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Preface

* Have you ever wanted to know how the CP/M® operating system really 
works?

* Would you like to use C P/M ’s hidden power in your own BASIC or 
assembly language programs?

* Are you a BASIC programmer who would like to learn assembly lan
guage, but have been told that it’s too complicated?

* Do you need to modify CP/M  to work with a particular printer or some 
other I/O  device?

* Do you want to write programs that will work with any version of 
CP/M ?

If the answer to any of these questions is yes, then this book, with its 
unique approach to teaching both CP/M  systems calls and 8080 assembly 
language programming, is for you. Starting with simple three- and four-line 
programs, we ease you into the “soul” of CP/M : the universal system calls 
that make CP/M  the world’s most popular microcomputer operating system. 
Gradually and easily, you’ll learn how to write programs to control all your 
I/O  devices, including the disk system, and, also, perform a variety of other 
functions.

Remember, you don’t need to know how to program in assembly language 
to understand this book! We’ll teach you all the 8080 assembly language that 
you will need to know and, since you’ll be learning the system calls at the 
same time, your programs will be able to perform powerful functions from 
the very beginning.

C P/M  is the registered trademark of Digital Research, Inc., Pacific Grove, CA



Soul of CP/M®

You’ll also learn how to use these powerful system calls in your BASIC 
programs, how C P/M  manages disk files, and how to modify C P/M ’s 
“BIOS” (Basic Input/O utput System) to work with different I/O  devices, so 
that you can customize CP/M  for a particular printer or other device.

All in all, if you want to do more with your C P/M  system than simply run 
applications programs, then this book is for you!

M it c h e l l  W a it e  
a n d  R o b e r t  La f o r e
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Introduction

SOUL OF CP/M®

What do we mean by the “Soul” of CP/M ? One of C P/M ’s most pleasant 
features is its ease of use. The loading of applications programs, the use of 
such C P/M  functions as DIR, STAT, and PIP, and the use of higher-level 
languages such as BASIC or FORTRAN, are all simple and straightforward
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in the C P/M  environment. In fact, this efficient facade is all that many users 
will ever know about CP/M . And yet, below this smooth and easy-going sur
face, CP/M  has a whole different level; a powerful inner structure that is 
easily used if you know how, which can control your computer’s input and 
output devices, including the disk drives, with a precision and a versatility 
that is impossible to obtain from a higher-level language. We call this deeper 
and more powerful level the “Soul” of CP/M  and, in this book, you will learn 
all about it.

WHO IS THIS BOOK FOR?

This book is aimed primarily at BASIC or other high-level language pro
grammers who are working with a CP/M  system and need to do more than 
they can with their higher-level language. If you need to write custom I/O  
routines, handle disk records in a way not accessible to your high-level lan
guage, or use an assembly language routine to add more power or speed to 
your programs, this book will teach you how to do it.

This book is also aimed at the assembly language programmer who is 
either not familiar with 8080 assembly language, or who needs to know more 
about how to program in the C P/M  environment.

WHAT THIS BOOK WILL TEACH YOU

First, this book teaches how to use C P/M ’s built-in system calls. These 
system calls are the key to programming in a CP/M  system, since they allow 
your program to communicate with a wide variety of I/O  devices, using a 
universal format that works on any CP/M  system. Once you’ve learned how 
to use these calls, you are freed of the restraints imposed by BASIC or what
ever other high-level language you are using. You can directly access the 
video screen, the keyboard, the disk system, and other I/O  devices, so that 
they respond the way you want them to, not the way the designers of your 
particular language decided they should.

Second, you will learn all about the CP/M  disk system. You will learn how 
it is organized, and how you can take control of it for use in your own pro
grams.

Third, you will learn how to “customize” C P/M  to work with different I/O  
devices. Since there is no universally accepted format for the communication

12



Introduction

between I/O  devices and computers, it is almost always necessary to write a 
special program called a “driver” in order to make your computer work with 
a new I/O  device. C P /M ’s solid, well-organized, I/O  system makes this easy, 
and we teach you how to do it.

Fourth, and this is thrown in as a sort of fringe benefit, you will learn 8080 
assembly language. (If you already know it, that’s fine too. We’ve placed all 
the descriptive text about assembly language in distinctive boxes, which are 
easy to skip over if you wish.) As you learn assembly language, you will also 
be learning the use of the CP/M  programs DDT, LOAD, and ASM.

8080, 8080A, 8085, Z-80: WHAT’S THE DIFFERENCE?

A “chip” is the tiny slice of silicon which contains the thousands of transis
tors that make up a microprocessor. The exact design of this chip determines 
the “instruction set” of the computer; that is, it determines what commands 
you have to give it to make it work. Different chips are given different names. 
One of the most famous is the “8080” chip manufactured by Intel Corpora
tion. After this chip had been in production for a time, Intel improved it by 
coming out with a faster version called the 8080A. Later, Intel added the 
8085 chip, which is very similar to the 8080 and 8080A, except for some 
improvements in the way that it handles interrupts.

Throughout this book, when we refer to the “8080” microprocessor chip, 
we are also referring to the 8080A and the 8085. The differences are relatively 
minor and, in any case, only apply to the interrupt system which we will not 
be concerned with.

Also, this family of chips is “upward compatible.” This means that any 
program written for an earlier chip (the 8080, say) will run on any later chips 
(the 8080A and the 8085). Thus, even if we used the interrupt system, by 
programming for the 8080, we ensure that our programs will run not only on 
the 8080 but, also, on the 8080A and the 8085 as well.

The Z-80 is a chip manufactured by Zilog. Although it is also upward 
compatible with the 8080, it has a considerably enlarged instruction set. 
Generally speaking, programs written for the 8080 will run on the Z-80 as 
well, although there are exceptions.

What it comes down to is this. The programs that you learn to write for the 
8080 microprocessor will also run on the 8080A, the 8085, and (usually) on 
the Z-80. So, no matter which of these chips is used in your C P/M  system, 
this book will tell you what you need to know to write working programs.

13
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WHAT YOU NEED TO KNOW TO GET THE MOST OUT OF 
THIS BOOK

Before you start this book, you should have some minimal experience with 
a CP/M  system, including the use of DIR, PIP, and STAT. (If you need to 
learn CP/M  from the ground up, consult C P / M  Primer, by Stephen M urtha 
and Mitchell Waite, and C P / M  Bible, by Mitchell Waite and John 
Angermeyer.) You should also have at least a nodding acquaintance with a 
text-editor of some sort, either the ED program that comes with C P/M  or 
another of the many popular text-editors, such as WordStar®.

Also, of course, you need access to a C P/M  system, with the programs 
ASM, DDT, LOAD, and your word-processing program.

This book will not teach you all of the bells and whistles of 8080 assembly 
language programming. Since our emphasis is on CP/M , we will teach you 
only enough assembly language to handle the examples in the book. 
Although this is actually a fairly large chunk of assembly language, if you 
want to go on and write your own complex applications programs, you 
should read a good 8080 assembly language primer, such as 8080A-8085 
Assembly Language Programming, by Lance A. Leventhal.

You should probably also have some experience with some programming 
language, such as BASIC, FORTRAN, or Pascal, before you start this book, 
so that you are familiar with fundamental programming concepts.

HOW THIS BOOK IS ORGANIZED

Chapter 1 is an introduction to C P/M ’s organization. You’ll learn why 
C P/M  can run on many different computers and why many different pro
grams can run on CP/M . The way CP/M  fits into memory will also be 
explained. Also, we’ll talk a little about how 8080 assembly language works, 
and how DDT can be used to write simple programs.

In Chapter 2, we’ll start by writing some very short routines to access the 
simplest of the systems calls, starting with outputting a single character to the 
video screen. At the end of the chapter, we’ll write an actual program which 
can be executed directly from CP/M , like any other program. Every step of 
everything you need to do will be explained in detail, so that no matter how 
new all this is to you, you can’t go wrong!

WordStar is the registered trademark of MicroPro™ International Corp., San Rafael, CA
94901
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Chapter 3 will advance further into the realm of system calls and you’ll 
learn how to handle strings of text, both for input from the keyboard and 
output to the screen. Throughout Chapters 2 and 3, you’ll also be learning 
the rudiments of assembly language, using DDT as a fast and easy way to try 
out the small programs needed for the examples.

In Chapter 4, we’ll introduce you to ASM, the C P/M  assembler, which 
simplifies the writing of larger assembly language programs. You’ll also write 
and operate a useful program—one which translates hexadecimal numbers 
(the kind the computer uses) to decimal numbers (the kind humans use) and 
makes use of the system calls you’ve been learning. (In case you’re not famil
iar with the hexadecimal numbering system, it’s described in detail in Appen
dix A.)

Chapters 5 and 6 cover the disk system. You’ll learn about the fundamen
tal building blocks of disk storage: records and files, and how to manage 
them. You’ll also write a variety of programs making use of the disk system 
calls. These programs will be used to write files and retrieve them from the 
disk in both sequential and random format, and there will even be a program 
to count the number of lines and pages in a file. As a bonus, we’ll delve into 
the mysterious world of C P/M  file directories and you’ll learn how to “res
cue” a file which has been mistakenly erased!

Chapter 7 covers a larger program in detail. This is “WORDS”, which 
counts the number of words in a text file. This program will make use of 
“wildcards” (the use of * and ? in a program name to represent unknown 
characters). It will also introduce the idea of “stack management,” so that 
you can avoid a variety of pitfalls in your programming.

Chapter 8 deals with how to use system calls and assembly language from 
BASIC. You’ll learn how to “call” assembly language routines from BASIC, 
how to pass numbers back and forth between BASIC and your assembly 
language routine, and where to put all these routines in memory. As exam
ples, we’ll use routines that allow you to use hexadecimal numbers in BASIC 
and allow you to convert BASIC string variables from lowercase to uppercase 
letters. Although BASIC is used as the example language here, many of the 
techniques described are applicable to other high-level languages as well.

In Chapter 9, we explain how to go about modifying your C P/M  to use 
different I/O  devices. A specific example—writing a driver for a particular 
printer—will be described in detail.

Finally, a number of appendices are given that cover hexadecimal notation 
and provide summaries of all CP/M  system calls, 8080 instructions, and 
DDT commands. They also include some useful and entertaining programs 
which make use of the material covered in the book.
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HOW TO ENJOY THIS BOOK

This book starts out easily and teaches you more and more as it goes along. 
For this reason, don’t try to understand it by starting in the middle some
where (unless you’re already a hot 8080 and CP/M  programmer). Start at the 
beginning, take it easy, and before you know it, you’ll be doing things with 
your computer that you never dreamed were possible!

16



CHAPTER 1

The Big Picture
How C P / M  Is Organized

In this chapter, we’re going to talk, in very general terms, about CP/M  
itself—how it does what it does and why it’s such a popular operating system. 
Then, we’ll present a few fundamental facts about how the 8080 microproces
sor works to prepare you for the introduction to 8080 instructions in the next
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chapter. And, finally, we’ll briefly discuss DDT, a program that lets you write 
short assembly language programs quickly and easily.

The idea of this chapter is to provide you with a sort of aerial view of the 
terrain we’re going to cover. Don’t worry about specific details yet. What 
we’re interested in here is concepts: what an operating system is, how it does 
what it does, how the computer itself operates, and why we need a program 
like DDT. In the next chapter, we’ll get down to specific examples and, then, 
the broad outlines described in this chapter will become clearer.

WHAT IS AN OPERATING SYSTEM, ANYWAY?

If you are using a small microcomputer with only a cassette system to store 
your programs, you probably don’t even need an operating system. Generally 
speaking, a language like BASIC is built into these small computers, and by 
using BASIC’s CSAVE AND CLOAD commands or their equivalent, you 
can save and load programs from cassettes in much the same way that you 
would record and play back a musical selection on a tape recorder.

However, when you add a disk system to your computer, things get a little 
more complicated. Now you can have dozens or even hundreds of programs 
sitting on a diskette, and you need a way to load a particular one, or list what 
they all are, or delete one, or rename it. Operating systems were originally 
devised to handle these kinds of housekeeping chores, and that is all many 
operating systems do. CP/M , however, goes beyond these simple tasks.

WHAT’S SO GREAT ABOUT CP/M?

CP/M  is by far the most popular operating system ever devised for 
microcomputers. Why is this? One of the main reasons can be summed up in 
a single word: transportability. “Transportability” means that something can 
be moved somewhere else and still work in the same way. C P/M  has two 
kinds of transportability, both of which contribute to its popularity.

Program Transportability

An analogy may make clearer what we mean by “program transportabil
ity.” Imagine an international chain of hotels, scattered across the globe in 
the major cities of the world. In order that the typical American traveler will 
feel at home in all of these hotels, they are all constructed and operated so as

18



The Big Picture

to be as similar to one another as possible. Thus, the furnishings, the interior 
decorations, and the food are the same in any city.

For example, if you’re staying at one of these hotels in Hong Kong and 
you order a chicken sandwich, you get a chicken sandwich that is identical, 
as far as you can tell, to the one you would get if you ordered it in San 
Francisco, or Madrid, or Bangkok. Of course, even though the sandwich is 
the same, the way that it is made may vary a great deal from one city to the 
next. In San Francisco, the hotel employees get their chicken from a restau
rant supply house. In Madrid, they get it from a man who drives up to the 
hotel with a truck full of chickens. And, in some cities, the hotel employees 
have to run out into the street and catch a chicken to make the sandwich.

We can think of these hotels as having two levels: the guest’s level, where a 
chicken sandwich is always the same, and the hotel employee’s level, where 
the making of the sandwich may be very different, depending on the location 
of the hotel.

A program running on a CP/M  system is like a guest staying at one of our 
hotels. The program “thinks” that it is operating in the same environment, 
even though it may be runnning one day on one computer and the next day 
on a very different computer. It’s the job of the operating system, as it is the 
job of the hotel employees, to make the program “feel at home” (that is, 
operate correctly), wherever it is. One way that C P/M  does this is through 
the use of “system calls.”

System Calls

The “system call” is the connection between a program operating in a 
CP/M  environment and the I/O  devices that the program wants to use. It is 
analogous to the hotel guest picking up his phone and calling room service. 
The system call is essentially a CALL instruction to a subroutine in the 
input/output section of the operating system. (CALL means “execute sub
routine” and is similar to a GOSUB in BASIC.) Since these CALLs are all 
made in exactly the same way, no matter what machine a program happens 
to be operating on, the program thinks it is operating in the same environ
ment and will work on many different computers. This is what we mean by 
program transportability.

System calls do such things as printing a single character on the screen, 
reading a character from the keyboard, and reading and writing records 
to disks. In fact, system calls can handle all the input and output in the 
C P/M  system. Since these calls must be made using instructions in 8080 
assembly language, they are usually used in assembly language programs,

19
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but they can also be used from BASIC or other higher-level language pro
grams if you know how. (We’ll cover the use of system calls from BASIC 
in Chapter 8.)

Machine Transportability

The subroutine that a particular program calls will be different, depend
ing on the actual physical characteristics of the I/O  device the program 
wants to use, just as the hotel employees and their particular method of 
obtaining a chicken will be different in different cities. This brings us to the 
second kind of transportability that makes C P/M  so versatile: machine 
transportability.

The only part of the CP/M  operating system that actually interracts with 
physical input/output devices is called the BIOS, for “Basic Input/O utput 
System.” It consists of a number of short separate subroutines, each of which 
performs an input or output operation on a specific device. These subrou
tines are easy to modify if a particular piece of I/O  equipment (such as a 
printer or video display) is changed. Thus, it is easy to reconfigure CP/M  to 
make it work with different equipment and on different computers. We’ll talk 
more about the BIOS later.

The diagram shown in Fig. 1-1 illustrates symbolically the relationship of 
CP/M  to its programs and to its operating environment.

User’s Program

System
calls.

Interchangeable with 
other user’s programs.

System calls are always 
the same.

/ ... / / /
BDOS Y
BIOS/ /

Interchangeable 
with many

This part ot CP/M is always 
the same.

■ This part of CP/M changes 
to match particular I/O 
devices.

different
computers. I/O Devices 

(tape, keyboard, etc.)

■ Interchangeable with many 
different brands of 
I/O devices.

Fig. 1-1. How CP/M is organized.
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C P /M ’s Golden Rule

The preceding ideas can be summarized in what is sometimes called 
C P/M ’s Golden Rule: “A call to BDOS on one machine is a call to BDOS on 
all machines.” Or, using our hotel analogy, “A chicken sandwich in one city 
is a chicken sandwich in all cities.” (We’ll explain what “ BDOS” means in 
the next section.)

THE PARTS OF CP/M

The CP/M  operating system is divided into several parts, each of which 
occupies a different area of memory. In this section, we’ll briefly review these 
different parts, what they do, and where they’re located in memory. The dia
gram in Fig. 1-2 shows the various parts of the software of a C P/M  system, 
and where they fit in the computer’s memory.

First, let’s talk about the TPA, or transient program area. This is the part 
of memory where the user’s program goes. This program could be a language 
interpreter, like BASIC, or it could be an assembly language program written 
by a user, or it could be one of the utility programs that are part of the CP/M  
system, like PIP or STAT.

On most CP/M  machines, the TPA starts at location 100H, meaning 100 
in hexadecimal notation, which is 256 in decimal. (If you don’t know any-

MEMORY ORGANIZATION—64K SYSTEM 
(Addresses may be different 

in different systems)

Top of memory

TPA

/ /

BIOS
/

BDOS
/

CCP
/

l l l l l l l l l l l l l l

User’s
program

/

Zero page
/

FFFF hex 

F200 hex

E400 hex

DC00 hex

0100 hex

0000 hex

FDOS

Fig. 1-2. The parts of CP/M.
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thing about the hexadecimal numbering system, now is the time to become 
familiar with it by reading Appendix A.) The size of the TPA is dependent on 
how much memory your machine has. In a 64K system (the maximum for 
most systems running CP/M ), the TPA will be about 56,000 (decimal) bytes 
long. (It will probably be a day or two until you are writing programs that 
large!)

The next part of the CP/M  system is called the CCP, for Console Com
mand Processor. This does just what the name says. It deals with commands 
typed in by the user from the console keyboard. Thus, every time you see the 
“A > ” prompt, it is the CCP that printed it and the CCP is waiting for you to 
type something in on the keyboard. When you do type something in, the CCP 
will either deal with your command itself, if it is a “resident command” like 
DIR or TYPE, or it will call another program if it is a “transient command” 
like STAT or PIP. The CCP might start at around DC00 hex, in a 64K sys
tem, and will occupy about 2000 (decimal) bytes.

Although the CCP must listen to your commands that are typed at the 
keyboard, read and write files to the disk system, and send messages to the 
screen, it doesn’t carry out these actual input/output operations itself. For 
that, it must call on the next part of the C P/M  operating system, the BDOS.

The BDOS, for “Basic Disk Operating System,” is located just above the 
CCP in memory. BDOS handles all requests for input and output made by 
your program. This includes the reading and writing of information from and 
to disks, the maintaining of a directory of disk files, and the allocation of the 
space that these files occupy on the disk.

BDOS also acts as a sort of intermediary for system calls that you make to 
nondisk devices such as the keyboard and the video console. Sometimes 
BDOS does not do very much with these calls itself, but merely passes them 
along to the BIOS portion of C P/M  (which we’ll describe next). Other times, 
it needs to do considerable work to prepare data for the BIOS. For instance, 
if you tell BDOS to print a string of characters on the video screen (the “Print 
String” system call), BDOS will break the string up into individual characters 
before sending it on to the BIOS, since the BIOS driver routine only deals 
with one character at a time.

Like the CCP, BDOS is entirely independent of the particular computer or 
disk-system it is being run on, so it does not have to be changed when it is 
moved to a different system.

Finally, we come to the part of C P/M  which actually communicates with 
the outside world: the BIOS (for Basic Input/O utput System). The BIOS, as 
we’ve mentioned before, contains the subroutines that actually communicate 
with I/O  devices like the disk drives and the console and the printer. It is
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these subroutines which must be modified when the hardware is changed in a 
particular system. BIOS reaches all the way to the top of memory: FFFF 
(hex), or 65535 (decimal), in a 64K system.

Since the BIOS is the only part of the C P/M  system that communicates 
with the physical devices in the outside world, it’s the only part that has to be 
changed if the devices are changed. The systems calls, by which a program 
communicates with BDOS, are always the same, no matter how BIOS must 
be rewritten to accommodate some strange new printer or disk drive.

BDOS and BIOS together are sometimes called “FDOS.” This stands for 
“Full Disk Operating System.” When you do a “cold boot”—by hitting the 
reset switch on your computer, for example—both the CCP and FDOS are 
loaded into the computer’s memory from the disk. When you do a “warm 
boot”—by hitting the control-c key—only the CCP is loaded in.

These various parts of CP/M  can also be thought of as being arranged in 
layers, like an onion (Fig. 1-3). On the outside is the user, who communicates 
with the CCP. Or, there is the user’s program. Either the CCP or the user’s 
program communicates with the BDOS. BDOS, in turn, communicates with 
BIOS. And the BIOS, finally, communicates with the actual I/O  devices, like 
the disk drives and the console.

There is another section of memory which, although small, is very impor
tant in the operation of the CP/M . This is the so-called “page zero”, or those 
addresses from 0 to FF (hex) that are located just below the start of the TPA. 
The CP/M  uses this area mainly for passing information of various kinds 
back and forth between the CP/M  system and the user’s program. For 
instance, locations 6 and 7 contain the lowest address used by the CCP. This 
lets a program figure out just how much room it has for itself in memory.

■ Direct connection 
to I/O devices.

Fig. 1-3. CP/M is like an onion.
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(For example, BASIC can look at these locations and determine how large a 
user program it can accept). We’ll cover other uses of page zero as we explore 
the workings of the disk system.

8080 ARCHITECTURE

In this section, we’re going to describe a few fundamentals about how com
puters work on the assembly language level. (If you’re already familiar with 
assembly language, you can skip to the next section.)

For a programmer, a computer can be thought of as consisting of two 
parts: the memory and the CPU. The CPU, or Central Processing Unit, con
tains a number of registers. We’ll talk about memory first and, then, describe 
what registers are and what they do.

Memory

As you already know, a computer’s memory consists of a large number of 
things called “bytes” (65,536 of them in a 64K system). On the kind of com
puters that we will be talking about (those that run standard CP/M ), each of 
these bytes consists of 8 bits, where each bit is represented by either a binary 
digit 1 or 0. All computer programs, and much of the data they operate on, 
are stored in memory; that is, they occupy a number of these memory loca
tions. You can think of these memory locations as little boxes, each with an 
“address” ( a number between 0 and FFFF hex) to identify it, that are capa
ble of holding one 8-bit byte.

Fig. 1-4 shows how a section of memory might look if the word “CAT” 
was stored in it in ASCII characters. This section of memory may look 
“upside down” to you, with the low numbers above the high numbers. Unfor
tunately, there are two more or less standard ways of showing memory. Big 
blocks of memory are shown with the high numbers on top, as in the diagram 
of BIOS, TPA, etc., that is given in Fig. 1-2. But when small sections of mem
ory are shown, the small numbers are at the top because that’s the way they 
appear on program listings (the same as do the line numbers in a BASIC 
program).

What do the numbers 43, 41, and 54, stored in the memory locations, 
mean? If you look at the table of ASCII values given in the Appendix D, 
you’ll see that 43 hex is the ASCII value for “C,” 41 is the value for “A,” and
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(Memory continues on down to 0000 hex)

Memory
locations

I
/ /

/
43

/
41

/
54 /

/

2000 hex

2001 hex

2002 hex

2003 hex

2004 hex

Addresses of 
—  memory 

locations.
(Memory continues up to  FFFF hex.)

Fig.1-4. Memory.

54 is the value for “T.” The ASCII code is simply the way that the computer 
stores characters. (It stands for “American Standard Code for Information 
Interchange.”) Since the computer must always think in terms of numbers, it 
translates all characters (letters, punctuation, etc.) into two-digit hex num
bers.

Numbers that aren’t ASCII characters can also be stored in memory. One 
byte (one memory location) can hold a number between 0 and 255 decimal (0 
to FF hexadecimal). Two bytes (two memory locations) used together can 
hold numbers from 0 to 65535 decimal (0 to FFFF hex.)

One of the important differences between assembly language (we’ll abbre
viate it A-L from now on) and a high-level language, such as BASIC, is that 
when you program in the higher-level language, you don’t need to know 
exactly where in memory a particular program or variable is stored. The lan
guage processing program (such as the BASIC interpreter) takes care of 
deciding where to put the program and its variables. In A-L, on the other 
hand, the programmer must decide himself where to put everything—this 
instruction will go in this memory location, that variable will go in that mem
ory location, and so on. For this reason, all the addresses (which is the same 
as saying memory locations) are numbered, starting at 0 and going up to 
FFFF (hex).
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The program, which consists of a list of instructions, each of which is rep
resented by one or more two-digit hexadecimal numbers, goes in specific 
memory locations just as numbers and ASCII characters do. The instructions 
in the 8080 instruction set will occupy either one, two, or three memory loca
tions, depending on what instruction it is.

The drawing in Fig. 1-5 shows three instructions stored in memory. 
They’re part of a program, but you can’t see the rest of the program because 
we’re only looking at a very small section of memory. The instructions are 
MOV E,A, CALL 5, and POP D. Don’t worry if they don’t mean anything to 
you at this point; we’ll be describing some actual instructions in detail in the 
next chapter. There are two things to notice here. First, each instruction is 
represented by one or more hex numbers (MOV E,A is represented by the 
number 5F, CALL 5 by the three numbers CD, 05, 00, and POP D by the 
number D l). Second, these numbers occupy specific places in memory; MOV 
E,A occupies location 018E, and so on. MOV E,A and POP D each occupy 
one memory location, while CALL 5 occupies three locations.

Registers

There is another place a program can store data; it is in special hardware 
devices called “registers.” A register is something like a memory location, but 
it is part of the microprocessor “chip,” and can therefore be operated on

(Memory continues down to 0000 hex.)

Memory
locations

/ /

D1
/

CD
/

05
/

00
/

5F
/

0192 hex 

0191 hex 

0190 hex 

018F hex 

018E hex

r instructions

POP D

CALL 5

MOV E.A

Addresses1 
of memory 
locations.

(Memory continues up to FFFF hex.)

Fig. 1-5. Three instructions stored in memory.
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faster than a memory location, which is on a separate memory chip located 
some distance from the microprocessor. A register also usually has some spe
cial attributes that memory locations don’t have.

A microprocessor “chip,” such as an 8080, consists mainly of registers and 
the instruction-decoding circuits that let the chip know what we want to do 
when we execute a specific instruction.

You can think of registers as the work areas where data are processed. 
Data are stored in the memory, and the instructions for handling the data— 
the program—are also stored in the memory. We execute the instructions in 
the program one after the other, like items on a list. Suppose we want, for 
example, to add together two numbers that are stored in memory. Our pro
gram will contain an instruction that will take the first number out of mem
ory and will put it in one of the registers. The next instruction will take the 
second number from memory and add it to the contents of the register. The 
third instruction in our program might cause the result of the addition to be 
put back into yet another memory location or, perhaps, it might send it to an 
output device like the video screen. The point is that the addition operation 
was carried out in a register, not in memory.

In the 8080 chip, there are 7 main registers for handling data. (There are a 
few others, but we’ll ignore them for the moment.) These 7 registers are called 
the A, B, C, D, E, H, and L registers.

Of these, the most important is the A-register. The “A” stands for “accu
mulator.” In the early days of computing, many computers had only one 
register. This was used to hold the results of all arithmetic calculations, in the 
same way that your pocket calculator keeps its arithmetic results in a single 
register (whose contents you can see in the little window). Since this register 
“accumulates” the results of previous arithmetic calculations, it was called 
the accumulator. The A-register in the 8080 still handles all of the 8-bit arith
metic (that is, numbers up to FF hex or 255 decimal), such as addition and 
subtraction, as well as logical ANDs, ORs, shifts, and the like.

Bytes of data can be moved from the A-register to memory and back, and 
also between the A-register and the other 8-bit registers.

The other registers, B, C, D, E, H, and L, can function as temporary stor
age places for 8-bit (one byte) quantities. They can also be used in a different 
way—as register pairs to hold 16-bit (two-byte) data quantities. When used in 
this way, the B and C registers are placed together to form the BC register, 
the D and E registers are placed together to form the DE register, and the H 
and L registers are placed together to form the HL register. The 16-bit data, 
which are numbers from 0 up to FFFF hex (65535 decimal), can be trans
ferred between these register pairs, or between specific register pairs and
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pairs of memory locations. The diagram given in Fig. 1-6 shows the principle 
8080 registers.

Don’t worry if all this talk about registers seems a bit obscure at this point. 
In the next chapter, we’ll introduce you to some specific operations with reg
isters and their uses will become clearer. For a more complete picture of the 
registers, look in Appendix C for a “Summary of 8080 Instructions.”

To summarize, the principal parts of the 8080 microprocessor are seven 
registers and a large number (up to 65536) of memory locations. This is 
shown in Fig. 1-7.

f= ^ = Q

8 bits wide ► 8 bits wide
--------------- 16 bits wide -----------------

Registers

A
/

B c

D E

H L

Fig. 1-6. The principal 8080 registers.

Continues 
down to 0000.

Memory

Continues up to FFFF.

Fig. 1-7. The principal parts of the 8080 m icroprocessor.
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DDT—THE PROGRAMMER’S X RAY AND PROBE

All right, you say. I’ve got this computer sitting on my desk, and you tell 
me there are things called registers inside it. And, something called memory. 
Well, I can’t see them and I can’t touch them. How am I supposed to do 
anything with them? How can I find out how they work?

Good questions. What we need are a set of tools. We need the program
mer’s equivalent of an x-ray machine and of some long probes, so we can 
examine the registers and the memory and also manipulate them; so we can 
change their contents. Fortunately, the kind folks at Digital Research (the 
makers of CP/M ) have provided just such a set of tools; it’s a program called 
DDT. (They also make a similar program called SID. You can use that too, 
if you like, but our discussion is geared to DDT.)

DDT (for “Dynamic Debugging Program”) is one of the “ transient com
mands” (programs not built into CP/M  but provided with it as a separate 
program). This program was devised to make it easier to work with the com
puter on a very fundamental level. DDT is able to examine and modify the 
contents of both particular memory locations and of the various registers in 
the 8080.

For example, if you are using DDT and you type “dlOO”, DDT will print 
out the contents of all the memory locations from 100 (hex) to IFF (hex) (or 
256 locations). You can change the contents of a memory location by typing, 
say, “s i00” to alter the contents of location 100. And, you can examine and 
modify the contents of registers; typing “xa” will permit you to examine and 
modify the contents of the A-register.

DDT has another important ability—one which we will make use of exten
sively in this book. That is, you can type in a program in symbolic assembly 
language and DDT will assemble the symbolic instructions into a program 
which can be executed directly.

Here’s why we need this ability to handle symbolic programs. The instruc
tions for the 8080, like those for all computers, take the form of lots of binary 
numbers when they are in the machine. (Of course, these aren’t abstract 
binary numbers, but groups of transistors being set to either the “on” or 
“off” states. For our purposes, it amounts to the same thing.) Again, read 
Appendix A on hexadecimal notation if you are not familiar with binary 
numbers or their relationship to hexadecimal numbers.

As an example, the instruction to subtract the contents of the C-register 
from the contents of the A-register is the binary number 10010001. Now 
binary numbers are hard to read and to remember, so we usually write the 
instruction in its hexadecimal form of 91. (See the table of binary to hex-
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adecimal conversions in Appendix A.) However, even this is hard to remem
ber. What the “symbolic assembler” function of DDT lets us do is write this 
number as “sub c” . It’s much easier to see that this means “subtract the con
tents of the C-register from the contents of the A-register” than it does when 
you look at the number “91.”

It wouldn’t hurt at this point to look over the DDT commands in Appen
dix F, or even the section on DDT in the CP/M  documentation provided 
with your computer, just to get a rough idea of everything that DDT is capa
ble of. Don’t worry if you don’t understand every detail; we’ll explain how it 
all works as we go along.

Instruction stored
as a binary number
in the computer’s memory.

1 0 0 1 0 0 0 1

Hexadecimal 
representation 
of the instruction.

91

Symbolic 
representation 
of the instruction.

SUB C

Fig. 1-8. Number conversion.

BACK DOWN TO EARTH

Now that you’ve gotten a fast aerial overview of the various major aspects 
of the terrain, it’s time to land and take a close-up look at a specific area. 
We’ll do this in the next chapter, on Console System Calls. If you feel you’re 
not quite sure of what’s happening and where all these concepts are leading, 
read on. The specific examples that we’ll cover next should help to pull every
thing together.
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CHAPTER 2

One Toe in the W ater
Console System Calls

In this chapter, you’re going to begin your journey into the mysterious and 
exciting world of CP/M  system calls. System calls, as we mentioned in the 
last chapter, are links between your program and BDOS, C P/M ’s Basic Disk 
Operating System. BDOS examines your system call and then uses one of the
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routines in BIOS (the Basic Input/O utput section of CP/M ) to communicate 
with a specific device, such as the video screen, keyboard, or disk drive. 
Understanding how to use these calls is the key to programming in the CP/M  
environment, since by using the calls, you can create programs that are effi
cient to write and are easily transportable from one computer to another. 
There is a complete list of system calls in Appendix E. You might want to 
glance over these calls at this point, just to get an idea of the kinds of things 
they do.

Our first programs will be very short, and will introduce the simplest of 
system calls at the same time that you’re learning just enough assembly lan
guage to use the call. For simplicity and ease of operation, we’ll use DDT to 
create the examples. By the end of the chapter, you’ll be well on your way to 
understanding both system calls and 8080 assembly language.

We’ll introduce each system call with a box containing the important facts 
about how to use it. Don’t worry if you don’t understand what we mean by 
“REG C = 2”, and so on, in the following explanation box; we’ll get to that 
soon.

CONSOLE OUTPUT SYSTEM CALL

CONSOLE OUTPUT FUNCTION 2 (dec) = 2 (hex)

Enter with: REG C = 2
REG E = ASCII character to be displayed

The first system call that we’ll learn is a simple one called “Console Out
put.” This call is nothing more than a way to send a single character from 
your program to the CP/M  display screen. It’s like a one-character-at-a-time 
version of the PRINT statement in BASIC. We’ll describe how the call is 
used, then write a program that makes use of the call, and, finally, show you 
how to type the program into the computer’s memory and execute it using 
DDT.

In order to execute this system call, your assembly language program must 
do three things:

1. Put the number 2 in the C-register.
2. Put the ASCII character you want to print in the E-register.
3. Execute a CALL instruction to memory location 5.
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That’s all there is to it! If you do these three things, a character will be 
printed on the screen. You don’t need to understand anything about the 
actual instructions that C P/M  uses to send the character to a particular 
kind of terminal or crt screen, since the routine in BIOS takes care of that 
for you.

Briefly, here’s what each step does. First, the number “2” is the number 
of the system call in hex. C P/M  uses the C-register as the “mail-box” for a 
program to tell C P/M  what systems call it wants to use. Second, the ASCII 
code for any character can be looked up in Appendix D found at the back 
of this book. In this system call, C P/M  gets the ASCII value of the charac
ter that is to be displayed from the E-register. And, finally, all system calls, 
no matter what they are, use a CALL to location 5 in order to enter BDOS, 
where the BIOS and BDOS routines will do whatever input or output func
tion has been requested; in this case, printing a character on the screen.

Your First Program

All right, you ask, how do I actually go about writing down these steps in a 
form that the computer can understand? Let’s look at a program that does 
just what we want:

mvi c,2 
mvi e,48 
call 5

Well, it’s short enough, but what does it all mean? Easy. The first instruc
tion puts the number 2 in the C-register. The second instruction puts the 
number 48 in the E-register. And the third instruction causes the program to 
“call” or jump to the entry point of BDOS, which is at memory location 
0005.

All the numbers used in programs in this chapter are in hexadecimal, so 
the 2, the 48, and the 5 are all hexadecimal numbers. (The 2 and 5 are the 
same as their decimal equivalents, but the 48 is equal to 72 decimal.)

Statement “Fields”

Each of the three lines in the preceding program is called a “statement.” As 
you can see, each of these statements consists of two parts separated by a 
space. These parts are called “fields.”
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The first field shown is the “operation” field. The instruction, or what 
you’re going to do goes in this field; “mvi” and “call” are instructions. (To 
confuse the issue, the word “instruction” is also used to refer to the entire 
statement.)

Following the space (which could be several spaces, or a tab) comes the 
“operand” field. This field contains the thing you're going to do it to. Thus, in 
the first line, “mvi” is the instruction or operand. It operates on the operand 
field, which contains “c,2”, and causes the number 2 to be placed in the C- 
register. In the third line, CALL is the instruction, and it operates on the 
operand 5, causing the program to jum p to location 5. Later, we’ll learn 
about other fields in the instruction line, but for the time being these two will 
keep us busy.

Something to notice here is that the order in which things are written in the 
operand field may seem backwards. In the example, “MVI C,2”, it’s the 2 
that is placed into the C-register, not the other way around. It’s like the state
ment “LET C =  2” in BASIC, where the variable C is given the value 2.

The MVI Instruction

“MVI” is an instruction that means “move immediate.” The word “imme
diate” means that the data to be moved immediately follows the instruction in 
memory. (Later, we’ll look at instructions that can take a constant from other 
places in memory and put it in a register.)

As we mentioned before, the memory locations in these drawings start at 
the top and go downward. This may seem strange at first, but you’ll get used 
to it.

The number to be moved using MVI can be any 1-byte number—that is, 
any number from 0 to FF hex (0 to 255 decimal). Also, the register that the 
number is moved to can be any of the seven main registers: A, B, C, D, E, H, 
or L. In the diagram of Fig. 2-1, the number is moved to the C-register. The 
second time that the MVI instruction is used in our example program, the 
number 48 is moved to the E-register.

The use of a constant as part o f an instruction can be confusing. Some com
puters require that constants be stored in a different part of memory from the 
program. However, in the “immediate” instructions used in the 8080 micro
processor, constants actually become a closely connected part of some 
instructions, such as MVI. Notice how the instruction occupies two bytes of 
memory. The first byte, at location 100, is the code that tells what the instruc
tion is going to be: 0E. This means the instruction is going to transfer a 
constant into the C-register; in other words, it’s the code for the “MVI C”
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Before MVI C,2 is executed:

Section of memory where 
the program is located

z :
C-register

/  1 /
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is in memory.

Memory
address.

After MVI C,2 is executed:

C-register

(  °2 0 "
The number 
2 is moved 
from memory 
to the C-register.

Fig. 2-1. The MVI instruction.

part of the instruction. This number will vary, depending on which of the 
seven registers the constant is to be placed in. The constant itself is given in 
the second byte of the instruction, at location 101; it’s the hexadecimal 
number 02.

We’re not going to be too concerned with the exact hexadecimal codes for 
the instructions we learn, but it’s important to understand the relationship of 
the codes to the symbolic instructions that we’ll be typing in using DDT. 
We’ll type in a symbolic instruction, like “mvi c,2”, and DDT will take care 
of the dirty work of figuring out the corresponding hexadecimal code and
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/
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/

0100
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/ 0102

/

MOV C,2

35



Soul of CP/M®

placing it in memory. We’ll talk more about this process later, when we show 
you how to type in the program.

Examples:

mvi c,2 
mvi h,ff 
mvi e,20

So the instruction “mvi c,2” means “take the number 2 and put it in the C 
register.” This 2 in the C-register tells BDOS that we want to execute Func
tion 2, which is Console Out.

The number 48 (hex) is the ASCII value of the letter “H ” (you can check 
this in the table of ASCII values in Appendix D). So the instruction “mvi 
e,48” means “take the ASCII value of ‘IT and put it in the E register.” Note 
that not all hex values represent printable characters. If you put a 0 in the E 
register, for example, nothing would happen when you tried to print it, 
because 0 is the ASCII code for a “null,” which is a nonprintable character. 
Also, remember that this number must be the hex representation of the char
acter and not the decimal representation.

The CALL Instruction

CALL means “execute” or “call” a subroutine. It’s equivalent to a GOSUB 
in BASIC. When this instruction is executed, the program jumps to the mem
ory address in the operand field of the instruction. Also, the instruction 
stores the “return address” so that it can get back to the proper place in the 
calling program when the subroutine is completed. The place that the pro
gram wants to return to in the program -the return address—is simply the 
location following the CALL instruction. The place where the CALL instruc
tion saves the return address is called the “stack.” We’ll learn more about the 
stack later. For now, think of it as a handy place for the program to save an 
address until it’s needed again.

Fig. 2-2 is a diagram of how CALL operates. In this case, when the call 
instruction is executed, program control will go to location O2C0, and loca
tion 107 will be stored on the stack. When the subroutine, which starts at 
location 02C0, is completed, program control will resume at location 107. 
(This is done using the RET instruction, which we’ll cover later in this 
chapter.)
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/ /
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/
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• CALL 02C0The return 
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instruction 
is executed, 
the program 
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/  / \

/

The “Stack”

02BF

02C0

02C1

Fig. 2-2. Operation of the CALL instruction.

Examples:

call 5 
call 100 
call bfOO

So, in our little program, the “call 5” means “execute the subroutine at 
memory location 5 hex” and 5 hex turns out to be the entry point for all 
system calls. What really happens is that locations 5, 6, and 7 contain a jump 
instruction to the actual BDOS entry point in high memory. We’ll talk more 
about that later in the book. But for now, all you need to know is that in 
order to do a system call, you execute a CALL 5 instruction.

So there it is, your first CP/M  system call, a simple 3-instruction program, 
written in assembly language. But, how do we get it to do what it’s supposed 
to do—put a character on the screen? In other words, how do we put the 
program into the computer’s memory and execute it?

We could actually write the program in “official” assembly language, using 
the ASM assembler program that comes with CP/M , and, then, execute it as 
a COM file (the same way systems programs are executed). But if we did 
that, we would have to add other instructions to the program to make it work
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and we also would have to use several different programs to convert it to an 
executable routine. Why go to all that trouble? Instead, we simply take 
advantage of DDT, which has a built-in mini-assembler, and which can exe
cute its own programs with no trouble at all. (For longer programs involving 
lots of jumps and subroutines, this DDT approach will begin to hold us back 
and we’ll graduate to using ASM, but for the moment, DDT is just what the 
doctor ordered.)

Just for fun, let’s make the program slightly more complicated before we 
type it in with DDT. Instead of a single letter, we’ll send the word “H I” to 
the console screen. Here’s the program to do that:

mvi c ,2 Put 2 in the C-register for Console Out.
mvi e ,48 48 hex is ASCII “H”.
c a l l  5 Jump-to-subroutine (BDOS) at location 5.
mvi c ,2 Put 2 in C-register for Console Out.
mvi e ,49 49 hex is ASCII “I”.
c a l l  5 Jump-to-subroutine (BDOS) at location 5.
r s t  7 Return to DDT.

This program is very much like the last one, except that we print two letters 
instead of one. In other words, we use the Console Out system call twice, 
once with “H” and once with “I.”

Something to note here is that we have to restore the “2” in the C-register 
(as well as putting the new character in the E-register) before we can “call 5” 
the second time. This is because the system call itself trashes the contents of 
the C-register. (“Trash” is a programmer’s word meaning to change some
thing, usually with disastrous results.)

Also, we’ve added comments to each line, to make the program clearer 
(although you can’t actually type in such comments in DDT). And, there is a 
final addition to the program—the “rst 7” instruction at the end.

The RST Instruction

This instruction was actually designed to be used with the interrupt system 
of the 8080 chip. Since this book does not cover the interrupt system, we 
won’t say anything further about RST, except to note that, since DDT uses 
the interrupt system, this instruction must be used to terminate programs 
when they are being executed under DDT. When used in DDT, RST returns 
control from the program to the DDT monitor. It’s a little like the STOP or 
END instruction in BASIC. Without the rst 7, the computer would just keep
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on executing all the instructions in memory that happened to follow the end 
of the program.

Example: 
rst 7

Typing in the Program Using DDT

The first step in writing our program is to load and get into DDT. (Notice 
that our typed input will be in lowercase letters, while C P/M ’s output is in 
uppercase letters. Don’t worry about this. C P/M  is good at translating the 
lowercase input to uppercase.) After you load DDT by typing “ddt” follow
ing the “A > ” prompt, DDT will print a “sign-on” message and then print a 
dash (“-”) and will wait for your command. (The dash is the DDT 
prompt character.)

A>ddt Call up DDT.
DDT VERS 2 .2  DDT sign-on message.
-  DDT’s prompt character.

You can now type “alOO”, which means “start assemblying a program at 
location 100 (hex).” DDT will respond to this command by printing 100, 
which is the location where the next instruction will go in memory. Each time 
that we type in an instruction and hit the carriage return, DDT will reply 
with the next available memory location. Here’s how our program will look 
when typed in using DDT:

A>ddt
DDT VERS 2 .2
-a100 ---------------
0100 mvi c ,2
0102 mvi e ,48
0104 c a l l  5 
0107 mvi c ,2
0109 mvi e ,49
01 OB c a l l  5 
010E r s t  7 
01 OF -----------------

' [  t______

------------------------------------------- DDT types these addresses.

Assemble code at 100 hex. (Type each instruction, followed by a 
return.)

Press return to end assembly.

You type the program in this column.
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We began at 100 hex because that’s the standard beginning address for all 
CP/M  programs and that is where the SAVE utility looks for code to save. 
(We’ll talk about that later.) Notice how different instructions take up differ
ent amounts of memory: mvi takes two bytes, call takes 3, and rst only needs
1. When we’ve typed the last instruction, we type a carriage return instead of 
another instruction to let DDT know that we’re done.

Let’s make sure the code is set up right by using the “1” (lowercase “L”) list 
command. The “1” command prints out or “lists” a program in the same 
format that we typed it in.

-1100
0100 MVI C,02
0102 MVI E,48
0104 CALL 0005
0107 MVI C,02
0109 MVI E,49
010B CALL 0005
010E RST 07

(This is a lowercase “L”.)

(This is the number 100.)

List the code to see that it’s all right.

Looks great. If you made any errors in entering your code, use the “A” 
(assemble) command again to reenter the correct code. For example, if you 
mistakenly typed CALL 6 at line 104, you would change it by typing: “a 104” 
(return). The address 0104 would appear. Then, you would simply type “call 
5” , hit return twice, and you’re finished:

-1100
0100 MVI C,02
0102 MVI E,48
0104 CALL 0006
0107 MVI C,02
0109 MVI E,49
010B CALL 0005
010E RST 07

-a104
0104
0107

ca L I 5

W oops-typed the wrong thing.

Start at the offending instruction. Type the right thing, 
another carriage return, and it’s fixed!
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Now that our little program is entered into the computer’s memory, it’s 
time to actually execute it, using DDT. We use the “go do it” command “g”, 
followed by the address where our program starts (100 hex).

-g100 Run the program at address 100 hex.

H I * 0 1  0 E  Program prints HI and the last address preceded by a

Wow! It actually printed what it was supposed to! The asterisk tells us that 
the program is finished, and the 010E tells us that the last instruction to be 
executed was a “rst 7” at location 010E. The HI, of course, stands for “High
ly Ingenious.”

To reward yourself for successfully writing and executing your first C P/M  
program, why not take the rest of the day off? Or, at least treat yourself to a 
beer!

Saving the Program

Now that you’ve written the program, you will want to be able to save it 
onto disk so that you can use it later. Here’s how to do it:

1. Type “gO” to take you out of DDT and back into CP/M .
2. Following the “A > ” prompt, type “save 1 test.ddt”.

(This is the number “zero,” not the letter “Oh”.)

Leave DDT.
Get the A >  prompt back.

A>save 1 t e s t . d d t  Save the program.

Since 0 is where the computer automatically goes to do a warm boot, typ
ing “gO” from DDT takes you back to CP/M . (It actually loads the CCP 
back into memory and executes it. You could also have typed a control-c, 
which has the same effect.) “SAVE” is a “resident command” that automati
cally writes to the disk the program that is occupying the TPA, starting at 100 
hex. It saves the program using the name that you type in; in this case, 
“test.ddt”. The “ 1” tells SAVE how many 256-byte “pages” of memory we 
want to save; in this case, just one page, since our program is less than 256 
bytes long.

-gO
A>
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If you want to reload the program, you can do it at the same time that 
you’re loading D D T:

A>ddt t e s t . d d t

Then, to execute the program, type:

-g100

Don’t try to execute the program directly from CP/M  by typing 
A >test.ddt. For one thing, only files with an extension of “COM” can be 
executed this way and, for another, the fact that the program ends with “rst 
7” (instead of “ret”) will cause problems if you do change the extension to 
COM and try to execute it. This is because RST takes you to an address that 
DDT is able to deal with but which CP/M  is not expecting at all. Later, we’ll 
learn how to execute programs directly from CP/M .

Using the “Control-S” Feature

There is more you should know about the way C P/M  handles the Console 
Output function. As we mentioned earlier, BDOS does not simply pass the 
request for output along to the input/output routine in BIOS—it does some 
interpretation of its own. This gives it the opportunity to add some useful 
features to the input/output routines that can be used by any program run
ning in the CP/M  environment.

For example, when you use the Console Output system call, BDOS checks 
to see if you’ve typed a “control-s” , which has the effect of starting and stop
ping the scrolling of material displayed on the screen. (Control-s is the char
acter generated when you hold down the “control” or “alt” key, and type “s” . 
You’ve probably used it in such C P/M  utilities as “TYPE”.) So if you press 
control-s as the program is running, CP/M  will freeze your output on the 
screen—that is, stop running-until you press another control-s.

Want to see control-s work on our sample program? Unfortunately, the 
program prints “HI” and returns to DDT so fast that you don’t have time to 
type anything. The solution to this is to replace the “return to DDT” instruc
tion—“rst 7”—with a jump to the beginning of the program, so that we have 
an endless loop printing the word HI. Then, you can try the control-s and 
verify that it freezes the program, and restarts it as well.
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The JM P Instruction

A JMP instruction is just like a GOTO in BASIC. When the program exe
cutes it, control goes to the address specified in the operand field of the 
instruction. Of course, in assembly language, the address is an actual memory 
location, not a line number as in BASIC. JMP differs from a CALL instruc
tion in that no return address is stored; the program doesn’t remember where 
you were before you executed the jump.

Fig. 2-3. The JMP instruction.

/ y
0110 C3

/

0111 D2
/

0112 01
/

/ /
01D1

/
01D2

/
01D3

/
01D4

/

JMP 0100 —  
causes the 
program to 
jump to 1D2

l l l l l l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l l l

Examples:
jm p 100 
jm p bfOO

Which Half Comes First?

You may have noticed something a little strange if you’ve been examining 
the diagrams of the programs carefully. Whenever there’s an address in a 
program listing or diagram, it seems to be backwards. An address consists of 
two bytes. For instance, 01D2 is stored in the computer’s memory as the two 
bytes 01 and D2. However, the makers of the 8080 (and the 8085, Z-80, and 
so forth), for reasons best known to themselves, chose to put the least-signifi
cant byte first, followed by the most-significant byte. That is, if you have the
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instruction “JMP 01D2” in a program, the JMP will come first (represented 
by the number C3), then the D2, and then the 01. This makes listings and 
diagrams confusing to read, until you get used to the procedure. Of course, 
you can simply ignore the hexadecimal values that the “a” function of DDT 
puts in memory and just look at the symbolic instructions.

To check the control-s feature, type the following:

A>ddt t e s t . d d t  Bring up DDT and our previous program.
DDT VER 2.2

List the code to see that it’s all right.

NEXT PC
0200 0100
-L100
0100 MVI C,02
0102 MVI E,48
0104 CALL 0005
0107 MVI C,02
0109 MVI E,49
010B CALL 0005
010E RST 7

Notice the NEXT and PC headings that DDT prints when you load a pro
gram. NEXT means the next memory location after the one loaded in. Since 
we SAVEd one 256-byte page when we saved our program, 256 decimal bytes 
(which is 100 hex bytes) are loaded in along with DDT. This fills memory 
locations from 100 to IFF, so the next available one is 200 hex. PC means 
Program Counter. This is DDT’s way of keeping track of where it is in a 
program, and it is always at 100 when a program is first loaded.

We want to change the last instruction in the program, RST 7, to a JMP 
100. So we type:

~a 1 Oe Change the rst 7 to a JMP 100.
010E JMP 100
0 1 1 0  -«------------------------------------ Carriage return.

-gO Now return to the CCP.

A>save 1 t e s t l . d d t  Save the program as TEST1.
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A>ddt t e s t l . d d t Go back to DDT.

-g 1 00 Execute the program.

e tc .

A huge amount of His are sent to the screen, quickly filling it up. The pro
gram will continue to send His until the control-s key is pressed; at which 
point, the display will freeze. Pressing another control-s will allow it to restart.

But how do you stop the entire program, so you can get back to DDT or 
CP/M ? Unfortunately, you’re in big trouble in this regard. The only way to 
regain control of the computer is to hit the reset button. That will cause a 
“cold boot,” and you’ll be back in CP/M . The moral of this is to avoid writ
ing assembly language programs with loops that never terminate. In BASIC 
you can always hit the Break key but, in assembly language, you need to 
write an escape route into your program. In the next section, we’ll show you 
how to modify your program so that it can be interrupted from the keyboard.

So, you’re now an expert on the CP/M  function call “Console Output.” 
The nice thing about this is, as we mentioned earlier, that what you’ve 
learned is applicable to any machine running CP/M , whether it has an 8080 
chip, an 8085, a Z-80, or whatever. It’s also applicable to any sort of display 
terminal, whether it’s from TeleVideo, IBM, Amdek, or any of the dozens of 
other manufacturers.

There are many other nondisk CP/M  system calls, some of which are more 
powerful than this one, and some of which are pretty mundane. Understand
ing them all will help you discover how C P/M  works and how to write pro
grams that make use of C P/M ’s full capabilities.

The next CP/M  function call that we will study is a simple but important 
one that is used by almost all of the C P/M  utilities.

GET CONSOLE STATUS

GET CONSOLE STATUS FUNCTION 11 (dec), 0B (hex)

Enter with: REG C = 0B
On return: REG A = 0 if no key pressed

REG A = non-0 if key is pressed
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Get Console Status (sometimes called Interrogate Console Ready) is used 
mainly for signaling to your program that the user has pressed a key. It 
doesn’t tell what character was typed, only that some key was pressed. What 
good is that? Well, remember the last program example of sending continu
ous His to the screen? We had to press the reset button on the computer to 
stop the display. The program was locked into a tight loop, continuously 
using the “Console Out” routine, and there was no way we could stop it.

Let’s fix this problem. We’ll change our program so that every time we 
print “HI” on the screen, we also use “Get Console Status” to check if the 
user has pressed a key. If he has, we’ll have the program end itself and return 
to DDT.

First, bring in the old testl.ddt program with DDT:

A>ddt t e s t l . d d t  
NEXT PC 
0200 0100
-  L1 0 0  List the code to see if it’s all right.
0100 MVI C,02
0102 MVI E,48
0104 CALL 0005
0107 MVI C,02
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0109 MVI E,49 
01 OB CALL 0005 
01OE JMP 0100

Looks fine—an endless loop that prints HI on the screen forever, or at least 
until RESET is pressed causing a cold boot of CP/M . Not the most elegant 
way to end the program.

Change your code as follows:

- a 1 0 e

01 0E mvi c ,b  Put 0B hex in C register.
0110 c a l l  5 Call BDOS.
0113 o r a  a O R  A with itself—to set zero flag.
0114 j Z 100 Go do HI again if no key pressed.
0117 r s t  7 Back to D D T  if key is pressed.
0118

Now list the whole thing:

-L100
0100 MVI C,02
0102 MVI E,48
0104 CALL 0005
0107 MVI C,02
0109 MVI E,49
010B CALL 0005
010E MVI C,0B
0110 CALL 0005
0113 ORA A
0114 JZ 0100
0117 RST 7
0118

You can save this program as “ test2.ddt” and then bring it back into mem
ory with DDT in the usual way:

-go

A>save 1 t e s t2 .d d t  

A>ddt t e s t2 .d d t
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What do these new instructions do? Let’s explain. W hat’s basically 
changed here is that, in line 10E, we don’t simply jum p back and repeat 
the loop. Instead, we put OB hex in C-register to set up the Get Console 
Status system call. Then, we do a call to BDOS with CALL 5. This will 
make C P/M  go and check the keyboard to see if a key has been pressed.

This system call is a little different from the last one, in that our pro
gram is trying to fin d  out something from C P/M  (namely whether a key 
was pressed) rather than trying to tell C P /M  something. Thus, we don’t 
need to put anything in the E-register before we do our “call 5.” But we 
do want to know what C P/M  has to tell us, so after the “call 5” is exe
cuted, we want to find out if the A-register contains a 0 (which would 
mean that no key was pressed) or if it contains something else (which 
would mean that a key was pressed). To do this, we need to use something 
called the “zero flag.”

The Zero Flag

We’ve already mentioned that arithmetic and logical operations involving 
8-bit quantities are always carried out in the A-register. Often, after perform
ing such an operation, our program needs to know what the results of the 
operation were. For instance, if we do an addition, we might like to know if 
the result is zero. The 8080 does this through what’s called the “zero flag,” 
which is simply a switch in the CPU that is set to “ 1” whenever the results of 
an arithmetic or logical operation are zero, and set to “0” when they’re not. 
(This might seem backwards, setting the flag to 0 when the result is nonzero, 
but remember, it’s called the “zero flag.” It gets set, meaning “set to 1,” when 
the result is 0.)

Once this “zero flag” switch is set, it can be used to affect the results of 
other instructions, such as jumps, in much the same way that a BASIC state
ment, such as “IF A = 0 THEN GOTO 1000”, is used.

When we use the “Get Console Status” system call, the A-register comes 
back with an 8-bit quantity in it, and we want to find out if it’s zero or not. 
The way to do this is to test the zero flag, but (remember this!) the zero flag  is 
not set until we perform an arithmetic operation. So we need to do some arith
metic on the A-register which will set the zero flag if the A-register is zero. An 
old programming trick here is to OR the A-register with itself.
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The “ORA” Instruction

“OR” means to take the bits in the A-register and OR them with the corre
sponding bits in some other register. This is illustrated in Fig. 2-4. Either the 
B, C, D, E, H, or L register will work fine. As you no doubt recall from 
BASIC:

0 ORed with 0 is 0
0 ORed w ith 1 is 1
1 ORed with 0 is 1 
1 ORed with 1 is 1

A-register Some other register

01001100 00001111

01001100
00001111
01001111

A-register

01001111

Contents of 
A-register ORed 
with contents of 
another register.

Result is placed back in A-register.

Fig. 2-4. The ORA instruction.

Examples:
ora b 
ora h

In our particular program , instead o f ORing the A -register w ith som e other  
register (B or C, or w hatever), w e OR it w ith  itself. A nd, as you  can see from  
the above defin ition , if w e OR anything w ith  itself, all w e’ll get back is itself 
again! W hile this m ay sound like an exercise in  futility , it’s im portant because  
w hen w e perform  an OR operation , the zero flag is set. T hat’s the on ly  reason  
for the O R A  instruction: to set the zero flag.

Following the “ora a” instruction, we know that the zero flag is set (=  1) if 
the A-register came back from the “Get Console Status” system call set to 
zero, and cleared (=  0) if the A-register came back with some nonzero quanti
ty. How does our program make use of this information? The “jump-on-
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zero” (jz) instruction takes care of it nicely by doing just what its name 
implies.

The JZ Instruction

This instruction is a special case of a regular jum p (JMP) instruction. If the 
zero flag is set, this instruction will act like a jum p and go to the address 
given in the operand field of the instruction. However, if the zero flag is not 
set, nothing at all will happen. No jum p will occur and the program will just 
go on to the instruction following the JZ just as if the JZ hadn’t even been 
there. The 8080 instruction “JZ 100” is very similar in function to the BASIC 
statement of “ IF Z =  1 THEN GOTO 100”.

This instruction, and similar ones that we’ll learn later, give our program 
the opportunity to branch or head in different directions, depending on 
something that’s happened in the program.

/
0100

/
0101

0102
/

iiiiiiiiiiiiiiini
i i i i i i i i i i i i i i i i i i

/
0114 C3

/
0115 00

0116 01
/

0117
/

Examples:

JZ 1 0 0 -

Goes back to 100 
it zero flag set.

Fig. 2-5. The JZ instruction.

Goes on to 0117 
if zero flag 
not set.

jz 100 
jz bfOO

In our case, if the A-register returns with zero, it means no key was pressed, 
so the zero flag will be set to 1, the jz 100 instruction will cause program con
trol to go back to 100, and the program will continue to print “HI” on the

50



One Toe in the Water

screen. However, if a key is pressed, the A-register will return with nonzero, 
the zero flag will be cleared (set to 0), and when we execute the jz 100 instruc
tion, we won’t jump at all but, instead, will go to the last instruction in the 
program (the “rst 7” instruction) which will return us to DDT.

So, does all this actually work?

-g100 Execute the program.

H IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH IH I
H IH IH IH IH IH I H....etc.

Watch the “H i’s” fill up the screen.
Try pressing control-s. The display should freeze. Press control-s again to 

unfreeze the display.
Now for the big test. Try pressing any key—for instance, the “z” . The pro

gram should come back to DDT, like this:

___ H IH IH IH IH IH IH IH IH *(0117)
-z

------------------------- *-----------------------N
We pressed a key here and the program stopped.

Here we are, back in DDT! Lo and behold, our modified program works 
too! It’s not perfect, because the letter we pressed gets passed along to DDT. 
That’s the “z” you see printed out following the DDT prompt. If we type a 
carriage return, DDT will think the “z” is input and will output a question 
mark when it can’t understand it. Aside from this minor glitch, the program 
is certainly very successful in getting us out of the endless loop.

Congratulations are again in order. You have just created your third 
CP/M  program and learned a new system call! At this rate, you’ll be writing 
programs for mass consumption within days!

BARBER-POLE DISPLAY PROGRAM

Here’s a somewhat longer exercise that demonstrates the “Console Output” 
and “Get Console Status” functions while showing how to program a loop 
with a changing variable in 8080 code. The goal of the exercise is to write a 
program that will display the entire ASCII set on the console, over and over
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again. We’ll use “Console Output” to send the characters to the screen and the 
“Get Console Status” to end the program if a key is pressed. (WARNING: Do 
not turn on your printer while running this program as it does not send a 
carriage return/linefeed to the screen, and it will, therefore, cause the printer 
to go to the right edge of the paper and just sit there, typing over and over on 
the same spot.) This program uses several new and interesting instructions and 
it introduces you to that useful but mysterious device, the “stack.”

Again, get into DDT and enter this program with the A (assemble) com
mand:

-a100
0100 mvi e ,20 Set up E-register for first ASCII character.
0102 mvi c ,2 Ready for output.
0104 push d Save the DE register-pair (save E).
0105 c a l l  5 Send character to the screen.
0108 pop d Get the DE pair back (E is restored).
0109 i n r  e Bump E by + 1 .
010A mov a ,e Put the E-register in the A-register.
010B cp i 7 f Is it the 127th character?
010D jn z  102 If result not zero, then no, so loop.
0110 mvi c ,b Check console status.
0112 c a l l  5 Call BDOS.
0115 ora a Set zero flag based on contents of A.
0116 jz  100 If a =  0, then no key pressed, so loop.
0119 r s t  7 Return to DDT.

You can save the program as “barber” by exiting DDT and typing: 

A>save 1 b a rb e r .d d t  

The program can be executed in the usual way by loading it along with D D T: 

A>ddt b a rb e r .d d t  

And, typing:

-g100

But, before you do that, take a minute to understand just what’s going on. 
There are a lot of new instructions in the program that you need to learn. 
(Too late, right? You already ran it. That’s all right, we admire impetuous 
programmers.)
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Fig. 2-6 gives a flowchart of the program’s operation. You can refer to the 
flowchart as you read about the new instructions the program uses.

A flowchart is simply a pictorial representation of the operation of a pro
gram. Sometimes, certain conventions are followed in flowcharting. For 
instance, actions which result in the program making a choice between two 
different routes are placed in diamond-shaped boxes. Rectangular boxes 
show actions which don’t result in a choice; there’s only one way out of a 
rectangle. Circles show places where the program enters or leaves the chart.

Fig. 2-6. Flowchart of the Barber-Pole Display program.
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The Stack

The first unfamiliar instruction in the program is the “push d” at location 
104. In order to understand this instruction and the one at location 108, “pop 
d” , you need to know about a strange, wonderful, and, occasionally, infuriat
ing thing called the stack.

We showed you earlier how the stack can be used as a convenient place to 
store the return address when we call a subroutine. But the stack can store 
more than one thing. It can be thought of as, well, a stack. A stack of dishes, 
for example. When you’ve washed a dish, you put it on the top of the stack for 
storage. If you need a dish, you take it off the top of the stack. (This kind of 
stack is called LIFO, for “last in, first out.”) There is a stack in the memory of 
your CP/M  computer and it works in the same way except, of course, that it 
doesn’t store dishes, it stores the contents o f register pairs. The contents of a 
register pair is two bytes long (which is 16 bits, or four hexadecimal digits).

There are two main instructions for manipulating the stack: PUSH (which 
puts something on the stack), and POP (which takes it off). The operation of 
these instructions is shown in the diagrams of Figs. 2-7 and 2-8. Notice that

PUSH

Fig. 2-7. Using the PUSH to manipulate the stack.
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POP

A register pair.

9E03

The number 9E03 is 
removed from the top 
of the stack with a 
POP instruction.

1020

FCOO

0200

40 E0

7
. /

/

Top of the stack.

POP

A register pair

1020

Then, the 1020 is removed.

FC00

0200

40E0

/

/

Top of the stack.

POP

A register pair.

FC00

¥

0200

40 EO

Top of the stack.

Finally, we can take off the FC00.

Fig. 2-8. Using the POP to manipulate the stack.

each box in the diagrams stands for two memory locations, since each is hold
ing a two-byte quantity.

We can’t take a number out of the middle of the stack. If we want the 
number FC00, for example, we must first remove the 9E03, then the 1020, 
and finally the FC00. This is illustrated in Fig. 2-8.

Remember how, in the last chapter, we mentioned that the B and C regis
ters, the D and E registers, and the H and L registers could be put together to 
form the BC, DE, and HL register-pairs? It’s the contents of these 16-bit 
register-pairs that are stored on our stack. Sometimes these 16-bit quantities 
are simply numbers that we want to save, other times they are addresses.

What does the stack consist of? It’s just a series of memory locations, 
somewhere in your computer’s memory. Often the program you’re using,
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such as DDT, or CP/M  itself, takes care of figuring out what memory loca
tions are to be used for the stack, and we’ll assume that’s true for the time 
being. Later, we’ll find that this can sometimes be a dangerous assumption, 
and we’ll figure out ways to deal with the stack more directly.

How does the CPU know where in memory to put whatever is supposed to 
go on the top of the stack? Well, there’s actually another register, which we 
haven’t mentioned yet, called the “stack pointer,” which keeps track of where 
the top of the stack is. For the moment, we won’t need to know too much 
about this register since the common instructions for putting things on the 
stack and taking them off—PUSH and POP—handle the stack pointer auto
matically.

Something strange to notice about the stack is that it grows downward in 
memory. That is, if the “ top” of the stack happens to be at location 1000 
hex and you add something to the stack, it will go into locations FFF and 
FFE, just below 1000. The next thing you put on the stack will go in loca
tions FFD  and FFC, and so on. Likewise, if the top of the stack is at 1000 
and you take off the first item, it will come from locations 1000 and 1001. 
The next item will come from locations 1002 and 1003, and so on. There’s a 
reason for this seemingly backwards behavior, and we’ll discuss it later in 
the book.

The PUSH  Instruction

To store the contents of a register-pair on the stack, we use the PUSH 
instruction. It has the format:

push x

where the x can stand for either “b”, “d”, or “h” . In this case, “b” stands for 
the BC-register, “d” stands for the DE-register, and “h” stands for the HL- 
register. When this instruction is executed, the 16-bit (two bytes, four hex 
digits) contents of the register-pair x are copied into the vacant memory loca
tion at the top of the stack.

This is the memory location pointed to by the stack pointer register. Once 
the quantity is written into this location, PUSH takes care of changing the 
stack pointer register so that it points to the new top of the stack-the next 
available place where a quantity can go.

Examples:
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Before the PUSH Instruction:

A register pair.

98DE

/ /
OFFD 90

/
OFFE 77 /
OFFF OE /
1000 D9 /

Stack pointer points here. 

Top of the stack.

The Stack.

After the PUSH Instruction:

PUSH

A register pair.

98DE

/
OFFB 98

/
OFFC DE

/
OFFD 90

/
OFFE 77 /
OFFF 0E /
1000 D9 /

Stack pointer. 

Top of memory.

The Stack.

Fig. 2-9. The PUSH instruction.

The PO P Instruction

POP is simply the opposite of PUSH. It takes things o ff the stack, from where 
PUSH put them on the stack. The 16-bit quantity removed from the stack is 
written into the register-pair specified in the operand field of the instruction:

p o p  x

where x can be either “b”, “d”, or “h” and stands for the BC, DE, or HL 
registers.

POP takes care of incrementing the stack pointer so that it points to the 
next free memory location.
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Before the POP Instruction:

A register pair.

/ — / ]
0FFB 98

/
0FFC DE

,

OFFD 90 /
OFFE 77 /

OFFF OE

1000 D9 /

Stack pointer. 

Top of memory

The Stack

After the POP Instruction:

A register pair.

Z I =
98 DE

OFFD

OFFE

OFFF

1000

90

77

OE

D9

Stack pointer 
points here.

Top of the stack.

Examples:

pop d 
pop h

The Stack

Fig. 2-10. The POP instruction.

In our “barber-pole” program, we need to save the E-register each time 
that we call the “Console Output” routine. Why? Because we’re going to use 
the E-register to hold the ASCII value of the character that we want to print.
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And, every time we call the Console Out routine, we want to increase the 
ASCII value of the contents of the E-register by one, so as to print the next 
character. Unfortunately, however, the Console Out routine trashes 
(destroys) the contents of the E-register when it is called. To prevent this 
unfortunate occurrence, we save the E-register on the stack with a “push d” 
instruction before calling “Console Output,” and restore it afterwards with a 
“pop d.” Notice that, even though it’s the E-register we want to save, we use 
“d” in the PUSH and POP instructions, because it is the first letter in the 
register-pair “DE.” The instruction saves both the “D ” and “E” registers but, 
in our case, the “D ” register is just along for the ride.

We mentioned that we wanted to increment the ASCII value in the E- 
register each time that we call the Console Out routine, so that we will print 
all the ASCII characters in order. How do we go about incrementing (adding
1 to the contents) a register?

The INR Instruction

This instruction is simply a way to add the quantitiy 1 to the contents of a 
register (see Fig. 2-11). It works on any of the registers A, B, C, D, E, H, and 
L. (It doesn’t work on register-pairs—there’s another instruction for that, 
which we’ll get to later.)

This instruction adds 1 to whatever is in the register. If the number in the 
register is FF, adding 1 will change it to 00, and the zero flag will be set. (This 
instruction will also set other flags, which we’ll discuss later.)

Register Before INR Instruction:

Fig. 2-11. The INR instruction.

Register After INR Instruction:

Examples:

inr e 
inr a 
inr h
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The MOV Instruction

You’ve already learned that the MVI instruction will take a fixed 8-bit 
number from memory (from the location immediately following the instruction) 
and put it in a register. The MOV instruction, on the other hand, takes the 8-bit 
contents of a register and puts it in another register. MOV can be used to MOVe 
data from any 8-bit register to any other 8-bit register. The format is:

mov x , y

“x.” (As we men-where the contents of register “y” is moved into register 
tioned before, this may seem backwards, or at least a little arbitrary, but 
you’ll get used to it. Think of the data as going from right to left in the 
instruction. All the 8080 instructions do things from right to left in this way.)

In the diagram of Fig. 2-12, the contents of the B-register are copied into 
the E-register by the MOV instruction. The contents of the B-register are not 
changed.

This instruction does not cause any flags to be set. Thus, if you MOV zero 
into a register, the zero flag will not be set.

Before the MOV Instruction: 

B-register

82

After the MOV Instruction: 

B-register

82

E-register

MOV E,B

A A
)

E-register

/ A
82

)

Fig. 2-12. The MOV instruction.

Examples: 
mov e,a 
mov h,l 
mov d,b

We mentioned earlier that not all hex numbers are printable as ASCII 
codes. In fact, the printable ASCII codes run from 20 (hex), which is a space, 
to 7F (hex), which is the rubout. Sending numbers greater or less than these 
to your console device or printer is likely to cause strange and unpredictable
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results. Thus, we want to start our program by sending 20 (hex) to the con
sole, and when we’ve sent 21, 22, and so on up to 7F, we want to start over 
again with 20. The first instruction in the program, “mvi e,20”, starts us off 
with 20, but how will we know when we get to 7F?

