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— COLUMNS —
Learning the Ropes
Charming Adders
Implementing an Adder in an FPGA
Ingo Cyliax
Designing with FPGAs is similar to working with other digi-
tal components, and opens the door to interesting design
permutations. This month, Ingo presents how structures are
implemented in FPGA logic blocks.

Lessons from the Trenches
The Race Is On
Catching Internet Connectivity Fever
George Martin
Do you want your toaster hooked up to the Internet? It may
sound absurd, but people are racing to connect their house-
holds. Until now,  even thinking about it was daunting, how-
ever, George discovered an easy way to get “iConnected”.

Silicon Update Online
It’s Two, Two, Two Memories in One
Tom Cantrell
The quest for the best memory is endless. You know about
Silicon Storage Technology’s combination chips SST38
and SST30. Tom takes a closer look at SST’s
MCP marvel that combines Flash and
SRAM on one chip.

Double your technical pleasure each month. After you read Circuit Cellar magazine, get a
second shot of engineering adrenaline with Circuit Cellar Online, hosted by ChipCenter.

 — FEATURES —
Monitoring Your Micro
Daniel Mann and Jim Magro
If you’re going to keep your system running at its peak
performance, it helps to be able to monitor the micropro-
cessor. Most processors use counters to measure perfor-
mance, but Daniel and Jim have a better way of gathering
and analyzing performance data.

The Ultimate 16-bit Microcontroller
Robbert Maris
Memory organization, often ignored by chip vendors, sig-
nificantly affects code density and speed. This is especially
important in applications that involve user interface or
extensive communications. Robbert outlines a solution
that may reduce controller diversity in companies, hence
reducing your tool investment.

MPEG and DSP Integration
Priyesh Surati and David Austin
For their final project at the University of Calgary, Priyesh,
David, and their team members wanted to demonstrate
MPEG decoding on Analog Devices’ SHARC 21061. Here,
they share what they learned about MPEG history, MP3,
and the music industry’s future.

Table of Contents for May  2000

WWW.CIRCUITCELLAR.COM/ONLINE

THE ENGINEERS
TECH-HELP RESOURCE

Let us help keep your project on track
or simplify your design decision. Put
your tough technical questions to the
ASK US team.

The ASK US research staff of engineers has been
assembled to share expertise with others. The forum
is a place where engineers can congregate to get
some tough questions answered, or just browse
through the archived Q&A’s to broaden their own
intelligence base.

Resource Links
• Wireless Application Protocol (WAP)
• Making of PDF and Postscript Files
Bob Paddock

Test Your EQ
8 Additional Questions

Coming Soon....
Circuit Cellar Online 1999 issues will be available on CD.
The CD will contain all the online files, the PDF files and
any referenced code files for issues July 1999 through De-
cember 1999.

Also on the CD are the Embedded Internet Workshop files
from years 1998 and 1999.
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What’s It Worth?

e veryone knows that there’s a difference be-
tween value and cost. I have an antique book-

case that was given to me by my grandmother. If you
wanted to buy a similar bookcase it would cost you

around $900. However, your $900 wouldn’t move my bookcase an inch
closer to the door.

Not too long ago, I was opening my mail and found a “Congratulations!
You are one of the 100 lucky winners…” letter. I stopped reading and was
all set to recycle it when a $10 Amazon.com gift certificate fell out. Sud-
denly there was some value to this letter.

I finished reading the letter and found out that I was one of 100 selected
people who responded to a survey about how businesses use the Internet.
To be honest, I didn’t take the time to fill out the survey because I was
interested in finding out how businesses use the Internet. I took the time to
fill it out because: (a) I use the Internet (b) I often get frustrated with how
businesses present themselves on the Internet, and (c) it was short enough
to finish in about five minutes.

Obviously, the most important reason is (c), because time is rather
valuable to me. However, (b) ranks right up there because time is rather
valuable to me. Get on the Internet and you’ll see that there are definitely
some businesses out there that have no idea how customers or other
businesses are using the Internet. So, if investing a few minutes of my time
to fill out a survey can make my next trip on the Internet more profitable,
then it was worth it.

Of course, that may be excessively optimistic. But, I think it’s more
reasonable than the idea of lobbying the government to find a way to
provide everyone with access to computers and Internet technology.
Attempting to minimize the digital divide is a great idea, but I’m not sure it’s
a process that should involve the government. Anyone who had to fill out
the long census form will be glad to tell you that the government is already
overly involved with personal and domestic issues.

You’ll notice on page 11 of this month’s issue that we revived the
Reader I/O page. This section used to be a monthly feature, but for some
reason, over the last few months, we’ve received a low amount of reader
feedback, which is uncharacteristic for Circuit Cellar readers. Hopefully no
news is good news, but because it has been awhile since we last had a
Reader I/O page, I thought I’d remind everyone that you’re always welcome
to send in feedback (positive or negative). It may cost you a few minutes of
time, but your comments are something we value.

Even if my survey response doesn’t dramatically change the way busi-
nesses view the Internet, my next stop at Amazon.com will definitely be
more profitable, thanks to a communications consulting firm that appreci-
ates the fact that time is valuable.

P.S. The deadline for the Design2K contest is June 30, so if you’ve got an
8051 project in mind, it’s not too late to enter. Check out the prizes and
you’ll see that it could be well worth your time!

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of reader-
assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or from
plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to build
things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to construct or
operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction. The reader
assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2000 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar INK are registered trademarks of
Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.
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NEW PRODUCT NEWS
Edited by Harv Weiner

MODULAR MOTOR CONTROLLER
DigiDrive II is a family of

modular controllers that controls
the speed of 1/10- to 1-horse-
power single-phase induction
motors. The family consists of a
modular set of drive electronics
that connects to supply single-
phase motor drives for applica-
tions such as fans, pumps, and
compressors. The controllers
provide energy savings, perfor-
mance improvement, increased
reliability, along with extending
motor life.

The controller consists of
three subsystems. The power
drive board (PDB) contains the
power electronics, drive circuitry,
and basic drive controls. The
power interface (PINT) connects
the motor and AC line to the
power drive board (PDB). It con-
tains filter and energy storage

elements that meet agency approval stan-
dards for noise and safety. The control
interface (COIN) provides specified con-
trol settings, interface communication
ports, and flexibility in control settings
and the interconnect system. Combining
modules creates a family of controllers

that meets the needs of
single-phase systems.

DigiDrive uses analog,
digital, power electronics,
and proprietary microcon-
troller and software algo-
rithms. Integrating provides
better energy efficiency and
performance. Firmware
modifications and hardware
selections result in faster
time-to-market and lower
overal cost.

Five-part samples are
available for $85. Pricing for
1000-piece quanities starts
at $60.

Anacon Systems, Inc.
(888) 456-3398
(512) 263-8668
Fax: (512) 263-8060
www.anaconsystems.com

http://www.anaconsystems.com
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NEW PRODUCT NEWS
EMBEDDED LINUX DEVELOPMENT PLATFORM

Linux Planet is an embedded Linux development platform that
integrates RPX hardware and firmware with Hard Hat Linux from
MontaVista. It shortens the time required to build embedded de-
vices and is easy to use with standard hardware and software.

Linux Planet comes in a rugged, colorful enclosure with a 12-bit
VGA resolution LCD with a touch-screen on top. The computing
power is composed of the RPX Lite CPU engine and the H I/O X
expansion module. The RPX Lite features the Motorola PowerPC
MPC823 microprocessor, a 10-Mbps Ethernet port, PCMCIA, RS-
232 interface, and an onboard ambient temperature sensor. The I/O
card offers an MP3-performance capable CODEC, video out for
NTSC/S-video, multiple serial ports, IrDA, and connections for the
touchscreen. The RPX bus, composed of two standard 120-pin con-
nectors that provide access to the PowerPC core and the communi-
cations processor module, connects the two. The RPX bus
accommodates modules of different mechanical configurations and
MPC8XX processors.

Hard Hat Linux includes cross and native development toolkits
for PowerPC, x86/Pentium, and other processors. A start guide,
Linux kernel configuration, scaling tools, device drivers, and
sample code for the RPX are included. Also included are unlimited
e-mail support for the hardware, a support program for the whole
solution, cables, and a universal power supply.

Linux Planet costs $5995 with a six-
month subscription to Hard Hat Linux, and
$7495 with a 12-month subscription.

Embedded Planet
(440) 646-0077
Fax: (440) 461-4329
www.embeddedplanet.com

http://www.embeddedplanet.com


CIRCUIT CELLAR®                                                                                                             Issue 119     June 1999     11www.circuitcellar.com

READER I/O
THE OLD SCHOOL

I missed Steve by a few hours at the Embedded
Systems Conference in Chicago, but I was pleased
to see Circuit Cellar there. I think the keynote
address from Clifford Stoll really spoke to the kind
of material Steve’s old articles in BYTE and current
Circuit Cellar articles address. There are some of
us (some days I think fewer and fewer) who really
want to know how things work.

As a mechanical engineer who has worked with
computers and software for his whole career, I find
that I benefit from understanding or at least having
some understanding of how the computer works
from an EE’s point of view.

Stoll recommended that we remove computers
from classrooms and replace them with a box of
parts from which we teach the kids to build com-
puters. What a curious idea.

Indeed, the real-time assembler programming
course I took as a student on a PDP-11-03 is still
useful to me whereas the usefulness of my vast
understanding of Wordstar evaporated in about two
years. And, although the BASIC language I learned
on a TRS-80 Model 1 still serves me today, CP/M
commands don’t seem to come in as handy. The
more fundamental information, the longer the
knowledge seems to last. What use is it to teach
kids how to use Windows 95?

So keep up the great work! Maybe you could
throw in some industrial style servo motion control
material for those of us who dream of building an
industrial CNC lathe in their basements.

Ian Jefferson

I enjoyed Steve’s editorial in the March (116)
issue. In our society’s zeal to ensure that life is
risk-free, we have sucked every bit of “chance” out
of education and learning. If I hear, ”If it saves one
child’s life or prevents one accident, it’s worth it...”
one more time, I’ll shout.

Somehow the adventuresome, risk-taking
American public decided or became convinced that
it wanted the sensation of challenge and explora-

tion, but without any risk (Mr. Columbus, can you
absolutely guarantee that you will come back will all
crew members safe and sound?). I think it’s part of
the Disney-fication of life—everything’s planned,
you feel a thrill, but there are no surprises.

I fear for the long-term consequences to our
knowledge base and society. But sadly, I blame
engineers as much as anyone else. Because we now
have (and are proud of) the apparent know-how and
tools to analyze and simulate in great detail and
with high confidence (we think we can know every-
thing before doing anything), we feel we must do
so—and that the answers will be correct.

To make it worse, there are the huge numbers of
oversight committees, groups, activists, post-event
analyzers and Monday-morning quarterbacks,
sensationalism-based news outlets, and so on
microanalyzing every move in advance and after-
wards, too. No moonshot attempt for these folks—
someone might get hurt.

Thanks for letting me spout. I grew up in an
apartment in New York City, had all sorts of chemi-
cals in my room, plus a workshop with small power
tools there—and also loved testing my .049 glow-
plug airplane engines in my room. The noise, the
smell, the risk—it was great!

I used to go to local “chemical” shops and buy
whatever I needed, such as copper sulfate for copper-
plating experiments. Try doing that now and you’ll
get arrested just for asking if they sell it.

Bill Schweber

Editor’s Note: In the article “Accurate Linear
Measurement Using LVDTs” in the May 1999 issue
(106), there was a reference that implied that
Schaevitz Technologies is associated with Macro
Sensors. There is no relation between Macro Sensors
and Shaevitz Sensors. The Handbook of Measure-
ment and Control is the property of Shaevitz Sen-
sors, Hampton, VA.



12        Issue 119    June 2000         CIRCUIT CELLAR® www.circuitcellar.com

Get it Right
the First
Time

FEATURE
ARTICLE

t
You can learn from
your own experience
(mistakes), or you
can learn from some-
one else’s. Bonnie
makes the choice
easy by sharing some
of the insight she’s
gained in her years of
analog design. Pay
attention now or pay
the price later.

he op-amp
circuit descrip-

tions found in most
reference books present

a computational algorithm that, theo-
retically, will provide the solutions to
your analog amplifier design woes.
With a perfect amplifier, these designs
would be easy to implement. But
there isn’t a perfect amplifier, yet.

Throughout the history of analog
system design, circuits have required
special care in key areas in order to
ensure success. Common sense and
bench sense will pull you out of most
potential amplifier design disasters.

In an ideal world, the perfect am-
plifier would look like the one de-
scribed in Figure 1. With this perfect
amplifier, the input stage would be
designed with devices whose inputs
(IN+ and IN–) can be taken all the

way to the power supply rails. As a
matter of fact, it would be nice if they
operated beyond the rails.

And, the inputs would not source
or sink current (i.e., they would have
zero input bias current). Because volt-
age errors across the two inputs are
usually gained by closed-loop circuit
configurations around the amplifier,
any DC voltage error (offset voltage)
or AC error (noise) would be zero.

As for the power supply require-
ments of this ideal amplifier, there
would be none. As you know, indus-
try trends are driven by requests for
lower supply voltages and, conse-
quently, lower power consumption
from active components. The ideal
amplifier wouldn’t need a voltage
supply across VDD and VSS and would
have zero power dissipation in its
quiescent state.

The output of this amplifier would
have no voltage limitations. This
would eliminate the problem of losing
bits on the outer rim in the subse-
quent A/D conversion as a result of
the amplifier not being able to swing
all the way to the rails.

The output impedance would be
zero at DC and over frequency, ensur-
ing that the external input device
connected to the amplifier is isolated
from the external output device. The
op-amp would respond to input sig-
nals instantaneously (i.e., the slew
rate would be infinite and there would
be no delay), and it would be able to
drive any load while maintaining an
infinite open-loop gain and rail-to-rail
output swing. Finally, in the fre-
quency domain, the open-loop gain
would be infinite at DC as well as
over frequency, and the bandwidth of
the amplifier would also be infinite.

Bonnie Baker

Figure 1—A perfect amplifier
has an infinite input imped-
ance, open-loop gain, power
supply rejection ratio, com-
mon-mode rejection ratio,
bandwidth, slew rate, and
output current. It also has
zero offset voltage, input
noise, output impedance,
power dissipation, and most
importantly, zero cost.

Tips and Tricks for Designing with
Single-Supply Analog Amplifiers
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We all want this ideal amplifier for
free, however, if I design this ampli-
fier, I guarantee I’ll be a billionaire.

Interestingly, many of these design
imperfections can be advantages. For
instance, the less than infinite band-
width of an amplifier is used to limit
the noise and high-speed transients in
circuits. This becomes an issue where
circuit board traces would operate as
transmission lines with reflections
and such if the amplifier didn’t per-
form this band-limiting function.

Today, there isn’t an ideal ampli-
fier for all circuit situations. The best
you can do is pick the best amplifier
for the application and use it properly.

CHOOSE WISELY
Single-supply operational amplifi-

ers are commonly manufactured with
CMOS and bipolar silicon technolo-
gies. It’s usual for bipolar amplifiers
to have bipolar input devices followed
by CMOS transistors. This type is
often called BiCMOS. The most im-
portant difference between CMOS and
bipolar (or BiCMOS) is in the input
stage transistors. These transistors
have a profound effect on the opera-
tion of the amplifier (see Figure 2).

Because of the difference between
the amplifiers’ input transistors, the
CMOS amplifier has lower input
current noise and higher input imped-
ance. As a consequence of the high-
input impedance, the CMOS
amplifier’s input bias current is lower.
In fact, the input bias current of a
CMOS amplifier would be
zero if it weren’t for the
ESD cells that are con-
nected to the input pins.
This can be used to an
advantage for high-imped-
ance sources.

The CMOS amplifier
typically has higher open-
loop gain than bipolar am-
plifiers. This can minimize
gain error in applications
where the closed-loop gain
is high (60 dB or greater).

To contrast the CMOS
amplifier, the bipolar am-
plifier usually has lower
input voltage noise and
offset voltage. Although

these specifications are typically bet-
ter than the CMOS amplifier counter-
part, the input bias current and input
current noise are higher.

Both CMOS and bipolar amplifiers
can be designed for single-supply op-
eration. If they are designed properly,
they also are capable of input and
output rail-to-rail operation.

BAD DATA IN, BAD DATA OUT
A signal transmission through the

operational amplifier begins at the
input stage. When selecting an ampli-
fier, first scrutinize the characteristics
of the external input signal.

For instance, what voltage range
would you expect your external
source signal to span? If the voltage
range of this signal spans from one
power supply rail to the other, a rail-
to-rail input amplifier would be ap-
propriate for your application. If not,
you probably don’t want a rail-to-rail
input amplifier because there is an
offset-voltage distortion that occurs as
you take the input across its entire
common-mode range (see Figure 3).

If this offset distortion feature is
not desirable, you may want to con-
sider designing your amplifier circuit
in an inverting gain configuration. An
example of this type of circuit is
shown in Figure 4.

But, don’t let this offset distortion
scare you away if you really need rail-
to-rail inputs. With single-supply
circuits, rail-to-rail input amplifiers
are needed when a buffer amplifier

circuit is used or possibly with an
instrumentation amplifier configura-
tion. Be aware that if either of the
inputs of the amplifier goes beyond
the specified input range of that am-
plifier, the output will typically go to
one of the power supply rails. There is
no guarantee which rail.

HIGH INPUT IMPEDANCE MATTERS
The typical input bias current of a

single-supply bipolar amplifier ranges
from a few nanoamperes to hundreds
of nanoamperes over temperature.
Typical CMOS amplifier input bias
current ranges from a few to hundreds
of picoamperes. The effect of the error
introduced by the input bias current
depends on the magnitude of the
source resistance and the circuit gain.
Two examples of circuits that will be
affected by high input bias current are
shown in Figure 5.

The circuit shown in Figure 5 is
designed to convert the light energy

that impinges on the photo
diode (DP) into charge (or
current over time). The
current from the photo
diode flows through the
feedback resistor (RF), gen-
erating a voltage at the
output of A1. The output of
A1 is directly connected to
R1, which is a part of a
second order low pass gain/
filter stage. This stage is
built using A2, R1, R2, R3,
R4, C1, and C2. Then, the
output of the filter is sent
to a 12-bit A/D converter.

If the two amplifiers in
this circuit design are bipo-
lar, the high-input bias

Figure 2—Single-supply amplifiers are manufactured
with CMOS and bipolar technologies. Sometimes
bipolars are manufactured on a CMOS process, the
input transistors are bipolar, and the rest are CMOS.

• Lower input
  current noise
• Higher voltage
  gain
• High ZIN

• Wide BW
• Single-supply
• Rail-to-rail
• Micropower

• Lower input
  voltage noise
• Lower offset
  voltage
• High CMRR
• High output
  drive

CMOS
dual and single-supply

Bipolar or BiCMOS
dual and single-supply

Figure 3—Rail-to-rail input amplifiers require two pairs of differential transistors. They
have an input-offset distortion as the input common-mode voltage passes through the
regions where one pair is turning on or off. This amplifier has two offset-voltage
transition regions; some single-supply amplifiers only have one transition region.
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fier, the voltage error generated in the
first stage is 14 µV. The voltage error
generated as a consequence of the two
resistors in the anti-aliasing filter
stage is 36.5 µV.

This total error, multiplied by 10
is equal to 508 µV, which is pre-
sented to the 12-bit A/D converter
input. Now, with an A/D converter
LSB size of 1.22 mV, the error from
the analog front end produces a 0.416
bit error.

REALLY RAIL-TO-RAIL?
Single-supply amplifiers do not

truly swing rail-to-rail at the output.
To make matters worse, at the outer
regions (near the rail), the amplifier
will behave in a non-linear fashion.
The reality of this performance char-
acteristic is that the output of single-
supply amplifiers can only come
within 50 to 200 mV of each rail. This
behavior is illustrated in Figure 6.

In advertising, the claim of “rail-
to-rail” can give you a false sense of
security, meaning the amplifier will
operate as an amplifier for the full
output range. Figure 6 illustrates
what the output swing of a single
supply amplifier looks like when the
output is driven to the rails.

In Figure 6, notice that the linear-
ity of the amplifier starts to degrade
before the output swing maxima are
reached. If the amplifier output is
operated beyond the linear region of
this curve, the signal’s input-to-out-
put relationship will be nonlinear.

The conditions of the DC open-
loop gain (AOL) specification defines
the linear operating output range of
the amplifier. The defini-
tion of DC open-loop gain
(AOL) is:

AOL (dB) = 20 log (∆VOUT/
∆VIN)

where VOUT is the output
voltage and VIN is the in-
put offset voltage. ∆VOUT is
(VOH – VOL), where VOH is
the maximum voltage
level of the output when it
is driven high and VOL is
the minimum voltage
level when it is driven

low. And, ∆VIN is the range of input
voltage that produces this change in
output voltage.

The difference between the AOL

conditions and an output swing-lim-
ited condition are profoundly differ-
ent. The AOL specification validates
the voltage output swing test by im-
plying that the operational amplifier
is operating within its linear region.
But, taking this discussion beyond the
difference of these specifications, the
output of your single-supply amplifier
will never reach the power supply
rail. Design your circuits accordingly.

DO YOU HAVE THE BANDWIDTH?
The gain bandwidth product

(GBWP) of an operational amplifier is
equal to the frequency of the first pole
of the open-loop gain plot multiplied
by the gain at that first pole. Most
operational amplifiers are unity-gain
stable, so the GBWP happens to be
equal to the 0-dB crossing.

You will seldom find an amplifier
that has a guaranteed gain bandwidth
product. Usually, the GBWP of an
operational amplifier is specified as a
typical and varies ±20 to ±30%. This
type of variation is not a good specifi-
cation to hang your hat on. Conse-
quently, most designers use resistors
and capacitors to control the band-
width of the amplifier circuit. A com-
mon circuit that this is done with is
shown in Figure 7. This 5th order, low-
pass filter is designed to limit the
bandwidth of a system (i.e., prevent
aliasing errors). This is only an ex-
ample of a 5th order filter. It could be a
2nd, 3rd, 4th,…order filter.

current from the amplifiers can cause
voltage errors in both stages. In the
photo detection circuit the amplifier
input bias current (A1) generates a
voltage drop across the parallel combi-
nation of RF and the photo diode para-
sitic resistance.

For example, assume the photo
diode parasitic resistance and feed-
back resistance (RF) are equal to 5 MΩ
and 250 kΩ, respectively, and the
input bias current of A1 is equal to
100 nA. The resulting voltage error
from this combination is 23 mV,
which appears at the output of the
amplifier. In the anti-aliasing filter
circuit, an input bias current can gen-
erate a voltage error across the input
resistors (R1 and R2) at DC, which is
amplified by the combination of R3

and R4 around the amplifier.
To continue this example, using

the resistor values for R1 and R2 equal
to 12.9 kΩ and 595 kΩ, respectively,
and an input bias current from the
amplifier of 100 nA, the resultant
voltage error is 61 mV. This added to
23 mV from the previous stage, equals
84 mV of error. This voltage is multi-
plied by 10 V/V to equal a significant
error of 840 mV at the input of the 12-
bit A/D converter. If the LSB size of
the 12-bit A/D converter is 1.22 mV,
this error will produce a 688 count
offset error.

This example can be recalculated
using CMOS amplifiers with an input
bias current of 60 pA (over tempera-
ture) instead of the bipolar amplifier
selected above. With this new ampli-

Figure 4—If the input voltage swing is rail-to-rail, an
amplifier configured as a single-supply buffer or voltage
follower (a) should have rail-to-rail input capability.
However, if an amplifier is configured in a gain of  –1V/V
(b), the amplifier input will remain at VREF.
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problem circuits, asking
what went wrong, and
then touching every chip.

Another tell-tale sign of
experience is when a de-
signer has dead bug cir-
cuits in his workspace.
This type of circuit is built
by turning the device on
its back, with pins stick-
ing straight up, and solder-
ing all connections to the
device in the air. Using
this technique is an at-
tempt to eliminate para-
sitic capacitance.

Yet another indication
that an individual spends

time in the lab is facial scar tissue
that looks like little razor cuts. This
may indicate a shaving problem, but
more than likely the designer was
looking at a circuit when a capacitor
or chip “blew up.”

Knowledge comes with these kinds
of experiences. Here are a few tips.
Before you plug the chip in, double
check your power supplies.

 If the positive supply is too high at
any time with respect to the negative
supply, the part will likely be dam-
aged. In contrast, a low supply won’t
bias the amplifier’s internal transis-
tors. A simple check of the difference
between the supply voltages at the
pins of the operational amplifier can
save a great deal of troubleshooting
time. A note of caution, turn the sup-
plies off before you insert the opera-
tional amplifier in the socket.

Double-check your grounding strat-
egy, especially if there are digital
circuits on the board. Low-impedance
grounds are imperative if you want a
stable analog design. If the circuit has

a lot of digital cir-
cuitry, consider
separate ground
and power planes.
Ground noise is
challenging to
track because it
appears everywhere.

Always decouple
the amplifier
power-supply pins
with capacitors.
Place these capaci-

tors as close to the amplifier pin as
possible. For amplifiers with a band-
width up to tens of megahertz, a 1-µF
or 0.1-µF capacitor is recommended.

Breadboarding on white bread-
boarding sockets is a risky way of
doing circuit evaluation. These boards
can produce noise or oscillations be-
cause of the preponderance of capaci-
tance and inductance underneath the
board. Because you should use short
lead lengths to the inputs of the am-
plifier the perf board will fail you.
These, may not be a problem with the
PCB implementation of the circuit.

Amplifiers are static sensitive! If
they are damaged, they may fail im-
mediately or exhibit a soft error that
will continue deteriorating over time.

I discussed the common problems
with op-amp design implementation.
If you have other inputs from experi-
ence, feel free to drop me a note. I

When designing this circuit, you
should consider the bandwidth of the
operational amplifier. If you are too
close in frequency to the operational
amplifier bandwidth, the amplifier
will contribute another pole to the
transfer function. This will more than
likely cause instability in the circuit.

Taking it further, you may have
designed an amplifier for a gain of 10
and find that the AC output signal is
lower than expected. If this is the
case, you may have to look for an
amplifier with a wider bandwidth. A
general rule of thumb is to design the
cutoff frequency of your filter at least
10 times lower than the closed-loop
crossing of the amplifier’s open-loop
gain curve.

DON’T MISS THE DETAILS
Analog design experience is avail-

able through many channels. One of
my favorite channels is hands-on.
Hands-on engineers are the people
with scar tissuse covering their finger-
tips caused by years of looking at

Figure 6—The bottom plot illustrates the input voltage swing to an
amplifier that is configured in a gain of +2V/V. The top plot shows the
magnified output voltage of the amplifier. Included in the top portion of
this plot is an indication where the positive supply rail is with respect to
VOH and where the negative supply rail is with respect to VOL.
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Keep Up with the Stars

FEATURE
ARTICLE

w
Looking at the stars is
one thing, but accord-
ing to Mel, tracking
them is much more
interesting, which is
why he designed a
computer-controlled
motorized telescope
mount. Build this
project and you’ll be
seeing stars in no
time at all.

hen 286-level
processors were

introduced, sky
watching became

clearer. Although microprocessors
were available, they weren’t practical
for many astronomy enthusiasts. In
this article, I’ll cover telescope basics
and then head into controlling a mo-
torized telescope with your computer
to get the best results.

