------------------------------------
llllllllllllllllllllllllllllllllllll
--------------------
----------------
lllllllllllllllll
------------------
------------------
----------------------
lllllllllllllllllllll
---------------------
-----------------------
llllllllllllllllll
-------------------
llllllll
lllllllll
---------------------
------------------------------------
lllllllllllllllllllllllllllllllllllll
SEINSEEEESES SESESEOENE ‘SRCESNOEEES
----------------------------

280 ASSEMBLY I.ANGUAGE PROGRAMMING
BY LANGE A. LEVENTHAL




280

RSSEMBLY LANGUAGE
PROGRAMMING






280

ASSEMBLY LANGUAGE
PROGRAMMING

Lance A. Leventhal

Osborne/McGraw-Hill
Berkeley, California



Published by
OSBORNE/McGraw-Hill

630 Bancroft Way

Berkeley, California 94710
U.S. A

For information on translations and book distributors outside of the U. S. A,
please contact the publisher at the above address.
56789 DODO 8765432
ISBN 0-931988-21-7
Copyright © 1979 by McGraw-Hill, Inc.

All rights reserved. Printed in the United States of America. No part of this
pubiication may be reproduced, stored in any retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior written permission of the publishers.

Cover design by K. L. T. van Genderen.



This book is dedicated to my colleagues at the Society for Computer Simula-
tion — Romeo Favreau. Natalie Fowler, Alexander McKenna, John Mcleod,
Stanley Rogers, and Chip Stockton.

ACKNOWLEDGMENTS

The author would like to acknowledge the following people:

Mr. Curt Ingraham, Ms. Mary Borchers, and Ms. Janice Enger of Osborne/
McGraw-Hill, who made many corrections and suggestions; Mr. Winthrop
Saville of Sorrento Valley Associates, who provided assistance and exam-
ples; Mr. Tom Littlefield of Littlefield/Smith Associates, who provided
reference material; Ms. Marielle Carter of Sorrento Valley Associates, who
typed some of the material; Mr. Stanley Rogers of the Society for Computer
Simulation, who has continued to suggest improvements in the author’s writ-
ing style; and his wife Donna, for her patience and understanding throughout
the writing of this book.

Others who provided assistance and suggestions were Mr. Colin Waish, Mr.
Gary Hankins, Mr. Romeo Favreau, Mr. David Bulman, Ms. Kati Bulman, Mr.
Robert Turner, Mr. Irv Stafford, Mr. John Burgar, Mr. Ferenc Montvai-Lako,
and Mr. Warren McKenna. Other students and colleagues also helped to keep
the author on the right track.

The author, of course, bears responsibility for any remaining errors, miscon-
ceptions, and misinterpretations.






Contents

Chapter

1 Introduction to Assembly Language Programming

How This Book Has Been Printed

The Meaning of Instructions
A Computer Program
The Programming Problem
Using Octal or Hexadecimal
Instruction Code Mnemonics
The Assembler Program
Additional Features of Assemblers
Disadvantages of Assembiv Language
High-level Languages
Advantages of High-level Languages
Disadvantages of High-level Languages
High-level Languages for Microprocessors
Which Level Should You Use?
How About the Future?
Why This Book?

References

2 Assemblers

Features of Assemblers
Assembler Instructions
Labels
Assembler Operation Codes (Mnemonics)
Pseudo-operations
The Data Pseudo-operation
The Equate (or Define) Pseudo-operation
The Origin Pseudo-operation
The Reserve Pseudo-operation
Linking Pseudo-operations
Housekeeping Pseudo-operations
Labeis with Pseudo-operations

Addresses and the Operand Field

Conditional Assembly

Macros

Comments

Types of Assembilers

Errors

Loaders

References

vif

Page

C 6o

'

Voo

b d ed ol b e e} A 3 e b e e e o 3 el
'
et ed e e O ON N DD O B G RN) e e

LLiLLl L L L oboouuodbsros Ll

NNNMNNMNNN”\)NNMNNMNNNM



Contents (Continued)

The Z80 Assembly Language Instruction Set
CPU Registers and Status Flags
Z80 Memory Addressing Modes
Implied
implied Block Transfer with Auto-Increment/Decrement
Implied Stack
Indexed
Direct
Program Relative
Base Page
Register Direct
Immediate
Abbreviations
Instruction Mnemonics
Instruction Object Codes
Instruction Execution Times
Status
Instruction Descriptions
8080A/280 Compatibility

Zilog Z80 Assembler Conventions

Assembler Field Structure
Labels
Reserved Names
Pseudo-operations

Examples
Labels with Pseudo-operations
Addresses
Conditional Assembly
Macros

wwwwmm@wmwmww
RORI N e ok i e s (O~ O



Contents (Continued)

Chapter Page
4 Simple Programs 4-3
General Format of Examples 4-1
Guidelines for Problems 4-2
Program Examples 4-3
Ones Complement 4-3
8-Bit Addition 4-4
Shift Left One Bit 4-6
Mask Off Most Significant Four Bits 4-6
Clear a Memory Location 4-7
Word Disassembly 4-7
Find Larger of Two Numbers 4-9
16-Bit Addition 4-11
Table of Squares 4-12
16-Bit Ones Complement 4-14
Problems 4-15
Twos Complement 4-15
8-Bit Subtraction 4-15
Shift Left Two Bits 4-16
Mask Off Least Significant Four Bits 4-16
Set a Memory Location to All Ones 4-16
Word Assembly 4-16
Find Smaller of Two Numbers 4-16
24-Bit Addition 4-16
Sum of Squares 4.17
16-Bit Twos Complement 4-18
Simple Program Loops 5-1
Examples 5-3
Sum of Data 5-3
16-Bit Sum of Data 5-6
Number of Negative Elements 5-9
Find Maximum b-11
Justify a Binary Fraction 5-14
Problems 5-17
Checksum of Data 5-17
Sum of 16-Bit Data 5-17
Number of Zero, Positive. and
Negative Numbers 5-18
Find Minimum 5-18
Count 1 Bits 5-18



Chapter
6

Contents (Continued)

Character-coded Data
Examples

Length of a String of Characters
Find First Non-blank Character
Replace Leading Zeros with Blanks
Add Even Panty to ASCH Characters
Pattern Match

Problems

Length of a Teletypewriter Message
Find Last Non-blank Character

Truncate Decimal String to Integer Form
Check Even Parity in ASCIl Characters
String Comparison

Code Conversion
Examples

Hex to ASCH

Decimal to Seven-Segment

ASCIl to Decimal

BCD to Binary

Convert Binary Number to ASCIl String

Problems

ASCH to Hex

Seven-Segment to Decimal
Decimal to ASCH

Binary to BCD

ASCII String to Binary Number

References

Arithmetic Problems
Examples

Multiple-Precision Addition

Block Move

Decimal Addition

8-Bit Binary Multiplication

8-Bit Binary Division

Self-Checking Numbers Double and
Double MOD 10

Problems

Multiple-Precision Subtraction

Decimal Subtraction

8-Bit by 16-Bit Binary Multiplication

Signed Binary Division

Self-Checking Numbers Aligned 1, 3. 7 MOD 10

References

A A
Ny

FOMIRS — e W D

CJ’)CDG)G)CD(?)O)CDO)O)G)
OO WO W=



Contents (Continued)

Chapter

9 Tables and Lists
Examples
Add Entry to List
Check an Ordered List
Remove Element from Queue
8-Bit Sort
Using an Ordered Jump Table
Problems
Remove an Entry from a List
Add an Entry to an Ordered List
Add an Element to a Queue
16-Bit Sort
Using a Jump Table with a Key
References

10 Subroutines

Subroutine Documentation

Examples
Hex to ASClI
Length of a String of Characters
Add Even Parity to ASCII Characters
Pattern Match
Multiple-Precision Addition

Problems
ASCIl to Hex
Length of an ASCll Message
Check Even Parity in ASCll Characters
String Comparison
Decimal Subtraction

References

1 Input/Output
Timing Intervals {Delays)
Delay Routines
Example
Delay Program Using Accumulators
Simple 1/0 Devices
The Z80 Parallel Input/Output Circuit (PIO}
P10 Mode Control
Configuring the PIO
Z80 Input/Output Instructions
Examples
A Pushbutton Switch
A Toggle Switch
A Multiple-Position (Rotary, Selector. or
Thumbwheel) Switch
A Single LED
Seven-Segment LED Display

xf

(D(D(D(D(DCD(‘O(O(DCD(DCD(O

OO NINOO PO



Contents (Continued)

Chapter

11 (Cont.) Problems
An on-off Pushbutton
Debouncing a Switch in Software
Control for a Rotary Switch
Record Switch Positions on Lights
Count on a Seven-Segment Display
More Compiex /O Devices
Examples
An Unencoded Keyboard
An Encoded Keyboard
A Digital-to-Analog Converter
Analog-to-Digital Converter
A Teletypewriter (TTY)}
The Z80 Serial Input/Output Device (SIO)
Examples
Teletypewriter 1/0 via a USART
Standard Interfaces
Problems
Separating Closures from an Unencoded
Keyboard
Read a Sentence from an Encoded Keyboard
A Variable Amplitude Square Wave Generator
Averaging Analog Readings
A 30 Character-per-Second Terminal
References

12 interrupts
Z80 Interrupt System
Non-Maskabie Interrupt
Z80 Interrupt Modes
Z80/8080 Interrupt Compatibility
PIO Interrupts
Examples
SIO Interrupts
interrupt Examples
A Startup Interrupt
A Keyboard Interrupt
A Printer Interrupt
A Real-Time Clock Interrupt
A Teletypewriter interrupt
More General Service Routines
Problems
A Test Interrupt
A Keyboard Interrupt
A Printer Interrupt
A Real-Time Clock interrupt
A Teletypewriter Interrupt
References

xii

Page

11-b65
11-65
11-66
11-65
11-66
11-56
11-67
11-60
11-60
11-69
11-72
11-76
11-81
11-89
11-98
11-98
11-103
11-103



Contents (Continued)

Chapter

13 Problem Definition and Program Design
The Tasks of Software Development
Definition of the Stages
Problem Definition
Defining the Inputs
Defining the Outputs
Processing Section
Error Handling
Human Factors
Examples

Response to a Switch
A Switch-Based Memory Loader
A Verification Terminal
Review of Problem Definition
Program Design
Flowcharting
Examples
Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Terminal
Modular Programming
Examples
Response to a Switch
The Switch-Based Memory Loader
The Verification Terminal
Review of Modular Programming
Structured Programming
Examples
Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Terminal
Review of Structured Programming
Top-Down Design
Examples
Response to a Switch
The Switch-Based Memory Loader
The Transaction Terminal
Review of Top-Down Design

Review of Problem Definition and Program Design

References

Xiii



Chapter
14

15

16

Contents (Continued)

Debugging and Testing
Simple Debugging Tools
More Advanced Debugging Tools
Debugging with Checklists
Looking for Errors
Debugging Example 1: Decimal to Seven-Segment
Conversion
Debugging Example 2: Sort into Decreasing
Order
Introduction to Testing
Selecting Test Data
Testing Example 1: Sort Program
Testing Example 2: Self-Checking Numbers
Testing Precautions
Conclusions
References

Documentation and Redesign
Self-Documenting Programs
Comments
Commenting Example 1. Multiple-Precision
Addition
Commenting Example 2: Teletypewriter Output
Flowcharts as Documentation
Structured Programming Languages as
Documentation
Memory Maps
Parameter and Definition Lists
Library Routines
Library Examples
Library Example 1: Sum of Data
Library Example 2: Decimal-to-Seven-Segment
Conversion
Library Example 3: Decimal Sum
Total Documentation
Redesign
Reorganizing to Use Less Memory
Major Reorganizations
References

Sample Projects
Project #1: A Digital Stopwatch
Project 32: A Digital Thermometer
References

index of Instruction Descriptions

Index

xiv

Page

14-1
14-1
14-8
14-10
14-11

14-16

14-21
14-27
14-28
14-29
14-29
14-29
14-30
14-31

16-1
16-1
156-2

15-4
16-5
15-7

16-7
15-7
15-8
15-10
15-10
15-10

156-11
16-12
16-13
15-14
15-16
15-16
15-18

16-1
16-1
16-15
16-29

XV
xvii



Chapter 1
INTRODUCTION TO ASSEMBLY
LANGUAGE PROGRAMMING

This book describes assembly language programming. It assumes that you are
familiar with An Introduction To Microcomputers: Volume 1 — Basic Concepts
(particularly Chapters 6 and 7). This book does not discuss the general features of
computers, microcomputers, addressing methods, or instruction sets; you should
refer to An Introduction To Microcomputers: Volume 1 for that information.

HOW THIS BOOK HAS BEEN PRINTED

Notice that text in this book has been printed in boldface type and lightface type.
This has been done to help you skip those parts of the book that cover subject
matter with which you are familiar. You can be sure that lightface type only ex-
pands on information presented in the previous boldface type. Therefore, only read
boldface type until you reach a subject about which you want to know more, at which
point start reading the lightface type.

THE MEANING OF INSTRUCTIONS

The instruction set of a microprocessor is the set of binary inputs which produce
defined actions during an instruction cycle. An instruction set is to a microprocessor
what a function table is to a logic device such as a gate, adder. or shift register. Of
course, the actions that the microprocessor performs in response to the instruction in-
puts are far more complex than the actions that combinatorial logic devices perform in
response to their inputs.

An instruction is simply a binary bit pattern — it must be [ BINARY
available at the data inputs to the microprocessor at the | INSTRUCTIONS

proper time in order to be interpreted as an instruction. For ex-
ample, when the Z80 microprocessor receives the 8-bit binary pattern 10000000 as the
input during an instruction fetch operation, the pattern means:

“Add the contents of Register B to the contents of the Accumulator”.
Similarly, the pattern 00111110 means:
“Load the Accumulator with the contents of the next word of program memory”".

The microprocessor (like any other computer} recognizes only binary patterns as in-
structions or data; it does not recognize words or octal. decimal, or hexadecimal num-
bers.

A COMPUTER PROGRAM

A program is a series of instructions that cause a computer to perform a particular
task.

Actually, a computer program includes more than instructions; it COMPUTER
also contains the data and memory addresses that the PROGRAM
microprocessor needs to accomplish the task defined by the in-

1-1



structions. Clearly, if the microprocessor is to perform an addition. it must have two
numbers to add and a destination for the result. The computer program must determine
the sources of the data and the destination of the result as well as specifying the opera-
tion to be performed.

All microprocessors execute instructions sequentially unless one of the instructions
changes the execution sequence or halts the computer {i.e.. the processor gets the next
instruction from the next consecutive memory address unless the current instruction
specifically directs it to do otherwise).

Ultimately every program becomes translated into a set of binary numbers. For
example, this is the Z80 program that adds the contents of memory locations
6016 and 614¢ and places the result in memory location 621g:

00111010
01100000
00000000
01000111
00111010
01100001
00000000
10000000
00110010
01100010
00000000

This is a machine language, or object, program. If this program OBJECT
were entered into the memory of a Z80-based microcomputer, the PROGRAM
microcomputer would be able to execute it directly. MACHINE

THE PROGRAMMING PROBLEM LANGUAGE

There are many difficulties associated with creating programs PROGRAM
as object, or binary machine language, programs. These are
some of the problems:

1} The programs are difficult to understand or debug (binary numbers all look the
same, particularly after you have looked at them for a few hours).

2) The programs are slow to enter since you must enter each bit individually.

3) The programs do not describe the task which vou want the computer to perform in
anything resembling a human readable format.

4} The programs are long and tiresome to write.
B) The programmer often makes careless errors that are very difficult to find.

For example, the following version of the addition object program contains a single
bit error. Try to find it:

00111010
01100000
00000000
01000111
01110010
01100001
00000000
10000000
00110010
01100010
00000000

1-2



Although the computer handles binary numbers with ease, people do not. People find
binary programs long, tiresome, confusing, and meaningless. Eventually, a programmer
may start remembering some of the binary codes, but such effort should be spent more
productively.

USING OCTAL OR HEXADECIMAL

We can improve the situation somewhat by writing instruc- | OCTAL OR
tions using octal or hexadecimal, rather than binary, numbers. | HEXADECIMAL

We will use hexadecimal numbers in this book because they are
shorter, and because they are the standard for the microprocessor industry. Table 1-1
defines the hexadecimal digits and their binary equivalents. The Z80 program to add
two numbers now becomes:

At the very least. the hexadecimal version is shorter to write and not quite so tiring to
examine.

Errors are somewhat easier to find in a sequence of hexadecimal digits. The er-
roneous version of the addition program, in hexadecimal form, becomes:

3A

The mistake is easier to spot.

What do we do with this hexadecimal program? The microprocessor understands
only binary instruction codes. The answer is that we must convert the hexadecimal
numbers to binary numbers. This conversion is a repetitive, tiresome task. People who
attempt it make all sorts of petty mistakes, such as looking at the wrong line, dropping a
bit, or transposing a bit or a digit.

This repetitive, grueling task is. however, a perfect job for a com- } HEXADECIMAL
puter. The computer never gets tired or bored and never makes | LOADER

silly mistakes. The idea then is to write a program which takes
hexadecimal numbers and converts them into binary numbers. This is a standard
program provided with many microprocessors; it is called a ‘’hexadecimal loader.”

Is a hexadecimal loader worth having? If vou are willing to write a program using binary
numbers, and you are prepared to enter the program in its binary form into the com-
puter. then yvou will not need the hexadecimal loader.

1-3



If you choose the hexadecimal loader, vou will have to pav a price for it. The hex-
adecimal loader is itself a program which you must load into memory. Furthermore, the
hexadecimal loader will occupy memory — memory that you may want to use in some
other way.

The basic tradeoff. therefore, is the cost and memory requirements of the hexadecimal
loader versus the savings in programmer time.

A hexadecimal loader is well worth its small cost.

A hexadecimal loader certainly does not solve every programming problem. The hex-
adecimal version of the program is still difficult to read or understand: for example, it
does not distinguish instructions from data or addresses, nor does the program listing
provide any suggestion as to what the program does. What does 32 or 47 or 3A mean?
Memorizing a card full of codes is hardly an appetizing proposition. Furthermore. the
codes will be entirely different for a different microprocessor, and the program will re-
quire a large amount of documentation.

Table 1-1. Hexadecimal Conversion Table

Hexadecimal Binary Decimal
Digit Equivalent Equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

INSTRUCTION CODE MNEMONICS

An obvious programming improvement is to assign a name to each instruction
code. The instruction code name is called a “‘mnemonic’’, or memory jogger. The
instruction mnemonic should describe in some way what the instruction does.

In fact, every microprocessor manufacturer {they can’'t remember PROBLEM
hexadecimal codes either) provides a set of mnemonics for the WITH
microprocessor instruction set. You do not have to abide by the MNEMONICS
manufacturer’s mnemonics; there is nothing sacred about them.
However. they are standard for a given microprocessor and therefore understood by all
users. These are the instruction names that you will find in manuals, cards, books, arti-
cles, and programs. The problem with selecting instruction mnemonics is that not all in-
structions have “obvious’” names. Some instructions do have obvious names (e.g..
ADD. AND. OR), others have obvious contractions {e.g.. SUB for subtraction, XOR for
exclusive OR), while still others have neither. The result is such mnemonics as WMP.
PCHL, and even SOB {try and guess what that means!). Most manufacturers come up
with mostly reasonable names and a few hopeless ones. However, users who devise
their own mnemonics rarely seem to do much better than the manufacturer.

1-4



Along with the instruction mnemonics. the manufacturer will usually assign names to
the CPU registers. As with the instruction names, some register names are obvious {e.g..
A for Accumulator) while others may have only historical significance. Again. we will
use the manufacturer’'s suggestions simply to promote standardization.

If we use standard Z80 instruction and register mnemonics, as ASSEMBLY
defined by Zilog, our 280 addition program becomes: LANGUAGE
LD A.(BOH) PROGRAM
LD B.A
LD A B1H)
ADD A.B
LD (62H),A

The program is still far from obvious. but at least some parts are comprehensible.
ADD A.B is a considerable improvement over 80; LD does suggest loading data into a
register or memory location. Such a program is an assembly language program.

THE ASSEMBLER PROGRAM

How do we get the assembly language program into the com- HAND

puter? We have to translate it, either into hexadecimal or into bin- ASSEMBLY
ary numbers. You can translate an assembly language program
by hand, instruction by instruction. This is called hand assembly.

Hand assembly of the addition program’s instruction codes may be illustrated as
follows:

Instruction Name Hexadecimal Equivalent
LD A.(NN) 3A
LD B.A 47
ADD AB 80
LD (NNJLA 32

As in the case of hexadecimal to binary conversion, hand assembly 1s a rote task which
is uninteresting, repetitive, and subject to numerous minor errors. Picking the wrong
line, transposing digits. omitting instructions, and misreading the codes are only a few
of the mistakes that you may make. Most microprocessors complicate the task even
further by having nstructions with different word lengths. Some instructions are one
word long while others are two or three words long. Some instructions require data in
the second and third words. others require memory addresses, register numbers, or
who knows what?

Assembly is another rote task that we can assign to the ASSEMBLER
microcomputer. The microcomputer never makes any SOURCE
mistakes when translating codes; it always knows how many

s . . PROGRAM
words and what format each instruction requires. The program
that does this job is called an ‘‘assembler’’. The assembler OBJECT
program translates a user program, or ‘‘source’’ program writ- PROGRAM

ten with mnemonics, into a machine language program, or
““object’’ program, which the microcomputer can execute. The
assembler’s input is a source program and its output is an object program.

The tradeoffs we discussed in connection with the hexadecimal loader are mag-
nified in the case of the assembler. Assemblers are more expensive, occupy more
memory, and require more peripherals and execution time than do hexadecimal
loaders. While users may {and often do) write their own loaders, few care to write their
own assemblers.

1-6



Assemblers have their own rules that you must learn to abide by. These inciude the
use of certain markers (such as spaces, commas, semicolons, or colons} in appropriate
places. correct spelling, the proper control information, and perhaps even the correct
placement of names and numbers. These rules typically are a minor hindrance that can
be quickly overcome.

ADDITIONAL FEATURES OF ASSEMBLERS

Early assembler programs did little more than translate the mnemonic names of instruc-
tions and registers into their binary equivalents. However, most assemblers now pro-
vide such additional features as:

1) Aliowing the user to assign names to memory locations, input and output devices,
and even sequences of instructions.

2) Converting data or addresses from various number systems (e.g.. decimal or hex-
adecimal) to binary and converting characters into their ASCII or EBCDIC binary
codes.

3} Performing some arithmetic as part of the assembly process.

4)  Telling the loader program where in memory parts of the program or data should be
placed.

5) Allowing the user to assign areas of memory as temporary data storage and to
place fixed data in areas of program memory.

6) Providing the information required to include standard programs from program li-
braries, or programs written at some other time, in the current program.

7} Allowing the user to control the format of the program listing and the input and
output devices emploved.

All of these features, of course, involve additional cost and memo- CHOOSING
ry. Microcomputers generally have much simpler assemblers than AN
do larger computers, but the tendency always is for the size of as- ASSEMBLER

semblers to increase. You will often have a choice of assemblers.
The important criterion is not how many offbeat features the assembler has, but rather
how convenient it is to work with in normal practice.

DISADVANTAGES OF ASSEMBLY LANGUAGE

The assembler, like the hexadecimal loader, does not solve all the problems of
programming. One problem is the tremendous gap between the microcomputer in-
struction set and the tasks which the microcomputer is to perform. Computer in-
structions tend to do things like add the contents of two registers, shift the contents of
the Accumulator one bit, or place a new value into the Program Counter. On the other
hand. a user generally wants a microcomputer to do something like check if an analog
reading has exceeded a threshold, look for and react to a particular command from a
teletypewriter, or activate a relay at the proper time. An assembly language program-
mer must translate such tasks into a sequence of simple computer instructions. The
translation can be a difficult, time-consuming job.

Furthermore, if you are programming in assembly language, you ‘must have detailed
knowledge of the particular microcomputer that you are using. You must know
what registers and instructions the microcomputer has, precisely how the instructions
affect the various registers, what addressing methods the computer uses, and a myriad
of other information. None of this information is relevant to the task which the
microcomputer must ultimately perform.

In addition, assembly language programs are not portable. PORTABILITY
Each microcomputer has its own assembly language. which ) -
reflects its own architecture. An assembly language program written for the Z80 will

1-6



not run on the Motorola 6800. the Fairchild F8, or the National Semiconductor PACE.
For example, the addition program written for the Motorola 6800 would be:

LDAA $60
ADDA  $61
STAA $62

The lack of portability not only means that you won't be able to use vour assembly
language program on another microcomputer, but it also means that you won't be able
to use any programs that weren’t specifically written for the microcomputer vou are
using. This is a particular drawback for microcomputers, since these devices are new
and few assembly language programs exist for them. The result, too frequently, is that
you are on your own. If you need a program to perform a particular task, you are not
likely to find it in the small program libraries that most manufacturers provide. Nor are
vou likely to find it in an archive. journal article, or someone’s old program file. You will
probably have to write it yourseif.

HIGH-LEVEL LANGUAGES

The solution to many of the difficulties associated with as- COMPILER

sembly language programs is to use, instead, ‘‘high-level’’ or
““procedure-oriented’’ languages. Such languages allow you to describe tasks in
forms that are problem oriented rather than computer oriented. Each statement in
a high-level language performs a recognizable function; it will generally corres-
pond to many assembly language instructions. A program called a compiler transl-
ates the high-level language source program into object code or machine language
instructions.

Many different high-level languages exist for different types of ! FORTRAN »

tasks. If. for example, vou can express what you want the com-

puter to do in algebraic notation, vou can write your program in FORTRAN (Formula
Translation Languagel. the oldest and one of the most widely used of the high-level
languages. Now, if you want to add two numbers, you just tell the computer:

SUM = NUMB1-+NUMB2

That is a lot simpler {and a lot shorter} than either the equivalent machine language pro-
gram or the equivalent assembly language program. Other high-level languages in-
clude COBOL {for business applications}, PASCAL {another algebraic languagel, PL/1 (a
combination. of FORTRAN, ALGOL, and COBOL), and APL and BASIC (languages that
are popular for time-sharing systems).

ADVANTAGES OF HIGH-LEVEL LANGUAGES

Clearly, high-level languages make programs easier and faster to write. A common
estimate is that a programmer can write a program about ten times as fast in a
high-level language as compared to assembly language. That is just writing the pro-
gram: it does not include problem definition. program design. debugging, testing. or
documentation. all of which become simpler and faster. The high-level language pro-
gram s, for instance, partly self-documenting. Even if you do not know FORTRAN, you
probably could tell what the statement illustrated above does.

High-level languages solve many other problems associ- MACHINE

ated with assembly language programming. The high-level INDEPENDENCE
language has its own syntax (usually defined by a national or OF HIGH-LEVEL
international standard}. The language does not mention the in- LANGUAGES
struction set, registers, or other features of a particular com-
puter. The compiler takes care of all such details. Programmers can concentrate on their
own tasks: they do not need a detailed understanding of the underlying CPU architec-
ture — for that matter. they do not need to know anything about the computer they are
programming.




Programs written in a high-level language are portable — PORTABILITY
at least, in theory. They will run on any computer or OF HIGH-LEVEL
microcomputer that has a standard compiler for that language. LANGUAGES

At the same time, all previous programs written in a high-level

language for prior computers are available to you when programming a new computer.
This can mean thousands of programs in the case of a common language like FORTRAN
or BASIC.

DISADVANTAGES OF HIGH-LEVEL LANGUAGES

Well, if all the good things we have said about high-level languages are true, if you
can write programs faster and make them portable besides, why bother with as-
sembly languages? Who wants to worry about registers, instruction codes,
mnemonics, and all that garbage! As usual, there are disadvantages that balance
the advantages.

One obvious problem is that you have to learn the "‘rules’’ or SYNTAX OF
“syntax’’ of any high-level language you want to use. A high- HIGH-LEVEL
level language has a fairly complicated set of rules. You will find LANGUAGES
that it takes a lot of time ust to get a program that is syntactically
correct {and even then it probably will not do what vou want). A high-level computer
language is like a foreign language. If you have a little talent, you will get used to the
rules and be able to turn out programs that the compiler will accept. Still. learning the
rules and trying to get the program accepted by the compiler doesn't contribute
directly to doing your job.

Here, for example. are some FORTRAN rules:

« Labels must be numbers piaced in the first five card columns
+ Statements must start i column seven

» Integer variables must start with the letters . J. K. L. M, or N

Another obvious problem is that you need a compiler to transi- COST OF
ate programs written in a high-level language. Compilers are COMPILERS
expensive and use a large amount of memory. While most assem-
blers occupy 2K to 16K bytes of memory (1K = 1024), compilers occupy 4K to 64K
bvtes. So the amount of overhead involved in using the compiler is rather large.

Furthermore. only some compilers will make the implementa- ALGEBRAIC
tion of your task simpler. FORTRAN, for example, s well-suited NOTATION
to problems that can be expressed as algebraic formulas. .

however, your problem is controlling a printer. editing a string of characters, or monitor-
Ing an alarm system. your problem cannot be easily expressed in algebraic notation. In
fact. formulating the solution in algebraic notation may be more awkward and more
difficult than formulating it in assembly language. One answer is to use a more suttable
high-level language. Some such languages exist, but they are far less widely used and
standardized than FORTRAN. You will not get many of the advantages of high-level
languages if you use these so-called system implementation languages.

High-level languages do not produce very efficient INEFFICIENCY
machine language programs. The basic reason for this is that OF HIGH-LEVEL
compilation i1s an automatic process which is riddled with com- LANGUAGES

promises to allow for many ranges of possibilities. The com-
piler works much like a computerized language translator — sometimes the words are
rght but the sounds and sentence structures are awkward. A simple compiler cannot
know when a variable 1s no longer being used and can be discarded. or when a register
should be used rather than a memory location. or when variables have simple relation-
ships. The experienced programmer can take advantage of shortcuts to shorten execu-

1-8



tion time or reduce memory usage. A few compilers (known as optimizing compilers)
can also do this, but such compilers are much larger and slower than regular compilers.

The general advantages and disadvantages of high-level languages are:

Advantages:

» More convenient descriptions of tasks ADVANTAGES

» More efficient program coding STGH LEVEL

- Easier documentation LANGUAGES

» Standard syntax

« Independence of the structure of a particular computer

» Portability

» Availability of library and other programs

Disadvantages:

« Special rules DISADVANTAGES

« Extensive hardware and software support required OF

« Orientation of common languages to algebraic or business ri%'gti\é%s
problems

- Inefficient programs
« Difficufty of optimizing code to meet time and memory requirements
- Inability to use special features of a computer conveniently

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS

Microprocessor users will encounter several special difficulties when using high-
level languages. Among these are:

« Few high-level languages exist for microprocessors
- No standard languages are widely available

» Few compilers actually run on microcomputers. Those that do often require very large
amounts of memory.

» Most microprocessor applications are not well-suited to high-level languages.
« Memory costs are often critical in microprocessor applications.

The lack of high-level languages is partly a result of the fact that microprocessors are
quite new and are the products of semiconductor manufacturers rather than computer
manufacturers.

Very few high-level languages exist for microprocessors. The most common are the
PL/1 type languages {such as Intel's PL/M. Motorola’s MPL. and Signetics’ PLuS),
BASIC. and PASCAL.

Even the few high-ievel languages that exist do not conform to recognized standards,
so the microprocessor user cannot expect to gain much program portability, access to
program libraries, or use of previous experience or programs. The main advantages re-
maining are the reduction in programming effort and the smaller amount of detailed
understanding of the computer architecture that is necessary.

The overhead involved in using a high-level ianguage with OVERHEAD

microprocessors is considerable. Microprocessors themselves are FOR
better suited to control and slow interactive applications than they HIGH-LEVEL
are to the character manipulation and language analysis involved LANGUAGES

in compilation. Therefore, most compilers for microprocessors will
not run on a microprocessor-based system. Instead, they require a much larger com-
puter. i.e., they are cross-compilers rather than self-compilers. A user must not only



bear the expense of the larger computer but must also physically transfer the program
from the larger computer to the micro.

A few self-compilers are available. These compilers run on the microcomputer for
which they produce object code. Unfortunately, they require large amounts of memory
(16K or more). plus special supporting hardware and software.

High-level languages also are not generally well-suited to UNSUITABILITY
microprocessor applications. Most of the common languages OF HIGH-LEVEL
were devised either to help solve scientific problems or to han- LANGUAGES

dle large-scale business data processing. Few microprocessor
applications fall in either of these areas. Most microprocessor applications involve send-
ing data and control information to output devices and receiving data and status infor-
mation from input devices. Often the control and status information consists of a few
binary digits with very precise hardware-related meanings. If you try to write a typical
control program in a high-level language, you often feel like someone who is trying to
eat soup with chopsticks. For tasks in such areas as test equipment, terminals, naviga-
tion systems, signal processing, and business equipment. the high-level languages
work much better than they do in instrumentation, communications, peripherals, and
automotive applications.

Applications better suited to high-level languages are those which APPLICATION
require large memories. If, as in a valve controller, electronic game, AREAS FOR
appliance controller. or small instrument, the cost of a single LANGUAGE
memory chip is important. then the inefficiency of high-level LEVELS
languages is intolerable. If, on the other hand. as in a terminal or
test equipment, the system has many thousands of bytes of memory anyway. the ineffi-
ciency of high-level languages is not as important. Clearly the size of the program and
the volume of the product are important factors as well. A large program will greatly in-
crease the advantages of high-level languages. On the other hand, a high-volume ap-
plication will mean that fixed software development costs are not as important as
memory costs that are part of each system.

WHICH LEVEL SHOULD YOU USE?

That depends on your particular application. Let us briefly note some of the factors
which may favor particular levels:

Machine Language:

- Virtually no one programs in machine language. its use can- ég:l‘l:/‘l::g:-l?ss
not be justified considering the low cost of an assembler and LANGUAGE
the increase in programming speed an assembler provides.

Assembly Language:

« Short to moderate sized programs APPLICATIONS

« Applications where memory cost is a factor FOR ASSEMBLY

. L. LANGUAGE

+ Real-time control applications

- Limited data processing

« High-volume applications

» More input/output or control than computation

High-Level Languages:

+ Long programs APPLICATIONS

+ Low-volume applications requiring long programs FOR HIGH-LEVEL

I .. . LANGUAGE

- Applications requiring large memories




- More computation than input/output or control
- Compatibility with similar applications using larger computers

+ Availability of specific programs in a high-level language which can be used in
the application

Many other factors are also important, such as the availability of a larger computer for
use in development. experience with particular languages, and compatibility with other
applications.

If hardware will ultimately be the largest cost in your application, or if speed is critical
you should favor assembly language. But be prepared to spend extra time in software
development in exchange for lower memory costs and higher execution speeds. If soft-
ware will be the largest cost in your application. you shouid favor a high-level language.
But be prepared to spend the extra money required for the supporting hardware and
software.

Of course, no one except some theorists will object if vou use both assembly and high-
level languages. You can write the program originally in a high-level language and then
patch some sections in assembly language. However. most users prefer not to do this
because of the havoc it creates in debugging. testing. and documentation.

HOW ABOUT THE FUTURE?

We expect that the future will tend to favor high-level languages for the following
reasons:

« Programs always seem to add extra features and grow larger { FUTURE TRENDS

- Hardware and memory are becoming less expensive IN LANGUAGE
LEVELS

» Software and programmers are becoming more expensive

« Memory chips are becoming available in larger sizes, at lower
“per bit"” cost, so actual savings in chips are less likely

» More compilers are becoming available
+ More suitable and more efficient high-level languages are being developed
« More standardization of high-level languages will occur

Assembly language programming of microprocessors will not be a dying art any more
than it is now for large computers. But longer programs. cheaper memory, and more ex-
pensive programmers will make software costs a larger part of most applications. The
edge in many applications will therefore go to high-level languages.

WHY THIS BOOK?

If the future would seem to favor high-level languages, why have a book on as-
sembly language programming? The reasons are:

1} Most current microcomputer users program in assembly language (almost two-
thirds, according to one recent surveyl.

2) Many microcomputer users will continue to program in assembly language since
they need the detailed control that it provides.

3) No suitable high-level language has yet become widely available or standardized.

4) Many applications require the efficiency of assembly language.

5) An understanding of assembly language can help in evaluating high-level
languages.

The rest of this book will deal exclusively with assemblers and assembly language pro-
gramming. However, we do want readers to know that assembly language is not the
only alternative. You should watch for new developments that may significantly reduce
programming costs if such costs are a major factor in your application.

1-11



REFERENCES

Some overall comparisons of the time required to write various types of programs at
different language levels are in M.H. Halstead, Elements of Software Science, American
Eisevier, New York, 1977 and in V. Schneider. “Prediction of Software Effort and Project
Duration - Four New Formulas”. SIGPLAN Notices. June 1978, pp. 49-55.




Chapter 2
ASSEMBLERS

This chapter discusses the functions performed by assemblers, beginning with features
common to most assemblers, and proceeding through more elaborate capabilities such
as macros and conditional assembly. You may wish to skim this chapter for the present
and return to it when you feel more comfortable with the material.

FEATURES OF ASSEMBLERS

As we mentioned previously, today’s assemblers do much more than transiate as-
sembly language mnemonics into binary codes. But we will first describe how an
assembler handles the translation of mnemonics before describing additional as-
sembler features. Finally, we will explain how assemblers are used.

ASSEMBLER INSTRUCTIONS

Assembly language instructions {or ‘‘statements’’) are divided ASSEMBLY
into a number of fields, as shown in Table 2-1. LANGUAGE
The operation code field is the only field which can never be FIELDS

empty; it always contains either an instruction mnemonic or a
directive to the assembler, called a pseudo-instruction, pseudo-operation, or
pseudo-op.

The address field may contain an address or data, or it may be blank.

Table 2-1. The Fields of an Assembly Language instruction

Operation Operand
Label Code or or Comment Field
Field Mnemonic Address
Field Field
START: LD A.(VAL1) :LOAD FIRST NUMBER INTO A
LD B.A :SAVEIN B
LD A (VAL2) ;LOAD SECOND NUMBER INTO A
ADD AB :ADD FIRST NUMBER TO A
LD (SUM)LA ;STORE SUM
NEXT: ? ? :NEXT INSTRUCTION
VALT: DEFS 1
VALZ: DEFS 1
SUM: DEFS 1

The comment and label fields are optional. A programmer will assign a label to a
statement or add a comment as a personal convenience, e.g., to make the program
easier to code and read.

2-1



Of course, the assembler must have some way of telling FORMAT |

where one field ends and another begins. Assemblers that use

punched card input often require that each field start in a specific card column. This is
a fixed format. However, fixed formats may be inconvenient when the input medium is
paper tape; fixed formats are also a nuisance to programmers. The alternative is a free
format, where the fields may appear anywhere on the line.

If the assembler cannot use the position in the line to tell the fields DELIMITERS

apart, it must use something else. Most assemblers use a

special symbol or delimiter at the beginning or end of each field. The most obvious
delimiter is the space character. Commas, periods. semicolons, colons, slashes, ques-
tion marks and other characters that would not otherwise be used in assembly
language programs alsoc may serve as delimiters. Table 2-2 lists standard Zilog Z80 as-
sembler delimiters.

Table 2-2. Standard Z80 Assembler Delimiters

after a label
‘space’ between operation code and address
, between operands in the address field
; before a comment

You will have to exercise a little care with delimiters. Some assemblers are fussy
about extra spaces or the appearance of delimiters in comments or labels. A well-
written assembler will handle these minor problems, but many assemblers are not
well-written. Our recommendation is simple: avoid potential problems if you can.
The following rules will help:

1) Do not use extra spaces, particularly after commas that separate operands.
2} Do not use delimiter characters in names or labels.

3) Include standard delimiters even if your assembler does not require them. Your pro-
grams will then be assembled by any assembler.

LABELS
The label field is the first field in an assembly language in- LABEL
struction; it may be blank. If a label is present, the assembler FIELD

assigns to the label the value of the address for the memory loca-
tion into which the first object program byte for that instruction is loaded. You may
subsequently use the label as data or as an address in another instruction’s operand
field. The assembler will replace the label with the assigned value when creating an ob-
ject program.

Labels are most frequently used in Jump, Call or Branch in- | LABELS
structions. These instructions place a new vaiue in the Program | IN JUMP
Counter and so alter the normal sequential execution of instruc- | INSTRUCTIONS

tions. JUMP 1501g means “place the value 15014 into the Pro-
gram Counter”. The next instruction to be executed will be the one in memory location
16016. The instruction JUMP START means “place the value assigned to the label
START nto the Program Counter” The next instruction to be executed will be the one
in the memory location to which the label START has been assigned. Table 2-3 contains
an example.

2-2



Table 2-3. Assigning and Using a Label

ASSEMBLY LANGUAGE PROGRAM
START LOAD ACCUMULATOR 100

« {(MAIN PROGRAM)

JUMP START

When the machine language version of this program is executed. the instruction JUMP
START causes the address of the instruction labeled START to be placed into the Pro-
gram Counter. The instruction with the label START will be executed next.

Why use a label? Here are some reasons:

1} A label makes a program location easier to find and remember.

2} The label can be moved to change or correct a program. You do not have to change
any subsequent instructions that use the label; the assembler will make all the
necessary changes.

