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— COLUMNS —
Considering the Details
Motors: A Lost Art?
Bob Perrin
How would you get identical performance out of 1-hp motors
operating at different line frequencies? The answer led Bob to
satisfy a driving curiosity of the inner details of motors. If
you ever thought you needed to know more about motors,
then Bob’s got what you need.

Lessons from the Trenches
Embed This PC
Part 2: Emulator and EPROM Basics
George Martin
Continuing with his latest project, George shows us how to
use emulators in an embedded ’486 project to monitor the
design. There are a few options to choose from, he’ll show
you how to make the best choice.

Silicon Update Online
Twenty Years Ago, Today
Tom Cantrell
Tom takes us back to the dawning of the DSP. Follow him as
he marks important moments in DSP development leading
up to today’s modern DSP chips.

Double your technical pleasure each month. After you read Circuit Cellar magazine, get a
second shot of engineering adrenaline with Circuit Cellar Online, hosted by ChipCenter.

 — FEATURES —
Designing a DSP-Based RAS Server
Part 1: RAS Server Background
Shawn Arnold
Learn all you need to know about Remote Access System
servers in Shawn’s introduction to RAS servers. If you’ve
ever had a need for a DSP-based RAS server, you’ll find
yourself referring to this article again and again.

Making the SmartPIC Serial Programmer
Duane M. Perkins
When picking a PIC programmer, you may find that there
are as many choices as there are PICs. The more versatile
it is, the more money you have to lay out, right? Not if you
follow Duane’s plan. He gives you more bang for your buck
with his new serial programmer.

Defects For Sale Revisited
George Novacek
George expounds on Software Reliability. Go with him as
he kicks the tires and puts some software through the
paces. He’ll show you how you can quantify software reli-
ability.
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THE ENGINEERS
TECH-HELP RESOURCE

Let us help keep your project on track
or simplify your design decision. Put
your tough technical questions in front
of the ASK US team.

The ASK US research staff of engineers has been
assembled to share expertise with others. The forum
is a place where engineers can congregate to get
some tough questions answered, or just browse
through the archived Q&A’s to broaden their own
intelligence base.

Resource Links
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• XML (Extentable Markup Language)
Bob Paddock
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Hitting the Green

w ell, it must be March. Just the other day while
getting something from the closet, my golf bag

managed to fall over and land at my feet. Could it be
a sign? If you believe that the shadow of a groundhog

can predict when winter will end, then winter should be on its way out. Once
winter heads north for the summer, New England enjoys a few weeks of
mud and slush, and then May arrives and it’s time to hit the links.

The first few rounds of golf each season are always the most enjoyable
for me. For one, all those annoying people who spent all winter referring to
15-degree weather as “refreshing” are too busy working in their gardens to
carry on about the “refreshing” smell of their shovelfuls of manure. The
second reason is because “Boy, am I rusty” is an honest observation (and
valid explanation for repeatedly requiring assistance as you search for your
Titleist 2 in the underbrush alongside the fairways).

Try implying that you are “rusty” in July or August and, regardless of
what they say to your face, your partners will be laughing at you, not with
you. Although comments like, “Hey guys, the wild raspberries over in the far
left rough on that dogleg to the right should be ready by next week!” will
surely impress them with your keen observation of the growth patterns of
the local flora and make them forget about scheduling next week’s tee time
while you’re at work.

However, there’s a lot to be done before May arrives. As I write this, I
have my tickets and schedule set for ESC-Spring in Chicago. I don’t recall
ever seeing golf highlights from Chicago at the beginning of March, so I
guess I can leave the clubs at home for this trip. This will be my first “major”
event since getting on the Circuit Cellar scorecard. I’m looking forward to
meeting those of you I’ve worked with over the last year or so, and I’m also
looking forward to bringing back some quality editorial leads.

I’m not the only one who has a lot to accomplish before May. If you’ll
recall, there’s over $26,000 in cash and prizes up for grabs in the Internet
PIC2000 contest that’s sponsored by Microchip and Circuit Cellar Online.
The deadline is May 1, so it’s almost time to put the finishing touches on
your PIC Internet connectivity project.

For those of you who have your sights set on the $5000 grand prize or
one of the Sony VAIO laptops that Philips is giving away in the Circuit
Cellar Design2K contest, you have until June 30 (note the extension) to
finish your designs.

And, for those of you who know your PICs and 8051s but live in
climates that allow you to play golf all winter, which is why you haven’t had
time to work on a design contest entry, there’s still time to drop me a note
about becoming a judge for one of the current design contests. After all, it’s
probably going to be too warm for golf pretty soon, so why not spend time
indoors judging project entries in air-conditioned comfort?

I don’t know how reliable the groundhog-shadow theory is, but I’m going
to set up my indoor putting cup and start polishing up my stroke. Be sure to
check out the latest rules updates on our homepage and start polishing up
your project designs because before this summer’s over, you might be
hitting some “greens” in the form of design contest prize money. It could be
the beginning of a Cinderella story….

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of reader-
assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or from
plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to build
things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to construct or
operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction. The reader
assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2000 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar INK are registered trademarks of
Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.
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NEW PRODUCT NEWS
Edited by Harv Weiner

V.23 MODEM EVALUATION KIT
Scenix has introduced a reference design that provides a

complete system solution for a V.23 modem in originate
mode. It has been tested in accordance with the FCC stan-
dards and is ideal for low-
speed data transmission
applications such as point-of-
sale terminals, automatic
teller machines, remote
monitoring equipment,
alarm systems, and the
back-channel function of
set-top boxes.

The V.23 modem is
compliant with the CCITT
V.23 standard and includes
DTMF generation and
detection, caller-ID and
call-progress functions. It re-
places external hardware components with virtual
peripheral software modules that are loaded into the
on-chip flash/EEPROM program memory of a 50-MHz
Scenix SX28AC MCU.

In addition to the processor, an RS-232 jack and line
interface circuit, line driver (DAA) and RJ-11 jack, crystal

oscillator, operational amplifier,
resistor-based adjustable hybrid
circuit, and a few decoupling ca-
pacitors and resistors are all that is
required for implementation. A
modem offering complete V.23-

compliant capabilities can be
configured to occupy an area
2″ × 3″ or smaller on a printed

circuit board.
The SX28AC MCU is priced at

less than $3 in volume. A modem
evaluation kit that includes addi-
tional components is available for

$89 from the Scenix web site.

Scenix Semiconductor, Inc.
(408) 327-8888
Fax: (408) 327-8880
www.scenix.com

http://www.scenix.com
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NEW PRODUCT NEWS
LOW COST DATA ACQUISITION SYSTEM

The DAS 100 was developed to answer the need for a sys-
tem that does not require a PC, costs less than $800, and is
easy to use. It offers a simple menu-driven setup user interface,
Internet access, and is suitable for a wide range of applications.

Housed in a weatherproof enclosure, the DAS 100 holds up
to six option cards that measure DC voltage, DC current, AC
voltage, AC current, frequency, and temperature. Three relays
on the motherboard can be activated by input channels or by
user-defined parameters such as time of day. The system fea-
tures up to 48 input channels and nonvolatile flash memory for
data logging. The flash memory system stores up to 3900
samples and data can be downloaded by modem, direct serial
connection, or via removable memory modules to spreadsheet
programs.

A PC is required to program parameters and values, but is
not required for operation. For remotely monitoring the data in
real time, an optional 16 × 4 LCD with menu buttons displays
the data.

A 24-MHz 8-bit single-board computer with FIREDOS pro-
vides power. The system has 1 MB of fixed flash memory for
data and program storage, 64 KB of SRAM, and 8 KB of
EEPROM, plus a real-time clock, two RS-232 serial ports, and a
2-bit ADC.

The price for the DAS 100 begins at $599.95
for the basic system with an optional LCD
screen available for $99.95.

Fire Wind & Rain Technologies LLC
(520) 526-1133
Fax: (520) 527-4664
www.firewindandrain.com

For $525 you get the model DSO-2102S
Scope, Probes, Interface Cable, AC Adapter,
and Windows and DOS Software.

All prices include Pods and Software

LA4240-32K (200MHz, 40CH) $1350

LA4280-32K (200MHz, 80CH) $2000

LA4540-128K (500MHz, 40CH) $1900

LA4580-128K (500MHz, 80CH) $2800

LA45160-128K (500MHz, 160CH) $7000

Digital Oscilloscopes Logic Analyzers

DSO-28264 (10Ch, 200MS, 64k) $2400

DSO-28464 (20Ch, 200MS, 64k) $4000

All prices include Probes and Software

http://www.firewindandrain.com
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Applied USB:
A Cookbook Approach

FEATURE
ARTICLE

Robert R. Severson

Developing a project
that interfaces to a
USB port isn't as
straightforward as
parallel or serial-port
interfacing, but ac-
cording to Rob, the
opportunities are
worth the effort. Read
on to learn why USB
will be the port of the
next generation of PCs.

’m an engineer
whose imagination

has been fueled by
science fiction. When I

think of what future technology might
be like, I have some pretty grand
dreams. I can think up a lot of big-
ticket items like faster-than-the-
speed-of-light travel, anti-gravity, and
androids. All of these represent sig-
nificant engineering advances.

I expect my personal engineering
efforts will be viewed as simple in
comparison. If I fell asleep and woke
up 100 years from now, I’d expect a
laugh from the android listening to
the details of my profession. Inte-
grated circuits? Ha!

However, if I woke up in three
years, I wouldn’t expect that technol-
ogy would have changed enough to
have a great impact on my work. But,
if my work were to involve designing
peripherals that interface to the PC,
this may not be the case. With a cur-
rent trend to remove so-called legacy
interfaces from the PC, three years
may very well be the distant future.

OBSOLESCENCE
Some of the computer equipment

that I have littered about in my base-
ment predates the programmers and
engineers I work with. I always have
an old 386/486 DOS PC setup so I can

interface circuits to the serial and
parallel ports. I use a cheap I/O card
and often use protection circuitry to
avoid damaging the PC ports if the
circuit that I’m working on goes awry.

I write a C program that runs in
plain old DOS to interface to these
devices. DOS still gets the job done
nicely, but the user interface for these
devices is rather archaic. I've used
DOS GUI packages to spiff things up
a bit, however, they certainly don't
allow for rapid development.

So, when I move to a PC that has a
graphical OS and a non-’80s develop-
ment environment, I gain access to
tools that help make a spiffy user
interface. What I lose, is the easy
access to the parallel and serial ports I
had with my old machine.

Sure, there are ways around this. If
you program in Visual Basic, you can
use one of several publicly available
dynamic link libraries to directly
access the serial and parallel port
hardware. This is a great solution. A
simple write to the parallel port data
lines, as I’ve done on the DOS ma-
chine, translates cleanly to a similar
function in Visual Basic. The serial
and parallel ports are accessible again!

The trouble is, the brave new
world of the PC will not support these
legacy devices. If you follow PC-de-
sign trends, you know that the ISA
expansion slots in the PC have been

Photo 1 —The USBSIMM is a USB-enabled controller
card that is placed in a 30-pin SIMM socket, or
mounted vertically or horizontally on a board with 0.1"
pin-center spacing.

i
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designated as obsolete. The parallel
port and serial port will soon follow.

The deficiencies of the legacy ports
are too expansive to describe here.
Suffice it to say, PC performance has
evolved, but the serial and parallel
ports still have the same limitations
imposed on them as in the mid ’80s.
The next generation of computers will
do away with these two ports.

The UART in the serial port was
designed to be polled or to interrupt
the CPU for each byte processed. Even
with hardware FIFOs, the result was
the same. The operating system and
the programs that ran under it were
generally oblivious to what was con-
nected to the serial ports.

The situation was even worse with
the parallel port. Not only did a lot of
devices use the port lines in unique
ways for their data transfers, but they
could also be daisy chained. It was
often a shooting match to determine
if chained devices would cooperate
with each other. Again, the operating
system could only control the parallel

port as best it knew how. Peripherals
remained external to the operating
system, rather than an integrated and
functioning part of the OS.

The next generation of computers
will replace the serial and parallel
ports (along with the keyboard,
mouse, and joystick ports) with the
Universal Serial Bus. The key advan-
tages of the USB are physical port
connectors, a data rate that’s fast
enough to support a wide number of
peripheral devices, the ability to chain
many (theoretically, 127) devices from
the host port, and protocol robustness.

The disadvantage? Hanging a relay
off of your new PC’s USB port to con-
trol your lights is not an afternoon
project. Even the simplest PC inter-
face idea will involve a microcon-
troller and a USB serial interface
engine (SIE), as well as OS drivers.

LONG, WINDING ROAD
Developing a project that interfaces

to a USB port is definitely not as
straightforward as parallel- or serial-

port interfacing. Making interface
circuits for the DOS machine in my
basement involved two basic steps—
making circuits and writing programs.

A parallel port can provide the
TTL-levels needed to adequately con-
trol a relay driver. There were eight
data lines on the port that could be
written to with a simple ��� instruc-
tion. Programming and testing this
hardware and software combination
was not a difficult development effort.

Developing for the USB takes a
sharp turn toward the complex. On
the peripheral side of the develop-
ment, a microcontroller is needed to
support the complex communication
required to be a USB-compliant de-
vice. The USB UART is the device I
mentioned earlier called the serial
interface engine (SIE).

The SIE is implemented differently
by different manufacturers. The SIE
can be a chunk of silicon in a package
meant to be interfaced to the micro-
controller of your choice, or it can be
a integral part of the microcontroller

Figure 1—The USBSIMM is a SimmStick controller card that
boasts an enhanced 8051-type microcontroller, 32 KB of RAM,
8 KB of EEPROM, and 20 I/O lines. Address and data bus
expandability add to the flexibility of the design.
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itself. One implementation
of the SIE can decode the
serial USB datastream and
provide the microcontroller
with rather raw informa-
tion, while another more
advanced SIE may do more
of the communication
work. The protocol requires
much more than just trans-
ferring data bytes.

In any case, there are a
lot of steps to USB device
development to get the
device to function the way
a USB peripheral should.
The peripheral USB device
must follow a predefined
protocol to communicate
with the low-level OS func-
tions, enabling it to be
recognized as a USB device.

The OS no longer blindly
deals with a USB device as
it may have with a serial or
parallel peripheral. With an
OS like Windows 98, there
is a sublimely orchestrated
interplay of USB host hard-
ware and several layers of drivers. To
achieve a tight coupling with the OS,
direct access to the hardware has been
cloaked behind a curtain of OS calls.
Access to this functionality is limited
to drivers and API calls. This is defi-
nitely not a place for a BASIC POKE.

Development has now evolved
from the two simple steps that I men-
tioned earlier to:

• design hardware—a microcontroller
is mandatory with either an exter-
nal or internal SIE

• create firmware to handle USB com-
munication for device recognition

• supplement the basic firmware with
application-specific routines

• create a Windows device driver that
will establish a communication
pathway to your device

• develop an application
that uses the driver to
talk to the USB device

USB FOR DUMMIES
If developing a USB pe-

ripheral is such a long and
laborious task, what can be
done to make it easier?
What part of the process can
be eliminated or reduced in
complexity? If you have a
circuit you wish to control
from the USB port on a PC,
how can the design process
be made easier?

Most of the devices I
interfaced with the DOS PC
are designs that are not
excessively complex. In fact,
most outputs are rather
simple, such as controlling a
relay. The inputs I’ve done
with the monitor have often
been the states of switches
or other two-state devices.

If the USB device only
needs to interface with basic
circuitry, then the firmware

development is simplified. As a mat-
ter of fact, if the USB device can be
designed to support a handful of gen-
eral-purpose I/O lines, the same core
design could be a building block for a
large number of projects.

However, driver development is no
walk in the park. Besides the com-
plexity, there is a serious investment
in development tools. If your goal is

Pin Signal Name Function

1 A1 (PC2) Port C bit 2. General purpose I/O or interrupt 0.
2 A2 (PC3) Port C bit 3. General purpose I/O or interrupt 1.
3 A3 (PC4) Port C bit 4. General purpose I/O or timer 0.
4 Power PWR connects to a wire point
5 Clock in CI connects to a wire point
6 Clock out CO connects to a wire point
7 VDD +5V in/out
8 Reset RES connects to a wire point
9 Ground Ground
10 SCL (I2C) I2C clock pulled high
11 SDA (I2C) I2C data pulled high
12 Serial in SI is connected to serial Port 0.
13 Serial out SO is connected to serial Port 0.
14 IO (PC5) Port C bit 5. General purpose I/O or timer 1.
15 D0 (PB0) Port B bit 0
16 D1 (PB1) Port B bit 1
17 D2 (PB2) Port B bit 2
18 D3 (PB3) Port B bit 3
19 D4 (PB4) Port B bit 4
20 D5 (PB5) Port B bit 5
21 D6 (PB6) Port B bit 6
22 D7 (PB7) Port B bit 7
23 D8 (PA0) Port A bit 0
24 D9 (PA1) Port A bit 1
25 D10 (PA2) Port A bit 2
26 D11 (PA3) Port A bit 3
27 D12 (PA4) Port A bit 4
28 D13 (PA5) Port A bit 5
29 D14 (PA6) Port A bit 6
30 D15 (PA7) Port A bit 7

Table 1—The pinout of the USBSIMM follows that of the SimmBus standard.

SimmStick
The SimmStick was a concept originally developed

by Antti Lukats from Estonia. The PC industry used 30-
pin SIMM printed circuit boards with dynamic RAM as
modules for motherboard memory expansion. The mod-
ules snapped easily into the SIMM sockets. Lukats
surmised that, because 30-pin SIMM sockets were inex-
pensive and widely available, using SIMM sockets for
something other than memory was a resourceful idea.

The idea was to place a small microcontroller on a
3.5″ wide SIMM-like board, the SimmStick. Port lines
from the microcontroller would extend to the card edge
fingers. A SimmBus pinout evolved to include 16 or
more port lines, serial lines, and I2C. The intent of the
signals present on the SimmBus was to provide control
lines to operate peripherals.

A typical SimmStick controller may be a PIC processor.
The PIC on the SimmStick can be programmed through
the SimmBus or through a dedicated ISP port connection.
A crystal and a voltage regulator may also be present on
the SimmStick.

SimmStick peripherals, such as LED modules and relay
modules, followed this small form factor. To make a sys-
tem, a motherboard with several SIMM sockets provides a
carrier for the SimmSticks. The motherboards are often
designed as a source of power for the SimmSticks, as well
as providing serial and other off-board signal connections.

Dontronics, an Australian electronics company, has
taken the lead in designing and manufacturing
SimmSticks. Dontronics offers PIC and Atmel-based con-
trollers, motherboards, and peripheral boards.
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Command Byte Value Function

Set Port A direction 1 73 Set port A direction
2 dd 1 = output, 0 = input

Set Port B direction 1 74 Set port B direction
2 dd 1 = output, 0 = input

Read Port A data 1 69 Read port A. Data
returned in byte 2.

Read Port B data 1 70 Read port B. Data
returned in byte 2.

Write Port A data 1 65 Read port A command
2 dd dd = value to write

Write Port B data 1 66 Write port B command
2 dd dd = value to write

to create a quick Visual Basic applica-
tion to interface to some simple hard-
ware, it’s a burden to use Visual C to
develop a driver for your “quick” app.

USBSIMM
If USBSIMM had only one “m”,

then the “sim” might stand for simple
(see the SimmStick sidebar). The

USBSIMM module
is a straightforward
hardware design.
Although an effort
was made to mini-
mize components,
the module was
designed to offer a
fair amount of
flexibility. In addi-
tion to the
microcontroller,
the USBSIMM has
an external 32-KB
RAM chip and an
8-KB serial
EEPROM (see Fig-
ure 1).

The microcon-
troller (EZ-USB AN2131Q) on the
USBSIMM board is manufactured by
AnchorChips, a division of Cypress
Semiconductor. AnchorChips started
the design with a souped-up 8051 that
offers a 3× performance boost over a
standard 8051.  They then added two
serial ports, three timers, an advanced
SIE, and lastly, 8 KB of internal RAM.

The internal RAM is a key feature.
The AN2131Q can run firmware from
this memory. This design is referred
to as soft. Because the firmware is not
placed into nonvolatile memory, it
can easily be upgraded. This way, if a
product is made with an AnchorChip
microcontroller, the firmware can
ship through a CD or floppy to the
product driver.

To achieve soft architecture, some
form of firmware download must take
place. The advanced SIE takes care of
all of the housekeeping needed to
support the firmware download. As a
matter of fact, the SIE holds the 8051
in reset and takes care of all of the
USB communication needed to enu-
merate to the PC as a peripheral USB
device. This is no small feat.

Once the PC is capable of recogniz-
ing the SIE as a USB device, the com-
munication channel between the PC
and the SIE is used as the path to
transfer firmware code to the internal
RAM. The PC can then command the
SIE to take the 8051 core out of reset
to start executing the firmware from

Table 2—The firmware of the USBSIMM provides port control functionality that can
be accessed from Visual Basic.
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RAM. If designed correctly, the
firmware-loading device disap-
pears from the bus, and the new
device appears.  AnchorChips
calls this process renumeration.

The USBSIMM, either used as
a daughterboard in custom hard-
ware or with other SimmStick
modules, forms the core of a rea-
sonably potent embedded USB
device. The USBSIMM routes all
of its port pins to the SimmBus
edge connection. The pinout is
shown in Table 1.

SHORTCUTS
The USBSIMM, shown in

Photo 1, simplifies the develop-
ment process by creating a gen-
eral-purpose hardware platform
for easy development. But, the
8051 doesn’t run on good inten-
tions. Despite the advanced SIE's
power to conveniently download firm-
ware to the USB device, code must
still be developed for the USB periph-
eral to function correctly after the SIE
allows the 8051 to execute.

Because the intent of this design is
to provide a platform for a USB device
to control relay circuits and read
switch settings, the firmware need
only provide two general functions.

The first function is for the
firmware to behave as a stan-
dard USB device. Rather than
creating a USB device that relies
on a custom driver for Windows
communication, this firmware
will appear to Windows as a
human interface device (HID).
Examples of HIDs are the
mouse and keyboard, standard
devices for PCs. [1, 2, 3]

If the firmware loaded in the
USBSIMM follows the correct
configuration as a HID, Win-
dows will load a standard driver
to communicate with the device
using HID reports, thus elimi-
nating the large step of develop-
ing a custom Windows driver.

The section function of the
firmware provides routines that
will read and write to the port
lines on the card. These routines

should allow any of the 16 lines to be
set as inputs or outputs, allow the
outputs to be set to a logic high or
low, and they should also read the
state of the input lines.

Photo 2 —The flexibility of the SimmStick products allows for a quick
prototype of a USB design. Here, a USBSIMM board is mounted on a
carrier motherboard, along with a support board that has pushbuttons
and status LEDs.
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Photo 3 —The USBSIMM can be easily used as a prototype system
by attaching a row of right-angle pins to the circuit board and inserting
it into a solderless proto board.

I developed HID firmware that
handles this functionality. If a
USBSIMM is loaded with this
firmware, Windows sees the USB
device as a HID. After Windows
detects the USBSIMM, it loads the
firmware into the internal RAM.

You may be wondering just
how Windows knows to load this
firmware into the USBSIMM.
Well, it uses a driver. When any
new USB device is connected to
the PC, the operating system
queries the device for vendor and
product information. Windows
uses this information to deter-
mine which driver needs to be
associated with the device.

In our case, when the USB-
SIMM is first attached, the infor-
mation Windows receives
indicates that the device is an
AN2131Q without firmware.
Windows searches for the right
driver for this hardware. If it
doesn’t find it already in residence on
the hard drive, a request to the user
appears in the form of a prompt. For
example, the driver may be located on
a CD or floppy disk.

The function of this initial driver is
strictly to load the firmware to the
USBSIMM. The driver files are pro-
vided on the Circuit Cellar website,
or at usbsimm.home.att.net.

After the firmware is loaded, Win-
dows associates the standard HID
driver with the new device. Whenever
the USBSIMM is attached, Windows
uses the first driver to load the firm-
ware to the internal RAM, renumer-
ates, and connects the HID driver
with the firmware. Once Windows
sees the USBSIMM as a HID, then an
application can communicate with
the HID using HID reports [1, 2].

HID reports are the standard for-
mat for communication between
Windows and a HID. The OS host and
the USB device must follow the right
format to communicate using these
reports. The formats of these reports
are too extensive to cover here. They
are covered in detail in, USB Design
by Example and USB Complete [1, 2].

The HID reports for the firmware
are described in Table 2. These reports
allow the host program to set port

direction, as well as read from and
write to the USBSIMM port lines.
Support for accessing the serial
EEPROM is described on the web site.

HOST DEVELOPMENT
As described earlier, the host appli-

cation software interfaces to the de-
vice through a standard Windows
driver because the USB device has
been recognized as a HID. Develop-
ment of an application in Visual Basic
then involves communication with
this HID through Windows API calls.

John Hyde, author of USB Design
by Example, developed the Visual
Basic (VB) routines that I use to access
Windows API. These routines specifi-
cally address communication with a
USB HID. Three main functions allow
access from VB to the firmware rou-
tines in the USBSIMM.

The OpenUSBdevice call finds the
correct USB device to talk to. The
firmware loaded into the USBSIMM
identifies itself by firmware revision.
In this case, the firmware is called
USBSIMM1v1.0. Once found and
opened, the application can send HID
reports to the firmware with the
WriteUSBdevice function and read
HID reports from the firmware using
the ReadUSBdevice function.

The host must transfer data
in the format defined by the
HID report. The firmware writ-
ten for the USBSIMM expects
all reports to fit one format.
This requirement simplified the
development of firmware. The
only odd feature about having a
single report format is that the
report is a fixed size. Six data
bytes are always transferred
between the host and the USB
device. The unused bytes can be
set to zero or ignored.

The USBSIMM firmware
supports six commands. The
sixteen port lines on the
USBSIMM originate from port A
and B of the AN2131Q. The
commands are split into two
sets, with each command appro-
priate for a particular port.

The eight lines of each port
can be individually selected to
be inputs or outputs. The port

direction command can change the
port direction from the default of
input to output by setting the appro-
priate bit of the data byte in the com-
mand to a one. See Listing 1 for some
simple example VB functions.

A port read will read the port lines
regardless of their direction. If only
part of the port is set to input, the
other lines can be masked to preserve
the important information. Port lines
that are set as inputs will remain
unaffected by a port write.

IS IT COLD OUTSIDE?
I currently use the USBSIMM to

interface with home-automation func-
tions. Every door and window in my
house is monitored by my security
system. Hardwired loops have reed
contacts that detect when any door or
window is opened. This is great for
intrusion detection, but so far it has
gone unused for any home-automa-
tion purpose.

