

INSIDE CP/M
A Guidefor
Users and
Programmers
with CP/M-86 and MP/M2

David E. Cortesi

INSIDECRM
A Guidefor

'- Usersand
Programmers
wUh CP/M-86 and MP/M2

............. HOLT. RINEHART AND WINSTON

New York ChIcago San Francisco Philadelptlla Montreal
Toronto london Sydney Tokyo Mexico City Rio de Janeiro Madrid

To Marian

1bese terms are trademarks of Digital Research. Incorporated:
CP/M. CP/M·SO. CP/M-86. MPfM. MAC. and RMAC.

1lIe term Z80 is a tr.tdc:mark of the Zilog Corporation.

Cop)'right 0 1982 CBS College Publishing
All rightS n:sco'cd.
Address connpondcnce to:
383 Madison Avenue. New York. NY 10011

Library or Congress Cataloging in PubliealiOlI Oala

Cortesi. David E.
Inside CP/M: a guide for users and programmers with

CPIM·86 and MPfM-2.

Includes index.
l. CP/M (CompOler program) I.

QA76.6.C665 001.64

ISBN 0-03-059558-4

Title.
82-2953
AACR2

Printed in the: United States of Ameriea
Published simulWleOUsly in Canada

345016 98765

CBS COLLEGE PUBLISHING
Hoh. Rinehart and Winston
The Dr)'dc:n Press
Saunders College Publishing

Preface

This book is bQ(h a guidt: and a reference manual for CP/M. an operating system for
small computers. The book has two sections. The Tutorial presents the basics of the
management. usc. and programming of a small computer and CP/M. In the Reference.
CP/M infonnation is organized for quick access by programmers and users.

The Reference Section

The Reference section contains the information that CPIM users and programmers need
every day. The commands arc displayed in alphabetical order. each with its syntax. its
operation. and suggestions for its best use. The BDOS service requests and BIOS enlries
are presented in numerical order. each wilh a concise explanation of its function and
suggestions for its usc. The operation and syntax rules for the IWO CP/M assemblers are
shown, and all of ttlt: assembler directives arc laid out in alphabetical orner with
descriptions and examples. A number of summaries and tables are included.

The Reference section is large. but a lot of thought has gone into its organization.
The reader should find that. with only a linle praclice, the answer to any question about
the day·to-<lay usc of CPIM can be found in a few seconds.

The Tutorial Section

CHOOSING Ml AUlm:J'olCE, In tht: Tutorial I'\"(: attempted 10 leach the use and program·
mingofCPIM. Before I could do so I had to imagine what my readers would be like and
what they would want to know. I made the comfonable assumption that the readers
would be adults who lire already committed to using a computer and mOlivaled to learn
about CP/M. Under that assumplion I could dispense wilh gee.whiz rhapsodit:s on ItIt:
computer age and could be free 10 treat ttlt: problems of computer use equally with the
advantages.

I could safely make no other assumptions. The success of CP/M and the strong
public interest in small computers ensure Ihat among the readers there will be people
having e\'cry degree of computer experience. from complete novices to experienced
programmers. I had to design the TUlorial SO thai it would say something useful 10 most v

Preface

readers. and I had to resign myselflO the fact that no one reader would be interesled in all

of it.

CIIAPTERS 1-4: ADDRESSI:01G TilE NOVICES. That a reader is a novice to compulers
does noc imply thai he or she is a novice in allihings. On the contrary. I picture my
novices as bright. agressive business and professional people, uncomfonable al being
cast in lhe role of .,greenhorn and eager to gel on top of lhis ncw subject. Chaplers I
through 4 ate addressed to lhese readers. There I introduce lernlS and buzzwords and
describe the parts of a computcr system. My aim is to arm the novice to deal with
salespeople, consultants. and other jargonauts. and 10 prepare him or her to make
ralional purchasing decisions.

CIlAPTl:RS 5·8: ADDRESSI:'lG TilE USERS. Chapters 5 through 8 inu'Oduce the CP/M
commands lhat nonprogrammers need. Here I assume lhal lhe reader is interested in
putting the system to use and wants no more explanation of how it works than is
absolulely necessary to make sense of ils responses. I prescnl the commands as a series
of exercises lhat lhe reader is expected to carry out at lhe keyboard. wilh a running
discussion of what is being done and when il is useful.

CIIAPTERS 9-12: ADDRESSING NEW PROGRA;\I.MERS. The day is long paSI when lhe
owner of a small computer was of necessity a programmer as well. Thus I expectthal
when the subject lums 10 programming, a good pan of lhe audience will head for the
door. Those who Slay will have to learn lhe fundamenlals of programming from other
books. However. Chapters 91hrough 12 covcrthe things lhat a new programmer needs to -....-/
know :tboul CP/M, things Ihal :tren't likely 10 appear in books devoted 10 BASIC,
Pascal, or assembly language.

CUM'TERS 13-15: .'OR PROCRA;\IM£RS. In Chapler 13 lhe TUlorial finally reaches the
point from which lhe official CP/M documenlalion depans: programming 1I00perations
in assembly language. Those who want 10 wrile syslems programs will find in Chaplers
14 and 15 discussions of the direclory. space management. and syslem generation.

Scope of the Book

CP/M is available in several versions. and in variant fomlS for differem hardware.
Fonunately.the differences between one CPIM variant and another are \'ery small, so
mosl of this book applies correctly 10 most systems. Howe\'er. the book was de\'eloped
on, and for, CPIM 2.2. 1be reader should know which \'ersions are covered and 10 what
degree.

CP/M 1.4. I omilled specific coverage of CP/M prior to release 2. Its inclusion would
have muddled the Tutorial with many exceplions and special cases. Although CP/M 1.4
can slill be ordered. moSI systems are two years old althis writing; presumably its users

vi ha\'e de\'eloped their own information sources by now. J

Preface

CP/M·86. The BOOS and BIOS entries unique 10 CPfM-86 are included in lhe
Refcrence. Digilal Research's wisc decision to make CP/M-86 compalible with
CP/M·80 ensures thaI thc firsl eight Tutorial chapters. and mOSI of Chaplcrs 13 and 14,
apply correclly 10 il. II wasn'l possible to includc any programming cxamples for
CP/M-86,

MP!M. Several subjects h:ad to be omitled. or:an already bulky book would ha\'e been
completely out of hand. MP/M is included only as notes al lhe poinls where a CP/M
operation works differently. or is not supponed. in MP/f\.'I. Tmorial Chapters I 10 13
apply to MPfM. but there is more 10 Ihat system than could be said here. The unique
MPfM commands and the MP/M XDOS services could nol be included,

MP!M 2. 1be latest version of MP/M includes a number of new services for the
programmer. All of these new file-system fealures have been included in lhe Reference
section. so that a CPIM programmer can prepare compalible programs, When the
long·awailcd CPIM 3 appears. it will probably suppon Ihcse services as well.

VARIANT UAROWAIU:. CPIM has been adapted tocornputers it w3sn'toriginally meant
for, notably lhe TRS·80 line and Ihe Apple. The examples in lhis book were developed
on an S·IOO bus system with 64 KIJ of storage. Alllhc command examples should work
as shown on any hardware varianl. The example programs may need 10 be assembled at a
different origin. Thisean be accomplished wilh a one-line change in lhe CPMEQU,lIB
inlrodueed in Chapler 12.

Acknowledgments

I am indebted to a number of people for Iheir help on Ihe book:. The publisher's reviewers
made several productive suggestions. Seolt Gamble. Paul Brest. and Steve Fields
subrniued graciously to my fumbling allempts 10 intcrview lhcm. I am espedally
graleful to Ben Mason of Califomi a Computcr Systcms for a thorough technical review.
Uis inpul made Chapters 14 and 15 much bellerand dceper. My wife assisted the book in
ways too numerous to mention.

My own CP/M system, which acted both as word processor and as guinea pig for
my experiments. performed nawlessly through Icn monlhs of heavy usc. For lhatl feel
some gralitude toward the manufacturers of ils components: CCS. Diablo. Godbout.
I-Iealh and Morrow.

David E. Cortesi

vii

Contents

PrefaCt' "

I)art One A TUTORIAL fOR USERS AND PROGRAMMERS

Chapter I COMPUTER FUNDAMENTALS

TilE COMPUTER: AN ORGANIZER

THE FIRST LEVEL: HARDWARE
The Chip
Input and Output
Instructions

THE SECOND LEVEL: A I'ROGRAM

HARDWARE VERSUS SOtiWARE

THE THIRD LEVEL: AN OPERATING SYSTEM
File System and File Storage
Working Storage
I>rograms and Programming
Programming Languages
Interpreters and Compilers
The Lure or I>rogramming
Program Efficiency

THE .'OURTH U:VEL: API)lICATIONS

.- RTHER READING
Computer Magazines
Computers in Society
Managing Computers
Programming
Computer Architecture

3

4

4
4

5
5

6

7

7
8
8,,,,.,.

II

II
II
12
12
12
13 ix

COlltellts

Chapter 2 HARDWARE FOR CP/M 14
-..J

COMI'UTER I'ACKAGING 15

ELECTRONIC PARTS 16
The Processor 16
Busses and Boards 18

THE TERMINAL 2.
Human .'actors of the Terminal 2.
Hardware Factors of the Terminal 22

DISK STORAGE 24
Diskette Storage 24
CP/M's Use of Diskettes 27
Diskette Variations 28
Diskette Compatibility 29

HARD DISKS 31
Hard-Disk Technology 31
The Uses of Hard Disks 32

CENTRALIZEn DISKS 32

PRINTERS 33
Typewriter Printers 33 -J
JI,'lalrix Printers 35
Other Printers 37
Printer Interfaces 37

OTHER I/O nEVICES 38

Chapter 3 SOFTWARE .-OR CP/M 3.

CATEGORIES OF SOFTWARE 4.

VERSIONS OF CP/M 4.

THE MONITOR 41
The Console Command I'rocessor 43

nLE COMMANDS 44

UTILITIES 44

LANGUAGE TRANSLATORS 45

APPLICATIONS 45
X Word-Processing Programs 45 -...-'

Contents

EI«tronic Worksheets 4<i

'-- Other Application Packages 4<i

S Mi\'lARY 47

Chapter 4 MANAGE1\tENT PROBLEMS 48

BUYING HARDWAR": AND SOFTWARE 49
Shopping for Hardware 49
The Importance of Advice 50
IJurchasing Software 50
E\'aluating Software 51

SElTlNG UP THE COMPUTER WORKPLACE 52
The Terminal 52
Diskettes and Drj\·cs 53
The Processor 53
The Printer 53

PLANNING fOR DISASTER 54
File Backup 54
Insurance 54

'--' DATA SECURITY 55
Planning for Security 55
Computer Crimes 56

Chapter 5 CO~"MON COMMANDS 57

LEARNING THE KEYBOARO 5.

INITIALIZING CP/M 59
The "'irst Time 59
Initializing with Resel 60
Initializing with Control-c 61

THE COMMAND PROCESS 61
Typing Commands 62
Uppercase and Lowercase 64

lNTRODUCING THE nLE SYSTEM 65
Filerefs: Naming Files 65
Introducing DIR 67
Ambiguous and Explicit Filerers 67
DIR with Ambiguous Hlerefs 68
Using Drh'ecodes 6. xi-

Contellts

The Drh·ecode Command 70
The STAT Command for File Information 71 -'
The REN Command to Rename "-iles 72

The ERA Command to EraS(' Files 73

Protecting Disks 74

STAT to Change File Status 7'
Summar)' of STAT 77

DlSPLAVING FILES 77

The TYPE Command 7'
Stopping Output with Control·s 7'
Console Cop." with Control.p 79

Chapter 6 PIP and 110 DEVICES "
fORMS OF THE PIP COMMAND .2

PIP "-OR DISK fiLES .2
Cop)'ing Single Files '2
Copying Groups of files 84
PIP Options for Disk Files .5

OTHER lIO DEVICES 86
The Logical De\'ices 86 ..J

The Physical Devices '7
STAT for 1/0 De\'ice Information .9
Making an Assignment Chart .9
STAT for I)e\'ice Assignment 90
Logical and Ph)'sical DC\'ices in MP/M 92

PIP FOR LOGICAL DEVICES 92
PIP Options for Formalling 93
PIP Options for Serial Transfer 9'
PIP Summary 9.

Chapter 7 USING ED 99

[I)lTOR CONCEPTS 100

The Edit Session 100

File Handling 100

Types of Editors 101

USING ED 102

An Initial Session 102

xii Controlling the Edit Session 103 ~

COII/ellts

The form of ED Commands 105
Controlling t-ilcs and Working Storage 106
Displa)'ing Text 107
Controlling Line and Character Pointers 109
Inserting and Deleting Text III
Text Substitution 113
Searching for Text "'Macro Commands 115

Chapter 8 LIBRARY ORGANIZATIO~AND SUBMIT II.

DISKETTE CARE 117
Diskelte Hazards 117
Diskelle Accessories 117

I'HEPARING A NEW DISKETTE 118
Mechanical Preparation 118
Formatting "'SYSGEN "'Receh'ing Distribution Diskettes '"

ORGANIZING THE LIBRARY 122
Categorizing Diskettes 122

"--' ORGANIZING A I-IARI) DISK .24
The User Code "5
Hard·Disk Backup ".
Organizing Under MP/M ".

AUTOMATING WITH SUBMIT AND XSUB 127
The SUBMIT Command 127
SUBMIT Parameters 129
The XSUB Command .30
Uses of SUBMIT 132

Chapter 9 THE REPRESENTATION OF DATA 134

(....1EANING IS A HUMAN CONCEPT 135

BINARY I)<\TA 135
Binar)' Units 135
Number S)'stems 135

REPRESENTATION OF NUMBERS 137
Binary Integers 137
Binary-Coded Decimal 138

~
Floating·l)oint Representation 138 xiii

Coltlems

REPRESENTATION OF CfIARACTERS: ASCII
Printable Characters
Control Characters

WORKING STORAGE

13.
\41
142

145

Chapter 10 THE HLE SYSTEM 147

CONTROL OF THE DISKS \48
PhJsical Organization \48

DISK ORGANIZATION \4.
The STAT DSK: Display 149
Resen·ed Tracks and Data Tracks 150
The "'ill' Dir«tor)' 150
Allocation Blocks 150
Directory Entries and Extents 15\
File Allocation 152
The $TAT Fill' Report 153

SEQUENTIAL FILE ACCESS 154
Creating the Fill' 154
Writing to the File 154

-.../
Completing the t-ile 156
Reading the File 156

DlRECT fiLE ACCESS 157
Input with OirK"t Access 158
Output with Oir«t Access 15"
STAT and Oir«t Access 15"

TYPES OF FI LES 159
ASCII .'i1es 15.
Dimlry Files '60

Chapter II LANGUAGE TRANSLATORS \6\

LANGUAGES AS TOOLS \62

INTERPRETERS VERSUS COMIJILERS 162
Using an Interpreter 162
Using a Compiler 163
Partial Compilers .64
Matched Translators 164

~

xiv THE REPRESENTATION OF PROGRAMS 164

COlllellls

JUDGING A LANGUAGE I"
'--' TRANSLATOR CASE STUDIES 167

tin)' c '67
Microsoft Dl!ik BASIC 5.0 168
CBASIC 169
PascaUZ 170
Digital Research PUI 170

Chapter 12 ASSEMBLY LANGUAGE I)ROCRA!\'IMING 172

EVALUATING ASSEMBLY LANGUAGE 173

USING ASSEl\IBLY I.ANGUAGE 173
The Assembly Process 173
Making a .COM File 17.
Relocating Assembly 175

ASSEl\IBLER t"EATURES 177
Conditional Assembly 177
The Macro Concept 178
l\'1aCI'O Libraries 181

CP/M PROGRAMMING CONVENTIONS 183
"- Standard and Nonstandard Addrt'SSC.'S 183

Low Storage 183
CCP Sen'ices for Command Programs .86
Program Entry and Exit .87

DEBUGGING AIllS .89
Using DDT '89
Appl)'ing Patches '89

Chapter 13 OOOS SERVICES FOR APPLICATIONS 193

SERVICE RI<:QUEST CONVENTIONS 194

CONSOLE INPUT REQUESTS 195
Sen'ice I: Get a B)'te .96
Service 10: Get a Line 196
Sen'ice II: Console Status .97
The CISUS Library .97

CONSOLE OlITPlIT REQUESTS .99
Senice 2: Write a B)'le 199

~ Senice 9: Write a String 200
The casus Librar)' 200 xv

COlltellts

FILE·HANDLING CONCEI'TS 202
The Idea of the Default Oril'c 202 -.J
Service 25: Get Ot'fault I)rh'e 202
Sen'ice 14: Set Default Drh'c 202
The .'i1c Control mock 202

FILE INPUT R.:QUESTS 204
Sen'ice 15: Open Exisling !,'ile 204
Opening Ihe Defaull FeU 205
Sen'ice 26: Set Burrer Address 205
Sen'ice 20: Sequential Read 20<
End of File 2.-
The TF Command 20<

flLE OUTI'UT REQUESTS 207
Ot'leling an Existing File 207
Service 22: Make a File 208
Sen'ice 21: Sequenlial Write 20'
Service 16: Close a File 20'
The FT Command 110
The SEQIO Library 212

mRECT ACCESS 212
Sen'ice 34: Direcl Wrile 212
Files with Holes 213
Sen'ice 33: Direct Read 113
A Hazard of Direct I.npul 213
Senice 40: Wrile with Zero Fill 214
Sen'ice 36: Gel Direcl Addr6S 214

Chapter 14 SERVICES FOR SYSTE~I PROGRAMMING 115

TWO USEFUL LIBRARIES "'The HEXSUB Librllr)' "'The DPSUB Librllr)' "'The XCMD Program 21'

THE DISK DIRECTORY 218
Re\'icwing the Director)' 218

CONTE1'Il'T$ OF DIRECTORY ENTRIES 220
The User Code 221
The Atlribule Bits 221
The Exlent Number 223
The Record Count 224

xv; The Dala Map 224 -.J

('omellts

THE SEARCH SERVICES 224
Sen'ice 17: Search First 22S

'-' Sen'ice 18: Search Next 225
Using the Search Requests 22S

DISK SPACE MANAGEMENT 229
Fundamental Parllllleters 22.
The nisk I)arameter lUock 232
A H)'pothelical Disk 237
Activating a nrh'e 238
Space Allocation 23'

DISK FORMA1TING AND THE DIRECTORY 241
The Directory High-Water Mark 24.
The Reason for ESh 241
The t-i11 Character Dilemma 241

Chapter 15 THE BIOS AND SYSTEM GENERATION 243

THE BIOS 244
The BIOS Intcrface-CP/M and ~IP/M 244
The BIOS Interface-CP/l\'I-86 244

'---' THE BIOS START FUNCTIONS 246
The Cold Start Entry 246
The Warm Start Entry 247
The CCp's Aotoconunand Entr)' 248

THE RIDS DISK FUNCfIONS 248
Disk Selection 248
Track Addressing 249
Record Addressing 250
Reading and Writing 252

THE BIOS SERIAL 110 FUNCTIONS 258
Functions for Logical Devices 258
BIOS Support of the J>hlsical I)e\'ices 260

CUSTO:\UZING THE BIOS 26'
Changing the Storage Size 26.
Changing the I)isk Functions 263
Changing the Serial liD Functions 264
Testing BIOS Changes 265

SYSTEM GENERAT10£lj 265
The Bootstrap Tracks 266

~
The MQVCPM File 267 XVII

COlltellts

The MOVCPM Command
S3\'ing the Relocated CCP and 8005
Adding the 810S
The SYSGEN Command

INDEX

Part Two A REFERENCE FOR USERS AND PROGRAl\'1MERS
REFERENCE

Summar}' Form and Use of Filerefs
Summar}' EffKts and Use of Ambiguous ."ilerefs
Com'entional File T}'pes in CP/l\'l and MP/M
Control Characters Recognized b}' CP/M and 1\11)",1
l)hJsical De\'ice Names
I/O Device Assignment Charts

COMMANDS
Topical Summar}' of CP/M Commands
Alphabetized CP/M Commands

ASCII, HEX
ASCII Code in Hex and DKimal
ASCII Control Characters
8·bit I-Iex to Decimal and lUnar}', with ASCII
16·bit Hex to Decimal, Positive and Unsigned Values
16-bit Hex to I)Kimal, Signed 'egath'e Values

8080, Z80
8080/8085 Instruction Set functional Tableau
ZSO Instruction Set Functional Tableau
Z80 Assembler SJnta.'l;-Cross·Reference

ASM, MAC
ASM Command
ASM Error l\'1essage
Statement Formation in ASM
Elements of AS!\I Expressions
MAC Command
MAC Command Parameters
MAC Error Messages
Statement Formation in !\lAC
Elements of MAC Expressions
Macro Substitution in !\'1AC

268
269
269
271

283

29'

293
294
295
296
298
299

30'
302
305

377
378 -...-/
380
383
386
387

389
390
392
394

397
399
400

"'"""2
""5
406
407
409
4'0
412

ASSEMBLER
Topical Summary of Assembler Directil-es
Alphabetized Assembler Directil-es

BOOS
Topical Summary of BOOS Sen'ices
Numeric Index of 8DOS Sen'ice
Summary of BOOS Error Codes
BOOS Service Requests in Sequence

NDOS
Summar)' of NDOS Senices
NODS Sen'ice Requests in Sequence

BIOS
Topical Summar)' of IHOS Entry Points
BIOS Entry I)oints in Sequence

!\'IAI'S
CP~I·80 Storage Map with Comments
CPfM·80 Lo,,· Storage Map ,,-ith Comments
FeB and Directory [ntr)' Map with Comments
Director)' Label Map
Extended File Control Block Map
Disk Parameter Header Map with Comments
Disk Parameter Block Map with Comments
CP!NET Sla\'e Configuration Table Map with COlllments

COIIICIiIS

415
41.
419

..7..,
4"
454
457

52.
531
533

53'
541
543

557
558
56(J

562
564
565
566
5.8
570

x,x

Part One

A Tutorial for
Usersand

Programmers

Chapter 1

Computer
ntals

Computer Fft"damemafs

This chapter is intended for people who arc about to work closely with a computer for lhe
first time. You might own a small business and be shopping for a solution to your
bookkeeping problems. You might be a writer exploring the much-touted advantages of
the computer as a word processor. You might be an employee whose boss has given you
the dubious distinction of becoming a computer operator for the machine she is about to
purchase.

Arc you anxious about it? New things make everyone anxious. Anxiety about
meeting a computer will stem from t.....o things: you don't know what the machine may
demand from you. And worse, you don·t know what questions to ask or what words to
use in asking them, People who know computers use unfamiliar tenns and seem to
become tongue-tied when you ask for explanations. They prefer to c1atler out a cryptic
line on a keyboard, point to the screen, and say, "There, secT-as if they'd clarified
something.

The aim of this chapter is to give you a sct of concepts that are common to all small
computers and the words that are used to name those concepts, Our space is too limited
for a complete course in computers, but we'll perform the introductions. There arc
suggestions for further reading at the end of the chapter, there is the remainder of this
book, and there arc people to whom you can talk. Once you've added to your vocabulary
the terms we'll define here, you'll be able to read, and to ask, and to understand the
answers.

THE COMPUTER: AN ORGANIZER

Our first definition is necessarily that of the word compll/er. TIle word is misleading if
you havcn't been associated with these machines, for it focuses your anemion on
computation, and that is flO(the main use of a computer, The French word is a beller
description of the functions of the machine. It is orJillaUllr, meaning lha' which pillS
things in order, a sequencer, arranger, or categorizer. Most computers spend most of
their time sifting, sorting, selecting, and finally displaying things. A computer is a
machine that arranges things according to some pattern, then eilherdisplays the arrange
ment or saves it.

THE FIRST LEVEL: HARDWARE

At its most fundamental level a computer arranges pallcrns of electric pulses. The fann
of this arranging is defined by the machine's wiring, which these days is usually
embodied in tiny lines etched on a small piece: of silicon: the famous chip,

The Chip

The faCI that the integrated circuits, or chips, that make up a modem computer are so
4 very tiny should not be important to you. After aiL why should you care what size a -...'

The First Level: Hardware

computer is, so long as it does the job? It is marvellous that such complex paltems can be
wrillen so small, but the practical benefit of this achievement is not in the size of the
machine but in its price. Because they are so small. and because they are made by
automatic equipment, modem computers have become inexpensive. Because computers
cost so little, pwple who would have passed their lives without seeing a computer now
have one as a component of a microwa\'c oven or as a lOy for their children. When
surrounded by more expensive auxiliary devices, the computer becomes an office
assistant or an aide to the professional person.

Input and Output

The flake of silicon is helpless and useless without some connection 10 the rest of the
world. Before a computer can move from being an arranger of pulses on a chip to being
an assistant (or an oven controller), it must be linked to its environment.

In the jargon of the trade, the links are called input.output lil'del'S. This is usually
abbreviated to JlO dt'I'ius,

Almost any physical effect can be encoded as an electric signal. Think of a tape
recorder, which con\'erts sound waves to electrical pauems and records those patterns in
the coating of the tape. A computer manipulates patterns of electric pulses. If some
physical effect can be coded as pulses of a compatible son, then the computer can receive
and manipulate them. These operations are always spoken of from the viewpoint of the
computer, and so the receipt of a signal from outside the chip is called an input (of data to
the machine).

A tape recorder can go both ways. It can play its tape back, thus convening the
stored panerns to sound again. And if there is some device attached to the computer that
will conven its patterns into a physical effect, the computer can make something happen
outside itself. This act is called an Oll/plll (of data from the computer).

Since almost anything can be coded electrically, and almost anything can be
amnged for electrical control. with the right set of 110 devices a computer can be
inserted into almost any process. One could imagine a Rube Goldberg contraption of
motors and levcrs that would allow a computer to paddle a canoe. It might not be useful,
and it would be too cxpensive as a joke, but it could be done.

The computers that use CPIM, the subject of this book. never do anything as
dramatic as paddling a canoe or as domestic as timing a roast. They are equipped with
110 devices whose purpose is the storage or display of letters and numbers. These
computer.> spend their time receiving input that represents leners and numbers and
sending output that also represents lettcrs and numbers, differently arranged.

instructions

1be ways in which a computer can amnge pulses are striclly limited by the circuits
engraved on its chip. and they are few and simple. No computer can do very much. but

.......... what it does, it does very quickly. Some of the sequences defined for a computer are of 5

Computer Fu"dame"tals

this fonn: Take a train of pulses from here on the chip, combine them with pulses from
there. and put the result over there. By specifying the particular ways in which the pulses
are combined, the computer's dcsigner can create sequences that perfonn simple
arithmetic. Other sequences just copy data from place to place on the chip. still others
compare pulses and producc a signal that says. in effect. ''This paltem of pulses,
considered as a number. is greater or less than that one,"

Each simple operation designed into the computer is called an inSlrue/ioll; all
together they constitute an inSlrueliol1 se/. Each instruction can be called into play by an
operarion code. which is simply a number. Thirteen. when received by the computer,
might cause it to multiply two numbers, whereas 36 might mean "receive input from that
device." A machine's instruction set is sometimes called its machine language. This is
the first level at which we can view the computer: as a chip, pulses, and instructions.

THE SECOND LEVEL: A PROGRAM

The second-level view of the computer becomes apparent when we provide it with a list
of operation codes and watch it run through the list, doing one after another vcry rapidly.
The usefulness of such a list arises from thc fact that the computer can jump around in the
list on the basis of the outcome of some instruction. The list can say, in effect, "If the sum
of two numbers is zero, do these instructions; if not, do those." Or it can say. "Repeat
this series of instructions until a certain condition is true." Such a list is called aprogram.
The power of the computer. and all its effects on sociCly. come about because it can carry

-../
out a program. and because the program can branch (make a choice) and loop (repeat
some number of times). Without a program the machine has no meaning except at the
firsllevel and is useless. With a program il can be made to drive its I/O devices in any
way the aUlhor of the program chooses. Given a differenl program il can do somelhing
else.

8mh the power and the weakness of the machine are revealed al this second
levcl--power. in its ability to pcrfonn any list of instructions very rapidly. and weak
ness. because it is quite impossible for the machine to do anything else than its current
program, and because the program can only be composed of the very primitive instruc
lions engraved into Ihe machinc by its designer. Balky children play Ihe game of doing
exactly what they are told to do and no more: Ihe game is llleantto be infuriating and is
quite successful. A computer is always playing thaI game, It does precisely what you
told it (provided you said it in the machinc's tiny. rigid vocabulary). If that is what you
meant, fine; if nOI, too bad. There arc no circuits in the machine for judgment or for
common sense. It is not possible to cngr:n'e values or a sense of ethics on a silicon ehip.

Whate\'cr there is of judgment or of ethics in a computer system has been coded
there by lhe person who wrote Ihe program. 1be machine sees nolhing ridiculous in the
quantity 50.00. If the author of the program failed 10 include a test for zero, lhe machine
will rapidly and precisely print a bill for that amount. Most of the computer errors
headlined by lhc media arise fromjusl such oversights. Many a so-called computer crime
has been perpetrated by someone who discovered and exploiled a programmer's mis
take. As computers become more central 10 the world's systems. the burden of responsi............

6 bility on the world's programmers becomes heavier,

Hardware Verslls Software

HARDWARE VERSUS SOFTWARE

Now we have cnough background to define two very important terms: hardware and
software. A computer systcm is composed of the computer chip itself and its many
supponing chips. and some mechanical and electrical units that provide its input and
output. All these units are known collectively as the hardware. 1be whole purpose of the
hardware, its only reason for existence. is to make it possible for you to run programs.
The programs used with a computcr are callcd, collcctivcly. the software.

It is vel)' important that you grasp the distinction between hardware and software.
Here is a mctaphor that may help: A program is to the computcr as a record is to a
phonograph. Software is to a computer system as your reoord collection is to your hi·fi
system. A phonograph is useless without a record to play. Just so, a computer has no
value without a program to run.

A phonograph record is a copy of some original performance. Once the master disk
is cut, the record company can make copies easily. and anyone who wants to hear that
performance can do so at low cost-provided they have the right kind of phonograph on
which to play it. A program is a record of one programmer's solution to some problem.
Once written, it can be copied and published for the usc of anyone who has the right kind
of computer on which to run it. There are many companies thai publish software. and as
the owner of a computer system. you will become as careful in your purchase of
programs as the most discriminating audiophile is in searching out and choosing records.

Programs, as we'lI see, are written in much the same way that music is written by a
composer. In this sense a program resembles a musical score or the scrip! of a play. A
program is a copy of the instructions for a performance. rather than a reproduction of the
performance ilself. We could say that a program is to a computer as a script is to the cast
ofa play, or as a score is to the orchestra that will perform it. One flaw in that metaphor is
that, unlikc an actor or a musician. a computer is ullcrly incapable of improvising. It
always follows its script in an exact. mechanical way.

THE THIRD LEVEL, AN OPERATI 'G SVSTEM

On the first level at which we can view the computer we see it as an arranger of electric
signals. At the second level we see it perfomling a program composed of elementary
steps. This book is concerned mostly with Ihird-le\'Cl and founh-le\'el views of the
computer. Creating a program allhe second level is a tedious and enor-prone business.
Exactly the right digits. hundreds ofthcm, ha"e to be entered into the machine. The first
programs wrillen for a ncw type of machine have to be made this way. They arc the
programs that comprise the third level: an operatill8 ~')'stem.

All operating system is a set ofprograms tllm apply the power ofthe compwer to the
task of mannging the computer. An operating system will contain several kinds of
programs. Some of the programs are concerned with managing the operations of the
computer's YO devices. Others use these to keep track of named collections of infonna-

.......... tion. calledjilt'S. SlilI others are conccrned with the job of loading yet othcr programs on
command from a user. 7

Computer Fundamentals

Once we reach this third level. the machine itsclfbecomes unimpollant to us except
as il runs the operating system programs. Our attention shifts to the programs. They
define the relationship between the machine and ils users; they give the machinc its
personality. From this level on, we don't care whal kind of hardware we use. for all we
see is the software (the whole collection of programs available). To most uscrs a
compUler is nothing but a means of running programs. Excepi for its price and its
reliability the hardware is irrelevant.

File System and File Storage

Of all the software available the operating syslem is the most important. And of ils parts
!he mosl impollanl are lOOse programs lhat support thefi/~ syst~m, a means 10 kllhe user
create a colleclion of dala. give il a name. and store il on a (lisk~tt~or a WJH for later use.
Such a named collection of data is called afi/~. All pennanenlly slored data are kepi in
files. The file system includes programs Ihat allow you to create files, erase them. and
rename them. Utility programs allow you to copy files from device 10 device (for
example, from diskette to a printer for examination), Diskeues and tapes are the
computer's permanent storage. Files saved on a diskene arc pcmlanent in the way a tape
recording is pennanen!: they remain until they are erased or written over.

Working Storage

Working storag~ differs from file slorage in several ways. Working slorage is a
rapid-access scratch pad from which the machine reads (he operalion code numbers of a
program. and in which !he machine will save !he working values needed by the program
as ilruns. It is dosely coupled to the computer chip and can be accessed by it in less Ihan
a microsecond. It is made up of inlegrnted circuits. and its contents vanish Ihe instant thaI
power is tumed off. All the instruclions and data that slream through the comp1Jler chip
come from working storage. It is a bliffer or temporary holding location belween the
computer and file storage.

There are several conventionallerms for working storage. The word "memory" is
often used. Engineers speak of RAM, short for Random Access Memory. Neilher is a
good tenn, llnd we won't use them in this book. What you and I know as memory bears
absolutely no resemblance to any kind of computer storage: il is dangerous to speak of
computers in human tenns. for then we come to expecl too much of them. However,
you're likely to meel the lemlS "memory" and "RAM" else.....here.

Programs are stored in files. and load~d (Ihat is. copied) into working slorage
before lhey can beuecul~d,or run. BOIh tenns mean applying the comp1Jterto the list of
insll1lctions. One small part of Ihe operaling syslem is residenl inorking storage; it is
loaded there when the machine is Slalled up and remains until it is shut down. This
Monitor comains the program thatillioad another program from a file al the users
requesl. and lhen call the loaded program (Ium Ihe computer's anention to that prog-

8 ram's instruclions). '--'"

The Third Level: All Operating System

Programs and Programming

"'-- The word "program" appears often in the foregoing paragraphs. Let's draw a breath and
think about what a program is and how it is creatcd. A dictionary definition ofthe word is
"an outline of work to be done; a prearranged plan of procedure." Earlier we said that a
lisl of oper.ltion codes is a program. That was a "plan of procedure" expressed in
machjn~ lan8uag~, SO called because the operalion codes defined for the machine are its
vocabulary. in a sense, When the list has been loaded into worting Storage the machine
can cycle through it. and Ihus the plan will be camed out.

Programs are composed by people, using the lools provided by the operating
system. The act of composing a plan for machine exccution is callcd programming, and
the person who does it is acting as a progr(lmnrer. The plan expresses the steps of the
solution to a problem. Such a step-by-slep solulion is called an algorithm: it is the
business of a programmer to design algorithms and express lhem in programs.

Programming Languages

Thanks to the operating systcm, the programmer need not write the operation codes but
can express the problem in a programming language. There are many of these. A
programming language really is a language. wilh pans of speech, a vocabulary, and
rules of grammar. Each of lhese elements is IllOf"e restricled than the same element of a
natural language such as English, II wouldn'l be possible 10 have a coO\'ersation in a

'-'" programming language because ils rules would nOI be nexible enough or liS "ocabulary
general enough to suppon ordinary speech. A programming language is an artificial
language designed for casy expression of the solutions to some class of problem. Each
one represents someone's idea of the best way to state those problems for machine
solution. None are completely successful: there are always problems that are awkward to
solve in one language but easy to solve in another. Programmers. because of their
experiences of ease or difficulty. and because lhey invcsi a lot of effon in learning a
language, become very partial to their languages. There are fads and fashions in
programming languages. and one or another will temporarily become the "in thing" to
use,

Interpreters and Compilers

A program is composed in the chosen language and entered into the machine as words,
numbers, and punctuation. The text of tbe program is usually slOred in a file. Then an
operating system program, a language Iraf/slator, is loaded. This program will read the
program's text and translate it into a sequence of machine instructions. These can then be
executed by the machinc, and exccution will result in the actions the programmer
intended-provided Ihat the programmer wrocc what was meant.

There are tWO Iypes of language lranslators: inrerprelus and compilers, An inter-
.......... preter program examines each unit (word, number, phrase) oflhe program text in lurn 9

ComplIIer FUlldamemals

and carries out the machine instructions it signifies. Both the interpreter and the program
text remain in working storage during execution. and so the space available for text and
for the program's data is limited. Because the translation is carried out each time the
program is run, the overhead of machine instructions needed to translate the progmm is
added to the program's execution time. The advantage of an interpreter is that it allows
easy tesling and debugging (locating and fixing errors). When an error occurs, the
interpreter can report on the problem in the terms of the programming language that was
used. A correction can be made at once and ex«ution continued.

Some language translators are compilr-rs. These are programs that perform the
translation to machine language just once. The list of machine instructions that results is
stored in a file. This translated \'ersion of the program text is called an objf'cI progrtlm: it
can be loaded and run exactly like an operating system program. A compiled program
usually runs faster than an inlel'pl"eted program. and has ITl(l("C working storage available
to it. However. it takes longer. and requires a beller knowledge oflhe operaling system.
10 test and debug a compiled program.

The Lure of Programming

For Ihose who take to it. programming is one of the most fascinating games ever devised.
Easier than chess and more varied than bridge. programming is both an intellectual
challenge and an act of personal domination over the machine. As programmers gain
experience. they try to get the right output in the most eflicient way, while expressing the
algorithm in the most elegant, concise terms. Because of this challenge, recreational
programming can be more absorbing than reading or games. However, programmers.
like bureaucrats. are always subject to the temptation to confuse means with ends. In
their fascination with the intricale puule of machine and language. they are apt 10 forget
the people who will actually use the program.

Program EmdenC)-'

Programmers arc often concerned with making a program run as fast as possible. A
program's speed depends mostly on the algorithm-there are always faster and slower
solutions-and on the speed of the 110 devices that the program uses.

Programs in the operating system must run as quickly as possible in order to reduce
the overhead cost of running them. Such programs are usually written in machine
instructions rather than in one of the easier programming languages. A language
translator called an assembler is used for this. An assembler gi\'es names to the operation
codes and to locations in working storage. This allows the program to be composed in
symbols people can read. thus relieving the programmer of much of the tedium of using
the machine at its second level. Writing machine language programs using an asscmbler
is called assf'nrbly languagf' programming. The terms nrachinf' langllag~ and auembly
lang/lage are often used interchangeably, allhough the second refers to a symbolk

J0 encoding of the numeric codes of the first. -..-'

The Fourth Level: Applicatiolls

THE FOURTH LEVEL: APPLICATIONS

The collection of opcnlling-system software-file system. language translators. and
various utility programs-makes it JXlssible for programmers to build applicatiQlls. An
application is any program whose output is dedicated to use by people, rather than to
managing the affairs of the computer system. The tenn covers just about anything you
can do with a machine other than programming it: games, sinlUlations. teaching
programs. lext fonnatting programs, and commercial accounling all are applications.
1be programs may be purchased. or wriuen under contract by a professional program
mer. or you may write them yourself. Except when it is being used for programming. the
machine will spend most of its time running applications.

Applications arc the fourth level at which we can view a computer system. The
microscopic wonders of the circuits. the ingenious printers and disk drives, the elegant
complexity of the operating systcm--all exist so that application programs can be
written and run. Only the applications deliver useful work toaid people in their jobs. and
50 only the applications can justify the cost of lhe computer.

FURTHER READING

This has been a very brief survey of the ideas surrounding a computer. We've defined a
number of tenns in a casual way; these tenns and others are listed in the glossary al the

"'--" end of the Tutorial .section.
There is much more to be known about computers than could be told here. Many

topics that have been hinted at are outside the scope of this book. Computer architecture
(the design of the instruction set and va devices) is one field of study; the theory and
practice of programming is another. There are books about the correct relation between a
program and its user (the so-called man-machine interface). about the proper design of
accOllnting software. and about how to manage the computer as pan of a business. Not
nearly enough work has been done on the effects that computers are having on our lives
and society. but some things are known and have been published.

To use computers you must be willing to read. Any system you buy wilt be
accompanied by pounds of printed matter. Moreover. there has recently been an
explosion of books and magazines about compUlers. Even the smallest bookstores have a
dozen or more titles in stock; teehnical bookstores often have hundreds. Here are a few
sources that the author has found useful. Any ofthem will lead)"00 to others. Good luck!

Compuler Magazines

The following magazines try to serve the needs of novices asell as those of experienced
computists. They are especially useful beeause they cany ad"ertisements for new
software and hardware. It is difficullto keep up with that fasl<hanging market in any

........... other way. JJ

/2

ComplIler Flmdamema/s

Crear;,,!, Compllting (P.O. Box 789-1\.'1. !\.'lorrislOwn. NJ 07960) conccnlnllcS on games
and educational computing. with occasional lUlorials.

Desktop Computillg (80 Pine Street. Peterborough. NH 03458) is directed to profession
als and owners of small businesses; it claims to have eliminated all jargon.

Ifllerjace Age (16704 Marquardt Avenue. Cerritos, CA 90701) altcmplS to balance
covcnlgc of home and business uses of small computers. It oflen carries product
surveys and reviews of soflware.

Microsyslems (P.O. Box 789-M, Morristown. NJ 079(0) is a bi-monthly magazine
aimed at programmers and experimenters. II has a strong emphasis on using and
programming CP/M systems.

PoplllarCompuling (70 Main Street. Peterborough. NH 03458) aims "'0 demythologize
small computel1i in a direct and entertaining manner:'

Computers in Sodel)'

Osborne, Adam. Running WiM-Tllt! Nexl Industrial Rel'olution. Osborne/McGraw
Hill. 1980. An enthusiastic view of the possibilities of small machines,

Covvey, H, Dominic, and Neil McAlister. COII/,nller COllciollsness: SlIrl'il'ilrg Ihe
AUlommed 80s, Addison-Wesley. 1980. A more sober analysis that I:lkes care to
poinl OUI lhe problems and dangel1i.

Weizcnbaum, Joseph. Computer Power alld Human Reason, W, H. Freeman. 1976. A
thoughtful, philosophical study of what compulers can be expected to do and what
we should let them do.

Managing Computers

Schneider. Ben Ross. Travels in Compll1ulo1Ul. Addison-Wesley. 1974. An entertain
ing account of how a professor innocently blundered into the cutting edge of
technology.

Brooks, Frederick P. The Mylhit'tll Ma/l-MQllfll. Addison-Wesley, 1978. A compuler
professional's reflections on his career in which he points outlhc ways in which
people and lheir systems can go wrong.

Bardach. E. The Implemell/atioll GWlle: What Happens Afler (I Bill Becomes IAIl'. MIT
Press. 1977. NO! a computer book. but a prnctical analysis of the ways thaI
organizations oppose or adapt 10 change. Essential for anyone wanling 10 inlroduce
a compuler into an existing power structure,

Programming

Amsbury. Wayne. Structured BASIC and Beyond. Computer Science ~ss, 1980. A
dear. well-written. methodical introduction to the fundamentals of progrnmming.
Uses the BASIC progr.a.mming language. available on e\'ery small computer. -..../

Further Reading

Kernighan. Brian, and P. J. Plauger. The Elemellts of Programming Sryle. McGraw
Hill. 1978. Afler you've ~..-iuen a few programs. read Ihis 10 learn what you've
been doing wrong without being aware of il.

Weinberg. Gerald M.• The Psychology of Compurer Programming. Van Nostrand
Reinhold. 1971. After you've wnuen a lot of programs. or if you ha\'e 10 manage
other programmers. read Weinberg to find oul whal is going on.

Compute.. A..chitectu ..e

1be besl practical introduclion to computer design is to learn the architecture of your
own. Gel an assembly language manual for your machine and experiment. For the theory
behind illry FOSler. Caxlon C.. CompllferArchirecture. Van Nostrand Reinhold. 1970.

JJ

Chapter 2

Hardware for
CP/M

COMPUTER PACKAGING 15

ELECTRONIC PARTS
"TheP~r

"Busses and Boards 18

THE TERMINAL 2.
Humlln Factors of the Terminal 2'
Hardware .'actors of the Terminal 22

DISK STORAGE 24
Diskelte Storage 24
CP/M's Use of DiskeUes 27
Diskette Variations 28
Diskette Compatibility 29

HARD DISKS 31
Hard·Disk TechnolClg)' 31
The Uses of Hard Disks 32

CENTRALIZED DISKS 32

PRINTERS 33
Typewriter Printers 33
Matrix I'rinters 35
Other Printers 37
Printer Interfaces 37

/4 OTHER VO DEVICES J8

Computer Packaging

In this chapter we look c1~ly at the hardware pans of a CPIM system. One aim of the
chapter is to imroduce the names of the components and the jargon used to describe
them. Anyone who uses a CPIM system needs these teons to understand the conversa·
tion of salespeople and programmers.

When buying hardware there are choices to be made thai affect the usefulness of the
system. A second aim of the chapter is to alen shoppers to the imponam choices and to
give some guidelines for making them.

If you art new to computers. you should 00(attempt to absorb all this infoonalion in
one reading. Skim the chapter now; return to it when questions arise.

COMPUTER PACKAGING

All systems thai suppon CPIM have cenain hardware pans in common. There will be a
teoninal (a video screen and keyboard) and one or more disk drives. 1bere will be the
electronics. the collection of hundreds ofintcgraled circuits. "These can be grouped inlO a
few components by function: the processor, working storage. and imerfacc circuits. The
teoninal and disk drives will be visible; the electronic pans will be housed in a case of
somc kind.

There are many ways of organizing these pans into cabinets. Some makers put all
the pans into a single box (Figure 2-1). Others put the electronic components in a cabinet
with the disk drives leaving the teoninal separatc (Figures 2·2 and 2·3). Or you can buy a

t'IGURE 2.) photo: PAWEKPIX

An all-in-om~ computtr,ln which pro«ssor, ttrminal, and two S·inch disktUt drh'es art
pac:k.agtd in a singk cabinel. This s)"sltm happens 10 use '·memor}··mapped'" terminal

-..- circuitry. J5

/6

Hardware for CP/M

FIGURE 2-2 pholo: PAWEKPIX

A s)'Slem that places the processor and 10m 8-inch driH$ in a .sing~ cabinet, lcolu"ing the
l«minal srpar1llt. 10 beconn«ltd '-ill an RS-2Jl intconact'. Thiss}'slcm"selectronla 8~ona
lingle circuit board.

system with each component in a box of its own. as we used 10 buy high-fidelity
componems (Figure 2-4). The larger the number of boxes, the greater the number of
choices open 10 the buyer. An all-in--onc system commits you to that manufacture(s
design for all parts of the system. Buying a system such as the one in Figure 2-4 allows
you to select each part individually. There is more 10 this than Oexibility of choice. An
all-in-one system is tidy and compact; a mullibox machine takes more space and there is
a tangle of interconnecting cables behind the boxes. A mix-aod-match system is
open-ended and flexible. but to build one successfully you must know a great deal about
the requirements and design of the components. as some components won't work with

o<he".

ELECTRONIC PARTS

The Processor

THE CPU. The hean of a computer system is a single integrated circuit. the Centrao,-",
Processing Unit or CPU. This is the computer on a chip that journalists marvel at (and it

Electronic Parts

nGURE 2-3 photo: PAWEKPIX

This syslem, like lhat in Figure 2·2, puis electronics lind drh"el; in asingle cabinet. In this case
lhe drh"el; are or S-Inch diameter. and the electronics are organized around the 5-100 bus.

FIGURE 2-4 phol:o: PAWEKPlX

A component S)·stem.•'rom len to right: two 8-inch drh'es, terminal, and S·loo processor
cabinet. This book was wrillen on the S)'stem shown, 17

Hardware for CP/M

is marvellous). whose instruction set programmers love or hate, and whose abilities and
low price ha,'e founded an industry. It is worthless alone. The CPU must be surrounded
by a number of support circuits that feed it timing signals and connect it to the rest of the
machine. This collection of circuitse call the proussor.

TIle Intel 8080 CPU is the machine for which CP/M was wriuen and most versions
of CP/M are wrillen in the 8080's assembly language. The Zilog Z80 CPU came a little
later. lis instruction set contains all of the instructions of the 8080 and adds a few dozen
of its own. Although wriuen in 8080 assembly language, the programs composing CP/M
will run correctly on a Z80 machine. CPfM makes no use of the Z80's extra instructions
but application programs are free to do so: if they do, they can't be run on an 8080. The
Intel 8085 is a later, faster circuit that provides an instruction set almost identical to that
of the 8080; it too runs the 8080 form of CP/M.

In the fall of 1980 Digital Research announced CP/M rewritten for the Intcl8086, a
new circuit with a different instruction set. CP/M-86, as this rcwriuen system is called.
has the same commands and uses the same types of file storage as the original CP/M.
Systems containing the 8086 are as yet rare, as are application programs that will run on
them. It seems likely that within a year or t.....o the 8086 will be a very common CPU for
CP/M systems.

WORKING SrORA<;E. The processor requires a program, and a program requires
\'Oriab/~$, repositories for the values on which it operates. Both the program and its
variables reside inorking storage, a storage medium that the processor can acc~ss(read

from or write to) in less than a microsecond (one millionth of a second). Like the
processor, working storage is built from an array of integrated circuits.

Working storage, like all storage in the system, is measured in b)'t~$. a unit of
storage that can hold a single character or a part of a decimal number. In scientific
notation the prefix kilo signifteS a multiplier of 1000. Computer people, always more
comfortable with powers of two than with powers often, use the same prefix to signify a
multiplier of 1024 (to to the tenth). When measuring working storage. it is convenient
to talk of kilobytes, or units of 1024 bytes. The maximum amOlJnt of working storage that
can be handled by an 8080. Z80. or 8085 machine is 64 kilobytes (written 64 KB), and
this is the usual size sold with new systems. CP/M-86 can make use of more working
storage; 128 KB is a typical quantity. In general you can't have too much working
storage.

INTERFACE CtRCUITS, The processor is connected to the va devices of the system
through ill/erloce circuits: circuits that coordinate the transfer of data. An interface
circuit mediates between the timing and electricallc\'e1s required by the device on one
side. and the timing and clectrical1cvels required by the processor on the other. The
interface circuitry is also built of integrated circuits.

Busses and Boards

The computer will contain a couple of hundred integrated circuits. They must be "'--'"
18 connected to each other in groups. and the groups muSl be connected. The connections

Electronic Parts

are made through metallic traces laminated to a fiberglass board: a circuir board (or
circuit card). The way the electronic pans are packaged into boards affects the price of
the system, the way it is maintained. and the degree to which it can be expanded.

Some designers place all the electronic components on a single board, Others place
each major component (processor, working stordge, etc.) on a board of its own. and then
connect the boards by plugging them into a bus. a set of parallel conductors,

SI:"lGLE·BoARO PACKAGIJoiG. The single-board design is the mOSI economical but the
least flexible. The contents of the computer are established once and for all by the
designer: il would be difficult and costly to add features not allowed for in the layout of
the board. If something fails. there is no hope of swapping a majorcompoocnt: thcentire
board will go in for repairs.

8us PACKAGI:"lG. The bus design (Figure 2-5) costs more: each component has a board
ofils own and the bus ilsclf is a fairly complex circuit board. The extra cost pays off in
flexibility of design. Any board designed 10 work wilh that bus layout can be insened
into the computer and put to use (always assuming the software is there).

Tm; 8·100 8us. The mOSt common bus layout for CP/M systems is called the 5-/00
bllS, There is a wide variety of circuit boards designed for it. and most of them will work

I
fiG RE 2.5 phol:o: PAWEKPIX

a~up of a bus-organized pl"ocessol". The bus itSfU is ,'isible on Ihe nool" of Ihe cabinet at
the righl. The CPU eard is marked: the disk controllel" eard has been pulled Qui ror dispia)'.

19

20

Hardware for CP/M

with each other properly. However. not all ofthcm will work because the S-IOObus was
not completely defined in its carly days. Cenain conductors were left optional. and
different designers made connicling choices as 10 which signals to pUI on the unspecified
lines. The Institute of Electrical and Electronics Engineers (IEEE) has defined a standard
for the 5-100 bus (IEEE-696). Any two components that claim compatibility with the
standard probably can be plugged into the same bus wilhout problems. bUI only
"probably." because the standard is new and there are many older. marginally confonn
ing products slill on the market. Within a year Of SO problems of bus incompatibility
should be uncommon.

THE TERMINAL

Human Factors of the Terminal

The unnintll. a keyboard with a screen. is the point al which the computer and its user
come togelher. You will spend thousands ofhours looking at the screen of your tenninal,
and type hundreds of thousands of strokes on its keyboard. No pan of the system
deserves more careful consideration of its comfon and usability.

TERMtNAI. ScRU:NS. Tenninals look much alike from a distance. but close up they
reveal an astonishing variety. Their differences are far wider. for instance. than those
between one office typewriter and another. Look closely at Figure 2·6. which shows the
character sets of four different tcnninals, in the order in which the characters appear on
the keyboards. Halftone reproduction probably docsn't reveal the differences in contrast
and sharpness that were apparent on the screens, but notice the shapes and proponions of
the leiters. Some charactcr setS are definitely more pleasing than others.

TERMINAL Kt:\'BOARI>S. Think carefully about the keyboard layouts represented in
Figure 2-6. Compare them with the keyboard of an offiee typewriter. If you are not an
experienced typist. minor details of keyboard arrangement won't trouble you. but a
touch typist at a keyboard such as that in Figure 2-6a will be scen to fumble, strike over.
and fume. It is strangc that a designer would create a keyboard layout without consider
ing the keyboards already in existence. yct it happens.

COMI'ARtNG TERMINALS. When shopping for a system. consider the person who will
spend the most time at the keyboard. That person should give the tenninal a thorough
trial. The keyboard should have a good touch. somcthing only a typist can recognize.
Many temlinals have acoustic feedback (they beep or click when a key is pressed). Is that
a friendly noise or an irritating electronic one? Cast a critical eye on the screen. Check
the contrast (relative brightness of letters and background), the sharpness (definition of
the dots composing the lettcrs)_ and the linearity (straightness of rows. consistcncy of
character size) over all pans of the screen. Using a compUler requires an alen. concen·
trated mind. Eyestrain and misread messages complicate mailers.

21

Hardware for CP/M

Hardware Factors of the Terminal

MOIORy.MAPPED TER:\IINALS. Tenninals can be divided into two categorics on the
basis of their interface methods. Some lenninals arc what arc called InttmorJ-mapped
tenninals: that is, a portion of working storage is shared between the compUler and the
lenninal hardware. What the CPU puts in thai area ofslorage. lhe lenninal displays on its
screen, lbe advanlage ofmis design lics in the great speed with which lhe display can be
updated. 1lK: CPU can change the contents of lhe display storage area in microseconds:
only milliseconds will elapse before the display screen reflects the change. Memory
mapped displays give an impression of lively responsh'eness. They have the disadvan
tage lhat 2 kilobytcs (KB) of working stornge must be dedicated to the display and are not
available to programs. Since the tenninal interface hardware must be intimately linked to
\\Iorking slorage, a breakdown in the tenninal will probably keep lhe whole system
down. There is linle chance of plugging in a loaner temlinal while repairs are being
mad<.

TrY-CoMPATIBLE TnIML"'ALS, lbe majority of tenninals connecl to lhe pnx:essor
wim a Slandard plug through which pass standard signal lines. These are usually called
'TIY<ompatiblc" tenninals. The standard is the Electronic InduSlries Association
(EIA) slandard RS-232-C. "Interface Between Data Tenninal Equipment and Data
Communication Equipmenl Employing Serial Binary Data Interchange." RS-232-C was
published in 1969 and has become lhe nearest thing to a universal interface to be found in
the computer world; the 25·pin plug it calls for (Figure 2-7) is seen everywhere. (In 1977J
the EJA published a new standard, RS-449, specifying elcclricallcvcls better suited to
integraled circuits. At lhis wriling RS-449 has had lillIe effect in the markctplace.)

FIGURE 2·7
Ttre business end or a D8-25 plug, lhe Slandard conne<:lor ror lhe RS·232 interCatt. It is

22 common ror onl)' nine or the pins to be used."

The Termi/lal

Any terminal equipped with an RS-232 plug can be connected 10 any computer with
"'-- an R$-232 s<x:kel. but communication isn't guaranteed. The processor (and lhe sofl

ware) have to agree wilh thc terminal on several points. The firsl agreemem musl be on
Ihe signaling speed, or transmission ralf'.

TRANSMISSION RAT£. As the litle oflhe standard says. the terminal and lhe compuler
will eltchange serial binary data: they lransfer I bil al a time. The rate at which bils are
sent is the transmission rate: it is given in bits per second (bps). Induslry people use the
word baud as a synonym for thc phrase "bits per second." This is technically incolTCCt
baud rate and bit rate need not be the same-but has been sanctified by common usage.

l\1ATCIfING TRANSMISSION RA....;. Clearly, each device must send bits at the rate thc
other expects them to come. Most terminals are equipped to operate at any of several
lransmission rales. The slandard rales are multiples of 75 bps: 300, 2400. 4800, 9600,
and 19.200 bps are the most common. The ternlinal's mte is usually set from very small
swilches on an internal cin:uit board. lbe UO interface in most computers will operate al
a variety of transmission rales as well. The computer's rate may be sel by soflware or by
switches, or even by soldcringjumpers on a cin:uit board. Usually it is besllO find QUI
whatlhe processor is SCi up for and then to set the terminal to agree with il. Howc\'er lhe
rates are sct. the IWO devices must use the same rate.

E~n;CTS m· TRANSMISSION RATE, The higher the transmission rate is set, the better.
\..- The data being exchanged between processor and terminal are scnt I bit at a time, butlhe

bits represent bytes (each bytc conlaining 8 bils and standing for one charaCler). Each
byle scnl is framed by sian and Slop bits. There will always be I Sian bit. butlhere may
be I, 1112, or 2 stop bils. This is a maHer thallhe IWO devices must be made to agree on.
again by selling swilches. Doe stop bit is nonnal at rates abovc JO() bps; thai plus a Sian
bit makes a t()(al of 10 bils that muSI be sent for each characler displayed at lhe terminal.
The maximum mte of characler tmnsmission is then lhe bit tr:msmission rate divided by
10. Since the selUn contains 1920 characters (24 lines of 80 characters), a transmission
,dte of9600 bps will allow lhe processor to rewr~te the entire screen in about 2 seconds.
Transmission al 19,200 bps reduces this to I second. That is a significant improvement
when you are using a full·screcn edilor or playing a simulmion game.

MATClltl'1G PAM-lTV, Temlinal and processor IllUSt. finally, agrec on whether they will
use parity-check bilS and if so, whether it is to be an odd· or an even-parilY check. This
again is a mailer of finding OUI what the processor expeCls and selling switches at the
terminal to SUiL

SPECIAL FEATUR~:S, Provided Ihat ils switches have been set correctly, any terminal
with an RS-232 plug shouldork with any processor that has an RS·232 socket. at leasl
for lhe Iransmission of nonnal characters. and that is all that CPfM needs. But modem
tcmlinals provide. and some software uses, functions beyond the simple display of

"--" lellers and numbers. Modem terminals will accept colltrof seqlll'I1Cf'S, special character 23

24

Hardware for CP/M

sequences that cause them to clear the screen, move the cursor 10 acenain location. erase
the line the cursor is on, and so fonh. Full-screen editors such as the popular WOrt! Star -....-/
and Magic Walld programs require these features. and you might want to use them in
your own programs.

C01"ITROI. SEQUENCES. Unfonunatcly. differenlmakes of terminals provide different
sets of functions. Where their functions arc the same. the control sequences that invoke
them may be different. 11lere is no recognized standard for conlrol sequences (Ihe
American National Standards Institute has published a suggested standard bOl it has had
little effect. probably because its Ihree- 10 five-charactcr sequences offend designers
whose practice is 10 usc Iwo<harncier sequences). Therefore. ifyou write a program Ihal
relies on your tenninars features, it will be a d~\'ict:-d~pendt:nt program: one that
probably won't work with any olher make ofterminal. This is no reason not to write such
a program, but the program should allow for easy change to suil other devices.

The authors who publish fcc software solve the problem with e1aborale cuslomizing
schemes thai tailor their programs 10 your terminal type. Once tailored by thc distributor.
the program is just as device dependent as one of your own. Thus if you change terminals
pemtanently or tcmporarily, some of your most used (and most expensivc) software will
need modification.

DISK STORAGE

Diskette Storage

The diskette (Figure 2-8) is CP/M's main form of file storage. Unless you are lucky
enough to have a hard disk (dcscribed in the nexi section) you will keep all of your
software and data as files 00 diskelles. The reliability. speed, and capacity of)'our
diskeues and their drivcs will have a Ioltodo with how reliable. fast. and capacious your
system seems.

Till:: Dlsn:.n:. Figure 2-9 reveals how a diskene is packaged. The plastic jacket is
lined with a soft padding. The recording medium is a disk of a tough. nexible plastic.
coated with a layer of fcrromagnctic material (thaI is. a highly refined rust); ilS surface is
polished smoolh. The thickness of lhe coating, and the required smoothncss of the
surface, are measured in units of millionths of an inch.

THF. DISIH.TTF. JACKET. The plastic disk is enclosed in a simple jacket lined with soft
material. The padding helps keep the disk clean by wiping it as it turns. There are
openings in the cover to allow the disk drive to grip the hub of the disk and slide ils
read-write head over the surface.

At the edge of the diskette jacket is a small nCMch. This is a write-proteci nolch, used
to prevent the diskelle from being writlen on. Eighl-inch diskettes are prorecled against
alteration by exposing the notch. Writing is possible only when the notch is absent or

Disk Storage

FIGURE 2-8 pbo4o: PAWEKPIX
Th~ two dts.kflt~ sius. Not~ th~ writ~·protednotchn. "'hich would be co"ued with labels
lib th~ OMS in th~ photo. Loot. clo5dYi th~ large disk~Ut is SCarting 10 "'i11 und~r tbe bot
lights.

covered with a gummed label. Five-inch diskettes are protected in the opposite way
covering the notch makes it impossible to write on one.

Tm: DISI..:TTE DRIVE. The diskette is insened into a drive for use (each of Figures 2-1
through 2-4 shows a diskette panially insened into its drive). The drive is a mechanism
that holds the diskette. spins it. and reads and writes data on its surface. As the door of
the drive closes. an axle centers the disk in its jacket and flanges grip its hub. The edges
of the jacket are gently squared in a frame. The axle of the drive rotates the disk within its
jacket at 360 rpm (revolutions per minute). or 300 rpm for the smaller 5·inch drives.

1be drive contains hinged anns like a pair of tongs that move in and out along a
radius of the diskette. AI the end of one ann is a r~(ld-\\'rit~ h~ad. a device that can record
data on. and read it from. the magnetic surface passing beneath it. Some dOllbl~·sjded

disk drives ha\'e a read-write head on each ann; they can record data on both sides ofthc
diskette. 1be more common sjngle.sid~ddrives have a pressure pad on the ann opposite
the head. The ann can step in and out o"er the surface oflile diskene. Each step defines a

'--'" track. a concentric circle on the surface of the diskelte. 25

phcNo: PAWEKPIX

16

Hardware for CP/M

FIGURE 2·9
Sen'etsoh diskette. re\·tlIled: lhejacbl is lined ",-jlh padded material.lhedisbttt mrfacc is
smooth and rdl«th·l!. Wbrn the index hole in the disk lilM'S up ,..ilh 1M one in the ja<'ktl it

marks the brginning or a tnclli.

DRIVE SEU:CTlO~. When a program in the processor wanlS access (0 the drive, it
causes the drive 10 be selected. The amlS over the diskette close together. pinching the
diskette gently between head and pad (or between IwO heads). Most drives make an
audible click as they "Ioad the head" in this way; some drives have a light that comes on
to show thai they have been selected.

S.:EKING. The processor can then command the drive 10 move its head to a particular
track. \0 wait until a particular part of the track is passing below the head. and then to
read or write data. Moving the arm to a panicular track is called seekillg. MOSI drives
make a sound as they seek; some emil a loud buzz. others a soft purr. Once lhe processor
has finished using it. the drive is t/eselecwJ. The ae<:ess anns open to let the diskette tum
without friction.

TRACKS A."il) S.:crORS. Data are slored along the tracks. NOlhing is recorded belween
them; read-wrile heads contain erase elements that mop up any slray signals that seep oul
of the line of lhe tnK:k. The diskette is marked by imaginary radial lines into arc-shaped
sectors. The drive always reads or wriles one or more complete sectors. Figure 2- JO
shows a diskette surf~ that was treate<! to re\'eallhe tracks and sectors. Powdered iron -....../
was floated across the surface. Iron panicles clung where lhe read-write head had

Disk Storage

nGURE 2·10 photo: PAWEKPIX

Powdered iron clings to (he mllgneliled areas ora diskelle 10 n~"eal the pallern ortrllcks, The
radial marks lire rormed by the sector boundaries.

magnetized the surface. This struclUre of sectors and tracks is the only organization
imposed by the hardware.

CP/M's se of DiskeUes

CP/M imposes a higher level oforganization on each diskene. It hides the details of track
and sector from the user and makes the diskette appear to contain a collection offiles,
each with a name and some quantity of data. The user need not be concerned with the
location of a file; a file's data may be scattered in different sectors over the surface of the
diskette, but the file can be treated as a single object.

THE DIRECTORY. CP/M reserves the fust (that is. outermosl) tracks of a diskette for its
own uses. The firsllwo or three tracks are reserved for Ihc bootstrap program, a subject
to which we return in Chapter 5. Pan of the nexi track is used for a dir~clory ofthi' files
on that diskene. The directory lists the files by name, and for each gives the localion of
the file's data on the diskette. When a file is needed. CP/M can find il by looking it up in
the directory.

STORING Flu:s. When a new file is created, CP/M allocates space to it from the
available sectors. using those nearest the outside first. When a file is deleted, the space it 27

28

Hardware for CP/M

occupied is made available again. CP/M's main function is to maintain files and keep
Irack of disk space. --../

Diskette Variations

Everything said so far of diskettes is true for all of them, but there arc several
charncteristics thai vary. These have to do wilh the exact size of the diskenes and their
tracks and sectors.

DISt.:£1TE DIAMETERS. A diskeuc may ha,"C one of two diamelcrs-8 or 5 inches: sec
Figure 2-8. (lbese sizes refer to the jackets; the disks inside are slightly smaller.)
Diskette drives are designed (orone size only. The first diskencs were made in the 8-inch
size. The 5·inch size was introduced in an 3ncmpt to lower the cost of diskenc slornge.
The attempt was successful: allhough they hold fewer data. the smaller disks and dri\'cs
are cheaper. Inexpensive home computers offer 5-inch drives. Most CP/M systcms use
8-inch drives because the more serious applicalions of these systems demand the larger
capacity.

SINGLE- ANO DoUHu:-SmEI) Us.:. Diskettes may carry data on one or on both sidcs.
The doublc-sided diskette is a recent innovation: drives with lwo read-wrile heads are as
yel uncommon. Allhough all diskettcs have magnetic material on bolh faces. diskettes
for double-sided usc need to be of higher quality. Double-sided drives ha\'e more parts
and must be made to lighler standards. lberefore. they are more expensive. ""-'"

RECORDI:"G DE.""SITIES_ Diskettes may be recorded 3t one of IWO bit dUlSili~s. A
singlr-dnuity diskelle has bils wriuen aloog ilS tracks at a density of 3200 bils per inch;
doubfr-drnsity recording writes 6400 bils per inch (bach as measured along the inner
mosl, or shonesl. lrack). Dri\'es Ihat suppon double-density recording usually can
record at single density as well.

S.:crOK 517,.:. The secfOrs of a diskctlc may have one of sevcrallengths. For singlc
density recording the nomlal sector size is 128 bytcs. although 256-or 512-bylc scctors
can be uscd. Al double density lhe seclors may be 128. 256. 512. or 1024 bytes long. The
combinations thaI are possible depend on thc drive. its va interface circuits. and the
software. The scefOr size detenllines lhc number of seClOrs thaI will fit along a track. In
most cases more data will fit on a track when fewcr. larger sectors are used.

Son ASD HARD SJ'.CTORISG. The number and size of the seeton; are usually deter
mined by the drive and the software. When this is the case. the diskette is said to be
soft-sectored. meaning that the sector size can be changed. Some dri\'es require a
Iwrd·stXlored diskette. Such diskenes ha\'e a ring of index holes around thcir hubs: the
passage of an index hole marks the end ofa seclor. FormOlting is the operalion of wriling
blank tracks and sectors at the size and densily that will be used. A soft-sectored diskettc
can be formatled to an)' sector size the drive and software will permit: a hard·seclored
one cannot.

Disk Storage

CIIOOSING DRIvES. There are five characteristics that must be known about a diskene:

I. the diametcr. 8 or 5 inches
2. whether it is hard· or soft-sectored
3. whether il is single- or double-sided
4. whether it is recorded at single or double density
5. the sector si1.e: 128,256,512, or 1024 byles

If all combinations were possible at once, you would be faced with keeping track of
diskenes in any of 64 possible fomlats! Fonunatcly this is not the case.

Your drives establish the diameter of your diskettes, whether they are hard- or
soft·sectored. and whether they can be double sided or not. Thus you have a maximum of
eight options when you buy your system. In fact. not all those combinations are possible.
Most likely you wil] be offered a choice only between a less expensive system that uses
5-inch drives (for example, Figure 2·1 or 2.3) and one that uses 8-inch drives (Figures
2-2 and 2-4). If you opt for the larger drives. you will be offered single-sided,
soft-sectored. dooble-density drives as a mailer of course: dO\lble-sided drivcs are more
expensive. whereas hard-sectored dri\'cs arc uncommon in general-purpose computen.

CIlQOSING A FORMAT. Having selected a system with 8-inch drives, you must decide
on how you will format your diskelles. There are really only two choices. It is customary
to distribute software on single-density diskettcs with 128-byte secton. This is the
achangeformat, the only fonnat that every 8-inch drive is sure to handle (there is no
agreed exchange format for 5-inch diskelles). As YO\l buy software you will accumulate
a collection of such distribution diskettes. If you exchange diskettes with someone else
this is the best fonnatto usc for the exchange (unless you are positive that their drives are
identical to yours). For diskettes that will stay with your own system you will want the
maximum storage capacity, and so you will probably use double-density disks at the
largest sector size.

Diskette Compatibility

It is common for any diskeue drive that handles g·inch. soft·sectored disks to be
adveniscd as "IBM compatible:' Such a claim is boIh true and false. Compatibility
among diskettes has little 10 do with IBM. and much to do with factors Olher than the
diskette drive.

H1SrOR\' OF DISKETTES. IBM was thc first company to introduce diskeuc storage.
IBM used diskettes at fint as a convenient way for its service technicians to carry
diagnostic programs. The diskelle drives were hidden under thc covers of the larger
components of an IBM computer and were IlOl made available to user programs.

lbc convenience and low COSI of diskeue storage attracted the auention of many
designen. and the devices were soon built into Olany kinds of equipment. Dozens of
companies placed them in autommic cash registers. word-processing stations. and 29

30

Hardware for CP/M

laboratory data-collection systems-anywhere that data nceded to be captured. lAM
made diskettes the primary storage medium in some of its smaller machines. When
inexpensive personal computers lll'lll appeared. the diskette medium was well de
veloped.

IBM CO~II'AT1RIL!T\'. Because their machines were first. IBM's diskcltc fonnats have
remained the de facto standard for the medium. IBM's document GA21·9182. IBM
Diskette Genera/Information MQ/lUUf. describes lhe diskcnc formats that IBM '5 diffe
rent machines will accept (document GA2l-9388.18M Diskmc OEM Manual. gives
detailed engineering specifications). At the most fundamentalleveJ. any IBM system is
capable of reading a single-densiIY. soft-sectored diskcucith a sector size of 128 bytes.
There is no formal standard in these mailers. but advenisers will usc the phrases "IBM
compalible" and "industry standard" when describing a diskette drive Ihat is capable of
handling thai formal.

A drive may be capable of wriling "IBM-compatible" formal. but its user may nOi
elecllo make il do so, Some of IBM's machines will accept double-density disks: olhers
will nOI. The same is true ofdifferent seclor sizes and double-sided disketles. This can be
said of drives from any manufacturer. In the general markel. considerations of diameter.
hard-sectoring. and fine dctails of fonnatting are added as well.

DATA COMI'ATIIlILlT\', In addilion to the question of whether or not a drive can read a
particular format. there arises the question of how Ihe data are organized. This organiza
tion is defined by lbeoperaling system-in our case. CP/M-and nOi by the drive. CP/M
organizes the diskeue inlo files in a cenain way and Ihat organizalion is oothing like the
scheme used by any IBM syslem. For example. most IBM software expecls a volume
label on !he firstlraCk of the diskette. where CP/M stores a bootslrap program. (You can
buy a ulility program thai runs under CP/M that will read and wrile diskelles in one
format acceptable 10 a number of IBM's machines, usually called the 3740 format after
lhe most common machine to use iL)

D1SKl.TrE EXCHANCE AClloss OI'EIlATING SYSTEMS, Diskettes that are perfectly
compatible as far as the drives are concerned will usually be rejected by an operating
system other than the one that wrote them. For example. the Radio Shack TRS-80 Model
II suppons bolh its manufactercr's operating system. TRSDOS. and a variant of CP/M.
Diskettes prepared under one operating system are unacceptable 10 Ihe other, even
though they are wrillen and read on the same drive.

DISKl.Tr£ EXCHANGE ACROSS CP/M SYSTEMS. 11 is easier 10 exchange diskettes
between CP/M systems. There is a slandard exchange format for CP/M diskeues: lhe
8-inch. single-densily diskette wilh 128-byte sectors. Any CP/M system that handles
8·inch diskeltes will read that formal.

Excep for !he exchange format there is no agreement whatever belween vendors of
CP/M syslems. There are many technical differences between one system's version of
double-clensily recording and thai of another. There is no agreed-upon exchange formal
for 5-inch diskettes.

Hard Disks

JUDGING COMPATIBIUT\'. If you are preparing to buy a CP/M syslem. and if pan of
your plan is to exchange diskenes with another system. you must be wary of all claims of
compatibility. It is safesl to ignore all statements by manufacturers and salespeople on
this subject. The problems of data compatibility arc mallY and subtle; an honest
salesperson lIIay still not be fully informed on the needs of a foreign operating system.
The only way 10 ensure that your plan will work is to carry out a trial exchange of data
before you are committed to the system.

HARD DISKS

Hard-Disk Technology

Disk lechnology was pioneered by IBM in the early 1960s. The firsl disk drives used a
Slack of rigid platters of aluminum. not a flexible scrap of plastic. The disk drives on
large computers today slill use this technology. although much refined.

The concepts of the hard disk are much like those of the diskctte. There is a rotating
disk coated with a recording medium; against the recording surface rides a read-write
head on an arm. The differences arise frolllthe hard disk's speed and capacity.

Hard disks are never exposed to the environment in a cardboard jacket: they are
enclosed in sealed cases and supplied wilh filtered air to keep them clean. They usually
tum at 3600 rpm. ten times the rale of a diskette. This speed reduces the lou'flCY of the
disk. Latency is the time that elapses between the instant the processor selects the drive
until the desired sector fO(ates under the head. Average latency is simply half the rotation
time of the disk: 8.3 ms (milliseconds) for a diskclte. 0.83 ms for a hard disk.

Seck time is another area in which hard disks excel. This is the time required to
move the access arm from track to track. or across severallracks. The access arms of
hard disks are usually driven by more expensh'c and precise mcchanisms that move the
anns much fasler Ihan a diskeuc drivc's ann will go.

lf Ihe read-wrilc head of a hard disk pressed againsl its surface. the heat of friclion
would quickly melt the coating and bum the head. lbc read·writc heads of hard disks
don't touch the disk's surface; they fly a few millionths of an inch above it, supported on
air as a water skier is supported by the flow of water. Once in a very long while, a
read-write head might touch down on Ihe disk. probably dragged down by dust or smoke
particles. The result is called a head crash and it ruins the disk.

IBM's mosl·reccnt·but-onc generalion of disk drives pioneered a new design of
read-write head Ihat was cheaper to makc and allowcd an e\'cn closer flying height of
head to disk. A smaller nying height permils data to be wriuen at a higher densilY; thc
ncw head design allowed smaller. chcaper disks that yet held more data than their
predecessors. Prior 10 the announcement of these products. IBM's intcrnal code name
for the project was "Winchester." One of the unannounced drives was slolen from the
laboratory; in the ensuing trial the code name enlered the vocabulary of computer
cngineers. Other manufacturers ha\'e adap:ed Inc technology to lheir own products. and
"winchesler·technology disk" is the acccp:cd jargon phrase for a colleclion of design
lechniques. 3/

32

Hardware for CP/M

The Uses of Hard Disks

Like the minute size of a computer chip. the intricate technology of disk design is not
really significant to the buyer or user. excepl as il delivcrs more function. more capacity.
or a better price.

DISK CAPACITI'. Hard disks far oUlStrip diskeucs in storage capacity. A double-sided,
double-density diskette will siore about 1000 KB of data (1000 kilobytes or, as il is
usually abbreviated. 1 megabyte or I 11.18). A lypical hard disk for small cOlllputers will
contain 20 MB; capacities up to 100 MB arc available. For a small system this is an ocean
of data space (as a point of scale. the lalest generation of drives for large machines offers
up to 2500 M8 per drive. with strings of four or eight drives nOI uncommon in large
installations).

EsTIMATI~GNEEDED C"PAcln'. A qU3n1ity of 100 M8 ofdala is no! hard to aceumu
lale. but it is llOt always needed o,,-li,,~. that is. inslantly accessible 10 lhe computer. A
single user over tbe course of lime mighl accumulate a library of 100 double-dcnsily
diskelles-data equivalent to Ihat of a 50-M8 hard disk. Some of those diskettesould
represent hislory files. and others would be needed only occasionally for use wilh certain
programs. The data capacity needed on-I inc is determined by the SilC of the largesl single
file or group of files necdcd by one program, It is easy to estimate this need before the
systcm is bought or the program written. Type out the information elcmcnts Ihat will be
stored in a single record of the file using typical values. Count the characlers. ESlimate to -....../
thc nearest thousand the number of records thai will be in the file. and mulliply. Then add
50 percent for contingencies and for lhe unwritten law that files always grow and never
shrink. If the result is less than 500 K8. the file should fit comfortably on a doublc·
density diskette. If it is between 500 K8 and I MB. the file is still suitable for diskette
storage but more. or double-sided. diskettes will be needed. Files up to 2 MB can be
h:lndlcd on diskette but only sequcntially, and boi:h programmer and operalor will be put
to the trouble of changing diskellcs in midrun. If you require files of more Ihan 2 MS.
you musl consider the purchase of a hard disk. If you acquire a hard disk for your CP/M
syslem. you will enjoy faster response to your commands and faster filc access than that
of your less afnuent peers. You also will be faced with a difficult problem of backup, that
is, saving copies of your data against the incvitable day when the on-line data arc lost.
We discuss backup in Chapler 8.

CENTRALIZED DISKS

ReccO! lechnological innovations have made thc use of hard disks more economical
in one special casc---when Ihere are 10 be sc\'cral CP/M systems closc together (in the
same building). Then the expensive hard disk can be shared among the systems. holding
a sct of files for each. Whcn the h<lrd disk's cost is divided in this way. ils pefoSystcm
price can approach that of diskette drives.

Centralized Disks

CPINET. One such system is called CP/NI::I. II is a software solUlion created by
'-- Digital Research. which produces CP/M. Under CPINET an MP/M system equipped

with a hard disk (and perhaps other costly VO devices) communicates with a number of
CP/M systems near it. The central machine makes file space available. transferring data
on request from the user syslems. The CP/NET software makes the communication
between systems invisible to the user, making the remOle hard disk act like a local
diskette drive.

TilE COR\'lJS ''CONSTELLATION.'' A hardware manufacturer, Corvus Industries, has
produced a hard disk packaged with its own processor. The disk-processor combination
altaches to one or more nearby CP/M machines in the same way, and uses the same
interface electronics. as a diskelle drive would be allached. Each CP/M system gets the
same responses from the hard disk that it would get from its own diskette drives, butlhc
hard disk plays the role of diskelle drive for several syStems at once, keeping each
system's data in a separate area.

TilE USE O}. Ct:.VTRALl7.ED DISKS. In both cases the designers have taken pains to
make the interface for both programs and users as much like that of a diskette as possible.
Users are meant 10 regard their section of a centralized disk as an invisible diskette that is
always loaded. Programs access files on the centralized disk exactly as they do files on a
local diskelle drive.

"-' FUTURE DEVELOP...u;....'TS. This is a new area for CP/M systems. and one in which the
technology is changing rapidly. By the time this book is in print there will surely be more
centralizalion schemes than are presentcd here. At the same time lhe corridors of the
industry arc a-buzz wilh rumors of smaller, fasler, and. above all. cheaper hard-disk
drives soon to be announced. It has been lhe bitler experience of computer buyers since
the dawn of the industry that you should never. ne\'er make plans on lhe basis of industry
rumor. Equally biller experience shows thai you should never become commilled to
software or hardware that won'l allow you to lake advantage of new products when the
rumors finally come lrue. CP/M users are fonunate that their operating system. so far,
seems flexible enough 10 expand as the technology docs.

PRINTERS

For all its speed and futuristic flash, lhe main useful product of a compuler is often
ordinary words on paper. A printer is a device that writes on paper at a computer's
direction. There are several kinds, each wilh its uses and drawbacks.

Typewriter Printers

"-- Tlle typewriter. in the form of the Teletype. was one of the first VO devices. For our
purposes a typewriter is a printer thai prints one character at a time by aligning a raised 33

34

Hardware for CP/M

character image and driving it into ribbon and paper. There arc three kinds in common
use on CP/M systems: the daisy. the thimble, and the ball (see Figure 2-11). Typewriter '-""
printers produce what advertisers like to call "letter-quality output": Ihe fully formed,
handsome, highly readable characters that distinguish the best business correspondence.

DAIS\', TIIIM8LE, 8,\u.. Daisy primers carry the type image on the radial spokes of a
wheel. They select a letter by turning the wheel. then bang the chosen spoke tip against
the platen. The thimble typewriter is similar. except that the !ellers are placed at the tips
of the slit edges of a cup-shaped wheel (Figure 2.11). The ball typewriter is just the
familiar Selectric mechanism. widely. and cheaply. available in reconditioned time
sharing terminals. "The venerable Teletype is still to be foond. but ils slow speed and
limited character set make it undesirable as compared with modem typewritcr primers.

Tn'I:-1G S"Et:O, Daisy and thimble typewriters operate at speeds up to 55 characters per
second: any of them can write onc line of a business lellcr in just over a second. or fill a
manuscript page in less than a minute. This is adequate speed for many applications. but
not for all. Bulky output such as wholc chapters of books or the listings of long prognuns
can tic up thc machine for many minutes. cven hours. Unfortunately therc is no fasler
way to get high-quality printing from a small computer. Ball typewriters cannot prim
faster than an ordinary office machine (around 15 charactcrs per second) and should be
used whcre the volume of priming is small.

S",:o,\I.. "-EATtJlU;S. Daisy and thimble printers contain their own processors. When '-""
ordered with the right opcions, most of them can centcr. underscore, justify. and do
proportional spacing on their own. These fealures, like the special features of terminals,
are invoked by sequences of control characters. But unlike the terminal features, the
capabilities of the typewrilcr are usually ignored by the popular text-formalling prog
rams. which handle the same functions from the computcr and use the typewriter strictly
as an output devicc. As with terminals. there is no standardization ofcontrol sequences.

fiGURE 2-11 photo: PAWEKPIX

Thrft "'alS of doing Il,'ttl,'r-qualit)' printing: tht: familiar ball, the thimble. and lht: dais}', ""-'"

Prillters

PRINTER KEYBOARDS. Typewriter printcrs are available in two models: with a
keyboard{KSR. for Keyboard Send Receive) and wilhout (RO foc Receive Only). With
a keyboard. a typewriter printer can be used like an ordinary office machine. bul il
doesn't make a "ery good one because the human faclOrs arc: all wrong. The: touch is nOl
pleasanl. and there is sometimes a split-second delay between the keystroke and printing
that is maddening to a touch typist.

Sometimcs a printer with a keyboard can be useful in a CP/M system. Onc can be
used as substitute for the tenninal. or as an input device when testing a program. But
generally a printer's keyboard woo"t be used often enough to justify its cost.

Matrix Printers

The other printer lechnology in common use on CP/M systems is that of the matrix
printer (see Figure 2-12). This device has a print head that contains a vertical row of stiff
wires pointed at the paper. Each wire can be driven against the ribbon and paper to make
a liny dot. The print head s.....eeps across the page: as it moves the wires are fired in
combinations so that the dots form charncteTS. Each characler is printed in a character
cell whose height is detennined by the number of wires in the prinl head and whose width
encloses some: number of Sleps at which !he wires may fire. Each charncter is formed
within a rectangular matrix of possible dots. hence the name ··matrix printer:·

-...- FIGURE 2-12
A tlpkal smaU matrix printer.

pholo: PAWEKPIX

35

36

Hardll'llre for CP/M

MATltlX PRII'oT QUAUno. The dimensions of the matrix dClcnnine lhe definition of the
leuers. The coarsest resolution is a five-by-sevcn matrix (five dots wide. seven dots -....-/
high). A matrix that size doesn't allow the descenders of characters such as "p" and "g"
to fall below the line; when such a printer offers a lowercase character set, its "g" will
often resemble its "@." Most printers usc a seven-wide by nine-high malrix thaI allows
true descenders and more readable OUlpUt.

PRll\I,. SPUJ) ":'liD COST. Matrix printers can be faster than typcwritCf"S-(he fastest
can operate at above 200 characters per second. ailhough 100 characlers per second is
more usual. Matrix printers are considerably cheaper than typewriters because their
mtthanical parts an: much simpler.

SP'ECL\L FUTURES. 1be manufacturers of matrix printers arc engaged in not competi
tion. This expresses itself nO(only in price but in the variety of opLional features. Many
matrix printers offer a graphics mode in which the application program can control the
placement of individual dots on the pagc. Elabor,llc pictures, C\'en fairly good halftone
images. can be drawn in this way. The programming required to create a picture or a
graph is equally elaborate, of course, and such programs will be device dependcnt.

CIIAKACTt;K FO:,\TS. Some matrix printers offer variations in the way they form
characters. Double-width characters and boldfacc characters (every dot struck twice for
a darker image) arc common features (sec Figure 2.13). A few printers have ways of

A9COEFGHIJKLHNOPORSTUVWXVIA6C0EFGHIJKLMNOPORSTUVWXYI
ab~d@f9hIJkl~opqr~tuv"~yz.b~d@f9hIJkl~opqr.tuv.xyz

12345b7B9Vt234567890' ••X&' ()' ••<~7' ••~·(1'_.()7
EPSON HAKES I10RE PRINT l'1ECHANISl1S THAN ANYONE ELSE IN THE WORl.D.
Ep~on ~ak•• -ore prInt ~echan'••5 than anyon••I.e ;n th. world.

ABCDEFGHIJKLMNOPQRSTUVWXVZ
_bcd_4Qhijk1~~opq~_t~~_MYZ

1234~67e90=-!••%~~ ()* __<>?
EPSON MAKES MORE PRINT MECHANISMS
Ep_o~ ~_k__ ~o~_ p~~~t ~_ch_~~ _

ABCOEFGHIJKLMNOPQRSTUVWXYI
abcd.f9hijklmncpqr.tuv.~yz

1234:!ib7B'i'O, - ~ ••~". () t_+()?
EPSON MA~ES MORE PRINT MECHANISMS
Ep.on .ak•• ~or. print ••chani •••

l.;{tEiiil:';l_ - ..il....'i:.>l:EiflilliJ.L';It:fOf.:.lu ',
':'~'~~I)~ I :;nt.'."":...., ••, JI 1"""'_, ., ,
l:;4~7;<.I:"»-i1·. lid I" ·'UW. , .. ,
m:~ •...·f;; ":Ii: fll"'- :l:..);lili!w loll' USf l_ iil Oi.i1f.
0;;",.. 0"" .:'. ~".: otor.u".. II....,... tlw ,. tU .,.,.U.

nGURE 2-13
Samples orlhe' \·arious ronts the' printer or nGURE 2-12 can USC', prO"ided it issentlhe right -......../
control sequences. Other printers ha\-e similar abilities,

Primers

multiplying the effective number of dots in lhe character matrix. By moving the paper in
tiny increments and restriking the letten, they can gel the cffect of a 14-by-18. or even a
21-by-36. matrix. This produces correspondingly better definition of Ihe characlen. but
allhe cost of slower prinling since every leiter must be struck lwO or lhree times. Some
advertisers claim thaI they can obtain lener-quality printing from lheir matrix printen by
using such lechniques. You should verify such claims by inspecting actual OUlput.

Other Printers

Printer technology has been developed 10 high levels among large computers. Train and
band printers place a print hammer behind every character posilion across the page and
spin a strip of type slugs in fronl of the page at high speed. When the type slug bearing the
right character nears a character cell, that cell's hammer fires. In Ihis way these primers
can pr<xluce an enlire line of print in one rotation of the Iype carrier. priming at a rate of
hundreds of lines a minuteith good quality.

At this writing no such printer is available al a price consonant with the cost of a
CP/M syslem. 110wever, ifCPINET is used to distribute Ihe usc and lhe COSI ofa prinler
among several systems. lhe fasl technology becomes economical. And as small compu
ten proliferate a market is being created that should eventually bring about the develop
ment of a band printer. suitably sealed down in price and speed. for small systems.

Printer Interfaces

S~;RIAL 1",·n:R~·AO:S. All printers suitable for CP/M are available with an RS-232
interface (described under "Terminals"). This inlerface is usually the best choice for a
printer: it allo.....s the printer 10 be s.....apped. cilher between systems or during repain.
Like a terminal. a printer has to be set to agree with the processor on the matten of
transmission rale. number of SlOp bits. and parity checking.

PRI"''' BUFFERING. The prinler puts characters on paper at a vcry slow rate. in
electronic terms. A typewriter proceeding al the rate of 50 characters per second is
consuming dala at an effective bit rate of about 500 bps. Not only is lhis slow. but it docs
nOI correspond to one of the standard lransmission rates. If the processor sends:lt 300
bps, the printer will h:lve to idle between !cUeTS. If lhe processor sends at 600 or 12(1)
bps. the printerill run at full speed butill quickly fall behind the computer. Most
printen comain storage for some number of characters unlilthcy can be prinlcd: if this
buffer fills up and the processor continues to send data. characters will be losl or garbled.

PRI....n;R H"NllSIIAk:ING. The solulion to lhe foregoing problem is 10 have the prinler
tell the processorhen its buffer is nearly full and to have the processor respect this
sign:ll and halt lransmission until the prinler has caught up, This exch:lnge of sign:lls is

\"....- called htl1ldshtlking. Wilh handshaking the printerc:ln run:ll its maximum speed with no
danger of losing data. One of the RS-232 signal lines can be used for jusl this purpose. 37

38

Hardware for CP/M

Most printers can be set up 10 signal whclllney are 1101 ready to accept data because their
buffer is full. lheir paper has run out. or for any other reason. The printer control -..J
programming in CP/M must also be sel up to recognize Ihe printer's signal (sec Chapter
15).

PARALLEL t...-rF..kt'AC£S. Some printers provide. instead of the RS-232 serial interface.
a parnJleI interface of some kind. There is no panic-ulaT standard [Of signals on a parallel
interface, but one arrangement is socommon on older machines thai il nearly qualifies as
such. This is the Centronics interface, named for one of the first inexpensive matrix
printers available to hobbyists. The Centronics interface is common. bUI the RS·232 is
the preferred interface because of its interchangeability.

OTHER 110 DEVICES

The basic CP/M system has eltttronics, a tenninal. diskettes. and usually a printer. But
lhe possible choice of UO devices is far wider Ihan IhaL Machines !hal use the 5-100 bus
can be equipped wilh an exciting amy of special-purpose equipment. Here are a few
examples:

1. speech recognition units for voice control of programs
2. voice response units so the program can talk back
3. music synthesizers for computer.generated music
4. color graphics output to a video monitor
5. video image processing for computer recognition of images
6. digitizing tablelS for !he input of maps and hand.....riting
7. planers for drawing graphs and blueprints on paper

There isn't room in this book to discuss lhe.sc interesting machines. Each provides
solutions to problems in a specialized domain. If you have the problem. then you can
build a solution based on your CP/M system.

Chapter 3

Soflware for CP/M

CATEGORIES OF sonWARE 40

VERSIONS OF CP/l\'1 40

THE MONITOR .,
The Console Command Processor .3

FILE COMMANI>S ..
UTILITIES ..
LANGUAGE TRANSLATORS •5

AI'PUCATIONS .S
Word-Processing Programs .5
Elec::tronic Workshft'IS 46
Olher Applkalion Packages 46

SUMI\'lARY .7

39

Software for CP/M

This chapler will take you on a brieftour of the software used wilh a CPIM system. We'll
identify and name the important components and sketch thdr functions. As in the lasl
chaplcr, we ha\'e two aims: to learn the jargon and to give some guidelines for the
shopper.

CATEGORIES OF SOFTWARE

The name "CPfM" refcrs to a package of programs wriuen and published by Digital
Research. For mosl users that package is nm sufficient software. You or your dcaler will
add other programs to makc a complete system. It will be casier to talk about this
collection of software if we PUI the programs into categories by their functions.

TilE MO:o1lTOa, The Monilor is a group of programs that manages the detailed
operation of the system. We'll discuss it briefly here: its workings are described for
programmers in Chapter 10 and beyond.

Tin: FILE CO~IMANlJS. The file commands arc a group of small, often used programs
that we cover in Chapter 5. They make it possible for you to manage the file system and
the 1/0 devices from the terminal.

TilE UtILITIES, U,i1iti~s are programs whose fUl'lCtioo is 10 copy and transfonn files.
The most important ones are called PIP and ED, each of which has a later chapter to
ilself (Chaplers 6 and 7). You'll be adding olher utilities 10 Ihe ones Ihat come with".
CP/M,

LANGUAGE TII.ANSLATOMS, Language translators are programs used to convert slate
ment:. in some programming language into machine language. The CPIM package
contains only one, an assembler. Your colleclion is bound to include Olhers.

APl'l.ICATIOSS, The programs in the first fOUf categories fit the definition of an
operating system that we gave in Chaplcr I: they are programs that apply the computcr 10
the job of managing the computer's affairs. The rcmaining category includes all
programs whose output is for the benefit of people rathcr than being directed toward the
needs of the system. Such programs are applicariallS.

VERSIONS OF CP/M

Digital Research has published several versions of CPIM over the years. Each version
has had more capabilities than the last. MP/M is a similar system. bUI one designed [0
control largcr machines and [0 support sever.ll users at once. This book is wrincn for
CP/M, bUI it applies to MPtM as well.

Each version of the system identifies itself when you call for a cold Start, W,
40 discuss how to cause a cold start in Chapter 5. "'-'"

Versions of CP/M

CP/M 1.4. The first "ersionofCP/M to achieve wide use was called CP/M 104. There
are many copies of CP/M 1.4 in use. and itcan still be ordered from the publisher. Much
of this book is applicable to CP/M 104.

CP/M 2. A major revision of CP/M was released in 1979 and called CP/M 2. It has
been updated twice since: the vcrsion being distributed today is called CP/M 2.2. CP/M
2 contained many improvements on CP/M 1.4. To the user it brought easier typing
correction. It gave the programmer the ability to access disk files at random. It ga\'e the
system builder much more nexibility in adapting CP/M to different kinds of disk drives.
This book is designed for use with CP/M 2.

CI~/l\1·86. CP/M has been rewritten to operate on machines thut use thc Intel 8086
CPU (nolably the IBM Personal Computer). Almost all of this book is applicable 10

CP/M·86. because its use. and most of its programming coO\'entions. are the same as
CP/M 2.

MP/M I. MP/M waS released at the same time as CP/M 2. MP/M is designed to
manage the resources of a machine larger than the usual desk-top computer. and 10
deliyer those resources to several users at once. Almost all of this book is applicable to
MP/M because Digital Research took pains to make the use and programming of f\..\P/M
compatible with the usc and programming of CP/M. MP/M has a number of commands
and programming features that are 1101 eo\'ered here.

1\1P/1\1 2 ANO MP/I\1·86. These advanced operating systems have a number of addi
tional features. but their use and programming is still compatible with CP/M 2. Many of
their new features are covered in the Reference section.

CPtM 3. Sometime in 1982. a new version of CP/M will probably appear. If Digital
Research continues its tradition of compatibility. the commands and programming
conventions of CP/M 3 will be subslantially identical 10 those described in this book.

THE MONITOR

One component of CP/M remains continuously in working storage while the system is
running. It consists of three programs. Two of these work together 10 provide services to
other programs; the third provides services to Ihe user.

PARTS m' TilE MONITOR. The CP/M documentation refers to the firsl two as the BOOS
(Basic Disk Operating System) and the BIOS (Basic UO System). They are described in
Chapters 10 and 15. The third program, whose purpose is 10 serve the system's user, is
called the Console Command Processor. or CCP. The distinctions between these

.......... programs will be made clear later. We'll refer to them collectively as the MOfliror, 4J

Software for CP/M

meaning that pan of CP/M Ihal is always presenl in working Siorage, moniloring the
activity in the sySlem.

SIZE m' TIlE MONITOR. The Monitor takes up space in working storage. Its total size is
aboUI 12K bytes. If the size of working storage is 64K bytes, then the amouni available to
application programs is 64K less 12K. or 52K bytes. The CCP is nOl needed while an
application program is running; if its 4K of space is used, the arnaunl available becomes
56K. Application programs have the option of using all of working slorage, bUI if they do
so lhey lose all the services that the Monitor provides, so Ihis is rarely done. Advenise
ments for fee software sometimes specify the minimum amount of slorage required; the
number mayor may not be exclusive of the Monitor. A program that requires a "S4K
CP/M system" may require that the machine have 64K of working storage.

COIlo'TROL OF VO. The Monitor juslifies lhe space it lakes by perfonning several
essential funclions. lis first duty is 10 control the operation of all the UO devices of the:
system. It is the Monilor Ihat contains lhe machine insll\lClions Ihat read and write
characters on lhe lerminal. that cause the disk drives to select. seek, and transfer data.
and thai send data at the correct rale 10 Ihe printer. Sincc these instructions are in the
Monitor, they need not be included in any application program. That makes applications
easier 10 write (UQ control code is the trickiest programming of all) and makcs them
smaller.

SERVICE REQUt:STS. The Monilor makes lhe devices accessible 10 programs by pr0

viding for service requests. There are slandard machine insltUClion sequences that allo\.\'
one program to call upon the scrvices of anolher. An applicalion program can call upon
Ihe Monitor for a number of services. Services are dcfined for reading and writing at the
lemlina!. at the printer. and at other devices. There are a numhcr of services relating to
access to files. By way of these service requesls, a program can access all pans of the
system wilhout itself containing any device-control logic.

CONTROL OF THE FILE S\·STE.\I. Besides conlrolling the operation of lhe disk drives.
the MonilOf contains lhe central logic ofthe CP/M file system. It is lhe Monitorthat reads
and writes Ihe file directory on a diskette. decides where a file's data shall be placed. and
finds the data again when needed. The Monitor contains serviccs by which a program
can read and wrilC the data in a file without concerning itself with either the details of
disk operation or the location of the dala on the disk. Other services allow a program to
creale a file, to rename ii, and to delele il.

A{)VAI'o'TAGES m' THE MOSl'roR. Great economy is achieved by centralizing all lhe
logic of device and file control in Ihe Monitor. If this logic had to be repeated in e\'cry
program in the system. disk space would be wastcd in sloring repetitive copies of that
code, but this is the least of the savings. If the Monitor's functions had to be repeated in
every program, surely some of them would gel il wrong, or do it differently than others.

42 Consislcncy would vanish. and errors would be introduced. Funher. the inslTuetions

-'

The MOllilOr

used to control one kind of terminal. printer. or disk drive differ from the instructions
needed to drive one of another kind. The number of possible combinations of CP/M
hardware is astronomical. If the functions camed out by the Monitor had to be done by
the programs. then every program would depend on the panicular combination of
hardware for which it was writlen. But the selVice request intcrfaee provided by the
Monitor is unifonn across all CP/M systems. The sclVice to read a file is the same in any
system. regardless of the kind of disk drive that system may have. By containing and
hiding the device-dependent logic. the Monitor makes it possible for software to be
exchanged between systems. That in tum makes it possible for a profitable software
publishing industry to exist, and that has led to the huge numbcrof application programs
that you can buy.

The Console Command Processor

When lhe system is idling between programs, the Console Command Processor(CCP) is
in charge. This pan oflhe Monitor exists to be the interface between the uscr (you) and
the operating system. Its job is to accept a line from the terminal and thcn sec that the
work Ihe line calls for is carried out.

CO;\t;\IA:-iDS, 1be line that you Iype and Ihat the CCP acts on is called a command.
Everyoperating system provides a commond fanguag~. although in this context the word

'- language is used ralher loosely. Few operating systems (and CP/M is nOl among them)
provide a true language of commands in the way that a programming language is a
self·consistent anificiallanguage. The phmse refers to the set of all commands that the
operating system can accept, and the rules for fomling them.

1'"0to,IOt·CO:'>I;\IA....OS. CP/M's command language rules are defined by the CCP. and
they are very simple. To the CCP a command is a line ofchameters broken into groups by
dtlimitus (one or more spaces). The first group, or word if you like. is the command's
I'erb: it specifics what is to be done. The rest of the line contains the command's
optrallds. They specify what is to be acted upon. The verb is always the name of a
program. Programs life the verbs of the system. The operands give the program any
information it needs about what it is to work on. and optional things it should do.

COM;\IA....O EXECUTIO:<O:. The CCp's method of carrying out a command is simple.
When you signal with the return key that the command has been completely typed. the
CCP takes the first word of the command and calls on the Monitor to locate that word as
the name of a Iile that contains a program. The Monitor locates the Iile on disk. The CCP
reads the file-which contains an object program-into working storage and Ihen calls
the program that has been loaded, Thc CCP leaves the rest of the command behind in a
known location in working storage for the program to reference. When the program is
finished. the CCP regains control and wailS for the nexi command. 43

'-'

Software for CP/M

FILE COMMANDS

Other than the Monitor and the CCP. the operating syslem consiSIS of command verbs.
that is, of programs thaI can be loaded by the CCP. These commands enable you to
conSlruC1 and then use the application programs.

1be file commands arc Ihe ones thaI are used mosl often. Chapter 5 describes lhem
in delail. 1bey make !he services ofthe Monitor directly available 10 Ihe user. 1bere are
commands thai let you lisl the contenls of a directory to see whal files exisl or 10 learn lhe
size of a file. to erase a file, or to rename it. Some of Ihese commands are used so
frequently that the programs Ihat implement them have been included in the body of the
CCP. These can be carried out without having 10 load them from disk. As far as the user
is concerned, the only difference between these resident commands and any other is that
they execule a bit more quickly.

UTILITIES

A utility is a command that moves or changes a file's contenls in some standard way. The
simplest utility is the TYPE command. It displays lhe conlentS of a file on lhe screen of
Ihe tenninal. TYPE is called so often thaI it too has been embedded in the CCP. SAVE
and LOAD are special-purpose utilities used to build programs; Ihey arc described in
Chapter 12.

PIP. The most important utility is PIP (for Pcripherallnterchange Program. named
after similar progl1lms in other operating systems). PIP is used for moving files between
one device and anomer: from one diskette 10 anolher. from diskelle to printer. or from
any device to diskene. It is examined at length in Chapter 6.

EDITORS. An editor is a program Ihat leiS you build and modify a file from the
lenninal. The file may be a business leiter. a list of names and addresses, the statemeOlS
of a program, or anything else Ihat can be expressed in characters. An editor presents the
contents of Ihe file at the screen and lakes changes from the keyboard. When the file has
been buill. extended, or changed as you desire, the editor writes it back onto diskelte.

ED, One editor is provided with CP/M; its name is ED. ED descends from a long line
of similar edilors going back into the dawn of compuling. liS funclions are organized for
easy use from a typewriter lenninal and might seem awkward 10 someone new 10
compuling (or friendly and familiar to one who is new only 10 CP/M bul experienced
with compulers). The conceptS and uses of ED are described in Chapler 7.

OTIIER EDITORS, ED is far from being Ihe best possible editor. There arc a number of
editor programs available for CP/M from (){her software publishers. A good full-screen
editor should be one of your first software purchases. Sec the discussion of word·

44 processing packages later in this chapter. ..J

Language Tratlslators

LANGUAGE TRANSLATORS

Only one language trnnslator is provided with CP/M. an assembler program named
ASM. Your system will undoubtedly have others, which will be bought from other
software vendors. In Chapter IIe discuss the differences beteen trnnslators and ho.....
to select the one(s) you need. Alll:mguage lranslaton can be thought of as pans of the
operating system, as they are used to create other programs rather than as an end in
themselves. TranslalOrs are called as commands. like all other programs under CP/M.

INTEKI'Rt:n;KS. Interpreters accept program statements from the teoninal (calling
upon the Monitor 10 read them), and contain some of the functions of an editor in that
they allo..... the programmcr to look around the program and make changes in it. At the
programmer's option they may read program tcxt in from a file. or save the finished
program in a new file.

CO~II'ILEkS. Compilers always usc the file system. 1hey read a file of program text,
translate it into machine language, and write the translation as another file. A compiler or
assembler (an assembler is a special case of a compiler) ill usually produce another file
containing a listing of the program.

APPLICATIONS

Ase said in Chapter I. applications-progrnms that arrange and display data for the
benefit of people-are the true purpose of a computer system. Specific applications may
be ritten, possibly by you, for your own purposes. Several types of application
programs are so useful. and so difficult to write, that they are usually purchased as
program packages.

Word-Processing Programs

A word I"'ocessor is a program or a package of programs that allows you to create
documents of all kinds with the compuler. Word-processing packages are reliable and
easy 10 apply. A good one can justify the whole cost of a computer installation. Word
processing has two pans: creating the docu~nt and printing it.

FIJl.L·ScK.:EN EDITORS, E\'ery word processorpackageconlains afilll·screen editor. a
more sophisticated version of ED. A full-screen editor uses the screen of the temlinal as
a window onto the file. The file's contents can be moved under the window like a scroll
sliding under glass. up and down at will. The cursor may be placed anywhere in the
windo..... and new or changed data typed into the file. The process is simple and natural;
just point to the placehere a change is to be made and type (he correction. 1hechange is
recorded inorking stornge as it is made. The ease and speed of typing with a good
full-screen editor arc truly remarkable. 45

46

Software for CP/M

PRINT FOIlMA'ITING. The second part of word processing is the display of the docu-
ment on the printer. The fommuing abilities of word processors go far beyond simple ..J
printing. All of them provide for automatic pagination and page numbering. Most can
justify the output so that all lines are the same length. \Vhen used with a daisy or thimble
printer. most can provide for automatic underscoring. bold printing. superscripts and
subscripts. and so fanh. Given the right hardware (and with considerable practice on the
part of the operator). a word processor's output can approach the quality oflypc~t1ing.

SI'~:LLlNG COIlR}:CTOIlS. Several publishers have produced programs that will read a
document file and compare it with the words in a spelling dictionary file. When a word in
the document can'l be found in the dictionary file. the program displays it at the tenninal.
If the word is truly misspelled. the user can correct it. Ifit is a correct word, the program
will add it to the dictionary so that it will be found next time.

Electronic Worksheets

A few years ago a genuinely new concept in computer applications was invented: the
electronic worksheet. The first such program was called Visi-Calc T.: it is available for a
number of personal computers (but not for CP/M systems). The concept has since been
copied by other publishers, and similar programs arc available for CP/M systems. Like
word processors. worksheet programs are easy to use and can cnable the machine to
justify its expense quickly. A worksheet program creates in working storage a large array -./
of cells, similar to the columns and rows of an accountant's worksheet. The user can
move the screen of the terminal over the worksheet and view the contents of the cells. A
number or a descriptive title can be placed in any cell.

The power of the worksheet idea arises from the fact thai the user can also put a
formula instead of a number into a cell. The formula can specify thai the cell's contents
are to be some arithmetic combination ofmhercells. A cell althe bottom ofa column can
be defined 10 hold the sum of all the numbers above it, or a percentage of two othcr cells.
and so on. Whenever one cell is changed, thc program passes over the whole sheet.
recalculating evcry formula. Thus a change in a detail amount causes an inslant.
automatic change in the total amount as well. A changc of a markup percentage in one
comer of the sheet is instantly rcnected as a change of gross and net profils elsewhere on
lhe sheet.

Other Application Packages

There are other packages thai you mighl wanllO ha\'c. depending on the usc to which
your system will be put.

A<;COU""ING PACKAGES. Business accounting packages contain programs thaI keep
the standard accounting information and prepare Ihe usual accounting reports: generalJ
ledger. accounts receivable and payable. elc. It is hard to write a generalized accounting

Applicariotls

package that will suit the requirements of evcry user. Such packages must be studied
very carefully to make sure that they meet your needs.

MAILING LIST PROGRAMS. There are programs that will maimain a file of names and
addresses. The list can be soned in various ways. and names can be selecled on the basis
of zip code orOlhercriteria. All names, or jusl selected ones, can be printed 0010 mailing
labels ready for attachment.

SoRTS AND RU'ORT Gt;..,;t:RATORS. A good general sort program is an important tool in
mosl computer systems. A sort is a program Ihat will read a file and write a copy of it,
with the records of the file arranged in sequcnce according to their COntenlS. An amazing
amount of processing can be done with only an editor and a sort, lbe edilor (or any OIher
program) is used 10 create a file of records in a regular fomlat, with the same kind of
infomlation at the same position in each record. Then the son program can be used to put
the records in order by any combination of record fields. To understand the usc of this
idea. think of a catalog of any collection of similar things, phonogrtlph rcrords, for
insta~. Imagine the usefulness ofbcing able to sort the catalog on any of its character
istics---<atalog number, performer. tille-and 10 print the resulting sorted list.

Report generalor programs take the next step beyond simple printing. They read a
sorted list of records and, at your direction. produce a fonnalled report of what they find.
A repon generator can be used to exclude or inelude records on the basis of their content.
It can count records and keep running 100ais and subtotals of numeric fields, as well as
decorating the report with titles and page numbers.

DATABASE Sl'~TEMS, The word "database" has been badly abused in recent years,
Often a simple repon generator will lay claim to the word. A genuine database system
docs a great dcal more than select records and print repons.

A database systcm maintains a file of infonnation in such a way that it keeps not
only the records, but the relationships between the records as well. For cxample. a
library might have separate files of books. of authors, and of subjects; a report generator
would allow records of one file 10 be selected and displayed. A library database would
manage atl the records. linking infonnation about authors to records of the books they've
written and linking those in turn to their subjects. A truc database system will also be able
to present another program with only the infonnation the program wants, in Ihe fonnal
the program needs wilhout regard 10 the format used to store tnc data.

