
$3.95 U.S. ($4.95 Canada)

CELLAR
T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

w
w

w
.c

ir
c

u
itc

e
lla

r
.c

o
m

CIRCUIT
®

 # 12 1 A U G U S T 2 0 0 0

EMBEDDED PROGRAMMING
Software Testing Made Easy

Build a Webcam For $55

Developing Software
Without A Target

A Free ANSI-C Compiler

2 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

— COLUMNS —
Lessons from the Trenches
Number Crunching with Embedded Processors
George Martin

This month, George walks us through binary numbers,
embedded processors, and how different numbering sys-
tems work together with CPU instructions and the C
language. He takes us through the steps and then encour-
ages us to walk on our own with different examples.
And remember, practice makes perfect!

Silicon Update Online
I’m a Traveling Man
Tom Cantrell

What season is it, anyway? I would say summer, but for
Tom and many others it’s conference and trade show
season. So, pack your suitcase, kiss the spouse goodbye,
and get ready for the ride because Tom is taking us on
the road with him. Our first stop—FPGAs.

Double your technical pleasure each month. After you read Circuit Cellar magazine, get a
second shot of engineering adrenaline with Circuit Cellar Online, hosted by ChipCenter.

 — FEATURES —
Looking at the Specs
Gerard Fonte

With this article, Gerard helps us answer some of the
questions about one of the defining characteristics of
most engineering projects, showing us that, when
engineers, marketeers, and customers all have a
common goal, they can get the most out of specifica-
tions. But, is it really possible for all three to come to
an agreement? See what Gerard has to say.

Build a Virtual Wireless
Automation System
Michael Chan

What is “real” and what is virtual reality? It’s hard to
tell nowadays. Similarly, Michael’s project scheme is
wireless, but is it really? It seems like it because there
is little or no wiring or installation involved when you
want to make a change to your system. Let Michael
take you through the steps, then maybe you can get
virtually wireless.

Decisions, Decisions...
Choosing the Right Technology
George Novacek

Are you creative? Well, if you are the engineer who
has to make the decision concerning a certain design,
then you had better be. George discusses some of the
more important aspects of decision making and shows
us that, by understanding the problems and options
available, we can decrease the risk and choose the
right alternative.

Resource Links
• Obtaining CE Marking Certification for Products
• Industrial Laser Applications & Sources
Rick Prescott

Test Your EQ
8 Additional Questions

Table of Contents forJuly 2000

WWW.CIRCUITCELLAR.COM/ONLINE

Learning the Ropes
Virtex Proto Board
Ingo Cyliax

Although Ingo had originally planned to follow
up his last article about multipliers, he
ran into a little problem. OK, so it
was a big problem. But,
that’s to our
benefit.

PIC® 2000contest

Internet

Winner
s!

✯✯✯✯✯ PIC Web CAM ✯✯✯✯✯
✯✯✯✯✯ PICX-10 Web Server ✯✯✯✯✯ Web Chart Recorder
✯✯✯✯✯ IDAPIC ✯✯✯✯✯ UDP/IP Interface
✯✯✯✯✯ SLIP Server ✯✯✯✯✯ Environment Sensing

CIRCUIT CELLAR® Issue 121 August 2000 3www.circuitcellar.com

EMBEDDED PC
41 Nouveau PC

edited by Harv Weiner

43 RPC Real-Time PCs
Real-Time Executive for Multiprocessor Systems
Part 4: Debugging
Ingo Cyliax

49 APC Applied PCs
Embedded Kiosk or Mission Impossible?
Fred Eady

Simplify Your Software Testing
Jonathan Valvano

Look Ma, No PC!
A $55 Webcam
Steve Freyder, David Helland, & Bruce Lightner

Anatomy of a Compiler
A Retargetable ANSI-C compiler
Sandeep Dutta

The Joys of Writing Software
Part 1: Battle of the Bug
George Novacek

Who Needs Hardware?
Developing Without the Target
Alan Harry

Count the Digits
Designing a Frequency Meter
Tom Napier

I From the Bench
Building on Familiar Ground
Part 1: Adding Analog to the 8051 Core
Jeff Bachiochi

I Silicon Update
We Ride the Waves
Tom Cantrell

6

8

11

85

95

 96

12
20

30

36

58

68

74

78

Task Manager
Rob Walker

Coming Events

New Product News
edited by Harv Weiner

Reader I/O

Test Your EQ

Advertiser’s Index
September Preview

Priority Interrupt
Steve Ciarcia

First on the BlockISSUE
INSIDE121121

6 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

TASK MANAGER

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Rob Walker

TECHNICAL EDITORS
Jennifer Belmonte
Rachel Hill
Jennifer Huber

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Mike Baptiste Ingo Cyliax
Fred Eady George Martin
George Novacek

NEW PRODUCTS EDITORS
Harv Weiner
Rick Prescott

PROJECT EDITORS
Steve Bedford
James Soussounis
David Tweed

ASSOCIATE PUBLISHER
Joyce Keil

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

CUSTOMER SERVICE
Elaine Johnston

ART DIRECTOR
KC Zienka

GRAPHIC DESIGNERS
Melissa Clukey

Mary Turek

STAFF ENGINEERS
Jeff Bachiochi

Anthony Capasso

QUIZ MASTER
David Tweed

EDITORIAL ADVISORY BOARD
Ingo Cyliax

 Norman Jackson
David Prutchi

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

CONTACTING CIRCUIT CELLAR
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301, www.circuitcellar.com/subscribe.htm, or subscribe@circuitcellar.com
PROBLEMS: subscribe@circuitcellar.com

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) and Circuit Cellar Online are published
monthly by Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at Vernon,
CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95, Canada/Mexico $31.95, all
other countries $49.95. Two-year (24 issues) subscription rate USA and possessions $39.95, Canada/Mexico $55, all other
countries $85. All subscription orders payable in U.S. funds only via VISA, MasterCard, international postal money order, or check
drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH
03755-5650 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

ADVERTISING
ADVERTISING SALES REPRESENTATIVE

Kevin Dows Fax: (860) 871-0411
(860) 872-3064 E-mail: kevin.dows@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

ADVERTISING CLERK Sally Collins

rob.walker@circuitcellar.com

Coming Events

b elieve it or not, the summer of 2000 is coming
to a close. All in all, 2000 has turned out to be an

interesting year thus far. Most of January was spent
on sighs of relief and repeats of “I told you so.” Then

reality set in—what does one do with a six-month supply of canned meat
and bottled water? Although the media never covered it, SPAM, SPAM,
bottled water, SPAM became a frequent addition to the menu in many
households. All of that processed meat got people thinking that maybe life in
the year 2000 was going to be a lot more like life in the late 1900s after all.

So, we set about to make a year of it. Unfortunately, it was already
late spring, so we had some catching up to do. In the summer of 2000,
science and technology advanced with the mapping of the human DNA
and the US government’s release of the latest method of secure hard
drive storage. (Using the BTC [behind the copier] hard drive storage
method, you too can keep high-security files as safe and protected as
they would be at Los Alamos.)

In the theater, we’ve weathered the perfect storm, accepted another
mission impossible, and watched as one summer blockbuster after another
was gone in sixty seconds. For some quality late summer entertainment
though, pop up a bag of microwave popcorn, pour yourself a cup of ice cold
soda, and sit down with this issue of Circuit Cellar. You’ll get more than 146
minutes of entertainment for half the cost of a trip the theater—and you can
smoke, talk, or leave your cell phone turned on if you so choose.

While Tom Cruise was hanging off cliffs, turn to page 49 and you’ll find
that Fred Eady was busy hanging two touchscreens off of one embedded
computer to create an embedded kiosk application. Bruce Lightner, David
Helland, and Steve Freyder directed an impressive sequel to their “A $25
Web Server” article (Circuit Cellar Online, July, 1999) by adding a basic
digital camera to their web server to create a $55 webcam (p. 20). And, if all
this talk of fame and fortune has you thinking that you wouldn’t mind racing
through the countryside in a sporty roadster and having your name up in
lights, look across to page 7 where you’ll find the details for the latest
design contest from Circuit Cellar and Zilog.

In sports, the summer of 2000 has seen legends retire and new ones
step into the spotlight. At Pebble Beach, Tiger Woods broke a 138-year old
record and once again proved that analysts sometimes say the dumbest
things. How could Tiger be bad for the game of golf?

If the title of this editorial had you looking for all kinds of what-the-future-
holds information, obviously you didn’t learn the Y2K lesson—hype kills.
You’ll get to 2001 before you know it, and chances are, you’ll find out that
it’s quite similar to life in 2000. But, I must admit, there is one coming event
that is generating enough interest to mention.

It’s an age-old quest for glory. The dream of representing their country,
standing on the platform, and waving to the masses has kept these contes-
tants training for most of their lives. For some, it is the chance to step out of
the shadows and become number one. For others, it is an opportunity to
carry on the family name. These contestants have put away the controlled
substances and now must begin the final push.

Yeah, nothing beats the pomp and circumstance of the American presi-
dential race. Let the games begin.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of reader-
assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or from
plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to build
things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to construct or
operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction. The reader
assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2000 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar INK are registered trademarks of
Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

8 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Harv Weiner

DATA LOGGER
Designed for educational use, the DrDAQ data logger

features built-in sensors for light and temperature and a
microphone for sound. It plugs into a PC’s parallel port
for display or data gathering. Any pH probe can be used
for acid or base measurements, and fast signals can be
captured like sound waveforms. An output is available
for control experiments.

In addition, DrDAQ has two sockets for external
sensors. When a sensor is plugged in, the software de-
tects it and automatically scales readings. DrDAQ uses
power from the PC, so neither batteries nor external
power are required.

PicoScope (oscilloscope) and PicoLog (data logging)
software are supplied. PicoScope enables rapidly chang-
ing signals. PicoLog allows DrDAQ to be used as an
advanced data logger over long periods of time. Both
software products are compatible with any PC running
Windows 3.1x 95/98/2000 or NT.

DrDAQ comes with practical experiments for educa-
tional purposes. The built-in sensors enable experiments
concerning light, sound (dB level and waveforms), and
temperature to be done almost immediately. DrDAQ
also has useful outputs for controlling experiments.

DrDAQ is supplied with cables, software, documen-
tation, and example science experiments. It sells for $99.

Saelig Company
(716) 425-3753
Fax: (716) 425-3835
www.saelig.com

○

○

○

ANALOG EVALUATION SYSTEM
The MXDEV Analog Evaluation System helps

embedded designers evaluate and develop products
with Microchip analog components. It consists of a
driver board and an evaluation daughter board. The
driver board performs data acquisition and connects
to a PC for analysis and display. The daughter board
plugs into the driver board and contains the device to
be evaluated.

The driver board contains three PIC microcontroller
sockets, an LCD display, LED display socket, SRAM
for data storage, and RS-232 interface. Software, com-
plete documentation, user’s guides, and a technical
library CD-ROM are also included.

The MXDEV 1 system supports Microchip’s 10- and
12-bit analog-to-digital converters with many develop-
ment features. The tool allows single or continuous
conversions for the analog-to-digital converter being
evaluated.

Data can be acquired in real-time or acquisition
mode. Data can be displayed in real-time numeric,
stripchart, Fast Fourier Transform (FFT), Histogram,
oscilloscope plot, and data list. The FFT display allows
many window options, including Blackman, Blackman-
Harris, Hamming, Hanning, and Rectangular.

Several jumper-selectable options mean flexibility.
And, the FilterLab Active Filter Design Tool simplifies
active filter design. Available for free at Microchip’s
web site, the tool automates the anti-aliasing filter
design for an analog-to-digital, converter-based data
acquisition system.

The MXDEV 1 Analog Evaluation System costs
$169 for the driver board and $89 for the daughter
board.

Microchip Technology, Inc.
(480) 786-7668
Fax: (480) 899-9210
www.microchip.com

http://www.microchip.com

CIRCUIT CELLAR® Issue 121 August 2000 9www.circuitcellar.com

NEW PRODUCT NEWS
GPS ANTENNA

The fixed-mount GPS-FM antenna enables
the capture and deployment of synchronized
time signals for timing applications in the cellu-
lar, paging, PCS operations, and other industries.

The antenna permits GPS signals to be used
at fixed locations to establish precise time and
space references. For example, local TV station
affiliates requiring precision time signals to
trigger switches to network operations would
receive the signals from a satellite system us-
ing Hirschmann GPS antennae.

Also, the antenna can be used to locate sig-
nal sources. For example, if a caller dials 911,
analysis and interpretation of the time mea-
surement received at two cell sites may locate
the caller.

The Hirschmann GPS-FM antenna with-
stands harsh conditions. Its UV inhibited ra-
dome is sealed to provide long service in
extreme environments. The mounting bracket
is allodized to prevent corrosion and pitting.
All hardware is stainless steel.

The antenna has a 3.5-dB gain, 26-dB LNA gain,
and operates at 1575 MHz ± 4.0. VSWR is <2.0:1 and
impedance is 50 W.

Pricing for the GPS-FM antenna starts at $275.

Hirschmann of America, Inc.
(973) 830-2000 • Fax: (973) 830-1470
www.hirschmann-usa.com

http://www.hirschmann-usa.com

10 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

NEW PRODUCT NEWS
RUGGED CAPACITIVE SENSORS

The PT30 and KT34 PVDF capacitive sensors are
barrel style sensors designed for harsh chemical environ-
ments. Capacitive sensors reliably detect all metallic
and non-metallic materials, including water, metal,
wood, glass, cardboard, plastic, concrete, glue, thin wire,
silicon wafers, and others. Constructed of
polyvinylidene fluoride (PVDF), the housing, cable, cord
grip, and mounting brackets are immune to damage
from contact with most industrial chemicals.

The devices feature a potentiometer for sensitivity
adjustment. The 30-mm diameter, threaded, barrel
PT30 model provides a 10-mm
sensing range with the ability to
repeat <2% of rated operating dis-
tance, even when embedded in
steel. The 34-mm diameter, smooth
barrel, non-embedded KT34
achieves a 20-mm sensing range,
with the same repeat rating.

The sensors also feature a com-
pensation electrode that minimizes
false outputs due to contamination
on the sensor face. The compensa-
tion circuitry ignores splashing wa-

ter and dust buildup.
Both are four-wire DC, 10–65-VDC, capacitive de-

vices that include LEDs that indicate “power on” and
“output energized”. Both feature outputs (usually one
open and one closed) with either NPN (sinking) or PNP
(sourcing) configurations. They are protected against
short-circuit, overload, wire-break, reverse polarity, and
transient voltages.

Available in flush and non-flush mounting styles, the
sensors include a potted-in, 2-meter PVDF-jacketed,
PVC insulated cable with an aluminum polyester shield

and drain wire. The de-
vices operate in tempera-
tures from –25° to +70°C,
and meet NEMA 1, 3, 4, 6,
and 13 and IEC IP67 envi-
ronmental standards.

TURCK Inc.
(800) 544-7769
Fax: (612) 553-9575
www.turck.com

http://www.turck.com

CIRCUIT CELLAR® Issue 121 August 2000 11www.circuitcellar.com

READER I/O

Editor’s Note: In Brian Millier’s article “Back to the
BasicX: Part 1—NetMedia’s Development System”
(Circuit Cellar, 119) there was a mistake in the URL
listed in the Software section. The correct URL for
Brian’s site is bmillier.chem.dal.ca.

Editor’s Note: In Fred Eady’s “Picking Some
ExacTicks” article (Circuit Cellar, 119), it was not
mentioned that ExacTicks is a commercial software
library that is published by Ryle Design. For more
information on ExacTicks, contact:

Ryle Design
(517) 773-0587
www.ryledesign.com
info@ryledesign.com

THE OLD SCHOOL: CONTINUED
I have to agree with Clifford Stoll, as quoted

by Ian Jefferson in June’s Reader I/O section,
but I’d extend that to the box of parts not
containing a BIOS chip, but a simple machine
code monitor only, with the only fancy code
being something to service the keyboard and
drive the basic SVGA monitor in a straight
black and white mono mode. Having only the
monitor, the next step after a powerup would
be to start writing a BIOS for it.

Given that to do so would require a full, no
warts covered, set of specs on the actual
hardware that was used to build it.

Note that I’m not saying a bunch of school-
kids are supposed to be able to to match what
it took Award Software (now part of Phoenix
Technologies) decades to do, but if they actu-
ally get the floppy drive working, I’d say the
whole class gets an A.

That would accomplish two things. First,
they would generally have a much better
understanding of what it takes to actually
program one of these things, bringing a lot of
respect for the efforts of the folks who have
made such things as the current windoze craze
possible. The second benefit would be the
serendipity effect of having exposed those
children to the world of programming at the
“get your hands dirty” level.

I could further expound, but I think this makes
the point. Teaching a room full of kids how to
run Windows 95 is a waste of both the teachers’
time and the schools’ resources. Schools should
give children the basic tools to do the job, not
assume those tools are nothing but a pull of the
checkbook away.

Gene Heskett

?

http://www.ryledesign.com

12 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

name output next

S5 S6 S10 S9
0101 0110 1010 1001

Simplify Your
Software Testing

FEATURE
ARTICLE

Jonathan Valvano

s
The more complex
your system is, the
more complex your
software will need to
be. As Jonathan
shows, using finite
state machines can
make the whole pro-
cess of software de-
sign more efficient,
more effective, and
maybe even more fun.

uccessful engi-
neers employ

well-defined design
processes when develop-

ing complex systems. When working
within a structured framework, it’s
easier to prove the system works and
then maintain it. As software systems
become more complex, it’s increas-
ingly important to use well-defined
software design processes.

In this article, I will present finite
state machines implemented with
linked data structures that you can
use as a framework to solve embedded
applications. Finite state machines
provide an efficient, effective solution
for embedded systems where the digi-
tal outputs depend on the current and
previous digital inputs. To illustrate
the design process, I’ll present a step-
per motor controller, traffic light
controller, and a vending machine.

FINITE STATE MACHINES
Software abstraction is the process

of defining a complex problem in
terms of a set of basic abstract prin-
ciples. You have a better understand-
ing of the problem and its solution if
you can construct your software sys-
tem using abstract building blocks.

Abstraction provides for a proof of
correct function and simplifies both
extensions and customization. The

abstraction presented in this article is
the finite state machine (FSM). The
inputs, outputs, states, and state tran-
sitions are the abstract principles of
FSM development. The FSM state
graph defines the time-dependent rela-
tionship between its inputs and out-
puts. If you can map a complex
problem into an FSM model, you can
solve it with FSM software tools.

Other examples of software ab-
straction include Proportional/Inte-
gral/Derivative (PID) digital cont-
rollers, fuzzy logic digital controllers,
neural networks, and linear systems
of differential equations. In each case,
the problem is mapped into a well-
defined model with a set of abstract
yet powerful rules. Developing the
software solution is a matter of imple-
menting the model’s rules. After you
prove your software correctly solves
one FSM, you can make changes to this
FSM with confidence that the solution
correctly implements the new FSM.

The FSM controller uses a well-
defined model or framework to solve
problems. The state graph is specified
using a linked data structure. There
are three advantages of this abstrac-
tion. First, development is quick be-
cause many of the building blocks
already exist. Second, it’s easier to
debug because it separates conceptual
issues from implementation. Third,
it’s easier to change.

In this article, I’ll demonstrate how
to implement Moore FSMs, in which
the output value depends only on the
current state, and the inputs affect
state transitions. The outputs of a
Mealy FSM depend on the current
state and inputs.

LINKED DATA STRUCTURES
Linked lists are software data

structures that consist of multiple
identically-structured nodes. One or
more of the entries in the node is a
pointer, or link, to other nodes. In an

Figure 1—This stepper motor FSM has four states.
The 4-bit outputs are given in binary.

 CIRCUIT CELLAR® Issue 121 August 2000 13www.circuitcellar.com

Listing 1—This 6811 software spins a stepper motor at 200 steps per second in the clockwise direction.

/* Port B bits 3-0 are outputs to the stepper */
const struct State {
 unsigned char Out; /* stepper command */
 const struct State *next;}; /* clockwise */
typedef const struct State StateType;
#define S5 &fsm[0]
#define S6 &fsm[1]
#define S10 &fsm[2]
#define S9 &fsm[3]
StateType fsm[4]={
 { 5, S6}, /* Out=0101, Next=S6 */
 { 6,S10}, /* Out=0110, Next=S10 */
 {10, S9}, /* Out=1010, Next=S9 */
 { 9, S5}}; /* Out=1001, Next=S5 */
/* delay time is given 500ns units */
void Wait(unsigned short delay){ short Endt;
 Endt=TCNT+delay; /* TCNT at the end of delay */
 while((Endt-(short)TCNT)>0);}
void main(void){ StateType *Pt;
 PORTB=5; /* initial output */
 Pt=S5; /* initial state */
 while(1){ /* embedded systems never quit */
 Wait(10000); /* 5ms wait */
 Pt=Pt->next; /* Clockwise step */
 PORTB=Pt->Out;}} /* stepper drivers */

embedded system, you usually use
statically allocated, fixed-size linked
lists. These lists are defined at com-
pile time and exist throughout the
software’s life. The state graph is
fixed in a simple embedded system,
therefore you can store the linked
data structure in nonvolatile memory.
For complex systems in which the
control functions change dynamically,
you may implement dynamically-
allocated linked lists. These linked
lists are constructed at run time. And
note that node numbers can grow and
shrink in time.

I will use a linked structure to
define the FSM. Note that there
should be one node for each state.

STEPPER MOTOR CONTROLLER
Figure 1 shows a circular linked

graph containing the output com-
mands to control a stepper motor.
This simple FSM has no inputs, four
output bits, and four states. There is
one state for each output pattern in
the usual stepper sequence—5, 6, 10,
9…. I use the circular FSM to spin the
motor clockwise. Notice the one-to-
one correspondence between the state
graph in Figure 1 and the fsm[4] data
structure in Listing 1.

I connected four high-cur-
rent drivers to Motorola
MC68HC11’s Port B (see Figure 2).
The low-current rating of the
driver must be large enough to
energize the stepper coils. The
ULN2074 datasheet states that
its maximum ICE is 1.25 A. But,
because the ULN2074 is a
high-current Darlington
switch, its ICE will also be lim-
ited by the input base current,
which comes from the 6811’s
IOH. In this case, the IOH of the
MC68HC11A8 is 0.8 mA, so
this ULN2074 circuit can sink
up to 500 mA.

The main program (see List-
ing 1) begins by initializing the Port B
output and the state pointer. The
6811 Port B has no direction register.
Every 5 ms, the program outputs a
new stepper command. The Wait()
function uses the built-in 6811 timer
to generate an appropriate delay be-
tween outputs to the stepper.

To illustrate how easy it is to
modify this implementation, let’s con-
sider the two modifications. To make it
spin in the other direction, I change
pointers to sequence in the other direc-
tion. To implement an eight-step se-

quence (e.g., 5, 4, 6, 2, 10, 8, 9, 1…), I
add the four new states and link all
eight states in the desired sequence.

TRAFFIC LIGHT CONTROLLER
Controlling traffic is another good

example. I placed car sensors on the
north and east roads, which I simu-
lated with two switches connected to
port C of my 6811 (see Figure 3 and
Photo 1). If the digital input is a one
(high), I assumed a car was on that
road. To simulate the traffic light, I
interfaced six color LEDs to Port B.

Figure 4 shows the simple Moore
FSM that controls traffic at my intersec-
tion. The goal is to maximize traffic
flow, minimize waiting time at a red
light, and avoid accidents. For example,
if I am in state goN, I set the port B out-
put to 1000012 (green light on north and
red light on east) and then wait 30 s.

Next, I read the sensor inputs. If the
sensor value is 012 (a car has entered
the intersection on the east road, but
no car exists on the north road), I go to
state waitN (yellow light on north and
red light on east). After showing the
yellow light for 5 s on the north road,
my controller switches to state goE
(red light on north and green light on
east), regardless of the input.

The main program (see Listing 2)
begins by specifying the Port C bits 1
and 0 to be inputs. When working with
CMOS microcomputers, define un-
used I/O pins either as outputs or
specify them as inputs and tie the pin
high or low in the hardware. In this
example, I defined the unused pins

Stepper
motor

shaft

Output
port

B

B

B

B

C

C

C

C

E

E

E

E

7

2

10

15

5

4

12

13

6

3

11

14

8

1

9

16

PB2

PB3

PB1

PB0

+12

*A

A

B

*B

ULN2074

IN4003

IN4003

IN4003
MC68HC11

Figure 2—When a unipolar stepper motor is interfaced to a
Motorola MC68HC11, a high output value on Port B causes a low
voltage on the ULN2074 output, causing current to flow through the
coil. A low output value on Port B causes the ULN2074 output to
float, and no current flows through the coil.

14 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Figure 3—This simulated traffic intersection is interfaced to a Motorola MC68HC11.

Input
port

Output
port

10 kΩ +5

13

2

7

9 8

7406

MC68HC11

+5

North sensor

East sensor

+5

+5

+5

+5

+5

+5

10 kΩ

North red

East yellow

East red

North yellow

East green

North green

PC1

PB5

PC0

PB1

PB2

PB3

PB4

PB0

200 Ω

22 Ω

22 Ω

3

5

1

11

14

10

12

6

4

+5

200 Ω

200 Ω

200 Ω

200 Ω

200 Ω

PC7–PC2 as outputs. Because of the
high impedance of CMOS inputs, an
unconnected input pin may oscillate,
dissipating power unnecessarily.

The initial state is defined as goN.
My controller software first outputs
the desired light pattern to the six
LEDs, waits for the specified amount
of time, reads the sensor inputs from
Port C, then switches to the next
state depending on the input data. The
function Wait1sec() calls the
Wait() function defined in Listing 1.
To simplify, I made a one-to-one cor-
respondence between the state graph
in Figure 4 and the fsm[4] data struc-
ture in Listing 2.

Notice how this implementation
separates the civil engineering poli-
cies (FSM specifications) from the
computer engineering mechanisms
(C program specifications). After I
prove the C program is operational, I
can modify it with confidence that
the mechanisms will still work.
When an accident occurs, I’ll blame
the civil engineer who designed the
state graph.

Again, the FSM approach makes it
easy to change. To change the wait
time for a state, I simply change the
value in the data structure. To add
more complexity (e.g., put a red/red
state after each yellow state, which will
reduce accidents caused by bad drivers),
I increase the size of the fsm[] struc-

ture and define the
Out, Time, and Next
pointers for these
new states.

To add two more
output signals (walk
and left turn lights),
I use all eight bits of
the Out field. I
increase the preci-
sion of the Out field
to add more output
bits. To add two
more input lines
(wait button, left
turn car sensor), I
increase the size of
the pointer field to
Next[16].

Now, there are
16 possible combi-
nations, because

there are four input lines. Each input
possibility requires a Next state
pointer specifying where to go if this
combination occurs. In this simple
scheme, the size of the Next[] field
will be two, raised to the power of the
number of input signals.

VENDING MACHINE
 The vending machine example

demonstrates additional flexibility
that you can build into your imple-
mentations. Rather than simple digi-
tal outputs, I’ll implement general
functions for each state. I could solve
this vending machine using the ap-
proach in the previous example, but I
want to show you an alternative
mechanism to use when the output
operations become complex.

My simple vending machine has
two coin sensors, one for dimes and
one for nickels, which I will again
simulate with two switches con-
nected to 6811’s Port C (see Figure 5).
If the digital input is high, I consider
there to be a coin in the slot. When a
coin is inserted into the machine, the
sensor goes high, then low. Unfortu-
nately, when I activate or deactivate the
switch, its contacts bounce, causing
oscillations on the digital line. Even
though a real coin sensor may not
bounce, it’s useful that the simulated
machine sensors bounce, because now I
can show you how to debounce a
switch using FSM software.