So, other than the detection of
intruders, why would a home-automa-
tion system care about open windows,
especially when it can’t close them?
In the spring and fall, the outside air
temperature falls into my comfort
range for a few short days. During
that time, the windows are opened for
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' Set all of the lines of port A to output
Private Sub PortAin()
    Dim OutBuffer(10) As Byte
    OutBuffer(0) = 73   ' Port A direction command
    OutBuffer(1) = &H0  ' 0 is input
    Call WriteUSBdevice(AddressFor(OutBuffer(0)), 6)
End Sub

' Set all of the lines of port A to output
Private Sub PortAout()
    Dim OutBuffer(10) As Byte
    OutBuffer(0) = 73   ' Port A direction command
    OutBuffer(1) = &HFF ' 1 is output
    Call WriteUSBdevice(AddressFor(OutBuffer(0)), 6)
End Sub

' Set all of the lines of port b to input
Private Sub PortBin()
    Dim OutBuffer(10) As Byte
    OutBuffer(0) = 74   ' Port B direction command
    OutBuffer(1) = &H0  ' 0 is input
    Call WriteUSBdevice(AddressFor(OutBuffer(0)), 6)
End Sub

' Set all of the lines of port B to output
Private Sub PortBout()
    Dim OutBuffer(10) As Byte
    OutBuffer(0) = 74   ' Port B direction command
    OutBuffer(1) = &HFF ' 1 is output
    Call WriteUSBdevice(AddressFor(OutBuffer(0)), 6)
End Sub

' Read port A
Private Sub ReadA()
    Dim OutBuffer(10) As Byte
    Dim InBuffer(10) As Byte
    OutBuffer(0) = 69   ' Read port A command
    Call WriteUSBdevice(AddressFor(OutBuffer(0)), 6)
    Call ReadUSBdevice(AddressFor(InBuffer(0)), 6)
    ReadAWindow.Text = TwoHexCharacters(InBuffer(1))
End Sub

' Read port B
Private Sub ReadB()
    Dim OutBuffer(10) As Byte
    Dim InBuffer(10) As Byte
    OutBuffer(0) = 70   ' Read port B command
    Call WriteUSBdevice(AddressFor(OutBuffer(0)), 6)
    Call ReadUSBdevice(AddressFor(InBuffer(0)), 6)
    ReadBWindow.Text = TwoHexCharacters(InBuffer(1))
End Sub

' Write port A
Private Sub WriteA()
    Dim OutBuffer(10) As Byte
    OutBuffer(0) = 65   ' Write port A command
    OutBuffer(1) = ReturnHexByte(WriteAWindow.Text)
    Call WriteUSBdevice(AddressFor(OutBuffer(0)), 6)
End Sub

' Write port B
Private Sub WriteB()
    Dim OutBuffer(10) As Byte
    OutBuffer(0) = 66   ' Write port B command
    OutBuffer(1) = ReturnHexByte(WriteBWindow.Text)
    Call WriteUSBdevice(AddressFor(OutBuffer(0)), 6)
End Sub

Listing 1 —An example of Visual Basic access to the USBSIMM firmware routines.



              CIRCUIT CELLAR ®                                                                                                          Issue 116     March 2000        19www.circuitcellar.com

fresh air, closed when it gets cool or
warm, and opened again.

Unfortunately, the furnace or air
conditioner may not be disabled when
the windows are open. I’m sure my air
conditioner won't cool the great out-
doors and I wouldn’t put any money
on the ability of my furnace to heat
the entire city, either.

A simple kill-switch type of relay
contact can be inserted in the electric
thermostat loop to prevent the fur-
nace or air conditioner from running
while any windows or doors are open.
My home-wiring configuration pro-
vides an active signal if one or more
windows are open. Another signal
indicates door status.

The USBSIMM is mounted in a
carrier SIMM socket on a board that
interfaces to these signals, as well as
to the kill relay. For the purpose of
simplified illustration, and to make
bench-top debugging manageable, I
used a DT003 SimmStick mother-
board to hold the USBSIMM, along
with a DT203 SimmStick I/O module
for status lights and pushbuttons (see
Photo 2). The USBSIMM can also be
used in solderless proto boards for
rapid prototyping, as seen in Photo 3.

The DT203 SimmStick I/O module
has an LED status light for each of the
SimmBus’s 16 I/O lines. This allows
for display of several status signals,
one of which is the kill-relay state.
Four buttons on the top of the DT203
acted as door and window inputs.

The USBSIMM communicates the
status of the inputs to a VB applica-
tion that decides whether to open the
kill relay based on the status of the
doors and windows. A USB develop-
ment that interfaces with a Pentium III
to make a decision a couple of resis-
tors and a broken transistor could
handle is definitely overkill, but this
is just step one. The exciting part
comes with more development.

FUTURE DIRECTION
At the time this article was

penned, the USBSIMM firmware sup-
ported basic port I/O. USBSIMM firm-
ware development is continuing and
will include several practical func-
tions such as serial port communica-
tion, A/D converter interfacing, and

X-10 control. Once developed, these
features will be made freely available.

By eliminating difficult or expen-
sive development steps, a USB device
can interface to the same type of cus-
tom hardware that is often hung off of
a parallel port. By using the USB-
SIMM and the firmware developed for
it, developing custom circuits and the
programs that control them is simple.

Using USB today as the PC inter-
face method for your next project
assures that you won’t be fighting a
battle to find an appropriate port on
the next generation’s old PCs. I
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j
If you’re going to use
flash memory to sim-
plify firmware up-
grades, you’ll need to
design your system
from the beginning
with this in mind. Lis-
ten in as Bob and
Michal explain some
of the problems and
solutions that come
with flash memory.

ust a few years
ago, the standard

method of doing a
firmware upgrade was to

send an EPROM to each customer.
The customer then had to open up the
system, pull the old EPROM out of its
socket, and plug the EPROM with the
new firmware into the socket. If no
leads were bent, the customer could
run the new version of the firmware.

With the success of flash memory,
you can eliminate the need to perform
EPROM swaps for firmware upgrades.
However, using flash memory is a
little more involved than simply sub-
stituting a flash-memory device for an
EPROM. You must design your sys-
tem from the start to make firmware
upgrades as easy as possible. In this
article we present some of the prob-
lems we encountered and methods we
used to perform firmware upgrades.

WHAT IS FLASH MEMORY?
Flash memory can be considered

part of the line of nonvolatile electri-
cally programmable memory devices.
The EPROM is the oldest relative of
flash memory. EPROMs are typically
programmed on a device programmer
external to the target system.

During programming, EPROM
require a super voltage (a voltage that
is above the normal operating voltage

range). A typical EPROM that oper-
ates on a +5-V power supply may
require a super voltage of from +10 to
+25 V during programming. EPROMs
are erased by exposure to UV light.
This erasure method requires that
EPROMs be placed in ceramic pack-
ages with clear windows to allow the
UV light rays to reach the die.

Because the windowed ceramic
package is more expensive to produce
than standard plastic packages, one-
time-programmable (OTP) EPROMs
are produced in plastic packages. The
OTP EPROMs are less expensive, but
they cannot be erased.

The EEPROM is another device in
the line of nonvolatile electrically
programmable memory devices.
EEPROMs do not require a device
programmer and are in-system pro-
grammable. Typically, they are pro-
grammed on a byte-by-byte basis with
a write to a memory address initiating
an erasure, and then programming of
that byte. This operation typically
takes a few milliseconds per byte.

During the ’80s, it was thought that
because the EEPROM didn’t require a
windowed ceramic package, it would
become less expensive than EPROMs
and might make the EPROM obsolete.
Of course, this didn’t happen.

The memory cell of the EEPROM
is more complex then that of an
EPROM. As memory densities in-
creased, the EEPROM, with its more
complex memory cell, couldn’t keep
pace with the increasing density of
EPROMs. The EEPROM found its
niche as a part used when small
amounts of nonvolatile rewritable
memory are needed. EEPROMs with
serial (rather then parallel) interfaces
are quite commonly used when a few
bytes of permanent storage are needed
and access time is not critical.

Flash memory combines many of
the best attributes of EPROMs and
EEPROMs. Like EEPROMs, flash
memory can be erased electrically,
eliminating the need for windowed
ceramic packages and allowing flash-
memory devices to use less expensive
plastic packages. Like EPROM, flash
memory has a memory cell that’s less
complex than that of the EEPROM,
which allows flash memories to have

Implementing Downloadable
Firmware via Flash Memory
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densities that are competitive with
that of EPROMs. Given these factors,
flash memory has the potential to do
what the EEPROM has failed to do—
make the EPROM obsolete.

Early flash memories required an
external super voltage for program-
ming. This meant that to program a
flash memory in-system, you had to
provide and control the super voltage.

Many of the analog IC companies
produced devices to create the super
voltage for flash memories from +5 V.
Of course, the need for the super volt-
age increased system cost and com-
plexity. The newer flash memories
can be erased and programmed using
only the system logic voltage, typi-
cally +5 or +3.3 V, which makes de-
signing in flash memory as simple as
designing in an EPROM.

Flash memory differs from EPROM
and EEPROM in the style of erasure
and programming. Flash memories
are block devices so they are erased
and programmed at the block level.

The block (or sector) size can be
uniform within a given flash-memory
device. For example, we’ve used a
512-KB device that has eight 64-KB
blocks. However, the block size does
not have to be uniform. Another de-
vice we’ve used has 256 KB with sec-
tors that consist of a 16-KB, two 8-KB,
one 32-KB, and three 64-KB blocks.

Block sizes vary from fine-grain
devices, with sector sizes in the 128-
byte range to course-grained devices
with sectors of 64 KB or larger. Re-
gardless of the block size or arrange-
ment, in order to write a byte to a
flash memory, you must erase and
then reprogram an entire block. This
is a more complex operation then
simply writing to the device, as is
required by an EEPROM.

Some flash memories, often called
boot block, have special sectors that
reside at the top or bottom of the
device’s address space. These special
boot block sectors can be locked to
prevent reprogramming in system.
The boot block sectors are designed to
prevent the system’s boot-up code
from being accidentally erased.

You choose a boot block flash
memory with the boot block at the
bottom of the address space if your

microprocessor runs from address 0 at
reset (e.g., 68k family) or a boot block
at the top of the address space for a
micro that runs from the top of mem-
ory at reset (e.g., 80X86 family).

FLASH PROGRAMMING
Programming typical flash-memory

devices is usually accomplished by
the specific command sequence,
which initiates the Embedded Erasure
or Embedded Program algorithms.
Let’s look at the three procedures.
The details are for one of the AMD
flash-memory devices we used. Most
flash-memory devices are similar.

Device identification is the first
step before any erasure or program-
ming takes place. The host system
can run an autoselect sequence, al-
lowing you to get manufacturer and
device codes. All command sequences
start with a pair of unlock writes to
the flash-memory device (a write of
AAH to flash address 555H followed
by a write of 55H to flash address
2AAH). Then the autoselect com-
mand 90H is written to address 555H.

At this point, the device is in a
mode that allows the host system to
execute two consecutive reads at
address XX00h and XX01h (manufac-
turer and device IDs, respectively).
The system has to exit this mode by
executing RESET command (writing
F0H to flash address 2AAH) to return
to normal reading array data mode.

Erasure is a six-bus-cycle operation
and can be applied to the entire chip
or to just the selected sector. We used
the sector-erase algorithm only.

Two unlock write cycles start the
sequence, followed by a setup write
cycle command (80H to 555H). Then,
an additional two unlock write cycles
are followed by writing the erase com-
mand (30H) to the address of the sector
to be erased. Those six write cycles
initiate Embedded Erase algorithm.

The host system should monitor
the status of the erase operation by
checking the Toggle and Timeout
bits. The Toggle bit (bit 7 for our de-
vice) changes state on every read from
the device until the erase or program
operation is complete.

Before running the programming
sequence, a copy of the data block to
be written should be stored safely in
the RAM. Byte programming is imple-
mented in a four-bus-cycles sequence.
The first two cycles are the unlock
write cycles, followed by the program
setup command (A0H to 555H). Then
the actual data is written to the de-
sired address. The host system can
determine the status of the program-
ming operation by checking the
Toggle and Timeout bits. The typical
byte programming time is 2–20 µs.

SYSTEM ARCHITECTURE
As you can see in Figure 1a, our

first-generation system did not use
flash memory, it used a 68EC000

Figure 1 —The first generation (a) system contained
EPROM and EEPROM, whereas our second-genera-
tion system (b) combined flash memory and EEPROM.
The third-generation (c) used just flash memory.
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Figure 2 —The boot program algorithm executes out of
the boot sector of the flash memory on a system reset.
It monitors the serial port and then executes the proper
procedure, based on the serial port activity.
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processor that was configured for an
eight-bit wide data bus. The program
code was stored in a 128K × 8
EPROM. Data storage consisted of
some SRAM and a small EEPROM for
nonvolatile parameter storage.

The system had a serial port for
board testing and system debugging.
Field program upgrades were done by
shipping EPROMs to customers, who
then opened the system, removed the
old EPROM and replaced it with the
new EPROM. This is an expensive
and error-prone procedure. It was
decided that the next generation sys-
tem must be upgradable without chip
swapping. The obvious choice was to
use flash memory and not the EPROM.

However, creating a field-upgrad-
able system that replaces EPROM
with flash memory requires the sys-
tem to be designed with field upgrad-
ability in mind. You can’t execute
code that resides in the flash memory
while the flash device is being erased
or programmed. That meant that our
flash-memory programming code
must execute out of RAM during
actual flash programming.

We also wanted to be protected in
case of a power outage during a pro-
gram upgrade. It would be OK for the
user to have to restart the upgrade,
but we had be sure that the code to
perform the upgrade was always pro-
tected from the loss of power.

Given those major considerations
and other system factors, the second-
generation system in Figure 1b used a
68EC020 processor. Taking advantage
of the dynamic bus sizing capability
of the 68EC020, we used a 256K × 8

flash memory, a 128K × 32 SRAM
bank, and a 2K × 8 EEPROM.

Like the older system, there was
also a serial port that would be used
for program upgrades, in addition to
its testing and debugging use. To al-
low our code to run at maximum
speed, it would execute in the 32-bit
wide SRAM, which meant that there
would be no performance penalty for
using only an 8-bit wide flash mem-
ory (with a few wait states).

Following a reset, our code is
moved from flash memory to SRAM
and executed in SRAM. Because ex-
ecuting code out of SRAM would be a
requirement for programming the flash
memory during a field upgrade, we
needed this capability anyway. After
weighing all the issues, we came up
with the organization for the firmware.

Instead of the single program that
was used in the EPROM-based sys-
tem, the firmware would consist of
three programs. We came to refer to
these three programs as the boot,
flash, and control programs. All of
these programs would be stored in the
flash memory, but the flash and con-
trol programs execute out of SRAM.

The control program is the main
operating program for the system.
This, of course, is the program we
want to be able to upgrade in the
field. Its actual operation isn’t relevant
to this article, however the operation
of the boot and flash programs are, so
let’s look at them further.

BOOT PROGRAM
The boot program is the code that

executes on a system reset (see Fig-
ure 2). It performs basic system ini-
tialization and then waits in a loop for
0.5 s, checking for a character from
the serial port. The boot program
resides and executes out of the boot
block section in the flash memory.

 If no character was received, the
boot program would copy the control
program from flash memory into
SRAM. Then it would execute a jump
to the start of the control program and
the system would run normally.

If an ASCII “D” character is re-
trieved from the serial port during the
loop, it indicates that a field upgrade
is to be started. The flash program is

copied from flash memory to SRAM,
then it jumps to the start of the flash
program. If a <CR> is retrieved from
the serial port, the boot program brings
up a low-level debugger that could be
used for board troubleshooting.

FLASH PROGRAM
Like the boot program, the flash

program (see Figure 3) is stored in the
boot block sector of the flash-memory
device. As mentioned, the flash pro-
gram is copied from flash memory
into SRAM and executed from SRAM
when a control program upgrade is
requested. Once started, the flash
program downloads the new control
program over the serial port to where
it is temporarily stored in SRAM.

After the download is complete,
the appropriate flash blocks are erased
and the new control program is writ-
ten into those blocks. When that’s
done, the upgrade is complete and the
user is prompted to reset the system.

On this system, the flash memory
has a 16-KB boot block. By placing the
boot and flash programs in the boot
block sector, the flash program was
protected. Having the flash program
in the boot block means the flash
program code could never be erased.

If the flash update code was part of
the control program, it would be
erased during a field upgrade. If a
power outage occurred before the new
program was written into flash mem-
ory, the system would be left without
a control program and without the
ability to download a new program. By
having the flash program in the boot
block, the system always has the abil-
ity to download a new control pro-
gram, even if the last update attempt is
interrupted by a power outage.

Of course, storing both the boot
and flash programs in the boot block
has its downsides. It means the code
for both programs must be small
enough to fit in the boot block and
the programs can never be updated.
Due to these constraints, we kept the
boot and flash programs quite simple.

Along with the system code, we
needed to create a few utility pro-
grams to convert the output of our
development system’s linker into the
formats needed for our system and a

Figure 3 —This program algorithm is loaded into RAM
from flash memory to upgrade a control program.
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program to perform the field down-
load of new control programs.

The flash and control programs had
to be linked to run at their final ad-
dress in RAM. Because the programs
would be stored in a different address
in the flash memory, we created a
program to create an S-record file
whose address fields were for the ap-
propriate address in the flash memory.
Another utility merged the S-record
files for the boot, flash, and control
programs into one S-record file for
initial flash-memory programming.

Another utility converted the linker
output for the control program into our
download file format. Because this
format was the exact image of the
control program as stored in the flash
memory, it is called the image file.

The image file has a 512-byte
header. The first 64 bytes are ASCII
text that includes the program revi-
sion, creation date, and a comment
field. The comments are mainly used
for in-house identification of special
program versions. The remainder of
the header is binary and contains the
length and start address of the text,
data, and bss program segments. Fol-
lowing the header is the exact binary
image of the program, as it will reside
in RAM during program execution.

These utilities were used in-house
and we created quick no-frills com-
mand-line programs in a couple of
days. We also created a quickie ver-
sion of the download program, how-
ever we had to create more polished
versions of the download program for
both Windows and Apple systems.

The download program accepts a
file name to be downloaded, then
displays the first 64 bytes of the file
header, which shows the user the
revision and creation date of the file.
The program then prompts the user to
reset our system. Our system re-
sponds to the download request and
sends the first 64 bytes from the pro-
gram header(s) (the second-generation
system allowed two control programs
to be stored in flash memory, the
third generation, only one) that it has
stored in flash memory. The down-
load program displays these headers
so the user can see the currently
stored program versions.

The user can then abort the down-
load process or (in the second-genera-
tion system) select the program to
overwrite. The file is downloaded in
512-byte blocks, each block is fol-
lowed by a checksum byte and each
block is acknowledged by the system.
When the download is complete, the
system writes the program into flash
memory and sends an acknowledge to
complete the transaction. The upgrade
is complete in about a minute.

Another option for programming
flash memory is the micro’s JTAG or
BDM ports. Our third-generation
system (see Figure 2c) uses a ColdFire
processor that has both ports avail-
able. We used the JTAG port to ini-
tially program the flash-memory
device, so the flash memory could be
soldered to the board without having
to be programmed. In our case, JTAG
wasn’t an option for end-user upgrades.

IT’S ALL YOURS
The method we’ve discussed was

developed for downloadable program
upgrades using flash memory and has

Bob Brown is a consultant specializ-
ing in embedded systems. His com-
pany, Alta Engineering, also sells
electronic kits that he has designed.
Bob has published more then a dozen
articles on computers and electronics.
You may reach him at alta@ieee.org.

Michal Tamborski is a software engi-
neer working for Ultre division of
Heidelberg Publishing Services. He is
involved in embedded programming
for systems controlling high-resolution
laser image setters. You may reach
him at mtamborski@ultre.com.

SOURCE

Flash devices
Advanced Micro Devices, Inc.
(408) 732-2400
Fax: (408) 732-7216
www.amd.com

made field program upgrades almost
painless. With a tweak here and there,
this method could be modified for use
on many different systems.  I

http://www.amd.com
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Building a
RISC
System in
an FPGA

FEATURE
ARTICLE

Jan Gray

i
To kick off this three-
part article, Jan’s go-
ing to port a C
compiler, design an
instruction set, write
an assembler and
simulator, and design
the CPU datapath.
Get reading, you’ve
only got a month be-
fore your connecting
article arrives!

used to envy
CPU designers—

the lucky engineers
with access to expensive

tools and fabs. But, field-program-
mable gate arrays (FPGAs) have made
custom-processor and integrated-
system design much more accessible.

20–50-MHz FPGA CPUs are per-
fect for many embedded applications.
They can support custom instructions
and function units, and can be recon-
figured to enhance system-on-chip
(SoC) development, testing, debug-
ging, and tuning. Of course, FPGA
systems offer high integration, short
time-to-market, low NRE costs, and
easy field updates of entire systems.

FPGA CPUs may also provide new
answers to old problems. Consider
one system designed by Philip Freidin.
During self-test, its FPGA is config-
ured as a CPU and it runs the tests.
Later the FPGA is reconfigured for
normal operation as a hardwired sig-
nal processing datapath. The ephem-
eral CPU is free and saves money by
eliminating test interfaces.

THE PROJECT
Several companies sell FPGA CPU

cores, but most are synthesized imple-
mentations of existing instruction
sets, filling huge, expensive FPGAs,
and are too slow and too costly for

production use. These cores are mar-
keted as ASIC prototyping platforms.

In contrast, this article shows how
a streamlined and thrifty CPU design,
optimized for FPGAs, can achieve a
cost-effective integrated computer
system, even for low-volume products
that can’t justify an ASIC run.

I’ll build an SoC, including a 16-bit
RISC CPU, memory controller, video
display controller, and peripherals, in
a small Xilinx 4005XL. I’ll apply free
software tools including a C compiler
and assembler, and design the chip
using Xilinx Student Edition.

If you’re new to Xilinx FPGAs, you
can get started with the Student Edi-
tion 1.5. This package includes the
development tools and a textbook
with many lab exercises.[3]

The Xilinx university-program
folks confirm that Student Edition is
not just for students, but also for pro-
fessionals continuing their education.
Because it is discounted with respect
to their commercial products, you do
not receive telephone support, al-
though there is web and fax-back
support. You also do not receive
maintenance updates—if you need the
next version of the software, you have
to buy it all over again. Nevertheless,
Student Edition is a good deal and a
great way to learn about FPGA design.

My goal is to put together a simple,
fast 16-bit processor that runs C code.
Rather than implement a complex
legacy instruction set, I’ll design a
new one streamlined for FPGA imple-
mentation: a classic pipelined RISC
with 16-bit instructions and sixteen
16-bit registers. To get things started,
let’s get a C compiler.

Part 1: Tools, Instruction Set, and Datapath

Table 1—The xr16 C language calling conventions
assign a fixed role to each register. To minimize the cost
of function calls, up to three arguments, the return
address, and the return value are passed in registers.

Register Use

r0 always zero
r1 reserved for assembler
r2 function return value
r3–r5 function arguments
r6–r9 temporaries
r10–r12 register variables
r13 stack pointer (sp)
r14 interrupt return address
r15 return address
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C COMPILER
Fraser and Hanson’s book is the

literate source code of their lcc retar-
getable C compiler.[1] I downloaded
the V.4.1 distribution and modified it
to target the nascent RISC, xr16.

Most of lcc is machine indepen-
dent; targets are defined using ma-
chine description (md) files. Lcc ships
with ’x86, MIPS, and SPARC md files,
and my job was to write xr16.md.

I copied xr16.md from mips.md,
added it to the makefile, and added an
xr16 target option. I designed xr16
register conventions (see Table 1) and
changed my md to target them.

At this point, I had a C compiler for
a 32-bit 16-register RISC, but needed
to target a 16-bit machine with
sizeof(int)=sizeof(void*)=2. lcc obtains
target operand sizes from md tables, so
I just changed some entries from 4 to 2:

Interface xr16IR = {
  1, 1, 0,  /* char */
  2, 2, 0,  /* short */
  2, 2, 0,  /* int */
  2, 2, 0,  /* T* */

Next, lcc needs operators that load
a 2-byte int into a register, add 2-byte
int registers, dereference a 2-byte
pointer, and so on. The lcc ops util-
ity prints the required operator set. I
modified my tables and instruction
templates accordingly.  For example:

reg: CVUI2(INDIRU1(addr)) \
�lb r%c,%0\n� 1

uses lb rd,addr to load an unsigned
char at addr and zero-extend it into a
16-bit int register.

stmt: EQI2(reg,con) \
�cmpi r%0,%1\nbeq %a\n� 2

uses a cmpi, beq sequence to com-
pare a register to a constant and
branch to this label if equal.

I removed any remaining 32-bit
assumptions inherited from mips.md,
and arranged to store long ints in
register pairs, and call helper routines
for mul, div, rem, and some shifts.

My port was up and running in just
one day, but I had already read the lcc
book. Let’s see what she can do. List-
ing 1 is the source for a binary tree
search routine, and Listing 2 is the
assembly code lcc-xr16 emits.

INSTRUCTION SET
Now, let’s refine the instruction

set and choose an instruction encod-
ing. My goals and constraints include:
cover C (integer) operator set, fixed-
size 16-bit instructions, easily de-
coded, easily pipelined, with three-
operand instructions (dest = src1

op src2/imm), as encoding space
allows. I also want it to be byte ad-
dressable (load and store bytes and
words), and provide one addressing
mode—disp(reg). To support long
ints we need add/subtract carry and
shift left/right extended.

Which instructions merit the most
bits? Reviewing early compiler output
from test applications shows that the
most common instructions (static
frequency) are lw (load word), 24%;
sw (store word), 13%; mov (reg-reg
move), 12%; lea (load effective ad-
dress), 8%; call, 8%; br, 6%; and
cmp, 6%. Mov, lea, and cmp can be
synthesized from add or sub with r0.

69% of loads/stores use disp(reg)
addressing, 21% are absolute, and
10% are register indirect.

Therefore we make these choices:

• add, sub, addi are 3-operand
• less common operations (logical ops,

add/sub with carry, and shifts) are 2-
operand to conserve opcode space

• r0 always reads as 0
• 4-bit immediate fields
• for 16-bit constants, an optional

immediate prefix imm establishes the
most significant 12-bits of the in-
struction that immediately follows

• no condition codes, rather use an
interlocked compare and condi-
tional branch sequence

• jal (jump-and-link) jumps to an
effective address, saving the return
address in a register

• call func encodes jal r15,func
in one 16-bit instruction (provided
the function is 16-byte aligned)

• perform mul, div, rem, and variable
and multiple bit shifts in software

The six instruction formats are
shown in Table 2 and the 43 distinct
instructions are shown in Table 3.
adds, subs, shifts, and imm are
uninterruptible prefixes. Loads/stores
take two cycles, jump and branch-
taken take three cycles (no branch
delay slots). The four-bit imm field
encodes either an int (-8–7): add/
sub, logic, shifts; unsigned (0–15): lb,
sb; or unsigned word displacement (0,
2–30): lw, sw, jal, call.