3) The assembler or loader can relocate the whole program by RELOCATION
adding a constant (a relocation constant} to each address in CONSTANT
which a label was used. Thus we can move the program to
allow for the insertion of other programs or simply to rearrange memory.

4) The program is easier to use as a library program, i.e.. it is easier for someone else to
take your program and add it to some totally different program.

5}  You do not have to figure out memory addresses. Figuring out memory addresses is
particularly difficult with microprocessors which have instructions that vary in
length.

It makes sense to assign a label to any instruction that you might want to use as a
destination or otherwise identify.

The next question is what label to use. The assembler often CHOOSING
places some restrictions on the number of characters {usually 5 LABELS

or 6), the leading character (often must be a letter], and the trailing
characters {often must be letters, numbers, or one of a few special characters). Beyond
these restrictions. the choice is up to you.

Our own preference is to use labels that suggest their purpose, ..e., mnemonic labels.
Typical examples are ADDW in a routine that adds one word into a sum, SRETX in a
routine that searches for the ASCIl character ETX. or NKEYS for a location in data
memory that contains the number of kev entries. Meaningful labels are easier to
remember and contribute to program documentation. Some programmers prefer to use
a standard format for labels, such as starting with LO00O0. These labels are self-sequenc-
ing {you can skip a few numbers to permit insertions), but they do not help document
the program.

Some label selection rules will keep you out of trouble. We RULES OF
recommend the following: LABELING

1} Do not use labels that are the same as operation codes or
other mnemonics. Most assemblers will not allow this usage. others will, but it is
very confusing.

2-3



2) Do not use labels that are longer than the assembler permits. Assemblers have
various truncation rules.

3} Avoid special characters (non-alphabetic and non-numeric) and lower-case letters.
Some assemblers will not permit them; others allow only certain ones. The simplest
practice 15 to stick to capital letters and numbers.

4} Start each label with a letter. Such labels are always acceptable.

5) Do not use labels that could be confused with each other. Avoid the letters |, O and
Z and the numbers 0. 1 and 2. Also avoid things like XXXX and XXXXX. There’s no
sense tempting fate and Murphy's laws.

6] When you are not sure if a label is legal. do not use it. You will not get any real
benefit from discovering exactly what the assembler will accept.

These are recommendations, not rules. You do not have to follow them, but don’t blame
us if you waste time on silly problems.

ASSEMBLER OPERATION CODES (MNEMONICS)

The main task of the assembler is the translation of mnemonic operation codes
into their binary equivalents., The assembler performs this task using a fixed table
much as vou would if you were doing the assembly by hand.

The assembler must, however, do more than just translate the operation codes. [t must
also somehow determine how many operands the instruction requires and what
type they are. This may be rather complex — some instructions {like a Halt} have no
operands. others (like an Addition or a Jump instruction) have one. while still others
(like a transfer between registers or a multiple-bit shift) require two. Some instructions
may even allow alternatives, e.g.. some computers have instructions {like Shift or Clear)
that can apply either to the Accumulator or to a memory location. We will not discuss
how the assembler makes these distinctions; we will just note that it must do so.

PSEUDO-OPERATIONS

Some assembly language instructions are not directly transl- PSEUDO-
ated into machine language instructions. These instructions OPERATIONS
are directives to the assembler; they assign the program to cer- ASSEMBLER
tain areas in memory, define symbols, designate areas of RAM for DIRECTIVE
temporary data storage, place tables or other fixed data in memo-
ry. allow references to other programs, and perform minor house-
keeping functions.

To use these assembler directives. or pseudo-operations, a programmer places the
pseudo-operation's mnemonic in the operation code field and. if the specified pseudo-
operation requires it, an address or data in the address field.

The most common pseudo-operations are:

DATA

EQUATE or DEFINE
ORIGIN

RESERVE

Linking pseudo-operations are:
ENTRY
EXTERNAL

2-4



Different assemblers use different names for these operations. but the purposes are the
same. Housekeeping pseudo-operations include:

END
LIST
NAME
PAGE
SPACE
TITLE

We will discuss these pseudo-operations briefly, although their functions are usually
obvious.

THE DATA PSEUDO-OPERATION

The DATA pseudo-operation allows the programmer to enter fixed data into
memory. This data may include:

« Lookup tables

« Code conversion tables

- Messages

» Synchronization patterns

= Thresholds

- Names

- Coefficients for equations

+ Commands

« Conversion factors

- Weighting factors

« Characteristic times or frequencies
» Subroutine addresses

+ Key identifications

» Test patterns

- Character generation patterns
« Identification patterns

» Tax tables

« Standard forms

» Masking patterns

« State transition tables

The DATA pseudo-operation treats the data as a permanent part of the program.

The format of a DATA pseudo-operation is usually quite simple. An instruction
like:

DZCON DATA 12
will place the number 12 in the next available memory location and assign that
location the name DZCON. Usually every DATA pseudo-operation has a label. unless it
is one of a series of DATA pseudo-operations. The data and label may take any form
that the assembler permits.

Most assemblers allow more elaborate DATA instructions that handle a targe amount of
data at one time. e.g.:

EMESS DATA  'ERROR’
SQRS DATA  1.49.16,25

2-5



A single instruction may fill many words of program memory. timited only by the length
of a line. Note that if vou cannot get all the data on one line, you can always follow one
DATA nstruction with another. e.g..

MESSG DATA ‘NOW IS THE~
DATA ‘TIME FOR ALL "
DATA ‘GOOD MEN *
DATA “TO COME 7O THE*
DATA ‘AlD OF THEIR *
DATA ‘COUNTRY’

Microprocessor assemblers typically have some variations of standard DATA
pseudo-operations. DEFINE BYTE or FORM CONSTANT BYTE handles 8-bit numbers;
DEFINE WORD or FORM CONSTANT WORD handles 16-bit numbers or addresses.
Other special pseudo-operations may handle character-coded data.

THE EQUATE (or DEFINE) PSEUDO-OPERATION

The EQUATE pseudo-operation allows the programmer to DEFINING
equate labels and names with addresses or data. This pseudo- NAMES
operation is almost always given the mnemonic EQU. The
names may refer to device addresses, numeric data, starting addresses, fixed ad-
dresses, etc.

The EQUATE pseudo-operation assigns the numeric value in its operand field to
the label in its label field. Here are two examples:

TTY EQU 5
LAST EQU 5000

Most assemblers will allow you to define one label in terms of another, e.g.:

LAST EQU FINAL
ST EQU START+1

The label in the operand field must, of course, have been previously defined. Often, the
operand field may contain. more complex expressions, as we shall see later. Double
name assignments {two names for the same data or address) may be useful in patching
together programs which use different names for the same variable lor different spell-
ings of what was supposed to be the same namel}.

Note that an EQU pseudo-operation does not cause the as- SYMBOL
sembler to place anything into memory. The assembler simply TABLE
enters an additional name into a table (called a symbol table)
which the assembler maintains. This table, unlike the mnemonic table, must be in
RAM since it varies with each program. The assembler program will always need some
RAM to hold the symbol table; the more RAM it has, the more symbols it can accept.
This RAM is in addition to any which the assembler needs as temporary storage.

When do you use a name? The answer is: whenever you have a USE OF
parameter that has some meaning besides its ordinary numeric NAMES
value, or the numeric value of the parameter might be changed.
We typically assign names to time constants, device addresses, masking patterns, con-
version factors, and the like. A name like DELAY, TTY, KBD., NROW, or OPEN not only
makes the parameter easier to change, but it also adds to program documentation. We
also assign names to memory locations that have special purposes; thev may hold data,
mark the start of the program. or be available for intermediate storage.

What name do you use? The best rules are much the same as CHOICE
in the case of labels, except that here meaningful names really OF
count. Why not call the teletypewriter TTY instead of X15. a bit NAMES

time delay BTIME or BTDLY rather than WW., the number of the

2-6



"GO key on a keyboard GOKEY rather than HORSE? This advice seems straightfor-
ward, but a surprising number of programmers do not follow it.

Where do you place the EQUATE pseudo-operations? The PLACEMENT
best place is at the start of the program, under appropriate OF
comment headings such as /O ADDRESSES. TEMPORARY DEFINITIONS

STORAGE, TIME CONSTANTS, or PROGRAM LOCATIONS. This
makes the definitions easy to find if you want to change them. Furthermore, another
user will be able to look up all the definitions in one centralized place. Cleariy this prac-
tice improves documentation and makes the program easier to use.

Definitions used only in a specific subroutine should appear at the start of the
subroutine.

THE ORIGIN PSEUDO-OPERATION

The ORIGIN pseudo-operation (almost always abbreviated ORG) allows the pro-
grammer to locate programs, subroutines, or data anywhere in memory. Programs
and data may be located in different areas of memory depending on the memory con-
figuration. Startup routines, interrupt service routines, and other required programs
may be scattered around memory at fixed or convenient addresses.

The assembler maintains a Location Counter {comparable to LOCATION
the computer’'s Program Counter) which contains the location COUNTER
in memory at which the next byte of object code generated by
the assembler will reside when the program is foaded. An ORG pseudo-operation
causes the assembler to place a new value into the Location Counter, much as a Jump
instruction causes the CPU to place a new value into the Program Counter. The output
from the assembler must not only contamn instructions and data, but must also indicate
to the loader program where in memory it should place the instructions and data.

Microprocessor programs often contain several ORIGIN statements for the following
purposes.

Reset (startup) address Main program
Interrupt service addresses Subroutines

Trap addresses Memory addresses for
RAM storage input/output devices
Memory stack or special functions

Still other ORIGIN statements may allow room for later insertions, place tables or data in
memory, or assign vacant RAM space for data buffers. Program and data memory in
microcomputers may occupy widely scattered addresses to simplify the hardware.

Typical ORIGIN statements are:

ORG RESET
ORG 1000
ORG INT3

Some assemblers assume an origin of zero if the programmer does not put an ORG
statement at the start of the program. The convenience is slight, we recommend the in-
clusion of an ORG statement to avoid confusion.

THE RESERVE PSEUDO-OPERATION

The RESERVE pseudo-operation allows the programmer to ALLOCATING
allocate RAM for various purposes such as data tables, tem- RAM
porary storage, indirect addresses, a Stack, etc.

2-7



Using the RESERVE pseudo-operation, you assign a name to the memory area and
declare the number of locations to be assigned. Here are some examples:

NOKEY  RESERVE 1
TEMP RESERVE 50
VOLTG  RESERVE 80
BUFR RESERVE 100

You can use the RESERVE pseudo-operation to reserve memory locations in program
memory or in data memory; however the nature of the RESERVE pseudo-operation is
more meaningful when applied to data memory.

In reality. all the RESERVE pseudo-operation does is increase the assembler’'s Location
Counter by the amount declared in the operand field. The assembler does not actually
produce any object code.

Note the following features of RESERVE:
1} The label of the RESERVE pseudo-operation is assigned the vaiue of the first ad-
dress reserved. For example, the sequence:

ORG 3000
BUF1 RESERVE 100
BUF2 RESERVE 50
VOLTS  RESERVE 5

assigns to the label BUF1 the value 3000, to BUF2 3100, and to VOLTS 3150.

2} You must specify the number of locations to be reserved. There is no default case.

3) No data is placed into the reserved locations. Any data that, by chance, may be in
these locations will be left there.

Some assemblers allow the programmer to place initial INITIALIZING
values in RAM. We strongly recommend that you do not RAM

use this feature — it assumes that the program {along with
the initial values) will be loaded from an external device (e.g.. paper tape or floppy disk)
each time it 1s run. Most microprocessor programs, on the other hand, reside in non-
volatile ROM and start when power comes on. The RAM in such situations does not re-
tain its contents, nor is it reloaded. Always include instructions to initialize the RAM in
your program.

LINKING PSEUDO-OPERATIONS

We often want statements in one program or subroutine to EXTERNAL
use names that are defined elsewhere. Such names are called REFERENCES
external references; a special linker program is necessary to ac-
tually fill in the external values and determine if any names are undefined or doubly
defined.

The pseudo-operation EXTERMAL, usually abbreviated EXT, signifies that the
name is defined elsewhere,.

The pseudo-operation ENTRY, usually abbreviated ENT, signifies that the name is
available for use elsewhere, i.e.. it is defined in this program.

The precise way in which linking pseudo-operations are implemented varies greatly
from assembler to assembler. We will not refer to such pseudo-operations again, but
they are very useful in actual applications.

HOUSEKEEPING PSEUDO-OPERATIONS

There are various housekeeping pseudo-operations, which affect the operation of



the assembler and its program listing rather than the output program itseif. Com-
mon housekeeping pseudo-operations include:

1)
2)

END. which marks the end of the assembly language source program.

LIST, which tells the assembler to print the source program. Some assemblers allow
such variations as NO LIST or LIST SYMBOL TABLE to avoid long. repetitive list-
ings.

NAME or TITLE. which prints a name at the top of each page of the listing.

PAGE or SPACE. which skips to the next page or next line, respectively, and im-
proves the appearance of the listing. making it easier to read.

PUNCH. which transfers subsequent object code to the paper tape punch. This
pseudo-operation may in some cases be the default option and therefore unnecess-
ary.

LABELS WITH PSEUDO-OPERATIONS

Users often wonder if or when they can assign a label to a pseudo-operation.
These are our recommendations:

All EQUATE pseudo-operations must have labels; they do not make any sense
otherwise, since their purpose is to define the meaning of the labels.

DATA and RESERVE pseudo-operations usually have labels. The label identifies the
first memory location used or assigned.

Other pseudo-operations should not have labels. Some assemblers allow other
pseudo-operations to have labels, but the meaning of the labels varies. We recom-
mend that you avoid this practice.

ADDRESSES AND THE OPERAND FIELD

Most assemblers allow the programmer a lot of freedom in describing the con-
tents of the Operand Address field. But remember, the assembler has built-in
names for registers and instructions and may have other built-in names.

Some common options for the operand field are: DECIMAL
. DATA OR
1} Decimal numbers ADDRESSES

Most assemblers assume all numbers to be decimal unless they

are marked otherwise, So:

ADD 100
means “add the contents of memory location 100 decimal to the contents of the Ac-
cumulator”
2) Other number systems OTHER
Most assemblers will also accept binary, octal, or hexadecimal en- NUMBER
; ' SYSTEMS

tries. But you must identify these number systems in some way,

e.g.. by preceding or following the number with an identifying
character or letter. Here are some common identifiers:

B or % for binary

0, Q. C or @ for octal (we avoid O because of the confusion with zero).
H or $ for hexadecimal

D for decimal. D may be omitted: it is the default case.

2-9



Assemblers generally require hexadecimal numbers to start with a decimal digit le.g..
0A36 instead of A36) in order to distinguish between numbers and names or labels. it is
good practice to enter numbers in the base in which their meaning is the clearest —
1.e.. decimal constants in decimal; addresses and BCD numbers in hexadecimal; mask-
ing patterns or bit outputs in binary if they are short and in hexadecimal if they are long.
3) Symbolic names

Names can appear in the operand field:; they will be treated as the data that they repre-
sent. But remember, there is a difference between data and addresses. The se-
quence:

FIVE EQU 5
ADD FIVE

will add the contents of memory location 5 (not necessarily the number 5) to the con-
tents of the Accumulator.

4) The current value of the location counter (usually referred to as * or $).
This is useful mainly in Jump nstructions; for example:
JUMP $+6
causes a Jump to the memory location six words bevond the word that contains the
first byte of the JUMP instruction:

Memory

} JUMP $ + 6 code stored here

6 locations

(e Jump here

Most microprocessors have many two and three-word instructions. Thus, you will have
difficulty determining exactly how far apart two assembly language statements are.
Therefore, using offsets from the Location Counter frequently results in errors that you
can avoid if vou use labels.

5} Character codes

Most assemblers allow text to be entered as ASCH strings. Such | ASCH

strings may be surrounded either with single or double quotation } CHARACTERS
marks. strings may also use a beginning or ending symbol such as
A or C. A few assemblers also permit EBCDIC strings.

We recommend that vou use character strings for all text. it improves the clarity and
readability of the program.

6) Combinations of 1) through 5) with arithmetic, logical, or special operators.

Almost all assemblers allow simple arithmetic combinations such { ARITHMETIC

as START+1. Some assemblers also permit multiplication, divi- | AND LOGICAL
sion, logical functions. shifts, etc. These are referred to as expres- | EXPRESSIONS
sions. Note that the assembler evaluates expressions at assembly
time. Even though an expression in the operand field may involve multiplication, you

2-10



may not be able to use muitiplication in the logic of vour own program -— unless vou
write a subroutine for that specific purpose.

Assemblers vary in what expressions they accept and how they interpret them. Com-
plex expressions make a program difficult to read and understand.

We have made some recommendations during this section but will repeat them and
add others here. In general, the user should emphasize clarity and simplicity. There
is no payoff for being an expert in the intricacies of assemblers or in having the most
complex expression on the block. We suggest the following approach:

1} Use the clearest number system or character code for data. Masks and BCD num-
bers in decimal, ASCH characters in octal, or ordinary numerical constants in hex-
adecimal serve no purpose and therefore should not be used.

2) Remember to distinguish data and addresses.

3) Don't use offsets from the Location Counter.

4) Keep expressions simple and obvious. Don’t rely on obscure features of the assem-
bler.

CONDITIONAL ASSEMBLY

Some assemblers allow you to include or exclude parts of the source program, de-
pending on conditions existing at assembly time. This is called conditional assem-
bly; it gives the assembler some of the flexibility of a compiler. Most microcomputer
assemblers have limited capabilities for conditional assembly. A usual form is:

IF COND

"CONDITIONAL PROGRAM

ENDIF

If the expression COND is true at assembly time, the instructions between IF and ENDIF
{(two pseudo-operations) are included in the program.

Typical uses of conditﬁonal assembly are:

1} To include or exclude extra variables.

2} To place diagnostics or special conditions in test runs.
3) To allow data of various bit lengths.

4)  To create specialized versions of a common program.

Unfortunately, conditional assembly tends to clutter programs and make them difficult
to read. Use conditional assembly only if it is necessary.

MACROS

You will often find that particular sequences of instructions oc- DEFINING A
cur many times in a source program. Repeated instruction se- SEQUENCE OF
guences may reflect the needs of your program logic. or they INSTRUCTIONS

mav be compensating for deficiencies in your microprocessor’s
instruction set. You can avoid repeatedly writing out the same instruction sequence by
using a macro.

Macros allow you to assign a name to an instruction sequence. You then use the
macro name in your source program instead of the repeated instruction sequence.

2-11



The assembler will replace the macro name with the appropriate sequence of in-
structions. This may be illustrated as follows:

Source Program Object Program
MAC1  MACRO {macro definition)
instruction M1
mnstruction M2 w
instruction M3
ENDM {end of macro definition)
mstruction P1 {mamn program} instruction P1
nstruction P2 B=<  mstruction P2
instruction P3 mstruction P3
mstruction M1
MACS . mstruction M2
instruction M3
instruction P4 instruction P4
tnstruction P5 P instruction P5
nstruction P§ mnstruction P6
nstruction P7 nstruction P7
instruction M1
MACT S on M2
instruction M3
mstruction P8 % instruction P8
nstruction P9 ? instruction P9
instruction M1
MACH \. g  instruction M2
instruction M3
instruction P10 } Py % nstruction P10
mstructian P11 instruction P11
° °
° °
° ®

Macros are not the same as subroutines. A subroutine occurs once in a program, and
program execution branches to the subroutine. A macro is expanded to an actual in-
struction sequence each time the macro occurs; thus a macro does not cause any
branching.

Macros have the following advantages: ADVANTAGES

1
2)
3)

4)

5)

The disadvantages of macros are:

1

OF MACROS

Shorter source programs.
Better program documentation.
Use of debugged instruction sequences — once the macro has been debugged,
vou are sure of an error-free instruction sequence every time you use the macro.
Easier changes. Change the macro definition and the assembler makes the change
for you every time the macro is used.

Inclusion of commands, keywords, or other computer instructions in the basic in-
struction set. You use the macro as an extension of your instruction set.

DISADVANTAGES
Repetition of the same instruction sequences since the | OF MACROS
macro s expanded every time it is used.

2-12



2) A single macro may create a lot of instructions.

3} Lack of standardization that may make the program difficult to read and unders-
tand.

4} Possible effects on registers and flags that may not be clearly stated.

One problem is that variables used in a macro are known only LOCAL OR
within it {i.e.. they are local rather than globall. This can often GLOBAL
create a great deal of confusion without any gain in return. You VARIABLES

should be aware of this problem when using macros.

COMMENTS

All assemblers allow you to place comments in a source program. Comments have
no effect on the object code, but they help you to read, understand, and document
the program. Good commenting is an essential part of writing assembly language
programs; without comments, programs are very difficult to understand.

We will discuss commenting along with documentation in a | COMMENTING
later chapter, but here are some guidelines: TECHNIQUES

1) Use comments to tell what the program is doing. not what instructions do.
Comments should say things like IS TEMPERATURE ABOVE LIMIT?", ““LINE FEED
TO TTY", or "EXAMINE LOAD SWITCH".

Comments should not say things like “ADD 1 TO ACCUMULATOR" “JUMP TO
START". or "LOOK AT CARRY". You should describe how the program is affecting
the system; internal effects on the CPU are seldom of any interest.

2} Keep comments brief and to the point. Details should be available elsewhere in the
documentation.

3) Comment all key points.

4) Do not comment standard instructions or sequences that change counters and
pointers; pay special attention to instructions that may not have an obvious mean-
ing.

5) Do not use obscure abbreviations.

6) Make the comments neat and readable.

7) Comment all definitions. describing their purposes. Also mark all tables and data
storage areas.

8} Comment sections of the program as well as individual instructions.

9) Be consistent in your terminology. You can (should} be repetitive; you do not need
to consult a thesaurus. P

10} Leave vourself notes at points which you find confusing, e.g.. "REMEMBER CAR-
RY WAS SET BY LAST INSTRUCTION". You may drop these in the final documen-
tation.

A well-commented program is easy to work with. You will recover the time spent in

commenting many times over. We will try to show good commenting style in the pro-

gramming examples. although we often over-comment for instructional purposes.



TYPES OF ASSEMBLERS

Although all assemblers perform the same tasks, their implementations vary
greatly. We will not try to describe all the existing types of assemblers; we will
merely define the terms and indicate some of the choices.

A cross-assembler is an assembler that runs on a computer CROSS-
other than the one for which it assembles object programs. ASSEMBLER

The computer on which the cross-assembler runs is typically a

large computer with extensive software support and fast peripherals — such as an I1BM
360 or 370. a Univac 1108, or a Burroughs 6700. The computer for which the cross-as-
sembler assembles programs is tvpically a microcomputer like the Z80 or MC6800.
Most cross-assemblers are written in FORTRAN so that they are portable.

A self-assembler or resident assembler is an assembler that runs RESIDENT
on the computer for which 1t assembles programs. The self-assem- ASSEMBLER
bler will require some memory and peripherals, and it may run
quite slowly.

A macroassembler is an assembler that allows you to define MACRO-
sequences of instructions as macros. ASSEMBLER
A microassembler is an assembler used to write the MICRO-
microprograms that define the instruction set of a computer. ASSEMBLER

Microprogramming has nothing specifically to do with
microcomputers.

A meta-assembler is an assembler that can handle many META-
different instruction sets. The user must define the particular in- ASSEMBLER
struction set being used.

A one-pass assembler is an assembler that goes through the ONE-PASS
assembly language program only once. Such an assembler must ASSEMBLER

have some way of resolving forward references, e.g.. Jump in-
structions which use labels that appear later in the source program, 1.e.. that have not
yet been defined.

A two-pass assembler is an assembier that goes through the TWO-PASS
assembly language source program twice. The first time the ASSEMBLER
assembler simply collects and defines all the symbols; the
second time it replaces the references with the actual definitions. A two-pass as-
sembler solves most of the forward reference problems. However, macro expan-
sion and conditional assembly can cause problems. On some large machines seven
or more passes are needed to insure that all forward references are resolvable. A
two-pass assembler may be quite slow if no backup storage (like a floppy disk] is
available; then the assembler must physically read the program twice from a slow
input medium (like a teletypewriter paper tape reader). Most microprocessor-
based assemblers require two passes.

ERRORS

Assemblers normally provide error messages, often consisting of a single coded
letter. Some typical errors are:

1) Undefined name (often a misspelling or an omitted definition).
2) lllegal character le.g.. a 2 in a binary number).

2-14



)

Illegal format twrong delimiter or incorrect operandsl.

Invalid expression {e.g.. two operators in a row).

lllegal value (usually too largel.

6) Missing operand.

7)  Double definition {i.e.. two different values assigned to one name).
)

[SIF Y

0~

Illegal label {e.g.. a label on a pseudo-operation that cannot have one).
9} Missing label.
10} Undefined operation code.

In interpreting assembler errors, you must remember that the assembler may get off on
the wrong track if it finds a stray letter. an extra space. or incorrect punctuation. Many
assemblers will then proceed to misinterpret the succeeding instructions and produce
meaningless error messages. Always look at the first error very carefully: subsequent
ones may depend on it. Caution and consistent adherence to standard formats will
eliminate many annoying mistakes.

LOADERS

The loader is the program which actually takes the output (object code) from the as-
sembler and places it in memory. Loaders range from the very simple to the very com-
plex. We will describe a few different types.

A bootstrap loader is a program that uses its own first few in- BOOTSTRAP
structions to load the rest of itself or another loader program LOADER

into memory. The bootstrap loader may be in ROM. or you may
have to enter it into the computer memory using front panel switches. The assembier
may place a bootstrap loader at the start of the object program that it produces.

A relocating loader can load programs anywhere in memory. it RELOCATING
typically loads each program into the memory space immediately LOADER

following that used by the previous program. The programs,
however. must themselves be capable of being moved around in this way, ie.. they
must be relocatable. An absolute loader, in contrast, will always place the programs in
the same area of memory.

A linking loader loads programs and subroutines that have LINKING
been separately assembled; it resolves external references — LOADERS
that is. an instruction in one module that refers to a label in
another module. Object programs loaded by a linking loader must be created by an as-
sembler that permits and marks external references.

An alternative approach is to separate the linking and loading LINK
functions and have the linking performed bv a program called a EDITOR
link editor.



REFERENCES

A complete monograph on macros is M. Campbell-Kelly, An Introduction to Macros,
American Elsevier. New York, 1973.

Microprogramming s described conceptually in An Introduction to Microcom-
puters: Volume 1 — Basic Concepts, Chapter 4. A more technical description i1s in A.K.
Agrawala and 7.G. Rauscher. Foundations of Microprogramming. Academic Press. New
York, 1976.

You can find more detailed descriptions of assemblers and loaders in D.W. Barron. “As-
semblers and Loaders””. American Elsevier, New York. 1972 and in C.W. Gear, Com-
puter Organization and Programming., McGraw-Hill, New York, 1974,

2-16



Chapter 3
THE Z80 ASSEMBLY LANGUAGE
INSTRUCTION SET

We are now ready to start writing assembly language programs. We begin in this
chapter by defining the individual instructions of the Z80 assembly language in-
struction set, plus the syntax rules of the Zilog assembler.

We do not discuss any aspects of microcomputer hardware, signals. interfaces. or
CPU architecture in this book. This information is described in detail in An Introduction
to Microcomputers: Volume 2 — Some Real Microprocessors and Volume 3 — Some
Real Support Devices, while Z80 Programming for Logic Design discusses assembly
language as an extension of digital logic. In this book. we look at programming tech-
niques from the assembly language programmer’s viewpoint, where pins and sig-
nais are irrelevant and there are no important differences between a minicom-
puter and a microcomputer.

Interrupts, direct memory access. and the Stack architecture for the Z80 will be de-
scribed in later chapters of this book. in conjunction with assembly language program-
ming discussions of the same subjects.

This chapter contains a detailed definition of each assembly language instruction.
These definitions are identical to those found in Chapter 6 of 280 Programming for
Logic Design.

The detailed description of individual instructions is preceded by a general discussion
of the Z80 nstruction set that divides instructions into those which are commonly
used, infrequently used, and rarely used. If you are an experienced assembly language
programmer, this categorization is not particularly important — and, depending on vour
own programming prejudices. it may not even be accurate. If you are a novice assembly
language programmer, we recommend that you begin by writing programs using only
instructions in the “commonly used” category. Once you have mastered the concepts
of assembly language programming. vou may examine other instructions and use them
where appropriate.

3-1



CPU REGISTERS AND STATUS FLAGS
The CPU registers and status flags for the Z80 may be illustrated as follows:

Sign
Zero

Auxitiary Carry
Panty/Qverflow
Subtract

Carry

s ‘ z I lAc{ lP/OI N [C Flags
A Accumulator
B C
Secondary S c } Secondarv Data Counters
A fators H L Primary Data Counter
s I z I IAc'I P/OI N [ C' { Alternate Flags
A Alternate Accumulator
Alternate B c } Alternate Secondary
Secondary [o% E Data Counters
Accumulators g @ L Alternate Primary Data Counter
SP Stack Painter
PC Program Counter
iX Index Register
Y Index Register
t Interrupt Vector Register
R Refresh Register

The Accumulator is the primary source and destination for one-operand and two-
operand instructions. For example, the shortest and fastest data transfers between the
CPU and 1/0 devices are performed through the Accumulator. In addition. more Memo-
ry Reference instructions move data between the Accumulator and memory than bet-
ween any other register and memory. All 8-bit arithmetic and Boolean instructions take
one of the operands from the Accumulator and return the result to the Accumulator. An
instruction must therefore load the Accumulator before the Z80 can perform any 8-
bit arithmetic or Boolean operations.

The B, C. D, E, H, and L registers are all secondary registers. Data stored in any of
these six registers may be accessed with equal ease; such data can be moved to any
other register or can be used as the second operand in two-operand instructions.

There are, however, some important differences in the functions of Registers B. C. D. E.
H. and L.

Registers H and L are the primary Data Pointer for the Z80. That is to say. vou will
normally use these two registers to hold the 16-bit memory address of data being ac-
cessed. Data may be transferred between any registers and the memory location ad-
dressed by H and L. Since HL is the primary Data Pointer, it often takes fewer bytes of
object code and less instruction cycles to perform operations with it. The Z80 program-
mer should try to address data memory via Registers H and L whenever possible.

Within your program logic, always reserve Registers H and L to hold a data memo-
ry address.

3-2



Registers B, C, D, and E provide secondary data storage: frequently. the second
operand for two-operand instructions is stored in one of these four registers. {The first
operand is stored in the Accumulator. which is also the destination for the result)

There are a limited number of instructions that treat Registers B and C, or D and E,
as 16-bit Data Pointers. But these instructions move data between memory and the
Accumulator only.

In your program logic you should normally use Registers B, C, D, and E as tempor-
ary storage for data or addresses.

Registers IX and 1Y are index registers. They provide a limited indexing capability of
the type described in An Introduction to Microcomputers: Volume 1 for short instruc-
tions.

The alternate registers F', A’, B’, C’, D', E', H’, and L' provide a duplicate set of
general purpose registers. Just two single-byte Exchange instructions select and
deselect all alternate registers; one instruction exchanges AF and the alternate AF’
as a register pair, and one instruction exchanges BC, DE, and HL with the alternate BC',
DE’. and HL’. Once selected. all subsequent register operations are performed on the ac-
tive set until the next exchange selects the inactive set. The alternate registers can be
reserved for use when a fast interrupt response is required. Or, they may be used in
any desired way by the programmer.

There are a number of instructions that handle 16 bits of data at a time. These in-
structions refer to pairs of CPU registers as follows:

F and A
B and C
D and E
H and L
F and A’
B’ and c’
D’ and E
H’ and L
e e
High- Low-
order order
byte byte

The combination of the Accumulator and flags, treated as a 16-bit unit, is used only for
Stack operations and alternate register switches. Arithmetic operations access B and C.
D and E. or H and L as 16-bit data units.

The Carry status flag holds carries out of the most significant bit in any arithmetic
operation. The Carry flag is also included in Shift instructions; it is reset by Boolean in-
structions.

The Subtract fiag is designed for internal use during decimal adjust operations. This
flag is set to 1 for all Subtract instructions and reset to O for all Add instructions.

The Parity/Overfiow flag is a multiple use flag, depending on the operation baing
performed. For arithmetic operations, it is an overflow flag. For input, rotate, and
Boolean operations, it is a parity flag, with 1 = even parity and O = odd parity. Dur-
ing block transfer and search operations, it remains set until the byte counter decre-
ments to zero; then it is reset to zero. It is also set to the current state of the interrupt
enable flip-flop (IFF2) when a LD Al or LD AR instruction is executed.

The Zero flag is set to 1 when any arithmetic or Boolean operation generates a
zero result. The Zero status is set to 0 when such an operation generates a non-
zero result.

3-3



The Sign status flag acquires the value of the most significant bit of the result
following the execution of any arithmetic or Boolean instruction.

The Auxiliary Carry status flag holds any carry from bit 3 to 4 resulting from the
execution of an arithmetic instruction. The purpose of this status flag 1s to simplify
Binary-Coded-Decimal {BCD) operations; this is the standard use of an Auxiliary Carry
status flag as described in An Introduction to Microcomputers: Volume 1. Chapter 3.

All of the above status flags keep their current value until an instruction that modifies
them 1s executed. Merely changing the value of the Accumulator will not necessarily
change the value of the status flags. For example. if the Zero flag is set, and a load im-
mediate to the Accumulator is executed, that causes the Accumulator to acquire a non-
zero value; the value of the Zero flag remains unchanged.

The 16-bit Stack Pointer allows you to implement a Stack anywhere in addressa-
ble memory. The size of the Stack is limited only by the amount of addressable memory
present. In reality you will rarely use more than 256 bytes of memory for your Stack.
You should use the Stack for accessing subroutines and processing interrupts. Do not
use the Stack to pass parameters to subroutines. This is not very efficient within the
limitations of the Z80 instruction set. The Z80 Stack is started at 1ts highest address. A
Push decrements the Stack Pointer contents; a Pop increments the Stack Pointer con-
tents.

The Interrupt Vector register and the Refresh register are special-purpose
registers not normally used by the programmer.

The Interrupt Vector register is used to store the page address of an interrupt response
routine; the location on the page is provided by the interrupting device. This scheme
allows the address of the interrupt response routine to be changed while still providing
a very fast response time for the interrupting device.

The Refresh register contains a memory refresh counter in the low-order seven bits.
This counter i1s incremented automatically after each instruction fetch and provides the
next refresh address for dynamic memories. The high-order bit of the Refresh register
will remain set or reset, depending on how it was loaded at the last LD R.A instruction.

Z80 MEMORY ADDRESSING MODES

The Z80 provides extensive addressing modes. These include:
« Implied

+ Implied Block Transfer with Auto-Increment/Decrement
- Implied Stack

+ Indexed

» Direct

+ Program Relative

- Base Page

- Register Indirect

- Immediate

3-4



Implied

in implied memory addressing, the H and L registers hold the address of the
memory location being accessed. Data may be moved between the identified memo-
ry location and any one of the seven CPU registers A. B. C. D, E. H. or L. For example. the
instruction

LD C.HL)

loads the C register with the contents of the memory location currently pointed to by
HL. This 1s illustrated as follows:

S ZAcP/ON C Data

A yv ppag
8.C *——-—————f—
D.E
HL pp aq
SP
PC mmmm mmmm + 1 Program
X Memory
\4
i | 4E mmmm
R | mmmm + 1
mmmm + 2
mmmm + 3
LD C.(HL}

—— ) ——

LT LTT

R )

Load Implied via HL

C Register

3-5



A limited number of instructions use Registers B and C or D and E as the Data
Pointer. These instructions move data between the Accumuiator and the memory loca-
tion addressed by Registers B and C or Registers D and E. The instruction

LD (BCLA

stores the contents of A into the memory location currently addressed by Register Pair
BC. This is illustrated as follows:

S ZAcPONC Data
A vy et ppaq
B.C pp aal
DE
H.L
SP
PC mmmm mmmm + 1 Program
X Memory
Y
i 02 mmmm
R mmmm + 1
mmmm + 2
mmmm +3
LD (BCLA
et ey

7 6 & 4 3 2 1 0

Lofofofofofofrjo]

Store Implied from A via BC

3-6



implied Block Transfer With Auto-Increment/Decrement

Block Transfer and Search instructions operate on a block of data whose size is
set by the programmer as the contents of the BC register pair. In this form of ad-
dressing, a byte of data is moved from the memory location addressed by HL to
the memory location addressed by DE; then HL and DE are incremented and BC is
decremented. Data transfer continues until BC reaches zero, at which point the in-
struction is terminated. Variations include allowing other instructions to follow
each data transfer, with the programmer supplying the loopback; auto-decrement-
ing HL and DE instead of auto-incrementing; and a complementary set of Block
Search instructions that compare the memory byte addressed by HL with the con-
tents of the A register, setting a flag if a match is found.

The Load, Increment, and Repeat instruction
LDIR

is ilustrated as follows:

(" Set if BC-1-#0 reset otherwise

S Z AcP/ON C Data
Memory

f .-nm- Yy ppaq

A ppaq + 1
B8.C t Uy ;
D.E 13 SS - Yy Tss

S, L pp qq mss+ 1
SP ppag+ 1
PC mmmm Program
X Memory

Y )
| ED mmmm
] e * 2] -+ 1

LDIR

—~Ro s
OF ™

}Load, Increment, and Repeat instruction

A similar group of Input/Output instructions is provided, allowing a block of data
to be input or output between memory and an 1/0 device. The I/O port number is
taken as the contents of the C register, with the single B register used as the byte
counter. Memory is addressed by HL.

mmmm + 2
mmmm +3



implied Stack

Since the Stack is part of Read/Write memory, we must consider Stack instructions as
Memory Reference instructions. Push and Pop instructions move two bytes of data
between a register pair and the addressed Stack Pointer location, i.e., current top-
of-stack. The Z80 Stack address is decremented with each Push and incremented with
each Pop. The instruction

PUSH DE

is iflustrated as follows:

S Z ACP/ON C Data

aq ssss - 2
A i op 8885 - 1
Bc 8885
D.E op qq ssss-2
HL
SP 55388
PC mmmm mmmm + 1 Program
X Memory
Y
t D5 immmm
R mmmm + 1
mmmm+2
mmmm+ 3
PUSH DE
AN
Py ey AV\
7 6 5 4 3 2 1 0
38 I I N R B R
RN

T

PUSH

Register Pair DE

3-8



The Z80 also has instructions that exchange the two top-of-stack bytes with a
16-bit register — HL or one of the two index registers. The instruction

EX (SP)HL
is illustrated as follows:
S ZAcP/ON C Data
CITTTT] Memory
A B aqa $588
8.C = o [ ssss + 1
D.E ssss +2
HL XX
SP SSS$
PC mmmm mmmm + 1 Program
X Memoary
Y
! E3 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

3-9




Indexed

The Z80 has two 16-bit index registers, called IX and IY. They may be used in-
terchangeably. All memory reference operations for which (HL) can be specified can
alternatively be specified as an indexed operation. The difference between implied ad-
dressing using HL and indexed addressing using IX and IY is that the index operand
includes a displacement value that is added to the index address. |n the instruction

ADD A (IX+40H)

the memory address s the sum of the contents of the IX register and 401 & This may be
illustrated as follows:

A
B.C
DE
HL
sp
PC

S ZAGP/ON C

Data
FEXIX]X[X]O]X] Memory
ppag
XK xx +yy
[]
Y ppaa + 40
mmmm
ppag

X
Y
|
R

———

N\

it
ADD A[(IX + 40)
e

mmmm

— 6 mmmm + 1
ppaq + 40 40 mmmm +2
B mmmm+ 3

(=3 g=0 K% ]

=1 % Y
o

}Add(oA dexed by IX i

Clofl-go

-

Clol~§s

(=]
(=]

Displacement

3-10



Direct

Direct addressing can be used to load the Accumulator with any 8-bit value from
memory, load BC, DE, HL, SP, IX, or IY with any 16-bit memory value, and jump or
call subroutines direct at any memory location. The 16-bit direct address is stored in
the last two bytes of the instruction, in low-byte high-byte order {this is the reverse of
the standard high-low scheme).

The instruction
LD ANETX)

loads the A register with the contents of the memory location addressed by the label
NETX. The instruction

LD HL{IFFH}

loads the L register with the contents of memory location 01FF1 and the H register
with the contents of memory location 020016' This may be illustrated as follows:

S ZACP/ON C

Data
A ¥y 01FF
B.C — XX 0200
DE Z ¥
HL XX Yy
SP
PC mmmm mmmm + 3 Program
2,4 Memory
Y
l 2A mmmm
R { FF mmmm + 1
01 mmmm + 2
mmmm + 3
LD HL{IFFH)
7 6 5 4 3 2 1t 0
0§0|1{0}1i0]1}0}] Load HL Direct instruction
T {1t 11 1111} Direct address - low bvte
0|0]0|0]|0}0}0 |1 §Direct address - High byte

The direct Jump instructions provide jumps and jumps-to-subroutines, both un-
conditional and conditional. These are all 3-byte instructions. with the direct address
stored in the second and third bytes of the instruction, as shown above for Load Direct.