/* Port C bits 1,0 are sensor inputs,
 Port B bits 5-0 are LED outputs */
const struct State {
 unsigned char Out; /* Output to Port B */
 unsigned short Time; /* Time in sec to wait */
 const struct State *Next[4];}; /* Next if in-

put=00,01,10,11*/
typedef const struct State StateType;
#define goN &fsm[0]
#define waitN &fsm[1]
#define goE &fsm[2]
#define waitE &fsm[3]
StateType fsm[4]={
 {0x21, 30,{goN,waitN,goN,waitN}}, /* goN state */
 {0x22, 5,{goE,goE,goE,goE}}, /* waitN state */
 {0x0C, 30,{goE,goE,waitE,waitE}}, /* goE state */
 {0x14, 5,{goN,goN,goN,goN}}}; /* waitE state */
void Wait1sec(unsigned short delay){ unsigned short i;
 for(i=0;i<delay;i++)
 Wait(2000);} /* 1 second wait */
void main(void){ StateType *Pt; /* Current State */
 unsigned char Input;
 DDRC=0xFC; /* Port C bits 1,0 are inputs from the

sensors */
 Pt=goN; /* Initial State */
 while(1){
 PORTB=Pt->Out; /* Perform output for this state */
 Wait1sec(Pt->Time); /* Time to wait in this state */
 Input=PORTC&0x03; /* Input=00, 01, 10, or 11 */
 Pt=Pt->Next[Input];}}/* Move to next state */

Listing 2—Here’s the 6811 C software that controls traffic in this intersection.

16 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

I assume there can’t be both a nickel
and dime simultaneously. To simulate
the soda and change dispensers, I inter-
faced two solenoids to Port B. The sole-
noids’ coil current is less than 40 mA,
so I can use the 7406 open collector
driver. If you need more coil current
(max IOL is 40 mA), you may upgrade to
a ULN2074, similar to Figure 2.

Figure 6 shows the Moore FSM
that implements my vending ma-
chine. A soda costs $0.15, and the
machine accepts nickels and dimes. I
have two input sensors that detect
nickels (bit 0) and dimes (bit 1). The
wait time in each state is 20 ms,
which is greater than the switch
bounce time but less than the time it
takes the coin to pass by the sensor.

Waiting in each state will
debounce the switch, preventing
multiple counting of a single event.
Notice that I wait in all states, be-
cause the switch bounces both on
touch and release. Each state also has
a function to execute. The function
soda will trigger the Port B output so
that a soda is dispensed. Similarly,
the function change will trigger the
Port B output so that a nickel is re-
turned. The M states refer to the
amount of collected money. When in
a W state, I have collected that much
money, but I’m still wait-
ing for the last coin to pass
the sensor.

For example, I start with
no money in state M0. If I
insert a dime, the input will
reach 102, and the state
machine will jump to state
W10. I’ll stay in state W10
until the dime passes by the
coin sensor. When the input
reaches 00, I go to state
M10. If I insert a second
dime, the input will reach

102, and the state machine will jump to
state W20. Again, I stay in state W20
until this dime passes. When the input
hits 00, I go to state M20. Then, I call
the change function and jump to state
M15. Lastly, I call the soda function
and jump back to state M0.

The main program begins by speci-
fying the Port C bits 1 and 0 to be
inputs (Listing 3). The initial state is
defined as M0. My controller software
first calls the function for this state,
waits for the specified amount of time,
reads the sensor inputs from Port C,

Photo 1—A simulated traffic intersection is built with colored LEDs and is
controlled by a Motorola MC68HC11.

Figure 4—This Moore FSM controls traffic in the
intersection. The 2-bit inputs and the 6-bit outputs are
given in binary. The wait times are given in seconds.

00,10

wait time

next if input is 01 or 11

goN
100001

waitN
100010

goE
001100

waitE
010100

30 5 30 5

10,11
00,01,

01,11
00,01

00,01,10,11

18 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

then switches to the next state depend-
ing on the input data. The Wait()
function is defined in Listing 1. Again,
note the one-to-one correspondence
between the state graph in Figure 6 and
the fsm[9] data structure in Listing 3.

SIMPLIFY, SIMPLIFY
In this article, I presented a possible

approach to solving embedded applica-
tions where digital outputs depend on
the time history of its digital inputs.
The advantage of FSM implementation

is the separation of what the controller
does (state graph) from how it is ac-
complished (C program).

You can improve these systems. If
you move the state pointer (Pt) to a
global variable, the controller soft-
ware can be executed in a periodic
interrupt handler. This way, you may
run multiple machines on the same
computer and still have the main
program free to perform other tasks.
As the number of input lines increase,
substitute functions that test for cer-
tain conditions in place of the simple
vector list used in these examples.

Early simulation will allow you to
identify critical problems and rapidly
evaluate alternative solutions. I

Figure 6—This Moore FSM implements a vending machine.

00

function

M0
20

W5
20

M5
20

W10
20

none none none none

M10
20

none

M15
20

M20
20

W20
20

soda change none

W15
20

none

10

01,10

00

01

00

01
00

00

01,10

01,10

01,10

10

00,01,10

00

00,01,10

00

wait time

10

01

Jonathan W. Valvano is a full professor
of electrical and computer engineering
at University of Texas at Austin,
where he has taught and performed
research since 1981 in the fields of
medical instrumentation and embed-
ded systems. He received his BS and
MS degrees in Electrical Engineering
and Computer Science at MIT in 1977.
He did his PhD. research in biomedi-
cal instrumentation and received his
doctorate in 1981 in Medical Engineer-
ing from the Harvard University/MIT
Health Sciences and Technology Pro-
gram. He has authored more than 60
journal articles, four book chapters,
and one textbook. You may reach him
at valvano@uts.cc.utexas.edu or visit

Input
port

Output
port

PC1

10 kΩ

PC0

PB1

PB0

dime

10 kΩ

nickel

22Ω

22Ω

+5

+5

13 12

solenoid

change

IN4003
+12

7

9 8

solenoid

soda

IN4003
+12

7406
+5

MC68HC11

Figure 5—A simulated vending machine interfaced to a
Motorola MC68HC11.

 CIRCUIT CELLAR® Issue 121 August 2000 19www.circuitcellar.com

Listing 3—Here’s the 6811 C software that implements the vending machine application.

/* Port C bits 1,0 are coin sensor inputs,
 Port B bits 1-0 are solenoid outputs */
void none(void){};
void soda(void){
 PORTB=1; /* activate soda solenoid */
 Wait(20000); /* 10 msec */
 PORTB=0;} /* deactivate solenoid */
void change(void){
 PORTB=2; /* activate change solenoid */
 Wait(20000); /* 10 msec */
 PORTB=0;} /* deactivate solenoid */
const struct State {
 void (*CmdPt)(void); /* function to execute */
 unsigned short Time; /* Time in msec to wait */
 const struct State *Next[3];}; /* Next if input=00,01,10*/
typedef const struct State StateType;
#define M0 &fsm[0]
#define W5 &fsm[1]
#define M5 &fsm[2]
#define W10 &fsm[3]
#define M10 &fsm[4]
#define W15 &fsm[5]
#define M15 &fsm[6]
#define W20 &fsm[7]
#define M20 &fsm[8]
StateType fsm[9]={
 {&none, 20,{M0,W5,W10}}, /* M0 state */
 {&none, 20,{M5,W5,W5}}, /* W5 state */
 {&none, 20,{M5,W10,W15}}, /* M5 state */
 {&none, 20,{M10,W10,W10}}, /* W10 state */
 {&none, 20,{M10,W15,W20}}, /* M10 state */
 {&none, 20,{M15,W15,W15}}, /* W15 state */
 {&soda, 20,{M0,M0,M0}}, /* M15 state */
 {&none, 20,{M20,W20,W20}}, /* W20 state */
 {&change,20,{M15,M15,M15}}}; /* M20 state */
void main(void){ StateType *Pt; /* Current State */
 unsigned char Input;
 DDRC=0xFC; /* Port C bits 1,0 are inputs from sensors */
 Pt=M0; /* Initial State */
 while(1){
 (*Pt->CmdPt)(); /* execute function */
 Wait(Pt->Time); /* Time to wait in this state */
 Input=PORTC&0x03; /* Input=00, 01, or 10 */
 Pt=Pt->Next[Input];}} /* Move to next state */

SOURCES
Interface components
BG Micro
(972) 271-9834
(800) 276-2206

RESOURCE
For more information about FSMs,
switch debouncing, interfacing, and
software development, read Em-
bedded Microcomputer Systems:
Real Time Interfacing, Jonathan W.
Valvano, Brooks-Cole Publishing,
2000. This book includes the
TExaS microcomputer simulator.

Fax: (972) 205-9417
www.bgmicro.com

LEDs and solenoids
All Electronics Corp.
(888) 826-5432
Fax: (818) 826-5432
www.allelectronics.com

6811 Adapt11 microcomputer board
Technological Arts
(416) 963-8996
(416) 963-9179
www.interlog.com/~techart

ICC11
ImageCraft Creations Inc.
(650) 493-9326
Fax: (650) 493-9329
www.imagecraft.com

his web site at www.ece.utexas.edu/
~valvano.

http://www.bgmicro.com
http://www.bgmicro.com
http://www.allelectronics.com
http://www.interlog.com/~techart
http://www.imagecraft.com

20 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Look Ma, No PC!

FEATURE
ARTICLE

i
If these guys caught
your attention with
their “$25 Web
Server” article in Cir-
cuit Cellar Online,
then you won’t want
to miss their latest
project. Read the ar-
ticle, get the materials,
build the project,
smile for the picture.
It’s that easy.

f you think that
it’s impossible to

build a full function
web camera that in-

cludes the camera, web server, net-
work interface, and software for under
$55, then keep reading!

There has been a battle brewing at
the low end of network interface prod-
ucts for embedded applications. It
seems that everyone is interested in
getting their equipment hooked up
and online as a network appliance.
Until recently this was an expensive
proposition requiring PCs, network
interface cards, HTTP server software,
and TCP/IP protocol stacks.

If you have a simple application
that would benefit from Internet ac-
cessibility, such as providing a tem-
perature reading, buying a PC and the
necessary network software for such
an application is probably out of the
question. However, cheaper alterna-
tives are available.

CHEAP WEB SERVERS
Early approaches to cutting the size

and cost of embedded network con-
trollers involved using single-board
PCs (e.g., based on the 80188 or
’386EX). These are still reasonable
solutions if your task requires a fair
amount of computational effort. How-
ever, the cost of these solutions is

generally well over $150. There are
now several special-purpose chips
that supply the network interface
protocols required to hook up your
favorite micro to the Internet.

For example, Hewlett-Packard has
the Bfoot-10501 chip. It has a serial
port to attach to your external device,
and a 10BaseT Ethernet interface to
connect everything to the ’Net. HP’s
offering includes a web server, allow-
ing a web browser to control and
monitor your device. The HP device is
relatively expensive ($240 in small
quantities), but it’s unlikely to be cost
effective until your quantities are high.

Something like the EmWare sys-
tem allows many small devices to be
connected to a serial network for the
purposes of web access. However
EmWare’s solution still requires a PC
to provide a “gateway” to your local
area network (LAN) and the Internet.

Another alternative is dial-up
Internet access. ConnectOne, Scenix,
and Epson have chips that can connect
to the Internet via a modem (or termi-
nal server). But, if you need a direct
connection to your LAN, need high-
speed access to your device, or can’t
afford modems (or terminal servers) at
both ends of your connection, these
solutions are probably unacceptable.

A more cost-effective way of pro-
viding a web-based network interface
with a direct connection to your LAN
is the PicoWeb server ($79). This is a
complete solution that provides a
TCP/IP stack, an HTTP web server,
and a 10BaseT Ethernet connection
for your device. The PicoWeb server
can stand alone as a web server with-
out the need to interface to another
microprocessor, or in many cases, to
even write software. Right out of the
box you can load your HTML code
and images, plug the device into the
LAN, and use your web browser to
display web pages from the device.

The PicoWeb project was started
by a group of friends who wanted to
settle an argument about whether or
not a single chip microprocessor could
really deliver web pages. The result
was an article demonstrating how to
build “A $25 Web Server” in Circuit
Cellar Online 1 (July, 1999) using a $6
Atmel microcontroller and a $9 PC

Steve Freyder, David Helland,
& Bruce Lightner

A $55 Webcam

 CIRCUIT CELLAR® Issue 121 August 2000 21www.circuitcellar.com

ISA-bus network card, complete with
all the necessary firmware and devel-
opment system software.

Lightner Engineering’s PicoWeb
server is a commercial product
spawned by that project. Even though
the PicoWeb’s microcontroller has
only 8 KB of program memory and
512 bytes of RAM, it effectively deliv-
ers web pages and more. A 16-KB
serial EEPROM chip adds storage for
graphic images, HTML, and CGI pro-
grams. A built-in UART and about 16
unused general-purpose digital I/O
lines provide the facilities to connect
the PicoWeb server to a wide variety
of user devices. Many project ex-
amples and the entire software devel-
opment tool set can be found at the
PicoWeb site (www.picoweb.net).

This article will show the power of
the PicoWeb server by attaching it to a
serial device (an inexpensive digital
camera) and how to program the
PicoWeb to acquire pictures from the
camera so they can be transferred to a
web browser for display. This project
will work on both the $25 “home-
grown” version of the PicoWeb server
and the commercial version.

HARDWARE DESIGN
The project demon-

strates how to make
an inexpensive, low
power, low cost web
camera with off-the-
shelf parts as shown in

Figure 1. No PC is
needed to provide the
web server functions and
Internet interface. All
functionality is provided
by a tiny 8-bit Atmel
microprocessor as part of
the PicoWeb server.

The camera used in
this project is a toy
camera sold by Mattel
as the Barbie Photo
Designer ($59) or the
Nick Click ($29) digital
camera. Which one you
choose is up to you. If
you like pink and have
money to burn, go for
the Barbie camera. If
you are cheap (like us)

and don’t mind a purple camera, buy
the Nick Click.

Both cameras are low-resolution
(160 × 120) CMOS-based color digital
cameras with RS-232 serial interfaces.
Both come with noisy software that
allows the pictures to be integrated
with Barbie or Nickelodeon cartoon
characters into a variety of output
formats. (Turn off your PC speakers if
you check out these at work!)

PICKING A CAMERA
Choosing a digital camera was

critical because of the limited code
space in the PicoWeb’s microcontrol-
ler. Remember, we are dealing with
8 KB of program memory in an Atmel
AT90S8515 microprocessor and it is
already providing support for ARP,
BOOTP, PING, UDP, TCP/IP, and
HTTP web server functions. (That’s
right, only 8 KB of flash memory and
512 bytes of RAM.) So, our require-
ments call for a simple camera inter-
face compatible with the PicoWeb’s
available message formats.

The first cameras we examined
were the many parallel port cameras
that are widely available for adding
video to your PC. At first glance,

these looked perfect: small, cheap,
simple interface, some with interface
protocol information, including driver
source code (typically Linux). How-
ever, a closer look at the available
protocols revealed that they are not
simple to handle in firmware. These
devices look more like raw video
cameras than true digital cameras
(e.g., the Quickcam by US Robotics).
The firmware must set all the camera
chip registers and make real-time
adjustments for light levels. Some
cameras require you to detect start of
frame and beginning of scan line in
the raw video stream.

We found web sites that were use-
ful in evaluating these cameras, in-
cluding “QuickCam Third-Party
Drivers” and the “CpiA Webcam
driver for Linux” (see Sources).

Another approach would have been
to utilize an NTSC video camera and
then capture the video image with a
video capture device such as Play Inc.’s
Play Snappy Video Snapshot 4.0. This
device has a parallel port interface but
the source code for the interface driv-
ers wasn’t readily available. The cost
of this route was going to be over $250
for the two devices, and multiple
power supplies would be required.

Yet another alternative is one of
the high-end digital cameras being
sold as alternatives to film cameras.
In fact, source code is available for
controlling many high-end digital
cameras, several of which deliver
JPEG images via RS-232 serial ports.

Open-source “freeware” offered by
Eugene Crosser (and Bruce Lightner)
can be used to download JPEG images
from the serial interfaces of many
Agfa, Epson, Olympus, Sanyo, and
Nikon camera models. (Full source
code is available at www.average.org/
digicam.) However, the cost of these
cameras ($300 and up) and the com-
plexity of their serial protocols elimi-
nated them from the quick, simple,
and inexpensive Webcam project we

had in mind.

CHEAP CMOS
CAMERAS

Finally, there are
several inexpensive
digital cameras on

Barbie photo designer camera

VV6301
image sensor

8-bit
microprocessor

RAM
image

storage

IR
filter Lens

Computer with
JAVA-enabled

browser

Local
Internet

connection

The Internet

CLK

SDA SCL FST

PicoWeb
server 10 BaseT Internet connection

8-bit data

RS-232 camera interface

Figure 1—A toy camera is combined with a tiny web server to give you an
inexpensive webcam that can be accessed from anywhere on the Internet.

Command Char Param Description

Set image index ‘A’ index Set current image index to one of 6 images
Take a picture ‘G’ delay Take photo and store as current image
Upload a picture ‘U’ 0 Send current image to RS-232 port

Table 1—These are the only commands we needed to turn our Mattel fun camera into a Webcam.

22 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Photo diode array

Vertical
shift

register

Digital
control
logic

CLKI

Analog
voltage

refs.

A/D converter

Image
format

Horizontal shift register

Clock
circuit

SDA

Sample and hold

SCL

CLKO
D[7:0]

QCK

FST

SIN

Figure 2—The STM VV6301 gives you everything you need to make a digital camera on one chip,
including a full-color CMOS sensor array.

the market now. These are low reso-
lution color cameras (160 × 120 pix-
els) with serial port interfaces that are
generally sold as fun cameras for chil-
dren. The manufacturers include Or-
egon Scientific (DS3838), Polaroid (FUN
320), and Mattel (Barbie Photo Designer
and Nick Click). The two cameras from
Mattel appear to have identical elec-
tronics inside. These cameras all seem
to be based on the VVL300 digital out-
put sensor from STMicroelectronics
(formerly VLSI Vision Ltd. of Scotland).

The camera chip used in the Mattel
digital cameras seems to be the
STMicroelectronics’ VV6301, a highly
integrated color camera sensor. A
block diagram of this chip is shown in
Figure 2. These chips use a CMOS
imaging device rather than the typical
charge-coupled device (CCD) sensor.
The advantage of CMOS-based sensors
is that a single silicon process can be
used to manufacture the chip and all
its ancillary logic. Therefore, most of
the elements necessary to make a
camera can be collocated on a single
die, and manufactured inexpensively.

On the other hand, CCD-based
cameras require multiple ICs and typi-
cally multiple voltages for the different
IC technologies involved. The claim is
that a single chip CMOS-based imager
has lower noise as a result of internal
parts that are in close
proximity, plus on-
board regulators that
allow operation from a
single 5-V supply. The
VV6301 sensor also
provides automatic
black level calibration
and includes a simple
2-wire I2C interface
for connection to a
microprocessor.

All you need to
make a complete cam-
era is a lens, memory
for image storage, and
a microprocessor to
provide the desired
camera functionality.
The Mattel camera
uses an Intel MCS 51
family microprocessor
and static RAM for
image storage.

One difference between a fun cam-
era and a high-end digital camera is
that the former depends on a PC to
convert the raw pixel data into some-
thing useful (e.g., a JPEG image), and
the latter does this inside the camera.
Typically, there is no image compres-
sion done in the fun cameras. You
only get uncompressed, raw image
sensor data out the serial port. As you
will see, raw pixel data needs a bit of
processing to yield an image that can
be viewed on a web page.

Mattel’s cameras send a total of
20 KB of raw pixel data per photo.
When converted into a compressed
JPEG image, this same photo is typi-
cally only one-tenth this size.

There was no question that we
couldn’t do any useful image process-
ing in the PicoWeb’s tiny micro-
controller. However, we still had a
trick up our sleeves!

PICOWEB SERVER HARDWARE
The PicoWeb server uses the

Atmel AT90S8515 microprocessor
because the architecture is quite
sophisticated for a processor of this
size and cost. All of the registers are
directly available (not mapped, as in
the 8051) and the memory address
space is linear (not segmented into
pages, as in the PIC).

The AT90S8515 is a low-power
RISC processor with 8 KB of flash
program memory, 512 bytes of
EEPROM, 512 bytes of RAM, 32 I/O
lines, and a built-in UART. With an
execution rate of one instruction per
clock and a clock rate of 8 MHz, the
AT90S8515 can drive the PicoWeb’s
10BaseT Ethernet controller’s I/O bus
at 1 MBps. The PicoWeb server in-
cludes a 16-KB serial EEPROM chip
to hold things like GIF and JPEG
images as well as things like HTML,
text files, and Java byte-codes. You
can see a photo of the commercial
version of the PicoWeb server in our
“$25 Web Server” article. The sche-
matic for this version of the PicoWeb
server can be found in Figure 3.

The PicoWeb’s Ethernet controller
is a Realtek RTL8019AS, a single chip
NE2000-compatible device with
16 KB of on-chip packet buffer RAM.
This chip only needs a transformer, a
single resistor and a few capacitors to
implement a complete 10BaseT
Ethernet network connection. The
PicoWeb’s DB-25 connector has up to
16 free general purpose digital I/O
lines, an RS-232 serial port, and an in-
circuit flash-memory programming
port. An onboard voltage regulator
accepts either AC or DC power in the
range of 7 to 25 V . Typical current

consumption is under
30 mA from the 5-V
DC supply.

An NE2000
Ethernet chip is opti-
mal because the
Atmel processor
memory is limited.
The NE2000 control-
ler has 16 KB of
onboard SRAM that
functions as a ring
buffer to allow unat-
tended reception of
back-to-back Ethernet
packets. (Because the
commercial version of
the PicoWeb server
operates the Realtek
chip in 8-bit mode, the
available buffer RAM
is reduced to 8 KB.)
The same onboard
Ethernet controller

 CIRCUIT CELLAR® Issue 121 August 2000 25www.circuitcellar.com

SRAM can be used to assemble trans-
mitted Ethernet packets. The result is
that the Atmel microcontroller’s mea-
ger 512 bytes of on-chip SRAM is not
needed to send or receive the maxi-
mum-sized 1500-byte Ethernet packets.

Connecting the camera to the Pico-
Web server is simple, as Figure 4 illus-
trates. The data connection to the
camera is a mini-stereo jack. The cable
that comes with the camera (not used
in our application) has this jack on one
end with three wires (TX, RX, GND)
that connect to a PC-compatible DE-
9S serial connector on the other end.

A 9-V battery normally powers the
camera, supplying a 5-VDC regulator
chip inside the camera. We disas-
sembled our camera and drilled a hole
to add a power plug so we could power
it off of the same unregulated 9-VDC
supply as the PicoWeb. The PicoWeb’s
unregulated DC is available on a pin
in its DB-25 connector. The camera
only draws 70 mA from this connec-
tion. (We tried powering the camera’s
logic board directly from the Pico-
Web’s regulated 5-VDC power supply,
but the camera kept warning us about
its (missing) “low” 9-V battery!)

The images stored in the camera
are located in its RAM, so removing
the battery or disconnecting the DC
cable from the PicoWeb will result in
the loss of any stored images. To keep
the camera from turning itself off to
save its (now missing) 9-V battery, we
programmed the PicoWeb to probe the
camera over the serial port, about once
per second. Modifying the standard
PicoWeb clock frequency (from 8 MHz
to 7.372 MHz) derived the 57.6 kbps
rate needed by the camera.

FIRMWARE FUNCTIONS
The basic function of the PicoWeb

server is to allow embedded applica-
tions to display their data on the
world wide web via its Ethernet con-
nection. To accomplish this, the
PicoWeb server’s standard firmware
supports a simple kernel, an optional
tiny debug monitor, a “p-code” inter-
preter, a network adapter driver, a
TCP/IP protocol stack, and an HTTP
server (i.e., web server). The network
protocols that the PicoWeb server’s
firmware supports include:

 • ARP—The PicoWeb server responds
to network ARP requests to allow
other computers to make an asso-
ciation between the PicoWeb
server’s assigned IP Address and its
unique Ethernet address.

• BOOTP—The PicoWeb’s IP address
can be assigned statically, by stor-
ing the IP address in the microcon-
troller’s flash EEPROM, or dynami-
cally, by using the BOOTP protocol.

• Ping—The PicoWeb server also re-
sponds to ICMP Echo Requests
(“ping”) to allow users to quickly
test network connectivity.

• UDP—The PicoWeb server can send
and receive UDP packets.

• TCP/IP—At the TCP/IP level, the
PicoWeb server responds to HTTP
GET requests that are addressed to
TCP port 80. The web server re-
sponds to these requests by sending

Photo 1—The web page shows a photo that was
captured by a Mattel Nick Click digital camera
attached to a PicoWeb server’s RS-232 serial port.
Raw data from the CMOS-based 164 × 120 pixel
sensor array are read into a Java applet (supplied by
the PicoWeb server) and then converted into a
viewable image. The raw pixels are in a 2 × 2 red-
green-blue-green Bayer array. The Java applet uses
nearest-neighbor bilinear interpolation to provide a
full-color image from the raw pixel array. The resulting
image is sharpened using a convolution function
before display.

26 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

ments located on the PicoWeb web
site. New debugger commands can
easily be added by the user (or deleted
to save program code space).

The Atmel AVR AT90S8515 chip
includes hardware to allow the flash
memory and EEPROM to be pro-
grammed via a 3-wire SPI interface.
This capability is used by the Pico-
Web server to download the code into
the flash memory and modify the on-
chip EEPROM (e.g., for parameter
storage). Downloading is accom-
plished by using a simple cable at-
tached to the parallel port of a PC.

The PicoWeb server has firmware
routines that allow the 16-KB serial
EEPROM to be programmed remotely
via the Ethernet interface. A utility
program is provided that allows data,
graphic images, HTML, Java applets,
and p-code routines to be loaded into
the serial EEPROM memory. The
serial EEPROM segments are trans-
ferred over the network using a TCP-
based loader program. This feature
also allows the images and p-code
routines to be updated while the
PicoWeb server is active.

SOFTWARE DESIGN
The first step in the software design

was a little reverse-engineering. First,
we analyzed the RS-232 traffic be-
tween our camera and the PC. The
transfer rate was 57.6 kbps at 8 bits
with no parity. A program was written
for a PC in Borland C to further clarify
the camera’s communication protocol.

The command format for control-
ling the camera turned out to be
simple. The commands are single

upper case characters followed by an
optional parameter. The command and
parameter characters are preceded by
an STX (0x02) and followed by an ETX
(0x03). The camera responds to each
command sequence sent to it with
either an ACK (0x06) or a NAK (0x15).
If a response to a command is war-
ranted, the response data from the
camera is preceded by an STX (0x02)
and terminated by an ETX (0x03).

The camera typically responds by
echoing the four-character command
sequence, after changing the com-
mand character to lower case and
replacing the parameter with a status/
error code. Table 1 shows the camera
commands utilized in this project.

Because we are interested in only the
first picture, we must send a command
to set the image index to zero before
taking a picture and also before upload-
ing a picture. The command sequence
to take a picture and upload it to the
serial port is shown in Table 2.

Note that the returned image data
is sent in a continuous stream with-
out any flow control. It takes about
4 s to transfer the full 20,680 bytes of
image data. This means that the
PicoWeb must receive, buffer, and
transmit data to the open TCP/IP
socket without dropping any of the
incoming 57.6 kbps characters.