Some assembly instructions are
formed from other machine instruc-
tions, as you can see in Table 4. Note
that only signed char data use lbs.

ASSEMBLER
I wrote a little multipass assembler

to translate the lcc assembly output
into an executable image.

Listing 1— This sample C code declares a binary search tree data structure and defines a binary search
function. Search returns a pointer to the tree node whose key compares equal to the argument key, or
NULL if not found.

typedef struct TreeNode {
  int key;
  struct TreeNode *left, *right;
} *Tree;

Tree search(int key, Tree p) {
  while (p && p->key != key)
    if (p->key < key)
      p = p->right;
    else
      p = p->left;
  return p;
}

Table 2—The xr16 has six instruction formats, each
with 4-bit opcode and register fields.

Format 15–12 11–8 7–4 3–0

rrr op rd ra rb
rri op rd ra imm
rr op rd fn rb
ri op rd fn imm

i12 op  imm12 … …
br op cond disp8 …
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The xr16 assembler reads one or
more assembly files and emits both
image and listing files. The lexical
analyzer reads the source characters
and recognizes tokens like the identi-
fier _main. The parser scans tokens
on each line and recognizes instruc-
tions and operands, such as register
names and effective address expres-
sions. The symbol table remembers
labels and their addresses, and a fixup
table remembers symbolic references.

In pass one, the assembler parses
each line. Labels are added to the
symbol table. Each instruction ex-

pands into one or more machine in-
structions. If an operand refers to a
label, we record a fixup to it.

In pass two, we check all branch
fixups. If a branch displacement ex-
ceeds 128 words, we rewrite it using a
jump. Because inserting a jump may
make other branches far, we repeat
until no far branches remain.

Next, we evaluate fixups. For each
one, we look up the target address and
apply that to the fixup subject word.
Lastly, we emit the output files.

I also wrote a simple instruction set
simulator. It is useful for exercising
both the compiler and the embedded
application in a friendly environment.

Well, by now you are probably
wondering if there is any hardware to
this project. Indeed there is! First,
let’s consider our target FPGA device.

THE FPGA
The Xilinx XC4005XL-PC84C-3 is

a 3.3-V FPGA in an 84-pin J-lead
PLCC package. This SRAM-based
device must be configured by external
ROM or host at power-up. It has a

14 × 14 array of configurable logic
blocks (CLBs) and 61 bonded-out I/O
blocks (IOBs) in a sea of program-
mable interconnect.

Every CLB has two 4-input look-up
tables (4-LUTs) and two flip-flops.
Each 4-LUT can implement any logic
function of 4 inputs, or a 16 × 1-bit
synchronous static RAM, or ROM.
Each CLB also has “carry logic” to
build fast, compact ripple-carry adders.

Each IOB offers input and output
buffers and flip-flops. The output
buffer can be 3-stated for bidirectional
I/O. The programmable interconnect
routes CLB/IOB output signals to other
CLB/IOB inputs. It also provides wide-
fanout low-skew clock lines, and hori-
zontal long lines, which can be driven
by 3-state buffers at each CLB.[2]

The XC4000XL architecture would
appear to have been designed with
CPUs in mind. Just eight CLBs can
build a single-port 16 × 16-bit register
file (using LUTs as SRAM), a 16-bit
adder/subtractor (using carry logic), or
a four-function 16-bit logic unit. Be-
cause each LUT has a flip-flop, the

Figure 1 —The xr16
processing symbol
ports, which include
instruction and data
buses, next address
and memory con-
trols, and bus
controls, constitute
its interface to the
system memory
controller.
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device is register rich, en-
abling a pipelined imple-
mentation style; and as
each flip-flop has a dedi-
cated clock enable input,
it’s easy to stall the pipe-
line when necessary. Long
line buses and 3-state driv-
ers form an efficient word-
wide multiplexer of the
many function unit results,
and even an on-chip 3-state
peripheral bus.

THE PROCESSOR IN-
TERFACE

Figure 1 gives you a good
look at the xr16 processor
macro symbol. The inter-
face was designed to be
easy to use with an on-chip
bus. The key signals are the
system clock (CLK), next
memory address (AN15:0),
next access is a read
(READN), next access is
16-bit data (WORDN),
address clock enable: above

CLK

CLK

V
CO
N
Z

A15

INSN[15:0]
RDY
IREQ
DMAREQ
ZERODMA
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Control unit Datapath
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Figure 2 —The control unit receives instructions, decodes them, and drives both the
memory control outputs and the datapath control signals.

signals are valid, start
next access (ACE), mem-
ory ready input: the
current access completes
this cycle (RDY), in-
struction word input
(INSN15:0), on-chip bidi-
rectional data bus to
load/store data (D15:0).

The memory/bus
controller (which I’ll
explain further in Part 3)
decodes the address and
activates the selected
memory or peripheral.
Later it asserts RDY to
signal that the memory
access is done.

As Figure 2 shows,
the CPU is simply a
datapath that is steered
by a control unit. Next
month, I’ll examine the
control unit in greater
detail. The rest of this
article explores the de-
sign and implementa-
tion of the datapath.
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negative, carry-out, or overflow; a
program counter (PC), PC incrementer,
branch displacement adder (br L),
and a mux to load the PC with a jump
target address (call _foo); and a
mux to share the memory port for
instruction fetch (addr ← PC) and
load/store (addr ← effective address).

Careful design and reuse will let
you minimize the datapath area be-
cause the adder, with the immediate
mux, can do the effective address add,
and the PC incrementer can also add
branch displacements. The memory
address mux can help load the PC
with the jump target.

DATAPATH SCHEMATIC
Figure 3 is the culmination of these

ideas. There are three groups of re-
sources. The execution unit is the

heart of the processor. It fetches oper-
ands from the register file and the
immediate fields of the instruction
register, presents them to the add/sub,
logic, and (trivial) shift units, and
writes back the result to the register
file. The result multiplexer selects
one result from the various function
units. The address/PC unit drives the
next memory address, and includes
the PC, PC adder, and address mux.
Now, let’s see how each resource is
implemented in our FPGA.

REGISTER FILE
During each cycle, we must read

two register operands and write back
one result. You get two read ports
(AREG and BREG) by keeping two
copies of the 16 × 16-bit register file
REGFILE, and reading one operand

DATAPATH RESOURCES
The instruction set evolved with

the datapath implementation. Each
new idea was first evaluated in terms
of the additional logic required and its
impact on the processor cycle time.

To execute one instruction per
cycle you need a 16-entry 16-bit regis-
ter file with two read ports (add r3, r1,
r2) and one write port (add r3, r1,
r2); an immediate operand multiplexer
(mux) to select the immediate field as
an operand (addi r3, r1, 2); an arith-
metic/logic unit (ALU) (sub r3, r1,
r2; xor r3, r1); a shifter (srai r3,
1), and an effective address adder to
compute reg+offset (lw r3, 2(r1)).

You’ll also need a mux to select a
result from the adder, logic unit, left
or right shifter, return address, or load
data; logic to check a result for zero,

Figure 3 —The pipelined datapath has an execution unit, a result multiplexer, and an address/PC unit. Operands from the register file or immediate field are selected and latched
into the A and B operand registers. Then the function units, including ADDSUB, operate upon A and B, and one of the results is driven onto RESULT15:0 and written back into the
register file. Meanwhile, the address/PC unit increments the PC to help fetch the next instruction.
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from each. On each cycle you
must write the same result
value into both copies.

So, for each REGFILE and
each clock cycle you must do
one read access and one write
access. Each REGFILE is a 16
× 16 RAM. Recall that each
CLB has two 4-LUTs, each of
which can be a 16 × 1-bit
RAM. Thus, a REGFILE is a
column of eight CLBs. Each
REGFILE also has an internal
16-bit output register that
captures the RAM output on
the CLK falling edge.

To read and write the
REGFILE each clock, you
double-cycle it. In the first
half of each clock cycle, the
control unit presents a read-
port source operand register
number to the RAM address
inputs. The selected register is read
out and captured in the REGFILE
output register as CLK falls.

In the second half cycle, the con-
trol unit drives the write-port register
number. As CLK rises, the RESULT15:0

is written to the destination register.

OPERAND SELECTION
With the two source registers

AREG and BREG in hand, you now
select the A and B operands, and latch
them in the A and B registers. Some
examples are shown in Table 5.

The A operand is AREG unless (as
with add2) the instruction depends on
the result of the previous instruction.
Next month, you’ll see why this pipe-
line data hazard is avoided by forward-
ing the add1 result directly into the A
register, just in time for add2.

FWD, a 16-bit mux of AREG or
RESULT, does this result forwarding.
It consists of 16 1-bit muxes, each a 3-
input function implemented in a
single 4-LUT, and arranged in a col-
umn of eight CLBs. The FWD output
is captured in the A operand register,
made from the 16 flip-flops in the
same CLBs. As for the B operand,
select either the BREG register file
output port or an immediate constant.

For rri and ri format instruc-
tions, B is the zero- or sign-extended
4-bit imm field of the instruction reg-

ister. But, if there’s an imm prefix, load
B15:4 with its 12-bit imm12 field, then
load B3:0 while decoding the rri or ri
format instruction which follows.

So, the B operand mux IMMED is a
16-bit-wide selection of either BREG,
015:4||IR3:0, sign15:4||IR3:0, or IR11:0||03:0

(“||” means bit concatenation).
I used an unusual 2-1 mux with a

fourth “force constant” input for this
zero/sign extension function, prima-
rily because it fits in a single 4-LUT.
So, as with FWD, IMMED is an 8-CLB
column of muxes.

The B operand register uses
IMMED’s CLBs 16 flip-flops. The reg-
ister has separate clock enables for B15:4

and B3:0, to permit separate loading of

the upper and lower bits
for an imm prefix.

For sw or sb, read the
register to be stored, via
BREG, into DOUT15:0,
another column of eight
CLBs flip-flops.

ALU
The arithmetic/logic-

unit consists of a 16-bit
adder/subtractor and a
16-bit logic unit, which
concurrently operate on
the A and B registers.

LOGIC computes the
16-bit result of A and B,
A or B, A xor B, or A
andnot B, as selected by
LOGICOP1:0. Each logic
unit output bit is a func-
tion of the four inputs Ai,
Bi, and LOGICOP1:0, and

fits in a single 4-LUT. Thus, the 16-bit
logic unit is a column of eight CLBs.

ADDSUB adds B to A, or subtracts
B from A, according to its ADD input.
It reads carry-in (CI) and drives carry-
out (CO), and overflow (V). ADDSUB
is an instance of the ADSU16 library
symbol, and is 10 CLBs high—one to
anchor the ripple-carry adder, eight to
add/sub 16 bits, and one to compute
carry-out and overflow.

Z, the zero detector, is a 2.5-CLB
NOR-tree of the SUM15:0 output.

The shifter produces either A>>1 or
A<<1. This requires no logic, so mux
simply selects either SRI || A15:1 or
A14:0 || 0. SRI determines whether the
shift is logical or arithmetic.

Hex Fmt Assembler Semantics

0dab rrr add rd,ra,rb rd = ra + rb;
1dab rrr sub rd,ra,rb rd = ra – rb;
2dai rri addi rd,ra,imm rd = ra + imm;
3d*b rr {and or xor andn adc rd = rd op rb;

sbc} rd,rb
4d*i ri {andi ori xori andni rd = rd op imm;

adci sbci slli slxi
srai srli srxi} rd,imm

5dai rri lw rd,imm(ra) rd = *(int*)(ra+imm);
6dai rri lb rd,imm(ra) rd = *(byte*)(ra+imm);
8dai rri sw rd,imm(ra) *(int*)(ra+imm) = rd;
9dai rri sb rd,imm(ra) *(byte*)(ra+imm) = rd;
Adai rri jal rd,imm(ra) rd = pc, pc = ra + imm;
B*dd br {br brn beq bne bc bnc bv

bnv blt bge ble bgt bltu
bgeu bleu bgtu} label if (cond) pc += 2*disp8;

Ciii i12 call func r15 = pc, pc = imm12<<4;
Diii i12 imm imm12 imm'next15:4 = imm12;
7xxx – reserved
Exxx – reserved
Fxxx – reserved

Table 3—The xr16 needs only 43 different instructions to efficiently implement an
integer-only subset of the C programming language.

Listing 2— Here’s the xr16 assembly code (with comments added) that lcc generates from Listing 1. lcc
has done a good job, although a few register-to-register moves are unnecessary.

_search: br L3 ; r3=k r4=p
L2: lw r9,(r4)

cmp r9,r3 ; p->k < k?
bge L5
lw r4,4(r4) ; p = p->right
br L6

L5: lw r4,2(r4) ; p = p->left
L6:L3: mov r9,r4

cmp r9,r0 ; p==0?
beq L7
lw r9,(r4)
cmp r9,r3 ; p->k != k?
bne L2

L7: mov r2,r4 ; retval = p
L1: ret
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RESULT MULTIPLEXER
The result mux selects the instruc-

tion result from the adder, logic unit,
A>>1, A<<1, load data, or return ad-
dress. You build this 16-bit 7-1 mux
from lots of 3-state buffers (TBUFs).
In every cycle, the control unit asserts
some resource’s output enable, driv-
ing its output onto the RESULT15:0

long line bus that spans the FPGA.
In the third article of this series,

I’ll share the CPU result bus as the
16-bit on-chip data bus for load/store
data. During sw or sb, the CPU drives
DOUT7:0 and/or DOUT15:8 onto RE-
SULT15:0. During lw or lb, the se-
lected memory or peripheral drives
the load data on RESULT15:0 or RE-
SULT7:0.

ADDRESS/PC UNIT
This unit generates memory ad-

dresses for instruction fetch, load/
store, and DMA memory accesses. For
each cycle, we add PC += 2 to fetch
the next instruction. For a taken
branch, we add PC += 2×disp8. For
jal and call, we load PC with the
effective address SUM from ADDSUB.

Refer to Figure 3 to see how this
arrangement works. PCINCR adds PC
and the PCDISP mux output (either
+2 or the branch displacement) giving
PCNEXT. ADDRMUX then selects
PCNEXT or SUM as the next memory
address.

If the next memory access is an
instruction fetch, ADDR ← PCNEXT,
and PCCE (PC clock enable) is as-
serted to update PC with PCNEXT.
When the next access is a load/store,

SELPC and PCCE are false, and
ADDR ← SUM, without updating PC.

PCDISP is a 16-bit mux of +215:0

and 2×disp8, 5 CLBs tall. PCINCR is
an instance of the ADD16 library
symbol, 9 CLBs tall. ADDRMUX is a
16-bit 2-1 mux with a fourth input,
ZERO, to set PC to 0 on reset. It’s 16
LUTs, 8 CLBs tall.

PC is not a simple register, but
rather it is a 16-entry register file. PC0

is the CPU PC, and PC1 is the DMA
address. PC is a 16 × 16 RAM, eight
CLBs tall.

I used RLOC attributes to place the
datapath elements. Figure 4 is the
resulting floorplan on the 14 × 14 CLB
FPGA. Each column of CLBs provides
logic, flip-flops, and TBUF resources.

THE DATAPATH IN ACTION
Next, let’s see what happens when

we run 0008: addi r3,r1,2. As-
suming that PC=6 and r1=10,
PCINCR adds PCDISP=2 to PC=6,
giving PCNEXT=8. Because SELPC is
true, ADDR ← PCNEXT=8, and the
next memory cycle reads the word at
0008. Because PCCE is true, PC is
updated to 8.

Some time later, RDY is asserted
and the control unit latches 0x2312
(addi r3,r1,2) into its instruction
register. The control unit sets RNA=1,
so AREG=r1. BREG is not used. FWD
is false so A=AREG=r1=10. IMMOP is
set to sign-extend the 4-bit imm field,
and so B=2.

We add A+B=10+2 and as SUMT is
asserted (low), we drive SUM=12 onto
the RESULT bus. The control unit
asserts RFWE (register file write en-

Assembly Maps to

nop and r0,r0
mov rd,ra add rd,ra,r0
cmp ra,rb sub r0,ra,rb
subi rd,ra,imm addi rd,ra,-imm
cmpi ra,imm addi r0,ra,-imm
com rd xori rd,-1
lea rd,imm(ra) addi rd,ra,imm
lbs rd,imm(ra) lb rd,imm(ra)
  (load-byte,   xori rd,0x80
  sign-extending)   subi rd,0x80
j addr jal r0,addr
ret jal r0,0(r15)

Table 4—Many assembly pseudo-instructions are
composed from the native instructions. Only rare
signed char data use the rather expensive lbs.

Figure 4 —In the datapath floorplan, RLOC attributes
applied to the datapath schematic pin down the
datapath elements to specific CLB locations. The
RESULT15:0 bus runs horizontally across the bottom
eight rows of CLBs.
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able), and sets RNA=RNB=3 to write
the result into both REGFILEs’ r3.

DEVELOPMENT TOOLS
This hardware was designed, simu-

lated, and compiled on a PC using the
Foundation tools in Xilinx Student
Edition 1.5. I used schematics for this
project because their 2-D layout
makes it easier to understand the data
flow because they offer explicit con-
trol and because they support the
RLOC (relative location) placement
attributes that are essential to
floorplanning (to achieve the smallest,
fastest, cheapest design).

To compile my schematics into a
configuration bitstream, Foundation
runs these tools:

• map: technology mapping—map
schematic’s arbitrary logic struc-
tures into the device’s LUTs and
flip-flops

• par: place and route—place the
logic and flip-flops in specific CLBs
and then route signals through the
programmable interconnect

• trce: static timing analysis—enu-
merate all possible signal paths in
the design and report the slowest
ones

• bitgen: generate a bit stream con-
figuration file for the design

HIGH-PERFORMANCE DESIGN
The datapath implementation

showcases some good practices, such
as exploiting FPGA features (using
embedded SRAM, four input logic
structures, TBUFs, and flip-flop clock
enables), floorplanning (placing func-
tions in columns, ordering columns to

Instruction(s) A B

add rd,ra,rb AREG BREG

addi rd,ra,i4 AREG sign-ext imm

sb rd,i4(ra) AREG zero-ext imm

imm 0x123 ignored imm12 || 03:0

addi rd,ra,4 AREG B15:4 || imm

add1 r3,r1,r2 AREG BREG
add2 r5,r3,r4 RESULT BREG

Table 5—Depending on the instruction or instruction
sequence, A is either AREG or the forwarded result,
and B is either BREG or an immediate field of the
instruction register.

Jan Gray is a software developer
whose products include a leading C++
compiler. He has been building FPGA
processors and systems since 1994,
and now he designs for Gray Re-
search LLC. You may reach him at
jan@fpgacpu.org.

SOFTWARE
Visit the Circuit Cellar web site
for more information, including
specifications, source code, sche-
matics, and links to related sites.
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reduce interconnect requirements,
and running the 3-state bus horizon-
tally over the columns), iterative
design (measuring the area and delay
effects of each potential feature), and
using timing-driven place-and-route
and iterative timing improvement.

I apply timing constraints, such as
net CLK period=28;, which causes
par to find critical paths in the de-
sign and prioritize their placement
and routing to best meet the con-
straints. Next, I run trce to find
critical paths. Then I fix them, re-
build, and repeat until performance is
satisfactory.

I’ve built some tools, settled on an
instruction set, built a datapath to
execute it, and learned how to imple-
ment it efficiently in an FPGA. Next
month, I’ll design the control unit. I

http://www.xilinx.com
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Killing Bugs
in Your
PalmOS

FEATURE
ARTICLE

Jeff Stefan

You’ve written an ap-
plication that uses the
serial port on your
Palm Pilot, but when
you try to launch the
app, nothing hap-
pens. If this situation
sounds familiar, pay
close attention as Jeff
reveals an old em-
bedded-systems
programmer’s trick.

et’s say you
want to write an

application that uses
the serial port on your

PalmPilot. Maybe you want to collect
data or connect to a GPS receiver.

You’ve written the program using
the Palm OS Serial Manager function
calls, and now you’re ready to test
your new application. You plug in a
serial adapter cable, launch your serial
application, and nothing happens.
Worse yet, your PalmPilot locks up so
badly you have to pull the batteries
and wait for the memory to discharge.

You can’t step through your code
with a debugger because the debugger
uses the serial port to communicate
with the Pilot. What do you do? It’s
time to employ a trick that embedded-
systems programmers use—implicit
debugging using state machines.

Embedded-system programmers
have blinked LEDs and placed custom
printf() statements in strategic
places throughout their embedded
code for years. We won’t be blinking
any LEDS from our Pilot (although it’s
possible). But, the example program
writes status information to a debug
display form in an orderly fashion.

The design also adds the structure
of a state machine to the example
program. After all the states are devel-
oped and debugged, the Palm OS Se-

rial Manager function calls are added,
completing the program. If the pro-
gram hangs up or faults in one of the
states, the problem can be easily iso-
lated and fixed. The line of code that
caused the problem isn’t explicitly
displayed, but is implicitly detected if
program loops in a state, skips states,
or exits a state unexpectedly.

 STATE MACHINES 101
 It’s worth taking a short side trip

into theory and history to understand
some of the fundamental theorems
behind the machinery of computation.
It’s also useful to know what a com-
puting machine can and can’t do.

State machines aren’t new, and
their origin isn’t in the domain of
practical programming. State ma-
chines have their roots in automata
theory, with the simplest machine
being a deterministic finite acceptor.

A deterministic finite acceptor
(DFA) is an abstract machine contain-
ing a set of finite states (functions
enabling transitions from one state to
another) and an associated set of input
symbols taken from a finite alphabet.
Deterministic finite acceptors have a
neat and concise mathematical nota-
tion. A DFA (M) is expressed as:

M = (Q, Σ, δ, q(0), F)

where Q is the finite set of states, Σ is
an alphabet consisting of a finite set of
symbols, δ is a transition function
from Q x S to Q, q(0) is a distinguished
start state, and F is a final state.

A language, denoted L(M), is the set
of strings from the alphabet that cause
the DFA to halt in the final state. Any
other string isn’t in the language.

Figure 1 —This DFA accepts a string consisting of any
number of ones followed by a zero.

l

Debugging with State Machines

Deterministic finite acceptor for L(M)=(1*0)

c(0)

0

c(1)=F

Machine definition
M=({q(0),c(1),(0,1  , c(0),{q1})

Language definition
L(M)={1*0}

Transition function
(q{(0),1}=q(0)
(q(0),0)=q(2)

1
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Consider the DFA in Figure 1. The
language that this DFA accepts can be
expressed as L = {1*0} where the star
superscript represents one or more 1s.
If this looks suspiciously like a regu-
lar expression, you’re right. This is
precisely classified as a regular expres-
sion: any string accepted by a DFA is
a regular expression by definition. The
simple DFA has no output or mem-
ory; either it accepts a string in the
language, or it doesn’t.

The DFA has two states, q(0) and
q(1), an input alphabet of two ele-
ments 1 and 0, a transition function,
and a final state of q(1). A final state
in an automaton is a double circle.
This innocent two-state machine will
never halt if presented with a singular
1 or an infinite stream of 1s. This
arrangement has deep implications in
the theory of computability, especially
when machines are more complex.

To see why this simple loop has a
profound impact on computing ma-
chinery, we need to step back to the
dawn of computer science and visit
one of the founders, Alan Turing.

The world changed profoundly in
1936, although few knew it. A 24-
year-old Englishman named Alan
Turing completed a paper called “On
Computable Numbers with an Appli-
cation to the Entsheidungsproblem”
(Entsheidungsproblem is the German
expression for decidability).

Decidability asks, “Can an algo-
rithm be developed to solve a particu-
lar problem that yields a yes or no
answer?” In his small, somewhat ob-
scure paper, Turing described an ab-
stract universal computing machine,
now recognized as a Turing Machine.

The Turing Machine is at the foun-
dation of modern computer
science, and defines the notion
of a computation. That notion
is that the sequence of configu-
rations in a Turing Machine
leading to a halt state is called a
computation. This means that
if your algorithm runs and halts
successfully on a Turing Ma-
chine, it’s a computation.

A Turing Machine can repre-
sent any computational device,
and Turing Machines can take
other Turing Machines as in-

put. This is called a Universal Turing
Machine, and here’s where the deep
problem lies. The question is, does an
algorithm exist (given any Turing
Machine and any input to the Turing
Machine) that determines whether
the Turing Machines finishes in a halt
state? The answer, is no.

Looking back at the simple DFA
that accepts an arbitrary number of 1s
followed by a 0, if our input is unseen,
we have no way of predicting whether
the DFA will accept a string and wind
up in a halt state. If it looks like the
machine is in an infinite loop, it may
be that it’s processing an enormously
long string of ones before it encoun-
ters a zero. There’s simply no way of
knowing, and that’s the limit of com-
putation as we know it.

USEFUL TOOLS
So much for theory! The math-

ematical model of a machine eventu-
ally emerged from theory to practice,
and evolved into transducers. Trans-
ducers have output functions along
with transition functions. These mod-
els were further refined into two types
of basic machines—Mealy machines
and Moore machines.

In a Mealy machine, all actions are
performed during a transition. In a
Moore machine, all actions occur
inside a state. Mealy and Moore ma-
chines can be used together, there’s
no rule that the two machines need to
be mutually exclusive.

The state machine shell function in
this article follows the Moore Machine
model because all the processing is
done within a state. This machine
shell is manifested as a simple void
function, as shown in Listing 1. The

function contains two control vari-
ables, Done and State, which are
both initialized to zero. If the global
DebugActive variable is true, the
code enunciates the current state.

The example shows specific
PalmOS code that writes the current
state to a form, but this code can be
altered to blink an LED, or pulse an
output line that can be captured on a
logic analyzer or storage scope in any
embedded application. When the last
state is entered and the work per-
formed, Done is set to 1 and State is
set to –1, an unknown state, cleanly
exiting the state machine.

When building parts of an applica-
tion that can fit a state machine model
(e.g., a communications protocol), first
rename the function and determine the
number of states it takes to complete
the end-to-end processing. Then add
the states, incrementing the State
variable each step of the way.

Usually the number of states is
small. If a state machine becomes too
large, it means that more than one

machine is required and the
design should be re-examined.