The popular Newtonian telescope
uses a paraboloidal mirror to focus
light onto an image plane that is then
inspected by an eyepiece to gain mag-
nification. The paraboloidal mirror
and smaller flat secondary that is used
to direct light out to the side of the
tube must be ground, polished, and
figured to an accuracy of a couple

millionths of an inch. Amateurs can
do this by hand using simple test
equipment and can achieve an aston-
ishing degree of penetration into the
sky. Using a CCD camera and 12″-
aperture telescope, an amateur can
equal the 200″-Palomar telescope with
film plates. Digital cameras with
cooled detectors must be exposed for
many minutes to capture faint ob-
jects. During the exposure, the camera
and telescope must precisely follow
the stars moving slowly.

Photo 1 shows my 20″-aperture
computer-controlled telescope.
Photo 2 shows a CCD camera expo-
sure of Messier 13, The Great Her-
cules Globular Star Cluster.

The challenge of motorizing
mounts with large thin mirrors causes
most amateurs to build hand-pushed
telescopes. The Dobsonian mount
relies on Teflon and Formica surfaces
to give smooth hand motion, yet re-
main stationary when released. Coma
is a comet-shaped optical aberration
caused by the paraboloidal primary. It
is observed when viewing objects off-
axis. Today’s fast f/5 telescope pro-
duces coma exceeding 1/4 wavefront a
few arcminutes off center. A planet
drifts this distance in a few seconds in
the viewfinder of this telescope. Expe-
rienced observers must wait for fleet-
ing moments of clear vision when the
atmosphere steadies and good plan-
etary detail bursts through. Motorized
tracking means using these moments
while keeping the object precisely
centered in the field of view.

The tracking accuracy of the tele-
scope mount is particularly demand-
ing. With respect to the stars, earth

Mel Bartels

Photo 1—A 20″-aperture
computer-controlled telescope
is shown here.

Motorized Telescope Control
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rotates once every 23 h, 56 min. (earth
overshoots every day by 1/365 of a
rotation). This is called a sidereal day.
The telescope must move at this rate,
referred to as the sidereal tracking
rate. Earth’s atmosphere limits resolu-
tion usually to a couple of arcseconds
(about 1/2000 of a degree). At the best
sites, resolution rarely exceeds 1 arc-
second. Consequently, in order to
produce round star images, your
tracking system needs to be accurate
to 1/4 arcsecond. If it’s accurate to
one part in 216, you can take unguided
long exposure images on either film or
silicon, up to 20 min.

Atmospheric refraction calls for
slower tracking rates near the hori-
zon. Refraction, dependent on baro-

metric pressure and relative humidity,
makes objects appear higher than
usual in the sky. At the horizon, re-
fraction reaches an angle of 34
arcminutes. Objects like the moon
need different tracking rates.

The best amateur portable tracking
telescopes achieve 30 s to 2 min. un-
guided, and permanently mounted
professional telescopes reach 20 min.
The principal limiting factor is error
in the gearing. Worm and gear errors
include periodic and erratic errors.
The gear’s elliptical shape and off
centering of the worm on its shaft
cause periodic errors. Tooth-to-tooth
differences and backlash when the
drive changes direction cause erratic
errors. By using a gear reducer in the
preliminary stage and a roller drive for

the final stage, the errors in the
former are divided by the ratio of the
final roller. For example, if the gear
reducer has a 1 arcminute error, and
the final roller drive ratio is 30:1, the
error at the eyepiece is 2 arcseconds.

Many professional scopes use cir-
cular rollers driven by machine shafts.
These avoid the errors in worm and
gear drives. Exposures using auto-
mated guided systems to follow a
nearby star can extend longer. Modern
telescope control systems capture
guiding corrections and later play
them back mirrored to compensate for
periodic error correction, called PEC.

A PEC table is built with 200 en-
tries, which cover any number of full
steps. Periodic error will likely repeat

every 200 full steps, corre-
sponding to a single revo-
lution of the stepper and
the attached worm. If the
worm is a double, quad, or
other and gears down-
stream need periodic cor-
rection, the periodic error
can occur over more full
steps. Error values can be
linearly interpolated be-
tween entries.

If one of the telescope
mount’s axes is pointed at
the celestial pole, only
that motor needs to turn
at a constant rate (see
Photo 3). A crystal-stabi-
lized motor-control cir-

cuit is usually used to achieve precise
tracking rates despite varying tem-
peratures during the evening (see
Photo 4).

If the mounting is altazimuth,
which operates like
a gun turret with
spin to the left,
right, up, and
down, both axes
must be driven at
slowly varying
rates (see Photo 5).
As the star moves,
it scribes an arc
across the sky. In
the past, unless you
could afford a mini-
computer, updating
drive rates on the

fly while controlling the motors was a
dream until 286-level processors were
introduced. The 6502 processor
couldn’t update frequently enough to
achieve smooth tracking.

To achieve smooth motion, com-
mand so that start and stop motions
are not perceptible. Analogous to the
monitor’s refresh rate, a 30-Hz com-
mand or update frequency rate is
sufficient. The mount’s fundamental
harmonic frequency also helps. Most
amateur mounts have oscillatory
frequencies of several hertz and are
only moderately stiff. Higher frequen-
cies are attenuated and smoothed out
by the mount.

It’s challenging to achieve 16-bit
control. Servo motors with velocity
feedback are flexible, but the digital
encoder feedback is expensive. Step-
per motors with positional feedback
achieve finer control at slower speeds
but suffer from coarse discreet steps,
vibration, and limited high speed.
Both systems have several successful
installations, but servo motors work
better for equatorial telescopes and
stepper systems work better for inex-
pensive altazimuth mounts.

Table 1—This shows the resulting sequence of control words for a single
full step with maximum average current (ignoring the other windings on
bits #2 through #7) if bit #0 controls winding A (control word output = 1)
and the control word bit #1 controls winding B (control word output = 2).

Photo 2—Here’s what Messier 13, the Great Hercules
Globular Star Cluster, looks like in a CCD camera
exposure.

Sequence of control words output (10 pulses per phase):
---------------------------------------------------------
Phase 1: 1 1 1 1 1 1 1 1 1 1
Phase 2: 2 2 2 2 2 2 2 2 2 2
For full stepping at half current:
Sequence of control words output (10 pulses per phase):
---------------------------------------------------------
Phase 1: 1 1 1 1 1 0 0 0 0 0
Phase 2: 2 2 2 2 2 0 0 0 0 0
For half stepping at half current where the intermediate
     half step consists of both winding A and B on:
Sequence of control words output (10 pulses per phase):
---------------------------------------------------------
Phase 1: 1 1 1 1 1 0 0 0 0 0
Phase 2: 3 3 3 3 3 0 0 0 0 0
Phase 3: 2 2 2 2 2 0 0 0 0 0

Sequence of control words output (10 pulses per phase):
---------------------------------------------------------
a) Winding A at 100% current: 1 1 1 1 1 1 1 1 1 1
+ Winding B at 60% current: 2 2 2 2 2 2 0 0 0 0
= Winding A + winding B: 3 3 3 3 3 3 1 1 1 1
Therefore, to microstep with four microsteps per full step with
maximum current:
b) Sequence of control words output (10 pulses per phase):
---------------------------------------------------------
Phase 1: 1 1 1 1 1 1 1 1 1 1 (A current = 100%, B current = 0%)
Phase 2: 3 3 3 3 3 3 1 1 1 1 (A current = 100%, B current = 60%)
Phase 3: 3 3 3 3 3 3 3 3 3 3 (A current = 100%, B current = 100%)
Phase 4: 3 3 3 3 3 3 2 2 2 2 (A current = 60%, B current = 100%)
Phase 5: 2 2 2 2 2 2 2 2 2 2 (A current = 0%, B current = 100%)

Table 2—Because electromagnetic fields propagate as the inverse square, the
current supplied to B must be about 60% of A’s current.
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MICROSTEPS
For smooth slow-speed motion,

steppers are microstepped. With a PC
controlling the stepper motor wind-
ings’ voltage waveforms, you can
divide full steps into microsteps.
Microstepping gives five advantages:

• resonance frequencies allow good
low-speed operation

• dynamic range with lower frequen-
cies helps avoid ringing, noise, and
vibration

• the gearbox is replaced by extending

the number of steps per motor shaft
revolution

• better step accuracy
• less system complexity

To microstep, winding A slowly
ramps down while winding B slowly
ramps up. Applying full current to
winding A puts the rotor over it. Ap-
plying equal current to both windings
puts the rotor between them. Apply-
ing a current to winding B that is 60%
of winding A’s current puts the rotor
1/4 of the way between them.

Stepper motors are limited at high
speeds. As the computer switches
current on/off to the windings,
counter electromotive force (EMF) is
generated. When the current source is
switched off, the collapsing magnetic
field moving quickly through the
winding generates a voltage spike that
can destroy the power transistors.

A flyback diode prevents the volt-
age spikes by giving a path for the
dying current to circulate back into
the winding. However, this slows the
time for the current to collapse. As
the motor tries to spin faster, torque
decreases. A zener diode used with
the flybacks allows only the voltage
above the zener’s rating to be returned
to the power source. This prevents
extreme voltage spiking and avoids
full braking of the flyback diodes.

While using higher voltage than
the motor’s continuous voltage rating
and smoothly raising the spin, you
can achieve faster speeds. Rates up to
10,000 half steps per second can be
achieved with modest torque. I use a
12-V battery to operate 6-V steppers,
which gives enough voltage to run the
steppers at high speed. A motor step-
ping at high speed consumes minimal
current because little current can be
forced into the motor.

The array holding the half stepping
pattern for two motors, A and Z, is
initialized by the code in Listing 1.
Using the parallel port, this code ener-
gizes windings IxA and IxZ of each
motor, respectively:

outportb( MotorPort,
HsOut[IxA)].A +
HsOut[(IxZ].Z);

where MotorPort = *(unsigned
far *)(MK_FP( 0x40, 0x008 +
(lptnum-1)*2));

The PC’s parallel port can’t source
a lot of current, so power transistors
control the stepper windings. Figure 1
shows how a single parallel port data
output line controls one of the unipo-
lar stepper motor’s four windings.

The PC’s timer chip can time the
half steps using Listing 2’s values.
Reset the PC’s time after the call to
the CMOS RTC (see Listing 3).

Listing 1—The array holding the half stepping pattern for two motors, A and Z, is initialized by the code
shown here.

HsOut[0].A = 1;
HsOut[1].A = 3;
HsOut[2].A = 2;
HsOut[3].A = 6;
HsOut[4].A = 4;
HsOut[5].A = 12;
HsOut[6].A = 8;
HsOut[7].A = 9;
for( IxA = 0; IxA < 8; IxA++)

HsOut[IxA].Z = HsOut[IxA].A << 4;

Listing 2—The PC’s timer chip can be used to time the half steps using these values.

#define Timer_Int 8
/* set new interrupt handler */
disable();
ClockVect = getvect( Timer_Int);
setvect( Timer_Int, SlewTickHandler);

where
#define PIC_EOI_ADDR 0x20
#define EOI 0x20
void interrupt SlewTickHandler( void)
{

if( !Done)
{

DoOneHs();
SetTickDelay();

}
/* enable PIC EOI (end of interrupt) */
outportb( PIC_EOI_ADDR, EOI);

}
and SetTickDelay( void)
has at its end:

Timer = <calculated value between halfsteps>;
/* set 8259 chip, Timer 0, read low, then high, software

triggered strobe */
outportb( Timer_Control, 0x38);
/* low byte */
outportb( Timer_0, 0xFF & Timer);
/* high byte */
outportb( Timer_0, 0xFF & (Timer >> 8));

where
#define Timer_0 0x40
#define Timer_Control 0x43



              CIRCUIT CELLAR®                                                                                                 Issue 119   June 2000       21www.circuitcellar.com

trolled precisely. Torque remains high
regardless of the motor’s speed be-
cause full current is applied during
the on time.

For adequate current resolution,
the sequence of on and off will add up
to 100 or more. Let’s say that the total
sequence per phase is 10. Table 1
shows the resulting sequence of con-
trol words for a single full step with
maximum average current (ignoring
the other windings on bits #2 through
#7) if bit #0 controls winding A (con-

trol word output = 1) and the control
word bit #1 controls winding B (con-
trol word output = 2).

Place the rotor at intermediate
positions between windings A and B
to microstep. To set the rotor 25%
towards B, the rotor must feel wind-
ing B one-third as much, positioning
itself three times closer to A than to
B. Because electromagnetic fields
propagate as the inverse square, the
current supplied to B must be about
60% of A’s current (see Table 2).

Microstepping’s limitations in-
clude deflection error caused by
torque loading and absolute tooth
error, typically 1/25 of a full step. The
deflection error is minimal when the
rotor is positioned on a winding and
maximum when positioned between
windings. If the torque loading is
10%, the shaft’s error between wind-
ings will be 10% of a full step. Micro-
stepping at 10 microsteps per full step
is a reasonable compromise between
smoothness and rotor position accu-
racy. More microsteps can mean a
smoother motion, but will not in-
crease rotor position accuracy.

The parallel port’s eight output bits
can simultaneously control the cur-
rent waveform of the stepper motors’
eight windings. The current wave-
forms are generated using pulse width
modulation (PWM). Full current is
turned on for a certain time then
turned off. The cumulative effect of
rapidly repeating on and off is the
same as if smooth average current. By
adjusting the percentage of on versus
off, the resulting current can be con-

5 VDC referenced to PC
PC

220 Ω

Optoisolator
4N26

Hex inverter
74LS04

Parallel  port data output

1

2

Hex inverter 74LS04

Stepper motor

MJE3055
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12–24 VDC

Ground to stepper motor power supply
mlb 12–99

side
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4.7 Ω
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 side

Stepper motor
Figure 1—This is how
a single parallel port
data output line
controls one of the
unipolar stepper
motor’s four windings.



22        Issue 119    June 2000         CIRCUIT CELLAR® www.circuitcellar.com

A microstepping array is created
and filled with the PWM values so
that during program execution, only
writing each array element in turn to
the port is necessary. For example, if
the 10 microstepping PWM values are
10, 9, 8, 7, 6, 5, 4, 3, 2, and 1, the
resulting array will have 400 entries
(10 PWM per microstep × 10
microsteps per full step × 4 full step
windings per sequence). That makes
40 microsteps (10 microsteps per full
step × 4 full step windings per se-
quence), as shown in Table 3.

Tweaking the PWM values adjusts
for the finite on/off times of the
power transistors, hex inverters,
optoisolators, parallel port, differences
in speed between PCs, and differences
between motors and torque loading.

Motors work best with 300 and
2000 per second PWM counts. If you
use the PC’s BIOS clock tick as a
convenient time marker, each tick
should have between ~20 and ~100
PWMs. Even if a stepper motor is
stationary, it is necessary to send
PWMs to the motor to maintain its
rotor position. If the current is turned
off, the rotor will move to the nearest
full step winding, thanks to the per-
manent magnetism of the motor.
These detents can be felt by slowly
spinning the shaft of a disconnected
motor by hand.

BIOS CLOCK TICK
Whether using velocity-based servo

systems or position-based stepper
systems, an accurate timing signal
must be procured. A PC’s BIOS clock
tick does this. An altazimuth-
mounted telescope moves in a line
between each clock tick. The devia-
tion between this line and the arc a
star will follow between clock ticks
cannot exceed an appreciable fraction
of an arcsecond. The BIOS timing
tick happens often enough, 18.2 times
per second, to alleviate this worry.

The sequence of events for each
BIOS clock tick begins with adding
equatorial drift to current equatorial
position. Next, update a status field
or work with the optional encoders.
Then, perform the following series of
checks if the previous one doesn’t
occur. For example, check for a key-

board event–if there isn’t one, check
for a hand paddle event, and so on.
The next steps are:

• check for an IACA (inter-applica-
tions communication area) event, if
none,

• check for LX200 protocol serial port
events and process all accumulated
commands since the last BIOS
clock tick, if none,

• check if field rotation motor needs
pulsing

Then, move to current equatorial
coordinates by calculating new altazi-
muth coordinates based on the new
sidereal time that was calculated
when the BIOS clock tick occurred.
Calculate the difference between
current altazimuth coordinates and
newly calculated altazimuth coordi-
nates. Determine the distances to
move in each axis and, if you’re
microstepping, choose microstepping
or half stepping.

If there isn’t backlash, spread
microsteps over the BIOS clock tick
by dividing the number of microsteps
into MsTicksRep, the count of PWMs
per BIOS. If microsteps exceed
MsTicksRep, reduce the number of
microsteps per full step to half step.

Continuously generate PWMs,
checking for a BIOS clock tick at the
end of each PWM. Next, port an al-
ready calculated array of on and off to
the stepper motors’ windings.

Listing 3—The PC’s time needs to be reset after the call to the CMOS RTC.

Flag ReadRealTimeClock( int* hr, int* min, int* sec, int* day-
light)

{
Regs.h.ah = 2;
int86( TimeOfDayInterrupt, &Regs, &Regs);
BCD = Regs.h.ch;
*hr = DECODE_BCD;
BCD = Regs.h.cl;
*min = DECODE_BCD;
BCD = Regs.h.dh;
*sec = DECODE_BCD;
*daylight = Regs.h.dl;
/* carry flag set if RTC not running (inaccessible) */
return !Regs.x.cflag;

}
where #define DECODE_BCD (int) (((BCD & 0xF0)>>4)*10 + (BCD &

0x0F))

   0: 1 1 1 1 1 1 1 1 1 1
 10: 3 1 1 1 1 1 1 1 1 0
 20: 3 3 1 1 1 1 1 1 0 0
 30: 3 3 3 1 1 1 1 0 0 0
 40: 3 3 3 3 1 1 0 0 0 0
 50: 3 3 3 3 3 0 0 0 0 0
 60: 3 3 3 3 2 2 0 0 0 0
 70: 3 3 3 2 2 2 2 0 0 0
 80: 3 3 2 2 2 2 2 2 0 0
 90: 3 2 2 2 2 2 2 2 2 0
 100: 2 2 2 2 2 2 2 2 2 2
 110: 6 2 2 2 2 2 2 2 2 0
 120: 6 6 2 2 2 2 2 2 0 0
 130: 6 6 6 2 2 2 2 0 0 0
 140: 6 6 6 6 2 2 0 0 0 0
 150: 6 6 6 6 6 0 0 0 0 0
 160: 6 6 6 6 4 4 0 0 0 0
 170: 6 6 6 4 4 4 4 0 0 0
 180: 6 6 4 4 4 4 4 4 0 0
 190: 6 4 4 4 4 4 4 4 4 0
 200: 4 4 4 4 4 4 4 4 4 4
 210: 12 4 4 4 4 4 4 4 4 0
 220: 12 12 4 4 4 4 4 4 0 0
 230: 12 12 12 4 4 4 4 0 0 0
 240: 12 12 12 12 4 4 0 0 0 0
 250: 12 12 12 12 12 0 0 0 0 0
 260: 12 12 12 12 8 8 0 0 0 0
 270: 12 12 12 8 8 8 8 0 0 0
 280: 12 12 8 8 8 8 8 8 0 0
 290: 12 8 8 8 8 8 8 8 8 0
 300: 8 8 8 8 8 8 8 8 8 8
 310: 9 8 8 8 8 8 8 8 8 0
 320: 9 9 8 8 8 8 8 8 0 0
 330: 9 9 9 8 8 8 8 0 0 0
 340: 9 9 9 9 8 8 0 0 0 0
 350: 9 9 9 9 9 0 0 0 0 0
 360: 9 9 9 9 1 1 0 0 0 0
 370: 9 9 9 1 1 1 1 0 0 0
 380: 9 9 1 1 1 1 1 1 0 0
 390: 9 1 1 1 1 1 1 1 1 0

Table 3—A microstepping array is created and filled
with the PWM values so that during program execution,
only writing each array element in turn to the port is
necessary.
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When BIOS clock tick oc-
curs, PWMs end, new sidereal
time is calculated, and current
altitude coordinate is updated.
To include refraction, current
altazimuth coordinates are
updated to include backlash
compensations that already
moved. And, the coordinates
are updated to reflect the
number of microsteps that
occurred and to include PEC
based on the stepper rotors’
position, altazimuth drift, and
guiding motions.

The steppers operate open
loop. If the stepper motors
never stall and the scope isn’t
bumped, the software always
knows the scope’s aim. After a bump,
the computerized finding breaks, and
the tracking becomes poor because
the drive rates vary for each sky posi-
tion. Center the scope on a known
object and inform the software.

As recourse, you can use encoders,
2′, inexpensive devices that convert
rotary motion into digital pulses. The

pulses are counted by a microproces-
sor. The PC queries the microproces-
sor via a RS-232 serial connection for
the current counts, converting the
counts to shaft angles. The parallel
port is sending output to the stepper
motors and receiving control signals
from the hand paddle, and the serial
port is communicating with the en-

coder interface. Using the
encoders within a mouse is
another alternative. No
interface box is necessary,
simply load a mouse drive
with acceleration and mul-
tiplier options set to off.

The popular incremental
optical shaft encoder con-
sists of an optical disk with
alternating clear and
opaque spokes. Two LEDs
shine onto detectors
through the spokes; they
are staggered so that when
the optical disk rotates, the
following sequence occurs:

time --->
outer detector: on  off on off
inner detector:    on  off on off

If the disk rotates the opposite direc-
tion, the sequence occurs backwards:

                time--->
outer detector:   on  off  on  off
inner detector: on  off  on off

Photo 3—If one of the telescope mount’s axes is pointed at the celestial pole, only
that motor needs to turn at a constant rate.



24        Issue 119    June 2000         CIRCUIT CELLAR® www.circuitcellar.com

Photo 4—A crystal-stabilized motor-control circuit is usually used to achieve
precise tracking rates despite widely varying temperatures in the evening.

The microprocessor de-
codes each passing of a spoke
into four events, known as
quadrature decoding.

The microprocessor  must
handle the encoder’s pulse
train speed. If the encoder is
geared 8:1 and the shaft spins
at one rev per second, the
total events from the outer
detector (A channel) and
inner (B channel) occur at 64
kbps. To reject noise, the
processor can sample each
channel three times, accept-
ing the result only if all reads
are the same. And, it must
count while communicating
with the PC.

In a permanently-mounted tele-
scope, the encoder interface can stay
on always and be run by a small bat-
tery. When the PC is off, the encoder
interface counts encoder pulses, al-
ways knowing the scope’s aim. In an
altazimuth mount, only the tube
assembly in altitude must be set to a
known angle at start-up. The Taki

routines do not need to synchronize
the starting azimuth value to the
scope’s starting direction.

WRITING CODE
Writing code for real-time control

is both a bottom–up and top–down
process. Port I/O and simple motor
commands are built from the bottom
up. Working from the bottom up,

DoOneHs() causes the step-
per motors to move one half
step. Consequently, it’s
called by
SlewTickHandler()s, the
interrupt handler for the PC
timer chip that is installed by
the function
MoveHsUsingIRQTimer().
This function is called by
MoveHs().

At the highest level, se-
quences of objects can be
automated so the operator
can press a button to view
the next object. High magni-
fication, smooth scrolling
tours that last minutes can

be flown over large objects, returning
to the star position, ready for the next
person at public star gazing parties.

Working from the top down,
main() calls ProcessKmwBEvents()
(keyboard), which calls Process
HPEvents() (hand paddle), which
calls MoveToCurrentRaDec(),
which calls SetDirDistance
StepsThenMove(), which calls
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A former orchestral musician and
teacher, Mel Bartels is now a pro-
grammer and systems manager. He
also builds computer control systems
for telescopes and runs a web site for
making amateur telescopes. His web
page is at zebu.uoregon.edu/
~mbartels/altaz/altaz.html.
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Photo 5—If the
mounting is
altazimuth, which
operates like a gun
turret with spin to
the left, right, up,
and down, both
axes must be
driven at slowly
varying rates.

gram. Similarly, images can be re-
trieved from a separate PC running
the CCD camera and e-mailed to the
operator.

Software and related information is
offered for free on the Internet. It was
gratifying to receive significant contri-
butions from others around the world,
making my system better than I could
achieve myself. I

KBEventMoveHs(), which calls
HPEventMoveHs(), which calls
MoveHs(), jumping into the lower-
level functions.

The following inaugurate high-
level sequences that involve calcula-
tions, real-time screen updates, and
lower-level motor control function
calls: keyboard events, hand paddle
events (read via the parallel port)
events , commands assembled from a
serial input port, and files containing

agreed on formats that show a new
time or date stamp. If there are no
events, the software continues track-
ing the currently targeted object.

It is possible to use astronomical
markup language (AML) to send com-
mands via e-mail, which are trans-
lated into LX200 protocol serial
commands. A Linux box with a Perl
script can parse the e-mail and send
commands out the serial port to a
DOS box running the control pro-
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Back to the BasicX

FEATURE
ARTICLE

w
If you’re a creature of
habit when it comes
to programming lan-
guages, you may
want to listen to what
Brian has to say. With
a design project at
hand, he realized it
was time to break the
shackles of tradition
and take a look at
NetMedia’s BasicX.

hat does it take
to make a dyed-in-

the-wool assembly
language programmer

consider a high-level language? After
20 years of designing circuits with
numerous microcontroller families
using assembly language firmware, I
thought nothing could convince me to
change. I preferred having nothing
separating my source code from the
internal CPU core and any external
peripherals. If something doesn’t
work as expected, I simply look at the
datasheets and my own program code.

My second rule is to use the small-
est possible microcontroller, prefer-
ably one with all of the required
memory onboard that needs few ex-
ternal peripheral devices. Although
few of my designs could be considered
high speed, usually there is a time-

critical aspect of the design. For all of
these reasons, a design based on firm-
ware written in a high-level language
has always been ruled out.

My last few projects involved
Microchip’s high-speed PIC family of
microcontrollers. Although the de-
signs worked, the assembly language
programming, with limited RISC
instruction set and addressing modes,
was enough to make me take another
look at higher-level languages.

Lest you think I’m stuck in the
’80s, I stopped writing assembly lan-
guage programs for any PC-based
applications when Windows 3.1 be-
came popular. I liked QuickBasic for
DOS, so Visual BASIC became my
programming for Windows.

BASICX DEVELOPMENT SYSTEM
I recently saw advertisements for

NetMedia’s BasicX microcontroller
chip and associated development
system. They claim to execute high-
speed BASIC programs, as well as
built-in high-speed networking and
multitasking. Because I had a design
project on the horizon involving de-
vices best interconnected through a
network topology, I decided to inves-
tigate BasicX. The increasingly com-
mercial nature of the world wide web
frustrates me, but the ability to down-
load varied information within half an
hour is rewarding!

My first impression of the BasicX
system was positive. Although the
ads didn’t mention what processor
was used in this product, I discovered
it was an Atmel AVR chip. I down-
loaded its datasheet and found it to be
a fast chip with a great instruction
set, lots of onboard flash memory,
EEPROM, and SRAM, as well as

Brian Millier

Photo 1—The BasicX development board/
programmer is only 3" × 3". The 25-pin D
socket connects to the host PC’s printer port,
which controls the board and supplies it with
power. Mounted on the opposite side are the
serial and network ports, as well as an
external power socket.

Part 1: NetMedia’s Development System
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splendid peripheral functions. If I had
to live with the slower execution
speed of BASIC firmware, this seemed
like a fast engine on which to run it.

The BasicX development board/
programmer is a small board that
connects to the printer port of a PC
(see Photo 1). For $50, you can buy
this board, including a CD-ROM con-
taining the Compiler/IDE software
and documentation. Two cables are
also included. The first cable allows
you to connect the development board
to the target board (in place of the
BasicX chip) for full speed testing of
your code, and the second allows you
to download the program code di-
rectly to the target board, using a
simple seven-wire connection.

The development system has a
simple application preprogrammed
into its EEPROM memory. By power-
ing the BasicX board and connecting
its serial port to a free COM port on
your host PC, you can verify that the
processor works by watching a mes-
sage that is sent once every second.
On the units I received so far, this
was either a hello world message
or a continually updated time and
chip serial number. It’s always good
to see that something has been tested
and is working, early in the game!