A prime design goal of the
PicoWebCam was to make it work
like other web cameras. That meant
that accessing a web site (in this case
the home page of the PicoWeb server)
would simply cause a photo from the
camera to be displayed. If the
PicoWeb server is accessible from the
Internet, then photos from the camera
can be viewed from anywhere in the
world. Nothing more should be
needed to make this work than a
Barbie camera, a PicoWeb server, and
our simple cable. No gateway or
helper PC should be required to pro-
duce images. Sounds like a problem
for a $6 microcontroller with 512 bytes
of RAM! But, with a little Java applet
programming, we can cleverly push all
of the “hard stuff” onto the web
browser’s host computer.

The first step in making all this
happen is storing an HTML page in
the PicoWeb server’s serial EEPROM

Photo 3—The first image (a) shows the raw pixel data
from the camera (Bayer color pattern). This image is
processed by the PicoWebCam-supplied Java applet to
supply the “missing” pixels (b), then it is sharpened (c).
Believe it or not, when not enlarged, the sharpened
image looks better to most people.

a) b) c)

Photo 2—The Nick Click camera is powered by the same
9-V supply as the PicoWeb. Plug this into your 10BaseT
LAN and you can snap and display the photos with your
favorite web browser.

back HTML documents, text, and
images. In addition, user-supplied
firmware can make use of the
PicoWeb’s TCP/IP stack for other
purposes.

The firmware kernel in the
PicoWeb server provides all the code
necessary to implement the needed
parts of the Internet protocols listed
above. In addition, the supplied soft-
ware and firmware include tools to
assist you in developing new web
pages and adding program code to com-
municate via the external I/O devices.

The PicoWeb server allows both
JavaScript (either embedded in HTML
code or as separate files) and Java
applets (i.e., Java byte-codes) to be
stored in its serial EEPROM, along
with HTML code and images. Java and
JavaScript are potent tools that allow
software routines that would other-
wise be too large and or too complex
to be run by the Atmel microcontrol-
ler to be executed by the user’s web
browser in a transparent way.

The PicoWeb’s firmware suite
contains an optional simple, exten-
sible debugger that provides for things
such as memory dumps, SRAM, and
EEPROM memory alteration, “p-
code” and network tracing control,
and so on. Debugger commands can
be entered via the serial port, or via
the network using a web browser by
accessing a special TCP port.

The format of a debugger command
URL is http://IPaddress:911/com-
mand[[+parameter1]+parameter2].

Any results from executing a debug
command will be returned as a web
page. The supplied debugger com-
mands are described in detail in docu-

 CIRCUIT CELLAR® Issue 121 August 2000 27www.circuitcellar.com

memory. This HTML code is returned
when the PicoWeb’s home page URL
is referenced (see Photo 1). This web
page references a Java applet stored in
the PicoWeb, which will give us a
graphics window in the web page in
which we later display the photos from
the camera.

The web browser then asks the
PicoWeb to deliver the referenced Java
applet (stored as Java byte-codes). The
applet is sent back to the browser
which starts its Java interpreter and
begins executing the Java program.
The Java interpreter executing in the
browser then displays a graphics win-
dow controlled by the Java applet.

The Java applet then makes a
TCP/IP connection back to the Pico-
Web to retrieve special HTML pages
from the PicoWeb that contain em-
bedded CGI p-code routine refer-
ences. Retrieving these pages causes
the associated p-code routines to be
executed in the PicoWeb server. Ini-
tially, the PicoWeb server will be
commanded to retrieve the latest
photo from the camera. Note that
this is not a Java security violation
because a Java applet is allowed to
make network connections back to
the host computer that delivered the
applet.

In response to the request from the
Java applet, the PicoWeb server tells
the camera to stream the latest photo
over its serial port (i.e., upload com-
mand). The server sends this raw
pixel data back to the Java applet over
the open TCP/IP connection as a web
page. This takes about 4 s and is paced
by the speed of the 57.6 kbps serial
connection with the camera. One byte
of raw pixel data is sent for each pixel
in the 164 × 120 sensor array.

The Java applet running in the web
browser’s computer receives the raw
pixel data from the TCP/IP port and
then processes the raw data to turn it
into a displayable image. Next, the Java
applet displays the received image.

The Java applet then begins
“watching the mouse buttons.” Using
the mouse, users can call for a new
photo to be taken by the camera and
displayed, or they can call for the
current image to be resized or alter
the image processing options.

Figure 3—The commercial version of the $25 PicoWeb server uses a Realtek NE2000 Ethernet controller
chip instead of a PC ISA-bus NE2000 Ethernet card. Everything else remains the same.

28 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

As you see, we have the Java applet
running on the user’s web browser
doing all of the things that are diffi-
cult or impossible for the PicoWeb
server to do. As long as your web
browser has Java enabled, you will be
blissfully unaware of what is really
going on behind the scenes.

PICOWEB FIRMWARE
Very little new PicoWeb

server code was required to
implement this project.
Existing example projects
for controlling serial port
devices were used as a
starting point for this
project. These are available
at the PicoWeb web site
(www.picoweb.net/
downloads.html). All the
code for the PicoWebCam
project (p-code, HTML,
Java) is also available and
can be downloaded from
the PicoWeb site.

The only new routines
required for this project
were those needed to reset
the camera image counter,
take a new picture, and
upload the raw pixel data.
These routines each con-
sist of a few lines of
PicoWeb p-code language,
a kind of interpreted as-
sembly language for a 16-
bit virtual machine. The
p-code interpreter was
developed for the PicoWeb

server to provide program code sim-
plification and maximization of code
re-use, allow the option to execute
program code out of serial EEPROM,
and reduce program code size as com-
pared to native code.

More information about the Pico-
Web p-code interpreter and how to
write p-code for the PicoWeb server
can be found at the PicoWeb web site

in an article titled “PicoWeb P-code
Description.” The information neces-
sary to allow developers to design
their own PicoWeb projects also can
be found at the same web site in an
article titled “How to Build a
PicoWeb Project.”

JAVA APPLET
A Java applet was necessary for

this project because the image data
returned from the Barbie Photo De-
signer camera needs to be processed
before it can be displayed. The camera
does not store images in a format that
can be directly displayed by a web
browser (e.g., JPEG or GIF images).
Instead, the camera sends raw image
data to the computer in the form of a
Bayer color pattern. The Java code
causes a TCP/IP socket to be opened by
the web browser’s computer to transfer
the raw picture data from the PicoWeb
server, and then to process the data as
necessary into a viewable image.

The raw pixels from the camera
come from a 2 × 2 red-green-blue-
green Bayer array as shown in Fig-

ure 5. Each pixel in the
image sensor chip is cov-
ered by a colored filter
according to the Bayer
pattern shown. There are
two green pixels for every
red and every blue pixel.
We need to supply a red,
green, and blue pixel for
every possible pixel loca-
tion in order to derive a
real image. If we don’t do
this, we get a low-resolu-
tion greenish image, as
shown in Photo 3a. We do
this by looking at like-
colored pixels in the
neighborhood and making
an intelligent guess about
the probable color and
intensity of the light that
struck each pixel when
the photo was snapped.
(Next time you read
about the latest full-
color digital camera
with 2.1 million pixels,
remember that in some
sense, two-thirds of the
pixel data is made up!)

2

8

1

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

7

6

5

4

3

P1

DB-25P
PicoWeb data

connector

Camera battery –

Camera battery +

GND

GND

TXD

RXD

9V DC

1

2

3

P2

Stereo plug
camera data

connector

GND

+9

Figure 4—A simple 5-wire cable connects the PicoWeb server to the Mattel digital
camera. Adding a power connector to the camera’s body means the camera can be
powered from the same 9-VDC supply as the PicoWeb server.

1. Set the image index to zero:
STX + ‘A’ + 0x00 + ETX then wait for ACK followed by STX + ‘a’ + 0x00 + ETX

2. Take a picture with no timer delay:
STX + ‘G’ + 0x00 + ETX then wait for ACK followed by STX + ‘g’ + 0x00 + ETX

3. Set the image index to zero again:
STX + ‘A’ + 0x00 + ETX then wait for ACK followed by STX + ‘a’ + 0x00 + ETX

4. Upload the picture:
STX + ‘U’ + 0x00 + ETX then wait for ACK followed by the image datastream: STX + ‘u’ + N1 +

N2 + N3 + N4 + D1 + D2 + ... DN + ETX

where N1 = 164 (number of columns)
 N2 = 2 (number of black lines)
 N3 = 124 (number of visible lines)
 N4 = 16 (number of status bytes)
 D1 + D2 + ... DN are the data bytes of the image (20,680 bytes)

Table 2—This is the sequence of camera commands and responses needed to take a photo and then upload the
photo’s image data to the PicoWeb server.

 CIRCUIT CELLAR® Issue 121 August 2000 29www.circuitcellar.com

SOURCES
PicoWeb server
Lightner Engineering
www.picoweb.net

Digital camera software
QuickCam third-party drivers
www.crynwr.com/qcpc

CpiA webcam driver for Linux
 http://webcam.sourceforge.net

PhotoPC digital camera software
(open-source freeware)
www.average.org/digicam

VVL300 digital output sensor
STMicroelectronics
www.vvl.co.uk/products/
image_sensors

Java compiler
Java 2 SDK, Standard Edition Version 1
Sun Microsystems
http://java.sun.com/products/jdk/1.2/

REFERENCES
[1] T. Chen, “A Study of Spatial
Color Interpolation Algorithms
for Single-Detector Digital Cam-
eras”, www-ise.stanford.edu/
~tingchen/main.htm.

[2] B. Day and J. Knudsen, “Image
processing with Java 2D”,
JavaWorld, www.javaworld .com/
javaworld/jw-09-1998/jw-09-
media.html, September 1998.

RESOURCE
S. Freyder, D. Helland, and B.

Lightner, “A $25 Web Server”,
Circuit Cellar Online, July 1999,
www.chipcenter.com/
circuitcellar/july99/c79bl1.htm.

We have lots of pixel interpolation
algorithms to choose from, of varying
complexity, and with a wide range of
computational requirements. Our Java
applet executes a simple, fast nearest-
neighbor bilinear interpolation algo-
rithm to quickly provide a full-color
image from the raw pixel array. The
resulting image is then sharpened
using a convolution function before
display. This is something that
Mattel’s PC software does in order to
make their camera’s otherwise tiny
fuzzy photos look better. Photo 3b and
3c show an enlargement of a sample
camera image after processing by the
PicoWebCam’s Java applet.

An excellent discussion of Bayer
color pattern processing algorithms is
titled “A Study of Spatial Color Inter-
polation Algorithms for Single-Detec-
tor Digital Cameras”, by Ting Chen.
[1] The basic algorithm for the image
sharpening was inspired by an article
titled “Image Processing with Java
2D”, by Bill Day and Jonathan
Knudsen. [2] The Java compiler used
for this project was provided by Sun
Microsystems. A complete, free Java
program development kit (JAVATM 2
SDK, Standard Edition Version 1.3) is
available for downloading from Sun.

SMILE
We have established that our Pico-

WebCam can be constructed for as
little as $55 by first building our $25
web server and then connecting it to
a Nick Click digital camera. Not
surprisingly, we think that for a few

dollars more, the commercial version
of the PicoWeb server is a better way
to go. In either case, you get a com-
plete, inexpensive, standalone web
server with attached web camera, all
in a tiny package. And the best part
is no PC is required!

Clearly, the resolution of the toy
cameras we used in the project is less
than optimal for many applications.
However, there are cost-sensitive
commercial applications that could
benefit from this project (e.g., a key-
pad entry system that records photos
of all entry attempts).

The fact that the camera takes
more than 4 s to send its image data
out its serial port means that the
frame rate of our PicoWebCam is
horrible. However, it doesn’t take a
propeller head to note that the serial
port bottleneck can be removed from
the picture (no pun intended). In fact,
just like Mattel, you too can buy
CMOS imaging chips from
STMicroelectronics (STM), and for a
whole lot less than $29 each. All of
STM’s imaging chips that we looked
at have a high-speed parallel interface,
and evaluation boards sporting even
higher resolution imaging chips are
available from STM.

How about a PicoWebCam that
delivers photos at the speed of the
Ethernet! It’s all possible, and now
you’ve got all the information you
need to roll your own. I

Odd
columns

(0,2,4,6,...)

Even
rows

(1,3,5,7,...)

Odd
rows

(0,2,4,6,...)

Even
columns

(1,3,5,7,...)

Green 1

Blue

Red

Green 2

Figure 5—This is the pattern of colored filters that
covers the image sensor chip’s 160 × 120 array of light
sensors (pixels). The “missing” red, green, and blue
pixel values must be interpolated from neighboring
pixels of like color.

Steve Freyder telecommutes from his
home in La Jolla, CA for Transcore,
working on automated toll collection
systems. He lost his “real” office many
years ago by never visiting it. Steve
has been programming since he first
discovered computers in high school in
1970. You can reach him at
steve@freyder.net.

David Helland works for Science Ap-
plications International Corporation
(SAIC) in San Diego, CA, most re-
cently working on portable electronics
for military training range systems.
Dave has been building hardware and
software systems for several decades.
In his spare time Dave restores vintage
fiberglass dune buggies. You can reach
him at dhelland@worldnet.att.net.

Bruce Lightner also works from home
for Lightner Engineering in La Jolla,
CA. He too discovered computers
several decades ago and has been
building hardware and software for
them ever since. In his spare time he
likes to abuse Dave’s dune buggies.
You can reach him at
lightner@lightner.net.

You can link to the PicoWeb soft-
ware and parts list under the
�Sources and PDF� section of
this article in August�s issue of

Circuit Cellar Online.

@www.chipcenter.com

http://www.picoweb.net
http://www.crynwr.com/qcpc
http://webcam.sourceforge.net
http://www.average.org/digicam
htttp://www.vvl.co.uk/products/image_sensors
http://java.sun.com/products/jdk/1.2/

30 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Anatomy of a Compiler

FEATURE
ARTICLE

s
Wouldn’t it be great if
there was an afford-
able C compiler that
was specifically de-
signed to the needs
of 8-bit micros? Not
to worry, Sandeep ex-
plains the inner work-
ings of just such a
compiler, which hap-
pens to be quite af-
fordable—it’s free!

mall device C
compiler (SDCC)

is an open-source
optimizing C compiler

developed primarily for 8-bit MCUs.
Although there are several free C com-
pilers available to address the general-
purpose processors (GCC, LCC), there
are no free C compilers available ex-
cept SDCC that address specific needs
of 8-bit MCUs. In this article, I’ll ex-
plore SDCC and some of the special
considerations when designing a com-
piler for 8-bit MCUs.

I’ll discuss the Intel 8051 because
it’s a widely used MCU. The concepts
have been implemented in SDCC and
the source code is available under
GPL in the hope that other people
will find it useful and contribute (ei-
ther by providing feedback or making
enhancements). Several commercial
compilers implement the concepts
demonstrated here.

ADDRESS SPACES
Unlike their 32-bit brethren, most

of the 8-bits use Harvard architecture,
which means the code and data reside
in different address spaces and are
usually accessed using different in-
structions. For example, the 8051
family of controllers has three address
spaces (four if you consider the upper
128 bytes of internal RAM as a differ-

ent address space). C language allows
for storage classes, however they are
restricted to const, volatile, static,
auto, and register. Although these are
adequate for Von Neuman architec-
ture, they’re not sufficient for archi-
tectures with many address spaces.

The problem is more complex
when you consider pointers. Where
does the pointer reside? Which ad-
dress space is it pointing to? Also
consider library routines, which take
pointers as parameters. Do you need
to write library routines for all the
combinations of address spaces?

SDCC handles this problem by
adding keywords for new storage
classes. Using the 8051 as an ex-
ample, SDCC has storage class speci-
fiers for each MCU address space.
Listing 1 shows examples of declaring
variables in different address spaces.

Frequently, a variable must be
allocated at a specific/absolute ad-
dress (i.e., a memory-mapped I/O
device). Again, standard C doesn’t
provide for this, you would have to
provide a special assembler routine (or
inline assembly code). SDCC, how-
ever, provides a special keyword “at”
to specify an absolute address for a
variable. The memory-mapped I/O
device can then be accessed in an
expression using standard C syntax.

POINTERS
The same concept of storage class

extension can be used to solve the
pointer problem. Listing 2 shows
different ways to specify pointers.
This leaves the problem of library
routines, not knowing which storage
class the pointer points to at compile
time. The SDCC solution is generic 3-
byte pointers; the third (highest order)
byte contains information about the
pointed at object’s storage class.

Sandeep Dutta

A Retargetable ANSI-C Compiler

a (..) c (..)b (..)

d (..) e (..)

main ()

Figure 1—The parameter locals of functions a, b,
and c can be overlaid.

 CIRCUIT CELLAR® Issue 121 August 2000 31www.circuitcellar.com

At runtime, the compiler calls a
routine that determines the storage
class from the third byte and uses the
appropriate instruction to fetch or
store data. This technique increases
code and data size, but is a compro-
mise to allow coding general-purpose
library routines, like strcmp.

STACK
The most difficult obstacle in pro-

gramming small devices (such as the
8051) in high-level language like C is
the limited stack space available for

Listing 1—Here’s the pointer declarations with extended storage classes.

Listing 2—This sample code illustrates iCode generation and optimizations.

xdata int * p;
int gint;

/* This function does nothing useful. It is
used for the purpose of explaining iCode */

short function (data int *x)
{
short i=10; /* dead initialization eliminated */
short sum=10; /* dead initialization eliminated */
short mul;
int j ;
while (*x) *x++ = *p++;
sum =0 ;
mul =0;

/* compiler detects i,j to be induction vari-
ables */

for (i = 0, j = 10 ; i < 10 ; i++, j�) {
 sum += i;
 mul += i * 3; /* this multiplication remains */
 gint += j * 3; /* this multiplication changed to addition */
}
return sum+mul;
}

/* the following array will be declared in program memory
 MOVC instruction will be used to access this array */
 code short array_in_code[3] = {0x01,0x02,0x03};

/* The integer will be allocated in internal ram space
MOV instruction will be used access this data item */
data unsigned char in_internal_ram ;

/* this will allocated in the external RAM and MOVX will
 be used to access this data item */
xdata char array_in_external_ram[9];

/* This variable will be allocated at address 0x8000 of
the external RAM */
xdata at 0x8000 ADC_PORTA;

/* pointer in data space points to object in xdata */
xdata char * p;

/* pointer in xdata space points to object in code space */
code char * xdata p;

/* pointer in code space points to object in data space */
data char * code p;

local variables and parameter passing.
Using registers for parameter passing
lessens the problem, but you still
must allocate local variables. SDCC
solves this problem by treating pa-
rameters and local variables as static
(at the expense of re-entrancy). It goes
a step further by overlaying parameters
and local variables of leaf functions
(i.e., functions that call no other func-
tions) to the same memory region.

What if you need the re-entrancy?
You could either compile the entire
source file with the stack-auto com-

piler option (all functions in the
source file will be treated as re-en-
trant), or you can choose only specific
functions to be reentrant by using the
reentrant keyword in the function
declaration. SDCC allocates param-
eters and local variables of a reentrant
function on the stack.

The current version of the compiler
only overlays local variables and pa-
rameters of a leaf function, but this
isn’t enough in some cases. Develop-
ment is underway to do function call
tree analysis, which would allow the
compiler to overlay parameters and
local variables of functions that don’t
belong to the same call sub-tree.

Consider the call tree illustrated in
Figure 1. In this case, local variables
and parameters (auto variables) of
functions d() and e() can be overlaid
(and are by the compiler). In addition,
auto variables of functions a(), b(),
and c() can be overlaid with each
other, because they don’t call each
other and are not present in the call
trees of any of their children. This
kind of overlaying needs to be done by
the linker because the compiler has
only a partial view of the call tree.

INTERNAL DETAILS
The current version of SDCC can

generate code for Intel 8051 and Z80
MCUs. It’s easy to retarget for other 8-
bit MCUs. Let’s take a look at some of
the internals of the compiler.

Parsing involves reading the input
source file and creating an Annotated
Syntax Tree (AST). This phase also
involves propagating types (annotating
each node of the parse tree with type
information) and semantic analysis.
There are some MCU-specific parsing
rules. For example, the extended stor-
age classes are MCU specific: while
there may be an xdata storage class for
8051, there’s no such storage class for
the Z80 or Atmel AVR. SDCC allows
MCU-specific storage class extensions
to be treated as a storage class specifier
when parsing 8051 C code, but to be
treated as a C identifier when parsing
Z80 or Atmel AVR C code.

In the intermediate code generation
phase, the AST is broken into three
operand forms (iCode). These forms are
represented as doubly linked lists. iCode

32 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

is the term given to the intermediate
form generated by the compiler. Listing
3 shows examples of iCode generated for
simple C source functions.

The bulk of target-independent
optimizations is performed during
optimization. Optimizations include
constant propagation, common sub-
expression elimination, loop-invariant
code movement, strength reduction of
loop induction variables, and dead-
code elimination.

During the intermediate code gen-
eration phase, the compiler assumes
the target machine has an infinite
number of registers and generates
many temporary variables. The live
range computation determines the
lifetime of each of these compiler-
generated temporaries. iCode example
sections in Listing 3 show the live
range annotations for each operand.
Note that each iCode is assigned a
number in the order of its execution,
which compute the live ranges. The
from is the iCode number that first
defines the operand and to signifies
the iCode that uses this operand last.

Sample.c (5:1:0:0) _entry($9) :
Sample.c(5:2:1:0) proc _function [lr0:0]{function short}
Sample.c(11:3:2:0) iTemp0 [lr3:5]{_near * int}[r2] = recv
Sample.c(11:4:53:0) preHeaderLbl0($11) :
Sample.c(11:5:55:0) iTemp6 [lr5:16]{_near * int}[r0] := iTemp0

[lr3:5]{_near * int}[r2]
Sample.c(11:6:5:1) _whilecontinue_0($1) :
Sample.c(11:7:7:1) iTemp4 [lr7:8]{int}[r2 r3] = @[iTemp6

[lr5:16]{_near * int}[r0]]
Sample.c(11:8:8:1) if iTemp4 [lr7:8]{int}[r2 r3] == 0 goto

_whilebreak_0($3)
Sample.c(11:9:14:1) iTemp7 [lr9:13]{_far * int}[DPTR] := _p

[lr0:0]{_far * int}
Sample.c(11:10:15:1) _p [lr0:0]{_far * int} = _p [lr0:0]{_far *

int} + 0x2 {short}
Sample.c(11:13:18:1) iTemp10 [lr13:14]{int}[r2 r3] = @[iTemp7

[lr9:13]{_far * int}[DPTR]]
Sample.c(11:14:19:1) *(iTemp6 [lr5:16]{_near * int}[r0]) :=

iTemp10 [lr13:14]{int}[r2 r3]
Sample.c(11:15:12:1) iTemp6 [lr5:16]{_near * int}[r0] = iTemp6

[lr5:16]{_near * int}[r0] +
 0x2 {short}

Sample.c(11:16:20:1) goto _whilecontinue_0($1)
Sample.c(11:17:21:0)_whilebreak_0($3) :
Sample.c(12:18:22:0) iTemp2 [lr18:40]{short}[r2] := 0x0 {short}
Sample.c(13:19:23:0) iTemp11 [lr19:40]{short}[r3] := 0x0 {short}
Sample.c(15:20:54:0)preHeaderLbl1($13) :
Sample.c(15:21:56:0) iTemp21 [lr21:38]{short}[r4] := 0x0 {short}
Sample.c(15:22:57:0) iTemp23 [lr22:38]{int}[r5 r6] := 0xa {int}
Sample.c(15:23:58:0) iTemp17 [lr23:38]{int}[r7 r0] := 0x1e {int}
Sample.c(15:24:26:1)_forcond_0($4) :

Listing 3—This is the iCode generated for the sample code in Listing 2.

(continued)

The register allocation determines
the type and number of registers
needed by each operand. In most
MCUs, only a few registers can be
used for indirect addressing. The com-
piler tries to allocate the appropriate
register to pointer variables.

Listing 3 shows the operands anno-
tated with the registers assigned to
them. The compiler tries to keep
operands in registers. The compiler
uses several schemes to achieve this.
When the compiler runs out of regis-
ters, it checks if there are any live
operands that are not used or defined
in the current basic block being pro-
cessed. If found, it will push that
operand and use the registers in this
block. Then, the operand will be
popped at the end of the basic block.

There are other MCU-specific
considerations in this phase. Some
MCUs have an accumulator so short-
lived operands may be assigned to the
accumulator instead of a general-
purpose register.

A complete table that defines the
iCode operations supported by the
compiler is available on the Circuit

 CIRCUIT CELLAR® Issue 121 August 2000 33www.circuitcellar.com

Sample.c(15:25:27:1) iTemp13 [lr25:26]{char}[CC] = iTemp21
[lr21:38]{short}[r4] < 0xa {short}

Sample.c(15:26:28:1) if iTemp13 [lr25:26]{char}[CC] == 0 goto
_forbreak_0($7)

Sample.c(16:27:31:1) iTemp2 [lr18:40]{short}[r2] = iTemp2
[lr18:40]{short}[r2] +

 ITemp21
[lr21:38]{short}[r4]

Sample.c(17:29:33:1) iTemp15 [lr29:30]{short}[r1] = iTemp21
[lr21:38]{short}[r4] * 0x3 {short}

Sample.c(17:30:34:1) iTemp11 [lr19:40]{short}[r3] = iTemp11
[lr19:40]{short}[r3] +

 iTemp15
[lr29:30]{short}[r1]

Sample.c(18:32:36:1:1) iTemp17 [lr23:38]{int}[r7 r0]= iTemp17
[lr23:38]{int}[r7 r0]- 0x3 {short}

Sample.c(18:33:37:1) _gint [lr0:0]{int} = _gint [lr0:0]{int} +
iTemp17 [lr23:38]{int}[r7 r0]

Sample.c(15:36:42:1) iTemp21 [lr21:38]{short}[r4] = iTemp21
[lr21:38]{short}[r4] + 0x1 {short}

Sample.c(15:37:45:1) iTemp23 [lr22:38]{int}[r5 r6]= iTemp23
[lr22:38]{int}[r5 r6]- 0x1 {short}

Sample.c(19:38:47:1) goto _forcond_0($4)
Sample.c(19:39:48:0)_forbreak_0($7) :
Sample.c(20:40:49:0) iTemp24 [lr40:41]{short}[DPTR] = iTemp2

[lr18:40]{short}[r2] +
ITemp11

[lr19:40]{short}[r3]
sample.c(20:41:50:0) ret iTemp24 [lr40:41]{short}
sample.c(20:42:51:0)_return($8) :
sample.c(20:43:52:0) eproc _function [lr0:0]{ ia0 re0

rm0}{function short}

Listing 3—continued
Cellar web site. Code generation in-
volves translating these operations
into corresponding assembly code for
the processor. This seems simple, but
that’s the essence of code generation.
Some operations are generated in an
MCU-specific manner. For example,
the Z80 port doesn’t use registers to
pass parameters, so the Send and Recv
operations won’t be generated, and it
doesn’t support jumptables.

ICODE EXAMPLE
This section shows some details of

iCode. The example C code isn’t use-
ful, but it illustrates the intermediate
code generated by the compiler.
Sample.c generates the iCode se-
quence in Listing 3.

In addition to the operands, each
iCode contains information about the
file name and line it corresponds to in
the source file. The first field in the
listing should be interpreted as follows:

File name (line number: iCode Execu-
tion sequence number: ICode hash
table key: loop depth of the iCode).

