
������

�
�
�
�
�
�
�
�
�
�
�
�
�
	
	

�
�
�
�
�

�������
®

1 2 3 O C T O B E R 2 0 0 0

�	���	��
�	�
��		�������
A PIC Web Server

An Automotive
Diagnostic Tool

Getting Around
with GPS

PCI Bus Software

T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

���

��
THE ENGINEERS

TECH-HELP
RESOURCE

Let us help keep your
project on track or sim-
plify your design deci-
sion. Put your tough
technical questions to the
ASK US team.

The ASK US research
staff of engineers has
been assembled to share
expertise with others.
The forum is a place
where engineers can
congregate to get some
tough questions an-
swered, or just browse
through the archived
Q&As to broaden their
own intelligence base.

★★

Test Your EQ
8 Additional Questions

RESOURCE LINKS
• Content-Address-

able Memory
Bob Paddock
• GPS Technology

Overview
• GPS Manufacturers
Rick Prescott

FFT FOR MONITORING AUDIO FILTERS

Part 2: The Rest of the Story
by Dan Cross-Cole
The second part of Dan’s series moves from Digital Signal Processing to using a
QuickBASIC program for implementing audio band-pass filters to provide a graphical
display of the audio filter output. Combining digital filters and Fast Fourier Transform can
prove useful for several applications, as illustrated in everything from measuring the
response from an acoustic guitar to isolating Morse code signals.

September 2000

AN INTELLIGENT SERIAL COMMAND INTERFACE
by Tom Napier
Specializing has its perks. If a device is not available commercially today, the opening is
there for the taking. And, sometimes the development is even fun. Tom knows that this
is part of the joy of being a consultant, as he runs through the process of designing a
box to speed up the testing of communications equipment.

September 2000

THERMAL CONSIDERATIONS IN ELECTRONICS DESIGN
by George Novacek
Options for thermal management haven’t been abundant for electronics designers in the
past. Back before microprocessors, you were restricted in your choice of cooling.
Today, it’s a whole new story, as we see George detail some practical and reliable
hard-data examples arrived at through the age-old method of measurement.
September 2000

LET’S PLAY A GAME—Sieve of Eratosthenes
Lessons From the Trenches
by George Martin
George changes gears this time around as he trades problem solving for PC fun. In this
article, he reminds us about the old Sieve of Eratosthenes and goes about finding prime
numbers using this technique as compared to a more modern approach. All is meant to
be an effort of enjoyment, so put the tension aside and see what you can do with the
power of computing.
September 2000

MULTIPLIER TRICKS
Learning the Ropes
by Ingo Cyliax
Ingo’s back on the design track after taking a trip through an FPGA module last time
around. With everything now in working order, he brings us integer multipliers. Used in
many signal processing applications, multipliers, of course, multiply. But, look closer for
some tricks to implement them.
September 2000

CYGNAL PROCESSOR
Silicon Update Online
by Tom Cantrell
In this article Tom revisits his 1998 presentation, “8-bits: Onward and Upward,” by
exploring the timelessness of the 8-bit MCU. The latest offering from Cygnal Integrated
Products, the ’C51, has hit the market proving once again that you don’t have to sizzle
like a Wunderchip to have a solid bottom line.
September 2000

CIRCUIT CELLAR® Issue 123 October 2000 ������3www.circuitcellar.com

A Winning Combination
PIC Internet Connectivity
Edward Cheung

Navigating with GPS
Jeff Stefan

Internet Connectivity
Do-it-Yourself or Off-the-Shelf?
Alan Singer

The Joys of Writing Software
Part 3: Design Tips
George Novacek

Routine Checkup
An Automotive Diagnostic Scan
Dan Harrison

One Small Step
Part 2: Liftoff!
Tom Napier

I From the Bench
They Just Haven’t Caught on Yet
Jeff Bachiochi

I Silicon Update
Who’s Nexus?
Tom Cantrell

6

8

11

84

95

 96

12

22
28

34

56

66

70

76

Task Manager
Rob Walker

Better Vision Through Landscaping

New Product News
edited by Rick Prescott

Reader I/O

Test Your EQ

Advertiser’s Index
October Preview

Priority Interrupt
Steve Ciarcia

Imputed Liability?ISSUE
INSIDE

EMBEDDED PC
40 Nouveau PC

edited by Rick Prescott

43 RPC Real-Time PCs
Catching the PCI Bus
Part 2: Configuration
Ingo Cyliax

50 APC Applied PCs
Rabbit Season
Part 2: Jackrabbit Development Board
Fred Eady

123123

6������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

TASK MANAGER

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Rob Walker

TECHNICAL EDITORS
Jennifer Belmonte
Rachel Hill
Jennifer Huber

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Mike Baptiste Ingo Cyliax
Fred Eady George Martin
George Novacek

NEW PRODUCTS EDITORS
Harv Weiner
Rick Prescott

PROJECT EDITORS
Steve Bedford Bob Paddock
James Soussounis
David Tweed

ASSOCIATE PUBLISHER
Joyce Keil

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

CUSTOMER SERVICE
Elaine Johnston

ART DIRECTOR
KC Zienka

GRAPHIC DESIGNERS
Naomi Hoeger

Mary Turek

STAFF ENGINEERS
Jeff Bachiochi

Anthony Capasso
John Gorsky

QUIZ MASTER
David Tweed

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson

David Prutchi

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

CONTACTING CIRCUIT CELLAR
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301, www.circuitcellar.com/subscribe.htm, or subscribe@circuitcellar.com
PROBLEMS: subscribe@circuitcellar.com

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) and Circuit Cellar Online are published
monthly by Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at Vernon,
CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95, Canada/Mexico $31.95, all
other countries $49.95. Two-year (24 issues) subscription rate USA and possessions $39.95, Canada/Mexico $55, all other
countries $85. All subscription orders payable in U.S. funds only via VISA, MasterCard, international postal money order, or check
drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH
03755-5650 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

ADVERTISING
ADVERTISING SALES REPRESENTATIVE

Kevin Dows Fax: (860) 871-0411
(860) 872-3064 E-mail: kevin.dows@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

ADVERTISING CLERK Sally Collins

rob.walker@circuitcellar.com

Better Vision Through Landscaping

a few weeks ago I finally got sick of squinting to
see road signs and went to have my eyes

checked. During some small talk, the optometrist
asked me how much time each day I spend in front of a

computer. Between work and home, I figure that I average eight or nine
hours per day. She gasped and then asked me if I had ever considered a
career in landscaping. It seems landscapers spend an equal amount of time
looking at close up things as they do far away things so their eyes get a
healthy amount of exercise.

I consented that she had a good argument, but insisted that if she was a
dermatologist, she would be telling me that landscapers spend an unhealthy
amount of time in the sun. And, if she was a chiropractor, she would be
telling me that shoveling snow and sand for 3–4 months (which is what
most landscapers in New England do during the winter) is not good for the
lower vertebrae. In the end, we both agreed that there was no easy solution,
which is why I’m writing this editorial and not out mowing lawns.

There’s no question, the growth of the Internet and technology industries
has probably quadrupled the number of people who sit in front of computer
screens all day, compared to even five years ago. But I wouldn’t consider
that to be a bad thing, especially from Circuit Cellar’s standpoint. It’s been
almost a year and a half since we started Circuit Cellar Online and in that
time we’ve found that the Internet is a great medium for presenting some
material and a poor medium for other material.

Having the online magazine has also allowed Circuit Cellar to broaden
its perspective without changing the traditional look and feel of the print
magazine. Where better to hold an Internet-based design contest than in an
online magazine that is primarily read by engineers who are interested and
involved in Internet-enhanced designs? By the way, if you still haven’t seen
the abstracts of the winning projects from the Internet PIC2000 contest,
head over to ChipCenter and check out the archived issue for July. Or, for
the majority of the winning abstracts, turn to page 12 in this issue and read
through Edward Cheung’s article about his prize-winning projects (now
there’s a guy who’s into Internet applications!). Articles about some of the
other winners will be appearing over the next few months, but the whole
idea of having an Internet-related design contest sparked the idea of center-
ing at least one issue of the print magazine on Internet-related material. So,
this month we kick things off with the Internet & Connectivity theme.

In case you’re one of the 10 people in the world who is not currently
trying to Internet-enable a design, don’t worry, there’s still plenty for you in
this issue. You can follow Jeff Stefan as he wanders through some of the
details of GPS navigation, or you can go under the hood with Dan Harrison
as he demonstrates how to design a diagnostic scan tool that will enable
you to keep tabs on today’s electronically-enhanced engines.

As you’ll see, Circuit Cellar hasn’t jumped headlong into the lemming race
that has become the Internet era, it’s more like a tentative first step toward
something new. Besides, trying something new can be rewarding. In fact, ever
since my visit to the optometrist, I’ve been printing everything in landscape
mode and I think my vision has definitely improved.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of reader-
assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or from
plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to build
things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to construct or
operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction. The reader
assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2000 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar INK are registered trademarks of
Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

8 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Rick Prescott

PHOTOELECTRIC SENSOR
Meet a new mountable photo-

electric sensor that measures
only 35 mm × 15 mm × 31 mm:
the WORLD-BEAM. Because its
single housing style fits almost all
mounting requirements, the
WORLD-BEAM can replace hun-
dreds of existing sensors, meet or
exceed their performance, and
use less space. It is ideal for vol-
ume OEM applications in all
industries, including material
handling, packaging, assembly,
printing, and converting.

This sensor is available in all
sensing modes. Its opposed-mode
sensing range is 20 m, retroreflec-
tive mode range is 6 m, and con-
vergent models have a 16- or
43-mm focus. Sensing modes also
include regular and wide-angle
diffuse (proximity mode) with
ranges up to 450 mm. The sensor
features versatile output configu-
rations and self-diagnostics. Users

can choose NPN
(sinking) or PNP
(sourcing) outputs,
normally one open
and one closed, each
capable of switching
up to a 100-mA load.

The WORLD-
BEAM has a rugged
ABS sealed housing
that stands up to
tough applications.
The housing is leak-
proof and meets the
IP67 and NEMA 6
standards for harsh environments.
Integral protective circuitry guards the
sensors against reverse polarity and
transient voltages, short circuits, and
false pulse at powerup. The internal
pot is isolated from the environment
and sealed. LEDs protruding above the
top of the sensor provide 360° visibil-
ity, keeping users informed of operat-
ing status from any angle.

The WORLD-BEAM photoelectric
sensor is made to fit all mounting
requirements. Models range from 10
to 30 VDC and cost $61.

Banner Engineering Corp.
(888) 373-6767
Fax: (763) 544-3213
www.bannerengineering.com

INERTIAL MEASUREMENT UNIT
The DMU-H6X is a six-axis internal measurement

unit (IMU) that provides six degrees of freedom (DOF)
motion sensing. The unit is designed for demanding
vehicle test environments in automotive, marine, and
airborne dynamic environments.

The unit offers bias stability of <±1°/s and <10 mG,
respectively over the full –40°C to 85°C range. It will
accurately measure X-, Y-, and Z-axis acceleration as well
as roll. The key to its performance is the integrated digi-
tal signal processor (DSP) coupled with proprietary algo-
rithms that compensate the effects of temperature,
non-linearity, and misalignment. The unit uses MEMS
sensor technology to create a reliable, inertial solution.

It is designed with both analog and digital (RS-232)
output signal formats for easy integration into a variety
of data acquisition systems. Transfer of digital data is
user configurable for either continuous or commanded
(polled) updates.The X-View software accessory is in-
cluded.

The compact DMU-H6X measures 3.0′ × 3.75″ × 3.25′
and weighs less than 20 oz. Pricing starts at $3495 in
single-unit quantities.

Crossbow Technology, Inc.
(408) 965-3300
Fax: (408) 324-4840
www.xbow.com

http://www.bannerengineering.com
http://www.xbow.com

CIRCUIT CELLAR® Issue 123 October 2000 9www.circuitcellar.com

T-1 SIMULATOR
The Simulation Platform (TSP) is capable of both T-l and POTS simulation.

Designed for maximum flexibility, users can mix and match the hardware
modules, which plug into the TSP base chassis. Any size simulation
can be built by connecting multiple TSP units to a single PC.

Through the Windows software interface, users
can set up and store configurations for mul-
tiple test setups, enabling them to
quickly change test configu-
rations without reprogram-
ming the unit. The TSP
software also logs events and
allows definition of pass/fail
parameters based on event se-
quences to help automate testing.

The TSP platform adds T-l capa-
bility to Teltone’s simulator prod-
uct family. The TSP is a base platform
on which to build new capabilities.
Future plans for the TSP include soft-
ware upgrades for E-l and PRI capabilities.

Depending on the user’s mix of mod-
ules, list price starts at $8200.

NEW PRODUCT NEWS

Teltone Corp.
(800) 426-3926
Fax: (425) 487-2288
www.teltone.com

http://www.teltone.com

10 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

NEW PRODUCT NEWS
SUNLIGHT-READABLE FLAT PANEL MONITOR

The Clarity-18 UHB is a sunlight-readable 18.1″ flat-
panel monitor that accepts analog, digital, and interlaced
NTSC input, all on the same video controller board. The
Clarity-18 UHB suits outdoor and high-ambient light
applications, such as point of information, point of sale,
and vehicular and plant
automation. Security and
medical monitoring sys-
tems could benefit from its
ability to switch among
analog, digital, and NTSC
(VCR, camcorder, CCD
camera) inputs.

The 18.1″ monitor has
SXGA resolution, 16.7
million colors, 900-bit
brightness, and a 160° view-
ing angle. For host comput-
ers with digital output, the
Clarity-18 UHB’s video
controller board features

the industry-standard PanelLink interface. The monitor is
rated for 0 to 50°C and measures 20.4″ × 14.25″ × 3.5″.

The monitor can take lower resolution video and
cleanly expand it to fill the 1280 × 1024 screen. The Clar-
ity-18 UHB comes in a rugged metal OEM frame, ready for

mounting in an enclosure. A
front-mount plate and bezel,
which gives NEMA 4 protec-
tion to the front surface, and
a durable analog-resistive
touchscreen are optional.

The Clarity-18 UHB costs
$5500 in quantities of 10.

Computer Dynamics, Inc.
(864) 627-8800
Fax: (864) 675-0106
www.cdynamics.com

http://www.cdynamics.com

CIRCUIT CELLAR® Issue 123 October 2000 ����11www.circuitcellar.com

READER I/O
MINDING Ps, Qs, AND Ns

The schematic on page 69 of the August 2000
issue identifies transistors Q2-7 as P/N 2N2907, and
they are drawn as NPN. The text on page 70 also
refers to these transistors as NPNs, however, P/N
2N2907 is a PNP transistor.

Ed Webb

Thanks, Ed! In the schematic, the box next to the
six-digit display should read:

Q2–7 = 2N3906
Q8–15 = 2N2907

THE HEART OF THE MATTER
Another fine copy of Circuit Cellar arrived and I

was scanning the articles to look for something to read
when I came upon George Novacek’s article “The Joys
of Writing Software: Part 1” (Circuit Cellar 121).

In your attempt to refute the industry’s attempt to
define bugs as features, you managed to perpetuate
the myth about dangerous cruise controllers in cars!
The American propensity to blame someone else for
their actions and duck responsibility through litiga-
tion almost destroyed the manufacturer of the Audi
automobile. In each case of unintended acceleration,
the party involved complained of complete brake
failure, yet no problem was found with the brakes
after the incident. There are some issues with the
placement of the pedals in the car and an aggressive
idle speed control loop, but the cruise control was
never found to be a problem, except in a courtroom
full of under-educated jurors.

Today, all new cars have a feature that requires
you to place your foot on the brake before shifting
the car into gear. (A habit that was taught to me by
my driving instructor.) This feature probably costs
~$50 or more per vehicle, and if you multiply that
times the more than 10 million vehicles per year,
that’s a large cost to the American consumer.

Go out to a large parking lot (empty), firmly apply
the brake, and give the accelerator a good push. The
brakes always win.

Matt Werner
Grand Rapids, Michigan

Thank you for your comment and you are not the
first one to mention this particular issue. Not being
a part of the automotive industry myself, I am only

familiar with the legend. In the context of the article,
however, I did not intend to criticize a specific car
manufacturer or any industry. I was making a point
that, in its infancy, software was viewed by many as a
promising, get-rich-quick design approach, which
could significantly cut the cost of hardware and its
development and simplify its future modifications
(listen to an FPGA salesman for a while and you will
hear similar claims).

Before we learned that producing good software is
serious business and definitely not cheap, we
endured and paid for a few embarrassing problems.
The cruise control and a lost satellite have been used
for many years as the perfect examples of bad
software design by instructors in software develop-
ment training sessions, but I have never seen the
actual piece of code containing the bug. However,
none of those instructors ever claimed “wrong code”
was to blame. As I show in the continuation of the
article, the real “wrong code” (programmer-created
bugs) accounts for a small part of the overall prob-
lem. More often than not, the problems such as the
lost satellite or a runaway cruise control have been
caused by EMI, an electrical transient, or some other
environmental or system influence.

But, as we’ve seen, the software gets the blame and,
in my opinion, rightly so. Making software perform the
desired function is a small part of the design. Just
about any designer should be able to do it.

On the other hand, well-designed software must
be robust, able to properly handle exceptions, and no
matter what the cause, revert to a safe, predictable
fault condition. Making a system idiot-proof is very
difficult, but it must be done. I can freeze just about
any program on my PC by hitting a few wrong keys.
In this case it is merely an inconvenience that
requires me to flip the power switch, no big deal. But
it still indicates weak software design—an avionic
program would have to be able to handle such
condition gracefully. We should expect no less from
everyone else.

George Novacek

Editor’s Note: on page 35 of the August issue, the bio
paragraph for Sandeep Dutta should read:

Sandeep Dutta is a compiler engineer working for
WindRiver Systems Inc. He works on the DIAB
optimizing C, C++, and Java compiler for 32-bit
processors. You can reach him at
sandeep.dutta@windriver.com.

12 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

A Winning Combination
PIC Internet Connectivity

FEATURE
ARTICLE

w
Edward’s winnings in
the Internet PIC2000
design contest turned
out to be quite a treat
for him, but now
we’re in for a treat of
our own as he ex-
plains some of the
tricks that went into
designing these
award-winning
Internet projects.

hen I entered
the Circuit Cellar

PIC2000 Contest
sponsored by Microchip,

I saw many possibilities. First, I devel-
oped the PIC Web Server, which
needed a good application in order to
come to life. I developed five Internet
applications that could be hosted on
the PIC. Four of these projects won—
including the top three prizes.

Home automation has been my
hobby for a long time. More than 10
years ago, I started with a collection
of lamp and appliance control mod-
ules from X-10. I gradually added
components to the system, including
a central desktop computer running
custom home control software that
communicates with a network of PIC
microcontrollers. The network uses
the RS-485 standard, which is similar
to HCS-II. It interconnects network
nodes that do a variety of real-world
input and output functions.

I can control the system from any
phone, but I wanted to control it from
the Internet. Ideally, I would add the
Internet/Ethernet interface at a node
on the RS-485 network, freeing the
desktop computer for other tasks. The
thought of a PIC communicating via
the local Ethernet network was appeal-
ing because it could be used in other
applications too.

In July 1999, Circuit Cellar Online
published an article describing a mi-
crocontroller web server. [1] It was
based on an Atmel processor interfaced
to a standard NE2000-compatible PC
Network Interface Card (NIC). The
idea was brilliant: take a commonly
available Ethernet interface card, use
the microprocessor to emulate its bus
interface, and you have a microcon-
troller Ethernet node. That was the
proof I needed to create a PIC version.

My finished product is a web server
that is roughly the size of two video-
cassettes. All it needs is power and a
10BaseT connection to provide any
user on the local network with real-
world interface to his web browser.

The first step in constructing a web
server on a microcontroller involves
knowing the protocols used on the
Ethernet network. I wanted to build a
web server from only web resources.
It probably stretched the process, but
it was more fun to learn my way from
the tidbits scattered about the ’Net. In
the end, I obtained an understanding
of the entire process—from the top
level where a user clicks in a URL box
of a browser, down to the level of the
voltage sent on the physical Ethernet
wire.

WEB SERVER HARDWARE
The NIC uses the PC-ISA standard

for its bus interface. The PIC emulates
this bus so you can communicate and
control it. All 16 bits of the data bus

Edward Cheung

Table 1—Take a
look at the
Ethernet packet
structure. Nodes
on the local
network can
decode the
recipient and
sender’s hard-
ware address.

Name Length Comment

Preamble 62 bits Prepended by NIC
Start of frame (SFD) 2 bits Prepended by NIC
Destination address 6 bytes Ethernet address
Source address 6 bytes Ethernet address
Type 2 bytes Length data for IEEE 802.3
Data 46–1500 bytes Least significant bit and byte first
Checksum 4 bytes Calculated and appended by NIC

 CIRCUIT CELLAR® Issue 123 October 2000 13www.circuitcellar.com

the middle of the bit time. In this
manner, both data and clocking infor-
mation is sent to the receiver.

By comparing the sent and received
data, the NIC can quickly detect a
collision and release the line. The
senders then wait a random amount
of time. After that, they retry and
await confirmation that the data was
sent without contention. The packets
are separated by a pause cueing the
other nodes to try sending their data.
The first data sent is the least signifi-
cant bit of the least significant byte.

The bit time is 100 ns
for 10BaseT and its vari-
ants, such as 10Base2.

The structure of the
packets is shown in
Table 1. The NIC used
is compatible with the
common NE2000. It has
a 16-KB circular buffer
to hold the Ethernet
data for the host proces-
sor. Of the listed data,
the preamble and the
SFD are not routed into
this circular buffer. This
data is sent to bit syn-
chronize other NICs on
the network. The desti-
nation and source ad-
dresses at the start of
the packet allow nodes
to sort the routing of the
packet. This 6-byte ad-
dress is unique for every
NIC made. If the most
significant bit of the
physical address is one,
this message is a broad-
cast and should be pro-
cessed by all nodes.

The two bytes in the
Type field that follow
indicate the kind of
packet. All data up to

brought to an RJ-11 connector (for the
Chart Recorder project and X-10 inter-
face). There are no additional RAM or
ROM chips, which meets my goal of a
minimal circuit.

ETHERNET, FROM THE BOTTOM
At the lowest level, Ethernet is a

party line shared by all the computers
on the local network. The bits are
sent Manchester encoded, which
means the logical ones and zeros are
not sent as voltage levels (as in RS-
485), but as rising or falling edges in

and 5 bits of the address bus are con-
nected to the PIC. The remaining bits
of the address bus are strapped either
high or low to presume the base ad-
dress of the NIC is at 0x300. The num-
ber of address lines allows the
addressing of 32 registers in the NIC.
Depending on the initial setup of the
NIC, it may have to be plugged into a
computer to disable plug-and-play and
to set the base address to the desired
value. In addition to these lines, the
minimum set of ISA bus control lines
is connected to the PIC (see Figure 1).

I chose the P16F877 as the micro-
processor because of its flash program
memory and the availability of the In-
Circuit Debugger (ICD). The 8 KB of
program space was just enough to fit
the web server and project application
code. A Maxim chip provides the
voltage level translation needed for
RS-232 (for the PIC Web Cam project),
and two of the PIC’s I/O lines are

Figure 1—Here’s the PIC Web Server. The PIC controls the Ethernet board by emulating the PC-ISA bus interface. All 16 data, five
address, and a minimal set of control lines are implemented. U2 provides the level shifting needed for RS-232.

Table 2—The TCP packet is sent within an Ethernet packet.

Name Length Comment

Type 1 byte Eight for echo request, zero for echo reply
Code 1 byte Always zero
Checksum 2 bytes One’s complement type
Identifier 2 bytes Used for matching messages
Sequence number 2 bytes Used for matching messages
Data/payload Variable Data to be echoed

14 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

this point (not including preamble and
SFD) is referred to as the Medium
Access Control (MAC) header. The
actual data follows this. Packets
shorter than 46 bytes need to be pad-
ded to fill the difference. Data packets
longer than 1500 bytes do not con-
form to the standard. In practice, the
minimum data packet is larger
(60 bytes). Finally, the CRC check-
sum is calculated by the NIC and
appended to the packet. National
Semiconductor offers a good discussion
of the lowest level of Ethernet and the
registers in the NE2000 board. [2]

This layer allows you to send pack-
ets from one computer to another
using various protocols. One common
protocol is Internet Protocol (IP), de-
noted by “0x0800” in the type field of
the MAC header (see Table 2). Figure 2
shows the IP packet structure. [3]

Network nodes that receive this
packet can decode its total length and
the IP addresses of the sender and
receiver among other parameters.
Suppose a node on the network needs
to send an IP packet to another ma-
chine. One problem is that you may

not have the MAC (hardware) address
of the destination machine; you may
only have its 4-byte IP address. This is
resolved by using the Address Resolu-
tion Protocol (ARP). An ARP request
on the network essentially asks:
“Which computer on the network has
the following IP address? Please re-
spond with your physical address.”
ARP messages are embedded in
Ethernet packets (see Figure 3). [4]

The sender of the ARP request uses
a broadcast destination address and
“0x0806” in the type field of the MAC
header. If there is a network node with
a matching IP Address, it will respond
with an ARP reply filled in with the
appropriate information. Often the
reply data is cached to keep the num-
ber of ARP messages low. To view the
ARP cache for your Wintel box, type
“������” at the DOS prompt.

Now that you can send IP mes-
sages from machine to machine, you
need something to send. One type of
IP message is Internet Control Mes-
sage Protocol (ICMP), often used for
ping applications. Most machines that
have a TCP/IP stack running will

Figure 2—Sent within the data field of an Ethernet packet, the IP packet allows the routing of data
to an IP stack running on a local network computer.

4 IHL ToS 16-bit total length

16-bit identification Flags 13-bit fragment offset

TTL protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address
Options (if any)

Data

IP header length (in 32-bit words) Type of service
(Not used)

Size of datagram (header and data)

Flags and fragmentation
to split large messages

into a series of IP packets

20
bytes

Flags
--X More
-X- Don't fragment
X-- Unused

Checksum to detect any
corruption of the IP

header within a router

Data to be sent to recieving node
Type of transport protocol to be used

Address of
intended
recieving

node

Address of
sending

node

Number of
network

hops

0 15 16 31

Figure 3—The ARP packet
is sent within an Ethernet
packet to exchange hard-
ware address information.

0 4 8 16 19 24 31

Hardware type Protocol type

HLEN PLEN Operation

Sender hardware address (bytes 0–3)

Sender hardware address (bytes 4–5) Sender IP address (bytes 0–1)

Sender IP address (bytes 2–3) Target hardware address (bytes 0–1)

Target hardware address (bytes 2–5)

Target IP address

 CIRCUIT CELLAR® Issue 123 October 2000 15www.circuitcellar.com

respond to these requests by
echoing the data. Ping often
is used to verify connectiv-
ity to other computers on
the network.

Another type of packet
that can be sent inside an IP
packet is UDP. UDP is usu-
ally used with streaming
data, and is unreliable—the
sender does not know if all
the data is received properly.
(However, this is adequate
for certain types of data.)
Packets such as UDP are
“connectionless”, meaning a
specific connection is not
established between the
sender and receiver.

Finally, the most com-
monly known IP protocol is TCP,
which is used with web transfers, e-
mail, and so on. C programmers will
recognize the TCP/IP protocol as being
an implementation of the sockets
library, where you need to open a con-
nection to another machine before
sending data. There also is a handshak-
ing mechanism where the receiver
acknowledges every packet sent. Miss-
ing packets are then retransmitted.
This mechanism ensures that data is
sent in a guaranteed fashion.

Note that TCP/IP packets are not
only sent to particular hardware and IP
addresses, but also to a port address.
Commonly known applications have
standard port numbers. For example,
web servers tend to listen for connec-
tions at Port 80. Telnet servers use
Port 23. In this manner, packets can be
routed to individual applications run-
ning on a particular computer. As you
see, these protocols are layered on top
of the previous ones and placed into
the Data field of the lower-level pack-
ets. Check the references and re-
sources included to learn more about
various fields in the packet structure.

THE NE2000 INTERFACE
I could not find any documents

describing the actual NE2000 standard
on the ’Net. The most useful resource
is National Semiconductor’s data-
sheet on the DP83905 AT/LANTIC
Ethernet chip. [2] The NE2000 has
registers that allow you to set up its

configuration, such as its MAC address
for filtering Ethernet messages and 16-
KB circular buffer. This important
resource is where outgoing data is
queued and incoming data is held until
the PIC retrieves it.

After the appropriate pointers are
set up, data can be read from or writ-
ten to the circular buffer through one
particular register. The pointers are
then autoincremented for the next
location. Data exchange is 16-bits
wide, and all data is simply the con-
tents of the structures described here.
In addition to the conventional use of
this buffer, the pointers can be config-
ured to leave a portion unused for
general storage.

GENERIC SERVER
SOFTWARE

The code for the ge-
neric web server occupies
about half of the 16F877’s
program space, leaving
room for the application
code. It is written in C
and compiled using CCS’s
PCM compiler.

The RAM inside the
PIC is not used to store
Ethernet data. Rather, data
that needs to be sent is
built up inside the
Ethernet card by moving
around the write pointer
as needed according to the
packet structure. If data

that takes into account a
series of bytes (such as
TCP checksums [5]) needs
to be prepared, the data is
read back one byte at a
time while processing.
Hence, the NE2000 buffer
doubles as PIC memory.

