
������

�
�
�
�
�
�
�
�
�
�
�
�
�
	
	

�
�
�
�
�

�������
®

1 2 5 D E C E M B E R 2 0 0 0

�	
������������	���
Finding DSP Application Algorithms

A Controller-Based LCD Panel

Design2K Winner: The QuizWiz

Designing
with SDRAM

T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

���

��
THE ENGINEERS

TECH-HELP
RESOURCE

Let us help keep your
project on track or sim-
plify your design deci-
sion. Put your tough
technical questions to the
ASK US team.

The ASK US research
staff of engineers has
been assembled to share
expertise with others.
The forum is a place
where engineers can
congregate to get some
tough questions an-
swered, or just browse
through the archived
Q&As to broaden their
own intelligence base.

★★

Test Your EQ
8 Additional Questions

RESOURCE LINKS
• Solid State Relays
• Snubbers
Bob Paddock
• Flattened Displays
Rick Prescott

THE ETHERNET DEVELOPMENT BOARD
by Fred Eady
Part 2: The Software and Firmware Exposed
Fred picks up where he left off and takes us through embedded Ethernet, as he
explores part two of his online series. Looking at the Ethernet development board from a
firmware angle, he covers a lot of information, but still reminds us, just as he does in all
his print columns, that “It’s not complicated, it’s embedded.”
November 2000

IR REMOTE-CONTROLLED VIDEO MULTIPLEXER
by Peter Gibbs
Costly technicians and intricate equipment doesn’t have to coincide with multi-channel video
monitoring. Peter shows us a system for visual monitoring that can be designed so you can
make simple modifications yourself, rather than having to call in that pricey expert. Using off-
the-shelf components, Peter succeeded at his task, while not obliterating the budget.

November 2000

A BETTER BATTERY CHARGER
by Thomas Richter
Part 2: Hardware and Software Implementation

Now that you’ve been introduced to the AVR Battery Charger Reference Design, Tom is
ready to delve into the hardware and software. The ATtiny15 has special features that
make it ideal for battery-charging applications. Take a look at the charge methods he
details this time around.

November 2000

STATE MACHINES
Learning the Ropes
by Ingo Cyliax
In this installment, Ingo illustrates state machines using algorithmic state machine charts,
implementing them through one-hot state encoding, the implementation of choice for
FPGAs. Ingo takes us through the basic design methodology, using a simple design with
two states. Here, the hardware has to depend on internal state, instead of just
computing an output value.
November 2000

SCHEDULING REVISITED
Lessons From the Trenches
by George Martin
This month, George addresses the wide response he received for his past scheduling
article. How can you schedule for something you’ve never done before? Well, keeping
records is a good start. And, asking around to gather information isn’t a bad idea. Even if
it comes down to taking a shot in the dark, George gives us some tips about breaking
the schedule down.
November 2000

INTERNET, OR ELSE!
Silicon Update Online
by Tom Cantrell
The Embedded Internet Conference has morphed from a workshop to a conference,
occupying an even bigger space next year. Today’s designers are anticipating ’Net
connection for all manner of electronics, from elaborate A/V remotes to LED gadgets
galore. Everyone’s in hot pursuit, working under the premise that the answer will come
later as to whether or not an Internet toaster is something people really want.
November 2000

CIRCUIT CELLAR® Issue 125 December 2000 ������3www.circuitcellar.com

Task Manager
Rob Walker

How Will You Be
Paying for That?

New Product News
edited by Harv Weiner

Reader I/O

Test Your EQ

Advertiser’s Index
January Preview

Priority Interrupt
Steve Ciarcia

ContinuingThe PlanISSUE
INSIDE125125

SDRAM: The New Embedded Solution
Mark Balch

Make Your Data Comfortable
Get Bit Cushions
Michael Smith & Laurence Turner

Design2K Winner
QuizWiz: A Hand-Held Scoring Device
Paul Kiedrowski

Using a T6963 Controller-Based Graphics LCD Panel
Brian Millier

Designing for Reliability, Maintainability, and Safety
Part 1: Getting Started
George Novacek

I From the Bench
Sharing Technology with Mother Nature
Out of State with an Internet-Compatible Cell Phone
Jeff Bachiochi

I Silicon Update
Hot Chips 12
Tom Cantrell

6

8

11

84

95

 96

12

20

32

58

68

74

78

EMBEDDED PC
40 Nouveau PC

edited by Harv Weiner

43 RPC Real-Time PCs
A Cup of Java
Part 1: Embedded and Real-Time Applications
Ingo Cyliax

50 APC Applied PCs
Rabbit Season
Part 4: The Wonderful World of TCP/IP
Fred Eady

6������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

TASK MANAGER

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Rob Walker

TECHNICAL EDITORS
Jennifer Belmonte
Rachel Hill
Jennifer Huber

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Mike Baptiste Ingo Cyliax
Fred Eady George Martin
George Novacek

NEW PRODUCTS EDITORS
Harv Weiner
Rick Prescott

PROJECT EDITORS
Steve Bedford Bob Paddock
James Soussounis
David Tweed

ASSOCIATE PUBLISHER
Joyce Keil

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

CUSTOMER SERVICE
Elaine Johnston

ART DIRECTOR
KC Zienka

GRAPHIC DESIGNERS
Naomi Hoeger

Mary Turek

STAFF ENGINEERS
Jeff Bachiochi

John Gorsky

QUIZ MASTER
David Tweed

EDITORIAL ADVISORY BOARD
Ingo Cyliax

Norman Jackson
David Prutchi

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

CONTACTING CIRCUIT CELLAR
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301, www.circuitcellar.com/subscribe.htm, or subscribe@circuitcellar.com
PROBLEMS: subscribe@circuitcellar.com

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) and Circuit Cellar Online are published
monthly by Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at Vernon,
CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95, Canada/Mexico $31.95, all
other countries $49.95. Two-year (24 issues) subscription rate USA and possessions $39.95, Canada/Mexico $55, all other
countries $85. All subscription orders payable in U.S. funds only via VISA, MasterCard, international postal money order, or check
drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH
03755-5650 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

ADVERTISING
ADVERTISING SALES REPRESENTATIVE

Kevin Dows Fax: (860) 871-0411
(860) 872-3064 E-mail: kevin.dows@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

ADVERTISING CLERK Sally Collins

rob.walker@circuitcellar.com

How Will You Be Paying for That?

n othing in life is free. This is what my mother
told me when I turned nine. She also informed me

that I was old enough to get a paper route and was
therefore capable of earning my own money, which was

interpreted to mean, if I ever wanted to buy anything again, I had better call
the Hartford Courant to see if they had an open route in the area.

The pride and honor of delivering the nation’s oldest continuously-
published newspaper faded with each falling snowflake that winter. But, I’m
sure anyone who’s ever delivered newspapers could share stories about
trying to run away from a German Shepherd while wearing five layers of
winter clothes, or the excitement and satisfaction that comes from riding
through Mrs. NoTipper’s tulip bed in the predawn darkness, so I’ll move on.

The intended lesson was that if you want something, you have to work
for it (the actual lesson went something like, delivering reading material to
sleeping people helps you stop wanting things). In short, I learned to value
the things I had to pay for.

When it comes to value and paying for things, one of the greatest de-
bates of this year has been whether or not “available on the Internet” should
be synonymous with “free.” It’s an interesting debate because there are
good reasons to support both sides. Of course, the arguments can change
depending on whether you’re talking about music, books, videos, informa-
tion, or services.

If I want information about refinishing furniture, I can find plenty of
hobbyist sites with interesting (and sometimes useful) information or I can
browse the shelves of the local Barnes & Noble. The problem with free stuff
is, you can’t complain when it doesn’t work. Let’s say I find a web site with
information about a great new technique for refinishing furniture by burning
off the old layers of paint. Who’s to blame when my eyebrows and grandma’s
original Hitchcock chair are nothing more than a pile of smoldering ashes at
my feet? For me, the value of credible information (that $20 book from
B&N) is much higher than the possible “costs” of free information.

Besides, by the time you figure in the cost of your PC, hardware and
software upgrades, the extra phone lines, ISP charges, and the time you
spend searching the web and waiting for flashy ads (which pay for the
information) to load, you’ll see that “available on the Internet” comes with its
costs. Don’t get me wrong, there’s more information on the Internet than in
all of the local bookstores combined, but I think there are some things that
are worth paying for.

Sure, I could log on to CNN.com or one of the local newspaper’s web
sites to get the news each morning, but waking up to the sound of a news-
paper thumping against my door each morning gives me the satisfaction of
knowing that I’m doing my part to help another young person learn that
nothing in life is free.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of reader-
assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or from
plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to build
things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to construct or
operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction. The reader
assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2000 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar INK are registered trademarks of
Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

8 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Harv Weiner

HIGH-VOLTAGE FLOATING AMPLIFIER
The Model 237 DC coupled amplifier provides a fre-

quency response from DC to 40 KHz (–3 dB at 40 kHz). Its
input floats at ±20,000 V and its output is connected to
ordinary lab instruments for data display and collection.

It has both real-time analog and digital outputs. Power
on/off and gain is set with an ordinary infrared remote
control unit (furnished) for hands-off operation.

The amplifier provides four gain ranges (x10, x1, x0.1
and x0.01) for input voltages of 0 to ±500 mV, ±5 V, ±50
V, and ±150 V (all peak-to-peak). The highest voltage
range is limited by component withstand voltages. Input
resistance is 1 MΩ on all ranges.
The input can withstand ±150 V
without damage whether the
power is on or off

A real-time analog output of 0
to 5 V full scale (on highest three
gain ranges) is available. An output
of 0 to ±1.5 V is available on the
x0.01 gain range. The low output
impedance of the amplifier will
drive voltmeters, oscilloscopes,
analog recorders, etc. A 12-bit
parallel, real-time digital output

for 0 to 5 V full scale is available. This consists of two 8-
bit bytes with the gain setting in the two most signifi-
cant bits. This output connects to a computer parallel
port with full handshaking.

The amplifier is housed in a plastic enclosure measur-
ing 11″ × 7.75″ × 3″. It features BNC connectors for ana-
log input and output, and a DB-25 connector for the
digital output. Power is supplied from an included DC
“wall wart” supply (the input amplifier board uses three
AAA batteries).

The Model 237 costs $359. A full datasheet and User
Guide are available on the
company’s web site.

TDL Technology, Inc.
(505) 382-3173
Fax: (505) 382-8830
www.zianet.com/tdl

http://www.zianet.com/tdl

CIRCUIT CELLAR® Issue 125 December 2000 9www.circuitcellar.com

PIXEL ARRAY
The TSL3301 Linear Optical Sensor Array combines

a 300 dpi 102 × 1 pixel array with an 8-bit A/D con-
verter and control circuitry.
The monolithic IC operates
down to 3 V and features a
sleep mode for reduced power
consumption. It is ideal for
portable battery-operated
applications such as hand-held
scanners and OCR readers.
Other applications include
automotive steering control,
robotics, linear and rotary
encoders, and spectrometers.

It converts pixel data at a 1
µ/s. The array is split into
three 34-pixel segments, each with its own set of pro-
grammable gain and offset registers. These registers
provide the system designer with the capability to
compensate for offset errors and to normalize the gain
across the array.

The TSL3301 command set provides you with full
control of the device. You can set pixel integration
time, read and write to gain and offset registers, read

NEW PRODUCT NEWS
data, and perform asynchronous pixel reset. The
TSL3301 utilizes an easy-to-use serial interface for all

control functions. Pixel output is
serial, and each pixel value is
represented by 8 bits. The serial
data clock can run as high as 10
MHz for a 1 megapixel through-
put rate.

The TSL3301 is supplied in an
8-pin clear epoxy DIP package
with standard commercial tem-
perature ratings (0° to 70°C). It is
in an extended temperature
glass-windowed package (–40° to
115°C) that is designated as the
TSLW3301. The TSL3301 and

TSLW3301 cost $4.65 and $5.58 respectively in 1000-
piece quantities.

TAOS, Inc.
(972) 673-0759
Fax: (972) 943-0610
www.taosinc.com

http://www.taosinc.com

CIRCUIT CELLAR® Issue 125 December 2000 ����11www.circuitcellar.com

READER I/O
ON TRACK
George, I really enjoyed your series “The Joys of
Writing Software.” (Circuit Cellar 121–123). It
was thought provoking and is a must read for all
of the software mongers out there. You’re right
on about how we expect hardware designers to
follow rigorous design rules and practices in
order to reduce costs of bad ASICs, new board
spins, and missed market opportunities, but we
neglect that this can and should also be done
with software as well.

Some faculty I worked with in the past wrote
a book titled The Art of Hardware Design
(Prosser/Winkel), which explains that the art is
more about applying proper design methodology
to hardware design (e.g., using ASM charts (it
was written in the ’80s), control/data path
decomposition, synthesizing state machines
from it, following good synchronous design
practice, and so on). Perhaps a similar book on
software design would be a good idea. No doubt,
you’ll probably get your share of negative or
cynical feedback from engineers who consider
themselves to be “software artists.” I just
wanted to make sure you also get some positive
feedback.

Ingo Cyliax

Thanks, Ingo. You’re absolutely right about
design process. My problem was finding a way to
squeeze all I wanted to say into a manageable
size for the articles. Hardware engineers also
have a tendency to make the same mistake as
software guys—they would like to draw schemat-
ics from the word go!

In my company, I insist that not a single
circuit be drawn until the entire system has
been defined in terms of functional blocks. It’s
difficult to enforce, but the price for cowboying
is too high.

George Novacek

STILL LEARNING
Please do continue to keep us on your college-

program mailing list. Now more than ever
Circuit Cellar is welcome and continues to be
viewed as the leader in computer applications. I
believe that students want to continue (and that
means buy) your magazine when they leave
here.

I am now teaching introduction to micro-
controllers and expect to add one or two ad-
vanced classes to meet the needs of our local
technical and engineering students. I know
how odd this may sound that at a two-year
college we get students who already have their
Bachelors in engineering, but I guess we are
giving them something they can’t get else-
where. I love creating classes that bridge
electronics, computers, and biomedical elec-
tronics together.

Please pass along how much this publication
means to me and the students. Thank you.

Prof. William Schlick
Schoolcraft College
Livonia, MI

If you are a professor who would like to
receive Circuit Cellar to use and distribute in
the classroom, please mail your request and e-
mail address on college letterhead to:

Valerie Luster
Circuit Cellar College Program
4 Park Street
Vernon, CT 06066

Editor’s note: The software for Edward Cheung’s
Internet project article (Circuit Cellar 123) is
moving from the URL listed at the end of the
published article to www.cheung.place.cc.

STATEMENT REQUIRED BY THE ACT OF AUGUST 12, 1970, TITLE 39, UNITED STATES
CODE SHOWING THE OWNERSHIP, MANAGEMENT AND CIRCULATION OF CIRCUIT CELLAR, THE MAGAZINE FOR COMPUTER APPLICATIONS, published monthly at 4 Park Street, Vernon, CT 06066. Annual subscription price is $21.95. The names and addresses of the Publisher, Editorial Director,
and Editor-in-Chief are: Publisher, Steven Ciarcia, 4 Park Street, Vernon, CT 06066; Editorial Director, Steven Ciarcia, 4 Park Street, Vernon, CT 06066; Editor-in-Chief, Steven Ciarcia, 4 Park Street, Vernon, CT 06066. The owner is Circuit Cellar, Inc., Vernon, CT 06066. The names and addresses of
stockholders holding one percent or more of the total amount of stock are: Steven Ciarcia, 4 Park Street, Vernon, CT 06066. The average number of copies of each issue during the preceding twelve months is: A) Total number of copies printed (net press run) 31,559; B) Paid Circulation (1) Sales
through dealers and carriers, street vendors and counter sales: 5,460, (2) Mail subscriptions: 18,061; C) Total paid circulation: 25,432; D) Free distribution by mail (samples, complimentary and other free): 854; E) Free distribution outside the mail (carrier, or other means): 4,905; F) Total free distribution:
5,759; G) Total Distribution: 31,191; H) Copies not distributed: (1) Office use leftover, unaccounted, spoiled after printing: 368; I) Total: 31,559. Percent paid and/or requested circulation: 80%. Actual number of copies of the single issue published nearest to filing date is (November 2000, Issue #124); A)
Total number of copies printed (net press run) 31,300; B) Paid Circulation (1) Sales through dealers and carriers, street vendors and counter sales: 4,905, (2) Mail subscriptions: 18,946; C) Total paid circulation: 25,945; D) Free distribution by mail (samples, complimentary and other free): 800; E) Free
distribution outside the mail (carrier, or other means): 4,450; F) Total free distribution: 5,250; G) Total Distribution: 31,195; H) Copies not distributed: (1) Office use leftover, unaccounted, spoiled after printing: 105; I) Total: 31,300. Percent paid and/or requested circulation: 83.2%. I certify that the statements
made by me above are correct and complete. Joyce E. Keil, Associate Publisher.

12 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

e mbedded sys-
tems have come a

long way since the
venerable ’8051

microcontroller was hooked up to a
2716 EPROM. Embedded controllers
today cover a wide spectrum including
8-bit single chip computers and 32-bit
PCs. Each application imposes a differ-
ent set of requirements for the design.
A modern embedded controller may
run at 32 kHz or 500 MHz, it may have
16 bytes of SRAM or 256 MB of
DRAM and a huge hard drive.

I have always been attracted to the
lower end of this spectrum where
small size, low power, and custom
hardware are keys to solving an em-
bedded control task. In many of these
applications, little scratchpad memory
is required and the 32–128 bytes of
local SRAM on the MCU are adequate.

On the other hand, some other applica-
tions require data logging and often a
common SRAM chip external to the
MCU fits the bill perfectly. But what
about those situations when a large
quantity of local RAM is required?
Enter DRAM.

DRAM has been around for many
years and is one of the most common
ICs manufactured. It’s ubiquitous,
found in PCs, printers, and consumer
electronics. DRAM’s advantage is its
high density of storage; it packs more
volatile RAM onto a square millimeter
of silicon than any other technology. In
most conventional computing applica-
tions, this density is the bottom line
that renders DRAM’s disadvantages
insignificant next to SRAM.

For its density, DRAM typically
consumes more power than SRAM, has
a more complex interface, and is
slower. However, power consumption
usually is not an overriding factor in a
corded appliance. The increased com-
plexity of DRAM’s interface was ad-
dressed a long time ago, first by
dedicated DRAM controllers and now
by integrated controllers on micropro-
cessors and support chips. Finally,
multilevel cache architectures miti-
gate the slower access time of DRAM.

Many embedded design engineers
stay away from DRAM because of its
power consumption and added com-
plexity. The good news is that newer
DRAM with lower supply voltage and
power-saving modes uses less power.
And, some embedded processors con-
tain internal DRAM controllers, and if
not, rolling your own for certain
microcontrollers is not difficult.

Before you run off and start drawing
schematics, let me provide one piece of
advice: don’t design DRAM into your

FEATURE
ARTICLE

Mark Balch

The next time you’re
designing a small,
low-power embedded
system, you might
want to consider us-
ing an SDRAM con-
troller. As Mark
shows us, an embed-
ded SDRAM control-
ler just might be the
simplest and most
cost-effective solution.

Figure 1—SDRAM
consists of a multibank
conventional asynchro-
nous DRAM array sur-
rounded by synchronous
state and interface logic.
Separate enable logic is
maintained for each bank,
enabling simultaneous
operations on multiple
banks.

SDRAM: The New
Embedded Solution

Control
signal

and row
address

latch

Column
address
counter

DRAM
array

Bank 0

Bank 1

Bank 2

Bank 3

Synchronous
state logic

*RAS

*CAS
*WE

Row[]

Col[]

DQ[]

Control,
address
inputs

Data bus

CIRCUIT CELLAR® Issue 125 December 2000 13www.circuitcellar.com

embedded system! Ordinary DRAM is
a thing of the past, and you don’t want
to get stuck designing with parts that
are already obsolete. You want to use
the new technology (e.g., synchronous
DRAM (SDRAM)). SDRAM is easier to
use than regular DRAM because it has
a clean synchronous interface instead
of an asynchronous enable architec-
ture. Additionally, the benefits of
riding the mass-market technology/
economic wave of SDRAM are numer-
ous. They range from widely available
parts, to decreasing costs, to increasing
speeds and densities.

WHAT’S SDRAM?
SDRAM is a new twist on the same

DRAM technology that has been
around for years. At the basic level, it
can be thought of as a familiar asyn-
chronous DRAM array surrounded by
a synchronous interface on the same
chip (see Figure 1). However, a key
architectural feature of SDRAM ICs is
multiple independent DRAM arrays—
usually two or four banks. Multiple
banks can be activated independently
and their transactions interspersed
with those of other banks on the IC’s
single interface. Rather than creating a
bottleneck, this functionality allows
better efficiency, and therefore higher
bandwidth across the interface.

The synchronous interface and
internal state logic enable these com-
plex multibank operations and burst
data transfers. After a transaction has
been started, one data word flows into
or out of the IC on every clock cycle.
So, SDRAM running at 100 MHz has a
theoretical 100-million-words-per-

second peak bandwidth. In reality, this
number is lower because of refresh and
the overhead of beginning and termi-
nating transactions. In fact, the true
available bandwidth for a given appli-
cation is dependent on that applica-
tion’s data transfer patterns and the
SDRAM controller.

Rather than presenting a DRAM-
style asynchronous interface to the
memory controller, the SDRAM’s
internal state logic operates on dis-
crete commands that are presented to
it. There still are signals called RAS
and CAS, but their functions are now
different and they are sampled on a
rising clock edge. The full set of con-
trol signals combine to form the stan-
dard SDRAM command set that the
IC’s internal state logic processes.
These commands configure the
SDRAM for certain interface charac-
teristics such as default burst length,
begin and terminate transactions, and
perform regular refresh operations.

SDRAM provides high bandwidth
in conventional computers because
individual burst transfers require a
fixed number of cycles of overhead to
begin and finish. A cache controller, for
example, might be able to fetch 256
words in only 260 cycles (98.5% effi-
ciency). And that’s just for starters. It
could improve the overall efficiency
by keeping track of its many transfers
and interleaving them between mul-
tiple banks inside the SDRAM ICs.

This mode of operation allows a
new burst transfer to be requested just
prior to the current burst ending.
Therefore, the overhead to start a
transaction could be hidden within the

time of another transaction. Theoreti-
cally, the SDRAM interface could be
kept busy for every cycle, with the
exception of the few cycles per second
required to refresh the DRAM array.

A SLEDGEHAMMER?
Don’t worry if this sounds like a

sledgehammer to hit your small, em-
bedded nail. All this means is that the
PC industry is supplying inexpensive,
high-density, easy-to-use memory
devices. Most of the whiz-bang
SDRAM features are not useful for a
slow microcontroller, therefore you
can ignore them when designing an
embedded SDRAM controller. In fact,
for the basic data transfers, designing
with SDRAM is practical and afford-
able. Just because these chips are
meant to run faster than 133 MHz does
not mean they can’t run at 12 MHz.

If your embedded processor is
heavy-duty enough to include an inte-
grated SDRAM controller, you can
stop reading, you’re done! If not, you
can make a simple controller to fit into
a midsized programmable logic device
(PLD). This controller must handle
only the basics—a small subset of an
SDRAM’s full feature set. These tasks
include powerup initialization, peri-

odic refresh, and single-word
read/write operations.

The main drawbacks of
attaching an SDRAM control-
ler to many small processors
are setup latency and variable
access time. At low frequen-
cies, the setup latency is actu-
ally less than at the intended
operational frequencies, but is
still about three cycles for a
read. The overall access time is
variable because of the need
for periodic refresh operations.
Eventually a refresh will con-
flict with a memory access.

Figure 2—SDRAM
interface signals look
similar to those of
asynchronous DRAM,
but the signals are
sampled on the
clock’s rising edge
and combine to form
discrete commands.

SDRAM
IC

CLK

CKE

*CS

*RAS

*CAS

*WE

ADDR[]

DQM[]

DQ[]

Command *CS *RAS *CAS *WE Address AP/A10

Bank activate L L H H Bank, Row A10
Read L H L H Column L
Read with auto-pre-charge L H L H Column H
Write L H L L Column L
Write with auto-pre-charge L H L L Column H
No operation L H H H X X
Burst stop L H H L X X
Bank pre-charge L L H L X L
Pre-charge all banks L L H L X H
Mode register set L L L L Config Config
Auto-refresh L L L H X X
Device deselect H X X X X

Table 1—Some common SDRAM commands (H is logic high, L is logic low, X is don’t care) are formed by combina-
tions of control signals and samples on the rising clock edge. The AP/A10 signal contains valid address information
for bank activate and mode register set commands.

14 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

When this happens and the refresh can
no longer be held off, the processor
will have to wait several cycles longer
for the transaction to complete.

These drawbacks are not problems
when dealing with processors that
have acknowledge-terminated bus
cycles. Such processors simply request
a data transfer and then wait for an
acknowledge signal to complete the
access. But, most 8-bit processors do
not have such advanced bus interfaces.
This does not mean that the game is
lost. Depending on the processor and
application, there are a variety of
clever solutions, which I’ll cover later.

THE SDRAM INTERFACE
Before diving into designing an

embedded SDRAM controller, let me
explain the operation of the standard
SDRAM interface. As mentioned, the
memory controller uses a set of syn-
chronous control signals to issue com-
mands to SDRAM. Figure 2 illustrates
the full set of interface signals, and the
corresponding basic commands are
listed in Table 1. The SDRAM samples
the control signals on every rising
clock edge and takes action as dictated.
Some common functions include acti-
vating a row for future access, perform-
ing a read, and pre-charging a row
(deactivating a row, often in prepara-
tion for activating a new
row). For complete de-
scriptions of SDRAM in-
terface signals and
operational characteristics,
refer to any of the IC
manufacturers’ datasheets.

Figure 3 provides an
example of how these
signals are used to imple-
ment a transaction and

serves as a useful vehicle for
introducing the synchronous
interface. *CS (not shown in
Figure 3) is assumed to be
tied low. The first require-
ment to read from SDRAM is
to activate the desired row in

the desired bank. This is done by as-
serting an activate (ACTV) command,
which is simply asserting *RAS for one
cycle while presenting the desired
bank and row addresses.

The next command issued to con-
tinue the transaction is a read (RD).
The controller must wait the necessary
number of clock cycles that equate to
the *RAS-to-*CAS delay time. This
integer is different for each design
because it is a function of the particu-
lar SDRAM’s timing specification (in
nanoseconds) and the clock period of
your interface.

If, for example, your SDRAM’s
*RAS-to-*CAS delay is 20 ns and your
clock period is 50 MHz or slower, you
would be able to issue the RD com-
mand on the cycle immediately fol-
lowing the ACTV. Figure 3 shows an
added cycle of delay, indicating a clock
frequency between 50 and 100 MHz.
During the idle cycles, the control
signals are inactive.

The RD command is performed by
asserting *CAS and presenting the
desired column address along with the
auto-pre-charge (AP) flag. The AP flag is
conveyed by address bit 10 during
certain commands such as reads or
writes. Depending on the type of com-
mand, AP has a different meaning. In
the case of a read or write, asserting AP
tells the SDRAM to automatically pre-

charge the activated row after the
requested transaction completes. Pre-
charging a row returns it to a quiescent
state and also clears the way for an-
other row in the same bank to be acti-
vated. Remember, a single DRAM
bank can’t have more than one bank
active at any given time.

When would you want or not want
to have the SDRAM automatically
pre-charge the row after a transaction?
This feature mainly serves to simplify
those implementations that will not
attempt to perform seamless, back-to-
back transactions from the same row.
If you are reading or writing just a few
words to a row, having the SDRAM
automatically pre-charge that row will
spare your controller the effort of
performing the pre-charge.

If your controller wants to take
advantage of the SDRAM’s seamless
bursting capabilities, it may be worth-
while to let the controller decide when
to pre-charge a row. This way, the
controller can quickly access the same
row again without having to issue a
redundant ACTV command.

The AP flag also comes into play
when issuing separate pre-charge com-
mands. In this context, the AP flag
determines if the SDRAM should pre-
charge all of its banks or only the bank
selected by the address bus.

Continuing the example, after the
controller issues the RD command
(called RDA if AP is asserted to enable
auto-pre-charge), it must wait a prede-
termined number of clock cycles be-
fore the data appears. This is known as
CAS latency in SDRAM jargon.
SDRAM typically implements two
latencies—two and three cycles.

Why would anyone select three
cycles when two are faster? Like most
things, you don’t get anything for free.
The SDRAM trades access time (clock
to Q) for CAS latency. This becomes

important at higher clock
frequencies where access
time is crucial to system
operation. In these cir-
cumstances, you are will-
ing to accept one cycle of
added delay to achieve
the highest clock fre-
quency. This is because
one cycle of delay will be

Clock

Command

Address[]

Data[] D0y D1y D2y D3y

ACTV × RD

B, R × AP, C AP, C

RDy

D0x D1x D2x D3x

Clock

*RAS

*CAS

*WE

Command

Address[]

DQM[]

Data[] D0 D1 D2 D3

ACTV × RD

B, R × AP, C

tRAS to CAS CAS
latency = 2

Figure 3—A typical SDRAM read
transaction consists of activating the
desired bank, issuing the read com-
mand, and then waiting a specific
number of cycles for the data burst to
begin.

