are:

FZ FNZ FC FNC FP FM FPE FPO FH FNH

The FZ and FNZ commands set the state of the ZERO fla% to zero or non-zero.
The FC and FMC commands set the state of the CARRY flag to carry or no carry.
The FP and FM command set the state of the SIGN flag to positive or minus.
The FPE and FPQ commands set the state of the PARITY flag to even or odd.

The FH and FNH commands set the state of the HALF-CARRY flag to half-carry
or no half-carry.

Examples:

*FNZ
*FC

The state of the ZERO flag is set to non zero and the state of the CARRY
flag is set to carry.

Rev. 8 9/78 4-80

4.11.4 DEBUG MISCELLANEOUS UTILITY COMMANDS

The two commands in this category are the MATH command which is useful in
doing address computations while engaged in a debug session, and the RST
command which may be needed to avoid conflict with program usage of the
processor restarts.

4.11.4.1 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs a 16 bit integer addition and subtraction on the
two specified hex numbers. It displays the sum and difference. The MATH
command is useful for length and address calculations. Example:

*MATH 4 5
PPP9 FFFF

4+5 equals 9 and 4-5 equals FFFF.
4.11.4.2 THE RST COMMAND

RST <vector number>

DEBUG normally uses the 'RST 6' restart vector of the 808P or 8985 processor
as its mechanism for implementing breakpoints (see Section 4.11.5.1). Some
computers and/or a particular program may already be using 'RST 6' for a
different purpose. In this case it is possible to change the RST vector
used by DEBUG to one of the other available RST's, 1-5 or 7. Example:

*RST 7

The RST vector used by DEBUG is changed to RST 7 from its default usage of
RST 6.

4.11.5 DEBUG PROGRAM EXECUTION CONTROL

DEBUG offers 3 modes of control to monitor progress through a program; the
breakpoint mode, the single step mode, and the trace mode. There is a
permanent breakpoint facility normally used in conjunction with the commands
SET, DISB, CLR, EXEC and REPT. There is a temporary breakpoint facility

used in conjunction with the commands CONT and RET. The single-step mode is
controlled with the space bar. The trace mode is a form of continuous single-
stepping. Use of these modes and their associated commands are detailed in
this section.

4.11.5.1 THE BREAKPOINT MODE

Breakpoints provide a means to stop program execution at a dgiven point. When
program execution reaches that point control of the processor is transferred

to DEBUG. Once in DEBUG, the results of the program section which was executed
may be examined or modified.

Rev. 8 9/78 4-81

In the breakpoint mode DEBUG replaces the instruction at a given address

with one of the 'RST' instructions of the 8@8p/8085 (see 4.11.4.2 the RST
command). Then DEBUG replaces the three bytes of code at the corresponding
'RST' vector location with a 'JMP' instruction to a routine inside itself.
DEBUG then loads the processor's registers with the stored 'user program
register' values and transfers control of the processor to the user's program.
When the breakpointed instruction address is executed, the 'RST' that DEBUG
had placed at that location causes the processor to 'CALL' the RST vector
location which then causes the processor to 'JMP' back to DEBUG. DEBUG then
stores the processor's registers in the 'user program registers' and replaces
the original contents of both the breakpointed instruction and the RST

vector location.

Because of the introduction of an 'RST' instruction into the program, when a
breakpoint is encountered, at least one level of stack space must be available
so that the return address back into the program can be stored. Therefore,
when using the breakpoint mode the user must insure that at least one stack
level will be .,available when the breakpoint is encountered.

Note that breakpoints cannot be used to DEBUG ROMed code because an 'RST'
instruction cannot be patched into the code.

When a breakpoint is encountered during program execution, DEBUG will display
the contents of the program registers in the following format:

A FLAGS BC DE SP @B @D @H @SP
13 2009 2000 ﬁﬂﬂﬂ §1A2 p@ 99 9P 14FE

Refer to the DISR command section for a detailed description of this display.

4.11.5.2 PERMANENT BREAKPGINTS

Permanent breakpoints are set using the SET command. These breakpoints are
not cleared when control of the processor is returned to DEBUG. Permanent
breakpoints are only cleared by the CLR command. Permanent breakpoints can
be used as traps on such things as error routines or executive loops.

Note that permanent breakpoints do not leave a 'RST' instruction in the
program code. The existence of a permanent breakpoint tells DEBUG to place
a breakpoint in the code only when the program is executing. Thus the
original program is intact whenever the DEBUG has control of the processor

4.11.5.3 THE SET COMMAND

SET <breakpoint #> <address>

The SET command derines a permanent breakpoint. The breakpoint # and the

hex address at which the breakpoint will be set are entered with the command.
More than one breakpoint # may be set with the same breakpoint address.
However, an attempt to SET a breakpoint # which is already set will cause the
message SYNTAX ERROR to be printed and the command to be ignored. A maximum
of 4 breakpoint #'s may be set at any time. Example:

*SET 1 2354

Permanent breakpoint number 1 was set at location 2354 (hex).
Rev. 8 9/78 4-82

4.11.5.4 THE DISB COMMAND

DISB

The DISB command displays all currently SET breakpoints.
Example:

DISB
@1 2354
@3 2365

The display indicates that breakpoint number 1 is set at address 2354 (hex)
and breakpoint number 3 is set at address 2365 (hex). B8reakpoints number
2 and 4 are not SET.

4.11.5.5 THE CLR COMMAND

CLR [<breakpoint #>]

The CLR command clears a SET breakpoint. If the optional breakpoint number
is not entered, then all SET breakpoints will be cleared. If a breakpoint
number is entered but is not currently SET, the message SYNTAX ERROR will be
displayed.

Example:

*CLR 1

Permanent breakpoint number 1 is cleared.

4.11.5.6 THE EXEC COMMAND

EXEC <starting address>

The EXEC command transfers control of the processor to the user's program.
The processor's PC register will be set to the entered starting address and
execution will start there. If a breakpoint is encountered, control of the
processor will be returned to DEBUG. If no permanent breakpoints are SET
at that time, the program will retain control of the processor.

Example:
*EXEC 3914
A FLAGS BC DE HL SP BB @D Q@H @Sp

PP Z C PP12 9341 3674 9195 99 08 0@ 3@54
3597 JMP 3643
*

Program execution was started at location 3914 (hex). A breakpoint was
encountered at location 3587 returning control back to DEBUG.

Rev. 8 9/78 4-83

4.11.5.7 THE REPT COMMAND

REPT <breakpoint #> <repeat count>

The REPT command transfers control to the user's program until a permanent
breakpoint has been hit a given number of times. The breakpoint number entered
specifies the breakpoint address and the entered repeat count snecifies the number
of times it must be hit before control is transferred back to DEBUG. If any
breakpoint other than the one being repeated is encountered, control will be
transferred back to DEBUG and the repeat operation is cancelled. If the

breakpoint # specified in the REPT command is not set, a SYNTAX error is displayed.

Example:

*SET 1 3000
*00 E 2000 2000 0000 0000 20 00 P9 POQAP
3099 DCR B

*00 1FOD 0000 0000 9200 00 89 09 D030
3001 JMP 3099
*REPT 1 8
A FLAGS BC DE HL SP @B @D @H @SP
*Qﬂ E 1800 2000 9000 D1AD £P 20 99 PPRD

The breakpoint at location 3P@@ (hex) is allowed to be passed over 8 times
before control is transferred back to DEBUG and the processor state is
displayed. N

4.11.5.8 TEMPORARY BREAKPOINTS

Temporary breakpoints are one-shot breakpoints which the user instructs
DEBUG to place in the program by using the CONT or RET commands. When
control of the processor returns to DEBUG, the breakpoints are cleared.
Temporary breakpoints are the type normally used to follow the execution of
the program from routine to routine.

4.11.5.9 THE CONT COMMAND

CONT [<break 1> [<break 2> [<break 3> [<break 4>]]]1]

The CONT command continues execution of the user's program at the current

PC location with up to four temporary specified breakpoints. If no temporary
breakpoints are specified, then control will never return to DEBUG unless an
already specified permanent breakpoint is encountered. Example:

*CONT 356F

A FLAGS BC DE HL SP 8B @D @H @sP
99 M 0120 p341 3674 D195 09 99 9P 3@54
3597 DCR A
*

Program execution is resumed at the next instruction indicated by the value
of the user program PC register and execution continues until the breakpoint
at location 356F (hex) is encountered, which returns control back to DEBUG.

Rev. 8 9/78 4.84

N

"4.11.5.10 THE RET COMMAND

RET

The RET command transfers control of the processor to the user's program
with a temporary breakpoint set at the address which is on the top of the
stack (@SP). This allows the user to 'RETURN' from a subroutine which was
'"CALL'ed by the program.

If a breakpoint other than the 'RET' breakpoint is hit, control will return
to the DEBUG and the 'RET' breakpoint will be cleared.

Note. The RET command should only be used after a 'CALL' type instruction

has been executed or when the top of the stack contains a known return
address. Qtherwise a breakpoint might be piaced at an address which is not

a part of the program. (e.g. the last instruction was a 'PUSH' and therefore

Ehe t?p of the stack contains a data word instead of a return address)
xample: .

*DISR
AFLAGS BC DE HL SP @B @D @H @SP
99 Z 2000 0000 3000 A030 9P A9 00 0AAP
2AP9 LXI SP,3ppp

*P9 Z p0p0 9000 0902 3020 PP 0P PP 3243
2AP3 CALL 2809 ~

09 Z 2000 9000 POPP 2FFE PP PP 9P 2AP6 -
2Bpp STC)

*RET
AFLAGS BC DE HL SP @B @D @H @SP
g9 zC po0D PA0P PARG 3900 29 9P PP 3243

After the second instruction single-step, the RET command causes a temporary
breakpoint to be set at location 2AP6 (which is the return address on the top
of stack) and program execution is resumed. When the program reaches 2A@6
control of the processor js returned to DEBUG and the processor state is
displayed.

Excepfion Note: The following program fragment illustrates a special
programming construct with which the RET command can not be used.

Call MESSAGE
TEXT DTH 'SIGNON'
RET

MESSAGE XTHL
CALL GLINEOUT
INX H
RET

If an RET command is given after the call to MESSAGE has just been executed,
the return address on the top of the stack is pointing to location TEXT.
DEBUG puts a breakpoint at that location. MESSAGE then outputs the Signon
text and returns without encountering the breakpoint because the return
address has been modified by the called routine.

Rev. 8 9/78 4-85

4.11.5.11 THE SINGLE STEP MODE

The single-stepping mode of program execution allows a aztailed inspection
of what the program is doing on an instruction by instruction basiz Ezxcf
time the space bar is pressed in response to the DEBUG '*' prompt, DEBUG
causes the next instruction in the program to be executed and displays

the contents of the processor registers.

Example:
*DISR

A FLAGS BC DE HL SP @B @D @H @SP
13 9020 2900 0000 P1A2 99 2P PP 14FE
2App STC
*13 C P20 Pe0D PPOD P1A2 90 9P @9 14FE
2AP1 XRA A

*00 ZE 0000 0000 PA3D Q1A2 PP D@ P@ 14FE
2AP2 STA 345F

At the '*' prompt the user typed a space which caused DEBUG to single-step

an instruction and print the resulting register contents on the same line.

In the single-step mode of operation, DEBUG makes a local copy of the instruction
to be executed in its own buffers. DEBUG then executes the instruction in its
buffers and stores the results. The single-step mode does not need to modify

the program in any way which allows programs in ROM may be stepped through
without .problem.

4.11.5.12 THE TRACE MODE COMMAND

TRACE

The TRACE command operates as a continuous single-stepping command. It is
used to provide a trace printout of the user's program. During a TRACE the
Control S / Control functions provide pause and break control.

Example:

*TRACE
ppE 1300 0000 000P P1AD PO 0D 0P PPAD
3981 JMP 3PP
@0 E 1800 0000 0000 B1AD PO 00 PO POND
3009 DCR B
20 E 1720 000G POOA P1AD 09 90 0P PP
3991 IMP 3900
g0 E 1700 0000 PPOG PIAD PP 90 PP DPOD
3¢@P DCR B
20 1600 0000 0009 B1AD 09 00 PP PPOR
3001 JMP 3999

*

The program was put in TRACE mode. The Control C key was pressed and stopped
the TRACE after 5 instructions had been executed. .

Rev. 8 9/78 4-86

Exception Note: The nature of Micropolis disk subsystems is such that a
disk access must not be interrupted during the data transfer process which
is accomplished by a program loop. For this reason it is not possible to
TRACE successfully through portions of a program that call MDOS disk access
routines, because the TRACE command effectively interrupts the program once
every instruction. '

4.711.6 INITIATING A DEBUG SESSION

Both DEBUG and the program to be monitored must be in memory at the same
time. The program is loaded into memory first by using the LOAD command
from the MDOS executive. DEBUG is then invoked from the MDOS executive
by typing the name of a configured DEBUG version as created by DEBUG-GEN
(see Section 4.12). The version invoked should not use any memory space
that is required by the program to be monitored. Example:

>LOAD "TEST PROGRAM"

>DEBUG

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978
*

DEBUG signs on and displays its executive prompt. Monitoring of program
execution is now controlled from the DEBUG executive.

. If the program to be monitored is one which runs in the MDOS Application
area, and which requires one or more ASCII or binary parameters that are
normally input as part of an MDOS Executive statement, then the way to
initiate program execution control is by SETting a permanent breakpoint
at the address of the entry point (first instruction) of the program and
then EXECuting the MDOS Executive at the warmstart address which is 4E7H.
Example:

*SET 1 28p9

*EXEC 4E7

MICROPOLIS MDOS V.S. X.X -~ COPYRIGHT 1978
>APP "ASCIIPARM" 12

A FLAGS 8C DE HL SP @B @D @H @sp

2BP@ LXI SP, P1AB

Permanent breakpoint number 1 is set at the program entry point 2B@@ hex
and execution is beqgun at the system warmstart address. The MDOS executive
signs on and prompts for a command. The APP command is used to transfer
control to the start of the proqgram in the application area and to pass

one ASCII and one numeric parameter. The breakpoint is then encountered.
DEBUG outputs a register display and waits for additional single-step,
breakpoint or other commands.

Rev. 8 9/78 4-87

If the program to be monitored is one which can be executed directly without
requiring any parameters from the MDOS executive, then the simplest way

to initiate program execution control is to set the PC register to the program
entry point address. Set the stack pointer to an appropriate address and then
use the CONT command to set a temporary breakpoint at the first desired stop
point and transfer control to the program. Example:

*PC 300
*SP 1A ~
*CONT 3929

The program counter is set to 3P@@ hex and the stack is set at 1AP hex. A
temporary breakpoint is set at 3P2Q hex and program execution is bequn at
the PC value, 302P hex. When the temporary breakpoint is encountered DEBUG
will output a register display and wait for a new command.

4.11.7 EXITING DEBUG

The user may exit DEBUG in one of two ways. First, the user may simply
transfer control of the processor to the program permanently. This is done
by clearing all permanent breakpoints with the CLR command and then using
the CONT command without setting any temporary breakpoints. Second, the
user may simply return to the MDOS executive. This is done by CLRing all
permanent breakpoints and then typing:

*EXEC 4E7

This warmstarts the MDOS executive and leaves the program without any
breakpoints set. A

4.11.3 RE-ENTERING DEBUG

If control of the processor has been permanently given to the program, DEBUG
may be restarted by executing the first address of the 1K boundary on which
DEBUG is running. This 'warmstart' procedure will cause any breakpoints
which were set in the program to be replaced by the original instructions.

An example of a situation where a restart of DEBUG would be necessary is as
follows. A breakpoint was set in the program and control transferred by a
CONT command. However, the program entered a loop which had a bug such that
the loop was never exited. This caused the system to lock up. The only

way to get control back to DEBUG is by restarting DEBUG.

4.11.9 SAMPLE PROGRAM DEBUGGING SESSION

This section contains a sample debugging session as an example of the use of
various DEBUG features. The program being DEBUGged is listed in 4.71.9.1.
Assume that the program and DEBUG are on disk unit @ along with an MDOS
system. The actual debugging session is shown in Section 4.11.9.2.

Rev. 8 9/78 4-38

4.11.9.1 SAMPLE PROGRAM LISTING

3909 16 09 2000 MVI D,?
30092 21 80 92 9319 LXI H,28@H
3995 CD 3¢ 9920 LOOP: CALL SuB
3908 25 2030 DCR H
3009 C2 95 33 (949 . JNZ LOOP
3ppC 70 pasP MOV A,L
390D @F pP6Q RRC

3PPE 6F 20979 MOV L,A
30pF D2 95 3@ 0989 JNC LOOP
3p12 C9 2990 RET

3913 F5 P19p SUB: PUSH PSW
3914 7C 2119 MOV A,H
3p15 BS P129 ORA L
3816 F1 p13p POP PSW
3917 C9 2149 RET

4.11.9.2 DEBUGGING SESSION

The following text is a description of the debugging session listing which
follows.

The first three lines show the test program being loaded into memory along
with the load and execution of the DEBUG. Once DEBUG is loaded and running
it signs on and displays its executive prompt '*'. At that point the PC

and SP registers are initialized so that the program can be tested. A
permanent breakpoint is set at the final RET instruction so that the program
will not return illegally. Then the first three instructions of the program
are single-stepped leaving the program inside the subroutine. The subroutine
is RETurned from and execution is allowed to proceed to location 3@@C using
the CONT command. Then the TRACE command is used to let execution proceed.
The TRACE is cancelled at location 3@@5. A permanent breakpoint is SET and
the REPT command used to allow the inner loop (the CALL, DCR H and JNZ) to
execute twice. After two loops control returns to DEBUG. The second
breakpoint (the one used for the REPT) is cleared and the program is allowed
to execute to the final RET instruction. Having finished testing the program,
MDOS is warmstarted.

MICROPOLIS MDOS V.S. 4.p - COPYRIGHT 1978

>LOAD "TEST" load program into memory
>DEBUG-79 run debug (7p@@ hex)

MICROPOLIS DEBUG V.S. 4.9 - COPYRIGHT 1978

*SP 1A2 set up a stack
*PC 3009 set up PC

Rev. 8 9/78 4-89

*DISR

A FLAGS BC DE HL

SP @8

@D @H @sP

80 ZC E DPOO POgp PPOP @1AP C3 C3 C3 5845

3009 MVI
*SET
*DISB

p1 3@12
*8p IC E

3902 LXI
*8p IC E

3p@5 CALL 3013
*3p IC E

3013 PUSH H
*RET

A FLAGS BC DE HL

g2 M 0099 PPRP 9280

3008 DCR H
*CONT 300C

A FLAGS BC DE HL

21 7 E 9099 9000 PP8H

3ppC MOV A,L
*TRACE

80 Z E pppR 3000 908D

399D RRC

40 7 E D000 20pD PR3P

3p9E MOV L,A ‘

49 7 E 0000 pA9p 0P4AP
- 3P@F JNC 39@5

49 7 E Q00D 000G PP4AD

3905 CALL 3p13
*SET 2 3p@C
*REPT 2 2

A FLAGS BC DE HL

207 E 0000 0200 DB20

39pC MOV A,L
*CLR 2
*DISB

g1 3012
*CONT

A FLAGS BC DE HL

89 IC E 000D 9099 0083

3912 RET
*CLR
*EXEC 4E7

0,00
13012

H,028p

- MICROPOLIS MDOS V.S. 4.9

Rev. 8 9/73

paoe paep 9009 A1A@ C3 C3 C3 5845
poeo PP 9280 P1A@ C3 C3 11 5845
poop pA@Y P28P @I9E C3 €3 11 3008

SP @B
21Ap C3

SP @8
p1Ap C3
P1Ap C3
P1Ap C3
21A9 C3
P1Ap C3

SP @B
P1Ap C3

SP @B
P1AD C3

set breakpoint on final RET

return from SUB call
@D @H BSP
€3 11 5845

set temporary break and go

@D @H
C3 PA

@sP
5845

execution
5845

trace
C3 PA

C3 PA 5845

C3 PA 5845

C3 PA 5845

Control C hit here

set permanent break
execute inner loop twice
@D @H @SP

C3 PA 5845

clear breakpoint 2
display breakpoints

complete program
@D @H BSP
C3 @A 5845

clear all breakpoints
warmstart MDOS

- COPYRIGHT 1978

4-90

single-step
single-step

single-step

4.11.10 USING DEBUG WITH BASIC

DEBUG is designed so that it is independent of the MDOS executive. The
only part of PDS on which DEBUG relies is the console and printer I/0
logic contained in the RES module. This independence makes it possible to
use DEBUG in conjunction with Micropolis BASIC to debug user written
machine language routines that BASIC accesses via its DEF FAA construct.

To use DEBUG in this way, its filetype must be changed to an overlay type
C, so that it may be accessed with the BASIC LINK statement. This can be
done from the MDOS executive by using the TYPE command.

The BASIC program and the machine subroutine should be loaded prior to
accessing DEBUG. Also the end of BASIC's memory space must avoid conflict
with the machine routine and the particular version of DEBUG being used.
When these conditions are met DEBUG can be accessed from the BASIC monitor
by using the statement LINK "DEBUG-XX". Example:

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY

LOAD "BASICPGM"
READY

LIST

19 DEF FAA=16R7D18
2P A=FAA (1)

3@ PRINT A

4@ END

READY

MEMEND 16R7000
READY

LOAD "MROUTINE"
READY

LINK "DEBUG-74"

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978

*SET 1 7218
*EXEC 4E7

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY

RUN

A FLAGS

............ DEBUG Register display
7919 PUSH H

*

Rev. 8 9/78 4-91

From the BASIC monitor the file "BASICPGM" is loaded and listed. It is a
program that accesses a machine language routine beginning at address 7910
hex. BASIC's end of memory is set to 7@8@0 hex and the machine routine
"MROUTINE" is loaded in above the end of BASIC. A version of DEBUG which
starts at 7480 hex is then linked to. In DEBUG a permanent breakpoint

is set at 7919 hex, the beginning of the machine routine. Control is then
transferred to the system warmstart address 4E7 hex and BASIC signs on
again. A RUN command starts execution of the BASIC program, which accesses
the machine routine when line 2@ is executed. The DEBUG breakpoint is
encountered and DEBUG outputs a register display and waits for a command.
The machine routine accessed from BASIC may now be stepped through or
otherwise debugged as required.

4.12 THE DEBUG-GEN UTILITY

The Micropolis DEBUG program is supplied in a non-configured form embedded
within the DEBUG-GEN utility program. Before DEBUG can be used an executable
version must be obtained by running the DEBUG-GEN utility.

DEBUG requires 4K of contiguous memory address space which may start on any
1X boundary above the beginning of the MDOS anpnlications area. DEBUG-GEN
accepts a memory space specification and creates a version of DEBUG that
uses the specified memory space.

From the MDOS executive, DEBUG-GEN is invoked by entering the filename
DEBUG-GEN like an executive statement (see Section 4.1.2) or by entering
the command LOAD "DEBUG-GEN" followed by the command APP.

The program signs on with the message
DEBUG GENERATION PROGRAM VS. X.X.

and prompts for the memory address at which the DEBUG will run with the
message

ENTER PAGE ADDRESS (2C-Fp) ?

Type a two digit hexadecimal number that corresponds to the high-order bhyte
of the start address where the DEBUG will run. This address may only be on

a 1K boundary. The program will ignore the lowest 2 bits of the response.

DEBUG-GEN creates a type 14 file on disk unit @ and fills it with the
relocated DEBUG system. The file name is "DEBUG-XX" where XX (hex) is the
- page address entered by the user.

Rev. 8 9/78 4-92

Example:

. MICROPOLIS MDOS V.S. 4.9 - COPYRIGHT 1978
>0EBUG-GEN

DEBUG GENERATION PROGRAM V.S. X.X

ENTER PAGE ADDRESS (2C-F@) ? 79

EUN FILE NAMED DEBUG-79

In this example a program file named "DEBUG-78" is created on disk unit @.
This file is a running DEBUG package which will use the memory space from
790@8H to 7FFFH.

Rev. 8 9/78 4-93

YV _MICROPOLIS DISK EXTENDED BASIC

5.0 INTRODUCTION

Micropolis Program Development Software consists of two systems, the Micropolis
Diskette Operating System (MDOS) and Micropolis Disk Extended Basic. Both
systems are supplied on a MASTER diskette included with each Micropolis disk
subsystem. The auto-load bootstrap brings MDOS, which is the first system on
the diskette, into memory. Control is transferred from MOOS to BASIC by

typing the filename BASIC to the MDOS executive. It is also possible to create
a BASIC only diskette so that BASIC may be directly loaded by the bootstrap
system.. See Chapter II, Section 2. This chapter describes the Micropolis
BASIC interpreter and its associated BASIC programming language.

The Micropolis BASIC Interpreter is a special 8080 machine language program
supplied on a master diskette included with the disk subsystem. It provides
a simple and powerful means for developing, maintaining and executing BASIC
programs on 8080 type microcomputer systems. The user interacts with the
Interpreter through a terminal which consists of an input keyboard and an
output display that may be video or printed hardcopy. Lines entered at the
keyboard may be program lines which are stored in the program buffer or
commands for immediate execution. A program in the program buffer may be
modified in place, stored as a disk file, retrieved from disk and executed
under control of the Interpreter. These functions and others are invoked
by entering the appropriate immediate commands. Elements of the BASIC
Interpreter and its use are described in Sections 5.1 and following.

The original 8ASIC programming language was developed by John Kemeny and
Thomas Kurtz at Dartmouth College, Hanover, New Hampshire; Micropolis
Extended Disk BASIC is an elaborated version of that language. BASIC
consists of data types, operators, function references and key words which
combine to form statements that can be grouped into executable BASIC
programs. The details of these language elements and the rules for com-
bining them are described in sections following.

5.1 ENTERING LINES TO THE BASIC INTERPRETER

The BASIC Interpreter is loaded into the main computer memory from MDOS

or booted from a BASIC only diskette. At the end of this procedure the
message READY is displayed at the terminal. This means that the Interpreter
is in control and is waiting for a line to be input.

A 1ine consists of not more than 250 characters typed in sequence. The
entry of a Tine is terminated by depressing the RETURN key. If more than
250 characters are typed prior to the RETURN the Interpreter will output
the message INPUT OVERFLOW and cancel the entire line.

During the entry of a line each character that is typed is echoed by the
Interpreter on the terminal display. If the character typed is not part
of the BASIC character set (see Section 5.15) it will not be echoed and
will not be included in the line entered. The Interpreter also keeps
track of the character count as a line is typed and automatically outputs
a carriage return / line feed combination to the terminal display when

5-1
Rev. 7 3/78

the count exceeds the width of the display device. This combination is not
included in the line count.

Two control features may be used when entering a line.

1) when DEL or RUBOUT key is depressed the next previously
typed character will be deleted from the Tine. A back arrow
is echoed to the terminal display for each character deleted.
Neither the deleted characters nor the back arrows are included
in the line count.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return
Tine feed combination is echoed to the terminal display; the
Interpreter is positioned to accept entry of a new Tine.

5.2 ENTERING A PROGRAM

The BASIC Interpreter recognizes a line as a program line by the presence
of a leading 1ine number. A BASIC program is entered one program line at
a time using the normal Tine entry procedures. The message READY is not
displayed after the entry of a program line. This permits consecutive
program lines to be entered conveniently. As each program line is entered
the Interpreter stores it in a program buffer which it maintains in the
computer system's mairn memory.

Each line of a BASIC program is composed of a line number followed by one
or more statements (see Section 5.20) which are separated from each other
by a colen (:). The length of a program line may not exceed 250 charactérs
including the digits in the line number. Each line number must be within
the range 0 - 65529. Spaces preceding the first digit of a line number

are ignored. Spaces embedded in a 1ine number are not Tegal. All other
spaces in a program line are preserved as entered. .

Program lines are stored in the program buffer in numeric order by 1ine
number. The Tines in the buffer at any given time constitute the current
program. This program may be modified in three ways.

To insert a new program line, type in the new line including the line
number. The interpreter will automatically place the new line in the
program buffer in proper seguence.

To modify an existing program line enter the line number and the new
statement or statements. The new line will automatically replace the
old 1ine in the program buffer that has the same 1ine number.

To delete an existing program line type the 1ine number followed by carriage
return. The corresponding line will be eliminated from the program buffer.
Mote that multiple lines may also be eliminated by using the DELETE command
as described in 5.4,

Rev. 8.1 2/5/79 5-2

5.3 IMMEDIATELY EXECUTED LIMES

Whenever a line is typed in, the Interpreter scans it from left to right
until the first non blank character is encountered. If this character is
a digit it is assumed to be the first digit of a line number and the line
ijs treated as a program line. (see Section 5.2). If the first non blank
character is not a digit then the line is interpreted for immediate
execution.

Most normal BASIC statements may be entered for immediate execution.
Exceptions are the DEF FN, DEF FA, and DATA statements which are only
functional within a program. Multiple statements may be included in an
immediate 1ine by separating them with colons (:). BASIC statements are
covered in Section 5.20.

Another form of immediate 1ine is the command. Commands are operations

which generally make sense only in immediate mode. Most of the commands

in BASIC system relate to the program buffer and to the manipulation and

execution of BASIC programs. The available commands are described in the
- following sections.

EDIT, RENUM and MERGE are three commands which function only in the immediate
mode. These commands cause a SYNTAX error if they appear in a program.

5.3.1 THE BASIC EDIT COMMAND

EDIT 1inenumber

A specified 1ine in the BASIC program buffer can be changed without retyping
the entire line by using the EDIT command. EDIT linenumber is the form of
this command. If the specified linenumber is not found in the current program
buffer, the message STMT # NOT FOUND is displayed. BASIC processes an EDIT
command by copying the specified line into a special editing buffer and
setting an invisible pointer to point to the first digit of the 1inenumber
that begins the text 1ine. BASIC is then in the EDIT command mode. A
separate set of single key commands is available for editing a line in the
special edit buffer. The whole line including the linenumber can be edited.

5.3.1.1 ADVANCING THE BASIC EDIT PQINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text 1ine immediately after the one that is displayed. The entire
1line can be displayed in this manner.

5.3.1.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a ¢ or C, followed by the new character.

The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

Rev. 8 9/78 . 5.3

5.3.1.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the consoie enclosed in backslashes (/). The edit pointer is left
pointing at the character immediately after the deleted character.

5.3.1.4 INSERTING CHARACTERS - I

Characters may be inserted into the line or at the end of the line by

typing an i or I followed by the characters to be inserted. The

insertion begins immediately before the character pointed to by the

edit pointer. Characters are inserted in sequence as typed until the
insert mode is terminated by depressing the ESC key. The edit pointer
remains pointing to the same character that it pointed to when the insertion
began. The.insert mode may also be terminated by pressing the return key.
This also terminates the EDIT command and replaces the line in the current
text file with the newly edited version from the special editing buffer.

5.3.1.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position

of the edit pointer to the end of the 1ine may be displayed by typing an

1 or L. The characters are displayed on the console followed by a carriage
return-line feed. The edit pointer is reset to the beginning position.
This command is useful to see what the line Tooks 1ike before editing is
completed. It may also be helpful to use this command immediately after
entering the original EDIT command. This would display the line about to
be edited without exiting the editing mode.

5.3.1.6 SEARCHING TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the first
occurrence of a specified character by typing an s or S followed by the
character to search for. The characters from the position of the edit
pointer up to but not including the searched for character are printed on
the console. The edit pointer is left pointing at the first occurrence of
the searched for character. If the search argument does not exist in the
line then the entire line is printed and the edit pointer is positioned at
the end of the line.

5.3.1.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position

up to but not including a specified search character can be deleted by
typing a k or K followed by the search character. The deleted characters
are displayed on the console, enclosed in backslashes (/). If the search
argument does not exist in the edit line, then all the characters from the
edit pointer to the end of the line are deleted. The edit pointer is left
pointing at the search character or at the end of the line.

Rev. 8.3-a 7/1/79

5.3.1.8 QUITTING THE BASIC EDIT COMMAND MODE - Q

The EDIT command may be aborted without changing the 1ine in the current
text file by typing a q or Q. The partially edited Tine in the special
editing buffer is abandoned. No changes are made to the current program
buffer. BASIC is ready to accept a new command.

5.3.1.9 COMPLETING THE BASIC EDIT COMMAND - THE RETURN KEY

The 1ine in the special editing buffer can be placed in the current program
buffer by pressing the return key at any point while in the BASIC EDIT
command mode. If the line number of the 1ine in the special edit buffer
matches a line number in the current program buffer, then the edited 1ine
replaces the corresponding line in the program buffer and the EDIT mode is
completed. If there is no 1ine in the current program buffer with the same
1ine number as the line in the special edit buffer, then the edited line is
inserted into the current program buffer in proper line number order. This
feature facilitates the copying or repetition of program lines by changing
only the line number during the edit.

5.3.2 THE RENUM COMMAND

RENUM

RENUM (starting-number)

RENUM (starting-number, increment)

RENUM (starting-number, increment, first-1ine-to-change)

Some or all of the lines in the current program buffer can be renumbered by
using the RENUM command. This command renumbers lines in the program, changing
1ine numbers, and line number references that follow branch statements.

These statements are GOTO, GOSUB, ON...GOTO, ON...GOSUB, THEN, RESTORE. The
ERROR, END, and ENDPAGE options of the OPEN statement are also affected.

The forms of this command are RENUM, RENUM (starting-number), REMUM (starting-
number, increment), and RENUM (starting-number, increment, first-line-to-change).
RENUM takes the 1ine number of the first-line-to-change and sets it equal to

the starting-number. The 1ine number of each 1ine after the first-1ine-to-change
is then set to the value of the preceding new 1ine number plus the increment
value. If no first-line-to-change is specified, the first 1ine in the program
buffer is assumed. If no increment value is specified, the value 19 is used.

If no starting-number is specified, the value 19 is used. Typing RENUM alone
will produce a program numbered from 19 by 19's. Examples:

Assume that the current program buffer contains the following program:

9 REM RENUM EXAMPLE PROGRAM

25 INPUT "VALUE";A

3@ PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
45 GOTO 25

The command RENUM (5@,38,39) would produce the following:
9 REM RENUM EXAMPLE PROGRAM
25 INPUT “VALUE";A

5@ PRINT "THE SQUARE ROOT OF";A;"1S";SQR(A)
89 GOTO 25

Rev. 8 9/78 5-4.1

The command RENUM would produce the following:

1@ REM RENUM EXAMPLE PROGRAM

29 INPUT "VALUE";A

3@ PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
49 GOTO 20

The command RENUM (19@) would produce the following:

100 REM RENUM EXAMPLE PROGRAM

118 INPUT "VALUE";A

120 PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
139 GOTO 119

The command RENUM (1909,108) would produce the following:

1999 REM RENUM EXAMPLE PROGRAM

1199 INPUT "VALUE";A

1299 PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
1399 GOTO 1109

Several error conditions are checked before any renumbering is done. This

is to safeguard the program against possible damage. As errors are detected
error messages are printed along with the lines where the error occurred. No
changes are made to the program if any errors are encountered and no
renumbering can be successfully carried out until the errors are corrected.

Entering a RENUM command may result in the message NUMBER QUT OF RANGE
followed by the line where the error occurred. This is an indication that
the renumbering attempt lead to a 1ine number greater than 65529. This can
be corrected by entering a RENUM with a smaller increment value that does
not cause a 1ine number greater than 65529.

Entering a RENUM command may result in the message MEMORY OVERFLOW. This
indicates that renumbering would create a program to long to be run in the
memory currently available to BASIC. The program is not renumbered.

Entering a RENUM command may result in the message STMT # NOT FOUND without
printing the offending 1ine. This occurs when the specified
first-1ine-to-change does not exist in the program. No change is made.
Example; if the program is:

19 PRINT "TEST"
29 GOTO 19

The command RENUM (199,10,30) would cause a STMT # NOT FOUND error because
there is no line 3@ at which to start renumbering.

Entering a RENUM command may result in the message STMT # NOT FOUMD followed
by the 1ine where the error occurred. This indicates that a branch statement
(c0T0,GOSUB, etc.) contained a reference to a 1ine number that does not exist
in the program. If this is intentional a stub line should be placed in the
nrogram to allow the RENUM to operate. This can be done by typing the line
number with a REM statement as a place holder.

Rev. 8 9/78 5-4.2

Entering a RENUM command may result in the message SYNTAX ERROR. This can
be caused by several types of syntactical errors. If the line contains
unbalanced quotes or parentheses the SYNTAX ERROR message is displayed, or
if renumbering would cause a sequence error in the line numbering (e.q. the
lines were numbered 10,20,39,4p and you typed RENUM (18,10,38). This would
result in numbers 10,29,10,20 which is not allowed.). '

The RENUM command does not change line numbers following LIST, or DELETE.
I[f these statements are used within a program they must be changed manuaily.

RENUM will not renumber line number references in scientific notation (1E3),
or expressions (GOTO 90*8+3). Such references must be changed manually.

If computed GOTO's, GOSUB's or RESTORE's are used in the program they will
more than likely be incorrect after renumbering unless extreme care is
taken in selecting the renumbering parameters.

Example; if the program is:

19 DATA THIS,IS,A,TEST

2P DATA MORE,TEST,HERE,END

39 INPUT "WHICH DATA,T1 or 2",A
49 RESTORE (19*A)

5@ READ A$,B$,C$,DS$

The command RENUM (109,18,39) would renumber the executable part of the
program while leaving the DATA statements unchanged.

1P DATA THIS,IS,A,TEST

29 DATA MORE,TEST,HERE,END

199 INPUT "WHICH DATA,1 OR 2",A
119 RESTORE (1@*A)

129 READ A$,3$,C$,D$

The computed RESTORE on line 118 would still function after the program is
renumbered. However, if lines 1@ and 2§ had been renumbered, then the
program would not perform as intended.

