

THE PROGRAMMER'S
CP/M® HANDBOOK

Andy Johnson-Laird

Osborne/McGraw-Hill
Berkeley, California

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to Osborne/McGraw-Hill at the above address.

CP/M is a registered trademark of Digital Research, Inc.
CP/M-86, MP/M-86, and MP/M II are trademarks of

Digital Research, Inc.
Z80 is a registered trademark of Zilog, Inc.

THE PROGRAMMER'S CP/M® HANDBOOK
Copyright © 1983 by Osborne/McGraw-Hill. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

1234567890 DODO 89876543

ISBN 0-88134-103-7 (Paperback Edition)
ISBN 0-88134-119-3 (Hardcover Edition)

Mary Bprchers, Acquisitions Editor
Ralph Baumgartner, Technical Editor
Susan Schwartz, Copy Editor
Judy Wohlfrom, Text Design
Yashi Okita, Cover Design

THE PROGRAMMER'S
CP/M® HANDBOOK

Dedication

Several years ago I was told that "Perfection is an English education, an
American salary, and a Japanese wife."

Accordingly, I wish to thank the members of Staff at Culford School in
England, who gave me the English education, the people who work with me at
Johnson-Laird Inc. and Control-C Software and our clients, who give me my
American salary, and Mr. and Mrs. Kitagawa, who gave me Kay Kitagawa (who
not only married me but took over where my English grammar left off).

A.J-L.

Acknowledgments

Although this book is not authorized or endorsed by Digital Research, I would
like to express my thanks to Gary Kildall and Kathy Strutynski of Digital
Research, and to Phil Nelson (formerly of Digital Research, now of Victor Tech
nology) for their help in keeping me on the path to truth in this book. I would also
like to thank Denise Penrose, Marty McNiff, Mary Borchers, and Ralph Baum
gartner at Osborne/McGraw-Hill for their apparently inexhaustible patience.

A.J-L.

Outline of Contents
Notation
Example Programs on Diskette

Iintroduction

This book is a sequel to the Osborne CPjM® User Guide by Thom Hogan. It is
a technical book written mainly for programmers who require a thorough knowl
edge of the internal structure of CP/M - how the various pieces of CP/M work,
how to use CP/M as an operating system, and finally, how to implement CP/M on
different computer systems. This book is written for people who

Have been working with microcomputers that run Digital Research's CP/M
operating system.

Understand the internals of the microprocessor world - bits, bytes, ports,
RAM, ROM, and other jargon of the programmer.

Know how to write in assembly language for the Intel 8080 or Zilog Z80
Central Processing Unit (CPU) chips.

Ifyou don't have this kind of background, start by getting practical experience
on a system running CP/M and by reading the following books from Osborne/
McGraw-Hill:

An Introduction to Microcomputers: Volume 1-Basic Concepts
This book describes the fundamental concepts and facts that you need to

1

2 The CP/M Programmer's Handbook

know about microprocessors in order to program them. If you really need
basics, there is a Volume 0 called The Beginner's Book.

8080Aj8085 Assembly Language Programming
This book covers all aspects of writing programs in 8080 assembly language,
giving many examples.

Osborne CPjM® User Guide (2nd Edition)
This book introduces the CP/M operating system. It tells you how to use
CP/M as a tool to get things done on a computer.

The book you are reading now deals only with CP/M Version 2.2 for the 8080
or Z80 chips. At the time of writing, new versions of CP/M and MP/M (the
multi-user, multi-tasking successor to CP/M) were becoming available. CP/M-86
and MP/M-86 for the Intel 8086 CPU chip and MP/M-II for the 8080 or Z80 chips
had been released, with CP/M 3.0 (8080 or Z80) in the wings. The 8086, although
related architecturally to the 8080, is different enough to make it impossible to
cover in detail in this book; and while MP/M-II and MP/M-86 are similar to
CP/M, they have many aspects that cannot be adequately discussed within the
scope of this book.

Outline of Contents

This book explains topics as if you were starting from the top of a pyramid.
Successive "slices" down the pyramid cover the same material but give more detail.

The first chapter includes a brief outline of the notation used in this book for
example programs written in Intel 8080 assembly language and in the C pro
gramming language.

Chapter 2 deals with the structure of CP/M, describing its major parts, their
positions in memory, and their functions.

Chapter 3 discusses CP/M's file system in as much detail as possible, given its
proprietary nature. The directory entry, disk parameter block, and file organiza
tion are described.

Chapter 4 covers the Console Command Processor (CCP), examining the way
in which you enter command lines, the CP/M commands built into the CCP, how
the CCP loads programs, and how it transfers control to these programs.

Chapter 5 begins the programming section. It deals with the system calls your
programs can make to the high-level part of CP/M, the Basic Disk Operating
System (BDOS).

Chapters 6 through 10 deal with the Basic Input/Output System (BIOS). This is
the part of CP/M that is unique to each computer system. It is the part that you as a
programmer will write and implement for your own computer system.

Chapter 6 describes a standard implementation of the BIOS.

Chapter I: Introduction 3

Chapter 7 describes the mechanism for rebuilding CP/M for a different
configuration.

Chapter 8 tells you how to write an enhanced BIOS.
Chapter 9 takes a close look at how to handle hardware errors-how to detect

and deal with them, and how to make this task easier for the person using the
computer.

Chapter 10 discusses the problems you may face when you try to debug your
BIOS code. It includes debugging subroutines and describes techniques that will
save you time and suffering.

Chapter 11 describes several utility programs, some that work with the features
of the enhanced BIOS in Chapter 8 and some that will work with all CP/M 2
implementations.

Chapter 12 concerns error messages and some oddities that you will discover,
sometimes painfully, in CP/M. Messages are explained and some probable causes
for strange results are documented.

The appendixes contain "ready-reference" information and summaries of
information that you need at your side when designing, coding, and testing
programs to run under CP/M or your own BIOS routines.

Notation

When you program your computer, you will be sitting in front of your terminal
interacting with CP/M and the utility programs that run under it. The sections that
follow describe the notation used to represent the dialog that will appear on your
terminal and the output that will appear on your printer.

Console Dialog

This book follows the conventions used in the Osborne Cp/M User Guide,
extended slightly to handle more complex dialogs. In this book

< name> means the ASCII character named between the angle brackets,<
and>. For example, < BEL> is the ASCII Bell character, and < HT> is the
ASCII Horizontal Tab Character. (Refer to Appendix A for the complete
ASCII character set.)

<cr> means to press the CARRIAGE RETURN key.

123 or a number without a suffix means a decimal number.

100B or a number followed by B means a binary number.

OA5H or a number followed by H means a hexadecimal number. A hexa
decimal number starting with a letter is usually shown with a leading 0 to
avoid confusion.

4 The CP/M Programmer's Handbook

/\ X means to hold the CONTROL (CTRL) key down while pressing the x key.

Underline is keyboard input you type. Output from the computer is shown
without underlining.

Assembly Language Program Examples
This book uses Intel 8080 mnemonics throughout as a "lowest common

denominator"-the Z80 CPU contains features absent in the 8080, but not vice
versa. Output from Digital Research's ASM Assembler is shown so that you can
see the generated object code as well as the source.

High-Level Language Examples
The utility programs described in Chapter 11 are written in C, a programming

language which lends itself to describing algorithms clearly without becoming
entangled in linguistic bureaucracy. Cryptic expressions have been avoided in
favor of those that most clearly show how to solve the problem. Ample comments
explain the code.

An excellent book for those who do not know how to program in C is The C
Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall).
Appendix A of this book is the C Reference Manual.

Example Programs on Diskette

Example programs in this book have been assembled with ASM and tested
with DDT, Digital Research's Dynamic Debugging Tool. C examples were com
piled using Leor Zolman's BDS C Compiler (Version 1.50) and tested using the
enhanced BIOS described in Chapter 8.

All of the source code shown in this book is available on a single-sided,
single-density, 8-inch diskette (IBM 3740 format). Please do not contact Osborne/
McGraw-Hill to order this diskette. Call or write

Johnson-Laird, Inc.
Attn: The CP/M Programmer's Handbook Diskette

6441 SW Canyon Court
Portland, OR 97221
Tel: (503) 292-6330

The diskette is available for $50 plus shipping costs.

CP/M from Digital Research
The Pieces of CP/M

CP/M Diskette Format
Loading CP/M
Console Command Processor
Basic Disk Operating System
Basic Input/Output System
CCP, BDOS, and BIOS

Interactions

The Structure
of CP/M

This chapter introduces the pieces that make up CP/M-what they are and
what they do. This bird's-eye view of CP/M will establish a framework to which
later chapters will add more detailed information.

You may have purchased the standard version of CP/M directly from Digital
Research, but it is more likely you received CP/M when you bought your micro
processor system or its disk drive system. Or, you may have purchased CP/M
separately from a software distributor. In any case, this distributor or the com
pany that made the system or disk drive will have already modified the standard
version of CP/M to work on your specific hardware. Most manufacturers' ver
sions of CP/M have more files on their system diskette than are described here for
the standard Digital Research release.

Some manufacturers have rewritten all the documentation so that you may not
have received any Digital Research CP/M manuals. If this is the case, you should
order the complete set from Digital Research, because as a programmer, you will
need to have them for reference.

5

6 The CP/M Programmer's Handbook

CP/M from Digital Research

Digital Research provides a standard "vanilla-flavored" version of CP/M that
will run only on the Intel Microcomputer Development System (MDS). The
CP/M package from Digital Research contains seven manuals and an 8-inch,
single-sided, single-density standard IBM 3740 format diskette.

The following manuals come with this CP/M system:

An Introduction to CP/M Features and Facilities. This is a brief description
of CP/M and the utility programs you will find on the diskette. It describes
only CP/M version 1.4.

CP/M 2.0 User's Guide. Digital Research wrote this manual to describe the
new features of CP/M 2.0 and the extensions made to existing CP/M 1.4
features.

ED: A Context Editorfor the CP/M Disk System. By today's standards, ED
is a primitive line editor, but you can still use it to make changes to files
containing ASCII text, such as the BIOS source code.

CP/M Assembler (ASM). ASM is a simple but fast assembler that can be
used to translate the BIOS source code on the diskette into machine code.
Since ASM is only a bare-bones assembler, many programmers now use its
successor, MAC (also from Digital Research).

CP/M Dynamic Debugging Tool (DDT). DDT is an extremely useful pro
gram that allows you to load programs in machine code form and then test
them, executing the program either one machine instruction at a time or
stopping only when the CPU reaches a specific point in the program.

CP/M Alteration Guide. There are two manuals with this title, one for CP/M
version 1.4 and the other for 2.0. Both manuals describe, somewhat crypti
cally, how to modify CP/M.

CP/M Interface Guide. Again, there are two versions, 1.4 and 2.0. These
manuals tell you how to write programs that communicate directly with
CP/M.

The diskette supplied by Digital Research has the following files:

A SM. COM
The CP/M assembler.

BIOS.ASM
A source code file containing a sample BIOS for the Intel Microcomputer
Development System (MDS). Unless you have the MDS, this file is useful
only as an example of a BIOS.

Chapter 2: The Structure of CP/M 7

CBIOS.ASM
Another source code file for a BIOS. This one is skeletal: There are gaps so
that you can insert code for your computer.

DDT.COM
The Dynamic Debugging Tool program.

DEBLOCK.ASM
A source code file that you will need to use in the BIOS if your computer
uses sector sizes other than 128 bytes. It is an example of how to block and
deblock 128-byte sectors to and from the sector size you need.

DISKDEF.LIB
A library of source text that you will use if you have a copy of Digital
Research's advanced assembler,' MAC.

DUMP.ASM
The source for an example program. DUMP reads a CP/M disk file and
displays it in hexadecimal form on the console.

DUMP. COM
The actual executable program derived from DUMP.ASM.

ED. COM
The source file editor.

LOAD. COM
A program that takes the machine code file outputbythe assembler, ASM,
and creates another file with the data rearranged so that you can execute
the program by just typing its name on the keyboard.

MOVCPM.COM
A program that creates versions of CP/M for different memory sizes.

PIP. COM
A program for copying information from one place to another (PIP is
short for Peripheral Interchange Program).

STAT.COM
A program that displays statistics about the CP/M and other information
that you have stored on disks.

SUBMIT.COM
A program that you use to enter CP/M commands automatically. It helps
you avoid repeated typing of long command sequences.

SYSGEN. COM
A program that writes CP/M onto diskettes.

XSUB.COM
An extended version of the SUBMIT program. The files named previously

8 The CP/M Programmer's Handbook

fall into two groups: One group is used only to rebuild CP/M, while the
other set is general-purpose programming tools.

The Pieces of CP/M

CP/M is composed of the Basic Disk Operating System (BDOS), the Console
Command Processor (CCP), and the Basic Input/Output System (BIOS).

On occasion you will see references in CP/M mamials to something called the
FDOS, which stands for "Floppy Disk Operating System." This name is given to
the portion of CP/M consisting of both the BDOS and BIOS and is a relic passed
down from the origi~alversion. Since it is rarely necessary to refer to the BDOS
and the BIOS combined as a single entity, no further references to the FDOS will
be made in this book.

The BDOS and the CCP are the proprietary parts of CP/M. Unless you are
willing to pay several thousand dollars, you cannot get the source code for them.
You do not need to. CP/M is designed so that all of the code that varies from one
machine to another is contained in the BIOS, and you do get the BIOS source code
from Digital Research. Several companies make specialized BlOSs for different
computer systems. In many cases they, as well as some CP/M hardware manufac
turers, do not make the source code for their BIOS available; they have put time
and effort into building their BIOS, and they wish to preserve the proprietary
nature of what they have done.

You may have to build a special configuration of CP/M for a specific computer.
This involves no more than the following four steps:

1. Make a version of the BDOS and CCP for the memory size of your
computer.

2. Write a modified version of the BIOS that matches the hardware in your
computer.

3. Write a small program to load CP/M irito memory when you press the
RESET button on your computer.

4. Join all of the pieces together and write them out to a diskette.

These steps will be explained in Chapters 7, 8, and 9.
In the third step, you write a small program that loads CP/M into memory

when you press the RESET button on your computer. This program is normally
called the bootstrap loader. You may also see it called the "boot" or even the "cold
start" loader. "Bootstrap" refers to the idea that when the computer is first turned
on, there is no program to execute. The task of getting that very first program into
the computer is, conceptually, as difficult as attempting to pick yourself up off the
ground by pulling on your own bootstraps. In the early days of computing, this
operation was performed by entering instructions manually - setting large banks

Chapter 2: The Structure of CP/M 9

of switches (the computer was built to read the switches as soon as it was turned
on). Today, microcomputers contain some small fragment of a program in "non
volatile" read-only memory (ROM)-memory that retains data when the com
puter is turned off. This stored program, usually a Programmable Read Only
Memory (PROM) chip, can load your bootstrap program, which in turn loads
CP/M.

CP/M Diskette Format
The standard version of CP/M is formatted on an 8-inch, single-sided diskette.

Diskettes other than this type will probably have different layouts; hard disks
definitely will be different.

The physical format ofthe standard 8-inch diskette is shown in Figure 2-1. The

....--------------Index Hole
(Marks Sector I)

....------------Central Hole

.1--"'t-__ r----------Track 76

I...----Floppy Medium

L..-------Track 0

L..- Sector 26

L..------------------Sector I

Figure 2-1. Floppy disk layout

10 The CP/M Programmer's Handbook

Sector Track 0 Track I

Bootstrap Loader

2 e_--l---
3
4
5
6
7 Basic Disk
8 Console Operating
9 Command System

10 Processor (BDOS)
11 (CCP) (Last Part)
12
13
14
15
16
17

~--- ----
18
19 ----- ----
20 Basic Disk
21 Operating
22 System

Basic
23 (BDOS) Input/Output
24 (First Part) System
25

~
(BIOS)

26

+

Figure 2·2. Layout of CP/ M on tracks 0 and 1 of floppy disk

diskette has a total of77 concentric tracks numbered from zero (the outermost) to
76 (the innermost). Each of these tracks is divided radially into 26 sectors. These
physical sectors are numbered from I to 26; physical sector zero does not exist.
Each sector has enough space for 128 bytes of data.

Even when CP/M is implemented on a large hard disk with much larger sector
sizes, it still works with 128-byte sectors. The BIOS has extra instructions that
convert the real sectors into CP/M-style 128-byte sectors.

A final note on physical format: The soft-sectored, single-sided, single-density,
8-inch diskette (IBM 3740 format) is the only standard format. Any other formats
will be unique to the hardware manufacturer that uses them. It is unlikely that you
can read a diskette on one manufacturer's computer if it was written on another's,
even though the formats appear to be the same. For example, a single-sided,
double-density diskette written on an Intel Development System cannot be read
on a Digital Microsystems computer even though both use double-density format.
If you want to move data from one computer to another, use 8-inch, single-sided,
single-density format diskettes, and it should work.

Chapter 2: The Structure of CP/M 11

In order to see how CP/M is stored on a diskette, consider the first two tracks
on the diskette, track 0 and track 1. Figure 2-2 shows how the data is stored on
these tracks.

Loading CP/M

The events that occur after you first switch on your computer and put the
CP/M diskette into a disk drive are the same as those that occur when you press the
RESET button-the computer generates a RESET signal.

The RESET button stops the central processor unit (CPU). All of the internals
of the CPU are set to an initial state, and all the registers are cleared to zero. The
program counter is also cleared to zero so that when the RESET signal goes away
(it only lasts for a few milliseconds), the CPU starts executing instructions at
location OOOOH in memory.

Memory chips, when they first receive power, cannot be relied upon to contain
any particular value. Therefore, hardware designers arrange for some initial
instructions to be forced into memory at location OOOOH and onward. It is this feat
that is like pulling yourself up by your own bootstraps. How can you make the
computer obey a particular instruction when there is "nothing" (of any sensible
value) inside the mach.ine?

There are two common techniques for placing preliminary instructions into
memory:

Force-feeding
With this approach, the hardware engineer assumes that when the RESET
signal is applied, some part of the computer system, typically the floppy
disk controller, can masquerade as memory. Just before the CPU is un
leashed, the floppy disk controller will take control of the computer system
and copy a small program into memory at location OOOOH and upward.
Then the CPU is allowed to start executing instructions at location OOOOH.
The disk controller preserves the instructions even when power is off
because they are stored in nonvolatile PROM-based firmware. These
instructions make the disk controller read the first sector of the first track
of the system diskette into memory and then transfer control to it.

Shadow ROM
This is a variation of the force-feeding technique. The hardware manu
facturer arranges some ROM at location OOOOH. There is also some
normal read/write memory at location OOOOH, but this is electronically
disabled when the RESET signal has been activated. The CPU, unleashed
at location OOOOH, starts to execute the ROM instruction. The first act of
the ROM program is to copy itself into read/write memory at some
convenient location higher up in memory and transfer control of the
machine up to this copy. Then the real memory at location OOOOH can be
turned on, the ROM turned off, and the first sector on the disk read in.

12 The CP/M Programmer's Handbook

With either technique, the result is the same. The first sector of the disk is read
into memory and control is transferred to the first instruction contained in the
sector.

This first sector contains the main CP/M bootstrap program. This program
initializes some aspects of the hardware and then reads in the remainder of track 0
and most of the sectors on track 1(the exact number depends on the overall length
of the BIOS itself). The CP/M bootstrap program will contain only the most
primitive diskette error handling, trying to read the disk over and over again if the
hardware indicates that it is having problems reading a sector.

The bootstrap program loads CP/M to the correct place in memory; the load
address is a constant in the bootstrap. Ifyou need to build a version of CP/M that
uses more memory, you will need to change this load address inside the bootstrap
as well as the address to which the bootstrap will jump when all of CP/M has been
read in. This address too is a constant in the bootstrap program.

The bootstrap program transfers control to the first instruction in the BIOS,
the cold boot entry point. "Cold" implies that the operation is starting cold from
an empty computer.

The cold boot code in the BIOS will set up the hardware in your computer.
That is, it programs the various chips that control the speed at which serial ports
transmit and receive data. It initializes the serial port chips themselves and
generally readies the computer system. Its final act is to transfer control to the first
instruction in the BOOS in order to start up CP/M proper.

Once the BOOS receives control, it initializes itself, scans the file directory on
the system diskette, and hands over control to the CCP. The CCP then outputs the
"A>" prompt to the console and waits for you to enter a command. CP/M is then
ready to do your bidding.

At this point, it is worthwhile to review which CP/M parts are in memory,
where in memory they are, and what functions they perform.

This overview will look at memory first. Figure 2-3 shows the positions in
memory of the Console Command Processor, the Basic Oisk Operating System,
and the Basic Input/Output System.

By touching upon these major memory components-the CCP, BOOS, and
BIOS - this discussion will consider which modules interact with them, how
requests for action are passed to them, and what functions they can perform.

Console Command Processor

As you can see in Figure 2-3, the CCP is the first part of CP/M that is
encountered going "up" through memory addresses. This is significant when you
consider that the CCP is only necessary in between programs. When CP/M is idle,
it needs the CCP to interact with you, to accept your next command. Once CP/M
has started to execute the command, the CCP is redundant; any console interac
tion will be handled by the program you are running rather than by the CCP.

Locations in
Hexadecimal

Chapter 2: The Structure of CP/M 13

Locations in
Decimal

FFFFH...r--------------, -65535
Basic Input/Output System

(BIOS)
FC80H-"""-------------- 1-64640

Basic Disk Operating System
(BOOS)

E680H-~-------------- -59008
Console Command Processor

(CCP)DE80H..... -r
56960

Memory Available for
Programs

OIOOH.....---------~-256
OOOOH- CP/M Reserved Area 0

Figure 2·3. Memory layout with CP/ M loaded

Therefore, the CCP leads a very jerky existence in memory. It is loaded when you
first start CP/M. When you ask CP/M, via the CCP, to execute a program, this
program can overwrite the CCP and use the memory occupied by the CCP for its
own purposes. When the program you asked for has finished, CP/M needs to
reload the CCP, now ready for its interaction with you. This process of reloading
the CCP is known as a warm boot. In contrast with the cold boot mentioned
before, the warm boot is not a complete "start from cold"; it's just a reloading of
the CCP. The BDOS and BIOS are not touched.

How does a program tell CP/M that it has finished and that a warm boot must
be executed? By jumping to location OOOOH. While the BIOS was initializing itself
during the cold boot routine, it put an instruction at location 0000H to jump to the
warm boot routine, which is also in the BIOS. Once the BIOS warm boot routine

14 The CP/M Programmer's Handbook

has reloaded the CCP from the disk, it will transfer control to the CCP. (The cold
and warm boot routines are discussed further in Chapter 6.)

This brief description indicates that every command you enter causes a pro
gram to be loaded, the CCP to be overwritten, the program to run, and the CCP to
be reloaded when the program jumps to location OOOOH on completing its task.
This is not completely true. Some frequently needed commands reside in the CCP.
Using one of these commands means that CP/M does not have to load anything
from a diskette; the programs are already in memory as part of the CCP. These
commands, known as "intrinsic" or "resident" commands, are listed here with a
brief description of what they do. (All of them are described more thoroughly in
Chapter 4.) The "resident" commands are

DIR

ERA

REN

TYPE

SAVE

USER

Displays which files are on a diskette

Erases files from a diskette

Changes the names of files on diskette

Displays the contents of text files on the console

Saves some of memory as a file on diskette

Changes User File Group.

Basic Disk Operating System

The BDOS is the heart of CP/ M. The CCP and all of the programs that you run
under CP/M talk to the BDOS for all their outside contacts. The BDOS performs
such tasks as console input/ output, printer output, and file management (creating,
deleting, and renaming files and reading and writing sectors).

The BDOS performs all of these things in a rather detached way. It is con
cerned only with the logical tasks at hand rather than the detailed action of getting
a sector from a diskette into memory, for example. These "low-level" operations
are done by the BDOS in conjunction with the BIOS.

But how does a program work with the BDOS? By another strategically placed
jump instruction in memory. Remember that the cold boot placed the jump to the
BIOS warm boot routine in location OOOOH. At location 0005H, it puts a jump
instruction that transfers control up to the first instruction of the BDOS. Thus,
any program that transfers control to location 0005H will find its way into the
BDOS. Typically, programs make a CALL instruction to location 0005H so that
once the BDOS has performed the task at hand, it can return to the calling
program at the correct place. The program enlisting the BDOS's help puts special
values into several of the CPU registers before it makes the call to location 0005H.
These values tell the BDOS what operation is required and the other values needed
for the specific operation.

16 The CP/M Programmer's Handbook

Handles aU physical I/O to
console, printer, serial I/O I Entry Pointsand disks (customized by user)

in JMP Table I'--

Handles aU logical I/O to
console, printer, serial I/O
including file management on I--
disk system.
(Not changed by user)

Handles communication with console;
accepts command lines; has some
commands built-in, or loads them
from disk (Not changed by user)

Program running
, ... under CP/M ,,",

'1""
;---- CALL 5 to make CP/M

'1""
requests

r- JMP 0 when finished
processing

Location
5 JMP BOOS

~·O JMP RESTART

Console {
Command
Processor

(CCP)

Basic fInput/Output
System
(BIOS)

Basic fDisk
Operating

System
(BOOS)

Figure 2-4. CP/ M's functional breakdown

How CP/M Views the Disk
The Making of a File
Disk Definition Tables
File Organizations

The CP/M File
System

This chapter gives you a close look at the CP/M file system. The Basic Disk
Operating System (BOOS) is responsible for this file system: It keeps a directory
of the files on disk, noting where data are actually stored on the disk. Because the
file system automatically keeps track of this information, you can ignore the
details of which tracks and sectors on the disk have data for a given file.

How CP/M Views the Disk

To manage files on the disk, CP/M works with the disk in logical terms rather
than in physical terms of tracks and sectors. CP/M treats the disk as three major
areas.

These are the reserved area, which contains the bootstrap program and CP/M
itself; thefile directory, containing one or more entries for each file stored on the
disk; and the data storage area, which occupies the remainder of the disk. You will

17

18 The CP/M Programmer's Handbook

be looking at how CP/M allocates the storage to the files as your programs create
them.

The Basic Input/ Output System (BIOS) has built-in tables that tell CP/M the
respective sizes of the three areas. These are the disk definition tables, described
later in this chapter.

Allocation Blocks

Rather than work with individual 128-byte sectors, CP/M joins several of these
sectors logically to form an allocation block. Typically, an allocation block will
contain eight 128-byte sectors (which makes it 1024 or 1K bytes long). This makes
for easier disk manipulation because the magnitude of the numbers involved is
reduced. For example, a standard 8-inch, single-density, single-sided floppy disk
has 1950 128-byte sectors; hard disks may have 120,000 or more. By using
allocation blocks that view the disk eight sectors at a time, the number of storage
units to be managed is substantially reduced. The total number is important
because numeric information is handled as 16-bit integers on the 8080 and Z80
microprocessors, and therefore the largest unsigned number possible is OFFFFH
(65,535 or 64K decimal).

Whenever CP/M refers to a specific allocation block, all that is needed is a
simple number. The first allocation block is number 0, the next is number 1, and so
on, up to the total remaining capacity of the disk.

The typical allocation block contains 1024 (I K) bytes, or eight 128-byte
sectors. For the larger hard disks, the allocation block can be 16,384 (16K) bytes,
which is 128 128-byte sectors. CP/M is given the allocation via an entry in the disk
definition tables in the BIOS.

The size of the allocation block is not arbitrary, but it is a compromise. The
originator of the working BIOS for the system ~-either the manufacturer or the
operating system's designer-chooses the size by considering the total storage
capacity of the disk. This choice is tempered by the fact that if a file is created with
only a single byte of data in it, that file would be given a complete allocation block.
Large allocation blocks can waste disk storage if there are many small files, but
they can be useful when a few very large files are called for.

This can be seen better by considering the case ofa 1K-byte allocation block. If
you create a very small file containing just a single byte of data, you will have
allocated an entire allocation block. The remaining 1023 bytes will not be used.
You can use them by adding to the file, but when you first create this one-byte file,
they will be just so much dead space. This is the problem: Each file on the disk will
normally have one partly filled allocation block. If these blocks are very large, the
amount of wasted (unused) space can be very large. With 16K-byte blocks, a
lO-megabyte disk with only 3 megabytes of data on it could become logically full,
with all allocation blocks allocated.

On the other hand, when you use large allocation blocks, CP/M's performance
is significantly improved because the BDOS refers to the file directory less

Chapter 3: The CP/M File System 19

frequently. For example, it can read a 16K-byte file with only a single directory
reference.

Therefore, when considering block allocation, keep the following questions in
mind:

How big is the logical disk?
With a larger disk, you can tolerate space wasted by incomplete allocation
blocks.

What is the meanfile size?
If you anticipate many small files, use small allocation blocks so that you
have a larger "supply" of blocks. Ifyou anticipate a smaller number oflarge
files, use larger allocation blocks to get faster file operations.

When a file is first created, it is assigned a single allocation block on the disk.
Which block is assigned depends on what other files you already have on the disk
and which blocks have already been allocated to them. CP/M maintains a table of
which blocks are allocated and which are available. As the file accumulates more
data, it will fill up the first allocation block. When this happens, CP/M will extend
the file and allocate another block to it. Thus, as the file grows, it occupies more
blocks. These blocks need not be adjacent to each other on the disk. The file can
exist as a series ofallocation blocks scattered all over the disk. However, when you
need to see the entire file, CP/M presents the allocation blocks in the correct order.
Thus, application programs can ignore allocation blocks. CP/M keeps track of
which allocation blocks belong to each file through the file directory.

The File Directory

Thefile directory is sandwiched between the reserved area and the data storage
area on the disk. The actual size of the directory is defined in the BIOS's disk
definition tables. The directory can have some binary multiple ofentries in it, with
one or more entries for each file that exists on the disk. For a standard 8-inch
floppy diskette, there will be room for 64 directory entries; for a hard disk, 1024
entries would not be unusual. Each directory entry is 32 bytes long.

Simple arithmetic can be used to calculate how much space the directory
occupies on a standard floppy diskette. For example, for a floppy disk the formula
is 64 X 32 = 2048 bytes = 2 allocation blocks of 1024 bytes each.

The directory entry contains the name of the file along with a list of the
allocation blocks currently used by the file. Clearly, a single 32-byte directory entry
cannot contain all of the allocation blocks necessary for a 5-megabyte file,
especially since CP/M uses only 16 bytes of the 32-byte total for storage of
allocation block numbers.

Extents
Often CP/M will need to control files that need many allocation blocks. It does

this by creating more than one directory entry. Second and subsequent directory

-- ---------------

20 The CP/M Programmer's Handbook

entries have the same file name as the first. One of the other bytes of the directory
entry is used to indicate the directory entry sequence number. Each new directory
entry brings with it a new supply of bytes that can be used to hold more allocation
block numbers. In CP/M jargon, each directory entry is called an extent. Because
the directory entry for each extent has 16 bytes for storing allocation block
numbers, it can store either 16 one-byte numbers or 8 two-byte numbers. There
fore, the total number of allocation blocks possible in each extent is either 8 (for
disks with more than 255 allocation blocks) or 16 (for smaller disks).

File Control Blocks
Before CP/M can do anything with a file, it has to have some control informa

tion in memory. This information is stored in afile control block, or FCB. The
FCB has been described as a motel for directory entries-a place for them to
reside when they are not at home on the disk. When operations on a file are
complete, CP/M transforms the FCB back into a directory entry and rewrites it
over the original entry. The FCB is discussed in detail at the end of this chapter.

As a summary, Figure 3-1 shows the relationships between disk sectors,
allocation blocks, directory entries, and file control blocks.

The Making of a File

To reinforce what you already know about the CP/M file system, this section
takes you on a "walk-through" of the events that occur when a program running
under CP/M creates a file, writes data to it, and then closes the file.

Assume that a program has been loaded in memory and the CPU is about to
start executing it. First, the program will declare space in memory for an FCB and
will place some preset values there, the most important of which is the file name.
The area in the FCB that will hold the allocation block numbers as they are
assigned is initially filled with binary O's. Because the first allocation block that is
available for file data is block 1, an allocation block number of 0 will mean that no
blocks have been allocated.

The program starts executing. It makes a call to the BDOS (via location
0005H) requesting that CP/M create a file. It transfers to the BDOS the address in
memory of the FCB. The BDOS then locates an available entry in the directory,
creates a new entry based on the FCB in the program, and returns to the program,
ready to write data to the file. Note that CP/M makes no attempt to see if there is
already a file of the same name on the disk. Therefore, most real-world programs
precede a request to make a file with a request to delete any existing file of the same
name.

The program now starts writing data to the file, 128-byte sector by 128-byte
sector. CP/ M does not have any provision for writing one byte at a time. It handles
data sector-by-sector only, flushing sectors to the disk as they become full.

22 The CP/M Programmer's Handbook

Seeks out the next spare entry in the directory.

Resets the FCB in memory to indicate that it is now working on the second
extent of the file.

Clears out the allocation block area in the FCB and waits for the next sector
from the program.

Thus the process continues. New extents are automatically opened until the
program determines that it is time to finish, writes the last sector out to the disk,
and makes a BOOS request to close the file. The BOOS then converts the FCB
into a final directory entry and writes to the directory.

Directory Entry

The directory consists of a series of 32-byte entries with one or more entries for
each file on the disk. The total number of entries is a binary multiple. The actual
number depends on the disk format (it will be 64 for a standard floppy disk and
perhaps 2048 for a hard disk).

Figure 3-2 shows the detailed structure of a directory entry. Note that the
description is actually Intel 8080 source code for the data definitions you would
need in order to manipulate a directory entry. It shows a series of EQU instruc
tions-equate instructions, used to assign values or expressions to a label, and in
this case used to access an entry. It also shows a series of OS or define storage
instructions used to declare storage for an entry. The comments on each line
describe the function ofeach of the fields. Where data elements are less than a byte
long, the comment identifies which bits are used.

As you study Figure 3-2, you will notice some terminology that as yet has not
been discussed. This is described in detail in the sections that follow.

File User Number (Byte 0) The least significant (low order) four bits of byte 0 in the
directory entry contain a number in the range 0 to 15. This is the user number in
which the file belongs. A better name for this field would have been file group
number. It works like this: Suppose several users are sharing a computer system
with a hard disk that cannot be removed from the system without a lot of trouble.
How can each user be sure not to tamper with other users' files? One simple way
would be for each to use individual initials as the first characters of any file names.
Then each could tell at a glance whether a file was another's and avoid doing
anything to anyone else's files. A drawback of this scheme is that valuable
character positions would be used in the file name, not to mention the problems
resulting if several users had the same initials.

The file user number is prefixed to each file name and can be thought ofas part
ofthe name itself. When CP/M is first brought up, User 0 is the default user-the
one that will be chosen unless another is designated. Any files created will go into
the directory bearing the user number ofO. These files are referred to as being in
user area O. However, with a shared computer system, arrangements must be made

Chapter 3: The CP/M File System 23

for multiple user areas. The USER command makes this possible. User numbers
and areas can range from 0 through 15. For example, a user in area 7 would,not be
able to get a directory of, access, or erase files in user area 5.

This user-number byte serves a second purpose. If this byte is set to a value of
OE5H, CP/M considers that the file directory entry has been deleted and com
pletely ignores the remaining 31 bytes of data. The number OE5H was not chosen
whimsically. When IBM first defined the standard for floppy diskettes, they chose
the binary pattern lllOOlOl (OE5H) as a good test pattern. A new floppy diskette
formatted for use has nothing but bytes ofOE5H on it. Thus, the process oferasing
a file is a "logical" deletion, where only the first byte of the directory entry is
changed to OE5H. If you accidentally delete a file (and provided that no other
directory activity has occurred) it can be resurrected by simply changing this first
byte back to a reasonable user number. This process will be explained in Chapter
11.

File Nameand Type (Bytes 1- 8and 9-11) As you can see from Figure 3-2, the file name
in a directory entry is eight bytes long; the file type is three. These two fields are
used to name a file unambiguously. A file name can be less than eight characters
and the file type less than three, but in these cases, the unused character positions
are filled with spaces.

Whenever file names and file types are written together, they are separated by a
period. You do not need the period if you are not using the file type (which is the
same as saying that the file type is all spaces). Some examples of file names are

READ. ME
LONGNAME.TYP
I
1.2

0000 = FOE'USER EQU 0 ,File user number (LS 4 bits>
0001 = FOE'NAME EQU I ,"1 Ie n.me (8 bytes>
0009 • FOESTVP EQU 9 ,File type

;Offsetsf.orbits used in type
0009 = FOE'RO EQU 9 ,Bit 7 :;r;l. :1 '-Re.d only
OOOA • FOE'SVS EQU 10 ,Bit 7 = 1- System status
OOOB • FOE.CHANGE EQU 11 ,Bit 7 = 0 • File Written To,
OOOC • FDE'EXTENT EQU 12 JExtiltnt nUMber-

,13. 14 reserved for CP/M
OOOF = FOE.RECUSED EQU IS ;Records used in this extent
0010 = FOE.ABUSEO EQU 16 ,Allocation blocks used

,
0000 FD'USER, DS ;File user number
0001 FD'NAME. DS 8 ,File name
0009 FD.TVP, DS 3 ,File type
OOOC FD'EXTENT. OS I ,Extent
0000 FD'RESV, DS 2 ,Reserved for CP/M
OOOF FD'RECUSED. DS I JRecords used in this extent
0010 FD.ABUSED. DS 16 ,Allocation blocks us.d

Figure 3-2. Data declarations for CP/M's file directory entries

24 The CP/M Programmer's Handbook

A file name and type can contain the characters A through Z, 0 through 9, and
some of the so-called "mark" characters such as "/ " and "-". You Can also use
lowercase letters, but be careful. When you enter commands into the system using
the CCP, it converts all lowercases to uppercases, so it will never be able to find
files that actually have lowercase letters in their directory entries. Avoid using the
"mark" characters excessively. Ones you can use are

!@#$%()-+/

Characters that you must not use are

<>.,;:=?*[]

These characters are used by CP/M in normal command lines, so using them in file
names will cause problems.

You can use odd characters in file names to your advantage. For example, if
you create files with nongraphic characters in their names or types, the only way
you can access these files will be from within programs. You cannot manipulate
these files from the keyboard except by using ambiguous file names (described in
the next section). This makes it more difficult to erase files accidentally since you
cannot specify their names directly from the console.

Ambiguous File Names CP/M has the capability to refer to one or more file names by
using special "wild card" characters in the file names. The "?" is the main wildcard
character. Whenever you ask CP/M to do something related to files, it will match a
"?" with any character it finds in the file name. In the extreme case, a file name and
type of "??????11.???" will match with any and all file names.

As another example, all the chapters of this book were held in files called
"CHAPI.DOC," "CHAP2.DOC," and so on. They were frequently referred to,
however, as "CHAP??DOC." Why two question marks? If only one had been
used, for example, "CHAP?.DOC," CP/M would not have been able to match this
with "CHAPlO.DOC" nor any other chapter with two digits. The matching that
CP/M does is strictly character-by-character.

Because typing question marks can be tedious and special attention must be
paid to the exact number entered, a convenient shorthand is available. The asterisk
character "*" can be used to mean "as many ?'s as you need to fill out the name or
the type field." Thus, "???????????" can be written "*.*" and "CHAP??DOC"
could also be rewritten "CHAP*.DOC."

The use of "*" is allowed only when you are entering file names from the
console. The question mark notation, however, can be used for certain BDOS
operations, with the file name and type field in the FCB being set to the "?" as
needed.

File Type Conventions Although you are at liberty to think up file names without
constraint, file types are subject to convention and, in one or two cases, to the
mandate of CP/M itself.

Chapter 3: The CP/M File System 25

The types that will cause problems if you do not use them correctly are

.ASM
Assembly language source for the ASM program

.MAC
Macro assembly language

.HEX
Hexadecimal file output by assemblers

.REL
Relocatable file output by assemblers

.COM
Command file executed by entering its name alone

.PRN
Print file written to disk as a convenience

.LIB
Library file of programs

.SUB
Input for CP/M SUBMIT utility program

Examples of conventional file types are

.C
C source code

.PAS
Pascal source code

.COB
COBOL source code

.FTN
FaRTRAN source code

.APL
APL programs

. TXT
Text files

.DOC
Documentation files

.INT
Intermediate files

.DTA
Data files

26 The CP/M Programmer's Handbook

./DX
Index files

.$$$
Temporary files

The file type is also useful for keeping several copies of the same file, for
example, "TEST.OOI," "TEST.002," and so on.

File Status Each one of the states Read-Only, System, and File Changed requires only a
single bit in the directory entry. To avoid using unnecessary space, they have been
slotted into the three bytes used for the file type field. Since these bytes are stored
as characters in ASCII (which is a seven-bit code), the most significant bit is not
used for the file type and thus is available to show status.

Bit 7 of byte 9 shows Read-Only status. As its name implies, if a file is set to be
Read-Only, CP/M will not allow any data to be written to the file or the file to be
deleted.

If a file is declared to be System status (bit 7 of byte 10), it will not show up
when you display the file directory. Nor can the file be copied from one place to
another with standard CP/M utilities such as PIP unless you specifically ask the
utility to do so. In normal practice, you should set your standard software tools
and application programs to be both Read-Only and System status/ Read-Only, so
that you cannot accidentally delete them, and System status, so that they do not
clutter up the directory display.

The File Changed bit (bit 7 of byte 11) is always set to 0 when you close a file to
which you have been writing. This can be useful in conjunction with a file backup
utility program that sets this bit to 1 whenever it makes a backup copy. Just by
scanning the directory, this utility P,f0gram can determine which files have changed
since it was last run. The utility can be made to back up only those files that have
changed. This is much easier than having to remember which files you have
changed since you last made backup copies.

With a floppy disk system, there is less need to worry about backing up on a
file-by-file basis - it is just as easy to copy the whole diskette. This system is useful,
however, with a hard disk system with hundreds of files stored on the disk.

File Extent (Byte 12) Each directory entry represents a file extent. Byte 12 in the directory
entry identified the extent number. If you have a file of less than 16,384 bytes, you
will need only one extent-number O. If you write more information to thie file,
more extents will be needed. The extent number increases by 1as each new extent
is created.

The extent number is stored in the file directory because the directory entries
are in random sequence. The BDOS must do a sequential search from the top of
the directory to be sure of finding any given extent of a file. If the directory is large,
as it could be on a hard disk system, this search can take several seconds.

Chapter 3: The CP/M File System 27

Reserved Bytes 13 and 14 These bytes are used by the proprietary parts of CP/M's file
system. From your point of view, they will be set to O.

Record Number (Byte 15) Byte 15 contains a count of the number of records (128-byte
sectors) that have been used in the last partially filled allocation block referenced
in this directory entry. Since CP/M creates a file sequentially, only the most recent
ly allocated block is not completely full.

Disk Map (Bytes 16-31) Bytes 16-31 store the allocation block numbers used by each
extent. There are 16 bytes in this area. If the total number of allocation blocks (as
defined by you in the BIOS disk tables) is less than 256, this area can hold as many
as 16 allocation block numbers. Ifyou have described the disk as having more than
255 allocation blocks, CP/M uses this area to store eight two-byte values. In this
case allocation blocks can take on much larger values.

A directory entry can store either 8 or 16 allocation block numbers. If the file
has not yet expanded to require this total number ofallocation blocks, the unused
positions in the entry are filled with zeros. You may think this would create a
problem because it appears that several files will have been allocated block 0 over
and over. In fact, there is no problem because the file directory itself always
occupies block 0 (and depending on its size several ofthe blocks following). For all
practical purposes, block 0 "does not exist," at least for the storage of file data.

Note that if, by accident, the relationship between files and their allocation
blocks is scrambled-that is, either the data in a given block is overwritten, or two
or more active directory entries contain the same block number-CP/M cannot
access information properly and the disk becomes worthless.

Several commercially available utility programs manipulate the directory. You
can use them to inspect and change a damaged directory, reviving accidentally
erased files if you need to. There are other utilities you can use to logically remove
bad sectors on the disk. These utilities find the bad areas, work backward from the
track and sector numbers, and compute the allocation block in which the error
occurs. Once the block numbers are known, they create a dummy file, either in
user area 15 or, in some cases, in an "impossible" user area (one greater than 15),
that appears to "own" all the bad allocation blocks.

A good utility program protects the integrity of the directory by verifying that
each allocation block is "owned" by only one directory entry.

Disk Definition Tables

As mentioned previously, the BIOS contains tables telling the BDOS how to
view the disk storage devices that are part of the computer system. These tables are
built by you. If you are using standard 8-inch, single-sided, single-density floppy

28 The CP/M Programmer's Handbook

diskettes, you can use the examples in the Digital Research manual CP/M 2
Alteration Guide. But if you are using some other, more complex system, you must
make some careful judgments. Any mistakes in the disk definition tables can
create serious problems, especially when you try to correct diskettes created using
the erroneous tables. You, as a programmer, must ensure the correctness of the
tables by being careful.

One other point before looking at table structures: Because the tables exist and
define a particular disk "shape" does not mean that such a disk need necessarily be
connected to the system. The tables describe logical disks, and there is no way for
the physical hardware to check whether your disk tables are correct. You may have
a computer system with a single hard disk, yet describe the disk as though it were
divided into several logical disks. CP/M will view each such "disk" independently,
and they should be thought of as separate disks.

Disk Parameter Header Table

This table is the starting point in the disk definition tables. It is the topmost
structure and contains nothing but the addresses of other structures. There is one
entry in this table for each logical disk that you choose to describe. There is an
entry point in the BIOS that returns the address of the parameter header table for a
specific logical disk.

An example of the code needed to define a disk parameter header table is
shown in Figure 3-3.

Sector Skewing (Skewtable) To define sector skewing, also called sector interlacing,
picture a diskette spinning in a disk drive. The sectors in the track over which the
head is positioned are passing by the head one after another - sector 1, sector 2,
and so on - until the diskette has turned one complete revolution. Then the
sequence repeats. A standard 8-inch diskette has 26 sectors on each track, and the
disk spins at 360 rpm. One turn of the diskette takes 60/360 seconds, about 166
milliseconds per track, or 6 milliseconds per sector.

Now imagine CP/M loading a program from such a diskette. The BDOS takes
a finite amount of time to read and process each sector since it reads only a single
sector at a time. It has to make repeated reads to load a program. By the time the
BDOS has read and loaded sector n, it will be too late to read sector n +1. This
sector will have already passed by the head and will not come around for another
166 milliseconds. Proceeding in this fashion, almost 4J;2 seconds are needed to read
one complete track.

This problem can be solved by simply numbering the sectors logically so that
there are several physical sectors between each logical sector. This procedure,
called sector skewing or interlace, is shown in Figure 3-4. Note that unlike physical
sectors, logical sectors are numbered from 0 to 25.

Figure 3-4 shows the standard CP/M sector interlace for 8-inch, single-sided,
single-density floppy diskettes. You see that logical sector 0 has six sectors between

Chapter 3: The CP/M File System 29

DPBASE, ,ea.e of the parameter header
, (used to access the h••ders)

0000 1000 OW SKEWTABLE ,Pointer to 109ical-to-phvsical, ••ctor conversion table
0002 ooסס DW 0 ;Scratch pad areas used by CP/M
0004 ooסס DW 0
00060000 DW 0
00082A00 DW DIRBUF ,Pointer to Directorv Buffer, work are.
OOOA AAOO OW DPBO ,Pointer to disk parameter block
OOOC B900 OW WACD ,Pointer to work area (used to, check for changed diskettes)
OOOE C900 DW ALVECO ,Pointer to allocation vector

Exampl. data definitions for those objects pointed
to bv the disk parameter header

The following equat•• would normally be derived from
values found in the disk parameter Block.
They are shown here only for the sake of completen••s.

,Number of directerv entries 1
,Number of allocation blocks

,Sector skew table.
; Indexed by lo~ical sector
,Logical ••ctors 0,1.2,3
,4,5,6,7
,8.9.10.11
,12.13.14.13
,16.17.18.19
,20.21.22.23
,24.25

63
242

EQU
EQU

,Directory buffer
,Disk parameter block
,This is normallv a table of
, constants.
IA dummv definition is shown
, here
;Work are. to Check directory
;Only used for removable media
IAllocat~on vector 10
,N.eds 1 bit per allocation
, block

,,,,,,
NODE
NOAB,,,,
SKEWTABLE.

0010 01070D13 DB 01,07.13.19
0014 19030B11 DB 25.03.11.17
0018 1703090F DB 23.03.09.13
OOlC 1302080E DB 21.02.08.14
0020 141A060C DB 20.26.06.12
0024 1218040A DB 18.24.04.10
0028 1016 DB 16.22

I
002A DIRBUF. DS 128
OOAA DPBO, DS 13

OOB9 WACD, DS (NODE+l)/4

OOC9 ALVECO, DS (NOAB/8)+1

oo3F·
00F2 •

Figure 3-3. Data declarations for a disk parameter header

it and logical sector 1. There is a similar gap between each of the logical sectors, so
that there are six "sector times" (about 38 milliseconds) between two adjacent
logical sectors. This gives ample time for the software to access each sector.
However, several revolutions of the disk are still necessary to read every sector in
turn. In Figure 3-4, the vertical columns of logical sectors show which sectors are
read on each successive revolution of the diskette.

The wrong interlace can strongly affect performance. It is not a gradual effect,
either; if you "miss" the interlace, the perceived performance will be very slow. In
the example given here, six turns of the diskette are needed to read the whole
track - this lasts one second as opposed to 41;2 without any interlacing. But don't
imagine that you can change the interlace with impunity; files written with one
interlace stay that way. You must be sure to read them back with the same interlace
with which they were written.

30 The CP/M Programmer's Handbook

Some disk controllers can simplify this procedure. When you format the
diskette, they can write the sector addresses onto the diskette with the interlace
already built in. When CP/M requests sector n, the controller's electronics wait
until they see the requested sector's header fly by. They then initiate the read or
write operation. In this case you can embed the interlace right into the formatting
of the diskette.

Because the wrong interlace gives terrible performance, it is easy to know when
you have the right one. Some programmers use the time required to format a
diskette as the performance criterion to optimize the interlace. This is not good
practice because under normal circumstances you will spend very little time
formatting diskettes. The time spent loading a program would be a better arbiter,
since far more time is spent doing this. You might argue that doing a file update
would be even more representative, but most updates produce slow and sporadic
disk activity. This kind of disk usage is not suitable for setting the correct interlace.

Hard disks do not present any problem for sector skewing. They spin at 3600
rpm or faster, and at that speed there simply is no interlace that will help. Some

Logical Sector
Physical Sector

Pass Pass Pa.. Pa.. Pass Pass

I 2 3 4 5 6

I 0
2 13
3 9

4 22
5 5

6 18

7 I
8 14

9 10
10 23
II 6

12 19

13 2
14 15

15 II
16 24
17 7

18 20

19 3
20 16

21 12

22 25

23 8

24 21

25 4
26 17

NOTE: Additional sector between logical sectors 12 and 13

Figure 3·4. Physical to logical sector skewing

Chapter 3: The CP/M File System 31

tricks can be played to improve the performance of a hard disk-these will be
discussed in the section called "Special Considerations for Hard Disks,"later in
this chapter.

To better understand these theories, study an example of the standard inter
lace table, or skewtable. Bear in mind that the code that will access this table will
first be given a logical sector. It will then have to return the appropriate physical
sector.

Figure 3-5 shows the code for the skew table and the code that can be used to
access the table. The table is indexed by a logical sector and the corresponding
table entry is the physical sector. You can see that the code assumes that the first
logical sector assigned by CP/M will be sector number O. Hence there is no need to
subtract I from the sector number before using it as a table subscript.

Unused Areas In the Disk Parameter Header Table The three words shown as O's in
Figure 3-3 are used by CP/M as temporary variables during disk operations.

DirectoryBuffer (DIRBUF) The directory buffer is a 128-byte area used by CP/M to store a
sector from the directory while processing directory entries. You only need one
directory buffer; it can be shared by all of the logical disks in the system.

Disk Parameter Block (DPBO) The disk parameter block describes the particular charac
teristics of each logical disk. In general, you will need a separate parameter block
for each type oflogical disk. Logical disks can share a parameter block only if their

0000 01070013
0004 19050811
0008 1703090F
OOOC 15020S0E
0010 141A060C
0014 1218040A
0018 1016

SKEWTA8LE:
08
08
08
08
08
08
08

01.07.13.19
25.05,11.17
23.03.09.15
21,02.08.14
20.26.06.12
18.24.04.10
16.22

;Logical sector
,0.1,2.3
,4.5.6.7
,8.9.10.11
, 12.13.14.15
, 16.17.18.19
,20.21.22.23
,24.25

The code to translate logical sectors to physical
sectors is as follows.

On entry, the logical sector will be transferred from
CP/M as a 16-bit value in regist~rs Be.
CP/M also transfers the address of the skew table
in registers DE (it finds the skew table by looking in
the disk parameter header entry).

On return, the physical sector will be placed
in registers HL.

001A E8
0018 09

001C 6E
0010 60
001E C9

,
SECTRAN:

XCHG
DAD

1'1011
1'1011
RET

8

L.I'I
H.O

,HL -) skew table base address
;HL -) physical sector
; entrY in skew table
,L = physical .ector
,HL • Physieal Sector
,Return to 8005

Figure 3-5. Data declarations for the standard skewtable for standard diskettes

32 The CP/M Programmer's Handbook

characteristics are identical. You can, for example, use a single parameter block to
describe all of the single-sided, single-density diskette drives that you have in the
system. However, you would need another parameter block to describe double
sided, double-density diskette drives. It is also rare to be able to share parameter
blocks when a physical hard disk is split up into several logical disks. You will
understand why after looking at the contents of a parameter block, described later
in this chapter.

Work Area to Check for Changed Diskettes (WACO) One of the major problems that
CP/M faces when working with removable media such as floppy diskettes is that
the computer operator, without any warning, can open the diskette drive and
substitute a different diskette. On early versions of CP/M, this resulted in the
newly inserted diskette being overwritten with data from the original diskette.

With the current version of CP/M, you can request that CP/M check if the
diskette has been changed. Given this request, CP/M examines the directory
entries whenever it has worked on the directory and, if it detects that the diskette
has been changed, declares the whole diskette to be Read-Only status and inhibits
any further writing to the diskette. This status will be in effect until the next warm
boot operation occurs. A warm boot occurs whenever a program terminates or a
CONTROL-C is entered to the CCP, resetting the operating system.

The value of WACD is the address of a buffer, or temporary storage area, that
CP/M can use to check the directory. The length of this buffer is defined (some
what out of place) in the disk parameter block.

Allocation Vector (ALVECO) CP/M views each disk as a set of allocation blocks, assign-
ing blocks to individual files as those files are created or expanded, and relinquish
ing blocks as files are deleted.

CP/M needs some mechanism for keeping track of which blocks are used and
which are free. It uses the allocation vector to form a bit map, with each bit in the
map corresponding to a specific allocation block. The most significant bit (bit 7) in
the first byte corresponds to the first allocation block, number O. Bit 6 corresponds
to block 1, and so on for the entire disk.

Whenever you request CP/M to use a logical disk, CP/M will log in the disk.
This consists of reading down the file directory and, for each active entry or extent,
interacting with the allocation blocks "owned" by that particular file extent. For
each block number in the extent, the corresponding bit in the allocation vector is
set to 1. At the end of this process, the allocation vector will accurately represent a
map of which blocks are in use and which are free.

When CP/M goes looking for an unused allocation block, it tries to find one
near the last one used, to keep the file from becoming too fragmented.

In order to reserve enough space for the allocation vector, you need to reserve
one bit for each allocation block. Computing the number of allocation blocks is
discussed in the section "Maximum Allocation Block Number," later in this
chapter.

Chapter 3: The CP/M File System 33

Disk Parameter Block

The disk parameter block in early versions of CP/M was built into the BDOS
and was a closely guarded secret of the CP/M file system. To make CP/M
adaptable to hard disk systems, Digital Research decided to move the parameter
blocks out into the BIOS where everyone could adapt them. Because of the
proprietary nature of CP/M's file system, you will still see several odd-looking
fields, and you may find the explanation given here somewhat superficial. How
ever, the lack ofexplanation in no way detracts from your ability to use CP/M as a
tool.

Figure 3-6 shows the code necessary to define a parameter block for 8-inch,
single-sided diskettes. This table is pointed to by-that is, its address is given
in - an entry in the disk parameter header. Each of the entries shown in the disk
parameter block is explained in the following sections.

Sectors Per Track This is the number of 128-byte sectors per track. The standard diskette
shown in the example has 26 sectors. As you can see, simply telling CP/M that
there are 26 sectors per track does not indicate whether the first sector is num
bered 0 or 1. CP/M assumes that the first sector is 0; it is left to a sector translate
subroutine to decipher which physical sector this corresponds to.

Hard disks normally have sector sizes larger than 128 bytes. This is discussed in
the section on considerations for hard disks.

Block Shift, Block Mask, and Extent Mask These mysteriously named fields are used
internally by CP/M during disk file operations. The values that you specify for
them depend primarily on the size of the allocation block that you want.

Allocation block size can vary from 1024 bytes (lK) to 16,384 bytes (16K).
There is a distinct trade-off between these two extremes, as discussed in the section
on allocation blocks at the beginning of this chapter.

An allocation block size of 1024 (lK) bytes is suggested for floppy diskettes
with capacities up to 1 megabyte, and a block size of 4096 (4K) bytes for larger
floppy or hard disks.

0000 1"00
0002 03
0003 07
0004 03
OOOS F200
ooo73F00
0009 CO
000... 00
ooOB 1000
OOOD 0200

DPBO.
DW
DB
DB
DB
DW
ow
DB
DB
DW
DW

26 ,Sectors per tr«ck
3 ,Block shift
7 ,Block ..ask
3 ,EHtent ..ask
242 ,MaH. allocation block number
63 ,Number of directory entries 1
IIOO$OOOOB ,Bit map for allocation blocks
OOOO$OOOOB , used for directory
16 ,No. of byt•• in dir. check buffer
2 'No. of tracks before directory

Figure 3-6. Data declarations for the disk parameter block for standard diskettes

34 The CP/M Programmer's Handbook

If you can define which block size you wish to use, you can now select the
values for the block shift and the block mask from Table 3-1.

Table 3-1. Block Shift and Mask Value

Allocation Block Size Block Shift Block Mask

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

Select your required allocation block size from the left-hand column. This tells
you which values of block shift and mask to enter into the disk parameter block.

The last of these three variables, the extent mask, depends not only on the
block size but also on the total storage capacity of the logical disk. This latter
consideration is only important for computing whether or not there will be fewer
than 256 allocation blocks on the logical disk. Just divide the chosen allocation
block size into the capacity of the logical disk and check whether you will have
fewer than 256 blocks.

Keeping this answer and the allocation block size in mind, refer to Table 3-2
for the appropriate value for the extent mask field of the parameter block. Select
the appropriate line according to the allocation block size you have chosen. Then,
depending on the total number of allocation blocks in the logical disk, select the
extent mask from the appropriate column.

Table 3-2. Extent Mask Value

Number of Allocation Blocks
Allocation Block Size

1 to 255 256 and Above

1,024 0 (Impossible)
2,048 I 0
4,096 3 I
8,192 7 3

16,384 15 7

Maximum Allocation Block Number This value is the number of the last allocation
block in the logical disk. As the first block number is 0, this value is one less than
the total number of allocation blocks on the disk. Where only a partial allocation
block exists, the number of blocks is rounded down.

Chapter 3: The CP/M File System 35

Figure 3-7 has an example for standard 8-inch, single-sided, single-density
diskettes. Note that CP/M uses two reserved tracks on this diskette format.

Number of Directory Entries Minus 1 Do not confuse this entry with the number of files
that can be stored on the logical disk; it is only the number ofentries (minus one).
Each extent of each file takes one directory entry, so very large files will consume
several entries. Also note that the value in the table is one less than the number of
entries.

On a standard 8-inch diskette, the value is 63 entries. On a hard disk, you may
want to use 1023 or even 2047. Remember that CP/M performs a sequential scan
down the directory and this takes a noticeable amount of time. Therefore, you
should balance the number oflogical disks with your estimate of the largest file size
that you wish to support.

As a final note, make sure to choose a number of entries that fits evenly into
one or more allocation blocks. Each directory entry needs 32 bytes, so you can
compute the number of bytes required. Make sure this number can be divided by
your chosen allocation block size without a remainder.

Allocation Blocks for the Directory This is a strange value; it is not a number, but a bit
map. Looking at Figure 3-6, you see the example value written out in full as a
binary value to illustrate how this value is defined. This 16-bit value has a bit set to
I for each allocation block that is to be used for the file directory.

This value is derived from the number ofdirectory entries you want to have on
the disk and the size of the allocation block you want to use. One given, or

Physical characteristics:

77 Tracks / Diskette
26 Sectors/Track

128 Bytes/ Sector
2 Tracks Reserved for CP/M

1024 BytesfAllocation Block

Calculate:

77
- 2

75
X26

1950
Xl28

249,600
-;..1024

243.75

242

Tracks/ Diskette
Tracks Reserved for CP/M

Tracks for File Storage
Number of Sectors

Sectors for File Storage
Bytes per Sector

Bytes for File Storage
Bytes/ Allocation Block

Total Number of
Allocation Blocks

Number of the last
allocation block
(rounded and based on
first block being Block 0)

Figure 3·7. Computing the maximum allocation block number for standard diskettes

36 The CP/M Programmer's Handbook

constant, in this derivation is that the size of each directory entry is 32 bytes.
In the example, 64 entries are required (remember the number shown is one

less than the required value). Each entry has 32 bytes. The total number of bytes
required for the directory thus is 64 times 32, or 2048 bytes. Dividing this by the
allocation block size of 1024 indicates that two allocation blocks must be reserved
for the directory. You can see that the example value shows this by setting the two
most significant bits of the l6-bit value.

As a word of warning, do not be tempted to declare this value using a DW
(define word) pseudo-operation. Doing so will store the value byte-reversed.

Size of Buffer for DirectoryChecking As mentioned before in the discussion of the disk
parameter header, CP/M can be requested to check directory entries whenever it is
working on the directory. In order to do this, CP/M needs a buffer area, called the
work area to checkfor changed diskettes, or WACD, in which it can hold working
variables that keep a compressed record of what is on the directory. The length of
this buffer area is kept in the disk parameter block; its address is specified in the
parameter header. Because CP/M keeps a compressed record of the directory, you
need only provide one byte for every four directory entries. You can see in Figure
3-6 that 16 bytes are specified to keep track of the 64 directory entries.

Number of Tracks Before the Directory Figure 3-8 shows the layout of CP/M on a
standard floppy diskette. You will see that the first two tracks are reserved,
containing the initial bootstrap code and CP/M itself. Hence the example in
Figure 3-6, giving the code for a standard floppy disk, shows two reserved tracks
(the number of tracks before the directory).

This track offset value, as it is sometimes called, provides a convenient method
of dividing a physical disk into several logical disks.

Special Considerations for Hard Disks
If you want to run CP/M on a hard disk, you must provide code and build

tables that make CP/M work as if it were running on a very large floppy disk. You
must even include 128-byte sectors. However, this is not difficult to do.

To adapt hard disks to the l28-byte sector size, you must provide code in the
disk driver in your BIOS that will present the illusion of reading and writing
l28-byte sectors even though it is really working on sectors of 512 bytes. This code
is called the blocking/deblocking routine.

If hard disks have sector sizes other than 128 bytes, what of the number of
sectors per track, and the number of tracks?

Hard disks come in all sizes. The situation is further confused by the disk
controllers, the hardware that controls the disk. In many cases, you can think of
the hard disk as just a series of sectors without any tracks at all. The controller,
given a relative sector number by the BIOS, can translate this sector number into
which track, read/write head (if there is more than one platter), and sector are
actually being referenced.

