
CELLAR
T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

w
w

w
.c

ir
c

u
itc

e
lla

r
.c

o
m

CIRCUIT
®

 # 1 1 4 J A N U A R Y 2 0 0 0

COMMUNICATIONS
Synchronous Serial
Communication

Resistive Touchscreens

Designing Neural Networks

Embedded CAN

2 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

— COLUMNS —
Considering the Details
The Basics of Thermocouples
Bob Perrin
This month, Bob sets out to shed some light on the mysteries
of the thermocouple by explaining hot junctions, cold junc-
tions, and dissimilar metals. As usual, he provides enough
circuits and information to get you ready to design a thermo-
couple into your next project.

Lessons from the Trenches
Defects For Sale
George Martin
Although it might not be the best slogan to put on your next
batch of business cards, if you design custom hardware and
software, defects (bugs, failures, etc.) are a reality of every
project. According to George, the key to staying in business is
understanding your ability to design, find, and repair defects.

Silicon Update Online
The Captain is Back
Tom Cantrell
Captain ZiLOG is back! Armed with the new eZ80 and
Z80S183, he returns to wipe out 20 years of somewhat lack-
luster performance by ZiLOG. As Tom explains,
these new chips certainly have the potential
to boost ZiLOG. Stay tuned to find
out more about the Captain’s
return.

Double your technical pleasure each month. After you read Circuit Cellar magazine, get a
second shot of engineering adrenaline with Circuit Cellar Online, hosted by ChipCenter.

 — FEATURES —
Voice-Recognition Controlled Sailboat
Mike Smith, Todd Turner, and Steve Alvey
For his engineering design project at the University of
Calgary, Todd and his team created a prototype for a voice-
recognition system that enables quadriplegic sailors to
independently control a full size Martin 16 sailboat. Batten
down the hatches for a storm of information about this
practical and resourceful project.

Building a Embedded Timing System
Jamie Pollack
Although development systems are robust and have a great
diversity of hardware and software, a few applications and
some wire wrap can go a long way. Jamie used a
MC68HC11 series microcontroller to design and develop a
system that will fit into even the tightest of budgets.

RC Servo Control via TPU
Jeff Loeliger
If you’ve ever wanted to control RC servos without any
additional hardware, then pay attention to this project
because that’s just what Jeff has done. By designing a time
processor unit (TPU) function, he provides an easy-to-use
interface and puts some of the fun back into servo control.

 Resource Links
• H-Bridges and Class-D
• Peltier Thermoelectric Coolers
Bob Paddock
• Flash Memory
Ben Day

Test Your EQ
8 Additional Questions

Table of Contents for December 1999

WWW.CIRCUITCELLAR.COM/ONLINE

www.circuitcellar.com/pic2000
PIC® 2000contest

Internet

 Grand Prize
for the best design that includes both

Internet connectivity and Internet application:

$5000 cash Plus
� MPLAB-ICE 2000 emulator

� MPLAB-C compiler
� PRO MATE II programmer

Each Category:

1st Place: $4000
cash plus PICSTART Plus and MPLAB-C

2nd Place: $3000
 cash plus PICSTART Plus and MPLAB-C

3rd Place: $2000
 cash plus MPLAB-ICDDeadline is May 1, 2000

CIRCUIT CELLAR ® Issue 114 January 2000 3www.circuitcellar.com

ISSUE
INSIDE11411448 Nouveau PC

edited by Harv Weiner

50 RPC Real-Time PC
A Matter of Time
Part 1: Accurate Timing and Frequency
Ingo Cyliax

55 APC Applied PCs
The Mockingbird Trial
PIC vs. 80188
Fred Eady

Synchronous Serial Communication
A PC Link to a SPI/Microwire Device
Duane Mattern

Reach Out and Touch
Designing a Resistive Touchscreen
Tom Dahlin

Neural Stamp
A Low-Cost Neural Network Processor
Robert Lacoste

Embedded CAN Can
Michael Howard

Embedded Living
Tuning Up the HCS-II
Mike Baptiste

I MicroSeries
High-Definition TV
Part 3: DTV System Architecture
Mark Balch

I From the Bench
Speed Racer
Virtual Speed with the SX
Jeff Bachiochi

I Silicon Update
Atmel Gets Tiny
Tom Cantrell

6

8

83

95

 96

12

20

26

36
40

62

70

78

Task Manager
Random Thoughts

Steve Meyst

New Product News
edited by Harv Weiner

Test Your EQ

Advertiser’s Index
February Preview

Priority Interrupt
Steve Ciarcia

It Starts with an Idea

6 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

THE MAGAZINE FOR COMPUTER APPLICATIONS

TASK MANAGER

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Steven Meyst

TECHNICAL EDITORS
Michael Palumbo Rob Walker

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Mike Baptiste Ingo Cyliax Fred Eady
George Martin Bob Perrin

NEW PRODUCTS EDITOR
Harv Weiner

PROJECT EDITORS
Steve Bedford Janice Hughes
Elizabeth Laurençot David Tweed

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson
David Prutchi

ASSOCIATE PUBLISHER
Sue Skolnick

CIRCULATION MANAGER
Rose Mansella

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

CUSTOMER SERVICE
Elaine Johnston

ART DIRECTOR
KC Zienka

GRAPHIC DESIGNER
Jessica Nutt

STAFF ENGINEERS
Jeff Bachiochi

John Gorsky

QUIZ MASTERS
Tak Auyeung

Benjamin Day
Bob Perrin

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics
or for the consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and
workmanship of reader-assembled projects, Circuit Cellar® disclaims any responsiblity for the safe and proper function of reader-
assembled projects based upon or from plans, descriptions, or information published in Circuit Cellar®.
Entire contents copyright © 1999 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar is a registered trademark of Circuit
Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

CONTACTING CIRCUIT CELLAR
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301 or via our editorial offices: (860) 875-2199

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.
ARTICLE FILES: ftp.circuitcellar.com

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 0896-8985) and Circuit Cellar Online are published
monthly by Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at Vernon,
CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95, Canada/Mexico $31.95, all
other countries $49.95. Two-year (24 issues) subscription rate USA and possessions $39, Canada/Mexico $55, all other
countries $85. All subscription orders payable in U.S. funds only via VISA, MasterCard, international postal money order, or check
drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 698, Holmes, PA
19043-9613 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 698, Holmes, PA 19043-9613.

ADVERTISING
ADVERTISING SALES MANAGER

Bobbi Yush Fax: (860) 871-0411
(860) 872-3064 E-mail: bobbi.yush@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

ADVERTISING CLERK Sally Collins

steve.meyst@circuitcellar.com

Random Thoughts

i finally broke down and bought a DVD
player this week. The last straw was a trip to

the video store during which I wandered up and
down the aisles, seeing only blank spaces where all

the good videos were supposed to be, and alongside
these spaces, shiny new DVD packages of the same movies. $249 later, I
have added to the eight different formats of recordable media in the house. I
was against getting a DVD player, in part for that reason, but also because I
didn’t think it would be much of a boost to my video-watching experience.
Though the format is digital, the signal is still converted back to analog. I
was perhaps a little more pleased than I thought I’d be with the image
quality, an onscreen GUI adds a touch of familiarity, and I don’t miss
rewinding tape. I admit there are enhancements here, but it is the additional
features I find intriguing. That there are additional features speaks to there
being room in the MCU to implement more of them. I did not find the feature
set to be uniform across all brands and titles, however. Some offer a zoom
capability. Most offer some kind of “alternate camera” view and all of them
have something like a random play function. Let’s look at this last feature.

You probably know that Hollywood productions are assembled into
finished products from raw stock. The raw stock is created asynchronously
in terms of the plot line; they shoot scenes in a sequence that makes
economic and logistical sense. Depending on the budget, they will film
sequences many times, from many angles. Then everything is stitched
together for the theatrical release.

Random play seems like a feature cribbed from an audio CD controller.
What other reason could there be? In the audio realm, it makes sense to
shuffle the tracks on a particular release. Even though the artist, producer,
production engineers, and others put plenty of thought into the organization
of the whole CD, random play can expand the listening experience by
confounding the expectations of the listener. This succeeds because there
is nothing inherently linear in most music CDs.

The same can not be said for the medium of film on a DVD. The data on
DVD is organized into chapters and these tend to be 3-4 minute segments
of a plot element. They are numbered, and next to each numbered chapter
is a title taken from the dialogue of the film. So, what happens when you
enable random play on a typical movie? Well, when I tried it, an asteroid
smashed into the earth killing most everyone, then I watched characters I
didn’t know anything about doing things that made no sense. That is, I saw
this happen on the screen, not in real life.

I have to believe that random play is not a feature that is suited very well
to video. It’s there on the DVD platform because there was room for the
routine and it was easy to implement. Applied in a broader scope, its
presence there signifies that there is a good amount of unused or misused
capability in all of the MCUs of like devices throughout the world. This
bodes well for inventive articles at Circuit Cellar.

Until the DVD feature set gets straightened out, feel free to enjoy this
issue however you please. Skip ahead to Robert Lacoste’s article on
embedded neural networks, start with Tom’s discussion of the new Atmel
chip and work your way backwards, or read it straight through from cover to
cover. Circuit Cellar is completely random play-friendly.

8 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Harv Weiner

STEP-DOWN SOLAR BATTERY CHARGERS
The Power Advantage 302 and 304 chargers are

step-down chargers that decrease incoming solar-
generated voltage to optimize charging currents for
battery banks. They deliver up to 25% more DC
power to the solar electrical
system’s batteries from photo-
voltaic (PV) panels. By increas-
ing current to the batteries,
the system maximizes usable
power from solar panels to
increase overall solar energy
system efficiency.