What are the advantages of
using this state machine form?
First, the program contains a
common framework and avoids
a tangled mess of if-then-else
statements. Second, using a
switch statement is efficient
because the only code that ex-
ecutes is the code that needs to.
Third, a common debug output
is constructed that displays the
current state of the machine.

Figure 2 —Here’s what you’ll see when the PalmOS is
running the serial demo main form.

SerSerial Demo 1.00ial Demo 1.00

Out :Out : 

In:In:

BABAUD:UD:         9600         9600

STSTATE:TE:         4

SNDSND

RCVRCV

SETUPSETUP

DEBDEBUGUG EXITEXIT

Figure 3 —All that’s happening here is the state writing a number to the
main form STATE text field.

State 0
open serial port

State 1
get text

State 2
send data

State 3
close port

Enter state machine

Port open success:
announce event
transition to State 1

Text captured:
announce event
transition to State 2

Text sent: 
announce event
transition to State 3

Exit send machine

Port open error:
announce transition

to State 3

No text available:
announce event

transition to State 3

Text not sent:
announce event

transition to State 3
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 FILLING IN THE STATES
In the PalmOS serial application

presented in this article, the end-to-
end processing consists of opening and
initializing the serial port, sending
and receiving data, then closing the
serial port. A screenshot of the appli-
cation is shown in Figure 2.

There are two machines, the Send
Machine and the Receive Machine.
The Send Machine has four states and
the Receive Machine has five. If you
enter a string in the OUT text box
and tap the SND button, the data is
sent out the serial port at the current
transfer rate. If you tap the RCV but-
ton, the application waits 5 s for data
to accumulate in the port’s buffer then
outputs the data to the IN text box.

The DEBUG button toggles the
DebugActive variable. When
DebugActive is a 1, then the state
numbers are displayed in the STATE
field. The SETUP button toggles the
transfer rate from 9600 to 4800 bps. If
you want to receive data from a GPS
receiver, 4800 bps comes in handy.
Most GPS receivers output data at
4800 bps at 1-s intervals.

SEND MACHINE
The Send Machine state diagram is

shown in Figure 3. There are four
states inside the Send Machine—Open
Serial Port, Get Text, Send Data, and
Close Port. All of the processing, such
as opening and initializing the serial
port, is done within the states. The

void StateMachine(void)
{
int State, Done;

//init control variables
State = Done = 0;
//do any other preliminary initialization or other work here

while(!Done)
{
switch(State)
{

//State 0
case 0:

//Do work that belongs to this state here. If debug
display flag is on, then display current state

if(DebugActive)
{
  //Display current state. The following is specific to the

         PalmOS app, but any output mechanism can be substituted.
Frm = FrmGetActiveForm( );
FrmCopylabel(frm, 1013,�0�);
}

State = 1;
break;

//State 1: Exit State
case 1: //This is the exit state in this two-state machine.

Do cleanup work here, such as closing any open
ports or resetting any flags.

if(DebugActive)
{
 //Display current state. The following is specifig to the

        PalmOS app, but any output mechanism can be substituted.
frm = FrmGetACtiveForm( )
FrmCopylabel(frm,1013,�1�);
}
State = �1;
Done = 1;
} //switch

} //!Done
} //StateMachine

Listing 1 —The state machine shell is manifested as a simple void function.
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Loads the
serial library.

SerOpen(...); Opens the
serial port

SerSetSettings(...);

SerSend(...); Send chars to 
output buffer

SerSendWait(...);

SerClose(...);

Wait until all of the
chars have been
transmitted

Close serial port

Send calling sequence

SerClose(...); Close serial port

SerSetReceiveBuffer(...);
Change buffer size 
to zero to restore
default buffer

SerReceive(...);
Extract number of

bytes from buffer

SerReceiveCheck(...); Check if any chars 
made it into the buffer

SerReceiveWait(...); Wait for chars to 
accumulate in buffer

SerReceiveFlush(...); Reset the serial port

SerSetReceiveBuffer(...) Replace default serial 
buffer with new buffer

SerSetSetting(...); parameters such as 
baud rate, stop bits, etc.

SerOPen(...);

Loads the serial library 

Opens the serial port

Receive calling sequence

SysLibFind("Serial
Library",&SetRef);

SysLibFind('Serial 
Library",&SerRef);

Set serial portSet serial
port parameters 
such as baud rate,
stop bits, etc.

edges are labeled with Event Enuncia-
tors, indicated by the diamonds.

Before inserting the actual PalmOS
serial port function calls in the states,
the function is filled in with the
Event Enunciators, compiled, then
executed. This process enables the
program to enter, execute, and exit
the state machine safely and reliably.

The next step is to open and close
the port without errors. This com-
pletes the core end-point processing.
The last steps consist of capturing the
text from the OUT label and sending
it out the port.

RECEIVE MACHINE
On entry, the Re-

ceive Machine (shown
in Figure 4) waits for
incoming characters
for a certain period of
time. The next state
checks to see if any
characters entered the
receive buffer. If no
characters were re-
ceived, the machine
short-circuits and
jumps to the exit state,
which closes the port
and exits the machine.

If characters are re-
ceived, the next state
extracts the characters
for further processing.
The next state displays
the characters in the
IN field, and the last
state closes the port.

HARDWARE AND FUNCTIONS
The PalmPilot UART is somewhat

scaled down from the typical PC fare.
Instead of a 16-byte buffer, the Palm
UART has an 8-byte buffer, and all of
the usual serial control lines aren’t
present. The Palm UART signals are
TxD (Transmit Data), RxD (Receive
Data), RTS (Request to Send), CTS
(Clear to Send), and Gnd (Signal
Ground). The UART signals that are
not supported by the PalmPilot in-
clude RT (Rise Indicator) and DTR
(Data Terminal Ready).

The PalmOS Serial Manager func-
tions are fairly simple and easy to use,
with a few caveats. The PalmOS serial
communications architecture is built
on multiple layers of increasing func-
tionality. The layer this article’s ex-
ample application uses is the bottom
byte-level serial manager. All upper
layer protocols go through the serial
manager, so it’s a good place to start.

There are a few things to be aware
of when writing PalmOS serial appli-
cations. The first major issue is leav-
ing the serial port open for extended
periods of time.

The PalmPilot is based on the
Motorola Dragonball MC68328 pro-
cessor (which consumes little power),
but leaving the serial port open rap-
idly drains the batteries. Leaving the
port open for a minute or less at a
time seems to work reasonably well,
if the port remains closed for a
minute or two. The basic rule is, keep
the port open only when you need to,
and close it when the application is
terminated. Another application will
not be able to enter the serial port if
your application keeps it open.

The next item to pay close atten-
tion to is extracting received data
from the receive buffer. By default,

the Serial Manager
receive buffer is 512
bytes, so if an applica-
tion needs a larger input
buffer, it can call
SerSetReceiveBuffer()
and set a pointer to a
new buffer.

The key is to restore
the original buffer
pointer when the appli-
cation terminates be-
cause the PalmOS won’t
automatically return
the buffer to the operat-
ing system. All that’s
required is to call
SetSerReceiveBuffer()
with the bufsize pa-
rameter set to 0, but it’s
an easy thing to forget.

The last item not to
ignore is user input. It’s
easy to tie up the appli-
cation while waiting
forever for a character

Figure 5 —This is the function-
calling sequence that is used by the
serial manager for sending and
receiving characters.

State 0
wait for chars with timeout

Timeout expired:
announce 
transition
to State 1

Serial port is initialized on
entry to receive machine

State 1
check for input chars

State 2
extract chars from receive

buffer

State 3
display extracted chars

State 4
close port

More than 0 chars in buffer:
announce 
transition
to State 3

Chars extracted:
announce
transition
to State3

Chars displayed:
announce 
transition
to State 4

Exit receive machine

Port receive error: 
announce 
transition
to State 4

No chars available:
announce 
transition
to State 4

Figure 4 —The Re-
ceive Machine is a bit
more complicated than
the Send Machine and
requires one more
state. The serial port is
initialized before entry
into the state machine
simply to reduce the
number of states.
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Jeff Stefan is a software engineer at
Visteon. He has worked in embedded-
systems software design for many
years and is the author of 15 techni-
cal articles. Jeff is currently working
on his first book, “Embedding Artifi-
cial Intelligence.” You may reach him
at jstefanl@visteon.com.
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P. Linz, An Introduction to Formal
Languages and Automata, D.C.
Heath and Company, Lexington,
MA, 1990.

T.L. Booth, Sequential Machines
and Automata Theory, John
Wiley & Sons, New York, 1968.

US Robotics, Developing PalmOS
2.0 Applications, 1997.

SOURCE

Dragonball MC68328
Motorola
(512) 328-2268
Fax: (512) 891-4465
www.mot-sps.com

to enter the receive buffer. The only
way out of this situation is to reset
the PalmPilot.

There are generally two methods to
handle user input while using the
serial port. The first method, which is
the one the example program uses,
opens the serial port, waits a short
period of time for characters to accu-
mulate in the buffer, processes them,
then closes the port. The port is only
open when the user taps the RCV
button.

The second method is to add a
timeout parameter to main
EventLoop function. Instead of using
the default timeout parameter of
evtWaitForever, a function pointer,
symbolic value, or hardcoded value
can be substituted instead. An event,
called a nilEvent, is generated when
the timeout expires. An application
can utilize a nilEvent just like any
other event.

nilEvent is commonly used in
serial applications to periodically poll
for serial data. In between the polling
for serial data, the main event loop
can still receive and process events in
the normal fashion. This method is a
bit more risky because it may leave
the serial port open for longer than
expected and therefore deplete the
batteries at a faster rate.

The serial manager functions are
called in a straightforward sequence
and lend themselves to a state ma-
chine model and implementation.

The serial manager has recently
been enhanced in latest version of the
PalmOS to the new serial manager.
The new serial manager is the third
iteration of the PalmOS serial API
which allows more than one serial

connection to be maintained
at the same time, including
the IR port. To stay compat-
ible for versions from PalmOS
2.0 on up, it’s safe to stay
with the serial manager calls
listed in Figure 5.

The PalmOS offers an
event-driven API and a rich
but simple set of GUI re-
sources to work with. The
events are processed in a spe-
cific order by a series of
nested function calls, as you

can see in Figure 6.

SERIAL PROGRAM SHELL
The application program,

PalmSer.c, consists of seven
PalmOS functions and three applica-
tion-specific functions. These func-
tions are:

� StartApplication( )
� RomVersionCompatable( )
� StopApplication( )
� ApplicationHandleEvent( )
� MainFormHandleEvent( )
� EventLoop( )
� PilotMain( ).

A PalmOS application is initialized
by calling StartApplication( ).
StartApplication( ) is where you
initialize global variables, check for
operating version compatibility, open
databases, and possibly establish any
communications.

The PalmOS has evolved from
V.1.0 to V.3.x. Most newer applica-
tions are not compatible with V.1.0
devices (e.g., early US Robotics Palm
devices). Most PalmOS programs call
RomVersionCompatable( ) and
abort if the device is running a version
of the PalmOS below V.2.0. A stan-
dard notification (an alert) is dis-
played, showing you that the applica-
tion won’t run on the current device.
The alert is almost identical to a mes-
sage box in a Windows application.

StopApplication( ), the coun-
terpart to StartApplication( ), is
the place to close an open serial port
and close any open databases.

ApplicationHandleEvent( )
loads the application’s forms and
event handlers associated with the

forms. This function is a programmer-
defined event handler and is applica-
tion specific.

MainFormHandleEvent( ) is the
event handler installed when
ApplicationHandleEvent( ) is
called. EventLoop( ) is the main
event loop described in Figure 7.

And, last of all, PilotMain( ) is
where the application is first entered,
and is similar to main( ) in a ANSI
C program. Like main( ), parameters
can be passed to the application.
These parameters, called launch
codes, can control the startup behav-
ior of an application.

BUG FREE
Programming a PalmOS application

takes patience and practice. Debugging
PalmOS serial applications can be
frustrating and time consuming. As
forward as the function calling se-
quence is, there’s still plenty of room
for error and unexpected program be-
havior. Adding a straightforward, de-
terministic state machine shell and
filling in the functions one at a time
makes writing PalmOS serial-commu-
nication programs a pleasure. I

EvtGetEvent(&event, timeout Gets a system event from
the event queue.

SysHandleEvent(&event)
Handles system level
event such as key and 
pen events.

MenuHandleEvent(0,&event,&error)
Handles menu events and
posts menu events.

ApplicationHandleEvent(&event)

FrmDispatchEvent(&event)

Loads application forms
and installs application 
specfic event handlers.

Handles and dispatches
system and application 
form events.

PalmOS event loop

Figure 6 —All PalmOSs process events in this fashion.

http://www.mot-sps.com
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SINGLE-BOARD COMPUTER
The VNS-786 is a single-board computer that is based on the

Intel TX chipset. Designed for embedded applications, it supports
the Pentium, Pentium MMX, and Tillamook processors from Intel
and the K6-II and K6-III processors from AMD. Expansion is
available through a PC/104-Plus
embedded bus.

The VNS-786 supports up to
128-MB of 3.3-V SDRAM memory
and has a 512-K synchronous
burst level-2 cache. Major
onboard peripherals include PCI
SVGA, 10/100 Mbit Ethernet,
and audio subsystems. The
onboard SVGA comes with 2-MB
video memory standard (optional
4 MB). It features both 3-V and
5-V flat-panel display support,
full-motion video input, and simul-
taneous CRT/flat-panel opera-
tion. The onboard audio is
SoundBlaster Pro and Windows
sound system compatible, and

PCNouveau
edited by Harv Weiner

PCI DATA ACQUISITION BOARD

includes bridge-mode power amplifier. Disk interfaces include
two Ultra DMA EIDE and one floppy disk. Also onboard are four
deep-FIFO serial ports (with RS-232 and RS-485 support), two
enhanced parallel ports, PS/2 keyboard, and mouse, and two

USB ports (with overcurrent pro-
tection). A 32-pin JEDEC socket
supports DiskOnChip and other
solid-state disk solutions. Other
embedded features include no-
battery operation and a watch-
dog timer. The VNS-786 sup-
ports 5-V only operation and
control of ATX power supplies.

The VNS-786 with 233-MHz
Pentium MMX CPU is available
for $550, in quantities of 100.

Adastra
(510) 732-6900
Fax: (510) 732-7655
www.adastra.com

addition, the board offers programmable gain (high and low gain
options), channel/gain RAM, programmable A/D pacer clock,
multiple triggering modes, a dual 12-bit clocked DAC option, and 16
digital I/O lines. The PCI-5503HR is a high-resolution version of the
PCI-5501MF featuring a 16-bit ADC with a 200-kHz sampling rate.

The PCI-5500 line is fully compatible with most popular data
acquisition software packages, in-
cluding I.abVIEW, TestPoint,
LabTech Notebook, and LabTech
Control. In addition, the PCI-5500
line includes ADAC’s ADLIB series
of drivers for custom programming
under WindowsNT, Win98, and
Win 3.1. All PCI-5500 software
drivers are free, and can be down-
loaded from ADAC’s web site.

ADAC
(800) 648-6589
Fax: (781) 938-6553
www.adac.com

An ultra low-cost line of data acquisition boards
for the PCI Bus has been announced by ADAC. The

PCI-5500 family consists of 12- and 16-bit resolution
analog input boards that include performance features such

as FIFOs, DMA, channel gain RAM, autocalibration, clocked
analog output options, and a custom PCI bus interface for high-speed
data transfers.

The PCI-5500 line consists of
three models. The PCI-5500 fea-
tures a 12-bit ADC with a 100-kHz
sampling rate, eight analog input
channels, 1024 word A/D FIFO,
DMA, and interrupts. A program-
mable A/D pacer clock, multiple
triggering modes, and 16 digital
I/O lines are also included. The
PCI-5501MF is a high-performance
board that features a 12-bit ADC
with a 100-kHz sampling rate, eight
differential or 16 single-ended ana-
log input channels, a 1024 word
A/D FIFO, DMA, and interrupts. In

http://www.adac.com
http://www.adastra.com
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Command Response Function

0x01 RX YY DD HH MM SS mm Read current time
0x02 S Diagnostic receive
0x03 — Force update
0x04 tc Read UTC time correction
0x05 rv Return version/revision

“A” R X Y Y L T D D H H M M S S m m Read current time
“B” S Diagnostic receive
“C” — Force update
“E” t c Read UTC time correction

“F” r v Return version/revision

Table 1—These are the commands and responses for the Ultralink atomic clock
receiver module. If you send the detector a BCD number (0x01–0x05) or an ASCII
character (A–F), the response will be either a BCD or ASCII string, respectively.

Real-Time PC

Ingo Cyliax

A Matter of Time
Part 3: Synchronizing a PC to a Time Signal

A

There are ready-made solutions as well as totally home-grown approaches
available for most engineering problems. As Ingo concludes this series, he
shows us that sometimes it makes sense to adopt a mixture of both.

  s you know, there are a lot of things
one can do with time, including wasting it,
so let me finish this series by explaining
how you can synchronize an embedded
PC to a time signal using a WWVB time
receiver from Ultralink. Ultralink makes
several versions of time-code receivers.
I’m looking at the 320BS, which is distrib-
uted by Parallax specifically for attaching
to a Basic Stamp.

LAST TIME…
To recap, WWVB is a

time station in Colorado
operated by the NIST.
WWVB broadcasts on a
carrier frequency of 60 kHz
which, unlike its sister sta-
tions in the shortwave band,
is not as affected by atmo-
spheric conditions.

At this frequency, sig-
nals tend to travel near the
surface of the Earth and

follow its contours, like a big waveguide.
Because it’s not scattered and reflected
like shortwave signals, the propagation
time is more predictable.

Also, because the wavelength is very
long, the signal penetrates most buildings
and structures. With a GPS microwave
signal, by contrast, I need to have a line
of sight from the antenna to the satellite.

Most shortwave radios don't tune be-
low 500 or 150 kHz, and many serious
shortwave radios don’t tune below 60 kHz.
That’s probably not a big loss because
there are no voice transmissions in the
very low frequency (VLF) band.

If you listened to WWVB, you would
hear a faint 100-Hz hum. [1] Well, I don’t
have a VLF-capable receiver, but I was

curious, so I built the con-
verter for a shortwave re-
ceiver shown in Figure 1.
This converter (or mixer)
mixes the frequency of a
local oscillator—in this
case, a 4-MHz TTL oscilla-
tor with the input signals
from the antenna.

The converter translates
the signals from the VLF
band to 4 MHz and above.
Its image is at 4 MHz and
below. Figure 2 shows the
spectrum conversion.
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Shortwave re-
ceivers are usually quite

sensitive around 4 MHz,
but you can translate the sig-

nal to any frequency you want
by changing the local-oscillator fre-

quency. The real purpose of the low-
pass filter is to prevent signals near 4, 8,
12 MHz, and so on, from interfering with
the VLF signal you want to hear. A prop-
erly balanced mixer can't put a signal
"back" out the antenna.

If you do it right, you should get the
same kind of beating hum as in the sound
file in [1], assuming your receiver’s audio
section can reproduce the 100 Hz. Once
you’re this far, you can use an LM567-
based tone detector to detect the 100-Hz
tone and generate a digital facsimile of it.

CHECK THE CLOCK
In Part 1, I mentioned that WWVB is just

a form of IRIG-H signaling and last month
I covered the general IRIG protocol.

WWVB transmits its time codes at
1 bps with a 60-kHz carrier being di-
rectly modulated with the IRIG time sig-
nal, using 10-dB power reduction. The
pulse-width relationship is 20/50/80%,
which indicates 0, 1, and reference
mark, respectively. Actually, it’s almost
slow enough that you can decode the
signal by hand.

I did just that, and it worked OK. The
decoded signal was pretty noisy. If you’re
interested in just a radio clock and don't
really care how it all works, you’re prob-
ably better off getting a radio-clock mod-
ule like the 320BS. It’s quite sophisti-
cated, works when you plug it in, and
doesn't tie up your shortwave receiver.

The Ultralink clock comes in two
pieces—a receiver/antenna unit and a
host-interface module (see Photo 1).

A three-wire cable connects the re-
ceiver and host-interface modules to pro-
vide power to the circuitry on the receiver
module, as well as the response to the
received signal from the receiver module
to the host-interface module.

Having a separate receiver/antenna
module means you can move the modules
away from electrical noise generators,
such as motors or poorly shielded moni-
tors. In fact, the cable can be 200′ long.

Besides the host-interface connection
to the antenna/receiver module, the cable
makes the host connection via an eight-

Listing 1—The PPS low-level driver responds to PPS signals on parallel port interrupt lines
and measures the period of the system clock.

#include <linux/module.h>
#include <linux/kernel.h>
#include <rtl_fifo.h>
#include <rtl_sched.h>
#include <rtl_sync.h>
#include <asm/rt_irq.h>
#include <asm/rt_time.h>
#include <rtl_sched.h>
#include <asm/io.h>
#include <linux/cons.h>

#undef LPT_PORT
#undef LPT_IRQ

#ifndef xxx
#define LPT_PORT 0x378 /* standard */
#else
#define LPT_PORT 0x278 /* lpt1 on VSBC-1 */
#endif
#define LPT_IRQ 7

#define PERIOD  (RT_TICKS_PER_SEC)
RTIME clkdifftot;       /* keep a running total of clock diffs */
unsigned clkdiffn;      /* and how many we have sampled */
RTIME ck_before,ck_now;

/* Interrupt handler�synchronize period timer with start of first word */
void irq_handler(void)
{
  ck_now = rt_get_time();
  if(ck_before){
    clkdifftot += ck_now - ck_before;
    clkdiffn++;
  }
  ck_before = ck_now;
}

/* User I/O handler�user sends int, compute average clock ticks/s and return */
int user_io_handler(unsigned int fifo)
{
int cmd;
unsigned avg;
  rtf_get(2,&cmd,4);
  if(cmd == 0){
    clkdifftot = 0;
    clkdiffn = 0;
    ck_before = 0;
  }
  if(clkdiffn)
    avg = clkdifftot/clkdiffn;
  else
    avg = 0;
  rtf_put(1,&avg,4);
  return 0;
}

/* Initialize module�set up FIFOs and interrupt/user-I/O handlers */
int init_module(void)
{
int old_irq_state;

  printk("Starting PPS Module\n");

  /* create some FIFOs */
  rtf_create(1,4); /* from drv to user */
  rtf_create(2,4); /* from user  to drv */
  rtf_create_handler(2,&user_io_handler);

  /* init the interrupt handler */
  outb(0x00,LPT_PORT+2); /* disable */
  rtl_no_interrupts(old_irq_state);
  request_RTirq(LPT_IRQ, irq_handler);
  rtl_restore_interrupts(old_irq_state);

(continued)
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Listing 1—continued

  /* init the variables */
  clkdifftot = 0;
  clkdiffn = 0;
  ck_before = 0;

  /* OK, start it up. */
  outb(0x10,LPT_PORT+2); /* enable */
  return 0;
}

/* Cleanup module�remove all of the stuff we allocated */
void cleanup_module(void)
{
int old_irq_state;
  printk("Stopping PPS Module\n");

  /* shut off the interrupt */
  rtl_no_interrupts(old_irq_state);

  /* remove FIFOs */
  rtf_destroy(1);
  rtf_destroy(2);

  /* free up the interrupt handler */
  outb(0x00,LPT_PORT+2); /* disable IRQ */
  free_RTirq(LPT_IRQ);

  /* we're done */
  rtl_restore_interrupts(old_irq_state);
}

#include <stdio.h>
#define WRFIFO "/dev/fifo1"
#define RDFIFO "/dev/fifo2"
main()
{
  FILE *rdfp,*wrfp;
  int cmd;
  if(!(wrfp = fopen(WRFIFO,"w"))){
    perror(WRFIFO);
    exit(1);
  }
  if(!(rdfp = fopen(RDFIFO,"r"))){
    perror(RDFIFO);
    exit(1);
  }
  cmd = 1;
  fwrite(&cmd,4,1,wrfp);
  fread(&cmd,4,1,rdfp);
  fclose(rdfp);
  fclose(wrfp);
  printf("Average Number of Ticks = %d.\n",cmd);
  exit(0);
}

Listing 2—This short program reads the clock period from the PPS low-level driver.

pin single-row header connector that car-
ries 5–15 VDC power/ground. The inter-
face module takes the demodulated sig-
nal from the receiver/antenna module
and synchronizes its internal clock to the
time signal. It also decodes the data
transmitted to maintain a real-time clock.

After the module locks on to the time
station, it generates a PPS signal that is
synchronized so the rising edge happens
at the beginning of each second. The host
computer then polls the module via a TTL-
level asynchronous serial interface for the

time of day and other information. The
result comes in either BCD or ASCII for-
mat, depending on the format of the
command (see Table 1).

MOMENT OF TRUTH
To test the module, I connected the

modules with 6′ of shielded cable and
powered it up. I didn't think I would be
able to pick up anything; my lab is mostly
at basement level. I also have several
monitors and usually at least one or two
running computers without skins on.
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On powerup, it
synchronized itself to

the clock. Once synchro-
nized, it woke up once per

hour and resynchronized itself
to the radio clock.
I live about 1000 miles away from

the time station. Yet, once the clock has
been turned on and it synchronizes the
PPS signal, it is synchronized to every
atomic clock in the world.

Being skeptical, I attached one logic
probe that generates the obnoxious
high/low and pulse tone to the PPS signal
of the atomic clock receiver and tuned one
of my shortwave receivers to WWV in the
shortwave band. Sure enough, I couldn’t
tell the difference between the second tick
of the WWV and the logic probe.

A GPS receiver compensates for the
propagation delay so its PPS output  is
several milliseconds earlier than the other
receivers. Not audible, but clearly visible
on a scope.

Once the system is connected to my
PC, there are two pieces of information
I’m interested in. I’d like the current time of
day and I also want to calibrate my PC

clock. To find out the current time of day,
I just have to attach the serial module to
the PC’s serial port. All that is needed is
a TTL–to–RS-232 serial converter.

The Ultralink module uses 3-V TTL-level
serial I/O and a 3–15-VDC power sup-
ply. I needed to convert these signals to
RS-232 levels to use them with a PC. I used
the self-powered RS-232–to–3-V TTL con-
verter shown in Figure 3. The module only
uses 600 µA, so we can also try stealing
power from any unused RS-232 signals.

The rectified signal’s 12-V supply is
somewhere between 5 and 10 VDC on
most PCs. We use this to power the Ultralink

module with a 10-µF capacitor to buffer it.
If the PC can’t supply enough current to
power the module, you can increase the
value of the capacitor to about 100 µF.