The CPI Instruction

The answer is the CPI instruction, which stands for “Compare Immedi
ate.” CPI performs a comparison between the number in the A-register and 
the number in memory immediately following the CPI instruction. The result 
of the comparison is used to set the various flags, including the zero flag. 
How do we know what flags will be set? The idea here is to think of this 
instruction as a sort of “phantom” subtraction of a fixed 8-bit quantity from 
the A-register. Why isn’t it a “real” subtraction? Because the quantity in the 
A-register is not actually changed; nothing is subtracted from it. However, 
the zero flag (and the various other flags that we will learn about later) act as 
i f  the subtraction had been carried out.

This is easy to understand in the case of the zero flag: i f  the two numbers 
are equal, the zero flag is set. Why? Because when you subtract a number from 
the same number, the result is zero.

Section of memory where 
the program is located.

In this case, they are not the same, 
so the zero flag is not set.

Fig. 2-13. The CPI instruction.

Examples: 
cpi 7f 
cpi 2
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In our case, the “cpi 7f” instruction compares the contents of the A-regis
ter with 7F hex. The first time through the loop, the A-register will contain 
20, because the E-register contains 20. So the result of the subtraction will 
NOT be zero. The next time, the A-register will contain 21, because the E- 
register contains 21, because we incremented it with the INR instruction. The 
next time it will contain 22, and so on, until we’ve counted up to 7F. When 
the A-register is 7F, the results of the comparison will be 0, and the zero flag 
will be set. What use will we make of the zero flag?

The JNZ (jump-on-not-zero) Instruction

As you can guess, this instruction is similar to the JZ instruction that 
you’ve already encountered, except that it jum ps if the zero flag is NOT set. 
Otherwise, it goes on to the next instruction in the program.

0100

0101

0102

/ /

/

/

/
l l l l l l l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l l l l

/

0114 C2
i

0115 00
/

0116 01
/

0117
/

JNZ 100 —

Goes back to 0100 
if zero flag is NOT set.

Goes on to 0117 
if zero flag is set.

Examples:
jnz 100 
jnz bfOO

Fig. 2-14. The JNZ instruction.

In the case of our barber-pole program, the CPI instruction will result in 
the zero flag not being set until all the ASCII characters from 20 to 7F have
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been printed. So each time the JNZ instruction will take us back to the sec
ond instruction in the program—at location 102. When we’ve printed all the 
ASCII characters, the program will go on to location 110, where it will per
form the “Get Console Status” system call to see if any key of the keyboard 
has been pressed. If not, it will start the program over. If so, it will return to 
DDT, as in the example shown in our previous program.

Running the Program

When you run the program, you should get something like this display: 

A>ddt b a rb e r .d d t  

-g100

! "# $ % & $ !( ) *+  ' - . / 0 1 234567890:;<=>?ABCDEFGHIJKLOMNOPQRSTUVWXYZC 
\ ] A_ 'abcdefgh i j  klmn opqrs tuvw xyz{ I }~ ! "#$%& ! ( ) *  + ’- .  / 0 1 234567890 
: ;<=>?ABCDEFGHIJKL0MN0PQRSTUVWXYZC\] A_'abcdefgh i j  klmn opqrstuvw 
xyz{ ! } ~ ! 1#$%&$!( ) * + ’- . / 0 1 234567890:;<  = >?ABCDEFGHIJKLOMNOPQRSTUVW 
XYZC I ]A_ 'abcde fgh i j  klmn opq rs tuvw xyz{I  }~ !"#$%&$I < )*  + ’- . /0 1 23456 
7 8 9 0 :;<=>?ABCDEFGHIJKLOMNOPQRSTUVWXYZC\]A_'abcdefghijklmn opqrs 
tuvwxyz{ ! .....[etc. until you press any key]

This is a good program to keep in your wallet and memorize for when 
you’re at a party or at a new friend’s house and you want to impress them 
with your knowledge of C P/M  and 8080 code.

CONSOLE INPUT

CONSOLE INPUT FUNCTION 1 (dec) = 1 (hex)

Enter with: REG C = 1
On return: REG A = ASCII character from keyboard

Console Input is perhaps the most-often used C P/M  function call. Its pur
pose is to get a character from the keyboard into your program. Console 
Input is used by almost all programs that run under C P/M  which request 
user input from the keyboard. For example, all text editors for CP/M  use the
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console input function to get an ASCII value from the keyboard. It works 
much like the GET statement in BASIC. When Console Input is called, it 
reads the next console character into the A-register of the 8080. It will “echo” 
your character to the screen as well. It will not echo control characters but 
will react to many of them. If no key is pressed, the function will hang, wait
ing until a key is pressed, and, thus, suspending execution if a character is not 
ready.

There are some special features of the Console Input function that you 
should be aware of. Most important is the way it responds to C P/M  control 
characters. It does not respond to a warm boot (control-c), or to the printer 
stop/start toggle (control-p). This makes complete sense, as you often 
DON’T want the user to be able to warm-boot the system or turn on the 
printer from inside your program. When you DO wish the user to have such 
control, you can use another C P/M  console function called “Read Console 
Buffer.” This call, which we will describe shortly, is the one that comes with a 
complete set of editing commands, and is used by many of the CP/M  utili
ties. You’ll hear more about “Read Console Buffer” later.

Beep Program

Let’s do a simple exercise program with the Console Input system call. 
This program will cause CP/M  to echo everything typed in at the keyboard 
onto the screen, accompanied with a little beep that is provided by your con
sole’s “beep” or “bell” sound.

Bring up DDT and enter this short program.

-a 1 00
0100 mvi c ,2  Set up for console output.
0102 mvi e ,7  a s c i i  7 =  bell.
0104 c a l l  5
0107 mvi c,1 Set up for console input.
0109 c a l l  5
010C jmp 100 Loop forever getting key and echoing it.

Save it with:

-gO
A>save 1 t e s t3 .d d t

Now, run it by typing:

64



One Toe in the Water

A>ddt t e s t3 .d d t  

and

-g100

Try it out. Each time you press a key, the console beeps and the character 
is printed on the screen. Neat. But if you try to press control-c to reboot, 
nothing happens. Great Scott, we’re caught in a deadly endless loop . . .  ; 
we’ll have to press reset to escape. But first, while you have your program 
running, try a few of these keys and verify what happens on your system. All 
should cause a beep.

AC Nothing happens and nothing gets displayed.
AP Same as above.
AJ Causes a line feed to occur.
AM Causes a carriage return to occur.
AS Nothing happens (or seems to happen).
AG Nothing happens.
AH Backspaces the cursor.

What this tells us is that the Console Input function does not respond to all 
the normal CP/M  control-key conventions. If you wanted it to respond, for 
instance, to the control-c key, you would have to write a special part of your 
program yourself, to do just that.

Also, you can see that our program has a “bug” in it, in that the only way
we can turn it off is to do a cold boot by resetting the system. This, again, is
less than elegant. Can you think of a way out of this problem? Could you 
rewrite the program so that it looks for the control-c and causes the program 
to end if it sees one? Yes, Watson, and here’s how to do it!

Take our old code:

0100 mvi c ,2  Set up for console output.
0102 mvi e ,7  ASCII 7 -  bell.
0104 c a l l  5
0107 mvi c,1 Set up for console input.
0109 c a l l  5
010C jmp-1-90 (Replaced with cpi 3.)

Enter this new code:
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-a10C
010C cp i 3 Check if A =  3.
010E jn z  100 If not, repeat loop.
0111 r s t  7 Yes, it was a 3, so end.

You can save the program as “ test4.ddt”.
What do these new instructions do? The ASCII code for a control-c is 3 

(hex), so we now check each character typed in to see if it has a value of 3, 
using the cpi instruction as in the previous example. If it does, we go back to 
DDT with the “rst 7” instruction. Otherwise, we keep looping.

Run the program from DDT with glOO and see if you can stop the pro
gram by pressing a control-c.

As an exercise, you could try modifying this program by having the cap
tured character do something other than end the program. Perhaps it could 
cause a warm boot when a control-c is typed. The next function call (system 
reset) explains how that is done. But first, we need to learn how to execute 
programs directly from CP/M .

EXECUTING PROGRAMS FROM CP/M

So far we have executed all our programs from DDT by typing glOO. This 
is fine for short exercises, but many times we want to be able to execute a 
program directly from CP/M  without calling up DDT at all, simply by typ
ing the name of the program following the CP/M  prompt A > .

In theory, this is simple. We write the program in DDT, then SAVE it as a 
COM file, and, then, execute it directly from CP/M . However, in practice, 
there’s a problem, and it’s this: if our program contains a “rst 7” instruction, 
and we attempt to execute it directly from CP/M , we’ll probably “crash the 
system” (cause error messages followed by a cold boot), because CP/M  does 
not respond to “rst 7” the same way that DDT does, “rst 7” can be used only 
to return to DDT. To return to CP/M , we use another instruction—“ret” .

The RET Instruction

RET is usually used in connection with the CALL instruction. CALL takes 
you from your main program to a subroutine, and RET takes you back again. 
Remember how, in the CALL instruction, the address immediately following 
the CALL was placed on the stack? Well, the RET instruction takes this
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address off the stack and transfers control back to this address in the main 
program.

The CALL instruction
MAIN PROGRAM transfers control to SUBROUTINE

the subroutine.

program.

Fig. 2-15. The RET instruction.

Example:

ret

RET is ordinarily used to return us to the calling program from a subrou
tine. Now, the way CP/M  is set up, applications programs—that is, programs 
we want to execute directly from C P /M —are treated as subroutines by the 
CP/M  operating system. This makes it easy to leave a program and go back 
to CP/M . All we have to do is execute a RET instruction and, presto, we’re 
back in the monitor with the A >  prompt.

However, if we attempt to execute a program directly in CP/M  that doesn’t 
use RET to return to the monitor, then we can be in big trouble. Specifically, 
if we attempt to execute a program in CP/M  that ends with RST 7, disaster 
will probably result.

So, before we can use any of the programs we’ve written so far in a direct 
CP/M  mode, we need to go through them and change any “rst 7” instruc
tions we find to “ret” instructions. Let’s do that on the last example, which
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beeped when we typed in characters, but which went back to DDT when we 
typed a control-c. Simply change the last instruction in the program, rst 7, to 
ret. Here’s the resulting code:

0100 mvi c ,2 Set up for console output.
0102 mvi e ,7 ASCII 7 = bell.
0104 ca l L 5
0107 mvi c,1 Set up for console input.
0109 c a l l 5
010C cpi 3 Check if A-register = 3.
010E jn z 100 If not, repeat loop.
0111 re t Yes, it was a 3, so end.

Go back to CP/M  and save this program as a .COM file by typing:

A>save 1 tes t4 .com

Now you can execute the program directly from CP/M , simply by typing its 
name:

A>test4

Type in some stuff. Listen to the beeps. What happens when you type a 
control-c? You’re back in CP/M  again! This is just how programs are exe
cuted in the big leagues.

SYSTEM RESET-A WARM BOOT

SYSTEM RESET FUNCTION 0 (dec) = 0 (hex)

Enter with: REG C = 0

The System Reset system call is used for causing a warm boot from your 
program. The warm boot, as you recall, causes the CCP part of the CP/M  
operating system to be reloaded. Also, several locations in FDOS (BDOS 
plus BIOS) are reset to their initial values.

The reason that you need to know how to do a warm boot is simple. Some
times you will need as much memory space in the TPA as you can get. As you 
know, BIOS, BDOS, and CCP take up room in the top of RAM. It turns out
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that you can remove the entire CCP from RAM and still use all of the system 
calls, provided you don’t wipe out FDOS. When you want to return to 
CP/M , you do a “System Reset” and the CCP will be reloaded and FDOS 
reinitialized. System reset works just as if you pressed control-c from the 
keyboard. You’ll hear the disk click as the CCP is read off the disk into 
memory.

Here’s a little program that will cause a warm boot (system reset). But, 
look out! You can’t test it from DDT because it will wipe itself out in the 
process of resetting the system, thus, resulting in error messages and trouble!

-a100
0100 mvi c ,0  Set up for system reset.
0102 c a l l  5 Call BDOS.
0105 r e t  Return to CP/M.

-gO

Enter the program from DDT, exit DDT with a gO (which also causes a 
warm boot and replaces DDT with the CCP), and do a:

A>save 1 tes t5 .com

Now, you can execute the program directly from CP/M :

A>test5  Test the program.
A> Hear disk click, new prompt.

Now you know how to make your program go back and reinitialize CP/M  
whenever you want. That means that you can run programs that use the 
memory space usually occupied by the CCP and can be assured that you can 
reinitialize the system later.

SO LONG, CHAPTER 2, ITS BEEN GOOD TO KNOW YOU

By this time, you know more about CP/M  and 8080 programming than 
you ever expected to. You’ve learned the Console Out, Get Console Status, 
Console Input, and System Reset systems calls. And, you’ve learned a whole 
batch of 8080 instructions: MVI, CALL, RST, JMP, ORA, JZ, PUSH, POP, 
INR, MOV, CPI, JNZ, and RET.
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That’s enough 8080 instructions to write some pretty complicated code. 
And, since you now know how to do input and output to your video screen 
and keyboard, there’s really no limit to the programs you can write. However, 
there are other, more powerful, systems calls that will give you greater flexi
bility and will simplify your programming. We’ll cover them in the next 
chapter, so hang onto your hats!
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Getting in Deeper
Advanced Console System Calls

In this chapter, we’ll look at some console input/output system calls that 
operate on whole groups of characters, rather than on one character at a time 
as did the system calls in the last chapter. Then, we’ll introduce you to an 
unusual display program which will act as a review of what you’ve learned so
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far. We’ll describe “Direct Console I/O ,” which lets you interact much more 
directly with the screen and the keyboard than have our previous system 
calls. Finally, to wrap up our study of nondisk system calls, we’ll cover a 
number of functions which deal with nonstandard I/O  equipment.

PRINT STRING

PRINT STRING FUNCTION 9 (dec) = 9 (hex)

Enter with: REG C = 9  hex
REGs DE = starting address of string 

Comments: String must end in a “ $” (24 hex)

Here’s the way to send complete words or even sentences to the screen 
from inside CP/M . In the programming world, as you know, a series of char
acters like a word or a sentence is called a “string” (it’s just a collection of 
strung-out characters). In CP/M , a string may goeth and a string may 
cometh, meaning that we can send strings to the screen and we can accept 
strings from the keyboard. The Print String function is for making your 
string goeth to the console display screen. It’s an advanced version of the 
Console Out system call in the the last chapter, which only sent one character 
to the screen at a time. Print String is sort of like the PRINT statement in 
BASIC, except it is a bit more indirect to use, as you will see.

Print String expects that you have stored the string you want to send to the 
screen in a continuous area of memory as a sequence of ASCII bytes. (We’ll 
show you how to do this presently.) You must end the string with hex 24, the 
ASCII value for the “$” symbol. Then, to print the string, you put the 
address where the string starts in the DE register-pair, put a 9 in your C REG 
and do a BONSAI TO BDOS (a very excited call 5).

Of course, manually typing in and looking up the ASCII equivalents for all 
of the characters in the message that you want to display can certainly be a 
tedious process. Be patient! In the next chapter, we are going to show you 
how to use ASM, the CP/M  assembler, to simplify this process. When using 
an assembler (as opposed to a miniassembler like that in DDT), you can 
simply enter the letters for the string into the source listing directly from the 
keyboard. So take heart, we’ll eventually learn to do Print String the easy 
way. In the meantime, using DDT will be a bit tedious, but it will give us a 
better idea of what’s really going on.
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Typing in a Message With DDT

First use the DDT Set command “s” to put the hex values for the letters 
“A B C D E” into memory starting at location 010A hex. The set command 
first displays the current contents of the memory location that you are 
about to type in to. In this case, these numbers are of no interest to us. Each 
time you type a two-digit (one byte) value and hit the carriage return, your 
number is stored in the memory location shown, overwriting the old value.

■ These are the old values.

-s10a I
010A 53 41
010B 49 42
010C 47 43
010D 48 44
010E 54 45
01 Of 20 24
0110 28 m

You type numbers in this column.

DDT displays 010A 53 and you typed 41 (hit return after every value 
you type in).

■ This is the $ to end the string.
• Type a period to end the Set command.

Now you can check that you have entered the string correctly, using the D 
command:

-d 1 0 a ,1 0 f
010A 41 42 43 44 45 24 ABCDES

As you can see, the numbers are just as we entered them, with the ASCII 
letters that they represent shown in the right-hand display column. Now we 
are ready to enter the program that will actually print the string:

-a 1 00
0100 mvi C,9 Set up for Print String.
0102 t x i  d,10a We start our string at 10A hex.
0105 c a l l  5 Our famous BDOS call.
0108 r s t  7 Return to DDT.

Save it as test5.ddt.
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The LXI Instruction

As you recall from the last chapter, the mvi instruction took a one-byte 
constant and placed it into the register indicated in the instruction. LXI is 
similar, except that it puts a two-byte constant into the indicated register- 
pair. This two-byte constant is stored in the program in the two bytes imme
diately following the lxi instruction in memory.

As in the MVI instruction, the “I” in LXI means that the constant to be 
stored immediately follows the instruction in memory (as shown in the dia
gram of Fig. 3-1). The “X” means that the instruction operates on a register

Before LXI D.010A is executed:
Section of memory 
containing program.

0100

0101

0102

0103

0104

DE register

11

0A

01

/

After LXI D.010A is excuted:

DE register

z :
010A

The constant in the instruction 
is moved into the DE register when 
the instruction is executed.

11

0A

01

/ 0100

0101

/
0102

k 10103

r 0104

/

1 /
Fig. 3-1. The LXI instruction.

LXI D.010A
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pair and not on a single 8-bit register. These are both conventions which 
make it slightly easier to remember the mnemonics (abbreviations) for the 
instructions.

Don’t forget when using LXI that you need to type in four hexadecimal 
digits, not two as with MVI.

Examples

lxi d,1234 
lxi h,01ff 
lxi b,bf00

Now try executing the “ test5.ddt” program: 

-g100
ABCDE*01 08 Worked perfectly! ABCDE got printed.

There is almost no limit to the size of the string you can print. To see this,
use the “fill” command in DDT to put a large number of the same ASCII
letter after the ABCDE string. To use “fill,” type f, followed by the address 
where you want to start filling, the address where you want to stop filling, 
and the constant you want to fill in. For instance,

-fl Of,400,41

will fill memory from lOf to 400 with ASCII “A’s” . Don’t forget to put the 24 
hex at the end o f the string, using the “s” function.

-s401
401 FD 24 This is the ASCII for
402 DO .  Period used to terminate “s”.

Now try your program on this new string. The screen will simply fill with 
the letter “A” continually until it reaches the end. DON’T TURN ON 
YOUR PRINTER. There are no carriage returns at the end of every 80th 
character of the string, so the printhead may go to the right side of the car
riage and bang itself to death there.
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READ CONSOLE BUFFER

READ CONSOLE BUFFER FUNCTION 10 (dec) = OA (hex)

Enter with: REG C = OA hex
REG DE = Buffer address
DE + 0 = Maximum number of characters

On return: DE + 1 = Number of characters typed 
DE + 2, etc. = Typed characters in buffer

Comments: Max length string = 255 characters 
Responds to all CP/M line editing commands

Read Console Buffer is one of C P/M ’s most useful functions. Its purpose 
is to accept a string of characters typed in at the console device (usually the 
keyboard) and put them in a “buffer” area in memory so your program can 
use them. Read Console Buffer is similar to the Console Input function we 
covered earlier in that it accepts information typed at the keyboard. How
ever, the similarity stops there, for the read buffer function allows the user to 
type a complete string of up to 255 characters. It’s also a little more compli
cated to set up than Console Input. We’ll explain how to do it, and what 
“DE + 1” and similar notations mean, in a minute.

C P /M ’s Built-in Editing Commands

One feature that makes Read Console Buffer especially useful is that it 
responds to the set of CP/M  control-character commands and, thus, per
mits editing while you’re typing in the string. Perhaps the most important 
of these commands is control-c. If this is typed at the beginning of the 
string, CP/M  does a warm boot. Thus, by using Read Console Buffer, you 
allow your program user the opportunity to reboot the program during 
input. This may be desirable or not, depending on the type of program 
being used. Read Console Buffer offers a host of other useful line editing 
features. The commands available to the lucky user of this function are 
(press CONTROL with all these letters):

H backspaces one character position.
X backspaces to the beginning of the line and erases all characters 

(start over, erase).
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U moves cursor down to beginning of next line and IGNORES previ
ous typed line (start over, still view old line).

R retypes the current line after the new line. Useful when you over
used the DEL key and can’t figure out what the line means.

E causes “physical end of line,” meaning the cursor returns to the left
margin, one line down.

J is a line-feed character, and terminates input line (as if a carriage
return was typed).

M is a carriage return, terminates input line.
DEL removes and echos the last character typed. An old-fashioned way

to remove characters, left over from the old days of hardcopy-only 
teletypewriter machines.

C does a warm boot.

We don’t want to go too far off on a tangent at this point by getting too 
involved in these editing features. You can practice them on the string that 
we will be using in the next exercise. For now, here is a short way to remem
ber the most important commands:

H Hard left one space, no Hurt.
X X out the whole line, start over.
U yUck, start over next line.
R Retype line, down one line.
E End this line, go down a line.

You can copy this out and stick it up near your computer, or on the fore
head of a passing co-worker.

How to Set Up Read Console Buffer

The Read Console Buffer system call “reads” a line of edited console input 
into a buffer addressed by the contents of register-pair DE. You must set up 
the buffer address in the DE-register before making the call. The LXI 
instruction is used to do this, just as in the Print String function. In addition, 
you must set up a number in the beginning of the buffer which represents the 
maximum number of characters you want to accept. If you put a hex 20, for 
example, in the buffer, then as soon as the user types more than 32 characters 
(decimal), the function will terminate. We call this “ending by OVER
FLOW.” The user can also terminate the string by typing a RETURN (or a 
control-J or -M).
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D E + O  +1  + 2  + 3  + 4 . . .  + n - 1  + n

/ / / / / / / /  , / |
mx nc c1 c2 c3 ??

??|/

\  ' -This is the number of characters typed.

--This is the maximum characters allowed.

Fig. 3-2. Buffer address in the DE register.

The buffer that we set up looks like the diagram in Fig. 3-2.
This is what it means. “DE + O” is simply shorthand for the address sent to 

the function in the DE-register. DE +1 is the next address after this, and so 
on. Thus, if you put 400 in the DE-register when you call this function, 
D E +  1 will be at 401, DE + 2 will be at 402, and so on up to DE +  n, which 
will depend on the length of your message.

The “mx” indicates the maximum number of characters that the function 
will allow to be typed into the buffer, a number from 1 to FF hex (1 to 255
decimal). Your program must put this value in the first position in the buffer.
The “nc” is the number of characters actually typed by the user and this is set 
by FDOS when the function returns to your program. This number is useful 
for determining how long the input string actually is. It is found at D E +  1. 
Following “nc” are the actual characters read from the keyboard. If the 
number of characters actually typed by the user is less than the number set 
by mx (nc <  mx), then the remaining positions in the buffer are whatever 
they were before the function was called and have no meaning. These are 
marked as ?? in Fig. 3-2.

Note that some control characters typed into the print buffer will get 
stored in their proper ASCII codes. Tabs, for example, appear as 09 hex. A 
control-c in the middle of a line will appear as a 03 hex.

Our Read Console Buffer example is really quite simple. Let’s assume that 
we’re going to start our buffer at 200 hex. Type the following in D D T:

-a 1 00
0100 mvi a , 20 Set max characters to 32 (dec)
0102 sta 200 and put in first buffer position.
0105 mvi c ,a Set up REG C for Read Console Buffer.
0107 Lxi d,200 Load DE with location of buffer start.
010A c a l l  5 Finally, call BDOS.
010D r s t 7 Back to DDT.
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You can store this program as “ testó.ddt” .
As you can see, there’s a new instruction listed: STA. Let’s see what it’s all 

about.

The STA Instruction

This instruction will take the 8-bit value in the A-register and store it any
place in memory. Where this value will be stored is determined by the 
address in the operand field of the instruction. For instance:

sta 2000

will take the 8-bit value in the A-register, which might be anything from 00 to 
FF, and store it in memory location 2000.

In DDT, this address is represented by a four-digit hexadecimal number. 
In the next chapter, when you learn how to use the assembler, you will find 
that this address can also be represented by a name.

Notice the difference between this instruction and others that we’ve 
learned about earlier. For instance, MOV B,A takes an 8-bit value from the 
A-register and stores it, not in memory as STA does, but in a register: the B- 
register. An instruction like MVI A,7F is different from STA in two ways. 
First, it’s loading an 8-bit value from memory into the A-register, not storing 
it from the A-register into memory as STA does. Second, MVI A,7F refers to 
a constant at a place in memory immediately following the MVI instruction, 
while STA refers to a location in memory that can be located far away from 
the STA instruction itself. For this reason, STA uses an address in the oper
and field, while MVI uses the actual 8-bit value.

Examples

sta 2010 
sta 0100 
sta bfOO

Our example program first puts a 20 (hex) into the A-register and stores 
it at the beginning of our buffer at 200 (hex). This is “mx,” the maximum 
number of characters. The program then calls Read Console Buffer, using 
the address 200 as the start of the buffer. It then waits for you to type 
something in.
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Before STA 2011 is executed:

A-register

63 IP

/ 0100

/ 0101

/ 0102

/ 0103

/ 0104

/

/
1111111111111 
1111111111111

/ /

2011
/ 2012
/

2010

2011

2012

After STA 2011 is executed:

A-register

0100

0101

0102

0103

0104

Fig. 3-3. The STA instruction.

Section of memory 
containing program.

STA 2011

Section of memory 
where constant 
will be stored.

Section of memory 
containing program.

STA 2011

Section of memory 
where constant 
is now stored.
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-g100 »--------  Start the program.
Now is  the t im e . - . -----------Type this in.

*01OD -*----------This will actually overwrite the first part of the input.

There is a small glitch in that the “ *010D”, which DDT prints when the 
program is over, overwrites part of the line that we typed in. This would be 
easy to fix, as we’ll see in the next example, but for the time being we’ll live 
with it.

Now you can dump (display) the buffer at 200 (hex) to see if what you 
were supposed to put there has actually arrived.

-d 2 0 0 ,2 1 f

0200 20 10 4E 6F 77 20 69 73 20 74 68 65 20 74 69 6D .Now i s  the t im
0210 65 2E CD 05 00 F5 79 CD 8F 06 F1 C9 FE 20 C8 FE e .....y .............

There it is! The 20 at location 200 is the maximum number of characters 
“mx,” which you put there with the STA instruction. The 10 in location 201 
is the actual number of characters typed in (10 hex is 16 decimal). The rest of 
the buffer from 212 on is still filled with whatever junk was in it before.

Let’s see what happens if we type in more characters than are specified by 
“mx.”

-g100

Now is  the t im e f o r  a l l  good men ------- Type this in, keep typing.
*010D I------- — At this point, the function took
~ over and returned us to DDT.

Dump the buffer again and there’s our input, safely stored away. This time 
the number of characters that were actually typed in is the same as the maxi
mum “mx.”

-d 2 0 0 ,2 2 f

0200 20 20 4E 6F 77 20 69 73 20 74 68 65 20 74 69 6D Now is  the t im
0210 65 20 66 6F 72 20 61 6C 6C 20 67 6F 6F 64 20 6D e f o r  a l l  good m
0220 65 6E FE 2C C8 FE OD C8 FE 7F CA 24 05 C9 0E 0D e n . , ............... $ ____

There it is again, just as you typed it. Later we’ll see how a program can
make use of this function to accomplish all sorts of useful and exciting things.

81



Soul of CP/M®

ECHO PROGRAM

Let’s put together the two string-handling system calls that you’ve just 
learned-Print String and Read Console Buffer—into a single short program.

-a100
0100 mvi a , 20 Put max characters at start of buffer.
0102 s ta  1fe
0105 mvi c,0a Call Read Console Buffer.
0107 Lxi d ,1 fe
010A ca L L 5
010D mvi c ,2 Use Console Out to print linefeed.
01 OF mvi e,0a
0111 c a l l  5
0114 mvi c ,9 Print String.
0116 l x i  d ,200
0119 c a l l  5
011 c r s t  7 Back to DDT.
011D

You can save this as “ test7.ddt” .
This program will accept the input that you type, store it in a buffer, and 

then print it out on the screen, echoing what you typed in. There are several 
things to notice. First, we had to add a section to the program to print a 
linefeed. This keeps the Print String function from printing right over the 
string that you typed in. To do this, we use the Console Output function to 
print a OA ASCII character, which is the linefeed.

The next thing to notice is that we tell the Read Console Buffer and the 
Print String functions different addresses for the start of the buffer. Read 
Console Buffer is told to start at 1FE, while Print String is told to start at 
200. This is because Read Console Buffer needs two extra bytes at the start of 
the buffer to enter the maximum number of characters “mx” and the number 
of characters actually typed “nc.” These will go in 1FE and IFF, respectively, 
so that the actual typed characters will start at 200.

Try typing in some input. But, BE CAREFUL! Since Print String requires 
that the string it prints be terminated with a dollar-sign character, you must 
type a “$” at the end o f your string. Otherwise, as we noted earlier, Print String 
won’t know when to stop, and may end up printing a lot of weird characters 
that will do strange things to your terminal. For this reason, you must also 
make sure you don’t type any more than 32 decimal (20 hex) characters. If
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you do, Read Console Buffer will terminate itself before you have time to 
type the dollar-sign character.

The next program also makes use of the Read Console Buffer and Print 
String functions. It’s a little more ambitious—which is to say longer and more 
com plicated-and is really included just to give you something a little frivo
lous and amusing to play with. So don’t worry if every nuance of the pro
gram’s operation isn’t clear to you. However, in addition to Print String and 
Read Console Buffer, it also makes use of the Console Output and Get Con
sole Status system calls and it uses most of the 8080 instructions we’ve cov
ered so far. So it can serve as a review of what you’ve learned up to this point. 
It also introduces the loop-within-a-loop, a concept that is good to get used 
to, as we’ll be seeing it again later.

What exactly does the program do? Well, that’s a little hard to explain. 
You start off by typing your name and the program then uses your name to 
make some rather surprising patterns on the video screen. One picture, they 
say, is worth a thousand words, so why not type in the program (very care
fully) and see what happens?

Don’t forget the $.
-g100

Now is  the t im e .S  
Now is  the t im e .*0 1 lC

You type this. 
Program types this.

NAME DISPLAY PROGRAM

-a100
0100 mvi a,20
0102 sta o l fe
0105 mvi c,0a
0107 lx i  d ,1 fe  
010A c a l l  5
0100 mvi b,30
010F push b
0110 pop b
0111 in r  b
0112 mov c,b
0113 mov a,b
0114 push b
0115 cpi 50

Get B from stack, 
increment it, 
store it in C, 
and in A,
and put it back on stack.

Set up to get input string, 
store it at lfe.
Call “ Read Console Buffer.”

Put max characters at start o f buffer.

Set initial B-register value to 30 
and save on stack.

Is the B-register =  50 yet?
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0117 jz 10D Yes, so go reset it.

011A mvi c,2 Set up to print a space,
011C mvi

o<\J<D (20 hex is a space),
011 E cal L 5 call “ Console Output.”
0121 pop b Get BC, to decrement C.
0122 dcr c Decrement C,
0123 push b save BC.
0124 jnz 115 If C-register not 0, go print space.
0127 mvi c,9 Print the string;

0129 lx i d,200 starts 2 bytes past Ife.

012C ca LI 5 Call “ Print String.”
012F mvi c,b Keyboard character typed?

0131 ca 1 1 5 Call “ Get Console Status.”

0134 ora a Is A-register still =  0?

0135 jz 110 Yes, so do another line.

0138 rs t 7 Back to DDT.

You can save this program as “namedisp.ddt” . Be careful while typing in 
the code. One disadvantage of using the microassembler in DDT is that if 
you make a mistake in your input, sometimes it’s not easy to go back and 
change it. This is because different instructions have different lengths, and if 
you put a two-byte instruction in a place where you meant to put a three-byte 
instruction, and then you want to go back and try to change it to the 3-byter, 
it won’t fit. Using the assembler will eliminate this problem, as we will see in 
the next chapter.

Here’s how this program works. When you first start it, you type in your 
name. As in the last example, BE CAREFUL! You must terminate your name 
with a dollar-sign character!

-g100 « Start the program.

A L f  red E . NewmanS -«---------  Type your name (press return).

-«-----------  Watch what happens!

Unfortunately, we can’t reproduce in this book a picture showing the 
motion that the program displays. However, we can describe how the pro
gram works. After you’ve typed in your name, the program prints a string of 
spaces, then your name, then a string of spaces (which is one space longer 
than the first string of spaces), then your name, then a string of spaces which 
is two spaces longer than the first one, then your name, and so on. The result

84



Getting in Deeper

is a pattern of shifting parabolas which seems far too complicated to have 
come from such a simple program.

The constants in the program, 30 hex and 50 hex, are set up to work on an 
80-column screen. If your screen is a different size, the program may not 
produce the desired results. Try changing the 30 in line 10D and the 50 in line 
115 to different values. Experiment a little.

Two registers are used to hold the variables that the program needs to 
remember what it’s doing. The B-register holds the number of spaces to be 
printed on the current line. This number starts at 30 hex and goes up to 50 
hex. (These values were determined by trial and error.) The C-register counts 
how many of these spaces have already been printed. That is, if the number 
in the B-register is 40, then the C-register will start off at 40 and count down
ward to 0, printing a space each time. When all these spaces have been 
printed, the program will go back, increment B by one, and start over print
ing the new number of spaces.

There’s one new instruction used in this program; it’s called DCR.

The DCR Instruction

This instruction is the opposite of the INR instruction that you learned 
about earlier. Where INR incremented (added 1 to) the one-byte register 
specified in the instruction, DCR decrements (subtracts 1 from) the register. 
Any 8-bit register (A, B, C, D, E, H, or L) may be used in the operand field.

Note that this instruction also sets the appropriate flags. That is, if decre
menting the register causes it to become 0, the zero flag will be set; otherwise, 
it will be cleared. (Some other flags may be set as well.)

Before DCR C Is Executed:

C-register

y /

99
/

Fig. 3-4. The DCR instruction.
After DCR C Is Executed:

C-register

/ /
98

/
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Examples: 
dcr b 
dcr h

Fig. 3-5 is a flowchart that details the operation of the program. The memory 
locations where the different parts of the code occur are shown on the side.

By studying the flowchart along with the program listing, you should begin 
to understand how the program works. The heart of the program is the print-

Get input string 
and store in buffer.

T
(100 to 107)

Set B-register =  30. (10D)

t
Increment B-register. (10F to 111)

Transfer B-register 
to C-register. (112)

< ^ J s  B-register =  5 0 ? ^ > ---------------- (115)

(1 1 A to 122)

(124)

(127 to 12C)

(12F to 135)

(138)

(Exit to D D ^

Fig. 3-5. Flowchart for the DCR instruction.
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ing of a string of spaces, in lines 11A to 124. Register C is set at the beginning 
of this section to the number of spaces to be printed and is decremented each 
time until it is zero. Then, the user’s name is printed and the program checks 
to see if a keyboard character was typed to halt the program. After this, the 
program returns to 10D to increment the B-register, which started off with 30 
and will end at 50. The B-register holds the value that is given to the C- 
register in line 112 so that the correct number of spaces will be printed each 
time through.

Again, don’t worry if every detail isn’t crystal clear. The point really is just 
to understand how a number of systems calls can work together in a single 
program.

DIRECT CONSOLE I/O

DIRECT CONSOLE I/O  FUNCTION 6 (dec) = 6 (hex)

Enter with: REG C = 06 hex
REG E = FF hex on input
REG E = ASCII character on output

On return: REG A = ASCII character, or 00 (no character) on input.

Comments: A dual-purpose function call, for input and output.
No echo, bypasses all CP/M line-editing commands.

Direct Console I/O  provides the serious programmer with a means of get
ting characters from the keyboard and displaying characters on the screen 
without echo and without the previously described built-in control-character 
functions, which it does not acknowledge. This is useful in those special cir
cumstances where you want to do something nonstandard with the user’s 
input or the screen output. For instance, you might be writing a word- 
processing program, and you might want to use control-c to cause the cursor 
to move to another part of the document, rather than causing a warm boot as 
it normally does. Or, you might want to define a special function for control- 
s, instead of having it halt the display.

The use of Direct Console I/O  lets you define control characters as you 
wish and, thus, gives you a great deal of flexibility and control over your 
input and output. However, you sacrifice all the capabilities that C P/M
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offers for free, such as, freeze the display, warm boot, retype line, backspace, 
printer on/off, etc. If you want these functions in Direct Console I/O , you 
must build them into your program yourself.

Since using the control characters in a nonstandard way can lead to confu
sion if you’re not careful, the makers of C P/M  (Digital Research, Inc.) rec
ommend that you not use Direct Console I/O . Of course, many programmers 
use it anyway.

Direct Console I/O  is unusual in another way. It’s actually two functions, 
accessed with the same system call.

On input, put ff (hex) into the E-register. The function will immediately 
return with a 0 in the A-register, and will continue to return 0 until some
thing is typed on the keyboard. Then, it will return the ASCII value of the 
character typed, but nothing will appear on the screen. This function is 
unlike both the Console Input and Read Console Buffer system calls in that 
it does not wait until the user types something before it returns to the calling 
program. (In this way, it’s like the INKEY$ function in some versions of 
BASIC.) Thus, you must continually check to see if the A-register is zero, and 
do the call again if it is.

On output, put the ASCII character you want to send to the screen into the 
E-register. The function will print it, without checking to see if it is a control 
character.
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A Short Example

Here’s a very short DDT program demonstrating how the calls are made to 
both the input and output functions of Direct Console I/O . All this program 
does is echo on the screen whatever is typed on the keyboard.

-a100
0100 mvi c ,6 Get keyboard character;
0102 mvi e , f f ff indicates input.
0104 ca LI 5
0107 ora a Is A-register =  0?
0108 jz 100 Yes, go try again.
010B mvi c ,6 Got character, so print it;
010D mov e,a put it in E-register.
010E ca L L 5
0111 jmp 100 Go wait for next character.

Save the program as “test8.ddt” and then try it out. Notice how none of 
the editing control keys has any effect. Also, the backspace doesn’t work. 
And, most inconvenient of all, there is no way to stop the program since 
control-c is inoperative. If you needed to use Direct Console I/O , you’d have 
to build all these features into your program.

Password Program

Have you ever used an automated bank teller that required you to type in 
an account number? Or a time-sharing computer that requested a password 
before giving you access to the system? In both these cases, what you type in 
is often not echoed to the screen. This is a security precaution. It keeps any
one who happens to look over your shoulder from learning your number or 
password. Our next example is a short program that shows how the Direct 
Console I/O  system call might be used to implement such a function.

Type in the following program and save it as “test9.ddt:”

-a100
0100 Lxi h,200 Put buffer address in HL;
0103 push h save it on stack.
0104 mvi c ,6 Set up Direct Console I/O;
0106 mvi e , f f specify “input.”
0108 ca L L 5
010B ora a Anything typed yet?
010C jz 0104 Not yet.
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01 OF pop h
0110 mov m,a
0111 i nx h
0112 cpi 24
0114 jn z 0103
0117 mvi c ,9
0119 Lxi d,200
o n e ca L L 5
011 F r s t 7

Yes. Restore address in HL. 
Store character in buffer. 
Increment address.
Was character a “$”?

No, go get next character. 
Yes. Print string in buffer; 

set buffer address.

Back to DDT.

This program lets you type in a string of characters, without echoing them 
to the keyboard, just as a real “password” program would do. To terminate 
the input string, you type a dollar sign ($). Then, to ensure that everything is 
working the way we expect, the program prints out the complete phrase. (It 
wouldn’t do this, of course, in a real password application.)

The Phantom “M ” Register

You may have noticed something new going on in this program. It is the 
letter “m” in the “mov m,a” instruction at location 0110. What is this? We’ve 
never mentioned an “M” register before. Well, as it turns out, there isn’t any 
such register. “M” is nothing more than a handy abbreviation for the memory 
address pointed to by the HL-register. This usage is possible because the 
designers of the 8080 gave the HL register the useful ability to indirectly 
address a memory location. That is, other 8-bit instructions, such as MVI and 
MOV, can “pretend” there is an “M” register, but what they really do (when 
we write an “m” following the instruction) is to first look at HL to get the 
address it holds and then operate on the memory location pointed to by that 
address, as if the memory location were a register. This is a useful concept 
when we want to store a series of data items in sequential memory locations, 
as we do here with the characters that are read in using the Direct Console 
I/O  routine. This is illustrated by the diagram shown in Fig. 3-6.

Here’s how it works. We start off by putting the address of the first mem
ory location where we want to store our series of characters—in the HL regis
ter. In this case, we put 200 into HL (line 100). Now that we’ve done this, we 
know that every time we refer to the “M” register, we’re really referring to 
memory location 200 (until we change the contents of HL). So—the first time 
it is executed, anyway—the “mov m,a” instruction in line 110 has the effect of 
taking the character in the A-register and putting it in location 200. But we 
don’t want to put all the characters in location 200—we want the second char-
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Before MOV M,A Is Executed: 

HL-register

z :
0203

A-register

77

/
010D

010E

010F

0110

A
0111

1

/

Section of memory 
containing program.

-M O V M,A

l l l l l l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l l l

After MOV M,A Is Executed:

0202

0203

0204

Section of memory 
where constant will 
be stored.

010D 

010E 

010F 

0110  ■ 

0111

Section of memory 
containing program.

-M O V M,A

0202

0203

0204

Section of memory 
where constant is 
now stored.

Fig. 3-6. The phantom “ M” register.

( .............- A
0203 /

llllllllllllllllll
l l l l l l l l l l l l l l l l l l

HL-register

A-register
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acter to go in 201, the third in 202, and so on. We accomplish this by simply 
incrementing the HL register-pair each time we put something in it. That 
way, the next time we refer to “m” in an instruction, we’ll really be talking 
about location 201, or 202, or however far we’ve gotten.

The INX Instruction

INX increments a register pair in the same way that IN R incremented a 
single 8-bit register. This means that it adds 1 to the 16-bit number in the 
register pair. If you started with a register-pair equal to zero and just kept 
incrementing, it would count all the way up to FFFF  hex (65535 decimal) 
before starting over again at zero.

The register pairs are HL, BC, and DE. INX works on all of them. A simi
lar instruction, DCX, decrements these register-pairs. An important and fre
quently annoying difference between these 16-bit increment and decrement 
instructions, and the 8-bit instructions IN R and DCR, is that the 16-bit 
instructions don’t set the zero flag  when the count gets to zero. That’s not a 
problem in this program example, but it will be later on.

Before INX B Is Executed:

BC-register 

/ —
BFFF

Fig. 3-7. The INX instruction.
After INX B Is Executed:

BC-register

( — ■ 7 \cooo /

Examples:
inx b 
inx h

Our program, after setting an initial value of 200 in HL and saving HL on 
the stack, calls the Direct Console I/O  routine to get the first character from 
the keyboard. (HL had to be saved on the stack because this routine, natu
rally, trashes it.) We cycle around the loop from 104 to 10C, waiting tor a 
nonzero value in the A-register to indicate that a character was typed. Once 
we get the character in A, we do several things: we get HL back from the
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stack (line 10F), we store the character in the buffer (line 110), and we incre
ment the HL-register (line 111) so it will point to the next sequential location 
in the buffer when we next call it.

To find out if the user has finished his message, we then check, with the 
“cpi 24” instruction, to see if the character typed was a dollar sign. If not, we 
jump up to 103, save HL again, and wait for a new character. If it was a 
dollar sign, we go on and print the contents of the buffer, starting at location 
200, using our old friend the Print String system call. Since we required that 
the message be terminated with a dollar sign on input, we know that there 
will be one at the end of the buffer to end the message for Print String. 
Finally, we return to DDT.

LIST OUTPUT TO PRINTER

LIST OUTPUT (PRINTER) FUNCTION 5 (dec) = 5 (hex)

Enter with: REG C = 05 hex
REG E = ASCII character

Comments: Similar to Console Output, except character is sent to LIST 
device.

This system call lets you send a character to the LIST device, which is 
usually the printer, in the same way that Console Output lets you send a 
character to the console screen. Of course, there are some differences in the 
way the printer operates, as compared with a video screen, that must be 
taken into account.

First, the usual situation is that a printer will absorb a certain number of 
characters, such as one line, without doing anything; at least, anything you can 
see. The characters sent are stored in an internal buffer in the printer, until 
either (1) the printer’s line length is exceeded, or (2) a carriage return or other 
terminating character is sent. At this point, the printer will print the entire line 
of characters. So, if your program wants to ensure that what it has sent is what 
gets printed out, it must send a carriage return as the last character.

Some printers automatically supply a linefeed when they receive a car- 
riage-return character, others don’t. If yours doesn’t, then you need to send 
one following the linefeed, to keep the printer from overprinting the previous 
line.
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Second, keep in mind that some characters look different on the screen 
than they do on the printer. Control characters, for example, may appear as 
characters preceded by a caret (A) on the screen but, instead, cause strange 
nonprinting actions to the printer, such as changing the printing pitch.

Program to Type to the Printer

This program will accept a line of input from the keyboard using the Read 
Console Buffer system call and then will output the string to the printer using 
List Output.

-a100
0100 mvi a , 50 Get input string. Max line length
0102 sta 01 f  e into buffer.
0105 mvi c,a Read Console Buffer.
0107 Lxi d ,1 fe Buffer address.
010A ca L L 5
010D Lxi h, 200 Set up HL and B. HL is buffer address.
0110 Lda 01 f f Number of characters typed.

0113 mov b,a Goes in B.
0114 mvi c ,5 Send character to printer.
0116 mov e,m Get character from buffer.
0117 i nx h Increment pointer.
0118 push h save H.
0119 push b save B.
011A ca L L 5 Do it!
011D pop b restore B.
011E pop h restore H.
011 F dcr b Check if done. Decrement count.
0120 jnz 114 Not done. Go print next character.
0123 mvi c,5 Done. Print linefeed.
0125 mvi e,a
0127 ca L L 5
012A mvi c,5 Print carriage return.
012C mvi e,d
012E ca L L 5
0131 r s t 7 Back to DDT.

You can save this program as “ testlO.ddt” . A flowchart of the program is 
given in Fig. 3-8.

The program uses two different registers to keep track of two different 
things. The HL register-pair (16 bits) holds the address in the buffer of the
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Fig. 3-8. Flowchart for outputting data to the printer.

character currently being processed-that is, it’s a “pointer” to the current 
character in the buffer. The B-register (8 bits) holds the number of characters 
remaining to be printed in the buffer.

We’ll put the actual typed characters into the buffer starting at memory 
address 200 hex. As is usual when using Read Console Buffer, the first location 
in the buffer (lfe hex) holds the maximum character count, which we set at 50 
hex (80 decimal) to avoid getting more than one line of characters. The second 
address of the buffer (Iff hex) will be filled in with the number of characters 
actually typed and this quantity is put in the B-register, which then uses it as the 
count when sending the characters to the printer. The typed input will be stored
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in the buffer starting at 200 hex, so this is the address we put in the HL register- 
pair, which is the pointer to the current character.

The program loops between 114 and 120, getting a character from the 
buffer (line 116), incrementing the pointer to the next character (line 117), 
sending the character (line 11 A, set up in line 114), and decrementing the 
count (line Ilf) to see if all the characters have been sent.

The LDA Instruction

LDA is the opposite of the STA instruction that we described earlier in 
this chapter. It loads the A-register with an 8-bit value taken from the mem
ory address specified in the operand field of the instruction. This is illustrated 
in Fig. 3-9.

Managing the Stack

Notice in the preceding printer program how we need to save both the HL 
and the B registers on the stack to keep them from being destroyed by the 
Read Console Buffer, which we call in line 11 A. The important thing to 
notice here is that the order in which we save the registers is the opposite o f the 
order in which we restore them. This is because the stack is “last in first out,” 
so that the number we put on first will be “pushed down” into the second 
position from the top when we put the next number on.

It’s easy to get confused when using the stack and pop things off into the 
wrong registers. This is a relatively simple example, but when the stack is 
used extensively in a program, it’s important to pay close attention to its use. 
Program bugs involving the stack can cause more bizarre results than usual, 
and they always seem to be particularly hard to track down.

READER INPUT

READER INPUT FUNCTION 3 (dec) = 3 (hex)

Enter with: REG C = 03 hex

On return: REG A = ASCII character

Comments: Same as Console Input, except uses tape reader.
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Before LDA 2011 is Executed:

A-register

/ / 0100

A
0101

A
0102

3A
/

11 /
0103

20 /
0104

A
///////////////////
///////////////////

/ 2010

/
2011

FE /
2012

J
After LDA 2011 is Executed:

0100

0101

0102

0103

0104

2010

2011

2012

Fig. 3-9. The LDA instruction.

i i i i i i i i i i i i i n i i i

i i i i i i i i i i i i i i i n i

A-register

Section of memory 
containing program.

LDA 2011

Section of memory 
where constant 
is stored.

Section of memory 
containing program.

LDA 2011

Section of memory 
where constant 
is stored.

97



Soul of CP/M®

This system call, and the one following, apply to devices that are no longer 
found in a typical CP/M  system: a paper-tape reader and a paper-tape punch. 
In the old days of computing, paper tape was an important medium for storing 
programs and data. Paper tape came in long rolls that were about an inch wide, 
and each character was punched into the tape as a group of 7 hole-positions. 
Each position in the 7-hole group could be either punched (indicating a 1) or 
not punched (indicating a 0). Many tape readers and, of course, all tape-punch 
devices, were mechanical and, therefore, not too reliable or fast. The introduc
tion of magnetic storage media, such as magnetic tapes and floppy disks, caused 
such a dramatic change in the reliability and pleasure of using mini- and 
microcomputers that it probably can’t be appreciated by anyone who has not 
struggled endlessly with fiendishly tangled rolls of paper tape.

In any case, should you be unfortunate enough to be using a paper-tape 
device, this system call will operate on the paper-tape reader in exactly the 
same way that the Console Input operates on the console device.

PUNCH OUTPUT

PUNCH OUTPUT FUNCTION 4 (hex) = 4 (dec)

Enter with: REG C = 04 hex
REG E = ASCII character

Comments: Same as Console Output, except uses tape punch.

As discussed previously under Reader Input, this function is usually used 
for a paper-tape punch device, which are no longer found in most CP/M  
systems. However, should you have occasion to use it, Punch Output func
tions exactly the same as the Console Output system call.

GET I/O BYTE

GET I/O  BYTE FUNCTION 7 (hex) = 7 (dec)

Enter with: REG C = 07 hex

On return: REG A = I/O Byte Value
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Logical and Physical I/O  Devices

This system call, and the following one (Set I/O  Byte), are not often used 
in the operation of a typical C P/M  system. However, they can be very useful 
when nonstandard devices, such as a modem, are attached to the system. 
What these calls do is make possible the assignment of different physical I/O  
devices to the logical devices that the program thinks it is talking to.

What do we mean by “logical” and “physical” devices? “Physical” simply 
means the actual device itself, such as the keyboard, video screen, or printer. 
Now it’s a strange and amazing fact that in CP/M,  a systems call to, say, the 
keyboard (such as Console Output) doesn’t necessarily have to go to the key
board. By setting a group of four software switches, you can actually cause 
the character that you sent to the keyboard (with a Console Output call) to 
end up at the printer, or you can cause what you sent to the printer to end up 
on the console device. The actual device that receives the character is called 
the “physical” device, whereas, the device that the program thinks it is send
ing the character to is called the “logical” device.

All this is explained in general books on CP/M  (such as CP/M® Bible, by 
John Angermeyer and Mitchell Waite) in the description of the STAT func
tion. STAT can be used to do all the things the GET I/O  Byte and Set I/O  
Byte system calls do, but they must be done by the user from the keyboard. 
What Get I/O  BYTE and Set I/O  BYTE do is let your program change the 
device assignments without human intervention.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

LIST PUNCH READER CONSOLE

Fig. 3-10. Breakdown of the I/O Byte.

The I/O  Byte

The byte referred to as the “I/O  Byte” in these system calls has a memory 
location in a typical CP/M  system of 0003 hex. The byte is broken up into 
four fields, each of which represents a logical I/O  device. It is arranged as 
illustrated in Fig. 3-10.

Each of the four logical devices is assigned two bits: the console gets bits 0 
and 1, the list device gets bits 6 and 7, and so on. Each of these 2-bit fields 
can represent four numbers (00 =  0, 01 = 1, 10 = 2, 11 =  3). Each of the result
ing four numbers is assigned to a physical device, according to the following 
list:
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CONSOLE FIELD (bits 0,1)
0—Printer device (TTY:)
1 -C rt device (CRT:)
2-B atch mode: READER is CONSOLE input, LIST is CON

SOLE output (BAT:)
3—User-defined device (UC1:)

READER FIELD (bits 2,3)
0—Teletypewriter device (TTY:)
1-High-speed reader device (RDR:)
2—User-defined reader device No. 1 (UR1:)
3-User-defined reader device No. 2 (UR2:)

PUNCH FIELD (bits 4,5)
0—Teletypewriter device (TTY:)
1—High-speed punch (PUN:)
2—User-defined punch No. 1 (UP1:)
3—User-defined punch No. 2 (UP2:)

LIST FIELD (bits 6,7)
0—Teletypewriter device (TTY:)
1—Crt device (CRT:)
2—Line printer device (LPT:)
3—User-defined list device (UL1:)

The 3-letter mnemonics following each device are those used in the STAT 
function. Note that many of the devices listed are no longer used in a typical 
CP/M  system. Usually the CONSOLE is assigned to the “console printer 
device” which C P/M  thinks of as the teletypewriter (TTY). Although your 
console uses a crt (cathode-ray tube), this device name (CRT:) is not usually 
used for the console.

How does all this look on a typical system? Bring up DDT and type -d0,f. 
This will cause the contents of the first 16 bytes of memory to be displayed. 
Look at the byte in location 3. It will typically have a value like 94 (hex). 
Let’s decode this to see what’s happening. Write down 94 in binary, like this:

10010100

Then, divide it into groups of two bits:
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10,01,01,00

The first two bits, 10, show that the LIST function has been assigned to the 
line-printer device, as can be seen using the preceding list. The next two bits,
01, show that the PUNCH device has been assigned to the high-speed punch. 
The next two bits, 01, show that the READER device has been assigned to 
the high-speed reader, and the last two bits, 00, show that the CONSOLE 
device has been assigned to the console printer device.

That’s how a human being can read the IOBYTE. How about a computer 
program? That’s where the Get I/O  Byte system call comes in. Try typing 
this program in using DDT:

-a100
0100 mvi c ,7 Call Get I/O  Byte.
0102 c a l l 5
0105 mvi b ,4 Set count of 4 in B-register.
0107 r Lc Rotate A-register.
0108 r Lc 2 bits left.
0109 mov c,a Save result in C-register.
010A ani 3 Mask off all but lower 2 bits.
010C adi 30 Add ASCII value of 0.
010E mov e,a Store result in E-register for printing.
01 OF push b Save BC register.
0110 mvi c ,2 Call Console Out.
0112 ca L I 5
0115 pop b Get BC back.
0116 mov a,c Put number back in A-register.
0117 dcr b Done 4 digits yet?
0118 jn z 107 No.
011B r s t 7 Yes, back to DDT.

Save the program as “ test 11 .ddt”. What it does is
tents of the IOBYTE. The first two instructions are the Get I/O  Byte system 
call, which returns with the IOBYTE in the A-register. The problem then is 
how to take each of the four 2-bit numbers and display them separately on 
the screen as ASCII characters. We do this by rotating the contents of the A- 
register 2 bits to the left, printing the two bits that are now on the right-hand 
end of the IOBYTE (converting them to ASCII first), then rotating the con
tents again and printing again; doing this four times. To do all this, we need 
to introduce three new instructions.
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The RLC (Rotate Left) Instruction

There are 8 bits in the A-register. Think of them as being 8 chairs placed in 
a line. Two kinds of people can sit in the chairs: zeros and ones. The chairs 
are numbered from 7 on the left down to 0 on the right. When the RLC 
instruction is executed, everyone stands up and moves over to the chair on 
his left. The person on the leftmost chair (number 7) has no chair to his left, 
so he runs all the way around to the right and sits on the rightmost chair 
(number 0). This is what “rotate” means in computer instructions; the bits 
rotate around the A-register.

Before Executing RLC: 

carry flag 5 4 3 2 1 0z
1 0 0 0 1 0 1

A
\J
\

VJ’VJ\J\jU’vJ
(The arrows show where the b its  w ill go.)

A fte r Executing RLC: 

carry flag

/ 7 i / / / / / / /  A

>
0 0 0 1 0 1 1 1

>
Fig. 3-11. The RLC instruction.

Another detail, although we won’t be concerned with it in this example, is 
that the value of the bit in position 7 is not only copied into position 0, but 
also into a special 1-byte register called the “carry flag.” This can be useful in 
many circumstances, such as when you want to rotate 16-bit numbers. Later, 
there will be an example of that.

The ANI Instruction

This instruction m eans “AND Im m ediate.” Im m ediate m eans that the value  
to be ANDed w ith the A -register is part o f the instruction  (rather than being  
stored som eplace else in m em ory). The log ica l AND operation  is som ew hat 
like OR, except that w hen you AND tw o num bers together, both b its in the 
corresponding locations in the operands m ust be set in  order for the result to  
be set, as the fo llow ing  listing shows:
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0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0 
1 AND 1 = 1

The following is an example of two 8-bit numbers being ANDed together:

0 1 1 0  1 0  0 1 
10 110  0 10

0 0 10 0 0 0 0

One useful application of the ANI instruction is to “mask off” unwanted 
bits in a particular byte. How does this work? When we AND a bit with 0, it 
doesn’t matter whether that bit was 1 or 0, the result is always 0. So, if we 
want to get rid of some bits in a particular quantity, we AND them with 0. In 
the diagram of Fig. 3-12, we’ve ANDed 66 with OF. This has the effect of 
masking off, or setting to zero, the left four bits of the 66.

Section of memory where 
the program is located.

Fig 3-12. The ANI instruction.
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In our program, we want to get rid of all the bits in the A-register except 
the two on the right (positions 1 and 0). So we “AND Immediate” a 3, which 
is the number with the two rightmost bits set: 00000011. All the bits in the A- 
register that match up with a 0 will be set to 0, and all the bits that match up 
with a 1 will be preserved—that is, set to 1 if they are a 1 already, and cleared 
to 0 if they are a 0.

The ADI (Add Immediate) Instruction

This instruction is similar to the preceding ANI instruction, except that the 
contents of the A-register are added to the number following the instruction. 
This is a simple arithmetic addition of two hexadecimal numbers. If there is a 
carry (that is, if the the resulting sum is greater than FF hex, 255 decimal), 
the carry flag is set. The other flags are also set. In particular, if the result of 
the addition is zero, the zero flag will be set; otherwise, it will be cleared.

Section of memory where 
the program is located.

Examples:
adi 30 
adi 7f

00FF

0100

0101

0102

Memory
address.

ADD 15

Fig. 3-13. The ADI instruction.
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In the preceding program example, we want a 2-bit value of 0 (00) to print 
out as an ASCII “0,” a 2-bit value of 1 (01) to print out as an ASCII “ 1,” and 
so on. However, the ASCII code for “0” is 30 hex ( not 0), “ 1” is 31 hex, 2 is
32 hex, and 3 is 33 hex; so we need to add 30 hex to each of our little 2-bit 
numbers before printing them out. The ADI instruction does it nicely.

The program uses the B-register to hold the count of how many 2-bit num
bers remain to be printed. This starts at 4 (set in line 105) and counts down 
to 0, at which point the program returns to DDT (lines 117 to 11B). The C- 
register is used to keep all eight bits of the IOBYTE (rotated either two, four, 
six, or eight times) as the program progresses. Since the B and C registers can 
both be saved on the stack with the “push b” instruction (line 10F), we can 
save both the count and the current rotated state of the I/O  byte at the same 
time, and, similarly, can restore them with a “pop b” in line 115. We need to 
save them because the Console Out system call that we use to print out the 2- 
bit numbers destroys both the B and C registers when it’s called.

Try running the program. It should give you the same value for the 
IOBYTE that you found by using the “d” function in DDT.

This is a straightforward system call whose purpose is to set the IOBYTE 
described in the last section to a new value. In fact, unless you have some 
unusual I/O  devices on your CP/M  system, there’s not really too much you 
can do that’s interesting by changing the values of the IOBYTE. Here’s a 
little experiment you can do, however, to see if everything is working as 
advertised.

Write the following program in DDT:

SET I/O BYTE

SET I/O  BYTE FUNCTION 8 (dec) = 8 (hex)

Enter with: REG C = 08 hex
REG E = new I/O byte

-a100
0100 mvi c ,8  
0102 mvi e,14 
0104 c a l l  5 
0107 r s t  7

Set I/O  Byte system call.
New IOBYTE makes LIST the Console.

Back to DDT.

105



Soul of CP/M®

This program simply changes the IOBYTE from the 94 (hex) that we found 
in the last section to 14 (hex). What does this do? Hex 94 is 10010100, while 
hex 14 is 00010100. Thus, we changed the leftmost two bits from 10 to 00, 
which (looking back at the diagram of the IOBYTE and the list of device 
assignments in the last section) means that we’ve changed the destination 
device of the LIST device from the lineprinter to the “console printer device” 
(TTY:). How do we know that’s what’s happened? Read on!

Turn on the printer with a control-p. Now type something. It doesn’t mat
ter what it is, it will get printed twice on the screen! Why is that? It gets sent 
once because the screen is simply echoing the keyboard as it normally does. 
It gets printed the second time because we’ve turned on the printer echo with 
a control-p, but the characters which would normally go to the printer have 
been re-routed to the console device because we put a 0 in the LIST field of 
the IOBYTE, instead of a 2.

GOODBYE, NONDISK SYSTEM CALLS

We’ve now covered all 12 of the nondisk system calls. You’ve learned a lot 
about how CP/M  works, and even more about how to program in 8080 
assembly language.

This might be a good time to review what you’ve learned so far. Go back 
and look at the various example programs. Experiment a little with them, 
changing a line here and a line there, to see what happens. You should feel 
comfortable assemblying and running short programs with DDT, and you 
should understand the operation of the 8080 instructions covered so far.

In the next chapter, we’re going to explain how the C P/M  assembler ASM 
works. Using ASM will save a lot of time, trouble, and agony, as compared 
with typing long programs in directly using DDT. It has a lot of other great 
features too, and you may find it almost too luxurious—but we figured that 
you deserved a break.
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Using the Assembler
Until now, you’ve been writing programs using the built-in miniassembler 

in DDT. This is fine for short routines, but its disadvantages begin to be 
apparent on longer programs. The most obvious problem is that once the 
program is written you can’t go back and insert a new instruction in the 
middle. This is because each instruction is converted into machine code, and 
the appropriate memory space is assigned to it as you type it in.
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A true assembler such as ASM, on the other hand, doesn’t convert any of 
the instructions into machine language until the entire program has been 
typed in. This makes modifications to the program much easier and also per
mits the use of various other wonderful features, such as symbolic labels to 
refer to memory addresses rather than hex numbers.

In this chapter, we’ll explain how an assembler works, show you how to 
use the CP/M  assembler ASM, and cover the use of the LOAD program, 
which converts the output of ASM into a form that can be executed directly 
from CP/M . We’ll start off by assemblying “TEST1” (one of the first pro
grams from Chapter 2) and then move along to a routine (“DECIBIN”) that 
accepts decimal numbers from the keyboard and converts them into binary 
for the computer to read. This routine makes up part of our next program, 
“DECIHEX,” which is used to convert decimal numbers typed in at the key
board into hex numbers on the screen. DECIHEX is a useful utility program, 
as well as providing a testing ground for the use of the assembler. Finally 
we’ll describe how to simplify the assemblying process through the use of the 
CP/M  utility, SUBMIT.

WHAT’S AN ASSEMBLER DO, ANYWAY?

The purpose of an assembler is to take instructions that are written in a 
form which is more or less understandable to a human and convert them into 
the binary numbers that a computer can read. When you typed “mvi c,2” in 
the DDT microassembler, for instance, DDT automatically converted this 
into the two bytes OE, 02. The OE is the code for the “mvi c” part of the 
instruction, and the 02 byte is the number that you want to put in register C. 
Similarly, a “call 5” instruction is converted into three bytes: CD, 05, 00. The 
CD is the code for “call,” and the 05, 00 is the address 0005. (As we men
tioned earlier, in 8080 machine language, the low-order or least-significant 
byte precedes the high-order or most-significant byte.) You might not even 
have been aware that these numbers were being generated when you used 
DDT’s microassembler if you didn’t look into the TPA (where the program 
was stored, at 100 hex), using the “d” command.

Let’s try that now. Bring up DDT and a simple program such as test 1.ddt:

- d d t  t e s t l . d d t

Then list it to see how it looks in symbolic form:



Using the Assembler

-1100
0100 MVI C,02
0102 MVI E,48
0104 CALL 0005
0107 MVI C,02
0109 MVI E,49
01 OB CALL 0005
01OE JMP 0100

Now, dump the contents of the memory locations occupied by the pro
gram, using “d” :

- d 1 0 0 ,1 10

------- “mvi c,2”
— mvi c,2”

I------“mvi e,48”
j—.“call 5”

| -----“call 5

0100 0E 02 "1E 48' 'CD 05 00 '0E 02' 1E 49 CD 05 00 C3 00 01
0110 01 V

(from next line)------1

Notice how the mvi instructions have different codes depending on what 
register they’re addressing: 0E for the C-register and IE for the E-register. In 
general, instructions that include an 8-bit byte (like the 02 in “mvi c,2”) are 
two-bytes long, and those that include a 16-bit address, like the “call” and 
“jm p” instructions, are three-bytes long.

The hexadecimal numbers revealed by the “d” function are representations 
of the binary numbers that the computer actually operates on when it is exe
cuting a program. The microassembler in DDT has taken symbolic instruc
tions, such as “mvi c,2” , and converted them into these binary numbers 
(which DDT translates into hexadecimal, so we can read them more easily). 
This is essentially what all assemblers do, but true assemblers do it much 
more elegantly than the DDT microassembler.

WHAT ASM DOES

In DDT, you typed symbolic instructions using the “a” function, and 
DDT assembled them one at a time as you typed them in. In ASM, the pro-
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cess is quite different and is somewhat more involved. You first type your 
symbolic input into a text file, using a word-processing program, just as if 
you were writing a letter. This text file, which is called an ASM file (and must 
have a file extention of ASM), is then stored on the disk, like any other text 
file. You then call up the assembler program ASM, which performs the actual 
assembly process: that is, figuring out what binary numbers should stand for 
each symbolic instruction. ASM generates two files: (1) the HEX file, which 
consists of the binary numbers, but in a special format which is not yet 
directly executable, and (2) the PRN (for “print”) file, which is the same as 
the original ASM file, but with the hexadecimal addresses and instructions 
included alongside the original symbolic instructions so that you can see how 
they all fit together.

Finally, the LOAD program is used on the HEX file to generate a COM 
file, which can be executed directly by CP/M .

Alternatively, the HEX file can be executed, inspected, and modified 
directly from DDT. This is useful if the program has a bug in it (a topic we’ll 
discuss later), or if access to the 8080 registers is necessary while the program 
is being used, as is the case in the “DECIBIN” routine that will be described 
later in this chapter.

The diagram in Fig. 4-1 shows the relationship of these files and programs.

Using the Word Processor

As we indicated in the introduction, we assume that your system includes 
a word processor or text-editor program. ED is included as a basic part of 
all CP/M  systems, and most people who use C P/M  also run one of the 
popular word-processing programs, such as WordStar, Spellbinder, Select, 
or Magic Wand. (For a complete description and comparison of these and 
other word-processing programs, see Word Processing Primer by Mitchell 
Waite and Julie Area.) Since there are so many different word-processing 
programs, we will not attempt here to describe how they work. We will 
simply assume that you have one running on your system and that you 
know how to use it.

Our first project will be to use ASM to assemble the program that we 
have just investigated using DDT. To begin assembling the program, use 
your word processor to open a file which has a file extension of ASM and 
the file name TEST1. (Some word processors have a special “nondocu
ment” mode for writing program listings: it suppresses page breaks and 
word wrap-around. If your word processor has such a feature, now is the 
time to turn it on.)
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ASM File 
Symbolic Instructions

mvi c,2 
mvi e,48 
call 5 
etc.

ASM Program

PRN File
Instructions with
hex equivalents.

0100 0E02 mvi c,2
0102 1E48 mvi e,48
0107 CD0500 call 5

HEX File 
Hex numbers in special format.

LOAD Program DDT Program

COM File 
Binary numbers, 

directly executable.

Fig. 4-1. Assemblying using ASM.

Format Differences Between DDT and ASM

There are several differences in the way that you type in programs using 
DDT and the way you type them using ASM.

1. Programs in ASM must start with an ORG (for “ORiGin”) directive to 
tell ASM where the program is to go in memory. (DDT assumed that 
the program would go at 100 hex.) We’ll explain more about “direc
tives” later in the chapter. Since the LOAD program (we’ll get to that 
later too) requires programs to begin at 100 hex, the ORG directive
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must be followed by lOOh, as shown in the first line of the following 
program.

2. ASM assumes that numbers are in decimal unless it is told otherwise. 
Thus, hex numbers must be followed by an “h.” (DDT assumed num
bers were in hex.)

3. The fields of the instruction are separated from each other by tabs. 
(DDT used spaces.) Also, there is a new field to the left of the opera
tion field for labels.

4. Hexadecimal numbers which start with a letter must be preceded by a 
zero (0), or ASM will think they are symbolic names rather than num
bers. This is very easy to forget, so remember it! Don’t write ffh, write 
Offh.

Let’s try typing in a program, keeping these rules in mind:

org 100h
mvi c ,2
mvi e,48h
ca L L 5
mvi c ,2
mvi e,49h
ca L L 5
jmp s t a r t

That’s not so different from the DDT version, is it? We’ve started off with 
the ORG statement, and we’ve put an “h” after all the hex numbers (except 
those that are the same in both hex and decimal, like 2 and 5). You’ve proba
bly noticed one other difference: the word “start” that precedes the first mvi 
c,2 instruction and, also, follows the jm p instruction. What’s this all about?

Symbolic Labels

One of the really nice things about using an assembler is that it relieves you 
of the responsibility of figuring out what memory address a particular 
instruction or data item occupies. In DDT, it was necessary, when we wrote 
the jm p instruction at the end of the program, to look up at the place at the 
beginning of the program where we wanted to jump to, and then write that 
same number following the “jm p” ; in this case, “jm p 100.” Of course, that’s 
not a problem in this particular example, but in longer programs, especially 
those where you want to jump down (that is to an instruction you haven’t yet
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written), the use of symbolic labels is invaluable. Also, as you will see in the 
next few programs, the labels given to subroutines can visually help to break 
the program into separate and more understandable sections.

You can use a label to refer to any particular address. A label can be any 
group of letters and numbers, but it must start with a letter, and it should not 
be longer than 8 characters or it will cause formatting problems when you try 
to type it in, and when ASM generates the PRN file. (Although, actually, 
ASM can accept up to 16 characters.) This label is placed in the “label field” 
in the program: that is, the first column of the listing. The instruction itself 
(as we learned earlier) then goes in the next column, which is called the 
“operation field.” The third column is called the “operand field” since it con
tains the thing that the instruction is going to operate on- th e  operand. This 
operand can contain either register names and constants, as is the case with 
the mvi instructions, or it can be a symbolic label, as in the case of the jmp 
instruction. There is another column, the “comment” field, which we’ll 
explore later. The fields are separated from each other either by tabs or by 
any number of spaces, but using the tab key makes for neater listings.

I tabel I operation I operand I comment

I I I I
I d e c ib in  l l x i  lh ,0  l ; s e t  HL to  zero

In using symbolic labels, writing “jm p start” is equivalent to writing “jmp 
100,” providing that we have already defined “start” as representing the 
address 100 by putting it in the label field at the appropriate place.

Assemblying the Program

Once you’ve written the program and checked it over for errors, save it on 
your disk using the appropriate command from your word-processor pro
gram. Don’t forget that it must have an ASM file extension. If it doesn’t, the 
ASM program won’t function correctly.