There are three additional addressing modes used by Z80 Branch instruc-
tions: program relative, base page. and register indirect. In general. they are shorter
and/or faster than direct jumps but may have more limited addressing capabilities.



Program Relative

Jump Relative instructions provide program relative addressing in the range -126,
+129 bytes from the first byte of the Program Relative instruction. These instructions
are all 2-byte instructions, with the signed displacement value stored in the second
byte of the instruction. There are unconditional and conditional relative jumps, as
well as a Decrement and Jump If Not Zero instruction (DJNZ) that facilitates loop
control.

Given the instruction
JR SRCH

assume that SRCH is a iabel addressing a location 5A, » bytes up in memory from the
JR op-code byte. The operation may be illustrated as follows:

S Z AGP/ON C

] 7 Data
L T 17 Memory
A
B.C
D.E
H.L
SP
PC mmmm e Program
1X Memory
Y
{ 18 mmmm
R SA mmmm + 1
mmmm + 2
mmmm + 3
bt
JR SRCH

6 5 4 3 2 t 0
0{0|0]1]110{ 00} Jump Relative mstruction
011{0}1]1{01 10 } Displacernent




Base Page

The Z80 has a modified base page addressing mode for the Restart instruction. This is
a special Call instruction that allows a single-byte instruction to jump to one of
eight subroutines located at specific points in lower core. The effective address is
calculated from a 3-bit code stored in the instruction. as follows:

Lower Core Address 3-Bit Code

00H 000
08H 001
10H 010
18H 011
20H 100
28H 101
30H 110
38H 1M1

The decoded address value is loaded into the low-order byte of the Program Counter;
the high-order byte of the Program Counter is set to zero. For example, the instruction

RST OOH
is illustrated as follows:
S ZAgcP/ON C Data
mm + 1 8588 - 2
A mm ssss - 1
B.C $588
D.E ssss - 2
HL
sP 5555
PC mmmm mmmm + 1 Program
1X Memory
Y
f 000 - Cc7 mmmm
R mmmm + 1
mmmm +2
mmmm + 3
RST O00H
—r—

Pod

7 6 5 4 3 2 1

Lilijofojol TJJ

® Restart ion
Address code




Register Indirect

In standard indirect addressing. a memory location contains the effective address, and
the instruction specifies the address of the memory location containing the effective
address. In register indirect addressing, a register contains the effective address, and
the instruction specifies which of the registers contains the effective address. Note that
for a Load. for instance. this is just another way of describing implied addressing.
However, the Z80 has Jump instructions that allow a jump to the memory location
whose address is contained in the specified register. This is a form of indirect ad-
dressing, and is described separately because, while most microcomputers have im-
plied addressing. very few have register indirect jumps.

The instruction

JP(HL)
directs that a jump is to be taken to the memory location whose address is contained in
HL. This may be illustrated as follows:

S Z AcP/ON C Data

A
B.C
DE
HL pp qaq
SP
PC mmmm : Program
X Memory
Y
! E9 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

P {HL

g

7 6 5 4 3 2 1 0

ERERE [o[1]o{omsumpwam




Immediate

Some texts identify Immediate instructions as Memory Reference instructions. An Im-
mediate instruction is a 2-. 3-, or 4-byte instruction in which the last one or two bytes
hold fixed data that is loaded into a register or memory location. The 280 provides Im-

mediate instructions to:

- load 8-bit data into any of the 8-bit registers,
+ load 16-bit data into any of the register pairs or 16-bit registers,
- store 8-bit data into any memory location using implied or indexed addressing,
- perform arithmetic and logical operations using the Accumulator and 8-bit im-

mediate data.

The instruction

LD BC,0BCH

loads the immediate data value BC1g into Register Pair BC. This may be illustrated as

follows:

S Z ACP/ION C

Data
Memory

PC mmmm

mmmm + 3

LD BC, 0BCH
7 6 5 4 3 2 10

[ofofojofofofo]i]

Load Immediate to Register Pair

Register Pair BC

immediate data - low-order byte

{mmediate data - high-order byte

3-16

Program
Memory

o1

BC

mmmm

mmmm + 1
mmmm + 2
mmmm + 3



Table 3-1. Frequently Used Instructions of the Z80

Instruction Code Moeaning
ADC A Add with Carry to Accumulator
ADD Add
AND Logical AND
CALL addr Call Subroutine
CALL cond.addr Cali Conditional
CcP Compare
DEC Decrement
DJINZ Decrement and Jump If Not Zero
IN input
INC Increment
JR Jump Relative
JR cond,addr Jump Relative Conditional
LD reg.{HL) Load Register
LD A laddr Load Accumulator Direct
LD data Load Immediate
LD {HU\.reg Store Register
LD ({addrl.A Store Accumulator Direct
LD dstsrc Move Register-to-Register
ouT OQutput
POP Pop from Stack
PUSH Push to Stack
RET Return from Subroutine
RET  cond Return Conditional
RLA Rotate Accumulator Left Through Carry
RRA Rotate Accumulator Right Through Carry
SLA Shift Left Arithmetic
SRL Shift Right Logical
SuB Subtract

3-16




Table 3-2. Occasionally Used !nstructions of the Z80

Instruction Code

Meaning

BIT

CPD. CPDR
CPL CPIR
CPL

Jr addr

JP cond.addr
LD A,(BC) or (DE)
LD HL.{addr)

LD reg. (xy+disp)
LD rp.{addr)

LD xv. (addr)

LD (BC) or (DE)LA
LD (addr},HL

LD {xy+displ.reg
LD {addr).rp

LD (addr).xy

LD {HL).data

LD (xy+displ.data
LDD. LDDR

LDI LDIR

NEG

NOP

OR

ouUTD. OTDR

QUTIL OTIR

RES

RETI

RL

RLC

RLCA

RR

RRC

RRCA

SET

SRA

XOR

Test Bit

Compare, Decrement, (Repeat)
Compare, Increment, {Repeat)
Complement Accumulator
Decimal Adjust Accumulator
Disable Interrupts

Enable Interrupts

Exchange

Halt

Input, Decrement, (Repeat)
Input. Increment, {Repeat)
Jump

Jump Conditional

Load Accumulator Secondary
Load HL Direct

Load Register Indexed

Load Register Pair Direct

Load Index Register Direct
Store Accumulator Secondary
Store HL Direct

Store Register Indexed

Store Register Pair Direct
Store Index Register Direct
Store Immediate to Memory
Store Immediate to Memory Indexed
Load, Decrement. (Repeat)
Load, Increment. (Repeat)
Negate {Twos Complement} Accumulator
No Operation

Logical OR

QOutput, Decrement, (Repeat)
Output, Increment, (Repeat)
Reset Bit

Return from Interrupt

Rotate Left Through Carry
Rotate Left Circular

Rotate Accumulator Left Circular
Rotate Right Through Carry
Rotate Right Circular

Rotate Accumulator Right Circular
Set Bit

Shift Right Arithmetic

L.ogical Exclusive OR




Table 3-3. Seldom Used Instructions of the Z80

Instruction Code Meaning
ADC HL.mp Add Register Pair with Carry to HL
CCF Complement Carry Flag
EXX Exchange Register Pairs and Alternatives
M n Set Interrupt Mode
RETN Return from Non-Maskable Interrupt
RLD Rotate Accumulator and Memory Left Decimal
RRD Rotate Accumulator and Memory Right Decimal
RST Restart
SBC Subtract with Carry (Borrow)
SCF Set Carry Flag
LD Al Load Accumulator from Interrupt Vector Register
LD AR Load Accumulator from Refresh Register
LD LA Store Accumulator to Interrupt Vector Register
LD R.A Store Accumulator to Refresh Register
LD SP.HL Move HL to Stack Pointer
LD SP.xy Move Index Register to Stack Pointer
ABBREVIATIONS
These are the abbreviations used in this chapter:
AFBCDEHL The 8-bit registers. A is the Accumulator and F is the Flag Word.
AF'.BC'.DE"HL' The alternate register pairs
addr A 16-bit memory address
x{b) Bit b of 8-bit register or memory location x
cond Condition for program branching. Conditions are:
NZ - Non-Zero Z = 0)
Z -Zerofz=1)
NC - Non-carry {C =0}
C -CarrviC=1)
PO - Parity Odd (P =0)
PE - Parity Even P = 1)
P - Positive Sign {S=0)
M - Negative Sign (S = 1)
data An 8-bit binary data unit
datal6 A 16-bit binary data unit
disp An 8-bit signed binary address displacement
xx(HI} The high-order 8 bits of a 16-bit quantity xx
| Interrupt Vector register (8 bits)
X 1Y The Index registers {16 bits each)
label A 16-bit instruction memory address
xx{LO) The low-order 8 bits of a 16-bit quantity xx
LSB Least Significant Bit (Bit 0)
MSB Most Significant Bit (Bit 7)
PC Program Counter
port An 8-bit 1/0 port address

3-18



pr

reg

Yy

SP
Xy
Object Code

Any of the following register pairs:

The Refresh register (8 bits)
Any of the following registers:

TImMmgoOw>

Any of the following register pairs:
BC
DE
HL
SP

Stack Pointer {16 bits)
Either one of the Index registers (IX or 1Y)
bbb  Bit number 000 (LSB) to 111 (MSB)

ccc  Condition code 000 = non-zero

001 = zero
010 = no carry
011 = carry

100 = parity odd
101 = parity even
110 = positive sign
111 = negative sign

ddd Destination register — same coding as rir
ppag A 16-bit memory address

rrr Register 1M1 =A
000=8B
001 =C
010=D
011 =k
100 =H
101 =L
sss  Source register — same coding as rrr
X Index register 0=1IX
1=1Y
XX Register pair 00 =8C
01 =DE
10 = HL

11 =8P (rp} or AF {pr)
xxx  Restart code {000 to 111)

vy An 8-bit binary data unit
vyvy A 16-bit binary data unit

3-19



Statuses

n

£ <>

The Z80 has the following status flags:

C - Carry status

z - Zero status

S - Sign status

P/Q - Parity/Overflow status
Ac - Auxiliary Carry status
N - Subtract status

The following symbols are used in the status columns:
X - flag is affected by operation

(blank) - flag is not affected by operation

- flag is set by operation

- flag is reset by operation

- flag is unknown after operation

- flag shows parity status

- flag shows overflow status

- flag shows interrupt enabled/disabled status

—QovwvCco-—-

Memory addressing: 1) the contents of the memory location
whose address is contained in the designated register, 2) an
1/0 port whose address is contained in the designated register.

The contents of a register or memory location.
For example:
[HLI} — [HLT] + 1

indicates that the contents of the memory location addressed by
the contents of HL are incremented. whereas:

[HU —[HLT + 1

indicates that the contents of the HL register itself are incre-
mented.

Logical AND

Logical OR

Logical Exclusive-OR

Data is transferred in the direction of the arrow

Data is exchanged between the two locations designated on either
side of the arrows.

3-20



INSTRUCTION MNEMONICS

Table 3-4 summarizes the Z80 instruction set. The MNEMONIC column shows the
instruction mnemonic (IN, OUT, LD). The OPERAND column shows the operands,
if any, used with the instruction mnemonic.

The fixed part of an assembly language instruction is shown in UPPER CASE. The
variable part (immediate data, /0 device number, register name, label or address)
is shown in lower case.

For closely related operands, each type is listed separately without repeating the
mnemonic. For instance, examples of the format entry

LD rp.laddr}
xy,(addr)

are: LD BC.DAT2)
LD IX.(MEM)

INSTRUCTION OBJECT CODES

The object code anfd instruction length in bytes are shown in Table 3-4 for each
instruction variation. Table 3-5 lists the object codes in numerical order.

For instruction bytes without variations, object codes are represented as two
hexadecimal digits (e.g., 3F).

For instruction bytes with variations in one of the two digits, the object code is
shown as one 4-bit binary digit and one hexadecimal digit (e.g., 11 x 1 D) in Table
3-5. For other instruction bytes with variations, the object code is shown as eight
binary digits (e.g.. 01ss5001).

INSTRUCTION EXECUTION TIMES

Table 3-4 lists the instruction execution times in clock periods. Real time can be
obtained by dividing the given number of clock periods by the clock frequency. For
example, for an instruction that requires 7 clock periods, a 4 MHz clock will result in a
1.75 microsecond execution time.

When two possible execution times are shown (i.e., 5/11), it indicates that the
number of clock periods depends on condition flags. The first time is for "'condi-
tion not met,’”” whereas the second is for ‘‘condition met.”

STATUS

The six status flags are stored in the Flag register (F) as follows:

Lelz] o] [eofw]e]
FETFTgs

These bits are not used
L——— Carry status {carry out of bit 7)
e Subtract status
{1 after subtract operation, 0 otherwise}
Parity/Qverflow
{for logical operations, 1 for even, 0 for odd panty.
For arithmetic, 1 for overflow)

Auxiliary Carry status {carry out of bit 3)
Zero status (1 for zero, O for nonzero}
Sign status (value of bit 7}

3-21



In the individual instruction descriptions, the effect of instruction execution on
status is illustrated as follows:

L1 1efxfolx]

L—L— Madified to reflect resuits of execution

Unconditionally reset to 0
Unconditionally set to 1

Unchanged
Unknown
An X identifies a status that is set or reset. A O identifies a status | STATUS
that is always cleared. A 1 identifies a status that is always set. A CHANGES
blank means the status does not change. A question mark (?) WITH
means the status 1s not known, INSTRUCTION
EXECUTION

3-22




£¢-¢

** Address Bus: A0-A7: [C]

AB-A15: [B] Taole 3-4. A Summary of the Z80 Instruction Set
Clock Status . )
Type Mnemoanic Operand Object Code Bytes . Operation Performed!
Cyclas s lerof Ag
IN A {port) DB yy 2 10 [ A] —{ port]
Input to Accumulator from directly addressed /O port
Address Bus: AO-A7: port
AB-A15: [A]
IN reg.{C) ED 01ddd000 2 11 X | P} x freg] —{[CH
Input to register from 1/0 port addressed by the conténts of C **
If second byte is 7016 only the flags will be affected
INIR ED B2 2 20/16° ? ? ? Repeat until [B} = O:
[LHLT — [ €T
{8]—(8]-1
[ HL] —[HL] + 1
Transfer a block of data from 1/0 port addressed by contents of C
to memory location addressed by contents of HL. going from fow
addresses to high Contents of B serve as a count of bytes remain-
ing to be transferred.**
Q INDR ED BA 2 20/15°* ? ? ? Repeat until [B] = 0:
= [[HL] — 1l Cl}
[B]—(B]-1
[HL} ~=[HL] - 1
Transfer a block of data from 1/0 port addressed by contents of C
to memory location addressed by contents of HL, going from high
addresses to low. Contents of B serve as a count of bytes remaining
to be transferred **
INI ED AZ 2 15 ? ? ? {{HL] —{IC
{8l —(8B]-1
[HL}«—[HL] + 1
Transfer a byte of data from I/0 port addressed by contents of C ta
memory location addressed by contents of HL Decrement byte
count and increment destination address.**




ve-€

** Address Bus: AQ-A7: [C]

AB-A15: [B] Table 3-4 A Summary of the Z80 instruction Set {Continued)
Clock Status
Type Mnemonic Operand Objact Code Bytes Operation Performed
Cycles s |riof a¢
IND ED AA 2 15 2 B [[HLI —1ICh
{Bl—1{B]-1
[HL} «=[HL] - 1
Transfer a byte of data from I/0 port addressed by contants of C to
mamoary location addressed by contants of HL. Decrement both
byte count and destination address **
ouT {port),A D3 yy 2 11 {port] — [ A)
Output from Accumulator to directly addressed 1/0 port
Address Bus: AD-A7: port
AB-A15: [ Al
ouT (Chreg ED 01555001 2 12 ltcll —1lregl
Output from register to I/O port addressed by the contents of C **
OTiR ED B3 2 20/15* ? ? ? Repeat until { B} = 0:
5 {tc —{{HL)
2 {8} —18]-1
£ [HL] = [HL] + 1
8 Transfer a block of data from memory location addressed by con-
‘6 tents of HL to /O port addressed by cantents of C, going from low
= memory to high. Contents of B serve as a count of bytes remaining
to be transferred **
OTDR ED BB 2 20/15* 7 ? ? Rapeat until { B] = 0:
{Cl— [ HLY
(Bl —{8B]-1
[HL] «—[HL] - 1
Transfer a block of data from memory location addressed by con-
tents of HL to /O port addressed by contents of C, going from high
memory to low. Contents of B serve as a count of bytes remaining
to be transferred **




§Z-¢

** Address Bus: AC-A7: [C]

Table 3-4. A Summary of the Z80 Instruction Set {Continued)

AB-A15: [B]
Clock Status
Type Mnemonic Operand Object Code Bytes Operation Performed
Cycles s |piof a
C
ouT! ED A3 2 15 [ I I [tey —{HLl
{Bl—{Bl-1
{HL] = [HL} + 1
5 Transfer a byte of data from memory location addressed by con-
5 tents of HL to I/O port addressed by contents of C Decrement byte
:..2 count and increment source address "*
8 ouTD ED AB 2 15 ? ? ? {tey — ((HL]
"5 (B]—[8]-1
= [HL]—THL] - 1
Transfer a byte of data from memory location addressed by con-
tents of HL to I/0 port addressed by contents of C Decrement both
byte count and source address. **
Lb A {addr} 3A ppag 3 13 [ A] — [ addr}
Load Accumulator from directly addressed memory location
LD HL. (addr) 2A ppaq 3 16 [H) —[addr + 11, [L] — [ addr]
f.oad HL from directly addressed memory
LD rp.{addr) ED 01xx1011 ppaq 4 20 [rp{HI}] = { addr + 1], [rp{LO)] — [ addr] or
] xydaddr) | 11x11101 2A ppag 4 20 [ xy(HI] — [addr + 1], [ xy{LO}] — { addr]
g Load register pair or index register from directly addressed memo-
- y
< LD {addr}.A 32 ppqq 3 13 [ addr] ~ [ A}
8 Store Accumulator contents in directly addressed memory location
H LD {addr) HL 22 ppag 3 16 {addr + 11— [H), [ addr] — (L]
E Store contents of HL to directly addressed memory location
5 LD {addr).rp ED 01xx0011 ppaq 4 20 {addr + 1] ~ [ rp{HD]. [ addr] — [rp(LO)] or
E {addr).xy 11x11101 22 ppaq 4 20 [addr + 1] —{ xy(HI}}, { addr] ~ [ xy{LO)]
a Store contents of register pair or index register to directly ad-
dressed memory.
Lo A,(BC) 0A 1 7 [ A} —{[BCl or [ A] — {[ DE}]
A.{DE} 1A 1 7 toad Accumulator from memory location addressed by the con-
tents of the specified register pair




9z-¢

Table 3-4. A Summary of the Z80 Instruction Set (Continued)

Clock Status
Type Mnemonic Operand Object Code Bytes Oparation Performed
Cycles | ¢ s |pro] a¢
LD reg,{HL) 01ddd110 1 7 [reg) — [[HL])
® Load register from memory location addressed by contents of HL
= LD (BC)L.A 02 1 7 {{BCI — [ Al or [{ DEI} — [ Al
5 {DELA 12 1 7 Store Accumulator to memory location addressed by the contents
23 of the specified register pair
3 LD {HL).reg 01110sss 1 7 ([HLH} [ reg]
g g Store ragister contents to memory location addressed by the con-
§ 3 tents of HL.
> - LD reg, {xy+displf 11x11101 01ddd110 3 19 {reg] « [[ xy] + disp}
E disp Load register from memory location using base relative addressing
£ LD (xy+disp).reg] 11x11101 01110sss 3 19 {[xy] + disp] — [reg]
disp Store register to memaory location addressed relative to contents of
Index register
LDIR €D BO 2 20/16°* [ Repeat until [BC] = 0:
[{DEN ~ [[HL])
[ DE]} ~ [ DE] + 1
{HL] —[HL] + 1
5 [8C} ~[BC] -1
§ Transfer a block of data from the memory location addressed by
'g the contents of HL to the memory location addressed by the con-
5 tents of DE, going from low addresses to high. Contents of BC
5 serve as a count of bytes to be transferred
E’ LDOR ED B8 2 20/16** o]0 Repeat until [BC] = 0:
£ {[ DE]} — [[HL]]
% [DE] —{DE] - 1
a.‘: [HL] —[HL] -1
{8C}—[BC]- 1
Transfer a block of data from the memory location addressed by
the contents of HL to the memory location addressed by the con-
tents of DE, going from high addresses to low. Contents of BC
serve as a count of bytes to be transferred,




L2-€

Table 3-4. A Summary of the Z80 Instruction Set (Continued)

Status
Type Mnemonic Operand Object Code Bytes Clack Operation Performed
Cycles s |prof ag
LDt ED AC 2 16 X[ o [DE]N ~— [{ HL]]
[ DE] -~ [ DE] + 1
[HL] — [HL] + 1
[ecl—1{BCl -1
Transfer one byte of data from the memory location addressed by
the contents of HL to the memory location addressed by the con-
tents of DE Increment source and destination addresses and decre-
ment byte count
LDD €D A8 2 16 X| o [ DEN «— {{HLI]
"§ [ DE] ~ [ DE] - 1
2 {HL] —[HL) - 1
£ {8c}—[BC - 1
é Transfer one byte of data from the memory location addressed by
5 the contents of HL to the memory location addressed by the con-
§ tents of DE. Decrement source and destination addresses and byte
w count
E CPIR ED B1 2 | 20m6 x| x| x Repeat until { Al = [[HL]] or [BC = 0:
5 [ A] - ([ HL]] (only flags are affected)
] [HL] —(HL) + 1
’g {BC]—(BC]-1
» Compare contents of Accumulator with those of memory block ad-
§ drassed by contents of HL, going from low addresses to high. Stop
@ when a match is found or when the byte count becomes zero
CPDR ED B9 2 20/16°* XiXiX Repeat untit [ A] = [[HL]] or [ BC] = 0:
{ Al - [{HL]] {only flags are affected)
[HL]—[HLI -1
{BC] —[BC] - 1
Compare contents of Accumulator with those of memory block ad-
dressed by contents of HL, going from high addresses to low Stop
when a match is found or when the byte count becomes zero




8¢-¢

Table 3-4 A Summary of the Z80 instruction Set (Continued)

. Ciock Status .
Type Mnemonic QOperand Object Code Bytes Operation Performed
Cycles s |e/o Ac
CPI ED A1 2 186 X x| x [ Al - [{HL)] (only flags are affected)
[HL] —~[HL] + 1
T g [BC]—1IBC]-1
f g Compare contents of Accumulator with thase of memory location
43 § addressed by contents of HL Increment address and decrement
53 byte count
i ;o cPD ED AS 2 16 X | X i X { Al - [ HL)] {only flags are affected)
§§ [HL~]'—[HL1-1
oo [BC]~(BC] - 1
Compare contents of Accumulator with those of memory location
addressed by contents of HL.. Decrement address and byte count
ADD AHL) 86 1 7 X|1o| X [A}«{A] + {[HL]] or [A}— [ Al + {[ xy] + disp]
Alxy +dispH{ 11x11101 86 disp 3 19 Add to Accumulator using implied addressing or base relative ad-
dressing
ADC A(HL) 8E 1 7 Xto}X {A] = {A] + [[HL] + C or [A] ~ [ A] + {[ xy] + disp] + C
° A.lxy +disp)| 11x11101 BE disp 3 19 Add with Carry using implied addressing or base relative address-
8 ing
2 suB {HL) 96 1 7 x]ol|x [A]—[Al - {HL]] or [A] — [ A} - ({ xy] + disp]
E {xy + disp) 11x11101 96 disp 3 19 Subtract from Accumulator using implied addressing or base rela-
- tive addressing
g SBC AHL) 9E 1 7 X] 0} X [A]~[A] - [[HL]] - Cor [A] ~[A] - [[ xy] + disp] - C
¢E> A lxy+displ] 11x11101 9E disp 3 19 Subtract with Carry using implied addressing or base relative ad-
2 dressing
; AND (HL) A 1 7 X|P 1 [ Al = {A] A [[HL or [A]— { Al A {[xy] + disp}
2 {xy + disp} §} 11x11101 AB disp 3 19 AND with Accumulator using implied addressing or base relative
§ addressing
@ OR {HL) 86 1 7 P2 [A]— [ AV [T HLI or (Al — [ A] V [{ xy] + disp]
{xy + disp} | 11x11101 B6 disp 3 19 OR with Accumulator using implied addressing or base relative ad-
dressing




62-¢

Table 3-4. A Summary of the Z80 Instruction Set (Continued)

Clock Status
Type Mnemonic Operand Object Code Bytes Cyel Operation Paerformed
ycles
S |P/O} Ag
XOR (HL} AE 1 7 xlepin [A] — [ A M{THL) or [A] — [ Al V([ xy] + disp)
> "§ {xy + disp} 11x11101 AE disp 3 19 Exclusive-OR with Accumulator using implied addressing or base
s 2 relative addressing
§= cp HL) BE 1 7 x| ol x [A] - [[HLD or [ Al - ([ xy] + disp]
E § {xy + disp) 11x11101 BE disp 3 19 Compare with Accurnulator using implied addressing or base rela-
é 8 tive addressing. Only the fiags are affected
S 6§ INC {HL) 34 1 1 xlo} x {{HL)} — ([ HLI] + 1 or [[ xyl + disp] ~ {[ xy] + disp] + 1
H § {xy + disp} 11x11101 34 disp 3 23 Increment using implied addressing or base relative addressing
@& DEC HL) 35 1 11 x|ol x [CHLD) = ((HLT] - 1 or [xy] + disp] — [{ xy] + disp] - 1
{xy + disp) 11x11101 35 disp 3 23 Decrement using implied addressing or base relative addressing
(xy + disp) | 11x11101 CB disp 4 23 [LHLY or {{ xy] + disp]
06 Rotate contents. of memory location {implied or base relative address-
ing} left with branch Carry
1)
g
£ AL HL) B 16 2 15 x|e|o
2 (xy + disp) 11x11101 CB disp 4 23 [LHL)] or {{ xv] + disp]
;1’.-:'; 16 Rotate contents of memory location left through Carry,
z
o
§ RRC (HL) B OE 2 15 X{P|O
{xy + displ | 11x11101 CB disp 4 23 [ HLY or Tl xy] + disp]
&3 Rotate contents of memory location right with branch Carry




og-¢

Table 3-4. A Summary of the Z80 Instruction Set {Continued)

Clock Status
Type Mnemonic Operand Objact Code Bytes Opaeration Parformed
Cycles
S |P/O]| Ag
RR {HL) CB1E 2 15 X P 0
{xy + disp) 11211101 CB disp 4 23
[{HLY or [{ xy] + disp]
1E Rotate contents of memory location right through Carry
. SLA (HL) CB 26 2 15 x]lelo o
@ {xy + disp) 11x11101 CB dis 4 23
H ? {LHL or ([ xy) + disp]
§ 26 ‘Shift contents of memory location left and clear LSB (Arithmetic
e Shift)
2
8
& SRA {HL) CB 26 2 15 x{p|o
E {xy + disp) 11x11101 CB disp 4 23
£ 2E
=
[
g | Shift contents of memory location right and preserve MSB
g i {Arithmetic Shift)
=
SRL (HL) CB 3t 2 15 X}iP ¢} (¢}
{xy + disp) 11x11101 CB disp 4 23
H HLY or U xy] + displ
3E Shift contents of memory location right and clear MSB {Logical Shift)




Le-€

Table 3-4. A Summary of the Z80 Instruction Set (Continued)

in sequence

Clock Status N
Type Mnemanic Operand Object Code Bytes Operation Perfarmed
Cycles
s {p/o| A
LD reg.data 00ddd110 yy 2 7 {reg] - data
° Load immediate into register
2 b rp.datal6 00xx0001 yyyy 3 10 {rp] — data18 or [ xy] ~datal6
k] xy.datalé T1x11101 21 yyyy 4 14 Load 16 bits of immediate data into register pair or Index register
£ LD {HL) data 36 vy 2 10 [HL]] — data or [{ xy] + disp] — data
- {xy-+ disp}. | 11x11101 36 disp yy 4 19 Load immediate into memory location using implied or base relative
data addressing
w» label C3 ppaq 3 10 {PC] ~ label
Jump to instruction at address represented by label
g JR disp 18 {disp-2) 2 12 [PC] —[PC) + 2 + (disp-2)
3 Jump relative to pr'asent contents of Program Counter
JP (HL) E9 1 4 [PCl —[HL) or [ PC] —xy]
{xy} 11x11101 E9 2 8 Jump to address contained in HL or Index register
CALL label €D ppag 3 17 [{SP] - 1] —{PCHI)
[ SP] - 2} —{ PCILON
[SP] —[SP]-2
< { PC] -~ fabel
_‘:: Jump to subroutine starting at address represented by label
é’ CALL cond,label 11ccc100 ppag 3 1017 Jump to subroutine if condition is satisfied; otherwise. continue in
E sequence.
i RET €9 1 10 [PCILON — ([ SPII
3 [PCIHI — [ SP] + 1]
o [SP] ~—[SP] + 2
- Return from subroutine
g RET cond 11¢cc000 1 5/11 Return from subroutine if condition is satisfied; otherwise. continue
23
0




(455

Table 3-4. A Summary of the Z80 instruction Set (Continued)

) Clock Status
Type Mnemonic Operand Object Code Bytes Operation Performed
Cycles s lr/o Ag
ADD Adata C6 yy 2 7 X|o| x [ Al — [ Al + data
Add immediate to Accumulator
ADC A data CE yy 2 7 Xl o] x {Al —[A] + data + C
Add immediate with Carry
° suB data D6 yy 2 7 X|1 01X [A] —[A] - data
§ Subtract immediate from Accumulator
4 SBC A, data DE yy 2 7 X!l ot X {(Al—{A]-data-C
2 Subtract immediate with Carry
8 AND data E6 yy 2 7 x| pla {A] —[A] A data
2 AND immediate with Accumutator
E OR data F6 yy 2 7 x|ej1 {Al—[A) V data
- OR immediate with Accumulator
XOR data EE yy 2 7 xje] [ Al — [ A] Vdata
Exclusive-OR immediate with Accumulator
cpP data FE yy 2 7 X| o} x [ Al - data
Compare immediate data with Accumulator contents: only the
flags are affected
P cond. label 11ccc010 ppaq 3 10 if cond, then [ PC] «— label
Jump to instruction at address represented by label if the condition
is true
JR C.disp 38 (disp-2} 2 712 If C =1, then [ PC] — [PC] + 2 + {disp ~ 2}
§ Jurnp relative to contents of Program Counter if Carry flag is set
H] JR NC.disp 30 {(disp-2} 2 112 If € =0, then { PC] —[PCl + 2 + {disp ~2}
5 Jump relative to contents of Program Counter if Carry flag is reset
‘: JR 2.disp 28 (disp-2) 2 mez i Z =1, then [ PC] —{PC] + 2 + {disp -2)
:_ Jump relative to contents of Program Counter if Zero flag is set
§ JR NZ,disp 20 (disp-2} 2 1712 1f 2 =0, then [ PC] —[PC] + 2 + (disp ~2)
= Jump relative to contents of Program Counter if Zero flag is reset
DJINZ disp 10 (disp-2} 2 8/13 [Bl—{8]-1

if {B] £0, then [PC] + 2 + (disp ~2}
Decremant contents of B and Jump relative to contents of Program
Counter if result is not 0.




£E-€

Table 3-4 A Summary of the Z80 Instruction Set (Continued)

Clock Status
Type Mnemonic Opserand Object Code Bytes Operation Parformed
Cycles s leiof A
C
LD dst src 01dddsss 1 4 [ dst] — { src]
Move contents of source register to destination register. Register
designations src and dst may each be A, B, C, D, E Hor L
Lo Al ED &7 2 ] X 1 [} [Al—T11]
Move contents of Interrupt Vector register to Accumuiator
LD AR ED 5F 2 9 X | 4] | LAl —{R]
Move contents of Refresh register to Accumulator
LD LA ED 47 2 9 [—{al
Load Interrupt Vector register from Accumulator
LD RA ED 4F 2 9 [R] — [ A]
Load Refresh register from Accumulator
o LD SPHL Fg 1 6 [ SP] - [HL]
H Move contents of HL to Stack Pointer
s LD SP,xy 11x11101 F9 2 10 {SP] [ xyl
§ Move contents of Index register to Stack Pointer
S EX DE HL EB 1 4 [ DE] ~— ~ [ HL]
2 Exchange contents of DE and HL
é EX AF.AF 08 1 4 [AF] —— [ AF]
Vg Exchange program status and aiternate program status
e EXX [31c] 1 4 {BC] [8c’]

[DE] J—~—{ [DE]
[HL) {HL']
Exchange register pairs and alternate register pairs.




vE-E

Table 3-4 A Summary of the Z80 Instruction Set (Continued)

Clock Status
Type Mnemonic Operand Object Cade Bytes Operation Performed
Cycles
S {P/O] A¢
ADD Areg 10000t 1 4 X|lo} x tA] — [ Al + [reg)
Add contents of register to Accumulator
ADC Areg 1000 1err 1 4 X|lol Xx (Al ~{A) + {reg] + C
Add contents of register and Carry to Accumulator
SUB reg 10010 1 4 xjolx [A] —[A] - [req]
Subtract contents of register from Accumulator
SBC Areg 1001 1err 1 4 Xjoi X [A]—{A]-[regl-C
Subtract contents of register and Carry from Accumulator
AND reg 10000t 1 4 X1 Pl {Al—1{A] A [reg]
AND contents of register with contants of Accumulator
OR reg 10110¢rr 1 4 Xpe|1 [Al —[A]lV{reg]
° OR contents of register with contents of Accumulator
& XOR reg 10101rer 1 4 Xie 1 [ A} —{ Al M| regl
2 Exclusive-OR contents of register with contents of Accumulator
E cP reg 1011 1err 1 4 x| o] x { Al - [ req]
§ Compare contents of register with contents of Accumulator Only
E the flags are affected
o« ADD HLmp 00xx1001 1 11 ? [HL] — [HL] + [rp]
§ 16-bit add register pair contents to contents of HL
% ADC HL.p £D 01xx1010 2 15 x{o}]? {HL] — [HL) + [rp] + €
-3 16-bit add with Carry register pair contents to contents of HL
$8C HL,rp ED 01xx0010 2 15 X|o ? {HL} =~ {HLI-{rp}-C
16-bit subtract with Carry register pair contents fram contents of
HL.
ADD IX.pp DD 00xx1001 2 15 ? (X}~ [1X] + [ ppl
16-bit add register pair contents to contents of Index register IX
{pp = BC, DE, IX, SP}
ADD Y.rr FD 00xx1001 2 15 ? [IY] = [1Y] + [l
16-bit add register pair contents to contents of index register 1Y
(rr = BC, DE. IY, SP)




GE-€

Table 3-4. A Summary of the Z80 Instruction Set {Continued)

N . Clock Status .
Type | Mnemonic Operand Object Gode Bytes Operation Performed
Cycles s |prof Ag
DAA 27 1 4 X P | X Decimal adjust Accumulator, assuming that Accumulator contents are
the sum or difference of BCD operands.
cPL 2F 1 4 1 {Al —[A]
° Complt_ement Accurnutator {ones complemant)
3 NEG ED 44 2 8 x| o] x [Al—{A] + 1
2 Negate Accumulator (twos complement}
N INC reg 00rr100 1 4 x| olx [regl — [reg] + 1
{3 Increment register contents
B> INC P 00xx0011 1 6 [rpl —[rpl + 1 or [xyl =[xyl + 1
< Xy 11x11101 23 2 10 Increment contents of register or Index register
DEC reg Q0rrr101 1 4 X101} X [regl — [reg] - 1
Decrement register contents
DEC ™ 00xx1011 1 6 [rp)—Lepl - 1 or [xyl =[xyl - 1
Xy 11x11101 28 2 10 Decrement contents of register pair or [ndex register
RLCA 07 1 4 [¢] g 7 <@ 0
@ [al
§ Rotate Accumulator left with branch Carry.
&
E
& RLA 17 1 4 0 7 - O
b
5 (Al
5 Rotate Accumulator left through Carry
2
2
3
« RRCA OF 1 4 0 7 i 0
[A]

Rotate Accumulator right with branch Carry




g9e-¢

Table 3-4. A Summary of the Z80 Instruction Set {Continued)

Clock Status
Type Mnemonic Operand Object Code Bytes Operation Performed
Cycles
s |r/o] A¢
RRA 1F 1 4 o]
RLC reg CB 000Q0rr 2 8 X|?P}]0
§ [ reg]
2 Rotate contents of register ieft with branch Carry
%
O
e
© RL reg B CG0010mr 2 8 X P 0
&
é { reg]
2 Rotate contents of register left through Carry
o
& RRC reg CB 00001 2 8 x|lepfo
8
= {reg]
5 Rotate contents of register right with branch Carry
RR reg CB 0001 Trrr 2 8 X P o]
{reg]
Rotate contents of register right through Carry
SLA reg CB 00100nT 2 8 x|efo 0
{ reg]
Shift contents of register left and clear LSB {Arithmetic Shift)




LE-E

Table 3-4. A Summary of the Z80 Instruction Set (Continued)

Clock Status
Type Mnemonic Operand Object Code Bytes Cyel Operation Performed
yeles s [rio] A
SRA reg €8 00101 2 8 X P o
SAL rag CB 0011 1nr 2 8 X|ePjo
- [ regl
'§ Shift contents of register right and clear MSB {Logical Shift}
£
[~
-3
e
2 RLD ED &6F 2 18 Xiprlo
g
3
©
]
& Rotate one BCD digit left between the Accumulator and memory loca-
% tion {implied addressing). Contents of the upper half of the Accumula-
HY tor are not affected.
s
3
«
RRD ED 67 2 18 X|pP}|o
{{HLY
Rotate one BCD digit right between the Accumulator and memory
location {implied addressing).Contents of the upper half of the Ac-
cumulator are not affected.




8e-¢

Table 3-4. A Summary of the Z80 Instruction Set {Continued)

. ) Clock Status
Type Mnemonic Operand Object Code Bytes Opsration Performed
Cycles s |ero| ac
BIT b,reg CB 01bbbrrr 2 8 A A I Z -~ eg(bl
Zero flag contains complement of the selected register bit
8IT b.{HL} CB 01bbb110 2 12 I I Z — [[HLIKb) or Z — ([ xy] + displ(b)
b.ixy + disp)j 11x11101 CB disp 4 20 Zero fiag contains complement of selected bit of the memory loca-
= O1bbb110 tion {implied addressing or base relative addressing)
£ SET b.reg CB 11bbbrrr 2 8 reglb) — 1
E Set indicated register bit
’s SET B,(HL} €B 11bbb110 2 15 [[HLII(bY — 1 or [ xy] + displib) «—1
s b.ixy+displ| 11x11101 CB disp 4 23 Set indicated bit of memory location (implied addressing or
g 11bbb110 base relative addressing!
RES b,reg CB 10bbbrrr 2 8 reglb) ~— O
Reset indicated register bit
RES b,(HL) CB 10bbb110 2 15 [[ HL]}{b) ~— O or [ xy] + displ{b) O
b.(xy + displ{ 11x11101 CB disp 4 23 Reset indicated bit in memory location {implied addressing or base
10bbb110 relative addressing)
PUSH pr 11xx0101 1 11 [ SP1-1] «— [ pr{HI}]
xy 11x11101 ES 2 15 [ SP1-2] «~ [ pr{LO)
18P} —{8P}-2
Put contents of register pair or Index register on top of Stack and
dacrement Stack Pointer
POP pr 11xx0001 1 10 [ priLO}] — ([ SP]}
% Xy 11x11101 E1 2 14 [pr(H) ~ ([ SP] + 1]
-] [SP] ~—[SP] + 2
@ Put contents of top of Stack in register pair or Index register and
increment Stack Pointer
E£X {SP),HL E3 1 19 [H] =~ [[SP] + 1]
(SP).xv 11x11101 E3 2 23 [L]—— ([SP]]

Exchange contents of HL or Index register and top of Stack




6£-€

Table 3-4. A Summary of the Z80 Instruction Set {Continued)

Status
Type Mnemonic Operand Object Code Bytes Clock Operation Performed
Cycles s |ero} A
DI F3 1 4 Disable interrupts
El FB 1 4 Enable interrupts
RST n Txxx111 1 11 {{SPI-1] — [PCHN
[{8P]-2] — [ PC{LO}]
P [SP] —{8P]-2
s’ {PC] —(8-nlyg
'é Restart at designated location
£ RETI ED 4D 2 14 Return from interrupt
RETN ED 45 2 14 Return from nonmaskable interrupt
M s} ED 46 2 8 Set interrupt mode 0, 1, or 2
1 ED 56 2 8
2 ED 5E 2 8
SCF 37 1 4 o} C—1
H Set Carry flag
B cCF 3F 1 4 ? c—¢
@ Complement Carry flag
NOP Qo 1 4 No operation — volatile memories are refreshed
HALT 76 1 4 CPU halts, executes NOPs to refresh volatile memories

**Exacution time shown is for one iteration




Table 3-56. Instruction Object Codes in Numerical Order

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
00 NOP 39 ADD HL,SP
01 yyyy LD B8C,datal6 3A ppaq LD A faddn)
02 [5s] (BCLA k] DEC sP
03 INC BC 3c INC A
04 INC ] p DEC A
05 DEC B 3Evyy LD A, data
06 yy tD B8.data 3F CCF
07 RLCA 4 Osss LD B.reg
08 EX AFAF 46 LD B.{HL)
09 ADD HL,BC 4 1sss LD Creg
0A Lo A/(BC} 4E LD CHL)
0B DEC 8C § Osss b D.reg
o INC [ 56 LD DJHL
[s]s] DEC [ 5 tsss LD Ereg
O yy s} C.data 5 LD E(HL}
OF RRCA 6 Osss LD H.reg
10 disp-2 DINZ disp 66 LD H.HL)
11 yyyy b DE.data18 6 1sss LD L.reg
12 D (DELA 6E LD LHL
13 iNC DE 7 Osss LD {HL).reg
14 INC 3] 76 HALT
15 DEC D 7 1sss LD Areg
16 yy [Ha] D data 7€ j1s] A(HL
17 RLA 8 Orrr ADD Areg
18 disp-2 JR disp 86 ADD AfHL)
19 ADD HL.DE 8 inr ADC Areg
1A Lo A{DE} 13 ADC AjHL)
18 DEC DE 9 Orrr SuB rag
1c INC E 96 suB (HL}
1D DEC E 8 inr S8C Areg
1E yy LD £ data 9E s8C AfHL)
1F RRA A Orrr AND reg
20 disp-2 JR NZ disp Ag AND (HL}
21 yyyy LD HL.datat€ A terr XOR reg
22 ppag {5s] {addr)HL AE XOR (HL)
23 INC HL B Ot OR rag
24 INC H B6 OR (HL)
25 DEC H 8 inr CcP reg
26 yy 13} H.data BE cp {HL)
27 DAA co RET NZ
28 disp-2 JR Zdisp Ct POP 8C
29 ADD HLHL €2 ppaq JP NZ.addr
2A ppaq LD HL {addr} C3 ppag JP addr
2B DEC HL C4 ppaqg CALL NZ,addr
2c INC L C5 PUSH BC
20 DEC L C6 yy ADD A data
2E &) L.data [ov4 RST [
2F CPL cs RET Z
30 disp-2 JR NC.disp Cg RET
31 yyyy LD SP.datal6 CA ppag JP Z,addr
32 ppag LD {addr).A CB O Orr RLC reg
33 iNC sP CB 06 RLC {HL)
34 INC {HL} CBO 1rr RRC reg
35 DEC (HL} CB OE RRC {HL)
36 yy LD (HL) data CB 1 0nr AL reg
37 SCF CB 16 AL (HL)
a8 JR C.disp CB 11tmr RR reg

3-40




Table 3-5.