The RENUM command can cause a line to expand to a length greater than 259
characters. Such a long line can only be created by RENUM and could not be
entered from the keyboard because the input buffer is only 25@ characters
long. The Basic EDIT command uses the 25@ character input buffer during
ed1t1ng If renumber1ng causes a line longer than 25@ characters and that
line is later edited using the Basic EDIT command the line will be truncated
at 259 characters by the editor.

5.3.3 THE MERGE COMMAND

MERGE "unit#:filename"

The MERGE command allows existing program files on disk to be incorporated
with a program presently in the BASIC program buffer. The form of the
command is MERGE "unit#:filename”. The unit# is a number from P to three
followed by a colon. If no unit number is specified, unit zero is assumed.

Rev. 8 9/78 5-4.3

Lines are merged one at a time from the merge file into the current program
buffer, starting with the first 1ine in the merge file. If the line number
in the merge file is the same as a line number presently in the program
buffer, then the Tine from the file replaces the line in the buffer. If the
Tine number in the merge file does not match any line number in the program
buffer, then the line from the file is inserted in the current program
buffer in proper line number order. When all lines from the merge file have
been placed in the program buffer the MERGE is complete.

The entire merge file is loaded into memory following the program in the
program buffer. Therefore the length of program in the program buffer plus
the merge program must be less than the space currently available to BASIC,
otherwise a LOAD OVERRUN message is output and the merge does not take place.

The MERGE command also needs some additional buffer space to perform the
merge. If there is not enough room the message MEMORY OVERFLOW is output
and the merge does not take place.

Large programs are often developed as modules. Each module is written with
its test data and debugged separately. The following example shows a three
part survey program. Part 1 reads the survey data and talleys the vote.
This module is allocated line numbers from 1988 to 20@@. The data has been
allocated 1ines 18 to 1@9 and the printer output module is allocated lines
5303 to 6¢99.

The program under test uses Tines 10-30 as test data, and lines 5009-5810
prints the test results. The program looks as follows in the program buffer:

19 REM LIVE DATA SUPPLIED BY QTHER PART QOF PROGRAM'

20 REM TEST DATA.

3@ DATA 1,1,2,2,3,3,4,4,0,1,4,1,99

19@@ REM PROCESS SURVEY MODULE.

1919 T=1 :REM INIT TOTAL COUNTER

192¢ REM VALID DATA IS P=NO OPINION,1=YES,2=N0,99=END OF DATA.
1925 READ C

1839 IF C=8 THEN T1=T1+]

1849 IF C=1 THEN T2=T2+]

195@ IF C=3 THEN T3=T3+]

1960 IF C=99 THEN T=T-1:GOTO 5090

1879 IF C<@ OR C>2 AND C<>99 THEN PRINT "“ITEM";T;"NOT VALID"
1989 T=T+1

1999 GOTO 1925

5P@@ REM TEST PRINT OUT ROUTINE

5910 PRINT "NO OPINION=";T1;" YES=";T2;" NO=";T3;" TOTAL=";T

This process module with the temporary test data and print logic can be
separately tested,debugged and then saved on disk with the command SAVE "PART1".

The real print module can then be developed as follows:

DELETE

5@9@ REM PRINT MODULE

591p OPEM 1 "*P" ERROR 5209

5@2p A$="7Z9":B$="VZ9"

5030 P1=T1/T:P2=T2/T:P3=T3/T

5049 IF P1+P2+P3<>19@ THEN PRINT"PERCENT ERROR":STOP
5059 PUT 1 TAB(6@);"NO"

Rev. 8 9/78 5-4.4

506@ PUT 1 TAB(1@);"RESPONSES";TAB(25);"YES %";TAB(46)"NO %",

5079 PUT 1 TAB(6@)"OPINION %"

5980 PUT 1 REPEAT$("=",72)

5099 PUT 1 TAB(12);FMT(T,A$);TAB(25);FMT(T1,A$);TAB(3@) ;FMT(P1,BS);
5199 PUT 1 TAB(45);FMT(T2,A$);TAB(5 1) FMT(P2,B$);TAB(6@);FMT(T3,A$);
5119 PUT 1 TAB(69);FMT(P3,B3)

5129 PUT 1 REPEAT$("-",72)

5139 CLOSE 1: STOP
5299 PRINT ERRS$:INPUT"CONTINUE",C$:GOTO 5@29

When the real print module is debugged the command SAVE "PART2" saves it on
the disk.

To test the system PART1 and PART2 are combined by typing the commands

LOAD “PART1" and a carriage return, and then the command MERGE "PART2" and

a carriage return. The combined programs are RUN using the test data. When
these parts are debugged they are saved on disk by typing the command SAVE
"PROGRAM" and a carriage return.

The data is entered into a separate file as follows:

DELETE

19 REM LIVE DATA

2 DATA 1,1,1,2,2,1,8,1,2,1
39 DATA 9,2,2,2,1,2,2,1,1,1
49 DATA 1,1,1,2,2,1,2,1,8,0
59 DATA 99

And then saved by typing the command SAVE "DATA" and a carriage return.
Several different data files can be produced if needed.

The final program is loaded in two parts by typing the commands:
LOAD "PROGRAM" and a carriage return and then MERGE "DATA" and a carriage
return. The final program appears as follows:

19 REM LIVE DATA

29 DATA 1,1,1,2,2,1,0,1
3p DATA 9,2,2,2,1,2,2,1
49 DATA 1,1,1,2,2,1,2,1
5@ DATA 99

1038 REM PROCESS SERVEY MODULE.

1919 T=1 :REM INIT TOTAL COUNTER

1929 REM VALID DATA IS @=NO OPINION,1=YES,2=N0,99=END OF DATA.
1925 READ C

1930 IF C=p THEN T1=T1+

19048 IF C=1 THEN T2=T2+1

1959 IF C=3 THEN T3=T3+

1969 IF C=99 THEN T=T-1:GOTO 590

1978 IF C<p OR C>2 AND C<>99 THEM PRINT "ITEM";T;"NOT vALID"
1080 T=T+1

199¢ GOTO 1@25

&>

2,1
1,1
8.0

?

LS ?

Rev. 8 9/78 5-4.5

5009 REM PRINT MODULE

5919 OPEN 1 "*P" ERROR 5200

5929 A$="779":B$="vZ9"

5039 Pi1=T1/T:P2=T2/T:P3=T3/T

5049 IF P1+P2+P3<>1@P THEN PRINT"PERCENT ERROR":STOP
5959 PUT 1 TAB(6@);"NO"

S5P6P PUT 1 TAB(1@);"RESPONSES";TAB(25);"YES %";TAB(46)"NO %";

5970 PUT 1 TAB(6@)"OPINION %"

598 PUT 1 REPEATS("=",72)

5@99 PUT 1 TAB(12);FMT(T,A$);TAB(25);FMT(T1,A$);TAB(30);FMT(P1,BS);
5199 PUT 1 TAB(45);FMT(T2,A$);TAB(51) ;FMT(P2,B%);TAB(6Q);FMT(T3,AS);
5119 PUT 1 TAB(69);FMT(P3,8%)

5129 PUT 1 REPEAT$("-",72)
5139 CLOSE1: STOP
52@@ PRINT ERR$:INPUT"CONTINUE",C$:GOTO 5@20

5.4 THE DELETE COMMAND

Groups of program lines may be eliminated from the current program buffer
by using the DELETE command. There are four forms of this command.

Type DELETE X-Y to eliminate the lines numbered X through Y. Line number

Y must be greater than line number X. If either line X or line Y or both

are not in the current program buffer a LINE NOT FOUND message will be displayed
and nothing will be deleted.

Type DELETE X- to eliminate line X through the last 1ine in the current
orogram buffer. If line X is not in the buffer a LINE NOT FOUMD messaqge
will be displayed and nothing will be deleted.

Type DELETE -Y to eliminate the first line through 1ine Y in the current
program buffer. If 1ine Y is not in the buffer a LINE NOT FOUND message will
be displayed and nothing will be deleted.

Type DELETE to eliminate the entire contents of the current program buffer.
The buffer will be set to empty and a new program may be entered.

5.5 THE LIST COMMAND

A11 or part of the program in the current program buffer can be listed
on the terminal display device by using the LIST Command. There are four
forms of this command.

Type LIST X-Y to display the lines numbered X through Y. Line number Y must
be greater than line number X. If either line X or Y are not in the current
program buffer the first present line number greater than X or Y will be used
instead.

Type LIST X- to display the lines from line X through the Tast line in the

current program buffer. If line X is not in the current program buffer the
first present 1ine number greater than X will be used instead.

Rev. 8 9/78 5-4.6

Type LIST -Y to display the first line through line number Y in the current
program buffer. If line Y is not in the current program buffer the first
present line number greater than Y will be used instead.

Type LIST to display the entire content of the current program buffer.

5.6 THE SAVE COMMAND

A program in the current program buffer can be stored on disk for later
retrieval by using the SAVE command.

SAVE "N: unit number: name of file" is the general form of the command.

The word SAVE and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 18 characters long. The characters

‘o

Rev. 8 9/78 5-4.7

which are legal in a file name are the letters A through Z, the digits @
through 9, and ten special characters including comma (,), dash (-),
period (.), slash (/), semi-colon (;), less than (), equal (=), greater
than (), question mark (?) and at sign (@).

The N: is optional. If it is not included in the command the existing
file with the specified name on the specified unit will be overwritten

and replaced by the program in the program buffer, If no such file exists
the message FILE NOT FOUND will be output. However, if the N: is included
in the SAVE command then a new file will be created with the designated
name on the designated unit. If N: is used and the file already exists

on the specified unit the message DUPLICATE NAME will be output.

The unit number: is also optional. When present it consists of a single
digit from ¢ to 3 followed by the colon (:). It represents the address
of the disk unit on which the specified file is to be replaced or created.
If no unit number is specified in the SAVE command, unit § is assumed.

5.7 THE LOAD COMMAND

A previously stored program can be retrieved from disk and placed in the
current program buffer by using the LOAD command.

LOAD "unit number: name of file'" is the general form of the command.

The word LOAD and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 1¢ characters and may use the
letters A-Z, the digits -9 and the special characters (,), (-), (.Y, (/),
;)s), (™, (D,@,)

The unit number: is optional. If it is used it must consist of a single
digit from @ to 3 followed by a colon (:). It designates the address of

the disk unit on which the specified file is to be found. If no unit number
is specified, unit @ is assumed.

If the filename specified in a LOAD command is not present on the specified
unit the message FILE NOT FOUND will be output. When a program file is
successfully loaded it replaces the contents of the current program buffer
and all data associated with the last program in the buffer is lost. 1If
the filename specified in the LOAD command is a data file (see section 5.21)
which cannot be properly placed in the program buffer, the message NOT A
LOAD FILE will be output.

5.8 THE DISPLAY COMMAND

The names of all files which are presently stored on a diskette are recorded
in a special file on that diskette. This special file is known as the
diskette directory and its name is always DIR. The names currently recorded
in a diskette directory can be output to the terminal display by using the
DISPLAY command.

DISPLAY '"unit number: DIR" is the general form of the command.

5-5
Rev. 2 5/77

The word DISPLAY and the quotation marks and the name DIR must be rresent.

The unit number: is optional. 1If it is not present unit @ is assumed. If

it is used it must consist of a single digit from @ to 3 followed by a colon (:)
It designates the address of the disk unit whose directory is to be displayed.

The DISPLAY command outputs the filenames five to a line. The first name
shown should always be DIR. On disks where it is present the second name
shown should always be BASIC.

If the diskette in the specified unit does not contain a valid directory file
a PERM L/O0ERR message will result because the disk cannot be accessed by
the BASIC system.

5.9 THE SCRATCH COMMAND

A file that is stored on disk may be eliminated by using the SCRATCH command.
SCRATCH '"unit number: name of file" is the general form of the command.

The word SCRATCH and the quotation marks and the name of file must always
be present. The name of file may consist of 1 to 1@ characters, including
the letters A-Z, the digits ¢-9 and the special characters (,), (-), (.),
(s G, (O, (3, (M, (D), (@).

The unit number: is optional. If it is used it must consist of a single
digit from @ to 3 followed by a colon (:). It designates the address of
the disk unit from which the specified file is to be eliminated. If no
unit number is specified, unit @ will be assumed. If the specified file
on the specified unit does not exist the message FILE NOT FOUND will be
output.

When a file is SCRATCHed the storage space uytiused by that file is automatically
freed and made available for reallocation.

5.10 THE RUN COMMAND

A BASIC program must be in the current program buffer in order to be
executed by the interpreter. This may be accomplished by typing in the
program from the input terminal or by using the LOAD command. Once a
program is in the current program buff er it may be executed by using the
RUN command.

RUN is the form of the command.
When the RUN command is entered, the interpreter resets all disk files to
"closed', and frees all memory space previously allocated to wariables from

the last program run. It then begins execution of the program with the
first program line in the buffer and proceeds to execute program lines in

Rev, 2 5/77 5-6

ascending order of line number. This sequence is altered only when
particular program statements deliberately change the sequence by trans-
ferring control. Each program line is only executed when execution
control reaches that line; it is executed each time that this occurs.
Execution is halted when an END or STOP statement is encountered or when
execution control processes the last line in the current program buffer
and it does not alter the control sequence. At this point the interpreter
displays the message READY and waits for a line to be entered.

5.11 INTERRUPTING A RUNNING PROGRAM

The execution of a program may be interrupted prior to completion by
holding down the CONTROL key and typing C at the input terminal. The
interpreter will respond by displaying the message INTERRUPT followed
by the message READY.

The interruption generally occurs after the end of whatever program line
was being executed when the CONTROL C was entered. In the case of the
input statement and whenever characters are being output, the interrupt
will occur immediately. Under these circumstances the remainder of the
input or output will be lost if a continue is attempted (see section 5.12).

When program execution is interrupted, the value of all program variables
remain as last assigned. Any open disk files remain open with file pointers
current. Variables may be examined by using immediate PRINT statements and
may be altered with immediate assignment statements. These are frequently
used aids in debugging programs. However, if the program in the current
program buffer is modified (lines deleted, inserted, or changed) then all
variable and file information from the interrupted program is lost and the
program can no longer be continued.

5.12 CONTINUING AN INTERRUPTED PROGRAM

If an executing program has been interrupted by the CONTROL C procedure
and no changes have been made to the current program buffer, then the
execution of the program may be continued by using the CONT command.

CONT is the form of the command.

When the CONT command is entered program execution is resumed at the point
in the execution control sequence following the last program line executed.
If continuation is not possible because no program has been interrupted or
because the current program buffer has been altered, the message NOTHING
TO RETURN TO will be displayed. '

5-7
Rev., 2 5/77

5.13 PROGRAM TRACING COMMANDS

Qften, when developing a new rrogram, it is useful to be able to follow
the execution on a line by line basis. This capability is provided in .
the Micropolis BASIC system through the use of the FLOW and NOFLOW commands.

FLOW is the form of the command which enables this program line tracing
capability. When the FLOW trace capability is enabled and the RUN command
is entered the interpreter displays each nrogram line immediately before
it is executed. The FLOW trace remains enabled after the end of a program
execution. It must be specifically disabled. '

NOFLOW is the form of the command which disables the program line tracing
capability.

5.14 BASTIC SYSTEM ERROR HANDLING

Whenever the BASIC interpreter attempts to execute an immediate line
which has just been entered or the next program line during program
execution, it is possible that an error condition may arise. If this
occurs the interpreter tries to indicate the problem by displaying an
appropriate error message at the terminal.

If the line in error is an immediate line then the error messagé will
be directly followed by the message READY. All or part of the erroneous
line may not have been executed.

If the line in error is a program line, the line number and text of the
erroneous line are displayed after the error message and before the READY
message. All or part of the erroneous program line may not have been
executed. Program execution is not continuable after an error.

Appendix A specifies the error messages which may be printed by BASIC
and their probable causes.

5.15 THE BASIC CHARACTER SET

BASIC recognizes all printing ASCII characters except the SHIFT O (5F HEX)
backspace character and the RUB QUT (7F HEX) character. However, lower case
symbols may only be used in REM statements and in literal strings. The
character set, along with the decimal, hexadecimal and octal values of the
corresponding ASCII codes are listed in table 5.1.

Rev. 8 9/78 5-8

5.16 BASIC DATA

BASIC programs operate on two types of data: Numeric and String. Numeric data
includes integers and real (floating point) numbers., Character string data
items consist of a sequence of characters chosen from the BASIC character set.
This includes letters, numbers, special characters and blanks. A data item
may be a constant which has an unchanging value, or a variable which may assume
different values during the execution of a program. A variable may be either
simple or grouped with other variables of like data type into a structure
called an array, and referenced as a member of the array.

_ 5.16.1 CONSTANTS

A constant is an unvarying value. It is expressed as its actual value. A
constant may be a numeric value, or a character string value.

5.16.1.1 NUMERIC CONSTANTS

Numeric constants may be integers or real numbers.

An integer is a positive or negative whole number which may be defined
as a decimal number or in any number base (radix) up to 36. The format
of an integer may be:

Integer format: -nn....n Example: -93784
Radix format: -xxRnn....n Example: -16R7B2

Where (-) is an optional sign, xx is the number base, R indicates radix
format, and nn....n is the number expressed with the digits 6-9 and the
letters A-Z (for radix format). The range of an integer specified in
decimal format is 1-5E (2*ISIZE) to 5E (2*%ISIZE). See SIZES statement
for definition of ISIZE, The maximum value of an integer specified in
radix format is 65535. A DIGIT BEYOND RADIX error occurs if a digit or
letter is used that is invalid for the radix specified.

A real number is a positive or negative number which includes a decimal
point and fractional part or a number expressed in scientific notation.
The formats of a real number may be:

Real format: -nn....n.0n... Example: =-2.677

Scientific format: -an...nE-xx Example: 257E-4
-nn...n.nn...E-xx Example: -12.231E1l4

Where nn...n.nn... represents the number expressed using the digits p-9
and a decimal point; an optional minus sign (-) denotes a negative number
or exponent; E specifies scientific notation and xx represents the
exponent expressed with the digits #-9.

The range of a real number is 1E-61 to (1E62)-1.

5-9
Rev. 2 5/77

BASIC CHARACTER SET IN COLLATING SEQURNCE

CHAR DECIMAL TEX OCTAL

(space)
y

o + oo~ o AN R

WOV Ar o DDA BUNNRPONT

Rev. 1 5/77

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
43
49
50
851
52
53
54
55
56
57
83
59
=10
51
52
63

20
21
22
23
24
25
26
2
23
29
24
2B
2C
2D
2T
27
30

31

32
33
34
35
36
37
38
39
34
3B
3G
3D
3E
37

Table 5.1 Standard Collating Sequence

040
041
042
043
Oas
045
046
047
050
051
052
053
054
055
058
087
060
051
06z
063
064
065
068
oa?
070
071
o772
73
074
07?5
075
o7

CIAR DECIMAL HZX OCTAL

0t S I A A AU EdO AR IHN O QYO W b D

64
55
€6
67
€8
&
70
71
72
73
74
75
76
¥il4
78
79
30
a1
82
83
34
35
86
37
a3
39
90
91
92
93
9¢

95

RHRES

3y v

o b
~3

T X
i il

i Dy
hi it

[$ S YL)
U PO

EEFERETEEEY:

5-9.1

100
101
102
103
104
108
106
107
110
111
i1z
113
114
115
113
117
120
121
122
123
124
128
12¢
127
130
131
132
133
134
135
136
137

5.16.1.2 STRING CONSTANTS

A character string is a sequence of valid BASIC characters. Entered

as a constant, a string must be enclosed in quotes ('). Quotes

within a string must be doubled (the constant " is entered as " ' " ").
The length of a string is the number of characters. The maximum

length of all character strings within a program is set by the SIZES
statement.

5.16.2 VARIABLES

Variables may be integer, real, or string. The amount of memory used
for each of the 3 types can be defined in a SIZES statement before
execution of a BASIC program. ISIZE defines the memory space for
integers; RSIZE for real variables; and SSIZE for character strings.

5.16.2,1 INTEGER VARTIABLES

Integer variables are designated by any letter followed by a percent
sign (7%).

The range of an integer is from 1-5E(2*ISIZE) to 5E(2*ISIZE).

The internal format is 2 BCD digits per byte stored in tens complement.
If an attempt is made to store a number that exceeds the range a
CONVERSION error occurs.

5.16.2.2 REAL VARIABLES

Real variables are indicated by any letter (not enclosed in quotes)
or a lecter followed by a digit. The range of a real is lE-6l to
(1lE62)-1. The precision or level of accuracy is 2(RSIZE-1) decimal
digits.,

The Internal Storage Format Is:

Byte 1: 1 bit sign and 7 bit exponent (excess 6&)

Byte 2 thru RSIZE: 2 BCD digits per byte.

5.16.2.3 STRING VARIABLES

A string variable is designated by a letter followed by a dollar

sign ($). String variables may have a length of ur to 258 characters.
The default value of maximum string length is defined by the SSIZE
parameter of the SIZES statement. The maximum SIZE of any particular
string may be declared in a DIM statement, which supercedes the

SIZES statement. If a string which is longer than the maximum length
is assigned to a variable, it will be truncated on the right.

The internal format of a string variable is:

Rev, 2 5/77 5-10

Byte 1: Maximum string length

Byte 2: Current string length

Byte 3 thry N: Any character, 1 character per byte
(N= 2+ Maximum string length found in Byte 1)

5.16,2,4 CONVERSIONS

Automatic conversion between integer and real data types is pro-
vided which allows mixed-mode arithmetic. A real value is con-

verted to an integer by truncating the fractional part while
preserving the sign of the number.

Conversion between string and numeric data types is provided by
the STR$, VAL, FMT, CHARS$, and ASC functions, See section 5.18,1.2
for description of these functions.

5.16.,2.5 ARRAYS

Numeric and character string data may be stored in memory as
arrays. An array is a set of variables of one data type (numeric
or character) identified by a single variable name, A numeric
array is denoted by a single letter or a single letter followed
by a percent sign (%) and may have 1 to 4 dimensions, A string
array is denoted by a single letter followed by a dollar sign ($)
and may have 1 to 3 dimensions, Both types of array are zero
indexed., An array must be declared in a DIM statement which
defines the number of dimensions and the index range in each
dimension. An array indexing error occurs if an attempt is made
to reference an element of an array which has not been defined in
a DIM statement.

A one dimensional array is a simple linear list in which the
elements of the array are stored sequentially in memory, For
example, an array A which has a dimension of 4 is stored:

A (B
A (1)
A (2)
A (3)
A (&)

An element of a one dimensional array 1s referenced by the array
name and by the index of the element within the array, enclosed in
parentheses, The 4th element of array A in the above example is

A (3). The index may be specified by a constant, as in this
example, a numeric variable, or a numeric expression,

S5-~11
Rev, 2 5/77

A two dimensional array is conceptualized as a table organized
by rows and columns. An array B dimensioned as B (3,2) would
be represented as:

cC Cc C
0 0 O
L L L
g 1 2
ROW @
ROW 1 Array B(3,2)
V/
ROW 2
ROW 3

An element of a 2 dimensional array is referenced by the array
name and the row and column indices. The shaded element in the
above illustration is referred to as B(2,2), where the first
index is the row index and the second is the colummn index.

The elements of a 2 dimensional array are stored sequentially in
memory in column major order, that is column by column., The
elements of the array B would be stored:

(8,9)
(1,9)
(2,9)
(3,8)
(9,1)
(1,1)
(2,1)
(3,1)
(,2)
(1,2)
(2,2)
(3,2)

W WEwW oW

As with one-~dimensional arrays, the row and column indices may be
specified by a constant, a numeric variable or a numeric expression,

3 and 4 dimensional arrays are extensions of the two dimensional
concept., An element of one of those arrays is referenced by the
array name and the appropriate number of indices,

5.16.3 OQUTPUT FORMATS

A numeric data item is converted to a string when it is output to

Rev. 1 5/77 5«12

the terminal. Unless the output format is explicitly specified

by use
one of

1)
2)
3)
4)

5)

6)
7

String

of the FMT function, a numeric value will be output in
three default formats according to the following rules:

The negative sign (if present) precedes the number

A space is output in place of a positive sign

A space is output following the number.

A number is either a whole number or a decimal
number. A whole number is a number without a
fractional part. A decimal number is a number

with a whole and a fractional part.

The output formats are: Whole, Decimal and Scientific,

Whole: (=) sxxxxexx¥
Decimal : (=)xxx ... x.xxxt
Scientific: (-)n.xxxxx E(-) TT¥

(-) = minus sign if negative, blank if positive
x = digit position

n = one non-zero digit

E = signifies expoment
TT = exponent

¥ = blank

The value of an integer variable is output in whole format.
A constant or the value of a real variable is output as
follows:
a) If the constant or value is a whole number
having less than or equal the number of digits
spec ified by RSIZE, then whole format is used.

b) If the constant or value is a decimal number greater

than or equal to ,1 and having less than or equal the
number of digits specified by RSIZE, then decimal
format is used.

c) Otherwise, scientific format is used.

data is output without modification.

The maximum output line length is 25¢) characters. 1If an attempt
is made to output a line longer than the maximum length, i.e,,by

trying

to output 2 strings of 250 characters with the same rrint

statement, The characters in excess of 25@# are truncated and
the message "WARNING--TRUNCATED OUTPUT" is output.

Rev. 2

5-13

5/77

5.17 BASIC OPERATORS

Operators are symbols which specify operations to be performed upon data
items. BASIC recognizes 4 classes of operations:

Numeric(arithmetic); String; Relational; and Logical.

5,17.1 Numeric Operators

Numeric operatwrs specify arithmetic operations to be performed

upon numeric data items and numeric function references. A numeric
data item may be a constant, a simple numeric variable or a numeric
array element. Numeric operators are classified as binary operators
which perform operations with 2 data items, and unary operators which
perform operations upon single data items.

The binary operators are listed below:

Symbol Operation
A Exponentiation i
/ Division '
* Multiplication
N Integer Division (X\Y = Int(X/Y))
- _Subtraction
+ Addition

The upary operators are listed below:

Symbol Operation
- Negation
No effect

The '"+" symbol is recognized as a unary operator to allow constructs
such as A= +7 and A= +B to be syntactically correct although the '"+"
has no effect.

5.17.2 String Operators

One operator 1s recognized for string data items:; concatenation.
A string data item may be a string constant, string variable or
string array element, or a string function reference.

Sngol Operation
+ Concatenation

Rev. 2 53/77 5-14

The "+" operator yields a string composed of the characters in the
string data item to the left of the operator followed by the char-
acters in the string data item to the right of the operator.

EXAMPLE: If AS$ = "ABCD" and BS = "EFGH" the operation A$ + BS
yields the string "ABCDEFGH"

5.17.3 Relational Operators

Relational operators allow the comparison of the values of numeric
or string data items.

The relational operators are listed below:

Sngol Meaning

Less Than

Greater Than

Equal to

v4 Less than or equal to
V= Greater than or equal to
Not equal to

N/ A

A relational operator is used in an expression of the form (Data Item 1
operator Data Item 2) which yields a single value as follows: The
values of the two data items are compared. Based upon this comrarison
if the expression is true, the value "true" (1) is returned. If the
expression is false, the value "false'" (@) is returned.

EXAMPLE: 1If A=l and B=2 then

AR Yields a value of 1
A=B Yields a value of @

The data items compared must both be the same data type (numeric or
string) or a type error results,

String comparison is performed as follows: Starting from the leftmost
character, two strings are compared character-by-character until there
is a mis-match or the end of one of the strings is reached. If there
is a mis-match, the string containing the character which is higher in
the collating sequence is considered "greater' than the other string.
If the end of one of the strings is reached without a mis-match and
the strings are not of the same length then the longer string is
"ereater"., If the end of one string is reached and the strings are

of the same length then the strings are "equal".

5«15

Rev. 2 5/77

e \\

Rev. 2

5.17.4 Logical Operators

The relational operators as described in section 3.17.3 return a
value of "true" or "false'"., This type of value is referred to as
a boolean value and is represented in Micropolis BASIC as an integer.
Truth or falsity is determined by converting the integer to a 16 bit
binary number. If the least significant bit of the binary number is
then the value is false, else the value is true. Logical operators
specify operations to be performed with boolean values as described
below:

Binary Logical Operators

Operator Expression Truth Table
AND VAL 1 AND VAL 2 VAL 1 VAL 2 RESULT
True True True
True False False
False True False
Fa'se False False

Operator Expression Truth Table
OR VAL 1 OR VAL 2 VAL 1 VAL 2 RESULT
True True True
True False True
False True True
False False False

Unary Logical Operators

Operator Expression Truth Table
NOT NOT VAL VAL RESULT
True False

False True

The primary function of the logical operators is to allow the
formation of complex exnressions which evaluate to a single value of
"true'' or '"false'.

EXAMPLE: A<=B AND C=§

5/77 5-16

A secondary function is nrrovided by the 16 bit implementation of
Boolean values. The logical orerators perform the above defined
funct'ons across the full 1€ bits. This allows you to perform the
AND, OR and Complement (NOT) functions in the same manner as the
elementary 808@ instructions. The utility of this feature is illus-
trated in the following examrle which is a serial I/0 handler for
an IMSAI SIO board.

8009 REM INPUT ROUTINE - RETURNS CHAR IN A

8199 A = IN (3) AND 2: IF A =@ GOTO 810¢ :! WAIT INFUT READY
8299 A = IN (2) AND 16R7F: RETURN:! MASK PARITY AND RETURN
830% REM OUTPUT CHARACTER IN A

840¢ B= IN (3) ANDl: IF B~=p GOTO 84@@ :' WAIT OUTPUT READY
85¢9 OUT(2) = A: RETURN ;' OUTPUT AND RETURN

NOTE: This example will not work for I/O to the terminal device.
The BASIC interpreter checks for input from the terminal
between execution of BASIC statements and will gobble any
character received unless it is a CTL/C.

5.18 BASIC FUNCTIONS

Functions are included in the BASIC language to provide commonly required
computations. A function reference consists of the name, followed by its
arguments. The arguments are enclosed in parenthesis and separated from
each other by commas.

A function returns a single value.

BASIC recognizes two types of functions: Intrinsic functions which are
built into BASIC; and user defined functions.

5.18.1 Intrinsic Functions

Intrinsic functions may be classified as numeric, string, special
and file. The functions relating to files are discussed in the file
1/0 section-

5.18.1.1 Numeric Functions

The numeric functions provide most of the commonly used trigonometric

and math functions. The math package computes these functions with up

to 2P digits of precision, which requires RSIZE to be set less than or
equal to 1@, Attemnrting to use the math functions with RSIZE greater

than 10 will cause a PRECISION ERROR., The numeriec functions are detailed

in table 5.2.

Rev. 8 9/78 5-17

Table 5.2

Rev,

2 5/77

NUMERIC FUNCTIONS

Function

Reference Value

ABS(x) The absolute value of x, where x is a
numeric expression.

ATN(x) The arctangent of x, where x is a
numeric exnression. Returns value in the

| range - W/2 to W/2.

CoS (%) The cosine of x, where x is a numeric
ex~ression in radians.

EXP(x) The value of e raised to the power x,
where x 1s a numeric exoression.
The whole number part of x with any frac-

FIX(x) tional part truncated and the sign preserved]
where x is a numeric expression.
The fractional part of x with the sign

FRAC (%) ~ . , .
preserved, where x is a numeric expression.

INT(x) The greatest integer not greater than x,
where x is a numeric expression.

LN(x) The logarithm of x to the base e, where
X is a numeric expression with a value
greater than 0.

LOG (x) The logarithm of x°"to base 1§, where x
is a numeric expression with a value
greater than .

MAX(x,y) The greater value, X or y, where both x
and y are numeric expressions.

MIN(x,¥y) The lesser value, x or y, where both x
and y are numeric expressions.

MOD(x,¥y) x modulo y which is equal to x-(y*INT(x/y)).
Both x and y must be numeric exnrressions.

5-18

Table 5.2

(cont)

Function
Reference

Value

RND (x)

Generates a nseudo random number between

® and 1. The argument X is a numeric
expression which controls the number generated
as follows:

If x is non zero, RND generates a number

using x as the seed. If x=@, the last

random number generated is used as the seed.
Reneatedly calling RND with x=f§ generates

a sequence of rseudo random numbers.

SGN(x)

+1 if the sign of x is positive, -1 if the
sign of x is negative, @ if x is @.

SIN(x)

The sine of x where x is a numeric exn-
ression in radians.

SQR (%)

The positive square root of x, where x is
a positive numeric expression.

TAN(x)

The tangent of x, where X is a numeric
expression in radians.

Rev, 2 5/77

5-19

5.18.1.2 String Functions

String functions are provided to compare strings, maninrulate substrings
and to convert between numeric and string data types. The string functions
are detailed in table 5. 3.

Table 5. 3. STRING FUNCTIONS

Function
Reference Value

ASC(s$) The ASCII code of the first character
in string s$. Returns a numeric value

CHARS (x) Returns the character whose ASCII code
is x

Returns a string consisting of the value
x formatted by the picture contaired in
string y$. The argument y$ can be any
expression evaluating to a string. Each
character in the string (except a V)
represents one character in the result
string. The following characters are

1 MT(x,vy$) used to format the digits of a number:

9-- A digit position of the number
leading zeroes are output as '@"

Z-- A digit position. Leading zeroes
are replaced by blanks.

V-- Decimal point alignment. If V is
not specified, the decimal point
is assumed to be at the far right
resulting in truncation of the
fractional part of the number.

§-- A digit position. If more than 1
$ appears in the string then the
digit rosition closest to the leading

| non-zero digit of the numbercontains|
a "$" and the leading zeroes are
blanked.

*-- A digit nrosition. Leading zeroes
are replaced by asterisks.

,~= A comma appearing before the leading
digit is renlaced with a blank,
asterisk or dollar sign according to
the context.

All other characters are output unchangad
If the number is too large to fit in the
format snecified, the entire string is
filled with question marks (?).

Rev, 2 5/77 5-20

Table 5.3 (continued)

Function

Reference Value

INDEX (x$, v$) The position in string x$ of the first occurrence
of string y$. If string y$ is not a substring of
x$, then @ is returned.

LEFTS (x$, n) Returns n leftmost characters of x§.

LEN (x$) Returns length of x$.

MID$ (x$,n,y) Returns y characters from string x$ starting with
character n.

MAX (x$,y%) The greater, string x$ or string y$. See the
collating sequence in Table 5.1.

-

MIN (x$,y9%) The lesser, string x$ or string y$. See the
collating sequence in Table 5.1.

REPEATS (x$, n) The character string with string x$ repeated

I n number of times.

i

jRIGHTs (x$, n) The n rightmost characters of string xS.

i

iSTRS (n) Converts the number n to a string.

i

| VAL (x%) Converts the string x$ to a number. The contents

: of x$ may be numeric digits or a numeric expression.

i EXAMPLE: If A$ = "2+2", then VAL (A$)=4

|

| VERIFY (x$, y9) Verifies that all characters in string x$ are.also

: in y§. Returns the position of the first character

} in x$ which is not found in y$. If all characters

; in x$ are in y$ returns @.

5-21

Rev, 2 5/77

5.18.1.3 Special Functions

Micropolis BASIC provides several other functions which rertain
neither to numbers nor strings. These special functions are
detailed in Table 5.4.

Table 5.4 SPECIAL FUNCTIONS
Function
Reference Value
IN(x%) Inputs a value from I/0 port x. The
value of x must be greater than @ and
less than 236.
PEEK (%) Returns the contents of memory
location x. The value of x must be
greater than @ and less than 65536.
Returns the size of the program
PGMSIZE currently occupying the program buffer
in bytes.
SPACELEFT .| ‘Returns the amount of space left in
the program buffer in bytes.

5.18.2 User Defined Functions

Micropolis BASIC provides the ability to define two tyves of functions:
BASIC functions and assembly language functions.

5.18.2.1 User Defined BASIC Functions

BASIC allows the user to define functions which consist of BASIC
expressions and which are referenced in the same manner as the
intrinsic functions. A BASIC function is defined in a DEF statement
which has the following form:

DEF FN(letter) (parameter) = expression
Function Optional Expression which provides
Name Parameter the value of the function

Rev, 2 5/77 5

]
[a%]
~N

The characteristics of a function definition are:

1) Function Name--consists of the characters "FN'" and one of
the letters A-Z yielding up to 26 user-defined BASIC functions.

2) Parameter--a function may optionally include a parameter which
passes a value to the function when it is referenced. The
parameter which appears in the function definition is a "dummy
parameter", For example, consider the function defined by:

16 DEF FNZ(X) = xP3+xf2+a+B

The parameter X is a "dummy' in the sense that when the function
is referenced, the value nassed in the function reference is
used in the place of '"X". The narameter is only used in the
definition to indicate the form of the expression. However, the
variables A and B are actual variable names.When the function is
referenced, the current values of A and B are used in evaluating
the expression.

3) Expression--a function may be defined as either a string function
or a numeric function by the form of the expression. The ex-
pression may be any BASIC expression which yields a single value
of the appropriate data type. ’

A function reference comsists of the 3 character function name
and the parameter (enclosed in parentheses) if a parameter is
included in the function definition. A function reference yields
a single value and can be used as a data item in any expression
not restricted to constants. A small program using the above
defined function is given below as an example:

10 DEF FNA(X)=x}3+4x42+a48
20 INPUT A,B,C
30 PRINT FNA(C)
40 GOTO 20
READY
RUN
7 2,3,1

7
70,1,2
13
?

INTERRUPT
READY.