Web clients and serv-
ers have a protocol of
their own that dictates
requests and replies fol-
low an orderly exchange.
The PIC Web Server com-
plies with the HTTP 1.0
protocol. [6] This data, as
well as HTML files, are
sent from server to client
in textual form. One pro-
grammer-friendly feature

incorporated into the web server code
is the way text strings are sent to the
client. This form of data can be en-
tered into the source code as follows:

�����	
��������������������

C programmers will recognize this
as a way to output string data. CCS’s
compiler allows a variant where the
name of a subroutine can be substi-
tuted for the ellipsis. This causes that
function to be called repeatedly for
every character in the resultant string.
By substituting ��������
� (trans-
fers data one byte at a time), whole
HTML files can be entered by copying
and pasting into the printf statement.

Photo 1—The PIC Web Cam won grand prize in the Circuit Cellar PIC2000 design
contest sponsored by Microchip.

Photo 2—This is an example of the image presented by the PIC Web
Cam’s brower display. In this case, the image is automatically refreshed
every 20 s, creating a live image.

16 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Photo 3—Here’s the PIC Web Cam main control panel as
seen on the web browser.

Building web pages can be easy.
Using a text or a WYSIWYG web page
editor, format the web page. Then,
copy the raw HTML source from the
editor into specially prepared printf
statements. Finally, compile and run
your code. This method doesn’t use
much program memory space.

Network nodes communicate with
the PIC Web Server by first issuing an
ARP request with the PIC’s assigned

IP address. The PIC then re-
sponds with its MAC address,
allowing future packets to be
properly addressed. The TCP/IP
stack on the client machine
opens a socket to the PIC by
issuing a TCP/IP message with
the appropriate flags set. Next,
the PIC accepts the socket
connection and confirms the
action. When the socket is
open, the web browser submits
a GET request containing the
full URL as typed by the user in
the browser Location box.

This information is then
parsed by the PIC Web Server
to find out which file is being

requested. The PIC returns the file
and closes the socket.

With these subroutines, the PIC is
now able to serve data to any web
browser. Of course, this is of little use
without an actual application defining
what form of data needs to be handled.
So without further delay, here are the
applications I submitted to the
PIC2000 contest.

THE PIC WEB CAM
With the web server in place, it is

easy to present web pages that contain
textual data. Without images, this data
is boring. When I was considering
applications for the server, I asked
myself “What better way to show the
power of the PIC than an image being
served up? Not only that, what if the
image was live?” This led to the PIC
Web Cam, which received grand prize
in the PIC2000 contest (see Photo 1).

Several web servers on the Internet
offer live images. They typically in-
volve video cameras feeding image
capture boards that are contained in
large desktop machines with Ethernet
boards. The PIC Web Cam accom-
plishes this with the web server. The
images are obtained from an Olympus
D-220L digital camera via its RS-232
interface. The image seen on the
browser is refreshed automatically,
creating a live image (see Photo 2).

The front of the sealed case is
clear, allowing the unit to be used in
harsh environments. I custom-built
the yellow board above the camera

 CIRCUIT CELLAR® Issue 123 October 2000 17www.circuitcellar.com

http://IP_ADDRESS, where
IP_ADDRESS is the PIC’s preselected
IP address. The resultant display on
the web browser is shown in Photo 3.

Clicking Small Image
decreases the image to 160
× 120, which is refreshed
every 10 s. Large Image
automatically reloads ev-
ery 30 s. Lastly, Custom
brings up the page that you
can customize via the
Config Custom link (a
form pops up with the
existing HTML code). You
can edit and store the code
in nonvolatile memory.

On the custom page,
parameters such as back-
ground color, image size,
and refresh interval can be
adjusted. Because the file
is stored in the PIC’s
EEPROM, a maximum of
256 bytes can be stored.

Camera data is sent to
the PIC in 2-KB chunks at
57,600 bps. The data is

split because this is larger than one
TCP/IP packet. Multiple groups of 2-
KB data are transferred from the cam-
era to the browser until the entire

that holds the PIC. The
Ethernet board is located
behind the camera.

This no-computer web
camera is similar to the
project published in Circuit
Cellar 121, by Steve Freyder,
David Helland, and Bruce
Lightner. They connected an
inexpensive digital camera to
their Picoweb server. The
difference is their use of a
Java applet to move the raw
image from the server.

Because of the inherent
image compression of the
JPEG format, the PIC Web
Server can deliver a higher
resolution image in less time.
In addition, you can use the
PIC Web Cam with older
web browsers that do not
support Java.

After the PIC Web Cam is
connected to the local Ethernet net-
work, you can communicate with it
by using ping or by requesting the
default home page with the URL

Photo 4—I configured the PIC Web Server as a Web Chart Recorder. The RJ-
11 jack on the right of the box allows connection of the two alligator leads in
the foreground. You would connect this pair to the data to be sampled.

18 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Photo 6—Many people can play tic-tac-toe against the computer
simultaneously. The PIC won this time.

image is complete. It takes about
3 s to transfer a small image and
about 6 s for a large image. The
PIC web server has been tested
with three simultaneous web
clients.

This example illustrates the
amazing capability of a tiny PIC
processor. It can not only do the
work of a desktop computer, but
also present digital images from
a still camera. The PIC processor
is a valuable addition to any
system requiring an inexpensive,
effective way to transmit live
images over the Internet.

PIC WEB CHART RECORDER
Another valuable project is

the PIC Web Chart Recorder,
which was awarded first prize in
the Internet Applications cat-
egory of the contest.

The graphical capabilities of the
Internet provide a good way to present
continuously varying data in the form
of a chart. Sites including stock bro-
kerages and weather stations benefit
from this technology. Instead of using
a large desktop computer, the PIC
Web Chart Recorder (see Photo 4)
provides this capability with a PIC.

Analog data is gathered by the
PIC’s A/D converter and presented by
the generic web server. Use the con-
trol panel to control the sampling
speed—stopped (no sampling), 10 s, 1
min., 15 min., or 1 h per division.

The graphical data is packaged as a
GIF image that is generated on the fly
by the PIC. To simplify the generic
web server code, it is split into five
255 × 52 GIFs that are assembled at
the browser. Because they are all the
same width, they stack seamlessly.
The display is automatically refreshed
once per minute. During each refresh
the graph is shifted from right to left
to make room for new data.

The core C code that generates the
GIF file is a modified version of the
one published in Circuit Cellar 107,
by Paul Breed. Modifications include
changing it to a RAM-limited 8-bit

environment and making
it stream output into the
Ethernet card.

For better readability
of the graph, horizontal
and vertical dotted lines
are added during creation
of the GIF. In addition,
where the data jumps by
greater than one count
from one sample to the
next, vertical lines are
added to connect the
graph in a continuous
manner. Each column of
pixels in the image repre-
sents one sample of the
PIC A/D converter, and
the vertical row repre-
sents the data value. As a

result, the GIF is 256 pixels high
(representing the one byte data
range), and 255 pixels wide (rep-
resenting the 255 samples that
are stored).

The chart is defined as an
HTML image map, causing the
coordinates of the mouse cursor
to be continuously displayed at
the bottom of the web page. The
browser updates the information
as you move the cursor over the
chart. This is useful when read-
ing data values.

If you click on the GIF, a new
image will be fetched from the
PIC Chart Recorder, showing a
dashed crosshair at the x-coordi-
nate of the mouse click and the
y-coordinate of the correspond-
ing data value. In addition, the
display underneath the GIF is

updated with the voltage value of the
sample. In Photo 5’s example, the
data value is 2.7 V.

The PIC Web Chart Recorder is a
useful addition to any system where
analog data needs to be gathered in a
graphical form. The unit can not only
gather data, but also present it in a
web-friendly format. Real-time gen-
eration of GIF images, normally ac-
complished by desktop computers, is
done here by a PIC.

Although the PIC Web Cam deliv-
ers data that is more interesting, the
Chart Recorder represented a bigger
challenge concerning software devel-
opment. I did not know until the end
if a complete web server and GIF file
generator would fit in 8 KB of program
space. Fortunately, the results ex-
ceeded my expectations.

In addition to the complex chart
discussed here, the GIF can include
objects that are easily described in
mathematical form, such as circles,
lines, and rectangles. So, the PIC Web
Server can generate dynamic graphics
such as thermometer bars, simple
animation, and other indicators that
change appearance based on real-time
data acquired by the PIC.

PIC X-10 WEB SERVER
For the next web server project, I

went back to the original application
that I had intended for the PIC Web

Photo 5—The chart is presented in the form of a GIF that is
generated on the fly in the PIC Web Server. Note the following:
the data is the solid line; division markers are dotted lines. Moving
over the GIF updates the mouse coordinates at the bottom of the
web page (here they are 181, 23). Clicking on the image puts a
dashed crosshair showing the value of the chart at the x-coordi-
nate (its voltage is at the bottom (here it’s 2.7 V)).

 CIRCUIT CELLAR® Issue 123 October 2000 19www.circuitcellar.com

Server, home automation. The home
automation industry is dominated by
a standard known as X-10. X-10 units
communicate over the existing power
line wiring to control all sorts of
loads. A simple power line modem
enables a computer to send and re-
ceive these commands.

The PIC X-10 Web Server combines
a server and an X-10 controller. With
this project, you can control and moni-
tor the status of your home or office
over the Internet. First prize in the
Internet Connectivity category was
awarded to this project.

The X-10 Web Server control panel
page automatically reloads itself every
5 s, allowing you to view the status of
the units in a dynamic color-coded
fashion. In addition, you can click on
the hyperlinks to send commands to
control the loads. If any other control-
ler sends a command to the load, its
status is also automatically updated
in the home control panel.

The control panel can be recon-
figured if you click on the Config
button at the bottom of the main

control panel. To add a unit, simply
enter the name and X-10 address and
click Add. You are then returned to
the main autoloading home control
panel with the new unit added (its
status will be displayed as a blue
question mark until a command is
sent or received). Conversely, you can
eliminate a unit from the control panel
with Delete. The names and statuses
of up to 16 units are preserved in the
PIC’s nonvolatile EEPROM.

The TW523 Two-Way X-10 power
line modem uses a low-level, timing-
critical interface. Thanks to the buffer
in the NE2000 card, no particular
attention needs to be paid to the
server’s Ethernet timing. An interrupt
that fires with every power line tran-
sition ensures that bits get sent and
received properly over the power line.

This powerful and compact web
server will benefit any environment
requiring the capability to send and
receive X-10 commands without in-
stalling unusual hardware or software.
Any computer on the local network
can perform as the control panel.

THE PIC SLIP SERVER
In addition to the previous two

projects, a third design was successful
in the Internet Connectivity category
of the contest. The PIC SLIP (Serial
Line Internet Protocol) Server earned
third prize.

Internet-connected PIC processors
have thus far used serial ports for
physical connection to the outside
world. Unfortunately, the advantages
of the PIC’s small size are tainted by
the need for a desktop computer as the
Internet gateway. The SLIP Server
addresses this deficiency.

The PIC processor’s serial port
provides the SLIP line. [7] The server
allows almost any microprocessor to
access the local IP resources (web and
FTP servers, etc.) using only its serial
port.

The versatile SLIP Server has many
applications, among them is providing
a wireless LAN connection. Using off-
the-shelf wireless RS-232 links, you
can put together a wireless network
connection. A second application is
establishing connectivity for comput-

20 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

ers with a serial port and no network
card, such as PDAs, palmtops, and
embedded computers. By adding a
standard modem, the SLIP Server can
create a remote access server. And it
can provide Internet access for various
other PIC projects, allowing them to
send and receive data between FTP and
web servers using only its serial port.

Using dial-up networking software,
a Windows95 PC served as the SLIP
client while I developed this project.
The PC serial port and the SLIP Server
were connected, and standard Internet
clients (like Netscape and ping) were
used to test the SLIP Server.

The main difference between IP
data sent on the serial line and
Ethernet is the Ethernet header (a.k.a.,
MAC). The latter contains the 6-byte
hardware address of the source and
destination nodes. Before any Ethernet
data can be sent, the hardware address
of the recipient must be determined
by the Address Resolution Protocol
(ARP). ARP requests are sent in broad-
cast mode, and the node that matches
the addressing information responds
with an ARP reply. Data obtained via
the ARP protocol is stored in nonvola-
tile EEPROM memory. The data can
be retained between power cycles or
cleared during powerup.

Serial characters from the SLIP
client are examined for the modem
“AT….<CR>” character sequence. If
one is detected, an “OK” string is ech-
oed. This fools the PC into thinking
that the modem has dialed and con-
nected to the remote computer. The
PIC continuously searches for the
SLIP flag character, which demarks
the start and stop of all packets. If it
is at the beginning of a packet, the
NE2000’s registers are readied for
loading data. If the flag character
marks the end of a packet, the packet
is examined to determine if the desti-
nation IP address is in the PIC’s ARP
table. If the entry is not found, an
ARP request is sent to obtain the
physical address. If the entry is found,
the correct physical address is
prepended to the IP packet and sent
out on the Ethernet network.

On the Ethernet receiving end, new
packets are checked for their type. A
correct ARP reply is stored in the

PIC’s ARP table. If a remote IP node is
querying the PIC for its hardware
address, an ARP reply is sent back.
Incoming IP packets are forwarded to
the serial line with the correct SLIP
flag and escape sequences.

In operation, the SLIP Server al-
lows the client PC to access any IP
service on the network. It also allows
remote nodes to access any server on
the client PC, showing that the SLIP
Server has bridged the connection to
the Ethernet. The client computer can
now interact with the network re-
sources as if it has its own Ethernet
connection.

PIC WEB TIC-TAC-TOE
Although this last web application

hosted by the PIC did not win a prize,
it is worthy of mention. When I was a
young boy, I visited a computer dis-
play at a science center. A refrigerator-
sized computer was located in the
middle of the room attached to six
large displays with keyboards. People
could get a sense of the “intelligence”
of the computer by playing tic-tac-toe
against it. I was impressed that a
computer could play against humans,
and that it was difficult to beat.

This capability has been shrunk
into a PIC processor running the web
server. Using any web browser on the
local network, you can match wits
with the PIC by playing against it over
the Internet. As many as several dozen
people can play simultaneously.

You can choose who makes the
first move. An example game board
during play is shown in Photo 6. Dur-
ing each turn, you move by selecting a
hyperlink on an open square. This
causes the web browser to retrieve a
web page from the PIC. The returned
HTML file contains a new game board
updated with your move and the PIC’s
countermove. When either party wins,
the winning row is highlighted in red.

The state of the game is kept in the
hyperlinks. Thus, an unlimited number
of people can play against the PIC
because no additional storage is
needed per player. The only limitation
is the maximum number of moves
that the PIC can handle per second.
Assuming a conservative value of 20
moves per second and a 2-s pause

 CIRCUIT CELLAR® Issue 123 October 2000 21www.circuitcellar.com

SOURCES
C Compiler
Custom Computer Services, Inc.
(262) 797-0455
Fax: (262) 797-0459
www.ccsinfo.com

MAX233
Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

PIC 16F877
Microchip Technology Inc.
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

Edward Cheung works at NASA
Goddard Space Flight Center in Mary-
land where he builds instruments for
the Hubble Space Telescope. Astro-
nauts install this hardware in space
every two to three years. His interests
include home automation and garden-
ing. You can reach him at edward.b.
cheung.1@gsfc.nasa.gov or visit
cheung.place.cc.

REFERENCES
[1] Steve Freyder, David Helland,
Bruce Lightner, “A $25 Web
Server,” Circuit Cellar Online,
July 1999, www.chipcenter.com/
circuitcellar/july99/c79b11.htm.

[2] National Semiconductor, AT/
LANTIC Ethernet chip,
www.national.com/ds/DP/
DP83905.pdf.

[3] University of Aberdeen, IP
packet structure, www.erg.abdn.
ac.uk/users/gorry/eg3561/inet-
pages/ip-packet.html.

[4] ARP packet structure, melb.
alexia.net.au/~www/vendor/
internetinfo/arp.html.

[5] Rensselaer Polytechnic Insti-
tute, TCP checksum,
www.ecse.rpi.edu/Homepages/
shivkuma/teaching/sp99/i07-udp/
sld015.htm.

[6] University of Massachusetts,
HTTP protocol, gaia.cs.umass.edu/
kurose/apps/http.htm.

[7] The Ohio State University,
SLIP protocol, www.cis.ohio-
state.edu/htbin/rfc/rfc1055.html.

RESOURCES
Camera protocol
www.average.org.digicam/
protocol.html

NBC weather charts
www.aws.com/nbc/wrc

X-10 home control module
X10, Inc.
www.x10.com

between moves, the PIC can handle 40
simultaneous players! As a side benefit,
because the entire state of the game is
encoded in the hyperlink, you can
bookmark Resume Game.

The strategy that the PIC uses to
countermove is simple:

• if a win is imminent, go for the win
• if the opponent is about to win, go

for the block
• if the center square is open, take it
• if a corner square is open, take it
• play any open square

This sufficiently simulates intelligent
play for most matches.

The tic-tac-toe project illustrates
how far silicon has come in the past
few decades. Instead of a refrigerator-
sized machine, the computer is the size
of a fingernail. Teamed with a standard
Ethernet card and attached to the
local network, many players can
match wits against the PIC using only
their browser software.

THE END RESULT
What happens when you combine a

powerful little microprocessor with
the ubiquity of the ’Net? You get the
PIC Web Server. With the HTML lan-
guage, a PIC can now communicate in
style with any user on the network.
Complex and fancy user interfaces
with control buttons, live images,
dynamic graphics, charts, and up-to-
date data are now possible. A single
web page can contain data from an
almost unlimited number of PIC Web
Servers, making the display come
alive with real-world data. I

SOFTWARE
You can download the source code
from www.mindspring.com/
~dr_ed/awards/pic2k/pic2k.htm.

http://www.average.org.digicam/protocol.html
http://www.aws.com/nbc/wrc
http://www.x10.com
http://www.ccsinfo.com
http://www.maxim-ic.com
http://www.microchip.com
http:// www.chipcenter.com/circuitcellar/july99/c79b11.htm
http://www.national.com/ds/DP/DP83905.pdf
http://www.erg.abdn.ac.uk/users/gorry/eg3561/inet-pages/ip-packet.html
http://www/vendor/internetinfo/arp.html
http://www.ecse.rpi.edu/Homepages/shivkuma/teaching/sp99/i07-udp/sld015.htm
http://www.cis.ohio-state.edu/htbin/rfc/rfc1055.html
http://www.mindspring.com/~dr_ed/awards/pic2k/pic2k.htm

22 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Navigating with GPS

FEATURE
ARTICLE

g
If you’re going to be
heading out with a
minivan full of little
ghosts and goblins
this Halloween, you
may want to brush up
on some GPS navi-
gation background
info. Luckily, Jeff has
all the details that
you’ll need to find
your way.

lobal Position-
ing System (GPS)

receivers are abun-
dant and cheap, paving

the way for anyone to write a simple
yet powerful navigation program. All
you need is a C compiler, a laptop or
small computer, and a couple naviga-
tion formulae. Seems simple? It is if
you know what data to use, what
conversions to make, and which for-
mulae to use. This article reveals the
twists and turns required to put your
GPS receiver to work and get you
navigating quickly. The application
program and functions I’ll present
allow you to calculate the distance
and heading from your current posi-
tion to any other position on earth.
The distance and bearing functions
provide the heart of a dynamic and
useful navigation system.

GPS FUNDAMENTALS
GPS became available in 1978 with

the successful launch of NAVSTAR 1.
NAVSTAR 1 was the first of four
NAVSTAR satellites launched that
year, creating an operational satellite
navigation system for the military.
Then in 1982, Russia launched a sys-
tem called GLONASS.

GPS satellites are incredible instru-
ments. Each satellite contains four
atomic clocks that operate on a level

of one second of error in three million
years. This degree of precision time
keeping is required so each satellite
can operate autonomously yet remain
synchronized. GPS satellites transmit
ranging codes based on a signal’s time
of arrival, not position and motion.

These satellites, which are at
known locations at all times, trans-
mit on two L-band carrier signals. The
satellite’s receiver marks the differ-
ence between the time the signal was
sent and received, and multiplies the
difference by the signal speed (close to
the speed of light). Using ranging code
from four satellites, a GPS receiver
can calculate its own position in
three-dimensional space, including
the receiver’s velocity.

The NAVSTAR system breaks
down navigation into two domains,
Standard Positioning Service (SPS) and
Precise Positioning Service (PPS). PPS
accuracy is published at 21-m hori-
zontally and 29-m vertically. The
early NAVSTAR SPS was so accurate
that it was considered a threat, so the
gap between SPS and PPS was inten-
tionally widened. The accuracy level
of the SPS was decreased to 100 m in
the horizontal plane and 160 m in the
vertical plane. The decrease, called
selective availability (SA), introduced
error into the satellite orbital data and
time transmissions.

SA made life more difficult for
commercial GPS-based navigation
systems. One hundred meters
(roughly 300′) of accuracy isn’t bad,
but if you’re trying to develop a pre-
cise hand-held or automotive naviga-
tion system, more accuracy is needed.
To the delight of the navigation com-
munity, the U.S. government turned
off SA on May 1, 2000. Instead of

Jeff Stefan

Figure 1—Longitude lines run east and west from
pole to pole. Latitude lines run north and south,
parallel to the equator.

Longitude Longitude lines from 0˚
to 180˚ east and west of

Greenwich Royal Observatory.

Latitude
Latitude runs from 0˚at

the equator to 90˚at
each pole.

 CIRCUIT CELLAR® Issue 123 October 2000 23www.circuitcellar.com

$<Address>,<Data>*<Checksum><CR><LF>

The address field, <Address>, is
broken down as <talker><sentence_
formatter>. All fields are comma
delimited except <Checksum>, which
is delimited by a star (see Figure 2).

Table 1 lists eight examples of
NMEA GPS messages. The most use-
ful one is the RMC message, which
contains all of the basic information
required to build a navigation system.
RMC is listed as recommended mini-
mum specific GPS/transit data (see
Figure 3). Although I don’t know what
the “C” stands for in RMC, I know I
like the utilitarian nature of this mes-
sage. It contains time, status, posi-
tion, speed, course, and date.

Looking at the RMC message, the
first chunk of data encountered is
$GPRMC. As the NMEA sentence
describes, this is the talker and sen-
tence formatter. Universal Time Coor-
dinated UTC data follows the sentence
formatter; the time is given in hours,
minutes, seconds, and decimal seconds.
Next is the GPS status indicator (A),
which indicates whether or not the
incoming GPS data is valid. The V in
this field seems to indicate that the
data is valid, however, it means the
opposite. An A in this field means that
the data is indeed valid.

There are many reasons why a GPS
receiver would output invalid data.
For example, the receiver might not
have acquired enough satellites for a
position fix yet, foliage or buildings
might block the GPS signals, or the
GPS almanac or ephemeris data could
be out of date. Invalid data output
from a receiver is almost always tem-
porary, and a V usually will become
an A within seconds or minutes.

The next two fields cover latitude
and determine whether the latitude is
in the Northern or Southern Hemi-

Table 1—These are
useful GPS NMEA
messages used for
navigation applica-
tions.

Listing 1—Here’s the structure that holds parsed RMC messages.

NMEA GPS messages at 1-s intervals.
NMEA messages are sent by talkers
(identified by a two-character ID
string with a “GP” prefix) and re-
ceived by listeners. The messages are
one-way: from talker to listener.
Thus, an application program’s con-
trol of the receiver’s output is limited.
Data enters your application program
at 4800 bps at 1-s intervals, period.
The data rate and burst time can’t be
changed. This is OK for most land-
and sea-based applications.

An NMEA sentence contains an
address field, data field, and checksum.
The address field is composed of a
sentence formatter and talker identi-
fier. The latter indicates where the
data comes from. For GPS, the talker
identifier is GP. Two useful GPS
talker identifiers are RMC and GGA.
The sentence formatter indicates the
content of the data field.

NMEA messages are easy for a pro-
gram to parse because they are consis-
tent and well defined. The general
NMEA message format is:

100 m, accuracy now is within 10 to
30 m in the horizontal plane and
slightly more in the vertical plane.

Now, the floodgate is open for new
and highly accurate GPS applications
based on latitude, longitude, and time.
GPS receivers turn up in everything
from wristwatches to locomotives.

Latitude and longitude are funda-
mentals of navigation. Sometimes it’s
difficult to remember which is which.
I use the mnemonic “it’s a long way
from the North Pole to the South
Pole.” Longitude lines run from the
North Pole to the South Pole and are
measured in half circles from the
Royal Greenwich Observatory in
Greenwich, UK. Longitude lines run
from 0° to 180° east and 0° to 180°
west (see Figure 1).

Latitude lines run in parallel from
the equator to the North and South
Poles. Latitude lines run from 0° at the
equator to 90° at the North and South
Poles. As the lines of latitude get closer
to the poles, they become smaller. This
presents a problem when trying to use
a two-dimensional distance formula,
as I’ll explain later.

GETTING THE DATA
Most GPS receivers output data in

NMEA-0183 format. NMEA stands for
the National Marine Electronics Asso-
ciation. The data is sent via RS-232 at
4800 bps, with most GPS receivers
providing a serial port that outputs

���������	
�������

���������	
������

����������

�

������	���	
������

������������

��� !��"���
��������

��� !��"���

�����#$�
��� !���%����

�����������

�����&�����	
�����

�����'����	
������

(�

RMC Contains recommended minimum specific GPS/transit data
ALM Provides GPS almanac information
GLL Provides latitude, longitude, and UTC (Universal Time

Coodinated) data
ZDA Contains UTC along with day, month, year, and local time
GGA Contains UTC, fix, and position data
GSA Provides GPS DOP and active satellite information
VTG Provides “track made good” and ground speed
ZDA Provides the current time and data

24 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

sphere. Following the latitude fields
are the corresponding longitude and
east/west indicators. The two fields
after that, speed (knots) over ground
and course (degrees) over ground, are
handy. Next is the date, and then the
magnetic variation (east or west).

The RMC message is available on
almost all receivers that output NMEA
messages. As stated, GPS receivers
supporting NMEA messages output
data at 1-s intervals at 4800 bps, so
processing data at 1200- to 1800-ms
intervals ensures enough time to fill
up a receiver buffer and transfer the
data to a holding buffer. The data in
the holding buffer can be parsed and
processed while new information
enters the receive buffer.

Listing 1 shows a C structure into
which you can deposit the parsed
RMC message data. The [��������]
identify character array lengths and
are optional. The structure contains
the proper data types to contain the
RMC data fields. You can create simi-
lar structures for additional NMEA
messages that an application needs.

After the GPS receiver deposits
data in a buffer named ��%��)����[],
the data is transferred to another
buffer called ��%��*�+,���[]. The
latter is used to extract the RMC or
other NMEA messages of interest. To
extract the data, create a pointer and
have it point to ��%��)����[]. For
transferring data, you need to de-
reference the pointer to ��%��-

*�+,���[]. This is illus-
trated in the C code frag-
ment in Listing 2.

When a message is in a
buffer, the talker and sen-
tence formatter can be
identified and processed.
This bit of code collects a
sequence of messages so

multiple messages can be processed.
This allows you to create custom
structures, spanning the data from
multiple messages. For example, a
structure can be created that holds
speed, course, latitude, longitude, the
number of satellites in view, and
dilution of precision values.

WAYPOINT NAVIGATION
Waypoint navigation is based on

great circle navigation. Great circle
navigation is general and good for
planes, boats, and cars. Waypoint navi-
gation systems navigate via latitude
and longitude pairs. The navigation
computer accesses a list of latitude/
longitude pairs and calculates the
distance and bearing from one point
to another. Information presented is
usually the current distance and bear-
ing from your present position to the
next waypoint. Often, a dynamic
directional pointer is displayed, which
you follow to the next waypoint.

Before navigating, the data from
the GPS receiver must be converted to
a form acceptable to the great circle
navigation algorithms (i.e., the distance
and bearing formulae). First and fore-
most, all of the data must be in radi-
ans. This seems straightforward, but
there’s a complication. The latitude
and longitude data emitted by most
receivers is in a form that cannot be
directly converted to radians. So, an
intermediate latitude and longitude
conversion sequence must take place.

All NMEA data is emitted as
ASCII data. Latitude and longitude
data received from a GPS receiver in
NMEA-0183 format is in units
ddmm.mmmm, where dd equals de-
grees, mm equals minutes, and
.mmmm is decimal minutes. These
units are not appropriate for the dis-
tance and course calculations; they
must be converted to degrees and
decimal degrees, then to radians.

Table 2—Here are common navigation units and conversion factors.

Ddmm.mmmm to dd.dddd Separate and save dd from the incoming latitude and longitude
Divide mm.mmmm by 60, yielding 0.dddd
Add the saved dd to 0.dddd, yielding dd.dddd

dd.dddd to radians Radians = dd.dddd/57.2957795
Radians to dd.dddd (degrees) Degrees = radians × 57.2957795
Radians to nautical miles (NM) NM = radians × 3437.7387
NM to statute (land) miles (MI) MI = NM × 1.150779
MI to feet (FT) FT = MI × 5280

 CIRCUIT CELLAR® Issue 123 October 2000 25www.circuitcellar.com

The first step is converting the
latitude and longitude data from the
form ddmm.mmmm to dd.dddd. This
is a straightforward algorithm, but it
still takes a substantial amount of
code. To determine the algorithm,
first separate and save dd from the
incoming latitude and longitude
string. Then, divide mm.mmmm by
60, resulting in an exponent of zero
and a new mantissa, 0.dddd. Third,
add the saved dd to the result, yield-
ing dd.dddd.

After you finish converting both
latitude and longitude, radian conver-
sion is possible. The formula to con-
vert from dd.mmmm to radians is:

radians = dd.dddd
57.3

After performing the distance and
bearing calculations, the data needs to
be converted back to dd.mm.mmmm.
This is done by following the formula
degrees = radians × 57.2957795. To
convert back to the form
ddmm.mmmm, save dd, multiply
.dddd by 60, and add the exponent to
the result, yielding mm.mmmm.
Then concatenate the saved dd, result-
ing in ddmm.mmmm.