Instruction Object Codes in Numerical Order {Continued)

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
CB1E RR {HL) 0D CB disp 10bbb110 RES b {iX + disp}
CB 2 Onr SLA reg DD CB disp 11bbb110 SET bliX + disp}
CB 26 SLA {HUL DD E1 POP X
CB 2 inr SRA reg DD E3 EX (SPIIX
CB 2E SRA {HL) DD ES PUSH X
CB3 1nr SRL reg DD E9 JP {1}

CB 3t SRL (HL} DD F9 LD SP.IX
CB Otbbbrrr BIT breg DE yy SBC A,data
CB 01bbb110 BIT b,(HL} DF RST 18H

CB 10bbbrrr RES b.reg EQ RET PO

CB 10bbb110 RES b,(HL} Et POP HL

CB 11bbbrrr SET b.reg E2 ppag JP PO.addr
CB 11bbb110 SET b,(HL) E3 EX (SPLHL
CC ppaq CALL 2,addr E4 ppag CALL PO, addr
CD ppaq CALL addr ES PUSH HL

CE yy ADC A data E6 yy AND data
CF RST 08H E7 RST 20H

Do RET NC E8 RET PE

D1 POP DE E9 JP {HL)

D2 ppag JP NC.addr EA ppag JP PE.addr
D3 yy out {port).A EB EX DEHL
D4 ppaq CALL NC.addr EC ppug CALL PE,addr
D5 PUSH DE ED 01ddd000 IN reg,(C)
D6 yy suB data ED 01sss001 ouT {Clrag
D7 RST 0H ED O1xx 2 S§BC HL.mp
D8 RET [ ED 01xx 3 ppqag LD (addrlrp
DS EXX ED 44 NEG

DA ppaqg JP C.addr ED 45 RETN

DB yy iN Afport) ED 010nn110 ™M m

OC ppag CALL C.addr ED 47 LD LA

DD 00xx 9 ADD X.pp ED O1xx A ADC HLmp
DD 21 yyyy Lo X data16 £D O1xx B ppaq Lo p (addr}
DD 22 ppgq o {addr},IX ED 4D RET]

DD 23 INC X ED 4F LD ]A

DD 2A ppag [%s] 1X {addr) ED 57 LD Al

DD 2B DEC X ED 5F Lo AR

DD 34 disp INC {IX + disp} ED 67 RRD

DD 36 disp DEC {IX + disp} ED 6F RLD

DD 36 disp yy LD {IX + displ,data €D A0 Lol

DD 01ddd110 disp e} reg,{IX + disp} ED A1 CPl

DD ¢ Osss disn Lo {IX + displreg ED A2 Nt

DD 86 disp ADD A{IX + displ ED A3 QuTH

DD 8E disp ADC A{IX +disp) ED A8 LDD

DD 96 disp sus {IX + disp} ED A3 CPD

DD 9E disp SBC A{IX + dispi ED AA iND

DD A6 disp AND {IX + disp} ED AB ouTD

DD AE disp XOR {IX + disp} €D BO LDIR

DD B6 disp OR {IX + disp) ED B1 CPIR

DD BE disp cP {IX + disp) ED B2 INIR

DD CB disp 06 RLC {IX + disp} ED B3 OTR

DD CB disp 0E RRC {IX + disp) ED B8 LDDR

DD CB disp 16 AL {IX + disp} ED B9 CPDR

DD CB disp 1€ RR {IX + disp} ED BA INDR

DD CB disp 26 SLA {IX + disp) ED BB OTDR

DD CB disp 2E SRA {1X + disp} EE yy XOR data
DD CB disp 3E SRL {IX + disp) EF RST 28H

DD CB disp 01bbb110 | BIT b.{1X + disp}

3-41




Table 3-5. Instruction Object Codes in Numerical Order (Continued)

OBJECT CODE INSTRUCTION OBJECT CODE INSTRUCTION
FO RET P FD 8E disp ADC AJIY +disp}
F1 POP AF FD 96 disp SuB {IY + disp}
F2 ppaq JP P.addr FD SE disp SBC AlY +disp}
F3 DI FD A6 disp AND (Y + disp}
F4 ppag CALL P.addr FD AE disp XOR {tY + disp}
F5 PUSH AF D 86 disp OR (1Y + disp)
F6 yy OR data FD BE disp cpP {IY + dispi
F7 RST 30H FD CB disp 06 RLC {IY + dispi
F8 RET M FD CB disp OE RRC iY + disp}
Fg Lo SPHL FD CB disp 16 RL {iY + disp}
FA ppag JP M.addr FD CB disp 1E RR {iY + disp)
B Ei FD CB disp 26 SLA (1Y + disp)
FC ppaq CALL M,addr FD CB disp 2€ SRA (Y + disp)
FD 00xx 9 ADD IY.rr FD CB disp 3E SAL Y + dispi
FD 21 yyyy LD IY.data16 FD CB disp 01bbb110 BIT b,{Y + disp}
FD 22 ppaq o {addr)lY FD CB disp 10bbb110 RES bty + disp}
FD 23 INC Y FD CB disp 11bbb110 SET b {iY +disp}
FD 2A ppaa Lo 1Y faddr) FD E1 POP 1Y
FD 2B DEC iy FD E3 EX (SPLIY
FD 34 disp INC {1y + disp} FD E5 PUSH Y
FD 35 disp DEC {IY + disp} FD €3 JP (34}
FD 36 disp yy Lo {iY + disp),data FD F9 2] SPiY
FD 01ddd 110 disp LD rag {iY + dispi FE yy cp data
FD 7 Osss disp LD {IY + displ.reg FF RST 38H
FD 86 disp ADD AflY +disp)

3-42




ADC A,data — ADD IMMEDIATE WITH CARRY TO
ACCUMULATOR

r
S ZAcP/ON C Data
FRXIXIXIX]OIX] Memory

A
B.C
DE
HL

SP

PC mmmm mmmm + 2 Program
X

Mermory
Y
I

t CE mmmm

R — YY mmmm + 1
mmmm + 2
mmmm + 3

XX

CHxx+vyy

ADC A, data
S, — o~
CE vy

Add the contents of the next program memory byte and the Carry status to the Ac-
cumulator.

Suppose xx=3A16. yy=7C1g, and Carry=0. After the instruction

ADC A.7CH
has executed, the Accumulator will contain B61¢:

3A = 0011 1010

7C = 0111 1100

Carry = 0
1,011 0110

1setsStol UT L-Non-zero result, set Z to O
No carry, setC to O

Carry, set Ac to 1

S 5
0% 1=1.setP/Oto1 Addition instruction, set N to O

The ADC instruction is frequently used in muitibyte addition for the second and subse-
guent bytes.

3-43



ADC A,reg — ADD REGISTER WITH CARRY TO

ACCUMULATOR
S ZAcP/ON C Data
r IIXTEIR] Memory
A XX ‘
BC contents of
D' £ A, B,C.D,EH
HL orLisvyy
SpP
PC mmmm mmmm + 1 Program
X Memory
A4
| 10001xxx_Emmmm
R mmmm + 1
mmmm + 2
mmmm + 3
ADC A, reg
S—— ——
10001 xxx

——

000 for reg=B
001  for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Add the contents of Register A, B, C. D, E, H or L and the Carry status to the Accumula-
tor.

Suppose xx=E31g, Register E contains AO1g. and Carry=1. After the instruction
ADC AE
has executed, the Accumulator will contain 841g:

E3 = 1110 0011
A0 = 1010 0000
Carry = 1
1000 0100
TsetsSto! tU LNon-zero result, setZ to 0
Carry, set C to 1 No carry, set Ac to 0
" )
14 1=0, set P/O 10 0 Addition instruction, set N t0 0

The ADC instruction is most frequently used in muitibyte addition for the second and
subsequent bytes.

3-44



ADC A,(HL) — ADD MEMORY AND CARRY TO
ADC A,{IX+disp) ACCUMULATOR
ADC A, (Y +disp)

S ZAcP/ON C Data
F XIXXXTo X — Memory
A %X xx+yy+C Yy ppag
B.C
D.E
H.L pp qq
SP
PC mmmm mmmm + 1 Program
X Memory
Y
! 8E mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of ADC A,{HL):
ADC A,{HL)
8E

Add the contents of memory location (specified by the contents of the HL register pair)
and the Carry status to the Accumulator.

Suppose xx=E316, yv=A01g. and Carry=1. After the instruction

ADC  AHL)
has executed, the Accumulator will contain 8446:
E3 = 1110 0011
A0 = 1010 0000
Carry = 1
1000 0100
1sets Stot t L-Non~ze:ro result, set Z to O
Carry. setC to 1 No carry, set Ac to 0
i
1%1=0, set P/Oto 0 Addition instruction, set N to 0

ADC A.(IX+disp)
N’

DD 8E d

Add the contents of memory location (specified by the sum of the contents of the IX
register and the displacement digit d} and the Carry to the Accumulator.

ADC A (Y -+disp)
N g~

FD 8E d

This instruction is identical to ADC A, {IX+disp), except that it uses the IY register in-
stead of the IX register.

The ADC instruction is most frequently used in muitibyte addition for the second and
subsequent bytes.

3-45



ADC HL,rp — ADD REGISTER PAIR WITH CARRY TO H AND L

S ZAcP/ON C Data

F RIXXIXTOIX] Memory
A BC, DE. HL or SP
8.c - contain yyyy
D.E .
HL XX XX xxxx+ C’ vy
SP
PC mmmm Program
X Memory
v mmmm + 2 |
| ED mmmm
R 01xx1010 fmmmm + 1
mmmm + 2
mmmm + 3
ADC HLmp

ED 01xx1010

——

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Add the 16-bit value from either the BC, DE. HL register pair or the Stack Pointer, and
the Carry status, to the HL register pair.

Suppose HL contains Ab3616, BC contains 104416, and Carry=1. After execution of
ADC HLBC
the HL register pair will contain:

AB36 = 1010010100110110
1044 = 0001 000001000100
Carry = 1
1011 010101111011
1sets Stol

tNon-zero result, set Z t0 0
t—_———No carry, set Ac to 0

&
0%0=0, set P/Ot0 0 Addition instruction, set N t0 0

No carry, setC t0 O

The ADC instruction is most frequently used in multibyte addition for the second and
subsequent bvtes.

3-46



ADD A,data— ADD IMMEDIATE TO ACCUMULATOR
S ZAcP/ON C Data
4 FAEI B3 EI A ES Mernory
A
B.C
DE
H.L
SP

PC mmmm mmmm + 2 Program

X Memory
Y

! C6 mmmm

R l — Yy mmmm + 1
mmmm + 2
mmmm + 3

XX XX +vyy

ADD A, data
S ———

Cc6 vy
Add the contents of the next program memory byte to the Accumulator.
Suppose xx=3A1g, yy=7C1g. and Carry=0. After the instruction

ADD A7CH

has executed, the Accumulator will contain B614:
3A = 0011 1010
7 = 0111 1100

1011 0110

1setsSto1 tU LNon—zero result, setZ to 0
No carry. setC to O

Carry. set Ac to 1

P
0% 1=1:setP/Oto 1 Addition instruction, set N to 0
This is a routine data manipulation instruction.

3-47



ADD A,reg — ADD CONTENTS OF REGISTER TO
ACCUMULATOR

S Z AcP/ON C

Data
F XXX Memory
B 2 = ) contents of
DE ;-——bA.B,c,D.E.
HL HorlLisyy
sp
PC mmmm mmmm + 1 :/rlogram
IX emory
Y
! 10000xxx § mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

ADD  reg

o

10000 %
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 forreg=L
111 for reg=A

Add the contents of Register A, B, C, D, E. H or L to the Accumulator.
Suppose xx=E31g, Register E contains AD1g. After execution of

ADD AE
the Accumulator will contain 8315:
E3 = 1110 0011
A0 = 1010 0000
14000 0011
1setsStol tU LNon-zero result, setZ 10 0
Carry, set C to 1 No carry, set Ac to 0
- P
1% 1=0, set P/O to O Addition instruction. set N to 0

This is a routine data manipulation instruction

3-48



ADD A,(HL) — ADD MEMORY TO ACCUMULATOR
ADD A, {IX+disp)
ADD A,({lIY-+disp)

S ZAGP/ON C Data

d B EROR Memory
A XX XX + vy Yy ppagq +d
B.C
DE
H.L
Sp
PC mmmm mmmm + 3 Program
1X ppaq Memory
Y
! DD mmmm
R 86 mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of ADD A, (IX+disp).
ADD A, (IX-+disp)
N, v

————

DD 86 d

Add the contents of memory location (specified by the sum of the contents of the IX
register and the displacement digit d} to the contents of the Accumulator.

Suppose ppag=400016. xx=1A1g. and memory location 400F1g contains 501¢. After
the instruction

ADD A (IX+0OFH)
has executed, the Accumulator will contain 6A1g.

1A 0001 1010
50 0101 0000

04010 1010

OsetsSto0 Ut LNon—zero result, set Z to 0
No carry, set C to O
V =

]

No carry. set Ac to 0

o
0% 0=0; set P/ QO to 0 Addition instruction, set N to 0
ADD A{IY-+disp!
., v’

——
FD 86 d

This instruction 1s identical to ADD A.{IX+disp). except that it uses the lY register in
stead of the IX register.

ADD A.{HL}
e
86

This version of the instruction adds the contents of memory location. specified by the
contents of the HL register pair. to the Accumulator.

The ADD instruction i1s a routine data manipulation instruction.

3-49



ADD HL,rp — ADD REGISTER PAIR TOH AND L

S Z AcP/ON C Data
Ll _ix] folX] Mermory
A BC, DE, HL or SP
| contain yyyy
B.C i
DE v
HL XX XX XXXX + YYYY
SP
PC mmmm Program
X Memory
mmmm + 1
Y
! 00xx 1001 § mmmm
R mmmm + 1
mmmm + 2
mmmm +3
ADD HL.mp
00 xx 1001

e

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Add the 16-bit value from either the BC, DE, HL register pair or the Stack Pointer to the
HL register pair.

Suppose HL contains 034A1g and BC contains 214C1g. After the instruction
ADD HL.BC
has executed, the HL register pair will contain 24964¢.

034A = 000000110100 1010
214C = 001000010100 1100
0010 0100 1001 0110
No carry, set C to 0 “——————No carry, set AC 1o 0

Addition instruction, set N to 0

The ADD HL.HL instruction is equivalent to a 16-bit left shift.

3-50



ADD xy,rp — ADD REGISTER PAIR TO INDEX REGISTER

S ZAcP/ON €

Data
F ---m Memory
A
8.C
DE 18 58
HL
SP
PC mmmm Program
X ppad Memory
Y 8
; | — N
00xx 1001 I mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of ADD {X.DE.

N

11y1 1101 OOxx 1001

O for Index register=IX
1 for index register=IlY

OO for rp is register pair BC
01 for rp is register pair DE

10 for rp is specified Index register

11 for rp is Stack Pointer

Add the contents of the specified register pair to the contents of the specified Index

register.

Suppose Y contains 4FFO1g and BC contains 000F 6. After the instruction

ADD 1Y,BC

has executed. Index Register IY will contain 4FFF1g.

3-51



AND data — AND IMMEDIATE WITH ACCUMULATOR

S Z AcP/ON C

1 B3R KNS ER D

XX

PC mmmm

AND
——
E6

XX vy

mmmm + 2

data

——

vy

Data
Memory

Program
Memory

E6

Yy

AND the contents of the next program memory byte to the Accumulator.
Suppose xx=3A1g. After the instruction

AND 7CH

has executed, the Accumulator will contain 381g.
3A =

7C =

OsetsSto0

instruction

0011

0111 1100

0011

1010

1000

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Three 1 bits, set P/0 10 0

Non-zero result. set Z to 0
This is a routine logical instruction: i1t 1s often used to turn bits “off”" For example. the

AND 7FH

will unconditionally set the high order Accumulator bit to 0.

3-52



AND reg — AND REGISTER WITH ACCUMULATOR

S ZAcP/ON C Data
FEx]X]ixjojo] Memory
A X contents of
g% — - ABCD.E
HL Horblisyy
sSP
PC mmmm mmmm + 1 Program
X Memory
Y
! 10100xxx_Immmm
R mmmm + 1
mmmm + 2
mmmm + 3
AND reg
S e
10100 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

AND the Accumulator with the contents of Register A, B, C, D. E, H or L. Save the result
in the Accumulator.

Suppose xx=E31g. and Register E contains AO1g. After the instruction
AND E

has executed, the Accumulator will contain AO1g.

E3 = 1110 0011
A0 = 1010 0000

1010 0000
1 sets S to 1 Two 1 bits, set P/O to 1

Non-zero result, set Z to O

AND is a frequently used iogical instruction.

3-53



AND (HL) — AND MEMORY WITH ACCUMULATOR
AND (IX+disp)
AND (1Y +disp)

S ZAGP/ON C

Data
Memory
A XX XX *yyY vy ppaq+d
8.C i
DE
H.L
SP r—
PC mmmm . Program
X ppaq. Memary
Yy o —
1 FD mmmm
R l - AB mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of AND {IY+disp).
AND {IY+disp}
e e d
FD A6 d

AND the contents of memory location (specified by the sum of the contents of the 1Y
register and the displacement digit d) with the Accumulator.

Suppose xx=E316. ppaq=40001g. and memory location 400F1g contains AQ1g. After
the nstruction

AND (Y +OFH)
has executed, the Accumulator will contain A016.
E3 = 1110 0111
A0 = 1010 0000
1010 0000
1setsStol Two 1 bits, set P/O to 1

Non-zero result, set Z to 0
AND (IX4disp)
e
DD A6 d

This instruction 1s 1dentical to AND (IY-+disp). except that it uses the IX register instead
of the 1Y register.

AND (HL)
N e

Ab

AND the contents of the memory location (specified by the contents of the HL register
pair) with the Accumulator.

AND is a frequently used logical instruction.

3-54



BIT b,reg— TEST BIT b IN REGISTER reg

S ZACP/ON C

Fludol i fufo] |

A
8.C
DE
HL
SP
PC
1X
Y

I

R

YyYbyyyy

mmmim

—

Bit Tested

BIT

R

CBO1

NOOAWN - O

b.

S——

bbb

000
001
010
011
100
101
110
111

reg

XXX
e~

000
001
010
on
100
101
111

mmmm + 2

Register

P ImoOm

Data
Memory

Program
Memory

cB

0 1bbbxxx

Place complement of indicated register’s specified bit in Z flag of F register.

Suppose Register C contains 1110 1111, The instruction BIT 4,C will then set the Z flag
to 1. while bit 4 in Register C remains 0. Bit O is the least significant bit.

3-55

mmmm

mmmm + 1
mmmm + 2
mmmm + 3



BIT b,(HL) — TEST BIT b OF INDICATED MEMORY POSITION
BIT b, {IX+disp)
BIT b, (tY+disp)

S Z AcP/ON C Data
: ! Memory
A ©4— —
B.C yyybyyyy | praa
o A
H.L pp aq
SP
PC mmmm mmmm + 2 Program
X Memory
Y
i B mmmm
R 01bbb110 fmmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of BIT 4.(HL). Bit O i1s the least significant bit.
BIT b, (HU
R e )

CcB 01 Egg 110

Bit Tested bbb
000
001
010
011
100
101
110
R

Test indicated bit within memory position specified by the contents of Register HL. and
place bit's complement in Z flag of the F register.

NOOTRWN—O

Suppose HL contains 4000H and bit 3 in memory location 4000H contains 1. The in-
struction

BIT 3.(HL)
will then set the Z flag to O, while bit 3 in memory location 4000H remains 1.
‘BIT b,{IX+disp)

imaan, it e,
DD CB d 01 bbb 110
—

bbb is the same as in BIT b,(HL)

Examine specified bit within memory location indicated by the sum of Index Register IX
and disp. Place the complement in the Z flag of the F register.

3-56



Suppose Index Register IX contains 4000H and bit 4 of memory location 4004H is 0.
The instruction

BIT 4,(IX+4H)
will then set the Z flag to 1. while bit 4 of memory location 4004H remains 0.
BIT b, {iY-+disp)
S~
A~ i,
FD CB 4 01 bbb 110

bbb is the same as in BIT b,{HL)
This instruction is identical to BIT b, {IX+displ. except that it uses thelY register instead
of the IX register.

CALL Ilabel —CALL THE SUBROUTINE IDENTIFIED IN THE
OPERAND

S ZAcP/ON C Data

A fI_mm-+3 ZIxxxx-2
B.C mm xxxx-1
DE @ XXXX
HL
SpP XXXX
PC mmmm @ Program
1X Memory
Y
i o) mmmm
R l 1 PR mmmm + 1
1 qq mmmm + 2
mmmm + 3

CALL label
e e

CD ppaq

Store the address of the instruction following the CALL on the top of the stack: the top
of the stack is a data memory byte addressed by the Stack Pointer. Then subtract 2
from the Stack Pointer in order to address the new top of stack. Move the 16-bit address
contained in the second and third CALL instruction object program bytes to the Pro-
gram Counter. The second byte of the CALL instruction is the low-order half of the ad-
dress. and the third byte is the high-order byte.

Consider the instruction sequence:

CALL SUBR
AND 7CH

SUBR

After the instruction has executed, the address of the AND instruction is saved at the
top of the stack. The Stack Pointer is decremented by 2. The instruction labeled SUBR
will be executed next.

3-57



CALL condition,label — CALL THE SUBROUTINE IDENTIFIED IN
THE OPERAND IF CONDITION IS

SATISFIED
CALL condition,  label
e, e’ S
o, i
1" X% 100 pp aq
i Condition Relevant Flag
000 NZ Non-Zero Z
001 Z Zero z
010 NC Non-Carry C
011 C Carry C
100 PO Parity Odd P/O
101 PE Parity Even P/0
110 P Sign Positive S
111 M Sign Negative S

This instruction is identical to the CALL instruction. except that the identified
subroutine will be called only if the condition is satisfied. otherwise, the instruction se-
quentially following the CALL condition instruction will be executed.

Consider the instruction sequence:

CALL | COND.SUBR
_ i COND.SUBR
ano ¥ 7cH
con'difion -
BR
suU

If the condition is not satisfied. the AND instruction will be executed after the CALL
COND.SUBR instruction has executed. |f the condition is satisfied. the address of the
AND instruction is saved at the top of the stack, and the Stack Pointer is decremented
by 2. The instruction labeled SUBR will be executed next.

3-58



CCF — COMPLEMENT CARRY FLAG

S Z AcP/ON C

PC mmmm

] | —

CCF

st

3F

=D

mmmm + 1

Data
Memory

Program
Memory

3F

Complement the Carry flag. No other status or register contents are affected.

3-59

mmmm

mmmm + 1
mmmm + 2
mmmm + 3




CP data — COMPARE IMMEDIATE DATA WITH
ACCUMULATOR

P T

S zZ ACP/ON C

Data
Memory
A XX XX~YY
B.C
DE
H.L
SP
PC mmmm mmmm + 2 Program
X Memory
Y
i FE mmmm
R — yv mmmm + 1
mmmm + 2
mmmm +3
CcP data
FE vy

Subtract the contents of the second object code byte from the contents of the Ac-
cumulator, treating both numbers as simple binary data. Discard the result: i.e.. leave
the Accumulator alone. but modify the status flags to reflect the result of the subtrac-
tion.

Suppose xx=E31g and the second byte of the CP instruction object code contains
AO16. After the instruction

CP OAOQH

has executed, the Accumulator will still contain E31g. but statuses will be modified as
follows:

E3 = 1110 0011
A0 = 1010 0000
0100 0011
OsetsSto0 U? LNon—zero result. set Z to 0
No borrow, set C to 0 No borrow. set Ac to 0
£ o
1% 1=0, set P/O 10 0 Subtract instruction, set N to 1

Notice that the resulting carry is complemented.

3-60



CP reg — COMPARE REGISTER WITH ACCUMULATOR

S ZAcP/ON C

FLRXIXIXIXT 1 EX]

XX

Contents of

-

|
f

PC mmmim

ABCDEH
orlLisyy

mmmm + 1

CP reg
—— ——
10111 xxx

——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Subtract the contents of Register A, B. C. D, E, H or L from the contents of the Ac-
cumulator, treating both numbers as simple binary data. Discard the result; i.e.. leave
the Accumulator alone. but modify status flags to reflect the resulit of the subtraction.

Suppose xx=E31g and Register B contains A01g. After the instruction

CP B

Data
Memory

Program
Memory

10711 1xxx

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

has executed, the Accumulator will still contain E31g, but statuses will be modified as

follows:

E3
A0

OsetsSto0

No borrow, set C to 0
-

v

134 1=0, set P/O t0 0

Notice that the resulting carry is compiemented.

3-61

11
00

11

1110 00
1010 00
0100 00

No borrow. set Ac to 0

Non-zero result, set Z to 0

Subtract instruction, set N to 1



CP (HL) — COMPARE MEMORY WITH ACCUMULATOR
CP {IX+disp)
CP {iY+disp)

8

T

S Z AcPON C

Data
FEXDXIXIX 1] Memory
A XX vy Ppaq
B.C
DE
HL pp qq
SP °
PC mmmm @ Program
X - . Memory
Y
| BE mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of CP (HL):
CP (HU)
R N
BE

Subtract the contents of memory location (specified by the contents of the HL register
pair) from the contents of the Accumulator, treating both numbers as simple binary
data. Discard the result: 1.e.. leave the Accumulator alone, but modify status flags to
reflect the result of the subtraction.

Suppose xx=E31g and yy=A01g. After execution of
CP {HL)
the Accumulator will still contain E316. but statuses will be modified as follows:

E3 1110 0011
AO 0110 0000

0n00 0011

OsetsSto0 UT LNon-zero result, set Z t0 0
N‘gborrow, setC to0 No borrow, set Ac to-0

&

It

g
1% 1=0, set P/O 10 0
Notice that the resulting carry is complemented.
CP {IX+disp)
N —

———

Subtract instruction, set N to 1

DD BE d

3-62



Subtract the contents of memory location (specified by the sum of the contents of the
IX register and the displacement value d) from.the contents of the Accumulator, treat-
ing both numbers as simple binary data. Discard the result; i.e.. leave the Accumulator
alone, but modify status flags to reflect the result of the subtraction.

CP {IY+disp!
S ——

FO BE d

This instruction is identical to CP {IX+disp). except that it uses the IY register instead of
the IX register.

CPD — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT ADDRESS AND BYTE COUNTER

S Z AcP/ON C Data
Set if BC-1 #0, Memory
£ -n. reset otherwise 3
A XX
8C tt

d uu Yy Pppaq
D.E ; P
HL o o ppag J
SP
PC mmmm Program
1X Memory
i D
| ED mmmm
] — R
mmmm + 2
mmmm + 3

CPD
\-—W
ED AS

Compare the contents of the Accumulator with the contents of memory location

(specified by the HL register pair). If A is equal to memory, set Z flag. Decrement the HL
and BC register pairs. (BC is used as the Byte Counter.)

3-63



Suppose xx=E316, ppaq=40001¢. BC contains 000114, and yy=A016. After the in-
struction

CPD

has executed. the Accumulator will still contain E31g, but statuses will be modified as
follows:

£3 = 1110 0011
AQ =

Osets S to O<—J TU LNon‘zero result, set Z to O
No borrow, set Ac to 0
The P/0O flag will be reset
because BC-1=0

Subtract instruction involved,
set N to 1

Carry not affected.

The HL register pair will contain 3FFF1g, and BC=0.

CPDR — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT ADDRESS AND BYTE COUNTER.
CONTINUE UNTIL MATCH IS FOUND OR BYTE
COUNTER IS ZERO

CPDR
S
ED B9

Thus instruction is identical to CPD. except that it is repeated until a match is found or
the byte counter is zero. After each data transfer, interrupts will be recognized and two
refresh cycles will be executed.

Suppose the HL register pair contains 500016, the BC register pair contains 00FF1g,
the Accumulator contains F916, and memory has contents as follows:

Location Contents

50001 AA1s
4FFF18 BC1g
4FFE16 1916
4FFD1g  7A18
4FFC1g  F91g
4FFB1g DD1s

After execution of
CPDR

the P/O flag will be 1. the Z flag will be 1. the HL register pair will contain 4FFB1g, and
the BC register pair will contain 00FA4g.

3-64



CPI — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT BYTE COUNTER.
INCREMENT ADDRESS

f \

S Z AgcP/ON C Data
Set if BC-1 #0, Memory
F .. reset otherwise
A XX
. m " g vy ppag
e }
HL PR ad
SP
ol —— Program
x Memory
I ED mmmm
R  — AT -
mmmm + 2
mmmm + 3

CPi
\.\/./
ED Al

Compare the contents of the Accumulator with the contents of memory location
(specified by the HL register pairl. If A is equal to memory, set the Z flag. Increment the
HL register pair and decrement the BC register pair (BC is used as Byte Counter).

Suppose xx=E31g, ppqa=40001g, BC contains 00321g, and yy=E31g. After the in-
struction

CPI

has executed. the Accumulator will still contain E31g. but statuses will be modified as
follows:

E3 = 1111 0011
-E3 = 0000 1101
0000 0000

O sets S to O<—J UT L Result1s 0. set Z to 1
No borrow. set Ac to 0
The P/0 flag will be set

because BC-1 #0.

Subtract instruction involved,
set N to 1.

Carry not affected.
The HL register pair will contain 400116, and BC will contain 00311¢.

3-65



CPIR — COMPARE ACCUMULATOR WITH MEMORY.
DECREMENT BYTE COUNTER.
INCREMENT ADDRESS.
CONTINUE UNTIL MATCH IS FOUND
OR BYTE COUNTER IS ZERO

CPIR
v’

ED B1

This instruction is identical to CPl, except that it is repeated until a match i1s found or
the byte counter is zero. After each data transfer interrupts will be recognized and two
refresh cycles will be executed.

Suppose the HL register pair contains 4560016, the BC register pair contains 00FFqg,
the Accumulator contains F816. and memory has contents as follows:

Location Contents
450016 AA16
450116 1516
450214 F916
After execution of
CPIR

the P/0 flag will be 1, and the Z flag will be 1. The HL register pair will contain 450314,
and the BC register pair will contain 00FC14.

3-66



CPL — COMPLEMENT THE ACCUMULATOR
S ZACP/ON C

XX XX

mmmm

: | —

mmmm + 1

CPL

R g

2F

Data
Memory

Program
Memory

2F

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Complement the contents of the Accumulator. No other register's contents are

affected.

Suppose the Accumulator contains 3A1g. After the instruction

CPL
has executed, the Accumulator will contain Cb1g.

3A 0011 1010
Complement = 1100 0101

This is a routine logical instruction. You need not use it for binary subtraction: there are

special subtract instructions {SUB, SBC).

3-67



DAA — DECIMAL ADJUST ACCUMULATOR

S Z AcP/ON C

Data
Memory
Co
A I docmmal
8.C
D.E
H.L
SP
PC mmmm mmmm + 1 Program
X Memory
Y
| 27 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

DAA

e

27

Convert the contents of the Accumulator to binary-coded decimal form. This instruc-
tion shouid only be used after adding or subtracting two BCD numbers: i.e.. look upon
ADD DAA or ADC DAA or INC DAA or SUB DAA or SBC DAA or DEC DAA or NEG DAA

as compound, decimal arithmetic instructions which operate on BCD sources to gener-
ate BCD answers.

Suppose the Accumulator contains 391g and the B register contains 471g. After the in-
structions

ADD B
DAA

have executed, the Accumulator will contain 8614, not 8016.

Z80 CPU logic uses the values in the Carry and Auxiliary Carry, as well as the Ac-
cumulator contents, in the Decimal Adjust operation.

3-68



DEC reg — DECREMENT REGISTER CONTENTS

S ZAcP/ON C

Data
F G Memory
. Contents of A,
o¢ B,C, D, EH,
HL orlLisyy
SP
PC mmmm mmmm + 1 Program
X Memory
Yy
i 00xxx101 fmmmm
R mmmm + 1
mmmm + 2
mmmm + 3
DEC reg
——
00 xxx 101
s

000 for reg=8B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Subtract 1 from the contents of the specified register.
Suppose Register A contains 5016. After execution of

DEC A
Register A will contain 4F¢.

3-69



DEC rp — DECREMENT CONTENTS OF SPECIFIED REGISTER
DEC IX PAIR

DEC lY
S Z AcP/ON C

Data
A
B.C Contents of BC,
DE DE. ML or SP
HL 1S Yyvy
SP
PC mmmm mmmm + 1 Program
X Memory
Y
| 00xx 1011 jmmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of DEC rp:
DEC

00 xx 1011
S——

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp 1s register parr HL
11 for rp 1s Stack Pointer

Subtract 1 from the 16-bit value contained in the specified register pair. No status flags
are affected.

Suppose the H and L registers contain 2F001g. After the instruction
DEC HL
has executed. the H and L registers will contain 2EFF1g.

DEC X
S -

DD 2B
Subtract 1 from the 16-bit value contained in the IX register.
DEC 1Y
N,
FD 2B
Subtract 1 from the 16-bit value contained in the |Y register.

Neither DEC rp. DEC IX nor DEC IY affects any of the status flags. This is a defect in the
Z80 instruction set. inherited from the 8080. Whereas the DEC reg instruction is used in
iterative instruction loops that use a counter with a value of 256 or less. the DEC rp
(DEC IX or DEC 1Y) mstruction must be used if the counter value is more than 256. Since
the DEC rp instruction sets no status flags, other instructions must be added to simply

3-70



test for a zero result. This is a typical loop form:

LD DE.DATA .LOAD INITIAL 16-BIT COUNTER VALUE
LOoP - :FIRST INSTRUCTION OF LOOP

DEC DE :DECREMENT COUNTER

LD AD .TO TEST FOR ZERO. MOVE D TO A

OR E THEN OR A WITH E

JP NZ.LOOP  :RETURN IF NOT ZERO

DEC {HL) — DECREMENT MEMORY CONTENTS
DEC ({iX+disp}
DEC (IY+disp)

S ZACP/ON C Data

FXIXIXTXT ] Mermory
B.C
D.E
H.L bp qq
SP
PC mmmm -mmmm + 1 Program
X Memory
Y
i 1 35 mmmm
R | mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of DEC (HL):
DEC (HL)
N —
35

Subtract 1 from the contents of memory location (specified by the contents of the HL
register pair).

Suppose ppaq=45001g. vy=5F1g. After execution of

DEC (HU)
memory location 45001 will contain 5E16.
5F = 0101
01 =

1111
1 1 1 1111
10 101 1110
O sets S to Oﬂ;lj U LNon-zero result. set Z to 0
“z -
1% 1=0, set P/O 10 0 No borrow, set Ac to 0

Subtract instruction, set N to 1

3-71



e

DEC (iX+disp)
gt~

DD 3 d

Subtract 1 from the contents of memory location (specified by the sum of the contents
of the IX register and the displacement value d}.

DEC {IY-+disp!
Ve i and

FD 35 d

This instruction 1s identical to DEC {(IX+disp). except that it uses the IY register instead
of the IX register.

DI — DISABLE INTERRUPTS

S ZAgP/ON C Data

A
8.C
D.E
HL
SP .
PC mmmm Program
IX ] Memory
Y
i l F3 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

Di

———

F3

!V_t_wen this instruction i1s executed. the maskable interrupt request is disabled and the
INT input to the CPU will be ignored. Remember that when an interrupt is
acknowledged. the maskable interrupt is automatically disabled.

The maskable interrupt request remains disabled until it is subsequently enabled by an
El instruction.

No registers or flags are affected by this instruction.

3-72



DJNZ disp — JUMP RELATIVE TO PRESENT
CONTENTS OF PROGRAM COUNTER IF
REG B IS NOT ZERO

S Z ACP/ON C xx-1 Data

. —
B.C XX J
D.E
HL
sSP
mmmm +
i~ mmmm {@d-2)+2. Program
X Memory
4
L 10 mmmm
R dd-2 mmmm + 1
mmmm + 2
mmmm + 3

DJNZ  disp
e ——
10 dd-2

Decrement Register B. If remaining contents are not zero. add the contents of the DJNZ
instruction object code second byte and 2 to the Program Counter. The jump is
measured from the address of the instruction operation code, and has a range of -126 to
+129 bytes. The Assembler automatically adjusts for the twice-incremented PC.

If the contents of B are zero after decrementing. the next sequential instruction ts ex-
ecuted.

The DJNZ instruction i1s extremely useful for any program loop operation. since the one
instruction replaces the typical “"decrement-then-branch on condition” instruction se-
quence.

El — ENABLE INTERRUPTS
S Z AcP/ON C Data

PC mmmm mmmm + 1 Program
1X Memory

1 F8 mmmm

R l mmmm + 1
mmmm + 2
mmmm + 3

3-73



El

o

FB

Execution of this instruction causes interrupts to be enabled, but not until one more in-
struction executes.

Most interrupt service routines end with the two instructions:

El ;ENABLE INTERRUPTS
RET :RETURN TO INTERRUPTED PROGRAM

If interrupts are processed serially, then for the entire duration of the interrupt service
routine all maskable interrupts are disabled — which means that in a multi-interrupt
application there is a significant possibility for one or more interrupts to be pending
when any interrupt service routine completes execution.

If interrupts were acknowledged as soon as the El instructions had executed, then the
Return instruction would not be executed. Under these circumstances, returns would
stack up one on top of the other — and unnecessarily consume stack memory space.
This may be illustrated as follows:

Interrupt

interrupt

Interrupt service routine
Interrupt

Interrupt service routing

Interrupt service routine

By inhibiting interrupts for one more instruction following execution of Ei, the Z80 CPU
ensures that the RET instruction gets executed in the sequence:

El :ENABLE INTERRUPTS
RET ;RETURN FROM INTERRUPT

It 1s not uncommon for interrupts to be kept disabled while an interrupt service routine
is executing. Interrupts are processed serially:

, Interrupt / Interrupt
Interrupt service routine Interrupt service routine

3-74



EX AF,AFF — EXCHANGE PROGRAM STATUS AND ALTERNATE
PROGRAM STATUS

S Z AcP/ON C

Alternate
Register Set
I I )= ) i
A ’;{ Q.' o
B.C A
DE D',E'
H.L H.L
Sp
PC mmmm rmmmm + Program
iX Memory
Y
| 08. mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
EX AF.AF
N— oo
08

The two-byte contents of register pairs AF and A'F" are exchanged.
Suppose AF contains 4F981g and A'F’ contains 10AA1g. After execution of

EX AF.AF
AF will contain 10AA1g and AF" will contain 4F9916.