5-23
Rev. 6 9/77

Below is an example of a string function.

S SIZES(S,4,80)

10 DEF FNB(S$)=REPEAT$ (S§,N)

20 INPUT A$,N

30 B$=FNB(A$)+"ISN'T THIS REPETITIVE?"
40 PRINT B$

READY

RUN

7 "AGAIN AND ",4

AGAIN AND AGAIN AND AGAIN AND AGAIN AND ISN'T THIS REPETITIVE?
READY

See the "DEF FN" statement for more detailed information.

5.18.2.2 Assembly Language Functions

Micropolis BASIC allows the user to define Assembly Language
"Functions'" which provide linkage to assembly language subroutines.
The linkage allows a BASIC program to pass from 1 to 4 arguments
to an assembly language subroutine and provides for a result to be
passed back to the basic program when the assembly language sub-
routine returns control.

An Assembly Language Function is defined as follows:

DEF FA (letter)= expression
The function name consists of the characters "FA'" and one of the
letters A-Z yielding up to 26 assembly language functions. The
expression is a numeric exnression which syecifies the memory address

of the subroutine entry point.

An assembly language function reference consists of the 3 character
name followed by a list of arguments enclosed in narentheses.

Examples:
1909 A = FAA
200 A$ = FAB (BS, C$)

Up to 4 arguments may be passed to an Assembly Language Function
and 1 result may be passed back as the value of the function reference.

Rev. 7 3/78 5-24

The arguments and result are passed through the following locations
which define the subroutine linkage:

LOCATION LABEL DESCRIPTION
P4BCH ARG1 Pointer to the first argument
P4BEH ARG2 Pointer to the second argument
P4CPH ARG3 Pointer to the third argument
P4aCc2H ARG4 Pointer to the fourth argument
PACAH NARGS Number of arguments passed
P4C5H RSIZE Values of RSIZE, ISIZE
P4CEH ISIZE and SSIZE as described
P4aC7H SSIZE in Section 5.20.26

P1ADH RESULT 250 byte result buffer

When an assembly language subroutine is referenced, the basic interpreter
sets the pointers in the linkage tabie to point to the values of the
arguments, indicates the number of arguments passed in NARGS, and calls the
subroutine. When the subroutine returns, the interpreter expects to find
the value returned by the subroutine, if any, in the result buffer.

The format of the arguments pointed to by ARG1-4 and of the result returned
is:

BYTE # - Type Indicator
1 - Real
2 - Integer
3 - String
BYTE 1-N- Refer to Section 5.16.2 "Variables" for the
internal storage format for each variable type.
The length of each variable type is specified
by RSIZE, ISIZE and SSIZE.

The general procedure for using assembly language subroutines is as follows:
1) Load BASIC from MDOS or directly from a BASIC only SYSTEM DISK.

2) Set the memory space used by BASIC using the MEMEND statement
to reserve space above BASIC for your subroutine.

3) Load the subroutine using the LOAD command. Execution of an
object file load within a program is allowed.

4) Define the name and entry point of the subroutine with the
DEF FA Statement. The subroutine may now be used.

5-25

Rev. 7 3/78

The assembly language program example on the following pages demonstrates
most of the principles involved in passing arguments and returning results.
It was created by using the assembly lanquage development tools of the

MDOS system. The source program was entered with LINEEDIT and then assembled
with ASSM to produce an object file named CONCAT which can be loaded by
BASIC.

The CONCAT subroutine expects two string arguments to be passed and returns

a string which is composed of the second argument concatenated with the first
arqument. If only one argument is passed, the result string is "argument
error". If both arguments are not strings, the string returned is "type
error".

Note: This example is not complete - a proper subroutine of this type

would have to handle the special cases of null strings and checking to see
if the maximum string length has been exceeded, etc.

Rev. 7 3/78 5-26

3222 o o 2 2l o o e oot o et oo o Teole e Aok o oo ke oot e o enle e e

22e9 * *

2202 = ASSTMBLY LANGUASF *

2392 R SUBRAUTINE LINKAGE d

222¢ # TEMC 1978 e

8232 . s x

S22 et ko o S SRk e e e e s Aok R e e etk &

seee %

222 *

2223 ®

22e2 21A2 RESULT EQT 1424

2222 24EC ARG T 4RCY

222 24EE ARGz ECT AFG1+2

22e¢ 24C2 ARGZ LXade] ARG1l+4

VY 24Ce ARG< EJT ARG1+6

4232 0404 NARGS 22U ARGl-8

vdee P4CEt RSIZE EQT) ARG 149

2220 2406 1517z ECU ARG1+12

4232 24C% SSIZE EQU ARG1+11

22e2 *

222 w®

2042 CRG 5242H

6242 *

6242 # TwIS TEMC ACCEPTS TwQ ARGUMENTS

t44s * WHICP ARE STRINGS AND RETUENS

5242 * ARG1 CONCATENATED WITH ARG?.

£24C R

€242 #

62¢Z A C4 ¢« NERCK iTa NARGS yCHZICK FCR TWO
£¢43 YE 82 CrI 2 y ABGUMENTS .

c24% C<¢ 8T €2 JN7Z N3E:R y IF NCT 1IWC ~ EREFCT,
8742 2A 3C 24 TYPCK ;30 ARG1 s LLSE, CEECK TYPE CF
824F 7: soly A~ yARS1. IT MUST
£44C FE 22 a1 3) ;EE A STRING.
B8&4EL CZ 87 €¢ JNZ TYPIRR ;I¥F NOT ~ E®ROR,
5821 ZA BE 24 LELD ARGR2 yELSE, CEECY ARGF
€454 7% MOV 4,M +IT ALSO MUST
£2%Z FL 23 CPI 3 y3E A STRING.
8337 C2 &7 6¢ INZ TYPERR yIF NQT - ERRCE.
E454A *

GQEA * BCTHE ARGUMENTS ARE VALID STRINGS

g23h 3

sS4 11 82 41 LXI D,RESULT ;SETUP EETUEN
82T 2k @3 Myl A,2 yPARAMITER AS A
5457 12 STaX D iSTRING TYPE.
c€2€3 12 INY D yS¥XIP QVEE

62681 12 INX T ; LENGTE FCOR

E2E2 13 INY o FNOW

ELE€3 AT XRA A ;ZERC LENGTH

6Z€4 47 MOV B,A s COUNTER.

6Z62 24 BC @4 LHLD ARG1 s MCVE FIEST

€€8 CD 7€ €3 ~STP CALL MOVE y ARGUMENT TO RESULT
5C6R 24 BE 24 LHLD APG2 y¥OVE SECOND

6L CL 79 €8 CALL vCVE s AGFUMENT T0O EESULT
€27l 78 vOov AR yGET LENGTH CCUNT
8e72 X2 A1 @21 <STA RESULT+1 ;PUT COUNT INTO
6273 32 A2 €1 <T4 RESULT+2 FRESULT.

8278 CS RET ° ;DONE, RETURN TO BASIC

5-27
Rev. 7 3/78

6e79
€279
€279
6€7S
6279
€27S
6279
6377
€273
6¢73
6¢7D
€Z7E
g27%
g€e8e
€2€el
6¢CEz
6€S3
628E
6287
5287
6287
6O EA
€28l
&2al
ECce
5263
63¢5
62¢5
5257
6298
622S9
6224
€3¢

SC9E
€2€L
6¢CSE
6JA1
6344
E2ZA7
6042
E2AE
S8A3
6ZAL
6031
€034
62387
€2BA
6¢3C
€23C

ee
54
45
52
82

29
41
85
43
4%
4F

Rev. 7 3/78

7D

9%
se
AB

Ag
a3

€8

€d
6d

€2
21

€@

J4
Se
45
&F

CE
47
43
20
52

* F % 3t

MOVE

MOV EL

it

=
TYPERER

NBRER
EMSG

* 3

ERRQR
TYPMSG

*
NBRMSG

*

MCVE ARGUMENTS TO RESULT.

EL REGISTERS HAS ARGUMINT ADDRESS.
DE REGISTERS HAS POSITION IN RESULT.
B REGISTER IS COUNT

INX H i SKIP TYPE
INX H ySKIP MAX LENGTH
MOV c,M yGET LENGTEH OF STRING
INX B
Mov AM yGET CHARACTER
STAX D yPUT [T INTC RESULT
INX D) NEXT
INX H
INE B i COUNT +1
DCR ¢ y LENGTE -1
JNZ MOVE1L + LOCP TILL DONE
RET ' DONE
LXI B, TYPMSG
JVP EMSG
LXI H,NBRMSG
LXI D,RESULT ;PUT MESSAGE IN RESULT
MVI A,3 iSTRING TYPE
STAX D
INX D
INX D
INX D
XBEA A 7 ZERC COUNT
¥CVv B,A
JMP MSTR yMOVE TO RESULT
MESSAGES
D3 2,9,12
DT “TYPE ERROR’
DB 2,2,14
DT "ARGUMENT ERROR’
END NBRCK
s-28

Listing of and output from a BASIC program that utilizes
the CONCAT assembly language routine.

READY

LIST

120 DIM A$(25@),B%(25@),C$(250)
22 MEMEND 16RSFFF
32 LOAD "CONCAT

42 DEF FAA=16R6024¢C
50 INPUT &%

B2 INPUT BS

72 CS=FAA(AS,BS)
&2 PRINT C¢

92z GOTO 52

READY

REUN

? 12345

? 67892

123456786¢

? NOW IS THE TIME
? FOK ALL GOGD MEN
NOW IS THE TIMEFOR ALL GCOD MEN
O)

INTERRUPT

€2 INPUT B¢

READY .
PRINT FAA[AY)

ARGUMENT 3:IRROR

REATY

PRINT FAA(A,B)

TYPE ERROR

READY .

PRINT FAA(12345 ,"67362")
12345E7699

READY

Rev. 7 3/78 5-29

Pages 5-30 through 5-32 left blank intentionally.

Rev. 7 3/73 5-30

5.19 BASIC EXPRESSIONS

A BASIC expression is a combination of data items and function references

connected by operators. An expression specifies an operation or series of
operations that yields a single value, which is referred to as the value of
the expression.
elements.

Rev. 2

5.19.1

Data items may be constants, simple variables, or array
Operators may be arithmetic, string, relational, and logical.

Evaluation of Expressions

BASIC contains a precise set of rules which define the manner in
which expressions are evaluated:

1) Operator Precedence -- Onerators encountered in an

2)

3)

4)

expression are performed in the following order:

1) Function references

2) VUnary operators

3) Arithmetic & string onerators
4) Relational operators

5) Logical orerators

Operators which have the same level of precedence are
performed in the order in which they are encountered
in scanning the expression from left to right.

The normal rules of precedence & order of evaluation

may be overridlenby the use of parentheses to partition
an expression into subexpressions. Nesting of sub-
expressions is limited by the overall complexity of the
expression. If an expression is too complex it may cause
a STACK OVERFLOW error. 1In this case, the expression
should be broken into two expressions.

Expressions containing subexpressions are evaluated

from the innermost subexpression outward to the next
level of parenthesis until all parenthetical expressions
have been evaluated. Within a subexpression the rules
given for operator precedence and order of evaluation
apply.

5.19.2 Numeric Expressions

A numeric expression consists of numeric function references, numeric
operators,

Operations are performed in the following order:

5/77

and numeric data items and evaluates to a numeric result.

5-33

1) Function references

2) Unary + dnd -

3) Exponentiation

4) Division and Multiplication
5) 1Integer division

6) Addition and Subtraction

Parentheses may be used to force evaluation in the exact order desired.
EXAMPLES :
L. 2%3+7%4
This expression is evaluated as follows: (V(x) indicates the value
of x)
1) 2%3 yields 6
2) 7%4 yields 28
3) v(2%3) + V(7*%4) yields 34
2. 2%(3+7) %4
This expression is evaluated as follows:
1) 347 yields 19
2) 2% V(3+7) yields 2¢
3) V(2*V(3+7)) *4 yields 80

5.19.3 String Expressions

A string expression consists of string function references, string
operators, and string data items and evaluates to a string result,
Operations are performed in the following order:

1) Function references
2) Concatenation

EXAMPLE: Let B$ = "The number is"
B$+STRS(134)
This expression is évaluated as follows:
1) STR$(134) yields " 134 "

2) V (STRS$(134)) is concatenated with the current
value of B$ which yields "The number is 134 "

5-34

Rev, 2 5/77

Rev.

5.19.4 L

ogical Expressions

A logical

expression consists of numeric and string expressiouns

combined with relational and logical operators. The value of a

logical e
as follow

1)
2)
3)
4)
5)
6)
7)

EXAMPLE :
A+2¢=3

xpression is a Boolean value. Operations are performed
S:

Function references are performed.

The NOT operation is performed.

Numeric and string exnressions are evaluated.

Relational operations are performed

The AND onerations are performed

The OR operations are performed

Parentheses may be used to force evaluation in the exact order
desired

AND B+34(5 OR NOT (B$="A")

This expression is evaluated as follows:

D

The value of B$ is compared with "A" (Note: if narentheses
had not been used, BASIC would have tried to rerform NOT
B$ which would have given an error) Temporary result Tl is
set =1 if B$="A" else is set =0

Tl is complemented

A+2 is evaluated

B+3 is evaluated

The value of A+2 is compared with 3 and a temporary result
T2 is set =@ if A+293 or 1 otherwise.

The value of B+3 is compared with 5 and T3 is set =@

if B+3 is greater than or equal to 5 else is set =],

T2 is ANDed with T3 yielding T4

The value of the expression is obtained by OR'ing T4

with T1

Note: The NOT operator complements the 16 bit representation of
Boolean values so the final value of this expression is
65535 if true and 65534 if false.

2 5/77

5.20 BASIC STATEMENTS

BASIC statements specify operations to be performed in a BASIC program, and
describe the data and operating environment of the nrogram.

Every BASIC statement consists of a keyword followed by a list of zero or
more expressions which specifies the operation to be performed by the

statement.

Multiple statements may be
the colon (:) (see section

The statements included in

and described in detail in
used are:

c

included in the same program line separated by
5.2).

the BASIC language are listed alphabetically
the following pages. Conventions of notation

1 fA
[B} Indicates a choice of one of the items enclosed.

2) €1 Indicates optional items.

3) Parentheses () used in definitions must be included as

illustrated.

5.20.1 DATA {numeric constant} {numeric constant}
2 ’

string constant

string comstant

150 DATA 25, "APRIL 1, 19777, 26E-3 L

The DATA statement is used to define a list of data internal
to a BASIC rrogram which may be accessed with the READ state-
ment. When a BASIC program is started, the DATA nointer is
initialized to point to the first data item in the first DATA
statement in the program. When a READ statement is executed,
one value is read from the list for each variable specified
and the rointer is advanced to noint to the next ddta item,
When the data items in a DATA statement are depleted, the
pointer is set to roint to the first data item in the next
DATA statement encountered in the program such that all the
data values contained in DATA statements constitute a con-

tiguous list.

The RESTORE statement can be used to re-position

the DATA pointer to point to the firstdata item of any DATA
statement within the program.

The DATA statement is non-executable and may therefore appear
anywhere within a program.

Rev., 2 5/77

5-36

o A
[

Rev.

5.20.2

5.20.3

2 5/77

DEF FN letter [(function parameter name)] = exrnpression

10 DEF FNA = X4Y+Z
16¢ DEF FNL(A)= (4*3.1415%A)/3
154 DEF FNR(M$)= REPEATS(MS,S)

The DEF FN statement is used to define a function.
The name of the function defined is "FN" followed

by one of the letters A-Z. Each function name may be
defined only once in a given program.

For example, if the statement 110 DEF FNN= 3.1415%R2
were used in a program. 260 DEF FNN (M$)=REPEAT(MS,S5)
could not be used because the function names are
identical. The statement 260 DEF FNM (M$)=REPEAT(MS,5)
would be legal.

A function rarameter is optional. 1If rresent, it is a
dummy ~arameter and its name may be any simnle variable
name. A function will return a numeric or string value
depending upon the form of the expression.

A DEF FN statement is non-executable and may appear
anywhere in a program.

DEF FA letter = numeric expression
9¢ DEF FAA = 16R70dd

The DEF FA statement is used to define a function which
provides linkage to an assembly language subroutine.

The function name consists of the letters "FA" and one

of the letters A-Z, The expression contains the starting
address of the assembly language subroutine. See section
5.18.2.2 '"Assembly Language Functions” for details of
linkage and passing arguments.

5-37

5.20.4 DIM letter [7] (11, 12, ... 14)
DIM letter $(length)
DIM letter $(I1, ... I3,length)

19 DIM A (2,4)
2¢ DIM B%(2,3,4,5)
39 DIM AS(4D)
4P DIM AS(2,3,49)

The DIM statement is used to define the maximum length of
string variables and to define the number of dimensions and
index ranges for arrays.

The first form of the DIM statement is used to define a
numeric array. The array name consists of one of the letters
A-Z, An optional percent sign (%) may follow the letter to
denote an integer array. The array may have 1 to 4 dimen-
sions as defined by the number of parameters (I). The value
of each I defines the maximum value of the index for that
dimension.

The second form is used to set the maximum length of a
string variable, The name of the variable is one of the
letters A-Z followed by the dollar sign ($). The length
specified must be less than or equal to 250 and overrides
the default length specified in the SIZES statement.

The third form is used to define a string array. The array
name consists of one of the letters A-Z followed by the dollar
sign (8). A string array may have 1 to 3 dimensions as
defined by the number of parameters (I) specified. The value
of each I defines the maximum value of the index for that
dimension., The last parameter specified in the parameter

list is the maximum length of each string element,

Dimension statements are executed dynamically, therefore
the parameters may be either constants or expressions.

5.20,5 END
10994 END

The END statement is optionmal in BASIC, Execution will
terminate when the END statement is executed and may not
be continued with the CONT command, It is recommended
that an END statement be the last statement of a program
to serve as a listing aid. Its presence ensures that the
listing is complete,

5-38
Rev, 2 5/77

5.20.6 EXEC string expression
199 EXEC AS

The EXEC statement is a feature unique to Micropolis BASIC.
The EXEC statement causes the string exnression to be passed
to the BASIC Interpreter and to be executed as a statement.
The expression may consist of one or more BASIC statements
separated by colons(:). The expression passed is checked for
syntax errors and then executéd if valid. The following
program is given as an example of the power inherent in this
statement. The program accepts arithmetic statements from
the terminal and prints the results -- effectively operating
the terminal as a desk calculator.

LIST

10 INPUT AS$: EXEC "PRINT "+A$: GOTO 10
READY

RUN

? 242

4

? SIN(3.14159/4)

.70710595
?

5.20.7 FLOW
14 FLOW

The FLOW statement turns on the program trace feature which
aids in debugging BASIC programs. The program trace will out-
put to the terminal the program line of each statement which
is executed. The program line will be output again if the
THEN portion of an IF . . . THEN statement is executed. The
program trace is turned off by the NOFLOW statement.

5-39
Rev. 2 5/77

5.20.8 TFOR numeric = numeric TO numeric STEP numeric :]
n

variable expression expression expressio
30 FOR X =1 TO 39
4@ FOR Y = 39 to 9 STEP -1
5¢ FORX =A to B

The FOR statement initiates the repeated execution of a set

of statements following it. The set begins with the statement
immediately following the FOR statement. The set ends with
the NEXT statement that contains the same variable as the

FOR statement. The numeric variable controls the number of
times the set of statements is to be executed and is called the
loop variable. The set of statements to be executed is
referred to as a FOR , . NEXT loop.

The expressions specify the initial value of the loop
variable, the terminal value of the loop variable, and the
value to be added to the loop variable after each pass
through the loop (step). The step parameter 1s optional;
when not specified, a default value of +1 is used.

The statements within the FOR . . . NEXT are executed
until the value of the loop variable is stepped outside
the range defined by the initial and terminal values.

The STEP value can be negative, as in:

20 FOR I = 108 to U STEP -14
This statement would cause the ipitial value of the loon
variable I to be set at 1#@, subtract 1@ from the looo
variable each time the loop was completed, and terminate
executing the loop when the loop variable contained the
value 9.

The statement 15 FOR J = f TO @ would cause the FOR looo

to be executed one time. That is, the statements between
the FOR J. . . . and the NEXT J statements would be executed
once before the loop variable of § + 1 would be compared to
the limit value of #. At this point the loop variable limit
would have been exceeded and program execution would fall
through to the next line number.

A set of FOR ., . .TO. . .NEXT statements may be nested within
one or more sets of FOR, . .TO. . .NEXT statements. For

example:
10 FORK =1 TO 90
26 FORL =1 TO 15
30 PRINT X,L
4@ NEXT L
50 NEXT K

Rev. 2 5/77 5-40

Rev.

When nesting FOR. . .TO. . .NEXT statements it is imperative
that the inside loop (in this case the L loop) be completely
enclosed within the outer loop.

If the above statements had been entered incorrectly as follows:

1§ FORK =1 TO 99
20 FORL =1 T0 15
3¢ PRINT X,L

49 NEXT K

5¢ NEXT L

The error message "MISSING FOR" would occur when the '"NEXT L"
statement is encountered.

If a GOTQ or IF. . .THEN statement is executed from within a
loop, the program execution will continue in a normal manner.
BASIC will continue the loop from the current value of the

loop variable if the loop is re-entered at some later point.

2 5/77 5-41

5.20.9 GOSUB } linenumber
numer {¢c expression

219 GOSUB 1499

The GOSUB statement causes a set of statements to be executed as
a subroutine.

When a GOSUB statement is executed, control is transferred to the
first statement whose line number 1is specified in the GOSUB
statement, The referenced line number and all statements following
it will be executed until a RETURN statement is encountered.
Control is then returned to the statement following the GOSUB,
Consider the following:

150 GOSUB 21¢: PRINT A + B
16¢ END

21¢ INPUT X,Z

226A =X+ 1: B =2-18
239 RETURN

When line number 158 is executed, control is transferred to line
number 217, Line 21@ and 228 are executed, then 23@, the RETURN
statement. The RETURN causes control to be transferred to the
statement immediately following the GOSUB. Therefore, the sum
of A + B will be printed before the program ends.

GOSUB statements can be nested. That is, a subroutine can
contain a GOSUB statement that references another subroutine.
Control will be returned to the first subroutine when the RETURN
statement of the second is executed. The message STMT # NOT
FOUND will be output if a GOSUB statement references a line
number that does not exist in the program.

BASIC allows an expression to be used as the line number, If
this i{s done, care must be taken to insure that the value of

the expression is a positive real number. The fractional part

of the number will be truncated in forming the line number.

A NUMBER OUT OF RANGE error will occur if the number is invalid.

Rev. 2 5/77 5-42

numeric expression

5,20.10 GOTO {1ine number }

5.20.11

Rev, 2

166 GOTO 5¢9¢@
208 GOTO A+B

The GOTO statement causes control to be transferred to the first
statement in a specified program line., A GOTO statement may
reference any line in a program, including its own line. The

line number may be specified as a constant or a numeric expression
Care must be taken to ensure that the expression evaluates to a
positive real value. The fractional part of the number will be
truncated in forming a line number. If the value is invalid, a
NUMBER OUT OF RANGE error will occur. If the line number does
exist in the program, a STMT # NOT FOUND will occur.

IF logical expression (__TH_EQ] STATEMENT [:STATEMENTI
THEN line number
19 IF AL B THEN PRINT "=*"
20 IF, A =2 GOTO 100
3 IF A =4 THEN 199
4@ IF A =2 ANDC =3 THEN D = 2: GOTO 10¢¢

The first form of the TF statement provides conditional exsecution
of one or more statements based upon the value of a logical
expression,

The statements subject to conditional execution must all reside
within the same program line as the IF statement. If the logical
expression evaluates to '"true', then the statements are executed.
If the expression evaluates to ''false'", then all remaining state-
ments within the line are ignored, The keyword THEN is optional
in this form.

The second form of the IF statement provides a conditional
program branch based upon the value of a logical expression.

If the expression evaluates to ''true', control is transferred
.to the first statement in the specified program line. 1If the
expression evaluates to 'false', program execution continues

at the next sequential program line. The line number must be
specified as a constant. If the line number specified does not
exist in the program, a STMT # NOT FOUND error occurs.

5/77 5-43

5.20.12

5.20.13

Rev. 6 9/77

INPUT ["prompstring"f}+] variable list

19 INPUT A,AS$
20 INPUT "ENTER NUMBERS"; A,B

The INPUT statement prompts for data to be entered from the
terminal and waits for the user to enter the data. If a
prompt string followed by a semicolon (;) is included, the
string is output, followed by a question mark (?) before
waiting. If a prompt string followed by a comma (,) is
included, the string is output and then the questicn mark
is output on the next line before waiting for entry. If

no prompt string is included, a question mark is output

to the next terminal line before waiting for input.

One value must be entered for each variable in the variable
Tist. Values may be numeric or string constants separated
from each other by the current string delimiter. Strings
entered do not need to be enclosed in quotes (") unless they
contain the string delimiter. If a string constant is
erroneously entered in place of a numeric constant, a

TYPE ERROR occurs, followed by the message REENTER FROM
BEGINNING. This means that all values in the variable 1list
should be entered again in proper order. The last value
entered is delimited by a carriage return. If too few values
are entered, INSUFFICIENT INPUT is output to the terminal and
the statement waits for more input to satisfy the variable
1ist. If too many values are entered, EXTRA INPUT IGNORED

is output to the terminal and the program continues execution.

[LET] variable = exprassion

1 LETA =S5
2p A$ = “FAT HIPPQ"

The LET statement causes the expression to be evaluated and
assigns the resuiting value to the variable. The data type
of the expression and the variable must be the same type or
a "TYPE ERROR" results. The LET keyword is optional.

5-44

5.20.14 MEMEND numeric expression

5.20.15

5.20.16

5.20.17

19 MEMEND 16R700¢

The MEMEND statement is used to define the upper limit of the
memory space used by BASIC. One of the main applications of
this statement is to reserve memory for assembly language
subroutines which may be placed above the address specified
by the expression.

NEXT numeric variable
19 NEXT X

The NEXT statement terminates the loop initiated by the
FOR statement that contains the same variable. While the
loop is being executed, each time control reaches the NEXT
statement, the loop variable is incremented by the STEP
value, or by 1 if a STEP value was not defined.

When loop execution terminates, control passes to the
statement following the NEXT statement.

If a NEXT statement is encountered prior to the execution

of a FOR statement naming the same loop varizble, a 'MISSING
FOR error occurs.

NOFLOW
504 NOFLOW

The NOFLOW statement turns off the program flow trace
which may be activated by a FLOW statement.

ON numeric expression GOTO line number list

100 ON K+5 GOTO 206, 389, 409
206 ON J GOTO A+50, 40@,B

The ON...GOTO statement causes control to be transferred to

the line number whose positional value in the line number list
is equal to the expression. If the expression is zero or
greater than the number of lines in the list, comtrol is

passed to the next statement. If the expression is fractiomal,
the fraction is truncated prior to the GOTO being executed.

If the expression is negative a ‘NUMBER OUT OF RANGE error
occurs. The line numbers in the line number list may be
numeric constants or numeric expressions. If a line number

in the list does not exist a STMT # NOT FOUND error occurs.

5-45

Rev. 2 5/77

5.20.18

5.20.19

5,20.20

Rev. 2 5/77

ON numeric expression GOSUB line uumber list

1600 ON X GOSUB 500, 600, 700, 80d
204 ON Z+2 GOSUB B,C, 609

The ON...GOSUB statement causes execution of the subroutine
beginning at the line number whose positional value in

the line number list is equal to the value of the numeric
expression.

If the expression is zero or greater than the number of
lines in the list, control is passed to the next statement.
If the expression is fractional, the fraction is truncated
prior to the GOSUB being executed. If the expression is
negative a NUMBER OUT OF RANGE error occurs.

The line numbers in the line number list may be numeric
constants or numeric expressions. If a line number in the
list does not exist a 3TMT # NOT FOUND error occurs.

When a RETURN statement is encountered in the subroutine,
control returns to the statement followng the ON.,.GOSUB
statement.

OUT (numer ic expression 1) = numeric expression 2
109 OUT (l6rR1d) = 29

The OUT statement causes the value of expression 2 to be
output to the I/0 port specified by exnression 1. Both
expressions must be numeric expressions with values in the
range f) to 255 or a NUMBER OUT OF RANGE error occurs.

POKE (numeric expression 1) = numeric expression 2

188 POKE (16R68¢@) = 200
200 POKE (4) =B

The POKE statement stores the value specified by expression
2 in the memory location specified by expression 1. Ex-
pression 1 must be in the range @ to 65535 and expression 2
must be in the range ¢ to 255. If the value for either
expression is outside of the specified range, a NUMBER OUT
OF RANGE error occurs. Care must be exercised to ensure
that the location POKE'd does not cause BASIC to crash.

5-46

5.20.21

PRINT expression {5} [TAB(numeric expressioq]. .

168 PRINT A;B;C
200 PRINT TAB(1@); "THE ANSWER IS"; FMT(A,"ZZZ9V.99")

The PRINT statement causes the value of the exnressions in
the expression list to be output to the terminal Exrressions
are output in the formats described in section 5.16.3.
"Output Formats'.

An output line consists of up to 250 characters and is
partitioned into 16 character print fields. Print rosition
within an output line is controlled as follows:

1) An expression is output starting at the current
print position. Each expression must be separated
from the next expression by a comma (,) or a
semicolon (;).

2) 1If the expression is followed by a semicolon,
the print position is set to the next position
following the last character output for the
expression. If the expression is the last

ga,gxpression of the PRINT statement then output

~ generated by subsequent PRINT statements will

{?.start at this position on this line of the output
on the terminal.

3) 1If the expression is followed by a comma, the
print position will be set to the beginning of
the next 16 character print field after out-
putting the expression. If the expression is
the last expression of the PRINT statement then
output from subsequent PRINT statements will
begin at this position on this line of output

e on the terminal.

4) If the last expression of the PRINT statement is
not terminated by a comma or semicolon then the
print position is set to the first character of
the next line after outputting the value of the
exnression.

5) The print rosition may be explicitly set by including
references to the tab function which cperates only
in PRINT or PUT statements. TAB moves the »rint
rosition to the position snecified by the value of
the tab function parameter. If the position is
already beyond the specified value when the print

5-47

Rev, 6 5/77

statement is executed then the specified value is
simply ignored.

BASIC contains a parameter which specifies the length of a
physical output line on the terminal. If a print line
which is longer than the terminal width is output, carriage
returns and line feeds will automatically be inserted to
wrap the output across as many physical lines as necessary.

Rev, 2 5/77 5-&8‘

5.20.22

5.20.23

5.20.24

5.20.25

READ variable list
14 READ 4,B,C$

The READ statement reads values from the BASIC programs

_ internal data list which is created by including data

statements within the program. One value is read from

the data list for each variable appearing in the variable
list., If there is insufficient data in the data list to
satisfy the variable list then RAN OUT OF DATA will be
output. If a string value is read for a numeric variable
then a TYPE ERROR will occur. Values are read sequentially
from the data list unless the pointer which points to the
next value to be read is repositioned by use of the RESTORE
statement.

REM remark text
14 REM THIS JUNK IS A REMARK AND IS NOT EXECUTED

The REM statement is used to include comment text. The
character (!) may also be used to include comments in a
program line. The REM statement and any characters fol-
lowing a (!) character in a program line are non-executable
and are ignored.

RESTORE . [numeric expression]

19 RESTORE
2§ RESTORE 25

The RESTORE statement is used to position the data list
pointer which allows control of the sequence in which

data items are read from the program's internal data list.
The pointer will be set to the first data item of the data
statement whose line number is specified by the numeric
expression. If an expression is not specified, the pointer
will be set to the first item in the first data statement
appearing in the program.

RETURN
16¢ RETURN

The RETURN statement transfers control to the statement
immediately following the last GOSUB statement executed,

If a RETURN statement is encountered prior to the execution
of a GOSUB statement the error message NOTHING TO RETURN
TO 1is output to the terminal.

5-49

Rev. 2 5/77

5.20.26 SIZES { numeric numeric numeric numeric
constant 1, constant 2, constant 3, | constant 4

20 SIZES (5,4,80)

30 SIZES (6,5,49,3099)
The SIZES statement is used to specify the number of bytes
of storage to be used for real variables (RSIZE), integer
variables (ISIZE) and string variables (SSIZE), and the
maximum program size when using chained program segments
(see section 5.21.2.6). Constant 1 - constant 3 are positive
integer constants. The value of constant 2 specifies ISIZE
which must be greater than 1 and less than RSIZE. The value
of constant 1 specifies RSIZE which must be greater than
ISIZE and less than 38. The value of constant 3 specifies
SSIZE which must be greater than @ and less than 251.

Constant 4 is an optional parameter. If it is present it
specifies the maximum number of bytes allocated for program
size, after which variable space allocation begins.

%f no S%ZES statement is executed, the default SIZES are
5,3,48).

The SIZES statement may not be executed if any variables are
already allocated. If any of the constraints described are
violated, a SIZES ERROR error occurs.

5.20.27 STOP :
100 STOP

The STOP statement causes the execution of a BASIC program
to cease. The execution may be resumed from the line
following the STOP statement with a CONT command.

5.20.28 STRING string expression
19 STRING ";"

The STRING statement defines the current string delimiter
used to terminate a string accessed by an INPUT or GET
statement. The end of string will be signified by either
the end of the record or the first occurence of the string
delimiter. If a STRING statement has not been executed,
the default delimiter is the comma (,).

Rev. 6 9/77 5-50

5.21

BASIC DISK FILE I/0

A file is a data structure which may be accessed as a named entity and consists
of a collection of data grouped into elementary units called records. The file
structure is generally used for storing data on mass storage devices such as a

disk.

Disk Extended BASIC provides the ability to create and access files stored

on the disk. Common maintenance operations such as renaming or deleting a file
are included.

Rev.

5.21.1 Disk Files

Each file stored on a diskette is identified by a file name, which may be

from 1 to 1§ characters long. The characters may be letters, digits
0-9, or the special characters period (.), slash (/), or hyphen (-).

The minimum amount of space required to store a file is one track. When a
"new" file is opened, a complete track is allocated. This track and any
other track assigned by the BASIC file system to this file remain una¥wail-
able to any other file until released by the user. The maximum number of
files that can be stored on a disk is a function of the number of tracks
available on the disk. The Mod I disk drive provides 35 tracks per
diskette; Mod II provides 77 tracks. per diskette. One track per diskette
is required for the file directory, so the maximum number of files is
either 34 or 76. Conversely, the maximum size of a file is 34 or 76
tracks. Each track consists of 16 sectors of 256 bytes per sector. A
file is accessed sector by sector; therefore a '"record" is 1 sector.

Actual placement of files is maintained by the BASIC file system. One
track is allocated for each 'mew"” file opened. When 16 records have been
written to a particular file, another track is allocated. The file
appears contiguous to the program, even if it is not stored on contiguous
tracks, It is not possible to store one file on more than onme disk; that
is, a file may not span disks.

Files may be stored in 3 formats: Program, Object and Data.

1) Program Files ~ A program file is a BASIC program which was stored
by a SAVE command as described in section 5.6. The data consists
of the BASIC program text as it resided in the program buffer with
keyword compression. A LOAD command will load the data from a
program file into the BASIC program buffer,

2) Object Files ~ An object file is an image of a block of memory
which was saved using the memory range option of the SAVE command.
A LOAD command will read the data back into the memory locations
from which it was saved. This is the format in which assembly
language programs may be stored on the disk.

5-51
2 5/77

Rev.

3) Data Files - Data files contain data created by and are
accessible to BASIC programs by use of the PUT and

GET statements.

Each execution of a PUT statement

stores 1 record in the file. Data within each record

is represented as

Each record is a

ASCII characters.

250 character string. A data file

may not be loaded using the LOAD command. Micropolis
BASIC provides the ability to access the records of a

data file either
referred to as ra

sequentially or directly. (commonly
ndom access)

In addition to the format, a file may also have Write

Protect and Perma

nent attributes.

1) Write Protect - A file which is Write

Protected cannot be re-written but may
be deleted by a SCRATCH command. This
is a software Write Protect not related
to the physical Write Protect provided

by a Write Protect tab installed on a
diskette. If a physical Write Protect
tab is installed on a diskette, all
operations which attempt to modify a

file or

the directory will yield a

WRITE PROTECT error.

2) Permanent - A Permanent £ile may be re-
written but may not deleted by a SCRATCH command.

A file may be both Permanent and Write Protected.

Several Yeywords are provided to manipulate disk files as described

below;

5.21.2 Disk File Commands

r~~mands are provided to load and save program or object files, delete

file, and to display a 1

ist of the files which reside on a diskette.

Although commands may arpear in a BASIC nrogram, commands will generally
be executed in Immediate mode. All disk commands reference the directory

of the desired diskette.

If the diskette is not loaded or a malfuncticn

exists in the disk drive which causes it to return a not ready status

the message JRIVE NOT UP
is executed. If the drive

will be output to the terminal when a command
is unable to read or write on the diskette

properly them a PERM I/0 ERROR will result.

2 5/77

5-52

Rev.

5.21.2.1 DISPLAY string expression

DISPLAY "1: DIR"
DISPLAY AS

The DISPLAY command will output the directory of the diskette loaded
into the drive specified by the string expression. The value of the
string expression must be of the form:

" [unit'.] DIR" where unit is the drive

unit address in the range of @ to 3. If omitted, drive # is assumed.
If the string is a constant it must be enclosed in quotes ('). If

a directory does not exist on the diskette a FILE NOT FOQUND error
results.