Now, return to CP/M  and call up ASM, followed by the name of the pro
gram you want to assemble. But don’t type any file  extension following the 
name o f your program. Just type the program name and a carriage return— 
don’t even type a period. This is because ASM interprets the letters, which 
appear in the place usually occupied by the file extension, in an entirely dif
ferent way. For the time being, we won’t worry about this, so leave the letters 
out.
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A>asm t e s t l  Assumes “testl.asm” exists.
CP/M ASSEMBLER -  VER 2.0  Sign-on message.
0111 Address following program.
000H USE FACTOR % of symbol table used.
END OF ASSEMBLY

ASM introduces itself with a sign-on message that gives its version 
number, and then proceeds to assemble the program. When it is done, it 
prints the address following the last address used in the program; 0111 in this 
case. The “USE FACTOR” has to do with the amount of space used by 
symbolic labels. There is only a certain amount of space for storing these 
labels in ASM; if you use too many labels, you’re in trouble. The USE FAC
TOR tells you the percentage of available space used in your program. The 
programs used in this book seldom have a USE FACTOR of more than 3%. 
In the present case, with only one label in the program (“start”), the USE 
FACTOR doesn’t even get up to 1%.

If you have made any errors in typing your program, ASM will print them 
out during the assembly process. The error messages are single letters incor
porated into the offending program line and can be rather obscure; usually, a 
glance at the line will show you where you went wrong.

Finally ASM tells you END OF ASSEMBLY, and returns you to CP/M . 
If you now use “dir”, you will see that two new files have been generated: 
TEST1.HEX and TEST1.PRN. To see what ASM has been up to, display the 
PRN file:

A>type t e s t l . p r n

0100 org 100h
0100 0E02 s t a r t mvi c ,2
0102 1E48 mvi e,48h
0104 CD0500 ca L L 5
0107 0E02 mvi c ,2
0109 1E49 mvi e,49h
010B CD0500 c a l l 5
010E C30001 jmp s t a r t

You’ve got to admit that’s pretty slick. Everything is all neatly printed out, 
you can see at a glance what hex values go with what symbolic instructions, 
and the program has even figured out that “jm p start” means “jm p 100.” 
About the only inconvenience is having to remember to reverse the order of
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the address bytes; thus, at line 104, the CD0500 means “call 0005,” not “call 
0500.”

Using the LOAD Program

You can’t actually execute (run) the HEX file from CP/M : it’s not in quite 
the right format. You’ll need to put the program into the correct format for 
execution, using the LOAD program. To do this, simply type “load” followed
by the name of the program, again without a file  extension. LOAD assumes
that it will be operating on a file with an extension of HEX, so typing the 
extension can cause trouble. LOAD also assumes it will be operating on a 
program that starts at 100 hex, so don’t forget the “org lOOh” directive at the 
start of your program.

A>load t e s t l  Assumes testl.hex exists.
FIRST ADDRESS 0100 Must start at 100 hex.
LAST ADDRESS 0110
BYTES READ 0011
RECORDS WRITTEN 01 Number of 128-byte records.

The messages generated by LOAD are largely self-explanatory. When 
LOAD returns you to CP/M , use DIR to see what’s happened. You’ll find a 
new file has been created: “TEST1.COM”. This file can be directly executed 
from CP/M , so type:

A> t e s t l  (No extension necessary for COM files)

The program will start and the screen will fill up with the word “H I”, just 
as it did under DDT. Another pat on the back is in order. You’ve just assem
bled and executed your first program using ASM. You are now a real 
programmer! All that stands between you and fame and fortune is a little 
more practice, some of which we’re about to give you.

Source Code and Object Code

Some nomenclature might be in order here. The ASM file that you type in 
is often called the “source file.” The COM file that you actually execute is 
called the “object file.” Individual lines of the source file are called “source 
code,” and individual lines of the object file are called “object code.” These 
terms won’t make you a better programmer, but they’ll make you sound like a
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real pro if you drop them into your conversation from time to time. (As in, 
“A head crash trashed my object file, so I had to reassemble.”)

THE “DECIBIN” ROUTINE—READS DECIMAL FROM 
KEYBOARD

The routine that we’re about to describe takes a decimal number that you 
type in at the keyboard and converts it into binary form, but leaves it in the 
HL-register where other routines (which we will write later) can have access 
to it. In order to verify that the correct binary number has indeed turned up 
in the HL-register at the end of the program, we’re going to execute the pro
gram in DDT. This will give us a chance to use the “x” function of DDT, 
which permits us to examine the contents of any of the 8080 registers.

Decimal to Binary Conversion

Before we describe how our DECIBIN routine works, you should make 
sure that you understand the distinction between binary and hexadecimal 
numbers. If necessary, read Appendix A. Essentially, binary is the way that 
the computer stores numbers, while hexadecimal is a convenient way for 
human beings to talk about binary numbers. A computer program can take 
the binary numbers stored in the computer and print them out on the screen 
in hexadecimal notation. (It could also print them out in binary notation, but 
that wouldn’t be so easy for a human to read.)

Frequently, when we talk about numbers in the computer, the distinction 
between binary and hexadecimal becomes a little fuzzy. The number in the 
computer is in binary, but when we print it out so that we can see it, as we 
might do with DDT, we’ll look at it as a hexadecimal number. It’s really 
always a binary number, but when it reveals itself to us on our computer 
screen, we see it as hexadecimal.

The DECIBIN routine that we’re about to discuss reads in a decimal 
number from the keyboard and changes it to a binary number and stores it in 
the HL-register. At least, it’s a binary number when it’s safely in the com
puter. If we wanted to see what the number was, we would print out the 
contents of the HL-register using DDT, and the number will appear in hex
adecimal form.

The program uses a different strategy to convert from decimal to binary 
than a human might. (For a human approach to decimal-to-binary conver
sion, see Appendix A on Hexadecimal Notation.) Here’s how the program
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does it. It uses the HL-register to store the binary number. At the beginning 
of the program, it sets HL to 0. Then, each time the user types in a decimal 
digit, the program performs the following steps:

1. It converts the new digit from decimal to binary.
2. It multiplies the old number in HL by 10 (decimal).
3. It adds the new digit to the old value in HL.

Thus, if the user types “432,” the program first sees the 4, and converts it 
to binary (which we’ll refer to as 4 hex). The old value in HL was 0, so when 
it multiplies this by 10 it’s still 0. Then, when it adds the new digit, the result 
is 4 hex. Next, the user types the 3. The program converts this to 3 hex, 
multiplies the old 4 hex by 10 decimal (which makes it 28 hex), and adds the 
3; thus, obtaining 2B hex. If the user at this point typed a return, signaling 
that he was finished typing in the number, the correct binary translation of 
43 decimal would be in the HL-register: 2B hex. However, the user now types 
a 2, little realizing how hard he’s making the program work.

The program converts the 2 to 2 hex and, then, proceeds to multiply the
old 2B hex by 10 decimal, which makes it 1AE hex. (2B hex is 43 decimal, 
times 10 is 430 decimal, which is 1AE hex.) Adding the 2 to 1AE makes it
1B0 hex, and that’s what remains in the HL-register if the user now types a
return. Whew! All that trouble just to go from decimal to hex notation.

Hex number in 
HL-register
H  L  

0 0 0 0
--------------- User types “4”, program multiplies 0 by 10

0 0 0 0
 - ------------and adds the 4.

0 0 0 4
---------------- User types “3”, program multiplies 4 by 10

0 0 2 8
-------------- and adds the 3.

0 0 2 B
-------------- User types “2”, program multiplies 2B by 10

0 1 A E
-*------------- and adds the 2.

0 1 B 0
 -------------User types “return”, 1B0 hex is 432 decimal.
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Why do it this way, rather than dividing by 4096, then by 256, and then by 
16, as shown in Appendix A? Because it’s easier for the computer to multiply 
by 10 than it is to divide by all those other numbers. Next question: how does 
the computer multiply by 10 when there are no multiplication instructions in 
the 8080? Well, the computer can easily double a number simply by adding it 
to itself.

Can you figure out how to multiply a quantity by 10 simply by using the 
doubling operation? Here’s how the program does it. It takes the original 
number in HL and copies it into the DE-register. Then it adds HL to itself, 
which doubles the number. If, for example, we started with 1, we now have 2. 
The result is in the HL-register. It adds HL to HL once more, which again 
doubles the number giving us a 4 in HL, with a 1 still left in the DE-register. 
It adds DE to HL which gives a 5, and, finally, it adds HL to HL again which 
doubles the result, giving us 10. Clever, no?

Decibin Routine Listing

Listing 4-1 shows the DECIBIN routine. We have used the PRN file so 
that it will be easy to refer to the particular program lines by their memory 
addresses.

You’ll notice that the program is liberally sprinkled with comments. This is 
made possible by the semicolon (;). Anything following a semicolon is a com
ment and is ignored by ASM (in the sense that it won’t try to turn it into 
binary instructions). The semicolon can occur any place in a program line, 
but the usual place to put it is at the beginning of a line (when you want the 
entire line to be a comment) or at the beginning of the comment field (the 
one on the right). It’s always a good idea when you write a program to use 
even more comments than may seem necessary, since a program listing is 
never as clear when you look at it some time after you’ve written it as it is 
when you’re writing it. And, in assembly language, there is no penalty for 
comments, as there is in interpreted languages such as BASIC (where com
ments occupy memory space when the program is running and, also, slow 
down execution speed). In assembly language, the comments exist only in the 
ASM and PRN files—they disappear completely when the program is ren
dered down into binary in the HEX and COM files.

Something else to notice about the listing is that we have added an “end” 
statement to the end of the program. Although the ASM assembler does not 
require this statement, many other assemblers do and it is good practice to 
include it. The “end” statement has another use in ASM and that is to specify 
where a program will start; that is, what instruction will be executed first.

118



Using the Assembler

0100

0100 CD0401 
0103 FF

0104 210000
0107 E5
0108 0E01 
01OA CD0500 
01 OD E1
01OE D630
0110 F8
0111 FEOA 
0113 FO

0114 E5
0115 D1
0116 29
0117 29
0118 19
0119 29 
011A 16 
011B 5F 
011C 19

011D C30701 

0120

Listing 4-1. The DECIBIN Subroutine
*************************************************** 
DECIBIN-reads dec imal  number f rom keyboard,  

conve r ts  to  b in a r y  i n  H L - r e g i s t e r

org 100h

c a l l i n g  p ro g ram- to  c a l l  r o u t i n e  and r e t u r n  to  DDT

ca 11 d e c i b i n ;ca  11 r o u t i  ne
r s t 7 ;back  to  DDT

f
; d e c i b i n  s u b ro u t in e
/
d e c ib in l x i h,0 ; s e t  h i  to  0
newdig push h ;save  h i  (Con I n p u t  uses i t )

mvi c,1 ; g e t  c h a r a c te r
ca 11 5
pop h ; r e s t o r e  h i
sui 30h ; c o n v e r t  f rom ASCII to  b in a r y
rm ; r e t u r n  i f  i t  was < 0
cpi 10d ;  i s i t  > 9 ?
rp ;  i  f  so ,  r e t u r n

W
; m u l t i p l y  co n te n ts  o f h i  by 10 ( d e c ) ,  then add new d i g i t
F

push h ; p u t  h i  i n  de
pop d
dad h ;add h i  to  h i  (doub le  i t )
dad h ;do u b le  i t  agai n
dad d ;add de ( o r i g i n a l  number) to  h i
dad h ;do u b le  r e s u l t
mvi d ,0 ; z e r o  i n  d
mov e,a ;new d i g i  t  i n  e
dad d ;add d i g i t  to  number

; r e s u l t  i s  now in  h i  
/

jmp newdig ;go  look f o r  nex t  d i g i  t

end
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(Note that this is not the same as the first instruction in the program, nor 
where the program starts in memory.)

If, for example, the last statement in your program is

end 100h

then, the first instruction to be executed will be at 100 hex. (This information 
is included by ASM in the HEX file.) This is useful if you have a program 
that you want to start executing in the middle. Only HEX files will be given 
an arbitrary address this way; COM files are assumed to start at 100 hex.

Subroutines

We have used the “call” instruction many times before when executing a 
system call to BDOS (“call 5”). As we pointed out, “call” is like a “GOSUB” 
in BASIC. It can be used to call any sort of subroutine, not just BDOS. A 
subroutine is simply a section of code that performs some function, that has a 
beginning (which is the address one uses to “call” the subroutine), and which 
ends with a “ret” instruction (which returns control to the calling program). 
If you’re hazy on what CALL does, you might want to review the description 
of it at the beginning of Chapter 2.

In our DECIBIN routine, note that lines 100 and 103 are actually the 
“program.” All these lines do is call the DECIBIN subroutine (which starts 
at 104) and, then, return to DDT with a “rst 7” instruction. Why make 
DECIBIN a subroutine? Because later, we’re going to use DECIBIN in a 
larger program where it will need to operate along with other subroutines 
and, also, because we can simplify the coding of the program if we can use 
instructions such as RM and RP, instead of RST 7.

The RM and RP Instructions, and the Sign Flag

The RM instruction means “return on minus,” while RP means “return on 
plus.” They are both very much like the RET instruction, except that they 
will only cause the return to the calling program if certain conditions are met. 
These conditions have to do with the state of something called the “sign 
flag.” You’ve already learned about the zero flag, which is set if the result of 
an arithmetic operation or a comparison turns out to be zero. The sign flag is 
similar, but it is set to “m” for minus or “p” for plus depending on the result 
of an arithmetic operation. Thus, if you subtract 5 from 3, the sign flag will 
be set to minus, but if you subtract 5 from 10, it will be set to plus.

120



Using the Assembler

The RP instruction will cause a return (the same as a ret instruction) if the 
result of a preceding arithmetic operation has set the sign flag to plus. If the 
sign flag is minus and this instruction is executed, control will simply con
tinue on to the next instruction after the RP. The RM instruction will cause a 
return if the sign flag is minus; if it is plus, control will go on to the following 
instruction.

The RP instruction functions in the same way, except that it causes a 
return to the calling program if the sign flag is set to plus.

Examples:
rm
rp

The SUI Instruction

This instruction is similar to the ADI instruction covered before, except 
that the number included in the instruction is subtracted from the contents of

MAIN PROGRAM

0100

0101

0102

0103

0104

0105

0106 

0107

CD

00

02

/

The CALL instruction 
transfers control to 
the subroutine. SUBROUTINE

CALL 200 —

RM F8

/

/

0200

0201

0202

0203

0204

0205

0206 

0207

The RM instruction transfers control back to the main program, 
jf the sign flag is set to minus. If the sign flag is not set to 
minus, control goes on to the next instruction, at 207.

Fig. 4-2. The RM instruction.
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the A-register, rather than being added. Thus, “sui 2” means “subtract 2 from 
the contents of the A-register.” This instruction, like other 8-bit arithmetic 
instructions, sets the zero flag and, also, the sign flag.

Examples:

sui 30 
sui I f

In the DECIBIN routine, the first half of the program, from locations 104 
to 113, is concerned with figuring out if the character that the user has typed 
in is a decimal digit or not. If it is, it’s converted to binary. If n o t- th a t is, if 
the user types any character other than a decimal digit—the subroutine is 
terminated and control returns to line 103 and, thus, back to DDT.

Let’s look at this in detail. The lxi h,0 instruction clears the HL register, 
which we need to do at the beginning of the program to get ready to add the 
digits to it. Then we save HL with a “pop h” instruction, since the Console In 
system call, as we’ve learned before, trashes all the registers and we need to 
remember the contents of HL. We call the Console In routine in lines 108 
and 10A to get the character from the keyboard and, then, we restore HL in 
10D.

Section of memory where 
the program is located.

Fig. 4-3. The SUI instruction.
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Now comes the interesting part. We have the character in the A-register. Is 
it a decimal digit? To find out, and at the same time to convert it from ASCII 
to binary, we subtract 30 hex in line 10E. (Recall that 30 hex = “0” in 
ASCII, 31 hex = “ 1,” and so on up to 39 hex = “9.”) If, when we subtract 30 
hex, the result is negative, then we know that the character typed in must 
have had an ASCII value less than 30 and, therefore, it could not have been a 
decimal digit. If the result is positive, then it may be a decimal number, pro
vided it isn’t too big. Since we’ve changed it to a binary number, we now 
need to see if it is greater than 9, so we do a “cpi lOd” which performs a 
“phantom” subtraction of 10 decimal from the contents of the A-register, 
and sets the flags accordingly. If the result is positive (or 0, which is consid
ered to be positive by the sign flag), then it must have been greater than 9, 
and is therefore not a decimal digit. The “rp” instruction will, therefore, 
cause a return to 103 and back to DDT.

The DAD Instruction

The DAD instruction adds the contents of a register-pair to the contents of 
the HL-register.

Fig. 4-4. Flowchart of DECIBIN subroutine.
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There are not nearly so many arithmetic instructions for 16-bit quantities 
in the 8080 as there are for 8-bit quantities. In fact, except for incrementing 
and decrementing, which are rather limited arithmetic operations, DAD is 
the only one! It was probably included in the 8080 instruction set to provide 
a way to calculate addresses but it is, of course, useful for other 16-bit quanti
ties as well. Any of the 16-bit register-pairs—BC, DE, or H L—can be added to 
the contents of the HL register-pair. The result is always left in HL.

As in other register-pair instructions, only the first letter of the register- 
pair name is used in the operand field. Thus, “dad d” means “add the con
tents of the DE register-pair to the contents of HL” ; “dad h” means “add the 
contents of HL to itself.”

Note that DAD does not set either the zero flag or the sign flag. It does, 
however, set the carry flag.

Examples:

dad d 
dad b 
dad h

The second part of the subroutine, from 114 to 11C, is concerned with 
multiplying the contents of the HL-register by 10 and then (line 11C) adding 
the new digit obtained in the first part of the program. As described earlier, 
the multiplication by 10 is accomplished by adding the contents HL to itself

Before DAD B is executed:

HL- register

BC03 f a

B C 0 3

0 2 F 1

B E F 4

B-register

z :
02F1

Result goes back into HL.

After DAD B is executed: 

HL- register

z :
BEF4

B-register

02F1
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twice (lines 116 and 117), then (in line 118) adding the original number 
(stored for that purpose in the DE-register in lines 114 and 115), and, finally, 
adding HL to itself again in line 119.

Notice, in lines 114 and 115, how easy it is to copy the 16-bit number from 
HL into DE. We simply do a PUSH H to write the number from HL into the 
stack and, then, a POP D to read it back into the DE-register. As long as we 
make sure to follow a PUSH with a POP, the stack is left unchanged.

The new digit is then added to the result in HL by placing it in the DE 
register-pair and adding DE to HL in line 11C. Notice how the D-register is 
first cleared and then the new digit is transferred from the A-register to the 
E-register (lines 11A and 11B), since it takes two 8-bit transfers to fill up a 
16-bit register. After this, we go back to get another character with the “jm p 
newdig” in line 11D.

Assembling and Executing the DECIBIN Routine

Type the program using your word-processing program, assign it the name 
“decibin.asm”, and then assemble it with ASM. Look at the resulting PRN 
file. It should look just like the one just shown. If ASM tells you there are 
errors, then you’ve probably made a typo somewhere. Fix it up until you 
have an error-free assembly.

Since we need to look at the HL register-pair after we execute this routine 
to see if it has done its job, we’ll run the program using DDT. DDT (unlike 
CP/M ) can load HEX files directly, so we’ll use the HEX file version of our 
program. When you start the program, it will just sit there waiting for you to 
type a decimal number. When you’ve finished typing the number and hit 
return, it will return to DDT and print the asterisk and the ending address. 
When it does this, DDT will overprint your original number, but that’s all 
right; the program has already read it.

Now you want to examine the contents of the HL-register, so you type “x” 
for eXamine, followed by “h” for the HL-register, and return. DDT will print 
out the contents of HL, and then wait for you to type a number to enter into 
HL; but that’s not necessary here, so hit return to get back to DDT.

A>ddt d e c ib in .h e x
-g100 Start the program.
4096 Type decimal number (then return).
*0103 (Actually prints over above line.)
- x h  Type this to look at HL.
H=1000 DDT prints out contents (in hex).
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Since 1000 hex is the equivalent of 4096 decimal, you know the program is 
working correctly. You can try it with other decimal numbers.

-g100 
10
*0103
-xh
H=000A 
-g100 
32767 
*103 
-xh
H=7FFF

And so forth. Notice that you can’t input a number greater than 65535, 
because that’s the largest number that can be represented by 16 bits (four hex 
digits).

DECIHEX PROGRAM-CONVERTS DECIMAL TO HEX, ON 
SCREEN

Hold on to your hats. For the first time, we’re going to write a program 
that is actually useful! By adding a routine which prints a hex number on the 
screen to the DECIBIN routine already described, we’re going to create a 
program that will convert a decimal number that you type in, to a hex 
number, right before your very eyes! The program will be a COM file so you 
can run it directly from CP/M , thus amazing your friends and teaching you 
the hexadecimal numbering system at the same time. Fig. 4-6 shows how the 
routines fit together.

BINIHEX—BINARY TO DECIMAL CONVERSION ROUTINE

Let’s talk about the new subroutine we’re going to add, which prints a 
binary number out on the screen. We’ll call it BINIHEX. It turns out that it’s 
surprisingly difficult to convert a four-digit hex number (really a 16-bit 
binary number) into four individual ASCII digits. This is because two of the 
digits are in one register (H) and two are in another (L), and two are on the

Decimal number.

Hex equivalent. 

Decimal number.

Hex equivalent.
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left side of their respective registers while two are on the right. We’ll make the 
project somewhat simpler by always printing four digits, even if they are 
leading zeros. Fig. 4-7 shows how it will look.

Digit 1, the most-significant digit, will be printed first, and so on, down to 
digit 4. To print the digits on the left-hand sides of the registers (1 and 3), we 
will have to shift them over to the right-hand side of the A-register so that 
they can have 30 (hex) added to them to make them into an ASCII code. 
(The digits on the right-hand sides, 2 and 4, don’t need to be shifted.)

Another problem is that the hex digits, A to F, need to be converted to 
ASCII in a slightly different way than the digits 0 to 9. This is because the 
letters A, B, C, etc., don’t immediately follow the numbers 7, 8, 9 in the 
ASCII coding system. (An unfortunate situation that results from the fact

DECIHEX Program

DECIBIN Routine

Converts decimal 
from keyboard 
to binary in HL.

BINIHEX Routine

Converts binary in 
HL to hexadecimal 
on screen.

^R eturn to C P /M ^

Fig. 4-6. The DECIHEX program.

Bit positions

H-register L-register

digit 1 digit 2 digit 3 digit 4

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Fig. 4-7. BINIHEX subroutine.
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that ASCII was invented before hexadecimal notation became popular.) List
ing 4-2 shows the BINIHEX subroutine.

Listing 4-2. The BINIHEX Subroutine

; b i n i h e x - s u b r o u t i n e  to  p r i n t  b i n a r y  number in  
: h i  ou t  on screen i n  hex

0128 7C
/
bi  n i  hex mov a,h ; p u t  h in  a ( f i r s t  d i g i t )

0129 CD3901 ca l  L p r i  nt1 ;  p r i n t  L e f t -ha nd  d i g i t
012C 7C mov a,h ; p u t  h in  a (second d i g i t )
012D CD3D01 ca 11 p r i  nt2 ;  p r i n t  r i g h t - h a n d  d i g i t
0130 7D mov a , I ; p u t  L in  a ( t h i r d  d i g i t )
0131 CD3901 ca L L p r i  nt1 ;  p r i n t  L e f t -ha nd  d i g i t
0134 7D mov a, L ; p u t  L in  a ( f o u r t h  d i g i t )
0135 CD3D01 ca 11 p r i  nt2 ;  p r i n t  r i g h t - h a n d  d i g i t
0138 C9 r e t ; e x i  t  b i  n i  hex

r
; con ve r t  to ASCII and p r i n t

0139 07070707
w
p r i  nt1 r l c ! r L c ! r l ( :!  rLc ;move high 4 b i t s  to

013D E60F p r i n t 2 ani Of h ; g e t  r i d  o f  h igh 4 b i t s
013F C630 adi 30h ;change hex to  ASCII
0141 FE3A cpi 3ah ; i f  more than 9
0143 FA4801 jm n o tb ig ;  ( i t 1s n o t )
0146 C607 adi 7h ;  then add b ias  (10=A, e t c )
0148 CD4C01 n o tb ig ca I L pchar ; p r i n t  d i g i t
014B C9 r e t

f
; sub rou t i n e  to  p r i n t char  i n  a - reg  out  on screen

014C E5
r
pchar push h ;save  hL (conou t  uses i t )

014D 5F mov e,a ; p r i n t  hex d i g i  t
014E 0E02 mvi c ,2
0150 CD0500 c a l l 5
0153 E1 pop h ; g e t  hL back
0154 C9 r e t

0155
/■

end

Notice first, that this is a subroutine, not an executable program. That’s 
why the memory locations don’t start at 100. What we’ve done is simply
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showing this subroutine by itself for clarity, even though it forms part of a 
larger program (as you can see by looking ahead a few pages).

BINIHEX consists of three parts. PCHAR is a subroutine whose only 
function is to print a character on the screen. It is entered with the character 
in the A-register, and before it calls the Console Out routine (lines 14E and 
150), it saves the HL-register because this is where the 16-bit binary number 
that we’re going to print out is stored.

PRINT 1 and PRINT2 are two different entry points for the subroutine 
that prints out, in ASCII, the 4-bit hexadecimal digit that is in the A-register 
when the routine is entered. If you want to print the hex digit on the left side 
of the A-register, you call PRINT1; if you want to print the hex digit on the 
right, you call PRINT2. This is because entering at PRINT 1 causes four 
additional instructions to be executed. The instructions are written in a some
what unusual way.

The Exclamation Point (!)

If you want to write a number of instructions on the same line, rather than 
on separate lines as we have done so far, all you need to do is separate the 
instructions by exclamation points. This is useful when a group of similar 
instructions that perform the same task can be grouped together. In this case, 
we need to rotate the A-register 4 bits to the left so that the leftmost 4 bits 
will end up on the right. Since each RLC instruction rotates the contents of 
the A-register 1 bit, we’ll do four instructions to move it the required 4 bits, 
and we’ll separate the instructions with exclamation points for clarity. (Of 
course, we could also have written each RLC instruction on a separate line— 
the assembled binary program would have been just the same.)

So, whether the A-register must be rotated or not, when we get to line 13D 
we know that the hex digit we want to print is on the right side of the A- 
register. Our next step is to “mask off” the upper 4 bits, which are meaning
less. We do this with the “ani Ofh” instruction. The number “Of hex” is 
00001111 in binary, so when we A N D  it with our 8-bit number, only the 
rightmost 4 bits will be left. Then, we add 30 (hex), to change the digit from 
binary into ASCII (since 30 hex is the ASCII code for 0).

Now we have to figure out if the resulting 4-bit ASCII digit is in the range 
from 0 to 9 or in the range from A to F. To determine this, we do a “compare 
immediate” with 3ah, since 3a (hex) is the ASCII code for 10. If the result is 
minus, we know that the number is less than 10 (decimal), so we jump over
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the next instruction and go to “notbig.” On the other hand, if the result is 
plus, we know that our ASCII digit is more than 9, so it must be in the range 
from A (hex) to F (hex). If you look at the table of ASCII values in Appendix 
D, you’ll see that “A” is 41 hex, while “9” is 39 hex. If “A” immediately 
followed “9” in the ASCII table, it would be at 3A hex, so there are seven 
characters between where “A” actually is in the ASCII table and where it 
should be. To make up for this difference we need to add an extra “7” to any 
ASCII character representing the hex numbers from A to F. We do this in 
line 146. Finally, in line 148, we call the PCHAR subroutine, already 
described, to print the ASCII digit on the screen.

Now, we can look at the main part of the BINIHEX routine, from line 128 
to line 138. These lines are responsible for making sure that the four digits 
that get printed come from the right place. The first two lines print the left 
side of the H-register. This is done by putting the H-register into the A-regis- 
ter and then calling PRINT 1 which, as we have seen, prints the left-hand 
digit (4 bits) of whatever is in the A-register. The next two lines print the 
right side of the H-register. Finally, the last four lines repeat the process with 
the L-register, and then returns to the main program.

The Complete DECIHEX Program

Now we can put together the DECIBIN and BINIHEX routines into a 
complete program. The combined DECIHEX program is given in Listing
4-3.

Listing 4-3. The DECIHEX Program
• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
;DECIHEX-converts decimal  i n p u t  f rom keyboard 
; to  hex on screen

0001 = conin equ 1 h
0002 = conout equ 2h
0005 = bdos equ 5h
000A = I f equ Oah

0100 org 100h

;main p r o g r a m - l i n k s  s u b r o u t in e s  to g e th e r

130



Using the Assembler

0100 CD0C01 
0103 3E0A 
0105 CD4C01 
0108 CD2801 
010B C9

010C 210000 
01 OF E5 
0110 0E01 
0112 CD0500
0115 E1
0116 D630
0118 F8
0119 FEOA 
011B FO

011C E5 
011D D1 
011E 29 
011F 29
0120 19
0121 29
0122 50
0123 5F
0124 19

0125 C30F01

c a l l  d e c i b i n  ; g e t  d e c im a l ,  conve r t  to  b in a r y  
mvi a , I f  ; p r i n t  l i n e f e e d  
c a l l  pchar
c a l l  b in i h e x  ; c o n v e r t  b in a r y  to  hex and p r i n t  
r e t

/
; d e c i b i n - r e a d s  decimal  number f rom keyboard,
;  co nve r ts  to  b in a r y

d e c i b i n  Lxi h,0 
newdig push h

mvi c , c o n in  
c a l l  bdos 
pop h 
sui  30h 
rm
cpi  10d 
rp

; s e t  h i  to  0
;save h i  ( c o n in  uses i t )
; g e t  c h a r a c te r

; r e s to r e  hI
; c o n v e r t  f rom ASCII to  b in a r y  
; r e t u r n  i f  i t  was < 0 
;  i  s i t  > 9 ?
;  i  f  so ,  r e t u r n

; m u l t i p l y  con te n ts  o f  h i  by 10 ( d e c ) ,  then add new d i g i t

; p u t  h i  i n  depush
pop
dad
dad
dad
dad
mov
mov

h
d
h
h
d
h
d ,0
e,a

dad d

r e s u l t  i s  now in  h i

;add h i  to  h i  (doub le  i t )
;do u b le  i t  aga in
;add de ( o r i g i n a l  number) to  h i
;do u b le  r e s u l t
; z e r o  i n  d
;new d i g i t  i n  e
;add d i g i t  to  number

jmp newdig ;go  look  f o r  nex t  d i g i  t

b i  n i  hex-program to  p r i n t  b i n a r y  number i n  h i  
ou t  on screen in  hex

0128 7C b in ih e x  mov a ,h  ; p u t  h in  a ( f  i  r s t  d i g i  t )
0129 CD3901 c a l l p r i n t l  ;  p r i n t  l e f t - h a n d  d i g i t
012C 7C mov a,h ; p u t  h i n a ( second di  g i  t )
012D CD3D01 c a l l p r i n t 2  ;  p r i n t  r i g h t - h a n d  d i g i t
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0130 7D
0131 CD3901
0134 7D
0135 CD3D01 
0138 C9

mov a , I  ; p u t  L i n a  ( t h i r d  d i g i t )
c a l l p r i n t l  ;  p r i n t  Le f t -h and  d i g i t
mov a , I  ; p u t  L i n a  ( f o u r t h  d i g i t )
c a l l p r i n t 2  ;  p r i n t  r i g h t - h a n d  d i g i t
r e t  ; e x i  t  b i  n i  hex

/
; c o n v e r t  to  ASCII and p r i n t

0139 07070707 p r i n t l  rLc !  r l c !  r l c !  r l c  ;move high  4 b i t s  to  Low
013D E60F 
013F C630 
0141 FE3A 
0143 FA4801 
0146 C607 
0148 CD4C01 
014B C9

p r i n t 2

n o tb ig

Of h 
30h 
3ah
n o tb ig  
7h

ca LI pchar 
r e t

ani
adi
cpi
jm
adi

; g e t  r i d  o f  h igh 4 b i t s  
;change hex to  ASCII 
; i f  more than 9 
;  ( i t ' s  n o t )
;  then add b ias  (10=A, e t c )  
; p r i n t  d i g i  t

014C E5 
014D 5F 
014E 0E02 
0150 CD0500
0153 E1
0154 C9

; s u b r o u t i n e  to  p r i n t  c h a r a c te r  i n  a - reg  out  on screen 
f
pchar push h ;save h i  ( conou t  uses i t )

mov e,a ; p r i n t  hex d i g i  t
mvi c ,con ou t
c a l l  bdos
pop h ; g e t  h i  back
r e t

0155 end

The EQU Directive

You’ve already learned about ORG and END. They’re instructions to the 
assembler program, rather than to the 8080 itself, like most instructions in an 
assembly listing. Digital Research, who wrote ASM, refers to such entities as 
“directives,” so we’ll do that too, although many other assembler writers call 
them “pseudo-ops,” meaning that they aren’t quite like real 8080 op codes.

Anyway, you will by now have noticed, unless you have fallen asleep at 
the wheel, that our DECIHEX program starts off with a number of state
ments containing “equ”, like “conin equ 5h”. EQU is another directive. 
W hat’s it for? The idea with these statements is to make the program listing 
clearer by using names for things instead of numbers. We know, for
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instance, that to call the Console In system call, we need to do an “mvi c , l” 
instruction. That’s fine, but the number “ 1” is not really very descriptive of 
what the instruction is trying to do. I t’s much clearer to be able to use an 
illustrative sort of name in the instruction, like “mvi c,conin” , which is 
exactly what we do in line 110. But how will the assembler program know 
what we mean when it sees “conin” used in this way? It won’t, unless we tell 
it, and that’s what the EQU directive is for. Using EQU, we can tell the 
assembler that every time it sees a certain name, it is to substitute the 
number given in the equ statement.

As another example, in line 103, we say “mvi a,If’. (These are the lower
case letters “LF,” for “Linefeed.”) What we’re doing here is loading the 
ASCII code for a linefeed into the A-register, where this value has already 
been defined in the statement “If equ Oah” at the beginning of the program. 
We could have said “mvi a,Oah” in line 103, but unless we happened to 
remember that 0a hex is the hex code for linefeed, we wouldn’t have known 
what the instruction meant.

When to use an EQU directive and when to simply use a regular hex or 
decimal number in an instruction is largely a matter of style. Many program
mers follow the convention that instructions that refer to memory locations 
outside o f the program, such as the entry point to BDOS at 5 hex, must be 
given a symbolic name with an EQU directive. This convention makes it eas
ier to go back and change the program if, for example, you wanted it to work 
on a CP/M  system where BDOS started at a location other than 5 hex. Oth
erwise, EQU is used when it will make the program easier to read. By con
vention, EQU statements are all grouped at the beginning of a program 
where they are easier to find.

Since we already know all about the DECIBIN and BINIHEX subrou
tines in this program, there isn’t too much more to say about the program. 
The first four lines, from 100 to 10B, link the subroutines together. First, we 
call DECIBIN, to get the decimal number that the user will type in on the 
keyboard. The number is placed in the HL-register where it will remain 
when we return to the main program in line 103. Then, we print a linefeed, 
so that when we print the hex number, it won’t print on top of the decimal 
number that was just typed in. To print the linefeed, we make use of the 
PCHAR subroutine that is already a part of the BINIHEX routine. We put 
the ASCII code for a linefeed in the A-register and call PCHAR. To print 
the hex version of the number, we then call BINIHEX, in line 108, and our 
job is done!
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Assembling and Using DECIHEX

Type in the entire DECIHEX program using your word-processor pro
gram and give it a file name and an extension of “decihex.asm”. Then, assem
ble it in the usual way:

A>asm dec ihex
CP/M ASSEMBLER -  2 .0
0155
000 USE FACTOR 
END OF ASSEMBLY

Now, since we want to run this program directly from C P/M  (rather than 
DDT), we’ll convert the HEX file to a COM file with the LOAD program:

A>load dec ihex

FIRST ADDRESS 0100 
LAST ADDRESS 0154 
BYTES READ 0055 
RECORDS WRITTEN 01

And now, lo and behold, we can actually execute the program and see if it
works. Type the program name (no extension needed to execute a COM file),
and when the program is loaded and waiting, type any decimal number 
between 0 and 65535:

A>deci hex 
65535 
FFFF 
A>

Wow! It did it! FFFF is the hex equivalent of 65535, so we’re really in 
business. Try it with other numbers and, then, file it away on a disk for the 
next time when you need to do decimal-to-hex conversions. DECIHEX is a 
lot faster than thumbing through some greasy table.

USING CP/M’s SUBMIT UTILITY

You’ve probably noticed that if you do a lot of assemblying, it gets a little 
tedious going through all the steps to assemble, load, and execute the pro
gram. Also, when the process is finished, you’re left with a lot of files for each 
program: ASM, BAK, HEX, PRN, and COM. (You may not have a BAK file
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if your word processor doesn’t create one.) Of these, you only need to store 
the ASM and COM files, since you can generate the others from the ASM file 
whenever you want to. Wouldn’t it be nice if there were a way to start with 
the ASM file and end up with just the ASM and COM files without having to 
go through all the steps of creating and, then, erasing the intermediate files? 
The CP/M  utility program SUBMIT permits us to do just that.

If you haven’t used SUBMIT before, here’s a brief description of how it 
works. The idea is to take a string of C P/M  commands (the kind you type 
following the A >  prompt) and put them together in a text file. Then, if you 
run the SUBMIT program, these commands will be executed one after the 
other.

Let’s try it out. Use your word processor to create the following file, and 
give it the name “quick.sub” :

Type this in. r--------These are just comments; don’t type them in.

era $1 .bak Erase the “bak” file,
asm $1 Assemble the program,
era $ 1 .p rn  Erase the “pm ” file.
Load $1 Load the program,
era $1.hex Erase the “hex” file.
$1 Execute the program.

Now, let’s assume that you have the following files on your disk in drive A:

1. “quick.sub” (which you just made above).
2. “decihex.asm” (which you typed in on your word processor).
3. “decihex.bak” (which your word processor created).
4. “submit.com”.

Type the following:

A>submit q u i c k  dec ihex

My goodness, what a clicking and whirring of the disk drive there is now! 
It’s hard to believe that one little phrase could cause so much activity. C P/M  
is erasing the “decihex.bak” file, assemblying the “decihex.asm” file with 
ASM, erasing the “decihex.prn” file, LOADing the “decihex.hex” file and 
then erasing it, and, finally, it executes the “decihex.com” file.

How does all this happen? SUBMIT looks first for the file with an exten
sion of SUB whose name was typed in following SUBMIT: in this case,
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QUICK. It then proceeds to “execute” the lines of this file as if they were a 
program written in “C P/M  language,” which, in a way, they are. When SUB
MIT sees the “era $l.bak” statement, for example, it looks for the file name 
that was typed in following the name of the submit file QUICK; in this case, 
DECIHEX. Then, wherever there is a $ 1, SUBMIT will fill in the name of the 
file: DECIHEX. So, the first line is translated into “era decihex.bak”. The 
second line is translated into “asm decihex”, and so on. (Actually, more than 
one file name can be dealt with in this way, by using $2, $3, and so on, but we 
don’t need to get into that here.)

Amusing, no? And also a great time saver. You can customize this little 
QUICK file to suit your needs. For instance, if you want to retain the BAK 
file for safety’s sake, leave out “era $l.bak”. And, if you don’t want to exe
cute the program right away, leave out the last line: “$1”.

GRADUATION TIME

You now know almost as much about 8080 assembly language as anyone. 
Oh, sure, there are some more instructions in the 8080 repertoire, but the 
ones you’ve already learned are used in 95% of all programming situations. In 
fact, you could probably write any program you wanted to by just using only 
the instructions you’ve learned so far. We’ll pick up a few more along the 
way, but they won’t be too different from what you know already.

Also, you’ve learned to use the sophisticated (at least when compared with 
DDT) ASM assembler to assemble your program. Now you can write pro
grams of almost unlimited length (subject to the limitations of your com
puter’s memory, of course) with the assurance that you’ll be able to turn them 
into object code. So, how about a round of champagne? You’ve graduated 
from 8080 school!
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CHAPTER 5

Disk System Calls

You can do some interesting things with the system calls you’ve learned so 
far, especially those that deal with the keyboard, the video screen, and the 
printer. However, most serious application programs deal with data in some 
form or other, and data in a C P/M  system are usually stored on a disk. If 
you’re writing a word-processing program, the text files are stored on the 
disk. If you’re writing a spreadsheet program like Visicalc, the data you put 
in the spreadsheet are stored on the disk. If you’re writing an improved 
C P/M  file directory program, the data you want to look at (the disk direc
tory) are stored on the disk. In short, understanding the CP/M  disk system is 
indispensable if you want to write programs that make use of the full capabil
ity of your C P/M  system.

The CP/M  disk system calls are amazingly powerful. Remember our anal
ogy in the introduction about ordering a chicken sandwich in hotels in differ
ent cities? The idea was that no matter what city you were in, you could 
always get the same chicken sandwich, even if the hotel employees, depend
ing on whether they were in Calcutta or Istanbul, had to engage in very dif
ferent practices to prepare the sandwich.

Let’s extend this analogy a little. If using the system calls for the console 
(keyboard and video) is like ordering a chicken sandwich, then using them 
for the disk drives is like ordering duck a l’orange with a magnum of Lafite 
Rothschild ’63. When you used the console system calls, you were dealing 
with single characters or character strings. With disk system calls, you can 
handle whole records and files at a time, all without having to worry about 
how CP/M  and your computer actually go about reading and writing infor
mation to the disk. And, of course, your programs will read and write files on 
any computer or disk system, as long as it is running CP/M .
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Learning how to use these disk system calls is the purpose of this chapter. 
You’ll find out about the “mailbox” system that CP/M  programs use to tell 
C P/M  what files to read or write, and you’ll explore several short system 
calls which will be all you need to have to read any file into your program. By 
the end of this chapter, you’ll be able to reproduce the CP/M  “type” com
mand and also write a program that counts the number of lines in a text file. 
(We’ll save writing to the disk until the next chapter.)

If this sounds complicated, relax. Thanks to the transportability features of 
CP/M , learning how to input and output information to the disk is scarcely 
more complicated than it is for the console. Well, maybe a little more compli
cated, but it’ll be fun. Trust us!

RECORDS, FILES, TRACKS, SECTORS, ALLOCATION 
UNITS, EXTENTS, AND GOODNESS KNOWS WHAT ELSE

One of the truly wonderful things about C P/M  is that you can write pro
grams in 8080 assembly language, which will do almost anything you want 
with the disk drives, without knowing anything about most o f the terms, such as 
those listed in the heading of this section. All you really need to understand
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are records and files. We won’t talk (too much) about the other terms until 
Chapter 7, when we get to such mysterious topics as the file directory and 
saving erased files.

Files

From the user’s viewpoint, the fundamental unit of information on a disk 
is a file. You’re already familiar with files and how they are named 
(“testl.com” and so on). A file is simply a whole lot of bytes stored on the 
disk. Files in CP/M  can be almost as small or as large as the person generat
ing them wants them to be. The minimum size is 256 bytes (which is 256 
characters, if the file consists of text), and the maximum size is more than 8 
million bytes. Now, that’s really big. Because C P/M  can handle such large 
files, it needs to be able to break them down into smaller sections. Why is 
this? Mostly because the memory of the computer is much smaller than this 
maximum file size and, also, smaller than the space on a typical 8-inch floppy 
disk. The memory of a typical CP/M  computer is 65,536 bytes (some of 
which are used by CP/M  itself). When you add the user’s program, there may 
not be more than a few thousand (or even a few hundred) bytes left for stor
ing data on the disk. On the other hand, an 8-inch disk will hold from about 
75,000 bytes to upwards of more than one million bytes. Clearly, if you have 
a file that occupies most of a disk (or more than one disk), you can’t cram it 
all into memory at the same time. So a file is broken down into smaller units 
called records, only one of which is loaded into memory at any one time.

Records

The designers of CP/M  had to determine what size records they wanted to 
break a file into. If they made the records too large, the records would take 
up too much memory when they were read in, but if they were too small, the 
disk drives would have to work too hard to transfer a file into memory, since 
each record requires a separate disk access. They chose a fairly small record: 
128 bytes. Remember this number—you’ll be seeing it again. Use your 
DECIHEX conversion program to find out what 128 decimal is in hex.

TALKING TO BDOS

When it is reading or writing information to the disk, the Basic Disk Oper
ating System (BDOS) uses two areas of memory to communicate with the

139



Soul of CP/M®

program calling it. These are the DMA buffer and the File Control Block 
(FCB). Understanding the DMA and the FCB and how they’re used is the 
key to understanding the CP/M  disk system calls.

Fig. 5-1 shows where the DMA buffer and the FCB are located in memory. 
They’re both in the “zero page,” the portion of memory from 0000 hex to 
00FF hex.

The DMA Buffer

When you want to read a file from the disk into memory, the process goes 
like this. You set aside a place in memory that is 128 bytes long. This space is 
called the “DMA buffer.” (DMA stands for “Direct Memory Access” and is 
actually a term better used with large mainframe computers that can transfer 
a block of data without the intervention of the a program—but that’s another 
story. The name got started and here it is.) The DMA buffer is usually 
located at memory address 80 (hex), which is called the “DMA Address,” 
although you can change it to any address you want, as we will soon see.

Once the DMA buffer is set up, you read the first record of the file into 
this space. When your program has done whatever it’s going to do with this 
record (printing it out on the screen, doing arithmetic on data in the record, 
or whatever), it then reads in the next 128-byte record, processes it, and so 
o n -un til the end of the file is reached.

The File Control Block (FCB)

How can your program tell C P/M  what file to read? We need a way to 
pass file  names from your program to CP/M , so that BDOS can take care of 
all the tedious details of looking for the file on the disk, finding the record we 
want and reading it off the disk, and putting it in memory in the DMA 
buffer. To pass these file names, we set up a sort of “mailbox” in memory,

l l l l l l l l l l l l l l l

I I  I I I  I I I  l l l l
/

TPA
/

DMA
Buffer /

FCB
/

/
Fig. 5-1. The memory location of the DMA buffer and the FCB.
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which we call the FCB, for File Control Block. This is simply a section of 
memory, 36 (decimal) bytes long, where we can put the file name. CP/M  also 
uses the FCB to store information about where the file is located and some 
other things, but we don’t need to worry about that now. The FCB is usually 
located at memory address 5C (hex), just below the DMA address.

The following listing shows the various sections of the file control block 
(FCB). For the time being, we are only interested in the place where the file 
name and extension go. (The mnemonics shown in parentheses are the desig
nations given the various bits by Digital Research.)

Byte number Location
(decimal) (hex) Contents

0 5C 0
1 5D T
2 5E E
3 5F S
4 60 T
5 61 1
6 62 0
7 63 0
8 64
9 65 T

10 66 X
11 67 T
12 68 00
13 69 00
14 6A 00
15 6B 02
16 6C 54
17 6D 00
18 6E 00
19 6F 00
20 70 00
21 71 00
22 72 00
23 73 00
24 74 00
25 75 00
26 76 00

Drive number (dr).

-File name (8 bytes) (fl to f8).

^■File extension (3 bytes) (tl to t3).

Current extent (ex).
Used internally by CP/M  (si).

(User should set to zero) (s2). 
N br of records in current extent (rc).

► Allocation units (dO to dlO).
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27 77 00
28 78 00
29 79 00
30 7A 00
31 7B 00
32 1C 01
33 7D 00
34 7E 00
35 7F 00

Now that you know about the DMA buffer and the FCB, we’re ready to 
plunge on into our first system call.

OPEN FILE

OPEN FILE FUNCTION 15 (dec) =0F (hex)

Enter with: REG C = OF (hex) 
REGs DE = FCB Address

On return: REG A = directory code.

Comments: Directory Code = 0,1,2, or 3 if file found. 
Directory Code = FF (hex) if file not found.

What does it mean to “open” a file? Before a program can do any reading 
or writing to a file, BDOS has to figure out where the file is on the disk. It is 
alerted to do this with the “Open File” system call. When this call is exe
cuted, BDOS finds the addresses of the various parts of the file (they’re called 
“allocation units”) and records them in the FCB for later reference. Since 
there is only one FCB, there can only be one file open at any one time. (Actu
ally, there can be several FCBs operating at once, but we’re not going to get 
into that now.)

Here’s a little program to open a file using this system call:

mvi C , f Put f in C-register for Open File.
Lxi d ,  5 C Put address of FCB in DE-register.
c a l l  5 Call BDOS.
r s t  7 Back to DDT.

►Allocation units (d ll  to dl5).

Current record (cr).

^•Random record number (rO, r l, r2).
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Type in this program using DDT, save it as “test 100.ddt”, and then exe
cute it by typing -glOO. You should hear your disk drive click and DDT will 
print out the usual star and ending address:

-g100
*0108 (Click!!)

Wow—what a powerful program—it made the disk drive click! W hat’s the 
click mean? You’ve told BDOS to open the file whose name is in the FCB. 
What name is in there? We don’t really know, since we haven’t put anything 
in the FCB ourselves. Maybe there’s an old file name left over from a previ
ous operation, maybe not. Whatever is in there, even if it’s a string of 
blanks or zeros, BDOS will try to find a file with that name. If it finds it, 
BDOS will “open” the file by recording the numbers of its allocation units 
in the FCB. If it doesn’t find the file, it will still make the disk drive click by 
looking for the file in the disk directory. (We’ll talk more about the direc
tory in Chapter 7.)

It’s not hard to see what’s in the FCB. From DDT, simply type “d5c,7f” . If 
there’s nothing in the FCB but zeros, you’ll get a printout like this:

-d 5 c ,7 f
005C 00 00 00 00 ___
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............................
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............................

The first line shows the memory locations from 5C to 5F, and the next 
lines, the locations from 60 to 7F. A name would be in here somewhere if 
there was one, but there isn’t.

You can make sure a file name is placed in the FCB by simply calling up 
DDT with the name of another program. For instance, assuming you have 
saved the “ testlOO.ddt” program described above, you can put its name in 
the FCB in the following way. First, exit from DDT with a -gO. Now, to get 
back into DDT, and at the same time, load the new program into the TPA at 
100 hex and leave the name o f the program in the FCB, type:

A > d d t testlOO.ddt 

Now look at the FCB with “d” :
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- d 5 c , 7 f
005C 00 54 45 53 .TES
0060 54 31 30 30 20 44 44 54 00 00 00 00 00 00 00 00 T100 DDT.............
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............................

There’s the name of the program! The name itself starts at location 5D, is 8
bytes long, and ends at location 64. The numerical ASCII values of the char
acters are shown on the left, and the actual characters on the right. Since 
“TEST 100” is only seven characters long, the last space of this 8-space field 
is filled in with a blank (20 hex) at location 64. The file extension “DDT” 
occupies locations 65 to 67 hex.

If we now run our little program with a -glOO, it will find an existing file, 
namely itself, in the FCB and open it.

Can we tell whether the Open File system call has been successful in find
ing the file whose name is in the FCB? Yes, by making use of what is called 
the “directory code,” which is returned in the A-register following the call. 
To use this feature, we need to add a few lines to our program to print out the 
number returned in the A-register.

0100 mvi c , f Put f in C-register for Open File.
0102 l x i d ,5c Put address of FCB in DE-register.
0105 ca 11 5 Call BDOS.
0108 mvi c ,2 Set up Console Out.
010A adi 30 Add 30 hex to A-register to get ASCII.
010C mov e,a Put result in E-register.
010D c a l l 5 Call BDOS.
0110 r s t 7 Back to DDT.

Type this program in using the “a” option in DDT, save it with “A >  save 
testlO l.ddt”, call it back in with “A > d d t testlO l.ddt” and run it with a 
“glOO”. You should get the following on the screen:

-g100
3*0110

The “3” preceding the usual asterisk and ending address is the number 
printed out by our program, and is the number that was in the A-register on 
completion of the Open File system call. It might also be a 0, or a 1, or a 2. 
Any of these numbers mean that the file, whose name was in the FCB, was 
found by the Open File system call. (Whether the number is a 0, 1, 2, or 3 is 
determined by the place in the disk directory that is actually occupied by the 
file name—a topic we’re going to avoid until the next chapter.)
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The “i” Command in DDT

It would be more convenient if there were a way to place other file names 
into the FCB directly, without having to enter them when calling up DDT. 
This is the purpose of the “i” (for “Input”) command.

Suppose you have a program on your disk called TESTPROG.TXT. If 
you’re already in DDT, and you want to put this name into the FCB, all you 
need to do is type:

-itestprog.txt

Doesn’t that seem easy? Let’s try it out to see if it really works. First, we’ll fill 
the FCB with “F F ’s” to make sure there’s nothing in it, and then we’ll use “i” 
to fill in a program name. Then, we’ll check to see if it’s there.

- f 5 c , 7 f , f f  
- d 5 c , 7 f
005C FF FF FF F F ___
0060 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F F ...................
0070 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F F ...................

- i  t e s t p r o g . t x t

- d 5 c , 7 f
005C 00 54 45 53 .TES
0060 54 50 52 4F 47 54 58 54 00 FF FF FF FF FF FF FF TPR0G..........
0070 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F F ...................

The name is there, just as it was when we called it in with DDT. Notice
also that byte 0 at location 5C and byte 12 at location 68, which are the drive 
number and “current extent,” respectively, are also zeroed out by the “i” 
function. A “0” drive number stands for the “default drive,” which is the one 
we’re in unless otherwise specified, and the “current extent” is 0 unless we’re 
reading from a file that is more than 16,384 bytes long. (More on that later.)

It is possible to do “by hand” what the “i” command does, if we translate 
the letters of the file name into ASCII values and put them into the correct 
locations using the “s” command in DDT; but, of course, the “i” command is 
far more convenient.

You can now check to see if your Open File program can find all sorts of 
different programs. Use “i” to insert the name of a program that is on the 
disk, and then run your program.
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- i t e s t p r o g .  t X t  Existing program name.
-g100
3*0110 “3” means it was found.

The program should print out a 0, 1, 2, or 3. Now try it with a program 
name that isn’t on your disk.

-i n o t a p r o g  . c o m  Nonexistent program.
- g 1 0 0

/ * 0 1 1 0  “/ ” means it wasn’t found.

If the file isn’t found, the A-register will contain FF when the program 
returns from the Open File system call. The program should then print out a 
slash (/), since this is the character with an ASCII value of 2F (30 plus FF), 
which we calcuated in line 010A of the program. (FF has the value — 1 in 8- 
bit arithmetic, and 30 minus 1 is 2F.)

THE PROBLEM WITH WHERE THE DMA IS LOCATED

The next thing that we want to do after opening a file is to read it into 
memory so that our program can examine it, print it out, send it to the 
printer, or whatever. We also want to be able to do this from DDT, because 
the “i” command makes it so easy to set up the FCB for a particular record. 
Unfortunately, there is a small problem with using DDT at the same time that 
we’re using the DMA in its normal location from 80 to FF (Fig. 5-2). The 
problem is that DDT uses this area for its stack (the place where the contents 
of registers go when you “push” them). These two areas can’t occupy the 
same space at the same time without causing error messages. What to do?

There are two solutions to this problem: an easy one and a good one. We’ll 
explore the easy one first.

The Easy Solution to the DMA Dilemma

The easy solution is to read only very short records into the DMA. Since 
D DT’s stack grows down from the address FF, and records are read into the 
DMA buffer at 80 and moving upward toward FF, if the records are short, 
we can avoid conflict. We’ll try this just because it makes for a nice easy
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i i i i i i i i i i i i i i i i i i i i i i i n i i

0100

DDT's stack and the
-  DMA buffer both try 

to use this space.

0080

005C

Fig. 5-2. The conflic t between DMA and DDT.

program, even though it has a built-in potential for disaster if we try to read 
too long a record.

The first thing to do is to create a very short record. Call up your word- 
processing program and type in some characters, but make sure you don’t 
type more than a line (80 decimal characters). End your line with a “return.” 
Save this as a file called “short.txt” . Since this file is so short, it is a 1-record 
file. (It will show up as a 2K file in the directory, but only one 128-byte 
record will be used.)

Now the only thing that stands between us and writing a program to read 
this record into the DMA is learning the Read Sequential system call.

READ SEQUENTIAL SYSTEM CALL

READ SEQUENTIAL RECORD FUNCTION 20 (dec) = 14 (hex)

Enter with: REG C = 1 4  (hex)
REGs DE = FCB address

On return: REG A = directory code.

Comments: Directory Code = 0 if read was successful.
Directory Code = nonzero if end-of-file.

Zero
Page

///z///;////;;;/////;/;/////

TPA

DDT Stack

l l l l l l l l l l l l l l l l l l l l l l l

/////////////////////// 
DMA Buffer

FCB
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This system call looks a good bit like the Open File call, but note that it 
reads a record, where the Open File call opened a whole file. What does 
“sequential” mean? It means that the call will start off reading the first 128- 
byte record in a file, will read the second one the next time it is called, the 
third one the next time, and so on, until it comes to the end of the file.

How does it know when it’s at the end of a file? In either of two possible 
ways. First, it can find an “end-of-file” mark in the file. This is only possible 
if the file is a text file, so that one of the characters can be set to the ASCII 
character for “end-of-file,” which is a 1A hex.

Secondly (and more important), since C P/M  keeps track of how many 
records are in a file and stores this information in the FCB when the file is 
opened, all the Read Sequential system call has to do is keep track of how 
many records it has already read to know if it has read the last record. The 
total number of records in a file is stored in byte 15 (decimal) of the FCB, 
and the number of the next record to be read is stored in byte 32. By compar
ing these two numbers, the Read Sequential call knows when it’s finished an 
entire file.

If the Read Sequential system call does find an end-of-file marker, it sets 
the A-register to a nonzero value on its return. Otherwise, the A-register is set 
to 0, which indicates that the read was successful.

Reading a Record

Here’s the routine to read into the DMA the record that we created earlier: 
“short.txt” . (Don’t try to read anything longer, or bad trouble and error 
messages will result.) Call this program “test 102.ddt” .

-a100
0100 mvi c , f Open file.
0102 Lxi d,5c Set FCB address.
0105 c a l l 5 Call BDOS.
0108 mvi c,14 Read record.
010A l x i d ,  5c Set FCB address.
010D c a l l 5 Call BDOS.
0110 r s t 7 Back to DDT.

Before running this program, you need to be sure that (1) your short file 
“short.txt” is on your disk, and (2) that you have put the name of this file 
into the FCB by typing “ishort.txt” from DDT. Now, run it with a “-glOO”. 
What happens? The disk drive should click. Big deal—no better than the last 
program? No. This time there’s a tangible result.
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Use “d” to look at the DMA buffer. Assuming that your “short.txt” file 
consisted of the line “Now is the time for all good men to come to the aid of 
their country,” you should see the following when you dump the buffer:

- d 8 0 , f f
0080 4E 6F 77 20 69 73 20 74 68 65 20 74 69 6D 65 20 Now i s the t ime
0090 66 6F 72 20 61 6C 6C 20 67 6F 6F 64 20 6D 65 6E f o r a l l good men
00A0 20 74 6F 20 63 6F 6D 65 20 74 6F 20 74 68 65 20 to come to the
00B0 61 69 64 20 6F 66 20 74 68 65 69 72 20 63 6F 75 a id o f t h e i r  cou
00C0 6E 74 72 79 2E 0D 0A 00 00 00 00 00 00 00 00 00
00D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 F0 00 00 00 00 00 00 00 00 C1 D6 9B D4 42 d4 44 00

j

These numbers inserted by DDT stack process.

The record ends with the codes for carriage return and linefeed: OD, OA. 
The zeros after that could be any junk that happened to be in the buffer 
before the record was read in, although you could guarantee they were zeros 
by using “f” to fill the buffer before executing the program.

So, there’s the record, sitting safe and sound in the DMA buffer, just where 
it should be. And the program to read it in is only 7 lines long! That’s even 
easier than reading a record in BASIC! However, as you’re aware, we’re 
restricted to very short records with this program. What we need now is a 
way to avoid the conflict that results when the DMA buffer and the DDT 
stack try to share the same space.

The Good Solution to the DMA Dilemma

Fortunately CP/M  offers an easy solution to this problem; we can move 
the DMA buffer using the “Set DMA Address” system call.

SET DMA ADDRESS

SET DMA ADDRESS FUNCTION 26 (dec) = 1A (hex)

Enter with: REG C = 1A (hex)
REGs DE = New DMA address
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This system call looks easy enough to use, and it is. All we need to say is:

m v i C ,  1 a Set up for Set DMA Address.
Lxi d,400 Move DMA address to 400.
caLL 5 Call BDOS.

We chose 400 (hex) as the new DMA address simply because it’s high 
enough in memory so that we know it isn’t going to interfere with our pro- 
gram at 100 hex. Actually, you can put the DMA anywhere you want, as long 
as it doesn’t interfere with your program or the C P/M  operating system (or 
DDT, if you’re using that).

Let’s incorporate these program lines into our read record program:

0100 mvi c , f Open file.
0102 Lxi d,5c
0105 ca L L 5
0108 mvi c,1 a Set DMA address to 400.
010A Lxi d,400
010D ca L L 5
0110 mvi c,14 Read record.
0112 Lxi d,5c
0115 ca L L 5
0118 r s t 7 Back to DDT.

Save this program as “testl03.ddt” . Now, use it to read in the first record 
of any file you want, no matter how long it is. Here’s how to do it:

1. Load the program with DDT with “A > d d t testl03.ddt”.
2. Put the file name of the program you want to look at in the FCB with 

“-iprogname.ext” (fill in the name of the file you want).
3. Run the program with “-glOO”.
4. Check the DMA buffer with “-d400” to see that whatever was in the 

record was read in correctly.

If you want to read the second record of a file that is longer than one 
record, simply repeat Steps 3 and 4. Each time you execute the program a 
new record will be read into the DMA buffer, where you can look at it with 
the “-d” command. You can examine any sort of record this way, whether it 
contains text, hex values, or whatever. This can be useful in investigating 
what’s really going on, on the bit level, in a record on your disk.
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For instance, some word-processing programs use the high-order bit (bit 7) 
of each character to indicate that there is something special about the charac
ter. A normal space is 20 hex, but the “soft” space used in some processors to 
justify text lines might be represented by AO hex, since 20 hex is 0010,0000 in 
binary, and A0 hex is 1010,0000. They’re the same, except that the high bit is 
turned on in A0.

Dumping a record using DDT this way immediately reveals the difference 
between hard and soft spaces, and a variety of other things as well. Read 
different kinds of files and look them over. You may be surprised at what you 
discover.

Fancy Read Record Program

We’ve left two things out of our program: (1) the check to see if the file 
we’re trying to open really exists, and (2) the check to see if the record we’ve 
read is a valid record or an end-of-file. Let’s modify the program so that it 
prints out the directory codes returned in the A-register twice; first when it 
returns from opening the file, and second, when it returns from reading the 
record. This way, we can tell if the file we are trying to read really exists, and 
if we have read a valid record in the file or an end-of-file. We’ll call this 
program “testl04.ddt”.

-a 1 00
0100 mvi c , f open file
0102 Lxi d ,5c
0105 ca L L 5
0108 mvi c ,2 print resulting directory code
010A adi 30
010C mov e,a
010D ca L L 5
0110 mvi c,1 A set DMA to 400
0112 Lxi d,400
0115 ca L L 5
0118 mvi c,14 read record
011A Lxi d ,5c
011 D ca L L 5
0120 mvi c ,2 print resulting directory code
0122 adi 30
0124 mov e,a
0125 ca L L 5
0128 r s t 7 back to DDT
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Let’s try out this program on the “short.txt” file that we created before. 
After saving the program, reload it with DDT. Then, set up the FCB with the 
“i” instruction and run the program.

- i  s h o r t . t x t  
-g 1 00 
30*0128

I-----------------------------------------------------------------The “0” says that the record was read successfully.
--------------------------------------------------------------- The “3” (or 0, or 1, or 2) says that the file was found.

Now we can dump the contents of the DMA to see that the record is really 
there:

-d400 ,47 f
0400 4E 6F 77 20 69 73 20 74 68 65 20 74 69 6D 65 20 Now i s  the t ime
0410 66 6F 72 20 61 6C 6C 20 67 6F 6F 64 20 6D 65 6E f o r  a l l  good men
0420 20 74 6F 20 63 6F 6D 65 20 74 6F 20 74 68 65 20 to  come to  the
0430 61 69 64 20 6F 66 20 74 68 65 69 72 20 63 6F 75 a id  o f  th e i  r cou
0450 6E 74 72 79 2E OD 0A 00 00 00 00 00 00 00 00 00 n t r y ..........................
0460 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...................................
0470 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...................................

But, now, if we try to read the next record of this file, we find that a direc
tory code of 1 is returned, indicating an end-of-file:

-g 1 00 
31*0128

-̂-----------------------The “ 1” indicates that the record was not sucessfully read; it was an end-of-file.

------------------------------------------------------------------------------------------- The “3” means the file was found.

Continuing to attempt to read records from the file will yield the same result: 
a directory code of nonzero indicating end-of-file.

Try out this program on some more existent and some nonexistent files. 
Check the contents of the DMA with the “d” command both before and after 
reading a nonexistent file. They don’t change since there’s nothing in the file. 
Read a file with a fairly small number of records and see how the contents of 
the DMA change for each succeeding record. Watch the directory code 
printout change from 0 to a nonzero value when the last record is reached.
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Using this program with the DDT dump function, you can explore how a 
variety of files are stored on the disk. You can find out what the contents of 
your files really are, rather than just what your applications programs tell you 
they are.

TYPE2 PROGRAM—IMITATES THE “TYPE” COMMAND

We’re now going to put together some of the things we’ve learned in order 
to show how to perform a simple but useful function involving the disk sys
tem. In fact, this function is so useful that Digital Research has already incor
porated it into CP/M . It’s the “type” function, which simply prints out on 
the screen the contents of a text file.

Our program will operate in almost exactly the same way as “ type,” so 
we’ll call it “type2.com”. It will operate directly from CP/M  as a COM file. 
To use it, you type:

A >type2 progname.ext

where “progname” is the name of the file you want to look at and “ext” is its 
file type. Executing the program in this way has the effect of putting the 
program name which follows “ type2” into the FCB, just as it did when we 
called DDT and followed it with a program name. In fact, this is always true; 
when you type two program names in a row following the A >  prompt, 
C P/M  will load the first program into the TPA, and put the filename of the 
second into the FCB.

Look at the listing of TYPE2 in the following pages. The program starts by 
opening the file whose name is in the FCB and, then, checking to see if the 
file was found. If not, it prints the message “No such filename” and exits 
back to CP/M . Assuming that the file exists, it reads the first record from the 
file and checks to see if it is a valid record or an end-of-file (EOF). If it is the 
EOF, the program figures its job is done and exits to CP/M . Otherwise, it 
knows it has a valid record, which it prints out using the Console Out system 
call in the subroutine “pchar” (for “print character”). We could have used 
the Print String system call, but then we wouldn’t have been able to print 
strings containing dollar signs, since these act as terminators to Print String.

Since this is a fairly long program which we don’t want to run from DDT 
anyway, we’ll assemble it using ASM. The program is given in Listing 5-1.
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Listing 5-1. The TYPE2 Program
;  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;TYPE2-program to  i m i t a t e  CP/M " t y p e "  f u n c t i o n  
/

000F = openf equ Of h ;open f i l e
0014 = readr equ 14h ; re a d  record
0009 = p r i n t s equ 9h ; p r i n t  s t r i n g
0002 = conout equ 2h ; c o n s o le  ou t
005C = fcb equ 5ch ; f i  le  c o n t r o l  b lock
0080 = dma equ 80h ; s t a r t  o f  dma b u f f e r
0005 = bdos equ 5h ; o p e r a t i n g  system e n t r y

0100
/

org 100h
f
;open f  i Le ( name must a l r e a d y  be i n  f c b )

0100 0E0F mvi c ,op en f
0102 115C00 Lxi d , f  cb
0105 CD0500 ca L L bdos
0108 3C i n r a ; i f  a was f f ,  now i t ' s  0 ,
0109 CA2701 j z nof  i ;  so no such f i l e  name

; re a d  record  f rom f i l e

010C 0E14
/
n e x t r  mvi c , r e a d r

010E 115C00 l x i d , f  cb
0111 CD0500 ca 11 bdos

f

; i f  e n d - o f - f i l e ,  then e x i t  to  CP/M
0114 B7 ora a ;  i s a=0?
0115 CO rnz ;  no,  so e o f ,  back to  CP/M

r

; d i s p l a y  co n te n ts  o f  dma b u f f e r
011 ó 218000 l x i h,dma ; s e t  p o i n t e r  i n  hL
0119 0680 mvi b,128d ; s e t  count  i n  b
011B 5E loop mov e,m ; g e t  char f rom b u f f e r
011C CD3001 ca 11 pchar ; d i s p l a y  i t
011F 23 i nx h ; i n c re m e n t  hL
0120 05 dcr b ;decrement b-done?
0121 C21B01 jn z loop ;  no t  ye t
0124 C30C01 jmp n e x t r ; y e s ,  go ge t  nex t  reco rd

/
;no such f i  Le name: p r i n t  message and e x i t

0127 0E09 n o f i  mvi c , p r i  n ts
0129 113A01 Lxi d,nfmess
012C CD0500 ca 11 bdos
012 F C9 r e t ;back  to  CP/M
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; s u b r o u t i n e  to  d i s p l a y  one c h a r a c te r  on screen
0130 E5C5 pchar push h ! push b! ;save  r e g i s t e r s
0132 0E02 mvi c ,con ou t  / p r i n t  c h a r a c te r  i n
0134 CD0500 ca 11 bdos
0137 C1E1 pop b! pop h ! ; r e s to r e  r e g i s t e r s
0139 C9 r e t

013A 4E6F207375nfmess db ’No such f i l e n a m e . $ ’

014C
A

end

Most of the programming tricks used in this program you’ve seen before. 
We’ve used a lot of EQU statements at the beginning of the program in an 
attempt to make the rest of the listing easier to read. A flowchart for the 
TYPE2 program is given in Fig. 5-3.

In lines 108 and 109, we check for EOF by incrementing the directory code 
in the A-register. If it was FF hex, indicating an EOF, incrementing it will 
cause it to become zero, and our “jz” (jump on zero) instruction will then be 
activated and will cause control to go to “nofi” (for “no file”), where the “No 
such filename” message is printed out using the Print String system call. 
You’ve used this system call before, but the way we type the message into the 
listing, using the “db” directive, may be new to you.

The “DB” Directive

As we pointed out earlier, it’s tedious to convert long strings of characters 
into their ASCII values and then type them in by hand when a message is 
called for in a listing. ASM provides a way to simplify this task with the “db” 
directive, which stands for “define bytes.” This directive is used whenever 
you want to put 1-byte values into your listing. These values can be repre
sented by either numbers from 0 to 255 decimal (0 to FF hex), strings of 
characters (which ASM will translate into their ASCII values), or labels that 
refer to 1-byte numbers. Combinations of these things may be used, sepa
rated by commas. Strings of characters must be enclosed in single quotes. 
Thus, any of the following statements are valid:

max db 12d ; single number
data db 43h,41h,54h ; group of numbers
mess db ’speak to me!’ ; string of characters
mess2 db ’your name?’0D,0A ; string plus numbers
mess3 db ’your name?’cr,lf ; string plus labels
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The hex values for carriage return and linefeed are OD and OA, respec
tively. Thus, mess2 and mess3 are equivalent, provided the labels “cr” and 
“If” have been set to these values with EQU statements.
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After reading a record, TYPE2 checks for end-of-file by ORing the A-regis
ter with itself; if it’s not zero, the program returns to CP/M . To display the 
contents of the DMA buffer on the screen, the program sets up a loop. The 
B-register holds the count of characters in the buffer (which is 128 decimal) 
and the HL-register holds the address of the particular characters in the 
buffer. We can then just put a character in the E-register with a “mov e,m” 
instruction and print it with a call to pchar. Next, we do a loop, incrementing 
the HL pointer, decrementing the B-register counter, and printing the charac
ters, until the count is zero, at which time we go off to read another record.

Type the program in using your word processor, giving it a filename of 
“ type2.asm” . (Don’t type the hex values on the left-hand side, of course.) 
Assemble it with ASM, load it with LOAD, and you’re ready to execute it 
directly from CP/M . Type “type2” followed by the name of the program that 
you want printed out.

Terrific! It’s just like C P/M ’s “ type” command. You can even start and 
stop the scrolling with control-s, just as you can with “type.” So look at you! 
Now you’re writing CP/M  system programs. In a few more pages, you’ll be 
ready to apply for a job at Digital Research!

LINES PROGRAM—PRINTS NUMBER OF LINES IN TEXT 
FILE

For our next program, and the last one in this chapter, we’ve tackled some
thing a little more ambitious. We’re going to write a program that will read 
through a file and count the number of linefeeds it encounters, thus provid
ing a line count of a document or listing.

Actually, the LINES program should look more or less familiar to you, 
since it consists of system calls and concepts you’ve looked at before—except 
for one section. So we’re not going to go into detail on every part of the 
program. We’ll talk about a few new things, and we’ll cover the BINIDEC 
subroutine which converts a binary number in the HL-register into a decimal 
number and prints it out on the screen. This subroutine has a cute way of 
doing what it does, so we’ll describe it briefly.