3-75



EX DE,HL — EXCHANGE DE AND HL CONTENTS

S ZAcP/ON C Data

CITTTT] Heren

D.E pp ad
H.L XX vy

PC mmmm " @ Program
X ] Memory

EB mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

EX DE.HL
N
EB
The D and E registers’ contents are swapped with the H and L registers’ contents.
Suppose pp=0315, qa=2A1g. xx=411g and yy=FC1g. After the instruction
EX DEHL

has executed. H will contain 0314, L will contain 2A1g. D will contain 411¢ and E will
contain FC1g.

The two instructions:

EX DEHL
LD A.(HL)

are equivalent to:
LD A.(DE)
but if you want to load data addressed by the D and E register into the B register,

EX DE.HL
LD B.HL)

has no single instruction equivalent.

3-76



EX (SP),HL — EXCHANGE CONTENTS OF REGISTER AND
EX (SP),IX  TOP OF STACK
EX (SP)1Y

S ZAcP/ON C

Data

A -t qa S8SS
g8.c —— L op ssss+ 1
DE "/ [ 2 sS85 +2
HL XX vy
sP SSSS
PC mmmm mmmm + 1 Program
X Memory
Y
i E3 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of EX {SP),HL.
EX (SP).HL
N
E3

Exchange the contents of the L register with the top stack byte. Exchange the contents
of the H register with the byte below the stack top.

Suppose xx=2118, yvy=FA1g. pp=3A16. aq=E214. After the instruction
EX (SP).HL

has executed, H will contain 3A1g. L will contain E21g and the two top stack bytes will
contain FA1g and 211g respectively.

The EX (SP).HL instruction is used to access and manipulate data at the top of the stack.
EX {SP).IX
N o’
DD ES3

Exchange the contents of the IX register's low-order byte with the top stack byte. Ex-
change the IX register's high-order byte with the byte below the stack top.

EX {SPLIY
S—
FD E3

This instruction is identical to EX (SP)LIX, but uses the IY register instead of the IX
register.

3-77



EXX — EXCHANGE REGISTER PAIRS AND ALTERNATE
REGISTER PAIRS

S ZACP/ON C

Alternate
&

A A
B.C B.C
R
HL ) H.L
SP
PC mmmm mmmm + 1 Program

IX Memory

Y

! D9 mmmm

R mmmm + 1
mmmm + 2
mmmm + 3

EXX

——

D9
The contents of register pairs BC, DE and HL are swapped with the contents of register
pairs B'C'. D'E’", and H'L’
Suppose register pairs BC, DE and HL contain 49011g, 5F001g and 72511¢ respec-

tively, and register pairs B'C’, D'E', H'L" contain 000016, 10FF1g and 333314 respec-
tively. After the execution of

EXX
the registers will have the following contents:

BC. 00001¢g; DE: 10FF1g: HL: 33334g:;
B'C'" 490115, D'E: BF0014; H'L 725115

This instruction can be used to exchange register banks to provide very fast interrupt
response times.

3-78



HALT
S ZAGP/ON C

Data

A
B.C
DE
HL
sP
PC mmmm Program
X Memaory
Y
i 76 mmmm
R l mmmm + 1
mmmm + 2
mmmm + 3
HALT
haad
76

When the HALT instruction is executed. program execution ceases. The CPU requires

an interrupt or a reset to restart execution. No registers or statuses are affected:;
however, memory refresh logic continues to operate.

3-79



IM O — INTERRUPT MODE 0
S Z ACP/ON €

Data

A

B.C
DE

HL

sP

PC mmmm mmmm + 2 Program

X Memory
Y

i

ED
R

46

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

MO
o

ED 46

Thus instruction places the CPU in interrupt mode O. In this mode. the interrupting
device will place an instruction on the Data Bus and the CPU will then execute that in-
struction. No registers or statuses are affected.

M 1 — INTERRUPT MODE 1

M1
o

ED 56

This instruction places the CPU in interrupt mode 1. In this mode. the CPU responds to
an interrupt by executing a restart (RST) to location 00381¢.

iM 2 — INTERRUPT MODE 2

M2
s Y
ED 5E

This instruction places the CPU in interrupt mode 2. In this mode, the CPU performs an
indirect call to any specified location in memory. A 16-bit address i1s formed using the
contents of the Interrupt Vector (I} register for the upper eight bits, while the lower
eight bits are supplied by the interrupting device. Refer to Chapter 12 for a full descrip-
tion of interrupt modes. No registers or statuses are affected by this instruction.

3-80



IN A,{port) — INPUT TO ACCUMULATOR

S ZAGP/ON C Data

A D

PC mmmm mmmm + 2 Program
1X Memory

! DB
R . vy

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

IN A, {port)
DB vy

Load a byte of data into the Accumulator from the /0 port lidentified by the second IN
instruction object code byte).

Suppose 3614 is held in the buffer of 1/0 port 1A1g. After the instruction
IN A (TAH)

has executed, the Accumulator will contain 3614.

The IN instruction does not affect any statuses.

Use of the IN instruction 1s very hardware dependent. Valid 1/0 port addresses are
determined by the way in which I/0 logic has been implemented. It 1s also possible to
design a microcomputer system that accesses external logic using memory reference
instructions with specific memory addresses.

3-81



INC reg — INCREMENT REGISTER CONTENTS

S Z A¢ P/ON C Data
- G0 Memory
A
ac Contents of A,
DE B,C.,D.E Hor
HL Lisyy
SP "
PC mmmm - @ Program
1X ” Memory
Y
| 00xxx100_§ mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

INC reg
sy

00 xxx 100

——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Add 1 to the contents of the specified register.
Suppose Register E contains A81g. After execution of

INC E
Register £ will contain A94g.

3-82



INC rp — INCREMENT CONTENTS OF SPECIFIED REGISTER PAIR

INC IX
INC 1Y

S ZAcP/ON C

Data
Memory

Contents of BC,

DE, HL or SP

—-1S YYYY

PC mmmm

mmmm + 1

Program
Memory

00xx0011

The illustration shows execution of INC rp:

INC p

00 xx 0011

——

00 for rp is register pair BC
01 for rp 1s register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Add 1 to the 16-bit value contained in the specified register pair. No status flags are

affected.

Suppose the D and E registers contain 2F7A1g. After the instruction

INC DE

has executed, the D and E registers will contain 2F7B1¢.

INC IX
- -

DD 23

Add 1 to the 16-bit value contained in the IX register.

INC IY
-
FD 23

Add 1 to the 16-bit value contained in the 1Y register.

Just like the DEC rp, DEC IX and DEC IY, neither INC rp, INC IX nor INC 1Y affects any
status flags. This is a defect in the Z80 instruction set inherited from the 8080.

3-83



INC (HL) — INCREMENT MEMORY CONTENTS
INC {IX+disp)
INC (1Y +disp)

S Z ACP/ON C

Data
F ﬂ- Memory
A \AJ ppaq +d
B.C A
DE
HL
SP
PC mmmm mmmm + 3 Program
X opaq Memory
Y
‘ DD mmmm
R = 34 mmmm + 1
Ern d mmmm + 2
- mmmm + 3

The illustration shows execution of INC {(IX+d):

INC {(iX+disp)
S

DD 34 d

Add 1 to the contents of memory location (specified by the sum of the contents of
Register 1X and the displacement value d).

Suppose ppag=40001g and memory location 400F1g contains 361g. After execution
of the instruction

INC (IX+OFH)
memory location 400F4g will contain 3746.

36 = 001t 0110
1

0011 0111

Osets Sto0 UT LNon-zero result, set Z to Q
Carry status not affected
o

No carry, set A 10 0

P

OVO‘—:O, set P/O to 0 Addition instruction, set N to 0

INC {IY+disp)
N oy
FD 34 d

This instruction is identical to INC {IX+displ, except that it uses the 1Y register instead
of the IX register.

INC (HL)
N e
34

Add 1 to the contents of memory location {specified by the contents of the HL register
pair).

3-84



IND — INPUT TO MEMORY AND DECREMENT POINTER

-1
S ZAcP/ON C * Data

FlulXjulufr] | 1/0 port yy Memory
A i l——-—b ppag
B.C XX i J Y
DE ppaqg-1
HL PR aq
sP
PC mmmm Program
IX mmmm + 2 Memory
Y
! ED mmmm
R AA mmmm + 1
mmmm + 2
mmmm + 3
IND
\‘\,./
ED AA

Input from 1/0 port (addressed by Register C) to memory location {specified by HL).
Decrement Registers B and HL.

Suppose xx=0581g, yy=15616. ppaq=24001g. and 1916 is held in the buffer of 1/0 port
151g. After the instruction

IND

has executed, memory location 240014 will contain 191g. The B register will contain
0416 and the HL register pair 23FF1g.

INDR — INPUT TO MEMORY AND DECREMENT POINTER
UNTIL BYTE COUNTER IS ZERO

INDR
S,
ED BA
INDR 1s identical to IND. but is repeated until Register 8=0.

Suppose Register B contains 0316, Register C contains 1516, and HL contains 24001 4.
The following sequence of bytes is available at [/0 port 1514:

1716. 5916 and AEqg
After the execution of
INDR

the HL register pair will contain 23FD1g and Register B will contain zero, and memory
locations will have contents as follows:

Location Contents

2400 1716
23FF 5918
23FE AE16

This instruction is extremely useful for loading blocks of data from an input device into
memory.

3-85



INI — INPUT TO MEMORY AND INCREMENT POINTER

S ZAcPION C < ot ) bata
A g l———-—~> ppaq
B.C x ;T v

DE ppgg + 1
HL PP aq

PC mmmm Program
X mmmm + 2 Memory

. l ED mmmm

R A2 mmmm + 1
mmmm + 2
mmmm + 3

INI
\-\(./
ED A2

Input from 1/0 port {addressed by Register C) to memory location (specified by HL).
Decrement Register B. increment register paur HL.

Suppose xx=051g. yy=151g, ppaaq=240014. and 1914 is held in the buffer of I/O port
1516.

After the instruction
INI

has executed, memory location 24001g will contain 1914. The B register will contain
0416 and the HL register pair 240115.

INIR — INPUT TO MEMORY AND INCREMENT POINTER
UNTIL BYTE COUNTER IS ZERO

INIR
S -
ED B2

INIR 15 identical to INL but is repeated until Register B=0.

Suppose Register B contains 0316, Register C contains 151g, and HL contains 240014.
The following sequence of bytes 1s available at |/O port 1614:

1716. 6916 and AE1g
After the execution of
INIR

the HL register pair will contain 240315 and Register B will contain zero, and memory
locations will have contents as follows:

Location Contents

2400 1716
2401 5818
2402 AEqg

This instruction 1s extremely useful for loading blocks of data from a device into memo-
ry.

3-86



IN reg,(C} — INPUT TO REGISTER

S ZAcP/ON C

FEXIXJOIX]O] ]

/0 port yy

Data
Memory

A

B.C

DE

HL

i

PC mmmm

mmmm + 2

1X

Y

7 | —

IN reg, (C)

B e s et

ED 01 xxx 000

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=Et
100 for reg=H
101 for reg=L
111 for reg=A

Program
Memory

ED

01xxx000

mmmm
mmmm + 1
mmmm + 2
mmmm + 3

110 for setting of status flags without

changing registers

Load a byte of data into the specified register reg) from the I/0 port {identified by the

contents of the C register).

Suppose 4216 is held in the buffer of I/0 port 3615, and Register C contains 3616.

After the instruction

IN D.C)

has executed. the D register will contain 421¢.

During the execution of the instruction. the contents of Register B are placed on the top
half of the Address Bus, making it possible to extend the number of addressable /0

ports.

3-87



JP label — JUMP TO THE INSTRUCTION IDENTIFIED
IN THE OPERAND

S ZAcP/ON C Data

A
B.C
DE
H.L
sp
PC mmmm Program
1X Memory
Y
: !: C3 mmmm
R 1 qq mmmm + 1
1 bp mmmm + 2
mmmm + 3

JP label
g, e’

C3 ppag

Load the contents of the Jump instruction object code second and third bytes into the
Program Counter; this becomes the memory address for the next instruction to be ex-
ecuted. The previous Program Counter contents are lost.

in the following sequence:

JP NEXT
AND TEH
NEXT CPL

The CPL instruction will be executed after the JP instruction. The AND instruction will
never be executed. unless a Jump instruction somewhere else in the instruction se-
quence [umps to this instruction.

3-88



JP condition,label — JUMP TO ADDRESS IDENTIFIED IN THE
OPERAND IF CONDITION IS
SATISIFED

JP cond. label
—

11 cc 010 ppag

Condition Relevant Flag
000 NZ Non-Zero z
001 Z Zero Z
010 NC No Carry C
011 C Carry C
100 PO Panty Odd P/O
101 PE  Parity Even P/O
110 P Sign Positive S
11 M Sign Negative S

This instruction s 1dentical to the JP instruction. except that the wump will be per-
formed only if the condition 1s satisfied. otherwise, the instruction sequentially follow-
ing the JP condition instruction will be executed.

Consider the instruction sequence
l
i
i

JP; CONDLABEL

| condition not satisfied

y AND * 7CH
condition
satisfied -
LABEL OR B

After the JP cond.label instruction has executed. if the condition 1s satisfied then the
OR mstruction will be executed. If the condition 1s not satisfied, the AND instruction,
being the next sequential instruction. 1s executed.

3-89



JP (HL) — JUMP TO ADDRESS SPECIFIED BY CONTENTS
JP (IX) OF 16-BIT REGISTER
JP (1Y)

S Z ACP/ON C

Data
Memorv
A
B8.C
D.E
HL pp qad
sp }
PC mmmm Program
1X Memory
Y
: E9 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of JP (HL):

JP{(HU)
g

E9

The contents of the HL register pair are moved to the Program Counter: therefore. an
implied addressing jump 1s performed.

The instruction sequence

LD H.ADDR
JP (HL)

has exactly the same net effect as the single instruction
JP ADDR

Both specify that the instruction with label ADDR is to be executed next.

The JP {HL) instruction 1s useful when vou want to increment a return address for a
subroutine that has multiple returns.

Consider the following call to subroutine SUB:

CALL SUB ;CALL SUBROUTINE
JP ERR :ERROR RETURN
:GOOD RETURN

Using RET to return from SUB would return execution of JP ERR: therefore, if SUB ex-
ecutes without detecting error conditions. return as follows:

poP HL :POP RETURN ADDRESS TO HL
INC HL :ADD 3 TO RETURN ADDRESS
INC HL
INC HL
JP (HL) ‘RETURN

JPiX)

o

DD E9

This instruction is identical to the JP {HL) instruction. except that it uses the IX register

3-90



instead of the HL register pair.
JP )
\c\/—/
FD EQ
This instruction is identical to the JP (HL) instruction, except that it uses the 1Y register
instead of the HL register pair.
JR C,disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF CARRY IS SET
JR C. disp
N e S~
38 dd-2

This instruction is identical to the JR disp instruction. except that the jump is only ex-
ecuted if the Carry status equals 1, otherwise, the next instruction is executed.

In the following instruction sequence:

4000 JR

]

i

]

1

4
4002 AND * 7FH

4008 OR B

After the JR C.$+8 instruction, the OR instruction is executed if the Carry status equals
1. The AND instruction 1s executed if the Carry status equals 0.

3-91



JR disp — JUMP RELATIVE TO PRESENT CONTENTS OF
PROGRAM COUNTER

S Z AcP/ON C

Data
A
B.C
DE
HL
SP
mmmm +
PC mmmm (dd-2) + 2 !;Arogram
1X lemory
Y
| 18 mmmm
R dd-2 mmmm + 1
mmmm + 2
mmmm + 3

JR disp
e
18 dd-2

Add the contents of the JR instruction object code second byte, the contents of the Pro-
gram Counter, and 2. Load the sum into the Program Counter. The jump is measured
from the address of the instruction operation code, and has a range of -126 to +129
bytes. The Assembler automatically adjusts for the twice-incremented PC.

The following assembly language statement is used to jump four steps forward from ad-
dress 40001g.

JR $+4
Result of this instruction is shown below:

Location  Instruction

4000 18
4001 02
4002 -
4003 -
4004 - ag——new PC value

3-92



JR NC.disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF CARRY FLAG IS RESET

JR NC.disp
S
30 dd-2

This instruction is identical to the JR disp instruction. except that the jump s only ex-
ecuted if the Carry status equals O otherwise, the next instruction 1s executed.

In the following instruction sequence:

4000  ADD | A.7FH
4001 !

C=0 4002 161
4003  JR 4 NCS$-3

4005  OR * B
After the JR NC,$-3 instruction. the OR instruction is executed if the Carry status equals
1. The ADD instruction is executed if the Carry status equals 0.

JR NZ,disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF ZERO FLAG IS RESET

JR NZ.disp
Nt o’
20 dd-2

This instruction is identical to the JR disp instruction. except that the jump 1s only ex-
ecuted if the Zero status equals 0: otherwise, the next instruction is executed.

In the following instruction sequence:

|
4000 JR !} NZ3$+6
1
4002 AND * 7FH
=0 4004 - z=1
4006 -
4006 OR B

After the JR NZ.$+6 instruction, the OR instruction 1s executed if the Zero status equals
0. The AND instruction is executed if the Zero status equals 1.

3-93



JR Z.disp — JUMP RELATIVE TO CONTENTS OF PROGRAM
COUNTER IF ZERO FLAG IS SET

JR Z.disp
e an ad
28 dd-2

This instruction is identical to the JR disp instruction, except that the jump is only ex-
ecuted if the Zero status equals 1, otherwise, the next instruction i1s executed.

In the following instruction sequence:

H
4000 JR 1 Z7.3+6
4002 AND | 7FH
z=1 4004 . vz=o
4005 -
4006 OR B

After the JR Z.$+6 instruction, the OR instruction is executed if the Zero status equals
1. The AND instruction is executed if the Zero status equals 0.

LD A,1 — MOVE CONTENTS OF INTERRUPT VECTOR OR
LD A.R REFRESH REGISTER TO ACCUMULATOR

S ZAgP/ON C Data

- CEoIXTo] Memor

A XX
B.C
D.E

H.L
Sp
PC mmmm mmmm + 2 Program
1X Memory
1y
1 XX ED mmmm
R ‘ 57 mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of LD A.l:
LD AL
N
ED 57

Move the contents of the Interrupt Vector register to the Accumulator, and reflect inter-
rupt enable status in Party/Overflow flag.

Suppose the Interrupt Vector register contains 7F 1. and interrupts are disabled. After
exacutton of

LD Al

Register A will contain 7F1g. and P/0O will be O.
LD AR

N o’
ED BF

Move the contents of the Refresh register to the Accumulator. The value of the interrupt
flip-flop will appear in the Parity/Overflow flag.

3-94



LD A, (addr) — LOAD ACCUMULATOR FROM MEMORY USING
DIRECT ADDRESSING

S Z AcP/ON C Data

A Yy -t yY ppaq
c
D.E
HL
SP
PC mmmm Program
1X Memory
ty
| 3A mmmm
; | — ] -+
pp mmmm + 2
mmmm + 3

LD A, (addr)
haaVerdihs aud

3A  ppag

Load the contents of the memory bvte {addressed directly by the second and third
bytes of the LD A.{addr) instruction object codel into the Accumulator. Suppose memo-
ry byte 084A1g contains 2014. After the instruction

label EQU 084AH

LD A (label)
has executed. the Accumulator will contain 201g.

Remember that EQU is an assembler directive rather than an instruction: it tells the As-
sembler to use the 16-bit value 084A 15 wherever the label appears.

The instruction

LD A.(label)

is equivalent to the two mstructions
LD HL . label
LD A (HL)

When you are foading a single value from memory, the LD A, {label} instruction is prefer-
red; it uses one instruction and three object program bytes to do what the LD HL label.
LD A.{HL}) combination does in two instructions and four object program bytes. Also,
the LD HL.label. LD A,{HL) combination uses the H and L registers, which LD A {label)
does not.

3-95



LD A,(rp) — LOAD ACCUMULATOR FROM MEMORY LOCATION
ADDRESSED BY REGISTER PAIR

S Z AcP/ON C Data

A ¥y - vy ppaa
B.C
DE }-DBC or DE contain ppaq
HL
sp
pPC mmmm mmmm + 1 Program
1X Memory
Y
! 000x1010 _§ mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

LD A rp)

000 x 1010
St

0 if register pair=BC
1 if register pair=DE

Load the contents of the memory byte {addressed by the BC or DE register pair) into the
Accumulator.

Suppose the B register contains 08¢, the C register contains 4A1g. and memory byte
084A16 contains 3A1g. After the instruction

LD A.(BC)
has executed, the Accumulator will contain 3A1g.

Normally. the LD A.{rp} and LD rp.data will be used together. since the LD rp,data in-
struction loads a 16-bit address into the BC or DE registers as follows:

LD BC.084AH
LD A.(BC)

3-98



LD dst,src — MOVE CONTENTS OF SOURCE REGISTER TO
DESTINATION REGISTER

S ZACP/ON C Data

F m Register A, B, C, Memory
D.E.HortL
A
8.C Register A, B, C
DE D.E H L
HL
sp
PC mmmm mmmm + 1 Program
X Memary
Y
! 01dddsss §mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
LD dst, src
N Syt eyt
01 ddd sss
\W-/

000 for dst or src=8
001 for dst or src=C
010 for dst or src=D
011 for dst or src=E
100 for dst or src=H
101 for dst or sre=L
111 for dst or src=A

The contents of any designated register are loaded into any other register.
For example:
LD AB
loads the contents of Register B into Register A.
LD LD
loads the contents of Register D into Register L.
Lb C.C

does nothing. since the C register has been specified as both the source and the
destination.

3-97



LD HL,(addr) — LOAD REGISTER PAIR OR INDEX REGISTER
LD rp,(addr) FROM MEMORY USING DIRECT ADDRESSING
LD iX,(addr)

LD 1Y, (addr)

S Z AcP/ON C Data

A XX ppag
B.C - Yy ppag+ 1
D.E i D,
H.L vy XX
SP
PC mmmm mmmm + 3 Program
X Memory
Y
i 2A mmmm
R aq mmmm + 1
pp mmmm + 2
mmmm + 3

The illustration shows execution of LD HL{ppqq):

LD HL.addr
N g,
2A  ppaq

Load the HL register pair from directly addressed memory location.

Suppose memory location 400415 contains AD1g and memory location 40051¢ con-
tains 121g. After the instruction

LD HL,{4004H)
has executed, the HL register pair will contain 12ADqg.
LD rp. faddr)

S S Sy
ED 01 dd 1011 ‘ppag

00 for rp is register pair BC

01 for rp is register pair DE

10 for rp is register pair HL

11 for rp is Stack Pointer
Load register pair from directly addressed memory.

Suppose memory location 49FF1g contains BE1g and memory focation 4A001g con-
tains 3316. After the instruction

LD DE.(49FFH)
has executed, the DE register pair will contain 33BE1g.

LD IX,{addn)
e s el

DD 2A ppaq
Load IX register from directly addressed memory.

3-98



Suppose memory location D1111g contains FF1g and memory location D1121g con-
tains 561g. After the instruction

LD IX.(D111H)
has executed. the IX register will contain 56FF1g.

LD IY.(addr!
e i Vesud
FD 2A ppaq

Load 1Y register from directly addressed memory.
Affects IY register instead of IX. Otherwise identical to LD X{addr}.

LD I,A — LOAD INTERRUPT VECTOR OR REFRESH
LD R,A REGISTER FROM ACCUMULATOR

S ZAcP/ON C Data
F ] Memory
A XX
B.C
D.E
HL
SP
PC mmmm mmmm + 2 Program
1X Memory
Y
v | ED mmmm
R E ] 4F mmmm+ 1
mmmm + 2
mmmm + 3

The illustration shows execution of LD R.A:
LD RA
Sz
ED 4F
Load Refresh register from Accumulator.
Suppose the Accumulator contains 7Fqg. After the mstruction
LD RA
has executed. the Refresh register will contain 7F1g.
LD LA
Ve
ED 47

Load Interrupt Vector register from Accumulator.

3-99



LD reg,data — LOAD IMMEDIATE INTO REGISTER
S ZAcP/ON C Data

A .
ac Destination is
D'E Register A, B, C,
H.L D,EHorlL
SP
eC mmmm mmmm + 2 Program

X Memaory
Y

t 00xxx 110 | mmmm

R l yY mmmm + 1
mmmm + 2
mmmm + 3

LD reg.data

00 xxx 110 yy
——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Load the contents of the second object code byte into one of the registers.

When the instruction

LD A2AH
has executed, 2A1p is loaded into the Accumulator.

3-100



LD rp,data — LOAD 16 BITS OF DATA IMMEDIATE INTO
LD IX,data REGISTER
LD IY,data

S ZAcP/ON C Data

BC Select BC, DE, HL or
D' e } / SP. Load ppaq into

HL lected destination

SP

PC mmmm mmmm + 3 Program

1X Memory

Y

{ 00xx0001 § mmmm

; | — S

pp mmmm + 2

mmmm + 3

The illustration shows execution of LD rp.data:

LD rp. data

00 xx 0001 ppag
S——

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Load the contents of the second and third object code bytes into the selected register
pair. After the instruction

LD SP.217AH
has executed, the Stack Pointer will contain 217A44.
LD IX, data
N

——

DD 21 ppaq

Load the contents of the second and third object code bytes into the Index register {X.
LD 1Y, data
—— e~

FD 21 ppag
Load the contents of the second and third object code bytes into the Index Register 1Y
Notice that the LD rp,data instruction is equivalent to two LD reg.data instructions.
For example:

LD HL,032AH
is equivalent to

LD H.03H

LD L.2AH

3-101



LD reg,(HL) — LOAD REGISTER FROM MEMORY
LD reg, {IX+disp)
LD reg,(IY+disp)

S Z AcP/ON C Data

A
B.C Register A, B, C, <@ vy ppaq +d
DE D E HorlL
H,L
SP
PC mmmm mmmm + 3 Program
X ppag Memory
Y
{ DD mmmm
R 01xxx110.§ mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of LD reg.{X+disp):
LD reg. X + disp)

gt g

DD 01 xxx 110 d

S

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Load specified register from memory location {specified by the sum of the contents of
the IX register and the displacement digit d).

Suppose ppaq=40041g and memory location 40101 contains FF1g. After the instruc-
tion

LD B{X+0CH

has executed, Register B will contain FF1g.

S

LD reg, (Y + disp)

FDO1&£HOd

L—————-n»same as for LD reg.IX+disp)

This instruction is identical to LD reg,(IX+disp). except that it uses the 1Y register in-
stead of the IX register.

3-102



LD reg.(HL)

01 xxx 110
b p»same as for LD reg,(IX+disp}

Load specified register from memory location {specified by the contents of the HL
register pair).

LD SP,HL — MOVE CONTENTS OF HL OR INDEX REGISTER
LD SP.IX TO STACK POINTER
LD SP.IY

S Z ACP/ON C

Data

A
8.C
DE
HL pp qaq
s >
PC mmmm mmmm + 1 Program
X Memory
Y
| F9 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of LD SP,HL:

LD SP.HL
S omp
F9

Load contents of HL into Stack Pointer.

Suppose pp=081g and qq=3F16. After the instruction
LD SP.HL

has executed, the Stack Pointer will contain 083Fqg.

LD SP.IX
M
DD F9

Load contents of Index Register IX into Stack Pointer.
LD SP.IY

FD F9
Load contents of Index Register [Y into Stack Pointer.

3-103



LD (addr),A — STORE ACCUMULATOR IN MEMORY USING
DIRECT ADDRESSING

S Z AcP/ON C Data
A vy Lo v ppaq
B.C
D.E
H.L
sp
PC mmmm mmmm + 3 Program
X Memory
Y
i 32 mmmm
R I qq mmmm + 1
‘ Bp mmmm + 2
mmmm + 3

LD (addr).A

32 ppag

Store the Accumulator contents in the memory byte addressed directly by the second
and third bytes of the LD {addr},A instruction object code.

Suppose the Accumulator contains 3A1g. After the instruction
label EQU 084AH

LD {label). A
has executed, memory byte 084A1g will contain 3A16.

Remember that EQU is an assembler directive rather than an instruction it tells the As-
sembler to use the 16-bit value 084AH whenever the word “label”" appears.

The instruction
LD (addr).A
is equivalent to the two instructions

LD H.label
LD {HLLA

When you are storing a single data value in memory. the LD (label),A instruction is
preferred because it uses one instruction and three object program bytes to do what the
LD Hllabel), LD {HL).A combination does in two instructions and four object program
bytes. Also, the LD Hllabel), LD (HL),A combination uses the H and L registers, while the
LD (label),A instruction does not.

3-104



LD (addr),HL — STORE REGISTER PAIR OR INDEX
LD (addr),rp REGISTER IN MEMORY USING DIRECT
LD (addr),xy = ADDRESSING

S ZACP/ON C Data

A i Yy ppaq
BC v ] X ppag+ 1
D.E v 7
HL XX AA4
SP
PC ey Program
X Memory
Y
I ED mmmm
g  — s [
qq mmmm + 2
pPp mmmm + 3

The illustration shows execution of LD {ppaq).DE:
LD f{addr), rp
——

ED 01 xx 0011 ppag
L

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is Stack Pointer

Store the contents of the specified register pair in memory. The third and fourth object
code bytes give the address of the memory location where the low-order byte is to be
written. The high-order byte is written into the next sequential memory location.

Suppose the BC register pair contains 3C2A 1. After the instruction
label EQU 084AH

LD (label).BC

has executed. memory byte 084A1g will contain 2A1g. Memory byte 084B1g will con-
tain 3C16.

Remember that EQU is an assembler directive rather than an instruction; it tells the As-
sembler to use the 16-bit value 084A 15 whenever the word “label” appears.

LD {addr) HL
[y

22 'ppag

This is a three-byte version of LD (addr).rp which directly specifies HL as the source
register pair.

3-105



LD f{addr, X
oy g,

DD 22 ppag

Store the contents of Index register IX in memory. The third and fourth object code
bytes give the address of the memory focation where the low-order byte is to be writ-
ten. The high-order byte i1s written into the next sequential memory location.

LD (addr)
g, o

i

FD 22 ppaq

This instruction is identical to the LD laddr).IX instruction, except that it uses the 1Y
register instead of the IX register.

3-106



LD (HL),data — LOAD IMMEDIATE INTO MEMORY
LD (IX+disp),data
LD {lIY+disp},data

S Z AcP/ON C

Data
A Al xx ppaq +d
B.C
D.E
H.L
sP
PC mmmm mmmm + 4 Program
X ppaq ) Memory
Y
1 DD mmmm
R 36 mmmm + 1
d mmmm + 2
XX mmmm + 3

The illustration shows execution of LD {IX+d),xx:

LD (IX-+disp).data

R

DD 36 d xx
Load Immediate into the Memory location designated by base relative addressing.
Suppose ppaq=54001g. After the instruction

LD {IX+9).FAH

has executed. memory location 54091g will contain FA1g.

FD 36 d xx

This instruction is identical to LD {IX+disp).data, but uses the IY register instead of the
IX register.

LD (HL).data
e
36 XX

Load Immediate into the Memory location {specified by the contents of the HL register
pair).

The Load Immediate into Memory instructions are used much less than the Load Im-
mediate into Register instructions.

3-107



LD (HL),reg — LOAD MEMORY FROM REGISTER
LD (IX+displ,reg
LD {lY+disp),reg

S ZACP/ION C Data
; Memory
A Contents of A, B~fs» Y ppaq
8.C C.D,E Horl
D.E v
H.L pp a9
SP
ol —— mmmm + 1 Program
x Memory
Y
i 01110xxx | mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of LD {HL}reg:
LD (HL).reg

——

01110 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Load memory location (specified by the contents of the HL register pair) from specified
register.

Suppose ppgq=46001g and Register C contains F91g. After the instruction
LD (HLL.C
has executed, memory location 450014 will contain F916.
w+disp)ﬂ

e
DD 01110 xxx d
same as for LD (HL).reg

Load memory location (specified by the sum of the contents of the IX register and the

3-108



displacement value d} from specified register.

LD {iY+disp).
(Ygg):sg

FD 01110 %xx d

same as for LD {HL),reg

This instruction is identical to LD (IX+displ.reg. except that it uses the 1Y register in-
stead of the IX register.

LD (rp),A— LOAD ACCUMULATOR INTO THE MEMORY
LOCATION ADDRESSED BY REGISTER PAIR

S Z AGP/ON C Data

A vy o Yy ppaq
BC 1 BC or DE
D.E ) contain ppag
H.L
SP
PC mmmm Program
X Memory
Y
t 000x0010 § mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

LD {rpl.A

ey

000&0010

0 if register pair=8C
1 if register pair=DE
Store the Accumulator in the memory byte addressed by the BC or DE register patr.

Suppose the BC register pair contains 084A1g and the Accumulator contains 3A1g.
After the instruction

LD BCLA
has executed, memory byte 084A1g will contain 3A15.

The LD {rp).A and LD rp.data will normally be used together, since the LD rp.data in-
struction loads a 16-bit address into the BC or DE registers as follows:

LD BC.084AH
LD (BCLA

3-109



LDD — TRANSFER DATA BETWEEN MEMORY LOCATIONS,
DECREMENT DESTINATION AND SOURCE ADDRESSES

p
Set if BC-1 # 0, reset otherwise

S Z AcP/ON C

Data
Memory

ppaa-1

A yv pPag
B.C 1t uu
D.E [ ss rrsg-1
NHLL op qq - Yy ITSs
: g

PC mmmm Pragram
X Memory
Y
| mmmm + 2 ED mmmm
R A8 mmmm + 1
mmmm +2
mmmm + 3
LDD
\‘\/./
ED A8

Transfer a byte of data from memory location addressed by the HL register pair to
memory location addressed by the DE register pair. Decrement contents of register
pairs BC. DE, and HL.

Suppose register pair BC contains 004F1g, DE contains 454514, HL contains 201214,
and memory location 201215 contains 1816. After the instruction

LDD

has executed, memory location 45451 will contain 181¢, register pair BC will contain
004E1g. DE will contain 45441g, and HL will contain 20111¢.

3-110



LDDR — TRANSFER DATA BETWEEN MEMORY
LOCATIONS UNTIL BYTE COUNTER IS
ZERO.DECREMENT DESTINATION AND
SOURCE ADDRESSES

LDDR
S,
ED B8
This instruction is identical to LDD. except that it is repeated until the BC register pair

contains zero. After each data transfer. interrupts will be recognized and two refresh cy-
cles will be executed.

Suppose we have the following contents in memory and register pairs:

Register/Contents Location/Contents

HL 201215 201216 1818
DE 454514 201118 AA18
BC 00031s 201016 2518

After execution of
~ LDDR
register pairs and memory locations will have the following contents:

Register/Contents Location/Contents Location/Contents

HL 200914 20121 1818 45451 1848
DE 45424g 201116 AA1g 45441 AA1g
BC 00001g 201016 2518 454315 2518

This instruction is extremely useful for transferring blocks of data from one area of
memory to another.

3-111



LD! — TRANSFER DATA BETWEEN MEMORY
LOCATIONS.INCREMENT DESTINATION AND
SOURCE ADDRESSES

( Set if BC-1 # 0, reset otherwise

S Z AcP/ON C @ Data
fCT T o] : Memary

YY pbaqg
A ppag+ 1
B.C 1t uu @
DE 11 Ss - hA rss
N~ L Bp qq rrss + 1
SP ppag+ 1
PC mmmm Program
1X Memory
i )
i ED mmmm
: — , 2] o+ 1
mmmm + 2
mmmm + 3

LD
e
ED AQ

Transfer a byte of data from memory location addressed by the HL register pair to
memory location addressed by the DE register pair. Increment contents of register pairs
HL and DE. Decrement contents of the BC register pair.

Suppose register pair BC contains 004F1g, DE contains 454516, HL contains 20121g,
and memory location 201215 contains 181g. After the instruction

LDI

has executed, memory location 45451 will contain 181, register pair BC will contain
004E1g, DE will contain 454614, and HL will contain 20131¢.

3-112



LDIR — TRANSFER DATA BETWEEN MEMORY
LOCATIONS UNTIL BYTE COUNTER IS
ZERO.INCREMENT DESTINATION AND
SOURCE ADDRESSES

LDIR
N o’
ED BO
This instruction is identical to LDI, except that it is repeated until the BC register pair

contains zero. After each data transfer. interrupts will be recognized and two refresh cy-
cles will be executed.

Suppose we have the following contents in memory and register pairs:

Register/Contents Location/Contents
HL 20121g 201216 1818
DE 454545 201316 CD18
BC 00031s 201416 FO18
After execution of
LDIR
register pairs and memory will have the following contents:
Register/Contents Location/Contents Location/Contents
HL 20151g 20121 1816 454515 1818
DE 454815 20131 CD1s 454615 CD1p
BC 000015 20141 FO1p 454716 FO15

This instruction is extremely useful for transferring blocks of data from one area of
memory to another.

NEG — NEGATE CONTENTS OF ACCUMULATOR
S ZAcP/ON C

Data
XX Ex] 1] x] Memory
A XX XX+ 1
B.C
D.E
H.L
sp
PC mmmm mmmm + 2 Program
IX Memory
Y
i ED mmmm
R l 44 mmmm + 1
mmmm + 2
mmmm + 3

Negate contents of Accumulator. This is the same as subtracting contents of the Ac-
cumulator from zero. The result is the two's complement. 80H will be left unchanged.

Suppose xx=b5A1g. After the instruction

NEG
has executed, the Accumulator will contain A61g.
5BA = 0101 1010
Two's complement = 1010 0110

3-113



NOP — NO OPERATION

S ZAcP/ON C Data
F T ] Memory
A
B.C
DE
H.L
SP
PC mmmm mmmm + 1 Program
1X Memory
Y
! 00 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

NOP
e

00

This 1s a one-byte instruction which performs no operation, except that the Program
Counter is incremented and memory refresh continues. This instruction is present for
several reasons:

1) A program error that fetches an object code from non-existent memory will fetch
00. itis a good idea to ensure that the most common program error will do nothing.

2) The NOP instruction allows vou to give a label to an object program byte:
HERE NOP

3) To fine-tune delay times. Each NOP instruction adds four clock cycles to a delay.

NOP is not a very useful or frequently used instruction.

3-114



OR data — OR IMMEDIATE WITH ACCUMULATOR

S ZAGP/ON C
FRxIx1rIx]ofo)

A
8.C
DE
HL
SP
PC
X
Y

!

A | —

XX

mmmm

OR data
S—— ey~

F6 vy

xx OR yy.

mmmm + 2

Data
Memory
Program
Memory
F6 mmmm
Yy mmmm + 1
mmmm + 2
mmmm + 3

OR the Accumulator with the contents of the second instruction object code bvte.

Suppose xx=3A1g. After the instruction

OR 7CH
has executed. the Accumulator will contain 7E16.

3A = 0011 1010
7C = 0111 1100

0111 1110

OsetsSto0

instruction

OR 80H
will unconditionally set the high-order Accumulator

3-116

Six 1 bits. set P/0O to 1

Non-zero result, set Z to 0
This is a routine logical instruction: it is often used to turn bits “on” For example, the

bitto 1.



OR reg — OR REGISTER WITH ACCUMULATOR
S ZACP/ON C

Data

F Memory

—

B.C Contents of A, B,

DE -I>C D, E Horl

HL 'S vy

SP
PC mmmm mmmm + 1 Program
1X Memory
Y

10110xxx _jj mmmm

mmmm + 1
mmmm + 2
mmmm + 3

OR  reg
R
10110 XXX

000 for reg=B

001 for reg=C

010 for reg=D

011 for reg=E

100 for reg=H

101 for reg=L

111 for reg=A

Logically OR the contents of the Accumulator with the contents of Register A, B. C. D,
E. H or L. Store the result in the Accumulator.

Suppose xx=E31g and Register E contains AB1g. After the instruction
OR E
has executed, the Accumulator will contain EB1g.

E3 = 1110 0011
A8 = 1010 1000
1110 1011
1 sets S to 1 Six 1 bits, set P/O to 1

Non-zero result, set Z to O

3-116



OR (HL) — OR MEMORY WITH ACCUMULATOR
OR (IX+disp)
OR {IY+disp)

S Z ACP/ON C Data

E nmm Memory
A XX xx OR yy Yy jsisleie]
B.C
D.E ?
HL pp qa
SP
PC mmmm mmmm + 1 Program
1IX Mermory
Y
! BE mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of OR (HL}):

OR (HL}
S— o’

B6

OR contents of memory location (specified by the contents of the HL register pair) with
the Accumulator.

Suppose xx=E31g. ppaq=40001g. and memory location 40001g contains A814. After
the instruction

OR (HUL)
has executed. the Accumulator will contain EB1g.
E3 = 1110 0011

A8 1010 1000
1110 1011
TsetsSto1 Six 1 bits, set P/O to 1
Non-zero result, set Z to O
OR {IX+disp)
\‘\/—-/ ——
DD B6 d

OR contents of memory location (specified by the sum of the contents of the IX register
and the displacement vaiue d) with the Accumulator.

OR {IY+disp)
St o
FDB6 d

This instruction is identical to OR (IX+displ., except that it uses the |Y register instead of
the IX register.

3-117



OUT (C),reg — OUTPUT FROM REGISTER

S Z AcP/ON C Data
A
8.C Y Register A, B, C,
D.E D.EHorl
HL
SP
PC mmmm mmmm + 2 Program
X Memory
Y
! ED
R 01xxx001
OUT (Cl,reg
N sy’

ED 01 xxx 001

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Suppose yy=1F1g and the contents of H are AA1g. After the execution of

OuUT [C)LH

AA1g will be in the buffer of I/O port 1Fqg.