5.21.2,2 LOAD string expression
LOAD "2.:DEMOPGM"

The LOAD command loads a program or object file into memory. The
file is specified by the string expression which must evaluate to
the following form:

" [unit:] filename" where unit is the

unit address in the range § to 3. If omitted, unit # is assumed:

The file name may be any valid filename. If the string is a constant
it must be enclosed in quotes ('"). If the desired file doas not
reside on the diskette a FILE NOT FOUND error results. 1If the

file is a data format file, a NOT A LOAD FILE error results.

5.21.2.3 PLOADG string expression
PLOADG ''¢:NEXTSEG"

The PLOADG statement operates like a combined LOAD command and RUN
command. It loads the program file named in the string expression
into the current program buffer and then transfers control directly
to the logic of the RUN command. All variables and file status from
the preceding program are reset to the initialize condition and
execution begins with the first line of the new program,

The PLOADG statement may be used to cause automatic execution of
several program files in sequence. This jis accompnlished by using
a PLOADG statement as the last executed statement of each program
in the sequence, such that it names, loads and begins the next
program in the sequence. Note, however, that no nrogram variables
or open files are retained from one vrogram or segment to the next,

3 6/77 5-53

Rev,.

3

The string expression in the PLOADG statement must evaluate to the
following form:

" [?nit{l filename'

where unit is the unit address in the range # to 3. If omitted,
unit @ is assumed. The file name may be any valid filename. If
the string is a constant, it must be enclosed in quotes ("), If
the desired file does not reside on the diskette a FILE NOT FGUND
error results, If the file is a data format file, a NOT A LOAD
FILE error results. If the file is an object file rather than a
program file, it will be loaded just as if a LOAD command had been
used and the current program will continue executing with the
statement after the PLOADG statement.

5.21.2.4 SAVE string expression [ﬁemory address rang%]

SAVE '"N:1:NEWPRG"
SAVE '"N:LOADER" 16R7¢¢¢, 16R7DFF

The SAVE command stores program format or object format files on the
diskette. The file is specified by the string expression which must
evaluate to the following form:

" [N:] [ﬁnic :inlename"

If the file to be saved does not already exist on the diskette, the
"™N:" must prefix the unit/file name to cause the creation of a new
file in the directory on the diskette., The unit is the drive unit
address in the range #-3. If omitted, unit @ is assumed. If the
string is a constant it must be enclosed in quotes (').

The filename may be any valid filename.

If the memory range option is not included, the contents of the
BASIC program buffer will be stored in the desired file in ~rogram
format.

If the memory range option is specified it must be of the form:
numeric expression 1, numeric expression 2

The numeric expressions must evaluate to positive real values in

the range @ - 65535, Fractional parts will be truncated. The

contents of memory from expression 1 to exXpression 2 will be
stored in the desired file in object format.

6/77 5-54

5.21.2.5

"5.21.2.6

Rev. 6 9/77

If "N:" is not specified for a new file, a FILE NOT FOUND
error results. If a file has a Write Protect attribute,

it cannot be overwritten and a WRITE PROTECT error will
occur if an attempt is made to save it. If a file specified
as new already exists a DUPLICATE NAME error occurs.

SCRATCH string expression
SCRATCH "1:JUNKFILE"

The SCRATCH command deletes a file from the diskette directory
and releases the tracks allocated to the file for use by other
files. The file to be scratched is specified by the expression
which must evaluate to the form:

"funit:] filename" where the unit is

the drive unit address in the range # - 3. The filename may
be any valid filename. If the expression is a constant it
must be enclosed in quotes ("). If the unit address is
omitted, unit P is assumed.

If the specified file does not exist, a FILE NOT FOUND error
results. If the file has a permanent file attribute then it
cannot be deleted and a PERM FILE error occurs.

CHAIN string expression
99p CHAIN "NEXTPART"

The CHAIN statement loads the BASIC program file specified

in the string expression into -the current program buffer and
then transfers execution control to the first line of the
newly loaded program segment. This operation is similar to
the PLOADG statement with the important exception that the
CHAIN statement preserves all allocated variables, user
defined assembly language functions, SIZES parameters, and
the current string delimiter from the Tast program segment.
These preserved values are passed to the newly loaded program
segment which may use them just as if it had assigned them.
Note that open file information and user defined BASIC
functions are not preserved by the CHAIN statement. If any
files are open when a CHAIN is executed they are implicitly
closed. This means that the filenumber is disassociated

from the filename and made free for reuse; but the directory
is not updated and therefore any changes in the length of

the file are not recorded. In general, all open files should
be properly CLOSEd before executing a CHAIN statement.

5-54.1

The CHAIN statement is a powerful tool which facilitates
the construction of programs much larger than available

system memory would otherwise permit.

It makes it passible

to transfer data and control from section to section of a
very large program that has been divided into separately

loadable segments.

To use the CHAIN statement effectively

certain rules must be observed.

Rev. 6 4/77

1)

2)

3)

The program size of a segment being chained in
cannot be greater than the program size of the
program currently in the program buffer. If

this condition does occur a LOAD QVERRUN error
will be reported. A procedure for avoiding this
condition is to specify the size of the largest
program in a chained program set as the fourth
argument of a SIZES statement (see section
5.20.26). This SIZES statement should appear as
the first statement of the first executed program
of the chained set. The program size of each
segment can be determined by LOADing it and using
the PGMSIZE function (see section 5.18.1.3).
Assuming a set of three program files named

SEG1, SEG2, SEG3, the following example illustrates
the procedure:

LOAD "SEG1"
READY

PRINT PGMSIZE
472

READY

LOAD "SEG2"
PRINT PGMSIZE
526

READY

LOAD “SEG3"
PRINT PGMSIZE
126

READY

In this example the largest PGMSIZE is 526. If
SEG1 were the first file to be executed and the
standard system precisions were desired, then the
statement SIZES (5,3,49,526) would be included

as the first statement of SEGT.

A1l files should be closed before executing a
CHAIN statement.

A CHAIN statement should not normally be executed
from within a FOR-NEXT loop. If this {s done only
the current value of the loop index variable will
be preserved across the CHAIN.

5-54.2

4) A CHAIN statement should not normally be executed from within
a subroutine. If this is done the RETURN information for that
subroutine is lost across the CHAIN.

5) A program segment which is to be CHAINed should not normally
contain a SIZES statement since SIZES statements cannot be
executed after any variables have been allocated. The only excep-
tion is the case of the SIZES statement used to set the maximum
program size. A special internal test allows such a statement
to be chained back to as necessary.

5.21.2.7 LINK string expression

LINK "MDOS"
LINK "DISKCOPY"

The LINK command loads the overlay file specified in the string expression
into memory and transfers control to the execution address of the overlay.
This command is designed primarily for use with Micropolis supplied overlay
files such as MDOS and DISKCOPY. These files completely replace BASIC in
memory when LINKed to. They take over the control of the computer system
and provide their own operating commands and dialogue.

The string expression must evaluate to a valid filename. The file must be
an overlay type C through F. If the specified file is not found or the
disk unit is not ready, control will return to BASIC where the error will

be reported. .If an unrecoverable disk error occurs during the LINKing
process, the system will execute a soft halt. This is done because BASIC
has already been partially destroyed and the new system has not been
successfully loaded. The computer must be reset and a new system booted in.

The LINK command can be used to load and transfer control to a machine
language program file that runs in high memory above the end of BASIC

(see MEMEND statement). It can return to the BASIC interpreter by jumping
to the system warmstart address.

5.21.3 DISK I/0 STATEMENTS

BASIC statements are provided which allow a BASIC program to create and
transfer data to.and from data format files, and to perform certain file
maintenance functions on any type file such as renaming a file or changing
the attributes of a file. The operation of disk I/0 statements differs from
the disk commands as follows:

5-54.3

Rev. 7 3/78

1) Disk I/0 statements refer to files through a program
"File Number'. An OPEN statement must be executed to
associate a file on the diskette with a nrogram file
number . '

2) When all I/0 operations on a file are complete, a file
must be closed by executing a CLOSE statement. Closing
a file consists of updating the directory to reflect all
operations which have been performed since the file was
opened, and disassociating the file from the program
file number. CAUTION: A file which has been written to
must ALWAYS be closed or data written to the file may be
lost.

Prior to any operation which accesses the disk, BASIC ensures that
the drive is ready to accept commands. If the diskette is not

loaded or a malfunction exists which prevents the drive from

per forming operations then a DRIVE NOT UP error results. If the
disk is unable to perform the specified read/write operation properly,
a PERM I/0 ERROR results.

A program file number may be in the range § to 9. As many as 19
filesmay be open at once within a program. If an I/0 statement
attempts to access a file which has not been opened by an OPEN
statement then a TFILE NOT OPEN error results.

If an I/0 statement specifies a file number outside the ramge @
to 9 then a 'NOT A FILE# error occurs.

5.21.3.1 OPEN file number étring expression options

19 OPEN 1 "N: NEWFILE"
2@ OPEN 2 "JOE" END 1409 ERROR 5009

The OPEN statement opens the srecified file for access by disk
I1/0 statements. The file is selected by the string expression
which must evaluate to the form:

"cN:J Einit :] filename"

If the file to be opened does not exist on the diskette, the characters
"N:" must be included in the unit/filename to cause the creation of a
new file in the directory. The file created is a data format file. The
unit specifies the drive unit address which must be in the range §-9.
The filename may be any valid filename. If the string is a constant,
it must be enclosed in quotes ("), If the unit address is omitted,
unit @ is assumed. If the specified file does not exist and is not
declared as a new file, a FILE NOT FOUND error occurs. If a file
specified as new already exists, a DUFLICATE NAME error occurs.

5-55
Rev., 8 9/78

Rev,

The filenumber must be a numeric expression with a value of 8 - 9.
The filename specified will be associated with this file number

until the file is closed and all file I/0 directed to the file number
will be performed using this file.

Each open file has two associated pointers which point to the next
record to be accessed in a sequential PUT or GET statement. When
a file is opened, the sequential GET pointer is initialized to
point to the first record. The sequential PUT pointer is initialized
to point to the record following the last record. The last record in
the file is considered the end of the file for GET statements. The
last record +1 is considered the end of file for PUT statements,
For example a 5 record file would have pointers initialized as follows:
r‘EOF for a GET (Read)
f"EOF for a PUT (Write)

RECORD 1 2 3| 4] 5 l 6 |
_—— - 1

Sequential Sequential

GET pointer PUT pointer

An open file may be read from and written to both sequentially and
directly by record.

The open statement includes several options which are listed below:

1) CLEAR - The CLEAR option overrides the normal initialization
of the sequential GET & PUT pointers. The pointers are
initialized so that the file is empty. A subsequent GET
will encounter an end-of-file. A PUT will write into
record 1. This option is generally used to initialize the
pointers for re-writing a file sequentially.

2) END numeric expression

The END option specifies the line number to GOTO when the
end-of-file is encountered during a read operation. The
numeric expression must evaluate to a positive real number
which is a valid program line within the program when the
fractional part, if any, is truncated. If the line does
not exist, a STMT # NOT FOUMD error occurs. This option
allows the BASIC program to handle an end-file condition
without the program being aborted. If the END option is
not specified, the normal end-file handling is to abort
the program with an END-FILE error.

2 5/77 5-56

3) ERROR numeric expression

The ERROR option specifies the line number to GOTO if a
disk I/0 error occurs. The numeric expression must
evaluate to a positive real number which is a valid
program line within the program when the fractiomal part,
if any, is truncated. 1If the line does not exist, a
‘STMT # NOT FOUND error occurs. This option allows

a BASIC program to handle disk I/0 errors without being
aborted. 1If the error option is not included, a disk
I/0 error will cause the appropriate error message to

be output and abort the program. the ERR function may
be used in the error handling program section to determine
the type of error.

5.21.3.2 PUT filenumber RECORD record number expression List

16¢ PUT 1 A;B;C
200 PUT 1 A;AS$+","; B
3¢8 PUT 1 RECORD 3 A;B;C

The PUT statement causes the values of the expressions in the ex-
pression 1list to be written onto a record of the file specified by
the filenumber expression. The filenumber must be a numeric ex-
presgsion having a value of the digits § - 9 when the fractiomal
part, if any, is -truncated.

Each execution of a PUT statement writes one record into the file.

Each disk record is composed of a 25@ character string and is, in
fact, a print line. Each expression in the expression list is
evaluated, converted to a string if the resulting value is numeric,
and is placed in the string in exactly the same way that orint lines
are built. The rules for building the string are as follows:

1) The record string is partitioned into 16 character fields.
A pointer which is initialized to point to the first char-
acter in the string keeps track of the next position in
the string to be loaded.

2) Expressions are evaluated as they are encountered in
scanning the expression list and from left to right,
and are converted to strings according to the formats
described in section 5.16.3 "Qutput Formats"., The
resulting string is loaded into the record string
beginning at the pointer position. Each expression must
be separated from the next expression by a comma(,) or a
semicolon(;).

Rev. 6 9/77 3-37

3) If the expression is followed by a comma(,) after the
expression nhas been loaded into the string, the string is
padded with enough blanks to position the pointer to the
beginning of the next 16 character field.

4) 1If the expression is followed by a semicolor(;), after the
expression has been loaded into the string the pointer is
set to the character position following the last character
of the expression.

5) After all expressions have been loaded into the record
string, any remaining characters in the string are padd
with blanks and the record string is written onto the
diskette.

EXAMPLE: [If A = 190 and B = -2.5, the statement:
128 PUT 1 A;B

would cause the following record to be written on
the disk: (Note: B denotes a blank)
BI1PPB. - 2.5 Bp ... B"
A R 24@ Character pad

The Statement
199 PUT 1 A,B

would cause tne following record to be written to
the disk:

BIPREPBBRBOBLBES, < 2.5 BB ... B
A PAD B . 229 Character pad

The expressions in the expression list may be numeric and string in any
order subject to the following restrictions: (1) If a string expression
follows a numeric expression it must be immediately preceded by the
current string delimiter. (2) The last character of a string expression
must be the current string delimiter. These restrictions Must Be
Strictly Followed or the expression will not be properly read back.

On Input, numeric values are delimited by blanks. The output format of
numeric values always follows the value with a blank, so numeric strings
built as described will always read back correctly. Strings, however,
may contain embedded blanks. The input logic which reads a record from
the disk looks for the current string delimiter to denote the end of a
string. If a string follows a numeric value, the blank following the
numeric field will be included in the string unless the current string
delimiter precedes the string.

Rev. 8 9/78 5-58

P

Rev. 6 9/77

One solution to this problem is to concatenate the string delimiter
on all string variable references, include the string delimiter in alil
string constants, and precede all string expressions following numeric

expressions with the string delimiter.
EXAMPLE

To write the values of A,B$,C, E$ and F$ on the diskette, the PUT
statement would be

lﬂ@ PUT 1 A;”,"'{'B$+“,";C;","+E$+",";F$+","
(This example uses the default delimiter, comma (,))

If it is desired to change the string delimiter, the following approach
could be used to implement the previous example:

14 D$ = ";" ¢! SET STRING DELIMITER
2¢ STRING D$

168 PUT 1 A;D$+B$+D$;C;D$+ES+DS:FS+D$

If this approach is used, the string de]imijter must be the same
when a record is read as when it was written or incorrect results
will be obtained...

"If the record option is not included, the record is writtenm into the

file at the record number specified by the sequentialPUT pointer. The
pointer is then incremented by 1.

If the record number option is included, the record is written into
the record specified by the record number expression. The record
number expression must have a value which is a positive real number.
The fractional nart is truncated. If the record number is greater
than .the end-of-file as described in 5.21.3.1, a PARM ERROR

occurs,

NOTE; Writing a record directly by use of the RECORD option does
not affect the sequential put pointer. The rointer will
only be moved by a sequential PUT or execution of a PUTSEEK
statement. ‘

If an attempt is made to write more than 258 characters into a
record, the first 25@ characters will be written and the remaining
characters will be truncated. A warning message WARNING - TRUNCATED
OUTPUT will be output to the terminal.

5-59

5.21.3.3 GET filenumber RECORD record number variable list

198 GET 1 A,B,CS$
209 GET 1 RECORD 148 A,B CS$

The GET statement reads a record from the file specified by the
filenumber expression and assigns the values read to the variable
list. The filenumber exrression must evaluate to one of the digits
@ - 9. The fractional part, if any, is truncated.

If a string is read for numeric variable, a TYPE ERROR results.
If too few values exist in the record string to satisfy the
variable list, a RAN OUT OF DATA error occurs. If an attempt
is made to get a record which is past the last record, an END
FILE error occurs.

If the RECORD option is not included, the record read is the
record specified by the sequential GET pointer. The sequential
GET rointer will then be incremented by 1.

If the RECORD option is included, the record read is the record
specified by the recordnumber expression. The expression must
evaluate to a positive real number. The fractional part will be
truncated,

NOTE: The sequential GET pointer is not affected by a direct
GET. The pointer will only be modified by a sequential
GET or by execution of a GETSEEK statement.

5.21.3.4 CLOSE filenumber
188 CLOSE 1

The CLOSE statement causes the file specified by the filenumber
expression to be closed for disk I/0. The filenumber exnrression
must evaluate to one of the digits # - 9 when the fractional ~art
is truncated.

Closing a file consists of updating the file entry in the diskette
directory to reflect all operations which were performed upon the
file since it was opened, and disassociating the file from the
program filenumber. As a rule, all files which are opened in a
program should be closed before the program terminates. All files
which have been written into must be closed or the directory wil]
not be updated and data written into the file may be lost. Any
files which are left open are implicitly closed by a RUN command
or any command that modifies the nrogram buffer, such as a DELETE,

Rev. 2 5/77 5-60

1OAD or line insertion/deletion. Implicit closure does not update
the directory. ,

5.21.3.5 ATTRS (filenumber) = numeric expression
198 ATTRS (2) = 19

The ATTRS statement sets the file attributes of the file referenced
by the filenumber to the value of the numeric expression. The file-
number expression must evaluate to one of the digits #-9 when the
fractional part {s truncated. The numeric expression, when the
fractional part is truncated, must evaluate to a valid combination
of the attribute values which are described below:

VALUE ATTRIBUTE

16 Program File

8 Object File

2 Permanent File
1 Write Protect

A file which does not have a Program or Object attribute is assumed
to be a Data Format file. Some examples are:

19 = 16+42+1 = Write vrotected, permanent, r~rogram file

9 = 8+1 . = Write protected, object file

26 = 16+8+2 = Invalid combimation - This would identify
a file as being a Permanent Program file and
Object file, which is not possible.

A main intent of the ATIRS statement is to allow the user to change
the Write Protect and Permanent attributes only. The File Format
attributes should not be changed. The current value of the attribute
parameter may be accessed by the ATTR function.

5.21.3.6. EOF (filenumber) = expression
158 EOF (9) = 59

The EOF statement sets the file length parameter of the file
referenced by the file number to the value of the expression.
The filenumber expression must evaluate to one of the digits

- 9 when the fractionmal part is truncated. The expression
must evaluate to a positive real number. The fractional part
will be truncated. The EOF statement is used to decrease the
length of a file. The value of the expression should be set to
1 greater than the last record number. For example if a file
contains 1#@ records and it is desired to delete the last 50
records, the statement

198 EOF (1) = 51

5-61
Rev, 2 5/77

would cause record 5@ to be the last accessable record. The following
cautions apply to the use of EOF statement:

1) The EOF statement does not reset the sequential PUT/GET
pointers. If they are set beyond the new EQF an END-FILE
error will occur if a PUT or GET is attemvted. Reset the
pointers to the proper values with the GETSEEK and PUTSEEK
statements.

2) Do Not Set The EQF Beyond the true length of the file.
Any sectors remaining on the last allocated track may be
read by a GET and will yield garbage.

3) Resetting the EQOF does not release the now unused tracks
for system use. De-allocate the unused tracks by executing
a FREESPACE statement.

5.21.3.7 ©FREESPACE filenumber
144 FREESPACE 1

The FREESPACE statement de-allocates any tracks allocated to the
file referenced by filenumber which are beyond the current end of
file. Filenumber expression must evaluate to one of the digits

- 9 when the fractional part is truncated. If there are no
excess tracks allocated an "END FILE" error results.

5.21.3.8 GETSEEK"(filenumber) = pumeTric expression
5¢ GETSEEK (1) = 24

The GETSEEK statement sets the sequential GET pointer associated
with the filenumber to the value of the numeric exoression. The
filenumer expression must evaluate to one of the digits # - 9 when
the fractional part is truncated. The numeric exrression must
evaluate to a positive real number. The fractional part is
truncated. The value must be greater thanm zero and less than or
equal to the last record number or a PARM ERROR or END FILE
error will occur when a sequential GET i{s performed. The current
position of the pointer may be accessed by using the RECGET function.

5.21.3.9 PUTSEEK (filenumber) = numeric expression

184 PUTSEEK (2) = 30
The PUTSEEK statement sets the sequential PUT pointer associated
with the filenumber to the value of the numeric exnression. The

filenumber expression must evaluate to one of the digits @ - 9
when the. fractional part is truncated. The numeric exprression must

Rev. 8 9/78 5-62

evaluate to a positive real number. The fractional part is truncated.
The value must be greater than zero and less than the last record
‘number +2 or a PARM ERROR will occur when a sequential PUT is
performed. The current value of the rointer may be accessed by

using the RECPUT function.

5.21.3.190 RENAME (filenumber) = string expression
108 RENAME (1) = "NEWNAME"

The RENAME statement changes the name of the file referenced by
the filenumber to the value of the string ex-ression. The file-
number expression must evaluate to one of the digits § - 9 when
the fractional part is truncated. The string expression must
evaluate to a valid file name. The current name can be accessed
using the NAME function.

5.21.4 DISK I/0 FUNCTIONS

Disk File I/0 functions are included within BASIC to provide informatiom
about a currently open file. Each function reference includes a file
number expression which must evaluate to one of the digits @ - 9 when the
fractional part is truncated. If the specified file number does not

have a file currently opened to it a FILE NOT OPEN error occurs. The
disk file I/0 functions are detailed in table 5.5,

5-63
Rev, 2 5/77

TABLE 5.5 DISK I/0 FUNCTIONS

Function
i Refarence

VALUE

ATTR (n)

Returns the attribute parameter assoC1ated with
file n. See section 5.21.3.5 for a description
of the value,

Returns the error code associated with the last
disk error. The error codes are:

- No Error

- Permanent I/Q Error
- End-File

- Disk Full

- FiTle Not Found
Dupiicate Name

- Parameter Error

- Drive Not Up

- Permanent File

- Hrite Protect
Invalid File Name
12 - Printer Attention

The error code is not reset by a successful operatlon)
so 1s meaningless unless an error occurs.

WOONOTON AR WN S
[}

—
—
]

Returns the error message string associated with the
last disk error.

Returns a string containing the name of the file
assoclated with file number n.

Returns the value of the sequential GET pointer
associated with file number n.

| RECPUT (n)

Returns the value of the sequent1a1 PUT pointer
associated with file number n.

SIZE (n)

TRACKS (n)

Returns the number of disk tracks currently

Returns the, SIZE (in records) of the file associated
with file number n.

allocated to file number n.

FREETR (n)

Rey. 8 9/78

Returns the number of d1sk tracks currently
available for allocation (free) on the disk
unit associated with file number n.

5-64

5.22 BASIC PRINT FILE QUTPUT

Micropolis BASIC provides a set of print file output features for systems which
have a hard copy printer device in addition to the standard keyboard-display
This section specifies each of the printer related language features
and discusses how to use the available features to solve some common printer
programming problems.

terminal.

5.22.1 Printer Related Language Features

The printer related language features consist of seven statement and option

keywords.

They achieve a high flexibility of output control by expanding the
disk file 1/0 scheme to include print file and terminal file output and by
adding a physical device assignment capability. Following are descriptions
of each statement syntax and function.

5.22.1.1 OPEN filenumber string expression option(s)

Rev. 6

9/77

19 OPEN 1 "*P" PAGESIZE 66 ENDPAGE 999
29 OPEN 2 "*T"
3P OPEN 7 "*N“

The syntax of the OPEN statement in this context is the same as that
for disk files as shown in section 5.21.3.1. The statement associates
a filenumber with a filename specified in the string expression.

The filenumber must be a numeric expression with a value of § - 9.

The string expression which contains the filename must have one of

three

1)

2)

specific values which designate a particular output print device.

Filename *P associates the filenumber being opened with the
system printer.

Filename *T associates the filenumber being opened with the
display element of the system terminal.

Filename *N associates the filenumber being opened with a null
output device. The output directed to that file will be
discarded or drained.

Any other filename will be interpreted as a disk file name per
section 5.21.3.1.

There are two print file options available with the OPEN
statement:

a) PAGESIZE numeric expression

This option allows the programmer to set a limit value for
an internal system counter which counts the number of 1lines
output to the associated filenumber. The counter is incre-
mented on each PUT statement to the associated file, unless
that PUT statement ends in a comma or semicolon (see section
5.22.1.2). Each time the limit count is reached, the

5-65

5.22.1.2

5.22.1.3

counter is reset and the system checks for a correspond-
ing ENOPAGE option.

The numeric exprassion must evaluate to a whole number from
P - 65535. If a print file is opened without a PAGESIZE
option the internal 1limit value defaults to a value of 66
which is the number of lines per page on standard 11 inch
forms.

b} ENDPAGE 1inenumber

This option specifies a program line number to which the
system will perform a GOSUB each time that the limit is
reached on the internal lines per page counter. The Tine-
number must be a numeric expression which evaluates to a
legal linenumber. That line should be the beginning of a
subroutine which programs some appropriate end of page
actions and which ends with a RETURN statement. The RETURN
will go back to the statement immediately after the PUT
statement which triggered the end of page action.

If no ENDPAGE option is specified for a given file the
internal Tines per page counter is just reset each time the
1imit is reached and processing continues normally.

PUT filenumber expression list

15 PUT @ "TOTAL = “; AT, "ITEM NAME ="; B$
25 PUT 7 A, B;

The PUT statement causes the values of the expressions in the
expression 1ist to be assembled into an output record which is then
output to the print file device associated with the filenumber.

The filenumber must be a numeric expression with a value in the
range # - 9. The expression list consists of a sequence of
constants and/or variables separated by commas or semicolons. The
rules by which the output record is assembled are the same as those
for PRINT statements as detailed in section 5.20.21. Separate
carriage width wraparound control is provided for the printer
device. If the expression 1ist ends with a comma or semicolon then
no carriage return line feed is output. In this case the internal
lines per page counter of the associated file is not incremented.
(see section 5.22.1.1 - PAGESIZE option). The TAB and FMT func-
tions may be used in PUT statements.

CLOSE filenumber

99 CLOSE 6
99 CLOSE 2

The CLOSE statement causes the file specified by the filenumber
expression to be closed for output. The filenumber must be in
the range § - 9. When a print file is closed the associated
filenumber is freed for use in a subsequent QPEN to another file.

Rev. 6 9/77 5-66

5.22.1.4

5.22.1.5

Rev. 6

9/77

Any files which are left open are implicitly closed by a RUN command
or by any command that modifies the program buffer, such as DELETE,
LOAD or- 1ine insertion change.

ENDPAGE filenumber ‘
25 ENDPAGE 7
28 ENDPAGE R6

The ENDPAGE statement is related to the ENDPAGE option described in
section 5.22.1.1. However, it is syntactically and functionally
distinct. Its function is to end the current output page of the
designated filenumber and thereby position the output device to the
beginning of the next logical page. The filenumber must be a numeric
expression with a value in the range @ - 9. When the ENDPAGE state-
ment js executed the current value of the lines per page counter
associated with filenumber is subtracted from its limit value. The
result determines the number of empty lines which are output to the
file device to complete the current logical page. When the ENDPAGE
statement is complete the associated lines per page counter is reset
to mark the beginning of the next logical page.

ASSIGN (physical device number, logical stream indicator, device
width, null count)

18 ASSIGN (2,1,89,6)

28 ASSIGN (2,2,132)

38 ASSIGN (1,1)

The ASSIGN statement is a dual purpcose statement which provides the
ability to specify the connections of physical output print devices
to logical output streams and the values for carriage width and
nullcount of the referenced physical device. The physical device
number must be a numeric expression which evaluates to a 1 or a 2.
The logical stream indicator must be a numeric expression which
evaluates to a 1, 2 or 3. The device width and nullcount must be
numeric expressions with values in the range 1 - 255. They are
optional parameters in the ASSIGN statement. If they are not in-
cluded, the values corresponding to the referenced physical device
are not changed. If only the device width is included, then the
nullcount is left unchanged. Note however that specifying a null-
count requires that a device width also be specified, i.e., if the
statement only contains three arguments, the third will always be
treated as a device width.

Logical output stream number 1 consists of all output generated by

Ssystem messages, keyboard echoing, PRINT statements, LIST commands,

and PUT statements when the corresponding filenumber is open to *T.
Logical output stream 2 consists of all output generated by LISTP
commands and by PUT statements when the corresponding filenumber is
open to *P. The logical stream indicator may be set to a value of
3 to represent both logical output streams 1 and 2.

5-67

Physical device number 1 represents the display element of the
keyboard display device that is configured as the system terminal.
(see section 3.3.1 on terminal configuration). Physical device
number 2 represents the hard copy print device which is configured
as the system printer. (see section 3.3.4).

The output of a logical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to

one or both logical streams. Whenever a physical device is ASSIGNed
its previous assignment state is effectively cancelled. A list of
legal device connections follows:

ASSIGN (1,1)

connects terminal display to stream 1 only

ASSIGN (1,2) - connects terminal display to stream 2 only
ASSIGN (1,3) - connects terminal display to stream 1 and

stream 2
ASSIGN (2,1) - connects printer to stream 1 only

ASSIGN (2,2) - connects printer to stream 2 only
ASSIGN (2,3) - connects printer to stream 1 and stream 2

In its initialized state BASIC connects the terminal to stream 1
only and the printer to stream 2 only. This state can be restored
by executing an ASSIGN (1,1) followed by an ASSIGN (2,2).

When the terminal and printer devices are configured each device

has a carriage width and a nullcount parameter associated with it.
These parameters may be altered under program control by specifying
optional 3rd and 4th arguments in an appropriate ASSIGN statement.
The width parameter determines the maximum number of spaces on each
line for the given device. When a line is output that is longer
than width the autowrap feature is activated and a carriage return
1ine feed is inserted between character number width and width +1.
The autowrap feature may be disabled at configuration time. The
width parameter may be changed on a given device by restating the
current device assignment with a new width argument. For example,
if the terminal were currently assigned to stream 1 with a width

of 80, it could be changed to a width of 72 with the statement
ASSIGN (1,1,72). Note that any such change remains in effect until
a subsequent ASSIGN statement alters it or until the system is re-
loaded. The nullcount parameter is one greater than the number of
nulls which are output after each carriage return output to a given
device. It js important with unbuffered character serial devices
which may lose characters while the carriage is being returned.

The nd1count parameter for a given device may be dynamically changed
by restating the current device assignment and WIDTH with a new
nullcount. For example, if the printer were currently assigned to
stream 2, 132 columns, no nulls (nullicount = 1), it could be changed
to stream 2, 132 columns, 5 nulls by using the statement ASSIGN
(2,2,132,6).

Rev. 6 9/77 5-68

5.22.1.6

Rev.

5.22.1.7

6 9/77

Because BASIC is an interactive language it depends on the avyail-
ability of a display deyice for system messages and keyboard

echoing. An interlock is therefore built in to ensure that stream

) always has at least one device assigned to it. If an ASSIGN state-
ment is processed the result of which would violate this condition,
then physical device 1 is automatically a531gned to stream 1 as part
of the ASSIGN being processed.

LISTP X - Y

LISTP

LISTP 1d@
LISTP -1¢
LISTP 1d-
LISTP 148-14d

The LISTP command causes a listing of the program {n the current
program buffer to be directed to logical output stream 2 which {s
normaily connected with the system printer. This COMMAND {s anal-
ogous to the LIST command (see section 5.5) with two exceptions.
The LIST command directs its output to logical stream 1 which is
normally connected to the system terminal display. The LISTP
cormand outputs a paginated.listing with three blank 1ines at the
top and bottom of each page and 6@ iines of 1isting as standard.
(see 5.22.1.7).

X and Y must be legal linenumber constants.
LISTP prints the entire program buffer.

LISTP X prints only line X if present or the first line greater than
X if no Tine X exists.

LISTP X- prints all lines starting with X or the first greater than
X through the end of the program buffer.

LISTP -Y prints from the beginning of program buffer thru line Y or
the first greater than Y.

LISTP X-Y prints from 1ine X or first greater than X through line Y
or first greater than Y.

PAGESIZE numeric expression
PAGESIZE 42

The PAGESIZE command is related to the LISTP command. It causes the
numbeyr of lines of 1isting per page of the LISTP command to be set

to the value of the numeric expression in the PAGESIZE statement,
This number is the number of actually printed 1ines not {ncluding the
3 blank lines at the top and bottom of each page. For example, to
list a program on paper which holds 48 lines per page, the statement
PAGESIZE 42 would be the proper value to use, When BASIC is config-
ured the default value for this parameter is 6f.

5-69

NOTE that the PAGESIZE statement as described here {s syntactically
and functionally distinct from the PAGESIZE option of the OPEN
statement as described in 5,22,1,1 °

5.22.2 Notes On Printer Related Programming

Used properly and with care the printer related language features in
Micropolis BASIC provide for highly flexible and efficient programming
of many common print file related functions. This section proyides some
examples and commentary.

5.22.2.1 Separating Print Files and Interactive Messages

There is a large variety of applications which can be programmed in
the following three part structure:

1) Output to the terminal display a sequence of prompting
messages which Tead the user through a process of entering
variable data from the terminal keyboard.

2) Process the input data through algorithms which create de-
sired output data.

3) Output to the printer one or more pages which present the
desired output data with proper labelling in an approprTate
report format. .

This structure requires the ability to separate output which {is
normally intended for the operators terminal from output which {is
normally intended for the system printer. In Micropolis BASIC the
separation may be accomplished by using PRINT statements for terminal
display messages and PUT statements to open print files for system
printer output. The technique is jllustrated by the following program
for building a depreciation schedule chart.

Rev. 6 9/77 5-70

! *¢+ DARTH IMFUT SECTION
]

0 PRINT "THIZ PROGRAM WILL EBUILD A DEFFECIATIDM ZCHEDULE™

PRINT "IHOWING YERR EBY YERR DEFRECIATION OF A FIXED RIZET"
PRINT "AT EZTERIGHT LINE AMD 003 RICELERATED RRTEZ. "

FRINT

PRINT “"PLERZE EMTER RIIET WRLUE "3
INPUT R

PRIMT “FPLERZE EMTER TEFRM IM YVERRZI™S

INPUT T

PRINT "PLERZE EMNTER FIRST YERR OF TERM fEG. 1377V2 "3
IMPUT ¥

\

! +e+ PRINT OUT CHART HERDIMGE

’

OFEN 9 "ep*”

PUT 2:PUT 2

PUT 9 "DEPRECIRTIDMN SCHEDULE FOR F “SH3" OYER "3T3"
PUT 2:pPUT @ '

PUT 23" YERR“s"ST. LN. DEP.”s "BARLAMCE"s "200% DEF."s
PUT 3 .

:

! *oe COMPUTE AMD PRINT ERCH LIME

] .. .

Bl=R:Ea=H:
FOR k=1T70T

T=R-T:F$="$ZTTTTZV. B3

B1=B1-%
=g+B2/T
E2=ke-D
PUT 2 YaFMTCSaFEy s FMT CBLsFEI s FMT CDa FEY s FMT RS« FE

Y=Y+l
MEXT K
cLgz=g <2
EMD

Rev. 6 9/77 5-71

*

YERR (52 "

* BALANGCE

RUM
THIS

RT

PLERZE ENTER
PLEASE ENTER
PLERZE ENTER

DEPRECIATION

YERR

19390
1531
1932
1353
1324
1335
1935
1937

X Y RN VY (Y (I8 L RN Y I AR Y]
DN T RN I PR I SRV (VI)

10 0 s e s e e e
KUKV ORSURY CRX VRS OV O Y OV L YT

I

[
=
o

2004

RERDY

Rev. &6 9/77

RSIET
TERM IN YERRIT
FIRST YERR OF TERM

ST.

B 09 69 79 B3 51 K0 50 07 67 07 05 09 00 00 00 55 07 09 O3 S 9 O B9 U

VARLLUE 7

SCHEDLILE FOR 3

LN,

4000, 00
$000, o0
$000, 00
o000, 00
$o0n, 90
SO0, 00
SO0, N0
4000, N0
4000, 00
$000, 00
$000, 00
SO0, an
$000, 00
S$a00, 00
4000, 00
4000, 00
4000, 0
$000, D0
G000, 00
SO00, an
0G0
G000, g0
$O00, 00
S$a00, 00
SO0, g

LEP.

PROGRAM WILL EBUILD A DEPRECIARTION
SHOWIMG YEARR BY YERR DEPRECIATIOM OF A
STRAIGHT LINE AND

29

MRS OO AH R HRHRmS

B3 &3 B3 o 5 O B

l::E.S . l '3 TT' i

S4000, 00
S00an, Qu
TRuaa, no
TENQ, DY

SE0ng, 0o

SS00n, 0N

100, oo
tS0nn, an
S00n, o0
SO00, 0

L i

5-72

ILHEDULE
FIXED
200> ACCELERRTED RATEZ.

ﬁEEET

.
200

PR R S N B S W S RN R WS s

DEP.