The serial I/O signals are converted
using a couple of 2N2222 general-pur-
pose transistors. They provide the neces-
sary level conversion and logic inversion.

To power the 3-V serial receive line on
the module, I used a low-dropout 3-V
voltage regulator that drops the 5–10 VDC
derived from the DTR/RTS pins to the
required 3 V. You can change the 2.2-kΩ
pullup resistor if the circuit draws too much
current from the RS-232 interface.

Photo 1—The receiver unit contains all the analog circuitry to receive and demodulate the WWVB
radio signal. The module also has a loopstick antenna.
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 I’m trying to avoid
the ambiguity that arises
when we send the command
to read the time right before the
second tick. In this case, we can’t
be sure if the time sent back is for the
second that occurs before or after the tick.

But, if we send the command 13.33 ms
before the expected second tick, we know
that the response is in the current second
interval. Of course, we also have to take
into account the latency in processing
serial data in the host’s OS, which adds
some time to the estimate.

SIGNALING THE TIME
To calibrate the PC’s clock, I

have to measure time more ac-
curately than the second count
available via the serial port. I
can do this with the PPS signal
on the connector of the host-
interface module.

The PPS signal is synthesized
on the Ultralink clock module
by locking an oscillator to the
100-Hz signal of the WWVB
transmission. The signal detects

A 74xx04 inverter inverts the PPS
signal from active high to active low, as
needed by the parallel port interface to
generate a falling-edge interrupt (see Fig-
ure 3). You might note that there is a
generic 7404 gate shown, but for proper
low-power operation, this should be a
74HC04 or equivalent CMOS converter.

Once attached via the serial port, the
host sends a read time command (either
0x01 or “A”), and the module responds
with a message in BCD or ASCII format,
respectively. One of the pins on the host-
interface module host connector is a data-
rate pin—open for 9600 bps or
short it to ground for 2400 bps.

TIME OF ARRIVAL?
The module responds to a

command within 5 ms. This is
important, because we need to
know the latency between the
request and when the host re-
ceives the data. In other words,
we need to know the time it takes
to transmit the command, the turn-
around latency of 5 ms, and the
time taken to send the response:

To send the command and get a time
back, takes:

Figure 1—In the VLF converter circuit, there is a low-pass filter, prefer-
ably tuned to pass only signals below the AM broadcast band (i.e.,
500 kHz), followed by a diode ring doubly balanced mixer (DBM),
which is driven by a TTL/CMOS clock oscillator.

6500 pF 6500 pF

T1
31 µHRF in

1n914

T2

4 MHz

RFout
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on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems Inc.,
a San Diego–based formal synthesis com-
pany, where he works on formal-method
design tools for high-assurance systems and
develops embedded-system products. You
may reach him at cyliax@derivation.com.

REFERENCE
[1] www.ezomm.com/~cyliax/wwvb.wave

SOURCES
Basic Stamp, 320 BS
Parallax, Inc.
(888) 512-1024
(916) 624-8333
Fax: (916) 624-8003
www.parallaxinc.com

Time reference systems
Datum, Inc.
(949) 598-7500
Fax: (949) 598-7555
www.datum.com

Figure 3—Two diodes steal power from the
DTR and RTS signals, one of which needs to
be at a 12-V level to power this circuit.

the beginning of the
modulated pulse’s

pulse, which starts the PPS
pulse with a rising edge.
The rising edge of the pulse is

used as the timing reference mark.
The accuracy  of the edge depends on

how accurately the module's oscillator can
be phase-locked to the carrier and how
accurately the start of the timing pulse can
be detected.

The module uses several cycles of the
pulse to enhance the accuracy and boasts
an accuracy of ±20 ms. The clock may
drift up to 0.02 s/h between synchroniza-
tion updates. This technique is much better
than my attmept to use a VLF converter,
shortwave receiver, and LM576-based
tone detector.

To use this PPS signal to measure the
PC clock, I attach it to the ACK line of the
parallel port. This line, if you remember
from “Parallel Port Interfacing” (Circuit
Cellar 113), generates an interrupt re-
quest on a high-to-low transition. So, I
have to attach an inverter to get the
correct sense from the PPS signal, be-
cause its reference edge is low to high.

Once this is accomplished, we can
generate one interrupt per second on the
PC. To test this setup, I wrote a program to
measure the number of clock ticks between
seconds. The source code in Listing 1 is
implemented as an RT-Linux module.

I start with ���������	
, which ini-
tializes some FIFOs to communicate with
a user-level application. FIFOs, if you
recall from the article series “Embedded
RT-Linux” (Circuit Cellar 100–104), are
how real-time threads communicate with

non-real-time processes
under RT-Linux. Next, I
install an interrupt han-
dler and turn on the
parallel port interrupts.

The interrupt handler
records the exact clock
tick it was invoked in.
Some latency occurs
between when the in-
terrupt really occurred and the time the
code is invoked. This interrupt response
latency can be measured and is determin-
istic under Linux.

At worst, it will be about 10 µs, which
is the overhead introduced by the sched-
uler. However, it’s not going to be much
of a factor, because the clock module
accuracy will be ±20 ms.

After the first time it's invoked, the
interrupt handler computes the time be-
tween this invocation and the last time it
was invoked (presumably the last time it
was called). I accumulate the result be-
cause I want to compute the average
period. I also record the number of sample
periods collected.

I registered a handler that wakes up
when there's activity on the receive FIFO,
indicating that a user application wants to
read the average time. The application
sends a zero word to reset the totals. Any
other command value just computes the
average and returns the result.

The application software is short, as
you see in Listing 2. It opens the two FIFOs
from the user side—one for read, the other
for write. It then sends a nonzero word to
the user side and reads the result. The
result is printed to the screen.

ON THE DOT
Once we figure out the average tick

rate the system runs, we check to see if it’s
accurate to better than 20 ms. There
should be 1,193,180 ticks/s.

If we measure 1,374,281 ticks/s, the
system clock is running fast. It thinks  each
real second is about 1.15 s long, which is
150 ms longer than it should be. That’s
clearly worse than the ±20-ms accuracy
that we can rely on from the atomic clock.

The simplest fix is to use the figure of
1,374,281 ticks as the prescale for com-
puting time intervals in RT-Linux. Last month,
I was able to generate IRIG codes by
programming RT-Linux to periodically
wake up a task. The calculation used a

system constant (������������
������). Replace this constant with our
computed constant and the period of the
IRIG signal should match the period of the
PPS signal.

To align the IRIG signal with the PPS
signal (i.e., for both signals to start on a
second boundary), use the PPS interrupt
service routine to kick off the IRIG task. A
more advanced algorithm would check
the starting time of the IRIG frame with the
PPS signal and minimize the difference.

OUTTA TIME
As with any engineering problem,

sometimes it makes sense to adopt a
mixture of both ready-made and home-
grown solutions. Instead of using my cus-
tom time-code receiver, I decided to adapt
a receiver module to my system.

Companies like Datum would be glad
to sell you a complete turnkey time refer-
ence system, which might be the best
solution if you require high accuracy and
stability, and if you have a budget to
match. In the end, of course, only you
know your application best. RPC.EPC

Figure 2—Here, the VLF band (0–500 kHz) is shifted by 4 MHz. The
result is a band at 4.0–4.5 MHz and its image band at 4.0–3.5 MHz.

4 MHz

4.060 MHz3.940 MHz
60 kHz

http://www.parallaxinc.com
http://www.datum.com
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Applied PCs

Fred Eady

Not only is DOS still alive, but as Fred shows us, Arcom and Datalight have
teamed up to provide a great deal of functionality in a hidden ROM-DOS
partition that is Kryptonite-resistant and ready at a moment’s notice.

H ere we are, well into the year 2000,
DOS is supposed to be dead and Win-
dows NT is supposed to relinquish its
throne to Windows 2000.

In fact, many Windows fanatics pro-
nounced DOS dead years ago. You know
that famous old line, “The rumors of my
demise have been greatly exaggerated.”
Hey, at least you aren’t still entering
your programs using 80-column
punch cards, or worse, cassette tape.

The world is still waiting for the
Y2K-bug destruction, and thanks to
Datalight, DOS is still very much
alive. If you  think about it, before
FAT32 and the “non-DOS Parti-
tion,” you had to load some mini-
mal DOS code to get Windows
3.xx or 9x on your hard drive.

Today, we have Windows NT,
Windows 2000, 98, and some Win-
dows 95 and Windows 3.11 run-
ning out there. There’s also Windows
CE and Windows NT Embedded. I’m
quite sure that none of these hardy

OSs have ever crashed, but what if Win-
dows NT Embedded sucked up a cor-
rupted file and spewed chunks?

And what if the machine that just lost its
cookies is in California, and you’re not?
What if I told you that you could use DOS
to recover the application and OS, via the
Internet? Read on, Grasshopper.

LOOK, UP IN THE SKY
It’s a bird, it’s a plane, it’s SuperBoot!

Hidden within a hard disk or flash memory,
SuperBoot could be thought of as invis-
ible. SuperBoot is really a feature and
extension of Datalight’s ROM-DOS. This
“invisible” partition is a hidden ROM-
DOS partition, residing on the same physi-

cal media as the primary OS.
The idea is to stuff as much function-

ality into the hidden ROM-DOS parti-
tion as possible. When the primary
OS fails or the hardware goes, the
hidden ROM-DOS partition can be
activated to provide a stable diag-
nostic platform. From this partition,
all the emergency tools that were
preloaded can be activated.

Although there’s good reason to
include things like a TCP/IP stack or
special diagnostic routines, you can
opt to establish a remote connection
with the failing machine and manipu-
late diagnostics or download good
files. And, who says the embedded

Getting the Databoot

Photo 1—The blue box may not be as full as before, but the
embedded Elan-104NC is carrying quite a powerful load.
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Including Datalight Sockets in the hid-
den partition allows a TCP/IP portal to be
implemented, which then allows remote
access to the failing code or hardware.
The on-site technician can call home, or
the main system (that never crashed on
January 1) can take over and remotely
stuff files down the failing machine’s throat.

MORE ON ROM-DOS
I like DOS. In your daily routine, notice

the guys who open a Windows command
prompt to copy files or view directories.
Those guys love DOS, too. ROM-DOS is
the embedded programmer’s DOS.

Your embedded hound dog
doesn’t have to be PC-compatible to
use the features of ROM-DOS. Any
80186 or higher CPU with about
10 KB of RAM and around 50 KB of
ROM is welcomed by ROM-DOS. If
you’re into the NEC V-series CPUs,
no problem. All the goodies you
know and love in Bill’s 6.22 are
included in Datalight’s ROM-DOS.

There’s not much difference in the
way ROM-DOS works versus Bill’s
6.22 version, but selectable device

drivers are the key to ROM-DOS’s univer-
sal nature. Datalight offers a ROM-DOS
development package to help you as-
semble a suitable ROM-DOS image. Us-
ing device drivers allows a ROM-DOS
platform to be implemented on any system.

Both OSs use a CONFIG.SYS to pro-
cess startup commands, but unlike DOS
6.22, ROM-DOS doesn’t require
COMMAND.COM to boot. Datalight’s ROM-
DOS supports both RAM and ROM disks,
and even provides remote disk-drive ac-
cess via the serial port.

There are ways to embed Microsoft’s
DOS 6.22, but it’s not as easy as doing it
with ROM-DOS. Bill’s 6.22 doesn’t like
Windows’ long filenames, either.
Datalight’s ROM-DOS kernel supports them
with no problems. There are a lot of other
features that set ROM-DOS apart from the
good-old everyday DOS and, if you’re
interested in delving into them, visit the
Datalight web site.

For the embedded developer, one of
the biggest advantages in using ROM-
DOS is that it’s half the size of normal DOS
when fully implemented. This small foot-
print enables ROM-DOS to be squeezed
into the tightest embedded design. ROM-
DOS 6.22 comes in at 73 KB versus
133 KB for a fully ROMed version of Bill’s
6.22. As well as being half the size, ROM-
DOS’s average cost is half as much.

device has to be
on the blink? You

can use this technol-
ogy to download an up-

grade or grant permission to
other parts of your code.
For those of you new to

SuperBoot, it works like this. There
must be some type of monitor or OS
(Windows, QNX, Linux, etc.) on spin-
ning electromagnetic media, silicon
flash, optical disk, or in read-only
memory that establishes the hard-
ware and system environment when an
embedded PC hardware is booted.

Using a method called double boot-
ing, SuperBoot is activated via a hotkey
sequence at boot time. This process al-
lows ROM-DOS to boot and load from its
hidden partition. Because this hidden
ROM-DOS partition is not recognized,
and therefore ignored by the primary OS,
it lies dormant until it is activated.

Besides ROM-DOS and the SuperBoot
code, Datalight Sockets (a TCP/IP stack
designed to run under ROM-DOS) can
also reside in the hidden partition. A
TCP/IP stack means Internet connectivity.

Photo 2—This screen holds bunches of “what am I” info. It’s
good reading while Windows CE initializes.

Photo 3—Not many Win CE icons here, but
keep your eye on that background bitmap.
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FLASHDATALIGHT
These days, embedded and flash

memory are often mentioned in the same
breath. There are times when a hard disk
or floppy drive just won’t do. In those
cases, flash memory steps in for the hard
disk and sometimes even doubles as ROM
on the system board.

The seemingly free flexibility that comes
with flash memory does have a cost—
additional software overhead.  Datalight’s
engineers developed FlashFX to help inte-
grate flash memory without paying the
high cost of writing the overlord code.

Datalight’s FlashFX software makes
flash memory arrays appear as disk drives.
This arrangement allows your application
to use the flash memory area just as it
would a physical disk drive. Your applica-
tions can access FlashFX arrays just as
they would if the flash were spinning.

Unfortunately, flash media can wear
out. FlashFX uses a process called wear
leveling to extend the life of the flash
memory array. The wear-leveling algo-
rithm makes sure all the erasable flash
memory area is used evenly, so recently
written to or recently erased sectors, aren’t
used excessively.

FlashFX is written in ANSI C and doesn’t
really have a flash memory hardware
preference. Flash memory parts from Intel

or AMD can use the
features offered by
FlashFX. Datalight offers
a FlashFX porting kit that
makes FlashFX portable
to any microprocessor
and embedded PC run-
ning Windows CE.

IN A BLUE BOX…
Last time we looked

into a case like this, out
popped a Datalight Thin Client, and my
Florida-room porch extended all the way
to Washington state. (Translation: porch
is a place outside of the house, usually
connected to the house much like a deck.
You’ll usually find rocking chairs, swings,
and Grandma on the porch.)

What’s in this box? Looks like an
Arcom Elan-104NC to me (I’m not psy-
chic—the model and type are written on
the PC/104 connector). As you can see in
Photo 1, there’s also a 56k external mo-
dem. Let’s see, there’s a 10BaseT Ethernet,
SVGA, mouse/keyboard, IDE interface,
serial ports, and a flat panel. It looks like
a slick Eurocard (100 mm × 160 mm).

After some Internet
detective work, I deter-
mined that the Elan-104NC
sports a 100-MHz AMD Elan
486SX processor with millenium-
compliant Datalight BIOS.

The M16-F8 comes with 16 MB of
DRAM (M16) and 8 MB of Intel Strata
flash memory (F8). ROM-DOS 6.22 comes
loaded, along with Datalight’s FlashFX,
and a 128-KB battery-backed SRAM disk.

If you need RS-485 capability, the
Elan-104NC includes three serial ports
with one doubling as your RS-485 driver.
If you require a no-trouble Ethernet inter-
face, the Elan-104NC employs a RealTek
RTL8019AS 10BaseT Ethernet controller.

The label on the blue box says Elan-
104 WinCE Development Kit. That must
mean, in addition to the Datalight BIOS,
Datalight ROM-DOS, and Datalight
FlashFX, there is some Windows CE code
in the flash memory, too.

PLUGGING ALONG
Taking a look at the Elan-104NC in

Photo 1, you’ll see that you really have to
try if you want to plug something into the

Photo 4—It’s no crystal ball, but a hint of the future can be seen in
the name of the image being downloaded.

Photo 5—Whether you’re downloading bit-
maps, files, operating system images, repair
operations, or upgrades, using SuperBoot,
ROM-DOS, and TCP/IP can make it happen.
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wrong header. I don’t
mind scratching my head

from time to time wonder-
ing which serial port is COM1,

but wondering about power con-
nectors doesn’t give me a warm and

fuzzy feeling. The Elan-104NC power
connector (the green receptacle) is keyed
and very much obvious as to what it is.

At powerup, I was greeted by the
standard banners telling me who did
what and how much memory was avail-
able. The Arcom/Windows CE install
screen shown in Photo 2 immediately
followed the Datalight banner screens.
Once I got the Elan-104NC booted, I saw
what you see in Photo 3—the Datalight
bitmap on a Windows CE desktop.

At this point, I played around a little to
see just what was loaded. I didn’t find
much, which is a good thing. After all, this
is supposed to be a tight load containing
only the application, ROM-DOS, and Win-
dows CE modules needed to do the job.

I ran into an interesting situation while
I was exploring. I tried to attach a stan-
dard 1.44-MB floppy drive to see if the
Windows CE load would recognize it.

Shucks, there’s a floppy power connector
grafted into the green Elan-104NC power
connector. I figured it must be there for me
to play with. And, the Elan-104NC sup-
ports standard floppy drives. Besides, I
couldn’t find a way to store and retrieve
the screenshots I wanted to show you.

I should have known that what I was
about to do was taboo, because I was
locked out of the Datalight BIOS setup
routines. Talk about foolproof! Users can’t
foul things up if they can’t get to them.

I decided to go ahead and install the
floppy drive. Maybe there’s something
hidden that I can exploit. Flip went the
power to the Elan-104NC and blink went

the floppy drive LED. No problems so
far—the Datalight banner and Windows
CE desktop appeared on the monitor.

I opened a command prompt and
attempted to get at the floppy. No luck, so
I went to the Windows CE system setup.
Still no luck. All right, I’ll reboot. Maybe
the hardware will be recognized then.
No luck, and this time no display! My first
word should probably not appear in print,
but my first thought was that I’d damaged
the load or worse yet, the Eurocard.

For the next few boots, I got nothing. I
disconnected the floppy and rebooted.
Again, nothing. The engineer (and idiot)
in me said, “Put the floppy back on and try
it one more time.” I did and—wham—the
display was back, but I still couldn’t get to
the floppy drive. Well, at least now I was
working again. I could go on and de-
scribe the dog and pony show, but it
would be great to get screenshots of the
mutt and nag performance using the floppy
drive interface. No dice. I had to resort to
plan nine from outer space.

In the interim, I decided to connect the
Elan-104NC to a larger monitor. In doing
so, I forgot to reconnect the floppy. I
powered everything up and things were
back to normal. I think I know what
happened, but I’m hesitant to go there
with you (cockpit error). So, I’ll move on
and describe what the Windows CE ap-
plication does and what Datalight re-
sources it uses to accomplish the task.

TO THE PHONE BOOTH
My superhero used the corner phone

booth to change clothes. We’re going to
do the same thing with the Elan-104NC.

The application that’s loaded on the
Elan-104NC demonstrates how Super-
Boot, in conjunction with the Elan-104NC
hardware, can be used to remotely re-
cover or repair an ailing Windows CE-
based application. The SuperBoot hidden
partition was carved out using FlashFX
when the flash memory was formatted.
We already know that the Datalight BIOS
drives the Elan-104NC hardware, and
the Datalight ROM-DOS with the SuperBoot
kernel is installed and hidden in flash
memory, along with the CE OS.

The SuperBoot BIOS extension lies in
wait, looking for a specific key sequence.
When that key sequence (Alt-F4) is in-
voked during the initial boot phase, the
SuperBoot partition (a ROM disk desig-

Photo 6—They say the third time’s a charm!
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nated as drive D) is booted instead of the
primary Windows CE OS partition on
flash memory drive C.

The SuperBoot boot sequence loads
ROM-DOS, Datalight Sockets, and an FTP
application. The idea is to show how the
Elan-104NC, loaded with ROM-DOS, the
Datalight SuperBoot feature, and Win-
dows CE, can be configured to recover or
completely rebuild the software image on
the Elan-104NC via the Internet. Remem-
ber, although we’re using Windows CE
here, you can use any popular OS.

The Datalight folks conveniently pro-
vided an FTP site to download one of three
desktop bitmap images to prove the re-
mote reload and repair concept.

GOT A QUARTER?
After resetting the Elan-104NC, I initi-

ated the Alt-F4 hotkey sequence during
the “Testing RAM” phase. The Datalight
SuperBoot banner informed me that I was
booting from drive D. ROM-DOS was in
control, Datalight Sockets was invoked,
and a PPP connection was established via
an 800 number to the Datalight FTP site.
What I saw next is shown in Photo 4.

After completing the file transfer, I reset
the Elan-104NC. This time, I left the Alt-F4
hotkey sequence alone, and the embed-
ded PC booted from the primary Win-
dows CE flash memory disk. As you can
see in Photo 5, I now have a new bitmap
image from the Datalight FTP site.

It just so happens that the bitmap I
grabbed represents Arcom. The Arcom
folks are responsible for the Elan-104NC
hardware that I used to dial the FTP server
to show you the downloaded image.

There’s one more bitmap out there,
and I’m anxious to see what it is. So, I
initiated the Elan-104NC reset and per-
formed the hotkey thing again. The FTP
session kicked off and down came the
image. Do you recognize the bitmap in
Photo 6?

DOWNLOAD IT AGAIN, SAM
I repeated the FTP-download sequence

dozens of times and it worked flawlessly
every time. Playing with this demo con-
jured up all kinds of possible applications.

Wouldn’t it be cool to have a system
that, when requiring the services of
SuperBoot, would call home to tell you
about it? I picked up the phone and called
Rob Krantz at Datalight and asked if they

Fred Eady has over 20
years’ experience as a sys-
tems engineer. He has worked
with computers and communica-
tion systems large and small, simple
and complex. His forte is embedded-
systems design and communications. Fred
may be reached at fred@edtp.com.

SOURCES
DataBoot
Datalight
(360) 435-8086 • Fax: (360) 435-0253
www.datalight.com

Elan-104NC
Arcom
(888) 941-2224 • Fax: (816) 941-7807
www.arcomcontrols.com

had thought about that. Silly me. Datalight
has an application that rides on ROM-
DOS that sends e-mail at your command.
It’s called SENDMAIL.

In the old days, your disaster had to be
in the presence of Clark Kent in order for
Superman to save you. Nowadays, your
embedded creation can practically jump
into a phone booth and save itself using
SuperBoot and ROM-DOS.

Thanks to Datalight and Arcom, once
again we have proven that it doesn’t have
to be complicated, or from the planet
Krypton, to be embedded. APC. EPC

http://www.datalight.com
http://www.arcomcontrols.com
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Throw Away the Key!

EMBEDDED
LIVING

Mike Baptiste

p
You know the rou-
tine: put the key into
the lock, try to open
the door, realize the
key is upside down….
Mike came home
with his hands full
one too many times,
so he set out to add
an iButton lock sys-
tem to his home
automation setup.

eople have been
locking doors with

keys for centuries.
What fairy tale would be

complete without a locked door and a
hidden key? Would you believe my
house still has skeleton-key locks on
all the doors (backed up with heavy-
duty deadbolts, of course)?

Keys have evolved plenty, but the
duty they perform is still the same.
Insert the key, realize you have it
upside down, flip it over, insert it
again…. It isn’t that hard, and we’ve
done it forever. Nevertheless, when
you have an armful of groceries, it
would be really nice to get the door to
unlock and open itself.

Electric door strikes have been
around for years. They have improved
some (they don’t have to buzz if you
get DC models), but the real chore is
figuring out a device to control it.

Keypads work well, and you don’t
have to carry keys around. However,
you still have to punch in the code.
(Remember the armful of groceries?)
Besides, in a densely populated area,
someone with criminal intentions can
try to see the code you punch in.
Binoculars are easy to come by!

When I considered automating my
door locks, I wanted to ensure they
were secure, but I wanted something
that would enable me to open the

doors with little effort. I decided to use
iButtons from Dallas Semiconductor.

DON’T PUSH THIS BUTTON
Photo 1 shows some iButtons in a

variety of holders, along with a simple
probe for reading them. The basic
concept is, you press the button into a
probe and the data is read or updated
using a simple 1-Wire interface. They
require no power source because
power is supplied on the same wire as
the data. (See the datasheets and ap-
plication notes for more info on para-
sitic power supplied via the data bus.)

iButtons come in a variety of for-
mats, most with onboard, nonvolatile
RAM. Their main application is to
store digital information (up to 64 KB)
in a small footprint. You can even get
iButtons with temperature sensors,
monetary logic and encryption, real-
time clocks, and even Java.

Numerous 1-Wire devices can exist
on the 1-Wire network at any given
time. To tell them apart, every 1-Wire
device, including iButtons, has a
unique 64-bit serial number. That
means 18,446,744,073,709,551,616
different serial numbers. Using that
serial number as a key would be
pretty secure! Technically, eight bits
of the serial number are a checksum,
and eight bits are a family code. Still,
48 bits adds up to a lot of guesses.

What about the RAM and Java that
would be wasted? Worry not. Dallas
has an iButton with a unique serial
number and a 1-Wire interface. It
makes an ideal key. Even if the thief
knew how to interface to a 1-Wire
network and tried to guess the serial
number, they would have to make a
lot of guesses. I had found my key.

STANDING ALL ALONE
As most of you know, I have an

HCS-II home automation system in
my house. Okay, I have a couple of
them. The HCS-II can read iButtons
using the AnswerMan Jr. network
module (Circuit Cellar 78).

However, I really didn’t want to
devote one of my AnswerMan Jr.
modules to reading iButtons. They
were busy enough handling LCD
displays and analog inputs. I needed to
come up with a standalone controller

An iButton Lock System
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to store approved iButton serial
numbers and unlock the doors
when a valid iButton was read.

Touching the iButton to the
probe is easy, reading the serial
number and comparing it to an
authorized list was another
matter. It screamed embedded
processor. Controlling the 1-
Wire network wouldn’t require a
huge amount of CPU effort, but
I also had to store the approved
iButton serial numbers.

I’m familiar with PICs,  so I
immediately considered the
’16F84. It has a reasonable
amount of ROM and memory as
well as 64 bytes of nonvolatile
memory to store iButton serial num-
bers in. Now, all I needed was a name
for this digital lock. DigiLock it is!

SPEAKING 1-WIRE
The biggest challenge of this

embedded-control program would not
be the main function. All the main
function does is take the received
serial number, compare it to a stored
list, and return true or false. The fun
part is having the interface actually
request and receive the serial number.
Supplying power and transferring data
over the same wire can also be tricky.