SUMMARY

With this chapter wc've finished naming the parts of a CP/M system. If you have a
syslem, you're ready to tum 10 Chapler 5 and begin learning how to use il. If you are still
shopping, you have enough of the jargon to undersland a salesperson's lalk.

47

48

Chapter 4

Management
Problems

BUYING HARDWARE AND sonWARE
ShoPlling for Hardware
The Importance of Advice
I)urchasing Software
Evaluating Software

SETTING UP THE COMI' TER WORKPLACE
The Terminal
Diskettes and Orh·es
The Processor
The Prinler

PLANNING FOR DISASTER
File Backup
Insurance

DATA SECURITY
Planning for Security
Computer Crimes

4.
4'
50
50
51

52
52
53
33
33

54
54
54

55
55
56

811)'illg Hardware and Software

This chapter addresses some lopics related to managing a small computer inSlallation.
We'lllalk aboullhe problems of owning a system. especially when it is part of a business
organization. Unlike the olher chapters. lhis one doesn't aim at preparing you 10 openlle
or program a CP/M syslem. If thaI is your immediale interest. skip ahead 10 Chapter 5 or
Chapter 9.

We'll look at four problems: first, the difficulty of buying a computer syslem,
especially compulcr software; second. sening up a good workplace for lhe machine and
its users; third. planning for breakdowns and disaSlers; and founh. keeping data secure
against loss. theft. and fraud.

BUYING HARDWARE AND SO••WARE

In lhe preceding chapterse·ve covered mosl of the jargon of lhe small-oomputer
markelplace. Having learned Ihal. you're ready to talk to a compuler salesperson. or to
read computer ads, with some degree ofcomprehension. However. as soon as you begin
to do so you will be slruck by how disorganized the computer marketplace is. The longer
you shop, the more il will corne 10 resemble an Arab bazaar crossed with a political
convention.

Shopping for Hardware

Compulers carry prices similar to those of a large office copier or a compact car. but
buying a compuler is nolhing at all like buying one of those prodUCI5. There are several
good reasons for lhis.

THE CoMPUTER'S COMPI.EXITV, 1llc first reason is thai a computer system is many
times more complicated than any other piece of equipment, Think of all the hardware
optionse covered in Chapter 2. Ponder the differcnl kinds of application packages we
skelched so briefly in Chapter 3. The compuler shopper is faced with an endless series of
choices.

Tm: MAIl.K}:r'S COMPU:Xf'n', Second. lhe small-computer industry is dominated by
very small, very young companies. These comp:lllies must deal with constant technolo
gical changes and with a chronic shortage of lrained staff. There are several hundred
companies. almost all small. making CP/M-compatible systems or hardware bits 10 plug
into them. There are several hundred more finns publishing software for CP/M systems.
The groWlh of the industry since il5 birth in 1976 has been brealhtaking; it has been a
striking demonstration of the power of a free-martet economy. However. few of these
finns arc: large enough to support mass-roarkel advenising or a large marketing staff.
There'll be no tailored salesperson coming around to court)'ou; you'll have 10 seek out
the products),ou wanl.

Till': NU:O!'OR TASK DU"II':ITION, Many people who go shopping for a computer have
no dear idea of what they want the syslem to do for them. Without lhat, neither shopper 49

Ma"agemem Problems

nor dealer can evaluate hardware or soflware. There are many ways in which a computer
can make itself useful. You must isolate one task for it to do-a task that when automated
will return the computer's cost over the period during which you'll depreciate it. Having
picked that task, define it as clearly as you possibly can.

Use the task definition as the benchmark against which you measure the products
you see. The task definition will limit the eligible systems and let you talk specifics with
vendors. Your shopping will be greatly simplified, Keep in mind, however, that a
computer is a general-purpose tool. Once ii'S installed, you will constantly find new uses
for it. Provided it meets your lask requirements, the system that can be extended or
upgraded most easily is 10 be preferred.

The Importance of Ad"ice

There's a huge number of products available and more appear every day, Many are
incompalible with each other: not a few are unreliable or are poorly supported by their
makers. You haven't a prayer of sorting them out on your own without months of study.
which is a waste ofthc time you need for running your own business. You muSt make use
of someone else to winnow the market for you and propose a comprehensible choice of
prodUCIS that meet your task definition.

USINC A CO:-<SULTANT, One way to get advice is to hire a consultant. A consultant is
simply a person who knows more than you do and who will share that knowledge for a
price. A considerable number of people ha\'e hung out their shingles as small<omputer
consultants in recent)·ears. There isn't any objective standard for consultancy. no
licensing board or examinaliooslo pass. Therefore. you must be extremely careful about
hiring a consultant. The one you want is the one who knows as much about your business
as about computers. There isn'l much point in hiring compuler knowledge when the
possessor of that knowledge doesn't ha\'e the background to relate it to your require
ments.

RF;U'INC ON ARUAIUiR, Mosl cities of middle size and larger contain retail computer
slores. There arc national franchise groups such as the Computerland chain, and many
independent dealers. Relail computer dealers are in a position to know the market, or at
least their own product line. Dealers have a strong motivation to select and stock only
solid, reliable products. Dealers are usually pressed for time and short of staff, and so are
unlikely to be patient with vague questions. However, if you present a clear definition of
the job you want a computer to do. the dealer should be able 10 propose a complele
syslem tailored to that job.

Purchasing Software

CP/M alone is nOI sufficient software for anyone but the hobbyist. You'll need to buy
software from other sources. Except for a simple assembler. CP/M contains no language --.-/

50 translators; you'll buy one or more, You will almost certainly want to supplement ED

Buying Hardware a"d Sofl\vare

with one of the word-processing packages that conlain both a full-screen edilor and a
print-fonnaning program, A worksheet program is always useful, as is a repon gener
ator. If you plan to apply your system to commercial accounting, you'll buy software for
thaI.

blI'ORTANC}; OF SOITWARt; QUAun. The quality and usability of an imponant
software package can decide the success or failure of your system. A package that is
poorly documented, or full of errors. or simply unsuited to your needs, can cause you to
waste the price of your hardware several limes over in lost time and duplicated effort. On
the other hand. a good package that matches your needs may enable the system 10 pay for
itself in weeks.

TilE Son-WARE MARK..... A broad and vigorous market in software has sprung up in
recenl years. lbousands of people and hundreds of small companies are competing for
your software purchases, Yet it is difficult 10 shop for software in the prcscnl market.
Adveniscmenls appear only in compuler magazines and are superficial at best-long on
color and dramatic claims. and shon on the detailed functional infonn3lion that would leI
you decide whelher or not the advenised package will do what you need. A reliable
computer retail dealer can be a great help in choosing softwarc.

LACK m" CO:"iSu:m;R IN}·ORMATIO:"i. A software package is at least as complex as an
automobile and the differences between. for example. twoord processors are much
greater than Ihe differences between IWO passenger cars. As yet no publication has

'--" appeared lodo for the software industry what the Tinr~sLit~ra,)'Suppl~nr~mdoes for the
publishing industry or Road and Track. and others do for the automobile industry.

Evaluating Software

There are four points on which to evaluate a software package: function, documentation,
suppan, and price.

FUNCTION. The first poinl is the most imponanl: Does the package promise to do
everylhing lhat you require of it? In order 10 answer Ihe queslion you must know what
you wanl done, and know it in detail. Then you mUSI find out what each package
promises. At prescnt lhe only reliable way to do that is to read carefully through the
documentation for the package. whieh is usually available at a price.

OocuM""TATION. Poor documenlation can make an excellent program unusable. 11le
quality of software documentalion generally is very low indeed. but there are packages
whose documentation is clear and readable. The presence of cryptic. poorly wrilten, or
incomplete documentation does not necessarily mean lhatthe program is bad. but il does
mean that you will pay an extra. hidden price in time and effort in mastering the program.
You should mentally adjust the price accordingly.

SUI'I'ORT. The ternl "suppon" describes all the human assistance included in the
purchase price of a package. Your vendor may offer to train you in the use of the 5/

52

MOllagemell1 Problems

package, or to tailor it 10 your needs. The publisher will have some method of reporting
and fixing errors. and may offer a hot-line phone number that you can call for assistance. ---./
All types of support are valuable and increase the worth of a package.

PRICE. Price is the last, and should be the least. consideration when you evaluate
soflware. A good package with good documentation and support is wOI1h ils price. A
poor package has negative value regardless of its dollar COSt.

SETIING P THE COMPUTER WORKPLACE

1bere was a time when a business computer required a special room wilh raised floors
and special air conditioning. YourCPIM system sits on a~rof your desk and emits a
faint purr. Its environmental requirements are easy to meet. That allows you to concen·
trate on making the machine's environment good for the humans who use il. Giving
thought to the human factors of the workplace can make the local syslem---tbe machine
and its operators-run beller. Some of the advicec·1l give hereould seem trivial and
obvious. were it nO(for thc many times the author has secn thcse simplc principlcs
ignored.

The Terminal

Thc tcnninal is the toughest picce of hardware in the system. As long as it doesn't stand
for hours in direct sunlight, and as long as nobody spills coffee or p:lper clips into its
keyboard. it will continue to worlc. But the tenninal is CPfM's primary human interface;
no other piece of the system offers more opportunities for optimizing the human factor.

SITING TilE TERMINAL A tenninal is used for typing; the typing is done from copy that
must be read, or is related to books and listings that must be refcrrcd to. The terminal can
be located to maximize the comfort of the operator in both reading and typing. The
terminal should sit close to a nat work surface where papers and books can be spread
convenielllto the screen. Its keyboard should fall at the right height for a typist's fingers
(Ihis is true whether or not the main user is a touch typist). Study the layout of a
secretary's desk in a commercial office. There's a wcll where the typewriter rests with its
keyboard several inches lower than the desktop. That design isn't an accident: it's the
result of cxperience. A high keyboard can lead to backache and subliminal tension.
things one canell do without when using a computer.

LIGIITiNG TilE TERMINAL, The lighting around the terminal is very important. Under
the best of circumstances the contrast and resolution of a screen are poorer than that of
print OIl paper. Glare from beyond the terminal or renections from above it make the
screen hard to read. If the lighting is bad. the user will suffer from fatigue, and may even
get headaches, and will make more errors. It is important to have even, glare-free
lighting at the lowest level consistent with good reading of print.

Selli"g Up the Computer Workplace

IMPRQ\'L'o;G TilE blACl;. There are usually things that can be done to improve the
image on the screen. The simplest thing, and one that is often overlooked. is to clean the
screen. The author has several times watched people unconsciously slrain to read a
terminal whose only problem was a grimy screen; a wipe with a sponge made a drastic
improvement in the brightness of the display.

Most terminals have a brightness control in some obscure location. A careful
adjustment of the brightness of the image sometimes will make an amazing difference in
the clarity of the display.

The linearity (straightness. squareness) of the display and the display's dimensions
can be adjusted by a service technician. One teoninal, the HeathJZenith H 19. stands out
because its o'tlCf"·s manual contains instnlctions for adjusting linearity. focus. display
height and width, and contrast.

Diskettes and Dri\'es

Diskette drives need to be within ann's reach of the operator. Thcy also need to be kcpl
as clean and dust-free as possible. The drives ought to be well above the noar and located
where there is no chance of spilling or dropping anything on them. If you don't dust
anything else in your office, dust around the disk drives. A liny bit of lint between the
read-write head and the disketle can cause a read error. or worse. a badly wriuen record.
Be fanatical about smoking around the drives: tobacco smoke condenses in a film on

"-'" everything, If you smoke, keep the ashlray as far down wind from lhe drives as you can
reach.

The Processor

The box containing the processor and other electronic pans has no special requirements
other than that it should not be overheated. Any location that lets you reach the reset
signal and allows a free now of air around the machine is fine. If the electronic
components are in a separatc cabinct, site the cabinet to allow the most work surface and
the least c1uller of cables-not an easy pair of requirements to mce!.

The Printer

The printer is the only noisy part of a CP/M system. In following chapters we'll assume
you can see and hear the printer from the tenninal, but that isn't really necessary. 1be
cable between printer and processor may be severnl yards long. Consider getting a long
cable so you can move the printer into a closet or behind a couch, anywhere that will
reduce the noise level. Acoustic hoods are available for typewriter printers. and they
work "cry well. A cardboard box lined with old blankets will do a pretty good job as
well; paint it a tasteful IBM blue and nobody will e"er guess. 53

54

Mallagemelll Problems

PLANNING FOR DISASTER

A computer that is doing Its job soon becomes essential to the business that employs il.
Such a business. whether in the home of a [one entrepreneur or one department of II large
company, mUSI take steps to protect against the loss of the machine or its data.

File Backup

Backup is the lenn for ma1r:.ing eXira copies of important files. File stornge media are
fragile. Files can be made unreadable by very simple. common accidents; they can be
erased by careless o~ration. You should know whallOc important files are and be aware
of the impacllhallheir loss would have. If the diskcltc containing Accounts Receivable
was stepped on today. how long would it take 10 recreate it?

It's a good idea to keep IwO Ic\'c!s of backup for really important files. The most
receO! copy can be kept near the computer. ready for a quick recovery. The generation
before that ought to be moved right out of the building. Then if a fire wipes out the ortice.
the older backup copy will still be safe.

It's easy to make backup copies of files with CP/M: we'll gooverthe lechniques in
Chapter 8. Your concern as the manager of the system is to set a reasonable backup
schedule for the imponant files and see that it is followed.

lll5urance

The subject of insurance is a complicated one. The oplions open 10 you depend on your
situation and your localily. They should be discussed with your insurance broker. This
section sketches some of the possibilities.

t"'SURt:"G TUE HARDWARE, Most small businesses carry a business insurance package
covering them for both liability and for the loss of office equipment. When a CP/M
system is installed, it probably increases the value of the equipment in the office
severalfold, thus making the present policy's coverage inadequate. Once the computer
becomes a pan ofyuurbusiness, it will be the vcry first thing you would want to replace
after a fire or a flood (or, in California. an canhquake. for which a special endorsement is
needed). A computer-using business ought to insure its hardware for full replacement
value.

Most business policies do not cover losses thai occur off the premises. Photo
graphers and others who eany valuable equipment out to a job can buy an off-premises
rider for their business policics. A computer might need lhe same type of coverage.
Without it. aeomputerthat is taken home for theeekend. orone on its way to a business
show, might be completely unpl'O(cctcd.

INSURANCE AT Ho:o.II::. Many CP/M systems are used in private homes. If you are
self.employed.the business equipment you keep at home is probably not covered by the
usual "unscheduled personal property" clause of your home insurance policy. Most

Planl/il/g for Disaster

home insurance policies do not cover equipmcnt u~d for busincss at all! A special
endorsement must be purchased to cover the equipment in your home office. You may
find that your insurance company has a limit on such endorscments lhat was designed to
cover typewriters and filc cabinets, not lllultithous.md-dol1ar computers.

INSURING TIlE DATA. You can purchase a valuable papers rider for your business
policy. Such a rider is intcnded to cover the cost of recreating important records, and it
can be written to cover reconls kept in compuler slorage as well as ordinary documents.
Valuable papers insurance can be expensive. because it is wrillen on the assumption that
only one copy of lhe insured documents exisls. Uowever. such insurance can be
purchased for any amounl you desire. Ifyou make weekly backup copies of crilical files.
you may want 10 carry valuable papers coverage only in the amount needed to cover Ihe
COSI of recreating one week's data. With these data covered. and with second-level
backup copies stored off the premises. you can feel quite secure.

DATA SECURITY

Data security is the term used to describe all the techniques uscd to keep the content of
files secure from theft, fraudulent alleration. or unauthorized access. In onc scnsc there
is no such thing as a computer crime; all the crimes so reponed are just cases of fraud or
lheft or embezzlement, no different from the same crimes committed in any olher way.

"""- CompUlersdon't allow new crimes to be invented. bulthey do pennil the old crimes to be
carried out in new, and sometimes easier. ways,

Planning for Securit)·

CREATIVE PARANOIA. Look at your CP/M machine and. for a moment, try to think like
a crook. Given unlimited access to the machinc-and it's the nature and greatesl blessing
of small systems that one may have unlimited uccess to them-what could you steal
without dctcction? Could you generatc a phony purchase order. disburse the amount,
and hide the transaction? Are there project disks that would be wonh a price 10 one of
yourcompetilors? Given the case of duplicating files, how hard would it be to keep two
sets of books?

CP/M LACKS SECVRtn'. Afterthat exercise in creative paranoia. it won't reassure you
10 learn that CP/M offers you no software help in securing your files. In CP/M I. CP/M
2, ancl MP/M I any user can look at, copy, alter, or destroy any file. Data security in a
CP/M 2 system is enlirely a mailer of procedures and policies that are applied by people.

SECURIT\' IN MP/M 2. Among the improvcments in MP/M 2 are some provisions for
data SC1:urity. Its new file system allows you to gh'e apass'l'Qrdtoany file. A pass.....ord is
aord that must be specified before the system will allow the file to be accessed. A file
can be sct so that its password will bcchecked when the file is to be rcad, or when it is to 55

56

Managemelll Problems

be written, or only when it is to be erased. You can add a measure of security by giving
read passwords to sensitive files and erdSC passwords to valuable ones.

Even jryou have MP/M 2 and usc passwords. you should not assume lhal your files
are secure. A person seriously bent on mischief will have no difficulty in discovering a
file's password. The password must be typed as pal1 of ;lIIY command that uses the file,
so a bit of unobtrusive peeping over the operator's shoulder will reveal il. A clever
programmer can circumvent the file system and read the disk directly. bypassing all the
checks.

TREAT DISKE'lTES AS PAPER. Remember that computers don't create new kinds of
crime, only new opponunilies. Data security is a maller of controlling those opportuni
ties so thaI the level of risk is no worse than il was in the paper system lbe machine
replaced. One way to do this is to treat data and diskeltes exactly as you would treatthc
same information if il were on paper. If simply locking the office door at night would be
security enough for the paper, then it's security enough for the data. Ifpa~rs with that
information would be locked in your desk or in a safe, then do the same with the
diskettes.

There might be papers-personnel infonnation, say-that ought to be seen by only
a few people. If such information is on diskette. that diskette should be handled as Ihe
paper file would be: kept under the ~rsonal control of the person responsible for it. This
is one area in which categorizing diskettes by their use (see Chapter 8) pays off.

SECURtn' WITII A HARO DISK. The use of a hard disk interferes with this scheme -....../
because the dala can't be carried away from the machine and 50 remain accessible 10 any
user. Security may be achieved by carrying away on diskelte something thai is essential
10 viewing the dala. If the dala are encrypted (encryption programs can be bought for
CP/M), the dttrypting program can be kept on diskette in the control of one person. Or
perhaps the programs that access the data can be kept on diskette: the trouble of locating
and modifying a file without the aid of the program thai buill il might be delerrent
enough.

Computer Crimes

The great opportunity that a computer affords to a criminal is the ease with which data
can be copied. A diskene can be duplicated in minutes; it might take hours to copy the
same dala on paper. Equally important, a copy of a computer file is indistinguishable
from the original. One can imagine a dishonest bookkeeper who has a CP/M syslem at
home. It would be easy toduplicate an officediskene, take lhe copy home where the files
could be "cooked" in safely. and substitute the copy for the legitimate diskette next day.
Backup copies are potentially more valuable to a thief than arc the originals. lbcy can be
borrowed for an extended period without being missed.

As the proprietor of a CP/M system your only defenses against such capers are to
enforce sensible precautions concerning the handling of diskettes, to choose your
employees carefully and pay them well, and to keep a constant watch. sharpened by the
exercise of creative paranoia. for signs of incipient wrongdoing.

Chapter 5

Common
Co

LEARNING THE KEY80ARD

INITIALIZING CI"/M
The First Time
Initializing with Reset
Initialb:ing wilh Conlrol-c

THE COMMAND PROCESS
Typing COlllmands
Uppercase and Lowercase

INTRODUCING TilE FILE S\'STEl\'l
Filerers: Naming Files
Introducing DIR
Ambiguous alld Explicit Filerers
DIR with Ambiguous Filerefs
Using Drh'ecudes
The Drh'ecode Command
The STAT Command for File Information
The REN Command 10 Rename riles
The ERA Command to Erase files
Protecting Disks
STAT to Change File Status
Summary of STAT

D1SPLA VING FILES
The TYPE Command
Stopping Output wilh Control-s
Console COP)' ~-ith Control-p

58

59
59
(j()

61

61
62..
65
65
67
67
68
68
7.
71
72
73

"76
77

77
78
78
79

57

Common Commands

This chapter introduces the moSI common CP/M commands, the ones that all users need
everyday. Anyone new to CP/M should read it, although if you are used to working with
computers you may find pans of it elementary.

This chapler is meant to be read while you arc near lhc machine. The presentation
assumes that you'll go to the keyboard and try out the examples as you encounler them. If
you work the examples, you will be leaching nOI only your mind but your fingers and
eyes; you'll remember the material much beller, and boost your confidence in yourself
and the system as well.

LEARNING THE KEYBOARD

If you aren't familiar with the keyboard of your tennina!. look at it now, If, despite our
recommendation. you aren't near your machine, look at Figure 5-1. and compare il wilh
your own keyboard soon.

bll'ORTA!'oT Kns, Locate the following keys:

lhe alphabetic keys
the numeric keys
the spacebar
the lab key
the backspace key
the shift keys
the linefeed key
the return key

- •. -- .. - - ..-

FIGURE 5-1
A I)'pical lerminal kt')'board, with lhe' CQfItrol, backspa<:C', and return kC',-s in the' usual

58 locations.

Learning the Keyboard

Ifyou've never used this terminal before, have someone disconnect it from the: processor
("lake it off-line") and lhen try all the keys out. Remember to reconnecl it ("put it
on·line') afterward,

THE RETURN Kt:l'. That last key, return, is an important one, It is used to end all
commands, The system won't do anything about what you've typed until you indicale
that you are done typing with a return. On a few ternlinals the return key is marked
"enter." At least one terminal has both a "return" and an "cnter": if that's the case, ignore
"enter" and use "return:'

RETURN KEY IN EXAMI'U:S, In the examples you'll see later. cach scparate linc is to be
ended with a press of thc return key, unless you're cxplicitly told otherwise. Somctimes
a line in an cxample consisis of nothing but a press of the return key, Rather than risk
confusing the printer (and the reader) with blank lincs, we'll indicate that thc return key
should be pressed at that point by wriling refilm. That means "press the return key and
n()(hing else at this point."

TilE CO:'\TMOL KEY. Locate one more key, the control key, It is marked wilh some
abbreviation of the word conlrol: "ctl:· '·ctr!." or the like (one make oflcrminal marks it
"ale). 10e control key is like a shift key in Ihat it gi\'es different values 10 the alphabetic
keys. As wilh a shift key, you hold it down while pressing anolher key. 1be value that
results is no! printable. but CP/M has a way of Showing whal conlrollcttcr was typed.

DISPLAY Qt" CO:,\'TROI, It::TTERS. Since the control leiters aren'l really printable.
special action must be laken to show on the screen Ihat one was typed, In many cases
CP/M will display a control lettcr using the ..,X" convention: an up-arrow (t) or
circumflex n. whichever onc your ternlinal uses. followed by the leiter for thai key.
Thus when you type control-z, CP/M might show -Z on Ihe screen.

Col'o'TROI. LE1Tt:RS IS EXMlI'LE:S. CP/M makes heavy use of the control letters as
signals. Whcn referring to a control1cner in the text we'll say, for inslance, "control·p".
When in an cxamplc you should usc a control· letter as a signal. you'll sce this: ·P. That
means "at this poinl. hold control down and press P".

INITIALIZING CP/M

The First Time

Computcr fans say "bringing up thc system" to refer to lhe whole process of turning the
machinery on and gelling it ready for use. II's hard (0 give instnK1ions for bringing up
CP/M when the hardware: comes in so many arrangements. Presumably you've seen
your dealer do il: it isn'l han1. 1bere are just IWO things you need to know about the
machine. other than how to lum on the power.

•-L....DTIlE A'DRWE, The lirsllhing 10 know is: Which diskelle do,·c is the A-dri"e'!Thc
A-drive is the drive from which the hardware will allemptlo load the CP/M Monitor (the 59

60

Common Commands

pan of CP/M always resident in worting storage). Your drives ought to be labeled "A"
and "B" (and "C', .. how many ha\'c you?). Iflhey aren"t marked.)'01.1'11 ha\'c to find
out which is which from someone who knows (then labclthem) .

•'1.'''0 TilE RESt:T Cm"'ROL. The second thing you need to know is the location of the
reUI. This is usually a push button or a key. It may be located in an awkward place on the
back of the processor cabinet. When the reset signal is given, the hardware is completely
reset to its initial slate. Then the disk hardware aUlOmatically selects the A-drive and tries
to load the Monitor into working storage. This is called bootslrap IOIUf, or simply bool.

PKACTlCt; D1SKF.rn:.s. Once you'vc found reset and the A-drive. obtain two diskettes
with files on them. The files should nOt be important ones; if lhey are imponanl you
might be overcautious whcn experimcnting with commands. Have copies made of two
diskettes and usc the copies. Be sure 10 have lhc diskeues made boola/lie. That means
thaI lhere is a copy of the Monitor on each. for the hardware to load upon reset.

Tum lhc system on. pUl a practice diskette in the A-drive, and reset. The A·drive
will be selected. and a momenl later a message will appear on the screen. This sign,o/1
message describes your "ersion of CPIM (as in Example 5-1). II slales the size of
working storage and the version numberofCPIM. Thcexamples in this book were laken
from CPfM version 2.2. Your system may use a different \'ersion (see "Versions of
CPIM" in Chapter 3).

Tile CCP PROMPT. Below the CPIM message will appear a prompt from the Console
Command Processor, Of CCP. Most programs that read from the keyboard issue a
prompt; thaI is. a short message indicating th:tt they arc ready for you to type. lbe CCP
uses -A>- as a prompt.

Initializing with Reset

Tm: E...·!::<..... O~· RESET. Reset complelcly refreshes the state of both hardware and
software. It halts all aClivity in thc system inslantly. Then it causes lhe disk va interface
circuits to load a copy of lhe first seclOr of the firSltrack of tile diskette in lhe A·drive inlo
working storage.

Those data oughlto be a small machine-I:tnguage progl1lnl thaI contains thc logic

EXAMPLE S·)
A tl"pical CPIM logon message. displa}'~ at the end ora wid start optf1llion. contains both
the silt or wOf"king storage and the ,·tnioo number or CP/M.

I
64~ CP/M VeTS 2.2

--"---

Initializing CP/M

needed to load lhe rest of Ihe Monitor. The Monitor program's instructions occupy the
rest of Ihe firsl few tracks of the diskctte.

bOOTSTRAP. Thc one-scctor program loaded by thc hardware is called a boolSlral)
loader, afler the old saying "to lift yourself by your own bootSlraps." Thc loader is the
bootstrap by which thc system loads ilself. From that name has come the use of
"bootstrap" to mean Ihe process of inilializing thc resident part of an operating system. If
you are asked 10 "boollhc systcm:' Ihat means 10 "press the reset bunon."

Cow START. The boolslrap provided by resel refreshes all of the Monilor, and has
come to be called a cold start (or even a "cold boof') because afterward the syslem starts
OUI cold, from the beginning.

HA7.A.ROS O~- RESET. Resel is noliO be used lightly! II can be used 10 gel the system
going after a hang-up of some kind. and it can be a very con\'cnicnl panic bUllon. BUI
Ihink before you use it. Any program excculing will have to be run again from scratch. If
a disk drivc is selccled and writing at the moment you reset, the data being wrillen will be
scrambled. [fthe data are Ihe filc directory, files may be lost. You should use reset eithcr
whcn nothing is going on in the system, or whcn Ihc SYSlcm is irretrievably fouled up.

Initializing with Control·c

A partial bootstrap can be otHained almost any lime by entering a control-c al the
keyboard (hold the control key and Iypc "c"-see the seclion on "Learning the
Keyboard"). This is called a warm Start (or, heaven help us. a "warm booC). It causes a
reset of lhe software by lhe soft1A'arC. A warm start does nO! resetlhc hardware, so it
cannol cause bad data to be wrinen 10 disk. It docs end any running program, It causes
the Monitor to be reloaded from the A-drive, in case the slorage copy of it had been
damaged.

Because it is less scvcre, a wam} start with control-c is 10 be preferred to a cold sIan
with reset. Usc the latter only whcn the syslem doesn't react to the formcr.

THE COMMAND PROCESS

Let's repeat somc infonnalion from Chapler 3. Whenevcr your CP/M system is idling
between jobs. it is under control oflhc Console Command Processor (CCP). The CCP is
waiting for a command to be Iyped by you. You Iype the command using certain aids
we'll describe shortly, and you signallhat it is complete by pressing relurn.

FORM 01' A COMMAND, The fonn of command accepted by CCP is:

verb operands 6/

Common Commands

where the verb is separatcd from thc operands (and the operands from each other) by
spaces. Here is :In example command:

stat beesabig.bug

The verb is stat and the only OPCl"3.nd is beesabig.bug.

TfIJ: CO~IMANU PROCESS. When the CCP recei,'cs the command it assumes that the
verb is the name of a program. The CCP locates a program file of that name. loads
(copies) it into working storage. and calls the program. The CCP leaves the operands of
lheeommand in a known local ion in working storage for lhecommand program 10 find.

Thc command program perfonns whatever work it is meant to do, short and simple
or long and complicated. When lhe program is done it returns control of the machine to
the ecp. The CCP then waits for another command from you.

COM~tA.'" '" PROGRAM'" FlU:, This is CP/M's command process: wait for a
command. load the program named by its verb. call the program. wait again. The
process is repeated each time you enter a command. A program. of course. is also a
file-a file of machine-language instructions, So, in CP/M. a command is a program is a
file.

There's one exception to this. There are a few commands that arc used so frequenlly
lhat they have been incorporated into lhe CCP. This saves the time of loading them from
disk. Except thaI they needn't be loaded, lhe process of calling these commands is lheJ
same. You'll be able to identify these resident commands in two ways. They respond
instantly, whereas ordinary commands take a second to load. And you won't be able to
.see their names in a file directory.

CCP Co!oml'..vrs. If the line you type begins with a semicolon (;). the CCP ignores
that whole line. This gives you a wayof making flO(es on the screen as you go. We'll find
a use for comment lines at the end of the chapter.

Typing Commands

YOUR FIR-lIT COMM"''''O. Get your system initialized and ready for a command. CP/M
is ready for a command when the CCP is in control and waiting: this is signaled by the
appearance of the promp(A> at the left margin of the screen.

Type the command

dir

remembering to end it with return. The DIA command is absolutely safe: there is no way
you can hurt the system with il. CP/M will make one of two responses. Either it will reply
NO FILE as in Example 5-2a or it will reply with a list of names in fourcolumliS simil31

62 to Example 5-2b. A CP/M 1.4 system will respond with NO FILE or wilh a single

The Command Process

EXAMPLE 5-2
Responses oldtc D1.R command. first when there are no files on the diskelle and, second, a
displa)' of r.Jes on a lfpical dlskelle.

">,;lir
NO FILE
A>

A>~ir

", :;TA'T
I\: :;0
f,: Dl"'P
A>_

SYSGEN COl'
WlIll CO¥.
'I'ESTI'1' BAS

CCFlI:IT COrt
AS!" cotl
X<;U'" em:

column of names. Anything else indicates that you misspelled the command verb. which
doesn't seem likely, If you got lhe NO FILE response. then the disketle in your A-drive
has no files on it; obtain a beller praclice diskette,

RESPONSE TO UNKNOWN COMMANDS. Now pretend to make an error while typing dir,
Typ'

(and return). It is very unlikely thaI yourdiskcue has a command program named "door"
on il. so the response should be as shown in Example .5-3, This is the nonnal CCP

response when it can't find a command program to match your verb. The CCP caused the
Monitor to search the directory of the diskette. looking for a program named "door:'
There was none, That being the case, the CCP gave you its equivalent of "Huh?:' which
is to repeal thc command "erb with a question mark after it.

CORRECTtNG WITII CmnIlOl.-x, Now pretend again to make a lyping crror. but this
lime calch lhe error before pressing return. Type

dirivel

and DO NOT press return. Instead, type control-x (that's typing lhe x key while holding

EXAMPLE 5-3
When ghoen III command \'crb for which it can find no matching C1>mmand file, the CCP
responds with the \'erb aRd II question mark.

I
"'dO,l'
000»
A>

~---- 63

64

CommOll Commands

down the control key, remember?). The command disappears from the screen! Control-x
is a start-over signal to the CCP. When CCP gets the control-x it erases everything typed
so far and both you and the CCP start over. Use control-x anylime you've fouled up a
command line and want to sIan over.

CORRECTING WITII CO:-',.ROI.·U. Try that again. Type

dirigible

and DO NOT press return. Instead 'ype control·u. That has the same effect as control-x.
except that the old command line. the onc you're giving up on, remains on the screen so
that you can refer to it if you wanl to. The result will resemble Example 5·4.

CokRECTI~GWITH BACKSPACE. Once more leI's pretend that you are having trouble
typing dir. Type

direemee

and DO NOT press return. Instead, use the backspace key. (If your Icrminal1acks a
backspace key, then use eontrol-h for now; later, file a strong protest with the person
who bought a tenninal without a backspace.) You'll notice that each time you press
backspace (or control-h), the rightmost letter vanishes and the cursor backs up, Back
space is invaluable; whenever you feci yourself making a typo just back up and type
again. --...I

Uppercase and Lowercase

You may type CP/M commands in uppercase. lowercase. or a mixture oflhc t.....o. as you
please. 1be CCP will convert everything you type in the command line to uppercase.
When you typed "door"the error message that came back was DOOR? because the CCP
had turned it into uppercase.

Since the CCP doesn't care, you might like to enter all commands in lowercase.
That's how we'lI show them in examples. Your command lines will stand out from the
system's uppercase responses.

Not all programs are as forgiving as the CCP, although all of them oughllo be, All

EXAMPLE 54
Rnull or using control-u to cancel a rommand lin~, n~ Iin~ remains on th~ SC:1"~n ror
m~rcnce, but user and CPP start o,·er.

-'>dlri9Iblel :
darn itt

L-- "'_- -.J

Introducing rhe File Sysrem

CP/M system programs accept lowercase and treat it as uppercase (except for ED; see
Chapter 7), but some application programs may no!. If you are running an application
program and get unexpected results, try giving it input in uppercase.

INTRODUCING THE FILE SYSTEM

Everything that CP/M does revoh'es around files and the file system. Mosl commands
work on files and the majorily of command operands are names of files,

Filerds: Naming Files

Beeause files are so imponant, it isn't surprising that CP/M has a carefully defined
syslem for naming files. The names offiles must be typed according to a SCI of rules. You
may write a file's name on paper, or carry il in your mind, in any form)'ou like. To name
a file in a command you must use the CP/M fonnal. When we want to talk about the full
name of a file in the CPM fomlat we'll use the tennjiferej.

A filercf has three pans: a drivecode, a filename. and a filetypc (Figure 5-2).

TilE DRt"ECODE. The drivecode is a single letter belween A and P inclusive. followed
by a colon. CP/M provides for up to 16 disk drives, and names Ihem A: through P:. The
drivecode specifies Ihe disk drive on which the file is currently to be found. When a
command calls for a file as input, and that file's drivecOOe says the file is on B:, lhen it is
on the 8-drive lhat CP/M will look for the file. The direclory of the diskelte in the
B-drive will be searched for the file, and the file's contenls will be read from the B-drive.

THE DEFAULT DIUVECOOE, The drivecode may be omitted from a fileref: when it is,
the CCP supplies one. The drivccode that will be supplied is the leiter that appears in the
CCP's prompt. Immediately after a cold sian the prompt is A> and the defaull drivecode
is A:. A: will be put at the head of any filerer where you don't put a drivecode yourself.

FdenuM, rwry.......y lESt any kllf" uup•
. ,;_11-<>/

The dollar IIIP' (SI ~uld be aYOidfd IS an iftiliallm....

___ FIGURE 5-2
The parts or a fill'rl'r: optional drh'«ode, filename, optional filet}'pt". 65

CommOll Commands

TilE FILENAME. The second pan of a filerer is the actual name oflhc file. The filename
is a group of from onc to eight characters. Most files arc given names that are spellable,
pronouoceableords. such as MYFllE, PAYROLL, or FRED. You are nO(required to
be so prosaic. if you don'l want 10 be. Any printable characters except those shown in
Figure 5-2 may be used in a filerer. This leiS you give files names like BV+BY.
YE$&NO. or %OFGROSS. Used carefully. this can be an aid 10 the memory.

THE FILETyft:. The third pan of a filerer is a filetype ofone 10 three characters. This is
a short secondary name separated from the filename by a period. The filctype may be
anything you choose. It may even be three spaces, that is, omitted entirely. Its letters
may be any you wish, except for those listed in Figure 5-2. Certain filetypes are given by
convention to certain kinds of files. This convention lets you separate files by the type of
their contents.

Table 5-1 shows the filetypes in common use. The only one you should note now is
the .COM filetype. This is the conventional fiktypc for files that contain machine
language programs..COM stands for command. A .COM file contains a command
program. that is. a machine-language program ready to be loaded as a command by the
CCP.

When the CCP receives a command. it takes the verb and appends .COM to it. Tben

TABLE Sot
The more Impurtant connnlional fiMypes. Any application package will ha\'e its own
com·entions.

=============== -.../
Filetype

66

.ASC

.ASM

.BAK

.BAS

.COB

.COM

.FOR

.HEX

.INT

.L1B

.LST

.PAS

.PLI

.PRN

.REL

.SUB

.SYM

.$$$

Source text of a BASIC program
Source text of an assembly language program
Original \'ersion of an edited file
Source text of a BASIC program
Source text of a COBOL program
Machine language COMmand, ready to execute
Source text of a FORTRAN program
Machine-language program in symbolic (hexadecimal characters) foml
Intennediate code produced by CBASIC compiler
Collection of source code for inclusion with the MACUB directive of
MAC; collection of relocatable subroutines for linking with UB .
File intended for printing
Source text of a Pascal program
Source text of a Put program
File intended for printing
Machine-language program in retocatable fonn
File of commands intended as input to SUBMIT
Symbol infonllation written by MAC assembler
Temporary file, used by PIP and most editors as the type of the work file -....-/

Imrodllcillg the File System

it searches the diskette directory for a file named verb.COM, whatever the verb may be.
That is the program that the CCP loads and calls. the program th:!t by its logic defines the
meaning and effect of the command.

Introducing OIR

The DIA command lists the names of files in a diskette directory. The form of the
command is

DIAfileref

lfthe fileref is omitted. DIA lists all files. Example 5·2 shows a sample of its output. Run
it again now:

dir

DIA lists as many as four files on each line it writes. At the left of the line is the
drivecode, then comes a filename and a filetype for one file. A colon follows as a
divider. thcn the name and type of the second file, and soon. Compare the response you
got with that in Example 5·2. You probably have some of the same files, and some
differelll ones.

DIA will accept an operand consisting of a filerd. Try this:

dir a:beesabig.bug

The response is probably NO FILE, meaning that the command could find no file with
that fileref. Use this form of DIR to find out if a panicular file is available wilhout having
to scan the whole list.

Ambiguous and Explicit Filerefs

A word that is ambiguous is one that can mean more than one thing. An ambiguous
fileref is a filercfthat can apply 10 more than one file. Ambiguous filerefs are very useful,
as they provide a way of recalling groups of related files. Some commands allow
ambiguous filerefs, whereas others will only work with explicit filerefs, those thaI apply
to only a singlc file.

Till': - RUERENCE, You may substitute an asterisk (-) for either the filename or the
filetype (but not for the drivecode) in a fileref. The asterisk means "any:' The fileref
·.COM means "'any file whose type is .COM." The fileref BEESABIG.· means "any
file whose name is BEESABIG."n.e asterisk may be used following other leiters. For
example, the fileref BEES-.- means "all files whose names begin with BEES.,., with

"--" any type." Any file whose filename began with BEES would match that reference. 67

68

Common Comma"ds

TilE? RUERENCE. The question mark (1) can be used in a filerer. When it is used, it
means "any single character.-, The question mark allows you to refer 10 any group of
fileTefs that are the same except for one or a few characters. The reference BEE?ABIG.·
would match files with namesofBEEDABIG, BEEZABIG, BEERABIG. and so fOMh.

More than one question mark can be used. The filerer 11????71.· is the same as
'.'; either reference would match files with any name and type. The reference 1171.',
however. refers only 10 files whose names are one. two, three. or four characters long.
Longer names wouldn '\ match.

DIR with Ambiguous Filerers

The full powef of the DIR command becomes clear when you understand the use of
ambiguous filercrs. Try

dir -.com

[0 list all the commands on your diskette. Then try

dir
dir "."

to verify that '.' refers to any name and type.
Excrcise the DIR command as much as you can using the files on your diskette.

Look at Table 5·2 for ideas.

Using Drh'ecodes

The CCP prompts you with thc namc ofa drive. and that drivccode is the default; it will
be used whenevcr you omit a drivccode. So far you've only used the A·drive and havc
had no necd of a drivccodc. Now gCI your second diskeuc and put it into the B-drivc.
Then do

dir b:

and DIR will list all thc files on thai diskettc (you could have used dir b:-. -. but OIR
assumcs "all files" in cithcr case). Compare thc result of

dir b:-.com

with the result of

dir a:-.com

Ill1rodllcillg the Fife System

TABLE 5·2
Some of Ihe many uses of ambia;uous liIerefs.

Fileref Will Malch

All files
q".' Any file wilh name commencing wilh a Q. from Q alone through

QUIETLY.BAS 10 QZZZZZZZ.ZZZ
wa" .com Any file of type .COM commencing wilh WA, such as WASH.COM.

WANT.COM, or WAVERLEY.COM
wilt.p" Any file named WILT with a type beginning P, such as WILT.PlI,

WILT.PRN, WILT.PRL, etc.
"q." All files-ch:lrJcters after an asterisk are ignored. so this is equivalent to

wan? Files with a filetype of three spaces and names of four letters beginning
with WAN-WANT. WAND, etc.

w?n?.' Any file wilh firsl letter W, third !eller N. tOlal of four leiters, any
filetype. WANT, WINS. SUB, WONT.GO, bUI not WINCE.BAS
five-Ieller names won 'I match

???????y.' Eight·letter names ending in Y. any filetype-SUDDENLY.BOO,
WAVERLEY.COM

????????? File n:lmes not exceeding seven letlers; types not exceeding two lellers.

ORIVECOOF".5 WITII VERBS, Think about this problem: When you gh'e a command the
CCP searches fora file named ,·ub.COM (commands are programs are files!). On wh:lt
drive does the CCP search? It searches lhe default drive, the one n:l~d in !he prompt. In
fact, since a command verb is just a filename. lhe CCP supplies a defauh drivecode for
\'C'rb.COM exactly as il does for any fileref. If lhe CCp's prompt is A>, then when il
needs to load a command the CCP will search for A:'·C'rb.COM.

Given that idea-that the CCP supplies a drivecode for the verb just as it does for
any other file-Ihink about this: If lhere were a program named FRED Ihat you wanlcd
10 use as a command. and il was on the B-drive, how would you call il1 One answer is to
move the diskette to the A-drive. A much bener answer is 10 use a drivecode on the
command verb. as in b:lred operands. That would cause the CCP to search for
B:FRED.COM. which is exactly what is wanlcd.

With drivecodes you can call a command from the B-disk, giving it as operands a
fileref on the A-disk and anolher on the C-disk, as

b:fred a:beesabig.bug c:again.sam.

INVALID ORl\'ECODES. If you specify the drivecode of a drive Ihat docsn'l exist in your
system, CP/M will repon an error. Try it now; it won'! hun anything. Find a drive code

\.......- leller Ihat your sySlem doesn't have (P: is a good bet) and usc it:

p:fred are you there? 69

70

Common Commallds

The response should resemble Example 5-5. The Monitor tried to select drive P: in order
10 search ilsdircclory for P:FRED.COM. Sincelhcre was no drive P: available. an error --../
occurred: the Bdos Err on P: Select message is its way of telling you.

It wails for any input and then perfonns a wann stan. Press the return key. The same
message appears again! The CCP is bent on moving 10 dri\'c P: come hell or high waler.
Use reset (or a cold stan: that'll fill: things up.

The Drivecode Command

Usually the programs and files that you use during a work session are alilogetheron onc
disketlc. It's h,mdy to make that diskette the default drive. But it isn '[always convenient
to put Ihal diskette in the A-drive.

The solution is 10 make some other drive be the default. This is done by giving CCP
a command that consists only of a drivccode. Try it now:

Yes. thc command is jusl the drivccode b: all alone. The next prompt should be B>
indiealing thai the default drivecodc is now B:. Try it a few times and vcrify that thc
current default drive. named in the prompt. is really supplied on filerers:

dir a:
a:
dir
dir b:
b:
dir

When you do a cold stan with reset thc default drh'c is set to A:. When you do a
warm stan with control-c, the default drive remains as it was last set.

SEU;CTING AN EMPTY DRI"~:. If you ask the Monitor to use a drivc that is currently
empty-by giving a b: drivccode command before you put a disketle in the B-drivc, for
example, you will probably reccive a different error message. Most systems will
COnlinue nornlally if you then insert the diskctte and return. If that doesn't wake the
system up. do a cold stan with rcsel.

EXAMPLE: 5·5
Thr ~ultofR:lteting a nonrxistf'nl disk driH~. Responding ",ilh ",turn ",~atsIhe problfm;
I cold start delrs il.

A>p:
BdO$ Err On P: select
Bdos Err On P: Select

64K CP/M vcrs 2.2

"-

IlIfroducillg the File System

The STAT Command for File Information

DIR only lists the names of files. STAT gives more infonnation about them. STAT has
other functions as well. but for file infonnation the fonn of the command is

STAT filu~

Try it now:

sial' .com

(If you get a response of STAT? use DIR to find STAT.COM. and use a drivccode
command to switch to the disk where it is. If you can't find it, get a diskette that has a
copy, load it into the A·drive. and do a eontrol·c wann start.)

THE STAT FlI.£ Rn'ORT. STAT produces output like that in E:tample 5-6. It tells you
five things about each file that matches the fileref. On the right it gives the explicit
filerer, dri"ecode and all. To the left of that it indicates whether the file may be changed
("R/W" for read-write) or is protecled against changes ("RlO" for read-only). In the
center under the heading "bytes" it tells the size of the file as a number of kilobytes. The
remaining two columns relate to the way that CP/M allocates disk space: this is explored
in Chapter 9.

Note that STAT lists the files in alphabetical order. 11 is the only CP/M command to
do so. We'll see later how to use STAT as a convenient way to make a printed record of

"'-- the contents of a diskette,

STAT.-oR AVAtLABL.E SPACIE. STAT can also be used with only a drivecode, In that
e"enl il reports on the status of the entire diskette. Try it

slat a:
stat b:

EXAMPLE 5·6
1'he result or slat·.com on a t)'pical disketle.

lI>stat -,com

Rec. Byte. '"' .«
" .. , R/W A DDT.COM,

" , R/W II DUMP.CC»l

" .. , JVW II ED.COM.. '" , R/W A EDIT.COM

" " , R/W A LOAD.COM

" m , R/W A MAC. COM

'" '"
, IVW II MBASIC.C{)fil

" .. , R/W II PIP.COM", '"
, R/W II PRINT.COM

H .. , R/W A STAT.COM

" " , RjW A SUBMIT.CC»l, " I R/W A XSUB.COM
Byte. Remail'\il'\9 01'\ II, , ,.
" 71

72

Commoll Commands

The result should resemble ExampleS-7. You are lold how many bytes are available for
new or expanded files. (If you are using MP/M 2. If)' the command show space for a
similar result.)

STAT.-oR DISI\ STATUS. STAT with no operand reports on all disks that have been
used since CP/M was last initialized. Try that:

sial

This repan not only tells you the remaining space but also gives the access stale of the
disks, thai is. wbe~r they can be mOOitied (RIW) or only used for input (RIO). At
present your disks should be RJW.

The REN Command to Rename Files

The REN (rename) command changes the name of a file without changing anything else
about it. Before trying it OUI. though, let's create a file that you won', mind losing. We'll
make a copy of an existing file. giving it another name. STAT.COM is a small file. so
lefs copy it. Do this:

pip 2bils.com=slal.com

'-'
The PIP command is described at length in Chapter 6. It makes copics of files. In this
case it should have made a copy of STAT.COM and given the copy the name
2BITS.COM. Did it?

dir slat.·
dir 2bits.'
stat stat.'
stat 2bits.'

EXAMPLE 5·'
The result or STAT ror diskette inrormation with 1)'picAI diskelles.

Byt.,s Re... fnlnq On A' 480k

A>St.t b:

lIyt.,s !l;e•• inina on II: t42k

A>stat
A: R/I', Spacft: 4801<
ft: R/I<l, .';Dace: 1421<

Introducing the File System

fORM m' TilE REN COMMASD, The REN command has the fonn:

REN newfileref=oldfileref

II locales the directory entry for oldfileref and allers it so that the same directory entry is
now found under the name newfileref. The contents of a direclory entry describe !he
location of thai file's data on !he diskelte. Since REN doesn't change them, the contents
of the file remain lhe same, Only ils name changes. Try il:

dir 2bits.·
ren 4bils.com=2bits.com
dir 2bits.·
dir 4bits,"

The file thai was named 2BITS.COM is now named 4BITS.COM. NoOlherchange has
laken place,

REN ERRORS. REN will refuse 10 work if there is already a file with a name identical
to the new filerer. Try il and see:

ren stat.com-4bits.com

There is already a file STAT.COM, so thai can't become the name of another file.
REN also refuses to work if the old merer doesn'l ex-is!. Prove it:

ren anewrel:::::notthere

There is no file NOTIHERE so REN can'l rename it.
Use REN to change 4BITS.COM to SIXBITS.COM. and finally to

ADOLLAR.COM (that's inflation!).

The ERA Command to Erase Files

The ERA command removes a file's entry from the directory. II makes Ihe diskette space
that was occupied by that file available for use. These actions of ERA can't be revoked!
Once erased. the file is gone for good (here's a mnemonic: an ERAsed file is ERAtriev
able).

FORM Ql' TilE ERA COMMAND. The fonn of the ERA command is

ERAfilere/

wherefilerefmay be ambiguous. Lct'serase the fileADOlLAR.COM that we built with
........... ~EN. Before doing so. check ilS size and lhe space on the diskette:

sIal adollar.com 73

Commo" Commands

Thcn erase ADOLLAR and check the results:

era adoltar.com
stat adollar.·

Your resuhs should resembl~ Example 5-8. AOOlLAR.COM is gone. and the space
that it occupied has been added 10 the pool of space on the disk.

ERA)"011. MULTIPu:: fll.F.s. ERA has the ability to erase several files at once. If the
merer given ERA is ambiguous, it will erase all files whose names match the lileref.
This is a useful, bUI potentially dangerous. feature. The best way 10 tame it is to
remember that ERA will erase exactly the files thaI $TAT displays when given the same
operand. If STAT with some fileref displays exactly and only the names of files you
want 10 crase, then ERA with the same fileref will erase just those files. We will make
use of ERA with an ambiguous filerer later.

Protecting Disks

STAT .'011. DISK PROTECTIO:-;. STAT can be used to prollX:t a diskelte tcmporarily
against accidental change. To protect a diskette use the rOnll

STAT drivecode=R/O

where the drivecode names one of)'our disk drives, such as A:. Try it now:

stal a:=r/o
stat

EXAMPLE 5·8
When alile is ('rased, the space it occupied Is made available; Ihis shows as an increase in the
space reported b)' STAT.

A>stllt lIdollll~.·

,~...
Bytes

Bytes Ext Ace
6\ 1 R/W A'AOOLLAR.COtl

Reuininq on A: 2021<

74

A>erll lIllolll1~.colll

A>stllt lI~ollll~.co.

File Not Foun..!
A>stllt
A: R!W. SP3Coe: 2081<

Introducing the File System

The display from STAT shows Ihat the A drive has been marked read-only. Any atlempt
'-- 10 modify that diskette will produce an error message. This proteelion is temporary. It

laslS only unlillhe ncxl wann slart. See for yourself:

·C
stal

The A-drive is no longer read-only. Prolecl il again, and Iry 10 modify the diskeue:

sIal a:=r/o
ren noway.com=stal.com

ThaI should produce BOOS Err on A: RIO. No prompt appears. Whal now? JUSI press
return. The: system will doa wann slan,jusl as if you'd donecontrol-c. Check wilh OIR;
lhe rename was nol done. (In MP/M 2 you may use either STATor SET: set a:=r/oand
sIal a:=r/o ha\'l~ the same effect.)

CHANC.t:[) DIS""'''''F.s ARE RIO. If CP/M discovers Ihat you've changed diskettes. il
makes the changed diskette read-only. The Monitor takes this precaulion because in
some cases, if you changed diskenes while a program was running, the program mighl
wrile in the wrong area of lhe new disketle. To see it happen you have 10 change

'-" diskettes. First check Ihe stalus of Ihe A-drive:

stal a:

1ben remove lhe diskeues from both drives. Put the diskette that was in B: inlo the
A-drive. Make lhe Monilor look al it, lhen check its status:

dir a:
stal a:

It should now be read-only. Pulthe diskettes back as they were and do a wann slart with
control-c.

RiO PROTECTION Is TF..MI'ORARl'. Disk prolcction is only temporary. It is done by
selling a nag in one orthe Monitor's variables. ThaI flag is cleared on a warm start. Mosl
application programs cause a wann start when they coo. 1berefore. making a diskeue
read-only usually protects the disketle only for a single command. Slill, it is worthwile to
protecl diskettes while testing a new or unknown program. Pennanent prolection comes
from the wrile-protect notch in the diskette jackel. Exposing the notch in the jacket of an

,--d-inch diskelle, or covering lhe nOlch of a 5.. inch diskette. makes it impossible to write
on Ihe diskette regardless of its status. 75

76

Common Commands

STAT to Change File Status

-../
The $TAT command can aller two attributes that arc contained in a file's directory entry.
The first is the protection attribute. which prevents or allows alteration of the file. The
second is the directory display attribute. This controls whether the file will be visible to
DIR. The form of the STAT command lhal sets these attributes is

STAT ft/ere! Saltribllfe

fiLE PROTF.cno:.;. You can give individual files permanent read-only status. The
status is recorded in the directory entry for the file. Since the SlalUS is recon:Ied on disk
with the file. it remains until you change it. In order to see it work. make a file and check
its 5IaIUS:

pip protect.com=stat,com
slat protect.com

Then make the file read-only and verify its new status:

stat protecl.com $r/o
stat proiecl.com

The response indicates thaI thc file has been prolccted. Now II)' to erase or rename the
file. The result is an error message BOOS Err on A: File RIO. followed by a warm start -....-/
.....hen you press return. Any program that tried to erase. rename. or write inlo this file
.....ould be terminated with the same message.

Read-only access can be applied (0 several files at once by giving STAT an
ambiguous fileref. Set all the .COM files read-only:

stat·.com $r/o

STAT reports on cach file as it marks the directory. This is a useful function. As you plan
your diskeltc library (Chapter 8). think about what files ought 10 be read-only.

STAT will return any file 10 read-write acccss in a similar way. Enler

slat· .com $rlw

and walch the resulting output.

DIRECTOR\' STAT11S. You can hide the names of files so that they don't appear in the
output of DIR. This attribute is also set by STAT. Try il:

dir protect.com
sial protect.com $sys
dir prOleCl.com
sial prolect.com

Imroducillg the File System

DIA no longer Iisls the file, cven though the file still exisls. Notc that DIA docs not say
NO FILE; it juSt doesn 'tlislthe entry. As you can see, when $TAT described the file, it
showed the name in paremheses 10 indicate that it had the SYS attribute. The Y
attribute can be removed, restoring the file to visibility, in this way:

slat proleCl.com $dir
dir protect.com
sIal prOleCl.com

This hiding of files has only one real usc. By hiding the names of ecnain common
files thai are presem on almosl all diskelles, you simplify lhe display wrillen by OIR. If
there are many files on a disketle, it is easier to locate lhe ones of intcrest if the standard
files don'l appear.

Summary of STAT

All the variations of STAT appear in the Reference $Cclion of this book. Hcre is a
summary of the ones wc've lookcd at so far:

STAT - disk status
$TAT drin'code RIO - protect a disk
STAT drh'ecode A1W - make a disk alterablc
$TAT fi/uef $AfO - make file rca<l.only
STAT fileref$A1W - make file alterable
STAT filerejSSYS - hide file
STAT fi/erefSOIA - reveal file

In MP/M 2 lhese fUllC'lions are available in the SET and SHOW commands as wcll.
If you have MPIM 2 you may prefer those commands to STAT simply be<:au5C thcy havc
fewer fomls.

D1SPLA YING FILES

In Ihis section you'll be displaying a file in sevcral ways. You'll need a printable file in
order todo so. We used a file named TEST.FIL in the examples: its contcnts are shown
in Example 5·9. You could have someone use an editor 10 make you a liIe like that.
Altemalively. you may usc your knowledge of$TAT and DIA to locate a small printable
file 00 your praclice diskelle, Almost any file with a filelype OIhcr Ihan ,COM Of ,INT is
prinlable. You want one that is no more Ihan 4K bytes in length. Make a copy of this file
under the name TEST.FIl:

pip lesl.fil=whalever·its·name-is

filling in the name of the file you found. 77

Common Commands

EXAMPU: 5-9
A simple test file suitable as a sour« for experimenting with PIP.

This ,. TEST.FIL line ••• 01
This ,. TEST.FIL line •.• 02
This ,. TEST.FlL line ••• 03
This " TEST.FIL line ••• Ot
Thl. ,. TEST.FIL line •.• 05
This .. TEST.FJL line ... 06
This " TEST.FIL Ilne ••• 07Th'. ,. TEST.FJL line ... 08
This .. TEST.FIL I1ne ••• 09
This ,. T£ST.FJL Ilne ••• IO
This ,. TEST.FlL line•.. 11
This " TEST.FJL line ••• 12
This ,. TEST.FIL line ... 13
This ,. TEST.FIL line ••. 14
This ,. TEST.FIL I1ne ... 15
This ,. TEST.FJL Ilne ••• 16
This .. TEST.FIL lIne ... 11
This ,. TEST.FIL line ... 18
This ,. TEST.FIL Ilne ••. 19
This ,. TEST.rtL Ilne ••• 20
This ,. TEST.FlL line ••. 21
This ,. TEST.rIL Ilne ... 22
This ,. TEST.FIL line •.. 23
This " TEST.rIL line ... H
This ,. TEST.FIL line ... 25

The TYPE Command

This is the simplest utility and the one most often used. Its form is

TYPE liI~rrf

wherefi/rrrfmust be explicit. TYPE gives you a quick look at the named file by typing it
at the terminal. It's a vcry quick look indeed. if your temlinal operates at 9600 bps or
more: the data stream up the face of the tube fastcr than the eye can follow. Try it
anyway. using your test file:

type test.fil

The contents of tile file should flow past. If the file has no more than 22 lines. it will all fit
on the screen: if it doesn·t. some lines will ha\'e scrolled off thc top of the screen.

Stopping Output with Control-s

CP/M provides a useful service through the cOfltrol-s signal. When that character is
received. output to the terminal halts and docsn't resume until a key (any key. including
control·s) is pressed. This lets you hah the flow of output in order [0 read it. When
you've seen enough. tap any key and 1('(the data roll until you want to stop the flow-....../

78 again.

Ill1roducing the File System

Enter thc type testfil command again, but don't press return yet. Rest your left
pinky on the control-shift key, Rest your left forefinger lightly on the "s" key. Just a
small dip of your hand will type control-s. Ready? Press return. See if you can halt the
display of TEST.Fll before the first line scrolls out of sight. Give another tap of the "s"
key 10 let OUlput continue.

Conlrol-s can be used to control screen output of most commands. You'll often find
yourself controlling output this way_ so pr3etice using it a few times. Be sure that you do
finally complele thc display each lime. You can lell it's done when the CCP prompl
comes out. Control-s will halt most CP/M output. Try it with the output of STAT·.·.

If you're displaying a very long file and don't want to wait for it to end, type some
character other than control-s; the TYPE command will stop instantly.

Console Copy with Control-p

When CP/M receives a control-p signal it begins to echo everything typed al the tenninal
to the printer. This is called consol~ cop)' and is very handy forgetting quick paper copies
of files.

Try control-p now. First make sure that your printer is turned on and has paper in it.
Then enter a control-p and preSS return sevcral timcs. The CCP's prompts of A> should
appear at both the tenninal and the printer. If nothing happens at either device, then the

'--" printer isn't ready or isn't connectcd to the processor. Use reset to get going again and
find out what's wrong. If the output appears at the tenninal but not at the printer, or if the
system still hangs after you've checked the printer over. then you probably have to make

an UO assignment. Read about assignments in the section on "Other UO Devices" in the
next chapter, and check with your vendor.

Whcn console copy is on, the printer duplicates everything that appears on the
screen. You tum console copy off with another control-p, Try il:

.p

return (no printer output)
rewrn
.p
rnurn (printer displays prompc)
r~turn

You can hear the printer \l.·orking as it duplicates the prompt.
Set console copy on if it isn'l (you can lell by listening to the printer as you press

return), then enter the command

type tesUiI

which should display on both the screen and the printer. 79

80

Common Commands

CO:'i'TROI.·S WITII CO",,.ROL-P. Try it again. and stop the display with control-s. The
printer will Slap too. and resume again when the display docs. The screen display stops -./
the instant you press control-s, bUlthc printer may no!. Mosl printers have a buffer thaI
holds characters until they can be printed. When you press COnlIOI-5, the processor stops
sending data to the printer. but the printer has a backlog of characters already received
and not yet written. It docsn '\ stop priming until it has drained its buffer. At that point the
lasl character printed ought to be the same as the last character typed on tnc screen.

EVIO.:SCE OF HASOSHAKISG. You may have noIiced anothereffccl orlile interaction
between processor and printer. "The display. instead of nowing smoothly up the screen.
may move. pause. and move again, This is visible evidence of the interaclion (called
handshaking) belween processor and primer. When the prinler's buffer is nearly full. it
signals the processor. The processor wailS for a second signal from the prinler. indicat·
ing thai it has nearly caught up. before sending more data. This explains the pauses that
oceur at the screen while the printer runs fuJi-tilt: the processor is waiting for the printer
to ealch up.

AVOID PtUN'!lNG "type.. You can avoid having lhe TYPE command appear at the
top of your paper copy. Tum off console copy, then position your primer at the lOp oflhe
foml, Enter the full TYPE command. but before you press return, type a control·p. Then
only file data will appear on the printer, except for the CCP prompt that follows the last
line. Try it. First make sure console copy is off. then:

type lesUirp return

PRI""TINC Tilt: FILE l.IST. Control·p allows you loduplicate any lenninal outptJt on lhe
printer. You'lI think of many uses for it, Here is one that was promised earlier. Set the
printer at the top of the fonn and then:

'p
; the liles on my practice diskette as 01 (dale)
stat ','
'p

You've printt"d a detailed, alphabetical listing of tile files on the A-drive diskette. headed
by a comment line giving the date, Such a listing should be filed with any important
diskene.

Chapter 6

PIP and I/O
Devices

FORMS 0'" THE PIP CO;\1MAND

PIP FOR DISK FILES
Cop)"ing Single Files
COPl'ing Groups of Files
PIP Options for Disk Files

OTHER 110 DEVICES
The Logical Devict>S
The Physical De"ices
5TAT for UO [)e,'ice Information
Making an Assignment Chart
STAT for Device Assignment
Logical and I)hysical De\'ices in MPfM

PIP FOR LOGICAL OEVICES
PIP Options for Formalting
PIP Options for Serial Transfer
PIP Summar)'

82

82
82
84
85

80
80
87
80
80
90
92

92
04
%
08

81

82

PIP and /10 Devices

In Ihis chapler wc'llieam the use of PIP, the most imponanl utility command. The
command's whole purpose is to move data from one "peripheral" (110 device) to
another. PIP's most frequent use is in moving files from one disk to another; this is what
we'll look at first.

PIP can move data from and to devices other than disks. After discussing the way
that CP/M names and controls those other devices, we '11 practice using PIP to move data
between the terminal, printer, and disk drives.

FORMS OF THE PIP COMMAND

The PIP command has two forms. The first is used when you want to call PIP to do a
single transfer, then go on to other things:

PIP deslinarion=source [options]

The format of lles/if/ation, sOl/ree. and [opliollsl will be explained shortly. Use lhe
second fonn when you want to make severallransfers before leaving PIP. Call it by
name with no operands and after it has been loaded it will prompt you with an asterisk.
Then you may enler a lransfer request in the foml deSlinaliOI/=SOllrce [OpliOlU"]. When
that transfer is complete, PIP again prompls wilh an aSlerisk: you may continue in this
way for as many lransfers as you like. Enter return alone 10 end lhe command.

PIP FOR DISK FILES

The destination and source of a PIP transfer may be files. In that case the destination and
source fields are simply filerefs.

Copying Single Files

COPYING ON A SINGL.£ DRtVE. PIP will transfer files wilhin a single diskette or
between drives. We 've used the simplest fonn of the transfer already. Let's do it again to
duplicale our test file:

pip lesI2.fil=tesl.fil

This creates a new copy of the source TEST.Fll and names it TEST2.F1L. No options
were used. The source in this transfer was TEST.Fll: the destination was TEST2.FIL.

COPYING BETWEEN DRtVES. Now make anolher copy, on lhe other disk drive. If your
A-drive is now active (the CCP prompt is A», fine. If not, reverse the places ofb: and
a: in this command:

pip b:test.fil=a:test.fil

PIP for Disk Files

Now there's a lile named TEST.F1L on both drives. Did you notice the sound. and
possibly the blinking lights. as the processor selected first one drive and Ihen the other?
It's hard to miss, unless you're working from a hard-disk drh·e. If you arcn'l now
working on the A-drive. move 10 il with a drh'ecodc command SO Ihal you'lI be in step
with the examples.

SE\'ERAL TRANSFERS IS OSE CO~t~IAN". Use lhe second fonn of lhe command to
make several clones of TEST.FIL

pip
t1,fil::tesl.fil
12.fit:: test.1it
t3.fil ::test.!il
remrn

Use CIA and STAT to see what you've done:

dir t·.lit
stal t?m

NOlice the usefulness of Ihe question-mark file reference. In this case it lets you pick up
only the files Ihat were two Ch:H1lcters long, omitting TEST.FIL and TEST2.FIL.

\....... CONCATENATING FILES. There may be several sources in a PIP transfer. The source
files are copied in order from lefl 10 right. and the destinalion cOnlains all of their
conlenls. leI's try that:

pip t9.lil=t1.fiI,t2.fil,t3.fil
stat t?m

Don'l be surprised if the numbers in Ihe STAT display don'l add up (as they don'I in
Example 6-1, for example). STAT repons sizes rounded up 10 a multiple of kilobytes.

EXAMPLE 6·1
There appur 10 be diSl:repancies in the size information when smaller files are merKed Inlo a
larger one, The explanation lies In Ihe waJ CP/M allocales storage.

A>pip t9.ril*tJ,fil.t2,fil.tJ,fll

">stAt n.rn

Recs Bytes Ext Ace
, 2k 1 R/W A TI.PIL
, 2t 1 R/W A T2.FlL
, 2t J Il!W A TJ,I"IL

17 4t 1 ~~ A T9.FIL
Bytes Remainlnq On A' 1 4k

"-
83

PIP and 110 Devices

The discrepancy in the numbers in the "rees" column has another explanation; we'll look
at both of these effects in Chapter 10.

SIIORTIIAND NOTATION, When copying between disks, the source and destination
usually differ only in their dri\·ecodcs. Since there's no need to t}'pe the same informa
tion twice,)'OU may omit one of the filerefs, leaving only the: drivecode:

pip b::a:tl.lil
pip b:t2.fiI:a:

Of course you may omit the default drivccode if you wish. The CCP will supply the
default drivecode:

pip b:=t3.fil

Cop}'ing Groups of Files

PIP WITH AMBIGUOUS FILEREfS. PIP will accepl ambiguous filerefs. but only in
certain cases. Source and destination must have different drivecodes, and the complete
ambiguous filercf may appear only on one side of the equal sign. You now have four test
files with two-letter names. Here is how to move them all to the B-disk:

pip b:=a:t?.fil

When moving data from one disk to another iI's best to be quite specific about
dri\·ecodes. It may f1O(make any difference to the system. bul you'll fed I1lOf"C

comfortable knowing you've said exaelly whal)'00 meant.
PIP will accept any kind of ambiguous fileref. including '.' meaning "copy

e\·erything." When creating groups of related files. plan the names of the files for easy
grouping so that it will be easy to copy them. to erase them, and to display their names
and status.

STOPPING A COl"'. PIP checks the tcnninal as it works. If you press any key, PIP will
notice it. report ABORTED. and stop work. Try it now. Enter tile command below.
When the first transfer is undcray. press any key ("X" for instance):

pip b::a:test·.fil

After reponing that its workas "aborted" PIP ended. returning control to the CCP.
Had you been using the second fonn of the: command, like this:

pip
b:=a:lesl·.fil

84 it would have issued its • prompt and awaitcd anotncr input.

PIP for Disk Files

TELLING Wllletl ."ILE OmN'y Cop\" You'll have noticed that when PIP copies a
group of files, it repons the names of the files as it moves them. PIP displays a file's
name before it begins the transfer. If there is an error, or if PIP is stopped as wejust saw
how to do. the last name typed tells the file being copied when the PIP stopped.

PIP Options for Disk Files

TilE V OP'T10"', The V opcion stands for "verify": it asks PIP to read the destination file
afler it has been wrillen and check it against the original. This check helps to ensure that
what was written can be read. A "erified copy takes slightly longer than an unverified
one. as more disk operations must be done. The extra time is barely ooiceable for shan
files.

Try a verified copy:

pip 14.fil=tl.fiIlv)

It is a good idea to verify every disk copy you do. We'lI use the V oplion in all our
examples from here on.

Tin: A OPTION. You may recall the feature of STAT by which you could hide Ihe
names of files. Hide one of the test files now:

dir l?.fil
stal t4.fil Ssys
dir I?fil

Now try to copy the hidden file:

pip 15.fil=t4.fil[v]

PIP responds that the file can't be found.
The A option stands for "read hidden files." When the A option is given, PIP will

find the files hidden by STAT:

pip 15.fiI=t4.fillrv]

The transfer completes: the file was found. {)(e than when more than oneopcion is given
the options may appear in any sequence. Thus IN] and [vr) arc the same.

Tm: W OPTION. 1bc W option stands for "write over read-only files:' Nonnally,
when the destination is the name of a prolected file, PIP will not complete the transfer
without explicit authorization. Try it:

slat 15.1i1 $r/o
slat 15.lil
pip 15.lil=11.fil[v] 85

PIP lIlld /10 Devices

PIP asks for authorization. Tell it n for no; it will reassure you that the file was nol
deleted.

Had you said y for yes, PIP would have overridden read..only protection and
completed the transfer. The Woplion lells PIP to proceed with the transfer regardless of
file proteclion:

pip IS.fil=tl.fil[wv)
slat IS.fil

As the STAT display shows. the TlCW file is no! protecled.
The W option is clearly dangerous for it makes the read-only file auribute useless. II

might be useful on some occasions but. since you can always override protection by
responding y to PIP's request for authorization. the W oplion isn't often needed.

Tm: 0 OPTtos. As we'll see in Chapler9. the end ofa printable file is marked with a
speC-ial characler (control-z). Nonprintable files are no! so marked. Usually PIP can lell
the difference from the filetype of the file it is copying. If the filelypc is one that is
con\'entionally printable, lhen PIP SlOps copying when it finds a conl1Ol-z marker within
the file. Once in a long while you might have a file that, because of its filelYpe. PIP
would judge to be printable but which actually has control-1.characters as part of its data.

The 0 option lells PIP to copy e\'cl)' byte of a file, regardless of the presence of
control-z characters.

TilE G OPTION. Yet another option. G. lets PIP copy files from one user code to
another. This option and the use of user codes arc covered in Chapter 8.

OTHER 1/0 DEVICES

Disk files arc central to CP/M, but other devices are important too. There is a profusion
of devices that could be connected to a CP/M system. In no way could the designers of
CP/M provide programming for all of them. Instead, they chose to provide support for a
small set ofcommon device types. That left it up 10 the system's vendors to complete the
I/O systcm with their knowledge of wh:1t 3ctually is connected to the machine. The
Monilor allows a program to access any four re31 devices by way of four prototype
device names. You choose which real device will play each prototype role before the
program is run.

It is necessary 10 understand the systcm of I/O assignmenls in order to make
complete use of PIP. 1I0wever, if you are a computer novice, there is no haml in your
skipping the rest of this chaptcr and returning when you feel more at home with the
machine.

The Logical Devices

LOGICAL DE\'tCF.s, The Monitor allows a program to access just four de\ ices over and
86 abo\'e disk files (a program can access any number of those). These four devices are

Other /10 Devices

named CON:, RDR:. PUN:, and LST:-forconsole, reader, punch, and list respective

'- ly.

I/O ASSIGNMENTS. These devices are called logical devices because they represent
classes of devices, not specific hardware. The Monitor will connect each logical device
to any of four real devices. These connections may be changed at your command: to do
so is to make an /10 assignmel1l.

ADVANTAGES Qt" LOGICAL DEVICF..s. This idea of logical devices provides two ben
efits. First, it allows programs to be independent of the details of (he system configura
tion. Programs need not be aware of how the CON: device, say, produccs data, or of
what machine address it has, or of what sequence of machine instructions is needed to
make it work. The program makes a service call on the Monitor requesting input from
CON:. The Monitor performs the necessary instructions to acquire a character from
whatever physical device is currently assigned to CON:. This makes programs indepen
dent ofIhe device logic and thus makes it easier to transport programs from one system to
another.

The second benefit is that you can ehange the connections between the logical
devices and the real ones. The assignment of LST: to a real device may be changed so
that at one time it means the printer and at another time the tenninal. The commands that
write to the LST: device won't be able to tell the difference.

"--' MEANING Qt' TilE loGICAL DEVICE NAMF.s. Each of (he logical devices has a conven
tional use and is thought of in certain ways.

CON: is the logical tenninaL Almost all CP/M programs assume that CON: has a
keyboard operated by human fingers, and they read their primary control input from
CON:. Programs assume CON: has a sereen that the operator is watching; they write
their messages to CON:.

LST: is (he logical printer. Most programs write data they expect to print to the
LST: device.

RDR: is an unspecified serial input device. PUN: is an unspecified serial OUlput
device. Programs that use RDR: and PUN: assume Ihat they are like a paper-tape reader
and a paper-tape punch respectively. That is, RDA: is cxpecled to read, and PUN: to
write, characters of the ASCII alphabet, one at a time. RDR: and PUN: are the best
devices to represent the many exotic 110 boards that will fit the S-IOO bus, as sketched at
Ihe end of Chapter 2.

The Physical Devices

There are 12 names for physical devices defined in CP/M. They are shown, together with
their conventional meanings, in Table 6-1. They are only names: CP/M docsn 'I enforce
any particular relationship between these names and the real devices attached to your
system. That relationship is established by the vendor of the system. The vendor knows
what devices your system actually has. and will have modified the Monitor so that each
device in the system has a name.

The names TTY:. CRT, and UC1: are meant to apply 10 terminal-like devices. 87

PIP and I/O Devices

TABLI': 6-1
Tht (OfI'-tnlional u.w of the ph,-sical-dt.-kt names-tht actual mtaning of I name is set by
tht vtndor Ind is arbitrary.

Conventional Use

Devices that may be assigned to CON:

nv: Typewriter terminal
CAT: Video display terminal
BAT: Signals that input requests be diverted to RDA: logical device, output to

LST: logical device
UC1: Another console (hum:m-openltcd input and output) device

Devices Ihat may be assigned 10 RDA:

TIY: Typewriter terminal
PTR: Paper-tape (or cassette·tape) input
UA1:
UA2: Other serial inpul devices

Devices that may be assigned to PUN:

TIY: Typewriter terminal
PTP: Paper-Iape (or cassette·lape) output
UP1:
UP2: Other serial output devices

Devices thai may be assigned to LST:

ny,
CAT,
LPT:
UL1:

Typewriter terminal
Video display terminal
A printer
Another printer or serial OUiput

nv: is a conventional name for a Iypewrilertcrminal. CAT: is thai ofa video terminal,
and UC1: is left open.

Thc name PTA: is meant to apply to a paper-tape reader or another serial character
input device such as a tape cassette. The names UA1: and UA2: are left open to be
applied to any other serial input device you might buy-a caSSClle drive. a telephone
coupler. or even a musical keyboard.

1be name PTP: is meanl for a paper-tape punch. Like PTA:. il might apply to any
serial character output device. If you have a cassellc tape. bol:h PTA: and PTP: might
apply to it. one for input purposes and one for OUtput. UP1: and UP2: are undefined.
except as you and your vendor match them to serial machinery.

LPT: is the col\\'enlional name for lhe main printer in the system. UL1: is an open
name available for a second printer-like device.

BAT: is a special name. 1be designers' intent was thai if CON: were assigned [0 -./
BAT:. then all input requests for CON: would be diverted to ADA: and all output
requests diverted to LST:. Thai would make il possible to prepare a script of commands.

88 place that stream of data on the device assigned to RDR:_ and leave the system to run by

Other 110 Devices

itself. BAT: Ihus stands for balch opel1l.tion. Implemenlation of this is left to the '·endor.
the distributed code: for CP/M doesn't do anything about BAT:, Systems with a device
suitable for assignment to ADA: are in the minority, Hence mosl systems don'l suppon
BAT:, although it could provide a "ery useful service.

STAT for I/O De''ice Information

You control the mapping between logical devices and physical device names through the
STAT command. Go to the terminal and try two commands:

stat val:
stat dev:

The resuhs should resemble Example 6-2. STAT VAL: is a convcnience provided by
STAT. It displays a list of reminders of how to use the STAT command, The bottom four
lines of the display list the possible assignments of physical-device names to logical
devices. For instance. the CON: device may be assigned to any of TTY:, CAT:, BAT:,
or UC1:.

The output of sIal dev: is a list of the device assignments that are now in effttl.
Since you haven't altered them since the lasl cold start. the assignments thai are
displayed arc lhe default assignments that are true whenever you initialize the system,
This default can be changed, If you find that the defaull assignments aren't convenient,
consult your vendor (or read Chapler 15).

Making an Assignment Chart

One difficulty of explaining device assignment is that we can't know what devices your
systcm has or under what names your \'cndordcfined Ihem. II is important thai you know
these things aboul your system.

EXMIPLE 6-2
The STAT VAL: wmmand disphlJS a lisl of reminders about how 10 use STAT, The STAT
DEV: command shows the current assignments of ph)'slcal to logical de\-ices,

A>stat val:

Temp RIO DiSk: d:"R/D
Set Indlc.tol: d:filen.me.typ SR/D SRjW SSYS SOIR
DI.k St.tus DSK: d:DSK:
Usel Stet us USR:
Jobyte Anl'i1n:
CON: • TTY: CRT BAT OCl
ROR: TTY: PTR URI UR2
PUN: • TTY: PTP UPI UP2
LST: • TTY: CRT LPT ULI

,,>s .t df:v:
Cotl Is CRT
R:DR Is TTY
PUJol Is TTY
LST Is LPT

A'_

89

PIP arid 110 Del,ices

Figure 6-1 is an 110 assignment chan filled OUt fora small CP/M system. The rows
of the chart describe the four logical devices. Each column represents one possible
assignment to a physical-device name. For instance. the upper left enlry is for the
assignmem of CON: to TTY:.

In each entry of the chart is written the effect of that assignment: the aClual device
thai will be accessed when that assignmenl is made. The eltample system has only two
devices, a tenninal (lube) and a daisy·wheel printer (daisy). The CON: logical device
can be assigned to either one. According to the chan, assigning CON: to either TTY: or
CRT: will connect it to the video tenninal; assigning it to either BAT: or UC1: will
connect it to the daisy printer and its keyboard. The BAT: device was not implemented in
this system as there was no real device for serial input.

According to the sample assignment chan, if PUN: and LST: are assigned to TIV:,
they are connected to "null." This system was set up so that when those assignments
were made the output would simply be discarded. This is sometimes useful for testing
programs.

You should fill out a chan like this one for your system. Consult your vendor (or
read on through Chapler 15) to get the infonnation. There is a blank assignment chan in
the Reference section of this book. Fill it in so that lhe infonnation will be handy.

STAT for Device Assignment

Once you know the vendor-defined meanings of names such as TTY:. LPT:, and PTR:.
you can make 1IO device assignmenls to suit yourself. Once more. check the current
assignments:

sIal dey:

CON.

RDR,

PUN

TrY: CRT, BAT UC,

-j;b ~ J"'J J"'1
TTY' I'TR' URI' UR2:

~-J ~ JV1 J-'4
lTY, I'TP' UPI, UP2'

.j! 1>"" J"'J J"'1
TTY, CRT. lPT: ULI.

~ ~ JV1 8"'1

FIGURE 6-1
An 110 assignlMnt chart filled in for a small S)'stem ...ilh onl)' t..·o de,'kes: a terminal",
(""tube") and a printer ('''ttats)'''). There', a blank chart In the Rere",,~sedlon: fiJI in)'our

90 110 assignments.

OIlier 110 Devices

1lJe name presently assigned to CON: is a name for your temlinal. If yoor printer works
for console copy (described earlier), then the present assignment of LST: is a name for
the printer. Don't be too surprised ifboth logical devices are assigned to the same name.
such as TIY:. One of the most slippery things about thedevice assignment scheme is that
the TIY: you assign 10 LST: may not mean the same device as the TIY: you assign 10
CON:. The connections are strictly arbitrary; your only hope of a"oiding confusion is to
complete the four-by-four grid of the assignment chan and then consult it often. With
your assignment chart fillcd out. find an assignmenlth:ll will connect the LST: dcvice to
lhe tenninal. CRT: is a likely candidate. Then make lhal assignmenl with STAT:

stat Isl::::crt:
slat dev:

The display from sIal dev: should show thutlhe assignmenl has been made. Now all
output directed to the LST: device will appear at thc tcrminal inste:ld. Let's find ouI.
When console copy is on. console output is duplicated on the LST: device. Try it:

type lest.firPmllrn

Example 6-3 shows what ought to happen. E"ery ootput characler appears Iwice (once as
wriuen 10 CON: and once as written to LST:. of course). Turn off this double vision with
another contro!.p and return LST: to its previous assignment. Iflhat was LPT:. say. then
the command would be

stat lst::::lpl:

If you can'l remember what it was. do a cold stan with reset 10 get the default setlings
b><k.

Ponder your assignmcnt chart. Try to Ihink of ways of using thcse possible
connections. Try also to think ofimprovemems you'd like made in the layoul. and what
the chan should be like if you added another device 10 Ihe system.

EXA.MPLE 6-3
The result of console COllY wilh the printer assigned to the console deltice--e"ery output
character is duplicated.

A>stet !et,·crt:

A>type t.st.fil (control-p prc!I:llld)

TThhlln II•• TTEESSTT.. rrIJLLC£ llilnnt!e ll

TThhU •• lin TTEESSTT.. rrIILL££ 111[nn••...... 22

TThht is. lin TTEESSTT.. rrIILLEE 111Innee 33

TThht t •• Ii•• TTEESSTT.. FFIILLEE 1111nn••.....• 44

TThhlln lin TT££SSTT.. FFIILLEE 1IIinnee•. __ .. ""

TThhi In Un tetc)

9/

PIP alld /10 Devices

Logical and Physical Devices in MP!M

In many respects MPIM and CP/M are alike as far as the ordinary user can tell. One
important difference between them lies in MP/M's treatment of logical devices. The use
of CON: is almost the same, but that of the other devices differs.

LST: IN MPfM. In CP/M the printer is all yours, todo with as you wish. Under MP/M
you share the printer with any other users who are working at the same lime. If your
printed lines are not to be mixed up with somebody else's, you have to get exclusive use
of it. PIP will do this for you when you specify lST: as the destination of a transfer.
Other programs may not seize the printer. 1bere is a way you can do it for them. The
oontrol-q signal requests ownership of the printer, If when you type control-q the printer
isn't in use, MP/M will reserve it for you and the commands you run. Release the printer
later with another control-q.

RDA: AND PUN: tN MPfM. MP/M simply doesn't support the RDR: and PUN:
devices. Miscellaneous serial devices are defined as "consoles" to MPfM. and there are a
variety of ways in which you can direct 110 to a differcnt '"console" than' the terminal.
You'll find that aCP/M program attempting to use RDR: or PUN: under MP/M in fact
will be using the temlinal. Such a program will have to be changed 10 work under MP/M.

PIP FOR LOGICAL DEVICES

PIP will accept the logical device names CON: and RDA: as sources in a transfer. Itcan
usc any of the logical devices CON:. lST:. or PUN: as a destination, PIP uses the
Monitor for its transfers, so the data will now between whatever real devices arc
currently assigned to the logical names.

CON: AS A SOURCE. As an example of using a logical device, let's build a disk file
directly from the terminal. Whcn typing data into a PIP transfer. you must remember to
end each line with both fCturn and lindeed. In normal command entry the CCP lakes care
of the linefecd for you. and you only usc return.

PIP uses conlrol-z 10 signal end of transfer. You'll have to enter control-z to stop
the operation. Try it. Type carefully!

pip my.fil="con:
As long as I type perfectly murn lint'jud
And never make a slip rt'lurn /int'jud
I'U never need an editor; relum /int'jud
I can enter files through PIP. rt'lIIrn lint'jud
·Z
type my.fil

As you can see. the dala from CON: (the terminal) were placed in the destination.
92 MY.Fll. While typing into PIP this way, you receive none of the typing aids you 'fC used

PIP for Logical Devices

10. If you correclOO a typing error by backspacing and Iyping over. alllhrce characters
went into the file: the error. the backspace, and lhe o\'crsmke. When you display the file
with TYPE. the same Ihree characler.> are typed out, probably too fast for you to see
them come. 1be control-x and control-u error correction aids don'l work either.

CONCATENATING LOGtCAL D.:vtc.::s. A logical device can appear in a list of concaten
aled files as well. Try lhis one:

pip me2.fil::my.fil,con:,my.fil
linefeed you can say that again!rewrn linefud
'z
type me2.fil

That transfer exposed a problem. How can you tell when PIP is ready 10 receive
dala? It docsn'l issue a prompt to lell you when it's ready for you to type. The only way
you can be sure is to wait for all disk activity 10 SlOp. Whcn lhe select lights are OUl. or
when you hcar the click of the head unloading. you know that PIP isn't reading disk dala
and so it must be waiting for Icnninal inpul. If you have a hard disk. there isn't any clear
ifldication. As long as the preceding sources are of reasonable sizc. waiting 15 seconds
or so should be enough 10 ensure that PIP is listening.

LST: AS A DfSTtNATlON. The logical prinler. L$T:. can be a PIP destination. Make
your printer ready, lhen try

pip Ist:::con:

Until you enier a control-z. any charactcr you Iype will be senl to the primer. Your
printcr may no! respond as the lerminal docs to backspace or tab characters. Try it and
see. On the OIher hand. conlrol-I (also called fonnfccd) should cause the printcrto skip to
a new page. Conlrol-l may mean nothing to the lenninal. or it may cause the tenninallO
clear ilS screen.

DISK .'II.F..s TO L$T:. The printer is more commonly used as a destination for disk
files. "'ere's lhe simple fonn:

pip Ist:=my.fi1

but there's nothing to stop you from sending several files:

pip Isl:::leSt.lil,my.liI,me2.fil

Notice lhat cach file's data follow on lhe heels of the prior file. In CP/M 2. one way to get
each file slatted on a new page ;s

pip 1st::: lest.fil,con:,my. til ,con: ,me2.fil 93

94

PIP lIlld 110 Devices

Each time the printer SlOpS, cOler "L"Z. The printer will feed to a new page. and the next
diskfilewill~gin. ~

PIP Options for Formatting

PIP provides numerous oplions thai regulate the formal of the transferred data. In the
following examples we"1l use the primer and terminal as destinations. This is done here
only for simplicity and visible results. All of the formaning options work as well with
disk. printer. or any other destination.

TilE On OPTION. 1be 011 oprion (the leiter d followed by a number) stands for "delete
trailing columns"; it causes PIP to truncate each line 10 the column indicated by the

number. Try it:

pip
con:,,=,rny.filldS)
con:=my.fil,my.fil[d3)
Tf'lurn

TilE P OPTION. The P option stands for "pagination:' II causes PIP to insert a
fOffilfeed after a cenain numbcroflines of output. If no numbcrof lines is specified. PIP
insens a formfecd cvery 60 lincs. This fits in with the norm:lI useof II-inch paper spaced

at six lines per inch. and resuhs in half-inch margins at top and bottom.

pip Ist:=test.fil[p5]

This begins the listing of the filc on a new page. and skips to a new page every five lines

thereaftcr.
Be awarc that when sending concatenated files the P option only insens a fonnfeed

at the head of the first source file. Thus in

pip Isl:=test.fil[p].my.liI[p]

the display of MY.FIL begins immediately after thc last line ofTEST.FIL This is truc
even if the two P options specify different numbers of lines.

Tm: F OPTION. The F option is used to filter out formfeed characters that might
alrcady be in a file. Cenain applications creatc listing files (files of type .PRN or .LST)
that contain fOnllfeed characters on the basis of somc assumed page size. To print such
files on a different size of paper. usc the F option to strip the fonnfeed characters out of
the file and the P option to put in ncw ones at the desired spacing.

Tm; LAND U OPTIONS. The L and U options change the case of alphabetic characters.
The L option makcs all alphabetic characters lowercase: the U option makes them all --/
uppercase. Try it:

pip con:=my.fil,my.fil(u],my.liI(l]

PIP for Logical Devices

TilE N A....u N2 OPTIO:"OS. The N and N2 oplions cause PIP 10 add a sequence number
at t~ ~ad of each line as it \l.'lites. The sequence numbers begin at one and go up by one
with each record. The field in which the numbers are placed is six characters wide.

The N option causes PIP to make sequence numbers in which the leading zeroes an:
convened to blanks. and the number is followed by a colon and a space:

pip con:::my.fi1[nl

The N2 option causes PIP to leave the leading zerres in the sequence numbers and to
follow each with a tab character. With standard CP/M tab SlOp senings. this places the
first data character of the line in column 9. just where the N option put it:

pip con:::my.fiI(n2)

Another example follows.

TilE T OPTiON. The T option requests PIP to expand tab characters that is. 10 replace
each tab character it finds in the source with some number of spaces. PIP keeps track of
the column at which the next destinalion character will fall. When it finds the next source
character 10 be a tab. PIP writes instead thc number of space characters that would be
skipped by a tab at that position.

CP/M has a convention that tab stops an: set at e\'ery eighth position on all output
devices (thaI is. at 9, 17.25. etc.). Some printers and terminals suppon sellable lab
stops: others provide pennanent tab stops that may or may rJ()(be at every eighth
position. And some devices don't supp:tn tabs at all.

The T option lets you smooth out these inconsistencies by convening lab characters
into spaces on the basis of any tab increment you like. We can test it with the N2 option.
which puts a tab after the sequence number:

pip
con:::my.fil[n2]
con: ::my.fil[n21]
con: ::my.fil(n21201
re/llrn

The first file transfer shows where your tenninal places the first tab stop after position
six. In the second the tab in each line was replaced by enough spaces to begin the data in
column 9, as the T option alone assumes tabs in 9. 17, etc. The third transfer replaces the
tab with enough spaces to begin the data in column 21.

Make your printer ready and repeat that series with a destination of LST:. If your
printer ignores tabs. or assumes tab stops at some increment other than eight, then the
first and serond transfers will differ.

TilE PRN: DE\'1C£. The P. F. N. and T options let you format dala going 10 any
destination. including disk files. PIP supplies a special con\'enience when the destina
tion is a printer. If you specify the destination as the device name PRN:. PIP writes to

--- the printer and assumes options P60. N. and T8:

pip Ist:::my.fil
pip prn:::my.fiI 95

PIP alld 110 Devices

Tilt: S ANI> Q OI'TIONS. The S and a oplions dictate the points at which PIP should
Stan and Quit copying a source. They let you extracl a ponion of a source. The extracted
ponion may be concatenated to other (ponions 01) files.

In demonstrating t~oplionswe will u~ MY.FIL. the four· line file you enlered in
the section "CON: as a Source." Ifyoo made typing errors in enlering that file, or didn't
enter it at all. make a good copy of it now.

THE S OP"TlOS.
The S option gives PIP a marker al which to begin eXlracting dala from the source,

The marker is the string of characters between Sand control-z. Here is an example:

pip
con:;;:my.fil
con:-my.fil[sAnd·Z)

The second transfer begins wilh lhe word "And" al the head of lhe second line (don 'I
forget to capilalize "And" exactly as you entered it). PIP ignores all the data thaI precede
the sian marker.

The S option is nol limited to skipping whole lines:

con: ;;:my.fil(slype·Z)

causes "As long as I" to be skipped; the transfer commences wilh lhe stan-string "IYpe," -..-/

THE a OPTION. The Q oplion is used exactly like the S oplion:

con:=my.fillqfiles·Z)

The transfer begins wilh the first line and ends with the word ·'files."·
The two olXions may be combined:

con:=-my.fil[sAnd"Zqslip'Z]

Only the second line is typed.
An extracted file can be concalenaled 10 olher dala:

con: = my.fiI[sl'lrZ),my.fil[qslip-Z)
rnu",

PIP Options for Serial Transfer

Dozens of kinds of devices can be connecled 10 a CP/M syslem. Special-purpose devices
may have their own software 10 drive lhem, bUl if a device can reasonably be assigned \(.
ADA: or PUN:, PIP can lnmsfer dala through it. PIP provides several options lhal are '--'

96 useful when it is driving serial devices. especially paper·tape and casselte·lape drives.

PIP for Logical Devices

(If your system lacks such devices, or if you are using MPIM. Of if you are new to CPIM.
skip this section.)

TilE B OPTION. 1ne B option is espedally designed for use with paper-lape readers
and some cassette recorders. TIlese devices operate at a fixed, and often quite rapid,
speed. The tape being read may contain long streams of data. When transferring data to
disk, PIP ordinarily reads a fixed amount of d:lta and then writes a disk record. The fape
will continue to move while PIP is wriling to disk. If PIP takes too long, incoming
characters will be lost.

The B option prevents such an overrun bycausing PIP to buffer all incoming data in
working storage until the device signals end of data with an XOFF character. Only then
does PIP write the received data to the destination.

The maximum amount of data that PIP can handle dcpends on the amount of
working storage in your sySlem. For a conservative estimate, subtract a 20K allowance
for PIP and the Monitor from the size of your system. A system with 64K of working
storage should be able to handle records more than 40 KB long.

Tin: E OPTION. The E option instructs PIP to echo alltrnnsferred data to lhe console
device. This lets you monilor the progress of a transfer between tape and disk. If an error
occurs. the last data transferred can be seen on lhe screen. You can use some unique pan
of lhe data as a sian marter with lhe S option when reco\'ering.

THE H AND I 0""101'05. The H and I oplions are for use when transferring files in the
'-- Intel "'hex" formal, a way of storing maChine-language programs in printable form that

we'll discuss in Chapter 12. Hex fomla! files are written by the CP/M Assembler: the
fonnat is often used 10 transpon programs on tape. The H oplion causes PIP to check the
transferred data for conformity to the fonnat, and to strip out nonessential pans. The I
oplion implies the H option (so both need not be specified), and also slrips out program
information records allowed by lhe format.

TilE Z OPTIO)ol. The Z option causes PIP to zero the parily bit of each byte ofdata as it
is received. Dala received via the Monitor from Ihe CON: logical device always have the
prity bit selto zcro. This isn't true of data from the ADA: device, and that is just as well
as sollle devices that might be assigned to ADA: transfer 8 meaningful bits in each byte.

The Z oplion gives you control over the parity bit in serialtransfcrs. If the incoming
data do not contain useful data in bit 7, specify Z. If all 8 bilS are useful. omil Z.

The device assigned to PUN: may require thallhe parity bils of output data be sellO
zero. In that case specify the Z option on the source of the transfer.

SPy..cLU. PIP SoURC~. PIP provides two special device names that may be used as
sources in a transfer. The NUL: source stands for 40 ASCII NUL charactcfli. NUL: is
used to create a leader or trailer on a paper tape, thus:

pip pun:ocnul:,my.fiI,nul:

The EOF: source stands for a control-z character (the ASCII code SUB) which is the
CPIM end-of-file mm. PIP automatically sends a control·z at the end of any file 97

98

PIP and /10 Devices

lransfer il knows 10 contain ASCII data. but in some circumstances you may want 10 send
one explicitly. ~

USt:R'\VRI'rn:N PIP ConE. The PIP program has been designed so that user-written
code may be inserted into it. Two user subroutines are allowed, one 10 be used as a source
and the other as a destination. They are designated as INP: and OUT: respectively. The
interface between the main PIP progrdffi and these user-supplied routines is described in
the CPfM documcnlalion. They must be written in assembly language and patched inla
PIP with the DDT command. Wc'lllook 31 the use afOOT for patching in Chapter 12.

PIP Summar)'

This has been a long excursion around the features of PIP. Before going on to another
subjeci you mighllike to look althe pages on PIP in the Reference section. That will help
you to recover a view over the forest after this tour lhrough the lrees.

Before leaving this section we should dean up the files we created. That will give us
an opportunity to use ERA with ambiguous filerers. On the A-disk you ought to have
several files of type .Fll: T1 through T5, T9, TEST, and TEST2. Some of the files
have been copied to the B-disk.

The key to safe use of ERA with an ambiguous fileref is this: The filenames listed
by STAT fileref are the files thai will be erased by ERA with the same filerer. If a $TAT
command shows you exactly the files you want erased and no others, then ERA with the ""-"
same operand will erase those files and no Olhers. Use $TAT and ERA in this way to
erase all the files created with PIP.

Chapter 7

Using ED

EI>ITOR CONCEI'TS
The Edit Session
Hie Handling
T)'pes or Editors

USING ED
An Initial Session
Controlling the Edit Session
The Form of ED Commands
Controlling t-iles and Working Stonge
Displa)'ing Text
Controlling Line and Character IJointers
Inserting and Deleting Text
Text Substitution
Searching for Text
Macro Commands

100
100
100
10 I

102
102
103
105
106
107
10'
III
113
114
115

99

100

Using ED

Many CP/M users spend mocc of their tenninal time using an editor Ihan any orhcr
program. Your editor is Ihe program 'hat lets you create. and then correct. files of all ----'
kinds: lellers, lists of data, programs. even books on CP/M. The human factors of your
editor can be crucial to your productivity.

There arc a number ofeditor programs available (orCP/M. Three very popular ones
are Ell!clric Pencil, Magic Wand, and Word Sill'. If you have acquired one ofthcsc or
another editor, skip this chapter and learn your own editor. If you haven', yet bought
another editor, stay with us to learn ED. but plan to investigatl.' some oflhe others as Ihcy
are beller for many purposes.

A nOle on the examples in this chapler: When dealing with thc CCP it doesn', matter
whether you type your commands in uppercase or lowercase. When dealing with ED it
mailers very much. When doing the examples, type your commands exactly as shown.
We'll explain why as wc go.

EDITOR CONCEPTS

The Edit Session

STARTI$ TilE SESSION. All edilors are based on similar concepts. An editor is called
as a command and given the name of a file. After it has been loaded by the CCP. the
editor loads pan or all oflhe file into working storage; !he edit 5ession has begun. It waits '-'"
for you to type an editing command. The command directs lheeditorto make a change of
some kind in ils copy of the file. After Ihat change is made. the editor wailS again. The
edit session continues in Ihis way.

ENUI:-1C TilE S£SSION. When you've caused all the changes you want. you give lhe
editor a command that means "OK. finished." and il writes the altered file back to disk.
The altered copy has the name of the original file: the old version remains but now has a
filetypc of .BAK (for backup).

File Handling

How TilE ftu: Is MOVED. During the edit session the editor holds a copy of the file. or
pan of it. in working storage (Figure 7-1). Sometimes the file to be ediled is larger than
the space available in working storage. A few editors cannot handle such files. but most
provide for this by loading a ponion of the file at a time. Only the part of lhe file in
working storage is accessible for editing. When you'\'e finished wilh the first pan of the
file. it is wrillen 10 disk as pan of a work file. The next ponion of the file is brought into
working siorage to be ediled. When you lellthe editor that you're done. any remaining
ponions of the file are copied to the work file. The original file is lhen gi\'en a filelype 01 ___
.BAK. and the work file is gh'en the name of the original file.

I
Accessible==portion of===

_file

Editor Concepts

) L::::"~-""'"'''''''~''''~'-----__-----.J

(Onpnal filc-NA)tE-TVP -7.'='~='=:fi::"::-~NO'iA:iM~E;;.S7.S"s_/
(b«omcs "AME-8AK) become. NAME.TVP

fiGURE 7·1
An ~ilor copi~ all or pari of the original filt inlo working storage whue it can be chang~.
Tht modified data are wrilten 10 a work file that e,'enlually acquires Ihe filuef of the
original.

THE LUI": CONCEPT. Most editors view the file as a continuous stream of characters,
divided into units called lines. By CPfM convemion. the marker that ends one line and
begins thc next is a pair of characters. rl!(urn and linefl!ed.

LISF-S ASt> DISPLAY LL"lES. A lineoftext in this sense is not the same as a line of letters
across your terminal's screen. A text line may be as soon as zero characlers (no other
characters belween one relUm·Jinefeed pair and lhe next). or it may be several thousand
characters long. When1' want to refer to a line of leiters on the screen. we'lI speak of a
"display line." Otherwise. take "Iine"to mean "all the characters between one rclum
linefced marker and the next."

CURREl'o'T LINE ANO CUARACTER. An editor can see only one line at a lime and. within
that line. only one character at a time. Figure 7-2 shows the first four lines ofa file as an
editor might see them. The editor is looking at the second line and within it at the initial
"h" of "had ... The line that the editor sees is called the currem fine; the character il sees is
the currellt dwracler. Often Ihe documentation of an editor will talk of the "current line
pointer" and the "character pointer"; these can be imagined as the lillie pointing hands
drawn in Figure 7·2.

Types of Editors

FULL-ScRU::'''' EIllTlNC. A full-screen editor displays a page oflext on the screen oflhe
terminal. lhen indicates lhe current character by placing the cursor under it. A full-screen

"'-" editor allows you to move the cursor wilh various signals. As you move the cursor the JOJ

Using ED

The boy stood on the burning deck.

c~..
L~Whence all but he~d fled;

The flame that lit the battle's wreck

Shone round him o'er the dead.

flGURE 7·2
An editor looks al a single character "'ithin a single line. A rull·SoCrftn tditor marks the
cumn! character "'jth the tenninal cursor; EO !"t\"eals the CUrTent line with the command
OTT.

editor updates its character pointer accordingly so that it is always looking at the same
characler Ihat you are. When you type a charactcr it replaces thc character at the cursor,
the relationship belwccn your input and the rest of the file is always clear.

LIN"E EDITING. A line editor such as ED is designed for typewriter.like tenninals. It
provides commands for moving the character and line pointers abool in the file. but the
location of the current character isn't so obvious. When using a line editor you have to
concentrate a bit harder and have a clear mental picture of those little pointing hands.
This quickly becomes automatic.

All editors. then, allow you to load a filc into working storage and move a pointer
around the lines and chantcters of the teltt. All allow you to make changes to the file in,;
the vicinity of the current character, and finally to put the changed file back on disk.

USING ED

ED is a line cditor provided as part of CPfM. Here we will introduce many of the parts of
ED. Don't Cltpect to Icarn ED from this demonstration; an editor. like any other
complicated tool, is only learned through repeated practice. In Ihis chaplcr you'll meet
the most important parts of ED and learn enough to gCI you started.

An Initial Session

ED is invoked as a command with an explicit fileref as its operand. Do it now:

ad casabian.ca

The response is as shown in Example 7-1. If the words NEW FILE don't appear, then a
file called CASABIAN,CA already exists; do a control-c warm start. erase it. and repeat

102 the command.,;

Using ED

EXAMPLE 7·1
The result when ED is called to create a new fj~.

I\.>ed casabian.ca

N~ FILE

INSERTING NEW TEXT,
Now type the single letter "i" and rel/JrIl (be sure to type a lowercase "i"). ED

returns as a prompt the line number, I. At this point it is ready to receive and store
anything you type. Take a few minutes to enter the lines of the poem "Casabianca" as
shown in Example 7-2. You'lI find you can use backspace and control-x to correct typing
errors, as when typing commands. End each line with re/llrll, and use re/llrn alone to put
a blank line between each stanza.

FINISHING THE FII.f.. When you've typed the last line orlhe poem, enter these things:

'z
b
#,
e

When you entered the #T (Iypeall)command. ED displayed the whole file. The E(end)
command made ED put the file away on disk. Use STAT and TYPE to verify that il
exists.

Thai was a simple edit session. The file was new. so there was no input file. You
had ED accept your input 10 the file, then displayed the file as ED had il in working
storage. and finally stored it away.

Controlling the Edit Session

PtrrTHE FILE AWAY WITII E. Theedit session is begun by giving the ED command 10
the CCP. It is ended with one of Iwo commands to ED. The E command writes the
complete text inlo the work file, then changes the directory so that the original file has a
filelype of .BAK, and Ihe work file has the main file's name. You used an E in the initial
session above.

QUIT WITH No CUANGES WITH O. The Q command tells ED 10 quit without making
any changes. The work file is erased and the original file remains as it was. Any work
you've done in lhe session is nullified. Try il;

eel casabian.ca
q

-..- ED asks, with a nole of disbelief, whether you really mean il. Anser y for yes. /03

Usi"g ED

EXAMPLE 7-2
Crating the file CASABIAN.CA wilh EO. The fililor supplies
COfTt'Clion loI"orks. Use the return key alone 10 enler a blank line.

line numbers. Typing
-.../

104

....>ed casabian.ea
NEW FILE

• i
i: C.... SABI ...NCA
2,
), by Felicia Helllani.,
5, The boy stood on the burning deck
6: Fromhich all but he had fled;
7: The flame that lit the battte's reck
8: Shone round him over the dead.

"10, Yet beautiful and briqht he stood.
Ii: As born to rule the storm;
12: A creature of heroic blood,
13: A proud, though chlld~like form.
H,
15: The {lalles rolled on !Il'ld On -- he would not go
16, ~ithout his father', word:
17: 'I'tlat father, hint In dealt> below,
18, His voice nO 10nger heard.
19:
20: He called aloud -- ·Say, father. say
21: If yet ~ task is done?"
22: He knew not that the Chieftain lay
23: Unconscious ot his SOn.
24 :
25: ·Speak. fatherl- once a'lain h" cri..cl.
26: or! I aay yet be 'lone!"
21, .- .o.nd but the booIoinq shots ~"pli...:l.

28: ~ fast the fla.es rolled on.
29,
30: Upon his brow h. r"lt th,,;~ b~eath.

31, ~ in hisylnq hai~:

32: .o.nd looked fro. that lone post of death.
33: In still. yet brave despili~,

34,
35, They ..~apt the Ihlp In splendor .. lId.
36, They cau9ht the na9 On hi9h.
37, .o.nd strea~ed above the 9allant chil~.

38: Like banners In the sky.
39 ;
40, (This Is an extra stanza. put
41, Into this stirrln'] verse
42, So the student may delete Jt,
43: The song'll be no wors•.)
44:
45: Then came a burat of thunder sound
46: Th" boy -- ohl ..here was he?
47: -- Ask of the .. inda that fa~ a~ound

48: With f~ag..ents strew'd the sea!
49: (press control-t here)

COl'oTROL THt: PRO:'tIPT WITtt V. Two other commands conlrullhe Slate of ED during
lhe session. The V (for visible numbers) command controls EO's prompt. When firsl
started. ED prompts with the number of the current line and an asterisk. The command
-V shortens the prompt to the asterisk only. You'd only want that if your tenninal were
slow or noisy (in otherords. if your lerminalere a typewriter). or if youere driving

Using ED

EO aUlomatically from a submit file (set: Chapter 8). V without the hyphen relUms lhe
'-- promp(10 nonna!.

CONTROL CASE WITH U. The U command causes ED to treal all inpul as uppercase, as
the CCP docs. This is needcd only whcn enlcring program lext for some programming
languages. Olherwise in beller to leave ED in ils inilial. ·U. Slate so lhat it stores the
leiters jusl as you Iypc lhem.

ED ERROR MESSAm:s. ED has a vcry limiloo vocabulary of crror messages. All of
them consist of the words BREAK "x· AT ;. where x and z vary with lhe circumstances of
thc messagc. The word BREAK simply means lhat EO stopped executing your com
mand. and the character z is the last character of the command that il looked at. The
character x tells the rcason it SlOPped. If x is a question mark. EO didn't recognize the
command. If it is a greater-than symbol. working storage is full. If it is a sharp sign (#).
lhen ED couldn'l repeal the last command as many limes as il was lold 10. That message
occurs frequenlly: il normally just means "finished:'

The Form of ED Commands

COM~IA:'I1I)S ARt: SINGLE b:rn:RS. We'vc seen four cxamples of ED commands. 1be
B. L and E commands were Iyped as single letters. and the IT command took two. ED

""-" commands are IlOI al all like CCP commands. Firs!. the verb of an EO command is a
single. more or lcss mnemonic. leiter. Second. when an operand is used it is placed in
front oflhe verb. not aftcr it. For instance the T command. as we'lI see laler, causes ED
10 lype al the lemlinal. Its preceding operand diclales the number of lines to type.

NUMERIC OJ>ERA:'I1lJS. Several ED commands accept numeric operands. and the rules
for these operands are consislenl. A numeric operand is an integer from zero up to
65535. The sharp characlcr (#) is taken as shonhand for 655]5. so thaI sharp means
"any and all." If you omit the operand, EO assumes you mean 1.

SIGNED NUMt:!UC OWKANl>S. Somc commands allow their numeric operand to have a
minus sign in from of it. This means "backward." or "Ioward lhe lOp oflhe fite": omilling
the minus sign means "forward." or "toward the end of the file." For example, T is a
command Ihal acccpts a numeric operand. The #T command used earlier meant "type all
lines from the current one to the end." whereas -2T means ''lype the two lines befOf'C Ihe
currenlone

OUR NOTATION t"OR COM,\I,\Nns, From now on when we refcr to commands that, like
T, will take signcd numcric operands, we'll namc them this way: liT. Commands that
will accept only posith'e operands we'll refer to like this: pA. A few commands will
'1ccep(only one operand. Ihe minus sign itselfwilh 00 number. These we will designate
,B, indicating only a sign is allowed. And those commands that don'l allow operands

'--we'll just name by their leuer alone. /05

106

Using ED

One other note on naming things and thcn we'll gel on with editing. Some
commands head strings of characters. These are much like the marker strings you used,/
with the S and a options of PIP. After the \'crb comes a string of any number of
characters, and the end of the sIring is marked with control-z. We'll use lilt: notation
sIring 10 mean "any characters ended by control-z.··

Controlling Files and Working Storage

When it is initialized. ED leaves working SlOrage empty. Unlike many editors. ED
doesn't read any ponioo of the text until you tell it to. Observe that when you begin a
session:

ed casabian.ca

*t
ED responds with ablank line number: liT shows nothing. This is so because there is no
lext in storage, and hence no lines 10 display.