That takes care of the latitude and
longitude conversions. Now, you can
tackle the knots and nautical miles
(NM) conversions. All speed and dis-
tance data contained in NMEA mes-
sages is in terms of knots and nautical
miles. One NM corresponds to the
traversal of 1 s of arc. One knot is
1 NMph. So, if you’re traveling at five
knots (5 NMph), you’ll traverse 5 s of
arc in 1 h.

Now, convert knots to miles per
hour and nautical miles to statute
(land) miles (see Table 2). Remember
that the output of the navigation cal-
culations is in radians. The conver-
sion to nautical miles is NM = radians
× 3437.7387. Next, you can convert
nautical miles to land miles (MI) us-
ing MI = NM × 1.150779. Converting
from land miles to feet (FT), the for-
mula is FT = MI × 5280.

NAVIGATION FORMULAS
Now that the units are all in line,

the latitude and longitude data points
can be run through the great circle

algorithms, yielding correct results.
The distance calculation is performed
first because the distance is a factor in
the bearing calculation. To compute
the great circle distance between two
pairs of latitudes and longitudes, use:

d = acos(sin(Lat1) × sin(Lat2) + cos(Lat1)
× cos(Lat2) × cos(Lon1 – Lon2))

This formula accurately yields the
distance between two points on the
globe. Remember that the units are in
radians, so to convert from radians to
nautical miles, use the formula NM =
radians × 3437.7387. Then you can
convert to land miles or kilometers.
Some languages and programming
environments, such as Visual Basic,
do not support a direct ����-�. func-
tion. Instead, you can use an ����-�.
function coupled with the relation

acos(x) = atan(sqrt(1 – x2) / x). For calcu-
lating distance, I use the sequence of
temporary variables as follows:

t1 = sin(Lat1) × sin(Lat2);
t2 = cos(Lat1) × cos(Lat2);
t3 = cos(Lon1 – Lon2);
t4 = t2 × t3;
t5 = t1 + t4;

rad_dist = atan – t5

– t5 × t + 1
+ 2 × atan 1

This sequence works well. While
taking a few more steps than one
monolithic formula, intermediate
variables are exposed, allowing you to
debug the distance algorithm as it
progresses. And, this sequence works
with all programming languages. To
prove it, t1 through t5 can be consoli-
dated, but sometimes it’s good to see

Figure 2—
This is the
NMEA
sentence
format.

/01������230&���240����5���20�
20"62
01������2� 7� 0	�!5��20��������8���������2
0	�!5��2� 7� 9
0��������8���������2� 7� ���� ���
*�� 1� �':;&1

26 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Now that distance is calculated, the
next thing to do is calculate the bear-
ing from one point to another. Bearing
tells you which way to go. It is defined
as the angle measured horizontally
from north to the current direction of
travel. North can be true north or
magnetic north. Again, the great circle
distance (d) between two points must
be previously calculated. The classic
bearing formula is:

where d equals the great circle dis-
tance. The result (c) must be qualified
by testing whether or not sin(Lon2 –
Lon1) is negative. If negative, the true
course is determined by 360° – c. You
will end up at the destination, but

what’s going on in a mathematical
algorithm at different steps.

Why not use the Pythagorean Theo-
rem (remember, d x2 + y2) to compute
the distance between two points? For
navigation, x would be the absolute
value of the difference of the latitudes,
and y would be the absolute value of
the difference of the longitudes. This is
true for the proximity of 300″ but
rapidly deteriorates beyond that.

Hence, the Pythagorean Theorem
is useful only in two-dimensional
space. You’re navigating in three-
dimensional space, so for short dis-
tances, the theorem appears to work,
but it fails for long distances. So, al-
though it’s an easier formula touse, you
can’t use it for any significant dis-
tances.

Listing 2—This code transfers an NMEA message from a raw input queue to a message processing buffer.

����+���������4!��%��� <<�!���!� ������%������

������7��������������������<<�����=�����>

<444444444444444444444444444444444444444

4�	����������%��)���������������%��*�+,�����

444444444444444444444444444444444444444<
!��%���7���%��)�����

<444444444444444444444444444444444444444

4�����5������*#1������+������������������?/@A
4����?/@���������3���������������+�������%��*�+,��A

44<

���-4!��%���77�?/@.

�

���B��!��-4!��%���C7�?D�@.
�����

����������%��*�+,�����EE��7�4!��%���

�����(
����%��*�+,�������7�?D�@�

(

Figure 3—Here’s the NMEA RMC message format, followed by definitions.

RMC message
$GPRMC,nnmmss.ss,A,IIII.II,a,yyyy.yy,a,x.x,x.x,xxxxxx,x.x,a*hh<CR><LF>

$GPRMC Address field
hhmmss.ss UTC of position fix (hours, minutes, seconds, decimal seconds)
A GPS status: A means data is valid, V means data is invalid
Llll.ll Latitude
a North/south
yyyy.yy Longitude
a East/west
x.x Speed over ground in knots
x.x Course over ground, degrees true
xxxxxx Date: ddmmyy (day, month, year)
x.x Magnetic variation
a East/west
*hh<CR><LF> Checksum

 CIRCUIT CELLAR® Issue 123 October 2000 27www.circuitcellar.com

Figure 4—The simple navigation system architecture is pictured here.

Receiver buffer Parser buffer

NMEA parser

Navigation
engine

Display
engine

Input to buffer at 1-s
intervals from GPS

receiver

Data transferred
to parser buffer between

1-s bursts

Calls NMEA grammer
functions

Contains navigation
algorithms

Displays raw GPS data and
processed navigation

information

SOURCE
NMEA Specification
National Marine Electronics Asso-
ciation

(919) 638-2626
Fax: (919) 638-4885
www.nmea.org

Jeff Stefan is an engineer at OnStar.
He holds a B.S. in Computer Science
and has worked in embedded systems
software design for many years. Jeff is
the author of more than a dozen tech-
nical articles and currently is work-
ing on his first book. You may reach
him at jmstefan@mindspring.com.

you’ll be taking the long way
around the globe. Again, I like to
break down the algorithm into
discrete steps using temporary
variables (see Listing 3).

To create a direction
pointer, subtract the current
GPS heading of the RMC mes-
sage from the calculated bear-
ing. Add 360° if the result is
negative, creating an angle
value that points from one
waypoint to another.

Many different sources are
available to determine
waypoints. Inexpensive PC-
based mapping programs pro-
vide methods of converting
map points to latitude and
longitude. Converting from an
address to a latitude and longitude
value is called geocoding. Converting
from latitude and longitude values to
an address is called reverse geocoding.
Using the algorithms provided here
and a GPS receiver, you can create
your own waypoint-capturing pro-
gram. Simply provide some code that
will save the incoming RMC message
when you pass over a location. The
saved message contains the latitude
and longitude of the point passed over.
You can use a collection of these val-
ues to create accurate maneuver lists
for roads, trails, rivers, and lakes.

Figure 4 illustrates the main com-
ponents of a simple navigation sys-
tem. Data is input from a GPS receiver

serially to an input buffer at 4800 bps,
8 data bits, 1 stop bit, and no parity.
The data is input periodically at 1-s
intervals. During the time between the
input data bursts (typically 200 to 800
ms), the input buffer data is transferred
to a parser buffer. The data in the
parser buffer is used as input to the
NMEA parser that separates the data
into different components—latitude,
speed, and so forth.

Data from the NMEA parser is
made available to the display and
navigation engines. The navigation
engine computes the distance, bear-
ing, and direction pointer, then gives
the information to the display engine
for rendering and display.

Listing 3—There’s no doubt this can be easily optimized, but the algorithm is broken up to be more
illustrative and instructional than optimal.

��� -���� -"��F� G� "���.� 0� �A�.

�
�����7����-"��F.�G����-"���.�4����-���8����.�
���F�7����-"���.�4����-���8����.�

���H�7����<��F�

���I�7�����-G�H�<��J��-G�H�4��H�E��..�E�F�4�����-�.�
� � � ���8 �����+� 7� �I�
(

�!��

�
��� 7� ���-"��F.� G� ���-"���.� 4� ���-���8����.�
�F� 7� ���-"���.� 4� ���-���8����.�

�H�7����<��F�
�I�7�G�H�4��H�E���
�K� 7� F� 4� HA�I� G� -����-G�H� <� �J��-G�H� 4� �H� E� �..� E� F� 4� ����-�.�

�����8 �����+�7��K�
(

The companion program to
this article, navcalc.c, takes
latitude and longitude pairs
from the command line and
computes the great circle dis-
tance from the first latitude/
longitude pair to the last pair.
The source and destination
latitude and longitude values
supplied in the program text
are for southeastern Michigan.
To create a dynamic navigation
program based on this code, use
the latitude and longitude re-
ceived and parsed from a GPS
receiver as the source coordi-
nates, and continuously calcu-
late the distance and bearing to
the destination coordinates.
Try different latitude/longi-

tude source and destination pairs in
your city and compare how well the
output values match reality.

PARTING COMMENTS
The C code provided supplies the

basic building blocks for a small, low-
cost yet significant navigation appli-
cation program. GPS receivers are
available on the ’Net for bargain base-
ment prices. Mapping programs that
provide latitude and longitude data
are widely available. The C code sup-
plied in the example program is por-
table, so it runs on most processors
that support floating-point operations
and trigonometry functions.

Now you’re on your way to creating
your own navigation program. Being
lost will be a thing of the past! I

http://www.nmea.org

28 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Internet Connectivity

FEATURE
ARTICLE

m
Implementing Internet
connectivity into prod-
ucts can be a
gamble, but as Alan
explains, you’ve got
to know when to roll
your own.... Under-
standing the different
factors that need to
be considered can
take the chance out
of playing the I-card.

ore and more
we’re reading

about the deployment
of Internet-enabled ap-

pliances such as cell phones supporting
WAP (wireless access protocol), set top
boxes that connect your TV to an ISP,
and interactive games that let you play
video games with someone on the
other side of the world. Most of these
devices use powerful 32-bit micropro-
cessors that run sophisticated applica-
tions, such as voice compression or
render high-resolution graphics.

MPUs can perform calculations of
100 or more MIPS (millions of instruc-
tions per second). Generally, MPUs
don’t use all this processing power, so
extra MIPS are available for other uses.
Design engineers correctly argue that
MPUs have available headroom to run
the Internet protocols as well.

In order to connect a device to the
Internet, it must support the relevant
Internet protocols required for speci-
fied connectivity. The basic TCP/IP
stack may use between 35 and 60 KB of
memory, depending on whether or not
the vendor supports the complete
stack from the PPP protocol on the
Physical Layer through the TCP and
UDP protocols on the Transport Layer
of the Open System Interconnection
(OSI) seven-layer networking model.
On top of the TCP/IP stack, there
may be e-mail protocols to support,
including SMTP (Simple Mail Trans-
fer Protocol) for sending to a mail
server and POP3 (Post Office Protocol
3) for receiving from a mail server.

These protocols can add an extra 5
to 15 KB of memory, depending on
whether or not they are both sup-
ported. If the device supports HTTP,
the web client deals with an extra 10
to 20 KB and the server faces an extra
20 to 40 KB. Thus, adding Internet
connectivity can increase 70 to 135 KB
to the application, not counting a real-
time operating system and additional
management, which can add another
55 KB (see Figure 1).

The question is whether to do the
work yourself or buy off the shelf. In
this article, I’ll explore the risks and
benefits of each approach.

Few design engineers don’t want to
do it themselves. After all, they are
paid to develop solutions and like the
challenge of a new project. Manufac-
turers could buy the protocols off the
shelf from vendors such as Allegro,
Agranat, Be, and Wind River. But, then
they integrate the protocols into their
application, which means they need
Internet programmers onboard or
subcontractors.

Alan Singer

Figure 1—Connect One
customizes the iChip
protocol stack according
to the dial-up application.

Application-specific protocols

DNS MIME SMTP POP3 HTTP

UDP TCP

IP

LCP PPP IPCP
PAP/CHAP/

Scripts

Communications platform

Do-it-Yourself or Off-the-Shelf?

 CIRCUIT CELLAR® Issue 123 October 2000 29www.circuitcellar.com

password, send and receive an e-mail
or a web page, or open and close a
socket interface, then log off. These
commands must be written into the
application and stored with the rel-
evant Internet protocols in the device’s
memory. If the device does not have
enough memory to store the Internet
protocols and configuration param-
eters, additional memory must be
designed in. Flash memory that can be
updated in the field is desirable.

If the device does not have a pro-
cessor with enough available MIPS to
run the Internet protocols, a new
processor must be added. A new de-
velopment environment may be nec-
essary if the manufacturer has selected
a new processor. New development
tools and kits may be required for
programming the processor during the
development stage. In addition, a new
RTOS may also be required to go with
the processor.

Finally, all these elements must be
integrated, debugged, tested, deployed
in alpha and beta sites, revised, re-
leased in the production version, and
maintained. The entire development
process can take one year or more for
a new product. In addition to expend-
ing engineers’ time, such a long devel-
opment process can cost success in
the marketplace. A long development
cycle will delay the time to market
for products where early introduction
and technological leadership often
determine market leadership.

RISKY BUSINESS?
Doing it yourself has serious finan-

cial, marketing, and technological
risks, especially when dealing with an

Figure 2—This Internet
controller is a peripheral
chip that works in
tandem with a device’s
host processor and
mediates the connec-
tion to the Internet.
Connect One’s AT+i
protocol simplifies host
programming.

match those supported by a particular
ISP. Furthermore, dial-up parameters
to an ISP may change and need to be
updated. If a device does not have
nonvolatile memory, these updates
cannot be stored in the device. Thus,
the device may not be able to connect
to the Internet if it does not have
EEPROM or flash memory.

Next, the device must be pro-
grammed to dial up the ISP, log on,
authenticate the user account and

THE BASICS
There are manufacturers ruled by

the NIH (not invented here) mentality.
In such places, the engineer writes the
complete protocol stack from top
(Application Layer protocol) to bot-
tom (Physical Layer). But the job
doesn’t stop there; the protocols must
be maintained.

Many cell phones, set top boxes,
and interactive video games already
have lots of onboard memory. There-
fore, there is no need to add memory
to support the Internet protocols,
design engineers say. Once again, the
engineers are correct from a math-
ematical and physical point of view.
They conclude that Internet connec-
tivity can be added to the design with-
out changing the hardware.

If the device already has a high-
powered 16- or 32-bit processor and
enough available memory, they may be
right. But the Internet is a dynamic
medium and is implemented differ-
ently from server to server. It may be
necessary to modify the protocols to

AT+i protocol = Simplified host API

Host
CPU

(8–16 bit)
Modem

H
ost interface

CPU

C
om

m
unications interface

Flash
256 KB

or
512 KB

SRAM
128 KB

iChip

Table 1—Here’s an analysis of the costs of doing it yourself at 5 and 10k units. All units are in U.S. dollars.

Current Internet design Internet design
design cost at 5k units at 10k units

Hardware
CPU 4 8 8
Flash memory (512 KB) 0 6 6
RAM (128 KB) 2 4 4
Modem 6 10 10

Subtotal 12 28 28

Software
License amortized per unit

RTOS at $20k 0 4 2
PPP, TCP/IP, SMTP,
POP3, HTTP server at $55k 0 11 5.50

Subtotal 0 15 7.5
Total hard costs 12 43 35.50

Soft costs
Development time

Man months at $x/month 0 48 24
 amortized per unit

Ongoing SW maintenance
Hourly rate/month/year 0 10 5
 amortized per unit

New CPU devopment
Cost/seat at $7.5k x 4 0 6 3
 environment amortized per unit

Total soft cost 0 64 32
Grand total 12 107 67.50

30 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

unfamiliar technology such as
Internet connectivity. Risks include
overruns and delays, being late to
market, incorrectly implementing the
Internet protocols, and not being able
to update the protocols.

Should a manufacturer take these
risks by stepping outside of its exper-
tise and spending resources in develop-
ing Internet connectivity? Or should it
invest in perfecting the functionality
of its product?

COST ANALYSIS
Let’s analyze the hard and soft costs

of doing it yourself. For small produc-
tion quantities (less than 10k units),
adding dial-up Internet connectivity to
an existing design can double the cost
of the basic processor, memory, and
modem. More memory is required to
store the Internet protocols and a
higher power processor is needed to
run the protocols and modem (one that
won’t time out on the Internet). Buying

or developing a new RTOS and
Internet protocol software can increase
the cost 25 to 50%. The soft costs of a
new development environment, devel-
opment time, and software mainte-
nance can add another 100 to 150%
on top of the hardware and software.

See Table 1 for a case study of up-
grading an existing design to include
Internet capability. For Table 1, as-
sume the following:

• Current design uses an 8- or low-end
16-bit processor with built-in code
memory, no external flash
memory, limited RAM, and low-
speed modem

• For DIY, upgrading to an Internet-
enabled design requires a stronger
processor, faster modem, and more
memory

• Software licenses are non-transfer-
able, one-time, royalty-free, single-

use licenses
• A new CPU environment

is required only if the
manufacturer upgrades
the processor

What about the cost for
larger production quanti-
ties? Software adds little to
the cost, but the soft costs
of development time, soft-
ware maintenance, and a
new development environ-
ment raise the cost of the
hardware plus software 13
to 23%. The main costs
are the delay in time to
market and the risks.

Table 2—Check out the do-it-yourself
versus the off-the-shelf version at 5
and 10k units. iChip consists of a
processor, the necessary firmware,
RAM, and flash memory. You have to
add 512 KB of flash memory and
128 KB of SRAM. All units are in
U.S. dollars.

Do-it-yourself Do-it-yourself Internet design Internet design
Internet design Internet Design with iChip with iChip

at 5k units at 10k units at 5k units at 10k units

Hard costs
Hardware

CPU 8 8 4 4
Flash (512 KB) 6 6 0 0
RAM (128KB) 4 4 2 2
Modem 10 10 6 6
iChip 0 0 25 20

Subtotal 28 28 37 32

SW license amortized per unit
RTOS @ $20k 4 2 0 0
PPP, TCP/IP, SMTP, POP3, 11 5.50 0 0
 HTTP server at $55k

Subtotal 15 7.50 0 0
Total hard costs 43 35.50 37 32

Soft costs
Development time

Man months 48 24 2 1
 at $x/month

Ongoing SW maintenance
 amortized per unit

Hourly rate/month/year 10 5 0 0

New CPU development
 environment

Cost/seat at $7.5k x 4 6 3 0 0

Total soft costs 64 32 2 1
Grand totals 107 67.50 39 33

Figure 3—iChip includes a processor, up to 512 KB of flash memory for storing the Internet protocols, commands,
and nonvolatile parameters. It also includes 128 KB to buffer messages.

CPU

Flash
256 KB

or
512 KB

SRAM
128 KB

Reset

X1
X2

Rx, Tx, CTS, RTS, DTR Rx, Tx, CTS, RTS, DTR

LD0-D15

LA0-A19

LRD

LWR

Lint

CS modem
CS extra RAM

Host
serial
bus

interface

Local
parallel/
serial

interface

C
rystal

iChip CO561AD-s

32 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Do-it-yourself Internet
 Internet design design with iChip

at 50k units at 100k units at 50k units at 100k units

Hard costs
Hardware

CPU 7 6 3.50 3
Flash memory(512 KB) 5 4 4 3.25
RAM (128 KB) 3.50 3 3 2.50
Modem 9 8 5 4.50
iChip 0 0 13 11

Subtotal 24.50 21 28.50 24.25

Software license
 amortized per unit

RTOS at $20k 0.40 0.20 0 0
PPP, TCP/IP, SMTP, POP3, 1.10 .55 0 0
 HTTP server at $55k

Subtotal 1.50 0.75 0 0
Total hard costs 26 21.75 28.50 24.25

Soft costs
Development time

Man months at $x/month 4.80 2.40 0.20 0.10

Ongoing SW maintenance
 amortized per unit

Hourly rate/month/year 1 0.50 0 0
New CPU development
 environment

Cost/seat at $7.5k × 4 0.60 0.30 0 0

Total soft costs 6.40 3.20 0.20 0.10
Grand total 32.40 24.95 28.70 24.35

Table 3—This table represents off-the-shelf versus do-it-yourself options at 50 and 100k units. For the latter,
upgrading to an Internet-enabled design requires a stronger processor, faster modem, and more memory. All units
shown are in U.S. dollars.

Now, let’s compare this to the cost
of an off-the-shelf solution. Connect
One’s iChip COS561AD-S Internet
Controller is a peripheral chip that
works in tandem with a device’s host
processor and mediates the connec-
tion between the host CPU and the
Internet (see Figure 2).

iChip is independent of the host
processor and operating system. It
contains two UARTs for serial inter-
faces. One is used to communicate
with a host CPU, and the other con-
nects to a communication peripheral.
The iChip’s firmware supports a dial-
up modem operating in the range
from 2400 bps to 56 kbps. It also sup-
ports connectivity to Ethernet LANs
and cellular modems. Because iChip
includes onboard memory, no other
hardware is necessary in order to
implement Internet connectivity.
There’s no need to redesign the basic
product with a higher-powered proces-
sor to run the Internet protocols, nor

to add extra memory to store the
protocols, nor to change the operating
system. iChip enables a manufacturer
to utilize its existing design, thus
shortening the time to market for new
Internet-enabled products.

The iChip Internet Controller in-
cludes onboard flash memory, enabling
it to be as dynamic as the Internet. As
an Internet controller, iChip keeps the
Internet protocols and configuration
parameters separate from the applica-
tion. It includes up to 512 KB of flash
memory and 128 KB of SRAM. New
protocols and configuration param-
eters can be downloaded to the iChip
(see Figure 3).

Connect One provides a high-level
API known as the AT+i protocol,
between the host processor and the
iChip Internet Controller. This proto-
col eliminates the need for the manu-
facturer to subcontract, hire, or use
in-house Internet programmers to
implement the Internet protocols and

 CIRCUIT CELLAR® Issue 123 October 2000 33www.circuitcellar.com

SOURCE
iChip COS561AD-S Internet Con-
troller

Connect One Semiconductors, Inc.
(408) 986-9602
Fax: (408) 986-9604
www.connectone.com

commands. With the AT+i command
set, a few lines of code transmit plain
ASCII text commands from the host to
invoke an AT+i command on iChip.

After receiving the AT+i command,
iChip switches from command to
Internet mode and takes over the com-
munication line. A set of intuitive
commands, parameters, and values are
defined for sending and receiving e-
mail or web pages, and for opening and
closing up to five TCP/UDP sockets
for direct packet transfers. Commands
then activate the appropriate protocol
or handshake sequence in the iChip.

The AT+i protocol supports the
Hayes AT command set. If iChip
receives a regular AT command, it
enters transparent mode, enabling the
command to pass through directly to
a modem. Successful AT commands
are returned with an AT result code
directly from the modem. Setup pa-
rameters for permanent use need to be
entered only once on the host using
the AT+i command set and the equal
sign, which stores them as default
settings. Internet commands will

Alan Singer is vice president of Con-
nect One Ltd. He received his B.S.
from Cornell University and MBA
from Columbia University. You can
reach him at alan@connectone.com.

become part of the host application,
issued as ordered by the host proces-
sor. Commands can be entered on a
single-session basis when needed and
will revert to the default settings after
the session is completed.

DECISION TIME
With iChip, there is no need for new

hardware or an operating system. All
the Internet protocols are also in-
cluded so no software licenses are
required. The combined hardware and
software cost for iChip is less than the
cost to do it yourself. Development
time with iChip is approximately one
month versus the typical 12 months
for a do-it-yourself solution.

The bottom line is that the iChip
off-the-shelf solution costs almost
one-third of the cost of the do-it-your-
self solution at the 5k level, and half
the cost at the 10k level (see Table 2).

At the 50- to 100k-unit level, Con-
nect One provides the iChip processor
plus firmware. iChip costs $15 for 50k
units and $11 for 100k units. You
provide your own flash memory and

SRAM. Although the hard cost of
using the iChip is greater, the soft
cost of doing it yourself is greater
because of the long development time
(see Table 3). Even at quantities over
500k units, time to market and no
risk remain the key selling points.

The Internet controller concept
proves its worth financially, commer-
cially, and technologically. The solu-
tion saves manufacturers the time,
cost, and aggravation to learn that
developing and deploying Internet
devices is not simple. I

http://www.connectone.com

34 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

The Joys of
Writing Software
Part 3: Design Tips

i n the two
previous parts of

this series, I talked
about planning and test-

ing software with the ultimate goal of
eliminating bugs. Hardware designers
have long recognized that all compo-
nents eventually fail, so they design
products that do so in a safe and pre-
dictable manner. Many software de-
signers make the mistake of thinking
that because software doesn’t wear
out, as long as it’s functionally correct
and no bugs can be found, their job is
done. But programs can skip rail as a
result of electrical transients, memory
bits can get altered by alpha particles,
and impossible input combinations can
happen. It is how the software re-
sponds to such exceptional conditions
that makes it mediocre or great.

Like hardware, designing software to
perform the intended function is a
small fraction of the task. Making it
fault-tolerant so it may recover from
the unexpected (or at least fail predict-
ably) is the most difficult part of de-
sign. This is what separates the good
design from the bad. The customer
expects bug-free software and we, as
professionals, should strive for nothing
less. So, how can we do it?

If you read my previous articles
carefully, you already know the an-
swer. There’s no magic trick or silver

bullet. Bug-free software is the result of
discipline and keeping things simple
(i.e., testable). The robust software
development process forces you to
make it a habit. Along the way, it posts
checkpoints in the form of design
documents and audits. Passing these
checkpoints and quality assurance
audits forces you to review what
you’ve have already done and helps to
uncover problems.

Critics say successful audits do not
guarantee working software. You can
pass them with flying colors and still
produce software that doesn’t work.
Strictly speaking, the critics are right
because the purpose of the audit is to
review adherence to the process, not to
check the technical correctness or the
engineers’ work and logic. Theoreti-
cally, as an engineer, you could start
with a flawed specification, carry
through the entire development pro-
cess while adhering to every detail, and
fool the non-engineer auditors along
the way. Of course, under normal cir-
cumstances, successfully passing the
checkpoint also validates the results of
the previous one. To end up with
flawed software, any organization
would have to be either completely
incompetent or purposely want to
waste time and money to prove that
the system can be fooled.

CHECKPOINTS
My checkpoints consist of a number

of design documents bound together
by the traceability matrix. I’ve already
developed the plans described in Part
1. But before we get down to the design
documents, in an organization where
several programmers work in a design
team, I need to set some design rules,
or standards. Not only do I want to
make sure the designers’ styles are
compatible, more importantly, I want
to ensure that the code they produce
satisfies the overall goal in testability,
modularity (i.e., one input, one output
rule), safety, and so forth.

I set these rules in the Software
Requirements Standards document,
which defines the methods, rules, and
tools used to develop high-level re-
quirements. Generally, this document
defines structured methods for devel-
oping the software requirements, nota-

FEATURE
ARTICLE

George Novacek

In this final segment
of George’s series,
he’ll delve into the
third aspect of creat-
ing excellent soft-
ware. He tackled
planning and testing
in Parts 1 and 2, and
now George ad-
dresses the ultimate
test of software qual-
ity: fault-tolerance.

 CIRCUIT CELLAR® Issue 123 October 2000 35www.circuitcellar.com

tion, formal specification languages,
development tools, and constraints.
On rare occasions, this document var-
ies for different jobs, so it is like a pro-
cess manual for the design engineers.

The Software Design Standards
document also defines the methods,
rules, and tools for the development of
architecture and low-level require-
ments. It addresses design description
methods, naming conventions, con-
straints on design tools, and more. But,
the most important part is
the definition of design
and complexity restric-
tions, the actual methods
that will guarantee test-
ability later. As an ex-
ample, I will need to limit
the number of nested loops
and calls, maintain one
function, one entry, and
one output per module,
and exclude recursion and
data aliases.

When you deal with
safety-critical software,
your design standards
require dual processing
paths, as shown in Figures
1a and 1b. For those of you
involved in the design of
embedded software, the
major task is to avoid
unpredictable, safety-
critical activity as a result
of erroneous behavior like
endless loops (or dead-
locks), microprocessor

erroneous performance, unconditional
jumps to undesired code section, erro-
neous writing and reading to and from
reserved memories, and so forth. I’ll
come back to this when I discuss the
design. Clearly, I must address how to
perform fault trapping, exception han-
dling, and what the minimum diagnos-
tics requirements are.

The Software Code Standards docu-
ment specifically defines programming
languages, methods, rules, and tools

used in coding. It also addresses the
format, such as indentation, line length
restrictions, blank line usage, headers,
and naming conventions.

Customarily, the three subjects are
combined into a single document
called Software Design Standards,
which is truly an engineering manual
(not specific to a project) and is used
across the entire software develop-
ment spectrum. Quality assurance
auditors are interested in knowing that
the engineers follow the well-founded
rules (they are spelled out). In good
software design standards, there is no
room for (misplaced) artistic ambitions
of programmers.

SOFTWARE REQUIREMENTS
The Software Requirements docu-

ment is the most important document,
a specification for the software you are
about to develop. If you don’t get this
one right, you’ll end up developing
something the customer didn’t ask for.
The basis for creating this specification
is the System Requirements document,
which is not part of the software docu-
mentation suite for the simple reason
that it is prepared by the systems engi-
neers. It addresses overall system as-

pects, such as
electromechanical and
hydromechanical com-
ponents and interfaces,
power actuators, envi-
ronmental effects, and so
on. It makes no refer-
ences to software, other
than the Hazard Analy-
sis, which will affect the
software criticality
level. Software designers
must study and distil
this document and in-
stall the software re-
quirements needed for
the design. Not surpris-
ingly, engineers with this
responsibility must have
a good knowledge of and
experience with both the
software development
process, as well as the
system design.