Dallas designed the iButton with a
parasite power circuit to keep the
device powered during data transmis-
sions. The 1-Wire network wire is
pulled high so iButtons get power
when they touch the probe. As long as
the data bus is not driven low for too

long, the internal power circuit keeps
the iButton powered until the bus
returns to its idle high state supply
external power again.

The Dallas 1-Wire network proto-
col requires the controller to act as a
master and the iButtons as slaves.
When an iButton touches the probe
and powers up, it waits for the master
to issue a reset pulse on the bus. Re-
set pulses must be 480 µs (minimum).
When the bus returns to its idle high
state the iButton signals its presence
by returning a presence pulse. This
tells the controller there is at least
one device on the network, and it is
ready to be accessed.

It’s unlikely that two iButtons will
be touched to probes on my house at
the same time, so I’ll assume only one
device is on the network at any time.
(Read the 1-Wire application notes on

Dallas’ website for information
on using multiple 1-Wire de-
vices at the same time.)

Once the iButton replies to
the controller with a presence
pulse, the controller can then
issue commands to it. The one
command we care about is
Read ROM. This will return the
64-bit serial number.

ALL IN THE TIMING
So far, it sounds easy. How-

ever, processing the serial num-
bers is not the tough part,
requesting and reading the se-
rial numbers. Remember, para-
site power requires that the bus

not be driven low for too long.
You can’t just transmit bits
across a 1-Wire network, be-
cause sending 0x00 will drive
the bus low for too long. To
handle this type of situation,
iButtons and other 1-Wire de-
vices use a protocol with spe-
cific bit timing.

Because the data bus is
pulled high to supply power, a
low pulse precedes each bit.
This low pulse always comes
from the master controller,
even during data reads. When
the master controller sends data
to the iButton, the iButton
samples the bus for the proper

bit value between 15 µs and 60 µs
after the bus is driven low.

Data is returned from the iButton
in a similar fashion. The controller
samples the bus between 1 µs and
15 µs after driving the bus low. This
allows the iButton to synchronize the
returned data to the master controller.
Note that the 1-Wire bus is an open-
collector driven bus because multiple
devices may drive the bus low at any
given moment. All highs are accom-
plished via a single pull-up resistor.

Consult the datasheet for the
timing diagrams, which outline the
Read and Write Time Slots. Listing 1
is the code used to read data from the
iButton. Writing this routine in C
made for a clean-looking code, but it
also required that I check the op-code
listing to ensure the timing was right.
C compilers for PIC processors can do
all sorts of tricks trying to handle bank
switching and other PIC oddities.

The PIC never actually drives the
bus high. Instead, it relies on a 4.7-KB
pull-up resistor to bring the bus high
again when it needs to send a 1. To
send a 0, the PIC will drive the bus
low. Even though it is discouraged for
portability reasons, I used the TRIS
command to toggle the tristate buffer
on the 1-Wire data pin so it functions
in an open-collector fashion.

With the code, I tried to ensure the
bits were sampled in the middle of
the given sampling window. You have
to read data from an iButton in 15 µs,
which includes sending a start bit and
sampling the returned data bit from

Photo 2— The DigiLock board is small enough to mount almost
anywhere. The iButton status bits are brought out via the 2 × 8
header. For security, locate the DigiLock where it cannot easily
be tampered with. If it’s outdoors, use a weatherproof box with a
lock. If you have an alarm system, wire a tamper sensor inside
the box to trip the alarm if anyone opens the box.

Photo 1— Plastic key fobs as well as leather fobs and wallets will hold
your iButtons. The probes are inexpensive and easy to connect. One wire
is data and the other is ground. They can be mounted on any flat surface
less than 10 mm thick.
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the iButton. I used a 3-µs start bit, a
3-µs pause, and then sampled the bit.

The code samples the bit three
times to ensure the proper value is
read. Remember, touching the iButton
to the probe is the same as holding two
wires together to transmit data. De-
pending on how firmly you press the
iButton into the probe and how still
you hold it, who knows how much
noise results from a weak connection.

The tricky part is that the start bit
and bit sampling must occur in 15 µs
or less. Taking a cue from the com-
mon hardware UART circuit in bigger
PICs, I wanted to sample the bit three
times. Because I used a 3-µs start
pulse and allowed for 3 µs before I
sampled (to allow things to stabilize),
that left 9 µs for sampling. Because
the PIC is running at 4 MHz with a
divide-by-four clock, each instruction
takes 1 µs. This means there are nine
instructions for sampling the bus
three times and storing the result.

Using bit-test commands and a
simple incrementing counter made for
quick and efficient code. Doing it in C
just makes it look slow. Listing 2
shows the resulting machine code,
which is quite compact.

Once I sampled the bit, I had
plenty of time to check the counter
and see if it indicated a 1 or 0 bit.
However, when I compiled the IF
THEN ELSE statement to check the
sample counter, it was huge. I reduced
the code size out of principal (and fear
of running out of PIC ROM space).

I soon realized that the second
least significant bit in the sample
counter would reflect the proper bit
value. I just had to shift it into the
buffer. Using an efficient bit test, I was
able to test the sampled bit and store it
in the buffer using five or six ticks.

Writing the bit out is easy. Just
bring the bus low for 1 to 15 µs and
then go to the proper bit state for
another 45 µs while the iButton
samples the bit. I take the bus low for
7 µs and then shift out the bit onto
the bus for another 50 µs.

CHECK THAT CHECKSUM
Each iButton serial number con-

tains an 8-bit checksum that lets you
ensure that the received data is most

likely the data sent by the iButton. As
I said earlier, the connection between
the iButton and the probe is like hold-
ing two wires together. If you’re in a
hurry, it’s worse.

While testing my code, I found that
1 out of 15 touches resulted in a bad
read the first time. Note, I said
touches. If the iButton was firmly
attached to the probe, the data read
never failed. However, casually press-
ing the iButton to the probe resulted
in erroneous reads from time to time.

The checksum allows you to
handle bad reads. Dallas Application
Note 27 gives an in-depth overview of
the 8-bit CRC used in 1-Wire devices.
As the bytes are received, they are fed
into the checksum loop. Listing 3
shows the code used to check the
received checksum against the re-
ceived serial number.

The checksum is calculated using
the 8-bit family code and the 48-bit
serial number. After each byte is read,
it is shifted into the checksum logic
loop using XORs. By the time the
received checksum byte is received,
the calculated checksum is ready to
be compared.

If a bad checksum is received, the
controller issues another reset pulse
and reads the serial number again until
it gets it right or until the iButton is
removed from the probe, which is
indicated by the lack of a presence
pulse in response to each bus reset.

PUTTING IT TOGETHER
Now that I can read the iButton

serial numbers reliably, the rest is
straightforward. To give some type of
success or failure feedback, I use
bicolor LEDs located by each probe.
Green indicates that the number
matches a stored number, and red
means no match was found.

Configuration is a snap. By short-
ing the configuration jumper and
powering up, the next seven iButtons
read will be stored in NVRAM. You
can store less if you like. The one
downfall of this simple method is, if
you want to add a key, you need to
rescan each iButton you already have
because the NVRAM is erased when
you enter configuration mode.

During normal operation, when
you touch an iButton to the probe, the
LED will turn green if the serial num-

Listing 1— Reading in bytes from a 1-Wire device involves some tight timing. Sampling the bus multiple
times helps ensure a valid read on the first try. If the counter hits 2 or 3, the code registers a 1 bit; otherwise
it registers a 0 bit. Note that using an IF, THEN,  or ELSE on the sample counter instead of the
shift_right command resulted in bigger and slower object code.

// This routine reads in a byte from a microLAN device
// after a READ command has been sent

int read_byte() {

int byte_in, i, bit_cnt;

for(i = 0; i < 8; i++) {
// Clear bit counter

bit_cnt = 0;
// Pulse microLAN low to clock bit

set_tris_a(MLAN_OUT);
mlan = 0;
delay_us(3);
set_tris_a(MLAN_IN);
delay_us(3); // Allow some pullup recovery time

// We now have ~7 µs left to sample a few times
if (!mlan) { bit_cnt++; }
if (!mlan) { bit_cnt++; }
if (!mlan) { bit_cnt++; }

// Lets shoot for 2 out of 3!
// Use a quickie bit test for efficiency

shift_right(&byte_in, 1, !bit_test(bit_cnt, 1));
// Lets allow for the microLan device to release
// (45 µs MAX) and LAN to recover (15)

delay_us(45);
}
return byte_in;

}
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Listing 3— Because of the nature of the iButton connection with the probe, checksums ensure data integ-
rity. The family code (0x01) and the 48-bit serial number are used to calculate the checksum. If the calcu-
lated result matches the received checksum byte, the data is assumed valid.

// Gen CRC
// This routine takes the old CRC value and a new byte
// and returns a new CRC value
int gen_crc(int crc_in, int newdata) {
int i;
for(i = 0; i < 8; i++) {
shift_right(&crc_in,1,(bit_test(crc_in, 0) ^

shift_right(&newdata, 1, 0)));
                             // Check for the extra XOR
if (bit_test(crc_in, 7)) {   // We need an extra XOR
crc_in ^= 0x0C;

}
}
return crc_in;

}
�
// This is the checksum section used during iButton reads.
// family contains the received family code.  The serial number
// is read and stored in the id_in array while calculating the CRC
crc_in = gen_crc(0x00, family);
for(i = 0; i < 6; i++) {
// id_in[i] = read_byte();
// crc_in = gen_crc(crc_in, id_in[i]);
// The code below is more compact (15us vs 20us)
tmp = read_byte();             // Read next byte from iButton
id_in[i] = tmp;
crc_in = gen_crc(crc_in, tmp);

}
// Read CRC from iButton and compare to calculated value
if (crc_in == read_byte()) {     // The CRC is okay!
return TRUE;

} else {
return FALSE;

}

ber matches a stored number. Pin RB0
will also pulse high. This signal can
be fed into a home automation sys-
tem, or it can feed an external relay
board to directly drive an electric door
strike. The pulse can be configured for
1 s or 10 s. The 10-s pulse allows for a
reasonable amount of unlock time to
get the door open.

If you insert an iButton that isn’t
stored in memory, the LED turns red
and the Digilock waits for 10 s before
it will read another iButton. This was
done mainly to prevent a thief from
cycling through iButton codes as fast
as the DigiLock could read them.
With the 10-s delay, it would take 89
million years to cycle through all the
possible 48-bit serial numbers.

If a thief tried for a day, he’d have a
1 in 32,578,122,304 chance of guess-
ing the right code. He’d be better off
playing the lottery.

I wanted to know which iButton
was used, so I used the unused output
bits on the PIC and pulled each one
high when the corresponding iButton
is read. If the fourth iButton stored is
read, the fourth bit is pulsed high
along with RB0. By feeding these eight
bits into my HCS, I can tell when
each valid iButton is used.

I can add more intelligence to my
electronic access system without
bothering the HCS with reading the
iButton serial numbers. For example,
if my neighbor has the sixth iButton, I
may not want that iButton to open
the door at certain hours. So, if the
sixth bit goes high, I can check the
time and then decide if I want the
door to open. To do this, I have to
control the door strike with an HCS
RBUF-Term Relay instead of using bit
RB0 on the DigiLock.

Photo 2 shows the completed
DigiLock board. It takes up little
room and, thanks to the 1-Wire
network, can be mounted anywhere.
Simply daisy chain all your probes
together using twisted-pair wire and
connect them to the Digilock. If you
want to use LEDs by each probe, use
another twisted-pair daisy chained to
each 3-lead bicolor LED.

Each LED should have a 180-W
resistor between the common lead
and ground to let you to link each

door probe to the DigiLock using two
twisted pairs. For noise immunity, I
recommend using CAT 5 cable.

SAFETY CHECK
An article about electric door locks

wouldn’t be complete without touch-
ing on safety. Door locks can be wired
in fail-safe and fail-secure modes. Fail-

safe means that the lock will disen-
gage and unlock the door if power is
lost. Fail-secure means the door stays
locked when power is lost. Before you
think that fail-secure is always the
right way to go—read on.

Electric door strikes are usually
wired in fail-secure mode so that, if
the power fails, you can still get out

Listing 2— It may look strange, but this code compiled extremely small. With only 7 µs to sample the
returned bit, there wasn’t a lot of CPU time available to perform the necessary checks. Overall, the bit is
sampled three times and stored in the buffer in 12 µs with a 4-MHz crystal.

.............. // We now have ~7 µs left to sample a few times

.............. if (!mlan) { bit_cnt++; }
BTFSS  05,0
INCF   1F,F
.............. if (!mlan) { bit_cnt++; }
BTFSS  05,0
INCF   1F,F
.............. if (!mlan) { bit_cnt++; }
BTFSS  05,0
INCF   1F,F
.............. // Lets shoot for 2 out of 3!
.............. // Use a quickie bit test for efficiency
.............. shift_right(&byte_in, 1, !bit_test(bit_cnt, 1));
BTFSS  1F,1
GOTO   062
BCF    03,0
GOTO   063
BSF    03,0
RRF    1D,F
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of your house. However, there are also
electric deadbolts out there. A com-
mon type of electric deadbolt is noth-
ing more than a solenoid with a steel
shaft. Make sure if you install these,
you wire them in fail-safe mode. If
you don’t, you risk locking yourself in
your house, which during an emer-
gency is a bad thing.

I don’t recommend using these
types of deadbolts. Instead, look for
higher-quality electric deadbolts that
still have a manual lever inside. If you
can disengage the lock manually from
the inside, you can wire it in fail-
secure mode without risking being
trapped in your house.

Regardless of what you use, I
highly recommend connecting your
DigiLock and electric door locks to a
power supply fed off a small UPS to
ensure that your locks continue to
function, even if the power goes out.

HINDSIGHT
I still can’t explain the one glaring

omission from the Digilock design. I
was so wrapped up in making it small

and flexible enough to tie into the
digital I/O ports of the HCS-II or any
other HA system, I forgot to include
an onboard relay to drive the electric
door strikes. Needless to say, the next
run of circuit boards will have a
heavy-duty relay onboard so you can
drive the door strikes without an
external relay card.

The DigiLock is a simple-to-use
and secure electronic lock. I enjoy just
touching the iButton to the probe and
pushing the door open. Of course, I
just found some RF-based security
cards, but they’ll have to wait for
another column. I

Mike Baptiste runs his own company,
Creative Control Concepts, which
designs and sells home automation
equipment, inlcuding the HCS-II. You
may reach him at baptiste@cc-
concepts.com.
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Dallas iButton datasheet,

www.dalsemi.com/DocControl/
PDFs/1990a.pdf

Dallas 1-Wire Network application
note, www.dalsemi.com/
DocControl/PDFs/app108.pdf

Dallas 1-Wire Checksum applica-
tion note, www.dalsemi.com/
DocControl/PDFs/app27.pdf

Microchip 16F84 datasheet,
www.microchip.com/Download/
Lit/PICmicro/16F8X/30430c.pdf

SOURCES
iButtons and probes
Dallas Semiconductor
(972) 371-4448 • Fax: (972) 371-3715
www.dalsemi.com

DigiLock Kits and Boards
Creative Control Concepts
(919) 304-3107
www.cc-concepts.com

Microchip PIC16F84
Microchip Technology, Inc.
(888) 628-6247 • (480) 786-7200
Fax: (480) 899-9210
www.microchip.com

SOFTWARE
The software and schematic for the
Digilock project is available via the
Circuit Cellar web site.

http://www.dalsemi.com
http://www.cc-concepts.com
http://www.microchip.com
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Rapid Gratification
with FPGA Design

MICRO
SERIES

Tom Bishop

i
Tom cov-
ered the
FPGA

background informa-
tion in Part 1, now it’s
time to take a de-
tailed look at the de-
sign process. It’s all
here, everything from
designing functional
blocks to simulation
and debugging.

n Part 1, I dis-
cussed the design

of a pulse multiplier
using a Xilinx FPGA.

Now, I’ll continue with a detailed
look at the design process.

There are a few crucial steps for
designing with modern tools like the
Xilinx environment. Years ago, the
designers of Sun Microsystem’s Sparc-
I computer said that the three most
important things they had done in
development were simulation,
simulation, and simulation. I believe
those are still wise words.

It’s also critical that the designer
clearly communicate the intent of the
design. This can be in the form of
annotated schematics, operational
diagrams, or written theory-of-opera-
tion documents. One of the best and
most overlooked places to commu-
nicate is in the design’s source files.

VHDL allows the names of signals
to be arbitrarily long, so the name of a
signal can communicate its intent
(see Figure 1). I worked with one engi-
neer whose signal names read like
short paragraphs. This was probably
going overboard, but his intention was
to communicate clearly. Well-written
VHDL should be readable.

I tell my clients that they will be
able to take my VHDL source, read it,
and understand what the design is

doing—even if they are unfamiliar
with VHDL. Clients like this, but I do
it for myself more than for anyone
else. I am the one who has to fully
understand and debug the design.

Another way to communicate the
design is by using comments. Com-
ments are useful but are a distant
second to writing high-quality com-
municative VHDL. It’s human nature
to read what the code is doing but
skip over the comments.

Comments can even be harmful.
I’ve spent a lot of time trying to un-
derstand someone else’s designs and
reconcile them with the comments. I
later realized that the circuit was
changed and updated, but the com-
ments were not. If the reason for us-
ing a particular algorithm or method
isn’t clear, comments are appropriate,
otherwise, the VHDL should stand on
its own to tell what it is doing.

VHDL is a powerful language. It’s
easy to just write and let the synthe-
sis tool convert it to hardware. Unfor-
tunately, this can lead to circuits that
operate slowly and have high gate
counts. Always keep the hardware in
mind when writing VHDL.

Before synthesis tools were com-
monly available, some designers
would write VHDL models of the
design blocks and simulate them to
work out the bugs at a high level. The
VHDL would then be hand synthe-
sized, or manually converted, to gate-
level schematics. I don’t recommend
doing this, but it is important to learn
how the various VHDL statements
will be implemented in hardware.

DECOMPOSE THE PROBLEM
Note that the heading isn’t “Un-

derstand the Problem.” Although an
understanding is desirable, it will
usually come with time.

Rather than working out all the
internal details of the circuit, it is
better to break the problem into man-
ageable pieces. This will show the
basic functional blocks of the design.
Each block may have many internal
details and requirements that are not
visible at this level. This is good.

My personal experience is that a
complex system (or chip) has far too
many levels of detail to comprehend

Quicker and Better Design

P
ar

t 2
2of
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/pulse_error 0 8 7 6 5 4 3 2 1 0

/outcount 8 9 10 11 12 13 14 15 16

/incount 1 2

/dutpulseout

0123451 0 8 7remaining_toggles

/dut/hold

/dut/toggle

/dut/num_toggles 8

/dut/input_duration

/dutin/pulse

/dutmeterpls

/dut/sel_mult

/reset
/clk

010

200 ms 220 ms 240 ms 260 ms 280 ms 300 ms 320 ms

at once. Often when I finish a project,
I will step back from it and see a tiny
package that performs the specified
functions. I understand the internal
workings intimately, but it still
seems like magic to have that much
complexity in such a tiny package.

It is by dividing the problem that
you can focus on only the details that
are appropriate for that level. A term
for this process is design abstraction. I
think of a function in an abstract
sense and ignore the details at the
lower levels of design. If I try to keep
all the details of a design in my mind,
it becomes difficult to make progress.

For instance, you can probably
convince yourself that a transistor can
be fabricated on a piece of silicon, and
understand how that transistor will
work. (There are, of course, thousands
of details at this level. I am assuming
that you can ignore most of them.)
Given that you accept that transistors
will operate, you can connect a few
transistors together and eventually
understand how they will work to-
gether as a logic gate. Once you un-
derstand the concept of a gate, you
can ignore the transistors and focus
on the operation at the gate level.

Logic gates can be connected to-
gether to build small function blocks,
such as single-bit half and full adders.
You can work through the logic to
confirm that a 1-bit adder will work
as expected. You can then connect
these small functional blocks and
build arbitrarily large functions, such

as 32-bit adders. It is reasonable to
understand a large adder in terms of
many single-bit adders.

Using the 32-bit adder and other
large function blocks, you can build a
system. You can understand the op-
eration of the system, by understand-
ing how the large functional blocks
will interact. But at a given level, you
want to assume that the details of the
lower levels will work without having
to think about them. Ignore the de-
tails of all the lower levels as a conve-
nience, so your mind can focus on
those that are important at the cur-
rent level.

There are still many decisions that
will need to be made in the functional
blocks. Decomposing the problem
does not avoid this. It does defer these
decisions until later, so you don’t get
bogged down in details early in the
design cycle. It also breaks the prob-
lem into manageable pieces that can
be implemented more easily.

FUNCTIONAL BLOCKS
The functional blocks are designed

using schematics, state diagrams, or
VHDL code. Verilog, ABEL, or other
hardware description languages
(HDLs) could also be used. For the
purposes of this article, I will assume
that VHDL is the HDL of choice.

Although, my methodology favors
VHDL for most functional blocks, I
sometimes use schematic sheets for
the top level of design, because it is
simple to create functional blocks,

which are particular to the FPGA that
I am targeting. This might include on-
chip memories, on-chip oscillators,
input/output pins, or Global Set and
Reset blocks. Alternately, I might use
VHDL for the entire design. The fre-
quency multiplier uses a single sche-
matic sheet at the top level, with
VHDL for the major functional blocks.

Many engineers who are not famil-
iar with VHDL prefer to use sche-
matic sheets for their designs. There
are advantages and disadvantages to
either method. VHDL can be intimi-
dating and there is a learning curve to
use the language effectively. Also, a
schematic sheet can show a graphical
flow of signals from module to mod-
ule (see Figure 2).

At a high level, a schematic sheet
can show the structure of a design
better than a text-based model. In
addition, a design can be most highly
optimized using schematic sheets. A
designer with an intimate knowledge
of the FPGA architecture will know
tricks that can do a better job than the
current generation of synthesis tools.

On the other hand, as a designer
becomes familiar with VHDL, they
can design much quicker than with
schematic sheets. VHDL is a powerful
language. A few lines of VHDL can
generate a complex circuit. A large
design can be quickly simulated at the
behavioral level. Well-written VHDL
is more scaleable than schematic
designs. Number formats, bus widths,
and the components that access these

Figure 1— In this sample simulation of waveforms in the pulse multiplier testbench, the period since the previous pulse is recorded at the falling edge of /dut/meterpls.
Signal /dut/pulseout is the multiplied output that cycles four times in that period. The output then holds until another input pulse is detected.
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buses can be quickly
changed with VHDL.

In a number of ways,
VHDL is generally more
portable than schematic
sheets. Because it is a
text-based language,
VHDL is portable between
tool environments, where
schematic sheets are not.
Also, synthesis of VHDL
can target different de-
vices by simply changing
the synthesis library. A
final advantage of VHDL
is that you can express the intended
function of circuitry in a clearer, more
explanatory fashion than with sche-
matic sheets.

Tools that allow you to draw a
state diagram are also available. These
then translate the state diagram into
VHDL or Verilog that can be simu-
lated and synthesized. The beauty is
that a graphical picture of a state
diagram communicates the desired
operation of the circuit. I believe that
any tools that help the designer and

others understand the operation bet-
ter, are definitely worth using.

That said, I mostly enter state
machines directly into VHDL because
I am used to that approach. Scary, but
true—I have reached the point that I
“think in HDLs” as I design. Either
method is much simpler and more
descriptive than designing a state
machine with schematic sheets.

Fortunately, there is a way to inte-
grate these design approaches. A state
diagram will be converted to VHDL

for synthesis to gates.
VHDL can represent com-
ponents and their intercon-
nections, so a schematic
can be “coded” in VHDL.
The computer tools will
convert a schematic to a
VHDL file quite easily.

TEST RUN
Even before the circuit is

completely working, it’s a
good idea to run the syn-
thesis and implementation
tools. This will check the

ability of the tools to synthesize the
constructs you used. It will also give a
starting indication about the size of
the design. Both of these pieces of
information are useful to avoid sur-
prises late in the design cycle.

DESIGN SIMULATION
Simulation is the process of using

the source models for a design to
produce information about how the
circuit will operate. Simulation can
mean different things to different

Photo 1 —An FPGA and serial PROM are the only active components in the completed
design. The rest is DIP switches, status LEDs, decoupling caps, pullups, and connectors.
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people. When I simulate, I convert the
schematic sheets to VHDL code and
then compile the code and the other
VHDL source files in the simulation
program. Lastly, I generate inputs to
the circuit, cause the circuit to oper-
ate, and check the output results.

There are at least two ways to
simulate a design—simulation at the
VHDL level, and simulation at the
gate level. Many low-cost CPLD and
FPGA tools include only a gate-level
simulator. With these, a user must
first synthesize and implement their
design. The simulator then models
the operation of the logic gates to
determine how the circuit will work.
This simulation will indicate whether
a circuit works or not, but it is a less
effective way to debug a circuit.

A better way is to simulate at the
VHDL level, before synthesis. This
enables you to debug at a higher level
and use the source directly. You can
watch the operation of the circuit as
you step through the VHDL line by
line. You can also see all the objects
in the design, even if optimization

will later remove them. Because you
are simulating at a high level, your
simulations will also run faster. Speed
probably isn’t much of a concern be-
cause most designs are small enough
that simulation speed isn’t a problem.

Simulation is a critical design step.
A good simulation gives you better
information about how the circuit
will run than about actually building
a prototype of your design (see the
“Why Simulate?” sidebar).

DEBUG THE DESIGN
This step is performed as part of

the simulation task. As you drive
logic signals into the inputs of the
model, you can watch the circuit
operate. If the operation does not
meet our specifications at first, you
need to troubleshoot the design.

Debugging a design in a computer
simulation is conceptually similar to
debugging a piece of hardware on a lab
bench. I generally use some sort of a
signal source (maybe a signal genera-
tor or pattern generator), or I might
connect the circuit to the device I’m

trying to interface. If you are using a
computer simulation, you can either
generate inputs from the command
line of the simulator or write a model
to generate signals.

My preferred method is to write a
VHDL test bench, which generates
stimulus patterns for the logic design.
In a test bench, you can use VHDL
more like a programming language
than a hardware design language.
Much of the VHDL is not synthesiz-
able. But I know the test bench will
never need to be synthesized, so I can
take advantage of whatever parts of
the language suit me. For a simple
test bench, you need only to generate
input data. For a large design, you can
check the circuit output values and
confirm that they’re what you expect.

The pulse multiplier is a fairly
simple circuit, with that in mind, I
used a simple stimulus generator in
the test bench. I also have a simple
output checker to verify the circuit
operation. To see if the multiplication
is working properly, I count input and
output pulses. I multiply the input
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pulses by the expected multiplier, and
then subtract the output pulses.