Chapter 3: The CP/M File System 37

Logical
Tracks , ,

Sector
0 1 2 3 76

\ \

0 Bootstrap f Allocation
I Allocation Block
2 Allocation Block #240
3 Block #3
4 Basic #0 ----------
5 Disk

~~~__L____ ---------6 Console Operating Allocation
7 Command System Block
8 Processor (BOOS) ! Allocation #241
9 (CCP) Directory

BlockI
10 Allocation #4
II Block ---------12 #1
13 ----------14 Allocation
15 Block
16 Allocation #242
17 Block
18 Allocation #5
19 Block
20 Basic #2
21 Input! _____l____ --------
22 Output Unused
23 System Allocation Sectors
24 (BIOS) Block
25 i #6

~l
Figure 3-8. Layout of standard diskette

Furthermore, most hard disks rotate so rapidly that there is nothing to be
gained by using a sector-skewing algorithm. There is just no way to read more than
one physical sector per revolution; there is not enough time.

In many cases it is desirable to divide up a single, physical hard disk into
several smaller, logical disks. This is done mainly for performance reasons:
Several smaller disks, along with smaller directories, result in faster file operations.

The disk parameter header will have O's for the skewtable entry and the pointer
to the WACD buffer. In general, hard disks cannot be changed, at least not without
turning off the power and swapping the entire disk drive. If you are using one of
the new generation of removable hard disks, you will need to use the directory
checking feature of CP/M.

The disk parameter block for a hard disk will be quite different from that used
for a floppy diskette. The number ofsectors per track needs careful consideration.
Remember, this is the number of 128-byte sectors. The conversion from the
physical sector size to 128-byte sectors will be done in the disk driver in the BIOS.



38 The CP/M Programmer's Handbook

If you have a disk controller that works in terms of sectors and tracks, all you
need do is compute the number of 128-byte sectors on each track. Multiply the
number of physical sectors per track by their size in bytes and then divide the
product by 128 to give the result as the number of 128-byte sectors per physical
track.

But what of those controllers that view their hard disks as a series of sectors
without reference to tracks? They obscure the fact that the sectors are arranged on
concentric tracks on the disk's surface. In this case, you can playa trick on CP/M.
You can set the "sectors per track" value to the number of 128-byte sectors that will
fit into one of the disk's physical sectors. To do this, divide the physical sector size
by 128. For example, a 512-byte physical sector size will give an answer of four
128-byte sectors per "track." You can now view the hard disk as having as many
"tracks" as there are physical sectors. By using this method, you avoid having to do
any kind of arithmetic on CP/M's sector numbers; the "track" number to which
CP/M will ask your BIOS to move the disk heads will be the relative physical
sector. Once the controller has read this physical sector for you, you can look at the
128-byte sector number, which will be 0, 1,2, or 3 (for a 5l2-byte physical sector) in
order to select which 128 bytes need to be moved in or out of the disk buffer.

The block shift, block mask, and extent mask will be computed as before. Use
a 4096-byte allocation block size. This will yield a value of 5 for the block shift, 31
for the block mask, and given that you will have more than 256 allocation blocks
for each logical disk, an extent mask value of 1.

The maximum allocation block number will be computed as before. Keep
clear in your mind whether you are working with the number of physical sectors
(which will be larger than 128 bytes) or with 128-byte sectors when you are
computing the storage capacity of each logical disk.

The number of directory entries (less 1) is best set to 511 for logical disks of 1
megabyte and either 1023 or 2047 for larger disks, Remember that under CP/M
version 2 you cannot have a logical disk larger than 8 megabytes.

The allocation blocks for the directory are also computed as described for
floppy disks.

As a rule, the size of the directory check buffer (WADC) will be set to 0, since
there is no need to use this feature on hard disk systems with fixed media.

The number of tracks before the directory (track offset) can be used to divide
up the physical disk into smaller logical disks, as shown in Figure 3-9.

There is no rule that says the tracks before a logical disk's directory cannot be
used to contain other complete logical disks. You can see this in Figure 3-9. CP/M
behaves as if each logical disk starts at track 0 (and indeed they do), but by
specifying increasingly larger numbers of tracks before each directory, the logical
disks can be staggered across the available space on the physical disk.

Figure 3-10 shows the calculations involved in the first phase of building disk
parameter blocks for the hard disk shown in Figure 3-9. The physical characteris
tics are those imposed by the design of the hard disk. As a programmer, you do not
have any control over these; however, you can choose how much of the physical



Chapter 3: The CP/M File System 39

Track Track
o 10

Track
58

Track
211

Track
363

t

Logical Disk A Logical Disk 3 Logical Disk C

A

Reserved {",,~..I_O--t :s----..ootl
Tracks C

·1- 211--------...""',

Figure 3-9. Dividing hard disks into logical disks

disk is assigned to each logical disk, the allocation block size, and the number of
directory entries. You can see that logical disk A is much smaller than disks Band
C, and that Band C are the same size. Disk A will be the systems disk from which
most programs will be loaded, so its smaller directory size will make pTcogram
loading much faster. The allocation block size for disk A is also smaller in order to
reduce the amount of space wasted in partially filled allocation blocks.

Figure 3-10 also shows the calculations involved in computing the maximum
allocation block number. Again, note that once the total number of allocation
blocks has been computed, it is necessary to round it down in the case of any
fractional components and then subtract 1 to get the maximum number (the first
block being 0).

Figure 3-11 shows the actual values that will be put into the parameter blocks.
It is assumed that the disk controller is one of those types that view the physical
disk as a series ofcontiguous sectors and make no reference to tracks; the internal
electronics and firmware in the controller take care of these details. For this
reason, CP/M is told that each physical sector is a "track" in CP/M's terms. Each
"track" has 512 bytes and can therefore store four l28-byte sectors. You can see this
is the value that is in the sectors/"track" field.

The block shift and mask values are obtained from Table 3-1, using the
allocation block size previously chosen. Then, with both the allocation block size
and the maximum number ofallocation blocks (see Figure 3-10), the extent mask
can be obtained from Table 3-2. You can see in Figure 3-11 that extent mask values
of 1 were obtained for all three logical disks even though two different allocation
block sizes have been chosen, and even though disk A has less than 256 blocks and
disks Band C have more.



40 The CP/M Programmer's Handbook

Physical Characteristics:

364 Tracks/Disk
20 Sectors / Track

512 Bytes/ Sector
10,240 Bytes/Track

Chosen Logical Characteristics:

Reserved Area
Disk A:
Disk B:
Disk C:

Tracks
10
48

153
153

Allocation
Block Size

n/a
2048
4096
4096

Calculate:

A:
48

X 10,240

491,520
-:- 2048

240

239

B: and C:
153

X 10,240

1,566,720
-:- 4096

382.5

381

Tracks assigned to Disk
Bytes/ Track

Bytes/Disk
Bytes/ Allocation Block

Number of Allocation Blocks

Maximum Block Number

Figure 3·10. Computing the maximum allocation block number for a hard disk

OPBAI DPBB. DPBC,
4 4 4 ; 128-byte sectors/'ltrack"
4 ~ ~ ,Block shift
1~ 31 31 IBlock mask
1 1 1 IExtent mask
239 381 381 I Max. all. block •
2~~ 1023 1023 INo. of directorY entries
11110000B IIIIIIIIB IIIIIIIIB IBit Map for allocation blocks
OOOOOOOOB OOOOOOOOB 000000008 I used for directory
o 0 0 ;No. of bytes in dir.check buffer
(10) (58) (211) IActual tracks before directory
200 1160 4220 I "Tracks" before directory

Figure 3-11. Disk parameter tables for a hard disk

The bit map showing now many allocation blocks are required to hold the file
directory is computed by multiplying the number of directory entries by 32 and
dividing the product by the allocation block size. This yields results of4 for disk A
and 8 for disks Band C. As you can see, the bit maps have the appropriate number
of bits set.

Since most of the hard disks on the market tbday do not have removable
media, the lengths of the directory checking buffer are set to O.

The number of "tracks" before the directory requires a final touch of skull
duggery. Having already indicated to CP/M that each "track"has four sectors, you
need to continue in the same vein and express the number of real tracks before the
directories in units of 512-byte physical sectors.

As a final note, if you are specifying these parameter blocks for a disk
controller that requires you to communicate with it in terms of physical tracks and
128-byte sectors, then the number of sectors per track must be set to 80 (twenty



Chapter 3: The CP/M File System 41

5l2-byte sectors per physical track). You would also have to change the number of
tracks before the directory by stating the number of physical tracks (shown in
parentheses on Figure 3-11).

Adding Additional Information to the Parameter Block

Normally, some additional information must be associated with each logical
disk. For example, in a system that has several physical disks, you need to identify
where each logical disk resides. You may also want to identify some otherphysical
parameters, disk drive types, I/O port numbers, and addresses of driver sub
routines.

You may be tempted to extend the disk parameter header entry because there is
a separate header entry for each logical disk. But the disk parameter header is
exactly 16 bytes long; adding more bytes makes the arithmetic that we need to use
in the BIOS awkward. The best place to put these kinds of information is toprefix
them to the front of each disk parameter block. The label at the front ofthe block
must be left in the same place lest CP/M become confused. Only special additional
code that you write will be "smart" enough to look infront of the block in order to
find the additional parameter information.

File Organizations

CP/M supports two types of files: sequential and random. CP/M views both
types as made up of a series of l28-byte records. Note that in CP/M's terms, a
record is the same as a l28-byte sector. This terminology sometimes gets in the
way. It may help to think of l28-byte sectors as physical records. Applications
programs manipulate logical records that bear little or no relation to these
physical records. There is code in the applications programs to manipulate logical
records.

CP/M does not impose any restrictions on the contents ofa file. In many cases,
though, certain conventions are used when textual data is stored. Each line of text
is terminated by ASCII CARRIAGE RETURN and LINE FEED. The last sector of a
text file is filled with ASCII SUB characters; in hexadecimal this is 1AH.

File Control Blocks

In order to get CP/M to work on a file, you need to provide a structure in which
both you and the BDOS can keep relevant details about the file, its name and type,
and so on. The file control block (FCB) is a derivative of the file directory entry, as
you can see in Figure 3-12. This figure shows both a series of equates that can be
used to access an entry and a series of DB (define byte) instructions to declare an
example.

The first difference you will see between the file directory entry and the FCB is
that the very first byte is serving a different purpose. In the FCB, it is used to



42 The CP/M Programmer's Handbook

specify on which disk the file is to be found. You may recall that in the directory,
this byte indicates the user number for a given entry. When you are actually
processing files, the current user number is set either by the operator in a command
from the console or by a BDOS function call; this predefines which subset of files
in the directory will be processed. Therefore, the FCB does not need to keep track
of the user number. .

The disk number in the FCB's first byte is stored in an odd way. A value of 0
indicates to CP/M that it should lo<!>k for the file on the current default disk. This
default disk is selected either by an ¢ntry from the console or by making a specific
BDOS call from within a program. 'In general, the default disk should be preset to
the disk that contains the set of programs with which you are working. This avoids
unnecessary typing on the keyboard when you want to load a program.

A disk number value other thanO represents a letter of the alphabet based on a
simple codification scheme of A =.1, B = 2, and so on.

As you can see from Figure 3-12, the file name and type must be set to the
required values, and for sequential file processing, the remainder of the FCB can
be set to zeros. Strictly speaking, the last three bytes of the FCB (the random
record number and the random record overflow byte) need not even be declared if
you are never going to process the file randomly.

This raises a subtle conceptual point. Random files are only random files
because you process them randomlY. Though this sounds like a truism, what it
means is that CP/M's files are not intrinsically random or sequential. What they
are depends on how you choose to process them at any given point. Therefore,

0000 = FCBESDISK EQU 0 ;Disk drive (0 = default, I=A)
0001 = FCBESNAI'1E EQU 1 ;Fi Ie name (8 bytes)
0009 = FCBESTYP EQU 9 ;File type

;Offsets foy bits used in type
0009 = FCBESRO EQU 9 ,Bi t 7 = 1 - read only
OOOA = FCBESSYS EQU 10 ;Bit 7 = 1 - system status
OOOB = FCBESCHANGE EQU 11 ;Bit 7 = 0 - file written to,
OOOC = FCBESEXTENT EQU 12 ,Extent number

,13. 14 reserved for CP/M
OOOF = FCBESRECUSED EQU 15 ;Records used in this extent
0010 • FCBESABUSED EQU 16 JAllocation blocks used
0020 = FCBESSEQREC EQU 32 ;Sequential riltc. to read/write
0021 • FCBESRANREC EQU 33 ,R.ndom Tee. to read/write
0023 = FCBESRANRECO EQU 35 ;Random Tee. overflow byte (I'1S)

,
0000 00 FCBSDISK.
0001 46494C454EFCBSNAI'1E.
0009 545950 FCBSTYP.
OOOC 00 FCBSEXTENT,
OOOD 0000 FCBSRESV.
OOOF 00 FCBSRECUSED.
0010 OOOOOOOOOOFCBSABUSED.
0018 0000000000
0020 00 FCBSSEQREC.
0021 0000 FCBSRANREC.
0023 00 FCBSRANRECO.

DB
DB
DB
DB
DB
DB
DB
DB
DB
DW
DB

o ! ,Search on default disk drive
'FIL~NAI'1E' ,File name
'TYPt .File type
o ;Extent
o,o! ;Reserved for CP/M
o i ,Records used in this extent
0,0, ,0.0,0,0.0 n\llocation blocks used
0,0. ,0,0.0,0.0
o ;Sequential Tee. to read/write
o ,Random Tee. to read/write
o ;Random rec. overflow byte (MS)

Figure 3-12. Data declarations for the FCB



Chapter 3: The CP/M File System 43

while the manner in which you process them will be different, there is nothing
special built into the file that predicates how it will be used.

sequential Files
A sequential file begins at the beginning and ends at the end. You can view it as

a contiguous series of 128-byte "records."
In order to create a sequential file, you must declare a file control block with

the required file name and type and request the BDOS to create the file. You can
then request the BDOS to write, "record" by "record" (really 128-byte sector by
128-byte sector) into the file. The BDOS will take care of opening up new extents
as it needs to. When you have written out all the data, you must make a BDOS
request to close the file.

To read an existing file, you also need an FCB with the required file name and
type declared. You then make a BDOS request to open the file for processing and a
series of Read Sequential requests, each one bringing in the next "record" until
either your program detects an end of file condition (by examining the data
coming in from the file) or the BDOS discovers that there are no more sectors in
the file to read. There is no need to close a file from which you have been reading
data - but do close it. This is not necessary if you are going to run the program
only under CP/M, but it is necessary if you want to run under MP/M (the
multiuser version of CP/M).

What if you need to append further information to an existing file? One option
is to create a new file, copy the existing file to the new one, and then start adding
data to the end of the new file. Fortunately, with CP/M this is not necessary. In the
FCB used to read a file, the name and the type were specified, but you can also
specify the extent number. Ifyou do, the BDOS will proceed to open (if it can find
it) the extent number that you are asking for. If the BDOS opens the extent
successfully, all you need do is check if the number of records used in the extent
(held in the field FCB$RECUSED) is less than 128 (80H). This indicates the extent
is not full. By taking this record number and placing it into the FCB$SEQREC
(sequential record number) byte in the FCB, you can make CP/Mjump ahead and
start writing from the effective end of the file.

Random Files
Random files use a simple variation of the technique described above. The

main difference is that the random record number must be set in the FCB. The
BDOS automatically keeps track of file extents during Read/Write Random
requests. (These requests are explained more fully in Chapter 5.)

Conceptually, random files need a small mind-twist. After creating a file as
described earlier, you must set the random record number in the FCB before each
Write Random request. This is the two-byte value called FCB$RANREC in
Figure 3-12. Then, when you give the Write Random request to the BDOS, it will



44 The CP/M Programmer's Handbook

look at the record number; compute in which extent the record must exist; if
necessary, create the directory entry for the extent; and finally, write out the data
record. Using this scheme, you can dart backward and forward in the file putting
records at random throughout the file space, with CP/M creating the necessary
directory entries each time you venture into a part of the file that has not yet been
written to.

The same technique is used to read a file randomly. You set the random record
number in the FCB and then give a system call to the BDOS to open the correct
extent and read the data. The BDOS will return an error if it cannot find the
required extent or if the particular record is nonexistent.

Problems lie in wait for the unwary. Before starting to do any random reading
or writing, you must open up the file at extent 0 even though this extent may not
contain any data records. For a new file, this can be done with the Create File
request, and for an existing file with the normal Open File request. lfyou create a
sparse file, one that has gaps in between the data, you may have some problems
manipulating the file. It will appear to have several extents, each one being
partially full. This will fool some programs that normally process sequential files;
they don't expect to see a partial extent except at the end ofa file, and may treat the
wrong spot as the end.



Functions of the CCP
Editing the CCP Command Line

Built-In Commands
Program Loading

Base Page
Memory Dumps of the Base Page
Processing the Command Tail
Available Memory
Communicating with the BIOS
Returning to CP/M

The Console
Command Processor
(CCP)

The Console Command Processor processes commands that you enter from
the console. As you may recall from the brief overview in Chapter 2, the CCP is
loaded into memory immediately below the BDOS. In practice, many programs
deliberately overwrite the CCP in order to use the memory it normally occupies.
This gives these programs an additional 800H bytes (2K bytes).

When one of these "transient programs" terminates, it relinquishes control to
the BIOS, which in turn reloads a fresh copy of the CCP from the system tracks of
the disk back into memory and then transfers control to it. Consequently, the CCP
leads a sporadic existence-an endless series of being loaded into memory,
accepting a command from you at the console, being overwritten by the program

45



46 The CP/M Programmer's Handbook

you requested to be loaded, and then being brought back into memory when the
program terminates.

This chapter discusses what the CCP does for you in those brief periods when it
is in memory.

Functions of the CCP

Simply put, once the CCP has control of the machine, so do you. The CCP
announces its presence by displaying a prompt of two characters: a letter of the
alphabet for the current default disk drive and a "greater than" sign. In the
example A>, the A tells you that the default disk drive is currently set to be logical
drive A, and the ">," that the message was output by the CCP.

Once you see the prompt, the CCP is ready for you to enter a command line. A
command line consists of two major parts: the name of the command and,
optionally, some values for the command. This last part is known as the command
tail.

The command itself can be one of two things: either the name of a file or the
name of one of the frequently used commands built into the CCP.

Ifyou enter the name of one of the built-in commands, the CCP does not need
to go out to the disk system in order to load the command for execution. The
executable code is already inside the CCP.

If the name of the command you entered does not match any of the built-in
commands (the CCP has a table of their names), the CCP will search the
appropriate logical disk drive for a file with a matching name and a file type of
"COM" (which is short for command). You do not enter".COM"when invoking a
command-the CCP assumes a file type of "COM."

If you do not precede the name of the COM file with a logical disk drive
specification, the CCP will search the current default drive. If you have prefixed
the COM file's name with a specific logical drive, the CCP will look only on that
drive for the program. For example, the command MYPROG will cause the CCP
to look for a file called "MYPROG.COM" on the current default drive, whereas
C:MYPROG would make the CCP search only on drive C.

lf you enter a command name that matches neither the CCP's built-in com
mand table nor the name of any COM file on the specified disk, the CCP will
output the command name followed by a question mark, indicating it is unable to
find the file.

Editing the CCP Command Line

The CCP uses a line buffer to store what you type until you strike either a
CARRIAGE RETU RN or a LINE FEED. Ifyou make an error or change your mind, you
can modify the incomplete command, even to the point of discarding it.



Chapter 4: The Console Command Processor (CCP) 47

You edit the command line by entering control characters from the console.
Control characters are designated either by the combination of keys required to
generate them from the keyboard or by their official name in the ASCII character
set. For example, CONTROL-] is also known as CARRIAGE RETURN or CR.

Whenever CP/M has to represent control characters, the convention is to
indicate the "control" aspect of a character with a caret ("A "). For example,
CONTROL-A will appear as "A A", CONTROL-Z as "A Z", and so on. But if you press the
CONTROL key with the normal shift key and the "6" key, this will produce a
CONTROL-A or "/\/\". The representation of control keys with the caret is only
necessary when outputting to the console or the printer - internally, these charac
ters are held as their appropriate binary values.

CONTROL-C: Warm Boot If you enter a CONTROL-C as the first character of a command
line, the CCP will initiate a warm boot operation. This operation resets CP/M
completely, including the disk system. A fresh copy of the CCP is loaded into
memory and the file directory of the current default disk drive is scanned,
rebuilding the allocation bit map held in the BIOS (as discussed in Chapter 3).

The only time you would initiate a warm boot operation is after you have
changed a diskette (or a disk,if you have removable media hard disks). Thus,
CP/M will reset the disk system.

Note that a CONTROL-C only initiates a warm boot if it is the first character on a
command line. Ifyou enter it in any other position, the CCP will just echo it to the
screen as "AC". Ifyou have already entered several characters on a command line,
use CONTROL-U or CONTROL-X to cancel the line, and then use CONTROL-C to
initiate a warm boot. You can tell a warm boot has occurred because there will be a
noticeable pause after the CONTROL-C before the next prompt is displayed. The
system needs a finite length of time to scan the file directory and rebuild the
allocation bit map.

CONTROL-E: Physical End-o'-L1ne The CONTROL-E command is a relic of the days of the
teletype and terminals that did not perform an automatic carriage return and line
feed when the cursor went off the screen to the right. When you type a CONTROL-E,

CP/M sends a CARRIAGE RETURN/ LINE FEED command to the console, but does
not start to execute the command line you have typed thus far. CONTROL-E is, in
effect, a physical end-of-line, not a logical one.

As you can see, you will need to use this command only if your terminal either
overprints (if it is a hard copy device) or does not wrap around when the cursor
gets to the right-hand end of the line.

CONTROL-H: Backspace The CONTROL-H command is the ASCII backspace character.
When you type it, the CCP will "destructively" backspace the cursor. Use it to
correct typing errors you discover before you finish entering the command line.
The last character you typed will disappear from the screen. The CCP does this by
sending a three-character sequence of backspace, space, backspace to the console.



48 The CP/M Programmer's Handbook

The CCP ignores attempts to backspace over its own prompt. It also takes care
of backspacing over control characters that take two character positions on the
line. The CCP sends the character sequence backspace, backspace, space, space,
backspace, backspace, erasing both characters.

CONTROL·J: Line Feed/CONTROL·M: Carriage Return The CONTROL-J command is
the ASCII LINE FEED character; CONTROL-M is the CARRIAGE RETURN. Both of
these characters terminate the command line. The CCP will then execute the
command.

CONTROL·P: Printer Echo The CONTROL-P command is used to tum on and off a feature
called printer echo. When it is turned on, every character sent to the console is also
sent to CP/M's list device. You can use this command to get a hard copy of
information that normally goes only to the console.

CONTROL-P is a "toggle." The first time you type CONTROL-P it turns on printer
echo; the next time you type CONTROL-P it turns off printer echo. Whenever
CP/M does a warm boot, printer echo is turned off.

There is no easy way to know whether printer echo is on or off. Try typing a few
CARRIAGE RETURNs, and see whether the printer responds; if it does not, type
CONTROL-P and try again.

One of the shortcomings in most CP/M implementations is that the printer
drivers (the software in the BIOS that controls or "drives" the printer) do not
behave very intelligently if the printer is switched off or not ready when you or your
program asks it to print. Under these circumstances, the software will wait forever
and the system will appear to be dead. So if you "hang" the system in this way
when you type a CONTROL-P, check that the printer is turned on and ready.
Otherwise, you may have to reset the entire system.

CONTROL·R: Repeat Command Line The CONTROL-R command makes the CCP repeat
or retype the current input line. The CCP outputs a "#" character, a CARRIAGE
RETURN /LINE FEED, and then the entire contents of the command line buffer. This
is a useful feature if you are working on a teletype or other hard copy terminal and
have used the RUB or DEL characters. Since these characters do not destructively
delete a character, you can get a visually confusing line of text on the terminal. The
CONTROL-R character gives you a fresh copy of the line without any of the logically
deleted characters cluttering it up. In this way you can see exactly what you have
typed into the command line buffer.

See the discussion of the RUB and DEL characters for an example of CONTROL
R in use.

CONTROL·S: Stop SCreen Output The CONTROL-S command is the ASCII XOFF (also
called DC3) character; XOFF is an abbreviation for "Transmit Off." Typing
CONTROL-S will temporarily stop output to the console. In a standard version of



Chapter 4: The Console Command Processor (CCP) 49

CP/M, the CCP will resume output when any character is entered (including
another CONTROL-S) from the console. Thus, you can use CONTROL-S as a toggle
switch to turn console output on and off.

In some implementations ofCP/M, the console driver itself (the low-level code
in the BIOS that controls the console) will be maintaining a communication
protocol with the console; therefore, a better way of resuming console output after
pausing with a CONTROL-S is to use CONTROL-Q, the ASCII XON or "Transmit On"
character. Entering a CONTROL-Q instead of relying on the fact that any character
may be used to continue the output is a fail-safe measure.

The commands CONTROL-S and CONTROL-Q are most useful when you have
large amounts of data on the screen. By "riding" the CONTROL-S and CONTROL-Q

keys, you can let the data come to the screen in small bursts that you can easily
scan.

CONTROL-U or CONTROL·X: Undo Command Line The commands CONTROL-U and
CONTROL-X perform the same function: They erase the current partially entered
command line so that you can undo any mistakes and start over. The CONTROL-U

command was originally intended for liard copy terminals. The CCP outputs a "#"
character, then a CARRIAGE RETURN/LINE FEED, and then some blanks to leave
the cursor lined up and ready for you to enter the next command line. It leaves
what you originally entered in the previous line on the screen. The CONTROL-X

command is more suited to screens; the CCP destructively backspaces to the
beginning of the command line so that you can reenter it.

RUB or DEL: Delete Last Character The rubout or delete function (keys marked RUB,

RUBOUT, DEL, or DELETE) nondestructively deletes the last character that you
typed. That is, it deletes the last character from the command line buffer and
echoes it back to the console.

Here is an example of a command line with the last few characters deleted
using the RUB key:

A>RUN PAYROLLLLORYAPSALES

DELeted

You can see that the command line very quickly becomes unreadable. If you
lose track of what are data characters and what has been deleted, you can use
CONTROL-R to get a fresh copy of what is in the command line buffer.

The example above would then appear as follows:

A>RUN PAYROLLLLORYAPSALES#
RUN SALES_

The "#" character is output by the CCP to indicate that the line has been



50 The CP/M Programmer's Handbook

repeated. The "_" represents the position of the cursor, which is now ready to
continue with the command line.

Built-In Commands

When you enter a command line and press either CARRIAGE RETURN or LINE

FEED, the CCP will check if the command name is one of the set of built-in
commands. (It has a small table of command names embedded in it, against which
the entered command name is checked.) If the command name matches a built-in
one, the CCP executes the command immediately.

The next few sections describe the built-in commands that are available;
however, refer to Osborne CP/M User Guide. second edition by Thom Hogan
(Berkeley: Osborne/McGraw-Hill, 1982) for a more comprehensive discussion
with examples of the various forms of each command.

X: - Changing Default Disk Drives The default drive is the currently active drive that
CP/M uses for all file access whenever you do not nominate a specific drive. Ifyou
wish to change the default drive, simply enter the new default drive's identifying
letter followed by a colon. The CCP responds by changing the name of the disk
that appears in the prompt line.

On hard disks, this simple operation may take a second or two to complete
because the BOOS, requested by the CCP to log in the drive, must read through
the disk directory and rebuild the allocation vector for the disk. If you have a
diskette or a disk that is removable, changing it and performing a warm boot has
the same effect of refreshing CP/M's image of which allocation blocks are used and
which are available. It takes longer on a hard disk because, as a rule, the directories
are much larger.

DIR - Directory of Files In its simplest form, the DIR command displays a listing of the
files set to Directory status in the current user number (or file group) on the current
default drive. Therefore, when you do not ask for any files after the DIR command,
a file name of "*.*" is assumed. This is a total wildcard, so all files that have not
been given System status will be displayed. This is the only built-in command
where an omitted file name reference expands to "all file names, all file types."

You can display the directory of a different drive by specifying the drive in the
same command line as the DIR command.

You can qualify the files you want displayed by entering a unique or ambiguous
file name or extension. Only those files that match the given file name specification
will be displayed, and even then, only those files that are not set to System status
will appear on the screen. (The standard CP/M utility program STAT can be used
to change files from SYS to DIR status.)



Chapter 4: The Console Command Processor (CCP) 51

Another side effect of the DIR command and files that are SYS status is best
illustrated by an example. Imagine that the current logical drive B has two files on it
called SYSFILE (which has SYS status) and NONSYS (which does not). Look at
the following console dialog, in which user input is underlined:

SYSFILE does not show

JUNK does not exist

Do you see the problem? If a file is not on the disk, the CCP will display NO
FILE (or NOT FOUND in earlier versions of CP/M). However, if the file does
exist but is a SYS file, the CCP does not display it because of its status; nor does
the CCP say NO FILE. Instead it quietly returns to the prompt. This can be
confusing if you are searching for a file that happens to be set to SYS status. The
only safe way to find out if the file does exist is to use the STAT utility.

ERA - Erase a File The ERA command logically removes files from the disk (logically
because only the file directory is affected; the actual data blocks are not changed).

The logical delete changes the first byte of each directory entry belonging to a
file to a value ofOE5H. As you may recall from the discussion on the file directory
entry in Chapter 3, this first byte usually contains the file user number. If it is set to
OE5H, it marks the entry as being deleted.

ERA makes a complete pass down the file directory to logically delete all of the
extents of the file.

Unlike DIR, the ERA command does not assume "all files, all types" if you
omit a file name. If it did, it would be all too easy to erase all of your files by
accident. You must enter "*.*" to erase all files, and even then, you must reassure
the CCP that you really want to erase all of them from the disk. The actual dialog
looks like the following:

A>~il b no;. ~<c.r.2..
ALL (Y/N)?y'<c..r>
A>

Ifyou change your mind at the last minute, you can press "n" and the CCP will
not erase any files.

One flaw in CP/M is that the ERA command only asks for confirmation when
you attempt to erase all of your files using a name such as "*.*" or "*.???". Consider
the impact of the following command:

The CCP with no hesitation has wiped out all files that have a file type starting
with the letter "c" in the current user number on logical disk A.



52 The CP/M Programmer's Handbook

If you need to use an ambiguous file name in an ERA command, check which
files you will delete by first using a STAT command with exactly the same
ambiguous file name. STAT will show you all the files that match the ambiguous
name, even those with SYS status that would not be displayed by a DIR command.

There are several utility programs on the market with names like UNERA or
WHOOPS, which take an ambiguous file name and reinstate the files that you may
have accidentally erased. A design for a version of UNERASE is discussed in
Chapter H.

If you attempt to erase a file that is not on the specified drive, the CCP will
respond with a NO FILE message.

REN - Rename a File The REN command renames a file, changing the file name, the file
type, or both. In order to rename, you need to enter two file names, the new name
and the current file name.

To remember the correct name format, think of the phrase new = old. The
actual command syntax is

A>r..!..!l newf He. typ=oldf i le •.lli~:cr>
A>_

You can use a logical disk drive letter to specify on which drive the file exists. If
you specify the drive, you only need to enter it on one of the file names. Ifyou enter
the drive with both file names, it must be the same letter for both.

Unlike the previous built-in command, REN cannot be used with ambiguous
file names. If you try, the CCP echoes back the ambiguous names and a question
mark, as in the following dialog:

A> r..!.!l £.h.~p.~d;lQ£.=.£h.~.p.l.l1tr~.,Q!;~£5.£.r >
CHAP*.DOC=CHAPTER*.DOC?
A>

If the REN command cannot find the old file, it will respond NO FILE. If the
new file already exists, the message FILE EXISTS will be displayed. Ifyou receive
a FILE EXISTS message and want to check that the new file does exist, remember
that it is better to use the STAT command than DIR. The extant file may be
declared to be SYS status and therefore will not appear if you use the DIR
command.

TYPE - Type a Text File The TYPE command copies the specified file to the console. You
cannot use ambiguous file names, and you will need to press CONTROL-S if the file
has more data than can fill one screen. With the TYPE command, the data in the
file will fly past on the screen unless you stop the display by pressing CONTROL-So

Be careful, because ifyou type any other character, the TYPE command will abort
and return control to the CCP.



Chapter 4: The Console Command Processor (CCP) 53

Once you have had time to see what is displayed on the screen, you can press
CONTROL-Q to resume the output of data to the console. With standard CP/M
implementations, you will discover that any character can be used to restart the
flow of data; however, use CONTROL-Q as a fail-safe measure. CONTROL-S (X-OFF)

and CONTROL-Q (X-ON) conform to the standard protocol which should be used.
Ifyou need to get hard copy output of the contents ofthe file, you should type a

CONTROL-P command before you press the CARRIAGE RETURN at the end of the
TYPE command line. f,

As you may have inferred, the TYPE command should only be used to output
ASCII text files. If for some reason you use the TYPE command with a file that
contains binary information, strange characters will appear on the screen. In fact,
you may program your terminal into some state that can only be remedied by
turning the power off and then on again. The general rule therefore is only use the
TYPE command with ASCII text files.

SAVE - Save Memory ImQge on Disk The SAVE command is the hardest of the CCP's
commands to explain. It is more useful to the programmer than to a typical end
user. The format of this command is

A>SAVE U FILENAME.TVp<cr>
A>

The SAVE command creates a file of the specified name and type (or over
writes an existing file of this name and type), and writes into it the specified
number n of memory pages. A page in ~P/M is 256 (100H) bytes. The SAVE
command starts writing out memory from location 100H, the start of the Transient
Program "rea (TPA). Before y<JP use this command, you will normally have
loaded a program into the TPA. The SAVE command does just what its name
implies: It saves an image of the program onto a disk file.

More often than not, when you use thF SAVE command the file type will be
".COM." With the file saved in this way, the CCP will be able to load and execute
the file.' .

USER - Change User Numbers As mentioned before, the directory of each logical disk
consists of several directories that are physically interwoven but logically separated
by the user number. When you use a specific user number, those files that were
created when you were in another user number are logically not available to you.

The USER command provides a way for you to move from one user number to
another. The command format is

A>USER n<cr>
A>

where n can be any number from 0 to 15. Any other number will provoke the CCP
to echoing back your entry, followed by a question mark.



54 The CP/M Programmer's Handbook

But once you have switched back and forth between user numbers several
times, it is easy to become confused about which user number you are in. The
STAT command can be used to find the current user number, If you are in a user
number that does not make a copy of STAT available to you however, all you can
do is use the USER command to set yourself to another user number. You cannot
find out which user number you were in; you can only tell the system the user
number you want to go to.

In the custom BIOS systems discussed later, there is a way of displaying the
current user number each time a warm boot occurs. Ifyou are building a system in
which you plan to utilize CP/M's user number features, you should give this
display of the current user number serious thought. If you are in the wrong user
number and erase files, you can create serious problems.

Some implementations of CP/M have modified the CCP so that the prompt
shows the current user number as well as the default drive (similar to the prompt
used in MP/ M). However, this use of a nonstandard CCP is not a good practice.
As a rule, customization should be confined to the BIOS.

Program Loading

The first area to consider when loading a program is the first WOH bytes of
memory, called the base page. Several fields-units in this area of memory-are
set to predetermined values before a program takes control.

To aid in this discussion, imagine a program called COPYFILE that copies one
file to another. This program expects you to specify the source and destination file
names on the command line. A typical command would read

A>copyfile tofile.typ fromfile.typ display

Notice the word "display." COPYFILE will, if you specify the "display" option,
output the contents of the source file ("fromfile.typ") on the console as the transfer
takes place.

When you press the CARRIAGE RETURN key at the end of the command line,
the CCP will search the current default drive ("A" in the example) and load a file
called COPYFILE.COM into memory starting at location WOH. The CCP then
transfers control to location WOH -just past the base page -and COPYFILE
starts executing.

Base Page
The base page normally starts from location OOOOH in memory, but where

there is other material in low memory addresses, it may start at a higher address.
Figure 4-1 shows the assembly language code you will need to access the base page.
RAM is assumed to start at location OOOOH in this example.



Chapter 4: The Console Command Processor (CCP) 55

,Input/output redirection byte

RAM+2 'BIOS ~ump vector page

RAM+5CH ,Bypas. unused locations

3 ,Contains a JMP to BDOS entry
BDOSE+2 ,Top palle of usable RAM

;Start of RAM (and the base page)
,You may need to change this to
, some other value (e.g. 4300H)

,F11e control block 11
,Note, if you use this FCB here
, YOU will overwrite FCB2 below.

,Set location counter to RAM bas.
,Contains a JMP to warm boot entry
, in BIOS ~ump vector table

,File control block 12
,You Must move this to another
, place before u5109 it

16

16

RAM
3

1 ,Current user (bits 7-4)
CURUSER ,Default logical disk (bits 3-0)

o

ORO
DS

EQU

DS
EQU

ORO

os

os

EQU

DS

os
EQU

,
BIOSPAOE,
10BYTE,,
CURUSER,
CURDISK

,
WARMBOOT,

,
FCBl:

RAM

,
BDOSE.
TOPRAM,

,
FCB2,

OOO:5C

OO:5C

0002 =

0003

0004
0004 =

0000
0000

0000 =

006C

000:5
0007 a

RAH+80H ,Bypa•• unused locations0080

0080

0081

ORO,
COMTAIL,
COMTAIL.COUNT. DS

COI1TA IL.CHARS, DS 127

,Complete command tail
,Count of the number of chars
; in command tail (CR not incl.)
,Oh.ar.cters in command tail
, converted to uppercase and
, without trailing carriage ret.

RAM+80H ,Redefine command tail area0080

0080
,
DI1ABUFFER.

ORO

os 128 ,n-fault "DMA" addre •• used
, .s a 128-byt. record buffer

0100
TPA,

ORO RAM+I0OH ,Bypas. unu.ed locations
,Start of transient pr09ram area
, into which pro~r.ms are loaded.

Figure 4-1. Base page data declarations

Some versions of CP/M, such as the early Heathkit/Zenith system, have ROM
from location 0000H to 42FFH. Digital Research, responding to market pressure,
produced a version of CP/M that assumed RAM starting at 4300H. If you have
one of these systems, you must add 4300H to all addresses in the following
paragraphs except for those that refer to addresses at the top of memory. These
will not be affected by the presence of ROM in low memory.

The individual values used in fields in the base page are described in the
following sections.

Wormboot The three-byte warmboot field contains an instruction to jump up to the high
end of RAM. This JMP instruction transfers control into the BIOS and triggers a
warm boot operation. As mentioned before, a warm boot causes CP/M to reload
the CCP and rebuild the allocation vector for the current default disk. Ifyou need



56 The CP/M Programmer's Handbook

to cause a warm boot from within one of your assembly language programs, code

-.IMP 0 ;Warm Boot

BIOSPAGE The BIOS has several different entry points; however, they are all clustered
together at the beginning ofthe BIOS. The first few instructions of the BIOS look
like the following:

-.IMP ENTRY 1
-.IMP ENTRY2
-.IMP ENTRY3 land so on

IOBVTE

Because of the way CP/M is put together, the first jump instruction always
starts on a page boundary. Remember that a page is 256 (lOOH) bytes of memory,
so a page boundary is an address where the least significant eight bits are zero. For
example, the BIOS jump vector (as this set of JMPs is called) may start at an
address such as F200H or E600H. The exact address is determined by the size of
the BIOS.

By looking at the BIOSPAGE, the most significant byte of the address in the
warmboot JMP instruction, the page address of the BIOS jump vector can be
determined.

CP/M is based on a philosophy of separating the physical world from CP/M's
own logical view of the world. This philosophy also applies to the character
oriented devices that CP/M supports.

The IOBYTE consists offour two-bit fields that can be used to assign a physical
device to each of the logical ones. It is important to understand that the IOBYTE
itself is just a passive data structure. Actual assignment occurs only when the
physical device drivers examine the IOBYTE, interpreting its contents and select
ing the correct physical drive for the cooperation of the BIOS. These device drivers
are the low-level (that is, close to machine language) code in the BIOS that actually
interfaces and controls the physical device.

The four logical devices that CP/M knows about are

1. The console. This is the device through which you communicate with
CP/M. It is normally a terminal with a screen and a keyboard. The console
is a bidirectional device: It can be used as a source for information (input)
and a destination to which you can send information (output).

In CP/M terminology, the console is known by the symbolic name of
"CON:". Note the ":"-this differentiates the device name from a disk file
that might be called "CON."

2. The list device. This is normally a printer of some sort and is used to make
hard copy listings. CP/M views the printer as an output device only. This
creates problems for printers that need to tell CP/M they are busy, but this



Chapter 4: The Console Command Processor (CCP) 57

problem can be remedied by adding code to the low-level printer driver.
CP/M's name for this logical device is "LST:".

3. The paper tape reader. It is unusual to find a paper tape reader in use today.
Originally, CP/M ran on an Intel Microcomputer Development System
called the MDS-800, and this system had a paper tape reader. This device
can be used only as a source for information.

CP/M calls this logical device "RDR:".

4. The paper tape punch. This, too, is a relic from CP/M's early days and the
MDS-800. In this case, the punch can be used only for output.

The logical device name used by CP/M is "PUN:".

The physical arrangement of the IOBYTE fields is shown in Figure 4-2.
Each two-bit field can take on one of four values: 00, 01, 10, and 11. The

particular value can be interpreted by the BIOS to mean a specific physical device,
as shown in Table 4-1.

Although the actual interpretation of the IOBYTE is performed by the BIOS,
the STAT utility can set the IOBYTE using the logical and physical device names,
and PIP (Peripheral Interchange Program) can be used to copy data from one
device to another. In addition, you can write a program that simply changes the

Bit Number I 7 I 6 I 5 I 4 I 3 I 2 I I I 0 I----------Logical Device List Punch Reader Console

Figure 4·2. Arrangement of the IOBYTE

Table 4-1. IOBYTE Values

Physical Device
Logical Device

00 01 10 11

Console (CON:) TTY: CRT: BAT: UCI:
Reader (RDR:) TTY: PTR: UR!: UR2:
Punch (PUN:) TTY: PTP: UP!: UP2:
List (LST:) TTY: CRT: LPT: UU:



58 The CP/M Programmer's Handbook

contents of the IOBYTE. But be careful: Changes in the IOBYTE take effect
immediately.

The values in the IOBYTE have the following meanings:

Console (CON:)

00 Teletype driver (TTY:)
This driver is assumed to be connected to a hard copy device being used
as the main console.

01 CRT driver (CRT:)
The driver is assumed to be connected to a CRT terminal.

10 Batch mode (BAT:)
This is a rather special case. It is assumed that appropriate drivers will be
called so that console input comes from the logical reader (RDR:) and
console output is sent to the logical list device (LST:).

11 User defined console (UCl:)
Meaning depends on the individual BIOS implementation. If, for exam
ple, you have a high-resolution graphics screen, you could arrange for
this setting of the IOBYTE to direct console output to it. You might
make console input come in from some graphic tablet, joystick, or other
device.

Reader (RDR:)

00 Teletype driver (TTY:)
This refers to the paper tape reader device that was often found on
teletype consoles.

01 Paper tape reader (PTR:)
This presumes some kind of high-speed input device connected to the
system. Modern systems rarely have such a device, so this setting is often
used to connect the logical reader to the input side ofa communications
line.

10 User defined reader #1 (URI:)

11 User defined reader #2 (UR2:)
Both of these settings can be used to direct the physical driver to some
other specialized devices. These values are included only because they
would otherwise have been unassigned. They are rarely used.

Punch (PUN:)

00 Teletype driver (TTY:)
This refers to the paper tape punch that was often found On teletype
consoles.

01 Paper tape punch (PTP:)



Chapter 4: The Console Command Processor (CCP) 59

This presumes that there is some kind of high-speed paper tape punch
connected to the system. Again, this is rarely the case, so this setting is
often used to connect the logical punch to the output side ofa communi
cations line.

10 User defined punch #1 (UPl:)

11 User defined punch #2 (UP2:)
These two settings correspond to the two user defined readers, but they
are practically never used.

List (LST:)

00 Teletype driver (TTY:)
Output will be printed on a teletype.

01 CRT driver (CRT:)
Output will be directed to the screen on a CRT terminal.

10 Line printer driver (LPT:)
Output will go to a high-speed printing device. Although the name line
printer implies a specific type of hardware, it can be any kind of printer.

11 User defined list device (ULl:)
Whoever writes the BIOS can arrange for this setting to cause logical list
device output to go to a device other than the main printer.

To repeat: The IOBYTE is not actually used by the main body of CP/M. It is
just a passive data structure that can be manipulated by the STAT utility. Whether
the IOBYTE has any effect depends entirely on the particular BIOS implementa
tion.

CURUSER The CURUSER field is the most significant four bits (high order nibble) of its
byte. It contains the currently selected user number set by the CCP USER
command, by a specific call to the BOOS, or by a program setting this nibble to the
required value. This last way of changing user numbers may cause compatibility
problems with future versions of CP/M, so use it only under controlled conditions.

CUROISK The CURDISK field is the least significant four bits of the byte it shares with
CURUSER. It contains a value of 0 ifthe current disk is A:, 1if it is B:, and so on.

The CURDISK field can be set from the CCP, by a request to the BOOS, or by
a program altering this field. The caveat given for CURUSER regarding compatibility
also applies here.

BOOSE This three-byte field contains an instruction to jump to the entry point of the
BOOS. Whenever you want the BOOS to do something, you can transfer the
request to the BOOS by placing the appropriate values in registers and making a
CALL to this JMP instruction. By using a CALL, the return address will be



60 The CP/M Programmer's Handbook

placed on the stack. The subsequent JMP to the BOOS does not put any
additional information onto the stack, which operates on a last-in, first-out basis;
so when the system returns from the BOOS, it will return directly to your
program.

TOPRAM Because the BOOS, like the BIOS, starts on a page boundary, the most
significant byte of the address of the BOOS entry tells you in which page the
BOOS starts. You must subtract I from the value in TOPRAM to get the highest
page number that you can use in your program. Note that when you use this
technique, you assume that the CCP will be overwritten since it resides in memory
just below the BOOS.

FCB1 and FCB2 As a convenience, the CCP takes the first two parameters that appear in
the command tail (see next section), attempts to parse them as though they were
file names, and places the results in FCB I and FCB2. The results, in this context,
mean that the logical disk letter is converted to its FCB representation, and the file
name and type, converted to uppercase, are placed in the FCB in the correct bytes.
In addition, any use of "*" in the file name is expanded to one or more question
marks. For example, a file name of "abc*.*" will be converted to a name of
"ABC!!???" and type of "???".

Notice that FCB2 starts only 16 bytes above FCBI, yet a normal FCB is at least
33 bytes long (36 bytes if you want to use random access). In many cases, programs
only require a single file name. Therefore, you can proceed to use FCBI straight
away, not caring that FCB2 will be overwritten.

In the case of the COPYFILE program example on previous pages, two file
names are required. Before FCBI can be used, the 16 bytes of FCB2 must be
moved into a skeleton FCB that is declared in the body of COPYFILE itself.

COMTAIL The command tail is everything on the command line other than the command
name itself. For example, the command tail in the COPYFILE command line is
shown here:

A)copyfile tofile.type fromfile.typ display

The CCP takes the command tail (converted to uppercase) and stores it in the
COMTAIL area.

COMTAIL$COUNT This is a single-byte binary count of the number of characters in the
command tail. The count does not include a trailing CARRIAGE RETURN or a blank
between the command name and the command tail. For example, if you enter the
command line

A>PRINT ABC!>:.!>:



Chapter 4: The Console Command Processor (CCP) 61

the COMTAIL$COUNT will be six, which is the number of characters in the
string "ABC*.*".

COMTAIL$CHARS These are the actual characters in the command tail. This field is not
blank-filled, so you must use the COMTAIL$COUNT in order to detect the end of
the command tail.

DMA$BUFFER In Figure 4-1, the DMA$BUFFER is actually the same area of memory as
the COMTAIL. This is a space-saving trick that works because most programs
process the contents of the command tail before they do any disk input or output.

The DMA$BUFFER is a sector buffer (hence it has a length of 128 bytes). The
use of the acronym DMA (direct memory access) refers back to the Intel MDS
800. This system had hardware that could move data to and from diskettes by
going directly to memory, bypassing the CPU completely. The term is still used
even though you may have a computer system that does not use DMA for its disk
I/O. You can substitute the idea of "the address to/from which data is read/writ
ten" in place of the DMA concept.

You can request CP/M to use a DMA address other than DMA$BUFFER, but
whenever the CCP is in control, the DMA address will be set back here.

TPA This is the transient program area into which the CCP loads programs. The
TPA extends up to the base of the BDOS.

The TPA is also the starting address for the memory image that is saved on disk
whenever you use the CCP SAVE command.

Memory Dumps of the Base Page
The following are printouts showing the contents of the base page (the first

WOH bytes of memory) as the COPYFILE program will see it.
This is an example of the first 16 bytes of memory:

0000, C3 03 F2 95 00 C3 00 C2 FF F6 F5 FF F3 F2 FF FO
~ ./

LArbitrary data left
from system startup

L...-------JMP to BDOS Entry Point
(Note OC200H is starting page of BDOS)

'---------Current default disk (0 = A, I = B)

L.-.---------Current User (User = 0)

'-----------Settings of the IOBYTE

L.-.------------JMP WARMBOOT
(Note that the BIOS Jump Vector is at OF200H)



62 The CP/M Programmer's Handbook

The command line, as you recall, was

A>copyfile tofile.typ fromfile.typ display

The FCBI and FCB2 areas will be set by the CCP as follows:

Logical Disk Logical Disk

">o'.Jl." ., " I.TOF -"-
0060. 49 4C 45 20 20 54 59 50 00 00 00 00 00 46 52 4F

ILE TVP ••.•• FRO
0070, 4D 46 49 4C 45 54 59 50 00 00 00 00 00 F2 34 F3

MFILETVP. ..4.

Since the logical disks were not specified in the file names in the command line,
the CCP has set the disk code in both FCBI and FCB2 to OOH, meaning "use the
default disk." The file name and type have been converted to uppercase, separated,
and put into the FCBs in their appointed places.

The complete command tail has been stored in COMTAIL as follows:

31 in decimal

I R"id"'~
0080,~54 4F 46 49 4C 45 2E 54 59 50 20 46 52 4F 4D.

• TOFILE.TVP FROM
0090, 46 49 4C 45 2E 54 59 50 20 44 49 53 50 4C 41 59

FILE.TVP DISPLAV
OOAO, 00 43 ~2 43 4B 20 20 20 20 43 4F 4D 00 00 00 OA

• C R C K C O. M . .
OOBO. 9B 9C 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OOCO, ES E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5

OODO: E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5.............
OOEO, E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5

OOFO: E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5

0100,
...........

OIF?i

Program Start

You can see that the command tail length isOl FH (31 decimal). This is followed
immediately by the command tail characters themselves. Note that the command
tail stops at location 9FH. The remainder of the data that you can see is the residue
of some previous directory operation by the CCP. You can see the file name
CRCK.COM in a directory entry, followed by several OE5Hs that are unused
directory space.

Finally, at location OIOOH are the first two bytes of the program.



Chapter 4: The Console Command Processor (CCP) 63

Processing the Command Tail
One of the first problems facing you if you write a program that can accept

parameters from the command tail is to process the command tail itself, isolating
each of the parameters. You should use a standard subroutine to do this. This
subroutine splits the command line into individual parameters and returns a count
of the number of parameters, as well as a pointer to a table of addresses. Each
address in this table points in turn to a null-byte-terminated string. Each parame
ter is placed in a separate string.

Figure 4-3 contains the listing of this subroutine, CTP (Command Tail Pro~
cessor).

0100
0100 CD3601
0103 00

ORO 100H
START, CALL CTP 'Test bed for CTP

NOP
, Remainder of your program

This subroutine break. the command tail apart, placing
each value in a separate .tring area.

EQU SOH ,Command tail in bas. pag_
EQU COMTAIL ,Count of chars. in command tail
EQU 1 ,Too many parameters error code
EQU 2 ,Parameter too long error code

parameters:
A • 0 - No error <Z flag set)
B = Count of number of parameters
HL -> Table of address••

Each address points to a null-byte
terminated parameter string.

If too many par.m.t ..... are specified, then A == TI'1P
If • given para/meter il too 10n9, then A :III PTL

and D points to the first character of the
offending parameter in the COMTAJL ar.a.

0080 •
0080 •
0001 •
0002 •

0104 OCOI
0106 IAOI
0108 2801

OIOA 0000

Return

,,,,,
COMTAIL
COMTAI L$COUNT
CTP$TMP
CTP$PTL,
PTABLE,

DW
DW
DW

DW

PI
P2
P3
, <--
o

,Table of pointers to parameters
, Parameter 1
, Parameter 2
; Param@ter 3

Add more parameter addresses her.
, Terminator

Parameter strin~s.

The first byte is 0 so that unus.d parameters appear
to b@ null strings.
The last byte of each is a 0 and is used to detect
a parameter that ts too long.
DB 0,1,1,1,1,1,1,1,1,1,1,1,1,0 ;Param. 1 " terminator
DB 0,1,1,1,1,1,1,1,1,1,1,1,1,0 ;Param. 2" terminato...
DB 0,1,1,1,1,1,1,1,1,1,1,1,1,0 ;Param. 3" terminato...

; (--- Add mo.... parameter strings he....

;
010C OoolOIOIOIPI,
OIIA 000101010lP2,
0128 0001010101P3,

,
CTP,

0136 210401
0139 OEOO
013B 3A8000
013E B7
013F C8
0140 E:5
0141 47
0142 218100

LXI
MVI
LDA
ORA
RZ
PUSH
MOV
LXI

H.PTABLE
C.O
COMTAIL$COUNT
A

H
B.A
H,COMTAIL+I

;Main entry point ««<
,HL -) table of addresses
,Set pa... amet@... count
;Characte... count
;Check if any pa...aml.
,Exit (return params. already .et)
,Save on top of stack fo... later
,B • COMTAIL char. count
;HL -) Command tail chars.

Figure 4-3. Command Tail Processor (CTP)



64 The CP/M Programmer's Handbook

E.M
H
O.M

A.O
E
CTPnMPX
H

0145 E3

0146 5E
0147 23
0148 56

0149 7A
014A 83
0148 CABOOl
014E 23
014F E3

CTP$NEXTP,
XTHL

MOV
INX
MOV

MOV
ORA
JZ
INX
XTHL

JNeMt parameter loop
,HL -> Table of addresses
,Top of stack = COMTAIL ptr.
,Get LS byte of paramo addr.
;Update address pointer
.Get MS byte of paramo addr.
'DE -) Parameter string (or is 0)
,Oet copy of MS byte of addr.
,Combine MS and LS byte
;Too many parameters--exit
;Update pointer to next address
; HL -) comtai 1
;Top of stack--update addY. ptr.

;At this point, we have
J HL -> next byte in command tail
; DE -) first byte of next parameter string

CTP$SKIP8.
0150 7E MOV
0151 23 INX
0152 05 OCR
0153 FA7301 M8
0156 FE20 CPI
0158 CA5001 JZ
0158 OC INR

CTP$NEXTC:
015C 12 STAX
0150 13 INX
015E IA LDAX
015F 87 ORA
0160 CA7AOI JZ
0163 AF XRA
0164 12 STAX
0165 7E MOV
0166 23 INX
0167 05 OCR
0168 FA7301 JM
0168 FE20 CPI
0160 CA4501 JZ
0170 C35COI JMP,

CTPX.
0173 AF XRA,

CTPCX
0174 EI POP
0175 210401 LXI
0178 87 ORA
0179 C9 RET

CTP$PTLX,
017A 3E02 MVI
017C E8 XCHG
0170 C37401 JMP

•CTP$TMPX,
0180 3EOI MVI
0182 C37401 JMP

0185 ENO

A.M
H
8
CTPX

CTP$SKIP8
C

o
D
D
A
CTP$PTLX
A
o
A.M
H
8
CTPX

CTP$NEXTP
CTP$NEXTC

A

H
H.PTABLE
A

A.CTP$PTL

CTPCX

A.CTP$TMP
CTPCX

START

;Oet next parameter byte
,UPdate command tail ptr.
:Check if characters still remain
;No, so 8)(it
;Check if blank
;Y.s, sO skip blanks
;Increment parameter counter

,Store in parameter string
,Update parameter string ptr.
,Check next byte
'Check if terminator
,Parameter too long exit
,Float a OO-byte at end of param.
,Store in param. string
,Get next character from tail
,Update command tail pointer
,Check if characters still remain
,No. 50 exit
'Check if parameter terminator
,Ves. so move to next parameter
,No, so store it in param. string

; Norma 1 exi t
;A = 0 , Z-flag set

;Common exit code
;Balanee stack
:Return ptr. to param. addr. table
;Ensure Z-flag set appropriatelY

;Parameter too long exit
;Set error code
;DE -) offending parameter
;Common exit

,Too many parameters exit
;Set error code
;Common exit

Figure 4-3. Command Tail Processor (CTP) (continued)

Available Memory

Many programs need to use all of available memory, and so very early in the
program they need to set the stack pointer to the top end of the available RAM. As
mentioned before, the CCP can be overwritten as it will be reloaded on the next
warm boot.



Chapter 4: The Console Command Processor (CCP) 65

Figure 4-4 shows the code used to set the stack pointer. This code determines
the amount of memory in the TPA and sets the stack pointer to the top ofavailable
RAM.

Communicating with the BIOS

Ifyou are writing a utility program to interact with a customized BIOS, there
will be occasions where you need to make a direct BIOS call. However, if your
program ends up on a system running Digital Research's MP/M Operating
System, you will have serious problems ifyou try to call the BIOS directly. Among
other things, you will crash the operating system.

Ifyou need to make such a call and you are aware of the dangers ofusing direct
BIOS calls, Figure 4-5 shows you one way to do it.

Remember that the first instructions in the BIOS are the jump vector-a
sequence of JMP instructions one after the other. Before you can make a direct
call, you need to know the relative page offset of the particular JMP instruction
you want to go to. The BIOS jump vector always starts on a page boundary, so all
you need to know is the least significant byte of its address.

0007 =
0000 3A07oo
0003 3D
0004 2EFF
0006 67
0007 F9

TOPRAM EQU

LOA
OCR
MVI
MOV
SPHL

7

TOPRAM
A
L.OFFH
H.A

;Most significant byt~ of
BOOS entrY point

,Get MS byte of BOOS entry point
;Back off one page
;Set LS byte of final address
,HL = XXFFH
;Set stack pointer from HL

Figure 4-4. Setting stack pointer to top of available RAM

At this point yoU make .. direct CONIN
CALL •••

Use this technique only for CP/M utility Programs.
HPJM ,Programs do not permit this.

;Get consol. input character
, (It'. the 4th Jump in the vector)
,Addre •• of BIOS page2

09HEQU
,
CONIN

BIOSPAGE EQU,,
0002 •

0009 •

0000 2E09
0002 C00:500

MVI L.CONIN ,Get LS byte of CONIN entrY point
CALL BIOS ,Go to BIOS entry .ubroutine
, •.• the r.st of your program•••

000:5 3A0200
oooe 67

0009 E9

,
BIOS'

LOA BIOSPAGE,Get BIOS Jump vector page
MOV H.A ,HL -) entry point

,(You set LS byte before coming here>
PCH- ; ",",Ump" to BIOS

;Your return addre.s i. alreadY
; on the stack

Figure 4-5. Making a direct BIOS call



66 The CP/M Programmer's Handbook

Note: This example assumes you have not
overwritten the cepe

H,O ,Save CCP~s stack pointer
SP ,By adding It to 0 In HL
CCPSSTACK
SP,LOCALSSTACK

0100

0100 210000
0103 39
0104 220FOl
0107 314101

START:
ORO

LXI
DAD
SHLD
LXI

100H ,Start at TPA

The main body of your program is here

:Get CCP's stack pointer
; Restore SP
,Return to the CCP

;Save area for CCP SP
,Local stack

2
48

START

DS
os

••. and when you are ready to return
to the CCP •••

LHLD CCPSSTACK
SPHL
RET,

CCPSSTACK,

LOCALSSTACK,
END

OlGA 2AOFOl
010D F9
010E C9

010F
0111

0141

Figure 4-6. Returning to CCP at program end

Returning to CP/M
Once your program has run, you will need to return control back to CP/M. If

your program has not overwritten the CCP and has left the stack pointer as it was
when your program was entered, you can return directly to the CCP using a RET
instruction.

Figure 4-6 shows how a normal program would do this if you use a local stack,
one within the program. The CCP stack is too small; it has room for only 24 l6-bit
values.

The advantage ofreturning directly to the CCP is speed. This is true especially
on a hard disk system, where the time needed to perform a warm boot is quite
noticeable.

If your program has overwritten the CCP, you have no option but to transfer
control to location OOOOH and let the warm boot occur. To do this, all you need do
is execute

EXIT: ...IMP 0 ;Warm Boot

(As a hint, if you are testing a program and it suddenly exits back to CP/M, the
odds are that it has inadvertently blundered to location OOOOH and executed a
warm boot.)



What the BDOS Does
BDOS Function Calls

Naming Conventions
Making a BDOS Function Request

The Basic Disk
Operating System

The Basic Disk Operating System is the real heart of CP/M. Unlike the
Console Command Processor, it must be in memory all the time. It provides all of
the input/ output services to CP/M programs, including the CCP.

As a general rule, unless you are writing a system-dependent utility program,
you should use the BDOS for all of your program's input/ output. If you circum
vent the BDOS you will probably create problems for yourself later.

67



68 The CP/M Programmer's Handbook

What the BOOS Does

The BDOS does all of the system input/ output for you. These services can be
grouped into two types of functions:

Simple Byte-by-Byte 110
This is sending and receiving data between the computer system and its
logical devices-the console, the "reader" and "punch" (or their substi
tutes), and the printer.

Disk File 110
This covers such tasks as creating new files, deleting old files, opening
existing files, and reading and writing 128-byte long "records" to and from
these files.

The remainder of this chapter explains each of the BDOS functions, shows
how to make each operating system request, and gives additional information for
each function. You should also refer to Digital Research's manual, CPIM 2
Interface Guide, for their standard description of these functions.

BOOS Function Calls

The BDOS function calls are described in the order of their function code
numbers. Figure 5-1 summarizes these calls.

Naming Conventions
In practice, whenever you write programs that make BDOS calls, you should

include a series of equates for the BDOS function code numbers. We shall be
making reference to these values in subsequent examples, so they are shown in
Figure 5-2 as they will appear in the programs.

The function names used to define the equates in Figure 5-2 are shorter than
those in Figure 5-1 to strike a balance between the abbreviated function names
used in Digital Research's documentation and the need for clearer function
descriptions.

Making a BOOS Function Request
All BDOS functions are requested by issuing a CALL instruction to location

0005H. You can also request a function by transferring control to location 0005H
with the return address on the stack.

In order to tell the BDOS what you need it to do, you must arrange for the
internal registers of the CPU to contain the required information before the CALL
instruction is executed.



Function
Code

o
I
2
3
4
5
6
7·
8·
9

10
11
12

Chapter 5: The Basic Disk Operating System 69

Description

Simple Byte-by-Byte I/O

Overall system and BDOS reset
Read a byte from the console keyboard
Write a byte to the console screen
Read a byte from the logical reader device
Write a byte to the logical punch device
Write a byte to the logical list device
Direct console I/O (no CCP-style editing)
Read the current setting of the 10BYTE
Set a new value of the 10BYTE
Send a "$"-terminated string to the console
Read a string from the console into a buffer
Check if a console key is waiting to be read
Return the CP/M version number

Disk File I/O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28·
29
30
31
32·
33
34
35
36
37
40

Figure 5·1. aDOS function calls

Reset disk system
Select specified logical disk drive
Open specified file for reading/ writing
Close specified file after reading/ writing
Search file directory for first match with filename
Search file directory for next match with filename
Delete (erase) file
Read the next "record" sequentially
Write the next "record" sequentially
Create a new file with the specified name
Rename a file to a new name
Indicate which logical disks are active
Return the current default disk drive number
Set the DMA address (read/write address)
Return the address of an allocation vector
Set specified logical disk drive to Read-Only status
Indicate which disks are currently Read-Only status
Set specified file to System or Read-Only status
Return address of disk parameter block (DPB)
Set/ Get the current user number
Read a "record" randomly
Write a "record" randomly
Return logical file size (even for random files)
Set record number for the next random read/write
Reset specified drive
Write a "record" randomly with zero fill ·These do not

work under MP/ M.



70 The CP/M Programmer's Handbook

0000
0001
0002
0003
0004
0005
0006
0007
0008 =
0009 =
OOOA =
0008 =
OOOC
0000 =
OOOE
OOOF
0010
0011
0012
0013
0014
0015 =
0016 =
0017 =
0018 =
0019 =
001A =
001B =
001C
0010
001E =
001F ~

0020 =
0021
0022
0023 =
0024 =
0025 =
0028 =

BSSYSRESET
BSCONIN
BSCCINOUT
BSREAOIN
BSPUNOUT
BSL!STOUT
BSOIRCONIO
BSGETIO
BSSETIO
BSPRINTS
BSREAOCONS
BSCONST
BSGETVER
BSOSKRESET
BSSELOSK
BSOPEN
BSCLOSE
BSSEARCHF
BSSEARCHN
BSERASE
BSREAOSEQ
BSWRITESEQ
BSCREATE
BSRENAME
BSGETACTOSK
BSGETCUROSK
BSSETOMA
BSGETALVEC
BSSETOSKRO
BSGETROOSKS
BSSETFAT
BSGETOPB
BSSETGETUN
BSREAORAN
BSWRITERAN
BSGETFSIZ
BSSETRANREC
BSRESETO
BSWR ITERANZ

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
40

SYstem Reset
Re<3id Consc,le Byte
Write Console Byte
Read "Reader" Byte
Write "Punch" Byte
Write Printer Byte
Direct Console I/O
Get IOBYTE
Set IOBYTE
Print Console String
Read Console String
Read Console Status
Get CP/M Version Number
Disk SYstem Reset
Se le,:t Di sk
Open Fi Ie
Close Fi Ie
Search for First Name Match
Search foy Next Name Match
Erase (delete) File
Read Sequent ial
Write Sequential
Create File
Rename File
Get Active (Logged-in) Disks
Get Current Default Disk
Set DMA (Read/Write) Address'
Get Allocation Vector Address
Set Disk to Read Only
Get Read Only Disks
Set File Attributes
Get Disk Parameter Block Address
Set/Get User Number
Read Random
Wr i te Randclm
Get File Size
Set Random Record Number
Rese't Drive
Write Random with Zero-Fill

Figure 5-2. Equates for BDOS function code numbers

The function code number of the specific function call you want performed
must be in register C.

Ifyou need to hand a single-byte value to the BDOS, such as a character to be
sent to the console, then you must arrange for this value to be in register E. If the
value you wish to pass to the BDOS is a 16-bit value, such as the address ofa buffer
or a file control block (FCB), this value must be in register pair DE.

When the BDOS hands back a single-byte value, such as a keyboard character
or a return code indicating the success or failure of the function you requested, it
will be returned in register A. When the BDOS returns a 16-bit value, it will be in
register pair HL.

On return from the BDOS, registers A and L will contain the same value, as
will registers Band H. This odd convention stems from CP/M's origins in PL/ M
(Programming Language/ Microprocessor), a language used by Intel on their
MDS system. Thus, PL/ M laid the foundations for what are known as "register
calling conventions."



Chapter 5: The Basic Disk Operating System 71

The BDOS makes no guarantee about the contents of the other registers. Ifyou
need to preserve a value that is in a register, either store the value in memory or
push it onto the stack. The BDOS uses its own stack space, so there is no need to
worry about it consuming your stack.

To sum up, when you make a function request to the BDOS that requires a byte
value, the code and the required entry and exit parameters will be as follows:

I'1VI
I'1VI
CALL

C,FUNCTIONSCODE
E.SINGLESBYTE
BOOS

;C = function code
;E = single byte value
;Location '5
;A = return code or value
lor HL = return value

For those function requests that need to have an address passed to the BDOS,
the calling sequence is

I'1VI
LXI
CALL

C,FUNCTIONSCODE .
D,ADDRESS
BOOS

;c = function code
;DE = address
; Locat ion ::;
;A = return code or value
lor HL = return value

If a function request involves disk files, you will have to tell the BtJOS the
address of the FCB that you have created for the file. (Refer back to Chapter 3 for
descriptions of the FCB.)

Many file processing functions return a value in register A that is either OFFH,
indicating that the file named in the FCB could not be found, or equal to a value of
0, 1,2, or 3. In the latter case, the BDOS is returning what is called a "directory
code." The number is the directory entry number that the BDOS matched to the
file name in your FCB. At any given moment, the BDOS has a 128-byte sector
from the directory in memory. Each file directory entry is 32 bytes, so four of them
(numbered 0,1,2, and 3) can be processed at a time. The directory code indicates
which one has been matched to your FCB.

References to CP/M "records" in the following descriptions mean 128-byte
sectors. Do not confuse them with the logical records used by applications
programs. Think of CP/M records as 128-byte sectors throughout.

Function 0: System Reset

Function Code: C = OOH
Entry Parameters: None
Exit Parameters: Does not return

Example

C,BSSYSRESET
BOOS

0000 =
0005 =
0000 OEOO
0002 C30:500

BSSYSRESET
BOOS

I'1VI
JI1P

EQU
EQU

o
:5

;System Reset
;BOOS entry point

;Set function code
:Note: you can use a JMP since
; you don't get control back



72 The CP/M Programmer's Handbook

Purpose The system reset function makes CP/M do a complete reset, exactly the same
as the warm boot function invoked when you transfer control to the WARM
BOOT point (refer to Figure 4-1).

In addition to resetting the BOOS, this function reloads the CCl>, rebuilds the
allocation vectors for the currently logged disks, sets the OMA address (used by
CP/M to address the disk read/write buffer) to 80H, marks all disks as being
Read/Write status, and transfers control to the CCIl. The CCP then outputs its
prompt to the console.

Notes This function is most useful when you are working in a high-level language that
does not permit ajump instruction to an absolute address in memory. Use it when
your program has finished and you need to return control back to CP/M.

Function 1: Read Console Byte

Function Code: C = 01 H
Entry Parameters: None
Exit Parameters: A = Data byte from console

Example

0001 '"
000:5 '"

S$CONIN
SDOS

EQU
EQU

1
5

,Console input
ISDOS entry

0000 OEOl
0002 CD0:500

"VI
CALL

C,S$CONIN
SDOS

,Get function code

Purpose This function reads the next byte ofdata from the console keyboard and puts it
into register A. If the character input is a graphic character, it will be echoed back
to the console. The only control characters that are echoed are CARRIAGE RETURN,
LINE FEED, BACKSPACE, and TAB. In the case ofa TAB character, the BOOS outputs
as many spaces as are required to move the cursor to the next multiple of eight
columns. All of the other control characters, including CONTROL-C, are input but
are not echoed.

This function also checks for CONTROL-S (XOFF) to see if console output should
be suspended, and for CONTROL-P (printer echo toggle) to see if console output
should also be sent to the list device. IfCONTROL-S is found, further output will be
suspended until you type another character. CONTROL-P will enable the echoing of
console output the first time it is pressed and disable it the second time.

If there is no incoming data character, this function will wait until there is one.

Notes This function ofteti hinders rather than helps, because it echoes the input.
Whenever you need console input at the byte-by-byte level, you will usually want
to suppress this echo back to the console. For instance, you may know that the
"console" is actually a communications line such as a modem. You may be trying
to accept a password that should not be echoed back. Or you may need to read a



Chapter 5: The Basic Disk Operating System 73

cursor control character that would cause an undesirable side effect on the
terminal if echoed there.

In addition, if you need more than a single character from the console, your
program will be easier to use if the person at the console can take full advantage of
the CCP-style line editing. This can best be done by using the Read Console String
function (code 10, OAH).

Read Console String also is more useful for single character input, especially
when you are expecting a "Y" or "N" (yes or no) response. If you use the Read
Console Byte function, the operator will have only one chance to enter the data.
When you use Read Console String, however, users have the chance to type one
character, change their minds, backspace, and type another character.

Function 2: Write Console Byte

Function Code: C = 02H
Entry Parameters: E = Data byte to be output
Exit Parameters: None

Example

0002 •
000:5 •

B.cONOUT
BDOS

EQU
EQU

2
:5

,Write Console Byte
,BDOS entry

0000 OE02
0002 lE2A
OOO4COO:5OO

I'1VI
I'1VI
CALL

C.B$CONOUT
E,"".'
BOOS

'Function cod.
IE = d.t. byte to be output

Purpose This function outputs the data byte in register E to the console. As with
function I, if the data byte is a TAB character, it will be expanded by the BOOS to
the next column that is a multiple of eight. The BOOS also checks to see if there is
an incoming character, and if there is, checks to see if it is a CONTROL-S (in which
case console output is suspended) or CONTROL-P (in which case echoing ofconsole
output to the printer is toggled on or off).

Notes You may have problems using this function to output cursor-addressing
control sequences to the console. Ifyou try to output a true binary cursor address
to position 9, the BOOS will interpret this as a TAB character (ASCII code 9) and
dutifully replace it with zero to eight blanks. Ifyou need to output binary values,
you must set the most significant bit of the character (use an ORI 80H, for
example) so that it will not be taken as the ASCII TAB.

Here are two general-purpose subroutines that you will need for outputting
messages. The first one, shown in Figure 5-3, outputs a null-byte-terminated
message from a specified address. The second, in Figure 5-4, does essentially the
same thing except that the message string follows immediately after the call to the
subroutine.



74 The CP/M Programmer's Handbook

;MSGOUT (message out)
;Output nUll-bvte-terminated message.

;Calling sequence
MESSAGE: OB "'Message"',O

LXI H.MESSAGE
CALL MSGOUT

;Exit Parameters
HL -) Null byte terminator

0002 B$CONOUT EQU 2
0005 BOOS EQU 5

MSGOUT.
0000 7E MOV A.M
0001 B7 ORA A
0002 C8 RZ
0003 23 INX H
0004 E5 PUSH H
0005 5F MOV E.A
0006 OE02 MVI C,B$CONOUT
0008 C00500 CALL BOOS
OOOB EI POP H
OOOC C30000 "'MP MSGOUT

;Write Console Byte
;BDOS entry point

;Get next byt~ for output

;Return when null-byte
";Update message pointer
;Save updated pointer
;ReadY for BOOS

;Recover message pointer
;00 back for next character

Figure 5·3. Write console byte example, output null-byte terminated message from
specified address

; MSOOUTI (message out in-line)
;Output null-bvte-terminated message that
,follows the CALL to MSGOUTI.

;Calling sequence
CALL MSGOUTI
DB ... Message".O
.•• next instruction

;Exit Parameters
HL -} instruction following message

0002
0005

0000 EI
0001 7E
0002 23
0003 B7
0004 C20800
0007 E9

B$CONOUT
BOOS

MSGOUTI,
POP
MOV
INX
ORA
JNZ
PCHL

EQU
EQU

H
A,M
H
A
MSGOUTIC

2
5

;Write Console Byte
;BDOS entry point

;HL -) message
;Oet next data byte
,Update message pointer
;Check if null byte
;No, continue
;Yes, return to next instruction
; after in-line message

0008 E5
0009 5F
OOOA OE02
OOOC C00500
OOOF C30000

MSGOUTIC,
PUSH
MOV
MYI
CALL
JMP

H
E.A
C,B$CONOUT
BOOS
MSGOUTI

;Save message pointer
;Re.ady for BOOS
;Funct ion code

;00 back for next char.

Figure 5-4. Write console byte example, output null-byte terminated message
following call to subroutine



Chapter 5: The Basic Disk Operating System 75

Function 3: Read "Reader" Byte
Function Code: C = 03H
Entry Parameters: None
Exit Parameters: A = Character input

Example

0003 •
000:5 •

BSREADIN
BOOS

EQU
EQU

3
5

;Read "Reader" Byte
;BDOS entry

0000 OE03
0002 CDO:500

MVI
CALL

C,BSREADIN
BOOS

;Function code
;A = reader byte

Purpose This function reads the next character from the logical "reader" device into
register A. In practice, the physical device that is accessed depends entirely on how
your BIOS is configured. In some systems, there is no reader at all; this function
will return some arbitrary value such as lAH (the ASCII CONTROL-Z character,
used by CP/M to denote "End of File').

Control is not returned to the calling program until a character has been read.

Notes Since the physical device (if any) used when you issue this request depends
entirely on your particular BIOS, there can be no default standard for all CP/M
implementations. This is one of the weaker parts of the BDOS.

You should "connect" the reader device by means of BIOS software to a serial
port that can be used for communication with another system. This is only a
partial solution to the problem, however, because this function call does not return
control to your program until an incoming character has been received. There is
no direct way that you can "poll" the reader device to see if an incoming character
has been received. Once you make this function call, you lose control until the next
character arrives; there is no function corresponding to the Read Console Status
(function code 11, OBH) that will simply read status and return to your program.

One possible solution is to build a timer into the BIOS reader driver that
returns control to your program with a dummy value in A if a specified period of
time goes by with no incoming character. But this brings up the problem of what
dummy value to use. If you ever intend to send and receive files containing pure
binary information, there is no character in ASCII that you might not encounter in
a legitimate context. Therefore, any dummy character you might choose could
also be true data.

The most cunning solution is to arrange for one setting of the IOBYTE (which
controls logical-device-to-physical-device mapping) to connect the console to the
serial communication line. This done, you can make use of the Read Console
Status function, which will return not the physical console status but the serial line
status. Your program can then act appropriately if no characters are received
within a specified time. Figure 5-11 shows a subroutine that uses this technique in
the Set IOBYTE function (code 8, 08H).



76 The CP/M Programmer's Handbook

Figure 5-5 shows an example subroutine to read lines of data from the reader
device. It reads characters from the reader, stacking them in memory until either a
LINE FEED or a specified number of characters has been received. Note that
CARRIAGE RETURNs are ignored, and the input line is terminated by a byte ofOOH.
The convention ofOOH-byte terminated strings and no CARRIAGE RETURNs is used
because it makes for much easier program logic. It also conforms to the conven
tions of the C language.

,RLSROR
;Read line from reader device.
;Carriage returns are ignored. and input terminates
;when specified number of characters 'have been read
;oy a line feed is input.

;Note: Potential weakness is that there is no
;timeout in this subroutine. It will wait fo~ever

;if no more characters arrive at the reader device.

;Calling sequence
LXI H,BUFFER
LXI B.MAXCOUNT
CALL RLSROR

;Exit Parameters
HL -} OOH byte terminating string
Be = residual count (0 if max. chars. read)
E last character read

OOO~ = BSREAOIN EQU 3 ;Reader input
0005 = BOOS EQU 5 ;BDOS entrY point

0000 CR EQU OOH ;Carriage return
OOOA LF EQU OAH ;Line feed (terminator)

RLSROR:
0000 79 MOV A,C ,Check if count 0
0001 BO ORA B ,If count o on entry, fake
0002 5F MOV E,A , last char. read <'OOH)
0003 CA2000 JZ RLSRORX ;Yes, exit
0006 C5 PUSH B ;Save max. chars. count
0007 E5 PUSH H ;Save buffer pointer

RLSRORI, ; Loop back here te. ignore
0008 OE03 MVI C,BSREAOIN
OOOA C00500 CALL BOOS ;A = character input
0000 5F MOV E,A ;Preserve copy of chars.
OOOE FEOO CPI CR ,Check if carriage return
0010 CA0800 JZ RLSRORI ;Yes. ignore it
0013 EI POP H ; Recover buffer pointer
0014 CI POP B ;Recover max. Count
0015 FEOA CPI LF ;Check if line feed
0017 CA2000 JZ RLSRORX ,Yes. exit
OOIA 77 MOV M,A ,No. store char. in buffer
OOIB 23 INX H ,Update buffer pointer
001C OB OCX B ;Downdate count
0010 C30000 JMP RLSROR ;Loop back for next char.

RLSRORX:
0020 3600 MVI M,O ,Null-byte-terminate buffer
0022 C9 RET

Figure 5-5. Read line from reader device



Chapter 5: The Basic Disk Operating System 77

Function 4: Write "Punch" Byte
Function Code: C = 04H
Entry Parameters: E = Byte to be output
Exit Parameters: None

Example

C,BSPUNOUT
E,"'."
BOOS

0004 ..
OOOS =
0000 0E04
0002 lE2A
0004 CDOSOO

B$PUNOUT
BDOl"

"'VI
"'VI
CALL

EQU
EQU

4
5

~Write "Punch " Byte

,Function cod..
,Data byt .. to output

Purpose This function is a counterpart to the Read "Reader" Byte described above. It
outputs the specified character from register E to the logical punch device. Again,
the actual physical device used, if any, is determined by the BIOS. There is no set
standard for this device; in some systems the punch device is a "bit bucket," so
called because it absorbs all data that you output to it.

Notes The problems and possible solutions discussed under the Read "Reader" Byte
function call also apply here. One difference, of course, is that this function
outputs data, so the problem ofan indefinite loop waiting for the next character is
less likely to occur. However, if your punch device is connected to a communica
tions line, and if the output hardware is not ready, the BIOS line driver will wait
forever. Unfortunately, there is no legitimate way to deal with this problem since
the BDOS does not have a function call that checks whether a logical device is
ready for output.

Figure 5-6 shows a useful subroutine that outputs a 00H-byte terminated string
to the punch. Wherever it encounters a LINE FEED, it inserts a CARRIAGE RETURN

into the output data.

Function 5: Write List Bvte
Function Code: C = 05H
Entry Parameters: E = Byte to be output
Exit Parameters: None

C,B$LSTOUT
E, .......
BOOS

Example
OOOS =
0005 =
0000 OE05
0002 lE2A
0004 COOSOO

B$LSTOUT
BOOS

"'VI
"'VI
CALL

EQU
EQU

S
5

,Writ .. List Byt ..

,Function cod..
,Data byt .. to output

Purpose This function outputs the specified byte in register E to the logical list device.
As with the reader and the punch, the physical device used depends entirely on the
BIOS.



78 The CP/M Programmer's Handbook

,WL$PUN
;Write line to punch device. Output terminates
;when a OOH byte is encountered.
;A carriage return is output when a line feed is
;encountered.

;Calling sequence
LXI H, BUFFER
CALL WL$PUN

;Exit parameters
HL -> OOH byte terminator

0004 B$PUNOUT EQU 4
0005 BOOS EQU 5

0000 = CR EQU ODH ;Carriage return
OOOA LF EQU OAH ;Line feed

WL$PUN:
0000 E5 PUSH H fSave buffer pointer
0001 7E MOV A,M ,Get next character
0002 B7 ORA A ;Check if OOH
0003 CA2000 -.lZ WL$PUNX ;Yes, exit
0006 FEOA CPI LF ,Check if line feed
0008 CCI600 CZ WL$PUNLF ;Yes, O/P CR
OOOB 5F MOV E,A 'Character to be output
OOOC OE04 MVI C,B$PUNOUT ;Function code
OOOE CD0500 CALL BOOS ; Output character
0011 EI POP H ;Recover buffer pcdnter
0012 23 INX H : Increment to next char.
0013 C30000 -.IMP WL$PUN ,Output next char

WL$PUNLF: ;Line feed encountered
0016 OE04 MVI C,B$PUNOUT ; Funct ion code
0018 IEOD MVI E,CR ,Output a CR
OOIA CD0500 CALL BOOS
0010 3EOA MVI A,LF ;Recreate 1 ine feed
OOIF C9 RET ,Output LF

WL$PUNX, :Exit
0020 EI POP H ; Balance the stack
0021 C9 RET

Figure 5-6. Write line to punch device

Notes One of the major problems associated with this function is that it does not deal
with error conditions very intelligently. You cannot be sure which physical device
will be used as the logical list device, and most standard BIOS implementations
will cause your program to wait forever if the printer is not ready or has run out of
paper. The BDOS has no provision to return any kind of error status to indicate
that there is a problem with the list device. Therefore, the BIOS will have to be
changed in order to handle this situation.

Figure 5-7 is a subroutine which outputs data to the list device. As you can see,
this is essentially a repeat of Figure 5-6, which performs the same function for the
logical punch device.



Chapter 5: The Basic Disk Operating System 79

IWLSLST
;Write line to list device. Output terminates
,when a OOH byte is encountered.
,A carriagE! return is output when a line feed is
,encountered.

,Calling sequence
LXI H.BUFFER
CALL WLsLST

JExit parameters
HL -> OOH byte terminator

0005 BsLSTOUT EQU 5
0005 BDOS EQU 5

OOOD = CR EQU ODH
OOOA LF EQU OAH

WLsLST.
0000 E5 PUSH H
0001 7E MOV A.M
0002 B7 ORA A
0003 CA2000 ..IZ WLSLSTX
0006 FEOA CPI LF
0008 CC1600 CZ WLSLSTLF
OOOB SF MOV E.A
OOOC OE05 MVI C.BsLSTOUT
OOOE CD0500 CALL BDOS
0011 El POP H
0012 23 INX H
0013 C30000 ..IMP WLSLST

WLsLSTLF.
0016 OE05 MVI C.BsLSTOUT
0018 lEOD MVI E.CR
001A CD0500 CALL BDOS
001D 3EOA MVI A.LF
OOIF C9 RET

WLSLSTX.
0020 El POP H
0021 C9 RET

Figure 5·7. Write line to Jist device

Function 6: Direct Console I/O

,Carria9. return
ILine feed

,Save buffer pointer
;Get next character
I Check if OOH
;Yes, exit
,Check if line feed
,Ve •• OIP CR
,Char.cter to be output
,Function code
;Output character
;Recover buffer pointer
;Update to next char.
;Output next char.

;Line feed encountered
; Funct ion code
;Output a CR

;Recreate line feed
;Output LF

,Exit
;Balance the stack

Function Code:
Entry Parameters:

Exit Parameters:

Example

C=06H
E = OFFH for Input
E = Other than OFFH for output
A = Input byte or status

0006
0005 z

BtD I RCONI 0
BDOS

EQU
EQU

6
5

,Dir.ct (raw) Console 1/0
,BDOS entry point

0000 OE06
0002 lEFF
0004' CD0500

I'1VI
I'1VI
CALL

C.BtDIRCONIO
E.OFFH
aDOS

,Function cod.
,OFFH ••ans input
,A • 00 if no char. waiting
,A • NZ if charact.r input



80 The CP/M Programmer's Handbook

;Example of console output

0007 OE06
0009 lE2A
OOOB COO:lOO

"VI
"VI
CALL

C,B$DIRCONIO
E, '.'
BOOS

;Function code
;Not OFFH means output char.

Purpose This function serves double duty: it both inputs and outputs characters from
the console. However, it bypasses the normal control characters and line editing
features (such as CONTROL-P and CONTROL-S) normally associated with console
I( O. Hence the name "direct" (or "unadorned" as Digital Research describes it). If
the value in register E is not OFFH, then E contains a valid ASCII character that is
output to the console. The logic used is most easily understood when written in
pseudo-code:
if this is an input request (E = OFFH)

{
if console status indicates a character is waiting

{

read the char from the console and
return to caller with char in A
}

else (no input character waiting) and
return to caller with A m 00

Notes

}

else (output request)
{

output the char in E to the console and
return to caller
}

This function works well provided you never have to send a value of OFFH or
expect to receive a value ofOOH. Ifyou do need to send or receive pure binary data,
you cannot use this function, since these values are likely to be part of the data
stream.

To understand why you might want to send and receive binary data, remember
that the logical "reader" does not have any method for you to check its status to see
if an incoming character has arrived. All you can do is attempt to read a character
(Read Reader Byte, function code 3). However, the BDOS will not give control
back to you until a character arrives (which could be a very long time). One
possibility is to logically assign the console to a communications line by the use of
the IOBYTE (or some similar means) and then use this Direct I( 0 call to send and
receive data to and from the line. Then you could indeed "poll" the communica
tions line and avoid having your program go into an indefinite wait for an
incoming character. An example subroutine using this technique is shown in
Figure 5-11 under Set IOBYTE (function code 8).

Figure 5-8 shows a subroutine that uses the Direct Console Input and Output.
Because this example is more complex than any shown so far, the code used to
check the subroutine has also been included.

Function 7: Get IOBVTE setting
Function Code: C = 07H
Entry Parameters: None
Exit Parameters: A = IOBYTE current value



Chapter 5: The Basic Disk Operating System 81

;--------------------------------------------------------
,TESTBED CODE
,Because of the complexity of this subroutine. the
; actual testbed code has been left in this example.
, It assumes that DDT or 1SID
; will be used for checkout.
;--------------------------------------------------------

0100
0100 C31101

OPTIONS,
TERMS.
BUFFER

,Change to IF 0 to disable testbed

;Bypass "variables" setup by DOT

in buffer

;Option flags
,Terminators
;Max. characters
; Actual count
;Data bytes

o
'A', 'E', "I' ,0
5
o
99,99,99,99,99
99,99

I
100H
START

DB
DB
DB
DB
DB
DB

IF
ORO
JMP

00
41454900
05
00
6363636363
6363

0103
0104
0108
0109
OIOA
OIOF

0111 210801
0114 110401
0117 3A0301
OIIA 47
OIIB CD2801
OIIE CD3800
0121 C31101

START,
LXI
LXI
LDA
MOV
CALL
CALL
JMP
ENDIF

H,BUFFER
D,TERMS
OPTIONS
B,A
RCS
38H
START

;Oet address of buffer
;Address of terminator table
;Oet options set by DOT
;Put in con-eel register
;Enter subroutine
,Force DDT breakpoint
;Test again
;End of testbed

;Res: Read console string (using raw input)
;Reads a string of characters into a memory
; buffer using raw input.

;Supports options:
o to echo characters or not (when echoing,

a carriage return will be echoed followed
by line feed)

o warm boot on input of control-C or not
o terminating input either on:

o max. no of chars input
o matching terminator character

Max. size
Actl.Jal Read
Buffer area

B, OPTIONS

D,TERMS

MVI

LXI

Calling Sequence
LXI H,BUFFER

Buffer has structure:
BUFFER, DB 10

DB 0
DS 10+1
Options required
(see equates)
Pointer to OOH-byte
terminated Chars,
anyone of which is a
tet"minator.

CALL RCS

Exit Parameters
BUFFER: Updated with data bytes and actual

character count input.
(Does not include the terminator).

A Terminating Code
o = Maximum number of characters input.
NZ = Terminator character found.

0001 = RCS$ECHO ECiU OOOO$OOOIB ; Input characters to be echoed
0002 = RCS$ABORT ECiU OOOO$OOIOB ; Abort on Control-C
0004 RCS$FOLD ECiU OOOO$OIOOB lFold lowercase to uppercase
0008 = RCS$TERM ECiU OOOO$IOOOB ,DE -) term. char. set

0006 B$DIRCONIO ECiU 6 ; Direct console 1/0
0005 BDOS ECiU 5 ,BOOS entry point

0003 CTL$C ECiU 03H ;Control-C
OOOD CR ECiU ODH ;Carriage return

Figure 5-8. Read/write string from/to console using raw I/O



82 The CP/M Programmer's Handbook

OOOA LF EQU OAH :Line feed
0008 BS EQU 08H ; Backspace

RCS$ST: ;Internal standard terminator table
0124 00 OB OOH ;Carriage return
0125 OA OB OAH ;Line feed
0126 00 OB 0 ;End of table

RCS$BSS, :Destructive backspace sequence
0127 08200800 OB BS.' , .BS.O

RCS, ,««< Main entry
012B 23 INX H ,HL -) actual count
012C 3600 MVI M,O ;Reset to initial state
012E 2B OCX H ,HL -> max. count

RCS$L:
012F E5 PUSH H ;Save buffer pointer
0130 C09201 CALL RCS$GC ,Get character and execute:

ECHO, ABORT, and FOLD options
,C = character input

0133 El POP H ;Recover buffer pointer
0134 3E08 MVI A.RCSHERM ,Check if user-specified terminator
0136 AO ANA B ,B = opt ions
0137 C23001 JNZ RCS$UST ;User specified terminators
013A 112401 LXI O.RCS$ST ;Standard terminators

RCS$UST,
0130 C00401 CALL RCS$CT ;Check for terminator
0140 CA4COI JZ RCS$NOTT ,Not termi oaler"
0143 47 MOV B.A ;Preserve terminating char.

RCS$MCI, ; (Max. char. input shares this code)
0144 OEOO MVI C,O ;Terminate buffer
0146 C07FOI CALL RCS$SC ;Save character
0149 78 MOV A,B ; Recover terminating char.
014A B7 'ORA A ;Set flags
014B C9 RET

RCS$NOTT, ,Not a terminator
014C 3E08 MVI A.BS ,Check for backspace
014E B9 CMP C

014F CA6001 JZ RCS$BS ; Backspace entered
0152 C07FOI CALL RCS$SC ;Save character in buffer
0155 C08BOI CALL RCS$UC ;Update count
0158 C22FOI JNZ RCS$L ;Not max. so get another char.
015B 0600 MVI ByO ;Fake terminating char.
0150 C34401 .IMP RCS$MCI ,A = 0 fot- max. chars. input

RCS$BS, ; Backspace entered
0160 E5 PUSH H ;Save buffer pointer
0161 23 INX H ,HL -) actual count
0162 35 OCR M ;Back up one
0163 FA7AOI JM RCS$NBS ;Check if cOI.J.nt negative
0166 212701 LXI H,RCS$BSS ,HL -) backspacing sequence
0169 3EOI MVI A.RCS$ECHO ;Nct y check if echcting
016B AO ANA B ;BS will have been echoed if so
016C CA7001 "Z RCS$BSNE ;No, input BS not echoed
016F 23 INX H ; Bypass initial backspace

RCS$BSNE,
0170 C5 PUSH B ;Save options and character
0171 05 PUSH 0 ;Save terminator table pointer
0172 COF601 CALL WCS ;Wri te console string
0175 01 POP 0 ;Recover terminatc,r table pointer
0176 Cl POP B ;Recover opt ions and character
0177 C37BOI JMP RCS$BSX ;Exi t from backspace logic

RCS$NBS,
017A 34 INR M ;Reset count te. 0

RCS$BSX:
017B El POP H ; Recover buffer pc,inter
017C C32F01 .IMP RCS$L ,Get next chat-actet-

Figure 5-8. (Continued)



RCS$SC:

017F 05 PUSH
0180 E5 PUSH
0181 23 INX
0182 5E MOV
0183 IC INR
0184 1600 MVI
0186 19 DAO
0187 71 MOV
0188 EI POP
0189 01 POP

018A C9 RET

RCS$UC:

018B E5 PUSH
018C 7E MOV
0180 23 INX
OISE 34 INR
018F BE CMP
0190 EI POP
0191 C9 RET

o
H
H
E,M
E
0,0
o
M,C
H
o

H
A,M
H
M
M
H

Chapter 5: The Basic Disk Operating System 83

;Save character in C in buffer
:HL -) buffer pointer
,Save terminator table pointer
,Save buffer pointer
,HL -) actual count in buffer
,Get actual count
,Count of 0 point5 to first data byte
,Make word value of actual count
,HL -) next fre. data byte
,Save data byte away
;Recover buffer pointer
,Recover terminator table
; pointer

,Update buffer count and check for max.
:Return Z set if = to max., NZ
; if not HL -) buffer on entry
,Save buffer pointer
,Oet max. count
;HL -> actual count
:Increase actual count
;Compare max. to actual
;Recover buffer pointer
.I-flag set

RCS$GC,

0192 05
0193 E5
0194 C5

RCS$WT:
0195 OE06
0197 IEFF
0199 C00500
019C B7
0190 CA9501
OIAO CI
OIAI 4F
0lA2 3E02
0lA4 AO
0lA5 CAAEOI
0lA8 3E03
OIAA B9
OIAB CAOOOO

RCS$NA:
OIAE 3E04
OIBO AO
OIBI C4E501
0lB4 3EOI
0lB6 AO
0lB7 CADIOI
OIBA C5
OIBB 59
OIBC OE06
OIBE C00500
OICI CI
0lC2 3EOO
0lC4 B9
0lC5 C20101
0lC8 C5
0lC9 OE06
OICB IEOA
OICO C00500
0100 CI

RCS$NE:
0101 EI
0102 01
0103 C9

PUSH
PUSH
PUSH

MVI
MVI
CALL
ORA
JZ
POP
MOV
MVI
ANA
JZ
MVI
CMP
JZ

MVI
ANA
CNZ
MVI
ANA
JZ
PUSH
MOV
MVI
CALL
POP
MVI
CMP
JNZ
PUSH
MVI
MVI
CALL
POP

POP
POP
RET

o
H
B

C,B$OIRCONIO
E,OFFH
BDOS
A
RCS$WT
B
C,A
A,RCS'ABORT
B
RCS$NA
A,CTL$C
C
o

A,RCS$FOLD
B
TOUPPER
A,RCS$ECHO
B
RCS$NE
B
E,C
C,B$OIRCONIO
BOOS
B
A,CR
C
RCS$NE
B
C,B$OIRCONIO
E,LF
BOOS
B

H
o

,Oet character and execute
, ECHO, ABORT and FOLO options
.Save terminator table pointer
,Save buffer pointer
'Save option flags

,Function code
,Specify input

,Check if data waiting
,00 back and wait
,Recover option flag5
,Save data byte
,Check If abort option enabled

;No abort
,Check for control-C

,Warm boot

,Check if foldin9 enabled

'Convert to uppercase
'Check if echo required

,No echo required
,Save options and character
,Move character for output
,Funct ion code
'Echo character
,Recover options and character
'Check if carriage return

'No
;Save options and character
,Function code
,Output line feed

,Recover options and character

Recover buffer pointer
Recover terminator table
Character in C

Figure 5-8. (Continued)



84 The CP/M Programmer's Handbook

0104 03 PUSH 0

RCS.CTL,
0103 IA LOAX 0
0106 B7 ORA. A
0107 CAE201 JZ RCS.CTX
OIOA B9 CMP C
OIOB CAE201 JZ RCS.CTX
OIOE 13 INX 0
OIOF C30301 JMP RCS.CTL

RCS.CTX,
0lE2 B7 ORA A

01E301
0lE4 C9

RCS.CT.

POP
RET

o

;Check for terminator
Fe = character just input
;DE -) OO-byte character
, string of term. chars.
,Returns Z status if no
, match found, NZ if found
; (with A = C = terminating
f ChaY4cter)
;Save table pointer

,Oet next terminator character
,Check for end of table
,No terminator matched
,Compare to input character
,Terminator matched
,Move to next terminator
J loop to try next character in table

,Check terminator exit
,At this point, A will either

be 0 if the end of the
, table has been reached, or
, NZ if a match has been
, found, The Z-flag will be
, set.
,Recover table pointer

,TOUPPER - Fold lowercase letters to upper
C = Character on entry and exit

0lE5 3E60
0lE7 B9
0lE8 02F501
OIEB 3E7A
OlEO B9
OIEE OAF50I
OIFI 3EOF
0lF3 AI
0lF4 4F

0lF5 C9

TOUPPER,
MVI
CMP
JNC
MVI
CMP
JC
MVI
ANA
MOV

TOUPX,
RET

A, ·· ... -1
C
TOUPX
A, .. z ....
C
TOUPX
A,OOFH
C
C,A

,Check if folding needed
,Compare to input char.
,No. char. is < or = I'a"-1
,Maybe. char. is = or > "a"

;No. char. is > liZ"

;Fold character

,Return folded character

,WCS - Write console string (using raw liD)
;Output terminates when a OOH byte is encountered.
,A carriage return is output when a line feed is
,encountered.

,Calling sequence
LXI H,BUFFER
CALL WCS

,Exit parameters
HL -} OOH byte terminator

WCS.
0lF6 E3 PUSH H ;Save buffer pointer
0lF7 7E MOV A,M ,Get next character
0lF8 B7 ORA A ; Check if OOH
OlF9 CAI602 JZ WCSX ;Yes, exit
OIFC FEOA CPI LF ;Check if line feed
OIFE CCOC02 CZ WCSLF ;Yes. output a carriage return
0201 3F MOV E,A ,Character to be output
0202 0E06 MVI C,E!$OIRCONIO ,Function code
0204 C00300 CALL BOOS , Output character

·0207 EI POP H ,Recover buffer pointer
0208 23 INX H ,Update to next char.
0209 C3F601 JMP WCS ,Output next char.

WCSLF. ,Line feed encountered
020C OE06 MVI C,B.OIRCONIO ,Function code

Figure 5-8. (Continued)



020E IEOD
0210 CD0:500
0213 3EOA
021:5 C9

I'lVI E.CR
CALL BOOS
I'lVI A.LF
RET

Chapter 5: The Basic Disk Operating System 85

,Output .. CR

.Recreat. line f.ed
,Output LF

WCSX,
0216 EI
0217 C9

Figure 5·8. (Continued)

Example

POP
RET

H
,E.it
;Balance the stack

0007 •
OOOl5 •

B$GETJO
BDOS

EQU
EQU

7
:;

,Get IOBYTE
,BDOS entry point

0000 0E07
0002 CD0:500

twl
CALL

C.B$GETJO
BOOS

,Function code
,A = IOBYTE

Purpose This function places the current value of the IOBYTE in register A.

Notes As we saw in Chapter 4, the IOBYTE is a means of associating CP/M's logical
devices (console, reader, punch, and list) with the physical devices supported by a
particular BIOS. Use ofthe IOBYTE is completely optional. CP/M, to quote from
the Digital Research CP/M2.0 Alteration Guide, "...tolerate[s] the existence of the
IOBYTE at location 0003H."

In practice, the STAT utility Provided ~y Digital Research does have some
features that set the IOBYTE to different values from the system console.

Figure 5-9 summarizes the IOBYTE structure. A more detailed description
was given in Chapter 4.

Each two-bit field can take on one of four values: 00,01, 10, and 11. The value
can be interpreted by the BIOS to mean a specific physical device, as shown in
Table 4-1.

Figure 5-10 has equates that are used to refer to the IOBYTE. You can see that
the values shown are declared using the SHL (shift left) operator in the Digital
Research Assembler. This is just a reminder that the values are structured this way
in the IOBYTE itself.

+-------+-------+-------+-------+
81 t No. I 7 I 6 I ~ = 4 I 3 I 2 I 1 I 0 :

+-------+----~=-+---~---+-------+
Logical Device List! Punch Reader Console

Figure 5·9. The IOBYTE structure



86 The CP/M Programmer's Handbook

;IOBYTE equates
;These are for accessing the IOBYTE.

;Mask values to isolate specific devices.
; (These can also be inverted to preserve all BUT the
; specific device)

0003 10$CONM EQU OOOO$OOIIB Console mask
OOOC 10$RDRM EQU OOOO$IIOOB Reader mask
0030 IO$PUNM EQU OOII$OOOOB Punch mask
OOCO 10$LSTM EQU IIOO$OOOOB List mask

Console values
0000 IO$CTTY EQU 0 Console -> TTY:
0001 IO$CCRT EQU I Console -> CRT:
0002 IO$CBAT EQU 2 Console input (- RDR:

Console output -> LST:
0003 I O$CUC I EQU 3 Console -) UC1: (user console I)

Reader values
0000 IO$RTTY EQU 0 SHL 2 Reader (- TTY:
0004 IO$RRDR EQU I SHL 2 Reader (- RDR:
0008 IO$RURI EQU 2 SHL 2 Reader (- URI: (user reader I)

OOOC IO$RUR2 EQU 3 SHL 2 Reader (- UR2: (user reader 2)

Punch values
0000 10$PTTY EQU 0 SHL 4 Punch -> TTY
0010 IO$PPUN EQU I SHL 4 Punch -) PUN
0020 IO$PUPI EQU 2 SHL 4 Punch -> UPI (user punch I)

0030 IO$PUP2 EQU 3 SHL 4 Punch -> UP2 (user punch 2)

L 5t values
0000 IO$L TTY EQU 0 SHL 6 L 5t -> TTY
0040 IO$LCRT EQU I SHL 6 L 5t -> CRT
0080 IO$LLPT EQU 2 SHL 6 L 5t -> LPT (physical line printer)
OOCO IO$LULI EQU 3 SHL 6 L 5t -> ULI (user list I)

Figure 5-10. IOBYTE equates

Function 8: set IOBYTE

Function Code: C = 08H
Entry Parameters: E = New IOBYTE value
Exit Parameters: None

Example This listing shows you how to assign the logical reader device to the BIOS's
console driver. It makes use of some equates from Figure 5-10.

0000Sl1008
2 SHL 2

0007
0008
ooo~

oooe
0008

BSGETIO
BSSETIO
BOOS

IOSRORM
IOSRURl

EQU
EQU
EQU

EQU
EQU

7
8
S

;Get IOBYTE
;Set IOBYTE
;BOOS entry point

;Reader bit mask
;User reader select

;This example shows how to assign the logical
;reader to the user-defined reader #1 (UR1:)

0100
0100 OE07

ORG
MVI

100H
e,BSGETIO



Chapter 5: The Basic Disk Operating System 87

0102 CD0500
010S E6F3

0107 F608
0109 SF
010A OEOS
010C CDOSOO

CALL
ANI

ORI
MOV
MVI
CALL

BDOS
(NOT IO$RDRM)

I O$RUR1
E,A
C,B$SETJO
BDOS

AND OFFH ,Preserve all but
, reader bits

'OR in new setting
'Ready for set IOBYTE
,Set new value

Purpose This function sets the IOBYTE to a new value which is given in register E.
Because of the individual bit fields in the IOBYTE, you will normally use the Get
IOBYTE function, change some bits in the current value, and then call the Set
IOBYTE function.

Notes You can use the Set IOBYTE, Get IOBYTE, and Direct Console II 0 functions
together to create a small program that transforms your computer system into a
"smart" terminal. Any data that you type on your keyboard can be sent out of a
serial communications line to another computer, and any data received on the line
can be sent to the screen.

Figure 5-11 shows this program and illustrates the use ofall of these functions.
For this program to function correctly, your BIOS must check the IOBYTE

and detect whether the logical console is connected to the physical console (with
the IOBYTE set to TTY:) or to the input side of the serial communications line
(with the IOBYTE set to RDR:).

Figure 5-11 shows how to use the Get and Set IOBYTE functions to make a
simple terminal emulator. For this example to work, the BIOS must detect the
Console Value as 3 (lO$CUC1) and connect Console Status, Input, and Output
functions to the communications line.

0006 = B$OIRCONIO EQU 6
0007 = B$OETIO EQU 7
0006 = B$SETIO EQU 6
OOOB = BSCONST EQU II
0005 = BOOS EQU 5

0003 = IOSCONM EQU OOOO$OOIIB
0001 = losCCRT EQU I
0003 = IOSCUCI EQU 3

TERM.
0000 C02AOO CALL SETCRT

TERM$CKS,
0003 C05200 CALL CONST
0006 CA2400 .JZ TERM$NOKI
0009 C04BOO CALL CONIN
OOOC CD3000 CALL SETCOMM
OOOF CD4500 CALL CONOUT

TERMsCCS,
0012 CD5200 CALL CONST
0015 CAOOOO .JZ TERM
0016 CD4BOO CALL CONIN

Figure 5·11. Simple terminal emulator

;Direct console input/output
,Oet IOBYTE
,Set IOBYTE
IOet console status (sneak preview)
'BOOS entry point

,Console mask for IOBYTE
,Console -> CRT.
,Console -} user console Ii

,Connect console -) CRT:

Oet CRT status
No console input
Get keYboard character
Connect console -} comm. line
Output to comm. line

Check comm. status
Get "console" status
No incoming comm. character
Get incoming comm. character



88 The CP/M Programmer's Handbook

OOIB C02AOO CALL SETCRT Connect console -} CRT'
OOIE C04S00 CALL CONOUT Output to CRT
0021 C30300 JMP TERM$CKS Loop back to check keyboard status

TERM$NOKI,
0024 C03000 CALL SETCOMM ;Connect console -) camm. line
0027 C31200 JMP TERM$CCS ;Loop back. to check camm. status

SETCRT: ;Connect console -) CRT,
002A FS PUSH PSW ,Save possible data character
002B 0601 MYI B.IO$CCRT ;Connect console -> CRT,
0020 C33300 JMP SETCON ; Common code

SETCOMM, ;Connect console -) comm. 1 ine
0030 FS PUSH PSW ~Sav, possible data character
0031 0603 MYI B.IO$CUCI ;Connect console -} comm. line

;Drop into SETCON

SETCON, ;Set console device
;New code in B (in bits 1.0)

0033 CS PUSH B ;Save code
0034 OE07 MYI C.B$GETIO ;Get current IOBYTE
0036 COOSOO CALL BOOS
0039 E6FC ANI (NOT IO$CONM) ANO OFFH ;Preserve all but console
003B CI POP B ;Recover required code
003C BO ORA B ,OR in new bits
0030 SF MOY E.A ;ReadY for setting
003E OE08 MYI C. B$SETIO ;Function code
0040 COOSOO CALL BOOS
0043 FI POP PSW ;Recover possible data character
0044 C9 RET

CONOUT:
004S SF MOY E.A ;Oet data byte for output

0046 OE06 MYI C, B$OIRCONIO ;Function code
0048 C30S00 JMP BOOS ;BDOS returns to CONOUT's caller

CONIN,
004B OE06 MYI C,B$OIRCONIO ;Function code
0040 IEFF MYI E.OFFH ;Indicate console input
004F C30S00 JMP BOOS ;BDOS returns to CONIWs caller

CONST,
00S2 OEOB MYI C,B$CONST ;Function code
00S4 COOSOO CALL BOOS
00S7 B7 ORA A , Set Z-flag to result
00S8 C9 RET

Figure 5-11. (Continued)

Function 9: Display "$"-Yerminated String

Example

Function Code:
Entry Parameters:
Exit Parameters:

C=09H
DE = Address of first byte of string
None

0009 B$PRINTS EQU 9 :Print $-Terminated String
0005 BDOS EQU 5 ,BOOS entry point

ooOD CR EQU ODH Carriage return
OOOA LF EQU OAH Line feed
0009 TAB EQU 09H Horizontal tab



Chapter 5: The Basic Disk Operating System 89

0000 ODOA095468MESSAGE. DB CR.LF,TAB.'This is a message',CR.LF,'"

0017 0E09
0019 110000
001C CD0500

I1VI
LXI
CALL

C.B'PRINTS
D,I1ESSAOE
BOOS

;Function code
IPointer to message

Purpose This function outputs a string ofcharacters to the console device. The address
of this string is in registers DE. You must make sure that the last character of the
string is "$"; the BDOS uses this character as a marker for the end of the string.
The "$" itself does not get output to the console.

While the BDOS is outputting the string, it expands tabs as previously de
scribed, checks to see if there is an incoming character, and checks for CONTROL-S

(XOFF, which stops the output until another character is entered) or CONTROL-P

(which turns on or off echoing of console characters to the printer).

Notes One of the biggest drawbacks of this function is its use of "$" as a terminating
character. As a result, you cannot output a string with a "$" in it. To be truly
general-purpose, it would be better to use a subroutine that used an ASCII NUL

(OOH) character as a terminator, and simply make repetitive calls to the BDOS
CONOUT function (code 2). Figure 5-3 is an example of such a subroutine.

Figure 5-12 shows an example of a subroutine that outputs one of several
messages. It selects the message based on a message code that you give it as a
parameter. Therefore, it is useful for handling error messages; the calling code can
pass it an 8-bit error code. You may find it more flexible to convert this subroutine
to using OOH-byte-terminated messages using the techniques shown in Figure 5-3.

,OM (Output me•••ge)
,This subroutine •• lects one of ••veral message. baled on
, the contents of the A register on entry. It then displays
, this m••••g. on the console.

,Each mes••ge is declared with • ".~ .s its last character.
, If the A register contains a value larger than the number
, of me.lages declared, OM will output "Unknown Message ll

•

,As an option, OM can output carriage return I line feed
, prior to outputting the m•••age text.

form I

,Number of messages in table
;Addres5 of text (A = 0)
p(A = 1)
I(A = 2)

,Entry parameters
, HL -> message table

This has the
D8 3
DW MSOO
DW MS01
DW MS02

"500: DB ~M.ss.ge t.xt$~

.. .•tc.
A = Messag_ code (from 0 on up)
B = Output CR/LF if non-zero

Figure 5-12. Display $-terminated message on console



90 The CP/M Programmer's Handbook

Calling sequence
LXI H,MSGSTABLE
LDA MSGCODE
MVI B,O ,Suppress CR/LF
CALL OM

DB CR,LF,"S'
DB ~Unknown Message$~

C. BSPRINTS
BDOS

PSW
H
A,B
A
OMSNOCR
D,OMSCRLF
C,BSPRINTS
BDOS

0009 BSPRINTS
0005 BDOS

OOOD CR
OOOA LF

0000 ODOA24 OMSCRLF,
0003 556E6B6E6FOMSUM:

OM'
0013 F5 PUSH
0014 E5 PUSH
0015 78 MOV
0016 B7 ORA
0017 CA2200 dZ
OOIA 110000 LXI
OOID OE09 MVI
OOIF CD0500 CALL

OMSNOCR,
0022 EI POP
0023 FI POP
0024 BE CMP
0025 D23700 dNC
0028 23 INX
0029 87 ADD
002A 5F MOV
002B 1600 MVI
002D 19 DAD
002E 5E MOV
002F 23 INX
0030 56 MOV

OMSPS,
0031 OE09 MVI
0033 CD0500 CALL
0036 C9 RET

OMSERR:
0037 110300 LXI
003A C33100 dMP

Figure 5·12. (Continued)

EQU
EQU

EQU
EQLI

H
PSW
M
OM$ERR
H
A
E,A
D.O
D
E,M
H
D,M

D,OMSUM
OM$PS

9
5

ODH
OAH

;Print $-terminated string
;BOOS entry point

;Carriage return
;Line feed

;Save message code
;Save message table pointer
;Check if CR/LF required

;No
,Output CR/LF

;Recover message table pointer
;Recover message code
;Compare message to max. value
;Error-code not <= max.
;Bypass max. value in table
;Message code * 2
;Make (code * 2) a word value

;HL -) address of message text
;Oet LS byte
,HL -) MS byte
;Get MS byte
;DE -) message text itself

;Print string entry point
o;Function code

;Return to caller

Error
Point to "Unknown Message"
Print string

Function 10: Read Console String

Example

Function Code:
Entry Parameters:
Exit Parameters:

C=OAH
DE = Address of string buffer
String buffer with console bytes in it

OOOA
0005

BSREADCONS
BOOS

EQU
EQU

10
5

;Read Console String
;BDOS entry point



Chapter 5: The Basic Disk Operating System 91

0050 = BUFLEN EQU 80 ,Buffer length

BUFFER, ;Console input buffer
0000 50 BUFMAXCH, DB BUFLEN ;Max. no. of characters in, buffer
0001 00 BUFACTCH, DB 0 ,Actual no. of characters input
0002 BUFCH, DS BUFLEN ,Buffer characters

0052 OEOA MVI C.B$READCONS ;Function code
0054 110000 LXI D.BUFFER ;Pointer to buffer
0057 CD0500 CALL BDOS

Purpose This function reads a string of characters from the console device and stores
them in a buffer (address in DE) that you define. Full line editing is possible: the
operator can backspace, cancel the line and start over, and use all the normal
control functions. What you will ultimately see in the buffer is the final version of
the character string entered, without any of the errors or control characters used to
do the line editing.

The buffer that you define has a special format. The first byte in the buffer tells
the BDOS the maximum number of characters to be accepted. The second byte is
reserved for the BDOS to tell you how many characters were actually placed in the
buffer. The following bytes contain the characters of the string.

Character input will cease either when a CARRIAGE RETURN is entered or when
the maximum number of characters, as specified in the buffer, has been received.
The CARRIAGE RETURN is not stored in the buffer as a character-it just serves as a
terminator.

Ifthe first character entered is a CARRIAGE RETURN, then the BDOS sets the
"characters input" byte to O. If you attempt to input more than the maximum
number of characters, the "characters input" count will be the same as the
maximum value allowed.

Notes This function is useful for accepting console input, especially because of the
line editing that it allows. It should be used even for single-character responses,
such as "YIN" (yes or no), because the operator can type "Y", backspace, and
overtype with "N". This makes for more "forgiving" programs, tolerant of humans
who change their minds.

Figure 5-13 shows an example subroutine that uses this function. It accepts
console input, matches the input against a table, and transfers control to the
appropriate subroutine. Many interactive programs need to do this; they accept an
operator command and then transfer control to the appropriate command proces
sor to deal with that command.

This example also includes two other subroutines that are useful in their own
right. One compares null-byte-terminated strings (FSCMP), and the other con
verts, or "folds," lowercase letters to uppercase (FOLD).



92 The CP/M Programmer's Handbook

,RSA
;Return subpyocessor address
,This subroutine returns one of several addresses selected

from a table bY matching keYboard input against specified
; strings. It is normally used to switch control to a
; particular subprocessor according to an option entered
; by the operator from the keyboard.,
,Character string comparisons are performed with case-folding;
; that is, lowercase letters are converted to uppercase.,
;If the operator input fails to match any of the specified
; strings, then the carry flag is set. Other-wise, it is
; cleared.

;EntrY parameters
HL -) Subprocessor select table

This has the form;
DW TEXTO,SUBPROCO
DW TEXTI,SUBPROCI
OW 0 ;Terminator

TEXTO, DB 'add' ,0 ,OOH-byte terminated
TEXT1: DB "'subtract',O
SUBPROCO,

Code for processing ADD function.
SUBPROCI:

Code for processing SUBTRACT function.

JExit parameters
DE -) operator input string (OOH-terminated

input string).
Carry Clear, HL -) subprocessor.
Carry Set, HL = OOOOH.

;Calling sequence
LXI H,SUBPROCTAB
CALL RSA
"'C ERROR
LXI D,RETURN
PUSH D
PCHL
RETURN'

;Subprocessor table

;Carry set only on error
;Fake CALL instruction
;Push return address on stack
;"CALL" to subpyocessor

H
H
H
E,M

H
H
H
C,BSREAOCONS
D,RSASBUF
BOOS

H,RSASACTC
E,M
D,O
H
D
M,O

OOOA BSREADCONS
0005 BDOS

0050 RSASBL
0000 50 RSASBlIF,
0001 00 RSASACTC:
0002 RSASBUFC,
0052 00

RSA,
0053 2B DCX
0054 2B DCX
0055 E5 PUSH
0056 OEOA MVI
0058 110000 LXI
005B CD0500 CALL

005E 210100 LXI
0061 5E MOV
0062 1600 MVI
0064 23 INX
0065 19 DAD
0066 3600 MVI

RSASML:

0068 EI POP
0069 23 INX
006A 23 INX
006B 5E MOV

EQU
EQU

EQlI
DB
DB
DS
DB

10
5

80
RSASBL
o
RSASBL
o

JRead console string into buffer
;BDOS entry point

;Buffer length
;Max. no. of characters
;Actual no. of characters
;Buffer characters
;Safety terminator

;Adjust Subprocessor pointer
; for code below
;Top of stack (TOS) -) subproc. table - 2
;Function code
; DE -) buffer
;Read operator input and
; Convert to OOH-terminated
JHL -) actual no. of chars. input
JGet actual no. of chars. input
;Make into word value
;HL -) first data character
;HL -) first UNUSED character in buffer
JMake input buffer OOH terminated

;Compare input to specified values
; Main loop
;Recover subprocessor table pointer
;Move to top of next entry
;HL -) text address
;Get text address

Figure 5-13. Read console string for keyboard options



Chapter 5: The Basic Disk Operating System 93

006C 23 INX H
006D 56 MOV D.M IDE -) text

006E 7A MOV A.D ;Check if at end of subprocessor table
006F B3 ORA E
0070 CAS500 JZ RSA$NFND ,Match not found

0073 23 INX H IHL -) subprocessor address
0074 E5 PUSH H ; Save ptr. to subprocessor table
0075 210200 LXI H.RSA$BUFC IHL -) input characters
007S CDSAOO CALL FSCMP ;Folded string compare
oo7B C26S00 JNZ RSA$ML ;No match, move to next entry
007E EI POP H ;Match found, recover subprocessor ptr.
007F 5E MOV E.M ;Oet actual subprocessor address
OOSO 23 INX H
OOSI 56 MOV D.M IDE -) Subprocessor code
00S2 E8 XCHO IHL -) Subprocessor code
OOS3 87 ORA A ; Clear carry (match found)
00S4 C';' RET

RSA$NFND,
00S5 210000 LXI H.O ; Indicate no match found
OOSS 37 STC ;Set carry
OOS';' C';' RET

,FSCMP
;Compare folded <lowercase to upper) string.
;This subroutine compares two OOH-byte terminated
,strings and returns with the condition flags set
Ito indicate their relationship.

;Entry parameters
DE -> sty ing 1
H~ -) sty ing 2

;Exit parameters
Flags set (based on string 1 - string 2. on a
character-bY-character basis)

OOSA IA
00S8 CD';'EOO
OOSE F5
OOSF 7E
00';'0 CD';'EOO
00';'3 47
00';'4 FI
OO';'~ BS
00% CO
00';'7 B7
OO';'S CS
00';'';' 13
OO';'A 23
OO';'B C3SAOO

FSCMP:
LDAX
CALL
PUSH
MOV
CALL
MOV
POP
CMP
RNZ
ORA
RZ
INX
INX
JMP

D
FOLD
PSW
A.M
FOLD
B.A
PSW
B

A

D
H
FSCMP

;Get string 1 character
;Fold to uppercase
;Save stt"ing 1 character
;Get string 2 character
;Fold to uppercase
;Save string 2 character
FRecover string 1 character
;String 1 - string 2
;Return if not equal
;Equal. so check if end of strings
;Yes
;No, update string 1 pointer
; and string 2 pointer
;Check next character

FOLD
Folds a lowercase letter (a-z) to uppercase (A-I)
The character to be folded is in A on entry and on exit.

FOLD:
OO';'E 4F MOV C.A
OO';'F 3E60 MVI A.... a ... -l
OOAI B';' CMP C
00A2 D2AFOO JNC FOLDX
00A5 3E7A MVI A.... z ...
00A7 B';' CMP C
OOAS DAAFOO JC FOLDX
00A8 3EDF MVI A.ODFH
OOAD AI ANA C
OOAE C';' RET

FOLDX,
OOAF 7';' MOV A.C
0080 C';' RET

Figure 5-13. (Continued)

;Preserve input character
;Check if folding needed
:Compare to input character
;No. char. is <= "a"
;Check if < "z"

;No. char. is > "z"
;Fold character

;Recover original input chat".



94 The CP/M Programmer's Handbook

Function 11: Read Console Status

Function Code: C = OBH
Entry Parameters: None
Exit Parameters: A = OOH if no incoming data byte

A = OFFH if incoming data byte

Example

OOOB =
0005 =

B'CONST
BOOS

EQU
EQU

11
5

;Get Console Status
;BOOS entry point

0000 OEOB
0002 C00500

MVI
CALL

C,B'CONST
BOOS

;Function code
;A = 00 if no character waiting
;A = OFFH if character waiting

Purpose This function tells you whether a console input character is waiting to be
processed. Unlike the Console Input functions, which will wait until there is input,
this function simply checks and returns immediately.

Notes Use this function wherever you want to interrupt an executing program if a
console keyboard character is entered. Just put a Console Status call in the main
loop of the program. Then, if the program detects that keyboard data is waiting, it
can take the appropriate action. Normally this would be to jump to location
OOOOH, thereby aborting the current program and initiating a warm boot.

Figure 5-11 is an example subroutine that shows how to use this function.

Function 12: Get CP/M Number

Function Code: C = OCH
Entry Parameters: None
Exit Parameters: HL = Version number code

Example

OOOC =
0005 =

B'GETVER
BOOS

EQU
EQU

12
5

;Get CP/M Version Number
lBOOS entry point

0000 OEOC
0002 C00500

MVI
CALL

C,B'GETVER
BOOS

;Function code
lH = 00 for CP/M
;L = version (e.g. 22H for 2.2)

Purpose This function tells you which version of CP/M you are currently running. A
two-byte value is returned:

H = OOH for CP/M, H = OlH for MP/M

L = OOH for all releases before CP/M 2.0

L = 20H for CP/M 2.0,21 H for 2.1, 22H for 2.2, and so on for any subsequent
releases.



Notes

Chapter 5: The Basic Disk Operating System 95

This information is of interest only if your program has some version-specific
logic built into it. For example, CP/M version 1.4 does not support the same
Random File Input/ Output operations that CP/M 2.2 does. Therefore, if your
program uses Random I/O, put this check at the beginning to ensure that it is
indeed running under the appropriate version of CP/M.

Figure 5-14 is a subroutine that checks the current CP/M version number, and,
if it is not CP/M 2.2, displays an explanatory message on the console and does a
warm boot by jumping to location OOOOH.

Function 13: Reset Disk System
Function Code: C = ODH
Entry Parameters: None
Exit Parameters: None

pCCPM
,Check if CP/M
;This subroutine determines the version number of the
;operating system and. if not CP/M version 2. displays
pan error message and executes a warm boot.

;Entry and exit parameters
None

;Calling sequence
CALL CCPM ;Warm boots if not CP/M 2

Figure 5-14.

0005' B$PRINTS EQU 9 ; Oi sp lay .-terminated string
OOOC B$GETVER EQU 12 ;Get version number
0005 BDOS EQU 5 ; BDOS enh"y point

OOOD = CR EQU ODH ;Carriage return
OOOA LF EQU OAH ;Line feed

0000 ODOA CCPMM: DB CR,LF
0002 5468697320 DB "This program can only run under CP/M version 2 ....
0031 ODOA24 DB CR,LF, '$'

CCPM,
0034 OEOC MVI C,B$GETVER pGet version number
0036 CD0500 CALL BDOS
0039 7C MOV A,H ;H must be 0 for CP/M
003A B7 ORA A
003B C24700 .JNZ CCPME ;Must be MP/M
003E 7D MOV A,L ,l = version nurnbet- of CP/M
003F E6FO ANI OFOH ;Version number in MS nibble
0041 FE20 CPI 20H ;Check if version 2
0043 C24700 .JNZ CCPME ;Must be an earl ier version
0046 C9 RET rYes, CP/M version 2

CCPME: ;Error
0047 OE09 MVI C,B$PRINTS ;Display error message
0045' 110000 LXI D,CCPMM
004C CD0500 CALL BOOS
004F C30000 .JMP 0 ;Warm boot

Determine the CP/M version number



96 The CP/M Programmer's Handbook

Example

OOOD ~

0005 ~

B$DSKRESET
BDOS

EQU
EQU

13
5

,Reset Disk System
,BDOS entry point

0000 OEOD
0002 CD0500

MVI
CALL

C,B$DSKRESET
BDOS

;Function code

Purpose This function requests CP/M to completely reset the disk file system. CP/M
then resets its internal tables, selects logical disk A as the default disk, resets the
DMA address back to 0080H (the address of the buffer used by the BDOS to read
and write to the disk), and marks all logical disks as having Read/Write status.

The BDOS will then have to log in each logical disk as each disk is accessed.
This involves reading the entire file directory for the disk and rebuilding the
allocation vectors (which keep track of which allocation blocks are free and which
are used for file storage).

Notes This function lets you change the diskettes under program control. If the
operator were to simply change diskettes, without CP/M knowing about it, the
next access to the (now different) diskette would force CP/M to declare the disk
Read-Only, thwarting any further attempts to write on the diskette. Ifyou need to
reset one or two disks, rather than the entire disk system, look ahead to the Reset
Disk function (code 37) described at the end of this chapter.

Figure 5-15 shows a simple subroutine that outputs a message on the console,
requesting that the diskette in a specified drive be changed. It then issues a Reset
Disk function call to make sure that CP/M will log in the diskette on the next
access to the drive.

,COISK
;Change disk
;This subroutine displays a message requesting the
;user to change the specified logical disk, then waits
;for a carriage return to be pressed. It then issues
;a Disk Reset and returns to the caller.

;Entry parameters
A = Logical disk to be changed (A = 0, B = I)

;Exit parameters
None

;Calling sequence
MVI A,O
CALL COISK

;Change drive A:

0000 =
0009 =
0001 =
0005 =

BSOSKRESET
BSPRINTS
BSCONIN
BOOS

EQU
EQU
EQU
EQU

13
9
I
5

Disk Reset function code
Print .-terminated string
Get console input
BOOS entry point

Figure 5-15. Reset requested disk drive



0000 ODOA43686ICDISKM:
0016 00 CDISKD:
0017 3A20616E64

0000 2

OOOA =
CR
LF

EQU
EQU

DB
DB
DB

Chapter 5: The Basic Disk Operating System 97

ODH
OAH

CR,LF,'Change logical disk'
o
~: and pres, Carriage Return to continue$~

CDISK:
003F C640'
0041 321600
0044 OE09
0046 110000
0049 CD0:500

CDISKW:
004C OEOI
004E CD0500
0051 FEOD
0053 C24COO
0056 OEOD
0058 CD0500
005B C9

ADI
STA
MVI
LXI
CALL

MVI
CALL
CPI
JNZ
MVI
CALL
RET

'A'-1
CDISKD
C,BSPRINTS
D,CDISKM
BOOS

C,BSCONIN
BOOS
CR
CDISKW
C,BSDSKRESET
BOOS

,Convert to letter
;Store in message
,Display message

,Get keYboard character

,Now reset disk system

Figure 5-15. Reset requested disk drive (continued)

Function 14: select Logical Disk

Example

Function Code:
Entry Parameters:

Exit Parameters:

C =OEH
E = Logical Disk Code

OOH = Drive A
01 H = Drive B and so on
None

000£ •
OOOS =

BSSELDSI<
BDOS

EQU
EQU

14
:5

,Select Logical Disk
,BDOS entry point

0000 OEOE
0002 IEOO
0004 CDOSOO

"VI
"VI
CALL

C,BSSELDSI<
E,O
BDOS

,Function code
,E = 0 for AI, I for BI etc.

Purpose This function makes the logical disk named in register E the default disk. All
subsequent references to disk files that do not specify the disk will use this default.

When you reference a disk file that does have an explicit logical disk in its name
you do not have to issue another Select Disk function; the BDOS will take care of
that for you.

Notes Notice the way in which the logical disk is specified in register E. It is not the
same as the disk drive specification in the first byte of the file control block. In the
FeB, a value ofOOH is used to mean "use the current default disk" (as specified in
the last Select Disk call or by the operator on the console). With this function, a



98 The CP/M Programmer's Handbook

value ofOOR in register A means that A is the selected drive, a value of 01 R means
drive B, and so on to OFR for drive P, allowing 16 drives in the system.

If you select a logical disk that does not exist in your computer system, the
BOOS will display the following message:

BOOS Err on J. Select

If you type a CARRIAGE RETURN in order to proceed, the BOOS will do a warm
boot and transfer control back to the CCP. To avoid this, you must rely on the
computer operator not to specify nonexistent disks or build into your program the
knowledge of how many logical disk drives are on the system.

Another problem with this function is that you cannot distinguish a logical
disk for which the appropriate tables have been built into the BIOS, but for which
there is no physical disk drive. The BOOS does not check to see if the drive is
physically present when you make the Select Oisk call. It merely sets up some
internal values ready to access the logical disk. If you then attempt to access this
nonexistent drive, the BIOS will detect the error. What happens next is completely
up to the BIOS. The standard BIOS will return control to the BOOS, indicating an
error condition. The BOOS will output the message

BOOS Err on C. Bad Sector

You then have a choice. You can press CARRIAGE RETURN, in which case the BOOS
will ignore the error and attempt to continue with whatever appears to have been
read in. Or you can enter a CONTROL-C, causing the program to abort and CP/M to
perform a warm boot.

Note that the Select Oisk function does not return any values. Ifyour program
gets control back, you can assume that the logical disk you asked for at least has
tables declared for it.

Function 15: Open File

Function Code:
Entry Parameters:
Exit Parameters:

Example

C=OFH
DE = Address of file control block

A = Directory code

OOOF =
ooo~ =

B.OPEN
BOOS

EQU
EQU

15
5

;Open Flle
;BDOS entry point

FCB.
0000 00 FCB'DISK:
0001 46494C454EFCB.NAME:
0009 545950 FCB.TYP,
OOOC 00 FCB'EXTENT:
OOOD 0000 FCB'RESV:
OOOF 00 FCB'RECUSED:
0010 OOOOOOOOOOFCB.ABUSED:
0018 0000000000
0020 00 FCB.SEQREC:

DB
DB
DB
DB
DB
DB
DB
DB
DB

;File control block
o ;Search on default disk drive
'FILENAME' ;File name
'TYP' ;File type
o ;Extent
0,0 ;Reserved for CP/M
o ;Records used in this extent
0,0,0,0,0,0,0,0 ;Allocation blocks used
0,0,.0,0,0,0,0,0
o ;Sequential rec. to read/write



Chapter 5: The Basic Disk Operating System 99

0021 0000 FCB$RANRECI OW 0 IRandom rec. to read/write
0023 00 FCB$RANRECOI DB 0 IRandom rec. overflow byte (MS)

0024 OEOF MVI C.B$OPEN IFunction code
0026 110000 LXI D.FCB IDE -) File control block
0029 CD0500 CALL BOOS IA z OFFH if file not found

Purpose This function opens a specified file for reading or writing. The FCB, whose
address must be in register OE, tells CP/M the user number, the logical disk, the
file name, and the file type. All other bytes of the FCB will normally be set to O.

The code returned by the BOOS in register A indicates whether the file has
been opened successfully. IfA contains OFFH, then the BOOS was unable to find
the conect entry in the directory. IfA= 0,1,2, or 3, then the file has been opened.

Notes The Open File function searches the entire file directory on the specified
logical disk looking for the file name, type, and extent specified in the FCB; that is,
it is looking for an exact match for bytes 1 through 14 of the FCB. The file name
and type may be ambiguous; that is, they may contain "?" characters. In this case,
the BOOS will open the first file in the directory that matches the ambiguous name
in the FCB. If the file name or type is shorter than eight or three characters
respectively, then the remaining characters must be filled with blanks.

When the BOOS searches the file directory, it expects to find an exact match
with each character of the file name and type, including lowercase letters or
nongraphic characters. However, the BOOS uses only the least significant seven
bits of each character-the most significant bit is used to indicate special file status
characteristics, or attributes.

By matching the file extent as well as the name and type, you can, if you wish,
open the file at some point other than its beginning. For normal sequential access,
you would not usually want to do this, but if your program can predict which file
extent is required, this is a method of moving directly to it.

It is also possible to open the same file more than once. Each instance requires
a separate FCB. The BOOS is not aware that this is happening. It is really only safe
to do this when you are reading the file. Each FCB can be used to read the file
independently.

Once the file has been found in the directory, the number of records and the
allocation blocks used are copied from the directory entry into the FCB (bytes 16
through 31). If the file is to be accessed sequentially from the beginning of the file,
the current record (byte 32) must be set to zero by your program.

The value returned in register A is the relative directory entry number of the
entry that matched the FCB. As previously explained, the buffer that CP/M uses
holds a 128-byte record from the directory with four directory entries numbered 0,
1,2, and 3. This directory code is returned by almost all of the file-related BOOS
functions, but under normal circumstances you will be concerned only with
whether the value returned in A is OFFH or not.

Figure 5-16 shows a subroutine that takes a OOH-byte terminated character



100 The CP/M Programmer's Handbook

string, creates a valid FCB, and then opens the specified file. Shown as part of this
example is the subroutine BF (Build FCB). It performs the brunt of the work of
converting a string of ASCII characters into an FCB-style disk, file name, and
type.

,OPENF
; Open Fi Ie

;Given a pointer to a OOH-byte-terminated file name.
;and an area that can be used for a file control
;block, this subroutine builds. valid file control
;block and attempts to open the file.

,If the file is opened, it returns with the carry flag clear.
; If the file cannot be opened, this subr'outine returns
;with the carry flag set.

;Entry parameters
DE -> 36-byte area for file control block
HL -) OOH-bvte terminated file name of the

form {disk:} Name t.tvp}
(disk and tvP are optional)

;Exit parameters
Carry clear File opened correctly.
Carry set : File not opened.

;Calling Sequence
LXI O.FCB
LXI H.FNAHE
CALL OPENF
JC ERROR

;where
,FCB, OS
,FNAHE, OB

36 ;Space for file control block
'A.TESTFILE.OAT'.O

OOOF
0005 =

B$OPEN
BOOS

EQU
EQU

15
5

;File Open function code
;BOOS entry point

0000 05
0001 COOCOO
0004 OEOF
0006 01
0007 CD0500
OOOA 17

OOOB C9

OPENF:
PUSH
CALL
HVI
POP
CALL
RAL

RET

o
BF
C.B$OPEN
o
BOOS

;Preserve pointer to FCB
;Build file control block

;Recover pointer to FCB

;If A=OFFH, carry set
;otherwise carry clear

Figure 5-16.

,BF
,Build file control block
;This subroutine formats a OOH-byte-terminated string
;(presumed to be a file name) 1nto an FCB, setting
;the disk and file name and type and clearing the
;remainder of the FeB to 0;5.

,Entry parameters
DE -} file control block (36 Bytes)
HL -} file name string (OOH-byte-terminated)

;Exit parameters
J The built file control block
;Calling sequence

LXl O.FCB
LXI H.F1LENAHE
CALL BF

Open file request



Chapter 5: The Basic Disk Operating System 101

OOOC 23 INX H ,Check if 2nd char. i> ":11
OOOD 7E MOV A.M ;Oet character from file name
ooOE 2B DCX H ,HL -> now back at 1st char.
OOOF FE3A CPI " ' ,If IIJ", then di.k specified
0011 C21COO JNZ BF$ND ;No disk
0014 7E MOV A.M ;Get disk leUn
0015 E61F ANI OOOI$IIIIB ;A (4IH) -) I. B (42H) -) 2 ...
0017 23 INX H ;Byp.... di.k letter
OOIS 23 INX H ; Bypass ": II

0019 C31DOO JMP BF$SD ;Store disk in FCB

BF$ND. ;No disk present
OOIC AF XRA A ; Indicate default disk

BF$SD,
OOID 12 STAX D ;Store disk in FCB
001E 13 INX D ,DE -) 1st char. of name in FCB
OOIF OE08 MVI C.8 JFi Ie name length
0021 CD3700 CALL BF$OT ;Oet token

;Note -- at this point, BFtOT
; wi 11 have advanced the string
,pointer to either a .. . " or
,OOH byte

0024 FE2E CPI , , ,Check terminating character
0026 C22AOO JNZ BF$NT ;No file type specified
0029 23 INX H ; Bypass .. .. in file name

BF'NT,
002A OE03 MVI C.3 ;File type length
002C CD3700 CALL BF'OT ;Oet token

JNot. -- if no file type i.
;present BF'OT will menrlv
;spacefill the FCB

002F 0600 MVI B.O ; O-f i 11 the remainder of the FCB
0031 OEI8 MVI C.24 ;36 - 12 (di.k. name. type =: 12 chars.)
0033 CD6400 CALL BF$FT JR.-use fill token SIR
0036 C9 RET

,BFtOT
;8~ild FeB -- get token

,This SUbroutine scans a file name string,
,placing characters into a file control block.
,On encounter ing a terminator character (". II or OOH) p

,the yemainder of the token is space filled.
; If an 1

1*" is encountered, the remainder of the token
,is filled with I'?".

;Entry parameters
DE -) Into file control block
HL -> Into file name string
C = Maximum no. of characters in token

;Exit parameters
; File control block contains next token

A = Terminating character

0037 7£ MOV A.M
0038 B7 ORA A
0039 CA5700 JZ BF'SFT
003C FE2A CPI ,,,,
003E CA5COO JZ BF.QFT
0041 FE2E CPI , ,

Figure 5-16.

0043 CA5700
0046 12

0.047 13
0048 23

(Continued)

BF'OT,

JZ
STAX

INX
INX

BF$SFT
D

D
H

Get next string character
Check if end of string
Yes. space fill token
Check if ?-fill required
V.... fill with?
Assume current token 1s file
name
Check if file type coming up
(If current token is file
type this check is
benignlY redundant)
Yes. space fill token
None of the above. so store
in FeB
Update FCB pointer
Update string pointer



102 The CP/M Programmer's Handbook

0049 OD DCR C
004A C23700 JNZ BF'OT

BF.SKIP,
004D 7E MOV A,M
004E B7 ORA A
004F C8 RZ
0050 FE2E CPI
0052 C8 RZ
0053 23 INX H
0054 C34DOO JMP BF.SKIP

BF'SFT,
0057 0620 MVI B,' ,
0059 C36400 JMP BF'FT

BF.QFT,
005C 063F MVI 8p"?'-
005E CD6400 CALL BF'FT
0061 C34DOO JMP BF.SKIP

BF'FT,
0064 F5 PUSH PSW
0065 78 MOV A,B

BF'FTL,
0066 12 STAX 0
0067 13 INX D
0068 OD DCR C
0069 C26600 JNZ BF'FTL
006C FI POP PSW
006D C9 RET

Figure 5-16. (Continued)

Function 16: Close File

:Countdown on token length ",f

"8t i 11 more characters to go

,Skip chars. until "." or OOH
;Get next string character
,Check if OOH
;Yes
,Check if
;Yes
;Update string pointer (only)
;Try next character

;Space fill token

;Common fill token code
;BF$FT returns to caller

;Question mark fill token

;Common fill token code
;Bypass multiple "*" etc.

'Fi II token
;Save terminating character
;Get fill characer

Inner lc,op
Store in FCB
Update FCB Pointer
Downdate residual count
Keep 90ing
Recover terminating character

Example

Function Code:
Entry Parameters:
Exit Parameters:

C= IOH
DE = Address of file control block

A = Directory code

0010 BSCLOSE EQU 16
0005 BOOS EQU 5

0000 FeB: OS 36

0024 OEIO MVI C,BSCLOSE
0026 110000 LXI O,FCB
0029 C00500 CALL BOOS

~Close File
;BOOS entrY point

;File control block

;Function code
;OE -) File control block
;A = 0,1,2,3 if successful
;A = OFFH if file name not
; in directory

Purpose This function terminates the processing of a file to which you have written
information. Under CP/M you do not need to close a file that you have been
reading. However, if you ever intend for your program to function correctly under
MP/ M (the multi-user version of CP/M) you should close all files regardless of
their use.



Notes

Chapter 5: The Basic Disk Operating System 103

The Close File function, like Open File, returns a directory code in the A
register. Register A will contain OFFH if the BOOS could not close the file
successfully. If A is 0, 1, 2, or 3, then the file has been closed.

When the BOOS closes a file to which data has been written, it writes the
current contents of the FCB out to the disk directory, updating an existing
directory entry by matching the disk, name, type, and extent number in the same
manner that the Open File function does.

Note that the BOOS does not transfer the last record of the file to the disk
during the close operation. It merely updates the file directory. You must arrange
to flush any partly filled record to the disk. If the file that you have created is a
standard CP/M ASCII text file, you must arrange to fill the unused portion of the
record with the standard lAH end-of-file characters as CP/M expects, as
explained in the section on the Write Sequential function (code 21).

Function 17: search for First Name Match

Function Code:
Entry Parameters:
Exit Parameters:

C= IIH
DE = Address of file control block

A = Directory code

Example
0011 =
0005 =

B$SEARCHF
BOOS

EQU
EQU

,17
5

,Search First
;BDOS entry point

FCB:
0000 00 FCB$DISK:
0001 46494C453FFCB$NAME:
0009 543F50 FCB$TYP:
OOOC 00 FCB$EXTENT:
0000 0000 FCB$RESV:
OOOF 00 FCB$RECUSED,
0010 OOOOOOOOOOFCB$ABUSED:
0018 0000000000
0020 00 FCB$SEQREC:
0021 0000 FCB$RANREC:
0023 00 FCB$RANRECO:

DB
DB
DB
DB
DB
DB
DB
DB
DB
OW
DB

,File control block
o ;Search on default disk drive
'FILE????' ;Ambiguous file name
'T?P' ;Ambiguous file type
o ;Extent
0,0 ;Reserved for CP/M
o ;Records used in this extent
0,0,0,0,0,0,0,0 ;Allocation blocks used
0,0,0,0,0,0,0,0
o ;Sequential rec. to read/write
o ;Random rec. to read/write
o ;Random rec. overflow byte (MS)

0024,(lEll
0026 110000
0029 CD0500

MVI
LXI
CALL

C,B$SEARCHF
D,FCB
BOOS

;Function code
,DE -) File control block
,A = 0.1,2,3.
; (A * 32) + DMA -) directory
; entrY
;A = OFFH if file name not
; found

Purpose This function scans down the file directory for the first entry that matches the
file name, type, and extent in the FCB addressed by OE. The file name, type, and
extent may contain a "?" (ASCII 3FH) in one or more character positions. Where
a "?" occurs, the BOOS will match any character in the corresponding position in
the file directory. This is known as ambiguous file name matching.

The first byte of an FCB normally contains the logical disk number code. A
value of0 indicates the default disk, while 1means disk A, 2 is B, and so on up to a



104 The CP/M Programmer's Handbook

possible maximum of 16 for disk P. However, if this byte contains a "?", the BOOS
will search the default logical disk antl will match the file name and type regardless
of the user number. This function is normally used in conjunction with the Search
Next function (which is described iminediately after this function). Search First, in
the process of matching a file, leaves certain variables in the BOOS set, ready for a
subsequent Search Next.

Both Search First and Search Next return a directory code in the A register.
With Search First, A = OFFH when no files match the FCB; if a file match is
found, A will have a value of 0, I, 2, or 3.

Notes To locate the particular directory entry that either the Search First or Search
Next function matched, multiply the directory code returned in A by the length of
a directory entry (32 bytes). This is easily done by adding the A register to itself five
times (see the code in Figure 5-17 near the label GNFC). Then add the OMA
address to get the actual address where the matched directory entry is stored.

There are many occasions when you may need to write a program that will
accept an ambiguous file name and operate on all of the file names that match it.
(The OIR and ERA commands built into the CCP are examples that use ambigu
ous file names.) To do this, you must use several BOOS functions: the Set OMA
Address function (code 26, described later in this chapter), this function (Search
First), and Search Next (code 18). All ofthis is shown in the subroutine given in
Figure 5-17.

,ONF
;This subroutine returns an FeB setup with either the
;first file m~tched by an ambiguous file name. or (if
,specified by entry parameter) the next file name.

;Not. this subroutine is context sensitive. You must
not have more than one -ambiguous file name
sequence in process at any given time.

;»> Warning: This subroutine chang•• the DMA address
;»> inside the BOOS.

;Entry parameters
DE -> Possibly ambiguous file name

(OO-byte terminated)
(OnlY needed for FIRST request)

HL -) File control block
A = 0 : Return FIRST file name that matches

= NZ : Return NEXT file name that matches

;Exit parameters
;Carry set: A • FF, no file name matches
; A not = OFFH, error in input file name
;Carry clear: FeB ,_tup with next name
; HL -) Directory entry returned

by Search First/Next

;Calling sequence
LXI q.FILENAME
LXI H.FCB

Figure 5-17. Search first/ next calls for ambiguous file name



Chapter 5: The Basic Disk Operating System 105

,or 11111 A.l for NEXT

H

A
GNFN
SF
H

H
D
PSW

D.GNFDI1A
C.B.SETDI1A
BDOS
PSW
H
D
D

,Check if FIRST or NEXT
,NEXT
,Build file control block
;Recover FeB pointer (to balance stack)
,R.turn if error in file name
,R•••ve FeB pointer

,Save FeB pointer
;Save file name pointer
,Save fir.t/ne.t fla9

'Recover first/next l1a9
,Recover file name pointer
,Recover FeB pointer
,Re.ave FCB pointer

,Set DMA to known address
,Function code

,S.arch for first file name
,Search for next file name
,Set up DI1A addre••
,BDOS entry point

,Default DI1A addre ••
,Save length (no. of chars to move)
,File control block len9th
;Save are. for file name/type

17
18
26
:5

A.O
GNF

EQU
EQU
EQU
EQU

80H
13
36
GNFSIIL

PUSH
PUSH
PUSH

LXI
11111
CALL
POP
POP
POP
PUSH

ORA
JNZ
CALL
POP
RC
PUSH

11111
CALL

B'SEARCHF
B.SEARCHN
B.SETDI1A
BDOS

GNFDI1A EQU
GNFSIIL EQU
GNFFCL EQU
GNFSII, DS

GNF'
OOOD E:5
OOOE D:5
OOOF F:5

0010 118000
0013 OEIA
001:5 CDO:500
0018 Fl
0019 El
001A Dl
001B D:5

001C B7
001D C23EOO
0020 CD9300
0023 El
0024 D8
002:5 E:5

0011 •
0012 =
001A
000:5 •

0080 •
OOOD •
0024 •
0000

0026 110000
0029 OEOD
002B CD8AOO
002E Dl
002F D:5

0030 OE11
0032 CD0:500
0035 El
0036 FEFF
0038 CA7DOO
003B C3:5DOO

LXI
11111
CALL
POP
PUSH

11111
CALL
POP
CPI
JZ
JI1P

D.GNFSII
C.GNFSIIL
110llE
D
D

C,B'SEARCHF
BOOS
H
OFFH
GNFEX
GNFC

;Mowe ambi9uou5 file name to
'iave are..
,HL -) FCB
,DE -) save are.
,O.t .ave len9th

,Recover FeB pointer
land resave

,Search FIRST

,Recover FeB pointer
,Check for error
,Error .xit
,Common coda

003E CD7FOO
0041 DI
0042 D:5
0043 0E11
004:5 CD0:500
0048 Dl
0049 D:5
004A 210000

004D OEOD
004F CD8AOO

00:52 OE12
00:54 CD0500
00:57 El
0058 FEFF
OO:5A CA7DOO

GNFN.

CALL
POP
PUSH
11\11
CALL
POP
PUSH
LXI

11111
CALL

11111
CALL
POP
CPI
JZ

GNFZF
D
D
C.B.SEARCHF
BDOS
D
D
H.GNFSII

C.GNFSIIL
I10IIE

C.B'SEARCHN
BDOS
H
OFFH
GNFEX

,Execut. search FIRST to re
,e.tabli.h contact with
,pr.viou. fil.
,U.er'. FCB still ha.
,name/type in it
,Zero-fill all but file name/type
,Recover FCB addr•••
,and re.av.
,Re-find the file

,Recover FCB pointer
,and re.ave
,Mov. fil. name from .ave area
,into FCB
,Save ar•• l.n9th

,Search NEXT

,Recover FCB addr•••
,Ch.ck for .rror
JError ex i t

oo:5D E:5
OO:5E 87

GNFC.
PUSH
ADD

H
A

;Save FCB addr•••
,l1ultiply BDOS return code * 32

Figure 5-17. (Continued)



106 The CP/M Programmer's Handbook

005F 87
0060 87
0061 87
0062 87
0063 218000
0066 5F

0067 1600
0069 19

006A DI
006B E5
006C D5
006D OEOD
006F CD8AOO
0072 3AOOOO
0075 DI
0076 12

0077 CD7FOO
007A EI

007B AF
007C C9

007D 37
007E C9

ONFEX,

ADD
ADD
ADD
ADD
LXI
MOV

MVI
DAD

POP
PUSH
PUSH
MVI
CALL
LOA
POP
STAX

CALL
POP

XRA
RET

STC
RET

A
A
A
A
H,ONFDMA
E,A

D,O
D

o
H
D
C,ONFSVL
MOVE
ONFSV
o
o

ONFZF
H

A

* 4
* 8* 16
* 32
HL -) DMA address
Make (code * 32) a word value
in DE

;HL -> 111e/5 directory entry

;Move file name into FeB
;Recover FeB address
;Save directory entry pointer
,and resave
;Length of save area

;Get disk from save area
,Recover FeB address
'Overwrite user number in FeB

;Set. up to zero-fill tail end
'of FCB
,Zero-fill
,Recover directory entry
,pointer
,Clear carry

,Set carrY to indicate error

,ONFZF
'Get next file -- zero fill
,This subroutine zero-fills the bytes that follow the
,file name and type in an FeB.

,Entry parameters
, DE -) file control block

ONFZF:
007F 210DOO LXI H,ONFSVL ,Bypass area that holds file name
0082 19 DAD 0 IHL -) FCB + ONFSVL
0083 54 MOV O,H 'DE -) FCB + ONFSVL
0084 50 MOV E,L
0085 13 INX 0 ,DE -) FCB + ONFSVL + I
0086 3600 MVI M,O ,FCB + ONFSVL = 0
0088 OEI7 MVI C,ONFFCL-ONFSVL ,Remainder of file control block

,Drop into MOVE
,Spread 0'5 through remainder
'of FCB

,MOVE
,This subroutine moves C bytes from HL to DE.

008A 7E
008B 12
008C 13
008D 23
008E 00
008F C28AOO
0092 C9

MOVE'
MOV
STAX
INX
INX
OCR
-.lNZ
RET

A,M
D
o
H
C
MOVE

;Get source byte
;Save destination byte
;Increment destination pointer
;Increment source pointer
;Decrement count
;00 back for more

Figure 5-17. (Continued)

,BF
;Build file control block

;This subroutine formats a OOH-byte terminated string

(presumed to be a file name) into an FeB. setting the
disk and file name and type. and clearing the
remainder of the FeB to 0/5.



Chapter 5: The Basic Disk Operating System 107

;Entry parameters
DE -) File control block (36 bytes)
HL -> File name string (OOH-byte-terminated)

;Exit parameters
The built file control block

;This subroutine is shown in full in Figure 5-16

0093 C9

Figure 5-17. (Continued)

BF: RET ;Dummy subroutine for this example

Function 18: search for Next Name Match
Function Code: C = 12H
Entry Parameters: None (assumes previous Search First call)
Exit Parameters: A = Directory code

Example

BOOS

C,B'SEARCHN

0012 =
0005 =
0000 OE12

0002 C00500

B'SEARCHN
BOOS

MVI

CALL

EQU
EQU

18
5

,Search Next
,BOOS entry point

;Function code
,Note: No FCB pointer
,You must precede this call
, with a call to Search First
;A = 0,1,2,3
,(A. 32) + OMA -> directory
, entry
,A = OFFH if file name not
, found

Purpose This function searches down the file directory for the next file name, type, and
extent that match the FCB specified in a previous Search First function call.

Search First and Search Next are the only BOOS functions that must be used
together. As you can see, the Search Next function does not require an FCB
address as an input parameter-all the necessary information will have been left in
the BOOS on the Search First call.

Like Search First, Search Next returns a directory code in the A register; in
this case, if A = OFFH, it means that there are no more files that match the file
control block. If A is not OFFH, it will be a value of 0, 1, 2, or 3, indicating the
relative directory entry number.

Notes There are two ways of using the Search First/ Next calls. Consider a simple file
copying program that takes as input an ambiguous file name. You could scan the
file directory, matching all of the possible file names, possibly displaying them on
the console, and storing the names of the files to be copied in a table inside your
program. This would have the advantage of enabling you to present the file names



108 The CP/M Programmer's Handbook

to the operator before any copying occurred. You could even arrange for the
operator to select which files to copy on a file-by-file basis. One disadvantage
would be that you could not accurately predict how many files might be selected.
On some hard disk systems you might have to accommodate several thousand file
names.

The alternative way of handling the problem would be to match one file name,
copy it, then match the next file name, copy it, and so on. Ifyou gave the operator
the choice of selecting which files to copy, this person would have to wait at the
terminal as each file was being copied, but the program would not need to have
large table areas set aside to hold file names. This solution to the problem is
slightly more complicated, as you can see from the logic in Figure 5-17.

The subroutine in Figure 5-17, Get Next File (GNF), contains all of the
necessary logic to search down a directory for both alternatives described. It does
require that you indicate on entry whether it should search for the first or next file
match, by setting A to zero or some nonzero value respectively.

You can see from Figure 5-17 that whenever the subroutine is called to get the
next file, you must execute a Search First function to re-find the previous file. Only
then can a Search Next be issued.

As with all functions that return a directory code in A, if this value is not
OFFH, it will be the relative directory entry number in the directory record
currently in memory. This directory record will have been read into memory at
whatever address was specified at the last Set DMA Address function call (code
26, 1AH). Notwithstanding its odd name, the DMA Address is simply the address
into which any record input from disk will be placed. If the Set DMA Address
function has not been used to change the value, then the CP/M default DMA
address, location 0080H, will be used to hold the directory record.

The actual code for locating the address of the particular directory entry
matched by the Search First/ Next functions is shown in Figure 5-17 near the label
GNFC. The method involves multiplying the directory code by 32 and then adding
this product to the current DMA address.

Function 19: Erase (Delete) File

Example

Function Code:
Entry Parameters:
Exit Parameters:

C= 13H
DE = Address of file control block

A = Directory code

0013 =
0005 =

B$ERASE
BDOS

EQU
EQU

19
5

;Erase File
;BDOS entry point

FCB:
0000 00 FCB$DISK,
0001 3F3F4C454EFCB$NAME,
0009 3F5950 FCB$TYP,
OOOC 00 FCB$EXTENT:

DB
DB
DB
DB

;File control block
o ;Search on default disk drive
'??LENAME' ;Ambiguous file name
'?YP' ;Ambiguous file type
o ; Extent



Chapter 5: The Basic Disk Operating System 109

0000 0000 FCB$RESV:
OOOF 00 FCB$RECUSEO:
0010 OOOOOOOOOOFCB$ABUSEO:
0018 0000000000
0020 00 FCB$SEQREC:
0021 0000 FCB$RANREC:
0023 00 FCB$RANRECO:

DB
DB
DB
DB
DB
OW
DB

0,0 ;Reserved for CP/M
o ;Records used in this extent
0.0,0,0,0,0.0,0 ;A110cation blocks used
0.0,0,0,0.0,0,0
o ;Sequentia1 rec. to read/write
o ;Random rec. to read/write
o ;Random rec. overflow byte (MS)

0024 OE13
0026 110000
0029 C00500

MVI
LXI
CALL

C,B$ERASE
O.FCB
BOOS

;Function code
;DE -) file control block
;A z OFFH if file not found

Purpose This function logically deletes from the file directory files that match the FCB
addressed by DE. It does so by replacing the first byte of each relevant directory
entry (remember, a single file can have several entries, one for each extent) by the
value OE5H. This flags the directory entry as being available for use.

Notes Like the previous two functions, Search First and Search Next, this function
can take an ambiguous file name and type as part of the file control block, but
unlike those functions, the logical disk select code cannot be a"?".

This function returns a directory code in A in the same way as the previous file
operations.

Function 20: Read sequential

Example

Function Code:
Entry Parameters:
Exit Parameters:

C= l4H
DE = Address of file control block

A = Directory code

0014 =
0005 =

B$REAOSEQ
BOOS

EQU
EQU

20
5

;Read Sequential
;BOOS entry point

FCB:
0000 00 FCB$DISK:
0001 46494C454EFCB$NAME:
0009 545950 FCB$TYP:
OOOC

DB
DB
DB
OS

;File control block
o ;Search on default disk drive.
'FILENAME' ;fi1e name
'TYP' ;Fi1e type
24 ;Set by file open

0024 OE14
0026 110000
0029 C00500

MVI
LXI
CALL

C,B$REAOSEQ
O,FCB
BOOS

;Record will be read into
; address set by prior SETOMA
; call
;Function code
JOE -) File control block
;A = 00 if operation successful
;A = nonzero if no data in
I fi 1e

Purpose This function reads the next record (l28-byte sector) from the designated file
into memory at the address set by the last Set DMA function call (code 26, lAH).
The record read is specified by the FCB's sequential record field (FCB$SEQREC
in the example listing for the Open File function, code 15). This field is incre
mented by 1 so that a subsequent call to Read Sequential will get the next record
from the file. If the end of the current extent is reached, then the BDOS will



110 The CP/M Programmer's Handbook

;OETC
;This subroutine gets the next character from a
;sequential disk file. It assumes that the file has
;alreadv been opened.

;») Note: this subroutine changes CP/M"s DMA addni!ss.

;Entry parameters
DE -) file control block

;Exit parameters
A = next character from file

(= OFFH on physic~l end of file)
Note: lAH is normal EOF character for

ASCII Files.

;Calling sequence
LXI Ot.FCB
CALL OETC
CPI lAH
JZ EOFCHAR
CPI OFFH
JZ ACTUALEOF

A.OFFH

A.GETCBS-l
B
E.A
0.0
H.GETCBF
o
A.M

o
O.GETCBF
C.B$SETOMA
BOOS
o
C. BSREADSEQ
BOOS
A
GETCX
A.GETCBS
GETCCC
GETCRE

0014
001A
0005

0080
0000
0080 00

0081 3A8000
0084 B7
0085 CA9900

0088 3D
0089 328000

008C 47

0080 3E7F
008F 90
0090 SF
0091 1600
0093 210000
0096 19
0097 7E
0098 C9

0099 05
009A 110000
0090 OEIA
009F C00500
OOA2 01
00A3 OE14
00A5 C00500
00A8 B7
00A9 C2B400
OOAC 3E80
OOAE 328000
OOBI C38800

00B4 3EFF
00B6 C9

BSREAOSEQ
BSSETOMA
BOOS

GETCBS EQU
GETCBF: OS
GETCCC: DB

GETC:
LOA
ORA
JZ

GETCRE:
OCR
STA

MOV

MVI
SUB
MOV
MVI
LXI
DAD
MOV
RET

GETCFB:
PUSH
LXI
MVI
CALL
POP
MVI
CALL
ORA
JNZ
MVI
STA
JMP

GETCX:
MVI
RET

EQU
EQU
EQU

128
GETCBS
o

GETCCC
A
GETCFB

A
GETCCC

B.A

20
26
5

;Read sequential
;Set DMA address
;BDOS entry point

;Buffer size
;Declare buffer
;Char. count (initially
,"empty")

;Check if buffer is empty

;Yes, fill blJ.ffer

;Re-entrY point after buffer filled
;No. downdate cQunt
;Save downdated count

;Compute offset of next
;character
;By subtracting
; (buffer size -- downdated count)
;Make result into word value

;HL -) base of buffer
;HL -) next character in buffer
;Get next character

;Fill buffer
;Save FeB pointer
;Set DMA address to buffer
;function code

;Recover FeB pointer
;Read sequential "record" (sector)

;Check if read unsuccessful (A = NZl
;Yes
;Reset count

;Re-enter subroutine

;Phys1cal end of file
;Indicate such

Figure 5-18. Read next character from sequential disk file



Notes

Chapter 5: The Basic Disk Operating System 111

automatically open the next extent and reset the sequential record field to 0, ready
for the next Read function call.

The file specified in the FCB must have been readied for input by issuing an
Open File (code 15, OFH) or a Create File (code 22, 16H) BOOS call.

The value OOH is returned in A to indicate a successful Read Sequential
operation, while a nonzero value shows that the Read could not be completed
because there was no data in the next record, as at the end of file.

Although it is not immediately obvious, you can change the sequential record
number, FCB$SEQREC, and within a given extent, read a record at random. If
you want to access any given record within a file, you must compute which extent
that record would be in and set the extent field in the file control block (FCB$EX
TENT) before you open the file. Thus, although the function name implies
sequential access, in practice you can use it to perform a simple type of random
access. If you need to do true random access, look ahead to the Random Read
function (code 33), which takes care of opening the correct extent automatically.

Figure 5-18 shows an example of a subroutine that returns the data from a
sequential file byte-by-byte, reading in records from the file as necessary. This
subroutine, GETC, is useful as a low-level "primitive" on which you can build
more sophisticated functions, such as those that read a fixed number ofcharacters
or read characters up to a CARRIAGE RETURN/LINE FEED combination.

When you read data from a CP/M text file, the normal convention is to fill the
last record of the file with lAH characters (CONTROL-Z). Therefore, two possible
conditions can indicate end-of-file: either encountering a IAH, or receiving a
return code from the BOOS function (in the A register) ofOFFH. However, ifthe
file that you are reading is not an ASCII text file, then a IAH character has no
special meaning-it is just a normal data byte in the body of the file.

Function 21: Write sequential

Function Code:
Entry Parameters:
Exit Parameters:

C= I5H
DE = Address of file control block

A = Directory code

Example
0015 =
0005 =

B$WRITESEQ
BDOS

EQU
EQU

21
5

IWrite Sequential
IBDOS entry point

FCB,
0000 00 FCB$DISK,
0001 46494C454EFCB$NAME,
0009 545950 FCB$TYP,
OOOC

DB
DB
DB
DS

IFile control block
o ISearch on default disk drive
'FILENAME' Ifile name
'TYP' IFile type
24 ISet by Open or Create File

0024 OE15
0026 110000
0029 CD0500

MVI
LXI
CALL

C,B$WRITESEQ
D,FCB
BDOS

Record must be in address
set by prior SETDMA call

Function code
DE -) File control block
A = OOH if operation
successful

A = nonzero if disk full



112 The CP/M Programmer's Handbook

Purpose This function writes a record from the address specified in the last Set OMA
(code 26, lAH) function call to the file defined in the FCB. The sequential record
number in the FCB (FCB$SEQREC) is updated by 1 so that the next call to Write
Sequential will write to the next record position in the file. If necessary, a new
extent will be opened to receive the new record.

This function is directly analogous to the Read Sequential function, writing
instead of reading. The file specified in the FCB must first be activated by an Open
File (code 15, OFH) or create File call (code 22, 16H).

A directory code of OOH is returned in A to indicate that the Write was
successful; a nonzero value is returned if the Write could not be completed be
cause the disk was full.

Notes As with the Read Sequential function (code 20, 14H), you can achieve a simple
form of random writing to the file by manipulating the sequential record number
(FCB$SEQREC). However, you can only overwrite existing records in the file,
and if you want to move to another extent, you must close the file and reopen it
with the FCB$EXTENT field set to the correct value. For true random writing to
the file, look ahead to the Write Random function (code 34, 22H). This takes care
of opening or creating the correct extent of the file automatically.

The only logical error condition that can occur when writing to a file is
insufficient room on the disk to accommodate the next extent of the file. Any
hardware errors detected will be handled by the disk driver built into the BIOS or
BOOS.

Figure 5-19 shows a subroutine, PUTC, to which you can pass data a byte at a
time. It assembles this data into a buffer, making a call to Write Sequential
whenever the buffer becomes full. You can see that provision is made in the entry
parameters (by setting register B to a nonzero value) for the subroutine to fill the
remaining unused characters of the buffer with 1AH characters. You must do this
to denote the end of an ASCII text file.

Function 22: Create (Make) File

Function Code: C = l6H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code

Example

0016 =
0005 =

B$CREATE
BOOS

EQU
EQU

22
5 <

;File Create
;BDOS entry point

FCB,
0000 00 FCB$DISK:
0001 46494C454EFCB$NAME:
0009 545950 FCB$TYP:
OOOC 00 FCB$EXTENT:

DB
DB
DB
DB

;File control block
o ,Search on default disk drive
'FILENAME' ,file name
'TYP' :File type
o ; Extent



0000 0000 FCB$RESV.
OOOF 00 FCB.RECUSED.
0010 OOOOOOOOOOFCB.ABUSED.
0018 0000000000
0020 00 FCB$SEQREC.
0021 0000 FCB.RANREC.
0023 00 FCB.RANRECO.

DB
DB
DB
DB
DB
OW
DB

Chapter 5: The Basic Disk Operating System 113

0,0 ,Reserved for CP/M
o ,Records used in this extent
0,0,0,0,0,0,0,0 ,Allocation blocks used
0,0,0,0,0,0,0,0
o ,Sequential rec. to read/write
o ,Random rec. to read/write
o ,Random rec. overflow byte (MS)

0024 OE16
0026 110000
0029 CD0500

MVI
LXI
CALL

C,B.CREATE
D.FCB .
BOOS

,Note. file to be created
,must not already exist ••.•
,Function code
,DE -) file control block
,A = 0,1,2,3 if operation
; successful
,A = OFFH if directory full

,PUTC
;This subroutine eithet" puts the next chara.... .':.cter" e,ut
;to a sequential file. writing out completed "records"
; (12S-byte sectors) ory if requested to, will fill the
;remainder of the current "record" with lAH's to
;indicate end of file to CP/M.

;Entry parameters
, DE -) File control block

B = 0, A = next data character to be output
B 1= 0, fill the current "record" with lAH's

,Exit parameters
none.

D,FCB
B,I
PUTC

;Calling sequence
LXI D,FCB
MVI B.O
LDA CHAR
CALL PUTC

or
LXI
MVI
CALL

; Not end of f i 1e

;Indicate end of file

0015 BSWRlTESEQ EQU 21
OOIA BSSETDMA EQU 26
0005 BDOS EQU !5

0080 PUTCBS EQU 128
0000 PUTCBF, DS PUTCBS
0080 00 PUTCCC, DB 0

PUTC,
0081 D5 PUSH D
0082 F5 PUSH PSW
0083 78 MOV A,B
0084 B7 ORA A
0085 C29900 .JNZ PUTCEF
0088 CDC300 CALL PUTCGA

008B Fl POP PSW
008C 77 MOV M.A
008D 7B MOV A.E
008E 3C INR A
008F FE80 CPI PUTCBS
0091 CAA900 ..II PUTCWB
0094 328000 STA PUTCCC
0097 DI POP D
0098 C9 RET

Figure 5·19. Write next character to sequential disk file

;Write sequential
;Set DMA address
;BDOS entry point

;Buffer size
;Declare buffer
,Char. count (initially "empty")

,Save FCB address
;Save data character
;Check if end of file requested

rYes
;No, get address of next free byte
;HL -) next free byte
;E= Current char. count (as
;well as A)
;Recover data character
;Save in buffer
;Get current character count
;Update character count
;Check if buffer fUll
,Ves. write buffer
;No r save updated count
;Dump FeB address for return



114 The CP/M Programmer's Handbook

PUTCEF: End of fi Ie
0099 Fl POP PSW Dump data character
009A CDC300 CALL PUTCGA HL -} next free byte

A = current character count

PUTCCE: ;COpy EOF character
009D FE80 CPI PUTCBS ;Check for end of buffer
009F CAA900 JZ PUTCWB ;Yes. write out the buffer
00A2 361A MVI M,IAH ;No. store EOF in buffet"
00A4 3C INR A ; Update count
00A5 23 INX H ;Update buffer pointer
00A6 C39DOO JMP PUTCCE ;Continue until end of buffer

PUTCWB: ;Wt"i te buffer
00A9 AF XRA A ; Reset character count to 0
OOAA 328000 STA PUTCCC
OOAD 110000 LXI D,PUTCBF ,DE -> buffer
OOBO OEIA MVI C,B$SETDMA ; Set DMA address -> buffer
00B2 CD0500 CALL BDOS
00B5 Dl POP D ;Recover FeB address
00B6 OE15 MVI C,B$WRITESEQ ;Write sequential record
00B8 CD0500 CALL BDOS
OOBB B7 ORA A ,Check if error
OOBC C2COOO JNZ PUTCX rYes if A = NZ
OOBF C9 RET ;No, return to caller

PUTCX: ;Error exit
OOCO ~{EFF MVI A,OFFH ;Indicate such
00C2 C9 RET

PUTCGA: ;Return with HL -} next free char.
land A = current char. count

00C3 3A8000 LDA PUTCCC ;Get current character count
00C6 5F MOV E,A ;Make word value in DE
00C7 1600 MVI D,O
00C9 210000 LXI H,PUTCBF ,HL -} Base of buffet-
OOCC 19 DAD D ; HL -} next free character
OOCD C9 RET

Figure 5·19. Write next character to sequential disk file (continued)

Purpose This function creates a new file of the specified name and type. You must first
ensure that no file of the same name and type already exists on the same logical
disk, either by trying to open the file (if this succeeds, the file already exists) or by
unconditionally erasing the file.

In addition to creating the file and its associated file directory entry, this
function also effectively opens the file so that it is ready for records to be written
to it.

This function returns a normal directory code if the file creation has completed
successfully or a value of OFFH if there is insufficient disk or directory space.

Notes Under some circumstances, you may want to create a file that is slightly more
"secure" than normal CP/M files. You can do this by using either lowercase letters
or nongraphic ASCII characters such as ASCII NUL (DOH) in the file name or
type. Neither of these classes of characters can be generated from the keyboard; in
the first case, the CCP changes all lowercase characters to uppercase, and in the
second, it rejects names with odd characters in them. Thus, computer operators



Chapter 5: The Basic Disk Operating System 115

cannot erase such a file because there is no way that they can create the same file
name from the CCP.

The converse is also true; the only way that you can erase these files is by using
a program that can set the exact file name into an FCB and then issue an Erase File
function call.

Note that this function cannot accept an ambiguous file name in the FCB.
Figure 5-20 shows a subroutine that creates a file only after it has erased any

existing files of the same name.

Function 23: Rename File

Function Code:
Entry Parameters:
Exit Parameters:

Example

C= 17H
DE = Address of file control block

A = Directory code

:File control block
o :Search on default disk drive
'OLDNAME ' :File name
'TVP' :File type
0,0,0,0

0017
0005 =

0000 00
0001 4F4C444E41
0009 545950
OOOC 00000000

B'RENAME
BDOS

FCB:

EQU
EQU

DB
DB
DB
DB

23
5

:Rename file
:BDOS entry point

,CF
;Create file
;This subroutine creates a file. It erases any
;previous file before creating the new one.

;Entry parameters
DE -) File control block for new file

;Exit parameters
CarrY clear if operation successful

(A = 0.1,2.3)
Carry set 1f error (A = OFFH)

;Calling sequence
LXI D.FCB
CALL CF
..JC ERROR

PUSH
MVI
CALL
POP
MVI
CALL
CPI
CMC
RET

D
C,B'ERASE
BDOS
D
C,B'CREATE
BOOS
OFFH

0013 =
0016 =
0005 =

0000 D5
0001 OEI3
0003 CD0500
0006 DI
0007 OE16
0009 CD0500
OOOC FEFF
OOOE 3F
OOOF C9

B'ERASE
B'CREATE
BDOS

CF,

EQU
EQU
EQU

19
22
5

,Erase file
I Create file
;BDOS entry point

;Preserve FeB pointer
,Erase any existing file

,Recover FeB pointer
;Create (and open new file)

,Carry set if OK, clear if error
;Complete to use Carry set if Error

Figure 5-20. Create file request



C,B$RENAME
D,FCB
BOOS

116 The CP/M Programmer's Handbook

0010 00
0011 4E45574E41
0019 545950
001C 00000000

0020 OE17
0022 110000
0025 CD0500

MVI
LXI
CALL

DB
DB
DB
DB

o ,FCB + 16
'NEWNAME ' ,File name
'TYP' ,File type
0,0,0,0

;Function code
,DE -> file control block
,A = OOH if operation succesful
,A = OFFH if file not found

Purpose This function renames an existing file name and type to a new name and type.
It is unusual in that it uses a single FCB to store both the old file name and type (in
the first 16 bytes) and the new file name and type (in the second 16 bytes).

This function returns a normal directory code if the file rename was completed
successfully or a value of OFFH if the old file name could not be found.

Notes The Rename File function only checks that the old file name and type exist; it
makes no check to ensure that the new name and type combination does not
already exist. Therefore, you should try to open the new file name and type. Ifyou
succeed, do not attempt the rename operation. CP/M will create more than one file
of the same name and type, and you stand to lose the information in both files as
you attempt to sort out the problem.

For security, you can also use lowercase letters and nongraphic characters in
the file name and type, as described under the File Create function (code 22, 16H)
above.

Never use ambiguous file names in a rename operation; it produces strange
effects and may result in files being irreparably damaged. This function will
change all occurrences of the old file name to the new name.

Figure 5-21 shows a subroutine that will accept an existing file name and type
and a new name and type and rename the old to the new. It checks to make sure
that the new file name does not already exist, returning an error code if it does.

Function 24: Get Active Disks (Login Vector)
Function Code: C = I8H
Entry Parameters: None
Exit Parameters: HL = Active disk map (login vector)

Example

0018 =
0005 =

B$GETACTDSK
BOOS

EQU
EQU

24
5

;Get Active Disks
;BDOS entry point

0000 OE18
0002 CD0500

MVI
CALL

;Example of getting active
C,B$GETACTDSK ; disk function code
BOOS ;HL = active disk bit map

;Bits are = 1 if disk active
; Bi is 15 14 13 ••• 2 1 0
,Disk P 0 N ••• C B A

Purpose This function returns a bit map, called the login vector, in register pair HL,
indicating which logical disk drives have been selected since the last warm boot or



Chapter 5: The Basic Disk Operating System 117

,RF
'Rename file
,Thi. subroutine renames a fi1 •.
,It uses the BF (build FCB) subroutine shown in Fi~ure ~.16

;Entry parameters
*** No cas.-foldin~ of file names occurs ***
HL -) old file name (OO-byte terminated)
DE -) new file name (OO-byte terminated)

; HL ~> old name
,DE -) new na"l~

;.

new fiole name already exists
old f Ie name does not exist

fi

Carry set
A
A

parameters
Carry clear if operation successful

(A E 0.1.2.3)
if error

OFEH if
E OFFH if

,Exit,,

,Calling sequence
, LXI M.OLONAME
I LXI Il.NEWNAME

CALL RF
JC ERROR

OOOF
0017
0005

BSOPEN
BSRENAME
BOOS

EQU
EQU
EQU

15
23
5

,Open file
,Rename file
,BOOS entry point

0000 OOOOOOOOOORFFCB. OW
0010 0000000000 OW
0020 0000000000 OW
0030 000000 OW

0.0.0.0.0.0.0.0 ,1 1/2 FCB'. lon~

0.0.0.0.0.0.0.0
0.0.0.0.0.0.0.0
0.0.0

RF.
0036 05
0037 110000

003A CO~OOO

0030 El
003E 111000
0041 C05000

0044 111000
0047 OEOF
0049 COO~OO.

004C FEFF
004E 3EFE
OO~O 08

00~1 110000
00~4 OE17
00~6 COO~OO

00~9 FEFF
OO~B 3F
OO~C C9

PUSH 0
LXI O.RFFCB

CALL BF

POP H
LXI 0.RFFCB+16
CALL BF

LXI 0.RFFCB+16
MVI C.BSOPEN
CALL BOOS
CPI OFFH
MVI A.OFEH
RC

LXI O.RFFCB
MVI C.BSRENAME
CALL BOOS
CPI OFFH
CMC
RET

,Save new name pointe...
,BUild old name FeB
,HL already -> old name

'Recover new name pointer
'Build new name in second part of file
,control block

,Experimentally try
,t~~op.n lh. new file
.to ensure it does
,not alrea~y exist
,Assume .r~or (11a95 unchanged)
,Carry s.t if A was 0,1,2,3

;Rename the file

,Carry set if OK, clear if error
'Invert to use carry, set if error

,BF
,Build file control block
;This subroutine formats a OOH-byt. terminated strinv
,(presumed to be a file name) into an FeB. setting the
,disk and t~e file name and typ~ and clearing the
,remainder of the FeB to O's.

,Entry parameters
DE -) file control block (36 bytes)
HL -) file name strin~ (OOH-byt. terminated)

,Exit parameters
The built file control block.

;Cal1in9 sequence
qI O.FCB
LXI H.FILENAME
C.LL BF

OO~O C9
BF.

RET ,Dummy subroutine I see Figure 5.16.

Figure 5·21. Rename file request
f



Notes

118 The CP/M Programmer's Handbook

Reset Disk function (code 13, ODH). The least significant bit of L corresponds to
disk A, while the highest order bit in H maps disk P. The bit corresponding to the
specific logical disk is set to I if the disk has been selected or to 0 if the disk is not
currently on-line.

Logical disks can be selected programmatically through any file operation
that sets the drive field to a nonzero value, through the Select Disk function (code
14, OEH), or by the operator entering an "X:" command where "X" is equal to A,
B, ... , P.

This function is intended for programs that need to know which logical disks
are currently active in the system-that is, those logical disks which have been
selected.

Function 25: Get Current Default Disk
Function Code: C = 19H
Entry Parameters: None
Exit Parameters: A = Current disk

(O=A,l=B, ...,F=P)

Example

C,B$GETCUROSK ;Function code
BOOS ;A = 0 if A:, 1 if B: •••

0019 =
0005 =

0000 OE19
0002 C00500

B$GETCUROSK
BOOS

MVI
CALL

EQU
EQU

25
5

;Get Current Disk
;BOOS entry point

Purpose This function returns the current default disk set by the last Select Disk
function call (code 14, OEH) or by the operator entering the "X:" command (where
"X" is A, B, ... , P) to the CCP.

Notes This function returns the current default disk in coded form. Register A = 0 if
drive A is the current drive, I if drive B, and so on. Ifyou need to convert this to the
corresponding ASCII character, simply add 41H to register A.

Use this function when you convert a file name and type in an FCB to an
ASCII string in order to display it. If the first byte of the FCB is OOH, the current
default drive is to be used. You must therefore use this function to determine the
logical disk letter for the default drive.

Function 26: set DMA (Read/Write) Address

Function Code: C = lAH
Entry Parameters: DE = DMA (read/write) address_
Exit Parameters: None

Example
OOlA =
0005 =

B$SETOMA
BOOS

EQU
EQU

26
5

;Set OMA Address
;BOOS entry point



Chapter 5: The Basic Disk Operating System '119

C,B$SETOMA
O,SECBUFF
BOOS

0000

0080 OE1A
0082 110000
0085 C00500

SECBUFF,

MVI
LXI
CALL

os 128 I SectoY" buffeY"

;Function code
IPointeY" to buffeY"

Purpose This function sets the BDOS's direct memory access (DMA) address to a new
value. The name is an historic relic dating back to the Intel Development System
on which CP/M was originally developed. This machine, by virtue of its hardware,
could read data from a diskette directly into memory or write data to a diskette
directly from memory. The name DMA address now applies to the address of the
buffer to and from which data is transferred whenever a diskette Read, Write, or
directory operation is performed.

Whenever CP/M first starts up (cold boot) m a warm boot or Reset Disk
operation occurs, the DMA address is reset to its default value of 0080H.

Notes No function call can tell you the current value of the DMA address. All you can
do is make a Set DMA function call to ensure that it is where you want it.

Once you have set the DMA address to the correct place for your program, it
will remain set there until another Set DMA call, Reset Disk, or warm boot
occurs.

The Read and Write Sequential and Random operations use the current
setting of the DMA address, as do the directory operations Search First and
Search Next.

Function 27: Get Allocation Vector
Function Code: C = IBH
Entry Parameters: None
Exit Parameters: HL = Address of allocation vector

Example

C,B$GETALVEC
BOOS

001B =
0005 =

0000 OE1B
0002 C00500

B$GETALVEC
BOOS

MVI
CALL

EQU
EQU

27
5

IGet Allocation VectoY" AddY"ess
limOS entY"y point

;Function code
;HL -> Base addY"ess of

allocation vector

Purpose This function returns the base, or starting, address of the allocation vector for
the currently selected logical disk. This information, indicating which parts of the
disk are assigned, is used by utility programs and the BDOS itself to determine
how much unused space is on the logical disk, to locate an unused allocation block
in order to extend a file, or to relinquish an allocation block when a file is deleted.

Notes Digital Research considers the actual layout of the allocation vector to be
proprietary information.



120 The CP/M Programmer's Handbook

Function 28: set Logical Disk to Read-Only Status
Function Code: C = ICH
Entry Parameters: None
Exit Parameters: None

Example

OOlC ~

000:5 ~

BSSETDSKRO

BOOS

EQU

EQU

28

5

:Set disk to ReAd Only
, function code
:BDOS entrY point

0000 OEIC
0002 COO:500

"'VI
CALL

C.BSSETDSKRO
BOOS

:Sets disk selected b. prior
:Select disk function c.ll
:Function code

Purpose This function logically sets the currently selected disk to a Read-Only state.
Any attempts to execute a Write Sequential or Write Random function to the
selected disk will be intercepted by the BDOS, and the following message will
appear on the console:

BOOS Err on XI RIO

where X: is the selected disk.

Notes Once you have requested Read-Only status for the currently selected logical
disk, this status will persist even if you proceed to select other logical disks. In fact,
it will remain in force until the next warm boot or Reset Disk System function call.

Digital Research documentation refers to this function code as Disk Write
Protect. The Read-Only description is used here because it corresponds to the
error message produced if your program attempts to write on the disk.

Function 29: Get Read-Only Disks

Example

Function Code:
Entry Parameters:
Exit Parameters:

C= IDH
None
HL = Read-Only disk map

0010 ..
000:5 ..

BSGETRODSKS
BOOS

EQU
EQU

29
5

:Get ReAd OnlY disks
IBDOS entry poipt

0000 OEl'
0002 COO:500

"'VI
CALL

C,BSGETRODSKS ,Function code
BOOS ,HL .. ReAd Only disk bit mAP

,Bits are" 1 if disk Read Only
,Bi ts 15 14 13 ... 2 1 0
,Disk P 0 N ••• C B A

Purpose This function returns a bit map in registers Hand L showing which logical
disks in the system have been set to Read-Only status, either by the Set Logical



Chapter 5: The Basic Disk Operating System 121

Disk to Read-Only function call (code 28, ICH), or by the BDOS itself, because it
detected that a diskette had been changed.

The least significant bit of L corresponds to logical disk A, while the most
significant bit of H corresponds to disk P. The bit corresponding to the specific
logical disk is set to I if the disk has been set to Read-Only status.

Function 30: set File Attributes

Example

Function Code:
Entry Parameters:
Exit Parameters:

C= IEH
DE = Address of FCB

A = Directory code

oolE •
ooo:s •

B.SETFAT
BOOS

EQU
EQU

,set File Attribute
,BOOS entry point

FCB,
ooסס 00 FCB.DISK,
0001 464?4C4~4EFCB.NAME,

OOO? D4 FCB.TYP,

0001I ~~
OOOC 0000000000

DB
DB
DB

DB
OW

,File control block
o ,search on default disk drive
'FILENAME' ,File na.e
'T'+80H ,Type with R/O

, attribute
'yp.'
0,0,0,0,0,0,0,0,0,0,0

0022 OEIE
0024 110000

0027 CDO~OO

MVI
LXI

CALL

C.B$SETFAT
D.FCB

BDOS

;Function code
,DE -) file control block
,MS bits set in file na../type
,A = OFFH if file not found

Purpose This function sets the bits that describe attributes of a file in the relevant
directory entries for the specified file. Each file can be assigned up to 11 file
attributes. Of these 11, two have predefined meanings, four others are available for
you to use, and the remaining five are reserved for future use by CP/M.

Each attribute consists of a single bit. The most significant bit of each byte of
the file name and type is used to store the attributes. The file attributes are known
by a code consisting of the letter "f" (forfile name) or "t" (forfile type), followed by
the number of the character position and a single quotation mark. For example,
the Read-Only attribute is tl'.

The significance of the attributes is as follows:

fl' to f4' Available for you to use
f5' to fS' Reserved for future CP/M use
tl' Read-Only File attribute
t2' System File attribute
t3' Reserved for future CP/M use

Attributes are set by presenting this function with an FCB in which the
unambiguous file name has been preset with the most significant bits set appro
priately. This function then searches the directory for a match and changes the
matched entries to contain the attributes which have been set in the FCB.



122 The CP/M Programmer's Handbook

The BDOS will intercept any attempt to write on a file that has the Read-Only
attribute set. The DIR command in the CCP does not display any file with System
status.

Notes You can use the four attributes available to you to set up a file security system,
or perhaps to flag certain files that must be backed up to other disks. The Search
First and Search Next functions allow you to view the complete file directory
entry, so your programs can test the attributes easily.

The example subroutines in Figures 5-22 and 5-23 show how to set file
attributes (SFA) and get file attributes (GFA), respectively. They both use a bit
map in which the most significant 11 bits of the HL register pair are used to
indicate the corresponding high bits of the 11 characters of the file name/ type
combination. You will also see some equates that have been declared to make it
easier to manipulate the attributes in this bit map.

:SFA
;Set file attributes
;This subroutine takes a compressed bit map of all the
;file attribute bits, expands them into an existing
,file control block and then requests CP/M to set
,the attributes in the file directory.

,Entry parameters
DE -) file control block
HL = bit map. Only the most significant 11

bits are used. These correspond directly
with the possible attribute bytes.

,Exit parameters
Carry clear if operation successful (A = 0,1,2.3)
Carry set if error (A = OFFH)

,Calling sequence
LXI D.FCB
LXI H.OOO(l$OOOO$IIOO$OOOOB ,Bit Map
CALL SFA
JC ERROR

;File Attribute Equates

8000 =
4000 =
2000 =
1000 =

FA$FI EQU
FA$F2 EQU
FA$F3 EQU
FA$F4 EQU

1000$0000$0000$000013
0100$0000$0000$000013
0010$0000$0000$000013
0001$0000$0000$000013

:FI' - F4'
,Available for use bY
; application programs

:Set file attributes
;BDOS entry point

0000$1000$0000$000013
0000$0100$0000$000013
0000$0010$0000$000013
0000$0001$0000$000013

0000$0000$1000$000013
FA$T!
0000$0000$0100$000013
FA$T2
(1000$0000$0010$000013

0800
0400
0200
0100 =

0080 =
0080 =
0040 =
0040 =
0020

OOIE
0005

FA$F5 EQU
FA$F6 EQU
FA$F7 EQU
FA$F8 EQU

FA$T! EQU
FA$RO EQU
FA$T2 EQU
FA$SYS EQU
FA$T3 EQU

B$SETFAT
BDOS

EQU
EQU

30
5

:F5' - F8'
;Reserved for CP/M

;T1/ read/only file

;T2/ system files

JT3/ -- reserved for CP/M

Figure 5-22. Set file attributes



Chapter 5: The Basic Disk Operating System 123

SFA,
0000 D:5 PUSH D
0001 13 INX D
0002 OEOB MVI C.B+3

SFAL,
0004 AF XRA A
000:5 29 DAD H
0006 CEOO ACI 0
0008 OF RRC
0009 47 MOV B.A
OOOA EB XCHO
OOOB 7E MOV A.M
OOOC E67F ANI 7FH
OOOE BO ORA B
OOOF 77 MOV M.A
0010 EB XCHO
0011 13 INX D
0012 OD DCR C
0013 C20400 JNZ SFAL
0016 OEIE MVI C.B$SETFAT
0018 DI POP D
0019 CD0500 CALL BDOS
OOIC FEFF CPI OFFH
OOIE 3F CMC
OOIF C9 RET

,Save FeB pointer
,HL -) 1st character of file name
,Loop count for file name and type