My understanding of
the system (which will
be validated by audit)

Figure 1a—Processes 1 and 2 perform the same function through two different paths in the software. The
two routines are coded differently and may not be performed by two different processors. They originate
from the same hardware stage and end in the same output stage. Their outputs must agree for the hard-
ware output stage to react. b—The control path performs all the computational functions and drives the
output. The monitor reads the output, reverses it into the input, compares it with the input monitor and, if
the results agree, enables the output stage.

Input process 1
S/W

Control process 1
S/W

Output process 1
S/W

Input process 2
S/W

Control process 2
S/W

Output process 2
S/W

H/W input
stage

H/W
output
stage

Input process 1
S/W

Control process 1
S/W

Output process 1
S/W

Monitor process
S/W or H/W

H/W input
stage

H/W output
stage

Reverse monitor
process

S/W or H/W

a)

b)

Figure 2—Command and data flow diagrams define the required processing and assign
functions numbers for identification. The numbering system is defined in the Configura-
tion Control Plan and the design standards.

Real-time clock

RS-422

Analog inputs

1553-B database

Startup

H/W supervisor

RS-422

Discretes

Current
driver

Outputs

NV RAM

3.2.2

3.3.5

1.1.7

2.2.2

1.5.8

36 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

finds its way, in a concentrated form,
into the Plans for Software Aspects of
Certification described in Part 1. Al-
though major aspects of the system
may be totally unrelated to software, I
want to make sure everybody under-
stands (albeit in a simplified form)
what the system is about. Software
requirements, in conjunction with the
hardware definition, must allocate
functions between hardware and soft-
ware and extract from the systems
requirements the modes of operation,
definition of performance and safety
requirements, and how it proposes to
handle failure conditions.

Remembering that this is the bind-
ing document for the software design-
ers, I must specify performance,
precision, accuracy, and all other crite-
ria in detail under all modes of opera-
tion. Full definition of memory size,
mapping, and timing constraints is
crucial. Hardware and software inter-
faces, communications protocols, fre-
quency, amplitude and bandwidth of
signals, and processing algorithms are
all vital to the programmers and must
be defined. Last but not least, modular-
ity, partitioning, performance moni-
toring, failure detection, and exception
handling are precisely nailed down.

Figure 2 is an example of a high-
level mode of operation as defined in
the Software Requirements. It defines
inputs, outputs, and control or data
flow and their relation to individual
software functions. Each function is
identified by a number that refers to a
section in the document containing the
specific requirements.

Figure 3 shows how functions are
defined. You must identify the pur-
pose, timing constraints, algorithm,
equations, inputs and outputs, and
whatever is pertinent for the designer
to do the job.

And, finally, your Software Require-
ments document will contain the
traceability matrix, which I’ll discuss
towards the end.

INCREMENTAL DEVELOPMENT
It would be nice if I could start

working with the fully defined System
Requirements document and work
step by step, moving on only when the
previous step is done. Unfortunately,

life’s not that simple. It is the
nature of development that we
are treading on unbroken
ground. More likely, the System
Requirements documents will
not be complete by the time
you receive them, with many
TBDs in place where firm data
is needed. And even the firm
data may prove to be wrong by
the time the prototype is built
and integration testing starts.

Software development, like
any other development, is an
iterative process. Time after
time, you will have to go back
one or two design levels during
development, or even back to
square one. The secret to main-
taining configuration and the
design discipline is to stick to
the process. You should docu-
ment everything and, when you need
to retrace, do not progress to the next
level unless all the currently known
requirements have been fully satisfied
and the QA audit has given you a clean
bill of health.

DESIGN DESCRIPTION
At this point, can you finally start

coding? Absolutely not! Now is the
time to design. Take one high-level
function (as shown in Figure 2) at a
time and decompose it into modules,
appropriately numbered, so the rela-
tionship with the high-level function is
immediately understood. For instance,
function 1.1.7 in Figure 3 for balancing
propellers could be decomposed to five
modules, 1.1.7.1 to 1.1.7.5.

The Software Design Standards
document should provide a guideline
for decomposition. There is no rule
stating that a function must be broken
up into modules, but remember why
you’re doing all this work. You want to
deliver bug-free software, and one
crucial aspect for accomplishing that is
being able to test the modules. And,
the simpler the structure of the mod-
ule, the easier it will be to test (and
the more complete the test coverage
will be).

Some developers arbitrarily decide
that a module will not be allowed to
have more than 100 lines of code. If
this is the source code, it could still

result in some highly complicated
modules. On the other hand, if lines of
executable code are counted, with
today’s high-level languages, you may
not be able to generate some modules.
My preference is to determine the
module as the smallest practical func-
tion that makes sense to stand on its
own and can be effectively tested.
Look again at function 1.1.7 in Fig-
ure 3. I would create a separate module
for every calculation; when the data
typing has been included, each will be
just a few lines of source code.

Various methods can be used for
module design. Some (not many) still
like to use flow charts because of the
graphics. This works well when I have
a presentation where I need to explain
a structure to people who are not soft-
ware developers. The most prevalent
method today is the use of pseudo-
code, which exists in many, often cus-
tomized versions. Computer Aided
Software Engineering (CASE) tools help
you generate pseudo-code, as well as
control and data flow diagrams.

In addition to the module decom-
position and architecture, your design
description must not leave out defini-
tions of inputs and outputs, data dic-
tionary and data flow, address design
constraints (resource limitations), and
how you’re going to test the module.
In fact, testing must always be on
your mind while you’re defining the

Figure 3—This is an excerpt from Software Requirements,
which illustrates how functions can be defined using ex-
ample function Propeller Balance. Calculations, inputs, and
outputs are defined.

1.1.7 Propeller Balance

Purpose—upon detection of vibration exceedance, determine
 .Correction_Weight and .Correction_Weight_Position,
 which would correct imbalance.

Requirement—propeller balance calculation shall be performed:
 • after a Prop_Vib_Maint_Exceedance is detected
 • once per flight during a stable flight condition

Calculations:
(Trbn_Vibr.Ampl_Prop_Spd) x (K_TRBN_PROP_SENSITIVITY)=
Prop_Bala_Corr
(Trbn_Vibr.Phase_Angle)+(K_TRBN_PROP_PHASELAG)=
Propeller_Balance_Trbn.Correction_Weight
…
…

Inputs Description

Prop_Vib_Maint_Exceedance Indication that prop vibration…

… …

Output Description

.Correction Weight Weight in units

… …

 CIRCUIT CELLAR® Issue 123 October 2000 37www.circuitcellar.com

modules. Discovering that the module
is not testable, even though it appears
to be working fine, means the software
cannot be certified.

One of the most important design
aspects is the module’s ability to
handle incorrect data. Division by
zero, zero or negative operand on loga-
rithms, and negative operand to square
root can all play havoc on your rou-
tines. The design must be able to toler-
ate such situations even if they are not
expected to arise. It is easy to forget
details, so never skimp on data typing
whenever the module could be affected
by incorrect data. Later, your test
routine must verify that the data typ-
ing is effective. See Part 2 of this series
for possible strategies.

Watchdog timers are helpful, pro-
vided their limitations are understood
and they are not viewed as a panacea.
A useful implementation has every
subroutine exercised during the main
program loop, upon which a flag is set.
Then, at each completion of the main
program loop, a roll call is performed
on the flags, but they only get cleared
and the watchdog is reset for another
round when they have all been set in
proper order.

The structure that can surely kill a
module (making it difficult, if not com-
pletely untestable) is a nested loop.
Figure 4 shows three fundamental
types. A concatenated loop consists of
two single loops (Figure
4a). These are simple,
effective, and should be
adequate for most appli-
cations. A single loop can
be tested with eight test
cases— 0, min – 1, min,
min + 1, max, max – 1,
max + 1, and one (or a
few) typical middle val-
ues. A concatenated loop
can be treated like several
single ones. It works fine
with the dual concat-
enated loop, requiring 16
tests for reasonable assur-
ance. The nested loop (see
Figure 4b) makes life
difficult. If you need eight
tests for a single loop, the
double-nested loop will
need 64 tests, a triple-

nested loop will need 512 tests, which
is just about the maximum reasonable
limit. I have always considered the
double-nested loop the practical maxi-
mum. Anything more than that is hard
to test, and if the function cannot be
done in a different, more acceptable
manner, perhaps a review of the over-
all architecture should be considered.

Figure 4c shows an example of one
monstrosity you would be well ad-
vised to stay away from. It is ex-
tremely hard (if not impossible) to test
and the potential gain arising from its
design simplicity will be quickly spent
by the potential trouble in testing.

At the end of the design effort is the
Design Description document, from
which any competent programmer can
take and write code. Please note the
fundamental distinction between the
software designer and the programmer.
The programmer is like an interpreter
who needs to know the language to
efficiently convert the designer’s cre-
ation into code. Often, the designer
and the programmer are one person,
but they don’t have to be. The bottom
line is that after the designer and QA
have signed off on the design descrip-
tion, everything is laid out for the
person wearing the programmer’s hat
(even though he or she may be the
person who prepared the document).
With the programmer’s hat on, this
person is not expected to check the
logic, develop algorithms, worry about

timing, or alter the design as laid out in
the document. All of this should have
been done during the design, but this is
not to suggest that the programmer
can put on blinders or ignore the dis-
covery of any possible errors.

SOURCE AND EXECUTABLE
CODE

Finally comes what many consider
the alpha and omega of programming,
the stuff the proverbial Twinkie-
munching, Coke-guzzling programmers
are made of. In reality, the actual cod-
ing is an insignificant part of the soft-
ware design process. In the DO-178B
standard, it is given a measly two para-
graphs of seven lines total.

Of course coding is important, espe-
cially good coding, but it is quickly
becoming a mechanical discipline.
Compilers do a good job of syntax
checking. Also, there are tools such as
CASE, fuzzy logic, Visual Basic, or C
development systems that accept de-
sign in a graphical or pseudo-code
form, then spit out source or execut-
able code. I don’t dare say how reliable
such mechanically generated code is,
especially for critical embedded appli-
cations. My experiments with fuzzy
logic produced decent C source. And
because software development cost
reduction is on everybody’s mind,
there is a lot of activity to produce
better and better tools.

VERIFICATION TEST
CASES AND PROCE-
DURES

If I followed the
procedures and de-
signed tests while de-
signing modules, the
Software Verification
Test Cases and Proce-
dures document would
be completed at the
same time as the Design
Description.

This article cannot
delve into the details of
software testing. The
References listed at the
end should give you a
good start for further
study. I discussed the
subject of testing at

a)

b)

Figure 4—Knowing what structures to avoid can save you a lot of time, (a) shows two
concatenated single loops; (b) is a double-nested; and (c) demonstrates a loop that is
difficult to test.

c)

38 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

length in Part 2 and will reiterate (at
the risk of becoming repetitive) how
important it is to consider integration
and testing during the module design.

Usually, the first extremely useful
test is the code walkthrough. This
cannot be automated and, in essence, is
nothing more than reading the code to
make sure it reflects the design de-
scription. It is also followed by a re-
view of the traceability matrix.

The rest of the tests should be auto-
mated as much as possible. At the very
minimum, C1 and C2 testing should be
done, which includes 100% statement
coverage and 100% branch coverage.
The sky’s the limit after that. Auto-
mated software tools are now available
to establish test coverage and to assist
in design and performance of the tests.
Among the most commonly used are
path, transaction, data flow, domain
logic, and state and transition testing.
Syntax testing is at the top of the list.
This may be obvious, but because it is
done automatically by every compiler,
dwelling on it is superfluous.

In terms of test performance, it can
be done on a target system or a host
computer. The market offers many
simulators, emulators, and entire de-
velopment systems depending on the
type of processor, language, and your
solvency. These tools are available for
less than $100 all the way up to
$100,000. When complete, the test
results are issued in a separate docu-
ment called Test Results.

SOFTWARE ACCOMPLISHMENT
With the tests successfully behind

me, before I can certify the software,
the last document I need to issue is the
Accomplishment Summary. It is a brief
summary of the documents generated
during the development process and
the configuration index. It addresses
subjects such as the system and soft-
ware overview, certification consider-
ations, change history, configuration
data, and the compliance statement,
which tells the customer that the job
has been done in full compliance with
the specification.

The major tool to prove the compli-
ance is the traceability matrix. The
traceability matrix is a database that is
generated automatically by develop-

ment tools. In the past, when it was
created and maintained manually, it
represented a major effort and cost. In
the first column of the matrix, cus-
tomer requirements raised in the Sys-
tem Requirements document are
listed, usually referred by their para-
graph number. In the second column,
corresponding paragraphs in the Soft-
ware Requirements document are
quoted. The implementation in the
design description comes next, then
the source code, and finally the test
cases and test results. Armed with the
traceability matrix, you can take any
customer requirement from the speci-
fication and show how it has been
addressed through the design process,
which part of the code satisfies it, and
how it was tested and proven correct.
Conversely, you can take any line of
source code and trace it back to the
original requirement.

The purpose of the traceability
matrix is manifold. First, it helps to
make sure that all the customers’ re-
quirements have been satisfied and
documented. Second, it allows you to
verify test coverage and show that all
the features have been tested. It also
quickly uncovers dead code or undocu-
mented features and hooks, which are
an absolute no-no. And finally, should
a bug slip through in spite of your best
effort, understanding the symptoms
and having the traceability map on
hand is an invaluable tool for zeroing
in and fixing it.

CLOSING WORDS
This concludes my three-part series

on software development. As I began
to write, I had to come to terms with
the inescapable reality of the scope of
these articles, which allowed me only
to scratch the surface. The most diffi-
cult part was selecting just the high-
lights. I agonized over much of the
material that I had to leave out.

Through years of engineering expe-
rience, I was involved in the inevitable
investigations of product failures. The
hardest concept for software engineers
to swallow is their culpability for
software behavior in response to ab-
normal conditions. Today, software is
the brain of all the sophisticated ma-
chinery surrounding us. If this machin-

ery, as a result of an external stimulus,
goes out of control because the pro-
gram got derailed, the software design
is unacceptable. Period!

It makes no difference that the sub-
sequent tests found no formal error,
thus declaring it bug-free. In my book,
such software contains the biggest bug
of all: it is not fault-tolerant and al-
lowed itself to go out of control un-
checked. An applications program that
freezes when you hit the most unlikely
combination on the keyboard is not
fault-tolerant and flawed. I am serious
about this and every software engineer
worth his salt should be too.

This series is merely an overview of
the main issues facing the software
engineer. Those of you interested in
deeper knowledge will find excellent
sources in the References section. I

REFERENCES
Software Considerations in Air-

borne Systems and Equipment
Certification, RTCA Inc., Wash-
ington, D.C., 1992.

M.R. Lyu, Handbook of Software
Reliability Engineering, IEEE
Computer Society Press, Los
Alamitos, CA, 1995.

Beizer, Software Testing Tech-
niques, Van Nostrand Reinhold
Company, NY, 1990.

Ralston, Encyclopedia of Computer
Science and Engineering, Second
Edition, Van Nostrand Reinhold
Company, New York, 1983.

 George Novacek, “Defects For Sale
Revisited,” Circuit Cellar Online,
February, 2000.

George Novacek has 30 years of expe-
rience in circuit design and embedded
controllers. He currently is the general
manager of Messier-Dowty Electron-
ics, a division of Messier-Dowty Inter-
national, the world’s largest
manufacturer of landing-gear systems.
You may reach him at gnovacek@
nexicom.net.

SOURCE
LDRA Ltd.
+ 44 (0) 151 708 8505
Fax:+ 44 (0) 151 709 2027
www.ldra.com

http://www.ldra.com

40 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

NOUVEAUPC
DIGITAL VIDEO MODULE

The DV-104 is a digital video module for embedded
applications. The DV-104 digitizes live video (NTSC,
PAL, or SECAM) and outputs the digitized stream on a
zoomed video bus. When combined with a zoomed
video-capable single-board computer (SBC), the result is
a system that can display live video in a window on a
SVGA monitor (CRT or flat panel) and capture video at
rates of 20 to 30 frames per second.

The DV-104 comes in three
forms: PC/104, PC/104-plus, and
standalone. The standalone form is
a compact 3.6″ × 2.8″. Its features
include video digitization up to 640
× 480 pixels (NTSC), six composite
or three S-Video inputs (or a combi-
nation), and 3.3-V digital video
(zoomed video) output.

The DV-104/Venus combination
is supported by a software package
that defines an API that allows
applications to easily display, ma-
nipulate, and capture live video in

USB DATA ACQUISITION SYSTEMS
The portable UDASTM USB Data Acquisition Sys-

tems is designed with ease of use and portability in mind.
UDAS systems provide an out-of-the-box alternative to
plug-in PC data acquisition boards. The PC auto detects
the addition or removal of the USB data acquisition sys-
tem. Some typical applications for USB I/O systems are
automated test and measurement, data logging, tempera-
ture measurement, laboratory automation, portable data
acquisition, production test, electronics test, and re-
search and development.

Edited by Rick Prescott

Several USB Data Acquisition models are available,
including some systems featuring a mix of analog and
digital I/O channels. They feature a bus-powered design,
allowing the system to be powered from the PC through
the USB port. The systems can be configured for 16SE/
8DIF 12-bit analog-input channels with programmable
gains, two 12-bit analog-output channels, eight digital-
input channels, eight digital-output channels, and one 16-
bit high-speed counter channel. Two termination options
allow users to select the signal conditioning design.

Other models interface with a variety of external
termination panels for interfacing with sensors and
transducers. They also feature built-in termination.
These systems accommodate direct thermocouple mea-
surement and are ideal for use with portable laptop
computers. Board-only versions are offered. A variety of
support software is available.

Prices start at $700 for OEM versions in single quan-
tities, and the plug-and-play models range from $895 to
$1060.

Intelligent Instrumentation, Inc.
(800) 685-9911
Fax: (520) 573-0522
www.instrument.com

both GUI and non-GUI environments. Versions of the
software are available for Windows, NX, and Linux.
Sample applications demonstrate “video windowing”
(various CPU signals shown on a single display) for
QNX running Photon microGUI and Linux running X-
Windows. The Windows version supports DirectX and
an OCX control.

The DV-104-plus Venus combination is ideal for
information kiosks, video-on-
demand systems, game applica-
tions, security systems, and
more.

Versions are available for
$120 in quantities of 100.

Adastra Systems
(510) 732-6900
Fax: (510) 732-7655
www.adastra.com

http://www.adastra.com
http://www.instrument.com

42 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

NOUVEAUPC
AUDIO ADDED TO PENTIUM III SINGLE-BOARD COMPUTER

Audio capabilities have been added to a Pentium III single-board
computer (SBC) to equip it for operation in music preview kiosks,
multilingual public information systems, arcade games, and other
applications where graphics, processing speed, and sound are impor-
tant.

The new PCM-9574 has a Socket 370 for a Celeron or Pentium III
processor, up to 256 MB of small-outline SDRAM, up to 4 MB of frame
buffer SDRAM for graphics, a hardware-assisted MPEG II accelerator,
and a CompactFlashTM socket. And it has SGVA display support (with
an optional PanelLink transmitter chipset for longer-distance connec-
tions), a 2X accelerated graphics port, IDE channel, PC/104 connector,
Ethernet, software modem, and one extra PC1 slot. All other pieces
and ports required are included.

Audio components include a Multistream Direct Sound controller
with direct sound 3-D acceleration, microphone in, line in, line out, and
CD in. All of these are packaged in the form factor of a 5.25 CD-ROM.

The PCM-9574 is priced at $462 in quantities of 100 without pro-
cessor or SDRAM.

MICRO WEBTARGET HARDWARE/SOFTWARE DESIGN KIT

Advantech Technologies, Inc.
(800) 866-6008
Fax: (949) 789-7179
www.advantech.com/epc

 The Micro WebTarget is a complete hardware/soft-
ware Java technology solution designed for the develop-
ment of resource-constrained embedded Internet devices.
Based on the Connected Limited Device Configuration
(CLDC) component of the Java 2 Platform, the Micro
WebTarget is aimed at developers of embedded designs
like cell phones, pagers, and other mobile devices.

The form factor of the Micro WebTarget prototyping
board, measuring 3 cm × 6 cm, demonstrates the poten-
tial benefits of Java-capable mobile applications, in
which size is a major issue. A single processor core from
Hyperstone Electronics combines the functionality of a
32-bit RISC processor with a 16-or 32-bit DSP unit. The
processor core provides 200 MOPS of processing power
at 50 MHz, giving the
Java Virtual Machine
(JVM) the execution
speed required to oper-
ate even in demanding
real-time applications.

The Micro
WebTarget includes a
built-in Ethernet con-
troller and interface
transformer support for
a direct network connec-
tion. Onboard DRAM,
flash l-MB DRAM, and 1-
MB flash memory are
available. HyNetOSTM,

a real-time, multitasking network operating system
optimized to run on the Hyperstone RISC/DSP archi-
tecture, is included. HyNetOS provides the device man-
agement for network connectivity and peripheral I/O.
The WebTarget also includes a TCP/IP stack and proto-
col manager.

Application development can be in Java, C, or a com-
bination of both on any PC or workstation. A
C compiler is provided with the development kit. The
onboard flash memory allows upgrades through the
network interface. The Micro WebTarget can be
mounted on an optional shuttle board.

The kit is available for $2350. This includes the
MWSl/X Micro WebTarget starter board, MWS shuttle

expansion board,
HyNetOS base version
with an Evaluation
License, Hyperstone
Development Tools on
CD-ROM, plus one year
of technical support and
updates.

Smart Network Devices
(SND)
+49-(0)2131-223267
Fax: +49-(0)2131-223269
www.smartnd.com

http://www.advantech.com/epc
http://www.smartnd.com

 CIRCUIT CELLAR® Issue 123 October 2000 ������43www.circuitcellar.com

EPC
REAL-TIME PCs

Ingo Cyliax

Catching the PCI Bus

Getting up to speed
on the PCI bus takes
more than just an un-
derstanding of the
protocol. This month,
Ingo digs into PCI
configuration to show
us how the puzzle
comes together. Lis-
ten up, because this
is Ingo’s last stop on
the PCI bus, for now.

Part 2: Configuration

l ast month I
described the basic

peripheral compo-
nent interconnect (PCI)

bus protocol, which is fairly simple—
after all, it has to be implemented in
hardware. If you’ll recall, PCI is a mul-
tiplexed address data bus. The device
that needs to access another device
will broadcast the address and type of
transfer it needs to perform and then
transfer data to or from the device. The
initiator or target can abort the trans-
fers when they are done or if there is an
error condition.

But, protocol isn’t all you
need to know. This month, I’m
going to describe PCI configu-
ration, an important part of
PCI-based systems.

CONFIGURATION
Older buses like VMEBus

and ISAbus, which are prima-
rily buses that are being re-
placed with PCI, typically use

configuration jumpers or switches to
set the bus address and interrupt level
of peripheral cards. This can lead to
several problems.

The software that runs on these
systems cannot determine the address
of cards. It has to use prior knowledge
about where the card’s base address
might be. IBM PC serial ports are at
well-known locations, and systems
usually need large technical manuals to
describe what address cards need to be
configured and what the address selec-
tion jumpers and switches actually
mean. Clearly, it’s a large effort to keep
the technical configuration manual in
sync with the operating system.

Another problem is the chance for
address collisions in the system. This
happens when some cards are not con-
figured well and their address ranges or
interrupt request levels overlap (e.g.,
two ISAbus serial cards that claim the
same I/O port range). The software will
find the card at the expected address,
but things will get confused when it
tries to use the serial cards. I’m sure
many of you have run into this. It’s
annoying for PC users, and unless
you’ve worked with large VMEbus
systems, you haven’t seen anything yet.

PC manufacturers tried to address
the problem by introducing plug-and-
play (PNP) for ISAbus peripherals,
more popularly known as plug-and-
pray for obvious reasons. Although it is
easy for the OS to query the cards and
find out what’s there, PNP cards can
still be mixed with old cards to create

Figure 1—Here is the PCI configuration
register space layout. This register space
is implemented in the PCI chipset and
controls the PCI interface of the device
or chip.

 Status Command

Class code Revision

Base address register 1

Base address register 2

Base address register 3

Base address register 4

Base address register 5

Cardbus CLS pointer

Subsystem ID Subsystem vendor ID

Expansion ROM base address

Reserved

Reserved

Max_Lat Min_Gnd IRQ_Pin IRQ_Line

BLST Header type
Latency

timer
Cache line

size

Device ID Vendor ID

44������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

conflicts. Also, many legacy
device drivers still assume that
I/O addresses can only be at
certain well-known addresses.

However, PNP is a step in
the right direction and the
configuration support draws
heavily on PNP. PCI starts from
scratch, so a minimal set of
configuration functions has to
be implemented to begin work-
ing in this environment.

SO, HOW DOES IT WORK?
Each PCI agent has to support con-

figuration read commands. Configura-
tion reads are bus cycles just like
regular I/O or memory reads, except
that they access a special configuration
register space on the agent. There are
several versions of this register layout.
The layout for a Type 0 configuration
register is shown in Figure 1.

Each agent starts with a device and
vendor ID. The vendor ID is a unique
16-bit number assigned by the PCI
special interest group (SIG). The device
ID is a 16-bit number that is assigned
by the vendor. The idea of the vendor/
device ID pair is to uniquely identify a
peripheral so that a device driver can
be found.

The configuration register space
also implements command and status
registers. These registers are for the
PCI interface of the card or chipset and
have nothing to do with any possible
command or status register that is
needed to control the device.

The PCI command register allows
the PCI subsystem to control how the
card behaves in the system. The com-
mand register has enables for I/O and
memory-mapping registers that control
whether or not the card’s
address decode will work
for the I/O and memory
address space.

A master enable will
work if the card can act as
a bus master. There are
enables that control cache
snooping and video func-
tions, as well as tracking
whether the card re-
sponds to parity errors or
generates system error
conditions. If the card

does not implement some of the func-
tions and features, it will simply imple-
ment the corresponding bit as
read-only set to zero. The system will
detect that the feature is not imple-
mented when it tries to enable the
feature and the command register does
not respond. Figure 2 shows the com-
mand register layout.

The status register tells the system
if it has features such as 66-MHz bus
speed support, fast back-to-back sup-
port, and how fast the card can decode
device accesses. The status register also
reports various errors that could have
occurred during aborts. Figure 3 shows
the status register layout.

The revision code register is an 8-bit
number that is assigned by the vendor
to indicate a particular version of a
card. This can be used by the driver
software to enable certain features or
avoid bugs.

Using only the vendor ID and device
ID to identify the card and find a match-
ing device driver can be cumbersome.
Also, for some critical system functions
like a disk controller or keyboard con-
troller, you need to be able to use the
device before you have access to a de-
vice driver. The class code register
identifies devices and places them in

several device types. The class
code is made up of three 8-bit
fields—the class code, subclass
code, and programming inter-
face (Prog I/F) field. Table 1
shows the class, subclass, and
program function codes.

If the class code is 0x03
(display controllers) and the
subclass or Prog I/F is 0x00/
0x00, then you’re dealing with
a basic VGA graphics control-

ler that a BIOS or low-level OS routine
can use as a basic console. After the OS
is loaded, along with extra functional-
ity, a specific device driver can be used
that extends the device’s functionality,
if possible.

Finally, the header type identifies
the format of the configuration header
and whether or not the device imple-
ments a multifunction device. Multi-
function devices are cards that can
implement more than one device func-
tion in one card. A modem plus
Ethernet card is a multifunction de-
vice. These devices and other header
types are beyond the scope of this
article. Check out the Resources sec-
tion at the end for more information.

REGISTERS
The address and address space (I/O

and memory) are programmed using
the configuration space base address
registers (BARs). There can be up to
six address ranges for memory and
I/O, one for an expansion ROM and
another for a CardBus CIS pointer.
Expansion ROMs are used by the BIOS
(on PCs) to extend boot capabilities.
For example, they implement the boot
code needed to boot the system from a
remote server over a network. Not all

address registers need to
be implemented, and
most devices don’t
implement more than
one or two different
address ranges, perhaps
only an I/O port range
and one memory range.

The address registers
can also be read-only, in
which case the device
might have a hard-coded
address for decoding. The
keyboard controller is

Figure 2—The PCI command register layout is used to enable various
aspects of the PCI interface for the device.

Figure 3—From the PCI status register layout you can find out about various errors that
may have occurred, as well as the capabilities of this device.

15 10 9 8 7 6 5 4 3 2 1 0

Fast back-to-back enable
SERR# enable
Wait cycle control
Parity error response
VGA palette snoop
Memory write and invalidate
Special cycle
Bus master
Memory space
I/O space

15 14 13 12 11 10 9 8 7 6 5 4 0

 66-MHz enable

ODF supported
Fast back-to-back capable
Data parity detected
DEVSEL timing
00-fast
01-medium
10-slow
Signaled target abort
Receiver target abort
Receiver master abort
Signal system error
Detected partity error

 CIRCUIT CELLAR® Issue 123 October 2000 ������45www.circuitcellar.com

one example of this. Address registers
can also be preprogrammed to select at
a specific address, yet are changeable if
the device needs to be re-mapped else-
where.

The address registers come in two
basic flavors—memory and I/O base
address register format. Figure 4 shows
the layout. They are identified by the
least significant bit—a one to identify
I/O, and a zero for memory. I/O base

address registers are easier to cover, so
I’ll start the discussion there.

The base address field has 30 bits in
the register. Low-order bits in this field
are set to zero to indicate the block
size of registers that the device needs
to use. Typically, to size the I/O regis-
ter space, a value of 0xffffffff is written
to the BAR. The first bit from the least
significant end of that set indicates the
size of the register (e.g., if 0xffffff00 is

Listing 1—Here is a list of the PCI table that the BIOS built while booting the system. Under Linux
this list can be seen with the file ���������.