 CIRCUIT CELLAR® Issue 121 August 2000 35www.circuitcellar.com

The readable form of the iCode
operation is found next. Each operand
of this triplet form can be of three
basic types—compiler generated tem-
porary, user-defined variable, or a
constant value. Note that local vari-
ables and parameters are replaced by
compiler-generated temporaries. Live
ranges are computed only for tempo-
raries. Registers are allocated for tem-
poraries only. Operands are formatted
in the following manner:

Operand name [lr live-from: live-to] {
type information} [registers allocated]

As mentioned, live ranges are com-
puted in terms of the execution se-
quence of the iCodes. For example,
the iTemp0 is a live from (i.e., first
defined with execution sequence
number 3) and is used last with num-
ber 5. For induction variables such as
iTemp21, the live range computation
extends the life from loopstart to end.

The register allocator used the live
range information to allocate regis-
ters, the same registers may be used

for different temporaries if their live
ranges don’t overlap. In addition, the
allocator takes into consideration the
type and usage of a temporary.

Some short-lived temporaries are
allocated to special registers that have
meaning to the code generator. The
code generation makes use of this
information to optimize a compare-
and-jump iCode.

Several loop optimizations are
performed by the compiler. It detects
induction variables iTemp21(i) and
iTemp23(j). And, the compiler does
selective strength reduction (i.e., the
multiplication of an induction vari-
able in line 18 [gint = j × 3] is changed
to addition, temporary iTemp17 is
allocated and assigned an initial
value, constant 3 is added for each
loop iteration). The compiler does not
change the multiplication in line 17,
however, because the processor sup-
ports an 8 × 8 bit multiplication.

Note the dead code elimination
optimization eliminated the dead
assignments in line 7 and 8 to I and
sum respectively.

READY, SET, COMPILE
You can download the compiler at

sdcc.sourceforge.net. SDCC is an
active project and, as with all GPL
software, many people contributed.
Recently, it was retargeted for
Nintendo Gameboy.

The compiler is distributed as GPL
software with the hope that you’ll find
it useful. The SDCC team believes in
continuous improvement of the soft-
ware so if you have any suggestions,
feel free to send me an e-mail. I

SOFTWARE
A complete table of the iCode
operations that are supported by
the compiler as well as an addi-
tional sample code listing are avail-
able on the Circuit Cellar web site.

Sandeep Dutta is a compiler engineer
working for WindRiver Systems Inc.
She works on the DIAB optimizing C,
C++, and Java compiler for 32-bit
processors. You can reach her at
sandeep.dutta@windriver.com.

36 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

The Joys of
Writing Software
Part 1: Battle of the Bug

r ecently, while
waiting for a

boarding call, I ob-
served a pair of high-tech

pacing workaholics. One had a cell
phone attached to his ear, and the
other wore a headset. I thought how
nice it would be if airports installed
cell phone jamming devices that are
popular in finer restaurants. To focus
on something other than their conver-
sations, I bought a computer magazine.

But this wasn’t my lucky day. I
opened to an article about Windows
2000 that stated, “The new operating
system is living up to its billing. But
even a stable system must be ex-
pected to have many bugs….” I get
emotional when it comes to shoddy
workmanship, bad engineering, and
defects, among which software bugs
undoubtedly belong.

“Bug” is not as sinister sounding as
“defect.” The software industry seems
to have convinced us that not only are
bugs necessary, if not loveable, but
that we should happily pay for their
fixes! Regardless of industry experts’
claims, a bug is a defect.

If we accept a bug as no big deal
because it can be fixed with the infa-
mous three-finger salute and the
customer’s aggravation is nothing to
worry about, the next time we may
feel free to leave a bug in an embedded

controller where it could do serious
damage. Remember the automobile
cruise controllers that caused uncon-
trolled acceleration, or the radiation
treatment machine that calculated
wrong dosages?

 For more than a decade, respon-
sible engineers have used proven soft-
ware development methods to guide
development, integration, and testing
processes to minimize defects. Today,
there is no excuse not to use these
methods. In this article, I will take you
through the widely used software stan-
dard RTCA DO-178B (see Photo 1).
Although this standard is primarily for
aircraft software, the principles are the
same for developing any software.

RTCA DO-178B
As the title “Software Consider-

ations in Airborne Systems and Equip-
ment Certification” implies, the
document addresses software certifi-
cation first and development second.
So, I’ll work backwards to identify the
development processes from the certi-
fication requirements.

Makers of safety-critical equip-
ment, medical, nuclear energy, trans-
portation, and weapons systems
quickly realized that, although soft-
ware provided unprecedented intelli-
gence, there should be a way to
control the software development
process. At that time, development
was a domain of a few avant-garde
engineers with artistic flair. This
mixture of art, black magic, late
hours, Coke, pizza, and Twinkies was
unpredictable and spelled trouble to
the conservative industrialists.

Not surprisingly, the military was
in the forefront of trying to quantify
and tame this unruly, yet useful,
bunch of creative people. The result
was MIL-STD-2167 software develop-
ment standard and several related
standards dealing with software qual-
ity assurance (SQA) and the like. En-
gineers were assured that following
the book step by step would result in
certifiable software.

However, with the rapid develop-
ment of software processes and engi-
neering tools, it was impossible to
keep the standard current. Then,
RTCA DO-178 emerged. Instead of

FEATURE
ARTICLE

George Novacek

No bugs. No ex-
cuses. The way
George sees it, the
three-finger salute
should not be consid-
ered an acceptable
fix for any software
problem. If it means
taking more time in
the test stages, so be
it. That’s why test
standards exist.

 CIRCUIT CELLAR® Issue 121 August 2000 37www.circuitcellar.com

saying, “Follow these rules and you’ll
be OK.” it said, “Here are the param-
eters you have to satisfy. Show us
how you did it and we’ll tell you if we
like it or not.” So, the creativity,
responsibility, and risk were returned
to the engineers.

Knowing the parameters, it isn’t
difficult to determine what you need
to do to satisfy them. And, you have
the freedom to set up your own pro-
cesses. Here’s the twist. DO-178B
divides software into five categories,
A through E, based on criticality. A
matrix in DO-178B shows which
documentation is required for each
category. Category E, which is the
lowest criticality, has essentially
none. Remember that DO-178B ad-
dresses software certification! The
fact that your software does not need to
be certified nor requires formal docu-
mentation doesn’t mean that the devel-
opment process can be shortchanged.

Whether you belong to a large engi-
neering organization, are an indepen-
dent contractor, or a hobbyist, you
need a robust development process.
So, delivering certifiable software is a
matter of formalizing your documen-
tation to accompany the product.
Moreover, a well-defined development
process guarantees a flawless product
on time and within budget.

The benefit is bug-free, predictable
software. No more embarrassing up-
grade patches and lame explanations.
To be sure, there is a degree of uncer-
tainty in every development.

START WITH A PLAN
When engineers succeed, it’s a re-

sult of planning. Planning makes you
understand the task, prepare, break it
into manageable pieces, then tackle it.

DO-178B identifies five plans. If
you’re developing certifiable software,
present these plans as formal docu-
ments. The same may be required in a
large organization to make sure every-
body on the team understands the job.

I advise you to put it on paper. You
won’t forget anything, and you’ll im-
press customers with your profession-
alism. You can modify the plan
quickly to fit the next projects, to
include the lessons learned, and to use
them during the projects as checklists.

CERTIFICATION
Plan for Software Aspects of Certifi-

cation (PSAC) is the first, top-level
plan that is presented to the customer
and the certification authorities before
other work has started. Some of the
data it contains is addressed in more
detail in the other plans I’ll discuss.

The PSAC should contain several
parts. First, you need a system overview,
including a short description of what the
project will do, a block diagram, and
how the functions are allocated between
hardware and software.

Also, include a software overview,
how it will be partitioned, which
resources will be shared, and what is
its safety effect. The safety effect is
the most important part, it defines
what may happen if the software fails.

Certification consideration pro-
vides the basis for the certification
level. The software criticality levels
are defined as follows:

• A—software could cause or con-
tribute to a catastrophic failure

• B—software failure could result in a
hazardous condition

• C—software failure can result in a
major failure of the system

• D—software failure may cause a
minor failure of the system

• E—no operational safety effect

An important part of this consider-
ation is fault trapping and exception
handling. Even if your software is bug
free, you must assume that it can derail
at any time in response to external
influences, for example, an ESD (elec-
trostatic discharge) to the cabinet, or in
response to alpha particles.

The software life cycle defines
development methods, programming
languages, tools, hardware, and pro-
cesses to be used during development.

A schedule is useful for the cus-
tomer and you. And, leave room for
special considerations like buying
software modules off the shelf.

PSAC is an executive summary to
communicate to the customer and, if
needed, the certification authorities.
It ensures that everybody understands
the job before it starts. It maintains
the project memory even when the
original players are no longer around.

If the customer and the authorities
agree that the criticality level is E, no
other formal documentation needs to
be produced. But, even if the customer
says there’s no certification require-
ment, it’s good practice to develop
this plan for your own records.

Ten years later you may need to
remember the basic features of the sys-
tem and other special facts. No less
important in our litigious society is your
ability to show that you took all reason-
able care while designing.

DEVELOPMENT
Now that you have a PSAC, the

Software Development Plan (SDP)
gives you a roadmap to successful
conclusion. Next, identify standards.
Are there internal or external stan-
dards you must satisfy? Do you have
copies? Do you understand them?
What are the implications?

Software lifecycle description adds
detail to the same section in the PSAC
above so it can be implemented prop-
erly. In short, it’s your plan of attack.

In the software development envi-
ronment, identify the development
hardware, software, development
platform, tools, and so on.

VERIFICATION
Before designing, think about how

you will test the software and verify
that it does its intended job. If you
don’t, you may find that some func-
tions cannot be properly tested.

So, organize first. Who will do the
testing? In a large organization, test-
ing is separate from designing. In a
small organization, especially for
critical software, you need to show
independence. That is, you can’t have
the designer test his own code.

You want to have regular peer and
customer reviews to make sure you’re
on track. Traceability matrices and
verification checklists are indispens-
able. Testing may have to be done on
the target hardware only or modules
are run on a separate platform.

Next, determine the availability of
emulators and simulators. Do you
need to verify and validate them?

Development and testing is an
iterative process. If there are different
people involved, at what point do you

38 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

tell the designer to stop debugging and
give the module to the test people?
When does it become a formal verifi-
cation for credit?

If you used partitioning, how do
you verify and prove its integrity?
What about the compiler? Don’t as-
sume compilers come without de-
fects. More often than not, the
compiler supplier won’t give you data
nor source code to alleviate your con-
cerns. You may have to spend time
testing the libraries, for example.

You also should consider future
recertification and retest. How are
you going to handle software modifi-
cations or future updates? Having a
robust development process is crucial.
Identify each module affected by even
the smallest change, then retest them.

Here are some lessons I learned.
Always investigate an unexpected
event. Second, don’t change the com-
piler version unless you want to com-
pletely retest the software. After use,
identify its version in the life cycle
documentation, store it in a vault, and
never use a different one on that code.

To maintain old software, use the
same compiler version, although you
may want to transfer it to a modern
medium. Third, in a critical applica-
tion where a dual redundant design is
used, use two different compilers.

I lived through a C compiler horror
story. During verification testing, an
engineer on my team observed a unex-
plained event, but because he couldn’t
repeat it, he wrote it off as an iso-
lated, inexplicable accident.

When we delivered the product, the
fluke occurred again. With the cus-
tomer questioning our credibility, we
needed to explain how this could
happen to certified, safety-critical
software. Eventually, after going
through the hex dump with a fine-tooth
comb, we found the culprit. Under
certain conditions, the well-known and
popular C compiler had a flaw that
caused it to drop DI (disable interrupt)
assembler instruction if it happened to
be the first line of code in the module.

The consequences of such a flaw
are obvious to anyone who has writ-
ten software. Upon discovery, the fix

was simple. We modified our software
design standards to require an NOP
instruction as the first line in every
module, starting with DI, to be com-
piled by that brand name. Now, we
never let an unexplained event go.
And of course, we test new compilers.

How do you protect yourself against
such disasters? One way is to use Ada
language, if you have $100,000 for the
development system and don’t mind
using a 32-bit processor and lots of
memory for tasks that an 8-bit proces-
sor could easily handle. Ada is the
only language for which you can buy a
validated compiler. You’re well ad-
vised to buy compilers from a repu-
table, well-established company, and
then test them (which also means
taking apart the libraries and examin-
ing the compiled hex dump line by
line). Then lock the original compilers
in a vault and make them a standard.

CONFIGURATION MANAGEMENT
Configuration or version control is

an important task that cannot be left to
chance. You want to impress your

 CIRCUIT CELLAR® Issue 121 August 2000 39www.circuitcellar.com

customer by demonstrating how seri-
ously you treat the subject. Your plan
should address several issues.

How are you going to control the
design activities? Version control? At
this point, you should design a source
code file header you may use with
every module to identify the creation
date, author, change history, and so on.

Determine how the software mod-
ules and revisions are identified. Let’s
say you’re developing a program and
you assign it part number 24000. It
has 15 modules and you call them
24001 through 24015. You need to
identify the versions with dash num-
bers, such as 24011-05. Every time the
module is modified, the dash number
is bumped up. In the end, the produc-
tion will have a configuration index to
compile the final software version,
let’s say 24000-3. The configuration
index will identify that you have to
link the following modules: 24001-1,
24002-17, 24003-13…24015-9.

I used only odd numbers for revi-
sion dash numbers because there are
avionic systems specified for left and
right hand (starboard and portboard)
application. Odd numbers tradition-
ally are used for left or both hand
systems, even numbers for right hand
systems only. However, you can
choose either.

Problem reporting and change con-
trol are other areas that require good
organization. Remember that prob-
lems may arise during testing, they
also may arise in the field. When a
new version is released for testing,

ensure that it has a version number
that no one can modify without for-
mal approval and documentation.

If a problem is found during test-
ing, a report is created; this can be on
paper or a database entry. Record the
problem, symptoms, cause, and solu-
tion for future reference. Determine if
other modules could be affected and
test them again.

Archive the life cycle environment
and data control. You want to be able
to repeat a test 10 years from now
under identical conditions. Every
piece of even a homemade test fixture
should have a number and a sketch so
that they can be maintained or repro-
duced. Before CD-ROMs, engineers
archived data on floppies. Each floppy
was produced twice, one stored on the
premises, the other off. And every two
years, the floppies were written again
to refresh the magnetic record.

No less important is application
programs storage. Many data formats
changed during the past decade, now
some of them are incompatible with
their older versions. Despite promises
of a paperless office, sometimes hav-
ing a hard copy is the only safe way.
This is the case with many EDA (en-
gineering design automation) tools.

QUALITY ASSURANCE
Often, the configuration control

and software quality assurance (SQA)
plans can be combined, because the
former identifies necessary activities,
and the latter shows how compliance
will be monitored.

QA is responsible for neither soft-
ware testing nor execution of the
identified development tasks. QA is
the industrial cop whose purpose is
auditing what’s done and verifying it’s
accomplished by the book. If you’re
working alone, it’s easiest to show
your employer’s QA that you’ll be
accountable with checklists and trace-
ability matrices. If you keep them
updated, the audits won’t be painful.

CHECKS AND BALANCES
I mentioned checklists and trace-

ability matrices several times. What
are they? The checklists help you
remember the numerous tasks to
watch during development, while

Photo 1—DO-178B is the worldwide standard for
avionic software development and certification.

40 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

providing a written record for the
customer’s auditor. Although simplis-
tic, checklists are invaluable.

For example, let’s assume you plan
to develop a home control software.
When you start, regularly check a few
things on your checklist. Have you
backed up the data? Do the module
headers indicate the necessary infor-
mation? The checklist should cover
completion of every task and subse-
quent start of the next phase.

Some of these things may appear
superfluous, especially if you are not
depending on the success of the project
for your next paycheck. But, by re-
maining disciplined, you’re saving
time for future debugging while learn-
ing to be a better programmer.

The traceability matrix enables you
to trace the specification require-
ments through the entire process, to
the source code and back. I’ll discuss
this in Part 3, when I look closer at
the design process. It’s sufficient to
understand that the traceability ma-
trix is essentially a database of re-
quirements and their implementation.

In a well-maintained matrix, you
must be able to pick a customer re-
quirement, follow it through the de-
sign process to understand its
implementation, and end up with the
source code lines that perform the
function. Similarly, picking up any
line of source code, you should be able
to trace it to the customer’s spec and
understand why it’s there. The last
step between source and executable
code traceability is not needed as long
as you pre-test your compiler.

Tracing between source and ex-
ecutable code isn’t easy today when
high-level languages are prevalent.
Most embedded software is written in
C. Assembler source code is difficult
to certify because of its low readabil-
ity. Authorities frown at it, allowing
it only in the absence of other
choices, mainly for execution speed.

Traceability matrix is a perfect tool
for proving to the customer full com-
pliance with the specification and for
verifying tests. In case of changes, it
identifies all code that will be af-
fected. Tools create and maintain the
matrix automatically. Tools also exist
for automatic version control and test

coverage determination, making the
software design a more predictable
process, without human error.

WHAT’S NEXT?
In this article, I covered the front-

end work for developing a stable,
predictable software design process.
The plans can be customized to ac-
commodate new specifications and
lessons learned. In Part 3, I’ll discuss
the design process itself.

Critics argue that this process
produces bloated, slow code, and still
is plagued with bugs. I disagree.
Likely, the code will be larger, but it
won’t be bloated. The greater memory
requirement is a small price to pay for
the structure, which will give you the
correct environment for generating
code without defects.

If your ambition doesn’t reach be-
yond writing small, single purpose,
non-critical programs, and you don’t
mind an occasional frustrating debug-
ging, you’ll be OK forgetting every-
thing you read here and sticking to
your haphazard code. But if your ambi-
tion aims higher, stay tuned! I

REFERENCES

[1] “Software Considerations In
Airborne Systems and Equip-
ment Certification”, RTCA/DO-
178B, RTCA Inc., 1140
Connecticut Ave., Washington
D.C., 1992.

[2] M. R. Lyu, Handbook of Soft-
ware Reliability Engineering,
IEEE Computer Society Press,
Los Alamitos, CA, 1995.

[3] B. Beizer, Software Testing Tech-
niques, Van Nostrand-Reinhold,
New York, 1990.

[4] A. Ralston, ed., Encyclopedia of
Computer Science and Engineer-
ing, Second Edition, Van Nostrand
Reinhold Co., New York, 1983.

George Novacek has 30 years of
experience in circuit design and em-
bedded controllers. He currently is
the general manager of Messier-
Dowty Electronics, a division of
Messier-Dowty International, the
world’s largest manufacturer of land-
ing-gear systems. You may reach him
at gnovacek@nexicom.net.

CIRCUIT CELLAR® Issue 121 August 2000 41www.circuitcellar.com

Edited by Harv WeinerNOUVEAUPC
486DX PC/104 PLUS MODULE

The CPU-1410 is an embedded 486
AT computer in a PC/104-plus form
factor. The board is PC/104-plus com-
pliant and can be expanded with other
PC/104 or PC/104-plus modules.
High-integration enables the board to

be used as an SBC in embedded
applications such as industrial
terminals and automobile naviga-
tion devices.

The module integrates a 486DX-
75/100-MHz CPU with 32
MB of DRAM. Interfaces
include two serial ports,
parallel port (with an op-
tional floppy disk control-
ler), IDE, SVGA, PAL/
NTSC TV-OUT, three
timers, and a keyboard
port. Other onboard func-
tions include an SSD
socket with up to 144 MB
of solid state disk space,
watchdog timer, and real-
time clock.

The BIOS is in a flash
EPROM and is onboard
programmable. Setup pa-

CELERON ATX MOTHERBOARD

The ATX-C440 is an industrial-grade motherboard
that supports an Intel Celeron microprocessor. It’s a
standard ATX motherboard designed for OEMs in the
industrial and embedded markets. The ATX-C440
will be available for up to five years with consistent
form and features.

Based on the Intel 440BX chipset, ATX-C440 sup-
ports socketed Celeron processors to 500 MHz,
with a 66-MHz bus, and up to 256 MB of
SDRAM. The motherboard conforms to the ATX
form factor and has one 16-bit ISA slot, three 32-
bit PCI slots, and one 2X AGP slot. It has a
SoundBlaster Pro-compatible 15-W-per-channel
PCI sound system, two USB ports with keyboard
support, two serial ports (optional RS-232 with
RS-485), one enhanced parallel port, a dual floppy
port, and two independent Ultra DMA-33 EIDE
ports.

Features include a watchdog timer, serial
EEPROM for storing configuration data, battery
monitor circuit, industrial grade latching connec-
tors, AC-power failure detection via NMI, flash
memory disk support, static RAM support, and a
BIOS you can customize.

rameters also are saved in flash
memory, allowing the module to
operate without a battery. The
flash BIOS can store 1 MB, 128 Kb
of which is used for the BIOS and
its extensions. The remainder can
be used as a read-only disk and to
store the operating system, user
programs, and data.

The CPU-1410 supports all
operating systems available for
standard PC platforms, including:
DOS, ROMDOS, Windows 3.11,
95, 98, 2000 and NT, Linux, as
well as real-time operating sys-
tems like QNX, pSOS, PharLap,
VxWork, WinCE, and RTLinux.

Eurotech S.p.a.
+39-0433-486258
Fax : +39-0433-486263
www.eurotech.it

The ATX-C440 with 400-MHz Celeron CPU is avail-
able for $420 in quantities of 100.

Adastra Systems
(510) 732-6900
Fax: (510) 732-7655
www.adastra.com

http://www.eurotech.it
http://www.adastra.com

42 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

NOUVEAUPC
PC/104 HIGH-DENSITY DIGITAL I/O MODULE

The DIO96-104 provides 96 TTL/CMOS compatible digital I/O channels arranged as four 24-bit groups. Each
group is divided into three 8-bit ports and controlled by a separate 82C55A peripheral interface chip. This chip
offers flexible configurations including software programmable port directions and strobed I/O handshaking. Pull-
up and pull-down resistors are absent, so the user’s circuitry dictates how each channel will be handled during
reset and input modes.

External devices connect to the DIO96-104 through four identical, 26-pin IDC, flat-ribbon headers that include
access to the host’s 5 V and GND for powering
external circuitry. All channels default to high-
impedance inputs during system reset. The DIO96-
104 occupies 16 consecutive locations within the
host computer’s I/O map, and the starting address
is jumper selectable for any value between 0X000
and 0x3f0. The module conforms to the PC/104
(IEEE-996) standard and operates on a single 5-V
power supply.

A standard J1/P1 stack-through connector al-
lows the DIO96-104 to reside anywhere within an
8-bit PC/104 stack. Adding an optional J2/P2 con-
nector provides 16-bit stack-through compatibility.

The DIO96-104 costs $119 in quantities of 100.

Scidyne
(781) 293-3059
Fax: (781) 293-4034
www.scidyne.com

SBC WITH TV OUTPUT
The PCM-5822 is a half-size single

board computer that features a TV-out
function, new switching power regula-
tor, and low-power NS GXMLV-200/
2.2-V processor. Other onboard features
include audio interface and controller,
CompactFlash card socket, watchdog

timer, 10/100 Base-T Ethernet,
and support for VGA/LCD and
LVDS (low-voltage differential
signal).

Because the CPU is mounted
directly on the board, there is
no need to set jumpers for
speed or voltage differences.
The CPU works in environ-
ments up to 60°C without a
fan. For convenience, all cables
connect to the front panel. AV
and S-Video connectors are also
provided on the front panel.

The compact unit fits in the
space of a 3.5″ HDD and ac-
commodates ISA-bus expansion
with an onboard PC/104 con-
nector. The unit provides a TV-
out function in NTSC and PAL
formats. The AWARD BIOS has
256 KB of flash memory, and
there is one 144-pin SO-DIMM

socket that accepts up to 128
MB of SDRAM. An Enhanced
IDE HDD interface supports up
to two enhanced IDE devices.
Two floppy disk drives are also
supported.

I/O consists of one parallel
port, RS-232, RS-232/422/485
serial port, infrared port, two
USB connectors, and connectors
for keyboard and PS/2 mouse.
The unit’s power management
is APM 1.1 compliant, and a
104-pin, 16-bit PC/104 module
connector is included.

Pricing for the PCM-5822
starts at $392.

Advantech Technologies, Inc.
(949) 789-7178
Fax: (949) 789-7179
www.advantech.com/epc

http://www.scidyne.com
http://www.advantech.com/epc

 CIRCUIT CELLAR® Issue 121 August 2000 43www.circuitcellar.com

EPC
REAL-TIME PCs

Ingo Cyliax

Real-Time Executive for
Multiprocessor Systems

It’s time to wrap up
this series on
RTEMS, so Ingo
shows us what it
takes to debug an
RTEMS application.
Working with the
run-time debugging
environment and
the GNU debugger
makes the process
even easier.

Part 4: Debugging

f or the last few
months, I have

been exploring
RTEMS, an open-source

licensed real-time environment from
OAR Corporation. RTEMS runs on a
multitude of architectures and plat-
forms and implements a TCP/IP proto-
col stack and an embedded web server.

RTEMS also includes a run-time
debugging environment that can be
used with the GNU Debugger (GDB).
This setup lets you debug multi-
tasking applications under RTEMS
from a remote host.

GNU DEBUGGER
Let’s start with GDB. GDB is a

source-level debugger that is available
under the GNU license. It can be

downloaded from the ’Net and is
bundled with most Linux distribu-
tions. With GDB, you can either start
applications or debug already running
applications by attaching to them.
You can also do post-mortem analysis
of crashed programs or systems.

GDB can be built for various 32-bit
processor architectures. For this kind
of project, however, you typically
need to get the source code from one
of the GNU code repositories (e.g.,
gnu.prep.ai.mit.edu) and compile it for
your specific cross target. GDB will
run on most Unix and Unix-like oper-
ating systems. It even runs under
Windows, using the Cygwin environ-
ment from Cygnus, which is now part
of RedHat. Cygwin is a run-time envi-
ronment that allows you to port and
run Unix- and Linux-type applications
under 32-bit Windows.

GDB also supports various loader
and symbol table formats such as
Coff, a.out, and ELF. It uses the
GNU binutil package, the same
library that the GNU C compiler and
linker (as well as various other GNU
tools) use to access and manipulate
object files and libraries. By using the
binutils library, it’s fairly easy to
add a new object file format if you
have all of the information.

One of the best features of GDB is
its remote debugger interface. If you
are debugging native applications in a
Unix or Linux environment, GDB
uses the ptrace() system call. With
ptrace(), a process can attach to
another process and perform func-
tions including reading and writing
memory registers, starting and stop-
ping the process, setting breakpoints,
and tracing and receiving signals.

Photo 1—GDB is a
command line-based
source-level debugger.
Command line-based
editors work well in
situations where you
may only have a simple
terminal interface.

44 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

to_open()

to_close()

to_attach()

to_detach()

to_resume()

to_wait()

to_fetch_registers()

to_store_registers()

to_prepare_to_store()

to_xfer_memory()

to_insert_breakpoint()

to_remove_breakpoint()

to_terminal_init()

to_terminal_inferior()

to_terminal_ours_for_output()

to_terminal_ours()

to_terminal_info()

to_kill()

to_load()

to_lookup_symbol()

to_create_inferior()

to_mourn_inferior()

to_can_run()

to_notice_signals()

to_thread_alive()

to_stop()

Listing 1—Here is the list of functions to implement a remote debugger in GDB. There are basic debugging
functions like register, memory, and symbol table interfaces, but GDB can support multiple tasks in a target.

/* Data for GET_TEXT_DATA */

struct get_text_data_in {

 int pid; /*process/actor id if non-zero */

 string actorName<16>; /*actor name for system mode */

};

struct get_text_data_out {

 int result;

 int errNo;

 u_long textStart;

 u_long textSize;

 u_long dataStart;

 u_long dataSize;

};

 /* Data for GET_SIGNAL_NAMES */

struct one_signal {

 u_int number;

 string name<>;

};

Listing 2—Here is a short section of the RPC descriptions file for rdbg, a remote network debugger imple-
mentation for RTEMS. It’s meant to give you the flavor of the C-like syntax used.