A -
]

H
-

v =)
o -,
&7

ERLAMCE

R BRI 0T 0 B0 5 B0 KD B R o KR T B R B T 5 iR i

DURIRSY B I Y Y IV Y]
s e = fa [0
VY
5

¥

D PR OO (Y

N D0 (RO Rl [Y

-
¥
-
-
(=
4
B
-
3
)
B
1
)
'}

e
¥y}

e el e el R R CE RN RN XTI A Y]

PO 00 $o O =) 00 o D Ja o0 00 e GO L) < e N

$o 0 T L G300 LN N
s PR S I i O U= VA N (1)

DX EY Y I W C e Y Y]
e s o & o o

L Q0 Lo o LG

A B i)

Lo o =) 0 v 00 L0 e [0
R SSUTRIN Y Vi SO

s J F a0
DO S D A R T B

[DOOR W YO0

5.22.2.2

Rev. 6

9/77

Paginating Print Files

When the number of lines {n a print file spans several printed

pages it is often required to print the file with page numbers,
headings and an equal number of lines on each page. The ENDPAGE
statement and the PAGESIZE and ENDPAGE options of the OPEN statement
provide a useful set of tools for accomplishing this goal. The
following example shows the depreciation schedule program of section
5.22.2.1 modified ta print on 2§ line pages with each page numbered
and titled. Note the use of the PAGESIZE and ENDPAGE options in
1ine 329 in conjunction with the page heading subroutine at 1ine 6@d.
NOTE also the use of the ENDPAGE statement in line 518 which ejects
the last report page and leaves the printer at the top of the next
blank page.

5-73

100
1140
120
120
140
151
150
174
1540
130

: +ee DATA IMFUT ZECTION

FRINMT “THIZ PROSEAM WILL BUILD AR DEFPRECIATION ZCHEDULE®
FRIMT “IZHOWIME YEAR BY YERR DEFEECIRTIOM OF R FIHED RIZET”

PRINT "AT ZTRAIGHT LIME RHD 00X RCCELERRTED FRTED

PEINT

FPRIMNT “PLERZE EMTER RAZZET “ALLUE "3
INPUT R

FRINT “PLERZE EMTER TERM IM YERRZ"S
IMPLT T

VERR (33 "

“"BALRMCE"

&0 FRIMT "PLERZE ENTER FIRIT YERR OF TEFM (ER. 1377273
10 INPUT ¥

g !

305 ! see OUTFUT IMITIRLIZATION

100t

320 OPEN 9 "eP" PRZEIIZE 2100 EMDPRGE SD0

330 P=1:603UE &£00

240 BlsAR:BE=R: E=R-TIFE="$222222V. 33"

400 8

41a 2 eees COMPUTE AMD FRIMT EACH LIME

420 !

440 FOR kK=1T0T

430 El=Bl-Z

450 D=2eB2-T

471 BE=B2-D

420 PUT 9 Y FMT CSaF30 s FMTCBLoFEs s FMT ED FEx s FMT (BESF ¥
430 =¥+l

SO0 MHEXT K

S1a EMDPAGE 3:CLOZE =

S0 3TOP

s00 8

610 ¢ see PAGE HERDIMNG ZUBROUTIME

YU

B30 PUT 3

B4 PUT 9 TREBI72): "PAGE "iP

£50 PUT 3

el PUT 9 "DEPRECIATIOM ZCHEDULE FOR F "3iR:#™ OYER "3T#"
570 PUT 3:PUT 3

B7S PUT 9" WEAR"s "3T. LN. DEP."s "BRLAMCE"s "@00% DEP."»
B77 PUT 2

TN P=F+!

710 RETURM

333 EMD

Rev. 6 9/77 5-74

RERDY

RUN

THIZ PROGRAM WILL BUILD A DEFPRECIARTION ZCHEDIILE
THOWIMG YERR EBY YERR DEFRECIATION OF R FIKED REZET
AT STRARIGHT LINE RMD 00X ARCCELEFRTEL FRATEE.

YLERSE ENTER RSSET VALUE 7 100000
AFLEASE EMTER TERM IN ¥YEARRS? 25

PLERZE ENTER FIREST YERR OF TERM (EG. o

13772 T 13

o0

DEFRECIATION EZCHEDULE FOR % 100000 OYER 25

—‘.
m
I
ol

=T. LH. ILEP. ERLAMCE

Se g, G
[2000, 00
SE000, 00
sq00a, 00
20000, 00
TEOGO, a0
f;nnn g

Saan, an
b4uuu un

o000, 00
S000, 00
So00, 00
SO0, T
$000, 0
S00a, 10
So00, 00
SO0, 00
So00, 0N
S00a, 00
So0n, no
0o, o

JMUUU UU

afe o o0 o g of ol o ofn ol oo o0

o o 00 00 £O 0D 00 Q0 (0 Q0 00 DD
= s 2N I PR I N PO 3 U o

B el e o e
5103 01 U O3 4 0 B 09 09 o

JEPRECIATION ZICHEDULE FOR 3 lﬂnﬂub

n
n

oYER

ST. LM.

m
b o}
x

DEP.

SO0, oo
4000, 10
S000, 0N
S000, an
4000, 00
S000.00
4000, 00
4000, 00
4000, 00
4009, 00
S0, 00
4000, 00

$20040, 040 %
S4000, 00 3
40000, 00 R
gsnnn nn RS
E 3
3
2

ol e e

Y (R QS ORY (Y« Y
N W

”BDUB on
24000, 00

20000, 00 R 3
15000, 00 ¥
120048, 00 R
SO0, 00 ‘5
4000, 00 ¥

=R O VR RN (]

s Ly

SR TO PO - - e = s s s

BT H eI W

DEPRECIRARTION SCHEDULE FOR $ 100000

YEAR ET. LN. DEP. BRLAMCE

coud $ 4000.00 .] R

Rev. 6 9/77 575

N

BRLAMCE 200

S0

YERR D

=)
m
o

S00N,. 0n
ToRl, 0N
Brrl.an
B2, S0
ST31.14
Sere.esS
S50, 24
4452, 77
4105.75
ATV .ED
347S.10
319709

YERR (3D

IEF.

A=l 3 Wk

2708, 12

290,37
7. 14
2. 57
B3, 43
4

o N e (U (N (Y
=

o ORI SR Y R (X
=] =J 0

b =~) A0
00 00 fe s o

R R =R e

OYER 2% YERR(ED

DlP.

1031.4¢2

BRLANCE

GO G o Lo LR ORI =p g 00 gD

D00, 00

=

(O I) W BN) IS N N rll
N |EE! oo Q.
[]
o= 0D

¥ RO OO s SO

L D) e D0 00 X

= {0

Rt IR (RN I =R VYUY RS VR |

[SN
-

CY fa (N =) 0 = T 4o T 0 e
D OO (Y (O P

[TS B Y I R s O LI 2N B I X Y]

[l N R Y O I U Y)

[

et LON (Y (U (U X
YO I O N R L

T
I
D]

ERLANCE

‘b

12436, 42

m

Q)

5.22.2.3

§.22.2.4

Rev.

8

Spooling Print Files To Disk For Latar Qutput

The commonality of the QPEN, CLOSE and PUT statements to both disk

and print files makes it possible to alter a print file program so

that the output is saved in 3 disk file inst=ad of sent to the 2rinter.
The procedure is to change the filename in the relavant QPEN statement
from "*P" to some appropriate disk filename. For example, line 329

in the depreciatian program listing might be changed to

328 OPEN 9 "N:DEP-REPORT" PAGESIZE 27 ENDPAGE 680

A print file that has been spooled to disk in this manner can be
printed out at a later time by using the following program:

5 INPUT "ENTER PAGE WIOTH QF FILE TG BE PRINTED";A
10 DIM AS(A)

2@ STRING CHARS(16RFF)

3@ INPUT "ENTER NAME OF FILE TQ BE PRINTED";AS
4@ QPEN 1 AS END 9¢

5@ QPEN 2 "*P*

6@ GET 1 AS

79 PUT 2 AS

80 GOTO 64

99 CLOSE 1

199 CLOSE 2

11@ END

Note that the string into wnich each disk record is resad must be
dimensioned to a Tength which matches the expected page width of
the report (lines 5 and 13). This ensurss that the extra blank
padding that fills each disk record will not be printad out causing
extra tlanks lines on most printers.

Note also that line 23 changes the systam string delimiter to a

- value that is illegal in normal print files. This ansures that the

entire content of each line will be assigned to and printed from AS
regardless of which charactars appear in the print file. If this
were not done any commas in the print file would cause errcneous
eutput.

Oraining File Qutput To A Null Device

Ouring the program development and test procass or in a reduced
system hardware environment it is sometimes usetrul to run a program
which outputs one or more files and be able to suppress one or mare
of the output files while the rast of the program runs normally.

In Micropolis BASIC this is easily accomplisned by changing the
filename in the apen statement of each file to be suppressad o a
"*N". When the program is run all output to "*N" files will be
suppressed or drained away without otherwise affecting program
operation. The following program illustrates this idea.

9/78 5-76

1@ DIM AS(4,3G)

20 FOR J=1 TO 4:AS(J)="":NEXT J
3@ INPUT " FIRST LINE ";AS(1)
4@ TNPUT "SEZCOND LINE ";A3(2)

S@ INPUT " THIRD LINE ";AS$(3)

6@ INPUT “FQURTH LINE ";AS(4)

79 BS="LABELS"

8@ INPUT "ADD TQ DISK FILE (Y/N)";XS
8@ IF XS ="Y" THEN 35="~N"

18@ CS="#pP"

11@ INPUT "PRINT LAREL (YAN)";XS
128 IF XS= "Y" THEN C3="#N"

130 x$=n'u

14@ OPEN 1 BS

15@ PUT 1 AS(1)+XS+AS(2)+XS+AS(3)+XS+AS(4)+AS
16@ CLOSE 1

17@ OPEN 2 CS$

18@ FOR J=1 TO 4:PUT 2 AS(J):NEXT J
199 CLOSE 2

293 GOTO 29

The file output section attempts to add four lines of input %3
label file and then print a copy of the new label entry. If aither
or both of these functions is refused by the aperator during %he
input saction, the pragram changes the {ilename variatle tor the
associated OPEN statement to "*N". When the output section exe-
cutas the refused function output is simply drained, i.e. not
output anywhere.

5.22.2.5 Echoing Of Terminal Qutput 7o Printer

On systems with a video terminal and printaer device it is sften
desirabdle to obtain 2 hard copy audit trail of ail system program
operatian, including all of the prompts and systam messaces normally
directed to the terminal only. This is easily done by using the
statement

ASSIGN (2,3).

This statament causes tha hard copy printar to be connectad tc lagical
output stra2am 1 which includes 211 print stataments, input dialegua,
keybocard echoing, *7 filaes, and systsm messages; 2nd to logical out-
put stream 2 which includes all *P gsrint files. Thus everyZhing
aimed at the tarminal thry stream 1 will also ¢o to the printer.

This echo mode remains active until changed. The statament ASSIGM
(2,2) will res“agre the system 22 normal wnich is device 1
{zarminal) connected %3 stream 1 and devics 2 {orirmtar) cannectad o
stream 2.

Rev. 2 8/78 §-7

~4

{This page left blank deliberately.)

Rev., &4 7/77 6-1

/— LASEL

T -
.4
WRITE 2AQTEQT
g/ cureur
/—ORIV! SPINDLE HOLE
:
SECTOR/INDEX HOLE
(3O SIDES)
S/e
]
X . ~

WAD/WRETE HEAD ACCZSS ’/ QSRESS RELIEF MQTCHES

HOLE (ACTH SIDES)

Figure 6.1

Rev. 8.1 2/5/79

VI.

6.0

DISK SUBSYSTEM THEORY AND DIRECT PROGRAMMING

INTRODUCTION

This section describes the Micropolis flexible disk subsystem in
sufficient detail to enable an experienced 8@8f assembly language
programmer to implement a disk driver,

FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA

6.1.1 Recording Medium

The recording medium used with the Micropolis flexible disk
subsystem is illustrated in Figure 6.1. The medium consists
of a thin, oxide coated circular disk permanently housed in
a protective plastic jacket. The disk rotates freely within
the jacket, which is lined with a material that cleans the
disk as it rotates. Several holes in the nlastic jacket
allow a disk drive to access the disk. When a diskette is
loaded into a drive, the disk is clamped to a motor-driven
spindle through the drive spindle hole. The read/write head
and the load pad which nresses the disk against the head,
access the disk through the read/write head access holes.

A photo detector senses sector and index holes through the
sector/index hole., 4 switch im the disk drive senses the
Write Protect cutout. If a Write Protect tab is placed

over the cutout, the diskette may be read, but may not be
written on. If the cutout is open, both read and write
operations may be performed.

6.1.2 Disk Data Format

Figure 6.2 illustrates the format of data recorded on the
diskette. Data is recorded on the diskette on concentric
tracks. The outermost track is Track @ and the innermost
track is 76 in Mod II subsystems and Track 34 in Mod I
subsystems. Each track has an unformatted capacity of
625@ bytes. Disk data transfers are performed on a block
basis, which would require a 6258 byte RAM buffer in the
computer for a full track size block. This buffer size

is wasteful of memory, so the actual format used divides

a track into blocks of more manageable size called sectors.
The format used in the Micropolis flexible disk subsystem
divides each track into 16 sectors. The beginning of each
sector is indicated by a sector hole punched in the disk.
This hole is sensed by a sector/index semsor in the disk
drive. An index hole is located halfway between the holes
for sector 15 and sector @ and indicates the next hole is
sector §.

6-3

Rev. ¢ 7/77

%\\\N\\\)
' -

&
\

Figure 6.2

Rev, & 7/77 -

Rev,

Each sector has an unformatted cavacity of anproximately 399
bytes. However, not all of the available storage space can be
used for data. The electronics in the disk drive and the nature
of the media and drive mechanism require a certain amount of
space be given up to accommodate the electronic characteristics
and to allow sufficient tolerance in the recording format to
permit interchanging diskettes between different disk drives.
Briefly, the factors which must be taken into account are:
mechanical tolerance in the physical distance between sector
holes punched in the disk; alignment of the sector/index sensor
with respect to the read/write head; response of the sector/
index sensor and logic; disk speed variation; write clock
frequency tolerance; and, acquisition time of the read data
decoder,

The recommended sector format is illustrated in Figure 6.2.

This is the format used in disk files created by the Micropolis
Disk Extended BASIC software and is the format required by the
disk bootstrap located on the controller board. This format

was designed to make the best trade-off between storage capacity
and tolerance margins. Although other formats could possibly
utilize more storage capacity, they would be incompatible with
the bootstrap and a complete discussion of the engineering
considerations necessary to design another format is beyond

the scope of this sect ion.

A disk sector consists of the following fields:

1) Preamble: The preamble is composed of anmproximately 4@ bytes
of zero (@) data bits. The preamble is automatically generated
by the disk controller and is necessary to provide tolerance
for the mechanical alignment and electrical characteristics
of the sector/index sensor., It also provides a field of known
data pattern for synchronization of the read data decoder.

2) Sync: The sync byte is a byte of @FFH data which is used in
the disk controller to define the beginning of useful data.

3) Header: The header is a 2 byte block consisting of the binary
track address of the track on which the sector resides (§-76 (3&4))
and the address of the sector (0-15). The header is used to
verify that the proper sector is being accessed in a disk I/0
operation.

4) Data: The data field consists of 266 bytes of user data.

5) Checksum: The checksum is a one byte error detection code which
provides error detection in read operations. The checksum is
computed as follows: a) The accumulator and carry are initially
cleared; b) Each byte of the header and data fields is added to
the accumulator with carry. In write operations, the computed
checksum is written immediately following the data field. In
read operations, the checksum is re-computed from the read data
and is compared with the checksum byte which is read. If they
do not compare, a read error has occurred.

6=5
& 7/77

COMPUTER INTERFACE

4 STCOND TimER

|

]

CONROLLEY

RIVE TITCTRONKO

ORIVE MECHANICS

UNLT ADORESS | - [3p]
_ B DRIVE SELECT)
SELECT1OGIC -— RO — <
UNIT SELECTE
- D 2
_ &
=
ol
4 81T SECTOR LT
ADDRESS
- INDEX SEPARATOR SECTOR/INDEX PLASE
SECTOR FLAG ||.IE;T.| N
- SECTOX COUN fER ,
| — . % e e e e
| — DISKETTE
SECTOR INTERRUPT \I
TRACK ZERD STATY _ d _
e - P I —_—
Y VEAD LOAD
SOLENOID
1 step [1 R—— - J)ﬁx zer0 HEAD LOAD PAD
SEC TOR, INDEX
_ _ POSHTIONER _
DIECNON - RACK 21RO SVATCH PULSE SENSOR
COMTROL READ/\WRITE
_rrov (o]
— N
STEPPER o] / -
* MOTOR /
hx:. READY VARITE/ERASE ORIVE /// \
WARITE PROTECT |]
STATUS READ/ VAL TE l VARITE PROTECT) see 8| W/ ©
' i S
CONMROL MOTOR 1
vRITE ViRITE ENAME H e — — O
_i] ! B _ \
1
WEAD CARRIAGE I | SPINDLE
1
| r | | .
1
READ WRETE ERASE “ "
1aL R A
_v.a|z‘-1cum»;!'. YRITE DATA SIRIALZRITE DATA | conmOL LOGIC _ I l I
eeert _ R OTECY klm
=]
WRITE PROTECT _]
switcH
8 BITDATA SERIaL READ Data READ/VRITE. ERASE CONTPOL AND DATA % SPINDLE
DATA DECODER — e I ORIV
| MOTOR
T ———— ~
~
~
READY STATUS _ MoTor SPINDLE MOTOR CONTROL ~
< CONTRW .
1063¢ 5
- DISKETTE LOADED SWITCH nm

6)

Postamble: The rest of a sector from the checksum to the next
sector hole is filled with zero data bits. The length of the
postamble allows for the mechanical tolerance in the placement
of sector holes on the disk and tolerance for disk speed and
write clock variations,

'6.2 HARDWARE FUNDAMENTALS

Rev,

4

Figure 6.3 is a block diagram of the Micropolis flexible disk
subsystem., The components of the subsystem may be grouped as:
spindle drive control; sector logic; position control logic;
read/write logic; select and head load logic.

D

2)

3

Spindle Drive Control: The disk drive spindle motor is
controlled by a micro-switch that senses when the diskette
is inserted and loaded, or unloaded. When the diskette is
loaded, the disk is accelerated to a speed of 3@@ RPM.
After an appropriate delay to allow the speed to stabilize,
the drive is ready to accept commands. If the drive is
selected by the controller, the drive will indicate this
state by asserting ready status.

Sector Logic: When the disk is rotating, the sector/index
hole sensor provides the controller with an electrical pulse
corresponding to each hole punched in the disk. The controller
separates the sector and index pulses and counts the sector
pulses, thereby providing the programmer with the 4 bit address
of the sector currently passing under the read/write head. A
flag bit in the status register is provided to indicate when
the sector address is valid and when a read or write operation
may be initiated.

Position Control Logic: The read/write head is mounted on,a
carriage which is moved from.track to track by a stepper
motor-driven lead screw. Positioning is accomplished by
specifying the desired direction (in or out) and issuing

a step command. Control logic in the drive electronics
generates all the signals necessary to cause the motor to
move a track in the desired direction. When a drive is
first selected, such as at power on, the track position of
the drive is indeterminate. Before read or write operations
may be performed, the positioner must be recalibrated as
follows: when the carriage is positioned at track @, a
microswitch associated with the positioning mechanism is
made., The state of this "track #" switch is provided as

a status bit, Recalibration consists of examining the

track @ status and if it is not true, issuing a command to
step out, , After an appropriate delay to allow the command
to be executed, the process is repeated. Once the positioner
has been calibrated, the software must .keep track of the
current position.

6-7

7177

4) Read/Write Logic: Data is transferred between the computer
and the controller on a byte-by-byte basis, For write
operations, the controller generates the preamble and then
converts 8-bit byte data from the computer to the serial
data which 1is recorded on the disk. When the computer
stops supplying data, the controller automatically writes
zero data to the rest of the sector until a sector pulse
is sensed. For read operations, the controller converts
the serial data stream coming from the disk to 8-bit bytes
and automatically detects the sync byte to determine when
valid data is available,

The controller generates a ''transfer ready' status flag
which indicates that the controller is ready to accept

data in a write operation, or that data is available in
a read operation.

The controller is accessed using a technique called
"memory-mapped I/0'". This means that the controller
command, status and data registers are treated as

memory addresses and that controller read/write commands
are actually memory reference instructions. When the
controller data register is accessed in a read or write
operation, the controller forces the computer to wait
until the controller is ready to transfer data. From
the computer's point of view, the controller appears to
be slow memory.

The read/write control logic in the drive electronics
provides the conversion between the serial digital data
at the controller interface and the serial data signals
at the read/write head, Whenever the drive is performing
a write operation, the positioner control and read logic
is disabled and the appropriate signals are generated to
drive the read/write and erase heads., The erase head used
in flexible disk drives is a "trim'' erase head. 0ld data
written on a sector is implicitly erased by being written
over by new data. However, any slight track positioning
errors could eause sufficient remnant old data to be left
in the space between tracks to cause data reliability
problems, To eliminate this error source, an erase head
which erases the disk a small distance on either side of
the newly written data is provided. This erase head is
located a small distance behind the read/write head and
cleans up the inter-track gap after data is written.

When a write operation is terminated by the occurrence of

a sector pulse, the erase head is left om a sufficient
amount of time for the last data written to be trimmed.
Since the position control and read logic will be inhibited
until the write operation is complete (including the erase),
a new operation must not be attempted for at least one
millisecond after the termination of a write operation.

Rev. & 7/77 | 6-8

5)

The drive contains a microswitch which senses the write
protect cutout in the diskette jacket. When the write
protect tab is installed, the write/erase control logic
is inhibited. The state of the write protect switch is
available as a status bit.

Select and Head Load Logic: The controller will support

up to 4 disk drive units connected in a ''daisy chain"
configuration. The drive electronics in each unit are
conditioned by the drive select such that only one drive

at a time will respond to, or provide, signals on the
controller/drive interface, When a drive is not selected,
the spring-loaded pressure pad which holds the disk in
contact with the read/write head is moved away so that there
is no contact and the head is '"unloaded'". When the drive is
selected, a solenoid is energized, which allows the load pad
to contact the disk so read or write operations may be
performed. The controller contains a 4-second timer which
automatically deselects all units if the controller has not
been accessed for four seconds,

6.3 CONTROLLER REGISTERS

The disk controller occupies a 1K byte block of memory from F4@¢@H to F7FFH.

The first half (F4@0¢H to F5FFH) is reserved for on-board bootstrap ROM, The

controller command, status and data registers start at address F6fPH and are
defined as follows:

1) Output Registers

Command Register

F6@¢H or yi & 5 4 3 2 1 0

F6#1H COMMAND S S MOD
CODE S s

MOD = Command Modifier

The commands available are:

Code Command Modifier
291 Select drive Contains drive unit address (@-3)
910 Set interrupt enable @1 = enable interrupt
(controls sector #3 = disable interrupt
pulse interrupt)
911 Step 1 track B = step out
#l = step in
100 Enable write Not used
141 Reset controller Not used
6-9

Rev, & 7/77

Write Data Register

F60Q2H If the write data register is referenced when the
transfer flag is set during a write operation, the
controller expects a data byte to be on the S14¢
buss data lines. The PRDY line will be held false
until the controller has accepted the data, then
the PRDY line will be set true for 1 bit time
(4 usec). (See the status register description
for the definition of the transfer flag.)

2) 1Input Registers

Sector Register

Fé690H 7 T6 5S4 [3 2 1 @t

s | 1
e N
;T T s, SECTOR
R, ! 7 ADDRESS f
P |
FoAL g
L§G."‘-r/’ !
{ '~;’/ £

G. ; b / :

Bits Definition

0-3 Sector Address: Address of the sector currently
passing under the read/write head of the selected
drive,

4,5 Reserved.

6 Sector Interrupt Flag: Indicates an interrupt
request has been generated by a sector pulse.
Flag is reset by issuing a reset or an interrupt
disable command.

7 Sector Flag: Indicates the sector address is

Status Register

F601H

Rev, & 7/77

valid and that a read or write operation may be
performed. Flag is true for 30 usec at the start
of each sector. All data transfers must be
initiated within 100 u seconds of the flag going
true,

[S 4 3 2 1 #
X P R W T S U A
F I E P K L N D
E N A T] T I D
R.| T ! D | D T R

E ! Y
F : ‘
L i !
G. g ! [

{ 1]

6-10

F6@2H

Rev.

8

Definition

g-1 Unit Address: Address of the currently selected
drive. Address is valid only if SLTD is true.
2 SLTD: Unit selected. This flag is low true,
i.e.,
§ = Selected
1 = Not selected
SLTD is true if a drive has been selected and
the 4-second timer has not expired. SLID is
low true so that the software may detect when
the controller is not installed (non-existent
memory references yield @FFH).
3 TK@: Track @ status from selected drive.
4 WPT: Write protected status from selected drive,
5 READY: Ready status from the selected drive,
When true, indicates the drive is ready to
perform commands.
6 PINTE: PINIE status from the S1@¢ BUSS,
7

XFER FLAG: Transfer flag. 1In write operations,
indicates that the controller is ready to accept
data from the computer. In read operations,
indicates the controller has data available to
the computer. When the software detects the
transfer flag has set, all data transfers are
performed by accessing the controller data
register, which automatically synchronizes the
transfer by use of the PRDY iine.

Read Data Register

If the read data register is accessed when the transfer flag is
set during a read operation, the controller will hold the PRDY
line false until a byte of data is available. The controller
will then place the data on the S1f#p BUSS data lines and set
PRDY true for 1 bit time (4 usec). The data will only be
available for this 1 bit time period.

9/78

6-11

Figure 6.4
DRIVE SELECT LOGIC N MILLISECOND TIMER

(SELECT) (DELAY)

READ
STATWS
r——-

Status Read
Re-triggers
4 second
timer

SEL&T
Desiesd
AT

DELAY
252
MSES

DRivE ANoT wp

{ Feron l

Rev, & 7/77 6-12

6.4 DISK OPERATIONS

The following paragraphs describe 'in detail the steps involved in performing
each of the operations required to operate the Micropolis flexible disk drive
subsystem,

6.4,1 Select a Drive

A drive must be selected prior to any status read, step or data transfer
operation. Selection must be performed for each operation since the &4
second timer may have deselected a unit since it was last accessed. The
important considerations in selecting a drive are:

1) When the drive is selected, the head will be loaded. A
minimum of 75 milliseconds must be allowed for the head
to load and settle.

2) The sector counter is located in the controller, When a
drive is selected, a minimum of 250 milliseconds must be
allowed for the sector counter to synchronize to the drive.

Figure 6.4 is a flowchart of the select operation.

NOTE that all delays are generated by a software timing loop

subroutine, A read status command is included to re-trigger

the 4 second timer every time the delay routine is entered.

6.4.2 Position the Head

A drive must be selected before a step command can be issued to cause

the head to move 1 track. One step command of the appropriate direction
(in or out) must be issued for each track moved. A minimum delay of 30
milliseconds must be allowed between each step command. (Note a step
in moves the head toward the center of the disk and therefore to a higher
track number.,) Typical logic to implement a 1 track step is illustrated
in Figure 6.5,

After the head is positioned to the desired track, an extra delay must be

allowed for the head to settle before read/write operations are attempted.
The complete process for an N track move is illustrated in Figure 6.6.

6.4.3 Restore to Track @

When a drive is first selected, the position of the read/write head is
indeterminate. Prior to performing disk data transfers, the positioner
must be "recalibrated" which consists of stepping the head out until the
track B switch is made. If the drive already indicates track @ status
when first selected, the head is stepped in 8 tracks, then out to ensure

a good track P position. Once calibrated, the software must keep track of
the current head position for each drive, The restore !ogic recommended
is illustrated in Figure 6,7,

6~13
Rev. & 7/77

Figure 6.5

STEP 1 TRACK

(STEPIN) STERPOUWT

ISSuiz Lssus
STERIN STEPOUT
COmmMmAND commanDd

OFLAY
3P MssC

Figure 6.6
POSITION N TRACKS

(POSITION)

SELECT
DRIVE

§TsP
IN/OUT

No
YES

DELAY
1O MSEC

:

EXIT

Rev, & 7/77 : 6-14

Figure 6.7 RESTORE TO TRACK #

(ResTorE)

SELECT
DRIVE

READ
STATUS

------------------- If already at track @, move
off 8 tracks then restore to
ensure a good position.

8 NO
TRALKS
YES

DFLAY
1@ MSEC

STEP
ouT

------- If 85 step out commands have
] been given and track @ has
not been reached, something
is wrong.

DELAY
1@ MsEL

(EXIT >

RESTORE ERROR

6-15
Rev. & 7/77

6.4.4 Write Operation

Figure 6.8 illustrates the logic necessary to perform a sector write
operation, The program illustrated requires a 268 byte memory buffer
with the first two bytes set to the track and sector address. The
sync byte and checksum are generated in the program. The steps
involved in writing a sector are:

1) Move the data to the write buffer.
2) Select the drive,

3) Wait for sector flag. When the flag goes true compare the
sector address with the desired sector address. When the
desired sector 1is found, issue an enable write command,.

4) The enable write command causes the controller to generate
the preamble, Wait for transfer ready flag to indicate the
controller is ready to receive data. The software must then
write the sync byte. The timing of the software ioop which
tests for XFER ready and then outputs the sync byte is
extremely critical. The sync hyte must be on the S14@ buss
data lines within 32 usec after XFER ready sets, The
following code satisfies the timing requirements:

(HL = F6@1H and A = # when this loop is entered)

*Wait for XFER ready flag

WAIT ORA M
JP WAIT
*INSERT SYNC BYTE
INX H
MVI M, $FFH

5) Each successive data byte must be made available witnin 33
useconds of the previous byte. When the data register 1is
accessed, the controller will hold PRDY false until it accepts
the data and then allow PRDY to go true for 1l bit time, The
timing constraints on the write loop are therefore a maximum
loop time of 32 useconds and a minimum loop time of 1 bit time
(4 useconds). These figures do not include any margin for
clock tolerance, so the actual design goals should be about
28 and 6 useconds for a conservative design,

6) When the checksum has been written, stop accessing the controller
write register. The controller will automatically zero fill the
rest of the sector,

7) After the checksum i8 written, the program waits for the next
sector flag. At this time the controller terminates the write
operation and the erase delay in the drive starts. The 1 milli-
second software delay allows sufficient time for the erase delay
to expire so that step and read functions are again enabled.

Rev. & 7/77 6-16

Figure 6.8

Controller
generates
preamble

Write

sync
byte

Main
write
loop

Rev. &

(weirte)

SECTOR WRITE

SELECT
DRIVE

WAIT
SECTOR

ENRBLE
WRITE

- = e em -

RERD
STATHS

DATA <~
@FFH

WRITE
DATA

7/77

GET OATA
1O M
BUFEA&ER

AD0D OATA
TO

CRECK SUNM

(wmr_q:crcn.

-

----Wait for
desired
sector

RERD
SECTOR
STATJS

6-17

wurk
CHECRSUM,
BYre

]

---Zero

111
sector _
to next”
sector
matk

Wait for
erase
delay in
drive

6.4.5 Read Operation

Figure 6.9 illustrates the logic necessary to perform a sector read
operation. The program illustrated requires a 268 byte read buffer.
The track/sector ID will be read into the first two bytes of the
buffer and when the operation is complete, will be compared against
the desired track/sector address., The steps involved in reading a
sector are:

1) Select the drive.

2) Wait for the sector flag, When the sector flag is true,
compare the sector address with the desired sector.

3) When the desired sector is found, wait for the transfer
flag to set to indicate disk data is available. Note
that no command is necessary to start a read operatiom,
but you must always wait for a sector flag to indicate
the start of the read.

4) When the transfer flag is set, the sync byte will be
available in 25-28 useconds. The sync byte will only
be available for 3-4 useconds so the timing of the loop
which checks for the transfer ready flag is critical. The
following code satisfies the timing requirements:

(HL = F6@1H and A = @# when this loop is entered)
* Wait for XFER RDY flag

WAIT ORA M
JP WAIT
*GOBBLE SYNC BYTE
INK H
MOV A,M

5) Each successive data byte will be available within approximately
25 useconds and will be available for about 3 usaconds.
When the controller data register is accassed, the
controller will hold PRDY false until the data is
ready, then will place the data on the S14@ buss data
lines and allow PRDY to go true for] bit time. Once
the software has read a byte, 1t must not access the
data register again until this bit time has expired.
The timing constraints on the read loop are therefore
a maximum loop time of 25 useconds and a minimum loop
time of 5-6 useconds, These figures reflect a
conservative margin to allow for timing variations
in the disk read data.

6) The last byte to be read from the disk 1s the checksum.

The checksum read should be compared with the re-computed
checksum, to determine 1if a read error has occurred.

Rev, 4 7/77 6-18

Rev,

Figure 6.9

4

'SECTOR READ
(READ)

SELECT

DRIWVE

wat

SECTOR

Wait for
controller
to detect
sync

Capture sync
- byte and
discard

READ
bata
eyre

0D Op7H
To
CRECKSLIAN

Mmove DATR

To
BUFFER

6-19

7/77

CHBCRSUM CRROR

ERRO @)

HERDER ERROM

ErRoQ)

First 2 bytes of
buffer should be
track/sector ID

7) 1If no checksum error is detected, the first two bytes
read should be compared with the desired track and
sector addresses to ensure the correct sector was read,

6.5 ERROR HANDLING

An important consideration which may not be ignored ia the design of a
flexible disk driver is the handling of errors which occur. Magnetic
storage devices in general dre subject to errors. The succeptability
of the diskette to damage or contamination due to handling makes error
handling particularly important in flexible disk systems, Most errors
are of a temporary nature and will be invisible to the system with a
properly designed driver.

Most errors can be attributed to one or more of the following sources:

1) Transient Electrical Noise

2) Media Contamination - Particles of foreign substances may become
lodged between the head and the recording surface of the disk amd
cause data errors.

3) Head Positioning - The read write head may be positioned to the
wrong track if the specified step rate is exceeded or may be
marginally positioned if a drive is misadjusted.

4) Disk Centering - Due to the flexible material of which the disk
is constructed, or in the event the disk is damaged or distorted
due to mis-handling, it is possible that a diskette may be
improperly clamped to the spindle in the disk drive.

The following procedures are recommended to perform proper error handling
in disk read/write operations:

Read Operations

1) Step the positioner to the desired track.

2) Perform the read operation as described in Section 6.9.5. 1If a
header or checksum error occurs, re-read the sector up to 5 times.

3) If the 5 retrys were unsuccessful, step the positioner off one
track and then back to the desired track. Repeat Step 2. If
still unsuccessful, step the positioner off one track in the
other direction and then back. Repeat Step 2.

4) Perform tne restep procedure given in Step 3 up to 4 times., If
still unsuccessful, deselect the unit and wait about 200:-milli~
seconds for the head to unload. Reselect the unit, restore to
track #, and re-seek to the desired track. Repeat Steps 2 and 3.

5) Perform the reselect function given in Step 4 up to 3 times, If
still unsuccessful, abort the operation with a permanent I/Q error.

Rev. &4 7/77 6-20

Write Operation

1) Step the positioner to the desired track.

2) Read the sector immediately preceding the desired sector. Any
errors which occur should be handled in the manner described
for normal read operations. This operation ensures the head is
properly positioned to the right track and the sector counter is
synchronized with the disk.

3) Write the desired sector as described in Section 6.4.4.

4) Read the sector just written to ensure the data was recorded
properly. If an error occurs, repeat Steps 2, 3, and 4 up to 5 times.

5) If unsuccessful, perform the restep operation as described for the
read operation and repeat Steps 2, 3, and 4.

6) 1If 4 restep operations are unsuccessful, perform the reselect
operation as described for the read operation.

7)Y 1If 3 reselect operations are unsuccessful, abort the operation
with a permanent 1/0 error.

If a permanent I/0 error occurs, the disk may be improperly centered, there
may be a defect in or damage to the recording surface of the disk, or the
disk may have been written on a marginal drive,

The '"restep' procedure described takes advantage of the hysteresis present

in all positioning systems, Friction in the positioner causes the head
position to deviate slightly from the nominal track position. This position
will be different when the head is stepped to a track from different directions.
In normal operations, this slight position error is well within the tolerance
limits for proper operations. However, if errors are encountered in reading

a disk which was written on another drive that is marginally aligned, the
slight difference may be enough to recover the data.

The ''reselect' procedure serves to dislodge any foreign particles and to
recalibrate the positioner, should it be positioned to the wrong track,.

6.6 DISK DRIVER

As a comprehensive example of all the principles presented in this section, a
sample disk driver is presented here. This driver provides the facilities to
seek to a track, seek and read a sector, seek and write a sector, and seek
and verify a sector. This verify operation is a special case of a sector
read but only the header bytes are transferred into the buffer. This allows
the use of a single disk buffer to perform write operations, which consist

of a header check prior to write, writing the sector, and a read-after-write
check.

The power-on recalibration is transparent. The driver maintains a table
containing the current track address of each drive connected to the controller,
The user's power on initialize software must set the entries in this table to
@PFFH, The first time a drive is accessed, the driver will recognize this

flag and recalibrate the positioner on the drive before performing the
specified operation.

Rev. & 7/77 : 6-21

When the driver is called, the HL register must point to a parameter block
(raferred to as a disk control block) which specifies the operation to be
performed. When the driver returns, the condition code will reflect the
status of the operation. (See the listing for details.)