The chargers are ideal for
retrofit applications because
they are configured the same
way as buildings with existing
charge controlling systems.

Both models are able to
optimize the battery charging
process by finding the maxi-
mum power point of the solar
panels and constantly read-

justing for changes in sunlight, temperature, and
battery voltage. An LCD gives the user real-time
system status such as state-of-charge and time left
on battery based on current usage. The LCD also

offers the user digital precision to
adjust set points such as charging
voltage. The software runs on any
PC equipped with Microsoft Win-
dows 95/98 and a serial port.

The chargers are able to monitor
energy production, energy consump-
tion, battery use, battery tempera-
ture, and illumination of the solar
cells.

The Power Advantage 302 lists for
$449 and the Power Advantage 304
lists for $549.

Fire, Wind, & Rain Technologies LLC
(520) 526-1133
Fax: (520) 5274664
www.firewindandrain.com

http://www.firewindandrain.com

CIRCUIT CELLAR ® Issue 114 January 2000 9www.circuitcellar.com

NEW PRODUCT NEWS
USB OPTO I/O MODULE

The JSB-320 USB Opto I/O module allows a user to
interface to opto-isolated inputs and outputs from any
universal serial bus (USB). Several configurations of
output and input up to 32 points are available and up
to 127 modules per USB channel can be addressed.
Programming the module is done with simple com-
mands from the host computer. Any programming
language that supports
USB communications can
be used to control the
input and output. The
module replaces internal
PC-based plug-in cards in
various test, control, and
measurement applications.

Output is rated at 1 A
@7–30 VDC and the input
range is 10–30 V. The in-
puts include reserve pro-
tection diodes and are
isolated in groups of two to
2500 VDC. The unit sup-

ports a USB data rate of 1.5 mbps and operates over a
voltage range from 4.1 to 5.25 V (self-powered from
the host). Plug-in style terminal block connectors
allow quick hook up.

Single unit pricing for the JSB-320 ranges from
$205 to $299 and includes sample interface source
code, Windows 98 driver software, and a USB cable.

J-Works, Inc.
(818) 361-0787
Fax: (818) 270-2413
www.j-works.com

www.j-works.com

10 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

NEW PRODUCT NEWS
SMART BATTERY ICS

PowerSmart’s PS331 is a smart battery IC that sup-
ports packet error checking per v.1.1 of the system
management bus specification. Its integrating, self-
calibrating 14-bit A/D ensures precise measurements of
current, voltage, and tem-
perature to enable remaining
run-time predictions to
within 1%. Patented, self-
learning algorithms compen-
sate for self-discharge,
temperature, charge/dis-
charge efficiencies and other
factors, and an auto-zero
offset correction feature auto-
matically compensates for
accuracy drift during usage.
An advanced 8-bit RISC mi-
croprocessor enables excep-
tionally fast data computations.

The PS331 enables a host device, which appends a
packet error code (PEC) at the end of each message
transfer, to check the integrity of the data communica-
tion. For each read or write bus transaction, an 8-bit

cyclic redundancy check (CRC-8) is used to calculate a
frame check sequence. Only 1 ms is required for the
CRC-8 calculation of a single data byte. The PS331 is
also capable of communicating with devices that do not

implement PEC error correc-
tion protocols.

The PS331 is packaged in a
standard 28-pin 209-MIL SSOP
and is priced at under $4 in
large quantities. Evaluation
kits are also available for pur-
chase at $199. Kits include all
necessary hardware and soft-
ware for programming of bat-
tery control algorithm
parameters and for customiz-
ing preprogrammed cell data
models.

PowerSmart, Inc.
(203) 925-1340
Fax: (203) 925-1714
www.powersmart.com

http://www.powersmart.com

CIRCUIT CELLAR ® Issue 114 January 2000 11www.circuitcellar.com

8051 IN-CIRCUIT EMULATOR
Signum Systems has released a new POD for sup-

port of TEMIC Semiconductor’s TS80C32X2. The
POD32X2-60 in the company’s USP-51A emulator
fully emulates the device in targets at the maximum
clock speed of 64 MHz. The POD uses the standard
TS80C32X2 device for emulation and can switch
between internal and external clock and power
sources via software control.

The TS80C32X2 micropro-
cessor uses the X2 feature to
double the internal operating
frequency, allowing up to 60
MHz of equivalent speed with
a 30-MHz external quartz at 5
V. The X2 feature shortens the
typical instruction execution
time from 400 to 200 ns

To allow for this high-speed
in-target emulation, POD32X2-
60 plugs directly into the user’s
40-pin processor socket. The
POD supports 44-PLCC foot-

NEW PRODUCT NEWS
prints with an optional socket adapter. It also supports
the ONCE (on-chip emulation) mode of emulation which
facilitates testing and debugging of the microcontroller
without the device having to be removed from the circuit.
This mode requires an optional ONCE adapter that clips
over the microcontroller and allows the POD32X2-60 to
be plugged into it.

POD32X2-60 fully supports debugging of target power-
up and power-down sequences, and
will not take any extra power from
the target board, nor will it supply
any current to the target board when
the target is off.

Prices for POD32X2 are $795,
$895 and $1,095 for up to 30, 40, and
60 MHz, respectively. The 44-PLCC
adapter is priced at $200 and the 44-
PLCC ONCE clip-over adapter is $250.

Signum Systems Corp.
(805) 523-9774
Fax: (805) 523-9776
www.signum.com

http://www.signum.com

12 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Synchronous Serial
Communication

FEATURE
ARTICLE

Duane Mattern

i
Duane had a project
that needed microvolt
resolution, so he re-
quested Linear Tech-
nology’s LTC-2400
eval board. Pay close
attention as he
comes up with a syn-
chronous serial com-
munications link using
Win32 subsystem
calls and C.

A PC Link to a SPI/Microwire Device

Photo 1— An example of a typical Windows dialog box
used to configure serial port communications.

noticed a num-
ber of advertise-

ments from Linear
Technology about their

new 24-bit ADC, the LTC2400. I have
an application that requires microvolt
resolution, so I followed the Internet
links to the NetSeminar web site to
get the lowdown on the LTC2400.

Mike Mayes’s online presentation
entitled “High-Resolution Data Con-
version Application and Techniques”
provided an impressive overview of
the LTC2400. So I signed up to receive
the LTC2400 evaluation board, the
DDC228.

The 8-pin LTC2400 has a three-
wire synchronous serial communica-
tion link that is compatible with SPI
and Microwire. The evaluation board
interfaces this three-wire serial link to
a DE-9 connector for connection to a
PC and it uses the PC serial connec-
tion to derive power for the board.

The evaluation kit includes a Win-
dows program that appeared to poll
the serial port directly to bit-bang the
synchronous bitstream. The evalua-
tion program uses the LTC2400 inter-
nal clock to drive a communication
rate of 19.2 kbps.

Polling the PC serial port to moni-
tor bit updates every 52 µs has an
impact on the mouse and keyboard
response. Also, I typically use the

Windows NT and the evaluation soft-
ware doesn’t run under NT because
NT doesn’t allow direct access to the
serial port.

Because I wanted to have full con-
trol of the data anyway, I decided to
write my own version of their inter-
face software. I could use an NT port-
I/O driver to access the serial port
under NT, but I didn’t want to poll
the serial port because of the impact
to the system response.

I decided to configure the LTC2400
to power up as a slave device. This
setup allows the PC to generate the
clock signal, instead of having the PC
poll the serial port, thus greatly reduc-
ing the impact on the PC response.

In this article, I discuss the pieces
of information that I assembled to
implement this serial port synchro-
nous link using Win32 subsystem
calls and C.

ASYNCHRONOUS
We’re all familiar with asynchro-

nous serial communications on the
PC. Hook up a DE-9 or DB-25 connec-
tor from the PC comm port to a mo-
dem or some other device, configure
the port, and you’re ready to go. If you
are using one of the Microsoft OSs,
you might use a dialog box like the
one shown in Photo 1 to configure the
serial port.

This port configuration sets up the
PC’s universal asynchronous receiver-
transmitter (UART) to perform the
required signal timing. The UART
adheres to the RS-232 recommended
standard. PCs typically use a dual
UART, like the 16450 or 16552 from
National Semiconductor.

When combined with an appropri-
ate crystal, the UART is capable of
rates from 75 to 115 kbps; with 5–8
data bits; a parity bit that can be con-
figured as even, odd, none, mark, or

 CIRCUIT CELLAR ® Issue 114 January 2000 13www.circuitcellar.com

Start -Data (5-8)- Parity Stop
MSBLSB

Figure 1a— In asynchronous communication data
sequences, a byte of data is bracketed by a start and
stop bit. b—Note that synchronous communication data
is valid on the rising edge of the clock signal. A periodic
clock is not required.

space; 1, 1.5, or 2 stop bits; and
configurable flow control. The 1.5
stop bit setting only pertains to five
data bit situations.

The UART performs the bit timing
in hardware and provides a FIFO
buffer to ease the software timing
requirements. RS-232 uses a start and
stop bit to bracket the transmission of
the 5–8 data bits as shown in Figure 1b.
The UART provides the proper timing
of the bits transmitted between the
start and stop bits.

RS-232 uses the nine signal lines
listed in Table 1. RX, TX, and GND
are the only three signals required to
transmit and receive data. Without
the other signal lines, byte codes are
needed so that each device knows
what the other is doing.

In the past, I paid little attention to
these electrical signal levels. I found
logical 1 as –10 V and logical 0 as +10
V. The voltage levels for RS-232 sig-
nals can range from –3 to –25 V for
logical 1 and +3 to +25 V for logical 0.