(continued)

 GDB’s remote debugging environ-
ment provides an application pro-
gramming interface (API) for targets
that mimic the functionality of the
ptrace calls. For example, you can
implement routines that will read
registers from a debug target. Listing 1
shows all of the functions that the
API supports.

 A traditional way to use this API
is to write a protocol module that
understands how to talk to a ROM-
level debugger via a serial link. In
this case, you implement smaller
functions, like read and write
memory and registers by talking to
the ROM debugger over the serial
link. Several ROM debugger proto-
cols have already been implemented
in the GDB tool set. These are auto-
matically included, if appropriate, for
a particular target architecture.

 GDB also provides a generic re-
mote protocol module. This module
implements a generic debugging pro-
tocol and is included in all implemen-
tation of GDB. It can be run through
serial links or network connections.
GBD also includes a sample remote
client module that can be used to
remotely debug a Unix application
program. This module can be adapted
to run in an embedded client as well.

 The remote debugger interface is
useful for interfacing with applications
on a variety of targets. However, it is
also easy to implement simulators to
architectures. In this case, the target
protocol module is an interface to an
instruction-based simulator for the
target architecture. Several simulators
exist in the default GDB tool sources.

 Add to this the fact that GDB will
run on many popular host environ-
ments like Solaris, Linux, or even
Windows (using Cygwin), and the
source code is available for the
debugger and existing protocol mod-
ules, and you have the recipe for a
popular debugging environment.
Photo 1 shows GDB running in a text
window, and Photo 2 shows GDB run-
ning in a simple X Window interface.

As it stands, GDB can be used to
debug embedded systems using the
remote debugger interface and a
ROM-based debugger, such as those
available in an evaluation module. On

 CIRCUIT CELLAR® Issue 121 August 2000 45www.circuitcellar.com

typedef one_signal all_signals<>;

struct get_signal_names_out {

 all_signals signals;

};

% /* now define the actual calls we support */

program REMOTEDEB {

 version REMOTEVERS {

 /* open a connection to server or router */

 open_out

 OPEN_CONNEX(open_in) = 1;

 /* send a signal to a process */

 signal_out

 SEND_SIGNAL(signal_in) = 2;

 /* all routines below require a connection first */

 /* close the connection to the server */

 void

 CLOSE_CONNEX(close_in) = 10;

 /* process ptrace request */

 ptrace_out

 PTRACE(ptrace_in) = 11;

 /* poll for status of process */

 wait_out

 WAIT_INFO(wait_in) = 13;

 get_signal_names_out

 GET_SIGNAL_NAMES(void) = 17;

 } = 2; /* now version 2 */

} = 0x20000fff;

Listing 2—continued

some platforms, you can even use on-
chip debuggers like BDM for Motorola
processors.

Background Debug Mode (BDM) is
a hardware debugger that is included
on many Motorola 32-bit processors,
such as MC683xx and ColdFire (see
articles by Craig Haller and myself
about BDM in Circuit Cellar 89). A
bit serial interface on the chip can
access registers and memory and vari-
ous break- and tracepoints. With GDB
and a BDM-to-serial interface, GDB
can be used to download and debug
programs on these processors.

However, I have been looking at
running RTEMS on the standard Intel
PC/AT platform, which doesn’t come
with a standard ROM-based debugger.
Here, I can use the RTEMS debugger
server (rdbg) module that comes
with RTEMS. Let’s look at this envi-
ronment in more detail.

 RTEMS DEBUGGER SERVER
The clever folks at Cannon Re-

search Center France have imple-
mented a Sun RPC-based debugger
module for RTEMS. Sun RPC is a
remote procedure call protocol devel-

oped by Sun Microsystems. It can be
run on top of UDP, which is nice if
you want to build small protocol
stacks. Sun RPC is freely available
and has been implemented on many
operating systems.

Sun RPC applications are built by
specifying data types and procedure
interfaces that will be used by a client
program to communicate with a
server program. In this case, the GDB
is the client and the server is the
module that lives in RTEMS.

A program (rpcgen) is then used
to compile the description into two C
modules. One is for the client pro-
gram and the other is for the server
application. The client application
simply calls the routines, which are
then encoded to be sent over the net-
work and executed in the correspond-
ing function in the server.

So why use this? The designers
figure that because Sun RPC is stan-
dard and public, it is a good way to
specify a network protocol. The de-
signers also have had experience with
VRTX and Chorus, which are commer-
cial RTOSs. These also use a Sun RPC-
based debugger interface with GDB.

By implementing a network-
based remote debugging environ-
ment, it is possible to get good
throughput when transferring
memory and register contents be-
tween the application and debugger.
Another advantage to network-
based debugging comes when you’re
developing multiprocessor systems.
It’s fairly simple to switch the con-
text of GDB from debugging one
application on one processor to
another (no serial cables to switch
from one board to another). You can
even do this on shared memory
multiprocessors by implementing
Sun RPC through shared memory
message passing.

Let’s take a look at the rdbg mod-
ule. rdbg is implemented as a library
that is linked to your application. In
this case, all you do is call the func-
tion rtems_rdbg_initialize
(void) from your application pro-
gram and it installs itself. Also, you
need to initialize the network mod-
ule, which I ran through in last
month’s installment.

46 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

/* Init GDB glue */

 if(BSPConsolePort != BSP_UART_COM2)

 {

 /*

 * If com2 is not used as console use it for

 * debugging

 */

 i386_stub_glue_init(BSP_UART_COM2);

 }

 else

 {

 /* Otherwise use com1 */

 i386_stub_glue_init(BSP_UART_COM1);

 }

 /* Init GDB stub itself */

 set_debug_traps();

 /*

 * Init GDB break in capability,

 * has to be called after

 * set_debug_traps

 */

 i386_stub_glue_init_breakin();

 /* Put breakpoint in */

 breakpoint();

Listing 3—Here’s the code for initializing serial port-based GDB support. It senses which serial port is used
for the console and uses the first available serial port for the debugger port. You then simply connect your
target and host via a null-modem cable, and voilà!

Table 1—These are the basic GDB commands. GDB also has an interactive help facility and a powerful macro
language to define your own commands.

break [file:]function Set a breakpoint at function (in file)

run [arglist] Start your program (with arglist, if specified)

bt Backtrace: display the program stack

print expr Display the value of an expression

c Continue running your program (after stopping at a breakpoint, etc.)

next Execute next program line (after stopping); step over any function

calls in the line

step Execute next program line (after stopping); step into any function

calls in the line

help [name] Show information about GDB command name, or general informa-

tion about using GDB

quit Exit from GDB

When rtems_rdbg_initialize()
is called, rdbg creates a couple of
sockets and starts a RPC UDP server.
This server simply waits for RPCs
from the client using the server mod-
ule created by rpcgen and processes
them. The rest of the module deals
with implementing the RPC calls.
This involves translating exceptions,
such as breakpoint, and dividing by
zero to signals, which is what GDB
likes to deal with.

Clearly, dealing with processor
exception involves some architec-
ture-dependent code in the rdbg
module. So far, these routines have
been implemented for PowerPC and
i386 targets.

NO WORKIE...
I was eager to give this a try. Mov-

ing on, I built the rdbg target libraries
by specifying enable-rdbg in the
configuration command line. Refer-
ring to the previous articles, remem-
ber that RTEMs uses the GNU auto
configuration scheme. You call a
configuration script that dynamically
configures software for your specific
environment.

Configure uses command line
options to override default choices.
This might include the location
where you want the application in-
stalled and the type of board support
package (BSP) to build the system
(pc386). By default, rdbg support is
off so I had to reconfigure the system
with rdbg support turned on.

I then recompiled one of the demo
programs from last month by adding
the rtems_rdbg_init() call right
after the init call to the network
protocol stack. The programs compiled
and linked fine, so I copied it to the
boot disk to run. The debugger did not
interfere with the normal operation of
the application, as you would expect.

However, there was one gotcha—I
didn’t have a GDB with the Sun RPC
calls enabled and I couldn’t figure out
how to rebuild GDB to include the
calls. It seemed there was some unex-
plained magic in the document that
comes with the system. I did spend
some time figuring out that I didn’t
have the support in the GDB I down-
loaded as a pre-built application from

OAR’s web site. Then I tried to figure
out how to get it. I finally ran out of
time. At this point, I had to punt and
come up with a different way of doing
my debugging.

 In a way, writing for Circuit Cellar
is much like doing consulting work.
There is an exact deadline (i.e., the

article is due!) and all of the work
needs to be completed and written on
time, or else it won’t make it into the
next issue.

 When I was scouring through the
sources trying to figure out how to
make the RPC-based debugger work, I
did find that the pc386 BSP supports

48 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

REFERENCES
M.K. Johnson and E.W. Troan,

Linux Application Develop-
ment, Addison-Wesley, Reading,
MA, 1998.

R. Stallman, Debugging with GDB
Version 4.17.

Ingo Cyliax is the Sr. Hardware
Engineer at Derivation Systems Inc.
(DSI) where he designs and builds
embedded systems and hardware
components. DSI is the leader in
formally synthesized FPGA cores and
specializes in embedded Java technol-
ogy. Ingo has been writing on various
topics ranging from real-time operat-
ing systems to nuts-and-bolts hard-
ware issues for several years.

SOURCE
OAR Corporation
(256) 722-9985
Fax: (256) 722-0985
www.oarcorp.com

Photo 2—Several GUIs exist for GDB to make it easier to use than the
command line version. The sample that you see here is a simple X
Window interface (xxgdb).

the standard GDB serial-based debugger
protocol. It’s a bit more involved because
you have to add the code in Listing 3 to
the program.

The code in Listing 3 figures out
which serial port to use, employing
the first one available—COM2 if the
console is on VGA/KBD, and COM1
if the system console is already on
COM2. With a null-modem cable,
the target then can be debugged by a
host running an i386-aware GDB
debugger using the standard GDN
remote debugger interface.

On the host, you start up GDB with
the executable image to read the symbol
table and then point the debugger to the
serial port where it will communicate
with the remote debugger stub running
on the target:

% i396-rtems-gdb �nx o-opti-
mize/netdemo.exe ... set
remotebaud 38400 target
remote /dev/ttyS1 ...

After everything is up and run-
ning, you can perform a variety of
tasks. Table 1 gives you a brief sum-
mary of the commands that are avail-
able in GDB.

Although using the
serial-based debugger ap-
proach isn’t as neat as the
network-based debugger,
at least now I have it
working. Also, going
through the exercise of
trying to get the network-
based debugger to work
brings a few points to
light. For instance, beta
software usually lacks
some of the finer points in
the documentation. You
shouldn’t wait until the
last minute to muck with
new software. Also, hav-
ing source code is nice
because you can figure out
how things really work,
rather then relying on
documentation. Finally, I
don’t need to tell you, but
it’s always good to have a
backup plan.

 Thanks to Emmanuel
Raguet and Eric Valette of

Canon Research Center in France S.A.
I do plan to revisit the network-based
remote debugger, perhaps when
RTEMS version 4.5.0 is released. I

htttp://www.oarcorp.com

 CIRCUIT CELLAR® Issue 121 August 2000 49www.circuitcellar.com

EPC
Applied PCs

Fred Eady

Embedded Kiosk or
Mission Impossible?

This project began
as a challenge that
even Fred couldn’t
resist (er, avoid).
Hidden keyboards,
limited access, mul-
tiple screens—the
mission had the
trimmings of a certi-
fied goose chase.
The Florida-room
clock was ticking….

f you’ve ever
worked in the

commercial sector,
you know that the mar-

keting folks dictate the direction of
the product line. If you are a design
engineer in the commercial world,
you also know that sometimes the
engineering requests made by the
marketeers (not to be confused with
mouseketeers) can be a little out
there. In this article, I’m going to show
you one time when the
marketing department
was absolutely right.

Have you ever been
walking through a mall
or airport and reached
into your pocket, only to
pull out a couple of pen-
nies and a quarter? It’s
rather difficult to buy a
soda or go to a movie for
$0.27 these days. And, if
you’ve just gotten off a
flight and your car is
parked in the airport pay-
to-park lot that doesn’t
take credit cards, you’ve
just extended your trip
and may be walking a bit
further than you
planned. Hopefully, in
either situation, you
have your trusty ATM
card in the other pocket.

A few keystrokes later, you are sol-
vent and can afford to get your car out
of hock or see “Godzilla vs. Mothra”
with a soda and popcorn.

What if you get off that plane in a
foreign city and rent a car to travel to
your final destination? It would be
nice to know how to get there,
wouldn’t it? Again, a few keystrokes
at the rental counter and, lo and be-
hold, a map instantly appears.

I see your lips moving. You’re mut-
tering, “Okay, Fred, what does using
your ATM card have to do with gener-
ating a map at the rental car counter?”
The answer is that in both scenarios,
the user was bailed out of a bad situa-
tion by a kiosk-like device.

Although you may not equate
kiosks with ATMs or map generators,
in a basic sense, all of these devices
are kiosks in one form or another. The
typical kiosk is simply a window into
a database. For instance, today’s
ATMs allow you to get just about any
information you desire about your
account status. Where is this account
status? It’s in the bank’s database.
The same goes for the generated map
at the rental counter. Database here,
database there.

Not all kiosks are created equal.
Some kiosks have mutated to accom-
modate web browsing. And, instead of

i

Photo 1—This is a busy window. Note the lean towards Bill’s Internet Explorer.

50 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Photo 2—A Glyph is actually a file name and path pointing to a button graphic.

Photo 3—This screen is a product of URL filtering. If the URL is not on
the list, you can’t get there from here.

NetShift. “If you can’t
get that to work, write
your own code.”

I could hear that mu-
sic from “Mission Impos-
sible” as I accepted the
kiosk mission from hell.
The problem is, if I fail, I
don’t think anybody’s
going to disavow any of
my actions. Let’s just
hope that this project
doesn’t self-destruct in
five seconds.

The idea of two kiosk
screens is a clever idea.
The customer wants to
have a public kiosk in
the main area of their
business and another in
the employee break
room. Not only does
having two kiosks on a
single embedded com-

puter save money on hardware, the
second employee-only kiosk saves
administrative time by allowing em-
ployees to query human resource
databases from the kiosk station’s
employee-only screen. Instead of go-
ing to the main office to get a copy of
a W-2, the employee could call it up
at the kiosk site and print it there.
Need a dental form? Get it at work
from the employee kiosk. Want to
change your 401K options? Use the
company kiosk and intranet, and do
it yourself. Sometimes those guys
and gals in the marketing department
use their heads for something other
than the perfect hairstyle.

getting data from a remote database,
some kiosks are now collecting data
to be added to a database. In fact, it
has been determined that a public
kiosk that is located on business pre-
mises can be used later to sample and
rate the success or failure of that
business’s products and services. This
is similar to the suggestion cards you
see in restaurants.

People love to push buttons on
machines. The kiosk feeds on this.
While you’re having fun punching
buttons, your answers or suggestions
are being logged to spot trends that
could lead to increased sales volumes
or higher customer loyalty.

MR. PHELPS
I think you know where

I’m headed on this. This
time around, I’ll be embed-
ding a kiosk solution.
However, the marketing
department has made a
“request.” I’ve got to run
not one, but two screens.
Unfortunately, it’s not as
easy as it sounds. I’ve got
to do this with not two,
but one embedded com-
puter. And, by the way,
I’m using some software
from an outfit called

 CIRCUIT CELLAR® Issue 121 August 2000 51www.circuitcellar.com

Listing 1—No kidding. This is all there is to it!

� MODULE .BAS CODE BEGINS HERE

Public Type STARTUPINFO
 cb As Long
 lpReserved As String
 lpDesktop As String
 lpTitle As String
 dwX As Long
 dwY As Long
 dwXSize As Long
 dwYSize As Long
 dwXCountChars As Long
 dwYCountChars As Long
 dwFillAttribute As Long
 dwFlags As Long
 wShowWindow As Integer
 cbReserved2 As Integer
 lpReserved2 As Long
 hStdInput As Long
 hStdOutput As Long
 hStdError As Long
End Type
Public Type PROCESS_INFORMATION
 hProcess As Long
 hThread As Long
 dwProcessId As Long
 dwThreadId As Long
End Type
Public Declare Function CreateProcessA Lib �kernel32� (ByVal

lpApplicationName As Long, ByVal lpCommandLine As String, ByVal
lpProcessAttributes As Long, ByVal lpThreadAttributes As Long,
ByVal bInheritHandles As Long, ByVal dwCreationFlags As Long,
ByVal lpEnvironment As Long, ByVal lpCurrentDirectory As Long,
lpStartupInfo As STARTUPINFO, lpProcessInformation As
PROCESS_INFORMATION) As Long

Public Declare Function PostThreadMessage Lib �user32� Alias
�PostThreadMessageA� (ByVal idThread As Long, ByVal msg As Long,
ByVal wParam As Long, ByVal lParam As Long) As Long

Public Declare Function RegisterWindowMessage Lib �user32�
Alias �RegisterWindowMessageA� (ByVal lpString As String) As Long

Public Declare Function WaitForInputIdle Lib �user32� (ByVal
hProcess As Long, ByVal dwMilliseconds As Long) As Long

Public NameOfProc As PROCESS_INFORMATION
Public NameStart As STARTUPINFO

� Dimension variables for Keyon message registration

Public WM_KEYON_CLOSE As Long
Public WM_KEYON_HIDE As Long
Public WM_KEYON_LEFT As Long
Public WM_KEYON_MAX As Long
Public WM_KEYON_MIN As Long
Public WM_KEYON_NOTOP As Long
Public WM_KEYON_ONTOP As Long
Public WM_KEYON_SHOW As Long
Public WM_KEYON_TOP As Long

� Const for priority of Keyon Engine process

Public Const NORMAL_PRIORITY_CLASS = &H20

� Define constants for registering Keyon messages. These
� could be literals in the code as well.

Public Const KEYON_HIDE As String = �KEYON HIDE�
Public Const KEYON_SHOW As String = �KEYON SHOW�
Public Const KEYON_MIN As String = �KEYON MIN�
Public Const KEYON_MAX As String = �KEYON MAX�
Public Const KEYON_ONTOP As String = �KEYON ONTOP�

(continued)

52 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

NETSHIFT
By the way, because this project is

experimental, it may not work. Mar-
keting has mandated that I use the
eval copies of NetShift and its utili-
ties. I’m sinking in quicksand already.

The first task is to find an evalua-
tion copy of NetShift. But, at this
point, I don’t even know what
NetShift is. Off to the ’Net.

It seems logical enough to try
www.netshift.com in my search pro-
cess, right? Bingo…the NetShift

homepage. The first buttons I see are
Introduction and Downloads. Not
only can I get “edumacated” (that’s
Southern for “familiar with”), I can
get my evaluation copy of the soft-
ware, too.

As it turns out, NetShift is a dedi-
cated kiosk program that runs under
Bill’s Win98 and WinNT. For security
reasons, the NetShift software liter-
ally takes over the computer. This
means that the average user can’t
hack his or her way into the kiosk and

damage any underlying computing
infrastructure back at the home office.
NetShift allows the kiosk user to e-
mail and even print when the kiosk
application requires it. Of course, this
is all done via touchscreen.

Putting together a good-looking
kiosk with NetShift is easy. The
NetShift evaluation package comes
with a setup manager program (see
Photo 1). As you see, there’s a tab for
every function that NetShift can per-
form. Keep in mind that this is the
development stage and some of the
options you see in the Preferences
window will not be employed in the
final kiosk design. For instance, “Exit
via keyboard button or clock” will not
be allowed in the final instance of
NetShift.

Under the Interface Editor tab is
where the kiosk rubber meets the
road. This window allows the kiosk
designer to lay out the basic frame-
work of how the kiosk will look and
act as far as the user is concerned. As
you see in Photo 2, the NetShift kiosk
screen is composed of four outer
frames that contain the buttons and
banners. Clicking on the “Cst 1”
button reveals the properties that can
be modified to make the button
unique. I named it CCINK and bla-
tantly set the URL to the Circuit Cel-
lar web site. Notice at the top of
Photo 2 that the information I am enter-
ing is kept in a NetShift.ini file.

After saving the information into
the startup configuration NetShift
.ini file, I clicked on the new
CCINK button, only to be denied!
Imagine the dismay of the Circuit
Cellar webmaster, having to explain
the contents of Photo 3 to staffers.

The good news is that Circuit
Cellar’s web site is operating fine. By
design, it’s NetShift that is throwing a
wrench into the works. Do you see an
entry for Circuit Cellar’s web site in
Photo 4? I didn’t think so. After add-
ing the site to the allowed viewing list
and attempting to click on CCINK
once more, Steve and company finally
showed up (see Photo 5).

At this point, note that Photo 5
gives you a good look at NetShift. To
affect a final kiosk design, the de-
signer needs to put together some

 CIRCUIT CELLAR® Issue 121 August 2000 53www.circuitcellar.com

Listing 1—continued

Public Const KEYON_NOTOP As String = �KEYON NOTOP�
Public Const KEYON_CLOSE As String = �KEYON CLOSE�
Public Const KEYON_LEFT As String = �KEYON LEFT�
Public Const KEYON_TOP As String = �KEYON TOP�

� The API�s are functions, so we need a variable to check
� the return code

Public RC As Long

� EXECUTABLE CODE BEGINS HERE
Dim kbflag As Boolean

Function RegisterKeyonMessages()
WM_KEYON_HIDE = RegisterWindowMessage(KEYON_HIDE)
WM_KEYON_SHOW = RegisterWindowMessage(KEYON_SHOW)
WM_KEYON_MIN = RegisterWindowMessage(KEYON_MIN)
WM_KEYON_MAX = RegisterWindowMessage(KEYON_MAX)
WM_KEYON_ONTOP = RegisterWindowMessage(KEYON_ONTOP)
WM_KEYON_NOTOP = RegisterWindowMessage(KEYON_NOTOP)
WM_KEYON_CLOSE = RegisterWindowMessage(KEYON_CLOSE)
WM_KEYON_LEFT = RegisterWindowMessage(KEYON_LEFT)
WM_KEYON_TOP = RegisterWindowMessage(KEYON_TOP)
End Function

Private Sub btnback_Click()
On Error Resume Next
WebBrowser1.GoBack
End Sub

Private Sub Form_Load() (continued)

fancy bit-mapped buttons and graphics
to place into the four areas of the
finished NetShift kiosk display.

LOOKS ARE DECEIVING
No one’s denying that NetShift is a

neat site, but I’ve got to run two in-
stances of it to satisfy the marketing
reps. To prove the concept, I got on the
web and ordered a Matrox G200 Multi-
Monitor card. Then, from the Florida-
room lab, I pulled out a Pentium-based
desktop and a couple of MicroTouch-
enabled touchscreen monitors.

As you know, Win98 supports two
monitors. Although WinNT does not
do this natively, the Matrox driver
coaxes NT into that position. WinNT
is a consideration as far as security
and OS flexibility are concerned, but I
won’t use it in the design phase.
There are a couple of ways to control
the dual-monitor configuration under
Win98. Of course, the Matrox way is
to use their dual-headed card, the
G200. Another route would be to use
the host computer’s onboard video
hardware and an additional SVGA

54 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Listing 1—Continued

On Error Resume Next
btnshkybd.Caption = �SHOW KEYBOARD�
kbflag = False

RegisterKeyonMessages

WebBrowser1.Navigate2 �http://www.circuitcellar.com�
DoEvents
End Sub
Private Sub btnshkybd_Click()
Select Case btnshkybd.Caption
 Case �SHOW KEYBOARD�
 NameStart.cb = Len(NameStart)
 RC = CreateProcessA(0&, �C:\Keyon\Keyon.exe�, 0&, 0&,

1&, NORMAL_PRIORITY_CLASS, 0&, 0&, NameStart, NameOfProc)
 RC = WaitForInputIdle(NameOfProc.hProcess, 5000&)
 RC = PostThreadMessage(NameOfProc.dwThreadId,

WM_KEYON_TOP, 0, 320)
 RC = PostThreadMessage(NameOfProc.dwThreadId,

WM_KEYON_LEFT, 0, 825)
 kbflag = True
 Case �HIDE KEYBOARD�
 RC = PostThreadMessage(NameOfProc.dwThreadId,

WM_KEYON_CLOSE, 0, 0)
 RC = WaitForInputIdle(NameOfProc.hProcess, 5000&)
 kbflag = False

End Select

 If kbflag = True Then
 btnshkybd.Caption = �HIDE KEYBOARD�
 Else
 btnshkybd.Caption = �SHOW KEYBOARD�
 End If
End Sub

Listing 2—If you have VB6, break out the API Text Viewer and note the differences in the
CreateProcessA function declarations.

KEYON HIDE
KEYON SHOW
KEYON MIN
KEYON MAX
KEYON ONTOP
KEYON NOTOP
KEYON CLOSE
KEYON LEFT
KEYON TOP

card or I could try two SVGA cards if
the host system board does not con-
tain its own SVGA hardware.

I tried all three methods. The
cleanest method is to use the Matrox
card. In fact, stacking dual-headed
Matrox cards allows twice as many
monitors as the number of cards you
can stuff into your computer. We
only need two, thank you.

Win98 was loaded with the Matrox
drivers and card. I then attached the
touchscreens, fired up the whole
thing, and kicked off NetShift. The
NetShift program opened and quickly
placed itself in the first touchscreen.
Touchscreen 2 did nothing, so it was
time to do some digging.

After careful investigation and lots
of web browsing, I decided that I
needed to expand the screen size.
NetShift recommends 800 × 600. Ex-
perimenting with WinNT and the
Matrox card, I remembered seeing a
good graphic depiction of how the
screens logically looked to NT. This
graphic is not present in Win98 and is
part of the Matrox WinNT utility set I
loaded with the drivers.

To make this work, think of the
two touchscreens set up side by side
as one large touchscreen of 1600 × 600.
Touchscreen 1 is 800 × 600. Touch-
screen 2 starts at 800 through 1600
horizontally. With that knowledge, I
put some quick and dirty VB code
together to see if I could place an
application in the Touchscreen 2 area.
Attempted and achieved! Now the
only thing left to do is put NetShift in
both touchscreen areas. But alas, Net-
Shift only runs in Touchscreen 1
space. To add insult to injury, only
one NetShift instance can be initiated.
To the phone….

There I met with another gotcha.
NetShift is headquartered in the UK.
So, instead of calling, I proceeded to
the support e-mail. I must admit I did
get a fast response from their techni-
cal desk, yet with a very short an-
swer—no. To be exact, “No, Fred, you
can’t run two instances of NetShift.
That defeats the purpose of a kiosk
and has potential security problems as
well.” You all know me, so in charac-
teristic form, I pleaded my case over a
total of four e-mails. The answer to

the third e-mail gave me the impres-
sion that this was of interest to the
NetShift troop and they may indeed
help me along. Wrong impression. In
the fourth e-mail they said no again,
this time a little more emphatically.
Most of the great inventors of our
time were doled out their share of
negativity, but went on to eventual
fame and international fortune. I too
must persevere.

A TWO-HEADED MONSTER
Part of the mission was, “If you

can’t get it to work, write your own
code.” Well, it’s crunch time. I need a

web browser solution that I can run
multiple instances of in the Touch-
screen 1 and 2 space. I need a flexible
multi-instance solution, because at
this point I don’t know if NetShift
will coexist with other applications.