,Main proc••• ing loop
,Clear carry and A
,Shift next MS bit into carry
,A = 0 or 1 depending on carry
,Rotata LS bit of A into MS bit
,Sava rasult (OOH or 80H)
,HL -) FCB charactar
,Oat FCB charactar
,Isolata all but attributa bit
,Sat attributa with rasult
,and store back into FeB
,DE -) FeB, HL = remaining bit map
,DE -> next character in FeB
;Downdate character count
'Loop back for next character
,Set file attribute function code
,Recover FeB pointer

,Carry set if OK, clear if error
,Invert to use carry .et if error

Figure 5-22. Set file attributes (continued)

,OFA
;Get file attributes
'This subroutine finds the appropriate file using a
,search for First Name Match function rather than opening
;the file. It then builds. bit map of the file attribute
;bits in the file name and type. This bit map is then ANOed
:with the input bit map, and the result is returned in the
;zero flag. The actual bit map built is also returned in case
,more complex check is required.

,»> Note: This subroutine changes the CP/M DMA address.

,EntrY parameters
DE -> File control block
HL = Bit map mask to be ANDed With attribute

results

,Exit parame\er$
CarrY clear, operation successful

Nonzero status set to result of AND between
input mask and attribute bits set.
HL = Unmasked attribute byte. set.

CarrY set, file could not be found

OOIA =
0011 =
000:5 =
0080 •

B$SETDMA
B$SEARCHF
BDOS
OFADMA

EQU
EQU
EQU
EQU

26
17
:5
SOH

,Set DMA address
;Search for first entry to match
;BDOS entry point
,Dafault DMA address

;Calling sequence
LXI D.FCB
LXI H. 0000$0000$1 100$0000B ,Bit map
CALL OFA
JC ERROR

;File attribute equates

8000 •
4000 •

FA$FI
FA$F2

EQU
EQU

1000$0000$0000$0000B
0100$0000.0000$0000B

,F!' - F5'
;Available for use by

Figure 5-23. Get file attributes



124 The CP/M Programmer's Handbook

,F6' - F8'
,Reserved for CP/M

2000
1000

0800
0400
0200
0100

0080
0080
0040
0040
0020

FA$F3 EQU
FA$F4 EQU

FA$F5 EQU
FI'l$F6 EQU
FA$F7 EQU
FA$F8 EQU

FA$T! EQU
FA$RO EQU
FAST2 EQU
FA$SYS EQU
FAST3 EQU

00 I OSOOOOSOOOO$OOOOB
000 I $OOOO$OOOO$OOOOB

OOOOSIOOO$OOOOSOOOOB
OOOOSOI OO$OOOO$OOOOB
OOOOSOOIO$OOOO$OOOOB
OOOO$OOOI$OOOO$OOOOB

OOOOSOOOO$I OOO$OOOOB
FA$T!
0000$0000$0 I OOSOOOOB
FAST2
0000$0000$00 I O$OOOOB

,TI'

,T3'

read/only file

system files

reserved for CP/M

0000 E5
0001 05
0002 OEIA
0004 118000
0007 C00500

OOOA 01
OOOB OEII
0000 C00500
0010 FEFF
0012 3F
0013 OA4100

0016 87
0017 87
0018 87
0019 87
OOIA 87
OOIB 5F
OOIC 1600
OOIE 218000
0021 19
0022 23
0023 EB

0024 OEOB
0026 210000

GFA.
PUSH
PUSH
MVI
LXI
CALL

POP
MVI
CALL
CPI
CMC
-.lC

ADO
ADO
ADO
ADO
ADO
MOV
MVI
LXI
DAD
INX
XCHG

MVI
LXI

H
o
C.B$SETOMA
O.GFAOMA
BOOS

o
C.BSSEARCHF
BOOS
OFFH

GFAX

A
A
A
A
A
E.A
0.0
H.GFADMA
o
H

C.8+3
H.O

,Save AND-mask
;Save FeB pointer
;Set DMA to default~ addYl?ss
,DE -) DMA address

;Recover FeB pointer
;S.~rch for match with name

;Carry set if OK, clear if error
'Invert to use .et c~rry if error
;Return if error
,Multiply by 32 to get offset into DMA buffer
;* 2
,_ 4
,iE 8
rtf 16
f* 32
;Make into a word value

;HL -) DMA address
;HL -) DirectorY entry in DMA buffer
;HL -) 1st character of file name
JOE -) 1st character of file name

;Count of characters in file name and type
;Clear bit map

0029 IA
002A E680
002C 07
0020 B5
002E 6F
002F 29
0030 13
0031 00
0032 C22900

0035 29
0036 29
0037 29
0038 29

0039 01
003A 7A
003B A4
003C 47
0030 7B
003E A5
003F BO

0040 C9

0041 EI
0042 C9

GFAL.

GFAX.

LDAX
ANI
RLC
ORA
MOV
DAD
INX
OCR
-.lNZ

OAD
DAO
DAD
DAD

POP
MOV
ANA
MOV
MOV
ANA
ORA

RET

POP
RET

o
80H

L
L.A
H
o
C
GFAL

H
H
H
H

o
A.D
H
B.A
A.E
L
B

H

;Main loop
;Oet neNt character of file name
,Isolate attribute bit
;Move MS bit into LS bit
fOR in any previously set bits
ISave resul t
,Shift HL left one bit for next time
;De -) next character in file name, type
;Downdate count
,Go back for next character

;Left justify attribute bits in HL
;MS attribute bit will already be in
;bit 11 of HL, so only 4 shifts are
,necessary

,Recover AND-mask
,Get MS byte of mask
,AND with MS byte of result
;Save interim result
,Get LS byte of mask
,AND with LS byte of result
;Combine two results to set Z flag

;Error exit
;Balance stack

Figure 5-23. Get file attributes (continued)



Chapter 5: The Basic Disk Operating System 125

Function 31: Get Disk Parameter Block Address
Function Code: C = IFH
Entry Parameters: None
Exit Parameters: HL = Address of DPB

Example OOlF •

0005 =
B$OETDPB

BOOS

EQU

EQU

31 ,Get Disk Parameter Block
I Address
,BDOS entry point

0000 OE1F
0002 CD0500

!'IVI
CALL

C,B$OETOPB
BOOS

,Returns.DPB address of
, l09ical disk previouslY
, selected with a Select
, Disk function.
,Funct ion code
IHL -) Base address of current
I disk's parameter block

Purpose This function returns the address of the disk parameter block (DPB) for the
last selected logical disk. The DPB, explained in Chapter 3, describes the physical
characteristics ofa specific logical disk-information mainly of interest for system
utility programs.

Notes The subroutines shown in Figure 5-24 deal with two major problems. First,
given a track and sector number, what allocation block will they fall into? Con
verseley, given an allocation block, what is its starting track and sector?

These subroutines are normally used by system utilities. They first get the DPB
address using this BDOS function. Then they switch to using direct BIOS calls to
perform their other functions, such as selecting disks, tracks, and sectors and
reading and writing the disk.

The first subroutine, GTAS (Get Track and Sector), in Figure 5-24, takes an
allocation block number and converts it to give you the starting track and sector
number. GMTAS (Get Maximum Track and Sector) returns the maximum track
and sector number for the specified disk. GDTAS (Get Directory Track and
Sector) tells you not only the starting track and sector for the file directory, but
also the number of l28-byte sectors in the directory.

Note that whenever a track number is used as an entry or an exit parameter, it is
an absolute track number. That is, the number of reserved tracks on the disk before
the directory has already been added to it.

GNTAS (Get Next Track and Sector) helps you read sectors sequentially. It
adds 1 to the sector number, and when you reach the end of a track, updates the
track number by 1 and resets the sector number to 1.

GAB (Get Allocation Block) is the converse of GTAS (Get Track and Sector).
It returns the allocation block number, given a track and sector.

Finally, Figure 5-24 includes several useful16-bit subroutines to divide the HL
register pair by DE (DIVHL), to multiply HL by DE (MULHL), to subtract DE
from HL (SUBHL -this can also be used as a l6-bit compare), and to shift HL
right one bit (SHLR). The divide and multiply subroutines are somewhat
primitive, using iterative subtraction and addition, respectively. Nevertheless, they
do perform their role as supporting subroutines.



126 The CP/M Programmer's Handbook

;Useful 5ubroutinei for acceslinv the data in the
1disk parameter block

oooE
OOIF
0005

B$SELOSK
B$GETOPB
BOOS

EQU
EQU
EQU

14
31
5

,Select Disk function code
;Oet OPB address
'BOOS entry point

,It makes for easier, more compact code to copy the
,specific disk par.meter block into local variables
;while manipulating the information.
tHere are those variables

OPB. ,Disk parameter block
0000 0000 OPBSPT, OW 0 ,128-byte sectors per track
0002 00 OPBBS: OB 0 ,Block shift
0003 00 OPBBM: OB 0 ;Block mask
0004 00 OPBEM: OB 0 ;Extent mask
0005 0000 OPBMAB, OW 0 ;Maximum allocation block number
0007 0000 OPBNOD: OW 0 ;Number of directorY entries - I
0009 0000 OPBDAB: OW 0 ; Directory allocation blocks
oooB 0000 DPBCBS: OW 0 'Check buffer size
0000 0000 OPBTBO: OW 0 ;Tracks before directory (reserved tr1icks)

oooF OPBSZ EQU $-OPB ,.Disk parameter block size

,GETDPB
;Gets disk parameter block
;This subroutine copies the DPB for the specified
;logical disk into the local DPB variables above.

;Entry parameters
A = Logical disk number (A: = 0, B: = 1... )

;Exit parameters
Local variables contain DPB

GETDPB:
OOOF 5F MOV E,A 'Get disk code for select disk
0010 OEOE MVI C,B$SELOSK ;Select the disk
0012 CD0500 CALL BOOS
0015 OEIF MVI C,B$GETOPB 'Get the disk parameter base address
0017 C00500 CALL BDOS ,HL -> DPB
OOIA OEOF MVI C.DPBSZ ,Set count
OOIC 110000 LXI D,OPB ;Get base address of local variables

GOPBL, ;COpy DPB into local variables
OOIF 7E MOV A.M ,Get byte from DPB
0020 12 STAX P ; Store into local variable
0021 13 INX 0 ;Update local variable pointer
0022 23 INX H ;Update DPB pointer
0023 00 DCR C ;Downdate count
0024 C21FOO JNZ GDPBL ;Loop back for next byte
0027 C9 RET

,GTAS
;Get track and sector (given allocation block number)

;This subroutine converts an allocation block into a
,track and sector number -- note that this-is based on
;128-byte sectors.

,»»> Note: You must call GETDPB before
;»»> you call this subroutine

;EntrY parameters
HL = allocation block number

;Exit parameters
HL track number
DE = sector number

,Method :
;In mathematical terms. the track can be derived from:
;Trk «allocation block * sec. per all. block) / sec. per trk)

+ tracks before directory

Figure 5-24. Accessing disk parameter block data



Chapter 5: The Basic Disk Operating System

;The sector is derived from:
,Sec «allocation block. sec. per all. block) modulo/

sec. per trk) + 1

127

0028 3A0200
OTAS.

LDA DPBBS .Oet block shift -- this will be 3 to
;7 depending on allocation block size
,It will be used as a count for shifting

OTASS,
002B 29 DAD H
002C 3D DCR A
002D C22BOO ,JNZ OTASS
0030 EB XCHO

0031 2AOOOO LHLD DPBSPT
0034 EB XCHO
0035 CD8FOO CALL DIVHL

0038 23 INX H
0039 EB XCHO
003A 2AODOO LHLD DPBTBD
003D 09 DAD B
003E C9 RET

,OMTAS
;Get maximum track and sector

;Shift allocation block left one place
,Decrement block shift count
,More shifts required
,DE = all. block * sec. per block
;i.e. DE = total number of sectors
;Get sectoYs per track
,HL = sec. per trk, DE = tot. no. of sec.
,Be = HL/DE, HL = remainder
,Be = track, HL = sector
;Sector numbering starts from
;DE = sector, HL = track
;Tracks before directory
,DE = sector, HL = absolute track

;This is just a call to GTAS with the maximum
;allocation block as the input parameter

;}>}>} Note: You must call GETOPB before
;}}}» YOU call this subroutine

;Entry parameters: none

;Exit parameters:
HL maximum track number
DE = maximum sector

OMTAS,
003F 2A0500
0042 C32800

LHLD
,JMP

DPBMAB
OTAS

;Get maximum allocation block
;Return from GTAS with parameters in HL and DE

,ODTAS
;Get directory track and sector

;This returns the START track and sector for the
.fil. directory, along with the number of sectors
pin the directory.

;»»> Note: You must call GETDPB before
;}}»} you call this subroutine

;EntrY parameters: none

;Exit parameters:
Be number of sectors in directory
DE directory start sector
HL = directory start track

ODTAS,
0045 2A0700
0048 23

0049 CDDOOO
004C CDDOOO
004F E5
0050 210000
0053 CD2800
0056 CI
0057 C9

LHLD DPBNOD
INX H

CALL SHLR
CALL SHLR
PUSH H
LXI H.O
CALL OTAS
POP B
RET

;Get number of directory entt"ies - 1
;Make true number of entries
;Each entry is 32 bytes 10n9. so to
;convert to 128 byte sectors. divide by 4
,I 2 (by shifting HL right one bit)
,I 4
;Save number of sectors
;Directory starts in allocation block 0
.HL = track. DE = sector
;Recover number of sectors

Figure 5-24. (Continued)



128 The CP/M Programmer's Handbook

;GNTAS
;Get NEXT track and sector

;This subroutine updates the input track and sector
;by one, incrementing the track and resetting the
;sector number as required.

;»») Note; You must call GETDPB before
;»»> you call this subroutine

Note: you must check for end of disk by comparinq
the track number returned by this subroutine
to that returned by by GMTAS + le When
equality occUrs, the end of disk has been reached.

;Entry parameters
HL = current track number
DE = current sector number

;Exit parameters
HL updated track number
DE = updated sector number

GNTAS:

0038 E3
0039 13
003A 2AOOOO
003D'CDC9oo
0060 EI
0061 DO
0062 23
0063 110100
0066 C9

PUSH
INX
LHLD
CALL
POP
RNC
INX
LXI
RET

H
D
DPBSPT
SUBHL
H

H
D.I

;Save track
;Update sector
;Get sectors per track
,HL = HL - DE
;Recover current track
;Return if updated sector <= sec. per trk.
;Update track if upd. sec) sec. per trk.
;Reset sector to 1

,GAB
;Get allocation block

;This subroutine returns an allocation block number
;given a specific track and sector. It also returns
,the offset down the allocation block at which the
;sector will be found. This offset is in units of
;12S-byte sectors.

,»>>>
,»»>

Note: You must call GETDPB before
you call this subroutine

;Entry parameters
HL = track number
DE = sector number

;Exit parameters
HL = allocation block number

; Method
;The allocation block is formed from:
;AB = (sector + (track - tracks before directory)

* sectors per track» / 1092 (sectors per all. block)

;The sector offset within allocation block is formed from:
;Offset (sector + «track - tracks before directory)

* sectors per track» / AND (sectors per all. block - 1)

GAB,
0067 D5
0068 EB
0069 2AODOO
006C EB
006D CDC900

0070 EB
0071 2AOOOO
0074 CDA400

0077 EB

PUSH D
XCHG
LHLD DPBTBD
XCHG
CALL SUBHL

XCHG
LHLD DPBSPT
CALL MULHL

XCHG

Save sector
DE = track
Get no. of tracks before directory
DE no. of tracks before dir. HL = track
HL = HL - DE
HL = relative track within logical disk
DE = relative track
Get sectors per track
HL HL"DE
HL number of sectors
DE = number of sectors

Figure 5-24. (Continued)



Chapter 5: The Basic Disk Operating System 129

0078 EI POP H
0079 2B DCX H
007A 19 DAD D
007B 3A0300 LDA DPBBM
007E 47 MOV B.A
007F 7D MOV A.L
0080 AO ANA B
0081 F5 PUSH PSW
0082 3A0200 LDA DPBBS
0085 4F MOV C.A

GABS'
0086 CDDOOO CALL SHLR
0089 OD DCR C
008A C28600 JNZ GABS
008D FI POP PSW
008E C9 RET

,Recover sector
,Make relative to 0
,HL = relative sector
,Get block mask
,Ready for AND operation
,Get LS byte of relative sector
,AND with block mask
,A = sector displacement
,Get block shift
,Make into counter

,Shift loop
,HL shifted right (divided by 2)
,Count down
,Shift a9ain if necessary
,Recover offlet

,Utility subroutines
,These perform 16-bit arithmetic on the HL register pair.

,DIVHL
,Divides HL by DE using an iterative subtract.
;In practice~ it uses an iterative ADD of the complemented divisor.

,Entry parameters
HL = dividend
DE := divisor

,Exit parameters
BC quotient
HL = ntmainder

008F D5

0090 7B
0091 2F
0092 5F
0093 7A
0094 2F
0095 57
0096 13

0097 010000

009A 03
009B 19
009C DA9AOO

009F OB

OOAO EB
OOAI EI
00A2 19
00A3 C9

DIVHL,

DIVHLS.

PUSH

MOV
CMA

_MOV
MOV
CMA
MOV
INX

LXI

INX
DAD
JC

DCX

XCHG
POP
DAD
RET

D

A.E

E.A
A.D

D.A
D

B.O

B
D
DIVHLS

B

H
D

,Save divisor
;Note I 2~s complement is formed by
,inverting all bits and adding 1.
,Complement divisor (for iterative
;ADD later on)

,Get MS byte
;Complement it

;Make 2/s complement
;Now. subtract negative divisor until
;dividend goes negative. counting the number
;of tim•• the subtract occurs
;Initialize quotient
,Subtract loop
;Add 1 to quotient
;"Subtract" divisor
;Dividend not yet negative
;Dividend now negative, quotient 1 too large
;Correct quotient
;Compute correct remainder
;oe ~ remainder - divisor
;Recover positive divisor
;HL remainder
;ac = quotient, HL = remainder

,MULHL
,Multiply HL • DE using iterative ADD.

;entry parameters
, HL • multiplieand
, DE = multiplier

;eMit parameters
HL product
DE = multiplier

00A4 C5

Figure 5-24.

MULHL,

(Continued)

PUSH B Save user register
Check if either multiplicand

or multiplier is 0



130 The CP/M Programmer's Handbook

00A5 7C
00A6 B5
00A7 CAC400
OOAA 7A
OOAB B3
OOAC CAC400

OOAF 7A
OOBO BC
OOBI OAB500
00B4 EB

00B5 42
00B6 4B
00B7 54
OOBS 50
00B9 OB

OOBA 7S
OOBB BI
OOBC CAC700
OOBF 19
OOCO OB
OOCI C3BAOO

00C4 210000

00C7 CI
OOCS C9

00C9 70
OOCA 93
OOCB 6F
OOCC 7C
OOCO 9A
OOCE 67
OOCF C9

MOV A,H
ORA L
JZ MULHLZ
MOV A,O
ORA E
,IZ MULHLZ

MOV A,O
CMP H
JC MULHLN
XCHG

MULHLN:
MOV B,O
MOV C,E
MOV O,H
MOV E,L
OCX B

MULHLA:
MOV A,B
ORA C
JZ MULHLX
OAO 0
OCX B
JMP MULHLA

MULHLZ:
LXI H,O

MULHLX:
POP B
RET

,SUBHL
;Subtract HL - OE

;Entry parameters
HL = subtrahend
DE = subtractor

;Exi t parameters
HL = differ"ene-e

SUBHL:
MOV A,L
SUB E
MOV L,A
MOV A,H
SBB 0
MOV H,A
RET

;Yes. fake product

;Yes, fake product

,This routine will be faster if
; the smaller value is in DE
JOet MS byte of current DE value
;Check which is smaller
;C set if 0 < H, so no exchange

,Be multiplier

;DE HL = multiplicand

,Adjust count as
;1 * multiplicand = multiplicand

; ADD loop
;Check if all iterations completed

,Yes, exit
,HL = multiplicand + multiplicand
;Countdown on multiplier - 1
'Loop back until all ADDs done

;Fake product as either multiplicand
; or multiplier is 0

;Recover user register

,Get LS byte
;Subtract without regard to carry
;Put back into difference

',Get MS byte
;Subtract including carry
;Move back into difference

;SHLR
;Shift HL right one place (dividing HL by 2)

;EntrY parameters
HL = value to be shifted

;Exit parameters
HL = value/2

SHLR:
0000 B7 ORA A Clear can'-Y
0001 7C MOV A,H Get MS byte
0002 IF RAR Bi t 7 set from previous carry.

bit 0 goes into carry
0003 67 MOV H,A Put shi ft MS byte back
0004 70 MOV A,L Get LS byte
0005 IF RAR Bit 7 = bit o of MS byte
0006 6F MOV L,A Put back into result
0007 C9 RET

Figure 5-24. (Continued)



Chapter 5: The Basic Disk Operating System 131

Function 32: Set/Get User Number

Example

Function Code:
Entry Parameters:

Exit Parameters:

C= 20H
E = OFFH to get user number, or
E = 0 to 15 to set user number
A = Current user number if E was OFFH

0020 = B.SETGETUN EQU 32 ,Set/Get User Nu-oer
0005 = BDOS EQU 5 ;BDOS entry point

,To set user nu~er

0000 OE20 MVI C,B'SETGETUN IFunction code
0002 lEOF MVI E,15 IRequired user nUMber
0004 CDOSOO CALL BDOS ITo get user nu~er

0007 OE20 MVI C,B'SETGETUN ;Function code
0009 lEFF MVI E,OFFH IIndicate request to GET
OOOB CDOSOO CALL BDOS ;A = Current user no. (0 -- IS)

Purpose This subroutine either sets or gets the current user number. The current user
number determines which file directory entries are matched during all disk file
operations.

When you call this function, the contents of the E register specify what action is
to be taken. IfE=OFFH, then the function will return the current user number in
the A register. If you set E to a number in the range 0 to 15 (that is, a valid user
number), the function will set the current user number to this value.

Notes You can use this function to share files with other users. You can locate a file by
attempting to open a file and switching through all of the user numbers. Or you can
share a file in another user number by setting to that number, operating on the file,
and then reverting back to the original user number.

Ifyou do change the current user number, make provisions in your program to
return to the original number before your program terminates. It is disconcerting
for computer operators to find that they are in a different user number after a
program. Files can easily be damaged or accidentally erased this way.

Function 33: Read Random
Function Code:
Entry Parameters:
Exit Parameters:

Example

C= 21H
DE = Address of FCB

A = Return code

0021 =
000:; =

B'READRAN
BDOS

EQU
EQLI

33
:;

;Read RandOM
;BDOS entry point

FeB:
0000 00 FCB'DISK:
0001 46494C454EFCB.NAME:
0009 545950 FCB$TYP:

DB
DB
DB

:File control block
o :Search on default disk drive
'FILENAME' :File name
'TYP' iFile type



132 The CP/M Programmer's Handbook

OOOC 00 FCB$EXTENT.
0000 0000 FCB$RESV,
OOOF 00 FCB$RECUSED,
0010 OOOOOOOOOOFCB$ABUSED.
0018 0000000000
0020 00 FCB$SEQREC,
0021 0000 FCB$RANREC,
0023 00 FCB$RANRECO,

DB
DB
DB
DB
DB
DB
OW
DB

o ;E"tent
0.0 ;Reserved for CP/M
o ;Records used in this e"tent
0.0.0.0.0.0.0.0 ;Allocation blocks used
0.0.0.0.0.0.0.0
o ;Sequential rec. to read/write
o ;Random rec. to read/write
o ;Random rec. overflow byte (MS)

0024 0204 RANRECNO, ow 1234 ;Example random record number

0026 2A2400
0029 222100
002C OE2l
002E 110000
0031 CD0500

LHLD
SHLD
MVI
LXI
CALL

RANRECNO
FCB$RANREC
C,B$READRAN
D,FCB
BOOS

;Record will be read into
; address set by prior
; SETDI'1A call
;Get random record number
;Set UP file control block
;F\Jnct ion code
;DE -) .file control block
;A = 00 if operation successful
;A = nonzero if no data in
; file specifically,
;A = 01 -- attempt to read

unwritten record
03 -- CP/M could not

close current e"tent
04 -- attempt to read

unwritten extent
06 -- attempt to read

beyond end of disk

Purpose This function reads a specific CP/M record (128 bytes) from a random file-
that is, a file in which records can be accessed directly. It assumes that you have
already opened the file, set the OMA address using the BOOS Set OMA function,
and set the specific record to be read into the random record number in the FCB.
This function computes the extent of the specified record number and attempts to
open it and read the correct CP/M record into the OMA address.

The random record number in the FCB is three bytes long (at relative bytes 33,
34, and 35). Byte 33 is the least significant byte, 34 is the middle byte, and 35 the
most significant. CP/M uses only the most significant byte (35) for computing the
overall file size (function 35). You must set this byte to 0 when setting up the FCB.
Bytes 33 and 34 are used together for the Read Random, so you can access from
record 0 to 65535 (a maximum file size of 8,388,480 bytes).

This function returns with A set to 0 to indicate that the operation has been
completed successfully, or A set to a nonzero value if an error has occurred. The
error codes are as follows:

A = 01 (attempt to read unwritten record)

A = 03 (CP/M could not close current extent)

A = 04 (attempt to read unwritten extent)

A = 06 (attempt to read beyond end of disk)

Unlike the Read Sequential BOOS function (code 20, l4H), which updates the
current (sequential) record number in the FCB, the Read Random function leaves
the record number unchanged, so that a subsequent Write Random will replace
the record just read.

You can follow a Read Random with a Write Sequential (code 21, l5H). This



Notes

Chapter 5: The Basic Disk Operating System 133

will rewrite the record just read, but will then update the sequential record number.
Or you may choose to use a Read Sequential after the Read Random. In this case,
the same record will be reread and the sequential record number will be incre
mented. In short, the file can be sequentially read or written once the Read
Random has been used to position to the required place in the file.

To use the Read Random function, you must first open the base extent of the
file, that is, extent O. Even though there may be no actual data records in this
extent, opening permits the file to be processed correctly.

One problem that is not immediately obvious with random files is that they can
easily be created with gaps in the file. If you were to create the file with record
number 0 and record number 5000, there would be no intervening file extents.
Should you attempt to read or copy the file sequentially, even using CP/M's file
copy utility, only the first extent (and in this case, record 0) would get copied. A
Read Sequential function would return an "end of file" error after reading record
O. You must therefore be conscious of the type of the file that you try and read.

See Figure 5-26 for an example subroutine that performs Random File Reads
and Writes. It reads or writes records ofsizes other than 128 bytes, where necessary
reading or writing several CP/M records, prereading them into its own buffer
when the record being written occupies only part of a CP/M record. It also
contains subroutines to produce a 32-bit product from multiplying HL by DE
(MLDL-Multiply double length) and a right bit shift for DE, HL (SDLR-Shift
double length right).

Function 34: Write Random
Function Code: C = 22H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Return code

Example
0022 =
0005 =

B$WRITERAN
BDOS

EQU
EQU

34
5

IWrite Random
IBDOS entry point

FCB:
0000 00 FCB$DISK:
0001 46494C454EFCB$NAME:
0009 545950 FCB$TYPa
OOOC 00 FCB$EXTENT:
OOOD 0000 FCB$RESV:
OOOF 00 FCB$RECUSED:
0010 OOOOOOOOOOFCB$ABUSED:
0018 0000000000
0020 00 FCB$SEQREC:
0021 0000 FCB$RANREC:
0023 00 FCB$RANRECO:

DB
DB
DB
DB
DB
DB
DB
DB
DB
DW
DB

IFile control block
o ISearch on default disk drive
'FILENAME' IFile name
;TYP' IFile type
o IExtent
0.0 IReserved for CP/M
o IRecords used in this extent
0.0.0.0,0,0.0.0 :Allocation blocks used
0,0.0.0.0,0,0.0
o ISequential rec. to read/write
o IRandom rec. to read/write
o IRandom rec. overflow byte (MS)

0024 D204 RANRECNOI DW 1234 IExample random record number

IRecord will be written from
I address set bY prior
I SETDMA call



134 The CP/M Programmer's Handbook

0026 2A2400
0029 222100
002C OE22
002E 110000
0031 C00500

LHLO
SHLO
MVI
LXI
CALL

RANRECNO
FCB$RANREC
C,B$WRITERAN
O,FCB
BOOS

Get random record number
Set up file control block
Function code
DE -) file control block
A = 00 if operation successful
A = nonzero if no data in file

spec i f icall y:
A = 03 -- CP/M could not

close current extent
05 -- directorY full
06 -- attempt to write

beyond end of disk

Purpose This function writes a specific CP/M record (128 bytes) into a random file. It is
initiated in much the same way as the companion function, Read Random (code
33,21 H). It assumes that you have already opened the file, set the DMA address to
the address in memory containing the record to be written to disk, and set the
random record number in the FCB to the specified record being written. This
function also computes the extent in which the specified record number lies and
opens the extent (creating it if it does not already exist). The error codes returned in
A by this call are the same as those for Read Random, with the addition of error
code 05, which indicates a full directory.

Like the Read Random (but unlike the Write Sequential), this function does
not update the logical extent and sequential (current) record number in the FCB.
Therefore, any subsequent sequential operation will access the record just written
by the Read Random call, but these functions will update the sequential record
number. The Write Random can therefore be used to position to the required
place in the file, which can then be accessed sequentially.

Notes In order to use the Write Random, you must first open the base extent (extent
0) of the file. Even though there may be no data records in this extent, opening
permits the file to be processed correctly.

As explained in the notes for the Read Random function, you can easily create
a random file with gaps in it. Ifyou were to create a file with record number 0 and
record number 5000, there would be no intervening file extents.

Figure 5-25 shows an example subroutine that creates a random file (CRF) but
avoids this problem. You specify the number of l28-byte CP/M records in the file.
The subroutine creates the file and then writes zero-filled records throughout. This
makes it easier to process the file and permits standard CP/M utility programs to
copy the file because there is a data record in every logical record position in the
file. It is no longer a "sparse" file.

Figure 5-26 shows a subroutine that ties the Read and Write Random func
tions together. It performs Random Operations (RO). Unlike the standard BDOS
functions that operate on l28-byte CP/M records, RO can handle arbitrary record
size from one to several thousand bytes. You specify the relative record number of
your record, not the CP/M record number (RO computes this). RO also prereads a
CP/M record when your logical record occupies part of a l28-byte record, either
because your record is less than 128 bytes or because it spans more than one



Chapter 5: The Basic Disk Operating System

CRF
Create random file
This subroutine creates a random file. It erases any previous
file before creating the new one, and then writes O-filled
records throughout the entire file.

;EntrY parameters
DE -) file control block for new file
HL = Number of 12S-byte CP/M r~cords to be

zero-filled.

135

;Exit parameters
Carry clear if operation successful (A
Carry set if error (A = OFFH)

;Calling sequence
LXI D.FCB
CALL CRF
JC ERROR

0.1,2.3)

0013
0016
OOIA
0015
0005

B$ERASE EGlU 19 J Erase file
B$CREATE EGlU 22 ;Create file
B$SETDMA EGlU 26 :Set DMA address
B$WRITESEGl EGlU 21 ;Write sequential record
BDOS EGlU 5 'BOOS entrY point

;Zero-filled buffer
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.

0.0.0
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.

0.0.0
0.0.0.0.0.0.0.0.0.0.0.0.0.0

CRFBUF,
0000 0000000000 DW

SHLD CRFRC
PUSH D
MVI C.B$ERASE
CALL BDOS
POP D
PUSH D
MVI C.B$CREATE
CALL BDOS
CPI OFFH
CMC
POP D
RC
PUSH' D

MVI C.B$SETDMA
LXI D.CRFBUF
CALL BDOS
POP D

LHLD CRFRC
MOV A.L
ORA H
RZ
DCX H
SHLD CRFRC
PUSH D
MVI C. B$WR ITESEGl
CALL BDOS

POP D
JMP CRFL

0032 0000000000

0064 0000000000

0080 0000 CRFRC,

CRF,
0082 228000
0085 D5
0086 OEI3
0088 CD0500
008B DI
008C D5
008D OEI6
008F CD0500
0092 FEFF
0094 3F
0095 DI
0096 D8
0097 D5

0098 OEIA
009A 110000
009D CD0500
OOAO DI

CRFL,
OOAI 2A8000
00A4 7D
00A5 B4
00A6 C8
00A7 2B
00A8 228000
OOAB D5
OOAC OEI5
OOAE CD0500

OOBI DI
00B2 C3AIOO

DW

DW

DW o ;Record count

;Save record count
;Preserve FeB pointer
;Erase any existing file

:Recover FeB pointer
; and resave
'Create (and open new file)

;Carry set if OK. clear if error
;Complete to use carry set if error
;Recover FCB address
;Return if error
;Resave FCB pointer

;Set DMA address to O-buffer

;Recover FeB pointer

;Oet record count

;Check if count now zero
;Yes. exit
;Downdate count
;Save count
;Resave FCB address
;Write sequentially

;Recover FeB
;Write next record

Figure 5·25. Create random file



136 The CP/M Programmer's Handbook

128-byte sector. The subroutine suppresses this preread if you happen to use a
record size that is some multiple of 128 bytes. In this case, your records will fit
exactly onto a 128-byte record, so there will never be some partially occupied
128-byte sector.

This example also contains subroutines to produce a 32-bit product from
multiplying HL by DE (MLPL-Multiply double length) and a right bit shift for
DE, HL (SDLR-Shift double length right).

IRO
;Random operation (read or write)

,This subroutine reads or writes a random record from a file.
;The record length can be other than 128-bytes. This
;subroutine computes the start CP/M record (which
; is 128 bytes), and, if reading, performs a random read
;and moves the user-specified record into a user buffer.
;If nece55ar~more CP/M records will be read until the complete
;user-specified record has been input.
;For writing, if the size of the user-specified record is not an exact
;multiple of CP/M records, __ the appropriate s.ctors will be preyead.
:It is not necessary to pr.read when the user-specified record
lis an exact CP/M r~cord, nor when subroutine is processing
;CP/M records entirely spanned by a user-specified record.

parameters
HL -} parameter

DB
DW
DW
DW
DW

block
o
FCB
RECNO
RECSZ
BUFFER

of the form:
;OFFH when reading, OOH for write
;Pointer to FCB
;User record number
;User record size
;Pointer to buffer of
; RECSZ bytes in length

;Exit parameters
A = 0 if operation completed (and user record

copied into user buffer)
1 if attempt to read unwritten CP/M record
3 if CP/M could not close an extent
4 if attempt to read unwritten extent
5 if CP/M could not create a new extent
6 if attempt to read beyond end of disk

;Calling sequence
LXI H,PARAMS
CALL RO
ORA A
JNZ ERROR

0021 FCBE$RANREC EQU 33
OOIA B$SETDMA EQU 26
0021 B$READRAN EQU 33
0028 B$WR ITERANZ EQU 40

0005 BDOS EQU :;

ROPB,
0000 00 ROREAD, DB 0
0001 0000 ROFCB, DW 0
0003 0000 ROURN, DW 0
0005 0000 ROURL, DW 0
0007 0000 ROUB, DW 0
0009 ROPBL EQU $-ROPB

0009 0000 ROFRP, DW 0

;HL -} parameter block

;Check if error

;Offset of random record no. in FeB
,Set the DMA address
;Read random record
;Write random record with zero-fill
; previously unallocated allocation
, blocks
;BDOS entry point

;Parameter block image
;NZ when reading, Z when writing
,Pointer toFCB
;User record number
;User record length
;Point~r to user buffer
;Parameter block length

;Pointer to start of user record fragment
; in first CP/M-record read in

Figure 5·26. Read/ Write variable length records randomly



Chapter 5: The Basic Disk Operating System

OOOB 00 ROFRL, DB 0 IFra9ment lenllth
OOOC 0000 RORNP, DW 0 ;Record number pointer (I n user FCB)
OOOE 00 ROWECR, DB 0 ,NZ when writing user records that are an, exact super-multiple of CP/M-record <.and

• therefore no pre..... ad is required)

OOOF ROBUF. DS 128 ,Buffer for CP/M record

ROI
008F 110000 LXI D,ROPB .DE -> local parameter block
0092 OE09 MVI C,ROPBL ,Parameter block length
0094 CDFEOI CALL MOVE ;Move C byt•• from HL to DE

,To compute off •• t of US.r record in CP/M record,
• compute the relative BYTE offset of the start
, of the us. I'" record within the file (i.8.
; user record number * record lize). The least
, significant 7 bits of this product give the
, byte off •• t of the .tart of the user record.
,The product / 128 (shifted left 7 bits) gives the
,CP/M record number of the start of the us. I'" record.

137

0097 2A0500
009A 7D
009B E67F
009D B7
009E 3EOO
OOAO C2A400
00A3 3D

RONE=-
00A4 320E00
00A7 EB
00A8 2A0300
OOAB CDB801

OOAE D5
OOAF E5
OOBO 7D
OOBI E67F

00B3 4F
00B4 0600
00B6 210FOO
00B9 09
OOBA 220900

LHLD
MOV
ANI
ORA
MVI
JNZ
DCR

STA
XCHG
LHLD
CALL

PUSH
PUSH
MOV
ANI

MOV
MVI
LXI
DAD
SHLD

ROURL
A.L
7FH
A
A,O
RONE
A

ROWECR

ROURN
MLDL

D
H
A,L
7FH

C.A
B,O
H,ROBUF
B
ROFRP

,Get us.r record length
,Get LS byte. of user .... ec. length
,Check If e.act multiple of 128
,(I.e. e.act CP/M records)
,A • 0, flags unchanged
,Not eMact CP/M record.
,A =FF

,Set write-exact-CP/M-records flag
,DE. user record len9th
,Get user record number
,DE,HL· HL • DE
,DE,HL • user-record byte offset in file
,Save user-record byte offset

,Get LS byte of product
,Isolat. byte off.et within

,CP/M record
,Make into word value
,Get ba.e addres. of local buffer
IHL -> Start of fragment In buffer
,Save fragment pointer

,Compute maximum fragment len9th that could reside in
,remainder of CP/M record, based on the off.et in the
,CP/M record where the fragment starts.

OOBD 47
OOBE 3E80
OOCO 90
OOCI 320BOO

MOV
MVI
SUB
STA

B,A
A,I28
B
ROFRL

,Take copy of offset in CP/M record
,CP/M record size
,Compute 128 - offset
,Assume this is the fragment length

,If the user record len9th is less than the assumed
, fragment length, use it in place of the result above

00C4 47
00C5 3A0600
00C8 B7
00C9 C2D600
OOCC 3A0500
OOCF B8
OODO D2D600
00D3 320BOO

ROFLOK,
00D6 3AOEOO
00D9 47
OODA 3AOOOO
OODD 2F

MOV
LDA
ORA
.JNZ
LDA
CMP
JNC
STA

LDA
MOV
LDA
CMA

B,A
ROURL+I
A
ROFLOK
ROURL
B
ROFLOK
ROFRL

ROWECR
B,A
ROREAD

,Get copy of •••ume frag. length
,Oet MS byte of user record length
'If NZ, rec, len. must be > 128
'So frallment lenllth Is OK
,Still a chance that rec, len.
t Ie•• than fragment len.
,NC if u.er rec. len. -> frag. len.
,U.er rec. len. < frag. len••0
J reset fragment length to .maller

,Oet e.act CP/M record flail
.for ANDlnll with READ flail
,Oet r.ad operation flag
,Invert .0 NZ ~hen writing

Figure 5·26. (Continued)



138 The CP/M Programmer's Handbook

OODE AO
OODF 320EOO

ANA
STA

B
ROWECR

;Form logical AND
;Save back in flag

;Recover the double length byte offset within the file
;of the start of the user record. Shift 7 places right
;to divide by 128 and get the CP/M record number for
;the start of the user record.

00E2 EI
00E3 DI
00E4 OE07

00E6 CDFIOI
00E9 OD
OOEA C2E600

OOED 7A
OOEE B3
OOEF C2ACOI

00F2 EB
00F3 2AOI00
00F6 012100
00F9 09
OOFA 220COO
OOFD 73
OOFE 23
OOFF 72

0100 OEIA
0102 IIOFOO
0105 CD0500

OIOB 3AOEOO
OIOB B7
OIOC C21FOI

OIOF 2AOI00
0112 EB
01130E21
0115 CD0500

0118 FE05
OIIA DCAFOI

OIID B7
OIIE CO

OIIF 2A0700
0122 EB
0123 2A0900
0126 3AOBOO
0129 4F

012A 3AOOOO
012D B7
012E C23201
0131 EB

0132 CDFEOI

0135 3AOOOO
0138 B7
0139 CA3DOI
013C EB

013D 220700
0140 3AOOOO

ROS:

ROMNF:

RORDI:

ROWRI:

POP
POP
MVI

CALL
DCR
JNZ

MOV
ORA
JNZ

XCHG
LHLD
LX!
DAD
SHLD
MOV
INX
MOV

MVI
LXI
CALL

LDA
ORA
JNZ

LHLD
XCHG
MVI
CALL

CPI
CC

ORA
RNZ

LHLD
XCHG
LHLD
LDA
MOV

LDA
ORA
JNZ
XCHG

CALL

LDA
ORA
JZ
XCHG

SHLD
LDA

H
D
C.7

SDLR
C
ROS

A,D
E
ROERO

ROFCB
B.FCBE$RANREC
B
RORNP
M.E
H
M.D

C.B$SETDMA
D.ROBUF
BDOS

'ROWECR
A
ROMNF

ROFCB

C.B$READRAN
BDOS

5
ROCIE

A

ROUB

ROFRP
ROFRL
C.A

ROREAD
A
RORDI

MOVE

ROREAD
A
ROWRI

ROUB
ROREAD

,Recover user rec. byte offset

;Count for shift right

,DE.HL = DE.HL I 2

;Error if DE still NZ after
; division by 128.

;Set CP/M record number in FeB
;DE = CP/M record number
:Get pointer to FCB
;Offset of random record no. in FeB
,HL -> roan. rec. no. in FeB
,Save record number pointer
; Store LS byte

; Store MS byte

;Set DMA address to local buffer

;Bypass preyead if exact sector write

;Oet pointer to FeB
,DE -> FCB
;Read random function

;Check if error code < 5
;Yes. check if ignorable error
; (i.e. error reading unwritten part
; of file for write operation preread)
;Cheek if error
;Yes

;Move next fragment
;Oet pointer to user buffer
;DE -} user buffer
;HL -} start of user ree. in local buffer
;Get fragment length
;Ready for MOVE

;Check if reading

;Yes. so leave DE. HL unchanged
;Writing. so swap source and destination
;DE -) start of user ree. in local buffer
;HL -) user buffer

;Reading - fragment local -) user buffer
;Writing - fragment user -) local buffer
;Check if writing

;Writing. so leave HL -) user buffer
;HL -) next byte in user buffer

;Save updated user buffer pointer
;Check if reading

Figure 5-26. (Continued)



0143 B7
0144 C~OOI

0147 OE2B
0149 2AOI00
014C EB
014D CDO~OO

ORA
JNZ

MVI
LHLD
XCHG
CALL

A
RORD3

C, BSWRITERANZ
ROFCB

BDOS

Chapter 5: The Basic Disk Operating System

,Ve., bypa•• write code

;Writ. random
,Get addre.s of FCB
,DE -) FCB

139

RORD3: ,Compute residual length of user record as vet unmoved.
,If necessary (because more data needs to be transferred)
;more CP/M records will be read. In this case
,the start of the fragment will be off •• t O. The fragment
,length depends on whether the user record finishes within
;the next sector or spans it. If the residual length of the
,user record is > 128, the fragment length will be set to
,128.

01~0 2AO~00

01~3 3AOBOO
01~6 ~F

01~7 1600
01~9' CDEAOI
Ol~ 7C
OI~D B~

Ol~ C8

OI~F 220~00

0162 4D
0163 118000
0166 CDEAOI
0169' FA6EOI
016C OE80

016E 79'
016F 320BOO

0172 210FOO
017~ 2209'00

LHLD
LDA
MOV
MVI
CALL
MOV
ORA
RZ

SHLD
MOV
LXI
CALL
JM
MVI

ROLTl28.
MOV
STA

LXI
SHLD

ROURL
ROFRL
E,A
D,O
SUBHL
A,H
L

ROURL
C,L
D,128
SUBHL
ROLTl28
C,128

A.C
ROFRL

H.ROBUF
ROFRP

;Oet residual user ree. length
;Get fragment length just moved
,Make into a word value

,Compute ROURL - ROFRL
;Check if result 0

;Return when complete USER
; record has be.n transferred
;Save downdated residual rec. length
;Assume residual length < 128
,Check If residual length Is < 128
,HL c HL - DE
,negative If < 128
;=> 128, so set frag.length to 128

,Fragment length now Is either 128
; if more than 128 bytes left to input
, in user record, or Just the right
, number of byte. « 128) to complete
, the user record.
,All sub.equent CP/M records will start
, at beginning of buffer

0178 2AOCOO
017B ~E

017C 23
017D ~6

017E 13
017F 7A
0180 B3
OIBI C28701
0184 3E06
0186 C9'

0lB7 72
OIBB 2B
0189' 73

018A 3AOEOO
OIBD B7
OIBE C21FOI

0191 3AOOOO
019'4 B7
Ol~ C2AOOI

0198 3AOBOO
OI9'B FE80
OI9'D CAIFOI

OIAO OE21
0lA2 2AOI00

ROSRN,

RORD2.

LHLD
MOV
INX
MOV
INX
MOV
ORA
JNZ
MVI
RET

MOV
DCX
MOV

LDA
ORA
JNZ

LDA
ORA
JNZ

LDA
CPI
JZ

MVI
LHLD

RORNP
E,M
H
D.M
D
A,D
E
ROSRN
A,6

M,D
H
M,E

ROWECR
A
ROMNF

ROREAD
A
RORD2

ROFRL
128
ROMNF

C,BSREADRAN
ROFCB

,Update random record number in FCB
,HL -) random record number in user FCB
;Increment the random record number
;HL -) MS byte of record number
,Get MS byte
;Update record number itself
,Check if record now 0

,No, 50 save record number
;Indicate "seek past end of disk"
; R.turn to User

;Save record number
,HL -) LS byte

,If writing, eheek if preyead required
,Check If exact CP/M r-ecord write

,If re.ding~ perform re.d unconditionally

,For writes, bypass preread if
; whole CP/M-record is to be overwritten
, (fragment length. 128)

;Read the neKt CP/M record
, in .equence

Figure 5-26. (Continued)



140 The CP/M Programmer's Handbook

OIAS EB
0lA6 C/lOSOO
0lA9 C31FOI

XCHO
CALL
JMP

BOOS
ROMNF

.DE -> FCB

:Go back to move next fragment

ROERO.

OIAC 3E04 MVI A.4
OIAE C9 RET

ROCIE.

OlAF 47 MOV B.A
OIBO 3AOOOO LOA ROREAo
0lB3 B7 ORA A
0lB4 78 MOV A.B

OIBS CO RNZ
0lB6 AF XRA A
0lB7 C9 RET

pErrot" because u~.r record number
: * User record length I 128 gives
, a CP/M r.cord numb.r > 6SS35.
:Indicate "a tt ..mpt to read unwritten
: extent"

:Check ignorable error (prey.ad
J for writ. operation)
:Save original error code
:Check if read operation

.Re.tore original error code but
J leave flags unchanged
:Return if reading
,Filke uno error" indicator

,MLoL
:MultiplY HL * DE using iterative ADD with product
:returned in DE,HL.

:Entry parameters
J HL = multiplicand

DE = multiplier

:Exit parameters
DE,HL z product
DE == multiplier

MLDL,
0lB8 010000 LXI B.O
OIBB CS PUSH B

OIBC 7C MOV A.H
OIBo BS ORA L
OIBE CAE501 JZ MLDLZ
OICI 7A MOV A.o
0lC2 B3 ORA E
0lC3 CAE501 JZ MLoLZ

0lC6 7A MOV A.o
0lC7 BC CMP H
0lC8 DACCOI JC MLoLNX
OICB EB XCHO

MLoLNX,
OICC 42 MOV B.D
OICo 4B MOV C.E

DICE S4 MOV o.H
OICF SO MOV E.L

DIDO DB OCX B

MLoLA.
0101 78 MOV A.B
0102 BI ORA C
0103 CAE801 JZ MLDLX
0106 19 DAD 0
0107 E3 XTHL
0108 70 MOV A.L
0lD9 CEOO ACI 0
010B 6F MOV L.A
010C 7C MOV A.H
DIDO CEOO ACI 0
OloF 67 MOV H.A
DIED E3 XTHL
OIEI DB OCX B
0lE2 C3DIOI JMP MLoLA

Agure 5-26. (Continued)

:Put 0 on top of stack
: to act as MS byte of product
,Ch.ck If .Ith.r multiplicand
: or multiplier is 0

,This routine will b. faster if
, the smaller value is in DE
,Oet MS byte of current DE value
~Ch.ck which is smaller
,C •• t if D < H~ so no exchange

,BC = multiplier

,DE = HL = multiplicand

,Adjust count as
, 1 * multiplicand = multiplicand
,ADD loop
,Check if all iterations completed

,Y.s~ exit
;HL = multiplicand + multiplicand
,HL = MS bytes of result, TOS = part prod.
,O.t LS byte of top half of product
,Add one if carry .et
,Replace
,Repeat for MS byte

,Countdown on multiplier - 1
;Loop back until all ADDs done



Chapter 5: The Basic Disk Operating System 141

OIE!5 210000

OIES 01
0lE9 C9

MLOLZ:

MLDLX:

LXI

POP
RET

H,O

o

,Fake product as either multiplicand
; or multiplier is 0

,Recover MS part of product

,SUBHL
,Subtract HL - DE.

,Entry parameters
, HL = subtrahend

DE = subtractor

,Exit parameters
HL =- diffiltrence

OlEA 70
OIEB 93
OIEC 6F
OlEO 7C
OIEE 9A
OIEF 67
OIFO C9

SUBHL:
MOV
SUB
MOV
MOV
SBB
MOV
RET

A.L
E
L.A
A,H
o
H.A

,Get LS byte
,Subtract without regard to carry
,Put back into difference
,Get MS byte
,Subtract including carry
,Move back into difference

,SOLR
,Shift OE,HL right one place (dividing OE,HL by 2)

,Entry parameters
DE,HL = value to be shifted

,Exit parameters
, OE,HL"= value I 2

OIFI B7
0lF2 EB
0lF3 COF701
0lF6 EB

0lF7 7C
0lF8 IF

0lF9 67
OIFA 70
OIFB IF
OIFC 6F
OIFO C9

SDLR:

SOLR2,

ORA
XCHG
CALL
XCHG

MOV
RAR

MOV
MOV
RAR
MOV
RET

A

SDLR2

A.H

H,A
A.L

L.A

,Clear carry
,Shift DE first

,Now shl ft HL

,Drop into SDLR2 with carry
, set correctly from LS bit
, of DE
,Shift HL right one place
,Oet MS byte
,Bit 7 set from previous Carry,
,Bit 0 goes into carry
,Put shift MS byte back
,Oet LS byte
,Bit 7 = bit 0 of I'IS byte
,Put back Into result

OIFE 7E
OIFF 12
0200 13
0201 23
0202 00
0203 C2FEOI
0206 C9

,MOVE
,Mov•• C byte. from HL to DE

MOVE.
MOV A,M
STAX 0
INX D
INX H
OCR C
JNZ MOVE
RET

;Get source byte
,Store in d•• tination
,Update destination pointer
,Update source pointer
;Oowndate count
; Get n.xt byte

Rgure 5-26. (Continued)



142 The CP/M Programmer's Handbook

Function 35: Get File Size
Function Code:
Entry Parameters:
Exit Parl'meters:

Example

C=23H
DE = Address of FCB
Random record field set in FCB

0023 =
000:5 =

B.GETFSIZ
BDOS

EQU
EQU

;Get Random File LOGICAL size
:BDOS entry point

FCB:
0000 00 FCB'DISK:
0001 46494C454EFCB.NAME,
0009 5459:50 FCB.TYP,
OOOC 00 FCB'EXTENT:
OOOD 0000 FCB'RESV:
OOOF 00 FCB'RECUSED:
0010 OOOOOOOOOOFCB'ABUSED:
0018 0000000000
0020 00 FCB.SEQREC:
0021 0000 FCB'RANREC:
0023 00 FCBSRANRECO:

DB
DB
DB
DB
DB
DB
DB
DB
DB
DW
DB

:File control block
o :Search on default disk drive
'FILENAME' ,File name
'TYP' :File type
o ;Extent
0,0 ;Reserved for CP/M
o ;Records used in this extent
0,0.0.0,0,0.0.0 :Allocation blocks used
0.0.0.0.0.0.0.0
o :Sequential rec. to read/write
o ,Random rec. to read/write
o ;Random rec. overflow byte (MS)

0024 OE23
0026 110000
0029 CD0500
002C 2A2100

MVI
LXI
CALL
LHLD

C.BSGETFSIZ
D,FCB
BDOS
FCBSRANREC

;Function code
:DE -> file control block

;Get random record number
,HL = LOGICAL file size
: i.e. the record number of the
: last record

Purpose This function returns the virtual size of the specified file. It does so by setting
the random record number (bytes 33-35) in the specified FCB to the maximum
128-byte record number in the file. The virtual file size is calculated from the
record address of the record following the end of the file. Bytes 33 and 34 form a
16-bit value that contains the record number, with overflow indicated in byte 35. If
byte 35 is 01, this means that the file has the maximum record count of 65,536.

If the function cannot find the file specified by the FCB, it returns with the
random record field set to O.

You can use this function when you want to add data to the end of an existing
file. By calling this function first, the random record bytes will be set to the end of
file. Subsequent Write Random calls will write out records to this preset address.

Notes Do not confuse the virtual file size with the actual file size. In a random file, if
you write just a single CP/M record to record number 1000 and then call this
function, it will return with the random record number field set in the FCB to
1000-even though only a single record exists in the file.

For sequential files, this function returns the number of records in the file. In
this case, the virtual and actual file sizes coincide.

Function 36: set Random Record Number
Function Code:
Entry Parameters:
Exit Parameters:

C= 24H
DE = Address of FCB
Random record field set in FCB



Chapter 5: The Basic Disk Operating System 143

Example
0024 =
0005 =

B$SETRANREC
BOOS

EGU
EGU

36
5

;Set Random Record Number
;BDOS entry point

FCB:
0000 00 FCB$DISK:
0001 46494C454EFCB$NAME:
0009 545950 FCB$TVP:
OOOC 00 FCB$EXTENT:
0000 0000 FCB$RESV:
OOOF 00 FCB$RECUSED:
0010 OOOOOOOOOOFCB$ABUSED:
0018 0000000000
0020 00 FCB$SEGREC:
0021 0000 FCB$RANREC:
0023 00 FCB$RANRECO:

DB
DB
DB
DB
DB
DB
DB
DB
DB
OW
DB

;File control block
o ;Search on default disk drive
'FILENAME' ,File name
'TVP' ;File type
o ;Extent
0,0 ,Reserved for CP/M
o ,Records used in thIs extent
0,0,0,0,0,0,0,0 'Allocation blocks used
0,0,0,0,0,0,0,0
o ,Sequential rec. to read/write
o ,Random rec. to read/write
o ,Random rec. overflow byte (MS)

; ••• file opened and read
, or written sequentially •••

0024 OE24
0026 110000
0029 CD0500
002C 2A2100

MVI
LXI
CALL
LHLD

C,B$SETRANREC
D,FCB
BOOS
FCB$RANREC

,Function code
,DE -) file control block

;Get random record number
'HL = random record number

that corresponds to the
, sequential progress down
; the file.

Function Code:
Entry Parameters:
Exit Parameters:

Purpose This function sets the random record number in the FCB to the correct value
for the last record read or written sequentially to the file.

Notes This function provides you with a convenient way to build an index file so that
you can randomly access a sequential file. Open the sequential file, and as you read
each record, extract the appropriate key field from the data record. Make the
BDOS Set Random Record request and create a new data record withjust the key
field and the random record number. Write the new data record out to the index
file.

Once you have done this for each record in the file, your index file provides a
convenient method, given a search key value, of finding the appropriate CP/M
record in which the data lies.

You can also use this function as a means offinding out where you are currently
positioned in a sequential file-either to relate a CP/M record number to the
position, or simply as a place-marker to allow a repositioning to the same place
later.

Function 37: Reset Logical Disk Drive
c= 25H

DE = Logical drive bit map
A=OOH

Example
0025
0005

B$RESETD
BOOS

EGU
EGU

37
5

,Reset Logical Disks
;BDOS entry point



144 The CP/M Programmer's Handbook

DE = Bit map of disks to b.
reset

Bits are if disk to be
reset

Bits 15 14 13 0.0 2 1 0
Disk P 0 N ••• C B A

0000 110200
0003 OE25
0005 CD0500

LXI
I'IVI
CALL

D,0000$0000$0000$0010B ;Reset drive B,
C,B$RESETD ;Function code
BOOS

Purpose This function resets individual disk drives. It is a more precise version of the
Reset Disk System function (code 13,ODH), in that you can set specific logical
disks rather than all of them.

The bit map in DE shows which disks are to be reset. The least significant bit of
E represents disk A, and the most significant bit of D, disk P. The bits set to I
indicate the disks to be reset.

Note that this function returns a zero value in A in order to maintain compati
bility with MP/ M.

Notes Use this function when only specific diskettes need to be changed. Changing a
diskette without requesting CP/M to log it in will cause the BDOS to assume that
an error has occurred and to set the new diskette to Read-Only status as a
protective measure.

Function 40: Write Random with Zero-fill

Example

Function Code:
Entry Parameters:
Exit Parameters:

C= 28H
DE = Address of FCB

A = Return Code

FCB,
0000 00 FCB$DISK,
0001 46494C454EFCB$NAI'IE,
0009 54~9~0 FCB$TYP,
OOOC 00 FCBSEXTENT:
0000 0000 FCBSRESV:
OOOF 00 FCBSRECUSED,
0010 OOOOOOOOOOFCB$ABUSED,
0018 0000000000
0020 00 FCB$SEQREC,
0021 0000 FCBSRANREC:
0023 00 FCB$RANRECO:

;File control block
o ;Search on default disk drive
~FILENAI'IE~ ;File name
~TYP~ ;File type
o ;Extent
0,0 ;Reserved for CP/I'I
o ;Records used in this extent
0,0.0,0,0.0,0,0 ;Allocation blocks used
0,0,0.0,0,0,0,0
o ;Sequential reco to read/writ.
o :Random rec. to read/write
o ;Random rec. overflow byte (I'IS)

0028 =
0005 =

0024 0204

B$WRITERANZ
BOOS

RANRECNO:

EQU
EQU

DB
DB
DB
DB
DB
DB
DB
DB
DB
OW
DB

OW

40
5

1234

;Write Random with Zero-Fill
;BDOS entry point

;Example random record number

0026 2A2400
0029 222100
002C OE28
002E 110000
0031 CD0500

LHLD
SHLD
I'IVI
LXI
CALL

RANRECNO
FCB$RANREC
C,S$WRITERANZ
D,FCB
SDOS

Record will be written froM
address set by prior
SETDI'IA call

Get random record number
Set up file control block
Function code
DE -) file control block
A = 00 if operation successful



Chapter 5: The Basic Disk Operating System 145

;A z nonzeYo if no dAtA in file
I specificAllY I
IA • 03 -- CP/M could not

close cuyyent eKtent
05 -- diYectoYy full
06 -- .ttempt to wyite

beyond end of disk

Purpose This function is an extension to the Write Random function described pre-
viously. In addition to performing the Write Random, it will also fill each new
allocation block with OOH's. Digital Research added this function to assist Micro
soft with the production of its COBOL compiler-it makes the logic of the file
handling code easier. It also is an economical way to completely fill a random file
with OOH's. You need only write one record per allocation block; the BOOS will
clear the rest of the block for you.

Notes Refer to the description of the Write Random function (code 34).



The BIOS Components
The BIOS Entry Points
Bootstrap Functions
Character Input/ Output Functions
Disk Functions
Calling the BIOS Functions Directly
Example BIOS

The Basic
Input/Output System

This chapter takes a closer look at the Basic Input/Output System (BIOS). The
BIOS provides the software link between the Console Command Processor
(CCP), the Basic Oisk Operating System (BOOS), and the physical hardware of
your computer system. The CCP and BOOS interact with the parts of your
computer system only as logical devices. They can therefore remain unchanged
from one computer system to the next. The BIOS, however, is customized for your
particular type ofcomputer and disk drives. The only predictable part of the BIOS
is the way in which it interfaces to the CCP and BOOS. This must remain the same
no matter what special features are built into the BIOS.

147



148 The CP/M Programmer's Handbook

The BIOS Components

A standard BIOS consists of low-level subroutines that drive four types of
physical devices:

Console: CP/M communicates with the outside world via the console.
Normally this will be a video terminal or a hard-copy terminal.

"Reader" and "punch": These devices are normally used to communicate
between computer systems-the names "reader" and "punch" are just his
torical relics from the early days of CP/M.

List: This is a hard-copy printer, either letter-quality or dot-matrix.

Disk drives: These can be anything from the industry standard single-sided,
single-density, 8-inch floppy diskette drives to hard disk drives with capaci
ties of several hundred megabytes.

The BIOS Entry Points

The first few instructions of the BIOS are all jump (JMP) instructions. They
transfer control to the 17 different subroutines in the BIOS. The CCP and the
BOOS, when making a specific request of the BIOS, do so by transferring control
to the appropriate JMP instruction in this BIOS jump table or jump vector. The
BIOS jump vector always starts at the beginning ofa 256-byte page, so the address
of the first jump instruction is always of the form xxOOH, where "xx" is the page
address. Location OOOOH to 0002H has a jump instruction to the second entry of
the BIOS jump vector-so you can always find the page address of the jump
vector by looking in location 0002H.

Figure 6-1 shows the contents of the BIOS jump vector along with the
page-relative address of each jump. The labels used in the jump instructions have
been adopted by convention.

The following sections describe the functions of each of the BIOS's main
subroutines. You should also refer to Digital Research's manual CP/M2.0 Altera
tion Guide for their description of the BIOS routines.

Bootstrap Functions

There are two bootstrap functions. The cold bootstrap loads the entire CP/M
operating system when the system is either first turned on or reset. The warm
bootstrap reloads the CCP whenever a program branches to location OOOOH.



KKOOH
KK03H
KK06!"l
KK09H
KKOCH
KKOFH
KK12H
KKl!5H
KK18H
KKlBH
KK1EH
KK21H
KK24H
KK27H
KK2AH
KK2DH
KK30H

.JMP BOOT

.JMP WBOOT

.JMP CONST

..lMP CONIN

.JMf,' CONOUT

.JMP LIST

.JMP PUNCH

.JMP READER

.JMP HOME

.JMP SELDSK

.JMP SETTRK

.JIlIP SETSEC

.JMP SETDMA

.JHp READ

.JI"P WRITE

.JMP LISTST

.JMP SECTRAN

Chapter 6: The Basic Input/Output System 149

;"Cold" (first time) bootstrap
;"Warm" bootstrap
;Console input status
;Console input
;Console outRl.lt
; List output
;"Punch l1 output
; "Reader" input
;Home disk heads (to track 0)
;Select logical disk
,Set track number
;Set sector number
;Set IlIA addre~s

'1 ~ead'( 128-tlyte) sector
~rite (128-byte) sector

;List device output status
;Sector translate

Figure 6-1. Layout of the standard BIOS jump vector

BOOT: "Cold" Bootstrap
The BOOT jump instruction is the first instruction executed in CP/M. The

bootstrap sequence must transfer control to the BOOT entry point in order to
bring up CP/M. In general, a PROM receives control either when power is first
applied or after you press the RESET button on the computer. This reads in the
CP/M loader on the first sector of the physical disk drive chosen to be logical disk
A. This CP/M loader program reads the binary image of the CCP, BOOS, and
BIOS into memory at some predetermined address. Then it transfers control to the
BOOT entry point in the BIOS jump veGt(tr.

This BOOT routine must initialize all of the required computer hardware. It
sets up th~ baud rates for the phy§ical console (if this has not already been done
during the bootstrap sequence), the "reader," "punch," and list devices, and the
disk controller. It must also set up the base page of memory so that there is a jump
at location OOOOH to the warm boot entry point in the BIOS jump vector (at
xx03H) and a jump at location 0005H to!iheBOOS entry point.

Most BOOT routines sign on by displaying a short message on the console,
indicating the current version of CP/M and the computer hardware that this BIOS
can support.

The BOOT routine terminates by transferring control to the start of the CCP
+6 bytes (the CCP has its own small jump vector at the beginning). Just before the
BOOT rbutine jumps into the CCP, it sets the C register to 0 to indicate that logical
disk A is to be the default disk drive. This is what causes "A>" to be the CCP's
initial prompt.

The actual CCP entry point is derived from the base address of the BIOS. The
CCP and BOOS together require IEOOH bytes of code, so the first instruction of
the CCP starts at BIOS -IEOOH.



150 The CP/M Programmer's Handbook

WBOOT: "Warm" Bootstrap

Unlike the "cold" bootstrap entry point, which executes only once, the WBOOT
or warm boot routine will be executed every time a program terminates by
jumping to location OOOOH, or whenever you type a CONTROL-C on the console as
the first character of an input line.

The WBOOT routine is responsible for reloading the CCP into memory.
Programs often use all of memory up to the starting point of the BOOS, overwrit
ing the CCP in the process. The underlying philosophy is that while a program is
executing, the CCP is not needed, so the program can use the memory previously
occupied by the CCP. The CCP occupies 800H (2048) bytes of memory-and this
is frequently just enough to make the difference between a program that cannot
run and one that can.

A few programs that are self-contained and do not require the BOOS's
facilities will also overwrite the BOOS to get another 1600H (5632) bytes of
memory. Therefore, to be really safe, the WBOOT routine should read in both the
CCP and the BOOS. It also needs to set up the two JMPs at location OOOOH (to
WBOOT itself) and at location 0005H (to the BOOS). Location 0003H should be
set to the initial value of the 10BYTE if this is implemented in the BIOS.

As its last act, the WBOOT routine sets register C to indicate which logical disk
is to be selected (C= 0 for A, I for B, and so on). It then transfers control into the
CCP at the first instruction in order to restart the CCP. Again, the actual address
is computed based on the knowledge that the CCP starts lEOOH bytes lower in
memory than the base address of the BIOS.

Character Input/Output Functions

Character input/output functions deal with logical devices: the console,
"reader," "punch," and list devices. Because these logical devices can in practice be
connected by software to one of several physical character I/O devices, many
BIOS's use CP/M's 10BYTE features to assign logical devices to physical ones.

In this case, each of the BIOS functions must check the appropriate bit fields of
the 10BYTE (see Figure 4-2 and Table 4-1) to transfer control to the correct
physical device driver (program that controls a physical device).

CONST: Console Input Status
CONST simply returns an indicator showing whether there is an incoming

character from the console device. The convention is that A = OFFH if a character
is waiting to be processed, A = 0 if one is not. Note that the zero flag need not be set
to reflect the contents of the A register - it is the contents that are important.

CONST is called by the CCP whenever the CCP is in the middle of an
operation that can be interrupted by pressing a keyboard character.



Chapter 6: The Basic Input/Output System 151

The BDOS will call CONST if a program makes a Read Console Status
function call (B$CONST, code 11, OBH). It is also called by the console input BIOS
routine, CONIN (described next).

CONIN: Console Input

CONIN reads the next character from the console to the A register and sets the
most significant (parity) bit to O.

Normally, CONIN will call the CONST routine until it detects A = OFFH.
Only then will it input the data character and mask off the parity bit.

CONIN is called by the CCP and by the BDOS when a program executes a
Read Console Byte function (B$CONIN, code 1).

CONOUT: Console Output

CONOUT outputs the character (in ASCII) in register C to the console. The
most significant (parity) bit of the character will always be O.

CONOUT must first check that the console device is ready to receive more
data, delaying if necessary until it is, and only then sending the character to the
device.

CONOUT is called by the CCP and by the BDOS when a program executes a
Write Console Byte function (B$CONOUT, code 2).

LIST: List Output

LIST is similar to CONOUT except that it sends the character in register C to
the list device. It too checks first that the list device is ready to receive the character.

LIST is called by the CCP in response to the CONTROL-P toggle for printer echo
of console output, and by the BDOS when a program makes a Write Printer Byte
or Display String call (B$LISTOUT and B$PRINTS, codes 5 and 9).

PUNCH: "Punch" Output

PUNCH sends the character in register C to the "punch" device. As mentioned
earlier, the "punch" is rarely a real paper tape punch. In most BIOS's, the PUNCH
entry point either returns immediately and is effectively a null routine, or it outputs
the character to a communications device, such as a modem, on your computer.

PUNCH must check that the "punch" device is indeed ready to accept another
character for output, and must wait if it is not.

Digital Research's documentation states that the character to be output will
always have its most significant bit set to O. This is not true. The BDOS simply
transfers control over to the PUNCH entry point in the BIOS; the setting of the
most significant bit will be determined by the program making the BDOS function
request (B$PUNOUT, code 4). This is important because the requirement ofa zero



152 The CP/M Programmer's Handbook

would preclude being able to send pure binary data via the BIOS PUNCH
function.

READER: "Reader" Input

As with the PUNCH entry point, the READER entry point rarely connects to
a real paper tape reader.

The READER function must return the next character from the reader device
in the A register, waiting, if need be, until there is a character.

Digital Research's documentation again says that the most significant bit of
the A register must be 0, but this is not the case if you wish to receive pure binary
information via this function.

READER is called whenever a program makes a Read "Reader" Byte function
request (B$READIN, code 3).

Disk Functions

All of the disk functions that follow were originally designed to operate on the
128-byte sectors used on single-sided, single-density, 8-inch floppy diskettes that
were standard in the industry at the time. Now that CP/M runs on many different
types of disks, some of the BIOS disk functions seem strange because most of the
new disk drives use sector sizes other than 128 bytes.

To handle larger sector sizes, the BIOS has some additional code that makes
the BDOS respond as if it were still handling 128-byte sectors. This code is referred
to as the blocking/deblocking code. As its name implies, it blocks together several
128-byte "sectors" and only writes to the disk when a completephysical sector has
been assembled. When reading, it reads in a physical sector and then deblocks it,
handing back several 128-byte "sectors" to the BDOS.

To do all of this, the blocking/deblocking code uses a special buffer area of the
same size as the physical sectors on the disk. This is known as the host disk buffer
or HSTBUE Physical sectors are read into this buffer and written to the disk
from it.

In order to optimize this blocking/deblocking routine, the BIOS has code in it
to reduce the number of times that an actual disk read or write occurs. A side effect
is that at any given moment, several 128-byte "sectors" may be stored in the
HSTBUF, waiting to be written out to the disk when HSTBUF becomes full. This
sometimes complicates the logic of the BIOS disk functions. You cannot simply
select a new disk drive, for example, when the HSTBUF contains data destined for
another disk drive. You will see this complication in the BIOS only in the form of
added logical operations; the BIOS disk functions rarely trigger immediate physi
cal operations. It is easier to understand these BIOS functions if you consider that



Chapter 6: The Basic Input/Output System 153

they make requests-and that these requests are satisfied only when it makes
sense to do so, taking into account the blocking/ deblocking logic.

HOME: Home Disk
HOME sets the requested track and sector to O.

SELDSK: select Disk
SELDSK does not do what its name implies. It does not (and must not)

physically select a logical disk. Instead, it returns a pointer in the HL register pair
to the disk parameter header for the logical disk specified in register C on entry.
C = 0 for drive A, 1for drive B, and so on. SELDSK also stores this code for the
requested disk to be used later in the READ and WRITE functions.

If the logical disk code in register C refers to a nonexistent disk or to one for
which no disk parameter header exists, then SELDSK must return with HL set to
OOOOH. Then the BDOS will output a message of the form

"BDOS Err on XI Select"

Note that SELDSK not only does not select the disk, but also does not indicate
whether or not the requested disk is physically present -merely whether or not
there are disk tables present for the disk.

SELDSK is called by the BDOS either during disk file operations or by a
program issuing a Select Disk request (B$SELDSK, code 14).

SETTRK: Set Track
SETTRK saves the requested disk track that is in the BC register pair when

SETTRK gets control. Note that this is an absolute track number; that is, the
number of reserved tracks before the file directory will have been added to the
track number relative to the start of the logical disk.

The number of the requested track will be used in the next BIOS READ or
WRITE function (described later in this chapter).

SETTRK is called by the BDOS when it needs to read or write a 128-byte
sector. Legitimate track numbers are from 0 to OFFFFH (65,535).

SETSEC: set Sector
SETSEC is similar to SETTRK in that it stores the requested sector number

for later use in BIOS READ or WRITE functions. The requested sector number is
handed to SETSEC in the A register; legitimate values are from 0 to OFFH (255).

The sector number is a logical sector number. It does not take into account any
sector skewing that might be used to improve disk performance.

SETSEC is called by the BDOS when it needs to read or write a 128-byte
sector.



154 The CP/M Programmer's Handbook

SETDMA: Set DMA Address

SETDMA saves the address in the BC register pair in the requested DMA
address. The next BIOS READ or WRITE function will use the DMA address as
a pointer to the 128-byte sector buffer into which data will be read or from which
data will be written.

The default DMA address is 0080H. SETDMA is called by the BDOS when it
needs to READ or WRITE a 128-byte sector.

READ: Read Sector

READ reads in a 128-byte sector provided that there have been previous BIOS
function calls to

SELDSK~ "select" the disk

SETDMA~set the DMA address

SETTRK~set the track number

SETSEC~set the sector number.

Because of the blocking/ deblocking code in the BIOS, there are frequent
occasions when the requested sector will already be in the host buffer (HSTBUF),
so that a physical disk read is not required. All that is then required is for the BIOS
to move the appropriate 128 bytes from the HSTBUF into the buffer pointed at by
the DMA address.

Only during the READ function will the BIOS normally communicate with
the physical disk drive, selecting it and seeking to read the requested track and
sector. During this process, the READ function must also handle any hardware
errors that occur, trying an operation again if a "soft," or recoverable, error occurs.

The READ function must return with the A register set to OOH if the read
operation is completed successfully. If the READ function returns with the A
register set to 01 H, the BDOS will display an error message of the form

BDOS Err on X: Bad Sector

Under these circumstances, you have only two choices. You can enter a
CARRIAGE RETURN, ignore the fact that there was an error, and attempt to make
sense of the data in the DMA buffer. Or you can type a CONTROL-C to abort the
operation, perform a warm boot, and return control to the CCP.

As you can see, CP/M's error handling is not particularly helpful, so most
BIOS writers add more sophisticated error recovery right in the disk driver. This
can include some interaction with the console so that a more determined effort can
be made to correct errors or, if nothing else, give you more information as to what
has gone wrong. Such error handling is discussed in Chapter 9.

If you are working with a hard disk system, the BIOS driver must also handle
the management of bad sectors. You cannot simply replace a hard disk drive if one
or two sectors become unreadable. This bad sector management normally requires



Chapter 6: The Basic Input/Output System 155

that a directory of"spare" sectors be put on the hard disk before it is used to store
data. Then, when a sector is found to be bad, one of the spare sectors is substituted
in its place. This is also discussed in Chapter 9.

WRITE: Write Sector
WRITE is similar to READ but with the obvious difference that data is

transferred from the DMA buffer to the specified 128-byte sector. Like READ,
this function requires that the following function calls have already been made:

SELDSK-"select" the disk

SETDMA-set the DMA address

SETTRK - set the track number

SETSEC-set the sector number.

Again, it is only in the WRITE routine that the driver will start to talk directly
to the physical hardware, selecting the disk unit, track, and sector, and transferring
the data to the disk.

With the blocking/deblocking code, the BOOS optimizes the number of disk
writes that are needed by indicating in register C the type ofdisk write that is to be
performed:

o= normal sector write

1 = write to file directory sector

2 = write to sector of previously unused allocation block.

Type 0 occurs whenever the BOOS is writing to a data sector in an already used
allocation block. Under these circumstances, the disk driver must preread the
appropriate host sector because there may be previously stored information on it.

Type 1 occurs whenever the BOOS is writing to a file directory sector-in this
case, the BIOS must not defer writing the sector to the disk, as the information is
too valuable to hold in memory until the HSTBUF is full. The longer the
information resides in the HSTBUF, the greater the chance of a power failure or
glitch, making file data already physically written to the disk inaccessible because
the file directory is out of date.

Type 2 occurs whenever the BOOS needs to write to the first sector of a
previously unused allocation block. Unused, in this context, includes an allocation
block that has become available as a result of a file being erased. In this case, there
is no need for the disk driver to preread an entire host-sized sector into the
HSTBUF, as there is no data of value in the physical sector.

As with the READ routine, the WRITE function returns with A set to OOH if
the operation has been completed successfully. If the WRITE function returns
with A set to 01 H, then the BOOS will display the same message as for READ:

BDOS Err on X: Bad Sector



156 The CP/M Programmer's Handbook

You can see now why most BIOS writers add extensive error-recovery and
user-interaction routines to their disk drivers.

For hard disk systems, some disk drivers are written so that they automatically
"spare out" a failing sector, writing the data to one of the spare sectors on the disk.

L1STST: List Status

As you can tell from its position in the list of BIOS functions, the LISTST
function was a latecomer. It was added when CP/M was upgraded from version 1.4
to version 2.0.

This function returns the current status of the list device, using the IOBYTE if
necessary to select the correct physical device. It sets the A register to OFFH if the
list device can accept another character for output or to OOH if it is not ready.

Digital Research's documentation states that this function is used by the
DESPOOL utility program (which allows you to print a file "simultaneously" with
other operations) to improve console response during its operation, and that it is
acceptable for the routine always to return OOH if you choose not to implement it
fully.

Unfortunately, this statement is wrong. Many other programs use the LISTST
function to "poll" the list device to make sure it is ready, and if it fails to come
ready after a predetermined time, to output a message to the console indicating
that the printer is not ready. If you ever make a call to the BDOS list output
functions, Write Printer Byte and Print String (codes 5 and 9), and the printer is
not ready, then CP/M will wait forever-and your program will have lost control
so it cannot even detect that the problem has occurred. IfLISTST always returns a
OOH, then the printer will always appear not to be ready. Not only does this make
nonsense out of the LISTST function, but it also causes a stream offalse "Printer
not Ready" error messages to appear on the console.

SECTRAN: Sector Translate

SECTRAN, given a logical sector number, locates the correct physical sector
number in the sector translate table for the previously selected (via SELDSK)
logical disk drive.

Note that both logical and physical sector numbers are l28-byte sectors, so if
you are working with a hard disk system, it is not too efficient to impose a sector
interlace at the l28-byte sector level. It is better to impose the sector interlace right
inside the hard disk driver, if at all; in general, hard disks spin so rapidly that CP/M
simply cannot take advantage of sector interlace.

The BDOS hands over the logical sector number in the BC register pair, with
the address of the sector translate table in the DE register pair. SECTRAN must
return the physical sector number in HL.

If SECTRAN is to be a null routine, it must move the contents of BC to HL
and return.



Chapter 6: The Basic Input/ Output System 157

Calling the BIOS Functions Directly

As a general rule, you should not make direct calls to the BIOS. To do so makes
your programs less transportable from one CP/M system to the next. It precludes
being able to run these programs under MP/M, which has a different form of BIOS
called an extended I/O system, or XIOS.

There are one or two problems, however, that can only be solved by making
direct BIOS calls. These occur in utility programs that, for example, need to make
direct access to the CP/M file directory, or need to access some "private" jump
instructions which have been added to the standard BIOS jump vector.

If you really do need direct access to the BIOS, Figure 6-2 shows an example
subroutine that does this. It requires that the A register contain a BIOS function
code indicating the offset in the jump vector of the jump instruction to which
control is to be passed.

Equates for Use with BIOS subroutine

0003
0006
0009
OOOC
OOOF
0012
0015 =
0018
0018
001E
0021
0024
0027
002A
002D
0030 =

W800T EQU
CONST EQU
CONIN EQU
CONOUT EQU
LIST EQU
PUNCH EQU
READER EQU
HOME EQU
SELDSK EQU
SETTRK EQU
SETSEC EQU
SETDMA EQU
READ EQU
WRITE EQU
LISTST EQU
SECTRAN EQU

03H
06H
09H
OCH
OFH
12H
15H
18H
18H
lEH
21H
24H
27H
2AH
2DH
30H

;Warm boot
;Console status
;Console input
;Console output
;Output to list device
10utput to punch device
;Input from reader
;Home selected disk to track 0
lSelect disk
;Set track
;Set sector
; Set DMA add ....'ss
;Read 128-byte sector
;Write 128-byte sector
;Return list status
;Sector translate

;Add further "private" BIOS codes here

Figure 6-2.

BIOS
This subroutine transfers control to the appropriate
entry in the BIOS Jump Vector. based on a code number
handed to it in the L register.

Entr-y paramete,-s

L = Code number (which is in fact the page-relative
address of the correct JMP instruction within
the jump vee-tell")

All other registers are preserved and handed over to
the BIOS routine intact.

Exit parameters

BIOS equates



158 The CP/M Programmer's Handbook

This routine does not CALL the BIOS routine, the,"efo,"e
when the BIOS routine RETurns. it will do so directly
to this routine's caller.

Calling sequence

0000 F5
0001 3A0200

0004 67
0005 F1
0006 E9

BIOS:
PliSH
LDA

MOV
POP
PCHL

MVI
CALL

PSW
0002H

H.A
PSW

L, C.:.de$Number
BIOS

;Save user"s A register·
;Get BIOS JMP vector page from

warm bCIl:.t ,JMP
:HL -) BIOS JMP vector entry
;Recover user~s A register
;Transfer control into the BIOS routine

Figure 6-2. BIOS equates (continued)

Line Numbers

0072-0116
0120-0270
0275-0286
0289-0310
0333-0364
0369-0393
0397-0410
0414-0451
0456-0471
0476-0492
0496-0511
0516-0536
0540-0584
0589-0744
0769-0824
0831-0878
0881-0907
0910-0955
0958-0964
0967-0973
0978-0984
0987-1025
1028-1037
1041-1056
1059-1154
1157-1183
1185-1204
1206-1378
1381-1432
1435-1478
1481-1590
1595-1681
1685-1764

Functional Component or Routine

BIOS Jump Vector
Initialization Code
Display Message
Enter CP/M
CONST - Console Status
CONIN - Console Input
CONOLIT - Console Output
LISTST - List Status
LIST - List Output
PliNCH - Punch Output
READER - Reader Input
IOBYTE Driver Select
Device Control Tables
Low-level Drivers for Console. List,etc.
Disk Parameter Header Tables
Disk Parameter Blocks
Other Disk data areas
SELDSK - Select Disk
SETTRK - Set Track
SETSEC - Set Sector
SETDMA - Set DMA Address
Sector Skew Tables
SECTRAN - Logical to Physical Sector translation
HOME - Home to Track 0
Deblocking Algorithm data areas
READ - Read 128-byte sector
WRITE - Write 128-byte sector
Deblocking Algorithm
Buffer Move
Deblocking subroutines
8" Floppy Physical Read/Write
5 1/4" Floppy Physical Read/Write
WBOOr - Warm Boot

Figure 6-3. Functional Index to Figure 6-4



Chapter 6: The Basic Input/Output System 159

Example BIOS

The remainder of this chapter is devoted to an example BIOS listing. This
actual working BIOS shows the overall structure and interface to the individual
BIOS subroutines.

Unlike most BIOS's, this one has been written specifically to be understood
easily. The variable names are uncharacteristically long and descriptive, and each
block of code has commentary to put it into context.

Each source line has been sequentially numbered (an infrequently used option
that Digital Research's Assembler, ASM, permits). Figure 6-3 contains a func
tional index to the BIOS as a whole so that you can find particular functions in the
listing in Figure 6-4 by line number.

Equat•• for defining memory size and the base address and
length of the Iystem components.

, Ficaur. 4-4.,
.-._._----_._._----_....._._._._---*---**-----*--*----...,. *
,. Simp1. BIOS Listing •
,. *,_w •••• * *_._._*__*._.__**_* * **_

,Equates used in the sign on message·'00'
'or
, 1:5'
'82'

EGlU
EGlU
EGlU
EGlU

I
VERSION
MONTH
DAY
YEAR
I;_ww_.w.w_www ._.__•••••__._. *_**_**_**_*********••********.***
,. *,* This BIOS is for. COMPuter system with the following *
,M hardware confivuration I *
I· •
I. - 8080 CPU •
•• - 44~BYt •• of RAM •
,. - CRT/keyboard controller that transfers data *
,M as thou9h it were a .erial port (but requires *
.M no baud rat. generator or USART pro9rilmming) *.N - A serial port, used for both list and "reader"/ *
,.. »punch" device•• The .erial port chip is an *
I. Int.1 82:51A with an 82:53 baud rat. caen.rator. •
;* - Two S 1/4 11

.. ini-floppy, double-sid.d.- doubl~- *
I. d.n.ity driv••• Th••• driv•• u•• 512-byte s.ctors. •
,* The •• are us.d •• logical dri.ks AI and B:. ..,* - Two 8" standard di.kette drive. (12S-byte sectors). *
'* Th••• are used .1 logical di.ks C. and 0:. *
I· •
,. Two int.llig.nt di.k controll.r. ar. us.d. one for •'* .ach diskette type. The•• controllers access memory *
I. dir.ctlY. both to r.ad th. d.tails of th. •'* op~rations they are to perforM and allO to read *
I. and writ. data from and to the disk.ttn. •
•• •
1* •
,**************.*******.*************************************••*.********

3030 •
3730
3:531 •
3238 •

(-- Lin. Numbn0001
0002
0003
0004
000:5
0004
0007
0008
0009
0010
0011
0012
0013
0014
001:5
0016
0017
0018
0019
0020
0021
0022
0023
0024
002:5
0024
0027
0028
0029
0030
0031
0032
0033
0034
003:5
0034
0037
0038
0039
0040
0041
0042
0043
0044
004:5

Figure 6-4. Simple BIOS listing



160 The CP/M Programmer's Handbook

The cold boot initialization code is only needed once.

'The BIOS Len9th must b. determined by inspection.
Comment out the ORO BIOS.Entry line below by chan9in9 the first
character to .. semicolon. (This will make the Assembler start
the BIOS at location 0.) Then assemble the BIOS and round up to
the nearest lOOH the address displayed on the console at the end
of the assembly.

BIOS jump vector
Control will be transferred to the appropriate entry point
from the CCP or the BDOS. both of which compute the relative
address of the BIOS Jump vector in order to locate it.
Transient programs can also make direct BIOS calls transferring
eontrol to location MxOOH, where xx is the value in location
0002H.

BIOS$Entry

~Number of Kbytes of RAM

0900H

;Assemble code at BIOS address

64

;Constant
OEOOH ;Constant

EQU ((CCP$Len9th + BDOS.Length + BIOS$Length) / 1024) + 1

EQU

EQU

0800H
EQU

(Memory$Size - Overall.Len9th) * 1024
CCP$Entry + CCP.Length + 6
CCP$Entry + CCP$Len9th + BDOS.Length

,Cold boot -- entered from CP/M bootstrap loader
, Labelled so that the initialization code can
, put the warm boot entrY addr~s5 down in location
, 0001H and 0002H of the ba.e page
,War. boot -- entered by Jumping to location OOOOH •

Reloads the CCP which could have been
overwritten by previous program in transient

, procaram ar~a

,Console status -- returns A = OFFH if there is a
, console keyboard character waiting
,Conlole input -- returns the next console keyboard
, character in A
,Console output -- outputs the character in C to
, the console device
,Lilt output -- outputs the character in C to the
, list d~vic~

,Punch output -- output. th~ character in C to the
, I09tcel punch device
,Reader input -- returnl the next input character from
, the locaieal reader device in A
,Homel the currently selected disk to track 0
,Selects the dilk drive specified in register C and
, returns the address of the disk parameter header
,Setl the track for the next read or write operation
, from the BC register pair
,Sets the lector for the next read or write operation
, from the A register
,S.ts the direct memory address <disk read/write)

address for the next read or write operation
, from the DE register pair
,Reads the previously specified track and sector from
, the selected disk into the DMA address
,Writes the previously specified track and sector onto
, the selected disk from the DMA address
,Returns A = OFFH if the list device can accept
; another output character
,Translates a logical sector into a physical one

ORO

;
Memory.Size

I
CCP$Length EQU
BDOS$Len9th

BIOS.Len9th

;
Overall$Length
;
CCP$Entry EQU
BDOS.Entry EQU
BIOS.Entry EQU

0900 =

0040 =

0800
OEOO

F600

F600 C3F9F6 .IMP BOOT
Warm$Boot.Entry,

F603 C329FE .IMP WBOOT

F606 C362F8 .IMP CONST

F609 C378F8 .IMP CONIN

F60C C386F8 .IMP CONOUT

F60F C3ACF8 .IMP LIST

F612 C3BCF8 JI1P PUNCH

F615 C3CDF8 .IMP READER

F618 C3D3FB .IMP HOME
F61B C32BFB JI1P SELDSK

F61E C358FB .IMP SETTRK

F621 C35EFB .IMP SETSEC

F624 C365FB .IMP SETDMA

F627 C3FBFB .IMP READ

F62A C315FC .IMP WRITE

F62D C394F8 .IMP LISTST

F630 C3CDFB .IMP SECTRAN

0008 =

EOOO •
E806 •
F600

0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120

Figure 6-4. (Continued)



Chapter 6: The Basic Input/ Output System 161

the

;Wind the location counter back

,Save the location counter
It • Current value of location counter

EQU

On this machine, the console port does
not need to be initialized. Thi. has
already been done bY the PROM bootstrap code.

Disk.Buff er

~12 ,This is the actual .ector size
,for th. ~ 1/4" mini-floppy diskette••
,The 8 11 diskllitte. use 128-byte sectors.
,Declare the physical disk buffer for the
I~ 1/4" diskettes

Physical.Sector.Size

•

8251A USART used for
communications devices.
,Port number
,Number of bytes

,Oet chip ready to be programmed bY
sending dummy data out to it

,Reset and raiee data terminal ready
,1 stop bit, no parity, 8 bits per character
, baud rate divide factor of 16.
,Raise request to send, and enable
, transmit and receive.

,Port number
,Number of bytes

,1200 baud (based on 16X divide-down selected
in the 82~IA USARTJ

,Carriage return

,Port number of 0 terminates

DS

I
INote
I,

ODH

o

for the sign-on .essage

I Initialize the
, the 11 It and

Communication.Statue'Port
6
o
o
o
0100.0010B
01$10.ll$IOB

0010.0101B

Communication'BaudSRate
2
0038H

It can b. overwritten once it has been executed.
Therefore, it t. "hidden" inside the main disk buffer.
When eontrol il tranlferred to the BOOT entry point. this
code will be eMecut.d, only bein9 overwritten by data fro.
the dilk onee the initialization procedure is complete.

To hide code in the buffer. the buffer is first declared
normallv. Then the value of the location counter followin9
the buffer il noted. Then. uling an ORO (ORiGin) statement.
location counte... il "wound back" to the st ..rt of the buffer
.9.10 and the initialization code written normal Iv.
At the end of thil eode. another ORO .tatement is used to
I.t the location counter back al it was after the buffer had
bun decland.

ORO

After.Dilk.Buffer EQU
I

,Initialize the 8253 programmable interval
timer used to generate the baud rate for

I the 8251A USART
Communication'Baud'Mode ,Port number
1 ,Number of bytes
10.11.011.0B .Select counter 2. load LS byte first.

, Mode 3 (for baud rates), binary count.

,
Initializ••Stream. ,Thil Itream of data is used by the

,initialize subroutine. It has the following
, formata,
, DB Port number to be initialized
, DB Number of bytel to be output
, DB xx,xx,xx,xx data to be output
I
, I

• DB Port number of OOH terminator

Disk.bufferl,

,,,,,
I,,,
I,,
I,,,
PhYlical.Sector.Siz.

F633 ED DB
F634 06 DB
F63~ 00 DB
F636 00 DB
F637 00 DB
F638 42 DB
F639 6E DB

F63A 25 DB

F63B OF DB
F63C 01 DB
F63D B6 DB

F63E DE DB
F63F 02 DB
F640 3800 DW

F642 00 DB

Equates,
OOOD a CR EQU

0121
0122
0123
0124
012~

0126
0127
0128
0129
0130
0131
0132
0133
0134
013~

0136
0137 0200·
0138
0139
0140
0141
0142 F633
0143
0144
014~ F833 =
0146
0147 F633
0148
0149
01~0

01~1

01~2

01~3

01~4

01~~

01~6

01~7

0158
01~9

0160
0161
0162
0163
0164
016~

0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
018~

0186
0187
0188
0189
0190
0191
0192
0193
0194
019~

Figure 6·4. (Continued)



162 The CP/M Programmer's Handbook

OOOA LF EQU OAH ;Line feed
;
Signon$Mess&ge: ;Main sign-on message

F643 43502F4D20 DB 'CP/M 2.2.'
FMC 3030 DW VERSION ;Current version number
F64E 20 DB
F64F 3037 DW MONTH ;Current date
F651 2F DB ·'1'
F652 3135 DW DAY
F654 2F DB ' I'
F655 3832 DW YEAR
F657 ODOAOA DB CR. LF. LF
F65A 53696D706C DB 'Simple BIOS'.CR.LF.LF
F668 4469736B20 DB ~Disk configuration .'.CR.LF.LF
F67F 2020202020 DB A. 0.35 Mbyte 5" Floppy'. CR. LF
F69D 2020202020 DB B. 0.35 Mbyte 5" Floppy'. CR. LF. LF
F6BC 2020202020 DB C. 0.24 Mbyte 8" Floppy' .CR. LF
F6DA 2020202020 DB D. 0.24 Mbyte 8" Floppy'.CR.LF

F6F8 00 DB 0

End of cold boot initialization code

;Default disk in base page

;Set IOBVTE to indicate terminal
J is to act as console

,Display sign-on message on console

0004H

;Interrupts can now be enabled

;HL -) Next data byte
;Get next datil byte
;Output to correct port

,Set default disk drive to At

EQU

;Initialize system.
;This routine uses the Initialize'Stream
; declared above.
;Disable interrupts to prevent any
; side effects during initialization.

H,Initialize$Stream ;HL -> Data stream

;Entered directly from the BIOS ~MP vector.
;Control will be transferred here by the CP/M
; bootstrap loader.
,The initialization state of the computer system
, will be determined by the
• PROM bootstrap and the CP/M lo.ader" setup.,

LXI

DI

;Complete initialization and enter
CP/M by going to the Console Command
Processor.

Initialize.Next.Byte:
INX H
MOV A. M
DB OUT

Initialize$Port:
DB 0 ; (- Set ilbov.
DCR C ; Count down
JNZ Initialize$Next$Byte ;Go back if more bytes
INX H ;HL -) Next port number
JMP Initialize$Loop ;Go back for next port initialization

Dehul t.Disk

;
Initialize.Loop:

MOV A. M , Ge t port number
ORA A ;If OOH, then initialization complete
JZ Initialize.Complete
STA Initialize.Port ;Set up OUT instruction
INX H ;HL -) Count of number of bytes to output
MOV C, M ; Get byte count

,
BOOT'

Initialize'Complete:

F713 3E01 MVI A.00.00.00.01B
F715 320300 STA IOBYTE

F718 2143F6 LXI H,Signon.M.ssa9&
F71B CD33F8 CALL Display.Message

F71E AF XRA A
F71F 320400 STA Default.Disk
F722 FB EI

F723 C340F8 -.IMP Enter.CPM

F6F9 F3

F6FA 2133F6

F6FD 7E
F6FE B7
F6FF CA13F7
F702 320AF7
F705 23
F706 4E

F707 23
F708 7E
F709 D3

F70A 00
F70B OD
F70C C207F7
F70F 23
F710 C3FDF6

0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217 0004.
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271

Figure 6·4. (Continued)



Chapter 6: The Basic Input/Output System 163

Serial input/output drivers

CALL Get.Console'Status 'Return A = zero or nonzero
,Accordin9 to status, then convert

Th..... driv..r. all look at th. IOBYTE at location
0003H. which will have been •• t by the cold boot routine.
Th.. IOBYTE can b. modifi@d by th@ STAT utility, by
aDOS calls, or by a program that puts a value directly
into location 0003H.

,Reset location counter

;G.t machine code foy ~MP

,S.. t up ,JMP at locAtion OOOOH
, and at location OOOSH

,Set disk 1/0 address to default
,Use normal BIOS routine

,Get BOOS entry point address
,Put addr••• at location OOOSH

,1/0 redirection byte

,Ensure interrupts are enabled
,Transfer current default disk to
; Console Command Processor
;Transfer to CCP

,Dispiavi the specified message on the console.
,On entry, HL points to a stream of byte. to be

output. A OOH-bvte terminate. the message.
,Oet next meSSAge byte
,Check if terminator
,Yes, return to caller
,Prepare for output
,Save message pointer
,Go to main consol. output routine
,Recover message pointer
,Move to next byte of message
,Loop until complete message output

;Get console status
;Entered directly from the BIOS JMP vector
, and returns a parameter that reflects whether

there is incomin9 data from the console.

0003H

,
,CONST will b@ call.d by programs that

make periodic checks to see if the computer
operator has pressed any keys -- for example.
to interrupt an executing program.

'A = OOH (zero flag set) if no data
,A • OFFH (zero flag clear) if data

A,M
A

H,Warm.Soot*Entry ;Get BIOS vector address
OOOIH ,Put address at location OOOIH

C,A
H
CONOUT
H
H
Display.Message

A,,JMP
OOOOH
OOOSH

H,BDOS$Entry
6

B,80H
SETDMA

D.faultSDisk
C,A
CCPSEntry

,This routine is entered either from the cold or warm
, boot code. It .et. up the JMP instructions in the

., base page, and also .ets the high-level disk driver"'s
, input/output addr.... (al.o known a. th. DMA Addr••• ).

EQU

ORO

All of the routine. make use of a subroutine, Select'Routine,
that takes the 1••• t si9nificant two bits of the A register
and use. them to transfer control to one of the routines whose
Addr.... immRdiat .. ly follow. th.. CAli to S.. I@ctSRoutin@.
A second entrY point, S.lect.Routin.S21, use. bits
2 and 1 to do the .ame job -- this .aves some space
by avoidin9 an unnecessary instruction.

,
Display.Messagel

,
IOBYTE,
I
CONST.

F833 7E MOV
F834 B7 ORA
F83~ C8 RZ
F836 4F MOV
F837 E~ PUSH
F838 CD86F8 CALL
F83B EI POP
F83C 23 INX
F83D C333F8 ,JMP

I,
Ent ..rSCPM,

F840 3EC3 MVI
F842 320000 STA
F84~ 320~00 STA

F848 2103F6 LXI
F84B 220100 SHLD

F84E 2106E8 LXI
F8~1 220600 SHLD

F8S4 018000 LXI
F8~7 CD6~FB CALL

F8~A FB EI
F8SB 3A0400 LDA
F8~E 4F MOV
F8SF C300EO ,JMP

0272 F833
0273
0274
027~

0276
0277
0278
0279
0280
0281
0282
0283
0284
028~

0286
0287
0288
0289
0290
0291
0292
0293
0294
029~

0296
0297
0298
0299
0300
0301
0302
0303
0304
030~

0306
0307
0308
0309
0310
0311
0312
0313
0314
031~

0316
0317
0318
0319
0320
0321
0322
0323
0324
032~

0326
0327
0328
0329 0003 =
0330
0331
0332
0333
0334
033~

0336
0337
0338
0339
0340
0341
0342
0343
0344
034~

0346 F862 CD6AF8
0347

Figure 6-4. (Continued)



164 The CP/M Programmer's Handbook

LDA 10BYTE ,Get I/O redirection byte
CALL Select.Routine ,Select correct CONIN routine

,These routines return directlY
, to CONIN/s caller.

DW Teletype.lnput ,00 <- 10BYTE bits 1.0
DW Terminal.lnput ; 01
DW Communication'Input ,10
DW Dummy.lnput ,11

LDA 10BYTE ,Get I/O redirection byte
CALL Select.Routine ,Select correct CONOUT routine

,These routines return directly
, to CONOUT/s caller.

DW Teletype.Output ,00 <- 10BYTE bit. 1.0
DW Termlnal.Output ,01
DW Communication'Output ,10
DW DummY.Output ,11

,
Get'Console.Status:

LDA 10BYTE

to return parameter convention.
Set fla9s to reflect status
If 0, no incoming data
Otherwise return A = OFFH to

indicate incoming data

,Get console input character
,Entered directly from the BIOS ~MP vector;

return. the next data character from the
Console in the A register. The most significant
bit of the data character will be O. except
when "readey" <communicat ion port) input has
been selected. In.this case, the full eight bits
of data are returned to permit binary data to be
received.,

,NormallY, this routine will be call@d after
, a call to CONST has indicated that a data character

is readY, but Whenever the CCP or the BDOS Can
proce.d no further until console input occurs,
then CONIN will be called Without a preceding
CONST call.

,Console output
,Entered directly from BIOS JMP vector,

outputs the data character in the C register
, to the appropriate device according to bits
, 1.0 of 10BYTE

I
,A OOH (zero flag set): cannot accept data
,A = OFFH (zero flag clear): can accept data

,List device (output) status
,Entered directly from the BIOS JMP vector,
, returns in A list device status that
, indicates whether the list device can accept
J another output character. The IOBYTE/s bits
, 7.6 determine the physical device used.

A

A.OFFH

;Get I/O redirection byte
;Console is selected according to
, bit. 1.0 of 10BYTE

Select'Routine ;Select appropriate routine
;These routines return to the caller
, of Oet'Console'Status.

Teletype.ln.Statu. ,00 <- 10BYTE bit. 1.0
Termlnal.ln.Statu. ,01
Communication'In'Status ,10
Dummy.ln.St.tu. ,11

CALL

ORA
RZ
MVI
RET

DW
DW
DW
DW

,
CONOUT.

,
CONIN:

,,
LISTST,

F865 B7
F866 C8
F867 3EFF
F869 C9

F86A 3A0300

F86D CDDCF8

F870 F6F8
F872 FCF8
F874 02F9
F876 08F9

F878 3A0300
F87B CDDCF8

F87E 20F9
F88026F9
F882 2FF9
F884 35F9

F886 3A0300
F889 CDDCF8

F88C 38F9
F88E 3EF9
F890 44F9
F892 4AF9

0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423

Figure 6-4. (Continued)



Chapter 6: The Basic Input/Output System 165

,
CALL Get.List.Status ,Return A = zero or nonzero

; according to status, then convert
; to return parameter convention

ORA A ,Set flags to reflect status
RZ ,If 0, cannot accept data for output
MVI A.OFFH ,Otherwise return A = OFFH to
RET ; indicate can accept data for output

;Oigital R.s••rch~s documentation indicates
; that you can always return with A = OOH
J ('ICannot accept data n

) if you do not wish to
, implement the LISTST routine. This is NOT TRUE.
,If you do not wish to implement the LISTST routine
, always return wi th A = OFFH (IlCan accept data").
,The LIST driver will then take care of things rather
, than potentially hanging the system.

,Reader input
;Entered directly from BIOS JMP vector,
, inputs the next data character from the
; reader device into the A register

Teletype'Out'Status
Terminal.Out.Status
Communication'Out.Status
Dummy'Out'Status

appropriate routine
,These routines return directly
, to Get'List'Status's caller.

,00 <- IOBYTE bits 1,0
,01
,10
,II

;Select correct LIST routine
;These routines return directly
; to LIST~s caller.
,00 <- IOBYTE bits 1,0
,01
,10
,II

,Select correct PUNCH routine
,The.e routines return directly
; to PUNCH~s caller.
,00 <- IOBYTE bit. 1,0
,01
,10
;11

,Select

,o.t 1/0 redirection byte
'Move bits 7.6 to 1.0

;Oet I/O redirection byte
,Move bit. 7,6 to 1.0

,Oet I/O redirection byte
,Move bits 3,4 to 2,1

;List output
;Entered directlY from BIOS JMP vector;
; outputs the data character in the C register

to the appropriate device according to bits
7.6 of IOBYTE

,Punch output
,Entered directly from BIOS ~MP vector,
, outputl the data char~ct.r in the C register
t to the appropriate device accot-ding to bits

3.4 of IOBYTE

Se lect 'Rout i ne

IOBYTE

Select.Routine

IOBYTE

Teletype'Output
Terminal.Output
Communication.Output
Dummy.Output

Teletype'Output
Dummy'Output
Communication'Output
Terminal'Output

Select'Routine'21

DW
DW
DW
DW

LDA
RLC
RLC
CALL

LDA
RRC
RRC
RRC
CALL

DW
DW
DW
DW

OW
DW
DW
DW

,
Oet'List'Status.

LOA IOBYTE
RLC
RLC
CALL

LIST.

,,,
PUNCH.

,
READER.

F89C 3A0300
F89F 07
F8AO 07
F8AI CDDCF8

F8A4 OBF9
F8A6 IIF9
F8A8 17F9
F8AA IDF9

F894 CD9CE"8

F897 B7
F898 C8
F899 3EFF
F89B C9

F8B4 38F9
F8B6 3EF9
F8B8 44F9
F8BA 4AF9

F8BC 3A0300
F8BF OF
F8CO OF
F8CI OF
F8C2 CDDDF8

F8AC 3A0300
F8AF 07
F8BO 07
F8BI CDDCF8

F8C5 38F9
F8C7 4AF9
F8C9 44F9
F8CB 3EF9

0424
0423
0426
0427
0428
0429
0430
0431
0432
0433
0434
0433
0436
0437
0438
0439
0440
0441
0442
0443
0444
0443
0446
0447
0448
0449
0430
0431
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0473
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499

Figure 6-4. (Continued)



166 The CP/M Programmer's Handbook

Serial deviee control tables

,
Terminal'Table:

DB Terminal.Status.Port

In order to reduce the amount of executable code,
the same low-level driver code is used for all serial ports.
On entrY to the low-level driver. HL points to the
appropriate control table.,

Teletype$Table.
D8 Teletype'Status'Port
DB Teletype$Data'Port
DB Teletype$Output.Ready
DB Teletype$Input$Ready

;Get 110 redirection byte
;Move bits 3,2 to 2.1
:Select correct READER routine
;These routines return directly
• to READER~5 caller.
,00 (- IOBVTE bit. 1,0
:01
,10
:11

;Transfers control to a specified address
; following its calling address according to
, the value of bits 1.0 in A.
;Shift select values into bits 2.1
; in order to do word arithmetic

EQU OEDH
EQU OECH

EQU OOOO$OOOIB ;Status mask
EQU 0000$0010B ;Status mask

EQU 01H
EQU 02H

EQU OOOO$OOOIB ;Status mask
EQU 0000$00 lOB ;Status mask

EQU OEDH
EQU OECH

EQU OOOO$OOOIB ;Status mask
EQU 0000$0010B ;Status mask

EQU ODFH ;Mode Select
EQU ODEH ,Rate Select

;Entry point to select routine selection bits
; are already in bits 2.1
; Isolate just bits 2.1
;Hl -) first word of addresses after
; CAll instruction
;Add on selection value to address table
; base
'Hl -) selected routine address
;Get routine address into HL
;lS byte
I HL -> MS byte
; MS byte
;HL -> routine
;Top of stack -> routine
;Transfer to selected routine

~The appropriate device is selected according
to bit. 3,2 of IOBVTE.

IOBVTE

Select$Routine$21'

Teletype$Output
Dummy$Output
Communication'Output
Terminal$Output

LDA
RRC
CALL

DW
DW
DW
DW

ANI 0000$0110B
XTHL

MOV E,A
MVI D,O
DAD D

MOV A,M
INX H
MOV H,M
MOV L,A
XTHL
RET

,
Select$Routine$21:

,
SelecURoutine.

RLC

Input/Output Equate.

,
Terminal'Status'Port
Terminal'DataSPort
Terminal'Output'Ready
Terminal'Input$Ready

Communication'Baud$Mode
Communication'Baud'Rate

Communication'Status$Port
Communication'DataSPort
Communication$Output$ReadY
Communication'Input'Ready

Teletype$Statu.$Port
Teletype$Data$Port
Teletype$Output$Ready
Teletype$Input$Ready

F8DC 07

F8D4 38F9
F8D6 4AF9
F8D8 44F9
F8DA 3EF9

F8DD E606
F8DF E3

F8EO 5F
F8E1 1600
F8E3 19

F8E4 7E
F8E5 23
F8E6 66
F8E7 6F
F8E8 E3
F8E9 C9

F8CD 3A0300
F8DO OF
F8D1 CDDDF8

OOED =
OOEC
0001 =
0002 =

OOED =
OOEC
0001
0002

OODF =
OODE

0001
0002 =
0001 =
0002

F8EA ED
F8EB EC
F8EC 01
F8ED 02

F8EE 01

0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575

Figure 6-4. (Continued)



Chapter 6: The Basic Input/ Output System 167

The followin4;l routines are "ealled" by Select'Routine
to perform the low-level Input/output

DB Termlnal.Data.Port
DB Termlnal.Output.Ready
DB Termlnal.lnput.Ready,

Communication'Table.
DB Communlcatlon.Status.Port
DB Communlcatlon.Data.Port
DB Communlcatlon.Output.Ready
DB Communlcatlon.lnput.ReadY

OS76
OS77
OS78
OS79
OS80
OS81
OS82
0S83
0584
058S
0586
0587
0588
OS89
OS90
OS91
OS92
OS93
OS94
OS9S
OS96
OS97
OS98
OS99
0600
0601
0602
0603
0604
060S
0606
0607
0608
0609
0610
0611
0612
0613
0614
061S
0616
0617
0618
0619
0620
0621
0622
0623
0624
062S
0626
0627
0628
0629
0630
0631
0632
0633
0634
063S
0636
0637
0638
0639
0640
0641
0642
0643
0644
064S
0646
0647
0648
0649
06SO
06S1

FBEF 02
FBFO 01
F8F1 02

F8F2 ED
F8F3 EC
FBF4 01
F8FS 02

F8F6 21EAF8
FBF9 C34BF9

F8FC 21EEF8
F8FF C34BF9

F902 21F2F8
F90S C34BF9

F908 3EFF
F90A C9

F90B 21EAF8
F90E C3S6F9

F911 21EEF8
F914 C3S6F9

F917 21F2F8
F91A C3S6F9

F9lD 3EFF
F91F C9

F920 2lEAF8
F923 C360F9

F926 21EEF8

F929 CD60F9

F92C E67F
F92E C9

F92F 21F2F8
F932 C360F9

F93S 3E1A

,,,
Teletype.ln.Status,

LXI H,Teletype.Table
JMP Input.Status

,
Termlnal.ln.Statu••

LXI H,Termlnal.Table
JHP Input.Status

,
Communlcatlon.ln.Statu.,

LXI H,Communlcatlon.Table
JHP Input.Status

,
Dummy.ln.Status,

HVI A,OFFH
RET

,
Teletype.Out.Status.

LXI H,Teletype.Table
JHP Output.Status

,
Termlnal.Out.Status,

LXI H,Termlnal.Table
JHP Output.Status

,
Communication'Out'Status:

LXI H,Communication'Tabl.
JHP Output.Statu.

,
DumMy.Out.Status.

HVI A,OFFH
RET,,

Teletype.lnput,
LXI H,Teletype.Table
JHP Input.Data

,
Terminal'Input.

LXI H,Terminal'Table

CALL Input.Data

ANI 7FH
RET,

Communication'Input:
LXI H,Communlcatlon.Table
JHP Input.Data

,
Dummy.Input.

HVI A,IAH

,HL -) control table
,Note use of JHP. Input.Status
, will eM.cute the RETurn.

,HL -) control table
,Note use of JMP. Input.Status
, will eMacute the RETurn.

,HL -) control table
,Note use of JMP. Input.Status
I will eMecut. the RETurn.

,Dummy status, always returns
, indica(in9 incoming data is ready

,HL -) control table
,Note use of JHP. Output.Status
, will execute the RETurn.

,HL -) control table
,Note use of JMP. Output'Status
, will execute the RETurn.

,HL -) control table
,Note u.e of JMP. Output.Status
, will execute the RETurn.

,Dummy status, always returns
1 indicat log ready for output

,HL -) control table
;Note use of JMP. Input.nata
; will execute the RETurn.

:HL -> control table
; will execute the RETurn.
, •• Special case **
;Input'Data will return here
, so that parity bit can be set 0

,HL -) control table
,Note use of JMP. Input'Data
, will execute the RETurn.

,Dummy input, always returns
; indicatin9 CP/M end of file

Figure 6-4. (Continued)



168 The CP/M Programmer's Handbook

, These are the general purpose low-level drivers.
, On entrY, HL points to the appropriate control table.
, For output, the C register contains the data to be output.,
Input'Status. 'Return with A = OOH if no incoming data,

, otherwise A = nonzero.
NOV A.M ,Get status port
STA InputSStatus$Port ;*** Self-modifYing code ***
DB IN ;Input to A from correct status port

#HL -} control table
,Note use of JMP. Output'Data
, will execute the RETurn.

,HL -) control table
, will execute the RETurn.
,Note use of JMP. Output'Data
, will execute the RETurn.

,DummY output, always discards
J the output character

;HL -> control table
,Not. use of JMP. Output'Data
r will execute the RETurn.

J(- Set above
;Move HL to point to input data mask

;Mask with input status

'Mask with output status

,(- Set above
'Move HL to point to output data mask

; (- Set above

;Return with next data character in A.
,Wait for status routine to indicate
; incoming data.
,Save control tabl. pointer
,Oet input status in zero flag
;Re~over control table pointer
,Wait until incoming data
,HL -) data port
;Oet data port
,*** Self-modifYing code ***
,Input to A from correct data port

;Return with A = OOH if not ready for output
, otherwise A = nonzero.

A.M ,Get status port
Output$Status$Port ,*** Self-modifYing code *._
IN 'Input to A from correct status port

H
Input.Statul
H
InpuUDah
H
A.M
InpuUData.Port
IN

MOV
STA
DB

PUSH
CALL
POP
JZ
INX
MOV
STA
DB

RET

JMP Output'Data

,
Teletype'Output,

LXI H.Teletype'Table
JMP Output'Data

,
Terminal'Output,

LXI H.Terminal'Table

,
Dummy.Output I

RET

,
Communication'OutputI

LXI H.Communication'Table
JMP Output'Data

I
Input'Status'Port,

DB 00
INX H
INX H
INX H
ANA M
RET

,
InpuUDah,

,,
OutpuUStatuSl

,
Output'Status'Port.

DB 00
INX H
INX H
ANA H
RET

,
Input'Data'Port,

DB 0
RET

F944 21F2F8
F947 C370F9

F94A C9

F941 C370F9

F938 21EAF8
F93B C37OF9

F93E 21EEF8

F937 C9

F94B 7E
F94C 3250F9
F94F DB

F950 00
F951 23
F95223
F953 23
F954 A6
F955 C9

F95B 00
F95C 23
F95D 23
F95E A6
F95F C9

F956 7E
F957 325BF9
F95A DB

F960 E5
F961 CD4BF9
F964 EI
F965 CA60F9
F968 23
F969 7E
F96A 326EF9
F96D DB

F96E 00
F96F C9

0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0122
0723
0724
0725
0726
0727

Figure 6-4. (Continued)



Chapter 6: The Basic Input/Output System 169

Disk definition table.

The.e drivers perform the following functionSI

Disk parameter tables

HiOh level diskette drive,.s

;Described in Chapter 3

,(- Set above

,Output the data eharaeter in the C re9ister.
,Wait for .tatus routine to indicate device
, ready to accept another character

H ,Save control table pointer
OutputSStatu. ,Oet output statu. in zero fl"9
H ,Recover control table pointe,.
OutputSData ,Wait until re"dy for output
H ;HL -) output port
A.M ,Oet output port
OutputSDataSPort , ••• Self-modifyin9 eode •••
Are ,Oet data charact.,. to be output
OUT ,Output datil to eorrect port

Select .. specified disk and return the address of
the appropriate disk parameter header
Set the track number for the next read or writ.
Set the sector numbe,. for the next read or write
S.t the DMA (read/writ.) address for the next read or writ ••
Translate .. logical sector number into a physical
Set the track to 0 so that the next read or write will
be on Track 0

SELDSK

PUSH
CALL
POP
..IZ
INX
MOV
STA
I10V
DB

SETTRK
SETSEC
SETDMA
SECTRAN
HOME

The standard 8" diskettes do not need to use the blocking/
deblockin9 code, but the :5 1/4 11 drives do. Theref,ore an additional
byte has been prefixed to the disk parameter block to
tell the disk drivers each logical disk~s physical
diskette type, and whether or not it needs deblocking.

As discu•••d in Chapter 3, these describe the physical
characteristics of the disk drives' In this example BIOS,
there are two types of disk drives, standard single-sided,
single-density 8 11

, and double-sided, double-density 5 1/4"
diskettes.

In addition, the high-level drivers are responsible for making
the :5 1/4 11 floppy diskettes that use a 512-byte sector appear
to CP/M as thou9h they u.ed " 128-byh sector. They do this
by using what is called blockin9/deblocking code,
described in more detail later in this listing,
Just prior to the code itself.

Th••• consist of disk parameter headers, with one entry
per logical disk driver, and disk parameter blocks, with
either one parameter block per logical disk or the same
parameter block for several logical disks.

,Lo9ie,,1 Disk A: (S 1/4" Diskette)
DW FloppySSSSkewtable ,S 1/4" .kew table
DW 0,0,0 ,Reserved for CP/M
DW DireetorySBuffer
DW FloppySSSP"rameterSBloek
OW DiskSASWorkarea
DW DiskSASAlloeationSVeetor

,Logical Disk 81 (5 1/4" Diskette>
DW FioppyS5SSkewtabie ,Share••ame .kew table a. A.

,
OutputSDataSPort:

DB 0
RET

,
OutputSDah.

,
DilkSParameter.H.adera.

F970 ES
F971 CDS6F9
F974 EI
F97S CA70F9
F978 23
F979 7E
F97A 327FF9
F97D 79
F97E D3

F97F 00
F980 C9

F981 6BFB
F983 0000000000
F989 CIF9
F98B 42FA
F98D 61FA
F98F CIFA

F991 6BFB

0728
0729
0730
0731
0732
0733
0734
073S
0736
0737
0738
0739
0740
0741
0742
0743
0744
074S
0746
0747
0748
0749
07S0
07S1
07S2
0753
07S4
07SS
07S6
07S7
0758
0759
0760
0761
0762
0763
0764
076S
0766
0767
0768
0769
0770
0771
0772
0773
0774
077S
0776
0777
0778
0779
0780
0781
0782
0783
0784
078S
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803

Figure 6-4. (Continued)



170 The CP/M Programmer's Handbook

;Sector size> 128 bytes

;Private work area
;Private allocation vector

Reserved for CP/M
Share same buffer as A:
Same DPB as AI
Private work area
Private allocation vector

Floppy)
;8 10 skew table
;Reserved for CP/M
;Share same buffer a5 A:

F"loppy)
;Shares same skew table as A:
;Reserved for CPIM
;Share same buffer as AI
; Same DPB as C:
;Private work area
,Private allocation vector

prefixed to indicate
and blocking required

Sectors per track
Block shift
Block mask
Extent mask
Maximum allocation block number
Number of directory entries - 1
Bit map for reserving 2 alloc. blocks

for file directorY
Disk changed work area size
Number of tracks before directory

1000$0000B

128

;5 1/4" mini floppy
18" floppy (SS SD)

;12S-byte sectors per track
,Block shi ft
; Block mask
;Extent mask
;Maximum allocation block number
;Number of directory entrilll5 - 1
;Bit map for reserving 1 alloc. block
; for file directory
;Disk changed work area size
;Number of tracks before directory

;Extra byte prefixed to OPB for
; this version of the BIOS
;Indicates disk type and the fact
; that no deblocking is required

1
2

EQU

0.0.0
Directory'Buffer
Floppv.5$Parameter$Block
Disk$B$Workar..a
Disk$B$Allocation$V..ctor

;Logical Disk C: (8"
Floppy$8$Sk..wtabl ..
0.0.0
DirectorY'Buffer
Floppy$S$Parameter$Block
DiskSCSWorkarea
Disk$C$Allocation$V..ctor

'Logical Disk OJ <8 11

Floppy$5$Sk..wtabl ..
0.0.0
Directory'Buffer
Floppy$S$Param.. t .. r$Block
Disk$D$Workar.a
Di.k$D$Allocation$V..ctor

EQU
EQU

Floppy$8

DW
DW
DW
DW
DW
DW

Disk parameter blocks

Blocking/deblocking indicator

DW
DW
DW
DW
DW
DW

5 1/4" mini floppy

DB

Disk Types

,
Need'Deblocking

I
Dir ..ctory$Buff .. r, DS

Floppy$5
Floppy$S

'Extra byte
; disk type

DB Floppy$5 + N.... d$D..blocking
Floppy$5$Param.. t .. r$Block.

DW 72
DB 4
DB 15
DB 1
DW 174
DW 127
DB 1100$0000B
DB OOOO$OOOOB
DW 32
DW 1

Standard 8" Floppy

Floppy$8$Param.. t ..r$Block.
DW 26
DB 3
DB 7
DB 0
DW 242
DW 63
DB 1100$0000B
DB OOOO$OOOOB
DW 16
DW 2

F993 0000000000 DW
F999 CIF9 DW
F99B 42FA DW
F99D 81FA DW
F99F D7FA DW

F9AI B3FB
F9A3 0000000000
F9A9 CIF9
F9AB 52FA
F9AD AIFA
F9AF EDFA

F9BI 6BFB
F9B3 0000000000
F9B9 CIF9
F9BB ~2FA

F9BD BIFA
F9BF OCFB

F9CI

FA41 81

0001
0002 =

0080 =

FA42 4800
FA44 04
FA45 OF
FA46 01
FA47 AEOO
FA49 7FOO
FA4B CO
FA4C 00
FA4D 2000
FA4F 0100

FA51 02

FA52 lAOO
FA54 03
FA55 07
FA56 00
FA57 F200
FA~9 3FOO
FA5B CO
FA~C 00
FA~D 1000
FA~F 0200

0804
080~

0806
0807
0808
0809
0810
0811
0812
0813
0814
081~

0816
0817
0818
0819
0820
0821
0822
0823
0824
082~

0826
0827
0828
0829
0830
0832
0833
0834
083~

0836
0837
0838
0839
0840
0841
0842
0843
0844
084~

0846
0847
0848
0849
08~0

08~1

0852
0853
0854
08~~

08~6

0857
0858
08~9

0860
0861
0862
0863
0864
086~

0866
0867
0868
0869
0870
0871
0872
0873
0874
087~

0876
0877
0878
0879
0880

Figure 6-4. (Continued)



Chapter 6: The Basic Input! Output System 171

Disk work areas

Disk allocation vectoys

These are used by the BOOS to maintain a bit map of
which allocation blocks are used and which are free.
One bvte i. u.ed for ei~ht allocation block" hence the
expression of the form (allocation blocks/8)+1.

These are used by the BOOS to detect any unexpected
chan~e of diskette•• The BDOS will automaticallv .et
such • chan~ed diskette to read-onlY status.

driver

A:
B:

I C.
D.

4

(242/8)+1
(242/8)+1

(174/8)+1
(174/8)+1

A.
B.
C,

, D:

EQU

I
,Oet DPB pointer off.et In DPH
,DE -> DPB addre., in DPH
,Get OPB address in DE

;Access disk parameter block
, to extract special prefix byte that
; identifies disk type and whether
, deblockin9 is required

;Save selected disk number
,Set up to return DPH address
,Make disk into word value

DS
DS

DS
DS

32
32
16
16

DS
DS
DS
DS

,DE -> DPB
H JOE -) prefix byte
A.M ;Oet prefix byte
OFH ;Isolate disk type
OiskSType ;Save for use in low-level driver
A.M ,Get another copy of prefix byte
NeedSDeblocking ,Isolate deblocking flag
Deblocking'Required ;Save for use in low-level
H ,Recover OPH pointer

D,10
D
E.M
H
D,M

SelectedSDisk

.Select disk in C
,e • 0 for drive A, 1 foY S, etc.
,Return the address of the appropriate
; disk parameter he.der in HL, or OOOOH
, if the s.l.c~d disk does not exist.
I

H,O ,Assume an error
A,e ,Check if requested disk valid
NumberSofSLogicalSOisks

,Return if > maximum number of disks

L,A
H,O

;Compute offset down disk parameter
, header table bv multiplving by
, parameter header len~th (16 bvtes)

H "2
H I "4
H "8
H • "16
D.Disk$Par.meter$Headers ,Oet base address
D ,DE -> Appropriate DPH
H ;Save DPH address

LXI
DAD
MOV
INX
MOV
XCHO
DCX
MOV
ANI
STA
MOV
ANI
STA
POP
RET

I
SELDSK,

,
Number$of$Lo~ical$Disk.

•Di,k$A$Allocation$Vector
DI.k$B$Allocation$Vector,
Disk$C$Allocation$Vector
Di.k$D$Allocation$Vector

I
I,,
Disk$A$Workarea,
Di.k$B$Workarea,
Di.k$C$Workarea,
Di.k$D$Workarea,,

FB2B 210000 LXI
FB2E 79 MOV
FB2F FE04 CPI
FB31 DO RNC

FB32 32EAFB STA

FB3S 6F MOV
FB36 2600 MVI

FB38 29 DAD
FB39 29 DAD
FB3A 29 DAD
FB3B 29 DAD
FB3C 1181F9 LXI
FB3F 19 DAD
FB40 ES PUSH

FB41 110AOO
FB44 19
FB4S 5E
FB46 23
FB47 56
FB48 EB
FB49 2B
FB4A 7E
FB4B E60F
FB4D 32FAFB
FBSO 7E
FBSI E680
FB53 32F9FB
FB56 E1
FB57 C9

0004 •

FAC1
FAD7

FAED
FBOC

FA61
FA81
FAA1
FAB1

0881
oe82
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956

Figure 6-4. (Continued)



172 The CP/M Programmer's Handbook

:
FloPPy$e$Skewtable: .Standard 8" Driver

, 01.02.03.04.05,06.07.08,09,10 L091cal sectors
DB 01,07,13,19,2~,O~,11,17,23,03 'PhYsical sectors

Set disk DMA (input/output) address for next read or write

Translate logical sector number to physical

Set lOQical sector for next read or write

Head
I

o
4
8
3
7
2
6
I
5

Logical sectors
,Physical sectors

;DMA address

LOQlical sectors
,Physical sectors

o

;Address in Be on entry
;Move to HL to save

;Save for low-level driver

,36.37.38.39
,40.41,42.43
,44.45.46.47
:48.49.50.51
,52.53.54.55
,56.57.58.59
,60.61.62.63
,64,65,66,67
,68,69.70,71

,on exit, HL = ~hysical sector number

,Translate lOQical sector into physical
,On entry, Be = logical sector number
J DE -> ..appropt"iate skew table

;Each physical ••ctor cont.ins four
; 128-bvte sector ••
L091cal 128b PhYllcal 512-byte
'00.01.02.03 0 .l
,~.~.~,OO 4 .l
,08.09.10.11 8 .l
'12.13.14.15 3 .l Head
,16.17,18.19 7 .l 0
,20.21.22.23 2 .l
,~.~.U.V 6 .l
'28.29.30.31 I .l
,32.33.34.35 5 )

DW

H,B ;Selected track in Be on entry
L,C
Selected.Track ;Save for low-level driver

,Logical sector in C on entrY
A.C
Selected.Sector ;Save for low-level driver

L.C
H,B
DMASAddress

21,22.23.24.25.26
18,24,04.10.16.22

11.12.13.14,15.16,17.18.19.20
09.15.21.02.08.14.20,26,06.12

Sector translation tables
These tables are indexed using the logical sector number,
and contain the corresponding physical sector number.

,
DB

,
DB

,
SETTRK,

MOV
MOV
SHLD
RET

SETSEC,
MOV
STA
RET

Set logical track for next read or write

,
DMASAddress,

SETDMA,
MOV
MOV
SHLD
RET

,,
:
FioppyS5SSkewtable,

,
SECTRAN,

FB58 60
FB59 69
FB5A 22EBFB
FB5D C9

FB5E 79
FB5F 32EDFB
FB62 C9

FB63 0000

FB65 69
FB66 60
FB67 2263FB
FB6A C9

, PhySical 128b
FB6B 00010203 DB 00,01. 02. 03
FB6F 10111213 DB 16.17,18.19
FB73 20212223 DB 32,33.34.35
FB77 OCODOEOF DB 12.13,14.15
FB7B lC1DIEIF DB 28.29.30,31
FB7F 08090AOB DB 08.09.10.11
FB83 18191AIB DB 24,25.26.27
Fee7 040S0607 DB 04,05.06.07
FB8B 14151617 DB 20.21.22.23

FB8F 24252627 DB 36,37.38.39
FB93 34353637 DB 52.53.54,55
FB97 44454647 DB 68.69.70,71
FB9B 30313233 DB 48.49.50,51
FB9F 40414243 DB 64.6S.66.67
FBA3 2C2D2E2F DB 44,4S.46.47
FBA7 3C3D3E3F DB 60,61. 62. 63
FBAB 28292A2B DB 40,41.42.43
FBAF 38393A3B DB 56.57.58.59

FBB3 01070DI319

FBBD 090F150208

FBC7 1218040AIO

0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
lOll
1012
1013
1014
lOIS
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

Figure 6-4. (Continued)



Chapter 6: The Basic Input/Output System 173

Data written to or read from the mini-floppy drive is transferred
via a physical buffer that is actually 512 bytes long (it was
deelared at the front of the BIOS and holds the lI one-t ime"
initi~lization code used for the cold boot procedure).

The blocking/deblocking code attempts to minimize the amount
of actual disk I/O bv storing the disk, track, and phvsical sector
currentlv residin~ in the Phvsical Buffer. If a read request is for
a 128-bvte CP/M "sector" that alreadv is in the phvsical buffer,
then no disk access occurs.

;These are the values handed over bv the BDOS
; when it calls the WRITE operation.
;The allocated/unallocated indicates whether the

BOOS is set to writ. to an unallocated allocation
block (it only indicates this for the first
128-bvte sector write) or to an allocation block

; that has alreadv been allocated to a file.
IThe BDOS also indicates if it is set to write to
, the file direct~rv.

;Contains the type of write
indicated bv the BOOS.

;Variables for phvsical sector
currently in Disk$Buffer in memorv

; These are moved and compared
; as a group, so do not alter
; these lines.

;When nonzero, the disk buffer has
; data from the disk in it.
;Nonzero when data has been

written into Disk.Buffer but
not vet written out to disk

,Check if physical buffer must
be written out to disk

,Set to track 0 (logically --
no actual disk operation occurs)

;No, so indicate that buffer
is now unoccuPied.

2048
18
PhvsicaISSectoY$Size/128
CPM$Sec$Per$Phvsical*Phvsical$Sec$Per$Track
CPM$Sec$Per$Physical-l
2 ,LOG2(CPM$Sec$Per$PhysicalJ

o

o
I
2

o
o
o

o

o

;Home the selected logical disk to track o.
,Before doin9 this, a check must be made to see
I if the physical disk buffer has information
, that must be written out. This is indicated by

~ flag, Must.Write.Suffer, set in the
deblocking code.

IHL -) skew table base
,Add on l09ical sector number
,O.t physical sector number
IMake into a 16-bit value

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

DB

DB

DB
DW
DB

DB

;Variables for selected disk, track. and sector

B
L.M
H.O

I
Must$Write$Buffer
A
HOME$No$Wr it e
Data$In$Disk$Buffer

XCHG
DAD
MOV
MVI
RET

LDA
ORA
JNZ
STA

I
HOME.

HOME$No$Write.
MVI C.O
CALL SETTRK
RET

I
Allocation$Block$Size
Physical$Sec$Per$Track
CPM$Sec$Per$Physical
CPM$Sec$Per$Track
Sectoy.Mask
Sector$Bit$Shift

Write$Allocated
Wr i te.Directorv
Write$Unallocated,
Write$Typ...

,
In$Buffer$Dk$Trk$Sec.

I
Data$InSDisk$Buffer,

In$Buffer$Disk.
In$Buffer.Track:
In$Buff .. rSSector.

FBD3 3AE9FB
FBD6 B7
FBD7 C2DDFB
FBDA 32E8FB

FBCD EB
FBCE 09
FBCF 6E
FBDO 2600
FBD2 C9

FBDD OEOO
FBDF CDS8FB
FBE2 C9

0800 =
0012 •
0004
0048 •
0003 =
0002

0000
0001
0002

FBE3 00

FBE4 00
FBES 0000
FBE7 00

FBE8 00

FBE9 00

1033
1034
103S
1036
1037
1038
1039
1040
1041
1042
1043
1044
104S
1046
1047
1048
1049
10SO
10SI
IOS2
IOS3
IOS4
lOSS
1056
1057
IOS8
IOS9
1060
1061
1062
1063
1064
106S
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
108S
1086
1087
1088
1089
1090
1091
1092
1093
1094
109S
1096
1097
1098
1099
1100
1101
1102
1103
1104
11 OS
1106
1107
1108

Figure 6-4. (Continued)



174 The CP/M Programmer's Handbook

Read in the 128-byte CP/M sector specified by previous calls
to select disk and to set track and sector. The sector will be read
into the address specified in the previous call to set DMA addres~

;Selected physical sector derived
from selected (CP/M) sector by
shifting it right the number of
of bits specified by
Sec\or$Bit$Shift

;Nonzero to indicate an error
that could not be recovered
by the disk drivers. SOOS will
output a lIbad sector" message.

;Set by SELDSK to indicate either
, 8" or 5 1/4" floppy
;Set by SELDSK to indicate whether

deblocking is required.

;Number of unallocated "records"
; in current previously unallocated
; allocation block.

:Nonzero if a physical sector must
be read into the disk buffer
either before a write to an
allocated block can occur, or
for a normal CP/M 128-byte

; sector read
;Nonzero when a CP/M 128-byte
; sector is to be read
;Nonzero when the selected disk
; needs deblocking (set in SELDSK)
; Indicates 8" or 5 1/4" floppy

selected (set in SELDSK).

SELDSK. SETTRK,and SETSEC)
; These are moved and
; compared as a group so
; do not alter order.

o

o

o

;Parameters for writing to a previously
unallocated allocation block.

o These are moved and compared
o ; as a group so do not alter
o ; these lines.

o

o

o

o

o

o

;Check if deblocking needed
:(fla9 was set in SELDSK call)
;No, use normal nondeblocked

using sectors larger than 128 bytes,
to uunpackll a 128-byte sector from

, lSe lected by
DB 0
DW 0
DB 0

DB

DB
DW
DB

DB

DB

DB

DB

DB

Deblocking'Required
A
Read$NoSDeblock

Selected'Disk;
Selected.Track,
Selected.Sector:

Selected.PhySical$Sector; DB

Unallocated$Dk$Trk$Sec:

Unallocated'Record'Count: DB

Unallocated.Disk.
Unallocat.d.Track,
Unallocated'SectoYI

,
Selected$Disk$Type,

,The deblocking algorithm used is such
that a read operation can be viewed
UP until the actual data transfer as
though it was the first write to an
unallocated allocation block.

A ;Set the record count to 0
Unallocated'Record$Count; for first "write"
A Indicate that it is really a read
Read.Operation that is to be performed
Must$Preread$Sector and force a preread of the sector

to get it into the disk buffer
A,Write$Unallocated Fake deblocking code into responding
Write$Type as if thi$ is the first write to an

unallocated allocation block.
Perform$Read$Write Use common code to execute read

Selected$Disk$Deblock:

Disk.Error.Fla~1 DB

Must$Preread.Sector:

,
,Flags used inside the deblocking code

Read.Operation:

Deblocking'Required.

Dis~$Type,

If reading from a disk drive
deblocking code will be used

: the physical sector.
READ:

LDA
ORA
.JZ

FBEA 00
FBEB 0000
FBED 00

FBEE 00

FBEF 00

FBFO 00

FBF1 00
FBF2 0000
FBF4 00

FBF!5 00

FBF6 00

FBF7 00

FBF8 00

FBF9 00

FBFA 00

FC02 AF XRA
FC03 32F3FB STA
FC06 3C INR
FC07 32F8FB STA
FCOA 32F7FB STA

FCOD 3E02 MVI
FCOF 32E3FB STA

FC12 C36EFC .JMP

FBFB 3AF9FB
FBFE B7
FBFF CA!52FD

1109
1110
1111
1112
1113
1114
11115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
11415
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
11159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
11715
1176
1177
1178
1179
1180
1181
1182
1183

Figure 6·4. (Continued)



Chapter 6: The Basic Input! Output System 175

Write & 128-byte sector from the current DMA address to
the previously $elected disk, track, and sector.

Check if this is not the first write to an unallocated
allocation block -- if it is. the unallocated record count
has Just been set to the number of 128-bYte sectors in the
allocation block.

Only writes to the directory take place immediately. In all other
cases, the data will be moved from the DMA address into the disk
buffer, and only written out wh.n circumstance, force the
transfer. The number of physical disk operations can therefore
be reduced considerably.

On arrival here, the BOOS will have set register C to indicate
whether this write operation is to an already allocated allocation
block (which means a preread of the sector may be needed),
to the directorY (in Which case the data will be written to the
disk immediately), or to the first 128-byte sector of a previously
unallocated allocation block (In which ca•• no prer.ad is required).

,
,COpy disk. track, and sector

into unallocated variables

,Check if deblocking is required
,(flag set in SELDSK call)

,No, this is a write to an
allocated block

rYes, this is a write to an
; unallocated block
;Count down on number of 128-bYte sectors

left unwritten to in allocation block
and store back new value.

,By desi9n. Compare$DkSTrkSSec
; returns with
, DE -) Unallocated$Sector
, HL -) UnallocatedSSector
,Update UnallocatedSSector
,Check if sector now> maximum
, on a t~ack

,No (A <' M)
,Ves,

DeblockingSRequlred
A
WrlteSNoSDeblock

H,Selected$Dk$TrkSSec
D,UnallocatedSDkSTrkSSec
Mov,"SDkSTrkSSec

M
A,M
CPMSSec$PerSTrack
NoSTrackSChange

LXI
LXI
CALL

XCHG
INR
MOV
CPI
..JC

LXI H,Select"dSDkSTrkSSec ,Check If th" s"lected disk, track,
LXI D,UnallocatedSDkSTrkSSec; and sector are the same as for
CALL CompareSDkSTrkSSec ,those In the unallocated block.
JNZ RequestSPreyead ,No, a preread is required

,Ves, no preread is needed.
,Now is a convenient time to

update the current sector and see
if the track also needs updating.

XRA A , Indicate that a wr i te operat ion
STA ReadSOperation , is required (i.e. NOT a read)
MOV A,C ,Save the BDOS write type
STA Wrlte$Type
CPI WriteSUnallocated ,Check if the first write to an

, unallocated allocation block
JNZ CheckSUnallocatedSBlock ,No, check if in the middle of

, writing to an unallocated block
,Ves, first write to unallocated

allocation block -- initialize
variables associated with

, unallocated writes.
MVI A,AIIocationSBIockSSize/128 ,Get number of 128-byte

sectors and
STA Unallocated$Record.Count set up a count.

,
WRITE'

LDA
ORA
..JZ

DCR A

STA UnallocatedSRecordSCount

,
CheckSUnallocat"dSBlock,

LOA Unallocated.Record$Count
ORA A
JZ Request.Preread

FC26 C237FC

FC15 3AF9FB
FC18 B7
FC19 CA4DFD

FCIC AF
FCI D 32F8FB~

FC20 79
FC21 32E3FB
FC24 FE02

FC4E EB
FC4F 34
FC50 7E
FC51 FE48
FC53 DA5FFC

FC37 3AF5FB
FC3A B7
FC3B CA66FC

FC29 3EIO

FC2B 32F5FB

FC2E 21EAFB
FC31 IIF1FB
FC34 CD35FD

FC3E 3D

FC3F 32F5FB

FC42 21EAFB
FC45 I1F1FB
FC48 CD29FD
FC4B C266FC

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

Figure 6·4. (Continued)



176 The CP/M Programmer's Handbook

;Reset sector to 0
;Increase track by

;Indicate to later code that
no preyead is needed.

:Must$Preread$Sector=O

;Check if sector in buffer is the
; same as that selected earlier
;Compare ONLY disk and track
;No, it must be read in

;No, it will have to be read in
J over current contents of buffer
,Check if buffer has data in that
; must be written out first
;Yes, write it out

,Set in buffer variables from
selected disk, track. and sector
to reflect which sector is in the

; buffer now
;In practice, the sector need only
J be physically read in if a preread
; is required
;Yes, preyead the sector
;Reset the flag to reflect buffer

contents.

;Check if disk buffer already has
; data in it.
; (Unconditionally indicate that
; the buffer now has data in it)
;Did it indeed have data in it?
;No, proceed to read a physical

sector into the buffer.

:Convert selected 128-byte sector
into physical sector by dividing by 4

;Common code to execute both reads and
; writes of 128-bvte sectors.
'Assume that no disk errors will

OCCUt-

;The buffer does have a physical sector
in it.
Not~: The disk. track. and PHYSICAL
sector in the buffer need to be
checked, hence the use of the
Compare$Dk$Trk subroutine.

;Selected sector on correct track and

M.O
Unallocated$Track
H
Unallocated$Track

A
Read$Sector$intoSBuffer

Must$Write$Buffer
A
Writ,,$Physical

A
Disk$Error$Flag

A
Must$Preread$Sector
Perform'Read'Write

Must'PrereadSSector
A

Read$Physical
A
Must$Write.Buffer

;
D,InSBuffer$Dk$Trk$Sec
H.Selected$Dk$Trk$Sec
Compare$Dk$Trk
Sector$Not$In$Buffer

H,Data$In$Disk$Buffer.
A,M
M.l

Selected.Sector

3FH ;Remove any unwanted bits
Selected'Physical'Sector

MVI
LHLD
INX
SHLD

LDA
ORA
CNZ

LDA
ORA

CNZ
XRA
STA

XRA
STA
.JMP

LXI
LXI
CALL
.JNZ

LDA In.Buffer.Sector ;Get physical sector in buffer
LXI H,Select~d$Physical$Sector

CMP M ;Check if correct physical sector
JZ SectorSIn.Buffer ;Yes, it is already in memory

;
ReadSSector$intoSBuffer:

CALL S~t$In$Buffer$Dk$Trk$Sec

;

No.Track.Change:

Perform'Read'Write:

;
SectorSNot$In$Buffer:

Sector$InSBuffer:

,
Request.Preread:

XRA A ;Indicate that this is not a write
STA Unallocated'Record'Count into an unallocated block.
INR A
STA Must$Preread$Sector ;Indicate that a preyead of the

physical sector is required.

FC5F AF
FC60 32F7FB
FC63 C36EFC

FC66 AF
FC67 32F5FB
FC6A 3C
FC6B 32F7FB

FC56 3600
FC58 2AF2FB
FC5B 23
FC5C 22F2FB

FC6E AF XRA
FC6F 32F6FB STA

FC72 3AEDFB LDA
FC75 IF RAR
FC76 IF RAR
FC77 E63F ANI
FC79 32EEFB STA

FC7C 21E8FB LXI
FC7F 7E MOV
FC80 3601 MVI

FC82 B7 ORA
FC83 CAA3FC .JZ

FC86 I1E4FB
FC89 21EAFB
FC8C CD24FD
FC8F C29CFC

FC92 3AE7FB
FC95 21EEFB
FC98 BE
FC99 CABIFC

FC9C 3AE9FB
FC9F B7
FCAO C49SFD

FCA3 CDIIFD

FCA6 3AF7FB
FCA9 B7

FCAA C49AFD
FCAD AF
FCAE 32E9FB

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335

Figure 6-4. (Continued)



Chapter 6: The Basic Input/ Output System 177

Oet byte from source
Put into destination
Upd.te pointers

Oet byte from source
Put into destination
Update pointers

;Oet base address of disk buffer
;Add on sector number * 128
'HL -) 128-byte sector number start
; address in disk buffer
,DE -) sector in disk buffer
,Get DI1A addr.. ss s .. t in SETDI1A call
,Assume a read operation, so
, DE -> DMA addr....
; HL -) sector in disk buffer
,Because of the faster method used

to move data in and out of the
disk buffer. (eight bytes moved per
loop iteration) the count need only

; b. Itath of normal.
;At this point -
, C = loop count

DE -> DMA addr....
; HL -> sector in disk buffer
;Determine whether dat. is to be moved

out of the buffer (read) or into the
buffer (write>

;Writing into buffer
;(A must be 0 get here)
,Set flag to for~e a write
, of the disk buffer later on.
,Make DE -) sector in disk buffer

HL -> DMA addr ... s

,The folowing ~ov. loop moves eight bytes
at a time from (HL> to (DE). C contains

, the loop count.
,Get byte from source
,Put into destination
,Update pointers

,Oet byte from source
;Put into destination
,Update pointers

,Get byte from source
,Put into destination
;Update pointers

,Get byte from source
,Put into de.tin.tion
,Update pointers

,Oet byte from source
,Put into destination
,Update pointers

Read.Operation
A
BuffeYSMove

A
l1u.t'Write'Buff ..r

, disk is already 1n the buffer.
,Convert thlt selected CP/I1(128-byh>

sector into. relative address down
, the buffer.
;Oet selected sector number
,Mask off only the le.st si9nificant bits
,l1ultiply by 128 by shifting 16-bit valu..
, left 7 bits
,. 2
;* 4
,. 8
,. 16
;* 32
,. 64
,. 128

110V A.M
STAX 0
INX 0
INX H
MOV A.11
STAX 0
INX 0
INX H
110V A.11
STAX 0
INX 0
INX H
110V A.11
STAX 0
INX 0
INX H
110V A.11
STAX 0
INX 0
INX H
MOV A.M
STAX 0
INX 0
INX H
MOV A.11
STAX 0
INX 0

,
Buffer.Move:

FCCB 3AF8FB LOA
FCCE B7 ORA
FCCF C2D7FC .JNZ

FCD2 3C INR
FCD3 32E9FB STA
FCD6 EB XCHG

FCB1 3AEDFB LOA Se1ect ..d'Sector
FCB4 E603 ANI Sector'Mask
FCB6 6F 110V L.A
FCB7 2600 I1VI H.O
FCB9 29 DAD H
FCBA 29 DAD H
FCBB 29 DAD H
FCBC 29 DAD H
FCBD 29 DAD H
FCBE 29 DAD H
FCBF 29 DAD H

FCCO 1133F6 LXI D.Disk.Buff .. r
FCC3 19 DAD 0

FCC4 EB XCHG
FCC5 2A63FB LHLD DI1A.Addres.
FCC8 EB XCHO

FCC9 OEI0 I1VI C.128/8

FCD7 7E
FCD8 12
FCD9 13
FCDA 23
FCDB 7E
FCDC 12
FCDD 13
FCDE 23
FCDF 7E
FCEO 12
FCEI 13
FCE2 23
FCE3 7E
FCE4 12
FCE5 13
FCE6 23
FCE7 7E
FCE8 12
FCE9 13
FCEA 23
FCEB 7E
FCEC 12
FCED 13
FCEE 23
FCEF 7E
FCFO 12
FCFI 13

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
13S1
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410

Figure 6-4. (Continued)



178 The CP/M Programmer's Handbook

The controllers are "hard-wired" to monitor certain locations

There are two "smart" disk controllers on this sYstem, one
for the 8" floPPY diskette drives, and one for the 5 1/4"
mini-diskette drives.

Compat"eSDkSTrlo ;Compares just the disk and track
; pointed to by DE and HL

MVI C.3 ,Disk (I). track (2)
~MP CompareSDkSTrk$Sec$Loop fUse common code

,
XRA A ;Clear flag that indicates buffer must be
STA Must'Write$Buffer ; written out
CALL Write.Physical ;Write buffer out to physical sector
LOA Disk.Error$Flag ;Return error flag to caller
RET

found

; Indicate selected disk, track, and
sector now residing in buffer

Get byte from source
Put into destination
Update pointers

,
;If write to directorv, write out
; buffer immediatelv
,Oet error flag in case delayed write or read
;Return if delayed write or read

;Count down on loop counter
;Repeat until CP/M sector moved

;Get source byte
;Store in destination
;Update pointers

,
;Check if any disk errors have occurred
;Yes. abandon attempt to write to directory

;Compares the disk, track, and sector
; variables pointed to by DE and HL
;Disk (1), track (2), and sector (1)

;Moves the disk, track, and sector
variables pointed at by HL to

; those pointed at by DE
;Disk (1), track (2), and sector (1)

C
BufferSMove

;Count down on byte count
,Return if all bytes moved

Move$Dk$Trk$Sec$Loop

Write'Type
WriteSOirectory
Disk'Error'Flag

A

H
A.M
D
D
H

;Get comparitor
;Compare with comparand
;Abandon comparison if inequality
;Update comparitor pointer
;Update comparand pointer
;Count down on loop count
;Return (with zero flag set)

Comp are$Dk STy kSSe cSLeu::.p

D
H
C

DCR
JNZ

RET

LDA Selected$Physical$Sector
STA In$Buffer.Sector

LDA Selected$Disk
STA In$Buffer$Disk

LDA
CPI
LDA
RNZ

ORA
RNZ

INX
MOV
STAX
INX
"INX

LHLD Selected$Track
SHLD In$Buffer$Track

MVI C.4
Move$DkSTrk$Sec$Loop:

MOV A.M
STAX D
INX D
INX H
DCR C
RZ
JMP

MVI C.4
Compare$Dk$Trk$.Sec$Loop:

LDAX D
CMP M
RNZ
INX
INX
DCR
RZ
JMP

Compare$Dk$Trk$Sec:

,
Move$Dk$Trk$Sec.

,
Set$In$Buffer$Dk$Trk$Sec:

FD35 OE04

FD37 7E
FD38 12
FD39 13
FD3A 23
FD3B OD
FD3C C8
FD3D C337FD

FCF2 23
FCF3 7E
FCF4 12
FCF5 13
FCF6 23

FCF7 OD
FCF8 C2D7FC

FCFB 3AE3FB
FCFE FEOI
FDOO 3AF6FB
FD03 CO

FD04 B7
FD05 CO

FD06 AF
FD07 32E9FB
FDOA CD95FD
FDOD 3AF6FB
FDIO C9

FDII 3AEAFB
FDI4 32E4FB

FDI7 2AEBFB
FDIA 22E5FB

FDID 3AEEFB
FD20 32E7FB

FD23 C9

FD24 OE03
FD26 C32BFD

FD29 OE04

FD2B lA
FD2C BE
FD2D CO
FD2E 13
FD2F 23
FD30 OD
FD31 C8
FD32 C32BFD

1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1482
1483
1484
1485
1486
1487

Figure 6-4. (Continued)



Chapter 6: The Basic Input/ Output System 179

I
0040 ~ Dlsk'Control'8 EQU 40H ;S" control byte
0041 ~ Command.Block.8 EQU 41H ;Control table pointer

I
0043 Dlsk'Status'Block ECiU 43H ,8" AND S 1/4" status block,
004S - Dlsk'Control$5 EQU 4SH ;~ 1/4" control byte
0046 - Command'Block'S ECiU 46H ;Control table pointer

Once the operation has been completed. the controller resets
its disk control byte to OOH. This indicates completion
to the disk driver code.

The disk control table layout is shown below. Note that the
controllers have the capability for control tables to be
chained together so that a sequence of disk operations can
be Initiated. In this BIOS this feature Is not used. However.
the controller requires that the chain pointers in the
disk control tables be pointed back to the main control. bytes
in order to indicate the end of the chain.

The controller also sets a return code in a disk status block -
both controllers use the SAME location for this, 0043H.
If the first byte of this status block Is less than 80H. then
a disk error has occurr~d. For this simple BIOS. no further details
of the status settin9s are relevant. Note that the disk controller
has built-in retry logic -- reads and writes are attempted ten
time. before the controller returns an error.

table

; Command

,Unit (drive) number = 0 or 1
;Head number = 0 or
;Track numbili'r
; Sector number
,Numbili'r of bytes to read/write
;Transfer address
;Pointer to next status block
; if commands are chained.
;Pointer to next control byte

if commands are chained.

,Write contents of disk buffer to
; correct sector.
;Oet write function code
;Go to common code
,Read previously selected sector
; into disk buffer.
,Oet read function code

I
,S" Floppy controller only has information
I on units 0 and I so Selected'Dlsk must
, be converted
.Turn Into 0 or I
,S.t unit number

Selected'Dlsk

OIH
Floppy.Unlt

'Set command function code
,Set UP nondeblocked command

H,128 ,Bytes per .ector
Floppy.Byte.Count
A ,8" floppy onl y has head 0
Floppy'Head

in memory to detect when they are to perform some disk
operat Ion. The 8" controller mont tors locat ion 0040H, and
the ~ 1/4 11 controller monitors location 0045H. These are
called their disk control bytes. If the most significant
bit of • disk control byte is set, the controller will
look at the word following the respective control bytes.
This word must contain the address of • valid disk control
table that specifi•• the exact disk operation to be performed.

LOA

LXI
SHLD
XRA
STA

ANI
STA

MVI A.Floppy'Read'Code
Common'NotDeblock:

STA Floppy.Command

MVI A.Floppy'Wrlte'Code
JMP Common'No'Deblock

Read'No'Deblock.

,
I
Wrlte'No'Deblock.

Floppy Disk Control Tables
I

FD40 00 FloppySCommand: DB 0
0001 - Floppy'Read'Code ECiU OlH
0002- Floppy'Wrlte'Code ECiU 02H
FD41 00 Floppy.Unlt. DB 0
FD42 00 Floppy.Head. DB 0
FD43 00 Floppy.Track. DB 0
FD44 00 Floppy'Sector: DB 0
FD4S 0000 Floppy.Byte.Count. OW 0
FD470000 Floppy.DMA.Address. OW 0
FD490000 Floppy'Next'Status'Block. OW 0

FD4B 0000 FloppvSNeHtSControlSLocation: OW 0

FDS2 3EOI

FD54 3240FD

FD57 218000
FDSA 224SFD
FDSD AF
FDSE 3242FD

FD61 3AEAFB

FD4D 3E02
FD4F C354FD

FD64 E601
FD66 3241FD

1488
1489
1490
1491
1492
1493
1494
149S
1496
1497
1498
1499
IS00
IS01
IS02
IS03
IS04
ISOS
IS06
IS07
IS08
IS09
ISIO
ISII
IS12
IS13
ISI4
ISIS
IS16
IS17
IS18
IS19
IS20
IS21
IS22
IS23
IS24
IS2S
IS26
IS27
IS28
IS29
IS30
IS31
IS32
IS33
IS34
153:5
IS36
IS37
IS38
IS39
IS40
IS41
IS42
IS43
IS44
IS4S
IS46
IS47
IS48
IS49
ISSO
ISSI
ISS2
ISS3
ISS4
ISSS
ISS6
ISS7
ISS8
ISS9
IS60
IS61
1562
IS63

FIgure 6-4. (Continued)



180 The CP/M Programmer's Handbook

I
LHLO DMA'Addre.s ,Trensfer directly between DMA address
SHLO Floppy.DMA.Addr..s ,end 8" controller.

LDA Selected'Treck
STA Floppy.Treck ,Set treck number

I
LDA Selected'Sector
STA Floppy'Sector ,Set sector number

,The disk eontroller can accept chained
disk control table., but in this case.
they are not used. so the IINext" pointers
must be pointed back at the initial

, control bytes in the base page.
LXI H,Disk'Stetus'Block ,Point next status back at
SHLD Floppy'Next'Status'Block ,main status block

H,Di.k'Control'B
Floppy'Next'Control'Locetion

,
,Activate controller to perform

operation.

,
,Point next control byte

back at main control byte,
,Point controller at control table

;Set sector number

;Set head number

;Set command table

;Oet disk type (set in SELDSK)
;Confirm it is a 5 1/4 11 Floppy
,Yes
,No. indicate disk error

;Write contents of disk buffer to
; correct sector.
,Get write function code
,Go to common code
;Read previously selected sector

into disk buffer.
;Oet read function code

,
,Convert disk number to 0 or

for disk controller

I
,The sector must be converted into a
, head number and sector number.

Sectors 0 - 8 are head 0, 9 - 17
, are head 1
,Assume head 0
,Get physical sector number
,Save copy in case it is head 0
,Check ·if < 9
; Yes it is < 9
,No, modify sector number back
; in the 0 - 8 range.
,Put sector in B
,Set to head 1

;Set up disk control table

,Set UP track number
,Note: This is single byte value
; for the controller.

B,O
In'Buffer'Sector
C,A
9
Head'O
9

In'Buffer'Track
A.L
Floppy.Track

H,Floppy$Command
Command'Block'8

In'Buffer'Disk
1
Floppy'Unit

H,Disk'Control'B
M,BOH
WaittFor$DiskSComplete

Disk,Type
Floppy'5
Correct.Disk.Type
A,1
Disk.Error.Flag

c.A
B

A.B
Floppy.Head
A,C

LDA
ANI
STA

MVI
LDA
MOV
CPI
JC
SUI

LHLD
MOV
STA

LXI
SHLO

LXI
SHLO

LXI
MVI
JMP

Write$Physical:

LDA
CPI
JZ
MVI
STA
RET

Correct.Disk.Type:

MVI A, Floppy'Read'Code

MVI A,Floppy'Write'Code
~MP Common.Physical

Read'Physical,

,
Common.Physical,

STA Floppy'Command

MOV
INR

Head'O.
MOV
STA
MOV

FD9A 3E01

FD95 3E02
FD97 C39CFO

FD9C 3240FO

FDBC 0600
FDBE 3AE7FB
FDC1 4F
FDC2 FE09
FOC4 DACBFO
FOC7 D609

FDC9 4F
FDCA 04

FDCB 7B
FDCC 3242FD
FDCF 79

F07B 214300
F07E 2249FO

FOB1 214000
F084 224BFO

FOB7 2140FO
FOBA 224100

FOBO 214000
F090 3680
FD92 C3F7FD

F069 3AEBFB
F06C 3243FO

FDAD 3AE4FB
FDBO E601
FDB2 3241FO

FDB5 2AE5FB
FDBB 7D
FDB9 3243FO

FD9F 3AFAFB
FDA2 FE01
FDA4 CAADFD
FDA7 3E01
FDA9 32F6FB
FDAC C9

F06F 3AEOFB
F072 3244FO

F07~ 2A63FB
F078 2247FO

1~64

1~6~

1~66

1~67

1~68

1~69

1~70

1~71

1~72

1~73

1~74

1575
1~76

1~77

1~78

1~79

1~80

1581
1582
1~83

1584
1585
1586
1~87

1~88

1~89

1590
1591
1~92

1593
1594
1~9~

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

Figure 6-4. (Continued)



Chapter 6: The Basic Input/ Output System 181

Disk control table images for warm boot

INR A (phYdcal sectors start at 1)
STA Floppy'Sector

,
LXI H,DiskSBuffer ;Set tra.nsfer address to be
SHLD Floppy'D~A'Address 'disk buffer

,
LXI H.Physical'Sector'Size ,Set byte count
SHLD Floppy.Byte.Count

,s.t disk-error flag nonzero

,Activate 5 1/4" disk controller

,Wait until Disk Status Block indicates
, operation complete, then check
; if any errors occurred.
,On entry HL -> disk control byte
,Oet control byte

,Operation still not vet done

.Set up command block pointer

I
,Complete -- now check status
,Check if any errors occurred
,V••
,No
,Clear error fla~

,Read function
;Unit (drive) number
'He.,~ number
; Track number
,Starting sector number
;Number of bytes to read
;Read into this address
,Pointer to ne.t status block
;PQint.~ to next control table

,Read funct ion
,Unit <drive) number
,Head numbel""
,TraCk numbel""
,Stal""tin9 s~ctOl"" numbel""
'Number of byte. to read
,Read into this address
,Pointer to next status block
;Pointer to next control table

,Warm boot entry
On warm boot. the CCP and BDOS must be reloaded

into memory. In this BIOS. only the 5 1/4"
diskettes will be used. Therefore this code

H,Floppv$Command
Command.Block.3

H.Disk'Control'S
H.80H

H.Disk'Status'Block
Floppy.Ne.t.Status.Block
H.Disk'Control'3
Floppy'Ne.t'Control'Location

Disk'Status'Block
80H
Disk'Error
A
Disk'Error'Flall

HOV A.H
ORA A
JNZ Wait'For'Disk'Complete

LDA
CPI
JC
XRA
STA
RET

Disk.Error:
HVI A.l
STA Disk.Error.Flag
RET

,
Wait'For'Disk'Complete.

,
;As only one control table is in

use, close the status and busy
chain pointers back to the
main control bytes.

,
Boot.Control.Part.l.

DB 1
DB 0
DB 0
DB 0
DB 2
DW 8 ..S12
DW CCP.Entry
DW Disk'Status'Block
DW Disk'Control'S

Boot'Control'Part2.
DB 1
DB 0
DB 1
DB 0
DB 1
DW 3*512
DW CCP.Entry + (8*512)
DW Disk'Status'Block
DW Disk'Control'5

,
WBOOT,

FDEO 214300 LXI
FDE3 2249FD SHLD
FDE6 214300 LXI
FDE9 224BFD SHLD

FDEC 2140FD LXI
FDEF 224600 SHLD

FDF2 214300 LXI
FDFS 3680 HVI

FDDO 3C
FDDI 3244FD

FDD4 210002
FDD7 2243FD

FDDA 2133F6
FDDD 2247FD

FDF7 7E
FDF8 B7
FDF9 C2F7FD

FDFC 3A4300
FDFF FE80
FEOI DA09FE
FE04 AF
FE03 32F6FB
FE08 C9

FE09 3EOI
FEOB 32F6FB
FEOE C9

FEOF 01
FEI0 00
FEll 00
FE12 00
FE13 02
FE14 0010
FE16 OOEO
FE18 4300
FEIA 4300

FEIC 01
FEID 00
FEIE 01
FEIF 00
FE20 01
FE21 0006
FE23 OOFO
FE23 4300
FE27 4300

1640
1641
1642
1643
1644
1643
1646
1647
1648
1649
1630
1631
1632
1633
1634
1633
1636
1637
1638
1639
1660
1661
1662
1663
1664
1663
1666
1667
1668
1669
1670
1671
1672
1673
1674
1673
1676
1677
1678
1679
1680
1681
1682
1683
1684
1683
1686
1687
1688
1689
1690
1691
1692
1693
1694
1693
1696
1697
1698
1699
1700
1701
1702
1703
1704
1703
1706
1707
1708
1709
1710
1711
1712
1713
1714

Figure 6-4. (Continued)



182 The CP/M Programmer's Handbook

,
WarmSBootSErrorSMessage:

FE67 ODOA~76172 DB CR.LF.'Warm Boot Error - retryini .•• '.CR.LF.O

is hardware specific to the controller. Two
prefabricated control tables are used.

Warm.Soot.Error:
LXI H,Warm$Boot$Error.Message
CALL Dl.play.Me••aie
JMP WBOOT ~Restart warm boot

FE29 318000 LXI SP.80H
FE2C 110FFE LXI D.Boot$Control$PartI
FE2F CD3BFE CALL Warm$Boot$Read

FE32 I1ICFE LXI D.Boot$Control$Part2
FE35 CD3BFE CALL WarmSBootSRead

FE38 C340F8 -.JMP Enter$CPM

WarmSBoot$Read:

;Execute first read of warm boot
;Load drive 0, track 0,
; , head 0, sectors 2 to 8
;Execute second read
;Load drive O. track O.

head 1. sectors 1 - 3
;Set up base page and enter cep

~Yes. an error occun-ed

JOn entry, DE -) control table image
,This control table is moved into

the main disk control table and
; then the controller activated.
,HL -) actual control table
,Tell the controller its address
;Move the control table image
; into the control table itself
~Set byte count

; Get image byte
;Store into actual control table
~Update pointers

~Count down on byte count
;Continue until all bytes moved

;Activate controller

;Get status byte
;Check if complete
'No
~Yes, check for errors

DiskSStatusSBlock
80H
Warm$Boot$Error

;Of simple BIOS listing

LDA
CPI
-.JC
RET

END

MVI C.13
Warm.Bc.ot SMove:

LDAX D
MOV M.A
INX H
INX D
DCR C
-.JNZ Warm$Boot.Move

LXI H.FloPpY'Command
SHLD Command.Block.5

LXI H.Di.k$Control$5
MVI M.80H

Wait$For'Boot'Complete,
MOV A.M
ORA A
-.JNZ Wait$For$Boot'Complete

FE3B 2140FD
FE3E 224600

FE41 OEOD

FE43 IA
FE44 77
FE45 23
FE46 13
FE47 OD
FE48 C243FE

FE4B 214500
FE4E 3680

FE50 7E
FE51 B7
FE52 C250FE

FE~5 3A4300
FE~8 FE80
FE~A DA5EFE
FE5D C9

FE5E 2167FE
FE61 CD33F8
FE64 C329FE

FE89

1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1782
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
17~8

1759
1760
1761
1762
1763
1764

Figure 6-4. (Continued)



The Major Steps
Building Your First System
Using SYSGEN to Write

CP/M to Disk
Using DDT to Build the

CP/M Memory Image
The CP/M Bootstrap Loader
Using MOVCPM to Relocate the

CCP and BDOS
Putting It All Together

Building a New
CP/M System

This chapter describes how to build a version of CP/M with your own BIOS
built into it. It also shows you how to put CP/M onto a floppy disk and how to
write a bootstrap loader to bring CP/M into memory.

The manufacturer of your computer system plays a significant role in building
a new CP/M system. Several of CP/M's utility programs may be modified by
manufacturers to adaptthem to individual computer systems. Unfortunately, not
all manufacturers customize these programs. You should therefore invest some
time in studying the documentation provided with your system to see what and
how much customizing may have already been done. You should also assemble
and print out listings ofall assembly language source files from your CP/M release
diskette.

It is impossible to predict the details of customization and special procedures
that the manufacturer may have installed on your particular system. Therefore,
this chapter describes first the overall mechanism of building a CP/M system, and

183



~-- _._--------------------

184 The CP/M Programmer's Handbook

second the details of building a CP/M system around the example BIOS shown in
the previous chapter as Figure 6-4.

The Major Steps

Building a new CP/M system consists of the following major steps:

Create a new or modified BIOS with the appropriate device drivers in it.
Assemble this so that it will execute at the top end of memory (by using an
origin statement (ORG) to set the location counter).

Create new versions of the CCP and BDOS with all addresses in the
instructions changed so that they will be correctly located in memory just
below the new BIOS. Digital Research provides a special utility called
MOVCPM to do this.

Create or modify a CP/M bootstrap loader that will be loaded by the
firmware that executes when you first switch on your computer (or press the
RESET button). Normally, the CP/M bootstrap loader executes in the low
address end of memory. The exact address and the details of any hardware
initialization that it must perform will depend entirely on your particular
computer system.

Using Digital Research standard utility programs, bring the bootstrap loader,
the CCP and BDOS, and the BIOS together in the low part of memory. Then
write this new version of CP/M onto a disk in the appropriate places. Again,
depending on the design of your computer system, you may be able to use the
standard utility program, SYSGEN, to write the entire CP/M image onto
disk. Otherwise you may have to write a special program to do this.

When CP/M is already running on your computer system and you want to add
new features to the BIOS, all you need to do is change the BIOS and rebuild the
system. The CCP and BDOS will need to be moved down in memory if the changes
expand the BIOS significantly. If this happens, you will have to make minor
changes in the bootstrap loader so that it reads the new CP/M image into memory
at a lower address and transfers control to the correct location (the first instruction
of the BIOS jump vector).

Building Your First System

The first time that you build CP/M, it is a good idea to make no changes to the
BIOS at all. Simply reassemble the BIOS source code and proceed with the system
build. Then, if the new system does not run, you know that it must be something in
the procedure you used rather than any new features or modification to the BIOS



Chapter 7: Building a New CP/M System 185

source code. Changes in the BIOS could easily obscure any problems you have
with the build procedure itself.

The Ingredients

To build CP/M, you will need the following files and utility programs:

The assembly language source code for your BIOS. Check your CP/M
release diskette for a file with a name like CBIOS.ASM (Customized Basic
Input/ Output System). Some manufacturers do not supply you with the
source code for their BIOS; it may be sold separately or not released at all. If
you cannot get hold of the source code, the only way that you can add new
features to the BIOS is by writing the entire BIOS from scratch.

The source code for the CP/M bootstrap loader. This too may be on the
release diskette or available separately from your computer's manufacturer.

The Digital Research assembler, which converts source code into machine
language in hexadecimal form. This program, called ASM.COM, will be on
your CP/M release diskette. Equivalent assemblers, such as Digital Research's
macro-assemblers MAC and RMAC or Microsoft's M80, can also be used.

The Digital Research utility called MOVCPM, which prepares a memory
image of the CCP and BDOS with all addresses adjusted to the right values.

The Digital Research debugging utility, called DDT (Dynamic Debugging
Tool), or the more enhanced version for the Z80 CPU chip, ZSID (Z80
Symbolic Interactive Debugger). DDT is used to read in the various pro
gram files and piece together a memory image of the CP/M system.

The Digital Research utility program SYSGEN. This writes the composite
memory image of the bootstrap, CCP, BDOS, and BIOS onto the disk.
SYSGEN was designed to work on floppy disk systems. If your computer
uses a hard disk, you may have a program with a name like PUTCPM or
WRITECPM that performs the same function.

The Ultimate Goal

In Figure 6-4, lines 0044 to 0065, you can see the equates that define the base
addresses for the CCP, the BDOS, and the BIOS. Figure 7-1 shows how the top of
memory will look when this version of CP/M has been loaded into memory.

Life would be simple if you could build this image in memory at the addresses
shown and write the image out to disk. Building this image, however, would
probably overwrite the version of CP/M that you were operating since it too lives
at the top of memory. Therefore, the goal is to create a replica of this image lower
down in memory, but with all the instruction addresses set to execute at the
addresses shown in Figure 7-1.



186 The CP/M Programmer's Handbook

OFFFFH (Top of 64K RAM)

BIOS

OF400H

BDOS

OECOOH

CCP

OE400H

Figure 7-1. Memory layout of CP/M

Using SYSGEN to Write CP/M to Disk

The SYSGEN utility writes a memory image onto a specified logical disk. It
can use a memory image that you arrange to be in memory before you invoke
SYSGEN, or you can direct SYSGEN to read in a disk file that contains the image.
You can also use SYSGEN to transport an existing CP/M system from one diskette
to another by directing it to load the CP/M image from one diskette into memory
and then to write that image out to another diskette.

Check the documentation supplied by your computer's manufacturer to make
sure that you can use SYSGEN on your system. SYSGEN, as released by Digital
Research, is constructed to run on 8-inch, single-sided, single-density diskettes. If
your system does not use these standard diskettes, SYSGEN must be customized
to your disk system.

When SYSGEN loads a CP/M image into memory, it will place the bootstrap,
CCP, BOOS, and BIOS at the predetermined addresses shown in Figure 7-2,
regardless of where this CP/M originated.



Chapter 7: Building a New CP/M System 187

OFFFFH (Top of64K RAM)041

Currently
executing

version
of CP/M

041

~ ~l>

•
BIOS

041

BDOS

041

CCP

041

Bootstrap
~

SYSGEN

041

041

0E400H (approximate)

2880H

IF80H

1I80H

0980H

0900H

OIOOH

OOOOH

BIOS = 2304 (900H) bytes
(this will vary from
version to version)

BDOS = 3584 (OEOOH) bytes

CCP = 2048 (800H) bytes

Bootstrap = 128 (80H) bytes

SYSGEN = xxx (xxxH) bytes

Figure 7-2. SYSGEN's memory layout



188 The CP/M Programmer's Handbook

You can see that the relative arrangement between the components has not
changed; the whole image has simply been moved down in memory well below the
currently executing version of CP/M. The bootstrap has been added to the picture
just beneath the CCP.

The SYSGEN utility writes this image onto a floppy diskette starting at sector
1 of track 0 and continuing to sector 26 on track 1. Refer back to Figure 2-2 to see
the layout of CP/M on a standard 8-inch, single-sided, single-density diskette.

Ifyou request SYSGEN to read the memory image from a file (which you do by
calling SYSGEN with the file name on the same line as the SYSGEN call), then
SYSGEN presumes that you have previously created the correct memory image
and saved it (with the SAVE command). SYSGEN then skips over the first 16
sectors of the file so as to avoid overwriting itself.

Here is an example of how to use SYSGEN to move the CP/M image from one
diskette to another:

A>SYSGEN<CR>
SYSGEN VER 2.0
SOURCE DRIVE NAME (OR RETURN TO SKIP) &
SOURCE ON A:. THEN TYPE RETURN <cr>
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) ~

DESTINATION ON B: THEN TYPE RETURN <cr>
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) <cr>
A>

As you can see, SYSGEN gives you the choice of specifying the source drive
name or typing CARRIAGE RETURN. If you enter a CARRIAGE RETURN, SYSGEN
assumes that the CP/M image is already in memory. Note that you need to call up
SYSGEN only once to write out the same CP/M image to more than one disk.

A larger than standard BIOS can cause difficulties in using SYSGEN. The
standard SYSGEN format only allows for six 128-byte sectors to contain the
BIOS, so if your BIOS is larger than 768 (300H) bytes, it will be a problem. The
CP/M image will not fit on the first two tracks of a standard 8-inch diskette.

Nowadays it is rare to find an 8-inch floppy diskette system where you must
load CP/M from a single-sided, single-density diskette. Most systems now use
double-sided or double-density diskettes as the normal format, but can switch to
single-sided, single-density diskettes to interchange information with other com
puter systems.

Because there is no "standard" format for 8-inch, double-sided and double
density diskettes, you probably won't be able to read diskettes written on systems
of a different make or model. Therefore, you need only be concerned about using a
disk layout that will keep your disks compatible with other machines that are
exactly the same as yours.

This is also true if you have 5 1/4-inch diskettes. There is no industry standard
for these either, so your main consideration is to place the file directory in the same



Chapter 7: Building a New CP/M System 189

place as it will be on diskettes written by other users of your model of computer.
You must also be sure to use the same sector skewing. Otherwise, you will get a
garbled version whenever you try to read files originating on other systems.

With the higher capacity diskettes, you can reserve more space to hold the
CP/M image on the diskette. For example, in the case of the BIOS shown in Figure
6-4, the CP/M image is written to a 5 1/4-inch, double-sided, double-density
diskette using 512-byte sectors. Figure 7-3 shows the layout of this diskette. Note
that the bootstrap loader is placed in a 512-byte sector all by itself. Doing so makes
the bootstrap code and warm boot code in the BIOS much simpler.

The memory image must be altered to reflect the fact that the bootstrap now
occupies an entire 512-byte sector. Rather than change all of the addresses, the
bootstrap is loaded into memory 384 (180H) bytes lower, so that it ends at the same
address as before. Figure 7-4 shows the revised memory image.

Writing a PUTCPM Utility

Because the example system uses 5 1/4-inch floppy diskettes with 512-byte
sectors, the standard version of SYSGEN cannot be used to write the CP/M image
onto a diskette. You will have to use a functional replacement provided by your
computer's manufacturer or develop a small utility program to do the job.

Track 0

Head 2 3 4

Sector

5 6 7 8 9

o Boot CCP BDOS

BDOS BIOS

10 II 12 13 14 15 16 17 18

Sector

Track 1 Sector

2 3 4 5 6 7 8 9

Head
File Directory Allocation Blocks

0

Figure 7-3. Disk layout for example BIOS on 5 1/4-inch diskettes



190 The CP/M Programmer's Handbook

OE400H (approximate)

OFFFFH (Top of 64K RAM)

Currently
executing

version
of CP/M ...

...
~:: ~

...
BIOS

...

BOOS

...
CCP

...
Bootstrap ..

2880H

IF80H

1I80H

0980H

0780H

BIOS = 2304 (900H) bytes
(this will vary from
version to version)

BOOS = 3584 (OEOOH) bytes

CCP = 2048 (800H) bytes

Bootstrap = 512 (200H) bytes

Figure 7·4. Addresses for example BIOS image

Figure 7-5 shows an example of such a program. It is written in a general
purpose way, so that you may be able to use it for your system by changing the
equates at the front of the program to reflect the specifics of your disk drives.

Note that there are two problems to be solved. First, the area of the disk on
which the CP/M image resides cannot be accessed by the BDOS, as it is outside the
file system area on the disk. Second, it is rare to write the CP/M image onto the
disk with any kind of sector skewing; to do so would slow down the loading
process. In any case, skewing would be redundant, since the loader is doing no
processing other than reading the disk and can therefore read the disk without
skewing.



Chapter 7: Building a New CP/M System

This program writes out the CP/M cold boot loader.
CCP, BOOS, and BIOS to a floppy diskette. It runs
under CP/M as a normal transient program.

191

3130

3730
3432 =
3238

Month
Day
Year

EQU

EQU
EQU
EQU

'OF

'or
'24'
'82'

JEquates used in the sign-on
• message

The actual PUTCPMFS.COM program consists of this code.
plus the 800TF5.HEX. CCP. BOOS. and BIOS.

When this program executes, the memory image should
look like this,

Component
BIOS
BOOS
CCP
BOOTF5

Basil! Address
IF80H
1180H
0980H
0780H

The components are produced as follows:

BIOS. HEX
BDOS )
CCP )
BOOTF5.HEX

By assembling source code
From a CPMnn.COM file output

by MOVCPM and SAVEd on disk
By assembling source code

The components are pieced together using DDT with the
following commands:

DDT CPMnn.COM
IPUTCPMF5.HEX
R
I BOOTF5. HEX
R680
IBIOS.HEX
R2980
00
SAVE 40 PUTCPMF5.COM

(Reads in this program)

(Reads in BOOT at 0780H)

(Reads in BIOS at IF80H)
(Exit from DDT>
(Create final .COM file)

The actual layout of the diskette is as follows:

Track 0 Sector
2 3 4 5 6 7 8 9

Head +-----+-----+-----+-----+-----+-----+-----+-----+-----+
o IBoot 1<======== CCP ========>1<======= BOOS ========1

+-----+-----+-----+-----+-----+-----+-----+-----+-----+
1====== BOOS ====>1<============= BIOS ============>1
+-----+-----+-----+-----+-----+-----+-----+-----+-----+

10 II 12 13 14 15 16 17 18
Sector

Equates for defining memory size and the base address and
length of the system components

0040 = Memory.Size EQU 64 ;Number of Kbytes of RAM

The BIOS Length must match that declared in the BIOS.

CCP.Length + BDOS$Length + BIOS$Length

980H - Boot$Length ,Address of CP/M image
Length$In$Byt". + Boot.Length

0900 =
0200 =
0800 =
OEOO =

IFOO =

0780 =
2100 =

BIOS.Length EQU,
Boot.Length EQU
CCP.L"ngth EQU
BDOS.Length EQU,
Length.In.Bytes EQll,
Start.Image EQU
Length.Image EQU

0900H

512
0800H
OEOOH

;Constant
;Constant

Figure 7-5. Example PUTCPM



192 The CP/M Programmer's Handbook

Disk characteristics

These equates describe the physical characteristics of
the floppy diskette so that the program can move from
one sector to the next, updating the track and resetting
the sector when necessary.

0001
0012
0009
0200

FirstSSectorSonSTrack
LastSSectorSonSTrack
Last'Sector'on'Head'O
Sector'Size

EQU
EQU
EQU
EQU

1
18
9
512

Controller characteristics

On this computer system, the floppy disk controller can write
multiple sectors in a single command. However. in order
to produce a more general example it is shown only reading one
sector at a time.

0001 Sectors.Per$Write EQU

Cold boot characteristics

0000
0001
0011

0009 =
0005

S1arUTrack
Start$Sector
Sectors$To'Write

I
a.PRINTS
BDOS

EQU
EQU

EQlI
EQlI
EQU

9
5

o ;Initial values for CP/M image
1 ; = " =
(Length$lmage + Sector$Size - 1) I Sector$Size

;Print string terminated by S
;BDOS entry point

'0100 ORG 100H
Put.CPM,

0100 C33FOI JMP Main'Code

OCIOD CR EQU ODH
OOOA LF EQU OAH

;Enter main code body
;For reasons of clarityp th. main

data structures are shown before the
; executable code.
;Carriage return
;Line feed

Signon.Message:
0103 ODOA507574
0119 ODOA
011B 5665727369
0123 3031
0125 20
0126 3037
0128 2F
0129 3234
012B 2F
012C 3832
012E ODOA24

DB
DB
DB
DW
DB
DW
DB
DW
DB
DW
DB

CR.LF,~Put CP/M on Diskette~

CR.LF
"'Version
Version

Month
'I'
Dn
'I'
Year
CR.LF.'"

Disk control tables

0045
0046 •
0043 =

Disk'Control'5 EQU
Command.Block.5 EQU
Disk'Status EQU

45H
46H
43H

:5 1/4 11 control byte
;Control table pointer
;Completion status

Figure 7-5. (Continued)

The command table track and OMA$Address can also be used
as working slorage and updated as the load process
continues. The sectoY in the command table cannot be
used directly a, the disk controller requires it to be
the sector number on the specified head~(l -- 9) rather
than the sector number on track. Hence a separate variable
mus t be used.



Chapter 7: Building a New CP/M System 193

,
COMmand.Table, DB
Uni tJ DB
Head' DB
Track. DB
Sector.on.head. DB
Byte.Count, OW
DMA.Addr.... DW
Next.Statu.. DW

Disk.Contro1$5

.Pointer to next status block
; if commands are chained
;Pointer to next control byt~

if commands are chained

,Command -- Write
,Unit (drive) number = 0 or 1
,H.ad number = 0 or 1
,Used •• working variable
,Converted by low-level driver

• Sector••Per.Writ.

02H
o
o
Start.Track
o
Sector.Size
StarUI.age
Disk.Statu.

DBSectorl

0132 02
0133 00
0134 00
013S 00
0136 00
0137 0002
0139 8007
013B 4300

013D 4:500

0131 01

SP,Put.CPM ,Stack grow. down below code

H,Command.Tabl. ,Point the disk controller at

Command.Block.5 the command block

D,Si9nonSM.ssage ,819n on
C,B.PRINTS ,Print string until.
BDOS

,Set sector count

,Write data onto diskette
,Downdat. sector count
,Warm boot

,Update sector number
by adding on number of sectors

, by controller
,Save result

+ 1 ,Ch.ck if at end of track

,At this point, the description of the
operation required is in the variables
contained in the command table, along
with the sector variable.

H,S.ctoY
A,Seetors'Per'Write
M
M.A
A.La.t.Sector.On.Track
M
Not.End.Track

Put .CPM.Wr it e
C
o

M,First'Sector'On'Track ,Ves, reset to beginning
Track ,Update track nUMber
H
Track

DMA.Addre.. ,Update DMA address
D,S.ctor'S1ze * Sectors.Per'Writ.
D
DMA.Addr..s
Writ••Loop ,Write next block

Main.Codel
013F 310001 LXI

0142 110301 LXI
014:5 OE09 MVI
0147 CDO:500 CALL

014A 213201 LXI

014D 224600 SHLD

01:50 OE11 MVI
Writ ••Loop,

01:52 CD7COl CALL
01:5S OD DCR
01:56 CAOOOO .JZ

01:59 213101 LXI
01:5C 3E01 MVI
01:5E 86 ADD
01:5F 77 MOV
0160 3E13 MVI
0162 BE CMP
0163 C26FOl .JNZ

0166 3601 MVI
0168 2A3S01 LHLD
016B 23 INX
016C 223:501 SHLD

Not.End.Track.
016F 2A3901 LHLD
0172 110002 LXI
017:5 19 DAD
0176 223901 SHLD
0179 C3S201 .IMP,

Put .CPM.Wr ite I

017C C:5 PUSH B ,Save sector count in C

,------ Chanoe this routine to match the disk controller in use

017D 0600
017F 3A3101
0182 4F
0183 FEOA
018:5 DA8COl
Olea D609
018A 4F
018B 04

018C 78
018D 323401
0190 79
0191 323601

H.ad.O.

MVI
LDA
MOV
CPI
JC
SUI
MOV
INR

MOV
STA
MOV
STA

B,O
Sector
C.A
La.t.Sector.on.Head.O+l
Head.O
La.t.Sector.on.Head.O
C.A
B

A.B
Head
A.C
S.ctor.On.Head

,As.ume head 0
,Get requested sector
,Take a COpy of it
,Check if on head 1
,No
,Bias down for head
,Save copy
,Set head 1

;Oet head

,Get .ector

Figure 7-5. (Continued)



194 The CP/M Programmer's Handbook

Wait$For$8oot$Complete.
MOV A,M
ORA A
JNZ Wait$For$8oot$Complete

0194 214:500
0197 3680

0199 7E
019A 87
0198 C29901

019E 3A4300
OIAI FESO
0lA3 DAASOI

LXI
MVI

LOA
CPI
JC

H,Disk$Control$:5
M,SOH

Disk$Status
SOH
Put$CPM$Error

JActiv~t. controller

;Oet status byte
;Check if compl.te
;No
;Yes. check for errors

;Yes, an error occurred

;------ End of physical write routine ------

0lA6 CI
0lA7 C9

OIAS I1B301
OIAB OE09
OIAD C00500
OIBO C33FOI

POP
RET

Put$CPM$Error.
LXI
MVI
CALL
JMP

B

D,PutSCPMSError$Message
C,B$PRINTS
BOOS
Main$Code

;Recover sector count in C

:Print string until $
;Output error message
;Restart the loader

Figure 7-5,

PutSCPMSErrorSMessage:
01830DOA4S7272 DB CR.LF .... Error in writing CP/M - retrying ..• ·' .CR,LF, /."
o I DB END PuUCPM

(Continued)

Using DDT to Build the CP/M Memory Image

DDT, the Digital Research debug program, is used to read files of type
".COM" and ".HEx" into memory. Understanding the internal structure of these
file types is important, both to understand what DDT can do and to understand
how the MOVCPM utility can effectively change a machine code file so that it can
be executed at a new address in memory.

...COM" File Structure

A COM file is a memory image. It is a replica of the bit patterns that are to be
created when the file is loaded into memory. COM files are normally designed to
load at location WOH upwards. No internal structure to the file requires this,
however, so if you know what the contents of a COM file are, there is nothing to
preclude you from loading it into memory starting at some address other than
WOH.

As you may recall from the description of the CCP in Chapter 4, the SAVE
command built into the CCP allows you to create a COM file by specifying the
number of 256-byte "pages" of memory and the name of the file. The CCP will
write out an exact image of memory from location WOH up.



Chapter 7: Building a New CP/M System 195

".HEX" File Structure

HEX files are output by the assembler. They contain an ASCII character
representation of hexadecimal values. For example, the contents ofa single byte of
memory with the binary value 1O1O1ll1 would be represented by two ASCII
characters, A F, in a HEX file.

The HEX file has a higher level structure than just a series of ASCII charac
ters however. Each line of ASCII characters is terminated by CARRIAGE

RETURN / LINE FEED. The overall structure is shown in Figure 7-6.
The most important aspect ofa HEX file is that each line contains the address

at which the data bytes are loaded. Each line is processed independently, so the
load addresses of succeeding lines need not be in order.

DDT can read in a HEX file at an address different from the address where the
code must be in order to execute. For example, you can read in the HEX file of the
BIOS at the correct place for the memory image (shown in Figure 7-4). There are
two ways of using DDT to read in a COM or HEX file. You can specify the name of
the file on the same command line with DDT. For example:

A>DDT BIXYZ.HEX<cr>
DDT VERS 2.0
NEXT PC
01S0 0100

<- Call UP DDT with file name
<- DDT signs on

<- ••• and displays next free byte
and entry point address

<- ••• and prompts for a commmand

The advantage of this method of loading a file is that you can specify which
logical disk is to be searched for the file. The second way of using DDT is to load
DDT first, and then, when it has given its prompt, specify the file name and request
that DDT load it like this:

-Ifilename.typ<cr>
-R<cr>

<- Enter the file name and type
<- Read in the file

The "I" command initializes the default file control block in the base page (at
location 005CH) with the file name and type; it does not set up the logical disk. If
you need to do this, you must set the first byte of the default FCB manually like
this:

-Ifilename~<cr>

-S5C<cr>
005C 00 02<cr>
005D 41 :<cr>
-R<cr> --

(- Specify file name
(- "S"et location 5C
<- Was 00, yOU enter 02(cr)
(- Enter "." to terminate
(- Read in the file

Location 005CH should be set to 01 H for Drive A, 02H for B, and so on.
The "R" command will read in HEX files to the execution addresses specified

in each line of the HEX file, so be careful-if you forget to put an ORG (origin)



196 The CP/M Programmer's Handbook

04 0158 00 64 00 01 80 BE

~

L!=CheCk sum formed by adding up all of the values 04, 01, 58, 00,
64, 00, OJ and 80 and then subtracting their sum from OOH

Data bytes to be loaded at the specified address

L..-.------Record (line) type, normally 00
L..-. Load address for the data bytes on this line

L..-.---------Number of data bytes on this line (ASM uses IOH bytes)

'------------ Beginning of line marker (colon)

NOTE: HEX files do not have embedded blank characters; the example above is shown with
gaps between individual fields only for clarity.

Figure 7-6. Example line from HEX file

statement at the front of the assembly language source code, reading in the
resultant HEX file will overwrite location OOOOH on up, destroying the contents of
the base page. Similarly, if you were trying to read in the HEX file for a BIOS,
there is an excellent chance that you will overwrite the currently executing CP/M
system.

DDT reacts to the file type you enter as part of the file name. For file types
other than .HEX, DDT loads the file starting at location OIOOH on up.

The "R" command can also be used to read files into memory at different
addresses. You do this by typing a hexadecimal number immediately after the R,
with no intervening punctuation. For HEX files, the number that you enter is
added to the address in each line of the HEX file and the sum is used as the address
into which the data bytes are loaded. The data bytes themselves are not changed,
just the load address.

For COM files, the number that you enter is added to OIOOH and the sum is
used as the starting address for loading the file.

The sum is performed as 16-bit, unsigned arithmetic with any carry ignored, so
you can load a BIOS HEX file into low memory by using the "R" command with
what is called an "offset value."

Ifa HEX file has been assembled to execute at address "exec," and you need to
use DDT to read in this file to address "load," you need to solve the following
equation:

offset = load - exec.

DDT's "H" command performs hexadecimal arithmetic. It calculates and
displays the sum ofand difference between two hexadecimal values. For example,



Chapter 7: Building a New CP/M System 197

the BIOS in Figure 6-4 has been assembled to execute at location OF600H, but
needs to be loaded into memory at location lF80H. Here is how to compute the
correct offset for the "R" command:

-HIF80,F6.o0<cr>
1580,2980

<- Use the H command
<- Sum. differenc'e

Thus, to read in the BIOS HEX file called FIG6-4.HEX at location lF80H,
you would enter the following commands to DDT:

-IFIG6-4.HEX<cr>
-R298Q.<cr>

<- Specify file name and type
<- Load at OF600H + 2980H (= IF80H)

In this way, using DDT, you can read in the HEX files for both the BIOS and
the bootstrap loader.

The CP/M Bootstrap Loader

The bootstrap loader is brought into memory by PROM-based firmware in
the computer system. It loads in the CCP, BOOS, and BIOS and then transfers
control to the cold boot entry point in the BIOS-the first jump instruction in the
BIOS jump vector.

The bootstrap loader is a stand-alone program; it cannot make use of any
CP/M functions because no part of CP/M is in memory when the bootstrap loader
is needed. The firmware in the PROM that loaded the bootstrap may contain some
subroutines that can be used by the bootstrap, but this will vary from system to
system.

Figure 7-7 shows the bootstrap code for the example BIOS (from Figure 6-4).
This code has been written in a general way, so that you can adapt it to your
system. The disk controller on the example system can in fact read in multiple
sectors from the disk, but for generality the code shown reads in only one sector at
a time. This considerably increases the time it takes to load CP/M, but does make
the bootstrap loader more general.

Note that almost the first thing that the bootstrap does is to output to the
console a sign-on message. Not only does this confirm the version number, but it
shows that the bootstrap has been successfully loaded.

The PROM-based code has been designed to load the CP/M bootstrap into
location lOOH, allowing the code to be debugged as though it were a normal
transient program, albeit with minor changes to the address at which it loads the
CP/M image from disk. Clearly, this feature is not very helpful if CP/M is being
brought up for the first time on a computer system. It helps a great deal, however, if
you need to modify the bootstrap or add the capability to boot your system from a
new type of disk drive.



198 The CP/M Programmer's Handbook

Example CP/M cold bootstrap loader

This program is written out to track OF head 0, sector 1
by the PUTCPMF5 program.
It is loaded into memory at location IOOH on up by the
PROM-based bootstrap mechanism that gets control of the
CPU on power UP or system reset~

3130 = Version EQU -'01 ~ ;Equates used in the sign-on message
3730 Month EQU 'or
3432 Day EQU '24--
3238 Year EQU '82'

0000 = Debug EQLI 0 ~Set nonzero to debug as norff\al
I tt"ansient progr"am

The actual layout of the diskette is as follow-;

Track 0 Sector
2 3 4 5 6 7 8 9

J Head +-----+-----+-----+-----+-----+-----+-.----+------t.--.-----+
o lBoot i(======== CCP ========>1(======= BDOS ========i

+-----+-----+-----+-----+-----+-----+-----+-----+-----+
i====== BDOS ====>i(============= BIOS ============>i
+-----+-----+-----+-----+-----+-----+-----+-----+-----+

10 II 12 13 14
Sector

15 16 17 18

Equates foY defining memory size and the base address and
length of the system components.

0040 Memory$Size EQU 64 ;Number of Kbytes of RAM

The BIOS Length must match that declared in the BIOS.

0900

0800
OEOO

BIOS$Length

CCP$Length
BDOS$Length

EQU

EQU
EQll

0900H

0800H
OEOOH

;Constant
; Constant

0008
IFOO

Length$In$K EQU
Length$In$Bytes EQU

«CCP$Length + BDOS$Length + BIOS$LenglhJ / 1024) + I
CCP$Length + BDOS$Lenglh + BIOS$Lenglh

NOT Debug
EQU (Memory$Size - LengthSInSK) * 1024EOOO

IF
CCP$Entry

ENDIF
IF

CCP$Entry

ENDIF

Debug
EQU 3980H ;Read into a lower address.

,This address is chosen to be above
the area into which DDT initially loads
and the 980H makes the addresses similar
to the SYSGEN values so that the memory
image can be checked with DDT.

E806 =
F600

BDOS$Entry
BIOS$Entry

EQU
EQU

CCP$Enlry + CCP$Lenglh + 6
CCP$Entry + CCP$Length + BDOS$Length

Disk characteristics

These equates describe the physical characteristics of
the floppy diskette so that the program can move from
one sector to the next, updating the track and resetting
the sector when necessary.

0001
0012
0009
0200

First$Sector$onSTrack
Last$Sector$on$Track
Last$Sector$on$Head$O
Sector$Size

EQU
EQU
EQU
EQU

I
18
9
512

Figure 7-7.

Controller characteristics

Example CP/M cold bootstrap loader



Chapter 7: Building a New CP/M System

On this computer system. the floppy disk controller can read
multiple sectors in a single command. However. in order to
produce a more general example it is shown only reading one
sector at a time.

199

0001 =
;
Sec tor s.Per.Read EQU

Cold boot characteristics

0000 =
0002 =
0010 =

ShrUTrack
ShrUSector
Sectors.ro'Read

EQU
EQU
EQU

o 'Initial values for CP/M image
2 ;= .. =
(Length.In.Bytes + Sector$Size - 1) / Sector'Size

ORO 100H
ColdSBoot'Loader:

~MP Main$Code

0100

0100 C34001

OOOD
OOOA =

CR
LF

EQU
EQLI

ODH
OAH

;Enter main code body
;For reasons of clarity, the main

data structures are shown before the
J executable code.
;Carriage return
;Line feed

ODOA
5665727369
3031
20
3037
2F
3234
2F
3832
ODOAOO

0103

011A
OllC
0124
0126
0127
0129
012A
012C
012D
012F

Signon$Message:
ODOA43302F DB

IF
DB
ENDIF
DB
DB
DW
DB
DW
DB
DW
DB
DW
DB

CR.LF r "'CP/M Bootstrap Loader· ...
Debug
, (Debug.l'

CR.LF
"'Version
Version

Month
'I'
Day
'/'
Year
CR.LF.O

Disk Control Tables

0043
0046 =
0043 =

;
Disk$Controi$5 EQU
Command$Block$5 EQU
Disk$St~tus EQU

45H
46H
43H

5 1/4" control byte
Control table pointer
Completion status

The command table track and DMA$Address can also be used
as working storage and updated as the load process
continues. The sector in the command table cannot be
used dlrectly as the disk controller requires it to be
the se~tor number on the specified head (1 -- 9) rather
than the sector number on track. Hence a separate variable
must be used.

0132 02 Sector: DB Start.Sector
;

0133 01 Command$Table, DB OIH ;Command -- read
0134 00 Unit. DB 0 ,Uni t (drive) number = 0 or 1
0135 00 Head: DB 0 'Head number = 0 or 1
0136 00 Track. DB Shrt$Track ;Used as working variable
0137 00 Sector.on.head: DB 0 ;ConvertiRd bY low-level driver
0138 0002 By\e$Count I DW Sector.Size * Sectors.Per.Read
013A OOEO DMA$Addres.. DW CCP.Entry
013C 4300 N••UShtu.. DW Disk.Status ;Point.r to next status block

; if commands are chained.
013E 4300 N.. t$Contro!: DW Disk$Control$5 :Pointer to next control byte

if commands are chained.

0140 310001
Main$Code,

LXI SP.Cold$Boot$Loader 'Stack grows down below code

Figure 7-7. (Continued)



200 The CP/M Programmer's Handbook

0143 210301
0146 CDD901

0149 213301
014C 224600

014F OEIO

0151 CD7BOI
0154 OD

0155 CAOOF6

0158 213201
015B 3EOI
015D 86
Ol!iE 77
015F 3EI3
0161 BE
0162 C26EOI

LXI
CALL

LXI
SHLD

MVI
Load.Loop:

CALL
DCR

IF
-.lZ
ENDIF
IF
-.lZ
ENDIF

LXI
MVI
ADD
I'lOV
MVI
CI'lP
JNZ

H,SignonSMessage
Display.Message

H,CommandtTable
Command$Block$5

C.SectorsSTo$Read

Cold$Boot$Read
C

NOT Debug
BIOS$Entry

Debug
o

H,Sector
A,Sectors$Per$Read
M
M.A
A.Last$Sector$On$Track
M
Not$End$Track

,Sign on

,Point the disk controller at
the command block

;Set sector count

;Read data into memory
;Downdate sector count

;Enter BIOS when load done

:Warm boot

;Update sector number
by adding on number of sectot"s

; by controller
;Save result

+ 1 :Check if at end of track

0165 3601
0167 2A3601
016A 23
016B 223601

016E 2A3AOI
0171 110002
0174 19
0175 223AOI
0178 C35101

MVI
LHLD
INX
SHLD

Not.End'Track:
LHLD
LXI
DAD
SHLD
JMP

Cold$Eloot$Read:

M.First$Sector$On$Track ;Yes, reset to beginning
Track ;Update track number
H
Track

DMA$Address ,Update DMA Address
D,Sector$Size * Sectors$per'Read
D
DMA$Address
Load.Loop ;Read next block

;At this point. the description of the
operation required is in the variables
contained in the command table, along
with the sector variable.

017B C5 PUSH B ;Save sector count in C

017C 0600
OI7E 3A3201
0181 4F
0182 FEOA
0184 DA8BOI
0187 D609
0189 4F
018A 04

018B 78
018C 323501
018F 79
0190 323701

0193 214500
0196 3680

;------ Change this routine to match the disk controller in use

MVI B.O ;Assume head 0
LDA Sector ;Get requested sector
MOV C.A ;Take a copy of it
CPI Last$Sector$on$Head$O+l ;Check if on head I
.tC Head$O ;No
sLii La.t$Sector$on$Head$O ;Bias down for head
MOV C.A 'Save copy
INR B ,Set head I

Head$O:
MOV A.B ,Get head
STA Head
MOV A.C ,Get sector
STA Sector$OnSHead

LXI H.Disk$Control$5 ;Activate controller
MVI M.80H

Wait$For$BootSComplete:
MOV A.M
ORA A
JNZ WaitSForSBoot$Complete

0198 7E
0199 B7
019A C29801

019D 3A4300
OIAO FE80
0lA2 DAA701

LDA
CPI
-.lC

Disk$Status
80H
ColdSBoot$Error

;Get status byte
;Check if complete
;No
;Yes. check for errors

;Yes, an error occurred

Figure 7·7.

;------ End of physical read routine

(Continued)



0lA5 CI
0lA6 C9

POP
RET

B

Chapter 7: Building a New CP/M System

;Recover sector count in C

201

0lA7 21BOOI
OIAA CDD901
OIAD C34001

,
ColdtBoottError,

LXI H.ColdtBoottError.Message
CALL Display.Message ;Output error message
JMP Main.Code ,Restart the loader

ColdSSootSError$Messagel
01800DOA426F6F DB CR,LF,~Boot5trap Loader Error - rE!tryin9 ••• ~,CR,LF.O,

; Equates for Terminal Output

0001 •
0002 =

,
Terminal.Status.Port
Terminal.Data.Port

EQU
EQU

OIH
02H

0001 •

0109 7E
OIDA B7
OIDB CD
OIDC 4F

,
Terminal.Output.Ready,,
Display.Message.

MOV A.11
ORA A
RZ
110V C.A

EQU OOOO.OooIB

,Displays the specified message on the console.
,On entry, HL points to • stream of bytes to be
,output. A OOH-byt. terminates the message.

,O.t next ••• sage byte
,Check if terminator
,Yes, return to caller
,Prepare for output

0100 DBOI
OIDF E601
OIEI CADDO I
0lE4 79
0lE5 0302

Output.Not.Ready,
IN Terminal.Status.Port
ANI Terminal.Output.Ready
JZ Output.Not.Ready
110V A.C
OUT Terminal.Data.Port

,Check if ready for output

,No, wait
,Get data character
;Output to screen

Figure 7-7.

0lE7 23
oIED C3D90-1

02EO
02EO 43502F4D
02E4

(Continued)

INX
JMP

ORG
DB
END

H ;Mov. to next byte of message
Display'Messag. ;Loop until complete message output

,The PROM-bas.d bootstrap loader checks
, to s•• that the characters IICP/M"
J are on the diskette bootstrap sector
, before it transfers control to it.

2EOH
'CP/W
Cold.Boot.Loader

In this case, the bootstrap code must be loaded at location 0780H, not the
normal 0980H, because the bootstrap takes a complete 512-byte sector (200H).
The same principle applies in determining the offset value to be used with DDT's
"R" command to read the bootstrap HEX file, namely:

offset = load address - execution address.

In this case, the values are the following:

0680H = 0780H - OIOOH

Using MOVCPM to Relocate the CCP and BOOS

MOVCPM builds a CP/M memory image at the correct locations for
SYSGEN, but with the instructions modified to execute at a specific address.
Inside MOVCPM is not only a complete replica of CP/M, but also enough



202 The CP/M Programmer's Handbook

information to tell MOVCPM which bytes of which instructions need be changed
whenever the execution address of the image needs to be moved.

MOVCPM, as released from Digital Research, contains the bootstrap and
BIOS for an Intel MOS-800 computer along with the generic CCP and BOOS.
Unless you have an MOS-800, all you use is the CCP and BOOS. Some manufac
turers have customized MOVCPM to include the correct bootstrap and BIOS for
their own computers; consult their documentation to see if this applies to your
computer system.

When you invoke MOVCPM, you have the following options:

MOVCPM<cr>
MOVCPM will relocate its built-in copy of CP/M to the top of available
memory and will then transfer control to this new image of CP/M. Unless
your manufacturer has included the correct BIOS into MOVCPM, using this
option will cause an immediate system crash.

MOVCPM nn<cr>
This is similar to the option above, except that MOVCPM assumes that nnK
bytes of memory are available and will relocate the CP/M image to the top of
that before transferring control. Again, this will crash the system unless the
correct BIOS has been installed into MOVCPM.

MOVCPM * *<cr>
MOVCPM will adjust all of the internal addresses inside the CP/M image so
that the image could execute at the top of available memory, but instead of
actually putting this image at the top of memory, MOVCPM will leave it in
low memory at the correct place for SYSGEN to write it onto a disk. The
SAVE command could also preserve the image on a disk.

MOVCPM nn *<cr>
MOVCPM proceeds as above for the "* *" option except that the CP/M
image is modified to execute at the top of nnK.

MOVCPM has a fundamental problem. The nn value indicates that the top of
available memory is computed, assuming that your BIOS is small-less that 890
(380H) bytes. Ifyour BIOS is larger (as is the case with the example in Figure 6-4),
then you will have to reduce the value of "nn" artificially.

Figure 7-8 shows the relationship between the size of the BIOS and the "nn"
value to use with MOVCPM. It also shows, for different lengths of BIOS, the BIOS
base address, the offset value to be used in DDT to read in the BIOS to location
IF80H (preparatory to using SYSGEN or PUTCPM to write it out), and also the
base addresses for the CCP and the BOOS. The base address of the BOOS
indicates how much memory is available for loading transient programs, as the
CCP can be overwritten if necessary.

The numbers in Figure 7-8 are based on the assumption that you have 64K of
memory in your computer system. If this is not the case, then proceed as follows:



Chapter 7: Building a New CP/M System 203

1. Convert the amount of memory in your system to hex. Remember that 1It is
1024 bytes.

2. Determine the length of your BIOS in hex.
3. Locate the line in Figure 7-8 that shows a BIOS length equal to or greater

than the length of your BIOS.
4. Using the "H" command in DDT, compute the BIOS Base Address using the

formula:
Memory in system - BIOS length from Figure 7-8

5. Find the line in Figure 7-8 that shows the same BIOS Base Address as the
result of the computation above. Use this line to derive the other relevant
numbers.

It is helpful to use DDT to examine a CP/M image in memory to check that all
of the components are correctly placed, and, in the case of the CCP and BOOS,
correctly relocated.

Figure 7-9 shows an example console dialog in which DDT is used first to
examine the memory image produced by MOVCPM and second to examine the
image built into the PUTCPMF utilityshown in Figure 7-5.

BIOS BIOS DDT MOVCPM CCP BOOS
Length Base Offset 'nn' Base Base

600 FAOO 2580 64 E400 ECOO
AOO F600 2980 63 EOOO E800
EOO F200 2080 62 OCOO E400

1200 EEOO 3180 61 0800 EOOO
1600 EAOO 3580 60 0400 OCOO
IAOO E600 3980 59 0000 0800
IEOO E200 3080 58 CCOO 0400
2200 OEOO 4180 57 C800 0000
2600 OAOO 4580 56 C400 CCOO
2AOO 0600 4980 55 COOO C800
2EOO 0200 4080 54 BCOO C400
3200 CEOO 5180 53 B800 COOO
3600 CAOO 5580 52 B400 BCOO
3AOO C600 5980 51 BOOO B800
3EOO C200 5080 50 ACOO B400
4200 BEOO 6180 49 A800 BOOO
4600 BAOO 6580 48 A400 ACOO
4AOO B600 6980 47 AOOO A800
4EOO B200 6080 46 9COO MOO
5200 AEOO 7180 45 9800 AOOO
5600 AAOO 7580 44 9400 9COO
5AOO A600 7980 43 9000 9800
5EOO A200 7080 42 8COO 9400
6200 9EOO 8180 41 8800 9000
6600 9AOO 8580 40 8400 8COO
6AOO 9600 8980 39 8000 8800

Apart from the MOVCPM 'nn' value all other values are in hexadecimal

Figure 7-8. CP/M addresses for different BIOS lengths



204 The CP/M Programmer's Handbook

Call UP MOVCPM requesting a /63K/ system
and the image to be left in memory.

A>t1Q.~~m. g ~£r.~
CONSTRUCTING 63k CP/M ver. 2.2
READY FOR "SYSGEN" OR
"SAVE 34 CPM63.COM"

Save the image from location 100H UP. By
convention. the file name is CPHon.COM, so
in this case it will be CPH63.COM

A>§.~.tt ~ ~J?Jlt~.~~...£...Q.~"~....£.r2

Call up DDT and request that it read in
CPM63.COM

A)9J!.!. ~E.!!12~,~Jl)~
DDT VERS 2.2
NEXT PC
2300 0100

Display memory to show the first few bytes of
the cepe Note the two JMP (C3H) instructions.
followed by 7FH. OOH. 20H' •• and the Digital
Research Copyright notice. These identify the
code as being the cepe Note that the first
JHP instruction is to 35tH into the cep -- you
can therefore infer the base address of the
cepe In this case the JMP is to locat;on E35C.
therefore this version of the CCP has been
configured to execute based at EOOOH.

-d98(J,-~.£1~r.2.

0980 C3 5C E3 C3 58 E3 7F 00 20 20 20 20 20 20 20 20 • \ •• X...
0990 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48 COPYRIGH
09AO 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T IC) 1979. DIGI
09BO 54 41 4C 20 52 45 53 45 41 52 43 48 20 20 00 00 TAL RESEARCH
09CO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

Display the first few bytes of the BOOS. Note
the JMP instruction at 1186. This is the
instruction to which control is transferred
by the JMP in location 5.

-d.!JJl..QLU_!'lE$£..r..~
118000 1600000985 C3 II E8 99 E8 A5 E8 AB E8 BI •••..••.........

Displaying further up in the BDOS ident i f ies
it unambiguouslY -- there are some ASCII errOr
messages.

-gj.g~.Q..,J.~_91..~£l:2.
1230 E8 21 DC E8 CD E5 E8 C3 00 00 42 64 6F 73 20 45 .! ......•. Bdos E
1240 72 72 20 4F 6E 20 20 3A 20 24 42 61 64 20 53 65 rr On : $Bad Se