The BINIDEC Subroutine

The BINIDEC subroutine occupies locations 175 to 1B2 in the LINES 
program. Here, in Listing 5-2, is how it looks, separated from the rest of the 
listing.
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Listing 5-2. The BINIDEC Subroutine

; b i n i d e c - c o n v e r t s  b i n a r y  number in  h i  to  
; d ec im a l ,  p r i n t s  r e s u l t  on sc reen.

0175 11F0D8 b in id e c l x i d , -10000 ; p r i n t  number o f  10,000s
0178 CD9401 c a l l subcnt
017B 1118FC l x i d , - 1 000 ; p r i n t  number o f  thousands
017E CD9401 ca 11 subcnt
0181 119CFF l x i d , -10 0 ; p r i n t  number o f  hundreds
0184 CD9401 ca 11 subcnt
0187 11F6FF l x i d , - 1 0 ; p r i n t  number o f  tens
018A CD9401 c a l l subcnt
018D 11FFFF l x i d , -1 ; p r i n t  number o f  ones
0190 CD9401 ca 11 subcnt
0193 C9 r e t ; t h a t 1s a l l

0194 0E2F
r

subcnt mvi c , ’0’-1 ; c  ho lds ASCII ver  o f  count
0196 0C sub2 i n r c ; in c re m e n t  count
0197 22B301 sh Id temp ;save  h 1
019A 19 dad d ;add neg const  f rom de to  h i
019B FA9601 jm sub2 ; l o o p  t i l  r e s u l t  i n  h i  i s  neg
019E 2AB301 Ih Id temp ; g e t  l a s t  pos va lue  back i n  h i
01A1 79 mov a ,c
01A2 CDA601 c a l l pchar ; p r i n t  d i g i  t
01A5 C9 r e t

; p r i n t  c h a r a c te r  i n  a - r e g i s t e r  on screen
01A6 D5C5E5 pchar push d ! push b ! push h ;save  r e g i s t e r s
01A9 5F mov e,a ; c h a r a c t e r  i n  e
01 AA 0E02 mvi c ,con ou t
01 AC CD0500 ca 11 bdos ; c a l l  conout  r o u t i n e
01AF E1C1D1 pop h ! pop b ! pop d ; g e t  r e g i s t e r s  back
01B2 C9 r e t

01B3 0100
A

temp dw 0

The routine uses the following strategy to convert a binary to a decimal 
number. To start with, it knows that no 16-bit binary number can be larger 
than 65535 decimal (FFFF hex). The first thing it wants to do then is to find 
out how many ten thousands there are in the number. There could be as 
many as 6, there could be 0, or there could be some number in between. How
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can it find this out, working only in binary? Not so hard. It merely subtracts 
10,000 decimal (2710 hex) from the number and checks to see if the result is 
negative. If not, it knows that the number is larger than 10,000, so it subtracts 
it again. If the result is still not negative, it knows that the number is larger 
than 20,000. It keeps subtracting until the result is negative, at which point it 
knows (since it’s been counting) just how many 10,000’s there are in the 
number. It prints this out, since it’s the first digit of the decimal translation of 
the number. Then, it restores the original number to the value it had just 
before the subtraction that made it go negative; this is the number with the 
10000’s digit removed.

Let’s say the number is 8000 hex, which we happen to know is 32768 deci
mal. When we subtract 2710 (hex) from B000, the result is not negative, as we 
can easily see by performing the arithmetic in decimal: 32768 minus 10000. 
So we do it again. We have to do it three times, so we print out 3 (which is 
right) and restore the number to 0AD0 hex, which is 2768 decimal: the 
number with the 10000’s digit removed.

Now we have a new number that we know must be less than 10,000, so 
we can start subtracting 1,000 (one thousand) from it to see how many of 
them there are. And, so on, until we’ve printed out the hundreds, tens, and 
ones places. In 8080 assembly language, there isn’t a subtraction instruction 
for 16-bit numbers, so we put negative numbers into the program when we 
assemble it and add them with a “dad” instruction. This subtraction pro
cess is similar for each of the five values that we need to subtract, so we put 
it in a subroutine that we will call each time with the value in the DE- 
register.

Another part of this routine is tricky. Look at line 194. What we want to 
do here is put the count of how many times we have had to subtract 10000 (or 
1000, or 100, etc.). But, we want to be able to print this count out, so we want 
it in ASCII and we want to start at — 1 instead of 0, because we always 
subtract the number the first tim e-tha t doesn’t count. So the clever way of 
generating a — 1 in ASCII is to specify ’0’ (that’s zero, not oh) in single 
quotes, which gives us the ASCII code for zero, and then we subtract 1 from 
it: ’0’- l .

Yes, you can write this kind of arithmetic statement in the operand field of 
an instruction. ASM will carry out the arithmetic operations for you, unless 
they get too complicated.

You may want to use the BINIDEC subroutine in other programs that you 
write. If so, just plug it in where it’s appropriate. All you need to remember is 
to define “conout” and “bdos” at the start of your program, so it will know 
where they are.
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We’ve actually used this subroutine in a program which is in the appendi
ces: the HEXIDEC program which converts a hex number typed in at the 
keyboard into a decimal number on the screen. This is another useful utility 
program (like DECIHEX in the last chapter) if you work with hexadecimal 
numbers. Once you’ve typed BINIDEC in for the LINES program, you 
might as well juggle it around with your word processor so that you can use it 
in HEXIDEC too.

You’ll notice a few other unfamiliar things in LINES: two new instructions 
and a new assembler directive.

The “SHLD” Instruction

This instruction is somewhat like the STA instruction, in that it stores the 
contents of a register directly into memory. However, STA stored the 8-bit 
contents of the A-register, while SHLD stores the 16-bit contents of the HL- 
register. Note that this means that two bytes of memory have to be set aside, 
whereas only one was needed for STA. To do this, see the DW directive 
described next. The place where the two bytes are to go can either be named 
with a hex address, or with a symbolic name, either of which are pointers to 
the first byte of the two-byte “word.”

Examples:
shld 2011 
shld penny

The “LHLD” Instruction

“LHLD” is the opposite of SHLD, as you may have guessed. It takes the 
16-bit value from the referenced memory location and loads it back into the 
HL-register.

Examples:
lhld 2011 
lhld whistle

The “DW” Directive

We’ve already discussed the directive DB which defined a byte or number 
of bytes to be specific 8-bit values. The DW directive is similar, except that it
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Before SHLD 2011 is executed:

HL-register

A
63 F9

/ /
0100

/
0101

/
0102

22
/

0103

11 / 0104

20 /

/
///////////////////
l l l l l l l l l l l l l l l l l l l

/ 2010

/
2011

/
2012

/
After SHLD 2011 is executed:

Fig. 5-4. The SHLD instruction.

Section of memory 
containing program.

SHLD 2011

Section of memory 
where constant will 
be stored.

Section of memory 
containing program.

SHLD 2011

Section of memory 
where constant is 
stored.
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Before LHLD 2011 is executed:

z :
HL-register

20

/

0100

0101

0102

0103

0104

///////////////////
l l l l l l l l l l l l l l l l l l l

FF

2010

2011

2012

Section of memory 
containing program.

LHLD 2011

Section of memory 
where constant is 
stored.

After LHLD 2011 is executed:

22

20

/ 0100

/
0101

/
0102

/
0103

/ 0104

/

/
l l l l l l l l l l l l l l l l l l

l l l l l l l l l l l l l l l l l l

/ / 2010

FF
/ 2012

01 /

Section of memory 
containing program.

LHLD 2011

Section of memory 
where constant is 
stored.

Fig. 5-5. The LHLD instruction.
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000 F = 
0014 = 
0009 = 
0002  = 
0005 = 
005C = 
0080 = 
0080 = 
007F = 
001A = 
000A =

0 1 0 0

defines a word (which is two bytes) to be a specific 16-bit value. In our pro
gram, we need two locations to store 16-bit values because all the registers 
are already used: “ctr” to store the number of linefeeds counted so far, and 
“ temp,” in BINIDEC, to store the original number in HL before we subtract 
from it each time. Both of these storage areas are reserved by using DW 
directives.

Like DB, DW can define either numerical or character constants. Several 
constants can be used together if they’re separated by commas.

addrs dw OffOOh
crlf dw ODOAh
abchar dw 4142h
busy dw 4142h,4344h
series dw 1000,1001,1002,1003

Fig. 5-6 gives a flowchart showing the operation of LINES. Using this 
chart and the descriptions of the various sections of the program given ear
lier, you should be able to to figure out what the program is up to. The 
LINES program is given in Listing 5-3.

Listing 5-3. The LINES Program

;L INES-program to  p r i n t  ou t  number o f  Lines i n  f i  Le

openf equ Of h ;open f i  Le
readr equ 14h ; re a d  seq record
p r i n t s equ 9h ; p r i n t  s t r i n g
conout equ 2h ;consoLe o u tp u t
odos equ 5h ;BD0S e n t r y
fcb equ 5ch ; f i  Le con t roL  bLock
dma equ 80h ;DMA address
re cs i  z equ 128d ; s i z e  o f  record  in  DMA
mask equ 7fh ; k i  L Ls b i t  7
eof equ 1ah ; e n d - o f - f i L e  c h a r a c te r
Lf equ Oah ;L i n e fe e d  c h a r a c te r
f

org 10Oh

open f i  Le, i n i  t i a  Li ze. read records
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Fig. 5-6. Flowchart for the LINES program.
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0100 0E0F mvi c ,openf ;open f i  Le
0102 115C00 Lxi d , f  cb ;  (addr  o f  f cb  in  de)
0105 CD0500 ca L L bdos
0108 116501 Lxi d ,n fm e s s ;p u t  "no f i  Le" mess i n  de
01 OB 3C i n r a ;add 1 to  a,  i f  i t  was f f .
010C CA4D01 j z n o f i  Le ;  now i t ' s  0,  so no such f i L e

01 OF 210000
/

Lxi h,0 ; s e t  h L to  0
0112 225301 sh ld c t r ;save  f o r  Line coun ter

0115 0E14
/
newrec mvi c , r e a d r ; read reco rd

0117 115C00 Lxi d , f  cb ;  i n t o  dma b u f f e r
011A CD0500 ca L L bdos
011D B7 ora a ;check  a to  see i f  eof
011E C24401 jnz done ;no n -0  i s  eof

; c o u n t  number o f  L inefeeds in  record  s to re d  i n  dma

0121 218000
¥

Lxi h,dma ; p u t  dma addr i n  hL as p o i n t e r
0124 0680 mvi b , r e c s i z ; p u t  record  s i z e  i n  b as coun te r

0126 7E
r
newch mov a,m ; g e t  c h a r a c te r  f rom dma b u f f e r

0127 E67F ani mask ;mask o f f  h igh  b i t
0129 23 i nx h ; in c re m e n t  p o i n t e r
012A 05 dc r b ;decrement c h a r a c te r  coun ter
012B CA1501 j z newrec ;when count  i s  0 ,  ge t  new reco rd
012E FE1A cpi eof ; i s  the c h a r a c te r  an eof?
0130 CA4401 j z done ;  yes
0133 FEOA cpi Lf ; i s  the  c h a r a c te r  a L inefeed?
0135 C22601 jnz newch ;  no,  ge t  nex t  c h a r a c te r
0138 E5 push h ;save  address which i s  i n  hL
0139 2A5301 LhLd c t r ; i n c re m e n t  Line count
013C 23 i nx h ;  ( u s i  ng h L)
013D 225301 sh Ld c t r
0140 E1 pop h ; g e t  address back in  h i
0141 C32601 jmp newch ;go  ge t  nex t  c h a r a c te r

r
; e n d - o f - f i L e , o r  no f  i Le,  so p r i n t  resu L t  and e x i t

0144 2A5301
/■
done Lh Ld c t r ; g e t  count  i n  hL f o r  b in id e c

0147 CD7501 ca L L b in id e c ; p r i n t  number o f  L ines i n  dec
014A 115501 Lxi d,Lmess ; s e t  up " L i n e s "  message
014D 0E09 n o f i  Le mvi c , p r i n t s ; p r i n t  message
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014F CD0500 ca 11 bdos
0152 C9 r e t ;back  to  CP/M

0153 c t r dw 0 ; l i n e f e e d  coun te r

0155 206C696E65Imess db ’ l i n e s  i n  f i l e . $ ’
0165 4E6F20736Fnfmess db ’No source f  i  l e . $ ’

f
; b i n i d e c - c o n v e r t s  b in a r y  number i n  h i  to  
;  d e c im a l ,  p r i n t s  r e s u l t  on screen.

0175 11F0D8 b in id e c  l x i d , - 1 0 0 0 0 ; p r i n t  number o f  10,000s
0178 CD9401 c a l l subcnt
017B 1118FC l x i d , - 1 000 ; p r i n t  number o f  thousands
01 7E CD9401 ca 11 subcnt
0181 119CFF l x i d , -1 0 0 ; p r i n t  number o f  hundreds
0184 CD9401 ca l  I subcnt
0187 11F6FF l x i d , - 1 0 ; p r i n t  number o f  tens
018A CD9401 ca l  I subcnt
018D 11FFFF l x i d , -1 ; p r i n t  number o f  ones
0190 CD9401 c a l l subcnt
0193 C9 r e t ;  t h a t 1 s a i l

0194 0E2F
f
subcnt  mvi c , ’0’-1 ; c  ho lds  ASCII v e r s io n  o f  count

0196 0C sub2 i n r c ; in c re m e n t  count
0197 22B301 sh ld temp ;save  h i
019A 19 dad d ;add neg cons t  f rom de to  h i
019B DA9601 jc sub2 ; l o o p  t i l  r e s u l t  i n  h i  i s  neg
019E 2AB301 l h l d temp ; g e t  l a s t  pos va lue  back in  h i
01A1 79 mov a,c
01A2 CDA601 ca l  1 pchar ; p r i n t  d i g i  t
01A5 C9 r e t

; p r i n t  c h a r a c te r  i n  a - r e g i s t e r  on screen
01A6 D5C5E5 pchar push d ! push b ! push h ;save  r e g i s t e r s
01A9 5F mov e,a ; c h a r a c t e r  i n  e
01 AA 0E02 mvi c ,conou t
01 AC CD0500 ca 11 bdos ; c a l l  conout  r o u t i n e
01AF E1C1D1 pop h ! pop b ! pop d ; g e t  r e g i s t e r s  back
01B2 C9 r e t

f
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01B3 0100 temp dw 1

01B5 end

Try typing in LINES, assemblying it, and running it on some of your test 
files. Not bad, eh? Now when someone asks you how many lines are in some 
program that you’ve written, you can tell them exactly, in about three 
seconds.

LIFE ON THE FAST TRACK

In this chapter, you’ve learned the fundamentals of how your programs 
communicate with C P/M ’s disk operating system. Our examples have shown 
you how to read records and files from the disk. In the next chapter, you’ll 
learn how to write to the disk. With this knowledge, we’ll go on to write the 
STORE program, which will enable you to enter text files onto the disk. Then 
we’ll learn how to delete files and, finally, go on to master the intricate Ran
dom Read and Random Write system calls.
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CHAPTER 6

W riting to the Disk

In the last chapter, you learned how to read records from a disk file. In this 
chapter, we’re going to move on to writing records and files to the disk. To 
write to the disk, you’ll need to know the “Make File,” “Write Sequential 
File,” and “Close File” system calls. After explaining these calls, we’ll illus
trate their uses with an example program, STORE, which is a very simple 
word-processing program. We’ll show you two versions of the program, one 
of which uses the “Delete File” system call.
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The next area that we’ll cover is that of “random” records. Random, in this 
case, doesn’t mean that the records contain just any old random words and 
numbers, it means that it’s possible to read or write to any record in a file, 
without starting at the beginning of the file and without reading all the 
records until you get to the one you want. Thus, “random”is the opposite of 
“sequential.” We’ll describe the “Random Read” and “Random Write” sys
tem calls, and then use them in a program (RANDYMOD) which will permit 
the modification of any record in a file.

WRITING A SEQUENTIAL RECORD

In this section, we’re going to describe the three new system calls that are 
necessary for writing a sequential record: Make File, Write Sequential, and 
Close File. Since these calls are all necessary to do the writing operation, 
we’re going to describe each of them before we go on to give an example 
program.

MAKE FILE

MAKE FILE FUNCTION 22 (dec) = 16 (hex)

Enter with: REG C = 16 (hex) 
REGs DE = FCB address

On return: REG A = Directory Code

Comments: Directory Code = 0, 1, 2, or 3 if file made successfully. 
Directory Code = FF (hex) if disk directory is full.

In the last chapter, you learned that to read a record from a file, you had to 
first “open” the file using the “Open File” system call. This was necessary, 
first to tell the BDOS routines of CP/M  what file you wanted to read the 
record from (the file name passed in the FCB), and secondly, to tell BDOS to 
determine where the various records of the file were so that they could be 
easily accessed by subsequent Read system calls. BDOS then wrote the loca
tions of the records in the FCB in the area called “allocation units.”
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When we want to write a new file, the procedure is somewhat different.
Since the file does not yet exist, it cannot be “opened” but, instead, must be
(as Digital Research puts it) “made.” To do this, we use the “Make File” 
system call. This call records the new file name in the disk directory so that 
BDOS knows what to do with subsequent “Write Record” system calls. 
Using “Make File” assumes that the file whose name is being “made” doesn’t 
already exist. If there’s any chance that it might exist, then it is the program
mer’s responsibility to delete the file before trying to “make” it. We’ll 
describe the “Delete File” system call later.

The Make File call is similar in format to Open File. The returned direc
tory code is different, in that a value of FF hex (meaning “unsuccessful”) is 
returned only if the directory is fu ll-a  rare occurrence. Otherwise, a 0, 1,2, 
or 3 is returned as in Open File.

A code fragment for using this call might be:

m v i C , 1 6  Set up for Make File.
L x i d ,  5 C Set FCB address.
c a l l  5 Call BDOS.

We’ll show how this code fragment is used when we get to the STORE pro
gram.

WRITE SEQUENTIAL RECORD

WRITE SEQUENTIAL RECORD FUNCTION 21 (dec) = 15 (hex)

Enter with: REG C = 1 5  (hex)
REGs DE = FCB address

On return: REG A = Directory Code

Comments: Directory Code — 0 if write is successful.
Directory Code = nonzero if disk is full.

Before the “Write Sequential Record” call can be used, several conditions 
must be met:

1. The name of the file to be written m ust be in the FCB.
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2. The file must have been initialized with a Make File system call. (It is
also possible to use the Write Sequential call with an existing file that
has been initialized with an “Open File” system call. This is described
later in this chapter.)

3. The record to be written must be in the 128-byte (128 hex) DMA 
buffer. If the DMA buffer is not in the usual (or “default”) position at 
80 hex, a Set DMA system call must have been issued to put it in the 
appropriate place.

The format of the Write Sequential system call is similar to the Read 
Sequential Record call. The directory code returned in the A-register is dif
ferent, in that a nonzero value indicates that the disk is full, a fairly rare 
occurrence and one we won’t worry about with our small sample programs.

A typical section of code used to write a sequential record might be:

m v i C ,  1 5 Set up for Write Sequential.
L x i d , 5 c  Set FCB address.
CaLL 5 Call BDOS.

Like the Read Sequential system call. Write Sequential writes to the first 
record of the file the first time that it is called, writes to the second record the 
second time it is called, and so on. (That’s why it’s called “sequential.”) How 
does BDOS “remember” what record it’s supposed to write to next when it 
executes this call? To understand this, we’ll need to look somewhat more 
deeply into the workings of the FCB.

The “CR” Byte in the FCB

Look back at the diagram of the File Control Block in the last chapter 
(Fig. 5-1). The “cr” byte is number 32 in the FCB, and is located at memory 
location 7C (if the FCB is in its usual place). The purpose of this byte is to 
keep track of what record is currently being written to (or read) by a sequen
tial write (or read) operation. Thus, when you execute a call to the Sequential 
Write system call, the record in the DMA buffer will be written to the record 
number that is in this cr byte. After either a write or a read operation, the 
number in cr is incremented so that the next record will be written to the next 
record in order.

This byte is typically set to zero by the user at the same time that the file is 
opened (or “made”), so that the first record will be written into record 0, the 
second into record 1, and so on.
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Those of you who have caught on to the hexadecimal numbering system 
will now be wondering what happens if a file has more than 256 records, 
since that’s all that can be described in a single byte. The answer is that when 
the cr byte “overflows” (that is, goes from 127 to 128 decimal, which is from 
7F to 80 hex), then a new “extent” is automatically opened. Why doesn’t this 
overflow take place at 255 records, instead of 127? The reason for this action 
has to do with allocation units, sectors, and the way records are stored on the 
disk, a topic which we’ll cover later.

Extents

The next question is, “What’s an extentl” An extent is 128 records. Extents 
are necessary because of the way CP/M  keeps track of where the various 
records of a file are stored on the disk. In general, a programmer doesn’t need 
to know too much about this process, since C P/M  takes care of it more or 
less automatically. Again, we’ll postpone further discussion of these topics 
until the next chapter, where we’ll talk about the disk directory.

For the time being, just keep in mind that the cr byte in the FCB is incre
mented each time a record is read or written sequentially, until the value in cr 
reaches 127 decimal. At this point, a new extent is opened. This means that 
the value in cr is reset to 0 and another byte in the FCB is incremented. This 
is the “ex” or “current extent” byte, which is number 12 and is located at 
address 68 hex. This byte, too, is normally set to zero when a file is first made 
or opened for sequential operations.

CLOSE FILE SYSTEM CALL

CLOSE FILE FUNCTION 16 (dec) = 10 (hex)

Enter with: REG C = 1 0  (hex) 
REGs DE = FCB address

On return: REG A = Directory Code

Comments: Directory Code = 0,1,2,3 if file closed successfully. 
Directory Code = FF (hex) if file name not in directory.

173



Soul of CP/M®

After you have opened or “made” a file and started writing to it with Write 
Sequential system calls, C P /M ’s BDOS takes care of deciding where on the 
disk each record is going to be written. This information, which constitutes a 
map of the disk showing where the various records of a file are stored, is kept 
in memory as long as the file is “open” ; that is, currently being written to. If, 
after writing a bunch of records, you just turned off your computer and 
walked away, this “mapping” information would be lost forever and, then, 
when you powered up again and tried to read the file from the disk, CP/M  
wouldn’t know where to find it. It’s the purpose of the Close File call to make 
sure this doesn’t happen.

When the Close File call is executed, CP/M  takes the mapping informa
tion, which is stored temporarily in memory, and writes it onto the disk in a 
region called the “disk directory.” When you next try to read this file, BDOS 
will look for the file name in the directory on the disk and will write the 
information it finds there back into memory. This is done by the Open File 
system call.

The moral of all this is that after you have finished writing records to a file, 
you had better close it, or you will never be able to read it back in. You don’t 
have to close a file after reading it, however, because the directory has not 
been changed. Thus, the directory information on the disk is still valid, even 
though the directory in memory may be destroyed.

The format of the Close File call is similar to that of an Open File. Here’s a 
section of code used to close a file:

m v i C , 1 0  Set up Close File.
Lxi d ,  5 C Set FCB address.
caLL 5 Call BDOS.

PROGRAM TO WRITE A SEQUENTIAL RECORD

Now we’re ready to put together the three system calls that we’ve just 
learned into a real program to write something to the disk. Here’s the pro
gram:

-a100
0100 mvi c,1a Set DMA address to 400.
0102 Lxi d,400
0105 ca L L 5
0108 mvi c,16 Make file.
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010A Lxi d ,5c
010D ca L L 5
0110 mvi c,  1 5 Write file.
0112 Lxi d ,5c
0115 ca L L 5
0118 mvi c,10 Close file.
011A Lxi d ,5c
011D ca L L 5
0120 r s t 7 Back to DDT.

Before we can execute this program from  DDT, however, there are a number 
of things that we need to do.

First, make sure that there is no file on your disk with the name 
“newfile.txt” . Next, we need to insert the name of the file that we’re going to 
be creating into the FCB. We’ll do this using the “i” operation. Thirdly, we 
need to put something into the DMA buffer so that we can write it onto the 
disk. This is a little cumbersome to do from DDT, but we’ll try it just to get 
the feeling of what the routine is doing. For this, we’ll use the “s” operation.

Type in the program in DDT, save it as “ testl05.ddt” , and return to DDT 
with the program (“A > d d t testl05.ddt”). Then, type in the following:

- i  newf i L e . t x t Put name of file in FCB.

-s400 Fill stuff into DMA.
0400 08 41 1
0401 DC 42
0402 D3 43 ► ASCII values for text: “ABCDE”
0403 01 44
0404 67 45 .
0405 3A 0A Linefeed.
0406 00 0D Carriage return.
0407 53 1A End-of-file mark. Don’t forget this!
0408 9F

------------------  These are the numbers you type in.

--------------------------  This is junk that was in the buffer already.

We won’t fill in all 128 decimal bytes of the DMA, since that would take too 
long using the “s” operation. (Although you could fill the whole DMA buffer 
with the same character using the “f” option.)
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We end our message with a carriage return and a linefeed so that when we 
print out the record it won’t be overprinted by the next line. And, most 
importantly, the last character of our record is an end-of-file character: 1A 
hex. This is necessary to tell BDOS that the record is finished, when we go to 
read it back.

Now run the program and then exit to C P/M  and see if the file is in the 
directory:

-g100
*0120
-gO
A>d i r  n e w f i l e . t x t
A: NEWFILE.TXT

So far, so good. Now, let’s see what’s really in the record, using the CP/M  
built-in TYPE function. (We can’t use TYPE2 here because it isn’t sophisti
cated enough to see the end-of-file mark in the middle of the record and it 
will print out all the junk in the DMA buffer following the “ABCDE” 
message.)

A>type newf i  L e . t x t

ABCDE
A>

There it is! It may not be War and Peace, but it is the very first file that 
you’ve written to the disk with your own program.

There’s another way to examine the contents of newfile.txt to see if it’s 
really there. Call up DDT along with newfile.txt:

A>ddt n e w f i l e . t x t

When DDT is loaded, dump the DMA buffer, which is where the first 
record of a file is loaded when the file is called in with DDT:

- d 8 0 , f f
0080 41 42 43 44 45 0A 0D 1A 51 01 CD 8C 00 C3 51 01 ABCDE.. .Q............Q.

 ̂ ..........■ ! || | , —...... J I >
T w

First record of newfile.txt ASCII version
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There it is! This is a good way to examine files that have only one short 
record.

Now we’re going to expand this little program into one that you can actu
ally use as a mini word processor.

STORE PROGRAM-STORES TEXT IN FILE

The program we’re about to describe accepts text typed in on the keyboard 
and puts it into a file. Since we’ll assemble the program with ASM and store 
it on the disk as a COM file, you can execute it directly from CP/M .

A>store n e w f i l e . t x t
T h is  i s  the Line t h a t  you type i n ,  to  be s to red  on d i s k  
Type ano ther Line i n t o  nex t  re co rd .

k :A> Terminate lines with a “return”. 
Typing “return” at the beginning of a line ends the program.

When the program is executed, it first finds out if the file name you typed 
in following “store” exists or not. If it does, the program will read (without 
printing) to the end of the file, wait for you to type something in, and then 
write it at the end of the file. If the file doesn’t exist, the program opens a new 
file with that name (using the Make File system call), waits for you to type 
something in, and then writes it at the beginning of the file.

We have made the restriction that you can only type in one line—no more 
than 80 characters—at a time. This avoids a lot of complexity about how to 
handle “returns” embedded in the text. At the end of your line, you must 
press “return” to tell the program that you’ve finished. It will then write the 
line to the disk as a single record. If you press “return” without writing any
thing, the program will assume that you’ve finished with the entire file and 
will close the file and exit to CP/M .
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Listing 6-1. The STORE Program

• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
; s to re -P ro g ra m  to  s t o r e  t e x t  i n  a f i l e .
;  S tores  one Line o f  t e x t ,  t e rm in a ted
;  by a r e t u r n ,  per  re c o rd .  Type r e t u r n
; to  ex i  t .

000F = openf equ Of h ;open f i l e
0016 = makef equ 16h ;make f i l e
000A = reads equ Oah ; re a d  s t r i n g
0015 = w r i t e r equ 15h ; w r i t e  s e q u e n t i a l  reco rd
0014 = readr equ 14h ; re a d  s e q u e n t i a l  record
0009 = p r i n t s equ 9h ; p r i n t  s t r i n g
0010 = c lo s e f equ 10h ; c l o s e  f i l e
0002 = conout equ 2h ; c o n s o le  out
0005 = bdos equ 5h ; o p e r a t i n g  system
005C = fcb equ 5ch ; f i  le  c o n t r o l  b lo ck
0080 = dma equ 80h ;dma b u f f e r
00FF = de I equ Of f  h ; d e l e t e  c h a r a c te r
000A = I f equ Oah ; l i n e f e e d
000D = cr

f

equ Odh ; c a r r i a g e  r e t u r n

0100
F

org 100h
F

; t r y  to open f  i le  (name must a l r e a d y  be i n  f c b )
0100 0E0F mvi c ,open f ;open f i l e
0102 115C00 l x i d , f  cb
0105 CD0500 c a l l bdos
0108 3C i n r a ; i f  a was f f ,  now i t ' s  0
0109 C25B01 jnz a lex ;  no t  0 ,  so f i l e  e x i s t s

F

;  f  i  le  does not  a I ready e x i s t ,  so we1 11 c re a te  i t
010C 0E16 mvi c,makef
010E 115C00 l x i d , f  cb
0111 CD0500 ca 11 bdos

;  f  i  L L the dma b u f f e r  w i th  d e l e t e  marks 
0114 218000 newrc l x i  h,dma ; p u t  dma address i n h I
0117 0680 mvi b,128d ; p u t  count  i n  b
0119 36FF loop mvi m,del  ; s t o r e  d e l e t e  i n  memory
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011B 23 i nx h ; i n c re m e n t  hL p o i n t e r
011C 05 dcr b ;decrement count
011D C21901 jnz Loop ; n o t  done y e t

r
; p r i n t  a L inefeed

0120 0E02 mvi c ,conou t
0122 1E0A mvi e,  L f
0124 CD0500 ca L L bdos

ł
; r e a d  c h a ra c te rs  i n t o b u f f e r  f rom keyboard

0127 3E50 mvi a,80d ; s e t  count  to  screen w id th
0129 327E00 sta dma-2 ;  ( s t r i n g  b u f f e r  s t a r t s  2
012C 0E0A mvi c , reads ;  by tes  b e fo re  dma
012E 117E00 Lxi d,dma-2 ;  b u f f e r ,  to  Leave room f o r
0131 CD0500 ca L L bdos ;  max-count  and coun t )

r
; f  i nd out  i f  b u f f e r  i s empty - i  f  so,  ex i  t

0134 3A7F00 Lda dma-1 ; g e t  number o f  char in p u t
0137 B7 ora a ;  i s i t  0?
0138 CA5201 j z f i n i  to ;  yes

; i n s e r t  cr  and I f  i n  b u f f e r  fo lLo w in g  t e x t
013B 5F mov e,a ; c h a r a c t e r  count  i n  de
013C 1600 mvi d ,0 r
013E 218000 Lxi h,dma ;dma address i n h L
0141 19 dad d ;add count  to  add r ,  pu t  in  hL
0142 360D mvi m,cr ; s t o r e  c a r r i a g e  r e t u r n
0144 23 i nx h ; in c re m e n t  p o i n t e r
0145 360A mvi m, Lf ; s t o r e  L inefeed

; w r i t e  record  to  d i s k
0147 0E1 5 mvi c , w r i  t e r ; w r i  te  i t
0149 115C00 Lxi d , f  cb
014C CD0500 ca L L bdos
014F C31401 jmp newr c ;go  read nex t  reco rd

; c l o s e  f i l e  be fo re  e x i t i n g  
0152 0E10 f i n i t o  mvi c ,cLo se f
0154 115C00 Lxi d , f c b
0157 CD0500 c a l l  bdos
015A C9 r e t  ;back  to  CP/M

: f i l e  a l r e a d y  e x i s t s ,  so read t i l l  EOF
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015B 0E09 a Lex mvi c , p r i n t s ; p r i n t  message
015D 117201 Lxi d,a  Lmess
0160 CD0500 ca L L bdos
0163 0E14 read2 mvi c , r e a d r ; re a d  reco rd
0165 115C00 Lxi d , f  cb
0168 CD0500 ca L L bdos
016B B7 ora a ; e n d - o f - f i L e  (a no t  0)  ?
016C CA6301 j z read2 ; n o ,  so read nex t  reco rd
016F C31401

f
jmp newrc ; y e s ,  so go w r i t e  new reco

0172 5465787420aLmess db ’Text  wi LL be added to  f i  Le . ’, c r ,  Lf

0190
f

end

Type the program in with your word processor, assemble it, and try it out, 
before you read the explanation of how it works. This will give you an idea 
what the program is supposed to do, which will be helpful in understanding 
the following comments. Fig. 6-1 is a flowchart of the program’s operation.

We will first try to open the file. If it already exists, we jump down to the 
“alex” label at line 15B and print the following message to the user: “Text 
will be added to file.” This will alert her to the fact that she’s not writing into 
a new file. Then, we read the first record of the file and check to see if there’s 
an EOF. If not, we read the next record and check again. If there is an EOF, 
we go back to line 114, where we would have started if the file had not existed 
in the first place.

Since our input lines are 80 character or less, and the records we’re writing 
into are 128 characters, we’re going to have left-over space in the record. We 
don’t want these extra characters to appear on the screen, or cause the printer 
to do anything weird if we want to print out the file, so we want to ensure 
that the rest of the buffer after our typed-in line is filled with some harmless 
character. A good harmless character, and one that we can send to the printer 
without causing any action at all, is the “rubout” character, which is 7F hex 
(FF hex if we include the high-order bit). The section of code from 114 to 
11D fills the entire DMA buffer with rubouts before any characters are typed 
in by the user, thus ensuring that there will be no printable garbage following 
the text.

We do a linefeed and, then, at line 127, read the characters from the key
board into the DMA buffer. Since we’re not using DDT, we can put the 
DMA buffer where it’s supposed to go at 80 hex (its default address), which 
we tell the program about with an EQU directive. We use the Read String
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system call, which requires that the maximum count of words be set two 
addresses before the first character, and which fills in the number of charac
ters that are actually read in from the keyboard at the address that is one 
byte before the first character.

If the buffer is empty after this call, we know the user is done and we close 
the file and exit to CP/M . Otherwise, we write a carriage return and linefeed 
into the buffer following the text, so that each record typed in doesn’t over
print the one before it. Then, we write the record to the disk and go back up 
to “newrc” to get another record from the keyboard.
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Your Own Text Editor

Now you can type in files using STORE and can read them out again using 
TYPE2. As text editors go, this may not be too fancy, but it does give you the 
satisfaction of having written it all yourself and, we hope, of understanding 
how the programs work.

Use STORE to create a file called “sample.txt”, which contains 10 or 12 
records, by typing in 10 or 12 lines one after the other (separated only by 
single carriage returns). Check that the whole record is there, using TYPE2. 
We’ll use this file later to experiment with the Random Read and Random 
Write system calls.

DELETE FILE SYSTEM CALL

DELETE FILE FUNCTION 19 (dec) = 13 (hex)

Enter with: REG C = 1 3  (hex)
REGs DE = FCB address

On return: REG A = Directory Code

Comments: Directory Code = 0,1,2,3 if file deleted successfully.
Directory Code = FF (hex) if file not found.

This system call is largely self-explanatory. When executed, it modifies the 
directory entry of the file so that C P /M ’s BDOS knows that it’s erased. 
BDOS will then release the disk space occupied by the file so that it can be 
used for other files when they are written.

Modifying the STORE Program

Here’s an example of how this call can be used. In the STORE program, 
we assumed that, if a file already existed, the user would want to add the 
records that he typed in to the file. We could have made another assumption: 
that he wanted to erase whatever was in the file and start over with what he 
was typing in.

Let’s use the Delete File system call to modify the STORE program to do 
this. Do the following:

182



Writing to the Disk

1. Make a copy of STORE using PIP. Call it “STORE2”.

A>pip s to re2 .asm=sto re .asm

2. Add this statement to the beginning of STORE2:

d e f i l e  equ 13h ; d e l e t e  f i l e

3. Remove the program lines from 100 to 109 and substitute the following:

; d e l e t e  the f i  Le
mvi c , d e f i  Le
Lxi d , f c b
caLL bdos

4. Remove lines 15B through 172, including the “almess” message.

Fig. 6-2 is the flowchart for the resulting STORE2 program.
Assemble STORE2 and try running it. When you write to an existing file, 

everything that was in it disappears, and only your new input is left. This 
works because if the file wasn’t there to begin with, the delete will have no 
effect, and if the file was there, it will be deleted. Either way, it won’t be there 
when we get to the “Make File” system call in line 10C. Now you have two 
versions of the STORE program, one which will add text to a file and one 
which will write over the old text.

RANDOM RECORDS

If you want to read or write a file, starting at the first record and going on 
until you come to the end, then the “Read Sequential” and “Write Sequen
tial” system calls which we have already described are just what you need. 
But suppose you want to read a record that is in the middle of a file? Or, you 
want to modify a record in the middle of a file? You can do it using the 
sequential read and write calls, but it’s a little difficult. What’s difficult about 
it? Mostly the way that the record numbers are specified in the FCB.

As you recall from the last section, there is a special byte in the file control 
block to indicate what record is currently being written. When 127 decimal 
records have been written, this byte “overflows” and is reset to 0, and another 
byte, the “current extent” byte, is automatically incremented. The use of two 
separate bytes to specify what record we’re talking about makes disk access to a
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Fig. 6-2. F lowchart of the STORE2 program.

particular record somewhat more awkward than it might be. For instance, if we 
had a program that wanted to read the 300th record in a file, it would have to 
first determine what “extent” this record was on, by dividing 300 decimal by 128 
decimal. Since 300 divided by 128 is 2, with a remainder of 44, our program 
would have to set the extent byte to 2 and the current record byte to 44 decimal
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(2C hex). This isn’t impossible, but it does complicate things, so Digital 
Research (starting with release 2.0 of CP/M ) has provided a set of system calls 
which use a single 16-bit value to specify the record number.

Look back at the map of the FCB in the last chapter. Bytes 33, 34, and 35 
(locations 7D, 7E, 7F) constitute the “random record number” and are 
called, respectively, rO, r l, and r2. This is shown in Fig. 6-3. The last byte, r2, 
is not used in CP/M  systems (although it is used by MP/M ). In CP/M  sys
tems, it must always be set to zero, otherwise error messages will result. The 
bytes rO and rl constitute the 16-bit record value, with the rO byte represent
ing the least-significant byte and rl the most-significant byte.

However, using random reads and writes requires one more step than sequen
tial reads and writes. The program must place the 16-bit number of the record 
to be accessed into bytes rO and rl before the read or write takes place.

We’ll briefly describe the Read Random and Write Random system calls 
and, then, go on to show how they’re used in the RANDYMOD program.

READ RANDOM SYSTEM CALL

READ RANDOM FUNCTION 33 (dec) = 21 (hex)

Enter with: REG C = 21  (hex)
REGs DE = FCB address

On return: REG A = Return Code

Comments: Return Code = 00 if read was successful.
Return Code = nonzero if error occurred.

When BDOS executes this call, it first looks at the record number in bytes 
rO and rl to see what record the program wants to read. It then figures out 
what “extent” the record is in, and the record number in the extent, and sets

7D 7E 7F

rO r1 r2

least- most-
significant significant 

byte byte
always 0

16-bit record number 

Fig. 6-3. The “ random record number.'
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these bytes in the FCB. Then, it reads the record just as the Sequential Read 
system call did.

An important difference between random and sequential system calls is 
that the random calls do not automatically advance the record number each 
time they are called. So, if you do a random read and, then, do another ran
dom read, you’ll be reading the same record twice unless your program has 
incremented the random record number in rO and rl before the second read.

Also note that, since Random Read has automatically set the current 
extent and current record bytes in the FCB, you could then do a Sequential 
read to read the same record again, followed by subsequent records, if you 
wished. This gives you the capability to plunge into the middle of a record 
with random access and, then, read a number of records, starting at that 
point, with sequential access.

The “Return Code” returned in the A-register following this call can actu
ally have a number of nonzero values, depending on what type of error has 
occurred:

01 attempt to read unwritten data block.
04 attempt to read unopened extent.
06 attempt to read past end of disk (byte r2 not set to zero).

Here’s a short DDT program for reading a random record:

-a100
0100 mvi c,1a Set DMA to 400.
0102 Lxi d,400
0105 ca L L 5
0108 mvi c , f Open file.
010A Lxi d,5c
010D ca L L 5
0110 mvi c,21 Read random.
0112 Lxi d ,5c
0115 ca L L 5
0118 mvi c,2 Print error code.
011A adi 30
011 c mov e,a
011 D ca L L 5
0120 r s t 7 Return to DDT.

Save this program as “ testl06.ddt” and then bring it back into memory 
with DDT. Use the “i” command to set the filename of a file that you know
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has a number of text records in it, such as the “sample.txt” file that we sug
gested you write in the section on the STORE program. Then, use the “s” 
command to set a record number into rO rl that you know is in the file. In 
other words, don’t make the record number so large that it doesn’t exist; if 
“sample.txt” is 12 records long, put in a number less than that.

A>ddt t e s t1 0 6 . d d t

- i  sample, t x t  A file you know has more than 3 records.
-s7d
007D 00 03 Least-significant two digits.
007E 00 00 Most-significant two digits.
007F 00 00 Always zero.
0080 00

------------ This is what you type in.
--------------------This is junk left over.

Execute the program and then look at the DMA with a “d400” to see 
what’s been read in. Now, change the rO byte in 7D to some other record 
number, like a 2 or a 4. If you have file that you know is longer than 256 
records, you can change both rl and rO. For record number 350, for example, 
you’d convert to the hex number 015E and then put 5E into rO (location 7D) 
and 01 into rl (location 7E).

Read a number of records by changing the record number and see what 
happens. Ordinarily, the “return code” printed out by this program will be 
zero, but if you try to read a nonexistent record, you’ll get one of the codes 
referred to above.

WRITE RANDOM SYSTEM CALL

WRITE RANDOM FUNCTION 22 (hex) = 34 (dec)

Enter with: REG C = 2 2  (hex)
REGs DE = FCB address

On return: REG A = Return Code

Comments: Return Code = 00 if write was successful.
Return Code = nonzero if error occurred.
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This call is similar to the Read Random call except, of course, that the 
record to be written must already be in the DMA buffer. The error codes are 
the same except that there is a new error, 05, which indicates that a record 
cannot be written due to directory overflow.

As with Random Read, the current record and current extent bytes are 
changed to correspond to the random record number given, but none of these 
numbers is incremented.

Writing to a New File

Here’s a short DDT program showing how this call can be used. This pro
gram assumes that we want to create a new record, so it uses the Make File 
system call. Note that it’s necessary to close the file after writing to it.

-a100
0100 mvi c,1 a Set DMA to 400.
0102 Lxi d,400
0105 ca L L 5
0108 mvi c,  16 Make file.
010A Lxi d,5c
010D ca L L 5
0110 mvi c,22 Write random.
0112 Lxi d ,  5c
0115 ca L L 5
0118 mvi c,2 Print return code.
011A adi 30
011 c mov e,a
011 D ca L L 5
0120 mvi c,10 Close file.
0122 Lxi d ,  5c
0125 ca L L 5
0128 r s t 7 Return to DDT.

Save the program as “test 107.ddt” and then load it back in with DDT. Use 
the “s” command to fill in the DMA buffer from 400 to 47F with whatever 
ASCII characters you want. Since we’re starting a new file, we assume we’re 
going to write to the first record, whose number is 0000, so use “s” again to 
fill in 0 values in rO, r l,  and r2. Use the “i” command to set the name of the 
new text file (you can call it newfile2.txt) into the FCB and, then, run the 
program. Exit from DDT and check the dirctory to see if the new file is there.
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Print it out using “TYPE.” It should be the same as whatever you put in the 
DMA buffer.

Writing to Existing Record

If we want to write to an existing record, we need to use the Open File 
system call, instead of Make File, just as we did with sequential writes. Here’s 
how we modify our program to do that:

-a 1 00
0100 mvi c,1a Set DMA to 400.
0102 Lxi d,400
0105 ca L L 5
0108 mvi c , 0 f Open file.
010A Lxi d ,5c
010D ca L L 5
0110 mvi c,22 Write random.
0112 Lxi d,5c
0115 ca L L 5
0118 mvi c ,2 Print return code.
011A adi 30
011C mov e,a
011D ca L L 5
0120 mvi c ,  10 Close file.
0122 Lxi d ,5c
0125 ca L L 5
0128 r s t 7 Return to DDT.

Save this as “testl08.ddt” and try it out, using the same steps as previously. 
As with the Read Random system call, you must be sure that the record 
number you put in rO and rl actually exists.

RANDYMOD-PROGRAM TO MODIFY A RANDOM 
RECORD

The following program incorporates both the Random Read and the Ran
dom Write system calls. You call it from C P/M  by specifying the name of the 
file you want to modify:

A>randymod t e s t f i l e . t x t
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The file name must be one which exists, or the program will print “No such 
filename,” and return to CP/M . The program now waits for you to type in 
the record number, in decimal, that you wish to modify in the file. Make sure 
that this record exists, because the program does no checking to make sure it 
has been given a valid record.

You can use the “sample.txt” file that you created in the section on the 
STORE program for this. If “sample.txt” is 12 records long, set the record 
number you want to modify to a number less than that: say 3. Once the 
program has read the record, it prints it out on the screen, and then asks “OK 
to modify (y/n)?” If you answer anything other than “y”, the program 
returns to CP/M . Otherwise, the program waits for you to type something in. 
As with the STORE program, you must type in a line that is less than 80 
decimal characters long and terminate the line with a “return.” Listing 6-2 
shows the RANDYMOD program.

Next, in Fig. 6-4, we have the flowchart for the RANDYMOD program.
The listing for RANDYMOD should be fairly easy to follow since it con

sists mostly of routines and code fragments that have been covered before. 
However, there are one or two unusual items.

We can’t put the DMA buffer at the usual place from 80 hex to FF hex 
because we want to use the Read String system call to get the input from the 
user. Why doesn’t this work? Because Read String uses two bytes immedi
ately preceding the actual buffer: one to store the maximum number of char
acters and the second to store the actual number of characters that are typed 
in. Unfortunately, the two bytes immediately preceding 80 hex are 7E and 
7F, which are the bytes used to store rl and r2 of the random record number. 
We could move the FCB, or move the DMA, or use a different way to read 
the characters from the keyboard, but moving the DMA seems easiest, so 
that’s what we do in lines 100 to 105. We move it to a place that we label 
“dma” at the end of the program, which we specify as 128 decimal bytes 
using the “ds” directive.

Notice how we do arithmetic with the symbolic labels in the address field 
in lines 117 and 11C. We know that byte rO is byte number 33 decimal in the 
FCB, so instead of figuring out what this address is and writing it in the 
address field, we write “fcb +  33d”. The assembler takes care of determining 
where “fcb” is, adding 33 to it, and translating the result into an address for 
the “shld” instruction to store in rO and rl. A similar process takes place for 
the “sta” instruction in line 11C.

As we explained in the section on the STORE program, it’s necessary to fill 
the DMA buffer with delete marks before accepting input to it from the key
board, so that any junk remaining in the buffer between the end of the user’s
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Listing 6-2. The RANDYMOD Program
**************************************************** 
RANDYMOD-Used to  mod i fy  a record  se le c te d  a t  random in  a 

f i l e .  Type f i l ename f o l l o w i n g  "randymod",  and 
then type record  number when program lo a d s ) .  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

000F = openf equ Of h ;open f i l e
0021 = randr equ 21 h ;random f i  Le read
0022 = randw equ 22h ;  random f i l e  w r i t e
0009 = p r i n t s equ 9h ; p r i n t  s t r i n g
0002 = conout equ 2h ;c o n s o le  out
0001 = coni n equ 1 h ; c o n s o le  in
000A = reads equ Oah ; read s t r i n g
0010 = c lo s e f equ 10h ;c  Lose f i  Le
005C = fcb equ 5ch ; f i  le  c o n t r o l  b lo ck
0005 = bdos equ 5h ; o p e r a t i n g  system e n t r y
00FF = de 1 equ Of f  h ; d e l e t e  c h a r a c te r
000A = I f equ Oah ; L inefeed
000D = cr equ Odh ; c a r r i a g e  r e t u r n

0100
r

org 100h
r
; p u t  dma b u f f e r  a t  end o f  program ( c a n ' t  be a t  8
;  o r  counts used by " p r i n t s "  w i l l
;  o v e r w r i t e  r1 and r2 )

0100 0E1A mvi c,1ah ; s e t  dma address
0102 11EB01 Lxi d,dma
0105 CD0500 ca l  L bdos

/
;open f i  Le (name must a l re a d y  be in  f c b )

0108 OEOF mvi c ,open f
01OA 115C00 l x i d , f  cb
01 OD CD0500 ca LI bdos
0110 3C i n r a ; i f  a was f f ,  now i t ' s  0 ,
0111 CA8701 j z nof  i ;  so no such f i  Le name

r
; g e t  record  number f rom keyboard ,  s t o r e  in  fcb

0114 CD9B01 ca LI d e c i b i n ; re a d  dec number, conver
0117 227D00 sh Ld f  cb + 33d ; s t o r e  i n  rO, r1 o f  fcb
011A 3E00 mvi a ,0 ; z e r o  ou t  r2 o f  f cb
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011C 327F00 
011F CD9001

0122 0E21 
0124 115C00 
0127 CD0500

sta  f cb  + 35d 
c a l l  p c r l f

r

; r e a d  random record  
mvi c , r a n d r  
Lxi d , f c b  
ca LL bdos

; p r i n t  c a r r i a g e  r e t u r n

; d i s p L a y  co n ten ts  o f  dma b u f f e r
012A 21EB01 
01 2D 0680 
012F 7E 
0130 CDB701
0133 23
0134 05
0135 C22F01

d Loop

Lxi h,dma 
mvi b,128d 
mov a,m 
ca L L pchar 
i  nx h 
dc r  b 
jn z  dLoop

; s e t  p o i n t e r  i n  hL 
; s e t  count  i n  b 
; g e t  char f rom b u f f e r  
; d i  spLay i t  
; i ncrement hL 
;decrement  b -  done?
;  no t  ye t

0138 
013A 
013D 
0140 
0142 
0145
0147
0148

0E09
11C401
CD0500
0E01
CD0500
FE79
CO
CD9001

;make sure user wants to  mod i fy  i t
mvi c , p r i n t s  ; p r i n t  q ue s t io n  
Lxi d,qmess 
ca L L bdos
mvi c , c o n in  ; g e t  1 -char  response 
caLL bdos
cpi  ' y '
rnz
caL L pe rL f

; i s  i t  " y "  ?
;  no,  so back to  CP/M 
;  yes ,  c a r r y  on

014B 21EB01 
014E 0680 
0150 36FF
0152 23
0153 05
0154 C25001

0157 CD9001 
015A 3E50 
015C 32E901 
015F 0E0A 
0161 11E901 
0164 CD0500

; f i LL the dma b u f f e r  w i t h  deLete marks
Lxi h,dma ; p u t  dma b u f f e r  address i n h L
mvi b,128d ; p u t  count  i n  b

f  Loop mvi m,deL ; s t o r e  deLete i n  memory Loc in  h i
in x  h ; i n c re m e n t  hL p o i n t e r
dcr  b ;decrement  count
jnz  fLoop ; n o t  done y e t

/
; r e a d  c h a r a c te rs  i n t o  b u f f e r  f rom keyboard

; p r i n t  L inefeed  
; s e t  max count  to  screen w id th  
;  ( read  s t r i n g  b u f f e r  s t a r t s  two 
;  by tes  b e fo re  s t a r t  o f  dma 
; b u f f e r  to  Leave room f o r  
;  max-count  and coun t )

ca l  L pe rL f  
mvi a,80d 
sta dma-2 
mvi c , reads  
Lxi d,dma-2 
ca L L bdos
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0167 3AEA01 
016A 5F 
016B 1600 
016D 21EB01
0170 19
0171 360D
0173 23
0174 360A

; i n s e r t  c r  and Lf in  b u f f e r  foLLowing t e x t
Lda dma-1 
mov e,a 
mvi d ,0  
Lxi h,dma 
dad d 
mvi m,cr  
i nx h 
mvi m,Lf

; g e t  number o f  chars typed in  
; p u t  i t  i n  de 
/
;dma address in  hL
;add count  to  add r ,  re su L t  in  hL
; s t o r e  c a r r i a g e  r e t u r n
; in c re m e n t  p o i n t e r
; s t o r e  L inefeed

0176 0E22 
0178 115C00 
017B CD0500

; w r i t e  record  to  d i s k  
mvi c , randw 
Lxi d , f c b  
ca L L bdos

;cLose f i L e  b e fo re  e x i t i n g  
017E0E10 mvi c , cLose f
0180 115C00 Lxi d , f c b
0183 CD0500 caLL bdos
0186 C9 r e t  ;back  to  CP/M

0187 0E09 
0189 11D901 
018C CD0500 
018F C9

;no  such f i  Le name: p r i n t  message and ex i  t  
n o f i  mvi c , p r i n t s  

Lxi d,nfmess 
caLL bdos 
r e t ;back  to  CP/M

; s u b r o u t i n e  to  p r i n t  c a r r i a g e  r e t u r n  and L inefeed 
0190 3E0D p c rL f  mvi a , c r
0192 CDB701 caLL pchar
0195 3E0A mvi a , L f
0197 CDB701 caLL pchar
019A C9 r e t

; p r i n t  c a r r i a g e  r e t u r n  

; p r i n t  L inefeed

019B 210000 
019E E5 
019F 0E01 
01A1 CD0500 
01A4 E1 
01A5 D630

; d e c i b i n -  s u b r o u t in e  to  read dec number from 
;  keyboard ,  conve r t  to  b in a r y  in  HL

d e c i b i n  Lxi h,0  
newdig push h

mvi c , c o n in  
ca L L bdos 
pop h 
sui  30h

; s e t  hL to  0
;save h i  ( c o n in  uses i t )
; g e t  c h a r a c te r

; r e s t o r e  hL
/ c o n v e r t  f rom ASCII to  b in a r y
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01A7 D8 rc / r e t u r n  i f  i t  was < 0
01A8 FEOA cpi 10d ; i s  i t  > 9 ?
01AA DO rnc ;  i f  so,  r e t u r n

r

/ m u l t i p l y  co n ten ts  o f  h i  by 10 ( d e c ) ,  then add new d i g i
01 AB E5 push h ; p u t  h i  i n  de
01 AC D1 pop d
01 AD 29 dad h ;add h i  to  h i  (doub le  i t )
01AE 29 dad h ;do u b le  i t  agai n
01AF 19 dad d ;add de ( o r i g i n a l  number) to  h i
01B0 29 dad h ;do ub le  r e s u l t
01B1 50 mov d,0 ; z e r o  i n  d
01B2 5F mov e,a ;new d i g i t  i n  e
01B3 19 dad d ;add d i g i t  to  number (now in  h i )
01B4 C39E01 jmp newdi g ;go look  f o r  nex t  d i g i t

r

/ s u b r o u t i n e  to  p r i n t  c h a r a c te r  i n  a - reg  ou t  on screen
01B7 E5C5D5 pchar push h! push b! push d ;save  r e g i s t e r s
01 BA 5F mov e,a ; p r i n t  ASCII c h a r a c te r
01BB 0E02 mvi c ,conou t
01BD CD0500 c a l l bdos
01C0 D1C1E1 pop d ! pop b ! pop h ; r e s to r e  r e g i s t e r s
01C3 C9 r e t

r

01C4 4F4B20746Fqmess db ’OK to  mod i f y  ( y / n ) ?  $’
01D9 4E6F207375nfmess db ’No such f i l e n a m e . $ ’

01 EB
f

dma ds 128d ;dma b u f f e r
W

026B end

typed-in line and the end of the buffer will not cause odd effects when it is 
printed out.

The DECIBIN routine at the end of the program is the same one that you 
saw before in the chapter on console system calls.

Trying Out the Program

Try out the program using the “sample.txt” file described in the section on 
the STORE program. Use TYPE2 to examine the file, and then use 
RANDYMOD to modify one of the records in the file. It’s easy to figure out
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Fig. 6-4. F lowchart of the RANDYMOD program.

which record number you want to modify, since each line in the file corre
sponds to one record.

Not bad, is it? Using STORE, TYPE2, and RANDYMOD you can create, 
examine, and modify text records, just as if you were using a real word 
processor. Well, not really quite as well, but by now you’re such a good 8080 
programmer that you can probably figure out how to combine these three
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programs and add the features necessary to come up with a competitor for 
WordStar!

We’re going to cover two more system calls in this chapter, both of which 
are concerned with what happens when we change in midstream from read
ing files sequentially to reading them randomly, and vice versa.

COMPUTE FILE SIZE SYSTEM CALL

COMPUTE FILE SIZE FUNCTION 23 (hex) = 35 (dec)

Enter with: REG C = 2 3  (hex)
REGs DE = FCB address

On return: Bytes rO, r1, r2 set in FCB

This is a useful little system call that makes it easy for you to get to the end 
of a file. This is useful if you want to add something to the end of a file and 
don’t want to waste the computer’s time in reading all the records sequen
tially to find what the number of the last record is.

For instance, take a look back at the STORE program earlier in this chap
ter. Here, if we wanted to add a record to an existing file, we had to read (in 
lines 163 to 16C) all of the records in the file until we came to the end. To see 
how the Compute File Size system call works, try modifying the STORE pro
gram as follows:

1. Make a copy of STORE using PIP. Call it STORE3.

A>pip s t o r e 3 . asm=store . asm

2. Put this statement at the beginning of STORE3:

c f s i z e  equ 23h ;Compute f i l e  s ize

3. Change the “readr equ” statement to:

readr  equ 21h ;Read random record

4. Delete lines 163 to 16C, and substitute the following:
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mvi c , c f s i z e  ;Compute f i l e  s i z e .
Lxi d , f c b
c a l l  5
mvi c , r e a d r  ;Read random record
Lxi d , f c b  ;  to  se t  c u r r e n t  reco rd  number.
caLL 5

Fig. 6-5 is a flowchart of the STORE3 program.
Instead of reading all the records until we get to the end of the file, we 

execute a Compute File Size system call. This sets rO and rl to the record 
number at the end of the file (r3 is set to 0). Then, in order to set the “current 
record” and “current extent” bytes in the FCB, we also execute a random 
read. This call uses the information in rO and r l to compute the values of the 
current record and byte, which is needed for sequential system calls. If we 
had wanted to do random writes to the file instead of sequential writes, this 
last step would not have been necessary because the random write call has no 
need for the current record and extent values.

Using the Compute File Size call will save our program a lot of time, espe
cially on long files, when compared with reading laboriously through all the 
records in the file to get to the end.

SET RANDOM RECORD SYSTEM CALL

SET RANDOM RECORD FUNCTION 24 (hex) = 36 (dec)

Enter with: REG C = 2 4  (hex)
REGs DE = FCB address

On return: Bytes rO, r1, r2 set in FCB

This system call is similar to the Compute File Size call, except that it finds 
the random record number in the middle of a record rather than at the end. 
This is useful if you have been reading through a file using the Read Sequen
tial system call and, suddenly, find a record whose number you want your
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Fig. 6-5. F lowchart of the STORE3 program.

program to remember. Executing this call will put the random record number 
into rO and r l, where it can be extracted and stored by your program. Or, 
your program can make use of the information in rO and r l to perform a 
random write operation at this point in the file.
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OUT OF INK

That finishes up our description of the various system calls used to write to 
the disk. In the next chapter, we’re going to delve deeper into the murky 
world of disk directories, allocation units, blocks, tracks, and sectors. We’ll 
learn how wildcards work and how to rescue a file that has been mistakenly 
erased. We’ll finish off the chapter with the WORDS program, which counts 
the words in a file, or in a whole group of files if wildcards are used in the file 
name. So don’t go away—things are just getting interesting!
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CHAPTER 7

Soul Searching
Wildcards and the Disk Directory

This chapter describes how CP/M  keeps track of what programs are on a 
disk and where they are. We’ll explain the disk directory, allocation units, 
extents, sectors, bit maps, and how they all fit together. We’ll also explain 
how CP/M  uses “wildcards” (the “?” and “ *” characters) to refer to whole 
groups of files rather than single files.
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Using these ideas, we’ll then cover the “Search for First” and “Search for 
Next” system calls, whose purpose is to provide your program with informa
tion about particular files. These calls give us the tool we need for our next 
example: a procedure which permits you to restore a file that has been acci
dentally erased.

We’ll finish off this chapter with WORDS, a program that counts the 
number of words in a text file. WORDS permits the use of wildcards in its 
input; that is, it will list the number of words in a whole group of files. In this 
program, which is somewhat more ambitious than any we’ve looked at so far, 
we’ll also introduce the idea of stack management.

In addition to teaching you about the disk system, this chapter will give 
you the skills necessary to write a variety of such advanced utility programs 
as a directory program that tells you how much disk space a program occu
pies, a master directory program that will read all your disks one after the 
other and produce a file of all your programs, and a program that restores 
erased files. You could even write a disk utility program that would enable 
you to read and write to specific sectors of the disk, as is done in many “disk 
debugger” programs.

HOW CP/M STORES FILES ON THE DISK

In previous chapters, we’ve mentioned, in passing, such terms as allocation 
units, extents, and the disk directory. Now we’re going to find out what these 
terms really mean and how they all work together to permit CP/M  to store 
and retrieve a particular file on the disk.

As you recall, a standard 8-inch CP/M  disk has 77 tracks, each of which 
contains 26 sectors. In a single-density disk, a sector is 128 bytes or the same 
length as a CP/M  record. (In double-density disks, a sector can hold two or 
even four records, but let’s ignore this possibility for the time being. It’s the 
idea of how the disk is organized that’s important here, not the actual num
bers.) Thus, there are 77 tracks times 26 sectors for 2002 sectors on the disk. 
You have also learned that a file is simply a number of records. Each of these 
records is 128 bytes long, which is the same length as a sector. Keep in mind 
the difference between sectors and records. A sector is a physical location on 
the disk, while a record is 128 bytes of information that you’re going to put, 
temporarily, in that sector. It’s like a parking lot. There are a certain number 
of spaces (sectors) in the lot, and cars (records) come and go, leaving some 
spaces empty and some full.
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Things would be easy if all the records in a file were just assigned to a 
group of sectors in order, so that a file with 100 records would simply occupy 
(say) sectors 450 to 550—as if all cars of the same color (representing a file) 
occupied one area of the parking lot. Unfortunately, things aren’t that simple 
because of the way files actually get created. Fig. 7-1 gives a picture of how 
two files are probably not arranged.

/ / / / / / 111 111 111 111 111 111 + ++ + + + + + + + + + + + + + + + + ++

/ / / = file  1

+ + +  = file  2

Fig. 7-1. An unlikely arrangem ent of two files.

In the real world, however, this is what might happen. Suppose that 
you’re using your word-processing program to write both a personal letter 
and an 8080 program on the same disk. You might work a little on the 
program and, then, a little on the personal letter, and then some more on 
the program. C P/M  doesn’t know, in advance, how long either of these 
documents is going to be (you probably don’t either), so it doesn’t try to set 
aside a big group of sectors for each file. As you type in parts of the pro
gram, it assigns sectors to this file, and as you type in parts of the letter, it 
assigns sectors to that file. As a consequence, the sectors for the two files 
get mixed up, like red and green cars parked randomly all over the lot. The 
problem then is, how is C P/M  going to keep track of what sectors hold the 
records for a particular file? It’s like asking the parking lot attendant to give 
you a list of the locations of every green car in the lot. The diagram given in 
Fig. 7-2 illustrates how the sectors of two files are randomly distributed on 
a disk track.

/ /1 + + + +  + + 111 + + + 111 111 + + + + + + + + + / / / +  +  + 111 111 11 / + +  +

/ / / = file  1 

+ +  + =  file  2

Fig. 7-2. The random d istribution of two files on a disk track.

Allocation Units

Here’s a copy of the diagram of the file control block that we discussed in 
Chapter 5. (It is reproduced here for your convenience.)
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Byte number Location
(decimal) (hex) Contents

0 5C 0
1 5D T
2 5E E
3 5F S
4 60 T
5 61 1
6 62 0
7 63 0
8 64
9 65 T

10 66 X
11 67 T
12 68 00
13 69 00
14 6A 00
15 6B 02
16 6C 54
17 6D 00
18 6E 00
19 6F 00
20 70 00
21 71 00
22 72 00
23 73 00
24 74 00
25 75 00
26 76 00
27 77 00
28 78 00
29 79 00
30 7A 00
31 7B 00
32 1C 01
33 7D 00
34 7E 00
35 7F 00

Drive number.

► File name (8 bytes).

File extension (3 bytes).

Current extent.
Used internally by CP/M .

(User should set to zero.)
Number of records in current extent.

► Allocation units.

Current record.

^■Random record number.
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This 36-byte file control block (FCB) is very similar to the information 
that CP/M  keeps in a place on the disk called the “disk directory.” At least 
one such FCB-like entry is recorded in the directory for each file. It contains 
all the information that CP/M  needs to know about the file and where it’s 
located on the disk.

Notice that bytes 16 to 31 of the FCB are occupied by something called 
“allocation units.” This rather ponderous name holds the key to the way that 
CP/M  keeps track of where the sectors are in a file.

An allocation unit is nothing more or less than a group of 8 sectors on the 
disk. The designers of CP/M  decided it would be too complicated for the 
operating system to try to remember the location of every single individual 
record, so they grouped each eight sectors together and gave them a number, 
and then made up a rule: all eight sectors in a particular allocation unit must 
be occupied by records in the same file. It’s as if each block of eight parking 
spaces in the lot had to be occupied by cars of the same color. This cuts down 
the information the operating system needs to remember about each file and 
speeds up disk access to the file, but it also means that there will (usually) be 
unused sectors at the end of each file. For example, a file 10 records long will 
occupy all of one allocation unit, but only two sectors of the next one, leaving 
6 unused sectors which can’t be used by any other file. However, this is a 
small price to pay for simplifying the disk directory entries.

In the FCB, there are sixteen bytes set aside to hold the allocation units. 
Each allocation unit is represented by a single byte. This works because there 
are approximately 2002 sectors, and 2002 sectors divided by 8 sectors per 
allocation unit gives 250 allocation units. Thus, one byte (which can have 
values from 0 to 255) can be used to specify any one of the 250 allocation 
units. Some of these sectors are used by the system, leaving 242 for the user’s 
programs. So the sixteen bytes in the FCB (or the directory entry) can refer 
to 16 allocation units; this is 16 times 8, or 128 sectors, which can hold 128 
records. (There can be more than 128 records in a file if different “extents” 
are used. We’ll look at that soon.)

As we noted, the preceding description only applies if the disk system 
being discussed is single density. If it is a double-density system, then, 
instead of 16 one-byte numbers to refer to the allocation units, there are 8 
two-byte numbers, with each one able to refer to any one of 256 times 256, or 
65536, possible allocation units.

When you “open” a file, the operating system gets the information about 
which allocation units the file occupies from the disk directory and writes this 
information into the FCB. Let’s see how this process looks in the real world.
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Examining the FCB

Get into DDT and enter the following program:

-a100
0100 mv i  C , f  Open file.
0102 Lxi d,5c
0105 c a l l  5
0108 r s t  7 Back to DDT.

Now, since we want to see what happens to the FCB when we do various
things to it, let’s fill it with all bits (FF bytes) so we can start with a clean slate.

- f 5 c , 7 F , f f

Now dump the FCB area to see that it really is filled with FFs:

- d 5 c , 7 f
005C FF FF FF F F ___
0060 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F F ....................................
0070 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF F F ....................................

Looks all right. Now put the name of a short program into the FCB with 
the “i” command. We’ll use a program called “multi.txt” which is three 
records long. (You can create records of any length using the STORE pro
gram, since each line typed into this program is a record).

- i m u l t i . t x t

Now, dump the contents of the FCB again to see what’s there. (We’ll also 
provide some reference numbers so that you can see more easily what bytes 
are where.)

c D E F

005C 00 4D 55 4C .MUL \
0060 54 49 20 20 20 54 58 54 00 FF FF FF FF FF FF FF TI  TXT
0070 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF F F ..................

Drive code

Current extent

Current record

0 2 3 4 5 6 7 8 9 A B C D E F

206



Soul Searching

The name and file extension have been filled in from bytes 5 D to 67 and, 
in addition, byte 5C (which is the drive code), byte 68 (which is the current 
extent), and byte 7C (which is the current record) have all been set to 0. The 
“i” command does this automatically, since this is what BDOS requires when 
the file is opened.

Now we’ll open the file by executing our little program.

- g 1 00 
*0109

And now we’ll dump the FCB again and see what’s happened:

C D E F

d5c. 7f
005C 00 4D 55 4C .MUL
0060 54 49 20 20 20 54
0070 00 00 00 00 00 00

0 l 2 3 4 5

■ Record count
■ Allocation unit

00 TI  TXT. 
F F .....................

7 8 9 A B C D E F

Lots of zeros, and a few other goodies. Byte 69 has become 0, and byte 6A 
is 80. (BDOS uses these bytes internally: don’t worry about them.) Byte 6B 
(which is the “rc” or record count byte) is 03, which is the total number of 
records in the file. Interesting. Bytes 6C to 7B are the 16 bytes that hold the 
allocation units and they’re all 0, except for the first one, which is 61.

Since the file is a mere 3 records long, it’s only going to use one allocation 
unit, since each allocation unit can hold up to 8 records. And that’s exactly 
what we see; all the allocation unit bytes are zero (meaning they’re unused) 
except one. BDOS can look at this FCB (so can we) and know immediately 
that the 3 records of the file “multi.txt” are located in allocation unit number
61 (hex), which is one of the 242 (decimal) or so allocation units on the disk. 
So if we issued a “read record” system call, BDOS would know which sectors 
to read to get this file.

Extents

We’ve found that our 16 allocation units can hold 8 times 16, or 128 records. 
This is 128 times 128, or 16384 bytes, a rather large file. But what happens when 
a file is longer than that? Then, instead of simply assigning more allocation units
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to increase the size of the file, we have to do a more major operation called 
“opening a new extent.” What’s this mean? Remember that the information that 
we read into the FCB when we opened the file came from the disk directory. It 
was, in fact, an FCB-like entry in the directory, and if you looked in the direc
tory (as we’re about to do), you would see it sitting there.

Now, when a file exceeds 128 records, what we have to do is make another 
entry in the directory. We use the same filename and type, but we have the 
extent number (byte 6A) set to 1 instead of 0 (or to 2, or 3, or more, if that 
many extents are required). Thus, a file with 300 records would have 3 
extents and, thus, 3 entries in the directory: one for the first 128 records, one 
for the next 128 records, and one for the 44 remaining records.

Fig. 7-3 gives a picture of how records, allocation units, sectors, extents 
and so on are related. Note again, that if you are using a double-density disk, 
these numbers will be somewhat different. In double density, a sector can 
hold either 256, 512, or 1024 bytes, depending on the system. The other num
bers given in the diagram of Fig. 7-3 change accordingly. However, records 
will always consist of 128 bytes regardless of the system. This means that 
when you write a program, you don’t need to worry about single density, 
double density, or whatever other peculiarities the system may have: you sim
ply deal with 128-byte records.

1 DISK =  77 tracks x  26 sectors/track =  2002 sectors

Fig. 7-3. The relationship of records, allocation units, sectors, etc.
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The Disk Directory

The disk directory, itself, is stored on the disk and consists of a number of 
records. How many? In single density, there are 16 records, each of which can 
hold 4 directory entries, for a total of 64 directory slots. In double density, 
there are 32 records, each of which can hold 4 directory entries of 32 bytes, 
for a total of 128 directory slots. This means that it is impossible to put more 
than 64 (or 128) files on a disk, even if they are all so short that they have no 
trouble with disk space.

You may be wondering where the last 4 bits went, if the FCB is 36 bytes 
long and the directory entry only holds 32. What happens is that when a file 
is opened, only 32 bytes are read from the directory to the FCB. The “cr” 
(current record) byte and the 3 bytes which make up the random record 
number (rO, r l, and r2), are constructed by BDOS when they are needed, and 
are not a part of the permanent record of the file.

Here’s what a directory entry looks like:

Byte Number 
(dec) (hex)

0 00
1 01
2 02
3 03
4 04
5 05
6 06
7 07
8 08
9 09

10 0A
11 0B
12 0C
13 0D
14 0E
15 OF
16 10
17 11
18 12
19 13

Contents

00
T
E
S
T
F
I
L
E
C
O
M
00
00
00
12
3C
3D
00
00

Set to 00 if file is valid; set to E5 if file is erased.

Filename, 8 bytes.