Fortunately, Internet Explorer is a
component of Visual Basic 6.0. Put-
ting together a web browser is as easy
as the code you see in webbrowser1.
Navigate �http://www.circuit
cellar.com. That’s all there is to it.
In the VB6 IDE, you simply expand
the form, load the Microsoft Internet
Controls component, place the
browser component on the form, and

 CIRCUIT CELLAR® Issue 121 August 2000 55www.circuitcellar.com

Photo 4—From the looks of this list, there’s not much outside NetShift
stuff that this kiosk is going to show you.

size it to run the one line of code. And
so, a web browser is born. All that’s
left is to put some buttons on the
form to allow the user to go back,
forward, up, and down.

Visual Basic’s IDE also includes a
virtual display to allow you to adjust
your form position visually on the
screen. There is a problem in that VB
doesn’t know about two monitors side
by side. I took a chance and placed my
Touchscreen 2 form to the outside and
right of the virtual monitor. Some-
times even a blind hog finds an acorn.

It worked perfectly. I then fired up
a NetShift session on Touchscreen 1
and my homebrew web browser on
Touchscreen 2. Then I successfully
browsed two different web sites on
the two touchscreens.

So far, I can put the second home-
made browser in Touchscreen 2 space
and run the NetShift product in
Touchscreen 1 space. The kiosk can
talk to us, but you also need to talk
back. You can’t use traditional key-
boards and mice in this case because
you would have to place a guard and a

technician at the kiosk
to keep the equipment
onsite and operational.
You must find and
employ a data entry
solution that takes
advantage of the
touchscreen.

Fortunately, the
NetShift kiosk product
includes a built-in
touchscreen keyboard
that can be hidden
when not in use. That’s
great for the NetShift
touchscreen window,
but how do I put a
touch keyboard to-
gether for the home-
brew web browser side
of the equation?

My first thought was
to roll my own in VB.
After the first few key
definitions, I realized I
would collect retirement before I
could get this to not only work, but
look good.

I noticed a separate keyboard offer-
ing from NetShift in my travels on
their web site. KEYON is the

56 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Photo 5—This kiosk is now aimed at one of the best sites on the web.

touchscreen keyboard engine
that is in place on the Net-
Shift kiosk product. I down-
loaded the evaluation copy
and discovered that I could
customize the touchscreen
keyboard using their key-
board manager. I could also
control the visibility and
location of the keyboard
from a VB program. Yes!
That “Mission Impossible”
music started again, but this
time Mr. Phelps was in con-
trol. The solution is to com-
bine the VB web browser and
the KEYON control code for
the kiosk solution on Touch-
screen 2. Listing 1 shows the code
that put the kiosk solution into opera-
tion. Mission continues with impossi-
bility diminished.

With all of the software and video
driver and hardware technical details
worked out, you’d think that things
would go smoothly. Well, not quite. I
worked with the least complicated
KEYON solution most of the day. I

didn’t want to write any complex code
and assumed that the KEYON manager
program would do what I needed. As it
turns out, I couldn’t hide the keyboard
or consistently place the keyboard in
Touchscreen 2 space, so I thought I’d
better refer to the KEYON document.

In reading the KEYON technical
documentation, I came across some
Windows code specifically tailored to

control the KEYON key-
board engine using VB. I
would like to thank and
spotlight Palmer King of
Piquing Futures, Inc. in
Safety Harbor, Florida. He
is responsible for the
KEYON VB code in the
KEYON doc. Basically,
Palmer has the KEYON
developer copy some types,
functions, and declarations
from the API Text Viewer
Database that comes with
VB6 into a VB.bas module.
Then the KEYON messages
are defined and registered.
The messages are com-

mands for the KEYON keyboard en-
gine. They include those shown in
Listing 2.

These commands are just what we
need to make our homebrew side of
the kiosk look slick. All of this API
activity is documented in Listing 2. I
called Palmer to talk to him about
this and his words were, “I had this
thing working in about 15 minutes.”
After speaking to him and going over
his code description, I had this thing
working in about 30 minutes.

Why did it take me so long? Well,
Palmer’s declaration of the function
CreateProcessA is correct. The
same function copied from the API
Text Viewer database didn’t work.
Looking closely at both, the differ-
ences were in the variable-type defini-
tions. To make a long story short, VB
picked the API Text Viewer function
declaration code out as a compiler
error and Palmer’s documented code
works. The fruits of my labor,
KEYON and a homebrew browser, are
shown in Photo 6.

JUST ONE MORE THING
Life is good on the dual-headed

kiosk front. But, this is all running on
a desktop! Problem number one is
that the Matrox video card is PCI-
based. In fact, the two-SVGA card
solution is PCI-based also. I need a
PCI-based embedded hardware solu-
tion to finalize the design.

I was a little concerned until I
contacted Advantech, where I found a
PCI backplane, the PCA-6104P4. This

 CIRCUIT CELLAR® Issue 121 August 2000 57www.circuitcellar.com

SOURCES
Setup Manager V4.52
NetShift Software, Ltd.
+44 (0) 1672 511 094
+44 (0) 1672 511 078
www.netshift.com

G200 Multi-monitor card
Matrox Electronic Systems, Ltd.
(514) 685-7230
Fax: (514) 685-2853
www.matrox.com

Touchscreen modules
MicroTouch Systems, Inc.
(978) 659-9000
Fax: (978) 659-9100
www.microtouch.com

PCA-6104P4, PCI-6771
Advantech Co., Ltd.
(949) 789-7178
Fax: (949) 789-7179
www.advantech.com

Fred Eady has more than 20 years of
experience as a systems engineer. He
has worked with computers and com-
munication systems large and small,

Photo 6—All that’s left to do
is add some fancy navigation
buttons. Ignore the cursor you
see on the “8” key. It won’t be
there in the final production
version.

backplane allows me to use either an
ATX or AT power supply and provides
me with four PCI slots. Where there’s
PCI backplanes, there must be PCI
embedded computers. Sure enough I
plugged Advantech’s PCI-6771 into
the Matrox G200 video card next.

Other than the fact that I need PCI
capability for the video solution, the
advantage of using the PCI bus stan-
dard is the higher performance of
32 bits at 33 MHz compared to the
ISA buses’ standard 8/16 bits at 8
MHz. And, if I need to expand beyond
the resources offered by the PCI-6771,
I could do so easily with off-the-shelf
PCI expansion cards.

The PCI-6771 supports Socket 370
for Intel Celeron Pentium III proces-
sors, topping out with the 500-MHz
part. Although it won’t be used in this
solution, the PCI-6771 employs a
Trident Cyber 9525DVD controller
that supports up to 1024 × 768 resolu-
tion. The MicroTouch-enabled
touchscreens require a serial port to
enable the input function. The PCI-
6771 comes standard with two serial
ports—one RS-232 and one RS-232/
422/485. That covers the touchscreens.

Right now, the customer is in the
midst of installing a nationwide
intranet. So, the first kiosks may have
to use DUN (Dial-up Networking).
Because there are only two native serial
ports, I’ll temporarily plug a PCI serial
card into the mix. When the intranet is
installed, the PCI-6771 sports a 10/100
Mbps Ethernet interface that will be
used to tie back to the home office and
the serial card can be removed.

So, the next time you’re in the air-
port or the mall and see a screen beck-
oning to be touched, indulge it because
now you know that kiosks aren’t com-
plicated. They’re embedded. I

simple and complex. His forte is em-
bedded-systems design and commu-
nications. Fred may be reached at
fred@edtp.com.

http://www.netshift.com
http://www.matrox.com
http://www.microtouch.com
http://www.advantech.com

58 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Who Needs Hardware?

FEATURE
ARTICLE

w
If you’re a software
designer, you know
what it’s like to have
your hands tied while
you wait for hardware
to arrive. Alan steps
into the Virtual Work-
shop to demonstrate
how you can continue
development and
testing even without
the target hardware.

hen developing
a product, the

ability to design soft-
ware without waiting

for the hardware can significantly
reduce the time to market. In “Devel-
oping a Virtual Hardware Device”
(Circuit Cellar 64), Michael Smith
outlines how time is spent developing
software. [1] He allots 215% for
“Waiting for Hardware.” Depending on
the project, there are times when even
215% would be an underestimation.

This article discusses how it’s
possible to develop and debug a com-
plete embedded program for the 8051
microcontroller, or a variant, without
target hardware. The benefits
extend beyond time to market
to encompass the complete
software life cycle.

For example, Crossware
developed a medical product
that uses high-power lasers to
treat skin, so FDA guidelines
were followed. Development
was completed in four
months. The software was
developed and verified almost
entirely using simulation.

The software was ready
before the hardware and pro-
totypes were given to the
client while testing on en-
hancements continued.

Consider another example. A few
years ago, Crossware developed an
instrument that measures the slope and
height of a flowing liquid (see Photo 1).
It uses three lasers and three position-
sensitive detectors, which measure the
displacement of the reflected beams.

The instrument is positioned above
the liquid. Mounted on a frame that is
not necessarily horizontal, the instru-
ment must know its exact orientation so
it can compensate for its tilt. Two ce-
ramic tilt sensors were embedded inside
the instrument, solving the problem.

The liquid’s height is displayed on
a graphic LCD and an image of a
bubble is used to indicate the two-axis
slope. The operator adjusts the screws
supporting the tank that contains the
liquid until the bubble is in the center
of a circle printed on the display and
the height offset is zero.

The software development wasn’t
easy. In order to move the bubble
around without delay, six images
were created, and the correct one was
placed at the correct location by ma-
nipulating the graphics origin. The
only guide was what could or could
not be seen on the display.

Before testing other features, the
final board was needed. And, prior to
full testing, the complete mechanical
unit had to be finished. By then, cli-
ents were waiting.

To provide an example for develop-
ment tool users, the company re-
cently revisited this project and
determined how it would develop the
software today.

Alan Harry

Developing Without the Target

Photo 1—The Optical Tilt Sensor measures the slope and height of
a flowing liquid’s surface. Embedded tilt sensors allow the instrument
to monitor its own orientation in space.

 CIRCUIT CELLAR® Issue 121 August 2000 59www.circuitcellar.com

COMPLETE SYSTEM SIMULATION
The Crossware 8051 Virtual Work-

shop simulates the 8051 instruction
set, timer/counters, UART, inter-
rupts, and it can be extended. The
extension interface originally was
implemented to allow rapid additional
support for 8051 variants.

#define P2 0XA0
#define P3 0XB0

#define KEY1PIN 0X02 // P2.1
#define KEY2PIN 0X04 // P2.2
#define KEY3PIN 0X08 // P2.3

void CExtensionState::GetPortPins(BYTE nPortAddress, BYTE* pnPins, BYTE*
pnHandledPins, BOOL bSimulating)
{
switch (nPortAddress)
{

case P2:
if (m_pKeys->IsKey1Pressed()) // interrogate the dialog box
{

*pnPins &= ~KEY1PIN; // clear pin
*pnHandledPins |= KEY1PIN; // pin handled

}
 else

{
*pnPins |= KEY1PIN; // set pin
*pnHandledPins |= KEY1PIN; // pin handled

}
if (m_pKeys->IsKey2Pressed()) // interrogate the dialog box
{

 // clear appropriate pin and trigger EX0 with a falling edge
*pnPins &= ~KEY2PIN; // clear pin
*pnHandledPins |= KEY2PIN; // pin handled

}
else
{

*pnPins |= KEY2PIN; // set pin
*pnHandledPins |= KEY2PIN; // pin handled

}
if (m_pKeys->IsKey3Pressed()) // interrogate the dialog box
{

*pnPins &= ~KEY3PIN; // clear pin
*pnHandledPins |= KEY3PIN; // pin handled

}
else
{

*pnPins |= KEY3PIN; // set pin
*pnHandledPins |= KEY3PIN; // pin handled

}
break;

case P3:
 // trigger an interrupt if any key is pressed
 if (m_pKeys->IsKey1Pressed() || m_pKeys->IsKey2Pressed() || m_pKeys-
>IsKey3Pressed())
 {

// P3.2 goes low for external interrupt 0
*pnPins &= ~0X04; // clear P3.2
*pnHandledPins |= 0X04; // P3.2 handled

}
else
{

// P3.2 high
*pnPins |= 0X04; // set P3.2
*pnHandledPins |= 0X04; // P3.2 handled

}
break;

 }
}

Listing 1—Virtual Workshop detects a falling edge on a port pin and generates an interrupt if appropriate.

Extensions are DLLs, which sup-
port some or all of the interface calls.
An extension has a special file name
so Virtual Workshop will recognize it.
The interface is a set of C function
calls, thus, any DLL written in C can
be an extension. However, for its own
extensions, Crossware creates a

CExtensionState C++ object and im-
mediately converts the C call into a
CExtensionState function call.

By writing the DLL in a particular
way and using Microsoft Visual C++
to build it, you can create an exten-
sion that integrates seamlessly with
Virtual Workshop. You can add dialog
boxes, windows, and menu items
using the Microsoft graphical editor
and Class Wizard. Virtual Workshop’s
Capture State command can be
supported, allowing the target system
to be captured and restored later.

 Any number of extensions can be
added. Virtual Workshop looks for
esim0.dll, esim1.dll, esim2.dll,
and so on, and loads when it finds
them. This means an extension can be
developed for a particular peripheral.
The extension may be used again if
the same peripheral is being used in a
different target system.

Virtual Workshop sends calls to
each extension, which handles the
ones it chooses. And, extensions can
communicate with each other (named
pipes make it easy to demonstrate the
communication between extensions).

VIRTUAL SPIRIT LEVEL
Let’s discuss the simulation of a

complete sub-set of Crossware’s mea-
surement instrument. Lasers and the
position-sensitive detectors are ig-
nored in this example. The display,
A/D converter, tilt sensors, battery,
and keyswitches are simulated to
create a virtual electronic spirit level.

When finished, the component
programs work together as a set, as
shown in Figure 1. I’ll briefly describe
the components before covering the
target board-specific extensions.

The Embedded Development Stu-
dio (estudio.exe) is the environ-
ment that provides project manage-
ment and editing facilities, and allows
you to compile and assemble your
source code. When you select 8051 as
the target microcontroller, it loads
and initializes the 8051 Virtual Work-
shop (sim.dll).

A lot of interaction occurs between
the Embedded Development Studio and
Virtual Workshop. The former informs
the latter about the target program and
source level breakpoints. Virtual Work-

60 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

estudio.exe
Embedded

development
studio

esim.dll
DS2250

Variant support

sim.dll
8051

Virtual
workshop

Simulating
8051

program

esim1.dll
LTC1290

A/D converter

esim2.dll
Varitronix graphic

LCD module

esim3.dll
Three

keyswitches

esim0.dll
Tilt sensors
and battery

mfc42.dll
Microsoft

foundation
classes

Three named pipes

void _interrupt IVN_INTERRUPT0 _using 1 KeyPress()
{
 unsigned char i;
 unsigned char nKeyPressed;
 unsigned char nKeyMask;
 unsigned char nKeyMaskCheck;
 _ie0 = 0; // clear the interrupt flag
 nKeyMask = _p2; // read port 2
 ResetWatchDog();
 for (i = 0; i < 10; i++); // delay

// read port 2 a second time to debounce
the keys

 nKeyMaskCheck = _p2;
 if (nKeyMask == nKeyMaskCheck)
 {

// The same data was read both times,
// so assume valid keypress

 switch (nKeyMask)
 {
 case 253: // 11111101
 KeyOneResponse();
 break;
 case 251: // 11111011
 KeyTwoResponse();
 break;
 case 247: // 11110111
 KeyThreeResponse();
 break;
 }
 }
}

Listing 2—Here’s the 8051 program interrupt function that reads the keyswitches. The developer can set
breakpoints and single step through interrupt routines.

Figure 1—When the
virtual electronic spirit
level is running, the four
custom DLLs (esim0.dll,
esim1.dll, esim2.dll, and
esim3.dll) will integrate
with the rest of the
Crossware development
environment.

shop places addi-
tional windows,
menus, and
toolbars in the
Embedded Devel-
opment Studio
environment.

When the 8051 program is ready to
run, the user selects an appropriate
command, such as Go or StepInto,
and Virtual Workshop starts its func-
tions. First, Virtual Workshop asks
the Embedded Development Studio
where it should look for extensions
and then loads and initializes them.
After that, Virtual Workshop loads
the 8051 program and begins simulat-

ing it instruction by instruction. At
this point, all DLLs are running and
receiving calls from Virtual Workshop.

Extension esim.dll provides sup-
port for extra features presented by
Dallas Semiconductor’s DS2250. Fea-
tures include a watchdog timer, addi-
tional interrupts, banked RAM, and
such. The extras are part of the Vir-
tual Workshop package and are auto-

 CIRCUIT CELLAR® Issue 121 August 2000 61www.circuitcellar.com

BOOL CExtensionState::SetXDataMemory(int nAddress, BYTE nValue, BOOL
bSimulating)

{
 if (m_bChipEnabled && nAddress >= 0X8000)
 {
 if (m_bCommandMode)
 {

// program is writing a command byte
 m_nCommand = nValue;
 HandleCommand();
 }
 else
 {

// program is writing a data byte
 if (m_bDataAutoWrite)
 {

// place the byte in memory and increment the memory
pointer

 m_Memory[m_nAddressPointer++] = nValue;
 if (g_pDisplayDlg)
 {

// show the updated memory pointer in the dialog box
 g_pDisplayDlg->SetAddressPointer(m_nAddressPointer);
 }
 }
 else
 {

// keep track of the lst two data bytes for use
// by the next command

 m_nData[1] = m_nData[0];
 m_nData[0] = nValue;
 }
 }
 m_nBusy = 4; // time 4 micro-second busy period

// tell the Virtual Workshop that this extension has
// handled SetXDataMemory by returning TRUE

 return TRUE;
 }
 return FALSE;
}

Listing 3—With the graphic LCD extension, you simply write to an external address at or greater than 8000
hex to access the display data bus. The HandleCommand routine does the work.

void CExtensionState::HandleCommand()
{
 CString strCommand;
 switch (m_nCommand & 0XF0)
 {
 case CONTROL_WORD_SET:
 switch (m_nCommand & 0X0F)
 {
 case TEXT_HOME_ADDRESS_SET:
 strCommand = "Text home address set";
 m_nTextHomeAddress = m_nData[0] << 8 | m_nData[1];
 if (g_pDisplayDlg)
 g_pDisplayDlg->SetTextHomeAddress(m_nTextHomeAddress);
 break;
 case TEXT_AREA_SET:
 strCommand = "Text area set";
 m_nTextArea = m_nData[0] << 8 | m_nData[1];
 if (g_pDisplayDlg)
 g_pDisplayDlg->SetTextArea(m_nTextArea);
 break;
 case GRAPHICS_HOME_ADDRESS_SET:

 default:

Listing 4—The data bytes have already been received when the command byte is written. They are stored
and can be used if the command needs them. This is a partial listing.

(continued)

62 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Listing 5—The data bytes have already been received when the command byte is written. They are stored
and can be used if the command needs them.

 strCommand = "Invalid command";
 break;
 }
 if (g_pDisplayDlg)
 g_pDisplayDlg->ShowCommand(strCommand);
}

Listing 4—continued

// the routine in esim0.dll that is running three times
// in three separate threads

CCriticalSection g_CriticalSection;

UINT PipeRoutine(void* pParam)
{
 const char* pszName = (const char*)pParam;
 CString strPipeName;
 strPipeName.Format("\\\\.\\pipe\\%s", pszName);
 HANDLE hPipe = CreateNamedPipe(strPipeName,
 PIPE_ACCESS_DUPLEX, // dwOpenMode
 PIPE_TYPE_MESSAGE |
 PIPE_READMODE_MESSAGE |
 PIPE_WAIT,
 PIPE_UNLIMITED_INSTANCES,
 BUFSIZE,
 BUFSIZE,
 PIPE_TIMEOUT,
 NULL);
 if (hPipe == INVALID_HANDLE_VALUE)
 {
 CString strMessage;
 strMessage.Format("Could not create pipe %s", strPipeName);
 AfxMessageBox(strMessage);
 return 0;
 }
 BOOL bConnected = ConnectNamedPipe(hPipe, NULL) ? TRUE :

(GetLastError() == ERROR_PIPE_CONNECTED);
 if (!bConnected)
 {

// exit thread
 CString strMessage;
 strMessage.Format("Could not connect to pipe %s", strPipeName);
 AfxMessageBox(strMessage);
 return 0;
 }
 CSingleLock AccessToExtensionState(&g_CriticalSection);
 while (nExtensionCount > 0)
 {
 char chRequest[BUFSIZE];
 char chReply[BUFSIZE];
 DWORD nBytesRead, nReplyBytes, nWritten;
 BOOL bSuccess = ReadFile(hPipe, chRequest, BUFSIZE, &nBytesRead,

NULL);
 if (!bSuccess || nBytesRead == 0)
 break;
 AccessToExtensionState.Lock();
 g_pExtensionState->GetAnswerToRequest(chRequest, chReply,

&nReplyBytes, pszName);
 AccessToExtensionState.Unlock();

 bSuccess = WriteFile(hPipe, chReply, nReplyBytes, &nWritten, NULL);
 if (!bSuccess || nReplyBytes != nWritten)
 break;

 }
 FlushFileBuffers(hPipe);
 DisconnectNamedPipe(hPipe);
 CloseHandle(hPipe);
 return 0;
}

matically selected when you choose
the DS2250 variant in the Embedded
Development Studio.

The four custom extensions,
esim0.dll, esim1.dll, esim2.dll,
and esim3.dll, will be developed
specifically for this target system.

Finally, mfc42.dll contains the
Microsoft Foundation Classes—a
comprehensive C++ interface to
Microsoft Windows. Note that this
DLL is used by all components. With-
out this link, the components
couldn’t integrate seamlessly.

When developing a Virtual Work-
shop extension, you may run it in the
Microsoft debugging environment.
You’ll be asked what .exe program
your DLL is associated with when you
first run from the Start Debug menu.
Specify estudio.exe and the Embed-
ded Development Studio environment
will fire up. You can set breakpoints
in your DLL, so you can single step
through and observe its behavior.

FOUR CUSTOM EXTENSIONS
Next, let’s delve into the custom

extensions, starting with the sim-
plest, esim3.dll, and finishing with
esim0.dll.

Virtual Workshop comes with an
AppWizard. This program interacts
with the Microsoft environment, so
when you create a new Microsoft C++
project, you may create a Crossware
8051 Virtual Workshop extension.
When you do, skeletal source code for
a complete extension will be created,
ready for you to customize and build.

To customize esim3.dll, create a
modeless dialog box containing three
buttons (see Photo 2). This is done
using the Microsoft graphical tools,
with the outline code and variables
generated by Microsoft Class Wizard.
You can make it a modeless dialog box
by adding the Create call to the class
constructor (just make sure it’s visible).
The process takes about 10 minutes.

Then, modify the CExtensionState
class by adding code to create the
dialog box object and to interrogate its
buttons whenever CExtension
State::GetPortPins is called.

It takes about 30 minutes to create a
set of virtual keyswitches. You may
want to add extra cosmetic features.

64 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Photo 3—The LCD and display driver attributes allow
the developer to easily see if the embedded program is
functioning as expected.

The code that you need to add
GetPortPins depends on the elec-
tronic circuit exhibited in Figure 2.
Figure 2 shows each keyswitch con-
nected to its own microcontroller port
pin, and to INT0. That means that
pressing a keyswitch causes an inter-
rupt, and the 8051 program can inter-
rogate Port 2 to determine which
keyswitch caused it.

GetPortPins is called repeatedly
after each instruction is simulated.
This allows Virtual Workshop to be
sensitive to falling-edge, rising-edge,
and level-sensitive external inter-
rupts. The extension only needs to
apply the correct levels to the pins it
controls. It does this by setting or
clearing appropriate *pnPins bits and
informing Virtual Workshop that it
has set or cleared a particular bit by
setting the corresponding bit,
*pnHandledPins.

Listing 1 shows the complete
GetPortPins function and Listing 2
shows the 8051 interrupt function
code that reads the keys.

GRAPHIC LCD MODULE
The circuit diagram shows that the

data bus is connected to the
microcontroller’s Port 0, and the
display’s and microcontroller’s /WR
and /RD pins are connected. The mi-
crocontroller writes to or reads from
the display when it writes to or reads
from off-chip external data memory.

For the DS2250, this occurs when
the xdata address is greater than 8000
hex. So, use CExtensionState::
SetXDataMemory to determine if the
display is being written to, and
CExtensionState::GetXDataMemory
to determine when it’s being read.

The display’s chip enable is con-
nected to P2.5. You need to use
CExtensionState::SetPortPins
to keep track of this pin. Then, ignore
all reads and writes unless the display
is enabled. Similarly, you need to
monitor P2.6 to determine whether
the display is in command or data
mode. Listing 3 shows code for
SetXDataMemory. HandleCommand
interprets the display driver com-
mands and is shown in Listing 4.

Variable g_pDisplayDlg points to
a dialog box (see Photo 3) that dis-
plays the LCD and its attributes. As
with the keyswitches, this dialog box
and associated code can be created
quickly using Microsoft’s graphics
editor and Class Wizard.

However, because you’re display-
ing graphics in the dialog box, you
have to create a CWnd object and sub-
class it to a placeholder in the dialog
box. The CWnd object then receives
the Windows messages that the place-
holder would have received, and it can
draw an image of the display in the
placeholder’s window area. In order to

Photo 2—The three
keyswitches for
esim3.dll will be
positioned immedi-
ately to the right of
the display. Legends
on the display change
as the functions of
the keyswitches
change.

accomplish sub-classing, you may use
a simple, single call to the MFC func-
tion SubclassDlgItem.

Photo 3 also shows the attributes
and the display driver chip’s state.
This makes development of the 8051
program easier because you can see if
it works as expected.

Also, you must account for timing.
The display driver requires 4 µs to
process a byte. Crossware’s 8051 pro-
gram polls the display’s status byte to
determine when the display is ready
to receive another byte, so the simula-
tion needs to incorporate a busy flag.

CExtensionState::IncMachineCycles
times the busy flag. After each in-

Listing 5—continued

// CExtensionState constructor in esim0.dll
// tilt sensors and battery extension

CExtensionState::CExtensionState()
{

 g_pExtensionState = this; // let threads access

class functions
 AfxBeginThread(PipeRoutine, (void*)"TiltSensor1");
 AfxBeginThread(PipeRoutine, (void*)"TiltSensor2");
 AfxBeginThread(PipeRoutine, (void*)"Battery");

}

// CExtensionState constructor in esim1.dll
// A/D Converter extension

CExtensionState::CExtensionState()
{

 for (int i = 0; i < NO_OF_CHANNELS; i++)
 {
 m_hPipe[i] = INVALID_HANDLE_VALUE;
 }
 m_hPipe[5] = OpenNamedPipe("Battery");
 m_hPipe[6] = OpenNamedPipe("TiltSensor1");
 m_hPipe[7] = OpenNamedPipe("TiltSensor2");
}

66 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Figure 2—The electronic spirit level is a sub-set of the Optical Tilt Sensor. It uses two ceramic tilt sensors to detect orientation in two axes.

Photo 4—The simulating A/D converter can fetch its inputs
from the dialog box edit fields or from named pipes running
anywhere else on the system.

struction is simulated, ����������
	
���� is called with an argument
that contains the number of machine
cycles elapsed since the last call.
Thus, cycle-accurate features can be
implemented in the extension.

THE A/D CONVERTER
The �������� extension simu-

lates the A/D converter, which is
driven by the microcontroller’s Port 1.
This device’s extension uses
	���������������������������

to monitor the port’s output and
	���������������������������

to send data back.