THE HARDWARE
Being a hardware person at heart, I

can’t resist first explaining what’s
involved in the BasicX hardware be-
fore going into detail about the fea-
tures of the language, the operation of
the compiler, and so on.

Figure 1 shows a typical small
BasicX system including the network
function and a serial port. This is
similar to the circuitry on the BasicX
development board itself, except the
development board steals its power
from the host printer port connection,
resulting in a few circuit changes.
Also shown in the Figure is the wiring
diagram for a cable to connect it to a
PC’s printer port for programming
(using NetMedia’s BasicX compiler
and downloader software).

The first point to note is the pres-
ence of an Atmel AT25256-SPI
EEPROM memory chip connected to
the Atmel 90S8515 microcontroller’s

SPI port. The BASIC pseudocode in-
terpreter resides permanently in the
’S8515 flash memory array and the
user’s application code, after being
compiled into pseudocode, is stored in
the serial EEPROM memory. The
AT25256 EEPROM is 32K × 8, and
holds between 500 and 1000 lines of
BASIC code. A simple seven-pin
header, connected to the SPI EEPROM
and the microcontroller *RESET line,
constitutes the programming interface
to the host PC. Although the ’S8515
microcontroller supports a clock rate
up to 8 MHz, a 7.3728-MHz crystal is
used to provide exact UART data
transfer rates, as well as to simplify
the real-time clock (RTC) design.

The network function uses the
three-wire RS-485 standard with a
single 75176 transceiver chip. An RS-
485 link must be terminated at both
ends of the run, so a 100-Ω resistor/
jumper is provided for the end units.
RS-485 is a multidrop network that
uses a differential pair of signals on its
NET+ and NET– lines, so it works
reliably over long distances and al-
lows many devices to be connected to

it. RS-485 is a half-duplex protocol
that supports peer-to-peer networking,
assuming that the software handles
the inevitable data collisions. The RS-
485 network uses a common ground
line for all of the interconnected
units, so you must ensure that there
aren’t significant differences in the
ground potential of these units, or
circuit damage could occur.

BasicX supports an independent
COM port (defined as COM2), in
addition to the Network port. Signal-
level translation to RS-232 levels can
be done with a MAX232. NetMedia
chose instead to use a few transistors
on the BasicX development board,
stretching the RS-232 specification by
transmitting data using 5-V logic
levels instead of the ±3-V minimum
levels specified by the RS-232 stan-
dard. It works fine this way.

Now you have a microcontroller
with program memory, a network
connection, and a serial port, which
leaves 26 I/O lines free for other uses.
Including the SPI interface, which can
be used for other devices besides the
EEPROM memory, you may have all

Figure 1—This is a typical minimal BasicX configura-
tion, containing 32K × 8 of external program EEPROM,
a network port, and a serial port with RS-232 driver. I
don’t show a power supply, only 5 V at less than
100 mA is needed. If you don’t want to use NetMedia’s
BasicX development board to download program code,
you can design a cable as shown.
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has tried to read or load 16-bit periph-
eral registers in these languages
knows what a chore this can be and
may welcome this feature. But, before
counting on absolute rescue, read the
manual about NetMedia’s implemen-
tation of these unsigned types because
there are a few limitations that will
haunt you if you simply charge ahead
with your coding.

The floating-point math routines
are IEEE-standard, so the results
should be the same as if obtained on
your PC. Floating-point numbers are
also stored in IEEE format, so arrays
can be easily transferred to a host PC
in a block move and properly inter-
preted by the host application. I was
disappointed that BasicX doesn’t pro-
vide a function to convert ASCII
strings to floating-point or integer
numbers (VAL function). Nor does it
provide the STR function, which con-
verts in the other direction. Because
most human input/output is ASCII
string-oriented, this is unfortunate.

Luckily, tucked away among the
examples on the BasicX CD-ROM is
the serial I/O folder containing the
sample program SerialPort.bas,
which includes some BASIC routines
to handle the conversion of various
numeric data types to string output.
However, such routines tend to en-
large your own program.

NETWORKING
Networking was another feature

that caught my eye in the BasicX
advertisment. I haven’t had an urge to
create Internet appliances, but I often
develop groups of modules used for
data acquisition and control in the lab
environment. In some cases, it is
difficult to connect them all to the
host PC’s available ports.

 Software packages, such as those
available from Cimetrics Technology,
provide RS-485 network drivers for
popular microcontrollers. And, al-
though sophisticated networking
protocols like TCP/IP have their
place, they are too complex for small
microcontroller applications. The idea
that all commands, regardless of how
simple, have to be wrapped in a
packet that could be hundreds of
bytes seems inefficient for my pur-

poses, even when coupled with a
high-speed Ethernet link.

For the application I had in mind, I
decided to design a network controller
using a BasicX circuit connected to a
PC’s COM port. All other devices are
interconnected using the BasicX high-
speed RS-485 network interface. An
offshoot of this network controller is
the BasicX NetSnoop project, which is
the subject of Part 2 of this series.
This software provides a background
debug monitor for BasicX systems.

BasicX networking differs from
conventional network protocols. In a
conventional network, the master
sends an address-stamped message
packet out on the network. All other
devices on the network must monitor
the packets, and the addressed node
must recognize messages addressed to
it. At this point, the addressed node
must parse the incoming message into
a command, possibly with one or
more parameters. If the intent of that
command is to illicit some response
from the addressed node, it must also
be able to take control of the network
and return that value in a message
packet of its own. It is a difficult task,
given this protocol, to convert stand-
alone firmware devices to work as
networked devices.

BasicX bases its networking proto-
col instead on the concept of shared
variables. In other words, rather than
sending out a message that the receiv-
ing node must parse and act upon, the
user’s program issues a command to
write a value to a particular variable
at a particular network node address.
Depending on the variable involved,
this could be as simple as a single
byte value or as complex as a whole
array of data. Retrieving data from
another node is also simply a matter
of reading the value of a variable at a
particular node address. Expanding on
this concept, BasicX also supports the
concepts of groupcasting and broad-
casting, in which the variable-write
functions can be targeted to like-
numbered node groups or to the
whole network, respectively.

Adding network functionality
starts with adding the single line:

OpenNetwork(BA,GA)

of the I/O lines needed for your
project. On the other hand, if it is an
I/O-intensive project, you can switch
the ’S8515 to the external SRAM
mode, which provides a full 16-bit
address and 8-bit databus that can be
used for SRAM or extended I/O.

THE BASICX LANGUAGE
If you like what you’ve read so far,

you’ll be interested in the BasicX
language. I prefer the user’s program
to be compiled into machine language
and then stored in the ’S8515 flash
memory, because compiled native
code runs quicker than interpreted
pseudocode programs. Furthermore,
fetching pseudocode instructions from
the SPI EEPROM is slower than ac-
cessing the ’S8515’s internal flash
memory. Photo 2 shows the serial
EEPROM’s SPI clock and data output
lines. Note that each SPI operation
takes about 5 µs. Addressing a byte of
serial EEPROM memory requires
sending a command byte followed by
a 16-bit address; then the data is avail-
able to be shifted in. Although the
first (non-contiguous) memory fetch
requires 20 µs, consecutive memory
locations can be read at 5 µs per byte.
This is slower than the flash array’s
735-ns access time.

Because many of the valuable fea-
tures mentioned in the hardware sec-
tion depend on this design decision,
you must accept the speed penalty.
Let’s investigate some of the interest-
ing features of the BasicX language.

NUMBERS AND MATH
I’ve always thought that if you’re

not using a lot of math in your pro-
gram, you don’t need a high-level
language. Let’s look at BasicX. BasicX
provides the following standard types:
Boolean, Byte, Integer, Long Integer,
and Single Precision Floating Point.

In addition, BasicX also adds a few
variants, available by using the new
keyword in the dimension statement:

UnsignedInteger
UnsignedLong

Neither QuickBASIC nor Visual
Basic support unsigned integers or
unsigned long integers. Anyone who
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without effort. It is the programmer’s
responsibility to include a copy of the
MAP file(s) associated with the pro-
gram code that is running on any node
to which one intends to transfer data.

The MAP file is a text file (with
an .MPX extension) that is automati-
cally generated by the compiler, in
addition to the program code file it
generates for downloading to the
BasicX chip. To do this, I copied the
section of the map file containing the
references to the variables of interest
to the clipboard. Then, I pasted this
section into the beginning of my
BASIC program.

When you’re declaring variables in
a program, it helps to group network-
related variables at the beginning of
the list. Then, only that part of the
map file has to be clipped and pasted
into the BASIC code of the other mod-
ules that access those variables.

Incidentally, assembly language or
C programmers who are used to the
INCLUDE directive for handling such
tasks, will find this procedure neither
intuitive nor efficient. However, in

my experience, BASIC source code
files are the only files that appear to
be able to be grouped together as part
of a project. But, I have not received
response from NetMedia to various
questions, so I can only report my
experiences gleaned from the docu-
mentation available in the package
itself and from information on the
company’s web site.

 The bottom line is that this net-
work concept makes it easier to de-
velop and debug a device as a
freestanding unit and convert it easily
to a networked device. And, I’ve saved
the best part for last—the speed of
this network is 460,800 bps. Although
it is slow compared to a 10BaseT
Ethernet link at 10 Mbps, the protocol
is lean, resulting in respectable data
transfer rates.

MULTITASKING
I must confess that in all of my

years of programming, I have seldom
written programs that could be de-
scribed as multitasking. I often make
full use of both internally- and exter-

where BA is the board address as-
signed to this particular BasicX mod-
ule and GA is the group address
assigned to this module. A number
must be assigned, but groupcasting
does not necessarily need to be used.

After this initialization, communi-
cation between modules is done using
the GetNetwork and PutNetwork
commands. Both commands require
you to specify the board address of the
intended node, as well as the name of
the variable on the node that is to be
read or written.

The other parameter needed is the
value(s) to read and write to that
variable. To simplify error handling,
BasicX performs the requested data
transfer until it is either successful
or a timeout period has elapsed. The
success or failure status of the opera-
tion is returned to the user in a result
byte, which the program can employ
to perform handling of errors or re-
covery routines.

The convenience of being able to
refer to a remote node’s variables by
name is not something that comes
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nally-generated interrupts from tim-
ers, ADCs, and so forth, so it can be
argued that, in this case, the processor
is doing many things at once. Al-
though many of my programs include
code for a real-time clock, which
often performs scheduled functions,
I’ve never expanded on this to provide
full-fledged task-switching and sched-
uling functionality.

BasicX provides this multitasking
capability, the basis of which is the
RTC that operates in the background
during program execution. Its intrin-
sic timing resolution (tick) is 1.95 ms.
Program tasks are given 1.95-ms
slices of CPU time, with each task
getting its turn. This task-switching
rate is fast enough to be useful for
many real-time operations, particu-
larly those involving human I/O, we
move slowly by computer standards.
Tasks that perform critical operations
can block task-switching, if necessary,
to complete a particular job (the
LockTask procedure). Conversely,
lazy tasks, or those that are generally
idle while waiting for infrequent I/O
activity, can yield their slice to any
other task that has work to perform.

Using multitasking in a program is
not difficult for modest applications.
Basically, a procedure can be written
in much the same way as if it were
called from a main program. When
the program is restructured for
multitasking, it calls this task using
the calltask syntax, instead of the
call syntax. Tasks that contain loops
awaiting infrequent input events
must be modified to yield their time-
slice if no activity is pending. High
priority tasks, or those that perform
operations that cannot be interrupted
even for a few milliseconds, must call
the LockTask procedure at the begin-
ning of the critical part of the code,
and then the UnlockTask procedure
when finished.

In any multitasking environment,
the possibility exists that numerous
tasks may reference common vari-
ables. The procedure for modifying
variables is not inherently indivisible
in a microcontroller. That is, one task
could be part way through modifying
a variable when its time-slice ends
and another begins. The results could

be unpredictable, depending on
whether another task refers to or
changes that variable. For this reason,
a multitasking executive must intro-
duce the concept of the semaphore,
which is a way to limit access to a
variable by any task other than one
that started a modification operation
on that variable. BasicX supports the
semaphore concept.

The only obvious fly in the oint-
ment with BasicX multitasking in-
volves the allocation of stack space
for the tasks. With or without multi-
tasking, BasicX uses an implicit stack
for its main program that is automati-
cally allocated, meaning it is not a
user declaration. Multitasking re-
quires that a separate stack space be
allotted by the user for each task.

There are no firm rules dictating
how to calculate the necessary stack
space, but if you underestimate it,
your program will crash. Unless you
are using external RAM, you only
have about 250 bytes of internal RAM
available for your variables, I/O
queues, and stack space. Clearly, you
can’t pop in a high number here for
safety’s sake! Rest assured, though,
the documentation does provide some
hints along the way.

NEAT TRICKS
In addition to the normal comple-

ment of BASIC functions, NetMedia
threw in smart functions and proce-
dures to take advantage of the ’S8515
hardware features. I’ll briefly outline a
few that I found interesting.

DACpin is a procedure that pro-
vides a rapid set of precisely timed
pulses to simulate an analog output
voltage on any available I/O pin. Its
resolution is about 8 bits and has to
be called periodically to refresh the
voltage at the pin.

By using an external variable resis-
tor and fixed capacitor connected to a
free input pin, the RCTime procedure
returns a value proportional to the
value of the resistor. It accomplishes
this by shorting out the capacitor and
measuring the time it takes for the
capacitor to charge to the switching
threshold voltage of the pin. This can
be used for modest resolution mea-
surements, such as reading resistive

sensors or the value of calibration or
front-panel user-adjustable pots.

The InputCapture procedure allows
you to capture the transition times on
the InputCapture pin of the processor.
The desired number of transitions and
the sense of the leading edge are user-
defined in the parameter list of the
procedure call. When called, an array
is filled with these transition time
values. However, shortcomings in-
clude the fact that this procedure
suspends all other operations during
its execution, hanging up the program
if the required number of input transi-
tions doesn’t occur.

Complementary to the above pro-
cedure, OutputCapture sends out a
user-programmable pulse train to the
dedicated OutputCapture pin on the
processor. The resolution is 135.6 ns,
and the pulse widths are specified as
unsigned integers. The phase of the
pulse train is user-specified, and the
complexity is limited only by the size
of the array, which is prefilled with
the individual pulse width values. As
with InputCapture, this procedure
completely ties up the processor dur-
ing its execution. And it uses the
’S8515 Timer1, so it will interfere
with the operation of COM2, which
also shares this timer. If you use this
function and also need to use the
COM2 port (non-concurrently), re-
open the COM2 port each time you
use either of these capture procedures.

The SPIcmd procedure lets you
access the processor’s SPI port, allow-
ing you to connect SPI peripherals to
the processor. The parameter list of
the associated OpenSPI procedure
allows you to interface to many differ-
ent SPI devices by setting clock rate,
polarity, and phase. Refer to Photo 2
where the SPI bus is busy doing
EEPROM memory fetches. Don’t
expect to be able to connect devices
with high data-transfer requirements
to this bus without a degradation of
program execution speed.

PICTURE WORTH 1000 WORDS
Although NetMedia compares

BasicX to Microsoft Visual Basic in its
advertisements, this comparison is
stretching it. BasicX is a beneficial
implementation for a microcontroller.
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However, Visual Basic is an event-
driven language based on the Win-
dows GUI, which draws heavily on
many assorted graphical objects.
BasicX has no intrinsic support for
graphics. This is logical because the
hardware has neither inherent graph-
ics input nor output devices. Al-
though BasicX syntax resembles
Visual Basic, it more closely re-
sembles QuickBASIC, which is not
based on a GUI (although it did sup-
port graphics). Perhaps NetMedia
thought many of its younger custom-
ers have not heard of QuickBASIC, or
DOS for that matter!

THE ATMEL AVR PROCESSOR
One significant reason why pro-

grammers like high-level languages is
because they insulate from the nitty-
gritty details of the processor. How-
ever, for low chip-count embedded
circuits, the processor design is im-
portant. As discussed earlier, because
you can expect a considerable perfor-
mance penalty going from native code
to a pseudocode interpreter, it be-
comes necessary that the processor be
both fast and efficient in terms of an
instruction set. I’ll briefly outline the
architecture of the Atmel AT90S8515
chip used in the BasicX system, and I
think you’ll agree that it fulfills both
of these criteria nicely. The Atmel
90S8515 microcontroller’s datasheets,
in PDF format, are included on the
BasicX CD-ROM. You can also down-
load them directly from Atmel.

The ’S8515 is part of Atmel’s AVR
family. It labels the AVR family as
having RISC architecture, with 118
instructions and nine different ad-
dressing modes. If this is a reduced
instruction set, I wonder what I
should call the PIC chips I’ve been
using lately, with their limited 37
instructions and few addressing
modes. I assume that the RISC label
on the AVR is justified because the
instructions execute in one cycle.
Also, unlike other processors that
divide the clock input frequency by a
factor between two and five, the
’S8515 runs at the full speed of the
clock crystal, which ranges as high as
8 MHz. Coupled with its two-stage
instruction pipeline, this yields an 8-

MIPS rating. The ’S8515 processor has
32 general-purpose registers, directly
addressable in one cycle, and three 16-
bit address pointers for indirect data
addressing. High-level languages are
particularly well served by the numer-
ous address pointers.

Program memory is flash EEPROM-
organized as 4 K of 16-bit words to
match the 16- or 32-bit instruction
width. In the BasicX system, this
memory space is pre-programmed by
NetMedia with the BASIC pseudocode
interpreter, so this leaves little more
to say. Although this memory space is
flash PROM and therefore easily
erased, I assume NetMedia has used
the Write-Lock feature of this chip to
keep its program intact.

The ’S8515 contains 512 bytes of
SRAM, with 250 bytes available for
the user’s BASIC variables, queues,
and so on. The rest is reserved for the
interpreter, but its needs vary. I’ve
had programs crash with 190 bytes of
RAM used for variables, and no com-
piler error messages were generated.
This is fine for many applications, but

if more SRAM is required, it can be
accommodated using the external
SRAM mode of the processor. By set-
ting bit number seven (the external
SRAM mode bit) in the MCUCR reg-
ister, 19 general-purpose I/O lines of
the ’S8515 switch functions to pro-
vide a 16-bit (multiplexed) address
bus, an 8-bit data bus, plus the usual
–RD and –WR lines. This allows for
direct addressing of 64 KB of RAM,
minus a small area that is mapped to
the register file and the I/O registers.
NetMedia sells a “RAM-sandwich”
module, which uses this feature (with
bank-switching) to provide 128 KB of
SRAM. I have not tried this module
but have used the external SRAM
mode to successfully provide an ad-
dress/data bus for external I/O chips.

Rounding out the onboard memory
is 512 bytes of data EEPROM. In
BasicX, this area is used for persistent
variables (i.e., those that do not lose
their value when the power is
switched off). Like all EEPROM ar-
rays, this memory can endure a finite
number of erase/write cycles. (In the
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case of the ’S8515, the number is at
least 100,000.) Common to all
EEPROM cells, a write cycle takes
approximately 4 ms to complete.
Although this timing is handled trans-
parently by the BasicX interpreter, it
may have to be considered in some
user applications. With these two
limitations in mind, persistent vari-
ables are best left for things like con-
figuration data that seldom changes
but must survive power shutdown or
short power interruptions.

Like most modern microcontrol-
lers, the ’S8515 has a variety of built-
in timer/counter modules. There is
one 16-bit timer/counter and one 8-bit
timer/counter, each with its own
prescaler. The 16-bit timer/counter
has an input capture register for moni-
toring the timing of signal changes on
its InputCapture pin. Also, there are
two compare registers that generate
output pulses of accurate widths or
implement a dual PWM feature. A
notable feature of the PWMs is that
they are glitch-free and phase-correct,
which is important in some motor-
control applications. To date, I haven’t
seen this level of sophistication in
other microcontroller chips.

Luckily, both the InputCapture and
pulse-generating features of this
timer/counter are directly supported
by BasicX commands, because any
features involving accurate timing are
of limited use unless directly sup-
ported by the language. Although the
dual PWM functions are not intrinsi-
cally part of the BasicX language, you
may refer to the References section at
the end of the article for an applica-

tion note describing some BasicX code
that will implement this feature as a
background task.

The 8-bit timer/counter is used by
the BasicX operating system to imple-
ment an RTC with resolution of 512
ticks per second. The RTC also acts as
the task-switcher for BasicX multi-
tasking and handles the sleep proce-
dure, which provides delays in
1.95-ms increments.

Asynchronous data communication
is well supported by the ’S8515, with
a full-featured UART port (referred to
as COM1 in BasicX). This UART
block contains its own data transfer-
rate generator, so you don’t have to
waste a timer/counter for this pur-
pose, as with other micros. The
UART has 9-bit capability, which is
used by the BasicX networking fea-
ture. When used for networking,
BasicX uses the UART’s highest speed
of 460,800 bps.

BasicX also supports a second com-
munications port, COM2. Don’t look
for this UART port in the ’S8515
datasheets. Instead, BasicX imple-
ments a bit-banged or software UART
for this port, topping out at 19,200 bps,
which is respectable for a software
UART running in parallel with the
user’s code. Both COM ports use indi-
vidual circular buffers for input and
output, the length of which is user-pro-
grammable. The BasicX example pro-
grams use the 19,200-bps rate, and so
far, I haven’t experienced any data loss.

The last major block in the ’S8515
is the SPI port. Like most SPI blocks,
it allows programming of clock rate,
polarity, and phase. Additionally, it

Photo 2—The SPI bus on
a BasicX system handles
the program EEPROM I/O,
and is an extremely busy
highway! This ’scope image
is typical during active
program execution. The
upper trace is the EEPROM
data out line, and the lower
one is the SPI clock. The
first three clock bursts are
for command/address data
being sent to the EEPROM,
therefore no data is seen
on the EEPROM data out
line during that interval.
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allows you to choose the data order
(i.e., whether the LSB or MSB of the
data word is sent first). On several
occasions I’ve been forced to use bit-
reversal routines to accommodate
specific peripheral ICs (my article in
Circuit Cellar 95, “Digital Attenua-
tors” comes to mind).

In the BasicX system, the user
program is stored in an external serial
EEPROM (an Atmel AT25256) con-
nected to the SPI bus of the ’S8515
microcontroller. However, the SPI bus
can also be used with other peripher-
als by providing a separate *Chip
Select line for each one, using spare
I/O lines on the microcontroller. In
most cases, the SPI signal format
required by these peripherals differs
from that used by the EEPROM
memory device. Earlier I mentioned
the SPIcmd procedure which allows
SPI transfers into and out of the
’S8515 with user-selected SPI param-
eters. If used properly, this doesn’t
disrupt the regular program memory
fetches from the serial EEPROM,
which would crash the program.

My last observation about the
’S8515 involves its power require-
ments. At clock frequencies less than
4 MHz, the chip will operate down to
2.7 V, making it usable in battery-
powered devices. It works well in the
4.0–6.0-V range over the full-speed
range, making it a good choice for
circuits running from four 1.5-V cells.

WHAT’S NEXT?
In the second part of the article,

I’ll explain BasicX software. I’ll also
discuss a PC-hosted background debug
monitor that I wrote to troubleshoot
BasicX projects.

While you’re waiting for Part 2,
check out the Delphi BasicX forum
for more BasicX information. It’s been
interesting uncovering yet another
useful microcontroller. I

http://www.atmel.com
http://www.basicX.com
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In the pre-micropro-
cessor era, quartz
crystals were some-
thing most designers
had only heard about,
and most had heard
very little at that. As
George points out,
even today many
people still don’t un-
derstand exactly what
makes crystals tick.

efore the ad-
vent of the micro-

processor, a quartz
crystal was a mysteri-

ous component that was associated
with ham radio amateurs, military
personnel, and U.S. Post Office com-
munications employees. Few people
understood how it worked, and fewer
knew how to design a circuit with it.
Generations of electronics engineers
never saw one during their careers.
Color TV and the microprocessor
changed that. The 3.579545-MHz
color burst crystal, now manufactured
in volume for consumer goods, low-
ered the price. Then, a microprocessor
designer achieved accurate timing
with a crystal controlled clock, and
the rest is history.

But, one thing did not change. Al-
though crystals keep precise clocks
ticking inside nearly every electronic
device today, few people understand
what makes them tick. That is be-
cause manufacturers make life easy
for engineers by producing ready-
made, monolithic oscillators. To
make a stable clock, buy a chip and
plug in the crystal. Is there more?

Engineers will benefit from under-
standing how crystals work so that
they can produce robust designs with
optimum performance under adverse
environmental conditions. In this

article, I’ll discuss the crystal’s prin-
ciple of operation first, then consider
applications and oscillator design.

FROM THE BEGINNING
The reason crystals are used to

produce stable frequencies is their
inherent accuracy and stability. Oscil-
lators need timing elements, which
can be resistor-capacitor (RC), induc-
tor-capacitor (LC), or electro-mechani-
cal. Crystals, ceramic resonators, and
tuning forks are electromechanical
resonators. The best you can achieve
with an RC oscillator is 0.1% accu-
racy and stability, an LC oscillator
will do approximately 0.01% better.
But, with a well-designed crystal os-
cillator, a few parts-per-million (ppm)
accuracy is within reach.

Now, I’ll state a few points about
ceramic resonators and tuning forks,
and then move on. Ceramic resona-
tors differ from crystals in that they
are manufactured from polycrystalline
ceramic; quartz crystals are monoc-
rystalline quartz. Ceramic resonators
achieve approximately two orders of
magnitude less accuracy and stability
than crystals but are easier to manu-
facture and cost less. In applications
where price is crucial and timing
accuracy is not, they are acceptable.
Principles that apply to the operation
and application of quartz crystals are
equally applicable to ceramic resona-
tors. In fact, in many circuits, a ce-
ramic resonator can substitute for the
crystal. However, the price you pay is
decreased performance and possibly a
minor adjustment to the component
values. Quartz crystals are practical at
frequencies from 100 kHz to 40 MHz.

Previously, tuning forks, magneti-
cally and piezoelectrically driven,
were preferred for frequencies less

George Novacek

Quartz Crystals and Oscillators
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Figure 1—Take a look at the
detail cut and the optical, electri-
cal, and mechanical axes in the
typical quartz crystal geometry.
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than 100 kHz. Today, because
microelectronics are inexpen-
sive, it is practical to use
crystal oscillators with signal
processing instead. When an
application requires it, divide
the frequency to whatever is
needed. When a waveform is
required, it can be simply and
inexpensively synthesized.

For frequencies higher
than 40 MHz, crystal wafers
become too thin and less
practical to manufacture.
Because crystals can oscillate
on odd harmonics (third,
fifth, and seventh), overtone
oscillators and phase locked
loop (PLL) are used to achieve high
frequency oscillations. Surface acous-
tic wave (SAW) resonators are gaining
popularity for frequencies greater than
100 MHz, and inverted MESA crystals
run at several hundred megahertz.

With an effective L/C ratio, crystal
resonators have high Q (quality fac-
tor), which determines their narrow
signal bandwidth. The higher the Q,
the narrower the bandwidth. Achiev-
ing Q = 150 at 1 MHz with a LC cir-
cuit is excellent; a crystal can provide
250,000. This means you can build a
narrow band-pass filter or a stable,
clean, low-distortion oscillator.

In its natural form, a quartz crystal
has a hexagonal cross-section (see
Figure 1) that’s defined by three axes
(X, Y, and Z). Z stands for an optical
axis, which goes through the apexes of
the crystal. The X and Y axes are per-
pendicular to each other and exist in
three sets that are perpendicular to the
sides of the hexagon: X, X′, X″ and Y,
Y′, Y″. The  X axes are electrical, and Y
axes are referred to as mechanical. The
quartz crystal’s piezoelectric properties
mean that when you apply a voltage to
an electrical axis, for example X′, a
mechanical distortion will result in
the corresponding mechanical axis Y′.