���� ����	�
� �����

���
���������	���������	��������

� � � ��
�� �������� ������ ������ �� �������� ��
�� ���� !�"� ����� �"#

� � � � � � $���%� ���
��#� � $&
���� �&'&���#� � (&���)*+�#

� � � � � � ������	,&���� ��� ���� %�%��)� &�� �-�� .�-�/#

���
���������	���������	��������

� � � � �&���
� �������� 0�-&
� ��
��%���
� ���1�2�� ����� �"#

� � � � � � $���%� ���
��#� � $&
���� �&'&���#� � (&���)*1+�#

$��� !��*13�#$&-� (&�*4#

� 5���'�����	,&���� ��� ���� %�%��)� &�� �-2�������� .�-2�������/#

���
���������	���������	������1�

� � � � �&���
� �������� 0�-&
� ��
��%���
� ���1�2�� ����� �"#

� � � � � � $���%� ���
��#� � $&
���� �&'&���#� � (&���)*1+�#

$��� !��*13�#$&-� (&�*4#

� 5���'�����	,&���� ��� ���� %�%��)� &�� �-21������� .�-21������/#

���
���������	���������	��������

� � � 6! � 	�%'&������ 	����������� 5��%&��	� $&��	!�&',� 5$�1+�

����� 1"#

� � � � � � $���%� ���
��#� � 7&
�� �&	8�����&	8� 	&'&���#� � �9:� 11#

$&
���� �&'&���#� � 5�� ��
�
#� � $��� !��*1+#$&-� (&�*�22#

������	,&���� ��� ���� %�%��)� &�� �-��������� .�-��������/#

5���'�����	,&���� ��� ���� %�%��)� &�� �-�3������� .�-�3������/#

5���'�����	,&���� ��� ���� %�%��)� &�� �-�3������� .�-�3������/#

���
���������	����+����	��������

� � � � �������� ������ ���41 �� ������ �; � ����� �"#

� � � � � � $���%� ���
��#� � 7&
�� �&	8�����&	8� 	&'&���#

$&
���� �&'&���#� � 5�� ��
�
#

���
���������	����+����	������1�

� � � � �<=� ������&	��� ������ ���41 �� ������ �<=� ����� 1"#

� � � � � � $���%� ���
��#� � 7&
�� �&	8�����&	8� 	&'&���#

$&
���� �&'&���#� � (&���)*��#

� � � � � � �>?� &�� �-�	��� .�-�	�1/#

���
���������	����+����	��������

� � � � @;�� ������������ ������ ���41 �� ������ @;�� ����� 1"#

� � � � � � $���%� ���
��#� � 7&
�� �&	8�����&	8� 	&'&���#� � �9:� 11#

$&
���� �&'&���#� � (&���)*��#

� � � � � � �>?� &�� �-����� .�-���1/#

���
���������	����+����	��������

� � � � �������� ������ ���41 �� ������ ���� ����� �"#

� � � � � � $���%� ���
��#� � 7&
�� �&	8�����&	8� 	&'&���#

46������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

read back, you know that this BAR
decodes a 16-byte register block). After
it’s sized, the system sets the BAR to
where the device should be decoded in
the I/O address space. A serial port
might be set to 0x000003f8. Note that
the BAR is 32 bits, but PCs normally
use only 16 bits.

Card designers are encouraged to
allow mapping of their I/O devices in
memory space because it is larger
(4 GB) than the I/O address space (64
KB) on PCs. Also, several processor
architectures like the Motorola
680000 and PowerPC series of proces-
sors might not be able to access devices
that are only I/O-mappable.

The memory BAR works similarly,
however, there is also a 2-bit field in
the BAR that indicates where this de-
vice would like to be mapped in the
memory space. This is important for
devices that can only deal with 1-MB
or 32-bit address spaces. If 64-bit ad-
dresses are allowed, then the BAR takes
two words of configuration register
space instead of one. Also, there is a
pre-fetch bit that indicates whether or
not the instruction may be pre-fetched
from this memory. The sizing and
address selection works the same as the
I/O base register select except that the
minimum memory block size is
16 bytes and the minimum I/O block
size is four bytes (one 32-bit word).

PUZZLE PIECES
At this point, you might be asking

yourself how all this fits together. In
order to get a better picture, let’s look
at what happens to the PCI bus and
devices when a PC tries to boot.

When the PC boots, the BIOS initial-
izes the host-to-PCI bridge, which is
chipset-dependent, and the BIOS ini-
tialization routines have to match the
bridge controller chipset used on the
motherboard. After the host-to-PCI
bridge is initialized, the processor can
generate configuration read and write
requests on the attached PCI bus.

Configuration accesses to PCI de-
vices are decoded using physical device
selects for each slot. This host-to-PCI
bridge has the device selects used by
the processor to test each slot and read
the configuration space in each at-
tached slot. Remember that even

though PCI chips and bridges can be on
the motherboard, they still take up a
virtual slot. If the processor finds an-
other PCI or PCI bus bridge and initial-
izes it, it continues to probe the slots
beyond the bridge. The BIOS records
each device it finds and its physical
location (bus and device) in a table.

Now that all of the devices have
been enumerated, the BIOS will find
appropriate system resources to boot
the system. This includes the program-
mable interrupt controller, the DMA
controller, RTC, keyboard controller,
and a VGA or compatible display
adapter. For each, the BIOS will use a
configuration write cycle to program

the BAR of each device and map it into
the proper location. For most of the
system resources, this will be in a stan-
dard location so that legacy software
will be able to find and treat them as
standard PC peripherals.

The BIOS then goes about booting a
system in the standard way of looking
for expansion ROMs and appropriate
boot devices. When the operating sys-
tem is loaded, the OS will either enu-
merate all of the PCI devices again or
use PCI BIOS calls to extract the list of
devices the BIOS has already enumer-
ated during the boot process. The OS
then will try to load appropriate de-
vice drivers. For some devices like

%)����	�A'�����"

####

�������� *� '	�A����	�
B� ���� B� ���� *� ����C��-�"D

>E'����8�FG��-� G��-H�F�����C�����������C����	�"B� >EE>

�������C������� **� $IA6=5<A<=6A�<"D

###� �����&��J�� ###

'����8�F��C� F"B

'	�A��&�A	�����A�K�����������A�?$$ 5<�L�&�"B

'����8�F	%��� G-� F��&�"B

'����8�FH�F"B

'����8�F��C� F"B

�����������'	�A��&�A	�����A�K�����������A� ;=A <<9=;;A��L�&�"B

'����8�F�&��� G-� F��&�"B

�&�� *� �-��������B

�����������������'	�AK����A	�����A�K�����������A� ;=A <<9=;;A���&�"B

�����������������'	�A��&�A	�����A�K�����������A� ;=A <<9=;;A��L�&�"B

'����8�F�&��� G-� F��&�"B

'����8�F
�J��� G�� �)��
F��M�&�� N� �-�"O1"B� >EE>

'����8�FH�F"B

�&�� *� �?A� ;=B

�������������������'	�AK����A	�����A�K�����������A� ;=A <<9=;;A���&�"B

�������������������'	�A��&�A	�����A�K�����������A� ;=A <<9=;;A��L�&�"B

'����8�F�&��� G-� F��&�"B

�&�� *� �-���2B� � � >E� �?� &��� $&
���� ��&���� E>

'	�AK����A	�����A�K�����������A�?$$ 5<��&�"B

'	�A��&�A	�����A�K�����������A�?$$ 5<�L�&�"B

'����8�F	%��� G-� F��&�"B

'����8�FH�F"B

���������������������������&8B

����������������P

P

###

P

Listing 2—A sample device driver snippet shows how to find a PCI device or card and how to set
the I/O base address using the base address register in the configuration register space.

48������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

RESOURCES
T. Shanley and D. Anderson, PCI

System Architecture, Third Edi-
tion, Mindshare, Inc., Addison
Wesley, Reading, MA, 1995.

PCI Special Interest Group, PCI
Local Bus Specification, Revision
2.1, Portland, OR, June 1, 1995.

PCI Special Interest Group, PCI
Compliance Checklist, Revision
2.1, Portland, OR, 1995.

B. Dipert, The PCI Handbook,
Annabooks, San Diego, CA, 1995.

M. Predko, PC Interfacing Pocket
Reference, McGraw-Hill, New
York, NY, 1999.

VGA cards, the OS might only use
generic drivers. However, if better
drivers are available for a specific card
that enables features, it may try to
match a driver based on the vendor and
device ID found while enumerating.

After an operating system is up and
running (Linux on my laptop, for ex-
ample), I can look at the list of PCI
peripherals (see Listing 1).

Linux has a convenient interface for
looking at the PCI BIOS table at the
command interpreter level. However, a
device driver will access a kernel level
list that has been built using PCI BIOS
calls. Listing 2 shows how a card might

Figure 4—The
base address
registers can
be in one of
two formats,
depending on
whether or not
the low-order
bit is zero.
Memory base
configuration
registers also
come in 32- or
64-bit address
width varieties.

0

3 2 1 0

Memory
Position type
00–32 bit
01–first 1 MB
10–64 bit
11–served
Pre-fetch
32-/64-bit base address

0 1

1 031

l/O
Always zero
32-bit base address

63/31

SOFTWARE
The list of PCI device class codes

and solo-class codes is available on
the Circuit Cellar web site.

Ingo Cyliax is the Sr. Hardware
Engineer at Derivation Systems Inc.
(DSI) where he designs and builds
embedded systems and hardware
components. DSI is the leader in
formally synthesized FPGA cores and
specializes in embedded Java technol-
ogy. Ingo has been writing on various
topics ranging from real-time operat-
ing systems to nuts-and-bolts hard-
ware issues for several years.

look through the list of PCI devices and
find which one it needs to use.

So, this routine will search the list
of PCI devices. In this case, I’m looking
for a card that matches $IA6=5<A<=6
A�<. Then I can use the physical loca-
tion stored in the device structure
pointed to by the device pointer to
access the configuration space of the
card. I included the command register
for illustration purposes (see Figure 2).

The PCI bus will map all of the
devices to free memory and I/O regions
if possible. It’s OK to use the regions
assigned by the BIOS. But in this case, I
want to map the card at a specific de-

vice address (�?A� ;=) in
I/O space.

To do this, I test the
BAR by writing a 0xffffffff
to it and decoding the ex-
pected register size. Most
device drivers would al-
ready know the register
size, but this illustrates
how it’s done. I then set the
address to �?A� ;= and
turned on I/O mapping to
enable master mode in the
command register. This
card uses master transfers
for some functions, so I
turned the master enable
bit on.

The initialization rou-
tine is run in a kernel-level
module and is dynamically
loaded. The card shows up
in the I/O port space after
it’s mapped and then a user-
level application can actu-
ally use it. Although this
example is Linux-centric,
the same basic scheme
applies to other operating

systems. The basic steps are to find the
card by vendor and device ID, use the
physical bus and device location to
map and turn on the card, and finally,
use your regular device driver scheme
for talking to the card.

PCI LAYERS
This concludes my two-part series

about PCI in a nutshell. Of course,
there are several more layers than
offered in this short series. The Re-
sources section should point you in the
right direction from here. However, for
most device driver work, all you need
to know about PCI is how to find your
card and map it to the address you
want to use. After that, it pretty much
behaves like the device implemented
on the card and all of the PCI business
is transparent. If you found this series
informative, let me know if you want
to read more about PCI or perhaps find
out how to build your own card. I

Class Subclass Description

0x01 0x00 SCSI controller
0x01 0x01 IDE Controller
0x01 0x02 Floppy disk controller
0x01 0x03 IPI controller
0x01 0x04 RAID controller

0x02 0x00 Ethernet controller
0x02 0x01 Token ring controller

0x03 0x00 VGA-compatible controller

0x06 0x00 Host/PCI bridge
0x06 0x01 PCI/ISA bridge
0x06 0x02 PCI/EISA bridge
0x06 0x03 PCI/Micro channel bridge
0x06 0x04 PCI/PCI bridge
0x06 0x05 PCI/PCMCIA bridge
0x06 0x06 PCI/NuBus bridge
0x06 0x07 PCI/CardBus bridge

0x07 0x00 8250-compatible serial controller
0x07 0x00 16450-compatible serial controller
0x07 0x00 16550-compatible serial controller
0x07 0x01 Parallel port
0x07 0x01 Bi-Directional parallel port
0x07 0x01 ECP 1.x-compatible parallel port

0x0c 0x00 Firewire (IEEE-1394)
0x0c 0x03 USB (Universal Serial Bus)

Table 1—This is a list of device class codes and subclass codes.
These codes are used by the system to find devices for specific
system functions.

50������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

EPC
Applied PCs

Fred Eady

Rabbit Season

Last month we met
the Jackrabbit dev
board, now it’s time
to dig a little deeper.
After a little C, then
it’s on to some IP,
and before this se-
ries is done, you’ll
have all the info you
need to get your
Ethernet interface
hopping along.

he Rabbit 2000
may have been as

still as a cold rock in
the snow since the last

installment, but the Rabbit’s innards
(that’s Southern for internal organs)
have been hard at work. In fact, a
little Rabbit indigestion has taken
place since last time. (Must have been
those spicy carrots.)

I mentioned that the Rabbit is I/O
rich to the point of not needing the
address and data bus to affect the
Ethernet interface. Well, I’m going to
have to call in some favors on that
statement. The Rabbit can use its
built-in data and address bus to inter-
face to the CS8900A Ethernet Control-
ler. But, I’m not
building the Rabbit
from scratch. Because
I’m depending on the
architecture of the
commercially avail-
able Jackrabbit board
from Z-World (see
Photo 1) and I’m not

t

Part 2: Jackrabbit Development Board

designing my own printed circuit
board based on the Rabbit IC, the
privilege of laying down a desired bus
structure on a printed circuit board
does not exist. As Photo 2 shows, the
data and address bus lines aren’t
brought out to the Rabbit’s monkey
board (i.e., a board you monkey around
with) either. The Rabbit folks have a
more accurate name for the monkey
board. They call it the Jackrabbit De-
velopment Board.

So, I’ll change the initial design
before it’s even a design. Rabbit Port
A will now become the official
Ethernet bidirectional data bus. Ports
D and E will take up the slack (ad-
dress lines, I/O strobes, and distinct
CS8900A control lines) wherever
needed. I hash all this out in Figure 1.

I’ve been studying the Rabbit
documentation in detail since the last
time we “spoke,” and I found
something that I would normally
classify as insignificant, but it was
interesting enough to follow through.
Someone asked the question, “Why
did you call your new IC a Rabbit?”
The answer is, “Because it is as quick
and agile as a real rabbit.” Well said.
Now that I’ve proven that with the
impromptu engineering change, let’s
get on with the Ethernet interface.

DEFINITIONS YOU CAN “C”
Consider this. On our little rock in

the cosmos, if something has no
physical or logical definition, then it
simply cannot exist. Well, at least not
to us and not to the C programming

Photo 1—All of the I/O lines
are brought out to headers and
the data and address bus lines
are dedicated to the Jackrabbit
SRAM and flash memory.

 CIRCUIT CELLAR® Issue 123 October 2000 ������51www.circuitcellar.com

language either. My mere
mention of C this early in
the game has probably made
many of you think that I’ve
caved in to the weight of
Dynamic C for this project.
Although this entire
Ethernet interface could be
written in Z80 assembler,
with the Rabbit Develop-
ment Kit, it would be fool-
hardy to do so. Dynamic C
combined with the Rabbit
BIOS is the better way to go.
There’s no reason to rein-
vent the wheel using assem-
bler. Dynamic C has all of
the I/O code resources up
front, tested, and ready to go.

I did spend some time attempting
to emulate the Dynamic C routines in
Z80 assembler and found that trying
to beat Dynamic C with assembler
was more interesting than productive.
But don’t count assembler out just
yet. I may find a perfect place for it
somewhere in this project.

 If you’re going to talk to other
Ethernet-capable devices with the
CS8900A-CQ Ethernet Controller IC,
you better know who or what is on
the other end. Unfortunately, I (and
all of you reading this) was born too
early. Instead of being a 3-D virtual
reality columnist or writing for a
magazine that will someday read
itself to my great grandchildren, for
now I am simply using words on
paper. That is, I can’t reach out and
personally give you the code you see
in the listings or provide helpful
casual conversational insight as to
why I did something one way instead
of another.

With that thought, the Ethernet
code I present in this offering and
those to come will not be short and
sweet. So, I won’t be able to show it
all to you in one issue or a single
article. Thus, in the upcoming
articles, I’ll list only the code that is
relevant to the text describing it and
refer you to my parallel series of
articles that starts this month in
Circuit Cellar Online for other code
as we go along. Also, I am making
arrangements to make the printed
circuit board and hardware available

to those of you who wish to raise these
particular types of Ethernet Rabbits at
your house.

As you go further into Alice’s
Ethernet Wonderland with bunny in
hand, you’re going to realize that the
hardware is not the hard part. The
CS8900A-CQ, some common
capacitors, resistors, connectors,
voltage regulators, crystals, and
magnetics do most of the work. As
programmers and users of these parts,
you must be able to convey a protocol
that can be applied to and used by the
basic structure of the Ethernet-based
electronics you are manipulating.
Fortunately, the CS8900A-CQ’s
internal Ethernet engine and the
supporting electronics are aware of all
the protocol types you will send down
the pike. All you have to do is define
and assign the protocol elements so
that the Rabbit and CS8900A-CQ are
in sync. So, your precise definitions as
to protocols ensure that the CS8900A-
CQ hardware will respond accordingly
and transmit and receive your
precious Ethernet packets.

IP 101
All of us have waded through nu-

merous discussions about what IP
(Internet Protocol) is and how it
works. The sad thing is that we’ve all
been exposed to the “high-level” de-
scription of IP. It’s like you’re not
supposed to know why IP does what it
does, you’re only supposed to know
how to make IP do something using
an upper-level interface or someone

else’s code. For instance,
unless you’re the network
administrator, you’re not
supposed to know your
station’s IP address or its
gateway address. Every in-
structional text I’ve seen
tells you that the network
guys provide that stuff.
Sorry, but in this series, I
guarantee you will know
what every line of Dynamic
C is doing and why. When it
comes to IP addressing,
you’ll be able to tell the
network administrator
what’s what. In fact, many
of you will probably write

to me with suggestions for improve-
ment or send along your own version
of “How to IP with Dynamic C.” (Not
very poetic.)

In the first part of this series, I
wrote that most folks can talk the
talk but cannot walk the walk when it
comes to Ethernet. Well, let’s put
that to the test. Do pure Ethernet
communications care about the IP
address? If your answer is “no,” turn
the page and keep driving or, if you’re
not in your car, go get a sandwich
while I talk to those of you who an-
swered “yes.”

As you have ascertained from the
previous question and answer session,
Ethernet in its raw form does not care
about IP addresses. Your next logical
question should be, “Then how does
Ethernet know where to deliver IP
addressed data or any other data it
may be carrying?” Well, it’s more or
less all in the definitions. Check out
Listing 1, which shows that I selected
an arbitrary IP address for my Rabbit.
This particular IP address is really not
arbitrary. First of all, it is reserved for
local networks and cannot (and should
not) be routed over the global Internet
you and I have grown to love. The
dotted IP address is what you see and
use when addressing other IP-based
workstations or devices. Actually, the
machine and application programming
use the dotted IP address. You may
tend to equate this “dot.dot.dot.dot”
address to something wordier because
it is easier for most of us to speak
than compute.

Photo 2—Everything else is here, including surface-mount pads for single-gate
logic parts. But if you want to gain access to the data and address bus, you’re
going to have to roll your own bunny board.

52������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Next, check out the 6-octet MAC
address to follow. (Mozart’s ghost
must be in the Florida room today and
if so, he’s probably here to jam with
the Stones’ Mick and Keith.)
Normally, this MAC address is
partially assigned by the IEEE. Each
MAC address for every piece of
commercial Ethernet physical
interface electronics is unique. I used
poetic license and assigned my own
unique MAC address of “Rabbit.” The
common commercial MAC address is
most often a combined IEEE-supplied
ID merged with the Ethernet device’s
manufacturing serial number. You can
normally find this Organizationally
Unique Identifier (OUI) as a silkscreen
image or a printed tag attached to the
Ethernet hardware. According to IEEE,
it costs $1250 (U.S.) to register for an
OUI. [1] I often use the SMC 9432TX
Ethernet adapters, and I can pick out
the common SMC OUI code (00 E0 29
XX XX XX) in each of the MAC
addresses on differing cards. Intel
must have the Rabbit idea because I
was involved with tracing an Ethernet

Listing 1—Don’t fall in love with the type definitions within the structures. Using arrays is the best way to
describe the lengths of the fields, but as we progress, you may come across a better way to define the packet
data.

�� ��������	��
�������������
���
���������

����������
�������
������������������
������� ��� ���������
������������������
���
������� ��� � !��������������������������
���
������� ��" � ��	�
�����������������
���
������� ��� �##�������
�	����������������
���

�����������	��
�����$���!�����%&����
'���(�������������)���������*
���
�
���+	�������	��,�-����
�����
�	�
�.�
�����
���
������� ,�-����#/0� ���1
������� ,�-����#/�� ����
������� ,�-"���#/�� ���2
������� ,�-����#/�� ���2
������� ,�-0���#/�� ����
������� ,�- ���#/0� ���+

����1����-34+

��5�������
����6

�	�
�	�
�.�
�7��5�8�9�����	�
�.�
����5�

�	�
�5
������7��5�8�9�����5
���������5�

�	�
�	�
�.�
�7������������	�
�.�
�����
�������'�	

�	�
�5
������7������������5
����������
�������'�	

�	�
��5�
�����8�9����������1���5�
��������:
�)����;��:
�5���

�	�
������
7	.���
8 9����������
��	�
�.�
�����
���

�	�
������
7�5���
8�9����������
��������
���

�	�
���
'��7	.���
8 9�������
'���	�
�.�
�����
���

�	�
���
'��7�5���
8�9�������
'���������
���

<�
575��=���

 CIRCUIT CELLAR® Issue 123 October 2000 ������53www.circuitcellar.com

network one evening and saw the word
Intel appear in the workstation MAC
field on the network sniffer. The
Ethernet card’s electronics know what
their unique MAC address is and use
that and Ethernet protocol to identify
and communicate with other Ethernet
cards, or here, interfaces. This
information is normally kept in a small
EEPROM like the Microchip 24LCxxx
series. I will hard-code the address
information.

Right now, I bet you’re thinking,
“I’ve never entered any MAC address
to establish IP communications.
Fred’s gone to play with Mozart and
the Stones, and forgot his guitar.” If
you think I’m playing air guitar,
here’s the scoop: people use names
that represent IP addresses to lever-
age communications between two or
more computing devices. Ethernet-
based machines use hardware or
MAC addresses for the same purpose.
The magic that brings this all to-
gether, Address Resolution Protocol
(ARP), is under the cover of IP com-
munications.

THE RABBIT MUST ARP
If the Rabbit is to speak with any

other Ethernet station on the net-
work, its Ethernet interface must be
able to recognize and respond to an
ARP message. Basically, ARPs come
in two flavors, request and response.
On Ethernet-based devices that use
full TCP/IP stacks and intelligent IP
applications, the ARP is transparent.
The IP user-written applications don’t
pass or produce destination MAC
addresses. The source and destination
machines are usually identified by the
application using the dotted address-
ing scheme. Knowing that the
Ethernet physical hardware wants a
MAC address, the sending machine
first checks its internal ARP cache to
see if it can resolve the destination-
dotted address to a corresponding
destination MAC address. If a match
is not found, the sender issues an ARP
request to all stations in its LAN
segment, asking who belongs to the
dotted address in the ARP request
packet. In the case of Rabbit Ethernet
electronics, you won’t be implement-
ing a complete TCP/IP stack mecha-

nism and thus, won’t be keeping an
ARP cache. For devices to communi-
cate with, your Rabbit Ethernet device
will depend on address information
from incoming packets.

ARP packets are small and self-
contained. From Listing 1, you can see
how the ARP packet is laid out. Be-
cause the ARP is basically a broad-
cast, your Rabbit’s companion
Ethernet IC must pull in the Ethernet
header information and process the
Ethernet packet to find out if it be-
longs to the IP address in question. As

you might have guessed by now, the
ARP request has every field filled in
with the exception of the unknown
destination MAC address. So, to iden-
tify with the ARP request, your Rab-
bit ARP code must take the incoming
Ethernet packet apart field by field,
making a decision to respond or trash
the incoming ARP request.

When the ARP request frame is
read into Rabbit memory, the packet
type field in the Ethernet header is
verified for 0x0806, which tells you
that the data encapsulated within the

54������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Ethernet frame is an ARP packet. Each
field in the ARP packet is interrogated
and verified to match up with an ARP
request. When you’re sure that it is a
valid ARP request, the target IP ad-
dress is checked to see if it matches
the Rabbit Ethernet Adapter IP ad-
dress. If a valid request field is verified
and the target IP address belongs to
your Rabbit and Crystal LAN
Ethernet Controller combination, an
ARP reply is assembled and transmit-
ted.

The incoming address informa-
tion, both IP and MAC, is used to
route the ARP reply packet back to
the sender. This time, the Rabbit’s
Ethernet MAC address is sent along
with the corresponding Rabbit IP
address.

BABY’S FIRST HOPS
I’m running low on space for this

time around, so I’ll come back to
ARP and the code to implement it
later. For now, let’s turn that
schematic I referenced earlier into
some real Ethernet hardware like the
kind in Photo 3. The Ethernet
controller hardware is compact and
straightforward, so let’s start from
the left and go right to describe what
you will find along the way.

The business end of our little
Ethernet Controller is the RJ-45
female receptacle. Although the AMP
RJ-45 jack sports eight physical
connections, the Ethernet standard
only requires that four of them be
used. This set of wires comprise the
Ethernet transmit and receive pairs
which are connected to the RJ-45 pins
1–2 and 3–6, respectively.

Directly to the right of the RJ-45
female connector is what’s referred to
as the Ethernet magnetics. That’s a
fancy way of saying Ethernet isolation
transformer. No, I didn’t use any
fancy mathematical transforms to
specify the isolation transformer char-
acteristics. This little bugger’s behav-
ior is specified in application note
AN83, one of the app notes I com-
mented on in Part 1. Note that this
particular piece of Ethernet magnetics
is designed for 10BaseT connectivity.
For those of you who walk the walk
(and the rest of you, as well), the “T”
implies a twisted pair cable, which is
usually Category 5, or CAT5, cable.
On the transmit side, the primary to
secondary ratio is 1:1.414 and the
receive side ration is 1:1. This assem-
bly of the CS8900A-CQ Ethernet
Controller sports magnetics from
Pulse Engineering part number PE-

65745. I also have another Ethernet
board that is equipped with the
equivalent Halo Electronics part
TG42-1406N1.

The CAT5 cable I use in the
Florida room has an impedance of 100
Ω. Following the six and eight traces
from the PE-65745 to the resistor/
capacitor network directly to the right
of the Ethernet magnetics, you will
find a couple of 24.3-Ω precision sur-
face-mount resistors coupled at one
end by a 68-pF capacitor and termi-
nated at the CS8900A-CQ transmit
pins on the other end.

Why 24.3 Ω? Well, that’s what the
application note calls for with a 100-Ω
cable. If you carefully trace from pins
1 and 2 to the right of the Pulse Engi-
neering transformer, you’ll see that a
100-Ω precision resistor is connected
across the transformer’s pins 1 and 2.
This resistor is chosen to match the
cable impedance and is placed across
the CS8900A-CQ receive pins. The
two 24.3-Ω resistors do the same im-
pedance-matching function for the
transmit side of the CS8900A-CQ.

There are two other resistors inside
this area of resistors and capacitors.
One is a standard 4.7-kΩ, 5% part that
pulls the active-low CS8900A-CQ
SLEEP line high. The other resistor is
more critical because it provides bias
for the CS8900A-CQ internal analog
circuits. This resistor is specified as a
4.99-kΩ, 1% part that is connected as
close as possible to the RES pin (pin
93) and the nearest CS8900A-CQ
analog ground pin (pin 94).

The CS8900A-CQ power supply
bypass caps are found directly behind
and under the CS8900A-CQ on the
opposite side of the printed circuit
board, and the two magnetics caps are
directly left of the eight RJ-45 pins.
These are all standard 0.1-µF
capacitors in surface-mount clothing.

I spoke extensively about the
CS8900A-CQ in the first leg of the
description of Ethernet and the hard-
ware that comprises it. Directly to the
right of the 100-pin CS8900A-CQ,
you’ll find some familiar faces—
surface-mount versions of the standard
7805, a 0.1-µF cap, and a 10-µF
tantalum. There are no surprises here,
just brute force voltage regulation.Figure 1—Although the CS8900A-CQ sports 100 pins, the overall circuit is logical and easy to understand.

 CIRCUIT CELLAR® Issue 123 October 2000 ������55www.circuitcellar.com

SOURCES
Jackrabbit Development Board
Z-World
(530) 757-8400
Fax: (530) 757-8402
www.zworld.com

Rabbit 2000 microprocessor
Rabbit Semiconductor
(530) 757-8400
Fax: (530) 757-8402
www.rabbitsemiconductor.com

TG42-1406N1
HALO Electronics, Inc.
(650) 568-5800
Fax: (650) 568-6161
www.haloelectronics.com

PE-65745
Pulse Engineering
(215) 355-2900
Fax: (858) 674-8262
www.pulseeng.com

Photo 3—This is a raw prototype.
I’ll add some silkscreen and
soldermask as I move through the
project. And, yes, I put the 100-pin
part down manually.