Figure 4—Greater efficiency can be obtained by initiating a new transaction during
the idle command time of a previous transaction. This results in seamless, back-to-
back transfers that do not waste additional cycles of overhead.

16 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

one, two, four, or eight words, or the
entire row. It is also possible to config-
ure a long burst length for reads and
only single-word writes.

Writes, on the other hand, are not
associated with latency. Write data
begins to flow on the same cycle that
the WR/WRA command is asserted.

The DQM[] bus provides one data/Q
mask signal for each byte lane. So, an
8-bit SDRAM will have only one DQM
signal, and a 32-bit device will contain
DQM[3:0]. These mask signals enable

or disable outputs during reads
and enable/mask data during
writes. DQM is useful for
writes because it enables writ-
ing to fewer bytes than the data
bus supports.

DQM assertion follows the
timing of the read or write
command. This means that the
DQM for the first word of a
transaction always will be as-
serted during the same cycle
that the read or write is as-
serted. In the case of a read, the
DQM leads the data by CAS

latency cycles. In the case of a write,
the DQM lines up with the data be-
cause writes do not have an associated
latency.

After the transaction has com-
pleted, the row will either be left acti-
vated or pre-charged depending on the
previous contents of the AP flag. If left
activated, the controller may immedi-
ately issue a new RD or WR command
to the same row. Alternatively, the
row may be explicitly pre-charged. If
automatically pre-charged, a new row
in that bank may be activated in prepa-
ration for other transactions.

SEAMLESS TRANSACTIONS
Thus far, I’ve alluded to the capa-

bilities and benefits of seamless back-
to-back transactions (see Figure 4).
Because the command bus is essen-
tially idle during the execution of a
transaction request, new requests may
be asserted prior to the completion of
an in-progress transaction. The con-
troller asserts a new read command for
the row that was previously activated.
By asserting this command two cycles
(CAS latency) before the end of the
current transaction, the controller
guarantees that there will be no idle
time on the data bus between transfers.

This concept can be extended to the
general case of multiple active banks.
Just as the controller is able to assert a
new RD, it could also assert an ACTV
to activate a different bank. Therefore,
any of the SDRAM IC’s banks can be
asserted independently during the idle
command time of an in-progress trans-
action. As these transactions near their
ends, the previously activated banks
can be seamlessly read or written to in

Data latch
(optional)

Configuration, read,
write, refresh
state machine

Refresh timer

CPLD

SDRAM MCU/
MPU

Data Data

Address
control Enable

Address
ACK

Figure 5—A simple SDRAM controller for an embedded system can
be designed into a modest CPLD. The basic elements are a command
processing state machine, a refresh timer, and an optional data latch
for certain types of implementations.

balanced by a higher burst
transfer rate. Remember that
SDRAM is powerful because of
its superior bursting capabili-
ties. At lower clock rates, how-
ever, it is possible to accept the
slightly increased access time in
favor of a shorter CAS latency.

When the CAS latency has
passed, data begins to flow
during every clock cycle. Data
will flow for as long as the
specified burst length. In this
example, the standard burst
length is four words. This pa-
rameter is configurable and adds to the
flexibility of SDRAM. The controller
can set certain parameters at startup,
including CAS latency and burst
length. The burst length defines the
fundamental unit of data transfer
across an SDRAM interface. Therefore,
longer transactions must be built from
back-to-back bursts and shorter trans-
actions must be achieved by terminat-
ing a burst before it has completed.
SDRAM enables the controller to
configure the standard burst length as

CIRCUIT CELLAR® Issue 125 December 2000 17www.circuitcellar.com

the same manner shown in Figure 4.
This provides a performance boost and
can eliminate nearly all non-refresh
overhead in an SDRAM interface.

SDRAM MAINTENANCE
As I stated, there are some opera-

tions that must be performed on the
SDRAM to keep it functioning prop-
erly, including interface configuration
and periodic refresh. At powerup (or at
any other time), the memory control-
ler is able to configure various param-
eters of the synchronous interface.
These include the aforementioned CAS
latency, burst length parameters, as
well as a sequential or interleave burst
mode setting. The controller config-
ures these parameters by asserting a
mode register set (MRS) command and
encoding the parameters onto the
address bus. At powerup, the control-
ler must establish a known, stable state
inside the SDRAM by executing sev-
eral pre-charge and refresh commands
prior to the MRS.

Periodic refresh is a universal re-
quirement of standard DRAM devices,
and SDRAMs are no exception. The
basic concept behind DRAM refresh is
that the tiny capacitors that store the
state of each bit have a finite leakage
rate. If left alone, they would lose their
charge and the memory would forget
its contents.

But, if the capacitors are refreshed
before they can lose their charge, they
will retain their state; hence, DRAM
refresh. DRAM is refreshed one row at
a time by feeding the outputs of the
on-chip row sense amplifiers back into
the same row. If the capacitors are able
to reliably hold their charge for N s
and there are M rows in the DRAM,
you must refresh the array no less than
M times every N s. Modern DRAM
contains internal row counters that
increment with every refresh cycle.
This ensures that if M refresh cycles are
executed every N s, each row will have
its chance to be properly refreshed.

In reality, typical refresh periods are
in milliseconds. A modern SDRAM
may contain 4096 rows per bank, and
require that all rows be refreshed every
64 ms. The controller must ensure that
the rate is accomplished. They could
be evenly spaced every 15.625 µs, or

the controller might wait until a cer-
tain event passes and then rapidly
count out the commands.

Different types of SDRAMs have
differing refresh requirements, but the
means of executing refresh are stan-
dard. All banks are pre-charged because
the refresh (REF) command operates on
all banks at once. When this is done, an
executed REF command takes advan-
tage of the SDRAM’s internal refresh
counter. The counter increments
through each row every time the REF
command is executed.

DON’T FORGET TIMING
It’s easy to forget the asynchronous

timing requirements of the DRAM
core when designing around the
SDRAM’s synchronous interface. After
studying state transition tables and
command sets, the idea that an asyn-
chronous element is lurking can be-
come an elusive memory. Make sure
that you double-check your integer
clock multiples versus the nanosecond
timing specs that are included in your
SDRAM datasheet.

Examples include minimum and
maximum RAS active time, RAS pre-
charge time, and write recovery time.
The tricky side of these timing specifi-
cations is that they affect your system
differently depending on your operat-
ing frequency. At 25 MHz, a 20-ns time
delay is less than one cycle. The delay
is two cycles at 100 MHz. Errors like
these may manifest themselves as
intermittent data corruption.

IT’S EASY
You’re probably wondering how

this information is useful to a small,
embedded system that isn’t running a

Clock

Command

Address[]

Data[] DIN

ACTV × WR

B, R × AP, C

Figure 6—The simplest read transaction consists
of a bank activation, an auto-pre-charge read
command, and a single word of outgoing data. This
transaction is atomic because it does not rely on
the state of a previous transaction and leaves the
SDRAM in a “clean” pre-charged state.

CIRCUIT CELLAR® Issue 125 December 2000 19www.circuitcellar.com

SOURCES
SDRAM ICs
Fijitsu Ltd.
(81-41) 754-3763
Fax: (81-41) 754-3329
www.fujitsu.com

Toshiba America, Inc.
(212) 596-0060
Fax: (212) 593-3875
www.fujitsu.com

32-bit microprocessor at 100 MHz. As
I stated, you can pick and choose from
what SDRAM has to offer. Take advan-
tage of the high memory density and
run at speeds of only a few megahertz
to match your microcontroller. If 32-
bit memories do not fit your applica-
tion, you can use 8-bit devices.

The key to incorporating SDRAM
into your embedded system is provid-
ing a simple memory controller to take
care of the SDRAM housekeeping
functions. The minimal set of SDRAM
control logic can fit into modest PLDs.
Some basic features are powerup con-
figuration, periodic refresh, single-
word read, and single-word write (see
Figure 5).

That’s it! All you need is control
logic that can perform these four op-
erations and you have a minimal
SDRAM interface to your controller.
There are as many ways to implement
this basic idea as there are engineers.
One technique is a single binary-en-
coded state machine inside a PLD. This
state machine would be large, but if
your system is only running at 12 MHz
and you use a modern, mainstream
PLD, the timing may be on your side.

HOW WILL THIS WORK?
The basic idea behind this simple

SDRAM controller architecture is
that all transactions are single words
and they all execute atomically. That
is, each read/write is automatically
pre-charged so subsequent transac-
tions do not have to take into account
the previous state of the device; the
SDRAM’s banks will spend their idle
time in pre-charge.

The logic to accomplish an atomic
read transaction is simple: activate the
bank/row, wait for the RAS-to-CAS
delay (if necessary), issue the RDA,
wait one cycle, and then latch the data
on the next rising clock edge (see Fig-
ure 6). Assume the SDRAM was config-
ured with a CAS latency of two cycles
and a read burst length of one word.
Depending on the operating frequency,
you may be able to skip the single-
cycle delay between ACTV and RDA.

A one-word atomic write is even
easier: issue a WRA along with data
after the RAS-to-CAS delay and return
(see Figure 7).

Implementing the periodic refresh
can be done with a counter that rolls
over no slower than the regular refresh
interval specified by your device’s
datasheet. At each rollover, the state
machine can simply issue the REF
command, insert the appropriate de-
lay, and then return to execute the
next microprocessor request. The
power-up MRS command will add
several states to your state machine,
but only has to execute once.

The only thorny issue related to
connecting an SDRAM controller to a
common 8-bit microprocessor is the
lack of a request/acknowledge bus
architecture. Such processors can’t be
held off when it takes longer than ex-
pected to provide data requested on a
read transaction. The SDRAM’s peri-
odic refresh creates the problem that
some transactions will take longer
than others. In processors with an ACK
signal, this is not a problem because
the ACK would simply be delayed
several cycles. But, if the controller
can’t hold off the processor, the proces-
sor will return to its software with
false data. Solutions differ depending
on the processor and circumstances.

In some situations, it may be valid
to run the SDRAM at a higher multiple
of the processor clock such that even
worst-case transactions will complete
in time for the processor’s data valid
window. Alternatively, some proces-
sors can be held off by stretching their
clocks at the appropriate time during
their bus cycles.

Inserting a dummy transaction prior
to the processor’s true data fetch op-
eration is a third method. The proces-
sor tells the controller that it wants to
read data. Then, the controller ex-
ecutes the read and holds the data.

The processor issues a second read
request where it latches the read data.
This usually works because there’s

ample time to execute a single-word
read in the time it takes a slow proces-
sor to issue successive transactions.

In the case of a write, the processor
could issue the write request along
with data. The controller would then
be able to latch that data and hold it
until the WRA command is issued.
This requires that the processor pause
between successive writes to allow
time for the operation. As with reads,
this delay should not be more than one
NOP or equivalent cycle.

IS SDRAM RIGHT FOR YOU?
Whether or not SDRAM is useful

for your controller application de-
pends on a variety of factors. Do you
need more memory than can be easily
accommodated by conventional
SRAM? Will your controller board
contain a PLD that is large enough to
accommodate an SDRAM controller?

I hope you now agree it’s a good
idea to keep SDRAM in mind when
solving controller design problems
that require substantial quantities of
local memory. SDRAMs are designed
for high performance, leading edge
systems, yet they may be applied to
smaller and slower systems without
excessive cost or complexity. This
may enable you to design your way out
of a memory tight spot in the future. I

Figure 7—The simplest write transaction differs
from the read case only in that incoming data is
presented in tandem with the auto-pre-charge write
command. This transaction is also atomic.

Clock

Command

Address[]

Data[] DOUT

ACTV × RD

B, R × AP, C

Mark Balch is an electrical engineer
who designs FPGAs and PCBs in the
data networking industry. He previ-
ously worked in the digital TV field
where he participated in the develop-
ment of various MPEG-2 broadcast
products including an HDTV encoder.
Mark earned a B.S. in Electrical Engi-
neering from The Cooper Union. You
can reach him at mark_balch@
hotmail.com.

http://www.fujitsu.com
http://www.fujitsu.com

20 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

Get Bit Cushions

n ew floating-
point DSP chips

are hitting the market
in the $5 to $10 range.

Analog Devices came out with the
ADSP21065L general-purpose 32-bit
DSP processor with on-chip dual-
ported memory and an independent I/O
processor. When the algorithmic wind
blows from the right direction, the
’065L is capable of 180 MFLOPS (mil-
lions of floating-point operations per
second). Texas Instruments recently
announced the 120 MFLOP TMSV33.
For a little more money, there is the
quad-SHARC or TI’s 150-MHz
TMS320C6711 for even faster perfor-
mance. If these new floating-point
processors are so great, why do the
same manufacturers still produce inte-
ger DSP processors in such large quan-
tities? Analog Devices has its new
2.5-V ADSP2188 to compete against
TI’s TMS320VC5410.

In this article, we are going to take a
design-oriented look at implementing
algorithms on integer and floating-
point DSP processors. How can you
determine whether or not your algo-
rithm will match the characteristics of
a specific processor? Using integer
processors means that you have to
become more aware of the finite and
quantized nature of the numbers you
are handling. How do you determine

the number of guard bits necessary to
cushion your data against overflow or
loss of precision? Are there equivalent
problems and solutions when using
floating-point processors?

BASIC DSP ALGORITHMS
Listeners perceive sounds as located

inside their head when listening to
prerecorded music on earphones (see
Figure 1 [1]). An interesting context in
which to look at the characteristics of
DSP algorithms is to examine ways of
altering these perceived sounds so that
you can generate virtual speakers in
front and behind the listener. This is
one case when a code developer would
be proud to announce, “Look, nothing
between my ears!”

The simplest way of moving the
perceived sound location is to delay
the relative arrival of the sound from
one ear to another. Imagine a single
sound source placed 1 meter in front of
your head. If your head is about 20-cm
wide, the sound takes about 3.35 ms to
arrive at each ear. Delay the sound by
an additional 0.53 ms and 0.24 ms to
the left and right ears respectively, and
the position of the sound shifts 50 cm
to the right. Listing 1 shows how to use
a delay line to generate two indepen-
dent sound sources from one, assuming
sound sampling is occurring at 44 kHz.

There is only one problem, this
doesn’t work. Ears perceive relative,
rather than absolute, delays. Although
you might recognize two sounds in
your headphones, it would be difficult
to convince yourself that the sounds
are not still positioned in the center
and to the right of your head, along the
line connecting your ears.

FEATURE
ARTICLE

Michael Smith
& Laurence Turner

What does it take to
determine if your al-
gorithm matches the
characteristics of the
processor you want
to use? Tune in while
Michael and Laurence
illustrate the best
ways for implement-
ing algorithms on both
integer and floating-
point DSPs.

Make Your Data
Comfortable

30˚

Delay 1

Delay 2

Figure 1—The sound source is perceived to be in
the center of the head if the same sound comes
from both left and right earphones. If the sound is
delayed before being sent to the left earphone, the
perceived position of the sound source shifts to the
right of the head. Further modeling of the audio
channel using FIR and IIR filters can move the
perceived sound out to a virtual speaker in front or
behind the listener.

 CIRCUIT CELLAR® Issue 125 December 2000 21www.circuitcellar.com

To get a proper relocation of the
sounds, you need a much more detailed
algorithm capable of handling the
concepts shown in Figure 2. [1] Here,
we have taken into account the trans-
fer functions of both direct and indi-
rect sound arriving at your ears from
the virtual speakers.

The direct transfer functions have
to take into account that sounds con-
structively, or destructively, interfere
after bouncing off of the earlobes or are
blocked by facial anatomy. The degree
of interference and blocking depends
on sound frequency as well as sound
location. The indirect transfer function
accounts for multi-reflections and
other characteristics of the room in
which the sound is produced.

The direct transfer functions can be
implemented by applying a real-time
finite impulse filter (FIR) to the origi-
nal sounds coming from the head-
phones. Listing 2 shows the C
implementation of a FIR filter, which
produces the output signal Output(n)

as a weighted sum of the delayed
input sound values Input(n).

 In Listing 2, the storage of
older input values is handled
using a circular buffer imple-
mented with pointer arithmetic.
Some processors can handle this
addressing more efficiently than
the gross data movement of the
delay line in Listing 1.

On more recent DSP proces-
sors such as the SHARC 2106X, circu-
lar buffer operations are implemented
through hardware. This allows delayed
values to be handled with zero over-
head, which is a distinct advantage
when trying to handle multiple FIR
filters between audio samples.

Reverberation and other indirect
sound effects can be achieved through
the application of an infinite impulse
response (IIR) filter:

IIR filters make use of delayed versions
of both the previous input and output
values. In Listing 3, the C code of a
basic IIR filter is implemented using a
fast masking operation on an array
offset to achieve circular buffer opera-
tions without the continual checking
necessary in Listing 1. Masking, or
modulus, operations on array indexes
or pointers permit processors without
specialized hardware to efficiently
handle circular buffers.

Looking at the sound stage prob-
lem, there are eight major characteris-
tics of DSP algorithms. First, they are
memory- or register-intensive to store
previous or intermediate results. Sec-
ond, DSP memory address calcula-
tions compete for scarce processor
resources. Third, DSP algorithms also
typically involve multiplication.

Fourth, they involve lengthy sum-
mations where intermediate results
can be large or small compared to the
original input or final output values.
And, DSPs involve loop operations
whose checking can compete for pro-
cessor resources. Next, DSPs need fast
and easy access to peripherals such as
A/D and D/A converters and timers.

Fancy, hardware-based, circular
buffer (delay lines) and bit-reverse
(FFT) addressing modes are character-
istic of DSP CPUs. Lastly, there are
no-overhead hardware loops.

Any processor, in principle, can
handle DSP algorithms. However,
real-time applications require a lot of
processing between data samples. The
custom features in a DSP-specific
processor can prove invaluable. Fast

Right Left

Hh,0(f) Hh,0(f)

H0,30(f)
H0,330(f) H0,330(f) H0,30(f)

Reverberation

Figure 2—The audio channel must be accurately modeled to
make the sound from headphones be perceived as a set of
left and right speakers positioned in front of the listener.

Listing 1—C pseudo-code uses a delay line to generate a second perceived stereo sound source
when only a single sound source is present. The delay line is implemented using gross data moves.

�������� �	
��	�� ����

���� �����������	
��	��

�������� ����	���	�� ���

�������� ����	����	�� ���

�������� �� !��	����	�� �"#

$%��� ��&��'%(%)��(%)*+�,� -���� %*�.�����,%)��/

���������������������������������0������*/�����0*�.1���*2�3

��������+%)��4

55� 6��+�� ��'� ,%)��� ���%� ������ ����

� � � � �����������	
��	�� 7� ��� 8� %*�.�����,%)��4

55� 6�+&�)9� %*�.����� ,%)��� ,%)*+�� �*%:� ������ ����
� � � � 0�������*� 8� �����������	
��	�� 7� �� 7� ����	���	��4
� � � � 0*�.1����*� 8� �����������	
��	�� 7� �� 7� ����	���	��4

55� 6�+&�)9� ,�+%��� ,%)��� ,%)*+�� �*%:� ������ ����

� � � � 0�������*� ;8� �����������	
��	�� 7� �� 7� ����	����	��4
� � � � 0*�.1����*� ;8� �����������	
��	�� 7� �� 7�� !��	����	��4

55� 	�<),�� $%�):�

� � � � 0������*� 8� 0������*� ==� �4
� � � � 0*�.1���*� 8� 0*�.1���*� ==� �4

55� �:9��:���� �� $�*�� >�,�+� ������ ����� %9�*���%�
� � � � � �%*� -+%)��� 8� �4� +%)��� ?� �	
��	�4� +%)��;;2

� � ����������+%)��� 7� ��� 8� ����������+%)���4
@

22 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

access to intermediate or old values
stored in memory is improved on the
SHARC processor by on-chip memory.

Three data buses allow simulta-
neous access to two data memory
blocks and an instruction cache to
avoid data/data and instruction/data
clashes. Two independent data address
generators off-load address calcula-
tions from the main processor core.

However, all the fancy addressing
modes and processing power available
through the super-scalar processor can
vanish into simple processed sand if
one thing is not taken into account:
Precise coefficient and data values are
needed to achieve the specific desired
DSP results.

SIGNAL QUANTIZATION
The signals and coefficients manipu-

lated in a digital algorithm must be
represented (stored) by finite, quan-
tized, binary values. With integer pro-
cessors, this process has two main
consequences. At every point, or node,
within the algorithm, there must be a
finite range for the signals. There also
is certain granularity in the signal. The
granularity, or resolution, is the small-
est value associated with changes in
the least significant bit of the number
representation. This is in the range of
–2N – 1 to 2N – 1 – 1, with a resolution of 1
for 2’s complement numbers stored
with a word length of N bits.

The quantization effects also are
present with floating-point (FP) proces-
sors. The 32-bit IEEE single-precision
FP format can store signals with maxi-
mum amplitude near 2127. Although
the smallest, nonzero magnitude signal
that can be stored is about 2–127, that is
not the resolution available for FP
numbers. The FP granularity changes
from a fine resolution for small magni-
tude signals to a coarse resolution for
large magnitude numbers.

This change is clear when you look
at how FP numbers 178.125 and
0.6958008 are stored in memory.
Table 1 shows how these decimal num-
bers are first converted to scientific
decimal and then biased exponent
binary numbers. Finally, the number is
truncated to the 32 bits that can be
stored in memory or register.

FP numbers are stored using 1 sign
bit, 8 bits for the unsigned magnitude,
biased exponent, and 24 bits for the
signal magnitude. That’s a neat trick
with 33 bits stored in a 32-bit loca-
tion! The signal magnitude is stored in
the form of �A��+��%�����9�*�. The
1 is “James Bond-ed”—implied, but not
stored—in the number representation.

The granularity of the FP numbers
is associated with changes in the last
bit of the fractional part of the number
representation. This granularity is
effectively 2–23 times the value of the
FP number that has been stored, so the
resolution is continually changing.
Changes near the floating point 0.695
can be recorded with 256 times greater
accuracy than changes near 178.

COEFFICIENT PRECISION
All designers must become worried

about the range and granularity of
signals and coefficients imposed upon
them by the finite word length associ-
ated with memory and data buses,
registers, and processing units.

Listing 2—C pseudo-code is necessary. The right ear sound is colored by the free-field transfer
functions Hh,0(f), H0,30(f), and H0,300(f). Here, the delay line is handled by a circular buffer implemented
using software pointer arithmetic. Many DSP processors provide zero-overhead circular buffers
through specialized hardware.

�������� �	
BC����� DE

��%��� +�*+>)���*��	
BC�����

55� ���� +%����+����,� 7� !
1/�
-�2� '��1� !

�/D�
-�2

��%��� ����!D���	
����� 8� 3� FA/� FA/� FA� @

55� ���� +%����+����,� 7� !
1/�
-�2� '��1� !

�/DD�
-�2

��%��� ����!DD���	
����� 8� 3� FA/� FA/� FA� @

$%��� ��&��'%(%)*+�,� -���� %*�.�����,%)��/

�����������������������%���0������*/���%���0*�.1���*2�3

��������+%)��4

� � � � ,����+� ��%��� 0��'�$��)�9�4

� � � � ��%��� 09�� 8� ��'�$��)�9�4

55� ���*���� ���� 9%����*,� �%� �������� ���� +%����+����,

� � � � ��%��� 09�����!D�� 8� G����!D���	
���� 7� ��4

� � � � ��%��� 09�����!DD�� 8� G����!DD���	
���� 7� ��4

55� 6��+�� ��'� ,%)��� ���%� +�*+)��*� >)���*

� � � � 09�� � 8� -��%��2� %*�.�����,%)��4

55� !�$�� �1�� ����� ��*� 1��*� �1�� ,�*��.1�� ,%)��
� � � � 0�������*� 8� %*�.�����,%)��4

55� H%�%*� *�.1�� ��*� ,%)��� '��1� >%�1� ���� �����*,

� � � �0*�.1����*� 8� �4

� � � � � �%*� -+%)��� 8� �4� +%)��� ?� �	
���4� +%)��;;2� 3
0*�.1����*� ;8� 09�� 0� -09�����!D�� ;� 09�����!DD�24

55� �%$�� �%� ��I�� �����*� +%����+����

9�����!D�J� J4 � � 000� ����� JJ

9�����!DD�� J� J4� 000� ����� JJ
55� �%$�� �%� ��I�� ���:���� ��� +�*+)��*� >)���*

9�J�J4����������000������JJ

��� -9�� ?� +�*+>)���*2� 9�� 8� 9�� ;� �	
BC����4
�����@

� � � � � 55� 6*�9�*�� +�*+)��*� >)���*� �%*� ��I�� ��'� ,%)��� ���*�

� � � � � ��'$��)�9�;;4
� � � � � ��� -��'$��)�9�� =8� +�*+>)���*� ;� �	
BC����2

��'$��)�9�� 8� �'�$��)�9�� 7� �	
BC����4

@

T T T

x x

x

x

Input
x(k)

y(k – 1)

–b1 –b2 –b3

y(k – 2) y(k – 3)

y(k)

Output

Σ

Figure 3—Here’s the direct form of an implementa-
tion of a third-order digital IIR Chebychev filter.

 CIRCUIT CELLAR® Issue 125 December 2000 23www.circuitcellar.com

Figure 3 shows the direct form of an
implementation of a third-order digital
IIR Chebychev filter. The frequency
response of this filter (see Figure 4) was
designed for a passband finishing at
1 kHz and a stopband starting at 8
kHz. As Figure 4b illustrates, the maxi-
mum passband ripple is 0.1 dB. Achiev-
ing this filter response requires the
following filter coefficients:

b1 = 1.266 765 327 585 4

a sign). Later, we will discuss what
determines the effective precision of
the coefficients.

With 7-bit precision, the best that
can be done for the b2

coefficient
–0.816 689… is to implement it as the
fraction 52⁄64, or 0.8125. The coefficient
multiplication operation would be
implemented as a multiplication of 52
followed by an arithmetic downshift
by 6 bits (fast division by a factor of
64). As a result, the implemented trans-
fer function of the filter is far from
what was intended (see Figure 5).

Multi-precision operations may
delay the onset of this quantization
problem, but with loss of performance.
However, a better solution is to use
special filter design techniques. These
manipulate all the filter coefficients so
that, within the quantization limita-
tions, the filter response is the closest
possible to the desired filter response.
This manipulation can be achieved by
randomly hacking at the coefficients
so that three wrongs nearly make a
right. A more systematic approach is
to use simulated annealing (i.e., equiva-
lent optimization techniques).

Another technique is to change the
form in which the algorithm is imple-
mented. Figures 6a and b show the
structure of a third-order Lossless
Discrete Integrator (LDI) Chebychev
filter and the associated passband
detail respectively for 7-bit precision
filter coefficients. [2] The transfer
function for an LDI structure has re-
duced sensitivity to the values (word
length) of the coefficients.

INTEGER OVERFLOW
Overflow can occur on integer pro-

cessors when the algorithm involves
repeated addition of numbers of the
same sign. Implementations of FIR and
IIR filters are subject to overflow. The
overflow condition causes a result that
is outside the range of the processor
word length. The result is larger than
the most positive number, or smaller
than the most negative number that
can be represented within the integer
number representation.

If overflow is allowed to occur,
severe signal distortion appears. For
2’s complement, the effect of overflow
at any node within the algorithm will

b2 = –0.816 689 070 728 84
b3 = 0.211 876 355 985 14

Unfortunately, whether using floating
point, block-floating point, fixed point,
or other number representations, the
filter coefficients must be represented
by a finite number of bits.

Let’s assume for the moment that
this third-order filter’s coefficients
must be quantized to an effective word
length with 7-bit precision (6 bits plus

Listing 3—C pseudo-code uses circular buffers so that the right ear sound is modified by an IIR
filter. The circular buffers are implemented using masking operations on an offset rather than direct
pointer arithmetic. This approach is useful on processors without hardware circular buffer capability.