} File extension, 3 bytes.

Extent.
si
s2
Number of records in this extent.

Allocation units (unused spaces = 0).
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20 14 00
21 15 00
22 16 00
23 17 00
24 18 00
25 19 00
26 1A 00
27 IB 00
28 1C 00
29 ID 00
30 IE 00
31 IF 00

►Allocation units (unused spaces =  0).

The information given in a directory slot (a slot is the position occupied by 
one directory entry) is not exactly the same as that in the FCB. For instance, the 
first byte (at location 0) is no longer the drive code. It’s now called the “user 
number.” On a single-user system, it can have either of two values: 00, meaning 
that the file name in this slot is in use, or E5, meaning that the file has been 
erased. The file name and file extension are the same as they are in the FCB 
and, on single-density systems, the record count is the record count. However, 
on double-density systems, the number in this position is not actually the record 
count, but is related to it by an obscure algorithm which we won’t go into.

As in the FCB, bytes si and s2 are used for something mysterious, and are 
undocumented by Digital Research, and must not be asked about.

Next, we’re going to discuss two systems calls that give your program the 
ability to read the disk directory: “Search For First” and “Search For Next.”

SEARCH FOR FIRST SYSTEM CALL

SEARCH FOR FIRST FUNCTION 17 (dec) = 11 (hex)

Enter with: REG C = 11 (hex)
REGs DE = FCB address

On Return: REG A = Directory Code

Comments: Directory Code = 0, 1, 2, or 3 if file found.
Directory Code = FF (hex) if file not found.
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When you execute it, this system call will look at the file name in the FCB 
and, then, will go and read the disk directory to see if there’s a file name there
that matches the name in the FCB. If it finds the file, it will write the direc
tory record that contains the name into the DMA buffer. Since there are four 
directory entries in each record of the directory, there will be three other 
entries written into the DMA besides the one you want. In order to tell your 
program which of these four entries is the right one, Search For First returns 
a number in the A-register that corresponds to the position of the desired file 
in the directory record:

0 means the file is the first entry in the record.
1 means the file is the second entry in the record.
2 means the file is the third entry in the record.
3 means the file is the fourth entry in the record.

This system call only looks for the first occurrence of a file in the directory. 
There are two reasons why a file whose name you have placed in the FCB 
may have more than one directory entry. First, it may be so large that it 
occupies more than one extent. Each extent that the file occupies requires an 
additional directory entry. Second, you may have used wildcards in the file 
name you placed in the FCB, in which case, a number of different file names 
may all fit the pattern.

WILDCARDS

As you know from using CP/M , it is possible to use the characters “?” 
(meaning any character) and “ *” (meaning any group of characters) in a file 
name. When you do this, any filename that matches the pattern you have set 
up will be operated on. For instance, if you type:

A>d i r  ch ap? ?? ? . t x t

all the files having a name that starts with the four letters “chap” and that 
have an extension of “txt” will be listed, such as “chapter.txt”, “chap-2.txt” , 
and so on. Similarly,

A>di r * . t x t
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will list all files with a file type of “ txt” . We can use one of these two conven
tions in the Search For First system call: the “?” character. The “ *” cannot be 
used, because it is the CCP that translates an “ *” into a “?”, and your pro
gram doesn’t have access to the CCP.

Let’s see how this call works. Type in the following program, using DDT:

-a 1 00
0100 mvi c,1a Set DMA address to 400.
0102 Lxi d,400
0105 c a l l 5
0108 mvi c,11 Search For First.
010A l x i d ,5c
010D c a l l 5
0110 mvi c,02 Print out directory code.
0112 adi 30
0114 mov e,a
0115 c a l l 5
0118 r s t 7 Back to DDT.

Save the program as testl09.ddt, and then go back to DDT with the pro
gram:

A>ddt t e s t1 0 9 . d d t

To make the program work, all you need to do is to put the name of the 
“target” file (the one whose name you want to find in the directory) into the 
FCB. This is easily done using the “i” command. Assume you’re going to 
look for a file called “wsibm.com” :

- i  wsi bm. com

Now run your program:

-g100
2*0118

t-------------- Position of target file in directory: 3rd.
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Your program will print out a single digit: 0, or 1, or 2, or 3, assuming that 
the file you named actually exists. If there is no such file, then a “ / ” will be 
printed out, since this is the ASCII value corresponding to an “FF” code 
returned in the A-register. (FF plus 30 =  2F.)

And now, finally, we’ll get our first look at the directory itself. Use “d” to 
dump the 128 bytes at location 400:

-d 4 00 ,4 7 f  
0400 00 45 58 41 4D 50 20 20 20 43 4F 4D 00 00 00 01 .EXAMP COM___
0410 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 ..............
0420 00 45 58 41 4D 50 20 20 20 41 53 4D 00 00 00 01 .EXAMP ASM___
0430 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 ..............
0440 00 57 55 49 42 4D 20 20 20 43 4F 4D 00 00 00 0C . WSIBM COM___
0450 03 04 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 ..............
0460 00 42 4F 42 20 20 20 20 20 54 58 54 00 00 00 03 .BOB TXT___
0470 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0 ..............

That looks like a lot of numbers, but as you can see from the ASCII 
printout on the right, four files are listed, and the one which we originally 
asked for—“wsibm.com”—is in the third position down, corresponding to the 
“2” that was returned as the directory code.

Let’s take one of these directory listings and examine it more closely:

------------ User number t;ctent

Filename typ
s1 s2f  .....

-Record count

0400 00 45 58 41 4D 50 20 20 20 43 4F 4D 00 00 00 01 .EXAMP 
0410 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............

COM.

0 1  2 3 4 5 6 7 8 9 A B C D E F

Only one a l l o c a t i o n  u n i t  used:  number 1.

In the lower line, from 410 to 4 IF, are the allocation units, the same as 
they are in the FCB. These are either 16 one-byte values, if the disk is single 
density, or 8 two-byte values, if the disk is double density.

Now we’re going to find out how to find filenames that occur more than 
once in the directory.
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SEARCH FOR NEXT SYSTEM CALL

SEARCH FOR NEXT FUNCTION 18 (dec) = 12 (hex)

Enter with: REG C = 12 (hex)
REGs DE = FCB address

On Return: REG A = Directory Code

Comments: Directory Code = 0, 1, 2, or 3 if file found.
Directory Code = FF (hex) if file not found.

As you can see, this system call is very similar to Search For First. The 
difference is that instead of starting at the beginning of the directory as 
Search For First does, this call starts looking for a file name at the place 
where either Search For First or Search For Next left off looking when it was 
last called. This is useful in either finding files that have more than one 
extent, or when the use of wildcards has made it possible for more than one 
file name to match the name given in the FCB.

Let’s write a little program to look at a number of files. Take the program 
from Search For First, given earlier as “test 109.ddt”, and add new code as
shown in the following program, starting at location 119:

0100 mvi c,1 a Set DMA address to 400.
0102 Lxi d,400
0105 ca L L 5
0108 mvi c,11 Search For First.
010A Lxi d,5c
010D ca L L 5
0110 mvi c,02 Print out directory code.
0112 adi 30
0114 mov e,a
0115 ca L L 5
0118 r s t 7 Back to DDT.
0119 mvi c , 1 2 Search For Next
01 IB 
011 E

Lxi 
ca L L

d ,5c
5 ► Add new code.

0121 jmp 110 Jump back to print directory. „

Save it as “test 1 lO.ddt” and, then, reenter DDT with it.
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You can use the program to search for a group of files, using wildcards. 
Here’s how. First, figure out what wildcard name you want to search for. 
Let’s say you want to look at the directory entry for every file that has a file 
extension of ASM. Type:

- i  ????????.asm

That’s eight question marks, one for each character position. (As noted ear
lier, you can’t use asterisks here because BIOS doesn’t understand them; only 
the CCP understands asterisks.)

Now, run the program from the beginning:

-g100
1*0118
-̂----------------This “ 1” means filename found in second position.

Dump the contents of the DMA buffer:

-d 4 0 0 ,4 7 f  
0400 00 45 58 41 4D 50 20 20 20 43 4F 4D 00 00 00 01 .EXAMP COM___
0410 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
0420 00 45 58 41 4D 50 20 20 20 41 53 4D 00 00 00 01 .EXAMP ASM___
0430 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
0440 00 57 55 49 42 4D 20 20 20 43 4F 4D 00 00 00 0C . WSIBM COM___
0450 03 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
0460 00 42 4F 42 20 20 20 20 20 54 58 54 00 00 00 03 .BOB TXT___
0470 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............

Well, it’s our old friend, the same directory record we saw before. Since it 
has an ASM file in the second position, a “ 1” is printed out when we run the 
program.

When we search for the next ASM file, we want to use the Search For Next 
system call, so we start our program at location 119 instead of at the begin
ning.

- g 1 19 
0*0118

-̂----------------The “0” means file found in first position.

Dum ping the DM A buffer again shows us:
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-d 4 0 0 ,4 7 f
0400 00 43 4F 55 4E 54 20 20 20 41 53 4D 00 00 00 01 .COUNT ASM-------
0410 1D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..................................
0420 00 43 4F 55 4E 54 00 00 00 43 4F 4D 00 00 00 01 .COUNT COM-------
0430 1E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...................................
0440 00 4D 45 4D 52 20 20 20 20 43 4F 4D 00 00 00 OC .MEMR COM------
0450 1 F 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .....................
0460 E5 54 45 53 54 31 30 30 20 43 4F 4D 00 00 00 02 .TEST100 COM--
0470 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .....................

The “0” that our program printed out shows us that the file we’re looking for
is in the first position, and sure enough, there it is.

We can keep doing this, executing the Search For Next system call with a
-gl 19, and then dumping out the buffer to see what’s there, until we’ve found
every ASM file in the directory.

What good is all this? After all, you can use the regular DIR and STAT 
commands in C P/M  to find out the same information and much more conve
niently. That’s true, you can use DIR and STAT, but your program can’t. 
Everything we’ve shown here can be done by your program; it can set up the 
FCB with a program name, execute the “Search” system calls, and then 
examine the contents of the DMA buffer to read the directory entries. When 
we get to the WORDS program at the end of this chapter, we’ll show you an 
example of just this process.

Scanning the Entire Directory

We’ve seen how to search the directory for all of the ASM files. If you want 
to look at everything in the directory, all you need to do is type:

- i  ????????. ???

This will match with every file, so when you execute the program four 
times, it will (usually) find all four files in each record of the directory record 
in the FCB.

. cp9

-g100
0*0118 First position.
- g 1 19
1*0118 Second position.
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—g 119
2*0118 Third position.
-g  119
3*01 1 8 Fourth position.

At any time, you can dump the contents of the DMA buffer to look at this 
record of the directory. It will show the same page until it’s found the last of 
the four entries; then, a new record will be loaded in:

-g100
0*0118 First position in next record.

When you see the 0, you know that a new record has been loaded in, so 
you can dump it to look at all four new directory entries. Continuing this 
process will eventually show you the entire directory and the directory entries 
for every program on your disk. This program will, in fact, do something a 
little special; it will show you not only existing files, but files that have been 
erased.

ERASED FILES

Look back at the dump in the Disk Directory section of this chapter that 
contained the file TESTIOO.COM. The first byte in the directory listing of 
this file is E5, not 00 as it is for the other files. What does the magic number 
E5 mean here? It means that the file  has been erased, probably through the use 
of C P /M ’s “era” command. When you erase a file this way, C P/M  doesn’t 
actually blot out the file on the disk; it doesn’t even blot out the information 
about the file in the directory. All it does is set this one byte in the directory 
entry to E5. Later, if it needs to go through the directory looking for some
thing, it ignores all the entries whose first byte is E5, since it knows they have 
been erased. (E5 was apparently chosen for this purpose because it’s the 
number that is placed in every byte of a newly formatted disk.) Of course, if 
BDOS, at some point, needs the space on the disk formerly occupied by the 
erased program, it will take it and, if it needs the space in the directory, it will 
take that too, but until it needs this space, the erased file is still there.

This leads to an interesting idea. Suppose you accidentally erased a file; 
would it be possible to get it back again, simply by changing the E5 back to 
00? Sure would. Let’s see how to go about it.
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SAVING AN ERASED FILE

The process for saving an erased file consists basically of three steps:

1. Find the erased file in the directory and record the number of records 
and the allocation units it uses.

2. Set up a new FCB using the name of the erased file and the number of 
records and allocation units discovered in Step 1, above.

3. Write this FCB back into the directory by performing a “Close File” 
system call.

To make this process easier, we’ll add a few lines of code to the testl lO.ddt 
program that we used above.

0100 mvi c,1a Set DMA address to 400.

0102 Lxi d,400
0105 ca L L 5
0108 mvi c,11 Search For First.

010A Lxi d ,5c
010D ca L L 5
0110 mvi c,02 Print out directory code.

0112 adi 30
0114 mov e,a
0115 ca L L 5
0118 r s t 7 Back to DDT.
0119 mvi c,12 Search for Next.
011B Lxi d,5c
011 E ca L L 5
0121 jmp 110 Jump back to print directory.

0124 mvi c,16 Open file
0126 Lxi d,5c
0129 ca L L 5
012C r s t 7 Back to DDT.

►New code012D mvi c,10 Close file.
012F Lxi 5,c
0132 ca L L 5
0135 r s t 7 Back to DDT. _

Save this program as testl 11.ddt.
You should probably practice the “rescue” procedure on a file you don’t 

like very much, just in case something goes wrong and you can’t get it back.
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Use STORE to create a 3-record file; you can call it BADFILE.TXT. Check 
that it’s there, using TYPE2 (or C P/M ’s “ type” function). Now, erase it!

A>era b ad f i  L e . t x t

Use “dir” to check to see that it’s really gone. Imagine your horror if this 
were a good file, filled with irreplaceable data, that you had—in a moment of 
inexcusable inattention—erased.

Step 1—Getting the Vital Information About the File

Actually, you already know how to perform this step. Load in testl 11.ddt 
with DDT. Then, type:

- i  ????????.???

to set up the FCB to look for all files and, then, repeatedly execute the pro
gram as shown in the last section. (The first part of the program works just 
the same as it did before.) Every time a new record is loaded in from the 
directory, dump it with “-d400,47f”, and see if BADFILE.TXT is one of the 
four entries. (You can’t just put BADFILE.TXT in the FCB and search for it 
because it’s been erased, and BDOS can’t “see” it anymore.) Eventually, 
you’ll find the entry. Maybe it will look something like this:

- d 4 0 0 ,4 7 f
00 57 53 4F 56 4C 59 31 20 4F 56 52 00 00 00 18 . WS0VLY1 0VR.
29 2A 2B 00 00 00 00 00 00 00 00 00 00 00 00 00
E5 42 41 44 46 49 4C 45 20 54 58 54 00 00 00 03 .BADFILE TXT.
2C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 48 45 58 49 44 45 43 20 41 53 4D 00 00 00 14 .HEXIDEC ASM.
1 F 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 4C 4F 41 44 20 20 20 20 43 4F 4D 00 00 00 0E .LOAD COM.
21 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00

There’s BADFILE.TXT, just as we hoped it would be. The E5, at the 
beginning of its line, signals disaster unless our rescue operation is successful. 
Now, what we would really like to do is simply change the E5 byte back to 
00, and then write this whole record of the directory back onto the disk. 
Unfortunately, C P/M  did not provide a system call for writing directory 
records, only for reading them—so we’re going to have to work a little harder 
to get the information back into the directory.
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Examine the directory entry carefully. The information we need to know is 
in two places. First, write down the number in location 42F, which contains 
the number of records in the file (or if you have double density, a number 
related to the number of records). In this case, it’s 3. Then, write down all the 
numbers that appear in the second line of the entry—here, it’s the line starting 
at 430. These are the numbers of the allocation units assigned to the file. 
There is only one allocation unit: 2C.

Step 2—Creating a New FCB With the Old Information

First, put the name of the file into the FCB:

- i b a d f i  L e . t x t

Now, open the file, by executing the “open file” system call in our testl 1 l.ddt 
program:

-g124 
*012C

The reason for opening the file is that we’re going to close it, and you can’t 
close an unopened file.

Now, put the information you found from the old directory listing into the 
FCB:

-s6a
006A 00 0 -------- --------------  -------------- This byte must be zero.
006B 00 3 -------- --------------  -------------- Number of records.
006C 00 2C -------- --------------  -------------- Allocation unit.
006D 00 . -------------- --------------  -------------- More allocation units would go here.

I------------------ These are the values we type in.
-------------------------Junk left over in the FCB

The FCB now contains all the information that we need to put in the direc
tory listing.

Step 3—Close the File

By closing the file whose name is in the FCB, we write all the information 
in the FCB into the directory on the disk. Execute the “close file” section of 
the program:
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- g 1 2D 
*0135

That’s it!

Is It Really Back?

Go back to C P/M  and use “dir” to verify that the file has been restored. Is 
it back? If so, bravo! If not, you probably made a typo somewhere. Try it 
again.

Now, before you do any writes to the disk, do a warm boot (control-c). 
Why do we need to do this? The answer lies in a mysterious place called the 
“bit map.”

THE BIT MAP

Ask yourself this question: when BDOS starts to write a record to the disk, 
how does it know which allocation units are already in use and which are 
available to be written in? One way it could find out is to read the directory 
and make a list of all the allocation units shown in the entries of active files 
(“active” meaning not erased). Then it would know not to write to these 
units. However, scanning the directory is a lengthy process involving a disk 
access, and it is not something that BDOS would want to do every single time 
it writes a record. So, instead of scanning the directory every time it wants to 
do a write, BDOS only scans it once: when the disk is first initialized (by a 
warm boot).

BDOS uses an area of high memory for something known as a “bit map” 
(sometimes called the “allocation vector”). On a single-density disk, this is 
simply a string of 242 bits (31 bytes). Each bit represents one of the alloca
tion units on the disk. If the allocation unit is in use, then the bit is set to 1. If 
it is free, the bit is set to 0. When a warm boot is performed, BDOS scans the 
directory and creates a bit map based on the information it finds there. Then, 
every time it needs to do a “write,” it looks at the bit map to see what alloca
tion unit is free, rather than going back and looking at the directory. As it 
writes, it will set the bits that correspond to the allocation units it has written 
into to a 1, to show they have been used. When you erase a file with “era,” 
the bits used by the file are set back to 0, to show that the allocation units, 
which they represent, are again available for use.
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Here’s how the bit map might look if most of the allocation units on the 
disk were in use:

11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111100
00000000 00000000 00000000 00000000
00000000 00

If we erase a file, it will free whatever allocation units the file was written 
into, thus setting the corresponding bits to 0:

11111111 11111111 11111111 11111111
11000111 00110011 10001111 11111111
11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111100
00000000 00000000 00000000 00000000
00000000 00

(Note that, as discussed above, the allocation units of a particular file aren’t 
necessarily contiguous.)

Now it becomes clear why you need to do a warm boot after you have 
rescued the erased file. Suppose you rescued the erased file and, then, without 
doing a warm boot, caused BDOS to write something to the disk. It would 
look in the bit map and, finding that the allocation units of the erased file 
were free, it would write over them (if it needed the space). Goodbye file! To 
avoid this, we simply cause the bit map to be recreated, using the new infor
mation we’ve put in the directory with our rescue process, by doing a warm 
boot (or a cold one, for that matter). Our file will then be completely legiti
mate in all respects and will be safe from post-rescue disaster.

WORDS PROGRAM-COUNTS WORDS IN FILES AND 
USES WILDCARDS

The program that we’re going to describe in this section is fairly lengthy, 
but don’t let that bamboozle you. You don’t really need to understand every 
part of the program, at least not all at once. The main point of interest is the 
way that the program handles “wildcards,” that is, file names given to it 
which contain question marks and asterisks.

222



Soul Searching

Here’s what the program does. You type in a file name, containing wild
cards if you wish. The program then finds all the files that match the name 
you typed in, and it counts the number of words in each one. These word 
counts are then printed out next to the name of each program, like this:

A>words * .asm 

F i l e s  Words

SHOW ASM = 1135
SPACE ASM = 307
WORDS ASM = 970
STORE ASM = 297

In this example, we’ve counted the words in all the ASM files on the disk, 
but you could just as easily count all the TXT files, or all the files whose 
names start with “chap”, or whatever.

WORDS can be a useful program for anyone doing serious writing, since 
managers and editors always seem to ask, “Well, how many words are there 
in that report, anyway?” With WORDS, it takes only a few seconds to find 
the length of that 50-page short story for which the New Yorker says it is 
going to pay you by the word.

How does the program count words? Essentially, by counting spaces. 
However, this is not quite as simple as it sounds, since a string of spaces must 
only be counted as one space, and carriage returns and linefeeds should also 
be counted as spaces, since they separate words too. Also, the program 
should avoid getting confused when words fall across the boundary between 
one record and the next.

But before we get into the actual word-counting process, let’s look at how 
the program deals with wildcards.

A Problem With the “Search” System Calls

You learned in the last section how the Search For First and Search For 
Next system calls handled wildcards. If you put a file name which contains 
question marks in the FCB, these calls will find the directory entries for all 
the files that match the pattern. This works very well if all you’re doing is 
looking at the directory entries, as we had to do to save the erased file. But 
suppose you want to actually read the files that you find using this process? 
Then there’s trouble. Why? Because when you “open” a file (which you must
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do to read it), the Search For Next system call loses track of where it is in the 
directory. If you use Search For Next, and then Open File, and then Search 
For Next again, there will be error messages as Search For Next tries desper
ately to figure out why it has lost its place.

The solution to this problem is to do all the searching first and, when it’s 
done, do all the reading. So, we first scan through the directory, looking for 
filenames that match the name in the FCB. When we find them, we put the 
names in an array called “ table” in our program. Once we’ve found all the 
names that match, we go back, take them out of “ table” one at a time, open 
the files, read them, count the words, and print out the totals.

Take a look at the program in Listing 7-1. Don’t be alarmed; it may be big. 
but it’s a pussycat. We’ll take you through it section by section, until it all 
makes sense.

We’ll need two flowcharts to describe the program in Listing 7-1. One will 
deal with the entire WORDS program (Fig. 7-4), and the other will cover the 
major subroutine called WCOUNT (Fig. 7-5), which actually counts the 
words in a file. Let’s begin our detailed examination of the program (Listing
7-1) by thinking for a moment about the stack.

Stack Management

In the programs we have written so far, we have, in the interest of simplic
ity, neglected to pay proper attention to the stack. In short programs, that 
has not gotten us into any serious trouble, but the longer the program is, the 
more likely it is that improper stack management will cause us grief.

What is the stack? It’s simply the area of memory where the 8080 processor 
stores things that are PUSHed onto it with a “push”instruction, and where 
the return address is stored when we do a “call” to a subroutine.

How does the 8080 know where to put the stack? That’s easy; as far as 
the 8080 is concerned, the stack is at whatever address is in the stack 
pointer. The stack pointer is a 16-bit 8080 register, just like the HL- and 
BC-registers. It’s abbreviated “sp” in assembly language. When you “push” 
something onto the stack, it goes to the memory address pointed to by the 
SP-register, and the SP-register is decremented two bytes so that it points to 
the next lower location in memory. Thus, if the SP-register contains 400, 
and you “push” a 16-bit value from some register, this value will go into 
locations 400 and 3FF, and the SP-register will be decremented to 3FE. 
Why does the stack pointer count down instead of up? Because lots of pro
grammers like to put their program in low memory and have it (and what-
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Listing 7-1. The WORDS Program

• **************************************************** 
;WORDS-PROGRAM TO COUNT WORDS IN A FILE.
;  A l lows wi Idcards  in  f i l e n am e .
F

; Type ' 'w o r d s  < f i l e n a m e . t y p > ' ' ,
;  ( *  and ? permi t t e d ) .

0005 = bdos equ 05h ; o p e r a t i n g  system
005C = f  cb equ 5ch ; f i  le  c o n t r o l  b lock
005C = dr equ f  cb ; d r i v e  code in  FCB
0068 = ex t equ fcb  + 12 ; c u r r e n t  e x te n t  in  FCB
007C = e r f  cb equ fcb  + 32 ; c u r r e n t  reco rd  in  FCB
0080 = dma equ 80h ;DMA b u f f e r
0011 = s f i  r s t equ 11 h ;sea rch  f o r  f i r s t
0012 = snext equ 12 h ;sea rch  f o r  nex t
0009 = p r i n t s equ 09h ; p r i n t  s t r i n g
0002 = conout equ 02h ;con so le  out
000F = openf equ Of h ;open f i l e
0010 = c lo se f equ 10h ; c l o s e  f i l e
0014 = readf equ 14h ; s e q u e n t i a l  read
0000 = wf lag equ 0 ; f l a g  va lue f o r  "word"
0001 = spf  lag equ 1 ; f l a g  va lue f o r  "space
000D = cr equ Odh ; c a r r i a g e  r e t u r n
000A = I f equ Oah ; l i n e fe e d
001A = c t r  Iz 

f

equ 1 ah ; c o n t r o l - z  (EOF)

0100
f

f

; s e t  up

org 100h 

lo c a l  s tack
0100 210000 l x i h,0 ; c le a r  HL
0103 39 dad sp ; g e t  c u r r e n t  s tack  p t r
0104 22E502 sh Id o ldsp ; save i t
0107 310703 l x i s p , s t k t o p ; p u t  i n  new s tack  p t r

f

; s e t  number of names in  a r ra y

oo+■»

01OA AF xra a ; p u t s  0 i n  A-reg
01 OB 32E202

r

sta nmcntr
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;SCAN FOR FILENAME AND PUT IN ARRAY

r
;sea rch  f o r  f i r s t  occur rence  o f  f i  Lename 
/■

; sea rch  f o r  f i  r s t

;check  d i r e c t o r y  code 
; i f  A=255, no f i  Le found 
;  so p r i n t  message 
; f o u n d ,  pu t  name in  a r ra y

010E 0E11 mvi c , s f i  r s t
0110 115C00 Lxi d , f  cb
0113 CD0500 ca L L bdos
0116 B7 ora a
0117 FEFF cpi Of f  h
0119 CA1102 j z e r r o r
011C CD3301 ca L L p u ta ry

A
;sea rch  f o r  nex t occur rence

011 F 0E12
/■
nmfnd mvi c , s n e x t

0121 115C00 Lxi d , f  cb
0124 CD0500 ca L L bdos
0127 B7 ora a
0128 FEFF cpi Of f  h
012A CA5B01 jz L a s t f i  Le
012D CD3301 ca L L p u ta r y
0130 C31F01 imp nmfnd

;sea rch  f o r  nex t

;check  d i r e c t o r y  code
; i f  A=255 then Last  f i l e  found
;  so go count  words
; n o t  L as t ,  so put  i n  a r ra y
; g e t  ano the r  f i  Le

;PUTARY-SUBROUTINE TO PUT FILENAME IN ARRAY "TABLE"

0133 0707070707putary 
0138 C680

r L c ! r  L c ! r  L c ! r l c !  rLc ;A*32 g ive s  0 ,  32,  e tc .  
adi  dma ; Loca t io n  o f  DMA

(A - reg  now hoLds p o i n t e r  to  f i  Lename in  dma) 

move f i  Lename f rom DMA to  a r r a y  " t a b L e " ,  char by char

013A 060C mvi b,  12 ; s e t  up count  in  B-reg
013C 2A0703 LhLd p n t r t a b  ; s e t  up p t r  to  tabLe
013F EB xchg ;  i n  DE-regi  s t e r
0140 2600 mvi h ,0  ; s e t  up p t r  to  DMA
0142 6F mov L,a ;  Leave in  HL-reg
0143 3A5C00 Ida dr  ; g e t  d r i v e  code
0146 77 mov m,a ; p u t  d r  i n  new fcb

0147 7E
r
repea t mov a,m ; g e t  c h a r a c te r  f rom FCB

0148 23 in x h
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0149 12 s tax d ; p u t  i t  i n  " t a b l e "
014A 13 i nx d
014B 05 dcr b ;done ye t?
014C C24701 jnz repea t oc

014F EB xchg ;save  t a b le  p o i n t e r
0150 220703 sh Ld p n t r t a b

;  inc rement  the "number of names in  a r r a y "  coun te r
0153 3AE202 Lda nmcntr
0156 3C i nr a
0157 32E202 sta nmcntr
015A C9 r e t ; r e t u r n

r
; l a s t  f i l e  i s  found ,  so go count  words in  each f i l e

015B11B402 l a s t f i l e  Lxi d,a rraym ess  ; p r i n t  " F i l e s  Words"
015E 0E09 mvi c , p r i n t s
0160 CD0500 ca L L bdos

MOV E  A F I  L E N A ME  I N T 0 F CB

move f i lenam es  f rom a r ra y " t a b l e "  i n t o  FCB
/

0163 210903 movnm Lxi h , t a b l e ; p u t  t a b le  p o i n t e r
0166 220703 sh Ld p n t r t a b ;  i n  " p n t r t a b "
0169 215C00 movnm2 Lxi h , f  cb ; p u t  FCB p o i n t e r
016C EB xchg ;  i n DE
016D 2A0703 Lh Ld p n t r t a b ; p u t  t a b le  p t r  i n  HL
0170 060C mvi b,12 ; s e t  count

/
0172 7E sp in  mov a,m ; g e t  char f rom " t a b l e
0173 23 i nx h
0174 12 stax d ; p u t  i t  i n  FCB
0175 13 inx d
0176 05 dcr b ;done ye t?
0177 C27201 jnz spi  n ;  no
017A 220703 sh Ld p n t r t a b ;save t a b le  p o i n t e r

;  c l e a r  c u r r e n t  record  number and e x te n t  in  
;  f cb  be fo re  t r y i n g  to  open f o r  count 
/

017D AF xra  a ; p u t  0 i n  A-reg
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017E 327C00 sta e r f  cb ; c l e a r  record  #
0181 326800 sta ex t ; c l e a r  e x te n t  #

;C 0 U N T N U M B E R  OF WOR D S I N  F I L E

0184 CD9901 ca L I wcount ; c o u n t  words i n  f i l e
0187 CD7802 ca L L c r  Lf ;do c r l f
018A 3AE202 Ida nmcntr ;done a l l  f i  Les ye t?
018D 3D dcr a
018E 32E202 sta nmcntr
0191 C26901 jnz movnm2 ;no

0194 2AE502 a l ld o n e  Lhld o ldsp ; r e s t o r e  o ld  s tack  p t r
0197 F9 sph I
0198 C9 r e t ; r e t u r n  to  CP/M

i
/  — — —

;WC0UNT SUBROUTINE-COUNTS NUMBER OF WORDS IN FILE

0199 215COO wcount l x i h , f  cb ; d i  sp lay  f i lenam e
019C OEOC mvi c , 1 2 ;  (number o f  char )
019E CD6202 ca 11 ourp rn
01A1 118702 l x i d,eqmess ; t h e n  the equal  s ig n
01A4 0E09 mvi c , p r i  n ts
01A6 CD0500 ca 11 bdos

A
;open f i l e  f i r s t  then s t a r t c o un t i  ng words

01A9 AF xra a ;0  in  A - re g i  s t e r
01 AA 32E102 sta s ta tu s ; s e t  w o rd -co n t in u e  f l a g
01 AD OEOF mvi c ,open f ;open f i l e
01AF 115C00 l x i d , f  cb
01B2 CD0500 ca 11 bdos
01B5 3C i nr a ;check  i f  code was f f
01B6 CA1102 jz e r r o r ; i f  so,  f  i le  i s  gone

01B9 010100
r

l x i b,1 ; s t a r t  word count  = 1
01BC C5 loop: push b ;save  word count
01BD 0E14 mvi c , r e a d f ; re a d  nex t  record
01BF 115C00 l x i d , f  cb
01C2 CD0500 ca 11 bdos
01C5 C1 pop b ; r e s t o r e  word count
01 C6 B7 ora a ;  i s i t  end o f  f i l e ?
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01C7 C20302 jnz e o f i  Le ; d i  sp la y  i t  and end
01CA 218000 l x i h,dma ; s t a r t  o f  record  i n  DMA

01 CD 7E
/
loop2: mov a,m ; g e t  c h a r a c te r

01 CE E67F ani 7fh ;mask o f f  h i - b i t
01 DO FE1A cpi c t r  Iz ;  i s i t  end o f  f  i  le?
01D2 CA0302 j z e o f i l e ; d i  sp lay  i t  and end
01D5 FE20 cpi 20h ; i s i t  a space?
01D7 CAF501 jz space ; y e s .
01 DA FEOD cpi cr ; o r  cr?
01 DC CAF501 jz space
01DF FEOA cpi I f ; o r  I f ?
01E1 CAF501 jz space

r
;  I t ' s some o th e r nonspace c h a r a c te r .

01E4 3AE102
/

Ida s ta tu s / c o n t i n u a t i o n  o f  word?
01E7 FEOO cpi wf lag
01E9 CAFA01 j z nex t ; y e s ,  d o n ' t  inc rement  c
01 EC 03 i nx b / in c re m e n t  word count
01 ED 3E00 mvi a ,w f  lag ;  f o l l o w i n g  chars are c<
01EF 32E102 sta s ta tu s ;  o f  word:  se t  s t a t u s
01F2 C3FA01 jmp nex t

01F5 3E01
X
space mvi a ,sp fLag ; s e t  s t a t u s  to  spaces

01F7 32E102 sta s ta tu s

01 FA 23
r
nex t i nx h / i n c re m e n t  DMA p o i n t e r

01 FB 7C mov a,h ; a t  end o f  DMA?
01FC B7 ora a
01FD CACD01 j z loop2 ; n o ,  loop
0200 C3BC01 jmp loop ; y e s ,  read nex t  reco rd

0203 115C00
r
e o f i l e l x i d , f  cb ; c l o s e  f i l e

0206 C5 push b ;save  wordcount
0207 0E10 mvi c , c  Losef
0209 CD0500 c a l l bdos
020C C1 pop b ; g e t  i t  back
020D CD1C02 ca 11 bi  n i  dec ; p r i n t  i t  ou t  ( i n  dec)
0210 C9 r e t ;norm al  end o f  subr

0211 118B02 e r r o r l x i d , n o f i L e ; p r i n t  "no f i l e  found"
0214 0E09 mvi c , p r i  n ts
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0216 CD0500 ca 11 bdos
0219 C39401 jmp a I Idone ; r e t u r n  to  CP/M

;BINIDEC s u b r o u t i n e - d i s p l a y s  number i n  dec on screen

021C C5E1
/
b in id e c push b! pop h ! ; g e t  be i n t o  h i

021E 0600 mvi b ,0 ;b  ho lds  le ad in g  0 f l a g
0220 11F0D8 l x i d , -10000 ; twos  complement o f  10000
0223 CD3F02 ca 11 subcnt ;sub 10000 and count
0226 1118FC l x i d , - 1 000
0229 CD3F02 ca 11 subcnt / thousands
022C 119CFF l x i d , - 1 00
022F CD3F02 c a l l subcnt /hundreds
0232 11F6FF l x i d , - 1 0
0235 CD3F02 c a l l subcnt ;  tens
0238 11FFFF l x i d , -1
023B CD3F02 c a l l subcnt ;ones
023E C9 r e t ; t h a t ' s a i l

F
;  s u b t r a c t  power o f  ten  and count  each t ime

023F 0E2F
F
subcnt mvi

T—1oso ; c  ho lds  ASCII count
0241 0C sub2 i nr c ; in c re m e n t  count
0242 22E302 sh Id temp ; save h I
0245 19 dad d ;add neg num in  de to  h i
0246 DA4102 jc sub2 ; loop t i l l  h i  i s  neg
0249 2AE302 Ih Id temp ; g e t  l a s t  pos va lu e  back i
024C 79 mov a,c ; g e t  d i g i  t  back

; check f o r  lead in g  0

024D FE31
r

cpi ' 1 1 ; less than 1 ?
024F D25B02 j nc nozer ;nope
0252 78 mov a,b ;check  f o r  0 f l a g
0253 B7 ora a ; i s  i t  se t
0254 79 mov a,c ; p u t  c back i n  a
0255 C8 rz ; s k ip  le a d ing  0
0256 59 mov e,c
0257 CD6C02 ca 11 condi  s ; p r i n t  i t  ( z e r o )
025A C9 r e t
025B 06FF nozer mvi b , 0 f f h ; s e t  0 f l a g  i n  b f o r  nonze
025D 59 mov e ,c
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025E CD6C02 
0261 C9

c a l l
r e t

condi s ; p r i n t  i  t  (nonzero )

; o u r p r n  s u b rou t in e
;  d i s p la y s  a s t r i n g ,  us ing  conout
; H L=s ta r t  address o f  s t r i n g ,  C=length

0262 5E
/
ourprn mov e,m ; g e t  ch a ra c te r

0263 CD6C02 ca 11 condi  s ; p r i n t i t
0266 23 i nx h ; i ncrement p o i n t e r
0267 0D dcr c ;decrement count
0268 C26202 jnz ourprn  ;done yet?
026B C9 r e t ;  yes

F
; c o n d is  s u b r o u t i n e - d i s p la y s  one char us ing conout
; expects e to  c o n ta in  the char

026C E5D5C5
F
condi s push h ! push d ! push b

026F 0E02CD0500 mvi c . c o n o u t ! ca 11 bdos
0274 C1D1E1 pop b! pop d ! pop h
0277 C9 r e t

F

; c r l f  su b ro u t in e - p r i n t s  a r e t u r n  and l i n e f e e d

0278 0E021EODCDcr I f mvi c . conout !  mvi e , c r !  c a l l  bdos
027F 0E021E0ACD mvi c. conout !  mvi e , l f !  c a l l  bdos
0286 C9 r e t

0287 203D2024
/
eqmess db ’ = $’

028B 0D0A6E6F20nofi Le db c r , l f , ’no f i l e  found ’, c r ,  I f  , ’$’
029D 0D0A74726Fopenerr db c r ,  I f , ’ t r o u b le  opening f i l e $ ’
02B4 0D0A46696Carraymess db c r , I f , ’F i l e s  Words’, c r , I f
02CB 2D2D2D2D2D db N4

- 
—

iV
 

£_0
V1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

02E1 s ta tu s ds 1 ; l a s t  char space o r  not  ( 1 = S j

02E2 nmcntr ds 1 ;number o f  words
02E3 temp ds 2 ; tem po ra ry
02E5 o ldsp ds 2 ; o l d  s tack  poi n te r
02E7 ds 32 ;new s tack

s t k t o p : ;new s tack  s t a r t s  here
0307 0903 p n t r t a b dw ta b le  ; p t r  to  c u r r e n t  name in  t a b l
0309 ta b le ds 12*30 ; t a b l e  ho lds 30 f i l e  names
0471 end 100h
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Set up local stack.

Set count of program 
names in array to zero.

Search for first 
occurrence of 

filename.

"nmfnd”

Search for next 
occurrence of 

filename.

“error”

Print “No 
file found”.

“last file"

Count words 
in file (“wcount”

Put filename
in array.

“alldone”

Print “Files Words”
heading.

“movnm” f

Set pointer to 
start of array.

“movnm2 ” ł

No

Get one filename 
from array; 
put in FCB.

Fig. 7-4. Flowchart of the “WORDS” portion of the program in Listing 7-1.
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Display filename 
and equal sign.

T
Set status flag to "spaces".

T
Open file.

No Print ‘No
file found” .

Set wordcount = 1.

"loop" j

Set pointer to start of 
record in DMA.

Get one character 
from DMA.

Is it an end-of-file?

Print wordcount 
(In decimal) 

using BINIDEC.

( Exit from A  
wcount J

characters in DMA

Is it a space?
^  Yes Set status flag

to "spaces".

j T no

T no

■ « ^ Y e s
"next"

Is it the continuation Increment
of a word? pointer to DMA 

to next character.

| N o

Increment 
word count.

ł
Set status flag

to "word". No Done all 128

Fig. 7-5. Flowchart of the “ WCOUNT”  subroutine in the ‘ ‘WORDS program
(Listing 7-1).
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ever data it needs) expand upward, while they start the stack in high mem
ory and have it expand downward. This keeps a “no-man’s-land” free 
between the program and the bottom of the stack (until, if you’re not care
ful, either the program or the stack gets too big, and they run into each 
other, and the system crashes).

What do we mean by stack management? Well, so far, whether you’ve been 
aware of it or not, we’ve let various other programs take care of the stack for 
us. When we used DDT, it started the stack at location FF (which turned out 
to be slightly inconvenient for us, since that’s where the default DMA 
address is). When we ran programs in the form of COM files, we let CP/M  
take care of the stack.

What’s wrong with that? Well, suppose we had made a mistake in our pro
gram, like putting more things on the stack than we took off (too many

...

Top of memory.

CP/M

free
memory /

stack ------------ User’s stack, growing downward.

l l l l l l l l l l l l l l l l l l l l l l
-4 ------------ No-man’s-land.

l l l l l l l l l l l l l l l l l l l l l l

Assembly
language -----------  User’s program.

program
/

100

Zero page
/

0

Fig. 7-6. Location ot the user’s program and the stack.

PUSFles and not enough POPs). If we did that, then when we went back to 
DDT or CP/M , or whatever was managing the stack for us, there would be 
trouble because what it (DDT or CP/M ) was taking off the stack wouldn’t be 
what it thought there should be. Or, suppose we just put too many things on 
the stack for DDT or CP/M  to handle. Then, we’d probably overwrite that 
part of their program just under the stack, and bad trouble would result.

So, the moral of all this is to set up your own stack in your program and 
make it big enough to handle everything you ever want to put in it: two bytes 
for every PUSH, and two bytes for every call to a subroutine. When you start 
your program, save the old stack pointer, and when you exit from your pro
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gram, restore the stack pointer with this old value. This guarantees that 
CP/M  or DDT will find the stack just as it was when they passed control to 
your program, and they’ll be happy.

The SPHL Instruction

Several of the instructions that work on other 16-bit registers also work 
on the SP-register. For instance, “lxi sp,14ffh” will put the constant 14FF 
in the SP-register, and “dad sp” will add the contents of the stack pointer to 
the HL-register. However, to load something into the stack pointer, we 
need another instruction, which is “sphl” . As its name implies, this instruc
tion takes the 16-bit value from the HL-register, and puts it in the stack 
pointer.

Before SPHL is executed:

SP-register

After SPHL is executed:

SP-register HL-register

✓ y Z  ■ ■ A
BF00 / - * — BF00 /

Fig. 7-7. The SPHL instruction.

Examples:

sphl

In the WORDS program, we set up the local stack at the beginning of the 
progam (locations 100 to 107), by adding the contents of the stack pointer 
and storing them in “oldstack”, and then putting the address of the “top” of 
our own stack (“stktop”) into the stack pointer with an lxi instruction. Later, 
when we’re about to exit from our program (at location “alldone”), we 
restore the old stack pointer by getting it into the HL-register and transfer
ring it into the stack pointer with an “sphl” instruction.

This is good programming practice and should be followed in all but the
smallest programs. Don’t say we didn’t warn you.

HL-register

/
BF00
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Memory to Memory Data Transfers

It is sometimes necessary to transfer a block of data from one part of mem
ory to another. This involves looping repeatedly through a section of code 
which transfers a single byte. Since this can be a comparatively time-consum
ing process, even in an assembly language program, it’s important to make 
the routine that does the transfer as short and efficient as possible. There are 
various ways to do this, using different kinds of instructions. Here’s the tech
nique used in WORDS:

repea t  mov a,m ; g e t  by te  f rom source b lock
inx  h ; in c re m e n t  source p o i n t e r
s tax  d ; p u t  by te  in  d e s t i n a t i o n  b lock
in x  d ; i n c re m e n t  d e s t i n a t i o n  p o i n t e r
dc r  b ;decrement count-done ye t?
jn z  repea t  ; n o t  ye t

HL-register 
points to 
byte in this 
part of 
memory. —

Data to be 
transferred 
is in this section 
of memory.

Data is to be 
transferred 
to this section 
of memory.

41 /

1000

1001

1002

41

53 /
53

68 / 1003

1004

68

7F /
DE-register 
points to 
byte in this 
part of

7F

8B
/ 1005

9D
/ 1006

AO
/

/ I 20DA

/ 20DB

y \ 20DC

/ 20DD

/ 20DE

/ 20DF

/ 20 E0

/

Fig. 7-8. Memory to memory data transfers.

Fig. 7-8 is a pictorial idea of how the data is arranged in memory. At the 
point shown in the diagram, all the data bytes down to 7F have been trans
ferred.

Since all these instructions (except the “jnz repeat”) are only one byte, the 
routine is short and executes quickly. Of course, the correct values of the
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pointers to the source and destination blocks must be placed in HL and DE, 
and the correct value of the count must be placed in the B-register, before the 
“repeat” loop is executed.

The LDAX Instruction

You’re already familiar with the instructions that transfer 8-bit data to and 
from memory using the HL-register as a pointer. They’re “mov r,m” and 
“mov m,r”, where “r” stands for any of the 8-bit registers (a, b, c, d, and e), 
and “m” stands for the memory location contained in HL. Will this instruc
tion work with other registers besides HL? No, it won’t—that’s not something 
the 8080 likes to do. In order to use the DE or BC registers as pointers to 
memory, we have to use several other more limited instructions: “stax” and 
“ldax.” The limitation is that these instructions can transfer data only 
between memory and the A-register, rather than between memory and all the
8-bit registers as “mov” can. Otherwise, they’re quite similar.

The “ldax r” instruction loads the A-register with the byte in memory at 
the address pointed to by register “r”, where “r” stands for either the BC or 
the DE register, but not the HL register. (Of course, you will use 1-letter 
abbreviations for the registers: “b” for the BC-register, and “d” for the DE- 
register.)

Examples:

ldax b 
ldax d

The STAX Instruction

Similarly, “stax r” stores the contents of the A-register into memory at the 
location contained in register “r”, where “r” can be either the DE- or the BC- 
register.

Examples:

stax b 
stax d
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Before LDAX D is executed:

0100 

0101 

0102

0103

0104

l l i l l l l l l l l l l l l l l l l l  

l l l l l l l l l l l l l l l l l l l l

2010 

2011 

2012

After LDAX D is executed:

0100 

0101 

0102

0103

0104

//////////////////
l l l l l l l l l l l l l l l l l l

2010 

2011 

2012

/ /

/

6B
/

/

DE-register

/ /
/
/
/

12 /
/
/

/

/
6B

/

/

DE-register

2011

A-register

/ /

/

/

/
1A /

/

/

Section of 
memory 
containing 
program.

LDAX D

Section of 
memory where 
constant is 
stored.

Section of 
memory 
containing 
program.

■LDAX D

Section of 
memory where 
constant is 
stored.
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Before STAX B is executed:

0100 

0101 

0102

0103

0104

BC-register

2011

A-register

FA

/ /
/
/
/

10 /
/

/
////////////////////
////////////////////

/ 2010
/ 2011

2012
/

After STAX B is executed:

BC-register

Fig. 7-10. The STAX instruction.

Section of memory 
containing program.

STAX B

Section of memory 
where constant is 
stored.

Section of memory 
containing program.

STAX B

Section of memory 

where constant is 
stored.
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In setting up the DE register-pair at the beginning of the “putary” sub
routine, we used another instruction that you have not yet been introduced 
to.

The XCHG Instruction

It’s easy to take a 16-bit value from a memory register and put it in the 
HL-register; we use a “lhld” instruction. Unfortunately, there is no such 
instruction which will load a value from a memory location into the DE- 
register. If we knew when we were writing the program what value we 
wanted to load in, we could use an “lxi” instruction, but we don’t, since this 
value changes every time we load in a new file name. So how do we get a 
value from memory into the DE-register? We load it into the HL-register 
first, with an “lhld,” and then exchange the values of the HL and DE regis
ters with the “xchg” instruction. This instruction is used again, just after 
the repeat loop, to save the contents of the DE-register in memory location 
“pntrtab.”

Before XCHG is executed:

HL-register DE-register

After XCHG is executed:

HL-register DE-register

/ .......  y?---- ....... VI
BF00 / - * ------------ A123 [ /

Fig. 7-11. The XCHG instruction.

Example:

xchg

How WORDS Handles Wildcards

As we described earlier, the program first looks through the disk directory 
for all of the program names that match the name in the FCB. These names 
are then stored in an array, called “table.” This is accomplished in the section
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of the program called “Scan For File Names and Put in Array.” As you can 
see, the code to do this doesn’t look too different from the simple DDT pro
gram that we used to perform the same search “by hand” in the last section.

The actual transfer of the names to the array takes place in the subroutine 
“putary,” and makes use of the little memory-to-memory routine described 
earlier. After putting the file name in “table,” this part of the program then 
increments “nmcntr,” which holds the number of file names, and, then, goes 
back to look for another possible match.

Once all the file names have been transferred to “table,” the program then 
goes on to its second phase, that of reading the individual files one at a time 
and counting the number of words in each one. This is done in a short section 
of code called “Count Number of Words in File.” All this section does is 
keep track of how many files have been counted, using the “nmcntr” varia
ble. Once they’ve all been counted, it restores the old stack pointer and 
returns to CP/M  in “alldone.”

The real work of counting the number of words in each file is performed by 
the subroutine “wcount.” This subroutine starts by displaying the file name 
and opening the file. The rest of the routine consists mostly of two nested 
loops: (1) the outer one, “loop,” reads a new record every time it is entered, 
while (2) the inner one, “loop2,” examines a new character each time it is 
entered.

We use a 1-byte variable called “status” to keep track of whether we’re in 
the middle of a word, in which case “status” is set to 0, or in the middle of a 
group of spaces, in which case “status” is set to 1.

Depending on what the character is that we’ve read, and what “status” is 
set to, we do different things. If the character is a space, or a carriage return, 
or a linefeed, then “status” is set to a 1. If the character is not any of these 
things, then we assume it’s part of a word and either one of two things may 
happen. If “status” is a 0 (meaning that the last character was a nonspace 
character and, thus, we’re already in the middle of a word), no action is 
taken. If, on the other hand, “status” is set to a 1 (meaning that the last 
character was a space), then, first, the word count is incremented, and sec
ond, “status” is set back to 0. Thus, every time we change from a space to a 
nonspace character, we count one word.

Subroutines in W ORDS

If you played with the BINIDEC routine earlier in the book, you’ll notice 
that it’s somewhat different here. We’ve added a refinement; it no longer 
prints out leading zeros. It accomplishes this by using the B-register as a
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status flag to keep track of whether or not a nonzero character has been 
encountered in the process of printing the decimal number. If so, then the B- 
register is set to 1, otherwise it’s 0. If the routine is about to print a zero, it 
first checks to see if the B-register is 0. If so, it doesn’t print anything, but 
goes on to calculate the next digit.

The “ourprn” subroutine simply prints out a string of characters on the 
string, starting with the character at the address in the HL-register. This is 
useful for printing out the names of the files; they aren’t terminated with 
dollar signs, so we can’t use the Print String system call.

The “condis” and “crlf” subroutines should be self-explanatory; in the 
interest of making them look more compact, they have been written with a 
lot of ! signs.

It’s All Over but the Cheering

That about takes care of our description of the WORDS program, which is 
the longest we’re going to try to cover in this book. If it isn’t all clear to you 
right away, keep working on small sections of the program. One of the best 
ways to try to understand a long program is to sit down and imagine how you 
would try to write a particular section of it yourself. Then, compare your 
code with the program. They may be surprisingly similar, in which case, 
you’ll immediately understand what that part of the program is supposed to 
do. And, if they don’t look the same, then, at least you’ll have defined the 
problem to yourself and, in comparing the differences, you’ll learn something 
new about programming.

In the next chapter, we’re going to turn to something different: how to 
interface assembly language routines with higher-level language programs.
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CHAPTER 8

Teamwork
Using Systems Calls From BASIC

Besides being called from assembly language routines, the system calls that 
we’ve described in the preceding chapters can also be called from higher-level 
languages such as BASIC, Pascal, and FORTRAN. (They can even be called 
from programs such as dBASE II™, a data-base program with a built-in pro
cedure for interfacing with machine-language routines.) When called in this 
way from higher-level languages, the system calls are usually part of a short 
assembly language routine which performs a specific function that is difficult 
or time-consuming to accomplish in the higher-level language.

This chapter describes how to to call assembly-language routines from 
within a BASIC program. Although BASIC is used in the examples, many of 
the techniques described are applicable to other high-level languages as well.

There are four main questions that must be answered in order to connect 
an assembly language routine to a BASIC program.

These are:

1. Where do we put the assembly language program in memory?
2. How do we get it there?
3. How do we transfer control between BASIC and the assembly lan

guage routine?
4. How do we pass arguments (data) between BASIC and the assembly 

language routine?

dBA SE II is a trademark of A shton-T ate, Inc.
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We’re going to start off by describing the four questions that are raised 
above and, then, we will use an example program to illustrate one possible set 
of answers (the simplest one). Don’t worry if all the details don’t seem com
pletely clear while you’re reading about the four problems. Things will 
straighten themselves out when we get to the example. In fact, you might 
want to glance forward at the example program (which is called BINIHEX2) 
from time to time as you’re reading about the four problems—just to keep 
yourself grounded in reality.

Once we’ve everything working in the simplest possible way, we’ll go back 
and, using different approaches and examples, explore some of the more 
complicated alternative solutions to the problems. Before we start, let’s agree 
on a convention: “assembly language” will be abbreviated to “A-L” in the 
rest of this chapter. This will save a lot of writing for us, and a lot of eyestrain 
for you.

WHERE DO WE PUT THE A-L PROGRAM IN MEMORY?

When there’s only one program in memory, there’s usually no problem 
about where to put it. A-L programs always go at 100 hex, and BASIC pro-
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grams go wherever the BASIC interpreter puts them, growing upward from 
itself. Fig. 8-1 shows what that looks like with an A-L program.

The CCP need not be in memory when a program is running, so it can be 
overwritten. That is, A-L programs may extend all the way up to the bottom 
of BDOS, an address called FBASE. We’ll say more about FBASE later.

The BASIC interpreter always uses the CCP area. Fig. 8-2 shows how 
memory looks when BASIC is loaded.

Notice how the user’s program grows upward into free memory, while the 
BASIC stack grows downward to meet it. This means that we never know 
exactly where the space in between the two is going to be. It can get gobbled 
up by the program or by the stack and only the BASIC interpreter knows 
when that’s going to happen. So this area doesn’t look like a good place to try 
to put an A-L routine. Where else could it go?

The way BASIC handles this is by providing a way to “protect” a section 
of memory above the stack. This is usually accomplished when BASIC is first 
loaded, by specifying a memory address in the load command string. For 
instance, if we loaded our particular BASIC interpreter, MBASIC5, with the 
following command,

A>mbasic5 /m:a000

then, mbasic would start its stack at A000 hex, and would let it grow down
ward from there. Thus, the memory between A000 and FBASE (the bottom 
of BDOS) would be available for our A-L program.

Let's see how this “protected” memory looks. It is illustrated by the dia
gram in Fig. 8-3. So if we put our A-L program at A000 hex, we know it will 
be safe and happy, provided, of course, that there is enough room for it 
between A000 and the bottom of BDOS (FBASE).

Anyway, that is the way things should be. The way they really are, however, 
is more complicated. This is because (at least, in this first and simplest 
approach) we have to load our A-L routine using DDT and, thus, it must f i t  
below DDT.

Why do we have to load it using DDT? That’s a long story and we’ll get to 
it in the next section. For the time being, let’s see what memory looks like 
with DDT loaded. This is shown in Fig. 8-4.

The question, then, is, where is the bottom of DDT? If we know this 
address, which we’ll call DBASE, then we can assemble our A-L program so 
that it lies just below it.

Finding out exactly where DBASE is may not be easy. However, the fol
lowing table shows the approximate addresses for various sized systems.
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z:
BIOS

/
BDOS

CCP

//////////////////
User’s

A-L
Program

Zero Page

Top of memory.

FBASE

CBASE

0100 hex 

0000 hex

• Can be over-written 
if more space is 
needed.

Fig. 8-1. Location of assembly language program in memory.

/ .. /
BIOS

BDOS
/ FBASE

Stack

/ / / / / / / / / / / / / / / / / /

/ / / / / / / / / / / / / / / / / /
User’s
BASIC

Program /
BASIC

Interpreter 0100 hex

Zero Page
/

0000 hex

Fig. 8-2. Location of BASIC interpreter in memory.

z :
BIOS

BDOS

Stack

//////////////////
//////////////////

User’s
BASIC

Program

BASIC
Interpreter

Zero Page

/

Top of memory.

- A-L routine can go here.

A000

Address specified 
in BASIC load command.

0100 hex 

0000 hex

Fig. 8-3. A “ protected” memory area for the assembly language subroutine.
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Top of memory.

FBASE

DBASE •* ------ What’s this address?

0100 hex 

0000 hex

Fig. 8-4. Memory with DDT loaded in.

Although these addresses may vary somewhat from one version of CP/M  to 
another, they will be good enough if you make sure that your A-L routines 
leave some space as a fudge-factor between themselves and DBASE.

System Size

DBASE (bottom of DDT)

There’s another way to figure out where DBASE is. Load DDT, and use it 
to look at itself! You should begin by turning off your system and then pow
ering it up again, to ensure that all unused memory is filled with zeros. Then, 
load DDT and use the “d” command to look in high memory, somewhere 
around the addresses given in the preceding table. Below a certain point, 
memory will be filled with all zeros (or sometimes FFs, depending on your 
system). Above that point, it will be filled with the hex code of the DDT 
program. You should be able to find this point by trial and error. When you 
do, you’ve found DBASE.

So now, you know where to put your A-L routine in memory: just below 
the address that you’ve found for DBASE. Or even a good bit below, if mem
ory space is not critical. (It won’t be in our short demonstration programs.)

There is, of course, a problem with this approach. Since we are using 
DDT to load the A-L program, we have to put it lower in memory than we

32K 48 K 56K 64K

5400 9400 B400 D400

BIOS 

BDOS 

DDT 

A-L Routine

/

/

/

/
Stack

l l l l l l l l l l l l l l l l l l
l l l l l l l l l l l l l l l l l l  

User’s 
BASIC 

Program y

BASIC
Interpreter

Zero Page
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want to. Although this isn’t a problem with our example programs, it could 
certainly become an inconvenience if we were using a very long BASIC pro
gram that needed all the space it could get. Normally, we can load pro
grams all the way up to FBASE (the bottom of BDOS), but now, we can 
only load as far as DBASE, the bottom of DDT. Later, we’ll look at ways to 
avoid this problem.

HOW TO GET THE A-L PROGRAM WHERE WE WANT IT 
TO GO

Suppose we write our A-L routine with our word processor in the usual 
way, assemble it with ASM, create the COM file with LOAD, and then put 
the routine into memory simply by calling it from C P/M  as with any other 
COM-file program. What will happen? Well, it turns out that the LOAD 
program only wants to create COM files for programs that start at 100 hex. 
This is an unfortunate limitation, but that’s the way it is. So if we specify 
ORG to be someplace in high memory, say A000, the routine will assemble 
properly, but LOAD will not be able to digest it and error messages will 
ensue.

What to do? This is where DDT comes in. It turns out that DDT, bless its 
little heart, will load a HEX file anywhere that we want, in either high mem
ory or low. All we have to do is say:

A>asm te s tp ro g  Assemble the program.
A>ddt t e s tp r o g .h e x  Load resulting HEX file with DDT.
-g0 Back to CP/M.
A>

Now, we can go on and load BASIC, with the proper memory limit, and 
we’re on our way. We’ll see exactly how this is done when we get to our 
example program.

HOW DO WE TRANSFER CONTROL BETWEEN BASIC 
AND THE A-L ROUTINE?

There are two parts to this question: getting from BASIC to the A-L rou
tine, and getting back.
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Getting From BASIC to the A-L Routine

We tell BASIC where the A-L routine is located in memory with the 
DEFUSR statement:

20 DEF USR1 = &HA000

This statement appears only once, at the beginning of the program. From 
it, BASIC knows that every time the routine “USR1” is called, BASIC should 
transfer control to location A000. (The “&H” specifies that the address which 
follows will be in hexadecimal.)

To actually go to this routine, we execute a BASIC statement like:

50 D=USR1( A)

This statement could take a wide variety of forms. In fact, whenever “USR1” 
appears in the program, BASIC will transfer control to the A-L routine at 
A000.

Getting Back to BASIC From the A-L Routine.

Going this way is much easier. All we have to do in the A-L routine is a 
“ret” and, presto, we’re back in BASIC.

HOW DO WE PASS ARGUMENTS BETWEEN BASIC AND 
THE A-L ROUTINE?

One of the unfortunate limitations of BASIC is that only one argument can 
be passed from BASIC to the A-L routine, and only one argument can be 
returned. (There are ways around this problem, but they can be somewhat 
complicated.) Take the BASIC statement:

B = USRKA)

The variable A is the argument that is passed from  BASIC to the A-L 
routine. From the viewpoint of the BASIC program, passing the value of the 
variable A is automatic. When this statement is executed, the BASIC inter
preter makes sure that this value is passed to the A-L routine.

The variable B is the argument that is returned to BASIC from the A-L 
routine. Again, from the viewpoint of the BASIC program, the procedure is
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automatic. Once the statement has been executed, B will have whatever value 
was returned by the A-L routine, and BASIC can make use of the value in 
subsequent statements. So it’s fairly straightforward to deal with these argu
ments in the BASIC program. But what does the A-L routine have to do first, 
to find out what the value of A is and, second, to pass the value of B back to

BASIC keeps a set of memory locations deep in its innards that are called 
the “Floating Point Accumulator,” or FAC. These locations are used to pass 
arguments back and forth between BASIC and the A-L routine. Either 2, 4, 
or 8 of these locations are used to hold the argument, depending on its varia
ble type. For integer variables, which are two bytes long in BASIC, two of the 
locations are used, as shown in Fig. 8-5:

If we assume that the BASIC variable “A” is an integer, then, when the 
statement “USR1(A)” is executed in the BASIC program, BASIC will auto
matically put the the value of A into the FAC. When control passes from 
BASIC to the A-L routine, BASIC makes sure that the HL-register contains 
the address of FAC-3. Thus, at the beginning of the A-L routine, all you have 
to do is get the variables out of the FAC using the address of FAC-3 in the 
HL-register.

An added nuance here, which we won’t make use of but which could come 
in handy in some situations, is that the A-register holds a number which tells 
you what kind of variable is in the FAC:

2 = integer
3 = string
4 = single-precision floating point
8 = double-precision floating point

BASIC?

z 71 higher
memoryFAC

FAC-1

FAC-2 hi-order byte integer
variable

FAC-3 lo-order byte V
Fig. 8-5. The Floating Pointer Accumulator.
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So, if your A-L routine doesn’t know what kind of variable to expect, it can 
find out by looking at the A-register. (Note that these numbers also tell the 
number of bytes in the variable.)

In the example that follows, we’re going to describe how integers are 
passed to the A-L routine and, later in the chapter, we’ll show how strings are 
communicated. We won’t cover floating point variables since these can vary 
from one version of BASIC to another, but the principles involved are much 
the same.

How do we pass a variable to BASIC when we return from the A-L rou
tine? The same way: we put it into the FAC. There’s no need to put anything 
in the HL-register since BASIC already knows where the FAC is. The value 
returned by the A-L routine should be of the same type (integer, string, etc.) 
as the value that was passed to it.

BINIHEX2—A-L ROUTINE CALLED FROM BASIC

You should recognize the name of this program; you’ve seen it before in 
the chapter on console system calls. We’re going to take this same program 
and modify it to work with BASIC. That is, we’ll give BASIC the responsibil
ity for getting the decimal number from the user and converting it to binary 
(it does this automatically). All that our A-L routine will have to do is print 
out the binary number in hex digits.

This is actually a handy little routine since many versions of BASIC don’t 
have a way to print out variables in hex format. Here’s the BASIC program:

10 DEFINT A-Z 
20 DEF USR1=&HA000 
30 INPUT"deci ma I number";  A 
40 PRINT"hex e q u i v a le n t  i s :
50 D=USR1( A)
60 PRINT: PRINT 
70 GOTO 30

We’ll assume that you’re familiar enough with BASIC to follow what’s 
happening here.

We define the entry address of our USR1 routine to be A000 because we 
know this is well below the bottom of DDT (DBASE), which is at B400 in 
our 56K system. (This will be different on different-sized systems. See the 
preceding discussion on where to put the A-L routine.) We could have placed
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0001
0002
0005
000A

A000

A000
A001
A002
A003

A004
A005
A008
A009
AOOC
AOOD
A010
A011
A014

it closer to DBASE, but there’s plenty of room in memory for these short 
example programs, so we don’t have to be too precise. With larger programs, 
it would be wise to assemble the A-L routine first, examine the PRN file to 
see how long it is, and then ORG it so that the end of the A-L routine fits just 
below DBASE.

For simplicity, we define all variables in the BASIC program to be inte
gers, using the DEFINT statement. The integer variable A is passed to the 
USR1 routine, which is the BINIHEX2 program (Listing 8-1).

Listing 8-1. The BINIHEX2 Program
• •k'k'k'k'k'k'k'kick'k-k'k'k'k'k'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'kic-k'k'k'kic'k'k'k'k'k'k'k'k'k-k'k

;BINIHEX2-Converts b in a r y  to  hex, p r i n t s  i t  out  
;  ( t o  be c a l l e d  f rom BASIC program)

= coni n equ 1 h
= conout equ 2h
s bdos equ 5h
= I f equ Oah

f
org 0a000h

r
; t r a ns f e r  i n te ger f rom FAC to h i reg i s t e r
;  (on e n t r y  h i  ho lds  p o i n t e r to l o - o rde r

5E mov e,m ; p u t  lo - b y t e i n e
23 i nx h ;bump the poi nte r
56 mov d,m ; p u t  hi - b y t e i n d
EB xchg ; p u t  de i n h i

co nve r t  b in a r y  to  hex and p r i n t  i t  ou t  
(on e n t r y  h i  ho lds  the b in a r y  i n t e g e r )

7C mov a ,h  ; p u t  h i n  a ( f i r s t  d i g i t )
CD15A0 c a l l  p r i n t l  ;  p r i n t  l e f t - h a n d  d i g i t
7C mov a,h ; p u t  h i n  a (second d i g i t )
CD19A0 c a l l  p r i n t 2  ;  p r i n t  r i g h t - h a n d  d i g i t
7D mov a , I  ; p u t  I i n  a ( t h i r d  d i g i t )
CD15A0 c a l l  p r i n t l  ;  p r i n t  l e f t - h a n d  d i g i t
7D mov a , I  ; p u t  I i n  a ( f o u r t h  d i g i t )
CD19A0 c a l l p r i n t 2  ;  p r i n t  r i g h t - h a n d  d i g i t
C9 r e t  ; e x i t  b in ih e x

p r i n t  c o n t e n t s  of a
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A015
A019
A01B
A01D
A01F
A022
A024
A027

A028
A029
A02A
A02C
A02F
A030

A031

07070707 p r i n t l  r l c  ! r l c  ! r l c  ! r l c  ;move high 4 b i t s  to  Low
E60F p r i n t 2  ani  Ofh ; g e t  r i d  o f  h igh  4 b i t s
C630 adi  30h ;change hex to  ASCII
FE3A cpi  3ah ; i f  more than 9
DA24A0 j c  n o tb ig  ;  ( i t ' s  n o t )
C607 adi  7h ;  then add b ia s  (10=A, e t c . )
CD28A0 n o tb ig  c a l l  pchar ; p r i n t  d i g i t
C9 r e t

/
; s u b r o u t i n e  to  p r i n t  c h a r a c te r  i n  a - reg  out  on screen

E5 pchar push h ;save  h i  (conou t  uses i t )
5F mov e ,a  ; p r i n t  hex d i g i t
0E02 mvi c ,cono u t
CD0500 c a l l  bdos
E1 pop h ; g e t  h i  back
C9 r e t

end

We ORG the program just where we want it to go, at A000. The first thing 
that the program does is get the value of the integer A out of the FAC. Since 
HL is pointing to FAC-3, the “mov e,m” instruction will put the low-order 
(least significant) byte of A into the E-register. Incrementing HL causes it to 
point next to FAC-2, so “mov d,m” will put the high-order byte of A into the 
D-register. The complete integer is now in DE, and we swap it into HL with 
the “xchg” instruction so that we can process it in the way we did before in 
BINIHEX.

After printing out the four hex digits from HL, we return to BASIC with a 
“ret” instruction. In this case, there is no argument passed back to BASIC. 
The “D ” in the expression D = USR1(A) in line 50 is a “dummy” argument, 
meaning that it’s not used but must be there for the sake of form.

Want to try all this out? Here’s how to do it. You should have a disk that 
contains the BASIC interpreter, the ASM assembler, your text editor, and 
DDT.

1. Type in the BASIC program and save it on your disk as 
“BINTEST.BAS”. (Remember not to use lowercase letters in the 
names of BASIC programs.)

2. Type in BINIHEX2 using your word-processing program and save it 
on your disk as “binihex2.asm”.
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3. Assemble it by typing:

A > asm  binihex2

4. Use DDT to load the HEX version of the program by typing:

A > d d t binihex2.hex

5. Return from DDT with a “-gO”.
6. Load the BASIC interpreter and, at the same time, protect the neces

sary space in high memory by typing:

A>m basic5 /m:&ha000

(Of course, the “aOOO” will vary, depending on your system.)
7. In BASIC, load your program back from the disk by typing:

Ok (BASIC prompt)
load “BINTEST” (or “BINTEST.BAS”)

8. Type “run” and see if it works!

You should be able convert from decimal to hex just as you did in the 
DECIHEX program.

The BINIHEX2 routine can be used in any BASIC program you like. 
You’ll probably be able to think of all sorts of situations where it might come 
in handy. You could, for instance, explore some of the inner workings of 
BASIC by using BINIHEX2 to print out the addresses of variables, and then 
using PEEKs and BINIHEX2 to print out their contents in hex. (For more 
on this, see the VARPTR function in your BASIC book.)

Now that you have an idea of what’s involved in linking an assembly lan
guage routine to BASIC, we’re going to go back and explore some alternative 
ways of doing things.

OTHER WAYS TO PUT THE A-L ROUTINE INTO MEMORY

Maybe you think it’s not elegant to use DDT to load the A-L routine, or 
maybe you don’t want to keep DDT on your disk just to load a small A-L 
routine to work with BASIC. Is there a way to get the A-L routine into mem
ory without using DDT? Yes, more than one. They each have their draw
backs.
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Using LOAD in High Memory

Here’s a way that doesn’t work very well, although it sounds reasonable 
enough at first.

The idea is this. Since LOAD only works with programs that start at 100 
hex, why not simply ORG our routine at lOOh and then start the program off 
with “filler”—a “ds” directive that will insert enough bytes to move the pro
gram up to where we want it to be. For instance, if we have to ORG it at 
lOOh, but we really want it to be at aOOO, we can change the program like 
this:

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

BINIHEX2-Converts b in a r y  to  hex,  p r i n t s  i t  out  
( t o  be c a l l e d  f rom BASIC program)

0001 = conin equ 1 h
0002 = conout equ 2h
0005 = bdos equ 5h
000A = I f equ Oah

0100 org 01 OOh

0100 ds 9f00h9fOOh ; 10Oh + 9f00h = aOOOh

; t r a n s f e r  i n t e g e r  f rom FAC to  h i  r e g i s t e r  
;  (on e n t r y  h i  ho lds  p o i n t e r  to  l o - o r d e r  by te  i n  FAC)

A000 5E 
A001 23 
A002 56 
A003 EB

mov e,m 
i nx h 
mov d,m 
xchg

; p u t  l o - b y t e  in  e 
;bump the p o i n t e r  
; p u t  h i - b y t e  i n  d 
; p u t  de i n  h I

Well, that looks just fine. We can assemble the program with ASM, and 
that’s fine too. However, when we use LOAD, we get our first clue that all is 
not well.
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A>load b in ih e x 2

FIRST ADDRESS AOOO 
LAST ADDRESS A030 
BYTES READ 0031 
RECORDS WRITTEN 3F

“Records written 3F”? That’s an awful lot of records! If we use STAT on 
“binihex2.com’’, we see that it’s occupying 40K bytes on the disk. Terrific. 
LOAD has actually stored all the meaningless bytes between lOOh and aOOOh 
in the file.

So this scheme doesn’t seem so good. It works, but even a few such small 
routines will quickly fill up our disk. There must be a better way.

Moving the A-L Routine After Loading

Let’s think about another way to get the A-L routine where we want it. 
Why can’t we assemble it at 100 hex, like any other program, and then just 
take all the bytes of the program and move them up to high memory where 
we want them? We could use the code segment, which we discussed in the 
last chapter, for moving the contents of a block of memory to another loca
tion.

Sounds good. The trouble is that if you move a program to a different 
place in memory, all of the “memory reference” instructions in the program 
will be wrong. Memory reference instructions are those that refer to partic
ular addresses (like “jm p” and “call”) which jum p to a specific memory 
location. For instance, in BINIHEX2, the instruction at location A005 
which is “call p rin tl”) should be CD15A0, since it wants to jum p to a sub
routine at location A015. But, if we assemble BINIHEX2 at lOOh, this 
instruction will become CD 1501, which is a “call” to a subroutine at loca
tion 0115, not A015.