Conversely, if you stress the me-
chanical axis, a voltage will develop
across the corresponding electrical
axis. In a crystal resonator, electrical
terminals are fixed to a small plate
cut out of the original crystal (called a
cut). An AC voltage applied to these
terminals causes the cut to vibrate.

When the vibrations occur at the cut’s
resonant frequency, their amplitude
grows to a magnitude that is deter-
mined by the quality factor Q. The
resonant frequency of the cut is deter-
mined by the cut’s mechanical char-
acteristics (such as geometry, size,
and thickness) and the way it was cut
out of the original crystal. Invisible to
you, the cuts oscillate in different
modes, depending on the design. This
characteristic and some modes of
vibration are illustrated in Figure 2.

The extensional oscillations are
typical of the most commonly used
cut, AT, and the face shear would be
seen in cuts like CT or GT. There are
infinite combinations of crystal cuts
with varying characteristics. For con-
venience, the industry settled with a
number of commonly used cuts. Fig-
ure 3 shows them. Today’s applica-
tions use the AT cut most often.

FREQUENCY STABILITY
The primary factors that contribute

to the crystal oscillator’s frequency
stability are:

• temperature at ±50 ppm,
from –55°C to 125°C

• power supply at ±2 ppm
for 5 V, ±10%

• load at ±1 ppm for 20%
load change

• time is responsible for
short-term ±0.01 ppm
per second

• ages ±15 to 20 ppm per
year

If the crystal is properly
packaged and operates with
well-designed electronics,
temperature is the most sig-
nificant influence on its
frequency stability. The type
of the cut determines this. As
you see in Figure 3, the AT
cut is made at 35° to the Z
axis. Varying the 35° angle by
14 angular minutes (+10′, –4′)
affects the frequency versus
temperature performance (see
Figure 4). Today’s manufac-
turing process is accurate and
well controlled. The best in
class (BIC) manufacturers
determine the optimum angle

for the desired operating temperature
range and manufacture the crystals
accordingly. For example, because 2′
offset will result in the minimum
temperature drift for 0°C to 70°C,
using crystal outside these limits will
deliver less than optimal performance.

For the military operating range
(–55°C to 105°C) you can achieve ±50-
ppm frequency stability. If this isn’t
good enough, use a crystal with an
integral oven that keeps it at a con-
stant temperature. Such compensated
crystals are available in varieties that
depend on the principle of compensa-
tion control called TCXO, OCXO,
MCXO, and so on. They deliver ±3 ×
10-8 frequency stability and aging
autocalibration. Don’t forget the com-
mon electronic wristwatch, which is
often clocked by an inexpensive ce-
ramic resonator. How can it be so
accurate? Its success relies on the
human body—an excellent tempera-
ture controller. Wearing the watch
maintains its internal operating tem-
perature at an almost constant 37°C.

Figure 2—Here are four examples of quartz crystal cuts’ oscillation modes.

Figure 3—This is how crystal cuts are created. Notice the most common
cut, AT, which varies from BT, CT, and DT by one angle to the Z axis.
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for the high Q. Resistance
(Rm) represents the loss of
the resonator, which, in an
oscillator, must be compen-
sated by the amplifier gain
to sustain oscillations.

The topology of the cir-
cuit in Figure 5a indicates
that two resonances, one
series determined by the
motion components and
one parallel due to C0, will

exist. The parallel resonance is ap-
proximately 1% higher than the series
resonance (see Figure 5b). The parallel
resonance can be pulled slightly by
external components.

If you determine the stray capaci-
tances exactly, the new resonant fre-
quency would be:

0

(1 )
2

m
a s

C
f f

C
= +

This property trims crystal oscilla-
tors operating in parallel resonance
mode. It is the basis for the voltage-
controlled crystal oscillator (VCXO)
where frequency deviation between
±10 and ±100 ppm can be achieved.

Although series resonance affords
the best frequency stability, parallel
resonant oscillators (Pierce’s topology)
are used more because they’re simple,
especially in microprocessor circuits.
As a result, series mode crystals are
difficult to find. Structurally they are
the same as parallel crystals. They
differ only in testing and the resonant
frequency marking.

A parallel crystal can be used in a
series mode oscillator and vice versa,
but the parallel crystal in the series
oscillator will run at a lower fre-
quency than marked.

THE OSCILLATOR
Now that you understand the prin-

ciples behind the ubiquitous quartz
crystal, you can make a stable oscilla-
tor with it. For an amplifier to oscil-
late, it must satisfy two conditions at
the frequency of oscillation.

First, it must have a positive feed-
back, that is 360° (0°) phase between
the input and the output. Secondly,
its open-loop gain must be greater
than one at the oscillation frequency.
This is known as the Barkhausen
criterion. The resonator suppresses
the gain outside the desired frequency
and provides a needed phase shift.

Figures 6a and 6b depict simplified
diagrams of two of the most popular
oscillator configurations. They are
shown with inverter circuits for two
reasons. Their operation is easier to
understand than if they were shown
with discrete transistors, and this is
how the majority of today’s oscilla-
tors are built.

For completeness, Figure 7 shows
several discrete oscillator designs,
with both bipolar transistors and
unipolar transistors. Today, these
oscillators seem to be limited to spe-
cialized applications in which a
monolithic design won’t suffice, or in
toys and consumer goods where every
penny counts.

Consider the series resonant oscil-
lator exhibited in Figure 6a. The two
inverters perform the 360° phase shift,
while the crystal in the feedback ex-
hibits minimum attenuation (its im-
pedance is resistive, equal to Rm) at
the resonant frequency. The first in-
verter is biased by R1 to operate in
the linear region. The second inverter
drives the crystal with a square wave.
Because of its high Q of 105 and in-
verter gain drop-off at higher frequen-
cies, the harmonics contained in the
square wave are suppressed, and a
pure sinewave can be observed at the
first inverter input.

Using Pierce’s topology in
Figure 6b, the parallel resonant oscil-
lator is a common design today and is
used as the basis for internal micro-
processor clocks. Unlike its series-
resonant brother, it needs only one
inverter, which provides 180° phase
shift. Another 90° shift comes from

Another cause of frequency insta-
bility is aging, which is caused by
gradual relief of the mechanical strain
on the crystal. If you purchase pre-
aged crystals, expect about 15 ppm per
year. This means a 10-MHz oscillator
may drift 150 Hz during one year.

 ELECTRICAL CHARACTERISTICS
Electrically, the quartz crystal can

be modeled as a resistance inductance
capacitance (RLC) network (see
Figure 5a). Rm, Lm, and Cm, also called
motion characteristics, represent the
cut’s mechanical characteristics. Par-
allel capacitance (Co) is the result of
the mounting hardware and the elec-
trical terminals attached to the cut. In
a parallel oscillator circuit, external
capacitances are added to it.

The theory of electrical circuits
states that whenever inductive and
capacitive impedances are equal, the
LC network resonates. The crystal
exhibits serial resonance at frequency

1
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m m
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The crystal’s effective inductance
(Lm) is often in henrys (H), while the
capacitance (Cm) is in low, even frac-
tions of a picofarad (pF). This acounts

Figure 4—This is a relative AT cut angle chart.

Figure 5a—The quartz crystal equivalent
electrical circuit is a series-parallel RLC
network. b—Quartz crystal exhibits both
series (Z = 0) and parallel (Z = 0) reso-
nance.
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late is a piece of cake, but usually an
undesirable one. Making it oscillate in
a stable, predictable way is a different
story. The deceptively simple circuit
with six components has many
glitches. Few components are suffi-
ciently characterized for precise calcu-
lations, and the components’
tolerances make the calculations just
good enough to make it into the
ballpark. Therefore, unless you plan
to make crystal oscillator design your
career, I recommend that you become
an educated buyer.

Most microelectronic circuits that
require a precise clock have an on-
board internal clock oscillator. Usu-
ally it is a Pierce circuit, and the
external component values (C1 and
C2, approximately 30 pF each) are
specified. But, this does not prevent
problems, especially when you need a
volume-manufacturing consistency.
The example described in reference [1]
shows that the manufacturing toler-
ance of the crystal’s loss resistance Rm

combined with the internal CMOS

the R2C2 element.
The crystal, vibrat-
ing at its series
resonance, appears
to the rest of the
circuit as resistor
Rm, which, together
with C1, adds a 90°
shift for a total of
360°. The inverter is
biased into its linear
region by R1. And, if
it has sufficient gain
at the crystal reso-
nant frequency, the Barkhausen crite-
ria are satisfied and oscillations ensue.

That works theoretically. The
reality is not as ideal. First, especially
at higher frequencies, the inverter
will have internal delays, and its
phase shift will be greater than 180°.
It’s not uncommon to reach 185°.
Secondly, R2C2 will more realisti-
cally generate a phase shift of less
than 90°, approximately 73°. To oscil-
late, the frequency will have to shift
above series resonance, where the
crystal impedance changes from
purely resistive (Rm) to slightly induc-
tive until the total phase shift hits
360°. This is why it is possible to pull
the crystal frequency by changing the
external capacitance. Similarly, the
series resonant circuit often needs a
capacitor in series with the crystal
(C1) for phase compensation.

OSCILLATOR DESIGN
How do you put together every-

thing you have learned and build an
oscillator? Making an amplifier oscil-

Figure 6—Here is an example of a series resonant oscillator (a) and a parallel
resonant oscillator (b).

Figure 7—The Pierce oscillator (a) is shown here, (b) unplug with a Colpitts oscillator, (c) and a Clapp oscillator.
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amplifier can cause the open-loop gain
to drop below one, meaning the clock
occasionally stops.

In marginal sysems, this may be
difficult to detect because it manifests
itself by only an occasional data cor-
ruption. The clock problems at
startup can be further aggravated by
temperature extremes. Here, author S.
Dickey devised a clever solution with
an inexpensive LC phase shift net-
work, rather than a conventional,
costly crystal solution. [1]

Another problem is a large gain,
which may cause the crystal to reso-
nate at an overtone frequency or, even
worse, dissipate too much heat and
crack. The only element within the
crystal dissipating energy is Rm.

To calculate the crystal dissipa-
tion, you need to know the current
passing through the crystal. The volt-
age across the crystal contains reac-
tive components, so it is unusable for
the calculation. Measure the current
with a current probe, or insert a small
resistor between the driver output and
the crystal (in series with R2 in
Figure 6b, which usually is an integral
part of the driver circuit and is inac-
cessible) and measure voltage across it.

Crystals are specified for maximum
power dissipation, usually in milli-
watts. Excessive power can be reduced
with a resistor in series with R2. Be-
cause this resistor also reduces the
open-loop gain, be careful not to create
the startup or stability problems de-
scribed in the previous paragraph.

I’ll note one more potential prob-
lem that I discovered the hard way
many years ago. Make sure there is no
constant DC voltage bias across the
crystal. The quartz crystal does not
conduct DC current, a fact that I veri-
fied with a VOM years ago.

So, I assumed that the few cents
saved by eliminating a DC blocking
capacitor from the oscillator, multi-
plied by thousands of dollars in the
production run, would save a bundle. I
was surprised when the oscillator
exhibited unforeseen behavior that I
could not explain. Eventually, I real-
ized that the DC bias I allowed to
exist across the crystal caused it to
deform, in addition to the oscillator–
driven vibrations. The result was

strange and unacceptable. Although
this is not a usual problem with
today’s monolithic oscillators, keep it
in mind.

PRACTICAL APPLICATIONS
If you need an inexpensive crystal

oscillator with no special require-
ments, use the circuit in Figure 6b. A
CMOS inverter, such as 4007 or 4049
with R1 = 4.7 to 10 MΩ and C1 = C2 =
15 to 33 pF works well for most appli-
cations. CMOS inverters have high-
output resistance, so R2 could be zero
for a 5-V operation. But, a resistance
may have to be added to limit the
current in case of an overdrive at a
higher supply voltage, or together
with C2 to lower the critical fre-
quency of the R2C2 low-pass filter if
the oscillator runs at an overtone
(harmonic) frequency. One additional
inverter should be used as a buffer to
isolate the load from the oscillator,
thus improving stability.

If you want to build a microproces-
sor clock and the oscillator circuitry
is onboard, follow the manufacturer’s
recommended design and component
values. If you need an exceedingly
stable clock for timing critical appli-
cations, you may have to build an
external oscillator, so read on.

If you’re determined to build your
own, Motorola manufactures the
crystal oscillator integrated circuit
MC12061 that contains many bells
and whistles, such as an AGC (auto-
matic gain control). The specification
sheet shows frequency drift of ap-
proximately 10 ppm through the mili-
tary temperature range, that is from
–55°C to 125°C (–67°F to 257°F), but
this does not include the crystal. The
IC can be configured to output
sinewave, MECL, or TTL level signal.
You still need a stable crystal, and be
careful when laying out the PCB.

For an inexpensive oscillator with
guaranteed performance, go to manu-
facturers like Q-Tech Corporation,
Fox Electronics, and US Crystals to
purchase a properly packaged and
characterized, hermetically-sealed
oscillator. With a prepackaged oscilla-
tor, your only tasks are providing
power and keeping the load within
the specifications. I
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Edited by Harv WeinerNOUVEAUPC
IDE DISK ADAPTER

The DA104 IDE disk adapter is a PC/104-
compliant carrier board that provides a conve-
nient means of integrating a 2.5” IDE hard
drive, M-Systems CompactFlash or M-Systems
1.3″, and 1.8″ IDE2000 Flash Disks to a PC/104
stack. A standard 40-pin IDE ribbon cable con-
nects the drive to the host. Power can be sup-
plied through the PC/104 headers or the
two-position screw terminal.

For additional disk space, a second 2.5″ hard
drive or IDE2000 Flash Disk can be mounted to
the underside of the module. However, this
configuration exceeds the PC/104 height speci-
fication.

The DA104 sells for $99. The underside
drive interface costs $30 (the IDE drive is not
included).

Tri-M Systems
(604) 527-1100
Fax: (604) 527-1110
www.tri-m.com

DIGITAL VIDEO MODULE
The DV-104 digital video mod-

ule digitizes live video (NTSC,
PAL, or SECAM) and outputs the
digitized stream on a zoomed video
bus. When combined with a
zoomed video-capable
single board computer
(SBC) from Adastra’s
Venus SBC family, the
system can display live
video in a window on a
SVGA monitor (CRT or
flat panel) and capture
video at 30 frames per
second.

The DV-104 comes in
three forms—PC/104,
PC/104-Plus, and
standalone. The
standalone form is a
compact 3.6″ × 2.8″. Its
features include video
digitization up to 640 ×
480 pixels (NTSC), six
composite or three S-
video inputs or combina-

tions, and 3.3-V digital video (zoomed
video) output.

The DV-104/Venus combination is
supported by a sophisticated software
package. The support software defines

an API that allows applications to
display, manipulate, and capture
live video in GUI and non-GUI
environments. Versions of the
software are available for Win-

dows, QNX, and Linux,
and support for other
operating systems is
planned. Sample applica-
tions demonstrate video
windowing for QNX
running Photon
microGUl and Linux
running X-Windows.
The Windows version
supports the latest ver-
sion of DirectX, version
7.0, and an OCX control.

The DV-104 sells for
$95 in quantities of 100.

Adastra
(510) 732-6900
Fax: (510) 732-7655
www.adastra.com

http://www.tri-m.com
http://www.adastra.com
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EPC
REAL-TIME PCs

Ingo Cyliax

Real-Time Executive for
Multiprocessor Systems

Having explained
some of the back-
ground details of
RTEMS last month,
Ingo figured it would
be a good idea to
provide a practical
application before
people started set-
ting up their own
backyard missile
command centers.

Part 2: Running i386 RTEMS Applications

l

Photo 1—My trusty
embedded test-bed. It’s
a discarded P120
machine, parts of
which are least six
years old. I don’t think
it ever had a case, so it
is simply bolted to a
piece of wood along
with the power supply.

ast month, I
introduced

RTEMS, an open
source real-time execu-

tive for 32-bit systems. I walked you
through installing and building the
host development environment.

One of the issues with setup is that
it’s based on the GNU C tool chain.
This allows flexibility, but you must
run it on a system that supports the
tool chain. The best supportive envi-
ronment for this is Linux. But, you
can work with other Unix and Unix-
like OSs. With Cygwin, a GNU envi-
ronment for Windows, you can run it
under Windows, with some effort.

Last month you built an environ-
ment that allows you to compile and
link programs with the RTEMS kernel
for the pc386 platform. Remember,
pc386 is a board support package (BSP)
for RTEMS that supports RTEMS to
run on PC/AT-compatible systems.

The standard build constructs some
example programs. This month, I’ll
cover how to run these, and build
your own applications.

GRUB
The standard environment gener-

ates the libraries, drivers, and startup
code for BSPs, and builds example
programs. For the pc386 BSP these can
be found in the directory /opt/
rtems/pc386/samples.

All of the pathnames I refer to
assume that you use /opt/rtems as
the prefix for configure--prefix=/
opt/rtems.This is also called the
top level. You should have the /opt/
rtems/bins directory in your search
path because it contains the develop-
ment tool chain components.

The sample programs are
base_sp.exe, minimum.exe,
ticker.exe, hello.exe,
paranoia.exe, and unlimited.exe.

Don’t be fooled by the .exe exten-
sion. They are not Windows nor DOS
executables. They are 32-bit ELF
executables that contain the whole
run-time image for an application.
This means the application’s main
code, RTEMS kernel, drivers, library
modules, and startup code needed to
prepare the board to run RTEMS are
included in this file.

To proceed, a target is needed. A
target is the system that will run the
application code, as opposed to the
host system, which is used to build
the application. I’ve been using two
different systems as a target. One
system is my laptop. In this case, I
reboot it to run RTEMS applications
for quick tests. Another test system is
a spare computer that serves as my
embedded development test platform
(see Photo 1). The procedure for getting
RTEMS to run is the same—build a
boot floppy for the target to boot from.
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Listing 1—In order to prepare a boot floppy for RTEMS, you have to prepare two floppies. Floppy #1 is the
Grub master floppy, and floppy #2 is the RTEMS boot floppy.

you can boot from nonstandard boot
devices. For example, an extension
ROM can be used to download a boot
image from a server to run it.

If you want to boot a PC without
the BIOS, the startup code would need
to initialize the hardware in a way
that the operating system or applica-
tion expects to find it. RTEMS does
have a BSP that allows build for a
standalone boot PROM for an i386ex
evaluation board. However, this is for
a specific platform (the i386ex EVB
from Intel), and expects the peripher-
als in an i386ex and on the EVB.

The best and easiest way to get an
RTEMS application to run on a PC/AT
compatible board is to use the BIOS to
load the code from a boot device. By
the way, if you are interested in see-
ing how to build a standalone boot
PROM for a PC/AT board, drop me a
note and I’ll consider addressing this
issue in a later article.

Now, how do you get a 32-bit ELF
image loaded from a floppy so it will
run? The answer—you have to use a
boot loader. A boot loader is a piece of
software that resides on the boot de-
vice (floppy, in this case) and boot-
straps the application code into the
memory of the system. The BIOS will
load the first block of a bootable disk
to find out what the geometry of the
boot device is and how many more
blocks to load from the boot loader.
Figure 1 shows the general format of
the master boot sector.

There are several boot loaders
available. The ones that come with
Windows or DOS are not too flexible
(primarily for loading Windows or
DOS). LILO is a Linux boot loader
that could be used because it’s freely
available, includes source code, and
works well overall. Most Linux sys-
tems use it as their boot loader. LILO
is even capable of multibooting up to
16 different systems. I showed you
how to use LILO in my Embedded
RTLinux series a while back, so this
time I’ll use Grub, another widely
available GNU-licensed boot loader.

Grub will boot almost anything
from any file system type. Its use in
booting RTEMS objects is docu-
mented in the pc386 BSP. It’s a no-
brainer for this application.

#
# copy grub master to floppy #1
#
dd if=grub-boot-0.5.93.1.image of=/dev/fd0 bs=36b

#
# copy the stage1/stage2 file from flopp #1

mount /dev/fd0 /mnt
cp /mnt/boot/grub/stage{1,2} /tmp
umount /mnt
#
# change floppies and initialize a DOS file system on floppy #2

   mkdosfs /dev/fd0
 #
# mount the DOS floppy
 mount /dev/fd0 /mnt
 #
# copy stage1/stage2 on DOS floppy
 cp /tmp/stage{1,2} /mnt
#
# compress and copy the executables from the sample directory
foreach i ( *.exe )
gzip < $i > /mnt/$i:r.gz
end
#
# edit and add the file to the grubmen file on the floppy
# title= Hello World Test
# kernel= (fd0)/hello.gz
# ...
#
vi /mnt/grubmenu
#
# unmount floppy #2
#
umount /mnt

Listing 2—Actually, this sample Grub menu file is more like a script file, but in this case, you only specify
enough to implement a boot menu.

title= Base SP
kernel= (fd0)/base_sp.gz
title= Hello World Test
kernel= (fd0)/hello.gz
title= Minimum
kernel= (fd0)/minimum.gz
title= Paranoia
kernel= (fd0)/paranoia.gz
 title= Ticker
kernel= (fd0)/ticker.gz
title= Unlimited
kernel= (fd0)/unlimited.gz

Listing 3—Not much to a sample hello world program. Init() is the application initialization
function. You would typically fire off tasks from here. In this case, you print a string.

#include <bsp.h>
#include <stdio.h> rtems_task Init(rtems_task_argument ignored)
{

printf(�Hello World\n�);
 }
 #define CONFIGURE_TEST_NEEDS_CONSOLE_DRIVER
 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
 #define CONFIGURE_INIT
 #include <confdefs.h>

A real system might use a flash
PROM as the boot device or even a
BIOS extension ROM. Booting on a
PC/AT platform is complex. There is
a BIOS that initializes all of the hard-

ware and chipsets that are present. It
then looks for a BIOS extension ROM,
and finally a boot device, which is a
floppy, flash–memory disk, or hard
disk. With a BIOS extension ROM,
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Figure 1—Here is what the boot sector of a disk looks
like. It contains the geometry for the disk, the primary
partition table of the disk, and boot code.

One feature that I will be using in
Grub decompresses compressed boot
images. This means I can compress
my .exe samples file and fit them on
a boot floppy. What do you need to
use Grub? To start, two floppies are
required. Next, the Grub masterboot
floppy image (grub-boot-0.5.93.1.im-
age, downloaded from prep.ai.mit.edu)
is needed, and stage1 and stage2 files

from the master boot file. Now, let’s
discuss the compressed executable
that you want to boot and a config file
that allows Grub to display a menu.
And, that’s the necessary list.

First, you have to build the two
floppies. Listing 1 shows how to do
this under Linux. There are instruc-
tions under Windows/DOS in the
RTEMS BSP for pc386.

Floppy #1 is the Grub master
floppy. Once you have generated this
floppy, you can write-protect it be-
cause it will be used to initialize
floppy #2. Floppy #2 is the RTEMS
boot floppy. I compressed and copied
the RTEMS images to it and built a
small menu file (see Listing 2) that
Grub will use to prompt me for the
particular sample program to run.
Also, you need a copy of the stage1
and stage2 Grub boot images in order
to initialize the boot floppy.

After making the two floppies,
you’re ready to initialize the RTEMS
boot floppy. When you boot the mas-
ter floppy, a Grub installation menu is
presented. You must select the entry

that starts a command line interface,
replace the master floppy with the
RTEMS boot floppy, and issue the
following command:

install=(fd0)stage1 (fd0)
(fd0)stage2 0x8000
(fd0)grubmenu

The command uses the stage1 file
to construct the boot sector of the
floppy and link to the stage2 boot file.
Next, it tells the loader to use the
grubmenu file to display after boot-
ing. After this is done, when you
reboot the machine, you should see a
screen resembling Photo 2. Then,
select the RTEMS sample program
you want to run. For instance, run-
ning the hello world example will
leave you with a screen like Photo 3.

After each program, you will need
to reboot the machine from the
RTEMS boot floppy. Remember that
each one of these programs is a com-
plete RTEMS application image. It
takes over the machine, does its thing,
and upon completion, needs to be

Jump to code

BIOS parameter block

Boot code

0×000

0×008

0×040

0×1FF
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rebooted. A real application unlikely
finishes unless it encounters an error
or the machine is rebooted on purpose.

BUILDING
Let’s walk through building your

program under RTEMS. First, you
write a program; I followed the
hello world example. The main
part of the code is simple (see List-
ing 3). Define an Init() routine that
prints a string on the console. To
make sure you pick up the right
pieces, include the files bsp.h and
confdefs.h. The #defines at the
end designate which parts of RTEMS
you need for this module.

To compile, you need a Makefile.
Listing 4, a generic Makefile that
can build a variety of programs, works
well. You want to build test.exe
from the source file test.c.

One more thing is needed. This
Makefile uses prototype Makefiles
to form the RTEMS installation envi-
ronment and figure out where to find
the tools and libraries to include files.
These prototype Makefiles are orga-
nized by BSPs, and in order to use the
one for pc386, you need to set the
environment variable:

RTEMS_MAKEFILE_PATH=/opt/
rtems/pc386

Then, set the command (make) and
out pops the executable test.exe,
which is in the o-optimize direc-
tory. Then, copy it onto your RTEMS
boot floppy and modify the Grub
menu file. Delete the stage1 and stage2
files from this disk to make space.

 NETWORKING
 As stated, RTEMS has a TCP/IP

network stack, a collection of routines
that implement a protocol stack. It’s
referred to as a stack because the dif-
ferent layers of protocols stack up to
implement a protocol system. Each
protocol layer communicates with the
layer above and below it and imple-
ments a virtual communication chan-
nel with the same layer in the protocol
stack of a remote host.

There are several layers for Internet
protocols. There is something called a
physical layer that is closest to physi-

cal wire. If you are running Ethernet,
this layer defines the electrical sig-
naling characteristics of how to
transmit frames over the wire. For
example, Ethernet uses Manchester
encoding.

The next layer up is the link layer.
This layer defines how frames are
constructed over the physical layer.
For example, Ethernet uses a type
HDLC framing with source and desti-
nation addresses and frame type
fields. The link layer allows packets
to be sent across the wire.

The Internet layer is the layer in
the Internet protocol stack that allows
host-to-host addressing and routing. It
also implements a method in which
packets that are larger than the link
layer imposed frame length can be
broken on the source host and then
reassembled on the remote host. This
disassembly and reassembly is trans-
parent to the network layers above the
Internet layer. Note the distinction
between the Internet protocol stack
and the Internet layer. The Internet
layer is a generic term and can imple-
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ment a different protocol for other
protocol stacks (like Novel IPX),
while the Internet Protocol (IP) is the
protocol used at the Internet layer in
the Internet Protocol stack.

Above the Internet layer is the
presentation layer, which is the proto-
col layer that is presented to the appli-
cation. In the Internet Protocol stack
there are several different protocols—
Unsequenced Datagram Protocol
(UDP), Transmission Control Protocol
(TCP), and Internet Control Message
Protocol (ICMP). TCP and UDP are
used by applications, and ICMP is
used between hosts and routers.

TCP and UDP allow several differ-
ent applications on hosts to commu-
nicate by assigning them port
numbers. A connection is uniquely
identified by the source port and host
and the destination port and host. The
endpoints are like sockets, and many
TCP/IP protocol implementations call
the file handle used by the applica-
tions to reference to these port/host
pairs’ sockets. TCP protocol allows
stream-based communication between

Listing 4—The Makefile is more complicated than the actual program. It is a general purpose Makefile
that can be used to build more complex projects. Just change the value for EXEC and add whatever source
modules you have to the CSRC (C source), CXXSRCS (C++ sources), and ASSRCS (assembler sources),
and make figures out the rest.