If the difference is not zero at the
end of an input cycle, I know I am not
getting the expected multiplication.
The power of the VHDL language is
that it takes only a few lines of code
to do this. I can observe this error
count, along with all of the other
signals, in a waveform window on the
computer screen, much like a logic
analyzer display.

To debug the circuit, I start by
compiling the model of the test bench
in the simulator. I then simulate the
test bench, which calls in the model
of my main design. I then add signals

from anywhere in the design hierar-
chy to the waveform display and tell
the simulator to run. After a few sec-
onds, the simulation results appear in
the waveform display.

If the output is not what I expect to
see, I use a divide-and-conquer ap-
proach to learn where I made my
mistake. I first find a signal that is
about midway through the design and
then check to see if the signal has the
expected values. If not, the first error
is probably in earlier circuitry. Then I
find a signal at a convenient place,
about midway into the suspect block.
I repeat this process until I isolate the
block with the error.

IMPLEMENT THE DESIGN
Design implementation actually

comprises a number of individual
steps. Each of the steps is intensive
and complicated. If you had to do
these steps manually (which is pos-
sible using the software tools), the
total design effort would be many
times larger. Fortunately, the FPGA
development tools are one flavor of
electronic design automation (EDA)
tools. “Automation” is a delightful
word for any of us who have ever
implemented a design manually.

The complex and often less-obvi-
ous steps described farther on are
performed entirely by the develop-

Why Simulate?
For electronic design, the typical development strategy

is to design a circuit, build a prototype, and then debug
the prototype. You would debug these circuits by tracing
expected values through various locations in your circuit.

When you build a circuit entirely inside a chip, you
can’t probe the intermediate stages inside a design to
look for problems. With ASIC devices, you must verify
that the design works before making prototypes. Simula-
tion is a tool that allows you to model your circuitry and
view its operation. Only then, do you build the circuit.

VHDL and other hardware description languages allow
you to write a computer model that describes your hard-
ware. You can then simulate those models, which means
you apply stimulus to the inputs and observe the results
through the circuit and at the outputs.

With an FPGA, if your logic has a bug, you don’t have
a large NRE expense for making changes. The only cost is
the time to regenerate the design and run the tests again.
So, you could say that simulation is not strictly required
when designing with FPGAs. If a design goal is to make
reliable circuits that operate consistently, simulation
becomes a necessity. Simulation provides better visibil-
ity into the operation of a circuit than just building the
circuit and putting it into operation.

For instance, designs will often have internal registers.
The stored data in these can affect the operation of the
circuit. What if you forget to initialize these registers? If
you build a prototype device, the internal registers might
wake up in a state that allows reasonable operation of the
circuit. But when the device begins production, the regis-
ters from a different batch of chips can take a different
set of values at powerup. This can cause your circuit to
fail, and in a manner that can be difficult to troubleshoot.

VHDL (and the IEEE 1164 standard) use more than the
values 0, 1, and high impedance. All signals wake up
with the value U, which shows that no value has been
assigned. If you simulated the design using VHDL, any
nodes you forgot to initialize would have the value U.

Any downstream gates, whose values depend on this
signal, would also propagate the value U.

So, instead of the simulation showing the device work-
ing properly, at some point you would be able to see out-
put signals changing to Us, instead of zeros or ones. You
would immediately know there is a problem, and the
problem was a result of uninitialized values in the circuit.

Another insidious error might occur if you put mul-
tiple drivers onto a single wire, which is fine if the gates
have three state drivers, but perhaps your error is that you
do not control the enable signal correctly and have data
contention. A prototype of the circuit might work cor-
rectly, but when you take the device to production, differ-
ent batches of chips might have different logic thresholds
or drive strengths, which could cause the circuit to fail.
This type of production crisis is usually more expensive
to fix than if you had solved the problem in development.

Had you simulated this design in VHDL, you would
have quickly learned about the problem. VHDL resolves
signal contention issues in the simulation. Whenever a
resulting value is not clear, the signal gets the value X, or
unknown. Gates will likewise propagate unknown inputs
to their outputs. When signals with the value X are seen
in a simulation, you should realize that a design error is
the likely cause.

Critical race conditions are also more likely to be
caught in a simulation. A design you plan to synthesize
will not specify propagation delays. (The actual delays can
only be computed later, after a design is synthesized,
placed, and routed.) Simulation, by default, assumes zero
propagation delay throughout the circuit. A race condi-
tion that requires propagation delay to operate properly is
likely to fail in the simulator. The actual circuitry might
work properly with certain production runs, but not others.

The immediate benefit of simulation is that it shows
how the circuit operates before the circuit is built. The
less obvious benefit is that simulation provides more
information than would a physical prototype.
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What’s the best design? Do you
need something that uses the fewest
gates possible, even if it runs slower?
Or, do you need to get the highest
speed from a block? The tools will
probably choose to optimize for the
highest speed. An option menu will
let you to specify any tradeoffs.

The next step in implementation is
mapping the gate-level design into the
functional blocks specific to the FPGA
family. After that, the tool runs a
place-and-route pass. The locations of
functional blocks on the FPGA silicon
must be specified. The goal here is to
locate the blocks in order to require
only the fewest signal routing chan-
nels, and to keep the length of the
routed wires the shortest.

The number of wires interconnect-
ing logic blocks is limited. Any work-
ing placement cannot use more wires

What’s Next?
I could have implemented the pulse-multiplier

project using a microprocessor instead of an FPGA.
The algorithms could be implemented in software. In
fact, much of the FPGA design cycle is similar to a
software development task. For the pulse multiplier
project, it would probably be cheaper to use a low-
cost microprocessor.

Why would you ever want to use an FPGA instead
of a microprocessor? Speed is the main reason. A
microprocessor would implement the algorithms as a
sequential program, spreading the processing out over
time. In an FPGA, I implemented the design using
dedicated hardware for each operation. Every plus or
minus sign causes an adder or subtractor to be built
in hardware—the ultimate in parallel processing.

One analogy that helps show the differences in-
volves the construction of machines. A lone me-
chanic can (and must) do all of the steps to produce
the end product. Likewise, a microprocessor sequen-
tially completes all of the steps that make up an algo-
rithm. If you instead use an assembly line to build
the machines, the tasks are distributed to many
workers who can use specialized machines at each
step. The assembly line uses more resources but can
produce many more machines per day.

The FPGA does not process a sequence of instruc-
tions. It, like the assembly line, uses dedicated hard-
ware for each operation in the algorithm. If the
number of required operations is large, the FPGA must
also become large. But, the speed increase over a mi-
croprocessor becomes proportionally higher as well.

The pulse-multiplier circuit is not speed critical. I
instructed the synthesis tools to optimize for the
fewest gates, not the highest speed. According to the
timing analysis that the tools provide, I could in-

crease the clock rates by 20,000×, without changing any
other logic. The circuit would then operate on much
higher input frequencies.

Designs often have speed-critical areas that must use
dedicated hardware, and non-speed-critical areas (such
as a user interface) that can operate more slowly. Typi-
cally, a design might use an FPGA for the speed-critical
areas and a microprocessor for the user interface. Why
not put the user interface into the FPGA as well?

In the past, there have been good reasons not to do
this. Cost is one. I am assuming that the circuit will use
an FPGA anyway, and there are probably enough gates
to do a simple user interface. If you need a larger FPGA,
the incremental cost will probably be low, plus you
eliminate the need for the micro and its support logic.
This arrangement allows a smaller board outline with
fewer components.

The idea of using dedicated hardware to do user-inter-
face functions seems cumbersome at first, but this can
be written using VHDL, or even directly using a state-
machine editor. This is similar to coding the user inter-
face in a high-level software language. Pushbutton
synthesis and optimization make the actual implemen-
tation trivial. Complex state machines use relatively
little logic.

Memory in FPGAs has been limited in the past. For
instance, it would use a lot of resources to display a
screen of text. With older FPGAs, this would make for
costly memory. But now there are many FPGA architec-
tures that provide dedicated memory blocks, which can
be configured as RAM or ROM. These are separate from
the FPGA logic blocks. If these are not all used by the
high-speed logic, then they are free to hold any other
information you wish. So, even a text-intensive user
interface may be practical with these devices.

ment software. The computer tools
are designed to make all of the imple-
mentation steps a fast pushbutton
operation, and they are largely suc-
cessful. For the pulse-multiplier
project, my computer performs all of
these steps in around 40 s.

Implementation is mostly a task
for the FPGA development software.
In the simplest case, the user tells the
tool to make gates, or attempt an
implementation pass. This process
involves synthesizing the VHDL and
combining it with the other sche-
matic or VHDL modules. The state-
ments in the VHDL are interpreted
and the synthesis tool generates logic
for the various modules. If the VHDL
contains statements that are not
synthesizable, the VHDL will need to
be modified to use statements that
the synthesis tool can interpret.

This sounds like a challenge. In
fact, there is some learning curve for
this step. There are several books that
teach how to write VHDL for syn-
thesis. The most accurate reference
should be the “design for synthesis”
document that comes with the FPGA
design software. In my opinion, these
documents contain information that
is well worth reading. Besides show-
ing what will work for synthesis, they
should help you understand why some
structures work better than others.

After the design passes the synthe-
sis step, the tools will attempt to
optimize the design. Think of a
skilled designer analyzing a circuit to
see where logic can be minimized,
redundancies eliminated, or where
gates can be combined into more
efficient units. There can be tradeoffs
here, of course.
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than are available at any location on
the die. Also, the length of the wires
on most FPGAs can incur more propa-
gation delay than the delay through
the gates. Properly locating the func-
tional blocks to shorten the wires will
make the design run faster.

Lastly, the tools must take the
block placement and routing informa-
tion and put it in a format that can be
loaded into the device. The signal
routing, logic configuration, and other
parameters are programmed into the
FPGA by changing the values of inter-
nal memory cells. The configuration
is placed in a format that can be down-
loaded as a serial bitstream.

DOWNLOAD THE DESIGN
Now that you have a bitstream file

that contains the program for the
FPGA, you need to load that informa-
tion into the FPGA. For production,
this information would be loaded into
the FPGA at powerup. The simplest
way to hold the configuration infor-
mation is in an 8-pin serial PROM.
But for development, you can down-
load the information directly from
your computer into the FPGA.

A download adapter is used to send
the configuration through a serial or
parallel port on your computer to the
target device. The download adapter is
provided with the implementation
tools. Again, a mouse click starts the
download operation, which takes
between 1 and 4 s on my computer,
depending on the size of the FPGA.
When the download is completed, the
reset pin is briefly activated, and the
design comes to life.

IN-CIRCUIT TEST
You can now test your design using

real hardware. The demonstration
board makes this easy. You’ve built
your hardware—it is inside the FPGA.
The pulse multiplier uses just one
input and one output, plus DIP switch
inputs to select a multiplier value.
Because the circuit uses an oscillator
internal to the FPGA, the circuit
doesn’t need a clock input.

I chose a pin that is connected to a
pushbutton for the input. I also added
an output pin that drives an LED. The
circuit buffers the input pin, and

drives the LED output. I chose the
output pin as one that was connected
to the adjacent LED. When I pressed
the pushbutton, I could see the input
LED change. That gave me confidence
that the FPGA was being configured
correctly. As soon as I pressed the
button, I could see pulses appearing at
the output.

I could then test the design by
pressing the pushbutton at a regular
rate and see the output synchronize to
my button presses. This was quite
gratifying. I did not have much vis-
ibility into the performance, however,
other than counting output pulses.

For the second phase of testing, I
connected a signal generator to the
input, using a mini-clip to attach it to
the header connector. The signal gen-
erator had no problem overdriving the
pull-up resistor on the board. For easy
viewing, I connected an oscilloscope
to the input and output.

The pulse-multiplier circuit was
designed to work with slow input
pulses. I chose internal counter sizes
and bus widths to meet this require-
ment. The slow pulse operation
worked fine, but the slow sweep
speed was difficult to view on my
non-storage oscilloscope. I easily fixed
this development by driving the clock
from a higher frequency internal
source. With this change, I could in-
crease the pulse rate and see nice
stable waveforms on the ’scope.

From start to finish, I made a hand-
ful of changes to the pulse multiplier
and fixed several errors. I initially
designed the circuit to use the simple
counter method as the multiplier, but
I changed to the DDA algorithm in
my second revision.

I also changed the output control
circuitry. I wanted to avoid a poten-
tial problem with short output pulse
widths. I found that these would oc-
cur when the output toggled, and then
a new input pulse would synchronize
the input again a short time later. The
output-control block maintains a
minimum high and low pulse width.

A third change was to allow the
DIP switch inputs to select the multi-
plier value. Until then, I had pro-
grammed the design to use a constant
multiplier. The changeable multiplier
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value made it easier to
observe the multiplier at
work with the LEDs.

There were a number
of errors that I fixed
during development.
Almost all of these were
fixed during simulation,
without using the actual
hardware. I made a mis-
take with the handshak-
ing to the output-control
circuit, which blocked
all output pulses from
the multiplier. No prob-
lem. A simple logic
error and a quick fix.

Another problem was
the input counter. With
low input pulse rates,
the counter value would increase
until it wrapped at zero, then con-
tinue increasing. This wraparound
would give the appearance of a higher
frequency input. Again, the correction
was a simple change to the VHDL to
prevent the wraparound.

A third problem was an off-by-one
error in the circuit that counted the
output pulses. For each input pulse, I
would produce an output stream one
half-cycle shorter than I expected. The
total number of output pulses is criti-
cal for my application, so I fixed this
error as well.

I did have one error that I did not
find in my simulation. It showed up
only in the hardware. These are the
types of bugs that cause designers to
mistrust the tools and pull their hair
during debug. As with most areas of
design, there are many ways to find
these problems.

One way is to use the download
port from the host computer. This
device is also a hardware-debugging
device that can be used much like a
microprocessor emulator pod. Instead
of using an external or free-running
clock, the user controls the clock
pulse generation from the host com-
puter. At any time, you can upload
the entire contents of the design and
investigate any signals in question. I
chose not to use this method.

If you are synthesizing VHDL, it’s
important to remember that the
VHDL will be used to generate the

actual hardware. Therefore, it eventu-
ally becomes important to understand
how the various VHDL constructs
translate to the circuitry that the
synthesis tool builds. A good way to
learn is to write simple models, syn-
thesize them, and then generate a
schematic sheet. This is possible with
the Xilinx Foundation tools using the
synthesizer directly. By the way, the
Foundation tools are also useful to
learn what hardware will be produced
from the various VHDL constructs.

To debug the last error, I used a
two-step process. First, I exported the
synthesized gate-level net list in a
VHDL format, and then ran a VHDL
simulation on it. Normally, I would
expect the simulation of the source
VHDL to give the same results as the
synthesized VHDL. This was not the
case because internal signals had
uninitialized values, and there were
no expected outputs.

Secondly, I brought the VHDL
model of the pulse-multiplier core
into the FPGA Express synthesizer. I
synthesized the design and then
viewed the result as a schematic
sheet. Machine-generated schematics
aren’t pretty—a human can do a much
better job. Still, the logic is there, and
I was able to look for the constructs
that I expected to see.

The error turned out to be my
problem. I found a group of flip-flops
that had no reset input. I had forgot-
ten to initialize a counter in the reset

state, which allowed it to
wake up with unknown
values. Why didn’t the
VHDL simulation catch
this? Uninitialized values
are supposed to be obvi-
ous (see the sidebar
“What’s Next?”).

 The reason became
clear when I read through
the source file. I had built
a counter that internally
used the type Integer.
Integer types wake up
with their minimum
value, which was zero for
the range of values that I
had specified. So in the
VHDL simulation, the
counter always started

with the value zero.
After synthesis, however, I no

longer have integer types in the de-
sign. The net list has only logic gates
and their interconnections. The simu-
lation of the net list showed the
uninitialized values. In this case, the
net list simulation showed more accu-
rate real-world performance than the
source VHDL.

The use of integers in a synthesiz-
able model is a convenience. It allows
the design to capture the system re-
quirements in a readable manner. In
this case, however, it masked another
error—my unspecified initial behavior
of the counter. A better way to model
the counter would be to use the Un-
signed type. Signed and Unsigned
types form a bit vector that is inter-
preted as a two’s complement value,
or unsigned value, respectively. I use
signed and unsigned values elsewhere
in the model for the arithmetic in the
DDA module and in other areas.

IN OPERATION
The last step in this project was to

put the pulse multiplier into opera-
tion at the water plant. I assembled
the circuit on a small piece of perf
board (see Photo 1). This board was
placed in a small aluminum enclosure
and installed in the panel containing
the controller. The controller pro-
vided access to 5-V power at a termi-
nal strip, so power was brought down
with the signal wires.

Figure 2—This schematic sheet was used at the top level of the design. This is the simplest
way to include the Startup block and other FPGA primitives. The pulse multiplier VHDL block
contains the majority of the circuitry.
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A serial PROM was included on
the circuit board to hold the FPGA
configuration. The data file was pro-
grammed, and the chips plugged into
their sockets. The multiplier value
was selected from the DIP switch, and
the controller input scaling factor was
modified to match. I used 128 as the
multiplier value to provide a reason-
able number of pulses per half-second
sample window. It would also allow
the input rate to increase to 3 Hz,
while keeping the output rate below
the maximum 400-Hz rate.

The installation and testing were
uneventful. I tested the controller by
first measuring the flow using the
indicator on the turbine meter and a
stopwatch. I then compared this value
to what was indicated on the flow
meter. They were within one gallon
per minute of each other. Because the
turbine meter is the source of the
input pulses, the values of the two
meters should be close.

I then needed to confirm that the
circuit was never producing more or
less total pulses than it should. I took

note of the total capacity indication
on both the turbine meter and the
controller. Nine days later, I re-
checked the values again. Both indi-
cated that just over 200,000 gallons
had passed through the filter. In regu-
lar operation, the controller I designed
worked as expected and, so far, has
shown no surprises.

Was the project successful? Yes.
Did I complete the project in one day?
Well…not exactly. Projects seem to
expand to fill all the time that is al-
lotted for them, and a little more.
This was no exception, and I had no
real deadline for completion. Plus, I
was having fun.

Over the course of the project, I
generated 13 revisions to the design.
Most of these were to change how I
manipulated the displays, or because I
used different internal clock rates for
testing. Also, I took a few sidetracks
that I knew were unnecessary. Each
time I learned a little more.

This incremental learning process
helps to put the FPGA design within
the reach of most designers. The

FPGA tools allow a design to be
implemented with little user inter-
vention. Still, with a complex design,
each user will want to optimize the
process for either speed, gate counts,
or debugging, depending on the appli-
cation. The tools not only allow this
tuning, but also allow a novice user
to get started quickly. I

http://www.xilinx.com
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FROM THE
BENCH

Jeff Bachiochi

In Theory and in Practice

Those
of you
who’ve
been
around

awhile will recall the
HAL project. This
month, with the as-
sistance of a digital
filter, Jeff converts
the concept into a
standalone unit.

ast month, I
left you without a

reason for needing a
digital filter. I intended

the article to be a standalone tutorial
on filter design, but I introduced a
specific design for a low-frequency
narrow-bandpass switched-capacitor
digital filter.

One of the most response-generat-
ing projects originally presented in
Steve’s old BYTE column was HAL,
the hemispheric activation level detec-
tor. People still e-mail us about that
project. So much so, that I revisited
HAL, or at least the analog filter front-
end optimization, in a past FTB col-
umn (Circuit Cellar 27). This month,
I’ll pull together the digital filter
scheme from Part 1 along with some
other circuitry to modernize the HAL
concept into a simple standalone unit.

LOGIC VS. EMOTION
Your brain contains two distinct

hemispheres. Each half may look like
a mirror image of the other, but each
half is organized for separate tasks—
the logical and the emotional.

Logical activities include speech,
reading, writing, spelling, and recall-
ing names and addresses. Processing
sequential and numerical information,
as well as the literal interpretation
and rational evaluation of facts are
natural logical functions.

Emotional activities involve feel-
ings and imaginative visuals. Exploring
the relationship between events past,
present, and future is best handled by
the emotional side. We tend to pro-
cess these activities in parallel.

The stimulation of these two areas
often results in conflicting output.
Your conscience may be the arbitrator
of the final outcome, but I’m not here
to debate the issues of the conscience.

SHOCKING INFORMATION
The brain produces tiny electrical

signals indicating activity. Making
sense of these electrical signals is best
left to the professionals, but these
signals have been categorized by cer-
tain ranges. Activity output in the
0.5–4-Hz range is known as Delta
waves. Delta waves seem to indicate
the deepest stages of sleep.

The range of 4–8 Hz is the Theta
band. Theta waves include active
mental imagery and creativity. These
may be associated with sleep as well
as with enhanced learning ability.

Electrical activity in the 8–12-Hz
range is known as Alpha wave. Alpha
waves suggest a state of rest (i.e., the
lack of any problem solving activity).

Beta activity is in the range of 14–
25 Hz. Beta waves correlate to the
brain’s engagement of thinking or
acting on a stimulus.

Although individual decisions can
be processed in a snap, a change of
focus (or state) may take much longer.
This is why we can’t see any mean-
ingful changes in less than 0.5 s.

TINY VOICES?
Not only must we contend with

electrical activity resulting from bodily
functions such as muscle activity, but
also interference from outside sources
(including electrical appliances and
the dreaded 60-Hz hum).

To remove these unwanted signals,
you need a good filter. The filter must
be capable of reducing these signals by
at least 50 dB (or 1 × 10–5). That’s, one
reason for the switched-capacitor filter
design in Figure 1. See what I’ve added
to last month’s filter design?

The circuit starts with an instru-
mentation amplifier. The in-amp
allows differential inputs to amplify

Part 2: Clock Adjustment and
Digital Filters

l
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~2 µV (20 mv/12500). The input will
be an AC signal so how do you know
when to make an A/D conversion?

You need to make a number of
conversions and look for the highest
conversion value of each cycle. How
can you stay in-sync with the input?

USER-SELECTED CLOCKING
The LTC1068 requires a clock of

100× the center frequency of the filter.
This means that if the filter is to be
centered at 10 Hz, you must provide a
clock of 1 kHz.

I planned to use the PWM function
as a background task. Unfortunately,
even with a divide-by-16 prescaler, the
minimum frequency was greater than
the 100 Hz I needed for a 1-Hz center-
frequency bandpass filter. So, I was
destined to use a 16-bit timer. Now,
instead of a single look-up table, I’d
need one for the least significant byte
and one for the most significant byte
of the timer reload value.

To allow you to select the center
frequency, six digital inputs are used.
The first five set the frequency
1–32 Hz (0 = 32 Hz). The last input
enables manual control.

This project is manual control, but
I wanted the hooks to
have RS-232 control.
Maybe I’ll come back to
this one day. It would
require some kind of
isolation between this
unit and the serial de-
vice. Note that you
should never use this
project with any power
source besides batteries.
No AC/DC converters.

Three things happen
when timer1 overflows.
First, the timer is re-
loaded from the
T1VAL_H and T1VAL-L
timer1 reload registers.
These are the values read
from the two 32-entry
tables. The offset into
the table is based on the
first five digital inputs.

Once reloaded, the
timer is started again.
While still in the inter-
rupt routine, the FCLK

device that can reach within 20 mV of
its power-supply rails. The potential
output swing is important because it
can limit the following A/D’s range.

The output of the final gain stage is
presented to the A/D converter. The
PIC16C73 has a built-in 8-bit A/D.
The gain stage’s output is an AC
waveform biased at 2.5 V (or 1/2 VCC).
Because the input will vary above and
below 2.5 V, we lose half of the A/D’s
resolution. We’ll pay attention to
conversions from 128-255.

A note here about Microchip’s new
PIC16F873. This flash-memory based
replacement for the ’C73 has im-
proved performance. The present 8-bit
A/D is replaced by a 10-bit A/D. But,
even more important is the addition
of a VREF-. Presently, the A/D can be
referenced at VCC or a VREF+ input
and ground. In an application like this
where the input is biased at 2.5 V, you
lose half the resolution. If the VREF-,
which is always ground on the ’C73,
could be 2.5 V (as with the ’F873’s new
VREF- input), there would be no loss.

If the LSB resolution of the 8-bit
A/D is ~20 mV (5 V/256), then the
minimum differential input to vary
the A/D conversion by 1 bit will be

microvolt-level signals while continu-
ing to reject common-mode signals.

My in-amp has a common-mode
rejection (CMR) rating of +70 dB, yet
costs about $4. A single resistor sets
the gain of the in-amp. I used a maxi-
mum gain of 1000 for the front end. A
5-µV signal across the differential in-
puts results in a 5-mV in-amp output.

The maximum output swing of the
in-amp using a single 5-V supply is
within 75 mV of the rails. Using a
2.5-V bias, this means that a ±2-V
swing would be no problem. However,
we must make room for an additional
12.5× gain boost further on down the
line. So, a differential input needs to
reach 200 µV to approach a full-scale
output level into the A/D (200 µV ×
1000 × 12.5). The total theoretical
gain of the system is 12,500.

I placed the digital filter between
the two gain stages. The filter has no
gain associated with it. To prevent
any post-gain amplifier from amplify-
ing any generated noise, you would
normally complete all the gain before
any attempt in filtering. In this case, I
didn’t want unwanted signals to peg
the gain stage such that any filtering
would be useless, so I placed some of
the gain after the filter.

The filter design was
based on a bandwidth
of about half the center
frequency. With these
criteria, I could center
the filter in a number
of different locations to
cover the Delta, Theta,
Alpha, and Beta bands.

Here’s a second rea-
son for using this
switched-capacitor
digital filter. Without
changing any filter com-
ponent values, I can
move the bandpass filter
around simply by
changing the clock in-
put. More on this later.

Following the
bandpass filter is the
final gain stage. I used a
National LMC7111
single op-amp (about
$3). This CMOS op-
amp is a single-supply

Figure 1—The top half of this schematic should look familiar if you read Part 1. The new
switched-capacitor filter design gives you more to look at and helps eliminate unwanted signals.
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Because it already has a phono jack
at each end, just cut it in half. Strip
back the remaining ends 1″ and re-
move the shield. Next, strip off 1/4″
of the center conductors and solder
them to female halves of #4 sew-on
snaps (from a fabric shop). This snap
receptor is just the right size for dis-
posable pregelled electrodes.