The DCB is structured as follows:

[—

ADDRESS 7 6 5 4 3 2 1 8
DCB + @ S0 S 7| CoDE
ID R
DCB + 1 F A UNIT
L w ADDR,
A F
L
G L
G /
DCB + 2 SECTOR ADDRESS
DCB + 3 TRACK ADDRESS 3
DCB + & BUFFER ADDRESS LSB
DCB + 5 {BUFFER ADDRESS MSB

The DCB entries are described as follows:

Rev,

4

FN CODE Function code
@ = Seek only
1 = Seek and read sector
2 = Seek and write sector
3 = Seek and verify sector

ID FLAG Pre-Write Header (ID) Check Flap
= Perform check
1 = Inhibit check

RAW FLAG Read-After-Write Check Flag
. @ = Perform check
1 = Inhibit check

UNIT ADDR, Drive Unit Address
9 -3

Sector and Track Address are the address of the sector which is to be
written or read and the address of the track upon which the sector
resides, The driver will seek as necessary to move the head to the
desired track.

The Buffer Address 1s a 16 bit memory address stored in standard
8080 low/high format. This must be the address of a 268 byte read/
write buffer, The first two bytes of the buffer are reserved for the
header,

7/77 6-22

To perform a write operation, move the data to the read/write buffer,
set up the DCB, and call the driver,

To perform a read operation, set up the DCB and call the driver. When

the operation is complete, the data from the desired sector will be in
the read buffer,

Rev, & 7/77 6-23

Rev. 4

7/77

e 2 2 e 32 5 o7 o e O e e 0 3 3 20 20 46 4 e e i 3 A e 20 3 o i Sk e 3 46 3 3K R R o

* % % #* % X ¥

COPYPIGHT MICROPCLIS CCRPCRATICON

DISK DRIVEER FOR MICEQOPQLIS
FLEXIBLE DISK SUBSYSTEM

8 JUNE 1977

L3R B B B B N

W 25 25 2 25 A 2 ¢ 2 26 24 2 2% 23 2 e % 3 2 2 2 A8 3 30 38 2 K A A8 36 5 4 4 e 20 4 3 38 e

LI AR AR BN B R BE BE BE BE SR BE B B ONE BE AR OBE BE NE R R NE BE BE BE N EE B BE BE AR B B EE SR R NE R B SR R BE K N R A

3

CALLING SEJUENCE:

LXI HLUDRCES POINT EL TO USER
CALL DSKIO DCE & PEEFOREM
JNZ EEROE OPERATION

UDCB IS THE USE='S DISK CONTRQL
ELOGCK VEICH DEFINES THE OPEFATICN
TO BE PERFORMED AND IS STRUCTURED
AS FOLLO%S:

UDCE+€ FUNCTION CODE
SEEX TEACK ONLY
! SEEK AND EEAD SECTGR
2 SEEK AND WRITE SECTQOR
3 SEEK 4ND VERIFY SECTCE

WRITE OPERATIONS CONSIST OF:

1) VERIFY THE TRACK/SECTOR ID

B IN THE SECTOR IMMEDIATELY
PRECEEDINC THE DESIRED SECTGOR

2) PERFORM THE VEITE OPERATICN

3) THE SECTOR WRITTEN IS THEN
VERIFIED BY A READ-AFTER-FRITE
CHECKSUM READ

NOTE:THE ID CHECK AND EEALD AFTEE

WRITE CHECKS CAN BE CVERRIDDEN

BY CONTROL FLAGS IN UDCE+!

FOR WRITING ON UNFCRMATTED DISKS

UDCB+! CONTROL FLAGS/UNIT SELECT
BIT FUNCTION
-1 UNIT ADDRESS
6 READ-AFTER-WRITE CHECK
CONTROL:3=PERFORM.
I=INHIBIT
7 PRE-VRITE ID CHECK
CONTROL: P=PEPFORM.
1=INHIBIT,
UDCB+2 SECTOE ADDRESS (8-15)
UDCB+3 TBRACK ADDEESS (8-76)(34)
UDCB+4&5 BUFFER ADDRESS
BUFFER ADDRESS IS THEE START
ADDRESS OF THE READ/WRITE
BUFFER TO BE USED IN
PERFORMING THE OPERATIGN.

6-24

ALL OPERATIONS
REGUIRE A 268 BYTE BUFFER
ORGANIZED AS FOLLOWS:

BYTE ©® -- TRACK ID
BYTE | -- SECTOR ID
BYTE 2-267 =-- DATA

BYTES @ AND | ARE FILLED
IN AS NECESSARY BY THE
DEIVER

2) THE DISK 1,0 DRIVER ERETURNS VITH
THE CONDITION CQDE SET TO Z IF
THE OPERATION WAS SUCCESSFUL AND
NZ IF AN ERROR OCCURRED. THE
A REGISTER WILL CONTAIN AN ERROR
CODE AS FOLLOWVS:

! -- PERMANENT I/0 EERQR --AN
UNRECOVERABLE DISK ERRQE

CCCURRED

2 -- PARAMETER ERROR - ONE OF THE
PARAMETERS IN THE DCB IS
INVALID

3 -=- DRIVE NOT UP - THE SELECTED
DRIVE IS NOT REALY
4 == WRITE PROTECT - THE SELECTED
DRIVE IS WEITE PROTECTED AND
A WEITE OPERATION WAS
SPECIFIED
3) INITIALIZATION REQUIREMENTS:

1) THE DRIVE® CONTAINS A TABLE
LABLED "TRACK'" WHICH CONTAINS
THE CUREENT TRACK POSITION FQOR
EACH DRIVE CONNEXTED TO THE
CONTROLLER. EACH ENTRY MUST BE
INITIALIZED TO FFH TO CAUSE THE
TRACK POSITION OF EACH DRIVE TO
BE RE-CALIBRATED THE FIRST TIME
IT 1S ACCESSED

2) THE PARAMETER LABELED "TRKMX"
MUST BE SET TO THE HIGHEST
TRACK ADDRESS WHICH IS 76 FOR
MOD Il SUBSYSTEMS AND 34 FOR

MOD 1 SUBSYSTEMS

3) THE 16 BIT PARAMETER LABELED
“DADE"MUST BE SET TO THE ADLCRESS
OF THE DISK CONTEOLLER WHICH IS
THE BOCT PROM ADDRESS+2@0H

PSS Y EEEEE E X I I I NI B B B B S B B B NE NE B B BE SR B BE NECEE BE R BE CEE K R R N BE K B R SR S A

poeo ORG X'4@0°

4898 F3 DSKIO DI

6-25

Rev, 4

g4o!l

g4a02
2483
p4o4
B4ag7
24028
9408
240C
240D
2418
g4al2
2413
Q414
2415
g41é
2417

g4l1Aa
941D
@4lE
0429
8423
pa24
@425
0427
0429
ga2cC
942D
Q42E
84382
2433
9434
2437
2438

2438

@43E

2441
2444
B44s

7/77

Ccs

DS

ES
210002
39
224887
El

ES
11FS@s6
B606
7E

12

23

13

@5
C212984

21F506
7E
FE@4
D2D205
23

7
ES3F
FE24
D2D28S
23 :
7E
FE12
D2D285
23
3AFE@6
96
FAD2@S

CDE4®@5S

CDDS@4

3AFS586
B7
CACCa4

DSa19

*

* * *

*

* xR n K

%* % % % *

PUSH B SAVE REGISTERS
PUSH D

PUSH H

LXI H.8 SAVE STACK POINTER
DAD SP

SHLD STACK

POP H GET POINTER TO
PUSH H USER'S DCB

LXl D,DCB COPY USER DCE TO

MVI B,DCELEN INTERNAL DCE
MOV ALM

STAX D
INX H
INX D
DCE B
JNZ DS918

VALIDATE DCB PARAMETERS

LX1 H,DCB FUNCTION MUST BE
MOV ALM 3 OR LESS

CP1 4

JNC PARMER PARAMETER ERROR
INX H

MOV A.M UNIT ADDRESS MUST
ANl X'3F°' BE LESS THAN 4
CPl 4

JNC PARMER

INX H

MOV ALM SECTOR MUST BE
CPL 16 1S OR LESS

JNC PARMER

INK H

LDA TRKMX TRACK MUST BE LESS
SUB M THAN OR EQUAL TO
JM PARMER MAX TRACK

ENSURE DRIVE IS OPERATIONAL
CALL SLCT

SEEK TO DESIRED TRACK

CaLl SEEX

GET FUNCTION PARAMETER FROM DCB

AND PERFORM ANY OTHER REQUIRED
FUNCTION

LDA DCBFN DONE IF FUNCT=
ORA A SEEK ONLY(2)
JZ DS1028 DONE

PERFORM READ/WRITE FUNCTION

RETRY CONTROL FOR READ/WRITE

6-26

2448
4a4aA
gaap
244F
2452
0454

457
@45A
@45
469
461

G464
2467
246A
G46E

B46F
24Tl
2473
€476
2479
e47A

247C

Rev. 4

3E23
3206€7
3EZ4
322507
JE@2S
322427

2AFS9€6
2290087
SAFS5@6
3D

C26404

CC&lge
C3A224
3D

c29724

JAF686
=660
ceelB4
JAF726
3D
E60OF
47

7/77

% % % % % % OF E X X O M X M E X X H X ¥ X X K X ¥

OPEFATIONS:

A 3 LEVEZL FETRY STEUCTURE IS
PFOVIDEL AS FOLLOVS:

Il =- IF AN ERFQF OCCUFRE,UF TOQO 5
RETRYS OF THE OFFENDINC QPEFATION
WILL BE PERFORMED

2-- I1F THE LEVEL | RETRYS AFE NOT

. SUCCESSFUL,THE POSITIONEE WILL

BE STEPPED OFF TRACK AND BACK
AND THE LEVEL 1| RETRYS VWILL BE
PERFOEMED. THE LEVEL 2 RETEYS
WILL BE PERFOPMED UP TO 4 TIMES
3 -- IF THE LEVEL 2 PRETRY
PROCELCURE IS NOT SUCCESSFULLTEHE
UNIT WILL EE DESELECTED TO UNLOAL
THE EEAD THEN THE UNIT WILL EE
FESELECTEDL,THE POSITIONER WILL
EE RECALIBRATED AND MOVED BACK
TO THE DESIFED TRACK AND THE
LEVEL 1 AND 2 RETEY PROCEDURES
WILL BE PERFOEMED. THIS VWILL BE
DONE UF TO 3 TIMES.IF NOT
SUCCESSFUL,# PEEMANENT I/0
ERRQE VILL RESULT

MUVI AL3 PRESET EETRY
STA L3FTRY COUNTERS

MUL AL4

STA L2ZTRY

MULI £,5

STA LIETRY

SELECT DESIRED FUNCTION AND
FERFOERM

LELD DCEAD PRESET BUFFER
SHLD BUFADR ADDEESS

LDA DCBFN GET FUNCTION
DCE A

JNZ DS@é2

READ SECTOR

CALL READAL READ SECTOR
JMP DS@9a CHECK FOR EXRRQR
DCE A

JNZ DEQE2

YRITE SECTOR

LDA DCBUN IF HEADER CHECK
ANI HCI INEIBIT SET GC
JNZ ©[S27¢@ WEITE
LDA DCBSC BACKEPACE SECTOR
OCR A COUNT MQOD 16
ANl X'2F°*
MOV B,A

6-27

Rev.

4

847D
2482
B483
B4a8s
2489
248A
848D
Q48F
2491
8494
8497
2498

8498
B49E
B49F

R4aAa2
O4AS
24A8
P4A9
B4AC

B4AF
94B2
2485
24B6
24B9

24BC
P4BF
gace
@4C3
B4ace

24C9

g4cC
24CF
94D9
24Dl

7/77

CDB1@6
C2A284
CD2F@6
3AF 786
47

3AF 686
E640
EE40
CaBl a6
C3A204
3D
c2D2@s

3AF706
47
CDB196

CACCR4
3AB487
3D

3284927
C25704

CD3605
3A85027
3D

320527
cas2g4

CD638S
3A2627
3D

322687
C24Dd4

C3CCas

2A2887
F9
El
Dl

DSe72

DS@88@

*

O * * *
wn
Q
o]
(]

* N KR R R

LA 3R 3R

DS109

CALL READCK DO PRE=-WRITE HDR

JNZ DS@90 CHECK =- ABORT ERR
CALL WSECT GO WRITE

LDA DCBSC DO RAV CHECKSUM
MOV BL,A READ CHECK

LDA DCEUN UNLESS INHIBITED
ANI RAFI

XRl PAFI

CNZ READCK

JMP DS@9e GO CHECK FOR ERR
DCR A

JNZ PARMER TRAP-JUST IN CASE

VERIFY SECTOR

LDA DCBSC
MOV BELA
CALL READCK DO CHECKSUM READ

CHECK FOR ERROR

JZ DS109 NO ERROR-EXIT
LDA LIRTRY LEVEL ! -~ RETRY
DCR A UP TO 5 TIMES
STA LIRTRY

JNZ DS@s59

RETRIED 5 TIMES - STEP OFF TRACK
AND BACK AND REPEAT

CALL RESTEP

LDA L2RTRY PERFORM UP TO 4
DCR A TIMES

STA L2RTRY

JNZ DSg4@

STEPPED OFF 4 TIMES - DESELECT
DRIVE TO UNLOAD HEAD THEN
SELECT,RESTQORE AND RE-SEEK

CALL RESLCT
LDA L3RTRY PERFOEM UP TO 3

DCE A TIMES
STA L3RTRY
JNZ DS@38

UNSUCCESSFUL =-- ABORT WITH
PERMANENT I1,/0 ERROR

JMP PERMER

END OF OPERATION

LHLD STACK RESTORE STACK PTR
SPHL
POP H RESTORE REGISTERS
POP D

6-28

24D2
24D3
24D4

B405
@4D8
24D9%
24DC
24DE
Q4LCF
R4E2
B4ES
P4ESB
B4ES
Q4EA

Q4ED
O4F @
B4F3
Q4F 4
O4F7
B4FaAa
G4FD
Q4FE
6501
0504
2505
2586

2507
gses
2589
250A
£50B
0SeE
2511
@s13
8516
2519
8S1A
251B
851cC

851D
BS1E

Rev. &4

Ci
2o
Cc9

CDE4ES
ES
CoBDES
3EFF
BE
C2ES@4
CD79@%
JAF8B@6
_F

96

FAFAZ4
CDB 705
3D
C2reg4a
cC3@1ias
CD1D@s
3C
C2FAaB4
cbz2pes
71
El
co

FS

DS

ES

AF
32077
2A02€7
3661
111E09
CD17026
El

Dl

Fl

Cco

FS
DS

7/77

CAQ4@5

EIADE

W * * * *

EEK

* % X % %

SEXIN

SEKOUT

SEEKE]
SEEKR

STEPIN

STP1

*
*®
*®

STPOUT

POP B
NOP SPACE FOR EI
RET

SEEK TO DESIRED TRACK

CALL sSLCT ENSUPE DFIVE ESLTD
PUSH H AND READY

CALL LDTRK POINT HL TO TRACK
MUL ALX'FF°’ SEE IF DRIVE HAS
cCMP M BEEN INITIALIZED
JNZ SEEK! YES-CONTINUE

CALL EESTOR CALIBRATE POSITION
LDA DCEBTK GET TRACK FPONM DCB
MOV C.A SAVE IN C

SUB M ALREADY AT TRACK?
JZ SEEKR YES-RETURN

NOT AT TRACK -- ISSUE THE
APPEOFRIATE NUMBER OF STEPS TO
MOUE TO THE DESIRED TBACK

JM SEKOQUT
CALL STEPIN
DCR A

JNZ SEKIN

JMP SEEKPI

CALL STPOUT

INR A

JNZ SEKOUT

CALL SETTLE WAIT HEAD SETTLE

MOV M,C STORE TRACK
POP H
RET

STEP POSITIONER IN 1 TRACK

PUSH PSV

PUSH D

PUSE H

XRA A SET DIRECTION FLAG
STA DIRCTN

LHLD DADR STEF IN ONE TRK
MULI M,STEP+1

LXI D,32 WAIT STEP TIME
CALL TIMER

POP H

POP D

POP PSV

RET

STEP POSITIONER OUT 1 TRACK

PUSH P&V
PUSH D

6-29

™ Rev, 4

@SIF
4529
gs22
@525
@s2sg
@s2a

@s2D
PS2E
253!
@S34
8535

8536
2539
2534
@538
@S3E
@s4l
8542
854S
8546
2549
254C
@54F
2552
@555
8556
3559
2sscC
@sSF
2562

8563
8564
8567
8569
B56C
@S6F
8572
85173
2576

7/77

ES
3EFF
320787
2A0287
3660
c313@s

DS
110A00
CD1786
Dl
cs

CDBD@S
7E
B?
C24208S
CD798s
co
3AR787
B?

C2s568%

CDg78s
cp2res
CD1D®S
Co2D8S
c9

CblDEs
CDh2D@eS
CD@7@5S
CD2D@S
co

'

ES
2A0207
36A8
11C800
CD1786
CDE48S
El
CD79@S
C3D5824

PUSH H-
MUl
STA
LHLD
MV1
JMP

DIRCTN
DADR
M, STEP
STP1

»

i

* VAIT
*

SETTLE PUSH D

LXI D.l#®
CALL TIMER

POP D
RET

* % % K

RESTEP CALL LDTRK
MOV ALM
ORA A

JNZ RSTPA
CALL RESTOR
RET

LDA DIRCTN
ORA A

JNZ RSTPB
CALL STEPIN
CALL SETTLE
CALL STPOUT
CALL SETTLE
RET
CALL
CALL
CALL
CALL
RET

RSTPA

RSTPB STPOUT
SETTLE
STEPIN

SETTLE

A X'FF"*

SET DIRECTION FLAG

STEP OUT ONE TRK
GO WAIT STEP TIME

HEAD SETTLE TIME

1¢ MILLISECONDS

STEP OFF TRACK ONE AND BACK TO CORRECT
POSSIBLE MARGINAL TRACK POSITION

OF DRIVE VHICE WRQOTE THE DISK

IF TRACK @ SUBSTITUTE RESTOR

GET CRNT TRK ADDR
GET CRNT TRK

USE RESTOF IF TK 2

RETRY ROUTINE TO RESTORE TO @ THEN

*
-
* LIFT HEAD,
*
R

ESLCT PUSH H
LHLD DADR
MVL
LXI D,298
CALL TIMER
CALL SLCT
POP H
CALL RESTOR
JMP SEEK

* % % A

6-30

ML RESET

LOWER HEAD AND RESEEK

RESET CONTROLLER

RESELECT,LOWR HEAD

GO RE=-SEEXK

RESTORE POSITIONER TO TEACK @
POSITIONER MUST BE STEPPED 0QUT
UNTIL THE TRACK 8 SWITCH IS MADE

79
' TA
»7B
iTE
388
583
388
386
387

ES

S
CDBD@5S
36FF
cD88es
36900
Ccl1

El

Co.

588
589
s8C
58D
S8E
591
1592
1593
1595

ES
CDE4@S
DS

CcS
2A02087
23

TE
E608
CAA4QS

3598
3S%9A
359D
2S9E
25Al1

3E28
CDe7es
3D
C29A85
cL2pes

25A4
B5SA6
BSA7
BSA9
25AC
BSAF
2580

PESS
TE
E688
C2B60S
CD1D@sS
2D
C2A685

@SB3 C3cCcCes

Rev. 4

/77

*
*x

RESTOR

*®
*
*

TO CALIBRATE TRACK POSITION

PUSH H

PUSH B

CALL LDTRK
MUI MLX'FF'
CALL RESTRI
MVl M,0
POP B

POP H

RET

RESTORE TO TK @

POINT HL TO TRACK

PRESET TO BAD TRK
RESTORE TO TK @

SET TRACK=9

RESTR1 PUSH H
CALL SLCT ENSURE UNIT SLCTD
PUSH D AND READY
PUSH B
LHLD DADR POINT TO STATUS
INX H BYTE
MOV ALM ALREADY AT
AN1 TK@ TRACK @ ?
JZ REST3 NO - PRESS ON
*
= ALREADY AT TRACK @ =~ STEP
* IN 8 TIMES THEN RESTORE
* TO ENSURE GOOD POSITION
*
MUI AL8
REST2 CALL STEPIN STEP IN 8
DCR A TRACKS
JNZ REST2
CALL SETTLE WAIT SETTLE TIME
*
* STEP OUT UNTIL TRACK @ SWITCH
* 1S ACTUATED OR UNTIL 85 STEPS
* HAUVE BEEN ISSUED SO THAT WE
* DONT BANG AGAINST THE STOP
* FOREVER IF TK® SWITCH IS
* BROKEN
* .
REST3 MVl (L85 LOAD MAX STEPCNT
REST3A MOV ALM TRACK 27
ANI TKe
JNZ REST4 YES- PRESS ON
CALL STPOUT STEP OUT ONE TK
DCR C MAX STEPS ?

*

JNZ REST3A

NO - TRY AGAIN

* MAXIMUM NUMBER OF STEPS HAVE
* BEEN ISSUED - ERROR ABORT

3

*

*FQUND TRACK @

JMP PERMER

- WAIT

* SETTLE TIME THEN EXIT

x

6-31

B5B6 CD2DAS REST4 CALL SETTLE WAIT HEAD SETTLE

8589 Ci POP B
g5BA DI POP D
@SEB EI POP H
8sBC C9 RET

*
* LOAD ADDRESS QF CURRENT TRACK ON
* CURRENT UNIT INTO HL

x*

@SBD DS LDTEK PUSH D
@5BE 3AF626 LDA DCBUN
@5C1 E6923 ANI @3 MASK QUT UNIT
@5C3 SF MOV ELA
25C4 1600 MVI D.@2
25C6 21FCB6 LXI ELTRACK POINT HL INTO
25C9 19 DAD D TRACK TABLE
85CA DI POP D
25CB C9 RET
**
*
**
x*
* ERROP EXITS
x*
@5CC 3EQ1! FERMER MVI ALl
@5CE B7 ORA A
@5CF C3CCB4 JMP DS109
@5D2 3EQ2 PARMER MVI A,2
@5D4 B7 - ORA A
@5D5 C3CCo4 " JMP DS99
@5D8 3EG3 DRIVER MVl AL3
@sDA B7 ORA A
@5DB C3CC84 JMP DS100
@S5DE 3EQ4 PROTER MVI A4
@SEZ B7 ORA A
@5E1 C3CC24 JMP DS122
*x
x
x
3 e e e e ik 2 e X e e e e e e 3 i e i e e ok ik e e i e X e e e Ok i X e K
* REGISTER DEFINITIONS AND *
* FLAG EQUATES FOR MICROPOLILS *
* FLEXIBLE DISK CONTROLLER B *
e e e e Xk 3 e e e e O 3 K K K e e 0 K e K KR K K K M R A i A Rk K R okl kK
x
x*
x
Faog BPROM EQU X'F4g@2°
F600 DIADR EQU EPROM+X'Q02@2°
b
* DATA REGISTERS
b
F602 WDATA EQU DIADR+X'g2"
F6@2 RDATA EQU WDATA
»x
* STATUS REGISTERS

Rev. & 7/77 6-32

F620 DSECTR EQU DIADR
* 8-~3 SECTOR COUNT
* 4 SPARE
* S SPARE
* 6 SCTR INTERRUPT FLAG
* 7 SECTOR FLAG
3
* FLAG BITS
3
2240 SIFLG EQU X*42°
2088 SFLG EQU X'&@°
g020 DTME EQU X'29°
x
*
F6@1 DSTAT EQU DIADR+1
* 2-] UNIT ADDRESS
* 2 UNIT SELECTED (LOW TRUED
* 3 TRACK @
* 4 WRITE PROTECT
*] DISK READY
* 6 PINTE
* 7 TRANSFER FLAG
»
* FLAG BITS
*
0080 TFLG EQU X890
Po4a INTE = EQU X'4@°
o920 RDY EQU X'28°
9010 WPT EQU X'19°
8908 TK@ EQU X'p8°*
o0Qe4 USLT EQU X'84°
*
*
* COMMAND REGISTER
»
Fé60o DCMND EQU DIADR
*(ALS0 WILL RESPOND TO DISK+l)
x
* p-1 COMMAND MODIFIER
* 5-7 COMMAND
*
* COMMANDS
*
Pe2o SLUN EQU Xr'28°' SELECT UNIT
* MODIFIER CONTAINS UNIT ADDRESS
Pouo SINT EQU X' 49° SET INTERRUPT
* MODIFIER =1 ENABLE INTERRUPT
* =@ DISABLE INTERRUPT
0069 STEP EQU X'602° STEP CARRIAGE
* MODIFIER =@@ STEP QUT
* =@l STEP IN
2089 WTCMD EQU X‘*8@* ENABLE VRITE
* NO MODIFIER USED
2CAD RESET EQU X‘ap® RESET CONTROLLER
* NO MODIFIER USED
*x
*

6-33
Rev. & 7/77

Rev,

A

9086

8SE4
@SES
BSE6
@SE7
@SEA
8SED
OSEF
BSFQ
OSF!
@SF2
g5F3
@SFS§

85F6
BSF7
@SFA
BSFE
BSFD

gSFE
260!
2684
2605
2687
2608
2629
g69cC
@60E
g6le
g6l1
8612
2613

g6l4a

2617
pelsg
ge19
gé6lcC
861D
@61F
8628
9622

7/77

0sS

cS

ES
2A0287
3AF606
E693
47

23

7E

4F
E687
A8

79
CagCos
78
F628
77

11FAGO
CD1 706
7E
E6087
A8

7E
c21806
E620
EE20
El

cl

D1

c8

C3D835

CcS

ES
2A0207
7E
2660
78
D691
B7

SL@1Q

SLA2g

*

=3 % % % % % % *

IMER

Tigle

QU 134 SECTOR LNGTH/2

SELECT DRIVE SPECIFIED
BY UNIT ADDRESS IN DCB

PUSH D

PUSH B

PUSH H

LHLD DADR GET CONTROLLER ADR
LDA DCBUN GET UNIT ADR FROM
ANI X'93° DCB

MOV B,A AND SAVE

INX H POINT TO STATUS
MOV ALM AND READ

MOV CLA SAVE STATUS

ANI X'27° MASK USLD & ADDR
XRA B DESIRED UNIT PREV

NOTE-THIS TEST WILL FAIL IF
CONTROLLER IS NOT PLUGGED IN

MOV ALC SELECTED?

JZ SLo1@ YES=-CHECK RDY
MOV ALB GET UNIT ADDRESS
ORl SLUN BUILD COMMAND
MOV M,A OUTPUT COMMAND

VAIT 25¢@ MSEC FOR -
LX1 D,259 SECTOR CNTR TO
CALL TIMER GET IN SYNC
MOV AaLM GET STATUS

ANl X'927° SELECTED NOW?

XRA B

MOV A.M GET STATUS AGAIN
JNZ SL@g22 ERROR IF NOT SLTD
ANI RDY ENSURE UNIT IS
XRI RDY READY

POP H

POP B

POP D

RZ RETURN IF OK

DRIVE NOT UP ERROR
JMP DRIVER

I MILLISECOND TIMER
DE=(DELAY) TIME IN MSEC

A 1S DESTROYED

PUSH B

PUSH H

LKLD DADR

MOV ALM RE-TRIGGER 4

MVl BL96 SECOND TIMER

MOV ALB COUNT

SUl 1 DELAY LOOP=1.008

ORA A MSEC @588 NSEC
6-34

8623 C22006 JNZ TIp19+]

»x
* IMSEC EXPIRED - DECREMENT DELAY
* MULTIPLIER & CHECK FOR DONE
*
8626 1B DCX D
8627 7B MOV ALE
9628 B2 ORA D
2629 C21F@6 JNZ TIp10
262C EI POP H
262D C1 POP B
P62E C9 RET
*
* WRITE | SECTOR
*
b3
B62F CDE40S5 WSECT CALL SLCT ENSURE UNIT SLD
2632 3AF706 LDA DCBSC AND READY
8635 47 MOV B,aA
8636 C5 PUSH B
2637 QE86 MUI C,SCLEN C <= BYTCT/2 ,
2639 2A2207 LHLD DADR GET CONTROLLER ADR
263C ES PUSH H
863D 23 INX H READ STATUS
863E 7E MOV ALM ABORT IF
@63F E610 ANl VWPT WRITE PROTECTED
@641 C2DEBS JNZ PROTER :
P644 2A0087 '~ _LHLD BUFADR GET BUFFER ADDR
8647 ES PUSH H
648 DI POP D MOVE TO DE
9649 3AF8@6 LDA DCBTK MOVE TRACK AND
264C 77 MOV ML,A SECTOR ID TO VRITE
864D 23 INX H BUFFER
B64E 70 MOV M,B
@64F 2A8287 LHLD DADR GET CONTROLLER ADR
@652 CDES@6 CALL GETSEC WAIT FOR SECTOR
*
* FOUND DESIRED SECTOR-
* ENABLE WRITE '
x .
2655 3680 MVI M,LWTCMD
8657 23 INX H
*
* WAIT FOR TRANSFER FLAG
x
2658 B6 WSd12@ ORAa M
P659 F25806 JP wso19
*
* INSERT SYNC BYTE
*
@65C 23 INX H
965D 36FF MVI MLX'FF°
*
B65F AF XRA A CLEAR CARRY
8660 EB XCHG
9661 2608 MVI B,@ AND CHECKSUM

6-35
Rev. & 7/77

Rev, 4

9663
8664
8665
R666
8667
2668
2669
866A
266B
p66C
R66D
266L

8671
p672

2673
9674
8675
2676
2679
B67C
867F
P680

2681

2684
2687
2688
2689
2688

@&8E
268F

2691
g6s2

7/77

7E
12
88
47
23
72
12
88
47
23
8D
C26306

78
12

El
AF
Bé
F2753¢%
112189
CD1706
C!
co

CDE4@3

JAF706
47

Cs
2E86
CDD6B6

EB
2680

1A
77

wseze

*

vsa3e

XN K OH R KN X

READAL

* % ¥ X ¥

RDAL1 O

WRITE HEADER & DATA FIELD

MOV ALM GET BYTE FROM MEM
STAX D WRITE TO DISK
ADC B ADD TO CKSUM
MOV B,A SAVE CKSU

INX H NEXT EYTE

MOV ALM -Z7C-

STAX D

ADC B

MOV B,A

INK H

bCR C

JNZ WSQ28

END OF DATA - INSERT CHECKSUM
MOV ALB

STAX D

WAIT END OF SECTOR

POP H

XRA A

QRA M WAIT SCTR FLAG
JP wsSa3g

LX1 DJl WAIT | MSEC FOR
CALL TIMER ERASE DELAY
PCP B

RET

READ | SECTGR
VERIFY CHECKSUM AND HEADER

RETURNS Z=0K

NZ=ERROR
CALL ESLCT ENSURE UNIT IS
RDY + SLTD
LDA DCBSC GET SECTOR ADDR
MOV E.,A FROM DCB
PUSH B
MVI C,SCLEN C <= BYTCT/2

CALL WTSYNC WAIT DESIRED
SECTOR & STEIP

SYNC BYTE

FOUND DESIRED SECTOR - READ

XCHG

MUl B,g CLR CHECKSUM

READ LOOP

LDAX D READ FROM DISK

MOV M,A MOVE TG BUFFER
6-36

2693
2694
P695
2696
2697
0698
0699
694
2698
269C

069F
P6AD
R6Al
P6A2

@6A3
26A6
B6AT
26AA
26AB
B6AC
B6AD
G6AE
B6AF
68RO

26B1
26B2
6BS
P6B7

26BA
26BC
368D
26BE

J6BF

Rev.

23
88
47
Ia
77
23
88
47
2D
C29106

1A
B8
Ci
Cco

2A0007
EB
CDBD@5
1a
8E
co
13
A
B8
ce

CsS
CDE48S
OEBS
CDD6dé6

0608
7E
12
88
47

4 7177

*
*
*

RDAG24@

L2 IR BE B B NE NE BE K BE OBE AR R B AR B

o)
n
>
o
Q
ES

L

INX H
ADC B

MOV BLA
LDAX D

MOV M,A
INX H
ADC B

MOV ELA
DCR C

JNZ RDAlG

NEXT LOC

ADD TO CHECKSUM
AND SAVE

NEXT READ

-ETC~-

END OF DATA?
NO-LOOP

END OF DATA~READ CHECKSUM

LDAX D
CMP B
POP B
RNZ

COMPARE VWITH
COMPUTED CHECKEUM
RETURN 1F ERROR

CHECKSUM OK=-VERIFY HEADER

LHLD BUFADR
XKCHG
CALL LDTRK

LDAX D
CMP M
RNZ

INX D
LDAX D
CMP B
RET

VERIFY SECTOR

POINT DE TO READ
BUFFER

POINT TO CURRENT
TRACK AND COMPARE
WITH TRACK ID READ

COMPARE SECTOR 1ID
WITH DESIRED SCTR

READ THROUGH SECTOR WITHOUT
MOVING DATA INTO MEMORY AND
VERIFY TRACK AND SECTOR 1ID

AND CHECKSUM

ONLY TRACK AND SECTOR ID ARE READ
INTO MEMORY AND CHECKSUM IS

VERIFIED

SECTOR IS SPECIFIED BY E REG

RETURNS 2=0K

NZ=ERROR

PUSH B

CALL SLCT

MVl C,SCLEN-I
CALL WTSYNC

MUl B.9
MOV ALM
STAX D
ADC B
MOV BLA

SAVE SECTOR

ENSURE SLTD&RDY

C <- BYTCT/2-~1
WAIT SECTOR & STRP
OFF SYNC BYTE

CLR CHECKSUM

READ TRACK 1ID

SAVE IN BUFFR

ADD TO CHECKSUM
AND SAVE

6-37

Rev.

4

06C0
26C1
gec2
26C3
g6Ca
B6CS5

86C6
86C7
26C8
86CS
gs6Ca
26CB
#6CC
86CD
B6CE
@6CF

gebD2
@6D3

26D6
96D9
86DA
46DD
P6EQ
26E1
B6E2
@6ES
P6E6
B6E7
A6ES

J6E9
@6EA
B6EB
@6EE
P6F9
B6F1

B6F4

7/77

13
7E
12
88
47
20

7E
88
47
ae
29
7E
88
47
2D
C2C606

7E
C3A006

2A0007
EB
240297
CDE986
23
B6
F2E106
23
7E
AF
c9

7E

B?
F2E906
E68F
A8
C2ES26
c9

DCK1@

* # #*

L3R AL IR X 3R R

5
v
<
2
Q

WTS@ol@e

LR IR 28

GETSEC

»*

INX
MOV
STAX
ADC
MOV
NOP

D
A.M
D
B
B,A

READ SCTR 1D
AND SAVE

READ THROUGH REMAINDER OF SECTOR

TO COMPUTE &

MOV
ADC
MOV
NOP
NOP
MOV
ADC
MOV
DCR
JNZ

END

MOV
JMP

A,M
B
B,A

A.M

B

B,A

c
RDCK!2

VERIFY CHECKSUM

READ FROM DISK
ADD TO CHECKSUM
SAVE CKSUM

-ETC-

OF DATA - READ CHECKSUM

AsM
RDAG20

GO CHECK HDR &
CHECKSUM

WAIT FOR DESIRED SECTOR
TO COME AROQUND AND STRIP OFF
BYTE FOR READ ROUTINES

GET BUFFER ADDRESS

AND CONTROLLER ADR
VAIT FOR SECTOR

WAIT FOR XFER RDY
FLAG

OK-READ IN SYNC
BYTE =~ = THROW IT
AWAY,CLEAR CARRY
AND GO READ

WAIT FOR DESIRED SECTOR TO COME

SYNC

LHLD BUFADR
XCHG

LHLD DADR
CALL GETSEC
INX H

ORA M

JP UTSOl9
INK H

MOV ALM
XRA A

RET

ARQUND

MOV ALM
ORA A

JP GETSEC
ANI X'*@gF?
XRA B

JNZ GETSEC
RET

RAM

WAIT FOR SCTR FLAG

OK -IS THIS THE
ONE WE WANT?
NO-WAIT

PRESS ON

STORAGE REQUIRED FQOR DRIVER

6-38

PEFS
B6FS
B6F6
36F7
P6F8
R6F9
2aee6

BREQ
@o49
B6FB

B6FC
@6FD
@6FE
Q6FF

270a

2782

g7¢4
2705
2786

0787
8708

2970A

Rev.

4cC

FF
FF
FF
FF

BOF6

4

7/77

»

*

b

DCB
DCBFN
DCBUN
DCBSC
DCBTK
DCBAD
DCBLEN
*

*

HCI
RAF1I
TRKMX

o K2R B B 3K N B IR

RACK

»

*
BUFADR
*

*

*

DADR

*

*
LIRTRY
L2RTRY
L3RTRY
*
DIRCTN
STACK
*

*

*

INTERNAL DISK CONTROL BLOCK

EQU
DS
DS
DS
DS
DS
EQU

EQU
EQU
DC

*

I

1

1

!

2

*-CCB

X'g@:° HEADER CHECK INH
Xr4@? RAV CHECK INHIBIT
76 MOD 2

CURRENT TRACK TABLE

MUST BE INITIALIZED TO FF

AT POWER ON TO CAUSE DISK TO

BE RESTORED TO TRACK 0

THE FIRST TIME IT IS ACCESSED TO
CALIBRATE TRACK POSITION

DC
DC
DC

.DC

DS

DC

RETRY

Ds
DS
DS

DS
DS

END

X*FF?
X'FF?
X'FF?
X'FF?

2 CURRENT BUFFER ADR

B(DIADR) DISK CTLR ADDR

COUNTERS

2 SAVED SP

-

6-39

APPENDIX A - BASIC ERROR MESSAGES

ARGUMENT - Argument in a function reference is the wrdng data type or missing.

ARRAY INDEXING ERROR - A reference to an array element contains an invalid
index. May also be caused if an attempt is made to reference an array ele-
ment before the array is defined in a DIM statement.