The RS-232 standard is a point-to-
point protocol. There are other asyn-
chronous schemes—RS-422 and
RS-485, for example. The RS-422
standard extends RS-232 to longer
distances using a differential voltage
measurement instead of measuring
the voltage relative to ground and
allows for multiple slave devices.

The RS-485 standard extends RS-
422 by allowing multiple receivers
and transmitters [1]. You can get more
information on RS-485 by checking
out Jan Axelson’s “Designing RS-485
Circuits” (Circuit Cellar 107).

SYNCHRONOUS
Synchronous serial communica-

tions require a separate signal line to
carry a clock pulse that triggers the
arrival of a new data bit. Thus, rather
than using a UART to handle the
bit timing, a separate line,
shown as the clock signal in
Figure 2, provides the timing
information.

Figure 2 presents a periodic
signal for the clock pulse, but
the signal does not have to be
periodic. A fast clock would
require appropriate hardware,
fast interrupt handling, or fast
polling by a listening device to
capture the data bits when trig-
gered by the clock signal.

The packing of the data in the
bitstream provides one distinction
between the various protocols. Three
common synchronous communica-
tion methods are I2C, SPI, and
Microwire.

I2C
Philips developed the inter-inte-

grated circuit (I2C) bus in the 1970s
[2,3]. If you’re curious about I2C spe-
cifics, see Stuart Ball’s article, “Multi-
processor Communications, Part 2:
Serial Communication Methods”
(Circuit Cellar 103).

This synchronous bidirectional
serial bus was originally developed for
speeds to 100 kbps and recently ex-
tended to support speeds of up to 3.4
Mbps. As you see in Figure 2, I2C is a
two-wire design with a serial data line
(SDA) and a serial clock line (SCL).
Philips extended the original 7-bit
addressing to 10 bits, allowing up to
1024 addresses.

The total bus capacitance limits
the number of possible devices on the
bus. Because there is no chip select

signal line, all devices must monitor
the bus all the time, just in case the
current transmission signal is ad-
dressed to them.

I2C also incorporates a level-shift-
ing capability, enabling the intercon-
nection of devices operating from
different supply voltages. To define
the transmission start and stop condi-
tions, unique patterns are used.

A high-to-low transition on the
SDA line with SCL high indicates a
start condition. A low-to-high transi-
tion on the SDA line while SCL is
high defines a stop condition.

The bus permits multiple masters
and includes an arbitration scheme to
handle conflicts between masters.
Data transfer must be eight bits and
one acknowledge bit, but the number
of bytes transmitted per transfer is
unlimited.

Pin Abbreviation Description

1 DCD Data carrier detect
2 RX Received signal in, SIN
3 TX Transmit signal out, SOUT
4 DTR Data terminal ready
5 GND Signal electrical ground
6 DSR Data set ready
7 RTS Request to send
8 CTS Clear to send
9 RI Ring indicator

Table 1—Of these PC serial port DE9 Pin-out assignments,
pins 2, 3, and 5 are the minimum subset for bi-directional
communication.

RX
SDA

1 2 3 4 5 6 7 8 9
clock
SCL

Figure 2— The Linear Technology DC228 evaluation board draws power from pin 3 of the serial connector.

a)

b)

14 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

SPI
The serial peripheral interface (SPI)

is a four-wire interface advanced by
Motorola [4]. It consists of two data
lines and two control lines—master
out, slave in (MOSI), master in, slave
out (MISO), serial clock (SCK), and
slave select (SS). If SPI is used for
point-to-point communication be-
tween two devices, then you can drop
the SS line and SPI becomes a three-
wire interface.

SPI was designed to communicate
synchronously over short distances at
speeds up to 4 Mbps and is oriented
for 8-bit transfers. When an SPI trans-
fer occurs, an 8-bit character is shifted
out one data pin while a different
8-bit character is simultaneously
shifted in on a second data pin.

You can view this transfer as a
circular 16-bit shift register, com-
posed of two interconnected 8-bit
shift registers in the master and the
slave. When a transfer occurs, this
distributed shift register shifts eight
bit positions. Thus, the 8-bit charac-
ters in the master and slave are effec-
tively exchanged.

Motorola has other variations of
serial interfaces as well. For instance
the SCI is an asynchronous scheme
while the SCI+ is an asynchronous
and synchronous method that in-
cludes SPI. SSPI is just a simplified
version of SPI.

MICROWIRE
Microwire was around

before 1992. It also is a four-
wire serial interface and it
includes a serial clock (SK),
data-in (DI), data-out (DO),
and chip-select (CS) lines.

Microwire is similar to
SPI. Its peripherals accom-
modate digital words of arbi-
trary bit length, although
they typically operate on
16-bit words.

Data into the device
should be valid on the rising
edge of the clock, and data
out of the device is synchro-
nized with the falling edge of
the clock. The clock rate
depends on the peripheral
timing but typically ranges
from 250 to 625 kHz, with a

minimum logic-high interval of 1 µs.
The chip-select pins have a non-

standard, active-high polarity. Nation-
al’s Microwire Plus protocol reverses
the clock phase for data in and data
out and also speeds up the interface
timing. Table 2 summarizes the three
synchronous communication meth-
ods: I2C, SPI, and Microwire.

THE LTC2400
The LTC2400 is a single-ended,

24-bit delta-sigma ADC in a SO-8. For
under $10 you get offset errors of less
than 1 ppm and full-scale errors of
4 ppm [6]. The integral nonlinearity is
just ±2 ppm and the converter’s noise
characteristic is only 0.3 ppm.

The LTC2400 also provides 120 dB
of 50- or 60-Hz noise rejec-
tion (selectable), and it does
not require an external
clock or crystal, (but can
use one). The eight-pin
package is easy to use with
only one power supply line
(2.7–5.5 V) and only one
ground.

The separation of analog
and digital power is handled
internally. The three-wire
interface is compatible
with SPI and Microwire.

In the 60-Hz filter con-
figuration, the LTC2400
has a 24-bit data conversion

time of 133 ms for an update rate of
7.5 Hz. Thus, this 24-bit ADC is ap-
propriate for DC and low-frequency
measurements.

Figure 2 shows you the evaluation
board that Linear Technology provides
for the LTC2400. This board provides
a DE-9 connector for easy connection
to a PC. Five pins on the serial port
are used: pins 3, 4, 5, 7, 8 for TX,
DTR, GND, RTS, and CTS.

The evaluation board receives
power from pin 3 of the serial port
(TX) by setting the UART break con-
trol to logic 1. This forces the serial
output to the spacing state, which is
+10 V on the PC comm port.

The LTC2400 only draws 200 µA
at 5 V when active which drops to
only 20 µA in sleep mode. The CTS
line senses the data bits transmitted
from the LTC2400’s serial data out
(SDO) line. The DTR line provides
the serial clock (SCK) signal to the
LTC2400 from the PC. The RTS line
provides the chip-select signal.
Schmitt triggers buffer the PC serial
port from the three-wire serial inter-
face on the LTC2400.

ASYNCHRONOUS PC
INTERFACE

While looking for a solution to the
problem of synchronous communica-
tion with the PC, I ran across the
MAX3100 from Maxim. The MAX-
3100 is a UART that supports
Microwire/SPI. Unfortunately, you
have to configure the MAX3100
through the SPI interface using some
smart device, like a microcontroller.

Figure 3— Running the LTC2400 in external clock mode allows the
PC to control the clock.

*CS to GND

SCK low

Power on

LTC2400
Pin values

Start new
conversion

Sleep mode

Data output
state output
new bit with
every falling
edge of the
clock signal

Continue with
28 reads

CS high,
then low

Clear RTS

Clear DTR

Set break

PC Comm Port
directives

Wait for
EV_CTS

Comm Event

SETDTR

Read data
bit CTS_ON

status

CLRDTR

Continue with
28 reads

SETRTS and
CLRRTS

DE-9 pin7
High, then low
+10,then –10 V
Force new
conversion

DE-9 pin4
low –10 V

Read DE-9
pin8 CTS
status:SDO

DE-9 pin4
+10 V

DE-9 pin8, 0 V
SDO low, end
of conversion

High to low
transition

DE-9 pin3 +10 V

DE-9 pin4 –10 V

DE-9 pin7 –10 V

Figure 4— This 40-s time slice of output data demonstrates the low
internal noise of the LTC2400.