�������� �	�	�BC����� � DE
�������� BC�����	(K� �I��

��%��� ���>)���*��	�	�BC�����4

��%��� %)��>)���*��	�	�BC�����4

�������� �	
����H����(� #

55� ���� 	� +%����+����,

��%��� ����	��	
����H����(�� 8� 3� FA/� FA/� FA� @

55� ���� B� +%����+����,

��%��� ����B��	
����H����(�� 8� 3� FA/� FA/� FA� @

$%��� ��&��'%(%)*+�,� -���� %*�.�����,%)��/� ���� 0������*/

���0*�.1���*2�3

��������+%)��4

55� ���,��� ���%� +�*+)��*� >)���*

� � � � ,����+� ���� %��,��4

� � � � ��%��� 0���9�� 8� ���>)���*4

� � � � ��%��� 0%)��9�� 8� %)��>)���*4

55� ���*���� ���� 9%����*,� �%� �������� ���� +%����+����,

� � � � ��%��� 0����	9�� 8� G����	��	
����H����(� 7� ��4

� � � � ��%��� 0����B9�� 8� G����B��	
����H����(� 7� ��4

55� 6��+�� ��'� ,%)��� ���%� +�*+)��*� >)���*

� � � � 0-���9�� ;� %��,��2� � 8� -��%��2� %*�.�����,%)��4

55� !�$�� �1�� ����� ��*� 1��*� �1�� ,�*��.1�� ,%)��

� � � � 0�������*� 8� %*�.�����,%)��4

55� H%�%*� *�.1�� ��*� ,%)��� '��1� ���� �����*,
� � � �0*�.1����*� 8� �4

� � � � � �%*� -+%)��� 8� �4� +%)��� ?� �	
����H����(4� +%)��;;2� 3

����������0*�.1����*
����������������;8�0-���9��;�-%��,���J�+%)��2�G��	(K2�0
����������������-0����	9�24

��������������	9��JJ4

@

� � � � �%*� -+%)��� 8� �4� +%)��� ?� �	
����H����(4� +%)��;;2� 3

0*�.1����*
������������;8�0-%)��9��;�-%��,���J�+%)��2�G��	(K2�0

������������0����B9�24
����B9�JJ4

����@

� � � � 0%)��9�� 8� 0*�.1����*4� � 55� (�%*�� ��'� %)�9)�� ��� >)���*4
� � � � %��,��� 8� -%��,��� ;� �2� G� �	(K4

@

26 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

change the sign of the result. A severe,
large amplitude, nonlinearity is intro-
duced. To prevent this, the digital
hardware must be capable of handling
(representing) the largest number that
can occur within the algorithm for any
input signal.

Preventing overflow can be handled
in two ways. If the word length associ-
ated with all internal nodes of the
algorithm can be made sufficiently
larger than the I/O signal word length,
then all possible internal signal values
can be accommodated and no overflow
will occur. Some DSP algorithms can
be efficiently performed using multi-
ply and accumulate (MAC) instruc-
tions, which use an 80-bit accumulator
for storing intermediate results.

If there is insufficient processor
word length, then the input signal
amplitude must be reduced so that no
overflow is possible with any input
signal. This reduction is obtained by
scaling the input signal using shift
operators rather than via implicit
(slow) division. But, this scaling means
a penalty in useful signal range. There
is also an increase in the noise level at
the output, because 1-bit inaccuracy at
any stage in the algorithm has a greater
effect on the scaled-down signal.

INTEGER OVERFLOW VERSUS FP
RENORMALIZATION

Integer processors overflow when
the intermediate results of an algo-
rithm are larger than values that can be

represented in the integer number
representation. An equivalent effect
can be seen in FP processors when the
intermediate results are larger than can
be represented in the fractional part of
the FP representation.

When the FP result becomes too
large, the processor renormalizes the
number again. This means that the
number associated with the fractional
part still can be represented as
�A�*�+��%����9�*�. But, the biased
exponent of the FP number representa-
tion is adjusted to compensate. The
larger number is still validly stored

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

"df3.splmag"
"df3.sqplmag"

Normalized frequency (radians)
0.8

Figure 5—Quantizing the multiplication coefficients
to meet the available processor word length will
generate band-pass characteristics that were not
intended.

0
–2
–4
–6
–8

–10
–12
–14
–16
–18
–20

0 0.5 1 1.5 2 2.5 3 3.5

"ldi3.lmag"

A
tte

nu
at

io
n

(d
B

)

Normalized frequency (radians)

0

–0.02

–0.04

–0.06

–0.08

–0.1

–0.12
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

"df3.almag"

Normalized frequency (radians)
0.8

Figure 4—This is a
theoretical frequency
response of a third-
order direct form
Chebychev filter. (b)
is a zoomed version
of the passband of the
normalized filter
response in (a).

a) b)

 CIRCUIT CELLAR® Issue 125 December 2000 27www.circuitcellar.com

within the FP representation, but with
a reduced accuracy, because the granu-
larity has changed.

Renormalization is a straightfor-
ward, but time-consuming operation.
It is typically performed as part of
operations using specialized fast, and/
or highly pipelined, dedicated FP hard-
ware. It will result in subtle nonlinear
effects in most cases. However, if suc-
cessive operations are performed on
large and small FP numbers with differ-
ing signs, algorithm instability and
inaccuracy can quickly appear.

ADVANTAGES OF FP AND INTE-
GER PROCESSORS

Until recently, one of
the major advantages of
integer processors was
the speed of operations
(particularly multiplica-
tion) and the lesser
amount of silicon
needed to implement
the arithmetic units.
Less silicon also means
lower battery drain,

which is important in small, stand-
alone, embedded systems. Although
this cost and performance effect is still
there, changes in technology have
decreased its importance.

The major advantage of an FP pro-
cessor is its automatic renormalization
if the number to be represented be-
comes too large or, just as importantly,
too small for the available word
length. Renormalization allows the
designer to be more flexible when
handling worse-case scenarios of the
interactions between algorithms and
signals. This does not mean program-
mers can use FP processors without
due diligence. Indeed, you need to

know the fundamental limitations of
both integer and floating-point number
representations.

A useful feature in many integer
processor architectures that partially
compensates for the advantages of
automatic FP renormalization is the
sticky flag. This can play a useful role,
as demonstrated in this DSP example
of averaging 64 values of a noisy input
signal that has been sampled using a
12-bit precision A/D converter:

Although the average
is guaranteed to be rep-
resentable in 12 bits, it
is possible for the sum
generated to grow as
large as 18 bits. Such a
sum is not possible to
accurately represent a
16-bit integer processor.

A number of things
can be done to prevent

0
–0.02
–0.04
–0.06
–0.08
–0.01

–0.012
–0.014
–0.016
–0.018

"ldi3.plmag"
"ldi3.pqlmag"

A
tte

nu
at

io
n

(d
B

)

Normalized frequency (radians)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

TT

T
x

x

x

Input
Σ Σ

Σ

Σ

Σ

Σ

Σ

Output

Figures 6a and b—These show the structure of a third-order LDI Chebychev filter and
associated band-pass detail, respectively, for 7-bit precision filter coefficients.

a) b)

28 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

the overflow of the sum. As suggested
earlier, this problem can be overcome
by prescaling the input. In this case,
the input would need to be prescaled
by four prior to calculating the sum:

Output(n) equals the sum divided by
16. The problem with this approach is
that the output value loses precision as
the input signal is effectively sampled
with only 10-bit accuracy.

There is also an annoying side ef-
fect. The precision is lost even for
input signals so small that no overflow
would have occurred. To get around
this problem, you need an algorithm
that continually checks whether or not
the sum is about to overflow and scales
only when appropriate. This continual
checking process places a strain on
processor resources unless shifted to
specialized hardware.

Many processors have sticky bits,
which remember overflow conditions
for many instructions. Rather than the
slow checking for overflow at every
individual stage in the algorithm, the
sticky flag is set at
the end. Then, if the
sticky bit is set, the
whole algorithm is
repeated with scaled
input values.

Other processors
have accumulators
with two or three
times the standard
word length. This
guarantees that in-
termediate calcula-
tions of a sum can

grow without loss of precision. But, if
the algorithm requires storage of these
wide intermediate values, then scaling
must occur prior to storage with an
associated loss of precision.

Many processors can be switched to
employ saturation arithmetic. But, it
can cause long-term inaccuracy, espe-
cially with recursive DSP algorithms
such as IIR filters. Typical problems
that can arise with saturation arith-
metic are dead bands and limit cycles.
Algorithms have dead bands when
changes in the input are not reflected
by expected changes in the output.
Limit cycles are the opposite—changes
occur in the output when there are no
input changes.

An alternate approach with greater
flexibility is to employ an FP number
format. Here the numbers will be auto-
matically scaled during the algorithm,
only if necessary. This implies that FP
operations allow for easier DSP algo-
rithm design and provide results at
least as accurate as an integer
processor’s results.

Although the first concept is true,
the second idea can be misleading.
Algorithm implementation in integer
and floating point can’t be discussed
without specifying the processor!
Imagine implementing the 64-point
average using a 16-bit integer format
and an imaginary processor capable of
performing operations on the packed
16-bit FP format that is used for short
word storage on the 2106 SHARC
processors.

The 16-bit integer algorithm in-
volves software scaling inputs by four,
whether needed or not. The 16-bit FP
algorithm requires no software scaling,
because hardware renormalization will

occur if needed. Keep in mind though,
this 16-bit FP format uses 1 bit for
sign, 4 bits to store a biased offset
exponent, and 11 bits to store the
rounded upper 11 bits of the source.
With this format, even the addition of
only two 12-bit input FP values has a
better than 50% chance of causing
renormalization and an associated loss
of precision.

For the average algorithm with a
12-bit input, the 16-bit integer imple-
mentation will be more difficult to
design, but gives better results. There
just are not enough significant binary
bits available in a 16-bit FP number
representation. This is why FP proces-
sors have word lengths of 32 bits, to
provide 24 bits to store the signal
without significant loss of precision.

STAND ON GUARD
The design and speed of integer

algorithms would significantly im-
prove if you could guarantee that no
overflow could occur and sufficient
precision could be maintained, so that
the output value is an accurate repre-
sentation of the desired signal. This
can be achieved by conditioning the
input signal. Guard bits are placed
above the sampled signal to prevent
overflow. Other guard bits can be
placed below the sampled signal to
protect against loss of precision.

Table 1—This shows the conversion of decimal values 178.125 and 0.6958008 (178.125 / 256) into their stored hexadecimal
representation for 32-bit IEEE single-precision FP numbers.

x +[/64]}

e(k) = error due to
quantization

ideal

Figure 8—Modeling signal quantization effects in
terms of an ideal operation and an introduced
quantization error signal is shown here.

T T T

x x

x

x

Input

x(k)

y(k–1)

–b1 –b2 –b3

y(k–2) y(k–3)

y(k)

Output

Σ

Figure 7—The number of guard bits needed to
protect against overflow can be calculated by
knowing the maximum gain between the input and
any internal node of the algorithm.

Example 1 Example 2

Decimal value 178.1250 0.695808
Best integer 178 1
 approximation
Scientific decimal 1.78125 × 102 6.958005 × 10–1

Scientific binary 1.0110010001 × 2111 1.0110010001 × 2–1

Biased exponent (1).0110010001 × 210000110 (1).0110010001 × 201111110

Stored binary 01000011001100100010000000000000 00111111001100100010000000000000
 representation
Stored hexadecimal 0x43322000 0x2F322000
 representation

 CIRCUIT CELLAR® Issue 125 December 2000 29www.circuitcellar.com

The analysis also provides design
information useful when developing FP
systems. First, the calculation gives an
estimate of the dynamic range avail-
able before precision is reduced
through renormalization. Equally im-
portant is that worse-case information
is made available for deterministic
timing calculations of subtasks involv-
ing real-time FP applications. Many
pipelined FP processors take additional
cycles if renormalization becomes
necessary during an instruction.

For any algorithm, ask how many
guard bits are needed. Also, be sure to
ask where they should be placed in the
processor word.

GUARDING AGAINST OVERFLOW
In principle, the determination of

the optimum number of angel guard
bits for any specific DSP algorithm is
straightforward. You determine the
maximum possible gain between the
input step or node and any other step
or node in the algorithm. Given this
information, the input signal can be
positioned on the data bus with a num-
ber of additional sign bits.

For the average example, the gain is
simple to calculate (64), indicating the
need for six additional sign bits beyond
the input signal’s word length to avoid
overflow. Calculation of the necessary
guard bits for the third-order digital
IIR Chebychev filter (see Figure 3) is
more complex because of the feedback.
Such calculations are best automated
using a tool such as DIGICAP. [3]

The maximum gain between the
input and any internal nodes can be
expressed in terms of the L1 Norms
(see Figure 7). The L1 Norms were
calculated using DIGICAP as:

L1(IN, OUT1) = 1.267
L1(IN, OUT2) = 1.267
L1(IN, DELAY1) = 3.6877
L1(IN, DELAY2) = 3.6853
L1(IN, DELAY3) = 3.6823

This calculation shows a maximum
gain between the input and any inter-
nal node of 3.6877. Because this gain is
less than 4 but more than 2, there is a
need for two additional sign bits to
protect against overflow for signals
processed using this filter form.

GUARD BITS FOR PRECISION
Because of the limited resolution of

the digital signals used to implement
the digital operations, it is not possible
to represent the result of all operations
exactly. Therefore, the signals in the
filter must be quantized. The nonlinear
effects caused by signal quantization
can result in limit cycles. This means
that the filter output may oscillate
when the input is zero or a constant. In
addition to that, the filter may exhibit
amplitude dead bands where it does
not respond to small changes in the
input signal.

The effects of signal quantization
are most obvious when coefficients are
not exact integers. For example, the
coefficient 0.8125, which would be
implemented as an exact multiplica-
tion followed by a division and signal
path quantization (truncation). One
way to understand the effect of quanti-
zation is to treat the calculation of the
result for every node in the algorithm
as perfect, but introduce a small, ran-
dom error (noise) generator at every
node (see Figure 8).

The maximum amplitude of the
noise generator is associated with
changes of one in the least significant
bit of the number representation. The
maximum effect of this error noise
signal at the output can also be deter-
mined if the L1 Norm (gain) between

1212

Sign

Input

0

Digital
filter

Unused

Output

Quantization
error

(ignore)

Figure 9—Here you see positioning of a 12-bit input
signal to avoid overflow and quantization errors for a
third-order direct form digital Chebychev filter.

T T T

x x

x

x

Input

x(k)

y(k–1)

–b1 –b2 –b3

y(k–2) y(k–3)

y(k)

Output

Σ

Figure 10—Calculation of the number of guard bits
needed to protect against quantization error requires
determination of the gain between any internal node
and the output.

30 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

REFERENCES
[1] E. Bessinger, “Localization of

Sound Using Headphones,”
Master’s thesis, University of
Calgary, 1994.

[2] L. Bruton, “Low Sensitivity Digi-
tal Ladder Filters,” IEEE Transac-
tions on Circuit and Systems, vol.
CAS-22, March 1975.

[3] L.E. Turner, D.A. Graham, and
P.B. Denyer, “The Analysis and
Implementation of Digital Filters
Using a Special-Purpose CAD
Tool,” IEEE Transactions on Edu-
cation, Special Issue on Teaching
and Research in Circuits and Sys-
tems, vol. CAS-32, no. 3, 1989,
287–297.

RESOURCE
M. R. Smith and L. E. Turner, “Fi-

nite Precision Effects in Digital
Filter Implementations,” SHARC
’99 International DSP Conference,
U.K., November 1999, 28–33.

any internal node in the algorithm and
the output are known. The calculation
is shown in Figure 9.

The L1 Norms calculated for the
third-order digital IIR Chebychev filter
using DIGICAP are:

L1(OUT1, OUT2) = 1.0000
L1(DELAY1, OUT2) = 1.2657
L1(DELAY2, OUT2) = 1.2657
L1(DELAY3, OUT2) = 1.2657

The values indicate that the maxi-
mum loss of precision between any
internal node and the output is 1.26
bits. Also, it’s possible for the quanti-
zation errors from one node to add to
the quantization errors from another
node. Therefore, the total possible
quantization error is determined by
summing the individual gains, giving
4.7973 bits. This indicates that three
guard bits are needed to ensure that
the least significant bit of the output
has meaning.

EXAMPLE
You have seen that for an input

signal of N bits, the third-order digital
IIR Chebychev filter requires imple-
mentation with two guard bits to pro-
tect against overflow and three guard
bits to protect against quantization
errors. Figure 10 shows the ideal situa-
tion for a 12-bit input signal.

What do these calculations mean in
real life when dealing with integer and
floating-point processors? Figure 11
shows the ideal positioning of an 8-bit
input signal within the word length of
a 16-bit word processor. There are
sufficient guard bits to protect against
both overflow and quantization error.
However, the 16-bit processor would
not satisfactorily handle the third-
order digital IIR Chebychev filter
when the input signal is 12-bits wide.

The calculations for necessary guard
bits to protect against overflow and

quantization errors on integer proces-
sors can be reinterpreted for floating-
point processors. Guard bits for
overflow on integer processors trans-
late into additional bits necessary to
avoid possible loss of accuracy when
floating-point numbers are renor-
malized. Guard bits that protect
against quantization noise on integer
processors effectively translate into
the additional bits necessary to avoid
floating-point truncation errors.

Figure 12 shows an 8-bit input value
stored inside the 16-bit floating-point
representation available on the
SHARC processor. In this representa-
tion, there is 1 bit for the sign, 4 bits
for the exponent, and only 11 bits to
store the fractional part of the number.
With two guard bits necessary to pro-
tect against normalization errors and
three guard bits to protect against
truncation errors, it appears this 16-bit
FP representation is 1 bit short of accu-
rately processing an 8-bit input signal
through the Chebychev filter. How-
ever, the FP numbers are stored using a
�A�*�+ format, which makes an addi-
tional bit available.

Using an argument based on this
analysis, a 16-bit floating-point proces-
sor has the precision of a 13-bit integer
processor. And, a 32-bit floating-point
processor essentially has the precision
of a 25-bit integer processor.

In this article, we looked at a vari-
ety of techniques to ensure precision in

DSP algorithms
on both integer
and floating-point
processors. Both
hardware and
software features
were discussed.
The analysis tool
DIGICAP is par-

S d5 d4 d3 d2 d1 d0 QEQE QENENE

Figure 12—For a third-order digital IIR Chebychev filter, a 16-bit floating proces-
sor provides an adequate word length to protect an 8-bit signal against floating-
point normalization and truncation errors because of the hidden bit associated
with the ������ format of floating-point numbers.

S S S d6 d5 d4 d3 d2 d1 d0

S d6 d5 d4 d3 d2 d1 d0

QEQE QE ???

S S S d10 d9 d8 d7 d6 d5 d4 d2d3 d1 QEQEQE

Overflow protection Quantization protection

8 bits of useable signal

Usable signal

For a 12-bit input signal
1 bit of output is lost to quantization error

Figure 11—For a third-
order digital IIR
Chebychev filter, a 16-
bit integer processor
provides an adequate
word length to protect
an 8-bit signal against
overflow and quantiza-
tion error. A 12-bit signal
would lose 1 bit of
precision in the output-
to-quantization error.

ticularly useful, because it calculates
the necessary guard bits to protect
against overflow and quantization
error. Copies of the DIGICAP disk
with user manuals and examples can be
obtained from Laurence Turner. I

Mike Smith and Laurence Turner both
are professors of electrical and com-
puter engineering at the University of
Calgary, Canada. Mike teaches and
researches microprocessor operations
with a biomedical slant. You may
reach him at smith@enel.ucalgary.ca.
Laurence teaches programming lan-
guages and ASIC design while research-
ing digital signal processing system
design and implementation. You may
reach him at turner@enel.ucalgary.ca.

32 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

A Hand-Held Scoring Device

f or automatic
scoring of multiple

choice tests, many
schools use a commer-

cially available system based on a
desktop card reader machine, which
requires that students mark their an-
swers on preprinted forms of specific
size and layout. This method is expen-
sive because of the equipment and
score cards, therefore, usually it’s used
only for critical testing.

In most cases, because only one
centralized scoring machine is avail-
able to teachers, it is not located in the
classroom where it would offer the
most convenience. Perhaps more im-
portantly, the most useful time to
evaluate test results is immediately
after a test so that feedback can be

given and the missed questions dis-
cussed promptly. This is especially
desirable for periodic quizzes where
the intent is to allow the teacher to
quickly gauge the classroom’s learning
progress. What is needed is a better,
lower cost, convenient way of quickly
scoring quizzes.

INTRODUCING THE QUIZWIZ
To answer these needs, I developed

a hand-held scoring device based on a
Philips 8-bit microprocessor. The
87LPC764 is a new 20-pin offering that
combines fast speed, 8051 code com-
patibility, and low cost. This processor
is ideally suited for the scoring device
project because of its 4-KB code space,
power-saving modes, serial port, and
remaining 16 I/O pins. My objective
was to create a device that is simple to
operate and affordable enough that
every teacher could own one (see
Photo 1).

The QuizWiz has many features
that make the teacher’s ability to score
multiple-choice quizzes fast and easy.
It reduces scoring time to only 10 to
15 s per page. It is capable of scoring
tests printed on standard paper with-
out preprinted forms, using a word-
processing template.

The QuizWiz does not require ma-
chine-assisted paper handling mecha-
nisms. Also it operates on three AAA
batteries. The device is inexpensive
($30 for parts) and measures only 6″ ×
1.7″ × 1″. Simple to learn, the new
teacher’s aid requires only two buttons
to operate.

A 2 × 8 LCD shows the status and
results, and a buzzer provides distinc-
tive audio feedback. Automatic power

FEATURE
ARTICLE

Paul Kiedrowski

When it comes to
making the grade,
Paul’s Design2K
project passed the
test with flying colors
and won a grand
prize. With the Quiz-
Wiz, a teacher has a
simple and cost-effec-
tive tool that can re-
duce the time spent
grading quiz forms.

Photo 1—The prototype QuizWiz
sports a 2 × 8 character LCD
display and just two operating
switches labeled “scores” and
“save.” The quiz format can be
seen here, requiring a starting
sync section, dark areas between
answer selections, and a minimum
amount of white space between
questions. A mini-DIN connector
is on one end to provide an op-
tional serial port interface.

The QuizWiz

 CIRCUIT CELLAR® Issue 125 December 2000 33www.circuitcellar.com

shutdown during idle periods provides
long life. The flexible quiz format
allows multiple columns and pages.

For convenience, there is temporary
memory storage of results during
power shutdowns. Totals, per question
and per quiz, are available. The
QuizWiz can handle eight choices per
question, four columns of questions,
and 32 questions per quiz. The proces-
sor provides an RS-232 serial connec-
tion for uploading results to a PC,
which allows tracking of which ques-
tions were missed per student.

CIRCUIT DESCRIPTION
Figure 1 shows the circuitry has

been partitioned by the two chassis
sections. A PCB in the lower half con-
tains most of the components, whereas
the sensor tip, LCD, and battery com-
partment are in the upper half. The
processor was DIP-socketed for the
development phase (see Photo 2).

A single reflective optosensor was
chosen to perform the scanning detec-
tion process, with an optimum sensor-

to-paper distance of 1 mm. To
preserve battery power, the
optosensor LED is only acti-
vated when the QuizWiz is
pressed against the paper, de-
pressing a mechanical switch
located in the tip. An alternate
scheme that I initially consid-
ered required two sensors, the
second one used for scanning a
parallel column of markings
intended only to synchronize
the scan position. The addi-
tional LED would have signifi-
cantly increased the power
consumption, however.

Normal battery operating
current is approximately 25 mA
when all circuits are operating, 15 mA
when not scanning, and 20 µA during
shutdown. Using three AAA batteries
in series with a typical capacity of
1000 mAh, the teacher can score ap-
proximately 100 quizzes for 30 stu-
dents before replacing the batteries.

The QuizWiz uses a simple three-
chip design consisting of the processor,

a 5-V DC/DC converter, and an RS-
232 three-wire interface. The
87LPC764 is a good match for the
required features, because all of its pins
and most of its features are used in this
project. The only features not used are
the I2C interface and analog compara-
tors. To minimize cost further, no
external crystal is required, because

the processor conve-
niently includes an inter-
nal 6-MHz RC oscillator.

OPERATION
Photo 1 exemplifies

how the quiz format is
arranged to aid in the
scanning process. The
format requires questions
to be arranged as usual in
columns, with three
additional constraints.
These constraints include
a short sync marking at
the top of each column to
aid in establishing the
scan rate, a black or dark-
ened area between each
of the answer selections,
and a minimum amount
of white space between
each question to distin-
guish them.

To use the device,
teachers simply place the
QuizWiz on the paper
and slide it down along
the check boxes used for
multiple-choice selection
by the students. The

Photo 2—A design-for-manufacturing approach was taken for
the construction of the aluminum-chassis prototype. The main
two-sided PCB has ample room for parts, mainly because of
the housing size needed to fit the AAA battery pack and LCD
display.

Figure 1—Here you can see the 87LPC764 processor, MAX221 RS-232 interface, and MAX710 DC/DC converter. The
device supplies 5 V to the LCD, which uses a 4-bit interface to save I/O pins.

 CIRCUIT CELLAR® Issue 125 December 2000 35www.circuitcellar.com

device scans the selections
made and compares the
results to the correct an-
swers that were previously
scanned in via a master
quiz. After each quiz is
scanned, the score is dis-
played as both the number
of correct answers and a
percentage. The teacher
also can select the current
cumulative scoring statis-
tic for each question or the
overall quiz, so the appro-
priate review focus can be
established.

As stated earlier, the
QuizWiz includes a sound-
ing device to provide au-
dio feedback. A short beep
will be heard if a column is
scanned properly, a longer
beep when all columns of
the quiz are correctly
scanned, or various alarm
beeps if an error is de-
tected. After each success-
ful quiz scan, the teacher
presses Save or scans again.

At any time after a
master quiz is scanned, the
teacher can press the
scores button for results of
each question, as well as for other
information. Simply continue to press
the button to advance to the results for
the next question. Note that holding
down the scores button for at least 1 s
resets the display and shows additional
pertinent data.

Results are stored in memory unless
battery power is removed or both the
scores and save buttons are held down
for more than 5 s. Then, the QuizWiz
will erase all results and start over,
directing the teacher that the next quiz
scanned must be the master.

The QuizWiz goes into low-power
shutdown mode after 2 min. of inactiv-
ity and is returned to normal operation
when both scores and save are pressed
together. A flow diagram of the opera-
tion is shown in Figure 2.

For access to quiz scoring details as
they are scanned, you may connect a
PC to the QuizWiz using a standard
RS-232 serial port connection at 9600
bps. The QuizWiz automatically de-

tects the presence of the serial port
connection, and power usage is re-
duced when not connected.

ADDITIONAL FEATURES
There is no main switch needed to

disconnect electronics from the bat-
tery, and existing data is preserved in
RAM during shutdown. Although the
processor has keyboard interrupt capa-
bility, a polling technique is used in-
stead, because a main ISR timing loop
is required. The circuit contains provi-
sions to detect a low-battery condition
and displays an appropriate message,
then shuts down if necessary.

The device must not only correctly
identify marked answers, but also be
capable of reading multiple columns of
questions and ensure that the total
question count is the same as that of
the master quiz.

Because the LCD used was chosen
for its minimal cost and small size, it
was important to carefully choose the

formatting of the dis-
played results. For ex-
ample, pressing the scores
button presents the fol-
lowing sequence:

SCORING RESULTS:
TOTAL # QUES = XX
TOTAL # COLMN = X
TOTAL # QUIZ = XX
AVERAGE SCOR = XXX
QUES #01 SCOR = XXX
QUES #02 SCOR = XXX
(And so on, until all ques-
tions are listed.)
QUIZ #01, SCOR = XXX
QUIZ #02, SCOR = XXX
(And so on, until all quiz-
zes are reported.)
NO MORE QUIZZES
(Then it starts again.)

HARDWARE ANALYSIS
The microprocessor has

the capability to monitor
keyboard interrupts, but
cannot distinguish key
states or releases. The
keyboard interrupt is level
sensitive and will continue
generating interrupts until
the key is released. There-
fore, polling must be used

to determine when multiple keys are
pressed as well as for debouncing.
For these reasons, it is simpler to use
the Timer0 interrupt to monitor key
states and actions, and only enable the
keyboard interrupts for wake up from
power shutdown. The nominal Timer0
interrupt rate is:

s

The behavior of the device during a
scan is detailed in Figure 3. Assuming a
10″ column of 0.1″ markings per an-
swer (dark plus light), scanned in 0.5 s,
the minimum value of TSYNC is:

s
.

Assuming markings are .25 and the
column scanned in 3 s, the maximum
TSYNC is:
 s.

So, during scans, if you use Timer1
in 16-bit mode, it has a range of 0 to

Main program

Timer0 interruptWatchdog timeout (1 s)

Activity timeout (2min.)

Battery power-on
"cold" reset

Power shutdown mode

Scores and Save
keys both pressed?

Initialize CPU,
display intro messages

Do master scan

Scan

Scan

Scan

Select Save
or Scan

Setup master data table

Select Scan
or Scores

Scores pressed
for >1s?

Do student scan
display total score

Select Save
or Scan

Go to next quiz results

Calculate score

Display quiz results

Reset "next quiz"
pointer to

master info

Show wrong answers and/or update student data table

Inc. big timers

Set delay flags

Read key states

Set key flags

Check battery

Check stack ovf

Feed watchdog

Return

Save

Save

YesScores

No

Figure 2—In the operation flow diagram, notice that the scan switch is depressed
whenever the tip is pressed to the paper. This approach minimizes power con-
sumption by allowing the device to use only a single optosensor.

36 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

65.5 µs, which is close enough for start-
ers. You can improve the range by
independently measuring TDARK and
TLIGHT. To conserve memory usage,
if you only store the upper eight bits of
Timer1 when measuring, the precision
will be 256 µs. That’s good enough,
because TDARK won’t be less then
2 µs, and this error does not accumu-
late during the scan.

The Timer0 interrupt latency is not
critical because the fastest operation
you are trying to measure is TDARK
to within 1/10 of its period, or ap-
proximately:

 .

Therefore, you can either disable
timer0 interrupts during this critical
time (with an insignificant effect) or
try to keep the timer0 ISR under 250
µs. If enabled, Timer1 should be set to
a higher priority than Timer0.