CONVERSION ERROR - Attempt to assign a real value to an integer variable and
the converted value is too large.

DIGIT BEYOND RADIX - A number specified in radix format includes a digit which
is invalid for the specified radix.

DISK FULL - An attempt was made to allocate another track for a file and no
free tracks remain..

DRIVE NOT UP - The desired disk unit dges not have a diskette loaded, is not
up to speed, or has a malfunction which prevents it from accepting commands.

DUPLICATE NAME - An attempt. was made to OPEN a file name which already exists
as a new file.

END-FILE - The end-of-file was encountered in a disk file read.

EXTRA INPUT IGNORED - The response to an INPUT statement contained more values
than were needed to sat1sfy the variable 1ist and the extra va]ues were
ignored.

FILE ALREADY OPEN - Fi]e‘number specified in an OPEN statement a]réady has a
file opened to it.

FILE NOT FOUND -~ File name specified in a disk I/0 command does not ex1st on
the specified diskette.

FILE NOT OPEN - File number specified in a disk 1/0 statement does not have
a file name opened to it.

FILE TYPE ERROR - The attributes of the referenced fi]é are inconsistent with
the requirements of the statement or command that referenced it.

ILLEGAL IMMEDIATE - An attempt was made to use a statement as a direct command,

but the statement.is only valid within a BASIC program.

INPUT OVERFLOW - A program line greater than 250 characters in length was en-
tered - the entire program line is cancelled.

INSUFFICIENT INPUT - The response to an INPUT statement contained insufficient
values to satisfy the variable list.

INTERRUPT - Executidn of a program was interrupted by entry of a CNTL/C key at
the terminal.

INVALID DISK FILE NAME - Disk file name specified is not a valid disk file
name.

-]
Rey. 7 3/78 A

Ve

LOAD OVERRUN - The length of the BASIC program being loaded exceeds the
memory space currently available to BASIC.

LOG OF NEG # - Attempt was made to pass a negative or zero value to the
LOG or LN function.

MEMORY OVERFLOW - Insufficient memory exists for execution of the program.

MISSING FOR - A NEXT statement was encountered prior to execution of a
FOR statement specifying the loop variable.

NOT A FILE # - File number specified in a disk I/0 statement is not one of
the digits 0 - 9.

NOT A LOAD FILE - Attempt to load a data format disk file.

NOT A RECORD # - The value following the RECORD option in a GET or PUT
statement is not a valid record number.

NOTHING TO RETURN TO - A RETURN statement was encountered prior to executing
a G0SUB statement.

NUMBER OUT OF RANGE - The value of an expression referenced is illegal.
Refer to the description of the statement in error for the range of
valid values.

OVERFLOW - Numeric overflow - Result of an operation is too large to be
contained in a variable.

OUTPUT OVERFLOW - A PRINT or PUT statement has attempted to create an output
line (record) greater than 250 characters in length. This exceeds the
maximum internal buffer capacity. The line (record) is not output.

PARM ERR - Disk I/0 Parameter error - usually caused by setting the sequential
GET/PUT pointers to an invalid value.

PERM FILE - An attempt was made to SCRATCH a permanent file. ¢

PERM I/0 ERROR - A disk I/0 error occurréd which was not recoverable in the
disk I/0 retry logic.

PRECISION ERROR - A numeric function or the 4 operator was referenced with
RSIZE greater than 10.

READY - The BASIC interpreter is ready for entry of commands or program
lines at the terminal.

RAN OUT OF DATA - A READ statement depleted the data 1ist before satisfying

the variable list. A GET statement encountered the end of the current
record without satisfying the variable list.

Rev. 8 9/78 A-2

SIZES ERROR - One of the parameters of a SIZES statement is invalid or
there are already variables allocated when the statement is encountered.

SQRT OF NEG # - Attempt to pass a negative number to the SQR function.
STACK OVERFLOW - The statement in error contains an expression which is
too complex. Break the expression into multiple expressions which are
less complex.

STMT # NOT FOUND - The statement in error tried to transfer control to a
program 1ine number which does not exist.

SYNTAX - The statement in error is not recognizable or contains an invalid
structure such as unequal right and left parentheses.

TYPE ERROR - Attempt to assign a value of the wrong data type to a variable.

WRITE PROTECT - An attempt was made to write on a file with a write protect
attribute or the diskette on which the file resides has a write protect
tab installed.

UNDERFLOW - Numeric underflow - The result of an operation is too small to
be assigned to a variable.

X4Y INDETERMINATE - Attempt to take a fractional power of a negative number
or @ or to raise # to a negative or @ power, which are undefined operations.

ZERO DIVIDE - Attempt to divide by zero which is an undefined operation.

Rev. 8 9/78

APPENDIX B - BASIC UTILITY

B.# DESCRIPTION

The MDOS System diskette included with each system contains a BASIC
utility program.

The functions provided are:

1)

2)

3)

Initializing a diskette: This must be done before a newly

purchased diskette can be used by MDOS or M.,BASIC to store
data or programs. The INIT command in MDOS may be used
instead. It has the same effect.

Examining and modifying memory: Used to examine, and change

if desired, the contents of any location in memory. The P
command in the Extended Systems Monitor is similar.

Saving BASIC: Writes a copy of M.BASIC plus the RES module
onto a diskette. Used for creating a BASIC-only system
diskette.

CALLING THE UTILITY

Rev.

1)

2)

3)

4)

Make sure you have mounted in drive # an MDOS system
diskette, or BASIC-only diskette with both M.BASIC and the
BASIC Utility on it.

Use normal operating procedures to get M.BASIC in control,
indicated by the READY prompt.

Enter the command LOAD "UTILITY" (return).

When the system responds with READY, enter RUN (return). The
Utility will sign on with:

BASIC UTILITY PROGRAM-VERSION X.X

ENTER KEY TO SELECT DESIRED FUNCTION

5)

6)

7)

8

F FORMAT DISK

M MEM EXAM/MODIFY
S SAVE BASIC

E EXIT

FUNCTION?

To select a function, enter the associated letter, followed
by a return.

After completing a function, the program will request another
command. Enter E to return to M.BASIC.

If the program is for some reason unable to complete a
function, it may return to the M.BASIC executive. To get
back to the Utility, begin again at step 3.

1 2/5/79 B-1

B.2 INITIALIZING A DISKETTE - FUNCTION F

The Utility refers to this as the FORMAT DISK function.
Initialization consists of writing track and sector address
information in each sector of the data area of the diskette and
writing an empty Directory on the Directory track.

Since initialization essentially erases a diskette, DO NOT
initialize the System diskettes included with your system.

l) In response to P (return), the Utility will output:

SPECIFY UNIT NUMBER?

2) Enter the number of the drive to be used (4 to 3) and press
return. The program responds with:

INSERT BLANK DISKETTE IN UNIT X.
ARE YOU READY?

If you wish to get out of this function, press (return),
otherwise, continue.

3) Load the diskette you wish to initialize into the specified
drive. '

4) Enter Y (return).

The Utility will initialize the diskette. This takes about 790
seconds.

When completed, the Utility will request the next function command.

B.3 MEMORY EXAM/MODIFY -~ FUNCTION M

In response to M (return), the Utility will output:

ENTER ADDRESS?

Type the hexadecimal representation of the desired memory address
followed by a carriage return. The Utility will print the
hexadecimal value of the contents of the desired memory location,

followed by a question mark (?). Enter one of the following
responses:

l) If a hexadecimal number from # - FF followed by a carriage
return is entered, the contents of the memory location just
displayed are set to the value entered. The contents of the
next sequential memory location are then displayed and the
Utility prompts for the next response.

2) If a carriage return only is entered, the contents of the
next sequential memory location are displayed and the Utility
prompts for the next response.

B-2 Rev. 8.1 2/5/79

3)

4)

If a colon (:) followed by a carriage return is entered, the
Utility prompts for the entry of a new address to
display/modify as described above.

If an exclamation mark (!) followed by a carriage return is
entered, the Utility exits the memory modify/display function
and prompts for a new function select. ‘

B.4 SAVE BASIC =~ FUNCTION S
1) In response to § (réturn), the Utility will output:
ARE YOU READY?
If you want to get out of this function, press (return),
otherwise, continue,

2) Mount the diskette on which you wish to store M. BASIC in
drive 9. (The diskette MUST be newly initialized. 1If it is
not, do section B.2 above, first.)

3) Enter Y (return).

4) The Utility will save M. BASIC on the diskette, and set its
attributes to permanent and write-protected. When completed,
the Utility will request the next function command.

5) If you wish to copy the BASIC Utility onto the BASIC-only
diskette, exit from the Utility by entering E as the next
function. After the BASIC prompt READY, enter SAVE
"N:UTILITY" (return).

6) To copy any assembly language utility, such as DISKCOPY, ' onto
the BASIC-only diskette, use the FILECOPY command in MDOS.

Rev, 8.1 2/5/79 B-3

APPENDIX C - ACCESSING DISKCOPY FROM BASIC

DISKCOPY is a special overlay utility that writes an absolute binary copy

of one disk onto another. The utility overlays MDOS or BASIC. It uses

all available memory during the copying process. The more memory in a system
the faster the copying process. On average it takes about two minutes to
copy and verify all 315k bytes of a MOD II disk.

NOTE 1: Previous versions of DISKCOPY will not run with BASIC 3.9 and
DISKCOPY 3.P will not run with earlier versions of Micropolis
BASIC.

NOTE 2: In multiple drive systems DISKCOPY can be copied onto another
disk by using the FILECOPY utility under MDOS (Section 4.7).

The DISKCOPY utility is invoked from BASIC by using the LINK command.
LINK "[unit:]DISKCOPY"
a sign-on message is output:

MICROPOLIS DISKCOPY VS X.X - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SOURCE) DISKETTE
?

DISKCOPY waits until the unit number is entered. When a number between
P and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until the unit number (@ to 3) is entered. It then prompts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

and waits for a Y. A note of CAUTION, we strongly recommend placing a
write protect tab on the original (source) diskette. It is possible to
put the wrong diskette in the wrong drive or type the wrong unit numbers.
If your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying,
the process can be temporarily halted between read source and write destina-
tion cycles by typing a control S. The process is restarted by typing anv
other key except a control C.

The control C will cancel the entry or copy process and prompt:

CANCELLED
MORE ?

Rev. 7 3/78 C-1

If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM DISKETTE IN UNIT @
TYPE Y WHEN READY
?

When a Y is typed the disk in unit @ is rebooted. If it's an MDOS diskette
MDOS is booted. If the disk in unit @ is a BASIC only disk or some other
bootable system, it will be booted in and sign on. DISKCOPY is overlayed
by the incoming system and is no longer in memory.

When the disk has been copied and verified correctly DISKCOPY outputs:

GOOD CoPY
MORE ?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:
PERM 1/0 ERROR ON DESTINATIQM DISKETTE

or

PERM I/0 ERROR ON SOURCE DISKETTE

indicating where the error occurred.

It is possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. In this case it is imperative that the
original diskette be write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks from
the source disk as can be contained in main memory and then pause. When the
select indicator 1ight goes out, remove the source diskette and insert the
destination diskette. Press the return key and as soon as the select
indicator 1ight comes on type a control S again. When the select indicator
light goes out again the data from the source disk has been written to the
destination disk and one complete cycle is finished. This process is
repeated, swaping the source and destination disks in and out until the
entire disk is copied. After the last data is written onto the destination
disk, the program goes directly into a verifying process and will not pause
until this is over. When the source is placed back into the drive and the
return key is pressed the system will prompt: GOOD COPY or output an error
message as discussed above. At this point the copy is complete.

c-2

Rev. 7 3/78

APPENDIX D - SUMMARY OF MDOS ERROR MESSAGES

D.1 MDOS EXECUTIVE AND SHARED SUBROUTINES
BAD FILE #

The file number specified is greater than 8.
BAD RECORD #

The record number specified is greater than exists in the specified file.

CANCELLED

A control C was typed at the console, canceling an operation.

COMMAND NOT FOUND

The word typed as a command name, or implicit command (file name) does
not exist. The command was spelled incorrectly or the file name was
not found on the specified disk.

DISK FULL

An attempt was made to allocate an additional track to a file, and no
free tracks exist. The file is closed and the message is output. Some
data may have been successfully written to the file before additional
track space was needed.

DRIVE NOT UP

The disk unit specified is not loaded.

DUPLICATE NAME

The file name already exists on the unit specified. All files on a-disk
must have unique names.

END-FILE

The end of the file has been reached during a disk read.

FILE NOT FOUND

The file name specified does not exist on the unit specified.

FILE NOT OPEN

The file with the specified number has not been opened.

Rev. 7 3/78

INDEX PAST EOR

The index position is beyond the end of the record.
LOAD ADDRESS ERROR

The address specified with a file to be loaded 1nto memory would cause
the file to overwrite the operating system.

PARM ERR

A parameter is out of range for a particular command, to big or to small.

This is different than a syntax error caused by a parameter beyond the maximum
input range.

PERM FILE

The file specified with a SCRATCH command or with the @SCRATCH subroutine
has an attribute with bit 1 set high indicating a permanent file.

PERM I/0 ERR

A disk I/0 error occurred which was not recoverable by the disk I/0 retry
logic.

READ ONLY FILE

The specified file has an attribute with bit ﬂ set high. This inhibits
rewriting of the file.

SYNTAX ERROR

The syntax of a command is wrong. This may be due to incorrect spelling,
or parameters beyond the maximum input ranges; 19 characters for ASCII
and four hex digits for numeric.

SYSTEM VERSION ERROR

An attempt was made to run a systém program on the wrong version of the
system.

WRITE PROTECT

The unit specified with a SAVE command or a subroutine that writes to the
disk has a disk in it with a write protect tab in place.

WRONG FILE TYPE

The file type does not correspond to the type of operation that is to
be performed.

D.2 EDITOR
FILEBUFFER OVERFLOW

Rev. 8 9/78 D-2

This message occurs whenever there is less than 256 bytes of buffer space
remaining in the edit buffer. Input can continue until the buffer is
completely full, but the message will be repeated after each carriage
return. The file should be written to disk and a new file started. If

a file is loaded from disk and is too large to reside in the buffer, this
message is output and the load is aborted. No data is loaded. This is
most 1ikely to occur in conjunction with the APPEND command. If an APPEND
causes an overfollow, it is aborted and the files that were in the buffer
prior to the command are not changed.

FILE ON DISK NOT UPDATED, PROCEED?

The current working file in the editor buffer has not been saved or resaved
to disk. If you want to continue without updating the disk then type a Y
in response, otherwise type an N.

FILE NOT NAMED

A name has not been given to the current editor file prior to trying to
save it onto a disk.

LINE NOT FOUND

A 1ine number which does not exist in the current text file was specified
in an EDIT command. :

LINE NUMBER OVERFLOW .

The editor command RENUM specified an increment that caused the 1ine number
to exceed 9999 decimal. The file is only partially renumbered and care
should be taken to do an additional RENUM with a smaller increment to assure
that the file is properly numbered prior to doing any editing on the file.

STRING NOT FOUND

The SEARCH MASK specified with a SEARCH or CHANGE command in the editor
does not exist in the text.

D.3 ASSEMBLER
See Sectilon 4.5.3.

Rev. 8.4-A 7/26/79

APPENDIX E — RES.I/0 SOURCE LISTING

Addr Bl B2 B3 B4 E Line Label Opcd Operand

0000 0010 *

0000 0020 * 1/0 source file for Micropolis RES module
0000 0030 * on Vector MZ, version 4.1

0000 0040 *

0000 0050 * by Neale Brassell,

0000 0060 * 2/79

0000 0070 * Vector Graphic Inc.

0000 0080 *

0000 0090 * first, general system equates from SYSQ

0000 0100 *

0000 04EC = 0110 @CONSOLEADDR EQU 04ECH

0000 04F0 0120 @CIOTABLE EQU 04FOH

0000 0502 = 0130 GLIOTABLE EQu 0502H

0000 078D = 0140 @CDIN EQuU 078DH

0000 0792 = 0150 @CpOUT EQU 07924

0000 0797 = 0160 @CDBRK EQU 07971

0000 07E5 = 0170 @LDOUT EQU 07ES5H

0000 07EA = 0180 GLDATN EQU 07EAH

0000 O4EA = 0190 @D1PORT EQU O4EAH

0000 04E7 = 0200 RES EQU 04E7H

0000 0210 *

0000 0220 * now, general equates

0000 0230 *

0000 000D = 0240 CR EQU 0DH

0000 000A = 0250 LF EQU 0AH

0000 0008 = 0260 BS EQU 08H

0000 0003 = 0270 CNTC EQU 031

0000 0013 = 0280 CNTS EQU 13

0000 0015 = 0290 CNTU EQU 15H

0000 0018 = 0300 CNTX EQu 18H

0000 007F = 0310 DEL EQu 7FH

0000 O05F = 0320 USCORE EQU S5FH

0000 0330 *

0000 0010 = 0340 CANCELLED EQu 16

0000 0350 *

0000 coDC = (0360 MIN EQU oconca

0000 c098 = 0370 MoUT EQU 0Cc098H

0000 0380 *

0000 0390 * Get printer etc. from user, and compute ports
0000 0400 =*

0000 0000 = 0410 DIAB REQ ‘Diablo (1=Yes, 0=No):’
0000 0000 = 0420 CENT REQ “Centronics (1=Yes, 0=No):’
0000 0000 = 0430 DECW REQ "Decwriter, TTY, etc (1l=Yes, O=No):’
0000 0000 = 0440 OTHR REQ "Any other printer (l=Yes, O=No):’
0000 0000 = 0450 BASE REQ ‘Bitstreamer base address:’
0000 0000 = 0460 ANY EQU DIAB! CENT!DECW!OTHR

0000 0470 *

0000 0003 = 0480 SSTAT EQU BASE+3 ;serial status
0000 0002 = 0490 SDATA EQU BASE+2 ;serial data
0000 0000 = 0500 PSTAT EQU BASE sparallel O
0000 Q001 = 0510 PDATA EQU BASE+1 ;parallel 1
0000 0520 *

0000 0530 * Ok! first, the vectors to the i/o tables

0000 0540 *

0000 0550 ORG @CONSOLEADDR

O4LEC 0560 *

Rev. 8.1 2/5/79 E-1

Addr

04EC
04EE
04FQ
04F0Q
04F0
04F0
04F0
04F0
04F2
04F4
04F6
04F8
04FA
04FC
O4FE
O4FE
O4FF
0500
0501
0502
0502
0502
0502
0502
0502
0504
0506
0508
0504
050C
0SCE
0510
0510
0511
0512
0513
0514
0514
0514
0514
0514
0514
0517
0518
051A
051B
051D
0520
0522
0524
0527
0529
0524
052C
052D
052E

Bl

FO
02

14
2E
77
F8
00
04
OF

00
01
4F
03

00
8E

00
27
11
13

00
01
83
01

CD
78

C8
FE
c2
06

ca
EE
Co

3C
C9

B2 B3 B4 E Line

04
05

05
05
05
05
06
06
06

00
05
05
00
06
06
06

8D 07

03

15
22 05
18
SF
2A 05
7F

08

0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

Label Oped Operand
DW @CIOTABLE
DW @GLIOTABLE
*
* the console i/o table
*
ORG @CIOTABLE
*
DW CIN
DW CouT
DW CBRK
DW CDIN
DW CDOUT
W CDBRK
DW CDINIT
*
WRAPFLAG DB 0]
NULLCT DB 1
WIDTH DB 79
CURSOR DB 3
*
* next, the list i/o table
*
ORG @LIQTABLE
*
W 0
DW LOUT
DW LATN
DW 0
DW LDCUT
DW LDATN
DW LDINIT
*
PWRAPFLAG DB 0
PNULLCT DB 1
PWIDTH DB 131
PCURSOR DB 1
*
* now for the logical i/o routines

*
* {CIN} logical console input

*

CIN CALL @CDIN
MOV A,B
CPI CNTC
RZ
CPI CNTU
INZ $+5
MVI B,CNTX
CPI USCORE
Jz BSPCE
¥YRI DEL
RNZ

BSPCE MVI B,BS
INR A
RET

*

E-2

slogical input

;logical output

;logigal break check
;physical input
;physical output
;physical break check
sphysical initialization

swraparound flag
;jnull count (+1)
swidth (~1)

;cursor position

;placeholder for input
s;logical output

;logical attention check
;Placeholder for input
sphysical output
;physical attentiocn check
;physical initialization

swraparound flag
snull count (+1)
swidth (~1)
;line position

;get character
37 C?

sreturn if so
et 114

3 0?

;xlate “U into X
;junderscore?

sDEL?

;nake backspace
;force NZ

Rev. 8,1 2/5/79

Addr Bl B2 B3 B4 E Line Label Oped Operand

052E 1130 * {COUT} logical console output

052E 1140 *

052E ED 5B FE 04 1150 cout LDED WRAPFLAG

0532 2A 00 05 1160 LHLD WIDTH ;get wrap, null, width, cursor
0535 78 1170 MOV A,B ;get character

0536 FE 0A 1180 CPl LF ;linefeed?

0538 cA 92 07 1190 Jz @CDOUT ;output, ignor if so
053B FE 0D 1200 CPI CR ;return? -
053D CA S5F 05 1210 JZ CROUT shandle special

0540 FE 18 1220 CP1 CNTX ;"X character?

0542 CA 6F 05 1230 JZ CNTXOUT ;handle special also
0545 FE 08 1240 CPI BS

0547 C2 4D 05 1250 JNZ COUT1 ;print if not BS
054A 25 1260 DCR H

0548 25 1270 DCR H ;ad just cursor counter
054C 00 1280 NOP ;(space for patch)
054D CD 92 07 1290 COUT1 CALL @CDOUT ;print character

0550 7B 1300 WRAP MOV AE ;get wrap flag

0551 B7 1310 ORA A

0552 €0 1320 RNZ ;return 1f no wrap
0553 7C 1330 MOV A,H ;get cursor

0554 BD 1340 CcMP L ;end of line?

0555 C2 69 05 1350 JNZ DONE ;done 1f not

0558 06 0D 1360 CCRLF MVI B,CR

055A CD 92 07 1370 CALL @CDOUT ;print LF

055D 06 0A 1380 MVI B,LF

O55F CD 92 07 1390 CROUT CALL @cCpouT ;and CR

0562 06 00 1400 MVI B,0 ;make a null

0564 15 1410 DCR D ;decrement counter
0565 C2 5F 05 1420 JNZ CROUT ; loop

0568 AF 1430 XRA A ,

0569 3C 1440 DONE INR A ;increment cursor ptr
056A 32 01 05 1450 STA CURSOR ;save

056D B7 1460 ORA A

O56E C9 1470 RET jreturn

056F 06 5C 1480 CNTXOUT MVI B, "\’ sprint \ instead of “X
0571-CD 92 07 1490 CALL @cpouT

0574 C3 58 05 1500 JMP CCRLF ;20 print CRLF

0577 1510 =*

0577 1520 * {CBRK} logical console break check

0577 1530 *

0577 CD 97 07 1540 CBRK CALL (@CDBRK

0574 CO 1550 RNZ sreturn if no char
057B 78 1560 MOV A,B ;get char

057C FE 13 1570 CPI CNTS ;7 8?

057E €2 89 05 1580 JNZ CANC

0581 CD 8D 07 1590 PAUSE CALL @CDIN ;get char

0584 FE 13 1600 CPl CNTS ;another “§5?

0586 CA 81 05 1610 Jz PAUSE

0589 FE 03 1620 CANC CPI CNTC ;°¢C?

058B 3E 10 1630 MVI A,CANCELLED ;error code, just in case
058D €9 1640 RET ;return

058E 1650 *

058E 1660 * {LOUT} logical list output

058E 1670 *

058E ED 5B I0 05 1680 LOUT LDED PWRAPFLAG ;get wrap, nulls

REV. 8.1 2/5/79 E-3

Addr Bl B2 B3 B4 E Line Label Opcd Operand

0592 2A 12 05 1690 LHLD PWIDTH sand width, cursor
0595 78 1700 MoV A,B

0596 FE 0A 1710 Crl LF ;linefeed?

0598 C2 A2 05 1720 JNZ LOUTO

0598 CD E5 Q7 1730 CALL @GLDOUT ;print directly if LF
059E DA EE 05 © 1740 JC ATT shandle if ATTN
05A1 C9 1750 RET

0542 FE OD 1760 LOUTO CrI CR ;return?

0544 CA CC 05 1770 Jz LCROUT

05A7 FE 18 1780 CrI CNTX ;"X character?
0549 Ca DF 05 1790 JZ LCNTXOUT

05AC FE 08 1800 Cr1 BS ;backspace?

05AE C2 B4 05 1810 JNZ LOUTI1

05B1 25 1820 DCR H ;adjust cursor
05B2 25 1830 DCR H

05B3 00 1840 NOP ;(spot for patch)
05B4 CD ES5 07 1850 LOUT1 CALL @rpouT ;print character
05B7 DA EE 05 1860 JC ATT shandle if ATTN
05BA 7B 1870 LWRAP MOV AE ;wraparound?
05BB B7 1880 ORA A

05BC CO 1890 RNZ sjreturn if not
05BD 7C 1900 MOV AH ;get cursor

05BE BD 1910 cMP L stoo far right?
05BF C2 D9 05 1920 JNZ LDONE

05C2 06 OD 1930 LCRLF MVI B,CR

05C4 CD ES 07 1940 CALL @rpouT ;print LF

05C7 DA EE 05 1950 JC ATT ;check ATTN
05CA 06 0A 1960 ’ MVI B,LF

05CC Cb E5 07 1970 LCROUT CALL @LDOUT ;print CR

05CF DA EE 05 1980 JC ATT

05D2 06 00 1990 MVI B,0 ;create a null
05D4 15 2000 . DCR D ;count

05D5 C2 CC 05 2010 JNZ LCROUT i ;print nulls
05D8 AF 2020 XRA A

05D9 3C 2030 LDONE INR A ;inc cursor
05DA 32 13 05 2040 ' STA PCURSOR ;save it

05DD B7 2050 ORA A

05DE C9 2060 RET ;return

0SDF 06 5C 2070 LCNTRXOUT MVI B, "\’ ;xlate here, too
0SE1 CD E5 07 2080 CALL GLDOUT ;print

05E4 D2 C2 05 2090 JNC LCRLF ;handle CRLF if no ATTN
05E7 C3 EE 05 2100 JMP ATT ;80 to ATIN routine
05EA 2110 *

05EA 2120 * {LATN} list logical attention check

05EA 2130 *

05EA CD EA 07 2140 LATIN CALL @LDATN ;do it

05ED DO 2150 RNC ;done 1if NC

OSEE 21 EA 04 2160 ATT LXI H,@D1PORT ;on ATTN,

05F1 3E 01 2170 MVI Al ; reset

05F3 77 2180 MOV M,A ; assignments
05F4 3C 2190 INR A ; to their

05F5 23 2200 INX H ; defaults,

05F6 77 2210 MoV M,A ; and indicate
05F7 C9 2220 RET ; an error.

05F8 2230 *

E-4 Rev. 8.1 2/5/79

Addr

05F8
05F8
05F8
O5F8
05F8
O05F8
O5FB
O5FE
O5FF
0600
0600
0600
0600
0601
0604
0604
0604
G604
0607
060A
060B
060C
060D
060E
060F
060F
060F
060F
oeél0
0611

Rev.

Bl B2

CD DC
CA F8
47
Cc9

78
C3 98

Ch DC
CA OD
47
AF
C9
3C
c9

8.1

B3 B4 E

co
05

Line

2250
2260
2270
2280
2290
2300
2310
2320
2330
2340

2350
2360

2370

co

co
06

2/5/79

2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540

Label Opcd Operand
*
* now for the physical i/o drivers
*
* {CDIN} physical console input"’
*
CDIN CALL MIN ;get stat/char
JZ CDIN ;none yet
Mov B,A ;satisfy requirements
RET ;that’s that
*
* {CDOUT} physical console output
*
CDOUT MOV A,B ;get character
JMP MOUT ;g0 print it
%*
* {CDBRK} physical comsole break check
%*
CDBRK CALL MIN ;get stat/char
JZ CBl sno char
Mov B,A ;save char
XRA A ;yset Z
RET . sreturn
CBl1 INR A sclear 2
RET sand return
%*
* {CDINIT} physical console initializationm
*
CDINIT XRA A ;clear CY
RET ;jconsole is always init’ed
*
E-5

Addr Bl B2 B3 B4 E Line Label Opecd Operand

0611 2560 =*

o611 2570 * Now for the physical list routines.

0611 2580 *

0611 2590 * {LDATN} physical list ATTN check

0611 2600 *

0611 AF 2610 LDATN XRA A ;jnone of our devices
0612 C9 2620 RET ; have this feature
0613 2630 *

0613 2640 * {LDINIT} physical list initialization

0613 2650 *

0613 AF 2660 LDINIT XRA A ;send nulls

0614 D3 03 2670 ouT SSTAT

0616 D3 03 2680 OoUT SSTAT

0618 D3 03 2690 OUT SSTAT

061A 3E 40 2700 MVI A,40H ;send reset

061C D3 03 2710 oUT SSTAT

061E 3E CE . 2720 MVI A,0CEH ;send mode

0620 D3 03 2730 oUT SSTAT

0622 3E 27 2740 MVI A,27H ;send command
0624 D3 03 2750 ouT SSTAT

0626 C9 2760 RET jreturn

0627 2770 *

0627 2780 * {LDOUT} physical list output

0627 2790 *

0627 CD EA 07 2800 LpOUT CALL @LDATN ;formality

062A D8 2810 RC

0628 2820 * ———e .

062B 2830 IFT DECW ;1f TTY, Decwriter, etc.
0628 2840 PRT ‘General selected’

062B 2850 *

062B 2860 LO1 IN SSTAT ;get status

0628 2870 RAR

062B 2880 JNC Lol swait till ready
062B 2890 MOV A,B

062B 2900 ouT SDATA ;output data
062B 2910 XRA A ;clear C

062B 2920 RET jreturn

062B 2930 *

062B 2940 ENDIF

062B 2950 *

062B 2960 IFT DIAB ;if Diablo

062B 2970 PRT ‘Diablo selected’

0628 2980 *

0628 2990 Lol IN SSTAT ;get status

062B 3000 RAR

062E 3010 JNC Lol . swait till ready
062B 3020 MoV A,B

062B 3030 ouT SDATA ;joutput character
062B 3040 CPI LF ;linefeed?

062B 3050 INZ XARET ;return if not
06238 3060 MVI B,CNTC ;send ETX char
0628 3070 CALL LDOUT

0623 3080 Lo2 IN SSTAT ;get return status
0628 3090 ANY 2

062B 3100 JZ Loz ;jwait till reply ready
0628 3110 IN SDATA ;get reply

E-6 Rev. 8.1 2/5/79

Addr Bl B2 B3 B4 E Line Label Opcd Operand

062B 3120 MV1 B,LF ;restore LF

062B 3130 XARET XRA A ;zap carry flag

062B 3140 RET yreturn

0628 3150 *

062B 3160 ENDIF

062B 3170 * ————-

062B 3180 IFT CENT ;if Centronics

062B 3190 PRT ‘Centronics selected’ -
062B 3200 *

062B 3210 Lol IN PDATA ;get status

062B 3220 RAR

062B 3230 Jc Lol swait till not busy

062B 3240 MOV A,B

0628 3250 ORI 128 ;strobe on

062B 3260 ouT PDATA

062EB 3270 ANI 127 ;strobe off

062B 3280 ouT PDATA

062B 3290 ORI 128 ;strobe on

062B 3300 ouT PDATA

062B 3310 XRA A ;clear C flag

062B 3320 RET sreturn

062B 3330 *

062B 3340 ENDIF

062B 3350 * ————-

062B 3360 IFF ANY ;1f no printer at all

062B 3370 ' PRT ‘No printer’ :

062B 3380 *

062B C3 92 07 3390 Lol JMP @cpouT ;dummy routine

062E 3400 * -
062E 3410 ENDIF ’
062E 3420 * ————e

062E 3430 * ' .3
062E 3440 IFT OTHR sspecial driver

062E 3450 PRT ‘Special printer’

062E 3460 *

062E 3470 LO1 , RET ;juser must write special driver
062E 3480 *

062E 3490 ENDIF

062E 3500 * —————

062E 3510 *

062E 3520 PRT ‘End = ‘,$

062E 3530 *

062E 3540 END RES

Rev. 8.1 2/5/79 E-7

APPENDIX F - MICROPOLIS DISK BOOTSTRAP

The Micropolis Disk Bootstrap Program resides in PROM on the controller

B board, occupying the first 512 bytes of the controller address space.

The bootstrap is involved by starting program execution at the base address

of the controller. An address-independent relocator determines the controller
base address and moves the bootstrap code from PROM to Tow RAM system

memory where it is executed. The Bootstrap Program selects drive unit 9

and reads the contents of sector § of track § (the System Loader Program)

into memory. Sector @ must be formatted as described in Section 6.1.2

and must be organized as follows:

Byte 9 Track ID

Byte 1 Sector ID

Byte 2-11 (Ignored)

Byte 12-265 System Loader Program
Byte 266-267 Load Address

Sector # is read into RAM at the system loader origin specified by bytes

266 and 267. After a successful read, the bootstrap transfers control to
load address +12. The DE register pair will contain the controller base

address. '

The Bootstrap Program requires approximately 1K of RAM memory from address
9@H.

F-1

Rev. 7 3/78

r4ce

FE20

Feaz
F€d2

F €20

ec40
¢oso
2022

Feo1

Rev. 7 3/78

H# Fo O g o

e 20 3¢ 2 76 e 3 e e 2 el e e v Ae e e e e 20 3k v e 2 e 2k e e e e e de e Ao e e de e

MICROPOLIS DISK BOOTSTRAP

VERSION 2 ==~ RELOCATABLE
BOOTSTRAP - OPERATES WITH
CONTROLLER STRAPPED FOR ANY
LOCATICN FROM C@OJH-FCIQH

HIGH 880383-901-4C
LoV 8009283-¢2-2C

RELEASE 1.9
COPYRIGRT MICRCPCLIS COFPORATION
CCTOBER 11 1977

2
*
%
*
#x
*
*
%*
PRCM PART NUMBERS: :
*
*
*
*
%
*
32 3% e e xje e e 2 e ok o o o o e eale i el e sl e e aeaje e o e e e ale i dfeoke o e ol

e e e e s e it v e e ade 5e %00 e o o o 2k ade e e o o el sl e e e ieadk e oie ol s sk

REGISTER DEFINITIONS ANT *
FLAG EJUATES FOR MICROPCLIS *
FLEXIBLE DISK CONTRCLLER B ®

4 3 2 4 3 3 4 3 3 I 33 N R R

e v v ofe e aleale 338 2 ok o e e o e e e fe e ke ole e e e ol e e e e e e e dbeale o ek

PROM EQU X'F400°

DEFINITIONS GIVEN FOR STANDARD
ADDRESS OF F400H —- CONTROLLER
MAY ACTUALLY BE STRAPPED FOR

ANY 1K BOUNDARY FROM C20QE -FCOOH

ECU BPROM+X‘2220°

—
wn
=

DATA REGISTERS

¥DATA EQU DISK+X’22°
RDATA EQU WDATA
&

% STATUS REGISTERS
%*

DSECTR EQU DISK

2-3 SECTOR COUNT
4 SPARE
5 SPARE

6 SCTE INTERRUPT FLAG
? SECTOR FLAG

FLAG BITS

i 3 3 3 W # O #

SIFLG EQU X’49°
SFLG EJU X's¢”
DTMR EQU X°20°
%

%
DSTAT EQU DISK+1

F-2

[N
i
(o

UNIT ADDRESS

UNIT SELECTED (IOW TRUE)
TRACK ¢

WRITE PROTECT

DISK READY

PINTE

TRANSFER FLAG

O U AN

=y
[
e

)

G BITS

3 3¢ 3 3 3 RO

z089 EQU X788 °
2040 INTE EQU X’48°
2022 EQU X722°
geie EQU X"18°
z2ee8 EQU X‘@8°
2024 EQU X‘84°

-3
taf
=
[*p]

oI E
v Myt
S 3rd
(]

COMMAND REGISTER

Feee CMNT EQJU DISK
(

ALSO WILL RESPOND TC DISK+1)

g-1 CCMMAND MODIFIER
&-7 COMMAND

COMMANDS

[
[
=z

EQU X’22° SELECT UNIT
MOTIFIER CONTAINS UNIT ADDRESS
EOU X742° SET INTERRUPT
MODIFIER =1 ENABLE INTERRUPT
=g DISABLE INTERRUPT
TEP EQU X°‘68° STEP CARRIAGE
MODIFIER =83 STEP OUT
=g1 STEP IN
RITE EQU X°“88° ENABLE WRITE
NO MODIFIER USED '
ESET EQU X‘ag’ RESET CONTROLLER
NC MQTIFIER USED

3820
pg4e

H.
. &
-3

22€0

228¢
goAQC

DISK PARAMETERS

DLY EQU 15 STEP+SETTLE TIME
PIVIDED BY 2.6775
YTCT EQJU 134 BYTCT/2

ROoF
gese

e e e 3 e o s R S e e s R
: %
PROM-RESIDENT BOOTSTRAP :

330 e el e ot e e e e e et e Ao ek o o o e ol ok o o e e e ok o e ke

BOOTSTRAP REQUIRES AT LEAST 1K
OF RAM MEMCRY FROM OQH

I+ 3 M I 3 3 3 b WO WO e B K R O I H D I RN

F-3

Rev. 7 3/78

23AC

agec

J8ER FC
206C 21A23¢
d8€EF 9
2078 3€CS
2872 CDAZ230
ge7< EB
207€ 2aA0¢¢
2979 2k39
2¢7B ES
ge7C 9110090
€87F @9
208¢ E5
2881 E1
28&z 2L1A
2284 @29
2985 06BD
2e87 EB
2088 &

2289 33
20S5A 1A
2288 77

208C BE

Rey. 7 3/78

TCRG

3C2 20 3k 3 3 3k 3 3F 3F 3 3k 3 4 3F 2 3 dF 3 3 o3

B 3 3 3 b

ELOC

REQ10Q

#* % ¥ %R o

RELOCATES FROM PROM INTO RAM THEN
BOOTSTRAP LOADS SECTOR ZERE OF
TRACK ZERO INTO RAM AND STARTS
THE PECGRAM LOADED

SECTOR ZERZ IS ORGANIZED AS
FOLLOVS:

BYTES 2-1 HEADER

BYTZS 2-265 USEF PROGEKANM
BYTES 266-267 RAM ALLRESS

BOOTSTRAP WILL READ SECTOR ZERC
INTO RAM STARTING AT THE
ADTDRESS SPECIFIED BY BYTES

266 S 267 AND WILL START

TEE PROGRAM AT RAM ADDRESS +12

EQU X7AQ° CONTROLLER BASE
ADDRESS SAVET HERE

ORG CTORG-X"35" CTOFG+2-RLCLEN)

RELOCATOR ~- MOVES 3COTSTRAP INTO
RAM AND STARTS BOOTSTRAP

DI
LXI H,CTORG+2 STUFF A RETURN IN
SPEL RAM AND CALL IT TO

MVYI ¥,X°C9° DETERMINE ADDRESS
CALL CTIORG+2 OF CONTROLLEF

ICEG SAVE RANM ADTR

LELD CTORG GET ADDRESS WHICH
Myl L,2 WAS PUSHEL ON STAC
PUSE H MSR IS CTLR ADDR
LXI B,BTDSP1 3BUILD MOVE LOOP
DAD B ADDRESS

PUSH E STUFF ON STACK

POP H ADJUST SP

MVYI C,BTDSP2 3BUMP HL TO START
DAD B OF BCOT CODE

MVI B,BTLEN

ICEG

DCX €SP ADJUST SP TO POINT
DCX SP TO RE@12 CN STACK
LTAX D MOVE BYTE FROM

MOV M,A PROM TO RAM

COMPARE MEMORY WITH A REG --
IF DIFFERENT THEN DESTINATION
RAM IS BAD OR IS PROM —-
RELOCATOR WILL LCOP IN MOVE
LOOP UNTIL SUCCESSFUL

CMP M GOOL MOVE?