LoAD TEXT WITH pA. The pA (for append lines) command brings some number of
lines from the source file into working storage:

1a

*1
"The firslline of text has been brought in. Its first character is current. The currenlline, as
the prompt lells you. is 1. "Then

lOa

*1
brings in 10 more lines; the NT command displays all of them.

Most of the files you edit will fit comfonably in working storage. Usc the sharp
notation for "all" and bring in the rest of the file:

*a
*1

CHECK A\'AtLABLE SPACE Wlnl av. Now let's see how much working storage is
available:

Ov

The av command produces a display of the number of bytes of stof'<Ige cUITCntly free an<.-......-/
the number of bytes in lotal that ED can use. On a 64K syslem the response will be

Using ED

something like 37000138300 (37,000 free bytes out of 38,300 total bytes). Our little
Casabianca file has barely scratched working storage.

WRITE TO TIlE WORK FILE \\1TII pW. Uad the source file been a great dcallarger, it
would have completely filledorking storage. When you gave the II-A command ED
would have reported its cryptic> error. meaning ·'full." At that point you could make
room by writing some of the top lines out to theork file with the pW command:

3Sw..
Note that when the currem line (line I in this case) is wriuen out. the pointers move down
to the first remaining line.

At.Tt:RNATIC pA A I> pW. The lines written out arc safe, but out of reach for editing.
Thus when editing a large file. use pA to get a good chunk of data, make changes in that.
then use IIW to put the data away. Repeat untilthc whole file is done.

START OVER W!TII O. It's inevitable thai sooner or later you'll so foul things up that
you want 10 stan over. TIle 0 (original file) command docs thaI. 0 is the equivalent of
doing 0 (quit) followed by calling ED again. It is just the same but a bit quicker. Try it
now:

'--' 0.a..
RETURN TO Tilt: Top WITII H. It's also inevitable that sometimes you'll gct half a large
file wrinen out and then remember a change you forgot to make at the top. The H
command gets you back to the top with all changes intact. It does so by doing exactly
what E (end), followed by recalling ED, would do. That is, it makes all the changes done
so far permanem, and then stans over on the altered file. In effecl H begins a new edit
session on the altered file.

Displaying Text

Display commands are the most common ones as one of the common uses of an editor is
to browse through a file. EO's display commands are liT and liP (for type and page-not
print-respect ively).

USES m' nT. nT displays some number of lines. To get the full sense of what it docs,
you have to get the character pointer in the middle of a line in the middle of the file:

161
15<: 107

108

Using ED

(fhc ilL and ne commands arc described laler; they move the pointers.) Now try

1
11
01
0111
on

and think for a minute. T and 1T are equivalent (an omiued operand is assumed to be 1 .
so T is assumed 10 be 1n. 80th show the current line from the character pointer through
the relUm-lincfeed pair thai marts its end. ott carefully lhallhey don', necessarily
show the whole line. 1be current character might be somewhere in midline.

DT shows the current line from the beginning up 10. bUI nol including. the current
character. If the current charnCler is the first charncterofthe linc~aswas always the case
up until now-then OT shows nothing. and IT shows the whole line.

EJ'n'Rl- m' !\'fULTII'LE COi\li\l,\NI>S. The last two entries show an imponant feature of
ED. You may string together as many ED commands as you like, one after another.
OT1 T and its equivalent OTT say. "Type the sIan of the line up to the CUlTCnl characler.
lhen lype from the currem characlcr to the end of lhe line."

OTT ALWA\'S Snows TIlE WIIOt.t: LINE. OTT will always type the whole current tine.
regardless of where in the tine the lillie pointing hand may be. T alone may type the
whole line. but only if the current character is the first of the linc. ~

MULTtI'U': LtNES. Let·s gel il back 10 the head orlhe line and Iry other \'crsions of nT.

·150
·31
31
-5151

Thc nT command displays the n tines preceding the currcnt line, or the currenlline and
n - I morc lines afler it.

DISl't.AY PAGt.:s WITH liP, Return 10 the top of lhe file and lry lhe lIP command:

b
Do

The OP command displays 23 lines beginning with the currcntlinc. Twenty-three is a
convenient number of lines. Provided thai each text line fits 00 one display line. which
isn'l always the case. lhen 23 text lines just fillihe screen, leaving one line on which to
enter lhe nexi command. Now II')'

p

Using ED

TIle P command (or 1P. which is the same) advances the line pointer 23 lines. then
displays 23 lines staning with that one. Thc nP command allows you to walk through the
file in screen-size chunks. forward and backward. It's very convenient for a long file.

Controlling Line and Character Pointers

We've seen how ED is made to load the source file and sa\'e it again. and how you get
ED to display thc source wilh the nT and liP commands. In the next section we'lI see
how to alter the text. but one set of commands must be covered first. That set gives you
precise control over the location of thc linc pointer and charactcr pointer. These pointcrs
mark the only characters of the text that ED can alter.

Go TO To.. OR Bo"'O~1 \\'11'11 s8. Wc've used one pointer control already. the 58

command. Try it now:

b
I
-b
I
-11

8 alone puts the line pointer on the first line inorking storage, and T displays it. -8 puts
the line pointcr in limbo; the prompt comains no line number and T displays nothing.
What happened? The -1T command shows what happened. The line pointer is aimed at
empty space just after the last line in working slomge. Displaying the prior line with -1 T
shows you the last line of the text. This odd behavior has a purpose, as we'll see later.

MO\'E TilE Lll'iE POINT.;R W!TII "L. 1be nL command lllO\'es the line pointer" lines
relative to its present location. Watch the prompt numbers during Ihis sequence:

b
51
-21
81
-81
I

The new line number after an nL command is the old line number plus 11.

MOVE ANI) DISl'LA't' \\'ITlIIlLT, [f you want to see thc line to which you 'vc movcd. you
may append a T command to the ilL command:

b
511
gltlt /09

Using ED

Whenever you explicitly move the linc pointer (with 58. liP. or Ill), the character
pointer is reset to the first character of the new line. Then T will display a whole line.J

SIIOkTIIA/'I1> t'Ok lilT. As a conllenience ED will !lIke a number fl. alone in the input,
to mean "nlT." As a funher convenience it will take rellirn alone as meaning 1, that in
tum meaning 1LT. Thus you can walk through a file in small steps lIery easily:

b
5
8
r~lurn

r~lurn

Go TO SI'ECIFIC LINES WITII "lIm:. One last way of moving lhe line pointer is most
useful when you know just what line number)'ou want. You might. for example, be
working from a printed lisling of the file. made by PIP using lhe N (sequence number)
option. Then you might say, "I want to fix lines 16 and 21." Instead ofstepping to those
lines with III (and doing the mental arithmetic to figure out the right value of II) you can
simply give the line number as a IUlm: command:

b
12:1
18:1
6:1

1be num: command mo\'es you directly to the line you name.

MOVE TIlE CIIARACTER POI~""ER wlTn IIC. You can now move the line pointer
anywhere you want it. but in orner to change text you must be able to move the character
pointer as well. There is only one specific command for that. IIC.

b
01
19cOI
1COl
1COl
-5cOI
01
01
I

The nC command moves the character pointer within the line. n characters rclati\'e to its
present location. 1be OT command shows the line from the beginning up to (but 11()(

including) the current character.

GET TO TIlE HEAD OF TilE LIS"E WITII OL. The text alter:llion commands usually move,
110 the character pointer as well. as a by-product of their work. Vou can always get the

Usi"g ED

character pointer back to the head of the line by giving any nL command, including OL.
which keeps you on the same line bUl mo,'es the character pointer back to the first

character.

Inserting and Deleting Text

We come: allast to the purpose of an editor-che alteration of the text that so far we have
only loaded and displayed. Texl can really only be changed in two ways: You can delete
it. and you can insert new text. If you think about it, any change of text, no matter how
complicaled. can be reduced to deleling erroneous text and inserting correct teXl. In fact,
ED has commands that combine deletion and insertion in one command. They'll come
later.

DII'ITRE.~CE BETWEE.~ I AND i. Lefs stan with insertion. We've already used line
insertion to create our file. At thaI time you were warned to use a lowercase command
leiter i. The reason for that was Ihat the I command has an undocumented feature that
often causes confusion. If the Icommand is given in uppercase, it forces all Ihe inserted
characlers to be uppercase. Ifit is given in lowercase. it inserts whal you type in the case
in which you typed it.

INSt:RT TF-XT WITH I. At any rate. two stanzas of the poem were len out of the original
copy. one in the middle and one at the end. Using the (lowercase) 1command, insert the
middle one now:

b#l
341t
;
And shouted but once more aloud,
-My lather! must I stay?-
While over him fast, through sail and shroud
The wreathing fires made way.
retllfll

·z
·8tl

L"'SERTED TEXT PRECEDt:S THE C(/RRF~vr LINE. Notice that the new text wcnt into the
file above the current line. That is how the I command operates. It does that so that you
can add new lines al the very top of the file. If the current line is I. you may still insert
lines ahead of if. Following thc insertion the current line was slilllhe same line as was
current before the insertion was done. This is convenicnt because you can type in some
inserted text. eod with cOnlrol-z. look al the text. and then resume the insertion.

I.~SERTIONCHANCES LINE NmtBt:lts. Notice that the line numbers have changed. The
........... current line was 34 before the insertion; it is numbered 40 now even though the line is the

same. EO gi\'es line numbers that reflect lheir position in lhe file. If you add lines above 111

Using ED

the current line,lhe current line and all after it get larger numbers because Ihey are now
fal1her down in the file than they used to be. -.....-/

WORK FRO...I TIlE BOlTOM Up TO P}U:SERVE NUMIU;RING, This is not a problem
unless you arc working from a printed listing with line numbers. If you arc, and you
mean to add 20 lines around line 27 and then make changes near line 250, you will find
that by the time you get 10 ii, line 250 has become line 270. This is annoying. The
solulion is simple. When working from a numbered listing, work from the bottom of the
file up! The line numbers at Ihe lOp of Ihe file won'I change regardless of whal you do
below them.

I....SERTtSG AT TilE BoTTOM. Let's finish inserting that lasl stanza:

refilm

With mast, and helm, and pennon fair,
That well had borne their part-
But the noblest thing that perished there
Was that young faithful heart.
·Z
·61

Now you can see why the -B command puiS the line pointer after the last line rather than --../
upon il. The I command inserts lext abo"e the current line. If)'oo couldn'l gel the line
pointer below the last line,)'OU couldn't add text at the very end of lhe file.

INSERT PIIRASES \'11TH Istring. In lhe original copy the author's middle name was
omitted. Insert il now. To do so we'll usc a second form of the Icommand, Istring (recall
thai by string we mean any characlersended bycontrol,z). This inserts "slring"to the left
of the current character. Which is the current character?ll is the first character that prints
on a T command. Make the "H" of "Hemans" be the current character:

b21t
11C
01
I

If the last character printed by OT (the character left of the asterisk, which is ED's
prompt) isn't a space, and the first character printed by T isn't an "H,"then adjust the
character pointer with nL and ne commands untilthesc things are troe, TIlen inse" the
author's middle name:

iDorothea -Z
Ott

Lf you omitted a space after "Dorothea," insen il now, using the same form of the I --.-/
I 12 command.

Using ED

D£I.t:'TF. Lt:-ES WITII "K. Deletion. like insenion. can be done by lines or by charac
ters. The I/K (for kill) command deletes lines. There is an extra stanza in the original
copy: take it out now.

45:
51
5k
-2131

Al'oTICIPATE Dt:L1:.,.tO:- WITH"T. nK deleles exactly the lines (or characters) that nT
types. when the n's are the same. This is a good way to judge a line-delete command
before you gi\'e it. If nT displays exactly and only what you want to delete. then nK with
the same n will delete just that.

n.:U:;TE CHARACTERS WITII 110. Characters are deleted with the ,,0 command. 110
removes /I characters. When II is positive. removal begins with the current character and
moves right. Whcn 1/ is negative. removal begins just left of the current character and
moves left.

There is an excess word in the original copy. Let's lake il out:

15:t
27~

Get the letters "and on" just left of the current character (so that they display just left of
the astcrisk). Then delete them:

·7d
01
on

Now that you can insen and delete. you can. with some labor. make any kind of
correction in a file.

Text Substitution

REPLACE PHRASES WITIt pS. The labor of replacing pans of text is reduced by the pS
(for substitute) command. This command has the fonn:

pS strillg Siring

You'll recall that p means that S accepts a positive operand only. The pS command docs
this: It searches ahead in the text for the first string: when it finds it. it replaces the first

'- string in the text with the second string. II repeats these actions p limes, or once if p is
omiued. This sa\'es a lot of nLand ne moves. pS can lake the place of I/O as the second J13

Using ED

string may be null (consist only of a comrol-z). Substituting nothing for something
amounts to deletion.

ThepScornmand, like lhe Icommand, behaves differently depending on whether it
is typed as a lowercase or uppercase leller. If lhe command leIter is enlered as "S~, it will
treat both S1rings to uppercase. Ifit is typed as "5", it will leave them as they were typed.

There is an incorrect word in lhe second line of the firsl stanza. The phrase "From
which" should be "Whence" and we'll fix it now:

bStl
sFrom which"ZWhence"Z
on

If ED reports its BREAK ·iI" AT·Z message here, it is trying 10 say Ihat it couldn't
locate the first string even once. You probably didn'l type "From which" exaclly as il
appears in lhe file.

MULTIPLE SURSTtTUTIONS, The pin pS is anolher labor-saving device. If there are
several places where identical changes are 10 be made, you can cause them all to happen
at once with a singlc command. For examplc, Mrs. Hcmans preferred to use the poetic
"o'er" instead of the "over" used in your copy. We can change both uses of "over" with
one command:

b
Nsove(Zo'er·Z
b#'

After doing the replacement twice ED can't find any more instances of the string "o'·er."
and repons BREAK "N" AT ·Z.

ED also supports an elaborate pJ (for Juxtapose) command. When you know ED
beuer you should lake a look al that.

Searching for Text

Often you want to locate a specific piece of text. In a short file you can simply walk
Ihrough with nP and nT until you find what you want. In a longer file this is a waste of
time.

locATE PHRASES WITH pF, ThepF (find) command locales a string oflext for you. Its
fonn is

pF string

and il locates the pth occurrence of the string, beginning ils search with the current
characler. '-""

114 When the search stops the current character is the one immediately following the

Using ED

search string in the text. This sets you up to insen characters just after the string, or to
delete it with -nO, or to deletc the following lettcrs with ,,0.

Likc I and pS, thcpF command is sensitivc to the case in which you type il. If it is
entcred in uppercasc, it will treat ils search string as uppercasc and hcnee can only find an
uppercase phrase.

Let's find IwO occurrences of "flamc":

b
fflame"Z
Ot
Ott
b
2fflame'Zott

SEARCH THE WHOLE FILE WITH pN. ED also has apN command that opcratesjust like
pF. pN has the additional function thai whcn the search reaches lhe end of working
storage. pN causes pW and pA commands 10 be donc 10 read morc of lhe file from disk.
This lets you begin ediling a very largc file by searching directly to the first editing point.

Macro Commands

In computer jargon a macro is almost any grouping of smaller units, especially com
mands or instructions grouped for the sake of simplicity. ED allows a macro to be
fonned from a list of individual commands with the pM command. The fonn of the
command is:

pM uny-coltllt/tmds-al.all.excepl-M

and it causes the emire command list to be performedp times. Hcre's a simple example
of pM:

-b
10m·1

That macro lists the last 10 lines in reverse order. The command -1 (equivalem to·1 Ln
is perfonned 10 times.

Mrs. Hemans. the author of"Casabianca," preferred to fonn the past tcnse ofa verb
with "'d" rather than wilh "ed." Thc following macro command will use pS to change all
"ed" words to "'d" and display the changes with OTT as it goes.

b
#msed "Z'd -ZOtt

'-- It takes some thought and imaginalion to use pM, but the command can be
invaluable. 115

1/6

ChapterB

Library
Organization and

SUBMIT

D1SKE'ITE CARE
Diskette Ilazards
Diskette Accessories

PREI)ARING A NEW DISKETTE
l\'1echanical Preparalion
Formatting
SYSGEN
Reuh'ing Distribution Diskettes

ORGANIZING THE Ll8RARY
Categorizing Diskettes

ORGANIZING A HARD lJISK
The U~r Code
Hard-I>isk 8ackup
Organizing Under MP/M

AUTOMATING WITH SUBMIT ANI) XSUB
The SUBMIT Command
SUBMIT Parameters
The XSUB Command
Uses or SUBMIT

117

117
117

118
118

"'"'")
122
122
124
125

".".
m
m
J29
13.
132

Diskette Care

Your library of files is central to your system. In this chapter we consider how to care for
and organize that library. We'lI discuss how to care for diskelles and how to prepare
them for use. lben we'll talk aboul organizing the library on the disks. and how to back it
up. Finally, we'll introduce two commands, SUBMIT and XSUB, that can automate
these and other tasks.

D1SKErrE CARE

Diskette Hazards

DIRT, A diskette is a miracle of precise manufacture that is sent into the world with
holes in its jacket. The slightest abrasion or soiling of its surface can make a file
unreadable. Murphy's law assures us that this won't be discovered until just when that
file is needed most, A diskette should be returned to some kind of protective case Ihe
momenl it leaves the drive, A diskette left exposed to the cigarette ash. coffee. thumb
prints, and cat hairs of this world is a diskette that will let you down.

HEAT. The black plastic jacket of a diskette absorbs heat quickly. A dramatic demon
stration of this occurred when the photographs shown in Chapter 2 were being taken. An
8-inch diskette was posed under two floodlights while the camera was focused. In less
than 5 minutes a pucker appeared in its jacket. As the photographer reached out to rescue

"-" the diskene, the jacket wrinkled all over and folded backward under its own weight!
Summer sunlight through a window could easily ha\'e the same effcct,

MAGSETS. Data are recorded on a diskelle in the form of very slighl changes in
magnetization. A strong magnetic field can alter the recorded data, making the data
unreadable. Electric motors, hi-fi speakers, and telephone ringers all emit magnetic
fields that can alter a diskette if it approaches them closely enough. Magnetic fields
decline rapidly with increasing distance, so a separation of a few inches is probably
sufficient protection, I-lowever, a separation of a few feet is belle!'.

Pt:NS AND Pt:NCII~", New diskettes come packed with a sct of gummed labels. Stick as
many labels as you like on a diskette, as long as you don't cover any of the holes in the
jacket. When you write on a label. write lightly with a felt.tip pen or fountain pen. Never
use a pencil: dust from the lead might get on the recording surface. Avoid ballpoint pens;
it's easy to bruise the plastic surface inside the jacket.

Diskette Accessories

STORAGE GAt>GETS. As diskettes have come infO wide use, tile number of diskette
accessories on the market has grown. Those who like gadgets can have a fine time
shopping for flip files. special binders. storage boxes, and diskette mailers. Most of
these gadgets are useful. Choose some thai let you store the diskettes so that they are 1/7

Jl8

Library Organization and SUBMIT

clean and safe. yel slilI easy to find. 1be simplest organizing gadget is also one of the
best. II is a clear plastic sleeve punched for an ordinary three-ring binder. Each sleeve
holds a diskenc in such a way Ihal it can be secn. 1be binders are inexpensive and easy 10
Slore. It's handy to siore a diskcuc in liS sleeve in the same binder lhal holds the
program's documentation.

Hou: RW·'t'ORCERS. Several companies sell diskette hole reinforcements (like over
size ring-binder reinforcements) thaI strengthen the edge of the diskcllC'S center hole. It
should not be necessary to reinforce your diskettes. Hole damage is rare and is usually
the result of careless handling. Installing the rings is a fussy job thaI exposes the diskettes
to morc handling than is desirable.

HEAU·CU:ANING KITS. There are various sorts ofhcad-clcaning kits on the nlurket; all

carry high-lechnology prices. The read-write head in each drive ought 10 be eleaned a
couple of limes a year. If you can reach it withoUl disassembling lhe drive. you ean clean
il with a cotton swab dipped in isopropyl alcohol-both available cheaply al a drugstore.
If you can't get at the head without a 101 ofork. buy a kit for the time it can save you.

PREPARING A NEW DISKETTE

You can usually pop a brand new diskette into a drive and save files on it at once. ThaI
isn'l a good idea, but it willork. It's bener to pul each new diskette through an
initializalion process. 1l'Ien you can be confidcnllhat all of yourdiskettcs are prepared in
lhe same way.

Mechanical Preparation

GtV}: IT AN Itn:NTIT\'. Evcry diskelle necds a unique identificr, a tag lhat refers 10 lhat
diskellc alone. The lag should nOl relalc 10 the diskeltc's conlents because it may be put
10 many uses in ilS lifc. The unique tag leIs you relale read errors through the lag to Ihe
bmch the diskelle came in. and TO thc supplier who sold il.

ON}: NUl'ollll:RING SCHEME, One way to give each diskelle a unique identity, assuming
you don 'I buy more lhan 10 boxes a year, is to form a lhree-digit number lhat describes
the age and source of the diskellc. 'The firsl digit is lhe lasl digit of the year of purchase,
the second the number of the box. the lhird the numberofthe diskette within the box. The
third diskette drawn from the first box boughT in 1982ould be numbered 203.

COVER TilE WRITE·PROTECT NOTClI, If these arc 8-inch diskelles, check for a
write.pr(l(ect notch on the lo.....er edge. NO! all new diskellcs come wilh nQ(ches. If there
is one. cover it with a small gummed label. If)"ou forgelto. you'll ha\'e a puzzling 110
error repon from CP/M when you try 10 format the diskclle. A Sheel of such labels is
usually packed in lhe diskene box.

Preparing a New Diskette

Formatting

To format a diskette is to write every sector of every track at the sector size and density
that you will use. New diskettes are usually formatted at the factory, but the factory's
drives and yours might not agree. Formatting ensures that the tracks are laid down in
precise alignment with the read-write head in your drive. It also sets the density and the
sector size that you will use.

TilE fORMATTING PROGRAM. Fonnatting is done with a program that is supplied by
the vendor of your system. Each make of disk controller hardware requires a different
program to direct formatting. The vendor supplies a fonnatter as part of the process of
customizing CP/M to your hardware. Fonnatting takes about 30 seconds; afterward the
diskette is completely empty of data.

USING THE FORMATTER. Your command dialogue with the fonnatter will depend on
the formatter you have been given. Example 8-1 shows a dialogue with the fonnatter
supplied by one vendor; yours will be similar. Most fonnaucr programs are arranged so
that you can fonnat one diskeuc after another without recalling the program.

"AZARM OF ,"'ORMATTING. Be very careful with a fonnatter. It pays no attention to the
existing contents of the diskette. You can fonnat a diskette that is full of good data. Most
will fonnatthe diskette in the A-drive as readily as any other. Fonnatting is quick. If you

'-' start the fonnattcr on the wrong diskette, it will have overwritten the directory before you
can hit reset to stop it. It is a good idea to remove thc diskettes from the other drives
before starting the fonnauer.

SYSGEN

TIlE: BOOTSTRAP TRACKS, In Chaptcr 5 we told you to use practicc diskettes that were
boatable. that is, diskettes that had a copy of the Monitor on their first (outennost)
tracks. That copy is not a file in the usual sense. There is no file directory entry for it, and
the space it occupies is not allocated in the file system's usual way. CP/M dedicates the
outcrmost two tracks (three tracks on a 5-inch diskcuc) to be a place where the code of
the Monitor and CCP can be saved. ready for bootstrap loading.

EXAMPLE 8-1
Adialogue wilh a diskclle rormatting program as written b}' a particular vendor-Olhers are
similar.

A>ddinit
CCS DISK rORMA'M'ER PROGRNI v2.0 8 INCH O~LY

WHICH DRIVE (A-D)? B
SINGLE OR DOUBLE DENSl'!'Y IS/D)? 0 (formatter runs)
~HICH DRIVE lA-D)?_

1/9

120

Library Orgallization and SUBMIT

ADVANTAGES O~· 800TABU; DISKETTES. There arc advantages to making disks "boot-
able," thai is, to pUlling a copy of the Monitor on the bootstrap tracks. The space is --./
pennanently reserved and can'l be used for files whether there's a Monitor copy in it or
not. Any booI:able diskette can be put inlo the A.<Jri\'c and left there. If a diskelle without
the Monitor is in the A-dri\'c and)'00 call for a wann Sian, the system will repon an UO
error. Lf you press reset when the A--disk is not bootable. the system will hang. Either of
these things can puzzle or frighten an inexperienced user.

A SERIOUS DISADVANTAGE. There's one drawback to making every diskette bootable.
The program that is written on the bootstrap tTacks-the Monitor-is prOiected by
copyright. Your license agreement with Digital Research permits you to make just five
copies of the Monitoror any other pan of the CP/M package. That puts you in a bind. The
advanlages of reproducing the Monitor (and cenain commands. such as STAT and PIP)
are many. but to do so puts you in violation of the letter of your agreement (which you
should have read carefully, and if you ha\'en'l done so before. do it now), We'll relUm 10
this topic laler.

TilE SYSGEN CO~IMAND. The command thai places a copy of the Monilor on lhe
reserved lracks of a diskcue is called SYSGEN in Ihe slandard CP/M system. This
program, like thc fonnatter, may have been customized by the vendor and may have a
different name. Your CP/M manual contains an example of the use of standard
SYSGEN.

USE m' SYSGEN, Example 8·2 shows a dialogue with a version of the program thai
was modified by a \'endor. The program asks for a source from which it can read the
Monilor. Normally the source is anolher booIable diskette (in Chapter 15 we'11 see where
the original copy comes from). 1llen it asks for a destination drive. the leiter of the drive
into which you've loaded the new diskelte. When told the deSlinalion. the program
writes a copy of the Monitor onto the new diskelle's reserved lracks and wailS again.
Like the fonnaller, the program is arranged to wrile on one diskeue after another withoul
reloading the progr.lm. You can run a box of diskettes through fonnalling and then
through SYSGEN, all in a few minutes.

EXAMPLE 8·2
A dialogue wilh II SYSGEN (Monitor COP)·) program 115 written by a particular '·endor. Sec
the CP/M documentation for. similar dialogue.

....>ccsysq.n
CCS SySTE.... GENERATION PROGRAn VERSION l.a

SOORCE DRIVE,
SOORCJ: ON A. THDI TYPE RETUItK

DESTINATION DRIVE' II
DE~T'NATION ON II, THOl TYPE RETURN

(sysgen proqram nmal
DESTI~:ATION DRIVE'

Preparing a New Diskette

CO:>OOIOS CO.\IMA....OS. There are a few command files that it's convenient to have on
every diskette regardless of its use (but see the foregoing comments on copying licensed
code). $TAT. PIP. and your fa\'orite editor are the most useful ones: you will think of
OIhers as you establish paltems of work. These are the commands you use so often that it
is an irritation to find them absent, or to have to give an explicit driveeode before the
command verb to load thcm.

COMMOS C01>mANI>S ON TilE OUTER TRACKS. Commands in frequcnt use should be
copied onto each new diskette as you initialize it. There is a petfonnance advantage in
having the most common commands first 00 the diskette and first in the directory
because CP/M can find and load them more quickly that way. Once copied they might as
well be given the SY$ altribute so that they won't c1unera directory display, and the RIO
attribute so that they can't be erased easily. If you read Chapter 5 carefully, you should
be able to work out the list of commands needed to do these things. Don't forget that if
the common commands have the SY$ (hidden) attribute on the source diskette, PIP
won't be able to find them without the A (read hidden files) option. Thc entire
initialization command sequence is shown in Example 8-3. Later we'll see how to
automate it.

Receiving Distribution Diskettes

Your library will receive additions from the places that supply you with software. New
software comes on diskettes. These distribution diskettes are precious, for they hold the
authoritative and original copy of the software.

The first thing to do wilh any dislribution diskette is to writc·protect il (cover the
notch of a 5-inch diskette. or peel the cover orr the n()(ch of an 8-inch one). The second
step is to make a copy of all the files onto anOlher, freshly initialized, diskelte. This
creates a writable working copy of the software and ensures that every file can be read.

The third thing to do with a distribution diskettc is to pack it away in a safe place.
ne\'er to be read again except in the event of a disaster. It's not at all ridiculous to remove
it to a different building from the onc that houses the computcr. If there is tailoring or
customization to be donc, do it and thcn file a copy of the tailored vcrsion with thc
original.

COPYI:-;G LICE....SED SOtTWARE. Ftt software may be copied again and again around
the library onto any diskeue where il will be needed. The publishers of fee software
would like to control the proliferation of copies of their code, as we llOIed previously.
But achieving a balance between their desires and your con\'enience is sometimes
difficult. The license agreement you sign and return to a software publisher amounts to a
legally enforceablc conlracl. The lieensc agrecment for one language translator allows
'"two additional copics only, for backup purposes." And this is for a program that must be
present to use any program written in that language! Can you obey the spirit of the
agreement-preventing the theft of the publisher"s work-while ignoring its letter?
Should you do so? Each system owner has to resolve these questions. /21

Library Organization and SUBMIT

EXAMPLE 8-3
Command dialogue used in pNparing a new diskette.

A>d<:! init
ecs DISP:: FOR.,"TTER PROGRAM V2.O 8 HI("11 Otll.Y
WHICH DRIVE (A-D)? B
SINGLE OR DOUBLE DENSITY IS/D)? D Iforaatte, runs)
WHICH DRIVE (A-D)? lonl~ returr e~t~red)

A><;<:sysgen
CCS SYSTEM GE!iEPATION PROGRA... VERSION LO

SOURCE DRIVE: A
SOURCE OIl A. THEN T'i'PE REnJRH

DESTINATION DRIVE: B
DESTINATION ON B, THEN TYPE RETURN

(sysgen p,oq",1I. runs)
DESTINATION DRIVE:

A>pip b:~a:stat.colI.[vrl

A>pip b:~a:pip.COM[V<1

A>stat b:·.coll. $</0

STAT.DOH Set to RIO
PIP.COM Set to RiO
ED.COM Set to RIO
A>stat b:' .COII. Ssys

STAT.COM Set to SYS
PIP.COM Set to SYS
ED.COM Set to SYS

"

ORGANIZING THE LIBRARY

People who enjoy organizing things are in their elcment around a computer system.
Nowhere are there so many things in need of organization, or so many ways of
organizing them. In this section wc·11 suggest one of (he many lines along which a
diskette library might be organized. As time passes you· II develop your own ideas on
how it should be done. The important thing is to make the machine do as much of the
work as possible.

Categorizing Diskettes

One way of categorizing diskclICS is by the kind oruse thcy·re given. The way you use a
diskelte affects the files you put on it and the imponance of backing it up.

DISTRIBUTIOS DISKl."TI'ES. One kind of use is that accorded a distribUlion diskette. It is "-'
/12 write protected. copied, and put away. The final \·cnion of a program created on your

Organizing tile Librwy

own system might well be put on its own distribution diskettc and filed with the fee
software.

WORK DISKETn:s. A second kind of usage is accorded whate·llcall a workdiskme.
This is one that is used as)'ou ould use a chalkboard. On it you can write any file at all
for any temporary purpose. A ork diskene is the place for casual memos. test versions
of programs. the lisling file ~'fiuen by a compiler-anything of only transient impon
anee. It should be boatable. of course. and it should have a copy of e"ery command you
normally use, set to RIO status.

As a mailer of policy any unprotected file on a work diskette should be considered
expendable. Anyone who needs space on the diskette may crase anything there. just as
anyone who uses a chalkboard may erase it. A file might be marked RIO in the way one
might leave a note on a chalkboard to "plcase save." But since a work diskette won't be
backed up. damage to the diskette will cause the loss of whatever files were there.

When the system is used by more Ihan one person. the users may have their own
.....ori; disketteshieh they can carry a.....ay from the machine. It should be clearly
announced that anyori; diskene left in a drive is fair game: important files must be
copied on more permanent storage.

PROJl:cr OlsKl::rn:s. A project diske"e is one that is used as a repository for imponant
riles. Each project diskette would contain the files that reprcsentthe CUrTent state of one
project. one unit of the business. You may define a "project" to be anything you
like-Accounts Receivable, The Mailing List, My Correspondence JQ82, and so on.

Because a project diskette contains files related to a singleell-defined unit of your
computer work. you can always lay your hands on the files that define that work. The
scheme has lhe minor disadvantage that mosl project subjeclson't fill lhe diskette
alloned to lhem. You mighl have a IQ(of projttl diskenes. wilh each only partly full. The
convenience of knowing where everything is should cowr lhe minor COSI of a few more
diskenes. Organizing diskettes by projttlS aids the solution to some data securily
problems (discussed in Chapler 4).

The files on a project diskette are imponant in some way 10 yourork. They should
never be altered casually. If there is anything dubious about a change, the file should be
copied on a work diskette and the change made there. When Ihe change is known 10 be
good. the file can be copied back.

8"cKur DISKF.·ITES. Backup is the compulist's word for making copies of imponant
files againslthe inevitable day when a file is 10sl. The purpose of making backup copies
is 10 minimize the loss when data are destroyed. People new 10 computers find it difficult
to understand that a magnetic record is not pemlanent in the way that a paper document
is. A paper document can be drenched, tom. and toasled. and still be readable. A
magnetic record is robustly there. or it isn't there at all. Blur half the letters on a page,
and a person can still make sense of lhe writing. If one single bit of a seCtor reads wrong.
a disk drive will repon an error. And ofcourse it's possible to crase files. or fonnat disks.
accidentally-a IlIOrc thorough erasure lhan sending papers through a shredder. There
arc few sensations as sickening as the realization that one has just dl:stroyed an imponant /23

/24

Library Organization llnd SUBMIT

file. One slip of the finger. one carelessly typed command. and the data 3fC gone.
instantly. At such moments it is a great comfort to know that a backup copy exists. If --/
backup is laken on a weekly schedule. then you have lost al most a week's work: ifdaily,
al most a day·s. The job of bringing the backup copy up Iodate is much easier and much
less cosily Ihan the job of recreating a file from scratch. Gi"cn a specific situation. you
could analytt the economics of backing up a file-so many hours of work [0 rttreate the
file from scratch. so many to make up a week's updates. so many minutes 10 make
regular copies. and some assigned probability of loss. A simpler way 10 decide on
backUp frequency is 10 gauge the panic faclor. Pretend 10 yourself thai you 've jusl been
lold. "1'bc rcceplionist watered your XYZ project disk along with lhe Boston fern:' and
measure the depth of the sinking feeling in lhe pit of your stomach. For each project
diskene. ask yourself. "How badly would it hurt to lose: lhese: dala? What would it do to
my schedule?"

A backup disketle is one thai holds noIhing bUl backup eopies of files. It need nol
conlain any commands. A backup diskclte doesn'l ha\'c to be limited to a single project:
it might hold eopies of several partly full project diskettes. pro\,jded that all were on the
same backup schedule.

You'll ha\'e a pool of backup diskettes and a schedule for backing up each project
diskette. "BackUp eveI')' Friday night" mighl be schedule enough. If the filerefs for a
project have been planned carefully. onc or IwO PIP commands will suffice to move the
important files to the backup disketlc. We'll see later how it can be automated.

Once filled. the backup diskeue should be stored away from the rest of the library,
in a fireproof safe or in anOlher building. To a business, baekup diskeues represent a -./
small security exposure. It's easier to borrow. copy. and return a backUp disketle than
one in daily use.

ORGANIZING A HARD DISK

A hard disk presents itself to CP/M and MP/M as one or more large, always loaded
diskettes. The commands presented in Chaptcr 5 work the samc on a hard disk as they do
on diskelte. The hard disk simply provides more space and faster access time.

LOGtCAt.DKIVfS. The hard disk C,IO usually be partitioned into several areas, each of
which acts like a single drive. If your systcm has two diskette drives and a 15 MB hard
disk. you can have it set up so Ihatthe diskelle drives are A and B. whereas areas of the
hard disk appcarunderdrivecodesC. D. and E, each with 5 MB of space. C, D. and Eare
thcn logical drives ("logical" as an adjective is computer jargon for simulated). The hard
disk's space necd not be divided evenly among its logical drives,

PM08U:MS m' ORGANI:t..ATlON. The hard disk presents problems of organization
because the data on it can't be loaded and unloaded as diskettes can. You can erase files
and eopy in new ones. but you cannot convcniently carry one group of files away and
load a new group. This implies that the hard disk should play the role assigned 10 project

Organizi"g a Hard Disk

diskeues. Each logical drive can contain the files representing one (fairly large) unit of
work. One logical drive might play the role of work disk for all users.

The User Code

It is easy to place more files on a logical dri\'e than will fit on the temlinars screen when
OIR is used. At that point it becomes difficullto keep track of whal files are available. It
would be convenienlto be able to make subsets of the files stored on a large disk so they
could be dealt with lllore conveniently. CP/M offers one aid toward this, a IIser code lhat
qualifies all fileref searches.

Tin: USER Command, The user code is a number from 0 to 15. There is al all times
one active user code. After a cold stan. the acth'e user code isO. The active user code can
be changed with the USER command, whose form is

USER Ilsercode

OI'.:R,nlON m' TIn; US.;R Com;. When a file is created, the user code active althe time
is written in the file's direclOry entry. When the directory is searched to locate a file. each
entry's user code is checked against lhe code active at the time the search is made. Ifthey
are the same. lhe file is visible. If the active code is different from the code recorded in a
directory entry. that file is invisible. OrR will flO(repon on it. nor can any command,
with one exception, access it. The effect is to divide lhe library inlo subselS. each
accessed under ilS user code.

PR08LF.1olS 0.' T1tE Usu CODE. The uscrcode has litlle value in a system that has only
diskeue dri\·cs. lbe reason for this is lhat only the files created under the active user code
can be foond. and Ihat applies to command files as well. Mo\'e from the normal user code
of zero 10 another number and issue the STAT command. The reply will be STAT?
indicaling lhat no such command file exists.

This behavior ofCP/M means lhat in order 10 work under a user code other than zero
you must store a copy of every common command file under each user code. This is not
practical in the limited storage capacity of a diskette dri\'e.

User codes become slightly more useful when the large capacity of a hard disk is
available. Even so. you might ha\'e a program stored under usercode 3 and want to run it
against a file recorded under user code O. II can'l be done. One file musl be copied into
the olher's user code.

PIP ANIJ US.:R COIlES. PIP is able to copy from onc user code 10 anOlher. The G
option of PIP tells it to search for the SOllTCe under some panicular user code. Thus pip
a:=b:fire[g3j wooid locate FILE on lhe B-drive under user code 3 and make a copy on
lhe A-drive under lhe aclive user code. One problem remains: How do yoll make a copy J25

Library Organizatioll (lnd SUBMIT

of PIP itself under another user codc? The answcr for CP/M 2 appears in the Reference
section as an example of the SAVE command.

USER CODES AND TilE HARD DISK. You could use user codes to partition a large
logical drive into as many as 15 diffel'l:nt project sets. one under each user code. Users
would work under user code 0 most of the time. copying project files to the: won: dri"e
with PIP and moving to the project's user code to copy thcm back again,

Hard-Disk Backup

It is absolutely esscntialto have a backup policy for a hard disk. A hard disk holds as
much data as dozens of diskettes, If a diskette is spoiled. you 've lost at the most the files
of one project; an accident that would wipe out your entire library is very unlikely. With
a hard disk, all of your eggs are definitely in a single basket. It is entirely possible that a
hardware: failure could make everything on a hard disk inaccessible. If there is a failure in
the e1eclrOnics of the dri\'e so that the drive is unusable and must be sent out for repair.
you canllOl be sure that there will be any dala on it when it comes back.

BACKUP TO DtSKETTE. There are two approaches!O backing up a hard disk. First, you
can arrange to back up individual files or groups of files. As long as each file is small
enough to hold on one diskelle, such copies can be made on diskctte (and automated).
This approach might be adoptcd by onc user of the systcm who wanted to keep backup
copies of his or her personal files,

BACKUP TO TAPE. 11K: second method is to copy larger units of data onto reels or
canridges of tape. Tape solves the capacity problem: depending on the: design ofthe: tape
drive and the length of the lape itself. from I to 15 MB of data can be copied. Tape
introduces a new problem, however. Backup to diskeue is done file by file with PIP.
Backup to tapc is usually done with a special progrnm. To make a lengthy process faster,
such programs usually copy entire tracks without regard for file organization. Therefore,
a single file can only be recovered by restoring the entire tape, taking all files on that
logical drive back to the time the rape was made.

Organizing Under MP/M

An MP/M system is very like a CP/M system. All of the familiar commands,ort in the
same way. 1bc difference is that se\'eral users, each with a tenninal. can use the system
simultaneously. Each user is given an area of wOfking storage and a panion of the
machine's anention. All users havc access to all dri\'cs.

USER COO.:S IN 1\..fP/M. Undcr MP/M the user code is a very useful organizing tool. In
MP/M each active user has an associated user codc. In addition. each uscr. regardless of

/26 his or her active code. can sec and access files creatcd under code O. The commands and '-'"

Organizillg a Hard Disk

files needed b), all users can be grouped under user code zero. whereas each user's
private files are kept under another number.

Under MP/M 2, access to files under user code 0 has been restricted to files that
have the SYS attribute, and then onl)' when the)' are to be read. This makes user codes an
even better organizing tool.

HARD DISKS L'" MP!M. With MP/M a hard disk may be partitioned very nicely into
logical drives and, within drives, by user code. The G option of PIP is still needed to
move files between user codes, but there is much less need to do so.

BACKUP I",' 1't'1P!M. MP/M presems a new problem when it is time to take a backup
copy from a hard disk. The backup copy will be invalid if any of the copied files are
changed while the copy is being made. This could occur if a user at one console is
working while the backup is being done at another console. The MP/M command
DSKRESET can be used to make logical dri\'es inaccessible while the backup is made.

AUTOMATING WITH SUBMIT AND XSUB

You'll find that system management tasks often involve stereotyped sequences of
commands. When initializing new diskelles. for example. the same list of commands
must be repealed over and over. The firsl few times you do it. such a task is a challenge
and hence interesting, Later, it'sjust a chore. SUBMIT is a command that automates the
execution of such command sequences. We've pol off introducing it to this point so that
we could show a real use for it.

The SUBMIT Command

The SUBMIT command causes a file that contains a list ofcommands to be handed over
to the CCP for execution. The CCP will do the commands one by one as they appear in
the file. just as if the list were entered command by command from the keyboard. This is
a powerful tool for managing the system's work.

Till: FORM 01' SUBMIT. The fonn of the SUBMIT command is

SUBMITJiI..nom~ porom~t~r-\'olu~s

Notc that the operand is nOi a completc filcref. only a filename (and possibly a
drivecode), The parameter values will be described later.

OPERATION 01' SUBMIT. SUBMIT assumes that the filetype is .SUB and looks for a
file of the given name and that type. When SUBMIT finds the file. it copies the data and
reformats the dala in certain ways. The original file remains: the reformatted copy is
placed on the default drive under the name $$$.SUB. If the dcfaull dri\'e is A. the /27

/]8

Library Orgallization and SUBMIT

command list is executed at oncc. [f not. the list won '[have any effect until the disketle it
is on is placed in the A-drive.J

THt: CCP Rf..ADS TH~: SUB.'ollnF.n FILE. Whenever il begins work after a warm orcold
stan. the CCP looks at the directory of the diskette in the A-drive to see if a file named
$$$.SUB is listed there. If such a file exists. the CCP reads its next command (rom that
file instead of the lerminal. Each time it reads a line from SSS.SUB. the CCP deleles the
line. Eventually SS$.SUB shrinks to n()(hing, is erased, and things rerum 10 normal.

The net resuh ofSUBMIT is to cause a list of commands from a file to be executed.
Thus you can create a complicated list of commands just once by using an editor and run
it any number of times, then or later, with little effort.

SUBMIT TO INITIALIZE A DISKt:rn:. Let's apply SUBMIT to the job of initializing a
new diskctle. You've worked OUt the sequence of commands already: the formalter
command (whatever it"s called in your system), lhe SYSGEN command (or your
vendor's variation). a series of PIP transfers. and two uses of STAT. Example 8-4
shows a file DISKINtT.SUB that would work in one system: it contains exactly the
commands that were issued in Example 8·3. Use an editor 10 prepare a similar file
(containing the right commands for your system) and call it DISKINIT.SUB. Be sure to
duplicate the dollar signs as shown in the example: we'll see why later.

Put a new. or at least an unimponanl. diskette in the B-drive. Thcn submit
DISKIN IT:

submit diskinil

After a bit of activity on the A-d.rive, the CCP's prompt will appear and after it the firsl
command from the file. When the formaller takes over, respond to its questions as you
nonnally would. When it ends. the CCP will read and display the second command.
Respond to SYSGEN as usual. When it ends. the CCP will go on to work its way
through thc ()(her commands of the file.

STot' A SUPMJ"tTED FII.F: \\'lT1t DEL. If you want to stop the execution of a submitted
file, you can do it. Each lime the CCP gets a new line from the subrnined file. il checks
the terminal keyboard. If the DEL (or Delete. as it 1Il3y be rn3rkcd) key has been pressed.

EXAl\IPLE 8-4
A simple submit iiiI' to carr)' out the command sequence to initialize a new diskelle,

A~type di5~init••ub

DDINIT
CC:SYSGEN
PIP B,*A:STAT.COM[VR]
PIP B:-A:PIP.COt-IlVR]
PIP B:*A:EO,COIoI[VRl
STAT B,·,crn~ SSR/O
STAT B:·.COH SSSYS
STAT B:

Automating with SUBMJT and XSUB

the CCPerases S.SUB and returns to nonnal operations. To try this. stan OlSKIN1T
'-' .SUB as before. As the firsl command appears on the screen. press DEL (or Delete).

Allhough the command appears. it won't be executed. The usual CCP prompt will
follow it.

You somelimes have a fairly small window of time in which to press DEL. If a
submitted command is reading from the tenninal. it will receive the DEL character. nOI
lhe CCP. In this case the window for canceling lhe submilled file opens following the lasl
input to the command. and doses when the next command is given control, often a
mailer of only a couple of seconds.

SUBMIT Parameters

Not all command sequences are as slereotyped as Ihat in Example 84. Some part of lhe
command lisl. usually a fileref. will vary from run 10 run. SUBMIT allows !he command
list to contain ptJramttus. that is. elements whose values are eslablished when lhe file is
submitted.

E~n;CT OF PARAMEn:RS. A parameter is signaled in the file by a dollar sign followed
by a digit. The parameter values that follow the filename in the SUBMIT command
replace the parameler signals in the file. The first parameter value given in the command
line replaces every occurrence of$l in the file. 11lc: second value from the command line

"-' replaces every occurrence of $2, and so on up 10 the ninth value. A signal of SO is
replaced by the name of the submilled file.

RULES FOR SUBMIT PARAMETERS. If there are parameter values in the command for
which no parameter signals appear in the file. the extra values arc ignored. On the other
hand. if there are parameter signals in the file for which the command contains no values.
the unmatched parameters are simply dropped from the file; a programmer would say
that they are replaced with the null string. (Note that this paragraph may contradict your
CP/M documentation; it is based on experiment whereas the documentation apparently
was not.)

AN [XAMPU; o~' PARMIF.TERS. Study Example 8-5. It is a submil file similar to the
one in Example 84. A PIP transfer has been added al the end: the name of Ihe
destination file is fonned from two parameters. $1 and $2. 11lc: fmit parameter value in
the SUBMIT command will replace the filename and the second will replace the
filetype. This PIP transfer will create a file whose name (with an initial hyphen) and
whose type will be established by the parameter values in the SUBMIT command.

The purpose of this version of CISKINIT is to put a label, in the fonn of a fileref,
into the direclory of the initialized diskette. When this is done, the command CIA -'.'
will display the unique name of this diskette on the screen. Edil your version of
I)I$KINIT.SUB adding the last two lines of Example 8·5. Then try it:

submit diskinit project 203 /29

130

Library Organization lIlld SUBMIT

The last two lines of the file will create II file -PROJECT.203 and give it RiO status, In
this way you can label the interior of a diskctlc as well as its exterior jacket. Whenever '-""
you wonder which diskeue is in a drive-and such moments arise-thc command dir _0.'

will tell you.

SUB)IITTISG A DoI.l.AR SIC:O/. Look c1ost:ly at thallasl STAT command in Example
8-5. Think about the problem faced by SUBMIT: Adollar sign signals aparamelerlo be
replaced. but there are also occasions, as here. when a dollar sign is pan of the
command. How can SUBMIT distinguish between a dollar sign that is pan of the
submitted command and one that marks the stan of a parameter signal? The solution
chosen was to require the user to double the dollar signs that did not signal a parameter.
Any single dollar sign is taken by SUBMIT as a parametcrsignal; a double one means it
is to leave a single dollar sign in the submitted command.

SUB!oIlTTI:-1C '" CO:<o'ROI. CIlARAcn:a, PIP and ED are often called from submitted
files. Born these commands use control characters, especially control,z, in their com
mand operands. SUBMIT allows)'ou to incorporatecootrol characlers in a submil file. II
uses !he same con\"enlion we've been using: ·Z in the file stands for control-z, and
SUBMIT will replace lhe -Z signal with a conuol·z charaCler in the $$$.SUB file. (In
CP/M 2,2 SUBMIT contains a bug Ihat causes ilto rejeci an uppercase signal, but il will
accept a lowercase one like 'z, See Chapter 13 where we apply the fix for this problem as
an example of using DDT.)

The XSUB Command

XSUB is a command that makes a valuable addition to the functions of SUBMIT. The
XSUB command modifies the operation of the Monitor so that linesof program input, as
well as commands, may be drawn from a submitted file. This makes il possible 10
automale lhe use of some commands lhat require inpul from the lemlinal. The responses
you'd have given at the terminal can be placed right in the file.

EXAl\IPLE 8-5
The pre\'ious submil file, parameterized 10 put a label file on the new diskette, The name of
the file is formed from the first two parameter \·aJUI'!l in the SUBMIT command,

OOIHIT
CCSfSGEH
PIP B,aA,STAT.COM[VR]
PIP B,aA,PIP,COM[VR]
PIP B,aA,ED,COH[VR]
STAT B,·,COM SSR/O
STAT B,·,COM SSSY~

PIP B,-Sl.S2-A:.';TA'r,COll
S'l'AT D:

Alltomating wit" SUBMIT ami XSUB

A~ EXAMPLt: OF XSUB. Example 8-6 improves on Example 8-5 by supplying tbe
'- contents of the label file. In Example 8-5 the label file was a copyofSTAT under another

name. In Example 8-6 we usc ED to create a two-line file as the label. The two lincs are
inserted using the ISlring command so that ED willtakc thcm from XSUB. Thc firStlinc
of the file will say THIS IS DISK. ... and whatcver the label is: the second line will
contain an asterisk followed by whatcvcr othcr paramcter values wcre given in the
SUBMIT command. The asterisk in the second line ensures that even if no other
parameters are given. there will be a string following the letter Ito prevent ED from
going into line inscrt mode.

Set up your version of DISKINIT so that its last lines look like those of EKample
8-6. Don't omit the call to XSUB. Then try it:

submit diskinil backup 351 initialized 8/4/82

When the submitted file calls ED. you will see ED receiving the two Istring commands
and an E command from the submitted file. When the submitted file completes its run.
use TYPE to display the label filc on the ncw disk to verify thill it looks as you cxpect it
10.

XSUB ANI) Tin; MONITOR. In Chaptcr 13 we cxplorc the Monitor"s service requests.
For the momcnt you need to know that the Monitor providcs two service requests for
console input: byte input and line input. When a program calls for line input the Monitor
gathers a complcte line ofdata up to the pl"CSS ofthe return key and returns that wholc line

........... to the calling program. While it is collecting the line, the Monitor allows the person
entering the line to make corrections with backspace, control-x. and control-u.

The byte input scrvice request gets the next charucter typed and returns it to thc
calling program. Since the Monitor docsn '(see an entirc linc of input. it can't attcmpt to
handle typing corrections. The charactcr. whatcvcr it was, is handed to the program that
asked for it. In gencrul (but not always). jf nannal typing correction is allowed, your
input is being gathered for a line input service request.

EXA~lPLE 8-6
The pre\'ious submit filt, IIllend 10 create the' label file b)' calling ED lind pro\-iding Its input
wilh XSUB.

A>type dis~inlt.sub

DDINIT
CCSYSCDl
PtP B,-A,STAT.COMIVRI
PIP B,_A,PIP.COKlvRI
PIP B,-A,ED.COMIVRI
STAT B,".COl'! $$R/O
STAT B,-.COl'! $$SYS
XSUB
EO ·SI.52 B,
tTHIS IS DtSK -51 S2
t" 52 53 54 55 56 51 5B 59,
ST"T B,

l31

132

Librar)' Orgallizolioll and SUBMIT

PKOGRAMS TIIAT CAN'T USE XSUB. XSUB sets up the Monitor to answer line input
requests wilh a line from Ihe submitted file. It does nothing for byte input requests. for -....-/
which the Monitor continues to come to the Icnninal. It is something of an adventure to
discover which commands use line input, and hence may be automated with XSUB. and
which do nol. PlP uses line input to get its commands. but byte inpullo read from the
CON: device as a source. ED uses line input to read commands but. infuriatingly. seems
to use byte input for inscoed lines even though typing correction works during an
insertion.

A PROBL.EM WITII SUBMIT. The SUBMITcommand has a problem thaI further limits
XSUB. SUBMIT (in CPfM 2.2) can't cope with a zero-length line. It does some bizarre
things if the submitted file contains one. The bug is apparently unfixable; it has been
reponed more Ihan once but no fix has appeared. As a result you can't use SUBMIT and
XSUB to automate a program Ihat, like PIP, requires a null line to signal "end of job."

Uses of SUBMIT

There are two reasons for applying SUBMIT 10 a lask. It may be a slereotyped task done
often with only minor variations, AnOlher good reason is thaI il may be a lenglhy lask in
which many commands must be done in precisely the right order, In thaI case building
the script of commands and submilling it may be a good idea even if the job is to be done
only once. Because you think the lask OUI while creating the submit file and proofread it.J
you lessen the chances of making an error. Even if a lask has if-then sorts of decisions
(which SUBMIT can'l accommodate), il is useful to putlhe usual sequence in a file.

t:XAMPI.E 8-'
Asubmit fiI~ used in a real installation to initialiu ".ot''' diskettes. The label file is made first
so as to be lisled fint by DIA, All mes are RIO, some art hiddtn.

A»type workinlt.sub

XSUB
EO -$1.$2 B:
,~HIS IS DISK -$1,$2
I $) 54 $5 $6 57 58 59,
PIP B:.A:VDUMP.COM(VR]
PIP B:·A:STA~.COM[VR]

PIP B:·A:PIP.COf'l(VR]
PIP B:.A:EDIT.COM(VR)
PIP B:.A:SUBMIT.~(VRJ

PIP B:·A:XSUB.COtl(VR]
STAT B:·.COM $$SYS
PIP B:·A:DDT.COtl[V)
PIP B:·A:DtVIL1.BAS(V!
PIP B:.A:LOAD,COM(V]
PIP B:.A:MAC.COH(V]
PIP B:·A:PRINT.COM[V]
PIP B:.A:/.COMIV]
S~A~ 8:',' $$R/O

Automating with SUBMIT tIIftl XSUB

When the task is to be done, edit the file and aller it to fit the situation before submilling
it. The burden of remembering the steps and their sequence is left to the system. while
the creative work is left to you-an application of the slogan, "Machines should work,
people should think,"

Example 8·7 shows the contents of WORKIN1T.SUB as used in the author's
system to initialize work diskettes. The fonnatting and SYSGEN steps are omilled
because it was more convenient to run a box ofdiskettes through each oflhose programs
by hand. Other than that. Example 8-7 is an expansion of Example 8-6. Certain very
common commands are installed on the new diskelte and hidden with the SYS atlribute;
a longer list of commands is moved in and left visible.

The task of making a b:Jekup copy of a project disk ean be automated "ery well. You
might place a file named BACKUP.SUB on each project diskette. Put in it the
commands needed to copy the important files of that disk to a backup diskette. The
procedure 10 take a backup then is: Place the project diskette in the A-drive and a backup
diskeue in the B-drive. Warnl start. Emer submit backup. Remove the diskettes when
done.

/33

134

Chapter 9

The
Representation of

Data

MEANING IS A HUMAN CONCEI~

BINARY DATA
Dinar)' Units
Number S}·stems

REPRESENTATION Of NUMBERS
Binary Integers
Hinar)··Coded Df.>cimal
Floating-Point Representation

REPRESENTATION OF CHARACTERS: ASCII
I'rintable Characters
Control Characters

WORKING STORAGE

135

135
135
135

137
137
138
138

139
141
142

145

Meaning Is a Huma" Concept

This chapter is for the CP/M user who has just launched into programming. In it we'lI
review the fundamemal ideas of computer data slorage and see how those ideas are

""-' applied by the language translators available for CP/M. This isn't a book on program
ming, and so we look imo these imeresting mailers just deeply enough to gain an
understanding of the common pnlCtice in CP/M softw~.

MEANING IS A HUMAN CONCEPT

In earlier chapters we have referred to numbers and characters as if the machine could
read and understand symbols as we do. Of course that isn'tltle case; the processor can
handle only patterns of bits. Everything Ihat is to be processed by the machine must be
represented in that form.

It·s imponant that you undersland that it ise. the humans who use the system,
who attach meaning to these patterns. All bit patterns are equally meaningful-or
equally meaningless-to the hardware. It is people. and primarily programmers, who
decide that one group of bits means ··A." that another means 65. and that yet another is
the machine instruction MOV A,B. 1bese examples~ nOl chosen at random: all have
the same pattern of bits. Meaning is a matter of human perception and of context.

BINARY DATA

............ Dinar)' Units

8rrs. The fundamental unit of computer storage is called the bi,. A bit can be
imp1ememed using anything that will take on only one of two states: a tiny circuit on a
chip that can be charged or not charged. or a tiny spot in a magnetic coating that can be
magnetized north or south. A single bit can be made to stand for anything that has 001 two
values. Most commonly it stands for one digit of a binary number. In that case its states
represent the value I or O.

8vn:s. It is conveniem for both machine designers and programmers to treat bits in
groups of eight. A group of 8 bits has come to be called a byte. The byte is a handy unit
for human comprehension. It can contain anyone of256 possible combinations of 0 and
I bits. The combinations can be interpreted in different ways as the need arises: as small
numbers. as characters. or as instructions to the machine.

Number Systems

Most beginning texts on programming stan with an introduction to the binary number
system. As a programmer)'ou have to be familiar with it. 001 because you use binary

umbers in programs (for you rarely do). but because that understanding is basic to
............understanding the machine representation of data. J35

The Represematioll of Data

NtJ),IBt;R THWKl'. Any number system has a base value and a set of digit symbols that
stand for the quantities from zero up 10 one less than the base (Ihink of the decimal system
with ils base of 10 and digits 0 10 9). The value of a multidigil number is formed by~
multiplying each digit by the base value raised to some power. and adding the results. If
the base is b. then the right-most digit is multiplied by bO. Of I (any number to the zero
power is equal to I). The next digit left is multiplied by b l (the base). the next by b2• and
so on.

lt works out that a number composed of 11 digits can represent any of bn different
values, including zero. For example. a Ihree-digit decimal number can represent any of
l()l. or 1000. different values (000 10 999).

BISARY NtJ),IBEMS. In a binary number the base is 2 and the only digits~ 0 and I. The
value of a binary number is lhe right~most digil---Qr bil-limes I. plus the next times 2.
plus the next times 4, plus the nexltimes 8. and so on. A binary number of /I digits can
represent any of 2" different values. For example. a four-digit binary number can
represent 24

• or 16. values from 0000 through 1111. A byte. which has 8 bits. can
represent any of 28 or 256 v!llues.

HEXADECIMAL NUMBERS. Haadecimal is a number system with the base value of 16.
Hexa· is the combining fonn of tile Greek word for six and decimal is a Latin tag for ten.
SO the coined word "hexadecimal" can be read as ''the 6-10 syslem." The digils used in
hexadecimal are 0 through 9 with lheirexpected values. plus the leiters A. B. C. D. E.
and F standing for the quantities of 10. II. 12. 13. 14. and 15 respectively. A two-digi
hexadecimal number can represent any of 162

• or 256. different values from 00 through--...'
FF.

TIIF; USF.s Ot- HF-XAOt:CI!oIAI.. Hexadecimal is very useful for discussions of binary
storage. It is closely related to the binary number system. Any binary number can easily
be com'elted into a hexadecimal number and vice versa. A group of 4 bits can represent
any of 16 values. and so can a single hexadecimal digit. With practice it becomes
automalic to convelt, say. the digit C into the bit pattern 1100. or the bits 100 I into the
digit 9. Anyofthe 256 possible values of a byte can be noted in 2 hexadecimal digits. and
this compact notation is often used in program documentation of the more technical sort.
A 16-bit binary number, nearly impossible to write out in binary without error, is easy to
state in 4 hexadecimal digits.

There is one small drawback to hexadecimal numbers. On paper it is possible to
confuse some hexadecimal numbers with decimal numbers. In this book we always add
the suffix "h" to any hexadecimal number. like this: 40h. 01A2h.

NUMBERl."lG TIlE BITS m' A BYTE. Sometimes il is necessary 10 talk about the
individual bils of a group. The usual convention is to number the bits of a group
according to the power of 2 that they represent in a binary number. The right-most bit,
which represents 2o(i.e., I). is named bit O. Its value has the least effect on the value of
the binary number. so it is also called the least significant bit. The next bit to the lef

/36 represents 21 (i.e .. 2) and is named bit I; the left-most bit of a byle represents 27 (i.e.•~

Biliary Data

128) and is called bit 7. Bit 7 has the mosleight in the binary value of a byte. and is
called the most significant bi1.

OTIIER CO~'VENTIO!'iS. This convention for naming the bils of a byle is nOI uni\'ersal.
It is the one in common use in CP/M soft.....are. but some organizalions (notably IBM)
chose 10 adopt exaclly the oppositc method and designated thc bits from left to right, 1be
tcons "mosl significant" and "Ieasl significant" are always understood. as are the
equivalent tenns "high order" and "low ordcr,"

REPRESENTATION OF NUMBERS

There are several ways 10 represent numbers in compUier slOrage. Eaeh has ils advan
tages and limitations. You need 10 undcrstand them in order to make a choice among
language translators that support different methods.

Binary Integers

An integer is a whole number. one with no fractional pan. Any group of bits may be
Irealed as an intcger. A byte can be thought of as representing un integer between OOh
and FFh. or 0 to 255 in decimal. This is not enough for useful arithmetic. The next
logical slep is 10 a l6-bil. or 2-bYle. integer. A group of 16 bits can represent any of2 16_

'- or 65.536. values. 1be processors used by CP/M ha\'e machine inslruclions for doing
arithmelic on 16-bit inlegers. making computalion rapid. All CP/M programming
language translators suppon 16-bil intcgers.

UNSIGNED INTEG.:MS. A binary integer may be thought of as an unsigned value. onc
that represents numbers beginning at 0 and running up to 65.535 (or OOOOh to FFFFh).
That interprelalion of an intcger is used mostly at the hardware le\'el and in sySlems
programs.

SIGNEt) ll'o'TEGEKS. More commonly a 16-bit integer is inlerpreted as being a signed
value. containing a number from -32.768 through 0 10 +32.767 (or BOOOh to 7FFFh).
As slored in binary lhose values whose left-mosl bit is I are interpreled as negalive; lhose
with a left-mosl bit of 0 are considered positive. The left-most bit is called the sign bit.

P'R£ClSIOS. The precision of an integer is the number of distinci values it can repre
sent. This is usually given as the number of digits in the largest possible value. That can
be stated in bits or. less accurately. in decimal digits. A byte has 8-bit precision. which is
JUSt anolher way of saying it can represent 28 or 256 different values. You could say it
had aboul 2.4 decimal digits of precision as it can represent aboul 1(}2··. or aboul 250
different values. If you have a pock~1 calculator handy. you can ~asily calculate the
decimal predsion of a binary integer by raising 2 to !he poweroflhe number of bits in th~

'-'" integer and taking the base-IO log of thar number. 137

The RepreSeflla1ioll of DaUl

HIGH~'" AND LoWEST VALUE. The precision of a number fonnal is nO(the same as the
highest value that can be stored in il. Precision is a mcasure of the number of different
values that can be represented in that fonnat. The 16-bit integer fonnat can represent 216,

or 65,536, different values, whether it is treated as signed or unsigned. However. an
unsigned 16-bit integer can represent the numbers from 7£ro to 65.535 whereas a signed
one can represent the numbers from -32,768 through zero to 32.767. The highest value
of a signed integer is jusl half that of an unsigned integer. although both can encode the
same number of distinct values.

OVERFLOW. 1be decimal precision of a l6-bil binary integer is less than five digits.
That range is wide enough for a program loop counter. or for wort with simple graphics
and games. but it is not sufficient for most computation. E"en the most elementary
business arithmetic involves numbers having more than five digits. If the machine is
asked to add 35.000 and 35.000. both represented as l6-bit integers. the computation
will overflow. Overflow occurs when the number of bits required to represent the result
is larger than the number of bits in the integer thai receives the result. What happens Ihcn
depends on the language translator. A fcw of them insen codc to check for overflow: thc
program will stop and repon an error. Most CP/M translators ignore overflow and store a
meaningless result.

Binary-Coded Decimal

A group of 4 bits can represent any of 16 values, but not all 16 combinations need be
used. If the range of values is restricted to 10. a 4-bit group can be thought of as,.,
representing a decimal digit from 0 to 9. A byte may represent two such digits. and a
sequence of bytes may stand for adecimal integer ofany precision. This representation is
caJled binary-coded decimal. or BCD for shon.

All processon used by CP/M have machine instructions for doing arithmetic in
BCD I byte at a time. and so BCD arithmetic is moderately fast. BCD is com'cnient
because it is easy to conven between the BCD values and printable characters. The
precision of BCD numbers is up to the designers of the language translator. Language
translators that suppon BCD usually allow a gencrous number of digits.

Floating-Point Representation

THE PR08LEM 0 .. LARGE NUMRERS. Scientific applications oflen require numbers
with a very wide range of magnitudes. from tiny fractions to vast quantities. while
demanding little in the way of precision. For example. the distance from the eanh to the
sun is about 1.5 times 10' kilometers. and Planck's constant is 6.625 limes 10'1'. Such
numbersould require many BCD digits or huge binary integers to represent them. but
most of the digits in such a representation would be zero. 1be precision llCCded is small;
il is the magnitudes thai are of interest. Either number could be represented in a l6-bit
binary inleger if the magnilUde. the power of 10 by which il is multiplied. could be

138 expressed separately.

RepresemllIiotl of Numbers

Fl.OATING-POINT NU)\I8nlS. That is precisely what j1oaling-poillf representation
allows. A flouting-point number is composed of two integers. The shorter part. usually a

'-- single byte. contains the magnitude. the power of 10 to be multiplied with the number.
The longer part. commonly 24 bits. represents a fraction between 0 and I that is to be
multiplied by that magnitude. The magnitude part of a f1oating·pain! number is called its
exponent: the fraction is called the mantissa. or simply "the fraction:-

SPt:El> OF Fl.OATiNG-POINl" ARll'IIMETIC. Floating-point arithmetic has two dis
advantages. The first. and less important, is that most CP/M processors have no machine
instructions for such arithmetic. They perform floating-point computations with long
sequences of instruclions. As a result the computations are fairly slow and take several
times as long as computations in\'olving integers. Floating-point hardware unils are
available for some machines. but they require support in the language lranslator and this
can't always be arranged.

HA7.ARl)S OF FI.DATING POIJ\T. The more serious drawback of floating-point repre
sentation is Ihat it can yield inaccurate results when used in situations where il isn'l
appropriate. 1be precision of a 24-bit fraclion is less than seven decimal digits. In other
words. the numbers 12.345.67 and 12.345.68 might be the same when encoded in
floating-point foml. Such small inaccuracies accumulate over a series of computations.
For most scientific work a difference of one part in one million is not significant. But in a
commercial program where the quantity represented is money. the difference between
the two numbers is a penny and is always significant whatever the size oflhc numbers. A

"-' penny's difference in a million dollar ac<:ount will keep the books from balancing, A
penny rounded the wrong way in a tax compulation will bring a complaint from the
employee who gets the check.

As a g'eneral rule floating-point representalion should never be used for the
calculation of money. If it is necessary to do so. then the precision of the representation
musl be at least two digits greater than the mosl precise number 10 be stored. preferably
several digils grealer.

REPRESENTATION OF CHARACTERS, ASCII

The 256 values th:ll a byte takes on can be interpreted as slanding for characters. Such an
interpn:lation is striclly arbitrary: there is no relationship between bytes and printed
leiters cxcept as people agree on one. People have agreed on a relationship between
cenain byle values and cenain characlers. That agreemcnt. the most widely respected
standard in the industry. was established by a commitlee of the American National
Standards Institute (ANSI) and is called the American Standard Code for Information
Interchange. or ASCII (the acronym has become a word in ils own right, and is
pronounced "as' .kcy~). ASCII has been adopted with only [iny changes by the Inrema
tional Siandards Organizalion. and is in use on all compulers (barring only IBM
nachines) Ihroughout thc world. The ASCII code is shown in Figure 9-1. 139

'-'

• • , ., , ... J .., , ,. ,
'"

, ", ,
'"• " • • .. • .. "• NUL DeE """ • • p p-,

" • U .. " .. ~ • '".. " " " .. " " ", SOH DC'
, , A Q • ,., , • " '" ~ " OC, " '".. " " " .. " .. "1 STX DCl .. ,

"
, b ,... , • " • " n. " oc, " '".. " " " .. " .. ", ETX DC' • , C S , •." • ". • U " .. ~ " ~ " ".• " " " " " " ", EOT DC' • , D T • ,... • • • ·.. ,~ .. OC. ,. '"• " .. • ", Eh'Q NAt:: • , E U • "

0101 • •" , " " " (SO " NAK ,.. '"• " " .. " " " ",
AC' SYN • 6 , V , ,

0110 • ", , .. " " ~ • $YS '" ".
" " " " ", BEL En , e w • •

1111 , ", •• .. " ~ " ~ '" '"• " • • .. • .. •• " CAN (• H X , •
'* • ,

" ·.. • " CAS ,. ,".. " • •, 'OT E"
, • , y ; ,

,., • ,
" , .. " " HT .. ~ ,.. '".. "

A " SU, 0 , , ; ,
10" "

,
" <0, • .. ". U ,. '"• " " • .. " " ", VT ESC • , , • [

1011 " • " , ~ " ~
,.

'"
OC < < OC OC < OC <

C FF " < L \ , I
". "

,
" , " .. " Ff 'l .. ,.

'".. " m " .. "D C, es - · " (m }
IIt1 " • • '" .. " ~ "

~,. '"• " " , •• 0 " "E SO RS > N 1\ " -
Illi " ,. 0 • .. " ~" U ". ,.

• " " " .. " " ",
" "' I , 0 - • DEL

1111 " • " " "
, •• "' '" '"

"'IGUR..: 9-1
The ASCII code displll)'ed. Each square sholl"s one chllracler with its hexadecimal \'alue at
lht upptr rlghl and ils decimal \'alue atlhe lower lert. The lirsltwo columns contain contro'

140 characters.J

Represetlwtiotl of Characters: ASCII

TilE 7-BIT CODE. EveI')' feature of ASCJI is the result of careful compromise. One
such fealUre is the size of the code table. It has only 128 clements from OOh to 7Fh, and
so can be represented in groups of 7 bits. That length was a compromise beteen the
6-bit codes in use whcn the st::mdard was formed and the B-bit machines then on the
horizon.

ASCII (STilES-BIT BYrE. Since the creatlon of the standard the B·bit byte has become
oonnal. The Standard states that an ASCII character. when stored or transmitted in an
S-bit byte. will be stored in the least significant 7 bits with the most significant bit set to

"'0.

Tm: PARITY BIT. When transmitted between machines. an ASCII character may have
a parif)' bit added in the most significant position. A parity bit is a check bit that enables
many transmission errors (0 be recognized and caught. The CP/M monitor assumes that
the most significant bit of any byte it receives from a tenninal is a parity bit. and sets it to
zero before deli\'ering Ihe character to the program that requested it. When a program
asks the Monitor to transmit a byte to a tenninal. the Monitor assumes thaI the byte is an
ASCII characler, and sets the most significant bit to lero. The I/O code supplied by the
vendor mayor may not set it to a parity value.

Printable Characters

TilE ALPII,\8ET. ASCII contains two complete alphabets. one of uppercase lellers and
one of lowercase letters. The code was devised so th:ll il would be easy to conven from
one to the other. Note in Figure 9-1 thaI the difference between an uppercase leltcr and its
lo.....ercase partner is only in I bit. Ifbit 5 is selto O. the leHer is uppercase; if set to I . it is
lowercase .

PuSCTUATtOS. ASCII has a rich set of punctuation and special characters. most of
which should be present on your lerminal and your printer. One. whose byte value is
5Eh. can have two different printable fomls. Ncwer tcrminals will rendcr Ihis character
as a caret or circumflex n. but some will display it as an up-pointing arrow. Either form
is permitted by the standard. This was a compromise between the domestic U.S. code
(which used the up-arrow) and the European code (which required the circumflex as a
mark of punctuation). Some programming languages use the up-arrow as a symbol for
exponentiation. They also \\11\ accept the caret. The byte value used by the program is
the same in eithcr case.

NON·[NCUSH PUNCTUATION. The punctuation of most languages is prcsent in ASCII.
Items such as the tilde (-) may present difllculties, because the output device must
backspace and overstrik.e. and may have to index up or down. This is impossible with
display teoninals and some printers. 141

/42

The Represefllatioll of Datll

COLL.ATING SEQUENCE. "A" and "a" in ASCII are two differenllctlers with different
byte values. This is true in any computer character code. and it causes problems for ...,J

applications that involve alphabetizing. A person setting up a card index WQuid realize
that ADAM. Adam. and adam werc all the same word. and that Apple followedalllhrec.
A computer would not; based on the values of ASCII it would sort them into the order
ADAM, Adam. Apple. and then adam. 1llCrc are other things about the collating
sequence thaI ASCII establishes thai might cause trouble: the numeric characters
precede the leiters. 50 that "I20A Main" will collate after "1200 Main." and some of the
punctuation is oddly scattered. The result is thaI you must give careful thought 10 the
design of records that are to be sorted.

Control Characters

TilE USE Ot' CO/loTROI. CUAKACTt:RS. 1l1e first 32 ASCII codes (00h through 1Fh)
and the lasl (7Fh) are control chameters. These have no prinlable shape: they are used to
regulate the transmission of data between IWO devices. A number of the char3clers are
useful only for leleprocessing (sending data between computers over tekphone lines).
but several serve useful functions within a system.

RELATION TO PIUN'fABLE CUAMACTt:RS. Each control chamcter is paired with a
printable character by a I-bit change. If bit 6 of a byte containing a control character is sct
to I, a printable character results. This was done so that it would be easy for designers to
provide a control shift key on keyboards. The relation is clear in Figure 9-1. To find the
leiter linked to a control code. look four columns to the right in the table. All CP/M
lenninals have a control shirt key (we used it often in the exercises of Chapter 5). The
conlrol key links each control character to a nonnal key bUllon. Control-a thus transmits
01h.lhe character named SOH. and eonlrol·underscore transmits 1Fh.the character
US.

Most programming languages provide some way to specify the <:entrol characters
within a program. BASIC. for instance. has Ihe CHR$ function.

FORMAT EFn:CToMs. Seven oflhe control characters are defined as fonnat effectors
characters that control the format. mther Ihan the content, of the data. The seven are
listed in Table 9- I. You should verify which of these ehamcters are supported by your
tenninal and printer. Your printer may nO(respond to a backspace (BS) but should
support Ihe fonnfeed (FF): your tenninal probably does jusl the opposile.

CR ,1.:.;0 LF IS CP/M FILES. The carriage return (CR) and lindeed (LF) characters are
imponant in CP/M. A pair of bytes CR. LF is used to end each T"CCOf"d ofa file of ASCII
teXI. Neither CR nor LF alone represents a record boundary. but CR and LF. adjacent
and in thai order. do.

DEVICE CONTkOL..". Thirteen of the ASCII control codes arc miscellaneous device
controls. These are summarized in Table 9-2. When received by any lenninal (and some

RepreSe1ll11lioll of CharaClers: ASCII

TABLE 9-1

'-
TM ASCII format effeclors, ronlrol characters defined 10 wntr<Hlhe rormat or dala rather
than ils content.

Characler Value as Control Meaning and Use
Name Do,. Hex. Shift

C. 13 ODh M Carriage return-return print head
or cursor to left margin.

LF 10 OM J Linefecd-move print head or cur-
sor down one line with respect to the
paper or screen display.

BS 8 OBh H Backspace-move print head or cur-
sor left one character position.

HT 9 09h Horizontaltab----move print head or
cursor right to Ihe next defined tab
stop. CPM assumes lab stops are SCi

al every eighth position. e.g .• 9. 17.
25.

FF 12 OCh L Fonnfeed-move print head 10 lOp
of nexi sheet ofpaper. Some tennin-
als will clear the screen and others
will ignore the formfced.

VT 11 OBh K Vertical tab--move print head down
to the next vertical tab stop.

printers). BEL will cause a beep or chime to sound. The cancel (CAN) character is used
by the Console Command Processor as a signal to clear its inpul line and start over.
you','e used it often as control-x. CAN would be a logical choice if you needed a special
character to mark a deleled record in a file.

SUB IN CP/M Ftu:s. The designers of CP/M chose the substitute (SUB) character to
mark the end of a file of ASCII text. and to mark the end of strings in the command
languages of PIP and ED. They may have been attracted to it by the mnemonic value of
using control-z to signal"the end." but it is curious that they didn't make the more logical
choice of the cnd-of-medium (EM) control character. EM is the characler thai lhe
standard has set aside 10 mark the end of aClive data on some medium. which is precisely
the purpose for which CP/M uses SUB. At any rate you must be careful never to write a
SUB code as part ora file of ASCII text as CP/M commands won't read past it; any data
that follow will be unreachable. The exception is PIP; it will read past a SUB ifgiven its
o option.

ESC ANI) ESCAl't: SEQm:NcES. The escape (ESC) chardcler is imponant. It signals that
one or more char-dclers following it are to be interpreted in some special way. ASCII

'-- devices with special features usually rely on sequences beginning with ESC (Q control J43

TABl.E 9-2
ASCII device control characlC!f"S pro,' ide a "aNty of usd'ul funclions. Unfortunately their
u.w by f'quipment de'iigners has oot allll'aJs bftn consistenl or in Ihe spiril oflhe standard.

Character Value as Control
Name De,. He".. Shift Meaning and Usc '--'

NUL 0 DOh (none) Null-used to fill time between data
transmissions; has no information
COnlent.

BEL 7 07h G Bell-soonds an audible alarm.
SO

"
OEh N Shift out--change 10 an allemate

font of prinlable characlers.
SI 15 OFh 0 Shifl in--retum 10 Standard print-

able characters. SO and $1 are the
logical choices to control screen
graphics. but no terminal maker
uses lhem so.

DCI I7 11h Q Device control l--once called XON
for transmit on, used 10 sian a unit of
a remote device. Some printers emit
DCI when they are ready to receive
data.

DC2 I8 12h R Device control 2-used to stan a
unit of a remote device.

DC3
"

13h S Device control 3-once called
XOFF for transmit off. used to SlOp '--'
a unil of a remote device. Some
printers emil DC3 when their buf-
fers are nearly full.

DC' 20 ,.h T Device control 4------used 10 stop a
unil of a remote device.

CAN 2. 18h X Cancel-Ihe data accompanying
this character are to be disregarded.
Logical choice to mark a deleted re-
cord.

EM 25 19h Y End of medium-meant to mark the
end of active data on a tape or other
medium.

SUB 26 lAh Z Substitute-replaces a character
known to have been garbled in trans-
mission. CPM uses SUB to mark
end of file.

ESC 27 IBh Escapc--marks the following one 10
four characters as special controls.

DEL 127 7Fh (none) Dclete--once called ruOOut; like
null. has no information contenl. On
paper tape a character can be erased '--'

/44 by punching all its holes. resulting
in DEL.

Working Storage

those special fealUres. For example, some lenninals will accepl an escape sequence Ihat
directs !hem 10 move lhe cursor 10 a panicular spot on lhe screen. An altempl has been
made by ANSI to standardize lhe design of escape sequences. with liule effcci. You will
find Ihat your lenninal"s repertoire of special features is controlled by escape sequences
different (rom those used by tenninals from other makers.

WORKING STORAGE

The computer's primary SlOrage medium is working storage. It is composed of a large
array of integraled circuits, each holding a collection of bils. The array is organized into
bytes and each byte can be accessed individually by the processor. The bytes are jusl
bytes 10 the hardware; it is CP/M and the programmer that impose structure and meaning
on them.

SPF.ED OF WORKING STORAGE. Working storage responds to access requests very
quickly. Such speed is essential because all of lhe instructions and allihe data Ihallhey
act on are held inorking slorage. If the processor is to k~p running al ils rated speed,
working storage has 10 deliver data at "ery high speed.

AOORESSES, Working storage is organized as an amy of 8-bil bytcs. Each b)'le is
numbered. The number is called ils addr~ss-it serves the same function as a street
address on a house. The firsl b)'le in working slorage is numbered O. the next I. and so on
10 the limit of !he machine.

ADDRESS NOTATIO:ol. In CP/M machines addresses are given as l6-bil integers.
interpreled as numbers in the range of0 ... 65.535. A 16-bil integer can be represenled as
4 hexadecimal digits. and Ihat is how we'll name specific addresses from now on. Once
you are accustomed 10 it. addresses make better sense in hexadecimallhan in decimal as
the powers of 2 into which storage naturally divides come out as more suggestive
numbers in hexadecimal. For example, the last byte available in a machine with Ihe
maximum amOUn! of siorage has the address FFFFh, a clearer indication that it is the last
than Ihe decimal number 65.535.

PROCESSOR INI'1JT. In order to read working storage. the processor emils the bit
paUern of an address on a set of address lines. The circuits of working slOrage decode the
address 10 select one of all the b)'les they hold, and emil the bit panern held in thai byte on
a set ofdala lincs. The processor accepts Ihe bit paUern and proceeds wilh its operations.

PROCI'SSOR OUTPtIT. In order 10 wrile into working storage. the processor emits both
an address value and the data value, and also selS a circuit 10 indicale mat it is writing.
The working storage circuitry decodcs!he address. acceplS the bil pattern of !he data,

'- and impresses il upon Ihal bYle. Ihus replacing whalever was there. Eilher process can be
accomplished in Icss Ihan half a microsecond. 145

/46

The Represemarioll of Dow

PROCESSOII b;D1}"FERE.o,;CE TO M£A,sl:oiG. To the hardware. all bytes oforking
storage are alike. 1be processor is as willing to felch an operation code from location
OOOOh as it is to write a character into the byte al FFFFh. Any location may contain any
bit panem. and (he processor is willing to interpret lhe bils in a location in any way the
programmer instructs il to: as a character. as part of a number. or as an instruction.

Chapter 10

The File System

CONTROL OF THE DISKS
Physical Organization

DISK ORGANIZATION
The STAT DSK: Display
Rcscn'ed Tracks and Data Tracks
The File l>irectory
Allocation lUocks
Oiret'tor)' Entries and Extents
file A.IIocation
The 5TAT File Report

SEQUENTIAl.. FILE ACCt::SS
Creating the File
Writing 10 the Hie
Completing the File
Reading the File

DIRECT FlU: ACCESS
Input with Direct Access
Output with Direct Access
STAT and Direct Access

TYPES OfLES
ASCII Files
Binary files

148
148

149
149
ISO
ISO
ISO
151
152
153

154
154
154
156
156

157
158
158
158

159
159
160

/47

/48

The File System

In this chapter we examine the file system as it is used by a programmer working in a
high-level language such as BASIC or Pascal. We will expose the workings of the
Monitor in enough dctailtocnable you (0 make sense ofttle STAT command'sdisplays.
Then we"1I observe the operation of the system as a BASIC program wriles a file and
reads it back. We discuss the file system in more detail in Chapler 13.

CONTROL OF THE DISKS

A disk is organized at three levels. TIlcre is the physical organizalion of tracks and
sectors. which is managed by code supplied by the vendor orthc system. On this. CP/M
builds an organizalion of files composed of extents. allocation blocks. and records. Thc
programmer. working through a programming language. imposes his or her view of the
stored data on that structure.

Physical Ol'"gani7..ation

PtIYSICAL UNITS. In Chapter 2 we described how a diskctlcor rigid disk is divided into
tracks by the stcpping motion of the access ann, and the tracks into sectors by thc drive
electronics. 1lle number of tracks. the number of sectors per track, and the size of a
sector are all matters lhat vary with the type of drive and the way the disk is fonnatted. It -...-/
is possible to have sc\'eral different disk configurations active at once. 1lle A-drive
might have a double-density, 8-inch diskcltc with eight I024-byte sectors on each of its
77 tracks whereas the B-drive might have a single·density diskette with twenty-six
128-byte scctors per track. Yet another drive might be a portion of a hard disk with still
other dimensions.

TIlE: BIOS AND TilE 8DOS. This variety is controlled and managcd by a pan of the
Monitor known as the Basic I/O System. or BIOS. This is the pan of the Monitor that is
writtcn by the system's vendor. Its primary function is to move data to and from 110
devices, especially the disks, at the command of the st:lI1dard part of the Monitor (which
is called the Basic Disk Operating System. or ODOS), We 'J[have a lot more to say about
the BDOS and 8105 in later chapters.

ROI,E Qt' TilE BIOS. The BIOS is the only pan of the Monitor that is aware of the
physical organization of the disks. Thc BIOS manages thc disk intcrface circuits,
commanding the access ann to movc from track to track and ordering sectors to be read
or written. The Monitor makes requests of the BIOS in terms of records of a standard
size, 128 bytes. The record might be a sector or only pan of a sector. In the latter case the
810S must read a complete physical sector (disks only read and writc completc sectors)
and then pass lhc right 128~bytc portion of it to thc Monitor.

Disk Orgallizar;oll

ROl.E Ot'Ttn: 800S. The BOOS. the slandard part oflhe Monitor. views all disks as
having some number of lracks. each of which contains 128-bYle records. CPfM 1.4 only
supports disks whose sectOl'S are 128 bytes in length. and so lhe Monilor's records
correspondede:uetly toseclors. Wilh \'ersion 2.0ofCP/M lhal relationship was broken.
CP/M continues 10 view all disks as being laid out in 128-bYlC records. but it relies on the
BIOS to relatc lhose standard records 10 the physical layout of the disk. The BOOS learns
such lhings aboul a disk as how many tracks it has. or how many standard records fit on a
track. by asking the BIOS.

DISK ORGA IZATIQN

The STAT DSK: Display

The STAT command will display what the BOOS knows aboul any disk. The fonn of
STAT for that display is

STAT d,ivecode:OSK:

Example 10-1 shows IWO typical displays for 8·inch diskettes lhat were fonnatted just
before the displays were maele.

Resen'ed Tracks and Data Tracks

RES~:MVEO TRACKS. The last line of the STAT display gives lhe number of reservcd
tracks. Some of Ihe lower numbered (outennost) lracks of a disk are reserved and do not

EXAMPLE 10-1
The STAT disk infonnalion displa)' sho\o\"s e'"errlhing that the BOOS knO\o\"5 about II disk.
The BIOS supplin Ihe informal ion.

">r with sinqle-denslty diskette ..
A>stBt b:dsk:

Sr Drive Characteristics
1944: t28 Byte Record C,,"paclty

243: Kilobyte Drive C,,"p,,"clty
64r J2 Byte Directory Entries
64: Checked Directory Entries

121: Records/ Extent
I: Records/ Block

26: sectors/ Track
2: Reserved Tracks

">stat b:

Bytes Remaininq on B: 24ik

,,>; with double-density diskette ...
">stat hrdsk:

s: DrIve Characteristics
4800: 128 Byte Record Capscity
600: ICi10byte Drive Ca~city

128,]2 Byte Directory Entries
128, Checked Directory Entries
121: Records/ Extent

16: Records/ Block
64: sectors/ TraCk

2: Reserved Tracks

,,>stat b:

Bytes Relllaininq on B: S9Ek

'----------------------- /49

150

The File SysTem

conlain data. These are the tracks thal contain the image of the Monitor and eep that is
loaded on a warm or cold start. There are usually two reserved tracks. On a 5-inch -.....J
diskette il may require three tracks to hold the Monitor image. On a rigid disk the number
of reserved tracks may be very large; we']] see the reason for that in Chapter 14.

DATA TRACKS. The remaining tracks on a disk arc used for data, except for a section
that is reserved for the file directory. The 5TAT display does not show the count of data
tracks directly. Its first line gives the total number of standard records that the drive will
hold. and the nexl to last line gives the number of standard records (confusingly, and
incorrectly, reponed as "sectors") on each data track. Divide the number of records per
track into the total number of records to obtain the number of data tracks.

The !"ile Directory

The file directory is a tablc of all the files on a disk. The directory contains the name and
type of cach filc and a record of where on thc disk each filc's data are kept.

DIKI::CTOIH'SIZE. The first records of the first (outermost) data track are used by the
Monitor to contain the file directory. The sizc of the directory is a vendor option,
repol1ed to the Monitor by the BIOS. The directory size is displayed by STAT in the
third line of the display. Each directory cntry is 32 bytes long, and the display gives the
directory size in terms of entries. Divide by four to team how many I28-bytc standard
records arc allocated to the directory. Subtract that number from the count of all records
in the first line ofthc display to discover how many ofthc disk's records are available for
data.

A DISK SPACE DISCREPANCY. We can now explain one seeming discrepancy in the
STAT displays in Example 10-1, Thcdisks were newly fonnaned and all records should
have been available, Yet the disk information display repol1s a different capacity in
kilobytes than the normal 5TAT display docs. The disk infomlation display repol1S drive
capacity as 128 bytes times the total count of standard records. The normal 5TAT
display repons the available data space. which is thc IOtalless the records allocated to the
directory, When a disk is freshly formatted, the difference between the two quantities is
the size of the directory in bytes.

Allocation Blocks

CP/M allocates file space in all(K'atiQIl blocks, each containing some number of standard
records. An allocation block is the smallest unit of space that CP/M can allocate to a file.

Disk Organization

Regardless of its exact size. a file will always have re~r\'ed to it some number of
""--" allocation blocks. The records contained in a block are adjacent to each other on the disk.

AI.I,OCATtON BLOCK StZE. The third from last line of the disk infonnation display
shows the number of records included in each allocation block. The first infonnation
display in Example 10·1 shows that there are 16 records (i.e., 16.128"" 2048 bytes) in
each allocation block. On such a disk 16 rttords is the smallest allocation unit. Files
from I byte to 2048 bytes in length will have one block of 16 records allocated to them.
Files containing from 2049 to 4096 bytes will have two blocks, or 32 rttords, allocated
10 them. and so fonh. The disk described by the second report in Example 10-1 uses eighl
records. or 1024 byles. per allocation block.

A PuZZLE FRO.\t CHAPTER S. The faCI that CP/M allocates space in blocks of several
records explains a small puzzle left unexplained in Chapter 5. There we used PIP to
create T9.FIL by concatenating three smaller files. According to $TAT. each small file
occupied 2 KB. but their concatenation occupied only 4 KB. Now it should be clear that
the small files were considerably less than 2K bytes each, but each had received an
allocation of 2K bytes regardless. The concatenation of their data added to just over 2K
bytes and so received two allocation blocks totaling 4K.

USE m' AI.I.DCATION BI-OCK SIZE. It is uscfulto know the size of an allocation block.
"'-' You need never estimate the expected size of a file more closely than to the nearest

block. There's no point in trying to economize on file space unless the file in question is
larger than one allocation block. and unless the economy 10 be applied will result in
savings greater than one block.

Directory Entries and Extents

DIR}:crORV USE IN CPfM 1.4. Each entry in the directory can describe a fixed number
of allocation blocks. In earlier versions of CP/M the allocation block size was always
eight records or 1024 bytcs. and a directory entry could describe 16 such blocks.
Therefore, a directory cntry could describe 16K bytes of space. That amount of space
was called an extf'nl, and everyone assumcd that "cxtent" meant "the amount of spacc
described by one directory entry. which is 16K bytes:'

DIRECTORV USE I~ CPfM 2. Venion 2 of CP/M exterxled lhe file system so that
vendors could specify larger allocation blocks. This improved the syslem's perfonnance
and made il possible to use disks ofgrealer capacity. It also complicated the lenninology
of the file syslem. With currenl vcnions of CP/M (arxl MP/M) a single directory entry
mighl describe as much as 256K byle5 of space. That would be an unusual ca~, but il is
common for disks to be configured so thai one direclory entry describes 32K or 64K
byles.

lSI

The File System

LocICAL AND PHYSICAL EXTENTS. What. then. does the word "extent" mean? Is itthe
amount of space COnirolled by one directory entry? Or does it mean 16K bytes of space --.-I
(in which case a single directory entry might describe sevenll "extents")? The CP/M
documentation uses the term in both ways. We will use the term logical extent when we
mean a unit of 16K bytes of data. The unqualified term extem will refer to the amount of
space that can be described by one directory entry on a particular disk. That will be some
multiple of a logical extent (some multiple of 16K bytes), depending on the size of an
allocation block.

LOGICAL EXTENTS "RO~I STAT DSK:. To discover the number of logical extents per
directory entry. refer to the STAT disk information display. It shows the number of
"records/extent." and in that line, the word "extent" refers to the space described by one
directory entry. Divide the number of records shown by 128 (the number of records in
16K of data) to find out how many logical extents a directory entry contains. In both
displays in Example 10-1 there are 128 records in an extent, so for those disks a logical
extent is equal to a physical one.

FILES LARGER TItAN ONE EXTE"''T. A directory entry can describe only a limited
amount of space-usually 16K bytes and never more than 256K bytes. CP/M allows
files 10 be as large as 8M bytes (8 megabytes). Files of that sizc ean't possibly be
described by a single entry in the disk directory.

A file that exceeds the size described by one directory entry has more directory
entries allocated to it. A file may have many directory entries, each describing part of the
space it occupies. Indeed, if there is only one file on a disk and it fills the disk, then all of
the entries in the disk directory are needed to describe that file.

File Allocation

Once you've swallowed that lump of background information, you'll find it easy to
understand how CP/M allocates space to files. When data are first put into a file, the
MonilOr selects an unused directory entry and initializcs it. Then it chooses an unused
allocation block and records it in the directory entry. The records of that block now
belong to the file. As the program produces data, the data are stored in the records of that
block. When all the records of the block have been filled, the Monitor selects another
block to be recorded in the directory and filled. [f a file grows until it has filled all the
blocks that can be recorded in an extent. then another directory entry is chosen and the
process continues.

In later chapters we examine how the Monitor keeps track of used and unused
blocks and directory entries, and how the entries that represent successive extents of a
file are linked together. For the purpose of writing application programs, it is enough to
know how to decode STAT's disk information display, and to understand the three units

J52 controlled by the Monitor: standard I28-byte records, allocation blocks, and extents. --.-I

Disk Organization

The STAT File Report

Example 10-2 shows the display produced by the slalfilerefcommand. In Chapter 5 we
sidestepped the job of explaining all the columns, but now that you understand file
allocation you can decode them.

NUM8ER Qt' RECQKOS IN A FlU:. 11lc first column. headed "Recs:' is the count of
slandard 128,byte records that aClUally contain data for the file. It does not include
records that have been allocaled as pan of a block but not yet used. This is the nearest
approximation to the true size of the file that you can get from STAT, The file size in
bytes is 128 times the count ofrttOrds in it. That might be exactly righl. or it mighl be off
by as much as 127 bytes.

SPACE AI.LOCATED TO A FlU:. Thc second column. headed "Bytes:' is a count of the
total amount of space allocated to Ihe file; Ihat is, it is Ihe size of an allocation block limes
the number of blocks that have been allocated. This is not exactly the size of the
file-that is beller described by the "Rccs" column-but it does describe the amount of
disk space that this file controls, the amount that would be made available if the file were
erased.

LoGICAl. EXTENTS IN A flU:. You mightgucss thaI the third column, headed "Ext," is
""'--" a count of the number of extents-that is. directory entries---controlled by the file. In

most cases you would be right. This column is a count of the I6-KB logical extents
owned by the file. To determine the number of physical extents. and hence directory

EXAMPLE 10-2
The STAT fill.' display: Recs an 128-b)"te standard N!«Irds, Bytes is the spa« all(l('ated to
the fill', Ext is the number of 16 KB logkal exlenls and usually the number or direclo!)'
entries.

A>stat •• com

RflCll Bytf!ll '" "0
" "

, R/W A DDT.COM
5 " , R/W A DUMP.COM

52 " , R/W A ED.COM

" '" , R/W A EDtT.COM

" "
, R/W A LOAD. COM

" m , R/W A HAC. COM

'" ,.. , R/W A MBASIC .COM

" " , R/W A PtP.COM

'" '" , R/W A PRI'lT.CO!'!.

" .. , 11/'. A STAT.COM

" "
, R/W A SUBMIT .cor:

• " , 11/'.. A XSUS.COM

" -
1S3

/54

The File System

entries. used by the file, you must divide by the number of logical extents described by
each directory entry.J

SEQUENTIAL FILE ACCESS

leI's study the operations of the Monitor as a file is written and then read again. Lefs
assume that you've written a program that will acquire data from some source and'rite
the data into a new file, one thaI docsn', yel exist. Afterward the program will read the
file back and display il al the lenninal. Figure 10-1 shows a simple BASIC program that
will do just that.

Creating the File

OPE."1ING THE fILE. The program begins by ofHning the file. Anywhere in data
processing. loopen a file is to locale the file and prepare it for access. Most progl1l.mming
languages provide a statement that opens a file, usually with provision for (he name of
the file and an indication of whether the program will be reading (in which case the file
must already exist) or writing (in which case it shouldn't exist).

ERASING AN EXISTING FlU:. Here we arc opening the file for output. and these aClions
will ensue. First the Monitor will be asked to see if the file exists. If it does, then the -......./
Monitor will be requested to erase the file, because it will be replaced. (Some languages
leave it up to the programmer tocheck for an existing file of the same name and erase it.)

Tilt: INITIAl. DIRl::CTORl' E!'.TRl'. Once the file is known not to exist. the Monilor is
asked to create an initial directory entry for the file. This service request locates an
unused directory entry and initializes it with the name of the file. The entry will not show
any space allocation. As far as the Monitor is concerned the file has zero length.

USl:: Qt· Tilt: Io't ...: CONTROL. BLOCK. A copy of the directory entry. called the File
Control Block (FeB), is kept by the program and passed as an operand of all subsequent
service requests. This copy of a directory entry reneets the true slilte of the file: it
contains the current allocation infonnation as the file grows. The directory entry on disk
will not change: it will continue to indicate that the file has zero length for some time. If
Ihe program halts or is canceled (by comrol·c or reset) before the directory on disk is
updated. the file will have zero length as far as anyone can tell.

Writing to the File

DATA RECORDS AND STANDARD RECORI>S. It's imponantto realize that the standard
records wrilten by the Monitor bear no relation at all 10 what lhe programmer knows as a
record. As a programmer you should think in tenns of the unilS of dala that are natural to

Seqllemial File Access

1000 REM A sl~ple progr~~ to create a file. The synta~

1100 REM is correct for ~icro&oft Basic; small changes are
1200 REM needed for other translators.
1300 REM
1400 REM L Establ!sh the on-error routine
1500 REM
1600 ON ERROR COTe 5100
1700 REM
1800 REM 2. Open the file for out,ut
1900 REM
2000 OPEN "O".II,"TEST.PIL"
2100 REM
2200 REM 3. Ask the operator hov alany records to write
2300 REM
2400 INPUT "Hov ~ny records·; NREC
2500 REM
2600 REM 4. ~rlte HREe records all of t~e for.,
2700 IlEM Thi. I' TEST_f'IL line ...• tnu~rl

2800 REM
2900 THIS$ • "This is TEST.PIL line ..•• •
3000 REM
3100 roR J • 1 TO NREC
3200 PRINT'i, THIS$;J
3300 NEXT J
3400 REM
3500 REM 5. Close the file and open It again for input
3600 REM
3700 CLOSEll
3800 OPEN "t".U."TEST.PIL"
3900 REM
4000 REM 6. Read back all NIlEC tines and type the,"
4100 REM
4200 roll J • 1 TO NREC
4300 INPUTtLTHtSS.K
4400 PRINT THISS.K
4S00 NEXT J
4600 RE.'t
4700 END
4800 IlEM
4900 REM •• errOr trapping routine -- ju.t 1isplay the nu.ber
5000 REM
5100 PRINT
5200 PRINT "Trapped on error ·;ERRI· ... •
5300 PRINT· in line ";ERL:·, doinq record .;J
5400 PRINT
5500 END

f.-IGURf.: 10-1
Asimple program in BASIC illustrlltes one language translatur's method of bringing CP/M
file operlltions to the programmer.

the problem you are solving. For example. you might be writing a record that consists of
a name. a street address. a city. a state. and a zip code. As represented by the
programming language. those items might add up 10 66 bytes. or 102. or any olher
number. Thai is the data ~ord size and the only unit of data worth your attention. Ii is
the job of the language lranslator to collect those units into I28-b)1e records. and lhe job
of the Monitor 10 slore the records on disk. Only when),OU use assembly language does
the burden of handling both kinds of records fall on you.

COLLECTI:O;G A STA..... DAKD Rt:CORD. The program begins to generate data and specify
that tnc data be wrilten to the file. (In BASIC this is done with a PRINT* slalement.)
The Monitor has a write service requesl. but it acceIXs only units of 128 bytes of data. /55

/56

The File System

The language translator (or the programmer, in assembly language) must provide the
code to collect data until exactly 128 bytes arc ready. Then a service request is made to
write that 128-bylc standard record to the file.

ALLOCATING SPACE. The first time this service request is made, the Monitor will see
from the FeB that no space has been allocated (0 the file. It will select an unused
allocation block, record it in the FeB, then write the data to disk in the first record
controlled by that allocation block. Subsequent write requests cause the Monitor to write
in the following records of thaI block until the block is filled; then another block is
allocated. The block numbers and the count of records written to the latest block are
recorded in the FeB. The Monitor keeps no information about the file; everything that is
known about the file is recorded in the FCB. which is in the keeping of the program.

AU,OCATING EXTErns. As writing continues the FCB will become filled with block
numbers. When the last record of the last block is wrillcn, the Monitor will copy the FCB

into the directory on disk. That makes the allocation done in the first extent pcmlanent. If
the program is canceled after this point. the file will appear to have exactly one extent of
data,

After updating the directory the Monitor, assuming that more data are to come.
finds and initializes another directory entry, and initializes the FCB in the program to
show that the current extent is empty. Writing may continue in this way, record by
record, block by block, and extent by extent as needed.

Completing the File

CLOSING TIlE FII.E. Anywhcre in data processing to close a file is to complete the last
access to it, make it permanent, and release it. Most programming languages provide an
explicit close request; some close all files automatically at the end of the run. The
Monitor provides a close service request.

WRITING THE LAST RECORD. The language translalOr buffers data in l28-byte re
cords. When the program calls for the file to be closed, there may be a panial record left.
That has to be wriuen with a write service request. Then the program asks the Monitor to
close the file. The Monitor copies the FeB into the directory on disk, and all the
allocation information becomes permanent.

Reading the File

OPENING THE FILE FOR INPUT. In order to read a file it must be opened. The Monitor is
asked to find the file and copy its directory entry into an FCB. There is a count in the FCB

of the number of records that have been read; this is set to zero.

Sequential File Access

READING A DATA ROCORD. The program contains a request for a data record (an
INPUT # statcment in BASIC). When this is executed. the proglllffi calls on the Monitor
to provide the nexl Il8-byte standard record. The Monitor reads the record from disk and
copies it to a buffer supplied by the program. The FCB is updated to indicate that onc
record has been read.

DATA R.:cORDS vusus STANDARO Rt:CORDS. The data record needed by the program
probably will nol be exactly 128 bytes long. It may be completclycontained in a standard
record. with data left over. In that case the follo.....ing data must be saved and used to
satisfy the next input command. The data record might span IwO or more standard
records. in which case lllore records have to be read until the complete data record has
been provided.

Succn:DI:o>G EXTE,'....S. Whcn the last standard record of an extent has been read. the
Monitor searches the disk directory for the directory record of the next extent. A copy of
that extent entry is placed in the FCB, and reading continues.

CI.OSING AN INl'lTf Ftu:, Undcr CP/M it is not necessary to close an input file. Thcre is
no need to updatc the disk direclory after input. Some operating systcms hold informa·
tion on active files outside the program space and SO need a close call as a signal that the
operating syslem may clean up ils tables. That is nOl the case with CP/M: all infonnation
on the state of the file is in the FeBhich is held by the program.

It is slill a good idea to dose input files. There are 1.....0 reasons for this. First, the
code generated by the language translator may benefit from knowing that a filc is nOl in
use. It may havc buffer space or tablcs that it can release. The second reason is that
MP/M does keep track of open files. When you open a file under MP/M I, the operating
system notes that that disk is active. Until you close the file, MP/M will nOl allow the
system operalor 10 change thai disk. MPIM 2 keeps track of each open file so that it can
proteci one program's files from the actions of other programs.

DIRECT FILE ACCESS

The comlllon way to access a file is sequentially, from first record to last. CP/M offers a
second way to access a file: direct access to any standard record in lhe file. Direct access
is useful for many applications and absolutely essential for a few. With it)'ou can
retrieve any records you want. in any sequence.

DIRF..CT ACCESS IN CP/M 1.4. True direct accessas added to CP/M with release 2.0.

A limited form of it was available in earlier versions. Most of the language translators for
CP/M were wriuen for earlier releases of the syslem and not all of them have been
updated to take advantage of direct access. Such packages will limit the size of a directly
accessed file to 256K bytes and may not be able to handle direct access on double-density
disks. J57

The File System

Input with Direct Access

'-"
Reading a file with direct access is slightly more complicated than reading one sequen-
tially. The languagc will require a different fonn of input command. In it you will be
asked to provide a record number.

DATA RECORDS VERSUS STANDARO RECORDS, Usually thc language will require all
data records in a direct file to be of the same length-so that the number of the standard
record that is wanted can be computed by llluitiplying the length of one data record by its
record number, and thcn dividing by 128. The result is the number of the standard record
in the file in which the data record lies (or at least the one in which it begins).

READING A STANDARD RECORD, With that information the program can call on the
Monitor for a direct read of that standard record. If the rccord lics in a diffcrent extent
than thc one in use, the Monitor will have to search the directory to find the cntry that
describes the extent that is needed, Then it can find out which block contains the record
and so learn where on the disk that record lies.

Output with Direct Access

AU..OCATION WITII DIRECT ACCESS. File allocation works differently when a file is
created with direct access. The Monitor allocatcs blocks and extents as you write to ...,J

them. You need not write every record, If you skip over an extent's worth of records, the
space will not be allocated. If you skip over a block's worth, the block will not be
allocated.

FILES WITII HOL~:S. It is possible with direct access to create a file that has holes (large
areas of undefined space) in it. If such a file is read sequentially, the Monitor will report
end of file when it reaches the first hole. All thc data following the first hole will be
unreachable for sequential reading. If the file is read with direct acccss and a nonexistent
record is requested, the Monitor returns an error code to the program. What the program
does thcn depends on the rules of that particular programming language. One way to
avoid both problems is always to create files sequentially and use direct access only for
retrieval and update.

STAT and Direct Access

When a file contains holes, the numbers displayed by thc statftlerefcommand have little
meaning. The statfilerefcommand has an optional operand $8, which causes it to
display, in addition to the usual numbers, the so-called virtual size of the file. That is the
size the file would have if it had no holes. A file with holes will show a differenc(

158 between its virtual number of records and the number in the Recs column. --..../

Types of Files

TYPES OF FILES

As CP/M sees it. the~ is just one kind of file: a series of slandard records. allocated in
blocks. described by directory entries. From another point of view, the~ are two lypes of
files: ASCII files and binary files. From still another point of view there are many
conventional file types. each with its own rules.

ASCll Files

A file thai contains ASCl1text may be edited from the terminal with ED or another editor
program. A file of ASCII text can be wrinen directly to the terminal or printer with
TYPE. PIP. or any other program; all the bytes it contains a~ valid chanlcters that such
devices can handle in a predictable way.

LOGICAL END OF FII.E: SUB. As we noted previously, the data records in a file may
have any length. Therefore. the laSI data record in lhe file might not end with the 128th
byte of the last standard record of the file; its last byte could even be the first byte of the
last recOfd. with 127 undefined bytes of garbage following it. SUB is lhe agreed-upon
signal for Ihe end of a file of ASCII texl. It is conventional in CP/M to fill the unused
byles of the last record of a file with SUB chanlcters (1 Ah. control·z). 1be input routines
of most language lranslators will cheek for SUB as they move data from the record buffer
into the program's variables during an input operation. When SUB appears, lhe lan
guage will report end-of-file status according 10 its conventions.

PHYSICAl. END OF FILE. The Monitor will report end of file when a program requests
the next record and lhere is no next record (either because there are no more records. or
because there is a hole in a file created with direct access). This is called physical ~ndof
fil~. as opposed to the appearance of SUB which is a logical end offilc. In the event that
the last data record exactly fills the last standard record. physical end of file will occur
before a SUB is secn.

ASCII LINF-S. It is also a CP/M convention that the data records of an ASCII file are
treated as lilies. A line is a sequence of characlers that ends with a carriage return and a
lincfeed (or CR. LF as we'll say from now on). The appearance of a pair of characters
CR. LF is the agreed signal for end of record. A line need not be restricted to the width o(
a terminal screen or a prinler line; it may be any length at all.

Elm Ot' LINE: CR, LF. Most languages that write data in ASCl! will insert CR. LF
a(tereach unit ofoutput. BASIC, (or instance, inserts CR. LF following the data written
with a PRINT# statement unless the programmer requests il not to. All editors insert
CR. LF to mark the boundary of a line. but different editors define "line" in different
ways. If you intend your program to read files created by your editor. you should check
the edilOr's documentation; it and the programming language may place different limits
on the maximum length of a line. /59

160

The File Sysrem

Binary Files

Binary files arc defined by negatives. They do not contain only ASCII characters. their
record boundaries are not marked by CR, LF, and in them the appearance of SUB does
not signal end of file..COM files are binary files: they contain machine-language
instructions among which any byte value whatsoever may appear. You may type or print
a .COM file. but the results will be peculiar and not useful. Files of inlcmlediatc code
(.INT) and relocatable program files (.AEl) are also binary files.

It is possible to create data files Ihat contain other than ASCII bytes. Many
programming languages write dala items in their ASCII representation as the normal
mode of OUlpul. If BASIC is used to write a number into a file, the PRINT., statement
will convert the number from its binary representation into ASCII numeric enaraelers.
Thus a file written from a BASIC program will normally be an ASCII file. However,
most languages allow the programmer to write numbers in their binary or BCD repre
sentation. When this is done. the file is a binary one; it will contain bytes that are not
meaningful liS ASCII. Depending on the conventions of the language. such a file mayor
may not have its records delimited by CR. LF and mayor may not have a SUB as an
end-of-file mark.