The “big timers” are all 8-bit
counts (reset at different times) of
Timer0 interrupts, so the maximum
range is 255 × 65.5 ms = 16.7 s. There
is a 3-bit additional counter used for
the activity timeout, which is 2 min.

The scan key is usually closed, so it
draws current normally. It is biased
through the 5-V line that is turned off
during shutdown, and its keyboard
interrupt doesn’t need to be enabled
for wake up. The Save and Scores keys
are biased to battery because they need
to be monitored for wake up detection.
Either can cause wake up, but polling
must be done to ensure that both are
pressed. This can be done without
activating the 5-V line.

In addition, this can help ignore
false key presses. Key press states are
determined when two successive key
state reads are the same in the Timer0
ISR. Because you need to determine
how long a key is pressed as well as if

Listing 1—Take a look at how the ISR functions.

��������	
�

��	
 ���� ����� ��� ������ � ���������� ���� �������� ���

�� �������

������� ��� ���������� ������� ����!����� ��� �������

��� ���������"

���� #$
�$ ���

����� ������ ���������

��������� ��� ����!� ������

��� ����� �!������ �����

���� ���������

��� ��� �����

����� ������ ����$ ������ ���$ ��� �� �������

����� ������ �����

�	
 ������� ���� ������ ����� �� �������� ��� % ���� ����
�� �� ��� ��� 	�����&�����

���� ����� 	�����'� ���

�� ������� ���� ����� ���� ��� ��� ���
	�����#���!�

�� ��� ������� ���� ���� ��� ������ ���� �� ��(

����� ����!�

����� ��������
�� ���)��*������	����� ����
�����)��*��������

�����)��*������ ����

�����
���� ���)��*��������
��)��*�������� + , ��� ���� ���)��*������ ����

����� ����� �!�������

�� 	����-����� .+ /'� ���� ��� 	����'���� ����
���� ��������
��� #$
�$ ���

������ ��� ����������
������ ���� ���

 CIRCUIT CELLAR® Issue 125 December 2000 37www.circuitcellar.com

more than one is pressed, no action is
taken on key presses until after they
are released.

The buzzer and sensor LED can be
driven directly from the port pins
(20 mA maximum), however, the cir-
cuit uses a 2N3904 NPN transistor
buffer to provide noise isolation.

The battery voltage was selected to
be 4.5 V (i.e., three AAA cells in series)
because the LCD’s high state output
voltage must be within 0.5 V of the
processor’s supply voltage. Using three
AAA cells instead of two is allowed
because of the height of the LCD and
because the 5-V converter has better
efficiency there. A standard AAA alka-
line battery (0.41″ × 1.75″) is typically
rated for approximately 1000 mAh, or
40 h at 25 mA of continuous usage.

By contrast, you could eliminate the
converter by using a standard 9-V

battery and a linear regulator. How-
ever, that would be less efficient. Fur-
thermore, with a capacity of
approximately 500 mAh, it would
yield only a 20-h lifetime.

By driving the LCD in 4-bit mode
instead of 8, you free an additional four
I/O lines, which is convenient and
allows you to add power shutdown,
battery monitor, buzzer drive, and
serial port detection features.

The scan switch could be conve-
niently replaced by another opto-
sensor, but it would draw too much
current. Another alternative is to peri-
odically pulse the scan optosensor (i.e.,
turn on the LED) and check for a high
detect level, indicating that it was
sensing a reflective surface. Then, if
synchronization wasn’t found within a
prescribed time, you would turn it off
again. However, this also would draw

Scan switch is depressed when device touches paper; sensor LED activated
---Wait for switch and optosensor to stabilize, then monitor detect signal
---Disable serial port of scan if QuizTimeout or Column Timeout set NewQuiz;
 otherwise assume new column
---Set QCurrent, QTotal as appropriate; read and save ScanCtartTime from Timer0
---Wait for first dark edge to occur

Transition occurs, start Timer1, monitor detect
stop Timer1, measure TDARK, restart Timer1

Call this period TSYNC = TDARK + TLIGHT

Next transition; stop Timer1, measure TLIGHT, restart

Repeat above process, then compute average
values for TDARK, TLIGHT, TSYNC

Wait for next light edge

Monitor detect , any dark to light records Timer0; this is reference point
QRefTime used to determine when the next question has started
---Set SyncDone flag

A gap between dark markings of more than
1.5 × TSYNC, indicates start of next question

Transition occurs, stop Timer0 and measure (Timer0–QRefTime); restart
Timer0; if delay >1.5 × TSYNC, increment QCurrent; then always start
Timer1 for interrupt at t + TDARK +

Timer1 interrupt, read and record detect state; if light clears DarkSpace
flag and waits for int0 at start of next dark edge; if dark restarts Timer1 for
interrupt at t + TSYNC and sets DarkSpace flag

Transition doesn’t occur if previous space is dark

A new dark to light transition resets reference point
QRefTime is used to determine when next question starts

If the previous space was marked, the next detect
sample will occur here based on Timer1 interrupt

Note: The scan switch is constantly monitored by a Timer0 loop every 65 ms.
If the scan switch is released at any point other than between questions, abort the
current process, display “SCAN ERROR,” and wait for new sync to begin. A
white space delay of > 1.5 × TSYNC is required after the last QRefTime before scan
is released, in case the device is prematurely lifted from the paper.

Allow up to eight choices per question, eight questions per column.

Scan switch released; if QCurrent = QTotal then start save
routine, otherwise restart NewColumnDelay (assume new column if
next scan in less than 5 s) and NewQuizDelay (assume new Quiz
after 10 s)

This
diagram
depicts
a typical
column
of quiz

markings.

Light
Dark

Sync
portion

required
at start
of each
column

Scan
direction

or
increasing

time

This is a
marked
answer

2–30 ms
typical

Gap here
indicates

new
question
or end of
column

time TDARK

time TLIGHT

Figure 3—The scanning process diagram shows how the quiz markings are interpreted and how timing is
used to detect a marked answer. The sync portion provides an estimate of the scanning speed.

38 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

SOURCE
87LPC764
Philips Electronics N.V.
+31 40 27 34184
Fax: +31 40 27 32250
www.philips.com

Special function registers
(up to128 bytes)

Per question scores
and master data

(32 bytes)

Per student scores
and general-purpose flags

(32 bytes)
Variable storage

(16 bytes)
Bit-addressable memory

(16 bytes)

Stack
(24 bytes)

Register R0–R7
(8 bytes)

Current quiz results (Q1-32)
(4 bytes)

Key and I/O status flags (2 bytes)

Scan progress flags (1 byte)

Error flags (1 byte)

Timer enables and overflow (2 bytes)

Byte variable (5 bytes)

Value = 7E used for stack monitoring20h

2Fh

00h

07h
08h

1Fh
20h
2Fh
30h
3Fh
40h

5Fh
60h

7Fh

FFh

80h

16 bytes

Figure 4—The internal RAM memory map shows that all of
the 87LPC764 memory is used.

too much current because the sampling
would have to be done even if there
was no intention of using the device.

The best solution is to embed the
scan switch into the tip of the device
so that it gets pressed automatically
during use. Note that a small lever-
activated micro-switch is well suited
for this purpose.

Optosensor testing revealed that for
the best rail-to-rail output signal, a
simple op-amp comparator is needed.
The processor’s fixed internal voltage
reference of 1.28 V is not well centered
for this application (2.5 V is desired),
and using an external reference would
use another I/O pin, so an external op-
amp is used instead of one of the
processor’s comparators. An external
op-amp also allows buffering closer to
the sensor and away from digital de-
vices for noise protection.

The external op-amp chosen is
MC33171, designed for single-supply
operation, low 180-µA supply drain,
and 1.8-MHz bandwidth. In addition,
pin INT0/P1.3 is used for the detect
signal, so scanning can be interrupt-
driven. This pin is a Schmitt trigger
input, which improves noise rejection.

The detect sensor signal
must be such that moving the
sensor from a light to dark
marking causes the detect
line to go from high to low, so
Interrupt0 can be used (set for
edge triggering). When the
device is lifted from the pa-
per, there is no reflection and
the detect line is low, similar
to that of a dark marking.
This is not a problem, be-
cause the scan switch is de-
pressed first, followed by a
short wait before the sensor is
read. At this point, detect
should be high because of the
paper’s light area reflections.

SOFTWARE
Results for the current

quiz scan are maintained in
four bytes, where each bit
indicates right or wrong for a
particular question (see Fig-
ure 4). The cumulative scor-
ing for up to 32 questions as
well as the master results

require 32 bytes.
An external hardware reset signal is

not needed because the QuizWiz is
using the watchdog. Whenever a reset
occurs, the WatchdogOverflow bit is
checked to determine if the watchdog
caused it. Because the watchdog timer
can’t be turned off by the software
when it enters shutdown mode, the
device must expend a small amount of
power to refresh it. Alternatively, the
WD timer can be disabled completely
at startup and no monitoring is needed
during shutdown.

The main ISR loop uses Timer0 in
the 16-bit mode 1 and always runs (see
Listing 1). The stack will be used for
three levels of subroutines. Interrupts
will be disabled as needed to ensure
this. Assuming that a single subroutine
will need to push PC, DPTR, ACC, B,
R0, and R1 (worst case), this will re-
quire 8 bytes. Therefore the 24 bytes
from 08h to 1Fh are reserved for the
stack. Store 07Eh at location 20h at
the bottom of the bit-addressable
memory to monitor stack overflow.
This value will be checked during each
Timer0 interrupt, and if changed, it
will cause a software reset.

LAST THOUGHTS
The most challenging aspect may

have been cramming all of the cir-
cuitry into the smallest possible pack-
age. Several iterations were required to
optimize mechanical constraints with
battery size, circuit layout, and assem-
bly methods.

The software was limited mainly by
the amount of available RAM, but the
8051 architecture proved adequate
because of bit-flag memory. If even
more RAM was available, then addi-
tional scoring details could be stored
or perhaps more complex grading re-
sults. And, if more I/O pins were avail-
able, then you might consider using a
full 8-bit LCD interface and a larger
character display.

Another improvement would be if
the LCD could run directly off battery
voltage, which of course varies over
time. This might lower current drain
and eliminate the need for a 5-V regu-
lator. However, a brief search for such
a display was not successful.

The scan timing currently is deter-
mined by the use of simple sync marks
at the top of each column and, there-
fore, depends on a uniform scan speed.
In a more elaborate approach, the de-
vice would determine the scan rate
from the timing of the markings them-
selves and adapt to any changes as the
scan progresses.

But, the difficulty is that the proces-
sor must store a significant amount of
scan data and post-process it to evalu-
ate the variable scan rate and take into
account marked spaces. I

Paul Kiedrowski obtained a BSEE from
Rose-Hulman Institute in 1982 and
has worked in the RF, microwave, and
communications industries since then.
Currently, he is senior staff engineer at
Motorola in Fort Worth, Texas, devel-
oping base station infrastructure
equipment. You can reach him at
kiedro@swbell.net.

http://www.philips.com

40 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

NOUVEAUPC Edited by Harv Weiner

SINGLE-BOARD COMPUTER
The Arcom SBC-386 is a single-board computer de-

signed for use in high-volume applications where net-
working capabilities are required. It provides the
performance and reliability of previous generation
boards, with the addition of onboard Ethernet. Applica-
tions include communications products, intelligent
transportation products, medical products, and indus-
trial control.

The heart of the computer is the 25-MHz 386EX
CPU from Intel. Included on the board are 2 MB of
DRAM, 1 MB of flash memory, up to 512 KB of bat-
tery-backed SRAM, three serial ports, a debug port,
10BaseT Ethernet, and an onboard 8- to 18-VDC (10- to
16-VAC) power supply.

The SBC-386 is rated at an operating temperature of
–20° to 170°C and has been designed to meet European
CF standards. The board is supplied with U.S. Software’s
Supertask Multitasking RTOS and Treck’s real-time
TCP/lP stack. Arcom also offers a full suite of software
development tools.

A development kit that contains all the hardware and
software needed to allow immediate development is
available.

The SBC-386 (including software) costs $199 in
OEM quantities. The SBC-386 development kit costs
$415.

Arcom Control Systems
(888) 941-2224
Fax: (816) 941-7807
www.arcomcontrols.com

http://www.arcomcontrols.com

CIRCUIT CELLAR® Issue 125 December 2000 41www.circuitcellar.com

PC/104 CPU MODULE
The CPU-1220 is an embedded 486 AT computer

in a PC/104 form factor.
The module is built around a 486DX core operat-

ing at 75 or 100 MHz. Onboard features include 32
MB of DRAM and SVGA with 2 or 4 MB of DRAM
(for resolutions up to 1024 × 768 with 16 million
colors at 75 Hz). Also included are IDE and floppy
disk interfaces, four RS-232 serial
ports (two configurable as RS-
485), and one 10/100-Mb Ethernet
controller.

A keyboard port, bidirectional
parallel port EPP-ECP, SSD socket
with up to 288 MB of solid state
disk, watchdog timer, and real-
time clock are included. The par-
allel port is internally
multiplexed with the floppy disk
controller, allowing the floppy to
be connected.

The flash BIOS has a capacity
of 1 MB, 128 KB of which is used

NOUVEAUPC
for the BIOS and its extensions. The remaining 896 KB
can be used as read-only and can store the operating
system and user programs and data. The BIOS is
reprogrammable onboard, and the setup parameters are
saved in flash memory, allowing the module to operate
without battery.

The CPU-1220 supports any operating system avail-
able for the standard PC platforms
such as DOS, ROM_DOS, Windows
3.11/95/98/2000/NT, Linux, as
well as real-time operating systems
like QNX, pSOS, PHARLAP,
VxWork, WinCE, and RT_Linux.

Options for the board include a
custom BIOS, fast BIOS boot, ex-
tended operating temperature
range, and custom connectors.

Eurotech SpA
+39-0433-486258
Fax: +39-0433-486263
www.eurotech.it

http://www.eurotech.it

 CIRCUIT CELLAR® Issue 125 December 2000 ������43www.circuitcellar.com

EPC
REAL-TIME PCs

Ingo Cyliax

A Cup of Java

Whether you’re start-
ing your morning at
Starbucks or capping
off the evening at
Borders, a cup of joe
can make a lot of
things better. Don’t
know beans about
Java? Then try
Ingo’s fine blend of
theory and applica-
tion on the subject.

Part 1: Embedded and Real-Time
Applications

i might be in-
clined to think

that you’ve been
living under a rock if

you’ve never heard about Java. The
Java strategy was developed by Sun
Microsystems several years ago. I use
the term “strategy” because Java is
actually a collection of things (lan-
guage, object libraries, and Java Virtual
Machine), rather than one component.

At first, it seemed like there was a
lot of hype about Java, and it wasn’t
really clear what it was suited for.
Initially, it was marketed as a solution
to everything. On the client side, Java
quickly caught on, with a model to
download a Java application (applet) to
your web browser and execute it
within a safe sandbox kind of environ-
ment. This was nice be-
cause it allowed you to
develop complex GUIs
that could run locally and
provide solid perfor-
mance instead of using
the traditional HTML-
style GUI interface. Also,
because the code ex-
ecutes in a sandbox and
(by default) only allows
Internet connections to
the server that the applet
is downloaded from, it’s

easy to develop Internet and Intranet
applications without bothering with
Internet security issues.

After client-side Java applications
became popular, some server-based
Java applications gained acceptance,
where Java programs can run on a web
server to implement applications.
Usually this would be a kind of appli-
cation gateway to a database server, or
perhaps a reservation system. There
has been a lot of press about these
types of applications, but I’m not going
to talk about that in this article. What I
do want to write about is Java in em-
bedded and real-time applications.

WHY JAVA?
There are several features that make

the Java strategy attractive for embed-
ded applications. Java is an object-
oriented language that maintains much
of the basic C syntax. Think of Java as a
C++ with all of the complexity re-
moved. This makes it an easy language
to learn and, in theory, you can expend
more brain power solving the problems
and implementing the algorithms than
fighting the syntax of the language.

Another feature is that it is strongly
typed, and this is enforced by the com-
piler and some JVMs or class checkers.
I’ll get to this a little later.

Besides the strong typing, there is no
traditional pointer type. So, like it or
not, you can’t typecast a pointer to an
array into an integer. This is deemed a
safety feature because now you can’t
just access memory willy-nilly, like in
C or C++. If you want to access device
registers, you’ll have to write native
functions of an object class. This re-
stricts access to the pointer by using a
protocol or API.

Machine type Length Java wrapper

— — Boolean
Byte 8 bit Byte
Short 16 bit Short
Int 32 bit Integer
Long 64 bit Long
Float 32 bit IEEE float
Double 64 bit IEEE double
Char 16 bit Unicode character
— — Void
— — String

Table 1—Here’s a list of the basic data types in Java. These sizes
are defined in order to make Java code portable across architectures.

44������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

Listing 2—Here is a simple ������ ����� in Java. The source code is more complex than in C,
but the object file is only 436 bytes.

������� �	
	�	�����������

������� ��	��� ����� ������ ������

� � ������� ��	��
��
���� �	���������� 	��
���� �

� � � ������������������ ����� !���� ��

�"

"

Finally, the language uses garbage
collection instead of relying on the
programmer to explicitly free memory.
This could be a foreign concept to C
and C++ programmers at first, but in
practice it’s actually not a bad idea.

In a nutshell, you allocate memory
when instantiating new objects or
arrays. As long as your program is still
referencing the object or array, the
memory allocated to it stays around.
After the reference has been forgotten
(i.e., none of the object reference vari-
ables or array variables exist), the
memory is freed at some point.

Right about now, C and C++ pro-
grammers are probably saying, “Yeah,
but....” Garbage collection does have
issues that need to be addressed when
you want to use it in memory-con-
strained or real-time applications, but
it’s a slick way of dealing with memory
management issues. It pretty much
guarantees that there is no memory
leak. Memory leaks, along with illegal
pointer problems, probably account for
most bugs in C and C++ programs.

I will get to these issues next month.
This time around, I want to begin with
a discussion about the Java program-
ming language and the Java Virtual
Machine (JVM).

THE LANGUAGE TO LEARN
As I mentioned, the Java language is

fairly simple. There are basic intrinsic
data types (see Table 1).

In order to avoid confusion, all of
the basic machine data types have
defined lengths and encoding. This
implies that a long machine type is
always a 64-bit integer, no matter what
type of machine the code is actually
running on. Also, all of the integer
quantities are signed integers. There is
no unsigned integer.

You should be familiar with all of
these data types if you program in C
and C++, except for the byte and char-
acter type. A byte is an 8-bit integer,
and a character is a 16-bit quantity
that uses Unicode (rather than ASCII)
to encode character representations.
The difference is that you can do math
on a byte but not on a character. In C
and C++ it’s possible to do math on a
char, even if it holds an ASCII charac-
ter representation. This is necessary to

force programmers to be disciplined
about what they mean when they rep-
resent a value in their programs.

I’ve added the types for Boolean,
Void, and String, which are not really
data types represented in the hardware.
Strings are a special kind of type that
are implemented in an external class
library, so they are objects as far as the
JVM is concerned. The compiler knows
about them because it needs to be able
to deal with String constants. A Bool-
ean is a true/false value, and it’s up to
the JVM to figure out how to store it in
a convenient format.

In Java there is an assignment opera-
tor (=) just like in C. In fact, most of the
actual language syntax is the same.
However, it’s stricter about type con-
versions and whether or not variables
have been initialized. For example, the
code segment in Listing 1 wouldn’t
make it past the compiler in Java, but
it will pass most C compilers without
warning and will actually run.

I don’t know how many times I’ve
made this mistake. Granted, a com-
monly used tool like lint would catch
the uninitialized variable in C and C++,
but because the assignment in the �#

expression is legal C syntax, it’s hard to
spot. The reason Java flags it is because
the �# expression requires a Boolean
value, but the constant 1 is compatible
only with the integer types.

If you’re a C programmer, objects
may be a new thing for you. Think of
them as instances of data types. The
object class is similar to a structure
definition. When you instantiate an
object of a class, the system will allo-
cate memory for the data that is de-
fined in the class. The data elements of
a class are called fields. There are a few
differences between structures and
classes, of course, but these are gravy.

One difference is that, as part of the
data type, a class lets you define spe-
cific functions you can use to operate
on the fields that are stored in an ob-
ject. These functions are called meth-
ods in Java. So, a class is the definition
of an object type, which is made up of
fields and methods.

Another twist is that you can make
fields and methods invisible outside of
the class. This way, if you instantiate
the object, the implementation details
don’t have to be visible to the applica-
tion. All the application has to know is

Listing 1—This shows an example of a common mistake you can make in C that would not pass
the Java compiler.

���

��������������������	$��

���

����������������	�%�&�

���

�����������������#���	�%�&����

������������������������	�%���

����������������"

���

 CIRCUIT CELLAR® Issue 125 December 2000 ������45www.circuitcellar.com

that there is an object and each in-
stance is a reference to the objects that
have been allocated in memory.

Furthermore, you can inherit fields
and methods from another class. This
lets you build complex classes from
simpler classes. Also in Java, a collec-
tion of classes that belong together can
be bundled into a package. Two ex-
amples of packages are �	
	��	��,

basic classes made up of expected
Strings, and �	
	���, classes that are
used to perform I/O on the system.

Let’s look at some examples of Java
and how this might work. In Java, ev-
ery software module is a class. Even if
you want to code a simple '���
(���� application (see Listing 2), you
have to define a class. In this case, you
have to define '���.

Listing 3—This example shows that methods in Java can take different argument types and still
sort it out. The implementation of 	�
��� has several versions for the different types, and the
dynamic linker figures out which one is called based on the signature.

������� �	
	�	�����������

������� ��	���)����*� ������ ������

������� ��	����
���� �	���������� 	��
���� �

���� ��

����������������)���������� ��

#����%&��� +%� ,��--�

�������������������

������������������ ��

"

"

The '��� class is based on the
�	
	�	���� class, which gives you
the ability to write top-level applica-
tion classes. In this case, the '���
class has only one method, main. This
method expects an array of Strings,
which is the argument list from a com-
mand line, and returns void. Notice
that in order to use Strings, you do not
need to import a class because the
compiler knows that Strings are de-
fined in �	
	��	���������. The only
thing the application has to do is call
an output method to display the
'����(���� String.

There’s something a little different
in Listing 3. Notice that in this ex-
ample, I print integers as well as
Strings using the same method. The
methods in a class are matched up
using signatures. The signature of a
method includes the return value, the
name of the method, and the argu-
ments expected. This means that there
are at least two different print methods
defined in the class ���������, pub-
lic void print(String) and public void
print(Integer).

46������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

LIGHTS ON, LIGHTS OFF
I built a class and named it .��'�,

(see Listing 4). The .��'� class has only
one field, the state of the light, which I
represent internally as simply on or off.
The actual field is hidden from the
outside and only the methods, /���0�,
/���0##, and 1���	�, are visible.

If you want to use this class in an
application, define the object to create
storage (see Listing 5). In this case, each
object contains the state field, so it’s
small. To use it, call the methods that
have been exported by the class.

Now you have a class that behaves
as if there’s a light somewhere. In fact, I
defined several lights in this example.
This is great for testing your system
before you have the hardware to turn
lights on and off. When the hardware
becomes available, you can replace the
simulated .��'� class with one that
implements talking to hardware. List-
ing 6 shows that I changed the code to
turn the lights on and off by making a
call to poke, which is a native call that
toggles bits in a hardware port.

This illustrates one use for object-
oriented programming. If you combine
the hardware components or sub-
systems into objects, it’s easy to re-
place objects that implement a test
version of the real thing. In Java, it
binds classes at run time, rather than at
compile time. So replacing the test
function would simply involve copying
the right class file into place, or chang-
ing the search path to the class file.
Whenever you start the software, it
will automatically find the appropriate
class and run.

If you’re seriously considering learn-
ing Java and have some C or C++ expe-
rience, I recommend reading Thinking
in Java, by Bruce Eckel, which is also
available online. [1]

CLASS FILE
After you’ve written a module in

Java, you need to compile it into a class
file. This is the object file format for
Java and normally ends in ���	��
extensions. A class file contains all of
the information a module needs to be
integrated into another program or
class. It also includes what other
classes and modules it depends on and
hints to where the JVM can find them.

In the examples I’ve provided, the
class file that contains the main
method is the one you have to start
with. To run these programs, you need
to tell the JVM to execute this module.
Typically, Java hello will do the job.
The JVM will load the class file and
look for the main module that matches
the signature Void main(String []). If
there is no such method in the top-
level class, it will not start. When
found, it will start executing the code
for the main method. When the JVM
finds a reference to a method or field, it
will look in the class files symbol table
to figure out where to find the class file
to resolve that reference. The JVM

then loads that class file and executes
the referenced method or accesses the
field. If an object of that class is instan-
tiated, then the class will get loaded
when the JVM allocates the memory
for it, because it needs to resolve how
much memory the object requires.

A CLOSER LOOK
Up to now I’ve mentioned the Java

Virtual Machine in passing, so you’re
probably wondering what it really is.
All Java class files contain machine
instructions for a fictional processor
(virtual machine). Tim Lindhol and
Frank Yellin of Sun Microsystems have
written a document called “The Java

������� �	
	������2�

������� �	
	�	�����������

������� .��'��2�

������� ��	��� ����� ������ ������

������� ��	����
���� �	���������� 	��
���� �

� � .��'�� ������� %� �(� .��'����

� � �������/���0����

������������������ /'� 3������ ���'�� ��

 -���������	���- � � ��

� � �������/���0##���

� � ������������������ /'� 3������ ���'�� ��

 -���������	���- � ��

�"

"

Listing 5—This is the software-only implementation of the �
��� class. It uses a state variable to
track the state of a virtual light.

Listing 4—This is the main program for the Light example. It uses a class called �
���, which
has three interface methods, ������, �������, and �������.

������� �	
	������2�

��	��� .��'�� �

����������	��

� � � �
���� /���0���� �

����������	��%�&�

����"

� � � �
���� /���0##��� �

����������	��%�4�

����"

� � � � ������� ��	���� �

���������#����	��%%�4�

� � � � ������ 0## �

����������

������������������ 0� �

����"

"

48������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

Virtual Machine Specification,” which
describes the class file format and what
each instruction needs to do in order to
be compatible. [2]

The JVM is stack-based and has
several different classes of instructions
that implement the basic data types
(byte, char, int, short, long, float, and
double). There are mathematical in-
structions (add, subtract, etc.), logical
expressions (and, or, xor), conditional
jumps, support for arrays, and instruc-
tions to deal with field accesses and
invoking methods. The last class of
instructions is the most difficult to
implement because fields and methods
are specified symbolically, and the
instructions that deal with them have
to contend with the dynamic loading
and linking of the classes.

NATIVE MACHINE CODE
Many compilers produce intermedi-

ate code that can be interpreted or
converted into native machine code for
an architecture. There are concerns
when you interpret intermediate code,
as is true with naive JVMs. However,
most Java instructions can be trans-
lated into native machine instructions
efficiently. This code translation can
be done in several ways.

One way is to statically convert all
of the code in a class into native ma-
chine code. This is typically done with

������� �	
	������2�

� � ��	��� .��'�� �

� � �
���� /���0���� �

� � � �����4�*56$����4�*56�74�4&��

���"

�
���� /���0##��� �

� �����4�*56$����4�*56�894�4&��

�"

� ������� ��	���� �

� � �#� ������4�*56�84�4&�� %%� 4�

� � ������ 0## �

� ��

� � ������ 0� �

�"

� ��	���� �	��
� ���� �������� 	��

� ��	���� �	��
�
���� ��������� 	$����
��

"

Listing 6—The hardware version of the �
��� class uses native C function calls to actually
twiddle some bits on a hardware port. It has the same name and interface as the software-only
version, and the application picks up whichever one is the default in the current directory.

code that you don’t expect to change
for a particular architecture. The draw-
back is that Java byte codes are dense
and memory efficient. After translated
into machine code, the code takes up
more space, which might be a problem
if your device is memory-constrained.

Another way is to compile the code
dynamically, because then the Java
methods are translated by the JVM
into native machine code before it
executes them. This can be done when
the class is first loaded, or even when a
method is executed the first time. The
latter is sometimes referred to as just-
in-time (JIT) compilation.

JIT COMPILATION
There are problems with JIT compi-

lation as well. Obviously, there is a
slowdown the first time a method has
to be translated before being executed.
Some JIT-based JVMs try to analyze
how often a method is being called
before compiling it into native ma-
chine code. The strategy is that there is
some threshold when translating the
method, and running it in native is
cheaper than interpreting it. Some JITs
will optimize the code after it’s trans-
lated. When translated, you have to
allocate memory for the native code.

Performance-enhancing techniques
were developed for desktop and server
applications where you need the best

 CIRCUIT CELLAR® Issue 125 December 2000 ������49www.circuitcellar.com

REFERENCES
[1] B. Eckel, Thinking in Java,

Prentice Hall, Upper Saddle River,
NJ, June 2000.

[2] T. Lindhol and F. Yellin, The
Java Virtual Machine Specifica-
tion, Addison-Wesley, Reading,
MA, 1997.