You can make pseudo electrodes by
soldering the conductor directly to
silver dimes. You’ll need a way to
attach these, because there’s no adhe-
sive (like there is on the disposable
electrodes). You can permanently
mount these to a sweatband if the
placement issue can be overcome. To
assure proper electrical contact with
the skin, a conductive gel can be ap-
plied to the electrodes

The most common placement for
the differential electrodes is the fore-
head and lower rear hairline. The pair
can be centered over the left or right
hemisphere. Pair placement, which
bridges the hemispheres, will indicate
differences between the two. The
body ground lead should be attached
some distance from the pair. You
might use an antistatic wrist strap for
this connection (or a third electrode).

This project is an engineering ex-
ample of the design techniques used
in acquiring brainwave signals. This
project is not medically approved, nor
do I make any medical claims for it.
Power the circuit with batteries only.
This circuit requires <50 mA and will
run on four alkaline batteries without
the need of a regulator.

HAL COMPARISON
HAL is a multichannel device that

uses a wide bandpass filter and
samples the amplified input once every
1/64 s. A PC is required for HAL. The
PC receives the sampled datastream
and, because the data rate is known,
performs an FFT on the real-time data
to extract frequency and signal
strength from the two channels.

This narrowband activity project
(NAP) is a single-channel device. It
uses a narrowband filter and samples
the amplified filtered input at a rate of
200 samples per cycle. Unlike the
HAL, a PC isn’t required. A 10-seg-
ment LED display indicates the rela-

tive strength of the input that falls
within the chosen band.

OTHER POSSIBILITIES
I can think of lots of ways this

project can be altered. A sound output
might be of benefit to some. You
would probably want the pitch or vol-
ume to change based on the A2D regis-
ter value. The PWM function on this
processor might work well for this.

As mentioned previously, if an
isolated RS-232 interface was added, a
PC could send instructions to move
the bandpass filter. Application soft-
ware might search for the strongest
signals and report on what it sees.

This is a vertical niche project that
certainly won’t appeal to all. But you
might find a small part that can help
you in your future endeavors. That’s
what these columns are about. I

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCES
AD627 in-amp
Analog Devices
(617) 329-4700
Fax: (617) 329-1241
www.analogdevices.com

PTC1068 quad filter block
Linear Technology
(408) 432-1900
Fax: (408) 434-0507
www.linear-tech.com

LMC7111 op-amp
National Semiconductor
(408) 721-5000
Fax: (408) 739-9803
www.national.com

PIC16C73
Microchip Technology, Inc.
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

A-10005 disposable electrode
Vermont Medical, Inc.
(802) 463-9976
Fax: (802) 463-9228
www.vermed.com

output is complemented. This is the
clock output that controls the center
frequency of the digital filter. Finally,
before leaving the routine, an A/D
conversion is performed. The conver-
sion value is compared to the
TEMP_A2D register (highest sample
value) and the TEMP_A2D is updated
if the conversion value is higher.

Every 200 times through the inter-
rupt, the TEMP_A2D value is trans-
ferred to the working register A2D,
and then cleared to compile a new
high value. Two hundred is a magic
number here. The FCLK output bit
flips 200 times for each 100 cycles.

One hundred cycles is the clock
rate equal to one cycle of center-fre-
quency input through the filter. No
matter what the center-frequency, the
A/D will always sample 200 times for
each cycle. This way it stays in sync
with the pass-band signal.

While not in the timer1 interrupt
routine, I process two pieces of data in
a continuous main loop. The first op-
eration is sampling the digital inputs
for a change in user configuration (i.e.,
a change of center-frequency) and up-
dating the Mode register accordingly.

Second, I want to display the A2D
register value. I didn’t do any averaging
of the A2D register because good data
actually changes slowly and the A2D
register only changes once a cycle.

To report the amount of signal mea-
sured by the A/D, I use multiple com-
pares on the A2D register and jump to
alternate routines to turn on a single
LED. The ten LEDs are programmed to
function as a linear bar-type display of
the A2D register’s value.

I could have used a logarithmic
function by simply changing the val-
ues used for comparison. By prevent-
ing only one LED to be on at a time,
precious battery current is preserved.

BODY CONTACT
To connect this project to the body,

you need three leads. The first is a
body ground, which places the body
and the circuit ground at the same
potential. The remaining two leads are
the differential inputs to the in-amp.
These leads must be shielded (with the
shields tied to circuit ground). You can
use a 6′ (or longer) phono cable.

http://www.analogdevices.com
http://www.linear-tech.com
http://www.national.com
http://www.microchip.com
http://www.vermed.com
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a s we enter the
year 2000, it’s

quite fitting that the
silicon wizards are con-

juring up a new way of thinking
known as System-on-Chip (SoC).

SoC brings to mind bleeding-edge
VLSI design techniques that give IC
designers half a chance of getting their
arms around million-gate megachips.
It’s a matter of necessity because the
good old schematic just can’t keep up
with the march of silicon.

The idea is certainly appealing.
Simply mix-and-match made and/or
bought intellectual property (design
know-how), punch a button, and
voilà!—instant net list. Well, it isn’t
quite that easy, but at least the tools
—hardware description languages
(HDLs), IP catalogs, simulators, and
so on—continue to improve.

SoC is dandy, but only for compa-
nies that can afford six-digit design
software, huge minimum ASIC order
quantities, and the army of engineers
needed to forge a huge WunderChip.

But now, an interesting new breed
of chips is emerging that brings the
benefits of SoC to the mere-mortal
designs and designers that make up
the majority of the embedded busi-
ness. Just like the big boys, you now
have the ability to build a custom
chip, but you don’t need to pony up
for the 100,000 parts to do it.

Consider the standard MCUs we
all know and love—PICs,’51s,’68s,
and so on. The price is right, but other
than changing the software, there’s no
way to customize the chip to opti-
mally match your application.

Then there are the field program-
mable gate arrays (FPGAs), which are
a blank canvas of silicon just waiting
for your design inspirations. However,
they’re rather pricey and don’t achieve
the performance of a dedicated chip.

What to do? The answer according
to Silicon Valley startup, Triscend, is
simple. Why not just put a hardwired
MCU and a block of programmable
logic on the same IC?

As shown in Figure 1, that’s exactly
what Triscend has done with their ’E5x
configurable System-on-Chip (CSoC),
which combines an enhanced turbo
version of the venerable 8032/52 with
configurable system logic (CSL). The
’E5x lineup utilizes the MCU in com-
mon while varying the amount of SRAM
(for code and data), the number of
configurable logic cells, and the pin
count (see Figure 2).

The entry-level TE505 goes for under
$10 in volume, fulfilling the promise
of an ASIC for the masses. Total up
the cost of an MCU, FPGA, and RAM
chip, and you’ll see that the ’E5 is
comparable. You’ve got one chip ver-
sus three, and the CSoC can do things
a multichip lashup can’t.

 TURBO TIME
Given that it’s only a part of the

equation, Triscend may have been
tempted to cut corners and save some
silicon for the fancy stuff. However,
the ’E5 turbo MCU is no slouch.

Of course, as the turbo moniker
implies, it’s faster than a traditional
8032/52. Instead of the meager 1 MIPS
or so throughput of the older chips,
the ’E5 significantly boosts performance
by combining a faster clock rate (up to
40 MHz) and reducing the clocks-per-
instruction byte to four.

The legacy peripherals, which in-
clude three 16-bit timer/counters, a
full-duplex UART, and a watchdog
timer, also have new features. For
instance, the timer/counters can run
off the system clock either divided by
12 for compatibility with the 8032/52

SoC it to Me

System-
on-Chip
technol-
ogy
works

well if you’ve got the
budget and the man-
power to forge the
chip. But, Tom has
found an alternative
that makes SoC tech-
nology available to
the masses.

SILICON
UPDATE

Tom Cantrell
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or divided by 4 for higher resolution,
faster transfer rates, and so on.

The UART adds an automatic ad-
dress-recognition feature to the tradi-
tional ninth data-bit mode for
low-overhead networking. An extra
data-pointer register eases the data-
transfer bottleneck of the original de-
sign. There are modern conveniences
like wait-states, power-on reset, a
built-in oscillator, and even an NMI-
like high-priority interrupt (HPI).

All this is a big improvement over
the original, but to be fair, neither the
turbo speedup and feature tweaks are
especially new concepts. At this
point, other players in the 8032/52
market, such as Philips and Dallas,
already offer similar improvements.

But, the ’E5 does break new ground
with the addition of a two-channel
DMA controller and an expanded
address space to go with it. Any DMA
controller, and certainly one with a
lot of features, is a rather big-ticket
item to find on a lowly 8-bit MCU.

When you talk DMA, speed comes
to mind. The Triscend unit doesn’t
disappoint. It can dish up single-cycle
transfers if you can digest the resulting
40 MBps. If necessary, the DMAC also
allows wait states to be inserted and
even keeps track of up to 64 KB of
pending requests if service falls behind.

Beyond the basics, the DMAC has
plenty of extras with features
like auto-initialization for
repetitive transfers, four-byte
receive FIFO, and a built-in
CRC (CCITT-16) generator.

There’s still a 64-KB logical
address space, each for code
and data—a must for 8032/52
software compatibility. How-
ever, built-in address mapping
extends the physical address
space to a whopping 4 GB
with up to 32 address lines.
Note that the unneeded high-
order address lines can be used
as general purpose I/O.

Speaking of I/O, with 128-
and 208-pin PQFP and 436-pin
BGA package options, there’s
certainly no shortage. Unlike
the original 8032/52, the ’E5
provides a dedicated memory
bus (not shared with port pins)

and furthermore, I/O related signals
(UART, timers, interrupts, etc.) can be
assigned to any I/O pin. Although the
’E5 runs at 3.3 V, the I/O lines are 5-V
tolerant and, offer programmable out-
put drive current (4 or 12 mA), optional
input hysteresis (±150 mV), and pull-
up, pull-down, or bus-follower modes.

ALL ABOARD
The ’E5 MCU-core would make a

decent chip in its own right. But,
that’s only the start. Let’s look at the
Configurable System Logic (CSL) that
puts the “C” in CSoC and sets the ’E5
apart from other 8032/52 chips.

Although the documentation isn’t
explicit, CSL logic cells appear to be
similar to the SRAM-based look-up
table design found on many FPGAs.

A cell can perform any combinato-
rial function of up to four inputs, and
it’s quick at that (<5 ns). Cells are
grouped together to widen the fan-in.
For instance, two cells can handle any
function for five inputs and a subset of
functions for six to nine inputs.

For arithmetic tasks, each cell acts
as a 1-bit slice of an ALU with ADD,
SUB, ADD/SUB, or Multiply capabil-
ity. These provide the building blocks
for higher level functions of arbitrary
width. For example, 16 cells can
implement a 16-bit counter or a com-
parator with 25-ns performance.

Finally, the LUT can be hijacked
for use as a 16 × 1 RAM or ROM
(RAM without a write line). Cells can
be paired to implement a 16 × 1 dual-
port RAM, and a single cell can also
act as an 8-bit shift register (i.e., FIFO).

WIRED
As vital as the MCU and CSL are,

it’s equally important to consider how
the two are connected.

The simplest approach is to hang
the CSL on the MCU like any other
peripheral, perhaps throwing in a
chip-select or interrupt. After all, this
mimics the approach used when con-
necting separate MCU and FPGA
chips. However, Triscend champions
a much tighter and more intimate
coupling that truly takes advantage of
putting everything on one chip.

To that end, their configurable
system interconnect is more powerful
than the usual 8-bit expansion bus.
Besides the full 32 address lines and
separate read and write ports, a lot of
consideration is given to getting the
MCU and FPGA partnership working.

There’s not just a chip-select line,
but dozens or hundreds (more on the
larger devices) of selectors that just
about eliminate the need to use CSL
silicon for decoding bus transactions
and addresses.

Furthermore, selectors can link
CSL functions with specific
MCU hardware like the
memory bus. That means,
logic can directly access any
chip or resource the MCU
can. Similarly, a selector can
steer request and acknowl-
edge lines between logic and
the DMA controller.

To make sure the MCU
and CSL march to the same
drummer, the MCU clock is
broadcast into the CSL.
Meanwhile, the CSL has six
global-buffered, low-skew
lines available for other
clocks or high-fanout sig-
nals. Clock sharing even
extends to power manage-
ment. When the MCU enters
powerdown, each clock
takes appropriate pre-pro-
grammed action either by

Figure 1 —The Triscend ’E5 combines an MCU and CSL in order to craft a field
programmable System-on-Chip.
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is high, the ‘E5 goes into power-down
mode waiting for another power-up or
RESET. If VSYS is low, it will auto-
matically retry the initialization se-
quence indefinitely.

it waits for external logic to take
charge. PMOD selects between paral-
lel- or serial-bus modes. Finally, VSYS
specifies what action the chip will
take should initialization fail. If VSYS

continuing to run, holding the last
state, or being forced low.

The ’E5 even allows mapping un-
used MCU SFR (Special Function
Register) addresses to CSL logic. Now
you can use the quick and easy direct-
and bit-addressing modes that the
8032/52 reserves for SFRs, with your
own logic. Another great example of the
’E5 being able to do things a separate
MCU and FPGA can’t.

The tell-all relationship between
MCU and CSL extends to debugging
as well. The CPU informs CSL logic
when it encounters a breakpoint,
thus, CSL logic can force a breakpoint.

WHERE AM I?
With the entire personality (code,

data, and logic) of the ’E5 living in
RAM, you have to initialize the chip
after power-on. Fortunately, there are
a variety of startup options that make
the job as easy as it can be.

Three pins control the behavior of
the chip after powerup. SLAVE* deter-
mines whether the ’E5 itself initiates
and controls downloading or whether
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Figure 2 —Boot loading options include (a) parallel master
using a conventional byte- wide flash memory or EPROM
(b) serial master using a sequential EEPROM (c) parallel
slave under the direction of a host, and (d) via JTAG,
which is also used for debugging and testing.
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In parallel-master mode (see
Figure 3a), the ’E5 reads the
byte-wide memory (usually
EPROM or flash memory) to
initialize itself and begins
execution (at address 0000H) in
the same memory. The exter-
nal memory needs a program
to map the code and data to the
internal or external memory.

Serial-master mode (see
Figure 3b) utilizes the same
sequential access serial
EEPROMs popular with the
FPGA crowd. As the name
implies, these chips don’t need
an address. They start at ad-
dress 0 after RESET and pro-
ceed sequentially bit-by-bit
with each CLK.

The parallel-slave mode wir-
ing (see Figure 3c) is just like
parallel-master mode, except
the direction is reversed. For
instance, addresses and control
lines are inputs to the ’E5 from
an external controller. To the
host, the ’E5 looks like RAM.
The ’E5 waits in RESET until
configured and released by the
host. External code fetches
aren’t allowed in this mode, so
the entire program must fit in
’E5 internal RAM.

Besides testing and debug-
ging, the ’E5 JTAG port is put
to use, providing the equiva-
lent of a serial-slave initializa-
tion mode (see Figure 3d) with
a number of unique capabili-
ties. First, the JTAG port is
treated as a bus master by the
’E5, giving the host complete
visibility into the target sys-
tem. In JTAG mode, the exter-
nal memory is optional and
can be of any technology (e.g.,
DRAM) because it doesn’t play
a role in the boot process. In-
system programming is easy
because the host can blow an
external flash memory or
EEPROM via JTAG and the ’E5
memory bus.

A final option is the so-
called stealth mode. Once the
program is loaded into internal
RAM, setting the security bit

disables both the JTAG and
memory ports. JTAG bus mas-
ter privileges are taken away
(although, boundary scan still
works) and no external pro-
gram or data accesses are al-
lowed. Global chip RESETs
are ignored even though the
MCU-specific RESET still
works. The only way to get
out of stealth mode is to cut
the power off, posing quite a
challenge for anyone trying to
sneak a peek inside.

FAST CHIPS FAST
The ’E5 brings it all under

one roof but raises the specter
of an unwieldy lashup of soft-
ware and hardware tools.
Never fear—Triscend offers
their FastChip software and a
development board (see Photo
2) to get you off on the right
foot. The best way to describe
FastChip is to show it in ac-
tion using the “My Design”
tutorial that’s included.

Photo 1a shows the main-
design entry screen. The row
of icons along the top corre-
spond to the general develop-
ment sequence, starting with
project definition and proceed-
ing through chip creation
(Bind, Download, Debug, etc.).

The tutorial example is
simple. It uses the watchdog
timer as a once-per-second-or-
so interrupt generator. Upon
each interrupt, the program
increments the Result register
and displays it on the EV
boards two 7-segment LED
displays (i.e., cycles from 00 to
FF, indefinitely). There’s also a
flip-flop (Heartbeat) that
toggles the decimal point on
the display. On the left you
can see the library from which
these and other functions can
be dragged and dropped onto
your design.

The icons in the second
row are used to configure the
MCU peripheral functions. For
example, clicking on the
watchdog timer brings up a

a)

b)

c)

d)

Photo 1 —Here’s a look at a custom SoC from start to finish. Begin by dragging
functions onto your chip (a). Next, configure the MCU peripherals (b), such as
the watchdog timer and FastChip, which automatically generates the initializa-
tion code. After binding and downloading your design, set up a breakpoint (c). At
the breakpoint, examine what’s going on (d). The LEDs are showing 36 (i.e.,
RESULT = 36, which matches the pattern on the 7-segment drivers).
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clicked on the LED drivers to take a
closer look and can confirm that they
are indeed driving the proper segment
pattern. Much as I like poking at a
rat’s nest, it’s rather enjoyable to
debug hardware on a screen!

A lot can be accomplished by using
FastChip and it’s built-in function
library. All you need to do is provide a
.HEX file with your MCU code, and
FastChip does the rest.

window, allowing simple point-
and- shoot setting of the opera-
tional characteristics. As shown in
Photo 1b, FastChip automatically
generates the code (C or ASM) to
accomplish your request, com-
ments, and all. This is great—now
you can tell your boss that you
spent all day writing exceptional
code when, in reality, it only takes
a few clicks of the mouse.

At that pace, it won’t be long
before you’re ready to download
and debug your design. In Photo 1c,
I’ve set a breakpoint for each
watchdog interrupt, specifically at
the point the Result register is
incremented. Notice in the watch area
near the bottom, that Result equals
36, and the status line at the very
bottom shows the MCU is halted at
the breakpoint.

Now, you can poke around to your
heart’s content. Let’s say the LEDs
don’t actually show 36. Most likely a
design bug, but it could also be a short
on the board, bent pin, or a bad LED.
Just to confirm, in Photo 1d we’ve

However, this only scratches
the surface. Triscend is working to
integrate popular third-party tools
more closely. The software comes
with demo versions of Keil for
MCU software and Orcad for sche-
matic capture. Other third-party
names bandied about include
Archimedes (software), ViewLogic
(schematic), and Synopsys, Syn-
plicity, and Exemplar (synthesis).

No complaint about the
FastChip price. It’s only $499,
which is peanuts by chip-design
tool standards. Better yet, they
offer a free 30-day fully functional
trial version so you can try before

you buy. The entire development kit,
including FastChip, the evaluation
board, and a PC parallal port to JTAG
adapter, sells for $1395.

The only caveat? During installa-
tion, FastChip reported that it really
would be happier with 192 MB of
RAM. I only have 64 MB, which was
enough to fool around a little with the
tutorial, but not much more. In dis-
cussions with Triscend, they indi-

Photo 2 —Fittingly, an evaluation board for a configurable System-
on-Chip doesn’t need much besides a CSoC. There’s an SRAM, a
parallel flash-memory chip (20-pin socket for the serial option), an
RS-232 transceiver, and the requisite LEDs and switches.



Problem 2 —In the world of computer science what is priority
inversion?

Problem 3 —Given a two-phase stepper motor that can be
configured either as bipolar or unipolar, which configuration
saves energy?

Problem 1 —Johnny is tasked with designing the trigger
circuit for the free world’s latest super-secret weapon.
This circuit must be built on a double-sided PCB to re-
duce cost and it must operate in an extremely noisy envi-
ronment with considerable ESD and EMI.

Earl, a guy at the local tavern, suggested that Johnny
should flood all of the space between traces on the PCB
with copper using the PCB layout tools copper fill function
since a changing electromagnetic field (EMI) cannot
penetrate a conductive surface (See Figure).   Should
Johnny use Earl’s advice?

Problem 4 —A pair of generic 4 MB dynamic RAM chips
configured as 1048K × 4 are used to implement a 1 MB × 8
memory array for an embedded 8-bit microprocessor. The
dynamic RAM chips are rated 60-nS access time. In opera-
tion, a minimum of 120 nS per byte is required to transfer a
block of data into or out of the memory using standard read/
write cycles. Why?

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for over a
decade. Reach him by e-mail at
tom.cantrell@circuitcellar.com, by
telephone at (510) 657-0264, or by fax
at (510) 657-5441.
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cated I would have problems if I tried
to actually create my own chip (i.e.,
do a Bind) with so little RAM. Of
course, I tried it immediately.

Finally resorting to CTL-ALT-
DELETE after about half an hour of
my hard disk playing washing ma-
chine, I’ve got two things to say to the
Triscend engineers. First, you were
right about the RAM, and second, you
might add a progress bar and ESC key
feature for the next RAM-poor fool
who tries pushing their luck.

SoCCESS STORY
Overall, I was impressed by the

’E5. The MCU does a good job mod-
ernizing the popular 8032/52, and the

FPGA seems decent enough. I give
Triscend a lot of credit for being one
of the first to run hard with the MCU
+ FPGA concept.

Yes, there are a lot of great MCUs
and FPGAs around, and other compa-
nies can, and will, introduce similar
combinations. However, Triscend
seems to understand there’s more to
the CSoC concept than just cut-and-
pasting separate chips onto a single
piece of silicon.

The real keys to success are how
cleverly the functions are combined
(interconnected) and development
tools that live up to the “S” in SoC by
handling the entire design spectrum
from gates to C.

Embedded Dedicated Device System RAM Configurable system CSI address PIO
processor  core resources  logic (CSL) cells selectors pins (max)

8032 Turbo High-speed internal bus TE505 16K × 8 512 32 124
(3) 16-bit counters Memory interface unit TE512 16K × 8 1152 72 188
USART 2-channel DMA controller TE520 40K × 8 2048 128 252
Watchdog timer Power management TE532 64K × 8 3200 200 316
Interrupt controller Power-on reset

Hardware breakpoint unit
JTAG port

Table 1—With up to 64 KB of SRAM, hundreds of pins, and thousand of logic cells, the ’E5 is definitely an 8-bit MCU with attitude.

Keep an eye on Triscend—I think
they get it. I

http://www.triscend.com
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swear this is the last thing I’ll write about Y2K. OK, a year ago I said there could be some Y2K glitches. As
engineers, we know computers are only as good as the program code they run. If a lazy programmer didn’t insert

some kind of error checking or fallback provisions, it’s possible that the code could stop dead in its tracks.
Maybe it was that fault of engineers like myself, who when asked if there could be difficulties, answered it honestly.

What we didn’t add was whether this uncertainty was significant or not. We should have thought more about who was listening to the
message and not just that we were answering a technical question. I can’t speak for all of you, but I know that when someone asks me if a
technical problem can be solved, I tend to answer it in engineering speak. In essence, if the task is 99% solvable and 1% trouble, I will say,
“Yes, it can be done, but situation X could make it not work.” It can easily sound to someone that the odds are 50/50 for either situation.

Because we technical people are so involved in solving tasks, we often feel responsible when we are unable to do something. As a
result, we automatically emphasize the tiny gotchas that inhibit 100% positive results rather than underscoring the 99% we might get right.
Certainly, it has a lot to do with our personalities, but it also has a lot to do with how engineers view technical tasks. An engineer designing
an anti-lock brake system for a car considers it a total failure if the end result has a 0.001% probability of not engaging at the right time. This
is a radical example of course, but I think you get my drift.

There is also media-speak. These days, accuracy is a matter of interpretation and journalists will often see events with the opposite
slant that you might. For example, if there is a new dot com IPO on the horizon with a 1% potential and 99% risk you’lI read or hear, “In
light of the vast fortunes being made on dot com companies these days the potential for success is assured.”

As for Y2K, we’ve been had. Informed technical people answered the media’s questions about the Y2K risk that there was some
possibility of isolated problems. This was reinterpreted by less-technical pundits like Ed Yardeni, an economist for Deutsche Bank, who told
Fortune magazine that the probability of recession was 70%! In the end, the media frenzy prophesied a scenario of 100% catastrophe. A lot
of scared people started thinking about bomb shelters for the first time in 35 years and bought enough bottled water to fill Lake Erie.

By now we all know what really happened on Jan 1st. Nothing! Nada! Zero! I mean, the media needs to have their clocks cleaned for this
fear fest! And remember people, this the same gullible group that we count on to provide the news tomorrow!

Were all of us who knew it shouldn’t be all that bad, stupid? Or, just not vocal enough? Was this Y2K hype so well orchestrated that we
were blindsided?

I’d like to say I was totally unaffected, but I wasn’t. No, I didn’t stock up on water, buy a generator, or fill all the kerosene heaters (we
have all that stuff already out here in snow country). Instead, we threw a New Year’s party! That was the good news. The bad news was all
the hysteria again. We had a few people tell us that they don’t venture out on New Year’s Eve, but we also had one couple call at the last
minute and tell us they were just too frightened to go out. Of course, they live in a town that had block watchers on every street with
emergency flags ready to signal roving police cars because (according to the media) the power and telephone system would inevitably fail.
It’s no wonder they were frightened.

It was interesting that night to watch the midnight celebrations as they progressed across the Pacific and Europe. By the time the Eiffel
Tower lit up the midnight sky in Paris, everyone at my party (primarily business professionals) was questioning why there were no reports of
catastrophe anywhere. The media was certainly on the lookout all over the world but there hadn’t even been a traffic light that didn’t work
correctly from what I saw.

I read someplace that the US spent about half a trillion dollars on Y2K. AT&T spent $500 million alone. How much do you think Belize
spent on Y2K readiness? OK, I’ll put a damper on my own hype here but wasn’t Russia supposed to implode on Jan 1st? Weren’t Greece,
Italy and a pile of other modern countries that depend upon computers, and who weren’t spending 50% of their GNP on programmers,
supposed to have gone belly up on the 1st?

 Another columnist recently said that if we went to the doctor and ended up with a heart bypass instead of an antacid that should have
been prescribed, we’d probably go berserk. As a matter of expenditure versus the reality of the problem, I think we did far too much to
achieve “Y2K compatibility.” For all of us businesses who spent thousands of dollars updating software and operating systems to satisfy the
demands of frightened customers and financial institutions, all I can say is phooey. Y2K was a significant non-event and it cost a lot more
than it should have. It is said that history is destined to repeat itself if we don’t learn from the past. Surely, if we don’t want to repeat this
fiasco, then we should also heed another wise old adage as it applies to Y2K beneficiaries: Follow the money!

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Y2K Phooey
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