Chapter 11

e
Translators

LANGUAGES AS TOOLS

INTERPRETERS VI<:RSUS COMPILERS
Using an Interpreter
Using a Compiler
Partial Compilers
Matched Translators

THE REPRESENTATION OF PROGRAMS

JUDGING A LANGUAGE

TRANSLATOR CASE STUDIES
tiny c
l\1icrosort Disk 8ASIC 5.0
CRASle
PascaUZ
Digilal Research pur

162

162
'62
163
164
164

164

166

167
167
168
169
170
.70

/6/

Language Trallslators

A languagc trans!ator-a compiler or imerpreter for a programming language-is your
primary programming 1001. A translator is a complicated, expensive piece of software. "'-"
and lhere are dozens of them on the marker. In this chapler we lalk aboul the kinds of
translaton anilable for CP/M and how to choose among them.

LANGUAGES AS TOOLS

If you've ever worked with your hands. you know how important il is 10 have Ihe right
tool for ajob, A task as simple as loosening a screw can be maddeningly difficult if you
don't have a screwdriver of the right size. When the comers of the screwdriver blade
have been rounded. the screwhead chewed up, and the screw is still finnly set in Ihe
wood. you have no one to blame bUI yourself. A programming language is a tool, and the
same principle applies. Having Ihe right tool makes hard jobs easy; using the wrong one
can make simple jobs impossible.

TilE VAJUETV m' TRANSLATORS. There are alleast six major programming languages
available for CP/M-a "major" language being one thai is both widely used and
available as a well-supported software package-from alleast eight differem vendors. In
acldilion. lhere are al least a dozen less common languages from a varicty of smaller
sources. Each language gives you a different way of stating the solulion 10 problems. a
way that may fil well 10 the problem at hand. or may noI.. Each implementation of each
language presems you with a differenl set of CP/M facilities and a differem way of -.-'
inVOking them.

If you are stillieaming to program. or are doing it forenjoymenr. lhen use whatcver
language is readily and cheaply available. If you are programming professionally-and
you are doing Ihat when the applicalion has to do with your work, whether you're paid
specifically for programming or not-lhen you should examine languages and the
packages they come in as critically as you'd examine any professional tool.

INTERPRETERS VERSUS COMPILERS

Using an Interpreter

ADVANTAGES 01'",ERPRETF.RS. Programming is most pleasant when an inlerprcler is
used. You type in a part of the program and run it. If there are errors, or the output is nOI
exactly whal you want to sec. simply change a line or two and try it again, When it is
right. add more code and continue. You move from coding to tesling and back as fast as
your fingers can follow your thoughls.

Inlerprelers aid you in debugging, When something unexpected happens you can
Slop the program. display the contents of variables. and let it conlinue.

. '--'
DISADVANTAGES 01' LVTERPRETED PROGIlA)IS. Some dlsadvanlages follow from the

/62 nature of an imerpreler. An inlerpreler must be resident in working storage while the

lfllerprelers Versus Compiler:;

program executes. That means thatlhe program you've wrinen cannot become a CP/M
command. The interpreter is the .COM file whose name is the command verb. The
interpreter's .COM file must be available whenever the program is run: this can lead to a
connict with the copying limits of your software license agreement.

Once loaded by the CCP, the interpreter loads the source program. This double load
may lake longer than the 10lal execution time of a small program. And the pcrson who
uses your program first must be taughl one more irrelevant thing.

INTERPKETEIlS USE MORE STOR"Cl:. Since the interpreter is present during execu
tion. its size is deducted from the useful size of working storage. With a 64K system this
is a problem only for the largest of programs, or for programs that are to operate on very
large arrays of data. On the other hand, an interpreted program often takes less disk space
than the same program compiled.

PERmRM"sCE OF b''TUPRETEl> PROGRAMS, The performance of an interpreted prog
ram may nOl be as fast as thai of a compiled program. For every operalion the program
specifies. the interpreter adds a small overhead COSt for scanning and decoding the
program text. This is not always significant. There are many cases in which the speed of
an interpreted program will be identical to that of the same program compiled.

This is always true of simple programs. Who can tcllthc difference between an
execution timeof500 ms andoneof50ms1 Again. if the s~dofthe program is limited
by its 110 so Ihat it spends most ofils lime waiting for the typist or the disk dri'·e. there
will be no noticeable difference between interpreted and compiled execution. Finally. if
the program spends most of its time in noating~point computation. compiling il will
produce little improvement in speed. floating-point arithmetic is usually perfonned by
subroutines. and the subroutines run at the same speed whether called by an interpreter or
from compiled code.

Using a Compiler

D'''AI>VAl\'TACF.,S OF A COMPIL.ER, A compiler places a barrier between you and your
program. You cannot cycle rapidly between coding and testing. After preparing the
source program with an editor you call the compiler as a CP/M command. It translates
the source program. a process Ihat may take several minutes. If the compiler finds syntax
errors, you must return 10 the edilor 10 fix tncm. then compile again.

If the compiler produces assembly language as its output. you must call the
assembler to translate that file. In all cases a linkage program musl be run to link the
relocatable object program and fonn a .COM file. Finally, several minutes after you
keyed in the source text you can begin to test the program.

If it docs not work correctly (and what program ever did, the first time'!). you will
have little help in debugging. The cause of an error must be deduced by logic from the
symploms. a challenging mental e:tercise. When you "'e identified the error, the entire
cycle must be repealed. If you can't find the error by logic, then the cycle must be

-..- repealed twice: once 10 insert diagnostic displa)'5 into the program. and again to remove
them and fix the error. 163

/64

Language TrallslalOr.\"

CO.'\Il'IL.ED PROGRAMS ARE CO.'\IMANDS. The extra labor spent in developing a com-
piled program is repaid when the program is complete, Because the cnd product is a --J
machine-language program. it can be called like any other CP/M command.

Pl:Rt'ORMANO: m' COMI'ILED PROGMMIS. The performance of a compiled program
will be at least as good as that of an interpreted program. In cenain cases. but nol all, it
will be much better. These cases arise when there is a greal deal of processing to be done
and the data to be processed arc characters and integers.

Partial Compilers

There is a middle ground between interpreters and full compilers (which translate the
source into machine language). A partial compiler converts the source program not into
machine language, but illlo a set of integers and constants that are the inpUlto a simple
run-time interpreter. The interpreter can be speedy, as most of the work of scanning the
source code has been done by the compiler. BUl the compiler can be simpler, as the code
it must generate is closely related to the source program's language. For the designer of
the package, then, a partial compiler is a good compromise.

For the programmer and the user the partial compiler is a compromise that has lhe
advantages of neither approach. It is as difficult to tCSI and debug with a partial compiler
as with a full one. The run-time interpreter is the command verb and must be present
whenever a program is run. Only in storage use are there benefits. The sum ofrun-time
interpreter and object program is rarely larger than the size of a compiled program and its
linked support modules, whereas the file size of the object program is small.

Matched Translators

A few vendors offer matched translators: a compiler and an intcrpretcr for the same
language dialect. The programmer who can afford such a matched pair of translators is in
an enviable situation. That programmer can cnjoy the benefits of an interpreter while
developing a program, then use the compiler to produce the final version.

THE REPRESENTATION OF PROGRAMS

Programs. like data, must be represented in computer storage. Programs arc special in
that they may pass through severaltransfonnations, being represented differently at each
stage. The only fonn of program that the machine can handle is the representation known
as machine language. People almost never write in machine language. They write
programs in symbolic fonn, store the programs as ASCII text, and have them translated
to machine language by a translator program.

PROGRAMS AS Tl::xT. The initial representation of any program is as ASCII characters,-I
typed at a tenninal and received by an editor program. The editor might be your nonnal

The Represell1a1ioll of Programs

one, or il might be part of an interpreter. Either way. lhe charJcters that you've used to
symbolize the program are slored in ASCII. The lines may be kept in working storage;
often lhey are writlen to a file. The original. ASCII version of a program is called the
JOU'C~ program because it is the source of all the later transfonnations.

CONDENSED PROGRAM TEXT. An iOlerpretcr works with the symbolic fonn of the
program as typed. scanning it and canying OUI thc aClions it calls for. For the sake of
speed. the interprclcr will probably condense lhc lcxt to make it easier 10 scan. Language
keywords and function symbols may be reduced to I-byte integers. and numbers may be
converted 10 Iheir binary or decimal representation. These changes will be made once as
the program is eOlered. and the re\'erse change will be made if the program has to be
lisled.

11\"fEMMEDIATE CODE. A partial compilcr docs not lransfoml ilS inpul inlo thc machine
language of the processor. Instead it transfomls it inlo a highly condcnsed series of
binary integers that represent commands for a very simple. very fast interpreter. This
in1~rm~diatecod~ is placed in a file (usually with fi1etype .INT). When the program is 10

be executed. the small. fast inlerpreter is loaded; illoads the inlennediate code and scans
il to cany out the aClions il represents. Inlemlediale code may be thoughl of as Ihe
machine language of an imaginary processor designed for their own purposes by the
people who designed lhe language lranslator.

'-" AssE.M8Ll' LANGUACE. A program written in assembly language is created as a file of
ASClIlext. just as any olher source program is. Moreo\'er, some compilers for Other
languages produce as their OUtput a file of assembly language source. Thai file must be
assembled to produce lhe machine language foml of the program. The compiler
designer's job is simplified when assembly language is used as a sort of inlemlcdiate
code.

.HEX FILES. The OUlput oflhe CP/M assembler. and of some compilers. is a picture of
the progrnm in machine language. bUl nol in its final fonn. Rather than producing the
binary values of machine language. lhe assembler produces a description of those binary
values in the fonn of ASCII characlers. Where the machine·language program would
have bytes C30SOOh. the assembler writcs the ASCII characters "C30SOO". Such a file
is called a Hu jife and always has the .HEX filetype. 1be purpose of this strange
procedure is 10 create a file that can be (I) read by people. (2) puoched into paper (ape.
and (3) sent from machine 10 machine easily and with lillie chance of error.

.REl .'tu:.s. Some compilers and assemblers produce yet another fonn of near
machine language. These programs write a file lhat con(ains the binary values of
machine language to which is added more infonnation. 11Ie exIra infonnation makes it
possible to load the machine-language program al any point in S(Ofage, rather than althe
single starting point for which it was assembled. Such files of ,e/ocatable code are given

'---Ihe .AEl filetype. /65

/66

umguage Trans/awrs

MACIlINE L.ANGUAGE. A compiled program may move through three lransfonnalions
before it arri\'e5 at an executable form. Eventually it is transformed into the binary values-'
that the processor will recognize as operation codes. This is a machine-language
program. It can be slOred in a .COM file and called for execution as aCP/M command.

JUDGING A LANGUAGE

EXI'R.:.sSIVE POWER. In an ideal world you could choose a programming language
only on the basis of how well its style of expression matched your problem and your
thinking habits. You have to have used more than one language. and each more than
once. before you can properly judge the expressive power of a nOlalion. We won'!
venture to give criteria for such comparisons: too much depends on the problem you
wanl to solve and on your personal taste (many dispules about language are really
disputes ovcr matters of taste). If you are only beginning. don't worry aboulthe maller.
bot reserve judgement on your first language until you've lricd at leasl two others.

PACKAGING. In lhe real world programming languages come in the fonn of soflware
packages. 1bc package should be judged. like any ()(her software purchase, on its
function, ils reliability, its support. lhe quality of its documenlation. and its price. A
good implementation of a languagc of mediocre expressive powcr may well be a better
tool than a sloppy implementation of a very elegant language.

LA.'I;GUAGE COMPATltllun·. One of the criteria for judging a software package-its
function-takes a special twist when a programming language is being judged. Most
languages have a formal or informal Siandard that specifies the form and meaning of the
languagc's statements. lOOse who design language translalors seem to fccl an irresisli
ble urge 10 tamper with these standards. If there are two translators for a given language.
you may be sure lhat there are small differences between them in the syntax and
sometimes lhe meaning of statements. From these differences arise software incompati
bilities; that is. programs thai are valid according to onc translator bUl that produce errors
from another, or worse, produce no crrors bUl execute differently. It is hard to find out
about lhesc problems in advance. Sometimes incompatible features are louled as
enhancemenlS but more oflen they are menlioned in passing in lhe back pages of the
manuals. Occasionally they arise from errors, and so afe not documented al all.

COMMOS USE, There are several advantages 10 working Wilh a widely used language.
There will be more published programs for you to use or to read for your edification.
There will be more people 10 whom you can lum for help. A large markel tends to
stabilize the language. discouraging incompatible innovations and allracling more
publishers to produce more and bener implcmentations.

POkTABILlTl'. When a language is supponcd by translalors lhal run on se\'cral differ
cnt makes of processor. or under S(veral different operating systems. programs in that
language becornc portable. Portability i1' \'ery desirable. You can bring portable pro
grams along when you upgrade to a bigger processor. and you sland a better chance of

Judging a La"guage

selling portable programs for a profit. Programs wrincn to run on othcr machines Illay
run on yours with littlc change.

'- Language incompatibililies work against portability. The translator that runs on
another machine probably came from a different publisher. and the odds are good that
there are at least minor differences between that "ersion of the language and yours. And.
of course. if you exploit the special features of your own hardware. or step outside the
standard language by using things like lhe PEEK and POKE statements of BASIC. you
defeat the idea of portability.

PERfORMANCE. Perfornlance. expressed either as speed of translation or speed of
execution. is almost entirely an attribute of tile package. A fast translator can be built for
any language. and any language can be translaled into fast machine code. but both are
not likely to be true of the same translator. In order to get a quantitative measure of the
speed of a translator, you must try it out on a number of cases. This is the expensive and
lengthy process called bellchmarkillg. If lhe language is both common and portable.
petfonnancc: is less a conccrn. If spced of execution becomes a severe problem. you can
move to another translator or to a (aster machine without having to rewrite all your
programs.

TRANSLATOR CASE STUDIES

Here are brief case studies of a sample of the language translaton available for CP/M.
'-'" The sample includes a rudimentary interpreter. a sophisticated interpreter. a partial

compiler. and two full compilers. They illustrate the great varicty oftnmslators avail
able. show the many ways in which CP/M's facilities arc presenled to thc programmer.
and give an example of how translators can be compared. We'lilook at only a few of the
translators on the markel. By the time you read this some of these packages will have
been revised and expanded. and so you should not use these studies as an up-to-date
shopping guide.

tiny c

tiny c (always in lowercase) is the product of tiny c associates of t1olmdcl. New Jersey. It
is a small. simple interpretcr that supports a subset ortbe C programming language. The
aim of its designers was to supply a modem programming language in a package so small
and inexpensive that it could be brought up by hobbyisls on the most rudimentary
hardware.

DATA R.;PRESENTATIOS. tiny c provides only two data fonnalS: l6-bil binary integers
(which may be interpreted either as signed inlegers or as addresses) and charaClers.

?ILE HASDI..INC. It supports only sequential files of 128·byle standard recon:Is; the
-""'programmer is responsible for handling data record boundaries. for extracting fields of

records. and for detecting end of file. The CP/M version of the package was buill for /67

Langllage Trallslalors

CPfM release 1.4. before direct access was available. The designers made an unfortun
ate choice in the way they handled the FCB, which effectively blocks the use of direct
access. The user is encouraged to modify the package, so this oversight can be
fixed-but only at the price of introducing a language incompatibility with other tiny c
users.

LANGUA.GE POWER AND PORTA.BILlTV. Despite the simplicity of the language that it
implements, tiny c's expressive power is geea!. tiny c encourages modular design and
extension of the language by the creation of a library of subroutines. If these: fealures are
applied carefully, tiny c can be used 10 state almost any programming problem clearly
and simply. In practice such extensions are limited by the speed of the inlerpreter.
PortabililY is almosl nil; lhe tiny c language is implemenled only by this Ifanslator.

PEIU'OIlMANCE, FUNCTIO~. ETC. By design, tiny e has a limited amount of function.
Its documentation is copious and well written. Its price is reasonable. The interpreter is
extremely simple and so is relatively slow. A matching tiny c compiler was announced
late in 1980; its use should solve most performance problems.

Microsoft Disk BASIC 5,0

The Microsoft Company of Bellevue, Washington, has produced BASIC interpreters for
several home computers. As a result the Microsofl dialect ofthc language is in very wide -...-'
U~.

DATA REPRt:St.:NTATIO~, Disk BASIC 5.0 provides Ihree representalions for numbers.
11 uses I6-bit signed binary integers and two different precisions of binary floaling point.
The shorter of these is the default; it has a 24-bit fraclion (six and a fraction decimal
digits). So-called double-precision numbers have a 7·byte fraction, giving 16 decimal
digits of pre<:ision. It is safe 10 usc the longer form of floating point for commercial
arithmetic. Variables must be explicitly declared to have the longer precision; take care
not to let a default short-precision number slip into a commercial computation.

FILE HANDLING. Disk BASIC allows access to all of CP/M's file capabililies. The
u-anslator handles dala record boundaries. Sequenlial files are ASCII files; the CR, LF
markers are used 10 delimit data ~rds. Files may be accessed at random by using an
entirely different, and much more awkward, set of language statements than those used
for sequential access. When these statements are used, all records must have the same
length. The binary representation of numbers can be placed in the records when dired
access is used; such items can't be read with the sequential statements.

LA,";CUAGE POWER A,";D PORTABILITY. Several features of the Microsoft syntax differ
from that supported by other publishers' BASICs, 50 almost any program will require
editing before it can be transponed. On the other hand, programs in Microsoft's version----'

J68 of BASIC can be moved with only trivial changes between any of the systems for which

Translator Case 5wdies

Microsofl has built a translator. including CP/M-86 for the Intel 8086. BASIC is not an
elegant programming languagc. Especially in a full-blown implemcntation such as this.

""--" every statement of the languagc seems 10 be a special case with its own rules of
fonnation. Nevertheless, there are millions of BASIC programs running on hundreds of
thousands of machines. It is clearly possiblc. if not easy. 10 state most problems in il.

FUNCTION, PERFORMANCE, ETC. Disk BASIC lacks function only in the area of
tracing and debugging tools, whcre its capabilities arc scarcely better than those of tiny
c. Its documentation is adequate. Disk BASIC is a sophisticated interpreter. It converts
the program to an internal representation in which language keywords, function sym
bols. and numeric conslants are stored in binary for fast scanning. Execution is fast
enough for most applications. A compiler for the same BASIC dialect is available from
the same publisher.

CBASIC

If not the first compiler available for CP/M. CBASIC by Compiler Systems. Inc .• of
Sierra Madre, California, was certainly one of the first. It is a partial compiler. It reads a
BASIC source program and writes a file ofintennediate code. That file is executed by a
fast, simple. run-time interpretcr. Because it was on the market carly. CBASIC was used
by several publishers of commercial software. As a result it is now very common.

"'--" DATA REPRESENTAno:o>. CBASIC supports two representations of numbers: l6-bil
signed integel1l and floating point. The floating-point numbel1l are stored in 8 bytes. of
which the first is the exponent. The fraction in the rem3ining 7 bytes of the numhcr is
carried in BCD rather than in binary fonn. and so has 14 decim31 digits of precision.

FILE HANDU:O>G. CBASIC file access uses ASCII text only. There is no way. aside
from tricky coding. to place binary data in a file. As this is written, CBASIC does not use
the direct access feature of CP/M version 2. Unless updated. il will not allow direct
access to very l3rge files or files on disks where a physical extcnt is not tnc same as a
logical extent.

PRm-ESSIONAL AII)S. The CBASIC compiler supports a %INClUDE directive that
causes it to include another file of source lext in the program being compiled. This
feature can be very helpfuL It allows you to de\'e1op a library ofsubroutines and slandard
code. and then include these in any program as you need them. Proper use of the
%INClUDE feature can make it much easier 10 develop large programs.

LANGUAGE POWER AND PORTABJUrv. There are a number of serious language incom
patibilities between CBASIC and Microsoft Disk BASIC 5.0. Forexample. in CBASIC
the FOR loop always executes at least once; in Disk BASIC it may execute zero times.
rherefore. some programs that run correctly with one translator will run inc()ITCCtly with

"'-the other. lbere are several differences in the I/O statements; the statements that request
direct access are especially incompatible. 169

Language Trans/arors

Pascal/Z

Pascal/Z. a product of Ithaca Intersystems. Ithaca. New York. is a full compiler for the
Pascal language. The "Z" in its trademark signifies that it generates code for the Zilog
280 CPU. Programs translated by PastallZ will run only on a Z80 processor: they cannot
be executed on an 8080 processor. PascallZ tnmslates a source program in Pascal into a
file of assembly language statements. That file muSt be translated by a 280 assembler
(one is included with the package) to produce a .AEL file of relocatable machine
language. That file is then given to a linkage program that merges it with support
programs from a library ofrelocatable subroutines. The end result is a .COM file that can
be called as a command.

DATA REPRESE1'fTATI0:-1. PascallZ supports 8-bit unsigned integers. 16-bit signed
integers. and binary floaling-point numbers with a 24-bit fraction. Linkable subroutines
that will perfonn decimal arithmetic of any precision are included in the package. These
subroutines make it possible to use Pascal/Z for commercial work. but the performance
of such arithmetic is notlikdy to be as good. or the using code as dear. as they would be
if a more precise representation were built into the implementation.

FILE HANDI.ING. PascallZ supports both sequential and direct access to disk files.
Files may contain ASCII text in which data items are read and wriuen much as they are in
BASIC. Files may also contain data items that are Pascal record variables: in that case
the record units are read and wriuen in their binary representations.

LANGUAGE POWER A.."iD POKTABlun'. Pascal is a language of good expressive power,..,
and most programming problems can be stated dearly and simply in it. Pascal programs
are at least as ponable as BASIC programs. 1bere are Pascal compilers for many small
and medium-sized machines (and. since mid-1980. for the IBM 370). Pascal is widely
used in both Europe and the United States. but its use on large machines is concentrated
in universities.

The UO statements supported by Pascal/Z are not entirely compatible with those of
other Pascal translators. There are also minor incompatibilities in the handling of
character strings and of external references.

PROFF,SSIONAI, AIDS. PascallZ has a source-inclusion feature like that ofCBASlC. It
aids the programmer in another way by allowing subroutines to be written separately
from the main code. These external subroutines are then combined with the main
program by the linkage program. Thus two kinds of common libraries can be built up;
one of standard code sections. especially data declarations. and one of precompiled
subroutines. lbe subroutines need noc be wrillen in Pascal: they may be in assembly
language. This allows the programmer to handle hardware dependencies in the way that
harms portability the leasl.

Digital Research plJI
-.../

The PUllanguage was developed in the early 1960s by IBM as an alternative to both
170 COBOL and FORTRAN. then as now the dominant programming languages for large

Translator CllSe Studies

machines. Despite the fact that it was used as the basis for the M.I.T. Mullics system
........... (built on GE computers), PUI was identified as an IBM captive language for many

years. In recent years a PLJI standard has been issued by ANSI, the language has
acquired resptttability in academic circles, and it is receiving supp<)n from Other
computer makers. espttially the makers of middle-sized machines.

Digital Research. the same company that produces CP/M, makes a PUI compiler
for CP/M. The package includes AMAC, a relocating assembler, and LIB. a linkage
program, The compiler produces a .REL file as its output withoul the need for an
assembly step. The relocatable object program is then linked with support subroUlines
from a library to form a ,COM file. Subroutines assembled with RMAC can be linked
with PUI programs. so machine and syslem dependencies may be isolated from the main
program.

DATA R.:PR.:SEI>.'TATtON. PLJI handles 8-bil unsigned and 16-bit signed integers,
floating-point numbers with a 24-bil binary fraction, and BCD numbers with up 10 15
digits of precision. BCD numbers are handled as fixed-point values; that is. each number
has a fixed number of digils on each side of tile decimal poinl. That fonnat is panicularly
cOlweniem for commercial woO:.

FILE HANDLING. All the CP/M file facilities are accessible from PUI. Data items can
be transferred as ASCII text with the translator converting between ASCII and the
internal represenlation. Data struclures can be read or written. in which Ca5C the file will
.::ontain the internal, binary. representalion.

'--'
PROFESSIONAl. AIOS. PUI supports boI:h source inclusion and linkable subroUlines. II
also has a limited texi subslitution ability.

L"NGUAC.; POWr.R AND PORTA81l.ITY. plJI is a good programming notation; the
choice beteen it and Pascal is largely a matlcrof individual taste. A full implementalion
of PUI will have more built-in functions and II'IOfe elaborate 110 facilities than Pascal
provides. but in its standard subsel for small machines its capabilities are almost
id~nlicalto those of Pascal. Direct access 110 and variable-length strings are a standard
part of the PLJI I(lnguage definition, which is not true of Pascal.

The PUI community is large but consists primarily of users of large machines. pUJ
programs should be at least as ponable as Pascal programs. but the sets or machines
served by the two languages are emirely different. PUI programs can generally be
exchanged with users of large machines, and Pascal programs wilh users or small and
middle-sized ones. If you employ your CP/M system within a large company, PLJI may
give you the opponunily (0 exchange programs between your system and its big cousin
down the hall. or to call on the company's programmers for advice.

/71

/72

Chapter 12

Assembly
Language

•

EVALUATING ASSEMBLY LANGUAGE

USING ASSEMBLY LANGUAGE
The Assem bl)' Pr0C6S
Making a .COM File
Relocating Assembl)'

ASSEMBLER fEATURES
Conditional Assembl)'
The Macro Concept
JIo'lacro Libraries

CP/M I)ROGRAMMING CONVENTIONS
Standard and Nonstandard Addresses
Low Storage
CCP Services for Command Programs
Program EntT)' and Exil

DEBUGGING AIDS
Using DDT
Applying Patches

m
173
173
17.
175

177
177
17'
18'

183
183
183
18.
187

18.
18.
18.

Evaluating Assembly LtmglfClge

Somelimes il is necessary to write applicalions. or parts of them, in assembly language.
Some applicalionson·t run fast enough even with compiled code. others require
features of the hardware or ofCPIM that aren't available in your programming language.

This chapter is for thoseho must use assembly language under CP/M. We ill
talk about the use of A$M. the assembler that comes with CP/M. and MAC. a macro
assembler from Digital Research. We'll cover CP/M's progrnmming conventions and
the basics of using DDT. The presentation assumes that you know something about the
assembly language of the 8080 (or ZSO) CPU.

EVALUATING ASSEMBLV LANGUAGE

We can judge assembly language just ase judged other languages. An assembler is no
easier to use than a compiler. Debugging is more difficult than with a compiled language
because small errors can cause things (0 happen that defy all analysis. A compiler takes
ean: ofdozens of triviaI housekeeping mallers for you. such as the use of the registers and
the stack and the details of l6-bit arithmetic. ElTors in such things simply don't occur:
the errors that do occur arc related in some way to the problem and your algorithm for
solving it. Wilh assembly language all these details are left to you. NO! only do they
burden the mental energies that you need for solving the problem at hand. but errors in
such code take as long or longer to find than the inevitable errors in the algorithm itself.

The portability of assembly language is nil. An assembled programiII run only on
the hardare and under the operating system for which it wasrillen. You can't upgrade
your hardware or move to another operating system without a rewrite.

At present assembly language is widely used forCPIM applications. However. the
population of CPIM users is growing rapidly. and mOst of the newcomers are not
systems-oriented hobbyisls but people who. if they know programming at all. know only
a high-level language.

The expressive power of assembly language is very low; cvery problem is difficult
and tedious to state. However. performance is as good as can be obtained. The
translators run quickly and the resulting code is as efficient as your ingenuity can make
it. Every feature of the syStem is accessible. It is these two features that keep assembly
language in usc for applications.

USING ASSEMBLY LA GUAGE

The Assembly Process

The process of making an assembled program is very much like the process of making a
compiled program. You prepare the source program with an editor and Slore it in a file as
name.ASM. Then you invoke the assembler as a command. giving the filename of the
source file as its operand. TIle assembler reads the source program and produces a listing

......... file and an object file. The listing displays the source stalemcnlS opposite the instruction
bytes (hey generate. The objecl file contains thc byte values of the machine-language
program itself. It must be convened into a .COM file before it can be run. /73

Assembly La"guage Programming

TilE .A$M fiLE. The source ofthe assembly language program is built with an editor
and stored in a file of type .ASM. The source program contains two kinds of statements.-/
Instruction statements cause the assembler to generate machine instructions. Diuclivt's
direct the assembler in its own operations, telling it to reserve space, test a condition, or
define a macro.

TII~: .PAN "'ILl'.. The assembler produces a listing in which it displays the source
statements and the resulting object code. The listing can be directed to a file, which is
given the filename of the source program and the filetype of .PAN. The listing may be
directed to the tenninal or printer instead of a file.

Tm: .HEX flu:. The object code-the bytes that represent machine instructions-is
placed in a file that has the filename of the source program and a filetype of .HEX. The
.HEX file is an ASCII filc; it contains a picture of the Object code bytes, with each
hexadecimal digit represented by an ASCII character. Each line of the .HEX file
represents from I to 255 bytes of object code. Each line begins with a count of the bytes
in the line. and tbe location at which the bytes are meant to be loaded. Each line ends with
a check sum so thai the line can be verified forcoITCCttransmission. PIP will "erify the
check sums if told to do so with the H or I option.

TilE .SYM FlU:. The MAC assembler produces one additional file. name.SYM. This
contains a list of the labels in the program with their addresses. The .SYM file is
sometimes called (erroneously) a cross-reference file. It can be used with another Digital
Research product, the debugging aid SID. The .SYM file is useful in a small way as a -./
documentation aid.

Making a .COM File

PKOGRAM AOI>RESSF-S, Any assembled program must deal with addresses. Jump and
call instructions contain addresses as operands; they instruct the machine to begin
execution atthosc addresses. Your progmm may contain address constants. 16·bit fields
that contain the addresses of data areas or points in the program. In the source program
you specify such addresses as labels. At the lime of writing you don't care aboulthe
value of these addresses, only that they refer to the pan of the progmm you intend. At
execution time the machine must be given a specific address. A jump instruction must
contain a 16-bit integer that is the address of the target of the jump.

TlIF; ORIGIN PROBLEM. The value of that address depends on two things: the origin of
the program. that is, the address of its first byle. and an offset, that is, the length of
program that precedes the location in question. Tl1e address wanled is the sum of those
IwO things. the origin and an offset. In order to put the address into the program. both
piecesofinformation must be known. Tl1eoffscl is easy; the assemblersimply coums the
bytes il has generated up 10 the point of assembling lbe labeled item. 1bc value of the
origin musl be supplied. --'

ABSOI.UTE ASSF..MBI..l'. With an absolule assembler such as ASM or MAC. you are
174 required to tellthc assembler the value of the origin. The assembler can then generate

Usillg Assembly Language

addresses as lhe sum of thai origin and ils knowledge of the offset. lbese absolule
addresses are placed in Ihe .HEX file. Once there. lhe)' can't be changed:),OU can 0fI1)'

reassemble with a different origin value.
Since the program conlains addresses computcd on the basis of a certain origin, it

must be loaded forexeculion at that origin and no other. Suppose the assembler was told
that the origin was 10 be 0100h, and on Ihat basis it assembled the first jump with a target
address of0340h. If the program were then loaded into storage at 1OOOh, it would run
correctl)' up to that jump. Thereupon it would jump to 0340h, regardless of Ihe fact that
the targel inslruclion was not there. Something would be there. perhaps a fragment of an
old program. Strange Ihings would happen.

LoADING A.HEX FlU:. Once the name. HEX file has been created it is a simple matter
to convert illo a name.COM file. The LOAD command performs Ihis task. Its form is:

LOAD filename

Onl)' a filename is given: the filel)'pc is assumed to be .HEX. The LOAD command reads
!he named .HEX file and places the b)'tes that file describes into storage at their
assembled origin. Having created an exaci image of the machine-language program,
LOAD opens and wriles a file using the stored program as the data. 1be file has the name
gi"en as LOAD's operand and the filel)'pe of .COM: it is an exacl COP), of Ihe program,
read)' to be loaded b)' the CCP and run.

Relocating Assembly

An absolute assembler requires)'ou 10 decide the program's origin in advance and 10

stale thai origin in the source file. It·s]X>Ssible to defer a decision on lhe program's origin
until after il has been assembled. An assembler that lets the origin go undefined is a
relocating assembler. The act of defining a program's origin after assembl)' is called
relocation.

REI.OCATiNG ASSEMHU;;RS, Relocating assemblers usuall)' comc as pan of a package
with a compiler. Digital Research PUI comes with RMAC: PascallZ is delivered with
ASMBL. A relocating assembler ducks the whole question of the program's origin. It
does nO(do a complele job of assembling addresses. It places in the objeci program onl)'
the offset values, not the sum of origin and offset.

THE .AEL FILE, A relocating assembler doesn 'I wrile a .HEX file. II places the object
code, in binary. in a liIe of type .AEL. .REL files are nO(ASCII files: the)' rna)' contain
an)' b)'le value. The assembler pUiS eXira infomlation in the file, naming all the points in
the program at which incomplete addresses occur. The extra infomlation enables a
different program. a linkage editor or linker. to relocate the program.

'- RELOCATIOS AND LISKI!'OG, Relocation is the job of going Ihrough a .REL file and
adding an origin value into all the incomplete addresses. The origin is supplied at the
time of linking, no(at the time of assembling. This means that a relocatable program can J75

Assembly Language Programming

be sel up 10 run at any origin without reassembly. At the same time the .REL files of a
number of programs can be linked together. ---/

E1'Io,RIES AND EXTERNAL REn:Rt:NcES. A relocating assembler has one other feature
that an absolute assembler docs not. It allows the program to declare a label within the
program as an entry poil/I. and to declare a label thaI is nOI defined in the program as an
external reference. An enlry is a label wilhin lhe program lhat may be referenced by
some olher program, one assembled at a differenl time. An external reference lens the
assembler that the label so declared is not part of this program, but is, or will be, defined
as an entry in some olher program.

For an entry lhe assembler puts the name of lhe enlry point and its offset within the
program into thc .REL file, wilh a flag slaling Ihal it is an entry point.

For an external reference the assembler puts in the .REL file lhe name of the
elltemallabel, and the offset of every instruction in the program that referenced that
name. The addresses in those inslructions can't be assembled because the assembler
doesn't know what the value of lhe extcmallabel will be. [t only knows, or rather it takes
on faith, that the value of the ellternallabel will be defined later.

LINKERS. A relocatable program with its incomplete addresses, relocation infonna
tion. entry labels, and elllemal references is obviously not ready co be loaded and made
into a command. Too much information is missing. Supplying the missing infonna
tion-the program's actual origin and the value of its cxlema[references-is the job of a
linker. Linkers too come as part of a package wilh a compiler. The Microsoft COBOL
and BASIC compilers come with lINK·SO; Digital Research PUI comes wilh LIB.

All work in the same way. A linker is given the name of a main program (a .REL
file) and the names of onc or more libraries of subroutines, which are also in relocatable
fonn. It is told, or assumes, some origin for the program. The linker proceeds as
described in the following.

loADING THE .REL FILE, It loads the .REL file and goes lhrough il. resolving all
addresses by adding the origin to them. It notes the names of all cntry points. It notes all
exlemal references. It then searches the library for subroutines that contain enlries
matching the main program's elltema[references.

RESOI.VING EXTERNAL R.:FER"'...CES. When it finds a subroutine, it loads it following
the main program. The first subroutine's origin will be the byte following lhe end of the
main program. The linker must relocale all the subroutine's addresses by adding this
origin to them. Wherever lhe main program conlained a reference to the subroutine. the
assembler could only leave zeros. The subroutine's address is now known and the linker
can fill in these addresses.

Many subroutines may be loaded. and each lllay have ilS own clltemal references
that cause the linker to search for yet olher enlry poinls. Each subrouline provides an
entry (or several enlries) that satisfies the elltemal references of other programs. The
linker weaves all these interprogram references together, filling in all the informalion -.....-/
that was nOI known at the time of assembly. The linked code is then written as a .COM

J76 file.

Using Assembly Language

USES m' RELOCATION AI'II> LINKING. Since relocating assemblers and linkers are
distributed with compilers. you might infer that they are useful only with compilers.
That isn't the case. The work of a compiler's designer is certainly made easier by the
presence of a linker. TIle designer can create a library of many small subroutines. each of
which perfonns a simple task needed by compiled programs: one for each floating-point
operation. for example. 1bc compiler. on encountering a floating-point operation. need
only generate a call to an external routine instead of all the code to do the operation. A
compiled program will ha\'e dozens of external references to be resolved by the linker.

If),ou have a relocating assembler and linker.),ou can--and certainl)' should
apply them to your own work. They allow you to adopt a modular style of programming.
You can create a set of preassembled subroutines that provide you with some of the
convenience of using a compiler. You might even use some of the compiler's sub
routines as your own. You can isolate device· and system.dependent parts of your
application to separate subroutines. For a program that uses advanced features of the
tenninal you can specify one subroutine for each special tenninal function. such as
clearing the screen. Then to make the program work with a different kind of terminal.
you need only revise the subroutines and relink.

ASSEMBLER FEATURES

All CP/M assemblers support directives that let you manipulate the source program. The
simplest way is conditional assembly, which lets you skip over or assemble a portion of

"-' code. depending on some condition. Macro assemblers offer more.

Conditional Assembly

Macro assemblers commonly contain some means of conditional assembly; that is,
statements that allow you to control the assembly of the program by the value of
symbols. Both ASM and MAC (and most other assemblers) provide an IF directive that
allows alternate parts of the program to be skipped under some condition. MAC includes
loop directives SO that a part of the program can be assembled repeatedly.

TilE IF DIRECTIVE. The IF directive is used to skip or include parts of a program
according to the value of an expression. The text that is skipped or included can be
another assembler directive. including another conditional statement or, in MAC. a part
of a macro. The expression is usually a simple label but may be any arithmetic
combination of constants and labels. Under ASM the nonnal use of IF is to skip over
parts of the program that are not wanted in a particular version of the program. Example
12-1 shows the form of this use of IF.

TilE ELSE DIRF.CTIVE. MAC allows an IF directive to be paired with a malching
ELSE directive so that a choice between altcrnate code sections can be made .

.......... REPEATED ASSEMRLY. MAC offcrs three looping directives. The REPT directive
repeats the assembly of a section of code a certain number of times. It is nonnally used to J77

Assembly Language Programmi"g

EXAMPLE 1l·1
A sketch or the' typical use or the IF directin: thl' true' (nonzrro) or raise (Zl'TO) "alue or an
expression sell'Cts statements ror IIssembly (ELSE is supported bJ MAC but not bJ ASM). -...../

TRUE "'" -1 GIVE NAMES TO
!'ALSE "'" 0 •• BOOLEAN VALUES

LONGSMI'.sSAGE EQIJ fALSE
NOvtCE "'" TRUE

" !«)VICE
TIMOOI1T EQIJ " !«)VICE GETS '0 SECONDS

ELSE
TtMEOUT EQII " EXPERTS ONLY GET "ENOl!'

'" D,TIMEOUT
CALI, SETTIM£ , START ANSWER CLOCK

"""Er..<:E

"F.NDTF

"

NOVICE OR LDNGSMESSAGE
''1'01,1 ~alted too 10n9 to answer,
, the penalty Is to polnt5'

initialize tables and other repetitive arrays of constants. The lAP directive repealS a
section of code once for each of a list of operands. substituting a different operand from
the list on each pass. lAP is used to create a series of instruction groups. each
parameterized differently.

The IAPe directive repeats a sequence of code onec for each character in its
operand. allowing substitution of a diffcrent. single character on each pass. IAPC finds
its greatest use within macros. as it is the only way MAC provides of cxamining the
letters of a single operand-somcthing that the author of a macro often needs to do.

The Macro Concept

As we said in Chapter 7. "macro" is a term that implies any grouping of statemenls for
the sake of simplicity. In programming the term implies 11lOTe. At a general level it is
almoSt a synonym for the concept of abstraction. the most powerful notion in the
programmer's annof)'. In practice. as in the MAC assembler. it also implies the concept
of substilWion.

ABSTRACTION. AJI of us have practiced abstraction from earliest childhood. A child -...../
178 learning to speak points to a thing and is lold that it is a "cup." Later the same child points

Assembler Features

to a Ihing ofdifferent color and shape and again is told that it is a "cup." Most babies need
only a few repetitions of that experience before they fonn an abstraction: "cup" becomes
the name of a class of things that are hollow and hold liquid for drinking.

To form an abstraction is to define a class of things that have characteristics in
common. OUf brains arc clearly designed to deal with abstractions, and the value of that
is also clear. Once we 've foroled an abstraction we've made a powerful simplification in
our view of the world. The baby can learn responses to the class "cup" as a whole; as
soon as a new thing can be placed in the cup class the baby knows how to deal with it.
(Once in a while we put things in the wrong class and so deal with lhem inappropriately,
but that's another story.)

USES O~' ABSTRACTION, There are endless uses of abstraction in programming. A large
pan of the de\'eloping science of software is the application of abstraction in different
fonns. Modular programming deals with abstracting single functions of a program,
defining those functions in isolated subroutines, and then treating the subroutines as
unitary things, or abstractions (relocation and linking arc a great aid 10 this). Top-down
programming involves breaking a large task into ever smaller steps. each of which is
treated as an abstraction at one level and defined in tCnllS of narrower abstractions at the
next.

MACROS AS ABSTRACTIONS. In assembly language programming a macro is a means
of converting a sequence of assembler instructions into a single instruction, so thatlhc
group may be treated as an abstraction. Used properly, this allows great simplification in
the task of programming.

All macro assemblen provide a fonn for macro definition. An example of how
MAC does it appe8n in Figure 12-1. That sequence of assembler instructions defines a
macro whose name is PROLOG. The body of PROLOG consists of the statements
between the MACRO statement and the ENDM statement. The MACRO statement.
besides declaring the macro's name and marking the start of ils text, declares that
PROLOG has two parameten, named ?SIZE and ?MAIN.

PROLOG is one programmer's abstraction of the class of things "entering a
pH'gram under CP/M": when made a macro, the abstraction can be called with a single
line of code. Provided the code works in all cases, the programmer can forget the details
of program entry and think about things more relevant to the problem at hand.

SUBSTITUTION. We met the idea of substitution when talking aboul submit files in
Chaptcr 8, Substitution is the process of replacing one string of charncten with anothcr
one. A macro assembler does two kinds ofsubstitution. It replaces a call to a macro with
the whole text of lhc macro it names. And within a macro's text it substitutes for
parameten the values given in the macro instruclion.

CALI.INC A MACRO, After having read the definition of PROLOG, MAC will watch
fortheoccurrenceofthat word in the program text. An occurrence of PROLOG and any
operands following it constitute a macro call. Whcn il finds a macro call for PROLOG,
MAC will replace the call with the entire body of PROLOG and continuc assembling.
The instructions contained in PROLOG will become pan ofthc program al that point. /79

Assembly Language Programming

STACK

START 111' 'l'.r.A.

CALL MAINLINE CODE

CALL MAINLINE C0DE

HL ~ CCP STACK PTR
SET OUR STACK PTR
SAVE CCP PTR POR EXIT

?MAIN

?SIZE

OiOOH

'.'"SP,STDSTACK,
NUL ?MAIN

MAIN

; PROGRAM ENTRY MACRO: BUILD LOCAL STACK, SAVE CCP'S
; ON IT. HANDLE RETURN TO CCP IF MAIN RETURNS HERE.
PROLOG MACRO ?SlZE,?MJlIN

LOCAL STKSI tE
IF NUL ?SIZE

STKSIZE SET 16
ELSE

STKSIZE SET
ENDIF

'"en

'"en
PUSH

" CALL
ELSE

CALL
EJ'lDIP

ON NORMAL EXIT, MAIN LINE WILL RETIlRN TO HERE

EPILOG pop
SPHL

'"
" ; RP.COVER CCP'R STACK PTR,

; •• ACTIVATE IT, ANn
; •• RETURN TO CCP

"STDSTACK EQU
ENOM

2'STKSIZE ;RESERVE STACK SPACE
$

FIGURE 12·1
The PROLOG macro, I)'pical of assembl}' macros under MAC. It abstracts the idea of
program entry and exil for a simple CPIM command.

Note that MAC isn't choosy about where it finds a macro call. PROLOG was
written under the assumption that its call would have the fonn of a machine instruction.
with the macro name in the opcOOe position. If the word appears as a label or as the
operand of an instruction. MAC will replace it there just as readily (with erroneous
results).

MACRO PARAMETERS, The second substitution a macro assembler performs is to take
parameter values from the macro call and substitute them for parameter names in the text
of the macro. PROLOG has two parameters, ?SIZE and ?MAIN. Whatever charactcrs
occupy the first operand position in the macro call will replace every occurrence of
?SIZE in the body of the macro as it is substituted. The characters in the second operand
position of the call will replace ?MAIN. If there are no characters in an operand position,
the corresponding parameter name will be replaced by the null string (it will vanish).
Note that there is no requirement that a parameter name begin with "1"; that was done so
that the parameter names would stand out in the code.

180

IF IN ,\ MACRO DUINITION. The PROLOG macro in Figure 12-1 contains several
uses of IF. In each case it tests to see if one of its parameters has no value (has been
replaced by the null string). If the ?SIZE parameter is null. PROLOG will supply a
default size of 16 words of stack space. If the ?MAIN paramcter is null, it will starlthe
program by calling a labcl MAIN; othcrwise it will call thc label defined by the
paramctcr.

Assembler Features

Macro Libraries

Sometimes a macro is useful only within the program for which it is written. You'd type
the definition of such a macro at the top of the source program, call it where it was
needed, and that would be thaI.

A macro often represents the abstraction of something that is useful in many
programs. The PROLOG macro in Figure 12-1 could be useful in many assembly
programs. Such macros are better kept outside any program and included wherever they
are wanted. Most maero assemblers have somc way of bringing in code from another
file. MAC's method is the MACU8 directive.

TIU: MACU8 DlIU:CTIW:, When MAC runs across a MACUS directive in the source
program. it opens the file named in the directive and incorporates the lines of that file in
the source program at that poinl. The MACUS statement is very like a macro call: the
directive is replaced by the contents of the macro library.

MACUS mR hCLUDISC SoURCE. "The term "macro library" used by the MAC
documentation is confusing because such files aren't libraries in the usual sense. They
are sections of assembler source text that arc kepi in separate files. If iteren't for a
restriction on its use. MACUS could be used exactly as you'd usc Ihe %INCLUDE
statement of CBA$IC-as a way of including prewritlen chunks of code in your
program.

Unfortunately MAC can't handle source inclusion in that general fonn. The
assembler text brought in by a MACUS directive is not allowed to contain any assembler
statements that generate machine language. It may contain only Statements that define
names to Ihe assembler: equate and set statements and the definitions of macros.

MACUS mR DECLARATIOSS, Even with that restriction. MACUS is still useful as a
way of bringing in a block of prcwrillcn code. There are a couple of dozen values Ihat
appear in most CP/M assembly code--values that define important locations in 10.....
storage, names for the important ASCII control characters. ancl the like. Figure 12-2
shows the text of a file called CPMEQU.US. Such a file could be included in any
program to define these COllllllon names.

This source inclusion is especially useful when you are building a suite of related
programs. Such programs will have a set of common items that should be named
consistently in all. That consistency is best achie\'cd by putting the equates that define
those names in a library file and including it in each progrnm. Then if a name must be
changed. it need be changed only once. in the library, after which all the programs would
be reassembled. If you are using a relocating assembler to create a library of subroutines,
the same technique can be used for names that are common to the main program and all
its subroutines.

MACUS mil ~1Acllo DE~-INITIOSS. The expected use of MACUS is 10 bring in the
definitions of a set of related macros. There's nothing magic about a macro library: the
assembler sees no difference between a macro that is defined in the source program and /8/

Assembly umguage Programming

CPMEQO.LIB, EQUATE NAMES USEFUL IN ASSEMBLY CODE

IMPORTAKT ADDRESSES,
OOOT '""BOOS £00
CPM.F'C8 EOU
TPA EQU
CPMBUFF EOU

OOODH
0005H
DOSCH
0100n
0080H

WARM~START EXIT POINT
SERVICE R£QUEST ENTRY
FeB S£T UP 8Y CCP
STANDARD PROGRAM ORIGIN
DEFAULT I/O BUFPER

/82

""'.. CHARACTER SET NA....ES,
'" '"" ''" 8ELL OR BEEP

" '"" ''" BACJSPAC£
'T '"" ''" HORUONTAL TAB.... '"" "'" LINEPEED
W '"" '" VERTICAL TAll

" '"" ,C' FORKPEEll
C' '"" '" CAIUlIAGE RETURN

"" '"" '''' £HI) OP rlU: "LAG (SUB)

'''' '"" '" ESCAPE......., ",u '",
ocm "'" 01'1'8-020H , 'AND' LOWER CASE 'f'O UPPER
ceASE '"" ." 'OR' CONTROL TO CHAAAC1'ER,, . . END OF CPMEQU. LIB

FIGURE 12·2
Th~ CPMEQU.lIB file can be included in almQSllIDf program 10 define names for IocattollS
and \'alues often usn! in CP/M.

one that is brought into the source program with MACUB. It is simply more convenient
to place common macro definitions in a file external to the programs thai use them. If a
macro definition needs changing, it is changed only in the library; all assemblies that
include it will pick up the new definition.

MACUS t"QR CO.'lIMON COI)F.. MAGUS can't handle statements that generate code.
II isn't possible to put the (ex.t of a group of common subroutines in a file and thcn include
them at the appropriatc place in your program with a MAGUS directive. Assembler
crror mcssagcs will result.

There is a way to get the same effect. If the common subroutines are surrounded by
MACRO and ENDM statelllcntS, the file can be read by MAGUS. The subroutine code
is saved in storage as the definition of a macro. At the point in the program whcre you
want the subroutines to appear, place a macro call to the subroutine macro. Figure 13-3
shows the contents of a library of console output subroutines that is organized this way.

The subroutincs of Figure 13·3 bring up the matter or styles of abstraction. They
represent one way of abstracting the idea of console output. Another way. espoused by
the authors of the MAG manual, is to have a console output macro that you call wherever
in the code you need it. The macro call is used instead of a call to a subroutine. The first
time it is ex.panded the macro generates a slllall subroutine in line with the code; on
subsequcnt calls it gcnerates only a call to that subroutine. A third style of abslracting the
idea of console output is to make the subroutine an ex.temal one and link it to the program
after assembly. All three methods are valid.

CP/M Programming COllve"'iolls

CP/M PROGRAMMING CONVENTIONS

In order to write assembly language programs for CP/M you must understand the
programming convenlions used within CP/M. When)'ou usc a compiler or interpreter,
all these details are handled for you by the language translator. With assembly language
you mUSI work with them di~ctly. The conventions cover thltt areas: the use of low
storage, the method of making service requests, and the use ofthc File Control Block, or
FeB.

From now on we must use more precise ternlS than "Monitor" for the resident part
of CP/M. We'lI still rcferlo the Monitor when we are talking about all of the CP/M code
in high storage. but we have to distinguish between the Console Command Processor
(CCP), the Basic Disk Operating System (BDOS) which resides above the CCP and
handles service requests. and the Basic 110 System (BIOS). which sits al the very topof
storage and operates the devices.

Slandard and onSlandard Addresses

Discussions of CP/M's use of storage are complicated by the fact that not all CP/M
variants use the same addresses. CP/M has been adapled to a number of machines; in a
few of them the hardware design forced the adaplers to use addresses different from
those we describe here. We'll describe standard CP/M. in which low storage is located at

'-" address OOOOh, commands are loaded at 01DOh, and the Monitor resides al the top of
storage.

Low Storage

The first 256 locations of working storage, from DOh through FFh. arc reserved by the
Monitor to hold sySlem infonnalion and to act as an interface between your program and
the BOOS. It contains a disk buffer. infonnation on the command thai called the
program, and the route to the BOOS for service requests. There is a map of low storage in
Figure 12-3. We'll lour the main points of interest on that map. from low ..ddresses to
high. in the discussion that follows.

The address immcdiately after low slorage. 01DOh. is thc point al which all
command programs are loaded. That is the origin of the Transient Program Area
("'transient" because commands are loaded into it one after another). or TPA. The
address 01 DOh is usually equated to TPA and used as the origin of absolute assemblies.

DOh: THE WARM START JUMP, 1be firsl 3 bylcs ofstorage conlain a jump 10 a routine
in the BIOS that perfonns wann stan initialization. If your program branches 10 OOh. il
will be tenninated and a warnl sian will occur. lbe CCP and BOOS will be reloaded
from the reserved U1lCks of the A-disk (if the A-disk isn'l booIable, the system will /83

Assembly Language Programming

08

10

"

Rnlan I

RCSlan J

Rnll" 4

"~==':~=':':'==========:
381:===·=~=·=n='===(=DO=T=.="S='=O=I=="I BIOS ,,'Ofk

":========
::IL 1~5-.----

5C

"
"
TO

""'flult fiI~conuoiblock

/84

38~==========
"1 1·1 Deflull fil~ buff.. r
'0 "

."IGURto: 12-3
A map of low ~torllgc from addr('~s OOOOh through address OOFFh.

hang). If your program was called from within a submit file, the next submilted
command will be clIccuted. If it wasn't, the user will sec the nomm] CCP prompt.

A jump to DOh is the conventional way to end a CPfM program, and certainly the
best way to end after an error of some kind.

03h: Till:: IOBYTE. The nexl byte (at 03h) is called the IDBYTE. II contains four
2·bil groups that specify the current assignment of logical [0 physical device names.
There are service requests (numbers 7 and 8) for getting and 5Ctting the current values of
the IOBYTE. If you want to check or alter the IOBYTE. you should use these requests,

CP/M Programming Conventions

e"en though the byte is easily accessible in CP/M. The byte at 03h might not be up to
date under MP/M. whereas under CP/M-86 the IOBYTE is kepi elsewhere.

04h: Default Disk and User Code. The byte at 04h contains t.....o 4-bit numbers. 1be
least significant 4 bits hold the drive number of the current default drive, as encoded by
service request 25 (see next chapter). The most significant 4 bits contain the active user
code, as set by the USER command. As with the IOBYTE. both of these values can be
checked or set through service requests. And also. as with the IOBYTE, the values are
stored here only undcr CP/M: MP/M and CP/M-86 are different.

aSh: The Service Request Jump. At location aSh there is another jump instruction.
This one points to the BDOS. where service requests are handled. Your program issues a
service request by preparing parameters in the registers and calling (not jumping to)
location aSh.

SIZE OF STORAGE. The address in the service request jump is the lowcst address of the
BOOS and the address ofthe byte following the CCP in storage. Ifyour program needs to
use all available storage. it may use all the space from 0100 up to (but nO(including) the
byte addressed by the service request jump. If it does so. it will overwrite the CCP. In
that case the program must end with a warm stan so the CCP will be reloaded. If your
program does not require all of storage. it might subtract B10h from the address in
location 06h and use storage only to that point. That willlea\'e the CCP (which is just
over 800h bytes long) intact.

THE RESTART LocATIONS. The 8080 and Z80 hardware provides a restan instruction
that is like a very concise jump to OllC of eight locations in low storage. 1bese locations
coincide with the slOrage reserved by CP/M. A restan zero instruction will transfer
control to location OOh. the wann stan jump, and so cause a wann stan.

Restans I through 7 transfer control to locations OBh. 10h, 18h, and soon up to
38h. These same locations may receive control during a device interrupt. The 8-byte
areas for restans I through 5 are not defined by CP/M. Unless you arc writing an
intcrrupt handlcr, you should avoid them also. It is tcmpting to think of using a restan
instruction in some clever way to gel around in your program, but to do so is to make
your program nonponable. Someone else's system might have a hardware usc for those
locations.

CP/M has reserved reslart location 6 (30h) for an unspecified purpose and never
used it. Nonelheless. it should be avoided.

The DDT and SID debugging programs use restan location 7 (38h). If your
program alters the area from 38h to 3Fh, it cannot be tested with those tools. Under
MPIM the DDT program can be configured to use any of the restan locations for its
work.

Restan location 7 was probably chosen because a RST 7 ioslrUction has the bit
pattern FFh. That's the value that most hardware will return when the CPU reads from /85

/86

Assembly Language Programming

nonexistem storage. If a program branches to a nonexistent address. the CPU will felch
an operation code of FFh and do an RST 7. -.-I

40h: THE BIOS WORK AREA. The BI05 that handles disk and ()(ner 110 has been
given the 16 bytes from 40h through 4Fh as a work area. If you are doing systems
programming and get deep inlothc logic of the B105. you may discover what this area is
used for (its use varies from vendor to vendor). Otherwise leave it strictly alone:
alterations could be catastrophic for the file system.

5Ch: TilE DEFAULT FeB. The space from 5Ch 10 7Fh alwaY' contains an FeB. This
feB is set up by the CCP as it prepares to load a command. In later chapters we will
make a lot of use of the default FeB.

BOh: TilE DEFAULT 8UFl'ER. The 128 bytes from BOh to FFh ha\'c IWO purposes.
First, Ihis space makes a convenient buffer for simple file operations. Most standard
commands use it forthis purpose. Second. when a command begins opr:ration it will find
a copy of the command line as typed by the user in the default buffer.

CCP Services for Command Programs

The CCP perfonns two helpful services for command programs, services that make it
easier toTite commands. It sets up the default FCB. and it prepares the command line in
the defaull buffer. ready for inspection.

TilE COMM"ND T"II.. Before it transfers control to a command, the CCP copies the
characters of the command line into the default buffer, beginning at 81 h. The characters
of the verb are omiued. All the characters that followed the verb are retained. This line is
called the command tail (it follows the verb that was at the head of the line). Lowerease
characters are translated into uppercase characters, but otherwise the line is exactly as
the user typed it. It will begin with at least one space, and may contain any number of
spaces between operands and following the last operand. A byte of OOh will follow.

The CCP places the length of the command tail. excluding the DOh byte at the end,
in the byte at 80h.

"'It...:M.U· OPERANDS, The CCP assumes that the first two command operands are
filerefs. It places each in the defaull FCB. The first filercfis set up at the head of the FCB;
Ihat file can be opened and accessed using the FCB just as the program finds it. The
second filerer, if there is one, is set up in FCB fonnat in the second half of the default
FCB beginning at 6Ch. If il is a filerer. it must be copied elsewhere before the FCB is
used, because opening a file causes the second half of the FCB to be overwritten. The
CCP is \'Cry generous about what it will treat as a filerer. If it finds a string of 20
characters in the firsl operand position. it will place the first eight or them in the defaull -./
feB as a filename.

CP/M Programmi"g Com'emiolls

AMKIGUOUS FILEREFS. The CCP sets up ambiguous filercfs just as it does unique
ones. However. it does not permit an asterisk reference to be put into Ihe default FeB. If
it sees an asterisk in a filename or filetype, the CCP deletes it and fills to the end of the
field with question marks. If the user Iyped X·.ASM as the first operand, then the filerer
at 5Ch will contain X???????ASM. In designing a command you must remember that
the user can pass you an ambiguous fileref.

Program Entry and Exit

A command program is looded at 0100h. the stan of the TPA. After preparing the
default FCB and the command tail. the CCP transfers control to the start of the TPA at
0100h. Your program must initialize itself. and later terminate in an orderly way. You
have se\'eral options as to how you can handle entry and exit. Most of the considerations
center on how the stack pointer register is to be handled.

51"11''''; PJtOGR.... MS. When control arrives at your program's first instruction, the stac,k
pointer addresses space in the CCP sufficient to handle eight nested calls (or interrupts).
Because of that a simplc program can be wrillen as a subroutine of the CCP. Such a
program just executes until it is finished. then issues a return instruction.

If you write such a program. you will find that when it ends the CCP's prompt
comes out instantly. When you run most applications there is a pause of I or 2 seconds
while the warm start takes place. No warm start occurs when a program terminates by
returning to the CCP. That's why the prompt comes out so quickly at the end of a simple
program.

TypIC....L PROGR....MS. Very simple programs can be coded quickly as subroutines of
the CCP, but this design creates two problems. The first is that larger programs need
more stack space than the CCP provides. The stack pointer register must be SCt up to
address an area local to the program.

The second problem is that (in CP/M 2) Ihe CCP doesn'l handle submitted files
cf>n'ectly unless each submitted command ends in a warm start, This is a pity, because
the quick response obtained by avoiding a warm start is very nice. The fact remains that,
10 be useful in a submit file, a program must end in a warm start rather thanjust return to
the CCP.

TilE PROLOG M....CRO. The PROLOG macro in Figure 12-4 shows how this can be
handled. It is meant to be used with a program organized like the sketch in Example 12-2:
the prolog code lowest in storage. then variables and constants, then the main routine,
and subroutines last. The main routine should return to its callere\'en though the return is
to a JMP BOOT instruction. It might seem simpler to put the warm stan jump in the
main routine. but there are debugging advantages to having a single. known, exit point
from the program.

EI..... 80R....n: PROGRAMS. Two more needs commonly arise. First, a more elaborate /87

Assembly Language Programmillg

PROGRAM ENTRY !'\ACRO !'OR COMPLEX PROGRAMS: FIND BOTTOM OF
CCP ANO SET STACK THERE, CALL MAIN WITH HL_END OF STORAGE.,

PROLOG2 MACRO
m.e
LHLO
SPHL

'"O~oc,
"CALL,...,
CALL
ENOIF

?HAIN
OIOOH

""""
0.0-128
o,
NUL ?MAIN

~"

? IN

START AT T.P.A.
HL --~ BOOS
STACK STARTS UNoER BOOS
NEGATIVE STACk SIZE
HL --~ STACk BOTTOM
HL --~ LAST USABLE BYTE

CALL MAINLINE CODE

CALL INLINE CODE

ON ANY EXIT. CONTROL WILL RE'nJ1lN HERE

EPILOG J,,-P : 00 A WARM START,
; ERROR EXIT TO ISSUE MESSAGE ADDRESSED BY DE. ERASE
; ACTIVE SUBMIT FILE (IF ANY).,
ERROREXIT EQU

~,

CALL

•'.'..,m;
: PRINT LINE TO'S'

ERROR EXIT TO TERMINATE SUBMIT ONLY,
ERROROUT £OlJ

'".v>
em

'"

•O.SUs..... JTFeB
C,l9
"m;
EPILOG

ERASE FILE IN FeB

EXIT BY SINGLE POINT

PCB USED FOR ERASING SUBMIT FILE 'A,SSS.Suo' -- ONLY
FIRST 16 OYTES ARE SIGNIFICANT.,

SUBMITFCB EQU S
DB 1,'SSS
"OK

suo' ,0,0,0,0

fiGURE 12-4
The PROLOG2 macro does four things n~dcd in a complex program: it prOl'ides a large
slack, sizes storage, prOl·ides for a tcrminaling error ml'SSagc, and cancels an ac1i~'e submit
file on an error.

program may need 10 allocate all possible storage, rather than confine itself to areas
defined in lhc program. Second. an elaborale program will usually have checks for many
different errorcondilions, and for each it will have a message 10 be lyped at lhe lerminal.

An elaborate program should be wrilten with lhe assumption thaI il may be called
from a submilled file. If il SlOpS because of some falal error, it should lake steps 10 cancel
the execution of the submilted file lhat (may hal'e) called il. The official way to cancel a
submitled file is 10 crase $$$.SUB.

TIlf: PROLOG2 MACRO. The PROLOG2 macro in Figure 12-4 handles all lhcse
malleTS. II finds the size of slorage up 10 the bollom oflhe BOOS. and selS lhe program's
slack there. It deducts 128 byles (allowing for up 10 64 nesled calls) and passes lhal
address to the main routine in the HL register pair. This address may be saved and used as -/

/88 the limit of slorage allocation.

CP/M Programming COIlI'l'IIIioIlS

EXAMPLE 12-2
Gtncralla)'out or a program that uses PROLOG, Thc macro must jump O\'tr thc stack il
dennes, so it's oon\'cnient to place the program's varlables just after the slack.

(MACLIB directives)

(..eros defined in this program)

PROLOG nn. nalRe

fprogr •• variables. PCBs, buffers)

,

(subroutines for this progra.)

(eomfl\On subroutines from libraries

'"
TilE ENMON EXIT. PROlOG2 provides IWO ways 10 end the program, If Ihe main
rouline ends normally. it will simply return to EPilOG, where a wann start is donc. The
macro also supplies a label ERROREXIT. If a fatal error occurs. the program may load
the DE pair to address an error message and jump to the error exit, There the macro
provides code to display the error message and to erase the active submit file if there is
one. The two service requesls it uses will be described in the next chapter. (Note Ihat this
method of ending a submiuoo file will not work in MP/M. where each user's activc
submit file has a different name.)

DEBUGGING AIDS

Debugging an assembly language program can be an eXlraordinarily fruslr.llingjob. A
dcbugging aid is a program that lets you exercise a program under your direct control,
Slopping it at critical points and displaying the machine registers and the contenlS of
storage, One such aid, DDT. is part of CP/M. It has many uses in the maintenance of
programs. AnOlher. SID. is available as a separale product from Digital Research. and
Olher debugging lools are sold by Olher publishers,

Using DDT

"--" DDT. and its biggcr brother SID. acl in many ways like interpreters of machine
language. They control the machine and execute the machine instructions ofthc program /89

Assembly Language Programmi"g

being tested one or a few sleps al a time. Because !he program is under lhe debugging
aid's control.)'OU may stop it or step along one inslruclion al a lime, pausing when you -./
like to examine the slate of working storage. These arc invaluable aids 10 finding lhe
errors in a program; e\'en the most experienced asscmbly language programmers need
lhem and lhe novice would be helpless without them.

DDT iscatlcd as a command and will accept the name ofa program file it is 10 load
for lesting:

DDT jileref

The operand may be omittcd; if it is given it must be a complete fileref naming a .HEX or
.COM file.

DDT loads itselfover the CCP, just below the BDOS in working storage, It changes
the BDOS jump address at location OSh to point to its own beginning, so th:ll programs
that use all of storage won't use the storage DDT is in. It then loads the named program at
its usual origin and awaits funher commands.

DDT supports commands 10 display the contents of storage as machine instructions
or as bytes and characters, commands to lrace one or sc\'eral steps of the program, and
commands to run the program until it reaches some panicular address. The CP/M
document CP/M Dynamic Debugging Tool User's Guidecontains a good introduction to
the commands that DDT supports. as well as a worked example of how DDT can be used
10 lrace and debug a program. If you've never used DDT. it would pay)'ou to type in thai
example program and work Ihrough the example at lhe lenninal.

Applying Patches

DOT is the command Ihat is used to apply fixes to programs for which)'OU do not have
the source. Such fixes are slated as changes to be made in the byle values of a program;
you learn of them from the publisher of the program.

In order to apply a patch you call DOT with the namc of thc program to be fixed.
You then display the locations that arc supposed to be changed and verify that they
contain what the publisher said they should contain. You then use DDT commands to
replace those values with the corrected values, and end DDT. The result is that the copy
of the program now in storage is corrected, whereas the program in the .COM file on disk
is still in error.

TilE SAVE COMMAND, After you '\'e used DDT to prepare the corrected version of a
program, the altered program remains in storage. It will be overwriuen by the next
command to be loaded into the TPA. Before that happens you must save the new version
of the program with !he SAVE command. whose fonn is

SAVE size jiler~

The SAVE command is pan oflhe CCP (if it had to be loaded from disk, it would"""""
190 wipe outthc altered command in storage). lis firsl operand is lhe size of the program 10 be

Debugging Aids

saved. TIle size is a decimal number of pages. where one page isa unitof256bytes. 1be
size is easily calculated. It is the decimal equi\'alem of the most significant byte of the
program's ending address. orone less than that iflhe address ends in OOh. DDT displays
lhe program's ending address when it loads the program.

1be SAVE command writes lhe given number of pages (i.e.. twice that number of
standard I 28-byte records) to the file given as its second operand. It begins wriling with
location 0100h, the Slart of the TPA. The re5ult is a new file containing a copy oflhe
program as you altered it with DOT.

EXAMPLE 12-3
DDT used 10 palch a rnt'SSllge in the SfAT cOlnrnand. After the program has bei!n altered in
storage, the SAVE command is used 10 write a copy of It 10 a lIew COM file.

A"sU,t a:dsk:

A: Drive Characteristics
4800: 128 Byte Record Capacity
600: Kilobyte Drive Capacity
128:]2 Byte Directory Entrie.
128: Checked Directory Entrie.
128: Records/ Extent
16: Records/ Block
u: secton/ Track

2: Reserved Tracks

,,"ddt StaLcoa
DOT VERS 2.2
HUT PC
iSBO 0100
-d028e,0294
028£ 53 '5 Se
0290 '3 74 'F 72 73 ctor.
-s028.
028E S3 52
OUF 6S
0290 6J
0291 H 6f
0292 61' 72
0293 72 '4
0294 73 ,
·d02Bt,0294
028£ S2 '5 Re
0290 '3 'r 72 64 73 cords-,0
A>aave 21 nstat.com
A>nstat a:dlk:

A Drive Characteristics
4800 128 Byte R~rd Capacity

600 Kilobyte Drive Capacity
128 32 Byte Directory Entrle.
128 Checked Directory Entries
128 Records/ Extent
16 Records/ Block
'4 Records/ Tnck (nOte c:h.nge,

2 Reserved Tr.cks

/9/

/92

Assembly Language Programmillg

AN EXAMl'Uo O~· A PATcn. Earlier we commented that thc STAT command's disk
infonnalion display says SeclorsfTrack when it really is displaying the number of
I28-bYlc standard records per track-not necessarily the same thing. The message text is
a constant in the body of the STAT program. and we can change it with DDT. Here arc
the instructions for the palch:

Around location 028E find the ASCII bytes for "Seclors" (in hexadecimal. 53 65
63 74 6F 72 73). Change those bytes to read "Records" (52 65 63 SF 72 64 73).

The complete process of applying the palch is shown in Example 12·3. The STAT
command is tried OUI. for reference. DDT is called with STAT.COM as its operand.
After loading the file DDT reports that the next available byte in working storage (the
address of the byte after the last byte of $TAT) is 1580h.

DDT's display command is used to verify that the expected values are present, then
its substitute command is used to replace them with new values. The go-to-zero
command ends DDT.

Since lhe end of lhe program was at 1580h, we need to save 21 (the decimal
equivalenl of 15h) pages. In order to lest the change before making il permanenl,e
.....anllo save the altered program under a different name. Hence lhe SAVE command is
givenoperandsof21 and NSTAT.COM. 1lle nc lycrealed NSTAT command wori.:sas
expected.

PATCHING A R.:AI. PROIlU:M. Here's a second patch cxample. In CP/M 2.2 the
SUBMIT command rejects a file if it contains a control character signal like "·Z.·'
SUBMIT is supposed to conven that into a control-z byte in the submitted command. It
turns oUlthat SUBMIT will accept"-z:' but that isn'l compatible with previous versions
of the system or with MP/M or CP/M-86.

This is the official fix forlOC problem. Use DDT 10 load SUBMIT.COM. Use lhe l
subcommand to display lhe instructions beginning al 0441 h. II should show

0441 SUI 61
0443 STA OE7D

.elc

(If it docs nOl, don't continue wilh the patch.) Use Ihe S subcommand 10 alter Ihe byle al
0442h from 61h to 41h. End DDT and save the updated command.

It's best 10 save Ihe altered command under a different name and test it. When
you're sure thallhe palch worked and didn'(cause any new problems, you can erase lhe
original command and rename the patched version.

Chapter 13

BDOS Services for
AppUcations

SERVICE REQUEST CONVENTIO~S

CONSOLE INP T REQUESTS
Service J: Gel a BJle
Sen-ice 10: Gel a Line
Service II: Console Sllllus
The CISUB Librar)'

CONSOLE OUTPUT REQUESTS
Sen'ice- 2: Write a Byte
Senice 9: Write a String
The CaSUB Librar,'

FILE·HANDLING CONCEPTS
The Idea of the Default Drive
Sen'ice 25: Gel Ddaull Drh'c
Service 14: Set Default Dri\'c
The File Control Block

FILE INPUT REQ ESTS
Sen'ice 15: Open Existing File
Opening the Odaull Fen
Service 26: Sci nufTer Address
Sen'ice 20: Sequential Read
End of ."i1e
The TF Command

19.

195
'96
'96
'97
'97

'99
'99
200
200

202
202
202
202
202

204
204
205
205
206
206
206

193

FlLE OUTPUT REQUESTS
I)eleting an Existing "'ill'
Service 22: Make II File
Service 21: Sequential Write
Service 16: Close a File
The FT Command
The SEQIO Library

D1RECf ACCESS
Ser\'ice 34: Direct Write
files with Holes
Sen'ice 33: Direct Read
A Hazard of Direct Input
Sen'ice 40: Write with 7..ero Fill
Service 36: Get Direct Address

207
207
20'
20.
20.
210
212

212
212
213
213
213
214
214

This chapler describes the BDQS service requests lhat are useful in writing 3pplication
programs. After looking at the programming convellIions used in making service
requests. we'll examine the requests for console va ;md file 110 in delail.

SERVICE REQUEST CONVENTIONS

SU\'ICJ: REQUJ:sT NUMBERS. CPfM 2.2 provides 38 different service requesls, They
are numbered sequenlially from 11037. plus 40(38 and 39exist only in MPfM), MPn.,'12
adds 15 more (numbers 41-48 and 100(106). TheCPf 'ET software. w~n installed in a
CPfM system, adds six more requests (numbers 64-69). CPfM·86 contains 10 unique
requesls (50-59). All these requests are described in the Reference section of lhis book,

MAKING SERVICE REQUESTS. All requests are accessed in the same way: lhe number
of the request is set in regisler C, a parJmeter is placed in the DE register pair. and a call
is made to the BOOS jump al localion OOOSh. A few calls need no parameter in DE,
When conlrol returns 10 the program there is usually a return value in regisler A, A few
requests relurn a value in the HL pair as well.

MAKI:"1G RF.QUESTS L'ol CP/M·86. The melhod of making a service requesl in CPfM-86
is only slightly different. The number of the requesl is placed in Bl and the parameter is
passed in OX. The BOOS returns byte values in Al and word values in ax. A CPfM-86
program calls the BOOS by executing INT 224 ralher Ihan by a jump.

REGISTER PRESERVATION. The BOOS does not presen'e the contents of any register.
You cannot assume anything aboulthe contenlS of the registers following a service call.
exupt for those specified to contain a return value. This makes it awkward 10 plaet:
service calls in the main line of your code. Often you'lI have allocated regislers carefulIy-...-'

/94 10 cenain functions and a service call upsels Ihose plans,

Service Request COIH'ell1;OIlS

One approach to the problem is to enclose a call 10 BOOS wilhin a subroUline lhat
also saves some registers by pushing lhem on lhe slack before making the service
requesl. But that is a lot of trouble to achieve a few push and pop instructions.

Tm: SERVICE MACRO, Figure 13-1 shows anothcr approach. The SERVICE macro
makes it possible to place service requesls at any point in a program without wonying
about register preservation. It saves the Be and DE registers, and the HL register as
well, excepl for lhe fi\'e services Ihat return values in it. If a second operand is given, the
macro assumes Ihat it names a value Ihal should become the paramelcroflhe service call.
In Ihat case illoads the DE register wilh Ihe parameter valuc. If no operand appears. the
macro assumes you have loaded Ihe parameter into DE already. Following the servicc
requesl il restores the regislers it saved.

THE Z80 REGlSfERS. The BOOS is wrillen in 8080 machine language and will ne\'er
alterlhe index and alternate registers thai arc uniqucto Ihc Z80CPU. Normallylhe BIOS
doesn 'I aller lhose registers eilher. or it preserves them if it does. You should check with
your vendor; il is likely Ihat your BIOS docs not change Ihe Z80 regislers. Ifso, you need
nOt preserve them over a service call.

CONSOLE INPUT REQUESTS

Many useful applicalions can be buill Ihal require no console 110 al all. When il is
required. console input should be designed wilh consideration for the operator in mind.
Programs such as Ihe disk formatter used as an example in Chapler 8, which require the
user to type one-character responses 10 crucial questions and can 'I be automated wilh
XSUB. arc Ihe bane of Ihe experienced user's life. Abused though il may be. console

SERVICE MACRO: CALL BOOS roR A SERVICE. SAVING
kLL REGISTERS EXCEPT A AND SOKETI!tES 111._ loOM)
DE RECISTER WITH PARA.I'IETER II' ONE IS GIVEN.,

SEI.VICE MACRO
PUSH
PUS"

IF PS NE 12l
PUSH

?S, ?DE,,
AND t?S

"

, SAVE BC AND ••
, •• DE ALWAYS.
NE 24l AND (?S NE 27l AND PS tiE 29) AND t1S tiE 31)

SAVE III. WHEN 800S oo&SNT RETURH IT
&tIDI!'
IP" NOT NUL 1DE

LXI D,1DE
£Il"DIP"

LOAD PARAMETER

,V,
CALL

IF t1S HE 12).,,,
ENOl!'

""."".
"""

C,7S
DOOSII
AND t?S

",
"

SET SERVICE NUMBER
, AND CALL BOOS
HE 24) AND (1S NY. 27l AND

RESTORE HI. IF IT ooESNT

; RESTORE DE, Be ALWAYS

PS HE 29) AHD (1S NE HI
HAVE TilE RESULT

':'IGURE 13-1
..........The SERVICE macro makes it simpl('r to issu(' a S('n'i« I'flIlIelit, and it handles rqistt'r

pmt'n·ation. 195

BDOS Sen/ices for Appliclltions

input is sometimes necessary, and the several service requests that deal with it make a
good introduction 10 service requests in general. --../

Sen'ice I: Gel a Byte

OPERATION m' SERVICE 1. Service I is simplicity itself. Call the BOOS with 01h in
register C. and receive the next character typed in register A. The system will be
suspended until the user presses a key,

SEItVICE I ANI) CONTROL CIIAItAC1'EItS, According to the CP/M documentation the
BOOS checks the received characler for control-p or control-s (console copy or stop
scrolling respectively). CP/M 2.2 lllay chcck: if so, it does nothing with what it finds.
This is easily shown with a program so simple you might enter it with DDT:

ORG
MVI
CAll
JMP
END

0100H (in DDT. a1oo)
C,I
5
'DOH

The program simply soaks up console input. If you run it. you'll find that none of the
usual control characters have any effect. Control-p does 1101 switch on console copy. '"-""
Control-c does not cancel the program with a warm start; you'll have to u~ reset to kill it.
If you add output to the program (as we'll soon see how to do), you can demonSlrate thai
control-s doesn't suspend il.

USE m' SEk\'ICE I, The userdoesn't get a chance 10COITCCt a typing error. If the wrong
character is typed, your program will have the dala and be off and running long before
the operator's finger has reached the bottom of the keystroke. Therefore. it is good
practice not to initiate anything irrevocablc in response to input from Service I, Ask for
confimlation with another input, or usc Service 10 in the first place.

Service 10: Get a Line

Service 10 requests line input. It requires the address of a line input buffer as a parameter
in register DE. This buffer consists of a byte giving the maximum amount of data the
buffer will hold, a byte in which the BOOS will return theamounl actually received. and
a series of bytes in which a complele line of user input will be placed.

OPERATION OF" SERVICE 10, When called for service 10, the BOOS will begin
collecting characters from the CON: logical device and placing them in the buffer.
During this process the BOOS willllOle and respond (0 all of the usual control characters.

/96 Wilen the user enters eilher a CR or an LF, the line is complete, The counl of bytes is"

Console /npm Requests

placed in the buffer and conlrol returns. The lenninating character (CR or LF) is nol
placed in the buffer nor is il counted in lhe dala.

USE Of SU\'ICE 10. Service 10 allows the user (Q cOITecttyping errors with control-x
and backspace. and to control the syslem with control-p. -so and -c. II is the only service
thaI can receive a line of input from a submit file via the XSUB program. Service 10 is
therefore the preferred console inpul method for all applicalions. The only exceptions
would be those that require delailed conlrol of the lerminal. such as full·sereen edilors
and games.

Strvice II: Console Status

If your application engages in a lengthy spell of processing (say. reading a file of several
thousand records). it would be nice to have some way of making it stop. The reset key
will do it. of course. but it doesn't give the program a chance to clean up. If the reset
button is the only way 10 stop your program. some day that bUllon will be pressed at just
the right lime to demolish a file directory.

OPEKATION OF S.:KVICE II. Service II offers a way tocheck lhe keyboard for an abort
request: it is undoubtedly the way that PIP checks for one. Upon return from service II
register A contains OOh if no key has been pressed since the last console input. If a key

"-" has been pressed. lhe BOOS returns a nonzero valuc (Ihe CP/M documentation says the
value is FFh. but the author has seen one system thaI returned 01 h).

USE m' SERVIC.; II. You can imbed a call 10 service II allhe center of your processing
loop. If a key has been pressed. you may either abort as PIP does (tidying up all files
behind you), or call a routine thaI asks if the user really meant it. going on with the
program if the uscr did f1O(. The latter course has two ad\'antages. First. the program
can'l be aborted by an accidental brush of the keyboard. Second. it lets the neryous user
punch a key jusl to make sure the program is still alive. It's often hard to tell a hung
program from one thaI is just working hard.

The CISUB Library

Figure 1)-2 shows the conlentS of CISUB. a macro library whose contents illustrate the
use of the console input services. It conlains no aids for service I (that is easily done wilh
a SERVICE 1 macro call). It docs contain a macro aid to the use of service II. CITEST
takes as its operand a label 10 be called in the event that a character has been typed. That
routinc would handle the abort procedure. returning if no abon was necessary.

CI$UB also illustrates tbe use of service 10. It contains a macro. CIBUFF. that
:onstructs a line input buffer with an additional byte ahead of it. The CISUBM macro

"-"generales three subroutines. 1be first. CIREAD. issues setvice request lito fill a buffer /97

BDOS Services for Applic(ltio/l,5

. .. CISUB.LIB : CONSOLE INPUT AIDS

MACRO 1'0 CREATE A LINE BUFFER WI'MI ONE ADDITIONAL
BYTE USED BY THE CIGETC SUBROUTINE

CIBUFF MACRO,.,.,.
"'END!'!

?SIZE,
1SlZE,
?SIZE

INDEX FOR CI(;ETC
BUFFER SIZE FOR BOOS
RETURNED LENGTH OF DATA
SPACE FOR THE DATA

MACRO 1'0 TEST IF A ~EY HAS BEEN PRESSED AT THE
TERMINAL. OPERAND IS THE LABEL OF A TER~INATION

OR USER-COMMUNICATION ROUTINE.,
CITEST """DO

SERVICE
0 ..
C"'

'"'"

?CALL
U

•?CALL
HAS A ~EY BEEN HIT?
IF SO, CALL (;IVDl ROUTINE.

SET OF SUBROUTINES FOR CONSOLE LINE INPUT

CISUBM MACRO

CILINE: READ A LINE OF INPUT TO A LINE BUFFER (DECLARED WITH
THE CIBUFF MACRO)

INPUT: HL ._~ THE LINE BUFFER (PRESERVED)
OUTPUT: BUFFER FILLED. A· NUMBER OF BYTES. Z-FLAG SET IF

THE INPUT WAS A NULL LINE.

CILINE EQU $
PUSH H
MVI M,OO
INX II
XCltG
SERVICE 10
XCHG
INX H
MOV A,M
0.. •

"" .""

SAVli: BUFFER ADDRESS
ZERO INDEX BYTE FOR CIGETC.
HL ._~ BUFFER FOR BOOS
PUT IN DE FOR BOOS,
.. FI LL TilE BUFFER
RECOVER CALLER'S DE
HL --~ LENGTH OF DATA
.. PUT IT IN A
SET Z-FLAG PROM LENGTH
RESTORE HL--~BUPFER

CIGETC,
INPUT'
OUTPUT'

GET NEXT BYTE FROM A LINE BUFPER
HL --~ THE LINE BUFFER (PRESERVED)
A • NEXT BYTE. IF THERE IS HONE, A • CR AND

THE Z-PLAG IS SET.

CIGETC !QU
PUSH
PUSH
MOV".
'""""...
'"'CIGETC2 HOV...
'"'"

,
••••••H!INXH
•CIGETC2
A,CR
CIGETC3
C••

'.'••

SAVE A WORK REGISTER
AND THE BUPFER ADDRESS
COPY INDEX BYTE,
. . AND STEP IT FOR NEXT TIME
HL --~ LENGTH OF DATA
INDEX" LENGTH?
(YES, DATA itEI'lAINS)
NO, RETURN A CR

COMPUTE OFFSET TO DATA FROM HL'
(HL+lj-->FIRST BYTE IN BUFFER

HL --~ WANTED BYTE

nGURE)3·2
CISUB.lIB contains subroutines that simplir)·the usc orser-"lee rfl!uest 10 (read a IinC' rrom~
1M consolC'). and macro CITEST that uses SC'r-"ke II ror an abort lest basC'd on console'

198 SlatU5.

"""eIGn'C) CPI

"".~
'.M
co

U!POPB

Console fnp", Requests

PICX IT UP
SET Z-FLAG FOR END Of LINE
RECOVER REGISTERS.

CIGETNB:
INPUT'
OUTPUT:

GET NEXT NON-BI.ANI< fROM A LINE BUffER
HL --> BUffER (PRESERVED)
AS FOR CIGETC. BUT NEVER A BLANK.,

CIGETNB EQU
CALL

"'"~,,...

,
CIGn'C GET A IlYTE.

•• EXIT IF DlO OF LINE
BLANK IP IT ISN-T BLANK,

•• REroRN
CIGE1'N9

END Of CISUB.LIB

t'lGURE 13·2 (Continued)

buill by the CIBUFF macro, 1lJe second, CIGET. returns the next byte from that buffer.
or a CR character and the Z flag SCt if there are no more.

The CIGETNB subroutine takes bytes from the buffer until il finds one that is not
blank (or finds the end of the input). h allows you to ignore blanks in Ihe input line.

CONSOLE OUTPUT REQUESTS

'--' Unlike console input. console OUlput is needed in almosl every program, if only to tell
the user that something has gone wrong. The console output requests are easy to use.

Service 2: Write a Byte

OPERATIOS OF" SERVICE 2, Service requesc 2 lakes as its parameler a single byte in the
e register (the contents of D are ignored), That character is displayed at the device
currently assigned as CON:, If the character is a tab, the BOOS expands it into a string of
one to eight spaces according to its knowledge of where the cursor is relative to the
standard g·column tab SlOpS. II is possible for the BOOS to be wrong about this. If
you've been moving the cursor about with escape sequences (which the BOOS, being
device independent, doesn't recognize), then lab expansion will be in error. Avoid
wriling tabs in that case.

S.:RVICE 2 AND COIlo'TROL CllARACTERS, The effect of control-s and control-p during
service 2 OUlput can best be explained by an example. Assemble this program:

ORG 01QOH

TOP MVI e,'x'
MVI C.2
CALL 5
LXI H.O /99

BDOS Sen>ices for Applications

SPIN DCX
MOV
ORA
JZ
JMP

H
A,L
H
TOP
SPIN

The program types Xs at the terminal with a pause between each. Run it and experiment
with control characters. You'll find that control-s. if it is the first input, suspends output
as it should. While output is suspended control-c will cancel the program. If you enter
any character other than conlrol-s. it is ignored, and thereafter control-s has no effect.
This odd behavior is not what the CP/M documentation might lead one to expect. At any
rate. while service 2 output is under way control-p will not initiate console copy. nor will
control-c alone cancel the program.

Service 9: Write a String

OPERATION O}' SERVtCE 9. Scrvice 9 providcs an easy way to write a complete
messagc to the console. The paramctcr in registcr DE is taken to be thc address of a
sequcncc of characters terminated by the ASCII value 24h (a dollar sign in Ihe United
States. or anothcr currency symbol elsewhere). The string. up to but not including the
terminator. is scntto CON:. The cffect of control characters during output is much the
same as with service 2.

USE OF SERVICES 2 AI'iD 9. 1be user can't cancel the program wilh control-c while il is
writing to the console. A program that writes a lot of data to the terminal without pausing
for service 10 input ought to include an abort test (such as the CITEST macro).

STRING TER;\lllllATORS. The choice of 24h as a siring terminator was an unfortunate
one; as a result. service 9 can ne\'er be used to wrile a string thai contains a currency
symbol as pan of the data. You might wonder why that terminator was chosen when
there were at least four other choices that could have been made (the null byte OOh or the
EM. ETX, or SUB control characters). Such speculation is irrelevant. inasmuch as the
choice \I'{IJ' made and couldn't be changed now without causing immensc problems for
existing programs.

Two other conventions have arisen among CP/M programs for terminating strings
of output. One convention, probably deriving from the practices of the C programming
language, terminates strings with the null byte. DOh. The second marks the last character
of a string by setting its most significant bit to I. Each has its advantages. and each
requires a subroutine in the program 10 handle it.

The casus Library

Figure 13-3 shows the contents of a macro library that contains a set of console output"--'"
subroutines. A call to the COSU8M macro will generate the subroutines at that point in

100 the program.

Console Output Reqllests

COSUIDl MACRO
I COSUS. LIB -- COtlSOLE OUTPUT SUBROUTINES

SUBROUTINE TO WRITE (AI TO CONSOLE
"'LTERS ONLY ... AND P,

COUT ""PUSH B

"""""'Y<
C"'LL
"" ,...

,
1 PUSH D

'"'.'e. ,
DDD~H

t pop D

I PUSH H
CP/M EXP£C1'S BIT 7 "' 0
PUT DAT'" WHERE CP/M EXPECTS
COtlSOLE OUTPUT FUNCTION

"'''
SUBROUTINE TO WRITE RETURN. LINEFEED TO CONSOLE
ALTERS NO REGISTERS,

COCRLF EOU

"'''~,

C"'LL
~,

eM,

""...
,
"'..... CR
COOT

'.U'
COOT

"'.
TIlE RE'nlRN ••

.. TIlE LINEFEED.

SUBROUTINE TO WRITE A SPACE TO TilE CONSOLE
ALTERS NO REGISTERS,

COSPACE EOU

"'''~,

",u.

""...
,
"'..... BL.tJlK
COOT

'"

,,
COSTR

SUBROUTINE TO WRITE BYTES ADDRESSED BY HL.
UP TO AND INCLUDING ONE WITH BIT 7 "' 1
ALTERSP. STEPS ilL TO LAST BYTE OF STRING.

""
,

""" ••• PICK UP BYTE TO 00
em COOT PRINT IT
HOY '.' LOOK AG... IN. '"'.<.c · .CHECK BIT 7:

'" • • RE'TURH " OM

'"'
, ELSE POINT TO NEXT.,., COSTR ·. AND CONTINUE.. ..

'"OM
END OF COSUS.LIB

nGURE: 13·3
caSUB.lIB contains rwlines 10 5implir,. console output. Tbt COSTR routine' illustrates the
uw or a ronH'ntion ror ending strinp other than the one used b}' scn'lce requnl 9.

The COUT subroutine is nothing bUI a calion service I. except that the character to
be displayed is passed in the A register. That is usually more convenient than using the E
register as the service request requires. COUT preserves all regislers.

The COSPACE and COCRLF subroutines allow)'01.1 to write lOOse most common
'-characlers. a space and a CR, LF pair. without modifying any registers at aiL

The COSTR subroutine writes a string that is terminated by a byte whose mosl
significant bit is set 10 I. 201

BOOS Sen/ices for Applicoriotls

FILE-HANDLING CONCEPTS

The greatest number of CP/M service calls are concerned with operations on the file '--'"
system. The pammeter for each of these calls is the address of an FCB, a 36-byte field
that reneets the state of a particular file. After reviewing an important CP/M concept,
we'll talk about the use of that data structure.

The Idea of the Odault Drh'e

Back in Chapter 5 we spoke of the default drive. That was the drive that was named in the
CCP's prompt, and whose dri,'ecode was used whcre\'erthe user didn't supply one. 11Je
coocept of the default drive runs throughout all your dealings with the file system.

When you operate on a file with one of the service requestse 'nlook at later, the
file is assumed toex.ist on the drive that is currently the default. You may specify another
drive in the FCB: if you do, the drive you name is made thc default before anything else is
done, In other words, the BOOS looks at only one drive at a time, and that drive is
automatically made the default.

Service 25: Get Default Drh'e

Service 25 returns a number indicating the current default drivecode in register A. This
can be used to find out which drive the user knows as the default, or S3\'ed to reset the ---./
correct drive at the end of the program. 1lle returned numberencodes the drive: 0 stands
forA:,) forB:, and soon toOFh for P:, This isdiffercnt fromasimilarcode in the FCB,
ase'll see.

Service 14: Set Default Drive

Service 14 sets the drive that is to be the default, ex.actly as a drivccodecommand docs.
The parameter to service 14 is a drive number in register E. The number returned by
service 25 may be used for the parameter.

The File Control Block

The FCB holds a copy of the information contained in a file's directory entry. Its initial
byte and the 4 bytes at the end are nOl pan of the directory; they are used only within
programs, There is a map of the FCB in Figure 13-4. Let's take a tour of its fields.

00h: TilE DkIVECOOE, The first byte of an FCB is a dri\'ecode byte. Ifits value is OOh,

then any operation using that FCB will be directed to the drive that is currently thi.
default. If the byte is nOl zero, the operation will go to a specific drive. The dri\'e iscoded~

202 as a number: I stands for A:. 2 for B:. and so on. 1+'X'-'A' is an assembler expression

File,Handling Concepts

00 01 " OJ .. " 06 07 08 09 OA DB oc OD OE OF

'---' 01 II 10DO,
Ori.""od. Filename Fil.lype Extenl " 52 Record

counl

" "
I_ Dal~ Imp __

" " n lJ

01 I
O"Te"l Ditttl

""'" ..,-
FIGURE 134
"map orlht ,,'Ut ConlroiBlock ("'CB),tbtstoragtcopyora director)' tntl")' used In mosl filt
sen'~ requests.

tllaC will produce chis code for any drive leiter X. Note Ih:lt this encoding of the drive is
one greater than the code used by services 25 and 14.

01h TO O8h: TilE FILL'IlAME. The filename comes nexl, as eight ASCU characters.
The name is left justified in the field and padded on lhe right with blanks. The most

............ significant bit of each of these characters is ordinarily 7.ero. as wilh any ASCII byte.
However.lhose bits are sometimes used as indicators, as we'll see in a laterchapler.

09h TO 08h: THE f'ILI:."·YPE, The filetype follows the filename (there is no dot
between them in lhe FeB). The filelype is left juslified and padded wilh blanks.
Therefore. a file wilh no filetype actually has a filelype of Ihree blank characters. The
most significant bits of each filctype chanlcler are nonnally 0, but in some advanced
service requests we'\I look at later lhey are used by CPfM as indicators.

oeh: TilE Exn:NT NUMliER. We discussed file cxlenlS in :111 earlier chaptcr. We said
Ihat one directory cntry can control a ce"ain amount of space (usually 16 KB). Filcs
larger than that have a directory entry for each extenl. Byte OCh contains lhe number of
the file extenl currently being processed. It is 00h in tnc first extent ofa file, 01 h in the
next, and so on up to 1Fh. That provides for 32 extents. the maximum in CPfM 104.
CPfM 2 can handle more than 32 extents. In eXlents with higher numbers the overflow
beyond 1Fh is kept elsewhere in the FCB.

OOh: THE S I ANI> S2 NUMBERS. The 2 bytes at ODh and OEh in the FCB are used by
BDOS for its own purposes. The uses 10 which these bytes are put are not defined. may
change in future versions of lhe syslem, and probably differ between CPfM and MPfM .

..........OFh: TIfE RECORD COU~,.. The byte at OFh contains a count of lhe number of
standard records controlled by Ihis exte11l. The STAT command computes the number of 203

BDOS Services for Applications

records in a file by adding up the record count field ofeach directory entry for the file. If a
file is built with direct access writes and contains holes (unallocated space). the record -./
count byte may be inaccurate.

10h TO 1Fh: Tm: DATA MAl>. The 16 bytes from 10h to 1Fh contain a list of the
allocation blocks controlled by this extent of the file. This is the most important
infonnation in the FCB. These numbers specify the disk locations where the file's data
are to be found. The data map should be left strictly alone. If)'ou alter the map before
closing the file, the results can be catastrophic. The infonnation from the directory ends
here; following bytes exist in storagc only.

2Oh: TilE CURRE.'T RECORD. The byte 20h into the FeB is used by the BOOS as a
count ofthe number ofstandard records that have been read orwriuen in this extent ofthe
file.

You are expected to settne current record number to ooh when opening a file for
sequential access. Then the first access will produce the first record of the extent. The
current record byte will be incremented to 01 h, which will cause the next service request
to access the second record. and so on. When the current record equals the record count
byte (on input) or the capacity of the extent (on output). thc BOOS knows that the extent
is finished.

21h TO 23h: RECORD ADDRESS. The last 3 bytes of the feB were added in CP/M 2.
Programs wrillen for earlier versions may nOi have provided for this extra space (tiny c.
for instance. dedicated these bytes to other purposes). Such programs cannot use the -./
direct access service requests.

Direct access to any standard recorc! of a file is done by setting a 24-bit integer in
bytes 21h. 22h. and 23h. 21h is the least significant byte and 23h is the most
significant. This is the reverse of what you might expect. but it fits well with the
operation of the 8080's instructions. After the address has been set a request for a direct
access operation is made: the BOOS reads or writes the record whose number is
specified.

In CP/M 2 thcre cannot be more than 65 .536 records in a file. In that system the byte
at 23h is always zero. MP/M 2 supports larger files. It will allow the third. most
significant. byte to contain a value as large as D3h.

FILE INPUT REQUESTS

Reading from a file can be almost as simple as reading from the console. Three steps are
required: open the file. read its data. and recogni7.e the end of the data.

Service 15: Open Existing File

OPERATtON 01' S.:R\'ICE IS. Service 15 requires the address of an FeB in register DE. -..-/
104 The BOOS uses the drivecode byte to select a drive. It looks up a direclOry entry for the

File l"plll Requesls

file and extenl named in the FCB. If il is found, the dala map from Ihal directory enlfy is
copied into lhe FCB and the file is ready for reading,

Tm; OllU;crORY 5EARCII, The first 15 bytes of the FeB affect the direclOry search,
The drivecode decides which drive's directory will be searched. If it is DOh, the directory
of lhe current default drive will be used. If not. the dri"e specified by the drivecode byte
will be made the default dri'·e.

AM81GUOUS "·II.EREFS, TIle filename and filelype mUSI have been set up properly (len
juslified and padded with blanks). The search will fail if they are not. Howcver, the
fjleref in the FCB may be ambiguous. If it contains queslion marks, the BOOS will open
the first directory enlry whose fjlercf matches the reference. This is lruc only in CP/M
and MP/M I. In MP/M 2 the fileref must be explicit.

TilE EXTL"''T NUMBER. The eXlent number byte lakes pan in lhe direclory search as
well, You should setlhis byte 10 OOh before the service request so Ihat the firsl extent
cntry will be found. You could set it to. say, 01 h and so open the second extent of the file
(assuming Ihere is one) instead of the first. This is how direct access was done prior to
version 2,0 ofCPfM. However. the highest extent you can open in this way is the 32nd.
It makes more sense (and yields better performance) to use the direct access services
oow.

TilE 51 ANI) 52 BYTES. 1be 51 and 52 bytes panicipate in the file search. The only
thing that you may be sure of about the fuoction ofthese bytcs is that, if they are zero. the
first extent will be found.

Opening the Derault }o'eB

If your program takes a fileref as its first operand, you may use the FCB prepared at SCh
in low slOrage. 1be CCP sets it up ready to open. Check that the byte at 5Dh----fhe first
byte of the filename-isn't blank (if it is, no operaod was given). Then simply request
service 15. passing the address of the dcfault FCB in register DE. This convenient
feature makes it vcry easy to write programs that process a single file.

Service 26: Set Buffer Address

Before reading a filc you musltellthe BOOS where the data are 10 be put. This is done
with service 26, which takes the address of a record buffer in register DE. Until another
service 26 is done all lile access requests will use Ihal buffer,

USING ntE O.;.'AULT HUn-T.R, "The CCP selS location BOh as the buffer address before
entering your program. If you don't change lhe buffer address with a service 26. all file

'- accesses will use that buffer from SOh to FFh. This feature simplifies the job of writing
simple programs. You must remember 10 process any operands from the command tail 205

BDOS Services for Applications

before doing any file accesses through the default buffer, as that is also the place where
the CCP stored the command tail.

Service 20: Sequential Read

OPERATION Of" SERVICE 20. Once lhe file has been opened and the buffer address set.
you may read data. Service 20 requeSIS a Slandard record from a file. The address of the
FeB is passed in register DE and a return code is returned in register A(if your CPfM or
MP/M documentation says a "directory eode" is returncd in rcgister A, COrTcct it; that is
not the case).

TilE RETVkN CODE. if Ihe return eode is OOh. thcn a copy of the current record has
been placed in the buffer. ready for processing. The current record byle has been
incremented and, iflhat made il equal to the record count byte. the BOOS has opened the
nexi extent of the file and copied its data map into the FCB. If the code in regislcr A is
nonzero (don'l assume il will be FFh), no more records are available. This is physical
end offile: it can happen on the first read request because a file can contain zero records.

End of File

Pln-SlCAL [SD Of" FILE. CP/M has two coO\'entions for end of file, The first is the"
physical end of file, which is signaled by a nonzero value in regisler A following service
20, That means thai there is no next record in sequence, That could happen because lhere
are no more records in the file, or it might be thai this file was created with direct access
and has a hole in it (a sequence of records Ihat have never been wrillen and hence were
never allocated).

LoGICAL [NO Of" FILE. In a file of ASClllextlhe SUB control character signals the
end of data, SUB usually occurs in thc last standard reeord of the file, but it mighl occur
in the next to last record, or indeed anywhere, Many programs fill each outpul buffer
wilh SUB characters before pUlling dala in il. The result is thatthc lasl part of the lasl
record of a file is filled completely wilh SUB bytes. That is not always done: sometimes
Ihere is only a single SUB character, followed by unpredictable values to the end oflhe
record.

If the last useful byte of an ASCII file is also Ihe last byte of a record. some
programs don't bolher 10 write an additional record containing a SUB. Therefore, the
end of an ASCII file can be signaled either by physical end of file or by the appearance of
a SUB character in the data.

The TF Command

Figure 13-5 shows the complele source of a simple program TF (for Type File). It does"
206 what the TYPE command does: it writes the conlents of an ASCII file at the console. TF

File I"put Requests

•• • TF , A PROGRAM TO TYPE FILES

HACLIB CPMEQU INCLUDE STANDARD NAMES
MACLIB ''''' PROLOG, SERVICE MACROS
MACLIB COSUB CONSOLE OUTPUT ROUTINES
!'IACLIB CISUB CISUB FOR CITEST MACRO

"""'" 2D,TF SET UP STACK

15,CPMFCB OPEN THE FILE
A CHECK FOR ERROR (FFH}

EXIT IF OPEN FAILEO,
Tf'TOP

SERVICE

'""
'"SERVICE
m..,

'"

,
20,CPMFCB
A

FIRST FILENAME BYTE'
NO OPERAND GIVEN?
ALL DONE IF SO.

; READ A RECORD TO 0080H
•• IF THERE IS ANOTHER

(THERE WASN'T -- EXIT)

CITEST TFABeRT ABORT IF A KEY'S BEEN HIT

LXI H,CPMaUFP ; START OF BUFFER,
!'WI B,128 •• oU1D ITS LENGTH.,

TFLOOP MOV
W

"CALL

'"0<,

'"'",
TFABeRT RET

SU8ROUTINES,
COSllBM

'"

A,Mro,
COUT,,
TFLOOP
TFTOP

NEXT FILE BYTE •.
IS IT oU1 £OF HARK?
QUIT IF SO,
•• ELSE TYPE IT AND
POINT TO NEXT BYTE.

00 ANOTHER IF THERE IS ONE,
.• OR GET NEXT RECORD

£XIT WHEN CITEST PIHDS A KEY HIT.

nGURE IJ.S
Tht' TF (for Tn~. Filt') rommartd demonstl"lltes sequential input using tht' default FeD and
dt'fanll rnvrd butTu, and the u~ of CITEST for an abort lest.

uses the default FCB prepared by the CCP and the default UO buffer. It uses the macro
libraries shown earlier; the PAOG library contains the PROLOG2 and SERVICE
macros seen earlier. TF watches for both end-of-file signals and terminates when either
occurs.

FILE OUTP T REQUESTS

Deleting an Existing File

File output is more involved than input. Complications occur upon opening of the file. If
a file of the same name presently exists, it must be erased-otherwise the data wrillen
would simply replace what al"ll already there. If)'our program wrote more data than the
file held originally, all would be well. If it wrote less. some old dataould remain. at 207

208

BOOS Services for Applicmio"s

best laking up space 10 no purpose. and 301 worst causing errors in the program Ihal reads
the data.

DE",,,"'ON Poucn;s. File deletion is just as permanent an action as the ERA com
mand. Generally speaking. it is nO(a good idea for a program 10 erase any file unless it
can be sure that doing so will cause no hann. PIP and thc CP/M editors have policies that
makes file deletion safer.

It is a CP/M convention that any file whose filelype is .$$$ is a temporary file that
can be erased withom warning. Sel up the output FeB with the filename requested by the
user, bUI with a filctypeof .$$$. Your program can delete thaI filcrcf without worry.

At the end of the program when the output file has been built and closed. the
program may delete the original file if it exists. and thcn rename the new output file to
give it the correct filetype. That is the sequence PIP uses. Editors don'l delete an cxisting
file; lhey renamc il so that it has a filelype of .BAK before they rename the new file 10 its
correct type.

Aoolher policy is possible: a program can simply refuse to lake tnc responsibility
for file delelion. Such a program would check 10 see if its output file existed. If it did. the
program would terminate wilh a message. It would then be up to the user to do the
erasing.

SERVICE 19: DELETE A FILE, Service 19 takes an feB and erases the file named in it.
lt relurns a signal in the A register. indicating whether or no! the file existed (Ihat hardly
seems useful-whether or nolthe file did exist. il doesn't aflerward!).

S£KVtCE 23: RENAME A FILE. Service 23 renames a file. just as the REN command
does, 1be present name of the file is given in the FCB in the oormal way. lis new name
must be placed in tnc same format in the data map space of the FCB. from bytes 11 h to
1Bh. The new filename is taken from bytes 11 h Ihrough 18h. and the new filetype from
bytes 19h through 1Bh.

Service 22: Make a File

After any existing file has been erased, and beforc oulpUI begins. a direelory entry musl
be crealed for the file. This is done wilh service 22. For lhal service register DE
addresses an FCB with Ihe drivecodc, filename. and filelype filled in as usual and other
fields SCI 10 zero.

OI'£IlATIOS OF SERVICE 22. The BOOS selects an unused entry in the directory and
fills it in from the FCB. Thc data map in the new directory entry is filled wilh zeros and
its rerord count byte contains zero. This indicates thaI although the new file exisls (it can
be listed by DIR and 5TAnno space has been allocated to il. Ifyour program terminates
at thaI point. the file will remain in lhe directory and 5TAT will show that it has no
records. Such a file can be opened for input: end of file will be signaled on the first read
request,

File OWpltl Requesls

USE OF SERVICE 22. It is absolutely essential to use service 22 before writing to a file.
During output the BOOS docs not check to see if a directory entry exists. You can write
to an unmade FCB with apparent success for one extent. When the extent must be closed,
either because of a close request or because it is full, an error will occur and the file will
not be recorded in the direclory. In MP/M 2the BDOS will refuse to write to an unmade
FCB.

Service 21: Sequential Write

Once the file has been made. the current recoo::I byte selto zero. and the buffer address set
(service 26), you may write in the file. This is done with service 21. Prepare a standard·
record of 128 bytes in the current buffer, put the address of the FCB in register DE, and
issue the request.

Au.ocATING A NEW EXTEl'o"T. The BOOS increments the record count oftlle FCB. If
that becomes greater than the capacity of an extent, the BDOS updates the directory by
copying the FCB's data map into the directory entry prepared when the file was made. It
then allocates a new directory entry, clears its data map. gives it an extent number one
higher than the prior extent, and copies it into the FeB.

ALLOCATI:"IG A NEW BLOCK, If the record to be wrinen is the first of a new allocation
'-- block, the BOOS allocates a block and records its number in the data map of the FCB.

With these allocation malters taken care of, the BOOS will copy the record from the
current buffer onto disk and return to the program.

ERRORS DURING SEQUL'TIAL WRITE. If all this gocs correctly, register A will be
returned with a value of 00h (if your CP/M or MP/M book says it will contain a
"directory cooe," correct il). Two things can go wrong with a sequential write. The
BOOS may want to open a new extent only to find that there are no free directory entries.
Or, it may look for a new allocation block and find that none are available (that is, that
the disk is full). Ifeither of these things happens. it will return a nonzero value in register
A. (Under CP/M 2.2, a value of01h says that there are no frec directory entries and a
value of 02h says that there is no disk space. MP/M and CP/M-86 may return different
codes.)

Service 16: Close a File

Having wriuen to a file. you must close it. Service 16 closes the file. It requires an FCB
address in register DE. The BOOS looks up the directory entry that matches the FCB (the
one with the same filename. filetype, and extent number) and copies the data map from
the storage FCB into it. Only at that time is the space allocation for the last extent made

............ pennanent. 209

BDOS Services for Appliccu;ons

R£SlILTOI'NOTCLQSING. If you do not closc the file (if, rorex-ample. your program is
aboncd with conlrol-c). the last. or only. directory entry will nol be updated to show the
data space allocated to it. The file will exist. provided it was recorded by service 22. but
all data written into the last. or only. extent will be los!. The space written to in that
extent will be available for reuse by another file.

The FT Command

Figure 13-6 shows the source of a command called FT (for File Typer). It makes the file
named in the command, then uses the CI$UB library shown earlier to read lines of input
from the console. Each input line is copied into a record buffer. When 128 bytes have
been collected. a record is written to the file. When the operator lypclS a null line. FT
closes the file and returns to the CCP. Any of several errors cause it to exit via the
ERROR EXIT label defined by the PROLOG2 macro.

The FT command could stand impro\'emenl. You mighl like 10 enhance it by
making it issue a prompt charocter before reading cach line. You might change the way it
handles existing files: as given, it adopts the simple jX)licy of refusing to erase a file.

" : BUIt.DS FILES BY TYPING

MACLIB CPMEQU
KACLIB PROG
KACLIB CISU8
KACLIB caSU8

PROLOGZ "

•• ERROR MESSAGES

DEFINE IMPORTANT NAMES
PROLOG2, SERVICE MACROS
CONSOLE INPUT ROUTINES
AHD OUTPUT FOR COCRLF ONLY

SET UP STACK, GO TO PT

,
CCMSG DB
CWMSG DB
CMMSG DB
FEMSG DB

-Can--t cloae the flle-,cr.lf,'S'
'Error on ",rlt,,',cr,lf,'S'
-Can"t make th" flle',cr,lf,'S'
'Pil" exl.t. -- you erase it' ,,,<,If,'S',

INPUT CIBUFF 128 DEFINE LINE INPUT BUFFER,
FT EOU S ST"'RT OF PROGRAM

LD'" CPMFCB"1
CPI BLANK 1 ANY OPERAND GIVEN?
RZ DONE IF NOT

SERVICE
INR

"~.,.,

lS.CPKf'CB

•
"2 I
D,FEH$G I
ERROREXJT

I OPEN FILE "'S FOR INPUT
DOES FILE EXIST?
NO, CONTINUE,
YES, QUIT WITH ... MESSAGE.