What we need, then, is a way to fool the assembler into thinking that 
things are up in high memory when, in fact, they’re just down in the program, 
which starts at lOOh. This way, when we move the program up to high mem
ory, the instructions will say the right thing (“call p rin tl” will be CD 15A0, 
and so on).

So, how do we fool the assembler? Very cleverly! But to understand it, you 
need to know what the dollar-sign symbol means to the assembler.
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The Label

When the “$” symbol is used in the address field of an instruction, it takes 
on the value of the current program line. For example, suppose you have the 
following section of code:

;end o f  main p a r t  o f  program
$

0111 C D1501 c a l l  p r i n t
0114 C9 r e t

/
; s t a r t  o f  s u b r o u t in e  p r i n t  
/

0115 7C p r i n t  mov a,h

All this shows is a program fragment that calls a subroutine and the begin
ning of the subroutine, “print” . Nothing unusual here. Now, let’s write it 
slightly differently.

;end o f  main p a r t  o f  program

0111 C D1501 c a l l  p r i n t
0114 C9 r e t

; s t a r t  o f  s u b r o u t in e  p r i n t  
/

0115 p r i n t  equ $
0115 7C mov a,h
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By using the $ symbol and an EQU directive, we’ve given “print” the value 
0015, because that is the memory location at this point in the program. Sub
sequent “CALLs” to print will go to location 0015, just as they would have if 
it were simply used to label the line as in the first code fragment.

So how can we use the dollar sign? Well, we can now modify the value that 
the assembler gives to a label; whereas before, it could only have the value of 
the line it was on. And this suggests a solution to our problem; that is, a way to 
have instructions occupy one place in memory while they refer to some place 
else. Since the label “print” is given its value with an EQU directive, we can 
change that value by doing arithmetic on the operand field that contains the 
“$”. For instance, we could change the “equ” line in the above example to:

;end o f  main p a r t  o f  program 
f

0111 CD1503 c a l l  p r i n t
0114 C9 r e t

A
; s t a r t  o f  s u b r o u t in e  p r i n t  
f

0315 p r i n t  equ $ + 200h
0115 7C mov a,h

This would give “print” the value of 0315h, or $ + 200h. And look at this: 
the “call print” instruction changes so as to refer to address 0315, even 
though the the “print” subroutine is still located at 0115. (Remember that the 
high and low bytes appear in reverse order in 8080 language, so that CD 1503 
means a “jm p” to 0315.)

In our situation, we need to move our routine from some place around 
lOOh, in low memory, to some place up around AOOOh (or whatever address is 
appropriate to your system) in high memory. To do this, we need to come up 
with a number that’s the difference between lOOh and AOOOh. Actually, we 
don’t need to do the calculation. We can let the assembler do it for us.
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0111 CD15A0 
0114 C9

;end o f  main p a r t  o f  program 
f

c a l l  p r i n t
r e t

f
; s t a r t  o f  s u b r o u t in e  p r i n t

A015 
0115 7C

p r i n t  equ 
mov

$ + (OaOOOh -  10Oh) 
a,h

AOOOh minus lOOh is 9F00, and adding 115 gives A015h, which is just 
where we want “print” to go when we move the program to high memory.

To summarize: we’re going to do two things. First, we will assemble and 
load our program at lOOh, but move all its bytes up to where we want them in 
high memory, after the program has been loaded. Second, we will change all 
the labels in the program so that they will have the correct values for their 
new locations in high memory.

Let’s see how BINIHEX2 looks when we make these changes. We’ll call 
the result BINIHEX3 (Listing 8-2).

Listing 8-2. BINIHEX3 Program
;  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;BINIHEX3-Converts b in a r y  to  hex and p r i n t s  i t  out  
;  ( t o  be c a l l e d  f rom BASIC program) .

0001 = 

0002 = 

0005 = 
000A =

conin  equ 1h 
conout  equ 2h 
bdos equ 5h 
I f  equ Oah

A000 = d e s t i n  equ OaOOOh ;where the r o u t i n e  w i 11 go

0 1 0 0 org 100h
/
; r o u t i n e  to m o v e  r e s t  o f  p r o g r a m  to h i g h  m e m o r y
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0100 013200 l x i b ,e nd i  ng - s t a r t + 1 ; n b r  o f  by tes  to  move
0103 111401 l x i d , s t a r t ;where they come from
0106 2100A0 l x i h , d e s t i  n ;where t h e y ' r e  going
0109 1A movem ldax d ; g e t  by te
010A 13 i nx d ; in c re m e n t  p o i n t e r
01 OB 77 mov m,a ; s t o r e  byte
010C 23 i nx h ; in c re m e n t  p o i n t e r
010D OB dcx b ;decrement  count
01OE 78 mov a,b ;b o th  B and C must be 0
01 OF B1 ora c ;  so OR them to  see
0110 C20901 jnz movem ;o t h e r w i s e  not  done
0113 C9 r e t ; r e t u r n  to  CP/M a f t e r  move

0114 = s t a r t equ $

9EEC =
A
o f f s e t equ d e s t i n - s t a r t
A
; t r a n s f e r  i n t e g e r  from FAC to  h i  r e g i s t e r
;  (on e n t r y  h i  ho lds  p o i n t e r  to l o - o r d e r  by te  i n  FAC)

0114 5E mov e,m ; p u t  l o - b y t e  i n  e
0115 23 i nx h ;bump the poi  n te r
0116 56 mov d,m ; p u t  h i - b y t e  i n  d
0117 EB xchg ; p u t  de in  h I

W
; c o n v e r t  b in a r y  to  hex and p r i n t  i t  ou t
;  (on e n t r y  h i  ho lds  the b in a r y  i n t e g e r )

0118 7C mov a,h ; p u t  h in  a ( f i r s t  d i g i t )
0119 CD15A0 ca 11 p r i n t l ;  p r i n t  l e f t - h a n d  d i g i t
011C 7C mov a,h ; p u t  h in  a (second d i g i t )
011D CD19A0 ca l  I pr  i n t2 ;  p r i n t  r i g h t - h a n d  d i g i t
0120 7D mov a , I ; p u t  I i n  a ( t h i r d  d i g i t )
0121 CD15A0 c a l l p r i n t l ;  p r i n t  l e f t - h a n d  d i g i t
0124 7D mov a , I ; p u t  I i n  a ( f o u r t h  d i g i t )
0125 CD19A0 c a l l p r i  n t2 ;  p r i n t  r i g h t - h a n d  d i g i t
0128 C9 r e t ; e x i  t  b i n i  hex

/
; s h i f t i f  necessary ,  and change to  ASCII

A015 = p r i n t l equ $ + o f f s e t
0128 7070707 r l c ! r l c ! r l c ! r l c ;move high 4 b i t s  to  low
A019 = p r i  nt2 equ $ + o f f s e t
01 2D E60F ani Of h ; g e t  r i d  o f  h igh 4 b i t s
012 F C630 adi 30h ;change hex to  ASCII
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0131 FE3A cpi 3ah
0133 DA24A0 j c n o tb i  g
0136 C607 adi 7h
A024 = n o tb ig  equ $ + o f f s e t
0138 CD28A0 ca 11 pchar
013B C9 r e t

/ s u b r o u t i n e  to  p r i n t  c

A028 = pchar equ $+o f  f  s e t
013C E5 push h
013D 5F mov e,a
013E 0E02 mvi c ,conou t
0140 CD0500 c a l l bdos
0143 E1 pop h
0144 C9 r e t

0145 =
w
ending equ $

0145 end 10Oh

; i f  more than 9 
;  ( i t 1 s n o t )
;  then add b ia s  (10=A, e t c . )  

; p r i n t  d i g i  t

r a c t e r  in  a - reg  out  on screen

;save  h i  (conou t  uses i t )  
; p r i n t  hex d i g i  t

; g e t  h i  back 

/ s t a r t i n g  address

The program now has two parts. The first part is the transfer routine, 
whose sole job is to move the rest of the program up to high memory. This is 
a fairly straightforward loop, which moves all the bytes between “start” and 
“ending” to the block in high memory that starts with the location “destin” 
(for “destination”). When we’re done with the transfer, we go back to CP/M  
with a “ret” .

Notice how all the labels in the main part of the program have been given 
new values with the “equ $ + offset” statement. If you look at the assembled 
hex code, you’ll see that all the jumps and calls go to the appropriate loca
tions in high memory.

Here’s how we use this version of the program:

1. Type in BINIHEX3, assemble it with ASM, and create a COM file 
version with LOAD. LOAD will not generate an enormous file 
because the program doesn’t occupy any space in high memory—yet.

2. From CP/M , simply type:

A >binihex3

This will load the program  into memory, where it will then move itself
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up to high memory. (The “move” part of the program will be left 
behind, but we don’t care.)

3. Load BASIC the same way as before:

A>m basic5 /m:&ha000

4. From BASIC, load the BINTEST program:

Ok
load “BINTEST”

5. Type “run,” and watch it go!

Unfortunately, as you will have noticed, this approach also has a glaring 
defect. Because we need to use the CCP part of C P/M  to load BASIC after 
we have loaded the A-L routine, we can’t locate the A-L routine just under 
FBASE (the bottom of BDOS) where we would like to. We must put it below 
CBASE, the bottom of the CCP. This loses us about 800 hex bytes of mem
ory. Too bad.

POKEing the A-L Routine Into Memory From BASIC

Our next attempt to put the A-L routine in memory is time-consuming to 
set up, but it has a major advantage. We can overwrite the part of the mem
ory used by the CCP. Since the CCP occupies about 800 hex (2048 decimal) 
bytes, this can offer a substantial saving in memory space.

But where is FBASE? Let’s summarize where the major parts of the CP/M  
system are stored in various sized systems:

System Size 32K 48K 56K 64K
FBASE (BDOS) 6400 A400 C400 E400
CBASE (CCP) 5 C00 9C00 BC00 DC00
DBASE (DDT) 5400 9400 B400 D400

Again, remember that these values are approximate. Any modifications 
made to the C P/M  system will cause the locations to change. For instance, if 
your BIOS has been modified, it may be larger than standard-sometim es, as 
much as several-K larger. Treat this table with skepticism.

There is, however, a very exact way to find out where FBASE (the starting 
address of BDOS) is on your system. It’s the address stored in locations 6
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and 7 of memory. Remember how, when you do a “call bdos”, you’re doing a 
“call 5”? Well, the instruction at location 5 is a jum p to the beginning of 
BDOS, so the two bytes following the C3 in location 5 are the address to be 
jumped to. The problem is, how do you examine these bytes?

The first idea that probably occurs to you is to look at them with the “d” 
instruction of DDT. Sorry, no cigar. When DDT is loaded, it changes the 
address in this location so that it can intercept calls to BDOS and, thus, keep 
control of the calling program. So, looking with DDT won’t help.

But, listen! The distant sound of trumpets! It’s HEXDUM P to the rescue! 
The name may not sound too romantic, but the program is really somewhat 
dashing. You’ll find it in Appendix B, and what it does is to let you do a 
DDT-like dump on any 128-byte section of memory, without using DDT. 
Type it in, assemble and load it, and fool around with it a little. It’s a useful 
little program.

Now, use it to dump page 0. That is, after the program loads, type 0 and a 
carriage return:

A>hexdump
0

You’ll see something like this:

,------------------------------ This is a “jmp” instruction.

I ^ ------------------- This is the start of BDOS address C406.

0000 C3 03 D2 94 00 C3 '06* C4 23 AF 23 36 40 23 77 23
0010 36 01 11 80 BB D5 C1 F1 AF 32 81 00 CD 06 E0 F5

(and so on)

The contents of locations 6 and 7 contain 06 and C4, so we know our 
BDOS starts at C406, and we know that we can locate our A-L program any 
place below this address. Note that this address differs by almost 100 hex 
bytes from the one given in the table. (Again, these addresses may be differ
ent on your system.)

So, how do we go about POKEing an A-L routine in from BASIC? Let’s 
summarize the steps involved:

1. Assemble the A-L routine at the desired location in high memory (just 
below BDOS).
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2. Using the PRN file, write down the hex values of all the bytes in the 
routine.

3. Translate these hex values into decimal values. This is necessary 
because most BASIC languages only understand decimal. (If your lan
guage understands hex values that are preceded by “&h”, then you can 
skip this step.)

4. Add these decimal values to your BASIC program in the form of 
DATA statements and, also, add a few lines to read the data state
ments and POKE them into memory, at the same address where you 
assembled the routine.

Of course, the tedious part of this is in translating the hex values to deci
mal and typing them into your BASIC program by hand. However, it’s not so 
bad for short routines.

Now, we have the PRN listing (Listing 8-3) for our BINIHEX program, 
assembled at location C000 hex. We’ve chosen this location because, on our 
56K system, FBASE (the bottom of BDOS) is at C406. We thus have more 
than 400 hex bytes to put our program in, which is plenty. Actually we could 
have used an ORG of C3D5, since the routine is only 30 hex bytes long 
(C3D5 + 30 = C405), but that would be cutting it a little close if we ever 
wanted to add a line or two to the routine.

Listing 8-3. PRN Listing for the BINIHEX Program
• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
;BINIHEX4-Converts  b in a r y  to  hex,  p r i n t s  i t  o u t .
; To be c a l l e d  f rom BASIC program.
;  Vers io n  to  be POKEd in  f rom BASIC.
f
con in  equ 1h 
conout  equ 2h 
bdos equ 5h 
I f  equ Oah 
f

org OcOOOh ;goes on top o f  CCP

; t r a n s f e r  i n t e g e r  f rom FAC to  h i  r e g i s t e r  
;  (on e n t r y  h i  ho lds p o i n t e r  to  l o - o r d e r  by te  in  FAC) 

mov e,m ; p u t  l o - b y t e  i n  e
inx  h ;bump the p o i n t e r
mov d,m ; p u t  h i - b y t e  in  d

0001 = 

0002 = 

0005 = 
000A =

C000

C000 5E 
C001 23 
C002 56
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C003 EB xchg ; p u t  de in  h i

; c o n v e r t  b in a r y  to  hex and p r i n t  i t  ou t  
;  (on e n t r y  h i  ho lds the b in a r y  i n t e g e r )

C004 7C mov a,h ; p u t  h i n  a ( f i r s t  d i g i t )
C005 CD15C0 c a l l p r i n t l ;  p r i n t  l e f t - h a n d  d i g i t
C008 7C mov a,h ; p u t  h in  a (second d i g i t )
C009 CD19C0 ca 11 p r i n t 2 ;  p r i n t  r i g h t - h a n d  d i g i t
COOC 7D mov a , I ; p u t  I i n  a ( t h i r d  d i g i t )
COOD CD15C0 ca 11 p r i n t l ;  p r i n t  l e f t - h a n d  d i g i t
C010 7D mov a , I ; p u t  l i n a  ( f o u r t h  d i g i t )
C011 CD19C0 ca 11 p r i n t 2 ;  p r i n t  r i g h t - h a n d  d i g i t
C014 C9 r e t ; e x i  t  b i  ni  hex

; p r i  n t co n ten ts  o f  a

C015 07070707
r

p r i n t l r l c ! r l c  ! r l c : ! r l c  ;move high 4 b i t s  to
C019 E60F p r i  n t2 ani Of h ; g e t  r i d  o f  h igh  4 b i t s
C01B C630 adi 30h ;change hex to  ASCII
C01D FE3A cpi 3ah ; i f  more than 9
C01F DA24C0 jc n o tb ig ; ( i t ' s  n o t )
C022 C607 adi 7h ; then add b ia s  (10=A, e t c . )
C024 CD28C0 n o tb i  g c a l l pchar ; p r i n t  d i g i  t
C027 C9 r e t

F

; s u b r o u t i  n«> to  p r i n t c h a r a c te r  i n  a - reg  out  on to  si

C028 E5
r

pchar push h ;save  h i  (conou t  uses i t )
C029 5F mov e,a ; p r i n t  hex d i g i  t
C02A 0E02 mvi c ,cono u t
C02C CD0500 c a l l bdos
C02F E1 pop h ; g e t  h i  back
C030 C9 r e t

C031 end

Look at the hex values given in the second column of the PRN listing of 
this routine: 5E, 23, 56, EB, and so on, down to C9 at the end. Write down 
these values and, next to each one, write its decimal equivalent:
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Hex Decimal
5E 94
23 35
56 86
EB 235

C9 201

Double check your work; it’s easy to make a mistake.
Here’s the listing of the revised BASIC program needed to make use of 

these values. We’ve placed them in DATA statements and added a subrou
tine (lines 100 to 140) to poke them into memory starting at location C000.

10 DEFINT A-Z 

15 GOSUB 100 

20 DEF USR1=&HC000 
30 INPUT"decimal number"; A 

40 PRINT"hex equivalent is: ";

50 D=USR1(A )
60 PRINT:PRINT 

70 GOTO 30

100 FOR I=&HC000 TO &HC030

110 READ D

120 POKE I,D

130 NEXT I
140 RETURN
200 DATA 94,35,86,235,124,205,21,192,124,205,25,192,125,205,21,192 
210 DATA 125,205,25,192,201,7,7,7,7,230,15,198,48,254,58,218,36,192 

220 DATA 198,7,205,40,192,201,229,95,14,2,205,5,0,225,201

Type all this in, and SAVE it as BINTEST2.
After all this work, we should reap some sort of reward, and we do. It’s 

easy to load the routine. First, we load BASIC, being careful to protect the 
memory space where our program goes.

A>mbasic5 /m:&hc000

0k
load "BINTEST2"

Then, when BASIC is loaded, we load the program:
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That’s all there is to it. Now we can type “run,” and we’ll be airborne 
immediately, since the BASIC program will POKE BINIHEX4 into memory 
and then jum p to it as soon as it gets to the USR1 statement.

HEX Files, and Using a BASIC Program to Load the A-L Routine

As our last method of loading an A-L routine into memory, we’ll make use 
of a special BASIC program that can directly load a HEX file: 
“HEXLOAD.BAS”.

In order to understand what the program does, you need to know some
thing about the format of HEX files. HEX files are rather strange beasts. 
They’re translations of a COM file (which as you know consists simply of the 
bytes that make up a program, the same bytes you will find in the left-hand 
columns of a PRN listing). These translations are in another format consist
ing of all ASCII characters. For instance, if you had a “mov e,m” instruction 
in your assembly listing, it would be assembled as the 8-bit (one-byte) 
number 5E, which is 01011110 in binary.

In a hex file, the 5 is translated into an ASCII “5”, which is represented by 
the one-byte number 35 hex, or 00110101 binary. Then, the E is translated 
into an ASCII “E”, which is 45 hex, or 01000101 binary. Thus, every byte of 
a COM file becomes two bytes of a HEX file.

There’s more. The entire file is broken down into groups of 16 one-byte 
digits (which is 32 ASCII characters). Each such group is given a separate 
load address (the place where the group is supposed to be loaded in memory) 
and a count (which shows how many of the characters in the 16-character 
group have actually been used). Usually they’re all used, except for the last 
group in the file. In addition, there’s a checksum for each group, which 
neither our program nor you need to worry about.

If we take a look at an actual HEX file, we’ll see something like this:

: 1 0C000005E2356EB7CCD15C07CCD19C07DCD15C00F0D0A
:1 0C010007DCD19C0C907070707E60FC630FE3ADA1B000A
:1 0C0200024C0C607CD28C0C9E55F0E02CD0500E1DAODOA
: 01C03000C9460D0A
: 00000000000D0A

Each of these lines is read into our BASIC program as a separate string 
variable, since they are separated by carriage-return and linefeed ASCII char
acters. Let’s take a look at the first line to see how it’s constructed.
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---------------------------------------Number of digits in this line (in hex).

------------------------------------------  4-digit load address.

16 data digits -̂----------------------Checksum.

: 1 0C000005E2356EB7CCD15C07CCD19C07DCD15C00F0D0A

\  ^ Linefeed.
Always 00. '-----------Carriage return.

The 10 (hex) at the beginning of the line shows that all 16 (decimal) posi
tions in the group are filled. The load address for the group is at C000. Then 
come two zeros and, finally, the 16 data bytes, in the form of 32 ASCII char
acters. This is followed by the checksum and the carriage return/linefeed 
characters. In the next to the last line, only one data byte is to be loaded, at 
address C030. It’s C9 (which is a “ret” instruction). Finally, in the last line, 
the count is 00, which is the signal for end-of-file.

This particular HEX file happens to be for BINIHEX4, which you may 
remember from the last section. You might like to compare the values in this 
HEX file with those in the PRN listing shown earlier. We’ll be using this 
program again in a minute as an example.

First, however, take a look at the BASIC program HEXLOAD.BAS:

100 DEFINT A-Z : CLEAR 1000
110 F$="BINIHEX4.HEX" ’name of file to be loaded
120 OPEN " I " , # 1 , F $ ’open file, “input” mode
130 INPUT #1,XX$ ’read one string
140 IF MID$(XX$,2 ,2 )="00" THEN END
150 AD$ = MID$(XX$,4,4) ’address to be loaded into
160 ST$=MID$(XX$,10,LEN(XX$)-11) ’data string (hex characters)
170 PRINT CHR$(10);CHR$(13);AD$;" ’print address
180 H$=AD$ : IH=3 ’convert address to decimal
190 GOSUB 1000
200 AD = H
210 FOR J=1 TO LEN(ST$) STEP 2 ’get data from string and stor
220 DA$=MID$(ST$,J,2) ’data byte
230 PRINT DA$;" ’print data byte
240 H$ = DA$ : IH = 1 ’convert data byte to decimal
250 GOSUB 1000
260 DA = H
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270 POKE AD,DA : AD=AD+1 
280 NEXT J 
290 GOTO 130

’store data and increment address 
’go get next data byte 

’go get next string
980 ’
990 ’s u b r o u t in e  to  c onve r t  ASCII s t r i n g  to  decimal  number
1000 H=0
1010 FOR 1=0 TO IH
1020 X=ASC(MID$(H$, IH+1-I ,1 )) -48  : IF X>9 THEN X=X-7
1030 H = H+(X*16M)
1040 NEXT I
1050 RETURN

This program reads in one line of the hex file at a time. Which HEX file? 
The one put into the program at line 120. (You could also change it so it asks 
you to type it in from the keyboard.) An INPUT statement then reads one 
string of 16 data bytes (with its load address, checksum, etc., as shown in the 
preceding program.) This is assigned to the variable XX$. The program then 
uses string functions to break up the line into the various components: the 
load address AD$, the string of data, ST$, and each individual data byte 
DA$. It doesn’t bother with the count number, preferring instead to derive 
this directly from the length of the data string. Both the 4-digit address and 
the 2-digit data have to be translated into decimal, since BASIC speaks only 
decimal. This is done in the subroutine at line 1000. The subroutine looks, in 
order, at the characters in the string H$ and then translates them into deci
mal numbers, using either two or four digits, depending on the value of IH. If 
IH is 3, then four digits are used, if it’s 1, then two digits are used. The 
conversion is done by adding the first (rightmost) digit to the second digit 
multiplied by 16, then adding the result to the third digit multiplied by 256, 
and adding this result to the fourth digit multiplied by 4096. These numbers 
are derived by raising 16 to the IA power. (See the program HEXIDEC that 
is described earlier in the book for an example of a similar approach.)

Once each data byte is found, it’s POKEd into the appropriate address. 
When the line is finished, the program INPUTs a new line. When it sees a 
count of 00, it quits.

The program prints the load address of each line of bytes and then prints 
each byte as it’s decyphered and POKEd into memory. This way, you can be 
assured that the program is doing what it’s supposed to do. And, it’s enjoya- 
bly hypnotic to watch the little bytes marching across the screen and into 
your computer’s memory. However, if you’re going to load really large A-L 
programs, you may want to remove the statements that do the printing (lines
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170 and 230) so the program will run faster. Once you’ve typed this program 
into memory and stored it as a BAS file, using it is really rather simple.

Let’s use the same BASIC program that we used in the preceding examples 
to test BINIHEX4. We’ll change it slightly so that the DEFUSR1 statement 
sets up the entry address of the A-L routine at C000:

10 DEFINT A-Z
20 DEF USR1 =&HC000'"-----------------------Change this to C000.
30 INPUT"decimal number" ;  A
40 PRINT"hex e q u i v a le n t  i s :  " ;
50 D=USR1( A)
60 PRINT: PRINT
70 GOTO 30

We’re going to use three programs: the BASIC program BINTEST.BAS 
which will call the A-L routine, the A-L routine BINIHEX4.HEX, and the 
BASIC program used to load the A-L routine, HEXLOAD.BAS.

Here’s how to do it:

1. Call up BASIC, at the same time protecting the appropriate memory 
address:

A>m basic5 /m:&hc000

2. Load and run HEXLOAD.BAS from BASIC:

run “HEXLOAD”

It will execute, loading in the A-L routine whose name appears in line 
120.

3. Still in BASIC, load in the BASIC program that you want to use:

run “BINTEST”

That’s all there is to it. If you try it out you should get the same results that 
you got using the last approach. To simplify the loading procedure, you could 
merge your own BASIC program and HEXLOAD into a single program, 
which would execute HEXLOAD first, and then go on to whatever it’s sup-
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posed to do. Or, you could chain them together, making the following line the 
last statement of HEXLOAD to be executed:

140 IF M ID$(XX$,2 ,2)="00" THEN RUN "BINTEST"

Don’t forget to make all the load addresses the same. The number you type 
in when you load BASIC must be the same as the number in the DEFUSR 
statement which, in turn, must be the same as the ORG of the A-L routine.

HEXIBIN2—PASSING ARGUMENTS TO BASIC FROM AN 
A-L ROUTINE

Our next example shows how an argument is passed back to BASIC from 
the A-L routine. This program, as you have no doubt gathered from the 
name, takes a hex number typed on the keyboard and converts it to decimal 
on the video screen. It is the complement of BINIHEX—with these two pro
grams, you have a complete set of utilities for handling hex conversions. 
(There’s another version of this program, called HEXIDEC, in Appendix B. 
It operates as a COM file directly from CP/M , without BASIC.)

We’ll assume that this program will be loaded from DDT, although it 
could be modified to be self-relocating or to be POKEd in from BASIC, as in 
the preceding examples. Here’s the listing of the BASIC program:

10 DEFINT A-Z
20 DEF USR2=&HA000
30 PRINT"hex number? " ;
40 A=USR2(D)
50 PRINT"decimaL e q u i v a le n t  i s  " ;  A
60 STOP

That’s pretty simple. After printing “hex number?”, we go to the HEX- 
IBIN2 routine to get the input from the keyboard. HEXIBIN2 converts these 
typed hex digits to a binary number, which is returned to the BASIC pro
gram as the variable A. The BASIC program then (as it always does) converts 
this number to decimal for printout. (Note that we can’t input hex numbers 
into our BASIC program directly from the keyboard, since BASIC has no 
function to do this.)

The important part of this example is how the A-L routine passes a value 
back to BASIC. Listing 8-4 shows HEXIBIN2.
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0001
0002
0005

A000

AOOO

A003

A006
A007
AOOA
AOOB

AOOC

AOOD

AOOF

A011

A014

A015 
A018 
A019 
A01B 
A01E 
A01 F 
A021 
A022 
A024

Listing 8-4. The HEXIBIN2 Program
;  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;HEXIBIN2-Converts hex typed on keyboard to 
;  b in a r y  ( t o  be c a l l e d  f rom BASIC program) .

= conin  equ 1h
= conout  equ 2h
= bdos equ 5h

/
org OaOOOh

/
;save  the address o f  FAC ( a c t u a l l y  FAC-3)

2244A0 sh ld  temp
; g e t  the number f rom keyboard,  pu t  i n  h i  

CD15A0 c a l l  h e x ib in
; p u t  va lu e  i n  h i  back in  FAC 

EB xchg ; p u t  number in  de
2A44A0 l h l d  temp ; p u t  FAC address i n  h i
73 mov m,e ; p u t  l o - b y t e  in  FAC-3
23 inx  h ;bump p o i n t e r
72 mov m,d ; p u t  h i - b y t e  i n  FAC-2

; p r i n t  l i n e fe e d  
0E02 mvi c ,conou t
1EOA mvi e,0ah ;ASCII  f o r  l i n e f e e d
CD0500 c a l l  bdos

;back  to  basi c
C9 r e t

; h e x i b i n - s u b r o u t i n e  to  read hex number from 
;  keyboard ,  s to r e  r e s u l t  in  b in a r y  i n  h i
r

210000 h e x i b in  l x i  h ,0  ; c l e a r  h i
E5 newch push h ;save h i
0E01 mvi c , c o n in  ; g e t  c h a r a c te r
CD0500 ca11 bdos
E1 pop h ;  r e s to r e  hI
D630 sui  30h ; c o n v e r t  ASCII d i g i t  to  b in a r y
F8 rm ;  r e t u r n  i f  < 0
FEOA cpi  10d ; i s i t > 9 ?
FA2FA0 jm addto ;  yes ,  so i t ' s  d i g i t  (0 to  9)

; n o t  d i g i t ,  maybe i t ' s  l e t t e r  (a to  f )
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A027 D627 sui 27h ; c o n v e r t  ASCII L e t t e r  to  b ina
A029 FEOA cpi Oah ; i s  i t  less  than a (hex)
A02B F8 rm ;  yes ,  r e t u r n
A02C FE10 cpi 10h ; i s i t  g r e a t e r  than f  ?
A02E FO rp ;  yes ,  r e t u r n

ł
; r o t a t e h L r egi s t e r f o u r  b i  t s  L e f t  and
; add new di g i t  to  r i g h t - h a n d  s ide

A02F 57 addto mov d,a ;save  new hex d i g i t  i n  d
A030 0E04 mvi c ,4 ; s e t  up Loop to  count  4 b i t s
A032 7D s h i f t mov a , I ; s h i  f t  L
A033 17 ra L
A034 6F mov I , a
A035 7C mov a,h ; s h i  f t  h
A036 17 ra L
A037 67 mov h,a
A038 OD dcr c ; a r e  we done ye t?
A039 C232A0 jnz s h i f t ;  no t  ye t
A03C 7D mov a , I ;mask o f f  Lower 4 b i t s  o f  L
A03D E6F0 ani Of Oh
A03F B2 ora d ; " o r "  the new d i g i t  on to  L
A040 6F mov I , a
A041 C318A0 jmp newch ;go  back f o r  nex t  c h a r a c te r

A044
/
temp ds 2

A046
/

end

The trick here is that the routine must save the contents of the HL-register 
before it does anything else. That’s because, when we first go from BASIC to 
our A-L routine, the HL-register contains a pointer to FAC-3, as described 
before, and our program needs to remember where the FAC is for later use. 
This is easily taken care of with a “shld temp” instruction at the beginning of 
the program, where “temp” is a two-byte location.

Having done this, we call the subroutine “hexibin” which actually gets the 
value from the keyboard, and returns with it in the HL-register. Now the 
problem is to get this value back into the FAC before we return to BASIC, so 
that BASIC will know what value to assign to the variable A. We “xchg” the 
number into the DE register, get the pointer to FAC-3 back from “temp”, 
and then move the two bytes out of DE, and store them one at a time into the
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location in HL and in the following location (FAC-3 and FAC-2). This is just 
where BASIC expects them to be, so our job is done and we “ret” back to 
BASIC.

Something to notice here is that you can’t break into the routine from 
BASIC by using control-c or the “break” key. Thus, if you changed the 
BASIC program so that it continuously asked for the hex number (by adding 
line “55 GOTO 30”, for example), there would be no way to get back to the 
BASIC program. One way to avoid this problem is to have BASIC check for 
a 0 being returned by the A-L routine. If it finds one, it knows that the user is 
done with the routine and jumps out of the loop.

OPERATING ON STRINGS WITH AN A-L ROUTINE

There are many situations where you might want to use an A-L routine to 
do something to a string variable, rather than a numeric variable, as in the 
previous examples. For instance, if your BASIC doesn’t have an INSTR func
tion to search one string for another, you could add this feature with an A-L 
routine. Or, you could add the LINE INPUT or PRINT USING functions.

In our example, we’ll try something a little less ambitious. We’ll write a 
routine to convert any lowercase letters in a string to uppercase. This might 
be useful if, for example, you wanted to search the string for a name, and 
didn’t want to worry about whether the word was capitalized in the string.

BASIC handles the transferring of string variables somewhat differently 
than it does numeric variables. The FAC is not used at all. Instead, the DE- 
register is used to point to a three-byte “descripter” which contains the 
address and the length of the string. Fig. 8-6 illustrates how it’s arranged.

So, getting to the string itself becomes a two-step process. First, we find the 
address of the descripter and from that we get the address of the string. The 
BASIC program for our example looks like this.

10 DEF USR1=&HA000 
20 INPUT A$
30 B$=USR1(A$+" " )  
40 PRINT A$
50 PRINT B$
60 STOP
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String stored 
in memory.

“s”

“ t”

“g”

Fig. 8-6. Using a three-byte descripter.

You type in any string you like, and the program will change any lowercase 
letters that it finds to uppercase. Then, it prints out both the original version, 
A$, and the modified all-uppercase version, B$.

Notice the plus sign and the space following the A$ in line 30. W hat’s all 
that about? It’s a subtlety that has to do with the way BASIC handles string 
variables. If we had written:

30 B$=USR1( A$)

BASIC would have actually converted the lowercase letters in A$ to upper
case and would have then set B$ equal to this same string. By including the 
space (or doing any other sort of operation on the string A$) in line 30, we 
cause BASIC to create a whole new string (A$ + “ ”) in a temporary work 
area. It is this temporary string that is then modified by our UCASE routine. 
A$, itself, remains unchanged, with its lowercase letters intact, while the tem
porary string is made permanent and assigned the name B$.

Listing 8-5 shows the program for the A-L routine UCASE, which actually 
does the conversion.

When we first enter the routine, we get the address of the descripter from 
the DE-register and “xchg” it into HL, where we use it to get first the length 
of the string (which we put in the C-register), and, then, the two bytes of the
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Listing 8-5. The A-L Routine UCASE
• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
;UCASE-Routine to  c onve r t  Lowercase L e t t e r s  
;  to  uppercase in  a BASIC s t r i n g
;  ( t o  be c a l l e d  f rom BASIC).
f

AOOO org OaOOOh

; g e t  c h a r a c te r  count  and address o f  s t r i n g  
; f ro m  d e s c r i p t e r

AOOO EB xchg ; p u t  d e s c r i p t e r  p t r  i n  h i
A001 4E mov c,m ; p u t  count  in  c
A002 23 i nx h ;move p o i n t e r  to  address
A003 5E mov e,m ; l o - b y t e  o f  address i n  e
A004 23 i nx h
A005 56 mov d,m ; h i - b y t e  i n  d
A006 EB xchg ;de (address o f  s t r i n g )  i n

f
;change lowercase l e t t e r s  in  s t r i n g  to  upperc.

A007 7E newch mov a,m ; g e t  c h a r a c te r  f rom s t r i n g
A008 FE61 cpi ’a’ ;  i s i t  less  than " a "  ?
AOOA FA15A0 jm no low ; yes ,  so not  lowercase
AOOD FE7A cpi V ;  i s i t  more than " z "  ?
AOOF F215A0 jp no low ; yes ,  so not  lowercase
A012 D620 sui 20h ; c o n v e r t  to  uppercase
A014 77 mov m,a ; p u t  back i n  s t r i n g
A015 23 no low i nx h ; in c re m e n t  address
A016 OD dcr c ;done ye t?
A017 C207A0 jnz newch ;  no,  ge t  nex t  c h a r a c te r

/
;back to  BASIC

A01A C9 r e t

A01B
F

end

address of the string (which goes back in the DE-register). Once we’ve got 
this address, we “xchg” it into HL, and we’re ready to start changing lower
case letters to uppercase letters.

We don’t have to pass anything back to BASIC when we return, since 
BASIC already knows where the string is that we modified.
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BACK TO BASICS

Now that you know how to add assembly language routines to BASIC, you 
may not have so much free time anymore. All of the BASIC programmers, 
who can’t get the computer to do what they want in that language, will come 
to you asking, “Please, just a little routine to do a fast bubble-sort of my 
data?”, “Please, just a little routine put my output in columns on the 
screen?”, and so on. You may have to get an unlisted number.

277



■

__



CHAPTER 9

The Innermost Soul of
C P /M

How to Modify C P / M  for Different 
Peripherals

WHY YOU’RE READING THIS CHAPTER

Scene I: You have a nice CP/M  system that runs with a dot
matrix printer. The printer is fast but the print quality leaves some
thing to be desired. So one day, after saving your pennies for a year 
or two, you decide to upgrade your printer to a letter-quality daisy
wheel model. You buy the new printer, bring it home, plug it in, 
a n d -it  doesn’t work! The dealer says he can modify your CP/M  
system to handle the new printer, but it will take three weeks and 
cost more than you want to spend.

Scene II: You have just purchased, by mail order, a brand new 
CP/M  system, along with a printer. But, when you unpack the 
boxes and set everything up, you find that the printer doesn’t work. 
What’s more, you find that the system won’t work with any other 
printer either. Someone suggests that the printer driver has not yet 
been installed in the CP/M  version supplied with the machine.

Scene III: You have a printer with extra features that can be 
selected under software control, like compressed or expanded print 
or different pitches for the type face. Unfortunately, the control
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characters that should activate these features are already being used 
by your word-processing program for something else. What you 
need is for your printer to respond to a different set of control char
acters, but you don’t want to rewire the printer.

Given any of the above situations, and assuming that you don’t have a 
resident programmer on your staff, what should you do? Stay tuned; you’ll 
find the answers in this chapter.

While our discussion is mostly about printers, the techniques used are 
applicable to other input/output devices as well, such as modems, tape trans
ports, different video terminals, or whatever.

WHAT IS THE BIOS ANYWAY?

In the preceding chapters, we’ve been working our way deeper and deeper 
into what we call the “soul” of CP/M ; that is, the hidden part of the operat
ing system which isn’t visible to the casual user of CF/M . In this chapter, 
we’re going to penetrate to the most hidden part of CP/M : the BIOS (or 
Basic Input/O utput System). You could call the BIOS the innermost soul of 
CP/M .
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As you may recall, the external part of C P/M  is the CCP (Console Com
mand Processor), which looks at what you type on the keyboard and takes 
action accordingly. The CCP is the outward facade that CP/M  presents to 
the world. To perform I/O , the CCP then calls the BDOS, or Basic Disk 
Operating System. Applications programs do the same thing, using a “call 
bdos” instruction, as you know from writing your own programs as described 
in the previous chapters. The BDOS is a section of code that is the same for 
all versions of CP/M , no matter what machine it is running on. The main 
purpose of BDOS is to handle disk files, but it also channels I/O  requests for 
other peripherals.

In order for BDOS to actually carry out its duties, it must at some point 
communicate with the actual physical devices connected to the machine: the 
disk drives, video screen, keyboard, printer, and so forth. Since these per
ipherals can come from a variety of manufacturers and can operate in a vari
ety of different ways, the subroutines which drive them must be different for 
each piece of equipment. This collection of subroutines is what constitutes 
the BIOS. These subroutines are called “driver” routines, meaning that they 
“drive” a particular peripheral device. When you change from one kind of 
printer to another, it’s this driver in the BIOS that must be modified to 
“speak” to the new printer.

z
THE USER

/ 7 !

CCP

z 71
BDOS

z 71
BIOS

Driver
routines

Direct connection 
to I/O devices.

1 /

1 /

1 /

1 /
Fig. 9-1. BIOS communicates with I/O devices.
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Notice that although the BIOS is at the innermost position in CP/M , it has 
(as do many innermost souls) a direct connection with the outside world. In 
fact, it is the only part of CP/M  that can actually communicate with physical 
devices.

Outline of This Chapter

What we’re going to do in this chapter is teach you how to modify a driver 
routine so that your C P/M  system can operate with a different printer. The 
techniques involved will also work for adding or changing other peripherals 
(such as your video display or the addition of a modem). Changes to the disk 
drives are considerably more complicated and should probably be left to the 
dealer unless you are a very ambitious programmer.

Because every system uses different hardware, every BIOS will be different. 
We can’t, therefore, tell you exactly how to modify your own BIOS. What we 
can do, however, is show you an example: how to modify a particular BIOS. 
Once you understand our example, you should be able to apply the same 
techniques to your own situation.

There are three steps involved in writing a new driver for your BIOS, and 
we’ve given each of them a separate section in this chapter. The three steps are:

1. Learning your way around the BIOS. You need to be able to find the 
existing driver so that you can see what it looks like, how it relates to 
the rest of the BIOS, and where to put the new driver.

2. Writing the new driver routine and testing it.
3. Inserting the new driver into the BIOS file and writing the new BIOS 

to the system tracks of your disk.

These steps are all somewhat involved but we’ll cover them slow and easy, 
and when we’re done and you look back on everything, it’ll seem easy!

What You Need To Modify Your BIOS

There are two things you need before you can modify your BIOS. The first 
is the ASM file of the BIOS. This is supplied (or can be) by the friendly 
people who put your system together for you. It contains the actual 8080 
code that communicates with I/O  devices. This file is usually called some
thing with “BIOS” in it, like IOBIOS.ASM or GBBIOS.ASM. If the file con
tains the I/O  for the disk system, then it will be very long, like 20 or 30 pages 
or so when printed out. But, often, the supplier will leave out the part of the
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BIOS that deals with the disk system and then it will be fairly short, on the 
order of a half-a-dozen pages. You need this file because it’s what you’re 
going to modify. That is, you’re actually going to use your word-processor 
program to alter parts of a section of this file. Then, you’ll reassemble it with 
ASM and write it back onto the “system tracks” of your disk.

The second thing that you’ll need is the specifications for your UART or 
serial board. “UART” stands for “Universal Asynchronous Receiver/Trans
mitter.” The UART is a “chip” or integrated circuit that is installed on one 
of the boards in your computer, namely the “serial board,” which allows the 
computer to communicate in serial mode with external devices. We’ll talk 
more about what all this means in the next section. Until then, just get your 
hands on the spec sheet. It will tell you what numbers to output to what 
“port” in the UART in order to send signals to various I/O  devices.

Some versions of the BIOS.ASM file include information on the UART at 
the beginning of the listing. Thus it is possible to modify your BIOS without 
the actual spec sheet, provided that the UART is already installed and oper
ating and your listing has this information. It’s also easier if you have a 
device already operating that is similar to the one you plan to install. That is, 
if you already have a printer running and want to change to another printer, 
you may not need the spec sheet or the comments in the listing. This is 
because you can use the existing driver as a model for what to do. But, if you 
don’t have any printer at all, then you really need the spec sheet. In any case, 
it will make your life a little easier.

LEARNING YOUR WAY AROUND THE BIOS

Writing a new driver routine for your C P/M  system is a little like being a 
building contractor who lands a job in a strange city. Suppose you’re given 
the job of tearing down the old office building at the corner of Main and 
North Street in a city that you’ve never before visited (called Bioston) and, 
then, are to build a new high-rise on the site.

You drive your pickup into town, and the first problem that you’re faced 
with is finding out where the intersection of Main and North Street is. Right 
away you need to scare up a map so you can get to the job site.

The ASM file of your BIOS (called BIOSIO.ASM, NSBIOS.ASM, or what
ever) is the map you need to get to the job site, which is the printer driver 
routine. In this section, we’re going to give you a little course in map-reading; 
that is, how to get where you want to go in the BIOS. The BIOS is a long 
listing, but remember that you don’t need to understand all of it. Like someone
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navigating in an unfamiliar city, you only need to recognize a few intersections 
and landmarks along a particular route in order to get to your destination.

We’ll show you some of these important features first, and then introduce 
you to the complete BIOS. Remember that the particular BIOS we will be 
describing is only one example of the hundreds of possible versions of BIOS 
out there in CP/M  land. Yours will be somewhat different, but it should be 
similar enough so that you can follow on your own BIOS the steps that we 
describe here. Reading your own BIOS listing will make the most sense if you 
assemble it with ASM and, then, refer to the PRN listing as, often, the hex 
values of things are important.

The BIOS Introduces Itself

Here’s the first part of our example BIOS:

TITLE + +  BIOS FOR DIO WITH CP/M 2.2  REV 2 .7  ++
W. W. COMPONENTS

•k'k'k'k'k'kicrk'k'k'k'k'k'k'k'k'k'k'k'k'k'k'krk'k'k'kic'k'kie'k'k'k'k'k-kie'k'k'k'kic'k'kic'k'k'k'kie

BIOS FOR IMSAI DIO-C CONTROLLER WITH CP/M 2.2
'k’k'k'k'k'kic'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'kicic'k'k'k'k'k'k'k'k-k'k'k'k'k'k'kicie'k'kic'kic-kic'k'k

BIOS VERSION 2 .7 :  SINGLE DENSITY, 128 B/S
DOUBLE DENSITY, 256 B/S 
DOUBLE DENSITY, 1024 B/S 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0000 = FALSE EQU 0
FFFF = TRUE EQU NOT FALSE

0038 = MSIZE EQU 56
0036 = SSIZE EQU MSIZE-2
001B = REVNUM EQU 27
0016 = CPMREV EQU 22

8800

BC00
C406
D200

;MEM0RY SIZE IN K-BYTES 
;2K FOR CP/M,BIOS AND BUFF 
;BI0S REV #
; CP/M REV #

;  "BIAS"  IS ADDRESS OFFSET FROM 3400H FOR
; MEMORY SYSTEMS OTHER THAN 16K (REFERRED TO
; AS "B "  THROUGHOUT THE TEXT).
BIAS EQU (SSIZE-20)*1024 ;ADDR OFFSET FROM 3400
;  (20K SYSTEM)
CCP EQU 3400H+BIAS ;BASE OF CCP
BDOS EQU CCP+806H ;BASE OF BDOS
BIOS EQU CCP+1600H ;BASE OF BIOS
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This BIOS starts out describing itself, where it comes from, and what it’s 
for. It comes from “WW Components,” is for the Imsai 8080, and is version 
2.7 of the BIOS.

Address Location Arithmetic

Next, we come to a very important part of the BIOS. All BIOS listings 
contain some calculations in the beginning that define and then set up the 
beginning address of the BIOS, itself, in memory. The addresses are usually 
calculated according to a set of rules laid down by Digital Research (the 
developers of CP/M ). They start out by specifying the memory size that the 
BIOS is working with. In the present example, we’re looking at a BIOS that’s 
set up for a 56K memory size. (If your BIOS has other weird statements in it 
at this point, such as various options that must be set to true or false, ignore 
them. They won’t influence this discussion.)

In the first line, we see that the size of the computer’s memory, MSIZE, is 
set to 56 (38 hex). All BIOS.ASM files should have such an equate. If we 
want to change our BIOS to work on a machine with a different memory size, 
the first thing that we will do is change this number to the appropriate value.

The next important number looks a bit strange; it’s called BIAS. (In other 
listings, it may have other names, like IOBIAS.) It’s the distance, in memory, 
between where the CPM system is on your system and where it is on a “vir
gin” CP/M  as it comes from the factory. Brand new systems are configured 
for 20K memories, and are then moved up to the top of memory where they 
will reside in a particular machine. BIAS is related to a certain magic 
number—yes, a genuinely magic number called N —which we will be discuss
ing in the last section of this chapter: how to insert your driver into the BIOS. 
We’ll have a lot more to say about this later.

BIAS is used to define the starting locations of the major parts of the 
CP/M  system: CCP, BDOS, and BIOS. The “standard” starting location for 
the bottom of the CCP is 3400 in a 20K system. As you can see, the CCP is 
806 hex bytes long in this listing, since BDOS starts at CCP + 806H. The 
CCP and the BDOS, together, are 1600 hex bytes long so, in our 56K system 
at least, BIOS ends up starting at D200 hex.

I/O  Equates and Other Goodies

In the next section of code, shown in Listing 9-1, the BIOS very kindly tells 
us something about the UART: namely, the meaning of each bit when we 
read the “status” of an I/O  device. Thus, bit 1 is “receiver ready,” and so
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forth. This will be useful information later. Following this is a series of 
“equates,” which are places where certain variables and addresses in the 
BIOS are given values. We see that the CRT status port “CRTST” is at 03 
hex, the keyboard data port is at 14 hex, the variable RXRDY is given a 
value of 2, and so on.

Listing 9-1. The Bits in an I/O  Device
'k'k'k'k'k'k'k'k'kieie-k'k'k'k'k'kic-krk'k'kie'k'k'k'kic'k'k'k'k'k'kie'k'k'k'k'kic'k'k'kie'k'k'k'k'k'k

I /O  DEFINITION EQUATES
★ ★★★I***********************************************

USEFUL THINGS TO KNOW 
MPU-B STATUS PORT

(TERMINAL/TRANSMITTER REFERENCE)

0 = TxRDY
1 = RxRDY
2 = TxE
3 = PE
4 = OE
5 = FE
6 = SYNDET
7 = DSR

TRANSMITTER READY 
RECEIVER READY 
TRANSMITTER EMPTY 
PARITY ERROR 
OVERRUN ERROR 
FRAMING ERROR 
SYCN DETECT 
DATA SET READY

CONSOLE STATUS PORT ( IN  HEX) -

CONSOLE DATA PORT ( IN  HEX) -

15 = PARALLEL
13 OR 4 = SERIAL 
3 = SYSTEM
14 = PARALLEL
12 OR 4 = SERIAL
2 = SYSTEM

0003 = CRTST EQU 3H ; CRT STATUS PORT
0002 = CRTDATA EQU 2H ; CRT DATA PORT
0015 = IKBST EQU 15H ; IKB1 STATUS PORT
0014 = IKBDATA EQU 14H ; IKB1 DATA PORT
F803 = VIODATA EQU 0F803H ; VIO DATA PORT
0002 = RXRDY EQU 02H ; CONSOLE STATUS

/ READY BIT (RxRDY)
0003 = IOBYTE EQU 0003H ; INTEL I /O  BYTE
F800 = VIOINIT EQU 0F800H ;V I0  IN IT  ENTRY POINT
FFFD = VIOID EQU OFFFDH ; POINTER TO VIO ID
0023 = PRTS EQU 23H ;PRINTER STATUS PORT
0022 = PRT EQU 22H ;PRINTER DATA PORT
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Notice especially PRTS and PRT, the printer status port and the printer 
data port, respectively. We’ll be using the numbers that they’re equated to, 23 
hex and 22 hex, when we write our printer driver.

The ORG Statement and the Jump Table

In the next section of code, we finally get to the actual beginning of our 
program: the ORG statement. Usually, this location is defined in terms of 
various other locations which, in turn, are defined in terms of the memory 
size of your computer, among other things. In this case, the ORG is at the 
start of BIOS plus 0C70 hex. The listing doesn’t start at the beginning of 
BIOS because all the drivers for the disk system are located there, between 
D200 and D200 + 0C70. Our listing is really only a small part of the BIOS: 
the nondisk part.

But think about this. How is BDOS, which wants to call some driver rou
tine in the BIOS, going to find it? If we fool around- as we’re going to do in 
this chapter—adding instructions to the BIOS and reassembling it so we can 
insert our driver in it, the starting addresses of all the drivers following the 
one we changed will be different. How will BDOS find them? The answer is 
that it makes use of a clever programming idea called a “jum p table.”

A jump table is merely a bunch of jumps at the beginning of the listing.
Each jump goes to one of the driver routines, like LIST, and CONST, and so
on. Since these jumps are part of the listing we’re going to reassemble, the 
values in their address fields will change when we reassemble the file. Thus,

Listing 9-2. Jump Table

■ ******************************************** 
;  USER CUSTOMIZED I /O  DEVICES. *
;  DO NOT REARRANGE JMP TABLE. *
■ ie ic 'k ie ie 'k 'k i c 'k ic 'k 'k 'k ie 'k 'k 'k 'k 'k 'k 'k 'k 'k - ic 'k 'k 'k ic 'k ie 'k 'k 'k 'k 'k 'k 'k r k - k 'k ic ie 'k 'k

DE70 ORG BIOS + 0C70H

DE70 C3F8DE INIT IO :  JMP INITVC
DE73 C3BFDE LIST: JMP LISTIO
DE76 C3B3DE LISTST: JMP LISTSTIO
DE79 C388DE CONST: JMP CONSTIO
DE7C C39BDE CONIN: JMP CONINIO
DE7F C3A7DE CONOUT: JMP CONOUTIO
DE82 C3CBDE PUNCH: JMP PUNCHIO
DE85 C3D7DE READER: JMP READERIO
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BIOS doesn’t care where the driver routines themselves are, it just cares 
where the jump table is, and the jum p table is always in the same place: at 
the beginning of the listing. BIOS “calls” one of the locations in the jump 
table, and the jump takes BDOS to the proper driver.

Notice, however, that BDOS assumes the jumps in the jum p table (Listing 
9-2) will always be in the same order. When it calls on the second jum p in the 
table, it expects to find a jum p to LISTIO, not PUNCHIO. That’s why the 
listing says “DO NOT REARRANGE JUM P TABLE.”

The Dreaded IOBYTE and the Trouble It Causes

Now we can actually start to follow a trail through the listing to our desti
nation. Look at the jum p table; the second jum p is to LISTIO. This is to the 
LIST device. As you recall, CP/M  permits different physical devices to be 
assigned to different logical devices. There are four logical devices:

CON:
RDR:
PUN:
LST:

which stand for console, reader, punch, and list. There are also various 
physical devices, like TTY:, and CRT:, and LPT:. You can change the 
assignments of physical to logical devices by using STAT. When you do 
this, STAT changes something called the IOBYTE, which is location 3 in 
memory.

Now, when BIOS gets a call to the LIST routine, it doesn’t know what 
physical device it’s intended for until it checks the IOBYTE. Based on 
what it finds there, it will either go to the driver for the printer, or to 
some other driver. That’s why LISTIO and LISTSTIO (for “ list status 
I /O ”) aren’t really driver routines but, instead, are a different form of
jum p table. Here’s what they look like

LIST OUT -  LST:
LISTIO:

DEBF CDE3DE CALL DISPATCH
DEC2 03 DB 3 ;USE IOBYTE BITS 7-6
DEC3 55DF DW CRTOUT ;00  -  TTY: (CRT OUTPUT)
DEC5 55DF DW CRTOUT ;01 -  CRT: (CRT OUTPUT)
DEC7 35DF DW LPTOUT ;10  -  LPT: (LINE PTR OUTPUT)
DEC9 6FDF DW VI00UT ; 11 -  UL1 : (VIDEO OUTPUT)
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This section works by first calling a routine named DISPATCH which 
looks at the IOBYTE and decides which of the four routines for the four 
possible physical I/O  devices it should go to. Usually, the line printer is 
assigned to the LST: device, so DISPATCH will figure this out from the 
IOBYTE and jump to the address in the third DW statement in this routine, 
which is called LPTOUT for “line printer output.”

In some versions of BIOS, the IOBYTE is not used and this whole section 
of code is nonexistent. This is true of the example BIOS provided in Digital 
Research’s CP/ M  Alteration Guide. In other versions, it’s implemented in a 
different way. Let’s follow along to LPTOUT (Listing 9-3) and see what that 
looks like.

Listing 9-3. Line Printer Output Subroutine

;  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;  LIST CHARACTER IN C

DF35 DB23 LPTOUT: IN PRTS ; CHECK STATUS PORT
DF37 E685 ANI 85H ;MASK OFF BITS
DF39 EE85 XRI 85H ; ALL BITS SET?
DF3B C235DF JNZ LPTOUT ;N0-N0T READY
DF3E 79 MOV A, C ; YES, CHARACTER TO A-REGISTER
DF3F D322 OUT PRT ; SEND TO PRINTER
DF41 C9 RET ;RETURN

Well, would you look at that! It’s the actual instructions to tell the UART 
to accept a character and send it on to the printer. We’ve reached the end of 
our journey; this is the very routine that we’re going to modify. For a change, 
it doesn’t call another routine—it’s the end of the line.

The PRTS (printer status) and PRT (printer) constants were defined ear
lier to be 23 hex and 22 hex. These are the “ports” that are accessed by the 
IN and OUT instructions.

The IN Instruction

IN and OUT instructions are the chief way that the 8080 microprocessor 
communicates with the outside world. As their names imply, IN gets data 
from a data port and puts it in the A-register, while OUT sends data from the 
A-register to a data port. There are 256 possible data ports: the appropriate
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Before IN 22 Is Executed:

A-register

Data ports on UART 
(256 of them).

41

/ 21

/
22

/
23

/

After IN 22 Is Executed:

z
A-register

Data ports on UART 
(256 of them).

41

/ 21

/
22

K 'J 23

/

Fig. 9-2. The IN instruction.

one is specified by a 2-digit hex number (or a label equated to it) in the 
address field.

Note that the data ports and their addresses are not the same as memory 
and its addresses. The data ports are a separate group of registers and, since 
there are only 256 of them, they are addressed with 2-digit hex numbers. This 
is illustrated in Fig. 9-2. Thus, the 5A in the instruction “IN 5A” refers to a 
data port, not to memory address 5A.

The byte that is read into the A-register can either be data, such as a 41 hex 
“A” character read from the keyboard, or it can be a “status byte,” whose 
purpose is to inform your program about the status of a UART or an input/ 
output device. The values of a status byte must be known from the operation 
manuals for the UART or input/output device.

The OUT Instruction

As noted above, OUT takes an 8-bit byte from  the A-register and puts it 
into the data port specified in the operand field of the instruction. This byte 
can either be data that is to be transferred to an output device (such as a 41
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Before OUT B1 Is Executed:

A-register

7F

Data ports on UART 
(256 of them).

BO

B1

B2

After OUT B1 Is Executed:

A-register

7F

Data ports on UART 
(256 of them).

7F

BO

B1

B2

Fig. 9-3. The OUT instruction.

Section of memory where 
the program is located.

Number in A-register and 
number in instruction are 
XORed together.

A-register

OF = 0 0 0 0  1 1 1 1 
66 =  0 1 1 0 0 1 1 0

0 1 1 0 1 0 0 1 =  69 ■ 

A-register

69

EE

66

Result goes back 
in the A-register.

/
20FF

/
2100

2101

/
2102

k I

XRI 66

Memory
address.

Fig. 9-4. The XRI instruction.
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hex “A” character to be printed on the screen), or it can be a “function byte” 
which tells the UART or an input/output device what to do. The values to be 
used in a function byte must be known from the operation manuals for the 
UART or the input/output device.

Examples:

IN 5 Ah
OUT LABEL

The XRI Instruction

This instruction performs an “Exclusive-OR” of the one-byte data that is in 
the instruction with the data that is in the A-register. An Exclusive-OR means 
“one or the other, but not both.” (Whereas, a regular OR means “one or the 
other, or both.”)

The following is the “ truth table” for an Exclusive-OR. Note that a 1 that is 
Exclusive-ORed with a 1 gives 0, not 1.

Data bit in instruction: 0 1 0  1
Data bit in A-register: 0 0 1 1
Exclusive-OR (XRI) 0 1 1 0

This is a useful instruction for testing bit patterns, because it will immedi
ately tell you if all the bits in a certain bit configuration are set to 1. Simply 
XRI the bit pattern that you want to see with the bit pattern in the A-regis
ter. If all the bits you specify are set, but nothing else is, the result will be 0.

For example, if the A-register contains 07 hex and you XRI it with 85 hex, 
you’ll have:

A-register 0000 0111
Constant 1000 0101
Result 1000 0010

which is not zero. However, if the A-register contains 85 hex, you’ll get:

A-register 1000 0101
Constant 1000 0101
Result 0000 0000

which is zero.
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The first thing we do in LPTOUT is read the status of the printer port to 
see if the printer is ready to receive data. We do this with an IN instruction to 
the port that holds the printer status: number 23 hex. This will return a byte 
that looks like this:

DSR SYNDET FE OE PE TxE RxRDY TxRDY

7 6 5 4 3 2 1 0

Now, what we want to see when the printer is ready to receive a character 
is this: the DSR, TxE, and TxRDY bits must be set. The other bits can be 
anything they like. So we first mask off the other bits with an ANI (A N D  

immediate) instruction, using an 85 hex, which is a 10000101 binary. As a 
result, only bits 7, 2, and 0 can have a value other than zero. They may be 
zero, but they may also be a one. All the other bits are definitely a zero.

Now, we want to make sure that bits 7, 2, and 0 are set to zero, so we XRI 
the A-register with 85 again. If not, we go back to check again with the JNZ 
instruction.

Once all the bits are set properly in the status word, we’re ready to receive 
data. The data byte has been in the C-register all along. (Remember how you 
put it there yourself before doing a call to BDOS?) So we move it to the A- 
register, and then OUT it to the printer output port, which is 22 hex. Then we 
return.

What could be simpler?

I /O  Initialization

Usually, the particular UART you’re using needs to be initialized before it 
can function properly. Thus, there is a section of code in the BIOS that is 
activated every time you do a warm boot (or a cold one). Listing 9-4 shows 
what this routine looks like.

Different UARTs need different kinds of initialization. (You can find out 
what yours needs from its spec sheet.) In our example, our UART is a strange 
little fellow that wants to be told “0, 0, 0, 40, AE, 27” before he can do 
anything. Look at the listing. Every time an “OUT CRTST” is executed, the 
value in the A-register is sent to the crt status register (3 hex). And, every 
time an “OUT PRTS” is executed, the value is sent to the printer status regis
ter (23 hex). Thus, the sequence of numbers referred to in Listing 9-4 is sent 
to both the crt port and the printer port of the UART.
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Listing 9-4. I/O  Initialization Code

■ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

; INIT USER I/O; I.E., CONSOLE, PUNCH, AND LIST DEV.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INITVC:

DEF8
DEF9
DEFB
DEFD
DEFF
DF01
DF03
DF05
DF07
DF09
DFOB
DFOD
DFOF
DF11
DF13
DF15

AF
D303
D303
D303
D323
D323
D323
3E40
D303
D323
3EAE
D303
D323
3E27
D303
D323

INIT UART (RECOMMENDED CMDS BY IMSAI)
XRA A
OUT CRTST
OUT CRTST
OUT CRTST
OUT PRTS
OUT PRTS
OUT PRTS
MVI A,40H ; RST 8251
OUT CRTST 
OUT PRTS
MVI A,0AEH ;MODE
OUT CRTST
OUT PRTS
MVI A,27H ;CMD
OUT CRTST
OUT PRTS

If you’re changing from one printer to another, you probably won’t have to 
add anything to this initialization process, but if you add a driver that wasn’t 
there before, then you’ll have to add code in this section to initialize the new 
ports on your UART.

THE COMPLETE BIOS LISTING

In Listing 9-5, we show the complete BIOS listing from which the various 
sections used previously were extracted. Look it over and see if you can 
locate them. To return to our analogy of finding your way around in a 
strange city, glancing over this listing is like getting a view of the city from an 
airplane. You’ll see how the various far-flung locations lie in relation to each 
other. Remember that even this is not the entire BIOS, since all the disk I/O  
has been (mercifully) left out by the firm that sold us the system.
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0000 = 

FFFF =

0038 = 
0036 = 
001B = 

0016 =

8800 =

BC00 = 
C406 = 
D200 =

Listing 9-5. The Complete BIOS Listing

TITLE ++ BIOS FOR DIO WITH CP/M 2.2  REV 2 .7  ++

BIOS FOR IMSAI DIO-C CONTROLLER WITH CP/M 2 .2  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

BIOS VERSION 2 .7 :  SINGLE DENSITY, 128 B/S 
DOUBLE DENSITY, 256 B/S 
DOUBLE DENSITY, 1024 B/S

FALSE EQU 0
TRUE EQU NOT FALSE

MSIZE EQU 56 ;MEMORY SIZE IN K-BYTES
SSIZE EQU MSIZE-2 ;2K FOR CP/M, BIOS, AND BUFF
REVNUM EQU 27 ;BIOS REV #
CPMREV EQU 22 ;CP/M REV #

/ "BIAS" IS ADDRESS OFFSET FROM 3400H FOR
MEMORY SYSTEMS OTHER THAN 16K (REFERRED TO 
AS "B "  THROUGHOUT THE TEXT).

BIAS
W

EQU ( SSIZE-20)*1024 ; ADDR OFFSET FROM 3400 
(20K SYSTEM)

CCP EQU 3400H+BIAS ;BASE OF CCP
BDOS EQU CCP+806H ;BASE OF BDOS
BIOS EQU CCP+1600H ;BASE OF BIOS

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

I /O  DEFINITION EQUATES 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

USEFUL THINGS TO KNOW 
MPU-B STATUS PORT

(TERMINAL/TRANSMITTER REFERENCE)

0 = TxRDY TRANSMITTER READY
1 = RxRDY RECEIVER READY
2 = TxE TRANSMITTER EMPTY
3 = PE PARITY ERROR
4 = OE OVERRUN ERROR
5 = FE FRAMING ERROR
6 = SYNDET SYCN DETECT
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7 = DSR DATA SET READY

CONSOLE STATUS PORT ( IN HEX)

CONSOLE DATA PORT ( IN  HEX)

15 = PARALLEL
13 OR 4 = SERIAL
3 = SYSTEM
14 = PARALLEL 
12 OR 4 = SERIAL 
2 = SYSTEM 
;CRT STATUS PORT 
; CRT DATA PORT 
; IKB1 STATUS PORT 
; IKB1 DATA PORT 
;VIO DATA PORT 
;CONSOLE STATUS

READY BIT (RxRDY)
; INTEL I /O  BYTE 
;VIO INIT ENTRY POINT 
; POINTER TO VIO ID 
;PRINTER STATUS PORT 
;PRINTER DATA PORT 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
USER CUSTOMIZED I /O  DEVICES. *
DO NOT REARRANGE JMP TABLE. *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0003 =
f
CRTST EQU 3H

0002 = CRTDATA EQU 2H
0015 = IKBST EQU 15H
0014 = IKBDATA EQU 14H
F803 = VIODATA EQU 0F803H
0002 = RXRDY EQU 02H

0003 =
/
IOBYTE EQU 0003H

F800 = VIOINIT EQU 0F800H
FFFD = VIOID EQU OFFFDH
0023 = PRTS EQU 23H
0022 = PRT EQU 22H

DE70 ORG BIOS + 0C70H

DE70
DE73
DE76
DE79
DE7C
DE7F
DE82
DE85

C3F8DE
C3BFDE
C3B3DE
C388DE
C39BDE
C3A7DE
C3CBDE
C3D7DE

INITIO:
LIST:
LISTST:
CONST:
CONIN:
CONOUT:
PUNCH:
READER:

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

INITVC
LISTIO
LISTSTIO
CONSTIO
CONINIO
CONOUTIO
PUNCHIO
READERIO

;  CONSOLE STATUS
CONSTIO:

DE88 CD8FDE CALL CONS
DE8B C8 RZ
DE8C 3EFF MVI A,OFFH
DE8E C9 RET

CON:

;GETS STAT OF SPECIFIC DEVICE 
;  IF NOT READY RETURN 0 IN A 
;ELSE RETURN FF 
;Z FLAG SET CORRESPONDINGLY

296



The Innermost Soul of CP/M

DE8F CDE3DE CONS: CALL DISPATCH
DE92 01 DB 1 ;USE IOBYTE BITS 1-0
DE93 45DF DW CRTSTAT ;00 -  TTY: (CRT STATUS)
DE95 45DF DW CRTSTAT ;01 -  CRT: (CRT STATUS)
DE97 45DF DW CRTSTAT ;10 -  BAT: (CRT STATUS)
DE99 5FDF DW IKBSTAT ; 11 -  UC1: (IKB1 STATUS)

DE9B CDE3DE 
DE9E 01

r
C0NINI0

CONSOLE IN -  CON:

CALL DISPATCH 
DB 1 ;USE IOBYTE BITS 1-0

DE9F 4ADF DW CRTIN ;00 -  TTY: (CRT INPUT)
DEA1 4ADF DW CRTIN ;01 -  CRT: (CRT INPUT)
DEA3 4ADF DW CRTIN ;10 -  BAT: (CRT INPUT)
DEA5 64DF DW I KB IN ; 1 1 -  UC1: ( IKB1 INPUT)

r CONSOLE OUT -  CON:

DEA7 CDE3DE 
DEAA 01

C0N0UTI0:
CALL
DB

DISPATCH
1 ;USE IOBYTE BITS 1-0

DEAB 55DF DW CRTOUT ;00 -  TTY: (CRT OUTPUT)
DEAD 55DF DW CRTOUT ;01 -  CRT: (CRT OUTPUT)
DEAF 55DF DW CRTOUT ; 10 -  BAT: (CRT OUTPUT)
DEB1 6FDF DW VIOOUT ; 1 1 -  UC1 : (VIO OUTPUT)

r LIST STATUS -  LST :

DEB3 CDE3DE 
DEB6 03

LISTSTIO:
CALL
DB

DISPATCH
3 ;USE IOBYTE BITS 7-6

DEB7 42DF DW LISTSTC ;00 -  TTY: (CRT OUTPUT)
DEB9 42DF DW LISTSTC ;01 -  CRT: (CRT OUTPUT)
DEBB 42DF DW LISTSTC ; 10 -  LPT: (LINE PTR OUTPUT)
DEBD 42DF DW LISTSTC ; 1 1 -  UL1 : (VIO OUTPUT)

DEBF CDE3DE 
DEC2 03

r
LISTIO:

LIST

CALL
DB

OUT -  LST:

DISPATCH
3 ;USE IOBYTE BITS 7-6

DEC3 55DF DW CRTOUT ;00 -  TTY: (CRT OUTPUT)
DEC5 55DF DW CRTOUT ;01 -  CRT: (CRT OUTPUT)
DEC7 35DF DW LPTOUT ;10 -  LPT: (LINE PTR OUTPUT)
DEC9 6FDF DW VIOOUT ; 11 -  UL1 : (VIDEO OUTPUT)
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; PUNCH OUT -  PUN:
PUNCHIO:

DECB CDE3DE CALL DISPATCH
DECE 05 DB 5 ;USE IOBYTE BITS 5-4
DECF 55DF DW CRTOUT ;00 -  TTY: (CRT OUTPUT)
DED1 73DF DW PUNOUT ;01 -  PTP: (H. S. PUNCH OUTPUT)
DED3 6FDF DW VIOOUT ;10  -  UP1: (VIO OUTPUT)
DED5 55DF DW CRTOUT ; 1 1 -  UP2: (CRT OUTPUT)

;  READER IN -  RDR:
READERIO:

DED7 CDE3DE CALL DISPATCH
DEDA 07 DB 7
DEDB 4ADF DW CRTIN
DEDD 74DF DW RDRIN
DEDF 4ADF DW CRTIN
DEE1 4ADF DW

DISPATCH:
CRTIN

DEE3 E3 XTHL
DEE4 56 MOV D,M
DEE5 23 INX H
DEE6 3A0300 LDA IOBYTE
DEE9 07 DSHFT: RLC
DEEA 15 DCR D
DEEB C2E9DE JNZ DSHFT
DEEE E606 ANI 06H
DEFO 5F MOV E, A
DEF1 19 DAD D
DEF2 7E MOV A,M
DEF3 23 INX H
DEF4 66 MOV H,M
DEF5 6F MOV L,A
DEF6 E3 XTHL
DEF7 C9 RET

;USE IOBYTE BITS 3-2 
;00 -  TTY: (CRT INPUT)
;01 -  PTR: (H.S.  READER INPUT)
;  10 -  UR1 : (CRT INPUT)
;  11 -  UR2: (CRT INPUT)

;SAVE CALLER'S H, GET TABLE ADD
;SHIFT COUNT
; POINT TABLE
;GET 10 ASSIGNMENTS BYTE

; SHI FT TO POSITION BITS 
;MASK BITS 
; D ALREADY CLEAR 
;  INDEX INTO TABLE

;TABLE WORD TO HL

;PUT ADDR OF ROUTINE, GET CALLER'S H 
;G0 TO ROUTINE

• 'k'k'k'k'k'k'k'k'k'kick'k'k'k'k'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k'kic'k'k'k'k'k'k'k'k'k'k'kit'k'k'kif'k'k'k'k'k

;  ; INIT USER I /O ;  I . E .  CONSOLE, PUNCH, AND LIST DEV.
■ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
INITVC:
;  INIT UART (RECOMMENDED CMDS BY IMSAI)

DEF8 AF XRA A
DEF9 D303 OUT CRTST
DEFB D303 OUT CRTST
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DEFD D303 OUT CRTST
DEFF D323 OUT PRTS
DF01 D323 OUT PRTS
DF03 D323 OUT PRTS
DF05 3E40 MVI A,40H ;RST 8251
DF07 D303 OUT CRTST
DF09 D323 OUT PRTS
DFOB 3EAE MVI A,OAEH ;MODE
DFOD D303 OUT CRTST
DFOF D323 OUT PRTS
DF11 3E27 MVI A,27H ;CMD
DF13 D303 OUT CRTST
DF15 D323 OUT PRTS

DF17 21FDFF LXI H,VIOID ;VIO ID 1 ADDRESS
DF1A 3E56 MVI A, ’V’ ;1 ST ID
DF1C BE CMP M ;SAME?
DF1D C22FDF JNZ NOVIO
DF20 23 INX H ;VIO ID 2 ADDRESS
DF21 3E49 MVI A / I ’ ;2ND ID
DF23 BE CMP M ;SAME?
DF24 C22FDF JNZ NOVIO
DF27 CD00F8 CALL VIOINIT ; INIT  VIO
DF2A 3E97 MVI A,97H ; VIO AS OUTPUT
DF2C C331DF JMP INITI01
DF2F 3E94 NOVIO: MVI 

I N I T I 0 1 :
A,94H ;CRT AS OUTPUT

DF31 320300 
DF34 C9

STA
RET

IOBYTE

■ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
;  LIST CHARACTER IN C
■ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

DF35 DB23 LPTOUT: IN PRTS ; CHECK STATUS PORT
DF37 E685 ANI 85H ;CHECK BOTH READY BITS
DF39 EE85 XRI 85H
DF3B C235DF JNZ LPTOUT
DF3E 79 MOV A,C
DF3F D322 OUT PRT
DF41 C9 RET ;USER PRINTER 10
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DF42 3EFF 
DF44 C9

DF45 DB03 
DF47 E602 
DF49 C9

DF4A CD45DF 
DF4D CA4ADF 
DF50 DB02 
DF52 E67F 
DF54 C9

DF55 DB03 
DF57 OF 
DF58 D255DF 
DF5B 79 
DF5C D302 
DF5E C9

DF5F DB15 
DF61 E602 
DF63 C9

• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
;  RETURN LIST STATUS (FF IF READY, ELSE 0)
;  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

LISTSTC:MVI A,0F FH 
RET

• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
;  CONSOLE STATUS RETURNED IN A.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
CRTSTAT:

IN CRTST ;STATUS PORT
ANI RXRDY ;TEST RxRDY
RET ;Z=1,  CHAR NOT READY

• :k'k'k-k'k'k'k'k-k-kie-k'k'k'k'k'k'k'k'kic'k'k'kicic'k'k'kicic'kic'k'k'kie'k'kic'k-k'k'k'kic'kieic'k'k'k'k-k'k
;  CONSOLE IN RETURNS THE CHARACTER IN A
• 'k'kickicie-k'k'k'kie'kic'k'k'kic'kieie'k'k'k'k'k'kick'k'k'k'k'k'k'k'k'kic'kie'kicic'kic'k'k'k'k'k-k-k-k'k'k

CRTIN:
CALL CRTSTAT
JZ CRTIN ;GET RxRDY
IN CRTDATA ;GET CHARACTER
ANI 7FH ;STRIP PARITY
RET

;  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;  CRTOUT SENDS THE CHARACTER IN C TO OUTPUT
• ‘k ’k'k'k'k'k'k'kicie'kif'k'k'k'k'k'k'kick'kic'k'kic'ick'k'k'k'k'k'k'kicic'k'k'k'k'k'k'k'k'kic'k'kicic'k'k'k'k

CRTOUT:
CRTST ;GET STATUS

;TxRDY?
CRTOUT ;REPEAT, NOT READY
A,C ;CHAR TO ACCUM
CRTDATA ;CHARACTER TO PORT

IN
RRC
JNC
MOV
OUT
RET

"k'kickic'k'k'k'k'k'k'k'kic'k'k'k'kic'k'kick'k'k'k'k'k'k'k'k'k'k'k'kie'k'kic'k'k'k'k'kie'k'k'k'k'k'k'kic'k'k

IKB1 STATUS RETURNED IN A. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IKBSTAT:
IN IKBST ; STATUS PORT
ANI RXRDY ;TEST RxRDY
RET ;Z=1,  CHAR NOT READY
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• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
;  IKB1 IN RETURNS THE CHARACTER IN A
■ ******************************************************* 
IKBIN:

DF64 CD5FDF CALL IKBSTAT
DF67 CA64DF JZ IKBIN ;GET RxRDY
DF6ADB14 IN IKBDATA ;GET CHARACTER
DF6C E67F ANI 7FH ;STRIP PARITY
DF6E C9 RET

• •k'k'k'k'k'k'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k 

;  VIOOUT SENDS THE CHARACTER IN C TO VIO
; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
VIOOUT:

DF6F 79 MOV A,C
DF70 C303F8 JMP VIODATA ;VIO RETURNS TO CALLER

■ ******************************************************* 
;  PUNCH CHARACTER IN REGISTER C
;  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

PUNOUT:
DF73 C9 RET ;NULL ROUTINE

• k'k'kie'k'k'k'k'k'k'k'k'k'k'kit'k'k'k'k'k'k'k'k'kic'k'k'k'k'k'k'k'k'k'k-k'kic'kickick'k'k'k'k'k'k'kic'k'k'k

;  READ CHARACTER INTO A FROM READER DEVICE
• 'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'kick'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k

RDRIN:
DF74 3E1A MVI A, 1 AH ;ENTER END OF FILE

;  (REPLACE LATER)
DF76 E67F ANI 7FH ;REMEMBER TO

;  STRIP PARITY BIT
DF78 C9 RET
DF79 END

HOW TO MODIFY YOUR PRINTER DRIVER

In order to create a new driver for our BIOS, you first must determine the 
kind of driver program you need to write. You must know what kind of 
printer you have and which communications “protocol” it uses. “Protocol” is 
just a fancy word for “procedure.” In this case, it means the procedure by 
which the the printer tells the computer that it is ready to accept data.
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Protocols and Other Diplomatic Niceties

With some printers, you can simply wait for it to be ready, throw a charac
ter at it, wait for it to be ready, throw a character at it, and so on, until you’re 
done, and it will print the characters just fine. Such a printer is called a “stan
dard serial printer,” or a “teletype-like printer.” The Epson is such a beast. 
Other more complex printers, such as the “daisy-wheel” printers, require one 
of two possible advanced protocols, either “xon/xoff” or “etx/ack.” For 
instance, the NEC printer needs etx/ack while the Diablo 630 likes xon/xoff. 
These protocols are designed to allow the printer to work with a bunch of 
characters at a time rather than with single characters.