1250 63 74 6F 72 24 53 65 6C 65 63 74 24 46 69 6C 65 ctor$Select$File
1260 20 52 2F 4F 24 E5 CD C9 E9 3A 42 E8 C6 41 32 C6 R/O$••.•• B•• A2.

Display the first few bytes of the BIOS.
Notice the BIOS JMP vector-- the series of C3H
instr.uctions. Normally the first instruction
in the vector can be used to infer the base
address of the BIOS; in this case it is
F600H. But there is no rule that says that
the cold boot code must be close to the BIOS
JMP vector -- so this is onlY a rough guide.

-d 1 f :30<cr >
IFBOC3-B3 F6 C3 C3 F6 C3 61 F7 C3 64 F7 C3 6A F7 C3 ••••••• a •• d •• j ••
IF90 6D F7 C3 72 F7 C3 75 F7 C3 78 F7 C3 7D F7 C3 A7 m•• r •• u •• x •• 1•..
IFAO F7 C3 AC F7 C3 BB F7 C3 CI F7 C3 CA F7 C3 70 F7 •••••••••••••• p.
IFBO C3 BI F7 82 F6 00 00 00 00 00 00 6E F8 73 F6 OD ..•.••..••. n. s ..
IFCO F9 EE F8 82 F6 00 00 00 00 00 00 6E F8 73 F6 3C .••..••.••. n. s. <
IFDO F9 ID F9 82 F6 00 00 00 00 00 00 6E F8 73 F6 6B •.•..••.••. n. s. k
IFEO F9 4C F9 82 F6 00 00 00 00 00 00 6E F8 73 F6 9A .L•.••.•••• n.s ..
IFFO F9 7B F9 IA 00 03 07 00 F2 00 3F 00 CO 00 10 00 • { •••••••• ? ••••
:2000 02 00 01 07 OD 13 19 05 OB II 17 03 09 OF 15 02 ................
2010 08 OE 14 IA 06 OC 12 18 04 OA 10 16 OD OA OA 36 ............... 6
:20:20 33 68 20 43 50 2F 4D 20 76 65 72 73 20 32 2E 32 3k CP/M vers 2.2
:2030 OD OA 00 31 00 01 21 9C F6 CD D3 F7 AF 32 04 00 ••. I •• ! •••••• 2..
-~£

Figure 7-9. Using DDT to check CP/M images



Figure 7-9.

Chapter 7: Building a New CP/M System

In contrast. load DDT and request that it
load the PUTCPMF5.COM program.

A> g9.1. ~."\!.t~.!!1f"l:t,"~.Q!!l.~.r2.
DDT VERS 2.2
NEXT PC
2900 0100

Display th. special bootstrap lo~der that
starts at location 07S0H (compared to the
MDS-800 bootstrap which i. at 0980H). Note
the sign-on message.

-d78Q, 7af ~"!2.
0780 C3 4001 OD OA 4350 2F 4D 20 42 6F 6F 74 73 74 .@ ••• CP/M Bootst
07907261 7020 4C 6F 61 646572 OD OA 56 65 72 73 rap Loader •• Vers
07AO 69 6F 6E 20 30 31 20 30 37 2F 32 34 2F 38 32 OD ion 01 07/24/82.

Confirm that the CCP is loaded in the correct
place. Check the address 01 the first JMP
instruction lOE35CH).

-1l5'8Q.,"2!;>1.~!2.
0980 C3 5C E3 C3 58 E3 7F 00 20 20 20 20 20 20 20 20 .\ •• X•••
0990 20 20 20 20 20 20 20 20 43 4F SO 59 52 49 47 48 COPYRlGH
09AO 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T (C) 1979. DIG I
09BO 54 41 4C 20 52 45 53 45 41 52 43 48 20 20 00 00 TAL RESEARCH

Confirm that the BOOS is also in place.
-g 1180, ill1<cr>
1180 00 16 00 00 09 85 C3 II E8 99 E8 AS E8 AB ES BI

Confirm that the BIOS has been loaded in the
correct place. Check the first JMP to get
some idea of the BIOS base address. Note the
sign-on message.

-dlf80<cr>
1F'S"O"C3F9 F6 C3 OC FE C3 62 F8 C3 78 F8 C3 86 F8 C3 •...••. b .• x ....•
IF90 A4 F8 C3 B4 F8 C3 C5 F8 C3 B6 FB C3 OE FB C3 3B ............... ,
IFAO FB C3 41 FB C3 48 FB C3 DE FB C3 F8 FB C3 94 F8 •• A•• H••...•••••
IFBO C3 BO FB ED 06 00 00 00 42 6E 25 DF 01 B6 DE 02 .••.••.. Bn7. •••••
IFCO 38 00 00 43 50 2F 4D 20 32 2E 32 2E 30 30 20 30 8 .• CP/M 2.2.00 0
IFDO 37 2F 31 35 2F 38 32 OD OA OA 53 69 6D 70 6C 65 7/15/82••. Simple
IFEO 20 42 49 4F 53 OD OA OA 44 69 73 6B 20 43 6F 6E BlOS..• Disk Con
IFFO 66 69 67 '1'5 72 61 74 69 6F 6E 20 3A OD OA OA 20 figuration : ...
2000 20 20 20 20 41 3A 20 30 2E 33 35 20 4D 62 79 74 A: 0.35 Mbyt
2010 65 20 35 22 20 46 6C 6F 70 70 79 OD OA 20 20 20 e 5" Floppy ••
2020 20 20 42 3A 20 30 2E 33 35 20 4D 62 79 74 65 20 B: 0.35 Mby!e
2030 35 22 20 46 6C 6F 70 70 79 OD OA OA 20 20 20 20 5" Floppy ...
-'C
A)

Using DDT to check CP/M images (continued)

205

Putting it all Together

Figure 7-10 shows an annotated console dialog for the complete generation of
a new CP/M system. Note that the following file names appear in the dialog:

BIOS1.ASM
PUTCPMF5.ASM
BOOTF5.ASM

Figure 6-4.
Figure 7-5.
Figure 7-7.



206 The CP/M Programmer's Handbook

C>9.§.OO. booie~,~c..s.~~.L?
CP/M ASSEMBLER - VER 2.0
02E4
004H USE FACTOR
END OF ASSEMBLY

c>~_!.!!!. e..~,.£EJ'l.t~..~,..£.£._~ ..S.£.rl:.
CP/M ASSEMBLER - VER 2.0
OIDB
003H USE FACTOR
END OF ASSEI1BLY

C>~..!!!l ~j..q.§.l..• ,.£..~.,:?_~C;.,l':l.
CP/11 ASSEI1BLER - VER 2.0
FE6C
OIIH USE FACTOR
END OF ASSEI1BLY

C)pd t ~.ElrL~.• C o,ro..5sr2.
DOT VERS 2.2
NEXT PC
2300 0100

-r.::s.r2..
NEXT PC
2300 0100

- iQl~.1_d'1!!.!i5.~!:l
-r~.?O<CY>

NEXT PC
27EC 0000

Assembl@ the CP/M Bootstrap Loader.
with the sourCe code and HEX file
on drive C:, no listing output.

Assemble the PUTCPI1F5 program (that
writes CP/M onto the disk), with
the source cOde and HEX file on
drive C:, no listing output.

Assemble the BIOS with the source
code and HEX file on drive CI, no
listing output.

Start piecing the CP/M image
together. Load DDT and ask it to
read in the file previously SAVEd
after a MOVCPM 63 *.

Indicate the file name of
PUTCPMF5.HEX, and read in without
any offset (i.e. it will load at
lOOH because of the ORO lOOH it
con t a i ns). - !E.~,.t£p.m.f...~,!"tHi1:.1:L~~).:l..

Indicate the file name of
BOOTF5.HEX and read in with an
offset of 680H to make it load at
780H on up (it contains ORG lOOH
too) .

Indicate the file name of the BIOS
HEX file. and read it in With an
offset of 2980 such that it will
load at IF80H (it contains an ORO
OF600Hl.

Exit from DDT by going to location
OOOOH and executing a warm boot.

Save the complete CP/M image on
disk. Saving 40 256-byte pages from
location IOOH to 2900H.

Figure 7-10. Console dialog for system build



Chapter 7: Building a New CP/M System

Load and execute the PUTCPMF5
prograM.

PUTCPMF5 signs on

207

Figure 7·10.

Put CP/M on Diskette
Version 01 07/24/82

and writ •• the CP/M image to
disk.

Console dialog for system build (continued)



BIOS Enhancements
Character Input/Output
Data Structures
Disk Input/Output
Custom Patches to CP/M
An Enhanced BIOS

Writing An
Enhanced BIOS

This chapter describes ways in which you can enhance your BIOS to make
CP/M easier to use, faster, and more versatile.

Get a standard BIOS working on your computer system, and then install the
additional features. Although you can write an enhanced BIOS from the outset, it
will take considerably longer to get it functioning correctly.

A complete listing ofan enhanced BIOS is included at the end of this chapter. It
is quite large: approximately 4500 lines of source code, with extensive comments
and long variable names to make it more understandable.

The sections that follow describe the main concepts embodied in the enhanced
BIOS listing.

209



210 The CP/M Programmer's Handbook

BIOS Enhancements

BIOS enhancements fall into two classes: those that add new capabilities and
those that extend existing features.

Some enhancements are normally accompanied by utility programs that allow
you to select the enhancement option from the console. For example, when the
BIOS is enhanced to include a real time clock, you need a utility program to set the
clock to the correct time. Other enhancements will not require supporting utilities.
For example, if the disk drivers are improved to read and write data faster, the
enhancement is "transparent." As a user, you are aware of the results of the
enhancement but not of the enhancement itself

Viewed at its simplest, the BIOS deals with two broad classes of input/output:

Character input/output
This includes the console, auxiliary, and list devices.

Disk input/output
This can accommodate several types of floppy and hard disks.

Enhancements in these areas do not fundamentally change the way that the
BDOS and CCP interact with these devices. Instead, enhancements improve the
way in which the device drivers deal with the devices. They can improve the speed
of manipulating data, the way of handling external devices, or the user's control
over the behavior of the system.

The example enhanced BIOS has capabilities not found in standard CP/M
systems. These can be grouped in several main categories:

Character input/output
This area probably benefits most from enhancement. This is partly because
such a wide range of peripheral devices needs to be supported and partly
because this is the most visible area of interaction between you and your
computer. Any improvements here will therefore be immediate and 0 bvious
to you as a user.

Error handling
CP/M's error handling is, at best, startling in its simplicity. Enhanced error
handling gives you more information about the nature of the failure, and
then gives you the options of retrying the operation, ignoring the error, or
aborting the program. This topic is covered in detail in Chapter 9.

System date and time
This is the ability to maintain a time-of-day clock and the current date. It
allows your programs to set and access the date and time. In addition, your
system can react to the passing of time, and you can move certain opera
tions into the time domain. For example, you can set upper limits on the



Chapter 8: Writing an Enhanced BIOS 211

number of seconds, or milliseconds, that each operation should take, and
arrange for emergency action if the operation takes too long.

Logical-to-physical device assignment
CP/M's logical-to-physical device assignment is primitive. With enhance
ments, you can use any character input/ output device as the system
consple, and output data to several devices at the same time.

Disk input/output
CP/M only knows about the 128-byte sector. Even with the deblocking
routines shown in Figure 6-4, overall disk performance can be slow.
Performance can be improved dramatically by "track buffering" (in which
entire tracks are read and written at one time) or by using a memory disk
(that is, using large areas of RAM as though they were a disk). These have a
cost, though, in increased memory requirements.

Public files
CP/M's user number system needs improvements to function well in
conjunction with large hard disks.

Preserving User-settable Options
A by-product ofadding features to the BIOS is that many of these features have

options that you can alter, either from the console using a utility program or from
within one of your programs.

Each of these options, once set according to your preferences, or to the
requirements of your hardware, do not normally change from day to day. There
fore, the BIOS should be designed so that options set by the user can be "frozen" or
preserved on the disk by using a utility program, FREEZE. All of the variables
recording these options are gathered into a single area and then this area is written
out to the disk.

This area is called the configuration block. In practice, there are two configura
tion blocks: one short term and the other long term. The short term block is not
preservable - you can set options within it, but they cannot be preserved after you
switch your computer off. The system date, for example, is normally set each time
you turn your computer on, and therefore is kept in the short term block. The baud
rate for your printer, on the other hand, is kept in the long term block so that it can
be saved permanently.

An extra BIOS entry point, CB$Get$Address, has been built into the enhanced
BIOS so that utility programs can locate variables in both configuration blocks.
For example, when a utility needs to know where the date is kept in memory,
it calls CB$Get$Address using a code number (specific for date) in a register.

CB$Get$Address returns the address of the date in memory. Ifa new version of the
BIOS is produced with the date in a different location, CB$Get$Address will still
hand the correct, although different, address back to the utility program.



212 The CP/M Programmer's Handbook

Two other variables that CB$Get$Address can access pertain to the con
figuration block itself One is the relative address of the start of the long term
configuration block. The other is the length of the long term block. These are used
by the FREEZE utility when it needs to preserve the long term block on a disk.
FREEZE must (1) read in the sectors containing the long term block from the
CP/M BIOS image on the reserved area of the disk, (2) copy the current RAM
resident version of the long term block over the disk image version, and then (3)
write the sectors back onto the disk.

Figure 8-1 shows how the long term block appears on disk and in memory. The

isk

M-resident Version

o Write to
Disk

"FREEZE Utility's Buffer

m oc rom n 1

art of the BIOS Memory

'-- I-

rt of BIOS

BDOS

• Copy RA

CCP

Disk ..~
~ D

I
Read fromI 1Disk

ConfiguratIOn /
Block

o

Sta

Long Term Configuration Block Sector Boundaries

~ BOOS ~2sL~~~~:::::::
C~M~7;';:I F llillU J

Relative Address at ------TT
Long Ter Bl k F Co fguration Block Length

the St

Figure 8-1. Saving the long term configuration block



Chapter 8: Writing an Enhanced BIOS 213

size of the CCP and BDOS do not change, even if the BIOS does. Therefore, the
sector containing the start of t}1e BIOS will not change. The formula (using
decimal numbers)

BIOS Start Sector + INT(Relative LTB Address / 128)

then gives the start sector number to be r«lid in. The number of sectors to read is
calculated as follows:

(Long Term Block Length + 127) / 128

The relative address and length can be used to locate the long term block in the
BIOS executing in RAM.

Character Input/Output

The character I/O drivers shown in the example BIOS, Figure 8-10, have been
enhanced to have the following features:

A single set of driver subroutines controlling all character devices

Preservation of option settings

Flexible redirection of input/ output between logical and physical devices

Interrupt-driven input drivers, to get user "type-ahead" capability

Support of several different protocols to avoid loss of data during high
speed output to printers or other operations

Forced input ofcharacters into the console input stream, allowing automatic
commands at system start-up

Conversion of terminal function keys into useful character strings

Ability to recognize "escape sequences" output to the console and to take
special action as a result

Ability to read the current time and date as though they were typed on the
console

"Timeout" signaling when the printer is busy for too long.

Each of these features is discussed in the following sections, as an introduction
to the actual code example.

Single Set of Driver Subroutines
In the following examples, only a single set of subroutines is used to process the

input and output for all of the physical devices in the system.
This is made possible by grouping all of the individual device's characteristics



214 The CP/M Programmer's Handbook

into a table called the device table. For example, in order to get a character from
the current console device, the address of its device table will be handed over to the
subroutines. These in turn will use the appropriate values from the device table
when they need to access a port number or any unique attribute of that device.

In our example, the drivers assume that all of the physical devices use senal
input/output. To support a device with parallel input/output, you would need to
extend the device table to include a field that would enable the drivers to detect
whether they were operating on a serial or parallel device. You would probably
also have to add different device initialization and input/output routines more
suited to the problems of dealing with a parallel port.

The device table structure consists of a series of equate (EQU) instructions.
These define the relative offset of each field in the table. Each definition is
expressed by referencing thepreceding field so that you can insert additional fields
without revising the definitions for all the other fields.

Individual instances of device tables are then defined as a series of define byte
(DB) and define word (OW) lines. The drivers are given the base address of the
device table whenever they need to do something with a device. By adding the base
address to the relative address (defined by the equate), the drivers can determine
the actual address in memory that contains the required value. The detailed
contents of the device table are described later in this chapter.

Permanent Setting of Options

About the only options that need preserving in the long term configuration
block are the values used to initialize the hardware chips. Other options can be set
during automatic execution of the command file when CP/M is first loaded.

Redirection of Input/Output Between Devices

As you recall, the BOOS only "knows about" the logical devices console,
reader, punch, and list. Using the IOBYTE at location 0003H in conjunction with
the STAT utility, you can redirect the BOOS to assign the logical devices to specific
physical devices. However, the redirection provided by CP/M is rather primitive. It
permits only four physical devices per logical device. Input and output of a logical
device must always come from the same physical device. Output data can only be
sent to a single destination, or (using the CONTROL-P toggle) to the console and the
list device.

The system in Figure 8-10 supports up to 16 physical devices. Anyone of these
devices can act as the console, reader, punch, or list device. Input can come from
any single device. Output can be sent to any or all of the devices. Each logical
device's input and output are separate-that is, console input can come from
physical device X while the output can be sent to physical devices Y and Z.

Device redirection can be done dynamically, either from within a program or
by using a system utility program. For example, if you have some special input



Chapter 8: Writing an Enhanced BIOS 215

device, your program can momentarily switch over to reading input from this
device as though it were the console, and then revert back to reading data from the
"real" console.

This redirection scheme is achieved by defining a 16-bit word, called the
redirection word, in the long term configuration block for each of the following
logical devices:

Console input

Console output

Auxiliary (reader/punch) input

Auxiliary (reader/punch) output

List input (printers need to send data, too)

List output.

Each bit in a given redirection word is assigned to a physical device. For input,
the drivers use the device corresponding to the first I bit that they find in the
redirection word. For output, the drivers send the character to be output to all of
the devices for which the corresponding bit is set.

The example code does not select a different driver for each bit set - it selects a
specific device table and then hands over the base address of this table to the
common driver used for all character operations.

Interrupt-Driven Input Drivers
With a standard CP/M BIOS, character data is read from the hardware chips

only when control is transferred to the CONIN or READER subroutines. If this
character data arrives faster than the BIOS can handle, data overrun occurs and
incoming characters are lost.

By using interrupts, the hardware can transfer control to the appropriate
interrupt service routine whenever an incoming character arrives. This routine
reads the data character and places it into a buffer area to wait for the next CONIN
or READER call, which will get the character from the buffer and feed it into the
incoming data stream.

User programs and the CCP are "unaware" of this process, perceiving only
that data characters are available. However, users will become aware of the
process; they will be able to enter data characters from the keyboard before the
program is ready for them. This gives the technique its other name - "type
ahead." Although this technique does not alter the speed of execution of any
programs running under CP/M, it does create the illusion of greater speed, since
pauses while a program accepts data vanish completely. The user can enter data at
a rate convenient to the tasks or thoughts at hand, without regard to the rate at
which the program can accept that data.



216 The CP/M Programmer's Handbook

The example contains the code necessary to handle arriving characters under
interrupt control. In order to be of general applicability, the code assumes a "flat"
interrupt structure: that is, all character input interrupts cause control to be
transferred to the same address in memory. The address is determined by the
actual hardware interrupt architecture.

The simplest interrupt schemes use the restart (RST) instructions built into the
8080 CPU chip. In the RST scheme, the external hardware interrupts what the
CPU chip is doing and forces one of the eight RST instructions into the processor.
Each RST instruction causes the processor to execute what is, in effect, a CALL
instruction to a predetermined address in memory.

In more complicated systems, a specific interrupt controller chip (such as the
Intel 8259A) will be used. In addition to providing very sophisticated (and
complicated) prioritization of interrupts, the interrupt controller can transfer
control to a different address depending on which physical device causes the
interrupt. It does this by forcing the CPU to execute a CALL instruction to a
different address for each device.

In both architectures, it is the responsibility of the BIOS writer to initialize all
the hardware chips so that an interrupt occurs under the correct circumstances.
The BIOS writer also must plant instructions at the correct places in memory to
receive control from an RST instruction or from the fake CALL instruction
emitted by the interrupt controller.

Some hardware requires that the interrupt service subroutine inform it as soon
as the interrupt has been serviced and the character has been input. The example
drivers provide for this.

This section deals with using interrupts for the input drivers, not the output
drivers. All of today's microcomputers can output data much faster than external
peripherals can handle. After the first few minutes of output, the computer will fill
any reasonably sized buffer - and from this point there is no advantage in having
a buffered output system. The computer still must slow down to the peripheral's
data rate for each character, although now it is waiting to put the character in the
output buffer rather than out to the peripheral.

One exception to this is where you have a large amount of"spare" memory and
a "slow" printer (which most of them are). Increasing numbers of systems have
more than 64K of RAM. The 8080 or Z80 can't address more than this, but a
"bank switched" memory system can switch blocks of memory in and out of that
64K address space.

Using this trick, you can access memory "unknown" to CP/M, store some
characters in it, switch back to the normal64K memory, and return control to the
caller of the BIOS output routine. When the physical device is ready to accept
another output data character from the CPU, it will generate an interrupt. The
interrupt service routine then will access the "secret" buffer, output the characters
to the device, and switch back to the normal memory.

For example, if you have a printer that prints at 80 characters per second and



Chapter 8: Writing an Enhanced BIOS 217

Program's Buffer
T ITHI~ 1H

I
S

'"
Get (CONIN)

I
S

'"Interrupt D
A

A
T

PUT

Keyboard

Figure 8·2. Circular buffer type-ahead

you can afford to use 64K of bank switched memory, you can squirrel away 13
minutes of printing-or even more if you design a scheme to compress blanks,
storing them in the hidden buffer as a special control sequence.

From the point of view of software, interrupt-driven input drivers are divided
into two major groups: the interrupt service routine that reads the characters and
stacks them in a buffer, and the non-interrupt routines that get the characters from
the buffer and handle the other BIOS functions such as returningconsole status.

The input character buffer serves as a transfer mechanism between the two
groups of subroutines, although the device table also plays an important role.

The example code uses a circular buffer, as shown in Figure 8-2.
The drivers start putting data into the beginning of the buffer. When the last

character in the buffer has been reached, the drivers reset to the beginning of the
buffer and start over. This, of course, assumes that the non-interrupt drivers have
been getting data from the front of the buffer, thus creating space for additional
incoming data.

Each device table contains the address of the input buffer, a "put" pointer (for
the interrupt service routine), and a "get" pointer (for the non-interrupt service
routine). It also contains two character counts: the total number ofcharacters and
the number of control characters in the input buffer. You can see how the put and



218 The CP/M Programmer's Handbook

get pointers operate asynchronously. The put pointer is used every time an
incoming character generates an interrupt. The get pointer is used for each
CONIN call.

The get and put pointers are only single-byte values and are more accurately
described as "relative offsets." That is, they contain a value which, when converted
to a word and added to the base address of the buffer, will point directly to the
appropriate position inside the buffer.

By making the buffer a binary number of characters long-32 characters, for
example-a programming trick can be used to make the buffer appear circular.
The device tables contain a mask value formed from the buffer's length minus one
(length - 1). Whenever the get or put pointers are incremented by one (to "point"
to the next character position), the updated value is ANDed with this (length - 1)
mask. In this example, if the get value goes from 31 (the relative address of the last
character in the buffer) to 32 (which would be "off the end''), the masking
operation will reset it to zero (the relative address of the first character of the
buffer). This avoids having to compare pointers to know when to reset them.

It is also simpler to use a count of the number ofcharacters in the buffer, rather
than comparing the get and put pointers, to distinguish between an empty and a
full buffer. To support different serial protocols, the driver must be able to react
when the buffer is within five characters of being full and when it drops below half
empty. Both of these conditions are much easier to detect using a simple count that
is incremented as a character is put into the buffer and decremented as a character
is retrieved from the buffer.

The count of control characters is used to deal with a class of programs that
incessantly "gobble" characters, thereby rendering any type-ahead useless. An
example is Microsoft's BASIC interpreter. When it is interpreting a program, you
can enter a CONTROL-C from the keyboard and the interpreter will come to an
orderly stop. It does this by constantly making calls to CONST (console status). If
it ever detects an incoming character, it makes a call to CONIN to input the
character. A character that is not CONTROL-C is discarded without further ado.
Thus, any characters that are input are consumed, destroying the effect of type
ahead.

To deal with this problem, the CONST routine shown in the example can be
told to "lie" about the console's status. In this mode, CONSTwill only indicate that
characters are waiting in the input buffer if a control character is received. It uses
the control character count to determine whether there are control characters in
the buffer; this count is incremented by the interrupt service routine when it detects
one, and decremented by the CONIN routine when it gets a control character from
the buffer.

Protocol Support
In this context, a protocol is a scheme to avoid loss of data that would

otherwise occur if a device sent data faster than the receiving device could handle



Chapter 8: Writing an Enhanced BIOS 219

it. For example, protocols are used to prevent the CPU sending data out to a
printer faster than the printer can print the characters and move the paper. The
drivers also support input protocols, indicating to a transmitting device when the
input buffer gets close to being full.

Two basic methods are used to implement protocols. The first uses the control
lines found in the normal RS-232C serial interface cables. For data being output by
the computer, the data terminal ready (DTR) signal is used, and for incoming data,
the request to send (RTS) signal. These signals conform to the electrical standards
for the RS-232C interface; they are considered true when they are at some positive
voltage between +3 and + 12 volts, and false when they are between -3 and -12
volts.

The second method uses ASCII control characters instead of control signals.
Two separate protocols are supported by this method. One uses the ASCII
characters XON and XOFF. Before the sending device (the computer or some
peripheral device) sends a data character, it checks to see if an XOFF character has
been received. Ifso, the sender will wait for an XON character. The receiving device
will only send an XON when it is ready to receive more data.

The second protocol uses the characters ETX (end of transmission) and ACK

(acknowledge). This method is normally used only when transmitting data from
the computer to a buffered printer. A message length (usually half the printer's
buffer size) is defined. When this number of characters has been output, the
computer will send an ETX character. No further output will occur until the
computer receives an ACK character from the printer.

The example drivers support the DTR high-to-send, the XONjXOFF, and the
ETXjACK protocols for output data. For input, they support RTS high-to-receive
and XONjXOFF.

The input protocols are invoked when the input buffer gets within five charac
ters of being full. Then the drivers output an XOFF character or lower the RTS
signal voltage, or do both. Only when the input buffer has been emptied to 50%
capacity will the drivers send XON or raise the RTS line, or both.

As an emergency measure, if the input buffer becomes completely full, not
withstanding protocols, the drivers will output a predetermined character (defined
in the device table) each time they discard an incoming character. This is normally
the ASCII BEL (bell) character. When you type too far ahead, the terminal will
start beeping to tell you that data is being dropped.

Forced Input Into the Console Stream

All application languages provide a means of reading data from the console
keyboard. This makes the console input stream a useful gateway to the system. A
simple enhancement to the CONINjCONST routines makes it easy to "fool" the
system into acting as if data had been input from the keyboard when in fact the
data is coming in from a character string in memory.



220 The CP/M Programmer's Handbook

Memory

Input A
Buffer

B

C

Get
CONIN

Normal r--_P_r_o_gr_a_m_B_u_f_fe_r-,

Data

O-byte Terminator

Stored String in Memory

Figure 8-3. CONIN uses forced input data if pointer points to nonzero byte

In the enhanced BIOS, both CONIN and CaNST are extended to check a
pointer in the long term configuration block, as shown in Figure 8-3.

Ifthis pointer is pointing at a nonzero byte, then that byte is returned as though
it had come from the console keyboard. The forced input pointer is then moved up
one byte in memory. The process of forcing input continues until a zero byte is
encountered.

Forced input serves several purposes. It can be used to force a command or
commands into the system when the system first starts up. In conjunction with a
utility program, it can allow the user to enter several CP/M commands on a single
command line, injecting the characters as each of the commands is executed. It
also makes possible the features described in the next two sections.

Support of Terminal Function Keys
Many terminals on the market today have special function keys on their

keyboards. When you press one of these keys, the terminal will emit several
characters, the first of which is normally the ASCII ESC (escape) character. The
remaining one or two characters identify the specific function key that was
pressed.

For these function keys to be of any practical use, an applications program
must detect the incoming escape sequence and take appropriate action. The
problem is that not all terminal manufacturers support the ANSI standard escape
sequences.



Chapter 8: Writing an Enhanced BIOS 221

The example drivers avoid this problem by providing a general-purpose
method, shown in Figure 8-4, of detecting escape sequences and of substituting a
user-defined character string that is injected into the console input stream as
though it had been entered from the keyboard.

This scheme permits function keys to be used very flexibly, even for off-the
shelf programs that have not been designed specifically to accept function key
input.

There is, however, one stumbling block. When an ESCAPE character is received,
the progam must detect whether this is the start of a function key sequence or the
user pressing the ESCAPE key on the terminal's keyboard. In the former case, the

Input Buffer

- ESC

[

'---- D

Function Key Table

[A TEXT I ~§]

[B TEXT 2 ~[QQ]

}
[C DELETE ~@

• ?
~@][D REPLACE

Forced Input
'- ~ Pointer

Program Input Buffer

Figure 8-4. CONIN decodes terminal function keys



222 The CP/M Programmer's Handbook

driver must wait to determine whether a function key string must be substituted
for the escape sequence. In the latter case, the driver must input the ESCAPE

character as it would other incoming data characters.
This recognition can only be done by moving into the time domain. When the

CONIN routine (the non-interrupt routine) gets an ESCAPE character from the
input buffer, it delays for approximately 90 milliseconds, enough time for a
terminal-generated character sequence to arrive. CONIN then checks the input
buffer to see if it contains at least two characters. If it does, the driver checks for a
match in a function key table in the long term configuration block. If the charac
ters match a defined function key, then the string associated with the function key
will be injected into the console stream by pointing the forced input pointer at it. If
the characters do not match anything in the function key table, then the ESCAPE

and subsequent characters are handed over as normal data characters.
Ifafter the 90-millisecond delay no further characters have arrived, the ESCAPE

character is handed over as a normal character, on the basis that it must have been
a manually entered ESCAPE character rather than part of a terminal-generated
sequence.

The example drivers show the necessary code and tables for function keys that
emit three characters. You could modify them easily for two-character sequences,
or, if you are fortunate enough to have a keyboard that uses all eight bits of a byte,
to recognize single incoming characters.

Processing Output Escape Sequences

The output side of the console driver, the CONOUT routine, can also be
enhanced to recognize escape sequences. It uses a vectored JMP instruction to
keep track of the current state of affairs. The CONOUT driver gets an address
from the vector and transfers control to it. Normally this vector is set to direct
control to the output byte routine. However, if an ESCAPE character is detected in
the output stream, the vector is changed to transfer control to a routine that will
recognize the character following the ESCAPE. If recognition does not occur, the
driver will output an ESCAPE followed by the character that arrived after it.

If the second character is recognized, then the driver can transfer control to the
correct escape-sequence processor. This processor can then take whatever action
is appropriate. It must also make sure that when all processing is finished, the
console output vector is set to process normal output characters again.

This technique is described in more practical detail in the next section, where it
is used to preset and read the date and time. You can easily extend the recognition
tables in the long term configuration block to perform any special processing that
you need, ranging from altering the I/O redirection words to changing any other
variable in the system or programming special hardware in your computer.

Be careful not to embed any pure binary values in the sequence of characters
going out to the CONOUT routine. Ifyou attempt to send a value of09H (the TAB



Chapter 8: Writing an Enhanced BIOS 223

character) out via the BDOS, it will gratuitously expand the tab out to some
number of blanks. Ifyou need to send out a bit pattern, such as the I/O redirection
word, split it up into a series of 7-bit long values. Then send it out with each byte
having the most significant bit set to 1. A value of 09H will then become 89H,
preventing the BDOS from expanding it to blanks.

Reading Dale and Time From Console

For the moment, set aside the question of how the date and time get into the
system. Since the date and time are stored in the short term configuration block
(there being no need to save them from one work session to the next), all that the
BIOS needs to be able to do is recognize a request from an applications program to
read either the date or the time and then set the forced input pointer to the appro
priate string in memory. Both the date and time strings are terminated by a LINE

FEED followed by a 00 byte.
This sequence of events is shown in Figure 8-5.
You can see that the characters "ESC d" output to CONOUT cause it to point

the forced input pointer at the date in memory. Subsequent calls to CONIN bring
the characters in the date into the program as though they were being entered on
the keyboard.

Forced Input
Pointer

Program Input Buffer Memory

Figure 8-5. Escape sequences sent to CONOUT allow the date to be read by CONIN



224 The CP/M Programmer's Handbook

"Watchdog" Timeout on Printer

There is no provision in CP/M to deal with a hardware device that for one
reason or another is permanently unavailable. Unless special steps are taken in the
drivers, the system will screech to a halt in a loop, reading status and testing for the
peripheral to be ready.

The example enhancement code shows a scheme, using a real time clock, that
can detect when a device such as a printer fails to come ready for more than 30
seconds. On detecting this situation, the code outputs a message to all of the
console devices that are not also being used as printers. This type of output is
needed to avoid "deadly embraces" where a printer not being ready generates a
message that cannot be output because the printer is not ready.

The code that performs the timing function is known as a watchdog timer.
Each time the real time clock "ticks," the interrupt service routine checks the
watchdog count. If the count is nonzero, it is decremented. If the watchdog timer
reaches zero, exceeding the time allowed, the drivers will display a message on the
console indicating that the printer has been busy for too long. The user then has
the option of making the printer ready and trying again to output data, ignoring
the error and carrying on, or aborting the program by doing a BDOS System Reset
(function 0).

Although sending an error message to the console sounds simple, it is compli
cated if console output is directed to the offending printer itself. The drivers
attempt to solve this problem by sending the message only to those devices being
used as consoles and not as printers. If all consoles are being used as printer
devices as well, the driver will send the message to device O-normally the main
console.

Keeping Time and Date

CP/M does not have provision for keeping the current time and date in the
system. The example enhancement shows how to keep the time of day and the
current date in the short term configuration block by using escape sequences
output to the console (1) to set them to the correct values and (2) to "read" them
from the console input stream.

The example presupposes that the system has a hardware chip that can be
programmed to generate an interrupt every 1/60th of a second (16.666 millisec
onds). This provides a divide-down counter to measure seconds elapsed. Of
course, if your computer has a true real time clock that you can read and get the
current time in hours, minutes, and seconds, your code will be very simple. You
still will need to have the clock generate a periodic interrupt, however, in order to
use the watchdog feature for timing printer and disk operations.

Actual time is kept as ASCII characters, using another ASCII control table to
determine when "carry and reset to zero" should occur. By changing two bytes in
this table, the time can be kept in 12- or 24-hour format.



Chapter 8: Writing an Enhanced BIOS 225

The date is simply stored as a string. The example code does not attempt to
make sure that the date is valid, nor to update when midnight rolls around. This
could be done easily by the BIOS - but it would take a fairly large amount ofcode.

Watchdog Timer

Having a periodic source of interrupts also opens the door to building in an
emergency or watchdog timer. This is nothing more than a 16-bit counter. Each
time the real time clock interrupts, or ticks, the interrupt service routine checks the
watchdog count. If it is already at zero, nothing more happens - the watchdog is
not in use. If it is nonzero, the routine decrements the count by one. Ifthis results in
a zero value, the interrupt service routine CALLs a predetermined address. This
will be the address of some emergency interrupt service routine that can then take
special action, such as investigating the cause of the timeout.

The watchdog routine has a non-interrupt-Ievel subroutine associated with it.
Calling this set watchdog subroutine provides a means of setting the count to a
predetermined number of real time clock "ticks" and setting the address to which
control should be transferred if the count reaches zero.

Having called the set watchdog subroutine, the driver can then sit in a status
loop, with interrupts enabled, waiting for some event to occur. Ifthe event happens
before the watchdog count hits zero, the driver must call the set watchdog routine
again to set the count back to zero, thereby disabling the watchdog mechanism.

The watchdog timer can be used to detect printers that are busy for too long or
disk drives that take too long to complete an action either because of a hardware
failure or because the user has not loaded the disk into the drive.

Data Structures

As already stated, each character I/O device has its own device table that
describes all of its unique characteristics.

The other major data structure is the configuration blocks - both short and
long term.

This section describes each field in these data structures.

Device Table

Figure 8-6 shows the contents of a device table. More correctly, it shows a series
of equates that define the offsets of each field in the device table. The drivers are
given the base address of a specific device table. They then access each field by
adding the required offset to this base address.

The first part of the device table is devoted to the physical aspect of the device,
defining which port numbers are to be used to communicate with it. The drivers
need to know several different port numbers since each one is used for a particular



226 The CP/M Programmer's Handbook

The drivers use a device table for each
physical device they service. The equates that follow
are used to access the various fields within the
device table.

0000
0001 =

0002 =

0003

0004

0005

0006 =

0007

0008

0009

OOOA

OOOB

OOOC

OOOD

Port
DTSSt at us SPort EQU
DTSDataSPort EQU

DTSOutputSReady EQU

DTSlnputsReady EQU

DTSDTRSReady EQU

DTSResetSlntSPort EQU

DTSResetSIntSValue EQU

DT$Oetect$Error$Port EQU

DTSDetect$ErrorSValue EQU

DTSResetSError$Port EQU

DTSResetSError$Value EQU

DT$RTS$Control$Port EQU

DTSDropSRTS$Value EQU

DT$Raise$RTS$Value EQU

numbers and status bits
o ;Device status port number
DT$Status$Port+l

;Device data port number
DTS[la t aPor t +I

;Output ready status mask
DTSOutputSReady+1

;Input ready statu5 mask
DTSInputSReady+1

,DTR ready to send mask
DT$DTRSReady+1

;Port number used to reset an
; i nter"rupt

DTSResetSlnt$Port+1
,Value output to reset interrupt

DT$ResetSIntSValue+1
;Port number for error detect

DT$Detect$Error$Port+l
;Mask for detecting error (parity etc.)

DT$Detect$ErrorSValue+l
;Output to port to reset error

DTSReset$Error$Port+l
;Value to output to reset error

DT$Reset$ErrorSValue+l
;Control port for lowering RTS

DT$RTSSControl$Port+l
;Value. when output, to drop RTS

DT$Drop$RTSSValue+l
;Value. when output. to raise RTS

Device logical status (incl. protocols)
EQU DTSRaiseSRTSSValue+1

DT$StatusS2+1
;No. of chars. sent in Etx protocol

DT$Et >:$(:ount +2
;Specified message length

buffer values
DT$Etx$Message$Length+2

;Address of input buffer
DT$Buffer$Base+2

;Offset for putting chars. into buffer
DTSPutsOffset+1

;Offset fot" getting chars. from buffer
DTSGetsOffset+1

;Length of buffer - 1
;Note: Buffer length must always be
; a binary number; e.g. 32, 64, or 128.
;This mask then becomes:

32 -) 31 (0001S111181
64 -) 63 (0011S111181

, 128 -) 127 (0111S111181

OOOE

0001

0002

0004
0008
0010
0020
0040
0080

OOOF
0001

0010

0012

0014

0016

0017

0018

Figure 8-6.

DTSStatus

DT$Output$Suspend EQU

DT.InputSSuspend EQU

DTSOutputSDTR EQU
DTSOutputSXon EQU
DTSOutputSEtx EQU
DT$Output$Timeout EQU
DTSInputSRTS EQU
DT$Input$Xon EQU

DT$Status$2 EQU
DT$Fake$Typeahead EQU

DTSEtxSCount EQU

DT$Etx$Mess&ge$Length EQU

Input
DT$Buffer$Base EQU

DTSPu tsOff se t EQU

DT$Ge tSOff se t EQll

DT$Buffer$Length$Mask EQU

Device table equates

;Status
OOOOSOOOIB

OOOOSOOIOB

OOOOSOIOOB
0000$10008
0001$00008
0010S00008
OIOO$OOOOB
1000$00008

DTSStatus+1
OOOO$OOOIB

bits
;Output suspended pending
; protocol action
;lnput suspended until
; buffer empties
;Output uses DTR-high-to-send
;Output uses Xon/Xoff
;Output uses Etx/Ack
;Output uses Timeout
;Input uses RTS-high-to-receive
;Input uses Xon/Xoff

;Secondary status byte
;Requests Input$Status to

return "Data Ready" when
control characters are in
input buffer



Chapter 8: Writing an Enhanced BIOS 227

DT$Character$Count EQU

DT$Stop$Input$Count EQU

DT$Resume$InputSCount EQU

DT$Control$Count EQU

DT.Function.DelaY EQU

DT.lnitialize$Stream EQU

Figure 8-6. Device table equates (continued)

function. Depending upon your hardware, each port number could be different;
however, with standard Intel or Zilog chips, you will often find that the same port
number is used for several functions. The drivers also need to know what bit
patterns to expect when they read some ports and what values to output to ports in
order to obtain particular results.

The layout ofthe device table and the manner in which the equates are declared
are designed to make it easy for you to change the contents of the table to meet
your own special requirements. The fields in this first section ofthe device table are
discussed in the sections that follow.

DT$Status$Port The driver reads this port to determine whether the hardware chip has
incoming data ready to be input to the computer or whether the chip is capable of
accepting another data character for output to the physical device.

DT$Data$Port The driver reads from this port to access the next data character from the
physical device. The driver also writes to this port to output the next data
character to the device.

If your computer hardware requires that the input data port be a different
number from the output data port, you will have to alter the coding in the device
table equates as well as make the necessary changes in the input and output
subroutines in the body of the code.

DT$Output$Ready This is the bit mask that the driver will AND with the current device
status (obtained by reading the DT$Status$Port) to see whether the device is ready
to accept another output character. It assumes that the device is ready ifthe result
of the AND instruction is nonzero. You may have to change some JNZ (jump



228 The CP/M Programmer's Handbook

nonzero) instructions to JZ (jump zero) instructions if your hardware device uses
inverted logic, with bits in the status byte set to 0 to indicate that the device can
accept another character for output.

Note that this status check relates only to the output chip-it is completely
separate from the question of whether the peripheral itself is ready to accept data.

DT$lnput$Ready This is the bit mask that the driver will AND with the current device
status to see if there is an incoming data character. The drivers again presume that
if the result of the AND is nonzero, then an incoming data character is waiting to
be read from the data port. You will need to make changes similar to those for the
output subroutines described in the previous section if your hardware uses
inverted logic (0 bit means incoming data).

DT$DTR$Ready DTR stands for data terminal ready. It refers to one of the control lines
connected from the actual peripheral device to the I/O chip (via several other
integrated circuits). The drivers, as an option, will only output data to the device
when the DTR signal is at a positive voltage. If the peripheral, in order to stop the
flow of data characters being output to it, lowers the DTR signal to a negative
voltage, the drivers will wait. Once DTR goes positive again, the drivers will
resume sending data. Many hard-copy devices use this scheme to give themselves a
chance to print out data received from the computer. They may have to lower DTR
for several seconds, while they perform paper movement, for example.

The value in this field is a bit mask that the drivers use on the device status to
determine the state of the data-terminal-ready control signal.

DT$Reset$lnt$Port Since the input side of the drivers uses interrupts, when an incoming
character is ready to be input by the CPU, the hardware generates an interrupt
signal, and control is transferred to the interrupt service routine. This routine
"services" the interrupt by reading the incoming data character, saving it in
memory, and then transferring control back to whatever was being executed
when the interrupt occurred.

The more complicated interrupt controller chips (such as the Intel 8259A)
must be told as soon as a given interrupt has been serviced so that they can permit
servicing of any lower priority interrupts that may be waiting.

This field contains the port number that will be used to "reset" the interrupt, or
more correctly, to indicate the end of the previous interrupt's servicing.

DT$Reset$lnt$Value This is the value that will be output to the DT$Reset$lnt$Port to tell
the hardware that the previous interrupt service has been completed.

DT$Detect$Error$Port Before the driver attempts to read any incoming data from the
DT$Data$Port, it checks to see if any hardware errors have occurred. It does so by
reading status from this port.



Chapter 8: Writing an Enhanced BIOS 229

DT$Detect$Error$Value The status byte that is input from the DT$Detect$Error$Port is
ANDed with this value. If the result is nonzero, the driver assumes that an error
has occurred.

DT$Reset$Error$Port If an error has occurred, the driver outputs an error reset value to
this port number.

DT$Reset$Error$Value This is the value that will be output to the DT$Reset$Error$Port
to reset an error.

DT$RTS$Control$Port The drivers use this port number to control the request-to-send line
if the RTS protocol option is selected.

DT$Drop$RTS$Value This value is output to the RTS control port to lower the RTS line
so that some external device will stop sending data to the computer.

DT$Raise$RTS$Value This value is output to raise the RTS line so that the external device
will resume sending data to the computer.

DT$Status This is the first oftwo status bytes. It contains bit flags that are set to a I bit to
indicate the following conditions:

D T$ Output$Suspend
Because of protocol, the device is currently suspended from receiving any
further output characters.

DT$/nput$Suspend
Because of protocol, the device has been requested not to send any more
input characters.

DT$Output$DTR
The driver will maintain DTR-high-to-send protocol for output data.

DT$Output$Xon
The driver will maintain XON/XOFF protocol for output data.

DT$OutputSEtx
The driver will maintain ETXj ACK protocol for output data.

DT$/nput$RTS
The driver will maintain RTS-high-to-receive protocol for input data.

DT$/nput$Xon
The driver will maintain XON/XOFF protocol for input data.

DT$Status$2 This is another status byte, also with the following bit flag:

DT$Fake$ Typeahead
CONST will "lie" about the availability of incoming console characters. It



230 The CP/M Programmer's Handbook

will only indicate that data is waiting if there are control characters other than
CARRIAGE RETURN, LINE FEED, or TAB in the input buffer.

DT$Etx$Count This value is only used for ETX/ACK protocol. It is a count of the number of
characters sent in the current message. When this count reaches the defined
message length, then the driver will send an ETX character and suspend any further
output.

DT$Etx$Message$Length This value is the defined message length for the ETX/ACK
protocol. It is used to reset the DT$Etx$Count.

DT$Butfer$Base This is the address of the first byte of the device's input buffer.

DT$Put$Otfset This byte contains the relative offset indicating where the next incoming
character is to be "put" in the input buffer. This byte must then be converted into a
word value and added to the DT$Buffer$Base address to get the absolute memory
location.

DT$Get$Offset This byte contains the relative offset indicating where the next character is
to be "got" in the input buffer.

DT$Buffer$Length$Mask This byte contains the length of the buffer minus one. The
length of the buffer must always be a binary number (8, 16,32,64,..). Therefore,
one less than the length forms a mask value. Both the get and put offsets, after
being incremented, are masked with this value. When the offset reaches the end of
the buffer, this masking operation will "automatically" reset the offset to zero.

DT$Character$Count This is a count of the total number of characters in the buffer. It is
incremented by the interrupt service routine each time a character is placed in the
buffer, and decremented by the CONIN routine each time it gets a character from
the buffer.

CONST uses this value to determine whether any characters are available for
input.

DT$Stop$lnput$Count When the interrupt service routines detect that the DT$Charac-
ter$Count is equal to this value (normally buffer length minus five), the drivers will
invoke the selected input protocol, lowering RTS or sending XOFF, to shut off the
incoming data stream.

DT$Resume$lnput$Count When the CONIN routine detects that the DT$Character$-
Count has become equal to this value, the drivers will again invoke the selected
input protocol, either raising RTS or sending XON to resume receiving input data.

DT$Control$Count This is a count of the number ofcontrol characters in the input buffer.
CARRIAGE RETURN, LINE FEED, and TAB characters are not included in this count.



Port number
Number of bytes to be output
Initialization bytes to be output to the specified port number

Chapter 8: Writing an Enhanced BIOS 231

It is incremented by the interrupt service routine and decremented by CONIN.
CONST uses the count when the DT$Fake$Typeahead mode is active; it will only
indicate that characters are waiting in the input buffer if the control count is
nonzero.

DT$Function$Delay This is the number of clock ticks that should be allowed to elapse
after the first character of an incoming escape sequence has been detected. It
allows time for the remaining characters in the escape sequence to arrive, assum
ing that these are being emitted by a terminal at maximum baud rate. Normally,
this will correspond to a delay of approximately 90 milliseconds.

DT$lnltlallze$Stream This is the address of the first byte of a string. This string has the
following format:

DB ppH
DB nnH
DB vvH,vvH...

This sequence can be repeated as many times as is necessary, with a "port"
number of OOH acting as a terminator.

Disk Input/Output

The example drivers show three main disk I/O enhancements:

Full track buffering

Using memory as an ultra-fast disk

Improved error handling.

Full Track Buffering
The 5 1/4" diskettes used in the example system are double-sided. Each side has

a separate read/write head in the disk drive. The disk controller is fast enough that,
if so commanded, it can read in a complete track's worth of data from one side of
the diskette in a single revolution of the diskette.

The drivers have been modified to do just this. The main disk buffer has been
dramatically enlarged to accommodate nine 512-byte sectors.

In the earlier standard BIOS, CP/M was configured for tracks of 18 512-byte
sectors. The data from each head on a given track was laid "end-to-end" to create
the illusion of a single surface with twice as much data on it. For track buffering,
performance would be reduced if each read required two revolutions of the
diskette, and so in this BIOS the tables and the low-level driver logic have been
changed. Each surface is separated, with even numbered tracks on head 0, odd on
head 1.



232 The CP/M Programmer's Handbook

The track number given to the low-level drivers serves two purposes. The least
significant bit identifies the head number. When the track number is shifted one bit
right, the result is the physical track number to which the head assembly must be
positioned.

The deblocking algorithm has also been modified by deleting references to
sectors. The code is now concerned only with whether the correct disk and track
are in the bufter. If this is true, the correct sector must, by definition, be in the
buffer.

The deblocking code no longer takes any note when the BDOS indicates that it
is writing to an unallocated allocation block-knowledge it used to bypass a sector
preread in the standard BIOS. The track size in this enhanced BIOS is much larger
than an allocation block, and so the question is meaningless; the whole track must
be preread to write just a single sector.

This enhancement really excels when the BDOS is doing directory operations,
which always involve a series of sequential reads. The entire directory can be
brought into memory, updated, and written back in just two disk revolutions.

One point to watch out for is what is known as "deferred writes." Imagine a
program instructed to write on a sector on track 20. The drivers will read in track
20, copy the contents of the designated sector into the track buffer, and return to
the program without actually writing the data to the disk. The program could
"write" to all of the sectors on this track without any actual disk writes. During all
this time, this data would exist only in memory and not on the disk drive, so if a
power failure occurred, several thousand bytes of data would be lost. Writing to
the directory is an exception. The drivers always physically write to the disk when
the BDOS indicates that it is writing to a directory sector.

In reality, the increased risk is small. Most programs are constantly reading
and writing files, so that the track buffer will be written out frequently in order to
read in another track. When programs end, they close output files. This in turn
triggers directory writes that force data tracks onto the disk.

If high security is a requirement for your computer, you could extend the
watchdog routine to include another separate timer. You could preset this timer
for, say, a ten-second delay each time you write into the track buffer but do not
write the buffer to the disk. When the count expires, it would set a flag that could
be tested by all of the BIOS entry points. If set, they would initiate a write of the
track buffer to the disk.

Using Memory as an Ultra-Fast Disk
As you can see from the preceding section, increased performance tends to go

hand in hand with increased memory requirements. This is certainly true with a
"memory disk," commonly called a RAM-disk or M-disk. In fact, to have an
M-disk with reasonable storage capacity, your computer must have at least 128K
bytes of additional memory.



Chapter 8: Writing an Enhanced BIOS 233

Since the 8080 or Z80 can only address 64K of memory at one time, to get
access to any of this additional memory, some part of your computer's "normal"
memory must be removed from the 64K address space and the additional memory
must be switched in. This is known as bank-switched memory.

Figure 8-7 shows the memory organization that is supported by the example
M-disk drivers.

You can see that the system has a total of 256K bytes of RAM, organized with
the top 16K, from 64K down to 48K, being "common"-that is, switched into the
address space all the time. The lower 48K can be selected from five banks,
numbered 0 to 4. Bank 0 is switched in for normal CP/M operations.

The M-disk parameter blocks describe a disk with eight "tracks," numbered 0
to 7. The least significant bit of the track number determines whether the base
address of the track will be OOOOH or 6000H. Shifting the track number right one
bit gives the bank number. Each track consists of 192 sectors. To get the relative
address of a sector within its "track," shift the sector number eight bits left, thus
multiplying it by 128.

The M-disk is referenced by logical disk M:. A few special-case instructions are
required to return the special M-disk parameter header in SELDSK.

One problem, fortunately easily solved, is that the user's DMA address coex
ists in the address space with the M-disk image itself. There is no direct way to
move data between bank 0 and any other bank. The M-disk uses an intermediary
buffer in common memory (above 48K), moving data into this, switching banks,
and then moving the data down again. Figure 8-8 shows an example of this
sequence, as used when reading from the M-disk.

64K-

48K-

CP/M

Trk Trk Trk Trk
I 3 5 7

Trk Trk Trk Trk
0 2 4 6

- 24K

Bank Number - 0

Figure 8·7. Memory organization for M-disk

2 3 4



234 The CP/M Programmer's Handbook

Intermediary
Buffer

#2: Select bank tl
move to user's

DMA buffer

User's DMA

I
~ f--

I

#I: Select bank 2,
move sector to

I I intermediary buffer I I Sector in M-Disk

Bank Number - 0

Figure 8-8. Reading a sector from the M-disk image

2

During cold boot initialization, the M-disk driver checks the very first direc
tory entry (in bank 1) to see ifit matches a dummy entry for a file called "M$Disk."
If this entry is present, the M-disk is assumed to contain valid information. If the
entry is absent, the initialization code makes this special directory entry and fills
the remainder of the directory with OE5H, making it appear empty. The dummy
entry makes it appear that the "M$Disk" file is in user 15, marked System status
and Read-Only-all of which are designed to prevent its accidental erasure.

Custom Patches to CP/M

Two features shown in the enhanced BIOS, one in the CCP and one in the
BDOS, require changes to CP/M itself. These features are implemented by modify
ing the CCP and BDOS to transfer control to the BIOS at specific points, execute a
few instructions in the BIOS, and then return to CP/M. The patches could be made
by modifying the MOVCPM program to install the changes permanently. The
changed version of MOVCPM, however, must be used with a specific version of
the BIOS. Therefore, patching CP/M "on the fly" ensures that there will be no
mismatch between the BIOS and the rest of CP/M.

Both of these patches were produced with the assistance of Digital Research.



Chapter 8: Writing an Enhanced BIOS 235

User 0 Files Made Public
The first change permits files created in user area 0 to be accessible from all

other user numbers. This feature comes into its own only with hard disk systems.
On a hard disk, user numbers can partition the disk, but the frequently used
utilities must then be duplicated in each user area. Allowing files in user area 0 to
be public means that these files will be accessible from all the other user numbers.
Hence the files need not be copied into each user area.

The public files feature alters the way that the BOOS performs the Search Next
function, allowing access to files declared in user area 0 even when the current user
number is not O. However, the feature is a double-edged sword-user 0 files can be
accidentally erased or damaged as well as accessed. Therefore, user 0 files should
be declared as System status and Read-Only to protect them. As an additional
precaution, public files can be turned off by a control flag in the long term
configuration block. This flag is set to an initial state that disables public files.

Modified User Prompt
This modification makes the CCP display the current user number as well as

the default disk. For example,

3B>

indicates that you are currently in user number 3, with disk B: as the default. In
addition, if you have enabled public files, the prompt is preceded by the letter "P"
to serve as a reminder:

P3B>

An Enhanced BIOS

The remainder of this chapter consists of the assembly language source code
for the enhanced BIOS described here. It is rather a daunting listing, but will be
well worth your study. The copious commentary has been written to make this
study easier, and emphasis has been placed on explaining why as well as what
things are done.

As with the standard BIOS, each line is numbered so that you can use the
functional index in Figure 8-9 to find areas of interest in the listing. Note that the
line numbers are not contiguous. They jump several hundred at the start of each
major section or subroutine. This facilitates minor changes in the listing without
revision of the functional index. The full listing is given in Figure 8-10.



236 The CP/M Programmer's Handbook

Start Line

00001
00200
00400
00800
00900
01100
01200
01300
01500
01700
01800
02000
02100
02200
02500
02700
02900
03000
03100
03200
03300
03400
03500
03600
03656
03800
04000
04200
04400
04600
04800
04900
05000
05300
05400
05500
05700
05900
06000
06200
06300
06400
06600
06800
07000
07100

Functional Component or Routine

Introductory Comments and Equates
BIOS Jump Table with Additional Private Entries
Long Term Configuration Block
Interrupt Vector
Device Port Numbers and Other Equates
Display$Message Subroutine
Enter$CPM Setup
Device Table Equates
Device Table Declarations
General Device Initialization
Specific Device Initialization
Output Byte Stream
CONST Routine
CONIN Routine with Function Key Processing
Console Output
CONOUT Routine with Escape Sequence Processing
AUXIST-Auxiliary Input Status Routine
AUXOST-Auxiliary Output Status Routine
AUXIN-Auxiliary Input Routine
AUXOUT-Auxiliary Output Routine
LISTST-List Status Routine
LIST-List Output Routine
Request User Choice-Request Action After Error
Output Error Message
Get Composite Status from Selected Output Devices
Multiple Output of Byte to All Output Devices
Check Output Device Logically (Protocol) Ready
Process ETX/ ACK Protocol
Select Device Table from I/O Redirection Bit Map
Get Input Character from Input Buffer
Introductory Comments for Interrupt-Driven Drivers
Character Interrupt Service Routine
Service Device-Puts Character into Input Buffer
Get Address of Character in Input Buffer
Check if Control Character (not CR, LF, TAB)

Output Data Byte
Input Status Routine
Set Watchdog Timer Routine
Real Time Clock Interrupt Service Routine
Shift HL Right One Bit Routine
Introductory Comments for High-Level Disk Drivers
Disk Parameter Headers
Disk Parameter Blocks
SELDSK-Select Disk Routine
SETTRK-Set Track Routine
SETSEC-Set Sector Routine

Figure 8·9. Functional index for listing in Figure 8-10



Chapter 8: Writing an Enhanced BIOS 237

07200
07300
07400
07500
07600
07800
07900
08000
08300
08500
08700
08900
09100
09200
09400
09700
09800
10000
10100
10300
10400
10500
10700
10800

SETDMA-Set DMA Routine
Skew Tables for Sector Translation
SECTRAN-Sector Translation Routine
HOME-Home Disk to Track and Sector 0
Equates for Physical Disk and Deblocking Variables
READ-Sector Read Routine
WRITE-Sector Write Routine
Common Read/Write Code with Deblocking Algorithm
Move$8 Routine-Moves Memory in 8-Byte Blocks
Introductory Comments for Disk Controllers
Nondeblocked Read and Write
M-Disk Driver
Select Memory Bank Routine
Physical Read/Write to Deblocked Disks
Disk Error Handling Routines
Disk Control Tables for Warm Boot
WBOOT- Warm Boot Routine
Ghost Interrupt Service
Patch CP/ M for Public Files and Prompt Changes
Get Configuration Block Addresses
Addresses of Objects in Configuration Blocks
Short Term Configuration Block
Note on Why Uninitialized Buffers are at End of BIOS
Cold Boot Initialization Hidden in Disk Buffer Followed by All Uninitialized Buffers

FIGURE 8·9. Functional index for listing in Figure 8-10 (continued)

""
"
"

""
"
"

;Equates used in the sign-on message

8080 CPU
64K byte. of RAM
3 serial I/O ports (using signetics 2651) for:

console. communications and list
Two 5 1/4" mini floppy. double-sided. double

density drives. These drives use 512-byte sectors.
Th••• are used al logical disks A: and B:.
Full track buffering is supported.

The line numbers at the left are included
to allow reference to the code from the text.
There are deliberate discontinuities in the
numbers to allow space for expansion.

EQU
EQU
EQU
EQU

This is a skeletal example of an enhanced BIOS.
It includes fragments of the standard BIOS
shown as Figure 6-4 in outline, so as to
avoid cluttering up the enhancements with the
supporting substructure. Many of the original
comment blocks have been abbreviated or deleted
entirely.

NOTE'

,,,
'",,,,,,

,
VERSION
MONTH
DAY
YEAR,
, •••••••••••••••••••*••*****••********.**.*******************************,,, "
;* This 810S is for a computer system with the following *
;* hardware configuration: *,,,,,,,,,,,,
,Of

;<

00001
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039

3030 =
3230 =
3632
3338

Figure 8·10. Enhanced BIOS listing



238 The CP/M Programmer's Handbook

The BIOS length must be determined by inspection.
Comment out the ORG BIOS$Entry line below by changing the first
character to a semicolon (this will make the assembler stat-t
the BIOS at location 0). Then assemble the BIOS and round UP to
the nearest tOOH the address displayed on the console at the end
of the assembly.

Equates for characters in the ASCII character set

Equates for defining memory size and the base address and
length of the system components

; (-- Revised to an approximate va1l.Je
to reflect enhancements

;Number of Kbytes of RAM

;Constant
;Constant

;BDOS entry point (used for making
sYstem reset requests)

;Assemble code at BIOS address

Cold boot -- entered from CP/M bootstrap loader
Labelled so that the initialization code can
put the warm boot entry address in locatic.n
000lH and 0002H of the base page

Warm boot -- entenrd by jumping to locat ion (I0(J(lH
Reloads the CCP, which could have been
overwritten by previous program in transient
program area

Console status -- returns A = OFFH if there is a
console keyboard character waiting

Console input -- returns the next console keYboard
character in A

Console output -- outputs the character in C to
the console device

List output -- outputs the character in C to the
list device

Auxiliary output -- outputs the character in (: te. the
logical auxiliary device

;Reenables transmission of data
;Disables transmission of data
;End of transmission
;Acknowledge
;Carriage return
;Line feed
;Horizontal tab
;Sound terminal/s bell

64

2500H

Cl005H

(CCP$Length + BDOS.Length + BIOS$Length + 1023) / 1024

(Memory$Size - Overall$Length) * 1024
CCPSEntry + CCPSLength + 6
CCPSEntry + CCPSLength + BOOSSLength

(>800H
OEOOH

Two e" standard diskette drives U28-bvte sectors)
These are used as l09ical disks C: and D:.

A memorY-based disk (M-disk) is supported.
"
""'"Two intelligent disk controllers are used. one for *

each diskette type. These controllers access memory *
directly, both to read the details of the *
operations they are to perform and also to read *
and write data from and to the diskettes. *

"

EQU

llH
13H
03H
06H
OOH
OAH
09H
07H

BIOSSEntryORO

BIOS jump vector

JMP WBOOT

JMP CONST

JMP CONOUT

,IMP C;ONIN

JMP AUXOUT

JMP LIST

EQU
EQU
EQU
EQLI

'EQU
EQU
EQU
EQU

,,,
,,,,,,

XON
XOFF
ETX
ACK
CR
LF
TAB
BELL

Memory$Size

BIOSSLength EQlI

CCPSLength EQU
BOOSSLength EQlI

Overall$Length EQU

CCPSEntry EQU
BOOSSEntry EQU
BIOSSEntry EQU

BOOS EQU

;11

JMP BOOT
Warm'Boot$Entry:

00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222

OOOF

0011
0013
0003
0006
0000 e
OOOA
0009
0007

0800
OEOO

2500

0040

C400
CC06
OAOO

0005

0000 C31311

OOOC C30703

0003 C3750E

0009 C33A03

OOOF C3F504

0006 C32003

0012 C3CE04

Figure 8·10. (Continued)



Chapter 8: Writing an Enhanced BIOS 239

Long term configuration block
HI

Additional "private" BIOS entry points

Logical to physical device redirection

,Default is OFFo

'SUBMIT STARTUP·'.LF.O.O.O.C>.O,O

1111 11
5432 1098 7654 3210 )(- Device number
OOOO$OOOO$OOOO$OOOIB
0000$0000$0000$0010B
0000$0000$0000$0100B

08

08

The following equates are used to indicate
specific physical devices.

The following words are tested by the logical
device drivers to transfer control to

EQU
EQU
EQU

JMP AUXIST ,Returns A = OFFH if there is input data for
; the logical auxiliary device

JMP AUXOST ;Returns A • OFFH if the auxiliary device(s) are
; 10gic.IIY ready to accept another output byte

JMP Specific$CIO$Initialization
;Initializes ch.racter device whose device
; number is in register A on entry

JMP Set$Watchdo9
;Sets up watchdog timer to CALL address specified
; in HL. after BC clock ticks have elapsed

JMP CB$Get$Address
;Configuration block get address

Returns address in HL of data element whose
code number is specified in C

Public files (files in user 0 accessible from all
other user numbers) enabled when this flag is set
nonzero.

Each logical device has a 16-bit word associated
with it. Each bit in the word is assigned to a
specific physical device. For input. onlY one bit
can be set -- input will be read from the
corresponding phYsical device. Output can be
directed to several devices. so more than one
bit can be set.

The forced input pointer is initialized to point to the
following string of characters. These are injected into
the console input stream on sYstem start-up.

JMP AUXIN Auxiliary input -- returns the next input character from
the logical auxiliary device in A

JMP HOME Homes the currently selected disk to track 0
JMP SELDSK Selects the disk drive specified in register C and

returns the address of the disk parameter header
JMP SETTRK Sets the track for the next read or write operation

from the Be register pair
JMP SETSEC Sets the sector for the next read or write operation

from the A register
JMP SETDMA Sets the direct memory address (disk read/write)

address foY the next read or write operation
from the DE register pair

JMP READ Reads the previously specified track and sector from
the selected disk into the DMA address

JMP WRITE Writes the previously specified track and sector onto
the selected disk from the DMA address

JMP LISTST Returns A = OFFH if the list device(s) are
logically readY to accept another output byte

JMP SECTRAN Translates a logical sector into a physical one

CB$Startup:

,
Dev ce$O
Dev ce$t
Dev ce$2

CB$Public$Files,

Long$Term$CB:

0015 C3Al04 00223
00224

0018 C3160A 00225
001B C36309 00226

00227
001E C39B09 00228

00229
0021 C3Al09 00230

00231
0024 C3A809 00232

00233
00234

0027 C3370A 00235
00236

002A C34BOA 00237
00238

002D C30704 00239
00240

0030 C3100A 00241
00242
00243
00244

0033 C38F04 00245
00246

0036 C39B04 00247
00248

0039 C3FA02 00249
00250
00251

003C C36008 00252
00253
00254

003F C33COF 00255
00256
00257
00258
00259
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409

0042 00 00410
00411
00412
00413
00414
00415
00416

0043 535542404900417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433

0001 00434
0002 00435
0004 00436

00437
0043S
00439

Figure 8·10. (Continued)



240 The CP/M Programmer's Handbook

The address of each stream is contained in each device table.

The table below relates specific bits in the
redirection words above to specific device
tables used by the physical drivers

These initialization streams are output during the device
initialization phase. or on request whenever the baud rate
needs to be changed. They are defined in the long term
configuration block so as to "freeze" their contents from one
system startup until the next.

th@ appropriate physical device driver"s

CBSConsole$Input; DOl Device$O
CB$Console$Output: DOl Device$O

CB$Auxiliary$!nput: DOl Device$t
CB$Auxiliary$Output: OW Device$!

CB$Listslnput: DOl Device$2
CB$List$Output: DOl Oevice$2

;Unassigned

Port number (OOH terminates)
Number of bytes to output to port
Values to be output

;E>:ample data for an 8251A chip
Port number for 8251A
Number of bytes
Dummy bytes to get chip ready
Reset and raise OrR
1 stoP. nc, par"ity. 8 bits/char.

divide down of 16
RTS high, enable Tx/Rx

;Example data for an 8251A chip
Por-t number" for 8251A
Number of bytes
Dummy bytes to get chip ready
Reset and raise DTR
1 stoP. no parity. 8 bits/char.

divide down of 16
RTS high. enable Tx/Rx

;Example data for an 8253 chip
Port number for 8253 mode
Number of bytes to output
Select:

Counter 1
Load LS byte first
Mode 3. binary count

Port number for counter
Number of bytes to output
Label used by utilities
9600 Baud (based on 16x divider)
Port number of 00 terminates stream

;Example data for an 8253 chip
Port number for 8253 mode
Number of bytes to output
Select:

Counter 2
Load LS byte first
Mode 3, binary count

Port number for counter
Number of bytes to output

x~:

nn
vv. vv. vv ..

DB
DB
DB

The stream for"mat is:

DB 0010$0101B

DB ODFH
DB 1
DB 10$11$011$OB

DB oDEH
DB 2

Device initialization byte streams

CB$Device$Table$Addresses:
DOl D1$O
DOl D1$l
DOl DT$2
DOl 0,0.0,0.0.0.0.0,0.0,0.0.0

DB ODEH
DB 2

DO$Baud$Rate$Constant:
DOl 0007H
DB 0

DO.Initialize.Stream:
DB OEDH
DB 6
DB 0,0,0
DB 0100$001013
DB 01$10$11$1013

DB 0010$010113

DB ODFH
DB 1
DB 01$11$011$013

Dl$lnitialize$Stream:
DB ODDH
DB 6
DB 0.0,0
DB 0100$0010B
DB 01$10$11$1013

00440
00441

0058 0100 00442
005A 0100 00443

00444
005C 0200 00445
005E 0200 00446

00447
0060 0400 00448
0062 0400 00449

00450
00451
00452
00453
00454
00455

0064 8E02 00456
0066 AE02 00457
0068 CE02 00458
006A 000000000000459

00460
00461
00462
00463
00464
00465
00466
00467
00468
00469
00470
00471
00472
00473
00474
00475
00476
00477
00478

0084 ED 00479
0085 06 00480
0086 000000 00481
0089 42 00482
008A 6E 00483

00484
008B 25 00485

00486
008C OF 00487
0080 01 00488
008E 76 00489

00490
00491
00492

(108F DE 00493
0090 02 00494

00495
0091 0700 00496
0093 00 00497

00498
00499

0094 DD 00500
0095 06 00501
0096 000000 00502
0099 42 00503
009A 6E 00504

00505
009B 25 00506

00507
00508

009C DF 00509
009D 01 00510
009E B6 00511

00512
00513
00514

009F DE 00515
OOAO 02 00516

Figure 8·10. (Continued)



Chapter 8: Writing an Enhanced BIOS 241

Variables for the real time clock and watchdog
timer

This table consists of a series of entries r each one having the
followin~ structure:

NOTE: The table is processed backwards -- to correspond
with the ASCII time.
E~ch character represents the value for the corresponding
character in the ASCII time at which a carry-and-reset-to-zero
should occur.

This following table is used to determine the maximum
value for each character position in the ASCII time
value above (except the ":"). Note -- this table is

~:nt~: ~~~9"::~:a~~~~~~~r:~i~~t~;~c~2s~rt~:th~~~ ~~~~~t.

;Number of real time clock
; ticks per elapsed second
;Residual count before next
; second will ,lapse
;Watchdog timer tick count
;(0 = no watchdog timer set)
,Address to which control

will be transferred if the
watchdog count hits 0

;1200 baud (based on 16x divider)
;Port number of 00 terminates stream

;1200 baud (based on 16x dividet")
;Port number of 00 terminates ~tream

o

;Change to ~23~ for a 12-hour clock
;"Skip" character
,MaMimum minutes are 59
,"Skip" character
;Maximum seconds are 59
,Used when updating the time

;"Terminator"

o

,Example data for an 8253 chip
,Port number for 8253 mode
;Number of bytes to output
;Select:

Counter 3
Load LS byte first
Mode 3. binarY count

;Port number for counter
;Number of bytes to output

60

60

;Example data for an 8251A chip
;Port number for 8251A
;Number of bytes
;Dummy bytes to get chip ready
;Reset and raise DTR
;1 stop, no parity, 8 bits/char,
; divide down of 16
;RTS high, enable Tx/Rx

OW

OW

DB

DB

Function key table

RTC$Tick$Count

RTC$Watchdo~$Count

DB ODFH
DB I
DB 11$II$OII$OB

DB Second character of sequence emitted by
terminal~s function key

DB Third character of sequence -- NOTE: this
field will not be present if the source code
has been confi~ured to accept only two characters
in function key sequences.
NOTE. Adjust the equates for.

Function$Key.Length
Thr••$Character$Function

DB 0
CB$12$24$Clock.

DB '34'
DB OFFH
DB '6.·'
DB OFFH
DB '6.·'

Update$Time$End.

,
RTC$Tick.$per$Second

RTC$Watchdog$Addre ••

DB ODEH
DB 2

D2$Baud$Rate$Constant.
OW 0038H
DB 0

D2$Initialize$Stream.
DB ODDH
DB 6
DB 0.0.0
DB OIOO$OOIOB
DB OI$IO$II$IOB

DB OOIO$OIOIB

DI$Baud$Rate$Constant.
OW 0038H
DB 0

00517
00518
00519
00520
00521
00522
00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535
00536
00537
00538
00539
00540
00541
00542
00543
00544
00545
00546
00547
00548
00549
00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00590
00591
00592
00593

OOBD 3C

OOBE 3C

OOBF 0000

OOCI 0000

00B4 00

00B5 3334
00B7 FF
00B8 363A
OOBA FF
OOBB 363A

OOAI 3800
00A3 00

00A4 DO
00A5 06
00A6 000000
00A9 42
OOAA 6E

OOAB 25

OOAC OF
OOAD 01
OOAE F6

OOAF DE
OOBO 02

OOBI 3800
00B3 00

Figure 8·10. (Continued)



242 The CP/M Programmer's Handbook

0219 FFFF

;Spare entries

+ Funct ion$}<ey$Length -

~Signals function key sequence
;Number of characters in function

key input sequence (NOTE: this
can only be 3 or 2 characters).

16 +

IBH
3

;Terminator for utility that preprograms
function key sequence

;The logic associated with function
key recognition is made easier with

; the following equate
EQU Function$Key$Length - 2
;Three$Character$Function will be TRUE if the

function keys emit a three character
sequence, FALSE if they emit a two charact@r
sequence.

EQlI

EQU
EQU

OFFH,OFFH

0,0,0.0.0,0.0.0,0,0.0,0.0,0,0.0,0.0,0
0,0,0.0,0,0,0,0,0,0.0.0,0,0.0.0,0,0.0
0.0.0,0,0,0,0.0,0,0.0,0,0,0,0,0.0.0,0
0,0,0,0,0,0,0.0,0,0,0.0,0,0,0,0,0.0,0
0.0,0,0,0,0,0.0.0,0.0.0,0.0,0,0,0,0.0
0.0,0.0,0,0,0,0.0,0.0.0,0.0,0,0,0,0,0
0,0,0,0,0.0,0,0,0,0.0.0.0,0.0,0,0.0,0
0,0,0.0,0.0,0.0,0,0,0,0,0,0,0.0,0,0,0
0,0,0,0,0.0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0.0,0.0.0,0.0,0,0,0,0,0,0,0

DB A character string to be forced into the console
input stream when the corresponding function key
is pressed. The last byte of this string must be
OOH to terminate the forced input.

DB

08 't' ;Read current time
OW CONOUT$Time
DB 'd" ;Read current date
DW CONOUT$Oate
D8 u ;Set current time
OW CONOUT$Set$Time

This table is referenced after a Function$Key$Lead character
has been detected in the CONOUT re.utine. The next character
to be output to the console is compared to the first byte
in each 3-byte table entrY. If a match is found, then control
is transferred to the address following the byte that matched.

Maximum length of substitute Lead character is not
string in table entry

For the terminating QOH

Console output escape sequence control table

123456789.1234 5 67 (- Use to check length
DB 'O~,'P',~Function Key l',LF,O.O
DB 'O','Q','Function Key 2~,LF,O.O

DB 'O'.'R','Function Key 3'.LF,O,O
DB 'O'.'S','Function Key 4'.LF,O,O

123456789.1
DB '[','A','Up Arrow'.LF,O.O,O,O.O.O.O.O
DB .,' [.' , "8" • "Down Arrow". LF. 0, 0, 0, 0, O. 0
DB '[','C'.'Right Arrow',LF,O.O.O,O.O
DB '['.'D','Left Arrow',LF,O,O,O.O,O.O

The last entry in the table is marked by a OO-byte.

Each entrY in the table must be the same length, as defined by:

The example values shown below are for a VT-l00 terminal.

08
08
08
DB
DB
DB
08
08
08
08

;
Function$KeY$Lead
Function.Key$Length

CB$Function$Key$Table:

CONOUT$Escape$Table:

Three$Character$Function

Ca$Function$Key$Entry$Size

74
4804
64
4104
75
5004

OOIB
0003

0001

00594
00595
00596
00597
00598
00599
00600
00601
00602
00603
00604
00605
00606
00607
00608
00609
00610
00611
00612
00613
00614
00615
00616
00617
00618
00619
00620
00621
00622
00623
00624
00625
00626
00627
00628
00629

00C3 4F5046756E00630
0006 4F5146756E00631
00E9 4F5246756E00632
OOFC 4F5346756E00633

00634
00635

OIOF 584155702000636
0122 5842446F7700637
0135 584352696700638
0148 58444C656600639

00640
0158 000000000000641
016E 000000000000642
0181 000000000000643
0194 000000000000644
0lA7 000000000000645
018A 000000000000646
OICO 000000000000647
OlEO 000000000000648
0lF3 000000000000649
0206 000000000000650

00651
00652
00653
00654
00655
00656
00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667
00668
00669
00670

0013

0218
021C
021E
021F
0221
0222

Figure 8-10. (Continued)



Chapter 8: Writing an Enhanced BIOS 243

,II

DB 0 , Terminator

Device port numbers and other equates

Interrupt vector

,Device 0

;Device 2

; Device 1

;Base port number

01$00$11$108
;1 stop bit. no parity
;8 bits. ASYnc. 16x rate

00$11 $1100B
;Tx/Rx on internal clock
,9600 baud

OO$IOOIlIB
;Normal mode
;Enabl. Tx/Rx
,RTS and DTR active

0011.10008
00.1101118

,Same as command value plus error reset
OOOO$OOOIB
OOOO.OOIOB
1000$0000B INote. this is actu~IIY the

CIO.Base$Port + 8
02.Base$Port
D2$Base$Port + I
D2$Base.Port + 2
D2$Base$Port + 3

CIO.Base.Port + 4
DI$Base$Port
D1$Base$Port + 1
D1$Base$Port + 2
D1$Base$Port + 3

80H

CIO$Base$Pot"t
DO.Base.Port
DO.Base$Port + I
DO.Base.Port + 2
DO.Base.Port + 3

EQU

'Interrupt nu.ber
RTC$lnterrupt ,0 clock
0 ,Skip a byte
Character'Interrupt ,I character 1/0
0
Ghost'Interrupt ,2 not used
0
Ghost.lnterrupt ,3 not used
0
Ghost.lnterrupt ,4 not used
0
GhosUlnterrupt ,5 not used
0
GhosUlnterrupt ,6 not used
0
Ghost'Interrupt ,7 not used

..IMP
DB
..IMP
DB
..IMP
DB
..IMP
DB
..IMP
DB
..IMP
DB
..IMP
DB
..IMP

Control is transferred her. by the programmable interrupt
controller -- an Intel 8259A.

DB ~e~ ;Set current date
OW CONOUT$Set$Date

NOTE. The interrupt controller chip requires that the
interrupt vector table start on a paragraph
boundary. This is achieved bY the following ORO line

ORG ($ AND OFFEOH) + 20H
Interrupt'Vector:

,
CIO.Base.Port

DO.Base.Port EQU
DO.Data.Port EQU
DO.Status.Port EQU
DO.Mode.Port EQU
DO.Command.Port EQU

DI.Base$Port EQU
DI.Data.Port EQU
DI.Status.Port EQU
DI$Mode$Port EQU
Dt.Command.Port EQU

D2.Base$Pot"t EQU
D2$Data.Port EQU
D2$Status$Port EQU
D2.Mode$Port EQU
D2.Command$Port EQU

O$Mode.Value.1 EQU

D$Mode$Value$2 EQU

n$CommandSValue EQU

O'Er-rol'" EQU
O$Error$Reset EQU

D$Output$Ready EQU
D.lnpuUReady EQU
D.DTR.High EQU

,
,II

,
Long$Term$CB$End.

00671
00672
00673
00674
00675
00676
00677
00800
00801
00802
00803
00804
00805
00806
00807
00808
00809
00810
00811
00812
00813
00814
00815
00816
00817
00818
00819
00820
00821
00822
00823
00824
00825
00826
00827
00828
00900
00901
00902
00903
00904
00905
00906
00907
00908
00909
00910
00911
00912
00913
00914
00915
00916
00917
00918
00919
00920
00921
00922
00923
00924
00925
00926
00927
00928
00929
00930
00931
00932
00933
00934
00935
00936
00937
00938
00939
00940

0027

0038
0037 =

0001
0002
0080 =

003C

0088 =
0088
0089
008A
008B

004E

0240

0224 65
0225 4E04

0227 00

0084
0084
0085 =
0086
0087

0240 C37808
0243 00
0244 C3E806
0247 00
0248 C3D80E
024B 00
024C C3D80E
024F 00
O~O C3D80E
0253 00
0254 C3D80E
0257 00
0258 C3D80E
025B 00
025C C3D80E

0080 •

0080·
OOSO •
0081 •
0082·
0083.

Figure 8·10. (Continued)



244 The CP/M Programmer's Handbook

Interrupt controller ports (Intel 8259A)

LXI H,Warm$Boot$Entry ;Get BIOS vector address
SHLD 0001H ;Put address at location 0001H

Note : these equates are placed here so that they
follow the definition of the interrupt vector
and thus avoid -'p .., (phase) errors in ASM.

I C$OCWI$Po,- t EQU
IC$OCW2$Port EQU
I C$OCW3$Pot"t EQU
IC$ICWI$Port EQU
IC$ICW2$Port EQU,
IC$EOI EQU

IC$ICWI EQU

data set-ready pin
on the chip. It is connected
to the OTR pin on the cable

Raise RTS. Tx/Rx enable
Drop RTS, Tx/Rx enable

Ensure interrupts are enabled
Handover current default disk to
console command processor

;Get machine code for JMP
;Set UP ..IMP at location OOOOH
; and at location 0005H

;Set disk I/O address to default
;Use normal BIOS routine

;Get BOOS entry point address
;Put address at location 0005H

OD9H ;Operational control word 1
OOSH ;Operational control word 2
ODSH ~Operational control word 3
ODSH ;Initialization control word 1
OD9H ;Initialization control word 2

00$1$001118
00$0$001118

20H ;Nonspecific end of interrupt

1111$11008 ; Interrupt mask
;Interrupt 0 (clock) enabled
;Interrupt 1 (character input) enabled

(Interrupt$Vector AND 1110.000(8) + 000$101108
;Sets the A7 - A5 bits of the interrupt

vector address plus:
Edge triggered
4-byte interval
Single 8259 in system
No ICW4 needed

Interrupt.Vector SHR 8
;Address bits A15 - A8 of the interrupt

vector address. Note the interrupt
vector is the first structure in
the long term configuration bloc~

;Displays the specified message on the console.
;On entry, HL points to a stream of bytes to be
;output. A OOH-byte terminates the message.

;Get next message byte
;Check if terminator
;Yes, return to caller
;Prepare fot" output
;Save message pointer
;Go to main console output routine
;Recover message pointer
;Move to next byte of message
;Loop until complete message output

EQU
EQU

A.M
A

EQU

EQU

;This routine is entered either from -the cold or warm
; boot code. It sets up the JMP instructions in the
; b.se page, and also sets the high-level disk dt"ivet"·'s
; input/output address (the DMA address).

C.A
H
CONOUT
H
H
Display$Mess.age

Default$Disl<
C,A

A.JMP
OOOOH
0005H

H,BDOS'Entry
6

8,80H
SETDMA

MOV
ORA
RZ
MOV
PUSH
CALL
POP
INX
JMP

EI
LDA
MOV

LXI
CALL

MVI
STA
STA

LXI
SHLD

D$Raise$RTS
D$Drop$RTS

HI

IC$ICW2

IC$OCWI

,II

,
Display.Message:

,
EnterSCPMI

00941
00942
00943
00944
00945
00946
00947
00948
00949
00950
00951
00952
00953
00954
00955
00956
00957
00958
00959
00960
00961
00962
00963
00964
00965
00966
00967
00968
00969
00970
00971
00972
00973
00974
00975
00976
00977
00978
01100
01101
01102
01103
01104
01105
01106
01107
01108
01109
01110
01111
01112
01113
01114
01115
01200
01201
01202
01203
01204
01205
01206
01207
01208
01209
01210
01211
01212
01213
01214
01215
01216
01217
01218
01219
01220
01221
01222

00D9
00D8
00D8
00D8
00D9

0027
0007

OOFC

0056

0020

0002

025F 7E
0260 B7
0261 C8
0262 4F
0263 E5
0264 CDD703
0267 El
0268 23
0269 C35F02

026C 3EC3
026E 320000
0271 320500

0274 210300
0277 220100

027A 2106CC
027D 220600

0280 018000
0283 CDA809

0286 FB
0287 3A0400
028A 4F

Figure 8·10. (Continued)



Chapter 8: Writing an Enhanced BIOS 245

Device table equates
The drivers use a device table for each
physical device they service. The equates that follow
are used to access the various fields within the
device table.

;Secondary status byte
;Requests Input$Status to
, return "Data Ready" when

control dharacters are in
input buffer

DT.Statu.+1
OOOO.OOOIB

;Transfer to CCP

DT$Status.2+1
;No. of chars. sent in Etx Pl"'cltocol

DT$Et x$Cclunt +2
;Specified message length

buffer values
DTSEtxSMessage$Length+2

;Address of Input buffer
DT$Buffer$Base+2

;Offset for putting chars. intcl buffer
DT$PutSOff.et+1

;Offset for getting chars. from buffer
DT.GetSOff.et+1

Length of buffer - 1
Note: Buffer length must always be

a binary number; e.g. 32. 64 or 128

numbers and status bits
o ;Device status por"t number
DT.Status.Por\+1

;Device data port number
DT$DataPort+l

;Output readY status mask
DT.Outpu\.Ready+1

;Input ready status mask
DT.Input.Ready+1

;DTR ready to send mask
DT.DTR.Ready+l

;Port number used to reset an
; interrupt

DT.R••et.Int.Port+l
;Value output to reset interrupt

DT.R••et.Int.Valu.+1
,Port number for detecting error

DT$Oetect$Error$Port+l
,Mask for detecting error (parity etc.)

DT.D.t.ct.Error.Value+1
;Output to port to reset error

DT.R••• t.Error.Port+l
;Value to output to reset error

DT.ResetSErrorSValue+l
;Control port for lowering RTS

DT.RTS.Control.Port+1
;Value, when output. to drop RTS

DT.Drop.RTS.V&lue+1
;Value, when output, to raise RTS

Device 109ical status (incl. protocols)
EQU DT.Rai".RTS.Value+l

;Statu. bit.
OOOO$OOOlB ;Output suspended pending

; protocol action
0000.00 lOB ,Input .u.pended until

; buffer empties
OOOO.OIOOB ,Output u'e. DTR-high-to-.end
0000.1000B ,Output uses XON/XOFF
0001.00008 ;Output u'e. ETX/ACK
OOIO.OOOOB ;Output u'e. timeout
0100$00008 ;Input use~ RTS-high-to-receive
1000.Om008 ,Input uses XON/XOFF

CCP.EntryJMP

DT.Output.Su.pend EQLI

DT.Input.Susp..nd EQU

DT.OutputSDTR EQU
DT.OutputSXon EQU
DT.OutputSEtx EQlI
DT.Output.Timeout EQLI
DT.Input.RTS EQU
DT.Input.Xon EQU,
DT.Status.2 EQU
DT.Fak...Typeahead EQlI

,
DT.Etx.Count EQU

DT.Etx.Me••age.Length EQU

; Input
DT.Buffer$Base EQU

DT.PutSOff set EQU

DT.GetSOff.et EQU

DT.Buffer.Leng\h$Mask EQU

DT.Status

;11

,, Port
DT.Status,Po,-t EQU
DTtDatdPort EQU

DT.OutpuUR..ady EQU

DT.InpuUR..ady EQU

DT.DTR.Ready EQU

DT.Reset.Int.Port EQU

DT.Reset.lnt.Value EQU

DT.Detect.Error.Port EQU

DT$Detect$Error$Value EQU

DT.R.s.t.Error.Port EQU

DT.R.... t.Error.Valu.. EQU

DT.RTS.Control.Port EQU

DT.Drop.RTS.Value EQU

DT.Rai ....RTS.Value EQU

01223
01224
01300
01301
01302
01303
01304
01305
01306
01307
01308
01309
01310
01311
01312
01313
01314
01315
01316
01317
01318
01319
01320
01321
01322
01323
01324
01325
01326
01327
01328
01329
01330
01331
01332
01333
01334
01335
01336
01337
01338
01339
01340
01341
01342
01343
01344
01345
01346
01347
01348
01349
01350
01351
01352
01353
01354
01355
01356
01357
01358
01359
01360
01361
01362
01363
01364
01365
01366
01367
01368
01369
0137(>
01371
01372
01373

0012

0014

0004
0008 =
0010
0020
0040 =
0080 =

OOOF =
0001

OOOE

OOOD

0018

OOOA

OOOB =

OOOC

0016

0017

0010

0001 =

0002 =

0009 =

0007

0008

0006

0004

0005

0003 •

028B C300C4

0000 •
0001 •

0002 =

Figure 8·10. (Continued)



246 The CP/M Programmer's Handbook

(Continued)

DO$Status$Port ;Status port (8251A chip)
DO$Data$Port ;Data port
D$Output$ReadY ;Output data ready
D$Input$Ready ;Input data ready
D$DTR$High ,DTR ready to send
IC$OCW2$Port ;Reset interrupt port (OOH is an .unused port)
IC$EOI ;Reset interrupt value (nonspecific EOI)
DO$Status$Port ;Detect error port
D$Error ;Mask: framing, overrun, parity errors
DO$Command$Port ;Reset error port
D$Error$Reset ;Reset error: RTS high, reset, Tx/Rx enable
DO$Command$Port ;Drop/raise RTS pc,rt
D$Drop$RTS ;Drop Rr3 Value (keep Tx 8. Rx enabled)
D$Raise$RTS ;Raise RTS value (keep Tx 8. R>: enabled)
DT$Input'Xon + DT$Input$RTS ;Protocol and status
o ;Status #2
1024 ;Etx/Ack message count
1024 :Etx/Ack message length
DO'Buffer :Input buffer
(I .Put clffset into buffer
o .Get offset into buffer
DO$Buffer$Length -1 ;Buffer length mask
o ; CO.Jnt clf char-acter"s in buf fer
DO'Buffer$Length - 5 ;Stop input when count hits this value
DO$Buffer$Length / 2 ;Resume input when count hits this value
o Count of control characters in buffer
6 Number of 16.66ms ticks to allow function

key sequence to arrive (appr-o>:. 90ms)
DOSInitialize$St earn ;Address of initialization stream

Dl $St at us$Por-t
Dl$Data$Port
D$Output$Ready
D$Input$Ready
D$DTR$High
IC$OCW2$Port
IC$EOI
Dl$Status$Port
O$Er-ror
01$(:ommand$Pot-t
D$Error$Reset
Dl.Command$Port
D$Drop$RTS

0019

00lA

001B

001C

001D

001E

028E 81
028F 80
0290 01
0291 02
0292 80
0293 D8
0294 20
0295 81
0296 38
0297 83
0298 37
0299 83
029A 07
0298 27
029C CO
029D 00
029E 0004
02AO 0004
02A2 2422
02A4 00
02A5 00
02A6 IF
02A7 00
02A8 lB
02A9 10
02AA 00
02AB 06

02AC 8400

02AE 85
02AF 84
02BO 01
02B1 02
0282 80
02B3 D8
0284 20
02B5 85
0286 38
0287 87
0288 37
0289 87
02BA 07

Figure 8-10.

01374
01375
01376
01377
01378
01379
01380
01381
01382
01383
01384
01385
01386
01387
01388
01389
01390
01391
01392
01393
01394
01395
01396
01397
01398
01399
01400
01401
01500
01501
01502
01503
01504
01505
01506
01507
01508
01509
01510
01511
01512
01513
01514
01515
01516
01517
01518
01519
01520
01521
01522
01523
01524
01525
01526
01527
01528
01529
01530
01531
01532
01533
01534
01535
01536
01537
01538
01539
01540
01541
01542
01543
01544
01545
01546
01547
01548

DT$Char-acter$Count

DT$Stop$Input$Count

DT$Resume$Input$Count

DT$Control$Count

DT$Function$Delay

DT$Initialize$Stream

,II

Device tables

DT$O,
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DW
DW
DW
DB
DB
DB
DB
DB
DB
DB
DB

DW

DT$I:
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

EQU

EQU

EQU

EQU

EQU

EQU

;This mask then becomes:
32 -) 31 (0001$1111BI
64 63 (0011$1111B>

, 128 -) 127 (0111$1111BI
;After the get/put offset has been

incremented. it is ANDed with the mask
to reset it to zero when the end of

; the buffer has been reached
DT$Buffer$Length$Mask+l

;Count of the number of characters
; currently in the buffer

DT$Character$Count+!
;Stop input when the count reach~s

; this value
DT$Stop$Input$Count+l

;Resume input when the count reaches
this value

DTSResumeS Input $Ccount + 1
;Count of the number of control
; characters in the buffer

DT$Control$Count+!
;Number of clock ticks to delay to

allow all characters after function
; key lead-in to arrive

DT$Function$Delay+l
;Address of byte stream necessary to

initialize this device

Statu! port (8251A chip)
Data por"t
Output data ready
Input data ready
DTR ready to send

;Reset interrupt port (OOH is an unused port)
Reset interrupt value (nonspecific EOI)
Detect error port
Mask: framing, overrun, par"ity errc'rs
Reset error port
Reset error: RTS high, reset. Tx/Rx enable
Drop/raise RTS port
Drop RTS value (keep Tx ~ Rx enabled)



Chapter 8: Writing an Enhanced BIOS 247

General character I/O device initialization

,#

Specific character I/O initialization

This routine will be called from the main CP/M
initialization code.

,Set device number (used to access the
table of device table addresses in the

; configuration block)
;Match to externallY CALL.ble interface

D2$Status$Port JStatus port (8251A chip)
D2$Data$Por"t JData por"t
D$Output'ReadY JOutput data readY
D.Input$Ready JInput data readY
D$DTR$High JDTR ready to send
ICSOCW2$Port JReset interrupt port (OOH is an unused port)
IC'EOI JReset interrupt value (nonspecific EOI)
D2$Status$Port JDetect error port
D$Error JMask: framing. overrun. parity errors
D2$Command$Port JReset error port
D.Error$Reset JReset error: RTS high. reset. Tx/Rx enable
D2$Command$Port JDrop/raise RTS port
D$DroP$RTS JDrop RTS value (keep Tx ~ Rx enabled)
D$Raise$RTS JRaise RTS value (keep Tx & Rx enabled)
DT$Input$Xon + DT$Input.RTS :Protocol and status
o ;Status #2
1024 ;Etx/Ack message count
1024 ;Etx/Ack message length
D2$Buffer ; Input buffer
o ;Put offset into buffer
o ;Get offset into buffer
D2$Buffer$Length -1 ;Buffer length mask
o ;Count of char"acters in bl.Jffer
D2$Buffer$Length - 5 ;Stop input when count hits this value
D2'BufferSLength / 2 ,Resume input when count hits this value.
o ;Count of control characters in buffer
6 ;Number of 16.66ms ticks to allow function

; Key sequence to arrive (apprc.>:. 90ms)
D2$Initialize$Stream ;Address of initialization stream

D$Rais.SRTS 'Raise RTS value (keep Tx ~ Rx enabled)
DT.Input.Xon + OTSlnputSRTS ;Protocol and status
o ,Status #2
1024 ; Et x/Ack message count
1024 ;Etx/Ack message length
Dt'Buffer .Input buffer
o ;Put offset into buffE'Y
o ;Get offset into buffer
Dt'Buffer'Length -1 ;Buffer length mask
o ;Count of characters in buffer
Dt'Suffer'Length - 5 ;Stop input when count hits this value
Dt'Buffer'Length I 2 ;Resume input when count hits this value
o ;Count of control characters in buffer
6 ;Number of 16.66ms ticks to allow function

; key sequence to arrive (approx. 90ms)
Dl$Initialize$Stream ;Address of initialization stream

It makes repeated calls to the specific character I/O
device initialization routine.

This routine outputs the spec fied byte values to the specified
ports as controlled by the in tialization streams in the
configuration block. Each dey ce table contains a pointer to

General'CIO$Initialization:
XRA A

DB
DB
DB
OW
OW
OW
DB
DB
DB
DB
DB
DB
DB
DB

OW

,
DT$2:

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
OW
OW
DW
DB
DB
DB
DB
DB
DB
DB
DB

DW

oil

MOV C.A
GCI$Next$De~ice:

CALL Specific$CIO$Initialization ;Initialize the device
INR A ,Move to next device
CPI 16 ; Check if all possible devices (0 - 15)
RZ have been initialized
,JMP GCI$Ne>:t$Device

01549
01550
01551
01552
01553
01554
01555
01556
01557
01558
01559
01560
01561
01562
01563
01564
01565
01566
01567
01568
01569
01570
01571
01572
01573
01574
01575
01576
01577
01578
01579
01580
01581
01582
01583
01584
01585
01586
01587
01588
01589
01590
01591
01592
01593
01594
01595
01596
01597
01700
01701
01702
01703
01704
01705
01706
01707
01708
01709
01710
01711
01712
01713
01714
01715
01716
01717
01718
01719
01720
01800
01801
01802
01803
01804
01805
01806

02EE AF

02EF 4F

02FO CDFA02
02F3 3C
02F4 FE10
02F6 C8
02F7 C3F002

02EC A400

02CC 9400

02CE 89
02CF 88
0200 01
0201 02
0202 80
0203 08
0204 20
0205 89
0206 38
0207 8B
0208 37
0209 88
020A 07
020B 27
020C CO
0200 00
020E 0004
02EO 0004
02E2 6422
02E4 00
02E5 00
02E6 IF
02E7 00
02E8 lB
02E9 10
02EA 00
02EB 06

02BB 27
02BC CO
02BO 00
02BE 0004
02CO 0004
02C2 4422
02C4 00
02C5 00
02C6 IF
02C7 00
02C8 lB
02C9 10
02CA 00
02CB 06

Figure 8-10. (Continued)



248 The CP/M Programmer's Handbook

A = Device number (preserved)

HL -) Byte stream

Exit parameters

C = device number

o

;<=== BIOS entrY point (private)

;Check if device table address

;Yes. device table nonexistent

;Recover usercs device number in C

Port number of 0 terminates

; Get ne>:t byte
;HL -) next data byte (or port number)

;Get pc,rt number
;Check if OOH (terminator)
;Exit if at end of stream
;Store in port number below
;HL -) count of bytes
;Get count
;HL -) first initialization byte

Repeated

OOH

A,D
E
SCI$Exi t

PSW

DB

A.M
A

OBS$Port
H
C,M
H

MOV
ORA
-IZ

Entry pat-ametet"s

Specific$CIO$Initialization:
;===========================

;=====================~===~=

Output byte stream

SCI$Exi t:
POP
RET

,#

these streams. The device table itself is selected according
to the device NUMBER -- this is an entry parameter for this
routine~

This routine will be called either from the general device
initialization routine above, or directly by a BIOS call from
a system utility executing in the TPA.

This routine outputs initialization bytes to port
numbers. The byte stream has the following format:

DB ppH Port number
DB nn Number of bytes to output
DB vvH, vvH.... Bytes te. be OI.Jtput

OBS$Nex\$Byte:
MOV A.M
INX H

Output$Byte$Stream:
OBS$Loop:

MOV
ORA
RZ
STA
INX
MOV
INX

MOV ArC ;Get device number
PUSH PSW ;Preserve device mJmbet"
ADD A ;Make device number into word pointer
MOV (:,A
MVI B,O ;Make inte. a w':trd
LXI H,CB$Device$Table$Addresses ;Get table base
DAD B ; HL -> device table address
MOV E, M ; Get LS byte
INX H
NOV D,M ;Get MS byte: DE -) device table

LXI H.DT$Initialize$Stream
DAD D ;HL -) initialization stream address
MOV E,M ,Get LS byte
INX H
MOV D. M ; Get MS byte
XCHG ;HL - initialization stream itself
CALL Output$Byte$Stream ;Output byte stream to various

ports

Entry parameters

01807
01808
01809
01810
01811
01812
01813
01814
01815
01816
01817
01818
01819
01820
01821
01822
01823
01824
01825
01826
01827
01828
01829
01830
01831
01832
01833
01834
01835
01836
01837
01838
01839
01840·
01841
01842
01843
01844
01845
01846
01847
01848
01849
01850
01851
01852
02000
02001
02002
02003
02004
02005
02006
020.07
02008
02009
02010
02011
02012
02013
02014
02015
02016
02017
02018
02019
02020
02021
02022
02023
02024
02025
02026
02027
02028
02029
02030

02FA 79
02FB F5
02FC 87
02FD 4F
02FE 0600
0300 216400
0303 09
0304 5E
0305 23
0306 56

0307 1A
0308 B3
0309 CAI703

030C 211EOO
030F 19
0310 5E
0311 23
0312 56
0313 EB
0314 CDI903

0317 FI
0318 C9

0322 7E
0323 23

0319 7E
031A B7
031B C8
031C 322503
031F 23
0320 4E
0321 23

Figure 8-10. (Continued)



Chapter 8: Writing an Enhanced BIOS 249

(Continued)

CONIN -- console input

Exit parameters

Entry parameters: none.

;Flag used during function key
processing to indicate that
a predetermined delay has
elapsed

;Get the forced input pointer
;Get the next character of input
;Check if a null
rYes. no forced input
rYes, update the pointer

and store it back

;<=== BIOS entry point (standard)

,<=== BIOS entry point (standard)

(- Set UP in instruction above
Count down on byte counter
Output next data byte
Go back for next port number

oDB

CB$Forced$Input
A,M
A
CONIN$No$FI
H
CB$ForcedSlnput

;No forced input
C8$Consol •• lnput ;Get redirection word
D,C8$Device$Table$Addresses
Select.Device$Table ;Get device table address
Oet.lnput.Character ;Oet next character from input device

OUT

o
C
OBS$NextsByte
OBS$Loop

LHLD
MOV
ORA
JZ
INX
SHLD
RET

CONIN.

,
CONIN$No$FI

LHLD
LXI
CALL
CALL

;Function key processing
CPI Function.Key'Lead ;Check if first character of function

: keY sequence (normally escape)
RNZ ;Return to BIOS caller if not
PUSH PSW ;Save lead in character

Normal ("unforced") input comes from whichever physical device
is specified in the console input redirection word (see the
configuration block).

A = oaOH if there is no data waiting
A OFFH if there is data waiting

This routine checks both the forced input pointer and
the character count for the approPriate input buffer.
The A register is set to indicate whether or not there
is data waiting.

This routine returns the neKt character for the console input
stream. DependinQ on the circumstances, this can be « character
from the console input buffer. or from a previously stored
strinQ of charaeters to be "forced" into the input stream.for
the automatic execution of system initialization routines.
The "forced input" can come from any previously stored character
string in memory. It is used to inject the current time and date
or a string associated with a function key into the console
stream. On sYstem startup, a string of "SUBMIT STARTUP" is
forced into the console input stream to provide a mechanism.

,
CONIN$Delay$Elapsed.

;==========================
;==========================

:
,II

;==========================
CONST.

CONST - Console status

DB
OBS$Port •

DB
DCR
JNZ
JMP

;==========================
LHLD CeSConsol •• Input ;Oet redirection word
LXI D,C8$Oevice$Tabl.SAddresses
CALL Select'Device'Table ;Oet device table address
JMP G.t.Input.Statu~ ,Get status from input device

and return to caller

02031
02032
02033
02034
02035
02036
02037
02038
02100
02101
02102
02103
02104
02105
02106
02107
02108
02109
02110
02111
02112
02113
02114
02115
02116
02117
02118
02119
02120
02121
02122
02200
02201
02202
02203
02204
02205
02206
02207
02208
02209
02210
02211
02212
02213
02214
02215
02216
02217
02218
02219
02220
02221
02222
02223
02224
02225
02226
02227
02228
02229
02230
02231
02232
02233
02234
02235
02236
02237
02238
02239
02240
02241
02242
02243
02244
02245

0339 00

032D 2A5800
0330 116400
0333 CD6F06
0336 C34708

0324 D3

0325 00
0326 OD
0327 C22203
032A C31903

033A 2A8DOF
033D 7E
033E B7
033F CA4703
0342 23
0343 228DOF
0346 C9

0347 2A5800
034A 116400
034D CD6F06
0350 CD9106

0353 FEIB

0355 CO
0356 F5

Figure 8·10.



250 The CP/M Programmer's Handbook

(Continued)

The following routine is called bv the watchdog routine
when the specified delav has elapsed.

loop

Get delay time constant for
delay while waiting for subsequent
characters of function key sequence
to arrive

Move to next (or first) entry
Get second character of sequence
Check if end of function key table
Yes -- it is not a function key
Compare second char"a.cter-s
No match. so trY next entrY in table

HL -> third character
Get third character of sequence
Simplify logic fot· 2 & 3 char. seq.

;Get delay value
;Make into word value
;Indicate timer not vet out of time

;Now check if the remaining characters
of the sequence have been input

;Save the current "get pointer"
; in the bl.Jffer
;Get the pointer
;Save pointer on the stack

;Indicate watchdog timer out of time

;Return to watchdog routine

;Get count of characters in buffer

;Check the second (and possiblv third)
; character in the sequence
;Get the second character"

;Enough characters in buffer for
possible function kev sequence

;Insufficient characters in buffer
to be a function kev. so return
to caller with lead character

H,DT'Function'DelaY

D
C,M
B,O
A
CONIN.DelaY.Elapsed
H,CONIN$Set$DelaY$Elapsed ;Address to resume at after delay
Set'Watchdog ;Sets up delay based on real time

clock such that control will be
transferred to specified address

; after time interval has elapsed
;Wait here until delay has elapsed
;Check flag set by watchdog routine

PSW

D
A,M
Function$Key$Length 
CONIN$CheckSFunction

H,DT'GeUOffset
Get.Addres •• in.Buffer
B,M

Three$Character$Function
H
A,M
H

Three'Character$Function
B ;Save for later use
H.DTSGetSOffset ;Retrieve the third character
GetSAddress$inSBuffer
8 ;Recover second character
C,M ;Now Be = Char 2. Char 3

LXI

DAD
MOV
MVI
XRA
STA
LXI
CALL

PUSH
LXI

RET

IF
INX
MOV
DCX

POP

LXI
CALL
MOV

DAD
MOV
CPI
,INC

IF
PUSH
LXI
CALL
POP
MOV
ENDIF

CONIN'Wait'for'Delay,
LDA CONIN.Delay.Elapsed
ORA A
JZ CONIN'Wait'for'DelaY

CONIN$Check$for$Function:
LXI H,DT'Character'Count

,
CONIN'Set'Delay'Elapsed,

MVI A,OFFH
STA CONIN.Delay.Elapsed
RET

,
CONIN$Check$Function:

LXI H.DT'Get'Offset
DAD D
MOV A.M
PUSH PSW

D ;Save device table pointer
H, CBSFunct ion$Key$Table - CB$Funct ionS~:ey$Entt'y$Si ze

;Get pointer to function keY table
in configuration block

LXI D,CB$Function$Key$EntrySSize ;Get entry size ready fe,r
CONINSNextSFunction:

DAD D
MOV A, M
ORA A
JZ CONIN'Not'Function
CMP B
JNZ CONIN'Next'Function

02246
02247
02248
02249
02250
02251
0225~

02253
02254
02255
02256
02257
02258
02259
02260
02261
02262
02263
02264
02265
02266
02267
02268
02269
02270
02271
02272
02273
02274
02275
02276
02277
02278
02279
02280
02281
02282
02283
02284
02285
02286
02287
02288
02289
02290
02291
02292
02293
02294
02295
02296
02297
02298
02299
02300
02301
02302
02303
02304
02305
02306
02307
02308
02309
02310
02311
02312
02313
02314
02315
02316
02317
02318
02319
02320
02321
02322

0357 211DOO

035A 19
035B 4E
035C 0600
035E AF
035F 323903
0362 217B03
0365 CD6D08

0368 3A3903
036B B7
036C CA6803

036F 211900

0372 19
0373 7E
0374 FE02
0376 D28103

0379 FI

037A C9

037B 3EFF
037D 323903
0380 C9

0381 211700
0384 19
0385 7E
0386 F5

0387 211700
038A CDF007
038D 46

038E C5
038F 211700
0392 CDF007
0395 CI
0396 4E

0397 D5
0398 21BOOO

039B 111300

039E 19
039F 7E
03AO B7
03AI CAC203
03A4 B8
03A5 C29E03

03A8 23
03A9 7E
03AA 2B

Figure 8-10.



Chapter 8: Writing an Enhanced BIOS 251

CONIN$Not$Function:

CONOUT st':trage variables

C = character to be output

Entry parameters

;Now that a function sequence has been
identified. the stack must be

; balanced prior to return
;Get the device table pointer
;Dump the "get" offset value
; Dump the funct ion sequence lead chat".

;Recover device table pointer
;Recover previous "get" offset

;Downdate the character count
to reflect the characters removed

; from the buffer
;Get the count
; (the lead character has already
; been deducted)
;Return to CONIN processing to get

the forced input characters

;HL -> first character of substitute
; string of characters (OO-byte term.)
;Make the CONIN routine inject the

substitute string into the input
stream

;Compare third characters
;No match, so try next entry in table
;When match found. compensate felY

extra decrement

;HL -) "get" offset in table
,Reset "get" offset as it was after
; the lead character was detected
;Recover lead character
,Return the lead character to the user

;Save area for character to be output

;Attempts to recognize a function key sequence
have failed. The "get" offset pointer must be
restored to its previous value 50 that
the character(s) presumed to be part of
the function sequence are not lost.

o

CONOLlT$Norrnal
;This is the address of the piece of

code that will process the next
character. The default case is

, CONOUT$Normal
o ;This points to a string (normallY

in the configuration block) that
is being preset by characters from
the console output stream

DB

H

C
CONIN$Ne.t$Function
H

CB$Forced$lnput

o
PSW
H.DT$GeUOffset
o
M.A

PSW

POP 0
pOP PSW
pOP PSW

LXI H,OT.Character$Count
DAD 0

MOV A.M
SUI Function$Key$Length -1
MOV M.A
"'MP CONIN

INX

SHLD

Console output

POP
RET

This routine outputs data characters to the console device(s).
It also "traps" escape sequences being output to the console,
triggering specific actions according to the sequences.
A primitive II s tate-machine" is used to step through escape
sequence recognition.
In addition to outputting the next character to all of the
devices currently selected in the console output redirection word,
it checks to see that output to the selected device has not been
suspended by XON/XOFF protocol, and that OTR is high if
it should be.
Once the character has been output, if ETX/ACI< Pt"otocc,l is in use,
and the specified length of message has been output, an Etx
character 15 output and the device is flagged as being suspended.

POP
POP
LXI
DAD
MOV

CMP
"'NZ
INX

ENDIF

;

H'

CONOUT$Processor: OW

CONOUT$String$Pointer: ow

;
CONOUT$Character:

02323
02324
02325
02326
02327
02328
02329
02330
02331
02332
02333
02334
02335
02336
02337
02338
02339
02340
02341
02342
02343
02344
02345
02346
02347
02348
02349
02350
02351
02352
02353
02354
02355
02356
02357
02358
02359
02360
02361
02362
02363
02364
02365
02500
02501
02502
02503
02504
02505
02506
02507
02508
02509
02510
02~H1
02512
02513
02514
02515
02516
02517
02518
02519
02520
02521
02522
02523
02524
02525
02526
02527
02528
02529
02530
02531
02532
02533

03B7 211900
03BA 19

03B4 01
03B5 F1
03B6 F1

03BB 7E
03BC 0602
03BE 77
03BF C33A03

03AB B9
03AC C29E03
03AF 23

03BO 23

03B1 228DOF

03C9 F1
03CA C9

03C2 01
03C3 F1
03C4 211700
03C7 19
03C8 77

03CB 00

03CC DB03

03CE 0000

Figure 8·10. (Continued)



252 The CP/M Programmer's Handbook

,II

Console output: escape s.quence processing

*** WARNING ._.
The output error message routine sh~res the code in this
subroutine. On entry here. the data byte to be output
will be on the stack. and the DE registers set up correctly.

CONOUr.Escape.Found: ;Possible escape sequence
LXI H,CONOUr.Process$Escape ;Vector processing of next character

CONOUr.Set.Processor:
SHLD CONOUr.Processor ;Set vector address
RET ; Return to BIOS caller

;Addresses of dev. tables
;Put onto stack ready for loop

This contains the maximum number of
characters to be preset into a
from the console output stream

;Save data byte
;HL alreadY has special bit map

;Get address of processor to handle
; the next character to be output
;(Default is CONOUT$Normal)
;Transfer control to the processor

;Normal processor for console output
;Check if possible start of escape
; sequence
;Perhaps

;Oet console redirection word

;Forced output entry point
;Not escape sequence -- Save data byte

;Check if device not suspended and
; (if appropriate) DTR is high
;No, wait

;Recover redirection bit map
;Recover device table addresses pointer
;Oet device table in DE
;Check if a device has been
; selected (i.e. bit map not all zero)
;No, exit
;Save redirection bit map
;Save device table addresses pointer

:Interrupts off to avoid
; involuntary re-entrance
;Recover the data byte
;Ready for output
;Output the data byte

;Recover data character
;CP/M "convention"

;Deal with Etx/Ack protocc,l
;Loop back for next device

o

;<=== BIOS entry point (standard)

DB

CONOUTSProcessor

;<=== output error message entrY point

CBSConsole$Output

A,C
Function'Key'Lead
CONOUTSEscapeSFound

O.CBSOevice$TableSAddresses
o
H

A,C
CONOUTSCharacter

CONOUTSExit
B ,Yes - B ••
H

CONOUTSCharacter
C.A
Output'Data$Byte

CheckSOutputSReady

CONOUTSWait

CONOUTSCharacter
A.C

Process$EtxSProtocol
CONOUT$Next$Device

LHLO

PCHL

CALL
JMP

LOA
MOV
CALL
EI

JZ

01

CONOUTSStringSLengthl

CONOUTSOEMSEntry,
STA CONOUTSCharacter
JMP CONOUTSEntry2

CONOUT:
;=====================

;=====================

LXI
PUSH
PUSH

CONOUTSNormal :
MOV
CPI
JZ

CONOUTSFclyced:
MOV
STA

LHLO

CONOUT$Next$Device:
POP H
POP 0
CALL Select'Device'Table
ORA A

,
CONOUTSEntry21

JZ
PUSH
PUl>H

CONOUTSWaitl
CALL

CONOUTSExit,
LOA
MOV
RET

02534
02535
02536
02537
02538
02539
02540
02541
02542
02543
02544
02545
02546
02547
02548
02549
02550
02551
02552
02553
02554
02555
02556
02557
02558
02559
02560
02561
02562
02563
02564
02565
02566
02567
02568
02569
02570
02571
02572
02573
02574
02575
02576
02577
02578
02579
02580
02581
02582
02583
02584
02585
02586
02587
02588
02589
02590
02591
02592
02593
02594
02595
02596
02597
02598
02599
02600
02601
02602
02603
02604
02605
02606
02607
02700
02701
02702

0300 00

0301 32CB03
0304 C3E803

0307 2ACC03

030A E9

030B 79
030C FE1B
030E CA1204

03El 79
03E2 32CB03

03E5 2A5AOO

03E8 116400
03EB 05
03EC E5

03EO El
03EE 01
03EF C06F06
03F2 B7

03F3 CAOO04
03F6 C5
03F7 E5

03F8 COOF06

03FB CAF803

03FE F3

03FF 3ACB03
0402 4F
0403 C02608
0406 FB

0407 C03A06
040A C3E003

0400 3ACB03
0410 79
0411 C9

0412 211904

0415 22CC03
0418 C9

Figure 8·10. (Continued)



Chapter 8: Writing an Enhanced BIOS 253

LXI H.Time$In$ASCII
JMP CONOUT$Set$Forced$Input

CONOUr.Time: ;Subpyocessoy to inject time into
console input stream

CONOUTSDate: ; Subprocessot" tel i nj ect current date
into console input stream (using
forced input)

LXI H.Oate
CONOUT$Set$Forced$Input:

SHLO CB$Forced$Input
RET ,Return tel BIOS'- calley

HL -) string, A = count
Save count
Save address
Vector further output

;Get MS byte
;HL -) subprocessor
;Goto subprocessor

;HL -) LS byte of subprocessor
;Get LS byte

,Control arrives here with character
; after escape in C
;Oet base of recognition table

;No match found. So original
escape and following character

; must be output
;Save character after escape
;Get escape character
;Output to console devices
pOet character after escape
; Output it. too

;Set vector back to normal
for subsequent characters

;00 back and check again

;Check if at end of table

;Yes, no match found
;Compare to data character
; They match
;Move to next entry in table

B
C,Function$Ker$Lead
CONOUT$Forced
B
CONOUT$Forced

H
E.M
H
O.M

PUSH
MVI
CALL
POP
CALL

;
CONOUT$Set$String$Pointer:

STA CONOUT.String$Length
SHLO CONOUT$String$Pointer
LXI H.CONOUT$Process$String

,
CONOUTSSet$Date: ;Subprocessor to set the date by taking

the next 8 characters of console output
; and stoying them in the date string

LXI H,Tim.SDat.tFlags ;S.t flag to indicate that the
MVI A,OatetSet date has been set by program
ORA M
MOV M.A
MVI A., S ; Set chat"acter count
LXI H,Date ;Set address
JMP CONOUT$Set$String$Pointer

CONOUTSSet$Time: ;Subprocessor to set the time by taking
the next 8 characters of console output

; and storing them in the time string
LXI H.Time$Oate$Flags ;Set flag to indicate that the
MVI A, Time'Set , t 1me has been set by program
ORA M
MOV M.A
MVI A,S ;Set character count
LXI H.Time$in$ASCII ;Set address
JMP CONOUT$5et$String$Pointer

;
CONOUT$No$Match:

CONOUT$Match:
INX
MOV
INX
MOV
XCHG
PCHL

;
CONOUT$Process$Escape:

;
CONOUT$Set$Normal:

LXI H.CONOUT$Normal
JMP CONOUT$Set$Proces.or

LXI H.CONOUT$Escape$Table
CONOUT$Next$Entry:

MOV A.M
ORA A
JZ CONOUT$No$Match
CMP C
JZ CONOUT$Match
INX H
INX H
INX H
JMP CONOUT$Next$EntrY

02703
02704
02705
02706
02707
02708
02709
02710
02711
02712
02713
02714
02715
02716
02717'
02718
02719
02720
02721
02722
02723
02724
02725
02726
02727
02728
02729
02730
02731
02732
02733
02734
02735
02736
02737
02738
02739
02740
02741
02742
02743
02744
02745
02746
02747
02748
02749
02750
02751
02752
02753
02754
02755
02756
02757
02758
02759
02760
02761
02762
02763
02764
02765
02766
02767
02768
02769
02770
02771
02772
02773
02774
02775
02776
02777
02778
02779

046C 320003
046F 22CE03
0472 217804

0450 21A30F
0460 3EOI
0462 B6
0463 77
0464 3E08
0466 21990F
0469 C36C04

0419 211B02

041C 7E
0410 B7
041E CA2B04
0421 B9
0422 CA3B04
0425 23
0426 23
0427 23
0428 C31C04

042B C5
042C OEIB
042E COEI03
0431 Cl
0432 COEI03

0435 210B03
0438 C31504

043B 23
043C 5E
0430 23
043E 56
043F EB
0440 E9

0441 218FOF

0444 22800F
0447 C9

0448 21990F
0448 C34404

044E 21A30F
0451 3E02
0453 B6
0454 77
0455 3E08
0457 218FOF
045A C36C04

Figure 8·10. (Continued)



254 The CP/M Programmer's Handbook

,#

,#

JMP CONOUT$Set$Processor

This routine returns the next input character from the

back

;Get list redirection word

;Revert to normal processing
; if count hits 0
;Return with output vectored
; to CONOUT$Process$String

;Revert to normal processing
;Otherwise. stack character
;Update pointer
;Stack fail-safe terminator
;Save UPdated pointer
;[Iowndate count

;<=== BIOS entry point (Private)

;<=== BIOS entrY point (Private)

~Control arrives here for each character
in the string in register C. The
characters are stacked into the
receiving string until either a OO-byte
is encountered or the specified number

; of characters is stacked.
CONOUT$String$Pointer ;Get current address for stacking chars
A,C ;Check if current character is OOH
A
CONOUT$S~t$Normal

M,A
H
M,OOH
CONOUT$String$Pointer
H,CONOUT$String$Length
M
CONOUT$S~t$Normal

CB$Auxiliary$Output
Get$Composite$Status

RET

LHLD
MOV
ORA
-.lZ
MQV
INX
MVI
SHLD
LXI
OCR
-.lZ

A = OOOH if there is no data waiting
A = OFFH if there is data waiting

Exit parameters

Entry parameters: none

Auxiliary input status

Auxiliary output status

Entry parameters: none.

LHLD CB$Auxiliary$Input ;Get redirection word
LXI D.CB$Device$Table$Addresses ; and table pointer
CALL Select.Device$Table ;Get device table address
JMP Get$Input$Status ;Get status from input device

and return to caller

This routine checks the character count in the
appropriate input buffer.
The A register is set to indicate whether or not
data is waiting.

A OOOH if one or more list devices are not ready
A OFFH if all list devices are ready

Exit parameters

This routine sets the A register to indicate whether the
Auxiliary device(s) is/are ready to accept output data.
As more than one device can be used for auxiliary output, this
routine returns a Boolean AND of all of their statuses.

LHLD
c1MP

Auxiliary input (replacement for READER)

CONOUT$Process$String:

AUXIST,
;==========================

AUXOST,

;==========================

;======================

;======================

02780
02781
02782
02783
02784
0278S
02786
02787
02788
02789
02790
02791
02792
02793
02794
0279S
02796
02797
02798
02799
02800
02801
02802
02900
02901
02902
02903
02904
0290S
02906
02907
02908
02909
02910
02911
02912
02913
02914
02915
02916
02917
02918
02919
02920
02921
02922
02923
02924
03000
03001
03002
03003
03004
0300S
03006
03007
03008
03009
03010
03011
03012
03013
03014
030lS
03016
03017
03018
03019
03020
03021
03022
03100
03101
03102
03103
03104

0478 2ACE03
047B 79
047C B7
0470 CA3S04
0480 77
0481 23
0482 3600
0484 22CE03
0487 210003
048A 3S
048B CA3S04

048E C9

047S C31S04

048F 2ASCOO
0492 116400
049S C06F06
0498 C34708

049B 2ASEOO
049E C3790S

Figure 8-10. (Continued)



Chapter 8: Writing an Enhanced BIOS 255

0404 C3A20~

0407 2A6200
04DA C37905

04CE 2A5EOO
0401 I1AD04

04Al 2A5COO
04A4 116400
04A7 CD6F06
04AA C39106

,Get aux. redirection word
,Message to be output if time

runs out

;Get list redirection word

;<=== BIOS entry Roint (standard)

; (=== BIOS entry point (standard)

CR.LF.7,~Auxiliary device not Ready?~.CR.LF,O

;<=== BIOS entry point (standard)

DB

CBSAuxl I iarYSOutput
D,AUXOUT$Busy$Message

CBSU. UOu t pu t
GetSCompositeSStatus

A = OOOH if one or more list devices at"e not ready
A OFFH if all list devices are ready

~MP MultipleSOutputSByte

LHLO
~MP

LHLO
LXI

List status

Entry parameters: none

List output

Exit parameters

This routine sets the A register to indicate whether the
List Device(s) is/are ready to accept output data.
As more than one deVice can be used for list output. this
routine returns a Boolean AND of all of their statuses.

A = data character

LHLD CB'Auxiliarv'lnput ;Get redirection word
LXI D,CB'Device'Table'Addresses ; and table pointer
CALL Select'Device'Table ;Get device table address
JMP Oet'Input'Character ;Oet next input character

and return to caller

Entry parameters

Entry parameters

Exit parameters

Entry parameters: none.

appropriate logical auxiliary device.

C = data byte

This routine outputs a data byte to the list device.
It is similar to CONOUT except that it uses the watchdog
timer to detect if the printer stays busy for more
than 30 seconds at a time. It outputs a message to the console
if this happens.

This routine outputs a data byte to the auxiliary device(s).
It is similar to CONOUr except that it uses the watchdo9
timer to detect if a device stays busy for more than
30 seconds at a time. It outputs a message to the console
if this happens.

C = data byte

Auxiliary output (replaces PUNCH)

,II

AUXOUT,

L1STST:

,
,II

,
,II

,
AUXOUTSBu.ySMe ••age,

;======================

;=====================
;=====================

;======================

;==========================
;~=========================

AUXIN,

03105
03106
03107
03108
03109
03110
03111
03112
03113
03114
03115
03116
03117
03118
03119
03120
03121
03200
03201
03202
03203
03204
03205
03206
03207
03208
03209
03210
03211
03212

ODOA07417503213
03214
03215
03216
03217
03218
03219
03220
03221
03222
03300
03301
03302
03303
03304
03305
03306
03307
03308
03309
03310
03311
03312
03313
03314
03315
03316
03317
03318
03319
03320
03321
03322
03400
03401
03402
03403
03404
03405
03406
03407
03408
03409
03410
03411
03412

04AD

Figure 8·10. (Continued)



256 The CP/M Programmer's Handbook

HL -) OO-byte tet·minated en"Ot" message

Entry parameters

This subroutine makes use of most of the CONOUT subroutine.
For memory economy it enters CONOUT using a private
entry point.

This routine outputs an error message to all the currently
selected console devices except those being used to receive
LIST output as well. This is to avoid "deadly embrace" situations
where the printer~s being busy for too long causes an error message
to be output -- and console output is being directed to the
printer as well.

" .0

Get list redirection bit map
HL = list, DE = console
Now set to 0 all bits in the console

;Get list redirection wor"d
;Message to be output if time

runs out

;Gobble UP any type-ahead

; Oi sp lay pt-ompt

;Get console character
;Mak~ uppet"case fot" compat"isons
;Save in confirmatory message
; Save fe,r later

; Recovet- act ion code

;Save message address
;Get console redirection bit map

CR,LF,7,'Printer not ReadY?~,CR.LF,O

;<=== BIOS entry point (standard)

Enter R - Retry, I - Ignore, A - Abl;)rt

DB

CR,LF

CB'U sUOutput
D.LISTSBusy$Message

DB
DB

CON1N
A$To$Uppet
Disk$Action$Confirm
PSW

PSW

R RetrY the operation that caused the error
r Ignore the error and attempt to continue
A Abor"t the pr"ogt"am and retur"n to CP/M

Request user choice

JMP Multiple$Output$Byte

LHLD
LXI

This routine displays an error message. requesting
a choice of:

This routine accepts a character from the console,
converts it to uppercase and returns to the caller
with the response in the A register.

Output error message

LXI H,Disk$Action$Confirm
CALL Output$Error$Message

POP
RET

CALL
CALL
STA
PUSH

'II

LIST.Busy.Message:

LIST:
;==m==================

;=====================

:
RUe$Message:

Request$User$Choice:
CALL CONST
JZ RUC.Buffer$Empty
CALL CONIN
JMP Request$User$Choice

,II

RUC'Buffer'Empty:
LXI H,RUC'Message
CALL Output$Error$Mess~ge

I
Output $En"ot"$Message =

PUSH H
LHLD CB'Console$Output
XCHG
LHLD CB'List'Output

04DD ODOA07507203413
03414
03415
03416
03417

04F5 2A6200 03418
04F8 11DD04 03419

03420
04FB C3A205 03421

03422
03500
03501
03502
03503
03504
03505
03506
03507'
03508
03509
03510
03511
03512
03513
03514

04FE ODOA 03515
0500 20<020202003516

03517
03518
03519

052F CD2D03 03520
0532 CA3B05 03521
0535 CD3A03 03522
0538 C32F05 03523

03524
03525

053B 21FE04 03526
053E CD5305 03527

03528
0541 CD3A03 03529
0544 CD3BOE 03530
0547 32BOOD 03531
054A F5 03532

03533
054B 21BOOD 03534
054E CD5305 03535

03536
0551 F1 03537
0552 C9 03538

03539
03600
03601
03602
03603
03604
03605
03606
03607
03608
03609
03610
03611
03612
03613
03614
03615
03616
03617
03618
03619

0553 E5 03620
0554 2A5AOO 03621
0557 EB 03622
0558 2A6200 03623

03624
03625

Figure 8·10. (Continued)



Chapter 8: Writing an Enhanced BIOS 257

HL = I/O redirection bit map for output device(s)

Exit parameters

Entry parameters

This routine sets the A register to indicate whether the
output device(s) i./~r. ready to accept output data.
As more than one device can be used for output, this
routine returns. Boo1e.n AND of all of their statuses.

bit map that are set to 1 in the
p list bit map
,Det MS byte of list
; Invert
;Preserve only bits with 0/5
; Save resul t
;Repeat foY LS byte of list

;HL now has only pure console
; devicllis
;Ensure that at least one device
; iii se lected
:Otherwise use default of device 0

:Recover message address into DE
;Get next byte of message
;Update message pointer
:Check if end of meSsage
rYes, exit
;Save message address for later
;Save special bit map
:Data character is in A
:Enter shared code
;Recover special bit map

;Assume all devices are ready
;Preset composite status byte

;Loop back for next device

;Return with COMPosite status

,Recover redirection bit map
,Recover device table addresses pointer
,Oet device table in DE
,Check if a device has been
J selected (i.e. bit map not all zero)
,No, exit
;Save redirection bit map
;Save device table addresses pointer
;Check if device ready
;AND together with Previous devices

status
;Save composite status

;Composite status of all deViceso

A = OOOH if one or more list devices are not ready
A = OFFH if all list devices are ready

08

DCS.E.it
B ,Ves - B••
H
Check.Output.Ready
H.DCS.Status
M
M.A

DCS.Ne.t.Device

DCS.Status
A

MOV A.H
CMA
ANA 0
MOV H.A
MOV A.L
CMA
ANA E
MOV L.A

~Z

PUSH
PUSH
CALL
LXI
ANA
MOV

~MP

Oet composite status

ORA H
~Z OEM.Device.Present
LXI H.OOOIH

OEM.Device$Present:
OEM.Ne.t.Character,

POP 0
.LDAX 0
INX 0
ORA A
RZ
PUSH 0
PUSH H

CALL CONOUT.OEM.Entry
POP H
~MP OEM.Ne.t.Character

DCS.Status.

,
Get.Composite.Status:

MVI A.OFFH
STA DCS.Status

LXI D,CBSDevic.STableSAddresses ,Addresses of dev. tables
PUSH D ;Put onto stack ready for loop
PUSH H ;Save bit Map

DCS.Ne.t.Device,
POP H
POP 0
CALL Select.Device.Table
ORA A

,
DCS.Ed t.

LOA
ORA
RET

03626
03627
03628
03629
03630
03631
03632
03633
03634
03635
03636
03637
03638
03639
03640
03641
03642
03643
03644
03645
03646
03647
03648
03649
03650
03651
03652
03653
03654
03655
03656
03657
03658
03659
03660
03661
03662
03663
03664
03665
03666
03667
03668
03669
03670
03671
03672
03673
03674
03675
03676
03677
03678
03679
03680
03681
03682
03683
03684
03685
03686
03687
03688
03689
03690
03691
03692
03693
03694
03695
03696
03697
03698
03699
03700
03701

0558 7C
055C 2F
0550 A2
055E 67
055F 70
0560 2F
0561 A3
0562 6F

0563 84
0564 CA6A05
0567 210100

056A 01
0568 lA
056C 13
0560 87
056E C8
056F 05
0570 E5

0571 CDDI03
0574 EI'
0575 C36A05

0578 00

0579 3EFF
0578 327805

057E 116400
0581 05
0582 E5

0583 El
0584 01
0585 CD6F06
0588 87

0589 CA9905
058C C5
0580 E5
058E CDOF06
0591 217805
0594 A6
0595 77

0596 C38305

0599 3A7805
059C B7
0590 C9

Figure 8·10. (Continued)



258 The CP/M Programmer's Handbook

Multiple output byte

Entry parameters

HL = I/O redirection bit map
DE -> Message to be output if time runs out
C data byte

,
,II

pointer

,Yes. output warning message
;Check if device ready
;No, wait

;Get data byte

;Check if watchdog timed out

,Ignore timeout error
;Balance the stack

;Oeal with ETX/ACK protocol

;Interrupts off to avoid
involuntary reentrance

;Turn off watchdog
; (HL setting is irrelevant)

,Time delay
;Address to go to
;Start timer

;Reset message needed flag

,Output the data byte

;Addresses of dev. tables
on stack ready for loop
lID redirection bit map

;Save device table addresses pointer
;Save redirection bit map

,Recover redirection bit map
,Recover device table addresses
;Get device table in DE
,Check if any device selected

;Number of clock ticks (each at
16.666 milliseconds) for which the

; device might be busy
;Character to be output
;Address of message to be
; output if time runs out
;Flag used to detect th.t the

watchdog timer timed out

,Get data byte
;Save copy
;HL -) timeout message
;Save for later use
;HL = bit map again

B

1800

o

o
o

DB

EQU

,<- Yes

DB
DW

B
H

B,O
S@UWalchdog

MOB$Need.Message
A
MOB$Output.Message
Check'OutputSReady
MOB$Wait

MOB$Char-achr
C,A
output$Data$Byt@

Process$EtxSProtocol
MOBSNextSDevice

LDA
MOV
CALL
EI
CALL
..JMP

PUSH
PUSH

DI

LXI
CALL

MOB$Wai t:
LDA
ORA
,INZ
CALL
..JZ

MOB$Charachr:
MOBSBusy$Message:

MOB.Need.Message:

Multip!e$Output$Byl@,
MOV A,C
STA MOB$Maximum$Busy
XCHG
SHLD MOB$Busv$M@ssag@
XCHG

This routine outputs a data byte to the all of the
devices specified in the I/O redirection word.
It is similar to CONOUr except that it uses the watchdog
timer to detect if any of the devices staYs busy for more
than 30 seconds at a time. It outputs a message to the console
if this happens.

MOB$Starl$Watchdog,
XRA A
STA MOB$Need.Message
LXI B, MOB$Max imumSBusy
LXI H,MOB$Not$R@ady
CALL S@t$Watchdog

LXI D,CSSDeviceSTableSAddresses
PUSH D ,Sa".
PUSH H ,Sa".

MOSSNext$Device:
POP H
POP D
CALL Select'Device$Table
ORA A
,JZ MOB$Exi t

,
MOB'Maximum'Busy

,
MOB'IgnoreSExit~

POP H
POP D

03702
03800
03801
03802
03803
03804
03803
03806
03807
03808
03809
03810
03811
03812
03813
03814
03815
03816
03817
03818
03819
03820
03821
03822
03823
03824
03823
03826
03827
03828
03829
03830
03831
03832
03833
03834
03835
03836
03837
03838
03839
03840
03841
03842
03843
03844
03845
03846
03847
03848
03849
03850
03851
03852
03853
03854
03855
03836
03857
03858
03859
03860
03861
03862
03863
03864
03865
03866
03867
03868
03869
03870
03871
03872
03873
03874

05D5 F3

0708 =

05C8 3AAI05
05CB B7
03CC C2EE03
05CF CDOF06
03D2 CAC805

03B9 C3
05BA E3

059E 00
039F 0000

05AI 00

05BB AF
05BC 32AI05
05BF 010807
05C2 210906
05C5 CD6D08

05EA EI
05EB DI

05AB 116400
03AE D3
05AF E5

05BO EI
05BI DI
05B2 CD6F06
05B5 B7
05B6 CAEC05

05A2 79
05A3 320807
05A6 EB
05A7 229F05
05AA EB

05D6 010000
05D9 CD6D08

05DC 3A9E03
05DF 4F
05EO CD2608
05E3 FB
05E4 CD3A06
05E7 C3B003

Figure 8-10. (Continued)



Chapter 8: Writing an Enhanced BIOS 259

DE -) device table

Entry parameters

NOTE: This routine does NOT check if the USART itself is ready.
This test is don. in the output data byte routine itself.

This routine checks to see if the specified device is ready
to receive output data.
It do•• so by checking to se. if the device has been suspended
for protocol reasons ~nd if DTR is low.

; CP/M "convent ion"

; Abort
Give BOOS function 0

;Display warning message
on selected console devices

;Display message and get
; action character
;Retry
;Restart watchdog and try again
; Ignore

Device not ready
Oevice readY

Yes. set up to check chip status
to see if OTR is high

Get OTR high status mask
Test chip status
OTR low, indicate not readY

:Check if OTR must be high to send
;Mask with device status from table
;No. device is logically ready

;Get status port number
:Set up instruction below

:Set up to read device status

; Get device stat,us
;HL -) status byte
;Get status byte
;Take a copy of the status byte
;Check if output is suspended
:Yes, indicate not ready

;Return to the watchdog routine

;Watchdog timer routine will call this
routine if the device is busY

; for more than apProximately 30 seconds
;Note: This is an interrupt service routine

'S.t request to output message

;(-- Set up bY instruction above
:Save hardware status

A,OFFH
MOBSNe~$Message

A.C

A = OOOH (Zero-flag set)
A = OFFH (Zero-flag cl.ar)

A,DTSOutputsDTR
B
CORSReadY

H.DT$Statu.SPort
D
A,M
COR$Statu.$Port

H,DTSStatu.
D
A.M
B,A
DTSOutputSSuspend
CORSNotSReadv

H,DTSDTRSReady
D
A.M
C
CORSNotSReady

EXlt parameters

CPI 'R'
JZ MOBSStartSWatchdog
CPI 'I'
JZ MOBSIgnoreSExit
CPI 'A'
JZ SystemSReset
JMP MOB$RequestSChoice

LXI
DAD
MOV
MOV
ANI
JNZ

MVI
ANA
JZ

LXI
DAD
MOV
STA

LXI
DAD
MOV
ANA
JZ

MVI
STA
RET

Check output ready

I
,It

;
MOB$Exit.

MOV
RET

MOB$Output$Message:
LHLD MOB$Busy$Message
CALL output$Error$Message

MOBSRequest$Choice:
CALL Request$UserSChoice

I
MOBSNotSReadY'

;
Check$OutputSReadY'

DB IN
COR$Statu.$Port:

DB 0
MOV C,A

;
CORSReadYl

03875
03876
03877
03878
03879
03880
03881
03882
03883
03884
03885
03886
03887
03888
03889
03890
03891
03892
03893
03894
03895
03896
03897
03898
03899
03900
03901
04000
04001
04002
04003
04004
04005
04006
04007
04008
04009
04010
04011
04012
04013
04014
04015
04016
04017
04018
04019
04020
04021
04022
04023
04024
04025
04026
04027
04028
04029
04030
04031
04032
04033
04034
04035
04036
04037
04038
04039
04040
04041
04042
04043
04044
04045
04046
04047
04048

0609 3EFF
060B 32Al05
060E C9

05EC 79
05ED C9

OSEE 2A9F05
05Fl CD5305

05F4 CD2F05

05F7 FE52
05F9 CABB05
05FC FE49
05FE CAEA05
0601 FE41
0603 CA360E
0606 C3F405

060F 210EOO
0612 19
0613 7E
0614 47
0615 E601
0617 C23806

061A 3E04
061C AO
061D CA3406

0620 210000
0623 19
0624 7E
0625 322906

0628 DB

0629 00
062A 4F

062B 210400
062E 19
062F 7E
0630 Al
0631 CA3806

Figure 8·10. (Continued)



260 The CP/M Programmer's Handbook

Exi t parameter"s

Message count downdated (and reset if necessary)

DE -} device table

Entry parameters

;Indicate device ready for output

,Get MS byte

,Get LS byte

:Indicate device not ready for output

;Recover address of count
;Save count back in table

;Check if ETX/ACK protocol enabled

;Reestablish whether count hit 0
;No, no further processing required
;Yes, send ETX to device
;Avoids involuntary reentrance

;Save addt"ess of count for later
;Get LS byte

;Flag device as output suspended

;Avoid interaction with interrupts
;Oet status byte
,Set bit
;Save back in table

;Get MS byte

;No, so return immediately
;Yes, so downdate count

;Check if count now zero
; Net
;Yes, r~set to message length

H
M,C
H
M,B

A

C,ETX

output'Oata'8yte

H,OT'Status
o

A,M
DT.Output.Suspend
M,A

H,DT$Etx$Count
o
H
C,M
H
B,M
B
A,B
C
PEP$Save$Cclunt
H,DT$Etx$Message$Length
o
C,M
H
8,M

H,OT$Status
D
A,M
OT'Output$Etx

Process ETX/ACK protocol

MVI A,OFFH
ORA A
RET

COR'NotsReadv:
XRA A
RET

,II

ORA
RNZ
MVI
DI
CALL
EI
LXI
DAD
DI
MOV
ORI
MOV
EI
RET

Select device table

This routine maintains ETX/ACK protocol.
After a specified number of data characters have been output
to the device, an ETX character is output and the device
put into output suspended state. Only when an incoming
ACK character is received (under interrupt control) will
output be resumed to the device.

This routine scans a 16-bit word, and depending on which is the
first l-bit set, selects the corresponding device table address.

,
'II

LXI
DAD
MOV
ANI
RZ
LXI
DAD
PUSH
MOV
INX
MOV
DCX
MOV
ORA
JNZ
LXI
DAD
MOV
INX
MOV

PEP$Save$Count:
POP
MOV
INX
MOV

,
Process$Et >:$Pt-otocol:

04049
04050
04051
04052
04053
04054
04055
04056
04200
04201
04202
04203
04204
04205
04206
04207
04208
04209
04210
04211
04212
04213
04214
04215
04216
04217
04218
04219
04220
04221
04222
04223
04224
04225
04226
04227
04228
04229
04230
04231
04232
04233
04234
04235
04236
04237
04238
04239
04240
04241
04242
04243
04244
04245
04246
04247
04248
04249
04250
04251
042~2

04253
04254
04255
04256
04257
04258
04259
04260
04400
04401
04402
04403
04404
04405
04406

065B B7
065C CO
065D OE03
065F F3
0660 CD2608
0663 FB
0664 210EOO
0667 19
0668 F3
0669 7E
066A F601
066C 77
0660 FB
066E C9

0634 3EFF
0636 87
0637 C9

0657 EI
0658 71
0659 23
065A 70

0638 AF
0639 C9

063A 210EOO
0630 19
063E 7E
063F E610
0641 C8
0642 211000
0645 19
0646 E5
0647 4E
0648 23
0649 46
064A OB
0648 78

·064C 81
0640 C25706
0650 211200
0653 19
0654 4E
0655 23
0656 46

Figure 8·10, (Continued)



Chapter 8: Writing an Enhanced BIOS 261

Get input character

Select$Device$Table:

Exit parameters

Entry parameters

;Ensure that incoming chars. will
be detected

;Get character count

;Check if any characters have
been stored in the buffer

;Check downdated count of chars. in
buffer. checking if input should be

;No characters, so wait
;Down date character count for

the character about to be
; removed from the buffer
;Use the get offset to access
;Returns HL -> character
; and with get offset updated
;Get the actual data character
;Save until later

;Yes, return corresponding address
;No, update table pointer

~HL -) address in table

;Get most significant byte of bit map
;Check if HL completely 0
;Return indicating no more bits set
;Check if the LS bit is nonzero

;Save shifted bit map
;Take copy of table pointer

~DE -> selected device table
;Set up registers for another

entry
;Recover shifted bit map
;Shift bit map right one bit
;Update DT address table pointer to

entry
; Indicate that a one bit was found

and registers are set up correctly

A,L
1
SDT$BiUS.. t
D
D
SHLR ,Shift HL right on .. bit
Select$Device$Table ;Check next bit

A,H
L

H
B,D
C,E

E.M
H
D,M

H
SHLR
B
B
A,1
A

H,DT$Charac~er$Count

D

LXI H,DT$O.. t$Off ... t
CALL Get$Address$in$Buffer

MOV A,M
ORA A
<.IZ OIC$Wail
DCR M

LXI
DAD

MOV A,M
PUSH PSW

Nbte: If HL is OOaOH on input. th6n the first entry in the
device table addresses will be returned in DE.

Be -) Current entry in device table addresses
DE Selected device table address
HL Shift ..d bit map

Nonzero if a l-bit was found
Zero if bit map now entirely 0000

HL = Bi t map
DE -) T.bl .. of d ..vic.. tabl...ddr.......

The first address in the list is called
if the l~ast significant bit of the bit map is
nonzero, and so on.

This routine gets the next input character from the device
specified in the device table handed over as an input
parameter.

POP
CALL
INX
INX
MVI
ORA
RET

,II

MOV
ORA
RZ
MOV
ANI
<.INZ
INX
INX
CALL
<.IMP

SDaBi US.. t,
PUSH
MOV
MOV
XCHO
MOV
INX
MOV

Get$Input$Character:
LXI H,DT$Character$Count
DAD D

OIC$Wait:
EI

04407
04408
04409
04410
04411
04412
04413
04414
04415
04416
04417
04418
04419
04420
04421
04422
04423
04424
04425
04426
04427
04428
04429
04430
04431
04432
04433
04434
04435
04436
04437
04438
04439
04440
04441
04442
04443
04444
04445
04446
04447
04448
04449
04450
04451
04452
04453
04454
04600
04601
04602
04603
04604
04605
04606
04607
04608
04609
04610
04611
04612
04613
04614
04615
04616
04617
04618
04619
04620
04621
04622
04623
04624
04625
04626
04627

0687 E1
0688 CDDB08
068B 03
068C 03
068D 3E01
068F B7
0690 C9

066F 7C
0670 B5
0671 C8
0672 7D
0673 E601
0675 C28006
0678 13
0679 13
067A CDDB08
067D C36F06

0680 E5
0681 42
0682 4B
0683 EB
0684 5E
0685 23
0686 56

0691 211900
0694 19

0696 7E
0697 B7
0698 CA9506
069B 35

0695 FB

069C 211700
069F CDF007

06A2 7E
06A3 F5

06A4 211900
06A7 19

Figure 8-10. (Continued)



262 The CP/M Programmer's Handbook

LXI H.DT$Detect$Error$Value ;Mask with error bit(s)
DAD 0
ANA M
JZ SD$No$Error ;No bit(s) set
LXI H,DT$Reset$Error$Port ;Set up to reset error
[lAD [I
MOV A.M ;Get roeset port number
STA SD$Reset$Error$Port ;Store in instruction below
LXI H.DT$Reset$Error$Value
OA[I [I
NOV A.M :Get reset interrupt value

Entry parameters

DE -> device table

This routine performs the device interrupt servicing~

checking to see if the device described in the specified
device table <address in DE) is actually interrupting,
and if so, inputs the character. Depending on which data character
is input. this routine will eithe," stack it in the input buffer
(shutting off the input stream if the buffer is nearly full),
or will suspend or resume the output to the device.

Input the data character (this may
be garbled if an error occurred)

Get data port number
Store in instruction below

;Check if status indicates data ready

;Check if this device is really
interrupting

;Get status port number
;Store in instruction below

;Input status

;Mask with input ready value
;No, retur-n to inten"upt service
;Check if any errors have occurred
;Set up to read error status
; interrupting
;Get status port number
;Store in instruction below

;Input error status

; Device 2

;Switch back to user~s stack

;Tell the interrupt controller chip
that the interrupt has been serviced

;Restore registers

;Re~nable interrupts in the CPU
;Resume pre-interrupt processing

;<-- Set up bY instruction above

;<-- Set up by instruction above

;<-- Set up in instruction above

D,DTS2
Ser'vice$Oevice

H

H,OT$InputSReady
o
M

A,IC$EOI
IC$OCW2$Port
o
B
pew
PI$U.orSStack

H,OT$Statu.$Port
o
A,M
SD$Status$Port

H.DT$Detect$Error$Port
o
A,M
SD$Er-r"or-$Por t

H,OTSDataSPort
o
A,M
SD$Data$Port

LXI
CALL

Service device

MVI
OUT
POP
POP
POP
LHLO
SPHL
POP
EI
RET

LXI
DAD
ANA
RZ

LXI
DAD
MOV
STA

.1I

DB IN
SD$Status$Por-t:

DB 0

Service$Device:
LXI
DAD
MOV
STA

DB IN
SOSErrortPo,- t:

DB 0

[lB OUT
SD$Reset$Error$Port:

DB 0

SD$No$Error:
LXI
DAD
MOV
STA

04920
04921
04922
04923
04924
04925
04926
04927
04928
04929
04930
04931
04932
04933
04934
05000
05001
05002
05003
05004
05005
05006
05007
05008
05009
05010
05011
05012
05013
05014
05015
05016
05017
05018
05019
05020
05021
05022
05023
05024
05025
05026
05027
05028
05029
05030
05031
05032
05033
05034
05035
05036
05037
05038
05039
05040
05041
05042
05043
05044
05045
05046
05047
05048
05049
05050
05051
05052
05053
05054
05055
05056
05057
05058
05059
05060

071E DB

071F 00

0708 3E20
070A 0308
070C 01
0700 Cl
070E Fl
070F 2A8422
0712 F9
0713 El
0714 FB
0715 C9

072F 00

0726 210700
0729 19
072A 7E
072B 322F07

072E DB

0716 210000
0719 19
071A 7E
071B 321F07

0702 l1CE02
0705 CD1607

0720 210300
0723 19
0724 A6
0725 C8

0730 210800
0733 19
0734 A6
0735 CA4707
0738 210900
0738 19
073C 7E
0730 324607
0740 210AOO
0743 19
0744 7E

0745 D~

0746 00

0747 210100
074A 19
074B 7E
074C 325007

Figure 8-10. (Continued)



Chapter 8: Writing an Enhanced BIOS 263

MVI A. XON
CMP B
JZ SD$Output$Desuspend
MVI A. XOFF
CMP B
JNZ SO$No$Protocol

SO.Output$Suspend.

,
SO$Check$if$Xon:

MOV A.M
ORI OT$Output$Suspend
MOV M.A
JMP SO$Exit

Update character count
Get updated count
Check if current count matches

buffer-full threshold

Not at threshold. check if control
character input

At threshold. check which means
for paUling input are to be used

;XON/XOFF protocol active. $0
if XOFF received. suspend output

; if XON received. resume output
;The noninterrupt driven output
; routine checks the suspend bit
;Check if XON character input

;Yes, enable output to device
;Check if XOFF character input

;No. process character as data
;Device needs pause in output of
; data, so indicate output suspended
;Get status/protocol byte again
;Set suspend bit to 1
;Save back in device table
;Exit to interrupt service without

saving the input character

,Input data character

,Take copy of data character above
,Check if either XON or ETX protocols
; is currently active
,Get protocol by.te

OT$Output$Etx
;Neither is active
;Check if XON/XOFF is active
;Yes, check if XON char. input
;No. a!sume ETX/ACK active
;Check if input character is ACK

,No, process character as data
;Yes, device now ready

to accept more data, 50 indicate
; output to device can resume
,The noninterrupt driven output
; routine checks the suspend bit
;Get status/protocol byte a~ain

OT$Output.Suspend ,Preserve all bits BUT suspend
,Save back with suspend = 0
;Exit to interrupt service without

saving data character

,<-- Set up bY instruction above

IN

o

B.A
H.OT$Status
o
A.M
OT$OutpuUXon +
SO$No$Protocol
OT$Output$Xon
SO$Check$if$Xon

Get.Address.In.Buffer
B
M.B

A.M
OFFH AND NOT
M.A
SO.Exit

H.OTSStatu.
o

H.OT$Buffer$Length$Mask
o
A.M
A
H.DTSCharacter'Count
o
M
SO$Buffer.Full
B
H.OT.Put$Offset

;Check if there is still space
; in the input buffer
; Get length - 1
;Update to actual length
pOet current count of characters
; in buffer
;Check if count = length
,Yes. output bell character
;Save data character
;Compute address of character in
; input buffer
;HL -) character position
;Recover input character
;Save character in input buffer

;Update number of characters in input
buffer. checking if input should

; be temporarily halted
H.DT$Character$Count
o
M
A,M
H.OT$Stop$Input$Count
o
M
SO.Check.Control

MOV
LXI
DAD
MOV
ANI
JZ
ANI
JNZ

MOV
ANI
MOV
JMP

LXI
DAD
INR
MOV
LXI
DAD
CMP
JNZ

LXI
DAD

MVI A.ACK
CMP B
JNZ SOSNo$Protocol

SDSOutput$Desuspend:

CALL
POP
MOV

DB
SO$Oata$Port:

DB

,
SO.No.Protocol:

LXI
DAD
MOV
INR
LXI
DAD
CMP
JZ
PUSH
LXI

05061
05062
05063
05064
05065
05066
05067
05068
05069
05070
05071
05072
05073
05074
05075
05076
05077
05078
05079
05080
05081
05082
05083
05084
05085
05086
05087
05088
05089
05090
05091
05092
05093
05094
05095
05096
05097
05098
05099
05100
05101
05102
05103
05104
05105
05106
05107
05108
05109
05110
05111
05112
05113
05114
05115
05116
05117
05118
05119
05120
05121
05122
05123
05124
05125
05126
05127
05128
05129
05130
05131
05132
05133
05134
05135
05136

076E 3EII
0770 B8
0771 CA6707
0774 3EI3
0776 B8
0777 C28107

077A 7E
077B F601
0770 77
077E C30907

0781 211800
0784 19
0785 7E
0786 3C
0787 211900
078A 19
078B BE
078C CAEB07
078F C5
0790 211600

0793 COF007
0796 Cl
0797 70

0798 211900
079B 19
079C 34
0790 7E
079E 211AOO
07Al 19
07A2 BE
07A3 C2CE07

07A6 210EOO
07A9 19

074F DB

0750 00

0751 47
0752 210EOO
0755 19
0756 7E
0757 E618
0759 CA8107
075C E608
075E C26E07

0761 3E06
0763 B8
0764 C28107

0767 7E
0768 E6FE
076A 77
076B C30907

Figure 8·10. (Continued)



264 The CP/M Programmer's Handbook

Exit parameters

Entry parameters

,
Get$Address$In$Buffer:

This routine computes the address of the next character to
access in a device buffer.

;Update count of control chars.

;Get reset port number
;Check if port specified
; (assumes it will always be NZ)
;Bypass reset if no port specified
;Store in instruction below

;Oet reset interrupt value

,Input buffer completely full
;Send bell character as despera'te

measure. Note JMP return to
caller will be done by subroutine

hardware interrupt system

:<- Set UP in instruction above
;Drop into input XON test

;Check if XON/XOFF protocol being used
to temporarilY suspend input

;Recover status/protocol byte
;Check if XON bit set
;No. see if control char. input
;Yes. output XOFF character
;Output data byte

;Check if control character (other than
CR. LF, or TAB) input. and update
count of control characters in buffer

;Check if control character
;No, it is not a control character

;<-- Set up in instruction above
,Return to interrupt service routine

,
Check$Control$Char
SDSExit
H,DTSControl$Count
o
M

; Reset
H,DT$Reset$Int$Port
o
A,M
A

SD$ResetSIntSPort
H,DTSResetSInt$Value
o
A,M

MOV A,M Get status/protocol byte
ORI DT.Input$Suspend Indicate input is suspended
MOV M,A Save updated status in table
PUSH PSW Save for later use
ANI OTSInpuURTS Check if clear to send to be dt"opped
JZ SOSCheckSInputSXon No
LXI H,OT$RTSSControISPort Yes, get conh-ol port number
DAD 0
MOV A,M
STA SD$OropSRTS$Port ; Store in instruction belclw
LXI H.DT$Drop$RTS$Value
DAD 0
MOV A.M ,Get value needed to drop RTS

POP PSW
ANI DTSInputSXon
JZ SOSCheckSControl
MVI C, XOFF
CALL OutputSOataSByte

CALL
JZ
LXI
DAD
INR

RZ
STA
LXI
DAD
MOV

SD$CheckSInputSXon,

DB OUT
SDSOropSRTSSPort:

08 0

SD$CheckSControl:

,
SOSExit:

LXI
DAD
MOV
ORA

DE -> approp~·iate device table
HL offset in the device table of either the

Oet$Offset or the PutSOffset

DE unchanged
HL -> address in character buffer

,II

Get address in buffer

08 OUT
SDSResetSIntSPort:

08 0
RET,

SOS8ufferSFull.
MVI C.8ELL
JMP OutputSOataSeyte

07AA 7E 05137
07A8 F602 05138
07AO 77 05139
07AE F5 05140
07AF E640 05141
0781 CAC307 05142
0784 210800 05143
0787 19 05144
0788 7E 05145
0789 32C207 05146
078C 210COO 05147
078F 19 05148
07CO 7E 05149

05150
07C1 03 05151

05152
07C2 00 05153

05154
05155
05156

07C3 F1 05157
07C4 E680 05158
07C6 CACE07 05159
07C9 OE13 05160
07CB C02608 05161

05162
05163
05164
05165

07CE C00808 05166
0701 CA0907 05167
0704 211COO 05168
0707 19 05169
0708 34 05170

05171
05172

0709 210500 05173
070C 19 05174
0700 7E 05175
070E B7 05176

05177
070F C8 05178
07EO 32E907 05179
07E3 210600 05180
07E6 19 05181
07E7 7E 05182

05183
07E8 03 05184

05185
07E9 00 05186
07EA C9 05187

05188
05189

07EB OE07 05190
07ED C32608 05191

05192
05193
05300
05301
05302
05303
05304
05305
05306
05307
05308
05309
05310
05311
05312
05313
05314
05315
05316
05317
05318

Figure 8-10. (Continued)



Chapter 8: Writing an Enhanced BIOS 265

Nonzero if A contains a control character other than
; CR, LF, or TAB.
Check$Control$Char,

Check control character

Exit parameters

;Space is first noncontrol char.

;Indicate A does not contain
a control character

;Not reallY a control character
;Check if horizontal tab

;Not really a control character
;Check if LF

;Not a control character
;Check if carriage return

;HL -) get/put offset in dey. table
,Preserve pointer to table
;Oet offset value
;Make into word value
offset value, resetting to
end of buffer
;Get copy of offset
,Update to next position

;Not really a control character
;Indicate a control character

;Mask LS bits with l.n9th - I
,Recover pointer to offset in table
;Save new value (set to 0 if nee.)
;Oet base address of input buffer
,HL -> address of buffer in table
:Get LS byte of address
;HL -) MS byte of address
;H -= MS byte
,L = LS byte
;Add on offset to base

;Update
o at

D
H
C,M
B,O

A

A,' , -
B
CCC$No
A,CR
B
CCC$No
A,LF
B
CCC$No
A,TAIl
B
CCC$No
A, I
A

A,C
A
H,DT$Buffer$Length$Malk
D
M
H
M,A
H,DT$Buffer$llale
D
A,M
H
H,M
L,A
B

XRA
RET

Output data ~yte

This is a simple polled output routine that outputs a single
character (in register C on entry) to the device specified in
the deVice table.
Preferably, this routine would have been re-entrant; however
it does have to store the port numbers. Therefore. to use it
from code executed with interrupts enabled, the instruction
sequence must be:

Entry parameters

01 ; Interrupts off
CALL Output$Data$BYte

This routine checks the character in A to see if it is a
control ch~r.ct.r other than CR, LF. or TAB. The result is
returned in the I-flag.

Zero status if A does not contain a control character
or if it is CR, LF. or TAB

DAD
PUSH
MOV
MVI

MVI
CMP
JC
MVI
CMP
JZ
MVI
CMP
JZ
MVI
CMP
JZ
iIIVI
ORA
RET

MOV
INR
LXI
DAD
ANA
POP
MOV
LXI
DAD
MOV
INX
MOV
MOV
DAD
RET

;
;11

;
;11

CCC$No,

0~319

0~320

0~321

0~322

0~323

05324
0532~

0~326

0~327

05328
0~329

05330
05331
05332
0~333

0~334

05335
05336
0~337

05338
0~339

0~340

05341
05400
0~401

05402
0~403

05404
0~40~

0~406

05407
0~408

0~409

05410
05411
05412
05413
0~414

0~41~

0~416

0~417

0~418

05419
0~420

0~421

05422
0~423

0~424

054~

0~426

05427
~42B

0~429

05430
~431

0~432

0~433

05434
05435
0~436

0~437

05438
0~500

05~01

0~502

0~503

0~~04

0~~05

0~~06

0~507

0~508

0~~09

0~510

05511
05512
0~513

07FO 19
07FI E~

07F2 4E
07F3 0600

0808 3EIF
080A B8
OBOB DA2408
080E 3EOD
OBIO B8
0811 CA2408
0814 3EOA
0816 B8
0817 CA2408
081A 3E09
081C 118
081D CA2408
0820 3EOI
0822 B7
0823 C9

0824 AF
082~ C9

07F5 79
07F6 3C
07F7 211800
07FA 19
07Fll A6
07FC EI
07FD 77
07FE 211400
0801 19
0802 7E
0803 23
0804 66
080~ 6F
0806 09
0807 C9

Figure 8·10. (Continued)



266 The CP/M Programmer's Handbook

Exit parameters

Entry parameters

Input status routine

; Save re9istet-s
;Get output ready status mask

;store in instruction below

;Oet status port number

;Read status

;Restore registers

;Check if readY for output
,No
;Oet data port

;Check if fake mode enabled
;HL -) status byte in table
;Get status byte
;Isolate status bit
;Fake mode disabled

;Store in in-struction below
;Get character to output

;Interrupts on

;<-- Set UP in instruction above

;<-- Set up in instruction above

EI

B
ODB.Wait'until.Ready
H,DT'Data'Port
o
A,M
ODB'Data'Port
A,C

BPOP
RET

ANA
....z
LXI
DAD
MOV
STA
MOV

This routine returns a value in the A register indicating whether
one or more data characters is/are waiting in the input buffer.
Some products. such as Microsoft BASIC, defeat normal type-ahead
by con.tantlY "gobbling" characters in order to see if an incoming
Control-So -Q or -C has been received. In order to preserve
type-ahead under these circumstances, the input status return
can. as an option selected by the user. return t'data waiting" only
if the input buffer contains a Control~S. -Q or -C. This fools
Microsoft BASIC into allowing type-ahead.

DB IN
ODB'Statu.'Port,

DB 0

A = OOOH if no characters are waiting in the input
buffer

C = character to be output
DE -> device table

Entry parameters

output.Data.Byte:
PUSH B
LXI H,DT'Output'Ready
DAD 0
MOV B,M
LXI H,DT'Statu.'Port
DAD 0
MOV A, M
STA ODB'Statu.'Port

ODB'Wait'until'ReadY'

;
;Fake mode -- onlY indicates data
;re.dv if control chars. in buffer

LXI H.DT'Control.Count ;Check if any control characters
DAD D ; in the input buffer
XRA A ,Cheap 0

Failure to do this may caus@ involuntary re-entrance.

DB OUT
ODB'Data'Pot"! :

DB 0

Get'Input'Status,
LXI H,DT'Status'2
DAD 0
MOV A,M
ANI DT'Fake'Typeahead
....Z GIS'True'Statu.

05514
05515
05516
05517
05518
05519
05520
05521
05522
05523
05524
05525
05526
05527
05528
05529
05530
05531
05532
05533
05534
05535
05536
05537
05538
05539
05540
05541
05542
05543
05544
05545
05546
05547
05548
05549
05550
05551
05552
05700
05701
05702
05703
05704
05705
05706
05707
05708
05709
05710
05711
05712
05713
05714
05715
05716
05717
05718
05719
05720
05721
05722
05723
05724
05725
05726
05727
05728
05729
05730
05731
05732
05733
05734
05735
05736

0847 210FOO
084A 19
084B 7E
084C E601
084E CA5B08

0851 211COO
0854 19
0855 AF

0826 C5
0827 210200
082A 19
082B 46
082C 210000
082F 19
0830 7E
0831 323508

0834 DB

0835 00

0836 AO
0837 CA3408
083A 210100
0830 19
083E 7E
083F 324408
0842 79

0843 03

0844 00

0845 Cl
0846 C9

Figure 8·10. (Continued)



Chapter 8: Writing an Enhanced BIOS 267

Se t wat chdo9

Entry parameters

This is ... noninterrupt level subroutine that simplY sets the
watchdog count and address

Control is transferred to the RTe.Interrupt routine each time
the real time clock ticks. The tick count is downdated to see
if a complete second has elapsed. If so. the ASCII time in
the configuration block is updated.

;Cheap 0
,Set A m OFFH and flags NZ
;Return to caller

,8et flags according to count
;Return indicating zero

;Empty bUffer, A = 0, Z-set

;Check if any characters
; in buffer
;Get character count

;Set count

;Save other registers
,Switch to local stack

,Avoid interference from interrupts
,Set address

;Get user~s stack
,Save it
;Switch to local stack

,Downdate tick count

True status, based on any characters
ready in input buffer

;Check if any forced input waiting
;Get next character of forced input
;Check if nonzero
,Ves, indieate data waiting

H,DT$Character$Count
D
A,M
A

C8$Forced$lnput
A,M
A
GIS$Data$Ready

GIS$Data$Ready

;Control is received here each time the
real time clock ticks

H.RTC$Tick$Count

RTC$Watchdog$Addre ••
H,8
L,C
RTC$Wat,hdog$Count

PSW
PI$User$HL
H,O
SP
PI$User$Stack
SP,PI$Stack
8
D

BC 2 number of clock ticks before watchdog should
"time out"

HL 8 address to which control will be transferred when
watchdog times out

LHLD
MOV
ORA
-.lNZ

Real time clock processing

With .ach tick, the watchdog count is downdated to see if control
must be "f'orced ll to ... previously specified address on return
from the RTC interrupt. The watchdog timer can be used to pull
control out of what would otherwise be an infinite loop, such
as waiting for the printer to come ready.

LXI
DAD
MOV
ORA
RZ
-.IMP

,II

ORA M
RZ

GIS$Data$ReadY'
XRA A
OCR A
RET

GIS$True$Status,

LXI

RTC$lnhrrupt:
PUSH
SHLD
LXI
DAD
SHLD
LXI
PUSH
PUSH

,
SeUWatchdog.

01
SHLD
MOV
MOV
SHLD
EI
RET

,
,II

05737
05738
05739
05740
05741
05742
05743
05744
05745
05746
05747
05748
05749
05750
05751
05752
05753
05754
05755
05756
05757
05758
05759
05900
05901
05902
05903
05904
05905
05906
05907
05908
05909
05910
05911
05912
05913
05914
05915
05916
05917
05918
05919
05920
05921
05922
05923
05924
05925
05926
05927
05928
05929
05930
05931
05932
05933
05934
05935
0593"6
05937
06000
06001
06002
06003
06004
06005
06006
06007
06008
06009
06010
06011
06012
06013
06014

0856 86
0857 C8

0858 AF
0859 3D
085A C9

0858 2A8DOF
085E 7E
085F 87
0860 C25808

0863 211900
0866 19
0867 7E
0868 87
0869 C8
086A C35808

0860 F3
086E 22CI00
0871 60
0872 69
0873 228FOO
0876 F8
0877 C9

0878 F5
0879 228622
087C 210000
087F 39
0880 228422
0883 318022
0886 C5
0887 05

0888 218EOO

Figure 8·10. (Continued)



268 The CP/M Programmer's Handbook

RTC$Oog$NZ.
SHLO RTC$Watchdog$Count

RTC$Oog$Not$Set.
MVI A, IC$EOI
OUT IC$OCW2$Port

Is not at 0 ret
One second has elapsed so

reset to original value

;Downdate pointer to time in ASCII
;Downdate pointer to control table
;Oet next control character
;Ch~ck if end of table and therefore
, all digits of clock updated
;Skip over ":~ in ASCII time
;Get next ASCII time digit
;Update it
; and store it back
;Compare to maximum value
;No Carry needed so update complete
'Reset digit to ASCII 0
; and store back in ASCII time
;00 back for next digit

,Update ASCII real time clock
;OE -> 1 ch.racter after ASCII time
:HL -> 1 character after control table

;Get current watchdog count
;Downdate it
;Check if it is now OFFFFH

;It must have been 0 beforehand
;Check if it is now 0
;No. it is not out of time

;Watchdog time elaps.d, so "call"
; appropriate routine
,Set UP return address
, ready for return
,Transfer control as though by CALL

,Control will come back here from
, the user's watchdog routine
'Behave as though watchdog not active

;Save downdated cOUnt
; (Leave, count unchanged)
,Reset the interrupt controller chip

,Switch back to user'. stack

,Recover user's r.~ist.r,

,Clear carry
,Oet MS byte
'Bit 7 •• t from previous carry
,Bit 0 90e. into carry
,Put .hifted MS byte back
'Oet LS byte
,Bit 7 • bit 0 of MS byte
,Put back into re.ult

M
RTC$Check$Watchdog

RTC$Ticks$per$Second
M,A

RTC$Oog$Not$Set

H,RTC$Watchdog$Return
H
RTC$Watchdog$Addre••

A
A,H

o
B
PI$User$Stack

PI$Usar$HL
PSW

H,A
A,L

L,A

LOA
MOV

OCR
JNZ

JMP

POP
POP
LHLO
SPHL
LHLO
POP
EI
RET

ORA
MOV
RAR

Shift HL Right one bit

MOV
MOV
RAR
MOV
RET

LXI
PUSH
LHLO
PCHL

RTC$Watchdog$Return.

,
'II,,,
SHLR:

,
,II

06015
06016
06017
06018
06019
06020
06021 LXI 0, Time$in$ASCI I$End
06022 LXI H,Update$Time$End
06023 RTC$Update$Oigit:
06024 OCX 0
06025 OCX H
06026 MOV A, M
06027 ORA A
06028 JZ RTC$Clock$Updated
06029 JM RTC$Update$Oigit
06030 LOA X 0
06031 INR A
06032 STAX 0
06033 CMP M
06034 JNZ RTC$Clock$Updated
06035 MVI A, '0'
06036 STAX 0
06037 JMP RTC$Update$Oigit

g~g~~ RTC$Clock$Updated'
06040 RTC$Check$Watchdog:

06041 LHLO RTC$Watchdog$Count
06042 OCX H
06043 MOV A, H
06044 ORA A
06045 JM RTC$Oog$Not$Set
06046 ORA L
06047 JNZ RTC$Oog$NZ
06048
06049
06050
06051
06052
06053
06054
06055
06056
06057
06058
06059
06060
06061
06062
06063
06064
06065
06066
06067
06068
06069
06070
06071
06072
06073.
06200
06201
06202
06203
06204
06205
06206
06207
06208
06209
06210
06211
06212
06213
06214
06215
06300

088B 35
088C C2B008

088F 3ABOOO
0892 77

0893 IIAIOF
0896 21BOOO

0899 IB
089A 2B
089B 7E
089C B7
0890 CAB008
08AO FA9908
08A3 IA
08A4 3C
08A5 12
08A6 BE
08A7 C2B008
08AA 3E30
08AC 12
08AO C39908

08C5 C3CB08

08BO 2ABFOO
08B3 2B
08B4 7C
08B5 B7
08B6 FACB08
08B9 B5
08BA C2C808

08BO 21C508
08CO E5
08CI 2ACIOO
08C4 E9

08C8 22BFOO

08CB 3E20
08CO 0308

08CF 01
0800 CI
0801 2A8422
0804 F9
0805 2A8622
0808 FI
0809 FB
080A C9

080B B7
08De 7C
0800 IF

08DE 67
08DF 70
08EO IF
08EI 6F
08E2 C9

Figure 8-10. (Continued)



Chapter 8: Writing an Enhanced BIOS 269

Disk definition tables

HiVh level diskette drivers

The•• drivers perform the fol1owinv functions.

Disk parameter tabl ••

,Described in Chapter 3

DI (8" floppy)
,Share•••me skew table as A:
,Reserved for CP/M
,Share, same buffer as AI

,Logical disk
Floppy$5$Skewtable
0.0.0
Directorv'Suffer

Select a specified disk and return the address of
the appropriate disk parameter header
S.t the track number for the next read or write
Set the ••ctor number for the next read or write
Set the DMA (read/writ.) address foY the next read or write
Translate. lovical .ector number into a physical
S.t the track to 0 so that the next read or writ. will
be on Track 0

OW
OW
OW

The.e consi.t of disk parameter headers, with one entry
per logical disk driver, and disk parameter blocks With
either on. parameter block per logical disk, or the sam.
parameter block for several logical disks.

,Logical disk Al (5 1/4" diskette)
OW Floppy$5$Skewhble ,5 1/4" skew table
OW 0.0.0 ,Reserved for CP/M
OW DirectorySBuffer
OW Floppy$5$Parameter$Block
OW Disk$A$Workarea
DW Disk$A$Allocation$Vector

,Logical disk C: (8" floppy)
OW Floppy$S$Skewhble ,S" skew table
OW 0,0,0 ;Reserved for CP/M
DW Directorv$Buffer ;Shares same buffer as AI
OW Floppy$8$Parameter$Block
OW DiskSCSWorkarea ;Private work area
OW Oisk'CSAllocation'V.ctor ;Private allocation vector

,Logical disk 8. (5 1/4 11 diskette)
DW FloppyS5'Skewtable ,Shares same skew table as AI
DW 0,0,0 ,Reserved for CP/M
DW Directorv'Suffer ;Shares same buffer as A:
OW Floppy$5$Parametar$Block I Same DPB as A'
DW Disk$B$Workarea ,Private work area
OW OiskSB$Allocation$Vector ;Private allocation vector

The standard 8" diskette. do not need to use the blocking/
deblocking code, but the :5 1/4" drive. do. Therefore an additional
byte ha. be.n prefiMed onto the disk parameter block tq
tell the disk drivers what each lovical disk~s physical
diskette type is, and whether or not it ne.ds deblocking.

As discussed in Chapter 3, the •• describe the physical
characteristics of the disk drives. In this e.ample BIOS.
there are two types of disk drives, standard single-sided,
single-density 8", and double-sided, double-densitv 5 1/4"
mini-diskettes.

In addition, the hivh level drivers are responsible for making
the S 1/4" floppy diskettes that use a 512-byte .ector appear
to CP/M as thouvh they used a 128-byte sector. They do this
by usinv blockinV/deblockinv code. This blockinv/deblocking
code is described in more detail later in this listing,
just prior to the code itself.

SELDSK

SETTRK
SETSEC
SETDMA
SECTRAN
HOME

,,,,,I.,
Disk'Parameter'Headers.

06301
06302
06303
06304
0630S
06306
06307
06308
06309
06310
06311
06312
06313
06314
0631S
06316
06317
06318
06319
06320
06321
06322
06323
06324
06325
06326
06327
06328
06329
06330
06331
06332
06333
06334
06335
06336
06337
06338
06339
06340
06341
06342
06343
06344
06400
06401
06402
06403
06404

08E3 AE09 0640S
08E5 000000000006406
08EB B022 06407
08ED 3409 06408
08EF B023 06409
08FI 1024 06410

06411
06412

08F3 AE09 06413
08FS 000000000006414
08FB B022 0641S
08FD 3409 06416
08FF 0023 06417
0901 2624 06418

06419
06420

0903 F609 06421
090S 000000000006422
090B B022 06423
0900 4409 06424
090F F023 0642S
0911 3C24 06426

06427
06428

0913 AE09 06429
091S 000000000006430
091B B022 06431

Figure 8·10. (Continued)



270 The CP/M Programmer's Handbook

Disk Typ.a

Equat •• for disk parameter block

,E.tr. byt. prefl ••d to Indlcat.
, dlak tyP••nd blocking r.quired

DB Floppy'S + N••d.D.blocklng
,The parameter block ha. b••n amended
, to reflect the new layout of one
, track per diskette aide, rather
, than viewing one track •• both
; sid•• on a given h.ad position.
,It has also been adjusted to reflect

one "new" track more being us.d for
the CP/M im~ge, with the resulting
change in the number of allocation
blocks and the number of reserved
tracks.

Blocklng/d.blocking Indlc.tor

,Same OPB as Ct
,Private work are.
,Private allocation vector

,No skew required
,Rea.rv.d for CP/1'1

,S.ctor alz. > 128 by tea

IS 1/4" mini floppy
,S" floppy (55 SOl
,I'1.mory disk

;Sectors per track
,Block shift
; Block mask
;Extent mask
;Maximum allocation block number
;Number of directorY entries - 1
;Bit map for reserving 2 alloc. blocks

for file directory
;Disk-changed work area size
;Number of tracks before directory

;Extra byte prefixed to DPB for
; this version of the BIOS
;Indicates disk type and the fact
; that nO deblocking is required

;12a-byte sectors per track
.Block shift
;Block mask
;Extent mask
;Maximum allocation block number
;Number of directory entries - 1
;Bit map for reserving 1 alloc. block
; for file directory
;Disk-changed work area size
~Number of tracks before directory

I
2
3

1000.0000B

,Logic" disk 1'1. (memory dhkl

Floppy.8.Param.t.r.Block
Dlsk'D'Workar••
Dlak'D'Allocatlon'Vector

,Disk cannot b. changed, therefore
, no work ar•• is required

I'1'Dlak'Alloc.tlon'V.ctor

o
0,0,0
Dlr.ctory'Buff.r
I'1.Dlak.Par.m.t.r.Block
o

EQU
EQU
EQU

Floppy$8

OW
OW
ow

DB

OW

I'1.Dlsk.DPH,
OW
OW
OW
OW
OW

5 1/4" mini floppy

Disk parameter blocks

Floppy$S$Parameter$Block:
OW 36
DB 4
DB 15
DB I
OW 171
OW 127
DB 1100.0000B
DB OOOO'OOOOB
OW 32
OW 3

Standard a" Floppy

Floppy$a$Parameter$Block=
ow 26
DB 3
DB 7
DB 0
OW 242
OW 63
DB IIOO$OOOOB
DB OOOO$OOOOB
OW 16
OW 2

,
Floppy'S
Floppy'S
I'1.Dhk
I,,
N••d'Deblocklng EQU,
II

0910 4409 06432
091F 0024 06433
0921 SB24 06434

0643S
06436
06437

0923 0000 06438
092S 000000000006439
092B B022 06440
0920 S409 06441
092F 0000 06442

06443
0931 7A24 06444

0644S
06446
06447
06448
06449
064S0

0001 • 064S1
0002 • 064S2
0003 • 064S3

064S4
064SS
064S6

0080 = 064S7
064S8
06600
06601
06602
06603
06604
0660S
06606
06607

0933 81 06608
06609
06610
06611
06612
06613
06614
066IS
06616
06617
06618
06619
06620

0934 2400 06621
0936 04 06622
0937 OF 06623
0938 01 06624
0939 ABOO 06625
093B 7FOO 06626
0930 CO 06627
093E 00 06628
093F 2000 06629
0941 0300 06630

06631
06632
06633
06634
06635

0943 02 06636
06637
06638

0944 IAOO 06639
0946 03 06640
0947 07 06641
0948 00 06642
0949 F200 06643
094B 3FOO 06644
0940 CO 06645
094E 00 06646
094F 1000 06647
0951 0200 06648

Figure 8-10. (Continued)



Chapter 8: Writing an Enhanced BIOS 271

CPI Number$of$Logical$Dioko
RNC ,Return if > maximum number of disks

,Comput. off.et down di.k parameter
I header table by multiplying by
, parameter header length (16 bytes)

DAD H ,"2
DAD H ,"4
DAD H ,"8
DAD H ,"16
LXI D,DisktParameterSHeaders ,Get base address
DAD 0 ,DE ~) appropriate DPH
PUSH H ,Save DPH address

H,O ,Assume an error
A,C ,Check if requested disk valid

;Select disk in register C
,C • 0 foy drive A. 1 for e, etc.
,Return the address of the appropriate
, disk parameter header in HL. or OOOOH
, if the selected disk does not exist.

4

sCheck if memory disk
,Yes

,Save selected disk number
,Set UP to return DPH addreo.
,lIake di.k into word value'

EQU

,DE -) DPB

,DE -) pref Ix byte
,Get prefix byte
,Ioolate di.k type

;Access disk parameter block to
, extract special prefix byte that
, identifies di.k type and whether
J deblocking is required,
,Oet DPB pointer off.et in DPH
,DE -) DPB addre•• in DPH
,Oet OPB addre •• in DE

,Sectors per "track ll
• Each track is

I 24K of memor y
,Block shift (1024 byte allocation)
; Block mask
;Extent mask
,Maximum allocation block number
;Number of directory entrie. -1
;Sit map for r ••erving 2 allocation blocks
, for file directory
,Disk cannot be changed. therefore no
; work are.
,No reserved tracks

,The II$Di.k pre.ume. that 4 x 48K memory
J banks are available. The following

tabl. describe. the disk as having
8 tracks. two tracks per memory bank
with each track having 192 128-byte
sectors. '
The track number divided bY 2 will be

, used to select the bank
,Type i. II$Di.k. no deblocking

L.A
H.O

Selected$Disk

'11' - 'A'
SELDSK$II$Diok

0.10
o
E.II
H
0.11

LXI
1I0V

CPI
JZ

DB 3
DB 7
0' 0
OW 192
OW 63
DB liOO$OOOOB
DB OOOO$OOOOB
ow 0

OW 0

LXI
DAD
1I0V
INX
1I0V
XCHO

STA

1I0V
IIVI

II$Dhk

,
Number$of.Logical$Disks

,
SELDSK:

SELDSK$Set$Disk$Type:
DCX H
1I0V A.II
ANI OFH

DB II$Dhk
II$Disk$Parameter$Block.

OW 192

06649
06650
06651
06652
06653
06654
06655
06656
06657
06658
06659
06660
06661
06662
06663
06664
06665
06666
06667
06668
06669
06670
06671
06672
06673
06674
06675
06676
06800
06801
06802
06803
06804
06805
06806
06807
06808
06809
06810
06811
06812
06813
06814
06815
06816
06817
06818
06819
06820
06821
06822
06823
06824
06825
06826
06827
06828
06829
06830
06831
06832
06833
06834
06835
06836
06837
06838
06839
06840
06841
06842
06843
06844
06845
06846
06847

0963 210000
0966 79

0967 FEOC
0969 CA9509

096C FE04
096E DO

096F 322DOA

0972 6F
0973 2600

0004

0975 29
0976 29
0977 29
0978 29
0979 llE308
097C 19
0970 E5

0956 03
0957 07
0958 00
0959 COOO
095B 3FOO
0950 CO
095£ 00
095F 0000

0961 0000

0986 2B
0987 7E
0988 E60F

097E 110AOO
0981 19
0982 5£
0983 23
0984 56
0985 EB

0954 COOO

0953 03

Figure 8·10. (Continued)



272 The CP/M Programmer's Handbook

Set logical track for next read or write

SETTRK,

Translate logical sector number to physical

,,.

Head
1

°4
8
3
7
2
6
1
5

Physical 512-byte
o )
4 )
8 )
3 ) Head
7 ) 0
2 )
6 )
1 )
5 )

contains four

;M$Disk selected
;Return correct parameter header
;Resume normal processing

;DMA address

;36,37.38,39
,40,41, 42. 43
,44,45,46.47
,48,49,50,51
,52.53.54,55
,56,57,58,59
,60,61,62,63
,64,65,66,67
;68,69,70,71

;Save for low level driver

;Address in Be on entry
;Move to HL to save

; St andard 8" D)'- i ver

o

;Logical sector in C on entry
A,C
Selected'Sector ;Save for low level driver

DW

L,C
H,B
DMA'Address

36,37,38,39
:52.53.54.5:5
68,69.70.71
48.49,50.51
64,65,66.67
44,45,46,47
60,61, 62, 63
40,41,42.43
56,57.58,59

Set disk DMA (Input/Output) address for next read or write

DB
DB
DB
DB
DB
DB
DB
DB
DB

Set logical sector for next read or write

MOV
STA
RET

MOV
MOV
SHLD
RET

;
Floppy'8'Skewtable,

STA Selected$Disk$Type ;Save for use in low level driver
MOV A.M ;Get another copy of prefix byte
ANI Need$Deblocking ;Isolate deblocking flag
STA Selected$Disk$Deblock ;Save for use in low level driver
POP H ; Recover DPH pointer
RET

Sector translation tables
These tables are indexed using the logical sector number F

and contain the corresponding physical sector number.

DMA$Addressl

MOV H,B ;Selected track in Be on entry
MOV L,C
SHLD Selected'Track ;Save for low level driver
RET

;
Floppy$S$Skewtablel ;Each physical sector

;128-bvte sectors.
; Physical 128b Logical 128b
DB 00.01,02,03 ,00,01,02.03
DB 16.17,18,19 ;04.05.06,07
DB 32.33,34,35 ;08.09,10,11
DB 12,13,14.15 ;12.13.14,15
DB 28.29.30,31 ;16.17.18,19
DB 08,09,10.11 ;20,21.22.23
DB 24.25,26,27 ;24.25.26,27
DB 04,05,06,07 ,28.29.30,31
DB 20,21,22,23 ;32,33,34,35

SETSEC,

,
SETDMA:

,
SELDSK'M'Disk,

LXI H.M'Dlsk'DPH
JMP SELDSK'Set$Di skHype,,.

I

,.

,.

06848
06849
068:50
068:51
068:52
06853
068:54
068:5:5
068:56
06857
06858
07000
07001
07002
07003
07004
07005
07006
07007
07008
07009
07100
07101
07102
07103
07104
07105
07106
07107
07108
07109
07200
07201
07202
07203
07204
07205
07206
07207
07208
07209
07210
07211
07300
07301
07302
07303
07304
07305
07306
07307
07308
07309
07310
07311
07312
07313
07314
07315
07316
07317
07318
07319
07320
07321
07322
07323
07324
07325
07326
07327
07328
07329
07330
07331
07332

09AE 00010203
09B2 10111213
09B6 20212223
09BA OCODOEOF
09BE lC1D1E1F
09C2 08090AOB
09C6 18191A1B
09CA 04050607
09CE 14151617

09D2 24252627
09D6 34353637
09DA 44454647
09DE 30313233
09E2 40414243
09E6 2C2D2E2F
09EA 3C3D3E3F
09EE 28292A2B
09F2 38393A3B

0995 212309
0998 C38609

09A6 0000

09A8 69
09A9 60
09AA 22A609
09AD C9

09Al 79
09A2 32300A
09A5 C9

099B 60
099C" 69
0990 222EOA
09AO C9

098A 32360A
098D 7E
098E E680
0990 323:50A
0993 El
0994 C9

Figure 8-10. (Continued)



Chapter 8: Writing an Enhanced BIOS 273

0200 -

0800 
0009-

0004 
0024 
1200 
0003 
0002 -

L04;lcal sectors
;Physical sectors

Logical sectors
,Physical sectors

,Set to track 0 (logically,
J no actual disk operation occurs)

Logical sectors
,Physical sectors

logical ••ctor into physical
Be = logical sector number
DE -) appropriate skew table

,AdJusted to reflect .. "new•
, track is only one lid. of the
, disk
,This is the actual sector size
, for the 5 1/4" mini-floppy diskettes
,The 8" diskett•• and memory disk
, us. 12S-byt. '.ctors
,Declare the phYllcal dllk buffer for the
, 5 1/4" dllkettel

PhYllcal.Sector.Slze/128
CPI'I.S-c.Per.PhYllcal*PhYllcal.Sec.Per.Track
PhYllcal.Sec.Per.Track*PhYllcal.Sector.Slze
CPI'ItS-c.Per.PhYllcal-1
2 ,LOG2(CPI'I.Sec.Per.PhYllcall

512

2048
9

exit, HL • physical ••ctor number
,HL -) .kew table ba.e
,Add on logical sector number
,Get physical ••ctor number
,Make into a 16-bit value

EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU

,Translat.
,On entry,,,
,on

21,22.23.24,25,26
18,24,04,10,16,22

B
L,I'I
H,O

01,02,03,04,05,06,07,08,09,10
01,07,13,19,25,05,11,17,23,03

11,12,13,14,15,16,17,18,19,20
09.15,21,02,08.14,20,26,06,12

,Home the .elected logical dl.k to track 0
,aefore doing this, • check must b. Made to see
, If the phy.lcal dllk buffer has Information In
, It that mUlt be written out. Thll Is Indicated by
, a flag, l'IultfWrlte.Buffer. that II let In the
, deblocking code.,

!'Iult.Wrlte'Buffer ,Check If physical buffer must
A , be written to a disk
HOI'IE'No'Wr Ite
Data'ln'Dllk'Buffer ,No, 10 Indicate that buffer

, ts now unoccupied

The ~ocklng/~blocklng code attempts to minimize the amount
of actual disk I/O by Itorlng the dllk and track
currently relldlng In the phYllcal buffer.
If a read request occurs of a 12S-by't.. CP/M ".ec tOY"
that alre.dy i. in the physical buffer, no disk acc.ss OCCurs
If a write request occurs if and the 128-bYte CP/M '.ector'
1. alre.dY in the physical buffer, no disk acee,s will OCCUY,
UNLESS the BOOS Indlcatel that It II writing to the directory.
DirectorY writ.s caus. an i •••diete writ. to disk of the entire
track In the phYllcal buffer.

LDA
ORA
JNZ
STA

,
DB,,
DB,,
DB

XCHO
DAD
I10V
11\11
RET

Oat. written to or r.ad from the mini-floppy drive is transferred
via. physical buffer that i, one complete track in length,
9 * 512 bytes. It Is declared at the end of the BIOS, and hal
lOMe ••all amount of initialization code "hidden" in it.

CPI'I$S-c.Per.PhYllcal
CPI'I.Sec.Per.Track
Bytel.Per.Track
Sector'l'Ialk
Sector.Blt.Shlft

HOME'No'Wrlte,
I'IVI C,O
CALL SETTRK
RET

,
SECTRAN,

,,.,,
HOI1E.

,,.,,,,,,,,,,,,,,,,,
Allocatlon'Block'Slze
PhYllcal'S.cfPer'Track

OAlO EB
OA11 09
OAl2 6E
OAl3 2600
OA15 C9

OA20 OEOO
OA22 CD9B09
OA25 C9

OA16 3A2COA
OAl9 B7
OAlA C2200A
OA1D 322BOA

07333
09F6 01070D131907334

07335
07336

OAOO 090F1S020807337
07338
07339

OAOA 1218040Al007340
07341
07400
07401
07402
07403
07404
07405
07406
07407
07408
07409
07410
07411
07412
07500
07501
07502
07503
07504
07505
07506
07507
07508
07509
07510
07511
07512
07513
07514
07515
07516
07517
07518
07519
07520
07600
07601
07602
07603
07604
07605
07606
07607
07608
07609
07610
07611
07612
07613
07614
07615
07616
07617
07618
07619
07620
07621
07622
07623
07624
07625
07626
07627
07628
07629
07630
07631
07632

Figure 8·10. (Continued)



274 The CP/M Programmer's Handbook

,Not part of group but needed here

,When nonzero, the disk buffer has
I data from the dl.k In It
,Nonzero when data has be.n written
I Into DI.k.Buff .. r but not yet
I written out to disk

,Selected physical sector derived
J from selected (CP/M) sector by
I shifting It right the numb..r of
, bits specified by Sector.Blt.Shlft

,Check If deblocking n....d..d
, (flag was set In SELDSK call)

,Nonzero wh..n a CP/M 128-byt ..
, .ector is to be read
,Nonzero when the .elected disk
I needs d..blocklng (set In SELDSK)
,Indlo.te. 8" or S 1/4" floppy or
I ".DIoI< selected. (set In SELDSK)

,Nonzero to indicat. an error
J that could not be recovered
I by the disk drivers. The BOOS
, will output a "Sad Sector" lIIes.age
,Nonzero if· a watchdog timeout
I occurs
,Number of 16.66 ms clock ticks
, for a 10 .econd timeout

,Contains the tyP" of writ ..
, Indicated by th.. BDOS

,<•• ignored for track buffering

o

o
1
2

,Variable. for selected disk, track and sector
, (Sel ..ct ..d by SELDSK. SETTRK and SETSEC)
o ;) The.e are moved and compared
o ,) a•• group so do not alter order

o

o

o
o
o

o

o

,Variabl•• for physical ••ctor currently
, In DI.k.Buffer In m...ory
o ,) Th••• are moved and compared
o ,) as • grOup, so do not alter

, th••• lin••
o ,Disk type for ••ctor in buffer

o

o
600

DB

,Th••• are the value. handed over by the BOOS
, when It calls the write oPeration.
,The allocated/unallocated Indlcat... whether th..
, BOOS wish•• to writ. to an unalloeated allocatton
I block (It only Indicate. this for the flr.t
, 128-bvt • ••ctor write>, or to an allocation block
I that has already b..en allocated to a fll ...
,Th.. BD~ also Indlcat .. s If It wl.h.. s to writ .. to

the file directory.

EQU

DB

DB
DW

I
EQU
EQU
EQIJ

DB

DB

DB

DB

S.. I ..ct ..d.DI.k.D..block
A

LDA
ORA

R..ad In the 128-byte CP/M sector specified by previous c.lls
to Select Disk, Set Track and Sector. The .ector will be read
Into the address specified In the previous s .. t DMA Addr.... c.ll.

If readin9 from a disk drive using s.ctors larger than 128 bytes.
deblocking code will be used to "unpack II a 128-byte sector frOM
the physical sector.,

READ.

In.Buffer.Dlsk,
In.Buffer.Track.

Dlsk.Tlm..r

Wrlt ...Allocated
Wr I te.DI rectory
Wrlt ...Unallocated,
Wrlte.Type,

,
S.. I ..ct ..d.Dk.Trk.

DI.k.Error.Flag.

,
In.Buffer.Dk.Trk,

S.. I ..ct ..d.DI.k.
Select ..d.Track,

Read.Oper a t 10"' DB

Selected.Dlsk.D..block, DB

,
Data.ln.Dlsk.Buffer.

Dlsk.Hung.Flag.

,,.

07633
07634
0763~

07636
07637
07638
07639
07640
07641
07642
07643
07644
0764~

07646
07647
07648
07649
076~0

076~1

076~2

076~3

076~4

076~5

076~6

076~7

07658
076~9

07660
07661
07662
07663
07664
0766~

07666
07667
07668
07669
07670
07671
07672
07673
07674
0767~

07676
07677
07678
07679
07680
07681
07682
07683
07684
0768~

07686
07687
07688
07689
07670
07691
07692
07693
07694
0769~

07696
07800
07801
07802
07803
07804
0780~

07806
07807
07808
07809
07810
07811

OA2B 00

OA2C 00

OA2D 00
OA2E 0000

OA30 00

OA37 3A3~OA

OA3A B7

OA31 00

OA27 00
OA28 0000

OA2A 00

OA33 00

OA32 00

OA3~ 00

OA36 00

OA34 00

0000 •
0001 •
0002·

OA26 00

02~8 •

Figure 8-10. (Continued)



Chapter 8: Writing an Enhanced BIOS 275

,Th. d.blockine .leorith. u••d i ••uch
th.t • r ••d oPeration c.n b. vi.wed
until the .ctu.l d.t. tr.n.f.r •• thoueh
it w•• the fir.t write to .n un.lloc.ted
.llocation block

MVI A.l ,Indic.te that. r ••d actually
STA Re.dfOp.r.tion , is to b. performed

,Indic.t. th.t • write oper.tion
, is requir.d (i •• NOT a ,re.d)
,Save the BDOS write type

but only di.tineui.h b.tw••n
writ. to allocated block or
directorY write

,Ch.ck if deblockine i. required
, (fl.e •• t in SELDSI< c.ll)

,F.k. d.blockine cod. into b.lievine
th.t this i •• writ. to .n

; allocated allocation bloek
,Use common code to eM.cut. read

,Common code to eM.cute both reads and
, writ•• of 128-byt•••ctor ••

A ,A"uMe th.t no di.k .rror. will
Di.kfErrorfFl.e, oecur

A.Writ.fAlloc.t.d
WritefTyp.

A
R••dfOper.tlon
A.C
1

Salect.dfDi.kfD.bloek
A
Writ.fNofD.block

LDA

STA

On .rriv.l her•• the BDOS will h.v.· •• t r.vi.t.r C to indicate
wheth.r this write oPer.tion i. to .n .lr••dy .lloc.t.d .lloc.tion
block (which •••ns a prey••d of the ••ctor may be n••ded), or
to the dir.ctory (in which c••e the data will be written to the
di.k imm.di.tely).

XRA
STA

Writ•• 128-byte .ector from the curr.nt DMA .ddr••• to
the previously •• lected disk. track and ••ctor.

MVI
STA

XRA
STA
MOV
ANI

Only write. to the dir.ctory take place immedi.tely. In all other
c ••••• the d.ta will be moved from the DMA .ddr••• into the di.k
buffer, and only be written out when circumstanc•• force the
transfer. The number of physical disk operations can they_fore
b. reduc.d con.id.rably.

,
,Th. buffer do•• have a phy.ical track
, in it. Ch.ck if it i. the rieht on.,

LXI D.InfBufferfDkfTrk ,Check if track in buffer i. the
LXI H.SelectedfDkfTrk ,.ame a. that ,el.ct.d .arlier
CALL ComparefDkfTrk ,Compar. ONLY disk and track
.II TrackfInfBuff.r 'Y.'y it i. alr.ady in buff.r

,No. it will have to b. r.ad in
, over current contents of buffer
,Ch.ck if buffer ha. data in that

LDA
ORA
.II

LDA S.I.ct.dfS.ctor ,Conv.rt .el.ct.d 128-byte .ector
RAR , into phy.ical ••ctor by dividine by 4
RAR
ANI 3FH ,R.mov. any unw.nt.d bits
STA S.lectedfPhY.icalfS.ctor,
LXI H.DatafInfDi.kfBuffer ,Ch.ck if di.k buffer alr.ady ha.
MOV A.M , data in it
MVI M.I ,(Unconditionally indicat. that

, the buff.r now ha. data in it)
ORA A ,Did it ind.ed have data in it?
.II R.adfTrackfintofBuff.r ,No. proc••d to read a phy.ical

, track into the buff.r

,
",,,,,,,,,,,,,,,
WRITE.

,,.,
P.rformfR••dfWrite.

07812
07813
07814
07815
07816
07B17
07818
07819
07820
07821
07822
07823
07824
07825
07826
07900
07901
07902
07903
07904
07905
07906
07907
07908
07909
07910
07911
07912
07913
07914
07915
07916
07917
07918
07919
07920
07921
07922
07923
07924
07925
07926
07927
07928
08000
08001
08002
08003
08004
08005
08006
08007
0e008
08009
08010
08011
08012
08013
08014
08015
08016
08017
08018
08019
08020
08021
08022
08023
08024
08025
08026
08027
08028
08029
08030
08031

OA4B 3A350A
OA4E B7
OA4F CA2AOB

OA52 AF
OA53 32340A
OA56 79
OA57 E601

OA3B CA2FOB

OA70 B7
OA71 CA870A

OA80 3A2COA

OA59 32260A

OA74 11270A
OA77 212DOA
OA7A CDEIOA
OA7D CA910A

OA5C AF
OA5D 32320A

OA60 3A300A
0A63 IF
OA64 IF
OA65 E63F
OA67 32310A

OA6A 212BOA
OA6D 7E
OA6E 3601

OA3E 3EOI
OA40 32340A

OA433E00
0A45 32260A

OA48 C35COA

Figure 8·10. (Continued)



276 The CP/M Programmer's Handbook

XRA A ;Clear flag that indicates buffer must be
STA Must'Write'Buffer ; written out
CALL WriteSPhysical ;Write buffer out to physical track
LDA Disk.Error.Flag ,Return error flag to caller
RET

LXI D.Disk.Buffer ,Oat ba.e addres. of disk buffer
DAD D ,Add on .ector number " 128

,HL -) 128-byte sector number start
, address in disk buffer

XCHO ,DE -) .ector in disk buffer
LHLD DMA.Address ,Oat DMA address set in SETDMA "all
XCHO ,A.lu••• r ••d operation. 10

, DE -) DMA addres.
, HL -) .e"tor in disk buffer

MVI C.128/8 ,.e"au.. of the fnter method u..d
, to .eve data in and out of the
, disk buffer, <eicaht byt•• moved per
, loop iteration) the "ount need only
, be 1/8 of nor.al
,At thh point,
, C· loop count
, DE -) DMA addres.
, HL -) .ector in dhk buffer

LDA R.ad.Operation ,D.termine whether data is to be moved
ORA A , out of the buffer (read) or into the
JNZ Buffer.Move ,buffer (write)

,Writin. into buffer
,(A must be 0 .et here)

INR A ,Set flag to force a writ.
STA Must$Write.Buffer of the disk buffer later on.
XCHO ,Make DE -) sector in disk buffer

HL -) DMA address

CALL Read.Physical
XRA A
STA ~.t.Write.Buffer

,
Read.Tra"k.into.Buffer,

CALL Set.ln.Buffer.Dk.Trk

, must be written out firlt
,V.s. writ. it out

,Set in buffer variabl•• from
•• lected disk. track
to reflect which track is in the

• buffer now
,Read the track into the buffer
,Reset the fla. to reflect buffer
, content"

,Selected track and
, disk i. already in the buffer
,Convert the selected CP/M (128-byte)
, ••ctor into a r.l~tiv. addr••• down
, the buffer
,o.t •• lected .ector number
,~ltiply by 128 by .hiftin. 16-bit value
,left 7 bits
,,, 2

'" 4,,, 8
,,, 16

'" 32
'" 64,,, 128

I
;Check if any disk errors have occured
rYes, abandon attempt to write to directory

;Moves 8 bytes * C times from (HL)
to (DE)

I
,If write to directory, write out
; buffer immediately
,Oet error flag in case delayed write or read
;Return if delayed write or read

A
Write.Physical

Mov.fa

Writ ••Type
Write'Directory
Disk.Error.Flag

ORA
CNZ

LDA Selected.Sector
MOV L.A
MVI H.O
DAD H
DAD H
DAD H
DAD H
DAD H
DAD H
DAD H

LOA
CPI
LDA
RNZ

ORA
RNZ

,
Track.ln.Buffer.

I,
Buffer.Move:

CALL

08032
08033
08034
0803~

08036
08037
08038
08039
08040
08041
08042
08043
08044
08045
08046
08047
08048
08049
080~0

080~1

OBO~2

080~3

080~4

080~5

080~6

08057
080~8

08059
08060
08061
08062
08063·
08064
08065
08066
08067
08068
08069
08070
08071
08072
08073
08074
0807~

08076
08077
08078
08079
080BO
08081
08082
08083
08084
0808~

08086
08087
08088
080B9
08090
OB091
08092
OBon
OB094
08095
OB096
08097
08098
OB099
08100
08101
08102
08103
08104
08105
08106
08107

OAA9 3A340A
OAAC 87
OAAD C2~A

OABO 3C
OABI 322COA
OAB4 EB

OA8A CDEAOB
OA8D AF
OA8E 322COA

OAA2 EB
OAA3 2AA609
OAA6 EB

OAC3 AF
OAC4 322COA
OAC7 CDE50B
OACA 3A320A
OACD C9

OAB~ CDF80A

OA91 3A300A
OA94 6F
OA9~ 2600
OA97 29
OA98 29
OA99 29
OA9A 29
OA9B 29
OA9C 29
OA9D 29

OA9E llA40F
OAAI 19

OAB8 3A260A
OABB FEOI
OABD 3A320A
OACO CO

OACI B7
OAC2 CO

OAA7 OEI0

OA83 B7
OA84 C4E~OB

OA87 CDCEOA

Figure 8·10. (Continued)



Chapter 8: Writing an Enhanced BIOS 277

~ntrY Parameters

C = number of a-byte blocks to move
DE -) destination address
HL -) Source address

MQve eight bytes

T~is routine moves eight bytes in a block F C times, from
(HL) to (DE). It uses "drop through" coding, to speed
UP execution.

1
MoveSOkSTrk: ,Moves the disk, track

variables pointed at by HL to
those pointed at by DE

MVI C,3 1Disk (1l, Track (2)
Move.Ok.Trk.Loop,

MOV A. M JGet source byte
STAX 0 ;Store in destination
~~~ ~ 1~pdate poi nten