Directly to the left and just below
the CS8900A-CQ is where a 20-MHz
crystal resides. This 20-MHz crystal
supplies the CS8900A-CQ clock that
is used to encode and decode bits in
the Ethernet. Additionally, the
CS8900A-CQ clock source can be
supplied from an external source like
an oscillator or the output of a
microprocessor clock pin.

 Left of the 20-MHz crystal and just
below the RJ-45 connector are a
couple of LEDs and their current
limiting resistors. The LEDs indicate
Ethernet link status and data transfer
activity.

HOPPING DOWN THE TRAIL
Next time the Applied PC column

comes around, I’ll put some wire
between the Rabbit’s monkey board
and the Ethernet Controller and
move some Ethernet electrons. In
addition, I’ll explain the software
algorithm behind ARP. In the
process, I will flesh out some
additional Ethernet-oriented
Dynamic C.

The ultimate goal is to end up
with an Ethernet interface that you
can build and use to connect and
control devices from embedded
microprocessors like the Rabbit.

Let me know if you need to obtain
parts and technical information to
build your own Ethernet Controller.
The folks at Rabbit Semiconductor
and Z-World are eager to help too.
When we’re finished, you’ll be able to
tell people that Ethernet isn’t

REFERENCE
[1] IEEE, Inc., standards.ieee.org/

faqs/OUI.html.

Fred Eady has more than 20 years of
experience as a systems engineer. He
has worked with computers and com-
munication systems large and small,
simple and complex. His forte is em-
bedded-systems design and commu-
nications. Fred may be reached at
fred@edtp.com.

complicated because you can easily
make it embedded. I

http://www.zworld.com
http://www.rabbitsemiconductor.com
http://www.haloelectronics.com
http://www.pulseeng.com

56 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Routine Checkup
An Automotive Diagnostic Scan

FEATURE
ARTICLE

t
If your last trip to the
mechanic involved
opening your check-
book and saying
“Aaaagh!”, then listen
up because Dan de-
signed a scan tool
that enables you to
troubleshoot today’s
digitally-enhanced
engines in the comfort
of your own garage.

roubleshooting
problems in

today’s car and truck
engines is not close to

what it was in our father’s time. As
automotive technology progresses, so
too must maintenance and repair
methods. In this article, I’ll present
the design for an onboard diagnostic
(OBD) port scan tool, called the
OBDScan. OBDScan reads the diag-
nostic output and clears trouble codes
from the vehicle engine control unit
for late-model cars and lightweight
trucks that support the OBD-II ISO-
9141 interface. It consists of an ISO-
9141-2-to-RS-232 protocol converter
and a Windows 95/98 application
(installed in the user’s computer).

The advent of digital fuel injection
and closed-loop control systems man-
aging fuel, ignition timing, and trans-
mission operation radically changed
how automotive troubleshooting and

repair is approached. A vast array of
sensors and actuators control virtually
every aspect of engine operation under
the guidance of a computer, the En-
gine Control Unit (ECU). Trouble-
shooting engine problems in pre-1996,
computer-controlled models often
was a nightmare. Each auto manufac-
turer had its own ECU interface stan-
dard and both the electrical interface
and data output formats were propri-
etary and not public.

In 1996, manufacturers were forced
to find a solution to the ever-tighten-
ing emissions restrictions imposed by
the federal government. Today’s clean
air standards require cars and trucks
to have engines that emit low levels
of substances defined as pollution.
Nitrous oxides, hydrocarbons, and
carbon monoxide emissions are
closely regulated by the Environmen-
tal Protection Agency (EPA). Addi-
tionally, federal laws mandate fuel
economy standards. In order to moni-
tor the health and status of vehicles’
electronic control systems, thereby
ensuring proper emission control, the
EPA mandated the use of OBD-II in
all cars and light-passenger trucks
sold in the U.S.

OBD-II gives us a better idea of
what is going on inside an engine.
OBD-II provides almost complete
engine control and monitors parts of
the chassis, body and accessory de-
vices, and diagnostic control network.

HISTORY
By the late ’70s, many manufactur-

ers (Bosch was the first) used electron-
ics to control a vehicle fuel-injection
system and ignition. Electronic engine
control became necessary when it was
discovered that catalytic converters
are the best way to reduce emissions.
A catalytic converter operates effi-

Dan Harrison

Photo 1—Before the OBDScan
protocol converter board is
installed, preliminary voltage tests
are run. In addition, a final inspec-
tion checks that all components
are installed correctly and the
solder workmanship is acceptable.

 CIRCUIT CELLAR® Issue 123 October 2000 57www.circuitcellar.com

ISO-9141-2 circuitry (10.4 Kbps) and
Ford uses SAE-J1850 PWM (pulse
width modulation) data signaling
(41.6 Kbps). Table 3 is a compilation
of the best data to date concerning
interfaces. Again, because manufac-
turers rarely publicize which stan-
dards their cars use, there are
exceptions to the rules.

If you examine the OBD connector
on 1996 and later models, you can
determine which format is used with
the following information. With J1850
VPW, the connector should have con-
tacts in pins 2, 4, 5, and 16. With ISO-
9141-2, the connector should have
contacts in pins 4, 5, 7, 15, and 16.
And, with J1850 PWM, the connector
should have contacts in pins 2, 4, 5,
10, and 16.

When the ECU detects serious
problems, it turns on the Malfunction
Indicator Light (MIL), which remains
on until repair and the MIL is reset.
Intermittent failures cause the MIL to
light momentarily but turn off before
the problem is located. The ECU also
stores data taken when the fault con-
dition is detected. This is called
freeze-frame data and may be useful
when troubleshooting difficult or
intermittent problems. Most commer-
cial scan tools can read and display
freeze-frame data.

The J-1979 OBD-II scan tool per-
forms various functions related to
monitoring the emissions-related
functions. It’s possible to get a real-
time look at various engine param-
eters, such as manifold pressure,
calculated engine load, and ignition
timing. The scan tool also can read,

The regulation re-
quired that manufactur-
ers install OBD
systems that monitor
emission control com-
ponents for any mal-
function or
deterioration causing
excessive emission
thresholds and alert the
operator. When a mal-
function occurs, diag-

nostic information must be stored in
the vehicle’s computer to assist the
mechanic in diagnosis and repair.
Finally, it called for a standard diag-
nostic interface to the onboard com-
puter that manufacturers had to meet.
But, instead of a standard communica-
tion protocol and standard data rates,
the EPA allowed three proprietary
data formats.

Naturally, these were based on the
proprietary systems that GM, Ford,
and Chrysler developed. The stan-
dards are available (for a steep price)
from the SAE and the International
Standards Organization (ISO). SAE
and ISO have published little data,
which means developers need to buy
many expensive publications to deci-
pher the federally-mandated interface.

In SAE-J2201, you can find the
standard for OBD-II scan tools (see
Table 1). J2201 is written at a high
level, so to know the OBD-II com-
mand/response structure, known as
the Application Layer, you need SAE-
J1979. This describes data flow and
command/response structure well,
but the physical and transport layer
information is described in ISO-9141
and SAE-J1850, depending on
the specific interface. SAE-
J1962 describes the standard
connector used in all OBD-
II–compliant vehicles (see
Table 2).

All new cars sold after
1996 are OBD-II compliant.
But, how do you know which
OBD-II standard your car
uses? Generally, GM cars and
light trucks use SAE-J1850
VPW (variable pulse width
modulation—10.4 Kbps).
Chrysler products, European,
and most Asian imports use

ciently only when the engine operates
at or near stoichiometry—the balance
point when the all-fuel charge is
burned and all oxygen is consumed in
the burning, when the fuel/air ratio
reaches 14.7 to 1.

The venerable carburetor couldn’t
be adjusted for a precise 14.7:1 fuel/air
ratio over the entire operating range,
so an alternative had to be found.
Electronic systems were developed to
precisely control the fuel/air ratio,
and as the ’80s progressed, embedded
microcomputers became the standard
all manufacturers chose for engine
control. As a result, manufacturers
had to develop ways to test the ve-
hicles and diagnose problems gener-
ated by the new electronic hardware.
The American big three chose to have
the ECU generate a serial data output
stream, which contained various sen-
sor and software data. Unfortunately
for the public, the auto manufacturers
considered this information propri-
etary and used non-standard commu-
nications protocols not made public.

As a result of the proliferation of
data formats from auto manufacturers
and the increasing inability of repair
shops to troubleshoot the electroni-
cally-controlled engines, the EPA
stepped in for the public good. In
1988, the Society of Automotive Engi-
neers (SAE) defined a standard connec-
tor plug and set of diagnostic test
signals. The EPA adapted most of the
recommendations and standards from
the SAE onboard diagnostic programs.
On February 19, 1993, the EPA pro-
mulgated a final rule (58 FR 9468)
requiring manufacturers of light-duty
vehicles (LDV) and light-duty trucks
(LDT) to install onboard emission
control diagnostics (OBD) systems
beginning in model year 1994.

Photo 3—When the OBDScan executable is run, this screen is
displayed. First, you must select a COM port to initiate communica-
tion with the protocol converter.

Photo 2—Here’s the completed and tested OBDScan Protocol Converter
installed in a PAC-TEC case. The RS-232 cable is on top and the three-wire
cable is the ISO-9141-2 interface.

58 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

display, and clear trouble codes. When
your MIL turns on but no obvious
problems are noticed during a casual
inspection, you at least know what
the ECU thinks is the problem, even
if you have to take it to a repair shop.
If it is something you can fix, then
you can also clear the trouble code at
home. Dealers charge $70 to $100 to
scan and clear trouble codes.

UNDERSTANDING ISO-9141
The scan tool design presented in

this article uses the ISO-9141-2 physi-
cal layer interface, which works for
the 1997 Honda Accord and 1996
Chrysler Sebring. The components to
the left of the 68HC705P6 in Figure 1
are a TTL-to-ISO-9141 interface. This
is a simple communication protocol.
The interface can only listen or talk at
any one time, because all data is com-
municated bidirectionally over the K
line. This is unlike the typical RS-
232, which usually can perform both
tasks simultaneously.

In the case of data transmit, the
TXD line is level-shifted by Q1 to a 0-
to 12-V signal on the K line and is
routed back to the RXD line by com-
parator U3. When receiving data, the
ECU toggles the K line between 12 V
and ground, which is level-shifted to 0
to 5 V by the comparator. This is a
simple, straightforward design. The
5-bps ISO-9141-2 initialization word
is shown in Figure 2.

UNDERSTANDING SAE-J1979
The document SAE-J1979 defines

the diagnostic test modes and request
and response messages necessary to
support the OBD regulations. SAE-
J1979 describes the application layer
of the OBD requirements and is appli-
cable to both ISO-9141 and J-1850
interfaces. There are nine different

modes that are defined by J1979.
Table 4 shows the basic J1979 mes-
sage format for the 10.4-Kbps mes-
sages for both ISO-9141-2 and J8150.

This covers most Chrysler prod-
ucts and Japanese and European im-
ports. GM uses J1850 for most of its
products. The other format for the
41.6-Kbps data used by Ford Motor
Company is not described here.

Mode 01 gives access to emissions-
related engine data. This includes data
from sensors and calculated data used
by the ECU for emissions manage-
ment. Mode 01 provides engine status
and sensor data output.

The SAE mandates that all OBD-II
vehicles support a PID, which returns
information about which diagnostic
parameters are supported. All scan
tools use this PID (00) to set up a list
of supported data. Table 5 shows the
command and response formats for
Mode 01. This mode allows various
PID values to be requested from the
ECU. Table 6 lists the PIDs available.

It is important to emphasize that
all vehicles do not support all PIDs.
That is why PID 00 gathers informa-
tion about which PIDs are supported
by each vehicle. Obviously, all OBD-
II-compliant vehicles must support
PID 00.

Photo 4—The OBDScan Fast Data Display window is
started by double clicking a data parameter. OBDScan
software then samples the parameter as fast as it can
(8 to 10 Hz), providing a real-time indication similar to a
digital meter.

Table 1—Most
of the docu-
ments required
to understand
and develop
OBD-II scan
tools are stated
here. Buying all
these docu-
ments individu-
ally can cost a
small fortune.

SAE-J1850 Class B data communication network
SAE-J1930 Diagnostic terms, definitions, abbreviations, and acronyms
SAE-J1962 Diagnostic connector
SAE-J1978 OBDScan tool
SAE-J1979 E/E diagnostic test modes
SAE-J2012 Recommended format and messages for trouble codes
SAE-J2178 Class B data communication network messages
SAE-J2186 E/E data link security
SAE-J2190 Enhanced E/E diagnostic test modes
SAE-J2201 Universal interface of OBD-II Scan
ISO-9141-2 CARB requirements for interchange of information

 CIRCUIT CELLAR® Issue 123 October 2000 59www.circuitcellar.com

Mode 02 allows access to emis-
sions-related data that was stored as a
result of an ECU-detected malfunc-
tion. When the ECU detects condi-
tions that could result in degraded
emissions control, it may freeze the
current data set for diagnostic tests.

Mode 03 enables the scan tool to
read any stored power train trouble
codes from the ECU. The OBDScan
first sends a Mode 01, PID 01 request
to get the number of stored trouble
codes. Then, it sends a Mode 03 re-
quest for the trouble codes.

Each response message contains
three trouble codes. If only one
trouble code is present, the last two
trouble codes will be 00. This keeps
all messages the same length for sim-
plicity. If more than three are present,
a second or third response message
may be required to get all codes.

Each trouble code is transmitted as
a two-byte number. The first two bits
(7–6) of the first byte will be zeros to

indicate a power train code (other
codes exist in SAE-J2012). The next
two bits (5–4) indicate the first digit
of the trouble code, 0–3. The next four
bits (3–0) and the second byte indicate
the last three digits of the trouble

code in Binary Coded
Decimal (BCD) format.
Be aware that if no
trouble codes exist but
are requested, the ECU is
not required to answer.

Mode 04 resets and
clears all trouble code
values from the ECU. It
is specified to work when
the ignition is on and the
engine is not running.
Some vehicles may re-
spond with the engine
running and others will
ignore it.

Mode 05 allows access
to the onboard oxygen
sensor monitoring tests,
as required by federal
regulation. The data out-
put can be constructed
into a graphical represen-
tation of the oxygen sen-
sor performance over
time to determine if it’s
working properly.

Mode 06 allows access
to the results for onboard
diagnostic monitoring
tests of components or
systems that are not con-
tinuously monitored.

Table 3—These vehicles are ISO-9141-2 according to my best informa-
tion. It’s a rule of thumb that foreign cars (European and Asian) and
Chrysler products (Jeep, Chrysler, Dodge, and Plymouth) are ISO-9141-2.
However, there are a few exceptions.

Auto Model year OBD-II type

Acura 1996 and newer ISO
Audi 1996 and newer ISO
BMW 1996 and newer ISO
Chrysler 1996–1998 ISO
Chrysler 1999 and newer ISO
Dodge Truck 1996 and newer ISO
Geo 1996 and newer ISO
GM International 1996 and newer ISO
Honda 1996 and newer ISO
Hyundai 1996 and newer ISO
Infiniti 1996 and newer ISO
Isuzu 1997 and newer ISO
Jaguar 1996 and newer ISO
Jeep 1996 and newer ISO
Kia 1996 and newer ISO
Land Rover 1996 and newer ISO
Lexus 1997 and newer ISO
Mazda 1996 and newer ISO
Mazda made by
 Ford not supported
Mercedes 1996 and newer ISO
Mitsubishi 1996 and newer ISO
Nissan 1996 and newer ISO
Plymouth 1996 and newer ISO
Porsche 1996 and newer ISO
Saab 1996 and newer ISO
Saab VPW is
 not supported
Subaru 1996 and newer ISO
Toyota 1997 and newer ISO
Volkswagen 1996 and newer ISO
Volvo 1996 and newer ISO

Terminal Assigned function

1 Discretionary
2 Bus + of J1850
3 Discretionary
4 Chassis ground
5 Signal ground
6 CAN high of SAE-J2284
7 K line ISO-9141
8 Discretionary
9 Discretionary
10 Bus of J1850
11 Discretionary
12 Discretionary
13 Discretionary
14 CAN low of SAE-J2284
15 L line ISO-9141
16 Battery positive

Table 2—The pin identification for OBD-II-compliant
vehicles is defined by SAE-J1962. All vehicles sold in
the U.S. since 1996 are equipped with this connector.

60 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

ISO-9141-2 specifies only a
1% tolerance for timing, so the
software must be carefully tuned
or the ECU will not recognize
the data. The processor interface
to ISO-9141 is so similar to in-
terfacing an RS-232 UART that a

standard UART could be used as the
TTL-level interface if the data rate can
be set to 10.4 Kbps with eight data
bits, no parity, and one stop bit.

The microcontroller (U2) is a
Motorola MC68HC705P6 used as the
RS-232–to–ISO-9141 Protocol Con-
verter and provides for framing, mes-
sage headers, checksum, and timing
control from the host computer into
J1979/ISO-9141-2 format. U2 reads
the diagnostic response from the ECU
and returns it as RS-232 data to the
host computer, initializing the ISO-
9141 interface upon sensing a connec-
tion. It maintains the connection as
long as the unit is on. The ’6805
maintains a connection by issuing a
request for diagnostic data from the
ECU every 2 s. Without this request,
the ECU will stop communications
until an initialization is performed.

Note that not all ISO-9141-2 ve-
hicles follow the standard completely.
Some do not require the initialization
sequence prior to communication, but
all respond if initialized.

There are 4672 bytes of one-time-
programmable EPROM in the ‘6805
for program storage. About 30% are

Mode 07 allows the tool to
obtain test results for power train
components that are continu-
ously monitored during normal
driving conditions.

Mode 08 enables the tool to
control the operation of an on-
board system, test, or component.

Mode 09 enables the tool to read
vehicle information such as the VIN
and calibration IDs. OBDScan sup-
ports Modes 01, 03, and 04, the most
useful for troubleshooting. You can
visit the Harrison R & D web site for
the latest software.

THE PROTOCOL CONVERTER
HARDWARE INTERFACE

Following the philosophy of KISS,
“Keep it simple, stupid,” the hard-
ware design is as simple as I could
make it. This keeps the cost of the kit
to a minimum, and it makes for a
more reliable design.

The OBDScan electrical design has
three functional blocks, the ISO-9141-
2 interface, 6805 microcontroller, and
RS-232 interface (see Figure 1). The
ISO-9141-2 interface is comprised of
U3, Q1, R1, R2, R3, R6, and R11. The
ISO-9141 K line is a bidirectional
signal with a 0- to 12-V signal ampli-
tude. Because it is bidirectional, only
one bus device can talk at a time, or
message collisions will occur. The
OBD-II spec makes the scan tool the
bus master, or initiator, for OBD-II

communication. The ECU can only
output data on the K line when com-
manded or requested to do so by the
scan tool.

After a request for data, the scan
tool must wait for the response before
sending another command or request.
When the OBDScan transmits on the
K line, ’6805 sets or clears Port A,
which is coupled to the base of Q1
through R6. Q1 pulls the K line low,
through the 75-Ω resistor R3, when
Port A, bit 0 is set high. R7 pulls the
line high when Q1 is turned off by
clearing Port A, bit 0.

OBDScan receives data through
the LM393 comparator U3. A voltage
divider, R1, and R2, set the inverting
input to 0.5 × VBatt, which is the
setpoint for deciding what is a one or
zero. Voltage levels greater than 0.5 ×
VBatt are logic 1 and voltages less
than 0.5 × VBatt are logic 0. Software
inside U2 is used to read and write
data to the ISO-9141 interface using
bit banging. In this case, the CPU
uses precisely-timed routines to send
and receive serial data for either tog-
gling an output line for transmit or
reading an input line for receive.

Header bytes Data bytes Error detect
68 6A F1 Maximum 7 data bytes Yes

Table 4—Here’s the SAE-J1979 format for a diagnostic request from a
scan tool. The header field is fixed, the data field varies according to the
request, and the error detection byte is a checksum for ISO-9141-2.

Figure 1—The
OBDScan voltages are
for a 12-V nominal lead
acid battery. Voltages are
approximate and depend
on resistor tolerance and
actual battery voltage in
the vehicle. Layout is not
critical, but keep the
crystal close to the
processor.

 CIRCUIT CELLAR® Issue 123 October 2000 61www.circuitcellar.com

used in the current implementation,
leaving plenty of room for future ex-
pansion. For those of you building this
project from scratch, the object code
is available from Circuit Cellar’s web
site or from www.ghg.net/dharrison/
OBDScan.html.

The RS-232 design is simple, using
a Maxim MAX232 chip for converting
the TTL-level logic signals to RS-232
level. The typical driver output volt-
age swing is ±8 V when loaded with a
nominal 5-kΩ RS-232 receiver. Out-
put swing is guaranteed to meet EIA/
TIA-232E and V.28 specifications,
which call for ±5-V minimum driver
output levels under worst-case condi-
tions. Input thresholds are set at 0.8

and 2.4 V, hence receivers respond to
TTL-level inputs, as well as EIA/TIA-
232E and V.28 levels.

The ’6805 CPU also uses the bit-
banging technique for RS-232 commu-
nication. The vehicle battery powers
the OBDScan through the diagnostic
connector. This can vary from 12 to
15 V depending on whether or not the
engine is running. The input power is
converted to 5 V for the electronics by
U1—a three-terminal voltage regula-
tor; almost any generic regulator will
work, OBDScan uses an LM2931 or
78L05. Obviously the firmware has a
lot to do, and in this case, the ’6805
processor is almost fully used with
respect to CPU cycles. All ’6805 code
was written in assembly language
because of timing and memory space
considerations.

To get an overall understanding of
firmware operation, I’ll start with a
description of the RS-232 interface
protocol to the OBDScan application
in the host computer. When power is
applied, OBDScan transmits a “P.” In

approximately 4 s, if the vehicle
ECU is on, OBDScan establishes
a connection with the ECU and
begins transmitting “S” every 64
ms. “S” synchronizes your com-
puter with the OBDScan. It repre-
sents an opportunity for you to
send a request for diagnostic data.

After receipt of the sync char-
acter, your computer has 40 ms
to send a request. If OBDScan
does not receive a request, it
times out for the remainder of the
64 ms and restarts the process. Every
48 sync characters, OBDScan sends a
request to the ECU for diagnostic data
to keep the link alive, whether or not
the user has sent a request. All user

diagnostic requests consist of
six ASCII bytes.

For example, if you want to
send a command to retrieve
throttle position, send an
ASCII string of 010B06 within
40 ms of receiving the sync
character (see Table 6). The
OBDScan will respond with
the full J1979 response data of
V486BAA01TTCC. The V
indicates ISO9141, 486B is
specified by J1979, AA is the

ECU address, 01 is the mode of the
request, TT is an 8-bit binary value for
the throttle position (0–100% open,
with 255 = 100%), and CC is a mes-
sage checksum. Currently, the sup-
ported commands are 01, 03, and 04.
SAE-J1979 defines additional com-
mands for reading the VIN, freeze-
frame data, oxygen sensor test, and
monitoring the results of built-in self-
tests in the ECU.

ISO-9141 INITIALIZATION
Upon powerup, the OBDScan pro-

tocol converter firmware waits 3 s for
the ECU to get ready and then ini-
tiates the ISO-9141 initialization
sequence. If the ECU does not re-
spond, the OBDScan protocol con-
verter waits another 3 s and tries
again. This process repeats until a
connection is established. As soon as
a reliable, error-free connection exists,
the protocol converter sets up an infi-
nite loop in which it waits for user
input on the RS-232 port and con-
stantly sends “S.”

COMMAND PROCESSING
 When an RS-232 input is received,

it is parsed into mode, PID, and byte
count. An ISO-9141 transaction is
prepared with the proper header and
checksum and then transmitted to the
ECU. The protocol converter waits up
to 1 s for a response from the ECU. If
the response happens before the time-
out, it reads the number of bytes speci-
fied in byte count and sends it back out
the RS-232. If the protocol converter
times out waiting for ECU data, it
initializes repeatedly until the link is
reestablished.

Note how ISO-9141 and SAE- J1979
compliance work. The protocol-con-
verter firmware handles internal and
external communication timing be-
tween message bytes and messages in
accordance with the applicable stan-
dards. It also calculates all required
headers, checksums, address and key-
word initializations, performs watch-
dog timeout on bus messaging, and
error detection. The timing require-
ments are listed in Table 7.

As you see, the built-in time delays
between messages are considerable,
making any sampled data faster than
10 Hz difficult in ISO-9141.

BUILDING THE PROTOCOL CON-
VERTER

Verify that your parts match the
parts list. The resistor color code for
each resistor is shown in the parts
list, and all capacitors (crystals and
ICs) are marked. The protocol con-
verter is a single-sided board, with all

Scan tool to vehicle Mode, PID
Vehicle to scan tool 41 h, PID, data

Table 5—The command and response format for SAE-
J1979 Mode 01 is listed here.

12 V

gnd

200
ms

400
ms

400
ms

400
ms

400
ms

Figure 2—ISO-9141-2 specifies that an initialization word,
transmitted from the scan tool at 5 bps, must be used to
establish communications. If the bus is inactive for more than
4 s, the scan tool must initialize the bus again to continue
communications. Although not all manufacturers require this,
all scan tools must support it.

Figure 3—The protocol converter sends the sync character every
50 ms to signal the start of a 40-ms window in which it can receive
a command from the host PC. The host PC sends a fixed format
string of six characters.

S M M P P N N

40 ms maximum

From OBDScan From user computer

MM = Mode 01, 03, or 04
PP = PID, valid for mode 01, values are 00–1F
NN = Byte count of returned data

62 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

components mounted on top, as shown
in Figure 3. Close spacing of foil runs in
some places, so be careful soldering to
avoid solder bridges. Use the minimum
amount of solder and a 25- to 35-W
iron with a small tip. Remember to
keep the tip clean for good solder con-
nections.

First, install the resistors from the
top so the leads are protruding from
the foil side of the board. Bend the
leads so the resistors stay in place
when the board is flipped over for
soldering. Then, solder all resistors in
place and clip off the leads close to
the board. It is a good idea to wear
safety glasses when you are cutting
component leads to avoid eye injury
from flying parts.

Next, install IC sockets and solder
them in place. Install the crystal,
transistor, Q1, voltage regulator U1,
and capacitors. Observe the polarity
on the electrolytics. Then, install the
two-wire jumpers as indicated on the
silkscreen. Before U2 and U3 are in-
stalled into the sockets, apply 12 V to
the board by connecting the 12-V
ground to C1 negative lead and the
+12 V to Jumper 1. After that, mea-
sure the voltage on U2, pin 28 with
respect to 12-V ground; it should be
5.0 V ±0.25 V. If the voltage is not OK,
check if U1 was installed incorrectly
or if there are solder bridges.

After problems are fixed, install
U2, U3, and U4. Be sure to get pin 1
oriented properly or the chips will be
destroyed when power is applied.
Install the RS-232 and OBD-II cables
as shown in Photo 1. You must insert
both cables through the strain reliefs
before soldering them into the PCB.

Now it’s time to drill the 0.6″
holes in the front panel. Insert the
combined cable/strain relief into the
front panel holes (see Photo 2). The
cable wires are small and fragile, so

handle them with care until the board
is installed in the case. Next, connect
the 12-V supply as instructed and
connect the RS-232 cable to a com-
puter. Using your computer, run
HyperTerm from the Run menu and
configure for the COM port to which
the protocol converter is connected.
You should see “P” transmit every
few seconds as the protocol converter
attempts to initialize an ISO-9141
interface. If you have a scope, measure
the signal on the collector of Q1. It
should look like the signal in Figure 2
repeated every 4 s.

Drill the 0.125″
holes in the bottom
shell of the case and
press in the PCB hold-
ers, and install the
PCB on the holders.
Push the PCB down
until it snaps into
place. Route the
cables around the

w0 Bus idle time before initialization 2000 ms min.
t0 ISO initialization 2440 ms
p2 ISO inter-message time 50 ms
p4 Inter-byte time 5 ms
t6 SAE delay before login 300 ms

parts on the PCB and insert the front
panel into the bottom shell. Then use
the supplied hardware to fasten the
top and bottom shell together. At
this point, you’re ready to proceed to
testing.

GETTING STARTED
The OBDScan application is Win-

dows 95/98-compliant and written in
Microsoft Visual Basic 6.0. The ex-
ecutable program is available to
download from the Harrison R & D
web site for free. To install OBDScan,
follow the directions in the file. The
program will install the executable
file and all required DLLs.

Before connecting the protocol
converter, launch OBDScan by either
double clicking the icon or selecting it
from the Programs menu. You should
see the screen shown in Photo 3.

Select the COM port that will be
used for communication. If the se-
lected port is not available or is being
used by another program, you will
receive an error message. The Win-
dows operating system allows one
program at a time to control any indi-
vidual COM port, so be sure to quit
other applications. After you success-
fully select a COM port, the ECU
status box will change from red to
yellow with the message “ECU Init,”
meaning that it’s waiting for the pro-
tocol converter to initialize the ECU.

After completing this phase, you’re
ready to move on to communication
with a vehicle. Check if your vehicle
is listed in Table 3. The first step is to
locate the OBD-II connector, which is
required by law to be within 1 meter
of the steering wheel. It’s usually
located under the dash, but if not,
check behind ashtrays and in console
compartments. Be sure your computer
is within cable reach of the OBD-II
connector. You can use up to 50″ of
RS-232 extender if required. With the
ignition off, plug in the protocol
converter’s OBD-II connector to the
mate in the vehicle.

Start the engine, and the ECU sta-
tus indicator will become green when
the ECU has been initialized. Next,
select Request Diagnostic Trouble
Codes. You should see a display in the
vehicle status window like “MIL is

Table 7—Take a look at the ISO-9141-2-specified timing delays. Notice the
inter-byte time of 5 ms, and the inter-message time of 50 ms. These two
timing parameters keep the data rate at about 10 updates per second when in
real-time display mode.