Ingo Cyliax is a computer and electri-
cal engineer (BSCEE) and the founder
of EZComm Consulting, which special-
izes in embedded systems and FPGA
design services as well as troubleshoot-
ing. Ingo has been writing about vari-
ous topics ranging from real-time
operating systems to nuts-and-bolts
hardware issues for several years. He
can be reached at cyliax@
ezcomm.com.

performance. However, for embedded
and real-time applications, JIT and
static compiling methods will get in
the way. The natively translated code
is likely to be bigger than the Java byte
codes. All of the Java instructions are
expressed in instructions that are 8 bits
in length. Also, because the machine is
stack-based, many frequently-executed
instructions do not have operands.
This makes Java byte codes dense.

Also, doing the dynamic compila-
tions or JIT introduces uncertainty
about timing. The first time a method
is invoked or a class is loaded, the sys-
tem will go away and translate the
code. Some JITs will cache translated
code blocks and throw out code if it’s
not refreshed by executing often
enough. Clearly, this won’t work for
real-time applications.

For those, you typically want to
statically pre-compile your methods to
native code or just use a JVM that does
not perform JIT compilation on meth-
ods that need to run in real time.

Fortunately, you don’t have to write
your own JVM implementation, unless

you’re planning to run Java on a new
architecture that isn’t supported.
There are many commercial and non-
commercial JVMs. Sun implemented
JVMs on several architectures. IBM and
Agilent have JVMs. On the real-time or
embedded front, Newmonics and Wind
River have Java-based solutions. There
are JVMs for 8- and 16-bit micropro-
cessor platforms like Dallas Semicon-
ductors’ Tini or Smart Network
Devices. Finally, vendors like Ajile,
Sun’s PicoJava, and Derivation Systems
sell hardware Java solutions that ex-
ecute Java byte codes directly.

ON THE HORIZON
Next month, I plan to write about

some of the real-time issues in Java. In
the third article, I will look at some of
these JVM solutions in more detail.

As usual, when I introduce a new
topic, keep in mind that a single tool
won’t solve every problem. Just as
there are various CPUs and operating
systems, there are various languages.

With this said, think of Java as yet
another tool you can put in your em-

bedded systems engineering toolbox to
help you solve problems. Java makes it
easier to code large projects in a short
time, but remember that there are
some performance issues. I

50������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

EPC
Applied PCs

Fred Eady

Rabbit Season

With only one more
part to go in this se-
ries, Fred wants to
cover a few more of
the Rabbit Ethernet
project details. So,
this month he shows
us how the board
handles TCP/IP and
everything from col-
lisions to pointers to
calling home.

rank Sinatra did
it his way, and last

month, so did I. In
my previous article, I

took a CS8900A-CQ Ethernet IC and
strapped it to the back of a Rabbit. The
Ethernet IC and silicon bunny combi-
nation worked well, although the
intercard wiring between the Rabbit
and my Ethernet development board
was a bit tricky. As I pointed out ear-
lier in this series, there’s more than
one way to force a Rabbit to generate
Ethernet packets. Move over Frank,
there’s one more Rabbit coming to the
stage in this magic show. Tell Alice to
bring along her teacup in Wonderland,
and let’s follow that silicon hare (wear-
ing a TCP/IP stack over its ears) as it
hops down the Ethernet trail.

f

Part 4: The Wonderful World of TCP/IP

DYNAMIC C PREMIER
The Rabbit 2000 TCP/IP develop-

ment kit is a single-board computer
that is based on the Rabbit 2000 mi-
croprocessor. Although it comes out
of the box with its own version of
Dynamic C, I happened to have a
version of Dynamic C Premier that I
used instead. Dynamic C Premier is
contained on a single CD and is ac-
companied by 1.2″ of excellent docu-
mentation. The manual set consists
of an introduction to TCP/IP, TCP/IP
high-level protocols, TCP/IP function
reference, and the Dynamic C Pre-
mier user’s manual.

Everything for the Rabbit 2000
hardware set is included with Dy-
namic C Premier. All of the sample
code and libraries for the standard
Rabbit 2000 Basic development kit,
the Rabbit 2000 TCP/IP development
kit, and the Rabbit 2000 core module
are shrink-wrapped into the package.

Dynamic C Premier also contains
full TCP/IP source code. Almost all of
TCP/IP’s rowdy friends are in on this
party. ICMP and HTTP with facilities
for SSI, CGI routines, cookies, and
basic authentication are all rolled in.
Also joining this magic show are
SMTP, FTP, and TFTP (client and
server) capabilities. The Rabbit TCP/
IP SBC wouldn’t rate without an
Ethernet interface, so, just to keep me
happy, the folks at Rabbit Semicon-
ductor dropped Ethernet drivers for
the Realtek NE2000 chipset into the
Dynamic C Premier package.

As you read on, you’ll see that I’m
going to use some of this TCP/IP and
Ethernet driver software magic to

Photo 1—This proves it. They
really aren’t invisible when
they sit still!

 CIRCUIT CELLAR® Issue 125 December 2000 ������51www.circuitcellar.com

implement a hare-raising Internet
appliance that monitors its environ-
ment and sends e-mails to inform you
of the good, the bad, and the ugly.

The microprocessor bunny on the
Rabbit 2000 TCP/IP Development Kit
hops along at 18.432 MHz. A 10BaseT
Ethernet interface is about the only
thing that logically differentiates the
Rabbit 2000 TCP/IP Development Kit
from the Rabbit 2000 Basic Develop-
ment Kit. All of the timers, I/O ports,
and memory resources that come with
the latter are included in the former
as well. A still TCP/IP Rabbit is cap-
tured in Photo 1.

REALTEK 8019AS
Unlike your CS8900A-CQ-based

home-brewed Ethernet bunny, the
Rabbit 2000 TCP/IP Development Kit
uses the Realtek 8019AS. The Realtek
8019AS is an inexpensive NE2000-
compatible Ethernet IC that’s based
on the National DP8390 Network
Interface Controller, which (like the
CS8900A-CQ) provides all the media
access control layer functions required

for transmission and reception of
packets in accordance with the IEEE
802.3 CSMA/CD standard.

In 8-bit mode, using DMA resources
to transfer data from the NIC’s on-chip
buffer memory to the host micropro-
cessor-controlled memory is not an
available option on the CS8900A-CQ,
but DMA is used to an advantage on
the Realtek 8019AS.

Within the Realtek 8019AS, the
onboard FIFO and DMA channels work
together to form a simple packet man-
agement scheme that provides up to
10-MBps internal DMA transfers.

A second set of Realtek 8019AS
DMA channels is provided to get data
out of the internal buffer ring and
into the microprocessor-controlled
memory for processing. The first set
of DMA channels is termed local and
the second set is called remote. Local
DMA channels burst data into and
within the Realtek 8019AS. Remote
DMA channels help get data from the
Realtek 8019AS NIC to the host
microprocessor.

Taking a look at Figure 1 and com-

paring it to the CS8900A-CQ imple-
mentation in earlier articles, you can
see that physically the Realtek
8019AS and the CS8900A-CQ hook
up to external support circuitry in an
almost identical manner. Just like the
CS8900A-CQ, the Realtek 8019AS
was originally designed for major
Ethernet applications in desktop per-
sonal computers. 10/100 Ethernet ICs
came along and washed out the use-
fulness of the Realtek 8019AS as a
major desktop player. Because of its
affinity to embedded-oriented 8- and
16-bit microprocessors, the Realtek
8019AS (like the CS8900A-CQ) found
its way into embedded applications.

ALMOST ONE AND THE SAME
The Realtek 8019AS is controlled

through an array of on-chip registers.
It isn’t CS8900A-CQ PacketPage tech-
nology, but it’s logically identical.
Again, just like inside the CS8900A-
CQ, the Realtek 8019AS registers are
used during initialization, packet
transmission, and reception. There are
also registers for remote DMA opera-

Figure 1—An extra address line for the RealTek 8019AS’s internal register set is the major physical difference between implementing the RealTek 8019AS and the CS8900A-CQ.

52������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

tions on the Realtek 8019AS that
don’t exist on the CS8900A-CQ. By
using the Realtek 8019AS internal
registers you can perform the same
logical operations as when using the
CS8900A-CQ’s PacketPage registers
during initialization. These operations
include defining the physical address,
setting receive and transmit param-
eters, and masking interrupts.

On the Realtek 8019AS, add config-
uring DMA channels and hacking out
transmit and receive buffer ring areas
to the aforementioned list. Because
DMA is an integral part of the Realtek
8019AS’s NIC-to-microprocessor
interface, there must be a control
mechanism or register to act as the
traffic cop for the dataflow between
NIC and microprocessor memory and
the NIC-to-Ethernet interface. This is
done within the Realtek 8019AS via
the command register (CR), which is
used to initiate remote DMA opera-
tions as well as data transmission.

On the original CS8900A-CQ de-
sign I presented, the interrupt line
was polled by the microprocessor to

check for receive activity. If you take
a closer look at Figure 1, you’ll see
that the Rabbit 2000 TCP/IP Develop-
ment Kit follows the CS8900A-CQ
logic that polls the NIC interrupt line.
Only the names have been changed to
protect the innocent. The micropro-
cessor senses the Realtek 8019AS
interrupt via polling and consults the
Realtek 8019AS’s interrupt status
register (ISR) to determine what type
of interrupt has occurred.

 The CS8900A-CQ generates inter-
rupts in the same way, except the
register called the ISR on the Realtek
8019AS is called the the Interrupt
Status Queue on the CS8900A-CQ.
Hmm…I wonder if they call the top
on an IC a “bonnet.” (For those of you
who think us Southern boys aren’t
“edumacated,” a bonnet is the com-
mon term for a hood when cars are
the topic of discussion.)

COLLISION COURSE
We’re working with Ethernet here

and dealing with it is similar to
watching a NASCAR Busch Grand

National Race. It’s a foregone conclu-
sion that collisions are going to occur.
So, the CS8900A-CQ and Realtek
8019AS transmit packets are in accor-
dance with the CSMA/CD protocol.
Both the Realtek 8019AS and the
CS8900A-CQ schedule retransmission
of packets on collisions up to 15 times
according to the truncated binary
exponential backoff algorithm. The
CS8900A-CQ datasheet calls this the
standard backoff algorithm. After you
cut the transmit process loose, each
NIC is on its own until the transmis-
sion cycle is aborted or completed.

Assuming that buffer memory is
free for the taking, transmitting pack-
ets with the Realtek 8019AS entails
setting up an IEEE 802.3 conformal
packet in memory with 6 bytes of the
destination address, 6 bytes of the
source address, the data byte count,
and data.

If you came in on the ground floor
of this set of articles, you may recog-
nize the above sequence of bits as a
standard Ethernet packet. When the
required packet items are laid in by

 CIRCUIT CELLAR® Issue 125 December 2000 ������53www.circuitcellar.com

the controlling microprocessor, the
following Realtek 8019AS registers
are loaded with TPSR (the packet
starting address) and TBCR0 and
TBCR1 (the length of the packet).

Finally, to initiate the transmis-
sion, the PTX (transmit packet) bit of
the Realtek 8019AS command register
is set. If the total length of the
Ethernet packet is less than 46 bytes,
the Realtek 8019AS (and the
CS8900A-CQ) will automatically pad
the packet to avoid sending a runt
packet onto the network. If you’re
into research and debugging, by con-
figuring the right bits in the right
registers, you can tell either the
CS8900A-CQ or the Realtek 8019AS
to send the runt anyway.

All of the Realtek 8019AS acro-
nyms I just exposed you to can be
effectively put into place by following
the setup in Figure 2.

The CS8900A-CQ is a little differ-
ent in that the on-chip buffer space is
asked for and permission is granted to
load the buffer area before any data is
transferred for transmission. This is
called a bid for buffer space in the
CS8900A-CQ documentation. The
Realtek 8019AS documentation
stresses that if the buffer ring area of
the Realtek 8019AS is set up correctly
at initialization, there should never be
any contention for transmit buffer
memory during normal operations.

The transmission of data to the
ether is an area that both NICs (the
CS8900A-CQ and the Realtek
8019AS) run in parallel as far as opera-
tion is concerned. Before jumping into
the ether, both NICs will check them-
selves to see if they are receiving.

If the coast is clear, the CS8900A-
CQ starts transmission of the 8-byte
preamble after a specified number of
bytes (5, 381, 1021, or all) are loaded
into the transmit buffer. Note that
this threshold is determined by bit
settings in the CS8900A-CQ Transmit
Command Register.

The Realtek 8019AS uses its DMA
channels and FIFO to follow the pre-
amble with valid data. The Realtek
8019AS DMA bursts data to the FIFO,
which is then serialized out as
clocked NRZ data. Then, the Realtek
8019AS DMA refreshes the FIFO

when the FIFO additional maximum
threshold is reached. The FIFO thresh-
old is register-programmable.

In both cases, each NIC continues
the transmission as long as the trans-
mission byte count in the registers are
greater than zero. After all bytes are
sent, the CRC is calculated by each
NIC and sent to complete the packet.

If a collision occurs during trans-
mission, the transmission is stopped
and 32 ones (a jam sequence) are
transmitted to make sure the segment

knows a collision just took place. The
standard backoff algorithm is ex-
ecuted by the CS8900A-CQ and the
Realtek 8019AS, and the transmission
is tried again. When the transmission
finishes, both NICs have transmit
status registers that can be queried as
to how the transmission went.

Receiving data from the ether is a
similar process for each NIC, as well.
Both NICs listen to the wire, sense a
carrier, and start synchronizing with
the alternating ones and zeros pre-

54������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

amble. After the two consecutive
ones of the SFD (start of frame de-
limiter) are sensed, the preamble
ends and the NICs expect everything
behind this set of ones to be valid
data. Both NICs check the destina-
tion address to see if the incoming
packet is addressed to them. If it’s
not, then the packet is moved into
buffer memory and subsequently
discarded.

On the other hand, if the packet
destination address matches the
NIC’s address filter setting (hashed or
individual), the packet is moved into
memory so it can be transferred to
the microprocessor memory for pro-
cessing. If everything goes OK during
the receive cycle, both NICs post
receive statuses in their respective
registers and generate an interrupt to
let the microprocessor know that an
event needs attention.

SOME POINTERS
The Realtek 8019AS differs from

the CS8900A-CQ in that the data
coming into the Realtek 8019AS is
put into a receive buffer ring,
whereas the CS8900A-CQ stuffs the
data into a flat predefined buffer area.
The CS8900A-CQ method is valid
and there is nothing special about the
Realtek 8019AS’s ring buffer. It’s a
classic circular, head and tail buffer
scheme. The following four pointers
control the ring:

• PSTART—the beginning
address of the buffer ring

• PSTOP—the address at
the end of the buffer ring

• CURR—the current page
pointer, which points to
the next available buffer
area for the next incom-
ing packet

• BNRY—the boundary
pointer, which points to
the next packet to be
unloaded from the buffer
ring

The buffer ring size is
determined by the bytes
between PSTART and
PSTOP. PSTART and
PSTOP are loaded at initial-
ization time. As packets

come in, the CURR pointer moves
ahead of the BNRY pointer around the
ring. If CURR reaches BNRY, the
buffer ring is full. All receptions are
aborted and missed packet registers are
updated until this condition is cleared.
The remote DMA channels help re-
move packets from the buffer ring. The
original datasheets tell you directly
that enough receive buffer memory
should be allocated initially to avoid
the CURR = BNRY condition.

Each Realtek 8019AS buffer is
256 bytes long. A valid received packet
and a 4-byte offset are placed at loca-
tion CURR. Buffers are automatically
linked together to receive packets
larger than 256 bytes. When all the
bits are in, the receive status register
(RSR), a pointer to the next packet,
and the byte count of the current
packet are written into the 4-byte
offset. That’s basically how the
Realtek 8019AS works.

To be honest, I was disappointed
with the Realtek 8019AS datasheets
and support. I realize that, as a profes-
sional, I’m supposed to know about
parts like the Realtek 8019AS. So far,
I haven’t received an airline ticket to
Taiwan for a personal briefing. So,
how do other people learn how to
manipulate this IC? Besides, who
doesn’t know that NE2000 and
DB8390 don’t correlate?

The Realtek 8019AS datasheet on
the web site leaves much to be desired.

It states, “This documents only the
differences between the 8019 and the
8019AS.” Nothing plus nothing equals
nothing. So, you know me, I fired off
an e-mail to Realtek asking for more
detailed documentation. They pointed
me to the DP8390 where I looked at a
National AT/Lantic datasheet. This
turned on the gas but didn’t boil the
water. Not yet satisfied at this point, I
wrote a second note to Rabbit Semi-
conductor. I figured if they were using
this part, they had to know how to
make a go of it.

JUST LIKE MAGIC…
Well, what do you think I ended up

with? If you guessed more DP8390
stuff, you’re right! In the end, every-
thing I received from all parties
proved useful. I found that the code
offered in the National DP8390 data-
sheets from Rabbit Semiconductor
was portable as well as informative.
All of the datasheet material descrip-
tions are posted at the end of this
article for your reading enjoyment.

I’m amused that, by putting the
NE2000-compatible label on the
Realtek 8019AS, you’re expected to
know what to do with it. Get a grip.
I’m not caught in an episode of Star
Trek here but if I was, my TriCorder
must not be working. If you want to
see how the Rabbit 2000 TCP/IP de-
velopment kit brings up its onboard
Realtek 8019AS, just start some of the
Rabbit’s TCP/IP sample code and step
through it. When you do that, the
Realtek 8019AS packet driver source
code will magically appear.

RABBIT PHONES HOME
Now that you have a sense of what

the Rabbit 2000 TCP/IP development
kit is and some knowledge of the
Realtek 8019AS Ethernet IC that re-
sides on it, let’s get on with a descrip-
tion of the supporting hardware you’ll
use to make it send e-mail.

If your Rabbit was in a briar patch
(a remote location void of other
friendly cottontails), and it sensed
something was not as it should be, it
would most likely hop to the nearest
telephone to dial, connect, and log on
to the ISP, compose an e-mail, and fire
it off. When the e-mail was en route,

Destination address
6 bytes

Source address
6 bytes

Type length
2 bytes

Data
46 bytes minimum

TPSR

TBCI

Figure 2—You can fiddle around with the transmit buffer’s location
and size on the RealTek 8019AS. This is fixed on the CS8900A-CQ.

 CIRCUIT CELLAR® Issue 125 December 2000 ������55www.circuitcellar.com

your silicon bunny would return to its
post in the briar patch to listen for
events to write home about. The prob-
lem is, there’s no modem included
with the Rabbit 2000 TCP/IP develop-
ment kit to help any of the onboard
serial ports send data or e-mail via
dialup through the Internet. And, if
there was a modem, there’s no dial-up
IP software to make the connection to
the ISP. Basically, it would be out
there collecting intelligence at Rabbit
speed with no way of communicating
its findings to Cottontail Central.

Well, I’ve been talking about devel-
opment platforms from the beginning
of this article. So, why not bring on
one more development board to solve
the modem problem?

You’ll need a modem that can do
what desktop modems do in an em-
bedded size and price range. For the e-
mail packets the bunny will be
sending, the modem you select won’t
have to be fast, but it would be nice to
have all the goodies you’ve come to
love on internal and external personal
computer models. For instance, the
AT command set is a lot easier to deal
with than some obscure proprietary
modem command set.

Another factor is the location of
the briar patch. Your modem should
be just as at home with a Texas jack-
rabbit as it would be with a nose
twitching Aussie puddle jumper.
Thanks to my peers at Circuit Cellar,
the search for a suitable modem ended
quickly; Jeff Bachiochi wrote about
the Si2400 in issue 117. Silicon Labs’
V2.BIS ISOmodem is imitating an
invisible Rabbit in Photo 2.

ISOMODEM
What you see in

Photo 2 is the Si2400
evaluation board. Look-
ing closer at the photo
you’ll notice two SOIC
packages, the Si2400
and the Si3015, sepa-
rated by a couple of
large SMT capacitors.
Those four parts are
essentially the whole
enchilada. Actually, the
Si2400 ISOmodem is a
chipset that integrates a
globally programmable

telephone line DAA (direct access
arrangement). Normally, I list things
that are included with a whiz-bang
part. With the Si2400 ISOmodem
chipset, the following are what you
don’t need to include:

• DSP data pump
• modem controller
• AFE (analog front end)
• isolation transformer
• relays

Photo 2—I’ve never heard bunnies babble, but if they do, the Si2400
ISOmodem can send it over.

• optoisolators
• 2- to 4-wire hybrid
• voice codec

Now here are the things the Si2400
ISOmodem chipset does without the
previous list of items:

• 2400-bps V.22bis
• 1200-bps V.22, V.23, Bell 212A
• 300-bps V.21, Bell 103
• V.25 fast connect
• V.23 reversing
• security protocols including SIA
• Caller ID detection and decode
• DTMF tone generation and detection
• UART functionality with flow
 control
• globally programmable integrated

DAA with parallel phone detect,
overcurrent protection, and capaci-

 tive isolation
• AT command set
• integrated voice codec
• call progress support
• HDLC framing in hardware
• PCM DATA pass-through mode
• 3.3- or 5-V power

56������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

Fred Eady has more than 20 years of
experience as a systems engineer. He
has worked with computers and com-
munication systems large and small,
simple and complex. His forte is em-
bedded-systems design and commu-
nications. Fred may be reached at
fred@edtp.com.

SOURCES
Realtek 8019AS
Realtek Semiconductor Corp.
(886) 3 5780211
Fax: (886) 3 5776047
www.realtek.com.tw

Si2400 ISOmodem
Silicon Laboratories
(877) 444-3032
Fax: (512) 416-9669
www.silabs.com

S-7600A
Seiko Instruments USA
Electronic Components Division
(310) 517-7771
Fax: (310) 517-7792
www.seiko-instruments-usa.com

Ethernet development board
E D Technical Publications
(800) 499-3387
Fax: (321) 452-1721
www.edtp.com

Rabbit 2000 TCP/IP development kit
Rabbit Semiconductor
(530) 757-8400
Fax: (530) 757-8402
www.rabbitsemiconductor.com

RESOURCE
Application notes
AN-475, AN-874, AN-93

Photo 3—Here are 48 pins of Internet Express.

M
P

U
 in

te
rf

ac
e

Physical layer
interface

Network stack

PPP

IP

TCP

S
R

A
M

 in
te

rf
ac

e

SRAM
 10 KB

RESETX

CLK

SD(7:0)
CS
PSX
C86
RS
READX
WRITEX
BUSYX
INTCTL
INT1
INT2X

C
T

S
X

D
S

R
X

R
I

R
X

D
D

C
D

D
T

R
IX

R
T

S
X

T
X

D

UDP

It’s a good thing Rabbits can’t
speak, or the Si2400 ISOmodem
would come as standard equipment on
every bunny in the field. Voice codec
is nice, but I won’t be using it here.

The silicon bunny now has some-
thing to say and a new modem, but
with the equipment it has now, it
can’t get any e-mail through to the
ISP. That’s because there’s no protocol
in place to complete the ISP connec-
tion. If you back up a bit, you’ll notice
that I didn’t mention anything about
PPP (point-to-point protocol) being a
Rabbit virtue. Most ISPs use PPP for
dial-up connections today. Well, I
heard on the QT that the Rabbit pro-
gramming staff is close to releasing
PPP code for the Rabbit 2000 TCP/IP
development kit. Just in case it
doesn’t hit the streets by press time,
I’ll revert to Plan B from the Florida
room. Plan B entails the implementa-
tion of Seiko Instruments’ S7600A
engine for the Rabbit (see Photo 3).

The iChip S-7600A in Photo 3 has
a TCP/IP protocol stack built into its
hardware that provides TCP/IP func-
tionality for small microprocessors
that are unable to support a full TCP/
IP stack and their application coding
at the same time. The Rabbit is not
included in the small microprocessor
equation because it can indeed sup-
port a full TCP/IP stack and carry on
with its daily duties as well. Right
now, all you need the S-7600A to do
is provide the PPP functionality that
hasn’t been found in the Rabbit’s
winter coat yet.

PLAN IN MOTION
As you can see in Figure 3, the S-

7600A takes Rabbit data in and spits
PPP, TCP/IP, and UDP out the other
end to a modem interface. I’ll have to
side with Steve Ciarcia on this one.
I’d rather solder in the S-7600A than
write the TCP/IP stack code.

So, the plan’s set. The Rabbit 2000
TCP/IP development kit includes the
capability to send e-mail using SMTP
code in the Dynamic C Premier librar-
ies. The Rabbit 2000 TCP/IP develop-
ment kit has ample I/O to sense
events that will trigger and send e-
mails. Si2400 ISOmodem hardware is
standing by to affect the ISP connec-
tion and the S-7600A is ready to fill in
if you don’t get the PPP native code
for the Rabbit 2000 TCP/IP develop-
ment kit before press time.

The ISOmodem evaluation board is
available for $150. Considering the
need for FCC approval of the DAA, I
opted to purchase the eval board for
this development project. I held off on
the S-7600A evaluation kit because

$199 was too expensive for what it
offers in terms of hardware, and it
assumes that an ISA interface would
be used for evaluation. I wasn’t ready
to pay for an ISA FPGA I may never
use. Seiko did stick a standalone S-
7600A on the board but that wasn’t
enough to sway me. So, next time I’ll
construct a nifty little S-7600A board
we all can afford, send e-mail from the
Rabbit 2000 TCP/IP development kit,
and again prove without a shadow of a
doubt that it really doesn’t have to be
complicated to be embedded. I

Figure 3—There’s
not much I need to
say about this
picture.

http://www.realtek.com.tw
http://www.silabs.com
http://www.seiko-instruments-usa.com
http://www.edtp.com
http://www.rabbitsemiconductor.com

58 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

Using a T6963 Controller-
Based Graphics LCD Panel

FEATURE
ARTICLE

r
With the latest ad-
vances in display-
panel technology, you
wouldn’t think that
Brian would have a
hard time finding a
simple 200 × 64 pixel
display. But, finding
one that was easy to
design into a micro-
based project had its
challenges.

odney
Dangerfield’s fa-

vorite expression is “I
don’t get no respect,” a

sentiment I’m sure LCD panels would
share if they had feelings. Consumers
own so many gadgets containing
LCDs that they don’t give them a
second thought. Like most electronics
enthusiasts, I take them for granted
now that I’ve used so many $10 alpha-
numeric LCDs. Had I not recently
replaced my laptop with one that
features a 15″ XGA screen, I probably
would feel blasé about that LCD
panel, too.

When faced with designing an in-
strument incorporating a modest-sized
graphics LCD, this cavalier attitude
evaporates quickly. I recently de-
signed an instrument that needed a
graphics display with about 200 hori-
zontal pixels and at least 64 vertical
pixels. My first thought was that there
must be tons of small LCD panels lan-
guishing in warehouses, the victims of
a technology moving so quickly that
many products become obsolete al-
most as soon as they are introduced.
Unfortunately, many of those LCD
panels are hard to design into the
average micro-based project.

In this article, I’ll outline the expe-
rience I gained while designing a “se-
rial backpack” that makes it easy to

Brian Millier

use a popular LCD panel in small
micro-based projects.

THE PLAYERS
I searched the Internet for available

devices and learned that they fall into
three broad categories including VGA
and sub-VGA panels, NTSC video
panels, and LCD panels that contain
onboard controller and memory.

The first panels, VGA and sub-VGA
panels, lack both an “intelligent” con-
troller and raster memory. They are
difficult to use in a project containing
only a conventional microcontroller
because they must be constantly re-
freshed and the timing is critical. They
are designed to use with a dedicated
controller LSI chip and usually are
interfaced to a full microprocessor bus.
I tip my hat to those Circuit Cellar
authors who have managed to use this
type of display with a PIC micro and
still have some CPU time left to do
useful tasks. Although not for the faint-
hearted, their advantage is that they
can be obtained on the surplus market
for a song.

NTSC video panels are designed to
be driven with standard TV video
signals and have an aspect ratio similar
to that of a standard TV screen. They
come in all sizes from 0.75″ to about
5″ and cost about $50 on the surplus
market. These displays are best left to
applications where NTSC video is the
main requirement. Incidentally, if you
need video with a text overlay, con-
sider Decade Engineering’s BOB-II.

The third category, LCD panels
that contain an onboard controller and
memory, generally use a CMOS LSI
controller such as the Toshiba T6963,
Sanyo LC7981, S-MOS SED133x se-
ries, or Samsung KS0708. Unlike the
devices mentioned earlier, these units
have onboard raster memory, which
means that they don’t require constant
refreshing. This relieves your project’s
micro of a time-consuming chore. Of
the three controller chips, the Toshiba
T6963 has the best mix of features,
availability, and documentation.

THE T6963 CONTROLLER
The T6963 controller isn’t an “in-

telligent” controller, so don’t go look-
ing for a screen clear command, line

 CIRCUIT CELLAR® Issue 125 December 2000 59www.circuitcellar.com

draw command, or automatic cursor
handling. Anything more involved
than putting up a text character on the
screen requires firmware routines. The
good news is that the T6963 has a
well-designed memory architecture
and instruction set that provide effi-
cient text and graphics routines. Un-
like some other controllers, the T6963
has a character generator built-in.