110

FIGURE 13-6
FT(fOf .1kTl~r)tllkeslinesrromth~~llnd pUlsth~m in a diskfilt. Thtmlln)'uron
thllt can be found mak~ it more oomplicattd than TF CHGURE 13-5). Tht PROLOG2 mltCro
simpliMes things.

'" SERVICE

'"m
'",.,

'0'
CALL

'"CALL

"

22,CPMf'CB,
'"D.CMMSG t
ERROREXIT

D,CPMBUFF
B,OO

$
COCRLP
H,INPUT
CILINE
FTCLOSE

File OWPIl1 Requesrs

: NEW FILE. MAKE IT.
DID THAT WORK?
YES, CONTINUE.
NO, QUIT WITH A MESSAGE.

; DE INDEXES DISK BUFFER
; B COUNTS BYTES IN IT

HERE FOR EACH CONSOLE LINE
CURSOR TO NEXT SCREEN LINE

SERVICE 10 GETS INPUT LINE
ALL DONE IF NULL LINE

FTLOOP CALL

"CALL

'"

CIGETC
FTEOL
FTPUT
M'LOOP

NEXT rllBYTE
(END OF LINE)

GOT A BYTE, PUT IT IN PILE
• • AND GET NEXT

FTEOL '"CALL

'"'CALL,.,

"',CR
FTPUT
A, LF
P'TPUT,ro,

END OF INPUT LINE, PUT
• .CR, LP INTO
•• THE PILE

THEN GET NEXT LINE

WHEN A NULL LINE IS RECEIVED FILL THE REST OF THE
BUFFER WITH Eor MARKS, WRITE IT, AND CLOSE rILE.

; FILL nISK RECORO WITH SUBS
,
FTCLOSE '"STAll

'"'""SERVICE
OAA,.,
SERVICE

'"'"'"'"'

A,Eor,,,
FTCLDSE
21,CPHFCB,
CANT$WRITE
16,CPMFCB,
D,CCMSG
ERROREXIT

THEN WRITE LAST
DID IT WORK?

CLOSE THE FILE
CHECK SUCCESS,
RETU RN TO EPILOG IF OK

SUBROUTINE TO STOW THE BYTE IN A IN THE DISK BUFFER.
DE-->BUFFER, BC COUNTS BYTES IN IT. WRITE THE BUFFER
WHEN IT FILLS UP.

FTPUT STAX

'"'""'"MY,
SERVICr.

'""CANT$WRITE EQU
m

'"

o PUT BYTE IN BUFFER,
o STEP BUFFER INDEX,
B COUNT BYTES IN THIS RECORD

RETURN IF NOT UP TO 128
D,CPMBUFF: RESET BUFFER PTR,
B,OD .. AND BYTE COUNT
21,CPMFCB , THEN WRITE RECORD
A .. AND IF IT WORKED

· .CONTINUE IN PROGRAM
$
O,CWMSG IF IT DID NOT,
ERROREXIT : ..QUIT WITH MESSAGE,

COMMON SUBROUTINES

CISUBM
COSUBM

'"
FIGURE 13·6 (Continued)

211

2/2

BDOS ServiceJ for ApplicaTions

The SEQIO Library

MAC, Digital Research's macro assembler, is distributed with a macro library called
SEQIO.UB. This macro library contains a number of aids to the use of sequential files.
The library is described 3tlength in the MAC documentation. It will repay study, as will
any exercise in reading Olher peoplc's programs. Although you may not care for ils
rather convoluted style, SEQIO.lIB can serve as the basis for a set of sequential file
macros that will make file access nearly as simple as console access.

DIRECT ACCESS

The steps of opening, making. and closing files are the same for direct access as for
sequential operations. Only the operations of reading and writing differ.

Service 34: Direct Write

With service 34 your program may write any swndard record lhat it wishes. The file musl
have been opened Wilh service 16 or made wilh service 22, ensuring that at leaSl one
directory entry exists for il. The record must have been prepared and lhe buffer address
aimed al il with service 26. Once all this has been sel up, your program need only store a ..J
24-bil record number in the direcl address bytes 21 h 10 23h of the FCB and requesl
service 34. Under CP/M 2. and for all but lhe largest files under MPfM 2. lhe record
address will be a 16-bil number and byte 23h will conlain zero.

LOCATING TilE EXTENT. When it receives a direct write request, the BOOS studies the
direct address number in the FCB. From the number it delcnnines the extent of the file in
which lhat record must fall. If that is not thc extent currently open (that is, nOl the one
reflected by the FCB), the BOOS writes lhe current eXlent record back to the directory
from the FCB. [t then locales the proper extent record in lhe directory. Ifno such extent
record exisls, it selects an unused directory enlry and initializes il with the fi[eref and a
data map showing zero space allocalion. The desired eXlent record, new or existing, is
then copied into the FCB.

locATING TilE BI,OCK, Once the right extenl of the file has been found, lhe BOOS
detennines in which of the allocation blocks in the extent's data map the record should
fall. Uno block has been allocated at thaI position, the BOOS chooses one and records it
in the FeB.

WRITING. Finally. lhe BOOS writes the data record onto disk in lhe right allocation
block. If that record existed before, its data arc replaced.

DireCI Access

Files with Holes

11 should be clear from thedcscription that a file written with service 34 could ha\'e holes
in it. A file might ha\'e 10 extent records, each controlling juSt one allocation block in
each of which)'ou have written just one record. Most of the file simply wouldn't exist,
The display produced by the STAT command would show peculiar numbers that would
have lillie meaning. It is best. and usually no more difficult. tocreatc: a direct access file
with no holes in it.

The STAT command has an optional operand. $S, whieh causes it to show the
so-called vinual size of a file, that is, the size the file would have if all of its records
existed.

Service 33: Direct Read

You may read a record from an open file with a direct read. Direct reads and direct writcs
may be done alternately to the same file (the same is true of sequential reads and writes,
but there's no point to doing that), To read a record directly set the buffer address, place a
record number in the direct address bytes of the FeB. and request service 33.

LocATlSC TilE EXT1::",.. 1be BOOS determines the extent in which that record must
fall. If it is not the current utent (the one reflected in the FCB), the BOOS must locate
the proper exte", record and copy it into the FCB. Before doing so it checks to sec if the
curre", extent has been modified. If that's the case. the BDOS must first update the
directory entry for the current extent.

LocAnsc TilE BLOCK. Having found theexlcnt, the BOOS figures out the allocation
block into which the wanted record must fall and looks at that entry in the extent data
map, From that infomlation it can find the record on disk and read it into the buffer.

Nm,,'EXISTENT RECOIUlS, If either the extent or the block that is needed has not been
aUxated, the BDOS returns an crror code in register A. That might be a normal event
when using direct accesS; it means that the record you tried to read has never been
written.

A Hazard or Direct Input

There is one case in which a direct read might return garbage. Suppose that at some time
lhe firsl record of an allocation block had been'Titten. That block of records will have
been reserved 10 the file and the first position in it will have been filled with a record's
data. However. if service 34 was used to write the record. then nothing can be said about
the other records in the allocation block. If lhe block has ever been pan of another file.
lhey might contain an)' son of garbage. 2/3

2/4

BDOS Services for Applicatiolls

Now suppose that your program requests a direct read of a record thaI falls as record
2 of the same allocation block. Willlhe BOOS infonn)'oo thallhe record you want does-/
not exisl~ II will nOI! 11lc BOOS cannollell; its directory information tells it only that a
cenain allocation block has been made pan of this file. II has no record of whether or not
all the records of thaI block were written.

When a file is wrinen sequentially. or written dirtttly but without holes. this
problem canfl()(occur because all allocation blocks except the laSI are filled. The BOOS
can lell the number of records in the lasl block by laking the remainder aftcrdividing the
record count by the number ofrecords in a block. Such acomputation has no meaning for
a file wrinen directly.

Service 40: Write with Zero Fill

Service 40 can be used 10 prevent the problem just described. If service 40 instead of
scrvke 34 is used fordirecl wriles. the BOOS adds one more feature to the operation. If it
has to allocate a new block in order to write the record. it writes all of the rest of the
records in the block asell. filling them with binary zeros. When a file is written this
way. a direct read that hits upon an unwritten record of an existing block will return a
buffer full of binary zeros. lbe program that reads the file ean tcst some field of the
record that ought not to be zero to find out whether the record exists,

Service 36: Get Direct Address

TilE CO....C£I>TO.. AN INDEX. Suppose a file was built with sequential writes. and you'd
now like to process it with direct reads. Let's say that the data records aren't necessarily
multiples of 128 bytes in length: they might start anywhere in the file. It won't be
practical to make direel reads without more infomlation. You can't give the standard
record number of a data record whose position you don't know.

What is wanted in such a case is an illdex, a table that gives the starting position of
each data record in the file. An index is a two-column table that gives the value of some
key I'aille for each record, and opposite the key value the position in the file of the record
that contains that key.

OP~:RATlO"" OF Sl:::RVICE 36, Service 36 allows you 10 build such an index while
reading an existing file sequentially. What service 36 docs is compute the standard
record number of the last record read (sequentially) from the file. and return that number
in the direct address bytes of the FeB.

USE 01'" SERVICE 36, To build an index. read the file sequentially, For each data record
note the key value and, through service 36, the lile position. Record these items in the
index. Each data record's position requires four bytes-a 3-byte record address. and a
I.byte offset of its first byte within the record. Having buill an index, you can now look
up the position of any record and retrieve it with service 33,

Chapter 14

Services for
System

•

TWO USU"UL LI8RARIES
The HEXSUB Librar)'
The DPSUB librar)'
The XCMD Program

THE DISK DIRECTORY
Re\'iewing the Directory

CONTENTS OF I>IRECTORY ENTRIES
The User Code
The Attribute Bits
The Extent Number
The Record Count
The Data Map

THE SEARCH SERVICES
Sen'ice 17: Search "'irst
Service 18: Search Next
Using the Search Requests

DISK SPACE MANAGE1\'IENT
Fundamental Parameters
The Disk I'aramcler Block
A H)'pothetical Disk
Acti"3Iing a Dri\'c
Space Allocation

216
216
216
216

21'
21'

220
221
221
223
224
224

224
225
225
225

229
229
232
237
23.
239 215

DISK FORMAlTlNG A D THE DIRECTOR\'
The Directory High.Water Mark
The Reason for ESh
The Fill Character Dilemma

241

241 11241
241

In this chapter we plunge deeper into the file system. Weoll examine the disk directory in
minute detail and find out how 10 read and write it from a command program. Then weOil
study the disk space management method of CP/M 2 and see how to interpret its
parameters from a program. The chap(cr includes several programs that can reveal the
internal wori:.ings of CP/M.

TWO USEFUL LffiRARlES

This chapter is illustrated with several programs. wriuen for the MAC assembler. They
rely on twO new macro libraries in addition 10 the COSUB oCPMEOU. and PROG
libraries we met in !he prior chapters.

The HEXSUB Library

The HEXSUB library (Figure 14-1) contains a set of subroutines that display data in
hexadecimal. Its cenlra.1 routines are COHEX. which types the ASCII image of a hex -....-/
byte at the console. and HEXBYTE, which returns the ASCII image of a byte in the A
and C registers so it can be inserted in another message. HEXLINE displays some
numberofbyteso first in hex and then as characters. HEXDUMP prefixes the display line
with a display of the address of the first displayed byte.

The DPSUB Library

Thc DP$UB library. shown in Figure 14.2. contains a fcw routines thai manipulatc the
16-bil registers of an 8080. As wc'lI sec. disk space allocation is comrolled by para
meters that are often 16-bit integers. Our cxample programs become shorter and clearer
whcn the necessary routines are moved to a libmry. The DP$ADAD and DP$ADAH
routines add the contents of the A registcr into the DE and HL registcr pairs respectively.
DP$LDHA performs an indirect load of the DE register from an address that is the sum
of the A and HL registers. DP$SRLD does a logical right shift oflhe contents of the DE
register. Many other routines could be added to such a library, but these are the only ones
needed by the example programs.

The XCMD Program

Figure 14-3 contains an example program of the sort we'll use throughout this chapter.,;
2/6 This program, XCMD. uses the HEXSUB routines to display the defauh FCB and the

Two Useful Libraries

HEXSUBM MACRO
• •• HEXSUB.LIB -- HEX DISPLAY ROUTINES POll. MAC ASSEMBLER

-- ASSUMES PRESENCE OF COSUB.LIB ROUTINES.

SUBROUTINE TO DO AN ADDRESSED DUMP OF ONE LINE. HL-->DATA,
B HAS LENGTH (SHOULDN'T EXCEED 16 OR SO).

HL IS INCREMENTED SO SUCCESSIVE LINES CAN BE DUMPED,
BC, DE ARE PRESERVED, AF IS TRASHED.

HEXDUMP EQU
CALL

'"CALL
CALL

S
HEXADDR· '.'"' .
COUT
COSPACE

DISPLAY HL CONTENTS IN HEX,
THEN A COLON,

•• A BLANK, AND
· .FALL INTO HEXLINE

SUBROUTINE TO DUMP B BYTES OF HL-->DATA TO CONSOLE
REGISTERS USED AS FOR -HEXDUMP-.

HEXLINE EQU
PUSII
PUSt!

IlEXL2 MOV
CALL
CALL

'"OC,

'"
CALL
CALL

'"'"PUSH

s
•
"
'.'COHEX
COSPACE,
•HEXL2

COSPACE
COSPACE,
••

SAVE PARAMETERS FOR
· .RE-USE WITIt ALPHA PART.

CURRENT BYTE..
· .PRINTED IN llEX
· .AND A BLANK AFTER.
STEP TO NEXT BYTE,
IF ANY,

(THERE IS)

TWO BLANKS AFTER HEX DISPLAY.

RETRIEVE DATA ADDRESS
· .AND COUNT
PRESERVE COUNT FOR CALLER.

llEXLJ

llEXL4
IlEXLS

,ov

'"'""'"'",V,
CALL

'"OC,

'"
eo,

'"

'.'""2DI!
HEXL4

""HEXLS
A, ' . '
COUT,
•HEXLJ

•

CURRENT BYTE ..
(LESS ITS BIT 7)

.• IS IT CONTROL?
(YES)
IS IT DEL?
(NO)
UNPRINTABLE BYTE, USE A DOT.
PRINT BYTE OR DOT
STEP TO NEXT,
.• IF ANY

; RESTORE CALLER-S COUNT

SUBROUTINE TO PRINT ilL AS AN ADDRESS IN llEX.
ALTERS ONLY A, F.

HEXAODR EOU
"'V
CALL
'OV
CALL

'"

s
'."COHEX
'.S
COIlEX

SUBROUTINE TO PRINT THE HEX BYTE IN A
ALTERS ONLY A, F

FIGURE 14-1
HEXSUB.lIB contains subl"outines fOI" displaying data in hexadecimal; it is included in most
of the example pl"ograms that follow. 2/7

Services for System Programming

•...
HEXLEFT
COOT
PSW ;
HEXRICHT;
COOT

"'"PUSH
cm
CALL.,,,
CALC
cm
~,

HEXLEPT EQO
AA' •

HEXRICHT EQO'

""CO<

'c....,
HEXLR ADI

~

•RAR I RAR

•
'''',~

HEXLR
-A'-)M.,.

SAVE THE BYTE.
CET AND

•• PRINT LEFT "ALF.
RETRIEVE BYTE.

•• DO RICHT H"'LF

: SET UP FOR LEFT HYBBLE
• AA'

: DO HYBBLE NOW ON RICHT
ISOLATE 4 BITS
CHECX "'LPHA CASE
IAI< OM
CORRECT FOR ALPHA
CONVERT TO PRINTABLE

SUBROUTINE TO R£T\lRN THE HEX VALUES OF
LEAST SICNIFICANT H"'LF IN C. MOST SICNIFICANT
IN A. USED WHEN ASCII-HU IS TO BE STORED.

; • • *

,
HEXBYTE

HALF

HALf'
SAVE THE BYTE.
•• PUT THE RICHT
•• INTO C REG

....'10 THE LEFT
•• INTO A.

OF XSUB.LIB

•PSW ;
HEXRICHT;
C.'."
HEXLEPT ;

"'""'''cm
wcv
"'.C...LL
~

* • END
,,~

FIGURE 14-1 (Continued)

command tail as it received Ihem. XCMD is very useful for learning the exact details of
how the CCP sets up low storage before loading a command program-something evcry
systems programmer needs to know. Example 14-1 shows XCMD in operation.

STYLE: m" EXAMPLE: PROGUMS. XCMD is typical of the examples to follow. All of
them place variables and message constants between the PROLOG macro and the main
code. and put subroutines at the end. All wilt work under CP/NET; most should work
under MP/M but haven't been tested under it. All were wrilten to optimize clarity of
logic rather than speed or program size.

THE DISK DIRECTORY

The disk directory is the hean of CP/M's file system. The directory is really a keyed
direct access file comJXlsed of extent records. There are endless ways in which these
records could be collated, listed, and reponed on, if we could just get at them. In fact
there arc service requests that allow us to read the directory easily-requests that are
supponed under CP/M. MP/M, and CPfM-86.

Reviewing the Directory

DIRf'.cTORV RECORDS. Let's go over what we learned about directory operations in ~
prior chapters. Directory records are 32 bytes long. Each contains most of the data of an

218 FeB. notably a filerer. an extent number. a record count, and a data map.

The Disk Directory

DPSUBM MACRO
•• I6-BIT REGISTER SUBROUTINES

SUBROUTINE TO LOAD DE FROM KIHL~AI

ALTERS ONLY DE, FLAGS.

DPSLOHA EOU
PUSH."
""'"'0'
'"'0'
'""T

$

•
'"'",
','•".•

MAKE 16-BIT OFFSET

ADD OFFSET TO BASE
PICK UP L.S. BYTE

GET M.S. BYTE

SUBROUTINE TO SHIFT-RIGHT·LOGICAL DE
ALTERS A,F (A L.S. BYTE. Z,C FLAGS SET)

OPSSRLO EOU

''''."
""""T

$

•',0

',' "'."'.
CLEAR CARRY
MOV O,A
KOY E,A

SUBROUTINE TO ADO A TO DE
ALTERS A,F (A_H.S. BYTE. Z,C PLAGS SET),

OPSADAO "'" $.,,, •
""" ','""" ','Me, ,
""" ','
"'"
SUBROUTINE TO ADD A TO HL, AS ABOVE

OPSAOAH .,,, $." C." C, •." ',''"
,

." ','"T
SUBROUTINE TO DO AN UNSIGNED COMPARISON
OF (S,C) " (H,LI. ALTERS A, LEAVES
FLAGS SET AS FOR THE COMPARE INSTRUCTION.

OPSCPSH "'" $." .,. ,
"'" •.., , ~u " K.S. BYTES DIFFER.,,, ',C ,
"'" c

"'" , B"H, EXIT WITH C,C .""",
END OP OPSUB.LIB

"'~
FIGURE 14·2
OPSUB.L1B nmtains COflnn~nu roulUres for ""orking ""jlh th~ I.bil rqisttr pain oft~

8080. Uw of t~ rouli~ darir~ 1M Iogk of Ihe fXampl~ programs.

Z/9

Sen/ices for System Programmillg

• • • •• XCMD -- EXAMINE THE COMMAND OPERANDS

MACLIB CPMEQU
MACLIB PROC
MACLIB H£XSUB
MACL I B COSUB

STANDARD NAMES
PROLOG. SERVICE MACROS
HEX DISPLAY ROUTINES
CONSOLE OUTPUT

PROLOG 20.XCMD,
FCBMSG DB "Default FeB --" .CR.LF.CR.LP.aOH
TAILMSG DB CR.LF.·Co_nd tail --·.CR.LF.CR.U'+aOH

"'"'"C"'LL

'"~,
"""'CAe'
C"'LL

,
H.FCBMSG : PRINT FCB HEADING

""T>
Il.CPMFCB
8.16 DUMP DEFAULT PCB
HEXOOMP •• IN 'NO LINES
COCRLF
IIEXDUMP I CALL COCRLP

: PRINT TAIL HEADING

B :COUNT 16 BYTES.
: •• CONTINUE IP MORE

N.T... ILKS<;
com
H.CPKBUPP
....M GET LEHGnI OP T"'IL AHD
OOPN •• ROUND TO .-JLTIPLI.: OP
OPOII •• SIXTEEN.

tEXIT IF NO OPERANDS)
• .SAVE LENGni IN C
DUMP 16 BYTES OF T...IL

'"<ACC

'"om
~,

''''"MOV c
C"'LL HEX DUMP
CALL COCRU'
HOY C ! SUB
JNZ XCMD2

""

XCMD2

COMMOII SUBROUTINES

IIEXSUBM
COSUBM

'"
HGURE 14.J
The XCMD command displa)'s the low·storage operands as the CCI' lea,'es thcm. The
program allows chffking out the 'I'll)' the CCI' $('IS up 0l)('rands.

St>ACE AU.QCATIQN. File space is allocated in blocks. The size of an allocation block
is a vendor option thatlllay be different on different disks. The data map in a directory
entry is a list of the allocation blocks controlled by Chat entry, The sum of the space
coltlrolled by one entry is called a physical exten!, or just an extent. A logical extent is
16K bytes of space, A physical extent is equal to one or more logical extents,

DtR.;CTORl' USE. A file that is larger than one physical extent has more than one
dil'C(:lOry entry. Each entry for the file contains the same fileref but differs in its extent
number (and possibly in the SI and S2 bytes, but thai isn't defined and might change
from one version of CP/M to another). We've said that the BDQS allocates directory
enlnes as they are needed, We didn't say so, but you've probably guessed that the entries
for a file lllay appear in any sequence in the dil'C(:tory,

CONTENTS OF DIRECTORY ENTRIES

The directory occupies one or more allocation blocks. These are always the first
220 allocation blocks on the disk. Later we'll sec bow they are reserved, Each standard

Colltel11S of Directory Ell/ries

EXAMI'LE 14·1
Running the XCMD program. 03h in the rerord count of the "'CR is probabl}' miidual from
loading XCMD. Such UlII'xpected errerts can be disco,-errd by simple display programs.

A>~C'"

Defllult rCB --

OO~C: 00 20 20 20 20 20 20 20 20 20 20 20 00 00 00 03
006C, 00 20 20 20 20 20 20 20 20 20 20 20 00 00 00 00

COllllllllnd tllil --

A>xC'" A:-.co. thi.-is-too-lonq-to-be·lI·flll'rl'f
Deh\llt F(;B _.

oosc: 01 JF Jr JP ")p)P " " " " 4D 00 GO GO 03 • ?1111???COM ••••
006C: GO " " 2D 49 " 20 20 20 20 00 GO GO GO .THIS-JS-

COlllllll.nd tail --
O~BO, 20 20 " " " 20 " " " 20 " " 20 .. } A'".COM THIS-I
0090, " 20 " " " 20 " " .. " 20 " " 20 " OS S-TOO-LONG-TO-BE
00.1.0, 20 " 20 " .. " OS .. 00 20 20 20 20 20 -A-FILEREr.

'>-

(128-byte) record in the directory COnlains four 32-b)1e direclory entries. Allhough they
are blocked in groups of four. each entry is independent of the others. leI's look at the
data in a directory entry (Figure 14-4).

The User Code

INACTIVE E:-'TRIES. The first byte of a directory entry. the one that corresponds to the
drivec()(J(; of an FCB. COnlains a user code. which is also an activity code. An inactive
directory entry contains E5h, which is usually the value to which a disk formatter
initializes every byte of every sector (but see the comments on disk formatting at the end
of the chapter).

ACTIV.: ESTRIES. An active directory entry eonlains the user number. from 0 to 15
(OOh to OFh). In prior versions of CP/M this value was always DOh. Version 2 (and
MP/M) added the concept of a user code and the activity byte was chosen to hold it.

TilE Usu Com: IN MP/M 2. In CP/M 2 and MP/M I the user code byte contains
either E5h or a number in the range of0 to 15. Two new directory entry types have been
added in MPfM 2. Both arc distinguished by values in their user code byles. The
Directory Label entry is marXed by a user code byte of 20h. An Extended FCB (XFCB)
is marked with 1xh, where x is a user code number.

.......... The Attribute Bils

The fileref ponion (the filename and filetypc fields) of a directory entry is laid out just
like the same part of an FCB. This area is defined to hold ASCII character'S. That means 221

lZl

Sen/ices for S)'stem Programming

"''' 0'"' 08 oc OD " "01 II 1000 ---', ,
Ml""ly Fil<namc l'iklyP<' E>.lcnl " " ,='",-> rounl

"""
" "I , , , I

___ D.ullll>.p_

fiGURE 144
A mapsho,,-ing the I.Jout ora dirrdory~lr)·.Compano II ,."ilh Iht layout oran t"CB (Figun
134).

that the most significant bits are unused. It's no surprise that these bits have had
meanings assigned 10 them. When comparing the flIerer of a directory entry 10 a
conSlanl. or 10 another directory enlry. you must be sure to mask off the most significant
bit of each byte.

AnRI8UTF. NOTATIOS. The CPM documentation refers 10 each of these bits by
naming its byte followed by a prime mark (apostrophe). The anribule bit in the first byte
oflhc filename is called 11' (f1 prime). the bit in the third filclypc byte is 13' or (13 prime).
and so on.

Til}: REA,()-ONLY ATTRIBUTE. Bit 7 of the first filclype byte (11') represents the
read-only file aUribulc. When a file is made RIO with the STAT command, STAT scts
this bit 10 I in all extents of the file.

Tin: SYSTEM ArrRIBUTE. Bit 7 of the second filctypc byte (12') represents the System
(no directory display) attribute. When the STAT command gives a file the SVS attribute
it scts this bit to I in all extent entries for the file,

Tm: AMCIllVl: ArrIHBUTE. Bit 7 of the third filetype byte (13') is used to signal a
change in a file. The BDOS sets 13' to 0 whenever it updates a directory entry. that is,
whenever the data map of an extent is altered. We'll see later that a command program
can cause the bit to be set to I. If thai is done, and the bit is later found to be O. then that
extent of the file must have been changed.

USING TIlF. ARCIllVE ATrMIPUTE. Auribute 13' is intended for use by an archiving
program. that is. a backup program that backs up only files that have changed since the
last backup run. Such a backup scheme is much more economical than whole-disk
backup. as usually only a small number of files change over a backup period. An archive
program would have logic like this:

for each aclive directory entry do:
if not{t3') then do:

open Ihis extent as an FeB;
copy this extent 10 backup;
record Ihe extenl in an archive calalog;
sel 13' to 1 in the directory

end
end

Come1l1S of DireCfOl)' £11/ries

It would make use of the faetthat any extent, not juSt the first one, can be opened with
service request 15. The other services needed are covered in this chapler. In MP/M 2 the
A option of PIP implements exactly this logic.

RESERVED ATIIUBtlTE BITS, Bit 7 of each of the 4 right.hand filename bytes (f5'
through ta') has been rescl"\'ed by Digital Research, We can assume that a usc eventually
will be found for those bits,

FRI::E ATIRItUITE BITS. In an act of unprecedented generosity Digital Research expli
citly set aside bit 7 in each of the 4 left-hand filename bytes (11' through f4') for the use of
application programs. This creates a problem. There are only 4 bits and an endless
number of application programs. There is no central agency to record the use of the bits,
much less standardize it. Perhaps Digital Research will act in that capacity. If you are
wriling a program for public distribution and want to use a file attribute bit. you might
contact Digital Research to see if anyone else has used your bit. No mailer what an)'olle
does, these bits will either go unused or there will be incompatible uses.

SI::RVICE 30: St::T ATIRIBl1lT. BITS. It is 001 neussary to have write access to the
directOl)' in order to sel the file attribute bits. Service 30 takes an FCB address as its
parameter. finds the matching direclory entry. and copies the file anributes from the
FCB onto the directory entry. Service 30 changes all the altTibute bits at once. If you
want to change only I bit while leaving all the others alone, the FCB should really be a
directory entry. Find the directory entry (see below). alter the bit of interest, and use the

......... directory entry as the FCB for service 30.
You can set or reset any of the II bits in this way. including the read-only attribute,

Considering that the read-only allribute is the only way to protecl a file from destruclion,
resclling that bit would be unfriendly, at the very leasl.

The Extent Number

USE m' Tin: Exn:NT Nmltl~:R. The extent number of a directory entry links all the
entries for one file together. The first entry for the file is extent number zero, and the rest
have higher numbers. If the file is built sequentially, all extents through the last will exist
and all data maps save the last one will be full. If the file is built with direct writes, some
extent numbers may be absent, Extenl entries don't ne~ssarilyappear in sequence in the
direclory. although they will more often than not.

EXTENT'S BEYOND Tin: 32ND. CP/M supports files as large as 8 MB (32 MB in MP/M
2). If a directory entry controls the minimum amount of space. 16 KB. 512 entries are
needed to describe an 8 MB file. There is a connici here, because the extent number byte
won't hold that large a number. As we'll sec laler. the extc", number byle is allowed to
have an ASCII question mark in it on certain service requests. Therefore it can't be

'--"" allowed to have a normal extent number of 3Eh as th:u is a question mark. The largest
value allowed in the extent number bytc has been sct :tt1 Fh. allowing 32 distinct extent
numbers. from DOh to 1Fh. Th:tt was good enough in earlier versions of CP/M; 32
extents of 16 KB make a 512-KB file. the limit of a normal diskette. 213

Services for Sysrem Programmi"g

EXTENTOvun..ow. CP/M and MP/M now support large drives and files, How are Ihe
additional extents recorded? The Digital Research documcnlation docsn't say, We can -..-'
assume that the exlcnt number is somehow split between the extent number byte and the
Sl or S2 byte, but we don't know which of Ihose bytes is used or how the split is
accomplished. Anylhing that is not documented can't be relied on, What isn't
documented may be changed in a later version. and so even if you find out how the larger
extenl numbers are handled. you risk version dependency if you wrile code thai relies on
it.

The Record Count

USE OF TilE RECORD COU~'T. The record count byte is nonnally the sum of lhe
slandard records controlled by the directory entry, It has IWO purposes. During sequen
tial access the BOOS can compare the currenl record byte with the record counl; when
they become equal il is lime to open the next extent oflhe file. Second, Ihe record count,
modulo by the number of records in a block, yields the number of records used in the last
block allocated,

FILES WITII HOLES, The first use is undependable when thc file has been created with
holes by direci access writes. Then the record count can be used to computc the number
of records in the last block allocated to Ihe directory entry but may be higher Ihan the
number of records owned by the entry.

The Data Map

USE OFTHE DATA MAP. The data map is simply a lisl ofal1ocalion block numbers. A
value of zero indicalcs that no block has been allocated (Ihere is a block numbered zero,
bul it is always allocated 10 the direclory, and Ihus zero can be used 10 mean that no block
exists). NornJatly the nonzero block numbers are filled in from the left oflhe map, and
the only zero values are at the right end. However, a file wilh direci access holes may
have block numbers of zero, representing unallocated space. at any point in the map.

DATA MAP FORMAT. Some disks can hold more than 255 allocation blocks. In that
case a block number must be a l6-bit integer, and only eight of them can be recorded in
!he data map, When the disk holds less Ihan 256 allocalion blocks, a block number will
fil in a byle. Then the dala map can hold 16 block numbers, Later we'll find OUI how to
tell which case holds for any particular disk.

THE SEARCH SERVICES

Two service requesls give access 10 the directory enlries in a way thai is bolh device
independent and supported in CP/M. MP/M, and CP/M·86. These are requests 17 and
18, Search First and Search Nexi. Each requires Ihe address of an FCB in the DE register '-"

224 pair. Each returns a directory entry in Ihe currenl record buffer.

The Search Sen/ices

Service 17: Search First

When your program requests service 17, the BOOS searches the directory for the first
entry that matches the filerer and extent number in your FCB. II places the matching
directory entry at one of four offsets in the current record buffer. Register A contains O.
J, 2. or 3to indicate the buffer offset. The offset is 32 times register A (add the register to
itself five times). The FCB used in the serviee is not changed.

Sen'ice 18: Search Next

Service 18 does exactly what service J7 does. except that the search for a directory entry
to match the FCB begins where the preceding search stopped. The next matching entry
will be returned. If either request fails to find a matching entry. it returns FFh in register
A to indicate failure.

Using the Search Requests

BUFFER COSTt:NTS. The directory entry may appear in the buffer at an offset ofO. 32.
64. or 96 bytes. The reason for this is plain: the directory is written as I28·byte standard
records, each containing four directory entries. Under CPIM the BOOS moves the
record containing the matching entry into the buffer; the entry you want is at some offset
because it is one of the four entries in that record.

Bun'ER COSTENTS UNDER CPINET. You should nOi assume that the BOOS always
moves a complete directory record into the buffer. Under CP/NET the data may have
come over the network from another machine. CP/NET. in order to minimize the amount
of data transferred. might send only the wanted entry. leaving the rest of the buffer
undefined. You can rely only onthc exactleller of the specification: search promises to
return a single directory entry only.

SEARCII RESTR1CTIOSS. The BOOS remembers its position by noting its stopping
point in a variable within the BOOS. The same variable is used during an open or make
request. and possibly during other file operations. Therefore, you should not request any
other file services between one search and the next: the BOOS might lose itS position. (It
is likely that some CPIM commands lake advantage oflhis. It may be possible to open a
file under an ambiguous name. read it, then requesl a Search Next 10 find the next file to
read. This is not a documented feature of CPIM: like all such features you cannot rcly on
it to be version or system independent.)

SEARCIII:-:C FOR USIQUE FII..EREFS. 1be search reqUeslS may. of course. be used 10
look for specific filerefs. For example. if you wanted to alterone allribut~bit, you would
use a search request to find thaI file's first directory entry. Alter the single allribule bit in

-..- the entry and use the entry itself as the FCB given as input 10 service 30. ThaI technique
preserv~s the seuings of Ihe other 10 attribute bits. 225

Services for System Programming

SEARCHING ~·OR AMBIGUOUS FIU:kEFS. The true usefulness of the search requests
comes from the fact that the fileTef you pass may be ambiguous. The asterisk reference is
not allowed, but the fileref may contain any number of question mans. The first
directory entry that matches the fileref by the usual rules is returned by Ihe search.

TilE HEXDIA PROGRAM. Figure 14-5 contains the source of a command called
HEXDIA. This program accepts an optional drivecode as ils operand. It displays the first
directory entry of every file on the selecled drive. The entries are scnt to the console in
hexadecimal. The files displayed by HEXDIA are the same, and appear in the same
order, as the names displayed by the DIA command with the same operand. The only
exception is that HEXDIR will display names that have the SYS attribute and DIR will
not. Example 14-2 shows the output of HEXDIA.

SEARCIIING FOk AMBIGUOUS Exn:."lTs. The search requests will accept a question
mark in Ihe extenl numberposilion of the FeB. The HEXDIA program has a zero in the
extent number of its feB. Accordingly. the search opeTalions return only the entries that
have a zero in their extent number field. When the extenl number is ambiguous. the
search functions relurn every directorycnuy ofthe files whose filerefs match the FCB. If
the fileref in the FCB is all question marks. every directory entry that is in use will be
returned.

THt: ACTDIR PROGRAM. The ACTDIR program tFigure 14.6) takes advantage of
extent ambiguity to display all active directory entries. It differs from HEXDIA only in
its heading message and the question mark in the extent number of Ihe FCB. Run '-'"
ACTDIR against different disks wilh files of various sizes and nOle everything you can
about the way directory entries appear. If)'our system has a hard disk. build a file of2 or
3 megabytes and display its directory entries. How is the extent number handled? Build a
file with direct access boles and look at its eXlents. Example 14·3 shows the outpul of
ACTDIA.

t:XA.l\IPLE 14·2
Running HEXDIA against a disk that held only a (ew riles. The second entry Is (ull; there
must be other exttnts ror U. Nole that allocation block nUIIJDers art two bytes tach.

,o.>hexd I r "Extent-zero directory entries, dr ive •.. .. " " .. " " " " " 41" 40 00 .. 00 04 . HEXOIR COM ••••., " " " " " .. " " " " " " 40 00 • PRINT COM ••••

" " .. " .. " .. " " " .. 0,0. 00 " " .. " " " " .. " 40 00 " . HUOIR ,o.SM ••••

"' "

"226

. ..
The Search Services

HEXDIR -- DISPLAY EXTENT-D DIRECTORY ENTRIES

KACLIB
MACLI8
MACLIB
MACLI8
MACLI8

C"",,"

''''''HEIlSU8
COSUIl
DPSUB

STANDARD HMES.
PROLOG. SERVICE MACROS
HEX DISPLAY ROUTINES
CONSOLE OUTPUT ROUTINES
16-81'1' ROUTINES

PROLOG 30,HEllOIR,
HEADING DB
DRIVE DB

·Extent·~ero directory entries. drive -
o.CR, LP ,CR, LF+80H

THEFC8 D6

""""""""OW

""

,
"nn11??'
"711',
0.0.0
0.0.0.0.0.0.0.0,.,

~RtVE ALREADY SELECTED
PJLENAIlE
PILETYP£
EXTENT ZERO ENTRIES
51, 52. RECORD COUNT
DATA MAP
CURRENT RECORD, DIRECT AODR

llEXOIR

DIU

EOU S
LOll CPMFC8
oe' •
JP DIR2
SERVICE 2!>
MOV E,'"
AOI
STA DRIVE
LXI II,HEADING
CALL COSTR
SERVICE H
SERVICE 17,THEPCB

SEE If' ... DRIVECDD£ ~ ...S CIVEN
CONVERT "al INTO "aD
(RESULT NOT PI' -- COOl! GIVEN)

OMITTEO. G&T CUIlRE'M' ORIVE
SAVE DRIVE FOR SERVICE 14
MAKE PRINTABLE.
•• POT IN M£SS.\G£,

• ,PRINT HEADING.
SELECT DRIVE (CODE IN REG EJ
: GET FIRST ACTIVE ENTRY,

DIRLOOP ORA

'"CALL
SERVICE

'"'

A ANY ENTRIES LEFT?
(SACK TO CCP IF NOT)

DIRDUMP ; YES, DUMP THIS ONE IN
18,THEFCS
DIRLOOP ; DO N~XT ENTRY, IF ANY

""
DUMP TUE DIRECTORY ENTRY WHOSE NUI'UlER IS HI A.

FROM THE CURRENT RCCORD IN THE BUFFER.

DIRDUMP LXI

'"'"'"CALL
An
CALL
CALL
CALL
,~

II,CPMBUFP
A

A ! ADD A
A!ADD A

DP$ADAII
B,I6
IIEXLINE
HEXLINE
cocm

CONVERT 0,1,2,3 --> O,32,~4,'6

•• AND ADD TO SUPPER ADDRESS
AMOUNT TO DUMP IN EACH LINE
CALL COCRLF 1ST LINE
CALL COCRLF 2ND LINE

BLANK LINE

COMMON SUBROUTINES

HEXSUBM
COSUBM
DPSUBM

'"
FIGURE 14-5
HEXDIA displays th~ nrst directory entry ror each file in the dirfflory, including those that
la,"e the SVS attribute.

227

Services for System Programming

• • • •• ACTDIR -- DISPLAY ALL ACTIVE DIRECTORY ENTRIES

KACLIB CPMEQU
KACLIB PROG
KACLIB HEXSUB
MACLIB COSUS
KACLIB DPSUS

PROLOG 3D,ACTOIR

STANDARD NAMBS,
PROLOG, SBRVICE MACROS
HEX DISPLAY ROUTINES
CONSOLE OUTPUT ROUTINBS
16-BIT ROU'TINES

HEADING D9 'Active directory entries, drive'
DRIVE DB O,CR,LF,CR,LF+80H

SEE IF A DRlVECODE WAS GIVEN

,
THEFCS

,
ACTDIR £OU

"'''."

•O????????'
'??1'.,.
0,0,0
0,0,0,0,0,0,0,0
0.0,
CPMI'CB
A _ •••

I DRIVE ALREADY SELECTED
FILENAME
FILETYPE
•• ALL BXTENT NUMBERS ••
51, S2, RECORD COUNT
DATA MAP
CURRENT RECORD, DIRECT ADDR

FIGURE 14-6
ACTDIA shows all dirmory entrits for all exiSling filts. The remainder of the prognwi is
identical to HEXDIA (Figure 14·5).

SEARCIIl:-.'C AI.L E:-"RtFS. Both HEXDIR and ACTDIR are limited to displaying ---./
aClive directory entries thatere created under the current user code. When a queslion
mark is placed in the drivecode position of the FeB. the search operations return every
enlry. whether acth'e or nOlo under any user code. 1bc only directory entries thai are not
returned in this case are entries thai have never been used.

EXAMPLE 14-3
Running ACTDIR againsl oh, disk or EXlImple 14·2. The second extent 0'
PRINT,COM is rt'\'ealed; it controls onl,· 14 records (OEh in the record count) of one block.

A>&ctdlr 0,
Active directory entrle_, drive B

00 .. " " " 20 20 " " '" 00 00 00 .. .HEXDIR COH ••••
02 00 00 00 "' "' "' "' "' "' "' "' "' "' "' "'

"' " " ,. 20 20 20 " " '" "' "' "' " . PRINT COM ••••

" "' .. "' " "' " "' " "' " "' " "' .. "'

"' " " ,. 20 20 20 " " '" " "' "' " . PRINT COM ••••

'" "' "' 00 00 00 "' "' "' "' 00 "' "' "' "' 00

"' .. " " " 20 20 " " 40 00 "' "' 00 .IlEXOJR ASJol
OC "' 00 00 00 "' "' "' 00 00 "' 00 00 "' 00 00

"
128

Disk Space Ma"agemem

Tin: AllDIR PROGRAM. Figure 14·7 shows the AllDIR progrJm. AllDIR differs
from HEXDIR and ACTDIR only in its heading message and in lhequestion mark in the

............. first bytc of ifS FCB. Whcn AllD1R is run. it displays all directory cntries cxcept those
thai have never been used (~ the seclion on disk formatting for the meaning of "llCver
been used"). Usually some entries are inactive (have E5h in their firsl bytc). The rest of
an inactivc entry is unchanged from ilS laSI usc. Thc filcrefand dala Illtlp will rcOecllhe
state of that eXlent at lhe time the file was deleted. Example 14-4 shows the resull of
running ALlDIR. Under MP/M 2 ALLDIR will display the Directory Label and any
XFCB entries that cxist.

DISK SPACE MANAGEMENT

CP/M 2 can manage file space on almosl any son of disk from a single-density 5-inch
diskene to a multimegabyte hard disk. New disk models appear on the markct almost
weekly. Each new model has its own sel of dimensions. Ihat is. ils own number of heads
and lracks. range of seclor sizes. and 10lal capacity. The responsibilily for managing
these device charactcrislics is placcd on lhc BIOS. Only a few chal1lcterislics of a disk
are relevant to space management. The BDOS requires lhc BIOS to lell it the value of
lhese few paramelers. Your programs can view the same paramelers and so handle many
disk tasks while remaining as independent of hardware delails as the BOOS is.

Fundamental Parameters

""-" CP/M asks the BIOS to tell it three fundamental things about any disk. The mosl
imponanl parameter is the size of an allocalion block. This parameler is chosen by the

... ALLDIR -- DISPLAY ALL DIRECTORY ENTRIES

MACLIB CPMEQU
MACLIB PROG
MACLID HEXSUB
MACLIB COSUD
MACLIB DPSUB

PROLOG 30.ALLDtR

STANDARD NAMES,
PROLOG. SERVICE MACROS
HEX DISPLAY ROUTINES
CONSOLE OUTPUT ROUTINES
16-BIT ROUTINES

,
HEADINC DB 'All directory entries, drive'
DRIVE DB 0.CR,LF,CR,LP+80N,
THEFC8 DB.,.,.,

".,
ow

','
'11111111'
'111-.,.
O,O,Il
0.0.0.0,0,0,0,0
0.0

•• ALL •• ENTRIES
FILENAME
PILETYPE
•• ALL EXTENT NUMBERS ••
Sl, S2, RECORD COUNT
DATA MAP
CURREN" RECORD, DIREC'I' ADDR

ALLOIR EQU
~A

'"''
S

"M""A
SEE IF A DRIVECODE WAS CIVEN

(CURE 14-7
"---",,LLDIA ~hows 1111 director" ('ntries, including those for erllsed files lind those created under

other user rodes. It don not show ne\·er·used entries. The program continuM identklllly to
HEXDIA. 129

Services for System Programming

EXAlIoIPLE 14·4
Running AllDIR against Ihe disk of Example 14-2. It rneals an erased file and one stored "'-'"
under user code 2. Note that Ile\'er used entries do not appear.

A>aUdlr b,
A" director)' entr iea, drive 8

" " " " .. " " 20 20 " " 4D 00 " " " .H&XOIR COM ••••
02 " " " " " " " " " " 00 00 " " " ·......... --....

" " " " " " 20 20 20 " " " " " " 80 • PIIINT COM ••••
03 " " " OS " "' " " " " " " " "' "

" " " " " " 20 20 20 " " " " " " " • PIIWT COM ••••

" " " " " " " " " 00 00 00 00 " 00 00
00 " " " .. " " 20 20 " " " 00 " 00 00 • HEXDIR IISM •••.
OC " " 0' " " " " '0 " " 00 00 " " "

" " " " " " .. 20 '0 " " <C '0 " " 80 eERA!\EO FIL ••••
'0 " 0' '0 " 0' " 0' " " " " 1I 0' .. " ·........

" " " " " " .. 20 20 " " <C " " " 80 eERASEO FIL••••

" " .. 0' " 00 " " .. 0' " 0' " " <C " ·...............

" " " .. " " .. 20 20 " " <C 02 " " " eE!lASEO FIL•...
'0 '0 " " " " 20 " " '0 " " " " " "! •.. LS.

02 " " " " '0 " 20 20 " " <C " " " 80 .USEII-2 FIL ••.•

" " " " " " " " " " " " " " " " (.) ...'. , .
02 " " " " 20 " 20 20 " " <C " " " " • U5£1I-2 FIL •.••

'" " " " 00 " " " 00 " " " " " " " -...........
A>-

author of the BIOS (usually the vendor of the disk system). and the choice has many
consequences. The BOOS must also know the capacity of the disk in allocation block
units and the number of standard I28-byte records that will fil on one track of the disk.
These three things are all that the BOOS needs to know in order to manage the disk.

ALLOCATION BLOCK SIZI';. The allocation block size may take any of five values.
Those values are the integral powers of 2 from 210 (i .1'., 1024) to 214 (16,384). Note that
the size of an allocation block has nOlhing to do with the size of a disk seetor. An
allocation block must contain an integral numberof sectors; except for that stipulation it
is simply a quantity used bylhc BOOS for space allocation. The BIOS manages physical
sectors and is only indirectly concerned with allocation blocks.

BLOCK StZE AND SPACE EFFlCtENCV. The allocation block size affects the file system
in several ways. The first effect is on the efficiency with which the disk space is used.
Since file space is allocated in whole blocks. the designer can expect that, on the
average, half of the last block in each file will be unused. The larger the block size, the
greater this unused space will be. The size of the disk must be considered, as well as thl--.-l
number of files likely to be on it. The smaller the disk. and the greater the number of

230 files, the smaller the block si7-c ought to be.

Disk Space Management

BLOCK SIZE ANI> TIlE DATA MAP. CP/M knows the capacity of a disk only in teons of
how many allocation blocks it will hold (its size in teons of sectors and tracks is the
business of the BIOS). If the disk will hold fewer than 257 allocation blocks. then a block
number will fit in a single byte: lhe BOOS can record 16 bllXk numbers in the dala map
of each directory entry. If the disk holds more than 256 allocation blocks. then each
bllXk number must be recorded as a 2-byte integer and the data map can hold only eight
numbers.

This is the second effect of the allocation block size: together with the disk capacity
it decides how many block numbers will fit in a data map. By making the block size large
enough thallhere are fewer than 256 blocks on Ihe disk, the designer allows more blocks
to be named by each directory entry. This economizes on the number of entries needed
for large files, but it conflicts wilh the need for space efficiency.

BI.OCK SIZE ANI) EXTENT SIZE. The block size and the disk capacity deteonine the
amount of space that can be described by one directory entry's data map. That amount
will be either 8 or 16 times the size of a block. It will also be a multiple of 16,384, the size
of a logical eXlent. (There is one case that would violale this rule. If the block size were
1024 and there were more than 255 blocks. a directory entry could only describe 8K of
data. This case is nol allowed; IK blocks may only be used on disks that hold less than
256 KB of data.)

This is the third result of the choice of a block size. It determines the relation of a
physical extent (the space described by one directory entry) to a logical extent. The
larger a physical extent, the smaller the number of directol)' entries needed 10 describe a
large file. This affects the system'S performance because it takes time to locate and open
a new extent record (a seek to the directory track is required). The larger a physical
extent, the less time it takes to process large files. This is especially imponant for direct
access processing. On the other hand, large extents require a large block size that results
in inefficient use of space.

BLOC": StZE A:oil> DIRECTOR\' Stzt:. The choice of allocalion block size has one more
effecl. The smaller the block size, the greater the number of directory entries it takes to
describe all the space on the disk. Designers must consider two extremes. At one
extreme they must imagine that a single file fills the disk. The absolute minimum number
of entries in the directory is the number of entries required 10 describe that file. If Ihe
direclory were smaller, it would ne\'er be possible 10 use the space on the disk. Atlhe
Olherextreme, the disk mighl be filled with a large numbcrof small files. each using only
one or t.....o blocks of space but requiring its own directory entry to describe it.

In general the smaller the block size is, the larger the directory must be. As we'll
see, there can't be more than 16 allocation blocks devoted to the directory, so for large
disks the choice of block size is sometimes dictated by the need 10 have a directory of
reasonable size.

BLOCKS PER DISK. The BOOS expects the BIOS to tell it the total number of
-- allocation blocks that the disk will hold. This number is the capacity of the disk for space

allocation; when all of the blocks are in use. the disk is full. 23/

Services for System Programming

RECORDS Pu TR,\CK, The BOOS does oot concern itself with the size of a disk sector;
that is purely the affair of the BIOS. However. the interface between BOOS and BIOS
(which we'll examine in the next chapter) requires that the BOOS ask for disk operations
in terms of tracks and records. rather than in terms of records alone. The BOOS can
compute which standard record it wants to read or write. However. in order to know
which track that record is on, the BOOS has to know how many standard records there
are on one track. Then it can divide the record number by that amount and so learn what
track to ask for.

The Disk Parameter Block

The important disk parameters that control space management are passed from the BIOS
to the BOOS in a 15-byte structure called the Disk Parameter Block (DPB). Service
request 31 returns the address of the DPB for the disk that is currently selected. You can
make use of some of the fields in it. Figure 14-8 shows a map of the DPB: we'll tour that
map in the following paragruphs. Table 14-1 shows all the possible combinations of
allocation block size and disk capacity, with the resulting OPB parameter values.

THE XDPB PROGRAM. The XDPB program in Figure 14-9 will display the OPB for
the default disk or (if a dri\'ccode is given as its operand) for some other disk. Example
14-5 shows the result of running XDPB in a system that supported both single- and
double-density diskettes. Note Ihat the mOSI important parameter, the size of a block, ----./
docs not appear in the DPB. It affects all the other parameters and can be derived from
them.

SPT: STA,"m,\RD RECORDS PER TRACK, Your CP/M documentation refers to the first
field in the DPB by the name SPT. which stands for "SCCtOl'S per track:' That name

TABU 14-1
All possibk combinations or allocation block size and disk size, and tht cfftct or tach
combination on the other disk paraml'lers. The rirst row d~ribts the onl" combination
allowed prior 10 CPM 2.0.

Block Block Block Blocks Blocks in Extent Logical Extent
Size Shift Mask per Disk Data Map Size Extents Mask

1024 O3h 07h <256 16 16K 1 00h
>255 (oot allo.....ed)

2048 O4h OFh <256 16 32K 2 01h
>255 8 16K 1 OOh

40% 05h 1Fh <256 16 64K 4 03h
>255 8 32K 2 01h

8192 06h 3Fh <256 16 128K 8 07h
>255 8 64K 4 03h '--"

16384 07h 7Fh <256 16 256K 16 OFh

231 >255 8 128K 8 07h

Disk Space Mallogemell1

I ISPT; nllmbo. ofre«>rdf/trxk

D OSll: block .hift fKlor

D 8U1: bkx:l< mast:

D EXld: Ulent m~sk

I os.\l· dri..,npacily

1 ORM. d"eoclory si~~

EB ALO, All' inil"l ~lIocation '~clor

CKS: check area we

OFF: cOllnt of "'served tr~ckl

FIGURE 14-8
A map of the Disk Parameltr Blodt (DPB), "'hQlW address is rrlurnt'd bySl'n~ rrqu~t 31.

reflects a confusion that runs Ihrough a1llhe CP/M manuals. In CP/M 104. 128 bytes was
the only disk sector size supponed by CP/M. People who worked with CP/M quite
reasonably thoughl"sector" when they meant"a unit of 128 bytes ofdata." Unfonunate
ly the habit has stuck even though a disk sector may now have any of a number of sizes.
with 128 bytes becoming less and less common.

The first DPB field contains the number of standard 128-byte records Ihat will fil on
a track of the disk. A single-densilY soft-sectored diskeue may have J28-byte sectors
(the second display in Example 14-5 describes such a disk). althOl.lgh Ihat is not cenain.
For all fonnaLS Olher than the "exchange format" this number will be some multiple of
the actual number of physical sectors on a track.

Note that this field of the DPB is a 16-bit integer. CP/M is prepared !O handle disks
thai hold more than 255 records per Irack. !fthe BDOS knows the number of the standard
record it wants. then it can compute what track it wants by dividing that record number
;y DPB.SPT.

'--'
BSH, BLl\1: THE BLOCK SHUT A:010 BLOCK MASK. The BSH (Block Shift) byle ofthe
DPB contains the number of times that a record number should be shifted to the right to
obtain its allocation block number. The BLM (Block Mask) byte contains a mask. 233

Sen';ces for System Programming

XOPB -- DISPLAY THE DISI PARAMETER BLOCK

MACLIB
MAeLIB
MACLI8
MACLJB

C"",,"

"""HEXSUB
COSUR

ST.>.NDARD NNtES,
PROLOG, SERVICE MACROS
HEX CONVERT' DISPLAY
COflSOLE OU'TPUT

PROLOG 30,OP8

DlSPLAY EOU

"ORIVE OS

"$FT OS

"8SH OS

"BLM OS

"ElOI OS

,
'Disk
1
'SFT,

•'8SH:,
'BLM:,
'!XH:,

: ENTIRE REPORT FORM
Parameter Bl~k for drive

I DB CR, Lf'

DB records per tuck" ,CR,Lf'

DB recno » 8SH • block numbe,',CR,LF

DB recno AND 8LM • record in block',CR,LP

DB logical ,",xtent versus physical' ,CR,Lf'

".

."

".,
••.,
••os
••os
••os

'oSM:

•'OM:

•
'IILV:

•'CkS:

•'OPf':

•

••
••
••
••
••

h19hest block nUllber (0[191n O)',CR,LP

h19hest dIrectory nUllber (origIn 0)' ,CR.LP

bIts reserving directory blocks- ,CR,LF

she of check vectOr In bytes- ,CR,LF

nu.ber of reserved tracks- ,CR,LF+SOH

."

OPB2

...
LOA
00'

"SERVICE
MDV
AD,

'TA
SERVICE
SERVICE
PUSH

'"CALL

'"'"'"'"'"'"'"'"'"CALL.,,,
~,

CAU....

,
CPMFCB
A
OPB2

"',A
'A'
DRIVE

"",
D,SPT
CVT'

D,8SH
C,BLM
D,EXH
D,DSH
D,DRM
C,ALV
D,CKS
D,DFF I
a,DISPLAY
COSTR

•B,1S
HRXDOHP

DRIVECOD£ GIVElf1
CONVERT A-Ol INTO A_OO
(YES, ONE WAS GIVEN)
NO DRIV'ECODE, GET CUlUl8N1' OISK
SAVE FOR SELECT SERVICE
KAKE DRIVECODE PRINTABLE,
•• PUT INTO OISPLAY
.. AND SELECT IT
KL --> DPB FOR CURRENT DISK
(SAVE IT FOR DUMP)

DE --> FIELD IN DISPLAY,
MAKE PRINTABLE, ADVANCE KL i DE

CALL CVTl
CALL CVTl
CALL CVTl
CALL CV'l'2
CALL CVT2
CALL CVTl I CALL CVTl
CALL CVT2
CALL CVT2

PRINT THE WHOLE THING
THEN DUMP IT ALL IN HEK

CALL COCRLF

ItE'nlRN TO CCP

234

FIGURE 14-9
XDPB displa)"s the Disk Parameter Block. the structure from ,.-hlch the 81>05 ~ts all it
information about a disk."

Disk Space Managemelll

,
em "'" • DISP(J,Y 16-BIT INTEGER, t8080 roAA FIRST BYT! IS THE LEAST-SIGNIFICANT)

"". • SAVE -->L.S. on,
'"' • HL -->M.S. .n,
CALL e,m • .CONVERT. STORE THAT
XTHL SAVE HL, HL -->L.S.B.
CALL csm • .CONVERT, STORE THAT

"" • HL-->NEXT 01\1'1.

=
e"",, "'" • DISP(J,Y BYTE AT HL++

NOV A,' GET BYTE.

'"' • · _ADVANCE RL
CVT" CALL HEXBYTE A.C '" ASCII DISP(J,Y

STAX 0 PUT LEPT IN DISPLAY

'" 0
.ov A,e '", RIGHT IN DISPLAY
STAX 0

'"' 0=
••••• COtVolOtl SUBROU'TINES

HEXSUBJol
COSUBJol
'"0

fiGURE 14-9 (Conlinutd)

which. if ANDed wilh a record number. will produce Ihe relative number of the rcrord
within its allocation block.

"-' The size of an allocation block can be delennined from BSH. Initialize a register
pair to the value 128. Then double the register contents (either with a left shift or with an
add) BSH times.

EXI'o'I: Tm: EXTENT MASK. The EXM (Extent Mask) field of the OPB gives the
relalionship between a physical extent and a logical extent. A logical extent number
results from dividing a recon:I number by 128. The corresponding physical eXlent
number can be computed from the logical eXlent number using EXM. However. the
physical eXlent number can also be compuled dircrdy from the record number and BSH
(shift the record number right BSH limes 10 yield a relati\'e block position, and divide the
result by 8 or 16 depending on the number of blocks in a dllta map). It is not clear what
role EXM plays in the BDOS's calculations.

D5M: HIGIIEST BLOCK NUMBER. The DSM (Disk Space Maximum) fieldoflhe DPS
gives Ihe highest valid allocation block number for the disk. Allocalion blocks are
numbered from zero. so DSM is one less thlln the number of blocks on the disk. If the
most signilicant (right-most. as Ihe 8080 stores il) byte of DSM is zero. then there are 16
block numbers in a dala map. Ifil is nOI zero. then a dala map must conlain eight numbers
of 2 bytes each.

The capacity of the disk in kilobyle units can be computed from DSM and BSU.
Initialize a register pair with DSM + I. Double that value BSH-.) limes. Double Ihe value

'--' BSH times to find the disk capacity in records. Note that the disk capacity in bytes
(D5M+I do"bl'" 85H+7 ';m,,) ;''''''y '0 omflo", , l6-b;, ~g;''''. 235

Services for System Programming

EXAMPLE 14·5
The output or XDPB, as run againSI doublt-drnsily and single-dtnsity disketlts. The 01'8
pro\'ides tht STAT rommllnd with most or Iht inrormation it displays in the disk status
rt>port.

A>dpb
Disk Para-eter Block fO' d,lve A
SP1': 0040 records per uack
850: 04 recno» 850 • block nUMber
BLK: OF recno AND BLII • nec'Hd In blOCk
£XM, 00 loqical extent vusus physical
DSM, 0128 hl9hest block numb'H (o'lgln 0)
DRM" 007F highest dl,ecto,y numbe, (0,19In OJ
"LV, COOO bits 'eserving dl'ecto,y blocks
CKS: 0020 size of check Yecto' In bytu
OFF: 0002 number of ,eserved t,acks
1'777: 40 00 04 OF 00 2B 01 71' 00 CO 00 20 00 02 00 (I, + .

A>dpb b,
Disk Paraseter Block (or drive B
SP1': 001A records per track
BSB: 0] recno» BSB • block nu.be,
9L11: 07 recno AND eLM • record In block
£XI't: 00 109ic41 extent versus physical
OSM: 00F2 highest block nUllbe, (origin 0)
ORM: OO]F highest directory nUllbe, lorlgln 0)
ALV, COOO bite reservin9 directo,y blocks
CIS: 0010 size of check yecto, In bytes
OFF: 0002 nUllber of reserved tracks
1'710, 1,\ 00 03 07 00 F2 00 JF 00 CO 00 10 00 02 00 r.1 .•.....

DRM: SIZ.; OF DIRECTOR\·. The DRM (Directory Maximum) field of the DPB gives --./
the highest numbered entry in ihe disk directory. The entries are numbered from zero. so
there are DRM + 1 ennies in the directory. Note that DRM is a 2-byte field: CP/M is
prepared to handle directories with more than 256 entries.

Recall that directory entries are stored four per standard record. Therefore.
DRM+ I will be a multipleoffourand DRM+ I shifled right twice will yield the number
of standard rerords in the directory.

ALV: AU..QCA1'I0N VECTOR. The BDOS keeps an allocation vector for each active
disk. This is a stringofDSM+ I bits, one bit per allocation block. in which a I-bit means
that the related block is in usc. The two ALV bytes of the DPB arc the initial value for this
allocation vector. They become the leading bytes of the full vector. Some number of
leading bits in the ALV bytes are set to 1 so as pcm13nently to reserve that many
allocation blocks to conlain thc direclory.

CKS: DIRECTOR\' CUECK SIZE. When the BOOS selects adri\'e il can check to see if
the disk on that drive has been changed since the last wann stan. If the volume has been
changed. the drive is made read only.

The CKS (Check Size) field of the DPB detennines iflhis will or will not be done. If
it is zero, then no check will be made. This is usually the case only for drives whose disks
cannot be removed. If CKS is not zero. checking will be done. In that case CKS is
usually given the value (DRM + I)/4, the number of standard records in the directory. -...-/
CKS might be smaller than (DRM + 1)/4. but then not all entries would be checked; there

236 would be a small possibility that a disk change could go undctected.

Disk Space Mallllgemem

In MP/M 2 the most significant bit ofCKS is used as a flag, If that bit is I. the drh'e
described by this OPB has fixed disks. If the bit is 0, the disk can be remc)\'oo from the
drive.

OFF: TRACK O'SE"f. Most disks have reserved tracks, Diskettes ha\'e two or three
tracks reseryed for the image of the Monitor that is loaded on a waml or cold stan. The
OFF field of the OPB tells how many tracks are reserved on this p3nicular disk. 1bc
BOOS will add this value to the track number it computes using the record number and
the SPT field. before requesting that the BIOS seek to that track. Since the first blocks on
the disk are reserved to the directory. and since disk tracks are numbered from zero. the
value in OFF is also the number of the track that contains the directory,

LARet; O'S.::-r V,u.m:s. The OFF field is 2 bytes long. CP/M is prepared to handle
disks that have more Ihan 255 reserved tracks. This mighl seem peculiar. Why should so
many tracks be reserved? 1bc answer is Ihat the 01-1= value can be used to panition a
large disk into several smaller logical drives. Imagine a large disk with 512lracks. It
could be presented 10 the BIX>S as four separate disks, each with its own DPS. The
capacity values of the drives might be equal, each reflecting the capacity of 128 tracks of
the disk. The offset V:lluc of the first would be lero, of the second 128, of the third 256,
and of the founh 384. As far as the BDOS would be able to tell four different drives
would exist. 1bc BIOS would know lhat there was only one .

......... A H)'pothetical Disk

p"RAMEn;KS nt· Tilt; DISK. Pretend we're designers. preparing to imerface a new disk
to CP/M. The disk is a hard disk with foul' recording surfaces under four read-write heads
and 128 tracks per surface. CP/M and MP/M don't ha\'e the concept of multiple
read-write heads, so we will simply treat it as a 5 J2-track disk: in our BIOS we will
translate BOOS track requests into cylinder and head requests.

Each track of the disk holds 32 sectors of 512 bytes. for a tOial of 16.384 bytes per
trlOck The total capacity of the disk is 8 1'.18 and we'll present it to CP/M as a single
logical drive, But what disk parameters shall we usc? Let's get out our pocket calculators
and try some numbers,

FL"OI:"lG Tlu: BLOCK SIZE. An allocation block size of 1024 is clearly OUI of the
question. It yields 8192 blocks in tOlal: block numbers would be 2 bytes. and a physical
eXlent would be less Ihan a logical extent. That isn't allowed.

Try again with a block size of 2048. There are then 4096 blocks; each directory
entry can control 16K. If a single file filled the disk. it would occupy (8 MB divided by
16 KB) 512 extent entries. That is Ihe minimum size of the directory, which requires 128
records or 8 blocks 10 hold il. The ALV bytes would be FFQOh (refer to Table 14-1 for
the OIher DPB values),

......... EXTREMES 01' THE DIIU;CTOMl', Bowever. there is another extreme to consider. 1lIe
disk might be filled with 4096 one·block files. It would require 4096 entries. or 1024
directory records. 01'64 blocks, to hold such a directory. Nobody would have so many 237

Services for System Programming

little files, but this design is short on directory entries, Suppose there were 256 two-block
files on the disk. Each uses up a directory entry. There would be 3584 unused blocks left, .-J
and only 256 directory entries leCtto describe them. It would take 448 directory entries to
describe that space. so we clearly risk running out of directory emries before we run out
of allocation blocks.

A BAlANCEO Dt:SICN. Try once more with a block size of 4096. Then the disk
accomodates 2048 blocks in total. The eight entries in a data map will describe 32 KB. If
the disk is completely filled with a single file. that file will be described in 256 directory
entries. Let's allow 512 directory entries instead. Now if there are 256 two-block files
(or even 256 one-block files), enough entries remain to describe all the remaining space.
The directory will fit in four blocks (ALV is FOOOh).

This last design seems the best. Each file will conlain half a block, or 2048 byles, of
wasted space, bul that can't be avoided. If there are 512 files, there'll be I MB of wasted
space. That is only 12 percent of the total: lhe actual amount of wasted space will,
probably never approach that.

Till: RECO'lI> COUNT P'108I.F~\1. When. as in this example. the physical extent
exceeds 16 KB. a directory entry will control 256 or more records. How can these large
numbers be counted in the single FeB byle used for a record count? The documentation
docsn't say. It seems likely Ihat the byle contains, not the number of records in the whole
eXlent. but the number of records in the last logical extent used within it. The record
count would be the actual count modulo 128, or would be SCi 10 12810 indicale that the
last logical extent was full. This might explain the BOOS's need for the EXM field.
which is redundant otherwise.

Activating a Drh'e

The first time a drive is used following a wann or cold start the BOOS must perfonn two
chores. The CP/M documcntlltion refers to these as "Iogging in" the drive. The two
chores are to build the allocation vcctor for the disk. and to build ils directory check
vector. These vectors are built in space provided by the BIOS.

TilE AI.LOCATIO:"i VECTOR, The allocation vector is a bil map, an array of bils each of
which corresponds to one allocation block. lbereforc. the size oflhe allocation vector is
OSM bits (rounded up to a byte). 1be BI05 is required to contain space for an allocation
vector for each drive that it supports. As we'll sec. the address of this area is returned
during a BI05 call.

When a disk is activated, its allocation veclor is initialized 10 all o-bits. Then the
AlV bytes from the OPB are installed in the first bytes ofthe veclor. That ensures that the
blocks used for the direclory arc reserved. Finally, the BOOS reads all the directory
records. Each time it finds an active directory entry it reads the data map in that entry.
For each nonzero block number in the data map it sets the corresponding bit of the '--"

238 allocalion vector to I.

Disk Space Management

THE XALV PROGRAM. Service request 27 returns the address of the allocation ,'ector
for the disk that is currently selected, lbe XALV program in Figure 14·10 will display
!he allocation vector of the defauh disk or(if a dri"ecode is its operand) another disk. The
vector is displayed as a list of rs and O·s. 64 perline. Run XALV. then erase a file and
run it again, Copy a large file with PIP and run XALVonce more. Example 14·6 shows
what XALV's output looks like.

TilE OllU:Cl'ORY CII~:CK V~:CTOR. The BIOS is required to provide space for a
direclOry check veclOr for each drive it suppons. That ,'ector is an array of bytes, I byte
for each standard rerord in the direClory. or (DRM+ 1)14 bytes.

The BOOS builds the check "ector while it builds the allocation vector. It forms a
l-byle hash code for each standard record in the directory and places lhat hash code in !he
check vector. lbereafter every time it scans the directory for some extenl record it again
forms a hash code as it reads each record, If a hash code fails to match the one formed
when the disk was activated. thc BOOS assumes thatthc disk volume has been changed.
It marks the drive read-only. Each time a directory cntry is updatcd because of a file
access its standard record's hash code must be updated as well.

Space Allocation

ALLOCATISC A 81.o<:K. Once you understand the space managemenl parameters, you
can probably work oUltne logic of space allocation for yourself. When the BOOS needs

'--' to give a new allocation block to a file. it scans Ihat drive's allocation map from left to
right. The first a-bit found corresponds 10 the first free allocation block. That bit's (and
block's) number is placed in the FCB for the file.

ALLOCATISC AS EXT~:'vrENTRl'. When the BOOS needs a new extent record. it reads
lhe directory and scans for the first inacti"e entry (the first with E5h in the user code
byte). That is lhe entry that it initializes wilh the currenl user number, the file ref from the
FCB, an extent number one greater Ihan that in the FCB. and a dala map of zeros.

ORl>ER O}" ALLOCATIOS. Both of these allocation schemes use (or reuse) the lowest
numbered space first. This tends to keep active directory entries compressed to the front

EXAMPU: 14-6
The outpul of XAlV. run against II double-density diskette. The pallern sho""s CP/M's
preferentt for allOC1lllion on the outermost tntClis. Patchn of 000 in the first ro..-s show
erased filn.

A>llalv
Allocation yector of diSk A

1IIIlill0000llll111ll111ll1111111111l11111111111tlll1111111111111
11111111111111111111101111111111111111010110001101111111111111111
Illllllllllillt00000001111111111111111110000000000000000000011111
11111111111100000000000001111111111000000000000000000000000000000
00.>

239

•• XALV -- EXAKINE 'nIE ALLOCATION VEC'I'OR

MeLIB
MACLIB
MACLIB
"''''CLIB

c"''''''
"'"OPSUB
COSUB

ST...ND.'IRD NAKES
PROLOG. SERVICE MACROS
16-BIT ROUTINES
CONSOLE OUTPUT

PROLOG 30, X"'LV

OPBSOSM EOU
1I£...OING DB
DRIVE DB

S ; OFFSET 1'0 'OS",' IN D.P.B.
•... llocation vector of disk'
0.CR.LP.CR,LF+80H

X"'LV

XAL2

"'"WA

'Xc.

"SERVICE

"""~',,.
un
C"'LL
SERVICE

,
CPKf'CB
AX'",
"',A
'A'
DRIVE
H.NEADING
COSTR

"

DRIVECODE GIVEN?
f'CB FORM TO SBRVICE 14 FORM
(DRIVECODB SPECIFIED)

OMITT£D. GET CURRENT DRIVE
S"'VE FOR SERVICB 14
KAKE PRINT...BLE.
•• PUT DRIVE IN HEADING.

• .AND PRINT IT.
SELECT WANT£D DRIVE

SERVICE 31 i'lL --) DISK PARAMETERS
MVI DPB$DSM ; OFFSET TO DPB.DS'"
C"'LL DP$LDII... LOAD TIIAT TO DE
!WI 7 r ROUND oSH UP TO
C"'LL OP$...OAD; •• A MULTIPl,E OF 8
MVI 8,3 r •• THf.N DIVIDE IT BY 8

XALSR CALL DP$SRLD; •• IIY SlllrTINC O~; RIGHT
OCR B ! JNZ XALSR

; DE * NUMBER OF BYTES IN THE ALLOCATION VECTOR
SERVICE 27 ilL --) ALLOC...TION VECTOR
MVI B.8 B • BYTES PER LINE,

XALOQP me X... LBYTE DISPt.AY 8 BITS.,X'" , • .COlJIlT 'T,

""" A,' , 0.. , • .CHECK roR ZERO... · . BACK TO CCP IF THAT'S 'T
OC. • '" IP TH"'T W"'S 64 ""'" KALOOP (CONTINUE IP HOT)
em coc'"" NEW LINE APTER 64 BITS

~' ".,.. KALOOP CONTINUE

SUBROUTINE TO PRINT 'nIE 8 BITS OP TNE BYTE AT (HLI
IIlCREM£NTS " TO NEKT BYTE. ALTERS "'F.

X...LBYTE ~" • SAVE ... WORK REG

~' C, • C HAS TilE LOOP COUNT.
,ov ',' •• 8 THE BYTE ITSELF.

'"
, INCREMENT DATA POINTER

'" ,OV A,_ CURRENT BIT TO CARRY "'No
..e MOV B

~' '0' •• PRINT A ZERO DR

"''' 00 •• .0. ONE. DEPENDING ON CARRY
C"'LL COOT
OC. C , '" '"ro, •...

CO!'I.'KlH SUBROUTINES

DPSUBM
COO,'"
""FIGURE 14·10 ~

XALV dlspla)'s the allocation '"eclor for a disk. Each bit stands ror an allocation block; I
240 means the block is in U~.

Disk Formotlillg (lnd 'he Directory

of the direclOry. and files compacted toward the outer edge of the disk. It means that the
track of a diskette that receives the most wear is the track that carries the directory,
followed by the rest of the tracks in ascending numerical order. In normal use an
unreadable disk sector on one of the innermost tracks may go undetected for weeks.
whereas a bad sector on an outer track will be discovered very quickly.

DISK FORMATTING AND THE DIRECTORY

The Directory High-Water Mark

The logic ofthc BDOS's directory scan depends on finding E5h in the first byte of an
inactive entry. Some simple tests with a newly fonnaned diskene and a stopwatch
revealed that the dependency goes even deeper. The time it takes the BDOS to log in a
disk does not vary with the number of active files on a disk. It varics with the maximum
number of directory entries lhat have e~'er been used, whelher or notthosc entries are
presently active.

The CPfM documentation asserts that a program like AllDIR will see every
directory entry. If the documentationere correct, ALLOIR would always display the
number of enuies given by the ORM field of the Disk Parameter Block, In fact, it does
not. ALLOIA will display every directory entry that has e\"Cr been used, but it will not
display a directory entry that has (It!\'er been used.

Both these facts imply that the BDOS has some way of detecting the high-water
"- mark of its use of the directory. Presumably it stops reading thc directory at the

high-watcr mark. There can't be an active enlry past the high-water mark becausc the
BDOS always allocates the earliest unused entry.

But what is lhe high-water mark? E5h in the first byte signals an inactive entry. The
documentation doesn't say. bute can hypothesize that ESh in the second byte signals
an entry that has never been used. This is reasonable, because filenames are (supposed
ly) always uppercase. A second byte of ESh could only result from a filename beginning
with "e," with its '1' auribute bil set.

The Reason for E5h

Why does CP/M have this reliance on lhe byte value E5h? That is the sector fonnalling
character specified by the IBM standard for single-density diskettes. CPfM was original
ly designed to suppon single-density, "IBM-compatible" diskeue drives. A freshly
formatted single-densily diskette will contain E5h in c\'ery byte of every sector. and
especially in the directory sectors. Since E5h signals an inactive entry. an initialized
diskette automatically has an empty directory. If E5h indeed signals the high-water
mark, lhen an initialized diskelle has its high-water mark set automatically as well.

The Fill-Character Dilemma

E5h is not a universal constant, nor was its choice as the format fill character arbitnry.
The format fill character is chosen to have a bit pattern that optimizes the action of the 14/

242

Services for System Programming

drive electronics. Not surprisingly the fill character specified by IBM for ils double
density drives is different: 4Eh. The fill character recommended for a hard disk will be
differenl still. A disk formatter thaI fills double-density sectors with ESh is not "IBM
compatible." On the other hand. a CP/M disk formauer thai fills sectors with 4Eh is
asking for trouble. The BOOS will think thallne diIttlory of such a diskelte is full!

That can be circumvented by requiring the user 10 issue ERA'.' after formatling a
diskette. That will put E5h in allihe user code bytes. making all entries appear inactive.
It probably won 'I. however, resellhe high-water mark by writing E5h in every second
byte. On such a disk-cue AlLDIR ought to display every directory entry. and log.in time
should not vary with directory use.

Most disk vendors bow to necessity and usc the E5 fill character for all disk fommts.
accepting a slight loss of disk reliability in return for CP/M compatibility. A few
fonnattcrs attempt to compromise by writing £5 in every 32nd byte and the optimum fill
character elsewhere. in effect doing ERA •.• for the user.

Chapter 15

The BIOS and
System Generation

THE 810S 244
The 810S Interface----CP/l\1 and !\'IPfM 244
The BIOS Interrace-CP/M-86 244

THE IHOS START FUNCTIONS 246
The Cold Start Entry 246
The W~rm Start Enlr)' 247
The CCI"s Autocommand Entry 248

THE BIOS DISK FUNCI'IONS 248
Disk Selection 248
Track Addressing 24'
R«ord Addressing 250
Reading and Writing 252

THE 810S SERIAL 110 FUNCTIONS 258
FunctiOIlS ror Logical Devices 258
810S Support or the Ph)'sical Ik,'jttS 260

CUSTOMIZING THE 81DS 26.
Changing the Storage Sil.e 261
Changing the Disk Functions 263
Changing the Serial I/O "'unctions 264
Testing 11105 Changes 265

SYSTEM GENERATION 265
The Bootstrap Tracks 266
The MQVCPM File 267
The MOVCPM Command 268 143

Saving the Relocated CCP and BOOS
Adding the BIOS
The SYSGEN Coml1llmd

269

269 -<'
271 II

This chapter covers the BIOS, the pan of the Monitor that is supplied by the vendor to
handle the UO devices. We 'It examine its functions and how they arc called. Then we'll
go over the procedure for modifying the BIOS, linking it to lhe BDOS. and putting the
updated Monitor on the bootstrap tracks of a diskene. The presentation assumes Ihat
you've had considerable experience with both assembly language and CPfM.

THE BIOS

The BIOS contains all the device-dependent code in the Monitor. Its interface to the
BDOS is the same for CPfM and MP/M. That interface may be used by ordinary
commands, although there is rarely any need to do so,

The BIOS must be customized 10 the hardware of a panicular system. The bulk of
the code in it is concerned with handling the disks, and is usually provided by the vendor
of the disk system. The rest of Ihe BIOS, usually less than a fifth of it, operates Ihe serial
110 devices. This pan 100 may have been provided by the pany who sold Ihe system, or
Ihe job of tailoring the serial 110 code may have been left up to)'00. It is this pan of the
BIOS thai moSt often needs changing because serial devices areofteo added or replaced.

The BIOS Inte..face-CP!M and MP!M

In CP/M and MP/M the BIOS rcsidesjust above the BOOS, in the highest addresses of
working storage. The first dozen instructions in the BIOS constitute ajump t:tble, a list of
jump instructions each of which le:tds 10 a service routine that provides a single function.
We'll call this lisl of jump instructions the enlry t:tble. Table 15·1 lists all the entries,

The address al location DOh in storage is a jump to the second jump of the entry
table, an entry that produces the service of a wann stan ofCP/M. The first entry, the cold
stan service, is only needed during a cold stan. The other entries are dividcd between
disk services :tod serial 110 services. Of the lallcr all except the List Status function are
available as BDOS serviCes.

TH~; BIOSCAll Lt8RAR\'. Figure 15·) shows the contents of a macro library,
BIOSCAlLlIB. This library contains equale statements to define the entry table and a
subroutine named BIOS Ihat calls the BIOS service indexed by register A. We'll use this
library in the examples that follow.

The BIOS Interface-CP!M·86

CP/M-86 provides an interface to the BIOS by way of a BDOS service request. A
244 program under CPfM-86 requests a BIOS function by requesting BOOS service 50.

The BIOS

Consult the Reference section of this book for the parameters 10 be passed ith service

'-- SO. In essence, the progmm supplies the, offset into the BIOS entry table and the contents
of the BIOS argument registcrs. Although the calling sequence is different. the BIOS
functions of CP/M-86 arc the same as those of CP/M.

TABLE 15-1
The runctionsorthe BIOS. "'lth tht'ir offsets in the BIOS t'ntr)' table. Thet'ntr)' lablt' is round
rrom Ihe address in low storage al OOOlh. The disk rllncllons cannot bt called from a
command program Ilndt'T MI'/M 2.

Name of Entry Table
Function index. offsct Pu<p<><e

Start Functions

BOOT .1. -03h Finish initializing the system after the bootstrap
load has becn completed.

WBOOT O. OOh Refresh the CCP and BOOS images at the end of
a command: refresh low-storage jumps.

Disk Functions

SELDSK 8. 18h Select the disk to which following disk functions
refer.

'-- SETIRK 9. ISh Seleci the lrack ror further operations.
SETSEC 10. lEh Selcct the standard record (not sector) of the

current track for the next opcrntion.
SECTRAN 15. 2Dh Translate a record position number according to

the ske..... algorithm in effcct for the disk.
SETDMA II. 21h Establish the address of the record buffer for the

next operation.
READ 12. 24h Read the currently selected record into the cur-

rent buffer.
WRITE 13. 27h Write the d,lla from the current buffer into the

selected record,
HOME 7. , 5h Equivalent to a call to SETIRK with an argu-

ment of zero.

Serial 10 Functions

CONIN 2. 06h Get the next byte from the logical console.
CONOUT 3. O9h Write a byle to the logical console.
CONST I. 03h Return a signal thattherc is or is not an input byte

ready at the logical console.
LIST 4. OCh Write a byte to the logical printer.
L1STST 14. 2M Relurn a signal that the logical printer is or is nOI

'-- ready to accept another byte.
READER 6. 12h Get the next byte from the logical reader.
PUNCH ,. OFh Write a byte to the logical punch. 245

Tile BIOS alld System Generatioll

; ... BIOSCALL.LIS: CODE FOR CALLlNG BIOS ENTRIES

B$WBOOT
BSCONST
aSCONIN
B$CONOUT
B$LIST
B$PUNCH
B$READER
BSHOME
B$SELDSK
B$S£TTRK
B$SETS£C
BSSETDMA
B$READ
B$WRITE
B$LISTST
BSS£CTRAN

EQU 0'3
EQU 1'3
EOU 2"3
EOU 3"3
EOD 4*3
BOU 5*3
EOU 6')
EQU 7*3
EQU s*)
EOD 9*)
EOU 10'3
EOU 11"3
EQU 12'3
EOD 13*3
EQD 14*3
EOO 15*3

WARM. START
CONSOLE STATUS
CONSOLE INPUT
CONSOLE OUTPUT
LIST OUTPUT
PUNCH OUTPUT
READER INPUT
SEEK TO TRlICK 00
SELECT DRTVE
SELECT TRACK
SELECT RECORD
SET BUFFER ADDRESS
READ ONE RECORD
WRITE ONE RECORD
LIST DEVICE STATUS
SKEW TRANSLATION

SUBROUTINE TO CALL BIOS AT THE ENTRY TABLE
VECTOR WHOSE OFFSET IS IN THE A-REGISTER.
ALTERS "'&F, AND NL. PRESERVES Be, DE

•• NOTE: ASSUMES BIOS IS ON PAGE BOUNDARY··

HL-->WBOOT ENTRY
ADD A TO MAKE ADDRESS
HL-->DESIRED BIOS ENTRY
SAVE THAT. GET
; •• RETURN ADDRESS
STACK RETURN ADOR.
•• GO TO BIOS. WHICIt
RETURNS HERE,,

,
! PUSH 0

BOOT+l
C

C.', ,
H.BIOSRET

,
o ! POP

MACRO

""PUSH B
LHLD

'"'"PUSH
en
llTHL
,m

""'0'
''''ENOM
•• END Of' BIOSCALL. LIB

BIOSM
BIOS

BIOSRET

fiGURE 15·)
BIOSCALL.L1B d£monstrates the code needed tocall on BIOS functions. Calling the)UOS is
rar('ly necessary.

THE BIOS START FUNCTIONS

The B[OS functions fall imo three groups: stan functions. disk functions. and serial VO
functions. In this section we']] examine the stan functions, that is, the work the BIOS
does during a cold or warm stan.

The Cold Start Entry

The first entry to the BIOS is intended for the use of the bootstrap load program: it
initializes the system immediately after the Monitor has been loaded by a bootstrap
loader,

246

BOOTSTRAP LOAD. In most systems a hardware reset causes a bootstrap load opera
tion. In almost all systems reset enables a segment of read-only storage that contains a
bootstrap load program. That program may load the entire image of the Monitor from the

The BIOS Stan Funcrions

reserved tracks of the disk in the A-drive. Or it may only load a one- or two-sector loader
from the first track, which in tum loads the resl of thc Monitor.

Once the complete Monilor image-eCP. BDOS, and BIOS-has been read into
high storage. the boolstrap program transfers contralto the Monitor by jumping to the
first veclor of the enlry table.

INITIALIZING TlU: HAIUlWAII.E. When control arrives at the cold stan routine of the
BIOS. the entire Monitor has JUSt been loaded. The BIOS code may assume that the cold
sian was iniliated by a hardware reset. and that therdore allihe serial devices in the
system have been TCSCI. One of the purposes of the cold stan entry is to initialize these
devices. It may ha\'e 10 set the transmission speed of serial device ports. or inilialize the
buffer of a memory-mapped lerminal. If there are interTUpc-driven 1/0 devices. the cold
sian code should inilialize the devices, set up lhe interTUpc vectocs. and enable the CPU
for interTUpts. The cold stan code is responsible for Iyping a log-on message at the
terminal.

INITlAl.lZING Low STOII.AGE. The cold sian code initializes two 10w-storJge locations
that are nOI changcd by warm Stan. It sets the currcnt disk number to DOh, indicating
drive A: and user code zero. It sets thc initial value of the IOBYTE. which represents the
slate of the UO device assignmcnts. As deli\'crcd. most BlOSs initialize the IOBYTE to
DOh. which assigns all four logical devices 10 TIY:. This is not the beSI setting; new
users find it a barrier to understanding the use of 5TAT for devicc assignmcnls. A bener
selling is 81h. which assigns CON: to CAT: and LST: to LPT:.

After initializing dcvices and Ihe IOBYTE. the cold sian code joins the logic of Ihe
wann sian entry to inilialize the jump addresses in low slorage and lransfercontrolto the
CCP.

LocATIO:-; OF THE COLI> START CODE. Once Ihe cold stan is O\'er (that is. once the
BIOS is inilialized and has entered the CCP). the cold Start code is never used again.
Because oflhis single use, some designcrs place the code in whal is. the rest of the time.
a BIOS disk buffer. That saves a few bytes of space (the BIOS is always shon of space).
No command program should ever call the cold stan entry; it may end up "exccuting" a
directory cnlry.

The Warm Start Entry

The second entry lable V«lor leads 10 Ihe warm sian routine. This ro~nine is called allhe
end of most commands. !tspurpose is 10 refresh the BOOS. CCP. and low stonge after a
program has. al!easl possibly, O\'crwritten them. The BIOS itself is only refreshed by a
cold stan. so if a command overwrill:S!he BIOS then nothing. including warm sian. will
work until a resel is done.

WARM START FUSCTIO:-;S. The first job of warm stan is to reload the image oflhe CCP
and the BOOS (bul not Ihe BIOS) from the reserved tracks of the disk in the A-drivc. To
do so it no doubt will use several of the BIOS disk functions as subroutines. 247

The 810S alld System Generation

After loading the CCP and BOOS the wann stan code will usually refresh the warm
stan and service request jumps in low storage, and it may initialize variables in the BIOS -./
work area between 40h and 4Fh. Nonnally no other system variables are reset during a
warm stan. The IOBYTE. user code, and defauh drive are left as !hey were. Howe\'er.
the author has found it useful to check the dri\'e number and, if it is invalid, to zero byte
04h. If a runaway program puts garbage in 04h. the system can be locked in a loop
issuing a message such as BOOS Error on k: select.

The jumps in the BIOS entry table are neill'ler reloaded nor refreshed. since
DESPOOL or another such program may ha\'e modified them.

When evenhing is in order. the warm stan code muSt put the defauh drive and user
code (in OIocr words, a copy of byte 04h) in register C and branch to a location 3 bytes
into the CCP. lbe CCP will begin the command process.

The CCP's Autocommand Entry

The CCP can be entered at an offset of 0 bytes instead of the nannal offset of 3 bytes. If
this happens. the CCP \I.'iII check the byte at CCP+7: if that is nonzero. it will execute a
precoded command as if the user had typed il. The precoded command may be any valid
one: it could be, for instance, the name ofacommand program that is always used when
the system stans up. We'll sec later how 10 code the command into the CCP.

The autQCommand entry nonnally would be used only after a cold stan rather than
after every wann stan. This can be arranged by having tbe cold stan code jump to -./
CCP+O and the warm stan code jump to CCP+3. If the two functions join in common
code prior to entering the CCP, the unique wann stan code can zero the byte at CCP+7.
negating the prc<:oded command on all but a cold stan.

THE BIOS DISK FUNCTIONS

The BIOS disk functions arc designed to serve the needs of the BDOS. The BOOS
requests 1/0 in teons of drives, tracks. and standard 128·byle records. The BIOS
translates these requests into disk 110 operations.

Under MP/M 2. the disk functions should never be called from a command
program. They will usually be located in a different bank of storage, not in common
Slorage. Calling a disk function will result in a transfer to a meaningless location.

Disk Selection

Tm: SELDSK FUNCTIO~. The SELDSK (Select Disk) vector of the BIOS entry table
lets Ihe BIOS know that the BDOS is planning to use a paniculardrivc. That is the only
drive Ihallhe BDOS will be concerned about until it calls SELDSK again. The BIOS
will often do nothing ahoul this call except to note the drive number for later funclions, -.-/
because the BOOS may select a disk and then not operate upon il. Depending on a

248 parameter, however, the BIOS may do more.

The BIOS Disk FfillCliolls

The BIOS should check the requested drive number against its own knowledge of

"'-' the number of drives it suppons; the BOOS has probably taken the drive number from a
program's FCB and has no way of knowing whether or not such a drive exists. The drive
number might even be garbage as the result of an error in Ihe program. The BIOS returns
zero in the HL register pair if the number is invalid.

THE DISK PARAMETER HUDER, When the disk number presented to SElDSK is
valid, the BIOS returns in the HL register the address of a structure called the Disk
Parameter Header (OPH). lbe DPH is used by the BOOS to locate its disk information.
The DPH contains the address of the Disk Parameter Block that we looked at socarefully
in the last chapter. II also contains the addresses of the allocation and check vectors for
this disk, and a few bytes ofstorage that the BOOS uses as a scratch pad (this is probably
where the BOOS keeps its memory of where 10 start on a Search ext service, but we
can't be sure of that).

The OPH also contains the address of a sector-actually. record-translation table.
an address that must be used as a parameter to the SECTRAN function.

SELDSK ANI> REGlSn:Rs DE, The CP/M documentation says that the only parameter
of SELDSK is the drive number in register C. The MP/M documentation specifies an
additional parameter. There, registers DE are to contain an even number (the least
significant bil of register E is to be 0) if this is the first time the given drive has been
selecled since the BOOS's infonnation about it was initialized. Otherwise DE are to
contain 0001 h, or at least an odd number.

CP/M PRODUCES THE DE PARAMETER, In fact, at least since version 2.2. the CP/M
BOOS has generated the same parameter in the DE pair, and at least one common BIOS
expects and uses it. A 0 in bit 0 of register E signifies that the drive is being selected for
the first time (I) since a cold or wann stan refreshed the BOOS. or (2) since service
request 13 reset the BOOS disk information. or (3) since service requesl 37 reset lhe
BooS's record of the drive.

USE Qt. TIlF. DE PARMU.'·ER, The BIOS may assume that if register E bit 0 is 0, the
diskette in the selected drive may have becn changed since the lasl select of that drive. In
that case the BIOS may read the drive to delermine the density and seclor size of the disk
mounted in it. A command program that calls the SElDSK entry can't be sure whether
the drive has been used before or nOl. How can it know what to put in Ihc DE pair? One
fail-safe method is to issue service request 14 (select drive) first. lbe BOOS will call
SELDSK with the correct parameter in DE. lben the command program can be sure that
the drive has been selected at least once and can pass DE=OOOlh without fear.

Track Addressing

BOOS TRACK COMPUTATIOi'l, The BOOS views a disk as containing some number of
tracks. each having some count of standard records that are numbered from zero up to
one less than the value in the SPT (standard records per track) field of the OPB. The 249

250

The BIOS and System Generation

BOOS addresses dala by computing a track number and a record number on that track. II
calls on the BIOS to select the track.,I

The BOOS does not know, directly. how many tracks the disk has. That infom13
tion is implicit in the DSM (maximum allocation block number) field of the DPB. The
BOOS computes a record number from an allocation block number. It arrives at a track
number by dividing Ihc record number by the number of records on a track. and adding
the Ol-r (cQunt of reserved \nIcks) field of Ihc DPB.

TilE SETIRK FIr."CTlo~. Baving made these computations. the BOOS calls the
BIOS al the SEnRK vttlOr of the enlry table. Most BIOSes simply OOle the track
number and return. deferring any disk action until it must be done. Ifthe disk controller
interface suppons interrupCs and as)'nchronous operation. the BIOS may commence the
seek operation at this time so thai il can run concurrently wilh the BOOS's ~ssing.

Record Addressing

The position of the record on the track is found as the remainder after dividing the record
number by the number of records per track. It is a value from zero up to one less than the
value of the SJ7T field of the DPI3 (note; from zero, not from one. despite the convention
al numbering of disk sectors). The BDOS must ask the BIOS to select that record. but
first it may have to ask the BIOS to translate lhe record position to allow for skew.

SECTOR SKEW OR 1""ERl.EA\'~:. It is common. but by no means universal. for lhe
sectors of a disk to be skewed. This means Ihat consecuth'e units ofdata are nol placed in
consecutive seclors on the track. Inslead. IWO units of data that ought logically to be
adjacent are in fact separated by some number of SCCIOJ'S. "The purpose of skew is to
improve performance. "The cxpeclatioo is that the processor is more certain to be ready
for data when the data rotale under the read-write head. Skew can eliminate one
revolution's wait for a missed sector. The effecl of skew (or ;lIurleal·e. as it's called with
hard disks) is to reduce the average latency of the drive.

Tilt: Sln;w T MIU; At)l)I(ESS. The BDOS finds out whetheror not the disk uses skew by
checking the first word of the Disk Parameter Header structure (returned by the
SElDSK function). If that word is zero. no skew is used: the record posilion compUled
from the record number is correct. If the word is not zero. it is the address of a translate
table in the BIOS. In this case the disk does usc skew and the record position must be
translaled in some way so thai it addresses the correct physical posilion on the disk.

SKEW TRANSLATION IN CP/M 1.4. Prior to version 2.00fCP/M. skew lranslation was
a simple mailer. CP/M supported only single-density. 8-inch diskeues wilh 26 .seClors
per track. A standard skew faclor of six sectors was applied. To translate a record
position into a .sector number the BOOS used the record position as an index infO a table
of 26 bytes. The indexed byte conlained the actual .sector number lhat contained the
desired record. Programs written for earlier versions of CPfM. assuming 26 sectors and

The BIOS Disk Functiolls

the standard skew, sometimes do their own skew translation. Such programs arc still
being published in hobbyist magazines. They won't work in CP/M version 2 because it
supports disks that have no skew, disks that skew by more or less than six sectors, and
disks with many more than 26 sectors per track and many more than one record per
sector.

Til}: PROBI-EM OF DISK "'ORMA1'S, Skew translation is now more complicated. A disk
sector often contains more than one record. The records that share a sector arc physical
ly. as wcll as logically. adjacent, but logically adjacent records that fall inro diffcrent
sectors arc separated. Skew translation can still be handled by indexing a tablc with thc
record position number. Howcver. the skcw table for disks with one sector size is
different from that for disks with anolher seclor size. There arc four common sector
sizes; a dri\'c may be loaded with a diskette that has any of the four sizcs. This is why the
BIOS must pass the address of a translate tablc to the BOOS through the Disk Parameter
Header. Only the BIOS knows the physical sector size of the diskette currently loaded in
a drive; it must tell the BDOS which of four possible tables to use.

Til.: PMOHl.EM OF DISK CAI'ACIT\'. The size of modem disks compliCilles matters still
more. A double-density diskelle can hold 64 records pert'olck, a hard disk even more. A
BIOS that keeps skew tables for several disk layouts can spend 500 or more bytes on
tables alone.

SK.:W COMPUrATIOS. One way to o\'ercome this problem is by computing the skew
translation instead of looking it up. Atlcast onc popular BIOS does this. In this BIOS the
translate tablc address in the Disk Parameter Header points only to a shan list of
pararnctcrs for the skcw algorithm. instead of pointing to a full lOOk-Up table. The
implication for command programs is that the first word of lhc DPH can't be relied upon
to point to a complete skew look-up table.

SKEW AND DISKETTE CO~lI'ATUllun·. The decision of what skew factor to apply to a
diskctte is left to the BIOS. and each BIOS is the work of a different vendor. Given the
samc format of density and sector size, two vendors may still ehoose diffcrent skew
factors. Diskettes couldn't be cxchanged between the two systems because the BIOS of
the second system would read the physical sectors in a different order than they were
written by the first system. The only standard skew factor is that of 6 used with 8-inch
disks in cxchange format.

Tm: SECTRAN fUSCTION. If the record position must be translated, there will be a
nonzero value in the first word ofthe Disk Parameter Hcader returned from the SElDSK
function. In that case the SECTRAN function of the BIOS must be called. It takes a
computed record position as a l6-bit integer in the BC register pair. and thc address of a
translate table in the DE registcr pair. It returns the translated record position in the Hl
register pair. The record position is a 16-bil number and should be saved as such, even if
you "know" that there are fcwer than 256 records on a tmck. It might contain a

""-- head-select value for a double-sidt-d diskette or muhihead hard disk. 25/

252

The 810S and System Gel/eratioll

CIIA1'':GI~G Tin: SKEW Aoow.}:ss. We might ask why the BIOS must pass an address (0
the BOOS whcn all the BDOS will do is 10 pass it back again. The reason for this
arrangement is lhat it allows the system programmer access to the skew translation
process. If you want 10 write a program that accesses data directly through the BIOS, you
can do so. Funher, it opens the possibility that. to handle a nonstandard disk (one from
another operJling system, or from a BIOS with different ideas on skew faclors). you can
get the address of the Disk Parameter Header and change the address of the skew table in
it.

THE RECTRAN PROGRA~I. Figure 15-2 shows Inc SOUrce of a program called
RECTRAN. It generates all record positions from zero up to the maximum for the
selected disk. and passes each through the SECTAAN function of tbe BIOS. 1bc
Inlnslated numbers that result are displayed in hexadecimal. eight per line. Example
15-1 shows what the output of AECTAAN looks like.

Run RECTRAN against different disk formats and study the patterns that result.
Read through the code of your BIOS to see how it performs the translation. Docs it use a
table, or does it compute the translation'!

Til}: SETSEC t"VNCTION. Once lhe record position has been translated (if that was
necessary), the BDOS calls the SETSEC function oCthe mos to select the record to be
accessed. Most BIOSes simply record the record number. again deferring actual disk
operation until it is necessary.

Reading and Wdling

Having addressed data by telling the BIOS the disk, the track, and the record. the BDOS
may request that tbe rttOrd be read Of wrillen. Befon: doing SO it musl ha\'c set a buffcr
address.

THE SETDMA FUNCTION. The SETDMA function of the BIOS does cxactly what
BDOS service request 26 docs: it establishes Ihe storage address of Ihe record buffer for
following reads and writes. To a program there is no functional difference between
calling service 26 and calling the SETDMA function. The BOOS. of course, must
sometimes set a buffer address different from the one being used by a program; when the
program opens a file. the BDOS must set a buffer address for directory reading, then
reset the program's data address.

A command program should always use BDOS service 26 to set the buffer address.
If it calls the SETDMA entry directly, the BOOS and the BIOS will thereaflcr disagree
on the buffer location.

TilE READ fUNCTION. 1bc READ funclion of the BIOS requests that it read the
standard record that has been addressed by previous calls to SELDSK. SETIRK.
SECTRAN, and SETSEC. The data are placed in the present buffer address and a
sucress code of zero is returned in the A register. If that code is nonzero, the BIOS had
tried several times to read the sector containing the record and failed.

The BIOS Disk Functions

•• IltcTu,< -- DISPLAY SII:Di TIlAKSLATIOIl

!'IAClon
MAClolB
MACloa
ftACL II
Noeloa

" .."'X
~.

HEXSUII
1I10SCAU.:

ST....'<OARD """,,ES.
PROLOG, S£RVlcl".: MACIlOS
COHSOI.£ CX11'PUT
HEX DISPLAYS
IUOS HtTEIU'ACI".:

~EAllIHC
DillVI':
HOlLATE
tillECS
PLENGTH
NPRltiT

'~ord .tev pattern for dlst '
O,CII,LF,CII,LF~IOH

'that disk needs no tranlhtlon. - ,CR,Lf.IOH
o IIEC1lRD COUNT 1'011 loOOP
16 NUMIIERS PEII Lltit
o NUMBERS LEfT ON THIS l.INt

ROCTRAN £QU $
MVI A,PLEtiGTH
STA NPRINT INITIALIZE COUNT 0' NUMBERS
LOA CpMI'CB SEE If DRIVl': 5pECII'IED
DCIl" CONVERT I'CB rolUl TO SERVICE 14 l'QRH
Jp ~C2 (YES, DIIIVE GlVENI
SERVICE 25 OMITI'ED, GtT CURRENT DRIVE

REC2 1'tOV E,A SAVE DMlVI': l'QII SEIlVICE II
ItOV C,A •• AND roll IIIOS 5£1.0$11: CALL
ADI 'A' MAKE PRINTAILE,
STA DRIVI': , .• PI)'!' IN HEADING' PUNT
un H,Hf:ADING I CALL COSTII
SI".:RVICE II £'<;,!,"!ILISH DlllVE TO IlIIOS
SERVICE Jt : HL-->DPII, SP:!" 01".: • sn
~ E.M I IHl II ! ItOV D,M
lIClIC : SAVE RECORIIS/TllAClt
SlIl.lI NRZCS : •• roll loOO' cotITllDL
KIll A.!I$SELDSK
CALl. !IIOS IIL-_>O,'.II., SET DE-->lLATE T-'B1oS
!tOY E," I IlIl II ~ O.M
!tOY A,I".: : II' 'MIAT ADOIttSS IS 1£110,
OItA 0 : •• liO TItANSLATIOIl IS DOll!.
Jill RZC)
LXI H,HOII:LATE! CALL COSTR
UT : •• 111: WIlICII CASI".:, OOIT.

RZCl LXI a,O : CIL\R RECORD ,"UIlIIEIl

A, Il$S!!'.CT RAN
1105 Ill. • XLATEIIICI
PUNT DISPLAY T6!i: ~SUloT

HII£CS DtClID'.tlfT loOO' VUIABLI".:..
A.LIDRAH

,
RZCloOOp KIll

CALL
CALL
~W

OC,

"""SRIoO

'",..,
NRECS

•
RECLOOP

IlE'nJRN TO CCP I' DONE
SAVE LOOP COUNT
STEP IIECORD NUHBI\II
AND CONTI NUl':

(NO. CONTUIUEI

PRINT HL AS Hr.X WORD
•• MID A SPACE
Stt If END 01' LIHE

REfRESH IoINE COO1M'
START A NEW IoINE

A,pLENGTH
NPUNT ,
COC'RIoI'

NnAOOR
COSPACE
NPRINT..
NpIIINT

CALL
CALLeo,
OC.

'"AA'
~,

'"CAI.I.
~

COOlON SUBROUTIH!S

1'111 NT

nGURE 15,2
RECTRAN displa,-s Iht' ~rd positions Ihal rt'$ult from skew translation oflht' ~uential
numbers from uro up 10 the number of records on a track. 253

rile 8/0S al/d System Gelleratioll

EXAMPLE 15-1
RECTRAN ~n'als 11K' skt,..· paUfrn of a doubk-densil" diskelle with IOUb~-lr SKlON.
Groups or eight records (OM R<:tor) art con~ulh-t; sectors a~ skewed b,. two.

A>re-ct.an
Record skew pattern for disk A

0001 0002 0003 0004 0005 0006 0007 0008 0019 OOlA 00111 ODIC (011) 0011': 0011' DOlO
0031 0032 OOB 0034 0035 0036 0037 0038 0009 OOOA 0008 OOOC OOOD OOOE DOD!' 0010
0021 0012 0023 0024 0025 0026 0027 0028 0030 003 ... 00J8 003e 0030 aOlf, OOll' 0040
OOIl 0012 0013 0014 0015 0016 0017 0018 0029 002" 0028 002e 0020 OO2t.: 0021' DOlO..-
Tin: En"ECT 01' SECTOR BUH1::II.IXG. NOte (hal the BIOS might nO(do any disk 110
when it is called on to read a ~ord. The BIOS operates on whole sectors. If a sector
holds more than one record. and if the wanted record is already in the buffer as the result
ofa prior read, no disk operation is needed. If the sector buffer is inactive or filled with a
prior sector. the BIOS will have to read the needed sector.

Tm: E.TF.cT 0.- WRITE 8UH"ERING. 1bc: BIOS might have 10 do 11.110 disk operalions
during a READ function. Ifit had been writing earlier. il might ha\'e a sector ofdata in its
buffer that hasn-I yet been written todisk. That sector muSt be wriuen in orderloclear the
buffer so that the desired seC10r may be read.

Tm: READIR I)ROGR,\I'.I, The program whose source appears in Figure 15-3 reads the
disk directory using direci calls on Ihe BIOS. Its oulput should be similar 10 thai of the
ALLDIR program of Figurc 14·7, although the program is quite a bit more complicated

•• READI!! -- READ DIRECTORY VIA 8105 CALLS

lUCLIB
MACLIB
lUCLI8
MACLIB
I'IACLIB
I'IACLIB

c,""",..,,'"co"",
RUSUB
OPSU8 ;
8IOSCALL;

STANDARD IIAKES,
PROLOC, SEItVICE MACROS
CONSOLE 0UTPU1'
REX DISPLAYS
16-81T ROUTINES
810S INTERFACE

PROt,OG2 READIR

HEADING DB
DRIVE 08"...."" ~
OPBSOR:ol EQV
OPBSOI'I' EQU
IlRECS DB

'phyalcal directory entrlea, drive'
D,CR, 1.1' ,CR, L!'+aOK
CR,LF,"OIDS reporta read errOr.·,CR,LI',·S·
D7K OFI'SET 01' 0R:ol FIELD III O.P.B.
DOK OFFSET OF OI'F FIELD III D.P.B.
o RECORDS LEM' TO GO,

R£.\D I R EOU $
LOA CPMFCO
OC. ,
Jp REA2
SERVICE 25

REA2 MOV E,A
MOV C,A

SEE II' DRIVE SpECII'IED
CONVERT FC8 pORM TO SERVICE 14 FORM
(YES, DRIVE GIVEN)
OMITTED, GET CURREIIT DRIVE
SAVE DRIVE POll. SERViCe 14
•• AND POR BIOS SELDSK CALL

254

FIGURE 15-3
FlEAOIR reads alilhe dlr«lor}' enlries on a disk b"alling 1M BIOS. It adds 00 information
to thai sho,,'n by AllOIFl, but sho""S the use of the BIOS for nonslandard disk I/O.

The BIOS Disk Fu"ctions

ADI 'A'
STA DAlY!:
LXI H,HeADING
S£l'IVICI!: 14
SERVICE H

; MAXE PAINTABLE,
: •• PUT IN HeADING' PAINT

I CALL COSTR
ESTABLISH DRIVE 1'0 BOOS
HL-->DPB GET OIlK, OFF

'"CALL

'"'CALL
CALL
'OV

'"

A,DPB$DIlK
DP$LDHA,
DP$SALO
DP$SALD

'.'HRECS

DE • LAST DIRECTORY ENt'IlY NUMBER
DE • TRUE COUNT OF ENTRIES
DIVIDE IT BY POUR 1'0 GET
· .COUNT OF STANDARD RECORDS.
ASSUMING THAT'S < 256,
• • SAVE IT FOR LOOP CONTROL

'"CALL
PUSH

A,DPBSOFI'
DPSLDHA ;, DE • TRACt{ OFFSET, ~IIICII IS

• .DIRECTORY TRACK. SAVE IT.

'"CALL
MOY E,M

A,B$SELDSK
BIOS ; IIL-->D.P.II., SET OE-->XLATE TABLE
! INX H ! MOV D,M ; •• OR MAYBE 0000

POI' B : 8C • WANTED TRACK NIJMBER
MVI A,BSSETTRK
CALL BIOS ESTABLISH THE TRACK NUMBER
LXI B,O CLEAR RECORD NUMBER

Il£AO 'reAl' RECORD 1'0 CP!'IBUFF
(RECOV'EIl STACKED RECORD NUMBER)
ANY pRDBLDlS ~ TIlE 1l£AO?
• .NO.
res, OOlT

NOxtATE

"''"MOV A,I!:

"~,
CALL
PUSH H
~,

<A~

~,

<~

""'U
"U,

'"

B SAVE CURJU:HT R£CORD NUMBER
! ORA 0 IS TRANSLATION NEEDED?
NOXLATE : (NO)
A,BSSECTRA.'1
BIOS : NL • XLATE(8C1

I pop B : 9C • TllAIlSLA1'ED R£CDRD NUKBER
A,BSSET$EC
BIQS ESTABLISH WANTED RECORD
A,B$READ

"OS••...,
D, EItRMSG:
EIlROIlUIT

CALL
~.

'"'""'"'"'
•
RECLOOp

MoL OK, pllINT ENTRIES.

UPDATE LOOP COUNT,
REnJRN TO EPILOG II' FINISHED

UPDATE RECORD POSITION,
CONTINUE.

LINENUMBER 01' BYTES PER
NUMBER OF RECORDS
CALL CDCIlLF
CALL COCRLF

$ DISPLAY 4 DIRECTORY EHTIlIES
B ; SAVE HAINLINE'S 8C
H,CPMBUFF
B,16
<••
HEX LINE !
HEXLINE !
COCRLP

C I IN! pLOOP
COCRLP ! CALL COCRLF

•

'OV
PUSH

'"~,
~,

CALL
CALL
CALL

'"CALL

""~

PllltlT

"'X"

CXlMMOH SUBROUTINES

COSU8I'I
HEXSU8l'l
DPSUIlfl

""""~,

nGURE 15-3 (Continued) 155

The BIOS lind System Generation

than ALLDtR. There is no benefit in reading the directory this way, but the same
techniques could be used in a program that updated the directory. You could write a -......./
program Ihat recovered an erased file by restoring a user code to the first byte of the file's
elltent records. for instance. Example 15-2 shows the output of READIR.