PID Description

00 PIDs supported
01 Number of trouble codes and

tests available
03 Fuel system status
04 Calculated load
05 Coolant temperature
06 Short-term fuel trim Bank 1
07 Long-term fuel trim Bank 1
08 Short-term fuel trim Bank 2
09 Long-term fuel trim Bank 2
0A Fuel pressure
0B Manifold pressure
0C Revolutions per minute (rpm)
0D Vehicle speed
0E Ignition timing advance
0F Intake air temperature
10 Air flow
11 Throttle position
12 Secondary air status
13 Location of 02 sensor
14 02 Sensor 1 Bank 1 V
15 02 Sensor 2 Bank 1 V
16 02 Sensor 3 Bank 1 V
17 02 Sensor 4 Bank 1 V
18 02 Sensor 1 Bank 1 V
19 02 Sensor 2 Bank 1 V
1A 02 Sensor 3 Bank 1 V
1B 02 Sensor 4 Bank 1 V
1C OBD type
1D Location of 02 sensor
1E PTO status
20 SAE-2190 support

Table 6—Here are the PID codes as defined in
SAE-J9179. Not all vehicles support all parameters.
All OBD-II vehicles respond to PID 00, which gives
information about which PIDs are supported.

64 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

SOURCE
OBDScan
Harrison R & D
(281) 485-7105
www.ghg.net/dharrison

Dan Harrison holds a B.S. in Physics
and Mathematics and is working
towards a Masters degree. He has
worked at the Johnson Space Center
in Texas for 22 years and is currently
branch chief of the Electronic Design
and Development branch of the Engi-
neering Directorate. His designs have
flown aboard space shuttles and the
International Space Station. His in-
terest in electronic engine control
started several years ago while restor-
ing a Nissan 280ZX. You can reach
him at dharrison@ghg.net.

OFF.” There are no
trouble codes set if
your MIL light is on
or have trouble
codes set. Defini-
tions for the SAE
trouble codes are in
the appendix of the
software manual.

As defined by SAE-2012, diagnostic
trouble codes (DTC) consist of a
three-digit numeric code preceded by
an alphanumeric designator. If the
alphanumeric designator is P0, then
the trouble code is SAE defined. How-
ever, if it’s P1, the DTC is defined by
the manufacturer and you will need a
shop manual. For example, if the
trouble code P0150 is displayed, it is
SAE controlled and indicates a prob-
lem in the O2 sensor. If the DTC is
P1298, you would have to consult the
shop manual for an explanation.

To clear any trouble codes and turn
off the MIL, select Clear/Reset Diag-
nostic Trouble Codes. Then select
Request Current Power Train Diag-
nostic Data. You will see data appear
in both the vehicle status and data
windows. This data is mostly optional
and varies from vehicle to vehicle.
Most manufacturers provide a reason-
able selection of parameters, but a few
1996 models provide only two or
three parameters (probably because it
was the first year).

Any data appearing in the vehicle
data window can be selected for real-
time display. For example, to see
throttle position, click on the line in
the vehicle data window (see Photo 4).
This window will continuously dis-
play throttle position at 8 to 10 Hz
until you press the Stop button in the
fast data display window. The fast
data display provides a troubleshoot-
ing benefit with large characters for
easy viewing and rapid updating for
fast-changing data. You can print data
from the main screen.

Photo 5—Here is the
actual screen display from
a 1997 Honda Accord.

Photo 5 shows a representative set
of data read from my vehicle. Users of
OBDScan can expect this basic set
from all ISO-9141-2-equipped ve-
hicles. If Read Trouble Codes was
selected, the status field would con-
tain any trouble codes set by the ve-
hicle computer.

FINAL ANALYSIS
The OBDScan is designed to be

both a useful repair tool and an aid to
learn about and explore the ODB-II
Diagnostic Interface. Demystifying
the OBD-II port and putting owners
back in control of their property is
important. After all, you paid a hefty
price for that late model car or truck,
so don’t let the automaker virtually
weld the hood. I

http://www.ghg.net/dharrison

66 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

One Small Step

FEATURE
ARTICLE

i
After describing the
model rocket and its
capabilities in Part 1,
Tom gets down to the
details. He notes that
despite frustration
along the way, the
project was satisfying
because it confirmed
years of speculations
about rockets. So,
Tom’s ready for liftoff.

n Part 1, I de-
scribed how a

1-ounce instrumen-
tation package can fly on

a model rocket and record its roll rate
and acceleration. I also presented a
schematic of the electronics package.
Now, it’s time to explain the details.

THE ELECTRONICS
Referring to Figure 1 in Part 1, di-

ode D1 in series with the 6-V battery
limits the supply voltage to approxi-
mately 5.5 V. It also protects the com-
ponents in case the battery is inserted
backwards. The 47-µF capacitor C1
retains power in case the battery
briefly breaks contact. Only the PIC
runs directly from the supply rail, the
other chips are powered via transistor
Q1, which is turned on during flight
by a PIC port pin.

A low-power, single-supply, dual
op-amp (U2) conditions the sensor
outputs. One half amplifies and offsets
the signal from the accelerometer U1
to give a working range of –1 to 12 G.
The other half buffers and amplifies
the signal from the LED. I used an
OP290, but an OP295 gives a greater
output swing.

The 10-kΩ resistor (R9), between
the amplifier output and ground, was
an afterthought. The output was
clamping at 0.5 V, which puzzled me

because it is specified to swing down
to 50 µV above ground. What the
datasheet does not state is that the
output cannot sink the 7 µA of feed-
back current without help from an
external resistor. (The other half of
the amplifier does not need a load
because its feedback resistors are
connected to ground.)

The accelerometer has a bandwidth
of 1 kHz, but the amplifier’s band-
width is limited to 150 Hz by filter
capacitor C5. At 500 samples per sec-
ond, you are sampling at just over the
Nyquist rate.

The 16C71 has a programmable
option that supplies pull-up current to
the Port B input pins. Shorting plugs
pull these pins low until they are
pulled off to signal an event. The pull-
up current also drives the serial input
pin high when there is no input con-
nected. Plugging in the computer pulls
the input low, generating an interrupt
and starting the control program.

INTERFACING
The old RS-232 standard calls for

signal levels between 6 and 12 V and
–6 and –12 V. Because RS-232 inputs
are supposed to work with 3-V sig-
nals, many computers compromise by
using 5- and –5-V levels.

My portable computer is a 1983
vintage Tandy Model 100. It tries to
output –5 V but fails if the output is
loaded by the standard 3000-Ω RS-232
input. Therefore, I designed the input
circuit to generate a low level from
anything less than about –2 V. A
greater positive signal turns off the
grounded-base transistor Q3 and al-
lows the PIC’s internal pullup of
about 0.25 mA to pull the input pin
high. Diode D3 offsets the –0.6 V that
appear at the collector of the transis-
tor when the input is low. Diode D4
protects the transistor’s base-emitter
junction from breakdown in case a
12-V input is connected.

The serial output cheats. It assumes
that the computer pulls its input low
when an open circuit is presented to it.
Thus, the logger circuit only has to
pull up the output to 5 V when it
wants to send a zero bit. Of course
this beats putting a negative supply
on the rocket!

Tom Napier

Part 2: Liftoff!

 CIRCUIT CELLAR® Issue 123 October 2000 67www.circuitcellar.com

CALIBRATION AND
CONTROL

Plugging in the
computer puts the
system in command
mode, letting you
record calibration
information in the
EEPROM. Accelera-
tion calibrations of
–1, 0, and 1 G are
achieved by pointing
the rocket nose down
and typing G0, laying
it on its side and typing G1, then
pointing it nose up and typing G2.
The calibration values are used during
data processing to correct the acceler-
ometer readings for drift.

Similarly, the roll sensor can be
pointed away from (S0) and towards
(S1) the sun to record results. Typing X
transmits data frames continuously as
hex bytes until you turn off the com-
puter. Because the EEPROM can be
written to at least 100,000 times, there
is no harm in making a complete
record and reading it prior to flight.
Gently shaking the rocket generates
surprisingly high G levels.

Any block of data in the EEPROM
can be displayed by typing B followed
by a two-digit hex number from 00 to
7F. For example, B00 displays the cali-
bration information. The data is trans-
ferred to RAM registers 10H to 1FH
and can be modified by the R com-
mand followed by the register number
in hex. This displays the present con-
tents of the register.

Typing a new hex number over-
writes the register and displays the

next one. To write the RAM registers
to the EEPROM, type W and the block
number in hex. Typing a space moves
to the next register with no change.
The enter key exits from the editor.

In addition to calibration informa-
tion, the first EEPROM block stores
the desired recording rate and a byte
that selects this rate or the default
rate of 100 samples per second. The
sampling rate is set by typing T and a
digit from 0 to 4, where 0 = 500 sps, 1
= 200 sps, 2 = 100 sps (the default
setting), 3 = 50 sps, and 4 = 20 sps.

Typing D0 activates the default
setting, typing D1 activates the user
setting. Using a blank EEPROM auto-
matically sets the default sampling
rate. The upper eight bytes of block 0
can be prerecorded with the date,
serial number, and engine to be used.

CONSTRUCTION
Payloads for model rockets have to

be small, lightweight, and rugged
enough to withstand fast accelera-
tions. I chose a body tube just less
than 1″ in diameter, which forced the

PC board to be about
0.9″ wide and several
inches long. I cut a
0.9″ × 6″ board from
Radio Shack part
276-170. It was cut
off-center to leave
three-hole copper
strips on the left and
four-hole strips on
the right. I cut a
scrap piece 0.3″ wide
and epoxied it on
edge to the plain side

of the board where it acts as a com-
bined reinforcing spine and ground
bus. The battery holder, when glued
to the copper side of the board, is the
correct height to locate the board
inside the tube.

When designing your payload
structure, try to distribute the mass
evenly around the spin axis. An offset
center of gravity can cause precession
or tumbling in flight. My full-size
rockets sometimes carry ballast
weights bolted inside the skin, but
this isn’t practical in a model.

As shown in Figure 1, most of the
components, including the socket for
the 16C71, are mounted on the copper
side of the board. Because there was
enough space, I used normal 0.25-W
resistors. The accelerometer is a 14-
pin surface-mount device. Only five of
its pins are used, so I glued it to the
board with silicone rubber and con-
nected the active pins with short bits
of wire-wrap wire. After everything
has been tested, more silicone rubber
will stop these wires and the chip
pins from moving.

One event pin is hard-wired to indi-
cate payload separation. The other
three sensor connections can be wired
to sense other events. A stereo jack
socket is glued to the board and wired
to the serial interface.

I installed the EEPROM in a socket,
giving me the option of taking a tube
of EEPROMs to the launch site rather
than a portable computer. It takes only
moments to swap EEPROMs between
flights, which is an advantage when
you have an audience of impatient
children who are more interested in
seeing rockets fly than in the finer
points of data transfer.

Figure 1—The rocket parts are mounted on the copper side of the 0.9″-wide PC board. Q1, C1,
and R13 are mounted on the underside. The two 22-pF capacitors (not shown) connected
between the crystal and ground are also under the board. A four-way ribbon cable glued to the spine
board connects the event-input pins on the PIC to the 8-pin connector at the foot of the board.

U1

R1
C2

R5

R7

C3
U2

R2

R4
R9

R8

U3

C5 C4
D2

R6 C1

D1

R10

D3C8
U4

R11

R13

R12D4
Xtal

R3

 Battery

Q2

Q3

Q1

Figure 2—The
instrumentation
package is
mounted in a
rocket about 18″
long and 1″ in
diameter. The
snatch plug
wires trigger
data recording at
liftoff.

Nose cone Foam block

8"

Cardboard tube

Connector

Payload separation
connectors

Wires to snatch plug

Attachments for elastic

Fin

Fin

Tube for launch rod
Snatch plug

Op-amp
Accelerometer

EEPROM PIC chip
Serial port

Battery
holder

Connector

Spine

Capacitor
Electronics package

End view of board

68 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

INSTALLATION
Figure 2 shows the installation

in a typical rocket. The lower
end of the circuit board fits into a
balsa plug about 2″ long (you can
file this down from a 1″ square
block). The slot is deep enough
that the battery holder rests on
the plug. The other end of the
balsa plug fits into the lower part
of the rocket where it is sup-
ported on a reinforcing ring glued
inside the body tube. A 0.25″ ring
of body tube fits around the
middle of the balsa plug and
forms the attachment point for
the lower connectors.

In flight, the circuit board is
protected by an 8″ tube, which
also fits on the balsa plug. The
top end of this tube has a nose
cone glued into it. A plug of poly-
styrene foam about 1″ long is
glued to the base of the nose
cone. This holds the board in
place and protects it in the event
of a ballistic landing. The tube
has one hole in its side to allow the
serial jack to be plugged in and an-
other hole to allow the roll sensor to
see the sun. Masking tape ensures
that the tube stays on during flight.

I embedded a section cut from a
ribbon cable connector into the balsa
plug. It mates with an eight-pin con-
nector glued to the circuit board. This
provides the start signal and event
sensing. Three sockets glued to the
surface of the plug mate with pins
glued to the lower tube to provide the
start-up and payload separation sig-
nals. Wires from two of the sockets run
down the side of the rocket to a point
near the launch lug, which guides the
rocket up the launch rod. Two sockets
glued here connect to the launch de-
tect snatch plug.

All connectors designed to separate
during flight are made from individual
pins and sockets from D-type connec-
tors. The sides of the sockets are pried
apart to reduce the separation force.
My snatch plug is two pins linked by a
loop of bus wire, which also links it to
the base of the launch rod.

This plug must be mounted where
it can’t foul any part of the rocket at
liftoff. It should have little slack be-

cause the rocket moves less than 1″ in
the first tenth of a second after igni-
tion. A tenth of a second later, it
reaches peak acceleration, is travelling
at 25′ per second, and is about to leave
the launch rod. You need a quick
startup to record this part of the flight.

The instrumentation package is self-
contained in its tube. It separates from
the lower tube during the descent but
remains attached by an elastic cord. In
this configuration, the drag is suffi-
cient to allow a safe landing on grass.
The package can be mounted on differ-
ent bodies, allowing experiments with
various fins, engines, and tube sizes.
You could even tape it to your car
door to check your brakes.

FIRMWARE
The firmware has two jobs. One

responsibility is to accept preflight
instructions and to execute the post-
flight download. The second job is to
record the flight data. When it’s not
doing one of these jobs, the PIC is in
sleep mode and consuming negligible
power. This means that both liftoff
and connecting the serial interface
must wake the PIC. Connecting the
launch snatch plug brings the reset

pin low. Liftoff removes
the reset, starting the
recording program.

Connecting the serial
port applies a low level
to the serial input, which
is also the interrupt pin.
This wakes the PIC and
diverts operation to the
monitor program, allow-
ing the recorded data to
be read and commands to
be entered.

In default mode, the
PIC samples the acceler-
ometer, roll detector, and
event sensors 100 times
per second. The four
event sensors form bits
12–15 of a data frame.
Bits 8–11 are the analog
roll sensor voltage, and
bits 0–7 are the acceler-
ometer voltage. Eight
frames are stored in RAM
and then transmitted to
the EEPROM as a block.

Block 0 contains five calibration
frames and three control frames. The
calibration frames store the settings
of the accelerometer in its three posi-
tions and the “towards sun” and
“away from sun” voltages generated
by the roll sensor. You may load these
before flight. This information is not
used by the controller, but is impor-
tant for postflight processing.

The first byte of the control frame
indicates which should be used, the
default or the user rate. It must be
programmed to zero to specify that the
second byte contains the user sam-
pling rate. Blank EEPROMs usually
contain mostly ones. These bytes are
read at powerup to set the recording
rate. The third byte is reserved to set
the recording format.

Downloading transmits a text file
with 40 characters per block to suit
the 40-character display of my Model
100. Each frame is transmitted as four
hex characters. The first seven frames
are followed by a space, the last one
by a line feed.

One irritating feature of the Model
100 is that it displays all incoming
data. It loses characters if you don’t
put a 0.5-s time delay between lines.

Figure 3—These graphs measure a flight using a B6-4 engine. The upper
graph plots acceleration and velocity. The spike at 4 s is the payload
separation. The middle graph shows the output from the sun sensor. The
bottom graph presents the four event recorder traces. The upper two were
unused, the next is the mercury switch output, and bottom line shows the
payload separation.

g

12

11

10

9

8

7

6

5

4

3

2

1

0

-1

mph

240

220

200

180

160

140

120

100

80

60

40
20

0

1 2 3 4 5

 CIRCUIT CELLAR® Issue 123 October 2000 69www.circuitcellar.com

DID IT WORK?
Amazingly yes, although the first

test flights revealed software bugs and
a construction problem. I had reversed
a bit test, thus recorded at the user
rate, which was set at 200 sps, rather
than the 100-sps default rate.

Another problem was that at the
end of the flight, the software turned
off the EEPROM before it had time to
write the last data block. The roll
sensor output was too small. I
mounted the LED looking straight
out, because I overlooked the fact that
usually the sun is above the horizon.
However, tilting the LED and cutting
a longer slot in the body tube amelio-
rated the problem.

The LED-viewing angle could still
be a problem when the wind comes
from the same direction as the sun.
But, rockets are launched into the
wind to return the payload near the
launch site. This method tilts the
nose further towards the light source,
shading the LED.

Figure 3 shows a flight with a
small engine, a B6-4. The curve in the
upper graph, which peaks then levels
off, is the acceleration. The curve that
slants up from the lower left shows
velocity in miles per hour. The peak
G level is greater than 9 G, and the
rocket is moving at 80 mph at motor
burnout. A C6 engine boosts speed to
greater than 160 mph.

The pronounced spike that occurs
just after the 4-s mark is the engine’s
expulsion charge firing. The G record
then becomes chaotic because the
payload swings and bounces below
the body tube. Note that there is no
indication where the rocket turned
over at apogee (the point when the
velocity goes to zero).

I discovered that the engine maker’s
specification of the delay before the
expulsion charge fires (the last digit of
the engine’s type number) must be
measured from ignition, rather than
from burnout. For example, a B6-2
engine separated the payload only 1.4 s
after takeoff while the rocket was still
travelling rapidly upwards.

The middle graph of Figure 3 shows
the roll sensor output. The rocket
reaches six turns per second then
slows down as speed decreases.

I only used two event channels
during my test flights. One showed
the payload separation and the other
recorded the position of the mercury
switch, which, as expected, only de-
tected the engine burnout and some
shaking on the way down.

I wrote a short program on my
Amiga 3000 to generate Figure 3. Win-
dows users will have to write their
own display software.

THE BOTTOM LINE
This project was both frustrating

and gratifying. My early hardware and
software designs were correct in the
outline, but it took about three weeks
to get them from 99% to 100% com-
plete. I was not familiar with the
16C71, and getting everything to
work took some digging in the
databook. In addition, the original
hardware needed to be modified ex-
tensively before it flew.

In the end, everything worked well
and I confirmed much about model
rocket behavior that I had pondered
for a decade. I

SOURCES

Microcontroller and EEPROM
Microchip Technology Inc.
(888) 628-6247
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

Accelerometer and amplifier
Analog Devices Inc.
(617) 329-4700
Fax: (617) 329-1241
www.analog.com

Rocket parts and engines
Estes Industries Inc.
www.estesrockets.com

Tom Napier is a physicist and engineer
who parlayed his design experience
into an electronics consulting business.
His compulsion to share his knowledge
drives him to write magazine articles,
and he regrets that he cannot offer free
design assistance to individual read-
ers. He will start using e-mail once the
bugs have been worked out.

http://www.microchip.com
http://www.analog.com
http://www.estesrockets.com

70������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

They Just Haven’t
Caught on Yet

Jeff’s
report
from
this
year’s

MASTER conference
shows that Micro-
chip is successfully
pulling off a one-of-
a-kind performance
when it comes to
educating engineers.

his is the
fourth MASTER

(Microchip’s Annual
Summer Technical

Exchange Review) conference, and as
far as I know, the other manufacturers
still haven’t caught on yet. If you’ve
watched the microcontroller market
over the last decade (in particular,
Microchip’s growth) you may have
wondered, “How’d they do that?” You
don’t get to be a major player without
doing a few things right. There are
certainly plenty of factors that deter-
mine a company’s success. I’m not
writing this to patronize Microchip.
In fact, I won’t mention the company
again. I do, however, want to talk
about a philosophy.

As the name implies, the MASTER
conference is an exchange of informa-
tion. What the name doesn’t imply,
however, is just how intensive this
exchange is. The conference includes
20 one-hour classes on a wide variety
of subjects, including hardware and
software (some in-depth classes re-
quire two- to four-hour blocks). Every-
one can learn something here, whether
you have a soldering iron or a keyboard
attached as a permanent appendage.

As if this information overload
wasn’t enough, evening activities are
designed to promote networking
among consultants, customers, third-
party support, FAEs, and design

t

houses. Evening activities are a bit
more relaxing while, as David
Letterman says, “enjoying a fine bev-
erage of your choice.”

GUIDANCE COUNSELOR
When you look over the total of 32

possible classes on the registration
form (90 hours of class time), you
quickly realize that you will only
touch the tip of the iceberg. And, be-
cause there are new courses added each
year, after four years I can still find
areas in need of improvement. Narrow-
ing the choices down to what will fit
into three days is the most difficult
task. Let’s look in on a few classes
during this year’s technical exchange.

HANDS-ON RFID
This class is basically about passive

RFID tags. Although active tags were
mentioned, because they are for longer
range, are expensive, and require bat-
teries, they weren’t the center of atten-
tion. Passive tags are generally used for
distances of less than a meter and are
already produced by companies such as
Temic, EM, Philips, SCS, TI, Bistar, and
Gemplus. As their name suggests, pas-
sive tags do not require a power source.
Well, that’s not entirely correct.

The circuitry does require power.
However, this power comes from the
RFID reader’s carrier signal. The pas-
sive tag is tuned to this carrier and
sucks in power to run its circuitry.
This circuitry does not transmit back
to the reader, instead it shorts out its
tuned circuitry, removing itself as a
load to the reader. The reader is de-
signed to detect a change in carrier
load. This change looks like amplitude
modulation. The passive tag’s circuitry
can use a number of encoding and
modulation methods to pass data to
the RFID reader.

RFID carrier frequency is another
hot topic. The FCC limits the output
power used in these ranges—125 kHz,
13.56 MHz, and 2.45 GHz are three
ranges used where the tag characteris-
tics greatly differ. At 125 kHz, the
tags have good penetration character-
istics but are high in cost and have
low data rates. At 2.45 GHz, the tags
have no penetration characteristics
but are low in cost and have high data

CIRCUIT CELLAR® Issue 123 October 2000 ������71www.circuitcellar.com

rates. On the other hand, the
13.56-MHz tags are a compromise
yielding good penetration, while main-
taining a low cost and high data rate.

Anti-collision is an issue in which
multiple passive tags may enter the
detection envelope. For many applica-
tions this envelope may only be centi-
meters, so anti-collision is not
necessary because there isn’t room for
multiple objects to be within range at
the same time. For larger envelopes,
the RFID readers must have a way to
tell passive tags not to speak simulta-
neously. Various methods of control-
ling this are handled by collapsing the
carrier field. The passive tags can sense
this and respond (or delay response)
depending on their programming. Fac-
tors of optimizing the detection enve-
lope include carrier power, tuned
antenna circuit Q, antenna diameter,
SNR, and data rate.

Playing with hardware is worth a
thousand words. The time I set aside
for hands-on work using some develop-
ment equipment really helped visual-
ize how different encoding schemes are
used to make unique tagging systems
based on the application requirements.

CONNECTING TO THE INTERNET
Everyone wants to be a “dotcom.”

It’s like the gold rush of the 1800s all
over again. The Internet is certainly
here to stay. And because it is, more
and more companies want their piece
of the action. In order to integrate your
product for communication with the
Internet, you need to know about the
protocols used. In an attempt to sim-
plify the network connection, it is
broken down into layers—applications,
transport, network, and link.

The application, or top layer, is
your data in any number of formats.
You may wish to use HTTP, FTP, or e-
mail via the TCP transport layer, TFTP
or SNMP via the UDP transport layer,
or may require a ping or traceroute via
the ICMP. The transport layer breaks
the data into packets and wraps its
particular format around the data.

The third (network) layer again
wraps the transport layer’s packet with
additional information, including
source and destination IP addresses.
This is the packet-routing information.

The bottom, or link layer, consists
of the actual protocols and device
drivers for physical connections like
Ethernet packets over fiber, 10BaseT,
or wireless connections, Serial Line
Internet Protocol (SLIP) over modem
connections. The network layer’s
packet is encapsulated with the
protocol’s required fields.

Visit http://rfc.akc.com for the
Request For Comment documents.

ANALOG NOISE
Everyone who has designed using

both analog and digital components
must be concerned with keeping the
digital noise from showing up in their
analog signals. This is a real problem
when using higher resolution A/Ds.
Noise that would not cause problems
in the digital realm can cause early loss
of hair when it shows up as wandering
A/D conversions. You expect an A/D
to be stable to ±1 bit. Where can you
look when it’s obvious that the system
noise is to blame? (The savvy designer
should’ve used good design practices.)

To fix problems, first review the
chosen components. This will allow
an analysis of the minimum theoreti-

cal noise you can expect. It is a good
idea to go through these calculations
to determine if you can achieve your
design goals with the circuit design
you have in mind.

Now look at your layout and sepa-
rate the digital and analog circuitry.
Proper layout techniques solve many
issues. Segregating the analog cir-
cuitry far away from the digital re-
duces radiated noise. This is caused by
PCB traces that look like antennas to
fast-edged digital signals or by high
current signals that induce a magnetic
field which, in turn, creates currents
in other traces. In addition, make sure
that both the power and ground con-
nections to each area have their own
path back to the power supply and
that all chips are properly bypassed to
keep them from borrowing current
from their neighbors. Use ground and
power planes when possible. You
might need to filter the power to the
analog circuitry if you’re using a
switching power supply.

If signal conditioning is imple-
mented in front of the A/D inputs,
there’s probably signal gain. Noise
picked up is multiplied by the gain
along with the signal, so keep high
impedance connections as short as
possible. The sampling speed should
not break Nyquist’s rule. It is prudent
to have a low-pass (anti-aliasing) filter
at the A/D’s input with its knee posi-
tioned to reject harmonics.

When using your scope to probe for
noise, your scope ground must be kept
short and connected to a ground as
close to your signal as possible. A 6″
ground clip will pick up a great deal of
noise that probably isn’t even on the
signal you are probing.

USB
The Universal Serial Bus (USB) is

destined to eliminate the serial and
parallel port from future PC mother-
boards. To empower this move, some
USB designers have already begun
manufacturing USB serial and parallel
port dongles. After all, would you
spring for a new PC if you couldn’t
use your old peripherals with it?

Advantages of the USB include live
connect and disconnect, automatic
driver installation, and 100 mA of

Photo 1—A crowd
gathers to watch a
robot attempting to
traverse a roadway
consisting of a black
line on a white floor.

72������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

scale output to the A/D’s full-scale
input. Operational amplifiers are the
building blocks used in designing
signal conditioners. The ideal op-amp
would accept any input voltage and
not require input current. The outputs
would swing to any voltage and sup-
ply infinite current. The op-amp
would have infinite gain for all signals
from DC to infinity without produc-
ing offset voltage errors. It could be
powered from any voltage source
while requiring no current and reject
the noise created in the power supply.

But the perfect op-amp doesn’t
exist. Although the designers try to
implement the best possible charac-
teristics, many op-amps are designed
to improve some parameters by sacri-
ficing others. The circuit designer
must, therefore, know what param-
eters are important to the application.

The op-amp’s power supply voltage
will directly affect the maximum and
minimum input and output voltages.
Although newer op-amps are touting
rail-to-rail swings, be sure to look at
their specifications carefully, because
no op-amp will operate with true rail-
to-rail swings and many vary widely
based on load. Today it is becoming
increasingly popular to use single-
supply op-amps. However, this brings
with it a wrath of new problems for
signals that are bi-polar.

Problems can arise when an op-amp
attenuates an AC signal because of
bandwidth limitations. There is a
tradeoff between stage gain and band-
width, so the designer must not be
fooled by the GBWP (Gain Bandwidth
Product). This represents the point
where an input frequency will have no
gain (gain = 1) through the op-amp,
even though it is configured for infi-
nite gain (open loop). Because the op-
amp’s gain increases 20 dB per octave
below this frequency, the designer
must make sure the necessary gain
falls within a range that can be
achieved at the maximum frequency
of the application.

Slew rate has another output limi-
tation. An op-amp’s slew rate is how
fast its output can change in V/µs.
This can be easily confused for a high
gain signal, which is bandwidth lim-
ited and clipped at the rails.

This class includes a hands-on
portion where the basic op-amp cir-
cuits (noninverting and inverting) and
instrumentation are used to create
signal conditioners with specific
transfer functions. A software design
package, similar to FilterLab and
AmpLab, allows the designer to select
configurations and component values
to solve a number of application is-
sues. Different op-amp models can be
substituted into the circuit where the
circuit parameters are automatically
recalculated, allowing the designer to
judge the level of suitability. A Spice
file can also be created from the de-
sign to allow dynamic simulation of
the circuit. However, even a Spice
simulation isn’t foolproof, and
prototyping should always follow the
design and simulation steps.

OTHER TOPICS
Interfacing was the hot topic at this

year’s MASTER conference. Other
topics included anti-aliasing filter
design, designing with digital potenti-
ometers, CAN bus, and using I2C in
master and slave mode. I must admit
that the sponsoring manufacturer did
have classes available on the products
they offer, as well as classes on third-
party programmer’s tools. I won’t
suggest that this manufacturer didn’t
wave its own flag, however, most
information was unbiased.