#
# Makefile
#
#
# RTEMS_MAKEFILE_PATH is typically set in an environment variable
#
EXEC=test.exe
PGM=${ARCH}/$(EXEC)
 # optional managers required
 MANAGERS=io
# C source names
CSRCS = test.c
COBJS_ = $(CSRCS:.c=.o)
COBJS = $(COBJS_:%=${ARCH}/%)
# C++ source names
CXXSRCS =
CXXOBJS_ = $(CXXSRCS:.cc=.o)
CXXOBJS = $(CXXOBJS_:%=${ARCH}/%)
 # AS source names
ASSRCS =
ASOBJS_ = $(ASSRCS:.s=.o)
ASOBJS = $(ASOBJS_:%=${ARCH}/%)
# Libraries
LIBS = -lrtemsall �lc
include $(RTEMS_MAKEFILE_PATH)/Makefile.inc
include $(RTEMS_CUSTOM)
include $(PROJECT_ROOT)/make/leaf.cfg
OBJS= $(COBJS) $(CXXOBJS) $(ASOBJS)
all:  ${ARCH} $(PGM)
$(PGM): $(OBJS)

$(make-exe)
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Photo 3—Voilà! It works. After many hours of sweat
and tears installing and building the RTEMS develop-
ment environment, one of the sample programs works
on my laptop and on my hardware test-bed.

Ingo Cyliax has written for Circuit
Cellar on topics such as embedded
systems, FPGA design, and robotics.
He is a research engineer at
Derivation Systems Inc., a San Diego-
based formal synthesis company,
where he works on formal-method
design tools for high-assurance
systems and develops embedded-
system products. You may reach him
at cyliax@derivation.com.

Photo 2—The boot menu displays a line for each application image. Highlight the one you
want and hit enter. Grub can also be programmed to have a timeout value, after which it
will boot a default.

 hosts. So, that means
that bytes go in on one side
and come out on a different
side of a virtual pipe.

UDP communications
are done with datagrams.
Some pitfalls are that the
datagrams may not arrive
at the remote host, and
they may be accidentally
duplicated by routers
along the way. TCP, on
the other hand, is more
robust because it operates
transparently.

Bytes are not dupli-
cated, and if packets get lost, they are
retransmitted. Also, when the com-
munication channel between two
TCP endpoints ceases, the protocol
will eventually time-out and signal
the application that the connection
does not exist anymore. The negative
characteristic of TCP is that it has
more overhead, both in the size of the
packets sent over wire and the power
required to process them.

Application layer protocols are the
next layer up. These are not defined
by most Internet protocol stack
implementations. An application
layer protocol in the Internet will use
either TCP or UDP and implement a
protocol that is suited for specific
applications on top of these channels.
For example, e-mail uses the simple
mail transaction protocol (SMTP) to
send mail between Internet hosts.
Another application protocol is the
post office protocol (POP), which your
home PC uses to retrieve e-mail mes-
sages from a mail server at your
Internet service provider (ISP) or of-
fice. Finally, the hypertext transaction
protocol (HTTP) is used by your web
browser to retrieve web pages from
web servers.

The RTEMS protocol stack in-
cludes implementation of the
Ethernet protocol, device drivers for
several Ethernet cards, and the proto-
col stack up to the application layer.
RTEMS also has PPP drivers. The
protocol stack is based on the
FreeBSD protocol stack, a freely avail-
able Unix operating system. This
protocol stack is derived from the
BSD protocol stack, which was used
as the reference implementation.

RTEMS also includes
an open-source web
server implementation
from GoAhead Software
and an FTP server imple-
mentation. The web
server and FTP allow file
transfers to and from
memory, so they operate
truly as embedded web
servers.

 It’s time to wrap up.
Next month, I’ll demon-
strate how to bring up the
web server and other
Internet applications. I
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EPC
Applied PCs

Fred Eady

Picking Some ExacTicks

They say timing is
everything, so Fred
decided to take a
look at the details of
ExacTicks. If you
need high-precision
timing for delays,
timers, or alarms,
you might want to
listen up. Of course,
it all started with a
blue box….

icrosoft is still
keeping Windows

NT 4.0 Embedded
close to its chest. Not

to worry, though, because I just got off
the phone with Mark at Arcom Con-
trols all the way in the U.K. It seems
that Mark and Steve (his U.S. counter-
part) were responsible for making
another little blue box appear on my
doorstep. Inside was an Arcom SBC-
MediaGX. I’ve described this to you
before, but for those of you who want
to stick to this subject for now, here’s
the rundown.

WHAT’S IN THE BOX?
The SBC-MediaGX is composed of

a National/Cyrix MediaGX 233-MHz
MMX-enhanced processor and the
National/Cyrix CX5530 I/O Compan-
ion chipset. There’s 16 KB of L1 write-

back cache supported by Award Soft-
ware PCI Plug and Play BIOS in Flash
EPROM. Intel and Chips and Tech-
nologies provide the Intel/Chips and
Technologies 69000 HiQVideo BIOS
and controller with 2 MB of integrated
SDRAM. Physical video can be a stan-
dard CRT, a flat panel, or both. The
VGA BIOS is integrated in the system
ROM. Up to 128 MB of unbuffered
3.3-V SDRAM can be installed. It is
equipped with 32 MB.

Silicon Disk is the new rage in
embedded, and the SBC-MediaGX
does it’s share to support it. The SBC-
MediaGX that was delivered contains
8 MB of Intel Strata flash memory.
My SBC-MediaGX is half-full (or half-
empty), because you can top it out at
16 MB of flash memory with this
unit. A CD with Datalight FlashFX
file system is also included with the
SBC-MediaGX kit.

On the spinning side of disk stor-
age, the SBC-MediaGX maintains all
of today’s common floppy drives and
supports PIO Mode 4 or Ultra DMA/
33 Hard Disk and ATAPI CD-ROM.
The enhanced IDE subsystem operates
in bus-mastering mode with a maxi-
mum of two devices (see Photo 1).

Integrated I/O is a healthy part of
the SBC-MediaGX. There’s an
NS97317 with built-in real-time clock
and keyboard controller and, for appli-
cations that require audio, Cyrix’s
XpressAAUDIO 16-bit SoundBlaster-
compatible subsystem is included.
There are even line-in, line-out, and
microphone ports.

To fill out an already impressive
array of functions, the SBC-MediaGX
sports a high-speed parallel port that
can be configured via BIOS for SPP,

m

Photo 1—Just think,
someday all PCs will
be dense packages
like this.

Keeping Precise Time
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custom version of WinNT was
built without a floppy interface
driver. That’s fine, because when
it comes to the drudgery of mov-
ing data and files, I call in
WinNT’s network services.

Throughout this and other
articles, I’ve addressed how the
embedded version of WinNT 4.0
is exactly like the commercial
version you can buy on CD. Well,
in this case, that’s good because
I’m going to have to use the
WinNT networking services of
WinNT Embedded 4.0 to get my
SBC-MediaGX timing application
code from a WinNT 4.0 server in
the Florida room.

In this predicament, the good
news is that the SBC-MediaGX is
equipped with onboard Ethernet
capability and the preloaded ker-

nel I received is set up as a DHCP
client. For you future MCSEs, that
means the SBC-MediaGX/WinNT
embedded combination will ask for an
IP address from the DHCP server in
the Florida room lab using a standard
Ethernet connection.

The DHCP server is set up to ser-
vice an internal 10.10.0.0 network
subset masked as 255.255.0.0 with 11
DHCP available leases. Photo 2 shows
the Windows-related technical details
of how this is set up. When the SBC-
MediaGX fires up WinNT, the DHCP
client on the SBC-MediaGX requests a
lease on an IP address from the

after the sun went down before it hit
me! There’s a PC-type power connec-
tor on the M-Systems flash disk. In
the South we’d say “It ain’t got noth-
ing connected to it,” meaning the
connector was empty. When I took a
closer look at the power brick and
noticed it had no connector scheme
that would interface to both the SBC-
MediaGX and the M-Systems flash
disk, I knew I would need a real PC
power supply to make this bird sing.

I keep a loose PC supply around for
emergencies such as this. I hooked up
the PC supply to the SBC-MediaGX
and M-Systems flash disk and fixed
that pilot-induced error. Everything
worked better from then on with
power applied to everything that re-
quired it.

Now that I have this desktop at my
disposal, what can I do with it?
Lately, I’ve been generating wave-
forms and timings for all sorts of
things. Let’s jump to some data mov-
ing using only the SBC-MediaGX
parallel port, Bill’s VB6, and some
Ryle Design ExacTicks DLL routines.

IS IT REAL?
I had to connect a PC power supply

anyway and, because I had a floppy
power connector handy, I thought I’d
hook up a floppy drive to see if I could
get enough timing code to do some-
thing useful. Think again! Seems my

EPP, or ECP mode. Four 16C550-
compatible high-speed UARTs
capable of supporting RS-232/-422/
-485 complete the SBC-MediaGX’s
integrated I/O package.

WHAT’S IN THE DRIVE?
Why it’s Windows NT 4.0 Em-

bedded, and not too much at that.
The spin of Windows NT 4.0 Em-
bedded that is loaded in the M-
Systems flash disk is a minimal
configuration of WinNT, which is
about 20 MB of code. This means
that there is absolutely nothing
but the bare necessities of NT on
the SBC-MediaGX. This is the way
you want to see it. If you can do
things with minimal configura-
tion, just think of the possibilities
that could exist with a larger com-
ponent load. Here’s the step-by-
step account of my initial contact
with this particular Arcom blue box.

TO THE FLORIDA ROOM
I’ve been through the blue box

parts ID process with little change
from time to time. So, I naturally
assumed that the power brick that
comes with the SBC-MediaGX would
be all I needed to get some pixels to
appear on my CRT. Again, I looked
carefully at the orientation of the
power brick connector and smiled
because I can put it on either way
without fear of smoking the SBC-
MediaGX system.

At this point, I did not know what
to expect with the OS or application
and was anxious to see what was in
store this time around. So with that, I
proceeded to fire it up, only to find….

“Disk Boot Failure.” How can this
be? The only floppy or traditional hard
drive attached was that tiny M-Sys-
tems product which should have
something, anything, on it. This made
me wonder what I’d missed. Before I
made any more assumptions, I went
back to the blue box to see if there
was anything in it that could help me.

There I came upon another power
connector that links to the SBC-
MediaGX at one end and a standard
red-black-black-yellow +5 /GND/
GND/+12 PC connector at the other.
It took a couple minutes in the woods

Photo 2—10.10.0.1 is also known as ppl_pdc. That’s short for PIC
Propulsion Labs_Primary Domain Controller. You guessed it, there’s
a back-up domain controller in the Florida room, too (ppl_bdc).

Photo 3—I took a count of how many PCs versus
leases are on this network segment. There are only
eight PCs, three using DHCP.  The other leases are
used by the server’s comm ports.
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designate which drives the Arcom
SBC-MediaGX and WinNT Embedded
4.0 can use FTP against. At this point,
I had to transfer the ExacTicks soft-
ware from a floppy on the WinNT
server. So, not knowing what I needed
or where it would come from, I in-
cluded the WinNT server’s hard disk
(c:) and CD-ROM (d:) drives as FTP

WinNT server. As you can see
in Photo 3, the Arcom SBC-
MediaGX successfully requested
and leased the IP address
10.10.0.200. This is a good thing
because now there’s a link for
communication between the
Arcom SBC-MediaGX and the
WinNT server.

Because I don’t have any way
of getting data into my SBC-
MediaGX using a local spinning
disk, I’m forced to use the
Florida–room network and its
resources. Although NetBEUI and
NWLINK are installed on the
10.10.0.0 network, they are not
installed on the Arcom SBC-
MediaGX, but as you can tell by
the dot-addressing scheme, good old
TCP/IP is everywhere. If TCP/IP is
around, there’s a chance that FTP or
TFTP may be hanging around with it,
but before you can get the data load
from the WinNT server, you’ve got to
grease the skids a bit.

Take a look at Photo 4. Here I used
Microsoft Internet Service Manager to

targets, too (see Photo 5). Users
are already set up on the network
who should be able to use FTP via
the Arcom SBC-MediaGX.

A quick FTP-initiated ls com-
mand directed at the WinNT
server floppy drive produces an
entry for the target ExacTicks
program named setup.exe. A
WinNT server side confirmation
of the Arcom SBC-MediaGX FTP
session is shown in Photo 6. All
that’s left is to get the bits from
the WinNT server floppy disk to
the SBC-MediaGX’s flash disk.

Referring to Photo 7, after a
change to binary transfer mode, it
seems that the FTP session was
successful and the ExacTicks data

did get loaded into the Arcom SBC-
MediaGX. Victory!

IT’S ABOUT TIME
ExacTicks is a collection of high-

precision timing libraries that can be
accessed using the Bill, Watcom, or
Borland C compilers, or Delphi or VB.
ExacTicks is an indispensable tool for
generating precision pulse trains and
delays.

ExacTicks relies on the timing
mechanism built into Windows.
ExacTicks can be integrated into both
16- and 32-bit Windows applications.
This includes Win3.x/95/98/NT. Six-
teen-bit applications are defined as
Win3.1 or WFW (Windows For
Workgroups). Native and 32-bit appli-
cations are those running natively
with Win9X and WinNT.

ExacTicks uses a timestamp as its
fundamental time measurement com-
ponent. This retrieves a 64-bit count
from the host system’s timer control-
ler. An ExacTicks timestamp has
nothing to do with the host system’s
time-of-day-clock.

Timers, delays, alarms, events, and
reports are ExacTicks components.
ExacTicks timers are like stopwatches
and return elapsed times. Under
WinNT, a timer may also return a
value that is relative to the CPU time
consumed by the host process.
ExacTicks delay components pause
execution of the current application
for a specified interval. The executing
code’s control is passed to the delay
for a specified interval.

Photo 4—We only need to get to the floppy drive, but what are a
few extra keystrokes among friends?
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Listing 1—This is a great tool for people who need guidance using C. I wanted to show the includes here.

** Find the correct parallel port **
findport3bc:
caddr = &H3BE
Out caddr, &H8
sbyte = Inp(caddr - 1) And &H80
If sbyte = &H80 Then GoTo test3bc
GoTo findport378
test3bc:
Out caddr, &H0
sbyte = Inp(caddr - 1) And &H80
If sbyte = 0 Then GoTo foundport
findport378:
caddr = &H37A
Out caddr, &H8
sbyte = Inp(caddr - 1) And &H80
If sbyte = &H80 Then GoTo test378
GoTo findport278
test378:
Out caddr, &H0
sbyte = Inp(caddr - 1) And &H80
If sbyte = 0 Then GoTo foundport
findport278:
caddr = &H27A
Out caddr, &H8
sbyte = Inp(caddr - 1) And &H80
If sbyte = &H80 Then GoTo test278
GoTo noportfound
test278:
Out caddr, &H0
sbyte = Inp(caddr - 1) And &H80
If sbyte = 0 Then GoTo foundport
GoTo noportfound
foundport:
daddr = caddr - 2
saddr = caddr - 1
init:
Select Case daddr
Case &H3BC
    lblport.Caption = �Connected to Parallel Port at Address 0x3BC�
    �lblstatus.Caption = �Port 0x3BC�
Case &H378
    lblport.Caption = �Connected to Parallel Port at Address 0x378�
    �lblstatus.Caption = �Port 0x378�
Case &H278
    lblport.Caption = �Connected to Parallel Port at Address 0x278�
    �lblstatus.Caption = �Port 0x278�
End Select
** CALIBRATE TIMER ROUTINES AND SETUP MINIMUM DELAY**
delaycal = hrt_delay_alloc(500, HRT_MILLISECOND)
mindelay = hrt_delay_getmin
Select Case mindelay
    Case Is < 20
        usedelay = 20
    Case Is > 20
        usedelay = mindelay
End Select
hrt_delay_free (delaycal)
delayuse = hrt_delay_alloc(usedelay, HRT_MICROSECOND)
** BIT BANG SUBROUTINES **
clklowdatalow = &HC3
clkhighdatalow = &HCB
clklowdatahigh = &HD3
clkhighdatahigh = &HDB
Public Sub highout()
            Out daddr, clklowdatahigh
            hrt_delay_do delayuse
            Out daddr, clkhighdatahigh
            hrt_delay_do delayuse
            Out daddr, clklowdatahigh
End Sub
Public Sub lowout()
            Out daddr, clklowdatalow
            hrt_delay_do delayuse
            Out daddr, clkhighdatalow
            hrt_delay_do delayuse
            Out daddr, clklowdatalow
End Sub
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Photo 6—Having your own private network has its privileges.
Administrator is king.

Photo 5—There’s nothing special here. Note that anonymous
spectators are stopped at the gate.

 Alarms are software components
that are set for a certain time interval
and are not asynchronous. Thus
alarms must be checked periodically.
An ExacTicks alarm will not trigger
other actions. It will simply notify the
process, checking that the interval has
come and gone. The other side of an
ExacTicks alarm is an ExacTicks
event. An ExacTicks event is similar
to a DOS interrupt service routine,
like a Windows Callback function. An
ExacTicks report is just that, a re-
port—a summary of active and named
timers, activations, elapsed time, and
average activation time.

To summarize, if you only want to
delay and not perform any other func-
tions, use the delay routines. If you
need to go about your business while
a delay is processing, and you have the
overhead to check up on the elapsed
time, use an ExacTicks alarm. If you
don’t have to check overhead time and
need asynchronous signaling, use an
event. A report is still a report no
matter what you need to do.

If the application was running un-
der DOS, the precision time measure-
ment would be completed by directly
addressing the 8253/8254 timer
counter IC (or its look-alike) on the
embedded PC. As you know, you can’t
do that with Bill’s Windows products.
When running Windows, you still get
the count from the timer IC, but you
must retrieve it in a roundabout way.

In a 16-bit Windows environment,
INT 0x2F gets the Virtual Timer De-
vice (VTD) function dispatch address.
Calling this address with AX = 0×100
returns a 64-bit count from the VTD.
For the 32-bit world of Win9X and
WinNT, there are two API functions,
Query-PerformanceFrequency(),
which returns the frequency of the

system’s precision timer and
QueryPerformanceCounter(),
which registers a 64-bit
count from the timer.

That’s sufficient if all you
need is a raw 64-bit count,
but to make the count infor-
mation useful, you must also
consider the time it takes to
get these counts and factor
that into your precision tim-
ing routines. To get precise

timings without rewriting and rein-
venting timing code for every
project, you must produce routines
that are self-calibrating at run time
and share a common API for both
16- and 32-bit environments. With-
out elaborating about how this is
done, I’ll just say the ExacTicks DLL
is the ticket here.

TIMING IS EVERYTHING
I’ve been exploring ways to get

data to and from embedded systems.
I’ve used the parallel instead of the
serial port to interface to projects
like parallel-port-based PIC program-
mers and flash-laden ICs on Internet
appliance prototypes. This reduces
hardware and compensates for code
by adding software overhead.

The eliminated serial hardware
costs about $10 in single quantities.
The extra software costs next to
nothing in any quantity.

 It’s ironic to use the Arcom SBC-
MediaGX’s parallel port because it’s
loaded with serial interfaces, but you
may find this interesting. It may be
handy if your project is
strapped for serial resources,
or if you want to reduce
project parts and save bucks
or board space. To this end,
I’ll describe a simple project
that employs the ExacTicks
DLL routines to produce a
precision set of bit-bang
pulses from the SBC-
MediaGX’s parallel port.

PRECISION BIT BANGING
There are 47 pages of

ExacTicks command syntax.
Obviously, I won’t expound
on each and every detail, but
I will use Listing 1 to de-

scribe and demonstrate the ExacTicks
functions that are necessary to carry
out the parallel–port mission. Believe
it or not, you can do this whole trick
using only delay routines. The SBC-
MediaGX is your intended target, but
I’ll show how ExacTicks routines
make this application universal.

Not all embedded platforms are
lighting-fast, so you must compensate
for PCs that run at low clock speeds. I
set a low point of 500 ms as the wid-
est programmed pulse that can leave a
pin from the parallel port. Conversely,
20 µs is the shortest pulse duration I’ll
generate. The selection of these values
depends on how quick the equipment
is at the other side of the parallel port
and your embedded PC’s speed.

 In this case, the equipment on the
other side of the parallel port is a PIC
running at 10 MHz. I chose these
values so my entire PIC bit-bang algo-
rithm could easily recover bits and do
housekeeping within the minimum
pulse width of 20 µs. As for the em-
bedded PC, there should be no prob-
lem generating a 500-ms pulse at the
lowest of practical clock speeds.

Before any bit banging or timing
takes place, it would be nice to know
which parallel port you will be operat-
ing on. My port-finding code is shown
at the beginning of Listing 1, and the
algorithm depends on a short between
an output pin and the busy input pin
on the external equipment parallel
port interface. If the external equip-
ment is hooked up, a TTL high and
low are sent out and sensed accord-
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Photo 7—Verbose Mode doesn’t lie. As you can see, I tried unsuccessfully
to do an ASCII transfer on a binary file.

SOURCES
SBC-MediaGX
Arcom
(888) 941-2224
(816) 941-7025
Fax: (816) 941-7807
www.arcomcontrols.com

Flash FX file system
Datalight
(360) 435-8086
Fax: (360) 435-0253
www.datalight.com

ingly using the busy input via the
short on the external equipment’s
parallel interface. After the parallel
port control port address is deter-
mined, the data and status port ad-
dresses can be easily calculated.

When the parallel port is estab-
lished and the external equipment is
sensed, the timing variables can then
be initiated. The first step is to allo-
cate a delay timer. This is done using
the delaycal = hrt_delay_
alloc(500, HRT_MILLISECOND)
statement. Delaycal has significance
here because the first time a timer is
allocated, ExacTicks calibrates its
timing routines automatically. So, by
simply allocating a 500-ms timer, you
calibrated your software routines and
allocated the maximum delay timer
in the same motion.

Next, determine if the embedded
PC can handle generating a 20-µs
pulse. The hrt_delay_ getmin
function shows that the minimum
delay time in microseconds is re-
turned as mindelay. If the minimum
delay is less than or equal to 20 µs,
use 20 µs as the value. If the mini-
mum delay returned is greater than
20 µs, use the returned value. Al-
though you allocated a 500-ms delay
called delaycal, the application
doesn’t need it, so free its resources
using hrt_delay_free(delaycal).
Then, use the delay allocate routine to
create a delay called delayuse that
reflects the 20-µs default or larger
mindelay value.

Now that the delay is calibrated
and allocated and the parallel port
address is known, put the data on the
parallel port pins. The final lines of
Listing 1 show how this is accom-
plished using the delay use timer you

allocated earlier. The clk
xxxxxxx statements are
for clarity and are con-
stants defined elsewhere
in the code. You know
where daddr came from
and the out command is
a user-written I/O DLL,
as VB doesn’t have a
native in or out instruc-
tion. Here’s the decode
on the clk xxxxx data
statements:

clklowdatalow 11000011
clklowdatahigh 11010011
clkhighdatalow 11001011
clkhighdatahigh 11011011

Without the eternal 1s and 0s, bit 5
is the data bit and bit 4 is the clock
bit. Because a clock bit is present, this
is a clocked synchronous bit bang.

TIMED OUT
I’ve cashed out all my Listings,

Figures, and Photos, but note there are
20-µs clock and data pulses on the
SBC-MediaGX parallel port.

That wraps up my coverage of Win-
dows NT Embedded 4.0 for a while. If
Microsoft decides that I need a full
copy, I’ll be back to share it with you
and again prove that it doesn’t have to
be complicated to be embedded. I

http://www.arcomcontrols.com
http://www.datalight.com
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Implementing a RAS
Server Port

FEATURE
ARTICLE

a s a result of
today’s demand

for Internet and re-
mote LAN access, the

RAS (remote access server) market is
growing quickly. For success in the
competitive market, manufacturers
must design and build high–perfor-
mance, inexpensive products. Hard-
ware and software design engineers
must design flexible, expandable, and
enduring products.

One important design issue is inte-
grating the RAS product’s heart—the
RAS port. Today’s products offer a
range of choices. But, you must under-
stand subtle issues regarding ports or
risk poor system performance.

This article will present important
issues regarding RAS port choice and
usage to help you get optimal results.
The ADSP-mod870-100 Internet Gate-

way Processor is a good place to start.
I will discuss how to integrate the
mod870 RAS port into a RAS server.
I’ll explore hardware integration,
which involves connecting signals
among the mod870 RAS port and the
Telco and Network interfaces, and
software integration, which involves
the host’s code routines that allow it
to communicate with the RAS port.

HARDWARE DESIGN
One of the first steps of hardware

integration is placing the RAS port
into the RAS server’s data stream,
which flows between the remote user
and the network (see Figure 1). The
RAS port becomes the gateway by
which a remote user can connect and
gain access to a given network. The
RAS port sits between the server’s
Telco and Network interfaces.

The hardware design consists of
the physical connections among the
RAS port and the RAS server’s Telco
interface on one side, and the Net-
work interface on the other. Note that
the Telco interface is a serial connec-
tion, and the Network interface is a
parallel connection.

Remember that you are working
within a RAS server, hence, integra-
tion involves the connection of mul-
tiple port devices to both the Telco
and Network interfaces. Collectively,
this group of RAS ports is called the
RAS port bank.

 The Telco interface (see Figure 2)
involves the connection of the RAS
server to the telephone system. The
most efficient way to feed the RAS
server is through a digital trunk line.
Examples of digital trunk lines are the
U.S. standard, T1, European standard,
E1, and ISDN PRI.

Shawn Arnold

Figure 1—One
of the first steps
of hardware
integration is
placing the RAS
port into the RAS
server’s data
stream, which
flows between
the remote user
and the network.
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In the February and
March issues of Cir-
cuit Cellar Online,
Shawn covered the
background informa-
tion on designing a
DSP-based RAS
server. This month he
enlightens us on the
basic but critical is-
sues regarding RAS
port choice.
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A few years ago, a RAS
server may have consisted of
a box with multiple RS-232
lines connected to racks of
analog modems, with each
modem fed by its own analog
local loop. But today, RAS
ports enable efficient integra-
tion of the modem or port
device into the RAS server
box. Now, you can use a
single digital trunk line that
carries multiple calls on one
pair of wires.

Port devices must connect
to the serial TDM signal
PCM datastream, which is
carried by the digital trunk
lines. Hence, each port device in the
RAS server must have access to the
PCM datastream. For this reason, the
serial connection is bused to each port
device in the bank.

A Telco serial connection usually
is straightforward because a special
port device selection isn’t required. A
port device is assigned to a channel in
the serial TDM signal. During its
assigned time slot, the port device
senses in the receive direction and
drives in the transmit direction.

The Network interface involves
the connection of the RAS server to
the network (see Figure 3). The host
handles the network data that flows
between the RAS port and the net-
work, processing network packets as
needed. The host supports a bank of
port devices. Depending on its horse-
power, the host supports a number of
ports (the amount is a multiple of the
number of channels carried on the
digital trunk line). Usually, it con-
nects to a parallel port on each port
device in the port bank.

Decoding the signals that select
which port device the host communi-
cates with is a challenge. Unlike the
Telco side, where each port device is
assigned a time when it can use the
serial bus, the host controls the use of
the network bus that is shared by all
of the ports.

It controls the parallel port, bus,
and the operation of each port device
individually. This usually includes
driving reset signals to and sensing
interrupt signals from a port device.

Other possibilities include driving
power-down signals, driving interrupt
signals, and driving timing signals to
the port device.

SOFTWARE DESIGN
Because the RAS port is usually

supplied with modem, fax, and voice
firmware, the software design does
not require code written for the port
device. The port is viewed as a black
box, so the focus is on code develop-
ment for the host’s support of the
RAS port. The host software design is
comprised of hardware abstraction
and an API interface (see Figure 4).