F-4

208
00 8E
0e8rF
209¢
9691
209z
ge ez
eQc6
eess
€eoA
208T
2COF

2e1D
2214
2037

geaz
20Az
J0A4

3BAE€
22AS
CoAA
20AC
QQAT
2030
2222
Z2B3

@286

geB"?

22388

Rev. 7

co

23

13

25

co

El
cAA2020
110092
18
22A2¢0
C6AQ
CZD402

2AA200
7E
£68¢
CAASQD
7E

23

36
F2B700

3/78

*
BTISP1

BTDSP2
KLCLEN
%

BOOT

TATR

LDRST
*

&
P
*
%
#*
%
%*
*
%
&
*
*
#*
X
&
&
*
R

LSEC

RNZ NO-LOOP

INX H

INX D

DCR B DONE?

RNZ NO-LOC?

POP H YES-CLEAN UP STACK
LHLD CTCRG BUILD CONTEOLLER
LXI D,X°20¢° ADDRESS TROM BASE
DAD T

SELD DADR ANT SAVE

MVI M,RESET RESET CONTROLLER
J¥P SLal12 AND GC START BOCT

ETU HEQ12-RELOC
EJU *-REQ12
EQU *-RELOC

1%

ECU
DS
D&

NN

READ 1 SECTOR

B=SECTCR
C=BYTECOUNT /2
DE=READ 3UFFER

A,HL ARE DESTROYED

RETURNS 2=0X
NZ=ERKOR

WAIT FCR DESIRED SECTCR

LHLD DADR :

MCV A M WAIT SCTR FLAG
ANI STFLG

JZ RDSEC+3

MOV ALM OK-IS THIS THE
ANI X°2F° DESIRED SCTR?
XFA B

JNZ EKDSEC+3 NO-WAIT

FCUND DESIRED SECTCR GO READ

INX B

ORA M WAIT FOR TRANSFER
FLAG

JP RD225

TRANSFER FLAG SET-STRIP

N

F-5

J2¢3BB
0¢3BC
¢OBD
2¢3E
G23BF
gect
3ec2

26C2
gacs
gecc
20C6
gacr
gecs
32C9
eaca
2@aCE
gecc
2@CD
2¢CE

23D1
geDn2
g@ns

20D4
2aL"7?
88DS
Z22TA
¢eDB
edDC
@orE
@oES

RAE3
@OES
PO E8
@LCES
24 EA
COEB
@0ET
Q2EF

Rev. 7 3/78

23
7¢
AT

9600
ee

C2C302

1a
Co

2AAZ228
36202
23

78

2B
E624
EE22
C2D402¢

PESE
CDh4921
23

7E

2B
£624
EE22
C2D429

®* 1 3

L1212

SLez2g

SINC

INX H
MOV A
XRA A
XCHG

MYI B
NOP
NQD

READ

LDAX D
MCV
INX H
ADC B
MOV B
LDAX D
MOV M
INX H
ADC B
MOV
DCR
JNZ

B,A

a

RDO10

READ SINC BYTX
CLEAR CARRY

AND CHECKSUM

READ FROM DISK

MOVE TO BUFFER

NEXT LOC

ADL TC CHECKSUM
AND SAVE

NEXT READ

-ETC-

END CF DATA?
NO-LOOP

END CF DATA-READ CHECKS'IM

LDAX D
CMP B
RET

SELEZCT DRIVE 2

LHLT DADR

vl M,SLUN
INX H

MOV A M

DCX H

ANI RDY+USLT
XRI RDY

JNZ SL212

MYI C,94
CALL TIMER
INX d

MOV ALM

DCX E

ANI RDY+USLT
XRI RIY

JNZ SL219

COMPARE WITH
COMPUTED CHECEKSUM

SELECT DPRIVE

CHECK SLTD & RDY
WAIT UNTIL OK
TO PROCEED

WAIT 250 MSEC
FOR SECTOR CNTR
TO SYNC

READ STATUS AGAIN
TO ENSURE STILL

OK TO PROCEED
NO-TRY AGAIN

ee¥2
dRF2
ger4
22F€E
22F7

J0F4A
22%C
A8TE
2129
21¢2
2104

2187
212¢e
3128
C1CZE
212C
C10F
2111
e112
211€

211s
211C
Q11F
@122
2122
2128
21238
212%
2131
2134
213<%
213€

4127
2128
R1Z¢
313C
313F
@142
2143
2144
214<
214€

Rev. 7 3/78

23

7E
E€28
2B
Ccaz721

B60E
3€E1
JEQF
CD4S21
e<
C2FC292

23

7E
EE28
2B
21801
36€D
CECF
CDh4901
CZo721

21ZFe1l
CL37el
CzZTr402
246982
224420
CL37d1
C2D404
2AA420Q
119CeQ
1s

1

ES

ES
LB
218622
CDAG09
El
c23721
EE
7%
23
B6

[2N -2

ZERC

#* SF 3 4 3t

CzZeie

czeze

CZesz

PR R

o

{2

ZEERO

RZERE

RESTCRE DRIVE TC TRACK 2

INX & READ STATUS
oV AWM

ANTI TV¥2 TRACK 27
DCX &

JZ CZ2392 NO-PRESS OCN

IF ALREADY AT TRACK ZERC
STEP IN THEN BACX OUT
TC ENSURE A GOOD POSITION

MvIl B,8 STEP IN 5 TKS
Mvr ¥,STEP+1 STEP IN
¥vl C,SDLY TCELAY SEEX +

CALL TIMER SETTLE TIME
DCRE B

JNZ CZ212 LOOP UNTIL IN
INX H READ STATUS
MCV A M TRACK &7

ANI TXD

LCX H

JNZ RSZERO YES-PRESS ON
Myl ™,STEP NC-STEP QUT

Mvi C,SDLY DELAY

CALL TIMER THEN TEST AGAIN
Jvp (2229

READ THRCUGE SECTCR ZERO
ONE TIME TO FINT KAM ADDRESS
THEN READ PROGRAM IN & START

LXI H,BTBUF

CALL RZERD READ SCTR ZERO-
INZ SL212 RESEEK IF HDE BAD -
LHLT BTBUF+266 GET PGM ADDRESS
SHLD LIRST GO LOAD PGN
CALL RZER2
INZ SL@12 RESEEK IF HDR BAD
LELD LTRST COMPUTE START
LXI D,12 ADDRESS AND GO
DAT D START PROGRAM
POP T (CTLE CRG STILL
PCAL ON STACK)
PUSE E SAVE FAM ADDRESS
XCHC DEC-ADDRISS
IXI B.BYTCT
CALL RDSEC READ IN SECTOR @
POP E
JNZ RZIRQ RETRY IF CESUM ERR
PUSH 1
MOV AN CEECK EEADER
INX H
CRA M

F-7

APPENDIX G - "FEATURES"™ PROGRAM TO OPTIONALLY SHORTEN BASIC

M.BASIC contains features which are very useful during program
development but unnecessary when running debugged production
programs. It is possible to selectively delete some or all of these
features. When these features are removed the program buffer
(user's program space) is enlarged. Without removing them, the
program buffer begins at 5D86 (Hex) whereas when all the features
which can be removed are removed, the program buffer begins at 5788.
This is the same place it did in version 3.0 of M.BASIC.

A special assembly lanquge program called FEATURES is supplied to
selectively remove features from BASIC. The three features which
can be removed are MERGE, RENUM, and EDIT. The procedure is as
follows:

1) Load BASIC fron an MDOS system diskette or from a BASIC-only
diskette. This must be BASIC version 4.9.

2) Type LINK "FEATURES" then depress (return).

3) The program will then begin by displaying:
BASIC V.S. 4.0 FEATURES PROGRAM

ENTER NUMBER OF DESIRED FUNCTION (CONTROL-C TO EXIT)

1-REMOVE MERGE..
2-REMOVE RENUM AND MERGE
3-REMOVE EDIT, RENUM AND MERGE

?

4) Select the desired function and enter its number. You have
only the 3 choices given. The program will begin executing
as soon as you touch one of the number keys. If you want to
return to BASIC rather than executing the program, depress
control-C (hold CTRL key down while depressing the letter C)
instead of one of the numbers.

5) When the selected features are removed, the system is
returned to BASIC automatically.

NOTE: If you run the FEATURES program using a disk whose BASIC is
already shortened and if you select any of the features which had
been removed, then the program will set the beginning of the program
buffer back to where it was originally, as if the feature had not
been removed, but the feature itself will not be added back on.
Thus, the program buffer will be shrunk, but you will not have the
feature. 1In short, be careful that you do not try to remove a
feature that has already been removed.

The shortened BASIC created by the FEATURES program may be saved ona
newly initialized diskette for use as a BASIC-only diskette. Follow

Rev. 8.1 2/5/79 G-1

the procedure in Appendix B before you exit from BASIC, in order to
do this.

The shortened BASIC can also be saved on your Personalized MDOS
System Diskette, or a copy of it. To do this, type the following
lines after BASIC's "READY" prompt, with the desired system disk in
drive 8 (each line is followed by depressing return):

OPEN 1 "BASIC":ATTRS(1l)=0
SCRATCH "BASIC"

SAVE "BASIC" 16R1572, 16RSDFF
ATTRS(1)=16RF:CLOSE 1

Following the last line, your system diskette has a copy of the
shortened version of - BASIC, which will be used everytime you enter

the command BASIC. You can use the DISKCOPY command in MDOS to copy
this sytem diskette.

If yoﬁ do not save your shortened BASIC in one of these ways, then
since it only exists in the system’s memory, it will be lost when

you turn the power off or return to MDOS. Until then, you can use
it for programming in BASIC.

G-2 Rev,., 8.1 2/5/79

APPENDIX H ~ INTERFACING TO A CENTRONICS PRINTER

Centronics Printer

VECTOR GRAPHIC PRINTER INTERFACE

General

The Vector Graphic Printer Interface provides the means to connect a Centronics
line printer such as the 700 series of printers or equivalent to the Vector MZ
or other Vector Graphic microcomputers. The interface is designed to utilize
the Vector Graphic Bit Streamer I/0 board parallel ports via connection to one
input port and one output port.

The software driver program monitors the BUSY signal from the printer and when
the printer is not BUSY (BUSY=0) the program may transfer a character of data at
which time the printer BUSY signal goes true thus holding off data transmission
until the printer is once again ready to accept data.

I/0 PORT BIT ASSIGNMENTS

PORT 01 OUTPUT

BIT 7 6 5 4 TB 2 1 0

STROBE | DATA | DATA | DATA | DATA | DATA | DATA | DATA

PORT 01 INPUT

BIT 7 6 5 4 3 2 1 0

]

INTERFACE PARTS LIST

1l ea Serial I/0 cable (Bit Streamer o Vector MZ backpanel.
1l ea Printer cable (Vector MZ backpanel to printer)
1l ea 6 pin Molex connector.

INSTALLATION INSTRUCTIONS

CAUTION - Power must be off before proceeding with installation.

1. Bit Streamer I/0 Board

a) Cut the circuit trace at J3-19.

b) BAdd a short jumper wire from J3-19 to J2-17.

c) Add the 6 pin Molex connector on the circuit or back side
of the board as shown in Figure 1.

d) 1Install the Bit Streamer in a chassis slot near the back
panel of the computer chassis.

e) Plug in the 24 pin dip plug (part of the I/O cable) into J3 of
the Bit Streamer. If your computer does not have this cable
(Vector P/N I0-1327) one must be obtained.

2. Serial I/0 Cable

a) Install the serial I/0O cable in the Vector MZ with the 25 pin
connector attached in an available cutout on the rear panel
and connect the 6 pin Molex plug to the Bit Streamer as
shown in Figure 1. This now becomes the connector to use with
your terminal (Hazeltine, etc).

H-2 Rev. 8.1 2/5/79

CABLE WIRE LIST AND DIAGRAM

VECTCR MZ/CENTRONICS I/O CABLE

Jl J2 CENTROMICS COMPUTER

VECTCR MZ CENTRONICS SIGNAL, NAME SIGNAL NAME
6 11 BUSY port 01 bit 0 IN
25 7 DATA 6 port 01 bit 5 OUT
24 6 DATA 5 port 01 bit 4 OUT
16 3 DATA 2 port 01 bit 1 OUT
15 4 DATA 3 port 01 bit 2 OUT
17 2 DATA 1 port 01 bit 0 OUT
12 8 DATA 7 port 01 bit 6 OUT
14 5 DATA 4 port 01 bit 3 OUT
11 1 STROBE port 01 bit 7 OUT
7 16 GROUND -
J1 - J2
1= 120"
DB-25P Amphenol 57-30360
or equiv..

Rev. 8.3-A 7/1/79 H-3

L

CABLE WIRE LIST AND DIAGRAM

SERIAL I/0 CABLE

J1 32
BIT STREAMER VECTOR MZ BACK PANEL SIQWL NAME
L 7 GROUND
> 3 TRANSMIT DATA
6 2 RECEIVE DATA
Jl J2
=
=),
=—
' 1= 12"
L
6 Pin Molex DB=25S
H-4 Rev. 8.1

2/5/79

1 22090!14

2as MK

AIWYSILS LI g

[
m m T L
- - Tl
== ssnnnegaen
" " widwogr —
- = T 0

er

i L0
LU L
o]

T

bo0eoo

78>
S/r MWusg —»

2/5/79

8.1

Rev.

APPENDIX I - TROUBLE SHOOTING IF MDOS DOES NOT LOAD

This section is applicable the first time you attempt to load MDOS
using the Extended System Monitor B command.

1) If the disk drive select light does not go on in response
to command B, check the connection between the mainframe and the
console. If this is not the problem, then the system requires
attention by the dealer or by Vector Graphic.

2) If the MDOS has not signed on within 28 seconds, but the
disk drive select indicator light is still glowing, the bootstrap
ROM has been unable to read the loader into memory from the
diskette. Depress RESET. Check whether the correct diskette was
inserted in the correct drive, that it is inserted facing correctly
(label leftward or upward), and that it is fully inserted and fully
mounted (snapped into place). 1If not the problem, inspect the
diskette for obvious contamination or damage. Reload the diskette
and begin again with the Monitor B command.

3) If the system has not signed on but the unit select
indicator has extinguished, the loader may not have been able to
read the rest of the system into memory. The probable cause is a
malfunctioning memory chip. Use the Extended Systems Monitor
command N to test memory. (See the Extended Systems Monitor
manual.) If this test terminates at a value below CPPPH (i.e. 48K),
it indicates malfunctioning memory: The ending address is the
location of the malfunction. 1If N reveals no problem, then try
command T, a more thorough memory test. Use the ending address
given by command N, less 1, as the second address in the command T
argument, and use Q000 as the first address. To use an Extended
System Monitor command, depress RESET on the front panel of the
mainframe. Then enter the command you want, after the Monitor
prompt * appears,

4) If there is no problem with memory, the system requires
attention by a service representative.

Rev. 8.1 2/5/79 I-1

¥

APPENDIX J -~ GAMES AND DISPLAYS ON THE MDOS SYSTEM DISKETTE

STARTREKG, CIVILWAR, and LUNAR are games written in BASIC. Get into
BASIC, then enter:

PLOADG "<game name>" (return).

The games are self-explanatory, with the exception of STARTREKG.
STARTREKG uses the classic set of rules familiar to all computer

Startrek aficianados. For others, a little trial and error gets the
player going.

FINANCE 1s a BASIC program for computing various interest and
annulty problems. It 1s useful on a day-to-day basis for users
working with investment problems. Its operation 1s

self~-explanatory. To start it, use the PLOADG command as with
games, above.

FLASHT7 i1s a demonstratlion of the graphics capabllity of the
Flashwriter II board. Do not attempt to use 1t unless your system
uses this board, indicated by 80 X 24 display on a video monitor or
Mindless Terminal. Also, it will not work if the system 1s set up
to run word-processing (l.e. 1t is a MEMORITE II system, or the Word
Management System character generator PROM's have been 1nstalled on
the Flashwriter II board.) It will only work if the system has the
graphlcs character generator PROM's which are installed when MZ
systems are manufacturerd.

To use FLASH7, mount an MDOS System diskette in drive 0. Get into
the MDOS command mode (usually done by depressing B (return) after
turning on or reseting the machine.) Then type FLASH7 (return).
The program will begln executing, showlng off the many feafures of
the Flashwriter II board, including graphics, lack of glitches on
screen, multiple cursors, reverse video, and so on. The program
wlll execute indefinitely by repeating itself until halted by the
operator with the RESET botton. Thils program 1s an excellent demo
for dealers. (Dealers who want to demo Word Management System on
the same system must forego 1t, however.)

The operator may interact with FLASH7 (unlike the earller FLASH6) 1in
various ways. First, touching the space bar at most times willl
freeze the screen, for closer examination. Another space bar will
resume the demo. Second, the operator can cause the demo to Jump
directly to any of several points within 1ts cycle, 1f that
particular part of the demo 1s of speclal 1nterest. Thils 1s

accomplished by pressing one of the followilng letters at almost any
time while the demo 1s operating:

letter part of demo letter part of demo

C Character Set B Introducing System B
R Sphere L Higher Level Languages
G Gettysburg Address S Bubble Sort

D Darth Vader

Rev. 8.4-A T7/26/79 ' J-1

APPENDIX K - CHANGING MICROPOLIS BOOTSTRAP ROM AND DISK I/O
ADDRESSES

The disk Bootstrap ROM and Disk Controller I/0O addresses are
located in the 1K block from the base address D889 to DBFF.

The user may change this location by changing jumpers on the disk
controller board. If this is done, however, the B command in the
Extended Systems Monitor will no longer function, unless the new
base address is F400. If not, in place of B, the operator must use
the G command followed by the new base address.

No software changes are necessary. Disk I/O routines in the RES

module automatically find the disk controller and Bootstrap
addresses.

This is also true if the CP/M operating system is used. However,
the MEMORITE and Word Management System word processing software,
and the MZ0S operating system, can only function with the disk

controller and Bootstrap block beginning at the normal D8¢9
location.

Use the following procedure to change the location of the block:

1. Refer to fiqure K.1l, locate the base address desired and
determine the jumpers required.

2. Referring to figure K.2, locate the address jumper
locatlons on the controller board. Vector Graphic ships the board
with jumpers Wl and W4 installed.

3. Remove one or both of the installed jumpers and replace
with jumpers required for the desired address. Use short lengths of
wire, a 25-39¢ watt soldering iron, and resin-core solder. To avoid
blowing LSI chips with static electricity, do not work in a carpeted

room. Touch the contacts on the board edge with one hand before
beginning to solder.

Rev. 8.1 2/5/7% K-1

ADDRESS BIT

AlS Al4 A13J:T§E§n A10 A9 A8 JUMPER INSTALLED

BASE ADDRESS N/A TWI_ W2 W3 W& [N/A~ WU WZ W3 W&

i CO! 00 - C3FF 1 10 0o 0 010 0 Y vy oy

i C4t 00 - CIFF 1 170 0 0 1]0 0 Y Y vy N

I C81 00 - CBFF 1 1o o 1 ofoo Y Y N Y

' CCY 00 - CFFF 1 1|0 0 1 1]00 Y Y N N
EDOEOO-D3FF 1 110 1 0 o0lo0 o Y N Y Y
sraoamp | 04| 00 - O7FF T 1o vy 0 10 o0 Y N Y N
ADDRESS | D8! 00 - DBFF 1 1o 1 1 olo o Y NN Y
' DC! 00 - OFFF 1 1{0 1 1 100 Y N NN

' E0! 00 - E3FF 1 11 0 0 o010 0 NooY Yy

' €41 00 - E7FF 1 101 0 o0 1100 0 NOoY oY N

' E81 00 - EBFF 1 11 0o 1 oo o NOOY N Y

' EC! 00 - EFFF 1 111 o0 1 110 o NCOOY NN

1 FO! 00 - F3FF 1 117 1 0 oloo NN YV

Y F41 00 - FIFF 1T 11 1 0 11000 N O ON Y N

' F31 00 - FBFF 1 1|1 1 1 oo o NN OON Y
gFCEOO-FFFF' 1 111 1 1 1100 NCON NN

As an example, if you wish to use base address F400 install jumper at W3.

Figure K.l' Controller Base Address Jumper Configurations

Rev. 7

] =2}

Address Jumpers

Figure K.2 Locating The Controller Address Jumpers

. K_3
Rev. 7

APPENDIX L - CHANGING CLOCK RATE TO 2 MHz

To operate the system at 2 MHz speeds, a jumper must be removed from
the disk controller board, as follows:

1)

2)

Refer to figure L.l. Locate the ribbon cable edge connector
and the resistors R25, R6 and R7.

Between R25 and R6 is a jumper location, W9. Remove the
jumper there with a 25-30 watt soldering iron. To avoid
blowing LSI chips with static electricity, do not work in a
carpeted room. Touch the contacts on the board edge with one
hand before beginning to solder.

A jumper must then be added to the Z-88 board at location "A".
Location "A" will be found under the top row of chips, directly
under the third chip from the left, U3. If necessary, refer to the
figure found in the Z-80 Board User's Manual.

Rev,

8.1 2/5/79 L-1

Speed Jumper

Figure L.1 Locating the controller processor speed jumper

L-2
Rev. 7

APPENDIX M - WRITING A CONSOLE PHYSICAL I/O ROUTINE

For users wishing to replace the console physical driver in the
Vector Graphic Extended Systems Monitor, this section describes the
console I/0 requirements of the RES module.

Your version should be written in place of the routines in RES.I/O
found from lines 2250 to 2540. RES.I/O is the source code for the
I/0 routines in the RES module. It will be found on your MDOS
System Diskettes. The listing is in Appendix E.

If there are any other routines to rewrite, such as printer
routines, do this before assembling RES.I/0. To assemble RES.I/O
refer to Appendix O where the procedures are explained.

l) Lines 728 - 750 in the @CIOABLE can be changed if required.

2) The logical input, output and break check routines (CIN,
CouT, and CBRK) should not have to be changed. They are
tailored to support all MDOS and BASIC requirements.

3) The console physical input routine (CDIN) must have the
following characteristics:

a) It must return all registers except A & B unchanged.

b) It can use the A register (destroy it).

c) It must return an ASCII character including the parity bit
if any, in the B register.

d) It must return the carry flag clear (NC). The other
status flags can be in any state.

4) The console physical output routine (CDOUT) must have the
following characteristics:

a) It must take an ASCII character in the B register.
b) It must return all registers except A unchanged.
c) It can use the A register (destroy it).

d) It must return the carry flag clear (NC).

e) The other status flags can be in any state.

5) The console physical break check routine (CDBRK) must have
the following characteristics:

a) It must check the console input status port to determine
if a key has been pressed.

b) If no key has been pressed it must return all registers
except A unchanged and the zero flag clear {(NZ).

c) If a key has been pressed it must return the byte, in the
B register. The A register can be used (destroyed). &all
other registers must be unchanged. The zero flag must be
set (Z).

d) The status flags other than zero can be in any state.

6) It will probably not be necessary to change the Physcial

Rev. 8.1 2/5/7% M-1

v!

Console Device Initialize routine (CDINIT).

M=2 Rev. 8.1 2/5/79

APPENDIX N — WRITING A PRINTER PHYSICAL I/0 ROUTINE

This Appendix is used when you want to write a custom version of the
printer physical I/O0 routines in the RES module.

l) RES.I/0 is an assembly language source code file found on the

Rev.

MDOS System Diskettes. 1In order to rewrite any part of the

‘'I/0 routines in the RES module, rewrite the relevent portions

of this source file, using the Line Editor in MDOS. Note
that RES.I/O is not the source file for the entire RES
module, but only the I/0 portion of it.

2) Write the your printer driver routine beginning at line 3478

3)

4)

3)

in the RES.I/0. Make sure the contents of lines 3528-3549
are at the end of your routine. The first line must use the
label L#1, not LDOUT. Do not over-write the other printer
physical I/0 routines in the Source code (only yours will be
assembled, as you will see.) The parts of the new routine
must have the following characteristics:

a) The character to be output is passed to the physical
output routine in the B register in ASCII.

b) The physical output routine can use (destroy) the A
register.

¢) All registers except A must be returned unchanged.

d) Some printers can signal when paper is out, the motor is
off, or they are out of ribbon. The system supports
printers which can signal a PRINTER ATTENTION condition.
If the printer needs attention, the physical output
routine should return with the carry flag set (C). If
your printer does not support a printer attention
condition, then always return with the carry clear (NC).
The other status flags can be returned in any state.
LDATN, the routine which handles printer attention, must
not destroy any registers except A.

Lines 8998-92¢ in the QLIOTABLE can be changed if desired.

The present contents of lines 3528 - 3540 must be at the end
of your routine, or it will not assemble.

Turn to Appendix & when you are ready to assembly and save
the new RES module.

8.1 2/5/79 N-1

APPENDIX O - REASSEMBLING AND SAVING THE RES MODULE

Follow the procedure in this appendix after you have modified the
RES.I/0 source code using the Line Editor in MDOS. When you are
done with this appendix, the RES module program will be modified on
your MDOS System Diskette, and ready to use.

1)
2)
3)

. 4)

5)

6)

7)

Rev. 8.

Mount Personalized MDOS System Diskette in Drive O.

In MDOS, enter ZSM "RES.I/O" "CRES'" "E" (return).

Four questions will appear on the screen one after the other.
Your answers to these questions tell the assembler which
printer driver to include in the assembled code. Your
choices will be a standard Diablo protocol driver, a standard
Centronics protocol driver, a standard Decwriter and Teletype
protocol driver, or a driver you have written yourself
according to the instructioms in Appendix N. As each
question appears, depress a 0 if you do not want that driver,
or a 1 if you do. Answer 1 to only one of the questions, and
0 to the other three. 1If you did not write your own and are
not sure which of the three standard drivers you need, review
section 2.2 in Chapter 2 which includes examples of the
different types of printers.

After the fourth question, another question will appear on
the screen, asking "Bitstreamer base address?" The answer to
this question is O if the Bitstreamer board is jumpered to
respond to port #'s O, 1, 2, and 3, and it is 4 if the
Bitstreamer board is jumpered to respond to port #'s 4, 5, 6,
and 7. Generally, the former is the case if you are using a
serial terminal such as a Hazeltine, and the latter is the

case if you are using a Flashwriter board to interface a

memory-mapped terminal such as Vector Graphic's Mindless
Terminal or a memory-mapped video monitor such as a Hitachi.
(If for some reason you have chosen to jumper the Bitstreamer
board for a different set of port #'s, then respond with the
lowest # of the set you are using.)

After the last question, the object code will be assembled.
At the end of the assembly , the message "END = XXXX" will
appear. This value must be under 0700. If it is not, then

the routines you have written are too long, and must be
shortened.

At this point, with the code successfully assembled, the new
I/0 portion of the RES module is on disk as a temporary file
called "CRES"™ but not yet overlayed over the entire RES
module on the system diskette. To do this, enter TYPE ''CRES"

C éreturnz, and then CRES (returm). Finally, type SCRATCH
return) to clear this workfile from the disk.

The complete RES module with all changes is now in memory,
but not yet stored on disk. Debug it now. Proceed when it

3-A 7/1/79 0-1

!

is finalized.

8) To save the new RES module, follow the instructions in
Section 2.2.0 of this manual.

10) NOTE: Do not overlay one of the pre-written printer drivers

as instructed in Chapter 2, sections 2.2.1 and 2.2.2. Steps 3
and 4 above already installed the correct driver.

0‘2 ReV- 803-A 7/1/79

APPENDIX P - MAP OF I/O PORTS

On the following page you will find a chart which lists all the I/O
ports that an 8080 or Z80 can address, in hexadecimal notation. An
I/0 port is accessed when the processor executes an IN xx or OUT xx
instruction, where xx is the one of the port numbers in the chart.
The port number will appear on the lower half of the address bus
instead of a memory address, and either SINP or SOUT will be active
high which tells memory NOT to react and tells I/0 devices that it
is their turn. Each I/O device and board has gating circuitry which
detects when its own port number is on the bus. Usually, I/O
devices have dip-switches or jumper pads with which you can assign
any port number.

Next to some of the ports, you will find the names of commonly used
boards which respond to those port numbers. Some of these boards
are Vector Graphic's and some are not. In the case of the Vector
Graphic boards, most of them can be assigned ANY port number, either
by dip-switch or jumper. The numbers shown for these boards are
those that Vector Graphic software expects. Use this information to
avoid present and future conflict when you are assigning port
numbers to hardware. You can also use this sheet as a worksheet if
you are assigning a number of ports.

Rev. 8.3-A 7/1/79 P-1

MAP OF PORTS

00 V.G. Flash-}V.G. 40 V.G. 16K bank selecc |80 U

Q1 Writers Bit- I3 81 c1

02 Streamer (42 82 C2

03 V.G. 43 83 Cc3

04 Bic- Alcernate (44 84 C4

Q5 Streamer Bit- 45 85 (o))

06 IT Streamer (46 86 o8]

7 I 47 87 Cc7

08 48 88 C8 VDM (not V.G.)
09 49 89 [o§ .
0A 44 8A CA

0B 4B 8B CB

(84 4C 8cC cc

0D 4D 8D CD

QE GE 8E CE

QF 4F 8F CF

1 a0 50 90 DO

11 Al 51 91 D1

12 A2 D+7A Board 52 92 D2

13 A3 (not V.G.) 53 93 D3

16 A 54 94 D&

15 AS 53 95 DS

16 A6 56 96 D6

17 A7 57 97 D7

3 58 98 D8

19 59 99 D9

1A SA 9A DA

13 SB 9B DB

1C 5C 9C DC

1D SD 9D DD

1E On/Oft Dazzler ISE 9E DE

1F Mode (Mot V.G.) [SF 9F DF

20 60 AQ EQ

21 61 Al E1

22 62 A2 E2

23 63 A3 E3

24 64 ASG E4

25 63 AS ES

26 66 A6 ES

27 67 A7 E7

28 63 A8 E3

29 69 A9 E9

24 6A JAA EA

23 [3:] AB E3

2C 6C Stactus Tarbell AC. EC

2D 6D Data Tape AD ED

2E 6E Status (Not V.G.) JAE EE

2F 6F Data AF EF .
30 BO FO

31 71 B1 |

32 72 B2 F2

33 73 B3. F3

34 74 B4 F4

35 |75 BS 11

36 76 B6 F6 V.G.

37 77 B7 F7 Joyscick
48 78 B8 F8 larbell
39 79 B9 F9 Disk
3A TA BA FA (not V.G.)
3B 78 BB FB

3C 7C BC

3D 7D BD FD

3E /& V.G. Video Uigltlzer |BE be lmsal Memor¥y ?noc V.G.
3F 7T BF FF Front oane not V.G.

APPENDIX Q - MEMORY DIAGNOSTICS

MDIAG

If you have some reason to suspect that the computer's main memory
is malfunctioning, use the Memory Diagnostic program on the MDOS
System Diskette. Simply turn the system on, mount the system
diskette in drive 0 (the right~hand drive), type B following the
Monitor prompt (*), type MDIAG following the MDOS prompt (>), then
depress the RETURN key. The program will load into the scratch-pad
area of memory (not part of main memory) and execute.

MDIAG tests the contiguous memory beginning at 0000. There are
actually two tests going on at the same time. Each repetition
("pass'") of the program fills the next 8K block of memory with
random numbers, and then tests it for changes. At the same time, it
also fills all of memory with a certain fill code, and then tests
all of it for changes. A display appears showing the result of each
repetition. The program waits a certain '"delay time" after filling
before it tests memory. After all 8K blocks of main memory have
been tested, the delay time is increased, and the program repeats
beginning with 0000.

The display shows for each repetition the TOP OF MEMORY (the lowest
address which is not in main memory), ACTIVE BLOCK (the first
address of the 8K block currently subject to the random number
test), the PASS NUMBER (incremented after each repetition), the FILL
CODE (the code used to £fill all of main memory as the second part of
the test), the DELAY TIME currently being used, the number of ERRORS
READ, and an ERROR DUMP showing the last 10 errors encountered,
giving the address which malfunctioned, the code written, and the
code read.

MDIAG will run indefinitely, with ever increasing delay timeé, if

allowed to. It is used at the factory to burn the systems in for
long periods of time. To stop it, depress the RESET key.

Monitor T Command

The T memory test is part of the Extended Systems Monitor PROM which
comes in the system. To activate it, depress the RESET key, then
type I, followed by the beginning address (in hex) of the block you
want to test, then the ending address of the block. For example, to

test the 48K of main memory, type T 0000 BFFF. The program will
begin executing immediately.

The program stores random numbers into memory, then tests to see if
any have changed. If memory is perfect, you will see nothing on the
screen. However, if anything changes, the program displays the
address, the code written, and the code read back. Then it

continues testing. It will go on until stopped by depressing the
RESET key.

Comparing with MDIAG, the strengths of the "T" test are 1) it allows

Rev- 8-3‘A 7/1/79 Q-1

you to test portions of memory which are not contiguous beginning at
0000, for example an 8K block from EQQ0 co FFFF, or the screen
memory, normally from DOCQ to D7FF; 2) ic displays ALL the errors,
rather than the last 10, allowing you to pinpoint all malfunctioning
locations, and 3) you can use it without .disk drives, if needed.

The weaknesses are 1) it may not show up errors produced by dynamic
memory over a delay time longer than T uses, whereas MDIAG increases
the delay time to long enough intervals; and 2) you must know the
ending address of memory. MDIAG is considered the better test for

dynamic memories, which are used in the standard Vector Grapaic
systems. .

Monitor N command . T = T

- - . -~ .. -

N is a non-destructive memory test. To activate it, depress the
RESET key, then type N. It will make only one pass through memory,
temporazily storing each byte, testing whether 00 and FF can be
stored and recalled corraccly, and then replacing the original
contencs. Lt does this until an error is found, whereupon it printcs
the address, the code written, and the code recalled, and then
returns to the Monitor executive.

This program is most useful for determining how much main memory a
given syscem has, because if no errors are found, it will print out
the first addrass of ROM memory which is above maia memory. The M
test is not nearly as thorough as eicher the T test or MDIAG, and it
only reports the first error found. However, it allows you to tast
memory without destroying any of the contents, unlika the ‘others.

Ma? | -~

MA? is a urility which tells you whether RAM, ROM or no memory at
all, is ac each address in the system. This includas all special
purpose memory such as video boards, scratch-pad, and so om. Use
MAP? if you azre not sure what is in the system. If the system is
standard, then the resulc should be the same as the map in Figure
1.2 (Chapter 1), wich the PROMs appropriate for your configuraticnm.

To zun MAP, simply turn che system on, mount the system diskatte in
drive Q (che righc-hand drive), type B following the Monitor prompce-
(*), type MAP following che MDOS prompt (D), the depress the RETURN
key. "The progrm will load and execute. The rasulcant display is a~
matrix of memory that is fairly self-explanacory. You only have to
know thac the addressas increase from left to right in blocks of 100
Hex (256 byzas). You can run MAP with RAM holding data or program
withourt losing anything; it is a non-destruccive test, except for

the area ic uses icself, which is the scratch-pad area beginning
§rcm DCOQ co DOFF. ‘

Q-2 Rev. 8.3-A 7/1/7%