An important feature is the screen
memory organization. The T6963 can
control a 64-KB SRAM directly. Com-
monly this controller is used with 240
× 64-pixel LCD displays and uses an
8-KB SRAM, which provides at least
twice as much memory as is needed
to perform all functions.

Another significant feature of this
controller is that it uses separate
memory areas for its text and graphics
bitplanes. You can, for example, erase
text without disturbing underlying
graphics images. Or, you may draw
dynamic graphics displays such as
charts and graphs without worrying
about clobbering text labels in the
same region of the screen.

The custom character generator
area (CGRAM) is a third memory area.
In normal text operation, the T6963

uses an internal
ROM-based character
generator for the first
128 characters of its
font. The last 128
characters are defined
by patterns that you
may download into
the CGRAM
memory.

There also is an
external character
generator mode for
users who want to
define a complete
256-character font.
This could be useful
for a foreign language,
for example. Eight
bytes per characher of
SRAM memory is
needed for this func-
tion. That’s a maxi-
mum of 2048 bytes
when using the exter-
nal character genera-
tor mode.

The location and size of each of the
three memory areas is user-defined. In
other words, you must send the T6963
commands to set up pointers to the
three regions during the initialization
phase of your program.

The T6963 controller is interfaced
to the host via an 8-bit parallel
interface, using two registers,
command/status and data. To
access the raster SRAM using
an interface such as this, you
must first issue a command
that loads the desired memory
address. Then you must issue
a command that reads or
writes to that address.

This requires quite a few
data transfers just to read or
write one memory byte. To
speed up the process for se-
quential memory accesses,
there are two alternatives.
There are data read/write com-
mands that automatically in-
crement the SRAM memory
pointer every time they are
executed, which eliminates
the need to send a new
memory pointer for each
memory access.

And, for large, sequential accesses
to the SRAM memory, there is the
data auto mode. After the data auto
write command has been sent, you
write a continuous stream of data to
the T6963 data register, which then
loads it into sequential SRAM loca-
tions. Alternatively, using the data
auto read command followed by a
repeated reading of the data register
will return contiguous SRAM
memory data. To exit this mode,
there is the data auto reset command.

Text is placed on the screen by
calculating the proper text memory
address to correspond to the desired
row and column and then writing the
desired character code to this address.
The only caveat is that the character
codes that Toshiba uses are not the
ASCII character codes; instead, the
T6963 uses the ASCII code minus 32.
Because the first 32 ASCII character
codes are not displayable control char-
acters, there is logic to this decision.
It frees 32 character codes in the up-
per 32 locations of the ASCII 7-bit
character set.

Toshiba uses this area for accented
vowels and currency figures that are
useful in an international context. It
would have made more sense to place
these international characters in the
lower 32 ASCII code locations (in

1 FGND To bezel

LCD
controller

U1

11 D0
11 D0
18 D7
5 *WR
6 *RD
7 *CE
8 C/*D
10 *Reset
19 FS

Decoder
U6

SRAM
U7

Data address
control bus

Bias circuit

Com
U2

SEG
U3

SEG
U4

SEG
U5

240 × 64 LCD panel

EL/LED backlight

CCFL backlight

64

80 8080

9 A

20 K

VFL

VFL

R18

R19

2 VSS

3 VDD

4 VEE

LCD driver control signals

Bias voltage for LCD

Figure 1—Although not labeled as such, U1 is a Toshiba T6963 controller
in the AZ Displays’ AGM2464D LCD panel.

Pin
number Symbol Function

1 FGND Frame ground (0 V)
2 VSS Ground
3 VDD Logic supply (5 V)
4 VEE Negative supply for LCD
5 –WR Data write
6 –RD Data read
7 –CE Chip enable
8 C/–D H—command/status

 L—data
9 A Backlight anode
10 –RESET Controller reset
11 D0 Data bit 0
12 D1
13 D2
14 D3
15 D4
16 D5
17 D6
18 D7 Data bit 7
19 FS Font select

 H—6 × 8, L—8 × 8
20 K Backlight cathode

Table 1—The T6963 controller uses Intel-style interface signals.
Note that the LCD backlight signals may differ on other displays
with different or no backlight.

60 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

Item

C/*D setup time

C/*D hold time

*CE,*RD,*WR
clock width

Data setup time

Data hold time

Access time

Data output
hold time

Item Condition Min. Max. Unit

tCDS Figure 100 _ ns

tCDH Figure

Figure

Figure

Figure

Figure

Figure

ns

ns

ns

ns

ns

ns

150

50

_

_

_

_

tDS

tDH

tACC

tOH

_

10

10

80

80

40

tCP, tRP,
tWP

C/*D

tCDS tCDH

tCP,tRP,tWP

tDS

DO~D7
(read)

DO~D7
(write)

*RD,*WR

*CE

tDH

tOHtACC

Figure 2—If you are using a fast microcontroller, you should note the
access time specification of the T6963 controller.

place of the control characters), thus
leaving the commonly used characters
accessible by using their proper ASCII
codes.

An additional enhancement is avail-
able when you select the text attribute
mode using the mode command, which
I’ll describe later. In this case, you lose
graphics capabilities, but can write
various bytes to the graphics bitplane
to modify the way each text character
is displayed.

 Text cursor control is flexible, but
must be handled entirely by your firm-
ware routines. You can define eight
different cursors from a simple under-
line to a full block, turn on/off the
cursor, or make it blink, all under pro-
gram control. Unlike those alphanu-
meric LCD modules you’ve probably
used, the T6963 does not move its
cursor along with the text while you
place it on the screen. When you write
a routine that places an ASCII text
string on the screen, you may want to
include some code that places the
cursor to the right of the last
character displayed.

There are two methods of
placing graphics data on the
screen. For bitmapped graph-
ics, you can transfer the
bitmap data directly to the
graphics area of the T6963
SRAM. This is straightfor-
ward; the T6963’s graphics
format is similar to that used
by the Windows BMP image
format. I’ll cover this in more
detail later.

The second method, the
bit set/reset command, places
individual points on the
screen and draws lines. To
use this command, you basi-
cally convert the x, y (i.e.,
Cartesian) coordinate of that
point into the proper graphics
memory location, then use
the appropriate bit set/reset
command to access the de-
sired pixel within the 8-pixel
range represented by that
memory location.

The T6963 is a slow
CMOS device and it must
constantly refresh the multi-
plexed LCD screen (which is

connected through several ASIC de-
vices). For this reason, it is not always
ready to accept commands or data
through its 8-bit parallel interface. To
address this, the T6963 supports a
status register, which informs the
host of its readiness to accept further
commands or data.

The rule is: check the status regis-
ter and wait until the controller is
ready before sending a command or
data byte to the T6963. The only com-
plication is that both bits 0 and 1 of
the register must equal 1 in order to
proceed with any command or data
transfer except when using the data
auto mode. In the latter case, bit 2
must equal 1 for data reads and bit 3
must equal 1 for data writes.

Alphanumeric LCD panels have
similar timing restraints. When using
them, I often employed software delay
routines in lieu of the status checking
routine to reduce the number of I/O
lines needed (i.e., the –RD line) and to
eliminate the need to switch the data

direction of the port used by the host
as the data bus. According to Toshiba,
you don’t want to try that scheme on
this controller! In fact, to reinforce
that rule, Toshiba does not indicate
the amount of time to perform any of
the commands.

T6963-BASED LCD PANEL
The T6963 LCD controller chip can

handle LCD panels up to 640 horizon-
tal pixels by 256 vertical pixels. I
chose AZ Displays’ AGM2464D panel
(240 × 64 pixels) because it is reason-
ably priced and supported by good
documentation in PDF format on the
company web site. The following dis-
cussion applies to the T6963 control-
ler as it is configured in Figure 1.

If you’re doing prototypes or small
production runs, it’s important to note
that this display is easily connected to
your target board via a 20-pin ribbon
cable terminated in a 10 × 2 IDC
header. The unit contains a convenient
LED backlight that requires only the

usual 5 V at about 220 mA.
Units that use an electrolu-
minescent (EL) backlight
require less power, but need a
600- to 800-V inverter circuit.

The T6963 controller
onboard the AGM2464D
LCD panel interfaces to the
micro via an 8-bit data bus
using Intel standard control
signals *WR, *RD, and *CS
and register select line C/–D.
Table 1 shows the pinout of
the interface connector. The
negative reset line may be
left unconnected, because the
display has an onboard power
reset circuit.

The interface timing is
shown in Figure 2. Note that
the T6963 has a 150-ns read
access time, which is slower
than the bus timing require-
ments of many microcontrol-
lers available today. I
experienced intermittent
problems when I tried driving
the T6963 using the Atmel
90S8515’s (with a 7.37-MHz
clock) extended SRAM bus
mode with wait states en-
abled. When I compared

 CIRCUIT CELLAR® Issue 125 December 2000 61www.circuitcellar.com

Atmel’s bus timing diagram to
the T6963, apparently there
wasn’t a timing violation. But I
experienced sporadic data errors.
When using this mode, I couldn’t
connect my oscilloscope’s 10×
probe to the *WR line without
disturbing the data transfers!

 For this reason, I recommend
driving the T6963 using direct
port I/O (i.e., one 8-bit port for the
data bus and several lines of another
port for the control lines). In this
configuration, the *CS line can be tied
to ground. Conveniently, because the
T6963 is slow, using this slower
method of I/O access does not impose
a performance penalty.

SELECTING FONT SIZE
The T6963 controller chip has two

font select lines, FS0 and FS1. These
are character width select lines, as
there is only one font built into the
T6963’s CGROM and it uses a 5 × 7
matrix for the actual character pattern.
However, by changing the levels on the
FS0 and FS1 lines, you can change the
character spacing to four different
widths of five, six, seven, or eight.
Note that the character size is always
eight pixels vertically.

On the AGM2464D, the FS0 line is
tied low, reducing the choice of widths
to either six or eight. The remaining
FS1 line is brought out to the interface
connector as the font select line.
When tied to VCC it produces a charac-
ter width of six and
has a width of eight
when grounded.

It’s tempting to
choose the character
width of six because
it closely matches
the 5 × 7 character
font and results in a
40-character-wide
display. However,
there’s a side effect
when using the
graphics display
functions. In this
case, the graphics
pixels are organized
horizontally in
groups of six on the
screen. When dis-

playing bitmaps (and to a lesser ex-
tent, drawing lines), the required algo-
rithms are slower and complex
because of this mismatch with the 8-
bit byte size. For this reason, I config-
ured the display for a character width
of eight pixels.

THAT PESKY VEE REQUIREMENT
Unlike those alphanumeric LCD

panels that you’ve probably used,
most graphics panels, including this
one, require both a 5-V (VCC

) and a
negative (VEE) supply. The negative
power supply must have several im-
portant characteristics. It must be
stable, but adjustable over a range
from approximately –8 to –14 V.

Achieving optimum contrast re-
quires a different VEE at different am-
bient temperatures, so it is rather
important to be able to adjust VEE

using an accessible pot or software
commands. The VEE current require-
ment is less than 3 mA.

Before you hook up your new LCD
panel to your bench supply, be aware
that power supply sequencing is im-

portant to prevent damage to the
LCD. For this particular unit, it sim-
ply means that VEE

must be kept off
for at least 20 ms after the VCC supply
comes up and must disappear before
the VCC supply shuts down. Because
the LCD unit draws little current
from the negative supply, using a
multi-output bench supply almost
guarantees that the sequencing re-
quirement will be violated, causing
the LCD to be damaged. I didn’t take
any chances, and designed a VEE sup-
ply based on a MAX749 digitally-
adjustable LCD bias supply.

INITIALIZING THE CONTROLLER
When the T6963 is powered, it is

not configured and the LCD panel
attached will display nothing. Even
after the controller has been properly
initialized, the LCD panel still will
display garbage until the text or
graphics areas of the RAM is cleared.

When testing your new LCD panel,
it makes sense to start by executing
the initialization code without the
screen clear routines. And then use

the resultant garbage-
filled screen to adjust
VEE

for the best con-
trast. There is a nar-
row range of VEE

that
produces a readable
display.

As mentioned ear-
lier, the T6963’s status
must be checked prior
to writing commands
or data. Therefore, in
all of the following
command sequences,
it is assumed that the
status checking rou-
tine precedes each byte
sent. With that in
mind, the data write
and command write

Figure 3—If you follow my initialization recommendations, the graphics memory organization
will look like this.

2016

0

32

MSB LSB

240 × 64 data matrix

 07 06 05 04 03 02 01 00 07 06 05 04 03 02 01 00

240 data

29

2045

64 DOT

Unused
RAM
30, 31

2046,
2047

Step Command description Parameter 1 Parameter 2 Command byte

1 Set graphics home address LSB (0) MSB (0) 0x42
2 Set graphics area N (0x20) 0 (0) 0x43
3 Set text home address LSB (0) MSB (0x08) 0x40
4 Set text area N (0x20) 0 (0) 0x41
5 Set offset register (for CGRAM) M (02) 0 0x22

Table 2—This table outlines some of the commands used to initialize the controller. The numbers in parentheses in
the parameter columns are the specific values that I used.

62 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

routines that I wrote include the sta-
tus checking code at the start of each
of those two routines.

The T6963 expects commands to
be sent to it with the data parameter
byte(s) preceding the actual command
byte. Commands require 0 to 2 pa-
rameter bytes. In the following com-
mands, the parameters must be sent
to the T6963’s data register and the
command (last byte) must be sent to
the command register.

Now, I’ll outline the procedure
needed to initialize the T6963. If you
want to read more detail, check out
the T6963 datasheet and a detailed
T6963 application note available on
my web site.

 INITIALIZATION DETAILS
The first issue is setting the graph-

ics home address. Because graphics
operations require the most calcula-
tions, it makes sense to place the
graphics home address at RAM ad-

dress 0. That eliminates the need to
add an offset for graphics operations
(see Table 2).

Setting the graphics area is the
next issue. Because the T6963 can
control many different sizes of LCD
panels, you have to tell it how many
RAM bytes are needed for each hori-
zontal line. For a 240-pixel display,
this is 30. As I’ll explain later, it
makes sense to use a value that is the
next largest binary number (32). Al-
though this wastes some RAM space,
it’s moot because the 8 KB used in the
AGM2464D is twice as big as needed.

Then, you want to set the text
home address. You can place the text
RAM anywhere, but I choose to place
it directly after the graphics RAM.
The graphics RAM is 32 bytes × 64
lines, or 2048 bytes, so the text RAM
can be placed at 0x0800. Check out
Table 2 for the details.

Setting the text area is the next
step. Like the graphics area, the text

area must reflect the LCD
panel size. For a given panel
size, the number of characters
displayed per line depends on
the font width selected. For
example, using a 240-pixel
display and a character width of
8 (as I configured the
AGM2464D), the number of
characters per line is 30. Set

the text area (desig-
nated N in Table 2) to
be equal to or larger
than this number.

Similar to the graph-
ics area set command,
it’s advantageous to
use the next largest
binary number (32).
Note again, this wastes
2 bytes of RAM per
line, but the routines
that convert the text
row and column into a
text RAM address are
simplified.

Now, let’s talk
about setting the dis-
play mode. This com-
mand sets up the way
the controller handles
several features. There
are individual text and

graphics bitplanes, and you must
select which one (or both) will be
used. This command also controls
whether or not the text cursor is vis-
ible and whether or not it will blink
(see Table 3).

Table 4 states another command
that sets up other aspects of the dis-
play mode not covered by the preced-
ing command. I use the value 0x80,
which enables both text and graphics
bitplanes in OR mode, and uses the
internal CGROM for the first 128 text
characters. The OR mode simply
means that for a given screen loca-
tion, if either a text pixel or graphics
pixel has a value of 1, then the screen
will be black at that location.

The set offset register command
(start address of CGRAM) is optional,
needed only if you are defining cus-
tom characters. The external CGRAM
mode requires 8 bytes per character
(2048 bytes total). Place the CGRAM
starting address at some location in
RAM that will not interfere with the
text and graphics RAM area. This
address is expressed differently than
that used by both the text and graph-
ics start setup commands. The value
M, shown in Table 2, is as follows:

M = 0 for 0x0000 start
M = 1 for 0x0800
M = 2 for 0x1000

Figure 4—The serial backpack comprises only four ICs, including the optional serial EEPROM, which stores only bitmap images.

Table 3—For the display mode command, I use the value of 0x9E
to enable text, graphics, and a non-blink text cursor.

D7 D6 D5 D4 D3 D2 D1 D0
1 0 0 1 GRPH TEXT CURS BLNK

If GRPH is 1, graphics bit plane is active
If TEXT is 1, text bit plane is active
If CURS is 1, cursor is visible
If BLNK is 1, cursor will blink (if visible)

64 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

Photo 1—I developed a Visual Basic program to test the serial backpack. It also
downloads bitmap images to the backpack’s serial EEPROM.

M = 3 for 0x1800

and so on up to the size
of the RAM fitted on the
LCD panel.

After the preceding
initialization has been
done, the LCD screen
will be active and filled
with random text charac-
ters superimposed on
random graphics patterns.
To clear the screen, fill
both the text and graphics
RAM areas with zeros.
This is the perfect place
to use the data auto
mode. Check out the steps of the
graphics clear screen example (with
graphics screen at RAM address 0).

• set address pointer to graphics RAM
 start (0x0, 0x0, 0x24)
• set data auto mode on (0xB0)
• execute a loop that sends 2048 zeros
 to the T6963’s data register
• exit data auto mode (0xB2)

Clearing the text screen is similar.
Set the address pointer to the text
RAM start address and write 256 ze-
roes to the data register.

BASIC GRAPHICS OPERATIONS
Graphics operations can be broken

down into two categories, vector op-
erations (drawing points and lines) and
displaying bitmap images. Let’s look at
vector operations first. Because the
basis for all vector operations is the
placement of a point on the screen, I’ll
start there.

A common operation for all vector
operations involves converting an x, y
coordinate(s) into an offset in the
graphics RAM memory space. Fig-
ure 3 shows the graphics screen map
when using a 240 × 64 LCD and the
values recommended previously.

The offset into graphics RAM is
(x\8) + 32 × y, where \ denotes an inte-
ger divide. Because you want fast
graphic operations, you can speed up
this conversion by substituting inher-
ently fast shift operations for the
slower divide and multiply opera-
tions. Thus, the offset into graphics
RAM is (x SHR × 3) + y SHL × 5,

where x SHR × 3 denotes three right
shifts on x (you may use an 8-bit shift
routine) and y SHL × 5 denotes five
left shifts on y (you must use a 16-bit
shift routine).

You use this offset with the set
address pointer command to point to
the proper RAM location. The com-
mand structure is LSB, MSB, 0x24,
where LSB and MSB are the lower and
upper bytes, respectively, of the offset
just calculated.

Now that you’re pointing at the
correct location in graphics RAM,
you must determine which bit at
that location must be set or reset and
issue the correct bit set/reset com-
mand. To place a dot, use the follow-
ing command:

bit set/reset = 0xF8 + ([255 – x] AND 7)

To erase a dot, use:

bit set/reset = 0xF0 + ([255 – x] AND 7)

DRAWING LINES
Until you’ve actually written the

code, it’s easy to assume that draw-
ing lines wouldn’t be more difficult
than cobbling together some loops
using the routine for placing points
described earlier. This is true only for
two special cases—vertical and hori-
zontal lines. Angled lines require
more attention.

I’m not a mathematician. I’m sure
there have been many algorithms
developed to break down a line into a
series of points. However, knowing
the way that the T6963 controller

organizes its graphics
memory and the best way
to use the Atmel
AT90S8515’s instruction
set, I designed my own
routines that work effi-
ciently.

The line draw routine
passes through the x, y
coordinates of the end-
points of the desired line.
First the endpoints are
checked to see if either a
horizontal or vertical line
is being specified; if so,
jump to dedicated rou-
tines, which are faster

than the ones for angled lines.
For angled lines, the routine used

will depend on the angle of the line.
In theory, you should divide the 360°
into eight 45° zones. These zones can
be reduced to four if you allow the
start and end point of a line to be
swapped in certain cases. This is rea-
sonable because you don’t care
whether a line is drawn from start to
end or vice versa. It draws so quickly
that the end effect is visually equiva-
lent anyway.

Determining which zone the line
falls into is accomplished by compar-
ing the absolute value of ∆x with the
absolute value of ∆y. If |∆x| is greater,
then the proper quadrant is deter-
mined by whether y0 or y1 is greater. If,
on the other hand, |∆y| is greater, then
the proper quadrant depends on
whether x0 or x1

is greater.
Based on these four quadrants, there

are four specialized line drawing rou-
tines:

∆x > ∆y and x1
> x0

and y1
> y0

∆x > ∆y and x1
> x0

and y0
> y1

∆y > ∆x and x1
> x0 and y1

> y0

∆y > ∆x and x0
> x1 and y1

> y0

The first and second cases have a
larger ∆x. For the first case, calculate
∆y⁄∆x and then step through all x integer
values from x0

to x1 while

adding this

fraction to the y value each time. Do
the same for the second case, except
substract the fraction.

In the latter cases, which have a
larger ∆y, calculate ∆x⁄∆y and then step
through all y integer values from y0 to

 CIRCUIT CELLAR® Issue 125 December 2000 65www.circuitcellar.com

y1, while

adding (for the third

case) this fraction to the x value
each time. For the fourth case,
subtract the fraction.

In practice, the routines have
to be more complex to produce
accurate angled lines. You must
add a bias of half the value of the
fraction when calculating the
coordinates of the second point
drawn. I used an integer divide
routine with scaling instead of
floating-point routines to calcu-
late the value of the fraction.
Because of the routine I chose, I
had to add the remainder of the
division operation to the value
calculated for the last point of
the line.

The speed of these routines is
so fast that the Atmel microcontroller
is waiting for the T6963 controller to
return an unbusy status byte for a
significant portion of time. That is to
say, the T6963 is what limits the
ultimate line drawing speed. Actually,
it takes the liquid crystal panel about
100 ms to turn on a pixel and about

250 ms for it to extinguish, so the
T6963 is not the bottleneck.

The line drawing routines used by
some serially controlled, intelligent
LCD panels only erase a line properly
if you specify the starting and final
coordinates in the same order in
which they were specified in the cor-

responding draw command. For
example, a line drawn from 0, 0
to 99, 50 may not be erased
properly if you pass the coordi-
nates 99, 50 to 0, 0 to the erase
routine. My line drawing algo-
rithms do not suffer this short-
coming.

DISPLAYING BITMAPPED
IMAGES

After text and vector graph-
ics, the next most common
display task is bitmapped graph-
ics. The T6963’s graphics RAM
organization lends itself nicely
to this, because it is similar to
the format used by Windows
BMP images. Although you can
not take a BMP file from a PC

and stream it directly into the
T6963’s graphics RAM space, there is
not much preprocessing necessary.

Table 5 gives the locations in a
BMP image file where the parameters
relevant to B/W images are located.
The format of the bitmap array stored
in the BMP file differs from what is

Photo 2—My prototype was built on a DonTronics SimmStick
protoboard, shown plugged into the matching DT003 motherboard.

66 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

needed by the T6963 in the following
three ways.

First, BMP files store image data
from left to right in groups of 4 bytes
(long integers). For example, in an
image that is 42-pixels wide, 5 bytes
would be needed, but an additional
three 0 bytes would be appended to
the datastream to meet the 4-byte
rule mentioned earlier. You have to
weed out these extra 0 bytes when
they occur in the BMP file.

Second, BMP files store data from
the bottom of the image to the top,
whereas the T6963’s graphics coordi-
nate system has the origin at the top of
the screen.

 The third difference is that BMP
files use a bit value of 0 to denote
black, and the T6963 uses a bit value
of 1 for a darkened pixel.

Considering these issues, the data
from the bitmap file simply can be
transferred to the T6963’s graphics
RAM directly. The quickest way to
accomplish this is to set the T6963’s
address pointer to the correct loca-
tion, enter data auto write mode, and
send one complete horizontal line of
the BMP file data to the T6963, one
byte at a time. Then, add 32 to the
address calculation performed earlier
and send another line until the entire
image is transferred. When finished,
turn off the data auto mode by issuing
the data auto reset command.

And, there’s a lot more to the BMP
file format. Microsoft publishes the
full specifications of the format.

 SERIAL BACKPACK
The background for this article was

gathered while designing an instru-
ment that required a graphics display.
I first bought a commercial LCD that

had a serial data interface
and an intelligent control-
ler. Although expensive, it
was easy to use because of
the serial interface and
high-level commands.

What I needed that the
commercial unit lacked,
was a function best de-
scribed as an oscilloscope
display mode. In other
words, I wanted to be able
to send a stream of ampli-

tude values to the LCD that would be
displayed quickly from left to right.
Then, without doing a full screen
erase (which would result in a dim
image with an annoying flicker), I
wanted to be able to refresh the image
with new data.

Doing this with commercial units
involved keeping track of the old data,
sending this data and a command to
erase it one point at a time, then writ-
ing new data to the display. The
amount of data that had to be trans-
ferred over the serial data link was
significant and the whole process was
slow. Additionally, the host had to
keep two complete sets of data, which
required more RAM than was available
in my microcontroller.

To solve this problem, I designed
my own serial backpack that works
with commonly available T6963-based
LCD panels such as AZ Display’s
AGM2464D or Optrex’s DMF5005.
This serial backpack performs the
following functions.

For the text, the serial backpack
does cursor placement and attributes,
writes ASCII string to the LCD, clears
the text screen, defines custom font
characters, and adjusts LCD contrast
and backlight. For vector graphics, it
draws and erases points, lines, rect-
angles, and blocks.

The serial backpack performs
bitmap graphics, too. It clears the
graphics screen, downloads the
bitmap image to flash EEPROM, dis-
plays the bitmap image from
EEPROM, and displays the bitmap
image from serial data input (see
Photo 1). More of its functions in-
clude displaying and refreshing a dy-
namic x, y coordinate data array.

Although the use of meaningful

Table 4—Here’s the structure of the mode command.

D7 D6 D5 D4 D3 D2 D1 D0
 1 0 0 0 CG MC2 MD1 MD0

CG = 0, internal ROM character generator
 1, external RAM character generator

MD2 MD1 MD0
0 0 0 OR mode
0 0 1 XOR mode
0 1 0 AND mode
1 0 0 Text attribute mode

 CIRCUIT CELLAR® Issue 125 December 2000 67www.circuitcellar.com

commands and ASCII strings for pa-
rameters make it easy when using a
high-level language, it results in
longer command/datastreams. Be-
cause this device gets its commands/
data through a serial data link, I de-
signed a compact command/param-
eter structure to speed up things.

Figure 4 is a schematic diagram of
the backpack. I chose the Atmel
90S8515-8PC microcontroller largely
because it has 8 KB of ISP flash
memory, 512 bytes of RAM, and a fast
RISC instruction set. The prototype
was built on a small DonTronics
SimmStick protocard (see Photo 2).
The unit’s 5-V power supply and
MAX232 reside on a DonTronics
DT003 mini-motherboard. The firm-
ware is written entirely in assembly
language and uses about half of the
available flash memory.

The design also includes an Atmel
AT25256 32K × 8 SPI EEPROM. This
nonvolatile memory can be used to
store up to 127 bitmap images. These
images can be quickly referenced by
number and displayed using the
bitmap display command. Because
monochrome bitmap images lend
themselves to data compression, I
implemented a run-length-encoding
algorithm in the EEPROM image
downloading routine. It crams five to
10 times as many images into the
available EEPROM and is quicker to
access a small, encoded image file from
the serial EEPROM, even though it
takes a few additional CPU cycles to
decode the RLE data.

A MAX232 is used for RS-232
level shifting. One section of the
device is used for the receive data
from the host. The backpack imple-
ments both hardware and software
handshaking, so two additional sec-
tions are needed for the transmit data
and CTS signals.

 Unfortunately, the MAX232’s
built-in negative charge pump doesn’t
generate enough voltage for the LCD’s

VEE
supply. Therefore, the next easiest

way to generate the VEE supply for the
LCD panel is to use an IC that was
designed specifically for that purpose.
I chose the Maxim MAX749 digitally
adjustable LCD bias supply. This 8-
pin DIP plus six discrete components
fits the bill nicely. It provides a regu-
lated negative supply that can be set
to the appropriate range via a single
resistor selection. The voltage then
can be adjusted in 64 steps from 33%
to 100% of this value, under digital
control. This is sufficient resolution
to provide good LCD contrast at dif-
ferent temperatures.

The requirement that the VEE sup-
ply be sequenced is easily addressed
by keeping the MAX749 in shutdown
mode for at least 20 ms after the logic
(VCC) supply comes up. The two digital
control lines used for digital voltage
adjustment also are used to place the
unit in shutdown mode. At powerup,
the firmware in the AT90S8515 micro-
controller holds the MAX749 in
standby by holding these two digital
lines low for the required 20 ms.

The value of R6 was chosen to pro-
vide –7.5-V output with the MAX749’s
internal DAC set at mid-scale (default
setting). This voltage provides a rea-
sonable contrast on the LCD panel at
nominal room temperatures.

The AGM2464D uses an LED
backlight that is controlled by soft-
ware using a port pin on the micro
and an IRFD110 HexFet. The data
interface to the LCD panel is via a 2 ×
20 header connector. The AGM2464D
and Optrex DMF5005 panels use the
same pinout, which may be common
to many 240 × 64 T6963-based panels.