–4
0 5 40353025201510

–3

–2

–1

0

1

2

3

4

5

m
ic

ro
vo

lts

Time (seconds)

16 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

//------ LTC2400 Power-up Configution for External Serial
 Clock Mode

if(EscapeCommFunction(h_port, CLRRTS) == 0)
// INIT CS_bar LOW

printf("CLRRTS failed\n");
if(EscapeCommFunction(h_port, CLRDTR) == 0)

// INIT SCK Low (-10 volts)
printf("SETDTR failed\n");

if(EscapeCommFunction(h_port, SETBREAK) == 0)
// POWER ON (+10volts)

printf("SETBREAK failed\n");

//------ Wait Loop for end of conversion from LTC2400
 (CTS Event)

printf(" Sec Voltage Int Hex Raw\n");
QueryPerformanceFrequency(&lFreq);
llFreq = lFreq.QuadPart;
dClockFreq = (double)llFreq; // Get the counter frequency
QueryPerformanceCounter(&lHPCount0);
llCount0 = lHPCount0.QuadPart; // Get Initial Starting Count

while(j){
WaitCommEvent(h_port, &EvtMask, NULL) == 0;
GetCommModemStatus(h_port, &ModemStatus) == 0;

// Read Status
// High-to-Low transistion ends LOW

if((EvtMask == EV_CTS) & (!(ModemStatus & MS_CTS_ON)))
{
QueryPerformanceCounter(&lHPCount); // Get Time
SetCommMask(h_port, 0); // Turn Events Off
dwData = 0;
for(i=0; i<28; i++) // Begin synchronous transfer

{
dwData = dwData << 1; // shift 1 left
EscapeCommFunction(h_port, SETDTR);

// SCK HIGH 10v
GetCommModemStatus(h_port, &ModemStatus);

// Read Status
if(ModemStatus & MS_CTS_ON) dwData |= 0x01;

// fill bit0
EscapeCommFunction(h_port, CLRDTR); // SCK LOW -10v
}

// Reduced Data Length Mode
EscapeCommFunction(h_port, SETRTS);

// CS_bar HI, then low
EscapeCommFunction(h_port, CLRRTS);

// Starts new conversion
llDiff = lHPCount.QuadPart - llCount0;
dDtime = (double)llDiff/dClockFreq; // calc deltaTime

if(dwData > 33554432)
dwMaskedData = dwData & 0X01FFFFFF; // positive

else if(dwData == 0 | dwData == 33554432)
dwMaskedData = 0; // zero

else
dwMaskedData = dwData | 0XFE000000; // negative

intMaskedData = (int)dwMaskedData;
// 32 bit signed integer

printf("%6.3f %13.4e %6d %8X %8X\n",dDtime,

intMaskedData*EngUnits,dwMaskedData,dwMaskedData,dwData);
j--; // decrement conversion counter
}
SetCommMask(h_port, EV_CTS); // Turn EV_CTS Event back on

}

Listing 1— Here’s the key portion of Console Mode Program Sync_Comm.c (The VB program contains the
same Win 32api calls).

18 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Table 2—Each asynchronous
serial communications protocol
has a weakness.

Feature Philips I 2C Motorola SPI NationalMicrowire

Number of wires for bus 2—SDA (serial data) 4—two data and two 4—two data and
 (without ground) and SCL (serial clock) control lines two control lines
Maximum transmission Normal 100Kbps Up to 4Mbps selected 200–625 kHz
 rates and modes fast 400Kbps fraction of the master faster for

 fastest 3.4 Mbps clock Microwire Plus
Number of bits transmitted 9—8 data + 1 ACK bit 8 data bits shifted 16 bits is typical,
 per data byte every byte is obliged before refilling buffer but continuous

 to acknowledge stream is possible
Addressable # devices 1024 Chip select logic Chip select logic

Because I could not configure the
MAX3100 from the RS-232 side, I
ruled out this device for my particular
application. Instead, I decided to use
the evaluation hardware as received,
without any additional hardware.

To solve the communication prob-
lem, I placed the LTC2400 into exter-
nal serial clock mode. This setup
avoids timing complications caused
by polling the serial port. The clock
signal is provided from the user mode
program on the PC, without the use of
a device driver.

The LTC2400 has several different
operating modes that are configured
at powerup or power reset. When

configured to start up in external
serial clock mode, the LTC2400 acts
like a slave device. As a slave, the
LTC2400 signals the completion of a
data conversion, then goes to sleep
until communication is requested.

The transmission of data normally
consists of 32 bits—two flag bits, one
sign bit, one extended mode flag, 24
data bits, and the last four bits are not
used. The LTC2400 is capable of in-
put conversion range from –12.5%
VREF to 112.5% VREF, and the extended
mode flag indicates when the result is
outside of the 0-VREF range.

To save time, rather than transmit-
ting the last four unused bits, a new

data conversion cycle can be forced by
toggling the chip select line. This
change causes the “reduced data out-
put length” mode and tells the
LTC2400 to abort the data transfer
and start a new conversion immedi-
ately. Figure 3 shows the command
sequence needed to configure the
LTC2400 for external clock and re-
duced data output length modes.

With the communication link
established, the only remaining issue
is how to establish a fixed sampling
rate on the PC under Windows. The
ADC conversion times take approxi-
mately 133 ms, and then flags the PC
that the conversion is complete.

 CIRCUIT CELLAR ® Issue 114 January 2000 19www.circuitcellar.com

Table 3—The data output from the C program indicates that the conversions are processed approximately every
150 ms.

 Sec Voltage Int Hex Raw

 0.179 -2.9802e-007 -1 FFFFFFFF 1FFFFFF
 0.336 -1.7881e-006 -6 FFFFFFFA 1FFFFFA
 0.484 1.7881e-006 6 6 2000006
 0.632 -2.9802e-007 -1 FFFFFFFF 1FFFFFF
 0.781 2.9802e-007 1 1 2000001
 0.929 -2.9802e-007 -1 FFFFFFFF 1FFFFFF
 1.078 8.9407e-007 3 3 2000003
 1.227 1.1921e-006 4 4 2000004
 1.377 -1.1921e-006 -4 FFFFFFFC 1FFFFFC
 1.525 -2.9802e-007 -1 FFFFFFFF 1FFFFFF
 1.674 4.1723e-006 14 E 200000E
 1.822 -5.9605e-007 -2 FFFFFFFE 1FFFFFE
 1.970 8.9407e-007 3 3 2000003
 2.118 2.9802e-007 1 1 2000001
 2.267 -2.3842e-006 -8 FFFFFFF8 1FFFFF8
 2.415 2.9802e-007 1 1 2000001
 2.563 -2.9802e-007 -1 FFFFFFFF 1FFFFFF
 2.711 0.0000e+000 0 0 2000000
 2.859 -2.0862e-006 -7 FFFFFFF9 1FFFFF9
 3.008 2.9802e-007 1 1 2000001

SOURCES
LTC2400
Linear Technologies, Inc.
(408) 432-1900
Fax: (408) 434-0507
www.linear-tech.com

MAX3100
Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

16450, 16552
National Semiconductor
(408) 721-5000
Fax: (408) 739-9803
www.national.com

Duane Mattern is an instrumentation
and controls engineer with 10 years of
experience in the areas of modeling,
simulation, control system design,
and implementation. You may reach
Duane at d.mattern@ieee.org.

REFERENCES
[1] G. Sakmar, “The right bus for

your data highway,” Electron-
ics Tech Briefs within NASA
Tech Briefs, p. 1a, February,
1999.

[2] Philips I2C web site, www-
us.semiconductors.com/i2c

[3] I2C specification, www-
us.semiconductors.com/acro-
bat/various/I2C_BUS_
SPECIFICATION_2.pdf

[4] SPI Specification, USAR Sys-
tems, www.usar.com/indact/
standars/spi.htm

[5] Motorola SPI, www.mot.com/
pub/SPS/DSP/LIBRARY/
56L811/UM_REV0/7.PDF

[6] Linear Technology, Demo
manual DC228, 24-bit A/D
demo board, LTC 2400 24-bit
high-performance A/D con-
verter.

[7] D. Mattern, “Soft” Real-Time
Using Windows NT, a timing
study of the Win32 multimedia
timer under Windows 95/NT,
http://home.columbus.rr.com/
dmattern/realtime/.

SOFTWARE
The C and Visual Basic project files
are available via the Circuit Cellar
web site.

Initially, I just recorded the conver-
sion completion time using the
Win32 high-performance counter.
Running the serial communication in
a continuous loop with the LTC2400
in external clock mode provides a
stable sampling period of about 0.155 s
on a 133-MHz PC.

This rate is slower than the fastest
rate possible, which is 135 ms (133.33
ms for the conversion and 1.67 ms for
the 32-bit serial transmission at
19.2 kbps). However, it does not suffer
the performance degradation caused
by polling the serial port.

If a consistent sampling period is
required, you can use the multimedia
timer. Although the multimedia
timer does not guarantee a periodic
sampling period, it does decrease the
average variability [7] when compared
to a pure software loop.

Listing 1 shows the Win32 calls
used to implement the steps in the
flowchart shown in Figure 3. The
overhead of the Win32 commands
combined with the clock speeds on
the current crop of PCs means you
can call them directly without worry-
ing about sending the signal too fast.

Note that the LTC2400 serial in-
terface does not generate a –10-V sig-
nal for the PC’s RS-232 interface,
(normally used for logic 1). In order to
sense a logic 1, you have to detect the
absence of a +10-V signal.

Table 3 shows the data output
from the C program. The program
displays the time with a millisecond
resolution, the hex version of the
masked data, an integer version of the
masked data, and the data converted
to engineering units of volts.

The data shown in Table 3 is taken
with the LTC2400 voltage input
shorted to ground with the reference
voltage set to the voltage supply VCC.
A longer record of this data is plotted
in Figure 4, showing the low internal
noise of the LTC2400.

NOW WE’RE TALKING
This software method for synchro-

nous serial communication is slow,
but it enables you to communicate
with SPI and Microwire devices from
a PC using only user mode code. Cer-
tainly using a microcontroller to con-
vert the synchronous stream to an
asynchronous one would greatly speed
up the communication rate, allowing
you to use the UART and serial port
directly. For the LTC2400, though,
that kind of setup is unnecessary
because an interval of 133 ms is re-
quired for the 24-bit data conversions.

If you need a low-voltage measure-
ment, check out the LTC2400. It can
also be used with a multiplexer, so
you can obtain multiple high-resolu-
tion measurements using a single
chip. I

http://www.linear-tech.com
http://www.maxim-ic.com
http://www.national.com

20 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Reach Out and Touch
Designing a Resistive Touchscreen

FEATURE
ARTICLE

Tom Dahlin

t
While working on a
design assignment
that involved an
expensive off-the-
shelf touchscreen
interface, Tom began
to consider rolling his
own. Watch as he
points out some of
the tricks of working
with resistive
touchscreens.

he use of
touchscreens as

computer interface
devices has become

widespread. I don’t think there are
many readers out there who have not
used an ATM machine with a touch-
screen or at least played with one of
the Apple Newton-type personal
digital assistants. The popularity of
touchscreens is in a large part due to
the simplicity they bring to user
interfaces. They eliminate the need
for a large keyboard and offer the benefit
of context specific menu choices.