OCR C ,Count down on byte count
Rl' ;Return if all bytes moved
JMP MoveSOkSTrkSLoop

,Indicate selected disk. track
J now residing in buffer

;Also reflect disk typeSelected'Oisk'Type
In'Buffer'Oisk'Type

LHLO Selected'Track
SHLO In'Buffer'Track

LOA Selected'Oisk
STA In'Buffer'Oisk

LOA
STA

RET

1
Set'In'Buffer'Ok'Trk.

1
MoveS8.

MOV A,M IGet byte from source
STAX 0 IPut into destination
INX 0 ,Update pointers
INX H
MOV A,M ;Oet byte' from source
STAX 0 ,Put into destination
INX 0 ,Update pointers
INX H
MOV A.M ,Get byte from source
STAX 0 ,Put into destination
INX 0 ;Update pointers
INX H
MOV A,M IGet b~~e from source
STAX 0 IPut into destination
INX 0 ,Update pointers
INX H
MOV A,M IGet byte from source
STAX 0 ;Put into destination

,
CompareSOkSTrk: ,Compares Just the disk and track

, pointed to by DE and HL
MVI C,3 ,Disk (I), track (2)

Compare$Ok.TrkSLooPI
LOAX 0 ,Get comparitor
CMP M ; Compare wi th comparand
RNZ ,Abandon comparison if inequality found
INX D ,Update compari tor pointer
INX H ,Upd.at. comparand pointer
OCR C ,Count down on loop count
RI .Return (with zero flag set)
JMP Compare.OkSTrkSLoop

08108
08109
08110
08111
08112
08113
08114
0811:5
08116
08117
08118
08119
08120
08121
08122
08123
08124
08125
08126
08127
08128
08129
08130
08131
08132
08133
08134
08135
08136
08137
08138
08139
08140
08141
08142
08143
08144
08145
08146
08147
08148
08149
08150
08300
08301
08302
08303
08304
08305
08306
08307
08308
08309
08310
08311
08312
08313
08314
0831:5
08316
08317
08318
08319
08320
08321
08322
08323
08324
0832:5
08326
08327
08328
08329
08330
08331
08332

OAEO OE03

OAEF 7E
OAFO 12
OAFI 13
OAF2 23
OAF3 00
OAF4 C8
OAFS C3EFOA

OACE 3A200A
OAOI 32270A

OA04 2A2EOA
OA07 22280A

OAOA 3A360A
OAOO 322AOA

OAEO C9

OAEI OE03

OAE3 lA
OAE4 BE
OAE:5 CO
OAE6 13
OAE7 23
OAE8 00
OAE9 C8
OAEA C3E30A

OAF8 7E
OAF9 12
OAFA 13
OAFB 23
OAFC 7E
OAFO 12
OAFE 13
OAFF 23
OBOO 7E
OBOI 12
OB02 13
OB03 23
OB04 7E
OB05 12
OB06 13
OB07 23
OB08 7E
OB09 12

Figure 8-10. (Continued)

278 The CP/M Programmer's Handbook

Introduction to the disk controllers on this computer system~

There are two "smart" disk controllers on this system. one
for the 8" floppy diskette drives, and one for the S 1/4"
mini-diskette drives.

,
,I

Once the operation has been completed, the controller resets
its disk control byte to OOH, and this indicates completion
to the disk driver code.

Unit (drive) number = 0 or 1
Head number = 0 or 1
Track number
Sector number

; Commando
OIH
02H
o
o
o
o

DB
EQU
EQU
DB
DB
DB
DB

The disk control table layout is shown below. Note that the
controllers have the capability for control tables to be
chained together so that a sequence of disk operations can
be initiated. In this BIOS this feature is not used. However.
the controller requires that the chain pointers in the
disk control tables be pointed back to the main control bytes
in order to indicat~ the end of the chain.

The controller also sets a return code in a disk status block.
Both controllers use the same location (0043H) for this.
If the first byte of this status block is less than BOH, then
a disk error has occurred. For this simple BIOS, no further details
of the status •• ttings are relevant. Note that the disk controller
has built-in retry logic, reads and writes are attempted ten
times before the controller returns an error.

The controllers are "hard-wired" to monitor certain locations
in memory to detect when they are to perform some disk
operation. The 8 11 controller looks at location 0040H, and
the 5 1/4 11 controller looks at location 0045H. These are
called their disk control bytes. If the most significant
bit of a disk control byte is set, the controller will then
look at the word following the respective control bytes.
This word must contain the address of a valid disk control
table that specifies the exact disk operation to be performed.

INX D ;Update pointers
INX H
MOV A,M ,Oet byte from source
STAX D ,Put into destination
INX D ;Update pointers
INX H
MOV A,M ,Get byte from source
STAX D ,Put into destination
INX D ,Update pointers
INX H
MOV A,M ,Get byte from source
STAX D ,Put into destination
INX D ,Update pointers
INX H

DCR C ;Count down on loop counter
,JNZ Mov.Sa ; Repeat until done
RET

Floppy Disk Control Tables

Floppy$Command:
Floppy$Read$Code
Floppy$Write$Code
Floppy$Uni t,
Floppy.Head:
Floppy$Track:
FloPPy.Sector:

,
Disk$Contro!$S EQU 40H ,S" control byte
Command$Block$8 EQU 41H ;Control table pointer,
Disk$Status$Block EQU 43H ,8" AND 5 1/4" status block

Disk$Control$5 EQU 45H ,5 1/4" control byte
Command$Block$S EQU 46H ;Control table pointer

08333
08334
08335
08336
08337
08338
08339
08340
08341
08342
08343
08344
08345
08346
08347
08348
08349
08350
08351
08352
08500
08501
08502
08503
08504
OS505
OS506
OS507
0850S
08509
OS510
08511
OS512
OS513
OS514
OS515
OS516
OS517
OS518
OS519
OS520
OS521
08522
OS523
OS524
OS525
OS:526
OS527
OS52S
OS529
OS530
OS531
OS:532
OS533
OS534
OS535
OS536
OS537
OS53S
OS539
OS540
OS541
OS542
OS543
OS544
OS545
OS546
OS547
OS548
OS549
OS550
OS551
OS552
OS553
OS554
OS555

0040
0041

0043

0045
0046

OB1D 00
0001
0002
OBIE 00
OBIF 00
01320 00
01321 00

OBOA 13
013013 23
OBOC 7E
OBOO 12
OBOE 13
OBOF 23
01310 7E
01311 12
01312 13
01313 23
01314 7E
OB1:5 12
01316 13
01317 23

01318 OD
01319 C2F80A
OB1C C9

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 279

LOA Selected$Sector
STA Floppy'Sector ,Set sector number

LOA Selected$TYack
STA Floppy.Track ,Set track number

,I
, Memory disk driver

,
LHLD DMASAddress ,Transfer directly between DMA Address
SHLD Floppy$DMA'Address ; and 8 11 controller.

,
;Point next control byte

back at main control byte

;Number of bytes to read/write
,Transfer address
;Pointer to next status block
; if commands are chained.
;Pointer to next control byte

if commands are chained

I
,Activate controller to perform
, operation

o

,
;Point controller at control table

o
o
o

OW
OW
ow

ow

H.01sk$Control$8
FloppytNextSControl$Location

H.01.k$Control$8
M.SOH
WaittFor$Oisk$Complete

H,Floppy$Command
CommandSBlock'S

LXI
SHLO

LXI
MVI
JMP

LXI
SHLO

,
LDA Selected'Disk ;8" floppy controller only knows about

units 0 and 1 so Selected$Disk must
, be converted

ANI 01H ,Turn 1nto 0 or 1
STA Floppy$Unit ;S.t unit number

No$Oeblock'Retry: ;Re-entry point to retry after error
LXI H,128 ,Bytes per sector
SHLO Floppy$Byte$Count
XRA A ;8" floppy only has head 0
STA Floppy$Head

LDA Selected$Disk'Type ,Check if memory disk operation
CPI H$Disk
JZ M$DisktTransfer ,Yes, it is MSOisk

This routine must use an intermediary buffer. since the
DMA address in bank ("track") 0 occupies the same
place in the overall address space as the M'Disk itself.
The M'Disk'Buffer is above the 48K mark, and therefore
remains in the address space regardless of which bank/track
is selected.

I
,I

Floppy$NextSControl$Location:

,
,The disk controller can accept chained

disk control tables, but in this case,
they are not used, so the "Next" pointers
must be pointed back at the initial

; control bytes in the base page.
LXI H,Disk$StatustBlock ;Point next status back at
SHLD FloppySNextSStatus'Block ,main status block

,
Write'No'Deblock: ;Write contents of disk buffer to

; correct sector
MVI ApFloppy'Write'Cod~ ;Get write function code
JMP Common'NotDeblock ;00 to common code

Read'No'Oeblock: ;Read previously selected sector
; into disk buffer.

MVI A,Floppy$Read$Code ;Oet read function code
CommonSNoSOeblock:

STA Floppy.Command ,set command function code
;Set up nondeblocked command table

Floppy$Byte$Count.
FloppyOMAAddre •••
Floppy$Next$Status$Block.

08556
08557
08558
08559
08560
08561
08562
08700
08701
08702
08703
08704
08705
08706
08707
08708
08709
08710
08711
08712
08713
08714
08715
08716
08717
08718
08719
08720
08721
08722
08723
08724
08725
08726
08727
08728
08729
08730
08731
08732
08733
08734
08735
08736
08737
08738
08739
08740
08741
08742
08743
08744
08745
08746
08747
08748
08749
08750
08751
08752
08753
08754
08755
08756
08757
08900
08901
08902
08903
08904
08905
08906
08907
08908
08909
08910

OB60 214300
OB63 22260B

OB66 214000
OB69 2228013

OB6C 2110013
OB6F 224100

01372 214000
01375 3680
01377 C33BOC

OB2A 3E02
OB2C C3310B

OB2F 3EOI

01331 3210013

01334 3A360A
01337 FE03
01339 CA7AOB

OB3C 218000
OB3F 2222013
01342 AF
01343 321FOB

01346 3A200A

01349 E601
013413 321EOB

OB4E 3A2EOA
01351 3220013

01354 3A300A
01357 3221013

OB5A 2AA609
OB50 2224013

01322 0000
01324 0000
01326 0000

01328 0000

Rgure 8·10. (Continued)

280 The CP/M Programmer's Handbook

For reading, the processing is:

For writing, the 128-byt. sector must be processed:

If there is any risk of any interrupt causing control
to be transferred to an address below 48K, interrupts must
be disabled when any bank other than 0 is selected.

1. Move sector DMA$Address -> M$Disk$Buffer
2. Select coyr&ct track (+1 to get bank number)
3. Move sector M'Disk'Buffer -> M'Disk image
4. Select bank 0

;Upper half, 50 bias address

,,, 2
I" 4
,,, 8
,tf 16
I" 32
I" 64
I" 128

,Compute address in memory
, by muliplving sector * 128

,HL -) sector in memory
;Recover select~d track
;Divide by 2 to get bank number
,Bank 1 is first track
;Preserve for later use

;Oet user~s DMA address·

IDE -> User's DMA, HL -> M$Disk buffer
;Number of a-byte blocks to move

,Revert to normal memory bank

,Select correct memory ~ank

,DE -> M$Disk$Buffer, HL -> M$Disk image
;Number of a-byte blocks to move

;Indicate no error

;Writing
;Save sector~. address in MtOisk image
;Move sector into M'DiskSBuffer

,Number of 8-byt41 blocks to move
,(Does not use B register)
;S = memory bank to select

Selected$Sector
L,A
H,O
H
H
H
H
H
H
H

0,(48" 1024) 1 2
D

DMA$Address
D, M$Disk$Buff er

A

B,O
SelecUBank

Select'Bank
D,M$Disk$Buffer
C,128/8
MoveSS

C,128/8
MoveSS

H
DMA$Addre..
D,M$Disk$e... ffer
C,128/8
Move$8

LDA
MOV
MVI
DAD
DAD
DAD
DAD
DAD
DAD
DAD

LXI
DAD

CALL
LXI
MVI
CALL

MVI
CALL

LHLD
LXI
XCHG
MVI
CALL

CALL Select$Bank

XRA
RET

I
M$Oisk$Transferr

LOA Selected'Track ;Compute which half of bank sector
, is in by using LS bit of track

MOV 8. A ; Save copy for lat41r
ANI 1 J Isol.tte lower/upper indicator
JZ M$Disk$Lower$Half

1. Select correct track/bank
2. Move sector M'Disk image -) M'Disk'Buffer
3. Select Bank 0
4. Move sector M'Disk'Buffer -) DNA$Address

M$DiskSLower$Half:
MOV A,B
RAR
INR A
MOV B,A

LDA Floppy$Command ;Check if reading or writing
CPI Floppy$WriteSCode
JZ M$DisktWrite ,Writing

;Reading

M$Disk$Write,
PUSH
LHLD
LXI
MVI
CALL

08911
08912
08913
08914
08915
08916
08917
08918
08919
08920
08921
08922
08923
08924
08925
08926
08927
08928
08929

OB7A 3A300A 08930
OB7D 6F 08931
OB7E 2600 08932
OB80 29 08933
OB81 29 08934
OB82 29 08935
OB83 29 08936
OB84 29 08937
OB85 29 08938
OB86 29 08939

08940
OB87 3A2EOA 08941

08942
OB8A 47 08943
OB8B E601 08944
OB8D CA940B 08945

08946
OB90 110060 08947
OB93 19 08948

08949
08950

OB94 78 08951
OB95 IF 08952
OB96 3C 08953
OB97 47 08954

08955
OB98 3AIDOB 08956
OB9B FE02 08957
OB9D CABEOB 08958

08959
08960

OBAO CDDDOB 08961
OBA3 113023 08962
OBA6 OEI0 08963
OBA8 CDF80A 08964

08965
OBAB 0600 08966
OBAD CDDDOB 08967

08968
OBBO 2AA609 08969
OBB3 113023 08970
OBB6 EB 08971
OBB7 OEI0 08972
OBB9 CDF80A 08973

08974
OBBC AF 08975
OBBD C9 08976

08977
08978

OBBE E5 08979
OBBF 2AA609 08980
OBC2 113023 08981
OBC5 OEI0 08982
OBC7 CDF80A 08983

08984
OBCA CDDDOB 08985

08986

Figure 8·10, (Continued)

Chapter 8: Writing an Enhanced BIOS 281

,
Common.Physical:

STA Floppy.Command ;Set command table

POP D ,Recover ••ctOy I1.Dlsk imagilt addr•••
LXI H.I1.Disk.Buff er
I1VI C.128/8
CALL l1ove'8 ; Move Into I1.Dlsk image

I1VI B.O ; Selee t bank 0
CALL SelecUBank

XRA A ;Indicate no error
RET,

,II, Select bank

routine switches in the required memory bank.
that the hardware port that control. bank selection
ha. other bits in it. The •• are preserved acro••
selections.

Entry paramet4t,...

,To preserve other bits

;Get current setting in port
,Preserve all other bits
;Set bank code
,Select the bank

,Start with sector 1 as a whole
, track will be transferred,
,Set byte count for complete
, track to be transferred

,Set up disk control table
I
,Convert disk number to 0 or
I for disk controller

40H
11 11.1000B

;Note. this is single byte value
, /2 for track (carry off from ANI above)

,Set up head and track number
,Even numbered tracks will b. on
, he.d 0, odd numbered on head 1
,Set head number

EQU
EQU

;Write contents of disk buffer to
; correct sector

ApFloppvSWrit.SCode ,Oet write function code
Common'Physical ,Go to common code

,Read previouslY •• lected .ector
, Into disk buffer

A, Floppy'Read'Code ,Oet read function code

A.L

Bank'Control'Port
Bank'"ask
B
Bank'Control$Port

JRe-entry point to retry after error
In'Buffer'DIsk'Type ,Oet disk type currently In buffer
Floppy.:5 ,Confirm It Is a :5 1/4" floppy
Correct.Dlsk$Type ,Yes
A,l ,No, indicate disk error
Dlsk.ErrortFlag

B = bank number

Floppy.Track

A.I
Floppy'Sector

In'Buffer'Dlsk
I
Floppy.Unlt

In'Buffer'Track
A.L
I
Floppy.Head

H,Bytes'PerSTrack
Floppy.Byte.Count

LHLD
110V
ANI
STA

110V
RAR
STA

LDA
ANI
STA

LXI
SHLD

This
Note
also
bank

Wrlte'Phvolcal.

I1VI
.JI1P

Read.Physlcal.

,
Deblock'RetrY!

LDA
CPI
.II
I1VI
STA
RET

Correct.Dlsk.Typel

,
SelectSBank:

IN
ANI
ORA
OUT
RET

,,,,,,,,,
Bank.Control.Port
Bank'"ask

,,.,

08987
08988
08989
08990
08991
08992
08993
08994
0899:5
08996
08997
09100
09101
09102
09103
09104
0910:5
09106
09107
09108
09109
09110
09111
09112
09113
09114
09115
09116
09117
09118
09119
09120
09121
09200
09201
09202
09203
09204
09205
09206
09207
09208
09209
09210
09211
09212
09213
09214
0921:5
09216
09217
09218
09219
09220
09221
09222
09223
09224
0922:5
09226
09227
09228
09229
09230
09231
09232
09233
09234
0923:5
09236
09237
09238
09239
09240
09241
09242

OBE:5 3E02
OBE7 C3ECOB

OBEA 3EOI

OBEC 321DOB

OBDD DB40
OBDF E6F8
OBEI BO
OBE2 D340
OBE4 C9

OBFD 3A270A
OCOO E601
OC02 321EOB

OCO:5 2A280A
OC08 7D
OC09 E601
OCOB 321FOB

OCOE 7D
OCOF IF
OCIO 32200B

OCI8 210012
OCIB 22220B

OCI3 3EOI
OCI:5 32210B

OBEF 3A2AOA
OBF2 FEOI
OBF4 CAFDOB
OBF7 3EOI
OBF9 32320A
OBFC C9

OBCD DI
OBCE 213023
OBDI OEIO
OBD3 CDF80A

OBD6 0600
OBD8 CDDDOB

OBDB AF
OBDC C9

0040 •
00F8 •

Figure 8·10. (Continued)

282 The CP/M Programmer's Handbook

Disk error message handling

LXI H,Disk$Status$B1ock
SHLD FloPPY$Next$Status$B1ock
LXI H,Disk$Contro1$5
SHLD FloPPY$NextSControlSLocation

H, Disk$Buffer
FloppyDMAAddress

As only one control table is in
use, close the status and busy
chain pointers back to the
main control bytes

Set transfer address to be
disk buffer

;Will be set to 40H

;Set up command block pointer

Control arrives here from watchdog
routine itself -- so this is eff~ctivelY

part of the interrupt service routine.
;Set disk hung error code

into en·or flag tel pull
control out of loop

;Return to watchdog routine

;Complete, now check status
;Check if any errors occurred
;Yes

;Get control byte

;No
;Clear error flag

;Activate 5 1/4" disk controller

;Also check if time expired

Wait until disk status block indicates
operation has completed, then check
if any errors occurred.

On entry HL -) disk control byte
;Ensure hung flag clear

;Set up watchdog timer
;Time delaY

;Reset watchdog timer
;HL is irrelevant here

This table is scanned, comparing the
disk error status with those in the
table. Given a match, or even when
then end of the table is reached, the
address following the status value
points to the correct message text.

H,Floppy$Command
Command.Block$5

H,DiskSControl$5
M,80H

A,M
A
Disk$Complete

H,DiskSTimedSOut
B,Disk$Timer
Set'Watchdog

Disk$Hung$Flag
A
Disk.Error

Disk$Status$Block
80H
Disk'Error

LXI
SHLD

LXI
SHLD

LXI
MVI

DB 40H
DW DiskMsg40
DB 41H
DW DiskMsg41

LDA
CPI
JC

~MP Disk.Wait$Loop

RET

MVI A,40H
STA Disk$Hung$Flag

LDA
ORA
,INZ

CALL Set$Watchdog

LXI
LXI
CALL

DiskSWait.Loop:
MOV
ORA
,IZ

XRA A
STA Disk$Hung$Flag

Disk.Timed$Out:

WaitForDiskSComplete:

Disk$Error$Messages:

Disk.Error.Ignore:
XRA A
STA Disk$Error$Flag
RET

Disk$Complete:
LXI B,O

,
,II

09243
09244
09245
09246
09247
09248
09249
09250
09251
09252
09253
09254
09255
09256
09257
09258

g~~~&
09261
09262
09263
09264
09265
09266
09267
09268
09269
09270
09271
09272
09273
09274
09275
09276
09277
09278
09279
09280
09281
09282
09283
09284
09285
09286
09287
09288
09289
09290
09291
09292
09293
09294
09295
09296
09297
092'~8

09299
09300
09301
09302
09303
09304
09400
09401
09402
09403
09404
09405
09406
09407
09408
09409
09410
09411
09412
09413

OC5D 010000

OC60 CD6D08

OC3F 21570C
OC42 015802
OC45 CD6D08

OC57 3E40
OC59 32330A

OC54 C3480C

OC63 3114300
OC66 FE80
OC68 DAB40D

OC48 7E
OC49 B7
OC4A CA5DOC

OC36 214500
OC39 3680

OC3B AF
OC3C 32330A

OC5C C9

OC1E 21A40F
OC21 22240B

OC24 214300
OC27 22260B
OC2A 214500
OC2D 22280B

OC30 211DOB
OC33 224600

OC6B AF
0(:6C 32320A
OC6F C9

OC70 40
OC71 9DOC
0(:73 41
OC74 A20C

OC4D 3A330A
0(:50 B7
OC51 C2B40D

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 283

0003 •

ODBO 00
ODBI OOOAOO

,<== Terminator
,Unm.a tched code

,Operation names

;Disk errOr message table entry size3

;Error text output next

o ,set to character entered by user
CR.LF.O

'Read.'.O
~Write.".0

'Hung',O ;Timeout message
-"Not Ready'.O
'Write Protected',O
'D.ta',O
'Format',O
'Missing Data Mark',O
"Sus Timeout", 0
'Controller Timeout',O
'Drive Addre.s',O
'Head Addre.s',O
'Track Address',O
'Sector Address',O
'Bus Addre.s",O
'Illegal Command',O
DB "Unknown" , 0

:Main disk error message -- part 1
BELL.CR.LF
'Disk '.0

:Main disk error message -- part 2
... Error ('
0,0 ;Status code in HeK.
~)~,CR,LF.~ Drive ~

o ;Disk drive code. A.B.•.
~. Head ~

o ;Head number
", Track ~

0,0 ,Track number
~. Sector"
0.0 ,Sector number
", Operat 10n -
o ;Term1nator

42H
DlskMsg42
21H
DiskMsg21
22H
DiskMsg22
23H
DiskMsg23
24H
DlskMsg24
25H
DiskMsg25
IIH
OiskMsgli
12H
DiskMsg12
13H
DiskMsg13
14H
DiskMsgi4
15H
DiskMsg15
16H
DiskMsg16
o
DiskMsgUnknown

DB
OW
DB
OW
DB
OW
DB
OW
DB
OW
DB
OW
DB
OW
DB
OW
DB
OW
DB
OW
DB
OW
DB
OW
DB
OW

Disk error processor

,
DiskEMRead. DB
OiskEMWrit.. DB
I

DB
DB

,
Disk$Action$Confirml

DB
DB

DB
DiskEMStatus, DB

DB
DiskEMDrive. DB

DB
DiskEMHead. DB

DB
DiskEMTrack' DB

DB
DiskEMSector. DB

DB
DB

,
DiskEMlI

,
DEM$Entry$Slz. EQU,
, Message texts,
DiskMsg40. DB
DiskMsg4I. DB
DiskMsg42. DB
DiskMsg2I. DB
DiskMsg22, DB
DiskMsg23. DB
DiskMsg24. DB
DiskMsg25. DB
DhkMsgII. DB
DiskMsg12' DB
DiskMsg13, DB
DiskMsg14. DB
DiskMsg15. DB
DiskMsg16' DB
Disk.MIgSUnknown:

I
DhkEM2,

42
ACOC
21
BCOC
22
CIOC
23
C80C
24
DAOC
25
E60C
II
F90C
12
0700
13
1400
14
2200
15
3100
16
3000
00
4DOD

OC76
ocn
OC79
OC7A
OC7C
OC7D
OC7F
OC80
OC82
OC83
OC85
OC86
OC88
OC89
OC8B
OC8C
OC8E
OC8F
OC91
ocn
OC94
OC95
OC97
OC98
OC9A
OC9B

09414
09415
09416
09417
09418
09419
09420
09421
09422
09423
09424
09425
09426
09427
09428
09429
09430
09431
09432
09433
09434
09435
09436
09437
09438
09439
09440
09441
09442
09443
09444

OC9D 48756E670009445
OCA2 4E6F74205209446
OCAC 577269746509447
OCBC 446174610009448
OCCI 466F726D6109449
OCC8 406973736909450
OCDA 427573205409451
OCE6 436F6E747209452
OCF9 447269766509453
0007 486561642009454
0014 547261636B09455
0022 536563746F09456
0031 427573204109457
0030 496C6C656709458
0040 556E6B6E6F09459

09460
09461

0055 070DOA 09462
0058 4469736B2009463

09464
09465
09466
09467

OD5E 204572726F09468
0066 0000 09469
0068 290DOA202009470
0076 00 09471
0077 2C2048656109472
OD7E 00 09473
OD7F 2C2054726109474
0087 0000 09475
0089 2C2053656309476
0092 0000 09477
0094 2C204F706509478
ODA2 00 09479

09480
ODA3 52656 I 642E0948 I
00A9 577269746509482

09483
09484
09485
09486
09487
09488
09489

Figure 8·10. (Continued)

284 The CP/M Programmer's Handbook

This routine builds and outputs an error message.
The user is then given the opportunity to:

R retry the operation that caused the error
I ignore the error and attempt to continue
A abort the program and return to CP/M.

PSW ,Preserve error code from controller
H,DiskSEM'Status 'Convert code for message
CAH ;Converts A to hex.

LXI H,Di.k$EM.Read

;Convert sector number

,Display operation type

;HL -) text
,Display eXPlanatory text

,Convert head number

,Abort

,Move to next (or fir~t) entry

,Convert track number

;HL -) address of text
;Oet address into DE

;Display second part of message

,Convert disk ida for message
;Make into letter

;Output first part of message

;Choose operation text
; (alllume a read)
,Get controller command

;Ask the user what to do next
,Display prompt and wait for input
; Returns with A = uppercase char.
,Retry?

,Ignore

;Ves
,No, change address in HL

;Oet code number from table
;Check if end of table
;Ves, pretend a match occurred
;Compare to actual code
,Yes, exit from loop
,Cheek next code

;Recover error status code
;For comparisons

- DEM.Entry.Size
;HL -> t.ble - one entrY
;Oet entry size for loop below

output.Error.Message

H, Disk.EM.I
output$Error$Message

H
E,M
H
D,M

A,M
A
Disk'Error'Matched
B
Disk'Error'Matched
Disk'Error'Next$Code

H, Disk.EM.2
output.Error.Message

Floppy'Sector
H,Disk.EM.Sector
cAH

Floppy.Track
H,DiskSEM$Track
CAH

Floppy.Head
'0'
Disk.EM.Head

In.Buffer.Disk
'A'
Disk.EM.Dr i ve

LDA
LXI
CALL

LXI
CALL

LDA
LXI
CALL

INX
MOV
INX
MOV
XCHG
CALL

LXI
CALL

LDA
ADI
STA

LDA
ADI
STA

MOV
ORA
JZ
CMP
JZ
JMP

I
Disk'Error:

PUSH
LXI
CALL

POP psw
MOV B, A
LXI H,Disk.Error.Messages

I
Disk'Error$Matched:

CPI 'R'
JZ Disk.Error.Retry
CPI 'A'
JZ SystemSReset
CPI 'I'
JZ Disk'Error'Ignore

LXI D,DEM.Entry.Size
Disk$ErrorSNextSCode:

DAD D

I
DiskSError$Reque.t$ActionJ

CALL Request.User.Choice

LDA Floppy.Command
CPI Floppy$Read.Code
JZ Disk.Error.Read
LXI H,Disk.EM.Write

DiskSErrorSReadJ
CALL output$ErrorSMessa~e

09490
09491
09492
09493
09494
09495
09496
09497
0949S
09499
09500
09501
09502
09503
09504
09505
09506
09507
0950S
09509
09510
09511
09512
09513
09514
09515
09516
09517
0951S
09519
09520
09521
09522
09523
09524
09525
09526
09527
0952S
09529
09530
09531
09532
09533
09534
09535
09536
09537
09538
09539
09540
09541
09542
09543
09544
09545
09546
09547
09548
09549
09550
09551
09552
09553
09554
09555
09556
09557
09558
09559
09560
09561
09562
09563
09564
09565

ODB4 F5
ODB5 21660D
ODBS CD440E

ODBB 3A270A
ODBE C641
ODCO 32760D

ODC3 3AIFOB
ODC6 C630
ODCS 327EOD

ODCB 3A200B
ODCE 21S70D
ODDI CD440E

ODD4 3A210B
ODD7 21920D
ODDA CD440E

ODDD 21550D
ODEO CD5305

ODE3 FI
ODE4 47
ODE5 216DOC

ODES 110300

ODFS 23
ODF9 5E
ODFA 23
ODFB 56
ODFC EB
ODFD CD5305

OEOO 215EOD
OE03 CD5305

OE06 21A30D

OE09 3AIDOB
OEOC FEOI
OEOE CAI40E
OEII 21A90D

OEI4 CD5305

ODEC 7E
ODED B7
ODEE CAFSOD
ODFI BS
ODF2 CAFSOD
ODF5 C3EBOD

OEI7 CD2F05

OEIA FE52
OEIC CA2COE
OEIF FE41
OE21 CA360E
OE24 FE49
OE26 CA6BOC

ODEB 19

Figure 8·10. (Continued)

Chapter 8: Writing an Enhanced BIOS 285

JMP DiskSError.Request.Action

HL -) byte followinQ last he. byte output

Exit parameters

EntrY parameters

lower 1 imi t
convert
upper limit
convert
uppercase

,The decision on wheYe to return
, d~pend. on whether the operation
, failed on a deblocked or
, ncndeblocked drive.

,This is a radical apProach, but
, 1t does cause CP/M to restart.
,System reset

,Isolate LS four bits
,Convert to ASCII
,Compare to maximum
,No need to convert to A -) F
'Convert to a letter

;Save character
,Update character pointer

,Convert to ASCII
,Get original value again
~Drop into subroutine, which converts
, and returns to caller

; Compare to
;No need to
,Compare to
,No need to
;Convert to

,Take a CoPY of the value to be converted
,Shift A right four places

'a'

M.A
H

CAH$Convert
PSW

PSW

A = converted character

0000$1111B
'0'
"'9"' + 1
CAHtNumeric
7

5FH

C.O
BDOS

MVI
CALL

A to upper

LDA Selected.Disk$Deblock
ORA A
JNZ Deblock$RetrY
JMP No$Deblock$RetrY

CAHSConvert:
ANI
ADI
CPI
JC
ADI

CAH$Numeric;
MOV
INX
RET

PUSH
RRC
RRC
RRC
RRC
CALL
POP

This subroutine conv@rts the A register to hexadecimal.

EntrY parameters

A = value to be converted and output
HL -> buffer area to receive two characters of output

Convert A register to hexadecimal

Exit parameters

•CAH:

Converts the contents of the A register to an upper
case letter if it is currently a lowercase letter.

I
I
AToUpper:

CPI
RC
CPI
RNC
ANI
RET

A = character to be converted

•Disk.Error.Retry,

I
System.Reset:

09~66

09567
09568
0~9

09~70

09571
09~72

09~73

09574
0957~

09~76

09~77

09578
09~79

09~80

09581
09~82

09~83

09~84

0958~

09586
09587
09588
09~89

09590
09591
09592
09593
09594
0959~

09596
09597
09598
09599
09600
09601
09602
09603
09604
09605
09606
09607
09608
09609
09610
09611
09612
09613
09614
09615
09616
09617
09618
09619
09620
09621
09622
09623
09624
0962~

09626
09627
09628
09629
09630
09631
09632
09633
09634
09635
09636
09637
09638
09639
09640
09700

OE58 77
OE59 23
OE5A C9

OE44 F~

OE45 OF
OE46 OF
OE47 OF
OE48 OF
OE49 CD4DOE
OE4C Fl

OE4D E60F
OE4F C630
OE51 FE3A
OE53 DA580E
OE~6 C607

OE29 C3170E

OE36 OEOO
OE38 CDO~OO

OE2C 3A3~OA

OE2F B7
OE30 C2EFOB
OE33 C33COB

0E"3B FE61
OE3D D8
OE3E FE7B
OE40 DO
OE41 E65F
OE43 C9

Figure 8-10. (Continued)

286 The CP/M Programmer's Handbook

Disk control table images for warm boot

,
Warm$BoottError:

LXI H,Warm$Boot$Error$Message
CALL Display.Message

LXI H.Disk$Control$5
MVI M.80H

Wait'For$Boot$Complete~

MOV A.M
ORA A
JNZ WaitSFor$Boot$Complete

,
Boot$Control.PartS!:

DB 1
DB 0
DB 0
DB 0
DB 2
DW 8"512
DW CCP$Entry
DW Disk$Status$Block
OW Disk$Control$5

Boot$Control$Part2:
DB 1
DB 0
DB 1
DB 0
DB 1
DW 3"512
DW CCP$Entry + (8"512)
DW DiskSStatusSBlock
DW Disk$Control$5

; Read funct ion
;Unit (drive) number
;Head number
; Track number
~8tarting sector number
;Number of bytes to read
;Read into this address
;Pointer to next status block
;Pointer to next control table

;Read function
; Un i t (dri va) number
; Head number
; Track number
;Starting sector number
;Number of bytes to read
;Read into this address
;Pointer to next status block
;Pointer to next control table

;Execute first read of warm boot
;Load drive O. track O.
; head 0, sectors 2 - 8
;Execute second read
;Load drive 0, track O.
; head 1. sectors 1 - 3
;Make custom enhancements patches
;Set up base page and enter CCP

;Activate controller

;Yes, an error occurred

;Get status byte
;Check if complete
;No
;Yes. check for errors

,On entry. DE -) control table image
;This control table is moved into

the main disk control table and
then the con~oller activated.

;HL -) actual control table
;Tell the controller its address
;Move the control table image
; into the control table itself.

; Set byte count

;Get image byte
;Store into actual control table
;Update pointers

;Count down on byte count
;Continue until all bytes moved

;Warm boot entry
IOn warm boot~ the cep and BOOS must be reloaded

into memory. In this BIOS. only the S 1/4"
diskettes will be used. therefore this code
is hardware specific to the controller. Two
prefabricated control tables are used.

D.Boot$Control$Part2
Warm$Boot$Read

SP.80H
D,Boot$Control$Part1
Warm$Boot$Read

Patch$CPM
Enter$CPM

H.Floppy$Command
Command$Block'S

C.13

D
M.A
H
D
C
Warm$Boot$Move

Disk$Status$Block
80H
Warm$Boot'Error

LDA
CPI
JC
RET

LXI
SHLD

LXI
LXI
CALL

LXI
CALL

CALL
JMP

,
WBOOT.

MVI
Warm$Boot$Move:

LDAX
MOV
INX
INX
DCR
JNZ

,
Warm$Boot$Read.

09701
09702
09703
09704
09705
09706
09707
09708
09709
09710
09711
09712
09713
09714
09715
09716
09717
09718
09719
09720
09721
09722
09723
09724
09725
09726
09800
09801
09802
09803
09804
09805
09806
09807
09808
09809
09810
09811
09812
09813
09814
09815
09816
09817
09818
09819
09820
09821
09822
09823
09824
09825
09826
09827
09828
09829
09830
09831
09832
09833
09834
09835
09836
09837
09838
09839
09840
09841
09842
09843
09844
09845
09846
09847
09848
09849

OE5B 01
OE5C 00
OE5D 00
OE5E 00
OE5F 02
OE60 0010
OE62 00C4
OE64 4300
OE66 4500

OE68 01
OE69 00
OE6A 01
OE6B 00
OE6C 01
OE6D 0006
OE6F 00D4
OE71 4300
OE73 4500

OE75 318000
OE78 115BOE
OE7B CD8AOE

OE7E 11680E
OE81 CD8AOE

OE84 CDDFOE
OE87 C36C02

OE8A 211DOB
OE8D 224600

OE90 OEOD

OE92 lA
OE93 77
OE94 23
OE95 13
OE96 OD
OE97 C2920E

OE9A 214500
OE9D 3680

OE9F 7E
OEAO B7
OEAl C29FOE

OEA4 3A4300
OEA7 FE80
OEA9 DAADOE
OEAC C9

OEAD 21B60E
OEBO CD5F02

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 287

OEB3 C3750E

OEDF 3EC3
OEEI 325ED3

,Save pre-interrupt registers
,Indicate end of interrupt

;Restart warm boot

BDOS.Entry + 758H
BDOS.Entry + 776H
BDOS.Entry + 75BH
13

EQU
EQU
EQU
EQU

;Control will only arrive here under the most
, unusual circumstances, as the interrupt

controller will have been programmed to
suppress unused interrupts.

A,JMP .Set up opcode
PF.BDOS.Exit.Point

WBOOT

PSW
A,IC.EOI
IC.OCW2.Port
PSW

.IMP

Equat •• for user prompt
I
UPCCPExlt$Point EQU CCP$Entry + 388H
UP.CCP.R••um••Point EQU CCP.Entry + 38BH
UP.CCP$Oet .User EQU CCP.Entry + 1l3H
UP.CCP.Oet.Disk.Id EQU CCP.Entry + IDOH
UP.CCP.CONOUT EQU CCP.Entry + 8CH

Equates for public files

When public files are enabled.

P3B> or 3B>

User prompt I

When using CP/M~s USER command and user numbers
in general, it is all too easy to become confused
and forget which user number you are "in." This
patch modifies the CCP to display a prompt which
shows not only the default disk id., but also the
current user number, and an indication of whether
public files are enabled:

Public file ..
On large hard disk systems it is extremelY useful
to partition the disk using the user number features.
However, it becomes wasteful of disk space because
multiple copie. of common programs must be stored in
each user area. This patch makes User 0 public -
accessible from any other user area.
*** WARNING *-*
Files in User 0 MUST be set to system and read/only
status to avoid their being accidentally damaged.
aecause of the side effects associated with public
files. the patch can be turned on or off using
a flag in the long term configuration block.

Patch CP/M

This routine makes some very special patches to the
CCP and BOOS in order to make some custom enhancements

PUSH
MVI
OUT
POP
RET

I
PF.BDOS.Exit.Point
PF.BDOS.Char.Match••
PF.BDOS.R••ume.Polnt
PF.BDOS.Unused.Byt••

I
Patch.CPM,

MVI
STA

I
III

I
III
I
Ghost.Interrupt:

I
Warm$Boot$Error$Message.

DB CR,LF~~Warm Boot Error - retryin9 •.• ~,CR.LF,O

09850
09851
09852

ODOA576 I 7209853
09854
09855
10000
10001
10002
10003
100M
10005
10006
10007
10008
10009
10010
10011
10012
10013
10100
10101
10102
10103
101M
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155

C788
C78B =
C513 =
C5DO =
C48C

D35E =
D37C =
D361 =
OOOD

OED8 F5
OED9 3E2O
OEDB D3D8
OEDD FI
OEDE C9

OEB6

Figure 8-10. (Continued)

288 The CP/M Programmer's Handbook

Recover second digit
Output remainder of prompt and return to

the CCP

Subtract 10 and convert to ASCII
Save converted second digit
Output leading 'I'

,Return to enter CP/M

,Control arrive. here from the BOOS
,The BOOS is in the process of scanning

down the target file name in the
search next function
HL -> the name of the file searched for
DE -) directorY entry
B = character count

,Use CCP's CONOUr routine

,Convert to ASCII

;Replaced patched out code
,Check if count indicates that

registers are pointing at
, unused bytes field of FeB
, Return to BDOS

,Control arrives here from the CCP
,The CCP is just about to get the
; drive id. when control gets here.
,The CCP~s version of CONOUT is used
, so that the CCP can keep track of
I the cursor position.

,Get current user number
,Check if one or two digits

CB$Public$Fila. ,Check if public file. are to ba enablad
A
No'Public'Files ;No

CBSPublicSFiles ;Check if public files are enabled
A
UP'PrivateSFiles ,No

A. 'P'
UPCCPCONOlIT

UP$CCPSCONOUT ;Output the character
UPCCPOat$Di.k$ld ,Oat di.k identifier
UPCCPResume$Point .Return to CCP

'0" - 10
PSW
A. '1'
UPCCPCONOUT
PSW
UPlDigit

PF$BDOS$Resume$Point

RET

~IMP

MVI
CALL

LOA
ORA
..JZ

LOA
ORA
..JZ

,
Public$Patch.

STA UPCCPE.it$Point
LXI H.Public$Patch
SHLD PF$BDOS$E.it$Point + I
LXI H,PrompttPatch ,Oet address of intervening code
SHLD UPCCPE.it$Point + 1

MOV A.M ,Oet user number
ORA A ,Check if User 0
JZ PFtSDOS$Char$Matches ;Force character match

LOA X 0 ,Oet user number from directory entry
CPI OE5H ,Check if active dir-ectory entry
JZ No.Publ ic$Fi les ,YiltS, ignore this patch

MOV A,B ,Oet character count
ORA A ,Check if 100kin9 at first byta

, (that contains the user number)
JNZ No'Public.Files ,Ncl, ignot"e this patch

No$Public$File ••
MOV A. B
CPI PF$BDOS$Unu.edSByt.s

,
,II

,
llP2Digits:

ADI
PUSH
MVI
CALL
POP
..JMP

UP$Private$File ••
CALL UPCCPOet$User
CPI 9 + 1
..JNC UP2Digits
ADI '0'

UP$lSDigit I

CALL
CALL
..JMP

,
Prompt$Patch.

10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10300

OEE4 3288C7
OEE7 21F40E
OEEA 225FD3
OEED 21110F
OEFO 2289C7

OEF3 C9

OEF4 3A4200
OEF7 B7
OEF8 CAOBOF

OEFB 78
OEFC B7

OEFD C20BOF

OFOO IA
OFOI FEE5
OF03 CAOBOF

OF06 7E
OF07 B7
OFOe CA7CD3

OFOB 78
OFOC FEOD

OFOE C361D3

OF II 3A4200
OFI4 B7
OFI5 CAIDOF

OFI8 3E50
OFIA CD8CC4

OFID CDI3C5
OF20 FEOA
OF22 D2300F
OF25 C630

OF27 CD8CC4
OF2A CDDOC5
OF2D C38BC7

OF30 C626
OF32 F5
OF33 3E31
OF35 CD8CC4
OF38 Fl
OF39 C3270F

Figure 8·10. (Continued)

Chapter 8: Writing an Enhanced BIOS 289

Entry parameters

Configuration block get address

By using this routine. utility programs need not know the exact
layout of the configuration block.

,19
,20
,21
,22
,23
,24
,25
,26
,27
,30

,Oet MS byte
;HL = address of object

Code
vv

,01 date in ASCII
,02 tim. in ASCII
,03 flags indicated if time/date set
,04 forced input pointer
JO~ system startup messag_
; Redirection ~ords

,06
,07
,08
,09
,10
'il

,Recover user~s registers

;Save user's registers

,Convert code into word offset
,O.t ba•• addr••• of tabl.
,HL -) obJ.ct'. addre•• in table
,O.t LS byte

,Hake code into. word

CB.Con.ol••lnput
CB.Con.ole.Output
CB.Auxiliary.lnput
CB.Auxiliary.Output
CB.U.t.lnput
CB.U.UOutput

,(==- BIOS entrv point (private>

Date
Tim•• ln.ASCII
Time.Date.Fla9'
CB.Forc.d.lnput
CB.Startup

DO.lnltializ••Str.am
DO.Baud.Rat••Con.tant
DI.lnitializ••Str.am
DI.Baud.Rat••Con.tant
D2.lnitiallze.Stream
D2.Baud.Rat••Con.tant
InterruptSV.ctor
LTCB.Offnt
LTCB.Len9th
CB.Public.Files

D
B
PSW

C = ObJ.ct id.ntity code (in .ff.ct. thi. i. the
subscript of the obj.ct~. addre•• in the
table below)

L.C
H.O
H
D.CB.ObJ.ct.Tabl.
D
E.M
H
D.M

OW
DW
DW
DW
DW

OW
DW
DW
DW
DW
DW

MOV
MVI
DAD
LXI
DAD
MOV
INX
MOV
XCHO

POP
POP
POP

RET

DW
DW
DW
DW
ow
DW
ow
DW
DW
DW

DW CB.D.vic••Tabl ••Addr••••• ,12
OW CB.12.24.Clock ,13 Selech 12/24 hr. format clock
DW RTC.Tick••p.r.Second ,14
OW RTC.Watchdog.Count ,15
DW RTC.Watchdo9.Addr... ,16
DW CB.Functlon.K.y.Tabl. ,17
DW CONOUT.E.cap••Tabl. ,18

Thi. rout In. i. called by utility pr09ram. runnin9 in the TPA.
Given a specifie code number, it returns the address of • specific
object in the confi9uration block.

,
CB.ObJ.ct.Table:

CB.O.t.Addr....
,c======.===••••=•••••c.==.

PUSH PSW
PUSH B
PUSH D

10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435

OF4E C9

OF65 6400
OF67 B500
OF69 BDOO
OF6B BFOO
OF6D CIOO
OF6F C300
OF71 IB02

OF4F 8FOF
OF:51 990F
OF:53 A30F
OF:5:5 8DOF
OF:57 4300

OF:59 :5800
OF:5B :5AOO
OF:5D 5COO
OF5F 5EOO
OF61 6000
OF63 6200

OF73 8400
OF75 9100
OF77 9400
OF79 AlOO
OF7B A400
OF7D BIOO
OF7F 4002
OF81 890F
OF83 BBOF
OF85 4200

OF3C F:5
OF3D C:5
OF3E D:5

OF3F 69
OF40 2600
OF42 29
OF43 114FOF
OF46 19
OF47 :5E
OF48 23
OF49 :56
OF4A EB

OF4B DI
OF4C CI
OF4D FI

Figure 8·10. (Continued)

290 The CP/M Programmer's Handbook

Uninitialized buffer areas

(LCTB$Offset + LTCB$Lengthl / 128

Forced input pointer

,II
, The short term configuration block.

,31

CB$Startup

,Minutes

,OO-byte terminator

; Seconds
,Used when updating the time

OW

BIOS$Entry - Long$Term$CB
Long$Term$CB$End - Long$Term$CB

OOOO$OOOIB
OOOO$OOIOB

,Current sYstem tim.
J Hours

,This byte contains two fla9s that are used
to indicate whether the time and/or date
have been set either programmatically or
by using the TIME and DATE utilities. These
flags can be tested by utility programs that
need to have the correct time and date set.

Multi'Command$Buffer

OW
OW

,Current system date
~10/17/82~,LF ,Unl.s. otherwise set to the contrary

J this is the releas. date of the system
,Normally, it will bot set by the DATE utility

o ,OO-bytot tnminator

o
EGlU
EGlU

ow

DB

I
D.tel

LTCB$Off .ott,
LTCB$Lotngth,

DB

CB$Forced$lnput,

If CONIN ever finds that this pointer is pointing to a nonzero
byte, then this byte will be injected into the console input
stream as though it had been typed on the console. The
pointer is then updated to the neKt byte in memory.

The LTCB$Offset is the offset from the start of the BIOS to
where the first byte of the long term configuration block
starts. Using the offset and the length, the utility can
copy the RAM version of the LTCe over the disk image
that it has read from the disk, and then write the
updated LTCB back onto the disk.

This contains variables that can be set once CP/M
has been initiated. but that are never preserved
from one loading of CP/M to the next. This part of
the configuration block form the last initialized bytes
in the BIOS.

The two values below are used by utility programs that
need to read in the long term configuration block from disk.
The BIOS starts on a 256-byte page boundary. and therefore
will always be on a 128-byte sector boundary in the reserved
are. on the disk. A utility program can then. using the
eB'Oet'Address Private BIOS call. determine how many 128-byte
sectors need to be read in by the formula:

With the eKeeption of the main Disk'Buffer, Which contains a few
bytes of code, all of the other uninitialized variables
occur here. This has the effect of reducing the number of
bytes that need be stored in the CP/M image on the disk.

I
Time'Date'Flags;

DB
Time.Set
Dah$Set

,
,II

TimeinASCll,
HH: DB '00'

DB ','
MM, DB '00'

DB ','
SS. DB '00'
TimeinASCII$End.

DB LF
DB 0

OF87 A421 10436
10437
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525

OF89 BED9 10526
OF8B E601 10527

10528
10529
10530
10531
10532
10533
10534
10535

OF8D 4300 10536
10537
10538
10539

OF8F 31302F313710540
10541
10542

OF98 00 1054.3
10544
10545

OF99 3030 10546
OF9B 3A 10547
OF9C 3030 10548
OF9E 3A 10549
OF9F 3030 10550

10551
OFAI OA 10552
OFA2 00 10553

10554
10555
10556
10557
10558
10559
10560
10561

OFA3 00 10562
0001 10563
0002 10564

10565
10566
10700
10701
10702
10703
10704
10705
10706

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 291

21A4

OFA4

OFA4 ,Wind the location counter back

,Counter O. periodic interrupt, mode 2

,Save the location counter
,. c current value of location counter

,Program the 8253 clock generator

;RTC uses channel 0

$

;Current version number

DB Port number to be initialized
DB Number of byte to b" output
DB XX,XK,XM,KK data to be output

Dlsk$Buffer

;19721 * 930 nanoseconds
; 16.666 milliseconds). 60 ticks/sec.

;Port number of 0 terminates

•08 Port number of OOH terminates

EQU

ORG

,This str.am of data is used by the
I Initlallz" ,ubroutln". It ha' the following
, for.at.,

o

MONTH ; Current date
'I'
DAY
'I'
YEAR
CR,LF,LF
~Enhanc9d BIOS~,CR,LF,LF

~Disk Configuration I~,CR,LF,LF

A, 0.35 Mbvt" 5" Floppy',CR,LF
B. 0.35 Mbyt" 5" Floppy',CR,LF,LF
C, 0.24 Mbyte 8" Floppy',CR,LF
D. 0.24 Mbyte 8" Floppy',CR,LF
MI 0.19 Mbyte Memory Disk~,CR,LF,LF

DS

o

83H
1
00$11$010$08

80H
2
17921

'CP/M 2.2.'
VERSION

DB IC$OCW1$Port
DB 1
DB IC$OCWI

DB

DB
DB
DB

DB
DB
DW

since uninitlalized areas do not need to be kept on the disk.

Aft"rDI,kBuff"r

DB I C$ I CW2$Por t
DB 1
DB IC$ICW2

Initialization stream declared here
DB IC$ICW1$Port ,Program the 8259 interrupt controller
DB 1
DB IC$ICWI

DB

Message, for M.Di,k

,
Signon.M••••ge:

DB
DW
DB
DW
DB
DW
DB
DW
DB
DB
DB
DB
DB
DB
DB
DB

,
Inltlallze$Stream.

,
Disk$buff"n

,
,II,
, The cold boot lnlti.lization code is only needed once.

It can be overwritten once it has been executed.
Therefore p it is "hidden M inside the main disk buffer.

OFA4 D8
OFA5 01
OFA6 56

OFA7 D9
OFA8 01
OFA9 02

OFAA D9
OFA8 01
OFAC FC

OFBO 80
OFBI 02
OFB2 0146

OFB4 00

OFAD 83
OFAE 01
OFAF 34

108D 00

10707
10708
10709
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851

OFB5 43502F4D2010852
OF8E 3030 10853
OFCO 20 10854
OFCI 3032 10855
OFC3 2F 10856
OFC4 3236 10857
OFC6 2F 10858
OFC7 3833 10859
OFC9 ODOAOA 10860
OFCC 456E68616El0861
OFDC 4469736B2010862
OFF3 202020202010863
1011 202020202010864
1030 202020202010865
104E 202020202010866
106C 202020202010867

10868
10869
10870
10871
10872

Figure 8·10. (Continued)

292 The CP/M Programmer's Handbook

1113 F3

1141 218EI0

1144 CD5F02

1123 CDDFOE

;System and read/only

:Interrupts can now be enabled

;00 into CP/M

:Set default disk drive to A:

JDummy directory entry used to determine
, if the M'Disk contains valid information
;User 15

;Default disk in base page

;Initialize system
;This routine uses the Initialize'StreaM

declared above

0004H

A
Default$Disk

Enter$CPH

H,M$Disk$Setup$Message ,Inform user

D :Get byte from initialized variable
M : Compare wi th M$Di sk image
M$Disk$Not$Setup :Match fails
D
H
C
M$Oisk$Setup :All bytes match
H$Disk$Test

;Check if MSOisk directory entry present
H,O ;Start address for first directory
D,H$Disk$Dir$Entry
C,32 ,Length to compare

EQU

15
'H$Disk
, '+80H.' '+80H.' ,
0.0.0,0
0.0.0.0.0,0.0.0.0.0,0.0.0.0,0.0

;Entered directly from the BIOS JMP Vector
;Control will be transferred here by the CP/M
, boot.trap loader

XRA
STA
EI

DB
DB
DB
DB
DB

,
H$Disk$Setup$Done:

CALL Display$H.ssage

;Initialize M$Disk
;If the M$Disk directory has the

special reserved file name "M'disk"
(with lowercase letters and marked
SYS and RIO), then the H$Disk is

: assumed to contain valid data.
~If the "MSDisk" file is absent, the

HSDisk Directory entry is moved into
the M$Disk image, and the remainder of
the directory set to OE5H.

HVI B, I ,Select bank I
CALL Select$Bank which contains the M$Disk directory

LXI H,Signon$Message :Display sign-on message on console
CALL Display$Message

CALL GeneralCICInitialization ~Initialize character devices

CALL Patch$CPM :Make necessary patches to CCP and BOOS
for custom enhancements

01 ;Disable interrupts to prevent any
; side effects during initialization

LXI H,Initialize$Stream :HL -) data stream
CALL Output$Byte$Stream :Output it to the specified

pc:,rts

,
H$Disk$Setup,

LXI

LXI
LXI
HVI

H$Dlsk$Test:
LDAX
CHP
..INZ
INX
INX
DCR
..IZ
.IHP

MtDiskSSetup$Message:
DB ~ MSDisk already contains valid information.',CR,LF,O

H$Disk$Not$Setup$Hessage:
DB ' H'Disk has b••n initialized to empty state.',CR,LF,O,

H$Disk$Dir$Entry:

,
BOOT,

,
DefaulUDisk

IA
BE
C24FII
13
23
OD
CA4111
C33311

10873
202020202010874

10815
202020202010876

10877
10878
10879

OF 10880
4D2444697310881
AOA020 10882
00000000 10883
000000000010884

10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948

114C C36C02

1147 AF
1148 320400
114B FB

1133
1134
1135
1138
1139
113A
113B
113E

1126 0601
1128 CDDDOB

IliA CDEE02

112B 210000
112E IIF310
1131 OE20

1114 21A40F
1117 CDI903

108E

lOCO

IIID 21B50F
1120 CD5F02

IOF3
IOF4
10FC
10FF
1103

0004

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 293

End of cold boot initialization code

Disk work areas

Disk allocation vectors

LXI H.MSDlsk$NotSS"tup$Messag"
JMP MSOlskSS"tupSOon" ,Output m"ssag" and enter CP/M

A,

,This can be used to insert long
command sequence. into the
consol. input stream by setting
the forced input pointer here

(174/8)+1

,Reset location counter

M$Disk directory entry 1nto
; MSDisk image
;Number of a-byte blocks to move

128 ,Disk directorY buffer

OS

128

128 ,Intermediary buffer for
, MSOisk

,Storage area for us.r~s stack pointer
, when an interrupt occurs
,Save area for us.r~. HL
,Stack area for u•• by interrupt service

routines to avoid overflowing the
user's .tack area

,DE -) next byt" aft"r MSOlsk directory
entry in image

,Set UP to do memory fill
,Store first byte in "source ll are.
,S"t HL to OE +1

,Dummy
,<== address of last initialized byte

1024) ~ 32) 1 8 ,Two allocation blocks
; less 32 bytes for MSOisk entry
,Use Mov.Sa to do fill operation

OS

Aft"rSDlskSBuffer

Mov"S8

A.OESH
o
H.O
L.E
H
C. «2 *

ORO

MVI
STAX
MOV
MOV
INX
MVI

CALL

These are used by the BOOS to maintain a bit map of
which allocation blocks are used and which are free.
One byte is used for eight allocation blocks, hence the
expression of the form <allocation blocks/8)+1.

These are used bY the eDOS to detect any unexpected
change of diskettes. The BOOS will automatically set
sueh a changed diskette to read-onlY status.

,
DiskSASAllocationSVectoY

,
PISUserSStack. OS 2

PISUserSHL, OS 2
OS 40

PISStack'

,
Directory'Buffer: OS,
M$OiskSBuf foro OS

,
DiskSASWorkareal OS 32 AI
DiskSBSWorkarea: OS 32 B,
DiskCWorkarea: OS i6 C,
DiskDWorkarea: OS 16 0,

,
DOSBufferSLength EQU 32 ,Must be binarY number
DOSBuffer: OS OOSBuff"rSLength,
D1SBuffer$Length EQU 32 ,Must bot binary number
DISBuff"r: OS 01SBufferSLength,
02SBufferSLength EQU 32 ,Must be binary number
02SBuffer: OS 02SBufferSL"ngth

Oata areas for the character drivers

OB 0
LastSlnltlallzedSByt",,

,
MultiSCommandSBuff"r,

MSDiskSNot$Setup,
LXI 0.0 ,Mov"
LXI H.MSDiskSOirSEntrY
MVI C.32/8
CALL Mov"S8

10949
109S0
109S1
109S2
109S3
109S4
109SS
109S6
109S7
109S8
109S9
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
1097S
10976
10977
10978
10979
10980
10981
10982
10983
10984
1098S
10986
10987
10988
10989
10990
10991
10992
10993
10994
1099S
10996
10997
10998
10999
11000
11001
11002
11003
11004
1100S
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
110242410

114F 110000
IIS2 21F310
l1SS OE04
l1S7 CDF80A

liSA 3EES
l1SC 12
IISD 62
liSE 6B
11 SF 23
1160 OEFC

1162 CDF80A

116S 21COIO
1168 C34411

116B 00

21A4

21M

0020
2224

0020 •
2244

0020
2264

2284

2286
2288

22BO

2330

23BO
2300
23FO
2400

Figure 8·10. (Continued)

294 The CP/M Programmer's Handbook

2426 11025 DiskBAllocation$Vector DS (174/8.\+1 B:
11026 ,

243C 11027 DiskCAllocation$Vector DS (242/8)+1 C,
245B 11028 Dlsk'D$Allocation$Vector DS (242/8)+1 D:

11029
247A 11030 M.Disk$Allocation'Vector DS (192/8.\+1 M$Disk

11031
2493 11032 END ;of enhanced BIOS listing

Figure 8·10. (Continued)

Classes of Errors
BIOS Error-Handling Functions
Practical Error Handling
Character 110 Errors
Disk Errors
Improving Error Messages

Dealing with
Hardware Errors

This chapter describes the enhancements you can make to improve CP/M's
somewhat primitive error handling. It covers the general classes of errors that the
BIOS may have to handle. It describes some of the underlying philosophical
aspects of errors, how to detect them, and how to correct them or otherwise make
the best of the situation.

At the end of the chapter are some example error-handling subroutines. Some
of these have already been shown in the previous chapter as part of the enhanced
BIOS (Figure 8-10); they are repeated here so that you can see them in isolation.

Classes of Errors

Basically, the user perceives only two classes of errors-those that are user
correctable and those that are not. There is a third, almost invisible class of
errors-those that are recoverable by the hardware or software without the user's
intervention.

295

296 The CP/M Programmer's Handbook

The possible sources for hardware errors vary wildly from one computer
system to another, since error detection is heavily dependent on the particular
logic in the hardware. The BIOS can detect some hardware-related errors - mainly
errors caused when something takes too long to happen, such as when a recalci
trant printer does not react in a specified length of time.

The BDOS has no built-in hardware detection code. It can detect system errors,
such as an attempt to write to a disk file that is marked "Read-Only" in the file
directory or attempts to access files that are not on the disk. These BDOS-detected
errors, however, generally are unrelated to the well-being of the hardware. For
example, a disIt controller with a hardware problem could easily overwrite a sector
of the directory, thereby deleting several fites. This error would not show up until
the user tried tb use one of the now-departed files.

BIOS Error-Handling Functions

The error-handling code in the BIOS has to serve the following functions:

Detection

Analysis

Indication

Correction.

Error Detection

Clearly, before any later steps can be taken, an error must be detected. This can
be done by the software alone or by the BIOS interacting with error-detecting logic
in the hardware. In general, the only errors that the BIOS can detect unassisted are
caused when certain operations take longer to complete than expected. Because
the writer of the BIOS knows the operating environment of the specific peripherals
in the system, the code can predict how long a particular operation should take
and can signal an error when this time is exceeded. This would include such
probl~ms as printers that fail to react within a specified time period.

The BIOS can work in cooperation with the hardware to determine whether
the hardware itself has detected an error. Armed with the hardware's specifica
tions, the BIOS can input information on controller or device status to trigger
error-detecting logic. How this should be done depends heavily on the peripheral
devices in your computer system and the degree to which these devices have
"smart" controllers capable of processing independently of the computer. Un
fortunately, many manufacturers document the significance of individual status
bits that indicate errors, but not combinations of errors, or what to do when a
particular error occurs.

Chapter 9: Dealing with Hardware Errors 297

Error Analysis

Given that your BIOS has detected an error, it must first determine the class of
error; that is, whether or not the error can be corrected by simply trying the
operation again. Some errors appear at first to be correctable, but retrying the
operation several times still fails to complete it. An example would be a check-sum
error while reading a disk sector. Ifseveral attempts to read the sector all yield an
error, then it becomes a "fatal" error. The code in your BIOS must be capable of
initial classification and then subsequent reclassification if remedial action fails.

Other types of errors can be classified immediately as fatal errors-nothing
can be done to save the situation. For example, if the floppy disk controller
indicates that it cannot find a particular sector number on a diskette (due to an
error in formatting), there is nothing that the BIOS can do other than inform the
user of the problem and supply other helpful information.

Analysis oferrors may require some basic research, such as inducing failures in
the hardware and observing combinations oferror indicators. For example, some
printers (interfaced via a parallel port) indicate that they are "Out of Paper" or
"Busy" when, in fact, they are switched off. The BIOS should detect this condition
and tell the user to switch the printer on, not load more paper.

Error Indication

An incomplete or cryptic error message is infuriating. It is the functional
equivalent of saying, "There has been an error. See if you can guess what went
wrong!"

An error message, to be complete, should inform the recipient of the following:

The fact that an error has occurred.
Whether or not automatic recovery has been attempted and failed.
The details of the error, if need be in technical terms to assist a hardware
engineer.
What possible choices the user has now.

To put these points into focus, consider the error message that can be output by
CP/M after you have attempted to load a program by entering its name into the
CCP. What you see on the console is the following dialog:

A>~~
BAD LOAD
A>

All you know is that there has been an error, and you must guess what it is, even
though the specific cause of the error was known to CP/M when it O\ltput the
message. This error message is output by the CCP when it attempts to load a

298 The CP/M Programmer's Handbook

".COM" file larger than the current transient program area. The message "BAD
LOAD" is only understandable after you know what the error is. Even then, it does
not tell you what went wrong, whether there is anything you can do about it, and
how to go about doing it.

To be complete, this error message could say something like this:

A>mypro'il<cr>
"MYPROG.COM" exceeds the available memory space by
1,024 bytes, and therefore cannot be loaded under the
current version of CP/M.