TilE WRITE F~CTION. The WRITE funcllon of the BIOS requests that it take the
standard rerord in the buffer and wrile it into the record position addressed by previous
calls on the BIOS. The record is laken by the BIOS and started on its way to the disk.

SECTOR Bu....IeKS AND PRt:Rt;AOING. The BIOS might have to do two disk operations
for a write. When a sector contains more than one record. the BIOS must first read the
correct sector, then move the record into it, and finally write the sector back to disk. The
initial read of a seclor is called a preread, and isn 'I always needed. Also, the seclor wrile
sometimes can be deferred unlil it is forced by later events.

The BIOS Disk FUllctions

DEFERRED WRITF-S. Mosl program output is sequential: there is a high probability that
the next write will be directed 10 the next record in the same sector. In that case deferring
the sector write wjll allow the BIOS to avoid the next prcread. On the other hand. if the
program altcrnales reading and wriling, lhe read requests will force out the wrillen
sectors so that every wrile requires a preread and every read forees a wrile. In that event
three disk operations will be done forevery two program accesses. Thiscould be avoided
by the use of hl10 sector buffers. one for reading and one for wriling. but most BIOSes
can't afford that much space.

WRITE PAtLH1LTERS. The WRITE function takes a parameter in register A. ThaI
parameter is an indicalion from the BOOS to lhe 8105 of the purpose of the write
operation. The BIOS can increase the performance and lhe reliability of the system by
recognizing this code. If you write a program that calls on the WRITE function. you
must be sure to provide a valid parameter.

WIUYI: 2: USAt.LOCATED DATA. When the write parameter is 2. the record is the first
to be wrinen to its allocation block. An allocation block usually COlTCSponds to one or
more whole sectors. Usually the sectors that comprise an allocation block are conliguous
(logically contiguous: lhey may span a track boundary. and skew must be considered).
When the BIOS knows it is writing the first record of an allocation block. it can skip
prereading that sector: the other records of the sector (and of the allocalion block) can'l
have any useful data in them.

......... WRITES "'OLWWL"'C AWRITE 2. Write 2 occurs only for the first record ofa block: all
olher records of the block are passed under write O. The BIOS can verify that each
successive write follows sequemially on the prior one. As long as they do, and as long as
no reads intervene to force out the buffer contenls. the BIOS can collect and write sectors
without prereading. TIle CP/M 2.2 AltermiQIl Gliide contains an example of this logic.

WRITE 0: ORDISAil" DATA. When the BDOS is handling any record other than the
first of an allocalion block (or a direct access write to any record). it passes write
parameter O. If the BIOS finds thalthc record continues an unbroken series from the last
wrile 2. it can avoid a preread. Olherwise it must read the sector into which the record
falls and place the record among the others in the sector. II may then defer writing the
seclor back 10 disk in hopes thaI the next wrile will fall in the same sector.

PEIU'ORMA....CE IMPL.lCATIO....S. Any command program can be designed to make the
mosl of write buffering. A read will break lhe chain of buffered writes; so will a wrile 10 a
different file. Best perfonnance is realized when lhe program reads and wriles data in
long bursts. Only a single large buffer is needed for this. The program either Illay read
one record at a time while accumulating oulput in the large buffer. or it may read records
to filllhe large buffer and lhcn write single records as they are produced. Either way. it
transfers a large amount of data for each file before switching to the other.

WRITE I: DIRECTOR" DATA. If lhe write parameler is I. then the record is pan of the
"--'" disk directory. A preread has 10 be done. The sector should be wriuen immedialdy; a 257

The BIOS alld System Generation

directory write should t1e\'er be deferred. If the sector write: is deferred. a reset signal or
program error can pre\'cnr the data from reaching the directory. That risk is tolerable for '--"
file dala----if the program bombs or is aborted. the files are expected to be incomplelc-
but it is not tolerable for dircclOry data. The se<tor may remain in the buffer so that a
preread can be avoided in the unlikely evenllhat the next access addresses the same
sector. but the data should be transferred to disk at once.

THE BIOS SERIAL 110 FUNCTIONS

1be BIOS functions thaI deal with serial 110 are needed to make the BOOS (and all
programs) device independent. It is up 10 the BIOS to direct the flow of serial data
according 10 the current device assignmems. With one unimportant exception, all of Ihe
serial 110 functions provided by the BIOS are also provided as service requests through
the BDOS. There are no advantages, and several disadvantages, 10 calling directly on the
BIOS for serial 1/0.

Functions ror Logical Devices

The BIOS provides se"en functions thai deal with the four logical devices of CP/M.
Three of these are related to CON:, the logical console: IWO suppon LST:, the logical
printer: and the remaining two operate the logical reader and punch. Example 15-3
shows the code of these services as it would appear in a typical BIOS. --.../

CONSOL£ FU:"rlCTIONS. The three console functions are CONIN, CONOUT, and
CONST. CONIN must delennine which device is currently assigned as the console, get
a byte from it, and return that b),te in the A register. It is CON IN's responsibility toclear
bil 7, the parity bit, of a received byte 10 zero.

1ne CONOUT function is given a character in the C register. It must find out which
device is currently assigned as the console and transmit the byte 10 it. The BOOS always
clears bit 7 of the byte before calling on CONOUT.

EXAMPLE 15-)
Code from. t}"pical 8IOS, sho",-ing supporl of logical 110 de'·ica. Note thecode for the BAT:
de,'ice. BAT: Is useful when a serial input de"jce for RDA: exists (a modem, for example).

TIlE FOLLOWING ROUTINES IX) LOGICAL I/O IlCCORIlIIIC TO TIlE IOBYTE.
'CRT' IS THE 819 TERMINAL DRIVEN PROM THE 2810 CPU SEIUAL PORT,
'LPR' IS THE OIABI.O 1650 ISR O!l 'nIE GOOBOU1' aoAIlO AT 2A/2B.
'AUX' IS A SERIAL OBVICE ON TIlE GOO9lXJT aoARIl AT 28/29

ROUTINE CONI IS TIlE CONSOLE INPUT ROUTINE CALLeD PROM THE alaS
JUMP TA8LE UP PRONT. IT /\DOS TilE PARITY-STRIP THAT CP/M REQUIRES.
BIOS ROUTINES CALL 'CI' STRAIGHT.

258

,
CONI, CALL

m
~

"'"
GET THE NEXT CHARACTER
STRIP OFP TIlE PARITY BIT

6><
6111 • tdn • NOd .tno.tll:l '"

I _____
O~IlT a Tdn .. NCId .LOOlId"J "3;)11\30 lOY .. dU • Nlld .Lnoxnv "OIWNIld '"3;)11\30 110M" A.oU • NOd .tnO'lnlll ".tN3WN.~ISSV K:lNnd 3.1....1051 ~SWNrld '"J.M.tflO II.)Nlld :;1.1:1.1101 ,eo '''',

OS9T .. T1n'.L4"J .. .tS1 : J.SOlld'l '"6TH .. .til.) .. J.S'l : J.So.J.lI;) "OIWol.S'1 '"3:>11\.30 11M a u.r. .. J.S'l : .LSO'lIUl "J.N:iloiN~tSSV 3;)11\30 .LSI' u,nosl , ",...,'" ..~
Sl'U.VJ.S J.tW.Ll'IO .LS11 : 3UQOI '" ',lVJ.S'J

6TK .. tlln .. 1I0l1 l NI.u:t:l '"'OS,! .. Hln .. IIIJll NHld1 "a:;nh:!O XOV .. lIU .. 1I0l1 I NIXn... "CI IWll(Jl['"S:Jlfl:jO 'InN .. .I.J.I. .. 11(111 NI'lnt'l "J.N3WN~ISSV 1130V311 3J.V10SI , :.lSWllClll '"J.MNI 1130't7l1 ' 3.1.1,1101 '" 'III,
'.1Y1J 1l0i~ 'HIM .. J..U. .. lUll! , 11301 "lISWlfllll '"01']"'''' 5 ••1.1 011" , a.u.1I01 '"• 'lIali lIsn .. J.YIJ .. NO;)

OS9T .. !;)ll .. NlXl ' NUld'I '"6TH .. .ul;)' J.,LJ; .. Noo ' NI.I.lI:l "aIK~ '"J.NlIWN~ISSV 3'lOSNO:J :u,nosl ,
llSWNO:> '".tndHI 310SNOO ' 3J,.I.IIOI '" '1:J

6TH" Zlin .. 11011 ' ,l.SIJ.lI;) '"OS91 .. Ilin .. 1I0l1 .1.5111<11 " I"J.lfO<! XOV .. 1IJ.d ~ HOII ' J.srxnv "Olh'l:lall '"'J....II 1I(),d Ol1YIIHI 'IlIM .. J.I.I. .. lIGll , 11301 "~W~ISSV 1I30Ylll1 u,nosl ,
"""" ..~

(:.LV1I .. '11K);) lIOd 1'lH() aaSrJl , :u.l1101 '" : .LS.Lva
SlU,V.tS 1:Im1 CUll 1T1'<I • .L'(8 • H()J

,
osn • IXl • NO;) : .tSIlld'l '"61H • .1.ll:;l'u.L • NO;) : .tS1.1.ll:;l we

QIKNo;) '".LNlIWN::USSV 3'1OStflX) lI.L'i'1OSI ,)ISlONOCl '"SlU,V.LS 3'1OSNo;) : 3UIIOI '" , S.LS:;l,
059T • T1n'.Ld1 ...S1 I .LnOlld1 ,.,

6TH • .L1I;) • .LS1 I .LrJOI.l:l:;l .,
OIW.LS'T '".&.Od.LllO 1'1nN • lJ..L • .LS1 I "'''''''' "J.N:ilWN~ISS\I .1.51'1 UYlOSI ,)ISWJ.S'! '"J.lW.tllO .LS11 : 3.1.11101 '" "".uxl .LSI'I O.LII.I 1'1V<l ••'(8 • No.J ,

(1591 • l:>ll • No.J I '"""" '"6HI • .1.ll:;l'lJ.t • NO;) : ""'"" .,
OJ""N();) '"J.N3NN~ISSSV :rTOSHCO :u.'i'1OSI ,)I5WNo;) ,~

.&.11<1.00 3'1OSNo.J 3.11101 '"
,.,,

'" ,0- OIWJ.S'l
HO:;lO '0' ~SW.LS1

'" '0' OllONrJd..= '" 00' ~SWNrJd

:3NIIIVdwo:l 110<1 3lY1V" J.O/Ild '" "" 01 W"llCill
J.N3tiH~ISSV IIC1ll J.l'I(l dlll.tS 0.1. lISVW ". '" """"~IIIVdwo.:> 110<1 3mvA .LOAtd '" "" OIWHo;)
.I.N3\(N~15SV NO;) UlO dlllJ.S OJ, 1IS\'W '" "" lISWHo;),

I -----(p;'InU!lUOJ) (-SI 31dl\,VX3

,WO!Pll1ld all W!.1iJS 5018 iJll.L

The BIOS lind System Generation

The CONST function is called to discover the input status of the console device.
that is. whether it has a byte ready for input or not. CONST is expected to return FFh in,/
the A register if a byte is ready. and OOh if one is nOl.

CoNSOLE 110: BOOS VERSUS BIOS. Hobbyist magazines often publish CP/M prog
rams that perfonn console 110 using these 8105 functions. This is lamentable. The
810S functions provide none of the user services thai are part of the similar service
requests provided by the BOOS. Console output sent through CONOUT cannot be
suspended with control-s nor can it be copied [0 the printer with control-p. Console input
obtained through CONIN cannot be supplied by XSUB. nor can the user correct typing
errors or cancel the program with control-c. The overhead imposed by the BOOS is
trivial compared with the human advantages to be gained by using service requests for
console I/O.

In the last chapter we noted that control·s and -p aren't always effccti\'e during
BDOS operations either. That doesn't affect the main point. Control-p can be hit before a
command is started. Then any BDOS output the command does will be copied to the
printer. but no 810S output will be.

I)RI:-',ER FUNCTIONS. The 8105 provides IWO funclions for the logical printer. The
first is the LIST function. It is passed a byte in regisler C. LIST must find out which
device is assigned to LST: and send the byle to it. The BDOS always sets the parity bit to
o before calling the LIST function.

The l1STST function is a convenience for Digital Research's background print
utility, DESPOOL. That program gels control whenever a console input service request
is issued. It needs to know if the printer is ready to accep(a byte or nOl. If it is ready.
DESPOOL will send a byte to the printer before letting the current service request
continue. L1STST has lhe job of finding out whether or nolthe device now assigned to
LST: is ready to receive a byte. USTST returns the same signals in register A as
CONST does.

READER AND I'uNCH FUNCTIONS. The CP/M BIOS has an cnlry called READER.
which returns a bytc from the device currently assigned to RDR:. and an entry called
PUNCH. which takes a byte and sends it on to the device assigned to PUN:. The rules
for the two entries are identical to the rules for CONIN and CONQUT respectively.

RE...LlER ANI) ruNCH UNDER MP/M. Under MP/M these two entries will be null.
consisting only of RET instructions. MP/M does nol ha\'e suppon for the logical devices
RDA: and PUN:. Instead it defines all serial devices as -·consoles." Under MPIM. a
program that would. underCP/M. use the RDA: and PUN: logical dc\-ices must attach a
separate process whose console is the device to be operated. That subordinate process
can be dc\'ice independent as the CP/M program can. but the program that uses this
tcchnique will be system dependent: it will only work under MP/M.

BIOS Support of the Physical Devices

A BIOS may be wrillen to ignore device assignments. The BOOS calls on the BIOS
260 function that corresponds to the logical device it wants. The BIOS may have a singlc.

The BIOS Serial /10 Functions

fixed mapping from these logical devices to physical devices. In su<:h a syslem the use of
STAT to display and change device assignments is slill possible. but it has noeffeci.

Us~; Ot· Tm; IOBYTE. It is preferable that the BIOS recognize and sUp]Xlrl device
assignment. When this is done. the code ofeach logical device function does nothing but
determine which physical device is needed and branch to the dri"cr for Ihat device. The
aClive device assignments are eneoded in the IOBYTE at 03h in Low Storage. 1be code
in Example 15-3 shows how that b)'te can be used by the logical device functions. 1be
sequence of lests and brnnches in these routines determines the meaning of the device
assignments. For example, the design of the LIST routine in Examplc 15-3 detcrmines
that if LST: is assigned, to TIV:, printcr output is to be thrown away: if to CRT:. then
printer output is 10 go to the terminal (notthc logical console but the physical tcrminal).
If the assignmcnt is to cither PAT: or Ul1:. then the OUlput is to go to the physical
printer.

DEVICE Dlun;RS. Each physical device is given one or I1lOft' driver routines of its
own. These routines-rarely more than haifa dOlen instructions-receive control from
the logical dcvice routines and return directly to the caller of the BIOS. Example 15-4
shows a typical sel of physical dcvice routines such as would be called by the logical
device codc of Examplc 15-3.

The device routines don't care what logical device they were called for. The
CATIN routine of Example 15-4 may be called by either the CONIN or the AEADEA
routines of Example 15-3. 1nc: CATOUT routine may be called by any of the CON
OUT. LIST, or PUNCH routines. depending on Ihe current assignments. A device such
as a terminal, which may be assigned to either list or console, must have bolh an inpul
Status routine and an output status routine.

CUSTOMIZING THE BIOS

The BIOS is prepared like any other assembly language program, although its testing
requires some care. There are usually a number of ways in which a BIOS can be
improved. Such improvements are satisfying, but must be made with care because the
whole system depends on their correctness.

Changing the Sto.-age Size

TilE BIOS BASE ADi)KESS. 1lle simplest BIOS change is a change in the size of
working slOrage. The BIOS resides in the highest]Xlssible locations in storage. It is
prepared as an absolute assembly with its origin set high enough that the end of the BIOS
is as high as possible in working storage. The BIOS base address must allow for the
buffers il needs, and for tnc presence of any fixed ROM or disk hardware windows in
siorage.

'-'
CIIANGISG TilE BASE, Probably your BIOS looks much like the example shown in
Appendix C of the CP/M Alteration GI/ide, with features from the seclor blocking code 26/

The BIOS and System Gel/eration

EXAl\-IPLE IS4
Code from a I)'pkal 810Sshows Ihe driwrs for physical de"ices, including null ones. Dtlalls
or devke handling ...i11 be difTerent In e'-el1' inslallation.

nlE I/O DRIVERS START IIERE. EACH DATA PATH HAS TWO ROUTINES,
A STATUS ROUTINE AND A TRANSPER ROUTINE. INPUT PATHS HAVE A
ROUTINE 'XXXIST' (INPUT STATUS) AND A ROUTINE ·xxxnr. OUTPUT
PATHS III1VE 'XXXOST' (OUTPUT STATUS) AND 'XXXOUT' -- XXX BEING
THE DEVICE MONICKER IN ALL CASES.

AUXDATA EOU
AUXSTAT EQU
LPRDATA £QU
LPRSTAT EOU

SERDTR EOU
SERnBE EOU
SERRXBP EOU

'"'"'"'"
'"'"'"

MODEM OR WHATEVER

DIABLO 1650 KSR

DATA TERMINAL R£ADY BIT
TRANSMIT BUFFER EMPTY
RECEIVE BUFFER FULL

THESE ARE THE DRIVERS FOR THE NULL DEVICE

NULOST Eau
NULIST ORI

'"NULIN MVI
NULO!JT EOU

""

,
OFFH

'",
NULL OUTPUT ALWAYS OK
NULL INPUT ALWAYS READY

NULL IIlPU'T ALWAYS CTL-Z (OOPl
NULL OUTPUT IS A NO-OF

TH~E ARE THE DRIVERS FOR THE CRT. USING VDlDOR'S CODE.

CRTIST IN

'""0"

'"
CRTIN CALL

"'"""
CRTOST IN

'""0"

"",
CRTOUT CALL

"'0'
002

""

SLSTAT

"''"'
OFFIl

CRTIST
CRTIN
SDATA

SLSTAT
n><n

OPFIl

CRTOST
CRTOUT
'.0
SDATA

GET 8250 LINE STATUS
RECEIVE BUFFER READY?

(NOPE. EXIT A-OOI
YES. A_PP

"AIT FOR OATA READY

""" >T£KIT, A-XX

GET 8250 LINE STATUS
CIlECK TRANSMIT BUPPER

(STILL WORKING. A-OOI
BUPFER AVAILABLE.

A-FF

WAIT FOR BUPFER EMPTY

OUTBYT£ IS IN C
SEND IT

THESE ARE nlE DRIVERS FOR THE AUXILIARY GODBOUT PORT

Customizing rhe BIOS

EXAMPLE 15-4 (Conllnued)

~.

"m
""AUXOSTI IN
m..
0"'

""

SERDTR
AUXOSTI
A

AUXSTAT
SERTXBE

oFFH

CHECK DATA TERMlNAL READY
(SERDTR_O MEANS "READY')
DEVICE UNREADY DR BUSY

RETURN AaOO
DEVICE IS READY, IS UART1
CHOCK XMIT BUFFER
(STILL SENDING, A-DOl
ALL Olt, RETURN A-FF

,
AUXOUT CALL

""W
0",

'"PAGE
'nIESE ARE,

LPRIST IN
~,..
0"'

'"

AUXOST WAIT FOR ALL-CLEAR
AUXOUT
A,C SET UP DATA,
AUXDATA SENU IT.

THE DRIVERS FOR THE PORT TIED TO THE 1650

LPRSTAT I GET UART STATUS
SERRXBF CHECK RECEIVE BUFFER

(!~ OATA, A_DOl
OFF'll BYTE READY

,
LPRIS

LPRQST

LPROSTI

CALL LPRIST WAIT ro, A BYTE

" LPRIN

" LPROATA "., ...".,
" LPRSTAT GET UART STAroS

'" SERDTR CIlECK DATA TERMINAL READY

" LPROSTI (SERDTR-O MEANS 'READY')
m A DEVICE UNREADY OR BUSY

'" RETURN A-OO

" LPRSTAT DEVICE IS READY, IS UART1
m SERnBE CHOCK XMIT BUFFER.. (STILL SENDING, A·OOI
0.. OFFH ALL OK, RETURN A-PF

'"CAL' LPROST WAIT FOR ALL-CLEAR

" ",.,..,
""" A,C , SET UP OATA,
OUT LPRDATA SEND IT.

'"

of Appendix G in that book, If that is the case. then all you need to do to change the origin
of Ihe BIOS is 10 change the value of the equate label msize allhe front of the source
program. and reassemble. If lhe author of lhe BIOS didn', follow the Digital Research
examples, then you must determine what Ihe assembly origin ought 10 be and change it.
In either case be careful that all of the BIOS. including lhe buffers and variables at the
end of the assembly. filS insideofslorage. Both ASM and MAC will allowthc assembly
location counter to overflow past FFFFh wilhout giving you any warning.

Changing the Disk Functions

"'--'The disk functions of a BIOS make an interesting and educational study, but there is
rarely any need to alter them. If you do so. you m:ly find il hard to convince your dealer 263

The BIOS and System Generation

that you have a problem with the disks. The dealer lIlay demand that you demonstrate a
failure using a stock BIOS.

DISK ERROR REPORTI:O>C. One area that can sometimes be improved with little
alteration of the cOOe is that of disk enor reporting. Most BIOSes don't display any
infonnalion about a disk error. they simply tell the BOOS that one occurred. You may be
able to find a place: to stow the track, sector, and command of the operation that failed so
thai you can retrieve them wilh DDT after a failure. You could add code to display that
information on the terminal when an error happens, or you might prefer to write a
command that retrieves and displays the stored information after the fact.

SOFT-ERROR STA.TISTICS. If there is room in the BIOS to store it. it would be nice to
keep a count of the number of recoverable errors that occur on each drive. A command
could then be writtcn that would display and clear the count, or add it to a file so that you
could spot a trend of increasing enor frequency and relate it to a specific drive or
diskette.

DEI.ETI:O>C UNUSED TABLES, Some BIOSes contain tables and code to handle many
different kinds of disks. If you have only a few disk types, you can gain space in the
BIOS by deleting the unneeded tables. Rather than remo\'e the statements that define
them you should use conditional assembly. Surround the unwanted tables and the code
thai names them with IF statements controlled by equate variables with meaningful
names. Then you can change the equates to bring the tables back into the BIOS later.

Changing the Serial I/O Functions

The serial UO functions must be changed whenever a new device is added to the system
and whenever you change the address or controlling board ofa serial port. These changes
are easy to make and, since they don't affect the integrity of disk files. they are safer and
cause less anxicty than disk changes.

IOBYTE SUPPORT. There arc a lot of convenience features you could add to the serial
device functions. An obvious change is to make the BIOS support device assignment, if
it doesn'l already do so.

PRI1'<o'TER HANDSIIAKISC. If your printer support doesn't shake hands with the printer,
you should look into making it do so. Most serial ports can be madc to pass the state of
the Data Terminal Ready line through to your code, and most printers can be set up to
report their status on it. It's very nice to know that when the printer runs out of paper.
printing will stop until paper is loaded, then pick up smoothly from where it left off.
There is a minor performance advantage in having printer data transferred at the printer's
maximum rate, with the BIOS waiting whenever the printer's buffer is full. The
advantage is minor because the average transmission fate will be exactly the rate at
which the printer puts lellers on paper. Only during the last buffer's wonh of data is the"-"

264 processor free for other commands.

Customizing the BIOS

IJOoTuRUPT·DJUVE.... TERMISAL 110. One very useful enhancemenl is to make the
terminal into a buffered. interrupt-driven device. This requires a fair amount of code,

'-- perhaps more code than will fit in the BIOS, The cold start function mUSI set up the
interrupt veclors and condition the terminal controller for interrupts. Thcre must be an
interrupt handler to receive and buffer data. and the output code must send the data if the
tenninal is idle or buffer the dala for the interrupl routine to send if the terminal is active.
The user must be gh'en some signal-perhaps the break key, which has no use under
CP/M-to cancel any characters typed but IlOl yet processed.

Once this has been done an experienced user can type commands ahead of the
system. This is a feature that must be used to be appreciated. but once you've had it
you'll never want to be without it,

Testing BIOS Changes

Unless a BIOS change is very simple-a change in the size of storage or the address of an
VO port-you'd be wise to lest lhe change before generating a new system. It isn't easy
to give the BIOS a thorough test. but it isn't hard to give it a simple shakedown thai will
tum up any gross errors. The following lechnique will work for BIOS changes that don't
affect the action of me console.

'The testing method relies on the fact that all 8105 calls are made through the BIOS
'-- entry table. Prepare a small driver program to issue the service requests that will trigger

the changed code of the BIOS. Append lhe altered BIOS to the end ofthe driver program
source. with its origin sct just past the end of the driver code. Assemble the combined
program.

Load theasscmbleddriver and the test 8105 under DDT. Use DDT to alter some of
the jump instruclions in the real BIOS entry lable to point to the corresponding entries of
the Icst BIOS. Use the DOT Go command to run lhe driver program. with breakpoints in
the test BIOS (the SID and ZSID debuggers are useful in this case. for lhey allow you to
sct multiple, permanent breakpoints). Step the test BIOS through the changed code, At
the end of the test don't forget to do a cold start in order to refresh the real BIOS entry
table.

SYSTEM GENERATION

When you change the BIOS or the size of working storage, you muSt generate a new
image of the Monitor and store it on the bootstrap tr<lcks ofa disk. This is a fairly simple
process provided you understand what each step is meant to accomplish.

Be aware that some system vendors have their own versions of the system genera
ion procedure. We can't cover all the variations here. We'lIloolr,; at how a standard

"--" system generation is done. You'lI have 10 find OUI what extra aids or impediments your
system's vendor has added to the procedure. 265

The BIOS alld System Genera/ion

The Bootstrap Tracks

1lIe aim of system generalion is 10 gel a modified "ersion of the Monitor-CCP. BOOS,
and BIOS-written onto the boolslrap lracks of a diskette. It·s a simple thing in concept
but complicated by diskeue formaL

STANDARD ROOTSTII:AI'. The standard diskette forCP/M is a single-density. 8-inch one
with twenty-six, 128-byte seCIOrs per track. The first two lracks are always used for
bootstrap on such a diskette. That provides 52.128, or6656. bytes ofspace for the image
of lhe Monitor. 1be standard Monitor comes very near 10 filling thai spa~.

Till: PROBl.EM Ot- 810S SIZF.. When a BIOS expands wilh the addilion of sector
buffering logic and IQBYTE suppon. il oflen pushes the Monilor size above 6656 byles.
NOle that this is only the result of code size. The extra buffer space required for sector
buffering affects the location of the Monitor in storage. butlhe buffers aren't recorded on
the boolstrap tracks. All vendors have their own solutions 10 the problem.

Tm: No-Run'EKING SoumON, Some vendors keep lhe BIOS simple (and thus small)
by handling only 128-byte seclOrs regardless of disk dcnsilY. Physical sectors map
dirtttly to record numbers. Unfonunalely Ihat violates the IBM slandard for double
densily and oflen leads 10 reliability problems with double-density recording. It also
causes disk incompatibility, as \'endon who follow lhe IBM standard won't read

'-'128·byte sectors at double density.

TilE DoUBU:·LoAO BIOS Sol.UTION. Anolher solution is to make cold sian a IWO
step operation. The Monitor on lhe bootstrap lracks is recorded wilh a small, simple
BIOS. The full-funcLion BIOS is recorded logethcr wilh a relocation program as an
on:Iinary .COM file. 1lIe precoded command in the CCP is sel up to invoke the command
Ihat loads the larger BIOS. During cold Sian Ihe Monitor loads with a simple BIOS. The
precoded command causes the full BIOS 10 be loaded as a command. The command
relocates the BIOS dynamically and moves it into place. The problem is solved. but two
disadvantages follow. The full-BIOS command must be present on every bootable
diskelle, and a cold start (but not a warm one) takes longer.

Tilt: DoUBU:·DJ;....SITY SoL.UTION, An IBM standard double-densily diskeue has a
single-density firsllT'aCk with twenly-six, 128-bYle seclors.](S second track is double
density with the number and size of sectors desired. The extra capacily of the SttOOd
frack is usually enough to allow the full Monilor to fit the boolslrap lracks. Syslems thai
use the double-load solution with single.density diskettes may not need if on double·
density ones.

DoUBl.E·D£NSITl· TRACK O. Some vendors fomlal all tracks of the diskette to the
266 desired densily. That gives ample space on the 1.....0 bootstrap tracks. and simplifies the "'-'"

System Ge1leration

BIOS as well, for it needn'l treallrack 0 as a special case. However, such diskelles aren't
"IBM standard" (although the vendor may choose 10 overlook this fine poinl in the
documentalion). More 10 the point, diskettes from "IBM slandard" syslems can 'I be read
by these systems because Ihey expcclthe entire diskette to be recorded iltthedcnsity used
on track O.

TUE ROM SoUJnON. Some systems incorporate a ROM monilor pennancntly 10
caled in the highest addresses. Since it's there. the BIOS may as well make use of it.
Doingso may take enough code out oflhe BIOS loallow itlo fit on any bootslrap tracks.

01'1I.;R Cm"'flGURATIONS, None of the foregoing applies to systems thai boot from
5-inch diskettes, or from double-sided diskelles of either diameter. Here the arrange
menl of bootstrap tracks is entirely up to the vendor. although the bootstrap tracks will
always be the lowest numbered so thallhc OFF value of the Disk P"olrameter Block can
acrount for lhem.

The MOVCPM File

The CCP and BDOS are distributed as pan of a remarkable command called MQVCPM.
This command is cenlr.llto system generalion, and we must look at it in detail--first as a
file. then in execulion as a command. We'll give addresses in MOVCPM as it is loaded
in the TPA (assuming a standard TPA al 0100h).

'-
Tm; FUNCTION OF MOVCPM. The purpose of MQVCPM is to prepare and leave
behind in storage an image of the CCP and BDOS. relocated for the Storage size of the
system. That image can then be wriuen to Ihe bootslrap tracks by a different program.

TilE EXECUTABL.£ PART, MOVCPM contains several parts. AI its lowest addresses
lies an executable program whose functioo is to relocate the addresses in the CCP/BDOS
image to a different origin. When we speak of MOVCPM as a command we'll be
speaking of Ihis program.

Tm: BIT MAl', Following its execulable pan MOVCPM conlains a bit map with I bit
for each byte of the CCP/BDOS image. Where a bit is I the corresponding byte is the
most significant byte of an address. Relocation is done by adding a page (256-byle unit)
offset to each byte of the image thai is marked in the map. (The same relocation method
is used in MP/M, where such files are gh'en the .PAL-page relocatable-filelype.)

8001' LoAI)EIt SPACE, From addresses O9OOh through 09FFh, MOVCPM contains
space in which the vendor may place a bootslrap loader program. The final Monitor
image will be written to disk beginning from 0900h: this space detcnnincs Ihe contcnts
of the first and second bootstrap SeclOrs.

Not all boolloaders fill two sectors. If the vendor can filthc loader into 128 byles_ it
;S placed in O98Oh to 09FFh, leaving O9OOh through 097Fh cleared 10 zero. This

.......... causes MOVCPM 10 take special action, as we'll sec. 267

The BIOS (lIId System Generation

TilE VENI)()K'S wAo.;a. The vendor will have placed a loader in your copy of
MOVCPM. It is an absolute assembly with Ihc origin required by thc hardware ROM
that loads it, usually OOh or SOh.

THE CCP A:-10 BOOS bIAGES. From OAOOh through lFFFh (16OOh. or 5632
decimal, bytes). the MQVCPM file conlains the image of the CCP and BOOS. The
programs have been assembled 10 some origin. The siandard origin is 3400h. The
vendor may have replaced the standard programs with programs assembled 10 a lo.....er
origin in ordcrtomakeroom fora larger BIOS. It is usual (amove the MonilOrdown by 2
KB (BOOh bytes) 10 make room in storage for sector buffers. Therefore. your CCPI
BOOS image lIlay have an origin of 2COOh. 800h lower than the standard.

TilE DlsTRIHuTED 810S. AI 2000h. following !he CCP and BOOS images.
MQVCPM conlains a BIOS. This may be the BIOS thaI you can read in Appendix B of
the CP/M AII~ratiOlf Guid~. If so, il is useless in your system and of no inlerest. On lhe
OIher hand.)'our vcndor may havc inslalled a BIOS cuslomized for thai "endor's
standard hardware configuralion. In that case il may be perfeclly usable.

The MOVCPM Command

The fonn of the MOVCPM command is

MOVCPM size flag

The firsl operand, size, slales the size of smrage as adecimal number of kilobytes, It may
be given as an aslerisk, meaning "measure the present size." Theflog operand is either an
aslerisk, or omiued entirely. We'll deal wilh illater,

When you issue the MOVCPM command, the file is loaded inlo the TPA and given
control as usual,

SERIAL NUMIU:R CIIECKS, The command compares Ihe CP/M serial number in lhe
command againsllhe serial number in the active BOOS in high storagc. Iflhcy aren't lhe
same, it issues an error message and ends. MOVCPM contains safeguards so thaI il can 'I
be slepped past these checks under DDT. The resull is that MOVCPM for one person's
syslem can only be executed under thai person's Monilor, You can't run your copy of
MOVCPM under a Monitor booted from someone else's disk,

COMPRESSING A SMALL LoADER, If the space from 0900h Ihrough 097Fh contains
zeros, MOVCPM now copies the code image, from 097Fh to lhe end, downward by
SOh bytes. Thiscnsures that all bootslrap seCIOrs will be in use. If your loader is only 128
bytes (many are), the resulting addresses are

268

Loader:
CCP/BOOS:
BIOS:

0900h to 097Fh
09BOh to 1F7Fh
1FBOh for length of BIOS

System Generatioll

RELOCATIJI;G CCP ASD BOOS. MOVCPM uses its first operand to detennine Ihe
desired system size. If that was given as an asterisk. it tests each byte of storage until it
finds one that can't be modified and uses that size.

The command scans the bitmap and relocates each marked byte by thc difference
(in page units) between the standard system size of 24K and the specified size. Note that
this relocation faelOr is independent ofthe assembly origin of the BOOS and CCP. They
presumably are assemb[~ to an origin that leaves adequate BIOS space in a 24K system:
the relocation factor is the amount by which they have to be moved up in order to ha\'e the
same relationship to the end of the existing system.

MODIFYING TIU; LOG-ON MFSSACE. The MOVCPM command searches through the
BIOS area beyond the BOOS image. If il can find the char-Jcter constant k CP/M vers
2.2, CR. LF. it places twodedmal digits-lhe value oflhc syslem size-in the 2 bytes
preceding the string. This nice little service selS up the log-on message issued by the
BIOS (xxk CP/M vers 2.2) to display the COfTCCt storage size.

TilE SECOND OJ'ERANl> OF MOVCPM. The second, flag, operand of MOVCPM
detemlines what il will do after relocating the CCP and BDOS images. If the second
operand is omiUed. it will copy those images to the proper place in storage so that they
are located althe correct address for their new origin. MOVCPM willihen jump to the
cold start entry point of the newly moved BIOS. Unless your vendor has installed a
customized BIOS in MOVCPM. this is I10l likdy to produce any useful result.

The second operand should always be given as an asterisk. That tells MOVCPM 10
tenninate with a waml Slart. leaving the relocated images behind in storage.

Saving the Relocated CCP and BOOS

After MOVCPM temlinales working storage from 0900h through 1FBOh conlains lhe
image of the boot:strap loader. CCP. and BOOS Ihat you want in your system. It lacks
only your BIOS. II should be saved at once with lhe SAVE command:

save 31 name.COM

Now you can retrievc those imagcs with DDT. These two steps (MOVCPM and SAVE)
can be done once when you receive CP/M: they needn't be repealed unless the size of
storage. and hence the origin. is changerl.

Adding (he BIOS

You have assembled and lested the new BIOS. It has been assembled 10 Ihe absolute
origin it will have when the system is running. All that remains is to attach it (0 the
images of the CCP and BDOS. and put the combined program image on disk.

LoAD THE CCPIBDOS IMAGE. Load the relocated CCP and BIOS (the saved .COM
file) under DDT. The BIOS will go into this image beginning al 1F80h and extend for 269

The BIOS and System Generation

some length. Use the DDT fill command to fililhat area with some known value: 00h. or
perhaps E5h. -....-/

COMPUTE nlE LoAD OtTSET. Your 810S has its assembled origin. but you want to
load it inlO storage at 1F80h. Usc the DDT hex command to find the difference between
the two addresses:

h1f80,origin

supplying the origin of the BIOS. The difference between the two numbers is the offset
that you want DDT to use when loading the .HEX file thai contains lhe BIOS. The
difference will be a large hexadecimal number. Load the file:

ibiosname.hex
rdifference

Then usc the DDT display and list commands to make sure thallhe BIOS image is in fact
now in storage from 1FBO 10 its end.

TilE PIl£C()DED Cm.tMASD. It's now time to install a precoded CCP command if
you'll use one. Usc DDT 10 display the 129 bytes beginning at CCP+7 (0987h-DAD7h
with a small loader, or DAD7 to DA87 with a 256·byte loader). The byte at CCP+7 will
contain the length of the command string in hex. The command itself is entered into the -..../
buffer beginning at CCP+8. It may be 127 bytes long. and must end with a byte ofOOh
(not counted in the length). The easiest way to prepare the command is as an assembly
program:

CCP

CMDSTART
CMDEND

Eau
ORG
DB
DB
DB
END

098DH ; - or DAOOh?
CCP+7
CMOEND·CMDSTART
'THIS IS THE COMMAND'
o

270

Assemble the program beforehand. then load its .HEX file with DDT.

COMPUTE nit: ESD ADDRESS. Examine the BIOS listing and find the end address that
encompasses all code and initialized values but which excludes uninitialized buffers and
tables (theyon·t be written to disk). Add the difference value to find the location of the
end in the storage image. It will usually agreeith the end address displayed by DDT
after it loaded the BIOS file.

SA \'1: THE MONITOR bIAGE. Once again. sne the merged images as a .COM file. Use
the number of pages thai will save all of the image through the end of the BIOS.

System Generation

The SYSGEN Command

SYSGEN's SOURCES. The purpose of the SYSGEN program (supplied by your
vendor) is to write an image of the Monitor onto the reserved tracks of a disk, SYSGEN
will obtain the Monitor image in one of two (or possibly three) ways. Most SYSGEN
programs take no command operand. Usually the command requests the leiter of a drive
that contains a diskelte from whose bootstrap tracks it can read a Monitor image. If me
question is answered with a null line, the command assumes that the image is already in
storage where MOVCPM leaves it (09OOh and up).

The SYSGEN distributed to vendors by Digital Research has the ability to take a
lileref as its operand. If a lilcref is given. that SYSGEN will load the namcd lile at
0900h and use it as the Monitor image. You might experiment with your vendor"s
SYSGEN to see if it has this ability.

USI:"iG SYSGEN. The first SYSGEN is done as follows. Prepare a new diskene and
mount it. U~ DDT to load the saved Monitor file into storage. End DDT. Call
SYSGEN and tell it (with a null response) that the image is already in storage. Give it the
ICller of the drive where the new diskette was mounted. It copies the image, beginning at
09OOh, onto the bootstrap tracks of that diskelle. The diskette can then be put in the
A-drive: a cold start will load the new Monitor.

LATER SYSGENs, Once the Monitor is on a disk and has been tested, that disk can be
used as the source disk in ()(her SYSGEN operations, as described in Chapter 8. You've
changed the Monitor, and the latest version should be transferred to all the bootable
diskettes in the library. That's a lediousjob: defer it until you are quite sure Ihatlhe new
BIOS works well and no further changes 3rc needed.

27/

Glossary

Address: The location of data in file storage or working storage. Usually an inlegcr that
is the index of the storage unit (the byte or the record) in which the addressed data
begins.

ALGOL (ALGOrithmic Language): A programming language designed by an inter
national committee in the early 196(rs. ALGOL introduced many fundamental
concepts 10 the field. Widely 3\'ailable in Europe butlitlle used in the United States.
where it came juslloo lale to supplant FORTRAN.

Algorithm: A step-by-step plan for the solution of a problem. See the first seclion of
Volume I of Knuth's Art o/Computer Programming for a detailed history and
definition of this useful word.

Allocation Block: TIle smallest unit of disk storage allocated to a file by the CP/M or
MP/M Monitor. Ranges in size from I to 16 KB.

ANSI (American National Standards Institute): The commiltee thai oversees volun
tary manufacturing standards in the United States. ANSI reviews and publishes
standards documents wriltcn by committees Ihat arc usually administered by
industry or professional organizations. and represents the United States in the
International Standards Organization (ISO). S~~ EJA. eDEMA.

APl. (A Programming Language): A programming language designed by Kenneth
Iverson in the 19605. Intended for the concise ex.pression of algorithms. especially
those relating to arrays of data, APL is an ex.ccptionally elegant language, mueh
loved by those who know it. It is rarely used on small computers due to its special
character set and its need for a complex. interpreter to achieve reasonable speed.

Applicatwn: Any use of a computer not devoted to managing the computer's own
affairs. Applications are what computers are all about; they pay the bills.

Architecture: The design of a computer system, in panicular its instruction set, but also
its interfaces and 110 devices. 273

274

Glossary

ASCII (American Standard Code for Information Interchange): A standard defin
ing the binary values of printable and control characters for computer slOrage. The
ASCII representation ofcharacters is used in all computers excepllhose from IBM.

Assembler: Aprogram that translates the texi of a program wrinen in assembly language
into a machine-language program.

Assembly Language: A nolation uSfil for writing machine-language programs in won:ls
and numben. Each machine design has its own unique assembly language. Su
Assembler. Machine Language.

Backup: Making and preserving copies of files in order to minimize the cost of the loss
or destruction of data. As an adjective. the copies so made.

BASIC (Beginner's AII.Purpose Symbolic Instruction Code): A programming lan
guage designed by John Kemeny at Danmouth and intended for instructional use,
Widely available on small computen; because of its supposed simplicity and
because of the ease wilh which a translator can be implemented.

BCD (Binary Coded ~imal): A representation of numbers in computer storage in
.....hich each group of four bits represents one digit of a decimal number.

BOOS (Basic Disk Operating S)'stem): The hard are-independent part of the CP/M
Monitor. The BOOS is always resident in orking storage. It executes service
requests for programs and manages the Iile system.

Binary: A number system to the base 2. much used within computer systems, Su Bit:
Byte; Floating Point: Decimal; Hexadecimal.

BIOS (Basic UO System): The pan of the CP/M Monitor that controls the disk drives.
terminal. and printer for the rest of the system. The bulk of the BIOS is devoted to
handling disks. so the BIOS is usually supplied by the manufaClUrer of the disk
controller cin:uitry.

Bit: The fund.l!.mental unit ofcomputer storage; soon for "binary digit." A single bit can
represent either the value zero or the value one (true or false, on or oro.

Board: S~~ Cin:uit Board
Bootstrap: (I) As a verb. to initialize an operating system. (2) As a noun, the program

that loads the resident part of an operating system.
bps (bits per s«ond): A unit of measure for the rate of transmission of data. S~~

Transmission Rate.
Hug: An error, especially in a program. A bug is almost always the result ofa mistake or

oven;ight on the pan of a human being. See Debug: Glitch.
Bus: A set of electrical conductors. each with a defined use. so arranged that cin:uit

boards can be plugged into the bus in parallel.
H)'te: A unit of computer storage: a group of eight bits. The Contents of one byte can

represent an integer from 0 to 255. or an integer from· 128 to +127. or one
character symbol. What the bytc's contents really stand for is determined by the
program that reads and processes it.

C: Not an acronym. ''C'' is a programming language designed for use in writing
operating systems. Used at Bell Laboratories to write the bulk of the UNIX
operating system, C has become available on small machines. C is an excellent
alternative to assembly language for systems programming.

Glossary

CBEMA (Computer and Business Equipment Manufacturer's Association): The
trade committee that administers standards committee X3 for ANSI. Committee X3
and its subcommiuees have written most of the programming language standards
now in effect.

CCP (Console Command Processor): The pan of lhe CPIM Monitor lhat reads
commands from the terminal and initiates lhem. 1be comparable program in MPIM
is called the Command Line Inlerpreter (CLI).

Chip: See Integrated Circuit.
Circuit Board: A plastic or l'iberglass board carrying metal traces that suppons and

connects integrated circuits and other electronic components. It usually represents
one functional unit of a computer.

COBOL (COmmon Business-Oriented Language): A programming language in
tended for Ihe expression of problems in commercial data processing. Standardized
by the American National Standards Institute. COBOL is oflen required in federal
data processing contracts. COBOL compilers are available for CPIM.

Command: A requestlhat maybe made by a uscrofanoperatingsystem.lnCPIM. most
commands are implemented as programs that reside in disk riles.

Command language: The SCi of all commands a program iII acccpc and the rules for
Iheir formation. In CP/M. commands have the form "verb operand(s),"

Compatibility: A characteristic of programs that are different bUI have Ihe same
purpose. such that each can process data prepared for the olher. For example. two
BASIC interpreters are compatible when each accepts and correctly processes
programs ritten for the olher. Compatibility may be "upward." that is, one way
only. For example. diskettes recorded under CP/M 1.4 can be read by CP/M 2, but
the reverse is not necessarily true: thus CP/M 2 is "upward compatible" with CP/M
1.4.

Compiler: A program thai lranslates the lext of a program written in a programming
language into a machine-language program. The machine-language program that is
lhe output of the process (the object program) can be stored in a file for later
execution.

Computer: A machine that follows a step-by-step program to organize data represented
by pallcms of eleclric pulses.

Computer System: A computer and its associaled 110 devices and programs: the whole
forming a single machine for organizing and presenting information to people.

Control Character: A binary value whose function is to control the form, or regulate
Ihe transmission. of data. ASCII defines 32 control characters that can be sent from
a terminal keyboard by holding the conlrol shift key while pressing another key.

Corrtttness: A characleristic of a program (hat delh'ers the expecled output in lhe
expcrted fonnat. Much theoretical work has been done on ways to create correct
programs from the Slart. as opposed (0 debugging them after they have been
wrillen. Many good things ha\'e come of this wort: (su StruClured Programming:
Top-down Design) bUI no magic solutions.

CPU (Central Processing Unit): That part of a computer (hat executes instructions. In
small machines the CPU is usually a single integrated circuit.

275

276

Glossary

Debug: To find. analyze. and correcllhe erron that will inevitably be present in all bUI
the most trivial of programs. "The second most enjoyable. and usually the most
time-consuming, part of creating a computer program.

DttimaJ: A number system to the base 10. used often by human beings alld occasionally
by computers. Set' Binary; BCD: Hexadecimal.

Delimiter: A marker that separates one unit of a program statement or command from
another. Typical delimiters arc the space and tab characters. but any punctuation
may act as a delimiter, depending on the program that interprets the data.

Oir«lory: A designated area on a disk or diskcuc in which the operating system keeps a
list of all files present on the disk and the location of their contents.

Disk: (I) A rotating disc coated with magnetic material. on which a compulerean store
data. (2) Casually. the term for any use ofdisk ordiskette. as in "I'll just save this on
disk ..·

Disk Orh'c: The mechanical device that supports a disk or diskelle. rotates it. and reads
or writes on it on command from a computer program.

Diskette: A disc of plastic, coated with magnetic material and cased in a jacket, on
which a computer can store data. First used by IBM to give their service personnel a
portable means of storing diagnostic programs. Widely used with small computers
because of the low cost of the disk drive that handles it, despite the fragility of the
medium.

Disk Parameter 810ck (DPB): 1be data structure, kepl by the BIOS, that tells the
BOOS all it needs to know about a disk in order to do space management.

Disk Parameter Header (DPH): The data structure, kepi by the BIOS. that tells the
BOOS where to find the DPB and OIher areas it needs.

Editor: A program whose purpose is to create or modify files under the immediate
control of a human being. A progr:lmmer. writer. or cleri.: is likely to spend more
time with an editor than with any other program.

[IA ([IKtronic Industries Association): A manufacturer's association that adminis
ters standards committee C83 for ANSI. That commiuee wrote standard RS-232-C
that specifies the serial data transmission interface used by most tenninals and
printers.

EXChange Format: The format of 8-inch diskettes that can be read by any CP/M (or
MP/M) system-single-density recording with twenty-six. 128-byte sectors per
track, 77 tracks, initialized to OE5h bytes and IBM standard sector addresses.

Extent: A unit of disk storage used by the CP/M or MP/M Monitor. Either 16 KB (a
"logical extent") or the amount of space controlled by one directory entry (a
physical extent. from 16to 256 KB).

Hie: A named collection of data stored in a computer system. In CP/M and MP/M a file
consists of one or more directory entries and a series of 128-byte records containing
the file's data. Su File Storage: File System.

file Control Block (.'CB): The data structure prepared by the programmer to hold
information about a file while the file is open.

File Storage: Any of the more-or-Icss permanent media for storing computer-readable
data. for instance, diskelle and tape. Opposed to Working Storage ("RAM").

Glossary

File System: The component of an operating syslem that allows the user to create and
manipulate files. The file system includes the functions of directory management
and disk space managentent, and sometimes the utility programs thatlransfer files
from device to device.

Floating Point: A representation of a number in which the significant digits of the
number are stored as one integer (the fraclion), and lhe magnitude of the number is
stored as another integer (the exponent). The magnitude represents a power of the
number base (which may be 2. 10. or 16) and may be thought of as the position of
lhe decimal point in the fraction.

noppy Disk: Casualtenn for diskelle. used because the diskette is flexible. in eontrast
to the hard metal disk that preceded il.

Format: To write all sectors of a disk or diskeue at the desired density and sector size.
Minor details of fonnalling (density of track urn. fill byte value) can cause
incompatibilities between systems. Set: Exchange Format.

FORTRAN (FORmula TRANslator): One of the first true programming languages.
designed to express mathematical problems. A wonder for its time. now thought to
be difficult and error-prone by comparison with. for example. PUI or Pascal. Vcry
common because of lhe huge number of exisling programs wrillen in it and the
relative case of implementing a compiler for it.

Garbage: Programmer's term for unpredictable or unwanted data. for example the data
thal follows an end-of-file mark in a file.

Glitch: A transient. unrepeatable error in the operation of a machine. usually an error in
the hardware.

Hardware: The mechanical and electronic components of a computer system, as
opposed to the software. which is equally. or more, important.

Hexadec:imal: (From hexa-. meaning 6, and decimal, thus "the six·ten system."') A
number system with the base value 16 and digils 0 to 9 and A to F. A convenient
system for programmers. for a group of four binary bits can be represented as a
single hexadecimal digit. Binary values are unsayable (e.g.. "'110 10100"), but their
hexadecimal fonn can be wrinen. pronounced, and remembered (e.g .. "1)4"').

Index: A table relating the key values of the records in a file to lhe addresses of those
records within the file. See Key.

Inpul: (I) A signal received by a compUler from another device. (2) Dala given to a
computer system. as "These numbers are the input for thal program." (3) (ungram
matical) The act of sending data to a computer, as "1'11 just inpul a control-c here."

Instruction: (I) One of the elementary operations that a particular computer can do. (2)
The operation code that invokes that operation.

Instruction Set: The set of all instructions that a CPU can perfoml. The design of Ihe
inslruction set is crucial 10 the speed, ease of progl"3mming. and eventual sucress of
the machine.

Integer: A number with no fl"3ctional part: in computer storage. a group of bits
interpreted as a binary integer. CP/M languages usually support imegers of 16 bits,
treated as numbers in the range -32768 to 32767. Su Binary: BCD: Floating Point:
Hexadecimal.

177

278

Glossary

Interface: (1) The point at which two different things come into contact. (2) The design
of the connection between two electronic devices. such as a computer and an 110
device. (3) The conventions used for passing control and infomlation between two
programs. (4) The rules and conventions for the use of a program by a person (the
"man-machine interface").

Interpreter: A program that examines the text of a program written in a programming
language and carries out the machine-language inSlIllctions that the program
intends. Both the interpreter and the program being interpreted arc present in
working storage during the process. See Compiler.

I/O: An abbreviation for "Input and Output." Loosely, an abbreviation for all exchanges
of data between a computer and the outside world. See Input: Output; and I/O
Device.

1/0 DC\'ice: A machine attached to a computer which. by exchanging signals with it.
connects the computer to the outside world. For examples see Disk Drive: Printer;
Terminal.

Key, Key Value: A field within a data record that contains unique information that can
distinguish that record from all others in the same file. Used in a file index, where
each key valuc is associated with the address of the record having that key.

KB (Kilobyte): 1024 bytes, a common measure of computer storage. See Byte: MB
(Megabyte).

KSR (Keyboard Send-Receive): Tenn for a typewriter printer thai has a keyboard.
Latency: The time required for a desired sector of a disk or diskette to rotate under the

read-write head. Usually given as one-half the total rotation time.
Linker: A program that converts a relocatable object program into an executable

program by supplying an origin and the addresses of its external subroutines.
Load: (I) To copy a file (especially a program) into working storage. (2) to convert a

.HEX file into a .COM file with the LOAD command.
Logical: Computer jargon for simulated, as opposcd to physical. mcaning tangible. For

example. CP/M may partition a physical (real), hard disk into smaller. logical
(simulated) drives.

Machine Language: Computer operation codes and addresses, especially as repre
sented in storage. A machine-language program is a sequence of bytes that repre·
sent operation codes and addresses. See Assembly Language.

MB (Megab)'te): I .048.576 (1024 times 1024) bytes. a measure of computer storage.
See Bytc; KB (Kilobytc).

Memory: Poor teon for computer storage. One rare and expensive type of computer
storage (associativc storage) bears a faint rescmblance to the organization of human
memory, but in gcncral thc usc of thc tcnn cncouragcs the misleading idea that
computers can "think:'

Memory Bank: A term from the scicnce fiction of the 1950's that has no mcaning in
modcrn tcrminology: oftcn used by journalists unaware of the distinction between
working storage and file sto',1ge. or of the many kinds of the laller.

Monitor: General teon for the part of an operating system that resides peonanently in
working storage, providing services to other programs. See BOOS; BIOS; CCP.

Glossary

Nybble: A cutesy term for a group of four bilS - one-half a byte. or a hex digit.
Object Program: The representation of a program in machine language, as delivered by

a compiler. May include relocation infonnation.
Operating System: A collection of programs that apply the computer to the manage·

ment of tnc computer and ilS work.
Operation Code: A number lhal. when recei\'ed by a CPU, causes it to do a cenain

inslruclion.
OUlput: (I) A signal sent by a compuler to another device. (2) Data received from a

computer system, as in "This outpul looks peCUliar:' (3) (ungrammatical) The
compuler's act of sending data, as "It's outpulling good stuff now."

Parameter: In software, an element of a command or statement whose value is set from
outside the program at the lime of execulion, ralher Ihan being set althe time lhe
program is wriuen (a constant) or being developed from computation (a variable).

Pascal: A programming language designed by Nicolas Winh for use in lhe teaching of
programming and the design of algorithms. Currently very popular and widely
available for small computers. An excellent ahemative 10 BASIC.

Ph}'sical: Computer jargon for tangible or real. Su Logical.
PUI (Programming LanguageIJ (Roman one»): A programming language firsl pro

moIed by IBM as having the besl of both COBOL and FORTRAN (i.e., as being
good for both commercial and mathematical problems). Now standardized by
ANSI and available for small computers. An alternative 10 Pascal, especially where
compatibility with a large computer syslem is needed.

Precision: The number of digils that can be stored. given a panicular representation of
numbers. Equivalent 10 "accuracy," An auempt to store a number wilh more digils
Ihan Ihe precision lhe representation allows results in a loss of infonnalion. A
noating-point number drops the leasl significant digits in that case; an integer
representation will lose the most significant digits, resulting in a meaningless
value.

Printer: A device that prints on paper under the direction of a computer.
Program: A step-by-step plan meant for computer execution. S~~ ProgrJ.mming lan

guage; Algorithm.
Programming Language: An anificiallanguage designed to make it easy to express

problems for computer solution. See Assembler; ALGOL; APL; BASIC COBOL;
FORTRAN; Pascal; PUI.

Processor: The CPU with ilS interface and timing circuits. Usually implemented as a
collection of integraled circuits on a single-circuit board.

PROM (Programmable, Read-Onl)' Memory): Like ROM, but ilS contenlS can be
changed (although usually they are oot).

Protocol: An agreed upon set of rules for communicalion. especially belween two
machines,

RAM (Random Access Memory): Engineer's tenn for fasl-access computer storage
(See Working Storage); not used in this book because (a) the readers are not thought
to be engineers and (b) the term is imprecise: disk storage is also capable of random
access.

279

280

Glossary

Record: One unit of data in a file. In CPIM files, the lenn has two meanings. A data
record is usually a line of characters terminated by a return, lincfecd character pair.
A record as the CPIM Monitor knows it is a unit of 128 bytes.

RO (Receive Only): A term for a typewriter prinler that lacks a keyboard.
RiO (Read Only): The state of a storage medium that is protected against modification.
ROM (Read-Only Memory): Fast-access storage whose conlents are fixed al the

factory and cannm be changed by the computer. Used in some computers for the
part of the operating system that is always resident in working storage, to eliminate
the need of loading it. Also used to contain a bootstrap program that loads the
operating system and then disables itself.

RS-232: The standard for interconnecting tenninals and other serial devices with a
computer. See EIA.

RfW (Read and Write): The state ofa storage medium which the computer can modify.
S-IOO Bus: A bus design commonly used in small computers. Originally designed

around the Intel 8080 CPU chip, now used with several different CPUs. Standar
dized by the IEEE (lEEE-696). See Bus.

Sector: See Track.
Seek: To move the head of a disk drive 10 the required track.
Seek Time: The time it takes to perform a seck. Given as either "expected" seek time

(one-half the time to seek the full width of the disk) or as "track-Io-track" seek time.
Service Request: Act of a program in calling upon a-Monitor for some service. The

service provided by the Monitor.
Skew: An arrangement of data on a diskette such that sectors whose contents would

logically be adjacent are in fact separated along the track. The sectors are inter
leaved so that sector 11 is separated from sector 11+ I by some number of other
sectors (the number is the skew factor).

Sortware: Programs, or a program; usually opposed to hardware. The set of programs
used with a particular computer system.

Source Program: The representation of a program as a sequence of characters readable
by a human being. The foml of input to an interpreter or compiler.

Spooling: (from SPOOL, Simultaneous Peripheral Operation On-Line.) An operating
system function in which data meant for the printer are collected on disk to be
printed later, during the execulion of the next program. In small systems the tenn
has been applied incorrcctly to the action of a utility such as Digital Research's
DESPOOL, whieh prints disk files concurrcntly wilh the execution of other
programs. CP/M and MP/M do not have a true spooling function, for they do not
collcct program output automatically: the user must take special action to direct Ihe
output 10 a named disk file.

Standard: An authoritative, formal definition of an interface or a programming lan
guage. See S-I00 Bus; RS-232; ANSI; ASCII.

Structured Programming: A collection of techniques for programming thai arose from
theoretical work in program correctness. most of which can be summarized in the
words "discipline" and "forethought."

Terminal: Combination of keyboard and display tube (video temlinal) or keyboard and

Glossary

print unit (typewriter tenninal); the point at which a human interacts with a
computer.

Top-down Design: A technique of structured programming in which the program
design is stated very simply at the first level, then that statement is expanded into
subproblems each of which is stated plainly, then each subslatcment is in its tum
expanded until the statements are at thc level of detail supported by the program
ming language to be used.

Track: An imaginary circle traced over the surface of a disk by its read-write head, along
which data is stored. All diskene drives. and some disk drives. divide the track inlo
arc-shaped sectors of equal length, and read or write only complete sectors on any
operation.

Transmission Rate: 1be rate at which bits an: sent over a communications Iioc.
Measured in bits per second (bps). 1bc standard rates an: 110 bps. 300 bps, and
successive doubles of 300 through 19.200 bps.

Utility: A program whosc purpose is to copy d:lIa from one place to another with liule or
no processing or reformaning.

Variable: A named location in working storage. used to hold values during the
execution of a program.

Word: The unit of storage that is natural to a panicular machine's architecture. For most
small computers the byte (8 bits) is also the word. Almost always a number ofbilS
that is a power of 2 sueh as 8, 16. or 32. although some machines have used words
that were multiples of 6 or 12 bits.

Working Storage: Fast-access storage from which the processor reads its program and
in which the programmer saves variables. Su RAM: ROM: PROM.

28/

Index

SSS.SU8 Ii\(-. 121. 188
.S$S fikl)~. 208
.A$M filel)·~. 174
.BAI< filet)'PC'. 100. 208
.COM filcl)'pe. 66. 69.163.175.176
.HEX filcl)'pc. 165. 114. 175
.lNT filcl~pc. 165
.PRN filclypc. 174
.REl filelHIe. 165. 175. 176
.SUB filclype. 127
.SYM fil)·pe. 11.\

absuxtion. 118
~.18

address. 145
a1pithm. '}
alloc_ion block, 150. 204. 209. 230. 231
allocation .'ector. 236. 238
alphawizing_ 142
ambiglIOUs fi1crd. 67. 84.187.205
ANSI. 139
application. II
archi,'c program. 222
ASCII. 139

alphabc:lic.141
CAN. 14)
cimomOcx.141
collating 5eqllmCC. 142
COQlrOI dlano<;:ltf1,. 142
CR. 142. 159
lkvia controls. 142
EM. 143
ESC. 143
formal c«ecton, 142
LF. 142. 159
punctuation, 141
SUB. 143. 159.206
up-am'.>w.141

ASCII file. 142. 159.206

~mbkr. 10. 173
absolute. 114
dir«ti\"c. 114
macro. 117
relocating. 175

usembkr direcl;'"C. 177
ELSE. 177
ENOM. 179. 182
IF. 177. 180
lAP. 118
IAPe. 178
MACLlB. 18l
MACRO. 179. 182
REPT, In

assembly bni:\IlIlC. 10. 165. 17J
auicnmrnl chan. 89

bal;".k~ .key. 64
bac-kup. 32. 54. 123. 126

in MP/M. 127
BAT: devi~. 88
baud rdle. 23
BCD. 138
BOOS. 41, 148. 183. 185.249.269

eonsole input. 131
dirtttOl)' search. 205
fi~ seryica. 204
and Z80 I!'plolers. 195

BOOS error. 7Q. 75. 76
bcnchnwt.:. 167
buwy fi~. 160
binary integer. 137
bina!)' s)"'slem. 136
binary.wded o;\c('imal (BC[\). 138
810S. 41, 148. 183. 186. 244

cold Sian. 246
enl!)' table. 244
READ. 252
seeM buffering. 254. 256 283

284

I"dex

SECTRAN. 2~9. 2$1
SELOSK.248
sni,,1 110. 2S8
SETOMA.2S2
SETSEC.2S2
SETIRK.250
skew tabk. 250
WRITE.2S6
WAITE O. 2$1
WAITE 1. 251
WRITE 2. 2$7
,.-me buffrnn" 254-256

bll. IlS
numbeD in " b}v. 136

"""'.f<)
boolabk disl.C1I(. 60. 119
boolsU'ap. 60. 61. 119. 2~
boocwap IoJder. 61. 119.268
~ IIxli:s. 150. 265""""'..
buffer. 8
M.19
b)'\e 18. 135. 145

call. 8
CCP. 41. 43. 61. 185. 186. 205. 248. 269

rommrntli. 62
prompt. 60. 62
and SUBMIT. 128

cenmll proctS~il\g unit (CPU). 16. 18
<;hanging disketteli. 75
circuit board. 19
Circll'l card. 19
CISUB.LIB. 197
close: (a file). 156
wid SIan. 61. 70. 246
rollaling 5eqlreocc. 142
command. 43. 61
oom~nl. 62
DOT, 189
OIA, 67
dri"mxIe.70
ERA. 13
LOAD. 175
REN, 72
SAVE, 190
STAT. 71. 77
SUBMIT. 127
TYPE. 78
USER. 125
XSUB. 130

command language, 43
command operand. 43. 186
COlnmand process. 43. 61. 66. 69
command tail. 186
command >"Cfb. 43
compiler. 10.45. 163
compiler. ;1

compIlt". ('rime. 6. 56
compulcr stores. 50

CON: devICe'. 1J1. 196. 199.258
rondiliOlUlI ;us.embl,·. 177
Coniole Conumnd Processor (CCP). 43
console mput. 196
«Insole OUtput. 199
conwltmls. SO
conuul cNno;t~rs. 59. 142
rorumI kc:y. 59
conuol<. 61. 7S. 196.200
control-p. 79. SO. 91. 196. 199
rontrol·$. 78. SO. 196. 199
rorumI-u. ~
control-.... 6J
conuol-z. 92. 206
copy1lllli«nsrd $Ofl..'UC. 120. III
COSUe.L1B. 200
CP M 1.4. lSI. 157
CP M ''m4IIU. ISJ
CM.I·86. 18. I~. 14-l
CP ~Ef. JJ. J7. I~. 22$
CPMEOU.LlB. 181
CPU. 16
CAT: devICe. 88

Wli ellCf)·pllOlI. So6
dall IT1JIp. 2l)1

dill ~llm)'. 55. 124
dalabloK. 47
DDT. 1119

and ~MlIIt 7. 185
in s)·stem ~nention. 269

debul. 10. 1119
debIIu,nllids. 189
default buff~r. 186.205
(\<rault dri..e. 202. 247
(\<raUII dri..erode. 70. 185
(\<raUII FCB. 186.20S
delimiter. 43
DESPOOL. 260
devitt independence. 43
DIA command. 62. 67. 68
DIA file anribute. 76
directltCe~ss. 157. 2Q.1. 212
direcl read. 213
direct write. 114
direcl;'·e. 177
dir«tury. 27.150.151. 2111. 236. 257

~mibules. 222
eheck veelor. 236. 239
COfltentS. 220
data map. 224. 231
e~tent number. 223
fl'tt anribules. 223
record counl. 224
~SC:l'"I'ed auributes. 223
scan:h. 205
SIze. ISO
user cOlk. 111

dirtttory check ,·«tor. 239
di~ drh..., iKli,·ation. 238

d,~ o:wpnizaUOll. 148
Di~ Panmetn Block (DPB). 232
Disk Panrn<:t~ HeaMr (DPH). 249. 2SO
disk prolection. 74. 75
disk space management. 229
d,skelle.24

bool:able.6O. 119
eve of. 53. 117
COlTIpOItibility. 29. 30. lSI, 266
6eu$ity ufo 28
diameters. 28
exd!an&e. 29. 30
exehange fOfJnal. 29. JO
format. 241. 266
formaning. 119
hard· sectored. 28
hiStOry. 29
hole ~inforcern<:lIt. 118
IBM 5Undard. 30. 241
p;:ket. 24
l.belling. 118
preparation. 118
sector Sil.e. 28
sides. 28
soft-sectored. 28
storage. 117
t)-ptS of use. 122
,,·rite·protect 1I(l(d!. 118

diskette dn,~. lS
head cleanmg. 118

distribution d,~ene. 29. 121
D~lA address. 205
DPB. 232. 249

ALV.236
BLM.233
aSH. 233
CKS.236
Dfl.M. 236
DS~I. 235
EXM.235
OFF. 237
SPT.232

OPSUB.L1B.216
drive selection. 26
dri'·ecode. 65. 68

lIefaull. 65. 202
ill FCB. 202
.nvalid. 69
"'-lIh command "em. 69

dn,·ecode command. 70

ED. 44. 100
curren! ChaT3Cter. 101
current line. 101
error messlliO. 105
uample ufuse. 102
hne IIUmben. 112
macro coml1Wlds. 115
subc:ommand A. 106

Index

subrommllOO B. 109
s.ubcommlloo C. 110
subcommand D. I])
subcommand E. 103
subcommand F. 114
subcommand H. 107
SUbrommand I. III
subcommllnd K. 113
subcommlllld L. 109. 110
subcomm:ltnd M. 115
suboontmand N. 115
SUbrommand " ..", ... 110
subcommand O. 107
subcommand P. 108
subcommand Q. 103
SUbcommand S. 113
subcommand s~·ntu. 105
subcommand T. 107. I])
subcommand U. 10$
5IJ1xonurwld II. I~. 106
lOuboommand W. 107
uppercase commands. 111. 114

edil session. 100. 102
editor. 44

eooc-epts. tOO
full-screen. 45. 101
line. 102

end of file. 143. 159. 206
end uf line. 1$9
8080 CPU. 18
8085 CPU. 18
8086 CPU. 18
enter key. 59
entry poim. 176. 177
ERA command. 73. 98
error message handling. 188
~ se<.j1lC1ICC. 143
estilNting file. siu. 32
e,":llU3ling sott"'3l"C. 51. 166
exchanj!e format. 29. JO
execute. 8
explicit file.~f. 67
extem. 152.209.212.213.220.231.239

logical. 152. 1$3
physical. 152

extent number. 203. 205
uterul ~f=nee. 176

feB. 154.202.223
etlrretlt TttOIlI. 204
4Ua map. 204. 224. 231
default. 186
direct address. 2().t
drivccO<k. 202
exrem number. 203. 223
file.twne.203
filetype. 203
~ <:aunt. 203. 224
51 b)"te. 203
52 b)1e. 203 285

186

IIJdex

f~ 5Ofl..~. 120. 121
file:. 8

ASCII. 1$9
bllwy.l60
line. 1S9
,"'1111 hoks. 1.58

file JUribo.iIC. 76. 221
arch,>,.:. 222
DIR. 76. 222
RIO. 76. 8S. 222
RJW. 76. 222
~l1ing. 225
SYS. 76. 85. 222

file amibulcs. 71
file buffer. 205
file close. 209
File Comrol Block (FeB). 154. 202
file Cn:Jl;OO. 208
file ddelioo. 208
file dllfflory. ISO
fik input. 204

dlr«t l\'ad. 213
file outpul. 207

d,,~c:1 ,,-me, 212. 214
file: pomion. 214
file n:name. 208
file~ allocalion. 152.2'09.213
file S)"Slcm. 8. 27. 42. 65. 218
filenarr....66
fi~f. 65
ambi~. 67. 84. 187. 2l:t'i. 226
a5lerisk ,no 67.187
as ronunmd~. 186
c:\p1icil. 67. 22j
in FeB. 203
qutSl10n mark in. 68. 187

filetypc. 66
Cl)'I"enllQllal. 66
in fCB. 203

floating point. 138
formal (a diskene). 119
full'5CTCcn editor. 45. 101

hand.haking. 80
hard disk. 31. 124

backup. 126
head en~h. 31
in MPIM. 127
organlzinl!. 124

hard,,·al'e. 7
heu(lecll"al. 136
HEXSUB.L1B.216
h'llh-ordcr bll. 137

10 tiSlJlIlllXnt. 87
IBM slandltrd disk~ formal. 30
1EE£..696 $landard. 20
IndcJl.214
Inpul.5
mpuHlutpul (110). ~

,ltSUUC:lion. 5
iMUuction ~. 6
iMllrancc. 54
llllcg<'f. 131

signed. 137
unsigned. 137

intmace cimlits. 18
In'crlnse. 250
imermediate code. 165
imCrpll'lcr. 9. 45. 162. 165
IOBYTE. 184,247. 26l
ISO. 139

keyboard use. 58
kilobyte. 18

IJnguage ,-,"J§I: smdies. 167
luguJ&c compatibility. 166
lJleocy. 31. 250
least sIgnifICant bi1- 136
lken§l:d wft,.·~. 120

rop~·lnj!. 121
line. 101. 159
line editor. 102
hnm.116
linkllll. J7~. 116. 171
k.d (J propmt). 8
LOAD C'OllIImfld. J7~

Ioum. mJ disk. 23ll
IoInl dc,·~. 86. IS-!

in MP M. 92
rwnes.81
..·,Ib PIP. 92

100icai dri,·c. 124. 231
100Ini end of file. 206
loIical extent. 220
loop. 6
low $lQnlge. 183.247
low-ordcr bit. 131
lo"·crcase. 64
LPT: de'·icc. 88
LST: device. 81. 2~8

in MPIM. 92

MAC. 174. 178. 179. 181
machine language. 6. 10. 166
macro. 178. 179

,-,"ailing. 179
parameters. ISO

macro rommands ED. ll~

macro library. 181
mlItched lnJIslau:n. 16-1
mattu prin'..... 35
IlXlJlinl or data. 13~

IlXmor)'-rnappetl Icmllnals. 22
Mon,tor. 40. 41. 119. un
_ S1l1n,f.......1 bll. 137
MQVCPM t'O<IU"and. 267, 268
MP M. 92. 126. 1~7. 244. 260

usn codes. 126

.-

numbt'r b,a~. 136
numlxr syslems. US
numeric pree;sioo. 137

objecl prugram. 10. 174
open a file. 154. 156
operand. 43. 186
operll;ng syslem. 7
opl:Blion code. 6
origin. 174
output. 5
O\'crl'Iow, US

~.191.

~.I29

pIITIly. 141
partial compolcr. 164. 165
~h.l90

elllmplc. 191
performance. 10. 121. 16J. 164. 167
phys~al device. 87.184

names. 88
physkal end of file. 206
physical c~tcm, 220. 2J I
PIP. 44. 72. 77. 82

aboning copy. 84
CON: input. 92
concatenatinl! files. 83
EOF: KJUrtt. 97
for IrllUJ"$ of files. 84
qio:ll dc..icc$. 92
lST: outpul. 93
NUL: KJUrtt. 97
Oplloo B, 97
optioa D. <).l

optIOn E. 97
optioa F, <).l

optIOn G. 86. 125
option H. 97. 174
OpUQrl I. 97, 174
option L. 9J
OJlIi.m N. 95
option N2. 95
oplion O. 86. 143
oplion P. 9J
oplion O. ':16
option R. 85
option S. 96
opIion T. 95
option U. 9J
opIlOn V. 85
opIion W. 85
option Z. 91
PRN: OUtput. 9S
and UKr codes. 12S
1I'in·...·nllen uits. 98

portlblilly. 166
pm:ision. 137
primer. 33. 53

ball. 34

band. 37
daisy. j4
malfi~. 35
noise:. 53
lhimble. 34
ullin. 37
lype rilcr.33

prinler handshake. 37
prtJoCnsor. 18,53
provam.6
progmn enlry. 187
prognm cmJI' handling. 188
pmtnm un. 187
prognm ongiJI. 174
profI1Im stack. 187. 188
pnIlnmfTIe'. 9
provammilll. 9
JIroG~mfTUng corl\~nlions. 183
programming language. 9. 162
project diskrttes, 123
PTP: devkc. 88
PTR: device. 88
PUN: de,·iee. 87. 260

in MP/M. 92
purchasing a compuler. 49
purchasing software. 50

RIO disk. 74. 75
RIO file Itlribute. 76
R/W file allrioolc. 76
RDR: device. 87. 260

,n MP M. 92
read-""fT~ ~ad. 25
",Iocalable IIf'll'Il2m. 165
reloc2llOn. 175
REN command. 72
report ,encrator. 47
rese"'Cd lracks. ISO
reset. 60. 61. 91
resct control. 60
reSlar1 (;nstl\lCtion). ISS
resta" locllions. 185
"'Sla" 7.185
",tum key. 59
RMAC. m
RS-232. 22. 37
RS-449. 22
run. 8

S·100bus.19
SAVE command. 190. 269
SCC1<lr. 148
scaor siu. 28
seck. 26
sc:kc1 error. 7'0
SEQIO.L1B.212
scqllC11tial read. 206
serial nu~r, 268
SERVICE macro. 195
SC:"'ice requeSt. 42. lJ I. 185

Index

287

188

I"der

con,,* input. 196
co."..,mlOPS. 19J
file input. 20a
file output. 207
file scam.. 214
numbnin,. 19-1

Kf'/icc mjuesl 1. 196
SCn'Kc rnjllCSI 2, 199
Krvice rtql".'SI 9, 200
service request 10. 196. 197
5Crvice ",quest II. 197
service "'quest 14. W2
service ",que!>! 15. 2().1
service requeSt 16.209
Krvice request 17. 225
scrvice ",queSt 18. 225
service requeSt 19. 208
scrv;ce requeSt 20. 206
service TeqllCil 21. 209
$t'.....ic1: mjl>t$l 22. 208
scrvice request 23, 208
sc....·jce request 25. 102
servKe reqUl:SI 26. 205
sen"icc reqlleSl JO, 223
sen"ice mjUl:S1 JJ. 213
savic1: mjllal 34. 212
sen'icc mjlN:$l 36. 214
sen"icc mj~ 40. 214
sen'lC!:: I"CqUO:Sl SO. 244
Kf\"ja rcq~jump. ISS
SID. ISS
$i,nbll.l31
sign-on me»agc. 60
ske 2SO
ske uobk. 2SO
SOrl"~. 1
SOfl....2n. Cval1l3lion, SI. 166
SOflW;IfC li~n5C. 121
son program. 47
sorting. 142
source prolll':lnl. 164
space allocation, 152. 156. ISS. 209. 213. 220.

lJ9
Slack poinler. 187. 188
standard =ord. 148. 154
standard lab SlOpS. 95
stan bit. 23
STAT. 76

IUribuICS. 222
device Issilln_m, 90
lk"icc information, 89
dilJ; infOlmlllion. 149
dilok organiUlion. 151
dilok prIlC«1ion. 74
disk~. 71
disk $lUllS. 72
fik Ittnbuln. 76
fik infonnallOll. 71. 153. 158.213
patminl. 191

IIOp bil. 23
$long.: size. ISS. 188
S1rinllamination. 200
SUBMIT,I27

and'S'. 130
ronlrol characlers. 130
c~amplc. 128
op::.,IIion. 127
parameter. 129
palching. 192
'.er<:>-kngth lines. 132

substitution. 129. 179. 180
SYS file anribute. 76
SYSGEN. 120, 271

example. 120
syStem generlllion. 265

lab Slops. 95
laP:: definition. 49
laminal.20

image quality. 20, 53
keyboard foci. 20
kr.llIion. 52

uxl;. 25. 148
TBMimt Pmgmn Area {TPA1, 183. 187
InlUlltor.9. 162
lnnSmission me. 23
TIY: dc'·~. 88
TYPE rommand. 71
t)-pilll errors. 63

UCl: dc"u. 88
Ul1: dc,·~. 88
untno..-n commands. 63
UP 1: dc"ice. 88
UP2: dc"ice. 88
upPerCUC. 64
UR1: dc..ice. 88
UR2: dc..ke. 88
usereodc:. 125. 185.221.247

in M?/M, 126
USER command. 125
utilities. 40

vem. 43. 61
with dri,·ecodc:. 69

warm stan. 61, 70. 75. 247
"'ann SIan jump. 183
word prottSSOf. 45
"m diskelln. 123
,,-orIcinl SlOOI~. 8. 18, 145
",Qrbhoet pmgmn. 46
"Tite·proIecI nalm, 24. 75

XSUB command. 13(1

ZSOCPU.18
Z80 ~giSlers. 195

Part Two

A Reference
for Users

and
Programmers

Form and Use of Filerefs

Files are designated by three-part names. They are:

the d,iw~cod~. a single leiter followed by a colon. that designates a disk drive. for
example A: or E:

the filename. one to eight characters long-if the filename contains an asterisk or a
question mark. it is ambiguolls. otherwise it is aplicil:

the jilnY{H. zero to three characters long-like the filename. the filetype may be
ambiguous or explicit.

The valid drive]clIers are A through P, naming the 16 possible drives that a CP/M system
can support.

Neither filename nor filetypc is allo.....~ to contain embedded spaces or any of these
characters:

. , ; : = [)- < >.

Most commands takefi/,ufs as operands. A fileref is

{drivecode}filename{.filelype}

that is, a filename. possibly preceded by a drivccodc and possibly followed by a fiJcIYpc.
Some commands accept only the filename, providing an assumed filetype or their own.

When the drivecode is omitted, the system will supply the drivecode of the default drive
(the one named in the system's command prompl).

Some commands accept ambiguous filerers, but most require explicit ones. Each
command's requirements are spelled oot in its description in this reference.

293

Effects and Use of Ambiguous Filerefs

194

Fileref

q•. ,

wa·.com

Will.p·

.q.'

wan?

w?n?'

???????y.•

??????1.??

Will match

All files

Any file with a name commencing with a Q. from Q alone
through QUIETLY.BAS to QZZZZZZZ.ZZZ

Any file of type .COM commencing WA, such as
WASH .COM. WANT.COM. or WAVERLEY.COM

Any file named WILT with a type beginning with a P. such as
WILT.PLI. WILT.PAN. WILT.PAL

All files--<harocters after an asterisk arc ignored, so this is
equivalent 10 '.'

Files with a filclype of three spaces and names of four letters
beginning with WAN-WANT. WAND

Any file with lhe first leiter W. third leiter N. a 100al of four
letters. any Iiletype. WANT. WINS.SUB. WONT.GO. but not
W1NCE.BAS--r.\·c-lctter names won', match

Eight-leuer names cnding in Y. any filelype
SUDDENLY .BOO. WAVERLEY.COM

Filenames not exceeding seven letters. types not exceeding two
[etters

Conventional File Types in CP/M and MP/M

Filetype

.ASC

.ASM

.BAK

.BAS

.CMD

.COB

.COM

.OOC

.FOR

.HEX

.INT

.IAl

.lIB

.lST

,MSG

.PAS

.PLI

.PAL

.PRN

.REL

.ASP

.SPA

.SAC

.SUB

.SYM

,SYS

,lEX

'-' .TXT
.S

ASCII

y"

y"

y"
00'

y"
"0

y"

y"
yes

"0

"0

yes

yes

y"
yes

y'"

00

yes

00

"0

"0

yes

yes

yes

"0

y"

y"
unk.

Conventional Use

ASCII source text of some BASIC programs

Source {eXI of an assembly language program

Original version of an edited file

Source leXI of some BASIC programs: may contain token
ized (compressed numeric) keywords

CPfM·86 machine language program (command)

Source text of a COBOL program

CP/M-SO machine language program (command)

Program documentalion. usually infonnal

Source lext of a FORTRAN program

Machine language program in symbolic (hexadecimal char
acters) ronn; output of ASM, MAC

Intennediate code produced by some compilers

Indexed relocatable library built by the LIB command

Collection of source code for inclusion with MACLlB;
collection of reloc:alablc subroutines for linking

File intended for prinling

Informal documentation or nOte

Source texl of a Pascal program

Source texl of a PUI program

Machine language program in page-rclocalable (MPfM)

File inlended for prinling

Machine language program in relocalable fom]

Residenl syslem procedure for MP/M (sec .PAl)

Syslem procedure for MPfM (see .PAl)

Assembler language source leXI for some assemblers

File of commands intended as inpul 10 SUBMIT

Symbol infonnalion written by MAC assembler

System file for MP/M

File of lex1with fonnatting commands. input 10 Ihe TEX lext
fonnatler

Infonnal documenlalion or nOle

Temporary file. used by PIP and mosl editors as the Iype of
the work file 295

Control Characters Recognized
by CPIM and MPIM

Control characters are recognized and acted on by the Monitorhen it is reading a
command line. or reading a complete line at the request of a command program. Many
control characters are 1101 recognized when a command requests its console input one
character at a lime. and none when il bypa~s lhe Monitor to read the console via the
BIOS. The program may lhen supply its own meanings for the control characters.

Character U~ Effect When Recognized

SUlIIdard Krys on Mosl Tumjnals

backspace edit Dekles prior charncler. backspaces cursor.

delete edit Deleles prior chal1lctcr in storage. but types the deleted
character al the console.

lindeed edit Ends input line, returns cursor to margin.

return edit Ends input line. returns cursor to margin.

rubout edit (same as delete) -.../

". edit Moves cursor to next eighth position (9. 17,25, etc.):
program receives an ASCII TAB.

Comro{.Shijl C!ll/meters

control-b control Terminates and removes OESPOOL.

control-c control Terminates comrmmd. causes 1I warm start,

control-d control Detaches console from comm:md (MP/M only).

control-c edit Moves cursor to new line without ending the input line.

control-f control Activates OESPOOL.

control-h edit (same as backspace)

control-i edit (same as tab)

control-j edit (same as Iinefeed)

control-l control Under ED. stands for CR, IF in string search and
replacement subcommands

control-m edit (same as return)

control-p control Starts or stops copying console output to the printer. -..../

296

Character Use Effect When Recognized

'-
control~q control Gets exclusive usc of the printer (MP/M only).

control-r edit Retypes the input line as received SO far.

control~s control Suspends console outpUl: restart with an)' key.

control-u edit Deletes input so far. moves cursor to new line.

control-x edit Deletes input line so far. mo\'es cursor to its starting
position.

control-z control Flags end of a string to ED or PIP.

297

298

Name

ny:

CAT:

BAT:

UC1:

nv:
PTA:

UR1:. UR2:

TTY:

PTP:

UP1:. UP2:

nv:
CRT:

LPT:

UL1:

Physical Device Names

Conventional Usc

Devices 111(1/ May Be Assigned to CON:

Typewriter terminal

Video display terminal

Input requests dh'cned 10 the RDR: logical device. output
10 LST: logical device

Another console (human-opel1l.led input and output) de
vice

De~'ices /h(l/ May Be Assiglled to RDA:

Typewriter terminal

Paper-tape (or cassene-tape) input

Other serial input devices

Del'ius thai May Be Assigllt'd 10 PUN:

Typewriter terminal

Paper-tape (or cassene-tape) output

Other serial output devices

Devices Ihm May Be Assig"t'l/ /0 LST:

Typewriter terminal

Video display terminal

A printer

Another printer or serial output

-..
N

~ ~-
~

" "g
"

- ~- •~ • ~
~

"
<

"•

t ~~ ~
~~ t uu

> >> >
~ ~~ ~

~ ~

299

Topical Summary of CPIM Commands

Command Syntax Page Function

Commands/or Fi/~ In/ormation and Display

DIR {fi/~r~f}

STAT d'l DSK,}
5TAT fi/~r~f

TYPE fi/~r~f

PIP d~v:=Iilu~floptiOlIJI

DUMP filuef

313
355
359
371
343
3\7

Display files on a drive
Display disk infoon31ion
Display file information
Display file al console
Send file 10 serial device
Display file in hex

COll1lflllflds for Fife Alleration

ED fileref {d:}
ERA fllere!
REN Ilewre/=oldref
STAT filert'! Souribule
LOADfilm·f
SAVE si:efilue/
PIP
PIP d,.stillation=.rourct'[op'ions)
PIP d:=ji/erefloptions]

319
325
349
36\
327
35\
339
34\
343

Stan editing session
Erase files
Rename existing file
Alter file attribute
Conven .HEX co .COM file
Copy storage 10 .COM file J
Stan PIP session
Transfer single file
Transfer multiple files

Commands for Suiaf De\'ices

PIP dev:=jiler,./Ioptiolls]
STAT DEV:
STAT VAL:
STAT /Qgical=physica/
LOCAL del'ice
NETWORK del'ice=IIumbt'r

343
363
363
363
329
337

Send file to seri31 device
Display device assignments
Display STAT operands
M3ke device assignmcnts
End use of remote device
Ask usc of remote device

Commands for Building Programs

302

DDT {Ii/ere/}
LOAD jileref
SAVE site jiferef

){)9

327
35J

SIar1 debugging session
Conven .HEX 10 .COM file
Copy slorage to .COM file

Command S)'lllaX Page Function

COII/II/lwds for Syslem ill/ormation

STAT DEV:
STAT USR:
STAT VAL:
CPNETSTS

363
365
363
307

Display device assignments
Display user-rode status
Display STAT operands
Display network devices

Commands for S)'stem COl/trol

STAT d:=R/O
STAT logicaf=physical
SUBMIT {d:}fi/ellame {/)(lmmerers,.,}
USER cOliI'

XSUB
OSKRESET {d,}

357
363
367
373
375
315

Make drive read-only
Make device assignments
Run command list in file
SCi active user code
Supply input from file
Reset local. remote drives

Commalt(/s for System Gellerorioll

MOVCPM siu flag
SYSGEN

335
369

CPINET Commands

Build relocated Monitor
Copy Monitor image to disk

CPNETLDA
CPNETSTS
OSKRESET {d,}
ENDLIST
LOCAL del,jce
LOGIN {]HISS} { lmasler] }
LOGOFF { [master] }
NETWORK del'ice=lllimber
RCVMAIL (Imaster) }
SNDMAIL Im6sftr) (wrgn) 'mt'ssage'

305
307
315
323
329
331
333
337
347
353

Set up CP/NET connection
Display network devices
Reset local. remote drives
Close remote print file
End use of remote device
Ask use of remote system
End use of remote system
Ask use of remote device
Rei:eive network messages
Send message on network

303

304

The two rlIllin components of a CPIM node of a network arc the 51:lvc Network 1/0
Supervisor (SNIOS). a hardware-dependent program that conlrols the communication
Hok(s). and the Network Disk Operating System (NDOS). which extends the functions
of the CP/M Monitor. Each program is kept 'as a file of type ,SPA.

This command need be done only once after a cold sian. lbc network programs
remain in storage o\'cr a "ami Sian.

Following this command a LOGIN command must be done to open communica
tions with a master network node.

CPNETLDR

The command loads and initializes the code nceded to connect a CP/M system to a
CP/NET network.

The command searches the default disk for the files SNIOS.SPA and
NODS.SPA; when it finds both it loads them at the lop of the Transient Program area
and prepares the system to act as a CP/NET node.

1be command displays a report showing the starting addresses and length ofeach of
the main components of CP/M.

305

306

The CPNETlDR command must have been done before this command can be
done. If this system has not been logged in to some master system with the LOGIN
command. all devices will be local.

The slave processor ID is the value that a user at another node would use to send a
message 10 this system. You might include it in a message or when reporting a problem
to the operator of the master node.

The network status byte is nomlally 10H. If the first digit is zero, thcn no LOGIN
command has been done, If the second digit is nOI zero. then a communication error
rttently look place. Note the value of the second digit. as il is reset 10 zero by the
command.

A drive shown as LOCAL is simply one that is not accessed via me nctworlc: il need
!lOt exisi. The command reportS on all possible disk drh·cs. whether or not they exist in
the local system. When a drive is located on some other node. the ID of that node is
shown; it might be used to send a message to the operator of that system as in

dskreset c:
sndmail (00) ~done with your disk G:"

CPNETSTS

The command reports the SllllUS orlhc sysccm as a node in a CP/NET network. The
repol1 resembles this:

CP/NET 1.0 Status
=====================================
Slave Processor 10 = 14H
Network Status Byte = 10H
Disk device status:

Drive A: = LOCAL
Drive B: = LOCAL
Drive C: = Drive G: on Network Masler ID = OOH
Drive 0: = LOCAL

Drive P: = LOCAL
Console Device:: LOCAL
list Device = List #0 on Network Masler 10 = DOH

The Status of each device thm can be accessed via the network is shown. A LOCAL
device is one that is accessed normally as pan orlhc local CPfM system's configuration.
Devices accessed at a distance arc identified with the system and device name thaI they
represent.

307

DDT is used to debug programs wrillen in assembly language. It also finds use as a
special utility program for building program images. and in applying patches to fix
programs.

See the USER command for an example of using DDT to load the image of a
comm.md: sec Chapter 12 for an example of applying a vendor's patch to a command.

An assembly-language program can be built from different modules. each assem
bled at a different, known origin. For example. a main progrum might contain a reserved
space for a lenninal driver subroutine. Different lenninal drivers can be prepared, each
customized for a panicular lenninal type. The correct driver can then be incorporated in
the main program with DDT:

308

ddt main.com
·ilerm120.hex
-,
-gO
save 37 main120.com

load image of main program
prepare 10 load driver for Soroq IQ120
read terminal dri"cr to its origin
warnl start, leaving merged progmffi
save customized command program

DDT { fileref}

The DDT command initializes a debugging session. The code of the debugger is
loaded and moved to the lOp of lhe Transient Program Area, replacing the CCP. The
address of the end oflhe Transient Program Area in low storage is changed to protecllhe
debugger.

If jift:re[is specified. thaI file is loaded iOlo the Transient Program Area. The
reference must be explicit and have a filct)'pe of either .HEX or .COM. A .COM file is
loaded al 0100h; a .HEX file is loaded at its assembled origin.

"The debugger then prompts with a hyphen and wailS for a subcommand. A table of
DDT subcommands follows this topic.

The command is cnded by a wann stan. One may be obtained either by typing
control-corby entering the GO (go to zero. i.e .. 10 the wann stan jump) subcommand.

309

Summary of DDT Subcommands

3/0

Syntax

Aswn

O{s/QrtH.t'/Id}

G{sumH.b/{,b2}}

HfirSI,$econd

1ft/ere!

L{slartH,elld}

Mswrl,elld,to

R{bias}

Description

Assemble into storage: DDT prompts with successive addresses
from start. Enter operonion names. and register names or hell.
values as opernnds. End the process with a null entry.

Display storage: DDT displays storage in hex and ASCII. 16
bytes per line. The display begins with SWrt if given. or where
the prior 0 left off. or with the HL value of the last instruction
traced. It ends with t'fl(1 ifgi\'cn. or aflcr 12 lines. Use any key to
end the display early.

Fill storage: DDT replicates xx in every byte from sran through
end. Caution: DDT will happily fill right over itself and the
BOOS if lold 10 do so.

Execute program: DDT transfers control to start if given. or 10

the test program's PC. If one or IwO break addresses are given.
DDT makes each an RST 7 instruction: control returns to DDT
if the program reaches one and the instructions are restored.

Hex arithmetic: DDT responds with two numbcrs.firsl+ secom/
and first-SecolU/.

Initialize FCB: filert'f is sct in the default FCB at 5Ch. Any
drivecode is ignored. The FCB may be used by the test program:
more often it is used by the R subcommand. Use S to set up a
drive number.

List instructions: DDT displays storage as instructions in
assembler formal. from sum if given. or where the last L left
off. or from the PC address of the lasttrilced instruction. The
display ends with cndifgiven. or after I I lines have been typed.
Use the delete key to stop the disp);ly.

Copy storage: DDT copies the block of storage from sum
through end to the address /0.

Read program: The file named in the default FCB at SCh is
loaded as a program. The filetype must be .COM (load address
is 0100h+bias) or must ha"e the .HEX format. In that case the
bias is added 10 the load address in each line. causing the file to
load away from its assembled origin. The highest load address
this session and lhe current PC value are displa)'ed.

Syntax

Sstart

T{COllllt}

U{coum}

x

Xregisler

Description

Modify storage: DDT prompts with the address start and that
byte's contents in hex. Enter a new value, orCR alone, to leave
it unchanged. DDT prompts with the nexi address; enter period,
CR to end.

Trace program; An instruction is traced. The test program PC
provides its address; use X to set it. The register state and the
instruction are shown before the instruction is donc; usc X tosee
the instruction's effect. IfCOl/ill is given, DOT continues for that
many instructions: use the delete key to stop it early.

Trace without display: Instructions are traced as for T but no
state display is typed.

Display program state: The test program registers and the in
struction addressed by its PC are shown.

Modify register; DOT prompts with the contents of the named
register or nag. Enter CR alonc to leave them unchanged. or
enter a new value. The registers areA, B, 0, H, S (for SP), and
P (for PC). Flags arc C, 2, M, E, and I.

3JJ

The command DIR with no operand displays all files with the active user number.
Usc ambiguous filercfs to sec the names of ~IS of files. for example.

dir -.com
dir his???-

10 sec all command verbs
10 sec six-leiter filenames beginning HIS

3/2

When DIA produces no output at all. displaying neither a filename nor a message. it
is because there is al least one file thaI malches. bot all files Ihal match have the SYS
attribute. Use STAT with the same operand 10 see their names.

When DIA responds NO FILE but you think there OUghiiO be files. check thc active ---./
user code with STAT USA:. The files you expect might be under a differenl user code.

DIR should nOI be used 10 preview the effect of an ERA command, as was possible
in prior systems. DIR docs not repon files with the SYS attribute but ERA will erase
such files. Use STAT to preview ERA: it reveals both system files and those that are
read-only.

DIR { fileref}

The system searches a disk's direnory for files that lllalchjilereJ. and displays the
names ofthosc it finds. Only files created under the active user code are examined. Files
with the S YS attribute may be found. but their names arc nO(displayed.

Ifft/ere/includes a drivccooc. the system searches the directory of the disk in that
dri\'c. If no drh'ccodc is given. it searches the directory in the default drive.

When/ilere! is explicit. only one file can be found. If it is ambiguous. many files
may be found 10 m:llch. 1bcir names are displayed four per line. I(ft/ere/is omincd. the
command assumes an operand of •.•. meaning "all:'

If no matching files are found. the message NO FILE is displayed.

313

3/4

The command finds little use for local drives. which arc reset by the wann stan at
the end of the command anyway. It is useful for causing a reset ofa drive that is located al
ano(her node. Use CPNETSTS to find outlhe local dri\'ccode for a TClllOlC dri\,c. After
the operator al the other node has loaded a diskene for }'OU. use the OSKRESET
command to cause the remote system to reset its drive so that you can write on il.

(This command is a standard part of an MP/1I.i system. where it replaces the warm
sIan for purposes of reseuing disk status. MPIM has no warm start.)

DSKRESET { drivecode ... }

The command resets one or more dri\'cs. thai is. it causes CP/M (Q forgel the check
information it uses to delcct when a diskette is changed. The diskette in the drive may
then be changed without CP/M marking it read-only.

If no dri\'ecode is given, all drives used by this node are resct. If a single driw~cQ(le

is given. only that drive is reset. Several driw!c()(./rs may be specified. separated by
commas; each drive is rescL

315

3/6

This command is of most usc 10 progrJ.ll1mcrs who want 10 sec the exact contents of
a file. unedited by any of the normal display mechanisms.

The opcr.md is usually an explicit flIerer. I-Iowever. it may be ambiguous. in which
case DUMP displays the first file under the acth·c user code thalmalchcs the reference.
Thai will also be the first file named by OIR. given lhe same operand.

DUMP fileref

The file named by filerl!/ is displayed al the console in hexadecimal format. Each
line of the display shows 16 bylcs of data, prefixed by the relative address of the data in
the file.

3/7

JI8

See Chapter 7 for a discussion of ED and examples of its use.
The I. F. and S subcommands behave differently depending on the case in which

the command lcncr is typed. The subcommand i accepts input as typed. whereas the
subcommand I COIl\'cns the typed input 10 uppercase.

ED can be used 10 inspect an input file thaI is marked read-only. If the session ends
with the Quit sulx:ommand all will be well. If ended with End. ED will attempt 10
rename the input file. causing BOOS Error an x: File Read-Only and a warm start. ED
cannOllake its input from a read-only disk drive. The message BOOS Error on x: RIO
appears at the SI:n1 of the session.

ED can be automated with the XSUB progrMn. The script of an entire edit session
can be put into a submit file and run wilhout human intervention. In this way a set of
complicated bUi routine changes can be run ilh only a single command. One exceplion:
Ihe bulk Inpul subcommand ilIl101 acccpl input via XSUB.

ED fileref { drivecode }

An edit session is begun on Inc named file (jilf'rt'j must be explicit). A file of the
same filename. but with a filclYpe of .$$$, is created to be a work file. The program then
awaits an edit subcommand from the console. A table of ED subcommands follows this
lOpic.

If the named file docs not exist. a NEW FILE is reported. If it docs exist. ED
prepares to read it. Any cxistingftlellame.BAK is erased at this time.

The presence of the optional (/ril'ecode changes the command's operation. If a file
named ft/erf'f exists on that drive, ED terminates with the message FilE EXISTS,
ERASE IT. If there is no duplicate filename. the work file is created on thaI drive.

When the session is ended with an End subcommand. the edited dam are wrineo 10
the work file. which is then given the namefilert'f. The original file is gi\'en a new
filCly~ or .BAK. Ir the command ends with a Quit subcommand. the work file is erast:d
and the original file is unchanged (although a .BAK file or the same name is gone.
regardless).

3/9

Summary of ED Subcommands

Key: s = a sign (blank or -): /' = an unsigned or ncgati\'c number:
p = an unsigned number: sIring = Icuers ending in oonlrol-z.

Syntax Description

"

E

pA

"e

nFslring

A number alone has the effect of liLT.

Move to the plh line in the file.

Before a letter, means "the rangeofliocs from the current one 10
the pth one. inclusive:'

Read p lines from the source file and append them to the file
copy in storage.

Move to the beginning line (8) or bonom (-8) of the file.

Move righl/down II characters (positive). or left/up" characters
(negative) in the file.

Delete /I characters beginning with the current one and moving --.-/
right (positive), or delete the II characters left of the current one
(negath'c).

End the session: wrile all source lex110 the work file and rename
it: rename the source file 10 .BAK.

Find the 11th occurrence of string. Positi\'c n searches down.
negative searches up. Treats string as uppercase when com
mand is F. as mixed case for f.

H Start over at the top of the source file, preserving all changes.
Do the actions of E, then begin again on the new source file.

Stan bulk input; all input to a controJ-z is added before the
current character. Input is forced to uppercase if command is I:
lowercase is accepted under i.

Istring Insert the string bcf~ the curren! charncter.

nJstring!string 2string)

Search for SIring! as for F; insert string2 as for I; delete follow
ing characters up (0 string). No deletion is done if SIring) can't
be found. With empty string2. J performs delete from-to; with
empty 5trh/gf as well it is delete-to: with impossible SIring) it is
insert-after. '--"

"D

320

Synlax

'--

"K

"L
pMcommmu!s

pNstrillg

0

"p

Q

R{filt'namd

nSstrillg!string2

'-' liT

,U

N

pW

pX

pZ

Description

Delele n lines staning wilh the currenl one and going down
(posilive). or II lines before the current one (negalive).

Move down (positive) or up (negative) /I lines.

Repeat the sequence of commml(ls. p times.

Search down for the pth occurrence of string. doing Wand A
actions as needed to scan all lines of the source file.

Restan lhe session wilh the original file: delete the work file and
clear lhe storage buffer.

Page down (positive) or up (negative) II multiples of 23: display
23 lines as for T.

Quitlhe edit with no changes: delete the work file and end the
command. Note that any .BAK file is losl.

Openjilt'IIQ/Ilt'.L1B and insen ils C'QIltenis as for I. When jilt'.
nUnlt' is omined. uses SSSSSSS$.lIB (see X).

Find stringl as for F: replace it wilh slring2. Treals both slrings
as uppercase if command is S.

Type 11 lines staning Wllh the current one (positive), or the /I

lines above the current one (negative).

Force insened letters to uppercase (U), or allow them to be
mixed-case (-U). See note on cases under F. I. S.

Use line numbers as a prompl (V). or usc only an asterisk (-V).
or display free/IOIal storage (OV).

Wrile the lop p lines of the file copy in storage 10 the work file
(see A).

Copy p lines slaning wilh the current one to the temporary file
$$$$$$$$.L1B (from whence R c.m read them). OX clears the
temporary library.

Idle for (theoretically) p seconds. AClOal delay depends on the
machine clock speed. Wake it up wilh any key.

J2/

322

When output wrillen 10 the LST: logical device is travelling o\'er the network (0 a
prinler al a remote node. Ihe ENDLIST command signals that node thaI the end of a
printed file has been reached. If the remote node has been saving the output on disk. II
will know it can close Ihc file and schedule it for printing. Usc the ENDLI$T command
at the conclusion of a program SO thaI its printed output will not run logether with the
output of the next command.

When the printer is a local device. the command has no use. although it will usually
cause no hann. [\ is safe to include ENDLIST in a submit file that may be used with
either a local or a remote printer.

ENDLIST

The command writes a single end-or-file character (ASCII SUB control character,
or cOnlrol-z) [0 the LST: device.

323

Remember the mnemonic "ERAsed files are ERAtrienble.·· and use caution when
erasing more than one file. In fact. it is possible to write a program thaI can. in some
cases. rttover an crased file. Such programs onl)' work when no filcs arc created on the
disk following the erasure.

Use ambiguous filerefs to erase sets of related files. for example.

era -.bak
era his???-

to erase all edit backup files
to crase six-lcner filclwmes starting with "1·ItS"

324

Use STAT to anticipate the effects of an ERA command. STAT givcn thc same-"
fileref displays all files ERA will attempt to erase. including those with the SY$ attribute
and lhose that are RIO.

When ERA responds NO FILE. but you think there ought to be files. check the
active usercodc with STAT USR:. The files you cxpttt might be under a different user
code.

ERA fileref

The system searches a disk's directory for files that matchfi/eref. and crases those il
finds. Only files created under the active user code are examined. Files with the SYS
allfibute are found and can be erased.

If fileref includes a drivccode, the system searches the directory of the disk in that
drive. If no drivccode is given. it searches the directory in the default drive.

Whenfllerejis explicit. only one file can be erased. If it is ambiguous. many files
lllay be erased. If the '." reference is used. the command requests confirmation before
erasing all files.

If a matched file has the RIO anributc. the message

BOOS Error on x: file rIo

will be displayed and the system will await any console input. following which a wann
Sian will be done. Some malching files may be erased before the RIO file is encountered.

Ifjiferefis omine<!. or if 00 malching files are found. (he message NO FILE is
displayed.

325

A .HEX file is the normal output of a (nonrclocaling) assembler. It represents each
byte of a program with '0 ASCII characters. one for each hexadecimal digit. Each line
of the file is preceded by the address al which the linc's data arc to be loaded. and
followed by a one-byte checksum.

The HEX formal was devised as a way 10 rcprcscru a machine language program in
standard ASCII characters. Such a rcpresent:llion can be printed and tr3nsmiUcd via
media. such as paper lape. ThaI require 7-bit ASCII.

The usual sequence of operations is to create the .HEX file. load it. and try it out:

asm testprog
load testprog
testprog operands...

DDT's R subcommand will load a .HEX file for tesling Of as a subcomponent of a
larger program:

a5m partprog
ddt fullprog.com
·ipartprog.hex
-,
-gO
save /111 fultprog

assemble customizing module
load major program

overlay with customizing module

save customized program

326

See Chapler 15 for an example of this technique in a CP/M system generation.

LOAD fileref

The named file is read aod inspected for correct HEX ronnal. 1be program il
represents is formed in working storage at its correct origin. The program image is
wriuen lodisk underthc same filename bUI with a .COM filclype. The command reports:

FIRST ADDRESS xxxx
LAST ADDRESS xxxx
BYTES READ xxxx
RECORDS WRIDEN xx

st3ning address of the program
ending address of the program
count of bytes in the program image
I28-bYlc records in the .COM file

If filere/ includes a drivecode. both input and output lake place on that drive.
Otherwise both input and OUlPUI lake place on the default drive. If the liJetype is omine<!
rromfilue/. the command supplies a .HEX filetypc.

The command will report a number of errors in file handling:

CANNOT OPEN SOURCE
NO MORE DIRECTORY SPACE
CANNOT CLOSE FILE

and in the fomlat of the input file:

input file IlOl found
output file can", be created
disk or directory is full

INVALID HEX DIGIT
CHECK SUM ERROR

input character not in ·0· .. ' F'
each line of inpul is checked

Following these errors the command repons the load address and the address in the
record in which the error occurred.

327

The CPNETlOA command must have been done before this command can bo.
done. If no LOGIN command has been done, then all devices will be LOCAL already.

When CP/NEr is active. the CON: and LST: devices. und any disk drive, may be
located on another system. with data passing to and from the local system over the
network. Devices are made remote with the NETWORK command. This command
fe\'erses the effect of NETWORK for a device. Use CPNETSTS to find out which
de\·jces ~ local and which are remote. -.../

Here is an example of renKllc 110:

cpnetldr
login
networ1< c:=g:
pip a:=c:master.ful
local c:

load the CPI '~.,. support code
connect to (he (main or only) master
drivccodc C: 10 mean master"s G-drive
copy file from master's disk to ours
make drivecodc C: local again

328

There need not be a real drive C: on the local system; any drivecodes A .. P will do. Using
nonexislent drive lellers for remOle drivcs helps avoid confusion.

NOlice thai Ihe command LOCAL CON: is mc:mingless if givcn at the local
console; if il can be given th~~. then CON: was local al~ady. LOCAL CON: is useful
only wh~n givcn from the remote console, after which no more commands will be
accepted Ihere.

Before making a remote disk local. iI's a good idea 10 reset il with OSKAESET.

LOCAL CON:
LOCAL LST:
LOCAL drivecode

The command changes the indicated device from one thm is accessed remolely over
the CPINET network to one that is accessed locally as part of the system.

The first ronn is used 10 dirccll/O for the CON: logical device to the local console
instead of a console on a remote system.

The second fomJ directs 110 for the LST: logical device to the local printer instead
of a printer on a remote system.

The third form is used to direct disk 110 (0 a local disk: drive instead of a disk drive
on a reffiO(C system.

329

The CPNETLDR command must ha\'c been run before LOGIN can be done. Once
LOGIN has been successful for a panicular master system. it need nOI be repealed unless
a LOGOFF command is done.

The LOGIN attempt may fail for any of several reasons. It may be rejected by the
master system because the password is incorrect or because the master is overloaded.
The ell/NET software may not be active in the master system. or indeed the master
system might IlOt be turned on.

More than one LOGIN may be done. The following sequence will copy a file from
master system 00 10 a disk on master system 02:

JJO

cpnelldr
login
login 02
network d:=c:
network e::=b: [02]
pip e:=d:remote.lil

initialize network soflware
log in to master 00
log in to master 02
dri\'ccode 0: represents master 00 drive C:
drivecode E: represents master 02 drive B:
copy file from one master 10 the other

LOGIN { password} { [idmasterj }

The command contactS a master system on the CPtNET network and requests the
righl 10 use thai master's facilities.

If f)(/ss\\,ortl-<!Oc to eight ICllers-is specified. it is sent with the rcqucsl. Other
wise the IcHeTS PASSWORD are used.

If idlllllSler is specified. thalm:lster is contacted. Otherwise master 00 is contacted.
[\ is not clear whal the command reports if the LOGIN fails.

331

332

The CPNETlDR command must have been done befOf"C this command can be
done. A successful LOGIN to the same master should ha\"c been done. but no hann will
come if one has not.

The master system has some resources tied up for each system that has logged in to
it. Those resources can only be freed by LOGOFF. The master will not voluntarily free
them. It is good practice \0 usc Ihis command whenever a master's services arcn't going --.../
to be needed.

LOGOFF { [idmaster] }

The command contacts a maSter system on the CP/NET network and infonns it that
this system no longer needs its facilities.

333

334

This cOlllmand is pan of the process of generating a new CP/M I or CP/M 2 system,
either initially or when the size of working storage is being altered. It is the only means of
relocating the Monitor. a necessary step for most systems as the Monitor is distributed
wilh an assembled origin suitable fOl a system with 20K bytes of working storage. The
command is often modified by the system"s vendor. and may ha\'c a different name 10
distinguish the customized version from Ihal supplied by Digital Research.

It is a common mistake [0 omit the 1('(11'(' operand. lbc command then attempts to
execute the relocated Monitor. The BIOS contained in the relocated image is usually not
the correct one for this system. and tnc resuh is a hung system lhal can only be recovered
by a cold start. The command is normally given operands of IwO asterisks: ~

movcpm· •

This causes the Monitor image to be relocated for the size of the machine. At the end of
the command the image of the MonilOr is in working storage. ready 10 be saved as a
.COM file. The customized BIOS for the system can then be p.1tchcd into the .COM file
and the customized system placed on a disk with SYSGEN.