To help the simulation,
Crossware constructed a UML-
style state chart that depicts the
operation. The chart is based on
the description in the manu-
facturer’s datasheet (see Figure 3).
The code in SetPortPins and
GetPortPins is based on the state
chart. If Crossware had constructed
this chart a few years ago when
developing the original instrument,
it would have helped the original
8051 program development, too.
Photo 4 shows the dialog box for

the A/D converter. This displays the
device’s attributes and allows devel-
opers to directly enter data represent-
ing the voltage level on its inputs.

NAMED PIPES
However, Crossware wanted the

A/D converter simulation inputs to
come from the tilt sensors and bat-
tery. In order to facilitate reuse, these
are split into a separate extension. To
communicate between the two exten-
sions, named pipes are used. Exten-
sion �������� creates three named
pipes, TiltSensor1, TiltSensor2, and

Battery. �������� connects to these
and requests data from the appropriate
one when it needs an input level.

Named pipes work system-wide,
and the operating system handles the
details. To the program, they behave
like files. To service a pipe,
�������� must create a separate
thread. It then loops continuously and
waits for a return from the ��������
function. This function returns in
response to a data request, so the
thread gathers the data and sends it to
the requestor using ���������.

Extension �������� creates three
threads, and there are three separate
channels of communication between
�������� and �������� (see List-
ing 5). Then, the tilt sensors and bat-
tery charge can be controlled separately
using the dialog box in Photo 5.

Battery drain is simulated using
the ����������	
���� function,
which decrements a variable repre-
senting the charge state at a rate that
corresponds with the simulation rate.
Similarly, charging is simulated by
incrementing the same variable when-
ever the charge box is checked.

 CIRCUIT CELLAR® Issue 121 August 2000 67www.circuitcellar.com

Idle

Waiting for two
ACLK falling edges

Entry: Dout = first bit
in clock count = 0
out clock count = 1
word length = large number (12)

Exit: Set configuration

Transferring
data

Waiting for
rising SCLK

Waiting for
falling SCLK

capture data bit/
in clock count ++

[in clock count == 8]/
Set word length

Waiting for
falling ACLK

[out clock count == word length]

Entry: a clock count = 0
stop sampling (start converting)

Converting

a clock count ++

[a clock count == 52]
[else]

[else]

[else]

[out clock count == 5]/
start sampling

/Dout = next bit
a clock count ++

[CS low]

[else]

CS low

LTC1290

SOURCES
8051 Virtual Workshop
 Crossware Products
011 44 1763 853500
Fax: 011 44 1763 853330
www.crossware.com

MGLS12864T-LV2
VL Electronics Inc.
(213) 738-8700
Fax: (213) 738-5340
www.vle.com

T6963C
Toshiba America Electronic Com-
ponents, Inc.
(770) 931-3363
Fax: (770) 931-7602
www.toshiba.com

LTC1290
Linear Technology Corporation
(408) 432-1900
Fax: (408) 434-0507
www.linear-tech.com

SH50055
Spectron Glass and Electronics Inc.
(516) 582-5600
Fax: (516) 582-5671
www.spectronsensors.com

T2250
Dallas Semiconductor
(972) 371-4167
Fax: (972) 371-3715
www.dalsemi.com

Alan Harry is the founder and man-
aging director of Crossware, a devel-
oper of C cross compilers and other
development tools for embedded
systems based on the 8051, ColdFire,
68000, CPU32, and other chip fami-
lies. He also heads a multi-disciplin-
ary product consultancy that works
on developments for international
clients. You may reach Alan at
alan_harry@crossware.com.

Figure 3—A manufacturer’s datasheet
usually gives a written description of the

device’s operation. It’s easier to
understand the details if this

description is translated into a
UML-style state chart. This

state chart shows an
approximation of the

LTC1290 A/D converter.

The MFC function AfxBegin

Photo 5—Three separate threads, one for each sensor
and one for the battery, service named pipes so that
the A/D converter can retrieve suitably scaled values
from this dialog box.

to the extensions to trap error condi-
tions or to automate testing. Try it
yourself by downloading the package
from the Circuit Cellar web site.

You’ll notice that not everything
was simulated. In particular, there
isn’t support for many display driver
features. The objectives are to speed
development and support the verifica-
tion and life cycle processes. Spending
time providing features that won’t be
used doesn’t support the objectives.

It took three days to develop the
extensions, with the display extension
requiring the most time. The benefits
of being able to see the internal at-
tributes of the display driver and A/D
converter, to test a wide range of tilt
sensor inputs, and to automate the
testing process at any time and inde-
pendently makes it worthwhile—even
when the hardware is available.

How about e-mailing your specifica-
tion and Virtual Workshop extensions
to an inexpensive resource on the
other side of the world, while you’re at
the beach? Developing your embedded
program is easier now, so you’ll see
enough of the beach while waiting for
the hardware to catch up. I

Thread starts new threads. This is
easy, but be careful. Any action on a
window handle, other than using it to
post a message, is likely to fail. So,
the dialog box is programmed to inde-
pendently keep variables m_nTilt
Sensor1, m_nTiltSensor2, and
m_nBattery up-to-date and uses a
CCriticalSection to ensure that
the variables are not accessed simulta-
neously from separate threads.

DEBUGGING WITHOUT HARDWARE
With the extensions in place, you

now can run a complete simulation of
the target system and develop the
8051 program. Features may be added

REFERENCES
[1] M. Smith, “Developing a Vir-

tual Hardware Device”, Circuit
Cellar, 64, November, 1995.

[2] B.P. Douglass, Real-Time UML:
Developing Efficient Objects for
Embedded Systems, Addison-
Wesley, 1998.

http://www.crossware.com
http://www.vle.com
http://www.toshiba.com
http://www.linear-tech.com
http://www.spectronsensors.com
http://www.dalsemi.com

68 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Six-digit display
Digit

drivers

Digit select
Input

Clock

Prescaler Microcontroller

BufferInput
Count

4

Reset

Count enable

Segment
drivers

6

8

Count the Digits

FEATURE
ARTICLE

i
Sure, you could just
buy a frequency
meter, but if you’re
like Tom, you prob-
ably have all the nec-
essary parts sitting
around, so why not
build your own? Be-
fore this project is
done, you’ll have a
better understanding
of frequency meters.

t’s sensible to
buy an accurate

frequency meter, but
a decent one costs more

than $500. You can get similar per-
formance from a home-built product
that costs about $70 to build. I had
most of the parts lying around, so I
decided to design and build my own
six-digit autoranging frequency
meter. The leftover parts slightly
hindered the design, so learn from
my experience.

I liked the fact that this project
involved tradeoffs among analog, digi-
tal, and firmware designs. It also in-
volved tricky mechanical design. It
was like a commercial design project
without the marketing department
leaning over my shoulder. And, I didn’t
have to worry about the
manufacturing cost.

WHAT IT DOES
A frequency meter

is a pulse counter that
turns on for an accu-
rately known time and
displays the accumu-
lated count. Dividing
the output of a crystal
clock sets the on time.
The end count is a
linear function of the
input frequency.

Twenty-five years ago, you would
have strung together a crystal, TTL
decade divider chips, display drivers,
and as many seven-segment display
chips as needed. The only analog part
of the circuit was the high-speed com-
parator, which turned the input signal
into appropriate TTL level pulses. It
and the crystal oscillator were designed
from discrete transistors and resistors,
but the rest of the circuit was made
from standard TTL building blocks.

Today, the comparator and the
oscillator are standard blocks and the
dividers and display drive are firm-
ware functions. I used a PIC16C55
microcontroller to count the input
pulses and drive the display. Nor-
mally, you would use an off-the-shelf
LCD unit. I had old seven-segment
display chips I wanted to use, so I
compromised. Hence, my display has
0.3″ LED digits.

HOW MANY DIGITS?
Two primary design decisions con-

cern accuracy and resolution. Resolu-
tion refers to how many different
results you can display. I used six
digits, giving a resolution of one part
per million (ppm). You can add more,
but each extra digit increases the
counting time by a factor of 10. Reso-
lution is cheap, but it means nothing
without accuracy.

Accuracy refers to how well the
result compares to a standard. In a
frequency meter, the accuracy is a
function of the crystal oscillator. You
can buy new crystal oscillators for $3
or surplus ones for $1. But, how accu-
rate are these? The standard specifica-
tion is ±100 ppm.

Designing a Frequency Meter

Tom Napier

Figure 1—The frequency meter uses a microcontroller as its counting and
display device. A prescaler extends its maximum input frequency to 50 MHz.

 CIRCUIT CELLAR® Issue 121 August 2000 69www.circuitcellar.com

Does that mean that measuring
frequency with six-digit resolution is
a waste of time? The answer is no,
for a couple of reasons. One reason is
that six digits give a best resolution
of 1 ppm, but only 5- to 10-ppm reso-
lution when the first digit of the
frequency is one. Another reason is
that even if the absolute accuracy of
a measurement is low, it can mea-
sure the difference between two fre-
quencies with a high resolution.

However, a ±100 ppm oscillator
can be accurate. Manufacturers state
that over a wide temperature range
(0° to 50° C), the frequency generated
is within ±100 ppm of the frequency
marked on the crystal. This error
band allows room for how accurately
the maker tuned the crystal to the
correct frequency and how the fre-
quency varies with temperature.

In most situations, the temperature
variation is a parabola or an S-shape.
This means that at room temperature,
the actual frequency is closest to the
nominal value and the variation per
degree is less than around the ex-
tremes of the range. If you don’t plan
to use the frequency meter on cold
days, you should have no problems
and the temperature stability will
work well.

The absolute accuracy of the crys-
tal should be better than ±25 ppm.
The number of digits stamped on the
oscillator is a good guide. An oscilla-
tor marked 10.000000 MHz is prob-
ably more accurate than one marked
10.000 MHz, although it is unlikely to
have the 0.1-ppm accuracy implied by
the label. An oscillator claiming ±50-
ppm accuracy is worth buying, but a
more accurate crystal isn’t worth the
extra money.

HOW IT WORKS
The frequency meter counts input

cycles for a fixed time period, usually
a decimal fraction of one second,
then displays the result. Adjust the
time period to maximize the resolu-
tion so the resulting count is be-
tween 100,000 and 999,999. Then
move the decimal to give a result in
megahertz or kilohertz.

The frequency resolution is the
reciprocal of the counting period. For
example, when displaying frequen-
cies greater than 10 MHz, the count-
ing period is 1/100 of a second and
the resolution is 100 Hz. At the op-
posite end of the scale, the counting
period is 10 s, the resolution is
0.1 Hz, and frequencies up to 100 kHz
can be displayed.

Most of the counting is done in the
PIC’s on-chip registers. What input
rate can the PIC handle via its timer
input pin, RTCC? Because you need
to count every input pulse, you can’t
use the on-chip prescaler. Although
this would let you handle higher in-
put frequencies with the bare chip,
you would lose resolution because
there is no mechanism for reading the
residual count in the prescaler. This
count represents the bottom two deci-
mal digits of the count.

Given a 50% on/off ratio in the
input, the timer pin can handle peri-
ods of 40 ns greater than the instruc-
tion period. With a 20-MHz clock, the
instruction period is 200 ns, so you
can count frequencies up to 4.17 MHz.
Because I wanted to measure frequen-
cies greater than 30 MHz, this wasn’t
fast enough.

PUSHING THE ENVELOPE
The answer is to add a four-bit

high-speed prescaler chip. This allows
the input frequency to be 16 times
greater. You don’t lose resolution
because the external prescaler's termi-
nal count can be read after the count
period. The theoretical maximum
counting rate is now more than
66 MHz. By limiting the frequency

Figure 2—The complete counter uses four chips, a
clock oscillator, and many inexpensive transistors.

70 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

To update the display, the six LED
digits are time multiplexed for 2 ms
each and are continuously refreshed.
An 8-bit PIC port drives the segments
of the six digits in parallel.

Ideally, you would display the
input count as it accumulates, but
this isn’t practical because you can't
easily read the prescaler on the fly.
Also, you are counting in pure binary
and don’t want to do binary-to-deci-
mal conversions continually, a 20-bit
conversion takes 300 µs.

To help, I converted a bug into a
feature. The firmware is either in a
count or a display loop. It does the
binary-to-decimal conversion between
the two. In the count loop, it tests for
timer overflow every 50 µs and keeps
accurate track of real time. In the
display loop, it displays a static result.
It tracks passing time to determine
when to re-initiate count mode.

However, its time granularity is
2 ms (the digit multiplexing period),
and there’s no need for accurate tim-
ing. Shutting down the display loop
during counting simplifies the code.
The segment drive is turned off, and
the display goes blank. A front panel
LED indicates that a count is in
progress. The whole job was completed
with less than 256 instructions.

Getting the timing correct is
tricky. For example, the timer regis-
ter is sampled every 50 µs (250 in-
structions), but you can’t execute a
1-µs loop 50 times. It takes eight
instructions to compare the timer
against its last value and to incre-
ment the next register if there is an
overflow. This means that the loop
count has to be only 47.

The next loop counts 200 of these
50-µs loops. It is executed 1, 10, 100,
or 1000 times. Whenever a carry oc-
curs in the counter register, the extra
code is padded to an even number of
microseconds, and the count for the
next 50-µs loop is decremented ac-
cordingly. The first 50-µs loop has to
be shorter than the rest to leave room
for the code that turns off the counter
chip when the count is done.

DRIVING THE DISPLAY
The PIC port can’t handle the peak

segment current (~25 mA per pin) so I
buffered the pins with eight TO-92
PNP transistors connected as emitter
followers. A commercial product
would use a driver chip.

The common anodes of the display
chips are driven in sequence. The
drive current, if all seven segments
and the decimal point are lit, is ap-
proximately 200 mA, which is beyond
the capacity of a PIC port pin. Again, I
used emitter followers. Small NPN
switching transistors can handle more
than 500 mA. Their mean power dis-
sipation is low. I used generic transis-
tors from Radio Shack.

There weren’t enough spare port
pins to drive the digit transistors
separately. Normally, the alternative
is a decoder chip, but it is has an
active-low output. The 74HCT259
can act as an active-high decoder, but
I found a solution that only required
two PIC pins.

I hooked up a 74HCT164 shift regis-
ter. If one PIC pin drives its clock and
a second pin drives its data input, it’s
easy to insert a one-bit to step through
six outputs to drive the six digits.

meter’s specified range to 50 MHz,
you gain a safety margin.

The 74AC161 prescaler chip has a
count enable input that is switched
on and off by the PIC to start and stop
counting. The prescaler is reset before
each count starts.

One advantage of using a prescaler
is that it reduces the effect of an ill-
formed or irregular input signal. The
74AC161 handles pulses 2-ns long,
arriving less than 10-ns apart, and
passes a 3-MHz squarewave to the
PIC. Hence, this counter not only
measures sinewave inputs, but also
the mean arrival rate of pulses that
occur in bursts. The rate is some-
times referred to as the “sequency”
to distinguish it from a regularly
occurring frequency.

The PIC synchronizes its timer pin
input to its internal clock and accu-
mulates a pulse count in its 8-bit
timer register. So, you can read the
timer register without fearing that it
will change as you read it. By sam-
pling more than once every 80 µs, you
can detect when it overflows and add
one to another 8-bit register. The total
capacity of this register, the timer
register, and the prescaler is 20 bits,
or 1,048,576. That’s sufficient to store
a six-digit full-scale count.

FIRMWARE CONSIDERATIONS
Because the on-chip timer counts

the input, it can’t keep track of real
time. So, execute a fixed number of
instructions during sampling periods.
The timing period must be an integral
number of instruction times, and the
clock frequency must be chosen ac-
cordingly. I used a 20-MHz clock.

Figure 3—The six
seven-segment display
digits are wired with the
segment cathodes in
parallel. The drive to the
digit anodes is time
multiplexed. Only three
decimal points are
connected.

72 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

wired the range indicator LEDs as if
they were two more decimal points.
This saved using discrete driver pins.

The mode control switch has auto,
hold, and start positions. When it is in
auto position, the meter cycles con-
tinuously. It counts for as long as nec-
essary, then displays the result for 3 s.

If you need longer than 3 s to note a
reading, you can switch to hold. If you
switch to start, the meter will execute
one count and display the result indefi-
nitely. You have to switch to hold,
then back to start to take another read-
ing. If you purchase a commercial

design, this function would be
accomplished with a spring-
loaded switch.

One PIC pin is needed to
read the switch and up to six
exclusive switch positions can
be read. The same shift regis-
ter that drives the display
drives the two outer switch
pins, and the common pin
goes to a PIC input pin.
Hence, as it multiplexes the
display, the firmware also

checks for switch closures. The
switch cannot be read during a count.

ANALOG
The signal input is a BNC connec-

tor. A 68-Ω resistor can be switched
across it as a compromise between
75-Ω and 50-Ω cable termination. The
input is AC-coupled.

Originally, I planned to make the
input impedance 1 MΩ to be compat-
ible with a standard 10× scope probe.
A fast comparator would have given
an input sensitivity of 50 mVp–p. This
plan collapsed when I noticed that the

The shift register must be
cleared when power is turned on
to avoid activating several digits
simultaneously. To display a
count, the shift register is
clocked at 500 Hz. A new one-
bit is inserted every six clocks,
and the appropriate segment
pattern for each digit is multi-
plexed out the 8-bit port. The
decimal points and the range
indicators are treated as the
eighth segment.

To minimize front panel controls,
the meter is autoranging. It takes a
series of measurements of each input,
starting from the 10-ms test period. If
the most significant digit of the re-
sulting count is a zero, the firmware
switches to the next longer period. If
an overflow is detected during the
count or during the binary-to-decimal
conversion, the autoranger switches
to the next shorter count period.

The decimal point position is set
according to the range and two LEDs
flag MHz or kHz. Because only three
decimal point positions were needed, I

Table 1—This frequency meter has specifications comparable to a
general-purpose commercial instrument.

Display: Six-digits
Frequency ranges: 0–50 MHz (sampling time = 10 ms)

0–10 MHz (sampling time = 100 ms)
0–1 MHz (sampling time = 1s)
0–100 kHz (sampling time = 10 s)

Input: 68 Ω or 1 MΩ > 1.5 Vp–p

Mode 1: Continuous update, 3-s display be-
tween sampling periods

Mode 2: Take one sample and hold
Frequency reference: 20-MHz crystal, 50 ppm

 CIRCUIT CELLAR® Issue 121 August 2000 73www.circuitcellar.com

SOURCE
PIC 16C55 microcontroller
Microchip Technology, Inc.
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

comparator had a specified input bias
current of 16 µA.

My back-up plan was to substitute
a 74AC14 Schmitt trigger chip for the
comparator. This has a high input
impedance but requires a 1.5-Vp–p

input to generate an output. So much
for using a scope probe.

IN A BOX…
I spent more time on the mechani-

cal design than on any other aspect of
the meter. A six-digit display needs a
wide front panel but no great height,
so I used a 1.5″ × 5″ plastic box from
Radio Shack. The box has grooves for
a front panel and a vertical circuit
board half an inch behind the panel.

If I had mounted the display chips
on a board in the rear grooves, they
wouldn’t have reached the front panel,
even if I put them in sockets. So, I cut
a piece of prototyping board and
mounted it on spacers above a support
board that fits into the rear grooves.

I soldered a strip of 16 wire-wrap
pins to the display board. These pass
through the supporting board and
mate with a 25-pin single-in-line
connector mounted edge-on to the
main circuit board. The latter is hori-
zontal and is screwed to the box’s
molded stand-offs.

The input socket and switches are
glued to the support board and poke
through holes in the front panel. The
Schmitt trigger chip is mounted on the
back of the support board. Electrical
connections from the support board are
made by more wire-wrap pins, which
also line up with the 25-pin connector
on the circuit board.

I had a transparent red filter panel
from another box that was large
enough to cover the display chips. It is
standard procedure to glue it to a
cutout in the front panel, but I used an
old optical designer’s tactic: if possible,
eliminate air spaces between surfaces.

I spread a thin layer of clear sili-
cone rubber over the front of the dis-
play chips after they were mounted in
the board, before they were soldered.
Then, I pressed the red filter on top of
the display and squeezed out the air
bubbles. I turned the assembly face
down on a smooth surface and pressed
down on each chip to minimize the

Tom Napier is a physicist and engi-
neer who parlayed his design experi-
ence into an electronics consulting
business. His compulsion to share his
knowledge drives him to write maga-
zine articles, but he regrets that he
cannot offer individual design assis-
tance. He will start using e-mail once
the bugs have been worked out.

thickness of the rubber. If you cover
the filter with clear tape during as-
sembly and testing, you will be able
to read the display without scratching
the filter.

The silicone rubber couples the
light from the display into the plastic
sheet without reflections, making a
brighter, clearer display. There is a
tiny, invisible gap between the red
plastic and the front panel. Replacing
a bad display chip won’t be easy!

Despite my careful mechanical
design, I drilled the front panel holes
0.1″ too far up and had to redo it.
That’s why the front panel looks fine,
but the back panel has odd ventilation
holes in it. Also, I forgot an on/off
switch. Fortunately, there was room
on the front panel for a slide switch,
but it looks awkward.

POWER TRIP
The unit requires 5 V at approxi-

mately 200 mA. A 9-VDC adapter and
a three-terminal regulator on a heat
sink provide the power. For compat-
ibility with other instruments, I used a
9-VAC transformer and added a recti-
fier and storage capacitor to the box.

If you’re wondering why I didn’t
use pin 0 of Port C of the PIC, it’s
because I once inserted my 16C55
backward in a socket. One bond wire
blew, but everything else works. I
have looked for a good home for that
chip ever since. I

SOFTWARE
The project firmware is available
on the Circuit Cellar web site.

http://www.microchip.com

74 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Building on
Familiar Ground

Jeff’s
been an
Analog
Devices
fan for

years. After scouting
AD’s MicroConverter,
he’s sure that this
addition to the lineup
will improve their po-
sition in the micro-
controller standings.

ey, getcha pro-
gram. Getcha

program heah. Ya
can’t tell da playahs

without da program.”
I can’t remember the last time I

heard that. Was it at a circus? WWF
Smackdown? ELECTRO 2000? Or
could it have been at a Red Sox game?
The objective of programs, above re-
moving an extra $8–$20 from your
wallet, is to provide information be-
yond what you would experience at
the actual event. If you’re hip, you
already know the players. Even so,
programs provide you with the real
skinny, added info you wouldn’t nec-
essarily expect.

When I first read about the
MicroConverter, not only did I find
that it contains ADC and DAC in one
package, there was more. Digital and
analog are no longer segregated. It’s
been slow in coming, but it came in
spite of the fact that we’ve been
warned for years to keep digital sig-
nals clear of analog signals. This is
still good practice, but today we are
seeing analog and digital circuitry
being combined in the same devices,
and I’m not just talking about the
interfacing circuitry.

One of the most prominent manu-
facturers in the analog field is Analog
Devices. So, when I heard that the
MicroConverter was being manufac-

tured by AD, I immediately got the
warm fuzzies. In all the years I’ve used
AD parts, there has never been cause
for concern, not in how the part per-
formed nor in its availability. I bought
the program so I could learn more. As
it turns out, the MicroConverter is a
multi-channel 12-bit ADC/DAC with
embedded flash MCU memory. I had
to check the cover of the program
again. Yep! It says Analog Devices. I
guess AD has officially entered the
microcontroller market.

THE CORE
Analog Devices chose to use an

8051 core for its ADuC812
MicroConverter. Take a look at the
diagram in Figure 1. Here you will see
the familiar pieces of the 8051 core.

All this and I haven’t even men-
tioned the ADC/DAC yet. Let’s look
at the enhancements to the 8051 core
in more detail before we get to the
crème de la crème.

The trouble with most small 8051
applications is, because the 8051 is a
ROM device, you need to have de-
bugged code before signing off that it
is acceptable for ROMing by the
manufacturer in the frequently large
runs. The prototype necessary for this
debugging doesn’t normally look any-
thing like the finished product be-
cause it has to have external memory.
This means adding an external
memory device, the de-multiplexing
latch, and decoding circuitry to sup-
port any external memory devices. Or,
if money is not a concern, you might
use an expensive quartz windowed
micro and the necessary tools for
programming and erasing the device.

The ADuC812 has user friendliness
written all over its ports. The 8 KB of
on-chip flash memory is not only
electrically erasable, it doesn’t require
special programming voltages. The
boot loader can be used to program
the 8-KB flash memory directly
through the UART port. The boot
load code is executed on reset if the
PSEN line is pulled low.

There is no need to add an external
serial EEPROM for that calibration
and configuration data because the
MicroConverter has 640 bytes of on-
chip data flash memory. The 640 bytes

Part 1: Adding Analog to the 8051 Core

“h

CIRCUIT CELLAR® Issue 121 August 2000 75www.circuitcellar.com

P0.0

AIN
MUX

DAC0

RESET

*EA

*PSEN

ALE

*INT1 (P3.3)
*INT0 (P3.2)

T2EX (P1.1)
T2 (P1.0)

T1 (P3.5)

T0 (P3.4)

DAC1

P3.7P3.0P2.7P2.0P1.7P1.0P0.7

T/H

12-bit
successive

approximation
ADC

ADC
control and
calibration

logic

DAC
control

12-bit
DAC0

12-bit
DAC1

BUF

BUF

Microcontroller

8051-compatible
microcontroller

Power supply
monitor

13 × 16-bit
TIMER/C Unters

8 KB flash/EE
program memory

Watchdog
timer

2-wire
serial I/O

640 bytes flash/EE
data memory

On-chip serial
down loader MUX

SPI

XTAL
1

XTAL
2

TxD
(P3.0)

RxD
(P3.1)

SCLOCK

256 × 8 user RAM SC UART

MOS
I/O

SDATA

MISO
(P3.3)

2.5V
REF

Temp
sensor

BUF
VREF

CREF

AVDD DVDDAGND DGND

AINO (P1.0)

AIN7 (P1.7)

are accessed through special function
registers (SFRs) as 160 four-byte pages.

 To protect against data corruption
from VDD droop, the ADuC812 has
user-selectable voltage trip points.
Another new SFR, the PSMCON reg-
ister, allows interrupts to be triggered
on either the analog or digital supply
dropping below the selected trip point
between 2.6 and 4.6 V.

Along these same protective lines,
a watchdog timer, which is not depen-
dent on the main oscillator, can inter-
rupt errant code execution. A
watchdog must be reset periodically
by “your good code” to prevent a
timeout. If for some reason, code ex-
ecution goes where no code has
gone before and doesn’t reset the
watchdog, the watchdog overflows
and creates an interrupt. This may be
a result of programming error, electri-
cal problems, or RFI. Watchdog
timeouts are user-selectable from 16
to 2048 ms.

To facilitate downloading execut-
able code into the 8-KB internal flash
memory of the ADuC812, internal
boot code executes upon reset when
PSEN is held low during reset. This
boot code allows the user to do one of
five functions—erase the 8 KB of code
memory, erase code and the 640 bytes
of data memory, write to the code
memory, write to the data memory,
and jump to the user code. The com-
munication path is the onboard
UART. Analog Devices supplies a PC
program to handle this communica-

tion for you, although technical note
uC004 explains the serial download
protocol in case you’re the type who
must take complete and utter control
of the situation.

As with many of today’s micros,
both SPI and I2C are supported on the
ADuC812. Although SPI has a faster
overall throughput, it usually requires
individual chip selects for all con-
nected peripherals. On the other hand,
the I2C protocol includes addressing
within the packet that reduces inter-
connections but lengthens packet size
and reduces overall throughput.

The addressable external data space
has been expanded to 16 MB. The
high-order byte (A16–A23) is output
on A8–A15 during ALE (at the same
time that A0–A7 is output on AD0–
AD7). This high-order byte comes
from a new data pointer register, the
Data Pointer Page register (DPP).