Notice how the message tells you what the problem is, and even quantifies it so
that you can determine its severity (you need to get IK more memory or reduce the
program's size). It also tells you how you stand-you cannot load this program
under the current version of CP/M, so retrying the operation is futile.

Not many systems programmers like to output messages like the example
above. They argue that such a message is too long and too much work for
something that does not happen often. Admittedly, the message is too long. It
could be shortened to read

(131) Program 1,024 bytes too large to load.

This conveys the same information; the number in parentheses can serve as a
reference to a manual where the full impact of the message should be described.

The major problem with the way error messages are designed is that they
usually are written by programmers to be read by nontechnical lay users, and
programmers are notoriously bad at guessing what nonexperts need to know.

Error indications you design should address the following issues, from the
point of view of the user:

The cause of the error
The severity of the error

The corrective action that has and can be taken.

Examine the error messages in the error processor for the example BIOS in
Figure 8-10, from line 03600 onward. Although these are an improvement on the
BOOS all-purpose

BOOS Error on A: Bad Sector

even these messages do not really meet all of the requirements of a good error
message system.

Another often overlooked aspect oferrors is that most hardware errors form a
pattern. This pattern is normally only discernible to the trained eye of a hardware
maintenance engineer. When these engineers are called to investigate a problem,

Chapter 9: Dealing with Hardware Errors 299

they will quiz the user to determine whether a given failure is an isolated incident
or part of an ongoing pattern. This is why an error message should contain
additional technical details. For example, a disk error message should include the
track and sector used in the operation that resulted in an error. Only with these
details can the engineer piece together the context ofa failure or group of failures.

Error Correction
Given that a lucid error message has been displayed on the console, the user is

still confronted with the question: "Now what do I do?" Not only can this be
difficult for the user to answer, but also the particular solution decided upon can
be hard for the BIOS to execute.

Normally, there are three possible options in response to errors:

Try the operation again

Ignore the error and attempt to continue

Abort the program causing the error and return to CP/M.

For some errors, retrying can be effective. For example, if you forget to put the
printer on-line and get a "Printer Timeout" error message, it is easy to put the
printer back on-line and ask the BIOS to try again to send data to the printer.

Seldom can you ignore an error and hope to get sensible results from the
machine; many disk controllers do not even transfer data between themselves and
the disk drive if an error has been detected. Only ignorant users, or brave ones in
desperation, ignore errors.

Aborting the program causing the error is a drastic measure, although it does
escape from what could otherwise be a "deadly embrace" situation. For example, if
you misassign the printer to an inactive serial port and turn on printer echoing
(with the CONTROL-P toggle), you will send the sy~tem into an endless series of
"Printer Timeout" messages. If you abort the program, the error handler in the
BIOS executes a System Reset function (function 0) in the BDOS, CP/M warm
boots, and control is returned to the CCP. In the process, the printer toggle is reset
and the circle is broken.

IPractical Error Handling

This section discusses several errors, describing their causes and the way in
which the BIOS and the user can handle them when they occur.

Character I/O Errors
At the BIOS level, most detectable errors related to character input or output

will be found by the hardware chips.

300 The CP/M Programmer's Handbook

Parity Error
Parity, in this context, refers to the number of bits set to I in an 8-bit character.

The otherwise unused eighth bit in ASCII characters can be set to make this
number always odd, or alternatively, always even. Your computer hardware can be
programmed to count the number of I bits in each character and to generate an
error if the number is odd (odd parity) or, alternatively, if it is even (even parity). If
the hardware on the other end of the line is programmed to operate in the same
mode, parity checking provides a primitive error-detection mechanism - you can
tell that a character is bad, but not what it should have been.

CP/M does not provide a standard mechanism for reporting a parity error, so
your only option is to reset the hardware and substitute an ASCII DEL (7FH;
delete) character in the place of the erroneous character.

Ifyour BIOS is operating in a highly specialized environment, you may need to
count the number of such parity errors so that a utility program can report on the
overall performance of the system.

Framing Error
When an 8-bit ASCII character is transmitted over a serial line, the eight bits

are transmitted serially, one after the other. A start bit is transmitted first, followed
by the data character and then a stop bit. If the hardware fails to find the stop and
start bits in the correct positions, aframing error will occur. Again, the only option
available to the BIOS is to reset the hardware chip and substitute an ASCII DEL.

Overrun Error
This error occurs when incoming data characters arrive faster than the pro

gram can handle them, so that the last characters overrun those being processed by
the hardware chip. This error can normally be avoided by the use of serial line
protocols, such as those in the example BIOS in Figure 8-10.

An overrun error implies that the protocol has broken down. As with the
parity and framing errors, almost the only option is to reset the hardware and
substitute a DEL character.

Printer Timeout Error
This is one of the few errors where the BIOS can sensibly attempt an error

recovery. The error occurs when the BIOS tries to output a character to a serial
printer and finds that the printer is not ready for more than, say, 30 seconds. The
most common cause of this error is that the user forgets to put the printer on-line.
Many printers require that they be off-line during a manual form feed, and users
will often forget to push the on-line button afterward.

After a 30-second delay, the BIOS can send a message to the console device(s)
informing the user of the error and asking the user to choose the appropriate
course ofaction. Note that console output can be directed to more than one device.

Chapter 9: Dealing with Hardware Errors 301

Parallel Printers
Printers connected to your system by means ofa parallel port can indicate their

status to the computer much more easily than can serial printers. They can
communicate such error states as "Out of Paper," "End of Ribbon," and "Off-line."

These single-error indicators can also be used in combination to indicate
whether the printer cable is connected, or even whether the printer is receiving
power. You need to experiment, deliberately putting the printer into these states
and reading status in order to identify them. It is misleading to indicate to the
inexperienced user that the printer is "Out of Paper" when the problem is that the
data cable has inadvertently become disconnected.

However, each of these errors can be dealt with in the same way as the serial
printer's timeout problem: display an error message and request the user's choice
of action.

Example Printer Error Routine

Figure 9-1 shows an example of a program that handles printer errors. It
consists of several subroutines, including

The error detection classification and indication routine

The error correction routine.

It uses other subroutines that are omitted from the figure to avoid obscuring
the logic. These subroutines are listed in full in the example BIOS in Figure 8-10.

This .Hampl. shows p in outline form, how to handle th.
situation when a ••rial printer remains busy for too long.
It is intended that this generic .Hample show how to
d•• l with this cl ••• of errors.

Th. example pre.uppos•• the exi.tence of a clock interrupt
every 16.666 milli.econd. (1/60th of a .econd), and that
control will b. transferred to the Real Time Clock service
routine each ti the clock ··tick....

Fi~ur. 9-10 shows. more compl.t. example, installed in a real
BIOS.

0000 •
OOOS •

0000 00

0708 •

Figure 9-1.

,
B.Sy.tem.Re.et EQU
BOOS EOO,
Printer'Timeout'FlaQI DB

Printer'Delay'Count EQU

Serial printer error handling

o
s

(I

1800

;BDOS sYstem re •• t function
,BDOS entry point

,This 11a9 is set by the interrupt
, service subroutine that is called
, when the watchdog timer subroutine
, count hits zero (after having

counted down. 30-second delay)

,Given. clock period of 16.666 ms
, this represent•• delay of 30 secs

302 The CP/M Programmer's Handbook

;Save area for the data character
to be output

,Carriage return
,Lin.. feed

OOH
OAH

o

EQU
EQU

DB

CR
LF,
Printer$Busv$Messag&:

DB CR.LF
DB 'Printer has be.n busy for too long,',CR,LF
DB 'Check that it is on-line and ready.',CR,LF,O

OOOA
5072696E74
436865636B,

Printer.Character:

0001
0003
0028

004E 00

0000
OOOA

;This is the count of the number
of clock ticks before the watchdog
subroutine call

; <-= this address
,Sets the watchdog running

;Return to the BIOS~s caller

;o.t character to output
,DE -) device table for printer
;Output the character to the printer

;Yes, 50 display message to
; indicate an error has occurred
;Otherwise, check if printer is

now not busy

,Save the data character

;<=== Main BIOS entry point
;<=== I/O redirection code occurs here

;The printer is now ready to output
a character, but befor"e doing so,

; the watchdog timer must be reset
;Ensure no false timeout occurs
;This i~ done by setting the count
; to zero

;Check if the watchdog timer has
hit zero (if it does, the
watchdog routine will call
the Printer'Timed$Out code
that sets this flag)

B.O
Set.Watchdog

Printer.Character
0.Printer.Oevic...Tab1 ..
Output.Oata.Byte

;Se. if the printer is ready to
accept a character for output
This includes checking if the printer
is "BusY" because the driver is
waiting for XON, ACK, or OTR to

; come high
;The printer is now ready005F C26COO JNZ PrinterSReady

0062 3AOOOO LOA Printer$Timeout.Fla~

0065 B7 ORA A
0066 C28400 JNZ Display.Busy$Message

0069 C35COO JMP Printer.Wait

Printer.Ready:

,
LIST'

;
004F 79 MOV A.C
0050 324EOO STA Printer.Character

Printer.RetrYI
0053 010807 LXI B,Printer.Oelay.Count

0056 217EOO LXI H,PrinterSTimed'Out
0059 COA300 CALL Set.Watchdog

Printer'Wait:
005C CDA300 CALL Get.Printer.Statul

006C F3 01
0060 010000 LXI
0070 COA300 CALL
0073 FB EI

0074 3A4EOO LOA
0077 llA300 LXI
007A COA300 CALL

0070 C9 RET

007E 3EFF
0080 320000
0083 C9

,
Printer'Timed.Out:

MVI A.OFFH
STA PrinterSTimeout.Flag
RET

;Control arrives here from the
watchdog routine if the
watchdog count ever hits zero
This is an interrupt service

; routine
;AII registers have been saved
, before control arrives here
;Set printer timeout flag

;Return back to the watchdog

;Interrupt service routine

Figure 9-1. (Continued)

Chapter 9: Dealing with Hardware Errors 303

I
Display.Busy.Message:

0084 AF XRA A
00B5 320000 STA Printer$Timeout$Flag

OOBB 210100 LXI H,Print.r'Bu.y'M.'I.~.

OOBB COA3oo CALL Output.Error.Message

OOBE CDA300 CALL Request'User'Choice

0091 FES2 CP1 'R'

0093 CA5300 .JZ Printer'Retry
0096 FE41 CP1 'A'
0098 CA9EOO .JZ Printer$Abort
009B FE49 CP1 'I'
0090 C8 RZ,

Printer'Abort:
009E OEOO MV1 C,B.System.Reset
OOAO C30500 ..lMP BOOS

,Printer ha. be.n busy for
, 30 seconds or more
,Reset timeout flail

,Displays a Retry, Abort, Ignore?
, prompt, accepts a character from

the keyboard. and returns with the
character, converted to upper

, case in the A re9i.ter
,Check if Retry

; Check if Abort

;Check if Ignore

;Issue system reset
;No need to give call as

control will not be returned

Figure 9-1.

Dummy subroutines
The.e are shown in full in Figure 8-10. The line numbers in
Fivure 8-10 are shown in the comment field below,

Printer$Device'Table: ;Line 01300 (example layout)
Request'User'Choice: ;Line 03400
Output'Error'MeS5~gel ILine 03500
Get'Printer'Status: ,Line 03900 (similar code)
Output$Oata$Byte, 'Line 05400 (similar code)
Set$Watchdoll' ,Line 05800

Serial printer error handling (continued)

Disk Errors

Disks are much more complicated than character I/O devices. Errors are
possible in the electronics and in the disk medium itself. Most of the errors
concerned with electronics need only be reported in enough detail to give a
maintenance engineer information about the problem. This kind of error is rarely
correctable by retrying the operation. In contrast, media errors often can be
remedied by retrying the operation or by special error processing software built
into the BIOS. This chapter discusses this class of errors.

Media errors occur when the BIOS tries to read a sector from the disk and the
hardware detects a check-sum failure in the data. This is known as a cyclical
redundancy check (CRC) error. Some disk controllers execute a read-after-write
check, so a CRC error can also occur during an attempt to write a sector to the
disk. -

304 The CP/M Programmer's Handbook

With floppy diskettes, the disk driver should retry the operation at least ten
times before reporting the error to the user. Then, because diskettes are inexpen
sive and replaceable, the user can choose to discard the diskette and continue with
a new one.

With hard disks, the media cannot be exchanged. The only way ofdealing with
bad sectors is to replace them logically, substituting other sectors in their place.

There are two fundamentally different ways of doing this. Figure 9-2 shows the
scheme known as sector sparing-substituting sectors on an outer track for a
sector that is bad.

The advantage of this scheme is that it is dynamic. Ifa sector is found to be bad
in a read-after-write check, even after several retries, then the data intended for the
failing sector can be written to a spare sector. The failing sector's number is placed
into a spare-sector directory on the disk. Thereafter, the disk drivers will be
redirected to the spare sector every time an attempt is made to read or write the
bad sector.

The disadvantage ofthis system is that the read/write heads on the disk must
move out to the spare sector and then back to access the next sector. This can be a
problem if you attempt to make a high-speed backup on a streaming tape drive
(one that writes data to a tape in a single stream rather than in discrete blocks). The
delay caused by reading the spare sector interrupts the data flow to the streaming
tape drive.

You need a special utility program to manipulate the spare-sector directory,
both to substitute for a failing sector manually and to attempt to rewrite a spare
sector back onto the bad sector.

Track 0

"Spare"
Sectors

Figure 9-2. Sector sparing

Drivers directed to use
this spare sector instead of
the bad one

Track n

Sector
No. x Bad Sector

Chapter 9: Dealing with Hardware Errors 305

Figure 9-3 shows another scheme for dealing with bad sectors. In this method,
bad sectors are skipped rather than having sectors substituted for them.

The advantage of sector skipping is that the heads do not have to perform any
long seeks. The failing sector is skipped, and the next sector is used in its place.
Because of this, sector skipping can give much better performance. Data can be
read off the disk fast enough to keep a streaming tape drive "fed" with data.

The disadvantage of sector skipping is that it does not lend itself to dynamic
operation. The bad sector table is best built during formatting. Once data has been
written to the disk, if a sector goes bad, all subsequent sectors on the disk must be
"moved down one" to make space to skip the bad sector. On a large hard disk, this
could take several minutes.

Example Bad Sector Management

Sector sparing and sector skipping use similar logic. Both require a spare
sector directory on each physical disk, containing the sector numbers of the bad
sectors. This directory is read into memory during cold start initialization. There
after, all disk read and write operations refer to the memory-resident table to see if
they are about to access a bad sector.

For sector sparing, if the sector about to be read or written is found in the spare
directory, its position in the directory determines which spare sector should be
read.

:103 104 105
Skip

106 107•

S::t~r I :
Spare Directory

Sector

1'06 t===M"b ,oc<O' b'd. Add 1 <0 ,11 ~~"numbers greater or equal to 106 in order
207 to get the correct physical sector.

Add 2 (this is the second entry in the
: d.oc'"y) <0 ~1 ~cto~_",""q"",,,

207.

Figure 9-3. Sector skipping

306 The CP/M Programmer's Handbook

In the case of sector skipping, every access to the disk makes the driver check
the bad sector directory. The directory is used to tell how many bad sectors exist
between the start of the disk and the failing bad sector. This number must be added
to the requested track and sector to compensate for all the bad sectors.

The physical low-level drivers need four entry points:
Read the specified sector without using bad sector management. This is used
to read in the spare directory itself.

Write the specified sector without using bad sector management. This is
used to write the spare directory onto the disk, both to initialize it and to
update it.

Read and write the sector using bad sector management. These entry points
are used for normal disk input/ output.

Figure 9-4 shows the code necessary for both sector sparing and (using
conditional code) sector skipping.

Additional equates and definitions

This example shows the modifications to be made in order
to implement bad sector management using sector sparing
and sector skipping.

Spare$Directory$O
SpareSDirectory'}

of spare directory addresses
,Note: Th. directories themselves

are declared at the end of the
I BIOS
;Physieal disk 0
,Physical disk 1

,Table

False
Not Sector'Sparing

o
Not False

EQU
EQU

OW
OW

,
False
True,
Sectoy.Sparing EQU
Sector.Skipping EQU,,
I,
SP&reSDirectories:

0000 =
FFFF =
0000 =
FFFF =

0000 0500
0002 9701

0004 00
0005 00

0000 =

0004 =
0005 =

,
SpareSDir$InSMemorYI

DB 0
DB 0

,
Spare.Track

Spanr'Sector
First'Spare'Sector

EQU

EQU
EQU

,Flags used to indicate whether spare
, directory for a given physical disk
, has been loaded into memory. Set by SELDSK

o ,Track containing spare directorY
, sectors

4 ,Sector containing directory
Spar••Sector + 1

Variables set by SELDSK

Pointer to directorY
Lo~ical disk number
Floppy/hard disks
Deblocking flag
Physical disk number

o
o
o
o
o

;) These variables are part of the command
;) block handed over to the disk controller

o
o

OW
DB

Selected$Spare'Directory:
OW
DB
DB
DB
DB

Selected'Disk:
Disk.Typel
Deblockin~$Required:

Selected.Physical.Disk:,
Disk'Track:
Disk.Sector:

0006 0000
0008 00
0009 00
OOOA 00
0008 00

OOOC 0000
OOOE 00

Figure 9-4. Bad sector management

Chapter 9: Dealing with Hardware Errors 307

8000 z

0012 =
0000 z

,
Maximum.Track
Sectors.Per.Track
Flrst$Sector$On$Track

,
Disk.Parameter.Headers:

EQU
EQU
EQU

32768
18
o

,Used as a terminator

;-------------------------
.Standard DPH Declarations
,-------------------------
Equates for disk parameter block

The special disk parameter byte that precedes each disk
parameter block, needs to be rearranged so that a
physical disk drive number can be added.

Disk types

,
Disk$Type$$Maok
Physical$Disk$Mask

OIIIOOOOB
OOOOIIIIB

0010 •
0020 =
0030
0040

0070
OOOF

,
Floppy$S
Floppy$8
M$Disk
H$Disk$10

EQU
EQU
EQU
EQU

vvvv--
OOOIOOOOB
0$01O$OOOOB
0$011 $OOOOB
0$1OO$OOOOB

EQU
EQU

Physical disk number
;5 1/4" mini floppy
,8" floppy (SS SD)
;Memory disk
,Hard disk - 10 megabyte

;Masks to isolate values

Blocking/deblocking indicator

0080
,
Need$Deblocking EQU I$OOO$OOOOB ,Sector size> 128 bytes

OOOF CO

0010 CO

Disk parameter blocks

;-----------------------------
; Standard DPB~s for A: and B:
;-----------------------------

,Logical disk CJ
,E.tra byte indicates disk type
, deblocking requirements and physical
, disk drive.

DB H$Disk$10 + Need$Deblocking + 0 , Physical drive 0
Hard.~.Paramet.r$Block.CJ

,-------------------------------
,Standard format parameter block
,-------------------------------

DB H$Disk$10 + Need$Deblocking + 0 , Physical drive 0
Hard$~.Parameter.Block.D:,--------------------------------

,Standard format PArameter block
,-------------------------------

0004 z

,
NumberSof$LogicalSOisks EQU 4

SELDSI<, ,Select disk in register C
,C = 0 for drive A, 1 for B, etc.
,Return the address of the appropriate

disk parameter header in HL, or OOOOH
, if the selected disk does not exist.

NumberofLogical$Disks
,Return if > maximum number of disks

0011 210000
0014 79

001~ FE04
0017 DO

LXI
MOV

CPI
RNC

H.O
A.C

,Assume an error
,Check if requested disk valid

Figure 9-4. (Continued)

308 The CP/M Programmer's Handbook

;Compute offset down disk parameter
; header table by multiplying by
; parameter header length (16 bytes)

DAD H P'2
MD H ,~

DAD H P'8
DAD H ,*16
LXI DpDisk$Parameter$Headers ;Get base address
DAD D ;DE -> appropriate DPH
PUSH H ;Save DPH address

0018 320800

OOIB 6F
OOIC 2600

OOIE 29
OOIF 29
0020 29
0021 29
0022 1I0FOO
0025 19
0026 -E5

STA

MOV
MVI

Selected$Disk

L,A
H,O

Save selected disk number
Set up to retw-n DPH address
Make disk into word value

;Access disk parameter block in order
; to extract special prefix byte that
: identifies disk tYPE! and whether
; deblocking is required

SELDSKSelDisk$Type,
DCX H ; DE -) pref i x byte
MOV A,M ;Get prefix byte
ANI Disk$Type.Mask ;Isolate disk type
STA Disk$Type ;Save for use in low-level driver
MOV A,M ;Oet another COpy of prefix byte
ANI Need$Deblocking ;Isolate deblocking flag
STA Deblocking$Required ;Save for use in low-level driver

0027 IIOAOO
002A 19
002B 5E
002C 23
002D 56
002E EB

002F 2B
0030 7E
0031 E670
0033 320900
0036 7E
0037 E680
0039 320AOO

LXI
DAD
MOV
INX
MOV
XCHG

D,IO
D
E,M
H
D.M

,
:Get OPB pointer offset in DPH
JOE -) OPB address in DPH
;Get CPB address in DE

,DE -> DPB

;Additional code to check if spare
directory for given disk has already
been read in.

SHLD Selected.Spare$DirectorY ;Save for use in physical
drivers later on

MOV A.M ;Get physical disk number
ANI Physica!$Disk$Mask
STA Selected$Physical$Disk ;Save for low-level drivers

MOV E,A ;Make into word
MVI D,O
LXI H,SpareDirIn$Memory ;Make pointer into table
DAD D

;Get flag

,Track containing spare directory

,Sector cont.ining spare directory
;Number of bytes in 5pare directory / 8
;Read in spare directory - without

using bad sector management

:Spare directorY address in DE
;HL -> spare directory

:Create pointer to spare
spare directory (added twice
as table has word entries)

;HL -) word containing directory addr.

;Spare directory already in memory
:Set flag

D,SpareSTrack
Se!ecl.d$Physica!$Di.k
B.A
A,Spare.Sector
C.Spare$Length/8
Absolute.Read

E,M
H
D.M

A,M
A
DirtnMemory
M

H, Spare$Director· ies
D
D

LXI
LDA
MOV
MVI
MVI
CALL

MOV
INX
MOV
XCHG

MOV
ORA
.JNZ
INR

LXI
DAD
DAD

003C 7E
003D E60F
003F 320BOO

0042 5F
0043 1600
0045 210400
0048 19

0049 7E
004A B7
004B C27700
004E 34

004F 210000
0052 19
0053 19

0054 5E
0055 23
0056 56
0057 EB

0058 220600

005B 110000
005E 3AOBOO
0061 47
0062 3E04
0064 OEI8
0066 CDD500

Figure 9·4. (Continued)

0069 2A0600
006C l1COOO
006F 19
0070 110080
0073 73
0074 23
0075 3602

LHLD
LXI
DAD
LXI
MOV
INX
MVI

Chapter 9: Dealing with Hardware Errors

Selected.Spare.Directory .S.t end marker
D,Spare.Lenf;lth , at back end of spare directory
D
D,MaximumSTrack ,Use m.ximum track number
M.E
H
M.D

309

0077 EI
0078 C9

Diy.In.MemorYI
POP H
RET

;Recover DPH pointer

In the low-level disk drivers, the following code must be
inserted Just before the disk controller is activated to
execute a read or a write command@

LHLD Disk'Track ,Oet track number from disk
; controller command table

XCHO ,DE = track
LHLD SelectedSSpare'Directory ,HL -} spare directory
DCX H ;Back UP one entry
DCX H (3 bytes)
DCX H

CheckSNext$Entry:
INX H

Check$Next$E"trYI,
INX H

Check'Next'Entr~2:

INX H

IF Sector.Sparing

0079 2AOCOO

007C EB
007D 2A0600
0080 2B
0081 2B
0082 2B

0083 3AOEOO
0086 4F

0087 06FF

0089 23

008A 23

008B 23

008C 04

008D EB
008E 2AOCOO
0091 EB
0092 CDCDOO

LDA
MOV

MVI

INR

LXI
CALL
..JZ
ENDIF

XCHO
LHLD
XCHO
CALL

IF

..JNZ
INX
INX
MOV
CMF
..JNZ

Disk'Sector
C.A

B.OFFH

B

D.l'1aximum$Track
CMPM
Not.Bad.Sector

Disk.Track

CMPM

Sector.Sparing

Check$Next$E"try
H
H
A.C
M
Check'Next$Entry2

;Get sector number
,Save for later

;Set counter (biased -1)

;Update to next (or first) entrY

,Update count

;If sparing is used. the
end of the table is indicated
bY an entrY with the track number

; = to maximum track number
'G,~ maximum track number
,Compare DE to (HU. (HL+I)
;End of table reached

'Notell ,For .ector skipping
, the following search loop will
, terminate when the requested track
, 15 le55 than that 1" the table.
,This will always happen when the
; maximum track number il encountered
, at the e"d of the table.

,DE -> table entry
,Get requested track
,DE = req. track. HL -) table entry
;Compare req. track to table entry

'Use the following code for
, sector sparing
,Track does not match
,HL -> M5 byte of track
,HL -) sector
;Get requested sector
;Compare to table entry
;Sector does not match

;Track and .ector match. so
, substitute spare track and

appropriate .ector

Figure 9-4. (Continued)

310 The CP/M Programmer's Handbook

Compute'Increment:

0095 CA9EOO
0098 D2ACOO
009B C38900

009E 23
009F 23
OOAO 77
OOAI B9
00A2 CAABOO
00A5 D2ACOO
00A8 C38BOO

OOAB 04

OOAC 79
OOAD 80
OOAE 0612

OOBO CDC300
00B3 320EOO

00B6 59
00B7 1600
00B9 2AOCOO
OOBC 19
OOBD 220COO

OOCO C3D500

LXI

SHLD

MVI
ADD

STA
ENDIF

IF

.!Z

.!NC

.!MP

Tracks.Match:
INX
INX
MOV
CMP
.!Z
.!NC
.!MP

Sectors'Match:
INR

MOV
ADD
MVI

CALL
STA

MOV
MVI
LHLD
DAD
SHLD
ENDIF

NotSadSector:

.!MP

H,SpareSTrack

DisktTrack

A,FirsttSpar••Sector
B

Disk'Sector

Track.'Match
Compute'Increment
Check'NeKt'EntrY

H
H
M.A
C
Sectors'Match
Compute'lncrement
Check'NeKt'Entry2

B

A.C
B
B,Sectors$PerSTrack

DIV.A.BY.B
Disk'Sector

E.C
0.0
Disk.Track
o
Disk'Track

Read'WriteSOisk

'Oet track number used for spare
; sectors
;Substitute track

;Get firslsector number
;Add on matched directory
; entry number
;Substitute sector

;Use the following code for
; sector skipping
;The object is to find the

entry in the table which
is greater or equal to the
requested sector/track

;Possible match of track and sector
;Requested track < table entry
;Requested track> table entry

,HL -> MS byte of track
;HL -) .ector
,Get sector from table

;Compare with requested sector
;Track/sector matches
;Req. trk/sec < spare trk/sec
;Move to next table entry

:If track and sectors match with
a table entrY. then an additional
sector must be skipped

;8 contains number of cumUlative
: number of sectors to skip
:Get requested sector
:Skip required number
;Determine final sector number
; and track increment
;Returns C = quotient. A = remainder
:A = new sector number

;Make track increment a word

;Get requested track
;Add on increment
;Save updated track

;Either- track/sector were not bad.
; or requested track and sector have
; been updated.
;Go to physical disk read/write

IF Sector$Skipping

DIV.A.BY.B
Divide A by B

;Subroutine required for skipping
routine

This routine divides A by B. returning the quotient in C
and the remainder in A.

Entry parameters

A = dividend
8 = divisor

Exit parameters

Figure 9-4. (Continued)

Chapter 9: Dealing with Hardware Errors

A remainder
C quoUent

311

OOC3 OEOO

OOC:5 OC
00C6 90
OOC7 F2C:500
OOCA OD
OOCB eo
OOCC C9

DIVABVSB,
MVI • C.O

DIV$ASBVSBSLoop,
INR C
SUB B
JP DIV$ASBV$BSLoop
DCR C
ADD B
RET
ENDIF

CMPM
Compare memory

;Initialize quotient

,Increment quotient
;Subtract divisor
;Repeat if result still +ve
;Correct quotient
;Correct remainder

This subroutine compares the contents of DE to (HL) and (HL+l)
returning with the flags as though the subtraction (HL) - DE
were performed.

Entry parameters

HL -> word in memory
DE = value to be compared

Exit parameters

Flags set for (HL) - DE
I
CMPM,

OOCD 7E MOV A.M ;Get MS byte
OOCE BA CMP D
OOCF CO RNZ ;Return now if MS bytes unequal
OODO 23 INX H I HL -> LS byte
00D1 7E MOV A.M ,Get LS byte
00D2 BB CMP E
00D3 2B DCX H ;Return with HL unchanged
00D4 C9 RET

I
Absolute$Read:

;The absolute read (and write) routines
, access the specified sector and track
; without using bad sector management.

Entry parameters

HL -> Buffer
DE = Track
A Sector
B = PhY5ical disk drive number
C • Number of bytes to read / 8

Set up disk controller command block with parameters in
registers. then initiate read operation by falling through
into Read.Write.Disk code below.

I
I
ReadSWriteSDisk,

;---
,The r~mainder of the low level disk drivers follow.

reading the required sector and track.
1---
Spare directory declarations

Note: The disk format utility creates an initial spare
directory with track/sector entries for those track/sectors
that it finds are bad. It fills the remainder of the
directory with OFFH's (these serve to terminate the
searching of the directoYy).

Figure 9-4. (Continued)

312 The CP/M Programmer's Handbook

OOCO
,
Spare.Length EQU 64 .. 3 64 Entries, 3 bytes each

Byte 0,1 = track
Byte 2 == sector

0005
0195

0197
0257

Figure 9-4.

Spare$Director-y$O:
DS Spare.Length
os 2

Spare$Directory$l:
DS Spare.Length
os 2

Bad sector management (continued)

Spare directory itself
Set to maximum track number by SELDSK as

a safety precaution~ The FORMAT utility
puts the maximum track number into all
unused entries in the spare directorv.

;Spare directory itself
;End marker

Improving Error Messages

The final extension to BIOS error handling discussed here is in disk-driver
error-message handling. The subroutine shown in the example BIOS in Figure
8-10, although a significant improvement on the messages normally output by the
BDOS, did not advise the user of the most suitable course of action for each error.
Figure 9-5 shows an improved version of the error message processor.

This shows slightly more user-friendlY error processor
for disk errors than that shown in the enhanced BIOS
in Figure 8-10.
This version outputs a recommended course of action
depending on the nature of the error detected.
Code that remains unchanged from Figure 8-10 has been
abbreviated.

Dummy equates and data declarations needed to get
an error free assembly of this example.

0001
0002

0000 00

0258

0043

0001 00
0002 00
0003 00
0004 00

Floppy'Read'Code
Floppy$WriteSCode,
Disk$HungSFlag:

DiskSTimer

DiskSStatusSBlock

FloppySCommand:
Floppy$Head:
F1oppy'Track:
Floppy.Sector:

EQU
EQU

DB

EQll

EQll

DB
DB
DB
DB

OIH
02H

o

600

43H

o
o
o
o

;Read command for controller
;Write command for controller

Set NZ when watchdog timer times
out

10-second delay (16.66ms tick)

Address in memory where controller
returns status

Values from controller command table

Figure 9-5. User-friendly disk-error processor

Chapter 9: Dealing with Hardware Errors 313

0005 00. Deblocking.Required. DB o ,Flag set by SELDSK according
, to selected disk type

0006 00

0007 00

Disk.Error.Flag.,
In.Buffer.Disk.

DB

DB

o
o

:Error flag returned tQ SDOS

:Logical disk Id. relating to current
disk sector in deblocking buffer

Equates for Messages

0007
OOOD =
OOOA

OOO~ •

•BELL
CR
LF,
BDOS,

EQU
EQU
EQU

EQLI

07H
ODH
OAH

5

,Sound terminal bell
,Carri.ge return
;Lin@ f@ed

;BDOS Ant~y pOint (for sy~twm r~~wt)

•No$OeblockSRetry:
,--
, Omitted code to set up disk controller command table
, and in\tiate the disk operation
: ---

;Write contents of disk buffer to
; correct sector

A.Floppv$Write$Code ;Oet write function code

WaitSForSOisk$Complete

COMMonSPhy~t~al .00 to ~gmmon ogd~

.Read ~rvvloY.ly •• 1wQt.d ••~tor
into disk buffer

:o.t ~.A~ funetion eode

JHP

HVI

JHP
R••dSPh,aielill

HVI A.FIgpPY$Re.d.Cg~e
Common.Physical:

STA Floppy.Command ;Set command table

,
Wr ite.Phvs ical:

OOOB 3E02

oooD C31200

0008 C31500

0012 320100

0010 31001

,
Deblock'Retry: ;Re-entrY point to retry after error

,---
; Omitted code sets up disk controller command block
; and initiates the disk operation
; ---_.._---------

I
Wait.For.Disk.Complete.

001~ AF XRA A
0016 320000 STA Disk.Hung.Flag

0019 i13100 LXI H.Disk'Timwd'Out
001C 015802 LXI B. Dhk.Timer
001F CD3B03 CALL Set'Watchdgg

Dl.kSWAltSLoo.,
0022 7E HOV A.H
0023 B7 ORA A
0024 CA3700 ,JZ DlskSCompl@t@

0027 3AOOOO LDA Disk.Hung'Flag
002A B7 ORA A
002B C29F02 .JNZ Disk.Error

002E C32200 JHP Disk.Wa it .Loop

Disk.Timed.Out,

0031 3E40 HVI A.40H
0033 320000 STA Disk.Hung.Flag

0036 C9 RET

;Wait until disk status block indicates
operation has completed, then check
if any errors occurred

,On entry HL -> disk control byte
;Ensure hung fla9 clear

:s.t up wat~n~oQ time~

:Tim. ~.l.y

,o.t control byte

; OPIlilTtl t ion done

,Also chwck if timed out

,Will b. set to 40H

;Control arrives here from watchdog
, routine itself -- so this is effectively
J part of the interrupt service routine~

;Set disk hung error code
; into error flag to pull
; control out of loop
,Return to watchdog routine

Figure 9-5. (Continued)

314 The CP/M Programmer's Handbook

Disk$Complete.
LXI B.O

,
Disk.Error.lgnore;

XR'" ...
ST'" Disk$Error$Flag
RET

0037 010000

003... CD3B03

003D 31\4300
0040 FE80
0042 DA9F02

0045 "'F
0046 320600
0049 C9

c"'LL

LD'"
CPI
,JC

Set$Watchdog

Disk$Status$Block
80H
Disk.Error

;R@set watchdog timer
;HL is irrelevant here

.Complete -- now check status
:Check if any errors occurred
;Yes

,No
;Clear error flag

Disk error message handling

,
DiskSError$Messages:

004... 40
004B BOOl9500
004F 41
0050 C9019...00
0054 42
0055 E301 ...400
0059 21
005... 0702B400
005E 22
005F 1B02B900
0063 23
0064 1B02COOO
0068 24
0069 3D02D200
006D 25
006E 3D02DEOO
0072 II
0073 5302FIOO
0077 12
0078 5302FFOO
007C 13
007D 53020C01
0081 14
0082 53021 ...01
0086 15
0087 53022901
008B 16
008C 53023501
0090 00
0091 53024501

DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
OW
DB
DW
DB
DW
DB
DW
DB
DW

'This table is scanned~ comparing the
• disk error status with those in the

table. Given a match. or even when
the end of the table is reached. th.
address following the status value
points to the correct advisorY message text.
Following this is the address of an
error description message.

40H
DlskS...dvicel.DlskSMsgS40
41H
DlskS...dvlc.2.DiskSMsgS41
42H
DiskS"'dvlc.3.DlskMsg42
21H
Dlsk$"'dvice4.DiskSMsgS21
22H
DiskS"'dvice5.Dlsk$MsgS22
23H
DiskSAdvice5,DiskMsg23
24H
DlskS"'dvlce6.DiskSMsg$24
25H
Disk$"'dvice6.DiskSMsgS25
lIH
Disk....dvlce7.Dlsk$MsgS11
12H
Disk$"'dvlce7.DlskSMsg$12
13H
DiskSAdvice7,DiskMsg13
14H
Disk$"'dvlce7.Dlsk$Msg$14
15H
DiskSAdvice7,DiskSMsgS15
16H
Dlsk$"'dvlc.7.DlskSMsg$16
o ;<== Terminator
Disk$Advice7.DiskSMsg$Unknown ;Unmatched code

0005
,
DEMSEntrySSiz. EQU

Message texts

5 ;Entry size in error message table

,
0095 48756E6700DiskSMsg$40.
009... 4E6F742052Disk$MsgS41.
00...4 5772697465DiskSMsg$42.
00B4 4461746100Dlsk$MsgS21.
00B9 466F726D61Dlsk$MsgS22.
OOCO 4D69737369Disk$MsgS23.
00D2 4275732054Disk$MsgS24.
OODE 436F6E7472DiskSMsgS25.
00F1 4472697665DiskSMsg$ll.
OOFF 4865616420DiskMsg12.
010C 547261636BDlskSMsgS13.

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

~Hun9~.O ;Timeout message
~Not Ready·'.O
~Write Protected~,O

"'D.ta~,O

~Format O
"'Missing Data Mark"',Q
"'Bus Timeout', 0
'Controller Timeout',O
'Drive Address O
'Head Address',O
'Track Address O

Figure 9-5. (Continued)

OIIA ~36~63746FDlsk$M'9$14. DB
0129 427~73204IDlsk$Ms9$1~. DB
0135 496C6C6567DlskMsg16. DB
0145 5~6E6B6E6FDlsk$Ms9$Unknown•

•DhktEMtll
014D 07000A
o 1i'10 446973t120,

DII
DB

Chapter 9: Dealing with Hardware Errors

~SectoY Addr.ss~~O

"'Bus Addre •• ',O
"'Illegal Command"',Q
DB 'Unknown',O

'~Aln dt~k error mg~5~9. -- p~rt 1
BELL,CR.LF
'OBi< '.0

315

CR.L.F, , ',0
~Ch.~k di~k load.d, R.tr~',O

'Possible hardware problem',O
'Writ. enable if corrvQt disk, Retry"',O
"'R.try sftv~r.l tlmes',Q
'Refo~mat disk or us• • noth.~ disk',O
'Hardware error, R.try$,O
~Ha~dware or Software error, R.try~,O

'~.tn disk error mv•••g. -- p.rt 2
... Error' ('"
0,0 ,Statu. code in hex
')',CR,LF,' Drive ...
o ,Disk drive code. A,B...
"'. Head ...
o ;Head number
.... Track '
0,0 ,Track number
" Sector ...
0,0 ,Sector number
" Operation - ...
o .Terminator

,
DhktEMt2.

0156 204572726F DB
015E 0000 DlskEMStatus. DB
0160 290DOA2020 DB
016E 00 Di.kEMDrlve. DB
016F 2C20486561 DB
0176 00 Di.kEMHead. DB
0177 2C20547261 DB
017F 0000 Disk$EM'Track. DB
0181 2C20~36~63 DB
018A 0000 DlskEMSector. DB
018C 2C204F7065 DB
019A 00 DB,
019B 526561642£Dl.ktEMtRgad, DB
OIAI 5772697465DI.k$EMtWrite. DB

I
OIAS ODOA2Q2020Di.kSAdvleeO. DB
OIBO 43tS6~36BDi.k'Advieel. DB
0lC9 ~06F737369Di.k'Advice2. DB
0lE3 5772697465DisktAdvlce3. DB
0207 52657472790isktAdvlce4. DB
021B 5265666F72Dlsk'Advice5. DB
0230 4861726477Disk'Advice6. DB
0253 4S61726477Dl,k$Advice7' DB

$R••d.',O
'Writ •. ',O

I
027~ 2C206F7220Disk$Advlce9. DB or call for help if er~or persists',CR,LF

029B 00
029C ODOADo

,
Dlsk$Action$Confirm,

DB
DB

o ;S.t to character entered by user
CR,L.F,O

Disk error proces.o~

This rout in. builds ~nd outputs _n error m•••av@.
Th. u••~ 1. th~" _tven thv oPPQrtYni\1 tOI

R y.try tn~ operation th~t c.u••d the error
I, iiinor. tn. i1u· ... O... ~nd attempt tQ continu.
A .bort tne pr09r~m and return to CP/M

PSW ;Pres@rve errol"" code from controller
H,Disk$EMSStatus ;Convert code for message
CAH ;Converts A to hex

isk.E~~orl

029F F~ PUSH
02AO 21~EOI L.XI
02A3 CD3B03 CAL.L.

02A6 3A0700 L.DA
02A9 C641 ADI
02AB 326EOI STA

02AE 3A0200 L.DA
02BI C630 ADI
02B3 327601 STA

02B6 3A0300 LOA
02B9 217FOI LXI
02BC CD3B03 CAL.L.

02BF 3A0400 L.DA
02C2 218AOI L.XI
02C5 C03B03 CAL.L

02C8 214001 LXI
02CB CD3B03 CAL.L.

In$Buffer'Disk
'A'
Dlok$EM.Or i ve

Floppy$Head
'0'
Dlsk$EI1$He.d

FloppytTrack
H.Olok.EM$Track
CAH

Floppy'Sector
H,Oiok$EM'Seetor
CAH

H.Disk.EM$1
Output.Error.M••••g.

;Convert disk id. for message
;M.ke into letter

;Convert head number

;Convert .ector number

Figure 9·5. (Continued)

316 The CP/M Programmer's Handbook

;Display operation type

;Hove to next (or first) entry

;Ves
;No, change address in HL

:Display second part of message

,HL -) message text address
;Get address into DE

;Choose operation text
, (assume a Yead)
;Get controller command

,HL -> text
;Display explanatory text

;0.' code number from table
,Check if end of table
'V••, pretend .. match occurred
;Compare to .ctual code
;V•• , exit from loop
;Check next code

,Display trailing eomponent

,Display leading blanks

'Recover advisorY text pointer

;DE -) advisory test
; Save for later

;HL -) advisory text address

; Ignore?

'Abort ?

,Ask the user what to do next
,Display prompt and get single

character responoe (folded to
, uppercase)
'Retn

~R.cover error status code
,For comparisons

- DEM'Entry'Size
;HL -) table -- one entry
,FoY loop below

OutputSError.Message

Output.Error.Message

H.Diok'EM'2
Output.Error.MesS4ge

H
Output.Error.Message

A.M
A
Disk'Error'Matched
B
Dlok'Error'Matched
Diok'Error'Next'Code

H.Disk'AdviceO
Output.Error.Message

H~Disk'Advice9

Output.Error.Message

H
E.M
H
D.M

'R'
DiskSError$RetrY
'A'
SystemSReset
'I'
Disk.Error.Ignore
DiskSError.Request.Action

INX
MOV
INX
MOV

LXI
CALL

CALL

XCHG
CALL

LXI
CALL

LXI
CALL

POP
CALL

CPI
,JZ
CPI
,JZ
CPI
,JZ
,JMP

MOV
ORA
,JZ
CMP
,JZ
.IMP

Disk$Error.Request.Actionl
CALL Request'User'Choice

LDA FloppySCommand
CPI, Floppy'Read'Code
JZ Disk$Error'Read
LXI H.Diok'EM'Write

Disk$Error'Read:

LXI D.DEM'Entry'Size
Disk$Error$Next$Code:

DAD 0

LX! H.Disk'EM'Read

POP PSW
MOV B.A
LXI H,DisktError$Messages

,
DiskSError$Matched:

INX H
MOV E.M
INX H
MOV D.M
PUSH D

02CE FI
02CF 47
02DO 214500

02D3 110500

02D6 19

02D7 7E
02D8 B7
02D9 CAE302
02DC B8
02DD CAE302
02EO C3D602

02E3 23
02E4 5E
02E5 23
02E6 56
02E7 D5

02E8 23
02E9 5E
02EA 23
02EB 56

02EC EB
02ED CD3B03

02FO 215601
02F3 CD3B03

02F6 219BOI

02F9 3AOI00
02FC FEOI
02FE CA0403
0301 21Al01

0304 CD3B03

0307 21A801
030A CD3B03

030D EI
030E CD3B03

0311 217502
0314 CD3B03

0317 CD3B03

031A FE52
031C CA2C03
031F FE41
0321 CA3603
0324 FE49
0326 CA4500
0329 C31703

Disk.Error.RetrYI

032C 3A0500
032F B7
0330 C21500
0333 C30800

LDA
ORA
,JNZ
,JMP

Deblocking'Required
A
Deblock'RetrY
No'Deblock'Retry

;The decision on where to return to
depends on whether the operation
failed on a deblocked or
nondeblocked drive

Figure 9-5. (Continued)

0336 OEM
0338 CDO~OO

I1VI
CALL

C.O
BDOS

Chapter 9: Dealing with Hardware Errors

,Thl. I•• r.dl~.l .ppraa~h. b~t

, it do•• ~.u•• CP/M to re.tilrt
,System r ••• t

317

Omitted subroutines (listed in fUll in Figure 8-10)

0338 C9

I
SetSWatchdocn

CAH:

OutputSError$Message:

Reque5t.User'Choi~e:

RET

;Set watehdo9 timer (to number of "ticks" in Be. and
, to transfer control to (HL) if timer hits zero).
;Convert A to two ASCII hex characters, storing
; the output in (HL) and (HL+l)
;Display the OO-byte terminated errOr message

pointed to bY HL. Output is directed onlY to
thos. console devices not being used for list

; output as well.
;Display prompt "Enter R. A. I. and return
J aint1e keyboard char.~t.r (ypperca••) in A
;OlJmmy

Figure 9·5. User-friendly disk-error processor (continued)

Chapter 10: Debugging a New CP/M System 321

build a machine, take it to the top of a hill, throw it off, and, when it crashes,
examine the debris to discover what went wrong.

Each time you do an assembly and test, you are building the aircraft and
lobbing it off the edge of a cliff. Each time it crashes, you examine the wreckage
and try to determine the possible cause.

This is a highly inferential process. With the wreckage as a starting point, you
use inference and intuition to extrapolate the real problem and the correction for
it.

Built-In Debug Code

The single most important concept that you will need in testing CP/M systems
is the same as that used in the modern day "black box" flight recorder. This device
is essentially a multi-channel tape recorder that records all of the relevant condi
tions of the aircraft, its height, altitude, throttle settings, flap settings, and even the
voice communications among crew members. If the airplane crashes, investigators
can replay the information and understand what happened during the flight.

Applying this concept to debugging CP/M means that you must build into
your code some method for recording what it is doing, so that if the system crashes,
you can see what it was doing. Make the code tell you what went wrong.

The debug code should be designed at the same time as the rest of the program.
Plan the debugging code while the design is still on the drawing board. The source
code for debugging should be a permanent part of the BIOS. Use conditional
assembly to "IF" out most of the debug code from the final version, or make the
code sensitive to a flag in the configuration block so that you can re-enable the
debug code at a moment's notice if the system begins to behave strangely.

The more meaningful the debug output data, the less you will have to guess at
what is wrong, and therefore the less painful and time-consuming the debugging
process will be. Make the output intelligible to others who may use it or yourself
several months hence. Data that tells you what is happening is more useful than
internal hexadecimal values, particularly if someone else must interpret it or relay
it to you over the telephone.

Debug Subroutines

Many programmers do their debugging on a casual "catch as catch can" basis
because they are overwhelmed by the task of building the necessary tools. Others
are too eager to start on a new program to take a few extra hours or days to build
debug subroutines.

To help solve this problem, the following section provides some ready-made
debugging tools that can be used "as is." Each of these routines has been thor-

322 The CP/M Programmer's Handbook

oughly debugged (there's nothing worse than debug code with bugs in it!) and has
been used in actual program testing.

Overall Design Philosophy
Some common methods run through the examples that follow. These include

displaying meaningful "captions" (including the specific address that called the
debug routine), grouping all debugging code together, preserving the contents of
all registers, and setting up the stack area in a standard way.

Debug Code Captions When the contents of registers or memory are output as part of a
debugging process, a caption of explanatory text describing the values should be
displayed. For example, rather than displaying the contents of the A register like
this,

A = 1F

you can use a meaningful caption such as:

Transaction Code A = 1F.

When you write additional debugging code, especially if you need to add it to
an existing routine, it is cumbersome to have to write the call to the debug routine
and then search through the source code to find a convenient place to put an
ASCII caption string. A caption string several pages removed from the point
where it is referenced makes for problems when you want to relate the debug
output on the screen or listing to the source code itself. Therefore, all of the
routines that follow allow you to declare the caption strings "in-line" like this:

IF
CALL
DB
ENDIF

MVI

DEBUG
Debug$Re,utine
'Caption string here',CR,LF,O

;Next instruction

All of the following routines that output a caption recognize one specific 8-bit
value in the caption string. If they encounter a value of OADH (mnemonic for
ADdress), they will output the address of the byte following the call to the debug
routine. For example,

0210
0213

CALL
DB

Debug$Routine
OADH,'Caption string',O

will cause the routine to display the following:

0213 Caption string

This identifies the point in your program from which the debug routine was
called, and thus avoids any possible ambiguity between different calls to the same
debug routine with similar captions.

Chapter 10: Debugging a New CP/M System 323

Grouping Debug Code Grouping all the debug code together lends itself to using con-
ditional assembly with IFjENDIF statements.

Setting Up the Stack Area All of the following routines preserve the CPU registers so
that there are no side effects from using them. All of them assume that they can use
the stack pointer and that there is sufficient room in the stack area. Hence you will
need to declare adequate stack space for your main code and for the debug
routines. Fill the stack area with a known pattern like this:

OW 9999H, 9999H, 9999H.9999H. 9999H. 9999H. 9999H. 9999H
DW 9999H. 9999H. 9999H. 9999H, 9'i'99H, 9999H, 9'''9~''H. ',J';i99H
DW 9999H, 9999H, 9999H. 9999H. 9999H. 9999H, 9999H, 9999H

Stack$Area: ;Label the upper end of the area

Then, during debugging, you can examine the stack area and determine how
much of it is unused. For example, if you looked at the stack area you might see
something like this:

"Lc1w-watet- mat-k ll

V
99 99 99 99 99 99 99 99 99 99 99 99 09 15 43 42
01 29 00 00 1A 2B 10 FF FF 39 02 ED 11 01 37 44
DD 00 00 11 1A 23 31 00 41 AE FE 00 01 10 70 C9

Stack area overflow can give arcane bugs; the program seems to leap off into
space in a nondeterministic way. By setting up the stack area in this way, you can
recognize an overflow condition easily.

Debug Initialization Before you can execute any of the debug subroutines in this chapter,
you must make a call to the initialization subroutine, OB$Init. The OB$Init
routine sets up some of the internal variables needed by the debug package. You
may need to add some of your own initialization code here.

Console Output

Normally, you can use the CONOUT functions either via the BOOS (Function
2), or via the BIOS by calling the jump vector directly. You cannot do this w~en you
need to debug console routines themselves, nor when you need to debug interrupt
service routines. In the latter case, if an interrupt pulled control out I of the
CONOUT routine in the BIOS, you would get unwanted re-entrancy if th~debug
code again entered the CONOUT driver to display a caption. Therefore, th debug
routines have been written to call their own local CONOUT routine, which i called
OB$CONOUT. OB$CONOUT can be changed to call the BOOS, the BI S, or a
"private" polled output routine. .

A counterpart OB$CONIN routine for console input is provided for essen
tially the same reasons.

324 The CP/M Programmer's Handbook

Controlling Debug Output

All output of debug routines in this chapter is controlled by a single master
flag, DB$Flag. If this flag is nonzero, debug output will occur; if zero, all output is
suppressed.

This flag can be set and cleared from any part ofthe program you are testing. It
is especially useful when you need to debug a subroutine that is called many times
from many different places. You can write additional code to enable debug output
when certain conditions prevail; for example, when a particular track or sector is
about to be written or when a character input buffer is almost full.

Two subroutines, DB$On and DB$Off, are shown that access the debug
control flag. These, as their names suggest, turn debug output on and off.

Turning the debug output on and off from within the program can create a
confusing display ofdebug output, lacking any apparent continuity. DB$Off gives
you the option of outputting a character string indicating that debug output has
been turned off.

Pass Counters
Another method of controlling debug output is to use apass counter, enabling

debug output only after control has passed through a particular point in the code a
specific number of times.

Two subroutines are provided for this purpose. DBSetPass sets the pass
counter to a specific value. DB$Pass decrements this pass count each time control
is transferred to it. When the pass count hits zero, the debug control flag DB$Flag
is nonzero and debug output begins.

Using pass counter techniques can save you time and effort in tracking down a
problem that occurs only after the code has been running for several minutes.

Displaying Contents of Registers and Memory

Figure 10-2 shows a series of display subroutines, the primary one of which is
DB$Display. It takes several parameters, depending on the information you want
displayed. The generic call to DB$Display is as follows:

CALL
DB

£OW
DB

DBSDisplay
Code <- Indicates the data to be

displayed
Optional additional parameters}
'Caption string',O

The codes that can be used in this call are shown in Table 10-1.
The only function that uses additional parameters is DB$Memory. This dis

plays bytes from memory in hexadecimal and ASCII, using the start and finish

Chapter 10: Debugging a New CP/M System 325

addresses following the call. Here is an example:

CALL
DB
DW
DB

DB$Display
DB$Memory
Start$Address,End$Address
'Caption string',O

Table 10-1. Codes for DBSDisplay

Code Value displayed

B-bit registers

DB$F Condition Flags

DB$A Register A

DB$B Register B

DB$C Register C

DB$D Register D

DB$E Register E

DB$H Register H

DB$L Register L

Memory

Bytes starting and ending at the addresses
DB$Memory specified by the two word values following

the code value.

16-bit registers

DB$BC Register pair BC

D8$DE Register pair DE

DB$HL Register pair HL

DB$SP Stack Pointer

Byte values

DBBBC Byte addressed by BC

DBBDE Byte addressed by DE

DBBHL Byte addressed by HL

Word valoes

DBSWSBC Word addressed by BC

DBWDE Word addressed by DE

DBWHL Word addressed by HL

326 The CP/M Programmer's Handbook

Debugging Program Logic

In addition to displaying the contents of registers and memory, you need to
display the program's execution path, not in terms ofaddresses, but in terms of the
problem. You can do this by displaying debug messages that indicate what deci
sions have been made by the program as it executes. For example, if your BIOS
checks a particular value to see whether the system should read or write on a
particular device, the debug routine should display a message like this:

Entering Disk Read Routine

This is more meaningful than just displaying the function code for the drivers -
although you may want to display this as well, in case it has been set to some
strange value.

Two subroutines are provided to display debug messages. They are DB$MSG
and DB$MSGL Both of these display text strings are terminated with a byte of
OOH. You can see the difference between the two subroutines if you examine the
way they are called.

DB$MSG is called like this:

LXI H,Message$Text
CALL DB$MSG

;HL -> text string

DB$MSGI is called like this:

CALL DB$MSG
DB ODH,OAH, 'Message Text',O ;In-line

DB$MSGI is more convenient to use. If you decide that you need to add a
message, you can declare the message immediately following the call. This also
helps when you look at the listing, since you can see the complete text at a glance.

Use DB$MSG when the text of the message needs to be selected from a table.
Get the address of the text into HL and then call DB$MSG to display it.

Creating Your Own Debug Displays

If you need to build your own special debug display routines, you may find it
helpful to incorporate some of the small subroutines in the debug package. The
following are the subroutines you may want to use:

DB$CONOUT
Displays the character in the C register.

DB$CONIN
Returns the next keyboard character in A.

DB$CONINU
Returns the next keyboard character in A, converting lowercase letters to
uppercase.

Chapter 10: Debugging a New CP/M System 327

DB$DHLH
Displays contents of HL in hexadecimal.

DB$DAH
Displays contents of A in hexadecimal.

DB$CAH
Converts contents of A to hexadecimal and stores in memory pointed at
by HL.

DB$Nibble$ To$Hex
Converts the least significant four bits of A into an ASCII hexadecimal
character in A.

DB$CRLF
Displays a CARRIAGE RETURN/LINE FEED.

DB$Colon
Displays the string" : ".

DB$Blank
Displays a single space character.

DB$Flag$Save$On
Saves the current state of the debug output control flag and then sets the
flag "on" to enable debug output.

DB$Flag$Restore
Restores the debug output control flag to the state it was in when the
DB$Flag$Save$On routine was last called.

DB$GHV
Gets a hexadecimal value from the keyboard, displaying a prompt message
first. From one to four characters can be specified as the maximum number
of characters to be input.

DBA To$ Upper
If the A register contains a lowercase letter, this converts it to an uppercase
letter.

Debugging I/O Drivers

Debugging low-level device drivers creates. special problems. The major one is
that you do not normally want to read and write via actual hardware ports while
you are debugging the code-either because doing so would cause strange things
to happen to the hardware during the debugging, or because you are developing
and debugging the drivers on a system different from the target hardware on
which the drivers are to execute.

Before considering the solution, remember that the input and output instruc
tions (IN and OUT) are each two bytes long. The first byte is the operation code

328 The CP/M Programmer's Handbook

(ODBH for input, OD3H for output), and the second byte is the port number to
"input from" or "output to."

Debug subroutines are provided here to intercept all IN and OUT instructions,
displaying the port number and either accepting a hexadecimal value from the
console and putting it into the A register (in the case of IN), or displaying the
contents of the A register (for the OUT instruction).

IN and OUT instructions can be "trapped" by changing the operation code to
one of two RST (restart) instructions. An RST is effectively a single-byte CALL
instruction, calling down to a predetermined address in low memory. The debug
routines arrange for JMP instructions in low memory to receive control when the
correct RST is executed. The code that receives control can pick up the port
number, display it, and then accept a hex value for the A register (for IN) or display
the current contents of the A register (for OUT). The example subroutines shown
later in this chapter use RST 4 in place of IN instructions, RST 5 for OUT.

Wherever you plan to use IN, use the following code:

IF
RST
ENDIF
IF
DB
ENDIF
DB

Debug
4

NOT Debug
IN

POt- t $Numbe r-

Note that you can use the IN operation code as the operand ofa DB statement. The
assembler substitutes the correct operation code.

Use the following code wherever you need to use an OUT instruction:

IF
RST
ENDIF
IF
DB
ENDIF
DB

NOT Debug
OUT

Port$Number

When the RST 4 (IN) instruction is executed, the debug subroutine displays

1AB3 : Input from Port 01 : _

The "IAB3" is the address in memory of the byte containing the port number. It
serves to pinpoint the IN instruction in memory. You can then enter one or two
hexadecimal digits. These will be converted and put into the A register before
control returns to the main program at the instruction following the byte contain
ing the port number.

When the RST 5 (OUT) instruction is encountered, the debug subroutine
displays

1AB5: Output to Port 01 : FF

This identifies where the OUT instruction would normally be as well as the port
number and the contents of the A register when the RST 5 (OUT) is executed.

Chapter 10: Debugging a New CP/M System 329

Debugging Interrupt Service Routines
You can use a technique similar to that of the RST instruction just described to

"fake" an interrupt. You preset the low-memory address for the RST instruction
you have chosen for the jump into the interrupt service routine under test.

When the RST instruction is executed, control will be transferred into the
interrupt service routine just as though an interrupt had occurred. You will need to
intercept any IN or OUT instructions as described above - otherwise the code
probably will go into an endless loop.

Before executing the RST instruction to fake the interrupt, load all the
registers with known values. For example:

MVI A.OAAH
LXI B.OBBCCH
LXI D.ODDEEH
LXI H.Ol122H
RST 6 ;Fake interrupt
NOP

When control returns from the service routine, you can check to see that it restored
all of the registers to their correct values. An interrupt service routine that does not
restore all the registers can produce bugs that are very hard to find.

Check, too, that the stack pointer register has been restored and that the
service routine did not require too many bytes on the stack.

You also can use the CALL instruction to transfer control to the interrupt
service routine in order to fake an interrupt. RST and CALL achieve the same
effect, but RST is closer to what happens when a real interrupt occurs. As it is a
single-byte instruction, it also is easier to patch in.

Subroutine Listings
Figure 10-1 is a functional index to the source code listing for the debug

subroutines shown in Figure 10-2. The listing's commentary defines precisely how
each debug subroutine is called.

Figure 10-3 shows the output from the debug testbed.

Software Tools for Debugging

In addition to building in debugging subroutines, you will need one of the
following proprietary debug programs:

DDT (Dynamic Debugging Tool)
This program, included with the standard CP/M release, allows you to
load programs, set and display memory and registers, trace through your
program instruction by instruction, or execute it at full speed, but stopping

330 The CP/M Programmer's Handbook

Start Line

00001
00100
00200
00300
00400
00500
00600
00700
00800
01100
01200
01300
01400
01500
01600
01700
01800
01900
02200
02500
02600
02700
02800
02900
02930
02938
02946
03100
03147
03300
03500
03700
03800
03900
04100

Functional Component or Routines

Debug subroutine's Testbed
Test register display
Test memory dump display
Test register pair display
Test byte indirect display
Test DB$On/Off
Test DBSetPass and DB$Pass
Test debug input1output
Debug subroutines themselves
DB$Init - initialization
DB$CONINU - get uppercase keyboard character
DB$CONIN - get keyboard character
DB$CONOUT - display character in C
DB$On - enable debug output
DB$Off - disable debug output
DBSetPass - set pass counter
DB$Pass - execute pass point
DB$Display - main debug display routine
Main display processing subroutines
DB$Display$CALLA - display CALL's address
DB$DHLH - display HL in hexadecimal
DB$DAH - display A in hexadecimal
DB$CAH - convert A to hexadecimal in memory
DB$Nibble$To$Hex - convert LS 4 bits of A to hex.
DB$CRLF - display Carriage Return, Line Feed
DB$Colon - display" : "
DB$Blank - display" "
DB$MSGI - display in-line message
DB$MSG - display message addressed by HL
DB$Input - debug INput routine
DB$Output - debug OUTput routine
DB$Flag$Save$On - save debug flag and enable
DB$Flag$Restore - restore debug control flag
DB$GHV - get hexadecimal value from keyboard
DBATo$Upper - convert A to upper case

Figure 10-1. Functional index for Figure 10-2

at certain addresses (called breakpoints). It also has a built-in mlnI
assembler and disassembler so you do not have to hand assemble any
temporary code "patches" you add.

SID (Symbolic Interactive Debug)
Similar to DDT in many ways, SID has enhancements that are helpful if
you use Digital Research's MAC (Macro Assembler) or RMAC (Relocat
ing Macro Assembler). Both of these assemblers can be told to output a file

Chapter 10: Debugging a New CP/M System 331

Debug Subr"out ines

B.~aus. of tn. "wed to test thv~w rQutinwi thQrQughly,
and in cal. YOU wish to make any ~h~ngvQ. thv tWitbwd
routine for the d.buv pa~kav. It.elf has been lelt In
1n tt''I1~ ftwu\",f!'.

;Call the debug routine

IDUMI=t m...ot"y
ICh~ek .tart/~nd at n~nmultlpl~.

I of 10H

;Call the debug routine

;Call the debug routine

,Dump memory
,Ch.~k .tart and end on displaYed

line boundaries

;Call the debug routine

;Call the debug routine

,Call the debug routine

,Set M-flag. ~lear Z-Il~g, .wt E-fl~~

,S.t c:ar-ry
'Call the debug rout In.

;Svt up local staok
;Initialize the debug package
,Enable debug output
,Simple t9.t of A register display
;Preset • value in the A register
;Prefill all other registers, partly

to check the debug display, but
also to check register .ave/restore

, (---- NOTE:
The line numbera at the extreme left are included purely
to r.f.r.n~. the cod. from the text.
There are d.liberat.ly indy~.d di.~Qntin~i\i••
in the numb• .,... in Qrder to .IIQW .P.~. for exp.n.lon.

0100 ORO 100H
START:

0100 316B03 LXI SP. TestsShck
0103 CDEA04 CALL DB'Inlt
0106 CDI505 CALL DB'On

0109 3EAA MVI A.OAAH
OIOB OICCBB LXI B.OBBCCH
OIOE IIEEDD LXI D.ODDEEH
0111 2111FF LXI H.OFFllH

,I
I Test r.gistvr dls"I ...,

0114 B7 ORA A
011~ 37 STe
0116 CD~205 CALL DB.Dhplay
0119 00 DB DS'F
O1IA 466C616773 DB ""Flat;l~"" .0

:
0120 CD5205 CALL DB.DI.play
0123 02 DB DS'A
0124 4120526567 DB ~A Register O

012F CD5205 CALL DS.Dhplay
0132 04 DB DB'B
0133 4220526567 DB "'S Register O

013E CD5205 CALL DB.Dlsplay
0141 06 DB DS'C
0142 4320!526567 DB 'C Reglster',O

014D CD'20' CALL t1P't1lwl"y
01'0 08 DB DI3'D
01'1 4420526567 DB 'D Reglster'.O

015C CD5205 CALL DB.Dlsplay
015F OA DB DB'E
0160 4520526567 DB E Register',O

016B CD5205 CALL DB.Display
016E OC DB DB'H
016F 4820526'67 DB "'H Registey"',O,
017A CD5205 CALL DB.Dlsplay
017D OE DB DB'L
017E 4C20526567 DB "'L Registllt.,.."',O

,II
I Test Memory Dump Display

0lB9 CD~205 CALL DBSDisplay
olec Ie DB DBSI'I
0180 ()801~801 ow 1()8H.I:>IIH
0191 4D6~6D6F72 DB "Hemot"y Ouml=t III' .0,
01AO CD520:; CALL DB'Dlsplay
01A3 18 DS DS'M
01A4 00011FOl DW 100H.IIFH
01Ae 4D6'6D6F72 OS "Memot"Y DUMP 12"',0,

00001
00002
00003
00004
00005
00006
00007
00008
00001
00010
00011
00012
00013
00014
0001~

00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00100
00101
00102
00103
00104
001O~

00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00200
00201
00202
00203
00204
0020!5
00206
00207
00208
00209
00210
00211
00212

Figure 10-2. Debug subroutines

332 The CP/M Programmer's Handbook

00213
00214
0021:5
00216
00217
00218
00219
00220
00221
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
0031:5
00316
00317
00318
00319
00320
00321
00400
00401
00402
00403
00404
0040:5
00406
00407
00408
00409

01B7 CD5205
01BA 18
01BB 01010001
01BF 4D656D6F72

01CE CD5205
0101 18
0102 00010001
0106 4D6:56D6F72

,II

01E:5 CD:520:5
01E8 10
01E9 4243205265

01F:5 CD5205
01F8 12
01F9 4445205265

0205 CD5205
0208 14
0209 484C20:526:5,
0215 CD5205
0218 16
0219 :53:5020526:5

022:5 013203
0228 113303
022B 213403

,II
I,

022E CD520:5
0231 IA.
0232 4279746520,
023F CD:5205
0242 IC
0243 4279746:520

CALL DBSDisplay
DB DBSI1
OW 101H, 100H
DB ~Hemory Dump 13;,0

CALL DBSDisplay
DB DBSI1
OW 100H,100H
DB 'Memory Dump .4',0

Test register pair display

CALL DBSDisplay
DB DBsBC
DB 'Be Re~ister'rO

CALL DBSDisplay
DB DBSDE
DB 'DE Register',O

CALL DBSDisplay
DB DBSHL
08 'HL Register',O

CALL DBSDisplay
DB DBSSP
DB 'SP R99ister',O

LXI B,ByteSBC
LXI D,ByteSDE
LXI H,ByteSHL

Test byte indirect displaY

CALL DBSDisplay
DB DBSBSBC
DB 'Byte at (BC)', 0

CALL DBSDisplay
DB DBSSSDE
DB 'Byte at (DE)', 0

JDump memor y
.Check error handling where
, start > end address

'DUMP mernor y
,Cheek end-ca.e of single byte
I output

,Call the debug routine

rCal1 the debug routine

,Call the debug Youtine

,Call the debug routine

;Call the debug routine

;Call the debug routine

Test pass count logic

CALL DB'On
CALL DBSI1SGI
DB ODH,OAH,'DebuQ output has been re-enabled.',O

CALL DBSOff ,Disable debug output
CALL DBSI1SGI ,Display in-line message
DB ODH,OAH.'This message should NOT appear',O

Test DBSOn/Off

,Call" the debug routine

;s.t up the registers for word tests

,Call the debug routine

,Call the debug routine

,Call the debug routineDBSDispiay
DBSWSBC
'Word at (BC)',O

DBSDispiay
DBSSsHL
'Byte at (HU',O

B,WordSBC
D,WordSDE
H,WordSHL

DBSDlspiay
DBSWSDE
'Word at (DE)',O

DB.Display
DB'WSHL
'Word at (HL)',O

CALL
DB
DB

LXI
LXI
LXI

CALL
DB
DB

CALL
DB
DB

CALL
DB
DB

0250 CD:520:5
0253 IE
0254 4279746520

0261 013503
0264 113703
0267 213903

026A CD5205
0260 20
026E 576F726420

028C CD5205
028F 24
0290 576F726420

,II

0278 CD5205
027E 22
027F 576F726420

0290 CDID05
02AO CDD607
02A3 ODOA546869

02C4 CD150:5
02C7 CDD607
02CA OD0A446562

,II

00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
0042:5
00426
00427
00428
00429
00500
00501
00502
00503
00504
00505
00506
00507
00508
00509
00600
00601
00602

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 333

Equate. foY DB.Display code.
The.e equat•• are the off ••t. down the table of addresses
for v~riou. subroutin•• to be u ••d.

ORO 400H ,To avoid unnecessary listings
when only the testbed ch~nges

,---
,It

Test debug input/output

CAL.L DBSOff ;Chiltck that debug IN/OUT
must .t i 11 occur when debug, output is disabled.

RST 4 ; Debug input
DB 111'1 ;Port number
RST 5 ;Debug output (value retu", ... from input)
DB 221'1 ,P"rt numb.,.-

JHP 0 ,Warm boet at IIiilnd of t".tb"d

,set lOOp eou"t~r .reat~r than pa5~

eount.",

JDt~able debug output
,Set p ... s ~ol"lnt

;Address for RST 4 - IN instruction

,DeQrement p«s. ~Qunt

,Displ.1 in-line m••••~.
message should displ.i1v 5 tim.!i~.O

201'1

,Fl'-liS
,A register
,B
,C
,D
,E
,1'1,L
,Be
;DE
,HL.
,St.~k pointer
,Memory
,(Be)
,(DE)
, (HL)
,(BC+I).(BC)
,(DE+I).(DE)
• (HL.+I) • (I'll)

99991'1. 99991'1. 9999H. 99991'1. 99991'1. 99991'1. 99991'1. 99991'1
99991'1. 99991'1. 99991'1. 99'91'1. 99991'1. 99991'1. 9999H. 9999H
99991'1. 99991'1. 99991'1. 99991'1. 99991'1. 99991'1. 9999H. 99991'1

for byte and word dl.pl~y.

OBCH
ODEH
OFIH

OBOCH
ODOEH
OFOIH

DBSOff
DBSSetspass
30

DSSPus
DBSMSOI
ODH.OAH.'Thls
A
TesUPassSLoop

DW
DW
DW

DW
DW
DW

EQU

00
02
04
06
OB
10
12
14
16
18
20
22
24
26
28
30
32
34
36

valu••
DB
011
DB

CALL
CALL
DW

I'IVI

,It

Debug subroutine.

; Dummy
llyt••BC.
llyt.SDE.
ByteSi'lL.

TvsttP..5li.Loop;
CAL.L.
CAL.L.
DB
DCR
JNZ

,
DSsF EQU
DBSA EQU
DBSB EQU
DBSC EQU
DBSD EQU
DBSE EQU
DS'H EQU
011'11'" EQU
DB'BC EQU
OS'OE EIilU
DStHL EQU
DBtSP EQU
DBtH EQU
DBtBtBC EQU
DBSBSDE EQU
DBtSSHL EQU
DBSWSBC EQU
DBSWtDE EQU
DBsWsHL EQU

,,
RST4

,
WordSIlC.
WordSDE.
WordSi'lL.,

9999999999
999""999
999"99999

T... USt.-ck,

032F C30000

032B E7
032C II
0320 EF
032£ 22

02F8 CD3505
02FB CDD607
02FE ODOA546869
0324 3D
0325 C2F902

02EE CDID05
02FI CD240:,\
02F4 IEOO

0328 CDID05

0400

033B
034B
035B

0332 BC
0333 DE
0334 FI

0335 acOB
0337 OEOD
0339 OIOF

02F6 3E22

0000 •
0002 =
0004 =
0006
0008 •
OOOA =
oooc •
OQQE
0010 •
0012 •
0014
0016 •
0018 •
oolA •
OOIC •
OOIE •
0020·
0022 =
0024 =

0020·

00603
00604
0060:'\
00606
00607
00608
0060'
00610
00611
00612
00613
00614
00700
00701
00702
00703
00704
00705
00706
00707
00709
0070'
00710
00711
00712
00713
00714
00715
00716
00717
00718
00719
00720
00721
00722
00723
00724
00725
00726
00727
00728
00729
00730
00731
00732
00900
00901
00902
00903
00804
00805
00906
00907
00808
0080'
00810
00811
00812
00813
00914
0081:'\
00816
00817
00818
0081'
00820
00821
00822
00923
00824
00925
00926
00927
00829
00929
00930
00931

Figure 10-2. (Continued)

334 The CP/M Programmer's Handbook

Main debuQ variable. and constants

RST:5 E;~U 28H ;Address for RST :5 - OUT Inotruction,
B.CONIN EQU I ,BOOS CONIN function code
B'CONOUT EQU 2 ,BOOS CONOUT function code
B.READCONS EQU 10 ;aoos read console function code
BDOS EQU 5 ,BOOS entry point,
False EQU 0
True EQU NOT False,

DB'Save'HL,
0409 00 DBSSaveSL. DB 0
040A 00 DBSSave'H. DB 0

040B 0000 DBSSaveSSP, OW 0
0400 0000 DB'SaveSRA. OW 0
040F 0000 DB$CaIISAddre •• , OW

DB'Start'Addreo~,

0411 0000 OW 0
DB'EndSAddr... ,

0413 0000 OW 0
DB.Display.Code:

041:5 00 DB 0

DB'PolledSIO EQU False
DBSBIOSSIO EQU Fals.
DBSBDOSSIO EQU True

DBSStatu.SPort EQU OIH
DBSDataSPort EQU 02H,
DBSInputSReady EQU OOOOSOOIOB
DBSOutputSReady EQU OOOOSOOOIB

BIOSSCONIN, DB JMP
OW 0

BIOSSCONOUT, DB JMP
OW 0

;Equates for polled I/O
;Console status port
;Console data port

,Data for BIOS I/O
;The initialization routine sets these

two JMP addresses into the BIOS

; Incoming data ready
;Ready for oulput

,Equate. to .peclfy how DB'CONOUT
, and DB'CONIN .hould perform
, their input/output
,)

;) Only one must be true
,)

,Display code requested

;End address for memory display

,Save area for Itack point.r
,Save area for return address
o ,Starts out the same as DB$Save$RA
, but DB$Save$RA g~ts updated during

debug processing. This value is
: output ahead of the caption
,Start address for memory display

,Main debu" control fla"
When this flag is nonzero, all debug
output will be made. When zero, all
debuQ output will be suppressed.
It is altered either directly by the user
or u51n9 the routines DB.On, DB$Off and
DB.Pa...

;Pass counter
When this is nonzero, calls to DB$Pass
decrem~nt it by one. When it reaches
zero. the debug control flag. DB$Flag.
is set nonzero. thereby enabling
debug output.

;Save area for HL

,Stack area
9999H. 9999H. 9999H. 9999H. 9999H. 9999H. 9999H. 9999H
9999H. 9999H. 9999H. 9999H. 9999H. 9999H. 9999H. 9999H
9999H. 9999H. 9999H.9999H. 9999H. 9999H. 9999H. 9999H
o ;E register
o ;D register
o ;c r~gister

o ;B register
o ,Flags
o ;A register

,Debug stack area
The registers in the stack area are PUSHed
onto the stack and accessed directly.

o

o

OW
OW
OW
DB
DB
DB
DB
DB
DB

,
DB'Pa••'Count, OW

,
DB'Fla". DB

0407 0000

0416 9999999999
0426 9999999999
0436 9999999999
0446 00 DBSSaveSE,
0447 00 DBSSav@SD,
0448 00 DBSSave'C,
0449 00 DBSSave'B,
044A 00 DB'Save'F,
044B 00 DBSSaveSA,

DBSStack,

0001 •
0002

0002 =
0001 =

0400 C3
0401 0000
0403 C3
0404 0000

0000
0000 =
FFFF

0406 00

0028 •

0001 •
0002 •
OOOA •
000:5 =

0000
FFFF •

00832
00833
00834
0083:5
00836
00837
00838
00839
00840
00841
00842
00843
00844
0084:5
00846
00847
00848
00849
008:50
00851
008:52
00853
008:54
008:55
008:56
00857
00858
00859
00860
00861
00862
00863
00864
00865
00866
00867
00868
00869
00870
00871
00872
00873
00874
00875
00876
00877
00878
00879
00880
00881
00882
00883
00884
00885
00886
00887
00888
00889
00890
00891
00892
00893
00894
00895
00896
00897
00898
00899
00900
00901
00902
00903
00904
0090:5
00906
00907
00908
00909

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 335

I
DB'Reglster'Captlons,

Th. table b.low, lnd•••d by the Dlsplay.Cod. i. u••d to acce••
the register caption .trin9.

Flags masks used to t •• t us.r flag byte
I
DB.Flag.Masksl

04£4 01 DB 0000.000111 ,C.rrl
04E5 40 DB OlOO.OOOoe ;Z.....o
04E6 BO 08 1000.00001 IMlm.lii
04E7 04 Oil 0000.01001 J Evun Piu-l t y
04EB 10 DI OOOltOOOOI ,Int9ydlgit Q.rry tx carry)
04E9 00 DB 0 ,Termlnilotor

I'

IUse 810S for CONIN/CONOUT
,Oet warm boot address from base
, p.~e. H = BIOS jump vector page
,G.t CONIN offset In jump vector
; Set up address
;Oet CONOUT offset in jump vector

, Flag.
,A register
'B
'C
'0
IE
'H
'L;ac
IDE
IHL
J Stack pointer

Address ",0 ,Memory
IIBC)
, IDE)
IIHU
,IBC+I),IBc>
IIDE+l),IDE)
I IHL+I), IHU

,Flags
,A register
,B
IC
ID
IE,H
'L,ac
,DE
,HL
,SUck pOint ...
,M..",ory
,IBC)
'IDE)
,IHU
IIBC+l).IBC)
I IDE+I). IDE)
, IHL+I). IHU

~s.t up J"P In.t~uctton. to ~~e~tv. eontrol
wh.n an RST tn.t~uetton t~ ~H.euted

,s.t J"P tn.t~uetton. at RST points

'CxZxMxExIx',O ,Compatible with DDT"s display

"Flags',O
'A'.O
'B',O
'C' ,0
'D'.O
'E' .0
'H' ,0
'L' .0
'BC' ,0
"'OE"',O
'HL'.O
'SP',O
"'Start, End
'IBC)',O
• WE)' ,0
'IHU' ,0
'IBC+I),IBC)',O
'IDE+I), IDE)'. 0
• (HL+I) , IHU' • 0

De.BIOS.IO
I

L,09H
BIOS.CONIN + 1
L.OCH
BIOS.CONOUT + 1

DB

DB'F'RC
DB'A'RC
DB'B'RC
DB'C'RC
DB'D'RC
DB'E'RC
DB.H.RC
DB'L'RC
DB'BC'RC
Oe'OE'RC
Oe'HL'RC
DB.SP.RC
DB'M'RC
DBSBSBC.RC
DB.BSDESRC
DB'B'HL'RC
DB'W'BC'RC
DB'W'DE'RC
DB'W'HL'RC

DB
DB
DB
DB
DB
DB
OB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

MVI

DW
DW
DW
DW
DW
DW
OW
DW
DW
OW
OW
DW
DW
OW
OW
DW
DW
DW
OW

DB'Inlt
This routine initi.liz•• the debut peekag••

MVI
SHLD
MVI
SHLD
ENDIF

,,
DB'Init.

IF
LHLD

Flags message

044C 7204
044E 7804
0450 7A04
0452 7C04
0454 7E04
0456 8004
0458 8204
045A 8404
045C 8604
049 8904
0460 8C04
0462 BF04
0464 9204
0466 A604
0468 AB04
046A B004
046C B504
046E Cl04
0470 CD04

04EA 3EC3

I
04D9 437B5A784DDB.Flags.Msgl

I
0472 466C616773DB.F.RC.
0478 4100 DB'A'RC.
047A 4200 DB'B'RC,
047C 4300 DB'C'RC.
047E 4400 DB.D.RC.
0480 4500 DB'E'RC.
0482 4800 DB'H'RC.
0484 4COO DI.L.RC.
048~ 424300 DBSBC.RC.
0489 444500 DB.DE'RC,
048C 484COO DB'HL'RC,
048F 535000 DB.SP.RC,
0492 5374617274DB.M.RC.
04A6 2842432900DB'B'BC'RC,
04AB 2844452900DB'B'DE'RC,
04BO 28484C2900DB.B.HL.RC,
04B5 2842432B31DB.W.BC.RC.
04CI 2844452B31DB.W.DE.RC,
04CD 28484C2B31DB.W.HL.RC,

00910
00911
00912
00913
00914
00915
00916
00917
00918
00919
00920
00921
00922
00923
00924
00925
0092'
00927
00928
00929
00930
00931
00932
00933
00934
00935
00936
00937
00938
00939
00940
00941
00942
00943
00944
00945
00946
00947
00948
00949
00950
00951
00952
00953
00954
00955
00956
00957
00958
00959
00960
00961
00962
00963
00964
00965
00966
00967
0096B
00969
01100
01101
01102
01103
01104
01105
01106
01107
01108
01109
01110
01111
01112
01113
01114
01115
0111'

Figure 10-2. (Continued)

336 The CP/M Programmer's Handbook

Exit parameter's

;Get character from keYboard
;Fold to upper and return

,Simple polled input
;Check if incoming data

,No
,Input data character
,Save data character
;Ready for output
;Echo it back
,Recover data character

fUse enos for input
,Read consol.
,BDOS return. to our caller

,Ignore output If disabled

,No
,Get data byte

'Us. BIOS for input
,This was s.t up during BIOS

inl tiallzation

;Check if debug output enabled

fUse BIOS for output

~U.e simple polled output
,Check if r.ady for output

'Us. BOOS for output
;Move into correct register

;Address of fake input routine

;Address of fake output routine

R$T4
RST5
H.DB'lnput
RST4 + 1
H.DB'Output
RST5 + 1

DB.CONIN
DB.II.To.Upper

A • character from console

DB.Polled.IO
DB'Status'Port
DB.lnpuURudy
DUCONIN
DB.Data.Port
PSW
C.II
DB'CONOUT
PSW

DB.BDOS.IO
C.B.CONIN
BDOS

DB'BIOS'IO
BIOS'CONIN

DB'Polled'IO
DB.Status.Port
DB.Outpu\$Ready
DB'CONOUT
II.C
DB.Data.Port

OB.BOOS.IO
E.C
C.B'CONOUT
BOOS

DB.BIOS.IO

RET

STII
STII
LXI
SHLD
LXI
SHLD

IF

IF
MOV
MVI
..IMP
ENDIF

IF
IN
IINI
..IZ
MOV
OUT
RET
ENDIF

,
DB.CONINU,

CIILL
..IMP

IF
MVI
..IMP
ENDIF

ENDIF

DB'CONOUT
This routine outputs the character in the C reei.ter to the
console. using simple poll.d I/O. the BOOS or the BIOS.

DB.CONINU
This routine returns the next character from the console.
but converting "a" to liZ" to uppercase letters.

IF
..IMP

DB.CONIN
This routine returns the next character from the console.
According to the setting of equates, it uses simple
polled I/O. the BDOS (funetion 2> or the BIOS.

,
DB.CONIN,

IF
IN
liN I
..IZ
IN
PUSH
MOV
CIILL
POP
RET
ENDIF

Entry parameters
, II = byte to b. output,
DB'CONOUT.

LDII DB.Flag
ORII II
RZ

04EC 322000
04EF 322800
04F2 2111108
04F5 222100
04F8 216C08
04FB 222900

04FE C9 ,.,
04FF CD0505
0502 C31B09

0505 OEOI
05Q7 C30500

05011 3110604
050D B7
050E C8

050F 59
0510 0E02
0512 C30500

01117
01118
01119
01120
01121
01122
01123
01124
01200
01201
01202
01203
01204
01205
01206
01207
01300
01301
01302
01303
01304
01305
01306
01307
01308
01309
01310
01311
01312
01313
01314
01315
01316
01317
01318
01319
01320
01321
01322
01323
01324
01325
01326
01327
01328
01329
01330
01331
01332
01400
01401
01402
01403
01404
01405
01406
01407
01408
01409
01410
01411
01412
01413
01414
01415
01416
01417
01418
01419
01420
01421
01422
01423
01424
014~

01426
01427
01428

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 337

I
DB.P....

0:53:5 F:5 PUSH PSW .Save user~s registers
0:536 E~ PUSH H
0:537 2A0704 LHLD D8.P....Count .Oet pass count
0~3A 2B DCX H
0l53B 7C MOV A,H .Check If count now ne,ative
0l53C B7 ORA A
01530 FA470~ DB.P.....x :V.,.. take no fU... th.... aetton
01540 220704 9HLO DB,P•••SCount is.v. downd.t.d count
0:543 B:5 ORA L ,Che"k if "ount now ;a.,-o
0:544 CA4A0:5 ,,)Z De.p....ED ~ VeSr .ne.bl. debug

DB.P..... , ,
0:547 EI POP H ,Recover u..... ~s "'_9ist@... s
0~48 FI POP PSW
0~49 C9 RET

,s.t control fl.~ on

,Move into correct register
,S.t up during debug Initialization

,Preserve registers

,Clear control fl.~

,Pr•••rve user~5 HL
,Recover return address
,Pre.erve u••r~. DE
,G.t LS byte of count
,Update pointer
,Get I1S byte
rHL point, to return eddy•••
,HL • p.s. ~Qynt.r

,S.t d.bu~ P••• coYnter
.HL point. to return addr•••
'R.~Qv.r u••r~. DE
,R.~ov.r u ••r~s Hl and •• t
, return addr••• on top of stack

DB.Set.Pas.
Pa••SCount'Value

PSW
A,OFFH
D8.Fl.g
PSW

A,C
8IOS.CONOUT

PSW
A
De.Flag
PSW

CALL
OW

D

DB'Save'HL
H
o
E,I1
H
0,11
H

DB.Off
Thi. routine dl.able••11 debug output by ••ttlng the
DB.Flag to zero.

110V
..JI1P
ENDIF

PUSH
I1VI
STA
POP
RET

PUSH
XRA
STA
POP
RET

D8.S.t.P...
This routine •• t, the pa•• eounte~. Sub••~u.nt eal1~ to DB.Pas.
decrement the count. and when it ~.aeh.1 0, debu9 output
is en.bled.

,I
I

I
De'Off,

RET

08.0n,

D8.0n
Thi. routine en.ble••11 debug output by •• tting the
De.Fl.g non.ero.

II,,
I
I
I,
I,,,,
DB.S.t.P... ,

SHLD
POP
PUSH
110V
INX
110V
INX
XCHO
SHLO
XCHO
POP
XTHL

II
I
, DB.Pu.
, This routine decrements the debug pass counter -

if the result il neg.tive~ it tak•• no further action.
If the re.ult il Z.ro~ it .ets the debug control fl.9 nonzero
to enable debug output.

0515 F5
0~16 3EFF
0518 320604
0:518 Fl
0:51C C9

0:510 F:5
O~IE AF
0:51F 320604
0:522 Fl
0:523 C9

0524 220904
0527 EI
0~28 05
0~29 :5E
0~2A 23
0:528 ~6

0:52C 23
01520 EB
0152E 220704
01531 EB
0532 01
0533 E3

0:534 C9

01429
01430
01431
01~00

01501
01~02

01~03

01504
01~0~

01~06

01507
01508
01509
01510
01:511
01600
01601
01602
01603
01604
0160:5
01606
01607
01608
01609
01610
01611
01700
01701
01702
01703
01704
0170:5
01706
01707
01708
01709
01710
01711
01712
01713
01714
01715
01716
01717
01718
01719
01720
01721
01722
01723
01724
0172~

01726
01800
01801
01802
01803
01804
0180:5
01806
01807
01808
01809
01810
01811
01812
01813
01814
0181~

01816
01817
01818
01819
01820
01821
01822

Figure 10-2. (Continued)

338 The CP/M Programmer's Handbook

Calling sequence

When the display code specifies a block of memory
the sequence iSI

DisplaY ~od. identifies which rvgister(s) are to be
displayed.

DB.Display
This i. the primary debug display routine.

; Enab lilp debug

,Save user"s HL

,HL -) caption string

,HL = end address, DE -> caption

,Set debug control flag

,Switch to local stack

,HL = start address

,Recover flags

,Save actual address of CALL
,Recover return address

;Correct for extra PUSH PSW needed
to save the flags

;Check if memory to be displayed

;HL -) end address
;G_t DE = end address

;Update return address

;Get return address
;Get display code

,Temporarily save flags to avoid
; them being changed by DAD SP
;Preserve stack pointer

,Save other user;s registers
;The stack area is specially laid

out to access these registers

;Get DE = start address

,Oet return address from stack
'This gets updated by debug code
,Save return address temporarily
,Subtract 3 to address call instruction
, itself

SP,DB'Stack

PSW
B
o

DB'Start'Address

DB'Save'RA
A,M
DB'Display'Code
H

DB'M
DB.Not.Memory
E,M
H
D,M
H

PSW

H,O
SP
H
H
DB.Save'SP
PSW

E,M
H
D,M
H

A,OFFH
D8.Fleg
DB.Pus'.

DB'Save'RA
H
H
H
H
DB'Call$Address
H

DB'End'Addren

LXI
DAD
INX
INX
SHLD
POP

XTHL
SHLD
PUSH
DCX
DCX
DCX
SHLD
POP

PUSH

LXI

PUSH
PUSH
PUSH

LHLD
MOV
STA
INX

CPI
JNZ
MOV
INX
MOV
INX
XCHG
SHLD
XCHO
MOV
INX
MOV
INX
XCHG
SHLD
XCHO

,*

,
DB.Display.Enabled.

SHLD DB'Save'HL

,
DB.Display.

,
D8.Pus.Ed,

MVI
STA
JMP

CALL DB.Di.play
DB Di.play.Code
OW Start'Addres.,End'Addre••
DB 'Caption Strin~',O

CALL DB.Di.play
DB Display'Code
DB 'Caption String',O

0552 220904

054A 3EFF
054C 320604
054F C34705

0562 210000
0565 39
0566 23
0567 23
0568 220804
0568 FI

0555 E3
0556 220004
0559 E5
055A 28
0558 28
055C 28
0550 220F04
0560 EI

0561 F5

056C 314C04

056F F5
0570 C5
0571 05

0572 2AOD04
0575 7E
0576 321504
0579 23

057A FEI8
057C C29105
057F 5E
0580 23
0581 56
0582 23
0583 E8
0584 221104
0587 E8
0588 5E
0589 23
058A 56
0588 23
058C E8
0580 221304
0590 E8

01823
01824
01825
01826
01827
01900
01901
01902
01903
01904
01905
01906
01907
01908
01909
01910
0191l
01912
01913
01914
01915
01916
01917
01918
01919
01920
01921
01922
01923
01924
01925
01926
01927
01928
01929
01930
01931
01932
01933
01934
01935
01936
01937
01938
01939
01940
01941
01942
01943
01944
01945
01946
01947
01948
01949
01950
01951
01952
01953
01954
01955
01956
01957
01958
01959
01960
01961
01962
01963
01964
01965
01966
01967
01968
01969
01970
01971

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 339

Memory displays look like I

A carriage return, lin. f ••d tl output at the start of the
m••••lI. - but NOT at the .nd.

; Get end address

,Display ~ I '"

,S.ve pointer to caption .trinll
,Dt.pl., Q.rri~g. return. Itne f ••d
,Di.pl•• D8.Call.Addre•• in hew.

,R.~ov.r pointer to eaptton strinv
,HL -> capt ian .trlnll
,O.t Qharacter

,Check if end of .trinll
'V••

;Th. memQry dilPl., rvquires a epecial
Q.ption with the start and ~nd

; .dd,........
,Display specific caption

,Save word value for later

,Save strtn~ pointer
,ReadY for output
,Display character
,Recover .trin~ pointer
,Go back for neMt character

;Display start address
'Display HL in hex.

,Memory display is a special case
;Ves

,Display register caption
,Oet us.r~s display code
;Make display code into word

,DE -> register caption string
;HL -> register caption string.
,Display message addressed by HL

;Make pointer to address in table
'HL -) word containing address of
; register caption
;Oet LS byte of address

'Save updated return address

I V.lu"
Register Caption (A, B, c •••)

H
DB'CRLF
DB'DI.pl.y'CA~~A

H
C.A
DB.CONOUT
H
DBSDi.playSCaplion

H,DBSRegisterSCaptions
D

DB.DisplaySCod.
E.A
D.O
D

D8sM
D8SDi.playSM"mSCaption

E.M
H
D.I'I

DBSI'ISG

DB.MSGI
, = '.0
D8.S"lectSRoutlne

DBSSav".RA

DBSColon

C.II Addr....

LXI H.D8SMSRC
CALL DBSI'ISO
CALL D8SCoion

LHLD DBSStartSAddr•••
CALL DBSDHLH

CALL DBSI'ISOI
DB . '.0

LHLD DB.End.Addr....

PUSH
CALL
CALL

CALL

PUSH
1'I0V
CALL
POP
~I'IP

LDA
1'I0V
I'IVI
PUSH

CpI
~Z

LXI
DAD

1'I0V
INX
1'I0V
XCHO
CALL

CALL
D8
oil'll'

nnnn Caption String I Start, End 55•• , ••••
•••• hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh , cccc cccc cccc cccc

D8'Not'I'I~MorYI,
• ~utput p~••Mbl. end cep\i9n .t~lng

• The form.t for wywr,thing except m~mory display t ••,
, nnnn i C.p\iQn String I RC = YVVV.

,
DBSOispl.,.Mem'C.p\ton.

POP H
DB.DIspl.y.C.ption:

!'IOV A.I'I
INX H
ORA A
~Z DB'EndSCaplion

,
DB.EndSCaption,

SHLD

05AE 3AI:504
0:581 :5F
0582 1600
0:584 D5

0:58:5 FEI8
0587 CACFO:5

0:58A 214C04
058D III

058E 5E
0:58F 23
O:5CO :56
O:5CI E8
05C2 CDEE07

05C5 CDD607
0:5C8 203D2000
O!lCC C3EDO:5

0:5E4 2AI304

O:5CF 219204
05D2 CDEE07
05D5 CDC807

05D8 2All04
05D8 CD8707

05DE CDD607
05EI 2C2000

05A8 220D04

05A8 CDC807

0:5111 E:5
05512 CDCI07
0"5 CD7C07

0518 EI

0:119 7E
O:lllA 23
0:1'8 87
05llC CAA80:1

O:5l1F E:5
O:lAO 4F
O:IAI CDOAO:l
0:IA4 EI
O:IA:I C311110:5

011172
Oilln
Ol1l74
Oilln
011l7'
011177
011178
0111711
011180
011181
011182
011183
011184
011l8:5
011l8'
011187
011188
0111811
011l1l0
Ollllli
011l1l2
Ol1l1l3
0111514
01515':5
Olllll'
Oill1l7
0111518
01511111
02000
02001
02002
02003
02004
0200:5
0200'
02007
02008
02001l
02010
02011
02012
02013
02014
0201:5
02016
02017
02018
02011l
02020
02021
02022
02023
02024
02025
02026
02027
02028
020211
02030
02031
02032
02033
02034
0203:1
02036
02037
02038
02039
02040
02041
02042
02043
02044
0204:5
02046
02047
02048

Figure 10-2. (Continued)

340 The CP/M Programmer's Handbook

Debu9 di.p14Y processing routines

Display HL in hex.
Display carriage return. line feed
Drop into select routine

;Recover word value Display$Code

,"CALL" display processor

;Fake link on stack

,HL -) address of code to process
; display requirem@nts
;Get LS byte of address
;Update pointer
pOet MS byte of address
;HL -) code

pOet updated return address (bypasses
; in-line parameters)
;Replace on top of user's stack
;Get useyo's HL
;Transfer to correct return address

;Revert to user/s stack

;Return to the user
;Recover user~s registers saved

on local debug stack

;Update flag mask pointer

;Store "'0-- Or "'1'" in message text
;Update pointer to next 0/1

;o.t ntxt flag mask
;Check if end of table
;Yes. display the results

;Check if this flag is set
;Assume yes
'Yes, it is set
;No, it is clear

;Displ~Y results

, Flags
;A nEr9ister
,B
,C
,0
,E
'H
,L
,BC
,DE
,HL
;Stack pointer
,Memory
, (BO
, <DE)
,(HU
I (BC+I). (B(:)
I WE+ll. (DE)
,(HL+I). (HLl

DB$DHLH
DB$CRLF

o
A
DBFD;op I ay

D,CS'Exit
o

DB$Save$RA

B
A.' I'
DBFNZ
A. '0'

DB$Save$HL

M.A
H
H
D
DBFN..t

DP$F
DP$A
DP$B
DP$C
DP$D
DP$E
DP$H
DP$L
DP$BC
DP$DE
DP$HL
DP$SP
DP$M
DPBBe
DPBDE
DPBHL
DPWBC
DPWDE
DPWHL

o
B
PSW
DB$Save$SP

CALL
CALL

;Flags
;The flags are displayed in the same way that
, DDT uses, CIZOMOEOIO

DBSSav.$F ; Get flags
B, A ; Preserve copy
H,D8$Flags$Msg + 1 ;HL -> first 0/1 in message
D.DS.Flag'Masks ;De -) table of flag mask values

LXI
PUSH
PCHL

XTHL
LHLD
RET

DW
ow
ow
ow
ow
ow
ow
ow
DW
ow
DW
DW
ow
ow
ow
ow
ow
ow
ow

MOV E.M
INX H
MOV D.M
XCHG

DB$Select$Routine,
POP 0
LXI H.DB$Display$Table
DAD D

DB$Display$Table,

,
DB$Exit ,

POP
POP
POP
LHLD
SPHL
LHLD

,II,,
DP$F:

05E7 CD8707
05EA CDCI07

05ED 01
05EE 210A06
05FI 19

05F2 5E
05F3 23
05F4 56
05F5 EB

05F6 IIFB05
05F9 05
05FA E9

0605 E3
0606 2A0904
0609 C9

0630 3A4A04 LDA
0633 47 MOV
0634 21DA04 LXI
0637 IIE404 LXI

DBFNext:
063A IA LOAX
063B B7 ORA
063C CA4E06 .JZ

063F AO ANA
0640 3E31 MVI
0642 C24706 .JNZ
0645 3E30 MVI

DBFNZ.
0647 77 MOV
0646 23 INX
0649 23 INX
064A 13 INX
064B C33A06 ..IMP

DBFDioplay.
064E 210904 LXI

05FB 01
05FC CI
05FD FI
05FE 2AOB04
0601 F9
0602 2AOD04

O6OA 3006
060C 5406
060E 5A06
0610 6006
0612 6606
0614 6C06
0616 7206
0616 7606
061A 7E06
061C 8406
061E 6A06
0620 9006
0622 9606
0624 4907
0626 5007
0628 5707
062A 5E07
062C 6607
062E 7207

02049
02050
02051
02052
02053
02054
02055
02056
02057
02056
02059
02060
02061
02062
02063
02064
02065
02066
02067
02066
02069
02070
02071
02072
02073
02074
02075
02076
02077
02078
02079
02060
02081
02082
02063
02084
02065
02066
02067
02066
02089
02090
02091
02092
02093
02094
02095
02096
02097
02096
02200
02201
02202
02203
02204
02205
02206
02207
02208
02209
02210
02211
02212
02213
02214
02215
02216
02217
02216
02219
02220
02221
02222
02223
02224
02225
02226

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 341

02227 06!!1 C3EE07 JI'lP DB'I'lSO ,ViIPl., m••••g • ..nd retu,-n
02228 •02229 DP'A. ,A ,..84;llt_,..
02230 06!!4 3A4B04 LDA DBfSav.fA ,Get .aved value
02231 06!!7 C39107 JI'lP DBfDAH ,Display it and return
02232 ,
02233 DPfB, .B
02234 065A 3A4904 LDA DBfSav.fB ;Get saved value
02235 065D C39107 JMP DBtDAH ,Display it and return
02236 ,
02237 DPfC, ,C
02238 0660 3A4804 LDA DBfSav.fC ,Oet saved value
02239 0663 C39107 JMP DBfDAH ,Display it and return
02240 ,
02241 DP'D. ,D
02242 0666 3A4704 LOA DBfSavefD ,O.t "ved value
02243 0669 C39107 JMf> DBfOAH ,Dl.play it and ~etu~n
02244 ,
0224!! Df>$E, ,E
02246 066C 3A4604 LDA DB$Sav.$E ,O.t saved value
02247 066F C39107 JMP DB$DAH ,Display It and return
02248 ,
02249 DP$H. ,H
02250 0672 3AOA04 LDA DBfSav.'H ,Oet laved value
02251 0675 C39107 JMP DB'DAH ,Display it and return
02252
02253 DPfL, ,L
02254 0678 3A0904 LDA DB'Sav.fL ,G.t .aved value
0225!! 067B C39107 JMP DB$DAH ,Display it and return
02256 ,
02257 DPfBC. ,BC
02258 067E 2A4804 LHLD DB$Sav.fC ,O.t saved word value
02259 0681 C38707 JI'lP DBfDHLH ,Dlsplu It .nd return
02260 ,
02261 DP.DE: :DE
02262 0664 2A4604 LHLD DS'S.v.'E ,O.t ..vlld w<>~d Yillue
02263 0667 C31;1707 '"'I'll' DBtDHLH ,Display 1\ ..nd ,-vtu,-n
02264 ,
02265 DP.HL. ,HL
02266 066A 2A0904 LHLD DBfSave.HL ,G.t ••ved word value
02267 068D C38707 JMP DB'DHLH ,Dlsplu it .nd return
02268 ,
02269 DP$SP, ;Stack Pointer
02270 0690 2AOB04 LHLD DB.Sav.'SP ,Oet saved word value
02271 0693 C36707 JMP DB'DHLH ,Display it and return
02272 ,
02273 DPfM, ,Memory
02274 0696 2A1304 LHLD DBEndAdd~ ... ;Increment end addr••• to lIIak.
0227!! 0699 23 INX H arith••tic e.sier
02276 069A 221304 SHLD DB'End'Add~es.

02277
02278 069D 2A1104 LHLD DB'Sta~t'Add~ •••
02279 06AO CD3A07 CALL DB.M$Check.End ,Compare HL to End.Address
02280 06A3 DADl06 JC OB.I'l.Addr....OK ~End > at«rt
02281 06A6 CDD607 CALL DBSI'lSGI ,E~~OP atart } wnd
02282 06A9 000A2A2A20 DB ODH.OAHrr** ERROR - St.rt Addre •• > End .*'.0
02283 O'CD C' FlET
02284 ,
0228S DB$M.Nu t.Ll n",
02286 06CE CDCI07 CALL DS$CFlLF ,Output earriage return, line feed
02287 DB'M'Add~."$OK, :Bypass CR,LF for fir5t line
02288 06Dl CDD607 CALL DB$I'lSO! : Indent lin.
02289 06D4 202000 DB ',0
02290 06D7 2A1104 LHLD DB'Sta~t$Add~ ••• , Get start of lin" address
02291 06DA CD8707 CALL DB$DHLH ,Display in heM
02292
02293 06DD CDC807 CALL DB'Colon ,Displ.ay r , ,
02294
02295 06EO 2A1104 LHLD DB'Sta~t$Add~e ••
02296 DBMNe.t.H"••Byt.,
02297 06E3 E5 PUSH H ,Save memory address
02298 06E4 CDOOO? CALL DB'Blank ,Output .. blank
02299 06E7 El POP H 'Recover current byte add......
02300 06E8 7E MOil A.M ,G.t byte from m.mory
02301 Q6E':l 23 INX H ,U~d.t. m.~ory .oint
02302 06EA E5 PUSH H ,Save '101"" 1.t.~

02303 06EB CD9107 CALL DB$DAH ,Ol.pl.y In h"•• ,
02304 06EE El POP H ,R.eov.r .emory upd.t.d addr•••

Figure 10-2. (Continued)

342 The CP/M Programmer's Handbook

,o.t saved word v.lue
,Oet word .ddr••••d by it

,Get saved word value
;Get byte addre.sed by it
JDisplay it and return

,o.t saved word value
,O.t byte addressed by it
,Display it and return

,Get saved word value
,Get byte .ddr••••d by It
,Display it and return

,HL = current address
,R.cover DE
;Return with condition flags set

,Check if DEL (may be non-graphic)
,No, it is graphic
,Force to ".'

,Compare. HL v. End.Address
;Save DE (defensive pro9rammin9)
,DE· current address
;Oet end address
,Compare MS bytes

,Di.pl.y byte. In ASCII
,Displ .. y " : ..
,Start ASCII as beginning of line

,Output carriage return, 1 ine feed
and return

,Compare HL v •• end address
; Yes,. end of are.
,Check if at start of new line.
, (is addre •• XXXOH?)
rYes
,No, loop baek for anoth....

,Exit now as theY ar. un.qual
;Compare LS bytes

,Get byte fro~ memory
,Save memory address
,Remove parity
,Prepare for output
,Check If non-9r.phic
• Char >= space
,Display non-graphic as

,Display characte...
,Reeove ... memory address
,Update memory pointe ...
,Update memory COPY
,Check if end of memory dump
'V••, done
,Check If end of lin.
J by checking address == XXXOH
'V•• ,. start next line
,Cheek if extra blank needed

if addre •• i~ multiple of 4
,No -- go back for next character
,Yes, output blank
,Go back for next character

DBSMSCheckSEnd
DBSMSDi.pl.ySASCII
A.L
OOOOSII liB
DBSMSDispl.ySASCII
DBSMSNextSHexSByte

DBSCRLF

OBSCONOUT
H
H
DBSStartSAddr•••
DBSMSCh.ckSEnd
DBSMSExit
A.L
0000SIII18
DBSMSNe x t SLi n.
A.L
ooOOSOOI1B
OBSMSNextSASCllSByte
OBSBlank
OBSMSNextSASCllSByte

CALL
.JZ
MOV
ANI
.JZ
.JMP

;
OBSMSNoUDEL.

CALL
POP
INX
SHLD
CALL
.JZ
MOV
ANI
.JZ
MOV
ANI
,JNZ
CALL
.JMP

;
DBSMSOlsplaySASCII,

CALL DBSColon
LHLO OBSSt.rtSAddre.s

OBSMSNextSASCIISByte.
MOV A.M
PUSH H
ANI 0111SIII1B
MOV C.A
CPI
,JNC DBSMSDispl.ySChar
MVI C. '.'

DBSMSOlsplaySChar,
CPI 7FH
.JNZ DBSMSNotsDEL
MVI C.'.'

,
DB.M.Exit.

.JMp

I
DBSMSCheckSEnd,

073A D5 PUSH D
073B EB XCHG
073C 2AI304 LHLO OB.EndSAddres.
073F 7A MOV A.O
0740 BC CMP H
0741 C24607 .JNZ OBSMSCheckSEndSX
0744 7B MOV A.E
0745 BO CMP L

OBSMSCheckSEndSX.
0746 EB XCHO
0747 01 POP 0
0748 C9 RET,

DPSBSBC. ,(BC)
0749 2A4804 LHLO DBSSaveSC
074C 7E MOV A.M
074D C39107 .JMP DBsDAH,

DPSBSDE, ;(DE)
0750 2A4604 LHLO OBSSaveSE
0753 7E MOV A.M
0754 C39107 .JMP OBsDAH

I
DPSBSHL, ,(HU

0757 2A0904 LHLD DB.SaveSHL
075A 7E MOV A.M
075B C39107 .JMP DBSOAH,

OPSWSBC, ,(BC+l).(BC)
075E 2A4804 LHLD DBSS.veSC
0761 5E MOV E.M
0762 23 INX H

06FE CDC807
0701 2AII04

0717 CDOA05
071A EI
071B 23
071C 221104
071F CD3A07
0722 CA3707
0725 7D
0726 E60F
0728 CACE06
072B 7D
o'1x E603
072E C20407
0731 CDD007
0734 C30407

0710 FE7F
0712 C21707
0715 OE2E

06EF CD3A07
06F2 CAFE06
06F5 7D
06F6 E60F
06F8 CAFE06
06FB C3E306

0737 C3CI07

0704 7E
0705 E5
0706 E67F
0708 4F
0709 FE20
070B D21007
070E OE2E

02305
02306
02307
02308
02309
02310
02311
02312
02313
02314
02315
02316
02317
02318
02319
02320
02321
02322
02323
02324
02325
02326
02327
02328
02329
02330
02331
02332
02333
02334
02335
02336
02337
02338
02339
02340
02341
02342
02343
02344
02345
02346
02347
02348
02349
02350
02351
02352
02353
02354
02355
02356
02357
02358
02359
02360
02361
02362
02363
02364
02365
02366
02367
02368
02369
02370
02371
02372
02373
02374
02375
02376
02377
02378
02379
02380
02381

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 343

0763 :l6 HOV D.H
0764 EB XCHO JHL = word to be displayed
076:5 C38707 .JHP DBtDHLH ,Display it and return,

DPtW'DE. ,<DE+ll. (DE)
0768 2A4604 LHLD DB'Sav,,'E ,o"t .aved word value
076B 5E HOV E.H ,o"t word .ddr••••d by It
076C 23 INX H
076D :l6 HOV D.H
076E E8 XCHO ,HL • word to be displayed
076F C38707 .JHP DB'DHLH ,Display It and r"turn,

DP$W'HL, , (HL+I). (HU
0772 2A0904 LHLD DBtSav..tHL ,O"t saved word v~luv

0775 5E HOV E.H ,Oet word addressed by it
0776 23 INX H
0777 :56 HOV D.H
0778 EB XCHO ,HL = word to be displayed
0779 C38707 .JHP DB'DHLH ,Display it and return,

,I
DBtDlsplaytCALLA
This routine displays the DB.Call.Address in hexadecimal,
followed by " I "

,
,tt,
, DB$DAH
, Dtsplay A ~.91~t.~ In h.Mad.~tmal,

Entry parameters

,Conv.rt LS 4 bit~ to ASCII
,Di~pl.Y the character
,Get o~t.lnal value ••ain
,Convert LS 4 bit. to ASCII
,Display and return to caller

,i_v. ~.11.r~. HL
'Oet the Qall addre ••
,Display HL in h" ••
,ReQover ~~ll.r~& Hl
,Displ~y " I " and return

,Save input value
,O"t HS byt" first
,Display A in h.x~

,Recover input value
,O.. t LS bytl!
,Di.play It and r.turn

,Take a copy of the value to be converted
,Shift A right four p!aQes

HL = value to be displayed

A • value to be converted and output

H
A.H
DBtDAH
H
A.L
DBtDAH

PSW

DBtNlbbl"tTotH".
DB'CONOUT
PSW
DB'Nibbl"tTotHl!x
DB.CONOUT

Entry parameters

DBtCAH
Convert A r«9tster to hexadecimal ASCII and store 1n
specified address.

PUSH
RRC
RRC
RRC
RRC
CALL
CALL
POP
CALL
.JI1P

EntrY parameters

DB'DHLH
Display HL in hex.

,
DB'Displey'CALLA,

PUSlH H
LHLD DB'Call'Addre••
CALL DBfDHLH
POP H
JHP DBfCoIon,

,I,

,tt

,
DBtDHLH.

PUSH
HOV
CALL
POP
110V
.JI1P

,,
DB'DAHI

onc E5
077D 2AOF04
0780 CD8707
0783 El
0784 C3C807

0787 E5
0788 7C
0789 CD9107
078C EI
078D 7D
078E C39107

0791 F5
0792 OF
0793 OF
0794 OF
079!l OF
0796 CDB407
0799 CDOA05
079C FI
079D CDB407
07AO C30AO!l

02382
02383
02384
0238:5
02386
02387
02388
02389
02390
02391
02392
02393
02394
0239:5
02396
02397
02398
02399
02400
02401
02:500
02:501
02502
02:503
02504
02505
02506
02507
02:508
02509
02:510
02:511
02600
02601
02602
02603
02604
02605
02606
02607
02608
02609
02610
02611
02612
02613
02614
0261!l
02616
02700
02701
02702
02703
02704
02705
02706
02707
02708
02709
02710
02711
02712
02713
02714
02715
02716
02717
02718
02719
02800
02801
02802
02803
02804
02805
02806
02807

Figure 10-2. (Continued)

344 The CP/M Programmer's Handbook

HL -} byte following last hex. byte output

EMit parameters

A = value to be converted and output
HL -) buffer area to receive two characters of output

,Convert to ASCII hex.
,Save in memory
,Update pointer
,Oet ori9inal value again
,Convvrt to ASCII hex.
,Save in memory
,Update pointe ...

;Take .. copy of the value to be converted
.Shift A ri9ht four places

,DisplaY in-line messagv

,Display in-line message

,For convenience of other routines

,Isolate LS four bits
,Convert to ASCII
,Compare to .aximum
,No ne.d to convert to A -) F
,Convert to • lette ...

,Display in-line melsage

PSW

DBSI1SGI
, • ',0

C.A

DBSNibbleSToSHvx
I1.A
H
PSW
DBSNibbleSToSHvx
I1.A
H

DBSI1SGI
, '.0

DBSI1SGI
ODH.OAH,O

OOOOSI1I1B
'0'
'9" + 1
DBSNTHSNumeric
7

Minor subroutin••

A = nibble to be converted in LS 4 bits

Exit p ..rameters

A,t = ASCII heM. character

PUSH
RRC
RRC
RRC
RRC
CALL
110V
INX
POP
CALL
I10V
INX
RET

DBSNibbleSToSHex
This is • minor subroutine that converts the least
significant four bits of the A register into an ASCII
heM. eharacter in A and C

M••5a~. processing subroutines

,
DBSCAH,

DBSCRLF
Simple routine to di5play carria~. rvturn. line f ••d.

DBSColon
Simple rout ine to displaY " : ".

ANI
ADI
CPI
JC
ADI

DBSNTHSNumeric.
110V
RET

:41,

,
DBSNibblvSToSHex,

,
DBSCRLF,

CALL
DB
RET

,
DB$Blank:

CALL
DB
RET

,
DS.Colon:

CALL
DB
RET

DB$Blank
Simple rouline to displaY" ".

07A3 F5
07A4 OF
07A5 OF
07A6 OF
07A7 OF
07A8 CDB407
07AB 77
07AC 23
07AD F1
07AE CDB407
07B1 77
07B2 23
07B3 C9

07C8 CDD607
07CB 203A2000
07CF C9

07B4 E60F
07B6 C630
07B8 FE3A
07BA DABF07
07BD C607

07BF 4F
07CO C9

0700 CDD607
07D3 2000
0705 C9

07C1 CDD607
07C4 ODOAOO
07C7 C9

02808
02809
02810
02811
02812
02813
02814
02815
02816
02817
02818
02819
02820
02821
02822
02823
02824
02825
02826
02827
02828
02900
02901
02902
02903
02904
02905
02906
02907
02908
02909
02910
02911
02912
02913
02914
02915
02916
02917
02918
02919
02920
02921
02922
02923
02924
02925
02926
02927
02928
02929
02930
02931
02932
02933
02934
02935
02936
02937
02938
02939
02940
02941
02942
02943
02944
02945
02946
02947
02948
02949
02950
02951
02952
03100
03101
03102

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 345

,
oB'MSO.

07EE F:5 PUSH PSW ,S.V9 u•• r r.~ist.rs

07EF C5 PUSH B
07FO D5 PUSH 0

oB.MSG$Next.
07Fl 7E MOV A,M ,Oet next byte for output
07F2 B7 ORA A ,Cheek if OO-bvte terminator
07F3 CAOO08 JZ oBMSGX ,EMit
07F6 23 INX H ;Update me.sage pointer
07F7 E5 PUSH H ;Save updated pointer
07F8 4F MOV C,A ;Ready for output
07F9 CoOA05 CALL oB$CONOUT
07FC EI POP H ,Recover message pointer
07Fo C3Fl07 JMP oBMSGNex t ,Go back for next character,

oB'MSO'X.
0800 01 POP 0 ; Recover user's registers
0801 CI POP B
0802 FI POP psw

Calling sequence

"'Message"',O

,Recover user~s registers

tR.~Qv.r m••••~. pointer
,00 b~ck for n.xt ch.r.

,o.t return address of stack, save
J u.er HL on top of stack
,HL. -> m g..

;Recover usey HL from stack, replacing
; it with updated return address
,Return to address after OO-byte

after in-line message

,Save message pointer
,Ready for output

,G"t n"xt d"t. byt..
,Updatv message pointer
,Check if null byte
;No, continue

DB

L.XI H,MESSAGE
CAL.L. DB'MSO

H
C,A
oB$CONOUT
H
DnMSGI'N~Mt

PSW
B
D

A,M
H
A
oB$MSOIC

o
B
PSW

CALL OB.MSOI
DB ... M•••ag..... O
••• neKt instruction

MESSAOE.

oB$MSG
Output null-byte terminated message

Exit parameters
HL -) null byte terminator

EMit parameters
HL -) instruction following messag_

DB.MSOI (mella9" in-lin,,)
Output null-byt" terminated melsage that follows the
CALL to MSOOUT!

,,
OB.MSOII

0706 E3 XTHL

07D7 F5 PUSH
0708 C5 PUSH
0709 OS PUSH

OBtMSOItNeMt.
070A 7£ MOV
070B 23 INX
070C B7 ORA
0700 C2E507 JNZ

07EO 01 POP
07EI CI POP
07E2 FI POP
07E3 E3 XTHL

07E4 C9 RET

OB.MSOIC.
07E:5 E5 PUSH
07E6 4F MOV
07E7 COOA05 CAL.L.
07EA EI POP
07Ee C3DA07 JMP

03103
03104
0310:5
03106
03107
03108
03109
03110
03111
03112
03113
03114
0311:5
03116
03117
03118
03119
03120
03121
03122
03123
03124
031211
03126
03127
03128
03129
03130
03131
03132
03133
03134
03135
03136
03137
03138
03139
03140
03141
03142
03143
03144
0314:5
03146
03147
03148
03149
03150
03151
03152
031:53
03154
03155
03156
03157
03158
031:59
03160
03161
03162
03163
03164
03165
03166
03167
03168
03169
03170
03171
03172
03173
03174
0317:5
03176
03177
03178
03179

Figure 10-2. (Continued)

346 The CP/M Programmer's Handbook

I.
I
, Debull output ~outine

RET

Debug input routine

carriage return, line feed
~illl il.ddress
port number

,Convert to heM. and store in message
,Output prompting message

,Get previous HL
,Put on top of stack
,Get return address
,TOS • return address, HL = previous value

;Save port number for later

'Save user"', HL
'Recover address of port number
;Backup to point to RST
,Save for later display
;Restore to point to port number
;Note: A need not be preserved
;O~t port number
,Update return addre•• to bypass port number
,Save return address
.Save remaining re~i.ter.

,Oet 2 digit h••• value
,Return. value in HL
,Oet just single byte

~Input from Port ~

'XX , ',0
DB
DB

DBSFlavSSaveSOn ,Save current state of debug flag
and enable debug output

DB$Save$HL
H
H
DB$Cal1$Addrus
H

o
B
DB$Sav.$HL
H
DB$Sav.$RA

A,M
H
DB$Save$RA
B
o
PSW

DB$CRLF ,Display
DB$Display$CALLA,Display
PSW ,Re~ov.r

H,DBIN$Port
DB$CAH
H,DBIN$Message
DB$MSG
C,2
DB$GHV
A.L

This routine helps debug code in which input instructions
would normally occur. The opcode of the IN instruction
must be replaced by a value of OE7H (RST 4).

Input from port XX I

This routine picks up the port number contained in the byte
following the RST 4. converts it to hexadecimal. and
displays the message.

WARNING - This routine uses both DB$CONOUT and BOOS calls
••IE

It then accepts two characters (in hex.) from the keyboard.
converts these to binary in A. and then returns control
to the byte following the port number

This routine picks up the port number contained in the byte
following the RST 5, converts it to heMadecimal, and
displays the message.

This routine helps debug code in whieh output instructions
would normally occur. The opcode of the OUT instruction
must be replaced by a value of OEFH (RST 5).

,.0803 C9

I
DB$Input,

081A 220904 SHLD
0810 EI POP
081E 2B DCX
081F 220F04 SHLD
0822 23 INX

0823 7E MOV
0824 23 INX
0825 220004 SHLD
0828 C5 PUSH
0829 05 PUSH
082A F5 PUSH

082B CDBI08 CALL

082E CDCI07 CALL
0831 CD7C07 CALL
0834 FI POP
0835 211408 LXI
0838 CDA307 CALL
083B 210408 LXI
083E CDEE07 CALL
0841 OE02 MVI
0843 CDCF08 CALL
0846 70 MOV

0847 CDBFOS CALL

084A 01 POP
084B CI POP
084C 2A0904 LHLD
084F E5 PUSH
0850 2AOD04 LHLD
0853 E3 XTHL
0854 C9 RET

,
0804 496E707574DBIN$Message,
0814 5858203A20DBIN$Port,

03180
03300
03301
03302
03303
03304
03305
03306
03307
03308
03309
03310
03311
03312
03313
03314
03315
03316
03317
03318
03319
03320
03321
03322
03323
03324
03325
03326
03327
03328
03329
03330
03331
03332
03333
03334
03335
03336
03337
03338
03339
03340
03341
03342
03343
03344
03345
03346
03347
03348
03349
03350
03351
03352
03353
03354
03355
03356
03357
03358
03359
03360
03361
03362
03363
03500
03501
03502
03503
03504
03505
03506
03507
03508
03509
03510
03511

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 347

Output to po.t xx I AA

•__IE***
WARNINO - Thi~ .outine u.e. both D8SCONOUT and BOOS call.
w

where AA is the contents of the A register prior to the
RST 5 being executed.
Control is then returned to the byte following the port number.

flag,

,Save caller/I registers
,G.t current value
,Save it
,S.t flae

,Previous fla; valueo

,Convert value to be output
,Convert to hex. and store in messaQ.

,O.t ~r.viou. HL
,Put on top of stack
,Oet return address
,TOS • return addr••• , HL • previous value
,R.cov.r A (NOTE' FLAG NOT RESTORED)

'Recover registers

;Save port number for later

,Save user·'s I-IL
;Recover address of port number
,Backup to point to RST
,Save for later display
;Restore to point at port number
,Preserve value to be output
pOet port number
;Update return address to bypass port number
;Save return address
'Save remaining registers

DB

DB$SaveSA
H,DDO'Value
OBSCAH

DB.Flag$Save.On ;Save current state of debug f189
, and enable debug output

DBSCRLF ,Display ~arri.9. ,-eturnr line feed
OBSOi5~lay.CAL.LAIDi.plaY~.II .dd••••
PS,,", ,RIil'I;:'Qver POT t m,lmb.r
H.DeO.~ort

DS$CAH ;Convert to hex. and stor. in m~s~age

DB'FlagSRestore ,Re.tore debug flag to previous state

DBSSav.SA

H,DBD.Message
08SI1SG

D
8
D8SSav.SHL.
H
DBSSaveSRA

DB 'Output to Port '
DB 'XX; ,
DB 'M',O

OBSSaveSHL
H
H
OBSCaiiSAddress
H
OBSSaveSA
A.11
H
OBSSaveSRA
8
o
PSW

OBSFlaeSSav.SOn
Thl. rout in. is only us.d for D8SIN/OUT.
It sav•• the current st.t. of the d.buQ control
O.Fl.;, and then enable. it to make sure that
OBSIN/OUT output alway. eoe. out.

LXI
CALL

LDA
L.XI
CALL

CALL.

CALL

POP
POP
LHLO
PUSH
LHLO
XTHL
LOA
RET

CAL.L
CALL
POP
LXI
CALL

,I

,,,
DB.Flag.Previous.,
OBSFlagSSav.SOn,

PUSH PSW
LOA DBSFlae
STA OBSFlaeSP••viou.
I1VI A.OFFH
STA DBSFla..
PDP PSW
RET

,II
I
I,

0880 C08108

08Bl F5
0882 3,0,0604
0885 32B008
OS8S 3EFF
OBSA 320604
OSBD FI
088E C9

OSS3 CDC107
oee6 CD7C07
oeS9 Fl
oeeA 216408
oeeD CDA307

0890 3A4804
OS93 21690S
oe96 CDA307

oe99 215508
089C COEE07

089F coeF08

08,0,2 01
08,0,3 Cl
08A4 2,0,0904
08,0,7 E5
08,0,8 2,0,0004
08,0,8 E3
08AC 3A4B04
08AF C9

08BO 00

,
OB55 4F75747075D80.He~~~eRI

OB64 5B58203A20D80.~o.tl

0869 414100 DBO.V~luR',,
08S0utputl

SHLO
POP
OCX
SHLO
INX
STA
110V
INX
SHLO
PUSH
PUSH
PUSH

OS6C 220904
OS6F El
OS70 2B
OS71 220F04
OS74 23
OS75 324B04
0878 7E
0879 23
087A 220004
0870 C5
087E 05
087F F5

03512
03513
03514
03515
03516
03517
03518
03519
03520
03521
03522
03523
03524
03525
03526
03527
03528
03529
03530
03531
03532
03533
03534
03535
03536
03537
03538
03539
03540
03541
03542
03543
03544
03545
03546
03547
0354S
03549
03550
03551
03552
03553
03554
03555
03556
03557
0355S
03559
03560
03561
03562
03563
03564
03565
03566
03567
03700
03701
03702
03703
03704
03705
03706
03707
0370S
03709
03710
03711
03712
03713
03714
03715
03716
03717
03800
03S01

Figure 10-2. (Continued)

348 The CP/M Programmer's Handbook

Get hex. value

Entry parameters

HL -) OO-byte terminated me ••age to be output
C • number of hexadecimal digits to be input

DBSFla9SR•• to...
Thl ...out In. I. only u••d fo.. DB.IN/OUT.
It restore. the debug control 11&9, DBSFla9, to
its former state.

,G.t previous setting
,Set debug control flag

;Set up maximum count in input buffer
;Output prompting message
,Accept characters from console
;Function code

;Output e line feed

;Get maximum characters to be input
;Check against maximum count
;Carry set if A < 5
,Force to only four charact~rs

;Initial value
,DE -) data characters
,Get count of characters input
,Keep count in C

;Downd.. te count
,Return when all done (HL has value)
,Get next character from buffer
,Update buffer pointer
,Convert A to uppercase if need b@
;Check if less than 0
,Ves, terminate
,Ch.ck If > ~

;No, it must be num@ric

;Set by the BOOS to the actual number
of chars. entered

;Buffer space for the characters

;Set to the maximum number of chars.
; to be input

,Input buffer for console characters

C,BSCONOUT
E.OAH
BDOS

H.O
D,DBSOHV$DataSByt ••
DBSOHVSlnputSCount
C,A

C

'9' + 1
DBSOHVSH.xSDI91 t

D
D
DBSASToSUpp.r
'0'

MVI
MVI
CALL

,,
DBSFla9SR•• to... ,

PUSH PSW
LDA DBSFla9SP...vlous
STA DB.Fla9
POP psw
RET

This subroutine outputs. prompting m••sage. and then reads
the keyboard in order to get • hexadecimal value.
It i. somewhat simplistic in that the first non-hex value
terminate. the input. The .aximum number of digits to be
converted is specified ., an input parameter. If moYe than ·the
••XiMUM nUMber is entered, only the last four are signif1cant.

,
HI

DBOHVlnputSCount.
DB 0

DB$OHVSData$Byt ••
DS 5

DB$OHVSBu ff
DBOHVMa.SCount.

DB 0

DB.OHV.
MOV A.C
CPI 5
JC DBSOHVSCount$OK
MVI A.4

DBSOHVSCountSOK.
STA DBSOHVSMaxSCount
CALL DBSMSO
LXI D.DBSOHVSBuff"r
MVI C.BSREADCONS
CALL BDOS

;*----*._.*--***---*---****-_._....****-*---*--************.*.**.WAR N I N 0
DB.OHV will alway, UI. the BDOS to perform a read console
functton (*10). 8e careful if you use this routine from
within an " ••"ut!nv BIOS.

,*******•••••••_•••••••••••••••••******•••••••••••••**.*****.****

LXI
LXI
LDA
MOV

DBSOHVSLoop,
DCR
RM
LDAX
INX
CALL
CPI
RC
CPI
JC

08BF F5
08CO 3AB008
08C3 320604
08C6 FI
08C7 C9

08C8 00

08C9 00

OeCA

08CF 79
08DO FE05
08D2 DAD70e
08D5 3E04

08D7 32C80e
OeDA CDEE07
OeDD Ilceoe
OeEO OEOA
08E2 CD0500

OeE5 OE02
OeE7 IEOA
oeE9 CD0500

oeEC 210000
08EF IICAoe
08F2 3AC908
08F5 4F

08F6 OD
08F7 F8
08F8 IA
08F9 13
08FA CDIB09
08FD FE30
08FF D8
0900 FE3A
0902 DAI009

03802
03803
03804
03805
03806
03807
03808
03809
03810
03811
03812
03813
03814
03900
03901
03902
03903
03904
03905
03906
03907
03908
03909
03910
03911
03912
03913
03914
03915
03916
03917
03918
03919
03920
03921
03922
03923
03924
03925
03926
03927
03928
03929
03930
03931
03932
03933
03934
03935
03936
03937
03938
03939
03940
03941
03942
03943
03944
03945
03946
03947
03948
03949
03950
03951
03952
03953
03954
03955
03956
03957
03958
03959
03960
03961
03962
03963
03964

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 349

,
DBATo$Uppar,

091B FE61 CPI 'a' ,Comp.,... to lower limit
0910 OS RC ,No ne.d to convert
091E FE7B CPI 'z' + I ,Compare to upper limit
0920 DO RNC ,No ne.d to convert
0921 E65F ANI 5FH ,Convert to uppercase
0923 C9 RET

EntrY ~aram.ter~

,Shift HL left four bit.

,Add binarY value in LS 4 bits of A
;Put back into HL total
,Loop b~ck for next character

,Check if < "A'"
;Ve., terminate
,Check if > 'F,o'
;Yes, te...minate
,Convert A throu~h F to numeric
;Combine with current result

;Convert to binary

"'F'" + 1

'A'

'A' - 10
DBGHVShift$Left$4

CPI
RC
CPI
RNC
SUI
.JMP

,Ii

Exit .arameters

A to upper
Converts the contents of the A register to an uppercase
lette... if it is currently a lowercase letter

,
DBGHVHe.$Digit.

SUI '0'
DBGHVShlft$Left$4,

DAD H
DAD H
DAD H
DAD H
ADD L
MOV L.A
.!MP DBGHVLoop

-,

0903 FE41
0907 08
0908 FE47
090A DO
090B 0637
0900 C31209

0910 0630

0912 2'
0'13 29
0914 29
0913 29
0916 85
0917 6F
0918 C3F608

03963
03966
03967
03968
03969
03970
03971
03972
03973
03974
03975
03976
03977
03978
03979
03980
03981
04100
04101
04102
04103
04104
04103
04106
04107
04108
0410'
04110
04111
04112
04113
04114
04113
04116
04117
04118
04119
04120

Figure 10-2. Debug subroutines (continued)

B>QQi flgIO-2,h,.<~r>

DDT VERS 2,0
NEXT PC
0924 0000
-glQQ(sr)

0116
0120
012F
013E
0140
015C
0168
017A
0189 I

0108
0110
0120

Flags I Flags m CIZOMIEIIO
A Register I A • AA
B Reglst,r I B & BB
C Regist,r I C CC
o Register 0 DO
E Register E EE
H Register H = FF
L Register I L • II
Memory Dump .1 I Start, End Add~.s. I 010e, 0128
I 05 3E AA 01 CC BB 11 EE I .>*. L,.n
I DO 21 11 FF B7 37 CO ~2 O~ 00 46 6C 61 67 73 00
I CD ~2 O~ 02 41 20 ~2 6~ 61 I HR •• ARe g

I JI •• 77MR •. FI 49S.

OIAO I Memory Dump .2 I Start. End Addres. I 0100. OIIF
0100 31 6B 03 CD EA 04 CD IS 05 3E AA 01 CC BB II EE
OliO I DO 21 II FF B7 37 CD 52 03 00 46 6C 61 67 73 00

Ik.M j.M.• >*. LI.n
]1 •• 77MR •• FI ag••

** ERROR - Start Address > End __
OleE I Memory Dump .4 I Start, End Address I 0100, 0100

0100 I 31 I I

Figure 10-3. Console output from debug testbed run

350 The CP/M Programmer's Handbook

0lE5 I BC Register: BC = BBCC
0lF5 I DE Register I DE = DDEE
0205 I HL Register I HL • FFII
0215 I SP Register I SP = 0369
022E I Byte at (BC) I (BC) • BC
023F I Byte at (DE) I (DE) = DE
0250 I Byte at (HLl I (HLl = FI
026A I Word at (BC) I (BC+I). (BC) = OBOC
027B I Word at (DE) I (DE+I). (DE) = ODOE
028C I Word at (HLl I (HL+1). (HLl = OFOI
Debug output has been re-enabled.
This message should display 5 times
This message should display 5 times
This message should display 5 times
This message should display 5 times
This message should display 5 times
0328 I Input from Port II I aa

032D I Output to Port 22 I AA

Figure 10-3. Console output from debug tested run (continued)

containing all of the symbols in your program, along with their
respective addresses. Once the program has been loaded by SID, you can
refer to the memory image of your program not by address, but by the
actual symbol name from your source code. SID also supports the "pass
count" concept when using breakpoints.

ZSID (Z80 Symbolic Debug)
This is the Z80 CPU's version of SID. The mini-assembler/disassembler
uses Zilog instruction mnemonics rather than those used by Intel.

Bringing Up CP/M for the First TIme

It is much harder to bring up CP/M on a new computer system than to debug
an enhanced version on a system already running CP/M. You will often find
yourself staring at a programmatic "brick wall" with no adequate debugging tools
to assist you.

For example, you install the CP/M system on a diskette (using another CP/M
based computer system), put the diskette into the new computer, and press the
RESET button. The disk head loads on the disk, and then - nothing! You cannot
use any programs such as DDT or SID because you do not yet have CP/M up and
running on the new computer. Or can you?

The answer is, wherever possible, debug the code for the new machine on an
existing CP/M system. You may have to "fake" some aspects of the new bootstrap
or BIOS so that the act of testing it on the host machine does not interact with the
CP/M already running on it.

This scheme permits you to be fairly sure of your program logic before loading
the diskette into the new ma~hine. It will help pin down problems caused by
hardware problems on the new computer.

Chapter 10: Debugging a New CP/M System 351

The hardest situation ofall is if you have only the new computer and the release
diskettes from Digital Research. Your only option is to find a way of reading the
CP/M image on the release diskette into memory, hand patch in new console and
disk drivers (not a trivial task), write the patched image back onto a diskette, and
resort to Orville Wright testing.

If you value your time, it is always more cost-effective to use another system
with CP/M already installed. This is true even if the two systems do not have the
same diskette format. You can still do the bootstrap and build the CP/M image on
the host machine. Then download the image directly into the memory of the new
machine and write it out to a diskette.

This downloading process does require, however, that the new computer have a
read-only memory (ROM) monitor program. Depending on the capability of this
ROM monitor program, you may have to hand patch into the new machine's
memory a primitive "download" program that reads 8-bit characters from a serial
port, stacking them up in memory and returning control to the monitor program
when you press a keyboard character on the new machine's console. In fact, some
ROM monitor programs have a downloading program built in.

Debugging the CP/M Bootstrap Loader

The CP/M bootstrap loader, as you may recall, is written on one of the
outermost tracks on a diskette or hard disk. On a standard 8-inch single-sided,
single-density diskette, CP/M's bootstrap loader is stored on the first sector of the
first track. The loader is brought into memory by firmware that gets control of the
CPU when you turn your machine on or press the RESET button.

The bootstrap has to be compact, as the diskette space on which it is stored is
limited: no more than 128 bytes for standard 8-inch diskettes. This tends to rule
out the use ofthe debug subroutines already described, so you have to fall back to
more primitive techniques.

Testing the Bootstrap Under CP/M
A bootstrap is best developed on a CP/M-based system. The task is easiest of

all if you already have CP/M running on your new machine and are simply
preparing an enhanced version of the bootstrap loader. In this case, you can test
most of the code as though it were a user program running in the transient
program area (TPA).

Most bootstraps get loaded into memory at location OOOOH, so at the front of
the code to be debugged you must put a temporary origin line that reads

ORO lOOH

352 The CP/M Programmer's Handbook

If you omit this and ask DDT to load the HEX file output by the assembler, it
will load at the true origin, OOOOH, and wipe out the contents of the base page for
the version of CP/M that you are running. This will cause a system crash; you will
have to press the RESET button and reload CP/M. When this happens, DDT does
not tell you directly that anything is amiss; it just displays a "?" after your request to
load the HEX file. You will discover that the system has "gone away" only when
you try to do something else.

You also will need to adjust the addresses into which the bootstrap tries to load
the CP/M image. Ifyou do not, you will overwrite the version of CP/M presently
running.

With these adjustments made, you can load the bootstrap under DDT and
watch it execute, confirming that it does load the correct image into the correct
addresses for debugging and transfer control to the BIOS jump vector. When
everything appears to be functioning correctly, use the IF instruction to disable the
debug code, reassemble the bootstrap, and write it onto a diskette. Then put the
diskette into drive A and press RESET.

Was the Bootstrap Loaded?
At this point you must establish whether the bootstrap is being loaded into

memory when the machine is turned on or RESET is pressed. The best way ofdoing
this, and one that you can leave in place permanently, is to output a sign-on
message as soon as the loader gets control. This requires hardware set up to
prepare the USART (Universal Synchronous/ Asynchronous Receive/Transmit)
chip to output data, although some manufacturers write this initialization code
into the firmware that loads the bootstrap. A suitable sign-on message would be
the following:

CP/M Bootstrap Loader = Vn 1.0 11/18/82

If you do not see this message, assume that control is not being transferred to
the bootstrap loader. This will be useful in the future if someone should call you
with a complaint that CP/M cannot be loaded. If this message does not appear,
they probably do not have CP/M on the disk.

Old the Bootstrap Load CP/M?
This is a harder question to answer than whether the bootstrap itself has been

loaded, especially if the bootstrap loader sign-on is displayed and then the system
crashes. A sign-on message early in the BIOS cold boot processing can confirm the
correct transfer of control into the BIOS.

If the problems with the bootstrap program are severe, you may have to adapt
the memory-dump debugging subroutine, dumping the contents of memory to the
console in order to see what information the bootstrap loader is placing in
memory. Display WOH bytes starting from the front ofthe BIOS jump vector. This

Chapter 10: Debugging a New CP/M System 353

table has an immediately recognizable pattern ofOC3H values every three bytes.
You should also check to see that the bootstrap is loading the correct number

of sectors from the disk into memory. If it loads too few, CP/M may sign on only to
crash a few moments later because it attempts either to execute code or access a
constant at the end of the BIOS. If the bootstrap loads too many sectors from the
disk, the excess may "wrap around" the top of memory and overwrite the boot
strap itself, down at location OOOOH, before it has completed its task. In this case,
you would see only the sign-on for the bootstrap, not for the BIOS.

Debugging the BIOS

Rather than try to debug the BIOS as a single piece ofcode, debug it as a series
of separate functional modules.

Notwithstanding current "top-down" philosophies of dealing with overall
structure first, it can be quicker to debug the low-level subroutines in a device
driver first. This gives you a solid base on which to build.

The BIOS can be divided up into its constituent modules as follows:

Character input
Interrupt service
Non-interrupt service

Character output

Interrupt routines
Real time clock
Watchdog timers

Disk drivers
High-level (deblocking)
Low-level (physical I/O)

Plan to write a testbed program for each of these modules. This testbed code
serves two purposes; first, it provides a means of transferring control into the
module under test in a controlled way. Second, it includes the necessary modules
or dummy modules to "fool" the module under test into responding as if it were
running in a complete BIOS under CP/M.

Using the testbed, you can check every part of the module's logic except the
part that may be time-critical. Problems caused by timing, such as interrupts
disabled for too long or code that is too slow or too fast for a particular peripheral
controller chip, tend to show up only when you are testing on the final hardware
and when you are running your new BIOS under CP/M.

354 The CP/M Programmer's Handbook

What You Should Test for in the BIOS

Describing fully how to debug each module in the BIOS ould fill several books.
Remember that you are trying to establish the absence of errors using a technique
that, by its very nature, tends to show only their presence.

There are two basic approaches to debugging. One is the plodding method,
checking every aspect of the code to ensure that every feature really does work.
The second is to try to do something useful with the code.

Plan to use both. Start with the plodding method, testing each feature under
control of the testbed until you are sure that it is working in vitro. When all of the
BIOS modules have been tested individually, build a CP/M system and try to do
some useful work with it. Trying to use the system for actual work testing in vitro
can be a good test.

Feature Checklist
Make a list of the specific features included in the various BIOS modules. Then

devise specific test sequences that will show that each of the features is working
correctly.

The same testbed code can often test all of the features ofadriver module. Ifit
cannot, create a new testbed for the more exotic features.

Keep the testbed routines. Experience shows that they are most often needed
shortly after you have erased them. Even after you have tested the BIOS, the
testbed routines will come in handy if you decide to enhance a particular driver
later on. You can extract the driver code from the BIOS, glue it together with the
testbed, and test the new feature code in isolation from the BIOS.

The following sections show example testbeds for the various drivers, along
with example checklists. These checklists were used to test the example BIOS
routines shown in earlier chapters.

Character Drivers
Figure 10-4 shows the code for an example testbed routine for character I/O

drivers in the BIOS. This code would be followed by the actual character I/O
drivers, exactly as they would appear in the BIOS except that all IN and OUT
instructions would be replaced with RST 4's and 5's respectively (see Figure 10-2)
so that you could enter input values and inspect output values on the console.

This example contains the initialization code for the debug package shown in
Figure 10-2 and the code setting up an RST 6 used to "fake" incoming character
interrupts.

The main testbed loop consists of a faked incoming character interrupt fol
lowed by optional calls to CONIN or CONOUT, the return ofcontrol to DDT, or a
loop back to fake another character interrupt. You can only return control to DDT
if you used DDT to load the testbed and driver programs in the first place.

Chapter 10: Debugging a New CP/M System 355

Testbed for character I/O drivers in the BIOS

The complete source file consists of thr•• componentsl

,For conditional assembly of RST
instructions in pl.c. of IN and

lOUT instructions in the drivers
'Us. RST 6 for f.k. in~omtn9 character
, interrupt

30H

TRUE

ORG 100H

EQU

LXI SP.Test.Stack ,Use a local stack
CALL DB.lnit ,Initialize the debuQ packaQe
MVI A. JI1P ,Set uP RST 6 wi th JI1P opcode
STA RST6
LXI H.Character.lnterrupt ,Set UP RST 6 ~MP address
SHLD RST6 + 1

EQU OFFFFH
EQU NOT TRUE

EQU

1. The testbed code shown here
2. The character 1/0 drivers destined for the BIOS
3. The debug package shown in Figure 10-2.,,

FFFF • TRUE
0000 • FALSE

FFFF • DEBUG

0030 i!I RST6

0100
START,

0100 310101
0103 CDDI0l
0106 3EC3
010B 323000
010B 210101
010E 223100

Make repeated entry to character interrupt routine
to ensure that characters can be captured and stored in
an input buffer

0111 3EAA
0113 01CCBB
0116 llEEDD
0119 2111FF
OIIC F7

,
Testbed.Loop,

MVI
LXI
LXI
LXI
RST

A.OAAH
B.OBBCCH
D.ODDEEH
H,OFFllH
6

,s.t registers to known pattern

Go.DDT,

,
Go.CONGUT,

CALL
~z

CALL
MOV
CALL
~MP

,ReadY for output
;Output to console
,Repeat while there is still data

,Enter DDT (RST 7 set UP bY DDT)

,DDT?

,Repeat CONIN loop until no chars.
waiting

;Get eon.ole ~t~tu.

;NO data waitinv
;Get data from buffer

.CONOUT?

,Loop back to interrupt avain

,Oet uppercase character
,CON IN?

,G.t console status
',No data waitinQ

CONST
Testbed.Loop
CONIN
C,A
CONOUT
Go.CONOUT

Go.COIIIIN

DB.Display ,Display character returned
DBSA in A r8Vi.ter
~CONIN r.turn.d~,O

9999H,9999H. 9999H. 9999H. 9999H. 9999H. 9999H. 9999H
9999H,9999H. 9999H. 9999H. 9999H,9999H. 9999H. 9999H
9999H,9999H. 9999H. 9999H,9999H. 9999H. 9999H,9999H

7
Testbed.Loop

CONST
Testbed'Loop
CONIN

DB.MSGI ,Display in-line messaQe
ODH,OAH,;Enter I to Input Char., 0 to Output, 0 to enter
'DDT. ',0

DB.CONINU
'I'
Go.CONIN
'0'
Go.DDT
'0'
Go.CONOUT
Testbed.Loop

~MP

CALL
DB
DB

CALL
CPI
~z

CPI
~Z

CPI
~z

~MP

OW
OW
OW

RST
~MP

OoSCONIN.
CALL
~Z

CALL

CALL
DB
DB

0191 CDDI01
0194 CAllOI
0197 CDDIOI
019A 4F
019B CDDIOI
019E C39101

OIAI 9999999999
01Bl 9999999999
01 C1 9999999999

016E FF
016F C31101

0172 CDDI01
017:l CAll01
0178 CDDI0l

017B CDDI0l
017E 02
017F 434F4E494E

01BE C37201

0110 CDDlOI
0120 ODOA4S6E74
01S2 4444S4203A

01S9 CDDI0l
01SC FE49
01SE CAnOl
0161 FE44
0163 CA6EOI
0166 FE4F
016B CA9101
016B C31101

Figure 10-4. Testbed for character I/O drivers in the BIOS

356 The CP/M Programmer's Handbook

TestSStack'

Dummy routines for those shown in other figures

BIOS routines (Figure 8-10)

CONST:
CONIN:
CONOUT,
Character.Interrupt:

,BIOS console status
,BIOS consol. input
,BIOS con501e output,
;Interrupt service routine for incoming chars.