XO N/XO FF Protocol

You have probably already used xon/xoff and not known it. Xon/xoff is 
the same thing as the “control-s/control-q” that C P/M  uses to freeze and 
unfreeze the scrolling of the display on the screen. In CP/M , control-s will 
freeze the display. Striking any key, thereafter, generates a control-q which 
will unfreeze the display. Control-s means xoff, i.e., “turn off transmission” 
while control-q means xon, i.e., “turn on transmission.”

A printer uses this technique of xon/xoff when it has a built-in “character 
buffer” that can hold a certain number of characters for printing. The buffer 
may be, for example, 1024 bytes long. What the buffer does is allow the com
puter to send characters to the printer at a fairly fast rate (say, 1200 baud, or 
about 120 characters per second) and then hold them while the slower printer 
mechanism prints them out (which may occur at roughly 30 characters per 
second). This way, while the buffer in the printer is emptying, the computer 
can go on its merry way and do more processing. Provided the computer is 
set up properly, you could then be editing a file while the printer was spitting 
characters out on the paper, and your text editor would not be slowed down 
by the 30 character/second printer. You would only notice a delay when the 
printer needed its buffer filled again, and this would occur at a rate of 1200 
or more baud, so it wouldn’t take long.

Normally, the way all this happens is that after your printer driver sends 
each character, it reads a status word from the printer and looks to see if the 
printer is sending back a control-s, which means “Stop! my buffer is full. 
Don’t send any more characters until it’s empty.” If there is no control-s 
being sent back, the computer sends the next character, and so on, until it
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receives a control-s. At that point, it goes into a wait loop searching for a 
control-q to come from the printer. The control-q means the printer buffer is 
once again empty. (“Hello, I’m empty; you can send more data.”) Fig. 9-5 
shows how this looks in flowchart form.

The point of all this protocol is that the computer only waits for the printer 
after every 1024 characters, instead of after every character, and is, therefore, 
free to do other tasks while printing is taking place.

ETX/ACK Protocol

Etx/ack protocol is similar to that of the xon/xoff procedure, but it is 
implemented differently. In this case, a block of characters (often 128) is sent 
to the printer followed by an “etx” character (03 hex = control-c). “Etx” 
means “end of text.” Then, after the printer has printed out the entire block 
of characters, it sends an “ack” (06 hex =  control-f) back to the computer. 
“Ack” means “Acknowledge. I have received your last transmission.”

Writing a Sample Driver

In the last section, where we explored the BIOS listing, we found a driver 
for the simplest kind of printer—a “teletype-like” device with no advanced 
protocol. What we’re going to do in this section is write a driver for a printer 
that uses xon/xoff protocol. Then, in the next section, we’ll show you how to 
insert this driver into your BIOS so your entire C P/M  system can use the 
new printer.

Specifically, our printer will be a Diablo 630 daisy wheel. We are using it 
for word processing and it is hooked to our C P/M  system through a serial 
board running at 1200 baud. The serial board uses an Intel 8251 UART, 
which is what our driver must talk to.

Look back at the driver in the last section. When it wants to know if it can 
send a character, it checks to see if 3 bits are set: number 7 for “Data Set 
Ready,” number 2 for “Transmitter Empty,” and number 0 for “Transmitter 
Ready.” Here’s how the status word looks with these bits set:

DSR SYNDET FE OE PE TxE RxRDY TxRDY
1 0 0 0 0 1 0 1

Bit number 7 6 5 4 3 2 1 0
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Fig. 9-5. Flowchart of the XON/XOFF protocol program.
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Using the xon/xoff protocol is somewhat more complicated. We need to 
ask the UART two different kinds of questions: first, whether the UART is 
ready to receive a character from  the BIOS, and second, whether the UART 
has a character ready to give to the BIOS. In the first case, we ask the UART 
whether bits 0 and 2, for “transmitter ready” and “ transmitter empty” are 
set. In the second case, we want to know whether bit 1, for “receiver ready,” 
is set.

When a program CALLed the driver for the simple “teletype-like” printer 
driver in the last section, there was only one possible outcome. The driver 
would wait until the UART said the printer was free and then send the char
acter.

With “xon/xoff,” there are two things that can happen when a program 
calls the driver to send a character to the printer. In either case, a character 
gets sent to the UART to be transmitted to the printer. Then, either (1) the 
UART will not have sent an “xoff ’ (in which case, control will return to the 
calling program so that it can get another character) or (2) the UART will 
have sent an “xoff” (in which case, the driver will not return to the calling 
program, but will wait until the “xon” is received before it goes on). Listing 
9-6 is the listing for the new driver.

We’re assuming here that we don’t need to do anything further to initialize 
the UART. If we did, we’d need to add the appropriate instructions to the 
initialization part of the program. From the preceding descriptions, you 
shouldn’t have any trouble following the operation of the driver.

Testing the Driver

If you’re very confident about your programming, you may want to go 
right ahead and assemble your new driver right into the BIOS without testing 
it out. If so, you can skip the next few paragraphs.

Inserting the new driver into the BIOS and writing it on the system tracks of 
a diskette (as we’ll describe in the next section) is somewhat involved, and not 
something you want to do too many times. It would be nice if there was an 
easier way to test out your new driver to see if it works. Then, you could debug 
it without going through the whole procedure of assemblying a new BIOS 
every time you change a single instruction in your code. Here’s how we do it:

1. We put the driver routine at 100 hex, just like any other program. We 
can use either the DDT “a” command, or assemble it with ASM.

2. We put a “jm p 100” instruction at the start of the printer driver rou
tine in the BIOS.
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Listing 9-6. New Driver Program
• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
;  LIST CHARACTER IN C *
• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;  New x o n / x o f f  p r i n t e r  d r i v e r .
;  (was j u s t a RET r e t u r n  i n s t r u c t i o n . )

LPTOUT: in p r t s ; I n p u t  8251 s ta tu s
ani 05h ;AND 8251 f o r  ready to  send
x r  i 05h ;E x c lu s i v e - 0 R  to  ge t  zero f l a g
jn z I p t o u t ;Loop t i l l  UART r e g i s t e r  ready
mov a ,c ;Get  l i s t  c h a r a c te r  f rom C to  A
out p r t ; 0 u t p u t  to  UART data r e g i s t e r  and send
i n p r t s ; I s  UART ready w i t h  a c h a r a c te r
ani 02h ;Does r e c e i v e r  have a c h a r a c te r  ready
x r i 02h ;Mask
rnz ; I f  not  ze ro ,  then co n t inu e  n o rm a l l y
in p r t ;Y e s -g e t  the  c h a r a c te r
cpi 13h ; I s  i t  a AS f re eze  ( x o f f )
rnz ;Nope-so s k ip  i t

L p 11 : i n p r t s ; I t  was a AS so now we must w a i t  f o r  
;a  AQ to  r e t u r n

ani 02h
x r i 02h
jn z Lp t i
i  n prs ;C h a r a c te r  i s ready
cpi 11 h ; I s  i t  a AQ (xon)
jnz Lp t i ;No,  so loop t i l l  i t  i s ,  i . e . ,  l e t p t r  

; b u f f e r  empty
r e t ; F i n a l l y ,  a AQ so r e t u r n  f o r  nex t  char

We’ll assume at this point that you’ve written an appropriate driver routine 
of your own. It may not be perfect, but it’s ready for a preliminary test. Thus, 
as we describe how to test our routine, you can—if you’re ready—follow the 
same steps with your own routine.

First, you have to know where to put the “jum p 100” instruction. This isn’t 
hard if you’ve assembled your existing BIOS into a PRN file. Simply look 
through the listing for the printer driver routine and write down the address 
where it starts. In our 56K system, this address is DF35 hex, as you can see 
from the BIOS listing that was described in the last section.

306



The Innermost Soul of CP/M

So, either write your driver with your word-processing program (call it 
NEWDRIVE.ASM), assemble it to get a HEX file, and call it in with DDT:

A>ddt newdr ive .hex

or, type it in directly from DDT using the “a” command. In either case, ORG 
it at 100 hex.

At this point, your printer should not be operating (you have not toggled it 
on with control-p). Use the “a” command to insert a “jm p 100” at the start 
of the driver routine in BIOS. For our particular BIOS, we’d say:

-aDF35
DF35 jmp 100 
DF38 .

Note that you are modifying the very BIOS that you’re operating with. If you 
do something wrong, the system may die, so save your files before you get in 
too deep.

Now comes the moment of truth. Toggle on the printer by typing control- 
p. Hit “return” a few times. The printer should respond. Type something, 
and then hit return. It should be printed out. If the wrong thing, or nothing, 
happens, either your driver is defective or your “jm p 100” instruction is in 
the wrong place. Back to the old drawing board.

INSTALLING THE NEW DRIVER INTO YOUR BIOS

Once you have the driver working in this nonstandard location, you can 
install it into your CP/M  system. That’s the subject of this section.

Before we can complete this process, you’ll need to learn about two new 
CP/M  utility programs, MOVCPM and SYSGEN, and about the magic 
number N that we mentioned earlier. We’ll cover these topics first, and then 
summarize the complete procedure at the end of the section.

The MOVCPM Program—What’s It Hiding?

MOVCPM is an amazing program. It actually contains within it most of 
the CP/M  operating system. That is, it contains the CCP and BDOS. It may 
also have part of the BIOS in it. If the people who configured your system
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did not put the disk part of BIOS in your BIOS.ASM file, then they put it in 
the MOVCPM program. What MOVCPM may not have in it are the drivers 
for the other I/O  peripherals: the console, the printer, and so on. They’re 
probably in the BIOS.ASM file. MOVCPM may have these routines in it, but 
they may not work on your equipment, or they may be merely skeletal drivers 
that don’t work on any equipment.

Here’s how MOVCPM works. When you call it, it loads three things into 
memory: (1) the MOVCPM program itself, (2) the CCP, BDOS, and maybe 
part of BIOS in the form of a COM file, and (3) a bit map, which tells it 
which bytes of the COM file need to be “relocated” and which don’t.

One question that should immediately occur to you is, “where in memory 
does the MOVCPM put this COM file?” It can’t put it in high memory where 
C P/M  normally goes, since the actual system we’re operating with is already 
there, and you can’t make major changes in the very same sections of code 
that constitute your operating system, without getting into big trouble. So 
MOVCPM keeps this version of C P/M  in low memory, starting at location 
900 hex, which just leaves room for the program and the bit map below it. 
This version of CP/M  is called the system “image,” a name that means that 
the instructions of code look just like the actual operating version of CP/M  
in high memory, but are in the wrong place to actually execute.

Fig. 9-6 illustrates what memory looks like when MOVCPM is at work. 
When you call MOVCPM from CP/M , you need to specify two parameters. 
The first is the size memory that your machine has, 64K or whatever. Second, 
you need to tell it whether you want the image of C P/M  to be moved to high 
memory and executed. This is something you almost never want, since the 
CP/M  image is probably incomplete and won’t work, and will result in a 
crashed system if you try to execute it. If you don’t want this to happen, you 
type an asterisk after the size:

A>movcpm 56 *

You can also use an asterisk in the memory field if you want to simply use 
all the available memory.

This means “leave the image in low memory; don’t relocate or execute it.' 
This means “we want to generate CP/M  for a 56K system.”

Axnovcpm *  *  (Takes 64K in a 64K system, etc.)
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In our particular case, we can’t do that because the upper 8K of our 
machine, although present, is used for special video drivers. (The routine 
figures out how much memory you have by testing higher and higher 
addresses to see if it can put something into each location and then read it 
out. When it can’t, that’s the top of memory.)

How does MOVCPM go about moving this “image” of C P/M  to high 
memory? It starts off with all the individual 8080 instructions written as if 
they were in a 20K system. Next, it figures out the difference or “bias” 
between a 20K system and the size that we specified, like 56K. Then it uses 
the bit map to change only those bytes which represent addressees in the 
code (the last two bytes of a “jm p” instruction, for instance). That’s it. The 
resulting new “image” sits in low memory waiting for the next thing that we 
want to do with it. Even though the addresses are changed as i f  the BIOS 
were in high memory, it is not actually moved there.

What we do now is save this image using the SAVE utility. MOVCPM is 
very helpful here because it tells us just what to type:

FBASE

CBASE

900

100

0

/ /
BIOS

/
BDOS

/
CCP

/

/
BIOS (maybe)

/
BDOS

/
CCP

/
Bit Map

/
MOVCPM

/
Zero Page

/

Top of memory.

“Active” CP/M system.

Space available, depending 
on size of system.

“ Image" of CP/M.

Fig. 9-6. Memory when MOVCPM program is operating.
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A>movcpm 56 *

CONSTRUCTING 56K CP/M ve rs  2 .2
READY FOR "SYSGEN" OR
"SAVE 45 CPM56.COM"
A>

So we type “save 45 cpm56.com”. The image is 45 separate 256-byte “pages” 
long, and MOVCPM suggests we call the file “CPM56.COM”, which we’re 
happy to do.

The Urge to Merge

Once we have the file of the C P/M  image, CPM56.COM, safely stored on 
our disk, what then? Well, we’re going to merge the BIOS.ASM file, which 
we’ve modified by putting our new driver into it, into CPM56.COM, using 
both a special technique in DDT and the magic number N. Then we’ll take 
the resulting complete image of C P/M  (which we can call “CPM56n.COM”, 
where “n” stands for new) and write it onto the system tracks of a formatted 
but otherwise virgin disk, using SYSGEN.

The Magic Number “N”

Now that you know how to use MOVCPM, you can be admitted to the 
small and privileged group who know how to find the magic number N. 
What is this number? Really, it is the difference, or offset, between where 
MOVCPM puts the image of C P/M  and where CP/M  actually goes in high 
memory.

In Figure 9-7, notice how the “image” of CPM that is placed in low mem
ory by the MOVCPM program is related to the image of C P/M  that will be 
placed on the system tracks of the new disk. This new image will occupy 
exactly the same addresses as the CP/M  that is currently running in high 
memory, except for the changes made to BIOS by the addition of the new 
driver.

The CCP is located at 980 hex in the system image, but will be at BCOO hex 
(in our 56K system) when actually installed and running. BDOS is located at 
1186 in the image, but will be at C406 when running, and so forth. You can 
see that all these pairs of numbers are related by the same constant, which we 
can find by subtracting any two of them.
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How Do We Find Out All These Addresses, Anyway?

In order to find the magic number N, we need to know at least one pair of 
addresses: the one in the MOVCPM image in low memory and the one that is 
in the running CP/M  in high memory. A good “pair” to work on is CBASE, 
the bottom of the CCP. The first half of this is easy because, in the system 
image, the CCP is always at 980 hex, no matter what size system you have. 
CBASE for high memory, as we discussed before in the chapter on BASIC, is 
not quite so easy to find. However, if you look at locations 6 and 7 hex in 
memory while CP/M  is running (not DDT), you’ll find an address that is 
close to the start of BDOS. The CCP is usually about 800 hex bytes long, so if 
you subtract 800 from this address, you’ll get CBASE. In our case, C406 -  
800 = BC06. But we know that the CCP is going to start on a page bound
ary, so we figure that it’s probably at BC00.

Another way to find CBASE is to look at the BIOS.PRN (not the ASM) 
listing. As we described earlier in the chapter, CBASE and several other fas- 

_____

FBASE

CBASE

2D7F

1F80

1186

980

900

100

0

Old BIOS

BDOS

CCP

(Unused)

New BIOS

BDOS

CCP

BOOT

Bit Map

MOVCPM

Zero Page

New BIOS

BDOS

CCP

BOOT

/ DFFF

/
D200

/
C406

/
BC00

/
BB80

Image written 
to system tracks.

Image in memory.

Fig. 9-7. Location of CP/M

All these pairs 
of numbers are 
related by the 
same constant.

image in memory.
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cinating addresses are often part of the address location arithmetic in the 
beginning of the file. Checking this file, we find that BCOO is, in fact, the start 
of the CCP.

DDT’s Hex Arithmetic Function

Did you know that DDT had a handy function that will perform arithme
tic on hexadecimal numbers? Of course you did. If we type:

- h x , y

where x and y are 4-digit hex numbers, DDT will print out x +  y and x-y in 
hex, for our gratification and amusement.

In this case, we want to know the difference between, say, 980 and BCOO. 
It would also be nice if we got a negative number, so that we could simply 
add it to other numbers later to perform the conversions. Thus, we get into 
DDT and type:

-h980 ,bc00

DDT responds with:

C580,4D80

The difference between these two numbers is what we want: 4D80. It is, in 
fact, our magic number N.

Finding the Magic Number the D.R. Way

In the CP / M Alteration Guide, Digital Research provides a table of these 
magic numbers for different memory sizes. This table will work for some 
C P/M  systems but not for others (such as the one in our examples). The 
problem is that the table assumes a certain size BIOS. If your BIOS has been 
enlarged, either by you or by the vendor who configured the system, the table 
will give you the wrong value.

These are the values of N that are shown in the CP/ M  Alteration Guide:
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Memory Size Offset N
20K D580
24K C580
32K A580
40K 8580
48K 6580
56K 4580
62K 2D80
64K 2580

Note that for our 56K system, it gives a value of 4580 instead of the 4D80 
that we know is correct. The difference between these two values is 800 hex, 
which is just how much additional space our modified BIOS takes up.

If you have the standard-size BIOS, then the table will be useful to you, 
but you should verify the actual location of your CP/M  system by one of the 
methods previously described before you accept the figures in the table at 
face value.

What Good Is This Magic Number?

We need to know this number for two reasons. First, we want to be able to 
look at certain sections of code in the MOVCPM image in low memory and 
know what we’re looking at. We know where things are in BIOS in high 
memory from the BIOS.ASM listing, and we need to be able to translate this 
into equivalent locations in low memory. The magic number N does this, as 
we shall see.

Secondly, we’re going to use another one of DDT’s useful features-the 
ability to load a HEX file with a “bias” or offset, instead of at the ORG 
address of the file. Thus, if we have a HEX file that is ORGed at, say, D200, 
and we want to load it into memory somewhere else, say at 1F80, we simply 
figure out the magic number that is the difference of these two numbers and 
type it into DDT following the “r” (for “read”) command. As you can see, 
this is the same old magic number, 4D80. If, for example, we want to load a 
HEX file called NEWBIOS.HEX (which is ORGed at D200) using this bias, 
we type:

- i n e w b io s .h e x
-r4d80

and the file will be placed in memory at 1F80.
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INSERTING THE NEW DRIVER INTO THE CP/M SYSTEM

At this point, you should have a working driver routine that you’re ready 
to insert into your CP/M  operating system. In the procedure that we’re going 
to describe, we’ll make use of the knowledge you’ve acquired in the previous 
sections.

Merging Your New Driver Into the BIOS.ASM  File

The first thing that we want to do is create a new version of the BIOS.ASM 
file: one which incorporates your new driver. (Remember that this file will 
have different names depending on your system: BIOSIO.ASM,
GBBIOS.ASM, or whatnot.)

Start by making a copy of the old BIOS.ASM file. Call it 
NEWBIOS.ASM:

A>pip newbios .asm=biosio.asm

Bring NEWBIOS.ASM into your word-processing or text-editing program. 
Delete the program lines for the existing driver. Then, either type in the 
assembly code for the new driver, or (if your word processer will let you) 
copy the file containing the new driver into the right place in 
NEWBIOS.ASM.

Also, if you need to add anything to the initialization part of BIOS to get 
the UART off on the right foot, now is the time to do it.

Reassemble the new BIOS:

A>asm newbios 

You now have NEWBIOS.HEX and NEWBIOS.PRN.

Create the C P/M  Image

You can now use MOVCPM to create the CP/M  image, as described in the 
last section. If you already have the system image (CPM56.COM or what
ever) stored as a file, you can skip this step. Refer to the last section to see 
how MOVCPM is used.
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A>movcpm 56 *
A>save 45 cpm56.com

Of course, the numbers here will be different, depending on your system.

Read in the C P /M  Image Using DDT

We’re going to use DDT to do the actual merging of the new driver into 
the system image. Load the system image as you call DDT:

A>ddt cpm56.com

To make sure that everything is where you think it is, use DDT to explore 
this image. Here’s the beginning of the CCP in the system image:

-d980
0980 C3 5C BF C3 58 BF 7F 00 20 20 20 20 20 20 20 20 . \ .  . X . . .
0990 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48 C0PYRIGH
09A0 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T (C) 1979, DIGI

( e t c . )

It should be just the same as the running CCP in high memory, so look at 
that:

-dbcOO
BCOO C3 5C BF C3 58 BF 7F 00 20 20 20 20 20 20 20 20 . \ .  . X . . .
BC10 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48 C0PYRIGH
BC20 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T (C) 1979,  DIGI

( e t c . )

Using the “d” command lets us see that the sign-on message is really there. 
Check the beginning of BIOS. It should be a jump table:

- 1 1 f 80
1F80 JMP D3D3
1F83 JMP D334
1F86 JMP DE79
1F89 JMP DE7C

(e t c . )
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Now look in the running BIOS. It should be the same thing:

-Ld200
D200 JMP D3D3
D203 JMP D334
D206 JMP DE79
D209 JMP DE7C

( e t c . )

Find the old driver routine (if there is one) in the system image and in the 
running BIOS. They may not be the same.

Merge in the New BIOS File

We’re going to use DDT to merge the NEWBIOS.HEX file into the image 
of CP/M  in low memory. This is where the magic offset number N comes in. 
Although NEWBIOS.HEX is ORGed in high memory (at DE70 in our case),
we want to lay it down on top of the BIOS part of the system image in low
memory (at 2BF0 in our case).

- i n e w b io s .h e x

That puts the file name in the FCB.

- r4d80

That reads in the file with an offset of 4d80. You should now look at the 
image with the “1” command to make sure that the new driver is where you 
want it to be. If so, you’re ready to save the image as a file back onto the disk.

-gO
A>save 45 cpm56n.com

 The “n” means “new.”

----------------------------This is the same number of 256-byte pages that MOVCPM told
you to save originally (unless your modification has expanded 
BIOS past a page boundary).

316



The Innermost Soul of CP/M

Writing the New Image to the System Tracks

Now, we’re ready to actually create a new system disk. Take a formatted 
disk and put it in drive B.

SYSGEN is often used, as you no doubt know, to simply copy the current 
C P/M  system from the system tracks of the working disk to those of a 
formatted disk. In that case, no file name is specified when we call it. How
ever, we want to use the CPM56n.COM file when we generate our new sys
tem, so we type:

| ------------------- Don’t forget the “n”.

A>sysgen cpm56n.com

SYSGEN will reply with:

■ Type this “b.”

SYSGEN VER 2.0  
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)b
DESTINATION ON B, THEN TYPE RETURN-------------------
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)-

■Type returns here.

SYSGEN will write the new version of the operating system onto the system 
tracks of the new disk.

That’s it! You’re done! You have a new custom-configured operating sys
tem that you made yourself. There are a lot of people out there who will pay 
good money for this sort of talent. Test it out using D IR and TYPE to see if 
it will really print out when you toggle on the printer with control-p. If you’re 
testing an xon/xoff or an etx/ack printer, you’ll need to send enough charac
ters at once to fill up the printer buffer.

If it doesn’t work, go back to the beginning of this section and follow the 
steps very carefully. Check that you know where everything is in memory, 
both in the system image in low memory and in the running C P/M  in high 
memory. If your driver worked when you tested it with DDT at location 100, 
it should work when installed in the driver.

Good luck!
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Quick Summary of Driver Installation Steps

Once you are able to perform this installation process quickly, this is what 
you’ll be typing on the screen. (We’ll assume that you aren’t going to check 
memory with DDT.) Of course, the memory size and the number of pages to 
SAVE will be different depending on your system.

A>pip newbios .asm=biosio.asm

(Add d r i v e r  to  newbios.asm w i th  word p ro c e s s o r ,  s to r e  
r e v i s i o n  as NEWBIOS.ASM)

A>asm newbios

A>ddt cpm56.com

- in e w b io s .h e x
-r4d80
-gO

A>save 45 cpm56n.com 

A>sysgen

Under some special circumstances, you don’t even need to use the assem
bler to modify your BIOS. You can do it directly with DDT, using a process 
similar to that previously described, but somewhat shorter. Essentially what 
this involves is using the “a” command of DDT to put the code for the new 
driver into BIOS, rather than reassemblying the BIOS.ASM file. This could 
be useful if the driver you want to install is not too complex, or if you’re 
making minor changes in an existing driver, or debugging it.

The limitation of this process is that the new driver must fit into the space 
occupied by the old one. Otherwise, when you type in the instructions using 
the “a” command, you may be overwriting something important. Actually, 
you might be able to expand the driver a little, depending on what routine

A>movcpm 56 *
A>save 45 cpm56.com

(These steps won’t be necessary each time.)

A SHORTCUT
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follows the driver. If it’s the routine that returns the status of the list device, it 
may never be used, so you can overwrite it. Check your BIOS.ASM listing to 
see what’s there.

As described in the last section, get your new driver working at 100 hex by 
placing a “jm p 100” at the start of printer driver in the running BIOS. Once 
it’s working at 100 hex, move it up to high memory with the “m” command 
of DDT. For instance, if your routine is 44 hex bytes long and is going to be 
installed in location F209, you’d type:

-ml 0 0 , 4 4 , f 209

Note that you’re directly modifying the operating system that you’re using, 
so if you make a mistake, things could die a quick death. You don’t (obvi
ously!) want to use this system to modify the drivers of any peripherals that 
are currently in use.

The instructions for your driver are now at the right place in the running 
BIOS, but they have the wrong addresses, having been assembled at 100 hex. 
Go through the code with the DDT “a” command and change the memory 
reference instructions to the correct values. For instance, if there’s a “jm p 
100” instruction in the program, you’ll need to change it to “jm p f209” .

Now, turn on your printer. (It should work since it’s running with the new 
driver, right?) Use DDT’s “1” command to dump the code for the driver rou
tine to the printer:

- L f 209

You’re going to need this printout in a minute.
If you don’t already have it, create a file containing your current system 

image, using MOVCPM:

A>movcpm 64 *
A>save 43 cpm64.com

This assumes that your MOVCPM contains a working version of BIOS. If it 
doesn’t (some MOVCPM’s have only a skeletal BIOS), then you’ll have to 
make up a current version of CPM64.COM (or whatever) by assemblying 
BIOS.ASM and merging it into CPM64.COM with DDT as described in the 
last section. This may make the process seem like not much of a shortcut, but 
if you’re debugging, you’ll only have to create this CPM64.COM file once.
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After that, you can skip this step entirely. Bring this image into memory 
with:

A>ddt cpm64.com

Now you have to find the old driver in the image in low memory. You can 
either use the magic number N as described earlier or you can simply search 
through the code with DDT, looking for the instructions that you know are 
in the driver.

Once you find the old driver, you type the new one over the top of it, using 
the “a” command. Type it in exactly as it appears on the printout that you 
made above. The memory reference instructions will be wrong for their cur
rent locations in low memory, but they’ll be right later when loaded from the 
disk system tracks into high memory.

Save this modified image as CPM64N.COM:

-gO
A>save 43 cpm64n.com

Use SYSGEN to write this new image to the system tracks of a formatted 
disk:

A>sysgen cpm64n.com

There you are again! A complete working CP/M  system with your own 
custom modification. Boot up the new disk and test the driver by using it to 
TYPE some long files.

MODIFYING BIOS FOR DIFFERENT CONTROL 
CHARACTERS

It may happen that you have a printer with special functions like com
pressed or elongated print fonts, different color ribbons, or the like. It may 
also be the case that there’s no convenient way to send these control codes to 
the printer from your program, so these special functions are difficult to use. 
One solution to this problem is to modify the printer driver in your BIOS to 
reinterpret certain characters.
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Listing 9-7. Print Driver Program
**************************************************

0100

0100 
0102 
0104 
0106 
0109 
010A 
010C 
01 OF

DB23
E685
EE85
C20001
79
FE17
CA1201
C32801

;new p r i n t e r  d r i v e r  f o r  Epson MX-80
r
; i n c o r p o r a te s  compressed-mode f a c i l i t y
;  c o n t r o l - w  to g g le s  between compressed and normal
W
;  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

r
org 100h

/
t e s t  i n  23h ; g e t  p r i n t e r  s t a t u s

ani  85h ;mask o f f  t e s t  b i t s
x r i  85h ; a r e  they a l l  on
jnz  t e s t  ;no -w a i  t
mov a ,c  ; g e t  c h a r a c te r  in  A-reg
cpi  17h ; i s  i t  a c o n t r o l - w  ?
j z  c o n t r o l  ;yes
j mp exi  t  ;no

; i t 1s a c o n t r o l - w

0112 3A2B01 c o n t r o l  Ida to g g le  ; i s  to g g le  se t  to  0 ?
011 5 B7 ora a
0116CA2201 j z  comp ;yes

; t o g g l e  se t  to  nonzero ,  so t u r n  OFF compressed p r i n t  
0119 2F cma ;change A - r e g i s t e r  to  0
011A 322B01 s ta  to g g le  ;  se t  to g g le
011D 3E92 mvi a,92h ; g e t  code to  t u r n  OFF c .p .
011F C32801 jmp e x i t

; t o g g l e  se t  to  ze ro ,  so t u r n  ON compressed p r i n t
0122 2F comp cma ;change A - r e g i s t e r  to  non-0
0123 322B01 sta to g g le  ;  se t  to g g le
0126 3E0F mvi a ,0 fh  ; g e t  code to  t u r n  ON c .p .

; p r i n t  the c h a r a c te r  and r e t u r n  
0128 D322 e x i t  ou t  22h ;send to  p r i n t e r
012A C9 r e t  ; r e t u r n

012B 00 to g g le  db 0 ;  i f  0 ,  norma I mode
; i f  non-0 ,  compressed mode

012C end
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As an example, let’s take the Epson MX-80. If you send it a control-o (OF 
hex), it will start printing in compressed mode. If you send it a control-r (12 
hex) it will go back to the normal mode. However, our word-processing pro
gram lets us use only a few control characters for user-defined functions and 
neither control-o or control-r are among them. However, control-w is. We’d 
like to set things up so that when the driver sees one control-w, it sends a 
control-o to turn on the compressed mode, and when it sees the second con
trol-w, it turns off the compressed mode with a control-r.

Listing 9-7 is a new driver program that will do exactly that.
As shown here, it’s ORGed at 100, ready to be checked out by DDT. Once 

you know it works, it can then be assembled into BIOS and merged into 
CPM64.COM with DDT, as previously described.

THE SKY’S THE LIMIT

There are, of course, dozens of things you can do along these lines once 
you know how to get in and modify your BIOS. The only limit is your imagi
nation. Have fun!
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APPENDIX A

Hexadecimal Notation

WHY USE HEXADECIMAL NOTATION?

Why don’t computers just use decimal notation like everyone else? 
Wouldn’t that be a lot simpler for everyone involved? Yes, it would be sim
pler for humans, no question about it. We’re used to counting by tens. How
ever, it would be much more difficult for the computer. Computers, as every
one knows, are full of transistors, and transistors are really just very small 
switches that can be turned on and off by other transistors. And these switch
es, like the light switches on your wall at home, have only two positions: on 
and off. No one has yet figured out how to make a transistor that has ten 
positions (at least one that will work reliably in a computer). So humans must 
think of a digit as having ten possible values (from 0 to 9), while computers 
think in terms of a binary digit that has only two possible values: either 0 or
1. This binary digit (binary means “two”) is called a “bit.”

BINARY NOTATION

When a computer counts, it starts with 0, like everyone else. It then goes to 
one. So far, we can identify with that. But what happens next? The poor thing 
has run out of all possible values for this digit! There are only 0 and 1! So it 
does just what we do in the decimal system when we run out of digits. It adds 
a new column to the left of the one’s column, which gives it 10.

Of course, this 10 isn’t 10 decimal but 10 binary, which is the same as 2 
decimal. The column next to the one’s column isn’t the ten’s column, as it is 
in decimal notation, it’s the two’s column. (The third column over is the
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four’s column, the fourth column is the eight’s column, and so on.) Thus, 11 
binary is the same as 3 decimal, and 100 binary is the same as 4 decimal. 
Here is a list of the first 16 binary numbers:

Binary Decimal Binary Decimal

0 0 1000 8
1 1 1001 9

10 2 1010 10
11 3 1011 11

100 4 1100 12
101 5 1101 13
110 6 1110 14
111 7 1111 15

So four columns in the binary system lets us count from 0 to 15 (decimal). 
A piece of information that is 4 bits long is sometimes called a “nybble” and 
a piece of information that is 8 bits long is called a “byte.” Since there are 16 
possible numbers (counting 0) in a nybble, there are 16 times 16, or 256, 
possible numbers in a byte. For instance, the binary number 11111111 is 255
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decimal, the binary number 1000000 is 128 decimal, and the binary number 
10000 is 16 decimal. (See the list of binary to decimal equivalents given later 
in this appendix.)

DECIMAL NOTATION

All right, now we know something about binary notation and why com
puters like to use it. But, what does binary have to do with hexadecimal? The 
problem is that while computers are happy thinking in binary, the binary 
system turns out to be very difficult for humans to read. For example, here’s 
the decimal number 48458 expressed in binary: 1011110101001010. Who can 
handle this long a string of ones and zeros? How would you like to do arith
metic on such a number, or try to remember it, or write it down accurately? 
Not so easy. Well then, why not just translate each binary number into its 
decimal equivalent, and talk about that? The computer can then think in 
binary and convert to decimal when it wants to communicate with humans. 
Good idea, and one that’s used very often in the computer business. Most 
applications programs communicate with the user in decimal notation, and 
even whole languages, like BASIC and FORTRAN, are made to speak in 
decimal to the user.

However, when we really want to talk about what is going on in the com
puter on a detailed level (as we often do when we write assembly language 
programs), the decimal system has certain glaring disadvantages. For one 
thing, the decimal number doesn’t tell us anything about how the bits look in 
the binary number and, in many programming applications, we need to deal 
with patterns of bits. It’s not instantly obvious, for example, that 240 decimal 
is 11110000 in binary. Another related problem is that the number of digits 
used for a particular binary number has no easy relationship to the number 
of digits used in a decimal number. Thus, 1001 and 1010 both have four 
digits, but 1001 is 9 decimal (which has one digit), and 1010 is 10 decimal 
(which has two digits). This is awkward for printouts and for visualizing 
what’s going on.

HEXADECIMAL NOTATION

Fortunately, in the dim and distant past of computer development, some
one came up with a compromise between binary (which is easy for the com
puter to read) and decimal (which is easy for the human to read). This com-
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promise is called “hexadecimal” notation (or “hex” for short). Where binary 
is a number system based on two, and decimal is based on ten, hexadecimal 
is based on sixteen. Hexadecimal works by grouping together 4 bits (a nyb
ble) and assigning a symbol to each value that those 4 bits can represent. 
Since 4 bits can have any of 16 possible values, we need 16 symbols. It seems 
natural to assign 0 (hexadecimal) to the value 0 (decimal), and to assign 1 
(hex) to 1 (decimal), and so on, up to 9. But what happens then? We’ve run 
out of decimal digits, and we still have six more values to represent. We need 
more symbols and they shouldn’t be too obscure, or it will be hard to find 
hardware to print them out. Why not use letters of the alphabet? “A” 
through “F ” will handle it nicely. This is illustrated in Table A-l.

Table A -l. Binary, Decimal, and Hex Equivalents

Binary Decimal Hexadecimal

0 0 0
1 1 1

10 2 2
11 3 3

100 4 4
101 5 5
110 6 6
111 7 7 .

1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Now every possible value of a nybble (4 bits) has a unique symbol. Also, 
every possible value of a byte (8 bits) can be represented by two of these sym
bols: FF (hex), for example, represents 11111111 binary, or 255 decimal. Also 
44 (hex) represents 10001000 binary, or 68 decimal, and so on. Remember the 
number 11110000 that we referred to above and which is 240 decimal? It’s 
represented by F0 in hex, where the F represents the 1111, and the 0 represents 
the 0000. Notice how easy it is to recognize the bit-pattern 11110000 when you 
look at “F0.” The hex number lets you “see” the binary number, whereas, the 
decimal number doesn’t. Each byte can be uniquely specified by two hex
adecimal symbols, and each symbol represents exactly 4 bits.
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Learning to Think in Hex

Now we have a whole new numbering system: hexadecimal, or base 16. 
How hard is it to learn to get around in hex? If it were necessary to learn, for 
instance, how to multiply two 4-digit hex numbers together using pencil and 
paper, then it might take a long time to become proficient in hex. Fortu
nately, we don’t have to learn that much about the hex system to deal with 
computers. If you need to do arithmetic on hex numbers, it is usually a sim
ple addition or subtraction. You can either do this in your head (after a little 
practice), or you can convert the hex numbers to decimal, do the arithmetic 
on the decimal equivalents, and then convert the answer back to hex. We’ll 
show how these conversions are done in the next section.

Hexadecimal Arithmetic

Let’s try a little arithmetic in hexadecimal just to see what it’s like. For 
simplicity at this point, we’ll adopt the convention used in many assemblers 
and other programs; an “h” immediately following a number means it’s a hex 
number and a “d” immediately following a number means it’s a decimal 
number. Thus, 22h is 22 hex, which is 34 decimal, while 22d is 22 decimal, 
which is 16 hex.

What’s 2h plus 2h? Since both these numbers are the same as their decimal 
equivalents and the answer is also the same as its hex equivalent, there’s no 
problem. The answer is 4h. Similarly, 4h plus 3h is 7h. What about 5h plus 
5h? Let’s count on our fingers. While we count out loud, “six, seven, eight, 
nine,” we put up one, two, three, and four fingers. Now what? We don’t 
count “ten.” Because we’re in hexadecimal, the next digit after nine is “A.” 
So, as we put up the fifth finger, we count “A,” and that’s the answer.

What about Ah plus 4h? Let’s count on our fingers again. Starting with 
“A,” we’ll count until we have four fingers in the air: “B, C, D, E.” E is the 
answer. To add 7h to Bh, we’d start at “B” and count until we had seven 
fingers in the air: “C, D, E, F, 10, 11, 12.” So the answer is 12h. (Notice how 
“F” in hex is similar to 9 in decimal, in that the next number after it is 10.)

Let’s try adding some 2-digit hex numbers. We’ll write them down in col
umns just as we do when doing arithmetic in decimal notation.

4 B h 
+  1 9 h

6 4 h
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Starting with B, we can count 9 more: “C, D, E, F, 10, 11, 12, 13, 14.” So, 
Bh plus 9h is 14h. We write down the 4 and carry the 1 to the next column 
(the sixteen’s column), where we add 4h and lh  and, then, the lh  we carried, 
giving us 6h. Thus, the answer is 64h.

What about larger hex numbers? Try this:

B C 9 0 h
+ 2 A 2 h
B F 3 2 h

The addition of 2h and Oh is 2h (in the one’s column). Then, 9h and Ah is 
13h (in the sixteen’s column), so we write down the 3 and carry 1 to the next 
column (the 256’s column). Here, we add Ch and 2h and the 1 we carried, 
giving us Fh (with nothing to carry). Bh and nothing is Bh, so that’s the 
answer: BF32h.

Subtraction is easy too:

C F 3 4 h
- A 1 6 h

C 5 1 E h

We start by trying to take 6h from 4h, but we can’t, since it’s smaller, so, 
just as in decimal subtraction, we borrow one from the next column over. 
(This is the sixteen’s column, so we’re really borrowing 16d, which is lOh.) 
We add the lOh to the 4h, giving 14h, and 14h less 6h is Eh, as you can prove 
by counting backwards on six fingers: “ 13, 12, 11, 10, F, E.” Since we bor
rowed 1 from it, the 3 at the top of the sixteen’s column has been reduced to
2, so when we take 1 from it again, only 1 is left. In the 256’s column, we take 
Ah away from Fh, which leaves 5h (counting on five fingers: “E, D, C, B, 
A”). And, finally, in the 4096’s column, nothing taken away from Ch leaves 
Ch. And that’s our answer: C51Eh.

That’s not so bad, is it? It took you years to learn decimal arithmetic, and 
here you are, learning a whole new numbering system in just a few minutes!

Hexadecimal Bit Patterns

Another thing that it is useful to do in hex is being able to recognize the bit 
patterns of the sixteen hex digits. A good approach to this is to copy down
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Table A-l on a filing card and tape it up near your computer. If you do a lot 
of assembly language programming, you will find that you will refer to it so 
much that eventually the bit patterns will become second nature.

The most useful bit patterns to recognize are 0000 binary which, of course, 
is Oh, and 1111 binary, which is Fh. Often, a routine will set all the bits in a 
section of the computer’s memory to 1 and, then, if you look into memory 
with DDT or a similar program, you’ll find it filled with F’s. Another useful 
bit pattern is 7Fh, which is all the bits in a byte being set except the leftmost 
one (01111111). This can be used to “mask off” an extraneous upper bit to 
obtain the ASCII code for a character. The ASCII character codes for letters 
run from 41h to 7Ah, so if you see memory filled with these values, you know 
you’re looking at text.

CONVERTING HEX TO DECIMAL

Finding the decimal equivalent of a hex number is mostly a matter of 
remembering that the digit in each column of a hex number is sixteen times 
larger than the same digit would be in the column to the right. (Just as in a 
decimal number, each digit is ten times bigger than the same digit in the 
column to the right.)

Let’s find the decimal equivalent of BF3Ch. (For clarity, we’ll show deci
mal numbers without the “d”.) The one’s column is easy. Just look up the 
value of Ch on your little card (Table A-l). Ch is 12, so write that down. 
Now, take the 3 in the sixteen’s column and multiply it by 16: that’s 48. In 
the 256’s column, we first need to convert the Fh to 15, and then we can 
multiply it by 256 to arrive at 3840, which we also write down. Finally, in the 
4096’s column, we convert Bh to 11, which we multiply by 4096, obtaining 
45056. Now we can add 12, 48, 3840, and 45056. This gives us 48956, and 
that’s the answer. The following entry shows how this looks.

B F 3 C

Ch = 12, 12 * 1 12
3h = 3, 3 * 16 = 48
Fh = 15, 15 * 256 = 3840
Bh = 11, 11 * 4096 = 45056

48956
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CONVERTING DECIMAL TO HEX

It’s not quite so easy to extract a hex number from a decimal number since, 
instead of multiplication, we must now use division. The idea is this. To con
vert a 4-digit hex number to decimal, we first see how many 4096’s there are 
in it. Then, we convert that number to hex and write it down; it’s the digit in 
the 4096 column. Then, we work with the remainder of this division. We see 
how many 256’s there are in the remainder, convert this number to hex, and 
write it down in the 256’s column. The remainder of this division we then 
divide by 16, obtaining a value which we convert to hex and write down in 
the sixteen’s column. The remainder of this division is the number of one’s, 
which we convert to hex and write down in the one’s column. Let’s try it with 
a number that may look strangely familiar (it’s the result of the previous 
section’s conversion): 48956.

First, we find that 4096 goes into 48956 exactly 11 times, with a remainder 
of 3900. Decimal 11 is Bh, so we write down B in the 4096’s column. We 
divide the remainder of 3900 by 256 (the next column), which gives 15 with a 
remainder of 60. Decimal 15 is Fh, so we write down F in the 256’s column. 
Next, we divide 60 by 16, which gives us 3 with a remainder of 12. We know 
that 3d is 3h, so we write down 3 in the sixteen’s column. And, finally, we 
convert 12 (the remainder) to Ch, and write that down in the one’s column. 
And, amazing as it may seem, we get what we started with in the last section: 
BF3Ch. Let’s illustrate this.

48956 /  4096 = 1 1 , l i d  =  Bh
remainder = 3900.

3900 /  256 = 15, 15d =  Fh
remainder =  60.

60 /  16 = 3, 3d = 3h
remainder = 12.

12 /  1 = 12, 12d =  Ch
no remainder.

As with most things, it takes practice to become comfortable with hex
adecimal. Practice doing some conversions and some arithmetic and, before 
long, you’ll be able to work with hex almost as well as your computer!
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Utility Programs

In this appendix, we’ve collected several programs that may prove to be 
useful or amusing, but which did not fit into the rest of the book.

HEXDUMP

This program will dump—that is, print out the contents in hex numbers— 
any 128-byte section of memory. It is very similar to the “d” command of 
DDT, except that it doesn’t print the ASCII representations of each byte 
alongside the hex. This would be easy to add to the program, however, if you 
want it.

This program is useful for looking at parts of memory when you don’t 
want to use DDT. For example, DDT modifies the page zero addresses when 
it’s loaded, so if you want to see what they are in their normal state, 
HEXDUMP is just what you want.

Listing B-1. The HEXDUMP Program
• ‘kickie'k'k'k-k'k'k'k'k'k'k'k'kie'k'k'k'k'kieieieie'k'k-kic'k'k'k'k'k'k'k'kif'kicie'kie'k'k'k'k'k

;HEXDUMP-Program to  dump 128 by tes  o f  memory.
;  Requires s t a r t i n g  address i n  hex.

0002 = conout equ 2h ; c o n s o le  out
0001 = coni  n equ 1 h ; c o n s o le  in
0005 = bdos equ 5h ; o p e r a t i n g  system

0100
/

org 10Oh
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0100 CD7101
0103 7D
0104 E6F0
0106 6F
0107 0E08 
0109 CD2E01

; g e t  address f rom user and i n i t i a l i z e  counts 
c a l l  h e x ib in  ; g e t  address in  hex

a , I  
Of Oh 
1/ 3  
c ,8  

c a l l  p c r l f

mov
ani
mov
mvi

;mask o f f  r i g h t - h a n d  d i g i t

; s e t  number o f  l i n e s  
; p r i n t  l i n e f e e d

; p r i n t  address and s t a r t  new l i n e
010C 0610 
010E CD2E01 
0111 CD3F01 
0114 CD3901 
0117 CD3901

011A 56 
011B CD4801 
011E CD3901
0121 23
0122 05
0123 C21A01

n u l i n e  mvi b,16d 
c a l l  p c r l f  
c a l l  phex 
c a l l  pspac 
c a l l  pspac

; p r i n t  the by tes  f o r  
nubyte mov d,m

c a l l  pbyte  
c a l l  pspac 
i nx h 
dc r  b 
jn z  nubyte

; s e t  nbr  o f  by tes  per  l i n e  
; p r i n t  l i n e f e e d  
; p r i n t  address 
; p r i n t  two spaces

t h i s  I i n e
; g e t  by te  i n t o  d 
; p r i n t  i t  
; p r i n t  space 
; in c re m e n t  h i  
;done w i th  t h i s  l i n e ?  
;  no t  y e t

0126 0D
0127 C20C01 
012A CD2E01 
012D C9

;done t h i s  l i n e  
dc r  c 
jn z  n u l i n e  
c a l l  per I f  
r e t

;done a 11 I i nes?
;  no t  y e t
; y e s - p r i n t  l i n e f e e d  
;back  to  CP/M

012E 3E0D 
0130 CD6401 
0133 3E0A 
0135 CD6401
0138 C9

; s u b r o u t i n e  to  p r i n t  
p c r l f  mvi a,0dh 

c a l l  pchar 
mvi a,0ah 
c a l l  pchar 
r e t

a r e t u r n  and l i n e f e e d  
; p r i n t  c a r r i a g e  r e t u r n

; p r i n t  l i n e f e e d

/ s u b r o u t i n e  to  p r i n t  a space
0139 3E20 pspac mvi a,20h ; p r i n t  space 
013B CD6401 c a l l  pchar
013E C9 r e t
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; p h e x - r o u t i n e  to  p r i n t  b in a r y  number i n  h i  
;  ou t  on screen in  hex

013F 54
F
phex mov d,h ; p r i n t  2 d i g i t s  f rom H

0140 CD4801 c a l l pby te
0143 55 mov d , l ; p r i n t  2 d i g i t s  f rom L
0144 CD4801 ca 11 pbyte
0147 C9 r e t

w
; subrou t i n e  to  p r i n t 2 - d i g i t  hex number ( i n  d)

0148 7A pbyte mov a,d ; p r i n t  l e f t - h a n d  d i g i t
0149 CD5101 ca 11 p r i n t l
014C 7A mov a,d ; p r i n t  r i g h t - h a n d  d i g i 1
014D CD5501 ca 11 p r i  nt2
0150 C9 r e t

f
; subrou t i  ne to  p r i n t one hex d i g i t  ( i n  a)

0151 07070707 p r i  nt1 r I c ! r  I c ! r l c ! r I c  ! ;move hi 4 b i  t s
0155 E60F p r i  nt2 ani Of h ; g e t  r i d  o f  h igh 4 b i t s
0157 C630 adi 30h ;change hex to  ASCII
0159 FE3A cpi 3ah ;  i f  i t ' s  more than 9
015B DA6001 j c pdig ;  ( i t ' s  n o t )
015E C607 adi 7h ;  add b ias  (A=10,  e t c . )
0160 CD6401 pdig ca 11 pchar ; p r i n t  d i g i t
0163 C9 r e t

0164 E5C5D5 
0167 0E02
0169 5F 
016A CD0500 
016D D1C1E1
0170 C9

0171 210000
0174 E5
0175 0E01 
0177 CD0500

; s u b r o u t i n e  to  p r i n t  c h a r a c te r  i n  a - r e g i s t e r  
pchar push h! push b! push d! ;save  r e g i s t e r s  

mvi c , cono u t  ; p r i n t  c h a r a c te r  
mov e,a 
c a l l  bdos
pop d! pop b! pop h! ; g e t  r e g i s t e r  back 
r e t

************************************************* 
h e x ib in - r e a d s  hex number f rom keyboard ,  

s to r e s  r e s u l t  i n  b in a r y  i n  h i

h e x i b in  I x i  h,0 
newch push h

mvi c , c o n in  
c a l l  bdos

; c l e a r  h i  
;save  hI 
; g e t  c h a r a c te r
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017A E1 pop h ; r e s t o r e  h i
017B D630 sui 30h ;ASCII  d i g i t  to  b in a r y
017D F8 rm ; r e t u r n  i f  < 0
017E FEOA cpi 10d ; i s  i t  > 9 ?
0180 FA8B01 jm addto ;n o ,  so i t ' s  0 to  9

; n o t  d i g i t ,  maybe i t ' s L e t t e r  (a to  f )
0183 D627 sui 27h ; c o n v e r t  ASCII to  b in a r y
0185 FEOA cpi Oah ; i s i t  < a ( h e x )
0187 F8 rm ; yes ,  r e t u r n
0188 FE10 cpi 10h ;  i s i t  > f  (hex)
018A F0 rp ;  yes ,  r e t u r n

; r o t a t e  HL 4 bi  t s  L e f t and add d i g i t  to  l e f t  s ide
018B 57 addto mov d,a ;save  new hex d i g i t  i n  d
018C 0E04 mvi c,4 ; s e t  C to  count  4 b i t s
018E 7D s h i f t  mov a , I ; s h i  f t  I
018F 17 ra I
0190 6F mov I , a
0191 7C mov a,h ; s h i f t  h
0192 17 ra L
0193 67 mov h,a
0194 0D dcr c ;done 4 b i  t s  ye t?
0195 C28E01 jnz s h i f t ;  no t  ye t
0198 7D mov a, L ;mask o f f  Lo 4 b i t s  o f  L
0199 E6F0 ani OfOh
019B B2 ora d ; " o r "  new d i g i t  on to  L
019C 6F mov I , a
019D C37401 jmp newch ;go  ge t  nex t  c h a r a c te r

01A0 end

MICRO SPACE INVADERS

This program (Listing B-2) is just about the smallest possible space game 
that you can have on a CP/M  system.

You’re in charge of a battery of four phasers, each of which is aimed at a 
different quadrant of the galaxy. Your mission is to shoot down the invading 
Klipson battle cruisers. They may appear in any of the four sectors and you 
must respond by firing the phaser in the appropriate sector. However, you 
don’t have much time as the Klipsons will be approaching at warp-factor 11. 
Keep your fingers poised over the number keys 1, 2, 3, and 4. When the 
Klipson appears (symbolized on your screen by an evil-looking asterisk),
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press the key corresponding to the sector that he’s appeared in. If you get the 
wrong sector, you lose a point. And, if you’re not fast enough and he gets 
through and destroys the earth, you also lose a point. It is only when you’re 
fast and accurate that you gain a point.

Listing B-2. Game Program
■ **************************************************** 
;MICR0 SPACE INVADERS 
/
;  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0005 = bdos equ 5h
0001 = coni n equ 1 h
0002 = conout equ 2h
0009 = p r i  n t f equ 9h
000B = chkcon equ Obh
0020 = space equ 20h
002A = a s te r equ 2ah
OOOA = I f equ Oah
000D = cr equ Odh
F800 = t ime equ 0f800h
0003 = mask equ 3h

0100
W

org 100h
r

; p r i n t  header

0100 0E09
i

s t a r t mvi c , p r i n t f
0102 118301 I x i d,header
0105 CD0500 ca L L bdos

r

; g e t  random number, use i t  to  p r i n t  spaces

0108 3A8101
r

Ida random ; g e t  random number
010B 07 r Lc ; s h i f t  L e f t  tw ice
010C 07 r Ic ;  to  muLt ipLy  by 4
010D 47 mov b,a ; p u t  in  b as coun ter
010E 04 i nr b ;add 1 to  ensure i t ' s  no t  0
010F C5 newsp push b ;save i t
0110 0E02 mvi c ,con ou t ; p r i n t  space
0112 1E20 mvi e,space
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0114 CD0500 ca 11 bdos
0117 C1 pop b ; g e t  i t  back
0118 05 dcr b ; i s count  0 ye t?
0119 C20F01 jnz newsp ; n o ,  so p r i n t  ano the r  space

/
; p r i  n t  a s t e r i  sk

011C 0E02
/

mvi c ,cono u t
01 IE 1E2A mvi e , a s t e r
0120 CD0500 c a l l bdos

i

; r u n  t im e r  w h i l e  check ing  keyboard

0123 0100F8
f

I x i b , t im e ;  se t  t i  me i n  be
0126 C5 loop push b ;save be
0127 0E0B mvi c,chkcon ;check  keyboard f o r  char
0129 CD0500 ca 11 bdos
012C B7 ora a ; a n y t h in g  ye t?
01 2D C23F01 jnz qui  ck ; y e s ,  c h a r a c te r  typed
0130 C1 pop b ; n o ,  ge t  be back

0131 0C
f

i n r c ; increment  c
0132 C22601 jn z loop ; loop i f  no t  0 ye t
0135 04 i n r b ; increment  b
0136 C22601 jn z loop ; loop i f  no t  0 ye t

f

; t i m e r  o u t - n o t  q u i c k  enough

0139 119801
f

I x i d,messnq ; s e t  up " n o t  q u i c k "  message
013C C35A01 jmp p r i n t ;go p r i n t  i t

f

; c h a r a c t e r  h i t  b e fo re  t ime o u t - q u i c k  enough

013 F C1
/
qui  ck pop b ; g e t  be back

0140 79 mov a,c ;save c f o r  l a t e r
0141 328201 sta ho ld

f

; read c h a r a c te r

0144 0E01
f

mvi c , c o n in ; re a d  c h a r a c te r
0146 CD0500 ca 11 bdos
0149 0631 mvi b , ’0’+1 ;ASCII  0 p lu s  1
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pbOUB 90 sub b ; s u b t r a c t  f rom char in  a
014C 47 mov b,a ;save  in  b

F

;see  i f  c h a r a c te r  typed matches random number

014D 3A8101
F

Ida random ;random number in  a
0150 B8 cmp b ;compare w i t h  c h a r a c te r
0151 11AD01 I x i d,messw ; s e t  up "w rong"  message
0154 C25A01 jn z p r i n t ;go p r i n t  i f  no t  match
0157 11BE01 I x i d,messr ;match-use  " r i g h t "  message

015A 0E09
F

p r i n t mvi c , p r i  n t f ; p r i n t  message
015C CD0500 c a l l bdos

F

;make up new random number

015F 3A8201
F

se t ra n Ida hold ; g e t  l a s t  va lue  o f  count
0162 47 mov b,a ;save in  b
0163 3A8101 Ida random ; g e t  l a s t  random number
0166 80 add b ;add o ld  count
0167 E603 ani mask ;mask o f f  upper s i x  b i t s
0169 328101 sta random ;save r e s u l t

F

; w a i t  f o r  user  to  s i g n a l  ready

016C 0E09
F

mvi c , p r i  n t f ;ask  i f  user  ready
016E 11CA01 I x i d,messj
0171 CD0500 ca 11 bdos
0174 0E01 wai t mvi c , c o n in ;wai  t  f o r  key press
0176 CD0500 ca 11 bdos
0179 FE20 cpi space ; i s  i t  the space-bar?
017B C27401 jn z wai t ; n o t  ye t

017E C30001
F

F

jmp s t a r t ; b e g in  again

0181 02
F

random db 2
0182 hold ds 1

f

0183 0D0A0A0A20header db c r ,  I f ,  I f , l f , ’ 1— 2— 3— 4’, c r , l f , ’$
0198 0D0A0A4E4Fmessnq db c r ,  I f ,  I f , ’N0T QUICK ENOUGH.$’
01 AD 0D0A0A5752messw db c r ,  I f ,  I f , ’WRONG TARGET.$’
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01BE 0D0A0A4120messr db cr,If, Lf,’A H I T !!!$’

01 CA 0D0A0A5072messj db cr,Lf,Lf,’Press space-bar to start ag a i n .

/
r

HEXIDEC

This program will print out the decimal equivalent to any positive 4-digit hex 
number that you type in from the keyboard. It is called directly from CP/M.

Listing B-3. Hex-to-Decimal Conversion Program
• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
; h e x id e c -C o n v e r t s  number typed i n  hex on keyboard 
;  i n t o  d ec im a l ,  and p r i n t s  i t  ou t  on sc reen.

000A = Lf equ Oah ; L i nefeed

0100 org 100h

0100 CD0C01
r

ca l  L h e x ib in ; g e t  hex c h a r a c te r
0103 3E0A mvi a , I f ; p r i n t  L inefeed
0105 CD6C01 ca L L pchar
0108 CD3B01 ca L L b in id e c ; p r i n t  dec imal  number
010B C9 r e t ;  t h a t 1 s a i l

■ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
; h e x ib i n - r e a d s  hex number f rom keyboard.
r s to re s  r e s u l t  i n  b in a r y  i n  h i

0001 =
F
coni n equ 1 h

0005 = bdos equ 5h
0030 = ascO equ 30h
000A = dec10 equ 10d
0027 = b ias equ 07h
00F0 = mask equ OfOh

010C 210000
f
h e x ib in I x i h,0 ; c Le a r  h i

01 OF E5 newch push h ;save  h i

338



Utility Programs

0110 0E01 mvi c , c o n in ; g e t  c h a r a c te r
0112 CD0500 ca I I bdos
0115 E1 pop h ; r e s t o r e  h i
0116 D630 sui ascO ; c o n v e r t  ASCII d i g i t  to  b in a r y
0118 F8 rm ; r e t u r n  i f  < 0
0119 FEOA cpi dec10 ;  i s i t  > 9 ?
011B FA2601 jm addto ;  yes ,  so i t ' s d i g i  t  (0 to  9)

; n o t  d i g i t ,  maybe i t ' s l e t t e r  (a to  f )
011E D627 sui b ias ; c o n v e r t  ASCII l e t t e r  to  b in a r y
0120 FEOA cpi Oah ; i s  i t  less  than a (hex)
0122 F8 rm ; yes ,  r e t u r n
0123 FE10 cpi 10h ; i s  i t  g r e a t e r  than f  ?
0125 FO rp ;  yes ,  r e t u r n

; r o t a t e  h i  r e g i s t e r  f o u r  b i t s  L e f t  and
;  add new d i g i t  to  r i g h t : -hand s ide

0126 57 addto mov d,a ;save  new hex d i g i t  i n  d
0127 0E04 mvi c ,4 ; s e t  up loop to  count  4 b i t s
0129 7D shi  f  t mov a,  L ; s h i f t  I
012A 17 ra I
012B 6F mov l , a
012C 7C mov a,h ; s h i  f t  h
012D 17 r a l
012E 67 mov h,a
012F OD dcr c ; a r e  we done ye t?
0130 C22901 jnz s h i f t ;  no t  ye t
0133 7D mov a,L ;mask o f f  lower 4 b i t s  o f  I
0134 E6F0 ani mask
0136 B2 ora d ; " o r "  the new d i g i t  on to  I
0137 6F mov l , a
0138 C30F01 jmp newch ;go back f o r  nex t  c h a r a c te r

W

; b i n i d e c - c o n v e r t s  b in a r y  number i n  hL to
¥ deci mal ,  p r i n t s  r e s u l t  on screen

0002 =
W
conout equ 2 ;c o n s o le  o u tp u t

0005 = bdos equ 5 ;BD0S e n t r y  p o i n t

013B 11F0D8
F
bi  n i  dec Lxi d , -10000 ; p r i n t  number o f  10,000s

013E CD5A01 ca L L subcnt
0141 1118FC Lxi d , - 1 000 ; p r i n t  number o f  thousands
0144 CD5A01 ca L L subcnt

335



Soul of CP/M®

0147 119CFF Lxi d , -10 0 ; p r i n t  number o f  hundreds
014A CD5A01 ca L L subcnt
014D 11F6FF Lxi d , - 1 0 ; p r i n t  number o f  tens
0150 CD5A01 ca L L subcnt
0153 11FFFF Lxi d , -1 ; p r i n t  number o f  ones
0156 CD5A01 ca L L subcnt
0159 C9 r e t ; t h a t 1s a lL

015A 0E2F
f
subcnt mvi c , ’0 ’-1 ; c  ho lds  ASCII v e r s io n  o f  count

015C 0C sub2 i n r c ; in c re m e n t  count
015D 227901 sh Ld temp ; save hI
0160 19 dad d ;add neg cons t  f rom de to  h i
0161 DA5C01 jc sub2 ;  loop u n t i  L r e s u l t  i n  h i  goes neg
0164 2A7901 Lh Ld temp ; g e t  Last p o s i t i v e  va lu e  back in
0167 79 mov a ,c
0168 CD6C01 ca L L pchar ; p r i n t  d i g i t
016B C9 r e t

; p r i n t  c h a r a c te r  i n  a-- r e g i s t e r  on screen
016C D5C5E5 pchar push d ! push b ! push h ! ;save  r e g i s t e r s
016F 5F mov e,a ; c h a r a c t e r  i n  e
0170 0E02 mvi c ,conou t
0172 CD0500 ca L L bdos ; c a l l  conout  r o u t i n e
0175 E1C1D1 pop h ! pop b ! pop d ! ; g e t  r e g i s t e r s  back
0178 C9 r e t

0179 0100
/
temp du 1

017B
f

end

FILEDUMP

This program (Listing B-4) takes any file  and prints out the contents in a 
hex format similar to the “d” function of DDT (except that ASCII 
equivalents aren’t printed out). Each 128-byte record is shown separately. 
Scrolling can be stopped and started with control-s.

This is a useful program for investigating how the records of a particular 
file are actually stored on the disk. It is a more convenient version of the 
technique that is shown in Chapter 5 for examining the contents of files in 
hex, where each record had to be read in separately and examined using 
DDT.
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Listing B-4. Program for Outputting a File in Hex
• ********************************************************** 
; FILEDUMP-Program to  dump a f i  Le to  the screen o r  p r i n t e r  
;  i n  hex f o r m a t .
• **********************************************************

bdos equ 5h ; o p e r a t i n g  system
conout equ 2h ;c o n s o le  o u tp u t
f  cb equ 5ch ; f i  le  c o n t r o l  b lock
dma equ 80h ; reco rd  b u f f e r
openf equ Of h ;open f i l e
readr equ 14h ; re a d  record
p r i n t s equ 9h ; p r i n t  s t r i n g
f

org 10Oh

; s e t  up l o c a l  s tack
l x i  h ,0  ;save  o ld  s tack  p o i n t e r
dad sp 
sh ld  o ld sp
l x i  s p , s t k t o p  ;  load new s t a c k p o i n t e r

r
;open f i l e ,  read records

mvi c ,open f ;open f  i l e
l x i d , f  cb
c a l l bdos
i n r a ;add 1 to A - r e g i s t e r .  I f  i t  was f f .
j z n o f i l e ;  now i t ' s  00,  so no such f i l e

'C c a l l p c r l f ; p r i n t  r e t u r n  & l i n e f e e d
mvi c , p r i  n ts ; p r i n t  header
l x i d,hmess
c a l l bdos

mvi c , r e a d r ; re ad  record
l x i d , f  cb
ca 11 bdos
ora a ;check A - r e g i s t e r  to  see i f  EOF
jnz done ;  non-0 i s EOF

; p r i n t  ou t  co n ten ts  o f  DMA in  hex fo rmat  
c a l l  p b u f f  
jmp newrec
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; e n d - o f - f i  Le, o r  no f i  Le, so p r i n t  message and r e t u r n  to  CP/M 
n o f i l e  Lxi d,nfmess ; p r i n t  "no f i  l e "  message

mvi c , p r i n t s  
c a l l  bdos

done Lhld o ld sp  ; r e s t o r e  o ld  s tack  p o i n t e r
sph L
r e t  ; r e t u r n  to  CP/M

■ 'k'k'k'k'k'k'k'k'k'kieie'k'k'k'kick'k'icicie'k'k'k'k'kic'kieierk'k'k'k'kie'k-k'k'k'k'ic'kickick'k'k'k'k'k'kic'k'kie

; p b u f f - s u b r o u t i n e  to  p r i n t  co n ten ts  o f  DMA in  hex
r
; s e t  address and i n i t i a l i z e  counts
pbuf  f Lxi h,dma ; p u t  addr o f  record  in  HL-reg

mvi c ,8 ; s e t  number o f  Lines
c a l l p c r l f ; p r i n t  L inefeed

; p r i  n t address and s t a r t  new l i n e
nu I i ne mvi b,16d ; s e t  number o f  by tes  per  l i n e

c a l l per  Lf ; p r i n t  L inefeed

; p r i  n t the 1bytes f o r t h i s  l i n e
nubyte mov d,m ; g e t  by te  p o in te d  to  by h i  i n t o

ca IL pbyte ; p r i n t  i t
ca IL pspac ; p r i n t  space
i nx h ; in c re m e n t  h i
dcr b ;done a l l  by tes  on t h i s  l i n e ?
jnz nubyte ;  no t  y e t

/
;done t h i  s I i ne

dcr c ;done a l l  l i n e s ?
jnz nu L i ne ;  no t  ye t
c a l l p c r l f ; yes -  p r i n t  r e t u r n  & l i n e f e e d
r e t ;back  to  main program

f
; s u b r o u t i  ne to  p r i n t a c a r r i a g e  r e t u r n  and l i n e f e e d
per Lf mvi a,0dh ; p r i n t  c a r r i a g e  r e t u r n

ca IL pchar
mvi a,0ah ; p r i n t  l i n e f e e d
ca 11 pchar

f
r e t

; s u b r o u t i  ne to  p r i n t a space
pspac mvi a,20h ; p r i n t  space

ca IL pchar
r e t
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********************************************************** 
phex -  r o u t i n e  to  p r i n t  b in a r y  number i n  h i  

ou t  on screen in  hex

phex mov d,h / p r i n t  two d i g i t s  f rom h
ca L L pbyte
mov d,L / p r i n t  two d i g i t s  f rom L
ca L L pbyte
r e t

r

/ s u b r o u t i n e to  p r i n t 2 - d i g i t  hex number ( i n  d)
pbyte mov a,d / p r i n t  Le f t -h and  d i g i t

ca L L p r i n t l
mov a,d / p r i n t  r i g h t - h a n d  d i g i t
ca L L p r i  nt2
r e t

/ s u b r o u t i n e to  p r i n t one hex d i g i t  ( i n  a)
p r i n t l r  Lc! r L c ! rLc ! rLc /move high  4 b i t s  to
p r i n t 2 ani Of h / g e t  r i d  o f  h igh  4 b i t s

adi 30h /change hex to  ASCII
cpi 3ah / i f  i t ' s  more than 9
j c pdig /  ( i t ' s  n o t )
adi 7h / t h e n  add b ia s  (A=10,  e t c . ]

pdig caL L pchar / p r i n t  d i g i t
r e t

/
/ s u b r o u t i n e to  p r i n t c h a r a c te r  in  a - r e g i s t e r  out
pchar push h! push 1b! push d /save  r e g i s t e r s

mvi c ,conou t / p r i n t  c h a r a c te r
mov e,a
ca L L bdos
pop d! pop b! pop h / g e t  r e g i s t e r s  back
r e t

r

nfmess db ’No such f i  Lename.$’
hmess db ’0 1 2 3 4 5 6 7 8 9 A B C D E  F$’
oLdsp ds 2

ds 32
s tk to p :
/

end

Low
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APPENDIX C

Summary of 8 0 8 0  
Instructions

This appendix summarizes the architecture of the 8080 and the 8080 
instruction set. Most of the instructions are explained in detail in the main 
part of the book. If you don’t have any assembly language programming 
experience, don’t read this appendix until you’ve read the first part of this 
book. This will avoid the possibility of your being blown away by seeing so 
many instructions all at once.