See the SYSGEN command for thc rest of the gencrntion process: sec Chapler 15
for funher discussion.

MOVCPM size leave

The image of the CCP and BOOS contained in the command is relocated for
execution in a machine with s;:e kilobytes of storage. If any fem·c opcl1lnd is present. Ihe
command ends. leaving the Monitor image in storage. If teart;' is omined. thc Monitor
image is moved to its relocated origin and begins execution as if it had been loaded by a
cold stlln.

The size operand may be given as a decimal numbcr of kilobytes, or as an asterisk,
oromilled. If it is omitted or given as an asterisk.lhc command uses the size of working
storage as it presently exists.

335

The CPNETLDR command. and a LOGIN for the desired master system. must
have been done successfully before this command can be donc.

When CP/NET is active. thc CON: and LST: devices. and any disk drive. may be
located on another system, with data meant for those devices passing 10 and from thc
local system over the network. This command makes a device remote. 11lc LOCAL
command reverses its effecl. Use CPNETSTS (0 find out which devices arc local and
which are remote.

Here is an example of remOte UO:

cpneUdr
login
network c:=g:
pip a:=c:master.ful
local c:

load the CP/NET suppon code
connect to the (main or only) master
drivecode C: (0 mean master's G-drive
copy file from master's disk to ours
make drivccodc C: local again

336

There need not be a real drive G: on the local system: any drivecode letter A .. P will
do, Using nonexistent drive lellcT:!l for remote drives helps avoid confusion.

When the command NETWORK CON: is given. no further commands can be
entered at the local terminal: all console 110 will be directed through (he network to the
master system. The command LOCAL CON: will end the connection and make the local
terminal usable again. II must be given from the TCmole console. aCler which no more
commands will be accepted there.

NETWORK CON:=number { [idmaster] }
NETWORK LST:=number { [idmaster] }
NETWORK drivecode=drivecode { [idmaster] }

The command changes the indicated device from onc that is accessed locally as part
orlhe system to one thaI is accessed remotely over lhe CP/NEr network. In each case,
idmm'fer is Ihe number ora master node to which this CP/M system is connected. If it is
omitted. the number 00 is used.

The first ronn is used to din...ct 1/0 for the CON: logical device 10 a console on the
remote syStem. NumIHr is the MPIM console number of the remote console.

TIle second form directs UO for the LST: logical device 10 a printer on the remote
system. NlllnfNr is the MPfM console number of the remote printer device.

The third fom} is used to dircct disk 1/010 a disk dri\,c on the remote system. The
first c/ril'('roJ(, is the dri\'ecode lhat will be used in commands in the local system. The
second clril'('C(xl(' is the actual dri\'ecode of the disk in the master system.

337

PIP is used to copy data belween disks and bclween serial devices. It is convcmioo
allo speak of "moving" data with PIP. New users should keep in mind that data arc not
moved but copied: the SOUTce of a transfer is never changed. Chapler 6 contains many
examples of Ihe use of PIP.

Specify a single transfer as part of the command. When doing two or more. it is
faster to call PIP with no opcr,lnds and specify the transfers after. This avoids the warm
start each time PIP ends.

Users of two-drive s)'siems have a problem when copying between IwO diskettes
neither of which has a copy of PIP. The solution is to load PIP and then change (he
source diskette: --./

A>pip

b:=a:xyz.

(return)

load PIP from the A-drivc
PIP wailS; load source diskeue in A-dri"c
read from A. write 10 B
PIP waits; put system diskeue back in A
end PIP, wann start follows

338

CPfM notices when a diskette is changed and marks it read-only: therefore you
can't change the destination diskclIc. The changed source diskette must be recorded at
the same density and sector size as the one removed.

See the USER command for copying files between user codes.

PIP { transfer}

If a transJ" is specified. il is pcrfonncd and the command ends.
If no transfer is given. the command prompts with an asterisk and awaits the entry

of a transfer specification. It perfonns thallransfer and prompts again. un!il 3 null line is
entered.

If a character is typed at the console while the command is working on a transfer.
the transfer SlOps. PIP reports ABORTED. It then ends. or prompts for another transfer.
depending on how it was called.

A "lll/s!er is gh'en as;

destination = sOllrceloptionsl ...

where destination and source arc the names of devices or files. There arc IwO kinds of
transfer: those lhal create a single file from one or more sources. and those that copy
mulliple files. The two kinds of transfer are described in the following topics. and
summary tables follow them.

339

340

Here are examples of single transfers:

clone.bas=original.bas[v]
tail .bas=originaLbasls120(XfZj

The file CLONE.BAS is a duplicate of ORIGINAL.BAS: TAIL.BAS is a copy of the
part of ORIGINAL.BAS that begins with the characters 12000. Single transfers may
also move between drives:

c:backup.dat=b:master,dat[v]
b:laminate=one.pli,two.pli,lhree.pli[v]

Single transfers are used 10 write files to the printer when pagination or sequence
numbering is wanted (console copy is casier for simple listings: sec the TYPE com
mand):

151: =cbios.prn[tBp]
prn:=equ.lib,mac.lib,hex.lib

The special device names NUL: and EOF: are designed for use with a paper-tape
punch:

pun: = nul:,prom1.hex,eaf:,nul :,prom2.hex,eaf:,nul:

In MPIM 2 ambiguous names may be sent to serial devices. as in:

prn:=b:·.bas[tBpSO]

destination= source [options] ...

The destination in a single transfer may be an explicit fllerer. the name of a logical
device like LST:. the name of a physical device like CRT:. or one of twO special PIP
device names. PRN: or OUT: (a table of all PIP device names follows the nexllopic).

The sOlfrce(s) in a single transfer may be explicit filerers, names of logical devices
like CON:. names of physical devices like CRT:. or PIP special device names like
EOF:. As many sOl/rees. separated by commas. may be given as wil] fit in a command
line of 128 characters.

Each source is read unlil end of file is reached and its data arc wrinen to the
'--- destination.

341

This ronn oflransfer is commonly used (Q create backup copics of files. The names
of sels of related files should be designed for easy copying:

b:=a:poO????dal
g:=b:gl'.cob

numeric purchase orders. not "poorly.da('
source modules of general ledger system

342

The W option (override RIO file protection) is at its most dangerous when a group
of files is being copied. When copying a single fite there is lillie chance that a wanted file
will be dcslfoyed. When ambiguous liIercrs are used il is much easier 10 pick up an
unexpected file by mistake.

In MP/M 2 both source and destination filercrs may be ambiguous. provided they
are ambiguous in the same way, as:

b:·.bak=a:·.asm(va)

In this case the dCSlination files will have different names. The new Aoption is especially
useful for backing up a hard disk.

drivecode= fileref [options]

This form is used to transfer onc or a number of files between drives. The source
filere/may be ambiguous. The source drive must be different from the destination drive.
Only onefilerefmay be given.

The file or files thaI mUlchfilerefare copied to the destination drive. The copies are
given the same names as their sources. When the fileref is ambiguous, PIP reports the
name of each file at the console. The name is typed as the copy begins. so if the transfer is
aboned. it is the last name that was not completely copied.

343

Summary of PIP Options

Key: n = a number: string = any leiters ended with control·%.

344

A

8

0"
E

F

G"

H

L

N1

N2

o

p"

Osrrillg

R

Ssrrillg

T"

u
V

W

Copy only files with the Archive auribule false: make it true
afterward (MP/M 2 only).

BufTer input unlil storage is full or an ASCII IX3 (formerly
XOFF. 13h) is secn. then wrile. Lessens chance of overrun.

Truncate input lines affcr the 11th character.

Echo all data al the console as they arc copied.

Remove formfccds (ASCII FF. OCh) from the input (P may be
used to insen others).

Look for this file under user code n. (MPtM 2: may be given
with destination as well.)

Check for correci .HEX format: promiX the user if an error is
found. Drop inesSCnlial bytes (e.g.. NUL. DEL).

Drop :00 records from the ,HEX-formal data (includes actions
of the H option).

Translate uppercase letters into lowercase.

Add sequence numbers of the form .. 99:" to each line.

Add sequence numbers ''00000099:,'' TAB. 10 each line.

Not an ASCII file; don't treat SUB (tAh) as CP/M end of file
(assumed whcn the filetype is .COM),

Insert a fomlfeed (ASCII FF. OCh) after every 11 lines. If" is
omitted, 60 is assumed (see the F option).

Stop copying when the characters s,rillg are written.

Read the file even if it has the SYS (no directory display) file
attribute.

Skip input data until the char.lcters Siring arc seen.

Replace tabs with spaces to simulate tab stops set at every mh
column. Assumes 8 if /I omittcd (CP/M standard tabs).

Translate lowercase letters into uppercase.

Do a read·back check of the destination disk file.

Replace a read-only deslination file wilhout asking Ihe user's
pennission (bad praclice).

Device Names Used in PIP Transfers

Key: d ;; valid as a deSlination; s = valid as a source

Logical Dn'ius

CON, d , TIle currently assigned console device

LST: d The currently assigned primer device (see also PRN:)

ADA: , The currently assigned reader device

PUN: d The currently assigned punch device

Special Devices

PRN: d Same as LST: with oplions [t8np] added

NUL: , 40 ASCII NUL characters (OOh) (0 space a paper tape

EOF, , An ASCII SUB character (1Ah) to mark CP/M end of file
'- INP: , Code patched into PIP. reached via CALL 103H

OUT: d Code patched into PIP. reached via CALL 106H

Physical Del'ices (defined by BIOS code)

TTY, d , A hard.copy tenninal device

CRT, d , Usually lhc main terminal device

UC1: d , A special terminal device

LPT, d Usually the main printer device

UL1: d A special printer device

PTR , An input device

UR1/2: , An input device

PTP, d An output device

UP112: d An output device

345

346

The CPNETLDR command. and a successful LOGIN for the desired master
system, must have been done successfully before this command can be done.

In CP/NET lcnninology. "mail" is a one-line message sent by the user of one
system in the network to the user of another. Mail is scnt with the SNDMAIL command
and received with this command. Mail may also come from the user of a master system,
or be broadcast to all nodes from a master system. Mail is held by the master closest to
this system unlil it is called for with this command. Then it is sent and also deleted from
the master system's queue.

Here is what one side of a conversation by mail might look like:

sndmail (04) "Elmer, ready for lunch?"
rcvmail
04: YES MEET YOU IN THE LUNCHROOM - E.

RCVMAIL { [idmaster] }

The command queries a master system in the CP/NEr network for any mail
(messages from other CP/NEl nodes) lhal it is holding for this syslem. If there arc
messages. they are received and displayed at the terminal.

If idmaster is specified, lhat master will be queried: if it is not, then master 00 will
be queried.

The system will be suspended until a mcssilge is received.

347

REN can only be used with explicit fllcTefs. In CPIM I. CPIM 2. and MP/M I it is
nOI possible to rename a set of related files. as:

Ten oldprog:=prog: only in MP/M 2

REN is handy when all but one or two of a set of files are to be erased or copied.
Rename the exceptions, then operate on the remaining set with a single command:

Ten allbu!=exceptcom
pip b:=a:·.com
Ten excepl.com=allbut

copy all but EXCEPT,COM

348

A read-only file cannot be renamed. nor can a file on a read·only drive. A file with
the SYS attribute. if renamed. will then appear in directory displays.

REN newref oldref

The command requires a single operand comJXlsed of two explicit filcrcfs linked by
an equal sign. The file named old,.e!is renamed newref.

Drivccodcs must be omitted from both fjlcrcfs. or both drivecodes must be the
same. If the drivecodes differ, the command reports oldrej? and ends.

If a file named newrefalrcady exists. the command reports FILE EXISTS. If the
file o/drefcannot be found. the command reports NO FILE. In either case no action lakes
place.

349

The purpose of SAVE is to prescn'c a copy of a progrJl11 image thaI has been
prepared in working storage. usually so lhal it can becxccutcd J:llcr as a command. The
nannal sequence of events is to usc DDT 10 create the program image and SAVE to
preserve it:

ddl badprog.com

-gO
save 28 goodprog.com

load program with a bug
aller it with DOT subcommands
fClUm 10 the CCP
copy the altered program [0 disk

DOT reports the address oflhe byte following the end oflhe program as loaded. l1le
number of pages to S3\'C is the decimal \'alue of the most signifICant byte of this address.
unless lhe address ends in OOh when one less page is needed:

end address is OE3A
end address is 2200

save OEh. or 14 pages
save 21h. or 33 pages

350

A size of zero is pemlitlcd: SAVE 0 NULL.COM creates a command file oflcnglh
zero. Such a command has a usc; the NULL command Ihat results is equivalent to
restarting the last-executed program at address 01 OOh. Some programs can be restarted
in this way and some cannot.

SAVE size fileref

The presenl contents of working storage. beginning at address 01 DOh, arc copied to

disk under the namcfllerej. Size specifies a decimal number of pages (256~byle units) to
be copied.

Fi/ere! must be explicit. If a filcflleref already exists. it is replaced. If there is not
enough disk space for the file. NO SPACE is reponed.

351

352

The CPNETLDR command. and a successful LOGIN for Ihc desired master, must
ha\'c been done before this command.

In CPI 'ET terminology, "mail" is a one-Hoc message sent by Ihc user of one
system in the network 10 the user of another. Mail senl (0 a slave system travels through
the network to the master system closest 10 its dcstination. There il is held until the user
of the slave system enters the RCVMAll command.

Here is what one side of a con\'crsaiioo by mail might look like:

sndmail (04l-Elmer, ready for lunch?~

rcvmail
04: YES MEET YOU IN THE LUNCHROOM - E.

Mail can be scnlto a master system by giving the master system's id for it/reel":

sndmail [01] (01) ~is my listing finished? Ellen."

The message will be held at the destined master system until a useroflhal system enters
Ihe MRCVMAIL command.

SNDMAIL { [idmaster] } (idrecvr) "message"

The command passes a message 10 a master system in the ep/NET network for
delivery 10 another CP/NET node.

If idmasler is specified. the message will be sent via that masler; if it is not. then
master 00 will be used.

353

It is" common typing error to omit the colon following tlril'ecOlle. In that case
STAT assumes you wanl infom13tion on a file. Usually there is no lile of thaI name, and
STAT reports NO FilE,

The first form of the command tells the free space on a dri,·c. Use illo sec if there is
room for some file. and to check the results of erasing files to make room:

sial biglile
slat b:
era b:·.prn
sial b:
pip b:=bigfile

check size of BIG FilE
sec:: if there's room on the B-dri,'c
dear some space on the B-drivc
check space again
copy the file

354

The report produced by the second form oCthe command is based on the CPffl.'l Disk
Parameter Block. It describes the information used to allocale space to files. Chapter 14
describes the Disk Parameter Block. relates ilia STAT's report. and discusses disk
space allocation, The report lines indicate:

l. heading
2. 10lal capacily. including direclory space. in records
3. toull capacilY. including direclOry space. in kilobytes
4. number of directory entries
5. whelher CP/M checks for diskelle changes: 0 means nol
6. space conlrolled by one directory emry
7. size of an allocation block (minimum space aJ1ocalion unin
8. 128·byle records (001 disk sectors) per track
9. tracks resen'ed for monitor (nO(included in capacily)

STAT { drivecode }
STAT drivecodeDSK:

The first form or the command reports the access status and lhe amount of free space
on disk drives. lfno dril'eco<le is given. it reports on all drives that have been accessed
since the last warm start. When d,.i,·ecotle is specified. thM drive is accessed and
described. The report for each disk resembles:

A: RAN, SPACE: 142K

The second foml reports the facts that CP/M knows about the drive named by
dril'eco(!e. The report resembles:

B: Device Characteristics
4800: 128-Byte Record Capacity

600: Kilobyte Driye Capacity
128: 32-Byle Directory Entries
128: Checked Directory Entries
128: Records! Extent

16: Recordsl Block
64: Sectors! Track

2: Reserved Tracks

355

356

Usc this command to give temporary protection to a disk while testing a new
command program:

pip b:=lestdala
stat a:=r/o
newprog b:lestdata

If NEWPROG goes off the rails and tries to create a file on the A-drivc. it will be
tem,inatcd at once. The protection is only temporary since the next wann Sian will
remo\'c II.

Programs thaI do disk 110 through the BIOS are 001 subjccllO this control; they can
write on any dri"c.

CPn.,'1 marks adri\·c read-only automatically ifit finds thallhe diskeue in it has b«n
changed. The check infannatton used for this fcalUrc is S3\'cd when the drive is first
accessed after a wann sian. On each following access CP/M comp3rcs the check
information 10 the diskcllc now in the drive and sets read-only status if there is a
difference, A warm start resets the status of all drives: new check data is built for each
dri\·c as it is used.

STAT drivecode = RIO

The disk drive named by dril'ecode is marked read-only. This access status remains
in effecl until the next warm stan.

If a command tries to change a read-only disk in any way. it is terminated with the
message Bdos Err on x: RIO. The system waits for any character to be typed. then
performs a warm start.

357

358

The Recs and Bytes columns tell of Inc space allocated [0 a file. Recs is the
number of standard 128·bytc records the file occupies. and is the closest estimate of a
file's actual size. Files of ASCIIlcxt may nOI fill the last record and hence may be as
much as 127 bytes shoner thun indiclllcd. Bytes is lhe amount of space allocated to lhe
file. the 31110UOI of space lhal would be made available if the file were erased.

This command is the only one lhal rcpons on a file's access attribute (whether it is
marked read-only or not). Files arc made read-only with the STAT command for file
control.

This command is the only one to report whether a file has the DIR or SYS attribute
(can or cannot be displayed by DIR). Files wilh the SVS allribute are displayed with
parentheses arourxllhe filename and filelYpe. Files are given the SYS atlribute wilh the
5TAT command for file control.

Since files are Iisled in alphaoctical order lhis is a convenienl command fOf making
a hard-oopy tist of a diskcllc's direclory 10 store wilh lhe diskette. Ready lhe prinler.
Emer the command

slat do' '.'

supplying lhe drivecode of the diskcllc to be listed. Before pressing return. enter
conlrol-p 10 SI:H1 console copy. The report will be printed.

STAT fileref

The filerefmay be ambiguous. A drivecodc may be part of it: if one is. Ihal drive's
directory is scanned. Otherwise the dcfaul! drive's directory is scanned.

The command produces a report similar to the following. with one line for each file
that matches fiferef

Recs
63
17

Bytes
12K
4K

Ext Ace
1 RIW
1 RIO

B:(BIGGER.PASI
B:SMALl.PAS

Byles Remaining On B: 92K

The lines of the report arc sorted in alphabetical order by fileref. If no file matches,
the command reports only NO FILE.

Files with the SYS attribute are indicated with parentheses around thc filename.

359

360

Selling the RIO (read-only) anributc makes it impossible to aller the rmtrkcd file in
normal usc. TIlis is pennancnl protection (as opposed 10 making a disk drive read-only.
which lasts only until the next warm stan). If a command tries 10 aller a read-only file
(tries to erolSC il. rename it. or wrile to it). the command is lenninalcd wilh the message
Bdos Err on x: file RIO. When the neXI character is typed. a wann slart occurs. -...../

PIP can o\'crride read-only file protection. lI ilI do so only with the operator"s
approval. unless Ihe W option is spcciried. In Ihal case. PIP will replace read-only files
without any warning. Programs can (but should nOl) be wrinen 10 remove read-only
prOiection from a file. Programs lhat do disk 110 through the BIOS arc nO(subject to any
control.

The SYS auribute is used to shorten the output orlhe DIR command. Files that are
always prescnt can be removed from the DIR display by giving them the SYS attribute.
The DIR attribute is the reverse of SYS: it makes the file appeOlr in the DIR command's
display.

Files with the SYS attribute are displayed only by the STAT command for file
information.

STAT fileref $R/O
STAT fileref $R/W
STAT fileref $SYS
STAT fileref $0IR

The filercf may be ambiguous. If it includes a drivccodc. the directory on that drive
is scanned. Otherwise the default drive is scanned. If no file matches fi/eref. the
command reports NO FILE and ends.

The staled attribute-RIO, R/W, SYS, or D1R-is set in every file that malches
"---' fi/eref. The command reports each filerer it finds, in the order in which they occur.

361

362

Since the relationship between physical device names and actual 110 devices is sct
by the code of the BIOS-usually written hy the vendor of the system-the meaning of
an assignment will vary from system to system. The meaning of a physical name may
differ depending on the logical device to which it is assigned. The nv: assigned to
CON: may mean something different than TIY: as assigned to PUN:.

Find out the exact meaning of each assignment in your system and fill in the
assignment chan on page 299. Usc pencil. because these meanings can be changed by -./
changing the BI05 when new devices are added.

STAT DEV:
STAT logical= physical
STAT VAL:

The first foml of the command reports lhe prescnt device assignments, The report
resembles this:

CON, ~
ADA, ~

PUN:
LST:

CRT:
ny,
ny,
LPT:

1lle names on the left arc the names of the CPflo.11ogicai devices. Those on the right are
names of physical devices. The code ofthe' BI05 detcnnines the relationship between
physical device names and the actual 110 devices atlached [0 lhe system.

The second fonn of the command assigns the logical device name logical to the
physical device physical. Logic(jl must be one of the four names on the left side of the
report: pll)'sical must be a physical device name, There is a table of physical device
names on page 298. and a bl:mk 110 assignment chan on page 299.

The third foml ofthccol1lll1:md displays 11 TCminder list of all STAT operands. and a
list of lhe physical device IUlmcs lhlll may be assigncd 10 cach logical name.

363

364

When DIR or another command uncxpeC'lcdly returns the message NO FilE. or
when the CCP cannot find a command that oughllo exist. il is likely thai the wrong user
code is active. The command USER a will return),ou 10 user code 0 under which most
files are Slored. So will a cold SIan. A warm Sian should !ea\'c lhe actj"c user code
unchanged.

Nomlally only files created under the aCli,'c user code can be accessed. PIP can
read a file under :mOlher user code and store::l copy of it under the acrive code. See the
USER command for a discussion of how 10 initialize a copy of PIP under a panicuJar
code.

STAT USR:

The command reports lhe active user code number and the codes for which files
exist on lhe default drive. The report resembles:

Active User: 0
Active Files: 0 9

The first line slates lhe <lctive user code. The second lists all user codes for which
liles c"ist on the default drive.

STAT
(user code)

365

366

Whcnc\'cr the CCP begins execution it looks for a file $$$.SUB on the A-drive. If
il finds I~ file. illakes its next command from lhal file ratherthan from the terminal. The
SUBMIT command isa utility whose function is locrealC the SS$.SUB file in the rather
unusual fomlat the CCP requires. SUBMIT. lo~wtherwilh the XSUB command. allows
any routine series of commands to be initialed with a single command.

The CCP trealS lines that begin with a semicolon as remarks. You can use this
feature to pul remarks and operator inslructions in your submit files.

The SUBMIT command in CP/M 2.2 has two bugs. An input line of length zero
causes the command locrash: il is impossible to submit a line of zero length. There is no
fix available for this problem. [\ also trealS substituted conlrol characters incorrectly. It '--"
will reject 'Z with the message Invalid Control Character. II will handle ·z (lowercase)
correctly. A palch is available from Digital Research to correct the problem; see Chapter
12 for an example.

SUBMIT {drivecode}filename { parameters... }

The command supplies a filclype of .SUB to make the first operand a complete
fileref. That file is read. Wherever in il a dollar sign followed by a decimal digit appears.
the IwO characters are replaced by the parameter thai corresponds 10 the digit. The first
paramt'ler replaces all appearances of $1. the second replaces $2. and so on. The
resulting file is wrineo to disk with the name S$$.SUB.

Ifdri~·t'codeis given. the input will be read from Ih:ll drive. but the output is always
written 10 the default drive. When the rile ftlenamt'.SUB can"' be found. the command
repons No SUB File Present and ends. The entire input file muSt be read before OUtput
begins. If there is not enough working storage for this. the command reports Command

'-- Buffer Overflow and ends.
Extra parameler$ have no effect. If the file references a parameter that wasn",

given. the $11 signal is replaced by nolhing: thaI is. the characters vanish. The signal SO is
replaced with fi/~lIalll~. The up-arro..... or carel charactcr signals an ASCII control
character. For example. "Z is replaced by the ASCII SUB character produced by
control~z.

367

368

SYSGEN is discussed at length in Chapler 15: it is used to place the image of the
Monitor on the rcsen,cd tracks of a disk or diskeuc so as 10 make the disk bootablc. 10c
command is oflcn modified by the "cndor of a system to suit the disk hardware.

SYSGEN is used in ly.ocases. Most often il is used when initializing one or more
new diskclIes for use. Each new diskette is foml3ned. SYSGEN is sianed and lold a
source drive from which (0 read a copy of the MonilOr. Then the new diskcues arc put in
the destination drive in tum, and a copy of the Monitor is wriltcn on each.

When a new version ofCPfM is being prepared. MOVCPM and DDT arc used lO
prepare a copy orthe new Monitor in working storage. SYSGEN is started and given no
source drive (as the Monitor image is already in stor-Igc). The command is used to copy -...-/
the new Monitor onlO one diskelle so lhal it can be lested.

SYSGEN

The command prompts for the letter of a source drive. 11 drive from which it can read
an image of the CPIM Monitor. A null line signals that the Monitor image is already in
storage; if given 11 drive letter, the command reads the Monitor into storage from the
reserved tracks of that disk.

The command then repeatedly asks for Ihe leltcr of a destination drive, a drive onto
which it should write the Monitor. A null line signals end of job: a wann stan is done.
When given a drive lct!cr. the command writes the Monitor image onto the reserved
tracks of the disk in that drive.

369

370

The TYPE command is most often used (0 lake a quick look at any printable file. A
printable file is one thaI contains only ASCII characters. Files such as .COM files
contain data [hal is not printable. These can be displayed with TYPE but the output will
be peculiar because the lenninal will respond to the unprintable charneters in unpredict
able ways.

TYPE can also be used (0 copy a file 10 the printer. Enter the command. but before
pressing return. enler a control-p. That enables console copy: [he lines displayed by
TYPE will also be wriuen [0 the printer.

TYPE fileref

The filcfilerefis read from disk and written to the console.
Fileref must be explicil. If it is ambiguous. or if the file cannot be found, the

command responds with jilerej? and ends.

371

The command STAT USA: will display the active u.scrcode and a lisl of all user
codes for which files exist on the dcfaul! disk.

To copy files from one user code to another. use PIP Yo ith the G option. PIP will
read a file created under some Olller user code and make a copy under lhe acth'c code.
Before you can use it. a copy of PIP must ('"isl under the 3(lh'c user code. For instance.
in the sequence:

user 9
pip file9=fileO(gOj

the response to pip will probably be PIP? because no copy of PIP has been made under
user code 9. The SAVE command must be used to make one:

user 0
ddt pip.com
-gO
user 9
save 30 pip.com

go where PIP is
load il inlo working storage
return to CCP
enter user code 9
make a copy of PIP

372

Now a copy of PIP has been made with user code 9 active. It can be used 10 read other
files and make copies under user code 9.

USER code

The number specified ilS ('OtJc' is made the ilclive user code. The only files that can
be processed arc those thut were created when that code was active.

The value of cOlle must lie between lero and [5 inclusive. If il does not. the
command responds with "codeT and ends.

373

374

XSUB greatly increases (he SUBMIT command's usefulness. Commarxls thai
require console input can be submitted for unatlendcd execution. Without XSUB such
commands require that the operator remain al the tenninallO respond to them.

XSUB's potential is Stunled by the fact thaI it can only respond to a request for a full
line of input. Many programs request their inpul a char-Jeter al a lime; these requests are
still directed 10 the console. Only experiment will reveal which form of input a program

uses.
Three useful programs can run under XSUB: ED. DOT. and PIP, An ED session

can be automated except for bulk input with the I subcommand. A submit file can do a
complicated file alteration: the target file can be ch~n through a SUBMIT parameter.
DDT can run from a script of subc:ommands delivered through XSUB.

A sequence of PIP transfers can be automated. PIP's use is impaired by a bug in the
SUBMIT command ofCPtM 2.2 that makcs it unable to handle a nulilinc. Thc null line
that tells PIP to cnd can't be submiHcd.

A final consideration for some programs: XSUB makes the apparent size of storage
smaller than normal. and disables the warm-stan JIlcchanism. A few programs may not
be able to run in the reduced space. If a program accidentally damages the Monitor, the
damage won't be repaired by a warm stan when the command cnds.

XSUB

The XSUB program alters the system so thaI when a program issues a Console
Input Line service request (BOOS service 10). the request will be satisfied with the next
line from the file A:$$$.SUB. rather than wilh a line from the console. Until that file is
exhausted the message XSUB Active is displayed at each warm start, When the suomit
file has been drained, the system returns (0 normal.

If XSUB is already active when the XSUB command is given. it reports the fact and
does nothing.

375

378

The ASClI Code in Hex and Decimal

Use this chart to conven between ASCII characters and their representations in binary.
decimal. and hexadecimal. Forexample. the charactcr"Z" has a decimal value of 90. a
binary representation of 01011010. and the name of Inc character that resulls from

pressing coolrol-z is SUB.

-~
, ~} TopbofMI most.irlc:llnl

10\ 3 b11S," bn and btlUry

I,,.. _Ilunl...

A Z C""RACTER

1010 90 SUI

'-.,--' ~ Conlrokh,fI."lut
Ldl bo;>nk., Int.1 SIPI;r",~nl

;4 ...,. in hn ~nd bJlW')' u..;",ul '':llll>l'

•- ,
~

, ." ,
"' • o.

,
'" • ". ,

'"• " • • .. •
• NUL Dc> "'" • • , · ,-• " •" .. • • m

" " " " .. " .. "0 "'" Dn , 0 A 0 • ,
-, , • " •" ~ .. oc, " '".. " " " .. " " ", IT> Dn .. , , , , ,
." , • " •" "' " ~ .. '"" " " " " " " ", m oc, , , , , , ,." , < "

,
" " " t:TX " OC, .. '".. " " " .. ",

EOT OC. , • " T • ,
". • , .. , .. " .. ,OJ .. oc• ,. ".• " " " .. ", ENQ NAt: • , E U ,

"
0101

, ,
" '" " " '" .. SAJ: '" ,"

• "
• m SYN • • F V , •

1110 • ,
" • " ~ .. SYS ,. ,,'

• " " " " " " ",
'" En · , G • • •

"11 , ,
" • • " " ~ " on '" '".. " .. " " •,

" CAN I 8 II , h •,- ,
" .. • .. • " •• ~ ,. '"• ", liT E' , ,

r V , ,
,., • , " , .. " " "" ~

,.
'"" ,.

" " " ..
A " 'U. 0 , l , •

1010 "
, .. • " " .. " .. w• o. m

• " "
• VT Ese • , r , {

lOll " • " " " " "' .. = o. '"oc " " " " " " "C FF 1'5 < L \ r I". "
,
"

, " .. l'S o• ,.... " " " ., "
.,

"D " e, - · " I m }
1101 " " .. '" " " D .. " ,. m

• " " " "E '" RS > N 1\ " ..
'''1 " • " " ... Q '" ,..

" " " " .. " .. "F " u' I , 0 - • DEL
1111 " • " " " " ." " '" m

379

Table of ASCII Control Characters

Character Value as Control
Name Dec. Hex. Shift Meaning and Usc

NUL 0 00 (none) Null-fills time between data blocks: has no
information contenl. Blank paper tape reads
as a series of nulls.

SOB 01 A Start of hcading-Qpcns address. formal. or
other nontcx[section of a message.

$TX 2 02 B Sian of texl-slllns a texl seclion of a mes-
sage: ends a heading if onc is in progress.

ETX 3 03 C End of lcxt-ends a section of text in a mes-
sage. SOH. STX. or EOT Illay follow.

EOT 4 04 D End of transmission-ends a complete trans-
mission of one or morc texts and associated
headings.

ENQ 5 04 E Enquiry-requests a remote device to send its
status or its identification or both.

ACK 6 05 F Acknowledge-an affirmative response from
a receiver to a sender. ..J

BEL 7 07 G Bell-sounds an audible alarm.

BS 8 08 H Backspace-moves print head or cursor left
one position.

fiT 9 09 Horizontal tab--moves print head or cursor
right to the next defined tab SlOp (CP/M
tab stops arc at every eighth column: 9.17.
25 ...).

LF 10 OA Linefeed-moves prinl head or cursor down
one line (note I).

VT II DB K Verticaltab--moves print head down to the
nexl defined vertical lab stop (note I).

FF 12 DC L Formfeed-moves print head 10 the defined
top line of the next page (nOle I).

CR l3 OD M Carriage relurn-moves print head or cursor
10 the left margin (note 2).

SO 14 DE N Shift out-selS alternate font of graphic char-
acters (21h to 7Eh) until 51 is seen.

..J

380

Character Value as Conlrol

'- Name Dec. Hex. Shin Meaning and Use

51 " OF 0 Shift in-returns to sl;mdard graphic fonl. SO
and 51 arc (he logical choices 10 control a
graphics mode. but are rarely used.

OLE I. 10 P Data link escape-marks start of one or more
characters to Ix interpreted as special trans-
mission cOfllrol characters.

DCI 17 11 Q Deviu control I (formerly XON)-slarts a
unit of a remot:e device. Some printers emil
IX: I when lhey are ready 10 reuh'e data.

DC2 18 12 R Device control 2-starts a unil of a remote
device.

DC3 I. 13 5 Device control 3 (formerly XOFF}-stops a
unit of a remote device. Some prinlers emit
DC3 when their buffers are nearly full.

DC4 20
"

T Device control 4-stops a unit of a remote
device.

NAK 21 15 U Negali\'e acknowledge-a negative response
from a receh'er to a scnder.

'- SYN 22 16 V Synchronous idle-fills lime on an idle line to
mainlain synchrony of sender and receiver.

ET8 " 17 IV End transmiued block-marks end of a block
of sent dal3 (but not the end of a message.
which may span blocks).

CAN 24 18 X Cancd-<auses lhe transmilled block to be
disregarded by Ihe receiver. Logical choice to
mark a deleted record.

EM 25 19 Y End of medium-marks the end of active data
on atapc orother medium. Not used in CP/M.

SU8 2. lA Z SubstilUtc-replaces a character known to
have been garbled in transmission. Used by
CPIM to mark logical end of file.

ESC 27 18 Escape-marks the stan of a sequence of
characters to Ix interpreted in some special
way by the receiving device.

FS 28 lC "- File separator-see nOle 3.

GS 2. 10 I Group separator-see note 3.

'- RS 30 IE Record separator-see not:e 3.

38/

382

Character Value as Control Meaning and Usc
Nome Dec. Hex. Shirl '--"

US 31 1F Unil separator-sec n()(c 3.

SP 32 20 (none) Space-moves print head or cursor one posi-
tion 10 the right.

DEL 127 7F (none) Delete (formerly rubout)-IO be disregarded
by the receiver. On paper tape a character
may be erased by punching all its holes. reo
suiting in DEL.

Note I. Nonnally the print head moves only vertically. When agreed by the sending
and receiving parties, the print head may also be moved to the left margin during this
action.

Note 2. LF may imply a CR action. serving as a New Line (NL) character. but CR
should nO(imply a LF action. A sender using CR. LF toencl lines works properly with a
receiver thai rclUms the carrier on LF. but not with one that mo\'CS the carrier down the
page on CR.

Note 3: FS. as. RS. and US a~ optional data delimiters. The standard does not
specify their use, except that they form a hierarchy with FS the most inclusive and US the
most specific. Note that the four arc adjacent to the space, which may be treated as a fifth
separator. -..-/

Hexadecimal-Decimal Chart

This chan documents the decimal, hexadecimal, binary. and character represenlations
thaI can be encoded in a single g·bit byte. Use it 10 conven between decimal and
hexadecimal as, for example, use of the SAVE command requires you to do. If the end
address of a program. as reponed by DDT. were 25A2h, you need to SAVE the
equivalent of 25h pages. 1bc chart shows that 25h is 37 decimal.

Top border; Iro5/ oi."meant
4 b,ts '" hc~ a"d bill'')'--+--~~~P,,,,

=t~~~::::,:::3:7::."_,-,::;:-----~::;.:::eL VALUE
~ ~ ASClleh:ux.e,

Ld. bonier mull,nanl (..-herr applicable)
4 bUI in he.. and borury

383

384

0 , 2 3 , S , ,- ~, ~.. ~"
,,~ 0101 0110 0111

~ " " " • • • "0 • , 2 3 • , , ,- "'"ilL ~ ~ = 00. L~ ~ ."
" " " " " " " ",

" " " " 20 " 22 23
~, ~ OCIlXoto, ~ OC.~ OC. ". SY!' O.

• " " " " " " ",
" JJ " " " " J8 J9

~" SPA<:~ , · • • • •• " " " " " • "3 .. " SO " " 53 " "~" 0 , • , • • • •.. " " " " " .. "• " " 0; " " " " "..~ • • • • , , , 0.. " " " .. " • "
S SO " " " .. OS 86 ""'1 , 0 • • • 0 • •

• " ",
" " " " '00 '01 102 'OJ

0110 • • · • · , •.. " " " " .., 112 '" '" '" '" '" '" '"Oil' , • , · , · , ·.. " " " " "8 128 129 030 03' '" '" '" '",~ .. " .. " .. " .. ", ,.. '" '" '" '''' '" os, 'SO
,~,

"
A '" '" 162 "3 ,.. 'OS '0; '"
1110

• " " " • ",
'" '" '" '" 'SO '" 182 '"lOll

00 0 0 ..
C '" ,OJ '" ,OJ '" ,,, '" '"
,,~

~ • .. ~ "', ". 209 '" 211 212 213 214 liS

,," U " " " " "E 224 22S 226 227 228 2:!9 23. 2)1

1111

" " n " " " " ", 20. 241 242 24) 244 !4S '" 247

1111

, , A , C • , ,
,* ,., 1011 '/III ". 1101 '110 1111

" • • " oc ~ " ~, ,
" " " " " "• "' ~ ~ " n • •

" " " " " ,. " "
" " " n 28 " 30 "c...~ ~ '" t::IC " ~ .. "'

" " " " " '" " ".,
" " " " " "

.,
, , . · ,

• • ,. " X '" " "
" " " " 60 " " 6J

• • < . > ,.. " u .. •
72 n " " " 77 " ""

, , • , " " •» " • '" " "
88 " 90 " " " " "• • • , , , ·• • .. " ..
"" '''' '" ,0> ,.. '''' ". '"• , , • , . · ·

" • u " " '" .. "". 12. 122 123 124 on 126 127

· , , , , , · Me

• • • .. " ..
'" '" '" '" ". ", '" '"

• • u " • ." .. "
'" '" '" '" os, '" ". os,

.. •• .. >. ~ .. " "
'" '" ". no 172 on '" on

.. • oc .. • •
'" '" '" '" '" '" '90 ,OJ

a a <- n oc rn n a

'00 20' 201 '" 2<" 205 20<> 20'

" ~ oc 00 " "
2" '" liS 219 no Ul 112 22J

u .. ~ u .. " " "2J2 m '" m '" m 238 239

" ~ " " ..
2<8 '" '" '" 2S2 m 254 '"

385

Hexadecimal Digit
most _ significant _ least

0 0 0 0 0
1 4.096 256 16 1
2 8.192 512 32 2
3 12,288 768 48 3
4 16.384 1.024 64 4
5 20.240 1.280 80 5
6 24.576 1.536 96 6
7 28.672 1.792 112 7
8 32.768 2.048 128 8
9 36.864 2.304 144 9
A 40.960 2.560 160 10
B 45.056 2.816 176 "C 49.152 3,072 192 12
D 53.248 3.328 208 13
E 57,344 3,584 224 14
F 61,440 3,840 240 15

J6·Bit Hexadecimal-Decimal COli version (for posith'e and unsigned "3Iues)

Use this chart to convert between decimal and I(j.bil hexadecimal numbers when the
numbers are positive or are not signed (use the chart on page ?? for signed, negative
numbers)."

To com'ert hex 10 decimal. sum the numbers corresponding to each digit. For
example. given 7BOEh:

28.672
2.816

208
14

31,710

(1st digit) 7 =

(2nd digit) B =
(3rd digit) D =
(4th digit) E = +

--:---,--,
(result)

To convert decimal to hex. sublraclthe largest possible number for each hex digit,
Given II .480:

11.480
- 8.192 = 2 (I st digit)

3,288
- 3.072 = C (2nd digit)

216
208 "'" D (3rd digit)

386 8 = 8 (4th digit)

Hexadecimal Digit

'--'
most _ significant ___ least

0 3,840 '40 16
1 3.584 224 15, 3.328 '08 14
3 3,072 192 13
4 2,816 176 12
5 2.560 160 11
6 2.3<» 144 10
7 2.048 128 9
8 28.672 1.792 112 8
9 24.576 1.536 96 7
A 20.480 1,280 80 6
B 16.384 1.024 64 5
C 12.288 768 48 4
0 8.192 512 32 3
E 4.096 256 16 2
F 0 0 0 1

16-Bit Hexadecimal-Decimal Convel"Sion (ror signed, negative values)

Usc this chart to COl1\'ert between decimal and hexadecimal numbers when the numbers
are negative. The most significant hex digit or such a number is 8 or greater. Usc the
chart 011 page?? for posilive or unsigned numbers.

To convert hex to decimal, sum the numbers shown for each corresponding digit.
Forcxamplc. in ordcrto PEEK location 813Ah the BASIC programmer must eonvert it:

(1st digit) B "" 16.384
(2nd digit) 1 "" 3,584
(3rd digit) 3 192

(4th digit) A _+--.,.,..,-,c6
20.166 - use PEEK(-20166)

To convert decimal to hex. subtract the largest possible number for each digit.
Given -14,283:

14.283
- 12.288 "" C (1st digit)

1.995
- 1,792 "" 8 (2nd digit)

203
192 "" 3 (3rd digit)

II = 5 (4th digit)
387

""~

l

8080/8085 Instruction Set-Functional Tableau

This chart displays the instruction sct of the Intel 8080/8085 CPU in functional groups. The fixed pans of the
instructions are shown in uppercase; the parts thaI may vary arc shown as lowercase abbreviations. For
example. the key shows that the abbreviation "bd" lllay stand for either B or D. llicrefore the instruction
shown as STAX bel may be coded as STAX B or lIS STAX D.

Use the chan as a memory aid 10 recall the usc or syntax of instructions. 'Inc following chart displays the
Z80 instruction set in the same formal, with similar instructions al similar loc:llions on the page. Flip between
the charts to compare the two instruction sets.

ARITHMETIC INSTRUCTIONS CONTROl. TRANSFER

S-bit Data 16-bit Data Unconditional Conditional

nccum : reg aCCU1l1 : imm. accul11 : storage POlL

OM JMP llddr Jcnd addr
CMA CALL addr Cc:nd addr

RET R,nd
,NR reg ,NX 'P RST ,
DCR reg DCX '"ADD reg ADI " DAD '"ADC reg AC' "SUB cog SU, " 111'1' 1\'IANII'UI.ATlON
SBB reg 5.' "ANA reg ANI "ORA reg ORI "XRA reg XRI "C1\-'1P reg CPI "

l l

(

ROTATION

(

SIlins MACIIINE CONTROL

(

RLA
RAR
RLC
RRC

NOP
01
STC

EI
CMC

INxx OUT xx

8-bit D~w

Ol\TA MOV";MENT INSTRucnONS

RIM SIM

16-bil Dula

reg : reg reg -.. Slor slor- reg re, re, reg - Slor SIO(_ reg

MQV reg.reg MVI reg.xx SIlI-IL LXI rp,xxxx
$TAX bd LDAX bd

STA addr LDA addr SHLD addr LHLD addr
XCHG XTHL

PUSH ph pop ph

:c
~

Key:
bd : II.!)
rp : B.D.lt.SI'
ph : PSW,B.D,1l

n:~ : A,B,C,D.E.H.L.M
addr: :odd~§i con~lanl

II : 8·bil f;Qn~an.

end Z,NZ.C.NC.I'O,PE.M.I'
uu 16.bi, conSUnl

§ J·b;t ror\l;lan,

~

Z80 Instruction Set-Fullctional Tllblcau

This chan displays the instruction set of the Zilog ZSO CPU in functional groups. The fixed parts of the
instructions arc shown in uppercase; the p:u1S that may vary are shown as lowCTC:lSC abbreviations. For
eX:lmplc. the key shows that the abbreviation "hx" m:.y stand for any of HL. IX, or IY, Therefore Ihc
instruction shown as LD SP,hx may be coded as LD SP,Hl. or as LO SP,IX. or a~ LD SP,IV.

Usc the chart as a memory aid 10 rec:llllhc use Of syntax of instructions. The previous chart displays Ihe
8080/8085 instruction set in the same forlll:!!. with simil:lr instructions at similar lo<:;tlions on Ihe page. Flip
between the chans to compare the IWO instruction selS.

The following chart shows the syntax for the unique Zilog instructions for the mocros distributed with the
Digitlll Research MAC assembler,

ARITHMETIC INSTRUCTIONS CONTROL TRANSFER

((

S-b;t Data 16-bit Data UneonditiOlmJ Conditional

llceum : reg aecum: imm. lleeUI11 : stor,tge JP (hx)
JR " JR ez.xx

DAA JP addr JP cnd.addr
CPL CALL addr CALL cnd.addr
NEG RIT ,"d
INC "', INC '" RST ,
DEC reg DEC '" R..::n
ADD ", ADD " ADD (xr+d) ADD hx.bp RETN DJNZ "ADC reg ADC " ADC (;u+d) ADC HL.bp
SUB reg SUB " SUB (xr+d) lilT i\IANII'UI.,\TION
SBC ". S~C " SBC (xr+d) SI3C HL.bp
AND "', A, D " AND (xr+d) BIT s.reg BIT s.(xr+d)
OR reg OR n OR (xr+d) SIT s.reg SET s.(xr+d)
XOR reg XOR n XOR (xr+d) RES s.reg RES s.(xr+d)
CP "'. CP " CP (xr+d)

,
(

((

ROTATION Silins M,\CIHNE CONTROL

RLA RL reg RL (xr+d) SLA reg SLA (xr+d) NOP
RRA RR reg RR (xr+d) SRA reg SRA (x.r+d) DI EI IN A.(.... x) OUT (xx).A
RLCA RLC reg RLC (xr+d) SCF CCF IN reg.(e) OUT (C).reg
RRCA RRC reg RRC (xr+d) SRL reg SRL (xr+d) EXX EX AF.AF'
RLD 1M 01112
RRD LD A.1 LD A.I

LD A.R LD R.A

UATA MOVEMENT INSTRUCTIONS

8-bil Dma 16-bil DOIta

reg : reg reg SlOT SlOT _ reg ~g ~g reg SlOT SlOT _ reg

LD reg.reg LD reg.xx LD SP.hx LD rp.xxxx
LD (bdl.A LD A.(bd)

LD (addr).A LD A.(addr) LD (addr),rp LD rp,(addr)
EX DE.lll EX (SP),hx

PUSI-I px pop p'
LD (xr+d),A LD A.(xr+d)

(

'"'~

Key:
bel , Be.DE
bp : RC,l)l;,III..S'>
rp : BC.Dl:.HI..SI'.lX,IY

~I ; IX,IY
I'IX : IX,lY,ltl.
px : AF,llC.DE,HLIX,IY

"'& A,a.c.O.E.Il.L,(IlLI
U41dr,x~~~ l6-bl1 CQll'l~Il(

u g·bit comtnm

("nd , Z.NZ.C.NC.I'O.Pf..M.I'
n Z.NZ,C.NC

s l-bil COnllam

Z80 Assembler Syntax
Cross-Reference

This chan shows the assembler Synl3X of the instructions thaI are unique to the Z80
for three different assemblers. The finl column shows the standard Zilag syntax. The
second column shows the "TDL mnemonics" used in some non-Zilog assemblers. The
third column shows the syntax of the macros contained in the file Z80.Ll B, distributed
with Digital Research's MAC assembler product.

Use the chan when a 280 instruction is needed in a program to be assembled with
MAC. Proceed as follows:

I. Find the instruction wanted in Z80 Instruction Sct Functional Tableau. page n.
2. Rip back one page 10 the 808018085 Instruction SCI Functional Tableau. If there is

an 8080 instruction at the same location on thai page. code thaI inSlruclion.
3. Look the inSlruction up in this chan (the chan is ofl!anized in lhe same groups and in

about the same order). If the inS!n.lclion does noc appear. then lhe macro (and the
TDL mnemonic) has the same syntax as the slandard Zitog instruction; code thc
Zilog instruclion.

4. Code lhe macro from the lhird cotumn of this chart.

394

DEC
INC
ADD
AOC
SUB
SBC
AND
OR
XOR
CP

INC
DEC
AOC
SBC
ADD

(xr+d)
(xr+d)
(xr+d)
(xr+d)
(xr+d)
(xr+d)
(xr+d)
(xr+d)
(xr+d)
(xr+d)

"
"HL.bp
HL.bp
xr.bp

Arithmetic InstructiOlIS. 8-bit
OCR d(Xf)
INR d(xr)
ADD d(xr)
AOC d(xr)
SUB d(xr)
SBB d(xr)
ANA d(xr)
ORA d(xr)
XRA d(xr)
eMP d(xr)

Arithmttic Instructions. 16·bit

INX xr
DCX xr
DAOC bp
OSBC bp
DADx bp

DCRx d
INRx d
ADDx d
ADCx d
SUBx d
SBCx d
ANDx d
ORx d
XORx d
CMPx d

INXxr
DCXxr
DADC bp
OSBC bp
OAOx bp

Control Transf~r Instructions

'---JP (hx) PCHx PCHx
1R xx JMPR xx 1R xx
1R cz.xx JRcz xx JRcz xx

Bi/ Mmliplilmioll InSlructiOlrs

SET s.reg SET s,reg SETS s,reg
BIT s,(xr+d) BIT s,d(xr) BITx ,.d
RES s.(xr+d) RES s,d(xr) RESx '.d
SET s,(xr+d) SET s,d(xr) SETx ,.d

Rotation and Shift Instructions

RL reg RALR reg RALR reg
RL (xr+d) RALR d(xr) RALx d
RR reg RARR <eg RARR <eg
RR (xr+d) RARR d(xr) RARx d
RLC <eg RLCR <eg RLCR <eg
RLC (xr+d) RLCR d{xr) RLCx d
RRC reg RRCR <eg RRCR <eg
RRC (xr+d) RRCR d(xr) RRCx d

'-SLA reg SLAR reg SLAR reg
SLA (xr+d) SLAR d(xr) SLAx d
SRA reg SRAR reg SRAR reg
SRA (xr+d) SRAR d(xr) SRAx d
SRL reg SRLR <eg SRLR <eg
SRL (xr+d) SRLR d(xr) SRLx d

Machille Cofltrollnstruc/iolls

IN rcg.(C) INP reg INP reg
OUT (C),rcg OUTP reg OUTP reg
LD A.I LDAI LDA!
LD LA LOlA STAI
LD A.R LDAR LDAR
LD R.A LDRA STAR

Data MOl'ement Ins/ructions, 8-bit

LD rcg.(xr+d) MOV reg,d(xr) LD, reg.d
LD (xr+d).rcg MOV d(xr).rcg STx reg.d
cD (xr+d).xx MV! d(xr).xx MV!x xx,d

'-'
395

I

396

Data MOI'ement IIlS/I"IKliolls. J6-bil

LD SP.hx $Phx SPllx -..../
LO xr.xxxx LXI xr.xxxx LXix xxxx
LD (addr).rp S<pO >dd' S<pO addr
LD rp.(addr) L<pO >dd' L<pO ,dd'
EX (SP).hx XTh, XTh,
PUSH " PUSH " PUSJ-Ixr
pop

"
pop " POPxr

II/direct Comparis(!Il

CPI CCI CCI
CPO ceo CCO
CPIR CCiR CCiR
CPDR CCDR CCDR

398

Most oneo the parameter leiters are omine<! entirely. causing all files 10 be located
on the default drive. The assembly of a large file can be speeded by proper use of the
parameters.

When the program is expected 10 have tlTOl"S. a fast syntax check can be: had by
suppressing both output files. EITOI1i are reported at the console as usual but the assembly
runs faster when no output liles arc wriUcn.

Most of the assembler's lime is spent writing the listing file or waiting for the drive
to seek between files. Suppressing the lisling file will shonen assembly lime.

Diskent hardware is usually faster al switching between drives than at seeking on J
one drive. Pulling the input and output files on different drives will often speed a long
assembly. Hard disk drives seck very quickly. If you have one, place the output files. or
all the files, on il.

A large listing may fill the OUlput disk causing the assembler to abort with the
message OUTPUT FILE WRITE ERROR. In lhis case direct the lisling to the console
and use control-p 10 gel a paper copy ofthc file. This allows a complele assembly. bUI
execution is slowed because the assembler is limited by lhe speed of lhe printer.

ASM {drivecode}filename{.shp}

The file namcdjilellome.ASM is assembled. As~mbly errors are reponed to the
console. A file representing the object program may be produced asfilel1omt',HEX. A
file containing the listing may be produced asjilen(//I1t',PRN.

If the optional (Iril'eCfxle is given. that drive is ffi:lde the default drh'C fOf all files.
The parameter letters may specify other drives.

The optional parameter Icncrsshp occupy the position ofa filetype. but lhey specify
Ihe drives used for Ihc three files. Parameter letter s specifies the drive (one of A... P) to
be searched for jifell(lme.ASM.

Parameter letter h determines the drive (one of A... P) whcrejilellol1lt'.HEX will be
wrinen. If h "" Z. the object file is suppressed.

Parameter leiter p controls the destination of the listing. When p is one of A... P. a
listing file is written to Ih:ll drive. If p = X. the lisling is wrillen to the console; p=Z
suppresses it.

399

400

ASM Error Messages

0: The o~rand is too large 10 store in the defined space.

E: An operand is required. None can be found. or the operand expression cann(){ be
interpreted.

L: This label is a duplicate of that on :lnother stalcmcnl. or no label is allo.....ed on this
type of slatement.

N: This operation is nOI available in the ASM assembler.

0: Either a char-Jeter string is too long. or thc operand expression is 100 complex to be
evaluated.

P: Label or expression has a diffcrenl value on Ihe second assembly pass lhan on the
firs!. May be auributable to duplicate labels or reference 10 a label before it is
defined. Fix all other errors first; P errors orten go away with them.

R: The register operand is not correct for the operation. as in DAD A.

s: A required statement field can"' be identified. as when the label is omiued from an
EQU. May result from the use of double rather than single qUOIes on a character
constant.

U: A label in the operand expression hasn't been defined prior to this statement (an
EQU. IF. SET, or ORG), and it must be,

V: 1l\e value of the operand expression is wrong for the type of operation, as in MVI
A.300.

CANNOT CLOSE FilES: An output file can't be closed. probably because the diskene
in that drive was changed and so made RIO.

NO DIRECTORY SPACE: An Output file can't be created becauselhatdisk'sdirectory
is full.

NO SOURCE FilE PRESENT: The filename wasomincd from the command line, or
filename.ASM is nOI on that disk.

OUTPUT FILE WRITE ERROR: There is either no more data space or no more
directory space for the output file.

SOURCE FILE NAME ERROR: TIle filenamc contained an asterisk or question
marks. It must be explicit.

SOURCE FILE READ ERROR: This error probably can'l occur: the assembler would
be terminated with "BOOS Enor on x:" instead.

SYMBOL TABLE OVERFLOW: 1l\ere are more labels defined in lhe program than the
assembler has room 10 store.

Statement Formation in ASM

"'-" 1. A statement contains these fields:

s~qumc~ label operatiofl op~ralld :comm~",

s~qllem:e: Any numbcrof decimal digits and spaces. The field is treated as
spaces: it is nOI checked for numeric fannat orcorrecl statement
order.

label: Any number of letters and digits, the first a Jetter.

Lowercase leners arc treated as uppercase.

The first 16 characters are used; others arc ignored.

Dollar signs may be interspersed in the label; thcy arc ignored
and not counted.

Op codes. directives. and operators (e.g.. SHL) are reserved:
use of one as a label causes an error.

A colon at the end of a label is treated as a space.

operatiOfJ: An instruction operation code or a directive.

Op codes and directives are rese ..yed words: they are recognized
wherever they appear in thc line. even in the first character of
the line.

operand: An assembler expression (see Ihc next chart).

;comment: Any characters except exclamation mark. A comment is treated
as spaces.

2. All fields are optional and may be omitted. except that most opera/ions require an
operand.

3. More than one slatemenlmay appear in an input line. Slalements are separated by
exclamation marks.

4. Any number of spaces may be used before. between. and afler fields.

5. An o~ration can begin in the left margin. When a label is present. a space or colon
mUSI separate il from the operation. A space must separate OfNration and operand.

401

Elements of ASM Expressions

I. Numeric constanlS represent unsigned l6-bil integers. Dollar signs may be inter
spersed among the digits: they are ignored.

binary digits and B:
octal digits 0 or Q:
decimal digits. optional 0:

hexadecimal digits and H:

01108
60

6
6H

1010$1100$111 DB
53160
27660

OACEH

2. Character constanlS usually represent their hexadecimal ASCII \'alues as unsigned
16-bit integers. See the DB and OW directives for their different treatment of
characters.

A single character A is equivalenllo 41H.
Two characters AS are equivalent to 4142H.
Multiple characters MESSAGE are allowed in DB only.

3. Lnbds represent the unsigned 16·bit integer value gh'cn them :11 the point al which
they are defined. This is usually the address of the operation the label precedes.
EQU. ORG. and SET give their labels the value of their operands. -..../

4. D,u-rOlion code /lames represent lheir binary value with zero bilS in any register
fields.

5. The len regisler /llImes represent lhese values:

A""-7
H=4

8""-0
L = 5

C=l
M = 6

0=2
SP = 6

E=3
PSW = 6

402

6. The special name $ represents the address of lhe neXl byte 10 be assembled (the
lOCOltion counter).

7. The result of any compound cxpression is an unsigned l6-bit integer. Use parenthe
ses to force the orner of evaluation wanted. In this display x and y stand for any of the
elemenls ab()\'e. Of any compound expression in parentheses:

+,..,.
.l+Y

.1'-)'

x.y
xl)'

x MOD y

idCnlity (=)' alone)
IWos' complement
unsigned sum
unsigned difference
unsigned product
integer division
n::mainder of xl)'

NOTy
.lAND)'

x OR"
xXOA),
x SHL)'
xSHAy

ones' complement
logical and
inclusive or
exclusivc or
x shift left y bits
.l shift right y bits

Here are examples of complcte statements using expressions:
MYI A.MOY OR «A SI·IL 3) OR B): pUI a "MOV A.O" opcode in A
ORO (S+OOFFH) AND OFFOOH: move to next page boundary.

403

404

Most often the parameters are omine<! entirely. causing all files to be located on the
default drh'c. The assembly of a large file can be speeded by proper use of the
parameters.

When the program is expected 10 have errors. a fast syntax check can be had by
suppressing all OUlpUl files (HZ PZ -$). Errors are reponed at the console as usual but
the assembly runs faster when no output files are wrincn.

Except when there are many macros to expand. most of the assembler's lime is
spent writing the listing file or wailing for the drive to seek between files. Suppressing -...-/
the listing file (PZ) will shoneo assembly time. If the SID debugging 1001 is 1'lO[to be
used immediately after the assembly. suppress the symbol table as well (PZ -$), Should
you later want to use SID. produce a symbollable quickly by writing only thaI file (PZ
HZ).

Diskette hardware is usually fastcr at switChing between drives than at seeking on
one drivc. PUlling the input and output files on different drives will often speed a long
assembly. Hard disk drives seek very quickly. If you have one. place the OUtput files. or
all the files. on it.

A large listing may fill the output disk causing the assembler to aborl with the
message OUTPUT FILE WAITE ERROR. In this case direct thc listing to the printer
(PP or PP +8) to get a paper copy of the file. This allows a complete assembly. but
execution is slowed because the assembler is limited by the speed of the printer.

MAC {drivecode}filename { $ parameters}

The file namedftlel1ame.ASM is assembled. Assembly errors arc reported to the
console. A file representing the object program may be produced asfile/llIme.HEX. A
file containing the listing may be produced asflfel1ame.PRN. A symbollable file may be
produced asfllel1ame.SYM.

If the optional dril'ecode is given. that drive is made the default drive for all files.
unless a parameter specifics otherwise.

The optional parameters control a number of features (a complete table of param-
"-' cler values appears following this topic). The disposition of the four files is controlled by

parameters. The parameter Ad (where d is a drive letter) specifies the drive to be
searched for ji/cl1l11l1c.ASM. The parameter ul specifics the drive to be searched for
macro libraries.

The parameter Hd determines thc drive (d one of A... P) where jilf!llclllle.HEX will
be written. HZ suppresses the object file.

The parameter Pd controls the destination ofthc listing. When (/ is one of A...0, a
listing file is written 10 that drive. Drive P: cannot be specified: PP causes the listing to
be wriHen to the LST: device. PX sends Ihe listing to the console; PZ suppresses il.

The parameter Sd comrols the destination of the symbol table. where d has the same
mcanings as for the Pd parameter. The symbol table may be suppresscd with either SZ or
-5. Specifying +5 sends the symbol table after the listing to whatever that filc's
destination may be.

405

MAC Parameters

Command Parameters, Used Following $ in lhe MAC COII/mand:

Ad

Hd

HZ
l.d

+L

-L

+M

-M

Pd

PP

PX
PZ
+Q

.Q

+R

Sd

+5

-5

Search for the source file on drive tf.

Write the .HEX fi1condrivcd(with RMAC. use A r:l.lherthan H
to conlrolthe .REL file).

Suppress the .HEX file.

Search for all ,LIB files on drive d.

List the contents of .L1B files as they arc read.

Don'l list the contents of .L1B files.

List all macro lines as they are substituted (nonnally. only lOOse
that produce object code arc listed).

List no lines produced from macro substitution (includes the
bodies of IRP. tAPe. and REPT).

List only the objcct code (hex values in the left column of the
listing) produced from macro substitution.

Write the listing 3S a .PRN file on drive d.

Write the listing to the logicailisl device.

Write the listing to the logical console device.

Suppress the listing enlirely.

Include local symbols (names beginning ??) in the symbol
table,

Don't include local symbols in the symbol table (defaull).

Add 100h to the operands of all OAG statements; assists in Ihe
construction of a .PAL file under MP/M. This function is not
available in AMAC where A controls Ihe .AEL file.

Wrile Ihe symbol table as a .SYM file on drive d.

Write Ihe symbol table following the listing file, whatever its
destination m:lY be.

Suppress thc symbol table display,

SOl/ret> File COll/rols, I"serleel tIS Lines Withi" tire SOl/ree Program:

406

$-PAINT

$+PAINT

S+MACAO

$-MACAO

S·MACRO

Stop producing a listing (this line is not printed).

Start producing a listing (this line is printed).

Start listing lines produced by macros.

List no lines produced by macros.

List only object code produced by a macro.

MAC Error Messages

B: A balanced pair of statements doesn't match: therc's an extra ELSE, ENDM. or
ENDIF, or one out of place.

e: The statement allows multiple expressions and one expression isn 'f properly delim
ited from the next.

0: The operand is too large to store in lhe defined space.

E: An operand is required. None can be found. or the operand expression cannot be
interpreted.

I: An invalid character (nol printable. not HT. CR. or LF) appears in this line.

L: This label is a duplicate of that on anolhcrslalement, or no label is allowed on this
type of statement.

M: Macro expansion is OUI of room: a macro is probably calling itself without limit.

N: This operation is nol available in the MAC assembler.

0: Either a characler Siring is too long. or the operand expression is too complex to be
evaluated. Within a macro too many substitutions are called for. or 10,000 local
labels have been generatcd.

P: Label or expression has a different value on the second assembly pass than on the
'- first. May be due to duplicate labels or use of a label before it is defined. Correct

other errors first; that often makes P errors go away.

R: The register operand is not correct for the operation, as in DAD A.

S: A required statement field can't be identified, as when the label is omitted from an
EQU. May result from the usc of double rather than single quotes on a character
constant

U: A label in the operand expression hasn't been defined prior to this statement, and it
must be.

V; The value of the operand expression is wrong for the type of operation, as in MVI
A,300.

CANNOT CLOSE FILES: An output file can't bedosed, probably because thediskelle
in that drive was changed and so made RIO.

INVALID PARAMETER: One of the parameter lellers in the command line is not
known or has the wrong argument.

NO DIRECTORY SPACE: An output file can't be created because that disk's directory
is full.

NO SOURCE FILE PRESENT; The filename was omiued from the command line, or
there is no jilellGme.ASM on thai disk.

OUTPUT FILE WRITE ERROR: There is either no more data space or no more
directory space for the output file. 407

408

SOURCE FILE NAME ERROR: The filename contained an aslerisk or question
marks. II must be explicit.

SOURCE FILE READ ERROR: This error probably can', occur: the assembler would
be lenninated with "BOOS Error on x:" instead.

SYMBOL TABLE OVERFLOW: There are more labels defined in the program than the
asscmbler has room to Slore.

UNBALANCED MACRO LIBRARY: In a macro library a macro definition isn't
properly closed with ENDM.

Statement Formation in MAC

I. A statement contains these fields:

s~qllmc~ lalNl o~ration OfN'rtltll/ :commnll

s~qllence: Any number of decimal digits and spaces. The lield is treated as
spaces: it is nol che<:ked for numeric fonnat orcorrect sequence.

lalNl: any number of lellers and digits. the first a leiter.

Lowercase lellers are treated as uppercase.

? and@ are treated as letters in labels. Labels beginning ?? are
not lisled in the symbol file.

The first 16 characters are used: Q(hers are ignored.

Dollar signs in the label are ignored and not counted.

A colon at the end of a label is treated as a space.

Op codes. directi\'es. and operators (e.g.. LOW) are reserved;
they may not appear as tabels.

OI,emliol1: An inSHuction operation code or a directive.

Of,ermrd: An assembler expression (see the next chan).

;comment: Any characters except exdamlllion mark. Acomment is treated
as spaces. In a macro a comment headed by;; is neilher slored
nor lisled.

2. All fields OIre optionOlI OInd may be omitled. excepllhat mOSl opera/ions require an
ol,ertwd.

3. More than onc statement may appear in an input linc. StalementS are separated by
cxdamalion marks.

4. Any number of spaces may be used before. between. and OIfter fields.

5. An 0l,um/on can begin in thc left margin. When a label is presenl. a space or colon
mUSl sepOlrolte it from the O/H'rmiOIl. A space must separale opera/ion and opumld.

409

Elements of MAC Expressions

I. Numeric conSUllIts represent unsigned l6-bit imcgcrs. Dollar signs may be inter
spersed among the digits; they are ignored.

binary digits and B:
octal digits a or 0:
decimal digits. oplional 0:
hexadecimal digits and H:

01108
60

6
6H

1010$1100$111 DB
53160
27660

OACEH

2. Characlt'r COllstants usually represcnllheir hexadecimal ASCII values as unsigned
l6-bi\ integers. See the DB and OW directives for their different treatment of
characters.

A single character A is equivalent to 41 H.
Two characters AS are equivalent 10 4142H.
Mulliple characters MESSAGE are allowed in DB only.

3. ulbds represent the unsigned 16-bit integer value gh'cn them at the point they
appear. This is usually the address of the operation the label precedes. EQU. GRG.
and SET give their labels the value of their operands. ---./

4. OpemtiQI1 C()(/l' /WI1!l'S represent their binary valuc with zero bits in any register
fields.

5. The ten regisler /lames represent these values:

A=7
H = 4

8=0
L = 5

C=I
M = 6

0=2
$P = 6

E=3
PSW = 6

4/0

6. The special name $ represents the address of the next byte to be asscmbled (the
location counter).

7. The result of any compound expression is a [6-bit integer. Use parentheses to force
the order of evaluation wanted. In this display x and y stand for any of the elements
above, or any compound expression in parentheses:

+y
-y

x+y
x-y
x-y
xly

.f MOD y
HIGHy

identity (= yalone)
twos' complement
unsigned sum
unsigned difference
unsigned product
integer division
remainder of xly
same as y SHR 8

NOTy
.lANDy
x DRy
xXORy
x SHLy
.lSHRy
LOWy

ones' complement
logical and
inclusive or
exclusive or
x shift left y bits
x shift right y bits
same as y AND
OOFFh

The rclationals return FFFFh for true, OOOOh for false:

x LT y
x LEy

x EQ y
x NEy

x GEy
x GT y

NUL returns FFFFh (true) if the rest of the line is blank.

4Jl

Summary of Macro Substitution in MAC

The Macro Call

A macro is defined with a MACRO directh'c. which provides a lIomt.' and template
of arglflll('llIs for Ihc macro:

label
AMACRO

MACRO (name)
MACRO NAr-IEI.NAME2.NAMEJ.NAME4

411

The lines following. up 10 an ENDM directive. compose Inc macro body. These lines are
store<! for later lISC.

A macro call occurs when. in the source. the macro mllnc is found. delimited by
spaces. The rest of Ihal statement is part of the m3cro call: OI:hcr Statements on th:tlline
arc discarded.

The assembler finds all tokt:'ns after Inc macro label. A token is:

A fist: any sequence of characters enclosed in <angle brackets>

An t:'.tprt'SS;OII: any sequence of characlers bel"cen % and a comma

A string: any sequence of nonspaces up [0 a comma.

Tokens are assigned one-lo-one to the argument names. according (0 their dclimi-
lers:

Lists: The outcr set of anglc brackcts is dropped: thc sequence of characters within
is assigned to the matching argument.

Exprcssions: The charactcrs are cvaluated as an expression: the resulting 16-bit
unsigncd number is converted to decimal; the dccinllll characters arc assigned to
matching argurnenl.

Strings: The characters (forced to uppercase) are assigned to the namc.

For example. given these two statel11enls.

address equ 0200H
amacro %address shr 8,mvi.<token3.<lhis too»,token4

NAMEl receives the characlers: 32 (evaluatcd expression)
NAME2 receivcs the characlers: MVI
NAME3 receives the charaClCrs: TOKEN3,<THIS TOO>
NAME4 receives the characlcrs: TOKEN4

Extra tokens are discarded. Omiued IOkens become null strings.

An S error is reponed if a space appears in a string token.

A U or P error is reponed if a label used in an expression has nOl: been defined prior
to the macro call.

An E error is reponed if an expression is badly formed.

The Macro Uody

Aftcr assigning tokens to namcs. the assembler processes thc lines of the macro
body as if they were part of the source program.

Wherever in a body line it finds an argument name delimited by spaces or other
special characters. the assembler substitutes the token assigned to that name. Given the
previous macro call.

name4 name2 a,name1 + 1 beromes TOKEN4 MVI a,32+ 1

As an argumcni of another macro:

mac2 name3 w:omcs mac2 TOKEN3,<THIS TOO>

Where an argumcnt is nOl: dearly set off by special characlers.substitution can be
forced by prefixing it with &:

xyzname4 is not changed, the "name4" argument is nm seen.
xyz&name4 becomcs xyzTOKEN4

Where an argument runs up to other leHers its end must be marked with &:

name4xyz is 110t changed. the "nall1e4" lIrgument is not seell.
name4&xyz becomes TOKEN4xyz

If an argument name is to be recognized inside a character constant.the & must be
used and the name must be coded in uppercase:

db 'name2.'
db '&name2'
db '&NAME2'

is not changed. the & is required.
is nOl: changed, "namer doesn'l equal "NAMET
w:omcs db 'MVI'

4/3

Topical Summary of Assembler Directives

Direc::ti,'e Assembler Page Function

Dlila Definition

DB operwu!s ... ,II 421 Assemble 8-bi! constants
OW o/JeulI1ds.. ull 425 Assemble 16·bil constants
OS operllluJ all 423 Reserve space in program
EQU operal/d ,II 42. Give name 10 value (perma-

nent)
SET operand ,II 443 Give name to value (lern-

penary)
ORG oJNratld ,II 43. Set location counter
DSEG RMAC 42J Move 10 data segment

COllditionof Assembly

IF opuantl ,II 433 Skip input if operand=O
ELSE MAC 425 Alternate part of IF group
ENDIF ,II 427 Close of IF group

SlIbstimtion alld Macro Proauing

MACUS filename MAC 4J7 Include library file
MACRO orglllllellis .. MAC 437 Open macro dcllnition
IRP lillmmy,<tokens> MAC 433 Repeal lext O\'cr items
IAPe ,lImrlllY,token MAC 4J5 Repeat text over [ellers
AEPT aperwu! MAC 443 Repeat lext operand times
EXITM MAC 431 SlOP macro or repell! group
ENOM MAC 42. Close macro or repeal body
SET OfJeralld MAC 443 Give name 10 value (temporary)
LOCAL names.. MAC 435 Declare local label-names

Program StrUC/lIre

OS o~rand ," 423 Resen'e space in program
ORG oJNrand ,II 43. SCi local ion counler
ASEG RMAC 41. Move 10 absolute segment
CSEG RMAC 421 Move 10 relocalable code
DSEG RMAC 423 Move 10 data segment ..J
COMMON Inamd RMAC 41. Move 10 a common segment

4/6 END {oJN"rand} ,II 427 End souree program

Directive Assembler Page Function

'-'
Program Linkage

NAME 'program' RMAC 439 Sct name of object code
EXTRN labels ... RMAC 431 Declare foreign labels
PUBLIC labels ... RMAC 441 Declare entry labels
ASEG RMAC 419 Move to absolute segment
COMMON lnamel RMAC 419 Move to a common segmcnt

Lis/ing COlltrol

PAGE {operalltJ} MAC 441 Eject; set page height
TITLE 'title-line

,
MAC 445 Enable titling, set line

417

A relocatabJe program may have an absolute segment. A$EG is used 10 force the
LINK command to place that code at its assembled origin in storage. The main use for the
absolute segment is to establish addresses fixed by the operating system. for instance:

boot

aseg
0'£
cq"
o'g
cq"
cseg

o
S
5
$

SCI abs. location counter
wanllSlan jump al abs. OOO,h

bdos jump at abs. 0005h
relocatabJe code begins

4/8

Then a call to BDOS in the rclocalablc segment will be assembled with an absolute
target address of 0005h.

Absolute segments containing object code must be linked with care. If two routines
assemble through thc same absolute addresses. thc code of one will overlay that of thc
other when they are linked.

A common segment is a ponion of storage that. at execution time, will be used in
common by several separately assembled routines. Each routine contains its own
definition of the common segment. The assembler notes the size of the area and passes
that information in thc objcct file. Thc LINK command allocates space for common
segmcnts following the codc scgmcnls. and supplies thc absolute addresses needed to
refcrencc it.

Common segments can be a fruitful source of bugs. To ensure that all routines use
thc samc definition of common space. put the defining statemcnts (OS. EQU. and
labelcd ORG statemcnts) in a macro library.

Thc initialization of a common segment must be handled carefully. Object code
assembled in a common segment is placed in the object file; the LINK command places
that code in the common area. If two routines both assemble initial values for a common
segmcnl, the initial data from the sccond onc linked will overlay that from the first one
Iinkcd.

{ label} ASEG

The assembler begins to place object code ill the absolute segment of the program.
Until a CSEG. DSEG, or COMMON directive is seen, all assembly addresses are
absolute addresses that cannot be changed when the program is linked.

The optional label receives the absolute address of lhe next byte in the absolute
segment.

COMMON /name/

The assembler begins to place object code in blank common or the named common
segment. Until the next ASEG. CSEG. or DSEG directive is seen all assembly
addresses will be relocatable. to be established when lhe LINK command locates this
cOlllmon segment.

Each named common segment is distinct, and has its own location counter. Each
will occupy a distinct area of storage at execution lime.

4/9

Most (W all of tile instructions and constants of a rclocalable program will be placed
in the code segment. 1be address of tile relocatable segment is established by the LINK
command. 1be relocatable segment of the first module linked will be placed al the stan
of the Transient Program Area: any other code segments will follow iL

A label equaled 10 a relocatable address is called. reasonably. a relocatable label.
Such labels may be used in expressions in only these ways:

relocalable label + constant
relocatable label - constant
relocalable label +/- relocalable label

The 1aSl forni, adding or sublracling IWO rclocatable labels. is only allowed when the two
labels are defined in the same segment. These restrictions are needed because only in
these cases can the assembler know the rcsull of the operation. The resuh of any other
arilhmctic or Boolean operation on arclocatablc label cannot be known until the program -......./
has been linked.

The most frequenl use of DB is 10 assemble character constanlS for messages and
the like:

makemsg db 'Can"t create output filer,'$'

The directive will accept an expression in :Iny opcrand:

comsize db ((program$end-0100h)+127) shr 7

420

If program$end is the label on the END directive. lhal statement will assemble a I-byte
count of lhe number of records (128-byte units) in the program's .COM filc. (ThaI
expression, however, is not a relocatable onc. and will cause an error if used with
AMAC,)

DB can be used at any poinl in the program, cven within executable code:

Ixi d,to
Ixi h,from
db Dedh,ObOh ; zao LOlA instruction

{ label} CSEG

The assembler begins to place object code in the code, or rclocalablc. segment of
the program. Until an ASEG, DSEG. or COMMON directive is seen all addresses used
will be relocillabJe, to be established when the LINK command locales the code segment.

The 0plionallabcl receives Ihc relative addrcssofthe nexi byte in the code segment.

{ label} DB operand{, operand...}

The values of tile operands arc assembled as [.byte values in consecutive lOCal ions.
Each operand must evaluate to an 8·bit value: if more than 8 bits are needed to

contain it. the assembler reports a 0 error.
An operand that is only a character constant may contain as many as 64 characters.

Each characler is treated as a separate operand.
The optional label receives the address of the first byte assembled.

42/

OS is most ofleo used to set aside buffer space within the program:

buflen
buffer

equ 128
ds buflen

422

The contents ofthc reserved space at execution lime can', be predicted. Quite likely
they will consist of whatc\'cr garbage was in storngc at those addresses at the lime the
lOAD or LINK command buill the .COM Iile. Tbc space can be given a known value by
loading the program under DDT and using its Fill subcommand 10 initialize the space.

Programs thai will be convened to page relocatable fonn (.PAL. .SPA) under
MP/M should neverend with a DSdireclive. The DSdirecti\'c produces no output in the
.HEX file. MP/M's GENMQD command assumes th:lt the storage requirement of a
program is its length through the laSI byte defined by a .HEX r«ord. Insert a DB 0 althe
end of the program to force generation of a .HEX record at the true end address.

The buffers and variables of il rdocatablc program eilher may be placed in its code
segment Wilh its instructions or isolated in its data segment. II is a good practice to put all
modifiable fields in the data segmenl. The address of the data segmenl is eSlablished by
the LINK comni<lnd. The data segments of all modules linked are placed allhc end of lhe
linkcd progr<lm following lhe code :md common segments.

A label equaled 10 <l relocatable address is called. reasonably. a relocatablc label.
Such labels may be used in expressions in only these ways:

relocatable label + constant
relocatable label - constant
relocatable label +1- relocatablc label

The last form. adding or subtracling lWO reloc31ablc labels. is only allowed when the two
labels are defined in the same segment. These restrictions are needed because only in
lhese cases can the assembler know the result of the operalion. The result of any olher
arithmctlc or Boolean operation on a relocatable label cannot be known until the program
has been linked.

{ label} DS operand

The value of the operand is added to the location counter. causing the assembler to
skip over pan of the program space. The contents of the addresses skipped over are not

defined.
The optional label receives the address of the first byte skipped.

{ label} DSEG

The assembler begins placing object code in the data segment of the program. Until
the next ASEG, CSEG. or COMMON directh'c is secn. all assembly addresses will be
rclocatable. to be established when the LINK command locates the data segment.

The optional label receives the relative addn:ss of the next byte to be assembled in
the data segment.

423

OW is masl oflen used 10 assemble address conSlanlS and l6-bil numeric values:

buffslart dw
buffend dw
bytemask dw

buffer
buffer+butflen
-256

II is also convenient for initializing storage, since it requires half the number of
operands of DB:

II
bitmap

equ -1
dw H,ff,ff,ff

424

The last example assembles 8 bytes of FFh,

ELSE is used in an IF ... ELSE ... ENDIF group to select an alternate section of
input text for assembly based on some condition. Sec the IF directive.

{ label} DW operand{,operand... }

The values of the operands arc assembled as two-byte \'alues in consecutive
locations. NonnalJy each value is stored with its least significanl8 bils first and its most
significant 8 bits secood. according 10 the Intel convention for word values.

Signed numbers are extended on the lefl to 16 bits with their sign bil value.
Unsigned values are extended on the len to 16 bits with 0 bits.

Operands thaI arc character constants may have no more than two characters. A
Iwo-characlcr constant is treated differendy from other operands. The first character
given is stored in the first byte of the word. and the second in the second.

The oplionallabcl receives the address of the firsl byte assembled.

{ label} ELSE
The true scope of the enclosing IF directive is cnJed. If the assembler is Skipping

inpUllcxt because lhe IF was false. it begins processing lext when ELSE is seen. If lhe
assembler was processing texl because the IF was true. il skips lcxt from lhe ELSE to the
matching ENDIF.

The 0plionallabel (whose use is nOI recommended) will be defined and given the
address of the next byte assembled. bUI only if the assembler was processing inpultcxt
following a true IF. Otherwise it will be ignored.

If there is no malching IF directive. the assembler repons a B error.

425

426

The entry address has little use undcrCPfM. jfthe .HEX file is loaded under DDT.
the debugger will set the initial program counter contents from the COlT)' address.
Howc\'cr. commands loaded into the transient program area are always entered at
0100h. It is convcnlionallo code END 0100H to document this fael.

The value of the oplionallabel may be used elsewhere in the program 10 compUle
the size of the program. See the DB directive for an example of such a computation.

Elaborate programs sometimes use the address of the end orlile program as the base
forclynamical1y established buffer or table space. This is a CP/M Ie<:hniquc thaI can only
be used under MP/M by a program that runs as a .COM file in an absolute TPA. The
technique should be 3\'oidcd in relocalable and page relocalable programs under MP/M.

ENDIF terminates ils IF ... ENOIF or IF ... ELSE ... ENOIF group. See lhe IF
directive.

The EN OM directive of MAC and AMAC terminates all open IFs. so ENOIF may
be omitted preceding an ENOM directive.

{ label} END { operand}

The assembler stops reading the input file: following Statements will be ignored. If
given, the value of the operand will be passed in the .HEX file as the entry point address
of Ihe program.

The optional label receives thc value of the location counter (Ihc address of the next
byte that would have been assembled).

{ label} ENDIF

The scope of the innermost IF directive is ended. If no IF directi\'c is active, ASM
ignores the statement; MAC and RMAC report a B error.

The oplionallabel (whose use is not recommended) receives the address of the next
byte to be assembled, but only if the assembler is processing input when it finds the
ENDIF. If the assembler is skipping input. the label is ignored and is not defined.

417

See the MACAO. lAP. IAPC. and AEPT directh'cs for examples of the usc of
ENDM.

The use of a single directive 10 delimit the bodies begun wilh four such \'anous
dirttlives might appear at firsl to be inconsistent. Howc\'cr. the statcmenlS bounded by
lAP. IAPC. or AEPT are in facl macro definitions cxaclly as is a group of stalements
headed by MACAO. Thc assembler handles all such groups in the same way. 11le
repealing groups differ in thai their definitions are tcmporary and can be expanded only
al the point where they are coded.

The EQU direetivc is used 10 gh'e meaningful names to valucs and so make the
progrJIll IllOrc understandable and casicr to modify. Thcre arc a numberof ways to apply
EQU toward these goals:

numrecs
buffsize
buffer
bufflast

equ 16
equ numrecs' 128
ds buffsize
equ buffer+buffsize"

A singlc EQU defines the size of a file buffer in standard records (thc units most relevant
to a buffcr). The remaining statements define the buffcr itsclf. but all depend on
numrecs. Changing only its definition changes evcrything about thc buffer.

false equ 0
true equ not false
prinler$support equ true
do$lormfeed equ lerm$ADM3 or printer$support

False and true are convcntional namcs for use with names that will be used in IF
directives. As the last statement shows. Boolean conditions can be given meaningful "-'"

428 names in EaUs at the top of the program. simplifying later IFs.

The body or the current MACRO, lAP. IRPe. or REPT directive is closed. All IF
directives begun within thaI body and not yel ended arc also closed. If there is no open
MACRO or repeating slnrcturc. the assembler reports a 8 error.

Where EN OM closes a macro definition. macro expansion SlOpS. Where it closes a
repeating structure the assembler either returns to the top of the body or continues.
depending on the repetition control.

The oplionallabel (whose usc is r10I recommended) receives the value of the next
byte to be assembled. If the label is proccsscrl more Ihan once in a repcatingslruclure. the
assembler reportS a P error.

{ label}

label

ENDM

EQU operand

The operand is evaluated and ils value is assigned to the label.
Any labels that appear in the operand expression must ha\"c been defined prior to

this poinl in the program. If any have nol, a U or P error is reponed.
If the lilalcmem label is omine<!. the assembler repons an S error.

429

430

EXITM is used 10 end macro expansion carly. In the case of a macro definition it
might be used in place of a !e"cl of IF nesting. to simplify the macro:

if nul ¶meter
exitm

It might be used in an error check. as here where a deliberate assembly error is used
to deliver a message:

if 255 It &number
equ 'number cannol exceed 255'
exilm

Repealing structures arc also macros. and EXITM can be used 10 tcnninalc repeti
tion early. I-Jere it is applied to prevent assembling characters beyond the eighth in a
filename:

length sel a
irpc f,afile

db '&F; filename letter
length sel lenglh--l

if length It 0
exitm ; ignore extra letters

endi!
endm

EXTRN identifies the addresses used in this program that will be provided in other
assemblies. External labels may be used in expressions in only certain ways:

external label + constant
external label - constant

This restriction is necessary because the assembler is allo.....ed to pass a rixed offset
value for any use of an external label. but it cannol know the value of the label at
assembly time.

Extemallabels may be used as operands in any segment. Forexample. an external
address could be assembled into an absolute segment instruction or initialized into a
common segment with OW.

{ label} EXITM

The assembler SlOpS expanding the current macro definition and continues assem
bly with the statement following the macro call.

EXITM may be used (0 Slop the processing of an lAP. IRPC. or REPT body. When
EXITM is found in one ofI~ structures. the assembler continues processing with the
statement following the ENOM thaI ends the structure.

If no MACRO or repealing structure is active. the assembler repons a B error.
The oplionallabcl (whose usc is nO(recommended) receives the address of the next

byte to be assembled.

EXTRN label{,label... }

Each label gh"cn is identified as being defined external to this assembly. The
assembler records the labels and their points of use in Inc object file. Olher programs.
assembled separately. will supply meanings for the names through their use of the
PUBLIC directive; lhe LINK program will copy their final addresses into the program.

External labels may be as long as desired. bUl only their first six characters are
recorded in the object file.

431

432

The IF directive is used 10 control the contents of the program on the basis of some
condition. The condition is usually expressed as a Boolean combination of labels that
ha\'c earlier been equated to true (nonzero) and false (zero) values.

A U diagnostic signals thai a label in the operand is Il()(defined anywhere in the
program. The undefined label is treated as if it had a value of zero. A P diagnostic signals
a label thai is defined true following the IF. causing the IF 10 assemble differently on the
assemble(s second pass.

With ASM the IF can be used only to skip or nol skip parts of the program:

if prinlerSsupport
... printer output code ...

endi'

With MAC the IF ... ELSE ... ENDIF combination can be used 10 choose between
altemates:

msg1 if not expertSmode
db 'Enter dale as MMfDDNY:'

else
db 'M/DN:'

endif

Note the usc of indentation to make the logic ofconditional assembly clearer. With MAC
the operator NUL is often used in IF expressions. See the AEPT and IRP directives for
examples.

lAP is used to automate the assembly of sequences that are repetitive in shape but
varied in content. In this example lAP is used to construct a branch table like the BIOS
entry table. A null item signals an unused entry to the table:

jumptab irp target,<sUb1,<>,sub3,sub4>
if nul &target

ret ! nop I nop
else

jmp target
endif

endm

In MAC version 2.0 if the list is empty (given as <» the body is not processed at
all. This is incompatible with the Intel assembler. which processes the body once.
replacing the dummy name with a null value. MAC version 2.0 docs peculiar things
when a null item is given as two adjacent commas. as in <one"three>. A null item
given as an empty list as in <one.<>,three> is processed correctly. These problems
may nOi exist in RMAC or in later versions of MAC.

{ label} IF operand

The operand is evalu:lted. If the result is false (zero). the assembler skips input text
unlil i, finds an ENDIF or ELSE directive. If the result is troe (not zero). the assembler
continues processing input. If ilthen finds an ELSE directi\'c. il begins skipping input
until an ENDIF is secn.

The ASM assembler docs not recognize ELSE.
Labels in the operand expression must be defined prior to the IF. If any are not, the

assembler reports a U or P error.
The optional label receives the address of the next byte to be asscmbled.

{ label} IRP dummy,<item,item...>

lAP takes two operands. The first is JWn/ny. a name containing no interspersed
dollar signs. The second is a lislOf ilems, The list is enclosed in angle brackets < and >.
'1le elements of the Jisillre simply strings of characters, any characters at all. Each item
is separatcd from thc ncxt by a comma. If an itcm contains spaces or special characters, it
should be cnclosed in anglc brackcts itself.

The asscmbler proccsses the body of statcmcnts between IRP and a matching
ENDM directivc once for each item in the list. On each pass over the body all
occurrences of the name dummy are replaced by thc current item.

433

IAPe is used (0 automate the a~mblyof rcpelilious declarations. Wilhin macros it
is oflen used to count the length of character strings. Here IRPe and REPT are used [0
assemble a filename in an FeB, padding the name with blanks to eight charnclers:

• : padding character

o ; drivecode
8
f,afile
db '&F' ; filename character
set length-l

db
set
irpc

length
endm
repllenglh

db '

feb:
length

endm

Because [RPe always makes one pass over the body of Sllliements it will nOI gi\'c a
reliable count of the length of a siring thai might be null. The IF NUL dirccti\"c can be
used [0 avoid this problem.

LOCAL provides the programmer with a supply of labels. each guaranteed unique
and nOl in use in the main program. A common use of LOCAL is to provide a name for a
constant and a branch target at its end:

msg macro text
local string,over
lxi d,string
mvi e,g
call bdos
jmp over

string db '&TEXr,'$'
over endm

434

Each time the macro msg is callcd, thc assembler will gencratc ncw labels 10 be
subseilutcd for string and over. Iflhe macro is called a dozcn times. 24 differenllabels
will be produced.

Nonnally the assembler does not list labels commencing with?? in Ihe symbol
table. If these labels are needed (for instance. if they arc 10 be used as breakpoints under
SID). specify Ihe assembler parameter +0.

{ label} IRPC dummy,item

IAPe takes IwO operands. The first. dllmm}'. is a name with no interspersed dollar
signs. 11le second. item, is any sequen~ of characters at all, tenninated by a space. lab,
or comment. If ilem contains delimiters. it should be enclosed in angle brackets
«it('m».

The assembler processes the body of statements between IAPe and a matching
ENDM once for each character in item. On each pass all occurrences of dummy are
replaced by Ihe current character from item.

If item is null (given as <> or as two adjacent apostrophes), the assembler makes
one pass, replacing dummy wilh the null string.

The optional label receives the address of the first byte generated.

LOCAL name{,name...}

LOCAL may be used only within the body of a macro definition (including bodies
defined by REPT. lAP. and tAPC). It accepts any number of opcnmds /lame each of
which is a name with no interspersed dollar signs.

During expansion of the macro the assembler replaces any occurrence of a /IGme

with a generated label unique to that name. The labels have the fonn ??/lfl1W where the
four decimal digits /11111/1 begin at (M)()I and advance with each /lame in each LOCAL
statement processed.

435

As the assembler reads the contenlS of the macro library it discards comment-only
lines. Macro definitions are stored. SET and EQU directives arc performed.

Normally only the SET and EQU tines are written in the listing. Specify the +L
assembly parameter to have all lines displayed.

A macro may contain another macro definition; on this hinges some programming
tricks. The ability is mainly used to solve the first-time problem: to make a macro
assemble one way the first time it is called. and another way all the other times. Define
the macro in its first-time form but embed a redefinition or the same macro within it. The
embedded definition replaces the original one when the macro is called the first lime.

The assembler will recognize a macro call in the label or operand field of a
statement as easily as in the nonnal operation field. If a macro attempts to generate a
label that is the same as its own name. that is.

cosub
cosub

macro
equ

; assemble a subroutine
$; entry to subroutine

436

the assemblcr will see the generated label as a call to the macro that generated it. After a
vcry long timc the nested macro expansions will fill stor"ge and the assembler will either
abort or repon an M error.

{ label} MACUS filename

The comeols of the file namcdjilenollle.L1B replace the MACUS statement: the
assembler processes them as if they had been part of the original program.

The assembler looks for filename. LIB on the default drive unless the Ld parameter
has been used 10 specify a different drive.

If a statement in Ihe macro library changes the location counter (that is, if it is an
GRG. DB. DS. DW, or an instruction statement), a P error will occur. The library
should contain only SET and EQU directives, MACRO ENDM groups. and
comments.

MACLIB
(MAC,
RMAC)

label MACRO name{,name...}

The body of statemenIS between the MACRO directive and the matching ENDM is
stored as a macro definition under Ihe name label (which may not have interspersed
dollar signs). If no matching EN OM can be found, the assembler repons a B error.

The macro body may comprise any sequence of assembler statements, including
IF, IRP, IRPC, and REPT structures. Macro definitions may be nested within the
current macro's body. Such nested definitions are not processed at the time the enclosing
macro is stored. They will be recognized and stored when the enclosing macro is
invoked.

Whcn thc word label appears in lhe program text, the assembler replaces it with the
body of the macro. Operands following label in the source are matched to the names.
Wherever a Ilame. delimited by spaces. commas. or ampersands. appears in the body of
the definition. it is replaccd by the matching operand from the macro call. See {he
Summary of Macro Substitution in MAC earlier in this section.

437

438

The name of the object program is recorded with the program in object file. 1be
name is l'lOled in a library created by the LIB command. and can be given as a LINK
parameter 10 cause the program 10 be included al link lime.

ORG is used at the beginning of a program [0 sellne progrolffi's assembled origin.
CP/M programs conventionally begin with statements like this:

tpa equ 0100h
start org Ipa

Within a macro it is convenient to assemble a default or fill value and then ORG
backward (0 overlay the fill with data. as in this method of assembling an FeB with
optional filename:

febln db ; filename - blanks
fcblt db ; filetype - blanks

if nol nul filename
org febln
db '&FILENAME' filename - blank padded
org fcb+36

endif

That technique should be avoided in MP/M where the GENMOD command may
nOI be able to handle overlapping load addresses. See the IRPC directive for an different
example of padding a filename with blanks.

The R parameler of MAC causes 01 OOh to be subtracted from the operand of all
ORGs. The resulting .HEX file, concatenated wilh a normal one. fonns the input to
GENMOD 10 creale a page relocatable program.

NAME 'name'

The assembler notes /Wille in the object file as the name of this program.
The lIame given will be truncated to six characters, as are all external symbols.
Ifoo NAME directive appears in a program, the filename oflhe source file is used.

{ label} ORG operand

The assembler's location counter is set to the value of the operand, causing
subsequent bytes to be assembled at a different address.

The location counter may be given any 16-bit value. including one that causes the
assembled code to overlap addresses already used.

The oplionallabcl receives the value of the operand (the address of the next byte to
be assembled).

439

440

The firsl fonn is used to force a page-eje<:t in on:Icr to make lhe listing more
readable. Blocks of declarations. important subroutines. and impor1ant phases of pr0

cessing stand out when they are preceded by PAGE directives.
Titling aside. a PAGE adds only I byte (an ASCII FF character) 10 the size of the

listing file. When the listing is typed al the console, the FF may be displayed as a space or
it may cause the screen to be cleared. depending on the type of terminal.

The assembler's line counter is initially seliO 56. The two lines wriuen allhe lOp of
each page when tilling is in effect are not counted toward the limit. When planning the
listing. il is beSllO specify two less than the actual capacity of the paper so Ihallilling can
be added later.

PUBLIC is used to identify the pailS of the program that arc available to other
linked routines: entry points to public subroutines and the names ofconstants that may be
referenced from other programs.

The assembler records each name. with the address to which it refers. in the object
file. The LINK command notes the names. Where another program specified one of the
names in an EXTRN directive. LINK supplies the actual address defined in this program.

{ label} PAGE
{ label} PAGE operand

In thc first fonn of the directive the assembler writes a fonnfeed to the listing file.
The formfeed follows the line containing the PAGE. which thus appears as the last line
on its page. If the TITLE directive has been used. the assembler writes the title and a
blank line as well.

In the second form the assembler sets the value of the operand as the limit of the
number of lines on 11 page of listing. If the operand evaluates to zero, automatic
paginalion is disabled; the only pagination done will be in response to the PAGE
directive in its first form.

When the operand is not zero. illakcs effecl at once.]flhcrc are already that many
lines or more on the current page. the PAGE directive itself will stan on a new page.

The optional label in both cases receives the address of the next byte to be
assembled.

PUBLIC label{,Jabel... }

Each label given is idcntified as being public. The assemblcr records the names and
addresses of the labels in the object file. Other programs. assembled separately, may
rcfcr to those labels; the LINK command will supply their addresses to the other
programs.

Public labels must have address values. whether absolute or rclocatable. They may
not be equated to a constant or an offset. or defined by an EXTRN directive.

Public labels may be as long as desired. but only their first six characters arc
"'--' recorded in the object file.

441

The purpose of REPT is to aUlom:I1C the assembly of repetitive constants or code
sequences. This group assembles 16 word constants. each a different power of IWO:

powerol2 set
repl 16

dw powerof2
powerof2 sel powerof2 shl 1

endm

This example constructs a table of ASCII characters in which cOfllrol characters
appear as nulls (OOh). The listing is turned off 10 suppress the bulky output.

table org ($+127) and OtfBOh
$-print

repl 128
asciivaJ set (low $) and 7fh

if (asciival It 20h) or (asciival eq 7fh)
db OOh; control char

else

endm
$+print

db
endi!

asciival ; printable char

442

In MAC version 2. if the operand evallmtcs to zero the REPT body is not processed
at all. an incompatibility with the Intel assembler. which always processes lhe body al

least once regardless. This may not be true of RMAC or of later versions of MAC.

SET.Iike EQU. associates a name wilh a value. Unlike EQU. a name defined with
SET may be redefined later to have another value. 'l1lis abililY finds lillIe use in ASM. In
MAC the SET statement is frequently used wilhin macros as a way of assigning values 10
macro temporary variables and control variables for macro loops. See the REPT and
IAPe directives for examples. '--'"

{ label} REPT operand

The assembler processes the body of statements between the REPT and a matching
ENOM directive some number of limes. generating code repetitively. The number of
repetitions is sct by the value of the operand.

The operand is evaluated only once. when the REPT is first scanned. Labels in the
operand cllprcssion must be defined prior to the AEPT statement; if any have nol. the
assembler reports a U or P error.

The optional label receives the address of the first byte of code generated.

label SET operand

The valueoflhc operand is assigned to the label. The label's value maysubsequcnl
Iy be changed by another seT statement.

All labels used in the operand must be defined prior to the SeT: if any are 1101. the
assembler reports a U or P error. If tbe label appears as the label of another type of
statement. the assembler rcpons a P error.

443

444

The TITLE direclive does two things. 11 cn:ablcs filling of the listing. and it SCIS the
descripli\'c constant 10 appear in the title. Once titling has been enabled it caonO(be shul
off again.

Tilling causes the assembler to write two more lines 10 each page than are called for
by the line counter conlIulled by the PAGE directi\'c. The blank line after the lille line is
produced by a single extra ASCII lindeed: it is not a complt'lc line of spaces.

It would be nice 10 be able tothOlngc the tit\econstanl panwa)' through an assembly.
but the TITLE directh'c docs not allow this. The title constant is saved during the
assembler's first pass and used during its second pass. The last TITLE statement seen
determines Ihe title constant for the entire lisling.

{ label} TITLE 'title constant'

Titling of the listing is enabled. Following each page eject of the listing file the
assembler will write a title line and a blank line to the listing. The title line identifies the
assembler and its version. gives the page number, and includes the title constant.

The optional label receives the address of the next byte to be assembled.

445

I

Topical Summary of
Selected BOOS Services

cpm-2

mpm-I

cpm-86

r 2 error key

R",. Page Sen'ice I)errormed Argument

Systelll /Ilforllllllio/l 01/(/ Comrol

7 , - , 463 Gel currenl rOB YTE none
8 , - , 465 Set IOBYTE E "" IOI3YTE

12 , , , , 469 Gel syslem identification none
31 , , , , 491 Get disk parameters none
32 , , , , 493 GctJ scI user code E = flag/code
45 - , 507 SCi BOOS error mode E = nag

"- 50 , - 511 Call BIOS entry DX_parameters
104 - , 525 Sel dalc and time DE-dale.time
105 - , S27 Gel dale and time DE_dale.lime
1116 - , 527 Set default password DE_password

Program Comrol

0 , , , , 457 Terminate program (86: DL '" flag)
47 - , 509 Chain 10 cOlllmand buffer=command
59 , - 521 Load program r DX_FeB

COl/sofe /I/IJ/II (lI1d OWPII/

I , , , , 457 Console input byte 00",

2 , , , , 459 Console output b}'te E "" byte
9 , , , , 465 Console output string DE-string

10 , , , , 467 Console input line DE_buffer
II , , , , 467 Console status check , 00"'

449

cpm-2

m::, crror key

Req# Page Sen'ice Performed ! Argument

OIher Seri(llll1pll/ alld Oil/pili

3 , - , 459 Reader input byte nonc
4 , - , 461 Punch output byte E = byte
5 , , , , 461 List output byte E = byte
7 , - , 463 Get current JOBYTE none
8 , - , - 465 Set IOBYTE E = JOBYTE

File Malliplilmioll and Conlml

IS , , , , 471 Open existing file d DE_FCB
16 , , , , 47J Close output file d DE_FCB
17 , , , , 475 Search for first file d DE_FCB
IS , , , , 477 Search for next file d DE_FeB
19 , , , , 477 Delete file d DE__ FCB

22 , , , , 483 Make new file d DE__ FCB

23 , , , , 483 Rename file d DE__ FCB
---'30 , , , , 491 Set file attributes d DE__ FCB

J2 , , , , '493 Getfset user code m E = tlag/code
41 - , 503 Test and writc rccord ; DE-FCB
42 , 505 Lock record ; DE_FCB
43 , 505 Unlock record , DE_FCB
44 - , 507 Set record COUlIt E = count

101 - , 52J Get directory data E = drive
102 - , 52J Read XFCB d DE-FCB
103 - , 525 Writc XFCB d DE_FCB

File Input {/I/(I Oil/pili

20 , , , , 479 Sequcntial read , DE_FCB
21 , , , , 481 Scquential writc w DE_FCB
33 , , , , 493 Direct access read , DE_FCB
34 , , , , 495 Direct access write ; DE-FCB
40 , , , , 501 Direct write. zero fill ; DE--FCB
J5 , , , , 495 Get file end address r DE_FCB
36 , , , , 497 Get direct address r DE_FCB
44 - , 507 Set record count E = count
45 - , 507 Set BDOS error modc E = tlag
26 487 Set filc buffer address DE_buffer ---', , , ,

450 51 , - 5lJ Sct file buffer scg. base OX = base adr.
52 , - 5lJ Get filc buffcr address none

cpm-2

mpm-I

1<pm-86

11"'"
error key

Req# Page Sen'jct' Perrormt.'d ! Argument

Direaory OperatiOllS

17 , , , , 475 Search ror first file d DE_FCB
18 , , , , 477 Search for next file d DE-FCB
19 , , , , 477 Delete file d DE-FCB
22 , , , , 483 Make new file d DE_FCB
23 , , , , 483 Rename file d DE_FCB
30 , , , , 491 Set filc auributes d DE_feB

100 - , 521 Set directory label d DE_FCB
101 - , 523 Get directory data E :: drive
102 - , 523 Read XFCB d DE_FeB
103 - , 525 Write XFCB d DE_FCB

Disk System lll!ormmioll (11/(/ Comrol

J3 , , , , 469 Resct all drives m none
14 , , , , 471 Select default drivc E :: drive

'---' '4 , , , , 485 Get acth'c dri\'c map MOO

25 , , , , 485 Get default dri\'e number MOO

27 , , , , 487 Get allocation vector MOC

28 , , , , 489 Pnxect drivc oooc

'9 , , , , 489 Get read-only dri\'e map "on<
31 , , , , 491 Get disk parameters none
32 , , , , 493 Gel! set user code E ". flag/code
3J , , , , 497 Reset drive m DE :: drive map
38 - , - , 499 Access drive DE = drive map

39 - , - , 499 Free drive DE .. drive map
46 - , 509 Get disk free space r E '"' drive
48 - , 511 Flush disk buffers r nonc

100 , 521 Set directory label d DE-FCB
101 , 523 Get directory data E :: drh'c
102 - , 523 Read XFCB d DE_FeB

451

Numeric Index of BOOS Services

cpm-2

mpm.1

cpm-86

mprn-2 error key

R",# , Page Sen"ice Performed
I

Argument,
0 , , , , 457 Tenninate program (86: DL '" nag)
I , , , , 457 Console input byte 00"'

2 , , , , 459 Console ompul byte E '" byte
3 , , - 459 Reader input byte none
4 , - , 461 Punch output byte E = byte
5 , , , , 461 List output byte E == byte
7 , , 463 Gel current JOI3YTE none
8 , , 465 Sct JOBYTE E = IOI3YTE
9 , , , , 465 Console output siring DE-string

10 , , , , 467 Console input line DE_buffer
II , , , , 467 Console status check , 00",

469 Gel system identification -'12 , , , ,
00"'

JJ , , , , 469 Reset all dri\'cs m 0000

14 , , , , 471 Select dcfauh drive f E = dri,'c
15 , , , , 471 Open existing file d DE_FCB
16 , , , , 47J Close output fi1c dOE_FeB
J7 , , , , 475 Search for first file dOE_FeB
18 , , , , 477 Search for next file dOE_FeB
19 , , , , 477 Delete file d DE-FCB
20 , , , , 479 Sequential read , DE-FeB
21 , , , , 481 Sequential write w DE_FeB
22 , , , , 483 Make new file d DE_FCB
2J , , , , 483 Rename file d DE-FeB
24 , , , , 485 Get acli\'c drive map none
25 , , , , 485 Get default drive number 0000

26 , , , , 487 Sct file buffer address DE_buffer
27 , , , , 487 Get allocation vector -28 , , , , 489 ProI:ect drive -29 , , , , 48. Get read-only dri\'e m:ap 0000

JO , , , , 491 Set file :attributes d DE_FeB
31 , , , , 491 Get disk parameters 00"'

32 , , , , 493 Gel! sct user code E = nag/code
33 493 Direct access read DE--FeB '-", , , ,

452

Req#

cpm-2

Service Perrormrd

error key

~ Argument

34
35
36
31
38
39
40
41

42
43
44
45
46
47

48
50
51

52
53
54
55
56
57
58
59

100
101
102
103
104
105
106

x x x x
x x x x
x x x x
x x x x

, - ,
, - ,

x x x x
- ,
- ,,,
- ,
- ,
- ,
- ,
,
, -

- ,
, ,
,
,
, -

- ,
,
- ,
- ,
- ,
- ,,
,

- ,

495
495
497
497
499
499
501
503
505
505
507
507
509
509
511
511
5IJ
5IJ
515

5"
SI7
SI7
519
519
521
521
52J
52J
525
525
527
527

Direct access write
Get file end address
Get dircct address
Reset drive
Access drive
Free drive
Direct write, zero fill
Test and write record
Lock record
Unlock record
Set record count
Sct BOOS error mode
Gel disk free space
Chain (0 cOlllmand
Flush disk buffers
Call BIOS entry
Set file buffer seg. base
Gct file buffer address
Max. relocatable storage
Max. absolute storage
Relocatable storagc
Absolute storage
Release allocated storagc
Release all storage
Load progralll
Set directory label
Get directory data
Read XFCB
Write XFCB
Set date and time
Get date and limc
Set default password

I DE_FCB
f DE_FCB
f DE_FCB
m DE == drive map
f DE == drive map
m DE = drive map
i DE_FCB
I DE_FCB
I DE_FCB
i DE-FCB

- E = count
E = nag

f E = drive
buffer=command

f none
DX_parameters
OX = base adr.
none

f DX_MCB
f DX_MCB
f DX_MCB
f OX_Mcn
f OX_MCB

OX_MCB
f OX-FCB
d DE_FCB

E = drive
d DE_FCB
f OE_FCB

OE_date.time
DE_date.time
DE_password

453

Summary of BDOS Error Codes

The error code groups shown here arc keyed to the indices on the previous pages.
To find the errors returned by a given service. look it up in the Numerical Index of BOOS
Services. then look here under its error key. A code marked with occurs in MP/M 2
only.

454

Koy
,

f

d

m

Cod,

A = OOh
A nonzero

A = OOh
.A = FFh

A = OOh
A = Dlh
A = 02h
A = 03h

A = FFh

A = OOh
*A = FFh

A = 01h
A = 02h
A = 03h
A = O4h
A = 05h
A = 06h

• A = 07h
• A = 08h

*A = O9h
*A = QAh
.A = OBh
• A = Deh

• A = DDh
• A = DEh

Meaning

No data available.
A byte is ready.

Success.
Failure (returned only in MP/M 2; an extended code is
returned in register H).

Success (directory code 0)
Success (directory code I)
Success (directory code 2)
Success (directory code 3)
File not found or error (MP/M 2: an extended code may be ...J
returned in register H.)

Success.
Physical error, register H contains extended code.
Auempt to read unallocated record.
Disk full. no space for a new allocation block.
CannOI find current FCB to update it.
Auempt to read in unallocated extent.
Directory full. no space for new extenl entry.
Direct address larger than allowed .
Record mismatch in Test and Write (41) .
Requested record is locked.
FCB was found invalid on a prior service.
FCB never opened, or corrupted (checksum error).
Unlocked file's FCB out of step with directory .
Too many locked records for one process.
Given File ID is not in list of unlocked files .
Too many locked records in the system .

In CPIM no code is returned.
In MP/M. A = OOh signals success, A = FFh signals failureJ

Key Code

"--- r A = OOh
A = FFh

.A = 08h
• A = 09h
• A = OAh

w A=OOh
A = Olh
A = 02h

• A = OBh
• A = 09h
• A = OAh
• A = FFh

Meaning

Success.
End of file (MP/M 2: see register H).
Requested record is locked.
FCB found invalid on previous service .
FCB hasn't been opened. or is corrupted .

Succcss.
No directory space for new extent.
Disk full, no data space for a new allocalion block .
Requested record is locked .
FCB found invalid on previous service .
FCB hasn't bttn opened. or is corrupted.
Physical error. see register H.

In MP/M 2 registcr H contains return code information. If multiple records arc in
use and not all records can be moved. lhe most significant 4 bits of registcr H contain a
count of reeords successfully transferred.