Debug routines (Figure 10-2)

0002 =

:
DBSlnit:
DBSMSOI:
DBSCONINU:
DBSDisplay:
DBSA EQU 02

,Debug initialization
,Display m•••age in-line
,O.t uppercase character from keYboard
;Main debug display routine
;Display code for DBSOisplaY

Reset Int. Val. 20

Data Port 80
Input Ready 02

Figure 10-4. Testbed for character I/O drivers in the BIOS (continued)

Executing an RST 7 without using DDT will cause a system crash, as DDT sets up
the necessary JMP instruction at location 0038H in the base page.

The faked incoming character interrupt transfers control directly to the inter
rupt service routine in the BIOS (see the example in Figure 8-10, line 04902, label
Character$Interrupt). This reads the status ports of each of the character devices;
you can enter the specific status byte values that you want. Ifyou enter a value that
indicates that a data character is "incoming," you will be prompted for the actual
8-bit data value to be "input." You can make the interrupt service routine appear to
be inputting characters and stacking characters up in the input buffer. For debug
ging purposes, reduce the size of the input buffer to eight bytes. Making it larger
means you will have to input more characters to test the buffer threshold logic. To
check the interrupt service routine, you will pass through the main testbed loop
doing nothing but faking incoming character interrupts and entering status and
data values. The data characters will then be stacked up in the input buffer.

To check the correct functioning of the interrupt service routines, you can stay
in control with DDT from the outset. Alternatively, you can just use DDT to load
the testbed/driver HEX file, loop around inputting several characters, and then
request that the testbed return control to DDT. Then you can use DDT to inspect
the contents of the device table(s) and input buffers.

Another possibility is to create debugging routines that display the contents of
the device table in a meaningful way, with each field captioned like this:

DEVICE TABLE 0
Status Port 81
Output Ready 01
DTR high 40
Reset Int. Prt 08

Status Byte 1
Output Suspended
Output Xon Enabled

Chapter 10: Debugging a New CP/M System 357

Buffer Base
Put Offset
Chat-. Count
Data Buffer
41 42 43 44

OE8C
05 Get Offset
04 Control Count

45 00 00 00

01
00

This display device table routine will require a fair amount ofeffort to code and
debug - but it will pay dividends. You can obtain a complete "snapshot" of the
device table without having to decode hexadecimal memory dumps and individual
bits. Constant values in the device tables are also displayed, so that if a bug in your
code corrupts the table, you will know about it immediately.

The next section shows examples of the specific tests you need to make, along
with a description of the strategy you can use.

Interrupt service Routine Checklist In a functioning BIOS, control is transferred to the
interrupt service module whenever an incoming character causes an interrupt. In
the example BIOS in Figure 8-10 (line 4900), the code scans each character device
in turn to determine which one is causing the interrupt.

When you are debugging the interrupt service routines using the "fake" input/
output instructions, you will have to enter specific status byte values. Refer to the
device table declarations in Figure 8-10, line 1500, to determine what values you
must enter to make the service routine think that an incoming character is arriving
or that data terminal ready (DTR) is high or low.

Start the debugging process using the first device table. Then repeat the tests on
the other device tables.

The following is a checklist of features that should be checked in debugging the
interrupt service routine:

Are all registers restored correctly on exit from the interrupt servicing?
Using DDT, start execution from the beginning of the testbed. Set a

breakpoint (with the GlO0,nnnn command) to get control back imme
diately before the CALL Character$Interrupt. Use the X command to
display all of the registers, and then, by using the G,nnnn command, you
set a breakpoint at the instruction that immediately follows the CALL
Character$Interrupt. The character drivers will prompt you for the status
values. Enter 00 (which indicates that no character is incoming). Display
the registers again - their values should be the same. Remember to check
the value of the stack pointer and the amount of the stack area that has
been used.

NOTE: Do not be too surprised if you lose control of the machine
when you first try this test. You may have some fundamental logic errors
initially. If the system crashes, reset it, reload CP/M, and then start the test
again. This time, rather than setting the second breakpoint at the
instruction following the CALL Character$Interrupt, venture down into
the Character$Interrupt code and go through the code a few instructions

358 The CP/M Programmer's Handbook

at a time, setting breakpoints before any instructions that could cause a
transfer of control. Find out how far you are getting into the driver before
it either jumps off into space or settles into a loop.

Does the service routine push a significant number ofbytes onto the stack
after an interrupt has occurred?

When you get control back after the CALL Character$Interrupt, use
the D (dump) command to dump the stack area's memory on the console.
Check how far down the stack came by looking for the point where the
constants that used to fill the stack area are overwritten by other data.

The example BIOS in Figure 8-10 saves only the contents of the HL
register pair on the pre-interrupt stack. It then switches over to a private
BIOS stack to save the contents of the rest of the registers and service the
interrupt.

Are data characters added to the input buffer correctly?
"Input" a noncontrol character via the Character$Interrupt routine.

Then check the contents of the appropriate device table. The character
count and the put offset should both be set to one. Then check the contents
of the input buffer itself; does it contain the character that you
"input?"

Are control characters added to the input buffer correctly?
"Input" a control character such as OJ H. Do not use ETX, ACK, XON, or

XOFF (03H, 06H, 11 H, and I3H, respectively); these may cause side effects
if you have errors in the protocol handling logic. Check that the character
is stored in the next byte of the input buffer and that the character and
control counts are set to two and one, respectively. The put offset should
also be set to two.

When the input buffer full threshold is reached, does the driver output the
correct protocol character?

Set the first status byte in the first device table to enable input XON

or RTS protocol, or both. Then go round the main testbed loop putting
characters into the input buffer. Check the console display to see if the
drivers output the correct values when the buffer is almost full (the default
threshold is when five bytes remain). The driver should then drop the RTS

line or output an XOFF character or both, according to the input protocol
that you enabled.

When the input buffer is completely full, does the driver respond correctly?
This is an extension of the test above. Input one more character than

can fit into the buffer. Check to see that the drivers do not stack the
character into the input buffer and that a BELL character (07H) is output to
the data port.

Chapter 10: Debugging a New CP/M System 359

Areprotocol characters XON/ XOFF recognized and the necessary controlflags
set or reset?

Reload the testbed and drivers. Set the status byte to enable the output
XON/XOFF protocol. Then use the Character$Interrupt routine to input an
XOFF character (l3H). Check to see that the XOFF character has not been
put into the input buffer. Instead, the status byte should be set to indicate
that output has indeed been suspended.

Input an XON and check to see that the output suspended flag has
been reset.

Does the driver detect and reset hardware errors correctly?
Proceed as though you were going to input a character into the input

buffer, but instead enter a status byte value that indicates that a hardware
error has occurred (enter the value given in the device table for
DT$Detect$Error$Value).

Check that the driver detects the error status and outputs the correct
error-reset value to the appropriate control port.

Non-interruptservice Routine Checklist In a "live" BIOS, non-interrupt service routines
are accessed via the CONIN and CONST entry points in the BIOS jump vector.
During debugging, the testbed can call the CONIN and CONST code directly.

Is input redirection functioning? Does control arrive in the driver with the
correct device table selected?

This is best tested directly with DDT. Use the Gnnnn,bbbb command to
transfer control into the CONIN code with a breakpoint at the RET
instruction at the end of the Select$Device$Table routine (see Figure 8-10,
line 04400). Check that the DE register pair is pointing at device table O. If it
is not, you will have to restart the test. Use the Tn command to make DDT
trace through the Select$Device$Table subroutine to find the bug.

Are characters returned correctly from the buffer?
Use the testbed to "input" a character or two. Then use the testbed to

make several entries into CONIN. Check the characters returned from the
buffer.

Are the data character and control character counts correctly decremented?
After each character has been removed from the buffer by CONIN, use

DDT to examine the device table and check that the data character and
control character counts have been decremented correctly. Also check that
the get pointer has moved up the input buffer.

When the buffer "almost empty "threshold is reached, does the driver emit the
correct protocol character or manipulate the request to send (RTS) line
correctly?

Use DDT to enable the input RTS or XON protocol or both. Then input
characters into the input buffer until it reaches the buffer full threshold (the

360 The CP/M Programmer's Handbook

default is when only five spare bytes remain in the buffer). Confirm that
"buffer almost full" processing occurs. Then make repetitive calls to
CONIN to flush data out of the buffer. Check that the "buffer emptying"
processing occurs when the correct threshold is reached. For RTS protocol,
the driver should output a raise RTS value to the specified RTS control port.
For XON, the driver should output an XON character to the data port (after
first having read the status port to ensure that the hardware can output
the character).

Does the driver handle buffer "wraparound" correctly?
Input characters to the input buffer until it becomes completely full.

Then make a single CONIN call to remove the first character from the
buffer. Foliow this by inputting one more character to the buffer. Check
that the get pointer is set to one and the put pointer set to zero.

Next, make successive CONIN calls to empty the buffer. Then input
one more character to the buffer. Check that this last character is put into
the first byte of the input buffer.

Can the driver handle '1orced input" correctly?
Using DDT, set the forced input pointer to point to a OO-byte

terminated string; for example, use one of the function key decode default
strings. (In Figure 8-10, the forced input pointer is initialized to point to a
"startup string"-this is declared at the beginning of the configuration
block at line 00400.)

Using DDT, call the CONST routine and check that it returns with A =
OFFH (indicating that there appears to be input data waiting).

Make successive calls to CONIN and confirm that the data bytes in the
forced input string are returned. Check that the forcing of input ends when
the OOH-byte is detected.

Does the console status routine operate correctly when it checks for data
characters in the buffer, control characters in the buffer, and forced input?

Input a single noncontrol character, such as 41 H, into the input buffer.
Using DDT, check that the second status byte in the device table has the
fake type-ahead flag set to zero. Call the CONST routine - it should return
with A = OFFH (meaning that there is data in the buffer). Then set the fake
type-ahead bit in the second status byte and call CONST again. It should
return with A = OOH (meaning that there is now "no data" in the buffer).
Input a single control character into the buffer. Now CONST should return
with A = OFFH because there is a control character in the buffer.

Does the driver recognize escape sequences incomingfrom keyboardfunction
keys?

This is a difficult feature to test when the real time clock routine is not
running. The driver uses the watchdog timer to wait until all characters in

Chapter 10: Debugging a New CP/M System 361

the escape sequence have arrived. You will therefore have to modify the
code in CONIN so that the watchdog timer appears to time out
immediately, rather than waiting for the real time clock to tick. To make
this change, refer to Figure 8-10, line 2200; this is the start of the CONIN
routine. Look for the label CONIN$Wait$For$Delay. A few instructions
later there is a JNZ CONIN$Wait$For$Delay. Using DDT, set all three
bytes of this JNZ to OOB.

Then, using the testbed, input the complete escape sequence into the
input buffer. For example, input hexadecimal values 1B, 4F, 51 (ESCAPE, 0,
P), which correspond to the characters emitted on a VT-100 terminal when
FUNCTION KEY 1 (PFI) is pressed.

Next, use the testbed to make successive calls to CONIN. You should
see the text associated with the function key (FUNCTION KEY I, LINE FEED)

being returned by CONIN.
Repeat this test using different function key sequences, including a

sequence that does not correspond to any of the preset function keys.
Check that the escape sequence itself is returned by CONIN without being
changed into another string.

Can the driver differentiate between a function key and the same escape
sequence generated by discrete key strokes?

This is almost the same test as above. Make the same patch to the
CONIN code, only this time do not enter the complete escape sequence into
the buffer. Enter only the hex characters lB and 4F. Make sure that the
CONIN routine does not substitute another string in place of this quasi
escape sequence.

This test only mimics the results of manually entering an escape
sequence. You could not press the keys on a terminal fast enough to get all
three characters into the input buffer within the time allowed by the
watchdog timer.

Character Output Checklist Can the driver output a character?
The CONOUT option in the testbed calls CONIN first to get a charac

ter. To start with, you may want to use DDT to set the C register to some
graphic ASCII character such as 41 H (A), and transfer control into
CONOUT directly. Check that CONOUT reads the USART's status, waits
for the output ready value, and then outputs the data to the data port. Note
that the testbed will output all characters waiting in the input buffer (or
forced input) when you select its CONOUT option. This is a convenience
for advanced testing of the drivers-for initial testing you may want to
modify the testbed to make only one call to CONIN and CONOUT and
then return to the top of the testbed loop.

362 The CP/M Programmer's Handbook

Does the driver suspend output when a protocol control flag indicates that
output is to be suspended?

Using DDT, set the status byte in the device table to enable output
XON/XOFF protocol. Then input an XOFF character and confirm that the
output suspended bit in the status byte is set. Output a single character, and
using DDT, confirm that the driver will remain in a status loop waiting for
the output suspended bit to be cleared. Clear the bit using DDT and check
that the character is output correctly.

When using ETX/ ACK protocol, does the driver output an ETX after the
specified number of characters have been output, then indicate that output
is suspended?

For debugging purposes, alter the ETX message count value in the
device table to three bytes. Then output three bytes of data via CONOUT.
Check that the driver sends an ETX character (03H) after the three bytes
have been output and that the output suspended flag in the status byte has
been set.

Then input an ACK character (06H). Check that this character is not
stored in the input buffer and that the output suspended flag is cleared.

Does the driver recognize and output escape sequences?
Input an ESCAPE, "t" (IBH, 74H) into the input buffer. Then output

them via CONOUT. Using DDT, check that the CONOUT routine
recognizes that an escape sequence is being output and selects the correct
processing routine. In this case, the forced input pointer should be set to
point at the ASCII time of day in the configuration block.

Does each ofthe escape sequence processors function correctly? Can the time
and date be set to specified values using escape sequences?

Repeat the test above using all of the other escape sequences to make
sure that they can be recognized and that they function correctly.

Real Time Clock Routines
A separate testbed program, shown in Figure 10-5, is used to check these

routines. It calls the interrupt service routine directly to simulate a real time clock
"tick," and then displays the time of day in ASCII on the console.

As you can see, the testbed makes a call into the debug package's initialization
routine, DB$Init, and then uses an RST 6 to generate fake clock "ticks."

There is a JMP instruction in the testbed that bypasses a call to Set$Watchdog.
Remove this JMP, either by editing it out or by using DDT to change it to NO
OPERATIONs (Nap, OOH) when you are ready to test the watchdog routines.

Real Time Clock Test Checklist Is the clock running at all?
Using DDT, trace through the interrupt service routine logic. Check

that the seconds are being updated.

Chapter 10: Debugging a New CP/M System 363

T.stbed for r.al tim. clock driv.r in the BIOS.

The complete lour~. file consist. of thr•• componentsl

1. The t •• tbed code sh~~n here
2. Th. r.al tim. clock drlv.r d••tln.d for the BIOS.
3. Th. d.bug packag. shown In Flgur. 10-2.

EQU OFFFFH
EQU NOT TRUE

,For conditional assembly of RST
, instructions in place of IN and
, OUT instructions in the drivers.
,U•• RST 6 for fake clock tick.

,Use local stack
,Inltlallz. the debug packag.
,S.t up RST 6 with ...I1P opcod.

,S.t up RST 6 .JI1P addr.ss

,<••• REI10VE THIS .JI1P WHEN READY TO
TEST WATCHDOG ROUTINES

30H

100H

TRUE

SP. TnUStack
DB.Init
A....I1P
RST6
H.RTC.Int.rrupt
RST6 + I

T.stb.d.Loop

EQU

EQU

ORO

LXI
CALL
I1VI
STA
LXI
SHLD

...I1P

RST6

,,,,,,,,
TRUE
FALSE

DEBUG

START'

FFFF •
0000·

FFFF •

0100

0100 318BOI
0103 CD8BOI
0106 3EC3
0108 323000
OIOB 218BOI
OIOE 223100

0111 C31DOI

0030 •

Make repeated entry to RTC interrupt routine
to enlure that clock i. correctly updated

,so tick. b.for. tlm.out
;Addr••• to transfer to
,Sat the w.tchdog tlm.r

B.SO
H.WD.Tim.out
S.UWatchdog

A.OAAH
B.OBBCCH
D.ODDEEH
H.OFFIIH
6

DB.I1SGI ,DI.play In-lin••••••g.
'Clock ·'.0

H.Tlme.In.ASCII ,O.t addre.s of clock In driv.r
DBSMSG ,Display current clock value

, (Not., Tlm••In.ASCII .lr••dy has
I • line fe.d character in it)

DB.I1S0I ,Di.play in-lin. m••••g.
ODH~O ,Carria4ille Yetut"'n

Testb.d.Loop

LXI
LXI
CALL

CALL
DB

LXI
CALL

CALL
DB

...I1P

,,,,
Te.tb.d.Loop.

I1VI
LXI
LXI
LXI
RST

0114 013200
0117 214201
OIlA CD8BOI

OIlD 3EAA
OIlF OICCBB
0122 IIEEDD
012S 2111FF
0128 F7

0129 CDSBOI
012C 436C6F636B

0134 218BOI
0137 CD8BOI

013A CD8BOI
013D 0000

013F C31OO1

DB.I1S0I
ODH.OAH.'Watchdog timed out'.O

,Return to watchdog routine

9999H. 9999H. 9999H. 9999H. 9999H. 9999H. 9999H. 9999H
9999H. 9999H. 9999H. 9999H. 9999H. 9999H. 9999H. 9999H
9999H. 9999H.9999H. 9999H. 9999H. 9999H. 9999H.9999H

,
, Control arrive. here when the watchdo;l timer time.
, out
we.Tim.out.

CALL
DB
RET,

OISB 9999999999 OW
016B 9999999999 DW
017B 9999999999 DW

Tnt.Stack.,

0142 CD8BOI
014S ODOA576174
01SA C9

Dummy routines for those shown in other fi9ur••

BIOS routin•• (Flgur. 8-10)
,,,
RTC.Interrupt,
Se i$Wa t chdog,
Tlme.In.ASCI I,

;Interrupt ••rvic. routine for clock tick
,S.t watchdog tlm.r
,ASCII .trlng of HH. 1111. SS. LF. 0

Debug routines (Figure 10-2),
DB.Init,
DB.I1S0I.
DB.I1S0,

;Debu9 initialization
;Display message in-line
,Display message

Figure 10-5. Testbed for real-time-clock driver in the BIOS

364 The CP/M Programmer's Handbook

Are the hours, minutes, and seconds carrying over correctly?
Let the testbed code run at full speed. You should see the time being

updated on the console display-although it will be updated much more
rapidly than real time.

Use DDT to set the minutes to 58 and then let the clock run again. Does
it correctly show the hour and reset the minutes to OO? Then set the hours to
11 and the minutes to 58 and let the clock run. Do minutes carryover into
hours and are hours reset to O?

Repeat these tests with the clock update constants set for 24-hour
format.

Is the clock interrupt service routine restoring the registers correctly?
Using DDT, check that the registers are still set correctly on return from

the clock interrupt service routine.

How much ofa load on the pre-interrupt stack is the service routine imposing?
Check the "low water mark" of the preset values remaining in the

testbed stack area to see how much ofa load the interrupt service routine is
imposing on the stack.

Can the watchdog timer be set to a nonzero value? Can it be set back to zero?
Using the second part of the testbed, call the Set$Watchdog routine,

and then monitor the testbed's execution as the watchdog timer times out.
Check that the registers and stack pointer are set correctly when control is
transferred to the timeout routine. Also check that control is returned
properly from this routine, and thence from the interrupt service routine.

Disk Drivers
It is only feasible to check the low-level disk drivers in isolation from a real

BIOS, as the BDOS interface to the deblocking code is very difficult to simulate.
The testbed shown in Figure 10-6 serves only as a time-saver. It does not test the
interface to the subroutines. Use DDT to set up the disk, track, and sector
numbers, and then monitor the calls into SELDSK, SETTRK, SETSEC,
SETDMA, and the read/write routines.

Unless you have the same disk controller on the host system as you do on the
target machine, you will have to use the fake input/ output system described earlier
in this chapter, rather than attempt to read and write on real disks.

You can see that the testbed, after initializing the debugging package, makes
calls to SELDSK, SETTRK, SETSEC, and SETDMA. It then calls a low-level
read or write routine. The low-level routine called depends on which driver you
wish to debug. For the standard floppy diskette driver shown in Figure 8-10, use
ReadNoDeblock and WriteNoDeblock. For the 5 1/ 4-inch diskettes, use
Read$Physical and Write$Physical. You will have to use DDT to set up some of
the variables required by the low-level drivers that would normally be set up by the
deblocking code.

Chapter 10: Debugging a New CP/M System

Te.tbed for di.k 110 driver. in the BIOS

The ~ompl.t. source file coneists of th~•• components.

365

1. The testbed code shown here
2. The Di.k 110 drivers de.tined for the BIOS
3. The debug package shown in Figure 10-2.

FFFF •
0000 •

FFFF =

0100

0100 314704
0103 CD4704

,,,
TRUE
FALSE

DEBUG

START,

EQU
EQU

EQU

ORO

LXI
CALL

OFFFFH
NOT TRUE

TRUE

100H

SP. Te.t.Stack
DB.Init

,For conditional assembly of RST
, instructions in plac~ of IN and
, OUT instructions in the drivers.

,Use. local stack
iInitialize the debug paeka9&

Make call. to SELDSK. SETTRK. SETSEC and SETDMA.
then either a read or write routine.

0106 314704

0109 3A1202
010C 4F
010D CD4704

Testbed.Loop:
LXI

LDA
MOV
CALL

SP. T..USt&ck

Logical.DiSk
C.A
SELDSK

,Use local stack

,Set UP for SELDSK call

DB.Oisplay 'Display return value in HL
DB.HL
'SELDSK returned'.O

0110 CD4704
0113 14
0114 S34S4C4453

0124 223201
0127 111000
012A 19
012B 223401

_CALL
DB
DB

SHLD
LXI
DAD
SHLD

DPH.Start
D.16
D
DPH.End

,Set up to display disk parameter header
,Compute end address

,Store into debug call

CALL
DB

DPH.Start,
DW

DPH.End.
DW
DB

LHLD
PUSH
POP
CALL

LDA
MOV
CALL

012E CD4704
0131 18

0132 0000

0134 0000
0136 53656C6563

0143 2A1302
0146 E5
0147 Cl
0148 CD4704

014B 3A1502
014E 4F
014F CD4704

0152 011702
0155 CD4704
0158 3A1602
015B B7
015C C2Dl01

LXI
CALL
LDA
ORA
JNZ

DB.Di.play ,Display DPH
DB.M ,Memor y

o

o
~Selected DPH~,O

Track ,Call SETTRK
H
B ,SETTRK need. track in BC
SETTRK

Sect or , Ca 11 SETSEC
C,A ,SETSEC need sector in C
SETSEC

B,Test'Buffer ,Set DMA address
SETDMA
Wrlte.Dlsk ,Check if reading or writing
A
Test.Wrlte

CALL

DBSMSGI ,Indicate problem
DB.HL ,Display HL (points to offending byte)
'Ripple pattern incorrect. HL -> failure.',O

Read.No.Deblock , ••• or Read.Physical depending on which
.*** driver_ you are t •• tinv

DB.Di.play JOi_play yetuyn code
DB.A
'Te.t Read returned',O

OISF CD4704

0162 CD4704
0165 02
0166 5465737420

0179 CDOI02
017C CA0601

017F CD4704
0182 14
0183 526970706C

01AC CD4704
OlAF CD1800
01B2 1702

CALL
DB
DB

CALL
JZ

CALL
DB
DB

CALL
CALL
DW

Check.Ripple
Testbed.Loop

DB.Display
DB.M
Te.t.Buffer

,Check if ripple pattern in buffer
;Ves, it is eoyyect

,Display test buffe.
,Memory

Figure 10-6. Testbed for disk I/O drivers in the BIOS

366 The CP/M Programmer's Handbook

Te s t bed'Loop

TestbedSLoop

Test'Buffer'Size
/Contents of TestSBuffer',O

DB.Display ,Display return code
DB'A
'Test Write returned',O

;Set p.ttern value into buffer
;Update buffer pointer
;Down date count
;Check if count zero

,Repeat until zero

,Check that the buffer is filled with the
, correct ripple pattern~

Returns with zero status if this is true,
nonzero status if the ripple is not
correct. HL point to the offending byte
(which .hould = L)

Fill'Ripple ;Fill the test buffer with ripple p.ttern
Write.No.Deblock,*** or Write'Physical depending on which

;*** drivet"! you are testing~

,Fills the Test'Buffer with. pattern
formed by putting into each byte, the
least significant a-bits of the byte's

; address.
a,Test$Buffer'Size
H,TestSBuffer

M.L
H
B
A,C
B
FR'Loop

0lB4 0002 DW
0lB6 436F6E7465 DB

OICE C30601 ..IMP

TesUWri tel
OIDI CDF201 CALL
0lD4 CD4704 CALL

0lD7 CD4704 CALL
OIDA 02 DB
OIDB 5465737420 DB

OIEF C30601 ..IMP

Fill'Ripple.

0lF2 010002 LXI
0lF5 211702 LXI

FR'Loop.
0lF8 75 MOV
0lF9 23 INX
OIFA OB DCX
OIFB 79 MOV
OIFC BO ORA
OIFD C2F801 .JNZ
0200 C9 RET,

Check'Ripple:

8,Test$Buffer$Size
H,Test'Buffer

0201 010002
0204 211702

0207 7D
0208 BE
0209 CO
020A 23
020B OB
020C 79
020D BO
020E C20702
0211 C9

LXI
LXI

CR'Loop.
MOV
CMP
RNZ
INX
DCX
MOV
ORA
.JNZ
RET

A.L
M

H
B
A,C
B
CRSLoop

;Get correct value
,Compare to that in the buffer
,Mismatch, nonzero alreadY indicated
,Update buffer pointer
,Downdate count
;Check count zero

;Repeat until zero
,Zero flag will already be set

Testbed variables

,
Test'Buffer'Size
Test'Buffer. DS

EQU 512 ;<=== Alter as required
Test'Buffer'Size

0212 00
0213 0000
0215 00
0216 00

0200
0217

,
Logical$Disk:
Trackl
Sector:
Write'Disk:

DB
DW
DB
DB

o
o
o
o

,A=O,B=I, •••
,Disk track number
;Disk sector number
,NZ to write to disk

0417 9999999999 DW
0427 9999999999 DW
0437 9999999999 DW

Test'Stack.

9999H,9999H,9999H.9999H.9999H.9999H,9999H,9999H
9999H,9999H,9999H.9999H, 9999H.9999H.9999H,9999H
9999H, 9999H, 9999H. 9999H, 9999H,9999H. 9999H, 9999H

Dummy routines for those shown in other figures

BIOS routines (Figure 8-10)

SELDSK,
SETTRK.
SETSEC.
SETDMA.
Read'No.Deblock:
Read.Physical:
Write'No'Deblock:
Write'Phvslcd.

,Select logical disk
;Set track number
,Set ••ctor number
,Set DMA address
;Driver read routines

;Driver write routines

Figure 10-6. (Continued)

Chapter 10: Debugging a New CP/M System 367

Debug routines (Figure 10-2)

0002 =
0014 •
0018 •

,,
DS.Inlt.
DS.MSGII
DS.Display,
DS.A EQU
DS.HL EQU
DS.M EQU

02
20
24

;D.bu~ initialization
,Display message in-line
,Main debug display rout in.
,Display codes foy DS$Di5play

Figure 10-6. Testbed for disk I/O drivers in the BIOS (continued)

Before issuing the write call, the testbed fills the disk buffer with a known
pattern. This pattern is checked on return from a read operation.

For both reading and writing, the testbed shows the contents of the A register.
If you have added the enhanced disk error handling described in the previous
chapter, the return value in A must always be zero.

Disk Driver Checklist Does SELDSK return the correct address and set up the required
system variables?

Check that the correct disk parameter header address is returned for
legitimate logical disks. Check, too, that it returns an address ofOOOOH for
illegal disks.

Check that any custom processing, such as setting the disk type and
deblocking requirements from extra bytes on the disk parameter blocks, is
performed correctly.

Does the SETTRK and SETSEC processing function correctly?
Using DDT, check that the correct variables are set to the specified

values.

Does the driver read in the spare-sector directory correctly?
Set up to execute a physical read and, using DDT, trace the logic of the

READ entry point. Check that the spare-sector directory would be loaded
into the correct buffer. If you are using fake input/ output, use DDT to
patch in a typical spare-sector directory with two or three "spared-out"
sectors.

Does the driver produce the correct spare sector in place ofa bad one?
Continuing with the physical read operation, check that, for "good"

track/ sectors, the sector-sparing logic returns the original track and sector
number, and for "bad" track/ sectors, it substitutes the correct spare track
and sector. If you are using sector skipping, check that the correct number
of sectors is skipped.

Can a sector be read in from the disk?
Continuing further with the physical read, check that the correct sector

is read from the specified disk and track. If you are using realI/ 0 (as

368 The CP/M Programmer's Handbook

opposed to faking it), the "ripple pattern" set by the testbed can be used, or
you can fill the disk buffer area with some known pattern (using DDT's F
command) so you can tell if any data gets read in.

Make sure you do not have any disks or diskettes in the computer
system that are not write-protected - you may inadvertently write on a
disk rather than read it during the early stages of testing.

Can a sector be written to the disk?
Using DDT, set up to write to a particular disk, track, and sector.

Remove any write protection that you put on the target disk during earlier
testing. You can either use the testbed's ripple pattern or fill the disk buffer
area with a distinctive pattern. Write this data onto the disk, fill the buffer
area with a different pattern, and read in the sector that you wrote. Check
that the disk buffer gets changed back to the pattern written to the disk.

Does the driver display error messages correctly?
Rather than deliberately damaging a diskette to create errors, use DDT

to temporarily sabotage the disk driver's logic. Make it return each of the
possible error codes in turn, checking each time that the correct error
message is displayed.

For each error condition in turn, check that the disk driver performs
the correct recovery action, including interacting with the user and offering
the choice of retrying, ignoring the error, or aborting the program.

Live Testing a New BIOS

Given that the drivers have passed all of the testing outlined above, you are
ready to pull all of the BIOS pieces together and build a CP/M image.

For your initial testing, disable the real time clock, and use simple, polled I/O
for the console driver if you can. It is important to get something up and running as
soon as possible, and it is easier to do this without possible side effects from
interrupts.

Prepare a complete listing of the BIOS and plan to spend at least an hour
checking through it. Take a dry run through the console and disk driver - if there
are any serious bugs left in these two drivers, CP/M may not start up. Remember
that once the BIOS cold boot code has been executed and control is handed over to
the CCP, the BDOS will be requested to log in the system disk, and this involves
reading in the disk's directory.

Pay special attention to checking some of the major data structures. Make
certain that everything is at a reasonable place in memory; for example, if the last
address used by the BIOS is greater than OFFFFH, you will need to move the
entire CP/M image down in memory.

Chapter 10: Debugging a New CP/M System 369

Then build a system disk, load it into the machine, and press the RESET button.
You should see the bootstrap sign on, then the BIOS, and after a pause of about
one second, the A> prompt (or OA> if you have included the special feature that
patches the CCP).

Ifyou see both sign-on messages but do not get an A> prompt, a likely cause of
the problem is in the disk drivers. Alternatively, the directory area on the disk may
be full of random data rather than OE5H's.

Ifyou cannot see what is wrong with the system, you might try faking the disk
drivers to return a 128-byte block of OE5H's for each read operation. The CCP
should then sign on.

Once you do have the A> prompt, you can proceed with the system checkout.
Start by checking that the warm boot logic works. Type a CONTROL-Co There
should be a slight pause, and the A> prompt should be output again.

Next, check that you can read the disk directory by using the DIR command. If
you have an empty directory, you should get a NO FILE response. If you get
strange characters instead, you either forgot to initialize the directory area or the
disk parameter block is directing CP/M to the wrong part of the disk for the file
directory. If the system crashes, there is a problem with the disk driver.

Check that you can write on the disk by entering the command SAVE 1TEST.
Then use the DIR command to confirm that file TEST shows up in the file
directory. If it does, use the ERA command ERA TEST and do another DIR
command to confirm that TEST has indeed been erased.

IfTEST either does not show up on the disk or cannot be erased, then you have
a problem with the disk driver WRITE routine.

Put a standard CP/M release diskette into drive B and use the DIR command
to check that you can access the drive and display a disk directory. Ifyou do, then
load the DDT utility and exit from it by using a GO (G, zero) command. This
further tests if the disk drivers are functioning correctly.

To test the deblocking logic (if you are using disks that require deblocking), use
the command:

PIP A:=B:*.*[VJ

This copies all files from drive B to drive A using the verify option. It is a
particularly good test of the system, and if you have any problems with the
high-level disk drivers and deblocking code, you will get a Verify Error message
from PIP. You can also get this message if you have hardware problems with the
computer's memory, so run a memory test if you cannot find anything obviously
wrong with the deblocking algorithm.

To completely test the deblocking code, you need to use PIP to copy a file of
text larger than the amount of memory available. Thus, you may have to create a
large text file using a text editor just to provide PIP with test data.

With the disk driver functioning correctly, rebuild the system with the real time
clock enabled. Bring up the new system and check that the ASCII time of day is

370 The CP/M Programmer's Handbook

being updated in the configuration block; use DDT to inspect this in memory. Set
the clock to the current time, let it run for five minutes, and see if it is still accurate.
You may have to adjust one of the initialization time constants for the device that is
providing the periodic interrupts for the clock.

Rebuild the system yet again, this time with the real interrupt-driven console
input and the real console output routines. Check that the system comes up
properly and that the initial forced-input startup string appears on the console.

Check that when you type characters on the keyboard they are displayed as
you type them. If not, there could be a problem with either the CONIN or
CONOUT routines. Experimentally type in enough characters to fill the input
buffer. If the terminal's bell starts to sound, the interrupt service routine is
probably not the culprit. Check the CONOUT routine again.

Check that the function key decode logic is working correctly. With the A>
prompt displayed, press a function key. The CONIN driver should inject the
correct function key string and it should appear on the terminal. For example,
with the BIOS in Figure 8-10, pressing PFI on the VT-100 terminal should produce
this on the display:

A>Function Keyl
Function?
A>

The CCP does not recognize "Function" as a legitimate command name, nor is
there such a COM file-hence the question mark.

Using DDT, write a small program that outputs ESCAPE, "t"to the console, and
check that the ASCII time of day string appears on the console. This checks that
the escape sequence has been recognized.

Library Functions
Reading or Writing Using the BIOS

Accessing the File Directory
Utility Programs Enhancing

Standard CP/M

Utility Programs for the Enhanced BIOS

Additional
Utility Programs

This chapter contains the narrated source code for several useful utility
programs. Two groups of such programs are included-those that supplement
Digital Research's standard utility programs, and those that work in conjunction
with features shown in the enhanced BIOS (Figure 8-10).

To avoid unnecessary detail, the programs shown in this chapter are all written
in the C language. C is a good language to use for such purposes since it can show
the overall logic of a program without the clutter of details common in assembly
language.

In order to reuse as much source code as possible, this chapter includes a
"library" ofall the general-purpose C functions that can be called from within any
of the utility programs. This file, called "LIBRARY.C", is shown in Figure 11-1.
Once a utility program has been compiled, the necessary functions from the
library can be linked with the utility's binary output to form the ".COM" file.

371

372 The CP/M Programmer's Handbook

1* Librarv of commonly-used functions *1

#include <LIBRARY.H> 1* Standard defines and structures *1

Configuration block access

1*==~I
char
get_cba(code) 1 Get configuration block address *1
/*==*1
1* This function makes a call to a "private" entry in the BIOS

jump vector to return the address of a specific data object in
the BIOS. The code indicates which object is required.
Each program using this function could make a direct call to
the BIOS using the biosh() function provided by 80S C. This
function provides a common point to which debugging code can
be added to display the addresses returned. *1

1* EntrY parameters ~I

int code; 1* Code that specifies the object
whose address is required *1

1* Exit Parameters
Address returned by the BIOS rout ine *1

a

(

char *retval; 1* Value returned by the BIOS *1

retval biosh(CBGADDR,code);
1* printf("\nget cba : code Xd address X4x",code,retval); *1

return retval;
} 1'IIf End of get _cba<code) *1

Character manipulation functions

1*==*1
strscn(string.key) 1* String scan *1
1*==~I1* This function scans a OO-terminated character string looking

for a key string in it. If the key string is found within the
string. the function returns a pointer to it. Otherwise it
returns a value of zero. *1

1* Entry parameters *1
char 'llfstring; 1* String to be searched ~I

char 'llfkey; 1* Key string to be searched felr *1

1* Exit parameters
Pointer to key string within searched string, or
zero if key not found

b

I" First char. matches ~I

== 0'> I" Perform substring
compare on rest *1

I" Substring matches,
return pointer "'I

I'" Move to next char. in string "'I

I" Indicate no match found "'I

string++;
}

return 0;
} 1* End of strscn *1

(

while <*string) 1* For all non-null chars. in string ~I

{

if «*string *key) &&
(sstrcmp(string.keY)

re t ur-n s t ring;

1*==*1
ustrcmp(stringl,string2) 1* Uppercase string compare *1

1*==*11* This function is similar to the normal strcmp function;
it differs only in that the characters are compared as if they
were all uppercase characters -- the strings are left
unal tered. *1

Figure 11·1. LIBRARY.C, commonly used functions, in C l.anguage

Chapter 11: Additional Utility Programs

1* EntrY P.rameters *1
char *stringl; 1* Pointer to first string *1
char *string2; 1* Pointer to second string *1

1* Exit parameters
o - if string 1 = string 2
-va integer if string 1 > string 2
+ve integer if string 1 < string 2.. /

373

f
int count;

count = 0;

1* Used to access chars. in both strings *1

1* start with the first character of both *1
c

1* While string 1 characters ~re non-null. and
match their counterparts in string 2. *1

while (stringl[countl == string2Ccount)
{

if (stringl[++countJ == ~\O~) 1* ~ast char. in string 1 *1
return 0; 1* Indicate equality *1

)

return string2Ccountl - stringlCcountl; 1* "Compare" chars. *1

} 1* End of sstrcmp *1 _

,*==*1
sstrcmp(string,substring) 1* Substring compare *1
I*==~=.=============*1
1* This function compares two strings. The first. string. need not

be oO-terminated. The second. substring. must be OO-terminated.
It is similar to the standard function strcmp. except that the
length of the substring controls how many characters are compared. *1

1* Entry parameters *1
char .string; 1* Pointer to main string *1
char *substring; 1* Pointer to substring *1
1* Exit parameters

o - substring matches corresponding characters in string
-ve integer if char. in string is > char. in substring
+ve integer if char. in string is < char. in substring.. /

-

d

f
int count;

count = 0;

1* Used to access chars. in string and substring *1
1* Start with the first character of each *1

1* While substring characters are non-null. and
match their counterparts in string. *1

while (string[countl == ~ubstrin9~countl)

{

if (substring[++countl == /\0/) 1* Last char in substring *1
return 0: 1* Indicate equality *1

)

return substring[countJ - string[countl:

) 1* End of sstrcmp *1

I*==?===================*1
usstrc.p(string,substring) 1* Uppercase substring compare *1
1*===-============*1
1* This function compares two strings. The first, string. need not

be OO-terMinated. The second. substring. must be OO-terminated.
It is similar to the substring compare above except all
characters are made uppercase. *1

1* Entry parameters *1
char *stringJ 1* Pointer to main string *1
char *substring; 1* Pointer to substring */

1* Exit parameters
o -- substring matches corresponding characters in string

-
-

e

Figure 11-1. (Continued)

374 The CP/M Programmer's Handbook

-ve integer if char. in string is > char. in substring
+ve integer If char. in string is < char. in substring

(

lnt count;

count =: 0;

1* Used to access chars in string and substring _/

1* Start with the first character of each *1

1* While substring characters are non-null. and
match their counterparts in string_ *1

while (toupper(stringtcount) == toupper(substring[count))
{

if (substring[++countl == '\0') 1* Last char. in substring *1
return 0; 1* Indicate equality *1

e

)

return sUbstring[countl - string[countl'
) 1* End of usstrcmp *1

1* "Compare" chars. *1
-

I*:::.::==:::================_==========z=======================*1
comp fname(scb.name) 1* Compare file names *1
1*==;========================-==================================*1
1* This function compares a possiblY ambiguous file name

to the name in the specified character string. The number of
bytes compared is determined by the number of characters in
the mask.
This function can be used to compare file names and types.
or, by appending an extra byte to the mask. the file names.
types, and extent numbers.
For file directory entries, an extra byte can be prefixed to
the mask and the function used to compare user number, file
name. type. and extent.
Note that a n?" in the first character of the mask will NOT
match with a value of OxE5 (this value is used to indicate
an inactive directory entry). *1

1* Entry parameters *1
struct _scb *scb; 1* Pointer to search control block *1
char *name; 1* Pointer to file name *1
1* Exit parameter

NAME_EQ if the nameS match the mask
NAME_LT if the name is less than the mask
NAME_GT if the name is greater than the mask
NAME_NE if the name is not equal to the mask (but the outcome

is ambiguous because of the wildcards in the mask)
*/

-

f
{

int count;
short ambiguous;
char *mask;

1* Count of the number of chars. processed *1
1* NZ when the mask is ambiguous *1
1* Pointer to bytes at front ,of SCB *1

1* Set pointer to characters at beginning of search control block *1
Mask = scb,

1* Ambiguous match on user number. matches
onlY users 0 - 15. and not inactive entries *1

if (maskrOJ == '7')
{

if (name[O] == OxE5l
return NAME_NE; 1* Indicate inequality *1

)

else 1* First char. of mask is not "?II *1
{

if (maskCOl != nameCOl) 1* User numbers do not match *1
return NAME_NE' 1* Indicate inequality *1

/* No~ check the name (and. if the length is such, the extent) *1
for (count = 1~ 1* Start with first name character *1

coun~ <= scb -) scb length, 1* For ~ll required characters *1
count++) - 1* Move to next character *1

(

if (mask[count) == '?"') 1* Wi Idcard character in mask *1 ,.&.,

Figure 11·1. (Continued)

Chapter 11: Additional Utility Programs

[

ambiguous = 1, 1* Indicate ambiguous name in .ask *'
continue, '* Do not make any comparisons */
)

if (mask[eountl 1= (name[eountl , Ox7F»
{ 1* Mask char. not equal to FeB char. *1
if (ambiguous) 1* If previous wildcard. indicate NE wI

.... turn NAME_NE;
else

375

1* Compare chars. to determine relationship wI
return (maskCcountl > name[countl ?

NAME_LT : NAME_Gll'

I'* If control reaches here, then all characters of the
mask and name have been processed, and either there
we... e wildcards in the mask. or they all matched. *1

return NAME_EQ, 1* Indicate mask and name .re "equal tl "'I

'*======••m=========••=_====================S==========a=====_==./
cony fname<fcb,fn) 1* Convert file name for output wI
, ••=;==s===_=a==================•••========-==========-=======-=*1
1* This function converts the contents of • file control

block into a printable ,triM "D:FILENAME.TVP." */

f

1* Entry parameters *1
struet feb *feb.
char *fn;

1* Pointer to file control block *1
1* Pointer to area to receive name *1

1* If the disk specification in the
feB is 0, use the current disk *1

*fn++ = (feb -) feb_disk) ? (feb -) feb_disk + (~A~-l» :
(bdo,(GETDISK) + 'A'), g

*fn++ = ": ";

movmem(&fcb -) fcb_fname,fn,S);
fn +. 8;
*fn++ = ".~;

.ovmem(lrfcb -) fcb_'name+8,fn,3),
*'n++ Ir- OM7F,
*'n++ &=- OM7F,
*'n++ &. OM7F,.'n • '\0',

} 1* End of conv_fname *1

1* Insert disk id. delimiter *1

1* Move 1ile name *1
1* Update pointer *1
/* Insert file name/type delimiter */
1* Move file type *1
1* Re.ove any attribute bits *1
1* Remove any attribute bits *1
1* Remove any attribute bits *1
1* Terminator *1

IMm•••••••••••======_•••===••=•••••==========.==================*1
conv_dfname(disk,dirpfn) 1* Convert directorY file name for output *1
1.·············======···=================··=·=============-=====*1
1* This function converts the contents of • file directory entry

block into a printable string "D:FILENAME.TVP." */

1* Entry parameters *1
short disk.
struct _dir *dir;
char *fn,

/* Disk id. (A = O. B = 1) */
1* Pointer to file control block */
/* Pointer to area to receive name *1

/* Convert user number and disk id. *1
sprintf(fn,"Y.2d/'Xc:",dir -) de userno,disk + "A.-');
fn += 5, - /* Update pointer to file name */

h

movmem(&dir -) de_fname,fn,8);
fn += 8,
.fn++ = ".";

/* Move file name */
/* Update pointer *1
/* Insert file name/type delimiter */

Ilovmem('dir ->
*fn++ &= Ox7F,
.fn++ ,- OM7F;
*fn++ &= Ox7F;
.fn = "\0";

de fname+8,fn,3), 1* Move file
- /* Remove any

1* Remove any
/* Remove any
/* Terminator

type */
attribute bits *1
attribute bits */
attribute bits *1
*/

Figure 11-1. (Continued)

376 The CP/M Programmer's Handbook

) 1* End of conv_dfname *1

1*==./
get_nfn (amb_fname, next_fname) 1* Get next file name *1
I*==s.=-=====_.=*/
1* This function sets the FeB at "next_fname" to contain the

directory entry found that matches the ambiguous file name
in "amb fname."
On the first entry for a given file name, the most significant
bit in the FCB~s disk field must be set to one (this causes a
search first BDOS call to be made). *1

/* Entry parameters *1
struct _feb .amb_foame, 1* Ambiguous file name *1
struct _feb *next_fname, l. First byte Must have rns bit set for

first time entry)*1

/* Exit parameter$
o No further name found
1 = Further name found (and set up in next_fname)

(

char bdos_func;
char" *pfname;

1* Set to ei ther search first or next tid
1* Pointer to file name in directory entry ttl

1* Initialize tail-end of next file FCB to zero *1
setmem(Lne.t_fname -) fcb_e.tent,FCBSIZE-12,O),

bdos_func = SEARCHF; 1* Assume a search first Must be given *1

if (I (ne.t_fname -) feb_disk L 0.80»
[

1* If not first time *1

1* search first on previous name ttl
srch_file(ne.t_fname,SEARCHF),
bdos_func = SEARCHN; 1* Then do a s.arch next *1
}

else 1* First time ttl
ne.t_fname -) feb_disk L= O.7F, 1* Reset first-time flag *1

1* Refresh next_fname frOM ambiguous file name
(move disk. name. type) iEI

movmem(amb_fname.next_fname.12);

1* If first time. issue search first. otherwise
issue a search next call. usrch_file" returns
a pointer to the directory entry that matches
the ambiguous file name. or 0 if no match *1

if (!(pfname = srch_file(next_fname.bdos_func»)
{

return 0; 1* Indicate no match *1
}

1* Move file name and type *1
movmem(pfname.&next_fname -} fcb_fname.ll);
return 1; 1* Indicate match found *1

1*==;===*1
char *srch file(fcb.bdos code) 1* Search for file *1
1*========;=============;=================================z=====*1
1* This function issues either a search first or search next

BDOS call. *1

1* Entry Parameters *1
str-uct _fcb .fcb; 1* pointer to file control block *1
short bdos_code; 1* either SEARCHF or SEARCHN *1

liE Exit parameters
o = no match found
NZ = pointer to entry matched (currently in buffer)

Figure 11·1. (Continued)

(

unsigned y_code,

Chapter 11: Additional Utility Programs

1* Return code from s.arch function
This is either 255 for no match, or 0, 1, 2, or 3
b.in9 th. ordinal of the 32-byte .ntry in the
buffer that matched the name *1

1* Pointer to directorY entry *1

377

1M Th. BOS C compiler always s.ts the BOOS DMA
to location 0.80 MI

r code· bdos(bdos cod.rfcb),
if (r code ~= 2S5)-

- return 0;

1M Issue the BOOS call *1
1* No match found wI

'* set • pointe ... to the .atching
entry by .ultiplyin9 r.turn code by 128
and adding onto the buffe... addr••• (Ox80),
also add 1 to point to first character of name *1

return (r_code « 5) + 0.81,

1/* End of srch_file *1

/.==EZ=====~==.=======.=.=====.=================================*1
1* Read disk (via BIOS) *1

1*·=·_·======·-·==*1'* This function use. the parameters previously set up in the
incoming request block, and, using the BIOS directly,
execute. the disk read. *1

1* Entry parameters *1
struet _drb *drb, 1* Disk request block (disk. track. sector. buffer) *1

1* Exit parameters
o • No data available
1 • Data available

*1
k

(

if (Iset_disk(drb»
return 0,

if (bios(DREAD»
return 0,

return 1,

1* Call SELDSK, SETTRK, SETSEC *1
1M If SELDSK fails, indicate

no data available *1
1* Execute BIOS read *1
1* Indicate no data available if error returned *1

1* Indicate data available *1

I 1* End of rd_disk *1

/*=====_.=======-=====-=====-_._=====================.====••••_=*/
wrt_disk(drb) 1* Writ. disk (via BIOS) *1
1*=============·===================-======·_=======-============*1
1* This function uses the parameters previouslY set up in the

incomin9 request block. and. usin9 the BIOS directly.
execute. the disk write. *1

'* Entry parameters *1
struct _drb Mdrbl 1* Disk request block (disk, track, sector, buffer) *1

'* Exit parameters
o • Error during write
1 = Oat. written OK

*1

(

if (Iset_dlsk(drb»
return 0,

if (bio.(DWRITE»
return 0,

return I,

1* Call SELDSK, SETTRK, SETSEC, SETDMA *1
1* If SELDSK fails. indicate no data written *1
/* Execute BIOS write *1'* Indicate error returned *1

1* Indicate data written *'
I 1M End of wrt_disk MI

Figure 11·1. (Continued)

378 The CP/M Programmer's Handbook

I*===_=••=••E=============*1
short .et_disk(drb) 1* Set disk parameters *1
1.======-==================:==============·_======-=============*1
1* This function sets uP the BIOS variables in anticipation of

a subsequent disk read or write. *1

-

1* EntrY parameters *1
struct _drb *drb; 1* Disk request block (disk. track, sector, buffer) */

1* Exit parameters
o = Invalid disk (do not perform read/write)
1 = BIOS now set UP for read/write*,

1* The sector in the disk request block contains a
LOGICAL sector. If necessary (as determined bY the
value in the disk parameter header), this ~U5t be
converted into the PHYSICAL .ector.
NOTE: skewtab is declared as a pointer to a pointer to
a short integer (single byte). *1

short **skewtab; 1* Skewtab -) disk parameter header -) skew table *1
short phy_sec; 1* Physical sector -I

,* Call the SELDSK BIOS entry point. If this returns
a O. then the disk is invalid. Otherwise. it returns
a pointer to the pointer to the skew table fltl

if (! (skewtab = biosh(SELDSK,drb -) dr disk))..)
return 0; 1* Ioval id di sk */

m

bios(SETTRK.drb -) dr_track); Iff Set track fltl

1* Note that the biosh function puts the sector into
registers BC. and a pointer to the skew table in
registers HL. It returns the value in HL on exit
from the BIOS *,

phy_sec = biosh(SECTRN,drb -) dr_sector.*skewtab)r 1* Get physical sector *1
bios(SETSEC.phy_sec); 1* Set sector *1
bios(SETDMA.drb -) dr_buffer); IfIt Set buffer address fltl

return 1; Iff Indicate no problems *1

,* Directory Management Functions *, -
1*=====================================-========================*1
get_nde(dir-pb) 1* Get next directory entry *1
1*============-===*1
1* This function returns a pointer to the next directory entrY.

If the directory has not been opened. it opens it.
When necessary, the next directory sector is read in.
If the current sector has been modified and needs to be written back
onto the disk. this will be done before reading in the next sector. *1

-

1* EntrY parameters fltl
struet _dirpb *dir-pb; 1* Pointer to the disk parameter block *1

1* Exit Parameters
Returns a pointer to the next directory entry in the buffer.
The directorY open and write sector flags in the parameter
block are reset as necessary.*,

n

(

if(Idir..pb
(

if

Figure ii-i.

1* Directory not yet opened *1

(Iopen_dir(dir-pb») 1* Initialize and open directory *1
(

err_dir(O_DIR.dir-pb)J 1* Report error on open fltl
exit()J
)

1* Deliberately set the directory entry pointer to the end
of the buffer to force a read of a directory sector *1

(Continued)

Chapter 11: Additional Utility Programs

dlr-pb -) dp_entry = dlr-pb -) dp_buffer + DIR_BSZ.
dtr-pb -) dp_write = 0; 1* Reset write-••ctor flag */
)

'* Update the directory entry pointer to the next entry in
the buffer. Check if the pointe... is now "off the end"
of the buffe... and another sector need, to b. read. *1

If l++dlr-pb -) dp_entry < dlr-pb -) dp_buffer + DIR_BSZ)
(

return dir-pb -) dp_entry; /* Return pointe... to next entry */
}

1* Need to move to next sector and read it in *1

1* Do not check if at end of directory or move to
the neMt ••ctor if the directory hal Just be.n
opened (but the opened flag hal not yet be.n set) *1

if l!dir-pb -) dp_open)
dir-pb -) dp_open = I' /. Indicate that the directory is now open ./

else
(

/. Check if the sector currently in the buffer needs to be
written back out to the disk (having be.n changed) *1

if ldir-pb -) dp_write)
(

dir-pb -) dp_write = 0, /. Reset the flag ./
if(lrw_dir(W_DIR,dir-pb» 1* Writ. the directory sector wI

(

err_dir(W_DIR,dir-pb), 1M Report error on writing *'
e.itO,
}

n
/* Count down on number of directorv entries left to process,

alwavs four 32-bvte entries per 128-byt. sector */
dir-pb -> dp_entrem -= 4;

379

/* Set directorv-end flag
if ldlr-pb -) dp_entrem == 0)

(

dlr-pb -) dp_end = I,
dir-pb -) dp_OPen = 01
return O.
)

true if number of entries now < 0 */
1* now at end of directorY */

/. Indicate end ./
/. Indicate directorY now closed ./
/* Indicate no more entrie. *'

/. Update sector land if need be track and sector) ./
if (++dir-pb -) dp_sector == dir-pb -) dp_sptrk)

(

++dir-pb -) dp_trackl /. Update track ./
dir-pb -) dp_s.ctor = 0, /* R••et ••ctor */
)

ifl!rw_dlrIR_DIR.dlr-pb» /. Read ne.t directory sector ./
(

err_dir(R_DIR,dir-pb), /* Report error on readin9 */
eMitO;
)

/* Reset directorv-entry pointer to fir.t entry in buffer */
return dir-pb -) dp_entry = dir-pb -) dpjbuffer,

} /. End of get_nde ./

/*======================================.=======================*,

/* This function "opens " UP the file directorY
on a specified disk for subsequent proces.ing
bY rW_dlr. ne.t_dir functions••/

/* Entry parameters */
atruct _dirpb *dir-pb, /* Pointer to directory parameter block */

o

Agure 11-1. (Continued)

380 The CP/M Programmer's Handbook

1* Exit parameters
o = Error, directory not opened
1 = Directory open for processing../

(

.truet _dpb *dpb; /* CP/M disk paraMeter block ../

'* Get disk para•• ter block address for the disk specified in
the directory parameter block *'

If «dpb • get_dpb(dlr-pb -) dp_dlskJJ •• OJ
return 0; 'M Return indicatin9 no OPB for this disk */

/ .. Set the remalnln9 fields In the parameter block ../
dir-pb -) dp_sptrk • dpb -) dpb_sptrk, / .. Sectors per track ../
dlr-pb -) dp_track • dpb -) dpb_trkoff, / .. Track offset of the directory ../
dlr-pb -) dp_sector • 0, /* "9innln9 of directorY ../
dlr-pb -) dp_nument • dpb -) dpb_ma.den+l, /* No. of directory entries ../ 0
dir-pb -) dp_entrem =dir-pb -) dp_nument, 1* Entries r.mainin~ to process *1
dlr-pb -) dp_end = 0, / .. Indicate not at end .. /

/ .. Set number of allocation blocks per directory entry to
8 or 16 dependln9 on the number of allocation blocks ../

dlr-pb -) dp_nabpde = (dpb -) dpb_ma.abn) 2~~ ? 8 I 16J,
/* Set number of allocation blocks (one More than number of

hl9hest blockJ ../
dlr-pb -) dp_nab = dpb -) dpb_ma.abn,

/ .. Set the allocation block size based on the block shift.
The po•• ibl. valu•• are: 3 = lk, 4 = 2K, ~ = 4K, 6 = SK, 7 16K.
So a value of 16 Is shifted rl9ht by (7 - bshlftJ bits .../

dir-pb -) dp_absize • 16 » (7 - dpb -) dpb_bshlftJ,

I. Indicate that directory now opened *1

1*====================_=========================_==8••_••••_====*1
rw_dir(read_oP,dir-pb) 1M Read/write directory wI
/.======.==.=.==============~====.3=============================*1

/ .. This function reads/writes the ne.t 128-byte
.ector from/to the currently open directory. *1

1* Entry parameters */
short read_oP' /* True to read, false (0) to write *1
struct _dirpb "dlr-pb, / .. Directory par~meter block ../

/* Exit parameters
o = error -- operation not performed
1 = operation completed.. /

/ .. Disk request (for BIOS read/wrlteJ */
(

struct _drb drb;

drb.dr_dlsk = dlr-pb -) dp_dlsk,
drb.dr_track • dlr-pb -) dp_track,
drb.dr_.ector • dir-pb -> dp_sector,
drb.dr_buffer = dlr-pb -) dp_buffer,

Iw Set up disk request */

p

if (read_opJ
(

If (Ird_dlsk(LdrbJJ
return 0,

(

If (lwrt_dlsk(LdrbJJ
return 0,

)

return 1,

) /* End of rd_dlr .. /

/* Issue read command *1
/ .. Indlc~te error -- no data available ../

1* I.sue write. command *1
1* Indicate error -- no data written */

Figure 11-1. (Continued)

Chapter 11: Additional Utility Programs

I.e•••••••••••••••••••••••••••••••••=•••••••••••••••••_=••a•••••MI
err_dir(apeode.dir-pb) /* Display direetory error, ••••••••••••••••••••••••=••••=••••=••••- •••••••••••••==··==···=*1'* This function displays an error mes.ag_ to report an error

deteeted in the direetorY .anave.ent funetions open_dir and rW_dlr. */'* Entry parameter. *'
short opeode, /* Operation belnv atteMPted */
struet _dirpb *dir-pb, /* Pointer to direetory parameter bloek */

(

prlntf("\n\OO7Error durinv "),

381

swIteh (apeode)
(

e ..se R_DIRI
prlntf(MR••ding"),
break,

ease W_DIRI
print f (·Wri t In9 11

),

break,
ease O_DIR'

printf (·OPeninv-),
break;

def..ult.
printf(HUnknown OPeration (Xd) on",oPcode>,

printf(1I Directory on disk XCI. ",dir.-pb -) dp_disk + "'A"'),

) /* End of err_dlr */

, ••••••••••==••===••=•••==•••••••==•••••••===••••••••••••••••===*,
••tseb(scb, fname,use ... ,eMtent, length) '* set ••arch cpntrol block *1
, ••••••••••••••••••••••••••••=••••••••••••••••••••••••••••••=••••,'* This function .ets up •••arch control block according

to the file n.... speeified. The file name ean take the
followinv fon.s,

fil.nam.
f Uena..e. typ
dlfil.na.••• tvp
*Ifil.n•••• tvp (••anin9 ".11 disks-)
ABCD••• NOPlfilen..... typ (meaning "Just the specified disks ll

)

The funetlon .ets the bit lIlap aeeordlng to whleh diSks should be
s.arched. For each s.lect.d disk .. it checks to .ee if an error is
venerated when seleetinv the dl.k (i.e. If there are disk table.
In the BIOS for the disk). */

q

'* Entry parameters *'
struct _scb .scb,
char *fname,
short user;
short .xtent,
int lenvth,

,* Exit para..ters
None.

*/

(

int disk'
unsign.d .disk.,

'* Point.r to s.arch control block *'
/* Pointer to the file name */'* User number to search for *''* Extent number to s.arch for *'
/* NuIIlber of byte. to eOlllPare */

'* Disk number curr.ntlY being cheeked *''* Bit .ap for active disks *'
'* Assu•• no disks to s.arch *'

if (strscn(fn...,-.-» /* Cheek if "I" in file name */
(

if (.fn..... '.') /* Cheek if lI a ll disks- */
(

adisks D OxFFFF, /* Set all bl is */
)

el •• /* Set speeifie disks */

Figure 11-1.

(

whil.(.fna.e ,. '1')

(Continued)

'* Unt i 1 "1" reached *1

382 The CP/M Programmer's Handbook

{

1* Build the bit map by getting the ne.t disk
id. (A - P), converting it to a number in
the range 0 - 1~. shifting a I-bit left
that .any plaees. and OR-ing it into the
current activ. disks. *1

_disk. 1= 1 « (toupper(Mfname) - ~A~).

++fname. 1M Move to neKt character *1
}

++fname. 1* Bypass colon *1
}

}

else 1M Us. only current default disk wI
(

1M Set Just the bit corresponding to the current disk wI
adlsks = 1 « bdos(OETDISK);
}

setleb(seb,fname); 1* Set ••arch control block as though it
were a file control block. *1

1* Make ealls to the BIOS SELDSK routine to make sure that
all of the active disk drives have disk table. for them
in the BIOS. If theY don;t, turn off the corresponding
bits In the bit map. *1

foY (disk = 0; 1* Start with disk AI *1
disk < 16; 1* Until disk PI *1
disk++) Itt Use next disk *1

I
if (1«1 « disk) L adlsks»

continue; 1* Avoid selecting unspecified disks *1
If (biosh(SELDSK.disk) == 0) 1* Make BIOS SELDSK call *1

I 1* Returns 0 If Invalid disk *1
1* Turn OFF corresponding bit in .ask

by AND-Ing It with bit mask having
all the other bits set = 1 *1

adlsks L= «1 « disk) • O.FFFF);
}

scb -) scb_adisks adisks; 1* Set bit map in SGB *1
scb -) scb_userno user; 1* Set user number *1
scb -) scb_••htlt extent; 1* Set e.tent number ttl
scb -) scb_length length; 1* Set numbll!r of bytes to compa.... e *1
} 1* End setscb *1

I*========z_====••===z======_=================_=================*1
dm_clr(disk_map) 1* Disk map clear (to zeros) *1
1*==-=======•••_==c==_*1
1* This function clears all element. of the disk map to zero. *1

r

1* EntrY Parameters *1
unsigned dlsk_map[16][18];

1* EMit parameters
None.

1* Address of array of unsigned integers *1

s

1* WARNING -- The 576 in the setmem call below is based on
the disk map array being [16][18] -- I.e. 288 unsigned
integers, hence ~76 bytes. *1

setmem(disk_map,576,~\O~); 1* Fill array with zeros *1

I*c==================._=========_===============================*1
drn_disp(disk_map,adisks) 1* Disk map display *1
I.===========e==.1
I. This function displays the elements of the disk map. showing

the count tn each element. A zero value-element is shown as
blanks. For eMample: l'

Figure 11-1. (Continued)

o
AI 123

2 3
20 98

4 5 6
202

Chapter II: Additional Utility Programs

7 8 9 10 II 12 13 14 15 Used Free
199 101 211 954 70

383

Lines will onlv be printed for active disks (as indicated bv
the bit map). *1

'* Entry par.meter~ *'
unsigned disk_map[16l[18l,
unsi9ned adisks,

(

.define USED_COUNT 16

.define FREE_COUNT 17

int disk,
int us.rno,
unsi4;ned dsum;

1* Pointer to disk maP array *'
1* Bit map of active disks wi

1* "User" number for used' entities *',w "User" numbe ... for free entiti •• *1

'* Current disk number w,'* Current user number *1'* Sum of entries for 9iven disk *1

for (disk = 0,
disk < 16.
disk++)

{

if (!(adisks & (1 «
continue,

printf("\n o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Used Free");

1* Start with disk A. *1
1* Until disk PI *1
1* Next disk *1

disk») 1* Check if disk is active *1
1M No -- so bypass this one wI

1* Displav disk number *1

1* Reset sum for this disk *1
/* Start with user 0 wI
1* Until user 15 *1'* Next use ... numbe... wI

dsum = 0,
for (userno = 0,

US.rno < 16,
userno++)

(

dsum +- disk_map[diskJeusernol, 1* Build SUM *1
)

if (dsum) 1* Check if anv output for this disk.
and if not, display d: None *1

or blanks *1
1* Start with user 0 *1
1* Until user 15 *1
1* NeMt user number *1

{

'M Print either number
for (userno • 0,

userno < 16;
userno++)

{

if (disk_map[disk][usernol)
pr tnt f (IIX4d", disk_map[disk][userno]);

el.e
printf(1I II);

else 1* No output for this disk *1
(

prtntf(II -- None -
)

printf(" %4d X4d".disk~ap[diskltUSED_COUNTl.disk_map[diskl[FREE_COUNTl),
)

I*=============================··=====·~·====s.=================*1

get dpb(disk) 1* Get disk parameter block address *1
I.·~====================_··=====.~=====·========================*1
1* This function returns the address of the disk parameter

block (located in the BIOS). *1

1* Entry par_meters *1
char disk; 1* Logical disk for which DPB address is needed *1

1* EMit parameters
o z Invalid logical disk
NZ = Pointer to disk parameter block

-
-

u

[

if (biosh(SELDSK,disk)
return 0,

0) 1* Make BIOS SELDSK call *1
1* Invalid disk *1

Figure ii-i. (Continued)

384 The CP/M Programmer's Handbook

bdos(SETDISK,disk)'
return bdos(GETOPARM),

J Iw End of get_dpb wi

Code table functions

Iw Use BOOS SETDISK function WI
1* Get the disk parameter block *1

-

1* Pointer to code table entry *1
1* Code value to stoYe in entrY *1
1* Pointer to string for entry *1

1* Host pr09rams that interact with a user must
accept parameters from the user bY name and translate
the name into some internal code value.
They also must be able to work in reverse. examining
the settin9 of a variable, and determing what (ASCII
name) it has been set to.

An example is setting baud rates. The user may want to
enter "19200,11 and have this translated into a number
to be output to a chip. Alternatively, a previously
set baud rate variabt. may have to be examined and the
string "19200 11 generated to display its current
setting to the user.

A code table is used to make this task easier.
E~ch element in the table logically consists of:

A code value (unsigned integer)
An ASCII character string (actuallY a pointer to it) *1

1*============================-=================================*1
ct_init(entry,code,string) 1* Initialize code table *1
1*==*11* This function initializes a specific entrY in a code table

with a code value and string pointer.

"); NOTE: By convention, the last entry in a given
code table will have a code value of CT_SNF (string not found). *1

1* Entry parameters *1
struct ct *entry;
int code.
char *string;

1* Exit parameters
None.

v

I*=====z==*1
unsigned
ct-parc(table,string) 1* Parameter - return code *1
1*==*11* This function searches the specified table for a

~atching strin9, and returns the code value that corresponds to it.
If only one match is found in the table, then this function returns
that code value. If no match or .ore than one match is found,
it returns the error value. CT_SNF (string not found).
This function is specifically designed for processing
parameters on a command tail.
Note that the comparison is done after conversion to uppercase
(i.e. "STRING" lIIatches "string"). A substring compare is used so
that only the minimum number of characters for an unambiguous
response need be entered. For example. if the table contained:

(

entry
entry
) Iw

-) _ct_code = code;
-) _ct_sp = string;
end of ct_inti *1

1* Set ct code *1
1* Set string pointer *1

--

w

Code Value
I "APPLES"
2 "ORANGES"
3 "APRICOTS"

A response of "0" would return code = 2. but "A" or "AP" would
be ambiguous. "APR" or "APP" would be required. 'If!

struet _ct -table:
ehar -string:

I- Pointer to table *1
1* Pointer to key string *1

Rgure 11-1. (Continued)

(

tnt mcode,
int Kount,

1IC0de = CT_SNFI
.count • 0,

Chapter 11: Additional Utility Programs

1* Hatched code to return *1
1* Count of number of matches found *1

1M Assume error *1
1* Reset Match count *1

385

while(table -) _ct_code ,= CT_SNF) 1* Not et end of table *1
{

/* Ca.pare keyboard r.sponse to table entry usin9
upp.rc.... substrin4ill compare·. *'

if (u••trcmp(table -) _ct_sp,strin9) ~. 0)
(

mcount++, 1M Update match count *1
meode • table -) _ct_code; 1* Save cod. wI
)

table++, 1* Hove to next entrY *1
)

w

if (_count == 1)
return tRcode,

«I ••
return CT_SNFI

) 1* End ct-parc *1

1* Only one match found */
1* Return .atched code *1
1M Ille4illal or ambi9uous wI

1*==·····=================··=====··=====·====··=======a_.=••••_.WI
unsi9ned
ct_code<table,string) 1* Return code for strin9 *1
1*····=======================··======·====····==·=··===·_·======*1
1M This function searches the specified table for the

specified string. 11 a match occurs, it returns the
corre.ponding code value. Otherwise it returns CT_SNF
(strln9 not found).
Unlike ct-parc, this function compar•• every character in the
key strine. and will return the code on the first match found. *1

1M EntrY parameters *1
struct _ct *table, 1M Pointer to table *1
char .strln9' 1* Pointer to strin9 wI

1* Exit parameters
Code value -- if strin9 found
CT_SNF -- if strln9 not found

*1

(

whlle(table -) _ct_code 1= CT_SNFl 1* For all entries In table *1
{

if (u.trcmp(table -) _ct_sp,string) == 0) 1M Compare strings *1
return table -) _ct_code, 1M Return code *1

table++, 1M Move to next entry MI
)

return CT_SNF' 1* Strin9 not found *1

I*=··~====···=·==••======.=_·===.····=.·=········._••=====•••==-.,
ct disps(table) 1* Displays all strin9s in specified table *1
I*~====••===•••==.====._•••_==•••••====••=====••======._=_=•••••MI
1* This function displays all of the strin9s in a 91ven table.

tt is used to indicate valid responses for operator input. *1

x

1* Entry para.eters wI
struct _ct *table,

1* Exit Parameters
None.

*1

1* Pointer to table *1

y

(

while(table -) _ct_code 1= CT_SNF) 1* Not end of table *1
(

printf("\n\t\tXs",tabl. -> _ct_sp), Itt Print strimJ *1
table++, 1M Move to next entrY WI
)

Figure ii-i. (Continued)

386 The CP/M Programmer's Handbook

putchar("'\n"'), 1* Add final return *1

/*==~==••==.=====c======_=.1
ct_index(table,string) 1* Returns index for a given string *1
1*===-==···=-===*1
1* This function searches the specified table. and returns

the INDEX of the entrY containing a matching string.
All characters of the string are used for the comparison,
after they have b••n _ade uppercase. *1

1* Entry parameters *1
struet _ct *table,
char .itringF

1* Pointer to table *1
1* Pointer to string AI

'* Exit parameters
Index of entry matching string. or
CT_SNF if string not found.

tfl
z

I
int index;

Inde' = 0,

1* Current value of index wI

1* Initialize index *1

whlle(table -> ct code 1= CT_SNF) 1* Not at end of table *1

I
If (ustrcMP(table -> _ct_sp,strlng) == 0)

return index, 1* Return index *1
table++, 1* Move to next table entry *1
index++, 1* Update index *1
)

return CT_SNF, 1* String not found *1

I.R=-.===========.=••==_=========••=====._.=================-===wI
char *ct stri(table,ind.x) 1* Get string according to index *1
1.===·=·;.=·==··=====--=====-==·====··=-··===_·=================*1
1* This function returns a pointer to the string in the

table entry specified by the index. *1
1* Entry parameters *1
struct _ct *table,
int inde.,

(

struct _ct .entry,
entry = table[lnde.l,
return entry -) _ct_sp,

1* Pointer to table *1
1* Inde. Into table *1

1* Entry pointer *1
1* Point to entry *1
1* Return pointer to string *1

aa

I*==z==.==.-================-_.====••==_===============-========*1
char wet_strc<table,code) 1* Get string according to code value *1
1.====···_·====·==-=======·_·==-======·_·======·====·=··====-·_·*1
1* This function search•• the specified table and returns a

pointer to the character string in the entry with the
matchinv code valu~ or a pointer to a string of "unknown"
if the code value is not found. *1

1* Entry parameters *1
struct _ct *table,
unsi9niltd code,

1* Pointiltr to table *1
1* Code value *1

bb

(

whlle(table -> _ct_code I- CT_SNF)
(

If (table -> _ct code == code)
return t;ble -) _ct_sp,

table++,

1* Until end of table *1

1* Check code matches *1
1* Ves. return ptr. to str. *1
1* No. move to next entry *1

Figure 11·1. (Continued)

Chapter 11: Additional Utility Programs

I
return "Unknown"J
I

387

Bit vector functions

,_ The.e function. manipulate bit vectors. A bit vector i. a 9roup
of ~dJ.c.nt bits, packed eight per byte. Each bit vector has the
.tructure defined in the LIBRARY.H file.

Bit vectors are used primarily to manipulate the operatin9
svstem'. allocation vectors and other value. that can best
be repre.ented as ••erie. of bits. wi

,.==..===•••====••••••••••=====.====••=====•••====••===.-=====:=*1
bV_Make<bv,byt.,> 1* Make a bit vector and clear to zeros *1
1.···--····==··_-===···········==·····_=····=-==-=-=··==========*1
/* This function us•• C's built-in memory allocatton, alloe,

to allocate the necessary amount of memory, and then
•• ts the vector to zero-bits. *1

1M Entry parameters wI
struct _by wbv, 1M Pointer to .. bit vector *1
unsi~ned bytes, 1M Number of bytes in bit vector *1

1* Exit parameter
NZ = vector cr.ated
o = insufficient memory to create vector

bb

cc

(

if(!(bv -) bv_bit•• alloc(byte.»)
return 0,

bv -> bY_bytes = byte.,
bv -) bv_end = bv -) bv_bit. + byte.,

bv_f UHbv, 0) I
return 1,

,- Request memory *',- Request failed *'
,* Set lan9th *',- Set pointer to end *'
,* Fill with 0'. *'

1*-===····===-····====-======-=··_-=--=····===-========-=-===--=*1
bv_fill(bv,value) ,_ Fill bit vector with value *'
IM.=••=-=.=••R===_==••_=====••=_===_••••==== ==============_==*1
,- Thi. function fill. the .pecified bit vector with the

specified value.
Thi. function exist only for consistency~s sak. and
to isolate the maln body of code fro. standard
functions like set.em. *1

1M Entry parameters *1
struct jbv Mbv, 1* Pointer to bit vector *1
char value, 1M Value to fill vector with *1

1* Exit parameters
Non••

(

1* address length value fi:1
setmem(bv -> bv_bits,bv -) bv_bvtes.value),
)

dd

1*===-=·=-====··_--==-==================-===========·====-====-=*1
bv_set(bv,bitnum) 1* Set the specified bit number *1
1.-==·=···=···_====·=====-:========-=====--===···===-=··==··-==-*1
1* This function sets the specified bit number in the bit vector

to one-bit. -,

1* Entry parameters *1
struct J>v _bvI
unsivned bitnuM'

1* Pointer to bit vector *1
1* Bit number to be set *1

Figure 11·1, (Continued)

388 The CP/M Programmer's Handbook

/W Exit parameters
None.

[

unsigned byte_offset; /* Byte offset into the bit vector *1

if «byte_offs.t = bitnum » 3) > bY -) by_bytes)
reluY" 0, 1* Bitnum is "o ff the end" of the vector '111;/

1* Set the appropriate bit in the yector. The byte offset
has already been calculated. The bit number in the byte
is calculated by AND ing the bit number with Ox07.
The Ipecified bit il then OR ed into the yector *1

ee

return 11 1M Indicate completion wI

I.c•••==•••=•••••=.====.===~.==.====.=================_===z=====*1
bv_te.t<bv,bitnulI) 'M Test the specified bit number *1
/*=============•••====.====.=••••===.======.====================*/'* This function returns a value that reflect, the current

letting of the IPecified bit. *1

1* Entry parameters WI
struet _bY Wbv,
unsi9ned bitnum,

'W Exit parameters
None.

t
unsigned byte_offset,

1* Pointer to bit vector *1'* Bit number to be set *1

1* Byte offset into the bit vector *1
ff

if «byte_offset = bitnum » 3) > bY -> bY_bytes)
return 0; ItIt 8i tnum is "off the end" of the vector *1

1* Set the APpropriate bit in the vector. The byte off.et
has already been calculated. The bit number in the byte
is calculated by AND in9 the bit number with OxOl.
The specified bit is then OR ed into the vector *f

return bY -> bY_bits[byte_offsetJ & (1 « (bitnum & Ox7»,

) 1* End of by ... test s *1

f*=================-========-===================================tltf
bv_nz(bv) f* Test bit vector nonzero *f
1*=====·===================·····================================*f1* This function tests each byte in the specified vector.

and returns indicatin9 whether any bits are set in
the vector. wI

1* EntrY parameters wI
struct _bY *bv, 1* Pointer to bit vector *1
f* Exit Parameters

NZ = one or more bits are set in the vector
o = all bits are off./

[

char *bitsJ /* Pointer to bits in bit vector tltl

bits • bv -) bv_bitsJ 1* Set workin9 pointer *1

while (bUs != by -> bY_end) 1* For entire bit vector */
[

if (*bits++) 1* If nonzero *f
return bits--, 1* Return pointer to NZ byte *1

Figure ii-i. (Continued)

gg

Chapter 11: Additional Utility Programs 389

1* Indicate vectoy is zero */

/.~=•••=.=.=.===••••====================.=====.========--======-*1
bv and(bv3.bv!.bv2) 1* bv3 = bv! L bV2 *1,.=....•==••====•••====.====••••====•••••••••===••===••===••====*/
1* This function perforMs a boolean AND between the bytes

of bit vector 1 and 2, storin9 the result in bit vector 3. */

'* Entry parameters *1
struct _bY *bvll
struct _bY *bv2,

1* Pointer to input bit vector wI
1* Pointer to input bit vectoy *1

'M Exit parameters WI
struct _bY Mbv3; 1M Pointer to output bit vectoY *1

(

char .bits1, *bit.2, *bits3; 1* Workin9 pointers to bit vectors */ hh

bits! - bv! -) bv bits,
bits2 - bv2 -) bv=bits,
bits3 - bv3 -) bY_bits;

1* Initialize working pointers *1

1* AND In9 will proceed until the end of anyone of the bit
vectors is reached */

while (bitsl 1- bvl -) bY_end &&
bits2 1= bv2 -) by_end &L
bits3 1- bv3 -) by_end)

(

*bits3++ = *bits1++ & *bits2++; 1* bv3 = bv! & bv2 *1
)

) 1* End of by_and *1

1*··=·····=········=·····===···===·======·====··==========a·_===*1
bv_or(bv3,bvl,bv2) 1* bv3 = bvl or bv2 *1
1*==····====··==.··••======================···====.··=====••====*1
1M This function performs a boolean inclusive OR between the bytes

of bit vectors 1 and 2, storing the result in bit vector 3. *1

ii

1* Pointer to input bit vector *1
1* Pointer to input bit vector "I

1* Pointer to output bit vector *1

1* Working pointers to bit vectors *1

1* Initialize working pointers *1bitsl = bvl -) bY_bits,
bits2 - bv2 -) bY_bits;
blts3 - bv3 -) bY_bits;

1* The OR ing will proceed until the end of anyone of the bit
vectors is reached. *1

while (bits! 1- bvl -) by_end L&
bits2 ,- bv2 -) by_end ~&

bits3 1- bv3 -) bY_end)
(

1M Entry parameters *1
st ruct _bY .bv!,
struct _bY *bv2,

(

char *bitsl, *bits2, *bits3;

1* EMit parameters *1
struct _bY *bv3;

*bits3++ • *bitsl++ I *bits2++, 1* bv3 bv! or bv2 *1

1*==···········=====·=====··=====·===··============···==•••••===MI
bv_disp(title.bv) 1* Bit vector display *1
1••···=······=··••• ••==···====··====··===···=====···=====.==._.=*1
1* This function displays the contents of the specified bit vector

in hexadeciMal. It is nor.ally only used for debugging. *1

)

) 1* End of bv _or *1

1M Entry par••eters wI
char *\1 tie'
struct _bY *bY'

1* Title for the display *1
1* Pointer to the bit vector *1 1

Figure ii-i. (Continued)

390 The CP/M Programmer's Handbook

/* Exit para.eters
None.

(

"har Wblts,
unsigned byte_count,
unsigned bit_countl
char byte_value,

/* Working pointer */
1* Count used for fOYMatting display wI
1* Count for processing bits in a byte */

1* Value to be displayed wI

printf("\nBit Vector I X. II ,tltl.>,

bits =bv -) bv bits,
byte_C'ount • 0,-

1* Display title wi

1* Set working pointer wI
1* Initialize count *,

jj

1* For the entire vector *1

1* Check if new line wi
1* Display bit number wI

printf("\n'X4d I ",byte_count « 3),

while (bits != bv -) bY_end)
I
if (byte_count X 5 -= 0)

'* O.t the next byte from the vector wi

for (bit_count = 0, bit_count < 8, bit_count++)
I
1* Display the leftmost bit, then shift the value

left one bit *1
if (bit count == 4) putchar(' ~), 1* Separator *1
putchar«byte_value & Ox80) ? ~1~ I ~O');

byte_value «- 11 Iw Shift value left wi
)

print f (" II), 1* Separator *1

byte count++; 1* Update byte count *1
) -

) IW End of bv_disp WI

IW End of LIBRARY.C wi

Figure ii-i. (Continued)

Associated with the library of functions is another section of source code called
"LIBRARY. R", shown in Figure 11-2. This "header" file must be included at the
beginning of each program that calls any of the library functions.

For reasons of clarity, this chapter describes the simplest functions first,
followed by the more complex, and finally by the utility programs that use the
functions.

Several functions in the library and some definitions in the library header are
not used by the utilities shown in this chapter. They have been included to illustrate
techniques and because they might be useful in other utilities you could write.

IIdef in.. LIBVN "1.0" 1* Library version number *1

1* This file contains groups of useful definitions.
It should be included at the beginning of any proqyam
that uses the functions in LIBRARY.C *1

1* Definition to Make minor language modification to C. *1
.define short char 1* Short is not supported directlY *1 Ja

Figure 11·2. LIBRARY.H, code to be included at the beginning of any program that
calls LIBRARY functions in Figure 11-1

Chapter II: Additional Utility Programs

/_ On. of the functions (bv_••k.) in the libr.ry us.s the BDS C
function ••lloc. to .lloc.t. "MOry. Th. following d.finitions
.r. provid.d for .lloc. -/

391

str-uet _h••der
(

struet _h••der *-ptr;
unlitaned _Ilze,
h

struet _h••der _b••• ,
str-uet _h••der *_al1ocP'

/- H••d.r for block of •••ory .lloc.t.d -/

'* Pointer to the next header In the chain *'
/_ NuMb.r of byt.s in the .llocat.d block -/

/_ D.clar. the first h.ad.r of the ch.in -/
/- Us.d bY .lloc() and fr•• () functions -/

b

/_ BDOS function c.ll numb.rs _/

.d.fin. SETDISK 14
Id.fin. SEARCHF 17
Id.fin. SEARCHN 18
.d.fin. DELETEF 1~

Id.fin. OETDISK 2S
.d.fin. SETDHA 26
.d.fin. OETDPARM 31
.d.fin. OETUSER 32
.d.fin. SETUSER 32

/_ sat (s.lect) disk _/
/_ saarch first -/
/_ saarch n.xt _/
/_ D.l.t. file _/
/_ Get d~f.ult disk (curr.ntly logg.d in) -/
/_ sat DMA (R••d/Writ.) Addr.ss -/
/_ Get disk p.r•••t.r block -.ddrus -/
1* Oet current user number w,
/* Sat current user n~~.r w/

c

/_ Dir.ct BIOS c.Ils
Th.s. d.flnitions .r. for dir.ct calls to the BIOS.
WARNINO: Us!nv th••••ak•• pr09yam 1••• transportable.
E.ch syMbol is r.I.t.d to its corr.sponding JuMp in the
BIOS Ju~ v.ctor.
Only the .or. us.ful .ntries .r. defined. -/

.d.fin. CONST 2 /- Conlole .tatu. */

.d.fin. CONIN 3 /- Conlole input */

.d.fin. CONOUT 4 /- Consol. output _/
Id.fin. LIST :5 /- List output _/
.d.fin. AUXOUT 6 /- Auxili.ry output _/
.d.fin. AUXIN 7 /- Auxili.ry input -/

.d.fin. HOl'E 8 /- HoMe disk -/ d
'defin. SELDSK ~ /- S.l.ct logic.l disk -/
.d.fin. SETTRK 10 /- S.t tr.ck -/
.d.fin. SETSEC 11 /- Set ••etor */
.d.fin. SETaHA 12 /- S.t aHA .ddr.ss -/
Id.fin. DREAD 13 /- Disk r.ad -/
.d.fin. DWRITE 14 / .. Disk wri te ../
'defin. LISTST 15 / .. List status ../
Ide fin. SECTRN 16 / .. sector translate *1
'define AUXIST 17 / .. Auxiliary input statuI */
'defin. AUXOST 18 /- AuxiliarY output statuI */

/ .. "Private" entries in jump v.ctOY *'
.d.fin. CIOINIT 1~ / .. Specific char.ct.r 110 initl.1iz.tion ../
'defin. SETDOG 20 / .. Set watchdog tim.r ../
'defin. CBGADDR 21 / .. Configuration block, ;let addr••• ../

'* Definitionl foY ace••• in9 the configuration block *'
.d.fin. CB_OET 21 / .. BIOS Ju.p number to .ce•• s rout in. ../
Ide fine DEV_INIT 1~ / .. BIOS JUMP to Initi.liz. device *1

• d"fine CB_DATE 0 / .. Dat • in ASCII .. /
Id.f in. CB_TIHEA 1 / .. n .. in ASCII ../
.d.fine CB_DTFLAOS 2 / .. Dat•• H ... fla9s ../
.d.fine TIME_SET OxOl / .. This bit NZns d.t. ha. b••n set ../
.d.fine DATE_SET Ox02 / .. This bit NZ .eans ti•• has b••n set ../

'defin. CB_FIP 3 / .. Forced input pointer *1
.define CB_SUM 4 /- System start-up m••••9. -/

Id.fin. CB_CI :5 / .. Consol. input *'
• d.fin. CB_CO 6 / .. Consol. output *'
Idefin. CB_AI 7 / .. Auxi lian input -/
.d.fi'l. CB_AO 8 /- Auxili.ry output _/

Figure 11-2. (Continued)

e

392 The CP/M Programmer's Handbook

Iw LI.t input wI
Iw List output wI

Iw Device 0 initialization stream wI
1* Device 0 baud rat. constant *'

1* Device 2 initialization stream *1
Iw DeVice 2 baud rata constant wI

Iw Public file. fla9 WI
Iw MUlti-command buffer wI
1* Polled console flag wI

e

-

initialization Itream wI
baud rat. constant *1

/* Device table addres.es *1
Iw Clock 12/24 format fla9 wI
1* Real time clock tick rat_ (per second) *1

Iw Watchd09 count WI
Iw Watchd09 address wI

Iw Function key table wI
/* Console output escape table *1

1* Device
1* Device

1* Interrupt v.c~or *1
Iw Lon9 term config. block off.et WI
Iw Lon9 term confi9. block len9th WI

.define CB_LI 9

.define CB_LO 10

.define CB_DTA II

.define CB_C1224 12

.define CB_RTCTR 13

.define CB_WDC 14

.define CB_WDA 15

.define CBjFKT 16

.define CB_COET 17

.define CB_DO_IS 18

.define CB_DO_BRC 19

.define CB_DI_IS 20

.define CB_Dl_BRC 21

.define CB_D2_IS 22

.define CB_D2_BRC 23

.define CB_IV 24

.define CBjLTC80 25

.define CBjLTCBL 26

.define CB_PUBF 27

.define CB~BUF 28

.define CB_POLLC 29

1* Structure and definitions for function keys wi

1* Names for the physical device. wI

1* Device numbers and nam•• for physical devices *1
/* NOTE_ Chanv. the.e definitions for your computer sYstem *1

-

1* Terminal w,
1* ModeM wI
Iff Printer wI

1* MaKimum physical device number *1

.define PN T "TERMINAL"

.deflne PN-M "MODEM"

.define PN::P "PRINTER"

.define T_DEVN 0

.define M...DEVN 1

.define P_DEVN 2

.define MAXPDEV 2

.define FK_ILENGTH 2

.define FK_LENGTH 16

.deflne FK_ENTRIES 18

/* No. of chars. input when func. key pressed
NOTE. This doe. NOT include the ESCAPE. wI

~: ~~:~:~ ~~ ;~~~rTon (~~~ ;~~~~~~n~nf~a~~~m~/·1 h

Iw Function key table wI.truct _fkt
(

char
char
char
JI

fk_input[FK_ILENGTH1,
fk_output[FK_LENGTH1,
fk_ter-m;

1M Lead-in character is not in table wI
1M Output character string *1
1* Safety terminating character *1

-

1* Definitions and structur-. for device tabl •• *1 -
1* Protocol bits WI
IW Note. if the most si9nificant bit i •

• et a 1. then the ••t-proto function
will l.,..ically OR in the value. This
permit. Input DTR to co-exist with
XON or ETX protocol. wI

.define DT_ODTR Ox8oo4

.define DT_OXON OxOOO8

.define DT_OETX OxoolO

.define DT_IRTS Ox8040

.define DT_IXON,Ox0080

Iw Output DTR hi9h to .end (OR ed in) xl
Iw Output XON xl
Iw Output ETX/ACK WI

Iw Input RTS (OR-ed in) wI
Iw Input XON WI

Figure 11-2. (Continued)

.d.fln. ALLPROTO O_DC

Chapter II: Additional Utility Programs

/* All protocols cOMbln.d */

393

'* Value. returned by the comp_fname (compare file name) tIt/

1* Name. equal *'
1* Name less than mask tIt/
1* Name greater than mask */
1* Name not equal (and comparison ambiguous) *1

struct _dt
I
ch..r dt_f l[14],
cher dt_st 11
ch..r dt_st2,
un.lgn.d dt_f2,
unsi9ned dt_etxmlJ
ch..r dt_f31 12],
} ,

.d.fin. NAME_EQ 0

.deflne NAME_LT I

.d.fin. NAME_OT 2

.d.fln. NAME_NE 3

/* Devic. tebl. */

/* Flll.r */
/* Status byte I -- h..s protocol fl */
/* St ..tus byte 2 */
/* Flll.r */
/* ETX/ACK m....... I.ngth */'* Filler tIt/

}
1M Structure for standard CP/M file control block */

.d.fln. FCBSIZE 36 /* Defln. the ov.rall I.n.th of ..n FCB */

struet _feb
I
.hort feb_disk, /" Logical dl.k (0 = default) */
cher fcb_fnam.III], /* FII. nam., type (with .. ttrlbut ••) "/
short feb_extent, 1* Current extent */
unsigned fcb_s12; 1* Reserved for CP/M *1
short feb_recent; 1* Record count used in current extent */
union 1* Allocation blocks can be either *1

{ 1* Single or double bytes */
short fcbab_Ihort[16J;
un.lgn.d fcbab_longIS],
} _fcb..b,

short feb_cur-ree, 1* Current record within extent */
ch.r fcb_ranrec[3J. /* R~cord for random r~ad/wyite */
} ,

1M Parameter block used for calls to the directory mana9~ment routines *1

k

1* DirectorY buffer size *1

1* The err_dir function is used to report errors found bY the
directory manacaement routines, open dir and rw dir.
Err_dir n.eds a parameter to define-the operation being
performed when the error occurred. The following definitions
represent the operations possible. *1

_dlrpb
(
short dp_open. I.
short dp_end; 1*
short dp_write, 1*
struct _dir *dp_.ntry, /*
cher dp_buff.r IDIR_BSZ],
ch ..r dp disk, /*
int dp_tr..ck, /"
int dp_sector, 1*
int dp_nUmiltntl 1*
int dp_entrem, I.
Int dp_sptrk, /*
Int dp_nabpde, /*
unsieaned dp_nab, 1*
int dp_absize, 1*
11

struct

.defin. W_DIR

.d.fln. R_DIR

.d.fine O_DIR

o
I
2

o to request directory to be opened *1
NZ when at end of directory *1
NZ to write current sector to disk *1
Pointer to directory entry in buffer *1

1* Directory sector buff~r *1
Current logical disk *1
Start track */
Start sector *1
Number of directory entries */
Entries remaining to process *1
Number of sectors per track *1
Number of allocation blocks per dir. entrY *1
Number of allocation blocks *1
Allocation block size (in Kbytes) *1

1* Writing directory *1
1* Reading directory *1
1* Opening directory *1

}
Figure 11-2. (Continued)

394 The CP/M Programmer's Handbook

1* Disk parameter block maintained bY CPM *1

struct _dpb
I
unsigned dpb sptrkl
short dpb_bshift;
short dpb_bmask;
short dpb emask;
unsigned dpb_Maxabn;
unsigned dpb maxden;
short dpb rabO'
short dpb-Yab1;
unsigned dpb diskca,
unsigned dpb-trkoff;
I' -

1* Sectors per track *1
1* Block shift *1
1* Block mask *1
1* Extent mask *1
1* Maximum allocation block number *1
1* Maximum directory entrY number *1
1* Allocation blocks reserved for *1
1* directory blocks *1
1* Disk changed workarea *1
1* Track offset *1

n

1* Disk directorY entry format *1

I;

1* Disk request parameters for BIOS-level read/writes *1

str-uet dir (
-char de userno; 1* User number or OxE5 1f free entry *1
char de-fname[II], 1M File name [8] and type [3] MI
tnt de_extent, '* Extent number of this entry *1
lnt de_recent, 1* Number of 12S-byte records used in last

allocation block *1
union 1* Allocation blocks can be either *1

1* single or double bytes *1
short de_short[16]'
unsigned de_Iong[SJ:
) _dirab'

.truct _drb
{

short dr disk,
unsi9ned-dr track;
unsi9ned dr=sector;
char .dr_buffer;
I

1M Logical disk A = 0, B = I •.. MI
1M Track (for SETTRKl MI
1M Sector Ifor SETSECl MI
1M Buffer address Ifor SETDMAI *1

o

l
1* Search control block used by directorY scanning functions *1

1* Code table related definitions *1

1* String not found *1

1* Define structure of code table *1

'define CT_SNF OxFFFF

q

l1* Code value *1
1* String pointer *1

/* User number(s) to match *1
1* File name and type *1
1* Extent number *1
1* Dummy bytes to make this look li~e

a file control block *1
1* Number of bytes to compare *1
1* Current disk to be searched *1
1* Bit map of disks to be searched.

the rightmost bit is for disk AI. *1
) ,

short scb length;
short scb-disk;
unsigned scb_adisks;

ct
-(

unsigned _ct_code;
char *_ct_sp;
I,

struct _scb
(

short scb_userno;
char scb fnam.CllJ;
short scb_extent.
char unusedCl9J;

.truct

Figure 11-2. (Continued)

1M Structure for bitvectors *1

Chapter II: Additional Utility Programs 395

-
struct _bY

[

unsi9ned bv bytes;
char *bv bits;
char .bv-end;
} I -

,- End of LIBRARY.H _,

Figure 11·2. (Continued)

Library Functions

/* Number of bytes in the vector *1
1* Pointer to the first byte in the vector *1
1* Pointer to byte following bit vector */

-

s

This section describes the library functions and the sections from the header
file that must be included at the beginning of each utility program.

A Minor Change to C Language
One minor problem with the BDS C Compiler is that it does not support

"short" integers, or integers that are only a single byte long. It is convenient to
declare certain values as short to serve as a reminder of the standard type
definition. Therefore, the BDS C compiler must be "fooled" by declaring these
values to be single characters. To do this, the library header file contains the
declaration

.define short char.

shown in Figure 11-2, section a.
The "#define" tells the first part of the C compiler, the preprocessor, to

substitute the string "char" (which declares a character variable) whenever it
encounters the string "short" (which would ordinarily declare a short integer in
standard C).

Note that character strings enclosed in" /*" and "*/" are regarded as comments
and are ignored by the compiler.

BOOS calls
The standard library of functions that comes with the BDS C compiler

includes a function to make BDOS calls, called "bdos." It takes two parameters,
and a typical call is of the following form:

bdos(c.de);

The "c" parameter represents the value that will be placed into the C register. This
is the BDOS function code number. The "de" is the value that will be placed in the
DE register pair.

396 The CP/M Programmer's Handbook

The library header contains definitions (#define declarations) for BDOS func
tions 14 through 32, making these functions easier to use (Figure 11-2, c). Function
32 (Get/Set Current User Number) has two definitions; the "de" parameter is used
to differentiate whether a get or a set function is to be performed.

BIOS Calls

The BDS C standard library also contains two functions that make direct
BIOS calls. These are "bios" and "biosh." They differ only in that the bios function
returns the value in the A register on return from the BIOS routine, whereas biosh,
as its name implies, returns the value in the HL register pair. Examples of their use
are

bios(jump_number,bc);

and

biosh(jump_number,bc,de);

Both functions take as their first parameter the number of the jump instruction
in the BIOS jump vector to which control is to be transferred. For example, the
console-status entry point is the third JMP in the vector. Numbering from 0, this
would be jump number 2.

The library header file contains #defines for BIOS jumps 2 through 21 (Figure
11-2, d). The last group of these #defines (19 through 21) is for the "private"
additions to the standard BIOS jump vectors described in Chapter 8.

Remember, though, that using direct BIOS calls makes programs more diffi
cult to move from one system to another.

BIOS Configuration Block Access

As you may recall, the configuration block is a collection of data structures in
the BIOS. These structures are used either to store the current settings of certain
user-selectable options, or to point to other important data structures in the BIOS.

One of the "private" jumps appended to the standard BIOS jump vector
transfers control to a routine that returns the address in memory ofa specified data
structure. For example, if a utility program needs to locate the word in the BIOS
that determines from which physical device the console input is to read, it can
transfer control tojump 21 in the BIOS jump vector (actually the 22ndjump) with
a code value of 5 in the C register. This jump transfers control to the CBGet
Address code, which on its return will set HL to the address of the console input
redirection vector. The utility program can then read from or write into this
variable. The library header file contains #define declarations relating the code
values to mnemonic names (Figure 11-2, e).

You will need to refer to the source code in Figure 8-10 to determine whether
the address returned by the BIOS function is the address of the data element or the

Chapter 11: Additional Utility Programs 397

address of a higher-level table that in turn points to the data element.
In order to access the current system date, for example, you would include the

following code:

char *Ptr_to_date: 1* declare date pointer*1
ptr_to_date = biosh(CB_DATE): 1* get address *1

The ptr-to_date can then be used to access the date directly.
During initial debugging of a utility, it is useful to be able to intercept all such

accesses to the configuration block, partly to reassure yourself that the utility
program is working as it should, and partly to ensure that the BIOS routine is
returning the correct addresses to the data structures. Therefore, the utility library
contains a function, "geLcba," that gets a configuration block address (Figure
11-1, a).

At first, it appears that geLcba is declared as a function that returns a pointer
to characters. This is not strictly true. Sometimes the address it returns will point
to characters, sometimes to integers, and sometimes to structures (such as the
function key table).

The "printf" instruction has been left in the function in anticipation of debug
ging a utility. Ifyou need to see some debug output whenever the geLcba function
is used, delete the" /*" and "*/ "surrounding the "printf" and recompile the library.

BIOS Function Key Table Access
The BIOS shown in Figure 8-10 contains code to recognize when an incoming

escape sequence indicates that one of the terminal's function keys has been
pressed. Instead of returning just the escape sequence, the console driver injects a
previously programmed string of characters into the console input stream. For
example, on a DEC VT-100 terminal, when the PF\ function key is pressed, the
terminal emits the following character sequence: ESCAPE, "0", "P". The function
key table contains the "OP" and a OOH-byte-terminated string of characters to be
injected into the console input stream. In Figure 8-10, the example string is
"FUNCTION KEY I", LINE FEED. The library header file contains a declaration
for the structure of the function key table (Figure 11-2, h).

Note the use of "#define" to declare the length of the incoming characters
emitted by the terminal as well as the length of the output string.

In order to access a function key table entry, you must declare a pointer to a
"Jk.t" structure like this:

struct _fkt *ptr_to_fkt: 1* Declare pointer *1
ptr_to_fkt = get_cba(CB_FKT), 1* Set pointer *1
printf("Display the first string I %s".

ptr_to_fkt -) fk_output),
++ptr_to_fkt, 1* Move to next entrY *1

The geLcba function is used to return the address of the first entry in the
function key table and set a pointer to it. Then the printf function (part of the

398 The CP/M Programmer's Handbook

standard BDS C library) is used to print out the first string, which gets substituted
for the "%s" in the quoted string. Note that the statement

++ptr _to_fkt

does not just add one to the pointer to the function key table-it adds whatever it
takes to move the pointer to the next entry in the table.

BIOS Device Table Access
The device tables are important structures for the serial devices served by the

console, auxiliary, and list device drivers in the BIOS. They are declared at line
1500 in Figure 8-10.

The get_ cba function does not return a pointer to a specific device table, but a
pointer to a table of device table addresses. Each entry in the address table
corresponds to a specific device number. If there is no device table for a specific
device number, then the corresponding entry in the table will be set to zero. the
library header file contains definitions for the device table (Figure 11-2, i).

The device tables contain, among other things, the current serial line protocols
used to synchronize the transmission and reception of data by the device drivers
and the physical devices. An example utility, PROTOCOL, is shown later in the
chapter. The example #define declarations and structure definition shown here are
modeled on the requirements of this utility. The only relevant bytes are the two
status bytes dLstl and dLst2 and the message length used with the ETXjACK

protocol, dLetxml. The #defines shown are for the specific bits in the device table's
status bytes. The PROTOCOL utility uses the most significant bit to indicate
whether a given protocol setting can coexist with others.

To access these fields, use the following code:

struct _ppdt
[

char *pdH 16J;
} *PPdt;

struct _dt *dt;

1* Array of 16 pointers to device tables *1
1* Pointer to array of 16 pointers *1
1* Pointer to device table *1

ppdt get_cba(CB_DTA); 1* Set pointer to array of pointers *1
dt = ppdt -> pdtCdevice_noJ; 1* Set pointer to specified device

table *1

if (!dU
printf("\nError - no device table for this device.");

dt -> dt_etxml = 0;

BIOS Disk Parameter Block Access

1* Clear ETX message length *1

Several of the utility programs shown in this chapter must access the file
directory on a given logical disk. The disk parameter block (DPB) indicates the
size and location of the file directory. The library header contains a structure
definition that describes the DPB (Figure 11-2, n).

Chapter 11: Additional Utility Programs 399

To locate the DPB, you can make a direct BIOS call to the SELDSK routine,
which returns the address of the disk parameter header (DPH). You then can
access the DPB pointer in the DPH. Alternatively, using the BDOS, you can make
the required disk the default disk and then request the address of its DPB. The
code for the latter method is shown in the geLdpb function included in the utility
library (Figure 11-1, u).

The geLdpb function uses a BIOS SELDSK function first to see if the
specified disk is legitimate. Only then does it use the BDOS.

Reading or Writing a Disk Using the BIOS

When you write a program that uses direct BIOS calls, you increase the
possibility of problems in moving the program from one system to another.
However, in certain circumstances it is necessary to use the BIOS. Reading and
writing the file directory is one of these; the BDOS cannot be used to access the
directory directly. The library header contains a structure declaration for a
parameter block that contains the details of an "absolute" disk read or write
(Figure 11-2, p).

Note the pointer to the 128-byte data buffer used to hold one of CP/M's
"records."

The disk read and write functions are nLdisk (Figure 11-1, k) and wrLdisk
(Figure 11-1, I). Both of them take a_drb as an input parameter, and both call the
seLdisk function to make the individual BIOS calls to SELDSK, SETTRK, and
SETSEC.

Of special note is the code in seLdisk (Figure 11-1, m) that converts a logical
sector into a physical sector using the sector translation table and the SECTRAN
entry point in the BIOS.

File Directory Entry Access
All of the utility programs that access a disk directory share the same basic

logic regardless of their specific task. This logic can be described best in pseudo
code:

while (not at the end of the directory)
(
access the next directory entry
if (this entry matches the current search criteria)

(
process the entry
}

There are two ways of implementing this logic. The first uses the BIOS to read
the directory. Entries are presented to the utility exactly as they occur in the file

400 The CP/M Programmer's Handbook

directory. The second uses the BDOS functions Search First and Search Next and
accesses the directory file-by-file rather than by entry. This latter method is more
suited to utilities that process files rather than entries. The ERASE utility, de
scribed later in this chapter, illustrates this second method.

Three groups of functions are provided in the library: to access the next entry
in the directory, to match the name in the current entry against a search key, and to
assist with processing the directory.

Directory Accessing Functions

A number of functions involve access to the file directory. The first group of
such functions performs the following:

geLnde (get next directory entry; Figure ll-l, n)
This function returns a pointer to the next directory entry, or returns zero if
the end of the directory has been reached.

opeILdir (open directory; Figure ll-l, 0)
This function is called by geLnde to open up a directory for processing.

rw_dir (read/write directory; Figure ll-l, p)
This function reads or writes the current directory sector.

erLdir (error on directory; Figure ll-l, q)
This general-purpose routine displays an error message if the BIOS indi
cates that it had problems either reading or writing the directory.

All of these functions use a directory parameter block to coordinate their
activity. The library header contains the definitions for this structure (Figure 11-2,
1), as well as #define declarations for operation codes used by the directory
accessing functions (Figure 11-2, m).

Before calling geLnde, the calling program needs to set dp_open to zero
(forcing a call to opeILdir) and the dp_disk field to the correct logical disk. The
opeILdir function sets up all of the remaining fields, using geLdpb to access the
disk parameter block for the disk specified in dp_disk.

Of the remaining flags, dp_end will be set to true, when the end of the directory
is reached, and dp_write must be nonzero for rw_dir to write the current sector
back onto the disk.

The geLnde function includes all of the necessary logic to move from one
directory entry to the next, reading in the next sector when necessary, and writing
out the previous sector if the dp_write flag has been set to a nonzero value by the
calling program. It also counts down on the number of directory entries processed,
detecting and indicating the end of the directory.

The code at the beginning of the function calls opeILdir if the dp_open flag is
false. Note the code at the end of opeILdir that sets the number ofallocation blocks
per directory entry (dp_nabpde). This number is computed from the maximum

Chapter ll: Additional Utility Programs 401

allocation block number in the disk parameter block. If it is larger than 255, each
allocation block must occupy a word, and there will be eight blocks per directory
entry. If there are 255 or fewer allocation blocks, each will be one byte long and
there will be 16 per entry. The allocation block size, in Kbytes, is computed from a
simple formula.

In the early stages of debugging utilities, comment out the line that makes the
call to wrLdisk. This will prevent the directory from being overwritten. You then
can test even those utilities that attempt to erase entries from the directory without
any risk of damaging any data on the disk.

The last function in this group, err_ dir, is a common error handling function
for taking care of errors while reading or writing the directory.

Directory Matching Functions

The second group offunctions that access the file directory matches each direc
tory entry against specific search criteria. These include the following functions:

setscb (set search control block; Figure ll-l, r)
A search control block (SCB) is a structure that defines the entries in the
directory that are to be selected for processing.

compJname (compare file name; Figure ll-l, f)
This function compares the file name in the current directory entry with the
one specified in the search control block.

The library header contains the structure definition for the search control
block (Figure 11-2, q). This SCB is a hybrid structure. The first part of it is a cross
between a file control block (FCB) and a directory entry. The last three fields,
scb_length, scb_disk, and scb-adisks, are peculiar to the search control block.
Note that its overall length is the same as an FCB's so that the standard BDS C
function seUcb can be used. This function sets the file name and type into an
FCB, replacing "." with as many"?" characters as are required, and clears all
unused bytes to zero.

The scb_length field indicates to the compJname (compare file name) func
tion how many bytes of the structure are to be compared. This field will be set to 12
to compare the user number, file name, and type, or to 13 to include the extent
number.

Note that scb_ disk is the current disk to be searched, whereas scb_adisks isa
bit map with a 1bit corresponding to each of the 16 possible logical disks that must
be searched.

The search control block is initialized by the setscb function.
Note the form of the file name that setscb expects to receive. This is described

in the comments at the beginning of the function.
Several of the utility programs use their own special versions of setscb,

402 The CP/M Programmer's Handbook

renaming it ssetscb (special setscb) to avoid the library version being linked into
the programs.

The complementary function compJname is used to compare the first few
bytes of the current directory entry to the corresponding bytes of the SCB.

The compJname function performs a specialized string match of the user
number, the file name, the file type, and, optionally, the extent number. A"?"
character in the search control block file name, type, and extent will match with
any character in the file directory entry. However, in the SCB user number, a"?"
will only match a number in the range 0 to 15; it will not match a directory entry
that has the user number byte set to E5H (orOxE5, as hexadecimal notation in C).

This function also returns one of several values to indicate the result of the
comparison. These values are defined in the library header file (Figure 11-2, j).

Directory Processing Functions
The final group of functions that access the directory are those that help

process the directory entries themselves. These functions use a structure definition
to access each directory entry (Figure 11-2, 0).

A union statement is used for the allocation block numbers. These can be
single- or two-byte entries, depending on the maximum number of allocation
blocks that must be represented. The union statement tells the BDS C compiler
whether there will be a 16-byte array of short integers (characters) or an array of
eight unsigned two-byte integers.

The functions contained in this group can be divided into three subgroups:

Those that deal with converting directory entries for display on the console.

Those that deal with a "disk map"-a convenient array for representing
logical disks and the user numbers they contain.

Those that deal with "bit vectors"-a convenient representation of which
allocation blocks on a logical disk are in use or available.

The library contains only one function to convert a directory-entry file name
into a suitable form for display on the console. This is the conv-<lfname function
(Figure 11-1, h). It takes the information from the specified directory entry (or, as a
convenience, a search control block) and formats it into a string of the form

uu/d:filename.typ

The "uu" specifies the user number and the "d" specifies the disk identification.
The repetitive code at the end of the function is necessary to make sure that the

characters in the file type do not have their high-order bits set. These bits are the
file attributes. If they are set, they can render the characters nondisplayable on
some terminals.

3 4 10 11 12 13 14 15 Used Free
15 241

50 3 245 779
0 1024

groups would be shown on the terminal.)

Chapter 11: Additional Utility Programs 403

The second subgroup of functions, those that manipulate a "disk map,"
produce an array that looks like this:

Disks

v User Numbers --) -Totals-
A 0 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15 Used Free
B

p

This disk map is used by several utility programs. For example, the SPACE
utility displays a disk map that shows, for each logical disk in the system, and for
each user on each logical disk, how many Kbytes of disk space are in use. The
totals at the right show the total of used and free space. In another example, the
FIND utility shows how many files on each disk and in each user number match
the search name.

Each utility program that uses a disk map is coded:

unsigned disk_map[16l[18l;

Two functions are provided in the library to deal with the disk map:

dIlLclr (disk map clear; Figure 11-1, s)
This function fills the entire disk map with zeros.

dIlLdisp (disk map display; Figure 11-1, t)
This function displays the horizontal and vertical caption lines for the disk
map and then converts each element of the disk map to a decimal number.

The first function, dIlLclr, uses one of the standard BDS C functions to set a
block of memory to a specific value. It presumes that the disk map is 16 X 18
elements, each two bytes long.

The second function, dIlLdisp, prints horizontal lines only for those disks
specified in the bit map parameter. Here is an example of its output:

012
A: 1 1
B: 66 20 74
C: None
(NOTE: All user

The final subgroup deals with processing "bit vectors." A bit vector is a string
of bits packed eight bits per byte. Each bit is addressed by its relative number along
the vector; the first bit is number O.

An example of why bit vectors are used is a utility program that needs to scan
the directory of a disk and build a structure showing which allocation blocks are in
use. It can do this by accessing each active directory element and, for each nonzero
allocation block number, setting the corresponding bit number in a bit vector.

The library header has a structure definition for a bit vector (Figure 11-2, s).

404 The CP/M Programmer's Handbook

This vector contains the overall length of the bit vector in bytes, and two pointers.
The first points to the start of the vector, the second to the end. The bytes that
contain the vector bits themselves are allocated by the alloc function-one of the
standard BDS C functions.

The following bit vector functions are provided in the library:

bV-Illake (bit vector make; Figure ll-I, cc)
This function allocates memory for the bit vector (using the standard
mechanism provided by BDS C) and sets all of the bits to zero.

bvJill (bit vector fill; Figure ll-I, dd)
This fills a specified vector, setting each byte to a specified value.

bv-set (bit vector set; Figure ll-I, ee)
This sets the specified bit of a vector to one.

bv_test (bit vector test; Figure II-I, ff)
This function returns a value of zero or one, reflecting the setting of the
specified bit in a bit vector.

bv_nz (bit vector nonzero; Figure II-I, gg)
This returns zero or a nonzero value to reflect whether any bits are set in
the specified bit vector.

by-and (bit vector AND; Figure 11-1, hh)
This function performs a Boolean AND between two bit vectors and places
the result into a third vector.

bv_or (bit vector OR; Figure ll-l, ii)
This is similar to bV-'lnd, except that it performs an inclusive OR on the
two input vectors.

bv_disp (bit vector display; Figure ll-I, jj)
This function displays a caption line and then prints out the contents of the
specified bit vector as a series of zeros and ones. Each byte is formatted to
make the output easier to read.

The by-make function uses the alloc function to allocate a block from the
unused part of memory between the end ofa program and the base of the BDOS.
It requires that two data structures be declared at the beginning of the program.
These structures are declared in the library header file (Figure 11-2, b).

The bvJill function uses the standard BDS C setmem function.
The bv_set function converts the bit number into a byte offset by shifting the

bit number right three places. The least significant three bits of the original bit
number specify which bit in the appropriate byte needs to be ORed in.

The bv_test function is effectively the reverse of bv-set. It accesses the specified
bit and returns its value to the calling program.

The bv_nz function scans the entire bit vector looking for the first nonzero

Chapter II: Additional Utility Programs 405

byte. If the entire vector is zero, it returns a value of zero. Otherwise, it returns a
pointer to the first nonzero byte.

Both bv_and and bv_or functions take three bit vectors as parameters. The
first vector is used to hold the result of either ANDing or ORing the second and
third vectors together. Both of these functions assume that the output vector has
already been created using bv_make. The shortest of the three vectors will termi
nate the bv_and or bv_or function; that is, these functions will terminate when
they reach the end of the first (shortest) vector.

The final fun~tion, bv_disp, displays the title line specified by the calling
program, and then displays all of the bits in the vector, with the bit number of the
first bit on each line shown on the left.

None of the utility programs uses bv_disp-it has been left in the library purely
as an aid to debugging.

Here is an example of bv_disp's output:

Bit Vector: Allocation Blocks in Use
o : 0000 0000 0001 1000 1000 0001

40 : 1111 1111 1111 1111 1111 1111
80 : 1100 0000 1111 1100 1111 1001

120 1110 1100 0001 1111 0000 0000
160 : 1111 1111 1110 1111 1110 1111
200 1111 0010

Checking User-Specified Parameters

1111 1111
1110 1011
1100 0000
1101 1000
0000 0111

1111 1111
0000 0000
1001 1111
0001 1110
0000 0111

The C language provides a mechanism for accessing the parameters specified
in the "command tail." It provides a count of the number of parameters entered,
"argc" (argument count), and an array of pointers to each of the character strings,
"argv" (argument vector). At the beginning of the main function ofeach program
you must define these two variables like this:

main(argc.argv)
(

int argc; 1* Argument count *1
char *argv[]; 1* Array of pointers to char. strings *1

1* Remainder of main function *1

}

Consider the minimum case-a command line with just the program name on
it:

A>command

The convention is that the first argument on the line is the name of the program
itself. Hence argc would be set to one, and argv[O] would be a pointer to the
program name, "command."

406 The CP/M Programmer's Handbook

Next consider a more complex case-a command line with parameters like the
following:

A>command param1 123

In this case, argc will be three; argv[l] will be a pointer to paraml; and
argv[I][O] will access the 0 (the first) character of argv[l]-in this case the
character "p."

To detect whether the second paramet~r is present and numeric, the code will
be

if (isdigit(argv[l][O]»
{

1* Process digit *1

else

1* Parameter either not present or has
alpha character at the front *1

}

In most of the utilities, you will get a much "friendlier" program ifthe user need
only specify enough characters of a parameter to distinguish the value entered
from the other possible values. For example, consider a program that can have as a
parameter one of the following values: 300, 600, 1200, 2400,4800, 9600, or 19200.
It would be convenient if the user needed to type only the first digit, rather than
having to enter redundant keystrokes. However, the values 1200 and 19200 would
then be ambiguous. The user would have to enter 12 or 19. Novice users often
prefer to specify the entire parameter for clarity and security.

The standard C library provides a character string comparison function,
strcmp. Unfortunately, this function does not provide for the partial matchingjust
described. Therefore, the library includes two special functions that do make this
possible: sstrcmp (substring compare, Figure 11-1, d) and usstrcmp (uppercase
substring compare, Figure II-I, e). The latter function is necessary when you need
to compare a substring that could contain lowercase characters; it converts
characters to uppercase before the comparison.

To assist with character string manipulation, two additional functions have
been included in the library. These are strscn (string scan, Figure 11-1, b) and
ustrcmp (uppercase string compare, Figure 11-1, c).

Using Code Tables

A code table is a simple structure used by all of the utility programs that accept
parameters that can have any of several values. The library header contains a
structure definition for a code table (Figure 11-2, r).

A code table entry contains an unsigned code value and a pointer to a character
string. It is used in the utility programs wherever there is a need to relate some
arbitrary code number or bit pattern to an ASCII character string. For example,

Chapter 11: Additional Utility Programs 407

to program a serial port baud-rate-generator chip to various baud rates requires
different time constants for each rate. Users do not need to know what these
numbers are; they only need to be able to specify the baud rate as an ASCII string.

Thus, a code table is set up as follows:

Baud Rate Constant
Ox35
Ox36
Ox37
Ox3A
Ox3C
Ox3E
Ox3F

User's Name
"300"
"600"

"1200"
"2400"
"4800"
"9600"

"19200"

A utility program now needs to be able to perform various operations using the
code table:

Given the input parameter on the command tail, the utility must check
whether the ASCII string is in the code table, display all of the legal options
on the console if it is not, and return the code value for subsequent processing
if it is.

Given the current baud rate constant (held in the BIOS), the utility must scan
the code table and display the corresponding ASCII string to tell the user the
current baud rate setting.

The library includes specialized functions to do this, plus some additional
functions to make code tables more generally usable. These functions are

cLinit (code table initialize; Figure 11-1, v)
This function initializes a specific entry in a code table, setting the code
value and the pointer to the character string.

cLparc (code table parameter return code; Figure 11-1, w)
This performs an uppercase substring match on the specified key string,
returning either an error (the value CT_SNF-string not found) or a code
value.

cLcode (code table return code; Figure 11-1, x)
This function is similar to cLparc in that it scans a code table and returns
the corresponding code. It differs in the way that the comparison is done.
The entire search string is compared with the string in the code table entry.
A match only occurs when all characters are the same.

cLdisps (code table display strings; Figure 11-1, y)
This function displays all strings in a given code table. It is used either when
the user has entered an invalid string, or when the utility program is
requested to show what options are available for a parameter.

cLindex (code table return index; Figure 11-1, z)
This function, given a string, searches the code table and returns the index

408 The CP/M Programmer's Handbook

of the entry that has a string matching the search string. The index is not the
code value; it is the number of the entry in the table.

cLstri (code table string index; Figure ll-l, aa)
This function, given an entry index number, returns a pointer to the string
in that entry.

cLstrc (code table string code; Figure ll-l, bb)
This function, given a code number, returns a pointer to the string in the
entry that has a matching code number.

Accessing a Directory via the BOOS
One problem associated with accessing the file directory directly, as illustrated

by earlier functions, is that the program is presented with directory entries in
exactly the order that they occur in the directory. For some programs, such as
those that process groups of files, it is better to use the BOOS Search First and
Search Next functions to access the directory.

Using the BOOS, the program can process the first file name to match an
ambiguous search key, then go back to the BOOS to get the name of the next file,
and so on. The library header contains a structure definition for a standard CP/M
file control block (Figure 11 -2, k).

Notice that the first byte of the FCB is a disk number rather than the user
number of the directory entry. Note also the use of a union statement to describe
the allocation block numbers.

The standard BOS C library contains a function, setfcb, that is given the
address ofan FCB and a pointer to a string containing a file name. It converts any
"*" in the name to the appropriate number of "?", and fills the remainder of the
FCB with zeros.

The example library contains the following functions designed for BOOS file
directory access:

geLnfn (get next file name; Figure ll-l, i)
This function is given a pointer to an ambiguous file name and a pointer to
an FCB. It returns with the FCB set up to access the next file that matches
the ambiguous file name.

srclLfile (search for file; Figure II-I, j)
This function, used by geLnfn, issues either a Search First or a Search
Next BOOS call.

convJname (convert file name; Figure ll-I, g)
This function converts a file name from an FCB into a form suitable for
display on the console. It is similar to the conv_dfname function described
earlier except that it outputs only the disk, file name, and type (not the user
number) in the form

d: filename. t yp

Chapter 11: Additional Utility Programs 409

To signal the geLnfn function that you want the first file name, you must set
the most significant bit of the first byte, the disk number.

Here is an example showing how to use the geLnfn function:

struct _feb feb; 1* Declare a file control block *1

setmem(fcb,FCB_SIZE,O); 1* Clear FCB to zeros *1
feb. feb_disk = Ox80; 1* Mark FCB for "first time" *1

while (\ilet_nfn(fcb,"B:XYZ*.*"»
1* Until get_nfn returns a zero *1

{

while
{

}

}

1* Open the file using FCB *1
(/* Not at end of file */)

1* Process next record or
Character in file*1

1* Close the file *1

The quoted string "B:XYZ*.*" could also be just a pointer to a string, or a
parameter on the command line, argv[n].

The last function for BDOS processing of the file directory, convJname, is
used to convert a file name for output to a terminal. Again, the repetitive code at
the end clears the file attribute bits to avoid any side effects from the terminal.

Utility Programs Enhancing Standard CP/M

This group ofutilities is designed to enhance those supplied by Digital Research.
They do not take advantage ofany special features of the enhanced BIOS in Figure
8-10 and can be used on any CP/M Version 2.2 installation.

With the exception of the ERASE utility, all of the utilities scan down the file
directory using BIOS calls, as described earlier in this chapter.

ERASE - A Sofer Way to Erase Flies

There are two disadvantages to the Console Command Processor's built-in
ERA command. First, it will unquestioningly erase groups of files. Second, if you
have a file name with nongraphic or lowercase characters, you cannot use the ERA
command, as the CCP converts the command tail characters to uppercase and
terminates a file name on encountering any strange character in the string.

The ERASE utility shown in Figure 11-3 erases groups of files, but it asks the
user for confirmation before it erases each file.

Rather than use the BIOS to access each directory entry, it uses the geLnfn
function, which then calls the BDOS. Thus ERASE functions equally well for files

410 The CP/M Programmer's Handbook

that have multiple entries in the directory. It can use the BDOS Delete File
function to erase all extents of a given file.

Here is an example console dialog showing ERASE in operation:

P3A>erase<CR>
ERASE Version 1.0 02/23/83 (Library 1.0)
Usage :

P3A>erase *.com<CR>
ERASE Version 1.0 02/23/83 (Library 1.0)

Searching for file(s) matching A:????????COM.
Erase A: UNERASE .COM yIn? D.
Erase A:TEMPI .COM yIn? l <== Wi 11 be Erased!
Erase AITEMP2 • COM yIn? D.
Erase A:TEMP3 .COM yIn? D.
Erase A:TEMP4 .COM yIn? l <== Wi 11 be Erased!
Erase A:ERASE .COM yIn? D.

Erasing files now•••
Fi Ie AITEMP1 • COM erased.
Fi Ie A:TEMP4 .COM erased •

• define VN "1.002/24/83"

1* ERASE
This utility erases the specified file(s) logically
bY using a 8DOS delete function. *1

.include <LIBRARY.H>

struet _feb amb_fcb;
struet _feb feb;

char file_name[20J,
short cur _disk;

.define MAXERA 1024
struct _fcb era_fcb[MAXERAJ,
tnt .count:
int count;

/* Ambiguous name file control block *1
1* Used for BOOS search functions */

1* Formatted for display, d,FILENAME.TYP *1
1M Current logical disk at start of program *1
1* ERASE saves the FCB's of the all the

files that need to be erased in the
following array *1

1M Count of number of files to be erased *1
1* Used to access era_feb during erasing *1

main(ar9c~argv)

short argc;
char *argv[];
(

1* Argument count *1
1* Argument vector (pointer to an array of char. *1

printf("\nERASE Version Xs (Library Xs)",VN,LIBVN),
chk u•• (arvc); 1* Check usage wI
cur=dilk • bdos(OETDISK), 1* Get current default dilk *1

.count ::I 0, 1* Initialize count of files to erase *1

1* Set ambiguous file name *1
1* Check if default disk to be used *1

setfcb(amb_fcb. ar9v[IJ),
if (a.b_fcb.fcb_dilk)

(

bdos(SETDISK.amb_fcb.fcb_disk + I):
)

1* Set to specified disk *1

Figure 11-3. ERASE.C, a utility that requests confirmation before erasing

Chapter ll: Additional Utility Programs 411

'* Convert aMbi9uoUS file name for output */
conv_fname<amb_fcb,fi18_n•••),
p ... intfl·\n\nS.....ehinll fo... fU.I.) matehinll X•• ",flle_nam.),

1* sat the file eont ...ol bloek to indieat. a ·fl ta ... eh *1
feb.feb_dl.k I- Ox80, 1* OR In the m. bit *1

1* Whll. not at the .nd of the dleto... y••• t the FCB
to the next name that Matches */

whll.lllet_nfnl.mb_feb.feb»
[

conv_fname(fcb,file_na.e);
1* A.k wh.th.... to file 0 ... not *1

printf("\n\tEr••• Xs yIn? ",file_oa.>,
if <toupper(vetchar(» ca 'V')

[

printf(" <== Will be era••dt"),
1* .dd eu.......nt feb to .rray of FCB'. *1

movmem(fcb,Lera_fcbCecount++J,FCBSIZE),
1* Ch.ck that the table I. not full *1

if I.eount .- MAXERA)
I
printf(lI\nWarninc; I Internal table now full. No more file. can be era••d"),
printf("\" until those already specified have been erased. II),

br.ak, 1* Br.ak out of whll. looP *1
)

)

1* All directory entries processed *1

If I.eount)
printf(lI\n\nErasin9 files now ••• "),

'* now proce•••ach FeB in the array, «....51n9 the file. *1
for (count = 0, 1* Starting with the first file in the array *1

count < ecount, 1* Until all active entries proce.sed *1
count++) 1* Move to next FCB *1

[

conv_fname(&.ra_fcbCcountJ,file_nam.),
if (bdos(DELETEF,&era_fcb[countJ) -= -1) 1* .rror? *1

printf("\n\007Error tryin9 to erase Xs11,file_name),
els. 1* File er•••d *1

printf(lI\n\tFile 'XI .r•••d.ll,fil._na....)'
}

bdol(SETDISK,cur disk), 1* relet to current di.k *1
} -

chk_u.e(argc) 1* Ch.ck usa9. *1
1* This function check. that the correct number of

parameter. ha. been specified, outputting in.truction. if not ••,

1* Entry parameter */
int argc, '* Count of the number of argument. on the coMm.nd line *1

1* The minimum value of argc I. 1 (for the program name It.e1f),
.0 aygc i. alwaYI one greater than the number of parameter.
on the command line *1

if I.rlle I- 2)
(

printf(ll\nU.age I")'
printfl"\n\tERASE [d,)flle_nam•• typ·),
.xltO,
}

Figure 11·3. (Continued)

412 The CP/M Programmer's Handbook

UNERASE - Restore Erased Files

UNERASE, as its name implies, can be used to "revive" an accidentally erased
file. Only files whose allocation blocks have not been reallocated to other files can
be revived. The UNERASE utility shown in Figure 11-4 builds a bit vector of all
the allocation blocks used by active directory entries. Then it builds a bit vector for
all the allocation blocks required by the file to be UNERASEd. Ifa Boolean AND
between the two vectors yields a nonzero vector, then one or more blocks that
originally belonged to the erased file are now allocated to other files on the disk.

Idefine VN "1.0 02/12/83"

I" UNERASE --
This utility does the inverSE! of ERASE: it restores
specified files to the directory by changing the first byte of
their directorY entries from O~E5 back to the specified user
number" .. *1

.include <LIBRARY.H>

struct _dirpb dir_pb.
struet _dir *diy_entry;
struet _scb scb,
struct _scb scba,
struct _dpb dpb;
struct _by inuse_bv,
_truet _bY file_bY'
_truet _by extents,

1* Directory management parameter block *1
Itt: Pointer to directory entry *1
1* Search control block *1
1* sea set up to match all files *1
1* CP/M~s disk parameter block *1
1* Bit vector for blocks in us. *1
1* Bit vector for file to be unerased *1
1* Bit vector for those extents unerased *1

I .. Formatted for display: un/d:FILENAME.TYP *1

short cur_diskJ

int count,

int user;

1* Current 109ical disk at start of program
NZ ~ show map of number of files *1

1* Used to access the allocation block numbers
in each directory entry *1

1* User in which the file is to be revived *1

main(arge,argv)
short arge,
char *ar9v[],

1* Argument count *1
1* Argument vector (pointer to an array of chars.) *1

Version Xs (Library 'ls)",VN,LI8VN),'* Check usage *1
I" Get current default disk "I

(

printf("\nUNERASE
chk use(ar4;lc),
cur=disk 2 bdos(GETDISKlI

1M Usin4;l a special version of the set search-control-block utility.
set the disk, nam., type (no ambiguous names). the user number
to match only erased entries, and the length to compare
the user. name, and type.
This special version allo returns the disk_id taken from
the file name on the command line. *1

if «dir-pb.dp_disk • ssetscb(Icb.ar9v[l],OxE~.12» -= 0)
{ 1* Use default disk *1
dir-pb.dp_disk = cur_disk,
}

els.
{ 1* make disk A = 0, B = 1 (for SELDSK) *1
dir-pb.dp_disk--I
}

print f ("\nS.arching disk Xd.", dir -pb. dp_disk),

if(strscn(scb."?"» 1* Check if ambi4;luous name *'
(

printf(lI\nError -- UNERASE can only revive a single file at .. time. "),
exi to.

Figure 11-4. UNERASE.C, a utility program that "revives" erased files

Chapter 11: Additional Utility Programs

'* Set up a special search control block that will match with
all existing files. w/

413

1* Set file name and initialize SeB */

if <ar9c -= 2) /* No user number specified *1
user bdos(GETUSER,OxFF): /* Get current user number *1

8lse
t

user .: .. toi (ar9v[2l) J 1* Get spec i f ted number *1
if (user> 15)

[

printf("\nUser number can only be 0 - 15."):
exitO:
}

1* Build a bit vector that shows the allocation blocks
currentlY in use. SCBA has been set up to match all
active directory entries on the disk. *1

bUild_bv(inuse_bv,scba):

1* Build a bit vector for the file to be restored showing
which allocation blocks will be needed for the file. *1

If <Ibulld_bv(flle_bv,scb»
t
printf("\nNo directorY entries found for file XS.",

areave1]);
exito;
}

1* Perform a boolean AND of the two bit vectors. *1
bv_and(fl~ejbv,inu.e_bv,fil._bv),

'* Check if the result is nonzero -- if so, then one or .ore
of the allocation blocks required bY the erased fi1. is
already in use for an existing file and the file cannot
be restored. til'

If (bv_nz(f11e_bv»
t

printf("\n--- This file cannot be restored as some parts of it");
printf("\n have been re-used for other files! 01);

ex!tO,

1M Continue on to restore the file by changing all the entries
in the directory to have the specified user number.
Note. There may be several entries in the directorY for
the same file name and type, and even with the same extent
number. For this reason, a bit map is kept of the extent
numbers unerased -- duplicate extent numbers will not b.
unerased. *'

1* Set up the bit vector for UP to 127 unerased extents *1
bv_make(extents,16); 1* 16 * 8 bits *1

1* Set the directorY to "close d", and force the get_nde
funct ion to open it. *1 .

dir-pb.dp_open = 0;

1* While not at the end of the directory, return a pointer to
the next entry in the directory. *1

while(dir_entrY = get_nde(diryb»
t

/* Check if user = OxE5 and name. type match *1
if (comp fname(scb.dir entry) == NAME EQ)

[- -'* rest if this extent has already been
unerased tl:1

if (bv_test(extents,dir_entry -) de_extent»
(I¥: Yes it has *1
printf(lI\n\t\tExtent *Y.d of Y.s icanored.".

dir entrY -) de extent.argvtl]);
continue; - 1* Do not unerase this one *1
}

Figure 11-4. (Continued)

414 The CP/M Programmer's Handbook

else 1* Indicate this extent unerased *1
[

bv_set(extents.dir_entrv -) de_extent),
diY_entrY -) de_userno = user. /w Unerase entrv *1
dir-pb.dp_write = 1, 1* Need to write sector back *1
printf("'n\tExtent ttXd of Xs un.rased.",

dir_entrv -) de_extent,argy[l]);

printf("\n\nFile);. unerased in User Number Xd.",
argv[11,user),

bdo.(SETDISK.cur_di.k)1 1* Re.et to current di.k *1
}

bUild_bv(bv,scb) 1* Build bit vector (frOM directory) *1
1* This function scans the directory of the disk specified in

the directory parameter block (declared as a global variable),
and builds the specified bit vector. showing all the allocation
blocks used by files matching the name in the search control
block. *1

1* Entry parameters *1
struct _bY *bv, 1* Pointer to the bit vector *1
struct _scb *scb, 1* Pointer to search control block wi
1* Also uses: directorY parameter block (dir-pbl *1

1* Exit parameters
The specified bit vector will be created. and will have 1-bits
set wherever an allocation block is found in a directory
entry that matches the search control block.
It also returns the number of directory entries matched. *1

[

unsigned abno;
struct _dpb *dpbJ
int mcount,

1* Allocation block number *1
1* Pointer to the disk parameter block in the BIOS wi
1* Hatch count of dir. entries matched ~I

mcount • OJ 1* Initialize match count *1
dpb III get_dpb(dir-pb.dp_diskl, 1* Get disk parameter block address *1

1* make the bit vector with one byte for each eight allocation
blocks + 1 wi

if (f (bv_make(bv, (dpb -> dpb_maxabn »3)+1»)
!
printf("\nError -- Insufficient memory to make It bit vector."),
exi t ();
}

1* Set directory to "closed" to force the get_nde
function to open it. wI

dir-pb.dp_open =0,

1* Now scan the directorY buildin9 the bit vector *1
whi le(dir_entry III get_nde(dir -pb»

[

1* Compare user number (which can legitimately be
OxE5). the file name and the type). *1

if (camp fname(scb.dir entry) m= NAME EQ)f - -
++mcount, 1* Update match count wi
faY (count = 0, 1* Start with the first alloc. block *1

count < dir-pb.dp_nabpde, 1* For number of alloc. blks. per dir. entry wi
count++)

[

1* Set the appropriate bit number for
each nonzero allocation block number *1

if (dir-pb.dp_nabpde == 8) 1* assume 8 2-byte numbers wI
!
abno = dir_entrY -) _dirab.de_Iong[countJ;
J

else 1* Assume 16 1-bYte numbers *1
[

Figure 11-4. (Continued)

Chapter II: Additional Utility Programs

abno = dir_antry -) _dirab.da_shorttcountJI
}

if labno) bv_sat(bv,abnO)1 1* Set tha bit *1
}

415

}

.... turn .count,
}

/* Return number of dir. entries matched *'
chk_u•• <ar9C) '* Check usag_ w,,* This function checks that the correct number of

par•••tey. ha. be.n specified, outputting instructions
if not. *1

'* EntrY parameter ./
tnt argc, '* Count of the nUMber of arguMent. on the cOMmand line *1
(

1* The minimum value of a",gc ts 1 (for the program name itself),
so argc is always one greater than the number of parameters
on the command line *'

if (arvc =- 1 II argc > 3)
(

printft"'nU.ag_ :");
printf("\n\tUNERASE ldlHilenama.typ (user}")1

printf("\n\tOnly • single unalAbi9uouI 1ile name can be used.)II);
e.itOI
}

) 1* end chk_use *1

••• tscb(scb,fname,user,length) 1* Special version of set search control block *1
1* This function .ets up a search control block accordin9

to the file name, type, user number, and number of bytes
to compare.
The file name can take the following forms

filename
filename.typ
d'filan_.\Yp

It .etl the bit map according to which dilk, should be .earched.
For each selected disk, it checks to see if an error 11 generated
whan salactinv the disk (i.a. if thara are disk tablas in the BIOS
for tha disk). *1

1M Entry parameters *1
struct _Icb *Icb,
char ItfnaIN'
short user,
int lenvthl

1M Pointer to ,earch control block *1
/* Pointer to the file name *1'* U.er number to be matched *1
1M Number of byte, to compare */

,* Exit parameter.
Di.k number to be .earched. (A = 1, B = 2 •••)

*1
(

short dhk_idl

scb -) .cb_u.erno •
scb -) scb length =
return dilk_id,) '* end ,.t,cb */

'* Disk number to .earch */

'* Set 'earch control block •• though it
were. file control block. *1

1* Set disk_id before it gets overwritten
by the user number *1

1M Set user number *1
1* set nUMber of byt.. to compar. *1

Figure 11-4. (Continued)

416 The CP/M Programmer's Handbook

A further complication occurs if two or more directory entries of the erased file
have the same extent number. This can happen if the file has been created and
erased several times. Under these circumstances, UNERASE revives the first entry
with a given extent number that it encounters, and displays a message on the
console both when an extent is revived and when one is ignored.

Because of the complicated nature of the UNERASE process, the utility can
process only a single, unambiguous file name.

The following console dialog shows UNERASE in operation:

P3A>dir *.com<CR>
A: UNERASE COM: TEMP2 COM : TEMP3 COM : ERASE COM

P3A>unerase<CR>
UNERASE Version 1.0 02/12/83 (Library 1.0)
Usage :

UNERASE {d:}filename.typ {user}
Only a single unambiguous file name can be used.

P3A>unerase templ.com<CR>
UNERASE Version 1.0 02/12/83 (Library 1.0)
Searching disk A.

Extent #0 of TEMP1.COM unerased.
Extent #0 of TEMP1.COM ignored.

File TEMP1.COM unerased in User Number 3.

P3A>dir *.com<CR>
A: UNERASE COM: TEMPl
A: ERASE COM

COM : TEMP2 COM TEMP3 COM

P3A>unerase temp5.£om<CR>
UNERASE Version 1.0 02/12/83 (Library 1.0)
Searching disk A.
No directory entries found for file TEMPS. COM.

FIND - Find "lost" Files

The FIND utility shown in Figure 11-5 searches all user numbers on specified
logical disks, matching each entry against an ambiguous file name. It can then
display either a disk map showing how many matching files were found in each
user number for each disk, or the user number, file name, and type for each
matched directory entry.

You can use FIND to locate a specific file or group of files, as shown in the
following console dialog:

P3B>find<CR>
FIND Version 1.0 02/11/83 (Library 1.0)
Usage :

FIND d:filename.typ {NAMES}
*:filename.typ (All disks)
ABCD •• OP:filename.typ (Selected Disks)

NAMES option shows actual names rather than map.

P3B>find ab:*.*<CR>
FIND Version 1.0 02/11/83 (Library 1.0)

Chapter II: Additional Utility Programs 417

S.archin'il disk : A
S.archin'il disk : B

Numb.rs show files in each User Number.
User Numbers Dir. Entries

0 1 2 3 4 5 11 12 13 14 15 Used Free
A: 1 1 8 23 233
B: 66 20 74 55 3 252 772

P3B>find *:*.com(CR>
FIND V.rsion 1.0 02/11/83 (Library 1.0)
S.archin'il disk A
S.archin'il disk : B
S.archin'il disk : C

o
A:
B: 61 :5
C: -- Non.

2 3
5

4 13

4
Us.r Numbers Dir. Entries

11 12 13 14 15 Used Free
23 233

252 772
16 112

P3B>~~ n4m.s(CR>
FIND V.rsion 1.0 02/11/83 (Library 1.0)
S.archin'il disk : B

O/B:CC •COM 0/B:CC2 .COM O/B:CLINK .COM 2/B:CLIB • COM
I/B:CPM61 • COM I/B:MOVCPM • COM I/B:PSWX • COM O/B:SUBMIT .COM
2/B:CDB • COM I/B:CPI'I60 .COM O/B:DDT • COM O/B:EREMOTE .COM
O/B:SPEEDSP .COM O/B:PIP • COM O/B:PROTOSP • COM O/B:RX • COM
O/B:TXA • COM O/B:EPUB • COM O/B:EPRIV • COM O/B:WSC • COM
O/B:X • COM O/B:CRCK • COM O/B:XSUB • COM O/B:DU • COM
O/B:QERA • COM O/B:FINDALL • COM O/B:MOVEF • COM O/B:REMOTE • COM
O/B:LOCAL •COM O/B:DUI'IP •COM O/B:MRESET •COM O/B:ELOCAL .COM
O/B: PUTCPMF:5. COM O/B:TEST • COM O/B:FDUMP • COM O/B:INVIS .COM
0/B:L80 • COM O/B:LIST • COM O/B:PUB • COM O/B:LOAD • COM
O/B:MAC • COM O/B:SCRUB • COM O/B:RXA • COM O/B:STAT • COM
O/B:TX • COM O/B: ERASEALL. COM O/B:WM • COM O/B: MSFORMAT. COM
O/B:STATUS • COM o/fhUNERA .COM O/B:MSINIT •COM O/B:VIS .COM
O/B:WSVTIP • COM O/B:XD • COM O/B:NEWVE • COM O/B:DDUMP • COM
O/B:FORMATMA.COM O/B:PRIV • COM O/B:FCOMP • COM O/B:DDUMPA • COM
O/B: PUTSVSIC.COM O/B:DDUMPNI • COM O/B:DSTAT • COM O/B:ASM • COM
2/B:CDBTEST .COM O/B:OLDSVS • COM O/B:E • COM 2/B:F/C • COM
3/B:ERASE •COM 3/B:FUNKEV •COM 3/B.DATE •COM 3/B.FIND .COM

Press SP4C. Bar to continu•••••
3/B:SPACE • COM 3/BlUNERASE .COM 3/B:MAKE • COM 3/B:MOVE • COM
lIB: PUTSVSWX. COM 3/BITIME • COM 3/BIASSIGN • COM 3/BlSPEED .COM
3/BIPROTOCOL.COM O/BIPRINTC • COM 3/B:T .COM

.define VN "1.0 02/11/83"

1* FIND - Thil utility can dilplaY either a .ap showing on which diskl
and 1n which us.r numbers fil •• Matehing the speeified ambiguous
file name are found. or the actual nam•• matched. *1

.include <LIBRARY.H>

Itruct _dirpb dir-pb,
Itruct _dir *dir_entry,

Itruct _"cb Icb,

char file_na.e[20],

'* Direetory ••na9•••nt parameter block *'
IW Pointer to direetory entry (somewhere in

dir-pb) *1'M S.arch control block wI

1* Formatted for dilplaY , un/d.FILENAHE.TYP *1

FIgure 11·5. FIND.C, a utility program that locates specific files or groups of files

418 The CP/M Programmer's Handbook

.hort cur_disk,
Int mcount,
Int dmcount,
int Ieount,

1* Current logical disk at start of program *1''II: Hatch eount (no. of fi1. names matched) *1'* Per disk match count *'
1* Line count (for lines displayed) *1

1* 0 & show file nameS of matched files,
NZ • show map of number of fil •• *'

'* The array below is used to tabulate the results for each
disk drive, and for each user nUMber on the drive.
In addition. two extra "users" have be.n added for "fre.·1

and "used" valu... *'
unsigned dlsk_map[16J[18J,
.deflne USED_COUNT 16
.deflne FREE_COUNT 17

1* Disk A -) P, ~s.r. 0 -) 1~, fr••• u••d *1
1* IIUsey" number for us.d entiti•• *1
1* "User" nu.ber for free entiti•• */

M.intarvc,arvv)
short arfie,
char ...rgv[lJ
{

,M Argument count wI
/* Argument vector (pointer to an array of chars.) *'

prlntf("\nF.IND Version X.S (Library X.s)",VN,LIBVN),
chk_use(argc), 1* Check usage *1
cur_disk· bdos(OETDISK), 1* Oet current default disk *1

/* Set ••arch control block
disks. name, type, user number, eMtent number,
and number of bytes to compare -- in this case, match all users,
but onlY eMtent 0 *1

s.tscb(scb,argv[ll,'?~,0,13), /* Set disks, name, type wI

map_f lag = usstrcmp (IINAMES", argv[2l);

lcount = dmcount = mcount = 0,

/* Set flag for map option */

1* Initialize counts *1

for (scb.scb_dlsk = 0,
scb.scb_dlsk < 16,
scb. sCb_disk++)

1* Starting with logical disk AI *1
1* Until logical disk PI *1
1* Move to ne.t logical disk wi

1M Check if current disk has been selected for search */
if (! (scb. scb_adisks a. (I « scb. scb_disk»)

continue, /* No,so bypass this disk *1

printf("\nsearching disk I Xc", (scb.scb_disk + "A"»;
lcount++, 1* Update line count */

dir-pb.dp_disk • scb.scb_disk; /* Set to disk to be searched*1
dmcount = 0, 1M Reset disk matched count *1

If (!map_flag) 1* If file names are to be displaYed *1
putchar('\n'), /* Move to column 1 *1

1* Set the directory to 'lclosed", and force the get_nde
function to open It *1

dlr-pb.dp_open = 0,

1* While not at the end of the directory, set a pointer to the
next directorY entry *1

whlle(dlr_entry = get_nde(dlr-pb)
{

1* Check if entry in use, to update
the free/used counts *1

if (dir entry -) de us.rno == OxE5) /* Unused *1
-dlsk_maptscb••cb_dl.kl[FREE_COUNTl++,

else /* In use WI
dlsk_map[scb.scb_dlskl[USED_COUNTJ++,

/* Select only those active entries that are the
first e.tent (numbered 0) of a file that matches
the name supplied by the user *1

Figure 11-5. (Continued)

if(
(diY_entry -> de_u••rno J.
(diy_entry -) de_extent ~c

(coMP_fname(scb,dir_entry)
)

OxE5) 8.8.
0) 8.8.