3-118

mmmm
mmmm + 1
mmmm + 2
mmmm + 3



OUTD — OUTPUT FROM MEMORY. DECREMENT ADDRESS

S Z AcP/ON C xx-1

Data
FRufxfufult] | 1/0 port yy Memory
A ] L——-——— : ppaq
8.C XX yY N
DE ppag-1
H.L pp qq
SP
PC mmmm Program
1X mmmm + 2 Memory
Y
i ED mmmm
R AB mmmm + 1
mmmm + 2
mmmm + 3
QUTD
o
ED AB

Output from memory location specified by HL to 1/0O port addressed by Register C.
Registers B and HL are decremented.

Suppose xx=0A16. vv=FF16. ppaq=50001g. and memory location 50001g contains
771g. After the instruction

ouUTD
has executed. 771g will be held in the buffer of I/O port FF1g. The B register will con-
tain 091g, and the HL register pair 4FFF1g.

OTDR — OUTPUT FROM MEMORY. DECREMENT ADDRESS,
CONTINUE UNTIL REGISTER B=0 '

OTDR
e
ED BB

QOTDR is identical to QUTD. but is repeated until Register B contains 0.

Suppose Register B contains 031, Register C contains FF1g, and HL contains 50001 .
Memory locations 4FFEqg through 500016 contain:

Location/Contents

4FFE1gs  CA1s
4FFF15  1B18
50001 Fl1s

After execution of
QOTDR

register pair HL will contain 4FFD1g. Register B will contain zero, and the sequence
F116. 1B16. CA1g will have been written to 1/0 port FF1g.

This instruction is very useful for transferring blocks of data from memory to output
devices.

3-119



OUTI — OUTPUT FROM MEMORY. INCREMENT ADDRESS

S ZACP/ON C - Data

X T T 1/0 port yy Memory

A ! _j L—— ppaq
8.C XX e Yy
DE ppaa + 1
HL pp aq
SP NG
PC mmmm Program
IX mmmm + 2 Memory
Y
¢ ED mmmm
R l A3 mmmm + 1
mmmm + 2
mmmm + 3

ouTt
Ny
ED A3

QOutput from memory location specified by HL to 1/0 port addressed by Register C.
Register B is decremented and the HL register pair is incremented.

Suppose xx=0A16. yy=FF16. ppag=50001g. and memory location 500014 contains
7716. After the instruction

OuTI

has executed, 771g will be held in the buffer of 1/0 port FF1g. The B register will con-
tain 0914 and the HL register pair will contain 500114.

OTIR — OUTPUT FROM MEMORY. INCREMENT ADDRESS,
CONTINUE UNTIL REGISTER B=0

OTIR
e —
ED B3

OTIR is identical to QUTI. except that it is repeated until Register B contains 0.

Suppose Register B contains 041, Register C contains FF{g. and HL contains 50001¢.
Memory locations 50001¢ through 500314 contain:
Location/Contents

500015 CA16
500116 1B1g
500215 Bl1s
500315 AD1g

After execution of
OTIR

register pair HL will contain 500418, Register B will contain zero and the sequence
CA1g. 1B1g. B11g and AD1g will have been written to I/0 port FFg.

This instruction is very useful for transferring blocks of data from memory to an output
device.

3-120



OUT (port),A— OUTPUT FROM ACCUMULATOR

S Z AcP/ON C Data

A
B.C
D.E
HL

SP

PC mmmm mmmm + 2 Program

X Memory
Y

! D3 mmmm
R

] Yy mmmm + 1
mmmm + 2
mmmm + 3

ouT (port). A

D3 %A%

Output the contents of the Accumulator to the I/0 port identified by the second QUT in-
struction object code byte.

Suppose 3616 1s held in the Accumulator. After the instruction
OUT {1AHLA
has executed, 361g will be in the buffer of I/0 port 1A1g.

The OUT instruction does not affect any statuses. Use of the OUT instruction is very
hardware-dependent. Valid /O port addresses are determined by the way in which I/0
logic has been implemented. It is also possible to design a microcomputer system that
accesses external logic using memory reference instructions with specific memory ad-

dresses. OUT instructions are frequently used in special ways to control microcomputer
logic external to the CPU.

3-121



POP rp — READ FROM THE TOP OF THE STACK
POP IX
POP IY

S Z AcP/ON C Data
[ aq ssSS
A ' [} pp ssss + 1
8.C s85§ + 2
DE SSSS + 2
Hi
SP SSSS
PC mmmm mmmm + 1 Program
1% Memory
Y
i 11000001 }jmmmm
R mmmm + |
mmmm + 2
mmmm + 3
The illustration shows execution of POP BC.
POP mp
—— e~
11 xx 0001
00 for rp is register pair BC
01 for rp is register pair DE
10 for rp is register pair HL
11 for rp is register pair A and £
POP the two top stack bytes into the designated register pair.
Suppose qa=011g and pp=2A1g. Execution of
POP HL
loads 011g into the L register and 2A1g into the H register. Execution of the instruction
POP AF

loads 01 into the status flags and 2A1g into the Accumulator. Thus, the Carry status
will be set to 1 and other statuses will be cleared.

POP IX
Sz
DD E1
POP the two top stack bytes into the IX register.
POP Y
Ntz e
FD E1
POP the two top stack bytes into the IY register.

The POP instruction 1s most frequently used to restore register and status contents
which have been saved on the stack; for example. while servicing an interrupt.

3-122



PUSH rp — WRITE TO THE TOP OF THE STACK
PUSH IX

PUSH Iy

S ZACP/ON C Data

qq 5885-2
A Do ssss-1
B.C N 5888
D.E
H.L
sp SSS55
PC mmmm mmmm + 2 Program
X Memory
Y ppag
! t: FD mmmm
R ! ES mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of PUSH IY:
PUSH 1Y
N ozime’
FD E5
PUSH the contents of the 1Y register onto the top of the stack.
Suppose the Y register contains 45FF1g. Execution of the instruction
PUSH 1Y
loads 451g. then FF1g onto the top of the stack.
PUSH IX
A
DD &5
PUSH the contents of the IX register onto the top of the stack.
PUSH rp

11 xx 0101

00 for rp is register pair BC
01 for rp 1s register pair DE
10 for rp is register pair HL
11 for rp is register pair A and F

PUSH contents of designated register pair onto the top of the stack.
Execution of the instruction

PUSH AF
loads the Accumulator and then the status flags onto the top of the stack.

The PUSH instruction is most frequently used to save register and status contents: for
example, before servicing an mterrupt.

3-123



RES b,reg — RESET INDICATED REGISTER BIT

S ZAcP/ON C Data
£ Memory
A YYYYYYYY
8.C -
Be A 7
H.L
SP
PC mmmm mmmm + 2 Program
IX Memory
Y
| c8 mmmm
R 10bbbxxx § mmmm + 1
mmmm + 2
mmmm + 3
RES  b.reg

1y

CB 10 bbb xxx
1

——
Bit bbb xxx Register
0 000 000 B
1 001 001 C
2 010 010 D
3 011 011 E
4 100 100 H
5 101 101 L
6 110 111 A
7 11
Reset indicated bit within specified register.
After the instruction
RES 6.H

has executed. bit 6 in Register H will be reset. (Bit O is the least significant bit)

3-124



RES b.(HL) — RESET BIT b OF INDICATED MEMORY POSITION
RES b, {IX+disp)
RES b, (IY+disp)

S ZAcP/ON C Data

A yYvyyvyy fppag +d
B.C
DE
H.L
sP
PC mmmm Program
X BPaq Memory
Y
t oD mmmm
R CcB mmmm + 1
d mmmm + 2
10bbb110 } mmmm +3
mmmm + 4

The illustration shows execution of SET b,{IX-+disp). Bit O is execution of SET
b, IX+disp). Bit O is the least significant bit.

RES b.(IX+disp)

DDCB d 10 bbb 110

bbb Bit Reset
000
001
010
on
100
101
110
111

Reset indicated bit within memory location indicated by the sum of index Register IX
and d.

Suppose IX contains 41101g. After the instruction
RES 0.0X+7}
has executed. bit 0 in memory location 41171 will be 0.
RES b {IY+disp!
——

NS WN O

FOCB d 10 bbb 110
S———
bbb is the same as in RES b,{X+disp)
This instruction is identical to RES b.{IX-+displ. except that it uses the |Y register instead

3-125



of the IX register.
RES b.(HL)

——

CB 10 bbb 110

——

bbb 1s the same as in RES b, (X+disp)
Reset indicated bit within memory location indicated by HL.
Suppose HL contains 44441g. After execution of
RES 7.{HL)
bit 7 in memory location 44441g will be 0.

RET — RETURN FROM SUBROUTINE

S Z AcP/ON C Data
’_{ qq XXXX
A pp XXXX + 1
8.C j XXXX + 2
DE
HL
sp XXXX XXXX + 2
PC mmmm Program
X Memory
Y
i ppaq ’ C9 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
RET
——
Cc9

Move the contents of the top two stack bytes to the Program Counter: these two bytes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2. to address the new top of stack.

Every subroutine must contain at least one Return {or conditional Return) instruction;
this is the last instruction executed within the subroutine. and causes execution to
return to the calling program.

3-126



RET cond — RETURN FROM SUBROUTINE IF CONDITION

IS SATISFIED

RET cond

R S Ve

11 xxx 000
000 NZ
001 Z
010 NC
011 C
100 PO
101 PE
110 P
111 M

Condition Relevant Flag
Non-Zero z
Zero z
Non-Carry C
Carry C
Parity Odd P/O
Parity Even P/O
Sign Positive S
Sign Negative S

This instruction is Identical to the BET instruction. except that the return is not ex-
ecuted unless the condition s satisfied; otherwise, the instruction sequentially follow-

ing the RET cond instruction will be executed.

Consider the instruction sequence:

CALL SUBR
AND 7CH<-\'

condition not
satisfied

OR 80H

condition satisfied

:First subroutine instruction

After the RET cond is executed, if the condition is satisfied then execution returns to the
AND nstruction which follows the CALL. If the condition 1s not satisfied, the OR in-
struction, being the next sequential instruction, is executed.

3-127



RET! — RETURN FROM INTERRUPT
S Z ACP/ON €

Data
qa | xxxx
A pp XXXX + 1
8.C XXXX + 2
DE
HL
SP XXXX XXXX + 2
PC MM Program
X Memory
Y
! ED mmmm
R 4D mmmm + !
mmmm + 2
mmmm +3

RETI
et
ED 4D
Move the contents of the top two stack bytes to the Program Counter: these two bytes

provide the address of the next mstruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2. and address the new top of stack.

This instruction is used at the end of an interrupt service routine, and, in addition to
returning control to the interrupted program. it is used to signal an I/O device that the
interrupt routine has been completed. The I/0 device must provide the logic necessary
to sense the instruction operation code: refer to An Introduction to Microcom-

puters: Volume 2 for a description of how the RETI instruction operates with the Z80

family of devices.

3-128



RETN — RETURN FROM NON-MASKABLE INTERRUPT
S ZAGP/ON C

Data

qq
A ] op
8.C
DE
HL
SP XXXX XXXX + 2
PC mmmm Program
1X Memory
| 1 ] D
1 ppaq ED
R 45

RETN
-
ED 45

mmmm
mmmm + 1
mmmm + 2

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Move the contents of the top two stack bytes to the Program Counter: these two bvtes
provide the address of the next instruction to be executed. Previous Program Counter
contents are lost. Increment the Stack Pointer by 2 to address the new top of stack.
Restore the interrupt enable logic to the state it had prior to the occurrence of the non-

maskable interrupt.

This instruction is Used at the end of a service routine for a non-maskable interrupt, and

causes execution to return to the program that was interrupted.

3-129



RL reg — ROTATE CONTENTS OF REGISTER LEFT

THROUGH CARRY

S ZAcP/ON

PC mmmm

The illustration shows execution of RL C.

RL reg

CB 00010 xxx

B

mmmm + 2

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Rotate contents of specified register left one bit through Carry.

Suppose D contains A914 and Carry=0. After the instruction

After

RL D
has executed. D will contain 5215 and Carry will be 1
Register D Carry

0 sets S to O=a—
3 ones. set P/0 1o 0

3-130

Register D

107101001 [6] [010700710]

Data
Memory

Program
Memory

[oi:]

00010001

Carry

mmmm

mmmm + {
mmmm + 2
mmmm + 3

Non-zero result, set Z to 0



RL (HL) — ROTATE CONTENTS OF MEMORY LOCATION

RL (IX+disp) LEFT THROUGH CARRY
RL (1Y +disp)

B
S zZ AcP/ON (¢ Data
£ Mermory
—<f- HF i~ rpaa +d
A
B.C
DE
H.L
3p
pC mmmm mmmm + 4 Program
X PPaq Memory
v j
{ DD mmmm
R cB mmmm + 1
” d mmmm + 2
16 mmmm + 3
mmmm + 4
The illustration shows execution of RL {(IX+disp):
RL {(IX+disp)
o
DD CB 16
Rotate contents of memory location Ispecified by the sum of the contents of Index

Register IX and displacement integer d} left one bit through Carry.

Suppose the IX register contains 40001, memory location 40071 contains 2F1g. and

Carry is set to 1. After execution of the instruction
RL {IX+7)
memory location 4007 g will contain 8F1g, and Carry is 0:

Before After
Memory Carry Memory Carry

00101111 o111 [0
~4

0 sets S to Q= Non-zero result, set Z to O

6 ones, set P/0 to 1
RL {iY+disp)
\‘VG./

FDCB d 16

This instruction I1s identical to RL (IX+displ. but uses the 1Y register instead of the IX

register.

3-131



RL (HL)
Nz
CB 16

Rotate contents of memory location (specified by the contents of the HL register pair)
left one bit through Carry.

RLA — ROTATE ACCUMULATOR LEFT THROUGH CARRY

S ZAcP/ON ¢ Data
- ' M
rLL ol o] j cmor

PC mmmm mmmm + 1 Program
X Memory
Y
| 17 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
RLA
Se——
17

Rotate Accumulator contents left one bit through Carry status.

Suppose the Accumulator contains 2A1g and the Carry status is set to 1. After the in-
struction

RLA
has executed, the Accumulator will contain F51g and the Carry status will be reset to O:
Before After
Accumulator Carry Accumuiator Carry

01111010 11110101 [0]

3-132



RLC reg — ROTATE CONTENTS OF REGISTER LEFT CIRCULAR

- —i
S ZAcP/ON C Data
FExXIXxJoixjo] 3 Memory

A
B.C
a Lt 1T . T 1
L= A1 1 1 I 1
H.L |
sP
PC mmmm mmmm + 2 Program
X Memory
Y
L 1 CB mmmm
R -] 00000011 Jmmmm + 1
mmmm + 2
mmmm + 3
The illustration shows execution of RLC E:
RLC reg
CB 000 00 xxx
000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Rotate contents of specified register left one bit, copying bit 7 into Carry.
Suppose Register D contains A91g and Carry is 1. After execution of
RLC D
Register D will contain 531g and Carry will be 1:
Before After
Register D Carry Register D Carry
10101001 [01010071T]
0 sets S t0 0w’ Non-zero result, set Z to 0

4 ones, set P/O to 1

3-133



RLC (HL) — ROTATE CONTENTS OF MEMORY LOCATION

RLC (IX+disp) LEFT CIRCULAR
RLC (IY+disp)

T
S Z AcP/ON C 4 Data
¢ IO TxTo] ] y Mermory
PpPaa
A
B.C
DE
HL pp qag
SP
PC mmmm mmmm + 2 Program
X Memory
Y
: cg mmmm
R 06 mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RLC (HL):
RLC (HL)
e d

CB 06

Rotate contents of memory location (specified by the contents of the HL register pair)

left one bit, copying bit 7 into Carry.

Suppose register pair HL contains 54FF15. Memory location 54FF1g contains Ab1g.

and Carry is 0. After execution of

RLC {HL)
memory location 54FF1g will contain 4B1g. and Carry will be 1:
Before After
Memory Carry Memory Carry

@ [giooioid

0 sets S to 0 g’ Non-zero result,
4 ones, set P/O to 1

RLC (IX+disp)
Nt attig -

EN'S

DD CB d 06

setZ 100

Rotate memory location {specified by the sum of the contents of Index register IX and

displacement integer d} left one bit. copying bit 7 into Carry.

Suppose the IX register contains 400014. Carry is 1, and memory location 40071 con-

tains 2F1g. After the instruction
RLC (IX+7)

3-134



has executed. memory location 4007 1g will contain 5E1g, and Carry will be O:

Before After
Merory Carry Memory Carry

00101111 o i110] [9]
N

0 sets S to 0 -4—~ Non-zero result, set Z to 0
5 ones, set P/O to O

RLC (IY+disp)
Ny~
FDCB d 06

This instruction is identical to RLC (IX+disp), but uses the IY register instead of the IX
register.

RLCA — ROTATE ACCUMULATOR LEFT CIRCULAR

S ZACP/ON C Data
el o] Jol 4 Memory
A,

B.C
DE
H.L
SP H
PC mmmm Program
X Memory

Yy

{ 07 mmmm
R mmmm + 1

mmmm + 2
mmmm + 3

RLCA
\W./

07
Rotate Accumulator contents left one bit. copying bit 7 into Carry.

Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the in-
struction

RLCA
has executed, the Accumulator will contain F41g and the Carry status will be reset to O:
Before After
Accumulator Carry Accumulator Carry

[orr111070] [ [iiiroioo] [0

RLCA should be used as a logical instruction.

3-135



RLD — ROTATE ONE BCD DIGIT LEFT BETWEEN
THE ACCUMULATOR AND MEMORY LOCATION

S Z AcP/ON C

Data
f XTI § Memory

A x ] v 1 r ppaq
8.C
b
H.L pp qq
SP
PC mmmm mmmm + 2 Program
1X Memory
Y
i ED mmmm
R M 6F mmmm + 1
mmmm + 2
mmmm + 3
RLD
\w./
ED 6F

The four low-order bits of a memory location (specified by the contents of register pair
HL) are copied into the four high-order bits of the same memory location. The previous
contents of the four high-order bits of that memory location are copied into the four
low-order bits of the Accumulator. The previous four low-order bits of the Accumulator
are copied into the four low-order bits of the specified memory location.

Suppose the Accumulator contains 7F1g, HL register pair contains 40001g. and memo-
ry location 400015 contains 121g. After execution of the instruction

RLD
the Accumulator will contain 7118 and memory location 400016 will contain 2F16:
Before After

Accumulator Memory Accumulator  Memory
7 F 1]2 7 T 1 1 [21F

high-order bit=0, set S t0 0 -g— Non-zero result. set Z to 0
4 ones, setP/O to 1

3-136



RR reg — ROTATE CONTENTS OF REGISTER RIGHT THROUGH

CARRY
7 g}
S ZAcP/ON C Data
’ Memory
PC mmmm mmmm + 2 Program
1X Memory
Y
: CcB mmmm
R 00011001 § mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RR C:

RR reg

CB 00011 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Rotate contents of specified register night one bit through Carrv.
Suppose Register H contains OF1g and Carry is set to 1. After the instruction
RR H
has executed, Register H will contain 8714, and Carry will be 1
Register H Carry Register H Carry

0000 1111 [foooo071171]
N
- ——

1 sets S to 1 <a— LNon-zero result, setZ to 0
4 ones. set P/O to 1

3-137



RR (HL) — ROTATE CONTENTS OF MEMORY LOCATION
RIGHT THROUGH CARRY

RR (IX+disp)

RR (1Y +disp)

<
S Z AcP/ON { Data
rixIxjofxfoly] Memory

= 7 -
A
8.C
DE
H.L
SP
PC mmmm mmmm + 4 Program
X Memory
134 ppag
( FD mmmm
R CB mmmm + 1
ppaq +d d mmmm + 2
1E mmmm +3
mmmm + 4
The illustration shows execution of RR {IY-+disp):
RR (IY—i-disg)
.}\\VZS‘
FD CB d 1E

Rotate contents of memory location (specified bv the sum of the contents of the IY
register and the displacement value d) right one bit through Carry.

Suppose the 1Y register contains 456001, memory location 450F1g contains 1D1g, and
Carry is set to 0. After execution of the instruction

RR {IY+0FH)
memory location 450F1g will contain 0E1g. and Carry will be 1.
Before After
Memory Carry Memory Carry

00011101] [0 [0ooo1110]

0 sets S to 0 =@— Non-zero result, set Z to 0
3 ones. set P/0Oto 0

RR {IX-+disp)
N, S~

N

DD CB d 1E

This instruction is identical to RR {IY+displ, but uses the IX register instead of the 1Y
register.

3-138



RR {HU)
e
CB 1E

Rotate contents of memory location {specified by the contents of the HL register pair)
right one bit through Carry.

RRA — ROTATE ACCUMULATOR RIGHT THROUGH CARRY

S ZAcP/ON Data
F 0 0 Memory
B.C
DE
H.L
SP
PC mmmm mmmm + 1 Program
1X Memory
Y
k 1F mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
RRA
Se——
1F

Rotate Accumulator contents right one bit through Carry status.

Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the in-
struction

RRA

has executed, the Accumulator will contain BD1g and the Carry status will be reset to
0:

Before After

Accumulator Carry Accumulator Carry

[oriion [0

3-139



RRC reg — ROTATE CONTENTS OF REGISTER RIGHT CIRCULAR

-
S Z AcP/ON C Data
Memory
PC mmmm mmmm + 2 Program
X Mermory
Y
! || cB mmmm
R [ 0001101 | mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RRC L:
RRC reg
—— o~

CB 00001 xxx

——

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Rotate contents of specified register right one bit circularly, copying bit O into the Carry
status.

Suppose Register D contains A91g and Carry is 0. After execution of
RRC D
Register D will contain D44g, and Carry will be 1:

Before After
Register D Carry Register D Carry

10101001 [0l [1010100]
D

1 sets S to 1 =g LNon-zero result, setZ to 0
4 ones. set P/0 to 1

3-140



RRC (HL) — ROTATE CONTENTS OF MEMORY LOCATION

RRC (iIX+disp} RIGHT CIRCULAR
RRC (IY+disp)

S ZAcP/ON C Data

FRXAX104x]0] 1 Memory

: B S

B.C

pRAq

DE

H.L] PP q9

SP

PC mmmm mmmm + 2 Program

X Memory
\4

i CB
R l OF

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of RRC {HL):
RRC {HL)
N

CB 0OE

Rotate contents of memory location (specified by the contents of the HL register pair)

right one bit circularly, copying bit O into the Carry status.

Suppose the HL register pair contains 45001, memory location 45001¢ contains

3416. and Carry is set to 1. After execution of
RRC (HL)
memory location 45001g will contain 1A1g, and Carry will be O:
Before After
Memory Carry Memory Carry

00110100 [oo1i010] [0]
e

0 sets S to O - L’Non-zero result, setZto 0

3 ones, set P/0 to O
RRC (iX+disp)

DD CB d O
Rotate contents of memory location (specified by the sum of the contents of

3-141

the IX



register and the displacement value d) right one bit circularly, copying bit 0 into the Ca-
rry status.

RRC (IY-+disp)
FD CB d Ot

This instruction is identical to the RRC {X-+disp) instruction. but uses the lY register in-
stead of the IX register.

RRCA — ROTATE ACCUMULATOR RIGHT CIRCULAR
~g

S ZAcP/ON C A Data
EEODERE Memory
A S==r===2
8.C
DE
H.L
sP
PC mmmm mmmm + 1 Program
X Memory
Y
t OF mmmm
R mmmm + 1
mmmm + 2
mmmm+ 3
RRCA
S o’
OF

Rotate Accumulator contents right one bit circularly, copying bit O into the Carry status.

Suppose the Accumulator contains 7A16 and the Carry status is set to 1. After the in-
struction

RRCA

has executed, the Accumulator will contain 3D1g and the Carry status will be reset to
0:

Before After
Accumulator Carry Accumulator Carry

(00111167 [0)

RRCA should be used as a logical instruction.

3-142



RRD — ROTATE ONE BCD DIGIT RIGHT BETWEEN THE
ACCUMULATOR AND MEMORY LOCATION

S Z AcP/ON C Data

Memory
FixIxfolxjo] | B A4
A X ]V r | s }epag
B.C =T~
D.E 7
HL pp qq
SP
PC mmmm Program
X Memory
Iy
! ED mmmm
R 67 mmmm + 1
: mmmm + 2
mmmm +3
RRD
W‘/
ED 67

The four high-order bits of a memory location (specified by the contents of register pair
HL) are copied into the four low-order bits of the same memory focation. The previous
contents of the four low-order bits are copied into the four low-order bits of the Ac-
cumulator. The previous four low-order bits of the Accumulator are copied into the four
high-order bits of the specified memory location.

Suppose the Accumulator contains 7F1g, HL register pair contains 40001g, and memo-
ry location 400016 contains 121g. After execution of the instruction

RRD
the Accumulator will contain 721 and memory location 40001g will contain F114:
Accumulator ~ Memory Accumulator  Memory

3 ]\\F !}1‘\527; \F? [ 2 [ [rl1]
N /’

High-order bit=0, set S to 0 <#— L Non-zero result,
4 ones, setP/O to 1 setZ to 0

3-143



RST n — RESTART

S ZAgP/ON C Data
F Memory
mm+ 1 _§ppaa-2
. mm ppag-1
b ppaq
D.E
H.L
5P BRaq
i~ momn Program
x Memory
Y
l 0000000000xxx000 11 Xxx 111] mmmm
" mmmm + 1
mmmm + 2
mmmm + 3

BST 5

TT xxx 111
Call the subroutine origined at the low memory address specified by n.
When the instruction
RST 18H

has executed, the subroutine origined at memory location 00181¢ is called. The pre-
vious Program Counter contents are pushed to the top of the stack.

Usually. the RST instruction is used in conjunction with interrupt processing. as de-
scribed in Chapter 12.

If your application does not use all RST instruction codes to service SUBROUTINE
interrupts, do not overlook the possibility of calling subroutines CALL USING
using RST instructions. Origin frequently used subroutines at ap- RST

propriate RST addresses, and these subroutines can be called with
a single-byte RST instruction instead of a three-byte CALL instruction.




SBC A,data — SUBTRACT IMMEDIATE DATA FROM
ACCUMULATOR WITH BORROW

S Z AcP/ON C

Data
¢ <D Memory
A XX
B.C
DE
H.L
sP
PC mmmm mmmm + 2 Program
X Memory
Y
b DE mmmm
R ‘ ‘ ] yv mmmm + 1
mmmm + 2
mmmm + 3

SBC A, data
S ha
DE vy

Subtract the contents of the second object code byte and the Carry status from the Ac-
cumulator.

Suppose xx=3A1g and Carry=1. After the instruction
SBC A.7CH
has executed, the Accumulator will contain BD1g.

3A 0011 1010
Twos comp of 7C 1000 0100
Twos comp of Carry 1111 1111

1011 1101

1setsStol Ut LNon-zero result, set Z to O
Borrow, set C to 1

Borrow. set Ac to 1

o

P -
14 1=0, set P/O t0 O Subtract instruction, set N to 1

The Carry flag is set to 1 for a borrow and reset to 0 if there is no borrow.

3-145



SBC A,reg — SUBTRACT REGISTER WITH BORROW

FROM ACCUMULATOR

S Z AcP/ON C

XX

B.C Contents of A, B,

DE C.D.E HorlL

HL is yy

PC mmmm mmmm + 1

SBC A, reg
i
10011 XXX
000
001
010
011
100
101
M

for reg=8
for reg=C
for reg=D
for reg=E
for reg=H
for reg=L
for reg=A

Data
Memory

Program
Memory

1001 1xxx

mmmm

mmmm + 1
mmmm + 2
mmmm + 3

Subtract the contents of the specified register and the Carry status from the Accumula-

tor.

Suppose xx=E31g. Register E contains AO1g, and Carry=1. After the instruction

SBC AE
has executed, the Accumulator will contain 4214.
E3 = 1110 0011
Two's compof AO = 0110 0000

Two's comp of 1 1111 1111

0100 0010

Osets Sto0 iU L
No borrow, set C to O

. »
14-1=0, set P/O to O

3-146

No borrow. set Ac to 0

Non-zero result, set Z to 0

Subtract instruction, set N to 1
The Carry flag is set to 1 for a borrow and reset to 0 if there is no borrow.



SBC A, (HL) — SUBTRACT MEMORY AND CARRY FROM
SBC A, (IX+disp) ACCUMULATOR
SBC A,(1Y +disp)

S Z AcP/ON C Data

FXIXIXIXTTIX Lo Memory
A XX xx-yy-C \ad ppag
8.C
D.E
HL pp qaq
SP
PC mmmm mmmm + 1 Program
X Memory
Y
| 9E mmmm
R mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SBC A, (HL):
SBC A.(HL)

S

9E

Subtract the contents of memory location (specified by the contents of the HL register
pair) and the Carry from the Accumulator.

Suppose Carry=0. ppqq=40001g. xx=3A1g. and memory location 40001g contains
7C16. After execution of the instruction

SBC A, {HLU
the Accumulator will contain BE1g.
3A = 0011 1010
Two'scompof 7C = 1000 0100
Two's comp of Carry = 0
W11 1110
1setsStol LNon-zero result. set Z to O
Borrow. set C to 1 L—Borrow. set Ac to 1
A
0%-0=0, set P/O to 0 Subtract instruction, set N to 1

The Carry flag is set to 1 for a borrow and reset to 0 if there is no borrow.
SBC A, {iX+disp)
A

DD SE d

Subtract the contents of memory location (specified by the sum of the contents of the
IX register and the displacement value d) and the Carry from the Accumulator.

SBC A.{lY+disp)
S

"

FD SE d
This instruction is identical to the SBC A, {IX+disp) instruction, except that it uses the lY
register instead of the IX register.

3-147



SBC HL,rp — SUBTRACT REGISTER PAIR WITH CARRY
FROM H AND L

S Z AcP/ON €

Data
Memory
A
B.C BC, DE. HL or SP
D.E contains yyyy
H.L XX XX
SP
PC mmmm mmmm + 2 Program
X Memory
1Y
: ED mmmm
R 01xx0010 mmmm + 1
mmmm + 2
mmmm + 3

SBC HL. rp

et
01 xx 0010

s

00 for rp is register pair BC
01 for rp is register pair DE
10 for rp 1s register pair HL
11 for rp 1s Stack Pointer

Subtract the contents of the designated register pair and the Carry status from the HL
register pair.

Suppose HL contains F4A21g, BC contains A0341g, and Carry=0. After the instruction
SBC HL.BC
has executed, the HL register pair will contain 546E14:

Two's comp of F4A2
Two's comp of A034
Two's comp of Carry

1111 0100 1010 0010
0101 111t 1100 1100

0
0101 0100 0110 1110

L]

OsetsSto0 $ Non-zero result, setZ to 0

No borrow. set C to 0 (—

No borrow.

Y

hansl <3
1% 1=0 setP/Ot0 0

Subtract instruction. set N to 1
The Carry flag s set to 1 for a borrow and reset to 0 if there is no borrow.

3-148



SCF — SET CARRY FLAG

S Z AcP/ON C Data ’
A
B.C
D.E
H.L
SP
PC mmmm mmmm + 1 Program
X Memory
Y
{ 37 mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
SCF
—
37

When the SCF instruction is executed. the Carry status is set to 1 regardless of its pre-
vious value. No other statuses or register contents are affected.

3-149



SET b,reg — SET INDICATED REGISTER BIT

S ZAcP/ON C

YYYY YYYY

PC mmmm

" | —

SET indicated bit within specified register. After the instruction

has executed, bit 2 in Register L will be set. (Bit 0 is the least significant bit.)

C

mmmm + 2

SET b.reg
——

NN

Bﬂp‘pﬁ

Bit bbb
000
001
010
011
100
101
110
1

~NOOTH WN - O

SET 2.L

3-150

XXX
g

XXX Register

000
001
010
011
100
101
11

PrImOO0O®

Data
Memory

Program
Memory

cB

11bbbxxx

mmmm

mmmm + 1
mmmm + 2
mmmm + 3



SET b,(HL) — SET BIT b OF INDICATED MEMORY POSITION
SET b, (IX+disp)
SET b, (IY+disp)

S ZAcP/ON C

Data
‘CITITT) C e
A YYYY vy | ppag
B.C
DE
HL PR aq’
sp
PC mmmm mmmm + 2 Program
X Memory
Y
l CB mmmm
R 1:: 11bbb110_Fmmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SET b,{HL). Bit O is the least significant bit.
SET b.{HL)

AN

cB 11 bbb 110

Bit Set @_b_
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Set indicated bit within memory location indicated by HL.
Suppose HL contains 40001g. After the instruction
SET 5.{HL)
has executed, bit 5 1n memory position 40001g will be 1.
SET b, {IX+disp)

—
DD CB d 11 bbb 110

o

bbb is the same as in SET b,(HL)

Set indicated bit within memory location indicated by the sum of Index Register IX and
displacement.

3-151



Suppose index Register IX contains 40001g. After execution of
SET 6.(X+5H)

bit 6 in memory location 400516 will be 1.
SET b.lY+disp)

i, s narin,
FD CB d 11 bbb 110

——

bbb is the same as in SET b, {HL)

This instruction is identical to SET b, (IX+displ, except that it uses the |Y register instead
of the IX register.

SLA reg — SHIFT CONTENTS OF REGISTER LEFT ARITHMETIC

S Z AcP/ON (

Data
F Memory
A
B-€
D.E
H.L
SP
PC mmmm mmmm + 2 Program
X Memory
Y
! cB mmmm
R 00100001_§ mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SLA C:

LA 1o

CB 00100 xxx

——

000 for reg=8
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift contents of specified register left one bit, resetting the least significant bit to 0.
Suppose Register B contains 1F1g, and Carry=1. After execution of

SLA B
Register B will contain 3E1g and Carry will be zero.

3-152



Before After
Register B Carry Register B Carry

0001 1111 oii1i10] [O]
N, mm—

O sets S t0 O —g— ~—» Non-zero result, set Z to 0
5 ones. set P/0 t0 0

SLA (HL) —  SHIFT CONTENTS OF MEMORY LOCATION
SLA (IX+disp) LEFT ARITHMETIC
SLA (IY+disp)

0
S Z AcP/ON C o Data

Memory
1
A FH -,
D.E ’
H.L pp aq
SP
PC mmmm mmmm + 2 Program
X Memory
Y
! -CB mmmm
R 26 mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SLA {HL):
SLA (HL)
St

CB 26

Shift contents of memory location {specified by the contents of the HL register pair) left
one bit, resetting the least significant bit to 0.

Suppose the HL register pair contains 450018, memory location 450015 contains
841g, and Carry=0. After execution of

SLA (HL)
memory location 45001¢ will contain 0814, and Carry will be 1.
Memory Carry Memory Carry

10000100] {1] [90001000]
Nemtn, v

0 sets S to 0 =#— LNon-zero result, set Z to O
1 one. set P/0 to O

3-153



SLA (X-+displ

DB CB d 26

Shift contents of memory location (specified by the sum of the contents of the IX
register and the displacement value d} left one bit arithmetically, resetting least signifi-
cant bit to 0.

SLA {iY-+disp)

e

FD CB d 26

This instruction is identical to SLA {IX+displ. but uses the 1Y register instead of the IX
register.

SRA reg — ARITHMETIC SHIFT RIGHT CONTENTS OF

REGISTER
S ZAcP/ON C Data
5 1 Tt Memory
PC mmmm mmmm + 2 Pragram
X Mernory
Y
| cB mmmm
:  — s [
mmmm + 2
mmmm + 3

The illustration shows execution of SRA A:
SRA reg

CB 00101 xxx
D

000 for reg=8
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift specified register right one bit. Most significant bit is unchanged.
Suppose Register H contains 5914, and Carry=0. After the instruction
SRA H

has executed, Register H will contain 2C1g and Carry will be 1.

3-154



Before After
Register H C Register H C

01011001 [0] [007101100]
Nt

0 sets S to 0 -<@— LD»Non-zero result, setZ t0 0
3 ones, set P/0 10 0
SRA (HL) — ARITHMETIC SHIFT RIGHT CONTENTS OF

SRA (IX+disp) MEMORY POSITION
SRA (IY+disp)

< —}
S z Ac-P/ON ¢ Data
FXIXToIXTO]V] Memory

A
a.c m ppaq +d
DE 5
H.L
sP
PC mmmm Program
1X DPaq , Memory
Y
! DD mmmm
R CB mmmm + 1
; d mmmm +2
2E mmmm + 3
mmmm + 4

The illustration shows execution of SRA {IX+disp}:
SRA (IX+disp}
Nct— g

DD CB 2E

Shift contents of memory location {specified by the sum of the contents of Register IX
and the displacement value d) right. Most significant bit is unchanged.

Suppose Register [X contains 340015, memory location 34AA 16 contains 2716, and
Carry=1. After execution of

SRA {IX+0AAH)
memory location 34AA1g will contain 1316, and Carry will be 1.
Before After
Memory Carry Memory Carry

00100111 [0oo10011]
S N

0 sets S to O —=g— l-—-ﬂ»Non-zero result, setZ to 0
3 ones. set P/0 to 0

3-155



SRA {IY+disp)
e

FD CB 2E

This instruction is identical to SRA (IX+disp). but uses the 1Y register instead of the IX
register.

SRA (HL)
g
CB 2E

Shift contents of memory location (specified by the contents of the HL register pair}
right one bit. Most significant bit is unchanged.

SRL reg — SHIFT CONTENTS OF REGISTER RIGHT

LOGICAL
- o]
S ZAcP/ON C C Data
[ 1 Memory
PC mmmm mmmm + 2 Program
1IX Memory
Y
| CB mmmm
R 00111011 fmmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SRL E:

SRL reg
—— Na——

CB 00111 xxx

000 for reg=B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A

Shift contents of specified register right one bit. Most significant bit is reset to 0.
Suppose Register D contains 1F1g, and Carry=0. After execution of

SRL D
Register D will contain OF1g, and Carry will be 1.

3-156



Before After

Register D Carry Register D Carry
00011111 [0 [000017111
R
4 ones, set P/O to 1 L’Nowzero result, set Z to O

SRL (HL) — SHIFT CONTENTS OF MEMORY LOCATION
SRL (IX+disp) RIGHT LOGICAL
SRL {IY+disp)

S ZAcP/ON C Data
FCe X Memory
A
B.C
B.E
HL op qq
SP
PC mmmm mmmm + 2 Pragram
1X Memory
1Y
! CB mmmm
R 3E mmmm + 1
mmmm + 2
mmmm + 3

The illustration shows execution of SRL (HL):
SRL {HL)
N ez’

CB 3E

Shift contents of memory location (specified by the contents of the HL register pair)
right one bit. Most significant bit is reset to 0.

Suppose the HL register pair contains 20001, memory location 200016 contains 8F1g,
and Carry=0. After execution of

SRL {HL)
memory location 200016 will contain 471g. and Carry will be 1.
Before After
Memory Carry Memory Carry

T0001+11] [0} 01000111
N

4 ones, setP/O to 1 l—> Non-zero result, set Z to 0
SRL (IX+disp)

DD CBd 3E

Shift contents of memory location (specified by the sum of the contents of the IX
register and the displacement value d) right one bit. Most significant bit is reset to 0.

3-1567



SRL (IY+disp)
i s

FDDBd 3E
This instruction is identical to SRL {IX-+disp), but uses the IY register instead of the IX
register.
SUB data — SUBTRACT IMMEDIATE FROM ACCUMULATOR

S ZAGP/ON C Data

{ CAEICREAKNES Memory
A XX XX-yy
B,C
DE
H,L
Sp
PC mmmm mmmm + 2 Program
IX Memory
Y
! D6 mmmm
R l e vy mmmm + 1
mmmm + 2
mmmm + 3
SUB  data
hes o ey —
D6 vy

Subtract the contents of the second object code byte from the Accumulator.
Suppose xx=3A1g. After the instruction

SUB 7CH
has executed, the Accumulator will contain BE1g.

3A = 0011 1010
Twoscompof 7C = 1000 0100

1011 1110
TsetsStol l Ut LNon-zero result, setZ t0 0
Borrow, set C to 1 J Borrow, set Ac to 1
V. P
0% 0=0, setP/Oto 0 Subtract instruction, set N to 1
Notice that the resulting carry is complemented.

3-158



SUB reg — SUBTRACT REGISTER FROM ACCUMULATOR
S ZAgP/ON C

Data
¢ Coon D) [ weman

A XX
B.C Contents of A, B. C,
Dk D.E,HorLis vy
H.L
SP
PC mmmm mmmm + 1 Program
1X Memory
Y
{ 10010xxx_fmmmm
R mmmm + 1
mmmm + 2
mmmm + 3
SuB reg
S ——
10010 XXX

000 for reg=B
001 for reg=C
010 for reg=D
011 forreg=E
100 for reg=H
101 for reg=L
111 for reg=A

Subtract the contents of the specified register from the Accumuiator.
Suppose xx=E3 and Register H contains A01g. After execution of

SUB H
the Accumulator will contain 431g.
E3 = 1110 0011
Twoscompof AQ = 0110 0000
01100 0011

OsetsSto0 U, LNon-zero result. set Z to 0
No borrow. set C to O

No borrow. set Ag to 0
i~

1% 1=0, set P/Oto 0 Subtract instruction, set N to 1
Notice that the resulting carry is complemented.