I was recently involved in the design
of a machine controller for an indus-
trial application. We liked the advan-
tages of a touchscreen interface, and
prototyped the system using an
industrial embedded PC, and a com-
mercially available motion-control
board. We purchased an off-the-shelf
industrial LCD display/touchscreen
combination and connected it to the
PC’s VGA and COM1 inter-
faces. We then developed the
application software in VB and
got the machine up and
running in short order. Life
was good.

The euphoria was short-lived
however. Economic reality set
in, and we realized we couldn’t
justify spending over $2k on

the off-the-shelf LCD/touchscreen for
the commercial product. Besides that,
the mechanical form factor was
wrong. With a short development
cycle ahead of us, life was looking not
so good.

We quickly realized that we would
either have to roll our own LCD
display/touchscreen, or drop back to a
character-oriented LCD/16 key
keypad for the user interface. While it
is not practical for a small company
to consider making its own touch-
screen (the glass part that is), it is
possible to save both money and
package size by purchasing only the
raw touchscreen, using a standard
LCD or CRT, and designing your own
controller and package. This article
will show you a few of the ways of
designing the touchscreen-to-com-
puter interface.

TYPES OF TOUCHSCREENS
Not all touchscreens are created

equally. There are two primary
technologies used today—resistive
and capacitive sense. There are others,
such as IR scanning, acoustic wave,
and electromagnetic technologies.
Although they all have their merits,
resistive- and capacitive-sense tech-
nologies have emerged as favorites
thanks to their low cost and high
resolution.

Resistive-sense technology has the
added advantage of being able to de-
tect a touch from a rubber-gloved
finger, something that is a problem
for capacitive type touchscreens. The
other technologies mentioned are
used when they offer a unique advan-
tage, such as the sense-before-touch
feature that IR scanning provides.

For a discussion of the relative pros
and cons of each technology, you
might want to read the application
notes written by David Blass of Sharp

Figure 1 —Most resistive touchscreens have a construction
similar to the one shown here. Two conductor layers are sepa-
rated by a layer of tiny dots. The dots allow the two planes to
make contact when force is applied to the top layer.

Mylar top coat

Transparent, conductive coating

Separator dots

Glass substrate

Transparent, conductive coating

 CIRCUIT CELLAR ® Issue 114 January 2000 21www.circuitcellar.com

ation of a PIC and a touchscreen
controller chip, one uses only a PIC,
and the last uses no processor at all.
Which method you use depends on
your system requirements for scan
rate, accuracy, and cost.

Interfacing to either a 4- or 5-wire
touchscreen is easy thanks to a pair of
chips from Burr-Brown. The ADS7843
is designed to interface to a 4-wire
touchscreen, and the ADS-7845 to a 5-
wire. The devices have identical hard-
ware and control interfaces, differing
only in the type of touchscreen they
interface to.

Figures 3 and 4 show examples of
circuits using a PIC and the devices to
interface to both 4- and 5-wire touch-
screens. Let’s take a look at each
circuit and chip individually, starting
with the 4-wire device.

The ADS7843 is a single-chip
interface to a 4-wire touchscreen. At
its core is a 12-bit successive approx-
imation analog-to-digital converter
(ADC). It performs all the front-end
analog multiplexing necessary to
generate the required voltage grad-
ients across the touchscreen planes
and switch the pickoff into the ADC.

As shown in Figure 3, a PIC and an
RS–232-level shifter are all that’s
required to build a 4-wire interface to
a PC com port. The PIC-to-ADS7843
interface is simple, needing only three
lines—clock, data, and chip select.

In the example circuit, the data
input and output lines from the
ADS7843 are tied together via a 10-kW

resistor. This arrangement allows the
use of a single PIC I/O line to handle
both. Also shown is a PIRQ, or pen
interrupt signal that can alert the PIC

to the presence of a
touch (or pen in a
PDA application), and
a BUSY signal that
enables the PIC to
monitor the status of
the ADC conversion.
The latter two signals
are not used in my
application, but are
brought into the PIC
for future use, if
needed.

Figure 5 shows the
logic diagram and

function of the x (right/left) position
of the touch.

The y position is then calculated
by removing the voltage from the x
plane and applying it to the y plane,
from top to bottom. The x plane is
then used as a pickoff and its output
is routed to the ADC.

In a 5-wire resistive touchscreen
like the one shown in Figure 2b, the
operation is similar, but the alternat-
ing x and y fields are applied across
only one plane, and the other plane is
used solely as a pickoff. Thus, one
wire goes to each corner of the
bottom plane, and a fifth wire is
connected to the top plane.

To read an x position, the con-
troller applies a voltage to the left two
corners and ground to the right two.
The fifth wire would go to the ADC.
To read a y position, the controller
grounds the bottom two corners and
applies a voltage to the top two.

SMORGASBORD OF OPTIONS
There are several different ways of

interfacing the glass touchscreen to
your system. I’m going to show you
four methods I’ve used with success.
Two of the methods use a combin-

[1], and another by VJ Kuroodi of
Tritech [2].

AN INSIDE LOOK
Resistive touchscreens almost all

start with a glass or hard plastic
substrate, onto which a thin, trans-
parent conductive layer (usually ITO)
has been applied. Figure 1 illustrates a
typical touchscreen cross-section.

A fine grid of spacer micro dots is
then applied and another layer of a
conductive-coated flexible plastic
(usually Mylar) is laid on top. You end
up with two transparent conductive
planes of material separated by a few
thousandths of an inch. Pressure from
a stylus or finger causes the two
planes to make electrical contact and
forms the means of sensing the touch.

There are two commonly used
types of resistive touchscreens. These
are called 4-wire and 5-wire. In a 4-
wire resistive touchscreen, the two
planes each have two wires connected
to opposite ends.

For example, the x plane would
have wires connected to the left and
right edges, and the y plane would
have wires connected on the top and
bottom edges (see Figure 2). In
operation, a
controller must first
apply a voltage across
the x plane thereby
forming a gradient
because of the
resistive coating.

A touch is sensed
by using the y plane
as an input to an
ADC and detecting a
voltage when the two
planes are forced
together. The ADC
reading will vary as a

Figure 2a —A 4-wire touchscreen has bus bars on the right and left edges of one layer, and on the top and bottom
edges of the other layer. b—A 5-wire version has four leads, each connected to the corner of the bottom layer, and
one lead connected to the top layer that works like a potentiometer wiper.

Bottom layer

Top layer

X(+)
Y(–)

X(–)

Y(+)

Bottom layer

Top layer

Upper left,
bottom layer

Lower left,
bottom layer

Lower right,
bottom layer

Upper right,
bottom layer

Top plane (wiper)

Figure 3 —3 chips are all you need for this circuit. The ADS7845 handles the analog functions and the
PIC performs the sequencing, scaling, and messaging formatting. The MAX232 handles the RS-232 level
shifting.

a) b)

22 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

disabled when either of the two bits is
set high. Thus, you can’t use the
PIRQ if you leave the device always
powered.

So, if the PIC wants to read the x
channel, it sends a $93 to the ADS-
7843. This selects not only that
channel, but also a 12-bit conversion,
differential referencing, and non-
powerdown operation. After clocking
out these eight bits to the ADS7843,
in return, the PIC clocks in 16 bits
that contain the 12-bit result and four
zero-filled trailer bits. To read the y
channel, the PIC performs the same
operation, only sending a $D3 for the
control byte.

TAKING THE 5-WIRE ROUTE
Burr-Brown has the ADS7845

device for a 5-wire touchscreen
interface. Like its cousin the
ADS7843, it connects to your
microprocessor via a simple serial
interface. It too uses a 12-bit ADC.
The pinouts of the chips are nearly
identical. The 5-wire device uses one
of the two spare analog inputs
available on the 4-wire device to
accommodate the fifth wire input.

Another way to
interface to a 5-wire
touchscreen is to do it
all with a PIC. As
shown in Figure 6, this
method results in a
low parts count. The
thing that makes this
design easy is the fact
that we can control the
four corners of the
bottom plane with the
PIC’s digital drivers
and run the sense-

plane wire directly into the PIC’s on-
chip ADC. Thus eliminating the need
for fancy analog multiplexing using
external FETs.

As you can see, we used four PIC
I/O lines (RB2–5) to connect to the
four corners, labeled UL (upper left),
LL (lower left), UR (upper right), and
LR (lower right). To generate a left-to-
right voltage gradient, the PIC sets UL
and LL to a low (0 V) and sets UR and
LR high (5 V). It then performs an
ADC conversion, reading AN0.

The presence of a voltage greater
than a few counts indicates a touch.
The bleed resistor R5 in Figure 6 pulls
the ADC input low, so we have no
problem knowing that a touch has
occurred.

To generate a top-to-bottom volt-
age gradient, the PIC simply sets UL
and UR to high and LR and LL to low.
Note that LL is always low and UR is
always high. Although we could
hardwire them to ground and +5 V
respectively, it’s better to allow the
PIC to do this to preserve balanced
levels on all four corners.

Once the PIC has secured readings
for the x and y directions, it can
adjust for offset and scale factors, and
determine the x and y positions. The
PIC I used was a PIC16C71 with an
8-bit ADC, which works for appli-
cations where positional accuracy is
not important. Newer members of the
PIC family have better accuracy and
would improve this design.