When cnabled by Sct BDOS Error Mode (45). crrors that would have cancelled the
program are returned by sclling A =. FFh and sctting an extendcd code in the low 4 bits of
register H as follows:

H = OOh
H = Olh
H = 02h
H = 03h
H = O4h
H = 05h
H = 06h
H = 07h
H = 0811
H = 09h
H = OAh
H = OBh

A = FFh means ""end of file" or "file no! found."'
Pennanent disk read or write error.
Attcmpt to write 10 a read-only drive.
Atlempt to write 10 a read-only file.
Anempl to selcct an invalid drive-leiter.
File open by another process in locked or read-only mode.
FCB can't be validated during a Close (16).
Password error.
File named in Make (22) or Rename (23) already exists.
Fileref in FeB is ambiguous: an explicil name is required.
This process has its limit of opt::n files.
The BOOS has recorded its maximum of locked. open files.

455

456

In both CP/M and MP/M service 0 duplicates the results of a JMP COho
Output files that arc not closed will have incomplete allocation dllla.
In CP/M the disk in drive A must be bootablc or a disk error or system hang will

follow. This is nnltruc of CP/M·86 or MPfM, which do nOI reload the system.
In CP/M-86 service 0 is the only way for a program to tcnninale; there is no jump

ve<:tor at location DOh in lhe data segment. CP/M·86 lakes a byte operand in the DL
register. OOh requests a complete Icnnination as forCP/M and MPfM: Q1h merely ends
the program. leaving the program image and ils memory allocation inIac!. The laneT
oplion is for programs lhal will be driven by events (110 or soflware interrupcs) rather
than ex«uling sequentially. Aflcr initializing itself under the guise of a command. the
c\'ent-drivcn program can fClUm control to lhe CCP. its subsequent execution being
triggered by inlerrupls.

Related requests: none.

,1lc use of direct cursor addressing can invalidate the BOOS's knowledge of the
cursor position. causing it to return the wrong number of spaces when a t:tb character is
received.

When a line of input is needed. it is beller for a number of reasons 10 use Console
Input Line (10).

Related requests: Direct Console 1/0 (6). Gel Console Line (10). Console SlalUs (II).

Terminate Program
'-

A

"' '-----__-----.J

" f----'---'-"""=---1
0'
f-------I

The calling program is aborted and control returns to the command level of the
system.

Under CP/M a warm Slllrt is done to refresh the CCP and BDOS code. The disk
system is reset; Ihat is. read.only disks are made read-write and directory check
infonn:llion is discarded.

Under MP/M all resources-storage segments. reserved drives. locked files and
records. queues. and mutual exclusions--owned by the calling process arc released. The
disk system is not reset nor is the Monitor reloaded.

Console Input Byte

A

Be 011\

0' r-----'------j

"' '-----__-----.J

A byte from the current console device is retumed in register A. The byte is echoed
to the lerminal. If no byte is ready at the time the call is made. the calling program is
suspended until a byte becomes available.

The BOOS does not act on control characters rccei\'cd through service I. COlllrol-c.
control-so conlrol-p are passed through to the program. If a lab characler is received. the
BOOS notes the number of spaces represenled based on its knowledge of the cursor

"'-- posilion. It echoes Ihal many spaces (not a tab) 10 lhe console. lbc lab is returned 10 the
program. however. 457

458

When controlling a special console device for which bit 7 is significant. use BOOSJ

service 6.
The use of direct cursor addressing may invalidate the BDOS's knowledge of the

cursor position. causing il to expand labs incorrecdy. Write labs only when it is sure that
only nonnal charactcn have been sent since the last CR.

MPI/I1: When wriling a linc. Console Output String (9) is more efficient than using
this service in a loop.

Related requests: Direct Console 110 (6). Console String (9).

The ADR: logical device represents a source of ASCII input. It can be assigned to
different physical devices depending on the BIOS's suppon of the IDBYTE.

MPt!o1: All serial devices arc called consoles. A single process has access to only
one serial device. which is its logical console. If a command is to drive a second serial
input device in addition to the user temlinal. the command must attach a second process.
giving it the auxiliary inpul device as its "console:' The two processes can then
communicate through a queue.

Related request: Punch output (4).

"'".,..
A

BC

D'

Console Output Byte
'-

Bit 7 orlhe byte in register E (DL in CP/M-86) is sellO zcroand the resulting byte is
sent to the current console device.

If the BOOS has seen a conlfol-s. it waits for another character to be typed before
completing the output and returning; the calling program is suspended during tbis time.
If the console-copy fiag is SCt, the byte is copied to the current list device.

If the byte is a lab (09h), the BDOS writes some number ofspaces instead. based on
ils knowledge of the position of the cursor.

Reader Input (CP/M only)

"'"
"

A

BC

H

D'

1be next byte from the device currenlly assigned to ADA: is returned in register A.
All 8 bits are returned. The program is sus~nded until a byte is ready.

'- MPIM: The service requcS! is honored. bUI it returns input from the current console
for the process rather than from a reader. 459

1bc PUN: logical device represents a recei\'crof ASCII data. It may be assigned 10 --'
diffcrent physical devices. depending on the BIOS's suppon of the IOBYTE.

MPIM: All serial devices are called consoles. A single process has access to only
one serial device. which is its logical console. If a command is to drive a second serial
OUlput device in addition to the user tcnninal. the command must altach a second
process, giving it the auxiliary output device as its console, The two processes can then
communicate through a queue,

Relatcd request: Reader Input (3).

If the BIOS suppons printer handshaking. the suspension lime may be long. If the
printer has a large buffer. the program may wait for many seconds while the printer
catches up. If the printcr repons not-ready when out of pal>cr or ribbon, thc program can
be suspended indefinitcly. These things usually cause no problem, Uowever, a program
allcmpting to monilOr two dcvices at once may wish to poll the printer through the BIOS
L1STST function before requesting this servicc.

MPfM I: If two processes use this service at once. their output will be merged at the
printer. producing garbage. Use the MXlisl mutual exclusion queue to get cxclusive
control of the printer before requesting list output.

MPfM 2: An Attack List Function is performed if the calling process doesn't
already own the list device: this prevelllS contention but may suspend the program.

460 Related requests: none.

Punch Output (CP/M only)

A

ec "'"
byte

The byte in register E COL for CPfM-86) is senllO the device currently assigned to
PUN:. The program will be suspended until the device is ready to accepllhe byle.

MPIM: The service request is honored. but the byle is sent to the current console
device for lhe process. not to a punch.

List Output Byte

0'"
byte

e

A

ec

'"
"

The byte in register E (DL for CP/M-86) is sent to the device currently assigned to
LST:. The program is suspended untillhc device is ready {O accept the byte.

461

462

Most programs ha\'c no need t03\'oid the BDOS·scontrolofcoosoleoulpul. There -.-/
are programs-full-screen editors and simulation games come to mind-Ihat depend on
a very close interaction beteen keyboard and screen: the program uses the keys as
control inputs rather than as character inpuls and the SCR.""Cn as a dynamic status display
rather than as an echo of the input. Such programs have traditionally used BIOS
functions for I/O in order 10 circumvent the BOOS. Service 6 should now be used
instead: to continue calling the BIOS is to risk incompatibility with later versions of the
system.

Related requests: Console Inpul Byte (I). Console Output Byte (2), Console Input Line
(10). Console Output String (9), Console Status (11).

Under CP/M the curren! value of the IOBYTE can be found in low storage at
location 03h. That is not true of CP/M-86; this service request is the only way of
examining the IOBYTE in thaI system.

The inilial value oflhe IOBYTE is sel during a cold sIan by code in the BIOS. See
Chapter 15 for a discussion of altering lhis setting.

MPIM; [10 assignments and the [OBYTE are nOI supponed. This funClion returns
FFh. a legal but highly unlikely value.

Relaled request; SCi IOBYTE (8).

Direct Console I/O

A,

'"
""fl.,

This request reads or writes thc CUITCllt console device. bypassing all the control·
charactcrchecks. One of three operations is done depending onfhl8' the value in register
E (DL for CP/M-86).

Ifflag is FFh. the console is sampled. If a byte is available. thc byte is returned in
register A if no byte is ready. OOh is returned instead. The input character is not echoed
to the screen; Ih:ll is up to the calling program.

MPIM: Ifflag is FEh. the console is sampled and a Ilag is returned as for service II.
Otherwise,flag is sent to the current console as outpUt. Tabs arc not expanded. The

console copy (control-p) and hah output (control-s) !lags are ignored.

Get 10BYTE (CP/M only)

A

" 1------1--"~7-,-1

"'1- ----1

"' L- -'

The current value of the CP/M IOBYTE is returned in register A. The four fields of

the byte have these meanings:

(bil number) 7 , 5 , , , "
IOBYTE, I lisl punch reader console

bit value = ()() 01 10 "
console nv: CRT: BAT: UC1:
reader nv: PTA: UR1: UR2:
punch nv: PTP: UP1: UP2:
list nv: CRT: LPT: UL1:

463

464

The IORYTE is nol reset during a warm start; it is only changed by this request, the
STAT command, orb)' a cold stan. Your BIOS may ignore the IOBYTE, or may not
suppon some values.

The IOBYTE is kept in location 03h; older programs may manipulate it direclly.
CPIM-86: The IOBYTE is kepi within the BOOS: this call must be used to alter it.

MPIM: The request has no effect: 110 assignment and the IORYTE are not
supported.

Related request: Gel lOB YTE (7).

When controlling a special console device for which bit 7 is significant, use service
6.

The use of direct cursor addressing may invalidate the BOOS's knowledge of lhe
cursor position, causing illO exp:md labs incorrectly. Avoid tabs unless you are sure that
only normal characters have been sent since the 13S1 CR.

MPtM: This request is more efficient than a sequence of byte requesls. beeause
fewer dispatch sequences are needed.

Relaled requeSlS: Direcl Console I/O (6). Console Output Byte (2).

Set IOBYTE (CP/M only)

Be 0'"
IOBYTE

bilnumbcr' 7 6 5 4 3 2 a
IOBYTE, -'-,Ci,-,-=-- --=-,-"-"'C.h-"-'c'-"Cd-"-=----'OO-"w..,-"~

The value in the E register (DL for CP/M-86) is set as the current IOBYTE. It
begins to control output direction immediately. The meanings of the bit fields arc

bit value = ()() 01 10 II

console ny: CAT: BAT: UC1:
reader ny: PTA: UR1: UR2:
punch TTY: PTP: UP1: UP2:
list TTY: CRT: LPT: UL1:

Console Output String

A

DE t 5lrin,

<Iring: I ... any l.xl al all <"dins with, 0
The string of ASCII text is written to the current console. The dollar sign (ASCII

character 24h. may be another currency symbol outside the U.S.) that terminates the
string is nol written. Bit 7 of each byte is set to 0 before transmission to the BIOS.

If the BOOS has seen a control-s, it waits for another character to be typed before
completing the output and returning; the calling program is suspended during this time.
If the console-copy flag is set. the string is also sent to the current list device.

If a tab (09h) appears in the string, the BOOS writes some number of spaces
instead, based on its knowledge of the position of the cursor. 465

Service lOis to be preferred over other console input requests. It allows the Iypistto
correct errors in a familiar way; this increases user confidence. It is the only input
method that can receive inpul from a submit file via XSUB. Under MP/M it is more
efficient than I-byte requests because fewer dispatch sequences are done.

The cursor returns to its original position on a control-x: this is convenient when a
prompt is wrillen before the service is requested. Use of direct cursor addressing can
invalidate the BooS's knowledge of the cursor position.

InpUl ends with a linefeed. carriage rclurn. or a full buffer: the program can'l tell
which occurred. Control-p. control-so and edil characters are nO! rclUmed: if DE·
SPOOL is acth'e, control-d is swallowed as well.

Related requesls: Console Inpul Byte (I). Console Status (II).

This service has two uses. The most common use is to check for an noon request
from the user during a long spell of otherwise silent processing. PIP uses this lechnique:
if the user has pressed a key, it assumes that the user wants to end Ihe current data
transfer. This may be too abrupt: the user might be asked if an aOOn is really wamed.

The second use occurs when a program is managing both Ihe console and another
serial device. By polling the console with service II it can avoid being suspended should
input not be read)'. MPIM: Polling the console is not recommended: any kind of polling
loop degrades the system. Attach a separate process for each device and let each wail for
input.

Related requcsts: Console Inpul Byte (I). Console Input Line (10), DirecI Console 110 -..../
466 (6).

Console Input Line

A, f-----f-------,
ae OAh

DE t burr~r

"' L-__-----.J

buffer;~ returned dala .

The BOOS notes the current cursor position as it knows it. then reads characters
from the console device until a CR or LF is received. or until max characters have been
received. The typist may employ all the input editing control characters: the BDOS
returns Ihe inpulline as it finally appears on the screen. Control-T. -U, and -x return the
cursor only to the original cursor position. Control-c as the first input byte lenllinatcs the
program.

The number of bytes received is returned in elll. The terminating byte (CR or LF) is
neither returned nor counted. If a tab is received. Ihe BDOS echoes some number of
blanks according to its knowledge of the cursor position: the tab byte is returned in Ihe
buffer, however.

Console Status Check

Be I- .L_~"O"'---_I
DE
1-------1

The current console device is polled, If a byte is ready for input, a nonzero value is
returned in register A, or else OOh is returned.

467

The system identification serves two purposes. A program written for CP/M that
uses services not available in MP/M can ensure that it is really running under CPIM by
checking the contents of register H.

A program written for a cenain level of CPIM can ensure that it is nOI running in an
earlier level that lacks the services it needs. For instance. a program that uses the Direct
Access file services might contain:

MVI
CALL
MOV
ePI
Je

C,12
BOOS
A,L
22H
OLD$VERSION

468

Note that the comparison should not be forcqualily as CPIM 3.0 will presumably support
everything that CPIM 2.2 supports.

Related requests: nonc.

This request is used to allow the opcratorto change the diskcllcon a drive. Without
a reset, when the BDOS next accesses the directory oflhe changed diskelle it will detect
the change (by comparison with the check veclor for the drive) and mark the drive
read-only.

The request should be used with care as it removes read-only slatus from all drives,
including those that aren't changed and those where it was set by uscrcommand. See
Reset Drive (37) for a more specific request. and one more likely to succeed under
MP/M.

Related requests: Reset Drive (37). Protect Drive (28), Get Read-Only Vector (29).

Get System Identification

A

HL' I ~y~t~m I .'usion I
A value that identifies {he system and version is returned in the HL register pair (BX

for CPfM-86).
The system value is OOh for CP/M. and 01h for MP/M.
The version value is the two-digit version number of the system in BCD (e.g.. 22h

for CPIM version 2.2 and the first release of CP/M·86 and 30h for MP/M 2).

Reset All Drives

" I-----'----j

"f--------1
"'-------_-!

The BDOS resets its knowledge of the Slale of all disks. Read-only disks are set to
read-write. Allocation and directory check information is discarded. As each disk is
selected a new allocation vector and a new check veClor will be built. and R/W disk
status will be set.

MPIM I: Ifany process has a file open. the reset will not be done and FFh will be
returned in register A.

MP/M 1: If a different process has an open file on a drive that is read-only or has
removable media, the reset will not be done and FFh will be returned. 469

470

Services that take an FeB as their paramcteroperale on a disk drive according to the
drivecode byte of the FeB, If that byte is OOh, those services operate on the default
drive.

The current default drive number can be obtained with service 25. (In ordinary
CPIM the default drive number can be found in low-storage location 04h. This is not true
of MPfM Of CP/M-86.)

When a program ends wilh a warm stan Inc drive Ihal is the default remains the
default drive: its !eller will appear in the CCP Of ell prompt seen by the user.

Related request: Get Current Drin~ (25).

The (Ox and s2 bytes should be SCi to OOh before the service to ensure opening the
first exlent of the file. 1ltc old dirttt access technique of opening other extents is nO(
reliable in present systems: usc the direct access services instead. The current record
number cr should be set 10 00h after opening a file for sequential access. Ofherwise lhe
first read will nol relum the first record.

Once an FCB has been opened don·1 move it elsewhere in storage. If (he file is
rel1lOle. accessed through CPfNET. moving the FCB will cause subsequent file opera
tions to fail.

MP/M I: Thc drive is rescn·cd and cannot be reset untillhc process ends or issues
Free Drive (39). MP/M 1: Only removable drives are reserved. File 10 is uscd in services
41-43.

MP//I1 2: Usc Get Directory Data (101) to see if passwords are enforced. Usc Read
XFCB (102) 10 scc if this file has one.

Related requests: Close File (16), M:lke File (22). ScI File Buffer Address (26). Read
XFCB (102). Set Password (106).

Select Drive

"
De ''"

dnY~

Register E (DL for CP/M-86) contains a number in the range 0... 15, signifying :I

disk drive A... P respectively. If that drive is nOllhe current default drive. it is made the
default drive. If it has not been selected since the last warm stan or disk reset, its
directory is scanned and used to build allocation and check vectors.

Open Existing File

A,
1---+--,-,-----,

I [ittIJ!,r I tx I

"'L- ---'

o , • , c o e
I ,1 I

,

The drivecode, if nol zero. is used to select a drive. The directory is scanned for the
first match to the filercr and extent number. The filercr may contain question marks. A
matching directory entry is copied into the FeB and register A is rclUmcd as O. I. 2. or 3.
If no match is found. FFh is returned.

CP/M: Only files created under the acth'c user code can be found.
MPIM J: Files created under user code 0 are equally accessible.
MPIM Z: Sel bit fS' if Ihe filc is 10 be unlocked (if OIher processes may open it for

output). Then a File 10 is relUmed in bytes 21hand 22hoflhe feB. A password maybe
gi\'en in byles 0 ... 7 of the curren! file buffer. Sel bit f6' to say the file is to be read-only.
In that case, if the search of the aclive user code fails, the BOOS will also search among
user code 0 files thaI ha"c the SYS attribule. 47/

472

1be purpose of the service is (0 update the directory enlry for the last-altered extent
of an output file (extents prior to the last are updated automatically as lhey are created). A
file used only for input need nO(be closed since its data map has no(been changed.

MPIM I: Closing the file does not release the drive.
MPIM 2: A pennanenl close (f5'=0) of the last open file on a drive releases the

drive.
AlP/Itt 2: 1ltc BDOS checks thaI the FeB has been opened com:ctly; if nol, the

close is noc done and FFh is returned. Use temporary close (fS'= I) as a checkpoint prior
10 console input thai might cancel the command.

Related request: Open File (15).

''"
t feb

" 1-----L---"-----1
DE

1----'--------1

Close Output File

"' L- -'

D 8 , 8 D E ,
'" I li/clOpe I ,'I" I $/ I .! I "

The drive code. if not zero. is used to select a drive. The directory is scanned for the
first match to the filcrcf and extent number under Ihe active user code. The meTef may
contain question marks.

AlP/M /: Files under user code 0 arc equally accessible.
If the search succeeds, the record counl and data map from the FeB are copied into

the directory entry and 0, 1,2. or 3 is returned in register A. If the search fails. FFh is
relUrned.

MPIM 2: Sct bit f5" 10 say the dose is nOI permanent; the directory is updated but
the file remains locked ifil was so. Otherwise the file is unlocked and locked records are

released.

473

474

Nonnally a record holding fOUf directory entries is set in thc file buffer. If the
default drive is remote (reached via CP/NET), then only the matching cnlry will appear
in the buffer; the other three positions will be garbage.

See Chapter 14 for a number of example programs that use Search First and Search
Next (18).

When there are question marks in alllields from dr through ex, the first directory
entry thai has ever been used will be returned (MPtM 2: this may be the Directory Label
or an XFCB). An unused entry has E5h in its firsl byte. Entries thai have never been used
are not returned.

Related request: Search For Next File (18).

Search for First File

"' I----l-~"~":..__I
t febDE

1----'-------1
"'L --.J

o 89 BCOEF

", P?L~JC"'C"C"'C'''C·_--.J:"_~JCiI'C·'~"C"·--.Jc=cg

The directory of the default drive is scanned for an entry thallllalchcs the mercf and
extent number in the FCB. which may contain question marks. If a match is found. the
directory enlry is placed at some offset in the current file buffer. and register A is set to
the position of the entry in the buffer (0. J. 2. or 3 corresponding lOan offsetofO. 32. 64,
or 96 bytes). [f no match is found. register A is SCI to FFh.

If ex is DOh. only the first extent for a file can be matched. If ex contains 11 question
mark. the first entry found will be returned.

Normally dr is ignored and only files with the current user code are matched. If dr
contains a question milTk, all directory entries of any user code, and entries of any type
including those not in use. are compared.

475

476

Normally a record holding four directory entries is SCI in the file buffer. If the
dcfaull drive is remote (reached via CP/NET). then only the malching entry will appear
in the buffer. the ()(her three entries are garbage.

See Chapter 14 for a numberof example programs thai use Search First and Search
'ext (18).

When there are question marks in all fields from dr through t'X. all directory entries
that have ever been used will be retumcd (,uPIM 1: Ihis may include the DireclOry Label
and XFCBs). An unused entry has ESh in its first byte. Entries thai have ncverbeen used
are not returned.

No ()(her file operation should be done beteen two Search requests because the
BDOS may lose its position in the directory. In some \'crsions of the system Ihis request
can be used follo.....ing Close File 10 find [he next file after the one closed. The technique
is not recommended.

Related request: Search for First File (17).

When rcplacinga file. it is best to write lhe new version. close il. delele lhcold one.
and rename lhe new one. By convention files with namcs beginning with $. and files
with lhe typc of .$$$. are scratch files and may be deleted wilhout warning.

MP/M /: A file delcted by one proccss mighl have been in use by another; this is
especially lrue of files under uscr code O.

MP/M 2: A file opencd unlocked by another process can be deleled, butlhe service
will fail if any malching file is open read-only or locked by another process. Use Gct
Directory Data (10 I) to find out if passwords are enforced. Use Read XFCB (102) 10 see
if lhis filc has one.

Relaled requcsts: Set File Buffer Address (26). SCI Password (106).

Search for Next File

A, f----l-----,
Be e----L---.:."~":.-_I

" e- t~'=":.____I
"' L --.J

o 89 BCDEF

'" P?-"flC"'C'''C"'C'''C' ",:::fl'CN~"'C"'_~

The directory of Ihc default drive is scanned for an entry lhal matches thc fileTer and
extenlnumber inlhc FeB. which Illay contain question marks. The search stans with the
entry following the one retumed by the last Search (17 or 18). If a match is found, the
directory entry is placed at some offset in the current file buffer. and regisler A is sel to
the position orthe entry in the buffer (0. [. 2. or 3 corresponding to an offset oro. 32. 64.
or 96 bytes). If no match is found. regisler A is sct to FFh.

If the extent number is DOh. only the first extent enlry for a fileean be matched. Ifit
contains a question mark. the first extent enlry found will be returned.

Normally dr is ignored, and only files with the current user code arc matched. If dr
contains a question mark. all directory entries of any user code. and entries of any type
including those not in usc. arc compared.

Delete File

A>-__>-_~
" e-----1--"':'"'-----I
D' e------'IC"=':.-----I
"' L- --J

o 89 BCDEF

'" PJL...:-f'~'.~"C"~''''-----_...:-f~".~'""~"_~

The drivecode. if not zero. is used to select a drive. The directory is scanned for all
entries that match the given filcrcf (which may contain question marks). Only files
created wilh the active user code arc considered.

MPIM I: Files under user code 0 are compared as well.
All matching entries arc deleted. and the space they control is made available for

other files.
MP/M 2: Set bit f5' to say that only XFCBs arc to be deleted; the files themselves

will remain. A password check may be made; a password may be given in the current file
buffer.

477

478

1llc BOOS doesn"' check to see if the FCB has bun opened. An altempl to read
from an unopened FeB will produce unpredictable results. MPIM 1: If the FCB hasn't
been opened. OAh is returned and no read is done.

Nonnall)' cr is set (0 DOh when the file is opened and altered thereafter only by the
BDOS. A limited form of direct acass can be done by sening crin the calling program.
The present direct access services arc more coo\'cnienl and reliable.

The lest for end of file assumes that all extents exccpl the last one ~ full. A file
built with direct access may contain unallocated areas that will cause end of file to be
reponed early.

A file built with direct access may contain unwritten records that can be read with
this request. Such records may conlain either garbage or binary zeros. depending on the
type of direct access write request used to build the file.

Related requeSts: Open File (15). ScI File Buffer Address (26). Sct Record Count (44).

Sequential Read
"--

" 1----+----,
'" I-__---,-L-'..~'_"

lk'0' 1----'-------1
"' L- ---'

o 8 9 8 o , F

'" dr I filwumf I fl'n)',,, I n I
, .. dala map.

" I I

The drivecode. if T'IOllCro. is used to select a drive. The I28-byte record at position
cr of lhe extent described by the FeB is read and placed in the current file buffer. The cr
field is incremented. If il then equals rc. the entire extent has been read; the directory
enlry describing the next eXlem of the file is copied into lhe FeB and cr is set 10 DOh. If
there is no funher extent. the data map is SCi 10 7.efO.

MPIM 2: This process may be repealed up 1015 times depending on the current
record count; sec Sci Rerord Count (44).

.......... When the read is successful, register A is returned as DOh. End of file occurs when
the data map position corresponding to cr is zero. When it occurs. register A returns
FFh.

MPIM 2: On any error. register H contains the count of records read; see Summary
of Error Codes.

479

480

It is possible to write to an unopened FCB bUllhc extent can't be dosed successful·
ly. MPIM 2: If the FeB hasn't been opened. error code OAh is returned, and no write is
done.

Nonnally cr is sellO OOh when the file is opened and altered thereafter only by the
BOOS. A limited fonn of direct access can be done by selting cr in the calling program.
The present direct access services arc more convenient and reliable.

MPIM J: There is nothing to keep Iwo processes from writing 10 the same file al
once.

MPIM 2: Unless the file was opened unlocked. only one process may ha\'c il open
for OUtput at a time.

Related requests: Make File (22), Close File (16). Set File Buffer Address (26), Set
Record Count (44).

Sequential Write

" f-----c'---"="''---j
DE tkb

, • 9 • C , e ,
'" " I JiI~"ulI'" I [il."p. I ..,. I I s1 I "

d~la m3p

" I I

The drivccodc, if not zero. is used to select a drive. If no block has been allocated (0

Tt:cord cr of this exlent, one is obtained and entered in the data map. The 128-byte record
in the current file buffer is wTinen to position cr of the extent. and cr and rc are
incremented. If the eXlent is then full. the FeB is copied into the matching directory
entry. a newcnlry is ffi:llk for the next extent, and rc. cr. and thcdata map arc sella zero.

AlP/At 2: This process may be repeated up 10 15 limes depending on the record
count; see Set RC('ord Count (44).

'- When the wrile is successful. register A returns OOh. If no dircaory entry or no
allocation block can be obtained when needed. a nonzero value is returned in register A.
MPIM 2: If the FeB was opened read-only. a nonzero value is returned. On any error.
register H contains the count of records wrinen: sec Summary of Error Codes.

48/

482

Nomlally the extent number is zero. causing the first extent of the file to bc created. ~
Later extents arc created by the BDOS as writing proceeds. It is possible 10 make entries
for other extents. but this is 11(){ recommended.

If the filercf contains lo.....ercase. unprintable, or special characters. a program will
be able (0 access it bul the user won", be able to name it in a command. It is possible to
create duplicate fi1erers; it is up to you 10 avoid this. AlP/AI 2: The BOOS returns FFh ifa
duplicate filcref exists under the active user code.

MPIM I: This request causes the selected drive to be reserved: it can"(be reset until
this process ends or issues Free Drive (39).

MP/M 2: The drive will be released when all files on it are closed. Use Get
Directory Data (101) 10 see if XFCBs are being created when files arc made.

Related request: Sequenlial Write (21).

If the new filercf contains lowercase. unprinlable, or special characlcrs. a program
will be able to access it but the uscr won'l be able to name il in a command. It is possible
to creale duplicale filcrcfs; il is up to you to avoid lhis. MP/M 2: The 8005 returns FFh
if a duplic:lte fileref exislS under lhe active user code.

MPIM I: There is no w:lY to keep one process from renaming a file thaI is in use by
another process.

MPIM 2: FFh is relumed if Ihe file is in use by anolher process. unless Ihat process
opened the file unlocked. Usc GelOireclOry Dala (101) 10 see if passwords are enforced.
Use Read XFCB (102) 10 see if this file has one.

Relaled requests: none.

Make New File
'- .,

" '"
DE tkb
HC

, 8 9 8 C D E ,
'" " I /il""a",~ I /iletype I " I I I

I " I I

Thedrivecode. if not zero. is used (0 seleel a dri,'c. A direclOry cntry is created for
the given fileref and extent number. The new entry shows that no space has been
allocated 10 this extent. If nodireclory conies are available. FFh is returned in register A:
otherwise re~isler A contains O. I, 2. or 3. indicating success.

MPI/If 2: Set bit f5' if the file is (0 be opened unlocked: ()(her processes will be able
10 modify the file while il is open. Sel bit f6' irthe file is to have a password. Supply the
password in bytes 0... 7. and the password application nag in byte 8. of the curren! file
buffer.

Rename File

•
" /----;L-c'c'"'---1
DE t feb

f-----'---------j
HC L- -'

o 89 aCOEF

'" ~f--,:-"-'.:-'-:-- --:-'_',:-:-~p=rr=j

The drivecodc. if not zero. is used to select a drive. lbe directory is scanned and all
entries for the explicit filcrd in bytes 01 h ...aSh ofttle FeB are changed 10 thai in bytes
11h... 1Bh. If no such directory cnny is foulld. FFh is relUmed in register A: else
regisler A is returned wilh O. 1.2. or 3 MP/M 1: A password check may be performed.
The password can be supplied in bytes 0 ... 7 of the currenl file buffer. 483

484

The drives indicated in the m3p arc active. but some ofthclll may be read-only. The
allocation vector and check veclOr information for read-only drives is undependable. as
the diskenc in a read-only drive may nOi be the one that was mounted when the
infonnation was built. Use Gel Read-Only Map (29) to find oul which active drives arc
read-only.

The bit map returned by this function has (he same (annal as that rclUmed by Gel
Read-Only Map (29) and input to Resct Drive (37), Access Dri\·c (38), and Free Drive
(39).

Related requests: Reset Disk System (13). Get Read-Only Vector (29).

This service allows a program to find out the default drive preferred by the user (the
one CUITCnt al (he lime (he program is entered).

Under CPfM. the default dri\'c number can be found in location 04h of working
storage. This is 00(troe of CPtM·86 or of MP/M.

Related requeSI: Select Dri\'C (14).

'"

Get Active Drive Map

" f----'-----"-"--I
oe
f-----I

HC L ---l

A bit map of the drives that are currently active is returned in the HL register pair
(BX for CP/M-86). The bits of the map stand for drives as follows:

bilnumbn's 1 6 S .. J 2 1 0 1 6 5 c J 2 1 0

Hl:II'OI>lNlKJ IIlGFFDCIIA!

Each drive indicated by a I-bit has been selected since the last waml start or Reset
Disk System (13) service. These drives have active allocation and check VCCIOT informa
tion.

Get Default Drive Number

A

" I- L---.:'~"':-~

De 1-- --1
HC L ---.J

A number in the range 0 ... 15 is returned in register A, signifying that the current
default drive is A... P respectively. 485

486

When a CPIM program is first entered, the file buffer address is set to OOBOh.
Under CP/M and MP/M there is no service request to discover the present value of the
buffer address.

CPIM-86: This request sets the file buffer offSCi within a segment. Use service 51 to
change the file buffer segment basco Use service 5210 retrieve the buffer segment base
and offset.

MPIM 2: The file buffer address is taken as the address of a password for those
requests Ihal use one (15. 19, 23. 30. 100. 103). Depending on the rcconl count (44) the
file buffer may be from 110 16 I28-bYlc records long for sequential UO. and from 210 32
Ittords long for Test and Write (41).

Related requests: Sct Record Count (44). Set File Buffer Segment Base (51). Gel File
Buffer Address (52).

Sec Chapter 14 for an example of a program Ihal displays the allocation vector.
Use the Select Drive (14) service to select the drive whose allocation veelOr you

want. Use Get Disk Parameters (31) to find out the number of allocation blocks. and
hence of bits in the map.

Use Get Read-Only Map (29) to find out if the drive is read-only: if so. the
allocation vector may not be valid. It reflects the allocation status of the diskette that was
loaded when the drive was selected: a different disketle may be in it now.

Related requests: Select Drive (14), Get Read-Only Map (29). Get Disk Parameters
(31).

Set File Buffer Address
'--

., f----f------,
'" 'AA
DE t file buffn

" L- -'

The address in register DE (OX for CP/M-86) is established as the address of the file
buffer for reading and writing files and for searching the directory.

Get Allocation Vector

" 1------'-------1
D' f---------{
"L -'

The address of the allocation vectoc for the defaull drive is returned in the HL
register pair (BX and ES for CP/M-86). The allocation veclor is a bit map with as many

......... bils as there are allocation blocks on the dri\'c. A I-bit means thaI the COITeSponding
block is in usc: a O·bit means that it is free. 487

488

Use Get Read-Only Map (29) to find out which dri\'cS currently have read-only .-J
status; usc Reset Dn"c (37) 10 reset thaI SIaIUS. Usc Seleci Dri"c (14) to select the drive
thai Ihis service will act upon.

Related requests: Select Drive (14). Gel Read-Only Map (29). Reset Disk System (13).
Reset Drive (37).

Dri\'CS are mari;ed read-only either by user command. by usc of Protect Drive (28),
or by the BOOS when it detects the fact that the diskette on the drh'c is notltle S3me as
when the drive was activated.

The check ,'ector and allocation "cclOr for a read-only drive describe the disk or
diskette thaI was mounted when the drive was SCICClCd. If a different volume is now
mounted. the information is invalid.

The bit map returned by this function has the same formal as that returned by Gel
Active Drive Map (29) and input to Resel Dri"e (37), Access Drivc(38). and Free Drive
(39).

Related reQuesls: Reset Disk Syslcm (13), Protecl Drive (28). Reset Drive (39).

Protect Drive

A

" f-----L-~':'"::..--
" 1-------
"' L- _

The default drive is sellO read-only status. It will keep this status until it is reset or
until a warm start,

Get Read-Only Map

A

''"
,

A bit map of the drives that arc currently marked read-only is returned in the HL
register pair (BX for CPfM-86). The bits of thc map stand for drives as follows:

bitnumbc,,: 7 6 54 3 2 1 0 7654 3 2 1 0

HL.!rONMLKJ I HGFEDCBA!

Each drive indicated by a I-bit has been selected and Ihcn sello read-only status since Ihe
last warm sian. Reset Disk System (13). or Reset Drive (39) service. The BDOS holds

"---' allocation and check vector information for these drives dating from thc time of their
selection. but it may not be valid. 489

Each fite has II attribute bits, one in each byte of the filename and filetypc, named
rr through f8' and tl' through t3' respectively.

Bit tt' is the file RIO attribute: t2' is the SYS allribute. Bit t3' is the Archive
attribute, cleared to zero when an extent is altered in any way. Bits f5' through f8' are
reserved for future system use. Bits n' through f4' are available for the use of
application programs.

To change only cenain bits use Search First and Search Nex.1 (17 and 18) to oblain a
copy of the first directory entry for the file. The entry returned has all of the allribute bits
at their present values. Alter Ihe bits of intCTCSI. zero the drivecode, and use the enlI)'
ilself as the FeB in this request.

MPIM 2: Use Get DireclOry Label flag (101) 10 find OUt if passwords af(: enforced:
use Read XFCB (102) to find out if Ihis file has a pass.....Ofd.

Related requests: Search (17,18), Rename File (23), Write XFCB (103).

Use Select Drive (t4) to select the drive whose DPB you want 10 inspect. There is a
map of the DPB in the CPIM Maps section. The DPB and ils uses are described in
Chapter 14.

Access 10 the OPB is necessary to a progrnmthat wants 10 read the disk directory as
il contains the number of dircclOry entries and the track offset. The DPB contains the
number of allocation blocks, which is required 10 make sense of the allocation vector. A
program Ihat intends to interpret the data map in an FCB. cither to do its own space
allocalion or in order 10 do nonstandard direct access. must look at the DPB to find OUI
the size of an allocation block and whether data map entries are lor 2 bytes in length.

A programmer with a thorough understanding of lhe DPB and of lhe BIOS might
modify Ihe DPB in order 10 handle noostandard diskettes. but this requires extreme care
and would be BIOS dependent.

490 Related requests: Select Drive (14), Get Allocation Vector (27), BIOS function Scldsk.

Set File Attributes

Be

DE
"", tfeb

DE
f--------1

o 8 9 ... 8 C 0 E F

'" 29L---'"-"-""-'-"'-- _Cfl_"C"C'''_~CCIIj

The drivttode. if not zero. is used to select a drive. The directory is scanned for all
entries thai match the given filercf (which must be explicit). The attribute bits (the most
significant bits orb}'lcs 01 h ...DBh) from the FeB are copied in each matching directory
entry. replacing the attribute bits in the director)'.

MPIM Z: A password check may be performed. A password may be supplied in
bytes 0 ... 7 of the current file buffer.

Get Disk Parameters

A' I---t-c:,---,
Be lFh

f---...L-----1

The BOOS returns the address of the active Disk Parameter Block (DPS) in the HL
register pair (BX and E$ for CP/M.86). The DPB describes the active drive and contains
alllhe information used by the BDOS [0 cOnlrol space allocation.

491

492

Only files created under the active user code may be accessed. Only those files can -....-I
be found by Ihc Search First and Search Next requests (17 and 18), except for one special
case of input to those requests.

MP/M /: Files created under user code 0 are also accessible for all purposes.
MPIM 2: A file created under user code a can be accessed (for input only) under

these conditions: (I) the file is opened read-only; (2) il can', be found under the active
user code: (3) it has the SYS 3uribute.

This request does flO(alter the state of Ihe disk system. 1berefore a program may
alternate user codes in order 10 read alternately from files created under diffcTCnI codes.

Related ~uests; none.

When some. but fl()(all. records of an allocation block ha\'c been written wilh "-'"
Direct Write (34). any record or the block-including those not wriuen----can be read.
Avoid the problem by initializing all records of a file. or build the file with Direct Write
with Zero Fill (40) so the condition can be detected.

CP/M 2. MP/M J: 1be maximum file size is 8 MB; the maximum record address is
65535 (OFFFFh). If the thin! (most significant) address byte is nonzero. error code 06h
is returned.

MPIM 2: The maximum file size is 32 MB: the maximum recon! address is 26214)
(3FFFFh). If the third address byte exceeds 03h. error code 06h is returned.

Related requests: Set File Buffer Address (26). Direct Write (34. 40).

c, "'"
" FFhjcod~

C,

o

"

,
A

Get or Set User Code

This request may either interrogate the aeti,'c user code or change il. If register E
(OL for CP/M~86) contains FFh. then the 3cti,'c code is returned in n:gistcr A. If it
contains another value. then the leasl signific,ml 4 bits of the value become the new
active user code.

Direct Access Read

I {lIm/,r I r< I ,I I .} I
,oc,,,o

Jr 1 III,'''~'''~

'",.
t "'

c,

A

"
o

"

" I udJr...' I

The dri\'ecode. if nol zero. is ust'd to sclttt a dri\'c. The record address and the
allocation block size determine an extent number. a data map index. and a record index.
If the FeB does not rdlecllhe wanted eXlen!. thai extent entry is found and copied to the
FeB (if the data map of the FeB has been changed. this extent entry is updated first).

The data milp is indexed to find the wanted alloc31ion bloc!; number; that and the
record index give the disk address. The wanted record is then read to the current file
buffer. a is set to the position of the record in the extent. and DOh is returned in register
A. Errors are reponed by nonzero values of register A. Codes 01h and 04h signal
nonexistent data: see the Summary of Error Codes for serious errors.

493

494

It is possible to create files wilh unwritten records or unallocated blocks or extents.
Some unwriUcn records can be rClld with apparent success by either Sequential Read (20)
or Direct Read (33). Sequential reading will stop with apparent end of file at the first
unallocated block or extent. The first problem can be handled by Direci Write with Zero
Fill (40); all can be avoided by wriling all records.

CP/M 2. /lfPIM I: The maximum file size is 8 MB: the maximum record address is
65535 (FFFFh). Iflhc third (most significant) address byte is nonzero. errorcode 06h is
returned.

AlP'M 2: lbe maximum file size is 32 MB: the maximum record address is 262143
(3FFFFh). If the third address byte exceeds 03h. error code 06h is returned.

Related requests: Sct File Buffer Address (26). Direct Read (33). Direct Write wilh Zero
Fill (40). Gel File End Address (35).

The address returned renccts the laSI existing record. It mOlY not represenllhe actual
size of lhe file, since files created Wilh direct <lccess c<ln conlain ·'holes." or unallocaled
space.

This service can be used 10 append data sequentially at the end of a file: open the
file. gel its end address, decrement lhe address. use Direct Read (33) 10 read lhe last
record. The FeB is then prepared for sequential writing: the nextrite will replace lhe
last record,

CP/M 2. MPIM I: If tnc third b)1e of lhe address is nonzero. the file contains a
record at the maximum address of OOFFFFh.

MPIM Z: If the third byte of the address is 04h. the file contains a record atlhe
maximum address of 03FFFFh.

Relaled requests: Direct Write (34). Gel Direct Address (36).

c, ""
" t feb

"

Direct Access Write

H

A

,
o

0 , , , C 0 , ,
kb ',I filr"Jmr I f/le1J'pe I " I ,/ I " I "

, .. dOlum~p.

" J "dd"s.; I
The dri\'ccode. if nOt lero. is used to select a drive. The record address and the

allocation block size dctcnnine an exlent number. a data map index. and a record index.
If the FeB does nOI renccllhc wanted extent. that exlent entry is found and copied (0 the
FeB. (fthe data map of tile FCB has been changed. this extent enlry is updated first. If
the new extent doesn"1 exist, one is created (showing no space allocation) and copied 10
the FeB.

The data map is indexed to find the wanted allocation block number. A block is
allocated if necessary. The block number and record index give the disk address. 1be
record is wriuen from the current file buffer. cr is sellO its position in the extent. and OOh
is returned in register A.

Errors are reported as nonzero values in register A; s« Summary of Error Codes.
Code 02h signals no room for data. and code OSh signals no room in the directory.

Get File End Address

""
" t feb

"

Be

o

A

H

0 , A , C 0 , ,
leb;

b
f11~""m~ {ilnypr cr=cg
""",..

The dri\·ecode. if noc zero, is used to select a dri\'e. The dirtttory is scanned to find
the highest numbered extent ofthe named file. The direct address of the file's last record.
plus one. is set in the direct address field of the FCB. 495

496

If the data re<:ords in a file are all of Ihe same size. Ihe standard record address at '--"
which each data record begins can be calculated. When thaI is nOi the case. the only
con\'cnient way of finding a record directly is through an index that relates some key
value of each record 10 the record's address. By reading a file sequentially. and fK)(ing
the record address and a key value for each record. you can build an index for a file Ihal
was created sequentially.

Related request: Get File End Address (35).

This service allows lhe progrnm to reset a dri,'c when the user is 10 change the
diskette mounted in it.)flhe drive is not reset before such a change. the BOOS will spot
the facllhallhe diskette has been ch:mged and will mark the drive read-only.

The service is similar 10. but S3fcr than. Reset All Drives (13). Only the drh'CS the
program needs are reset; other drives-which mighl have been made read-only by the
user-arc left alone,

The drive map input 10 lhis service is identical to lha! returned by Gel Acti\'e Drive
Map (24) and Gel Read-Only Map (29).

Related requesl: Reset Disk System (13).

Get Direct Address

A,
1---+-----,

DE t feb

HC

o 9 A ... S C 0 E F

kbP ~,,=,.~Qr-""-,-_-- ----=:::.:::::--=

The extent number and current record number of the FeB are used to calculate the
direct address of the last record thaI was returned by Read Sequential (20). The address is
placed in the direct address field of the FeB.

Reset Drive (MP/M only)

'"
driv~ m~p

C

A

"
"
H

bitnumbt:rs" 1 e 54321 0 7654 3 2 1 0

dllv.mlp Ip 0 1'1 M L K J I" G FED C 8 AI

The drives specified by I-bits in the drh'C map in the DE register are reset. Each
such dri\'(~ is marked read-write. and the BOOS discards its allocation and check \'eclOf
information for that drive. New allocation and check information will be buill when a
drh'c is next selected.

MPIM J: If any process has a file open on a selected drive. f1()(hing is done; FFh is
relUmed in register A.

""-" MPIM 2: If a selected drive has removable media or is SCI read-only. and ifanother
process has a file open on thaI drive, nothing is done and FFh is relurned. 497

498

Drives are reserved automatically when an Open File (15) or Make File (22) service
request is issued. If a program intends 10 access a drive in some nonstandard way,
wilhout opening a file on il. il should use this requesllo prevent the drive's being reset
during its work.

The only way 10 free a drive reserved by this request is (or the program 10 terminate.
or 10 issue the Free Drive (39) request.

The bil map input to this request has the same fonnat as that rclUmed by Gel Active
Drive Map (24) and Get Read-Only Map (29) and input to Free Drive (39).

Related requests: Gel Active Drive Map (24), Free Drive (39).

This service allows the program to give up the dri\·cs it might have reserved by
issuing Open File (15). Make File (22). or Access Drive (38) service requests. The only
other way to free the drives reserved by a process is for the process to terminate.

The bit map input to this request has the same format as that returned by Get Active
Drive Map (24) and input to Reset Drive (37) and Access Drive (38).

Relaled requests: Gel Active Drive Map (24). Access Dri\'e (38).

Access Drive (MP/M only)

A,
1----+-----,

'c ..
DE dri.. n"'fl

"L --J

bil ,,"mbers- 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

De, II' 0 N ~I l K J I H r. FED (" U AI
The drive map in the DE register is used to reserve drives to this process. Where the

input map has a I . the corresponding drive is reserved by this process. That drive cannot
be reset until this process (and :lOy other process that has reserved it) frees il or
lcnninates.

Free Drive (MP/M only)

Af-__+ __...,
BC 27h

bllnum~rs; 1 654321 0 7654 3 2 1 0

DE: IPO" .\l l K J I H co FED (' 8 "I
The drive map in the DE register is used to release drives reserved by this process.

Where a bit in the map is a I. and if the corresponding drive has been reserved by this
process. the dri'"c is released.

MPIM 2: If this process has an open file on a released drive, the BOOS forgets il: the
file is considered to be not open and any funher usc of its FeB will rclUm an error code. 499

500

When Direct Access Write (34) is used to build a file, unwritten records within an
allocution block contain unpredictable garbage. This request fills the unwritten records
of each new block with binary zeros.

It remains possible 10 create a file with "holes" (unallocated blocks or extents).
Sequential reading will stop with apparent end of file at Ihc first unallocated block or
extent. A direct read to an unallocated area returns a nonzero code in register A.

Related Requests: SCi File Buffer Address (26). Direct Write (34).

Direct Access Write with Zero Fill.,
1----1--~

'C f------'---="""-----J
0' I---'--'-------J
"' '-------'

0 9 • , C 0 , ,
lebo d, T II"'"~"''' T 111,-" I'" T " I ', I ,- I

d","","I'.

" 1 ud,hn, -1

The drh'ccodc. if not zero. is used to select a dri\·c. The record address and the
allocation block size detennine an e,uent number. a data map index. and a record index.
If the FeB does not reneellhe wanted extent. Ihat eXlent cnlTy is found and copied to the
FeB. If Ihc data map of the FeB has been changed. this exlent entry is updated first: if
the new eXlenl doesn", exist. one: is created (showing no space allocation) and copied to
the FeB.

1be data map is indexed 10 find the wanted allocation block number. If necessary. a
block is allocated and all records in it filled with binary zeros. Then the record in the
CUrRnt file buffer is wrincn (0 disk. cr is set (0 its position in Ihc extent. and DOh is
returned in register A.

Errors are rclUmcd as nonzero values in register A: see Summary of Error Codes.
Code 02h signals no data space. and code OSh flO directory space.

501

502

This ~rvice allows se\'eral simultaneous processes to update the same file without
loss of data. Each process must open the file unlocked. then proceed thus:

I. Read the desired records.
2. Build updated records following in storage.
3. Test and wrile all the records.
4. If error code 7 occurs. repeal from step 1.

Error code 7 occurs only if. during step 2. another process updated the same records.
When such conflicts are infrequent. this service is more efficient than Lock and Unlock
Record (42 and 43).

The service is subject to mosl of the error codes that can result from Direct Read
(33) and Direct Write (34): see SummaI')' of Error Ccxlcs.

Related requests: Direct Read (33). Direct Write (34), Lock Record (42). Unlock Record
(43).

Test and Write Record (MP/M 2)

A

"
D'

0 9 A , C D , ,
feb: " I J,I.."""", I fil~I',)~ I " I ', I " I

... dala map.

" I "lid"·,, I

"The BOOS performs a direct read, as for service 33. into a private buffer. It
compares the record with thaI in the current file buffer. (fthe records arc OO[equal. the
service returns 07h in J't;gisler A and ends. (fthey are equal. the BOOS performs a direct
wrile as for service 34. taking the data from a position following the comparison record.

If Sel Record Counl (44) has been used. up to 16 consecutive records are compared
with as many adjacent n:cOfds in the file buffer. If all comparisons arc equal. allteslcd
records are updated from adjacent records following the comparison records.

No other process is allowed 10 access the file while the service is underway. Errors
OIherthan unequal compare are reponed as for services 33 and 34: see Summary of Error
Codes.

503

504

This service allows several simullaneous processes 10 operate on the same file
without loss of data. Each must open the Iile unlocked. then proceed thus:

I. Decide what records are needed.
2. Lock them.
3. Read. alter, and write the records.
4. Unlock them.

Test and Write Record (41) is more efficient when conflicts arc infrequenl. This service
is dangerous: ifstep 3 takes too long (if it includes a wait for lerminall/O. for instance),
or if a bug prevents step 4 from being done. the other processes could be hung up
indefinitely.

The service is subject to most of the errors that can occur with Direct Read (33): see
Summary of Error Codes.

Related requests: Test and Write Record (41), Unlock Record (43).

See Lock Record (42) for the use of this service. It is !\Of necessary 10 unlock the
identical SCI of records thaI were locked by service 42: more or fewer records ean be
unlocked. allhough doing so has obvious possibilities for program error.

The service is subject to most of the error codes that can oceur in Direct Read (33):
see Summary of Error Codes.

Related requests: Test and Write Record (41), Lock Record (42).

0'

Lock Record (MP/M 2)

, 2M

t feb

H'
0 , A , , 0 , ,

feb: " I filmum,- I lil,·/ ,.,,,. I ," I ', I " I
,.<1"" mar.

I "ddT"" I
The record address specifies a record to be locked, The File 10 returned when the

file was opened or made must be given in bytes 0... 1 of the currem file buffer. If the
specified record has not been allocated to the file. or if it exists but has been locked by
another process, the service ends with an error code. Otherwise the record is locked: any
other process 3ncmpling to access it will reuive an error code until it is unlocked.

If Sel Record Count (44) has been used. up to 16 conseculi,'c fttords are inspected.
If all exist and are unlocked. all are locked.

If the file was opened locked or read-only. the service docs nothing and docs nol
validate the File 10.

Unlock Record (MP/M 2)
A

""" 1------'-----"-----1
0' 1----'-----1

1/ I sl I

H' L-- -'

0 , A , ,
'" " I f1lem",,~ I /ilnJ'JH I u I

.. dal3 map.

I 04d,tSJ I

o , ,

The record address spedfies a record (Q be unlocked. The File ID returned when the
file was opened or made must be given in bytes O... 1 of the currenl file buffer. If the
specified record cXiSIS and has been locked by this process. il is unlocked.

If Set Record Count (44) has been used. up to 16 cooSttutive records can be
unlocked.

11le service ignores IttOfds that do not exist. records Ihat are no! locked. and
records that are locked by another process. Iflhc file was opened locked or read-only .Ihe
service does noIhing. and does no! validalc the File ID. 505

506

It is common practice to read or write records in blocks 10 3\"oid excessive disk
activit)'. This service allows sequential (but not direct) fe3ds and writes 10 access a block
of up to 16 records (2048 byles) in one serviC'e request. The amount of system overhead
will be less than that incurred by a progl1l.mmed loop. since fewer dispatch cycles are
needed.

When this service is used with one file but flO(anOlhcr. or for locking but not for
accessing. there is a clear chance of error. Since the record count will usually change
when the file buffer address does. it might be wise 10 put bolh services in a single
subroutine.

Related request: Set File Buffer Address (26).

With this service a program can intercept a serious error and either correct il or
Icnninate in an orderly way. This is cs~cially important when files are protected by
passwords. A password mismatch will cancel the program unless extended error mode is
00.

Related requests: none.

Set Record Count (MP/M 2)

A

"
DE

2CA

.011111

If the count in regisler E is not in the range of I ... 16. FFh is returned in register A.
If the count is in muge. it is sct as a repelition counl for lhe following services:

Set Error Mode (MP/M 2)

These services normally operate on single records. When the CQunt is sct higher than I
they repeat for consecutive records until the 100ai reaches the record count. When a
repeated operation is interrupted by end of liIe or an error. lhe count of successful
iterations is rclumed in the most significant 4 bits of register H.

A

DE

20 Sequential Rend
21 Sequential Write
41 Test and Write Record

""
fl4

42 Lock Record
43 Unlock Record

Ifflag is FEh or FFh. the BOOS will no longer trap serious disk I/OCTTOrs but will
return them to thccalling program as FFh in register A and a code in the least signific;mt
4 bits of register H. The services affected are

14 Select Disk
20 Sequential Read
21 Sequential Write
33 Direct Read
34 Direct Write
35 Get File Size
38 Access Drh'e
40 Direct Write Zero

41 Test and Write Record
42 Lock Record
43 Unlock Record
46 Get Disk Free Spaee
48 Flush Buffers

100 Write Directory Label
102 Read XFCB
103 Write XFCB

Ifflag is FEh. the BOOS will continue to display its usual Bdos Err messages when an
error occurs: ifflag is FFh the BOOS will not display a message when an error occurs.

If flag is OOh. the BOOS revens to normal; a serious error will tcnninate the
program and a Bdos Err message will be displayed 10 the user. 507

508

Prior to MP/lI,1 2 a program could discover this infonnalion. but only by referring to
lhe Disk Parameter Block (DPB) and the allocation vector for the drive.

The maximum value that could be retumcd is 4.194.303 decimal or 3F.FF.FFh:
the maximum disk capacity (536.870.912 bytes) divided by 128. The value shows the
number of records that could be added to anyone file. If the third byte exceeds 03h. Ihen
there is room for a file of the maximum size (32 MB).

Rclmed requests: Gct Allocation Vector (27). Gel Disk Parnmetcrs (31).

This service allows a program to end and pass control to a command. "Chain"
usually implies changing programs while TCtaining storage variables and open files. In
this case the program temlinates completely. controlling only the command lhat follows
it.

Related request: Terminate Program (0).

A'

Be

Get Disk Free Space (MP/M 2)

DE
"", dri.e

Register E contains a number in the range 0 ... 15. signifying a drh'c from A... P
respectively. If the drive has 001 been selected sillCe the disk system was initialized. it is
selected. The BOOS counts the free allocation blocks on the drive. multiplies by the
number of I 28-bYlc records in a block. and returns the count as a 3-bYIC binary integer.
The number is TelUmed in bytes O... 2 of the current file buffer in the fonn of a direct file
address: thai is. byte 0 is the least significant and byte 2 is the moSt significanl.

Chain to Command (MP/M 2)

""
E'

"

A

Be

D

I IX> I
The current file buffer must contain a character siring that (he system willireal as if

il were a command typed by the user. The command will be executed next. even if a
submit file is aclive.

The command string may be from I to 100 bytes in length and mustbc followed by a
byte of OOh (which is not counted in the length).

Ordinarily control will not be returned to thc program: it will be ended as for service
O. If the process is not allached to its console. control will return. 509

510

-.J
Some BIOSes manage large slOrage buffers. A BIOS of proper design will never

delay'Tiling changed data for very long. However, the most n..-ccnt program ampUl may
be retained for some time. especially when direct access is being used. This request
allows the program 10 ensure thalille data il has wrillen has aclUally been put on the disk..
Its real apphc31lon is in large ~'1P/M systems. especi31ly tOOse that keep a large disk
cache and use fixed-media disks. 1be service. in combination with the temporary close
feature of service 16. allows a long-running program like a CP/NET serycr to lake
periodic disk checkpoints. thus assuring file inlcgrity.

Related request: Close Output File (16).

This request provides the only way for a CI'/M-86 program to calion a BIOS
function. The address of the BIOS entry table is not placed in low slOragc in CP/M·86;
there is no way for a program lodiscover its address. The BDOS must intervene losct the
various segmcnt registcrs correctly for BIOS execution before the BIOS is enlered.

The BDOS does nOl censor BIOS requests made wilh lhis scrvice: alllhe functions
of the BIOS are still available 10 programs thaI need them.

Relaled requests: none.

Flush Disk Buffers (MPIM 2)

"f------~
"'L -.J

The BOOS calls on the BIOS to write any output disk records it may be holding in
internal buffers. If the BIOS buffers large disk seeton. or if it keeps a cache of disk
sectors. it will wrile the data 10 disk. If the BI05 docsn', buffer data. f)()(hing happens.

Call BIOS Entry (CPIM-86 only)

A<
f-------1

"f----------j
ex OOJ2h

p:II:1....1<1'S G ex ...I~ I ox .-:dlll' I
The B005 loads the 16-bil values given in the parameter list inlo the ex and OX

regislers and enters the BIOS at the funclion entry indicated. lbc g.bilfne value is an
offset into the BIOS entry table. withfnc = OCOITCspcmding 10 the first (cold Sian) entry.

-......... fire ". 3 corresponding to the second (warnl start) entry. and so on.
The registers are rclUmcd as the BIOS scI them. 51 J

5/2

When a program is initialized. the file buffer.scgment address is set identical to the '--"
data segment address in thc program's OS register. and the file buffer offset address is
seliO OOBOh. This confonns to the conventions ofCP/M and MP/M. where the defaull
buffer is al OO8Oh in (file only segment of) working storage.

lbe Sci File Buffer Address (26) request alters only Ihc buffer offset in CP/M-86:
that request can be used to place the buffer anywhere in the Data Segment but not
elsewhere. This request allows the file buffer to be located in the program's Code. Slack.
or Extra Segments.

Related request: SCi File Buffer Address (26).

This request can be used to find and save the current file buffer address before
setting another. temporary one. There is no comparable request in CP/M or MP/M.

Related requests: Sel File Buffer Address (26), Set File Buffer Segmenl Base (51).

,

00""
S<'pn~nll>aS<'~dr.

Set File Buffer Segment Base (CP/M-B6 only)

DX

"
AX

ex

The address in the OX register is saved as the scgmCnl base for the file record buffer
whose offset is scI by SCI File Buffer Address (26). The HCldress is taken [0 be il paragraph
address, the most significant 16 bits of a 20-bil address.

Get File Buffer Address (CP/M-B6 only)

AX f--------1
"1---------1
ex ~h

DX L -'

The complete address of the acth'C file buffer is returned. The segment address is
returned in the ES register and the offset address in the BX register. 5/3

5/4

This request acquires a large area of storage that the progr.lffi will subdivide
accon:ling to its own rules. Note thai a program loaded according to the CP/M-86 rules
for the Compact Model can have as many as six storage areas allocated for it when it is
loaded.

Use Relocatable Storage (55) when an area of a specific size is needed. Use
Absolute Storage (56) or Maximum Absolute Storage when an area at a specific address
is required.

Related requests: Relocatablc Storage (55). Release SlOrage (57).

This request acquires a large area of siorage at a specific storage address. To do so
implies some hardware dependency. as the program must know that the address is
defined in this machine. To gel an area of a panicular size at an absolute address (for
example, the area that defines a memory-mapped display), use Absolute Storage (56).

Related requests: Absolute Slorage (56). Release Storage (57).

Maximum Relocatable Storage (CP/M-S6 only)
'-

AX

"
" 0035"

OX l~'

b)"IOS 0 2 , •
~'I '"'- It~r'" 0

This request asks tOe BOOS to provide the largest area of contiguous storage
available. The BDOS sets the paragraph address of the slorJgc area in the first 2 bytes of
the Mea. and the length (in paragraph. or 16-bYIC. units) in the second 2 bytes. [f no
storage areas are available. FFh is returned in the AL register. otherwise OOh is returned.

Jfthcn: are other storage areas that could be allocated. the flag field is SCi to 01 h. If
this is the last area. il is set 10 OOh.

Maximum Absolute Storage (CP/M-S6 only)

AX

"
" """"
" t mcb

"',~ 0 2 , •
mcl" '"'- """" 0

This request asks the BOOS 10 provide the largest area of contiguous slorngc
available at a specific storage address. The paragraph address required must be passed in
the firsl2 bytes orthe Mell. The length available (in paragraph. or 16-byte. units) is
returned in the length field. If the address requested docsn't exist or falls in an area
already allocated to some other use. FFh is returned in the AL register; otherwise OOh is
retumcd.

If there are OIhcr storage areas that could be allocated. the nag field is set to 01 h. If
this is the last area. it is set to OOh. SJ5

5/6

Use this request to acquire 11 block of storage of some known size: a file buffer,
perhaps. or space for a table or army of known size. Note thaI a program lOaded
according 10 the CP/M-86 rules for the Compact Model can have as many as six storage
areas allocated for it when il is loaded.

Usc Maximum Rclocalablc Storage (53) when an area oflhe largest possible size is
needed. Usc Absolute Storage (56) or Maximum Absolute Storoge when an area al a
specific address is required.

Related requests; Maximum Relocatablc Storage (53), Release Storage (57).

This request acquires a specific area of SlOrage at aspecil'ic storage address: perhaps
a section of storage that is mapped by some hardware device such as a mcmory.mapped
display. Using this or the Maximum Absolute Storage request (54) implies a hardware
dependency. Use Relocatable Storage (55) when the storage address doesn't malter,

Related requests: Maximum Absolute Storage (56), Release Storage (57).

Relocatable Storage (CP/M-B6 only)

A< 1-------"
"f----=::---jex 0037h

ox tm;b

b)'I'.. 0

mcb />11><

This request asks the BOOS to provide an area of contiguous storage of a specified
length. The length needed must be passed as a number orp3rngraph (16-bylc) units in the
second 2 bytes of the MeS. The BOOS sets the paragraph address of the SlOrage area in
the first 2 bytes of the MeR. If no storage area of the size requested is available. FFh is
returned in the AL regisler; otherwise DOh is returned.

If there arc olher storage areas th:lI could be alloclllcd.lhe nag field is sellO 01 h. If
this is the last area. it is SCI to DOh.

Absolute Storage

,

"'""
I~'

AX

ex

"
, , .
f~"f" 0

Thi~ request asks the BOOS to provide a ccrtain amount of contiguous storage at a
specific storage address. The paragraph address required lIIust be passed in the first 2
bytes of the MeB and the length required (in paragraph. or J6-b}'le. unils) in the second
2 byles, If the address requested docsn 't exist or falls in an area already allocated 10 some
other use. or ifthc lenglh requested isn't available following it. FFh is returned in the AL
register: otherwise DOh is returned.

If there are other storage areas that could be allocaled, lhe flag field is set to 01 h. If
this is the laSl area. it is sel to DOh. 5/7

5/8

The storage released must have been obtained by one of the allocation requests
(53-56). Storage allocated as p:m of the program load should not be released.

When a single area is released. the area may be identical to an area obtained wilh an
allocation request. or may be the low end (base = allocated address) or high end (bose +
length = allocation end) of an allocution. The middle part of an allocation may not be
released alone.

A released area is available for later alilx:ation.

Related requests: Maximum Relocatable Storage (53), Relocatable Storage (55), l\'lax
imum Absolute Storage (54), Absolute Storage (56).

This request is meant for the use of the CCP; il is included here only for the sake of
completeness. It is impossible to predict whal would happen if a command program
issued this request. bUI it wouldn't be anything good.

Related requests: none.

Release Storage (CP/M-86 only)
'-

"
"
" oro,

" l~'

byl..., 0 , 3 •
~, I bow m",,, I~

TIle storage area whose paragraph base address is given in the MCB is released for
other uses.

If jig = FFh, then all storage allocated by preceding requests is released. In this
case the txlSe and length values arc ignored.

Ifftg = DOh, the area described by base and lel/glh is released. This aTea must be a
complete area as allocated by a previous request. or must be adjacenllo one end of such
an area.

Release All Storage (CP/M-86 only)

"1-------1
" 1----------.1
ex OOOAh

"
All storage areas in the machine (exccpllhc space occupied by the BOOS, BIOS.

and CCP) are released. 5/9

520

After loading a program you can examine the first bytes of its data segment (via the
base address in register BX) to disco\'er which progr;l111 model (8080. Small. or
Compact) it uses and the addresses of its various storage segments.

In order to call the loaded program you must find its emry poim. The base address of
the program's code segmem appears at offsct 0001 h in its data segment. If the program
was built on the 8080 model. the byte at 0003h in its data segment will be nonzero. In
that case the program's code segment and data segment are identical. aJXIthe program
should be entered al offset 0100h. Programs built on the other models should be entered
at the beginning of their code segments.

The default FeB in the new program's base PJgc has not been initialized. nor has
the dcfaull file ooffcr address sel for it. If the progrnm will expect these things to have
been done. the loading program mUSI do them before calling it.

Related requests: none.

The name and type fields serve only as user identification: they can be displayed
with the SHOW command but a program can read them only with the Search requesfS
(17. 18).

Theftg settings are very imponant for file processing. Ifbit 7 is O. passwords can be
supplied for files but will never be checked: if it is I. then a passord may be required
.....henever a file is opened. deleted. renamed. or has its allributcs changed.

If bit 4 is I. then an XFCBill be created whene\'er a file is made. That consumes
an extra directory entl')' for evcry new filc.

A return code of FFh will usually indicate that the directory is futl and so a label
could nOI be created. If extended error mode has been set (service 45). FFh in registcr A
will be accompanied by a code in register H.

Related request: Get Directory 0:11:1 (101).

Load Program (CP/M-86 only)
'-

"I----------j
" I----------j
ex OOOBh

ox tkb

Register OX specifies the offset of a file control block in the data segment. The
FeB. which musl have been opened. names a file ofl)'pe .CMD. The BOOS loads the
program. allocating segmentS of storage as required. Register Al contains OOh if the
load is successful. and register BX contains the segment base of the loaded program's
data segment.

If the file cannot be read. or doesn"' contain a \'alid header record, the load is not
done and FFh is relUmed in register Al.

Write Directory Label (MP/M 2)

A

'- " I----L-:":':.--I
" 1--__-'1-:"::'__--I
"L ---.J

o 9A BCDEF

., p:JL---"="='"="=" '='="~"'---'=rn=rj

The drivccode. if nOi zero. is used to select a drive. The Directory Label orlhat disk
is created or updated. The filename and filctypc fields provide user identification for the
disk, The bits of fig establish the handling of passwords and XFCBs:

Bil7 = I: Enforcc file password protection.
Bit 6 = I: Timestamp an XFCB whcn its file is opened.
Bit 5 = I: Timestamp an XFCB when its file is closed.
Bit 4 = I: Create an XFCB during Make File (22).
Bit 0 = I: Assign a (new) password to the Director)' Label.

If (he: current label has a password it is checked. The password may be given in
bytes 0 ... 7 of (he: current file buffer, or previously through Set Password (106). Jfflg bit
) is set. the new password must be in bytes 8.. 15 of the file buffer.

"'-" If the direclOI')'labcJ is created or updated successfully, O. 1,2. or 3 is returned in
registcr A. otherwise FFh is relurned. 521

522

Check bit 7 to find out if a password may be required when a file is opened. deleted.
renamed, or has its attributes changed. If so, you can check the file's XFCB to sec irthe
file has a pltssword.

Check Bil 0 to see if a label entry exists at all. If one does. then service 100 may
require a password.

If extended error codes ha\'c been set on (service: 45), register A is rclUmed as FFh
when a physical error oceun.

Related request: Write Directory Label (100).

The timestamps may nO! be accurate. Timcstamping is controlled by the Directory
Label. Depending on the selling of bils in the label the BOOS may update only open
times. only dose limes. neither, or both.

Password enforcement is also controlled by the Directory Label. If it specifies
password checking. then Ihis file's password will be checked on the openllions indicated
by jig. It is possible for alllhreeflg bils to be 0: in that case the file may have a password
but it will not be checked.

Related requests: Read Directory Dala (101), Write XFCn (103).

Get Directory Data (MP/M 2)

,

"0'
"0
d",c

Register E contains a number from 0... 15. signifying drive A... P respecth·cly. If
the drive has not been selected since the disk system was initialized. it is selected. If the
directory contains no label entry. OOh is returned in register A. Otherwise the Directory
Label nag byte is returned:

Bi17"" I: Passwords are chcrked for files that ha\'c them.
8il6 = I: An XFCB is timcstamped when ils file is opened.
Bil 5 = I: An XFCB is timcstampcd when its file is closed.
Bit 4 :: I: An XFCB is crc,llcd whcnc\'cr a file is made.
Bil 0 = I: A Directory Label exists on lhe drive.

Read XFCB (MP/M 2)
'--'

,
" f---__--,J_--"66~"_1

0' f--- t~'_" 1
" '-- ---1

, 8 9 , c °
, ,

,', I II/nIJI/I<' I I""" /"- 11K I I I
I "1''''' lhn.',ram" do«' lll"""la",p

The drivecodc. if no! zero. is used to select a drive. The BOOS searches for the
gi\'cn fLlerer (which must be explicit). Ifil is flO(found. or if the file has no XFCB. FFh is
returned in register A. If a matching XFCB is found. its fields arc returned in the given
FCB. The open timestamp in bytes 18h 1Bh marks the lasltime the file was opened in
any mode: the close timestamp in 1Ch 1Fh marks the time the file was last closed after
output. Thcj1g field controls password enforcement for this file. Passwords are checked
on these ope!1ltions:

Bit 7 = I: Read-only open. plus...
Bit 6 = I: Locked and unlocked opens. plus...
Bit 5 = I: Delele. rename. and atlribule change. 523

524

Only one off78 bits 7. 6. and 5 should be sct. If none of them are sct but bit 0 is I . the -./
file will be given a new password but it will be disabled. The new password can be
enabled at a later time by updating the XFCB again.

Related requests: Read XFCB (102). Read Directory Data (101).

The system maintains the lime and date mainly for use in timestamping XFCBs.
The current time can be obtained with Gct Dale and Time (105).

Related request: Gct Dale and Time (105).

,

Write XFCB (MP/M 2)

c "", t feb

L

o

"
o 9A BCOEF

.. Pl--"'-"'""~·''''-· _.L",-,,,,,,-"::-"_rn=g

The drivecode. if not zero. is used 10 select a drive. 1be BDOS searches for the
given filcref(which must be explicit). If there is no Directory Label. or if the file does not
exist, or iflhere is no directory space to create an XFCB. FFh is returned in register A,

If an XFCB exists and calls for password checking. the password is checked against
the one in bytes 0 ... 7 of the CUlTent file buffer. If no XFCB exists. the BOOS creates one.
Then bits 7.6, and 5 offlg arc copied to the XFCI3: they control password application:

Bil 7 "" J: Check on read·only open. plus...
Bil6 = 1: Check on any open. plus...

'- Bit 5 = 1: Check on delete. rename. and SCI auribute

Ifjlg bit 0 is I. then a new password is taken from bytes 8... \5 of tile cumnt file
buffer.

Set Date and Time (MP/M 2)

o

"

""
E Idm

"
"',~ --"0,-_'--,, ,
d.I·1 .,.,..~

The syslcm's clock and calendar are sct. 1llc ,11IU \'alue is a l6-bil integer. a counl
of days sin~ I January. 1978: thaI is. datt' would have been 0001h during thai day.
fUming to 0002h al 00:00:00 hours. 2 January. 1978.

"'"- The hlr and mm bytes represent the hour and minute. respeclively. in Binary Coded
Decimal (BCD), 525

526

NOle thallhe sign bit ofdale will beO until 2066 A.D. Therefore a dale prior 10 1978
may safely be conslrucle<! by subtrndion ilh dates back 10 1880 being represenled by
negative numben>.

Related requesl: Set Date and Time (1~).

If the password string is shorter than Bbytes. it should be left-justified in the field
and padded with blanks.

If the user has sct a default password, it will be replaced.

Related requests: none.

Get Date and Time (MP/M 2)

A

" 1------1-:'"'=----1
0' 1-__---'1':"'="__-1
"'L ----J

byte", 0 2 J

d~la dUI~ l~

The system's clock and calendar values are returned in a 4·bytc field in storage. The
Jlh and mm values represent the current hour and minute in Binary Coded Decimal
(BCD).

The dat,. value is a 16·bit binary integer thaI is a counl of days since I January.
1978. That is. daft' would have been 0001h on that date. 0002h the next. and so on.

Set Password (MP/M 2)

A.

" ,..
06 t password

"'
bylt'S: 0 2 ,

password: ch",,~clcl1 •..

Register DE addres~s an 8.byte character siring that can be used as a password in
subsequent file services. The siring is set as the defaull password. Each time a file
service requires a password check the BDOS will Itsl lhe 8 bytes at the thcn-eurrenl file
buffer address. If that tesl fails. it will try the default password before reponing a
password error.

The default password remains in force until all()(hcr one is specified or umil a cold
stan is done. 527

•

J

Topical Summary of CP/NET NOOS
Services

Req.
No. Page Scnice I)erformed Argument

'" 5J3 Login 10 a master system DE_login lllSg

65 533 Logout from a master system E = m3Sler id

66 535 Send message DE.......message

67 535 Receive message DE_buffer

68 537 Get network status byte E = master id

69 537 Gel configuration table none

531

532

If a login request fails. it might be Ihat the master processor rejected it. or thallhc
master couldo", be contacted or dido', respond. Usc Gct Network Status (68) to find out
if a send or receive error occurred.

h is not clear what will happen if two login requests arc issued in succession to the
same master. The second request might be rejected. or ill1lighl be accepted and ignored.

If this processor is connected to more than one master. or if the program wants to

log in through the local master to a processor in some higher layer of the network. the
master id must be given explicitly.

Related request: Logout from Network (65).

If a logout request fails. it may be thallhc master processor didn't recognize the
source processor id. This could occur if this processor had never successfully logged in
to that master, or if the master had crashed and been restarted since the login took place.
Use Get Network Status (68) to find out if a transmission error took place.

Related request: Login to Network (64).

..
, t k>e-in moe

Login to Network

HC

A

0'

,, 2

10l;-il\ m<g. 0,-,-,'"c"cWCOC"C'C''--~ _

The message addressed by the DE register pair is transmitted to the master
processor indicated by id. If the master is active. can accept a login. and finds the
password correct. this processor is logged in as a slave processor. It may then usc the
master for I/O.

A value of OOh is fClUmed in register A if the login is accepted by the master
processor. FFh is rclUmcd if the login is nOi successful.

An id of OOh specifies the only master processor to which this processor is directly
connected.

Logout from Network

""
"

C

A

"
"
H

A logout message is sent to the master processor indicated by id. If that processor
can be contacted, and recognizes the source processor id. il will free any resources it
holds for this processor.

A value of OOh is rclUmed in regisler A if the logout succeeds. If 001. FFh is
returned.

A processor id of OOh specifies the only maSler to which this processor is dir«lly
connected. 533

534

The greal bulk of network messages relate to redirected 110: these are produced by
the NODS as a rcsull of 110 service requesls. This request allows a program to send a
message for some other reason.

One use of this request is to send a message to a processor elsewhere in the network.
The message will have the Send Message on Network format. After sending such a
message. execute a Receive Message requesl (67) to get lhe master processor's return
code.

To receh·e a message from a processor elsewhere in the network. use this request 10
send a Receive Message from Network fannat 10 the master processor. then use Receive
Message (67) to get the message.

Related request: Receive Message (67).

Don·l confuse this service request wilh the CPINET message formal of the same
name. The service causes lhis processor 10 receive a lr.msmission from the master
processor {Q which il is directly connected.

When a network message is senl (Send Message on Network format.lransmined 10
lhe maSler wilh a Send Message (66) request). this service should be requested im·
mediately afterward. The message lhat is received will be lhe master processor"s
response, indicaling whether it was able 10 handle lhe nelwork message.

[n order 10 receive a message from another processor elsewhere in the nelwork.
transmil a Receive Message from Nelwork fonnat to the maSler processor (using a Send
Message (66) request). then issue lhis request. The resulting message. if it contains $;;;

greater than [. is from the network.

Related request: Send Message (66).

Send Message

A

""
. t m,'SS'g>'

,,,2o

"'.SS:lg~; L:._.L_-L_--l.L--'_--'L -l

The CP/NEr message addressed by the DE register pair is transmitted on Ihe
network. The calling program is suspended until the entire message has been transmit
ted. The message must contain a complete message header. Any type and format of
CPfNET message may be sent in this way.

Receive Message

A,

6C ""
OE I buff,"

"'
0 2 , , , ...

bufror: /1111 did sid ji,r .,1: «suUs. _.

The next message from the master processor will be placed. exactly as received, in
the buffer. The calling program is suspended unlil a message is received. No length
check can be made: the program must provide a buffer large enough to contain the
message. 535

536

This request can be used 10 distinguish between a logical and a physical error: thaI
is. between a message Ihal was rcjecled by Ihc maSler proce~SOf and one thaI couldn', be
sent.

The request returns Ihc SlalUS byte kepi by the SNIOS in this system. Don', confuse
it with the Gel clworlo: Status message format. A message in Ihal format would be sent
10 a master system using Send Message (66). The master's response. obtained \\ ilh
Receive Message (67). would contain the master's stalUS byte. wllh a different bit
layoul.

Related requc~ls: none.

Examine the configur.l.lion table to rind OUI if 110 for a panicular disk drh'c or
logical device is travelling over the I1Ctwork. Network disk 110 is likely to be slower than
local disk 110. This is flOl usually important. bUI a few progr:ams may depend on disk
speed. For instance. a program that reads from a dcvice pronc to ovcrrun (such as a
slreaming lape drive) mighl nol work when ilS oUlptll was 10 a remote disk Ille.

Get Network Status

A

'"
;J

This processor's SliltUS relative to the master whose id is in register E is returned in
register A. The format of the network status byte is

, , , ,
,., 3 ,

.,
o

'"'
where log indic:lles that this processor has logged in to the milstcr. rC!' indicates lhal a
receive error has occurred. :llld Slid indicates a send error. The (wo error bils arc reset
when the request is made. hence lhey reneel errors only since the last request.

Get Contiguration Table

A

'"
0'
1------1

" 1----'------1

The ,tddrcss of this processor's network configuration table is returned in the HL
'--" register pair. The configuration litblc layoul is shown in the CP/M Maps section. The

table defines which logical devices arc having their 1/0 redirected to the network. 537

Topical Summary of BIOS Entry Points

Enlr)' Page Senice Performed Argument Valid Systems
No. -80 -86 MP/M

System III!ormm;oll allt! Control

0 543 Initialize (warnl boot)
""~ X X X

1 543 Console status """' X X X
14 551 List Status none X X X
II 549 SCI file buffer address Be-buffer X X X
16 553 SCI file buffer segment base ex == segment X
17 553 Return region table none X
18 555 Return current IOBYTE

""~ XI. 555 Sci new IOBYTE CL = IOBYTE X

Ser;al/nplll 011(1 Oil/Pili

2 543 Console input none X X X
3 545 Console output C :::: byte X X X

'-- 1 543 Console slatus ""~ X X X
4 545 List OUlput C = byte X X X

14 551 List Status none X X X
5 545 Punch output C = byte X X
6 547 Reader input none X X

Disk D,i\'~ OfNfmio/ls

7 547 Home drive (sct track 0) ""~ X X X
8 547 Seleci drive C = drive X X X

• 54. Set lr:lck Be = track X X X
15 553 Translate record number Be = record X X X
10 54. Set record number Be = record X X X

" 551 Read record to buffer
""~

X X X
13 551 Write record from buffer C = type: code X X X
II 54. Set file buffer address Be_buffer X X X
16 553 Set file buffer segment base ex = segment X

54/

542

Under CPIM and MI'IM this function emry is directly addressed by the jump
instruction at location DOh. 1lJe address in lhal instruction may be used as lhe base
address of the BIOS entry lable. Under cpn..1-86 the BIOS is called by way of BOOS
service 50: there is no jump instruction in low slorage.

In all sySlcms BOOS service request O. Tenninate Program. has Inc same effccl as
BIOS funclion O. It is traditional for CPtf\1 programs 10 end wilh a 'Jump 10 boot," (JMP
0). The BIOS entry is difficulllO get 10 under CPfM·S6. For best compatibility with all
versions of the system. usc Ihe BDOS service request.

This function duplici:lIcS Ihal of BOOS service request II. -./
The value returned in register A is specified 10 be eilher FFh orOOh. The Z flag will

usually reflccllhe value in lhe register. bUllhis depends on the code of lhe BIOS and
should nOl be relied on.

Under MP/M the number of the console assigned to the process can be obtained
with Get Console Number. XOOS sen'ice request 153.

This funclion duplicales Ihal of BOOS service 6 for inpul. II can be used in plttce of
BOOS service I. but it bypasscs all monitor funclions. IfCP/NET is prescnt. the NIX)S
is bypassed: console 1/0 cannOl be redirecled 10 a nelwork location. If DESPOOL is
aclive. il cannol gel control 10 (cstlhe primcr SlalUS. The BDOS will nOI be able 10 echo
the input byte to the terminal screen (or to the printer. if conlrol-p has been pressed).

Under MP/M the number of the console assigned to the process can be obtained
with Get Console Number. XOOS scn'ice request 153. Under MP/M the mOSl signifi-
cant bil of the firsl byte of the process name in lhe Process DescripiOT should be set to I --../
when this BIOS call is to be used.

WBOOT

The calling program is terminated and the system is initialized.
Under CP/M J and 2lhc code of the eep and nDOS is refreshed from the reserved

tracks of the A-drive disk and low SlOrage is initializ.ed. The eep selects the A-drive. If a
file SSS.$UB exists. lhe next command is laken fmm it: else lhe user is prompted for a
command.

Under MP/M this funclion simply perfonns ODOS service request O. Terminate
Progrnm. All resources owned by the calling progrnm are freed. the storage it occupied is
m3dc available. and control of the lerminal is returned 10 the ClI.

CONST

"'--- The st::llus of the console device is sampled. A nonzero value is returned in register
A if a characler is ready for inpUi. OIhcrwise OOh is returned.

Under MP/M register 0 muSt contain the numbcrofthe console device 10 be tested.

CONIN

The next character is Te:td from the console device. The calling program is
suspended until a characlcr is available. The parit)' bit (bit 7) of the character is SCi to
zero. and the resulling bytc is returned in the A register.

In MP/M the number of the console device must be passed in register D.

543

544

This function duplicates that of BDOS service 6 for output. II can be used in place of
BDOS service 2. but all monitor functions are bypassed. If CP/Nl::. is present. the
NDOS is bypassed: console output cannot be redireclcd to a network local ion. Console
output will not be duplicated at the printer if conlrol-p has been pressed.

Under MP/M the number of the console assigned 10 the process can be obtained
with Gel Console Number. XDOS service request 153.

"Illis funclion duplicates that of BOOS service request 5 excepllh3t if CP/NET is --./
present. the NOOS is bypassed: list output canlOl be directed to a network location.

Under MP/M the MXlisl mutual exclusion queue should be obtained before writing
to the list device.

This function duplicates that of BDOS service requeSt 4.

CONOUT

The charaCfer in register C (el for CP/M-86) is sent 10 the console device. The
BIOS assumes Ihal the parity bit (bit 7) has been set to zero. The calling program is
sllspended until the character has been lransmincd.

Under MPfM. register D muSl contain the console number for lhe operation.

LIST

\....-- The character in register C (el for CP/M-86) is transrniucd 10 the logical list
device. The BIOS assumes thallhe parity bit (bit 7) has been sella zero. The calling
program is suspended until the char,Klcr has been sent.

PUNCH

The character in regisler C (CL for CP/M-86) is senl to the logical punch device.
The BIOS assumes (hut the parity bil (bit 7) of the character has been sct to zero. The
calling program is suspended until the character has been sent.

"--' This BIOS entry performs no function under MP/M: it consists of a return instruc-
lion only.

545

546

This fUrK1ion duplicates Ihal of BOOS service requ~st 3.

This fUlKlion is eff«1ively (he same as a call on SETfRK (9) with a truck number
of zero.

The m~in reason for calling this m05 function from a command program is to
obtain the address of the Disk Parameter Header. The DPH contains the address of the
skew translation table for the selected drive, which is nceded as (In input to the
SECTRAN function (IS).

The BDOS keeps track of the drive it thinks it has selected. II is not wise 10 call the
BIOS to select a drive withoul first calling on the BD05 (via service 14) to select the
same drive. If this is not done. Ihe BOOS will be oul of step: false disk error messages. or
worse failures. may occur.

Some CP/M and all MP/M BIOSes usc register E bit 0 to determine ifa diskenc may
have been changed. If they receive a O-bit. indicaling lhat lhis is lhe first select since the
disk system was resel. they may sense tile media for density and sector size. If lhey
receive a I-bil. they may assume thaI the disk cannot have been changed and so still has
the same fomlal.

The best sequence of operations 10 cOJIC with all these consideralions is (1) call
BOOS service 13 if you want the BIOS to sense the media. (2) call BDOS service 14to
select lhe drive. and (3) call the BIOS to get the DI'U address.

READER

The next chanKler (rom the logical reader device is returned in regisler A (Al for
CP/M-86). The calling progml11 is suspended unfillhc characler is ready. The parity bit
(bit 7) will be set to zero.

Under MPIM this BIOS entry has no function; il consists of a return instruction
only.

HOME DISK

The read-write head of the disk last SCIe<:lcd by the SELDSK (8) function will be
moved to track zero (the OUlcnnOSl track). Whether the head is moved immediately
depends on Ihe drive hardware and the code of the BIOS; disk motion is usually deferred
until a READ or WRITE cal! occurs.

If the head is moved immediately.lhc program may or may nOI be suspended until it
reaches track zero. In some systems (especially MP/M) the BIOS disk code may initiate
lhe operJlion and return. relying on a hardware imcrrupt to signal thaI lhe motion is
complcte.

SELDSK

The disk drive specified by the drive number in regisler C (CL for CP/M·86j is
selected for fUr1her operalions. The drivc number musl be in the range of 0 ... 15.
signifying drives A ... P respeclively.

Under MP/M and some CP/M syslems. thc leasl significam bil ofregistcr E (Ol in
CPIM-86) is a signal to lhe BIOS: 0 says that lhis is the first timc the disk has been
selectcd: I says lhat it was selected previously sincc it was rcsct.

The address of the Disk Parameter Header for the selecled drive is relurned in lhc
Hl regisler pair (BX and ES for CP/M·86). If the dri\'e number is nol \·alid for Ihis
system. or if an UO error occurs while selccling the drive. OOOOh is relurned to indicate
the elTOf.

BIOS
08

547

548

InfonJ13tion in the Disk Pammeter Block (DPB) can be used to calculate Ihe firM
and lasllrack numbers of a drl\"(' "hill,' 3\'oiding hardware dependencies. The address of
Ihe DPB can be obtained through BOOS service 31. See Chapter 14 for:l discussion of its
IISC.

The Intek number passed in Be is a physicallr.K'k number. A request for track zero
is a request for the outermost lrack on the phy~ical drive. The firsltrack containing data is
the Irack whose number appears 'lS the [mek offsct value in the DPB. The disk dirc('lOry
appears in the firsllogical rccordsoflhallrack. If the lmek offset is zero. or largcflhan 3.
the drive i~ likely to be a logical drive. pan of a hard disk.

If the drive is a double-sided di~kcllC or a hard disk wilh lllultiple he'lds. the BIOS
will translate lhe lrad; number into a cylinder number and :t side (or hC:td) number.

When the disk involved actu:tlly u.;cs I28-byte scrlOrs, the rttord number is also a
physical seclor number. On OIher disk~ the BIOS dClcnnines the rel:llion bel"'een lhe
l\.ocord numbcrand lhe scrlor Ihal COn1ain~ iI, The calling program need noI be aware of
the size of a physical sector. onl) of the number of standard l\.ocords per truck. The --..-/
m:aximum record number c:an be foond in Ihe Disk Parameler Block (DPU). obt:tinable
through BDOS sen'ice requesl 31.

The record number passed is a ph)sical rcrord number ~laling the JX>"ilion of lhe
rttord on the track. If skcw trJnsl:llion is used on Ihe !>elecled disk, lhe number given
mUlol be the one relUmed from a SECTRAN (cnlry IS) call.

Under cpa..'I-86 lhis funclion SCIS Ihe scgment Offsel ofthc file buffer: lhe segment
base address is SCi wilh funclion 16,

The BDOS keeps lrack of lhe buffer il lhinks it has selected. The BDOS selects
eilher the buffer named in the most recent sen'ice 26 or. during dri ..·c selection and
dirtttory scan operations. its own dirtttol)' buffer. To a"'oid conflicl "ith lhe BDOS usc
BOOS service requesls to sclcel the dri ..'e and lhe inilial buffer address. Then requcsl no
file sen'ices from lhe BOOS until your UIOS work is complele,

SETTRK

The track number given in the Be register pair (eX for CP/M-86l is established as
the track for the next opemtion on the drive that has been selected by SELDSK (8).

Whether or nOI head Illotion is initiated althis time depends on the disk h<lrdware
and the code of the BIOS: the seck may be deferred umil it is required.

SETSEC

The standard record number in the Be register (eX for CP/M-86) is eSI<lblishcd as
the record 10 be read or wrillcn in the next call for disk I/O. The record number is inlhc
range of I through the maximum number of standard records on a track. It should be the

"--- result of skew translation by the SECTRAN entry.
Whether or not :my disk operation is started at this time depends on the disk

hardware and the code of the BIOS. Seclor selection may be deferred unlillhe READ or
WRITE eall oceurs or. if the B[OS is buffering physical seClors. may nOI be needed al
all.

SETDMA

The address in Ihe BC regisler pair (CX for CP/M-86) is sel as lhe file buffer address
for the READ and WRITE calls lh31 will follow.

549

550

Under CP/M the BIOS will usually defer all disk operations until a READ or
WRITE call occurs. Only then docs it seek the desired track. search for the necessary
seClOr. and perform the 110. If the BIOS buffers physical sectors. it may not need to do
:my disk 110 at all.

Under CPtM the B[OS will usually defer all disk activity until a READ or WRITE
call occurs. Then it will seck to the track. select the sector, and pcrfOTl11lhc [/0. Irlhe
BIOS buffers physical sectors. no disk activity may be needed.

It is essential to pass the sector buffering parameter under CPIM 2 and later
systems. There is no way to lei I whcthcror not the BIOS suppons sector buffering. If it .J
does, and if a parameter of 02h is passed by accident. the write may cause the destruction
of all the records in the allocation block except for the one being written.

Don't place too much trust in the indication returned by this function. The BIOS
need not suppon it (although most do). If it docs not. it should always return OOh.

When the BIOS does suppon the function. the relllrned value indicates whether or
not a program that calls for list outplll will be delayed. If the result is nonzero, a call for
list output should return very quickly. If DOh is returned. the program mllY be suspended
for some time before the output completes.

Calling LlSTST is not a defense against printer overrun. If the printer isn·t
configured for handshaking, LlSTST will only repon the condition of the UART
transmit buffer. The transmission rate might still be tOO high for the printer to handle.

READ

The standard record selected by preceding SELDSK. SETl'RK. and SETSEC calls
is read and placed in the buffcrselccled brlhe last SETDMA call. The calling program is
suspended until the record has been rcad.

lrthe read is successful OOh is returned ill register A; if an error occurs. 11 nonzero
value is returned. The BIOS will retry an error sever:!] limes. The number of rClries, and
the technique used. depends on the hardware and on the code of the BIOS.

WRITE

The sl<lndard record in the buffcrsclcclCd by the last SETDMA call is writlen to lhe
location selected by the preceding SELDSK, SETrRK. and SETSEC calls.

Register C (CL for CP/M-86) should contain an indication of the type of data being
wrincn. This indicator directs the sector buffering algorilhm of the BIOS. if one exists:

OOh"" Normal write: preread if necessary. defer wrile if convenielll.
01h= Direclory write: preread if necessary. do nOl defer wriling.
02h = Firsl write to lhis allocation block: no prercad needed. write may

be deferred.

L1STST

The list logical device is polled. If il is ready to accept a character. a nonzero value
is returned in registcr A. If it is nOl ready for a characler. OOh is returned.

55/

552

Skew trnnslalion is nO(required on all dn\·es. Use Ihc SELDSK (8) function to
obtain the Disk Parameter Header. hs first word conla-ins the table address to be passed in
DE. or 0000h if translation is nO(required. Do flO(call SECfRAN al all in Inc laner
case.

Do nol assume Ihat the address in the [)PH lXlims 10 a simple table of permuted
record numbers. one [oreaeh record on a track. All you can be sure oris that it points to
parameters nceded by lhe SECTRAN funclion. These may not be a table at all but a few
numbers input to a greatest common divisor algorithm.

The segment base need only be SCI when it ch:mges. The SETDMA entry (II) may
be called several times to SCI different buffers within the same segment.

The BDQS keeps track ofllle base and offsct illasl set as the lile buffer. If you usc
this call from a command program. tnc BOOS is put out of slep with the BIOS. Usc
BOOS service 52 to get the presenl value of the buffer segment base before changing it.
then restore it afterward.

The MRT contains a physical description of the system's storage layout. The
BOOS ket'ps more elaborate information on the stornge allocations it has made, The
!\.'!RT can be used to rind thc actual layoul of stornge, perhaps 10 rind if a panicular
address exists before requesting it in an Absolute Storage service request.

SECTRAN

The record number in the Be register pair is translated using the skew table
addressed by the DE register pair (eX and DX. respectively. for CP/M-86). The
translated record number is returned in the HL register pair (BX).

SETDMAB

(CP/M-86only) The address in the ex register is SCI as the segment base of the file
buffer for subsequent reads and wriles.

GETSEGT

(CPfM-86 only) The BIOS returns the address of the Memory Region Table (MRT)
in the ax register:

553

MRT: BL__"_'"_'_"--_"_"O"_"_'_L__"'_"_'_ L-":"~''':'"~':'':'·L_
Each of the em entries of the MRT describes an area of contiguous storage in the system.
The storage reserved to 8086 interrupt vectors and the storage occupied by the ecp.
BOOS. and BIOS arc excluded. A system that has but one area of storage would have
only a single entry in its MRT.

554

This function duplicales thaI of BOOS service request 7. In CP/M-86 the 810S
holds the lOB YTE in pri\'ate storage. because there is no rcli:lblc IOW-S10r.agc location in
'Which 10 keep il.

This function duplicates that of BDOS service request 8. In CPfM-86 the BIOS holds the
lOB YTE in private storage. ~causc there is no reliable low-storage location in which to
keep it.

GEllOS

(CP/M-86 only) The BIOS returns the present selling of the IQBYTE in register
AL.

SEllOS

(CP/M-86 only) The byte in lhe CL register is set as the current IOAYTE,

555

CP/M·SO Storage Map

Storage is divided into three areas. Low storage extends from DOh to FFh: Monilor
storage extends downward by approximately 9200 bYles. depending on the size of the
BIOS. The area between is the Transient Program Arcll.

Name

BI05

BOOS

CCP

TPA

Contents

The system's builder (the vendor or hobbyist) supplies this code to drive 110
devices under control of the BDOS. 115 standard size is 600h bytes. but
many bunders must expand it to EOOh. especially ifdisk sector buffering is
included.

This code operates the file system in response to sen-ice requests from the
CCP or command programs. Its size is EOOh bytes in version 2.

The Console Cornm,lOd Processor is loaded on a warm start and may be
overlaid by a command program. It gelS a command from the console or a
submit me and processes it. The CCP executes OIR. REN. ERA, TYPE,
and SAVE itself, and loads the .COM files that represent other com
mands. lIs size is aOOh byles in version 2.

The size of lhe TPA depends on lhe siz.e of storage and the size of lhe BIOS:
Storage size: 64K 48K 32K
Slandard TPA: EJOOh (56K) AJOOh (40K) 6300h (24K) .J
Typical TPA: DBOOh (54K) 9BOOh (38K) 5800h (11K)

558

Low stornge is described on the following map.

Cold
start
load

200h

Wam,
star!

400h load

FFFFh

[)COOh

'OOh

0080h

OOOOh

BIOS-dc.ice conlrol code
standard $il~ 600h, typical EOOh

,
BOOS-file system control.

service requests
standa,d si1,e EOOh

E

CCI'-command illlelllrele,
$Iandord si1.e 800h

TPA-.pace for oommand prognms
standard size, storage le55 I DOOh
typical siu; sto,.", le" 2S00h

0
Defaul! file bllffe,; command tail

System cons!ant" default FeB, etc.

559

Low Storage Map

Sioragc from OOh [0 FFh is an interface area, used for communication bclwcen eel'.
BIOS. BDOS. and command programs. Low slOrage is initialized by the BIOS during a
wann or cold SIan. and mainlaincd by the eel'.

560

Offset

DOh

Qlh-02h
03h
04h

OSh

06-07h

OBh-37h
38h-3Fh

40h-4Fh
SOh-5Bh

5Ch-7Fh

aOh-FFh

ComenlS

JMP operonion code: veclOr 10 [he BIOS for a wann sian.
Should a AST 0 occur. a wann sian will folio......
Address of 11K' waml sIan cony to the BIOS.
The current IOBYTE. defining serial device assignments.
Oefauh dri\'c and aClive user code:

Bits 7-4 cootain the 3Clivc user code.
Bils 3-0 tOfuain the defaull drive (0 = A. I = B. etc.)

JMP oper:nion code: \'c("loruse<! localllhc BOOS for a service
request.
Address of the BOOS service request cnlry point. Used as the
address orlhc end of slorage; subtract 806h to avoid overlaying
the CCP.
AST jump \'ecto~. reserved for 1/0 interrupts.
AST 7 jump vector. reservcd for use by debugging lools such as
DDT and SID. -...../
BIOS work area (lypically disk operation variables).
Reserved by CP/M (AIPIAI 2: the lenglhs and addresses of the
passwords from the first twO command operands arc sct up
herc.)
Default Filc Control Block (FCB): SCt up by CCP to:

5Ch first operand dri\'ccodc or OOh
5Dh-64h first operand fi Icn<ll1lC or spaces
65h-67h fll,l operand fi1clype or spaces
6Ch second operand drivecode or OOh
6Dh-74h second operand filename or spaces
75h-77h second opcr<lnd filetypc or spaces

Default file buffer. SCI up by CCP to:
Bah length of COllllll,lIId tail
B1h-FFh cornrn:md tail

OSh Restart 1

>Oh R..ta,l 2

"h Rt$larl 3

"lh Rntart 4

28h Restart S

J<lh Rntart 6

38h I RtSlarl 7

:1 BIOS work alTa

SOh I RcsofYcd

'""
Seh

Firs! Q~nd·

"'"
08h 60>1

Sccond~nd-

"lh

"h

~Jlen I rom....nd ...:- 1
,J__Tm

56/

File Control Block (FeB) and Directory Entry Map

The FeB is built by a program and passed with many service requests. The Directory
Entry. which differs only in its first byle. is maintained on disk by the BOOS.

562

Offset

OOh

01h-08h

09h-08h

OCh

Ooh

OEh

OFh

10h-1Fh

20h

21h-23h

Name

,]

"

Contents

FeB: drive number for I/O
OOh = usc current default drive
01h = drive A, 02h =: drive B. etc.

Directory: activity/user code
Oxh = extent cnlry. file created by user x
1xh = XFCB for file created by user x
20h = directory label entry
E5h = inactive entry

Filename in ASCII. left justified and padded wilh
spaces: allributes coded in bit 7 of each byte.

FilclYpe in ASCII. lcft justified and padded with
spaces: auributcs coded in bit 7 of each byte.

E;o;lent number for extents 0-31 (OOh-1Fh).

BOOS nags (MPIM 2: FeB checksum).

Extent number for extents over 31.

Count of I28-byte records controlled by this extent.

Data map (list of allocation block numbers).

(FCB only) Currenl record of extent. from OOh up to
one less than "rc'·.

(FeB only) Direct address. from 0 t065535 (OOOOOOh
to OOFFFFh). In MPtM 2. from 000000 10 03FFFF.

File COlli rol Block, Directory Emf'}'

OOh 091 OAh OBh OCh OOh OEh OFho "" 0" OJ, "" OS, 06" m" 08" ~ ~ In~~

EjL':JE ~ '~~®Fi"~' ~ ~ ~ IE >~""' LJ~LJ
"""",

<D Bil '1 ~ F,I,- ",ad-<lllly;oUribL1lc

C)Bil 7· SVS (no di",etory di'l'l"y) Jttribule

Q) Bil 7" ",,,,,,,,od Jllrib"lc bi"

@)Bit '1" Jvailable "lIribUle bilS

<!l Bit '1 ~ ~tehi"e m,ibUlo bit

563

Director)' Label Map

The Directory Label exists only on disks wrinen by MIW·.I 2. It is ere,lled and updated by-../
Write Directory Label. service request 100. The label provides idcnlific:llioll for a disk.
and controls the enforcement of file passwords, There ('.111 be only one Directory L'lbcl
on a disk.

Offset

OOh
01h-08h
09h-OBh

OCh

ODh...QFh
10h-17h
18h-1Bh

1Ch-1Fh

Contcnb

20h signals thaI thi!> is the Dil\.'CIOI)' Label.
Disk name in ASCII. left justified and padded ilh !orates.
Disk type (or any identification) in ASCII. left justified and padded
with spaces.
Flag which determines pass\\ord enforcement:

Bit 7 = I: Enforce password checks on files that h:wc XFCI3l>
Bit 6 = I: Timestamp an XFCB when its file is opened.
Bit 5 = 1: Timeslarnp an XFCB when its file il> closed.
Bil 4 = I: Create an XFCB whenever 11 file is created (Make

File. 22).
Reserved. undefined.
Encrypled password for the Directory LOlbcl.
Timestamp of label creation. Format i... thai of syslem time of day:

dale: 16·bil inleger. days since Illns
hh: hours in BCD
mm: minulCS in BCD

Time siamp of lhe laSI ulX!atc of Ihe label. Fomlal a... above.

Oi=IOry ube!

""" rO~'"'r-'''c'ro"'~'r'''''''r-0''"'r-06h"":-:O~'"'r08,,,h O9h OAh OBh OChEll : :-: D" :,m, -: : : II~o:,'---'------.J,7181
OUh Of-h OFh
~~"~ I

564

'0"""'"""~ ~""-,"~h ISh 191, lAh IBh ICh IDII 1t:1I It'll

I ,~,,,'~•.~, II_C~"'''~~''·:~II_o~·''':_';~:~1
'FbI'

B'l 7 - 1 enrOlt'1: pHSwvnl dlcckl on fib nh XFC&
B,16_1 Pl'tr_X('CB(optll) 1"...·1UmPl on XFCBs
Bn S - 1 Pl'rf_ upcble (dmc) "'ne-ln",,,,.. on XFCBs
B'I 4 - I crUle III XFCB ""'~r a rok is Cl't'lln!

'- Extended File Control Ulock (XfCU) J\'laIJ

The XFCB exists only on disks written by MP/M 2. II may be built aUlOm'llic"lIy by the
I3DOS when" file is created. or explicitely by a program. The XFCB determines
contains the password for its file. and determines when it will be checked.

Off~t

ooh
01h-08h
09h-OBh
OCh

ODh-OFh
10h-17h
18h-1Bh

lCh-1Fh

Conten!:)

h"h..... hcl"('" .,the' u-.cr code under hich the fileas created.
Filename in ASCII. left justified and padded 1Ih space,.
Filct)pc in ASCII. left justified and padded ith)paces.
flag that determines password enfon:ement:

Bit 7C "" I: Check on a read-only open :md...
Bit 6 = I: Check on normal open and.
Bit 5 "" I: Check on directory ch:mge. E:tch bit implies all

the bits after it: unly one bit need~ to be sel.
Reserved. undefined.
Encrypted password.
Time stamp of XFCB creation or the t:t~t opcn of the
file. Format is that of system time:

date: 16-bit integer. day:. :.in(·(Illns
hh: houn. in BCD
mm: minutes in BCD

Time stamp of the last close of the file. Fomlat a' above.

Euendtd File Conlrot Bloc:k

II :7:11_'_".:_'_"~'_'_'L: _,_:_,:.:~_m_:_"": _""~:_"_'~"'_'II
OOh OEh OFh

:,"~, I

lOll. . .• 17h ISh 19h 1M IBh

� -_-__,OC_~_,_'"'_,,_._w_~_,_-__:.____.JIL_"'";'c"_"_·."~:"~~'_'_omem'_'I
°Fbc:

BII 7. I p;mword chtd: Oft rnd-only o~n. plus ...
BII 6· I p;mword cho<:k Oft n<>n1W 09tn. plus ..
BII S· I p.l_d d>ttl< on ddde. rtn.>me. _ile XFCB
8,1$ 4 .0 1Qrl""<'d

ICh lDh

565

Disk Parameter Header (DPU) Map

The address of the DPH is oblained by calling the SELDSK enlry of tile BIOS. whichJ
relUms its address in the HL register pair.

566

Offset

ooh

08h

OAh

DCh

OEh

Name

XLT

DIRBUF

DPB

CSV

ALV

Contents

Address of p,lramctcrs used for skew tnlOslalion, PilSS

the address when calling the SECfRAN entry to the
BIOS. unless it is OOOOh meaning thm the drive does
not use sector skew.

Address of a J2B-byte buffer. located in the BIOS.
used fordireelol)' 1/0 by the BDOS. Only one buffer is
provided: all DPI-I blocks address it.

Address of the Disk Parameter Block (DPS) thai de
scribes this drive and the disk mounted in it. TIlere will
be a single DPB for each disk type in the system.

Address of an area where the BDOS builds a directory
check ,'ector y, hen it logs in the disk 00 this dri'·e. The
sizeoflhe area is given in lhe DPB. and may be zero. in
which case this field is ignored.

Address of an area where (he BDOS builds an alloca
tion vector when it logs in the disk on this dri\'e. The
size of the area is detemlined from the disk cap:K"it)'.
which appears in the DPB.

Disk Parameter Head., (DPH)

OO"L-_~_~

XLT: add,e.. of skeW-lr'llslal;On parame1."

I
BDOS work area

"', -'---'-----~---'---~-

I De,
OAh_~__

OCh '------'-_-.J

OEhL-_~__

DI R8UF, oddre.. or d;re<'!Ory I/O bufrer

DI'l!: ,ddress of Disk Paron"'l" Block

CSV: address or djrectorr.che.k area

AL V: address of allocation·'-e.lor area

567

Disk Parameter Block (DPB) Map

'-"The address of the DPB is obtained with BOOS service requesl 31. Gel Disk Parantelcrs.
The table is located in the BIOS.

568

Offset

ooh
02h

03h

04h

05h

07h

O9h

OBh

ODh

, ,~

SPT

BSH

BLM

EXM

DSM

DRM

CKS

OFF

Contents

"Sectors" (I 28-by1C records) per lrock.

Number of limes a record number should be shifled
righllo yield its illlocatioll block number (or the base-2
log of the number of records in a block). Gel the size of
an allocation block by doubling 128 BSH limes.

Mask which. if ANIXd ith a record number. yields
its index within an allocation block (or BSH minus I).

Number of limes a logical extent number should be
shifted right to yield a physical extent (dircclOry entry)
number (the basc-2 log of logical extents per entry).

liighest allocation block number (count of blocks is
one greater). Get disk capacit)' in ,,---cords by shifting
DSM+ I left aSH time:..

Highest directory entry number (count of entries is one
greater). Shift right twice for number of records in the
dire<:tory: shift BSH times for number of blocks.

Initial value for the first 2 bytes of the allocation
\·eClOr. with a leading l·bit for each directory block.

Number of bytes in the directOry check area. Either
(DRM+ I)/4. I byte per directory record. or OOOOh to
signify no checking of ,I fixed disk. MPIM 2: Most
signific<lnt bit is SCt to I to show that thisdrivc's disk is
fixed. not remov:tble.

Count of rescrved tracks. u~ually 2 or 3 for diskelles.
but 1l111}' be large when ,I rigid disk is p:lrtitioned into

logical drives.

..1-----,-----

02hO
".0
".0
".1==
OTh 1----,-----
~

08h L:J...::::J

SPT, Ilumbn of IT<'OIds lract

85'1 bIocll shift rXlo<

DS\1 dnv~ ~.p",ity

DR.\1 dJt~IOf)lll'f

ALii. All mIll.] alIoauon 'C'Clo<

569

CPINET Configuration Table Map

The address of the configur:lIion table is obtaincd wilh NDOS servitt request 68. Get
Conliguralion Table Address. The table is pan of the body of the Slave Network UO
Syslcm. loaded below (he BOOS by the CPNETLDR command.

570

Offset

OOh

01h

02h-25h

26h

27h

2Dh

Contents

Network SlalllS byte as kepi by SNIOS:
Bit 4 c 1 if system is logged in to :lny master.
Bit I = 1 if a receive error has occurred.
BilO = 1 if a send error h:\s ()(:currcd.

$I:\\,c's (local system's) network idClllifical;on num

be"

Device rcdireclion fields: 02h. 04h.... 20h describe
drives A. B.... P respeclh·cly. 22h describes CON:.
24h dc~ribcs LST:. In each l-bYIC field:

IJYh: O.
B;I 7 I if device is acces~d via net

work:
Bits 3-0 number of the remote drive or

console: -.....-/
Byte I contains the id of the master handling 110.

Lisl buffer ;hdc't. namcs the next fl\."'(' b)'tc in the buffer
al offset 2Dh.

I1cader of a List Output fomlat mcs~age:

FMT = OOh (all header fields I byte)
DID = m:lS!er·id from 2Sh
SID = slave-id from 01 h
FNC = OSh (List Output)
SIZ = length of data less one (from 26h)
de" = master console number (from 24h)

List buffer. where outpul bytes :lre collected.

us

r--TI7~"'z
J~Jjnq ISn ~LL-I-L-J

IOV 1f(J~

,-r--,---,---,--,--""

,,,

D'"
0 I'"

:N?J I'"
7 I""
,w

D'"
D~

I" ,." ,I' ,,.','I~I~
-P!;m.~w. ·~~p·o 0 O!J~

"""""Z"'~

: [1.: 1'----'----
~';;lZ~~'lO~Z"'..~· . " Il~ ~,ozo;--';,;;;--

Reference

Commands

ASCII,HEX

aoao,zao

ASM,MAC

Assembler

BOOS

NOOS

BIOS

MAPS

J
INDEX t-

FOR PART TWO l- t-
To use, bend the book in half. r- t-
Find the index box for the see- r---
tion you want and follow it to

r---the matching black edge
marker. r-

.
•

ISBN 0-03-059558-4 t-