Hardware abstraction, or hardware
driver, develops the lowest level func-
tion calls that allow data buffers to
transfer between the host and port
device. Code routines are created for
the functions that the physical host-
to-port device connections can per-
form. The functions are combined to
form an abstraction
that removes the host
code development from
the specific aspects of
the physical hardware
connection.

Like a carpenter, you
follow a blueprint,
which enables the host
to communicate with
the firmware that runs
on the RAS port. The
blueprint, called the
API specification, de-
scribes how the com-
munication mechanism

works and how the host can
communicate with the RAS
port firmware. The API in-
terface involves the develop-
ment of the communicative
host routines. Hardware
abstraction involves operat-
ing port device hardware,
and API interface operates
RAS port firmware.

THE MOD870
The mod870 RAS port

meets the port device specifi-
cations. Remember that the
two important RAS port
specifications are small size
and low power consumption

(in milliwatts). The most important
features are universal port and com-
plete solution. And, each RAS port
product will have extra features.

The integrated SRAM and I/O
peripherals (SPorts and IDMA port),
and low pin count contribute to the
mod870’s small size. The 0.4µ process
geometry, 40-MHz clock rate, and idle
and power-down states reduce its
power consumption. And, it is avail-
able with firmware that implements
the three applications that make up a
true universal port:

• modem: V.90, K56 flex, V.34, V.32/
bis, V.23, V.22/bis, and V.21

• fax: T.30 class 2.0
• voice: G.711, G.722, G.728, G.723/

.1, G.729/a, and G.165 EC

The mod870 offers a complete
solution because port device program-
ming isn’t required, and applications

Figure 2—The Telco interface involves the connection of the RAS server to the
telephone system. Feeding the RAS server through a digital trunk line is efficient.
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Figure 3—The Network interface involves the connection of the RAS server
to the network.
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The mod870’s firmware
offers configurable modules
that perform generic PCM
data stream processing
functions. They allow the
mod870 to be connected to
transceiver circuits other
than the DS2151. These
modules include data
companding, U-law or A-
law, and bit reversal. The
digital trunk line, Telco
interface transceiver, and
supported data format

determine the combination of PCM
datastream processing functions con-
figured and enabled. This provides the
proper data format to the port’s inter-
nal modem data–processing modules.

The mod870’s SPort0 connection
to the serial port of the Dallas 2151
T1 transceiver is shown in Figure 5.
Notice the simple four-wire serial
connection of the Telco interface and
mod870’s SPort pins. These four lines
carry the PCM datastream between
the digital trunk line transceiver and
the port bank. Because the serial lines
carry 24 TDM channels, the serial
lines form a bus that connects to all
24 mod870s in the port bank.

In each mod870, SPort0 is config-
ured for multi-channel mode, so only
one frame sync line is needed. The
frame sync connects to the SPort0’s
RFS0 signal. In the multi-channel
mode case, the TFS0 signal becomes
the TDV output signal and isn’t used.

The serial clock signal, or SCLK0,
is driven by the DS2151 and sensed by
SPort0. It provides the master clock-
ing that drives the SPort0 operation.

The frame sync signal, or RFS0, is
driven by the DS2151 and sensed by
SPort0, too. It provides the start-of-
frame reference point. The PCM
datastream is a 24-channel frame
serial TDM signal. The RFSO pro-
vides the reference point that marks
the start of each 24-channel frame.

ries a serial TDM signal. Because a
digital trunk line carries many simul-
taneous calls, it usually is bused to a
bank of RAS ports. The number of
ports in the bank equals the number
of calls carried by the digital trunk
line. Here are three common digital
trunk lines: T1 carries 24 calls, E1
carries 30, and ISDN PRI carries 23.

In my example, the RAS server is
specified to support a T1 digital trunk
line. A Dallas DS2151 T1 transceiver
implements the transceiver circuit.
This transceiver provides the serial
bus connection to a bank of 24
mod870 ports (see Figure 2).

The mod870 has two integrated
serial port peripherals, known as
SPort0 and SPort1. One is needed for
the RAS port application. SPort0 is
used by the RAS port firmware be-
cause it has a 24/32-channel TDM
mode of operation.
This allows easy
connections to T1
or E1 digital trunk
lines. In TDM
mode, SPort0 has
a four-pin inter-
face (see Table 1).

Figure 4—The host software design is made up of hardware abstraction
and API interface.

Table 1—In TDM mode, the mod870’s SPort0 has a four-pin interface.

Host S/W

Host server S/W
higher level routines

API drivers

Port F/W

Hardware drivers

Host 
microcontroller

DSP

Usually, the physical connection of
the DSP and host microcontroller is

parallel connection.a

Pin name I/O Function Comments

SCLK0 I/O serial clock bussed, configured as an input
RFS0 I/O frame sync bussed, configured as an input
DT0 O transmit data bussed, active on one channel
DR0 I receive data bussed, active on one channel

THE PHYSICAL CONNECTIONS
Now, let’s discuss how to integrate

the mod870 RAS port into a RAS
server. Each RAS port must be con-
nected to the digital trunk line to
support its channels. Often, the con-
nection is serial because the line car-

don’t need additional coding. Imagine
the port as a black box. The API speci-
fication describes how to configure,
control, and communicate with each
of the universal port applications that
run on the mod870 RAS port.



58        Issue 119    June 2000         CIRCUIT CELLAR® www.circuitcellar.com

The receive data signal, or
DR0, is driven by the DS2151
and sensed by SPort0. It carries
the mod870's received PCM
data stream. The upstream
PCM data flow is received
from the remote device via
SPort0 into the mod870. The
mod870 firmware application
demodulates the Telco data
and passes it to the host, then
the host passes it to the net-
work. The receive data signal
is bussed to each mod870 in
the port bank. Only one

mod870 is assigned a given channel at
any time, and senses it in the serial
TDM signal. The PCM datastream on
a T1 digital trunk line is U-law
companded. Therefore, the U-law
companding module within the
mod870’s firmware application is
enabled.

THE  NETWORK INTERFACE
To support the network data flow,

each port device must be connected to
a controlling host. The host usually

supports a bank of port devices. In
most cases, the host supports a mul-
tiple of the total number of calls car-
ried by the digital trunk line.

Most port devices have a parallel
port for connection to a controlling
host device. For this reason, the con-
nection between the host and the port
is made between the host’s memory
interface and the port device’s parallel
port. Unlike the serial interface bus,
the Network interface bus is not
TDM’d. Transfers over the network
bus are asynchronous and occur ran-
domly, therefore the host controls and
arbitrates this bus. To select indi-
vidual parallel ports for data transfer,
each select signal is mapped into the
host’s external memory space.

In this example, the host supports
24 mod870 ports, which matches the
number of channels carried by the T1
digital trunk line (see Figure 3).

The mod870 includes an integrated
internal direct memory access (IDMA)
port. The IDMA port is designed for
connection to a master host device. It
is a 16-bit parallel port that supports

The transmit data signal, or DT0,
is driven by SPort0 and sensed by the
DS2151. It carries the mod870's trans-
mitted PCM datastream. The down-
stream PCM flows from the network
to the host, then to the mod870. The
firmware application modulates the
network data and transmits it via
SPort0 to the remote device. The DT0
is bused to each mod870 in the port
bank. One mod870 is assigned a given
channel at a time and drives it in the
serial TDM signal.

mod870

SPort 0

SCLK0

DR0

RFS0

DT0

TDV

TCLK
RCLK

TSYNC
RSYNC

TSER

RSER

Serial
I/F pins

RRING

RTIP

TRING

TTIP

DS2151
T1 transceiver

Parallel port I/F

Transceiver
controller

T1 trunk
I/F pins

Figure 5—Here’s the SPort0 connection to the serial port of the
Dallas 2151 T1 transceiver.
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mod870 booting via the host
and runtime access to
mod870 internal memory.
And, it has a 16-bit multi-
plexed address and data bus.
The multiplex bus adds
complexity to the host inter-
face, however, the pin count
savings contributes to a
reduction in package size.

IDMA port access is asyn-
chronous and a host can
access the mod870’s internal
memory while the mod870
is operating at full speed. It
does not require core inter-
vention to maintain data
flow. The host system can
access mod870’s internal
memory directly. The
mod870’s IDMA port has a 21-pin
interface (see Table 2).

CONNECTING THE  IDMA PORT
The mod870’s IDMA port connec-

tions to the host’s external memory
interface are complicated by the
IDMA port address and data signals,
which are multiplexed onto a single
bus (see Figure 6). More address de-
coding, in addition to port device
selection, must be implemented to
distinguish an address latch from a
data transfer cycle.

Because the host individually se-
lects the 24 ports, all but the IDMA
port ISb signals are bused. So, a single
host address is allocated for each ad-
dress latch and data transfer select on
each of the IDMA ports.

The host accesses the appropriate
memory-mapped address to select the
operation that it wants to perform.
The required address locations for 24
mod870 ports are:

N modems → 2 × N address locations
24 modems → 2 × 24 = 48 address

locations

The required number of decoding bits
per address location for 24 mod870
ports are:

N modems → int (log2 [2 × N] +1)
address bits

24 modems → int (log2 [2 × 24] +1) = 5
address bits

[*IS] selects the IDMA port for
access. A mod870’s IDMA port will
be accessed for either an address latch
cycle or a data transfer cycle. Because
the host supports multiple mod870s,
each pair of accesses to a given
mod870 IDMA port must be unique.
Each pair is given a unique address in
the host’s external memory space.

Every *IS pin on each mod870 has
a separate connection to the decode
logic that decodes the host’s memory-
mapped address. A mod870 IDMA
port should be selected whenever an
address or data cycle is desired for
that mod870 IDMA port.

[IAL] latches a mod870 address into
the IDMA port. This signal is active
during an address latch cycle. Note
that a mod870 IDMA port must be
selected via its *IS pin or signal in
order for an address to be latched to
the IDMA port. So that, the port
bank’s IAL pins can be bused. Any
host write to an address latch mapped
location of any mod870 IDMA port
will activate the signal. However,
only one *IS signal should be asserted.

IDMA Write Strobe, or IWRb, en-
ables an IDMA port data write. This
signal is active during a data write
cycle. Note that the IDMA port must
be selected via its *IS pin or signal in
for a write to mod870 memory to
occur. For this reason, the port bank
*IWR pins or signals can be bussed,
provided each *IS signal is unique to
each mod870 IDMA port. Any host

write to a data transfer
mapped location will acti-
vate this signal.

IDMA Read Strobe, or
*IRD, enables an IDMA port
data read. This signal is ac-
tive during a data read cycle.
The IDMA port must be
selected via its *IS pin or
signal  for a read from
mod870 memory to occur.
So, all the port bank *IRD
pins or signals can be bussed
if each *IS signal is unique to
each mod870 IDMA port of
the bank. Any host read to a
data transfer mapped loca-
tion will activate this signal.

The IDMA Port Acknowl-
edge, or *IACK, line identi-

fies the completion of a data transfer
cycle. It acts as a busy signal for the
IDMA port transaction. The host
waits for this to be inactive before
starting the next IDMA operation.

The *IACK pin can be configured
as an open drain output. This allows
all the *IACK signals from the bank’s
ports to be wire ORed or bused, even
though this is an output signal. This
helps reduce the complexity of the
connection back to the host. Only one
host connection is required. It could
be a MACK (memory acknowledge) or
a host input flag pin, which may be
required to extend the access cycle.

The multiplexed address and data
bus (IAD[15:0]) carry the address for a
data transfer during the address latch
cycle and the data during a data trans-
fer cycle. The host’s data bus is con-
nected to this bus. The host's address
bus drives the decode logic, which
selects the desired device by asserting
its *IS signal when that device’s ad-
dress location is accessed.

THE CONTROL INTERFACE
The host also drives and senses

general control signals to and from
port devices. The signals include:

• reset—port device input, driven by
the host

• flags—host input, driven by the port
device

• interrupts—port device input, driven
by the host

Figure 6—The mod870’s IDMA port connections to the host’s external memory
interface are complicated by the IDMA port address and data signals, which are
multiplexed onto a single bus.
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The host should have individual
control of each port device’s reset
signal, because port devices crash
sometimes despite safety measures.
Having individual control of the reset
lines allows a specific port device to
be reset, rebooted, and restarted inde-
pendent of other port devices in the
port bank. If the ports shared a com-
mon reset, the whole port bank would
have to be reset.

Some port devices provide signal-
ing flags that mark the occurrence of
events within them. The occurrence
of one of these events may require the
host to perform a specific action. The
most common use of this signal is to
generate a hardware interrupt signal
to the host. For example, a port device
may pulse a flag pin, indicating the
need for the host to read received
network data from the port device.

Some port devices require interrupt
input signals to be manipulated to
activate certain actions within them.
With interrupts, the host drives the
signals in order to elicit the proper
operation from the port device. For
example, the host has to signal the
port device that it completed the
write of network data into the port
device for transmission.

THE MOD870'S CONTROL
SIGNALS

The mod870 has two useful control
signals (see Table 3).

Although not required, addi-
tional connections can be made
between the host and other
control signals. This increases
individual control over each
mod870 and adds flexibility
and efficiency to the system.
The mod870’s control signal
connections to the host are
shown in Figure 7.

In my example, the host
controls 24 mod870 ports. In

order to provide the greatest flexibil-
ity in mod870 control, the design
requires individual control over each
mod870 reset signal. This individual
control requires decoding logic. De-
coding is similar to IDMA port select
signal decoding. Each reset is allo-
cated a unique selection address in
the host’s I/O memory. Every *RESET
pin on each mod870’ has a separate
connection to the decode logic, which
decodes the host’s memory/mapped
address and activates the mod870’s
reset. In this case, each signal is as-
signed an address. The host addresses
the appropriate select depending on
the desired signal operation. The re-
quired address locations for 24
mod870 ports are:

N modems → N address locations
24 modems → 24 address locations

The required number of decoding bits
per address location for 24 mod870
ports are:

N modems → int (log2 [N] +1) address
bits
24 modems → int (log2 [24] +1) = 5
address bits

Because there are fewer interrupt
input pins on the host than FL0 sig-
nals coming from the port bank, the
FL0 signals must be decoded to one

signal going to a single host interrupt
line. In this case, there are 24 FL0
signals coming from the port bank.
Notice that when the host senses an
interrupt, you don’t know which
mod870 generates the signal. It is
determined by using a 24 input OR
gate and a single 24-bit memory
mapped register. The OR gate is used
to decode the FL0 signals to the single
host interrupt signal. The 24-bit
memory-mapped register captures the
individual toggles of the 24 mod870
FL0 pins. When the host is inter-
rupted, it can read the memory-
mapped register for the information.

You may want to mask out certain
mod870 FL0 signals. For example, if a
polling scheme is employed for
mod870s operating in fax mode, mask
out interrupts generated by the
mod870. This feature can be imple-
mented via a 24-bit memory-mapped
mask register. The FL0 register bits
are AND’d with the mask register
bits to generate the inputs to the OR
gate. Only the unmasked ports can
generate a host interrupt signal. The
host can write the mask register with
the desired masking value.

SOFTWARE DESIGN: CODING
THE HARDWARE DRIVERS

Hardware abstraction removes the
specifics of the hardware implementa-
tion from software development. The
most important reason is code port-
ability. For example, if the system
hardware changes, a more powerful
port device is integrated in the sys-
tem, you’ll want to minimize the
effects on the software. Higher level
software coding should never depend
on the specifics of the hardware
implementation.

If the abstraction is properly
executed, changes in the
system’s hardware result in
minor rewriting of the lowest
level hardware interface/driver
functions. The first step is to
clearly mark the boundary of
abstraction. In the RAS server
host, this boundary is defined
by the following function calls:

get_port_buffer()
put_port_buffer()Figure 7—Here are the mod870's control signal connections to the host.

Host

Memory
I/F pins

Addr

Data

IRQ

Decoding

reset

Interrupt
register

Mask
register

IR_select

PLD logic mod870
IDMA
port

Resetb

FL0

MR_select

Table 2—The mod870’s
IDMA port has a 21-pin
interface.

Pin name I/O Function Comments

IRDb I Read strobe bused
IWRb I Write strobe bused
ISb I Port select separate connection per port
IAL I Address latch bused
IAD [15:0] I/O Address/data bused
IACKb O Acknowledge bused, open drain output
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All higher level functions
are built upon these two
basic functions. If the hard-
ware changes, only the code
within these two functions
will require recoding.

HOW DOES THE
MOD870 WORK?

To design and code the
best buffer transfer func-
tions, it is important to
know how the mod870’s
memory is structured and
how the IDMA port is used
to access this memory. The
mod870’s memory architecture has
two separately selectable and address-
able memory spaces (see Figure 8).
The memory spaces are referred to as
program memory (PM) and data
memory (DM) spaces. Program
memory space is 16k words by 24 bits,
and contains either 24-bit instruction
code or 16-bit data. Data memory
space is 16k words by 16 bits, and
contains 16-bit data words.

Although the program and data
memory spaces are only addressable
up to 16k words, memory overlays or
pages provide an additional 16 words
of available memory for both PM and
DM spaces. The bottom half of PM
and the top half of DM have two 8k
word overlay pages.

Therefore, only 14 bits are required
to address locations of a memory
space. However, a 16-bit value is
latched into the IDMA port during the
address latch cycle (see Figure 9). The
two extra bits provide overlay page
and memory information that is re-
quired to identify unique locations
within the mod870’s total available
memory.

The mod870 IDMA port requires
two basic operations, the address
latch cycle, which includes overlay
page and address latching, and the
memory access cycle, which includes
read and write accesses. Depending on
the value of IAD[15], the address latch
cycle will perform one of two possible
functions:

• an overlay page latch: IAD[15] = 1
  DM overlay page = IAD[7:4]
  PM overlay page = IAD[3:0]

• an address latch: IAD[15] = 0
  to DM space: IAD[14] = 1
  to PM space: IAD[14] = 0

IRDb and IWRb determine the data
transfer direction. Note that the
IDMA bus is 16–bits wide, therefore
PM transfers require two read or write
cycles. DM transfers require one
cycle. After an address is latched into
the IDMA port via an address latch
cycle, subsequent data transfers auto-
matically increment the original ad-
dress value. So, only one address latch
cycle is required for a contiguous
buffer of data. After the address latch
cycles, the buffer can be accessed by
continuous memory access cycles. A
typical IDMA port access consists of
three steps, overlay page latch, ad-
dress latch, and looped memory ac-
cess (read or write).

IDMA PORT FUNCTIONS
At the lowest level of host-to-

IDMA port interaction, there are five
basic transaction
cycles the host must
be programmed to
support. The buffer
transfer functions are
constructed from
these five cycles:

• address latch cycle
• data transfer cycle:

24-bit read—2
cycles/PM word,
strobe IRDb

• data transfer cycle:
16-bit read—1
cycle/DM word,

   strobe IRDb

• data transfer cycle: 24-bit
write—2 cycles/PM
word, strobe IWRb

• data transfer cycle: 16-bit
write—1 cycle/PM word,
strobe IWRb

An address latch cycle
performs two pointer latch
operations that are not
distinguished by the way
the host controls the
IDMA port, but by the
address information driven
on the IAD bus. Therefore,

only one address latch function is
required. The address information
passed to this function determines the
latch cycle, page, or address.

Data transfer cycles can be read or
write. And, they can be to or from PM
space, requiring two access cycles, or
DM space, requiring a single access
cycle. These possibilities lead to four
required access functions. Then, all
data transfers are constructed from
the five basic cycles.

It is assumed that inpw( ) and
outpw( ) are programmed in the
assembly language of the specific host
platform. The address latches are
distinguished by the address value
passed to the latch cycle function.

BUFFER TRANSFER FUNCTIONS
Buffer transfer functions are built

from the five basic IDMA building
block functions.

The IDMA port automatically
increments its internal address
pointer for each word transferred.

Figure 9—A 16-bit value is latched into the IDMA port during the address
latch cycle.
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Figure 8—The mod870’s memory architecture has two separately selectable and
addressable memory spaces.
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Therefore, for contiguous data loca-
tions, one address latch cycle is re-
quired. For efficiency, the word
transfer function is chosen before the
buffer transfer loop is executed. This
avoids incorporating a redundant “if”
statement within the loop.

A transfer register is employed to
hold the entire necessary buffer
pointer and size information for the
transfer. Each item in the transfer
register structure must be pro-
grammed before buffer transfers. Mac-
ros are used to automatically insert
the IAD[15] and IAD[14] bit informa-
tion. This helps the abstraction of the
hardware in subsequent higher level
functions that will call these buffer
transfer functions.

THE API INTERFACE
An API describes the interface to

the port device; and the mechanisms
by which the host can operate and
control the functionality of the RAS
port. Generally, API interfaces are
reserved for programmable port de-
vices. In the programmable port de-
vice case, the API spec describes how
the host can interact with the firm-
ware that runs on the port device. The
types of interactions may include the
following: network data access and
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transfers, port device configuration
and control, data formats, start-up
procedures, and initialization.

The API interface refers to the func-
tions that support the data transfer
mechanisms described in the
mod870’s API specification. All data is
passed between the host and the mo-
dem via virtual FIFOs that reside in
the mod870’s memory (see Figure 10).
The term “virtual” is used because
these are not real FIFOs chips. These
FIFOs are circular buffers that must
be maintained by the host code and
the mod870 firmware.

A virtual FIFO is a data buffer with
associated read and write pointers.
The pointers point to the start and
end of the valid data range within the
FIFO. The way the pointers are used
makes the linear buffer look like a
circular buffer. Pointers must be
maintained manually. The host code
and the firmware update pointers as
they read or write the FIFOs and
monitor pointers for wrap around
when they reach the end of the buffer.

Two functions are created to per-
form reads and writes to a FIFO.
The use of transfer registers helps
hide the details of handling PM or
DM transfers and the overlay page.

A FIFO transfer is made up of at
least one buffer transfer. If the trans-
fer causes the pointers to wrap, a
second buffer transfer is used. Rather
than check for a wrap condition on
each word transfer, a wrap condition
is determined before transfers take
place. If the total transfer will cause a
pointer to wrap, the transfer is broken
into two transfers—one at the bottom
of the FIFO and another at the top.

The host must know the FIFO’s
location within the memory to inter-
act with it. So, a tag holds the pointer
and size information. Each FIFO has
an associated tag that is placed in a
predefined location within the
mod870’s memory. The host reads
each tag before it performs transfers.

SUMMARY
To be successful in today’s com-

petitive RAS server market, you
must build inexpensive, productive
RAS servers. The two key ingredi-
ents in the recipe for success are a
good RAS port IC choice and skillful
integration of the RAS port IC in the
RAS server. Make sure the RAS port
is small, consumes little power, and
has few pins. In addition, a program-
mable port that’s easy to upgrade is
helpful.

Also, apply the RAS port device
the best possible way. Hardware and
software integration must be ap-
proached properly for optimal results.

Take advantage of the port
device’s special serial and parallel I/O
features. With hardware drivers, cre-
ate a function for each transaction
that the host can perform and build a
generic function to abstract the hard-
ware. You can use the API interface
to create functions that support API
mechanisms. I

Figure 10—All data is passed between the host and the
modem via virtual FIFOs that reside in the mod870’s
memory.
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Table 3—The mod870 has these two useful control
signals.

Pin name I/O Function Comments

RESETb I chip reset
FL0 O output flag host interrupt

SOURCES SOFTWARE
The software for this article is
available for downloading from
the Circuit Cellar web site.

http://www.analogdevices.com
http://www.dalsemi.com
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3
4

Op-Amp
Specifications

MICRO
SERIES

Joe DiBartolomeo

w
For Joe,
putting this
Microseries

together has been a
lot like working with
op-amps—there’s a
lot more decisions to
make than you would
think. Just looking at
the input and output
stages reveals a host
of options to consider.

hile preparing
this four-part

Microseries, I discov-
ered that writing about

op-amps is similar to designing with
them. When I dared to deviate from
the world of the ideal op-amp, I found
myself on a slippery slope. How much
detail is too much, what do I leave
out, how little is too little?

For example, the circuit in Fig-
ure 1a is a basic noninverting ampli-
fier. Using the ideal op-amp model,
you get the output voltage given in
the equation. Many op-amp circuits
can be designed using the ideal op-
amp model and feedback equations.

If you need greater precision, take
into account the op-amp specifica-
tions (errors) that I discussed in the

first two parts of this article series
(see Figure 1b). There are two equa-
tions in Figure 1b, the first is valid at
a specific temperature and when there
is a constant supply voltage. If there
are thermal effects or power supply
perturbations, you must use the sec-
ond equation. But, note that I left
things out. For example, I assume the
op-amp differential gain is infinite. In
addition, the equations in Figure 1 do
not include op-amp or circuit noise
and depict DC input errors only.

It is clear that your application will
dictate which op-amp model to use
and which op-amp specifications are
important. What is often overlooked
is that the external op-amp circuit can
amplify or swamp out the affects of
an op-amp specification.

The need to understand the total
circuit will become clear shortly as
we discuss op-amp input and output
impedance along with the acceptable
voltage ranges that allow proper op-
amp operation.

Before getting started, I would like
to finish Part 2’s topics by presenting
two circuits to test for op-amp bias
currents, input offset voltage, CMRR,
and PSRR (see the sidebar on page 67).

 INPUT AND OUTPUT IMPEDANCE
Voltage feedback op-amps have

both common mode and differential
mode input impedance. Input imped-
ance is specified in various ways in
textbooks and manufacturers’
databooks.

One popular way is to specify the
differential impedance as the imped-
ance between the two input termi-
nals, represented by a capacitor and

Part 3: Input/Output Stages

P
ar

t 3
4of

Figure 1—In the ideal op-amp model (a), the
noninverting amplifier output is easy to determine.
(b) However, when deviating from the ideal model,
including the input errors means determining the
output voltage, which is complicated.
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ε = Long term drift of VOS
∆T = Change in temperature
∆VCC = Change in power supply
VIC = Input common mode, VIN in this case
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resistor in parallel. The common
mode input impedance is specified as
the impedance between each input
terminal and ground, again repre-
sented by a capacitor parallel to a
resistor. So, on the datasheets you see
1012 || 10 in units of ohms and pF,
respectively (see Figure 2a).

You also see the input impedance
split, as shown in Figure 2b. The
datasheet gives RI and CI, which repre-
sent the input resistance and capaci-
tance between the terminals, with
one terminal grounded. In Figure 2b, if
you ground the positive terminal,
RIC = RD||RN and CI = CD||CN. CIC and
RIC are specified for common mode
signals. They are the input resistance
and capacitance seen by a common
mode signal with respect to ground.

Connecting the two input terminals
results in CD = CP||CN and RD = RP||RN.

No matter how the input imped-
ance is specified, the values range
from 103 to 1012 ohms for resistance
and 1 to 25 pF for capacitance. Input
impedance is a nonlinear function of
temperature and common mode volt-
age. For example, in FET devices,
input common mode impedance is
reduced by a factor of two for every
10°C rise in temperature. That’s the
same as bias currents, but in the op-
posite direction.

The output impedance of the op-
amp is small—in the 10- to low-100-Ω
range, mostly resistive. The op-amp
output impedance is important in
applications where a capacitive load is
being driven and in power op-amp
applications.

Usually the actual value of the op-
amp’s input or output impedance is
not meaningful. As I discussed in

Part 1, op-amps are rarely used in
open-loop configuration. How the op-
amp’s impedance interacts with the
external feedback circuit components
to give the circuits overall input and
output impedance is important.