WRAP UP
If you’ve considered using a graph-

ics LCD panel but were scared off by
the thought of a lot of programming, I
hope this article changes your mind.
There is a lot of good information on
the ’Net, but it takes effort to find it. I

SOURCES
AGM2464D
AZ Displays, Inc.
(949) 360-5830
Fax: (949) 360-5839
www.azdisplays.com

DMF5005
Timeline, Inc.
(310) 784-5488
(800) 872-8878
Fax: (310) 784-7590
www.digisys.net/timeline

AT90S8515-8PC
Atmel Corp.
(714) 282-8080
Fax: (714) 282-0500
www.atmel.com

MAX749, MAX232
Maxim Integrated Products
(408) 737-7600
(800) 998-8800
Fax: (408) 737-7194
www.maxim-ic.com

Programmed AT90S8515-8PC for
 the serial backpack

Brian Millier
Computer Interface Consultants
(902) 494-3709
Fax: (902) 494-1310
bmillier.chem.dal.ca

SimmStick protoboard
DonTronics
Fax: +613 9338 2935
www.dontronics.com

SOFTWARE
The object code is available on the

Circuit Cellar web site.

Offset Size Type Description of the variable

1 2 Character “BM” to indicate that the file is a bitmap
11 4 Long int. Offset into file of start of bitmap data
19 4 Long int. Width of the image in pixels
23 4 Long int. Height of the image in pixels

Table 5—These
BMP file param-
eters determine the
size of the image
and locate the
position of the
bitmap in the file.

Brian Millier is an instrumentation
engineer in Dalhousie University’s
chemistry department, Halifax, NS,
Canada. He also runs Computer Inter-
face Consultants. You may reach him
at brian.millier@dal.ca.

posted datasheets from the various
manufacturers, application notes, and
more. on my web site, as well as the
complete documentation package for
my serial backpack. I

Author’s Note: I’d like to acknowl-
edge Steve Lawther for his good appli-
cation note on the T6963 controller.

http://www.azdisplays.com
http://www.digisys.net/timeline
http://www.atmel.com
http://www.maxim-ic.com
bmillier.chem.dal.ca
http://www.dontronics.com

68 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

Designing for Reliability,
Maintainability, and Safety

e lectronic equip-
ment designers are

familiar with the con-
cepts of reliability, main-

tainability, and safety (R/M). But sadly,
we use these disciplines much less than
they deserve, especially in consumer
product development. Many people
find them boring and think they chew
up a big chunk of the precious develop-
ment budget but add no value.

In this article, I want to show you
the basic steps in performing R/M
analyses and how they do add value to
your design. You’ll learn to appreciate
their benefits and, hopefully, come to
the conclusion that your time is well
invested using them. Not all manufac-
turers spend the time to ensure good
design, but as you will learn, we could
be buying better, safer products at
lower prices if they did.

To be effective, the analyses must
be performed concurrently and as an
integral part of product development. I
will take you through development of
a hypothetical controller to illustrate
the fundamentals of the R/M engineer-
ing approach. I set up the project to

demonstrate the use of R/M tools, not
the design of a controller. So, some
design decisions are tailored to exag-
gerate R/M aspects. For the same rea-
son, some issues have been simplified
or omitted.

HAZARD ANALYSIS
Let’s assume you are contracted to

develop an electronic controller for a
hot tub, to maintain its water tempera-
ture at 100°F (±2°). It is heated by a
gas-fired burner capable of raising the
water temperature to the boiling point
quickly. The hot tub supplier (your
customer) should start the project by
performing a system hazard analysis.
And, you should know enough about
the system to prepare your own. The
requirements pertinent to the sub-
system become a part of the perfor-
mance specification.

The simple analysis shown in
Table 1 has only two potential failures.
The failures and their permitted prob-
abilities of occurrence per hour of
operation are the result of a trade-off
between requirements and cost.

With the possibility of personal
injury at hand, I’m not aware of any
system where it would be considered an
acceptable risk to allow such a design
weakness. Performing the hazard analy-
sis and implementing its results reduces
risk and shows reasonable care and
prudent design in court (just in case).

The probability of 10–9 failures per
hour of operation generally is accepted
as “never.” With the exponential fault
distribution, which is most popular in
electronics and yields a constant fail-
ure rate, it represents a 50% chance of
experiencing such a failure after about
79,000 years of continuous operation.

 The second line of Table 1 shows
noncritical subsystem failures when
the hot tub is not as hot anymore. You
don’t want such failures but can live
with them. Statistically, all compo-
nents will fail at some point. As you
will learn during this design exercise,
decreasing the probability of a failure
is expensive. When there is no poten-
tial for personal injury, the decision
boils down to the manufacturing cost
versus potential customer unhappi-
ness, cost of service, warranty, main-
tainability, life cycle cost, and so on.

FEATURE
ARTICLE

George Novacek

If you think that de-
signing for reliability
and maintainability
are just steps in the
development process
that eat up more bud-
get without adding
any value, then you
might want to listen
up because George
has evidence that
proves otherwise.

Part 1: Getting Started

 CIRCUIT CELLAR® Issue 125 December 2000 69www.circuitcellar.com

Imagine that the controller fails. It
doesn’t matter why, now you have a
customer complaint and must send out
a maintenance technician. If it happens
during the warranty period, you pay
for the repair. With the probability of
failure pegged at 10–5/h as a design
goal, you must expect a failure every
100,000 h of the controller operation.
But, suppose sales take off and during
the next few years you sell 10,000
units. If they run 24 h per day, you can
expect one failure every 10 h.

Is it possible to lower the failure
rate by an order of magnitude? One
million hours of mean time between
failures (MTBF) would drastically re-
duce the service cost but will be ex-
pensive to achieve. What is the cost of
improving MTBF compared to the
savings in maintenance and warranty
cost? Will there be enough parts to
service the equipment several years
from now, recognizing that the current
life cycle of microelectronic parts is
merely five years or less?

Let’s say you must extend a five-
year warranty. Based on the probable
failure rate, you can estimate the war-
ranty cost. How will it affect profit-
ability? R/M analyses also help make
these business decisions. Provided they
are performed concurrently with the
design, their results are implemented
in a closed-loop system for optimal
results. Discovering the laws of statis-
tics after the product introduction to
the market may be revealing, but usu-
ally too late.

RELIABILITY FUNDAMENTALS
To fully appreciate the aspects of

reliability, you need to review the
fundamentals of failure prediction.
Because electronic components can be
most often modeled by constant fail-
ure rate (λ), which is the characteristic

property of exponential failure distri-
bution, you won’t have to go into the
gory details of statistical analysis. The
mathematics will be straightforward.

Suppose a sample population of a
component you are interested in is
tested while you record observed fail-
ures, plotting them against time of
their occurrence. You can plot the
number of occurrences within given,
short, time intervals to obtain a fre-
quency distribution plot. Or, you can
record the cumulative number of fail-
ure occurrences against the time as you
proceed with the test (cumulative
frequency distribution).

The cumulative frequency distribu-
tion of the majority of electronic com-
ponents will be exponential and
resembles the curves in Figure 1. The
mathematical model for the frequency
distribution is called probability den-
sity function (PDF) and for exponential
distribution is expressed as f(t) = λ × e–λt.
The cumulative frequency of distribu-
tion is modeled by the cumulative
distribution function (CDF):

where f(y)dy is a dummy variable of
integration. For the exponential distri-
bution, you can write the following
functions for PDF and CDF, respec-
tively:

f(t) = λ × e–λt

F(t) = 1 – e–λt

where λ is a single unknown that de-
fines the fault distribution. You can
calculate reliability (the number of
surviving units) as:

R(t) = 1 – F(t)

Then, use this to arrive at the expres-
sion for an instantaneous failure rate:

and solve for constant λ:

h t =λ× e–λt

e–λt =λ

A component following an exponential
life distribution exhibits the same
probability of failure in the next hour
regardless of whether it is new or used.
It does not age or degrade with use.
Failure occurs at a constant rate, unre-
lated to the hours of use.

This important, seemingly illogical
concept allows you to gain equivalent
information from testing 10 units for
10,000 h as if from 1,000 units for 100
h. It also means that the “impossible”
10–9 failure is as likely to happen in the
first 5 min. of operation as 114,000
years from now.

If, based on observation, you sus-
pect that the failure rate does depend
on the time used, it may be because of
wear caused by improper derating or
the exponential fault distribution does
not apply for this part.

A measure of reliability more com-
monly used at the user level for irrepa-
rable parts is mean time to failure

(MTTF). For components
with exponential life distri-
bution, this is a reciprocal of
λ. For assemblies where a
failed component can be
replaced, MTBF is appropri-
ate. For exponential fault,
distribution also equals 1/λ.

Figure 2 shows the well-
known bathtub diagram. The
diagram consists of three

Table 1—Even a simple hazard analysis matrix is an effective tool for identifying system weaknesses and potential
hazards that the design must eliminate.

0 1 2 3 4 5 6 7 8 9 10
Time

S
am

pl
es

CDF PDF

Failure description Failure effect Maximum probability

The controller fails to turn off the A critical failure must not happen <10–9

burner when the water under any circumstances, personal
reaches 102°F. injury may result.

The controller fails to turn During a noncritical failure, the tub is not <10–5

on the burner when the water useable and the system is no longer
temperature drops below 98°F. available. Customer dissatisfaction results.

Figure 1—Probability density function (PDF) and
cumulative distribution function (CDF) are the results
of exponential failure distribution in components and
are characteristic of the constant failure rate typical
of electronic parts.

70 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

Reliability Models For Electronic Components
The calculated value is λp, which represents the predicted num-
ber of failures per 106 hours. The reliability model for microelec-
tronic circuits (ICs) states that:

λp = (C1 × πT + C2 × πE) × πQ × πL

where:
C1 = die complexity; 0.14 for the PIC controller and 0.020 for the

regulator 7805.
πT

= temperature coefficient. Assuming the junction tempera-
ture Tj < 100°C for both ICs, it will be 1.5 for the PIC con-
troller and 16 for the regulator.

C2 = a constant based on the number of pins. 0.0034 is used for
the PIC with 8 pins and 0.0012 for the 3-pin regulator.

πE = environmental constant. Assume the equipment will oper-
ate in a “ground fixed” environment, a benign location
with average ambient temperature of 25°C, not exceeding
45°C.

πL = learning factor; 1 for ICs more than two years in production.
πQ = quality factor. This is the most controversial coefficient.

For military screened components it is between 1 and 2, but
climbs to 10 for commercial components. Many critics
have established that the penalty for commercial, off-the-
shelf parts is unrealistically high, especially when taking
into account modern manufacturing processes.

For diodes, the equation looks like:

λP = λb × πT × πT × πS × πC × πQ × πE

where:
λb = base failure probability related to the construction; 0.0012

for switching and general-purpose diodes, 0.0030 for power
rectifiers, and 0.0013 for transzorbs.

πT = temperature coefficient; 3.9 for junction temperature Tj <
70°C.

πS = is based on stress 1.0 for transzorbs and 0.054 for other di-
odes in the system, provided they are not exposed to more
than 30% of their rated characteristics.

πC = contact construction factor; 1.
πQ = 8.0 for plastic encapsulated devices.
πE = environmental constant; 6.0 for the “ground fixed” environ-

ment.
Next is the solenoid driver power MOSFET (less than 1-W dissi-

pation):

λP = λb × πT × πA × πQ × πE

where:
λb = base failure probability related to the construction; 0.012 for

power MOSFET.
πT = temperature coefficient; 2.3 for junction temperature Tj <

70°C.
πA = 1.5 for switching applications.
πQ = 8.0 for plastic encapsulated devices.
πE = environmental constant; 6.0 for the “ground fixed” environ-

ment.
Resistors’ reliability calculates as follows:

λP = λb × πT × πP × πS × πQ × πE

where:
λb = base failure probability related to the construction; 0.0037

for RLR resistors and 0.0019 for thermistors.
πT = temperature coefficient; 1.3 for resistor operation less than

50°C and 1 for the thermistor.
πP = is determined by the dissipated power; 0.44 for 100 mW and

greater, 1 for 1 W, and 0.44 for the thermistor.
πS = 1.1 for stress factor 0.4 (i.e., you don’t operate the device at

more than 40% of its rated characteristics). It equals 1.0 for
the thermistor.

πQ = 3.0 for devices without established reliability.
πE = environmental constant; 6.0 for the “ground fixed” environ-

ment.
Capacitors’ reliability is expressed as:

λP = λb × πT × πC × πV × πSR × πQ × πE

where:
λb = base failure probability related to the construction; 0.00051

for fixed, metallic film capacitors and 0.00040 for tantalum
capacitors.

πT = temperature coefficient; 1.6 for capacitor operation less
than 50°C

πC = a factor for capacitance; 0.81 for the fixed capacitors as-
sumed to be 0.1 µF and 1.6 for the electrolytic capacitors
assumed to be 10 µF.

πV = 1 for stress factor 0.3.
πSR = 1 for both types.
πQ = 3.0 for devices without established reliability.
πE = environmental constant; 10.0 for the “ground fixed” envi-

ronment.
The next device on the list is the transformer:

λP = λb × πT × πQ × πE

where:
λb = base failure probability; 0.022 for low-power transformers.
πT = temperature coefficient; 1.4 for operation less than 50°C.
πQ = 3.0 for devices without established reliability.
πE = environmental constant; 6.0 for the “ground fixed” environ-

ment.
And finally, for quartz crystals:

λP = λb × πQ × πE

where:
λb = base failure probability related to the crystal frequency;

0.022 for 10 MHz.
πQ = 2.1 for nonmilitary devices.
πE = environmental constant; 3.0 for the “ground fixed” environ-

ment.
The results of the calculations are tabulated in Table 2.

72 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

curves and three distinct
areas. The quality curve is
predominant during the
initial life period and is
often referred to as infant
mortality, which is the result of design,
handling, or workmanship problems.

Infant mortality effects can be re-
duced by using robust designs and
manufacturing process control. At the
end of the manufacturing process, a
good burn-in or environmental stress
screening (ESS) period will weed out
the majority of the failures. Products
shipped from the factory should be
past the infant mortality curve.

The useful life period is character-
ized by stress-related failures, in other
words, the MTTF or MTBF. The infant
mortality curve can bottom out within
a few days of “shake ’n bake,” but the
useful life period is counted in years.

Finally, at the end of their life, com-
ponents begin to fail because of wear.
Although common in mechanical sys-
tems, well-derated electronic systems
seldom reach this period.

RELIABILITY PREDICTION
Reliability prediction analysis re-

sults in definition of λp, the predicted
failure rate, which is expressed as a
number of failures per 106. This number
forms the basis for other R/M analyses.
In most electronic systems with a con-
stant failure rate, the MTBF and MTTF
are the reciprocals of λp stated in hours.
If a device is not repairable (e.g., a failed
transistor), MTTF is used. If it can be
repaired, MTBF is used.

Because they attempt to forecast the
future, reliability prediction methods
have been the subject of many heated
debates. Several schools of thought
exist, each having adherents and just as
many opponents. This article is not the
forum for getting into the thick of the
debate. I’ll discuss MIL-HDBK-217F
because it’s a widely recognized model
based on the constant failure rate. [1]

Remember that you are extrapolat-
ing historical or test data into the

future. This data is used as a yardstick
for performance evaluation and im-
provement. So, you need to understand
what the numbers mean and must not
look at them as the only objective.

Tweaking the numbers will be self-
defeating. Field returns are always a
more powerful statement of perfor-
mance than statistical predictions.
Both you and the customer need to
understand that the failure probability
of 10–6 is not a guarantee of a million-
hour, failure-free operation. A failure
can occur in the first or one-millionth
hour. On the positive side, reliability
models are conservative, the equip-
ment outperforms the statistics.

Let’s start with preliminary design
of the controller. You’ll calculate its
predicted reliability, put it through
FMECA and FTA analyses, and review
the results (see Figure 3).

For this example, I used a CMOS
PIC micro operating from a 5-V power
supply provided by a three-terminal
7805 regulator. The water temperature
is detected by thermistor R3 and the
gas-fired water heater is controlled by
solenoid valve (SV) L1. The valve con-
tains an internal freewheeling diode to
suppress back-EMF kick and is
switched off and on by power
MOSFET Q1.

Diodes D2 and D4 clamp the analog
input of the PIC within 0 to 5 V to
protect the micro and prevent ESD
damage. One of the built-in ADCs
reads the thermistor voltage. The sec-
ond ADC monitors the current
through the solenoid valve to provide
short-circuit protection and to moni-
tor operation. The valve is external
and supplied by the system integrator,
so exclude it from the reliability calcu-
lation; although, it is an important
player for safety. Tranzorb D5 protects
the MOSFET driver against voltage

Life characteristic curve

Stress-related failures

Infant
mortality

Useful life Wear out

Quality failures Wear-out failures

Time

Fa
ilu

re
s

Figure 2—The product life cycle
characteristic curve is composed
from the constant failure rate of
components, increased at the
beginning by infant mortality and at
the end by wear. (This figure is not
to scale.)

 CIRCUIT CELLAR® Issue 125 December 2000 73www.circuitcellar.com

REFERENCES
[1] U.S. Department of Defense,

Reliability Prediction of Electronic
Equipment, MIL-HDBK-217F,
General Policy Series, no. 14T.

S.E.R. subcommittee, Automotive
Electronics Reliability Handbook,
Society of Automotive Engineers,
Warrendale, PA, 1987.

P. Tobias and D. Trindale, Applied
Reliability, Van Nostrand
Reinhold, NY, NY, 1986.

U.S. Department of Defense, Elec-
tronic Reliability Design Hand-
book, MIL-HDBK-338, General
Policy Series, no. 542.

U.S. Department of Defense, Main-
tainability Program for Systems
and Equipment, MIL-HDBK-47OB,
Washington D.C.: Government
Printing Office, 1995.

SOFTWARE
Reliability calculations are avail-
able on the Circuit Cellar web site.

George Novacek has 30 years of expe-
rience in circuit design and embedded
controllers. He currently is the general
manager of Messier-Dowty Electronics,
a division of Messier-Dowty Interna-
tional, the world’s largest manufac-
turer of landing-gear systems. You may
reach him at gvovacek@nexicom.net.

tial distribution, assuming a constant
failure rate. All the values and calcula-
tions come from that source. Read the
“Reliability Models for Electronic
Components” sidebar for the details.

Immediately it is apparent that the
resulting failure rate and MTBF of
nearly 300,000 h satisfy the 10–5 sys-
tem availability requirement the
customer defined in the hazard analy-
sis. Can it be improved? Let’s take a
closer look, because this would mini-
mize future warranty claim costs,
maintenance requirements, and im-

prove customer
satisfaction.

All compo-
nents are well
derated (i.e.,
working at less
than 30% to 40%
of their specified
ratings). Further
derating will
have a minimal
effect on their
reliability im-
provement. But,
five components
have failure rates
that are greater
than the rest: Q1,
U1, U2, D5, and

Figure 3—Here’s my first run at the controller schematic diagram. The design is
simple, straightforward, and appears to do what is needed.

transients, which could be the result of
the freewheeling diode failure.

To calculate the predicted failure
rate, you could use one of several ex-
pensive programs. Some methods even
extract components and their operat-
ing conditions out of the schematic
capture program, simplifying the chore
that generations of engineers have
performed manually. My program is a
small circuit and performing the calcu-
lation by hand will be good exercise.
As stated previously, you’re using the
MIL-HDBK-217F model with exponen-

T1. What can you do?
Q1, U1, and U2 work at conserva-

tively estimated junction temperature
Tj

= 100°C. Keeping the ambient oper-
ating temperature at 27°C and with
efficient heat sinking, Tj can be re-
duced to 50°C. Heat is the reliability
killer and even a small reduction will
have a significant effect.

Transzorb D5 and diodes D2 and
D3 conduct current during infrequent
transients only. You can reduce their
contribution by applying a duty cycle.
Design T1 to run at a lower tempera-
ture and you’ll improve its reliability.

Implementation of these steps will
increase the MTBF to 714,000 h (λp =
1.4). And, for the remaining analyses,
you will use the results of these calcu-
lations to evaluate product safety. I

Component Description lp/106 hours MTTF

R1 Small resistor RLR 2.7936E-02 3.5795E+07
R2 Small resistor RLR 1.0794E-02 9.2647E+07
R3 Small resistor RLR 1.0032E-02 9.9681E+07
R4 Small resistor RLR 2.7936E-02 3.5795E+07
R5 Small resistor RLR 1.0794E-02 9.2647E+07
R6 Current sensing resistor 6.3492E-02 1.5750E+07
C1 Tantalum capacitor 10 mF 3.0720E-02 3.2552E+07
C2 Tantalum capacitor 10 mF 3.0720E-02 3.2552E+07
C3 Metallic capacitor 0.1 mF 1.9829E-02 5.0432E+07
C4 Metallic capacitor 0.1 mF 1.9829E-02 5.0432E+07
C5 Metallic capacitor 0.1 mF 1.9829E-02 5.0432E+07
C6 Metallic capacitor 0.1 mF 1.9829E-02 5.0432E+07
C7 Metallic capacitor 0.1 mF 1.9829E-02 5.0432E+07
C8 Metallic capacitor 0.1 mF 1.9829E-02 5.0432E+07
Q1 Power MOS-FET PD

= 1 W 1.9872E+00 5.0322E+05

U1 7805 regulator 1.1680E-01 8.5616E+06
U2 PIC12C672 microcontroller 1.8160E-01 5.5066E+06
D1 1A bridge rectifier 1.2131E-02 8.2436E+07
D2 Signal diode (1N914) 1.2131E-03 8.2436E+08
D3 Signal diode (1N914) 1.2131E-03 8.2436E+08
D4 Signal diode (1N914) 1.2131E-03 8.2436E+08
D5 Transzorb 2.4336E-01 4.1091E+06
X1 Quartz crystal 1.3860E-01 7.2150E+06
T1 Transformer 120 V primary 5.5440E-01 1.8038E+06
Controller total 3.5691 280,180 h

Table 2—Preliminary failure rate calculation also indicates that you are on the right track and that the
customer’s specification is achievable.

74������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Sharing Technology with
Mother Nature
Out of State with an Internet-
Compatible Cell Phone

Out of
the of-
fice for
three
weeks

meant that Jeff
needed a way to
stay connected. The
recipe for success?
Take one new cell
phone, one old mo-
torcycle battery….

find myself
spending more

and more time on
Internet-related mat-

ters. I send and receive dozens of
e-mails every day (I hate the tele-
phone). I use the instant messenger to
keep in contact with my family be-
cause it’s easier to send a Windows
RealPopup message over the home
network than to locate someone in
the house.

By surfing manufacturers’ web sites I
get the most up-to-date news and infor-

i

mation about parts and products.
Oftentimes I also find good application
tutorials to help simplify designs. Data
books have gone from paper to the
web, some without stopping at the
intermediate CD stage. I find search
engines indispensable for locating both
product and educational references.
For me, the Internet truly is the infor-
mation superhighway.

I use my local phone company as
my Internet service provider. Because
I hardly ever travel out of state, a
local number is all I need to connect
from home. This summer, a number
of events came together in such a way
that I was going to be away from
home for three weeks straight.

The first week, I was going to Cape
Cod, Massachusetts with the family
for some much needed R&R (rest and
relaxation). The second week, I
planned to be in Arizona at Microchip’s
MASTER conference for some hands-
on E&E (experience and education).
Finally, it was off to Camp June
Norcross Webster in Connecticut for
some wilderness C&C (camping and
counseling).

All would have been fine if I didn’t
need to bring up a revised online ques-
tion and answer forum I was moderat-
ing at the time. I was handling it via
e-mail, and the new application prom-
ised to ease my burden and give the
users a real-time feel. The transition
period (while I was to be away) re-
quired that old and new applications
run concurrently, which promised to
take much of my time.

Photo 1—My
StarTAC is connected
to a Toshiba laptop
via Motorola’s con-
nectivity kit. Internet
Explorer dials out to
the cell phone con-
nected as an external
modem. My ISP gets
me on the Internet
where I can surf or
connect to get my e-
mail.

CIRCUIT CELLAR® Issue 125 December 2000 ������75www.circuitcellar.com

Preparing to visit Massachusetts and
Arizona was not a big deal; I searched
around for a free ISP, which offered
local numbers in the areas where I’d be
staying. I ended up using freei, which
gave me access to the Internet so I
could log on to Circuit Cellar’s e-mail
server on a daily basis. I could also
access the FTP site and make daily
updates of questions posed to my
researchers.

To read and answer e-mails and
update the FTP site required one to
two hours per day. I found that late
evening was the best time for me to
accomplish this. The local Hyannis
exchange on the Cape was never busy,
however, the Phoenix exchange was
difficult to get into. The third week
was the most challenging.

PREPARATIONS
Our camp wasn’t exactly far from

civilization, just free from modern
hassles. Because the setting lacked
power, phone, and running water, free
Internet wasn’t going to solve the
problem of having no utilities.

First, I needed to overcome my
loathing of the telephone. In fact, I
needed to go a step further, all the
way to cellular. Surfing the ’Net for
cell phone manufacturers proved to be
an empty venture, because few cell
phones are Internet-compatible. Of
those few that are, one stands out
above the rest, the Motorola StarTAC.

The StarTAC 7868W is the dual-
mode, analog and digital, dual-band
CDMA cell phone with a host of pre-
mier features. It operates at 800 and
1900 MHz. Most of you have probably
seen this shirt pocket 4.4-oz. handset
that provides digital talk and standby
times of up to three hours over five
days. The optional data connectivity
kit coupled with my laptop provides
fax capability, Internet access, and e-
mail (send and receive).

The StarTAC also has mini-
browser capabilities. This works for
getting weather information, but the
four lines of text definitely won’t
handle any e-mail. I used my Toshiba
Satellite laptop and a real browser for
comfortable communication, which
would undoubtedly be necessary for
extended periods of time.

Looking at the talk and standby
times of the StarTAC, I expected to get
almost two days worth of work (based
on two hours a day) before the phone
would need recharging. My laptop
won’t even make that. Something had
to give because there aren’t any outlets
on trees.

The cell phone has a car adapter for
charging, but I’d be miles from any
cars. Fortunately, I just replaced my
motorcycle battery and haven’t
brought the old one to the recycling
center yet. There wasn’t enough energy
in the failing plates to start an engine,
but plenty for what I needed.

A sealed lead acid battery is much
safer to use in this situation! The cor-
rosive electrolyte could leak from the
unsealed unit if you tip the battery on
its side. Lead acid batteries are capable
of high currents and, if they are
shorted, can cause serious damage by
explosion. Use breathable batteries
with extreme caution.

I designed a carrier for the battery
with a wide base that would keep it
more stable and give me a place to
mount some components. The first
thing I did was wire up a fuse to the
battery. Radio Shack has a good assort-
ment of fuses and cigarette lighter
accessories, including sockets and
plugs. Mounting a cigarette lighter
socket onto the battery carrier made
connecting to the battery safe and

convenient. I measured about 25-mA
charging current for the cell phone,
which could receive a full charge over-
night. This calculates to about 3 Wh
per charge.

DC/AC/DC
My Toshiba laptop, on the other

hand, is not the perfect match. It cannot
be directly powered or charged from a
12-V battery. Its AC plug-in power
supply creates 15 VDC for the laptop’s
DC input. The simplest way to convert
my 12-VDC source into power for the
laptop would be to use a vehicle power
inverter, which produces 110 VAC, and
then use the laptop’s own power supply.
Although simple, it seems inefficient
(see Tables 1 and 2).

With the laptop on and idling, it
draws ~21 W of power. The power
conversion circuitry requires 26.7 W
and the idle efficiency is ~78%. With
the power to the laptop off, the charg-
ing current is ~0.5 A (~7.5 W at 15 V).
The power conversion circuitry re-
quires 11 W. The charging efficiency
is 68%. We’re only talking about a
handful of watts here. Is efficiency
really important?

If you paid attention last month
when I discussed photovoltaic cells,
you’ll remember that the panel output
about 3 W in direct sunlight. If I
wanted to use my laptop for two
hours each day, I would require 42 Wh
of power. That’s 14 h of solar panel
collection (100% efficiency). The
efficiency of the converter would
require 53.4 Wh, or 18 h of solar panel
collection. I don’t know about you,
but, I don’t get 18 h of sunlight in one
day. So, how much power can be
saved by directly converting 12 VDC
to 15 VDC?

 Average idle Current measured Watts

12-VDC source 2.28 A 26.7
15-VDC laptop 1.4 A 21

Table 1—When my laptop is running off its 110-VAC
power supply it requires 21 W. If that supply is
plugged into a 12-VDC-to-110-VAC inverter, the
12-VDC battery must supply about 27 W for both
items.

From battery

+12V 3
L1

4
22µH

EXT
V+
FB

SHDN

CS
GND

AGND
REFR1

10.0k

4
3

C5

100pF

C1

470µF

C2

0.1µF

R2
90.9k 1

2
8
7
6
5

C3
0.1µF

R3
0.025 ohms

T1
NDP603

D1

1N5821

+15

To
laptop

C4

470µF

GND

MAX1771

Figure 1—The DC/
DC converter boosts
the 12 V from my
motorcycle battery
up to the 15 V
needed to run or
charge my laptop.
Efficiency is ~95%,
as opposed to ~68%
using an off-the-
shelf DC/AC inverter
and the laptop’s AC/
DC external power
supply.

76������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

VIN (3 V), circuit efficiencies can reach
over 85%.

RECHARGE
Recharging the cell phone was less

of a hassle. After I placed a cigarette
lighter accessory socket on the battery
carrier, I was able to plug the cell
phone’s car adapter charging cable
directly into my portable storage
source. It uses a simple zener diode as a
regulated 5-V charging source for the
cell phone. The draw on the portable
battery is ~350 mA of initial charging
current. The phone will fully recharge
in about 5 h with a final current draw
of ~50 mA, so the portable battery is
required to supply ~9 Wh for a total
cell phone charge. The solar array’s
output was ~3 W, which is about 3 h
worth of sun for a total charge.

BENDING THE RULES
The issue of total portability is

based on a delicately balanced system.
If you can’t gather enough energy from
the sun (or another source), then even-
tually your portable power source will
become depleted. If your portable
storage system can’t sustain usage over
some nominal period of time (i.e., to
take care of cloudy days), then you will
also run out of electrons. If you happen
to be located in an area outside of cell
coverage, it doesn’t matter how much
power you’ve collected; you’ll never be
able to make that all-important con-
nection.

During my three-week stint away
from the office, I received close to 300
legitimate e-mails, above and beyond
the normal amount of spam. I only lost
the cell connection a total of three
times over many hours of continued

service. Although there was no
actual cell time charge, the invest-
ment can’t be overlooked. If you
already have a web-capable digital
cell phone and you disregard the
cost of the phone itself, then the
Internet connection costs for my

DC/DC
A boost-mode switching regulator

could provide the 15 VDC necessary to
run my laptop from the 12-VDC bat-
tery. Maxim’s MAX1771 looked like it
could do the job for me. This device
has a fixed 12-VDC output or can be
adjusted using a resistor divider on the
output (see Figure 1).

Coil current through L1 is allowed
to flow when the external MOSFET is
enabled by the ’1771. This current
ramps up, generating a magnetic flux
in the coil’s core until either the cur-
rent reaches a maximum (set via
sense resistor R3) or the ON-oneshot
times out (~16 µs). At this point, an
OFF-oneshot triggers and the external
MOSFET remains off for ~2.3 µs. Cur-
rent no longer flows through the coil
because the MOSFET now looks like
an open circuit. Therefore, the coil’s
collapsing magnetic field causes the
voltage on the anode of the diode D1
(1N5821) to rise until the current can
flow through it, charging the output
capacitor.

To set the output voltage, a resistor
divider combination is selected to
produce 1.5 V at the feedback input to
the ’1771. When the output voltage
dips below the nominal level, so does
the feedback input. An internal com-
parator triggers the ON-oneshot again
and the cycle starts over. The ’1771
differs from the standard pulse width
modulation (PWM) circuits in that it
adds pulse frequency modulation (PFM)
and dramatically reduces the operating
current.

With the DC/DC converter in Fig-
ure 1 attached to my motorcycle bat-
tery, I connected four 1-Ω, 10-W
resistors as a load. The battery’s power
was measured at 36 W and the load
current was 34 W (see Table 3). The
efficiency of this circuit is ~94%.
Charts in the Maxim datasheet sug-
gest that this is about right. Better
efficiencies are where the VIN is closest
to the VOUT. However, even with lower

phone were around $150 for the
StarTAC interface cable and laptop
software (Mototola’s connectivity kit).
There is an $8 monthly access fee, in
addition to the monthly cell phone
plan, for allowing you to make a con-
nection to your ISP, via the cell phone
system.

While camping, I tried keeping
this Internet thing a secret by logging
on in the late evenings (see Photo 1),
after the boys had retired for the
night. Some of the rules we have
when we go camping are no radios,
CD players, or Gameboys because we
want the kids to experience the
beauty of nature without outside
distractions. However, one morning
my son was asking some rather in-
quisitive questions. It seemed that
in those nighttime hours he heard
the familiar beep of Windows load-
ing. The jig was up. He was content
with my explanation of need and
never mentioned it again. The
adults, by comparison, were con-
stantly badgering me to send e-mails
to their wives. It just goes to show
ya’, sometimes it’s tough to tell the
men from the boys. I

SOURCES
StarTAC cell phones and

accessories
Motorola, Inc.
(847) 576-5000
Fax: (847) 576-5372
 http://www.gx-2.net/wwow/

phones.html

MAX1771
Maxim Integrated Products, Inc.
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

Free ISP
freei
(253) 796-6500
Fax: (888) 841-9825
www.freeinternet.com

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

DC/DC Current measured Watts/h

 12-VDC source 3 A 36
 16-VDC load 2.1 A 34

Table 3—Using the circuit from Figure 1, a 4-Ω load has a
measured current of 21 A. Notice the high efficiency.

Charging only Current measured Watts

12-VDC source 0.92 11
15-VDC laptop 0.5 7.5

Table 2—When my laptop is off and charging, the
requirements are lower, but so is the efficiency.

http://www.gx-2.net/wwow/phones.html
http://www.maxim-ic.com
http://www.freeinternet.com

78 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

n owhere are the
chips hotter than

on the ’Net, judging by
the action at this year’s

Hot Chips conference.
Long-time readers know that Hot

Chips is one of my perennial summer-
time favorites. The conference’s focus
is bleeding edge, performance-at-any-
price silicon, which is a fun change
from the workaday chips I usually
cover. But, remember that when it
comes to silicon, today’s bleeding
edge is tomorrow’s mainstream.

Hot Chips 12

SILICON
UPDATE

Tom Cantrell

Hot
Chips is
one of
Tom’s fa-
vorite

conferences because
nothing is more excit-
ing than the latest and
greatest. There’s no
question that the hot-
test new chips have
potential, but just how
practical are they?

NET WORTH
So it is with this season’s collection

of haute network processors. The sili-
con wizards are banking on network-
ing to fuel the next wave of demand,
and I think they’re right on the money.

I don’t claim to have a better idea
than the next stuttering dot-com of
where this is all is heading, but it
doesn’t take a rocket scientist to un-
derstand that the ’Net will be a huge
deal. The only way to find out what
the ’Net is good for is to hook every-
thing up and see what happens.

As you might imagine, hooking
everything up will swallow silicon at a
prodigious pace. How many chips does
it take to rebuild, rewire, and retrofit
the global communications infrastruc-
ture? It would take a lot, and they’d
better be hot!

TO EVERY SEASON
As it was with signals, graphics,

and multimedia before, the network-
ing crowd is demanding its own flavor
of network processor instead of hav-
ing to make do with a lash-up of bor-
ing standard chips and messy ASIC
add-ons.

The premise underlying special-
purpose processors is that a perfor-
mance advantage can be obtained over
a general-purpose design. However,
marginal improvement isn’t enough
to overcome standard chip inertia and
economies of scale. The gain has to be
significant (at least on the order of 2×)

Figure 1—The C-5 sets the stage for the next generation of computing with plenty of processors and a lot of
memory on a single chip.

Table look up
unit

Fabric
processor

Queue
management

unit

Buffer
management

unit

Channel processor 0

Channel processor 1

Channel processor 2

Channel processor 3

Channel processor 12

Channel processor 13

Channel processor 14

Channel processor 15

P
ay

lo
ad

 b
us

Executive processor
Serial interface
PROM interface

Ring bus

PCI
interface

CP cluster

CP cluster

G
lo

b
a
l b

u
s

SRAM
table storage
and statistics

SRAM
queue
storage

Fabric

SDRAM

Frame/cell
storage

XPprgm./data
storage

External
host
CPU

Control logic (optional)

External PROM (optional)

P
H

Y
P

H
Y

P
H

Y
P

H
Y

P
H

Y
P

H
Y

P
H

Y
P

H
Y

16
 c

ha
nn

el
s

 CIRCUIT CELLAR® Issue 125 December 2000 79www.circuitcellar.com

before it becomes compelling.
Whether or not that happens depends
on the characteristics of the applica-
tion (i.e., how amenable it is to opti-
mization and acceleration by
special-purpose features).

Because I’m certainly no expert on
the inner workings of networking apps,
the opening day tutorial, “Introduction
to Network Processors,” by Chuck
Narad and Larry Huston of Intel, was a
great way to kick off a conference that
would see nearly a dozen new network-
ing-related chips take a bow. [1]

Narad and Huston began by classify-
ing particular networking tasks in
terms of the degree to which the pro-
cessor must touch, or further compute,
data and state (see Table 1). Tradi-
tional routing and switching apps
spend most of their time doing little
more than forwarding data from A to B.
On the other hand, new and antici-
pated features such as QoS (Quality of
Service) and VPN (Virtual Private Net-
works) call for detailed inspection of
the traffic and on-the-fly, data-driven
decision making. In any case, with
bandwidth aspirations of 1 Gbps and
beyond, time is of the essence.

In answer to their own rhetorical
question (“Why not just use a GHz+
Pentium?”), the instructors pointed out
that locality of networking apps is
poor. In what’s essentially a dataflow
problem, there’s usually little relation-
ship between a packet and other re-
cently processed packets.

What that means is that the fancy
cache schemes found on desktop chips
not only don’t help much, but cache
thrash may make matters worse. In-

deed, as wire speeds increase, a par-
ticular piece of netgear more likely
aggregates traffic from disparate
sources, exacerbating the problem.

Also filed under the heading of
“Cruelty to Memory” is the fact that
networking data structures rarely
cooperate with the DRAMs that are
required to buffer all the bits along
their way. For instance, DRAMs work
best for power-of-two burst transfer
lengths, but the ’Net is littered with
weird 53-byte ATM cells and Ethernet
packets of variable lengths. There are
also alignment problems as packets
move up and down the stack, getting
encapsulated and de-capsulated along
the way. For instance, Ethernet head-
ers are 14-bytes long, and a higher
layer (such as PPP) may introduce its
own header jitter of variable length.

 In short, networking applications
lend themselves to partitioning be-
tween what’s referred
to as control and data
(i.e., forwarding)
planes. Packets that
require connection
setup (and tear down)
and other significant
state modifications
are handled by the
control plane, and
the data plane
handles the bulk of
the byte blasting.

As you’ll see,
various flavors of
such partitioning are
the primary differen-
tiating factors that
represent an opportu-

nity for specialized processors to
make their mark. Now, without fur-
ther ado, on with the chips.

BIG BIT BANGERS
By my count, there were a total of

nine networking chips presented at
the conference, mostly from new
startups jumping on the bandwagon.
There’s no hope of covering each in
detail, but a few examples will serve
to demonstrate the major trends.

As usual, the most obvious trend is
that the hot chips are hotter than
ever—bigger, faster, and more compli-
cated. I must say, it’s a challenge to
keep my jaw from dropping when I
see a chip like the C-5 DCP (Digital
Communication Processor) from
startup C-Port (recently acquired by
big leaguer Motorola).

As you can see in Figure 1, C-5 starts
with 16 individual channel processors.
Each is a Harvard RISC with its own
memory (24-KB instruction and 48-KB
data), boosted with networking in-
structions and four register sets for
efficient multitasking. Digging a bit
deeper (see Figure 2), you can see that
each channel processor incorporates
dual (transmit and receive) serial data
processors that are programmable
enough to handle the many flavors of
links that abound (10-/100-/1-Gb
Ethernet, HDLC, ATM, SONET, etc.).

Then there’s the executive proces-
sor that handles control plane stuff
and host (PCI) interface. It functions
with the aid of four specialized

CPRC

(channel processor
RISC core)

RxSDP
(receive

serial data processor)

TxSDP
(transmit

serial data processor)

Instruction
memory

Extract
space

Merge
space

Data
memory

Table look up(s)
(TLU via ring bus)

Descriptor
to QMU

Data DMA
(BMU via
payload

bus)

Control

Data

Application Data touch State touch Compute Hybrid

Switching Low Low/Med Low/Med Yes
Routing Low Low/Med Low/Med Yes
QoS Low/Med Low/Med Low/Med Yes
Stateful firewall Low/Med Low/Med Low/High Yes
Proxy firewall Med/High Med Med Depends
Load balancing Med Med/High Low/Med Yes
CB load balance High Med/High Low/Med Yes
VPN High Med High *
Virus detection High High High No
IDS High High High No

* Crypto processing requires a special processor

Table 1—Here are networking applications characterized by their data, state, and compute requirements.
Many applications are hybrids where some packets involve a lot of processing to establish flow state, and
subsequent packets are simply forwarded. The most demanding apps must process all traffic content in real time.

Figure 2—Each channel processor in the C-5 has its own memory and addi-
tional serial data sub-processors that handle the ones and zeros.

80 Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

RISCs each, like the C-5, with four
contexts so the chip can juggle 16
packets in flight at once.

Similarly, you can see that network-
ing chips (and others) are starting to
incorporate a ton of memory. Con-
sider the iFlow address processor from
Silicon Access Networks, bulked up
with a whopping 52 Mb of DRAM!

Finally (although not limited to
networking chips, but highlighted by
the frenzy in that market), is the
observation that the fab-less chip
company model is key for innova-
tion. Many of the bleeding edge net-
working chips announced were made
by foundries, with TSMC (Taiwan
Semiconductor Manufacturing Co.)
credited for more than a few. The
bottom line is that none of these
hopeful startups would ever have a
chance of raising enough money to
make chips this hot themselves.

PROCESSOR PROGRESSION
Although most of the action was on

the networking front, there were more
than a few interesting presentations
about traditional processors and DSPs
as well. Certainly, everyone with a PC
paid close attention to the Itanium
presentations from Intel.

I don’t need one yet, but Itanium
looks like the trailblazer on the fron-
tier of computing know-how. Most of
the obvious concepts (pipelining,
superscalar, vector, VLIW, cache, big
register sets) were discovered long
ago. For some time, CPU designers
have faced a challenge going beyond
the basics, and gains have come
mainly from clock rate, bus band-
width, and more cache, not from ar-
chitecture. Worse yet, does Itanium
still have to run clunky DOS games
and all the other ’x86 detritus gather-
ing dust on old hard drives? That’s a
challenge on the order of a moon shot.

The last time I wrote about
Itanium, I covered the basic concepts
such as EPIC (VLIW) and predication
(conditional execution) and decided
that, being at the end of my architec-
tural rope and all, Intel had probably
done as good a job as could be done.

It’s a simple (but showstopping)
dilemma; gains achieved by increasing
circuit complexity are lost by the re-

coprocessors for table look up, buffer
and queue management, and 3.2-Gbps
local (fabric) bus.

That’s about 50 processors, over
1 MB of memory, and three internal
buses with 50-Gbps bandwidth for a
total of 56 million transistors, all
tidily packaged in an 838-pin BGA!

The C-5 single-handedly illustrates
a collective wisdom when it comes to
networking chips. First, it’s clear that
the so-called chip multiprocessors
(i.e., replicated processors on one
piece of silicon) are moving from the
lab to the market. Another example,
the Vitesse NPU, incorporates four

Heat pipe lid

Itanium processor organic
C4 package

Cartridge base
substrate

Edge connector
for power delivery

Surface-mounted pin array
connection to system bus

4-MB cache organic C4 MCM

Custom L3 SRAM

Figure 3—As gains by architecture become more difficult to achieve, the Itanium cartridge indicates that
implementation (cache integration, bus bandwidth, power management, etc.) will move to the fore.

 CIRCUIT CELLAR®
www.circuitcellar.com

ALU cluster
ALU cluster

ALU cluster

SDRAM

SDRAM

SDRAM

SDRAM

S
tr

ea
m

re
gi

st
er

 fi
le

2 GBps 32 GBps 544 GBps

(Stanford) and David Patterson (UCB)
at the helm, the pair responsible for
tomes of near biblical stature (Com-
puter Architecture: A Quantitative
Approach). [2]

Both the Bears and the Cards were
expected at the conference, so I was
looking forward to seeing the latest big
chips on campus. And thankfully, I
was not disappointed.

Pushing the chip multiprocessor
envelope, the Stanford team has aptly
named its IMAGINE chip, foreseeing a
future with not just a few, but hun-
dreds or even thousands of processors
onboard. Integrating 48 ALUs (8 clus-
ters × 6 ALUs), it’s especially well-
suited for media and signal processing
applications that have little data reuse
(don’t want or need cache), are highly
data parallel (outputs independent of
each other), and computationally
intensive (60 ALU operations per
memory reference).

With conceptually unlimited pro-
cessing power on tap, the challenge
for such designs is interconnect.
IMAGINE uses a three-stage hierarchy
comprised of external synchronous
DRAM (SDRAM), global register files,
and local (to each ALU) register files
(see Figure 4).

duced clock rate that results. There’s
indication that Itanium is at the edge,
with architectural gains just sufficient
enough to offset the faster clock ad-
vantage of a simpler design. Neverthe-
less, it’s no secret that the term
“Itanic” is heard in certain circles.

With the core architecture commit-
ted, implementation will decide the
fate. The Itanium cartridge (see Fig-
ure 3) is a clear reminder that Intel
really is, and has been for some time,
a system rather than a chip company.

The cartridge is also a reminder of
why Hot Chips is relevant, with the
liquid-filled heat pipe recalling a Hot
Chips presentation years ago by the
Alpha crew. What’s hot today will be
on your desk tomorrow.

SHADES OF CRAY
The presence of (not to mention

the rivalry between) two world-class
universities has been key to the Sili-
con Valley phenomenon. Whether on
the football field or in the computer
lab, it’s a big deal when the Bears (UC
Berkeley) and the Cardinals (Stanford
University) meet.

Between the two schools, they’ve
set the course for computer research
with notables like John Hennessy

Instruction
cache

MIPS64
5 Kc core

Data cache

DMA

JTAG

JTAG IF

SysAD IF

FPU

C
P

 IF

Flag unit 0

Flag register file (512 b)

Arithmetic
unit 0

Vector register file (8 KB)

Memory unit TLB

Memory crossbar

Flag unit 1

Arithmetic
unit 1

DRAM0
(2 MB)

DRAM1
(2 MB)

DRAM7
(2 MB)

8 b

32 b

32 b 32 b

8 b Figure 5—Vector
supercomputers
aren’t new, and
neither is DRAM.
But, put ’em to-
gether on a single
chip and you’ve got
something special—
a VectorIRAM.

Figure 4—Taking multiprocess-
ing to the “exStream” calls for a
lot of “IMAGINE-ation,” and a
lot of bandwidth.

 CIRCUIT CELLAR® Issue 125 December 2000 83www.circuitcellar.com

Working with TI and Intel, the
IMAGINE team expects to take the
22-million transistor, 500-MHz, 10-
GOPS bun out of the oven shortly.

By contrast, the Bears are pulling
the memory integration strategy out
of their playbook. Their Vector IRAM
is what it seems to be: a vector pro-
cessor with 128 Mb of DRAM thrown
in (see Figure 5)!

The MIPS+ vector coprocessor part
of the chip is pretty much the equiva-
lent of a traditional vector super-
computer, a Cray-on-a-chip if you
will. In fact, the IRAM compiler with
C, C++, and Fortran frontends is based
on well-regarded, time-proven Cray
vectorizing compiler technology.

Because neither the vector register
length nor the datapath width is
explictly defined by the architecture,
processing power is arbitrarily scal-
able. Once again, that puts the burden
on bandwidth, where the on-chip 7.5-
ns (page hit), 256-bit wide DRAM and
12.8-GBps per direction (load/store)
crossbar switch shine.

I don’t know who’s going to win
the big game, but both teams are sure
giving it the old college try, wouldn’t

you say? For grad students, that’s not
bad at all. Maybe they’ll find some
time in between to get out and hit the
beach or a party or two, but I doubt it.

WORLD BEYOND CHIPS
Whether it’s the world’s smallest

PC, phone, or web gadget, when it
comes to electronic stuff, smaller and
cheaper is beautiful. Can silicon con-
tinue to deliver the goods?

I recall a speech by Intel’s chairman
of the board, Gordon Moore, at a Hot
Chips conference some years back. He
weighed in on the subject of a possible
silicon wall, the proverbial end of the
line for silicon. In a remarkably self-
effacing way (for someone who’s de
facto chairman of the Valley), he
frankly admitted that he was proven
wrong in predicting a wall so many
times that he finally quit doing it.

Whether or not there is a wall and
when it might be reached is signifi-
cant. When the price and performance
of electronic products quits improv-
ing, falling to the ranks of things like
insurance and hamburgers, then the
party will be over. The business will
become boring, Silicon Valley will

Sensors

Passive transmitter with
corner-cube retroreflector

Active transmitter with laser
diode and beam steering

Receiver with photodetector

1–2 mm

Thick-film battery

Solar cell

Power capacitor

 Analog I/O, DSP, control

Figure 6—If smart dust becomes a reality, I suppose we’ll all be using Dustbusters instead of emulators.

crash, and the entire economy will
suffer, losing the free lunch electron-
ics-driven productivity gains now
thoroughly enjoyed.

Folks at IBM’s Almaden Research
Center aren’t twiddling their thumbs
waiting for the ax to fall. Their presen-
tation, “Towards Quantum Computa-
tion: A 215-Hz, 5-qubit Quantum
Processor,” foresees a day when 1 bit
equals 1 atom. [3]

I must say, the presentation was a
little over my head, what with all the
bulk spin resonance, collapsing super-
positions, Cooper pairs with Joseph-
son junctions, and the like. But any
bit-head would sit up and take notice
of a machine that could, for example,
search a database a thousand times
faster or, dig this, factor integers more
than a billion times faster!

Will it be ashes to ashes, dust to
dust for the wizards? Those guys who
are working on the “Preliminary Smart
Dust Mote” at UC Berkeley sure hope
so. Their goal: tiny autonomous
motes in 1 mm3 that proliferate like
dust bunnies. Currently, they’ve been

Tom Cantrell has been working on
chip, board, and systems design and
marketing for several years. You may
reach him by e-mail at
tom.cantrell@circuitcellar.com.

REFERENCES
[1] L. Huston and C. Narad, “Intro-

duction to Network Processors,”
HOT Chips 12: A Symposium on
High-Performance Chips at
Stanford University,
www.hotchips.org, August 2000.

SOURCES
mC-5 DCP
C-Port
www.cportcorp.com

iFlow Address Processor
Silicon Access Networks
(408) 545-1100
Fax: (408) 577-1940
www.siliconaccess.com

Itanium
Intel Corp.
(408) 765-8080
Fax: (408) 765-1399
www.intel.com

[2] J. Hennessy and D. Patterson,
Computer Architecture: A Quanti-
tative Approach, Morgan
Kaufmann Publishers, San Fran-
cisco, CA, 1995.

[3] Almaden Research Center, IBM,
“Towards Quantum Computation:
A 215-Hz, 5-qubit Quantum Pro-
cessor,” HOT Chips 12: A Sympo-
sium on High-Performance Chips
at Stanford University,
www.hotchips.org, August 2000.

experimenting with COTS (commer-
cial off-the-shelf) prototypes and have
developed a capacitively actuated
reflector passive optical communica-
tion scheme (see Figure 6) that’s
achieved 118 bps over 150-m range at
less than 1 nJ per bit.

I’m an optimist at heart. If and
when the wall does loom, I have to
believe the wizards will climb right
over it. May your chips stay hot, but if
they don’t, meet me at the Hot At-
oms, Hot Dust, or Hot something or
other conference. I

Problem 2—Given a 16-bit digital signal at sample rate Fs,
upsample it to a new sample rate of N×Fs by inserting N-1 zeros
between each original sample. Then lowpass filter the result with
an ideal sinc function to interpolate the N-1 samples. Next, dither
and quantize this signal to 8 bits using, say, simple rounding.
Lowpass-filter this result with the ideal brickwall filter with a
cutoff frequency of Fs/2 Hz. Finally, decimate this result back
down to sample rate Fs by throwing away N-1 out of every N
samples.

Quantizing a signal results in the same total noise power no matter
what the sample rate is. If we assume the quantization noise is
white, then the quantization noise power in any fixed bandwidth
(say, 0 to Fs/2) will decrease as we increase the oversampling
ratio N. This way we can reduce the 16-to-8-bit quantization noise
to an arbitrarily low level by using a sufficiently high oversampling
factor.

Right?

Problem 3—The original Ferris Wheel was built for the
Columbian Exposition in Chicago in 1893. It was the engineering
highlight of the exposition and one of the most pervasive, lasting
influences of the 1893 fair. The Ferris Wheel was Chicago’s answer
to the Eiffel Tower, the landmark of the 1889 Paris exhibition. The
wheel was created by Pittsburgh, Pennsylvania bridge builder
George W. Ferris. Supported by two 140 foot steel towers, its 45-
foot axle was the largest single piece of forged steel at the time in
the world. The wheel itself had a diameter of 250 feet, a circumfer-
ence of 825 feet, and the maximum height was 264 feet. It was
powered by two 1000-horsepower reversible engines. It
had 36 wooden cars that could each hold 60 people.

Assuming that just one car is packed with 60
people that have an avereage weight of 150 lbs,
how much torque is required in the worst case
to turn the wheel? How fast can the two 1000-hp
engines turn it under these circumstances?

Problem 1—What does this function do? Why would you write a

function like this?

����� ����	�
����� ��� ����� �� ����� ��

�

�������������

�����������
������

�������������
������������

���������������

�

Problem 4—When was the IBM PC first available to the
public? What was Steve Ciarcia doing at the time?

�������� ����	� ��������	�
��������� ����	�

What’s your EQ?—The answers and 4
additional questions and answers are
posted at www.circuitcellar.com.

You may contact the quizmasters
at eq@circuitcellar.com.

8 more EQ

questions

each month in

Circuit Cellar Online

see pg. 2

http://www.cportcorp.com
http://www.siliconaccess.com
http://www.intel.com

96������� Issue 125 December 2000 CIRCUIT CELLAR® www.circuitcellar.com

his afternoon I had to choose among a few tasks. I could spend the afternoon dragging in firewood for
the solarium wood stove. I could fire up the leaf blower and try to finish moving tons of wet leaves before

they freeze tonight and remain like concrete until spring. Or finally, I could keep an already rescheduled
appointment at the dentist. As you might guess, they all lacked a certain amount of appeal.
Fortunately, before I had to choose among all these evils (I don’t know that I’d call any of them lesser), Rob reminded me

that I owed him an editorial. In truth, I didn’t really need an excuse. Any opportunity to discuss Circuit Cellar should always
take precedent over the dentist or getting a hernia lugging wood.

Seriously though, December is a good time to look back and discuss what we’ve attempted and what we’ve
accomplished over the year. There was a time when we were simply a technical print magazine. Today, I’d like to think
we have become a whole lot more than that. The plan was always in place but it took the explosive expansion of the
Internet to properly launch it. 1999 and 2000 have been banner years for Circuit Cellar. We’ve increased our
circulation, increased our editorial content, and doubled the number of design contests. When many print magazines
are imploding, consolidating, or restructuring, Circuit Cellar continues expanding. The good news is that 2001 looks
like more of the same.

Because hardware applications are near and dear to my heart, design contests were a high priority this year. It
didn’t hurt that big semiconductor manufacturers were lining up at the door for them either. We started the year with
Philips Design2K (8051-family), did a little parallel online tango with the Microchip PIC2000 contest (PIC-family), and
are ending the year with the Zilog Driven to Design contest (Z180-family). In my mind, contests have very real side
benefits for both entrants and readers. $100,000 worth of combined prize money in this year’s contests is ample
incentive for entrants to stay on their design toes and all the great application articles that come from contests are a
delight for the readers.

If a $20,000 first prize looks like enough incentive these days, you’ll be happy to know that there is still time to
enter the Zilog Driven to Design contest. If, on the other hand, you have always wanted to enter one of our design
contests but just haven’t seen your favorite processor yet, wait a minute—it will eventually show up! Before you burn
up my e-mail in-basket, let me tell you that we are planning a couple more contests in 2001. The first one will be an
Atmel AVR design contest starting in February. It will concentrate on AVR processors, FPGA’s, and Atmel’s new
FPSLIC components.

The Internet continues to be an integral ingredient. Among our Internet achievements is the continued success of
Circuit Cellar Online and ASK US. I suppose we should really be calling it the Circuit Cellar e-zine or something so
that people aren’t confused and think it is the same as the print magazine you are reading. It’s not. Unlike many web
sites that simply post rehashed HTML print articles, Circuit Cellar produces a second 100% original-material online
magazine that is posted and available for free at ChipCenter.com (soon to be renamed eChips.com). If you like what
you read here, make sure you check out www.chipcenter.com/circuitcellar/main.htm for a second dose of Circuit
Cellar each month.

Finally, it’s important to remember that everything you view at Circuit Cellar begins as an idea—and we don’t have
all of them. Many of the editorial products and ideas you see come from the readers. Our future depends on keeping
the ideas flowing. If you’ve got a great inspiration or just think that we need to have a little prodding now and then, tell
me about it. If I’ve tried to emphasize one idea more than any other over the years, it’s that Circuit Cellar is a
community and it’s the contributions from the community that keep it running correctly.

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Continuing the Plan

t