LOOK MA, NO PROCESSOR
If you want a simple interface to a

4-wire glass and you can live with a
predefined output format, the TriTech
TR88L811 chip makes it possible to

Figure 4 —By swapping an ADS7845 into the circuit shown in Figure 3, we can create a 5-wire control-
ler. The ADS7843 and ADS7845 are 12-bit devices that provide resolution capability up to 1/4096 of the
touchscreen width.

*CS

DCLK

1 8 1 8 1 8

*CS

SER/
DFR PD1 PD0MODEA0A1A2S

(START)

ACQ

AcquireIdle Conversion Idle

Zero filled0

(LSB)

1234567891011

(MSB)

timing of the PIC
interface. This
timing is called 24-
clock mode,
referring to the
single byte of
control info sent to
the device and the
two bytes returned.
Other modes are
also available and
overlap the shifting
of data in and out to
save transit time,
providing an ability to get more
samples per second.

To read the touchscreen, the PIC
must send an 8-bit control byte to the
ADS7843. This byte always has its
most significant bit or start bit set.
The next three bits (A2, A1 and A0)
specify whether we want to read x, y, or
one of the two Auxiliary ADC inputs.

The auxiliary inputs, with proper
signal conditioning, can be connected
to any system analog value you might
want to read (e.g., a battery voltage).
The next bit is called MODE and is
set to zero if you want a 12-bit
conversion, or a one if you want an 8-
bit conversion. The following bit is
called SER/DFR and is set to zero if
you want to use a differential voltage
reference (normally preferred) or is set
to one for a single-ended type.

Lastly, the final two bits in the
control byte are called PD1 and PD0.
These are the power down mode
select bits. If both are low, the device
is powered down between conversions
to save power for portable applica-
tions. If both are high, then the device
is always enabled. An important fact
is that the PIRQ, or pen interrupt is

Figure 5 —eight
clocks are used to
shift out a control
byte from the PIC to
the device and
another 16 clocks
are used to retrieve
the result. Since the
data input and
output lines are not
simultaneously
active, it’s possible
for them to share
the same microcon-
troller I/O pin.

24 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

taining the location of the touch. The
PIC should continue to send out this
information as long as a touch is de-
tected and send a special packet at the
end when the touch has gone away.

The PIC sends a five-byte data
packet to communicate the x/y touch
coordinates to the host processor (see
Figure 8). The first byte in the five-
byte header always has its most
significant bit set to one. The other
four bytes always have their most
significant bits set to zero to allow
the receiver to synchronize to the
packet. The first byte is either a $C0
or $80, depending on whether the
touch is active ($C0) or a touch-up
event has occurred ($80).

The four bytes that follow hold the
x and y coordinate values, with 14
bits allowed. Because we digitize to
12-bit resolution, bits 12 and 13 are
zero filled.

The firmware was written as a
state machine, as shown in Figure 9.
On powerup, the code enters State 0,
where it initializes the data direction
registers and blinks the LED three
times. A transition to State 1 follows,
where the code continuously scans
the touchscreen, looking for a touch.

When a touch is detected, a tran-
sition to State 2 occurs, where the
controller sends out a five-byte data
packet, and turns on the LED. While
in State 2, the controller continues to
scan the touchscreen and sends out a
new data packet each as long as a
touch is detected. If a touch is not
detected, a transition to State 3
occurs, where a final data packet is
sent with the header byte set to $80
indicating a touch-up event, the LED
is turned off, and a transition back to
State 1 is initiated.

A low-level subroutine called
Convert is used to talk directly to

had a good experience dealing with
the Bergquist Company and I’ve also
been successful interfacing to glass
made by Elo and Microtouch.

DEVELOPMENT NOTES
I began this project by first locating

the touchscreen-interface chips. I then
needed a quick and dirty means of
testing their functionality, which I
did using a Basic Stamp II device with
a serial LCD attached. It was a simple
matter to interface the chips to the
Stamp, and then use the interactive
Stamp-development environment to
debug the chip interfaces.

Of course, a $50 Basic Stamp is not
a good solution for a production
product. The production hardware
was designed around a lower cost PIC,
the 16C622. I intended to discard the
Stamp code and write the production

code in C. However, I had
heard about a compiler for
the Stamp BASIC, and
decided to give it a try. The
results were good and
enabled me to use most of
the stamp code with little
modification. I’ve since used
this approach (successfully)
on other projects.

The compiler is the PIC
BASIC Pro (PBP). It is avail-
able from microEngineering
Labs for about $250.

FIRMWARE
DESCRIPTION

Firmware for the 4-wire
Burr-Brown design is avail-
able on the Circuit Cellar
web site (the 5-wire firm-
ware is nearly identical).
The PIC’s job is to sense a
touch event, and if detected,
send out a data packet con-

Figure 6 —Four of the PIC’s
digital lines are used to provide x
and y voltage gradients. A single
analog input is used to determine
the contact point by measuring
the pick-off voltage in both the x
and the y planes.

Figure 7 —The processor in this interface is actually the Tritec
TR88L811, a dedicated 4-wire touchscreen interface device. It handles
all of the touchscreen scanning, touch detection, and message
formatting chores. The 3-VOLT device was originally developed for
the PDA industry.

go from the glass to a serial bitstream
with only one chip. If you have an
extra serial channel available and only
need 10 bits of positional accuracy,
then this may be the way to go.

The TR88L811 is designed for
standalone applications and requires
only a 1.8432-MHz crystal and an RS-
232–level shifter to form a complete
interface that you can attach to a
spare PC COM port.

Figure 7 shows an example circuit
that steals its power from the PC’s
COM port. The TriTech device scans
the touchscreen continuously and
sends a serial data packet out of its
TxD pin when a touch is detected.
The data packet, sent at 19,200 bps,
contains five bytes—a header and two
bytes each of x and y position. The
position is resolved to 10 bits, which
is adequate for most applications.

If a touch is maintained, the chip
will send data out at a rate of
approximately 200 coordinate pairs
per second. The main advantage of
this device is that it requires no
firmware. As long as you can live
with the 10-bit resolution and can
work with its output format, then it’s
a turnkey solution.

You can buy the raw touchscreen
glass from several manufacturers. I’ve

 CIRCUIT CELLAR ® Issue 114 January 2000 25www.circuitcellar.com

the touchscreen controller chip. The
routine is similar for both 4- and 5-
wire chips. Convert passes a variable
called channel, which contains a 0 or
1. This variable controls whether we
read the x or y channel of the device.
The 12-bit result comes back in a 16-
bit word named ADC.

Convert is called by a higher level
subroutine named Read_Glass. This
routine determines if a touch has
occurred and sets a flag called touch
to indicate such. A touch is deter-
mined to have occurred if the result of
a Convert operation is above a cer-
tain noise threshold. When Convert
is called and no touch has occurred, a
value near zero is returned.

WRAPPING IT UP
Well, there you have it. You’ve

seen four different means of inter-
facing a resistive touchscreen to your
system. The Burr-Brown chips offer
high accuracy, off-the-shelf solutions
to both 4- and 5-wire glass types. My
roll-your-own PIC interface is a

Header (Sync) byte

High byte
x position

Low byte
x position

Low byte
y position

Low byte
y position

Either a $C0 or $80
$C0 = Touch Down
$80 = Touch Up

Bits 8–11 of the x position

Bits 0–7 of the x position

Bits 8–11 of the y position

Bits 0–7 of the y position

Figure 8 —This is the message format used for circuits
in Figures 3, 4, and 6. A simple five-byte data packet is
used to transmit the touch coordinates from the
touchscreen controller to the host system.

Figure 9 —In this flow diagram for Figures 3, 4, and 6, the
controller continuously scans the touchscreen, detects
the touch, and sends out a five-byte data packet.

State 0
Powerup initialization

State 1
Waiting for touch

State 2
Send 5-byte "touch down"
packet starting with a $C0

Touch detected

State 3
Send 5-byte "touch up"

packet starting with a $80

Touch not
detected

Touch
detected

Touch not
detected

SOURCES
TR88801/802 4-wire controllers
TriTech Microelectronics Int’l Inc.
(408) 894-1900
Fax: (408) 894-1919

ADS-7843/-7845
Burr-Brown Corp.
(520) 746-1111
Fax: (520) 889-1510
www.burr-brown.com

Touchscreen glass
Bergquist Touch Products
(800) 796-6824 • (612) 835-2322
Fax: (612) 835-4156
www.bergquistcompany.com

Microtouch Systems Inc.
(800) 642-7686 • (978) 659-9000
Fax: (978) 659-9105
www.microtouch.com

PIC16C71
Microchip Technology, Inc.
(888) 628-6247 • (480) 786-7200
Fax: (480) 899-9210
www.microchip.com

Basic Stamp
Parallax, Inc.
(916) 624-8333 • Fax: (916) 624-8003
www.parallaxinc.com

REFERENCES
D. Blass, Touch Screens for Flat

Panel Applications, Sharp
application note, January 18,
1996.