Op-amp output impedance is in the
tens to low thousands of ohms range,
mostly resistive. As you will see,
output impedance is almost always
reduced by feedback. A couple of ex-
amples where output impedance is of
concern are, driving capactive loads or
cables, or driving analog to digital
converters (ADC) where the op-amp
must charge the ADC input capaci-
tance to within ½ LSB in a period of
time that is less than 1 sampling inter-
val. You’ll see later how output imped-
ance also affects the ideal loop gain

Op-amps are almost always used
with feedback, normally negative.
This feedback will either increase or
decrease the input and output imped-
ance seen by the source and load.
Figure 3 points out that, in a standard
op-amp circuit with feedback, the op-
amps ZI and ZO are not what is pre-
sented to the load and source. What is
presented is the result of the interac-
tion between the op-amp’s impedance
and the external feedback circuit.

Taking a look at ideal amplifiers in
feedback configurations, we can
bundle them up into four basic topolo-
gies shown in Figure 4—series-series
(SS), series- parallel (SP), parallel-series
(PS), and parallel-parallel (PP).

The names stem from how the
amplifier and feedback network are
connected relative to the input and
output signals. For example, in the SP
configuration of Figure 4a, the ampli-
fier input is connected in series with
the feedback network while the am-
plifier output is connected in parallel
with the feedback network. Under-
standing these configurations helps
explain how the amplifiers imp-
edance’s interacts with the feedback
network to give the overall input and
output impedance.

If we go through some simple math
for the SP configuration, you get:

Vin = Verror + BVout [1]

Vout = AVerror

where B equals feedback network
transfer function and A equals op-amp
open-loop gain.

Vin = Verror (1 + AB) [2]

Vin = Verror (1 + AB) [3]

Verror = IinZi [4]

Vin = IinZi (1 + AB) [5]

Z IN = VIN

I IN
= 1 + AB Z i [6]

AB is greater than one, so the input
impedance with feedback is greater
than the amplifier’s input impedance.

What happens to the output imped-
ance? Here the feedback reduces the
output impedance of the amplifier. A
similar calculation to the one for
input impedance would show that:

ZOUT = ZO

1 + AB [7]

Figure 2—Here are two common ways to represent op-
amp input impedance.

a)

b)

ZCM–

ZCM+

ZDIFF

–

+

CN

CP

RN–

RP

RD CD

–

+

H

zi

zo

Load

Figure 3—The op-amp's input and output impedance is
not what the load and source see. They see the input/
output impedance of the circuit, which is the result of the
op-amp impedance effected by the feedback network H.

Figure 4—Op-amps are almost always connected in a
feedback network. The four ways of connecting are (a)
series-parallel (SP), (b) parallel-parallel (PP), (c) series-
series (SS), and (d) parallel-series (PS).

H

H

H

H

A A

A A

b)a)

c) d)
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Measurement of Bias Currents, Input
Offset Voltage, CMRR, and PSRR

For years, each time I encountered
a circuit to measure op-amp specifica-
tions, I was curious about its effec-
tiveness. But, I never acted on my
curiosity, assuming the results from
these circuits would never match the
manufacturer’s specifications. Also,
for most of my engineering career, I
have had the luxury (curse) of working
with either laser or radar systems.
These systems are good at pointing
out op-amp imperfections.

So, with this Microseries as an
excuse, I built several circuits I found
in various app notes, seminar notes,
and textbooks (see Figures i and ii).

In Figure i, VIO will appear across R
and produce a current of VIO/R, which
will flow through RF and produce an
output voltage V= VIO/R × RF.  So, the

value read with a volt-
meter at V is approxi-
mately 1000 VIO.

The bias current of
the AUT can be ignored
because VIO/R is much
larger then the bias cur-
rent. Also, the effects of
the buffer amp can be
ignored because it must
be a high-gain, low-input
offset voltage and low
bias current device.

To calculate PSRR, find VIO. Then
change VCC/VEE  and again find VIO:

PSRR =
∆VCC

∆VIO

The greater the change in supply
voltage, the easier it will be to mea-
sure the change in VIO. Remember to
change the supply rails equally in

opposite directions
to avoid a common
mode change.

To measure
CMRR, use the cir-
cuit to test for VIO

and apply a com-
mon mode voltage
to the positive ter-
minal, as shown in
Figure i.  Repeat for
a different common
mode voltage. You
then get the change
in VIO for a change
in common mode
voltage:

CMRR =
∆VCM

∆VIO

After you have VIO, use the circuit
in Figure ii to find the bias currents.

I tested several op-amps with vari-
ous values of bias currents, offset
voltage, CMRR, and PSRR. The tests
yielded no surprises. Op-amps with
the lowest datasheet specs also came
up with the lowest test results, al-
though I did not match the manufac-
turer specifications.

There are a few important things to
take note of. As mentioned, the buffer
amp must have high-gain, low-input
offset voltage and low bias currents.
Change the buffer amp and you will
likely see changes in the output for
the same AUT.

The resistor values may have to be
played with, depending on the AUT.
Also, if the circuit oscillates use a
capacitor across the feedback resistor.
These circuits give you a “feel” for
the op-amp specs and are useful for
those just starting out with op-amps.

A similar calculation for
all four configurations can be
performed (see Table 1). Op-
amps are normally used in
SP (noninverting) and PP
(inverting) configurations.

Now, replace the ideal
amplifier with an op-amp.
Again, let’s look at the three
basic op-amp circuits—
inverting, noninverting, and
follower. We will look at
both the ideal case and non-
ideal case.

H

zI

zo

zIN ⇒

zOUT
⇐

VOUT

BVOUT

+

–

VIN

IIN

H

zI

zo
VOUT

VOUT

+

–

VERROR

Figure 5—In an op-amp circuit connected with negative feedback to produce a
voltage amplifier, noninverting amp (a), the feedback will increase the input imped-
ance seen by the source and will decrease the output impedance presented to the
load. The circuit also provides stable gain. These features make the noninverting
amplifier suitable for voltage amplification. (b) If the gain is set to one, you have a
voltage buffer.

Starting with the non-
inverting amplifier of fig-
ure 5a, you see that there
is a series parallel configu-
ration. Here the input
control variable is a volt-
age and the controlled
output variable is also a
voltage (this is a voltage
amplifier).

Ideally what you have is
the standard SP configura-
tion that will yield a cir-
cuit input impedance as

10 R

–

+

AUTCMRR –

+

Buffer V

VCC

VEE

RF

COVO

100

100

VCC

VEE

Vbias

10k 

–

+

Buffer

–

+

AUT VO

R2

RS

RS

Test IB+   S1 closed
Test IB–  S2 closed

IOS = (IB+ – IB–) S1 + S2 closed

VO = 1+ R2

100
VIO+IB+RS–IB–RS

 Figure i—To measure input offset voltage (VIO),  set VBIAS = 0. This puts
VO at zero, which is how VIO is defined.

Figure ii—You can use this circuit to find the bias currents.

a) b)
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given in equation 6. However, the
circuit’s actual input resistance is:

RIN = RD (1 + AB) || RC [9]

Where RD and RC are the resistive
portions of ZDIFF and ZCM of Figure 2.

Here you can see that the differen-
tial input resistance is increased by
feedback. At high gains, the op-amp’s
common mode resistance sets the
resistance upper limit, as is also the
case with a voltage follower.

The output resistance of the non-
inverting configuration is given by:

ROUT = RO/(1 + AB) [10]

as predicted by the general ideal case.
But, note that the output resistance of
the op-amp forms a voltage divider
with the load and feedback resistors.
The net affect is to reduce the open-
loop gain—the larger the op-amp’s
output impedance, the greater the
reduction in loop gain. As a rule of
thumb, if the op-amp output resis-
tance is one-tenth or less the value of
the output resistance then its affects
can be ignored.

 In the inverting configuration
ideally the input resistance is equal to
the value of the series resistance, RS

(see Figure 6). You can see this if you
take the case with no series resistor
than the input resistance is the  com-
bination of RD and the Millerized
feedback resistor, RF, so:

RIN =  (RD || RF) /(1+AB)

Because RD is generally much
larger than RF and AB is generally
much larger than 1, you can approxi-
mate the equations as RIN= RF/AB,
which is small. These returns use an
input resistance that is equal to the
series resistor, RS.

The output resistance of the invert-
ing configuration is reduced by feed-
back as was noninverting configura-
tion, seen in equation 10.

Op-amp input resistance, both in
inverting and non-inverting configu-
ration, has an affect on loop gain
because it is parallel with the series
resistance. The approximation for the
inverting case (see below) points this
characteristic out:

B = [(RS || RD)]/[(RS || RD) + RF]

if RD >>> RS, you get the familiar

B = RS/(RS + RF).

If you were dealing with the non-
inverting configuration this equation
would be much more complex, but
the results would besimilar.

Now, you see that the feedback
network plays a dominant role in
determining circuit impedance. But
recall, feedback plays a dominant role
in virtually all aspects of the op-amp
circuit, from stabilizing gain and re-
ducing distortion to increasing band-
width. You saw last month that, in the
case of the inverting op-amp circuit,
you could ignore the effects of CMRR.
However, in the noninverting configu-
ration the effects of CMRR were am-
plified by the gain of the circuit.

Figure 7 summarizes the effects of
feedback on the amplifier’s circuits
input and output impedance for most
scenarios.

INPUT COMMON MODE VOLTAGE
RANGE

The op-amp operates properly
(linearly) in the input common mode
voltage range, Vicr. Input common
mode range, like many other op-amp
specifications, can be explained by
looking at the differential pair (see
Figure 8a).

The biasing of the current source
and current mirror results in an over-
head voltage. This voltage puts a
limit on the maximum input voltage.
The transistors wouldn’t be properly
biased if any input voltage were
higher or lower. Therefore, you must
restrict the input voltage range to:

Vrail – (+)Voverhead

VOUT

IIN

zi

IIN

VOUT

RS

RF RF

VOUT

IIN

RFRF

1+A≈ A

RG

+

–

RG

+

–

RF

–

+

ZIN=AZI

ZOUT= ZO

A

ZIN = 1+AB ZI

B=1+RF

RG
ZOUT = ZO

1+AB

ZIN = RG

ZOUT = ZO

1+AB

RF

Figure 6 —The input
impedance is Rs,
whereas in (b), the
feedback resistor is
Millerized to give the
input impedance.
Figure 7—Here’s the
graphic version of
Table 1 summarizing
the affects of feedback
topologies on the input
and output impedance.

Figure 8a—The voltage required to bias the current source and current mirror in the op-amps input stage is similar
to an overhead voltage. This overhead means that the input common mode voltage can never equal either rail. b—
Rail-to-rail input op-amps have complementary NPN and PNP differential pairs. This ensures that they can work with
a common mode voltage equal to either rail because one pair is always active.

+VCC

–VBF

VIN

≈0.8 V

≈1 V

.6 .6

+ +

– –

–+

a) b)

Figure 6

Figure 7
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Joe DiBartolomeo, P.Eng., has more
than 15 years of engineering experi-
ence. He is currently employed by
Texas Instruments as an analog field
engineer. You may reach him at
j-dibartolomeo@ti.com.

The overhead voltage is dif-
ferent, depending on whether
you are dealing with positive or
negative rails, or the inverting
or noninverting input (see Fig-
ure 8a).

For example, overheads are
not critical for ±15 V rails, the
input common mode range
would be greater than ±10 V.
However, if a single supply of 5 V and
ground ran this op-amp, the common
mode range would be less than 3 V. A
rail-to-rail input op-amp’s input struc-
ture is designed to extend the range as
near to the rails as possible.

There are rail-to-rail input op-amps
that include one or both supply rails.
For example, op-amps with comple-
mentary NPN and PNP differential
pairs can work with a common mode
voltage equal to either rail because
one pair remains active (see Figure 8b).

Exceeding the input range could
cause an inverting circuit to become a
noninverting circuit, or the inputs
could be destroyed.

DIFFERENTIAL INPUT RANGE
There is a limit to the amount of

differential voltage that can be applied
across the op-amp’s input terminals.
This voltage is equal to or greater
than the base emitter reverse break-
down voltage of one transistor plus
Vbe of the other transistor. Any excess
voltage will damage the op-amp (see
Figure 9a).

However, because the op-amp nor-
mally is used with feedback (i.e., both
inputs at nearly the same values),
usually differential input voltage
range isn’t a design issue.

OUTPUT VOLTAGE SWING
The best way to understand the

output is to look at its structure. Fig-
ure 9b shows a common output stage
of the emitter follower with comple-
mentary transistors, often called the
class B push-pull amp. The name
comes from the mode of operation,
when VI is positive, the NPN transis-
tor is on and supplies the load cur-
rent, while the PNP transistor is off.
When VI is negative, the PNP is on
and supplies the load current while
the NPN transistor is off. The diodes
in Figure 9b greatly reduce the cross-
over distortion, which is caused by
the transistor’s Vbe. The small resis-
tors R1 and R2 help stabilize the qui-
escent current and improve small
signal gain linearity.

Figure 9b clearly demonstrates that
the emitter follower cannot drive the
output to either rail. The output can
drive:

V+ <= +VCC – VR1 – VBEQ1 – VFAPQ1

and

V– >= –VEE + VR2 + VBEQ2 + VSAPQ2

The maximum output voltage ±Vo

is the maximum positive or negative

peak output voltage that can be
obtained without the output
voltage clipping when quiescent
DC output voltage is zero. This
voltage depends on the load. The
greater the output current, more
is dropped across R1 and R2.

Rail-to-rail output op-amps
use common emitter or com-
mon base rather than the emit-

ter follower structure to extend the
output voltage swing towards the
rails. The output swing is limited
only by the saturation voltage (bipo-
lar) on resistance (CMOS) of the out-
put transistors.

Now, you have looked at common
op-amp specifications and how they
affect circuit performance. Remember
that these specifications are effected
significantly by the input and output
topologies.

Next month, I’ll look at AC op-
amp specifications and the trade-off
when selecting an op-amp for a par-
ticular application. I

Figure 9a—Any voltage that
is equal to or greater than one
base emitter, reverse break-
down voltage, plus Vbe causes
excess current flow in the
inputs and may destroy the
op-amp. b—This is a com-
mon op-amp output stage.
The emitter follower with
complementary transistors is
often called the class B
push-pull amp. Because this
configuration won’t allow the
output to reach either rail,
rail-to-rail op-amps use
common emitter or base
configurations.

VEBO≈5VVEB≈.6V

VD

VI

–VEE

Q2

Q1

+VCC

Table 1—Here is a summary of the effects of feedback topologies on
an amplifier circuit’s input and output impedance.

Feedback Transfer
topology function ZIN ZOUT

SP VOUT/VIN Increase Decrease
PP VOUT/IIN Decrease Decrease
PS IOUT/IIN Decrease Increase
SS IOUT/VIN Increase Increase
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FROM THE
BENCH

Jeff Bachiochi

The Chips
are Alive with
the Sound of
Music

The Von
Trapp
family
may
have

made some great
music, but try fitting
them all into a birth-
day card and you’ll
see why Holtek’s
Melody Generator
ICs were such a hit.

used to make
an annual pilgrim-

age to New Jersey for
the Trenton Computer

Fair. It wasn’t like today’s computer
fairs where John Q Public roams the
aisles for the cheapest Taiwanese
clones. Most of the products were
made by hand for the elite who knew
what a computer was before
Macintosh and Microsoft.

Outside, hackers (back when a
hacker was a good guy) and hams sold
the electronic stuff that had been col-
lecting dust since they bought it the
previous year. I picked up the first
singing birthday card I ever saw at a
fair. “Wow,” I thought, “How did they
get all that into a card?” I plunked
down five bucks and ogled at the little
bits inside the folded paper greeting.

I had to search high and low for an
old Digikey catalog. I learned not to
throw out an old databook when the
new one arrives, but didn’t think I’d
need an old Digikey catalog. However,
I knew I had seen these things in
there, the Holtek Melody Generator
ICs, a TO-92 device with connections
for a battery and a piezo output device
(see Figure 1). They cost less than $1
and were available in a selection of
melodies. But, Digikey no longer lists
them. A trip to Holtek’s web site
confirmed my fears that they were
discontinued.

PERSONAL MELODY
I couldn’t let this discourage me. I

wanted to make a special card for my
wife this year and I planned to use one
of Holtek’s parts for it. I ended up
turning a simple gesture into a full-
fledged project (see Photo 1).To make
a similar device requires a program-
mable microprocessor. A small 8-pin
SMD device would be the perfect size
for a Holtek replacement. The only
manufacturers of 8-pin micros that I
know of are Atmel and Microchip.
Microchip’s PIC12C508 does not have
interrupts, so it can’t easily output
frequencies with stability amidst the
other processing that’s necessary. This
means the smallest workable PIC is
the PIC12C671. Atmel’s AVR series
8-pin micros have timer interrupts
available, so the ATtiny10, which is
its bottom-end device, is adequate.

TOS
In the synthesizer industry, TOS

means top octave synthesizer, which
was developed in the ’70s for elec-
tronic organs. A 1- or 2-MHz input
would be internally divided to pro-
duce 12 equally spaced frequency
outputs. The 12 semitones comprise
the musical scale, an octave. An oc-
tave is the interval between two notes
where one frequency is twice or half
of the other. When an octave is pro-
duced, dividing a note’s frequency by
two derives the remaining notes in
lower octaves. Hence, notes are based
on the single clock’s input frequency.

Because TOSs are hardware de-
vices, no overhead was necessary.
Doing this with a processor requires
hardware PWMs or an execution speed

i

Figure 1—Holtek melody generators were popular, but
they have since been discontinued.

Imitating the Dead Melody IC
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on the 64-µs timer interrupt routine.
Each note’s duration is based on a tic
or beat of 1000h interrupts (~0.25 s).
The rest of the code is a small loop
and two main lookup tables. The first
lookup table is an 8-bit code contain-
ing note, duration, enable, and EOF
information. See Listing 2 for the bit
information arrangement.

Here’s how it begins. After initial
housekeeping, Table1offset is
cleared, and the first value of Table 1
is read. If the MSB is a one, you are at
the last note in the tune, and the
Table1offset is cleared, allowing
the tune to repeat. Otherwise,
Table1offset is incremented for the
next table1 read. Now,you have the
data indicating which note will be
played and its duration.

Next, Note1duration is initial-
ized to one, and if the LSB duration is
one, Note1duration is shifted left. If
the MSB duration is also one, Note1
duration is shifted left twice. This
shifting sets the duration to one, two,
four, or eight. This is used to count off
the note’s beats. Remember the sec-
ond (16-bit) counter in the interrupt
routine? That counter is responsible
for the beat timing (of an eighth note).
In this case, the beat is arbitrarily set
to ~0.25 s (64 µs × 1000h). Now
you’ve set up the number of tics the
note should last, one for 0.25 s (the
shortest note), two for 0.50 s, four for
1 s, or eight for ~2 s (the longest note).

The note number (LS4B) of the first
table read is used as an offset in a
second table. This table holds the
Note1reload value. The first table
doesn’t need to know how to produce
the note, just where it’s located in the

for a single note (frequency
counter) and a 23-µs duration
(beat counter). Although I
could reload timer0 with any
number greater than the maxi-
mum interrupt time, I used 64
µs to give the rest of the code
enough time to execute be-
tween interrupts.

FIRST COMPARISON
Both chips execute an in-

struction in 1 µs. Although
Microchip’s instruction set is
simpler, many operations re-
quire multiple instructions because
data must move through the W regis-
ter. One of Microchip’s powerful in-
structions is the decfsz command,
which decrements, tests for zero, and
determines a branch in a single in-
struction and one instruction cycle
(see Listing 1). It takes two cycles if it
must change the program counter.

My interrupt timer routines require
the same number of maximum in-
struction cycles for either processor.
Frequency-generated notes are based

that supports software PWM. Hard-
ware PWMs are not available on these
low-end micros. Execution speed of
both of these is 1 µs using their inter-
nal 4-MHz oscillators. Software di-
vide-by-N counters can be coded using
an interrupt routine. Look at Figure 2
to see how this is accomplished.

At least two divide-by-N counters
are part of the timer overflow inter-
rupt, there is an accurate time base
tick. Upon N counts or ticks, an ac-
tion is performed. Here, two actions
are necessary. The first, frequency
creation, is done using an 8-bit count
and by complementing an output bit
each time the divide-by-N reaches
zero. Two transitions of this bit equal
one cycle of output frequency (period
= two divide-by-N counts).

The second action concerns dura-
tion, which requires a 16-bit count.
This is the duration of the fastest
note, in this case I’m using the eighth
note (one beat in x/8 time). The long-
est path through this routine must
include reloading the “N” each time
a divide-by-N counter reaches zero

Photo 1—A complete melody generator consists of an SMD
8-pin micro, coin battery, and piezo device.

NOTDONE: DECFSZ TEMP  ; 1, 2ifz - decrement and skip if zero
GOTO NOTDONE ; 2
DONE: (minimum of two execution cycles)

//Atmel�s equivalent code requires three instructions, dec, tst, and breq and
four to five instruction cycles.

NOTDONE: DEC TEMP ; 1
TST TEMP ; 1
BREQ DONE ; 1, 2ifz - branch if zero
RJMP NOTDONE ; 2

DONE: (minimum of four execution cycles)
//Of course, you would likely use the opposite branch instruction and save a
cycle.

   NOTDONE: DEC TEMP ; 1
TST TEMP ; 1
BRNE NOTDONE ; 1,2if<>z - branch if not zero

DONE: (minimum of 3 execution cycles)
//If you had a spare register that was cleared, you could use this (TEMPZ)
register to save another cycle.

NOTDONE: DEC TEMP ; 1
CPSE TEMP,TEMPZ ; 1 - compare and skip if equal
RJMP NOTDONE ; 2

DONE: (minimum of two execution cycles)

1xxxxxxx = Last note in list
0xxxxxxx = More notes in list
x1xxxxxx = Disable the frequency output (rest)
x0xxxxxx = Enable the frequency output (note)
xx11xxxx = Duration eight half beats (whole note)
xx10xxxx = Duration four half beats (half note)
xx01xxxx = Duration two half beats (quarter note)
xx00xxxx = Duration one half beats (eighth note)
xxxx0000 = Note table offset zero (note �G�)
�
xxxx1111 = Note table offset 15 (note �F�)

Listing 2—Here’s the bit information arrangement.

Listing 1—The decfsz command determines a branch in a single instruction and one instruction cycle.
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crosses a page boundary. A
smaller word means smaller die
sizes, and that spells savings for
the customer. However, special
handling can be confusing when
working with larger tables.
Because Atmel uses two 8-bit
registers (16-bits) for indirect
addressing, table lookups are
easier to manage.

Atmel states program
memory in 8-bit bytes. Because
instructions are in words, you
must adjust the program size
accordingly (divide by two).
However, table values are
stacked two to a word. Micro-
chip states program memory by
instruction width (word), such
that an instruction requires one
program word. But, each table
value also requires a full word.

There are pros and cons to each meth-
odology, therefore it is important to
know about each processor so you can
choose the best one for your design.

SOUNDS LIKE
Square waves don’t sound smooth.

They are irritating on their own, as
proven by cell phones and beepers.
However, piezo elements allow thin
transducers where fidelity (at least the
bandwidth is greater than the tele-
phone) is not necessary. The devices’
frequency range fits well into that
limited bandwidth. The piezo element
can be directly driven from the micro-
controller I/O port’s toggling bit. Al-
though you could get more drive from
a transistor-driven speaker, if the idea
is to hide the circuitry within a greet-
ing card, the speaker is out of the
question (see Figure 3).

Here’s how a simple tune trans-
lates into a table of entries. Middle C
on a piano, and all of the notes within
an octave above it, are noted by their
capital letters. Notes one octave be-
low middle C have a tick before them,
and notes one octave above middle C
are followed by a tick.

Notes in octaves further away have
multiple ticks. With this notation,
you can determine a note’s exact loca-
tion. Looking at a piece of music, I
copied the musical notations and
timing duration of each note into a

Figure 2—The melody generator flowchart shows frequency and
duration based on a single timer.
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second table. Thus, the second table
can be transposed easily without wor-
rying about the duration of the note.
In fact, the notes don’t have to be in a
particular order and can span octaves.

Note1reload has a count that
produces periods where an output bit
is complemented every time the
count reaches zero, which is the fre-
quency output of your note.
Note1duration has a count that
counts off 0.25-s beats, which is the
duration of your note. When the
counters are set, the interrupt is en-
abled, and you’re ready to begin.

The frequency output continues for
the note’s duration. When Note1
duration is zero (by 0.25-s tics),
execution goes back to reading an-
other table entry. The loop continues
reading table entries until it finds an
entry containing the MSB set, when it
clears Table1offset and starts the
tune again. Bit 6 (enable) indicates a
noteless duration interval, called a
rest. A one in this bit location dis-
ables the frequency output for the
duration period.

SECOND COMPARISON
Many programs require table look-

ups. Microchip’s low- and mid-range
processors have a single 8-bit indirect
register for table lookups. This re-
quires special handling when the table
gets larger than 255 entries or it
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list of notes. Is it an eighth, quarter,
half, or whole note? The song “My
Bonnie (Lies Over the Ocean)” is in
3/4 time. This means there are three
beats to the measure and a quarter
note is equal to one beat (eighth note
= half beat, half note = two beats, and
whole note = four beats). Measures
break the music into manageable
pieces.

Look at Table 1’s second column,
which lists the notes and how many
halves of a beat each note gets. I use
halves of a beat because the fastest
note I can handle is an eighth note
(two to one beat or half beat each),
even though there are none in this
song. Notice that each group adds up
to six (half beats), that’s three beats to
a measure. Don’t worry about the first
and last group, this is a partial listing
of the song, they also total three
beats. The last column shows the
words to the song, so you can follow
what I’m writing about.

The first column in Table 1 is a
binary representation of the note and
duration. This is the data the micro
gets from the table. It also contains
other important information. By
equating some initial constants for all
the possible notes, durations, rests,
and last note indication, I could let
the assembler calculate the data val-
ues for every entry in the table.

TEA FOR TWO
The interrupt routine requires less

than the 64 µs that timer0 allows. If it
didn’t, no other work could be done. It
has enough time, in fact, that the note
generation code can be duplicated to
allow for a second note. The second
note would be output at the same
time as the first, creating harmony. In
addition, a second note requires a
second note table. This isn’t a prob-

Figure 3—An 8-bit micro makes a simple melody
generator. Both Microchip and Atmel parts can be used.

00010111 G-2 My
00010010 E-2 Bon
00010011 D-2 nie
00010100 C-2 lies
00010011 D-2 o

00010100 C-2 ver
00010110 ‘A-2 the
00010111 ‘G-2 o
00101001 ‘E-4 cean
00101001 ‘E-4 …

Table 1—These groups contain notations for each
measure that is to be played.

lem, but it created unusual output
when I entered one wrong timing bit.
The first time through the tables, the
notes were in time with each other.
However, after the incorrectly notated
note played, the two parts were out of
sync. And, each time through, they
grew further apart. This is where sepa-
rating the table data into groups (mea-
sures) makes it easy to locate errors.

PIC AND CHOOSE
Both Microchip and Atmel’s micro-

processors can do the job. Comparable
tools are available for Microchip and
Atmel’s 8-pin wonders. Microchip has
a wide selection. Atmel’s larger in-
struction set handles the total pro-
gram space easier, despite confusing
register restrictions. On the other
hand, Microchip’s smaller instruction
set is easily memorized. Although its
handling of tables is not as straightfor-
ward as Atmel’s 16-bit pointer, it
works well for small tables. Although
the Atmel device handles table space
efficiently, Microchip’s instruction
set provides more compact code.