A/D
The ADC conversion block (as

shown in Figure 1) incorporates a
5-µs, 8-channel, 12-bit, single-supply
A/D converter. The front end track-
and-hold multichannel mux shares
the Port 1 I/O, allowing any of the
eight Port 1 I/Os to be used as analog
inputs. The analog input range is 0 V
to +VREF, where +VREF can be the 2.5-V
internal factory calibrated low drift
reference, or any input from 2.3 V to
AVDD. Conversions can be initiated by
software, an external input, or by the
special DMA mode. In this special

mode, continuous conversions can be
directly shifted into external RAM
space without interaction from the
MPU. Try to get that kind of continu-
ous throughput with other systems
where you need to handle converted
data on interrupt!

Factory programmed calibration
coefficients can be overwritten by the
user, if necessary, to tweak the effect of
a change in acquisition clock fre-
quency, reference, or supply voltages.

The DMA mode requires the user
to pre-configure the external RAM as
a table with entries of the A/D chan-
nel to sample. This may simply be a
single channel number placed in the
upper nibble of each of the RAM’s
double-byte locations and used to hold
a 12-bit conversion resultant. A high
nibble of FF indicates an end of table
or DMA STOP command. With this
preconfigured table, any channel can
be converted in any order based on
what the user has placed in the RAM
table. This makes for some interesting
possibilities.

In addition to the eight input chan-
nels, an absolute on-chip temperature
can be sampled. At 25°C, the output
is 600 µV. Temperature changes in-
crease or decrease this output at a rate
of 3 µV per degree. This ninth channel
is also available in the DMA mode.

D/A
The internal dual 12-bit DACs are

truly a significant innovation in on-
chip peripherals. With a full-scale (0

• 256 bytes of RAM
• 32 bits of general-purpose I/O

full duplex UART
• Three 16-bit timer/counters
• 64 KB of external program space
• 64 KB of external data space
• 8 KB of on-chip flash program

memory
• 640 bytes of on-chip flash data

memory
• user-selectable power supply

monitor level
• separate watchdog timer
• boot downloader
• SPI/I2C support
• paging increases external data

space to 16 MB

Figure 1—Check out these points of interest. Analog Devices has jumped into the microcontroller market with a great product that includes both analog and digital I/O.

76 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

to +VREF) settling time of 15-µs, these
pacesetters round out the Micro-
Converter’s feature list. Both DACs
can be updated together using the
sync bit in the DACCON SFR. For
instances where eight bits are enough,
8-bit mode automatically routes the
8-bit values into the top eight bits of
each DAC.

INTERRUPTS
Three new interrupts are added to

the original six, the power supply
monitor, end of conversion, and the
SPI interrupts. Of these, the power
supply monitor is pre-configured as
high priority only. All other interrupts
can be ordered as either high or low
priority. This allows any interrupt to
be configured as the most important
and interrupt another interrupt (ex-
cept for the power supply monitor).

WWW
At Analog Devices’ web site, you

can find datasheets and other techni-
cal documentation about the
ADuC812. You can also download a
box of tools there. You’ll find four
important products—an assembler,
simulator, debugger, and downloader.

The 8051 assembler was written by
MetaLink. This supports most of the
offshoots of the 8031 core parts manu-
factured today. This cross assembler
will take your source code file, writ-
ten with your favorite text editor, and
create the Intel hex file compatible
with the ADuC812.

The simulator was written by
Vault Information Services.
ADSIM812 loads an Intel hex file into
a simulated ADuC812 environment.
This allows you to step through your
code line by line, verifying that your
choice of syntax interacts with the
processor in the manner you intended.
Almost every register and function
can be explored. Not only is this tool
great for evaluating the device, but
you will find it extremely useful for
debugging purposes without ever
touching a piece of hardware.

The debugger was written by
Accutron Ltd., and it provides control
of the program running on the target
system via the serial port. The UART,
timer1, RXD and TXD pins cannot be

used by your program. Similar in func-
tion to the simulator, the debugger
runs the code on the target system.
This allows you to check the physical
devices attached to the processor. Real
data can now be processed.

For an even less restricted target
check, Accutron offers a hardware
emulator that removes the serial port
restriction from the mix. (Note: the
emulator costs extra and is not in-
cluded in the free tool kit.) However,
the debugger does give you complete
control to erase and download code to
both the on-chip program and data
flash memory areas.

Luckily, a standalone downloader
written by Accutron is included. This
no-nonsense loader will pass your Intel
hex file to the ADuC812 where it will
be programmed into flash memory and
executed upon reset.

Code examples are supplied dem-
onstrating various functions of the
ADuC812. They can be used as a
guide when writing your own pro-
grams, or simply downloaded into the
tools for exploration purposes. To help
with support, schematics and gerber
files are included for their evaluation
board. If you’ve got the guts, you can
make your own eval PCB. If you’re
under a time constraint, you may
want to buy an assembled evaluation
unit from Analog Devices.

DESIGN IN
You will inevitably be forced into

SMT to use the ADuC812 because it
is only available in a 52-pin PQFP. But
don’t let that stop you. As you will
see next month, it didn’t stop me. I’ll
continue this discussion with what I
chose as a flexible complement to the
ADuC812. I

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCE
ADuC812 MicroConverter
Analog Devices, Inc.
(781) 329-4700
www.analog.com

http://www.analog.com

78 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

i ’ve said it be-
fore, and I’ll say it

again. I hate wires.
My long-suffering

wife has learned to tolerate my
packrat tendencies, but even I have to
agree that my pile of cables has gotten
out of hand. Somewhere along the
way, the collection reached a critical
mass, at which point it became easier
to just purchase a new cable rather
than sort through the knotted mess.
Of course, with each new addition
matters become worse, perpetuating
the action of buying as opposed to
organizing.

Some people collect balls of old
string. There was a time when I’d
laugh and think “get a life,” but now
the joke’s on me. Brace yourself while
I run down the lengthy list—there’s
DB-9s, -15s, 25s, Centronics, floppy,
SCSI, USB, keyboard, ADB, Apple-
Talk, phone, video coax, speaker wire,
AC, ribbon with plenty of permuta-
tions of male and female, not to men-
tion a full quiver of gender changers,
null modems, and breakout boxes.

Of course, once you have the proper
cable in hand, the fun has just begun.
How often have you ended up under
the desk, cursing while trying to find
the mythical blind insertion point?
There’s always at least one wrong way
to line things up and it amazes me
how often that’s my first guess.

We Ride the Waves

SILICON
UPDATE

Tom Cantrell

Seeing how hard it is to make a
connection in the first place, it should
be easy to break it, right? Fishing a
cable out of the knot is an accurate
description. Have you ever noticed
how closely connectors with thumb-
screws resemble a fishhook? It’s inevi-
table that the cable you’re yanking on
will get hung up so badly even Moby
Dick wouldn’t have a chance of break-
ing through.

I look forward to the day when
wires meet their maker, and slowly
but surely I think we’re making
progress. Thanks to radio, there are
currently all manner of wireless
schemes afoot that offer the promise
of cutting the cord for PCs, just as
it’s been cut for phones.

Indeed, the idea of drafting a
cordless phone for data duty has
crossed my mind more than once. It
could be as simple as using a regular
modem with acoustical coupling. It is
likely that the older, simpler 300- and
1200-bps transfer standards would
work, though I have my doubts about
high-speed modes like the 56k. If
speed or modem interoperability isn’t
an issue, you could just homebrew
your own simple modulation scheme
in software.

It seems the cordless phone idea
struck a chord at Zilog too. The differ-
ence is they happen to have a cordless
phone chip on the market already.
Why not just tweak the phone soft-
ware to add wireless data capability?

DOUBLE-DOUBLE-DUTY DSP
The Zilog Wave chip looks a lot

like the Z89xxx DSP I covered a few
years back in “Double-Duty DSP”
(Circuit Cellar 91). The title reflected
my musings about the trend towards
blurring the distinction between pro-
cessors and DSPs, a subject that’s
been around for a while (see also “To
DSP or Not to DSP” by Michael
Smith in Circuit Cellar 28).

The point of my article was that
with Harvard architecture, fast multi-
ply and add, and other architectural
trinkets (e.g., zero overhead loops), the
Z89xxx is well suited to carry the
DSP label. However, with built-in
serial and A/D ports, timers, and a
$10 price tag, the Z89xxx could just as

Follow
Tom’s
column
for any
amount

of time and you’ll find
out just how he feels
about wires. With the
introduction of Zilog’s
new Wave chip, Tom’s
wire woes may be
coming to an end, and
that’s good news for all.

 CIRCUIT CELLAR® Issue 121 August 2000 79www.circuitcellar.com

easily be considered a 16-bit control-
ler. Have it your way.

Moving back to present day, take a
look at the Zilog Wave chip (aka,
Z87L0x). You’ll swear you are seeing
double and, in fact, you are. That’s
because the Wave integrates two com-
plete Z89xxx-type DSPs (see Figure 1).

As an aside, the idea of packing
multiple processors on a single chip
isn’t really new, especially when one
of them is relegated to a co-processor
role. Of course, desktop chips
brought their formally external float-
ing point co-processors onboard long
ago. Another example that comes to
mind are the Motorola micros that
incorporate an autonomous Time
Processing Unit (TPU).

The idea, via the Wave chip, of
integrating multiple copies of the
same core is a bit more radical. How-
ever, as the ability to milk ever more
MIPs from a single processor tapers
off, expect to see more Chip Multi-
processors moving from research and
development labs to market.

HOP ALONG CAPACITY
The Wave chip is designed to do

the heavy lifting in cordless telephone
applications. One chip goes into the
base station and one into the handset.
The minor difference in functionality
between base and handset boils down
to who gets the most sleep (the hand-

set, to conserve battery power) and
can be accommodated with a single
ROM code and jumper setting.

The chip is designed to take advan-
tage of the 900-MHz ISM (Industrial,
Scientific, Medical) band. The good
news is that, unlike other low-cost RF
solutions, the 900-MHz band isn’t
subject to the strict FCC restrictions
of transmit power and duty cycles
that rule out the use of garage door
openers and keyless remote class
technology for data applications.

The first DSP (DSP1) manages
an external 900-MHz RF trans-
ceiver (see Figure 2) and imple-
ments the Frequency
Hopping Spread Spectrum
(FHSS) wireless protocol.
This DSP is supplemented
with the special purpose
circuits that comprise a
SuperHeterodyne radio,
including Local Oscillator
and FSK modulator and
demodulator.

The spread spectrum
technique changes or spreads
the radio frequency every
4 ms. The bandwidth of the ISM band
(902 to 928 MHz) is partitioned into
142 channels of 182.044 kHz. Time
division multiplexing devotes half of
each 4-ms frame to transmitting and
half to receiving for virtual full-duplex
operation (see Figure 3).

The spread spectrum approach has
a number of well-known advantages
including immunity to narrow-band
interference and a measure of security
because the output is difficult to dis-
tinguish from noise. A potential
eavesdropper would need to know the
hopping sequence and have a similar
frequency agile receiver. Gone are the
days when anyone can listen in if
they own a portable scanner.

To further enhance robustness, the
Wave chip utilizes adaptive frequency
hopping. At any given moment, 64 of
the 142 channels are active. The chip
consistently monitors the integrity of
the link, and will dynamically reas-
sign marginal channels to ones that
are clear.

In phone applications, the second
DSP (DSP2) handles voice processing
including Adaptive Delta Pulse Code
Modulation (ADPCM) transcoding
that converts and compresses the
raw digitized voice signal. It’s also
responsible for other audio functions
such as DTMF decode and genera-
tion, call progress monitoring, caller
ID, and more.

Photo 1—In Zilog’s “extremely connected” vision, every hand-held
wireless gadget in your house (phones, TV, stereo, X-10, etc.) can
get rolled into one unit like this prototype Handspring Communicator.

Photo 2—Zilog offers a Wave-based OEM and evaluation wireless data modem, with RF on one side and RS-232 on
the other.

80 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Each DSP has its own complement
of memory. DSP1 includes 32K × 16
program ROM, 512 × 16 data RAM,
and 1K × 16 scratchpad RAM that can
handle code and data. DSP2 gets by
with 16K × 16 ROM, 512 × 16 RAM,
and 1K × 16 scratchpad. Notice that
the DSP2 scratchpad is accessible by
both DSP cores.

This arrangement provides a
mechanism for data exchange and
dynamic configuration. There’s also
an 8-bit channel that provides a di-
rect interface between DSP1 and
DSP2.

One version of the part (Z87L03)
comes in a higher pin count package
(144- instead of 100-pin QFP), which
supports external program memory
(i.e., EPROM or flash memory) for
DSP1 for those designers who aren’t
ready or willing to commit to ROM
(Z87L02).

There’s also a hybrid module ver-
sion (Z87M02) that offers onboard
flash memory while maintaining the
ROM version pinout for easy proto-
typing and pre-production.

Rounding out the chip are various
ports, including parallel and serial
(I2C) I/O. A three-channel multiplexed
8-bit A/D converter can be used for
functions such as battery monitoring
and signal strength indication. A 4-bit
DAC conveys the desired transmit
power level so software can dictate
the minimum power required to
maintain the link, thus extending
battery life.

DATA TIME
Zilog envisions an “extremely con-

nected” future in which something
like the prototype Handspring Com-
municator shown in Photo 1 will be-
come as indispensable as your TV
remote. I must admit, it would be nice
to have one gadget that does every-
thing, without any wires of course.

In the meantime, because voice data
is already handled digitally these days,
it’s trivial to put the Wave to work as a
basic wireless modem. It’s simply a
matter of stripping out DSP2’s
ADPCM processing and replacing it
with a simple software UART. Be-
tween the dual DSPs, there’s spare
horsepower available to handle extras
that are application-specific such as
display, keypad, touchscreen X-10, IR,
web access, and so on.

To make things even simpler,
Zilog is offering a simple RF modem
module both as an evaluation kit and
as an OEM unit (see Photo 2). For
versatility, the module utilizes the
’03 Wave variant with an external
flash memory chip.

Photo 3—Real-world (i.e., through walls, no shielding)
range of the 0.25-W modem is a few hundred yards.
Here the link goes marginal and is lost at the limit, then
recovered when it is back within range.

 CIRCUIT CELLAR® Issue 121 August 2000 83www.circuitcellar.com

After booting from the external
flash memory at power-up, DSP1
downloads the RS-232 driver code
from the flash memory into DSP2’s
scratchpad RAM. After being down-
loaded, DSP1 releases DSP2 from
reset and allows it to run. At this
point, DSP1 is handling the 4-ms (i.e.,
one frame per hop) control loop, while
DSP2 is sending and receiving RS-232
data as required.

The overall scheme supports up to
16 modules (each with a unique unit
ID number) that comprise a miniature
neighborhood of sorts. Initially, all
modules operate as slaves in a sleep
and wake cycle. Periodically (every
5 s), each unit wakes up and listens
for a link request.

An interrupt from DSP2 (i.e., in-
coming RS-232 character) turns a
module into a master, at which point
it exits the sleep and wake cycle and
starts transmitting a link request,
including the destination unit ID.
Within 5 s the ID’d unit wakes up and
detects and acknowledges the link
request. At this point, both master
and slave are executing the 4-ms con-

trol loop, alternately sending and
receiving data. After the needed data
transfer is complete, both units revert
to the sleep and wake cycle.

The RS-232 code (about 300 words)
running on DSP2 relies on a 100-µs
tick interrupt. Because the communi-
cation channel between the DSP cores
is only 8-bits wide, 4 bits of the RS-
232 data and 4 bits of control informa-
tion are transferred every tick as
shown in Figure 4.

RADIO ACTIVE
I managed to get a couple of early

prototypes of the modules for evalua-
tion that had a few cut-and-jump
attributes as well as some firmware
limitations. The RS-232 port param-
eters were fixed at 9600 8-N-1, for
example.

Different from the miniature
neighborhood peer-to-peer model that
I described earlier, the prototypes
that I was testing operate in beacon
mode. In beacon mode, one unit is
assigned as the base station and all
others are handsets through a DIP
switch setting.

RX

BATMON

ANIN

ANT1/GP1

ANT0/GP0/EXTCLK

HBSW

PWLV

RFCLK

XTALO

XTALIN

SYNLE

SYNCLK

SYNDAT

TXON

RXON

RFEON

TX

RESET

VREF

SERCLK

SERDAT

RSSI

ADC
(1-bit) FSK Demodulator

DAC
(4-bit) FSK Modulator

OSC
Frame Counter(s),

Event Trigger,
T/R Switch Control,
Sleep/Wake Control,

Frequency Hop Control

WDT

DAC
(4-bit)

AN
MUX

ADC
(8-bit)

1k Word
SPRAM 1

32k
Word

Program
ROM

512 Word
RAM

16k Word
Program ROM

1k Word
SPRAM2

512 Word
RAM

MUX

MBX

89S00
DSP Core

CLK

Codec/
Data

Interface

Core 1
GPIO
Ports

Core 2
I/O

Analog
Power

VXD [7..0]
VXRDY
VXSTR
VXRW
VXADR [2..0]
CODCLK

Digital
Power

I2C
Interface

FS[1..0]

P2CLK

GND

VCC

AGND

AVDD

P2UI[1..0]

P2U01

P2INT[1..0]

P[31..0]

RXD

TXD

89S00
DSP Core

CLK

Figure 1—With two complete DSPs onboard, the Zilog Wave chip has enough horsepower to handle wireless voice
and data applications.

84 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

Finally, the module is designed to
utilize RS-232 handshake lines to
initiate and acknowledge a link re-
quest. The idea is to assert DTR to
the module to request the RF link
establishment. After link establish-
ment is complete, the module sends
DSR back. However, the units I re-
ceived had a small switch patched in
for manual operation.

Note that in a real application,
especially one where power consump-
tion is an issue (e.g., battery-driven), it
is imperative that you utilize software
to shut down the link between trans-
fers. When the link is up,
power consumption of the
module is almost 1 W
(3.6 V at 250 mA) because
the Wave chip and 0.25-W
RF transmitter are running
full bore.

The one-page datasheet
I received with the mod-
ules mentioned a precau-
tion about using the
RS-232 handshake lines for
link control. After you
complete an RS-232 trans-
mission to the module,
you should wait a while
before de-asserting DTR to

make sure the last character makes it
across the air before the link is
brought down.

To start, I connected the modules
to the serial ports on my desktop and
laptop PCs. Fortunately, I have a
bench power supply with adjustable
output that gave me easy access to the
3.6 V required. Otherwise, I would
have had to scrounge for some batter-
ies, or wire up an adjustable regulator.

With all systems go, it was a
simple matter of running a terminal
program on both PCs to verify that all
was well (i.e., whatever you type on

one PC’s keyboard appears on the
other screen too).

Having passed the first test, I de-
cided to explore further. I connected
one of the modules to an SBC and
wrote a no-brainer program that sim-
ply outputs a Can You Hear Me
message with a sequence number once
per second. Then I carted an admit-
tedly ugly lash-up comprised of the
laptop, the Zilog modem, the variable
power supply, and a cigarette lighter
12-V to 120-VAC inverter out to the
car and started driving.

As you can see in Photo 3, the link
held up for a few hun-
dred yards. The signal
was passing through a
number of walls, not to
mention the body of the
car and, due to the lay-
out of my neighborhood,
I couldn’t even see my
house by the time recep-
tion was lost. Further-
more, the prototype
units I received didn’t
have the shielding on the
circuit boards that Zilog
intends for production
units, no doubt upping
the interference ante.

VBAT
+3.6V

10.7 MHz

PA

902–928 MHz

T/R SW

ANT FLT

TXLVL

VOSC

RXON

TXON

VRX

VTX

VREG
+3.3V

Voltage
regulator

SDAT

SCLK

SLE

REFCLK

VCOON Power
management

Power
management

Voltage
regulator

0
90

0
90

AD6190

0
90

10.7 MHz

RXIF

RSSI

/64
/65

/2

Synthesizer

PREOUT

MODCTRL

10.7 MHz

TXIF

Loop
Filter

TNK

Figure 2—The Wave-based wireless data modem module takes advantage of 900-MHz cordless phone technology by utilizing an Analog Devices RF subsystem.

Layer 1
software

Layer 3
software

Layer 2
software

Transmit time 144 bits

Receive time 144 bits

Receive time 144 bits

Transmit time 144 bits

Master

Slave

Layer 1
software

100 µs maximum timing between interrupts

8-bit character saved at Core 1 level

Figure 3—The Wave chip transmits and receives for 4 ms between frequency hops. The
software running on DSP1 consists of three layers. Layers 1 and 2 manage the RF link and
messaging among layer 3 and other transceivers. Layer 3 manages the user interface and
the data path between DSP1 and DSP2 via an interrupt service routine.

 CIRCUIT CELLAR® Issue 121 August 2000 85www.circuitcellar.com

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for sev-
eral years. You may reach him by e-
mail at tom.cantrell@circuit
cellar.com or by telephone at (510)
657-0264.

SOURCE
Wave Chip
Zilog, Inc.
(408) 558-8500
Fax: (408) 558-8300
www.zilog.com

RS-232 RX Data In

Slave

Master

ASCII "H" 48
64: msb nibble
58: Isb nibble

Hello World!

RF I/O

ASCII "H" 48
44: msb nibble
38: Isb nibble

Core1/Core2 command list
3x- Isb nibble Core1 to Core2
4x- msb nibble Core1 to Core2
5x- Isb nibble Core2 to Core1
6x- msb nibble Core2 to Core1

RS-232 TX Data Out

Air-ways

IRQ
RadioCore1Core2

8-bit data bus

8-bit data bus

Hello World!

IRQRF I/O
Core2Core1Radio

Hello World!

Figure 4—Notice that DSP2 passes RS-232 data to DSP1 for RF transmission. Because the channel is only 8 bits
wide, each byte of data requires two transfers, each made up of 4 bits of data and 4 bits of control information.

Zilog estimates that the unit
should be good for a range of up to one
mile, but that’s in free air, line of
sight, with proper shielding. They are
investigating options for built-in soft-
ware error detection and correction.
Of course, you could add those fea-
tures (such as CRC and Retry) to your
application level software as well.

In any case, the smaller range I
achieved with the prototypes was
promising. Certainly adequate cover-

age for the typical homestead, unless
you happen to live on the Ponderosa.

BYE BYE CABLE GUY
There’s no shortage of radio-based

initiatives on the table—Bluetooth,
HomeRF, wireless Ethernet, and oth-
ers. Frankly, it’s difficult to keep track
of them all. Eventually, as usual, I
suppose we’ll muddle through the
confusion and commercially success-
ful solutions will emerge.

In the meantime, why not take
advantage of the 900-MHz cordless
phone technology? It may not be a
whiz, but it works.

Whatever the answer turns out to
be, it can’t come soon enough for me.
I’ve had it with cable chaos and can’t
wait to see the look on my wife’s
face when the day finally comes that
I cart the whole tangled mess out to
the trash can where it belongs. IH

Problem 4 —You are given two light bulbs in a
physics lab and you are asked to measure their
current at different voltages. You get the data
shown in the following table. What’s going on
here? (Try sketching a graph of the data.)

Applied Bulb #1 Bulb #2
Voltage Current Current
10 V — 105 mA
20 V — 133 mA
30 V 95 mA 155 mA
40 V 132 mA 179 mA
50 V 168 mA 195 mA
60 V 208 mA 216 mA
70 V 250 mA 235 mA
80 V 296 mA 252 mA
90 V 345 mA 268 mA

Problem 3 —What is the difference between an
interpreter and a compiler?

Problem 2 —Significant effort continues to be
put into both cable/fiber and satellite technolo-
gies for wide-area communications. Why would
you pick one over the other for a particular ap-
plication?

Problem 1 —Why is it a generally a bad idea to
write lengthy ISRs?

CIRCUIT CELLAR Test Your EQCIRCUIT CELLAR

What’s your EQ?—The answers and 4
additional questions and answers are
posted at www.circuitcellar.com.

You may contact the quizmasters
at eq@circuitcellar.com.

8 more EQ

questions

each month in

Circuit Cellar Online

see pg. 2

http://www.zilog.com

96 Issue 121 August 2000 CIRCUIT CELLAR® www.circuitcellar.com

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

First on the Block

K, I’ll admit that I am a technology junkie. I was the first on my block to have a PC, a VCR, a projection
TV, and a digital camera. I have TVs and video monitors everywhere (come on, I can’t be the only one with a

TV/home control monitor in the bathroom). In fact, I was so ahead of my time that today’s automotive computers
are old hat compared to the dash-mounted DAS system I had in the ’70s.

For the most part, new technology is easy to justify because it just plain works better. You buy a pocket LCD TV to catch
the news or add a little entertainment for the daily train commute. You buy the GPS for the car so that no one has to argue
about who’s going into the gas station to ask for directions. You subscribe to cable TV, install the mother of all YAGI TV
antennas, and add an 18″ DSS dish next to the 9′ C-band so you can justify enough signal sources to buy a new HDTV.

In truth, however, I’ve mellowed over the years. I don’t go out (as much, anyway) and just buy something because it’s
new these days. I’d like to say the reason is because I’m studying the technology and maximizing the price-performance
before I buy, but the truth is simpler. A lot of this new technology really isn’t ready as far as I’m concerned.

I remember when I bought my first cellphone (to give you an indication of how long ago that was, let me just say that I
paid $3500 for it). I needed it to keep in touch with the office. Unfortunately, there were so few cellsites in Connecticut at the
time that I could throw a rock through the office window from further than I could call on the cellphone. You wouldn’t have
thought that from their advertising before I bought it, of course.

OK, it took 15 years and they’ve cleaned up their act. I’ve had six cellphones since and there are very few “no service”
locations left in Connecticut. I should be happy, right? Well, ordinarily yes, but now I’m being barraged by all the communica-
tion companies to sign up for wireless services. My gadget-happy side loves the idea of wireless e-mail, real-time traffic and
GPS updates, downloaded music, and wireless Internet connections.

Most people presume it’s just a matter of updating their old analog cellphone to a new digital version. Well, not quite.
First of all, there is no guarantee that the digital networks can handle all this wireless traffic they want us to buy into.

Worse yet, they haven’t even settled on a standard. You have a 75% chance of picking the wrong phone if you aren’t careful
to scope out the options first. There are four distinct digital phone networks: Code Division Multiple Access (CDMA), Global
Standard for Mobile Communications (GSM), Nextel National Network, and Time Division Multiple Access (TDMA). All of
these networks operate on 1900 MHz but are incompatible with each other.

I suppose that even if these guys don’t sort out the mess, market demand will sustain adequate coverage for all the
services but that doesn’t help you every place. Reviews in recent magazines suggest that you should choose CDMA if you
want the best signal quality. If you want the maximum geographic coverage in the US then choose TDMA. If you travel to
Europe you will want to go with GSM. If you are going to Asia, stick with CDMA.

Finally, there is the issue of cost and speed. At the present time, surfing the wireless ’Net isn’t cheap. Most nontrivial
wireless Internet uses utilize a cellular digital packet data card (CDPD) and require an ISP subscription. Most of us are used
to paying about $20 a month for a 56k modem connection (if my part of CT would ever get out of the dark ages we might
actually have cable or DSL modems some day). Wireless digital services currently average $50–$60 per month. The good
news is that someday it will have respectable speed. The bad news is that today, wireless communication is limited to
9600 bps–19.2 kbps, depending upon the network. I know that’s fine for e-mail but try downloading one MP3 music selection
to your PDA for the train ride and you’ll be home before you get to listen to it.

I’m going to try to ignore the hype for a while. Wireless Internet sounds great and I really want this bandwagon to
succeed. Before I start reaching for the phone to order, however, I need to forget that it was more than 10 years ago that I
saw HDTVs at the Consumer Electronics Show. The claim then was that they’d be in general use within 3 years!

o