V. Kuroodi, Pen Input Capability
for Portable Devices, TriTech
Microelectronics application
note, 1996.

Tom Dahlin is a published author
who runs a consulting business where
he has developed the electronics for
products such as a Talking Trash
Compactor used in the fast food
industry, an automated french fry
dispenser, and (don’t laugh) a pig
sperm heater/controller for the
animal-breeding industry. Tom has
20 years of design engineering

minimal parts count design and is
best suited to low-accuracy applic-
ations. The TriTech chip offers a
unique solution in that it involves no
firmware. Those of you whose
favorite programming language is
solder will appreciate that. I

http://www.burr-brown.com
http://www.bergquistcompany.com
http://www.microtouch.com
http://www.microchip.com
http://www.parallaxinc.com

26 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Neural
Stamp

FEATURE
ARTICLE

Robert Lacoste

c
Neural networks are
no longer just an
ideal research ex-
periment for acade-
mia. In his Design99
award-winning entry,
Robert clears up
some of the mystery
of implementing
neural network tech-
nology in everyday
applications.

onsidered a
research topic for

years, neural net-
works are now a mature

technology, with applications ranging
from image recognition to data fore-
casting and from real-time process
control to statistical analysis. But the
widespread use of this technology is
still quite limited, especially in em-
bedded systems, probably owing to
three main factors:

• embedded-system designers seem
afraid of the academic style pre-
dominant in neural network publi-
cations

• ready-made hardware implementa-
tions of neural networks exist, but
they are targeted to high-speed or
high-complexity systems and are
not adequate for low-cost applica-
tions [1]

• time-to-market is usually a pre-
dominant constraint, so neural-
network technology is often
considered a risky alternative be-
cause no dedicated embedded devel-
opment tools are available

Why not develop a universal
canned neural network module, reus-
able from design to design, using a
simple microcontroller and a minimal
number of external components to

keep the bill as low as possible? I’d
had this idea for years, but Design99
was the trigger to start transforming
the idea into a working prototype…
and Neural Stamp was born (see
Photo 1)!

I wanted Neural Stamp to be a
purely analog macrochip. Its eight
inputs are 0–5-V analog inputs; its
eight outputs are 0–5-V analog out-
puts. With this approach, a Neural
Stamp can easily be integrated into an
existing analog design, replacing dis-
crete analog regulation circuitry by
neural network technology while
minimizing system impact.

In this article, I first give a brief
overview of the artificial neural net-
work model. I then describe the Neu-
ral Stamp hardware and embedded
software, as well as the associated
PC-based development tool, NS-
Drive.

NEURAL NETWORK MODEL
A lot of books describe artificial

neural networks and how to use them
[2, 3]. I’m not a specialist, so here is
my very simplified, engineering-ori-
ented personal summary.

A neural network is a set of com-
puting elements (neurons), connected
through weighted links. Each neuron
calculates the weighted sum of its
inputs (plus some bias), applies a non-
linear function to the result (like the
classical sigmoid function illustrated
in Figure 1), and puts the resulting
value on its output (see Figure 2).

A Low-Cost Neural Network
Processor

Photo 1 —The Neural Stamp macro-chip is a SMT PCB
with an onboard 68HC908GP20 microcontroller and
circuitry for eight analog inputs and eight analog outputs.

 CIRCUIT CELLAR ® Issue 114 January 2000 27www.circuitcellar.com

software and up to 12 full sets of
weights. And, the integrated low-
voltage detection and watchdog allow
a safe “macrochip” approach, helping
to hide the microcontroller’s presence
from the end user.

NEURAL STAMP DETAILS
Figure 5 shows the schematic of

the Neural Stamp macrochip. The
eight analog inputs AD0–AD7 con-
nect directly to the Neural Stamp
input pins.

The eight Neural Stamp analog
outputs come from PD0–PD7 digital
outputs through a 20-Hz simple low-
pass filter and a quarter of an LMC660
used as an analog buffer [4]. This sim-
ple circuit is associated with an inter-
rupt-based routine to implement a
low-cost eight-channel sigma-delta
DAC.

For those interested in bit-banging,
the difference between a classical
PWM-based design and a sigma-delta
DAC lies in the shape of the digital

Basically, a neural network is
“only” a computing gizmo that takes
n inputs, calculates a nonlinear math-
ematical function of these inputs, and
puts the resulting values on the out-
puts.

The main difference between clas-
sical programming and neural net-
work technology is that neural
networks are not “programmed” but
“trained,” using a large set of training
samples (input values and desired
output values). The goal is not to
manually define the network weights
but to let neural network training
software do it for you.

Many training algorithms exist,
from the classical back-propagation
technique to complex multimode
algorithms. And, the debate within
the scientific community regarding
how to size a neural network for a
given task and which learning algo-
rithm to use is extremely active!

For common problems, however, a
feed-forward two-layer network (in-
puts, one hidden layer, and one output
layer; see Figure 3) is usually a good
compromise between performance
and training convergence issues. The
choice of a good set of training sam-
ples is far more important than the
learning algorithm.

Moreover, a lot of good simulation
and learning software is available
(often for free on the web), so there’s
no need to reinvent the wheel. Now
you have the basics, so let’s take a
look at the Neural Stamp concept.

NEURAL STAMP TOPOLOGY
To keep costs as low as possible

(i.e., single-chip implementation),
Neural Stamp has a fixed connectivity
of eight inputs and eight outputs.
Internally, the Neural Stamp is struc-
tured as a two-layer feed-forward
neural network, as in Figure 3.

It has a hidden layer of 16 neurons,
each connected to the eight inputs
and to a constant bias source. It also
has an output layer of eight neurons,
each connected to the 16 hidden neu-
rons and to a constant bias source.

Each link has an associated weight,
so this network is characterized by
280 parameters (16 ´ 9 + 8 ´ 17). As a
coarse estimation, this kind of net-
work needs about 150–500 training
samples to be correctly defined.

If the connectivity or computing
power of the Neural Stamp is insuffi-
cient for a given application, several
devices can be chained (with analog
links) to build larger networks. For
example, two Neural Stamps can be
used to build a full-connected 8 in-
puts/16 hidden/16 outputs network.

WHY THE 68HC908GP20?
To decide on a microcontroller for

the Neural Stamp macrochip, I listed
the major constraints for this project:

• low-cost microcontroller
• eight analog inputs
• speed, especially quick arithmetic

operations
• large amount of flash memory to

store the weight associated to
each neural connection, and
enough RAM for neuron states
storage

• in-circuit programming to download
weight files

• small surface-mount package

And the 68HC908GP20 fit these re-
quirements almost exactly! I won’t
present the details of the chip here,
because Tom Cantrell covered it well
in “Flash Forward” (Circuit Cellar
104).

The main positive points for this
application are that it’s cheap, and it’s
even cheaper if you take into account
that a simple 32-kHz crystal can be
used, thanks to the onboard PLL.
Also, its 8-MHz bus frequency, but
more importantly its fast 8 ´ 8 multi-
ply instruction, is interesting for this
application because it permits a calcu-
lation cycle under 50 ms for the 24
neurons.

The 20-KB flash in-circuit program-
mable memory stores the application

Figure 1 —Any non-linear function may be used, but a
sigmoid function, as shown here, is the most common.

Figure 3 —The Neural Stamp implements a fully
connected neural network with its 8 inputs, 16 hidden
neurons, and 8 outputs.

Neuron

Input 1

Input 2

Input 3

Input 4

Output

Output = sigmoid (w1.i1 + w2.i2 + w3.i3 + w4.i4 + bias)

1
0,8

0,6
0,4
0,2

0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

Bias

Bias

NH1

NH2

NH3

NH4

NH5

NH6

NH7

NH8

NH9

NH10

NH11

NH12

NH13

NH14

NH15

NH16

NO1

NO2

NO3

NO4

NO5

NO6

NO7

NO8

Inputs

Hidden layer

Output
layer

Figure 2 —Each artificial neuron calculates a weighted
sum of its inputs and passes this through a non-linear
function.

28 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Figure 4 —PWM and sigma-delta signals and frequency spectrums for an 18% output ratio with the same sampling
frequency (23 ones and 105 zeros each 128 cycles). The sigma delta version has far fewer low frequency harmonics
and is easier to filter.

signals. With a sigma-delta converter,
the ones and zeros are (on average)
more spread out, giving far fewer low-
frequency harmonics with the same
sampling frequency, as Figure 4 illus-
trates.

And because the harmonics are at
higher frequencies, a simple low-pass
filter gives surprisingly good results,
but at the expense of more computa-
tions on the microcontroller. For
more details about sigma-delta algo-
rithms, see David Tweed’s article,
“Digital Processing in the Analog
World, III,” (Circuit Cellar 101) and
Listing 1.

The clock generator circuit is built
around a standard 32.768-Hz clock
crystal (upconverted to 32 MHz by the
internal PLL, giving an 8-MHz bus
frequency). Finally, the TXD and RXD
SCI connections are routed to some
Neural Stamp pins for a PC connec-
tion, as well as the reset line and the
pins needed for the monitor-based in-
circuit programming (PA0, IRQ, and
OSC1).

The Neural Stamp components fit
on a 39 ´ 44 mm PCB (1.5² ´ 1.8²)
with two 12-pin headers. All compo-
nents are surface-mount, except the
crystal and the headers (and, well, a
10-MW resistor, because I couldn’t
find it in a surface-mount package in
time).

 The Neural Stamp prototype was
in fact my first surface-mount home-
built project. I’m pleased to confirm
that the soldering of 0603 size resis-

tors and even QFP packages is pos-
sible without huge equipment—just a
delicately handled fine iron, and lots
of patience!

NEURAL STAMP TEST BOARD
To test the Neural Stamp macro-

chip, I wired a small test board to
provide input signal (potentiometers)
and output signal monitoring (LEDs).
This board, shown in Photo 2, also
includes all the circuitry needed for
the in-circuit programming of the
flash memory. Three switches on the
test board let you switch the PC serial
port between SCI and flash download
modes (see Figure 6).

I should point out that this in-
circuit programming is possible using
the ’GP20 onboard monitor ROM, but

it needs an external 4.9152-MHz os-
cillator because the PLL is not en-
abled if the flash memory isn’t empty
[5]. This factor complicated the pro-
ject because I wanted to have the full
8-MHz power for the main program.

Of course, it’s possible to bypass
the monitor ROM by including flash-
memory management routines in the
application software. But, I didn’t
implement this feature on the current
version of the Neural’Stamp firmware
(deadlines).