The interrupt routine is critical in
this project, and neither processor has
an execution advantage over the other.
So, there isn’t any overwhelming rea-
son to choose one over the other. I

http://www.atmel.com
http://www.microchip.com
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b uying a new
vehicle is an amus-

ing departure from
the no-haggle price tag

approach that characterizes most sales
transactions. Imagine the same situa-
tion with, say, a loaf of bread. After
eight hours at the checkout counter,
envision your earnest sales consultant
(aka, the good guy) repeatedly running
to the back room to plead your case to
the sales manager (aka, the bad guy).

Why is this odd game played with
car purchases? I think the persistence
of the let’s-make-a-deal approach is a
result of high prices and the fact that
most people mistakenly think they’re
savvy negotiators.

Recently, I took the plunge and
bought a new Chevy van. I put up an
admirable fight (hint: bring your own
bad guy, aka, your wife), but sincerely
doubt the dealer lost money on the

deal. Anyway, purchasing the new van
is the reason I’m suddenly on this car
computing kick. As you’ll see, the
collision of modern technology and
the somewhat bizarre ways of the car
business makes a trip under the hood
of a modern car worthwhile.

HOOKING UP
Testimony to the fact that times

have changed, when I ordered shop
manuals for the van, I discovered
almost 600 pages devoted to the sub-
ject of engine controls versus a mere
200 for engine mechanical.

Interest piqued, I poked around
under the dash and found, as you will
on any ’96 or later vehicle, the Data
Link Connector (DLC) shown in Fig-
ure 1, which serves as a gateway into
the vehicle’s LAN.

Note that out of the 16 pins, only
the power, ground, and data line(s)
(whether J1850, ISO, or CAN) are
strictly specified (in SAE J1962). In
GM vehicles, the single-wire version
of J1850 uses pin 2. The rest of the
pins are available for proprietary use
by each manufacturer.

When you take your car for service,
a scan tool gets plugged into the DLC.
As you’ll see, this allows the repair
technician to quickly and easily get a
good picture of what is, and what has
been, going on under the hood.

Perusing the shop manuals further,
I found that my van incorporates all
manner of electronic sensors and sub-
systems that operate under the watch-
ful direction of the Vehicle Control
Module (VCM, see Photo 1).

According to the specs I found at
Delphi (the spinout of formerly cap-
tive GM parts-supplier, Delco), my
VCM incorporates a 16.7-MHz 32-bit

On The
Road Again

What ex-
actly is it
that
makes
the car

business tick? Tom’s
not sure, but he did
take a look under the
hood to see just how
challenging it can be
to service a car that’s
loaded with silicon.

SILICON
UPDATE

Tom Cantrell

Figure 1—Although the
protocols (J1850, ISO,
CAN) vary, at least the pin
description and form factor
of the Data Link Connector
have been standardized.
As a result, the trend is
towards universal test
equipment, such as scan
tools that work with any car.

Part 2: Taking Silicon for a Test Drive

+
1

9

8

16

+ + + + + + + +

+ + + + + + + +

1–Discretionary
2–Busline+ of SAE J1850
3–Discretionary
4–Chassis ground
5–Signal ground
6–CAN high line of SAE J2284
7–K line of ISO 9141-2
8–Discretionary

9–Discretionary
10–Busline– of SAEJ1850
11–Discretionary
12–Discretionary
13–Discretionary
14–CAN low line of SAE J2284
15–L line of SAE 9141-2
16–Unswitched vehicle battery positive
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microcontroller (MC-
68332), a healthy half-
megabyte of flash memory,
and 6 KB of RAM.

With 160 I/O connec-
tions, the to-do list for the
VCM is certainly full.
Practically on a rev-by-rev
basis (i.e., hundreds of
hertz), the VCM deals
with the myriad of sensors
and actuators responsible
for low-level control of the
powertrain—spark timing,
fuel/air mixture, transmis-
sion shift points, and so
on. Furthermore, the VCM
continuously runs reality
checks to detect compo-
nent failures and compen-
sate as best it can (i.e.,
limp home).

On a higher plane, the VCM coor-
dinates activity across the powertrain
as a whole, notably getting the engine,
transmission, and brakes to work as a
team. For example, as you travel over
hill and dale, the VCM will update
transmission shift characteristics
depending on the circumstances, such
as whether you’re towing a trailer at
the time.

MIL SPEC
One fine morning I started the new

van and left it idling while I ran back
in the house. Upon jumping back
behind the wheel, the “Service Engine
Soon” message was glaring at me
from the infamous malfunction indi-
cator lamp.

With only about 500 miles on the
clock, I wasn’t exactly a happy camper.
According to the owners manual,
driving the vehicle with the MIL on
could lead to costly repairs that may
not be covered by my warranty.

That’s just perfect. Though the van
seemed to be running fine, the omi-
nous wording left little choice but to
make a trip to the dealer.

Fortunately, it turned out to be a
false alarm. The repair technician
hooked up a scan tool to the DLC and
extracted Diagnostic Trouble Code
(DTC) P0141, meaning the VCM felt
that one of the oxygen sensors wasn’t
heating up properly. I don’t know if

the technician performed the intricate
diagnosis of the oxygen sensor called
for in the manual or just cleared the
DTC (extinguishing the MIL), but the
problem hasn’t popped up since.

Nevertheless, the episode prompted
me to investigate further. Not to im-
pugn anyone’s integrity, but forewarn-
ed is forearmed. When I go in for
repairs, I like to be clued in and pre-
pared to some extent.

I started cruising the Internet and
found myself immersed in the regula-
tory depths of the Environmental
Protection Agency (EPA) and the Cali-
fornia Air Resources Board (CARB). It
turns out that one of the VCM’s most
important roles is that of smog buster
(i.e., continuously monitoring and
tweaking operation to minimize air
pollution). If the VCM thinks some-
thing isn’t kosher, it turns on the MIL.

Of course, everyone supports clean
air, but be assured the advocacy is not
all altruism on the part of car manu-
facturers. EPA and CARB may walk
softly, but they carry a big stick.

In September ’98, for example,
CARB ordered the recall of 330,000
Toyota and Lexus cars to replace
onboard computers that failed to de-
tect gas vapor leaks under normal
driving conditions. At a cool $250
each, that adds up to more than $80
million. Rather a strong incentive to
get it right next time.

Indeed, vapor leaks are
considered a major pollu-
tion no-no, so modern
vehicles have sophisti-
cated EVAP (evaporative)
systems that recycle fuel
vapors. It’s up to the on-
board computer to ensure
that the fuel system
doesn’t leak, and that’s
why something so simple
as not tightening the gas
cap can turn on the MIL.

Another suspect to
watch out for is misfire,
incomplete combustion
that not only pumps raw
gas out the tailpipe, but
can damage the catalytic
converter. The VCM goes
to great effort to detect
misfire by statistically

sampling variations in crankshaft
speed and using camshaft position to
isolate the problem to a single cylin-
der. To complicate matters, some-
thing as common as bouncing over a
pothole can feedback through the
drivetrain and mimic misfire. So, in
the most advanced implementations,
misfire detection is qualified by a
“rough road” input from the brake or
suspension module.

Even when all is well, a lot of pol-
lution occurs in the first few minutes
after a cold start. The challenge for
the VCM is to achieve reliable starts
and smooth idling without just throw-
ing extra gas at the problem (as with
yesteryears’ choke).

That’s why oxygen sensors have
heaters. They need to be up to proper
operating temperature before the VCM
can enter the closed loop mode that
continuously varies the fuel/air mix to
achieve maximum performance and
fuel economy with minimum smog.

OH BOY, DATA
Thanks to the regulatory might of

the EPA and CARB, the name of the
game when it comes to onboard com-
puting is OBD II, the second-genera-
tion on-board diagnostics mandated
by law since model year ’96.

While wandering around on the
Internet, I perceived what appeared to
be a tug-of-war between the various

Figure 2—The first few captured messages illustrate a valid RPM response. For ex-
ample, in the first line, 0AE0 hex represents 4× the RPM (i.e., RPM = 2784/4 = 696). The
purpose of the following byte (e.g., 23 hex in the first line), not to mention the intermittent
mystery messages (third byte not equal 48), remains to be determined.

40 82 48 6B 10 41 0C 0A E0 23 00 00 00 9F
40 82 48 6B 10 41 0C 0A D9 9C 00 00 00 11
40 82 48 6B 10 41 0C 0A FE 48 00 00 00 E2

40 82 A8 FF 29 03 F0 00 00 00 00 00 00 45

40 82 48 6B 10 41 0C 0A DC F5 00 00 00 6D
40 82 48 6B 10 41 0C 0A E6 6D 00 00 00 EF
40 82 48 6B 10 41 0C 0A EE 85 00 00 00 0F
40 82 48 6B 10 41 0C 0A F3 C9 00 00 00 58

40 82 E8 FF 10 03 B3 00 00 00 00 00 00 2F

40 82 48 6B 10 41 0C 0A F9 1B 00 00 00 B0
40 82 48 6B 10 41 0C 0A F4 9A 00 00 00 2A
40 82 48 6B 10 41 0C 0A E9 D6 00 00 00 5B
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players who have high stakes on the
table. The car companies seem biased
toward keeping the inner workings a
deep, dark secret. Meanwhile, the
aftermarket repair shops are alarmed
at the prospect of cars that can only
be fixed by an authorized dealer.

Striking a balance between the two
are the regulators. They want the
procedures and tools needed to fix a
smoker widely accessible, yet under-
stand it’s not reasonable to expect
manufacturers to disclose all. For
example, the VCM not only controls
the engine, transmission, and such,
but also plays a role in theft preven-
tion (e.g., disables starter in absence
of a valid key signal).

Frankly, none of them seem too
eager to let the lowly consumer have a
clue. In particular, the regulators look
askance at the emergence of power
chips and such, going so far as to de-
mand sophisticated countermeasures
to prevent homebrew hot-rodding (i.e.,
reprogramming) of VCMs.

OBD II is the compromise solution.
It openly standardizes (in SAE J1979)
access via the DLC to the real-time
(RPM, temp, vacuum, etc.) and his-
toric freeze-frame information deemed
necessary to correct emissions-related
problems. It also defines the mecha-
nism for retrieving and clearing DTCs
(i.e., find out why the MIL went on
and turn it off).

SCAN MAN
With the emergence of standards,

as a trip to your local auto parts store
will confirm, the average shade tree
mechanic now has access to scan
tools that were formerly the domain
of dealers only. These are typically
hand-held units that cost $200 or so,
and get by with a keypad and small
LED display or LCD screen.

There are also PC-based solutions
on the market that offer pretty screens,
hard-disk data logging, printed reports,
and so on (see Photo 2). Generally,
they use a converter dongle that con-
nects the J1850 DLC to the PC’s
serial port. Because the price is about
the same as the hand-held units,
these are likely to have more appeal
for computer literate types. I discov-
ered some interesting units available

from Baum Tools, B&B Electronics,
and Ease Simulations.

Whether hand-held or PC-based,
these units are generally intended for
hood-up inspection, maintenance, and
repair. Indeed, as one supplier’s docu-
mentation notes, there’s no easier
way to end up in a ditch than trying to
drive while you’re fiddling around
with one of these gadgets.

I was intrigued by the possible on-
the-road applications. All I needed
was a simple J1850-to-RS-232 adapter
with enough brain power to get online.

Fortunately, I stumbled across an
outfit called Multiplex Engineering,
which offers such a gadget for less
than $100 (see Photo 3). It was time to
try my hand at a little high-horse-
power hacking.

ACCESSORIES
Though Multiplex Engineering will

take an order for a single unit, be
advised that they primarily deal with
OEMs, rather than end users. Thus,
documentation is rather sparse and
deals mainly with the basics of estab-

Listing 1—Notice that mystery messages (third byte not equal 48 hex) are simply ignored.

PROGRAM J1850Tach
INTEGER rpm,i,j
INTEGER response(14)
STRING rpm_str
CONST leds=~$c038~
BEGIN

/* Mux interface msg to request RPM */
DATA $20,2,5,$68,$6a,$f1,1,$c,0,0,0,0,0,0,$d7

OUT 0,$74     /* '180 ASCI0 19.2K 8N1 */
OUT 2,$20
OUT 4,0

FOR i=0 TO 7
  OUT leds+i,ASC(" ")
NEXT i
OUT leds,ASC("R")
OUT leds+1,ASC("p")
OUT leds+2,ASC("m")

loop:
/* Send request RPM msg */
  FOR i=1 TO 15
    READ j
    DO
    UNTIL BAND(INP(4),2)<>0
    OUT 6,j
  NEXT i

/* Receive RPM response msg */
  FOR i=1 TO 14
    DO
    UNTIL BAND(INP(4),$80)<>0
    response(i)=INP(8)
  NEXT i

/* Throw away mystery msgs */
  IF response(3)<>$48 THEN GOTO loop

/* Convert RPM to 3 or 4 digit string, display on LEDs */
  rpm = ((response(8)*256)+response(9))/4
  rpm_str = STR$(rpm)
  IF LEN(rpm_str)=10 THEN rpm_str=MID$(rpm_str,1,4)
  ELSE rpm_str=CONCAT$(" ",MID$(rpm_str,1,3))
  FOR i=0 TO 3
    OUT leds+4+i,ASC(MID$(rpm_str,i+1,1))
  NEXT i
  WAIT 6  /* Spec requires 100ms min between msgs */

GOTO loop
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lishing J1850 communications. Just as
an Ethernet chip datasheet doesn’t
teach you about TCP/IP, the docu-
mentation tells you a lot about how
to talk over J1850, but little about
what to say.

Thus, the mux interface by itself
isn’t a substitute for the higher priced
turnkey PC-based scan tools. How-
ever, if you aren’t afraid to get your
hands dirty, it is a good alternative to
rolling your own (e.g., starting from
scratch with one of the J1850 chips
described last month) for applications
where a PC is overkill.

With that in mind, I decided to
have a go at it and see if I could get a
BASIC SBC to have a meaningful
J1850 dialog with my van.

The first step was to establish basic
communication on the RS-232 side.
This sounds simple enough, but RS-
232 hook-ups invariably involve more
hassles than they should, and this
time was no exception.

No problem with the 19.2-KB, 8–
N–1 part, but I did have to ponder a
bit about the handshaking lines. The
unit is wisely optoisolated to keep
load dumps and the like at bay.

To accomplish this, the RS-232 port
is powered from the host via the DTR
and RTS lines. So, whatever you hook
up must connect these lines and be
capable of driving them to opposite RS-
232 polarity, which means you need
three distinct transmitters (TX, DTR,
RTS) along with a receiver (RX). The
SBC’s MAX-232 chip has only two
transmitters, so there wasn’t a way to
cut and jump around the problem.

Whenever I need to make an RS-
232 connection, I reach into my stock-
pile of MAX-235 chips. Yes, the
28-pin wide DIP is bulky, but it’s also
much handier for prototyping than a
tiny surface-mount package. Other-
wise, with five transmitters and re-
ceivers, a single 5-V supply, and no
external components (except for a
1.0-µF power supply bypass capacitor),
the MAX-235 is definitely the
Cadillac of RS-232 chips.

Because I’m going upscale with RS-
232, why not go for the gusto with the
display as well? Once again, reaching
back into the trusty group of gadgets
I’ve used before (Circuit Cellar 31,
“Smart LEDs: The Hard Way, the Soft
Way, and the Right Way”), I came up
with the HP DSP-2501, 8-character
bit-mapped LED display.

It isn’t cheap, and the parallel in-
terface demands a lot of I/O lines, but
the display quality is unsurpassed
compared to the inferior LCD. Is it
sunlight readable, you ask. Well, if it
weren’t for the software dimming

Photo 2—PC-based
scan tools use software
(in this case, OBD2-
TOOL from Baum Tools),
running on a PC to offer
more flexibility and
features at a lower cost
than hand-held units.

Photo 1—With 16.67 MHz 68K, a half-megabyte of
flash memory, and 160 I/Os, the Delphi Vehicle Control
Module is where silicon meets the road.
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The first three bytes are the J1850
header, 01 is the code for mandated
OBD II diagnostics, 0C specifies RPM,
and 8B is the J1850 CRC.

So, what you need to send to the
mux interface is:

20, 02, 05, 68, 6A, F1, 01, 0C, 00, 00,
00, 00, 00, 00, D7

The first byte (20) is an address
associated with a particular mux in-
terface. The next (02) is a command to
send a J1850 VPW message. The third
byte is a count of the J1850 packet
length, not counting the CRC. The
next five bytes are the J1850 packet
(minus CRC) followed by six bytes of
zero pad (recall the maximum J1850
packet length is 11 bytes). The fif-
teenth and last byte is the checksum
of all bytes except the first.

Coming back on J1850, you expect
to see something like the following,
where HH and LL are the high and
low bytes of the RPM:

48, 6B, 41, 01, HH, LL, CRC

Oh, by the way, don’t forget it’s
actually RPM × 4, or you might end
up with gray hair, like someone I
know.

In turn, the mux interface will
return the following, where CHK is
the checksum depending on the RPM:

40, 82, 48, 6b, 41, 01, HH, LL,
00,00, 00, 00, 00, 00, 00, CHK

Refer to Listing 1 to see the BASIC
embodiment of all this. Without fur-
ther ado, as you can see in Photo 4, I
was successful in my quest to make
the J1850 connection.

DANGEROUS CURVES AHEAD
That’s not to say I’ve completely

mastered all the mysteries. If you look
closely at the program, you’ll see I had
to resort to a bit of ad hoc hacking to
make it work. In particular, I discov-
ered that it was best to adopt a policy
of listening only for the stuff I wanted
to hear.

For example, when sending a com-
mand from the SBC, I discovered the
Multiplex Engineering unit isn’t
happy if you dawdle between bytes
and will complain by sending back an
error message. I was able to stop that
by streamlining the inner loop of code
that sends the message (by pre-com-
puting the checksum). Considering
that the BASIC SBC I’m using is fairly
fast (it’s a compiled, rather than inter-
preted, BASIC), watch out for this if
you’re using something slower.

The good news is I was no longer
getting back stuff when I didn’t expect
it. The bad news is I was getting some
stuff back that I didn’t expect. Every
now and then the RPM came back
0000. Curiosity aroused, I probed
further to take a closer look at the
incoming messages.

Sure enough, as shown in Figure 2,
some strange activities were taking
place. In particular, every now and
then I’d get an odd packet that appar-
ently is a valid diagnostic response as
far as J1850 is concerned, but certainly
doesn’t contain the proper RPM info.
While you’re thinking about that, also
note that even in the valid RPM pack-
ets, there’s a third mystery byte fol-
lowing the two RPM bytes called for
by the SAE spec. Following the if-in-
doubt, throw-it-out approach, I finally
got my digital J1850 tach working like
a charm.

Photo 4—The old and new.
Though seemingly analog,
the dial gauges in the
instrument panel are driven
digitally. Even the radio is
connected to the VCM, so
the faster you go, the louder
it gets.

Photo 3—The Multiplex Engineering mux interface acts
as a gateway between the vehicle network and any-
thing with an RS-232 serial port.

feature, you’d practically need sun-
glasses to look at it.

Not surprisingly, the HP unit, at
full throttle with 280 individual LEDs
(eight characters, each 5 × 7), calls for
a high-octane power supply. In fact,
the datasheet has cautionary language
about limiting the total power (i.e.,
number of LEDs on at once), lest
things get a little too hot to handle.

Fortunately, there’s no shortage of
engine-on power in automotive apps,
considering the typical cigarette
lighter outlet can deliver 100 W or so.
For the few watts of 5 V or more re-
quired by the SBC and display, I might
have been able to get by with a plain
linear regulator, but it would have
been iffy. Even under normal condi-
tions (about 14 V, according to the
van’s voltmeter), the regulator would
get hot, not to mention coping with
worst-case spikes. So, I took the easy
way out with a fully-loaded 15-W DC/
DC converter featuring 9- to 18-V
input and overvoltage, thermal, and
reverse polarity protection.

TACH TIME
Time to buckle up and hit it. The

Multiplex Engineering mux interface
puts a wrapper (i.e., destination, com-
mand, number of J1850 bytes, check-
sum) around the raw J1850 messages.
One nice feature is that your software
only needs to deal with a simple
checksum because the mux interface
handles the J1850 CRC. Another sim-
plifier is fixed-length packets, with
unused bytes zeroed.

Care for an example? To find out
the current, RPM requires sending the
following J1850 packet:

68, 6A, F1, 01, 0C, 8B
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What’s your EQ?—The answers and 4
additional questions and answers are
posted at www.circuitcellar.com.

You may contact the quizmasters
at eq@circuitcellar.com.

8  more EQ

questions

each month in

Circuit  Cellar Online

see pg. 2

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for sev-
eral years. You may reach him by e-
mail at tom.cantrell@circuitcellar.com
or by telephone at (510) 657-0264.

RESOURCES

Diagnostic RS-232 Multiplex Inter-
face

Multiplex Engineering
(805) 964-6802
Fax: (805) 964-0890
www.multiplex-engineering.com

What does all this mean? Why do
car dealers buy so many balloons?
Seems to me the car biz is just bi-
zarre, both at the showroom and un-
der the hood.

WWW.MYWHEELS.CAR?
I though historically resistant to

change, I think the silicon revolution
will inexorably work it’s magic on the
car business. The manufacturers will
realize that the car network isn’t
about the old-fashioned proprietary,
dealer-only strategy. Rather, as with
PCs, it is a great platform for neat
features and services that they (and
third-parties) will be glad to provide
and encourage eventually.

What might the future hold? Re-
mote diagnosis and even repair. Car
black boxes that eliminate courtroom
finger-pointing after an accident. A
key for teen drivers that doesn’t let
them burn rubber. Dial-up smog
checks in which the car testifies to
it’s own cleanliness (no need to pay
for a tailpipe proctologist). Stolen cars
that not only report their location, but

OBD2Scan PC-based Scan Tool
Baum Tools Unlimited, Inc.
(800) 848-6657
Fax: (941) 927-1612
www.baumtools.com

AutoTap PC-based Scan Tool
B&B Electronics
(815) 433-5100
Fax: (815) 433-5105
www.autotap.com

Ease PC Scan Tool
Ease Simulation, Inc.
(570) 465-9060
Fax: (570) 465-9061
www.easesim.com

Vehicle Control Module (VCM)
Delphi Automotive Systems
(248) 813-2000
Fax: (248) 813-2670
www.delphiauto.com

Gryphon Ethernet & TCP/IP Mul-
tiplex Server

Dearborn Group Inc.
(248) 488-2080
Fax: (248) 488-2082
www.dgtech.com

CIRCUIT CELLAR Test Your EQCIRCUIT CELLAR

stop running or, for kicks, automati-
cally chauffeur the miscreant to the
police station.

You may laugh, but click over to
the Dearborn Group to check out
their Gryphon Ethernet & TCP/IP
Road Wide Web server.

I realize all this sounds rather vi-
sionary (as in “Tom’s having visions
again…”), but when it comes to sili-
con it’s never a question of if, only
when—and whether it comes in
leather. I

Problem 4 —What is the Miller effect, and why is it gener-
ally considered a bad thing? How is it sometimes used to
advantage?

Problem 3 —An embedded 16-bit microcontroller is con-
nected to an 8-bit DAC, where the DAC is connected to
the high-order half of the data bus. What is the purpose of
y in the following driver?

#define DAC (*(unsigned *) 0x8000)

void DAC_out (unsigned x)
{
    static unsigned y;

    x += y;
    y = x & 0x00FF;
    DAC = x;
}

Problem 1 —If you apply a sinewave stimulus to a
linear time-invariant circuit, its response is also a
sinewave. A squarewave can be shown to be the
sum of a set of sinewaves, so by superposition, the
response of the same circuit to a squarewave stimu-
lus should also be a squarewave. What’s wrong with
this logic?

Problem 2 —The energy stored in a capacitor is
defined to be E = (V2/2) C.

Suppose you have two 1 F capacitors, one is
charged to 1 V, and the other is discharged. The
energy in the charged capacitor is:

 (1V2/2) × 1 F = 1/2 J.

Now, you connect the second capacitor across the
first, effectively creating a capacitor of 2 F. The
charge redistributes itself across the doubled
capacitance so that the voltage on
each capacitor is now 1/2 V.
However, the energy in the system
now evaluates to ((1/2 V)2/2) × 2 F =
1/4 J. What happened to the missing
energy?

http://www.multiplex-engineering.com
http://www.baumtools.com
http://www.autotap.com
http://www.easesim.com
http://www.delphiauto.com
http://www.dgtech.com
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PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Choice Versus Default

i suppose that everything we do can be rationalized to being a matter of choice or default. Do we
bother to learn a new task or expand our expertise if we don’t have to? How significant must the benefits

of doing something a new way be for us to make an effort to learn it?
Let me share a humorous example. My 10-year-old grandson bounded into our house recently. After the

usual hugs and pleasantries, he reverted to being a typical adolescent. After conning me out of new batteries for
his Gameboy, he piped an urgent imperative, “What time is it? I can’t miss Stone Cold Steve Austin!”

I looked at the wall clock that was barely 15′ away and noted the time was 4:37 p.m. Becoming a facilitator
for the WWF wasn’t something I would do easily. I pointed at the wall clock rather than simply answering. He
looked at the clock. Surprisingly, instead of reading the time, he jumped up and ran into the guest bedroom where
he usually stays when visiting. At the conclusion of his round-trip dash, he plopped back in the kitchen chair and
said with a sigh of relief, “It doesn’t start for another hour. I hope we’re having dinner early.”

Having kids around is a new thing for me. People who survived parenthood warned me that I should neither
react immediately to what kids say nor look at every situation like it was supposed to be a learning situation for
the kid. As for the WWF and me, we’ll have to remain in a state of mutual coexistence.

It only took me a few seconds to realize what was going on here. The wall clock I pointed at in the kitchen is
analog—the big hand and little hand deal. The clock in the bedroom is digital. Was the answer that simple? Trying
not to be the condescending grandparent, I pointed at the kitchen wall clock and said, “Hey, kid?” (I affectionately
called him kid when I’m trying to make a point), “Can you read that?”

“If I study it, I can usually figure it out. I just thought I’d save time by reading the clock in the bedroom. I
can’t miss Steve Austin, you know,” he answered.

I won’t bore you with the details after that. Let’s just say that it demonstrated his level of necessity wasn’t
great enough to choose an unfamiliar technique when, with a little more effort, there was a default approach.
Unfortunately, this lesson made me consider whether or not my concept of choice versus default needed
modification too.

At least for electronics people, this experience parallels using digital versus analog design solutions. I don’t
mean obvious digital functions like encryption or combination logic. I mean real analog I/O, traditionally done with
external analog circuitry attached to a processor, versus synthesized analog functions using mostly digital means.
A typical example of this is a ramp generator. You can do it with an op-amp. You can also do it with a processor
and a DAC. The question is, which method would you choose these days, and what issues influence your
decision?

Just like calculators have reduced tedious hand calculation, today’s technology strives to meet the demand.
Newly designed programmable analog architectures attempt to make analog interfacing more comfortable for
digital designers. The only saving grace is that at least for now, programmable components aren’t presented as a
way for designers to avoid understanding real analog interfacing issues. Not everything can nor should be done
with digitally programmable devices. Things like signal amplification and filtering are still less expensive and less
power hungry using an analog approach.

Design architecture is not black or white. Cost and design finesse may not even enter the equation. These
days, often the only necessity is product delivery. Over the years, I’ve been critical of the fact that fewer
engineers have traditional analog design experience. I also believe there is a tremendous gray area in design
issues that can justify virtually any approach that succeeds (that’s the only way I can rationalize using an
embedded PC where an 8051 could do the job).

Nonetheless, design technique should be an informed choice and never a consequential default. Our
subtitle is “The Magazine for Computer Applications”. Sometimes this means describing analog, as well as digital
designs. Other times it means describing overkill instead of finesse. Regardless of the subject, I want you to
know that our real message is always helping you have an educated choice rather than merely the default.