8080 ARCHITECTURE

The diagram shown in Fig. C-l illustrates the principal 8080 registers. 

Registers

Registers B and C can be accessed either as separate 8-bit registers, or 
together as a single 16-bit register called the BC-register. Similarly, the D- 
and E-registers can be combined into the 16-bit DE-register, and the H- and 
L-registers can be combined into the 16-bit HL-register.

The 8-bit A-register (sometimes called the “Accumulator”) is the principal 
arithmetic register on the 8080 microprocessor. The term “arithmetic” used 
in this section includes the Boolean (logical) operations of “ A N D , ”  “OR,” and 
“Exclusive-OR.” The A-register is almost always used alone as an 8-bit regis
ter, but it can be combined with the Program Status Word (PSW) to form a 
16-bit entity that can be stored on the stack.
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■16 bits
8 bits 8 bits -  

PSW

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  -* ------------- Bit numbers
(8-bit registers).

1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0  ------------- Bit numbers
5 4 3 2 1 0  (16-bit registers).

Fig. C-1. Registers of the 8080 m icroprocessor.

The 16-bit HL-register is often used as a pointer to a particular address in 
memory. When this is done, the 8-bit data in the address pointed to by HL 
can be called “M” (for “memory”) in some 8080 instructions. In this case, 
“M” is referred to as if it were another register. For example,

m o v  c , m

means, move the contents of the memory location pointed to by the HL- 
register into the C-register. There is no “M” register—it is simply the memory 
location pointed to by HL.

The BC- and DE-registers can be used for temporary storage and for a few 
arithmetic operations on 16-bit numbers. They can also be used as pointers 
to memory, using the LDAX and STAX instructions, although this is not 
quite as easy as using the HL-register.

All of the 8-bit registers (A, B, C, D, E, H, and L) can be used for tempo
rary storage of 8-bit data.
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The Stack Pointer (SP) holds the 16-bit address that is the current top of 
the stack. If you PUSH something onto the stack, it will be placed in memory 
at the address in the SP, and if you CALL a subroutine, the address to which 
you will RETurn is placed in memory at this address. When something is 
placed on the stack (by a PUSH or a CALL) the SP is automatically decre
mented two locations (since two bytes hold a 16-bit address), and when some
thing is taken off the stack (by a POP or a RET), the SP is incremented. This 
is the opposite of what you might expect because the stack grows downward 
in memory.

In addition to the registers shown in Fig. C-l, there is also a 16-bit Pro
gram Counter (PC) (which holds the address of the instruction currently 
being executed) and an 8-bit Instruction register (I) (which holds the instruc
tion being executed). These registers are seldom accessed in normal 8080 pro
gramming.

Program Status Word

The Program Status Word contains the five “flags” used in the 8080 
processor. These flags are set, following the completion of some instructions 
(mostly 8-bit arithmetic instructions), to indicate the outcome of different 
operations. They can have either of two values, 1 or 0. Jumps, calls, and 
returns can sample these values automatically to decide what to do. (For 
example, JZ will cause a jump if the zero flag is set, but not if it isn’t.)

The flag bits, and the mnemonic associated with each value, is shown in 
Table C-l. The sign flag is used to indicate whether the result of an arithmetic 
instruction is plus or minus (positive or negative). The Zero flag indicates 
whether the result of an operation is zero or nonzero. The Auxiliary Carry flag 
indicates whether there has been a carry from Bit 3 to Bit 4 in an arithmetic 
operation. Its primary use is in BCD (binary-coded decimal) arithmetic.

Table C -l. Flags of the PSW

FLAG
BIT NAME  

(In PSW )

MNEM OM IC

Bit =  0 B it=  1

Sign S P (plus) M (minus)

Zero z N Z  (nonzero) Z (zero)

Auxiliary carry A (N o Mnemonics)

Parity P PO (parity odd) PE (parity even)

Carry C NC (no carry) C (carry)
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The Parity flag is set to 1 whenever the result of an arithmetic operation 
contains an even number of bits, and set to zero when it contains an odd 
number of bits. This is useful for running parity checks on data to see if a bit 
has been lost. (Neither the parity flag nor the Auxiliary Carry flag is used in 
this book.) The Carry flag is used to indicate when the result of an arithmetic 
or shift operation results in a bit being carried or shifted out of the A-register.

8080 INSTRUCTIONS

Most summaries of assembly language instructions list them either in 
alphabetical order or in order of numerical op codes. Neither of these 
approaches is ideal, since when you want to look something up, you usually 
don’t know the instruction yet. You start with an idea of what you want to 
accomplish in the program and you want to know what instruction will do it 
for you. Accordingly, we’ve arranged the instructions in seven functional
groups:

1. 8-bit Transfers.
2. 16-bit Transfers.
3. 8-bit Arithmetic.
4. 16-bit Arithmetic.
5. Jumps, Calls, and Returns.
6. Rotates.
7. Other instructions.

“Transfers” means moving data from one register to another, or between a 
register and memory. In a transfer, the data are not altered.

In general, instructions that have an X in them, like LXI, operate on regis
ter pairs and 16-bit values. Also, an I at the end of an instruction stands for 
“immediate,” which means that the data referred to in the instruction are 
stored immediately next to the instruction in the program, and not someplace 
else in memory.

We’ve made no attempt in this summary to show such niceties as how 
many bytes each instruction takes, how long it takes to execute, or exactly 
what flags are set. For this, you should consult the 8080 or 8085 reference 
manuals available from the Intel Corporation.

Remember: when “M” and “m” are referred to in the following descrip
tions, they stand for the memory location contained in the HL-register. Of
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course, for this to work, you must put the appropriate address in the HL- 
register before executing an instruction with an “m” as an operand.

Also remember: numbers used in an ASM listing are assumed to be in deci
mal unless otherwise specified. If a number is meant as a hex number, it must 
be followed by an “h,” as in Offh. Also, hex numbers starting with a letter 
must be preceded by a zero, or ASM will think they’re a name. For clarity, 
it’s probaby best to put a “d” after decimal numbers as well, although this is 
optional. Numbers followed by “b” are assumed to be in binary notation, as 
in 11110000b.

8-Bit Transfers

MOV R1,R2 Moves data from register R2 to register R l, where R1 and R2 
can be any one of the registers A, B, C, D, E, H, L, or M.

Examples: 
mov a,b 
mov h,d

MVI R,data Puts an 8-bit data byte into R, where R can be any one of the 
registers A, B, C, D, E, H, L, and M. (The data are stored in 
the byte immediately following the MVI instruction.)

Examples: 
mvi d,31
mvi b,const (where “const” is given a numerical value 

in an EQU statement)

LDA Addr Puts an 8-bit byte, located in memory address Addr, into the 
A-register.

Examples:
Ida 3c00h 
Ida const

STA Addr Stores an 8-bit byte from the A-register into memory address 
Addr.

Examples: 
sta eOlOh 
sta temp

LDAX RR Loads the A-register with 8-bit data contained in memory loca
tion that is pointed to by register RR, where RR is either “b” 
or “d,” meaning the BC- or DE-register.
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Example: 
ldax b

STAX RR Stores an 8-bit value from the A-register into memory location 
that is pointed to by register RR, where RR is either “b” or 
“d,” meaning the BC- or DE-register.

Example: 
stax d

16-Bit Transfers

LHLD Addr Loads the HL-register with a 16-bit value that is stored in 
memory addresses Addr and Addr + 1.

Example:
lhld pointr

SHLD Addr Stores a 16-bit value from the HL-register into memory loca
tions Addr and A ddr-f 1.

Example:
shld 0bd80h

LXI RR,data Loads a 16-bit data word into register RR, where RR can be 
“b,” “d,” “h,” or “sp,” meaning BC, DE, HL, or SP. The data 
are in the two bytes immediately following the instruction.

Examples:
lxi d,0005h 
lxi h,ptrl

PUSH RR Puts the 16-bit contents of register RR onto the top of the
stack, where RR can be “b,” “d,” “h,” or “psw,” meaning BC, 
DE, HL, or the register-pair formed by the A-register and the 
PSW. It decrements the stack pointer twice.

Example: 
push h

POP RR Takes the 16-bit value from the top of stack and puts it in reg
ister RR (where RR is defined as in PUSH). It increments the 
stack pointer twice.

Example: 
pop b

XTHL Exchanges the two 16-bit values in the HL-register and the top
of the stack.

350



Summary of 8080 Instructions

Example:
xthl

SPHL Loads the 16-bit contents of the HL-register into the stack
pointer (SP) register.

Example:
sphl

PCHL Loads the 16-bit contents of the HL-register (usually an ad
dress) into the program counter (PC) register. This has the ef
fect of causing a JMP to that address.

Example:
pchl

XCHG Exchanges the two 16-bit values in the HL-register and the
DE-register.

Example:
xchg

8-Bit Arithmetic

In the instructions that follow, R stands for any of the registers A, B, C, D,
E, H, L, or M (written as “a,” “b,” “c,” “d,” “e,” “h,” “1,” or “m”).

Examples: 
add b 
cmp c

In those instructions involving two operands, the first operand is always in 
the A-register and the second is in register R. The result is always left in the 
A-register. (Register R is unchanged.) Thus, in the first example given above, 
the contents of the B-register are added to the contents of the A-register, and 
the result is left on the A-register.

Note that all these 8-bit arithmetic instructions set the various flags to the 
appropriate values: zero or nonzero, plus or minus, and so on.

ADD R Adds contents of register R to the A-register.
SUB R Subtracts contents of register R from A-register.
INR R Increments the contents of register R.
DCR R Decrements the contents of register R.
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CMP R Compares the contents of register R with the contents of the A- 
register. (This causes the flags to be set as if a subtraction had 
taken place, although the contents of register A are unchanged.)

ANA R Logically ANDs the contents of register R with the contents of the 
A-register.

ORA R Logically ORs the contents of register R with the contents of the A- 
register.

XRA R Logically Exclusive-ORs the contents of register R with the con
tents of the A-register.

In the instructions that follow, “data” means a numerical or a symbolic
representation of an 8-bit data item.

Examples: 
adi Offh
ori mask (where “mask” is defined in an “equ” statement)

ADI data Adds 8-bit data to contents of A-register.
SUI data Subtracts 8-bit data from contents of A-register.
CPI data Compares 8-bit data with contents of A-register.
ANI data Logically ANDs 8-bit data with contents of A-register.
ORI data Logically ORs 8-bit data with contents of A-register.
XRI data Logically Exclusive-ORs 8-bit data with contents of A-register.

16-Bit Arithmetic

In the following instructions, RR stands for registers BC, DE, HL, or SP 
(written as “b,” “d,” “h,” or “sp”). Note that these instructions do not set the 
flags!

DAD RR Adds contents of register RR to contents of HL-register.
INX RR Increments register RR.
DCX RR Decrements register RR.

Jumps, Calls, and Returns

JM P Addr Transfers control of the program to memory location Addr, 
where Addr can be either a number or a symbolic label. 

Examples: 
jm p lOOh 
jm p start
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CALL Addr Transfers control of the program to memory location Addr, 
and also puts the return address (the location of the next in
struction following the CALL) on the stack. Decrements the 
stack pointer twice.

RET Transfers control of the program to the memory location
pointed to by the contents of the top of the stack. Increments 
the stack pointer twice.

The JMP, CALL, and RET instructions all have variants that only execute 
when a particular condition is true. Thus,

j z  s t a r t

will only transfer control of the program to “start” if the results of a previous 
arithmetic operation left the zero flag set to 1. If the condition is not met, 
control simply passes to the next instruction in line. Rather than list all of 
these instructions separately, we’ve arranged them in a table (Table C-2). The 
most-used of these instructions are probably JNZ, JZ, JNC, JC, JP, and JM.

Table C-2. Variants olr the JM P, CALL, and iET Instructions

Instruction executes 
if flag set to JU M P CALL RETURN

Nonzero JNZ CNZ RNZ
Zero JZ CZ RZ
N o Carry JNC CNC RNC
Carry JC CC RC
Parity Odd JPO CPO RPO
Parity Even JPE CPE RPE
Plus JP CP RP
Minus JM CM RM

Rotations

All rotations are done on the contents of the A-register. The A-register can 
be rotated either right or left, and the bits pushed off the end can either circle 
round and appear on the other end of the A-register, or they can go to the 
carry bit of the program status word. The diagrams shown in Fig. C-2 illus
trate the various possibilities.
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RAL

RAR

RLC

RRC

"Rotate Accumulator Left.”

7 6 5 4 3 2 1 0

H 3
Carry
Bit

Example: ral

/ /lI I
A-reg ster

‘Rotate Accumulator Right”

7 6 5 4 3 2 1 0

/  y i

i !
iii____ I____ ! I :T>

A-register

Example: rar

Carry
Bit

“Rotate Accumulator Left Through Carry"
i------------------------------------

7 6 5 4 3 2

0
Carry
Bit

Example: rlc

_L
A-register

1 0

.........

“Rotate Accumulator Right Through Carry”

7 6 5 4 3 2 1 0

/  m A
i------- ► i i i : i i i

A-register
W - - G )

Carry
Bit

Example: rrc

Fig. C-2. Rotations.
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Other Instructions

The 8080 microprocessor communicates with the outside world by using 
only two instructions:

IN Inputs an 8-bit byte of data into the accumulator from the data port 
specified in the instruction. The data ports are numbered from 1 to FF 
(hex).

Example: 
in 23h

OUT Outputs an 8-bit byte of data from the A-register to the data port 
specified in the instruction.

Example:
out ptr (where “ptr” is defined elsewhere).

There are several instructions that you can use to alter the bit in the carry 
flag:

CMC Complements the carry flag. That is, it changes it to 0 if it was 1, and 
vice versa.

Example:
cmc

STC Sets the carry flag to 1, no matter what it was before.
Example:

stc

You can also complement the A-register; that is, change every bit that’s a 1 
to a 0, and vice versa.

CMA Compliments the A-register.
Example:

cma

There are a number of instructions that are designed to operate on BCD 
(binary-coded decimal) format numbers. This is a way of using 4 bits to rep
resent the 10 decimal digits and it is popular on mainframe computers that 
are used for business. We aren’t going to describe BCD here, so these instruc
tions will go unexplained. The “auxiliary carry” bit in the program status 
word is used with BCD calculations.
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DAA Means “Decimal Adjust Accumulator.”
ADC Means “Add to Accumulator with Carry.”
ACI Means “Add with Carry Immediate to Accumulator.”
SBB Means “Subtract from A-register with Borrow.”
SBI Means “Subtract Immediate from A-register with Borrow.”

You can halt the operation of the computer and you can also have an
instruction which does nothing.

HLT Halts the computer, which is then paralyzed, unless there’s an inter
rupt. Not to be used frivolously.

Example:
hit

NOP Means “No Operation.” It can be used as a “filler” in a program.
Example:

nop

And, finally, there are several instructions connected with the use of the
interrupt system. Since we are not concerned with the use of interrupts in this
book, we won’t attempt to explain them. However, they are:

DI Means “Disable Interrupts.”
El Means “Enable Interrupts.”
RIM Means “Read Interrupt Mask.”
SIM Means “Set Interrupt Mask.”

The instruction RST (which we use when returning from a program we’ve 
written in DDT) was designed for use in the interrupt system. However, it 
can be executed by any program. There are 8 such instructions: RST 0 
through RST 7. They are each the equivalent of a CALL instruction, but they 
transfer control only to certain predefined locations in memory.

RST 0 is a CALL to location 0000 hex 
RST 1 is a CALL to location 0008 hex 
RST 2 is a CALL to location 0010 hex 
RST 3 is a CALL to location 0018 hex 
RST 4 is a CALL to location 0020 hex 
RST 5 is a CALL to location 0028 hex 
RST 6 is a CALL to location 0030 hex

356



Summary of 8080 Instructions

RST 7 is a CALL to location 0040 hex

Since these are one-byte instructions, instead of a three-byte instruction as 
CALL is, you might find a use for them if you’re writing a very short or very 
fast code. DDT uses them because it uses the interrupt system. Of course, 
you have to be very careful, since the addresses are located in C P/M ’s semi- 
sacred zero page. You don’t want to overwrite or jum p to an area that CP/M  
is using for something important.

RST n Causes a CALL to a location indicated by “n”, as shown in the pre
ceding list.

Example: 
rst 3

ASSEMBLER DIRECTIVES

Assembler directives are placed in the instruction field of an ASM listing 
as if they were 8080 instructions, but they’re not. They’re instructions to the 
ASM program itself. For this reason, they’re sometimes called “pseudo-ops.”

ORG Causes ASM to start assemblying at the memory location given in the 
address field.

Example:
org lOOh (causes assembly to start at location 100 hex)

END Causes the assembly to end. Any subsequent statements will not be 
processed. If followed by an address, this address will be the starting 
address used in HEX files.

Example:
finish end lOOh

EQU Defines a symbolic label as having a specific value. Note that this di
rective does not set aside any memory to hold the value, it simply 
causes ASM to remember what value is associated with a label. 

Example:
bdos equ 5h (defines the label bdos to have the value of 5 

hex)
Example:

lnfeed equ Oah (defines the label lnfeed to have the value of 
0a hex)
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DB Means “define bytes.” This directive is used to set a single 8-bit byte 
or strings of bytes in memory to a specific value. A number of bytes 
can be placed in the same db directive by separating them with com
mas. A string of ASCII characters can be used if it starts and ends with 
single quotes (’). Symbolic values (labels) can be used to represent 
bytes if they are defined elsewhere.

Examples:
decten db lOd
crlf db Odh, Oah
messl db ’Type your name ’,Odh,Oah
mess2 db ’What?’,cr,lf

DW This directive is similar to DB, except that it defines 16-bit words. A 
number of words can be used if they are set off with commas, and 
ASCII characters can be used if they are delimited by single quotes. 
However, strings must be limited to 2 characters.

Examples:
mask dw OffOOh
data dw 0d4h, 63h, 7dh, 0c9h
crlf dw OdOah
abee dw ’ab’

DS This directive is used to set aside an area of memory for storage of 
bytes or groups of bytes. The number given in the address field is the 
number of bytes to be set aside. The memory locations thus reserved 
are filled with zeros by the assembler.

Examples:
temp ds 2 (sets aside two-byte word) 
stemp ds 1 (sets aside 1 byte) 
buffer ds 400d (sets aside 400 bytes)

358



APPENDIX D

Tables

This appendix contains the following charts and tables:

1. ASCII character set with hexadecimal equivalents.
2. Hexadecimal-to-Decimal conversion (one-byte values).
3. Multiples of IK (1024), in decimal and hexadecimal.
4. Decimal, Hex, and Binary conversion (4-bit values).

ASCII CHARACTER SET WITH HEXADECIMAL 
EQUIVALENTS

First, we give you the hexadecimal values for some common needs, like the 
linefeed or carriage return, and then we furnish the complete ASCII Code 
and show the hexadecimal values for each ASCII character.

Hex ASCII

07 bell (or beep)
09 tab
0 A linefeed
0D carriage return
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Hex ASCII Hex ASCII H ex ASCII H ex ASCII Hex ASCII Hex ASCII

20 Space 30 0 40 @ 50 P 60 t 70 P
21 I 31 1 41 A 51 Q 61 a 71 q
22 II 32 2 42 B 52 R 62 b 72 r
23 # 33 3 43 C 53 S 63 c 73 s
24 $ 34 4 44 D 54 T 64 d 74 t
25 % 35 5 45 E 55 U 65 e 75 u
26 & 36 6 46 F 56 V 66 f 76 V
27 ’ 37 7 47 G 57 W 67 g 77 w
28 ( 38 8 48 H 58 X 68 h 78 X
29 ) 39 9 49 I 59 Y 69 i 79 y
2A * 3A 4A J 5A Z 6A j 7A z
2B + 3B * 4B K 5B t 6B k 7B {
2C , 3C < 4C L 5C \ 6C 1 7C 11
2D - 3D = 4D M 5D } 6D m 7D }
2E m 3E > 4E N 5E A 6E n 7E
2F / 3F 9 4F 0 5F — 6F 0 7F rubou t

HEXADECIMAL-TO-DECIMAL CONVERSION

On the next page, we furnish an easy-to-use listing that will permit you to 
make fast and accurate conversions between hex and decimal notations, and 
vice versa.
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Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec H ex Dec

00 0 2B 43 56 86 81 129 AC 172 D7 215
01 1 2C 44 57 87 82 130 A D 173 D8 216
02 2 2D 45 58 88 83 131 AE 174 D9 217
03 3 2E 46 59 89 84 132 AF 175 DA 218
04 4 2F 47 5A 90 85 133 BO 176 DB 219
05 5 30 48 5B 91 86 134 BI 177 DC 220
06 6 31 49 5C 92 87 135 B2 178 D D 221
07 7 32 50 5D 93 88 136 B3 179 DE 222
08 8 33 51 5E 94 89 137 B4 180 DF 223
09 9 34 52 5F 95 8A 138 B5 181 EO 224
0A 10 35 53 60 96 8B 139 B6 182 El 225
OB 11 36 54 61 97 8C 140 B7 183 E2 226
OC 12 37 55 62 98 8D 141 B8 184 E3 227
OD 13 38 56 63 99 8E 142 B9 185 E4 228
OE 14 39 57 64 100 8F 143 BA 186 E5 229
OF 15 3A 58 65 101 90 144 BB 187 E6 230
10 16 3B 59 66 102 91 145 BC 188 E7 231
11 17 3C 60 67 103 92 146 BD 189 E8 232
12 18 3D 61 68 104 93 147 BE 190 E9 233
13 19 3E 62 69 105 94 148 BF 191 EA 234
14 20 3F 63 6A 106 95 149 CO 192 EB 235
15 21 40 64 6B 107 96 150 C l 193 EC 236
16 22 41 65 6C 108 97 151 C2 194 ED 237
17 23 42 66 6D 109 98 152 C3 195 EE 238
18 24 43 67 6E 110 99 153 C4 196 EF 239
19 25 44 68 6F 111 9A 154 C5 197 FO 240
1A 26 45 69 70 112 9B 155 C6 198 FI 241
IB 27 46 70 71 113 9C 156 C l 199 F2 242
1C 28 47 71 72 114 9D 157 C8 200 F3 243
ID 29 48 72 73 115 9E 158 C9 201 F4 244
IE 30 49 73 74 116 9F 159 CA 202 F5 245
IF 31 4A 74 75 117 AO 160 CB 203 F6 246
20 32 4B 75 76 118 A1 161 CC 204 F7 247
21 33 4C 76 77 119 A2 162 CD 205 F8 248
22 34 4D 77 78 120 A3 163 CE 206 F9 249
23 35 4E 78 79 121 A4 164 CF 207 FA 250
24 36 4F 79 7A 122 A5 165 DO 208 FB 251
25 37 50 80 7B 123 A6 166 D1 209 FC 252
26 38 51 81 7C 124 A7 167 D2 210 FD 253
27 39 52 82 7D 125 A8 168 D3 211 FE 254
28 40 53 83 7E 126 A9 169 D4 212 FF 255
29 41 54 84 7F 127 AA 170 D5 213
2A 42 55 85 80 128 AB 171 D6 214
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MULTIPLES OF IK (1024), IN DECIMAL AND 
HEXADECIMAL

A “K” is simply a number that is equal to 1024 (decimal). It’s a convenient 
number to use in the computer world since it’s almost 1000 (decimal) and, at 
the same time, is exactly equal to 400 hex, both of which are nice round 
numbers. The numbers shown in the table listing are common memory sizes 
for 8-bit computers (which, in general, use a 16-bit address bus), thus limiting 
them to addresses smaller than FFFF (hex). Note: The “Hex — 1” column in 
the table shows the highest memory location in a computer with the given K- 
bytes of memory.

K Decimal Hex H e x - 1

IK 1024 400 3FF
2K 2048 800 7FF
4K 4096 1000 FFF
8K 8192 2000 1FFF

16K 16384 4000 3FFF
20K 20480 5000 4FFF
32K 32768 8000 7FFF
48K 49152 cooo BFFF
56K. 57344 E000 D FFF
64 K. 65536 10000 FFFF
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DECIMAL, HEX, AND BINARY CONVERSION

In this section, we have a chart that will allow a fast and easy conversion 
between the three numerical value systems of decimal notation, hexadecimal 
notation, and binary notation.

Deci mal He x Binary

0 0 0 0 0  0
1 1 0 0 0 1
2 2 0 0 1 0
3 3 0 0  1 1
4 4 0 1 0  0
5 5 0 1 0  1
6 6 0 1 1 0
7 7 0 1 1 1
8 8 1 0  0 0
9 9 1 0  0 1

10 A 1 0  1 0
11 B 1 0  1 1
12 C 1 1 0  0
13 D 1 1 0  1
14 E 1 1 1 0
15 F 1 1 1 1
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Summary of BDOS System 
Calls (For C P / M  2 .2 )

This appendix lists all of the 36 system calls used in CP/M  2.2. The typical 
calling sequences are written in DDT format for brevity. This means that all 
numbers in this column are in hexadecimal notation. No attempt is made to 
show how a returned value is dealt with following the call to BDOS “call 5.” 
For more information on system calls, check the program examples in the 
text.

Function 
Number in 
C-register

Function
Value passed 
to function

Value returned 
by function

Typical calling 
sequence

Refer to 
page 

numberDec H ex

0 00 System Reset None N one mvi c,0 
call 5

68

1 01 Console Input None A =  ASCII 
character

mvi c,l 
call 5

63

2 02 Console Output E =  ASCII 
character

None mvi c,2 
mvi e,65 
call 5

32

3 03 Reader Input N one A =  ASCII 
character

mvi c,3 
call 5

96

4 04 Punch Output E =  ASCII 
character

N one mvi c,4 
mvi e,65 
call 5

98
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Function 
Number in 
C-register Value passed 

to function
Typical calling 
sequence

Refer to 
page 

numberDec H ex Function by function

5 05 List Output 
(Printer)

E =  ASCII 
character

N one mvi c,5 
mvi e,65 
call 5

93

6 06 Direct Console 
I/O  (Input)

E =  ff (hex) A =  00 or 
A =  ASCII 
character 
(note 1)

mvi c,6 
mvi e,ff 
call 5

87

Direct Console 
I/O  (Output)

E =  ASCII 
character

N one mvi c,6 
mvi e,65 
call 5

7 07 Get I /O  Byte None A =  I/O
byte value

mvi c,7 
call 5

98

8 08 Set I/O  Byte E =  I/O  
byte value

N one mvi c,8 
mvi e,D2 
call 5

105

9 09 Print String (see 
note 2)

DE =  string 
address

N one mvi c,9 
lxi d,200 
call 5

72

10 0A Read Console 
Buffer

DE =  buffer 
address

Characters in 
buffer

mvi c,a 
lxi e,300 
call 5

76

11 OB Get Console 
Status

None A =  FF (hex) 
or A  =  00

mvi c,b 
call 5

45

12 0C Return Version 
Number

None HL =  version 
number

mvi c,c 
call 5

*

13 0D Reset Disk System None N one mvi c,d 
call 5

*

14 0E Select Disk E =  disk 
drive number

N one mvi c,e 
mvi e,2 
call 5

*

15 OF Open File DE =  FCB 
address

A =  directory 
code (note 3)

mvi c,f 
lxi d,5c 
call 5

142

16 10 Close File D E =  FCB
address

A =  directory 
code (note 3)

mvi c,10 
lxi d,5c 
call 5

173

17 11 Search For First D E =  FCB
address

A =  directory 
code (note 3)

mvi c, 11 
lxi d,5c 
call 5

210
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Function 
Number in 
C-register

Function
Value passed 
to function

Value returned 
by function

Typical calling 
sequence

Refer to 
page 

numberDec H ex

18 12 Search For Next DE =  FCB 
address

A =  directory 
code (note 3)

mvi c,12 
lxi d,5c 
call 5

214

19 13 Delete File (note 5) DE =  FCB 
address

A =  directory 
code (note 3)

mvi c,13 
lxi d,5c 
call 5

182

20 14 Read Sequential 
Record

DE =  FCB 
address

A =  directory 
code (note 4)

mvi c,14 
lxi d,5c 
call 5

147

21 15 Write Sequential 
Record

DE =  FCB 
address

A =  directory 
code (note 4)

mvi c,15 
lxi d,5c 
call 5

171

22 16 Make File DE =  FCB
address

A =  directory 
code (note 4)

mvi c,16 
lxi d,5c 
call 5

170

23 17 Rename File DE =  FCB
address

A =  directory 
code (note 3)

mvi c,17 
lxi d,5c 
call 5

*

24 18 Return Login 
Vector

N one HL -  login 
vector

mvi c,18 
call 18

*

25 19 Return Current 
Disk

N one A =  current 
disk drive

mvi c,19 
call 5

*

26 1A Set DM A Address DE =  new 
D M A address

N one mvi c ,la  
lxi d,80 
call 5

149

27 IB Get Allocation 
Address

None HL =  alloca
tion address

mvi c ,lb  
call 5

*

28 1C Write Protect Disk N one N one mvi c ,lc  
call 5

*

29 ID Get Read/Only  
Vector

None HL =  read/ 
only vector

mvi c ,ld  
call 5

*

30 IE Set File Attributes DE =  FCB 
address

A =  directory 
code (note 3)

mvi c ,le  
lxi d,5c 
call 5

*

31 IF Get Disk Para
meters Address

None HL =  disk 
parameters 
address

mvi c ,lf  
call 5

*
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Function 
Number in 
C-register

Function
Value passed 
to function

Value returned 
by function

Typical calling 
sequence

Refer to 
page 

numberDec H ex

32 20 Set User Code E =  user 
code (0 to 31)

N one mvi c,20 
mvi e,l 
call 5

*

Get User Code E =  FF A =  user 
code

mvi c,20 
call 5

33 21 Read Random  
Record

DE =  FCB 
address

A =  error 
code (note 6)

mvi c,21 
lxi d,5c 
call 5

185

34 22 Write Random  
Record

D E =  FCB
address

A - error 
code (note 6)

mvi c,22 
lxi d,5c 
call 5

187

35 23 Compute File Size DE =  FCB 
address

bits rO, r l, r2 
in FCB set to 
file size

mvi c,23 
lxi d,5c 
call 5

196

36 24 Set Random D E  =  FCB 
address

bits rO, r l, r2 
in FCB set to 
record number

mvi c,24 
lxi d,5c 
call 5

197

NOTES: 1. On Input, AA =  0 means no character is ready yet. Direct console I/O  does not
recognize the normal control codes (AP, AS, etc.)

2. The string must terminate with a “$” character.
3. Directory Code (I)

=  FF if file cannot be found.
=  0, 1, 2, or 3 if file found. Number corresponds to position of file entry in 

directory page.
4. Directory Code (II)

=  00 if operation was successful.
=  nonzero if end-of-file (reading), disk full (writing), or directory full (make 

file).
5. Wildcards (“?” characters) can be used in the program name.
6. Error codes returned in random record operations:

00 Operation successful.
01 Reading unwritten data (read only).
02 (Unused).
03 Cannot close current extent.
04 Seek to unwritten extent (read only).
05 Directory overflow opening new extent (write only).
06 Seek past physical end of disk.

7. The descriptions of the Functions marked with an asterisk (*) are not included 
in this book.
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Summary of DDT 
Commands

This appendix summarizes the commands used in DDT. Except for the 
first section, which is about loading DDT, they are arranged in alphabetical 
order: A, D, F, G, H, I, L, M, R, S, T, U, and X.

LOADING DDT

From CP/M , type:

A>ddt

A COM or HEX program can be loaded into memory from the disk at the 
same time that DDT is loaded, by appending the program name to “ddt” . 
(Different file extensions can be used for COM files, like “ddt” .)

A>ddt tes tp rog .com  
A>ddt t e s t1 1 0 . d d t

DDT loads itself into the CCP area of high memory and also uses various 
parts of page zero. It loads the COM or HEX program into the TPA, starting 
at address 100 hex for COM files, and, at the starting address specified by the 
program, for HEX files.
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“A” FOR ASSEMBLE

This command lets you type in programs in a symbolic format; that is, 
instructions mnemonics may be used, but not labels.

From DDT, type “a” followed by the address (in hex) where you want to 
start the assembly:

-a  100

or

-a20B0

DDT responds with the address in memory of the next instruction:

----------------------------- You type symbolic instructions in this column.

100 mvi c ,0  
102 c a l l  5 
105 re t
1 06 —----------------------------  Type a “return” when you’re done.

I—-------—------------------------------  DDT tells you the address of the next instruction.

“D” FOR DUMP MEMORY

“Dump” means to display a portion of memory in hexadecimal format. 
From DDT, type “d” followed by the starting address of the memory block 
you want to look at.

-d400
0400 41 0A 00 00 00 DE DO 00 01 B7 D8 AC 7E E9 42 43 A....................... ~.BC

(16 lines will be displayed)

ASCII equivalents to the hex values are printed on the right, with periods 
used for nonprintable values.

If no ending address is specified, 16 lines of 16 bytes each are displayed. 
An ending address can also be used, following the starting address:
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-d 4 00 ,4 2 f

This will cause the dump to stop when the ending address is reached (in this 
case, after 3 lines).

If neither a starting nor an ending address is typed, 16 lines will be 
dumped starting at the last address used (initially 100, when DDT is loaded).

“F” FOR FILL

This command is used to fill an area of memory with a constant hex value. 
After “f”, type the starting address, the ending address, and the constant that 
is to be filled in (all in hex):

- f 4 0 0 , 5 0 0 , f f

will fill the block of memory from 400 to 500 with the value ff. The constant 
must be a one-byte value—in the range 0 to ff hex.

“G” FOR GO

This command is used to transfer control to a program at a particular 
address in m em ory-in other words, to execute the program. The usual form 
is “g” followed by the starting address:

-g100

which will cause the program that starts at 100 hex to be executed. It is simi
lar to a jump instruction in assembly language, or a GOTO in BASIC. A “g” 
to location 0 brings you back to C P/M  (with a cold boot):

-g0
A>

Note that the only way to get back to DDT once you’ve used “g” is is to 
have your program end with an “RST 7” instruction (or you can use 
breakpoints).

You can also use the “g” command to set “breakpoints,” which are tempo
rary jumps back to DDT that are inserted automatically in your program and
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then deleted once they’ve been used. Breakpoints are useful if you want to 
execute only a portion of a program that you’re debugging. You insert a 
breakpoint at the end of the section you want to execute, and DDT will 
regain control from your program at that point, leaving your program 
unchanged in memory. Thus, only the section of your program between the 
starting address (the first address specified in the “g” command) and the 
breakpoint (the second address specified) will be executed.

Either one or two breakpoint addresses can be typed following the starting 
address:

-g 1 0 0 ,1 24 Sets a breakpoint at 124.
-g100 ,127 ,13d Sets breakpoints at 127 and 13d.

“H” FOR HEXADECIMAL ARITHMETIC

DDT can be used to perform addition and subtraction of hexadecimal 
numbers, using the “H ” command. After “h” , type the two numbers sepa
rated by a comma:

- h 980 ,bc00 - —  —  You type this.
C580,4D80 « --- DDT types this.

------------- Difference of 980 and BCOO.
------------- Sum of 980 and BCOO.

“I” COMMAND

See the “ R” Command.

«¥L” FOR LIST

This command is used to list a program in disassembled symbolic form (as 
opposed to dumping it in hex numbers with “d”). It can be thought of as the 
inverse operation of the “A” command.

If you type a “1” followed by an address, 12 lines of instructions will be 
displayed:
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-1 1 0 0 -------------
100 MVI A , 50 ' 
102 STA 01FE 
105 MVI C, A 
e t c .

You type this. 

DDT displays this.

You can also specify an ending address, in which case, the last address 
displayed will be the one you specify:

-1100 ,116

If no address is specified, disassembly will start at the current line, which is 
initially 100 when DDT is loaded, but which is set to the last line displayed 
whenever “1” is used.

- I

“M” FOR MOVE

“M” allows the contents of one block of memory to be moved to another 
part of memory. After “b”, type the starting address of the block to be 
moved, the ending address of the block to be moved, and the address that the 
block is to be moved to.

-m100,124,200

I----------  Starting address of destination block.
--------------------  Ending address of source block.

------------------------------- Starting address of source block.

“R” FOR READ

This command is used in conjunction with the “I” command to permit 
DDT to read a program from the disk into the Transient Program area (TPA) 
of memory. Once in memory, the program can either be executed by DDT, or 
debugged using any of DDT’s various commands. Either COM or HEX files 
may be loaded, although COM files can be given different file types, like 
“DDT.”
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Before this command is used, the “I” command is used to insert the name 
of the COM or HEX program into the File Control Block at 5C hex. To do 
this, simply type the name of the program, along with its file type, following

- i  t e s tp r o g .h e x

Now to actually read the program into the TPA, type “r” :

- r

COM files will be loaded at 100 hex and HEX files will be loaded at the 
address that you specified in the “end” statement of the ASM file when you 
created the program. Make sure the program does not overwrite the zero 
page (0 to ff hex), since DDT uses this area.

Note that using “i” and “r” together like this has the same effect as loading 
in the COM or HEX program when you first load DDT:

A>ddt t e s tp r o g .h e x

is the same as 

A>ddt
- i  t e s t p r o g . hex 
- r

An optional offset can also be used with the “R” command. This causes 
the program to be loaded into a different address than the one that it nor
mally would be; that is, 100 hex for COM files and the address specified in 
the ASM file’s “end” statement for HEX files. The new address is found by 
adding the offset to the normal address-that is, the offset is the difference 
between the new address and the normal one. To use this option, type the 
offset after the “r” :

- r 4 0

If, in this case, a COM file had already been specified by the “I” com
mand, the program would be loaded at 140, since 100 (the normal loading 
address of COM files) plus 40 equals 140.
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“S” FOR SET MEMORY

This command lets you insert hexadecimal values into memory. It is 
invoked by typing “s” followed by the address at which you want to start 
inserting values. It responds by typing a line number and the current con
tents of the line:

- s 1 10 
110 B5

You can now type in a new value or, if you want to leave this address 
unchanged, you can simply press “return” to go on to the next address. A 
period is used to terminate the function.

You type numbers in this column.

- s 1 10
110 B5 cO
111 00 b6
112 00
113 2D c9
114 76 0
114 7 F

Nothing is inserted here; “return” leaves current value unchanged.

Type period to terminate function.

“T” FOR TRACE

Tracing is a very clever function whereby DDT can execute the instruc
tions of your program and at the same time keep control of the computer 
itself, so that it can print out all sorts of useful information about what your 
program is doing.

The information printed out consists of the contents of the various 8080 
registers. To use this command, you must first have your program in memory 
ready to be executed. You then type a “t” followed by the number of instruc
tions you want to see executed, in hexadecimal.

For example, we show in Listing F-l what happens when you load and 
then use “t” to trace the first 8 instructions of the program “barber.ddt” from 
Chapter 2 in this book.
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Listing F-1. Using “T” for Trace

A>ddt b a r b e r . d d t  
DDT VERS 2.2 
NEXT PC 
0200  0100 
- t 8
C0Z0M0E0I0 A = 00 B = 
C0Z0M0E0I0 A = 00 B = 
C0Z0M0E0I0 A = 00 B = 
C0Z0M0E0I0 A = 00 B = 
C0Z0M0E0I0 A = 00 B = 
C0Z0M0E0I0 A=00  B= 
C0Z0M0E0I0 A = 00 B = 
.COZOMOEOIO, A = 00. B =

Contents of flags.

C =  carry 
Z =  zero 
M = minus 
E = even parity 
I =  interdigit carry

: 0000 
: 0000 
: 0002 
:0002 
:0002 
: 0002 
! 0002 
■ 0002 ,

=0000 H= 
=0020 H= 
=0020 Hi 
=0020 H= 
=0020 H= 
=0020 H= 
= 0020 H = 
= 0020, H =

♦

0000 
: 0000
: 0000
0000 
0000 
0000 
0000 
0108,

Contents of 
DE register.

Contents of 
BC register.

" Contents of 
A-register.

S = 0100 P = 0100 MVI E,20
S = 0100 P = 0102 MVI C,02
S = 0100 P = 0104 PUSH D
S = 00FE P = 0105 CALL 0005
S = 00FC P = 0005 JMP A800
S = 00FC P = A800 JMP AEA2
S = 00FC P = AEA2 XTHL
S = £ 0 ^ P=£EA3, .SHLD B74A,

Instruction 
executed. 

Contents of 
program counter.

—► Contents of stack pointer. 
------ Contents of HL register.

“U” FOR UNTRACE

This command is very similar to trace, except that nothing is printed out. 
You simply type “u” and the number (in hex) of the instructions you want 
DDT to execute:

-u10

This is useful if you want to trace a particular segment of your program 
using “t,” but this part isn’t at the start of the program. Using “u,” you can 
skip over the first part of your program without the printout (which can be 
time-consuming for even a few hundred instructions), but, at the same time, 
let DDT keep control of the program so that it will stop at the point you 
want it to. Once these initial instructions have been “untraced,” that is, 
traced without printing, you can trace the next, defective, group of instruc
tions using “t.”
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Thus, if you know, for example, that your program executes a loop of say, 
10 instructions correctly five times, but does something incorrect on the sixth 
iteration of the loop, you can say:

-u50 -*---------  Skips over 50 good instructions.
- t 1 0  ------  —  Traces 10 bad instructions.

“X” FOR EXAMINE REGISTERS

It’s often helpful to be able to look a t—and alter—the contents of the vari
ous 8080 registers when you’re trying to debug a program. The “x” command 
lets you do both these things. You can also examine and change the contents 
of the flags. To do this, you type “x” followed by a one-letter mnemonic for 
the register that you want to look at or modify. For instance,

- xp -«-----------  If you type this,
P=1024 100 - -------  —  DDT will respond with “P =  1024”, the contents of the program
~  . counter.

I------------------ You change it to 100 hex by typing the number in this column. If
you only type a carriage return, the number is unchanged.

Sometimes you have to type a 4-digit hex number, as in the case of the 
registers BC, DE, HL, the program counter P, and the stack pointer S. For 
the A-register, you must type a 2-digit number and, for the flags, you must 
type a single binary digit: 0 or 1.

Here’s a list of the mnemonics used for the various registers, together with 
the range of values that can be put into them:

A A-register 0 to FF
B BC-register 0 to FFFF
D DE-register 0 to FFFF
H HL-register 0 to FFFF
S Stack Pointer 0 to FFFF
P Program Counter 0 to FFFF
M Minus Flag 0 to 1
C Carry Flag 0 to 1
Z Zero Flag 0 to 1
E Even Parity Flag 0 to 1
I Interdigit (Auxiliary) Carry Flag 0 to 1
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Notice that if you want to put just a 2-digit (8 bit) number into, say, the 
B-register, you must put an entire 4-digit (16 bit) number into the BC-regis
ter. With the “x” command, there is no way to work with the B, C, D, E, H, 
or L registers as separate 8-bit registers.
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Summaries of Programs 
Used and Locations of 

Instruction Descriptions

This appendix provides an itemized listing of the programs used in this 
book and the instruction descriptions given in the book. They are arranged 
by chapter for your convenience.

PROGRAMS USED

Alongside each program name is a short description of what it does.

Chapter 2

test.ddt Prints “H I” returns to DDT.
test 1.ddt Prints series of “HLs”.
test2.ddt Prints “H is” with Check Console Status.
barber.ddt Prints ASCII characters.
test3.ddt Beeps keyboard.
test4.ddt Beep with AC escape.
test4.com Beep with RET instead of RST.
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Chapter 3

test5.ddt Print string.
test6.ddt Read console buffer.
test7.ddt Read console and print string,
namedisp.ddt Parabola name display.
test8.ddt Direct console I/O .
test9.ddt Password.
testlO.ddt Type to printer,
testll.dd t Get I/O  byte.

Chapter 4

test 1.asm 
decibin.hex 
binihex.asm 
decihex.asm

Assembled version of test 1.ddt. 
Decimal to binary routine. 
Binary to hex routine.
Decimal to hex conversion.

Chapter 5

testlOO.ddt
test 101.ddt
testl02.ddt
testl03.ddt
testl04.ddt
type2.com
lines.com

Open file.
Open file, return directory code.
Read record.
Read record with DMA at 400.
Read record, DMA at 400, print directory code. 
Imitates CP/M  TYPE function.
Counts lines in a file.

Chapter 6

testl05.ddt
store.asm
store2.asm
testl06.ddt
testl07.ddt
testl08.ddt
randymod.asm
store3.asm

Write sequential record.
Store text in file (add to existing file). 
Store text in file (delete existing file). 
Read random record.
Write random record (new file).
Write random record (old file).
Modify a random record.
Version of store using compute file size.
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Chapter 7

testl09.ddt Search For First (in disk directory).
test 1 lO.ddt Search For First and next.
testl 1 l.ddt Save erased file.
words.asm Counts words in file, uses wildcards.

Chapter 8

binihex2
binihex3
binihex4
LOADHEX.BAS
hexibin2
ucase

Decimal to hex converter.
Version to be relocated in memory.
Version to be POKEd in from BASIC.
BASIC program to load HEX files.
Hex to decimal converter (runs from BASIC). 
Convert lowercase letters to uppercase.

DESCRIPTIONS OF INSTRUCTIONS

Alongside each instruction is listed the specific section in the chapter 
where the instruction is described.

Chapter 2

MVI Console Out
CALL Console Out
RST Console Out
JMP Console Out
ORA Get Console Status
JZ Get Console Status
PUSH Get Console Status
POP Get Console Status
INR Get Console Status
MOV Get Console Status
CPI Get Console Status
JNZ Get Console Status
RET Console Input
INR Get Console Status
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Chapter 3

LXI Print String
STA Read Console Buffer
DCR Name Display Program
INX Direct Console I/O
LDA List Output
RLC Get I/O  Byte
ANI Get I/O  Byte
ADI Get I/O  Byte

Chapter 4

RM Decibin Routine
RP Decibin Routine
SUI Decibin Routine
DAD Decibin Routine

Chapter 5

SHLD Lines Program 
LHLD Lines Program

Chapter 7

SPHL Words Program 
LDAX Words Program 
STAX Words Program 
XCHG Words Program

Chapter 9

IN Printer Driver 
OUT Printer Driver 
XRI Printer Driver
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A

“A” command, 109 
explained, 38 

Add Immediate instruction; see ADI 
instruction defined 

Addresses, reverse order, 43, 114 
ADI instruction defined, 104 
A-L

program, 244-248 
routine, 248-277 

getting back to BASIC from,
249

getting from BASIC to, 249 
how do we pass arguments between 

BASIC and, 249-251 
moving after loading, 256 
operating on strings with, 274-276 
passing arguments to BASIC from, 

271-274
POKEing into memory, 262-267 
putting into memory, 255-271 
transferring control between BASIC 

and, 248-249  
using a BASIC program to load the, 

267-271 
Allocation 

units, 138-139, 170, 202, 205, 207-209, 
221

vector; see bit map 
A nd logical operation, 102-103 
ANI instruction defined, 102-103 
A-register, 27, 129 
Arguments, 243, 249-251, 271-274  
ASCII, 72, 78, 105, 123, 130, 133, 155, 

159, 213, 267, 359-360  
character set, 51 
defined, 25 

ASM, 14, 15, 108, 153, 248

ASM —cont.
and D DT, format differences between, 

111-112 
assembler, 108, 109-116, 136 
file(s), 110, 118, 223, 283 

Assembler 
D D T  mini, 29 
directives, 357 
using the, 107-136 

Assembly language 
8080, 136 
instructions, 348 
routine, 243, 246, 277, 325 

Assemblying 
and using DECIHEX, 134 
a program, 110, 113-115

B

Barber-Pole display program, 51-63  
BASIC, 243, 244, 248, 262-267  

using system calls from, 243-277  
Basic

disk operating system; see BDOS 
input/output system; see BIOS 

BC-register, 27
BDOS, 22, 143, 170-171, 182, 185, 207, 

221-222, 310; 
see also basic disk operating sys
tem

system calls, summary of, 365-368  
talking to, 139-142 

BEEP program, 64-66  
Bias or offset, 314 
Binary, 116, 129 

decimal, and hex conversion, 363 
notation explained, 323-325  
numbers, 29
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Binary—cont.
-to-decimal conversion routine, 126, 157 

BINIDEC SUBROUTINE, 157-160, 242 
BINIHEX  

program, 264-265 
routine, 126-130 

BINIHEX2 routine, 251-254  
BINIHEX3 routine, 259-262  
BIOS, 22, 32, 215; see also basic input/ 

output system 
file, merge in the new, 316-317  
installing the new driver in your, 308- 

314
learning your way around, 283-294  
listing, 295-301
modifying for different control charac

ters, 320-322  
what is the?, 280-283  
what you need to modify your, 282-283 

Bit
map, 221-222, 308 
patterns, 292 

hexadecimal, 329 
Buffer

DM A, 140, 172, 175, 188, 194, 215-216  
printer, 302-303 
read console, 76-81 

Byte(s), 202, 205, 208 
I/O , 99-101, 105-106

C

CALL instruction defined, 36-37  
Calls

advanced console system, 71-106  
console system, 31-70  
disk system, 137-167 

Carry flag, 104, 124, 359 
CBASE, 262-263
CCP, 22, 68, 212, 215, 245, 262, 263, 281, 

285, 310-311, 315; 
see also console command 
processor

Close File system call, 169, 170, 173-174,
218

Code, source and object, 115-116

Cold boot, 45, 65, 293 
COM file(s), 110, 118, 120, 134, 155, 234, 

248, 261, 308 
Comment field, 113
Compute File Size system call, 196-197 
Console 

buffer, read, 76-81
Command Processor, 281; see also CCP 
field, 100
Input system call defined, 63 
Output, 52 

system call defined, 32 
system calls, 31-70  

advanced, 71-106  
Control 

-c, 41, 65, 303 
characters, 279-280  

modifying BIOS for different, 320- 
322 

-P, 106 
-q, 302-303 
-s, 42, 302-303, 340 

feature, using, 42-45  
Converting 

decimal to hex, 330 
hex to decimal, 329 

CPI instruction defined, 61 
C P/M

executing programs from, 66-68  
image 

create the, 315 
using D DT, 315-316  

operating system, 308 
parts of, 21-24  

CPM56.COM program, 310 
CR byte, 172-173 
Create the C P/M  image, 315 
Creating a new FCB, 220 
Current extent, 145 

byte, 173, 183, 188

D

D A D  instruction defined, 123-124 
Data

statements, 264, 266
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D ata—cont.
transfers, memory to memory, 236-240  

DB directive defined, 155-156 
DBASE, 245-247, 251-252, 263 
dBASE II, 243 
“D ” command, 81, 109 

explained, 73 
DCR instruction defined, 85-86  
DDT, 14, 107-109, 136, 143-147, 212, 234, 

245, 247, 248-254, 320, 331, 340 
and ASM, format differences between, 

111-112
commands, summary of, 369-378 
hex arithmetic function, 312 
loading, 369
-the programmer’s x ray and probe, 29 - 

30
typing in 

a message with, 73-75  
the program using, 39-41 

DECIBIN routine, 110, 116, 118-120, 
122-123, 196 

assemblying and executing, 125-126 
DECIHEX program, 126, 130-132 
Decimal 

converting hex to, 329 
hex, and binary conversion, 363 
notation explained, 325 
-to-binary conversion, 116-118 
-to-hexadecimal conversion routine, 

126-130 
to hex, converting, 330 

D EFIN T statement, 252 
D EFU SR  statement, 249, 270, 271 
Delete File system call, 169, 182-183 
DE-register, 27, 77 
Descripter, 274-275 
DIR, 216
DIRECT CONSOLE I/O  system program, 

87-93 
Directory, 219-220  

code, 212; see also return code 
disk, 205, 209-210 
scanning the entire, 216 

Disk
directory, 144, 174, 202, 205, 209-210  

and wildcards, 201-242

D isk—cont. 
operating system, C P/M , 167 
system calls, 137-167 
utility program, 202 
writing to, 169-199 

DM A  
address, 141
buffer, 140, 146, 149, 150, 172, 175, 180, 

188, 194-196, 215-216 
dilemma, 146-147, 149 
location problem, 146-147 

“$” label, 257-258
Dollar-sign label, 256, 258; see also “$” 

label
Drive 

code, 207, 210 
default, 145 
number, 141 

Driver
installation steps, quick summary of,

318
into the C P/M  system, inserting new, 

314-318
in your BIOS, installing, 308-314  
routines, 281, 314 
testing the, 305-307 
writing a sample, 303-306  

Dummy argument, 254 
DW  directive defined, 160-163

E

8-bit
arithmetic, 351-252 
transfers, 349-350  

8080
8080A, 8085 microprocessor chips, 13 
architecture, 24-28, 345-348 
assembly language, 136 
instructions, 345, 348-357 
microprocessor, 27, 289 
register, 234 

E5, 210, 217, 219 
ECHO program, 82-83  
Editing commands, 76-77  

C P /M ’s built-in, 76
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End 
directive, 132 
-of-file; see EOF 

marker, 148 
statement, 120 

EOF, 153, 155, 180 
EQU directive, 180, 258 

defined, 132-133 
Erased files

saving, 218-221, 222 
using E5 with, 210, 217 

ETX /A C K  protocol, 303 
Examining the FCB, 206 
Exclamation point directive defined, 

129
Exclusive-OR, 292 
Executing programs from 

C P/M , 66-68 
D DT, 42 

Existing record, writing to, 189 
Extents, 138-139, 173, 186, 202, 205 

opening new, 207, 208, 211

F

FAC, 250-251, 253, 273, 274 
FBASE, 245, 262-263, 264 
FCB, 140, 142-144, 148, 170-172, 185, 

195-196, 205, 207, 316; 
see also file control block 

creating new, 220 
examining the, 206 

FDOS, 23, 68 
Field(s) 

comment, 113 
label, 113 
operand, 34 
operation, 34 
statement, 33-36 

File(s), 148, 211-212  
ASM, 223
control block, 140-142, 203-205; see 

also FCB 
count words in, 222-242  
close the, 220-221 
defined, 139

File(s)—cont. 
erased, 217
getting the vital information about the, 

219-220  
merging, 310
on the disk, how C P/M  stores, 202-210  
opening, 205
outputting in hex, 341-343 
storage, 340
writing to a new, 188-189 

FILEDUM P program, 340-343 
Flag(s), 124, 353 

list of, 347-348 
Floating Point Accumulator, 250; see also 

FAC
Flowchart defined, 53 
Format differences between D D T and 

ASM, 111-112 
FORTRAN, 243
Full disk operating system; see FDOS 
Function byte, 292

G

“G ” command explained, 41 
Get

Console Status, 52 
system call defined, 45 

I/O  Byte system call, 98-105 
Golden Rule, C P /M ’s, 21

H

Hex
arithmetic function, 312 
converting decimal to, 329-330 
decimal, and binary conversion, 363 
files, 110, 115, 118, 120, 248, 267-271 
-to-decimal conversion program, 339- 

340
Hexadecimal, 112, 116 

arithmetic, 327-328 
bit patterns, 329 
digits, 127
instruction codes, 35
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Hexadecimal—cont. 
notation explained, 323-330  
numbers, 29
-to-decimal conversion, 360-361 

H EXDUM P program, 263, 331-334 
HEXIBIN2 program, 271-274  
HEXIDEC program, 338-340  
High memory, 255, 261, 315 

using load in, 255-256  
“HI” program, 38 
HL-register, 27
How C P/M  stores files on the disk, 202- 

210

I

command, 206, 212 
instruction, 152

command explained, 145-146 
(“immediate”) used in instructions, 74 

Imitating the “TYPE” command, 153-157 
“Immediate” used in instructions, 74 
IN  instruction defined, 289-290 
Input call, console, 63-66  
IN R  instruction defined, 59 
Inserting the new driver into the C P/M  

system, 314-318 
Instructions, assembly language, 26 
Interpreter, BASIC, 245, 246, 254 
Interrupt system, 38 
INX instruction defined, 92 
I/O , 285-287  

byte, 99-101, 105-106 
devices, logical and physical, 99 
initialization, 293-294  

IOBYTE, 288-289

J

JMP instruction defined, 43-44  
JNZ instruction defined, 62 
Jump(s) 

calls, and returns, 352-353

Jump(s)—cont.
-on-not-zero; see JNZ instruction 
table, 287, 316 

JZ instruction defined, 50

L

Label(s) 
field, 113 
symbolic, 112-113 

“L” command explained, 40 
LDA instruction defined, 96 
LDAX instruction defined, 237-238  
LHLD instruction, 160, 162, 240 
LINES program, 157-167 
List 

field, 100
Output to Printer system call, 93-96  

LOAD, 14, 110, 255, 256, 261 
program, using the, 115, 248 
using, 115 

Loading 
D D T , 369
programs with DDT, 42 

Logical 
and physical I/O  devices, 99 
devices, 99 

LXI instructions, 74-75, 77, 240

M

MAC, 29
Machine transportability, 20 
Magic number 

find the, 313 
“N ”, 310, 320 
what good is this?, 313 

Make File system call, 169, 170-171, 172 
Mapping, 174 
Masking off bits, 103 
Memory, 24-26, 248 

other ways to put the A-L routine into, 
255-271 

protected, 245, 246 
to memory data transfers, 236-240
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Merge in the new BIOS file, 316-317 
Merging 

files, 310
your new driver, 314 

MICRO SPACE INVADERS program, 
334-338 

Modifying 
BIOS, 282-283  

for different control characters, 320- 
322

C P/M  for different peripherals, 279-322  
the STORE program, 182-183 
your printer driver, 301-307 

MOV instruction, 60, 237 
MOVCPM utility program, 308-310, 311, 

320
“M ” register, 90-92, 237, 346 
MVI instruction, 34-36, 60, 74

N

N AM E DISPLAY program, 83-87  
NEXT, 44
Nondisk system calls, 106

O

Object code, 115 
and source code, 115-116 

Open 
files, 205
File system call, 142-146, 148, 170 

Operand field, 34 
Operating system(s), 18 

C P/M , 308 
what is an?, 18 

Operation field, 34 
O r logical operation, 49 
ORA instruction defined, 49 
ORG

directive, 111, 115, 132, 252, 253 
statement and the jump table, 287 

OUT instruction defined, 290-292 
Output 

system call, console, 32-45

Output—cont. 
to printer, 93-96

P

Page zero, 23 
Parts of C P/M , 21-24  
Pascal, 243
Passing arguments between BASIC and 

the A-L routine, 249-251 
PASSWORD program, 89-90  
PC (program counter), 44 
PCHAR subroutine, 133 
Peripherals, 279, 281 
Phantom “M ” register, 90-92  
Physical 

devices, 99 
I /O  devices, 99 

PIP command, 14, 183, 197 
POKEing the A-L routine into memory 

from BASIC, 262-267 
POP instruction, 55, 57-59, 234 
Printer(s), 94, 106, 279, 286-287  

buffer, 302-303 
daisy-wheel, 302 
driver, 301-307  

how to modify your, 301-307  
program, 321 

list output to, 93-96  
program to type to, 94-96  
serial, 302 

Print String system call, 72-75, 82, 242 
PRN files, 110, 113, 118, 125, 264-265, 

267
Program(s) 

assemblying the, 113-115 
beep, 64-66  
executing, 66-68  
running the, 63 
saving the, 41-42  
Status Word, 345, 347-348  
to type to the printer, 94-96  
transportability, 18-19 
typing in the, 39-41 
using the LOAD, 115 
utility, 331-343
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Programmer’s probe, DDT, 29-30  
Protected memory, 245, 246 
Protocols, 301-303  
PSW; see Program Status Word 
Punch 

field, 100
Output system call, 98 

PUSH instruction, 56, 57, 234 
Putting the A-L routine into memory, 

255-271

R

Random  
and sequential system calls, 186 
record(s), 170, 183-185, 186, 194 

program to modify a, 189-195 
R AN D Y M O D  program, 170, 185, 189—

195
Read

Console Buffer system call, 76-81, 82 
Random Record system call, 185-187, 

189
Record program, 151-153 
Sequential system call, 147-149, 172,

182, 183
Reader 

field, 100
Input system call, 96-98  

Reading a record, 148-149 
Record(s), 138-139, 202-203, 205, 208, 209 

defined, 139
random, 170, 183-185, 186 
reading a, 149-149 
sequential, 148 
storage, 340 
writing to existing, 189 

Register(s), 26-28, 34, 345-347  
phantom “M”, 90-92  

Reloading D D T  programs, 42 
RET instruction, 36, 66-67  
Return code, 186, 187; see also directory 

code
RLC instruction, 102, 130 
RM instruction defined, 120-121

Rotate Left instruction; see RLC instruc
tion defined 

Rotations, 353-354  
RP instruction defined, 120-121 
RST instruction defined, 38-39  
Rubout character, 180

S

16-bit 
arithmetic, 352 
transfers, 350-351 

SAVE command, 40, 310 
Saving D D T  programs, 41 
“S” command D D T  explained, 73 
Scanning the entire directory, 216 
Search For 

First system call, 202, 210-211, 214, 
223-224  

Next system call, 202, 214-217, 
223-224  

“Search” system calls, 223 
Sectors, 138-139, 202-203, 205, 208 
Sequential records, 148 
Serial printer, 302 
Set

DM A Address system call, 149-153 
I /O  Byte system call defined, 105 
Random Record system call, 197-198 

SHLD instruction defined, 160, 161 
Sign flag defined, 121-122, 124, 359 
Source code, 115 

and object code, 115-116 
Space game, 334 
SPHL instruction defined, 235 
SP-register, 56, 234 
Stack, 54-56, 66, 105, 146 

defined, 54
management, 96, 234-236  
pointer, 347 

register; see SP-register 
STA instruction defined, 79 
STAT, 14, 216, 256 
Statement fields, 33-36  
Status byte, 290 
STAX instruction, 237, 239
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STORE
program, 171, 177-182, 190, 196, 197,

219
modifying, 182 

text in file, 177 
String(s) 

argument in BASIC, 274 
defined, 72
-handling system calls, 82 
in DB directives, 157 
operating on with an A-L routine, 274- 

276
SUBM IT utility, using C P/M ’s, 134-136 
Subroutines, 36, 120-125 

in W ORDS, 242 
SUI instruction defined, 121-122 
Symbolic labels, 112-113, 195 
SYSGEN utility, 317, 320 
System

calls, 12, 19-20, 31-106, 223 
console, 31-106  
disk, 137-167 
nondisk, 106 
string-handling, 82 
summary of BDOS, 365-368 

Reset system call defined, 68 
tracks, 317

T

Talking to BDOS, 139-142 
Text editor, your own, 182 
TPA, 21, 68; see also transient program 

area
Tracks, 138-139, 202, 203, 205 
Transferring control between BASIC and 

the A-L routine, 248-249 
Transient program area; see TPA 
Transportability 

machine, 20 
program, 18 

TYPE2 program, 153-157 
Typing in

a message with D D T , 73-75 
the program using D D T, 39—41

U

UART, 283, 285, 290, 292, 293, 305 
UCASE program, 275-276  
Universal Asynchronous Receiver/Trans

mitter; see UART  
U se factor, 114 
Using

a BASIC program to load the A-L rou
tine, 267-271 

the LOAD program, 115 
U SR  function, 249, 250, 275 
Utility 

program(s), 331-343 
disk, 202

W

Warm boot, 41, 66, 68-69, 221, 222, 293 
Wildcards, 211-213, 215, 222 

and the disk directory, 201-242 
how W ORDS handles, 240-241 

Word processor, using the, 110 
WORDS  

program, 199, 202, 216, 222-242  
subroutines in, 242 

Write
Random system call, 187-189 
Record system call, 171, 182 
Sequential Record system call, 169, 170, 

171-173, 183 
Writing

a sample driver, 303-306  
to a new file, 188-189 
to existing record, 189

X

“X ”
command explained, 126 
used in instructions, 74 

XCH G instruction, 240, 275-276  
X O N /X O F F  protocol, 302, 304, 305 
XRI instruction defined, 291-293
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Y

Your first program, 33 

Z

Z-80 microprocessor chip, 13 
Zero flag, 48, 104, 124, 359
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An advanced programming guide em phasizing the 
Bourne shell, while including the C shell and the 
Korn shell as well. This book dem onstrates how the 
powerful U N IX  shell programming language is 
creating a revolution in programming. M any easy-to- 
use exam ple programs can be run on any computer. 
Manis and Meyer.
No. 22497, $24.95

□  Artificial Intelligence Programming on 
the Macintosh™
Includes tutorials in Logo as well as in Lisp and 
Prolog, the three main A I languages. For 
programmers whose background is in BASIC, an 
appendix shows how to convert the program exam ples 
to that language. Dan Shafer.
No. 22447, $24.95

CP/M® Primer (2nd Edition)
Completely updated to give you the know-how to 
begin working with new or old CP/M versions 
immediately. Includes CP/M terminology, operation, 
capabilities, internal structure, and more.
W aite and Murtha.
No. 22170, $16.95

CP/M Bible: The Authoritative Reference 
Guide to CP/M
G ives you instant, one-stop access to all CP/M 
keywords, commands, utilities, conventions, and more. 
A m ust for any com puterist using any version of 
CP/M. W aite and Angermeyer.
No. 22015, $19.95

Soul of CP/M: How to Use the Hidden 
Power of Your CP/M System  
Teaches you how to use and modify CP/M ’s internal 
features, use CP/M system  calls, and more. You'll 
need to read C P/M  P R IM E R  or be otherwise familiar 
with CP/M's outer-layer utilities. W aite and Lafore. 
No. 22030, $19.95

Discovering MS™-DOS®
From com plete description of the basic command set 
through analysis of architectural implications, you will 
gain a com plete understanding of this operating 
environment. Kate O'Day.
No. 22407, $15.95
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D epartm ent DM 
P.O. Box 7092 
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Sams books cover a wide range of technical topics. We are 
always interested in hearing from our readers regarding the ir in 
formational needs. Please complete th is  questionnaire and 
return it to us w ith  your suggestions. We appreciate your com
ments.

1. W hich brand and model 
of com puter do you use?
□ A p p le  _______________________ _
□  Com m odore____________________
□  IBM ___________________________
□  Other (please specify) __________

2. W here do you use your 
com puter?
□  Home D W ork

3. Are you planning to buy
a new com pbter?
□  Yes Q N o
If yes, what brand are you planning
to b u y?____________________________

4. Please specify  the brand/  
type of softw are, operating 
system s or languages you use.
□ W ord P ro c e ss in g ________________
□  Spreadsheets ___________________
□  Data Base Management _________
□  Integrated Softw are______________
□ O perating System s ______________
□  Computer Languages ___________

5. Are you interested in any 
of the following electronics or 
technical topics?
□  Amateur radio
□  Antennas and propagation
□  Artificial intelligence/ 

expert systems
□  Audio
□  Data communications/ 

telecommunications
□  Electronic projects
□  Instrumentation and measurements
□  Lasers
□  Power engineering
□  Robotics
□  Satellite receivers

6. Are you interested in se r
v ic in g and repair of any of 
the following (please  
sp e cify)?
□  VCRs __________________________
□  Compact disc players ____________
□  Microwave o ve n s________________
□  Television________________________
□  Computers __________
□Automotive electronics _
□  Mobile telephones ___
□ O ther _______________

7. How many com puter or 
electronics books did you buy  
in the last year?
□  One or two □ T h re e  or four
□  Five or six □  More than six

8. What is the average price  
you paid per book?
□  Less than $10 □$10-$15
□  $16-$20 D$21-$25 D$26 +

9. What is your occupation?
□  Manager
□  Engineer
□  Technician
□  Programmer/analyst
□  Student
□ O ther __________________________

10. Please specify  your 
educational level.
□  High school
□  Technical school
□  College graduate
□  Postgraduate

11. Are there sp e cific  books
you would like to see us 
pu blish? _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Comments.

Name _________________ _________________________
A d d r e s s ________________________________________
City ___________________ _________________________
S tate /Z ip  ________________________________________  i

2 2 0 3 0  '
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Soul of CP/M*
How to Use the Hidden Power of Your CP/M System
Do you w an t to learn the universal "system calls" that m ake C P/M  the most popu lar 
opera ting  system in the m icrocom puter w orld?  W ould you like  to know  how  to program  
in 8080 assembly language? If so, read this book! Using a un ique approach, it teaches 
you both CP/M  system calls and 8080 assembly language at the same tim e!

Your voyage o f discovery w ill take you deep inside C P/M  to its Soul. Y ou 'll d iscover how  
to m od ify  BIOS so your CP/M  system w ill run w ith  d iffe re n t peripherals, how  to in terface 
8080 programs to BASIC, how  to access the disk system, and much more. And, it's easy to 
learn, using our new  code-fragm ent approach w ith  DDT. If you 're  ready to advance 
beyond sim ply runn ing app lica tion  programs, then this book is fo r you!

•  Learn 8080 Assembly Language Program m ing
•  Find out how  CP/M  rea lly  works
•  Get started fast w ith  our easy DDT Code-Fragment approach
•  Discover how  to use C P/M  System Calls
•  Access CP/M  from  BASIC
•  Learn how  to M od ify  BIOS

The W aite Group is a San Rafael, C a lifo rn ia  based producer o f h igh q u a lity  books on 
personal com puting . A cknow ledged as a leader in the industry, the W aite  G roup has 
w ritte n  and produced over th irty  titles, inc lud ing  such best sellers as UNIX Prim er Plus, 
Com puter G raph ics Prim er, CP/M  Prim er, and Sou l o f  CP/M . In te rna tiona lly  known 
and aw ard  w in n in g , W aite  G roup books are d istributed w o rld  w ide , and have been 
repackaged w ith  the products o f such m ajor com panies as Epson, W ang, Xerox, Radio 
Shack, NCR, and Exxon O ffice  Systems. Mr. W aite, President o f the W aite  G roup, has 
been invo lved  in the Com puter Industry since 1972 w hen he bought his first A pp le  I 
com puter from  Steven Jobs.

Robert Lafore is M anag ing  Editor o f the W aite  G roup, a com pany w hich produces 
com puter books in San Rafael, C a lifo rn ia . Mr. Lafore has w orked w ith  com puters since 
1965, w hen he first learned assembly language on the DEC PDP-5. He has 
program m ed on m any d iffe re n t machines, and is flue n t in a varie ty  o f com puter 
languages. He holds degrees in m athem atics and e lectrica l eng inee ring , and is the 
co-author o f Soul o f  C P/M , an assembly language book fo r CP/M  systems. Mr. Lafore 
founded In teractive Fiction, a com puter gam e com pany, and has also been a 
pe tro leum  eng ineer in Southeast Asia, a novelist, a newspaper colum nist, a systems 
eng ineer fo r the University o f C a lifo rn ia 's  Lawrence Berke ley Laboratory, and has 
sa iled his ow n boat to the South Pacific.

Howard W. Sams & Co.
A Division of Macm illan, Inc.
4300 West 62nd Street, Indianapolis, IN 46268 USA o 81262 22030

$19.95/22030 ISBN: 0-672-22030-X