3-159



SUB (HL) — SUBTRACT MEMORY FROM ACCUMULATOR
SUB (IX+disp)
SUB ({IY+disp)

S Z AcP/ON C

Data
F Memory
A XX XX-YY yv ppag +d
B.C
D.E
HL
SP
PC mmmm Program
X Ppaq Memory
Y
! DD mmmm
R ’ 96 mmmm + 1
d mmmm + 2
mmmm + 3

The illustration shows execution of SUB {IX+d}:
SUB {IX-+disp)
R i o

DD 96 d

Subtract contents of memory location {specified by the sum of the contents of the IX
register and the displacement vaiue d) from the Accumulator.

Suppose ppaa=40001g. xx=FF1g. and memory location 40FF1g contains 501g. After
execution of

SUB (IX+OFFH)
the Accumulator will contain AF1g.
FF = 1 1
Two's comp of 50 = 1 1
1 0 1111

1setsStol U’ LNon-zero result, setZ 10 0
Ng borrow, set C to 0 No borrow. set Ac to 0
-

P

14 1=0, set P/Oto 0 Subtract instruction, set N to 1
Notice that the resulting carry is complemented.

SUB {IY+disp)
Nty o~

FD 96 d

This instruction is identical to SUB (IX+disp), except that it uses the IY register instead
of the IX register.

SUB (HL}
S
96

Subtract contents of memory location {specified by the contents of the HL register pair)
from the Accumulator.

3-160



XOR data — EXCLUSIVE-OR IMMEDIATE WITH ACCUMULATOR
S ZAcCP/ON C

Data
X IX 010 Memory

XX XX Yyy

PC mmmm mmmm + 2 Program

Memory

! EE mmmm

R l —] vy mmmm + 1
mmmm + 2
mmmm + 3

XOR data
Se—— ——r—

EE vy
Exclusive-OR the contents of the second object code byte with the Accumulator.
Suppose xx=3A1g. After the instruction
XOR 7CH
has executed. the Accumulator will contain 4616.

3A = 0011 1010
7€ =0111 1100

0100 0110

OsetsSto0 Non-zero result, set Z to O

Three 1 bits, set P/O to 0
The Exclusive-OR instruction is used to test for changes in bit status.

3-161



XOR reg — EXCLUSIVE-OR REGISTER WITH ACCUMULATOR
S Z AcP/ON C

B N Data
/ Memory

F

Bé Contents of A, B,
DE (; D,EHortL
H.L sy
sp
PC mmmm mmmm + 1 Program
X Memory
Iy
! 10101xxx _j mmmm
R mmmm + 1
mmmm + 2
mmmm + 3
XOR reg
e Ve ——
10101 XXX
S——
000 for reg=8B
001 for reg=C
010 for reg=D
011 for reg=E
100 for reg=H
101 for reg=L
111 for reg=A
Exclusive-OR the contents of the specified register with the Accumulator.
Suppose xx=E31g and Register E contains AO1g. After the instruction
XOR E
has executed, the Accumulator will contain 4316.
E3 = 1110 0011
A0 = 1010 0000
0100 0011
OsetsSto0 Non-zero result, set Z to 0

Three 1 bits, set P/0 to 0
The Exclusive-OR instruction i1s used to test for changes in bit status.

3-162



XOR (HL) — EXCLUSIVE-OR MEMORY WITH ACCUMULATOR
XOR (IX+disp)
XOR (IY+disp)

S Z AcP/ON C

Data
Memory
A XX XX WYY Yy ppag+d
8.C
DE
H.L
SP
PC mmmm Program
X ppaq Memory
Y
| DD mmmm
R — AE mmmm + 1
g d mmmm + 2
. mmmm + 3

The illustration shows execution of XOR (X+disp):
XOR {IX+disp)
N e

o

DD AE d

Exclusive-OR contents of memory location (specified by the sum of the contents of the
IX register and the displacement value d) with the Accumulator.

Suppose xx=E316. ppaq=450016. and memory location 46FF1g contains AO1g. After
the instruction

XOR {(IX+OFFH)
has executed. the Accumulator will contain 4316.

E3 = 1110 0011
A0 = 1010 0000
0100 0011

OsetsSto0 Non-zero result, set Z to 0

Three 1 bits. set P/O to 0
XOR (IY+disp)
N -

FD AE d

This instruction is identical to XOR {IX-+disp), except that it uses the Y register instead
of the IX register.

XOR (HL)
R e
AE

Exclusive-OR contents of memory location (specified by the contents of the HL register
pair) with the Accumulator.

3-163



8080A/280 COMPATIBILITY

Although the Z80 microprocessor can certainly be used on 8080A/280
its own merits, one of its important characteristics is its COMPATIBILITY
compatibility with the 8080A microprocessor. This com- FEATURES

patibility has the following features:

1) Al 8080A machine language instructions are also Z80 machine language instruc-

tions.
2)  All B080A registers are also Z80 registers (see Table 3-6).

3)  Almost all 8080A programs will run on a Z80. with some minor differences to be

noted later.

4)  The Z80 has instructions, registers, and other features not present on the 8080A,

so Z80 programs will not generally run on 8080A processors.

Note that this compatibility does not extend to assembly 8080A/Z80
language source statements since Z80 assemblers and 8080A ASSEMBLY
assemblers use different operation code mnemonics. Table 3-7 LEVEL
contains a list of the 8080A mnemonic codes and the corres- CONVERSION
ponding Z80 codes, while Table 3-8 is the same list organized

by 280 codes.

Readers should note the binary coding limitations that this com- 8080A
patibility places on the extra features of the Z80 microprocessor. UNUSED
The BO80A has some unused operation codes (see Table 3-9) that OPERATION
are used for some of the Z80's extra instructions. But there are CODES
simply not enough such codes to cover the large number of

features in a simple form.

Thus, many of the added Z80 instructions require a 2-byte opera- 2-BYTE

tion code. The first byte is CB, DD. ED. or FD. Note the following OPERATION
meanings of these codes from Table 3-9: CODES

CB — a register or bit operation
DD — an operation involving register 1X

ED — a miscellaneous non-8080A instruction not covered elsewhere

FD — an operation involving register 1Y

The second byte of the operation code describes the actual operation to be performed.

The end result is that these multi-byte instructions execute rather JFASTER AND
slowly {and use more memory) because an additional memory JSLOWER
access is required. The reader should be aware of this variation in  JEXECUTING
execution times and try to use faster executing instructions when (INSTRUCTIONS

possible. This warning particularly applies to the extra shift

instructions (RLC, RRC, RL. RR. SRA, SRL) and to instructions involving the index

registers IX and Y.

There are a few minor incompatibilities between the 8080A/Z80
8080A and the Z80. These are: INCOMPATIBILITIES

1) The Z80 uses the P {or P/Q) flag to indicate twos com-

plement overflow after arithmetic operations. The 8080A always uses this flag for
parity.

The Z80 and B080A execute the DAA instruction differently. On the Z80, this in-
struction will correct decimal subtraction as well as decimal addition. On the
8080A. 1t will correct only decimal addition.

The 280 rotate instructions clear the A flag. The 8080A rotate instructions do
not affect the Ag flag.

3-164



Table 3-6. Register and Flag Correspondence between

Z80 and 8080A

280 Register
A

X TIIMMMMQgQUOO%®R

=

v
R

PC
SP

Z80 Register Pairs

8080A Register

A
Nons
B8
None
c
None
D
None
£
None
Least Significant Half of PSW
None
H
None
None
None
None
L
None
None
PC
SP

B08B0A Register Pairs

8C B
DE D
HL H
AF PSW
280 Flags 8080A Flags
C (Carry} C (Carrvi
H {Half-Carry) AC {Auxiliary Canv]
N {Subtract} None
P/Q (Parity/Overflow] P (Parity}
S {Sign} S (Sign)
Z (Zero} Z (Zero}
The 280 is not compatible with the extra features of 8085/280
the 8086 microprocessor. The codes used for RIM and INCOMPATIBILITIES
SIM on the 8085 are used for relative jumps (NZ and NC) on
the Z80.
Instruction timings on the 8080A, 8085, and 280 all TIMING
differ. Programs that depend on precise instruction tim- INCOMPATIBILITIES

ings will therefore execute properly only on the pro-

cessor for which they were written.

The N flag on the Z80 occupies bit 2 of the F register; the corresponding bit in the

Processor Status Word of the 8080A is always a logic ‘1'.

3-165



Table 3-7 Correspondence between 8080A and Z80 Mnemonics

8080A Mnemonic

Z80 Mnemonic

8080A Mnemonic

280 Mnemonic

ACl
ADC
ADD
AD!
ANA
ANI
CALL
cc
M
CMA
cMme
CMmP
CNC
CNZ
cpP
CPE
CP
CPO
cz
DAA
DAD
DCR
[a]e0.3
D!

Ei
HLT

INR
INX
JC
™M
JMP
JNC
P
INZ
JPE
JPO
Nra
LDA
LDAX

data
reg or M
reg or M
data
reg ar M
data
addr
addr
addr

rag or M
addr
addr
addr
addr
data
addr
addr

™
reg or M
»

port
regor M
P

addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
BorD

ADC
ADC
ADD
ADD
AND
AND
CALL
CALL
CALL
CPL
CCF
cP
CALL
CALL
CALL
CALL
CP
CALL
CALL
DAA
ADD
DEC
DEC
Di

Et
HALT
iN
INC
INC
JP
JP
Je
JP

JP
JP
JP
JP
JP
[Ra]
LD

Adata

A.reg or (HL}
Areg or (HL}
Adata

reg or (HL}
data

addr

C.addr
M.addr

rag or (HL)
NC,addr
NZ,addr
P.addr
PE.addr
data
PO,addr
Z.addr

HLmp
rag or {HL}
™

Afporti
rag or {HL)
m

C.addr
M,addr
addr
NC,addr
P,addr
NZ,addr
PE.addr
PO.addr
Z,addr

A (addr)
A(BC) or (DE}

LHLD
Lt
MoV
MoV
mMvi
NOP
ORA
ORI
out
PCHL
POP
PUSH
RAL
RAR
RC
RET
ALC
AM
ANC
RNZ
RP
RPE
RPO
RRC
RST
RZ
seB
SBi
SHLD
SPHL
STA
STAX
stC
suB
sut
XCHG
XRA
XRi
XTHL

addr
rp,datal
reg.reg or M
reg or M,reg
reg or M.data

rag or M
data
port

pr
pr

reg or M
data
addr

addr
BorD

reg or M
data

reg or M
data

LD
LD
L
LD
Lo
NOP
OR
OR
out
JP

PUSH
RLA
RRA
RET
RET
RLCA
RET
RET
RET
RET
RET
RET
RRCA
RST
RET
SBC
S8C
LD
LD
LD
Lo
SCF
sus
SuB
EX
XOR
XOR
EX

HL {addr}
rp,datalf
rag.reg or {HL}
rog or (HLlreg
reg or {HL).data

rag or (HLJ
data
{portL.A
(HL}

pr

pr

M
NC
NZ
P
PE
PO

n
Z

A.reg or {HL}
A.data
{addr}HL
SP.HL
{addr),A

{BC) or {DELA

rag or (HL)
data
DEHL

rag or (HL)
data
{SPLHL

3-166




Table 3-8. Correspondence between Z80 and 8080A Mnemonics

280 Mnemonic 8080A Mnemonic 280 Mnemonic 8080A Mnemonic
ADC  Adata ACH data INC P INX P
ADC  AlHL) ADC M INC Xy —

ADC Arag ADC reg INC (xy + disp} e

ADC  Alxy + disp) — IND —

ADC HL.m - (NDR —

ADD  Adata ADI data N —

ADD AfHLY ADD M INIR —

ADD  Areg ADD  reg JP addr JMP addr
ADD  Alxy + disp} — JP C.addr Jc addr
ADD  HLmp bAD P (HL) PCHL

ADD X.pp — JP M,addr JM addr
ADD Y.er — JP NC.addr JNC addr
AND  data ANI data JP NZ,addr JNZ addr
AND  (HL) ANA M Je P addr JP addr
AND reg ANA rag JP PE.addr JPE addr
AND  (xv + disp} — Je PO,addr JPO addr
BIT b,(HL} — JP Z,addr Jz addr
8iT b.reg — JP Xy e

BIT bixy + disp) — JR C.disp —

CALL  addr CALL  addr JR disp -

CALL  C,addr cc addr JR NC.disp —

CALL  M.addr Cl addr JR NZ.disp —

CALL  NC.addr CNC addr JR Z.disp —

CALL  NZ.addr CNzZ addr b A {addr) LDA addr
CALL  P.addr cp addr Lo A(BC) or {DE} LDAX BorD
CALL  PE,addr CPE addr LD A o

CALL  PO.addr CPO addr LD AR —_

CALL  Zaddr cz addr D {addrl,A STA addr
CCF cMC LD {addr},BC or DE —

ce data CPI data D {addr).HL SHLD  addr
cP (HL} cmpP M LD {addr),SP —

cP rag CMP  reg Lo {addr).xy —

cP {xy + displ - LD {BC) or (DELA STAX BorD
CPD — LD BC or DE{addr} —

CPDR i LD HL {addr) LHLD  addr
CPl - LD {Ht},data Mvi M data
CPIR — LD {HL).reg MOV Myreg
CPL CMA o LA —

DAA DAA LD RA —

DEC (ML) DCR M LD reg.data MVI  reg.data
DEC reg peRr reg LD reg,(HL} MOV regM
DEC 4] DCX m LD reg,reg MOV reg,reg
DEC Xy — LD reg,{xv + disp) —

DEC {xy + disp) — LD rp.datals X rp,datals
Di Dl 5} SP {addr) —_

DJNZ  disp — LD SP,HL SPHL

£l El LD SP.xy -

EX AFAF — LD xy,datal6 —

EX DEHL XCHG LD xy,{addr) —

EX {SP},HL XTHL Lo {xy + displdata —

EX {SP},xy — LD {xy + dispireg —

EXX - LDD _

HALT HLT LDDR —

M m - L0l —

iN Alport} N port LDIR —

IN reg.{C) — NEG —

INC {HL} INR M NOP NOP

INC reg INR reg OR data OR! data

— indicates that there is no corresponding mstruction.

3-167




Table 3-8. Correspondence between Z80 and 8080A Mnemonics (Continued)

280 Mnemonic

8080A Mnemonic

280 Mnemonic

8080A Mnemonic

OR
OR
OR
QOTOR
OTIR
ouT
QuT
OuUTD
ount
POP
POP
PUSH
PUSH
RES
RES
RES
RET
RET
RET
RET
RET
RET
RET
RET
RET
RETH
RETN
RL

AL
RL
RLA
ALC
RLC
RLC
RLCA
RLD

(HLY
reg
{xy + disp)

(Clreg
{portiA

pr
Xy

pr

xy

b.{HL}

b.reg

bixy + disp}

C
M
NC
NZ
P
PE
PO
z

{HL)
reg
{xy + disp)

(HL)
reg
{xv + disp}

ORA
ORA

RANC

M

reg

port

pr

pr

RR
AR
AR
RRA
RRC
RRC
RRC
RRCA
RRD
RST
SBC
SBC
SBC
SBC
sBC
SCF
SET
SET
SET
SLA
SLA
StA
SRA
SRA
SRA
SAL
SRL
SRL
suB
sus
sus
sus
XOR
XOR
XOR
XOR

(HL)
reg
(xy + disp)

{HL}
reg
{xy + disp}

n

A data

A (HL}

Areg

Afxy + displ
HLm

b,{HL)
breg

bixv + disp}
{HL}

reg

{xy + disp}
(HL)

reg

{xy + disp}
{HL)

reg

{xy + dispi
data

{HL)

rag

{xy + disp}
data

{HL)

reg

{xy + disp}

RAR

ARC

RST n
sl data
s88 M
S88 reg
STC

sul data
sus M
suB reg
XRt data
XRA M
XBRA  reg

-~ indicates that there i1s no corresponding instruction

3-168




Table 3-9. Unused 8080A Operation Codes and Their Z80 Meanings

8080A Operation Code 280 Use
08 EX AF.AF
10 DJUN? disp
18 JR disp
20 (RIM on 8085] JR NZ disp
28 JR Z.disp
30 {SIM on 8085} JR NC.disp
38 JR Cdisp
cB BIT, RES, RL, RLC, RR. RRC, SET. SLA, SRA, SRL
[o:] EXX
DD All instructions nvolving Register 1X.
ED ADC  HLrp o Al NEG
CPD LD AR OTDR
CPDR [1s] {addrirp  OTIR
CPl Lo LA OUT  (Clreg
CPIR LD R.A ouTD
M m LD rpfaddr)  QUTI
N reg,(C} LDD RETI
IND LDDR RETN
INDR LDI RLD
N LDIR RRD
INIR SBC  HLrmp
FD All instructions mvaolving Register 1Y,

3-169




ZILOG Z80 ASSEMBLER CONVENTIONS

The standard 280 assembler is available from 280 manufacturers and on the major
time-sharing networks; it is also part of most development systems. Cross assem-
bler versions are available for most large computers and many minicomputers.

ASSEMBLER FIELD STRUCTURE

The assembly language instructions have the standard field structure (see Table

2-1). The required delimiters are:

1) A colon after a label, except for the pseudo-operations EQU, DEFL, and
MACRO, which require a space.

2) A space after the operation code.

3] A comma between operands in the operand field. (Remember this one!)

4) A semicolon before a comment.

5) Parentheses around memory references.

Typical Z80 assembly language instructions are:

START: LD A{1000)  ;GET LENGTH
ADD HL.DE
HALT

LABELS

The assembler allows six characters in labels; the first character must be a letter,
while subsequent characters must be letters, numbers, ?, or the underbar
character (-). We will use only capital letters or numbers, although some versions
of the assembler allow lower-case letters and other symbols.

RESERVED NAMES

Some names are reserved as keywords and should not be used by the program-
mer. These are the register names (A, B, C. D, E, H, L. |, R), the double register
names (IX, 1Y, SP), the register names (AF, BC, DE, HL, AF’, BC’, DE’, HL'), and
the states of the four testable flags (C, NC, Z, NZ, M, P, PE, PO).

PSEUDO-OPERATIONS

The assembler has the following basic pseudo-operations:

DEFB - DEFINE BYTE
DEFL - DEFINE LABEL
DEFM - DEFINE STRING
DEFS - DEFINE STORAGE
DEFW - DEFINE WORD
END - END

EQU - EQUATE

ORG - ORIGIN

DEFB. DEFM. and DEFW are the Data pseudo-operations used to DEFB,DEFM,
place data in ROM. DEFB 1s used for 8-bit data, DEFW for 16-bit DEFW

data. and DEFM for ASCHI strings (63 or less characters long). The PSEUDO-
only unusual feature to remember is that DEFW stores the eight OPERATIONS
least significant bits of data in the first word and the eight most

significant bits 1n the second word. This is the standard 8080A/8085/Z80 procedure for
storing addresses in memory. but is contrary to normal practice. You must be aware of
the order when storing 16-bit data.

3-170



Note that DEFB and DEFW define the value of only a single byte or single word. respec-
tively. Establishing a table of values requires a series of DEFB or DEFW pseudo-opera-
tions. one for each byte or word of data.

Examples:

ADDR: DEFW 3165H

results in (ADDR) = 65, and (ADDR+1) = 31 (hexadecimal).

TCONV: DEFB 32
This pseudo-operation places the number 32 in the next byte of ROM and assigns the
name TCONV to the address of that byte.

ERROR: DEFM ‘ERROR’
This pseudo-operation places the 7-bit ASCll charactersE. R, R. O. and R in the next five
bvtes of ROM and assigns the name ERROR to the address of the first bvte.

OPERS: DEFW  FADD

DEFW  FSUB
DEFW  FMUL
DEFW  FDIV

This series of pseudo-operations places the addresses FADD. FSUB, FMUL. and FDIV in
the next eight bytes of memory and assigns the name OPERS to the address of the first
bvte. Note that the first byte contains the least significant bits of address FADD.

DEFS is the Reserve pseudo-operation used to assign locations in DEFS

RAM: it allocates a specified number of bytes. PSEUDO-
OPERATION

EQU is the Equate or Define pseudo-operation used to assign EQU

values to names. PSEUDO-
OPERATION

DEFL is similar to EQU. except that DEFL allows the name to be DEFL

redefined later. DEFL is much like the SET directive in other as- PSEUDO-

semblers. It should only be used to define assembly time variables OPERATION

(i.e., those variables used in conditional assembly or conditional

macro expansion statements).

ORG is the standard Origin pseudo-operation. ORG

780 . PSEUDO-

programs usually have several origins; the origins are used as
follows: OPERATION

1) To specify the RESET address {usually zero).

2) Tospecify interrupt entry points (usually 0 to 661¢ but may be anywhere in memo-
ry.

3) To specify the starting address of the main program.

4) To specify the starting addresses of subroutines.

5)  To define areas for RAM storage.

6) To define an area for the RAM Stack.

7} To specify addresses used for I/0 ports and special functions.

3-171



Examples:

RESET  EQU 0

ORG RESET
This sequence places the RESET instruction sequence in memory beginning at address
0.

INT1 EQU 38H
ORG INT1

The instruction sequence that follows is stored in memory beginning at location 3814

END simply marks the end of the assembly Ianguage program. END
PSEUDO-
The special purpose pseudo-operations COND. MACRO. ENDC. OPERATION

and ENDM are described later in this chapter.

LABELS WITH PSEUDO-OPERATIONS

The rules and recommendations for labels with Z80 pseudo-operations are as
follows:

1) EQU, DEFL. and MACRO require labels, since the function of these pseudo-opera-
tions 1s to define the meaning of that label.
2} DEFB. DEFM. DEFW, and DEFS usually have labels.

3) ORG. COND. ENDC. ENDM, and END should not have labels, since the meaning of
such labels 1s unclear.

ADDRESSES

The Zilog Z80 assembler allows entries in the address field in any | NUMBERS AND

of the following forms: CHARACTERS
IN ADDRESS

1) Decimal {the default case) FIELD

Example: 1247

2) Hexadecimal {must start with a digit and end with an H)
Examples: 142CH. OE7H

3) Octal {must end with O or Q, but Q is far less confusing)
Example: 1247Q or 12470

4) Binary {must end with B)
Example: 10010010001118B

5) ASCll (enclosed in single quotation marks)
Example: 'HERE'

8) As an offset from the Program Counter {$)
Example: $+237H

All arithmetic and logic operations within an address field assume | ASSEMBLER
all arguments are 16-bit data; they produce 16-bit results. These | ARITHMETIC
operations are allowed as part of expressions in the address field. AND LOGICAL
OPERATIONS

When defining address constants., hexadecimal notation should
be used. Binary constants of 16 bits are unwieldy and hence error-
prone. Octal constants are inconvenient due to the fact that addresses are stored in
low-order bvte high-order byte format. This division occurs in the middle of an octal
digit. which causes vou to have to split a digit. For example, to express the address
9D7FH or 116577Q in low-high format you get 7F9DH or 77236Q. As you can see, in
hexadecimal notation the digits are simply transposed. while no such simple relation-
ship exists for octal notation.

3-172



OPERATOR FUNCTION PRIORITY
+ UNARY PLUS 1
. UNARY MINUS 1
.NOT. or \ LOGICAL NOT 1
.RES. RESULT 1
. EXPONENTIATION 2
. MULTIPLICATION 3
/ DIVISION 3
.MOD. MODULO 3
SHR. LOGICAL SHIFT RIGHT 3
.SHL. LOGICAL SHIFT LEFT 3
+ ADDITION 4
. SUBTRACTION 4
AND. or & LOGICAL AND 5
OR. or | LOGICAL OR 6
XOR. LOGICAL XOR 6
EQ.or = EQUALS 7
GT.or > GREATER THAN 7
LT or < LESS THAN 7
UGT. UNSIGNED GREATER THAN 7
ULT. UNSIGNED LESS THAN 7

In address expressions with more than one operator, the order of evaluation 1s defined
by the priorities given in the list above. Operators having the same priorities are evalu-
ated from left to right. Expressions in parentheses are evaiuated first. Remember that
enclosing an expression entirely in parentheses indicates a memory address.

Note the following:

1} The Result operator (.RES.) causes overflow to be suppressed; i.e.. a change in sign
caused by overflow into the sign bit does not result in an assembler error.

2) The shifts have the form:

.SHR. opl.op2
SHL. opl.0p2

where opl is the number to be shifted and op2 is the number of shifts. The shifts
are logical. i.e.. zeros are shifted into the high-order or low-order bits. respectively.

3)  The comparison operators produce a result of either logical True {all ones) or logical
False {zero).

4) The operators .GT. and .LT. assume signed twos complement numbers, whereas
{UGT. and .ULT. assume unsigned operands. This means that. for .GT. and .LT.,
positive twos complement numbers are larger than negative twos complement
numbers, while the opposite 1s the case for .UGT. and .ULT.

3-173




CONDITIONAL ASSEMBLY

The Z80 assembler has a simple conditional assembly COND AND
capability based on the pseudo-operations COND and ENDC. ENDC
COND s followed by an expression, for example: PSEUDO-

COND  BASE - 1000H OPERATIONS
or
COND  BASE - OPER1

If the expression is not zero. the assembler includes all of the instructions up to the
ENDC pseudo-operation in the program; if the expression s zero, the assembler ignores
all instructions between COND and ENDC.

We will not use conditional assemblies or refer to this capability again: it 1s sometimes
handy for adding or eliminating debugging instructions, or configuring unique versions
of a common program.

MACROS

The standard Z80 assembler has a macro capability that MACRO AND
assigns names to instruction sequences. Use the pseudo-opera- ENDM

ton MACRO to begin the defimtion and ENDM to end it. The PSEUDO-
macro may have parameters and may include any assembly OPERATIONS

language instructions except the definitions of other macros.

The macro capability is often a convenient programming shorthand, but we will not use
1t

Note that instruction sequences defined by macros are generally quite short; they
should not exceed ten or fifteen instructions. Longer sequences should be made into
subroutines to conserve memory space.

Every MACRO pseudo-operation must have a label; the label is the name with which
you identify the macro. For a discussion of this subject, see Chapter 2.

3-174



Chapter 4
SIMPLE PROGRAMS

The only way to learn assembly language programming is to write assembly
language programs. That is what we will do for the next six chapters, which con-
tain examples of typical microprocessor tasks. Problems at the end of each
chapter contain variations on the examples given in the text of the chapter. You
should try to run the examples on a Z80-based microcomputer system to ensure
that you understand the material covered in the chapter.

In this chapter we begin with some very simple programs.
GENERAL FORMAT OF EXAMPLES

Each program example contains the following parts: EXAMPLE
FORMAT

1) A title that describes the general problem.

2} A statement of purpose which describes the specific task that
the program performs. plus the memory locations that it uses.

3) A sample problem showing input data and results.

4) A flowchart if the program logic is complex.

5) The source program or assembly language listing of the program.

6) The object program or hexadecimal machine language listing of the program.

7) Explanatory notes that discuss the instructions and methods used in the program.

The problems at the end of the chapter are similar to the examples; problems
should be programmed on a Z80-based microcomputer system using the examples
as guidelines.

The source programs in the examples have been constructed as follows:

1) Standard Zilog Z80 assembler notation s used. as sum- GUIDELINES
marized in Chapter 3. FOR
2)  The forms in which data and addresses appear are selected for EXAMPLES

clarity rather than for consistency. We use hexadecimal num-
bers for memory addresses, instruction codes. and BCD data; decimal for numeric
constants: binary for logical masks; and ASCH for characters.

3) Frequently used instructions and programming techniques are emphasized.

4) Examples illustrate tasks that microprocessors perform in communications, instru-
mentation. computer, business equipment, industrial. and military applications.

5) Detailed comments are included.

6] Simple and clear structures are emphasized, but programs are as efficient as possi-
ble within this guideline. The notes often describe more efficient procedures.

7} Programs use consistent memory allocations. Each program starts in memory loca-
tion 0000 (the RESET location) and ends with the HALT instruction. If your



microcomputer has no monitor and no interrupts, you may prefer to end programs
with an endless loop instruction, e.g.:

HERE: JR HERE

The hexadecimal version is 18 followed by FE. You may replace the HALT or JR
HERE instruction with a RESTART or JP instruction that transfers control back to
the monitor in some Z80-based microcomputers.

Consult the user's manual for your microcomputer to determine the required memory
allocations and terminating instruction for your particular system.

GUIDELINES FOR PROBLEMS

When tackling the problems at the end of each chapter, try PROGRAMMING
to work within the following guidelines: GUIDELINES

1)

9)

Comment each program so that others can understand it.

The comments can be brief and ungrammatical. thev

should explain the purpose of a section or instruction in the program. Comments
should not describe the operation of instructions; that description is available in
manuals. You do not have to comment each statement or explain the obvious. You
may follow the format of the examples but provide less detail.

Emphasize clarity, simplicity, and good structure in programs. While programs
should be reasonably efficient, do not worry about saving a single byte of program
memory or a few microseconds.

Make programs reasonably general. Do not confuse parameters {such as the num-
ber of elements in an array) with fixed constants {such as = or ASCH C).

Never assume fixed initial values for parameters, i.e.. use an instruction to load an
initial value into a parameter.

Use assembler notation as shown in the examples and defined in Chapter 3.
Use hexadecimal notation for addresses. Use the clearest possible form for data.

if your microcomputer allows it, start all programs in memory location 0000 and
use memory locations starting with 004016 for data and temporary storage. Other-
wise, establish equivalent addresses for your microcomputer and use them consis-
tently. Again, consult the user’s manual.

Use meaningful names for labels and variables. e.g.. SUM or CHECK rather than X,
Y. or Z

Execute each program on your microcomputer. There is no other way of ensuring
that your program is correct. We have provided sample data with each problem. Be
sure that the program works for special cases.

We now summarize some useful information that you should keep in mind when
writing programs.

Almost all processing instructions (e.g.. ADD, SUBTRACT. USING THE
AND. OR} use the Accumulator. In most cases you will load ACCUMULATOR

data into the Accumulator with LD. using either LD A,{addr) to

load data from any memory location or using LD A,(HL) to load
data from the address specified in Registers H and L. Remember that the parentheses
indicate a memory address rather than data.

The preferred method of accessing memory is using implied ad- USING
dressing via Registers H and L, that is, using (HL). This code causes REGISTER
the Z80 to perform a memory access using the address stored in PAIR HL

Registers H and L. You can use LD HL, data16 to load a fixed num-



ber into Registers H and L or LD HL,{addr) to load the contents of two successive memo-
ry locations into H and L. You can use INC HL or DEC HL to increment or decrement (by
1) the address in Registers H and L.

The 8-bit arithmetic and logical operations all use the data in the Accumulator as one of
their operands and place their result into the Accumulator.

Some of the 8-bit arithmetic and logical operations have special § SPECIAL
uses, for example: INSTRUCTIONS

SUB A {or XOR Al clears the Accumulator.

ADD AA shifts the Accumulator left one bit logically. This instruction also multiplies
the contents of the Accumulator by 2. AND A {(or OR A} clears the Carry flag while
preserving the contents of the Accumulator.

A logical AND can mask off parts of a word. The required mask has ‘1" bits in the posi-
tions that you want to reserve and ‘0’ bits in the positions that vou want to clear.

PROGRAM EXAMPLES
Ones Complement

Purpose: Logically complement the contents of memory location 0040 and place the
result into memory location 0041,

Sample Problem:

0040} = 6A
Result: (0041} = 95
Source Program:
LD A,{40H) :GET DATA
CPL ;COMPLEMENT
LD {41H).A :STORE RESULT
HALT
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 3A LD A, (40H)
0001 40
0002 00
0003 2F CPL
0004 32 LD {@1H)LA
0005 41
0006 00
0007 76 HALT

The LD A,{addr) and LD (addr}.A instructions contain addresses to determine the source
or destination of the data. The addresses are 16 bits long, with the eight least signifi-
cant bits in the word immediately following the instruction code and the eight most sig-
nificant bits in the next word {this order is contrary to normal computer practice). CPL is
a one-word instruction that inverts each bit of the Accumulator. It replaces each ‘0’
with a ‘1" and each "1’ with a ‘0", just like a set of inverter gates.

HALT is used to end all the examples.

Note that we could also place an address into Registers H and L and then use that ad-
dress throughout the program. This is shown in the following program.

4-3



Source Program:

LD HL,40H ;POINT TO OPERAND

LD A, (HL) :GET DATA

CPL :COMPLEMENT

INC HL :POINT TO DESTINATION

LD {(HL).A ;STORE RESULT

HALT

Object Program:
Memory Address Memory Contents Instruction

(Hex) {Hex) Mnemonic)
0000 21 LD HL,40H
0001 40
0002 00
0003 7E LD A, HL)
0004 2F CPL
0005 23 INC HL
0006 77 LD (HL),A
0007 76 HALT

Which version do you think is better?

The two versions require the same number of bytes of memory even though the second
version is two instructions longer. This is because the second version uses fewer ex-
plicit addresses.

8-Bit Addition

Purpose: Add the contents of memory locations 0040 and 0041, and place the result
into memory location 0042.

Sample Problem:

0040} = 38
0041) = 2B
Result: (0042) = 63
Source Program:
LD A, {40H) :GET FIRST OPERAND
LD B.A :SAVE FIRST OPERAND
LD A.G1H) :GET SECOND OPERAND
ADD AB :ADD OPERANDS
LD {42H).A :STORE SUM
HALT



Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {Mnemonic)
0000 3A LD A, {40H)
0001 40
0002 00
0003 a7 LD B.A
0004 3A LD A (4TH)
0005 41
0006 40
0007 80 ADD AB
0008 32 LD {42H).A
0009 42
000A 00
0008 76 HALT

Here again. we could alternatively use Registers H and L as the source for all addresses.
Source Program:

LD HL.40H
LD A (HL) :GET FIRST OPERAND
INC HL
ADD A (HL) ;ADD SECOND OPERAND
INC HL
LD (HLLA ;STORE RESULT
HALT
Object Program:

Memory Address Memory Contents Instruction
(Hex) {Hex) {(Mnemonic}
0000 21 LD HL.40H
0001 40
0002 00
0003 7€ LD A, (HL)
0004 23 INC HL
0005 86 ADD A, (HL)
0006 23 INC HL
0007 77 LD HL)LA
0008 76 HALT

In this case, the program using Registers H and L is shorter than the one using direct
addressing. Why?

LD HL.40H loads the contents of the following two words of program memory into
Register Pair HL. The first word goes into Register L. the second into Register H.

The code (HL) means that data is obtained from or sent to the memory location ad-
dressed by Registers H and L. Thus., LD A,{HL) loads the Accumulator with the contents
of the addressed memory location; LD {HL},A loads the addressed memory focation with
the contents of the Accumulator. ADD A,(HL) adds the contents of the location ad-
dressed by HL to the contents of the Accumulator. Remember that H and L contain a
16-bit address, but the memory location with that address contains eight bits of data.
Note the difference between ADD A, (HL) and ADD AH or ADD A L.

INC HL performs a 16-bit increment in one instruction cycle. The CPU doesn’t use the
8-bit arithmetic unit for the increment; it uses the incrementer that it normally uses to
increment the 16-bit Program Counter.



LD A, (HL) and LD (HL).A are preferable to LD A,{addr) and LD {addr).A whenever you
use the same memory location repeatedly or use adjacent locations, because LD A, {HL)
and LD (HL).A require less program memory and time. Note, however. that you must
load Registers H and L before you can use (HL).

Shift Left One Bit

Purposge: Shift the contents of memory location 0040 left one bit and place the resuit
into memory location 0041. Clear the empty bit position. This type of shift is
known as a logical shift. In a logical shift. a value of zero is always shifted in.

Sample Problem:

(0040} = 6F
Result: (0041) = DE
Source Program:
LD A, {40H) :GET DATA
ADD AA (SHIFT LEFT
LD @1HLA :STORE RESULT
HALT
Object Program:
Memory Address Memory Contents Instruction
{Hex) (Hex! (Mnemonic)
0000 3A LD A, (40H)
0001 40
0002 00
0003 87 ADD AA
0004 32 LD [41HLA
0005 41
0006 00
0007 76 HALT

ADD A A simply adds the contents of the Accumulator to itself. The resuit, of course, is
twice the original data, which is the same resuit that a logical left shift would produce.
The least significant bit of the result is zero, since 0+0 = 1+1 = 0; 1+1 also produces a
Carry to the next bit.

Alternatively, we could replace ADD A A with SLA A, certainly the more obvious
choice. However. SLA A requires two words of program memory and eight clock cycles,
while ADD A A requires one word of program memory and four clock cycles. The
difference is caused by the fact that SLA A is one of the extra instructions added to the
original 80B0A set {remember the comparison presented earlier).

Mask Off Most Significant Four Bits

Purpose: Place the least significant four bits of memory location 0040 into the least
significant four bits of memory location 004 1. Clear the most significant four
bits of memory location 0041.

Sample Problem:
(0040)
Result: (0041

3D
0D

4-6



Source Program:

LD A {40H) :GET DATA
AND 000011118 ‘MASK 4 LSB'S
LD {41HLA :STORE RESULT
HALT

Note: B means binary in standard Z80 assembler notation.
Object Program:

Memory Address Memory Contents Instruction

. (Hex) {(Hexi {Mnemonic)
0000 3A LD A, (40H)
0001 40
0002 00
0003 E6 AND 000011118
0004 OF
0005 32 LD @1H).A
0006 41
0007 00
0008 76 HALT

The mask (00001111} is written in binary to make its function clearer to the reader. Bin-
ary notation for masks is generally much clearer than hexadecimal notation, although
the results are the same. Hexadecimal notation should be used for masks longer than
four bits. The comments should explain the masking operation.

When the argument in the address field is a number. AND logicaily ANDs the contents
of the Accumulator with the contents of the word of program memory immediately
following the instruction. AND may be used to clear bits that are not in use. The four
least significant bits could be an input from a switch or an output to a numeric display.
Clear a Miemory Location

Purpose: Clear memory location 0040.

Source Program:

SUB A

LD (40H),A ;CLEAR LOCATION 40

HALT

Object Program:
Memory Address Memory Contents Instruction

Hex (Hex) {Mnemonic)
0000 97 SuB A
0001 32 LD ({40H).A
0002 40
0003 00
0004 76 HALT

SUB A subtracts the number in the Accumulator from itself. The result is to clear the
Accumulator. SUB A, XOR A, or LD A.Q can all clear the Accumulator. LD A0 takes
more time and memory but doesn’t affect the status flags.

Word Disassembly

Purpose: Divide the contents of memory location 0040 into two 4-bit sections and
store them in memory locations 0041 and 0042. Place the four most signifi-
cant bits of memory location 0040 into the four least significant bit positions

4.7



of memory location 0041, place the four least significant bits of memory
location 0040 into the four least significant bit positions of memory location
0042. Clear the four most significant bit positions of memory locations 0041
and 0042.

Sample Problem:

0040) = 3F
Result: {0041} = 03
{0042) = OF
Source Program:
LD HL.40H
LD A (HL) JGET DATA
LD B.A
RRA :SHIFT DATA RIGHT 4 TIMES
RRA
RRA
RRA
AND 00001111B :MASK OFF MSB'S
INC HL
LD {HLL.A :STORE MSB’'S
LD AB ;RESTORE ORIGINAL DATA
AND 000011118 :MASK QOFF LSB'S
INC HL
LD HLLA :STORE LSB'S
HALT
Object Program:

Memory Address Memory Contents Instruction
{Hex) {Hex) {Mnemonic)
0000 21 LD HL..40H
0001 40
0002 00
0003 7E LD A,(HL)
0004 47 LD B.A
0005 1F RRA
0006 1F RRA
0007 1F RRA
0008 1F RRA
0009 E6 AND 000011118
000A OF
0008 23 INC HL
006C 77 LD HL)LA
000D 78 LD AB
000E E6 AND 000011118
000F OF
0010 23 INC HL
0011 77 LD HL).A
0012 76 HALT

Instructions using the address in Registers H and L occupy only one word of program
memory. However, HL must be loaded before the address can be used. Thus, implied
memory addressing saves time and memory, as compared to direct memory addressing,
only when the program repeatedly uses the same address or consecutive addresses.

4-8



RRC shifts the Accumulator right one bit circular. with the least significant bit going to
the most significant bit position and to the Carry. Shifting the Accumulator right four
times requires four RRCs. We could use SRL A to provide a logical shift directly (no final
AND would then be necessary). However, SRL A requires twice as much time and
memory as RRC. Try substituting SRL A for RRC and see the difference. Another alter-
native would be to use the RLD instruction to replace both the mask and the store.
However. this solution 1s not optimal in terms of either storage or execution speed due
to the constraint that the high-order nibble of each result must equal zero.

Many Z80 instructions affect a pair of 8-bit registers. The pairs are HL (H and L), DE (D
and E), and BC (B and C). Registers B, D. and H are the most significant eight bits of the
pairs: Registers C, E. and L are the least significant eight bits. The common instructions
that use pairs of registers are LD rp (Load Register Pair), INC rp {Increment Register
Pair), DEC rp (Decrement Register Pair), and ADD HL.rp {Add Register Pair to H and L).