Last year, an after-hours robot
building competition was introduced.
The Lego Mindstorm Robotics Lab
was used by teams of volunteers to
create a ball-collecting robot. As a
result of the limited number of after-
hours available and the learning curve
needed to use the Mindstorm, few
teams were actually successful. This
year, a preassembled robotics platform
was used. The majority of effort now
became one of software. Conse-
quently, more robots qualified on the
rigorous line tracking raceway (see
Photo 1). Interestingly, a small trans-
mitting video camera was placed on
some of the robots. A projection TV
gave the teams a robot’s eye view of
the raceway. Technology sure is fun.

Although August in Arizona
doesn’t sound great, I hope this article
convinces you to go back to school for

minimum power available through
the bus. Present USB specifications
(rev1.1) allow 1.5 MBps at low speed
and 12 MBps at full speed. However,
to compete with firewire (1394 A),
USB rev2.0 will allow 480 MBps.
These are bit times, and actual data
throughput will vary with packet size.

The physical layer consists of a
power and ground pair and a differen-
tial signaling pair. USB is not a daisy-
chain system. It is based on a star
topography with the host or a hub
upstream controlling communication
and a hub or device downstream re-
sponding to commands.

USB is not a simple protocol. In
order for the host PC to know what
kind of device is being connected to
the USB pyramid, a standardized
transfer must take place whenever the
host detects that a new device has
been attached. This initial transfer, or
enumeration, takes place at a known
address and lets the new device tell
the host about itself. The host can re-
assign the device to a new unused
address and install the correct driver,
allowing access to the device func-
tions. Although there are device driv-
ers for standard peripherals, if your
device has any non-standard func-
tions, you will need to provide a Win-
dows/Apple/Linux driver for your
device. In addition, you may have to
provide application software.

USB transfers occur in 1-ms
frames. Each frame is packed with
control, interrupt, isochronous, and/or
bulk transfers. The USB low-speed
protocol is used for peripherals that
have small amounts of data to pass
(i.e., mouse or keyboard) and can only
use control or interrupt transfers. The
full-speed protocol is used when a
peripheral needs to send timely or
bulk data, however, all four transfer
formats are allowed.

SIGNAL CONDITIONING
For most digital engineers, connect-

ing some sensors to an A/D input is a
challenge. Many sensors output sig-
nals in the millivolt range, and A/D
inputs have full-scale ranges up to
VCC. To maximize the A/D converter
resolution, use scale and gain to trans-
late (or condition) the sensor’s full-

74������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

 Wesley, ISBN 0-201-46137-4, 1997.
W.M. Tan, Developing USB PC

Peripherals, Annabooks, ISBN
0-929392-64-7, 1999.

a few days. And, if I can convince other
manufacturers to follow suit and pro-
vide intensive programs on a variety of
subjects, we can all get a quick burst of
education to help supplement the con-
fines of our workplaces.

THE LAST WORD
The conference was also the place

to meet Circuit Cellar readers. I got to
meet and talk with guys and gals from
all over this small planet—from the
USA, Australia, Brazil, France, Mexico,
and more. I want all of you to know
how much I appreciate hearing your
kind words. It is comforting to see that
we all have something in common. I

RESOURCES
125 kHz
ISO 11784/11785—Animal tagging

13.57 MHz
ISO 14443, ISO 15693—Proximity

and vicinity
Microchip AN707—MCRF 355/360

Applications
Microchip AN710—Antenna circuit

design
Microchip—RFID System Design

Guide

Connecting to the Internet
Microchip AN724—PPP dialup
Microchip AN731—iReady design
Microchip AN732—Flash memory

reprogramming
RFC1127—Server protocol
RFC894 and 1042—Ethernet packets
RFC1055—SLIP logon
RFC1661—PPP negotiation
RFC1662—Packet checksum calcu-

lation

SOURCES
MASTER Program
Microchip Technology Inc.
(408) 786-7200
(408) 786-7302
www.microchip.com

USB
USB Implements Forum, Inc.
www.usb.org

RFC791—P Header
RFC792—ICMP Structure
RFC768—UDP Header
RFC793—TCP Header
RFC2616—HTTP Application

Analog Noise
Microchip AN688—Layout tips for

12-bit A/D converter applications
Microchip AN699—Anti-aliasing,

analog filters for data acquisition
systems

USB
www.microsoft.com/hwdev/

busbios/usbpnp.htm
www.microchip.com/usb
www.usb.org
www.microsoft.com/hwdev/usb
www.apple.com/usb

REFERENCES
D. Anderson, Universal Serial Bus

System Architecture, Addison

http://www.microchip.com
http://www.usb.org

76 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

a s I went through
the datasheets and

press releases for last
month’s article about

Motorola’s latest M-Core moves, “Dial
M-Core for Micros?,” I repeatedly
came across references to Nexus.

Thanks to the web, extensive
detective work wasn’t required to find
out who (or what) Nexus is. For more
information, just head over to their
web site and read all about it. As I
navigated my way around, I realized
that Nexus is really GEPDIS. Well,
now that explains it.

I can certainly sympathize with the
marketeers who made the switch. No
doubt Nexus makes for smoother
sounding press releases, but GEPDIS,
as in Global Embedded Processor
Debug Interface Standard, says it all.

Is it possible? Anytime you’re
talking global standards, it’s a big deal.
Not to mention that there’s more
embedded processor debug interfaces
than you can shake a stick at.

Combining the two clauses might
seem optimistic, bordering on oxy-
moronic. Nevertheless, considering
the list of heavyweights involved (see
Table 1), it’s wise to look closer.

WHAT’S DEBUGGING ME
It may sound audacious, but the

goal of a standard debug interface is a
worthy one. In fact, I think it’s more

Who’s Nexus?

SILICON
UPDATE

Tom Cantrell

Although
Tom’s no
Perry
Mason, it
didn’t

take him very long to
uncover the who,
what, when, where,
and why behind
Nexus. No matter
what you call it, imple-
menting a global stan-
dard is no easy task.

than worthy. I consider it mandatory,
lest our digital dream machines
become our worst debug nightmare.
With certainty I say, it’s a debug crisis!

Remember the first computers?
They were vacuum-tube Goliaths that
could barely compute their way out of
a paper bag, and that’s if they
managed to continue running for more
than a few minutes at a time. Talk
about a hardware crisis.

As we all know, silicon and recent
hardware synthesis technology have
come to the rescue. Now the hardware
crisis boils down to choosing between
Verilog, VHDL, and shopping chip
suppliers to find the lowest price.

Then, after computers came into
being that could handle more than a
few lines of code, there was a software
crisis (a term I first heard used by
Intel’s Andy Grove in the ’80s). So
many megahertz and megabytes, so
little time to write software.

But the advent of high-level
languages, automatic code generating
tools, and third-party OEM software
has put a big dent in the software crisis.
Consider our desktop PCs where
higher-ups seem to have no trouble
filling more memory and consuming
more MIPS with bloatware. These
days, a single programmer with a
budget for advanced tools and OEM
software can point, click, and purchase
megabytes of code (i.e., RTOS, TCP/IP
stack, and such) all before lunchtime.

So, you’ve got your fancy chips and
your fancy code, now what? If it didn’t
seem to work right the first time,
welcome to the debug crisis.

GOOD OLD DAYS…
I say this with a trace of nostalgia.

Back then, debugging a balky system
wasn’t a cakewalk, but it was
possible. In fact, much of it was
straightforward, at least for the simple
microprocessors of the time. In
particular, external address and data
buses offered a way to easily observe
and control. With chips like the Z80
and 68K, it was possible to bring a
system to life with little more than a
few pages of test code and a scope.

With the emergence of single-chip
MCUs (i.e., no external bus), the
market for emulators took off.

 CIRCUIT CELLAR® Issue 123 October 2000 77www.circuitcellar.com

Emulators traditionally rely on a
special bond-out version of the MCU
that, as the name implies, connects the
internal buses to pins, and then by a
cable to the target socket.

Although still viable for older
commodity micros, traditional
emulation technology won’t cut it for
today’s advanced ICs. With everything
buried on-chip, external activity on
the pins yields little insight about the
inside. As the number of architectures
and variants grows, manufacturers
don’t want to be bothered with
juggling different custom bond-out
chips. Triple-digit clock rates, mixed
signal I/O, and tiny surface-mount
packages spell doom for the
traditional pod/cable/probe lash-up.

Now, consider the emergence of
ASICs and SOCs that may incorporate
one or more processing elements (e.g., a
CPU and DSP). Don’t bother calling
Emulators-R-Us.

The bottom line is, if you plan to
integrate everything but the kitchen
sink on one chip, the only course of
action is to integrate debug logic, too.

JTAG, YOU’RE IT
Integrating debug logic is exactly

what micro suppliers have started
doing during the past few years. The
idea is that a little extra debug logic
embedded on-chip can go a long way
towards solving the debug crisis.

Not surprisingly, Motorola, the
number-one MCU supplier, was one
of the first to take the plunge with the
Background Debug Mode (BDM) and
On-Chip Emulation (OnCE) approach.

In general, these and similar
schemes from other manufacturers
exploit the fact
that a powerful

host (as today’s PCs surely are) can do
the heavy lifting, thereby offloading
and minimizing the debug logic that
is required on-chip.

With debug smarts on both the host
and chip, the main issue remains about
how to connect the two. Often, the
debug logic hitches a ride on one of the
controller’s serial ports. However, this
approach has a couple of limitations.
The limited speed of the link may
create a bottleneck and the port’s use
for debug will conflict with its possible
use in the application.

JTAG (a.k.a., IEEE 1149.1) to the
rescue. Originally, the five-wire clock
serial interface was designed merely for
hardware debugging and testing. With
each chip in a system connected in a
JTAG daisy-chain, test equipment can
perform what’s known as a boundary
scan, essentially setting or checking the
level of each pin.

It’s not difficult to imagine how
boundary scans and JTAG are helpful
for debugging PCB prototypes or
automating production tests. But it
wasn’t long before folks had the bright
idea that JTAG could go beyond its
pin-centric roots to serve as the
generic link between the host and the
target during system integration and
debug, as well.

Compared to hijacking a UART or
such, JTAG has key advantages. It’s
undoubtedly fast, capable of running
at many megahertz. In one real-world
example, engineers at Motorola
measured end-to-end throughput of
1 MBps on a 40-MHz M-Core part
(admittedly with the addition of an
*RDY pin to help speed things up). [1]
That’s about 1000 times faster than

the 9600-bps UART that folks made
do with back when everything
managed to fit in 64 KB.

Another advantage (as mandated in
the standard) is that JTAG pins must
be dedicated to testing and debugging,
thereby reining in the chip designer’s
inevitable tendency to multiplex
them with some application I/O func-
tion. So, whenever a chip includes
JTAG, you’re assured that during
development (and even after the appli-
cation is deployed) there will be a
dedicated debug connection available.

Finally, JTAG is quickly becoming a
standard feature. After surveying the
market, Motorola asserts that the
majority of leading MCU vendors are
getting on the JTAG bandwagon.
Widespread adoption is crucial to
boost the number of available seats,
which, in turn, attracts the interest
and monetary investment of third-
party tool developers.

Table 1—With more than a few top-tier chip and
tool suppliers onboard, the Nexus Consortium goes
beyond a mere marketing marriage of convenience.

Applied Dynamics International
Applied Microsystems Corp.
Digital Logic Instruments
Green Hills Software, Inc.
Hewlett-Packard Co.
Hitachi Semiconductor Inc.
Hitex Development Tools
HIWARE
Infineon Technologies
Metrowerks Corp.
Mitsubishi Electric Corp.
Motorola Inc.
Nohau Corp.
Noral Micrologics
PLX Technology, Inc.
STMicroelectronics
Tektronix, Inc.
Yokogawa Digital Computer Corp.

Table 2—Nexus
defines four classes
of capability across
a range of prices and
performance, from
simple static control
to real-time dynamic
debug. The former
includes basic opera-
tions such as ac-
cessing memory and
stopping, starting, and
single-stepping the
processor.

Static development features
Development feature Class I Class II Class III Class IV Nexus feature

Read/write user registers in debug mode V V V V
Read/write user memory in debug mode A A A A Read/write access
Enter a debug mode from reset A A A A Development and control status
Enter a debug mode from user mode A A A A Development and control status
Exit a debug mode to user mode A A A A Development and control status
Single-step instruction in user mode and A A A A

re-enter debug mode
Stop program execution on instruction/ A A A A Breakpoints/watchpoints
 data breakpoint and enter debug mode
 (minimum of two breakpoints)

A = required feature implemented via API P = required feature implemented via development port or port pin
V = required vendor-defined feature implemented via API O = optional feature

78 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Dynamic development features
Development feature Class I Class II Class III Class IV Nexus Feature
Ability to set breakpoint or watchpoint A A A A Breakpoints/watchpoints
Device identification A A and P A and P A and P Device ID message (see section 6)
Ability to send out an event occurrence P P P P Watchpoint message (see section 6)

when watchpoint matches
Monitor process ownership while processor P P P Ownership trace

runs in real-time
Monitor program flow while processor P P P Program trace
 runs in real-time (logical address)
Monitor data writes while processor runs P P Data trace (writes only)

in real-time
Read/write memory locations while program A and P A and P Read/write access

runs in real-time
Program execution (instruction/data) P Memory substitution

from Nexus port for reset or exceptions
Ability to start ownership, program, or A Development control and status

data trace upon watchpoint occurrence
Ability to start memory substitution upon O Development control and status

watchpoint occurrence or upon program
access of device-specific address

Monitor data reads while processor runs in real-time O O Data trace (reads and writes)
Low-speed I/O port replacement and O O O Port replacement/sharing

high-speed I/O port sharing
Transmit data values for acquisition by tool Opt. Opt. Data acquisition

Table 3—Dynamic debug features include familiar breakpoints and watchpoints as well as advanced capabilities, such as memory substitution and I/O replacement.

CLASS ACT
The Nexus folks are sensitive to the

pragmatic issues of getting there from
here. It’s tempting to push for an all-
things-to-all-designers standard that

checks off every item on a wish list. It
would also be a mistake to bite off
more than the market can chew.

Thus, the standard incorporates
flexibility and scalability by classifying

four different levels of debug
capability (see Tables 2 and 3). They
cover the whole spectrum, from Class
I, which is close to what’s found on
today’s commodity MCUs, to Class

80 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

IV, which can handle anything thrown
at it by the chips of the future.

As the entry point to Nexus, Class
I provides a baseline of so-called static
debug features that includes single-
step reading and writing target regis-
ters and memory and instruction and
data breakpoints. The static designa-
tion means that the processor must be
stopped (in debug mode) during tool
access. In other words, Class I debug
is intrusive. In return, it consumes
the least silicon, meeting the primary
goal of minimizing barriers to entry
and overcoming inertia for chip, tool,
and application designers.

To that end, Class I does not need a
lot of pins. And in fact, it demands
little beyond a stock JTAG port for
tool connection.

Upping the ante with dynamic
debug features, Class II adds the
watchpoints, process ownership, and
program trace that are required for
monitoring instruction execution in
real time. Class III adds similar capa-
bilities for data access and tracing.
Finally, Class IV offers generic
memory substitution (i.e., overlay
memory in emulator-speak) and port
replacement.

However, upper-class dynamic
features (such as program and data
trace) put a strain on JTAG. For
example, the way program trace works
is that the target sends a message to the
tool every time there’s a change of
program flow, whether as a result of a
branch or an exception. Even though
the messages are compressed (see
Figure 1), it’s likely that a large amount
of Branch Trace Messaging (BTM) and
Data Trace Messaging (DTM) is
required. Furthermore, JTAG was not
designed for full-duplex operation or
with provisions for handling
unsolicited messages from the target.

AUX BOX
To boost bandwidth, Nexus Class II,

III, and IV implementations can take
advantage of what the standard calls an
auxillary port (i.e., extra pins). So,
debug capability is scalable across a
range of price and performance for
both chip and tool suppliers.

In particular, 1, 2, 4, 8, or more
pins can be allocated independently
for input and output. Typically,
messaging from the target to the tool
is the bottleneck, so more pins can be
assigned. For example, the standard

Figure 1—To use limited target-to-host bandwidth in the best way, branch and data trace messages are
compressed by sending only the bits that differ from the previous address. Periodically (every 256 mes-
sages), or if something goes awry (e.g., message overrun), a full address is sent to maintain and restore synchroni-
zation between tool and target.

Example of how the target processor generates the address to send in a trace
message:

Previous absolute address (A1) = 0x003FC01,
Absolute address associated with new trace occurrence (A2) = 0x0003F365

A1 = 0000 0000 0000 0011 1111 1100 0000 0001
A2 = 0000 0000 0000 0011 1111 0011 0110 0101
A1 + A2 = 0000 0000 0000 0000 0000 1111 0110 0100

The unique portion of the address (M1) sent in the message (high-order
 zeros are suppressed):

M1 = 1111 0110 0100

Example of how the tool recreates the address based on its previously calculated
 address and the address contained in the trace message:

Previously calculated address (A1) = 0x003FC01,
Address in message (M1) = 0xF64

A1 = 0000 0000 0000 0011 1111 1100 0000 0001
M1 = 0000 0000 0000 0000 0000 1111 0110 0100
A1 + M1 = 0000 0000 0000 0011 1111 0011 0110 0101

Address recreated by the tool = 0x0003F365

 CIRCUIT CELLAR® Issue 123 October 2000 81www.circuitcellar.com

recommends 1, 2, or 4 pins for a Class
III or IV input port (tool to target), but
4, 8, or 16 pins are recommended for a
Class III or IV output (target to tool).

To handle the variations, Nexus
defines three connectors and multiple

configuration options (see Table 4).
Connector A (20 pins) is the entry
level. Aside from the five JTAG pins,
seven optional signals are defined.
*RESET allows the tool to reset the
target processor. CLOCKOUT is

typically driven by the target
processor clock and allows the tool to
detect target activity and determine a
suitable rate for the JTAG clock
(TCK), or to clock transfers from
target to tool directly.

Pin name Connector A Connector B Connector B Connector B Connector C Comments
Opt. 1–IEEE 1149.1 Opt. 2–Auxiliary Port Opt. 3–Combined

MCKI 1 1 Auxiliary port
MDI 2 4 Auxiliary port
*MSEI 1 1 Auxiliary port
MCKO 1 1 1 Auxiliary port
MDO 4 2 8 Auxiliary port
*MSEO 1 1 2 Auxiliary port
*EVTO 1 1 1 1 1 Auxiliary port
*EVTI 1 1 1 1 1 Auxiliary port
*RSTI 1 1 Auxiliary port
PORT 16 Port replacement
IEEE 1149.1 5 5 5 IEEE 1149.1
 pins
*RDY 1 1 1
VREF 1 1 1 1 1 System signals
*RESET 1 1 1 1 1 System signals
CLOCKOUT 1 1 System signals
Vendor-defined 1 1 1 1 2
 UBATT 2
GROUND 8 13 13 13 38
Total signals 12 12 16 15 42
Total pins 20 30 30 30 80

Table 4—Nexus defines three connector options (A, B, and C) by using either JTAG, a scalable auxiliary port, or both.

 CIRCUIT CELLAR® Issue 123 October 2000 83www.circuitcellar.com

*RDY allows JTAG transfers to be
sped up, as opposed to the polling
alternative. VREF

 is the signaling level of
the target debug interface, so a single
tool can handle various voltage (e.g.,
3-V vs. 5-V) targets. There’s also a
vendor-defined pin, power for the
target being the likely option.

*EVTO and *EVTI provide the
critical ability to synchronize debug
with external events. For instance, the
target can be configured to assert
*EVTO to the tool when a particular
event like an instruction or data access
occurs. This is great for triggering a
scope or logic analyzer. Similarly, the
tool can drive *EVTI asynchronously,
and the target debug logic will output a
message of interest, such as the value of
the program counter or a particular
register or memory location.

The next option, Connector B (30
pins), is the most versatile, supporting
three different configurations. The
first just maps the 20-pin Connector
A (i.e., JTAG plus options) to a subset
of the 30 pins.

The second configuration of Con-
nector B replaces JTAG with the
aforementioned auxiliary port com-
prised of separate input (MCKI, MDI,
*MSEI) and output (MCKO, MDO,
*MSEO) channels.

The third Connector B configura-
tion is a hybrid that restores JTAG by
eliminating the auxiliary input port
(tool to target) and reducing the out-
put port (target to tool) data pins from
four to two.

The final option, Connector C,
calls for 80 pins. That may seem like
a lot, but don’t forget that almost half
are grounds. In addition to extra auxil-
iary port bandwidth (four MDI pins
and eight MDO pins), the big claim to
fame for Connector C is the 16 pins
that are devoted to port replacement.

Port replacement is a variation of
the bond-out chip scheme that’s been
used in traditional emulators in the
past. Instead of a special custom
bond-out chip, the production chip
has an emulator mode that makes the
internal buses available on existing
pins. Of course, the question then
becomes how to reproduce the appli-
cation function of those pins in the
target system.

The port replacement scheme does
that with an extra chip that replicates
the function of the pins called to debug
duty. The combination of two chips
achieves the same end as a custom
bond-out chip because it both delivers
every pin function of the target device
and offers extra pins for debug.

Just how faithfully the port replace-
ments mimic their target counterparts
is a concern. In the Nexus scheme,
the tool is basically limited to simple
parallel I/O operations (i.e., sample
inputs and set or clear outputs). Thus,
chip makers who want to take advan-
tage of port replacement should take
care to multiplex the debug function
with simple I/O. Trying to port-re-
place a complicated high-speed func-
tion like PWM or UART could get
ugly unless the tool has a lot of horse-
power to devote to the cause.

LET’S GET MODULAR
The basic premise of Nexus is to

enable a more open and universal
development environment for the
benefit of everyone—chip designers,
tool suppliers, and their customers.

From the chip supplier’s perspec-
tive, a small additional investment in
Nexus silicon helps ensure the avail-
ability of development tools, some-
thing that shouldn’t be taken for
granted and has been known to trip up
processor wannabes.

Meanwhile, tool designers will be
able to leverage their know-how across
several architectures without wasting
time reinventing the wheel for each
new chip that comes to town. I’m

Figure 2—Nexus defines APIs to help decouple high-
level tool functions from low-level hardware details of
the target chip and emulator hardware.

Tool (or Nexus
conformance suite)

Tool vendor-specific
API(s)

Target abstraction layer

Emulator HAL

To
ol

 v
en

do
r

sp
ec

ifi
c

A
P

I(
s)

N
ex

us
 A

P
I

The Nexus API consists of two layers:

84 Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

Problem 2—Many processors have a special instruction that
can be used for implementing process synchronization functions.
If your processor does not have such a function, can you still
implement a semaphore function for process synchronization?

Problem 3—An embedded 8051 processor (mask ROM)
needs a nonvolatile memory to store configuration information. A
maximum of 1 KB of configuration data is needed which will be
modified one byte at a time no more than once per day. The
product will be used 1 hour per day and will be required to last
at least 10 years. The best technology to use for the configura-
tion memory is:

A) FlashROM
B) EEPROM
C) Battery-backed CMOS static RAM
D) Battery-backed dynamic RAM
E) Bubble memory
F) None of the above

Problem 1—What does the array ‘hello’ contain after four calls
to overstrike()? What are the values returned by overstrike()?

����������	
����������
������������������
������������������������
��������������������������

Problem 4—A 1 MB x 8 bank of memory is required for an
ultra-low power battery operated data logger. The data logger will
be implemented using a PIC processor which will remain in sleep
mode but wake up once per minute to record 100 bytes of data.
The datalogger will run unattended for at least one year at a time
and data will be downloaded at least once a week from the
datalogger then the memory bank reset. The smallest possible
power consumption for the finished product is desirable.
Which memory technology is best suited for this task?

A) FlashROM
B) EEPROM
C) CMOS static RAM
D) Dynamic RAM
E) Bubble memory
F) None of the above

�������� ����	� ��������	�
��������� ����	�

What’s your EQ?—The answers and 4
additional questions and answers are
posted at www.circuitcellar.com.

You may contact the quizmasters
at eq@circuitcellar.com.

8 more EQ

questions

each month in

Circuit Cellar Online

see pg. 2

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for several
years. You may reach him by e-mail
at tom.cantrell@circuitcellar.com.

REFERENCES
[1] D.Gonzales, “M-Core Architecture

Implements Real-Time Debug Port
based on Nexus Consortium

 Specification,” Motorola,
 www.ieeeisto.org/Nexus5001/

northcon_99.pdf.
[2] D.Gonzales and B.Branson, Real-

Time Debugging Highly
Integrated Embedded Wireless
Devices, Motorola,
www.chipcenter.com/analog/
main.html.

SOURCE
Global Embedded Processor Debug

Interface Standard
Nexus 5001 Forum
(732) 981-3434
Fax: (732) 562-1571
www.nexus-standard.org

sure they won’t miss agonizing over
whether or not to build, sell, and
support their own over-priced, under-
popular tools or to crawl around with
hat (and checkbook) in hand, trying to
convince third-party tool suppliers to
bless their chip.

You will have a lot of freedom to
mix and match different chips and
tools with less of the fire drills that
typically accompany such a switch.

With chip and tool vendors both
dabbling in debug, there’s the danger of
wasteful duplication, overlap, and
something falling through a crack. To
impose a who-does-what discipline,
Nexus explicitly defines (with C
header files) two APIs, one each for
chip and tool suppliers (see Figure 2).

The chip supplier crafts the Target
Abstraction Layer (TAL), which maps
the standard Nexus debug semantics
(e.g., nx_ReadMem, nx_SetEvent, and
such) to a particular chip’s underlying
debug hardware. In turn, the tool
supplier comes up with an emulator
Hardware Abstraction Layer (HAL) by
which a host establishes basic

communication with the emulator
(e.g., a device driver, if the host is a PC).
Together, the two layers comprise the
Nexus API, upon which a tool vendor
can layer their fancy IDEs.

PLAYING CATCH UP
Remember the old saw, “If the

phone system hadn’t become
automated, everyone on earth would
be an operator?” I imagine a world
where everyone spends so much time
debugging gadgets that they don’t
have time to enjoy them.

The fact is, without fundamental
improvements on the tool front, it’s
going to get ugly. Trying to brute-
force a way out of the debug crisis by
throwing more engineers at it will not
keep up with the march of silicon or
the grandiose aspirations of designers.

 I’d like to be able to rely on a few
powerful, versatile, easily-upgraded
pieces of gear that could work with any
chip, and together as well.

Who cares what the Nexus/
GEPDIS folks want to call it, let’s just
wish them luck doing it. I

http://www.nexus-standard.org
http://www.chipcenter.com/analog/main.html
http://www.ieeeisto.org/Nexus5001/northcon_99.pdf

96������� Issue 123 October 2000 CIRCUIT CELLAR® www.circuitcellar.com

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Imputed Liability?

ocktail parties with business people are all alike. Without exception, in a professional crowd
someone will jokingly yell out, “They should shoot all the lawyers first!”
I always laugh and agree. At the same time, I’ll admit to all of you that I’ve availed myself of many

legal services in the past. Of course, it can always be argued that if lawyers weren’t creating a full-
employment economy for lawyers in the first place, then I wouldn’t have needed them as often.

I only bring this issue up because of all the brouhaha about Napster and copyright infringement. As an avid
consumer of information and technology, I want the Internet to be as free from obstacles and regulations as
possible. As a supplier and publisher of some of that same copyrighted material, I want to know that it can be
protected. Basically, I see both sides of the argument.

In order to understand what is going on with Napster, some of the legal jargon defining copyright infringement
has to be explained. A copyright is a federal law that protects the intellectual property of artists and authors
when they publish their works. A copyright lasts for the life of the author plus 50 years. “Copyright infringement”
simply means the unauthorized use (or posting) of copyrighted material. The real issue in this case revolves
around something in copyright law called “imputed liability.” Imputed liability doesn’t mean that you are specifi-
cally violating copyrights by your own action, it just means that you were in the position to control someone else doing
it. Under the law that makes you just as liable.

The RIAA and Metallica are contending that Napster is liable because it controls the service through which
Napster users are committing individual copyright infringement. (The RIAA could sue each individual for
downloading MP3 files of copyrighted music, but the cost and difficulty of pursuing legal action against each
“infringer” could be prohibitive. It’s more effective to go after the “deep pockets.”)

There are various defenses to this argument, which is not a new one. The record industry said that cassettes
would destroy the record industry. The motion picture producers said the VCR would end the making of movies.
It hasn’t happened in both cases because the evolutionary choice to copy the materials to a new medium wasn’t
driven by a lust for copyright infringement. It was driven by convenience and economics.

Although it’s not always the case, file sharing can prove beneficial. Would Microsoft have risen so quickly if the
original Microsoft BASIC not been copied to millions of home computers in the early days? Was the end result of all
that file sharing the creation of a culture bent on software piracy or was it instead a wider public ready to pay for a
regulation upgrade after they had sampled the merchandise? It’s not pretty, but that’s what happened.

The popularity of MP3 file sharing has a lot to do with overpricing in the music industry. Are you old enough to
remember being able to hear a record before buying it in a record store? These days, if it isn’t played on a radio
station, you basically have to buy the CD and that’s your first sample. It wouldn’t be so bad if the music industry
wasn’t also charging more for cheaper-to-produce CDs than other media. That certainly doesn’t help music
industry popularity.

The music industry wants to eradicate services like Napster. The courts want to apply laws fairly to all. The
truth is that neither the music industry nor the laws can keep up with the technology. I don’t have a good answer for the
present dilemma. All I can say is that the web has become the great equalizer. It takes millions of dollars to hire a staff,
design a product, and launch a new company. These days, all it takes to destroy that business model is a 19-year old
who designs an application that turns the world upside down. Welcome to the Internet.

c