NAI1E_EQ)

Chapter 11: Additional Utility Programs 419

IRcount++,
dmcount++,

/* Update .atch.d counts */
1* Per disk count *1

/* Check map option */

el ••

/* Update disk map */
dlsk_map[scb.scb_dlsk][dlr_.ntry -> de_userno]++,
)

1* Display name. *1
(

conv_dfn.~.(.cb••cb_disk.dir_.ntry,fil._nam.),
printf ("X. ", 1t1e_na.e) J

/* Ch.ck If ne.d to start new line */
if (!(dmcount X 4»

(

putchar(~\n'),

If (++lcount > 18)
(

leount • 0,
pyintf(lI\nPr••• Space ear to continue......),
getchar() ,
putchar(··'n)'
)

)) '* End- of directorY */
) /* All disks s.arch.d */

if (,.ap_fla9)
(

prlntf("\n
printf ("\n

Numbers show fil•• in each U58... nUlftber. "),
Us.r Numbers --- Diy. Entri••"),

dm_dlsP(disk~ap.scb.scb_adlsks),

}

if (mcount =- 0)
printf("\n --- File Not Found A),

/* Display disk map */

bdos(SETDISK,cur_dlsk), /* Reset to curr.nt disk */
}

ehk_u•• (argc) 1M check U5.9. */
/* This function checks that the correct number of

par•••ters has been IPecified, outputtinv inltruetionl
if not.

*/

/* Entry parameter */
int .rgc, 1* Count of the number of argu••nt. on the command line */
(

1* The minimum value of arvc il 1 (for the provraM name it.elf),
10 argc is alwaYI one vre.ter than the number of param.t.rs
on the command lin. */

If (ar9c ~a 1 II ar9c > 3)
(

printf("\nUI.v•• "),
prlntf("\n\tFIND d,fil.nam•• typ (NAMES)"),
printf("\n\t *,filenam•• typ (All disks)"),
printf ("\n\t ABeD•• OPI fil.n..... typ (sel.ct.d Disks)"),
printf("\n\tNAt£S option IhoWI actual na..... rather th.n m.p."),
.x1t(),
)

Rgure 11-5. (Continued)

420 The CP/M Programmer's Handbook

SPACE - Show Used Disk Space

The SPACE utility shown in Figure 11-6 scans the specified logical disks and
displays a disk map that shows, for each user number on each logical disk, how
many Kbytes of storage have been used. It also displays the total number of Kbytes
used and free on each logical disk.

Here is an example console dialog showing SPACE in operation:

P3B>space<C~.L
SPACE Version 1.0 02/11/83 (Library 1.0)
Usage =

SPACE * (All disk s)
SPACE ABCD •• OP (Selected Disks)

P3B>i.E!A£.!. *<CR>
SPACE Version 1.0 02/11/83 (Library 1.0)
Searching disk A
Searching disk B
Searching disk C

Numbers show space used in kilobytes.
--- User Numbers

o 2 3 4:5 10 11 12 13 14 15
AI 18 202 38
BI 692 432 6:56 548 36
CI 140

tld"fin" VN "1.0 02/11/S3"

'* SPACE -- This utility displays ~ map showing on the amount of space
<expressed as relative percentages) occupied in each user number
for each logical disk. It also shows the relat tve amount of space
free. */

tlinclud" (LIBRARY.H>

Space (Kb)
Used Free

258 1196
2364 996

140 204

struct _dirpb dir-pb,
struct _dir .diy_entry,
.truct _scb scb'
struct _dpb dpb,

short cur_di sk,

int countr

int user,

1* Directory management parameter block wI
1* Pointer to directory entry *1
1* Search control block *1
1* CP/M~s disk parameter block *1

1* Formatt"d for display, un/d,FILENAHE.TYP *1

1* Current 10Qicai disk At start of program
NZ = show .ap of number of filel *'

/* Used to access the allocation block numbers
in each directory entry */'* Used to accels the disk map when calculating *'

/* The array below is used to tabulate the results for each
disk drive. and for each user number on the drive.
In addition, two extra "users" have been added for IIfree"
and "used II vAlues.

*1
un.i~ned disk __ap[16][iS]1
tldefln" USED_COUNT 16
tld"fine FREE_COUNT 17

/* Disk A -) P. users 0 -> 1~. free. used *'
Iff "User II number for used entities w'
/* IIUser" number for fnt. entities tff

.ain<arQlc,arQv)
short argc,
char .arvv[] J
(

/* Arvument count *t
/* Argu••nt vector (pointer to an array of chari.) *t

Figure 11-6. SPACE.C, a utility that displays how much disk storage is used or available

Chapter 11: Additional Utility Programs

printH"'nSPACE Version Xs (Library Xs)",VN,LIBVN),
chk_u•• <ar9C), 1* Check usag_ *1
eur_disk - bdos(OETDISK), /* Oet eurrent default disk */

421

•••tscb(scb,ar9v[1]),

for (seb.seb_disk - 0,
seb.seb_disk < 16,
seb. seb_dhk++)

(

1* Special version = set dilks,
name, type *1

/* Starting with logieal disk AI */
/* Until logieal disk PI */
/* Hove to next logieal disk */

1M Check if current disk has be.n .elected for ••arch */
if (!(seb.scb_adisks & (1 « seb.scb_disk»)

eontinue, /* No, so bypass this disk */

printf("\n5earchln9 disk I Xc", (scb.lcb_dilk + ''''»,
dir-pb.dp_disk = scb.scb_disk, /* Set to disk to be searehed */

1* Set the directorY to "closed", and force the get_nde
function to open it *1

dir-pb.dp_open = 0,

/* Whil_ not at the end of the directory, I.t a pointer
to the next entrv in the directorY *1

While (dir_entrY - get_nde(dir-pb»
(

if (diy_entry -> de_userno OxE5)
continue, 1M Bypass inactive entries *1

for (eount - 0, /* Start with the first alloc. block */
count < dir-pb.dp_nabpde, 1M For number of alloe. blks. per diy. entry *1
count++)

(

if (dir-pb.dp_nabpde == 8) 1* Assume 8 2-byte numbers *1
(

disk_maptscb.scb_disk][d1r_entry -> de_userno]
+= (dir_entrY -> _dirab.de_Iong[count] > 0 ? I 0);

else
}

1* Assume 16 I-byte numbers *1
(

disk_map[scb.scb_disk][dir_entrY -) de_userno]
+= (dir_entry -> _dirab.de_shorttcountl > 0 ? 1 0);

}

} 1* All allocation blocks processed *1
/* End of direetory for this disk */

1* Compute the storage used by multiplying the number of
allocation blocks counted by the number of Kbyt •• in
each allocation block. WI

for (user = 0; 1* Start with user 0 *1
user < 16; 1* End with user 15 *1
user ++) 1* Move to next user number *1

(

1* Compute size occupied in Kbyt•• *1
~i5k_maptscb.scb_diskltuser]*= dir_pb.dp_absize;

/* Build up sum for this disk */
disk_maprscb.seb_diskJrUSED_COUNTJ += disk_maprscb.scb_diskJruserJ;
)

1* Free space = (. of alloc. blks * • of kbyt. per blk)
- used Kbytes
- (direetory entries * 32) / 1024 ••• or divide by 32 */

disk_maprscb.scb_diskJrFREE_COUNTJ • (dir-pb.dp_nab * dir_pb.dp_absize)
- disk_maprscb.scb_diskJrUSED_COUNTJ
- (dir-pb.dp_nument » 5); 1* Same as I 32 */
1* All disks processed *1

printf("\n
printf("\n

Numbers show space used in ki lobytes.");
User Numbers --- Space (Kb)II);

1* Display disk map -I

Figure 11·6. (Continued)

422 The CP/M Programmer's Handbook

bdo5(SETDISK,cuy_disk): 1* Reset to current disk *1
}

ssetscb(scb,ldisks) 1* Special version of set search control block *1

1* This function sets up a search control block according
to just the logical disks specified. The disk are specified as
a single string of charecters without any separators. An
asterisk lReans "al1 disks." For example --

ABGH (disks AI, B., G. and HI }
* (all disks for which SELDSK has tables)

It sets the bit map according to which disks should be searched.
For each .elected disk, it checks to see if an error is generated
when selecting the disk (i.e. if there are disk tables in the BIOS
for the disk).
The file name. type. and extent number are all set to "?" to match
all possible entries in the directorv. *1

1M Entry parameters *1
struct _scb *scb; Itt Pointer to search control block *1
char *ldisks; 1* Pointer to the logical disks ttl

Itt Exit parameters
None.

*1
[

int disk, 1* Disk number currently being ch&cked *1
unsigned .disks; 1* Bit map for active disks *1

adisks = 0, . 1* Assume no disks to search *1

if <ttldisks) 1* Some values specified wi
[

if (ttldisks "'."') 1* Check if flail disks" *1
[

adisks = OxFFFF; Itt Set all bits ttl
}

else Itt Set specific disks *1
[

while<*ldisks) I. Until end of disks reached .1
[

1* Build the bit map by getting the next disk
id. (A - PL conviltrting it to a number
in the range 0 - 15, and shifting a I-bit
left that many places and OR Ing it into
the current active disks.

*1
adisks := 1 « (toupper(tfldisks) - ·'A'·");
++ldisks; 1* Move to next character *1
}

}

else 1* Us. only current default disk *1
[

1* Set just the bit corresponding to the current disk *1
adisks = 1 « bdos(GETDISK),
}

1* Set the user number, file name, type, and extent to "7"
so that all active directory entries will match *1

1* 0123456789012 *1
strcpy (&scb -) scb_userno, I'?????????????");

1M Hake calls to the BIOS SELDSK routine to make sure that
all of the active disk drives have disk tables for them
in the BIOS. If they don~t, turn off the corresponding
bits in the bit map. ttl

Itt Start with disk A: *1
1* Until disk P. *1
Itt Use next disk ttl

for (disk = 0,
disk < 16,
disk++)

[

if (!«l « disk) ~ adisks»
continue; 1* Avoid selecting unspecified disks *1

Figure 11-6. (Continued)

Chapter 11: Additional Utility Programs

if lbioshlSELDSK,disk) -- 0) 1* Hake BIOS SELDSK call *1
I 1* Returns 0 if invalid disk *1
1* Turn OFF corresponding bit in mask

bY AND-ing it with bit mask having
all the other bits set = i. *1

adisks L= IIi « disk) • OxFFFF),
)

423

seb -) .cob_.disks = .disk.,

) 1* End ssetscb *1

chk_use (ar9C) 1M Check usage *1
1* This function checks that the correct number of

parameters has b••n specified, outputting instructions
if not. *1

'* Entry parameter */
tnt .rgel 1* Count of the number of arguments on the command line *1
I

1* The minimuM value of argc is 1 (for the program name its.1f),
so argc 1s always one gr••ter than the number of parameters
on the command line wI

if largc I- 2)
(

printf("'nUsag. :11),
printfl"\n\tSPACE * lAll disks)");
pYintfl"\n\tSPACE ABCD•• OP lSelected Disks)");
ex!tOI
)

) 1* End chk_use *1

Figure 11-6. (Continued)

MOVE - Move Files Between User Numbers
The MOVE utility shown in Figure 11-7 moves files from one user number to

another on the same logical disk, The movement is achieved by changing the user
number in all the relevant directory entries. This is much faster than copying the
files. It also avoids having multiple copies of the same file on the disk.

Here is a console dialog showing MOVE in operation:

P3B>move(CR>
MOVE Version 1.0 02/10/83 (Library 1.0)
Usa'i\e :

MOVE dlfilename.typ to_user {from_user} {NAMES}'
*:filename.typ (All disks)
ABCD •• OP:filename.typ (Selected Disks)

NAMES option shows names of files moved.

P3B>dir *.com(CR>
B: ERASE COM I FUNKEY
Bl SPACE COM UNERASE
Bl TIME COM ASSIGN

COM : DATE
COM MAKE
COM : SPEED

COM
COM
COM

FIND COM
MOVE COM
PROTOCOL COM

P3B>move *.com ~ names(CR>
MOVE Version 1.0 02/10/83 (Library 1.0)

Movin'i\ file(s) 3/B:????????COM -> User o.

424 The CP/M Programmer's Handbook

O/B:ERASE • COM O/B:FUNKEY • COM O/B:DATE .COM O/B:FIND .COM
O/B:SPACE • COM O/B:UNERASE .COM O/B:MAKE • COM O/B:MOVE • COM
O/B:TIME • COM O/B:ASSIGN .COM O/B:SPEED .COM O/B: PROTOCOL. COM

P3B>user Q.<CR>
POB>dir
B: ERASE COM FUNKEY COM DATE COM FIND COM
B: SPACE COM UNERASE COM MAKE COM MOVE COM
B: TIME COM ASSIGN COM SPEED COM PROTOCOL COM

_define VN "1.002/10/83"

1* MOVE -- This utility transfers 111.(5) from one user number to
another p but on the SAME logical disk. Files are not actuallY
copied -- rather, their directory entries are changed. *1

_include <LIBRARY.H>

struet _dirpb dir-pb;
struet _dir *diy_entry;
struet _5cb scbJ

_define DIR_BSZ 128
char dir_buffer[DIR_BSZ],

char file_name[20l;
short name_flag;

short cur_disk;
int from_user;
int to_user;

int mcount:
int dmcount:
int lcount:

1* Directory management parameter block *1
1* Pointer to directory entry *1
J* Search control block *1

1* Directory buffer size *1
1* Directory buffer *1

I. Formatted for displaY' un/d,FILENAME.TYP wi
1* NZ to displaY names of files moved *1

1* Current logical disk at start of program *1
1* User number from which to move files *1
1* User number to which files will be moved *1

1* Match count (no. of file names matched) *1
1* Per-disk match count *1
1* Line count (for lines displayed) *1

main(argc,argv)
short argc;
char Mar9v[] J
(

1* Argument count *1
1* Argument vector (pointer to an array of chars.) *1

pr1ntf("\nI1O\lE Version Xs (Library Xs)",VN.L1BVN),

to_user· atoi(argv[2]); 1* Conv.rt user no. to integer *1
Iw Set and check destination user number *1

if(to_us.r > IS)
(

printf(lI\nError -- the destination user number cannot be greater than 15.");
)

1M Sat the current user number wI
from_user = bdos(OETUSER.OxFF),

1M Check if source user number specified *1
if (isdiQit(arQv[3][0]))

(

else

1* Set and check source user number *1
if«from_user ~ atoi(argv[3)) > 15)

(

printf("\nError -- the source user number cannot be greater than 15."):
exitO:
)

1M Set name suppress flag from parameter #4 *1
name_flag = usstrcmp("NAMES",argv[4]):,

1* No source user specified *1

Figure 11-7. MOVE.C, a utility program that changes files' user numbers

Chapter 11: Additional Utility Programs

1* Set name suppress flag from parameter 13 *1
name_flag· usstrcmp("NAMES",ar9v[3]),
)

/* To simplify the logic below, name_flag must be made
NZ if it i_ aqual to NAME_EQ. 0 if it is any othar value *1

nama_flav • (nama_flav NAHE_EQ ? i I 0),

if (to_us.r -= from_user) J* To = from *1
(

printf("\nEYYor - 'to'" user numbe... is the same as "from'" user number. II);

a.itO,
)

'* Set the search control block fi1. nam., type. us.r number,
eM tent number, and length -- length matche. user number, file
name, and type. As the eM tent numbe... do•• not enter into the
comparison, all extents of a given file will be found. *1

•• tscb(scb,argv[ll,from_user,'?",13),

425

cur_disk· bdos(GETDISK),
lcount • dmcount • mcount • 0,

for (scb.scb_disk = 0;
scb.scb_disk < 16,
scb. scb_dhk++)

(

1* Oet current default disk *1
1* Initializa counts *1

1* Startinv with lovical disk AI *1
1* Until lovical disk p, *1
1* Move to neKt logical disk *'

'* Check if current disk has b.en selected for .earch *1
if (!(scb.scb_adisks & (i « _cb.scb_disk»)

continua, 1* No. so bypass this disk *1
/* convert search user nu.ber and name for output */

conv_dfname<scb.scb_disk,scb,file_na..),
printf('I\n\nMoving file<s) Xs -) User Xd.",file_name,to_user),

lcount++, 1* Updata lina count *1

dir-pb.dp_disk • scb.scb_disk, 1* Set to disk to be searchad*1
dmcount a 0, 1* Reset disk matchad count *1

if (nama_flav) 1* If fila namas are to be displayad *1
putchar('\n'}, /* Move to column 1 *1

1* Set the directory to "closed" to foree the get_nde
function to open it. *1

dir-pb.dp_open .0,

1* While not at the end of the directory, set a pointer
to the neKt directory entry *'

whila(dir_antry • vat_nde(dir-pb»
(

/* Hatch those entries that have the correct
user number, file name, type, and any
eKtent number. *1

U(
(dir_entry -) de_userno 1= OKES) LL
(comp_fname(scb.dir_entry) NAME_EQ)

)

dir_entrY -) de_userno = to_user, i* Move to new user */'* Requ.st .ector to be written back */
dir-pb.dp_writa. i'

tncount++,
dmcount++,

/* Update matched counts *1
/* Per-disk count *1

if (name_flav) I_ Chack map option *1
(

eonv_dfname(seb. seb_disk,dir_entrY, file_name),
printf <"Xs ", f i I._na....);

1* Chack if na.d to start naw line *1
if (!(dmcount Yo 4»

(

putehar('\n');
if (++lcount > i8)

Rgure 11-7. (Continued)

426 The CP/M Programmer's Handbook

(

lcount = 0,
printf(H\nPress Space Bar to continue ll

),

getchar () J
putchar("'\n");
}

if (Mcount .m 0)
printf("\" --- No Fil•• Moved II);

bdos(SETDISK,cur_disk), 1M Reset to current disk *1
}

chk_u•• (argc) '* Check USa,9. *1'* This function checks that the correct number of
parameters hal be.n specified, outputting instructions
if not *1

1* Entry parameter.'
int arge: /* Count of the number of arguments on the command line *1
{ ,

1* The minimum value of aygc is 1 (for the program name itself),
10 argc is always one greater than the number of parameters
on the command line *1

if (argc == i II argc > 5)
{

printf("\nUsage :");
printf("\n\tHOVE d,filename.typ to_user {from_user} (NAMES}"),
printf("\n\t *Ifilename.typ (All disks)");
printf("\n\t ABCD •• OP,f11ename.typ (Selected Disks)"),
PYintf(lI\n\tNAMES option shows names of files moved."),
eMitO,
}

Figure 11·7. (Continued)

Other Utilities
The utility programs described in this section are by no means a complete set.

You may want to develop many other specialized utility programs. Some possibili
ties are:

FILECOPY
A more specialized version of PIP could copy ambiguously specified
groups of files. Of special importance would be the ability to read a file
containing the names of the files to be copied. A useful option would be the
ability to detect the setting of the unused file attribute bit and copy only
files that have been changed.

PROTECTjUNPROTECT
This pair of utilities would allow you to "hide" files in user numbers greater
than 15. Files so hidden could not be accessed other than by UNPRO
TECTing them, thereby moving them back into the normal user number
range.

-

Chapter 11: Additional Utility Programs 427

RECLAIM
This utility would read all sectors on a disk (using the BIOS). Any bad
sectors encountered could then be logically removed by creating an entry in
the file directory, with allocation block numbers that would effectively
"reserve" the blocks containing the bad sectors.

OWNER
This utility, given a track or sector number, would access the directory and
determine which file or files were using that part of the disk. This is useful if
you have a bad sector or track on a disk. You then can determine which files
have been damaged.

Utility Programs for the Enhanced BIOS

This section describes several utility programs that work with the enhanced
BIOS shown in Figure 8-10. Several of these utilities work directly with the
physical devices on the computer system, which can vary from computer to
computer. The library header contains #define declarations for device numbers
and names for physical devices (Figure 11-2, f and Figure 11-2, g).

These #define statements are used to build a physical-device code table. Ifyou
have more physical devices or want to change the names by which you refer to the
devices, you will need to change these definitions.

All of these utilities share some common features in the way that they are
invoked. If they are called without any parameters, they display instructions on
the console regarding what parameters are available. If they are called with the
word "SHOW" (or "S", "SH", and so forth) as a parameter, they display the
current settings of whatever attribute the utility controls.

MAKE - Make Flies "'nvlsible" or IVisible"
The MAKE utility shown in Figure 11-8 is designed to operate in conjunction

with the public files option implemented in the enhanced BIOS of Figure 8-10. It
has two modes of operation-making files "invisible" or "visible."

An invisible file is one in user 0 which has been set to Read-Only and System
status. When the public files option is enabled, these files cannot be seen when you
use the DIR command, nor can they be erased accidentally.

A visible file is one that has been set to Read/Write and Directory status.
When files are made invisible, they are transferred from the current user

number to user O. When files are made visible, they are transferred from user 0 to
the current user number.

Here is an example console dialog showing MAKE in operation:

P3B>make<CR>
HAKE Version 1.0 02/12/83 (Library 1.0)

430 The CP/M Programmer's Handbook

tneount++, ''If Update Matched counts wI

if <1nvi.ibh)
(1* S.t m. bU. *1
dir_.ntrv -) d._fnam.[SJ 1= OxSO,
diy_entry -) de_fname[9J 1= OM80,
)

.1.. 1* Vi.ibl. *1
(1'If CI.ar ms bit. wI
dir_.ntrv -) d._fnam.[SJ &= Ox7F,
dir_.ntrv -) d._fnam.[9J &= Ox7F,
)

1* Hove to correct user number wI
diY_entry -> de_us.rno • to_user,

1'If Indicate sector to b. written back *1
dir-pb.dp_writ. = 1,

1* Check if naMe to be displayed wi
if (n.m._flav)

(

conv_dfna.e(scb.scb_disk,dir_entry,file_name),
printf("\n\tXs made Xs in User Xd. ll

,

file_name, operation, to_user),

)

) /* All directory entries processed wi
1* All di.k. proc••••d *1

if (..count 0)
Prlntf ("\n No Fil•• Proc••••d II),

bdo.(SETDISK,cur_di.k), 1* R••• t to curr.nt di.k *1
)

chk_u•• <argc) 1* Check usag_ wI
1* Thi. function ch.ck. th.t the corr.ct number of

parameters ha. b••n specified, outputting instructions
if not.

1' Entry para••ter */
int argc, 1* Count of the number of arguments on the command line *1
(

1* The MiniMum value of ar9C is 1 (for the program name it •• lf),
50 .r9C is always one greater than the number of parameters
on the cOMmand line *1

if (arvc •• 3 II arvc ~. 4)
return,

.1 ••
(

printf("\nU.ave r~),

printf("'n\tI'lAKE d'fU.n•••• hp INVISIBLE (NAMES)"),
printf("'n\t VISIBLE"),
printf("\n\t *.fU.nam•• hp (All disk.)"),
printf("\n\t ABCD •• OPrfilename.tvp (Selected Disks)"),
printf(U\n\tNAMES option shows names of files Processed. II),

.>citO,
)

Figure 11-8. (Continued)

Chapter II: Additional Utility Programs 431

SPEED - set Baud Rates

The SPEED utility shown in Figure 11-9 sets the baud rate for a specific serial
device. Here is an example console dialog that shows several of the options:

P3B>speed<CR~

SPEED 1.0 02/17/83
The SPEED utility sets the baud rate speed for each physical device.
Usage is: SPEED physical-device baud-rate. or

SPEED SHOW (to show current settings)

Valid physical devices are:
TERMINAL
PRINTER
MODEM

Valid baud rates are:
300
600
1200
2400
4800
9600
19200

P3B>speed show<CR>
SPEED 1.0 02/17/83
Current Baud Rate settings are:

TERMINAL set to 9600 baud.
PRINTER set to 9600 baud.
MODEM set to 9600 baud.

P3B>~m 19<CR>
SPEED 1.0 02/17/83
Current Baud Rate settings are:

TERMINAL set to 9600 baud.
PRINTER set to 9600 baud.
MODEM set to 19200 baud.

P3B>~ l!.tl l.£.<CR>
SPEED 1.0 02/17/83
Physical Device ~XYZ' is invalid or ambiguous.
Legal Physical Devices are

TERMINAL
PRINTER
MODEM

Ideflne VN "'nSPEED 1.0 02/17/83"

I. This utility sets the baud rate speed for ••eh of the physieal
dil!vic••• wI

Iinelude <LIBRARY.H>

struet _et et-pdev[MAXPDEV + 2], I. Physleal devlee table .1

Figure 11·9. SPEED.C, a utility that sets the baud rate for a specific device

432 The CP/M Programmer's Handbook

/* Baud rates for serial ports *1
lIdefine 8300 0.35 /* 300 baud .. /
lIdeflne 8600 0.36 /* 600 baud .. /
Idefine 81200 0.37 / .. 1200 baud .. /
lIdeflne 82400 0.3A / .. 2400 baud .. /
'define 84800 0.3C /* 4800 baud .. /
lIdefine 89600 0.3E /* 9600 baud */
.define 819200 0.3F / .. 19200 baud .. /
~truct _ct ct_br[10l, / .. Code table for baud rates (+ spare entries) .. /

1* Parameters on the command line *1
.define PDEV argv[ll I'll: Physical device *1
Idefine BAUD argv[2J I'll: Baud Yate *1

main(ar9c,ar-gv)
tnt a"'9C'
char *argv[];
{

prlntHVN),
setup() ,
chk_use(aY9c),

1* Display s19n-on mesSage *1'* Set up code tables *1
1* Check correct usage *1

1* Check if request to show current settings *1
if (usstrcmp ("SHOW", argv[1]»

(1* No -- assume setting is required *1
setjbaud(get-Fdev(PDEV),get_baud(8AUD», / .. Set baud rate .. /
)

1* Display current settings *1

1* set up the code tables for this program *1setup()
{

1* Initialize the physical
ct_lnit(ct-Fdev[Ol,T_DEVN,PN_T),
ct_inlt(ct-Fdev[ll,P_DEVN,PN_P),
ct_lnlt(ct-Fdev[2l,M_DEVN,PN_M),
<:_101 t (ct.Ydev[3l, CT_SNF, 11*"); I'll:

device table '11:1
1* Terminal '11:1
1* Printer- */
1* Modem *1

Terminator *1

I'll: Initialize the baud rate
ct_ini t (ct_br[Ol, B300, "300 11

);

et_lnl t(ctjbr[1], 8600, "600"),
ct_lnl Hct_br[2l, 81200, "1200"),
ct_lnl t (ct_br[3l, 82400, "2400"),
ct_lnlt (ct_br[4l, 84800, "4800"),
et_lnl t (ct_br[5l, 89600, "9600"),
ct_lnlt (ct_br[6l, 819200, "19200"),
ct_inlHct_br[71 ,CT _SNF, """) I / ..
}

table *1

Terminator *1

unsigned
get-pdev(PPdev) 1* Get physical device *1
1* This function r-eturns the physical deVice code

specified by the user in the command line. *1
char *ppdev, IIJI: Pointer to character string *1
{

unsigned retval; IIJI: Return value *1

retval = ct-parc(ct-pdev,ppdev); 1* Get code for ASCII string *1
If (retval == CT_SNF) / .. If string not found .. /

{

printf("\n\007Physical Device "''Yes'" 115 invalid or ambiguous.",
ppdev);

printf("\nLegal Physical Devices are I II);

ct_disps(ct-pdev), 1* Display all values *1
exitO;
)

return retval; 1* Return code *1
)

unsi9ned
get baud (pbaud)
1* This function returns the baud rate time constant for

the baud rate specified bY the user in the command line *1

Figure 11-9. (Continued)

'* R.turn code wI

1* Pointer to character strin9 w,
1* Return value wi

/* Get c:ode for ASCII strln9 */
/* If strln9 not found */

Chapter 11: Additional Utility Programs

c:har *pbaud,
(

unsivned retval,
retv.l • ct-parc(ct_br,pbaud),
If (retval •• CT_SNF)

(

PYintf("\n\0078aud Rate ... x.... is invalid or ambi9uouI.",
pbaud) ,

printf(U'nLe9i1.1 Baud Rat •• are: II),
c:t_dlsps(c:t_br); /* Display all values */
e.UO,
}

return retval,
}

433

set_baud(pdevc:.baudc)
Int pdevc,
short baudc:,

/* Set the baud rate of the specified device */
1* Physical device code *1
/* Baud rat. code w,
1M On lome systems this May have to be •

two-byte (unsi9ned) value wi
(

short -baud_re, '* Pointer to the baud rat. con.tant w,
1* On some IYlteM. this may have to be •

two-byte (unlivned) value wI
1* Note. the relPective code. for acc••• ine the baud rate const ...nt.

via the vet_cba (get confi9uration block addresl) function are.
Devlc:e .0 • 19, .1· 21••2 • 23. This func:tlon uses this

.athematlc:al relationship */

'* Set up pointer to the baud rate constant *t
baud_rc: • get_c:ba(CBjDO_BRC + (pdevc: « I»,

Iw Then set the baud rate constant wI
Mbaud_rc • baudc,

1M Then call the BIOS initialization routine wI
blos(CIOINIT,pdevc:),
}

tnt pdevn, Iw Physical device number wi
short baudc, IW Baud rate code *1

IW On some systems this may have to be a
two-byte (unsilllned) value *1

short wbaud_rc, 1* Pointer to the baud rate constan,t *1'* On some Iystems this may have to be •
two-byte (unsi9ned) value wi'* Note. the relPective codes for accessin9 the baud rate constants

via the get_cba (get conf i9urat ion block address) f'unct ion are.
Device 10 • 19, .1. 21, 12 • 23. Thil function uses this

mathe••tlc:al relationship */

printf(lI\nCurrent baud rate •• tt1n91 are ."),

for (pdevn • 0, pdevn <= MAXPDEV, pdevn ++)
(

ItIt All physical devices w'
1M Set up pointer to the baud rat. constant -

the code for the get_cba function is computed
by addin9 the physical device number w2 to
the Baud R.te c:ode for device .0 */

1M Then set the baud rat. constant WI
baudc • wbaud_re,

printf(lI\n\tXs s.t to Xs baud.",
c:t_strc(c:t-pdRv,pdevn). /* Get ptr. to devlc. name */
ct_strc(ct_br,baudc)), 1* Get ptr. to baud rate WI

chk_u.e (arlllc)
int ar9C,
(

1* Check correct usag_ wI
IW Argument count wI

Figure 11-9. (Continued)

434 The CP/M Programmer's Handbook

if (argc == I)

£
prlntf("\nThe SPEED utility set. the baud rate speed for e ..ch physlc.. l device."),
prlntf("'nUsag8 is I SPEED physical-device baud rate, or");
printf(lI\n SPEED SHOW (to show current sett~n9.)")J

printf("\n\nValid physical device. are: ">,
ct_disps (ct...pdev);
printf("\nValid baud rates arel II);
ct_dlsps (ct_br),
.. ItO,
}

Figure 11-9. (Continued)

PROTOCOL - Set Serial line Protocols

The PROTOCOL utility shown in Figure 11-10 is used to set the protocolfor a
specific serial device.

The drivers for each physical device can support several serial line protocols.
The protocols are divided into two groups, depending on whether they apply to
data output by or input to the computer.

Note that the output DTR and input RTS protocols can coexist with other
protocols. The strategy is first to set the required character-based protocol and
then to set the DTRj RTS protocol. There is an example of this in the following
console dialog:

P3B>protocol<CR>
PROTOCOL Vn 1.0 02/17/83
PROTOCOL sets the physical device's serial protocols.

PROTOCOL physical-device direction protocol {message-length}

Legal physical devices are
TERMINAL
PRINTER
MODEM

Legal direction/protocols are
Output DTR
Output XON
Output ETX
Input RTS
Input XON

Message length can be specifed with Output ETX.

P3B>protocol lihow<CR>
PROTOCOL Vn 1.0 02/17/83

Protocol for TERMINAL - None.
Protocol for PRINTER - Output XON
Protocol for MODEM - Input RTS

P3B>protocol m~ ~ 128<CR>
PROTOCOL Vn 1.0 02/17/83

Protocol for TERMINAL - None.
Protocol for PRINTER - Output XON

Chapter II: Additional Utility Programs 435

Protocol for MODEM - Output ETX Message Length 128 bytes.

P3B>protocol mQ~
PROTOCOL Vn 1.0 02/17/83

Protocol for TERMINAL - None.
Protocol for PRINTER - Output XON
Protocol for MODEM - Output DTR Output ETX Message Length

128 bytes •

• d.fin. VN "'nPROTOCOL Vn 1.0 02/17/83"
/* PROTOCOL -- Thi. utility ••t. the ••ri.l port protocol for the

.p.cifi.d phy.ical d.vic•• Alt.rnativ.ly, it di.play. the
current protocol. for .. II of the serial devices. *1

.includ. <LIBRARY.H>

.truet

.truet
It ruet
.truet
.truct

1* Cod. tabl •• u••d
_ct ct_iprotot3l1
_ct ct_oprotot4l,
_ct ct_dprotot7l,
_ct ct-pd.vtHAXPDEV +
_ct ct_iot3J 1

to r.l.t. ASCII .trinv. to code v.lue. */
/* Cod. table for input protocol. */
/* Cod. table for output protocol. *1
1* Cod. t.bl. for di.playinv protocols */

2JI/* Physical d.vic. t.bl. *1
/* Input, output w/

.defin.

.defin.

.d.fine

.d.fin.

/* Parameters
PDEV arvvtlJ
10 arvvt2J
PROTO arvvt3J
PROTOL arvvt4J

on the command line *1'M Physical device w'
/* Input/output *1
1* Protocol *''* Protocol •••••g. length *'

maintarljlc,arvv)
int ar;lc,
char .arvv[].
(

print f(VN),
..tuPO,
chk_u,. <arge).

/* Di.play sign-on m•••age *1
/* S.t up cod. tabl •• *1
1* Check correct usag_ wI

'* Check if request to show current ••tting. w'
if (uI.trclRP("SHQW",arvv[l]»('w No -- •••ume t i. required */

••t-proto(v.t-pd.v(PDEV), 1* Phy.ical d.vic. *1
1* Input/output and protocol *1

v.t-proto(V.t_io(IO) ,PROTO).
PROTOL) 1 /* Protocol •••••v. l.nvth */

)

.how-protoO 1

) /* end of program wi

..tupO
f

1* Initializ. the phy.ic.l d.vic. table */
ct_init(ct-pd.vtOJ,O.PN_T), 1* Terminal *1
ct_init(ct-pd.vtlJ, l,PN_P) , /* Printer */
ct_init(ct-pd.vt2l.2,PN_H)I /* Hod•• *1
ct_init(ct-pd.vt3J.CT_SNF, "*"), /* T.r.inator */

1* Initializ. the input/output table *1
ct_init(ct_iotOJ.O,"INPUT"),
ct_ini t (ct_iot 1J ,I. "OUTPUT"),
ct_inittct_io[21,CT_St*',lIw '1), '* Terminator wI

1* Initi.lize the output protocol table *1
ct _i ni t (ct_oPl'"ototOJ ,DT_ODTR, "DTR") 1
ct_init (ct_oProtot lJ. DT_OXON, ·XON") 1
ct_init(ct_oProtot2J,DT_OETX, "ETX"),

Figure 11·10. PROTOCOL.C, a utility that sets the protocol governing input and
output of a specified serial device

436 The CP/M Programmer's Handbook

ct_ini t (ct_OPyoto[31. CT_SNF, ".") 1 '* Terminator */

1* Initialize the input protocol table *1
ct_Inltlct_lprototOJ.DT_IRTS, "RTS"),
ct_Inlt(ct_lproto[lJ.DT_IXON,"XQN"),
ct_ini t (ct_lpyoto(21, CT _SNF, It. II) J f. Terminator fl.'

/* Initialize the dl.play protocol */
ct_Inl t(ct_dprototOJ, DT_ODTR, "Output DTR"),
ct_init(ct_dproto[ll,DT_OXON,"Output XON"),
ct_Inlt Ict_dprotot2J, DT_OETX, "Output ETX"),
ct_Inlt Ict_dprotot3J, DT_IRTS, "Input RTS"),
ct_Inlt Ict_dprotot4J, DT _IXON, "Input XON"),
ct_Inl t Ict_dprotot5J, CT _SNF, "*"),
}

unsigned
get-pdevlppdev) /* Oet physical device */
1* This function returns the physical device code

specified by the user in the command line. *1
char .ppdev; 1* Pointer to character string tiff
{

unsigned retval, ,* Return value *f

ret val = ct-parc(ct-pdev,PPdev), 1* Get c~de for ASCII string *1
If lretval == CT SNF) /* If .trlng not found */

{ -
printf("\n\007Phvsical Device "'Y.s" is invalid Or ambi9uouS.",

ppdev);
printf(ll\nLegal Physical Device. are; II);
ct_disps(ct..-pdev), 1* Display ...11 values *1
e.ltll,
}

yeturn retval; /* Return code */
}

unsigned
get_io(pio)
char *pio,
[

unsigned retval,

/* Get input/outPut parameter ./
/* Pointer to character string */

/* Return value */

retval = ct-parc(ct_io.pio); 1* Get code for ASCII string *1
if (retval s::= CT SNF) 1* If string not found */

{ -
printf(ll\n\007Input/Output direction "Xs'" is invalid or ambi9uous. lI

•

pio>;
printf("\nLe4jJal values are: ");
ct_disps(ct_io), /* Display all values */
exitO;
}

return retval, 1M Return code *1
}

unsieaned

get-proto(output,pproto)
1* This function returns the protocol code for the

protocol specified by the user in the command line. *1
int output; /* =1 for output. =0 for input .1
char .pproto, /. Pointer to character strin9 .1

{

unsigned retval,

If loutput)
{

/* Return value */

/* OUTPUT specified */

/* Get code for ASCII .trlng */
retval = ct-parc(ct_oproto.pproto),
if (retval s::= CT SNF) 1* If string not found *1

{ -
printf(lI\n\0070utput Protocol "1.5'" is invalid or ambiguous.",

pproto) :
printf("\nLegal Output Protocols are: "):
ct_diSPs(ct_oproto); I. DisplaY valid protocols *1
exitO;
}

Figure 11-10. (Continued)

91.e

Chapter II: Additional Utility Programs

'W INPUT op"ct f1"d w,
'W G"t cod" for ASCII strln9 w,

retva! = ct-parc(ct_iproto,pproto);
If (retval 8: CT_SNF) 'W If otrln9 not found w,

(
printf(H\n\007Input Protocol .. x is invalid or ambi9uouS.",

pproto) ,
printf("\nLe9al Input Protocols are; II);
ct_dlopo(ct_lproto)1 'W Dloplay valid protocols w,
"Mlt()1
)

437

)

return ret va"
)

1* Return code *1

••t-proto(pdevc,protoc,pplength),/* Set the protocol for physical device *1
int pd"vcl 'W Physical d"vic" cod" w,
unsi9ned protoc, 1* Protocol byte *1
char .pplength; 1* Pointer to protocol length *1
(

otruct --"pdt
(

char .pdt[16l; 1* Array of 16 pointers to the device table. *1
) ,
struct -ppdt *ppdt, 1M Pointer to the device table array *1
struct _dt Mdt, 1M Pointer to a device table *1

ppdt = 9"t_cba(CB_DTA)1 'W Set pointer to array of polnt"ro w,
dt 8 ppdt -) pdHpdevc] I '

if (ldt) 1* Check if pointer in array is valid *1
(

printf(lI\nError Array of Device Tabl_ Addre••es is not set for device IXd. II.

pdevc) J
eKit();
)

if (protoc L O_BOOO)

(

dt -) dt sU
)

else

/* Check if protocol byte to be .et
directly or to be OR ed in *''W OR "d w,

1= (protoc & OK7F)r

('* Set directly *'
dt -) dt_stl • (protoc L 0_7F),
)

if ((protoc L 0_7F) == DT_OETX) 'w If ETX'ACK. Check for mesoa9"
length *'

(

If (iodI9It(wppl"n9th»
(

'W Ch"ck If 1"n9th pres"nt w,

/* Convert length to binary and let device
tabla field. w,

dt -) dt_et_ml • atoi(ppl"n9th)1
)

show-proto()
(

otruct --"pdt
(

char *pdt[16J;
I ,
struct -ppdt .ppdtl
otruct _dt Wdtl
int pdevcJ
.truct _ct *dprotoJ

/* Show the current protocol s.tting. */

/* Array of 16 pointers to the device tabl•• */

/* Pointer to the device tabl. array *'
/* Point.r to • device table w''* Physical device code */'M Pointer to display protocol' M'

ppdt • get_cba(CB_DTA), /M Set pointer to array of pointers */

/* For all physical device. */

Figure 11-10. (Continued)

438 The CP/M Programmer's Handbook

for (pdevc • 0, pdevc (- "AXPDEV, pdevc++)
(

/* Set pointer to device table */
dt • ppdt -) pdt[pdevcl,

if (dt) 1M Check if pointer in array i. valid wi
(

printf("\n\tProtocol for Xs - ",ct_strc(ctJ)dev,pdevc»,
1M Check if any protocols set wI

if (l(dt -) dt It I & ALLPROTO))
(-
printf("None."),
continue,
l

1M Set pointer to display protocol table *1
dpYoto = ct_dproto,
while (dproto -) _ct_code != CT_SNF)

I
1M Check if protocol bit set wi

if (dproto -) ct code & dt -) dt Itl)(- /* Display protocol *1
printf("Xs ",dpYoto -) _ct_sp),,

++dpyoto, 1M Move to next entrY wI,
/* Check if ETX/ACK protocol and

message length to be displayed wi
if (dt -) dt Iti & DT OETX)

printf(II Mess:;ge length Y.d bytes. I',
dt -) dt_etxml);

chk_use(argc) 1M Check for correct usage wi
tnt ayge, 1M Argument count on commmand line wi
(

if (argc == 1)
(

printf(lI\nPROTOCOL sets the physical devic.... s serial protocols.");
printf(lI\n\tPROTOCOL physical-device direction protocol (messag.-Iength}");
printf("\n\nLegal physical devices are Zll);

ct_disps(ctydillv) ;
printf("\nLegal direction/protocols are :"),
ct dilPI(ct dproto),
prlntf(ll\n\tMttssage Itngth can be sp4tcifed with Output ETX.\n ll

);

e.!tOI
)

Figure 11-10. (Continued)

ASSIGN - Assign Physical to Logical Devices

The ASSIGN utility shown in Figure ll-ll sets the necessary bits in the
physical input/output redirection bits in the BIOS. It assigns a logical device's
input and output to physical devices. Input can only be derived from a single
physical device, while output can be directed to multiple devices.

Here is an example console dialog showing ASSIGN in action:

P3B>assign<CR>
ASSIGN Vn 1.0 02/17/83
ASSIGN sets the Input/Output redirection.

ASSIGN logical-device INPUT physical-device
ASSIGN logical-device OUTPUT physical-devl {phy dev2 •• }
ASSIGN SHOW (to show current assignments) -

Chapter 11: Additional Utility Programs

Legal logical devices are
CONSOLE
AUXILIARY
LIST

Legal physical devices are :
TERMINAL
PRINTER
MODEM

P3B>~ show<CR>
ASSIGN Vn 1.0 02/17/83
Current Device Assignments are :

CONSOLE INPUT is assigned to - TERMINAL
CONSOLE OUTPUT is assigned to - TERMINAL
AUXILIARY INPUT is. assigned to - MODEM
AUXILIARY OUTPUT is assigned to - MODEM
LIST INPUT is assigned to - PRINTER
LIST OUTPUT is assigned to - PRINTER

439

P3B>~ A Q i mp<CR>
ASSIGN Vn 1.0 02/17/83
Current Device Assignments are :

CONSOLE INPUT is assigned to - TERMINAL
CONSOLE OUTPUT is assigned to - TERMINAL
AUXILIARY INPUT is assigned to - MODEM
AUXILIARY OUTPUT is assigned to - TERMINAL PRINTER MODEM
LIST INPUT is assigned to - PRINTER
LIST OUTPUT is assigned to - PRINTER

.deflne VN "'nASSIGN Vn 1.0 02/17/83"

.Include <LIBRARY.H>

struct _ct ct-pdev[HAXPDEV + 2l, /w PhYsical device table w/

1* Name. of logical devic•• *1
.def I ne LN C "CONSOLE"
.define LN::A "AUXILIARY"
.define LN L "LIST"
.truct _ct-ct_Idev[4l, /w Logical device table w/

_truet _ct ct_iot31, 'tt Input, output */

1* Parameters on the cornm.nd line tt'
.deflne LDEV argv[!l /w Logical device w/
.deflne 10 argv[2l /w Input/output w/

main(ar9C,argv)
tnt argcJ
char Margv[J,
(

prlntf<VNJ,
.etup() I
chk_use (argc),

'tt Display sign-on m•••ag_ ttl
/w Set up code table. w/
/* Check correct usag_ *1

1* Check if request to show current •• ttin91 *1
if (u•• trcmp(IISHOW",argv[l]»

{ '''' No, assume a set is required ttl

Figure 11·11. ASSIGN.C, a utility that assigns a logical device's input and output to two
physical devices

440 The CP/M Programmer's Handbook

liE NOTE : the number of physical devices to
process is given by argc - 3 *1

;et_asst9n(get_ldeV(LDEV),get_iO(IO),ar9C - 3,ar9v);

show_assign();

setup()
(

liE Set UP the code tables for this prOgram iE/

1* Return code *1

1* Return value *1
1* Get code for ASCII string *1

If string not found *1

1* Initialize the physical device table *1
ct_init(ct-pdev[OJ,O,PN_T), 1* Terminal *1
ct_init(ct-pdev[ll,l,PN_P); liE Printer *1
ct_init(ct_pdev[2J,2,PN_M), 1* Modem *1
ct_init(ct"'pdev[3l,CT_SNF,"iElI); Itt Terminator iE/

liE Initialize the logical device table *1
ct_init(ct_ldevCOJ,O,LN_C); 1M Terminal *1
ct_init(ct_ldev[IJ,I,LN_A)' 1* Auxiliary *1
ct init(ct Idev[2J,2,LN L), 1* List *1
ct=:init<ct=:ldev[3l,CT_SNF,II*"); 1* Terminator *1

1* Initialize the Input/output table *1
ct_ini t (et_ioCOl, 0, "INPUT");
ct init(ct io[ll, 1, "OUTPUT");
ct.::)nit<c()o[2l,CT_SNF,"."); liE Terminator *1

unsigned
get Idev(pldev) liE Get logical device *1
1* This function returns the logical device code

specified by the user in the command line. *1
char *pldev; 1* Pointer to character string *1
(

unsigned retval;
ret val = ct-parc(ct_ldevrpldev);
if (retval === CT SNF) 1*

(-
printf(H\n\007Logical device "Xs" is invalid or ambiguous."r

pldev);
printf("\nLegal logical devices are I II);

ct_disps(ct_ldev); 1* Display all values *1
e)(it ();
}

return retvah
}

unsigned
get_io(pio)
char .pio,;
(

unsigned retval;

1* Get inputloutput parameter *1
1* Pointer to character string *1

1* Retuyn value *1

retva! = ct-parc(ct_iorpio); 1* Get code for ASCII string *1
if (retv.! -= CT_SNF) 1* If string not found *1

(

printf(lI\n\007Input/output direction "Xs" is invalid or ambiguous.",
pia),

printf(lI\nLegal values aye I ");

ct_disps(ct_io); 1* Display all values *1
ex!tO,
}

return retval; 1* Return code *1
}

1* Pointer to redirection word *1
/* Physical device code *1
1* Redirection value *1

set assign(ldevcroutput.argcrargv)
int -ldevcJ l-
int output; 1*
int argc; 1*
char *argv[)J 1*
{

unsigned .redir;
int pdevcJ
unsigned rd_val;

1* Set assignment (I/O redirection) *1
Logical device code */
I/O redirection code *1
count of arguments to process *1
Replica of parameter to main function */

/* Get the address of the lID redirection word.

Figure 11-11. (Continued)

Chapter II: Additional Utility Programs

This code ••su••• that vet_cba code valu••
are ordered.

Oevie••0, input L output
Device *1. input L output
Device .2. input ~ put put

The get cba code i. computed by multiplyin9 the
109ical-device code by 2 (that i •••hift left 1)
and added onto the code for Device .0. input
Then the output variable (0 • input. 1 • output)
h added on ..,

redir • get_cba(CB_CI + (ldevc « 1) + output),

441

'* Initialize redirection value *1

'ilt For output •••signment can be made to ••veral physical
devic•• , 10 this code May b. eKecuted ••veral tim.. *'

do

, .. Get code for ASCII .trin9 .. ,
, .. NOTE. the physical device para~ter••tart

with parameter .3 (ar9v[3J). However ar9c
i. a decre.sin9 count of the number of phy.ical
devic•• to b. procels.d, Therefore, aYQc + 2
cau••' the. to b. proc••••d in rever •• order
(i.e. from ri9ht to left on the command line) ..,

pdevc • ct-parc(ct-pdev,argvCargc + 2]),

if (pdevc •• CT SNF) , .. If .trin9 not found ..,
(-
prlntf("\n\007Physical device ... X.... i. invalid or aMbiguous.",
arvvCargc + 2]),
printf("\nLeval physical devic•• are I It),
ct_di.p.(ct-pdev), , .. Di.play all value...,
exiH),
)

1* Rep••t this looP for a. long a. there are
More parameters (for output onlY) w'

{

, .. Build new redirection value bY OR in9 in
a one-bit .hifted left pdevc place....,

rd val I. (1 « pdevc),
) -

) while (--ar9c ~~ output),

iltyedir • rd_val' ,.. S.t the value into the confi9. block ..,
)

show_assivn() ,.. Show current baud rate ..,
(

int rd_code, ,.. Redirection code for get_cba ..,
int ldevn, ,.. L09ical device number */
int pdevhl ,.. Phy.ical device number ..,
unsi9ned rd_val, ,.. Redirection value A/
unsi9ned Aprd_val' ,.. Pointer to the redirection value ..,
/M Note. the respective codes for acce.sinv the redireetion value.

via the get_cba (get confi9uration block addres.) f~nction are.
Device .0 con.ole input -- S
Device .0 con.ole putput -- 6
Device .1 auxiliary input -- 7
Device .i auxiliary output -- 8
Device .2 li.t input -- 9
Device .2 li.t output -- 10

Thi. function us•• this mathematical r.lationship *'
printf("'nCurrent device a.sivnments are :tI),

, .. For all get_cba code...,
for (rd_code • CB_CII rd_code <= CB_LO' rd_code++)

(

/* set pointer to redirection value */
prd_val • get_cba(rd_code),

/* Oet the input redirection value */

Figure 11-11. (Continued)

442 The CP/M Programmer's Handbook

1* This also performs byte reverlal *1

1* Display device name. The rd code is converted to ~

device number by subtract in; the first code number
from it and dividing by 2 (shift right one place).
The input/output direction is derived from the
least significant bit of the rd_code. */

printfC"\n\tXs X. is aSli9ned to - II,

ct_strclct_ldev,lrd_code - CB_CI) » I),
ct_strc(ct_io,«rd_code L OxOl) AI»);

1* For all physical devices *1
for (pdevn • 0, pdevn < 16, pdevn++)

(

1* Check if current physical device is assi9ned
by AND· ing with. I-bit shifted left pdevn tim..../

if (rd_val & (1 « pdevn» 1* II device active? *1
(1* Display physical device name *1
printf('1 Xs",ct_strc(ctydev,pdevn)),
)

chk_use(art~c) 1* Check for correct usage */
int argc, /* Argument count on commmand line */
(

if (ar9c =:=t 1)
(

printf("\nASSIGN sets the Input/Output yediyection. II),
printfl"\n\tASSION logical-device INPUT phYlical-device");
printfl"\n\tASSION logical-device OUTPUT physical-devl (phY_dev2••)"),
printf("\n\tASSION SHOW (to show cuyyent assignments)II);
PYintf("\n\nLegal logical devices aye :11);

ct_disps(ct_ldev);
printf(I'\nLegal physical devices are :");
ct_dlspslctJ>dev) ,
eK1tO,
)

Figure 11-11. (Continued)

DATE - Set the System Date
The DATE utility shown in Figure 11-12 sets the system date in the configura

tion block, along with a flag that indicates that the DATE utility has been used.
Other utility programs can use this flag as a primitive test of whether the system
date is current.

Here is an example console dialog:

P3B>date<CR>
DATE Vn 1.0 02/18/83
DATE sets the system date. Usage is :

DATE mm/dd/yy
DATE SHOW (to display current date)

P3B>date show<CR>
DATE Vn 1.0 02/18/83

Current Date is 12/18/82

P3B>date 2/23/83<CR>
DATE Vn 1.0 02/18/83

Current Date is 02/23/83

Chapter II: Additional Utility Programs

Idafina YN "\nDATE Vn 1.0 02/18/83"

Iw This utility accepts the current date from the command tail,
validates it. and set the internal system date in the BIOS.
Alternativelv, it can be requested just to display the current
Iystem date. *1

linclude <LIBRARY.H>

443

eha... wd.tef
char .date_flall'
tnt mm,dd. yy,
int mcount,
int count,

Iw Pointer to the date in the confill. block wi
Iw Pointer to date-set flail wi'* Variable' to hold month, day, year */
/* Match count of numeric value. entered *1'* Count used to add l ••ding 0'. to date *1

main(ar9c,ar9V)
int arQc,
cha... .arvv[],
(

printf(YN), Iw Display sllln-on mes.alla wi
date - lIet_cba(CB_DATE)1 Iw Set pointer to date wi
date_flail - "et_cba(CB_DTFLAGS) ,/W Set pointer to date-set flail wi

if (arllc ,- 2)
show_use (),

IW Check if help requested (or naeded) wi
1* Display correct usag_ and exit wI

if (u•• trctnp ("SHOW I
., arvv[1]»

(

IW Check if not SHOW option wi

1M Convert specified ti.8 into month, day, y.a... *1
mcount = ••canf(arvv[ll,"Xd/Xd/Xd",&rnm,&dd,Lyy),
if (mcount != 3) /* Input not num.ric *1

show_use(), 1M Display correct usag_ and exit wi

1* NOTE' The followlnll validity checkinll i •
• t~lt.tic, but could be expanded to accommodate
More context-sensitive checking. days in the ~onth,

leap years, etc. *1
if (mm> 12 II mOl < 1) IW Check valid month. day, year wi

(
printf("\nMonth - Xd is illellal.", ..)1
show_us.(). 1* Display correct usag_ and exit wI
)

if (dd > 31 I I dd < 1)
(

printf("\nDaY = Y.d i. illegal.",dd),
show_use(), I. Display co~~.et usalle and eMit *1
)

if (yy > 90 II yy < 83) IW <=-- NOTE! wi
(

printf(lI\nVear - Y.d is illegal. lI ,yy),
show_use(), 1* Display correct usage and exit wI
)

1* Convert integers back into a formatted string *1
sprintf (date, "X2d/X2d/X2d" ,m.. , dd, yy) I
date[8J - O.OAI IW Terminate with line feed wi
date[9l - '\0', 1* New string terminator *1

/* Change II 11 2/ 3" into 1101/02/03 11 *1
for (count - 0, count < 7, count+=3>

I
if (date[countl == ' ')

date[countl • '0',

1* Turn flag on to indicate that user has set date *1
wdate_flall 1= DATE_SET;
)

printf("\n\tCurrent Date is Xs",date),
}

show u,e() 1* Display correct usag_ and exit */
(-
printf(lI\nDATE set, the system date. U,.ge 1, I">'
printf ("\n\tDATE mm/dd/YY");
printf("\n\tDATE SHOW (to display currant datenn"),
e.itO,
}

Figure 11·12. DATE.C, a utility that makes the current date part of the system

444 The CP/M Programmer's Handbook

TIME - Set the System Time

The TIME utility shown in Figure 11-13 sets the current system time. Like
DATE, TIME sets a flag so that other utilities can test that the system time is likely
to be current.

Here is an example console dialog:

P3B>time<CR>
TIME Vn 1.0 02/18/83
TIME sets the sYstem time. Usage is I

TIME hh£:mm£:ss}}
TIME SHOW (to display ~urrent time)

P3B>time show<CR>
TIME Vn 1.0 02/18/83

Current Time is 13:08:44

P3B>time 5:47<CR>
TIME-vn-l.0 02/18/83

Current Time is 05:47:00

Idefine VN "'nTIME Vn 1.0 02/18/83"

1* This utility accept. the current time fyom the command tail,
validate. it. and .et. the internal .y.tem time in the BIOS.
Alternatively, it can Just display the current system time. *1

linclude (LIBRARY.H>

main(lIr9C,argv)
tnt arge;
chay ••r9v[],
(

printfIVN), 1* Di.play
tim.. = ~et_cbaICB_TII'IEA)1 1*
tim.._fla~ - ~.. t_cbaICB_DTFLAGS)1

char *tlme,
char tift ime_set r
tnt hh,mm, •• ,
tnt fRcount,
tnt count,

hh = mm = SI • 0,

if lar~c ,- 2)
show_use () ,

1* Pointer to the time in the confi~. block *1
1* Pointer to the time .et fla~ *1
1* Variable. to hold hourl ••tnut •• , seconds ttl'tt Match count of numeric valu•• entered *''tt Count used to add leading zerol to time *1

sign-on •••••g. ttl
Set pointer to time *'

1* Set pointer t,a the
time-.et fla~ *1

1* Initialize the time if .econd. or
minut•• are not specified ttl

1M Check if help reque.ted (or needed) *1
1M Di.play correct u.~~e and eMit *1

if (u.strcmp("SHOWII.ar~v[ll»

(
1* Check if not SHOW option *1

1* Convert time into hours. minute., .econds *1
..count ••sc..nf (argv[13, "Xd: Xdl Xd ll

• Lhh. "mm.....),
if (!mcount) 1* Input not numeric *1

show_use(), 1* Display correct usa~e and eMit *1

if (hh > 12) 1* Check valid hours, minut•• , .econds *1
(

printfl"'n\OO7Hour. - Xd i. ille~al.".hh)1

show u.e(), 1* Display correct u.a~. and eKit *1
} -

Figure 11·13. TIME.C, a utility that makes the current time part of the system

Chapter 11: Additional Utility Programs

if (mm > 159)
(

printf(t'\n\007Minut••• XcI ts illega.I.I',IRm),
show_use(), '* Display correct usage and exit wI
)

if (n > 159)
(

show_use(), 'M Display correct usa.ge and exit *1
printf("\n\007Seconds = Y.d is illec;al.tI,ss);
)

'* Convert inte98rl back into formatted string w,
sprintf(time,"X2dlX2dIX2d",hh,mm,ss);
tlmeISl = O.OA, /w Terminate with line feed w/
timet9J = ~\O'; 1* New string terminator *1

1* Convert .. 1: 21 3" into "01,02.03 11 *'
for (count • 0, count < 7, count+=3)

(

if <tiMtcountJ •• ' ')
time[countJ = '0',

)

1M Turn bit on to indicate that the time has been set *1
wtl.._fla~ 1= TIME_SET'
)

prlntf("\n\tCurrent Ti.e is It..... tl..),
)

Ihow_use() 1M Display correct U••g8 and exit */
(

printf(lI\nTIf1E ••tl the .ylt.... time. Ula98 11 I")'
prlntf("\n\tTlME hh(,mm(, ••))"),
prlntf ("\n\tTIME SHOW <to display current time)\n"),
exiH),
)

445

Figure 11-13. TIME.C, a utility that makes the current time part of the system (continued)

FUNKEY - Set the Function Keys

The FUNKEY utility shown in Figure 11-14 sets the character strings asso
ciated with specific function keys. In the specified character string, the character
"<" is converted into a LINE FEED character. Here is an example console dialog:

P3B>funl>ll~GB.~
FUNKEY sets a specific function key string.

FUNKEY key-number "string to be programmed<"
(Note ~<' is changed to line feed.)
(key-number is from 0 to 17.)
(string can be up to 16 chars.)

FUNKEY SHOW (displays settings for all keys)

P3B>funkey show<CR>
FUNKEY Vn 1.0 02/18/83

Key #0 ~Function Key 1<~

Key #1 = ~Function Key 2<'

P3B>funkey ibow<CR>
FUNKEY Vn 1.0 02/18/83

Key #0 ~PIP BI=A;*.*[V]<~

Key #1 = ~Function Key 2<~

446 The CP/M Programmer's Handbook

IIdeflne VN "\nFUNKEY Vn 1.0 02/18/83"

'Include <LIBRARY.H>

int fnuln,
char fstring[20l;
struct _fkt *pfk,

main(arQc.argv)
i nt aygc;
char .argv[);
(

if (argc == 1 I I aygc > 3)
show_use(),

1* Function key number to be programmed *1
Iw String for function key *1
1* Pointer to function key table wI

pfk = get_cba(CB_FKT), 1* Set pointer to function key table *1

if (usstrcmp("SHOW",argv[ll»
(

If (!lsdlglt(argv[I][O]»
(

pyintf("\n\007"y's'" is an illegal function key.",
anave 1) I

show_use ();
}

fnum = atoi(argv[l]), 1* Convert function key number wi

If (fnurn > FK_ENTRIES)
(

pr int f ("\n\007Funct ion keY number Y.d too large. II, fnum);
show_use (),
}

If (get_fs(fstrlng) > FK_LENOTH)
(

printf("\n\007Function keY string is too 10n9. 1I),

show_use 0 ;
)

pfk += fnum, 1* Update pointer to string wI
1* COpy string into function key table wi

el.e

1* Check if function key input present *1
If (I(pfk -> fk_Input[O]»

(

printf("\n\007Error I Function Key *%d 11 not set up to be provrammifd.",fnum).
show_use 0 ,
)

strcpy(pfk -> fk_output,fstrln9)'
)

1* SHOW function specified *1
(

prlntf (VN),
show _f un () J

1

g et _fs(strlng)
char string[J;
{

t:har _tai l'
short tcount,
int slen;

tall = Ox80,
tcount = *tal1++;
slen = 0,

whl Ie (tcount --)
(

if (*tail++
break;

1* Display sig~on message *1

1* Get function string from command tail *1
1* Pointer to character string *1

1* Pointer to command tail *1
1* Count of TOTAL character. in command tail *1
1* String length *1

1* Command line is in memory at 0080H *1
1* Set TOTAL count of characters in command tail *1
1* Initialize string length *1

1* For all characters in the command tail *1

... 11 ...) 1* Scan for first quotes *1

Figure 11-14. FUNKEY.C, a utility that sets the character strings associated with
specific function keys

Chapter 11: Additional Utility Programs

)

if (Itcount) IN No quotes found NI
[

protnt f ("\n\007No l ••dine; quot•• found. Jl),

show_u•• (),
)

++tcount, IN Adjust tail count NI
whi1e(tcount--) IN For all reMainin9 characters in tail NI

[
if (Ntai1 •••)

[

.trin9Cslen] • ~\O', 1* Add tar.in.tor *1
break, IN Exit froM loop NI
)

.trinvtslen] • *tail++, 1* Move char. from tail into strinca *'
if <stringCslenJ •• '(')

strin9[slen] • OxOA'
++Il.n,
)

if (Itcount) 1* No terminatin9 quotes found NI
[
prlntf(lI\n\007No trailing quote. found. II),

show_use 0 ,
)

return slen, 1* Return strine; length *1
)

447

show_fun 0
[

struct _fkt *pfkt,
int count;
char *If,

1* Display settin9' for all function keys *1

1* Local pointer to function keys *1
1* Count to access function keys w'
1M Pointer to "<" character (LINE FEED) *1

pfkt • get_cba(CB_FKT), IN Set pointer to funstion key table NI
for (count = 0; count (= FK_ENTRIES, count++)

[

if (pfkt -) fk input[O]) 1* Key is pro9rammed NI
[-

1* Check if at physical end of table *1
if (pfkt -) fk_input == OxFF)

break; 1* Ve. -- break out of for loop 'AI
strcpy(fstrin9.pfkt -) fk output),

/'If Convert all OKOA chars to 11<" *1
while (If = 5trs<:n(f5trin9,1I\012"»

[
*If = .. <.. ,
)

++pfkt;
)

printf(lI\n\tKey IXd = .. Xs ,count,fstring);
)

1* Move to next entry *1

Ihow_use()
[

prtntf("\nFUNKEY .ets .. specific function keY string. II);
printf(lf\n\tFUNKEY keY-numbe... \0425trin9 to be programmed(\042 II);
prtntf(lI\n\t (Not. J .. <.. is changed to line feed.)II);
printf(lI\n\t (key-number is from 0 to Xd.)II,

FK_ENTRIES-1) ,
printf("\n\t string can be UP to Xd chars.)Il,

FK_LENGTH) ,
printf("\n\tFUNKEY SHOW (displays settings for all keys)"),
eMitO,
)

Figure 11-14. (Continued)

448 The CP/M Programmer's Handbook

Other Utilities

Because of space limitations, not all of the possible utility programs for the
BIOS features can be shown in this chapter. Others that would need to be
developed in order to have a complete set are

PUBLIC/PRIVATE
This pair of utilities would turn the public files flag on or off, making the
files in user 0 available from other user numbers or not, respectively.

SETTERM
This program would program the CONOUT escape table, setting the
various escape sequences as required. It could also program the characters
in the function key table that match with those emitted by the terminal
currently in use.

SAVESYS
This utility would save the current settings in the long term configuration
block.

LOADSYS
This would load the long term configuration block from a previously saved
image.

DO
This utility would copy the command tail into the multi-command buffer,
changing "\" into LINE FEED, and then set the forced input pointer to the
multi-command buffer. As a result, characters from the multi-command
buffer would be fed into the console input stream as though they had been
typed one command at a time.

SPARE
This utility would work in conjunction with the hard-disk bad-sector
management in your disk drivers. It would spare out bad sectors or tracks
on the hard disk. This done, all subsequent references to the sectors or
tracks would be redirected to a different part of the disk.

Error Messages Displayed
Miscellaneous Errors

Error Messages

This chapter lists the error messages that emanate from standard CP/M and its
utility programs. It does not include any error messages from the BIOS; these
messages, if any, are the individualized product of the programmers who wrote
the various versions of the BIOS.

The error messages are shown in alphabetical order, followed (in parentheses)
by the name of the program or CP/M component outputting the message. Mes
sages are shown in uppercase even if the actual message you will see contains
lowercase letters. Additional characters that are displayed to "pretty up" the
message have been omitted. For example, the message "** ABORTED **" will be
listed as "ABORTED".

Following each message is an explanation and, where possible, some informa
tion to help you deal with the error.

The last section of the chapter deals with known errors or peculiarities in
CP/M and its utilities. Read this section so that you will recognize these problems
when they occur.

449

450 The CP/M Programmer's Handbook

I Error Messages Displayed

? (CCP)

The CCP displays a question mark if you enter a command name and there is
no corresponding "command.COM" file on the disk.

It is also displayed if you omit the number of pages required as a parameter in
the SAVE command.

? (DDT)

DDT outputs a question mark under several circumstances. You must use
context (and some guesswork) to determine what has gone wrong. Here are some
specific causes of problems:

DDT cannot find the file that you have asked it to load into memory. Exit
from DDT and investigate using DIR or STAT (the file may be set to System
status and therefore invisible with DIR).

There is a problem with the data in the HEX file that you have asked DDT to
load. The problem could be a bad check-sum on a given line or an invalid
field somewhere in the record. Try typing the HEX file out on a console, or
use an editor to examine it. It is rare to have only one or two bad bits or bytes
in a HEX file; large amounts of the file are more likely to have been
corrupted. Therefore, you may be able to spot the trouble fairly readily. If
you have the source code for the program, reassemble it to produce another
copy of the HEX file. Ifyou do not have the source code, there is no reliable
way around this problem unless you are prepared to hand-create the HEX
file-a difficult and tedious task.

DDT does not recognize the instruction you have entered when using the "A"
(assemble) command to convert a source code instruction into hexadecimal.
Check the line that you entered. DDT does not like tabs in the line (although
it appears to accept them) or hexadecimal numbers followed by "H". Check
that the mnemonic and operands are valid, too.

??= (DDT)

This cryptic notation is used by DDT when you are using the "L" (list
disassembled) command to display some part of memory in DDT's primitive
assembly language form. DDT cannot translate all of the 256 possible values of a
byte. Some of them are not used in the 8080 instruction set. When DDT encoun
ters an untranslatable value, it displays this message as the instruction code,
followed by the actual value of the byte in hexadecimal.

You will see this if you try to disassemble code written for the Z80 CPU, which

Chapter 12: Error Messages 451

uses unassigned 8080 instructions. You will also see it if you try to disassemble
bytes that contain ASCII text strings rather than 8080 instructions.

ABORTED (STAT)
If you enter any keyboard character while STAT is working its way down the

file directory setting files to $DIR (Directory), $SYS (System), $R/ W (Read/
Write), or $R/ 0 (Read-Only) status, then it will display this message, stop what it
is doing, and execute a warm boot.

By contrast, if you enter the command

A>!itat *.*<cr>

to display all of the files on a disk, there is no way that the process can be aborted.

ABORTED (PIP)
This message is displayed if you press any keyboard character while PIP is

copying a file to the list device.

BAD DELIMITER (STAT)

Ifyour BIOS uses the normal IOBYTE method ofassigning physical devices to
logical devices, you use STAT to perform the assignment. The command has this
format:

STAT RDR:=PTR:

STAT displays this message if it cannot find the "=" in the correct place.

BAD LOAD (CCP)

This is probably the most obscure error message that emanates from CP/M.
You will get this message if you attempt to load a COM file that is larger than the
transient program area. Your only recourse is to build a CP/M system that has a
larger TPA.

BAD PARAMETER (PIP)

PIP accepts certain parameters in square brackets at the end of the command
line. This message is displayed if you enter an invalid parameter or an illegal
numeric value following a parameter letter.

BOOS ERROR ON d: BAD SECTOR (BOOS)

The BDOS displays this message if the READ and WRITE functions in your
BIOS ever return indicating an error. The only safe response to this message is to
type CONTROL-Co CP/M will then execute a warm boot. If you type CARRIAGE

RETURN, the error will be ignored-with unpredictable results.

452 The CP/M Programmer's Handbook

A well-implemented BIOS should include disk error recovery and control so
that the error will never be communicated to the BOOS. If the BIOS gives you the
option of ignoring an error, do so only when you are reasonably sure of the
outcome or have adequate backup copies so that you can recreate your files.

BOOS ERROR ON d: FILE RiO (BOOS)

You will see this message if you attempt to erase (ERA) a filethat has been set
to Read-Only status. Typing any character on the keyboard causes the BOOS to
perform a warm boot operation. Note that the BOOS does not tell you which file is
creating the problem. This can be a problem when you use ambiguous file names in
the ERA command. Use the STAT command to display all the files on the disk; it
will tell you which files are Read-Only.

This message is also displayed if a program tries to delete a Read-Only file.
Again, it can be difficult to determine which file is causing the problem. Your only
recourse is to use STAT to try to infer which of the Read-Only files might be
causing the problems.

BOOS ERROR ON d: RiO (BOOS)

This looks similar to the previous message, but it refers to an entire logical disk
instead ofa Read-Only file. However, it is rarely output because you have declared
a disk to be Read-Only. Usually, it occurs because you changed diskettes without
typing a CONTROL-C; CP/M will detect the new diskette and, without any external
indication, will set the disk to Read-Only status.

If you or a program attempts to write any data to the disk, the attempt will be
trapped by the BOOS and this message displayed. Typing any character on the
keyboard causes a warm boot-then you can proceed.

BOOS ERROR ON d: SELECT (BOOS)
The BOOS displays this message if you or a program attempts to select a

logical disk for which the BIOS lacks the necessary tables. The BOOS uses the
value returned by SELOSK to determine whether a logical disk "exists" or not.

If you were trying to change the default disk to a nonexistent one, you will have
to press the RESET button on your computer. There is no way out of this error.

However, if you were trying to execute a command that accessed the nonexis
tent disk, then you can type a CONTROL-C and CP/M will perform a warm boot.

BREAK X AT Y (ED)
This is another cryptic message whose meaning you cannot guess. The list that

follows explains the possible values of "x." The value "y" refers to the command
EO was executing when the error occurred.

Chapter 12: Error Messages 453

x Meaning

Search failure. ED did not find the string you asked it to search for.
? Unrecognized command.
o File not found.
> ED's internal buffer is full.
E Command aborted.
F Disk or directory full. You will have to determine which is causing the problem.

CANNOT CLOSE. READ/ONLY? (SUBMIT)
SUBMIT displays this message if the disk on which it is trying to write its

output file, "$$$.SUB", is physically write protected. Do not confuse this with the
disk being logically write protected.

The standard version of SUBMIT writes the output file onto the current
default disk, so if your current default disk is other than drive A:, you may be able
to avoid this problem if you switch the default to A: and then enter a command of
the form

A>submit blsubfile<cr>

CANNOT CLOSE DESTINATION FILE (PIP)

PIP displays this message if the destination disk is physically write protected.
Check the destination disk. If it is write protected, remove the protection and
repeat the operation.

If the disk is not protected, you have a hardware problem. The directory data
written to the disk is being written to the wrong place, even the wrong disk, or is
not being recorded on the medium.

CANNOT CLOSE FILES (ASM)
ASM displays this message if it cannot close its output files because the disk is

physically write protected, or if there is a hardware problem that prevents data
being written to the disk. See the paragraph above.

CANNOT READ (PIP)
PIP displays this message if you attempt to read information from a logical

device that can only output. For example:

A>~ ~iskfile=LSTI<cr>

PIP also will display this message if you confuse it sufficiently, as with the
following instruction:

A>~ filel=file2;file3<cr>

454 The CP/M Programmer's Handbook

CANNOT WRITE (PIP)

PIP displays this message if you attempt to output (write) information to a
logical device that can only be used for input, such as the RDR: (reader, the
anachronistic name for the auxiliary input device).

CHECKSUM ERROR (LOAD)

LOAD displays this message if it encounters a line in the input HEX file that
does not have the correct check sum for the data on the line.

LOAD also displays information helpful in pinpointing the problem:

CHECKSUM ERROR
LOAD ADDRESS 0110 <- First address on line in file
ERROR ADDRESS 0112 <- Address of next byte to be loaded
BYTES READ:
0110:
0110: 00 33 22 2B 02 21 27 02 <- Bytes preceding error

Note that LOAD does not display the check-sum value itself. Use TYPE or an
editor to inspect the HEX file in order to see exactly what has gone wrong.

CHECKSUM ERROR (PIP)

If you ask PIP to copy a file of type HEX, it will check each line in the file,
making sure that the line's check sum is valid. If it is not, PIP will display this
message. Unfortunately, PIP does not tell you which line is in error-you must
determine this by inspection or recreate the HEX file and try again.

COMMAND BUFFER OVERFLOW (SUBMIT)
SUBMIT displays this message if the SUB file you specified is too large to be

processed. SUBMIT's internal buffer is only 2048 bytes. You must reduce the size
of the SUB file; remove any comment lines, or split it into two files with the last line
of the first file submitting the second to give a nested SUBMIT file.

COMMAND TOO LONG (SUBMIT)
The longest command line that SUBMIT can process is 125 characters. There

is no way around this error other than reducing the length of the offending line.
You will have to find this line by inspection-SUBMIT does not identify the line.

One way that you can remove a few characters from a command line is to
rename the COM file you are invoking to a shorter name, or use abbreviated
names for parameters if the program will accept these.

CORRECT ERROR. TYPE RETURN OR CTL-Z (PIP)
This message is a carryover from the days when PIP used to read hexadecimal

data from a high-speed paper tape reader. IfPIP detected the end ofa physical roll

Chapter 12: Error Messages 455

of paper tape, it would display this message. The user could then check to see if the
papertape had torn or had really reached its end. If there was more tape to be read,
the user could enter a CARRIAGE RETURN to resume reading tape or enter a
CONTROL-Z to serve as the end-of-file character.

Needless to say, it is unlikely that you will see this message if you do not have a
paper tape reader.

DESTINATION IS RIO, DELETE (YIN)? (PIP)
PIP displays this message if you try to overwrite a disk file that has been set to

Read-Only status. Ifyou type "Y" or "y", PIP will overwrite the destination file. It
leaves the destination file in Read/ Write status with its Directory/System status
unchanged. Typing any character other than "Y" or "y" makes PIP abandon the
copy and display the message

** NOT DELETED**

You can avoid this message altogether if you specify the "w" option on PIP's
command line. For example:

A>eie destfile=srcfile[wJ<cr)

PIP will then overwrite Read-Only files without question.

DIRECTORY FULL (SUBMIT)

This message is displayed if the BOOS returns an error when SUBMIT tries to
create its output file, "$$$.SUB". As a rough and ready approximation, use "STAT
." to see how many files and extents you have on the disk. Erase any unwanted
ones. Then use "STAT DSK:" to find out the maximum number of directory
entries possible for the disk.

You may also see this message if the file directory has become corrupted or if
the disk formatting routine leaves the disk with the file directory full of some
pattern other than E5H.

You can assess whether the directory has been corrupted by using "STAT
USR:". STAT then displays which user numbers contain files. If the directory is
corrupt, you will normally see user numbers greater than 15.

It is not easy to repair a corrupted directory. "ERA *.*"erases only the files for
the current user number, so you will have to enter the command 16 times, once for
each user number from 0 to 15. Alternatively, you can reformat the disk.

DISK OR DIRECTORY FULL (ED)
Self-explanatory.

456 The CP/M Programmer's Handbook

DISK READ ERROR (PIP)
DISK WRITE ERROR (SUBMIT)
DISK WRITE ERROR (PIP)

These messages will normally be preceded by a BIOS error message. They will
only be displayed if the BIOS returns indicating an error. As was described earlier,
this is unlikely if the BIOS has any kind of error recovery logic.

END OF FILE, ClL-Z? (PIP)

PIP displays this message if, while copying a HEX file, it encounters a
CONTROL-Z (end of file). Again, the underlying idea is based on the concept of
physical paper tape. When you saw this message, you could look at the tape in the
reader, and if it really was at the end of the roll, enter a CONTROL-Z on the keyboard
to terminate the file. Given any other character, PIP would read 'the next piece of
tape.

ERROR: CANNOT CLOSE FILES (LOAD)

LOAD displays this message if you have physically write protected the disk on
which it is trying to write the output COM file.

ERROR: CANNOT OPEN SOURCE (LOAD)
LOAD displays this message if it cannot open the HEX file that you specified

in the command tail.

ERROR: DISK READ (LOAD)
ERROR: DISK WRITE (LOAD)

These two me~sageswould normally be preceded by a BIOS error message. If
your BIOS includes disk error recovery, you would not normally see these mes
sages; the error would have been handled by the BIOS.

ERROR: INVERTED LOAD ADDRESS (LOAD)
LOAD displays this message if it detects a load address less than OlOOH in the

input HEX file. It also displays the actual address input from the file, so you can
examine the HEX file looking for this address to determine the likely cause of the
problem.

Note that DDT, when asked to load the same HEX file, will do so without any
error-and will probably damage the contents of the base page in so doing.

ERROR: NO MORE DIRECTORY SPACE (LOAD)

Self-explanatory.

Chapter 12: Error Messages 457

ERROR ON LINE N (SUBMIT)

SUBMIT displays this message if it encounters a line in the SUB file that it does
not know how to process. Most likely you have a file that has type .SUB but does
not contain ASCII text.

The first line of the SUB file is number 001.

FILE EXISTS (CCP)

The CCP displays this message if you attempt to use the REN command to
rename an existing file to a name already given to another file.

Use "STAT •.•"to display all of the files on the disk. DIR will show only those
files that have Directory status, and you may not be able to see the file causing the
problem.

FILE IS READ/ONLY (ED)

ED displays this message if you attempt to edit a file that has been set to
Read-Only status.

FILE NOT FOUND (STAT)
FILENAME NOT FOUND (PIP)

STAT and PIP display their respective messages if you specify a nonexistent
file. This applies to both specific and ambiguous file names.

INVALID ASSIGNMENT (STAT)

STAT can be used to assign physical devices to logical devices using the
IOBYTE system described earlier. It will display this message if you enter an il
logical assignment. Use the "STAT VAL:" command to display the valid assignments.

INVALID CONTROL CHARACTER (SUBMIT)

SUBMIT is supposed to be able to handle a control character in the SUB
file-the notation being '''' x", where "x" is the control letter. In fact, the standard
release version of SUBMIT cannot handle this notation. A patch is available from
Digital Research to correct this problem.

Given that this patch has been installed, SUBMIT will display this message if a
character other than "A" to "Z" is specified after the circumflex character.

INVALID DIGIT (PIP)

PIP displays this message if it encounters non-numeric data where it expects a
numeric value.

458 The CP/M Programmer's Handbook

INVALID DISK ASSIGNMENT (STAT)

STAT displays this message if you try to set a logical disk to Read-Only status
and you specify a parameter other than "R/O." Note that there is no leading "$"in
this case (as there is when you want to set a file to Read-Only).

INVALID DRIVE NAME (USE A. B, C, OR D) (SYSGEN)

SYSGEN displays this message if you attempt to load the CP/M system from,
or write the system to, a disk drive other than A, B, C, or D.

INVALID FILE INDICATOR (STAT)

STAT outputs this message if you specify an erroneous file attribute. File
attributes can only be one of the following:

INVALID FORMAT (PIP)

$DIR
$SYS
$R/O
$R/W

Directory
System
Read-Only
Read/Write

PIP displays this message if you enter a badly formatted command; for
example, a "+" character instead of an "=" (on some terminals these are on the
same key).

INVALID HEX DIGIT (LOAD)

LOAD displays this message if it encounters a nonhexadecimal digit in the
input HEX file, where only a hex digit can appear. LOAD then displays additional
information to tell you where in the file the problem occurred:

INVALID HEX DIGIT
LOAD ADDRESS 0110 (- First address on line in file
ERROR ADDRESS 0112 (- Address of byte containing non-hex
BYTES READ:
0110:
0110: 00 33 (- Bytes preceding error

INVALID MEMORY SIZE (MOVCPM)
MOVCPM displays this message if you enter an invalid memory size for the

CP/M system size you want to construct.

INVALID SEPARATOR (PIP)

PIP displays this message if you try to concatenate files using something other
than a comma between file names.

Chapter 12: Error Messages 459

INVALID USER NUMBER (PIP)
PIP displays this message if you enter a user number outside the range 0 to 15

with the "[gn]" option (where "n" is the user number).

NO 'SUB' FILE PRESENT (SUBMIT)

SUBMIT displays this message if it cannot find a file with the file name that
you specified and with a type of .SUB.

NO DIRECTORY SPACE (ASM)
NO DIRECTORY SPACE (PIP)

Self-explanatory.

NO FILE (CCP)

The CCP displays this message if you use the REN (rename) command and it
cannot find the file you wish to rename.

NO FILE (PIP)

PIP displays this message if it cannot find the file that you specified.

NO MEMORY (ED)
ED displays this message if it runs out of memory to use for storing the text

that you are editing.

NO SOURCE FILE ON DISK (SYSGEN)
This error message is misleading. SYSGEN does not read source code files.

The message should read "INPUT FILE NOT FOUND".

NO SOURCE FILE PRESENT (ASM)
In this case, ASM really does mean that the source code file cannot be found.

Remember that ASM uses a strange form of specifying its parameters. ASM uses
the file name that you enter and then searches for a file of that name, but with file
type .ASM. The three characters of the file type that you specify are used to repre
sent the logical disks on which the source, hex, and list files, respectively, are to be
placed.

NO SPACE (CCP)
The CCP displays this message if you use the SAVE command and there is

insufficient room on the disk to accommodate the file.

460 The CP/M Programmer's Handbook

NOT A CHARACTER SOURCE (PIP)

PIP displays this message if you attempt to copy characters from a character
output device, such as the auxiliary output device (known to PIP as PUN:).

OUTPUT FILE WRITE ERROR (ASM)

ASM will display this message if the BDOS returns an error from a disk write
operation. If your BIOS has disk error recovery logic, you should never see this
message.

PARAMETER ERROR (SUBMIT)

SUBMIT uses the "$" to mark points where parameter values are to be
substituted. If you have a single "$" followed by an alphabetic character, SUBMIT
will display this message. Use "$$" to represent a real "$".

PERMANENT ERROR, TYPE RETURN TO IGNORE (SYSGEN)

SYSGEN displays this message if the BIOS returns an error from a disk read or
write operation. If your BIOS has disk error recovery logic, you should never see
this message.

QUIT NOT FOUND (PIP)

PIP displays this message when it cannot find the string specified in the
"[Qcharacter string" Z]" option, meaning "Quit copying when you encounter this
string."

READ ERROR (CCP)

The CCPdisplays this message if the BIOS returns an error from a disk read or
write operation. If your BIOS includes disk error recovery logic, you should not
see this error message.

RECORD TOO LONG (PIP)
PI P displays this message if it encounters a line longer than 80 characters while

copying a HEX file. Inspect the HEX file using the TYPE command or an editor.

REQUIRES CP/M 2.0 OR NEWER FOR OPERATION (PIP)
REQUIRES CP/M VERSION 2.0 OR LATER (XSUB)

Self-explanatory.

Chapter 12: Error Messages 461

SOURCE FILE INCOMPLETE (SYSGEN)

SYSGEN displays this message if the file that you have asked it to read is too
short. Use STAT to check the length of the file.

SOURCE FILE NAME ERROR (ASM)

ASM displays this message if you specify an ambiguous file name: that is, one
that contains either "*,, or "?".

SOURCE FILE READ ERROR (ASM)

ASM displays this message if it encounters problems reading the input source
code file. Check the input file using the TYPE command or an editor.

START NOT FOUND (PIP)

PIP displays this message when it cannot find the string specified in the
"[Scharacter string/\ Z]" option, meaning "Start copying when you encounter this
string. "

SYMBOL TABLE OVERFLOW (ASM)

ASM displays this message when you have too many symbols in the source
code file. Your only recourse is to split the source file into several pieces and
arrange for ORG (origin) statements to position the generated object code so that
the pieces fit together.

SYNCRONIZATION ERROR (MOVCPM)
Apart from the spelling error, this message is designed to be cryptic. MOVCPM

displays it when the Digital Research serial number embedded in MOVCPM does
not match the serial number in the version of CP/M that you are currently running.

SYSTEM FILE NOT ACCESSIBLE (ED)

ED displays this message if you attempt to edit a file that has been set to System
status. Use STAT to set the file to Directory status.

TOO MANY FILES (STAT)

STAT displays this message if there is insufficient memory available to sort and
display all ofthefiles on the specified disk. Try limiting the number offiles it has to
sort by judicious use of ambiguous file names.

UNRECOGNIZED DESTINATION (PIP)

PIP displays this message if you specify an "illegal" destination device.

462 The CP/M Programmer's Handbook

VERIFY ERROR (PIP)

Ifyou use the "[v]"(verify) option of PIP when copying to a disk file, PIP will
write a sector to the disk, read it back, and compare the data. PIP displays this
message if the data does not match.

If there is a problem with your disk system, you should have seen some form of
disk error message preceding this one. If there is no preceding message, then you
have a problem with the main memory on your system.

Wrong CP/M Version (Requires 2.0) (STAT)

Self-explanatory.

(XSUB ACTIVE) (XSUB)

This is not really an error message, but you may mistake it for one. XSUB is the
eXtended SUBMIT program. Without it, SUBMIT can only feed command lines
to the Console Command Processor. XSUB allows character-by-character input
into any program that uses the BOOS to read console input.

XSUB is initiated by being the first command in a SUB file. Once initiated it
stays in memory until the end of the SUB file has been reached. Until that happens,
XSUB will output this message every time a warm boot occurs as a reminder that it
is still in memory.

XSUB Already Present (XSUB)

XSUB will display this message if it is already active and you attempt to load it
again.

Miscellaneous Errors

This section deals with errors that are not accompanied by any error message.
It is included here to help you recognize a problem after it has already occurred.

The errors are shown grouped by product.

ASM: Fails to Detect Unterminated IF Clause
Ifyou use the IF pseudo-operation, it must be followed by a matching ENOIF.

AS M fails to detect the case that the end of the source file is encountered before the
ENDIF.

If the condition specified on the IF line is false, you could have a situation in
which ASM would ignore the majority of the source file without comment.

Chapter 12: Error Messages 463

ASM: Creates HEX File That cannot Be Loaded
Ifyou omit the ORG statement at the front ofa source file, AS M will assemble

the code origined at location OOOOH. This file will crash the system if you try to load
it with DDT. The message "ERROR: INVERTED ADDRESS" will be shown from
LOAD.

CP/M: Signs On and Then Dies Without A> Prompt
After the BIOS has signed on, it transfers control to the Console Command

Processor. The CCP then attempts to log in the system disk, reading the file
directory and building the allocation vector. If your file directory has been badly
corrupted, it can cause the system to crash. Use another system disk and try to
display the directory on the bad disk.

DDT: Loads HEX File and Then Crashes the System
DDT does not check the addresses specified in a HEX file. If you have

forgotten to put an ORG statement at the front of the source file, or more subtly, if
your source program has "wrapped around" by having addresses up at OFFFFH
and "above," the assembler will start assembling at OOOOH again.

DIR: Shows Odd-Looking File Names
If you have odd-looking file names, or the vertical lines of":"that DIR uses to

separate the file names are misaligned, then the file directory has been corrupted.
One strategy is to format a new disk, copy all of the valid files to it, and discard the
corrupted disk.

DIR: Shows More than One Entry with the same Name
This can happen if you use a program that creates a new file without asking the

BDOS to delete any existing files of the same name. It can also happen if you use
the custom MOVE utility carelessly.

To remedy the situation proceed as follows:

Use PIP to copy the specific file to another disk. Do not use an ambiguous
file name; specify the duplicated file name exactly. PIP will copy the first
instance of the file it encounters in the directory.

Use the ERA command to erase the duplicated file. This will erase both
copies of the file.

Use PIP to copy back the first instance of the file.

<- Change 5bb
<- from 00 (default drive)

to 01 (drive A:)

464 The CP/M Programmer's Handbook

STAT: User Numbers> 15

Ifyou use the "STAT USR:" command to display which user numbers contain
active files, and user numbers greater than 15 are displayed, then the file directory
on the disk has been corrupted.

Use PI P to copy the valid files from legitimate user numbers, and then discard
the corrupted disk.

SUBMIT: Fails to Start Submit Procedure
There are several reasons why SUBMIT will not initiate a SUB file:

You are using the standard release version of SUBMIT and your current
default disk is other than drive A:. SUBMIT builds its "$$$.SUB"file on the
default disk, but the CCP only looks on drive A: for "$$$.SUB". Use the
following procedure to modify SUBMIT to build its "$$$.SUB"file on drive
A:

A>DDT. $IJBMIL..£91!.5..~_t:.L

DDT VERS 2.2
NEXT PC
0600 0100
-s5bb
05BB 01 Q.9<cr>
05BC 245£.r>
_AC
A>SAVE 5 SUBMIT.COM<cr>
A>-- -

If you forgot to terminate the last line of the SUB file with a CARRIAGE

RETURN.

If your SUB file contains a line with nothing but a CARRIAGE RETURN on it
(that is, a blank line).

ASCII Character 5 t
The American Standard Code for Information Interc ange (ASCII) consists

of a set of 96 displayable characters and 32 nondisplayed haracters. Most CP/M
systems use at least a subset of the ASCII character set. When CP/M stores
characters on a diskette as text, the ASCII definitions are used.

Several of the CP/M utility programs use the ASCII Character Code. Text
created using ED is stored as ASCII characters on diskette. DDT, when displaying
a "dump" of the contents of memory, displays both the hexadecimal and ASCII
representations of memory's contents.

ASCII does not use an entire byte of information to represent a character.
ASCII is a seven-bit code, and the eighth bit is often used for parity. Parity is an
error-checking method which assures that the character received is the one trans
mitted. Many microcomputers and microcomputer devices ignore the parity bit,
while others require one of the following two forms of parity:

Even Parity
The number of binary 1's in a byte is always an even number. If there is an
odd number of 1's in the character, the parity bit will be a 1; if there is an
even number of 1's in the character, the parity bit is made a O.

Odd Parity
The number of binary 1's in a byte is always an odd number. If there is an

465

466 The CP/M Programmer's Handbook

even number of 1's in the character, the parity bit will be a 1; if there is an
odd number of l's in the character, the parity bit is made a O.

Alternative ways of coding the information stored by the computer include the
8-bit EBCDIC (Extended Binary Coded Decimal Interchange Code), used by
IBM, and a number of packed binary schemes, primarily used to represent
numerical information.

Table A-i. ASCII Character Codes

b7- 0 0 0 0 I I I I
b6- 0 0 I I 0 0 I I
b5- 0 I 0 I 0 I 0 I

b4 b3 bI bl~ 0 I 1 3 4 5 6 7Row

0 0 0 0 0 NUL DLE SP 0 @ P
,

P
0 0 0 I I SOH DCI ! I A Q a q
0 0 I 0 2 STX DC2 " 2 B R b r
0 0 I I 3 ETX DC3 # 3 C S c s
0 I 0 0 4 EOT DC4 $ 4 D T d t
0 I 0 I 5 ENQ NAK % 5 E U e u
0 I I 0 6 ACK SYN & 6 F V f v
0 I I I 7 BEL ETB

,
7 G W g w

I 0 0 0 8 BS CAN (8 H X h x
I 0 0 I 9 HT EM) 9 I Y i y
I 0 I 0 10 LF SUB • J Z j z
I 0 I I II VT ESC + , K [k {
I I 0 0 12 FF FS

, < L \ I I
I I 0 I 13 CR GS - - M] m }-
I I I 0 14 SO RS > N 1\ n -
I I I I 15 SI US / ? 0 - 0 DEL

NUL Null DCI Device control I
SOH Start of heading DC2 Device control 2
STX Start of text DC3 Device control 3
ETX End of text DC4 Device control 4
EOT End of transmission NAK Negative acknowledge
ENQ Enquiry SYN Synchronous idle
ACK Acknowledge ETB End of transmission block
BEL Bell or alarm CAN Cancel
BS Backspace EM End of medium
HT Horizontal tabulation SUB Substitute
LF Line feed ESC Escape
VT Vertical tabulation FS File separator
FF Form feed OS Group separator
CR Carriage return RS Record separator
SO Shift out US Unit separator
SI Shift in SP Space
DLE Data link escape DEL Delete

Appendix A: ASCII Character Set 467
Table A·2. ASCII Character Codes in Ascending Order

Hexadecimal Binary ASCII Hexadecimal Binary ASCII

00 0000000 NUL 30 Oil 0000 0
01 0000001 SOH 31 Oil 0001 I
02 0000010 STX 32 0110010 2
03 0000011 ETX 33 Oil 0011 3
04 0000100 EOT 34 0110100 4
05 0000101 ENQ 35 0110101 5
06 000 OlIO ACK 36 01l011O 6
07 000 Oil I BEL 37 Oil 0111 7
08 0001000 BS 38 Oil 1000 8
09 0001001 HT 39 Oil 1001 9
OA 0001010 LF 3A Oil 1010
OB 000 lOll VT 3B Oil lOll ;
OC 000 1100 FF 3C Oil 1100 <
OD 0001101 CR 3D Oil 1101 =
OE 000 lllO SO 3E Oil 1110 >
OF 0001111 SI 3F Ollllil ?

10 0010000 DLE 40 1000000
II 0010001 DCI 41 1000001 A
12 001 0010 DC2 42 1000010 B
13 0010011 DC3 43 1000011 C
14 001 0100 DC4 44 1000100 D
15 0010101 NAK 45 1000101 E
16 001 OlIO SYN 46 100 OlIO F
17 0010111 ETB 47 1000111 0
18 001 1000 CAN 48 1001000 H
19 001 1001 EM 49 1001001 I
IA 001 1010 SUB 4A 1001010 J
IB 001 lOll ESC 4B 100 lOll K
IC 001 1100 FS 4C 1001100 L
lD 001 1101 OS 4D 100 1101 M
IE 001 lllO RS 4E 1001110 N
IF 0011111 US 4F 1001111 0

20 010 0000 SP 50 1010000 P
21 010 0001 ! 51 1010001 Q
22 0100010 .. 52 1010010 R
23 010 0011 # 53 101 0011 S
24 010 0100 $ 54 1010100 T
25 010 0101 % 55 1010101 U
26 010 OlIO & 56 101 OlIO V
27 01001l1 , 57 1OI0Ill W
28 010 1000 (58 101 1000 X
29 010 1001) 59 101 1001 Y
2A 010 1010 • SA 101 1010 Z
2B 010 lOll + 5B 101 lOll [
2C 010 1100 , 5C 101 1100 \
2D 010 1101 - 5D 101 1101]
2E 010 1110 5E 101 1110 A

2F 010 1111 / 5F 101 1111 -

468 The CP/M Programmer's Handbook

Table A-2. ASCII Character Codes in Ascending Order (Continued)

Hexadecimal Binary ASCII Hexadecimal Binary ASCII

60 110 0000 70 1110000 P
61 110 0001 a 71 1110001 q
6, 1100010 b 72 1110010 r
63 110 0011 c 73 1110011 s
64 110 0100 d 74 1110100 t
65 1100101 e 75 111 0101 u
66 1100110 f 76 1110110 v
67 110 0111 g 77 1110111 w
68 110 1000 h 78 111 1000 x
69 1101001 i 79 111 1001 y
6A 110 1010 j 7A 111 1010 z
6B 110 1011 k 7B 111 1011 {
6C 110 1100 1 7C 1111100 I
6D 110 1101 m 7D 111 1101 }
6E 110 1110 n 7E 111 1110 -
6F 110 1111 0 7F III 1111 DEL

CP/M Command
Summary

This appendix summarizes the command line format and the function of
each CP/M built-in and transient command. The commands are listed in
alphabetical order.

ASM Command Lines

ASM filename<cr> Assembles the file filename.ASM; uses the currently logged disk for
all files.

ASM fllename.opt<cr> Assembles the file filename.ASM on drive 0: (A:,B:,... ,P:).
Writes HEX file on drive p: (A:,B:, ... ,P:), or skips if p: is Z:.

Writes PRN file on drive t: (A:,B:, ... ,P:), sends to console if p: is X:, or
skips if p: is Z:.

469

470 The CP/M Programmer's Handbook

DDT Command Lines

DDT<cr> Loads DDT and waits for DDT commands.

DDT x.1I1ename.typ<cr> Loads DDT into memory and also loads filename.typ from
drive x: into memory for examination, modification, or execution.

DDT Command Summary

Assss

o

Dssss,ffff

Fssss,ffff,CC

G

G,bbbb

Enters assembly language statements beginning at hexadecimal address ssss.

Displays the contents of the next 192 bytes of memory.

Displays the contents of memory starting at hexadecimal address ssss and
finishing at hexadecimal address ffff.

Fills memory with the 8-bit hexadecimal constant cc starting at hexadecimal
address ssss and finishing with hexadecimal address ffff.

Begins execution at the address contained in the program counter.

Sets a breakpoint at hexadecimal address bbbb, then begins execution at the
address contained in the program counter.

G,bbbb,cccc Sets breakpoints at hexadecimal addresses bbbb and ecce, then begins
execution at the address contained in the program counter.

Gssss Begins execution at hexadecimal address ssss.

Gssss,bbbb Sets a breakpoint at hexadecimal address bbbb, then begins execution at
hexadecimal address ssss.

Hx,y Hexadecimal sum and difference of x and y.

Ifilename.typ Sets up the default file control block using the name filename.typ.

L Lists the next eleven lines of assembly language program disassembled from
memory.

Lssss Lists eleven lines of assembly language program disassembled from memory
starting at hexadecimal address ssss.

Lssss,ffff Lists the assembly language program disassembled from memory starting at
hexadecimal address ssss and finishing at hexadecimal address ffff.

Appendix B: CP/M Command Summary 471

Mssss,ffff,dddd Moves the contents of the memory block starting at hexadecimal address
ssss and ending at hexadecimal address ffff to the block of memory starting at
hexadecimal address dddd.

R

Rnnnn

Sssss

Tnnnn

Unnnn

x
Xr

Reads a file from disk into memory (use "I" command first).

Reads a file from disk into memory beginning at the hexadecimal address
nnnn higher than normal (use "I" command first).

Displays the contents of memory at hexadecimal address ssss and optionally
changes the contents.

Traces the execution of (hexadecimal) nnnn program instructions.

Executes (hexadecimal) nnnn program instructions, then stops and displays
the CPU register's contents.

Displays the CPU register's contents.

Displays the contents of CPU or Flag r and optionally changes them.

DIR Command Lines

OIR x:<cr> Displays directory of all files on drive x:. Drive x: is optional; if omitted, the
currently logged drive is used.

OIR x:filename.typ<cr> Displays directory ofall files on drive x: whose names match the
ambiguous or unambiguous filename. typo Drive x: is optional; if omitted, the
currently logged drive is used.

DUMP Command Line

DUMP x:filename.typ <cr> Displays the hexadecimal representations ofeach byte stored
in the file filename.typ on drive x:. Iffilename.typ is ambiguous, displays the
first file which matches the ambiguous file name.

ED Command Line

ED x:filename.typ <cr> Invokes the editor, which then searches for filename.typ on drive
x: and creates a temporary file x:filename.$$$ to store the edited text. The
filename.typ is unambiguous. Drive x: is optional; if omitted, the currently
logged drive is assumed.

ED Command Summary
NOTE: Non-alphabetic commands follow the "z" command.

472 The CP/M Programmer's Handbook

nA Append lines. Moves "n" lines from original file to edit buffer. OA moves lines
until edit buffer is at least half full.

+/-8 Begin/Bottom. Moves CPo

+B moves CP to beginning of edit buffer
- B moves CP to end of edit buffer.

+/-nC Move by characters. Moves CP by "n" character positions.

+ moves forward
- moves backward.

+/-nO Delete characters. Deletes "n" characters before or after the CP in the edit
buffer.

+ deletes before the CP
- deletes after the CPo

E End. Ends edit, closes files, and returns to CP/M; normal end.

nFstrlng"Z Find string. Finds the "n"th occurrence of string, beginning the search after
the CPo

H Move to head of edited file. Ends edit, renames files, and then edits former
temporary file.

I<cr> Enter insert mode. Text from keyboard goes into edit buffer after the CP; exit
with CONTROL-Z.

Istring"Z Insert string. Inserts string in edit buffer after the CPo

Isfrlng<cr> Insert line. Inserts string and CRLF in the edit buffer after the CPo

nJflndsfring"Zlnsertstrlng"Zendstrlng"Z Juxtaposition. Beginning after the CP, finds
findstring, inserts insertstring after it, then deletes all following characters up
to but not including endstring; repeats until performed "n" times.

+/-nK

+/-nL

Kill lines. Deletes "n" lines.

+ deletes after the CP
- deletes before the CPo

Move by lines. Moves the CP to the beginning of the line it is in, then moves
the CP "n" lines forward or backward.

+ moves forward
- moves backward.

nMcommandstrlng"Z Macro command. Repeats execution of the ED commands in

Appendix B: CP/M Command Summary 473

commandstring "n" times. "n"= 0, "n"= 1, Or "n" absent repeats execution
until error occurs.

nNstrlng"Z

o

+/-nP

Q

R<cr>

Find string with autoscan. Finds the "n"th occurrence of string, automatically
appending from original file and writing to temporary file as necessary.

Return to original file. Empties edit buffer, empties temporary file, returns to
beginning of original file, ignores previous ED commands.

Move CP and print pages. Moves the CP forward or backward one page, then
displays the page following the CPo "nP" displays "n" pages, pausing after
each.

Quit edit. Erases temporary file and block move file, if any, and returns to
CP/M; original file is not changed.

Read block move file. Copies the entire block move file X$$$$$$$.LIB from
disk and inserts it in the edit buffer after the CPo

Rfllename<cr> Read library file. Copies the entire file filename with extension LIB from
the disk and inserts it in the edit buffer after the CPo

nSflndstrlng"Zreplacestrlng"Z Substitute string. Starting at the CP, repeats "n" times:
finds findstring and replaces it with replacestring.

+/-nT

+/-u

ov

+/-v

Type lines. Displays "n" lines.
+ displays the "n" lines after the CP
- displays the "n" lines before the CPo

If the CP is not at the beginning of a line
OT displays from the beginning of the line to the CP
T displays from the CP to the end of the line
OTT displays the entire line without moving the CPo

Uppercase translation. After +U command, alphabetic input to the edit
buffer is translated from lowercase to uppercase; after - U, no translation
occurs.

Edit buffer free space/size. Displays the decimal number of free (empty) bytes
in the edit buffer and the total size of the edit buffer.

Verify line numbers. After +V, a line number is displayed with each line
displayed; ED's prompt is then preceded by the number of the line containing
the CPo After - V, line numbers are not displayed, and ED's prompt is "*".

474 The CP/M Programmer's Handbook

nW

nX

nZ

n:

:m

+/-n

Write lines. Writes first "n" lines from the edit buffer to the temporary file;
deletes these lines from the edit buffer.

Block transfer (Xfer). Copies the "n" lines following the CP from the edit
buffer to the temporary block move file X$$$$$$$.LIB; adds to previous
contents of that file.

Sleep. Delays execution of the command which follows it. Larger "n" gives
longer delay, smaller "n" gives shorter delay.

Move CP to line number "n." Moves the CP to the beginning of the line
number "n" (see "+ /-V'').

Continue through line number "m." A command prefix which gives the
ending point for the command which follows it. The beginning point is the
location of the CP (see "+ /- V'').

Move and display one line. Abbreviated form of+/-nLT.

ERA Command Lines

ERA x:fllename.typ<cr> Erases the file filename. typ on the disk in drive x:. The filename
and/ or typ can be ambiguous. Drive x: is optional; if omitted, the currently
logged drive is used.

ERA X:*.*<cr> Erases all files on the disk in drive x:. Drive x: is optional; if omitted,
the currently logged drive is used.

Line Editing Commands

CONTROL·C Restarts CP/M if it is the first character in command line. Called warm start.

CONTROL-E Moves to the beginning of next line. Used for typing long commands.

CONTROL-H or BACKSPACE Deletes one character and erases it from the screen (CP/M
version 2.0 and newer).

CONTROL·J or LINE FEED Same as CARRIAGE RETURN (CP/M version 2.0 and newer).

CONTROL·M Same as CARRIAGE RETURN «cr».

CONTROL-P Turns on the list device (usually your printer). Type it again to turn offthe list
device.

Appendix B: CP/M Command Summary 475

CONTROL·R Repeats current command line (useful with version 1.4); it verifies the line is
corrected after you delete several characters (CP/M version 1.4 and newer).

CONTROL·S Temporarily stops display of data on the console. Press any key to continue.

CONTROL-U or CONTROL·X Cancels current command line (CP/M version 1.4 and newer).

RUBOUT (RUB) or DELETE (DEL) Deletes one character and echoes (repeats) it.

Load Command Line
LOAD x:fllename<cr> Reads the file filename. HEX on drive x: and creates the execut

able program file filename.COM on drive x:.

MOVCPM Command Lines
MOVCPM<cr> Prepares a new copy of CP/M which uses all of memory; gives control to

the new CP/M, but does not save it on disk.

MOVCPM nn<cr> Prepares a new copy of CP/M which uses "nn" K bytes of memory;
gives control to the new CP/M, but does not save it on disk.

MOVCPM * * <cr> Prepares a new copy of CP/M that uses all of memory, to be saved
with SYSGEN or SAVE.

MOVCPM nn * <cr> Prepares a new copy of CP/M that uses "nn" K bytes of memory, to
be saved with SYSGEN or SAVE.

The "nn" is an integer decimal number. It can be 16 through 64 for CP/M
1.3 or 1.4. For CP/M 2.0 and newer "nn" can be 20 through 64.

PIP Command Lines

PIP<cr> Loads PIP into memory. PIP prompts for commands, executes them, then
prompts again.

PIP plpcommandllne<cr> Loads PIP into memory. PIP executes the command pip
commandline, then exits to CP/M.

PIP Command Summary

x:new.typ=y:old.fyp[p]<cr> Copies the file old.typ on drive y: to the file new.typ on
drive x:, using parameters p.

x:new.fyp=y:old1.fyp[p],z:old2.fyp[q]<cr> Creates a file new.typ on drive x: that

476 The CP/M Programmer's Handbook

consists of the contents offile old 1.typ on drive y: using parameters p followed
by the contents of file 0ld2.typ on drive z: using parameters q.

x:filename.typ=dev:[pl<cr> Copies data from device dev: to the file filename.typ on
drive x:.

dev:=x:filename.fyp[pl<cr> Copies data from filename.typ on drive x: to device dev:.

dst:=src:[pl<cr> Copies data to device dst: from device src:.

PIP Parameter Summary

B

On

E

F

Gn

H

I

L

N

a
Pn
Qs/\Z

R
Ss/\Z

Tn

U

V

W

Z

Specifies block mode transfer.

Deletes all characters after the "n"th column.

Echoes the copying to the console as it is being performed.

Removes form feed characters during transfer.

Directs PIP to copy a file from user area "n."

Checks for proper Intel Hex File format.

Ignores any :00 records in Intel Hex File transfers.

Translates uppercase letters to lowercase.

Adds a line number to each line transferred.

Object file transfer (ignores end-of-file markers).

Issues page feed after every "n"th line.
Specifies quit of copying after the string "s" is encountered.

Directs PIP to copy from a system file.

Specifies start of copying after the string "s" is encountered.

Sets tab stops to every "n"th column.

Translates lowercase letters to uppercase.

Verifies copy by comparison after copy finished.

Directs PIP to copy onto an RIO file.
Zeroes the "parity" bit on ASCII characters.

PIP Destination Devices

CON:

TTY:
CRT:
UCI:

OUT:

PUN:

PTP:
UPI:
UP2:

PRN:

LST:

LPT:
ULl:

Logical devices

Physical devices

Special PIP devices

Appendix B: CP/M Command Summary 477

PIP Source Devices

CON:

TTY:
CRT:
UCI:

NUL:

RDR:

PTR:
URI:
UR2:

EOF: INP:

Logical devices

Physical devices

Special PIP devices

REN Command Line
REN newname.typ=oldname.typ<cr> Finds the file oldname.typ and renames it

newname.typ.

SAVE Command Line
SAVE nnn x:tllename.typ<cr> Saves a portion of the Transient Program Area of

memory in the file filename.typ on drive x: where nnn is a decimal number
representing the number of pages of memory. Drive x: is the option drive
specifier.

STAT Command Lines
STAT<cr> Displays attributes and amount of free space for all diskette drives accessed

since last warm or cold start.

STAT x:<cr> Displays amount of free space on the diskette in drive x:.

STAT x:tllename.typ<cr>(CP/M 2.0 and newer) Displays size and attributes of file(s)
filename.typ on drive x:. filename.typ may be ambiguous. x: is optional; if
omitted, currently logged drive is assumed.

STAT x:tllename.typ $atr<cr> Assigns the attribute atr to the file(s) filename.typ on drive
x:. File filename.typ may be ambiguous. Drive x: is optional; if omitted,
currently logged drive is assumed.

STAT DEV:<cr> Reports which physical devices are currently assigned to the four logical
devices.

STAT VAL:<cr> Reports the possible device assignments and partial STAT command line
summary.

STAT log:=phy:<cr> Assigns the physical device phy: to the logical device log: (may be
more than one assignment on the line; each should be set off by a comma).

STAT USR:<cr> (CP/M 2.0 and newer) Reports the current user number as well as all user
numbers for which there are files on currently logged disks.

478 The CP/M Programmer's Handbook

STAT x:DSK<cr> (CP/M 1.4 and newer) Assigns a temporary write-protect status to
drive x:.

SUBMIT Command Lines
SUBMIT filename<cr> Creates a file $$$.SUB which contains the commands listed in

filename. SUB; CP/M then executes commands from this file rather than the
keyboard.

SUBMIT filename parameters<cr> Creates a file $$$.SUB which contains commands
from the file filename. SUB; certain parts of the command lines in filename.
SUB are replaced by parameters during creation of $$$.SUB. CP/M then gets
commands from this file rather than the keyboard.

SYSGEN Command Line

SYSGEN<cr> Loads the SYSGEN program to transfer CP/M from one diskette to
another.

TYPE Command Line
TYPE x:filename.typ<cr> Displays the contents of file filename.typ from drive x: on the

console.

USER Command Line

USER n<cr> Sets the User Number to "n," where "n" is an integer decimal number from
oto 15, inclusive.

x: Command Line

x:<cr> Changes the currently logged disk drive to drive x:. Drive x: can be "A"
through "P."

Summary of BOOS
Coils

Table C-1. BOOS Function Definitions for CP/M-80 Version 2.2

Function Entry Exit
Explanation

No. Name Parameter(s) Parameter(s)

00 SYSTEM None None Restarts CP/ M-80 by returning control to the
RESET the CCP after reinitializing the disk subsystem.

01 CONSOLE None A = ASCII Returns the next character typed to the
INPUT character character calling program.

Any non-printable character is echoed to the
screen (like BACKSPACE, TAB, or CARRIAGE

RETURN). Execution does not return to the
calling program until a character has been
typed. Standard CCP control characters are
recognized and their actions performed
(CONTROL-P begins or ends printer echoing
and so on).

479

480 The CP/M Programmer's Handbook

Table C·1. (Continued)

Function Entry Exit
Parameter(s) Parameter(s) Explanation

No. Name

02 CONSOLE E = ASCII None Displays the character in the E register on
OUTPUT character the console device. Standard CCP control

characters are recognized and their actions
performed (CONTROL.P begins or ends printer
echoing and so on.).

03 READER None A = ASCII Returns the next character received from the
INPUT character reader device to the calling program.

Execution does not return to the calling
program until a character is received.

04 PUNCH E = ASCII None Transmits the character in the E register to
OUTPUT character the punch device.

05 LIST E = ASCII None Transmits the character in the E register to
OUTPUT character the list device.

06 DIRECT E = FF hex A = ASCII If register E contains an FF hex, the console
CONSOLE device is interrogated to see if a character is
IN ready. If no character is ready, a 00 is
DIRECT E = ASCII None returned to the calling program in register A;
CONSOLE character otherwise the character detected is returned
OUT in register A. If register E contains any char-

acter other than an FF hex, that character is
passed to the console display. All CCP con-
trol characters are ignored. The user must
protect the program against nonsensical
characters being sent from or received by the
console device.

07 GET None A= Places a copy of the byte stored at location
IOBYTE IOBYTE 0003 hex in the A register before returning

control to the calling program.

08 SET E = IOBYTE None Places a copy of the value in register E into
IOBYTE the memory location of 0003 hex before

returning control to the calling program.

09 PRINT DE = String None Sends the string of characters stored
STRING address beginning at the address stored in the DE

register pair to the console device. All
characters in subsequent addresses are sent
until BDOS encounters a memory location
which contains a 24 hex (an ASCII "$"). The
CCP control characters are checked for and
performed if encountered.

NOTE: CP/ M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

Table C-1. (Continued)

Appendix C: Summary of BDOS Calls 481

Function Entry Exit
Parameter(s) Parameter(s)

Explanation
No. Name

OA READ DE = Buffer Data in This function performs essentially the same
CONSOLE address buffer as the CCP would in that it takes the
BUFFER characters the user types and stores them

into the buffer that begins at the address
stored in the DE register pair. The first byte
in the buffer pointed to by the DE pair must
be the maximum length of the command;
BDOS will place the number of characters
encountered in the second byte, with the
typed command beginning with the third
byte pointed to by the DE pair. All standard
CCP editing characters are recognized during
the command entry.

OB GET None A = Status BDOS checks the status of the console
CONSOLE device and returns a 00 hex if no character is
STATUS ready, FF hex if a character has been typed.

OC GET None HL= If the byte returned in the H register is 00
VERSION Version hex then CP/M is present, if 01, then MP/M
NUMBER is present. The byte returned in the L register

is 00 if the version is previous to CP / M 2.0,
20 hex if the version is 2.0, 21 hex if 2.1 and
so on.

OD RESET None Used to tell CP/ M to reset the disk subsystem.
DISK Should be used any time diskettes are
SYSTEM changed.

OE SELECT E = Disk None Selects the disk to be used for subsequent
DISK number disk operations. A 00 hex in the E register

indicates disk A, a 01 hex indicates
disk B, etc.

OF OPEN DE= FCB A ='Found'/ Used to activate a file on the current disk
FILE address not found drive and current user area. BDOS scans the

code first 14 bytes of the designated FCB block
and attempts to find a match to the filename
in the block. A 3F hex (ASCII "?'') can be
used in any of the filename positions to indi-
cate a "don't care" character.

If a match is found, the relevant informa-
tion about that file is filled into the rest of
the FCB by CP/ M-80. A value of 00 hex to
03 in register A upon return indicates the
open operation was successful, while an FF
hex indicates that the file could not be found.
If question marks are used to identify a file,
the first matching entry is used.

NOTE: CPJM-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

488 The CP/M Programmer's Handbook

BDOS Function codes (continued) . ----"O....IuO"'S'-'-'fc"'o..."u',.;"u..u>w'L1Jdl _

490 The CP/M Programmer's Handbook

CONIN (continued)

Console input, in the BIOS, 151
Recognizing incoming function key characters, 221
Use with forced input, 219

CONOUT:
Console output, in the BIOS, 151
Escape sequences to input date and time, 223
Processing output escape sequences, 222

CONST:
Console input status, in the BIOS, 50
Problems with programs that "gobble" characters, 218
Use with forced input, 219

CP/M:
Bringing up a new system, 350

CP/M 12S-byte "records": 41
CP/M file system:
Concepts, 17

CP/M records as 12S-byte sectors: 71

CRC:
See Cyclic Redundancy Check

CRF:
Example of Random Write, 135

Cancel command line:
CONTROL-V, 49

Captions:
For debug subroutines, 322

CARRIAGE RETURN:

CONTROL-M,48

Changed diskette:
Size ofbuffer for detection, in disk parameter block, 36
Work area in disk parameter header, 32

Changing disks:
Need to force disk log-in, 96

Changing user number:
USER, 53

Code table:
Definition of structure in LIBRARY.H, 394
Display all strings, ct_disps, Code, 385, Narrative,

407
Get string for code, ct_strc, Code, 386, Narrative, 407
Get string for index, ct_stri, Code, 386, Narrative, 407
Initialize, ct_init, Code, 384, Narrative, 407
Prompt and return code, ct_parc, Code, 384, Narrative,

407
Return code, ct_code, Code, 385, Narrative, 407
Return index, ct_index, Code, 386, Narrative, 407
Used for command tail parameters, 406

Cold Boot:
BIOS functions, 149
Concepts, 12

Command line:
Canceling, CONTROL-V, 49
Deleting last character typed, 49
Repeating, CONTROL-R, 49

Command Line Editing:
By the CCP, 46

Command tall:
Code tables, C functions, 405
Example program to process parameters, 63
In base page, 60
Input to the CCP, 46
Processing, C functions, 405

Communications:
Using Reader/Punch (Auxiliary), 151

Comp_fname:
Compare file name, Code, 374, Narrative, 401

Compare file name:
Comp_fname, Code, 374, Narrative, 401

Configuration Block:
Accessing from C, 396
Concepts, 211
SUI!lzestion for utilitv orogram. 448

Default disk:
Changing, 50
In base page, 59
In CCP prompt, 46

Default File Control Blocks:
In base page, 60

Deferred writes:
In conjunction with track buffering, 231

Delete character:
Rubout/Del, 49

Deleting files:
ERA,51

Device table:
Accessing from C, 398
Displaying for debugging, 356
Structure, 225

Digital Research:
Manuals,6

Direct BIOS calls:
Example code, 156
Examples, 65

When to avoid, 15

Directory code:
As returned by BDOS calls, 71
As returned from Create (Make) File, 114
As returned from Rename File, 116
Returned by BDOS Close File, 103
Returned by BDOS Open File, 99
Returned by Search for First Name Match, 103
Returned by Search for Next Name Match, 107

Directory entry: 99
Definition in LIBRARY.H, 394

Directory Parameter Block:
Definition in LIBRARY.H, 393

Disk Drivers:
Debugging, 364

Disk I/O:
Enhancements, 231
In the BIOS, 152

Disk Map:
In file directory entry, 26

Disk Parameter Block:
Accessing from C, 398
Adding extra information, 41
Block shift, mask, and extent mask, 33
Definition in LIBRARY.H, 394
Details, 33
Finding the address ot; 125
Maximum allocation block number, 34

Index 491

Disk Parameter Block (continued)
Number of directory entries - I, 35
Number of tracks before directory, 36
Pointer in disk parameter header, 31
Reserving allocation blocks for file directory, 35
Sectors per track, 33
Size of buffer for detecting changed diskettes, 36
Worked example for hard disk, 39

Disk Parameter Header:
Details, 28
Disk buffer, 31
Disk parameter block, 31
Pointer to allocation vector, 32
Sector skewing, 28
Work area for changed diskette detection, 32

Disk buffer:
In disk parameter header, 31

Disk definition tables:
Concept, 18
Details, 27

Disk drivers:
Example testbed code, 365

Disk errors:
Strategy, 303

Disk full:
Error returned from Sequential Write, 112
Disk layout:
CP/M on diskettes, 189
Disk map:
As used in C functions, 402

Disk map clear:
Dm_c1r, Code, 382, Narrative, 403

Disk map display:
Dm_disp, Code, 382, Narrative, 403

Diskette:
Layout of standard CP/M diskette, 37

Diskette format:
Concepts, 9

Display $-Terminated String:
BDOS Function 9,88

Display directory error:
Err_dir, Code, 381, Narrative, 400

Displaying an ASCII file:
TYPE,52

Displaying current user number: 54

Dm_cir:
Disk map clear, Code, 382, Narrative, 403

Dm_disp:
Disk map display, Code, 382, Narrative, 403

492 The CP/M Programmer's Handbook

Control characters (continued)

CONTROL·C:

Used to abort after BDOS error, 98

CONTROL·P:

Errors generated, 299

CONTROL·Z:

If no Reader driver in BIOS, 75
Used to indicate end of file, 110
Used to terminate prior to BDOS Close File, 103

Conv_dfname:
Convert directory file name, Code, 375, Narrative, 402

Conv_fname:
Convert file name, Code, 375, Narrative, 408

Convert directory file name:
Conv_dfname, Code, 375, Narrative, 402

Convert file name:
Conv_fname, Code, 375, Narrative, 408

Create (Make) file:
BDOS Function 22, 112

Ct_code:
Code table, return code, Code, 385, Narrative, 407

Ct_disps:
Code table, display all strings, Code, 385, Narrative,

407

Ct_index:
Code table, return index, Code, 386, Narrative, 407

Ct_init:
Code table, initialize, Code, 384, Narrative, 407

Ct_parc:
Code table, prompt and return code, Code, 384, Narra

tive,407

Ct_strc:
Code table, get string for code, Code, 386, Narrative,

407

Ct_stri:
Code table, get string for index, Code, 386, Narrative,

407

Current default drive: 97

Current logical disk:
In base page, 59

Current record number:
In FCB, unchanged for Random Read, 132
In FCB, unchanged for Random Write, 132

Current user number:
Displaying, 54
In base page, 59

Customization:
Of CP/M, an overview, 8

Cyclic Redundancy Check:
As used in disk errors, 303

D
DDT:
Dynamic Debug Tool, 185, 329
Manual, 6
I Command used for building new CP/M system, 195
R Command used for building new CP/M system, 195
Used for checking CP/M images, 204
Used for debugging character drivers, 354
Used to create CP/M memory image, 194
Used to debug disk drivers, 364

DESPOOL:
Use of LISTST BIOS entry, 156

DIR:
Display directory of files, 50

DMA buffer:
Default in base page, 60

DPB:
See Disk Parameter Block

DPH:
See Disk Parameter Header

DTR:
PROTOCOL, C program to set protocols, 434
See Data Terminal Ready

Data storage area:
Concept, 17

Data Terminal Ready:
Explanation of DTR protocol, 219

DATE:
C program, sets the date, 442

Date:
Keeping the current date in the BIOS, 224
Reading the date from the console driver, 223

Debug output:
Controlling when it occurs, 324

Debug subroutines: 322
Overall design philosophy, 322

Debugging a new CP/M system, 319

Debugging checklist:
Character output, 361
Disk drivers, 367
Interrupt service routines, 359
Non-interrupt service routine, 359
Real Time Clock, 362

Default DMA Address: 118

Default DMA buffer:
In base page, 60

DO:
Suggestion for utility program, 448

DPB:
See Disk Parameter Block

DPH:
See Disk Parameter Header

E
ED:
Editor, manual, 6

ERA:
Erase (delete) files, 51

Echoing of keyboard characters:
Read Console Byte, 72

End of File:
Detection using Read Sequential, 110

Erase (Delete) File:
BDOS Function 19, 108

ERASE:
C program, a safer way to erase files, 409

Erased files:
Unerasing them, 26

Erasing a file:
ERA, 51
Logical deletion only, 23

Err_dir:
Display directory error, Code, 381, Narrative, 400

Error messages:
Debugging disk drivers, 368, Chapter 12

Errors:
Dealing with hardware errors, 295
Example printer error routine, 301
Handling disk errors, 303
Hardware, analysis, 297
Hardware, correction, 299
Hardware, detection strategy, 296
Hardware, indication, 297
Improved disk error messages, 312
Practical handling, character I/O, 299

Escape sequences:
Function keys, debugging character driver, 360
Incoming, debugging character driver, 360
Processing output sequences, 222
Recognizing function key sequences, 222
Suggestion for utility program, 448
Support via device table, 226

Etx/Ack:
Debugging character drivers, 358, 362
Explanation of protocol, 219

Index 493

Etx/Ack (continued)
Protocol, C program to set protocols, 434

Example programs:
Ordering diskette, 4

Extent:
In file directory entry, 26
Of files, concepts, 18

Extent mask:
In disk parameter block, 33

F
FCB:
Default FCB's in base page, 60
See File Control Block

FDOS:
Rarely used term for BDOS/CCP combined

File Attributes: 99
Setting, 121
See File status

File Control Block:
Creating one from an ASCII file name, 100
Concepts, 18
Definition in LIBRARY.H, 393
Structure, 41
Used for random file operations, 43
Used for sequential file operations, 43
Used in BDOS Open File, 99
Used in BDOS Requests, 71

File Directory:
Accessing entries directly, 399
Processing, C functions, 402

File Organizations:
Concepts, 41

File Protection:
Special characters in file name, 114

File changed:
File status bit in file directory entry, 26

File directory:
Accessing, C functions, 400
Accessing, via BDOS & C functions, 408
Concept, 17
Details, 18
Disk map, 26
Displaying contents, DIR, 50
Entry structure, 22
Erasing fIles, ERA, 51
File extent, 26
File name and type in entry, 27
Matching names, C functions, 401
Number of entries - I, in disk parameter block, 35

494 The CP/M Programmer's Handbook

File directory (continued)

Number of tracks before, 36
Record number, 27
Status (attribute) bits, 26
User number in entry, 22

File extent:
Concepts, 18
In file directory entry, 26
Manipulation to achieve Random I/O, 110-12
Opening extent 0 for Random I/O, 133-34

File name/type:
In file directory entry, 23

File protection:
Suggestion for utility program, 426

File status:
In file directory entry, 26

File system:
Concepts, 17

File type:
Conventions for actual types, 24

Filecopy:
Suggestion for utility program, 426

Files:
Creating, sequence of operations, 20
Displaying a directory, DIR, 50

Find:
C program, finds lost files, 416

Flushing buffers:
Prior to BOOS Close File, 103

Forced input:
Concepts, 219
Debugging character driver, 360
Suggestion for utility program, 448

Framing error:
Character I/O, handling, 300

Function Key table:
Accessing from C, 397

Function keys:
Structure in LIBRARY.H, 392
Support with enhanced BIOS, 220
Testing in a live BIOS, 370

FUNKEY:
C program, sets the function keys, 445

G
GETC:
Example of Read Sequential, 111

GETDPB:
Example of Get Disk Parameter Block Address, 126

GFA:
Example of Get File Attributes, 122

GNF:
Example of Search First/Next File Name Match, 104

Get CP/M Version Number:
BOOS Function 12, 94

Get Current Default Disk:
BOOS Function 25, 118

Get Disk Parameter Block Address:
BOOS Function 31,125

Get Disk Parameter Block Address:
Get_dpb, Code, 383

Get File Size:
BOOS Function 35, 142

Get IOBYTE Setting:
BOOS Function 7, 80

Get Read-Only Disks:
BOOS Function 29, 120

Get allocation vector:
BOOS Function 27, 119

Get configuration block address:
Get_cba, 372

Get next directory entry:
Get_nde, Code, 378, Narrative, 400

Get next file name:
Get_nfn, Code, 376, Narrative, 408

Get_cba:
Get configuration block address, 372

Get_dpb:
Get Disk Parameter Block Address, Code, 383

Get_nde:
Get next directory entry, Code, 378, Narrative, 400

Get_nfn:
Get next file name, Code, 376, Narrative, 408

H
HEX file structure: 195

HOME:
Home disk heads, in the BIOS, 153

HSTBUF:
In the BIOS, 152

Hard disk:
Division into several logical disks, 39
Special considerations, 36

Hardware errors:
Dealing with, 295, Chapter 9

Hardware reset:
Debugging character driver, 359

Heath/Zenith:
Special version of CP/M, 55

Host Buffer:
In the BIOS, 152

Host sector size:
In the BIOS, 152

I/O Redirection:
Assign, C program to assign physical devices, 439
Concepts, 214
IOBYTE Structure, 57

IF/ENDIF directives:
Used for debug subroutines, 323

IOBYTE:
Equates for bit fields, 86
Structure, 57
Use for polling communications line, 75
Use with Direct Console I/O for communications, 80

Initialization of debug subroutines: 323

Input redirection:
Debugging character driver, 359

Input/Output:
Fake I/O for debugging purposes, 327

Interactions:
Between CCP, BDOS, and BIOS, 15

Interlace:
See Sector skewing

Interrupt service routines:
Debugging checklist, 357

Interrupts:
Architecture, 216
Circular buffers, 217
Dealing with buffer overflow, 219
Debugging service routines, 329
Use for character input drivers, 215

J
Johnson-Laird Inc.:
Ordering diskette, 4

Jump vector:
Use for entering the BIOS, 15

L
LIBRARY.C:
Utility function library, 372

LIBRARY.H:
Header for LIBRARY.C functions, 390

LIST:
List output, in the BIOS, 151

Index

LISTST:
List device output status, in the BIOS, 156

LST:
Logical list device, 56

Line editing:
Using Read Console String, 91

Line feed:
CONTROL-J,48

List Device Errors:
Problems with BDOS Function 5, 78

Loading CP/M:
Overview, 11

Loading programs:
Via the CCP, 54

Loadsys:
Suggestion for utility program, 448

Location ooOOH:
Use for warm boot, 13

Location 0005H:
Simple examples of use, 20
Use for BDOS function calls, 14

Logging in a disk:
Using BDOS Reset Disk System, 96

Logiclli deletion of files, 23
ERA, 51

Logical devices:
CON:, LST:, AUX:, RDR:, PUN:, 56

Logiclli disk:
As represented in File Control Block, 42
Division of hard disk into several logical disks, 39
Selecting, 97

Logical Input/Output:
As afforded by the BIOS, 15

Logical records:
Concepts, 41

Logical sectors to physical: 28
SECTRAN, in the BIOS, 156

Login Vector:
See BDOS Function 24, 116

Lowercase letters in file name: 114

M-disk:
Using memory as an ultra-fast disk, 232

M80:
Macro Assembler, 185

MAC:
Macro Assembler, 185

MAKE:
C program, makes files visible/invisible, 427

495

496 The CP/M Programmer's Handbook

MOVE:
C program, moves files between user numbers, 423

MOYCPM:
In conjunction with patches to CP/M, 234
Relocating the CCP and BDOS, 201
Use in building a new CP/M system, 182

MSGOUT:
Example of Write Console Byte, 74

MSGOUTI:
Example of Write Console Byte, 74

Manuals:
From Digital Research, 6

Maximum allocation block number:
In disk parameter block, 34

Memory:
Displaying in debug subroutines, 324
Finding size of area available for programs, 65
Use of hidden memory for buffers, 216
Used as an ultra-fast disk, 232

Memory dumps:
Base page, 61

Memory image:
Checking a new system, 204
Of new CP/M system, 185

Memory layout:
For example BIOS, 190
For input to SYSGEN, 187
With CP/M loaded, 13

Messages:
As an aid to debugging, 326

N
Notation:
For example console dialog, 3

Number of file directory entries:
In disk parameter block, 35

o
OM:
Example of Display $-Terminated String, 89

OPENF:
Example of Open File, 100

Open File:
BDOS Function 15, 98

Open directory:
Open_dir, Code, 378, Narrative, 400

Open_dir:
Open directory, Code, 378, Narrative, 400

Orville Wright approach to debugging: 320

Output Escape sequence:
Debugging character output driver, 362

Overrun error:
Character I/O, handling, 300

Overwriting the CCP:
To gain memory, 45

Owner:
Suggestion for utility program, 426

p
PIP:
Used to test a new BIOS, 369

PROM Bootstrap:
Used to load CP/M, II

PUN:
Logical Punch, 56

PUNCH:
Punch (Auxiliary) output, in the BIOS, 151

PUTC:
Example of Write Sequential, 113

PUTCPM:
Example program, 191
Writing a utility, 189

Parallel printers:
Error handling, 301

Parameters:
Example program to process command tail, 63

Parity error:
Character I/O, handling, 300

pass counters:
Use in debug subroutines, 324

Patching CP/M:
General techniques, 234

Performance:
Effect of sector skewing, 29

Physical end of line:
CONTROL-E, 47

Physical sectors:
Relative, on a hard disk, 38

Polled Reader Input:
Problems and solutions, 75

Polled communications:
Using Direct Console I/O, 80

Printer echo:
CONTROL-P, 48

Printer errors:
Example routine, 301
Use of watchdog timer, 224

Printer timeout error:
Handling, 300

Program loading:
Via the CCP, 54

Program termination:
Returning to CP/M, 66

Prompt:
From the CCP, 46

Protect/Unproteet:
Suggestion for utility program, 426

PROTOCOL:
C program, sets serial line protocols, 434

Protocol:
See also Data Terminal Ready, Request to Send,

XonjXoft; EtxjAck
Definitions in LIBRARY.H, 392
Support in enhanced BIOS, 218
Support via device table, 226
Xon/Xoft; used by TYPE, 52

Public roes:
Patches to create this feature, 235
Suggestion for utility program, 448

Publir/Private:
Suggestion for utility program, 448

R
RAM-disk:
Using memory as an ultra-fast disk, 232

RCS:
Example of Direct Console I/O, 81

RDR:
Logical Reader, 56

READ:
Read Sector, in the BIOS, 154

READER:
Reader input, in the BIOS, 152

REN:
Rename file, 52

RF:
Example of Rename File, 117

RLSRDR:
Example of Read Reader Byte, 76

RMAC:
Relocatable Macro Assembler, 185

RO:
Example of Random File I/0, 136

RSA:
Example of Read Console String, 92

Index 497

RST7:
Use for debugging drivers, 356

RTS:
See also Buffer thresholds, Request to Send
Protocol, C program to set protocols, 434

Random Read:
Using Read Sequential, 110

Random Write:
Using Write Sequential, 112

Random files:
Concepts, 43
Creating an empty file, 144
Problem of sparse files, 44
Virtual size, 142

Random record number:
In FCB, set for Random Read, 132
In FCB, set for Random Write, 132

Rd_disk:
Read disk (via BIOS), Code, 377, Narrative, 400

Read Console Byte:
BOOS Function I, 72

Read Console Status:
BOOS Function II, 94

Read Console String:
BOOS Function 10, 90

Read Random:
BOOS Function 33, 131

Read Reader Byte:
BOOS Function 3, 75

Read Sequential:
BOOS Function 20, 109

Read disk (via BIOS):
Rd_disk, Code, 377, Narrative, 400

Read-Only:
Automatic setting after changing diskettes, 32
File status bit in file directory entry, 26

Read-Only Disks: 120
Read-Only File:
Attribute bit, 121

Read/write dlreetory:
Rw_dir, Code, 380, Narrative, 400

Reading/Writing disk:
Direct BIOS calls from C, 399

Real Time Clock:
Debugging, 362
Example testbed code, 363
TIME, C program to set the time, 444

498 The CP/M Programmer's Handbook

Reclaim:
Suggestion for utility program, 426

Record number:
In file directory entry, 26
Manipulation to achieve Random I/O, 110, 112

Registers:
Displaying in debug subroutines, 324

Relative page offset:
Use for making direct BIOS calls, 65

Relative physical sectors:
On a hard disk, 38

Release diskettes:
Files from Digital Research, 6

Rename File:
BOOS Function 23, 115

Renaming a file:
REN,52

Repeat command line:
CONTROL-R, 48

Request to Send:
Explanation of RTS protocol, 219

Reserved area:
Concept, 17

Reset:
Signal used to start loading of CP/M, 11

Reset Disk System:
BOOS Function 13, 95

Reset Logical Disk Drive:
BOOS Function 37, 143

Resident CCP commands: 14

Restoring registers:
In interrupt service routine, 356
Rw_dir:
Read/write directory, Code, 380, Narrative, 400

S
SAVE:
Save memory image in disk file, 53
Use in building new CP/M system, 194

SECTRAN:
Logical sector to physical, in the BIOS, 156

SELDSK:
Debugging disk drivers, 367
Select disk, in the BIOS, 153

SETDMA:
Set DMA Address, in the BIOS, 154

SETSEC:
Set Sector, in the BIOS, 153

SETTRK:
Set Track, in the BIOS, 153

SETTRK/SEC:
Debugging disk drivers, 367

SFA:
Example of Set File Attributes, 122

SID:
Debugging tool, 330

STAT:
Use for displaying current user number, 54

SYSGEN:
System Generator, 185
Writing a new system to disk, 186

Savesys:
Suggestion for utility program, 448

Saving memory on disk:
SAVE, 53

Search First/Next:
Example use together, 107
Search for file:
Srch_file, Code, 376, Narrative, 408

Search for Next File Name Match:
BOOS Function 18, 107

Require for Search for First, 104

Sector interlace:
See Sector skewing

Sector size:
Host, in the BIOS, 152

Sector skewing:
Effect on performance, 29
For CP/M image on disk, 190
In disk parameter header, 28

Sector skipping:
Concepts, 304

Sector sparing:
Concepts, 304

Sectors:
Use in allocation blocks, 18

Sectors per track:
In disk parameter block, 33

Select Logical Disk:
BOOS Function 14, 97

Sequential Files:
Concepts, 43

Set DMA (Read/Write) Address:
BOOS Function 26, 118

Required by Search for First Name Match, 104

Set File Attributes:
BDOS Function 30, 121

Set IOBYTE:
BDOS Function 8, 86

Set Logical Disk Read-Only:
BDOS Function 28, 120

Set Random Record Number:
BDOS Function 36, 142

Set disk parameters for rd/wrt_disk:
Set_disk, Code, 378, Narrative, 400

Set search control block:
Setscb, Code, 381, Narrative, 401

Set/Get User Number:
BDOS Function 32, 131

Set_disk:
Set disk parameters for rd/wrt_disk, Code, 378,

Narrative, 401

Setscb:
Set search control block, Code, 381, Narrative, 401

Setterm:
Suggestion for utility program, 448

Shadow PROM:
Used to load CP/M, 11

Short:
Minor change to C Language, 395

Single-density, single-sided:
Diskette format, 10

Single disk reset, 143

Skewing:
See Sector skewing

Skipping:
Skipping bad sectors on disk, 304

SPACE:
C program, shows used/free disk space, 420

Spare:
Suggestion for utility program, 448

Spare dkectory:
Debugging disk drivers, 367

Sparing:
Use of spare sectors on disk, 304

Sparse Random Files:
Problem,44

Special version of CP/M:
Heath/Zenith, 55

SPEED:
C program, sets baud rates, 431

Srch_fIle:
Search for file, Code, 376, Narrative, 408

Index 499

Sstrcmp:
Substring compare, 373

Stack:
Filling with known pattern, 323

Stack overflow:
In interrupt service routine, 358

Standard BIOS:
Example code, 158

String scan:
Strscn,372

String scan, uppercase:
Ustrscn, 372

Strscn:
String scan, 372

Structure:
Of CP/M, 5

Subroutine:
CCPM, Check if CP/M Version 2, 95
CDISK, Change Disk, 96
CRF, Create Random File, 135
DB$Blank, Display a blank, 344
DB$CAH, Convert A to ASCII Hex., 343
DB$CRLF, Display Carriage Return, Line Feed, 344
DB$Colon, Display a colon, 344
DB$Conin, Debug console input, 336
DB$Conout, Debug console output, 336
DB$DAH, Display A in Hex., 343
DB$DHLH, Display HL in Hex., 343
DB$Display$CALLA, Display call address, 343
DB$Display, Main debug display, 338
DB$GHV, Get Hex. Value, 348
DB$Init, Debug initialize, 335
DB$Input, Debug Port Input, 346
DB$MEMORY, Debug display of memory/registers,

325
DB$MSG, Display Message, 345
DB$MSGI, Display Message (In-line), 345
DB$Oft: Turn debug output oft: 337
DB$On, Turn debug output on, 337
DB$Output, Debug Port Output, 347
DB$Pass, Decrement the pass counter, 337
DBSetPass, Set pass counter, 337
DIVHL, Divide HL by DE, 129
FOLD, Fold lowercase to upper, 93
FSCMP, Folded String Compare, 93
GAB, Get Allocation Block given Track/Sector, 128
GDTAS, Get Directory Track/Sector, 127
GETC, Get Character from Sequential File, 111
GETDPB, Get Disk Parameter Block Address, 126
GFA, Get File Attributes, 122
GMTAS, Get Maximum Track/Sector, 127

500 The CP/M Programmer's Handbook

Subroutine (continued)

GNF, Get Next File matching ambiguous name, 104
GNTAS, Get Next Track/Sector, 128
GTAS, Get Track/Sector from Allocation block No.,

126
MSGOUT, Message Output, 74
MSGOUTI, Message Output In-Line, 74
MULHL, Multiply HL by DE, 129
OM, Output Message selected by A register, 89
OPENF, Open File given ASCII file name, 100
PUTC, Put Character to Sequential File, 113
RCS, Read Console String, 81
RF, Rename File, 117
RL$RDR, Read Line from Reader, 76
RO, Random File I/O (non-128-byte records), 136
RSA, Return Subprocessor Address, 93
SDLR, Shift DE,HL one bit right, 141
SFA, Set File Attributes, 122
SHLR, Shift HL right one bit, 130
SUBHL, Subtract DE from HL, 130
TERM, Terminal Emulator, 87
TOUPPER, Fold lowercase to upper, 84
WL$LST, Write Line to List Device, 79
WL$PUN, Write Line to Punch, 78

Substring compare:
Sstrcmp, 373
Uppercase: Usstrcmp, 373

System file:
Attribute bit, 121
File status bit in file directory entry, 26
Not displayed by DIR, 51

System Reset:
BDOS Function 0, 71

T
TERM:
Example of Set/Get 10BYTE, 87

TIME:
C program, sets the time, 442

TYPE:
Type an ASCII file, 52

Tab:
Interaction of tab characters and escape sequences, 222

Tab expansion:
Supported by Write Console Byte, 73
Using Display $-Terminated String, 89

Termination of programs, returning to CCP: 45

Testbed:
Use for new drivers, 353

Time:
Correct display during debugging, 364
Keeping the current time in the BIOS, 224
Reading the time from the console driver, 223

Top of RAM:
Finding, via base page, 60

Track buffering:
Enhancement to disk I/O, 231

Track offset:
See Tracks before directory

Tracks before directory:
In disk parameter block, 36

Transient Program Area:
Finding available size, 65

Typeahead:
Concepts, 217
Dealing with buffer overflow, 219

u
Undo command line:
CONTROL-V, 49

UNERASE:
C program, restores erased files, 412

User Number:
Changing under program control, 131
Changing using USER, 53
Displaying, 54
In base page, 59
In file directory entry, 22
Patches to make this appear in CCP prompt, 235
Suggestion for utility program, 426

Usstrcmp:
Uppercase substring compare, 373

Ustrcmp:
Uppercase string scan, 372

Utility programs: 371

v
Variable record lengths:
Processing in Random Files, 133, 134

W
WLSLST:
Example of Write List Byte, 79

WLSPUN:
Example of Write Punch Byte, 78

WRITE:
Write sector, in the BIOS, 155

Warm Boot:
After BDOS Error, 98

Warm Boot (continued)

BIOS functions, 150
Initiated by CONTROL-C, 47
Initiated by pressing a key, 94
Initiated by System Reset BOOS Function, 72
JMP at location OOOOH, 55
Reloading the CCP, 45
Resetting Read-Only disks, 120
Setting default DMA Address, 118
Technique for avoiding, 66
Use of location OOOOH, 13

Watchdog timer:
Concepts, 225
Debugging Real Time Clock, 364
Use for detecting printer errors, 224

Write Console Byte:
BOOS Function 2, 73

Write List Byte:
BOOS Function 5, 77

Write Punch Byte:
BOOS Function 4, 77

Write Random:
BOOS Function 34, 133

Write Random with Zero-fill:
BOOS Function 40, 144

Index 501

Write Sequential:
BOOS Function 21,110

Write disk (via BIOS):
Wrt_disk, Code, 377, Narrative, 400

Wrt_disk:
Write disk (via BIOS), Code, 377, Narrative, 400

x
Xoff:
CONTROL-S, 48

Xon:
CONTROL-Q, 49

Xon/Xoff:
Debugging character driver, 358, 362
Explanation of protocol, 240
PROTOCOL, C program to set protocols, 434
Supported by Read Console Byte, 72
Use by TYPE, 53

Z
ZSID:
Z80 Symbolic Interactive Debugger, 185, 350

	01 prog
	02 prog
	03 prog
	04 prog
	05 prog