Find Larger of Two Numbers

Purpose: Place the larger of the contents of memory locations 0040 and 0041 into
memory location 0042. Assume that the contents of memory locations 0040
and 0041 are unsigned binary numbers.

Sample Problems:

a. 0040} = 3F
(0041} = 2B
Result: {0042) = 3F
b. (0040) = 75
(0041) = A8
Result: (0042) = A8
Source Program:
LD HL.40H
LD A (HL) :GET FIRST OPERAND
INC HL
CcP {HL) ;1S SECOND OPERAND LARGER?
JR C.DONE
LD AL(HL) JYES, GET SECOND OPERAND INSTEAD
DONE: INC HL
LD {HL).A :STORE LARGER OPERAND
HALT
Object Program:
Memory Address Memory Contents Instruction
{Hex) {Hex) (Mnemonic)
0000 21 LD HL.40H
0001 40
0002 00
0003 7€ LD A HU
0004 23 INC HL
0005. BE CP {HL)
0006 30 JR NC.DONE
0007 01
0008 7€ LD A (HL)
0009 23 DONE: INC HL
000A 77 LD (HLL.A
0008 76 HALT

4.9



CP {HL} sets the flags as if the contents of the memory location addressed by H and L
had been subtracted from the contents of the Accumulator. However, the contents of
the Accumulator are left unchanged for later comparisons or other processing.

If A is the contents of the Accumulator and X is the second operand for a CP instruc-
tion. then the flags are set as follows:

1 Zero=1ifA=X
Zero=0if A# X
2) Carry=1ifA<X
Carry =0 ifA>X
(A, X are unsigned binary numbers)

CP sets the Carry to 1 if a borrow would be necessary to actually perform the subtrac-
tion. i.e.. if the number being subtracted from the contents of the Accumulator is
greater than those contents. Thus, the sequence CP, JR NC,DONE causes a jump to
DONE if the contents of the Accumulator are greater than or equal to the other number.

JR NC,DONE causes a jump to memory location DONE if the Carry flag = 0. Otherwise
(if Carry = 1), the computer continues with the next sequential memory location after
the JR instruction.

DONE is a label, a name which you assign to a location in memory so that it is easier to
remember. Note that labeis are followed by a colon on the line where they are defined.

The label makes the destination of the branch clearer, particulerly when relative ad-
dressing is being used. The assembler calculates the required offset (caution: some Z80
assemblers will not do this). Using a label is preferable to just specifying the offset {i.e.,
JR NC,$+3) since the Z80's instructions vary in length. You could therefore easily make
an error in determining an offset.

If the branch conditions are not satisfied, the processor simply proceeds to the next se-
quential location in program memory (i.e., it executes the instruction LD A, (HL)).

The Z80 assemblers allow six characters in labels — the first must be a letter, while the
others mav be letters or numbers {some special characters are allowed but we will not
use them).

The JR instruction uses relative addressing in which the second word of the instruction
is an 8-bit twos complement number that the CPU adds to the address of the next in-
struction to find the target address. In the example, the relative offset is 0009 {target
address) minus 0008 {address immediately following the branch) or 01.

We should note that some Z80 assemblers will not calculate the offset in the form
shown. These assemblers require an offset in the address field, rather than the iabel of
the target instruction. If you have such an assembler, use the form JR NC,DONE-$.
Remember that $ means “the address of the current instruction”

The Z80 has two sets of jump instructions, JP {Jump) and JR (Jump Relative). The JP
instructions require a complete memory address; they occupy three bytes of memory
and execute in ten clock cycles. The JR instructions require only a one-word offset;
they occupy two bytes of memory and execute in 12 cycles if a jump is actually per-
formed and in 7 if not. So the JR instructions use less memory than JP instructions but
may require a little extra time if a jump is performed {the extra time is used to execute
the required 16-bit addition of program counter and offset).



16-Bit Addition

Purpose: Add the 16-bit number in memory locations 0040 and 0041 to the 16-bit
number in memory locations 0042 and 0043. The most significant eight bits
are in memory locations 0041 and 0043. Store the result in memory loca-
tions 0044 and 0045, with the most significant bits in 0045.

Sample Problem:

0040} = 2A
0041) = 67
0042) = F8
0043} = 14
Result: 672A + 14F8 =7C22
0044) = 22
(0045) = 7C
Source Program :
LD HL,[40H) :GET FIRST 16-BIT NUMBER
LD DE.(42H) :GET SECOND 16-BIT NUMBER
ADD HL.DE :16-BIT ADDITION
LD {44H), HL ;STORE 16-BIT RESULT
HALT
Object Program :
Memory Address Memory Contents instruction
(Hex! {Hex) {(Mnemonic)
0000 2A LD HL.(40H)
0001 40
0002 00
0003 ED LD - DE42H)
0004 5B
0005 42
0006 00
0007 19 ADD HL.DE
0008 22 LD (44H).HL
0009 a4
000A 00
000B 76 HALT

LD HL.{addr) loads Registers H and L from two memory locations, the one specified in
the instruction and the next consecutive one. The contents of the first addressed loca-
tion go to Register L. The contents of the next iocation go to Register H. Thus, LD
HL,{40H) means L = (40}, H = (41). The actual transfer proceeds one byte at a time and
takes 16 clock cycles. The advantage of the 16-bit Load instruction over two 8-bit Load
instructions is that the CPU has to fetch only one instruction from memory.

Note the difference between LD HL.(addr). which loads the contents of the two RAM
locations at addr and addr+1 into H and L. and LD HL.data16. which loads the contents
of the next two bytes pointed to by the instruction counter into H and L. Since these
two bytes immediately follow the op-code. loads of this type are referred to as load im-
mediate instructions.

LD DE.{addr} is similar to LD HL.laddr) except that it takes one extra word of memory
and four more clock cycles. This is one of the instructions that is present in the Z80 set
but not in the 8080/8085 sets. An alternative approach is:

EX DE.HL :SAVE FIRST 16-BIT NUMBER IN DE
LD HL.(42H) :GET SECOND 16-BIT NUMBER

4-11



EX DE.HL exchanges the contents of Registers D and E with H and L. No numbers are
changed or destroyed. The advantage of EX DE.HL will become obvious if you try to
replace it with a series of LD instructions.

ADD HL.DE adds the 16-bit number in Registers D and E to the 16-bit number in
Registers H and L. The result is placed into Registers H and L. ADD HL.DE actually adds
one byte at a time. It executes in 11 clock cycles.

LD {addr).HL stores the contents of Registers H and L into two memory locations, the
one specified in the instruction and the next consecutive one. The contents of L go into
the specified location and the contents of H go into the next location. Thus, LD {44H), HL
means {44) = L, {45) = H. As with LD HL,(addr), the actual transfer proceeds one byte at
a time and requires 16 clock cycles.

Aithough the Z80 is an 8-bit processor. it has instructions that handle 16-bit numbers.

These instructions are intended primarily for handling addresses, but you can also use
them for 16-bit data. The most common ones and their uses are:

1) ADD HL,rp — 16-Bit Add
Used to access tables and to add 16-bit data units
2) DEC rp — 16-Bit Decrement
Used to subtract one from the contents of a register pair
3) INC rp — 16-Bit Increment
Used to add one to the contents of a register pair
4) LD rp.datal6 — 16-Bit Load immediate
Used to initialize a register pair with a fixed value, e.g.. the starting address of an ar-
ray or table
5) LD HL,{addr} — 16-Bit Load HL Direct
Used to place variable addresses into the main address register (H and L)
6 LD laddr),HL — 16-Bit Store HL Direct
Used to store addresses to memory from the main address register (H and L).

Table of Squares

Purpose: Calculate the square of the contents of memory location 0040 from a table
and place it into memory location 0041. Assume that memory location 0040
contains a number between 0 and 7 inclusive (0 < (0041} < 7).

The table occupies memory locations 0050 to 0057

Memory Address Entry
{(Hex) {(Hex) (Decimall
0050 00 0o 03
0051 01 103
0052 04 4 23
0053 09 9 @3
0054 10 16 43
0065 19 2% (69
0056 24 3% (62
0057 31 49 (73
Sample Problems:
a (0041) = 03
Result: {0042} = 09
b. (0041) = 06
Result: {0042) = 24

4-12



Source Program:

LD A.(40H) :GET DATA
LD LA ;MAKE DATA INTO 16-BIT INDEX
LD H.0
LD DE.SQTAB :GET STARTING ADDRESS OF TABLE
ADD HL,DE /INDEX TABLE WITH DATA
LD A HL :GET SQUARE OF DATA
LD {41H).A
HALT
ORG 50H ;SQUARE TABLE
SQTAB: DEFB 0
DEFB 1
DEFB 4
DEFB 9
DEFB 16
DEFB 25
DEFB 36
DEFB 49
Object Program:

Memory Address Memory Contents Instruction
{(Hex) (Hex) (Mnemonic)
0000 3A LD A (40H)
0001 40
0002 00
0003 6F LD LA
0004 26 LD H.0
0005 00
0006 " LD DE.SQTAB
0007 50
0008 00
0009 19 ADD HL.DE
000A 7€ LD AHL)
000B 32 LD (a1HLA
000C 41
000D 00
000E 76
0050 00 SQTAB: DEFB 0
0051 o1 DEFB 1
0052 04 DEFB 4
0053 09 DEFB 9
0054 10 DEFB 16
0055 19 DEFB 25
0056 24 DEFB 36
0057 31 DEFB 49

Note that you must also enter the table of squares into memory (the assembler pseudo-
operation DEFB will handie this). The table of squares is constant data, not parameters
that may change; that is why vou can initialize the table using the DEFB pseudo-opera-
tion. rather than by executing instructions to ioad values into the table. Remember that
the table is part of the program memory (ROM in most systems).

LD L,A moves the data in the Accumuiator to Register L. The data is the eight least sig-
nificant bits of the index. You cannot always assume that the data presented to your



program is in the proper range. It is always a good practice to range check all critical
values. Range checking consists of testing a value to ensure that it is within the proper
lower and upper limits. Any byte can have a value in the range 0 to 2565. If the value
stored in the byte at location 0040H is greater than seven, the program will reference
an undefined byte beyond the end of the square table, causing the program to generate
erroneous results Range checking will prevent this error from occurring.

LD H.0 clears Register H so that it does not interfere with the 16-bit addition of starting
address and index. Never assume that a register contains zero at the start of a program.

LD DE.SQTAB loads the starting address of the table into Registers D and E. We use D
and E for the starting address since the ADD HL instruction does not change D and E.
Thus, the starting address of the table will still be in D and E after the addition, in the
event that we want another element from the table.

ADD HL,DE adds the starting address and the index; the resultin H and L is thus the ad-
dress of the correct entry. LD A,(HL) then moves that entry to the Accumulator.

Arithmetic that a microprocessor cannot do directly in a few instructions is often best
performed with lookup tables. Lookup tables simply contain all the possible answers to
the problem; they are organized so that the answer to a particular problem can be
found easily. The arithmetic problem now becomes an accessing probiem — how do
we get the correct answer from the table? We must know two things: the position of
the answer in the table {called the index) and the base, or starting, address of the table.
The address of the answer is then the base address plus the index.

The base address, of course, is a fixed number for a particular table. How can we deter-
mine the index? In simple cases, where a single piece of data is involved, we can organ-
ize the table so that the data is the index. In the table of squares, the Oth entry in the ta-
ble contains zero squared, the first entry one squared, etc. In more complex cases,
where the spread of input values is very large or there are several data items involved
{e.g.. roots of a quadratic or number of permutations), we must use more complicated
methods to determine indexes.

The basic tradeoff in using a table is time vs. memory. Tables are faster. since no com-
putations are required, and simpler. since no mathematical methods must be devised
and tested. However, tables can occupy a large amount of memory if the range of the
input data is large. We can often reduce the size of a table by limiting the accuracy of
the results, scaling the input data, or organizing the table cleverly. Tables are often
used to compute transcendental and trigonometric functions, linearize inputs, convert
codes, and perform other mathematical tasks.

16-Bit Ones Complement

Purpose: Place the ones complement of the 16-bit number in memory locations 0040
and 0041 into memory locations 0042 and 0043. The most significant bytes
are in locations 0041 and 0043.

Sample Problem:

{0040) = 67
0041 = E2
Result: {(0042) = 98
(0043} = 1D

The ones complement inverts each bit of the original number; the sum of the original
number and its ones complement will always be all 1 bits.

4-14



Source Program:

LD HL.(40H) :GET DATA
LD AL :COMPLEMENT 8 LSB'S
CPL
LD LA
LD AH :COMPLEMENT 8 MSB'S
CPL
LD H.A
LD {40H),HL :STORE ONES COMPLEMENT
HALT
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 2A LD HL..(40H}
0001 40
0002 00
0003 7D LD AL
0004 2F CPL
0005 6F LD LA
0006 7C LD AH
0007 2F CPL
0008 67 LD H.A
0009 22 LD {42H).HL
000A 42
0008 00
000C 76 _ HALT

Despite the Z80's 16-bit instructions, you must use 8-bit instructions to perform most
arithmetic and logical operations. The 16-bit instructions can. however, be used to load
and store data and occasionally to do a few 16-bit arithmetic operations, such as addi-
tion, subtraction. incrementing, and decrementing. You will soon learn that the 16-bit
instructions are far from a complete set and you rmay often run into awkward probiems
if using them to manipulate 16-bit data. ’

PROBLEMS
1) Twos Complement

Purpose: Place the twos complement of the contents of memory location 0040 into
memory location 0041. The twos compiement is the ones complement plus
one.

Sample Problem:
(0040} 3E
Result: {0041) = C2
The sum of the original number and its twos complement is zero (try the sample case).
2) 8-Bit Subtraction

Purpose: Subtract the contents of memory location 0041 from the contents of memory
location 0040. Place the resuit into memory location 0042.

Sample Problem:

it

{0040) = 77
(0041) = 39
Resuft: (0042) = 3E

4-15



3) Shift Left Two Bits

Purpose: Shift the contents of memory location 0040 ieft two bits and place the result
into memory location 0041. Clear the two least significant bit positions.

Sample Problem:

{0040) = 5D
Result: {0041} = 74
4) Mask Off Least Significant Four Bits

Purpose: Place the four most significant bits of the contents of memory location 0040
into memory location 0041. Clear the four least significant bits of memory
location 0041,
Sample Problem:
(0040} Cc4

Result: {0041) = CO

5} Set a Memory Location to All Ones
Purpose: Memory location 0040 is set to all ones (FF hex).

6) Word Assembly

Purpose: Combine the four ieast significant bits of memory locations 0040 and 0041
into a word and store them in memory location 0042. Place the four ieast sig-
nificant bits of memory location 0040 into the four most significant bit posi-
tions of memory location 0042; place the four least significant bits of memo-
ry location 0041 into the four least significant bit positions of memory loca-
tion 0042.

Sample Problem:

(0040} = 6A
(0041} = B3
Result: {0042) = A3

7) Find Smaller of Two Ndmbers

Purpose: Place the smaller of the contents of memory locations 0040 and 0041 into
memory location 0042. Assume that 0040 and 0041 contain unsigned bin-
ary numbers.

Sample Problems:

a. {0040) = 3F
0041) = 2B

Result: {(0042) = 2B

b. (0040) = 75
(0041) = A8

Result: 0042) = 75

8) 24-Bit Addition

Purpose: Add the 24-bit number in memory locations 0040, 0041, and 0042 to the 24-
bit number in memory locations 0043. 0044, and 0045. The most significant
eight bits are in memory locations 0042 and 0045; the least significant eight
bits are in memory locations 0040 and 0043. Store the result in memory
locations 0046, 0047, and 0048 with the most significant bits in 0048 and
the least significant bits in 0046.

4-16



Sample Problem:

(0040) = 2A

0041) = 67

(0042) = 35

0043) = F8

0044) = A4

(0045) = 51

Result: (0046) = 22

(0047) = 0OC

(0048) = 87
that is, 35672A
+51A4F8
870C22

9) Sum of Squares

Purpose: Calculate the squares of the contents ot memory locations 0040 and 0041
and add them together. Place the resuit into memory location 0042. Assume
that memory locations 0040 and 0041 both contain numbers between 0 and
7 inclusive {0 < (0040} < 7 and 0 < (0041} < 7). Use the table of squares
from the example entitled Table of Squares.

Sample Problem:

{0040) = 03
{0041) = 06
Result: (0042} = 2D
thatis, 32+62= 9+ 36=45 (decimal
= 2D {hex

10) 16-Bit Twos Complement

Purpose: Place the twos complement of the 16-bit number in memory locations 0040
and 0041 {most significant bits in 0041) into memory locations 0042 and
0043 (most significant bits in 0043).

Sample Problems:

a. (0040} = 00
{0041) = 58

Result: {0042} = 00

(0043) = A8

b. 0040) = 72
0041) = 00

Result: (0042) = 8E

0043) = FF

4-17






Chapter b
SIMPLE PROGRAM LOOPS

The program loop is the basic structure that forces the CPU to repeat a sequence of in-
structions. Loops have four sections:

1) The initialization section, which establishes the starting values of counters, addres
registers {pointers), and other variables. i

2} The processing section. where the actual data manipulation occurs. This is the sec-
tion that does the work.

3) The loop control section. which updates counters and pointers for the next itera-
tion.

4} The concluding section. which analyzes and stores the results.

Note that the computer performs Sections 1 and 4 once, while it may perform Sections
2 and 3 many times. Thus, the execution time of the loop will mainly depend on the ex-
ecution time of Sections 2 and 3. You will want Sections 2 and 3 to execute as quickly
as possible; do not worry about the execution time of Sections 1 and 4. A typical pro-
gram loop can be flowcharted as shown in Figure B-1. or the positions of the processing
and loop control sections may be reversed as shown in Figure 5-2. The processing sec-
tion in Figure 5-1 is always executed at least once, while the processing section in
Figure 5-2 may not be executed at all. Figure 5-1 seems more natural. but Figure 5-2 is
often more efficient and avoids the problem of what to do when there is no data (a
bugaboo for computers, and the frequent cause of silly situations like the computer
dunning someone for a bill of $0.00).

The loop structure can be used to process entire blocks of data. To accomplish this, the
program must increment an address register (usually register pair HL) after each itera-
tion so that the address register points to the next element in the data block. The next
iteration will then perform the same operations on the data in the next memory loca-
tion. The computer can handle blocks of any length with the same set of instructions.

Implied addressing through register pairs {particularly HL) is the key to processing a
block of data with the Z80. since it allows you to vary the actual memory address by
changing the contents of registers. Indexed addressing, while longer and slower on the
Z80 than implied addressing, may be handy when processing more than one block of
data. Note that in the immediate and direct addressing modes, the addresses that are
used are completely determined by the instruction {and thus fixed if the program
memory is read-only).

5-1



Initialization
Section

——

Processing
Section

]

Loop Control
Section

Has

the task been

< completed
2

Conciuding
Section

Figure 5-1. Flowchart of a Program Loop

5-2




initialization
Section

....__>v

Loop Control
Section

Has

the task been

completed
?

Processing Concluding
Section Section

(= )

Figure 5-2. A Program Loop that Allows Zero lterations

EXAMPLES
Sum of Data

Purpose: Calculate the sum of a series of numbers. The length of
the series is in memory location 0041, and the series
begins in memory location 0042. Store the sum in
memory location 0040. Assume that the sum is an 8-bit
number so that you can ignore carries.

Sample Problem:

(0041} = 03
(0042) = 28
(0043) = 55
(0044) = 26
Result: (0040) = (0042) + (0043) + (0044)
= 28+56+26
= A3

There are three entries in the sum, since (0041)=03.

5-3

8-BIT
SUMMATION




Flowchart:

Note: (Pointer) is the contents of the memory location addressed by Pointer. Remember
that on the Z80, Pointer is a 16-bit address, while (Pointer} is an 8-bit byte of

data.
Source Program:
LD
LD

suB
SUMD: INC

Pointer = 41
Count = (Pointer}
Sum = 0

—

Pointer = Pointer + 1
Sum = Sum
+ {Pointer}

Y

Count = Count - 1

HL.41H
B.(HL

HL
A.(HL)

w

NZ,.SUMD
(40H).A

1
2

s
Yes

{40} = Sum

:COUNT = LENGTH OF SERIES

:SUM = ZERO

:SUM = SUM + DATA

:STORE SUM

5-4



Object Program:

Memory Address Memory Contents Instruction
(Hex) {Hex) {(Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 46 LD B.{HL)
0004 97 SuUB A
0005 23 SUMD: INC HL
0006 86 ADD A (HL)
0007 05 DEC B
0008 20 JR NZ.SUMD
0009 FB
000A 32 LD {40H), A A
000B 40
000C 00
000D 76 HALT

The initialization section of the program is the first three instructions which set the sum,
counter. and data pointer to their starting values.

Note that vou can use LD to transfer data between memory and any of the primary
general purpose registers (i.e.. A, B, C. D, E. H, U using the address in Registers H and L.
However, the only transfers allowed using direct addressing are those that move data to
or from the Accumulator (i.e.. LD A, {addr} and LD {addr),A — there 1s no instruction LD
E.{addr), for examplel.

The processing section of the program is the single instruction ADD A,{HL) which adds
the contents of the memory location being addressed by Registers H and L to the con-
tents of the Accumulator. and stores the result in the Accumulator. This instruction
does the real work of the program.

The loop control section of the program consists of the instructions INC HL and DEC B.
INC HL updates the pointer so that the next iteration adds the next number to the sum.
DEC B decrements the counter that keeps track of how manv iterations are left.

The instruction JR NZ causes a branch if the Zero flag is zero. The offset is a twos com-
plement number, and the count begins from the memory location immediately follow-
ing the JR instruction. In this case, the required jump is from memory location 000A to
memory location 0005. So the offset 1s:

0005 _ 05
-000A ~ +F6
B

If the Zero flag 1s one, the CPU executes the next instruction in sequence fie., LD
{40H).A). Since DEC B was the last instruction before JR to affect the Zero flag. JR
NZ.SUMD causes a jump to SUMD if DEC B does not produce a zero result, re.:

SUMD if B #0
PC =
PC+2ifB=0

(The 2 is caused by the two-word JR instruction).



The loop control sequence DEC followed by JR NZ is so common that the Z80 has a
special instruction that both decrements the counter and performs the jump. This in-
struction is DINZ, Decrement and Jump on Not Zero, which decrements Register B and
then jumps by the specified relative offset if the remainder is not zero. So we could
change the end of the example to:

DJUNZ SUMD
LD {40H).A
HALT
Which has the object form:
07 10 DJINZ SUMD
08 FC
09 32 LD (40H),A
0A 40
0B 00
ocC 76 HALT

This change saves one byte of memory and three clock cycles. Note, however. that you
must use Register B as the counter since this is the register that DIJNZ decrements.

Since the offset in ZBO relative jumps is only one byte long. such jumps can go no
further than 127 locations forward or 128 locations backward (actually 129 forward or
126 backward, since the count starts at the end of the 2-word instruction). Longer
jumps must use the JP instructions.

Most computer loops count down rather than up so that the Zero flag can serve as an
exit condition. Remember that the Zero flag 1s 1 if the result was zero and O if the result
was not zero. Try rewriting the program so that it counts up rather than down; which
method is more efficient?

The order of instructions is often very important. DEC B must come right before JR
NZ,SUMD. since otherwise the Zero result set by DEC B could be changed by another
instruction. INC HL must come before ADD A, {HL) or else the first number added to the
sum will be the contents of memory location 0041 instead of the contents of memory
location 0042.

16-Bit Sum of Data

Purpose: Calculate the sum of a series of numbers. The length of the series i1s in
memory location 0042 and the series itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 (eight least significant
bits in 0040).

Sample Problem:

(0042) = 03

(0043) = C8

(0044) = FA

(0045) = 96
Result: C8 + FA + 96 = 0268

0040) = 58

0041 = 02

5-6



Flowchart:

Pointer = 42
Count = (Pointer}
Suml = 0
Sumu = 0

__.,*

Pointer = Pointer + 1
Sumi = Sumi
+{Pointer)

Sumu =Sumu + 1

Count = Count -1

NO @
Yes
{40} = Suml
(41} = Sumu

Source Program:

LD HL.42H

LD B.{HL} :COUNT = LENGTH OF SERIES

suB A LSB'S OF SUM =0

LD C.A :MSB'S OF SUM =0
DSUMD: INC HL

ADD A HL) :SUM = SUM + DATA

JR NC.CHCNT

INC C :ADD CARRY TO MSB'S OF SUM
CHCNT: DJNZ DSUMD

LD HL.40H

LD {HLLA :STORE LSB'S OF SUM

INC HL

LD (HLL.C :STORE MSB'S OF SUM

HALT

5-7



Object Program:

Memory Address Memaory Contents Instruction
(Hex) {Hex) (Mnemonic)
0000 21 LD HL.42H
0001 42
0002 00
0003 46 LD B.{HL)
0004 97 suB A
0005 4F LD C.A
0006 23 DSUMD: INC HL
0007 86 ADD A HL)
0008 30 JR NC.CHCNT
0009 01
000A ocC INC C
000B 10 CHCNT: DJINZ DSUMD
000C F9
000D 21 LD HL.40H
000E 40
Q00F 00
0010 77 LD {HL). A
0011 23 INC HL
0012 71 LD HL).C
0013 76 HALT

The structure of this program is the same as the structure of the last one. The most sig-
nificant bits of the sum now must be initialized and stored. The processing section con-
sists of three instructions (ADD A.(HL): JR NC.CHCNT; and INC C}, including a Condi-
tional Jump.

JR NC,CHCNT causes a jump to memory location CHCNT if the Carry = 0. Thus, if there
is no carry from the 8-bit addition, the program jumps around the statement that incre-
ments the most significant bits of the sum. The relative offset is:

000B
-000A
01

The relative offset for DJNZ DSUMD is:
Q006 _ 06

000D ~ +F3
F9
INC C adds 1 to the contents of Register C. Note that INC BC is a 16-bit increment that
adds 1 to Register C and adds the resulting carry to Register B; INC C is an 8-bit incre-
ment that does not account for the carry.

5.8



Number of Negative Elements

Purpose: Determine the number of negative elements {most significant bit 1) in a
biock. The length of the block is in memory location 0041 and the block itself
starts in memory location 0042. Place the number of negative elements in
memory location 0040.

Sample Problem:

Result:

Flowchart:

{0041)
{0042}
{0043}
{0044)
{0045)
{0046)
0047)

{0040)

LT I (T 1
«Q
~

02. since 0043 and 0044 contain
numbers with an MSB of 1.

Pointer = 41
Count = {Pointer)
Nneg = O
——=

Pointer = Fointer + 1

is
{Pointer) <0 2
2

No

Nneg =Nneg + 1

Count = Count - 1

<>

Yes

{40) = Nneg

5-9




Source Program :

LD HL.41H
LD B.{HL) :COUNT = NUMBER OF ELEMENTS
LD Cc.0 :NUMBER OF NEGATIVES = ZERO
SRNEG: INC HL
LD A, (HL) :GET NEXT ELEMENT
AND A ;1S MSB ZERO?
JP P.CHCNT
INC C :NO. ADD 1 TO NUMBER OF NEGATIVES
CHCNT: DJNZ SRNEG
LD AC :STORE NUMBER OF NEGATIVES
LD {40H),A
HALT
Object Program:
Memory Address Memory Contents Instruction
{Hex) {Hex) (Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 46 LD B.{HL)
0004 OE LD Cc.0
0005 00
0006 23 SRNEG: INC HL
0007 7€ LD A (HL)
0008 A7 AND A
0009 F2 JP P.CHCNT
000A oD
0008 00
000C ocC INC C
000D 10 CHCNT: DJNZ SRNEG
000E F7
000F 79 LD AC
0010 32 LD {40H).A
0011 40
0012 00
0013 76 HALT

AND A simply sets the flag bits according to the contents of the Accumulator without
affecting those contents; OR A has the same effect. This is necessary since merely load-
ing the Accumulator does not affect the flags.

JP P.CHCNT requires a full 16-bit address. There is no relative jump on the Sign flag like
there is on the Carry and Zero flags.

Note that all we reallv want to do is test the value of bit 7 of the memory location ad-
dressed by Registers H and L. The Z80 has a special bit testing instruction, BIT, that is
designed specifically for this purpose. BIT sets the Z flag to the complement of the indi-
cated bit within the indicated register or memory location. For example, BIT 5.D will set
Z to 1 if bit b of Register D is zero, and to 0 if bit 5 of Register D is one. An implementa-
tion of this alternative is as follows.



Source Program:

LD HL.41H
LD B.(HL) :COUNT = NUMBER OF ELEMENTS
LD c.0 NUMBER OF NEGATIVES = ZERO
SRNEG: INC HL
BIT 7.HL) 1S NEXT ELEMENT NEGATIVE?
JR Z.CHCNT
INC C JYES, ADD 1 TO NUMBER OF NEGATIVES
CHCNT: DJNZ SRNEG
LD AC :STORE NUMBER OF NEGATIVES
LD (40H).A
HALT
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) {(Mnemonic)
0000 21 LD HL.41H
0001 41
0002 00
0003 46 LD B.{HL)
0004 OE LD c.0
0005 00
0006 23 SRNEG: INC HL
0007 CB BIT 7.(HL)
0008 7E
0009 28 JR Z.CHCNT
000A 01
0008 ocC INC C
000C 10 CHCNT: DJNZ SBNEG
000D F8
000E 79 LD A.C
000F 32 LD {40H). A
0010 40
0011 00
0012 76 HALT

BIT 7.(HL) sets the Z bit if bit 7 of the memory location addressed by Registers H and L is
zero, and clears the Z bit if bit 7 of that iocation is one. BIT does not affect any registers
or memory locations.

This program uses JR Z.CHCNT since no incrementing is necessary if the addressed bit
iS zero.

Still another approach would be to use the instruction RLC (HL) to shift the sign bit of
the data in memory to the Carry. The required jump would then be JR NC.CHCNT
However, this approach uses extra time (RLC {HL) takes 15 cycles as compared to the
12 needed by BIT 7.(HL)) and also changes the data in memory which may be needed
for other purposes. Note that these disadvantages are related: the extra time is needed
to return the result to the memory location.

Find Maximum

Purpose: Find the largest element in a block of data. The length of the block 1s in
memorv location 0041 and the block itself begins in memory location 0042.
Store the maximum in memory location 0040. Assume that the numbers in
the block are all 8-bit unsigned binary numbers.



Sample Problem:

041 = 05
0042) = 67
0043 = 79
(0044) = 15
(0045) = E3
0046) = 72

Result: {0040}

E3, since this is the largest of
the five unsigned numbers.

Fiowchart:

Pointer = 41
Count = {Pointer)
Max = 0

_____ﬁ

Pointer = Pointer + 1

Is
Max > {Pointer)
?
I No

Max = (Pointer

Count =Count - 1

Yes

{40) = Max

5-12



Source Program:

LD HL.41H :POINT TO COUNT
LD B.(HL) :COUNT = NUMBER OF ELEMENTS
SuUB A :MAXIMUM = MINIMUM POSSIBLE VALUE (ZERO)
NEXTE: INC HL
cP (HL) J1S NEXT ELEMENT ABOVE MAXIMUM?
JR NC.DECNT
LD A, (HL) 'YES, REPLACE MAXIMUM WITH ELEMENT
DECNT: DJNZ NEXTE
LD (40H).A :SAVE MAXIMUM
HALT
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) {Mnemonic)
0000 21 (D HL.41H
0001 41
0002 00
0003 46 LD B.(HL)
0004 97 suB A
0005 23 NEXTE: INC HL
0006 BE CP (HL)
0007 30 JR NC.DECNT
0008 01
0009 7E LD A HL)
000A 10 DECNT: DJUNZ NEXTE
0008 Fg
000C 32 LD {40H).A
000D 40
00CE 00
000F 76 HALT
The relative offset for JR NC,DECNT is:
000A
-0009
01
The relative offset for DJNZ NEXTE is:
0006 _ 05
-000C HF4
F9

The first three instructions of this program form the initialization section.

This program takes advantage of the fact that zero is the smallest 8-bit unsigned binary
number. When you set the register that contains the maximum value — in this case the
Accumulator — to the minimum possible value before you enter the loop. then the pro-
gram will set the Accumulator to a larger value uniess ali the elements in the array are

Zeros.

5-13



The program works properly if there are two elements, but not if there are one or none
at all Why? How could you solve this probliem?

The instruction CP (HL) sets the Carry flag as follows (ELEMENT is the contents of the
address in Registers H and L and MAX is the contents of the Accumulator):

CARRY = 1 if ELEMENT > MAX
CARRY = 0 if ELEMENT < MAX

1 CARRY =0, the program proceeds to DECNT and does not change the maximum. If
CARRY = 1. the program replaces the old maximum with the current element by ex-
ecuting the mstruction LD A,{HL)

The program does not work if the numbers are signed because negative numbers will
appear to be larger than positive numbers. The problem is somewhat tricky because
overflow could make the result appear to have the wrong sign.

Remember that overflow occurs when the magnitude of a result affects its sign bit. The
280 has a Parity/Overflow flag that indicates when twos complement overflow has oc-
curred. Arithmetic operations that result in overflow set this flag. You can then test its
value with the mstructions JP PELADDR (Jump on Parity Even — or Jump on Overflow)
or JP PO,ADDR (Jump on Parity Odd — or Jump on No Overflow). One thing you may
have to watch is that this Z80 usage is inconsistent with the B080A or 8085
microprocessors, which always use the P flag to indicate parity. The 8080A and 8085
microprocessors have no overflow indicator.

Justify a Binary Fraction
Purpose: Shift the contents of memory location 0040 left until the most significant bit
of the number is 1. Store the result in memory location 0041 and the number
of left shifts required in memory location 0042. if the contents of memory
location 0040 are zero, clear both 0041 and 0042.
Note: The process is just like converting a number to a scientific notanon‘::"flé)‘r'example:
0.0067 =5.7x 10

Sample Problems:

ER (0040) = 22
Result: (0041} = 88

(0042) = 02

b. (0040) = O1
Result: (0041) = 80

(0042} = 07

C. (0040) = CB
Result: {0041) = CB

0042) = 00

d. (0040) = 00
Result: {0041) = 00

0042y = 00

5-14



Flowchart:

Source Program:

CHKMS. JP

DONE: INC

Nshft = 0
Numb = {40}

Is m
significant bit of B
Numb 1
K
No

Shift Numb
left 1 it
Nshft = Nsht + 1

(41} = Numb
{42) = Nshft

L

B.0
HL.40H
A.(HL)

Z.DONE
M.DONE

AA
CHKMS
HL
(HL).A
HL
(HL).B

:NUMBER OF SHIFTS =ZERO

:GET DATA

:IS DATA ZERO?

YES, DONE

:DONE IF SIGN BIT IS ONE
:ADD 1 TO NUMBER OF SHIFTS
:SHIFT LEFT ONE BIT

:SAVE JUSTIFIED DATA

:SAVE NUMBER OF SHIFTS



Object Program:

Memory Address Memory Contents Instruction
{Hex) {Hex) (Mnemonic)
0000 06 LD 8.0
0001 00
0002 21 LD HL.40H
0003 40
0004 00
0005 7€ LD A HL)
00086 A7 AND A
0007 28 JR Z.DONE
0008 08
0009 FA CHKMS: JP M.DONE
000A 11
0008 00
000C 04 INC B
000D 87 ADD AA
000E Cc3 JP CHKMS
000F 09
0010 00
0011 23 DONE: INC HL
0012 77 LD (HL)L,A
0013 23 INC HL
0014 70 LD (HL).B
0015 76 HALT

JP M.DONE causes a jump to location DONE if the Sign bit 1s 1. This condition may
mean that the last result was a negative number or may just mean that its most signifi-
cant bit was 1 — the computer supplies only the results; the programmer must provide
the interpretation.

ADD A.A adds the number in the Accumulator to itself. The program uses this instruc-
tion, rather than RLA or RLCA, because ADD A affects the Sign bit while RLA and RLCA
do not.

We could reorganize this program so as to eliminate an extraneous JP and use relative
rather than absolute jumps. One reorganized version would be:

LD B.0 :NUMBER OF SHIFTS = ZERO
LD HL.40H
LD A HL) .GET DATA
AND A :IS DATA ZERO?
JR Z.DONE :YES. DONE
DEC B :ADJUST NUMBER OF SHIFTS BACK ONE
CHKMS: INC B :ADD 1 TO NUMBER OF SHIFTS
RLA SHIFT LEFT ONE BIT
JR NC.CHKMS :CONTINUE IF MSB NOT ONE
RRA :ADJUST DATA BACK
DONE: INC HL
LD (HLLA .SAVE JUSTIFIED DATA
INC HL
LD (HLL.D :SAVE NUMBER OF SHIFTS
HALT

Show that this version also works. What are its advantages and disadvantages as com-
pared to the previous program?



PROBLEMS

1) Checksum of Data

Purpose: Calculate the checksum of a series of numbers. The length of the series is in
memory location 0041 and the series itself begins in memory location 0042,
Store the checksum in memory focation 0040. The checksum is formed by
Exclusive-ORing all the numbers in the series together.

Note: Such checksums are often used in paper tape and cassette systems to ensure
that the data has been read correctly. The calculated checksum is compared to
the one stored with the data — if the two checksums do not agree. the system
will usually either indicate an error to the operator or automatically read the data
again.

Sample Problem:

0041) = 03
0042) = 28
{0043) = 85
{0044) = 26
Result: (0040) = (0042)@ (0043) @ (0044)
= 28D55@26
= 00101000
@ 01010101
01111101
@ 00100110
01011011
= 5B

2) Sum of 16-Bit Data

Purpose: Calculate the sum of a series of 16-bit numbers. The length of the series is in
memory location 0042 and the series itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 (eight most significant
bits in 0041). Each 16-bit number occupies two memory locations, with the
eight most significant bits in the higher address. Assume that the sum can
be contained in 16 bits.

Sample Problem:

0042) = 03
0043) = F1
(0044) = 28
0045) = 1A
(0046) = 30
0047y = 89
(0048) = 4B
Result: 28F1 + 301A + 4B89 =A494
(0040) = 94
{0041) = A4

5-17



3) Number of Zero, Positive, and Negative Numbers

Purpose: Determine the number of zero, positive {most significant bit zero but entire
number not zerol, and negative (most significant bit 1) elements in a block.
The length of the block is in memory location 0043 and the block itself starts
in memory location 0044. Place the number of negative elements in memory
location 0040, the number of zero elements in memory location 0041, and
the number of positive elements in memory location 0042.

Sample Problem:

(0043} = 06
(0044} = 68
(0045) = F2
(0046) = 87
0047) = 00
{0048) = 59
(0049) = 2A
Result: 2 negative, 1 zero, and 3 positive, so
(0040) = 02
0041} = 01
(0042) = 03

4) Find Minimum

Purpose: Find the smallest element in a block of data. The length of the block is in
memory location 0041 and the block itself begins in memory location 0042,
Store the minimum in memory location 0040. Assume that the numbers in
the block are 8-bit unsigned binary numbers.

Sample Problem:

(0041 = 05
(0042) = 67
0043) = 79
(0044) = 15
0045) = E3
(0048) = 72
Result: {0040} = 18, since this is the smallest of the

five unsigned numbers.

5) Count 1 Bits

Purpose: Determine how many bits in memory location 0040 are one and place the
result 1n memory location 0041.

Sample Problem:
{0040}
Result: (0041)

3B =00111011
05

it

I



Chapter 6
CHARACTER-CODED DATA

Microprocessors often handle character-coded data. Not only do keyboards,
teletypewriters, communications devices, displays. and computer terminals expect or
provide character-coded data; many instruments, test systems, and controllers also re-
quire data in this form. The most commonly used code is ASCIl. Baudot and EBCDIC are
found less frequently. We will assume all of our character-coded data to be 7-bit ASCH
with the most significant bit zero (see Table 8-1).

1

Some principles to remember in handling ASCli-coded data are: HANDLING
The codes for the numbers and letters form ordered sub-se- 223: IN

2)

quences. The codes for the decimal numbers are hex 30
through 39, so that you can convert between decimal and
ASCH with a simple additive factor. The codes for the upper-case letters are hex 41
through BA, so that you can do alphabetic ordering by sorting the data in increas-
ing numerical order.

The computer draws no distinction between printing and non-printing characters.
This distinction is made only by /O devices.

An ASCII device will handle only ASCH data. To print a 7 on an ASCH printer. the
microprocessor must send hex 37 to the printer; hex 07 is the ‘bell’ character.
Similarly, the microprocessor will receive the character 9 from an ASCH keyboard
as hex 39; hex 09 is the 'tab’ character.

Some ASCIl devices do not use the full character set. For example, control charac-
ters and lower-case letters may be ignored or printed as spaces or question marks.

Some widely used ASCIl characters are:
0A, g - line feed {LF)

0D16 - carriage return {CR)

2016 - space

3F16 - ? {question mark}

7F16 - rubout or delete character

Each ASCH character occupies seven bits. This allows a large character set but is
wasteful when the data is limited to a small subset such as the decimal numbers.
An 8-bit byte, for example, can hold only one ASCll-coded decimal digit, while ¢
can