Instead, I used an external 4.9152-
MHz oscillator for downloading
weight files and application software
updates. A future firmware evolution
will solve this issue, but I think the
Motorola guys should have included a
more flexible monitor ROM.

PWM FFT PWM

Sigma-delta FFT sigma-delta

1

0

50

40

30

20

10

0

1

0

50

40

30

20

10

0

Figure 5 —Other than the ’908
microcontroller and associated cir-
cuitry, the Neural Stamp uses 8 low-
pass filters built around LMC660 op
amps for crude (but effective) analog
outputs.

 CIRCUIT CELLAR ® Issue 114 January 2000 29www.circuitcellar.com

NEURAL STAMP EMBEDDED
SOFTWARE

The Neural Stamp embedded soft-
ware, written in assembler, resides in
the ’GP20 flash memory. As Figure 7
illustrates, it is classically structured
into two tasks—a main program,
which is in charge of the initializ-
ations and the main processing loop
(analog acquisitions, neural network
calculations and host serial link man-
agement); and an interrupt routine,

called at a 4-kHz rate, which is in
charge of the sigma-delta output pulse
generation.

These two tasks communicate
through eight RAM variables that
store the desired output values. The
software uses about 1.5 KB of flash
memory, starting at $E000.

The remaining part of the flash
memory is divided into 12 memory
blocks. Each block can store a com-
plete set of neural network param-

eters (weights associated to each of
the 280 connections). During initial-
ization, the software looks for the last
nonempty block and uses the values
it contains for all neural network
computations.

This arrangement allows multiply-
ing by 12 the erase/write-cycle speci-
fication of the chip. Up to 12 sets of
parameters can be downloaded and
tested before the flash memory has to
be erased!

The software itself currently uses
exactly 67 bytes of RAM, using an
additional 12 bytes for the stack. So, a
majority of the inital 512 available
bytes are still free, but they’ll soon be
used by the software extensions I have
in mind.

MAIN PROGRAM
The main program (nstamp09.

asm) is easy to read and generously
commented. The trickier parts are the
numerical computations. To save
both memory and execution time, all
calculations are done on the mini-
mum argument size:

Listing 1 —The sigma-delta algorithm needs 375 cycles to update the eight analog outputs.

Variables:
S = sigma-delta accumulator (-128 to +127)
Vo = desired output mean value (0 to 127)
X(N)=previous output binary value (0/1)
X(N+1)=next output binary value (0/1)

Algorithm:
For each time step
 For each output
 S = S + Vo
 if X(N)=1 then S=S-128
 if S>0 then X(N+1)=1
 else X(N+1)=0

30 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

• the input and output of each
neuron is stored in one unsigned
byte (0–255)

• the weight of each connection is
stored in one signed word

(–32,768 to +32,767)
• all the intermediate calculations

are done on three signed bytes

This appears to be a good compromise
between rounding and truncating
errors and complexity. A normaliza-
tion factor is used to optimize the
available numerical range.

A dedicated multiplication routine
is included to get the maximum per-
formance possible. For division, per-
formance is less critical, so the
generic 32 ´ 32 division routine pro-
vided in Motorola’s application note
is called directly [6]. The sigmoid
estimation is done via a precalculated
table.

Lastly, a simple serial protocol is
implemented for host-to-target dialog
during development steps. One-byte-
long commands allow the host to
identify the target, read input and
output values, start and stop the neu-
ral network computations, or write
specific values to the target’s outputs
in stop mode.

INTERRUPT ROUTINE
The interrupt routine is called at a

frequency of 4 kHz, thanks to the
integrated time-base generator. Each
time it is called, a new binary value is
calculated for each of the eight analog
outputs.

The desired output value is first
divided by 2 (resolution 0–127) and
then processed through a sigma-delta
emulation. In worst-case conditions
(output value 1 or 126), the output bit
is updated at a frequency of:

4000
128 = 31 Hz

which is adequate, given the
Neural’Stamp 50-ms global cycle
time.

The sigma-delta algorithm is given
in Listing 1. This interrupt
routine needs 375 cycles to
update the eight analog
outputs. With the 8-MHz
bus frequency, this trans-
lates into a 93-µs execution
time. Because the interrupt
frequency is 4 kHz, the
interrupt routine uses:

4000 ×
93 µs
1 s = 37%

of the CPU time, as shown
in Figure 8.

The main program,
while not receiving com-

mands from the host, needs
about 128,000 cycles for com-
plete execution (acquisition
and neural network calcula-
tion), or 32-ms CPU time.
Taking the interrupt CPU
time into account, this gives a
50-ms global cycle time, or a
cycle frequency of 20 Hz. Not
bad for a low-cost neural-
network implementation!

PC-HOSTED DEVELOP-
MENT SOFTWARE

A system designer needs a
good development and debug-
ging environment, so I had to
leave the soldering iron for the
keyboard and develop the
dedicated PC-based software,
which I call NS Drive.

With this tool, a PC can be
linked to the Neural Stamp

through a serial link and the designer
can get real-time training samples
from the real-world application, train
and simulate the neural network, and
download a neural-network parameter
set into flash memory. After this
learning phase, the Neural Stamp is
autonomous and no longer needs the
PC connection.

NS Drive can also be used during
design optimization or maintenance
operations. The designer can recon-
nect the serial link and monitor the
neural network behavior in real time,
without any impact on the process
control itself.

Because a lot of good neural net-
work development software is already

Figure 6 —The test board uses potentiometers for input signals and LEDs to monitor the output levels. It also contains the
necessary logic and clock for the monitor mode flash programming.

Figure 7 —The embedded software is structured into a main program
(managing the calculations and serial port) and an interrupt routine.

Reset

Initialization

Get analog
input values

Compute
ouputs

Network
weights

Character
received

Execute
command

Yes

Input
values

Output
values

Interrupt

Return

Update
output bits

32 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Figure 8 —37% of CPU time sharing is dedicated to
managing the sigma-delta emulation for the 8 outputs.

37%

63%

Interrupt CPU time
Main program CPU time

available (and enhanced every day
by an active research commu-
nity), I decided not to develop
something from scratch. Rather, I
use a general-purpose neural
network software for training,
optimization, and verification.

NS Drive serves as a gateway
between the Neural Stamp device
and this external software
(through ASCII files) as well as
integrating real-time monitoring
functions. For the training soft-
ware, I used the simple but effec-
tive Visible Neural Network
shareware. However, virtually
any other package can be used, with
some postprocessing.

NS Drive supports five different
modes, as shown in Figure 9. In the
training-set acquisition mode, real-
time input values are read from Neu-
ral Stamp inputs and stored in a file
with the corresponding output values
entered by the user. This training set
can then be fed to the general-purpose
neural network training software.

The simulation mode consists of
offline verification of the weight file
generated by the training software,
with exactly the same algorithm as
the one embedded on the Neural
Stamp (integer calculations) or with a
floating-point version of the same
algorithm (useful to detect rounding
issues).

Emulation mode is online verifica-
tion of the weight file. Inputs are read
from the target inputs, the neural
network is simulated on the PC, and
the outputs are written back to the
target’s outputs. This mode lets you
quickly test a weight file on a real
application before burning it into
flash memory.

The download mode lets you gener-
ate a binary file that can be down-

loaded on the Neural Stamp flash
memory through Motorola’s supplied
tools [5].

Finally, there’s real-time monitor-
ing of Neural Stamp inputs and out-
puts, with the neural network
calculation still done locally on the
Neural Stamp. This mode can be used
without disturbing the real-time con-
trol process, which aids on-site prob-
lem solving.

In a nutshell, NS Drive fills the gap
between the powerful academic neu-
ral network development tools and
the needs of the embedded system
engineer who’s more used to in-cir-
cuit emulators and cross compilers
than mathematics! It provides a set of
sliders to monitor and/or control the
inputs and outputs of the Neural
Stamp (see Photo 3). It also simulates
the neural network in emulation or
simulation modes.

Technically, NS Drive is Win95-
based software, developed with Bill’s
Visual C++ under the MFC frame-
work. I designed it as a multithreaded
software, with one thread dedicated to
the user interface and a second thread
managing the serial link.

NEURAL STAMP AT WORK
To test the Neural Stamp, and to

demonstrate what can be done with
it, I trained my Neural Stamp to rec-
ognize specific patterns on the analog
inputs. As illustrated in Figure 10,
each output is trained to be full on
when a specific pattern is defined on
the inputs.

For example, output 2 is trained to
be full on (and all other outputs full

Photo 2 —The switches on the right of this Neural Stamp
test board are used to switch from flash download mode to
execution mode.

 CIRCUIT CELLAR ® Issue 114 January 2000 33www.circuitcellar.com

off) when input 1 is at 5 V,
input 2 at 4.2 V, and so on,
down to input 8 at 0 V.

To train the network, I
used about 30 diffrent train-
ing sets. In addition to the
eight basic sets that are
shown in Figure 10, I also
entered several sets of
pseudo-random input sig-
nals and what I, as a hu-
man, can see as a general
trend created on these input
values.

Using the Visual Neural
Network toolset with the
standard back-propagation algorithm,
I got a good convergence of the learn-
ing and was able to download the
resulting weight file to the Neural
Stamp.

Photo 4 shows that an input pat-
tern may not be exactly identical to
the training set C4, but “similar” is
correctly identified by the network.
Frankly, the output C4 is “on.”

A major advantage of the neural
network technology is that even if the

input pattern isn’t like any of the
training sets, the outputs are still
reasonable:

• output 6 is doubtless “on” because
the inputs 1–4 are increasing as in
test case C6

• output 3 is moderately “on” be-
cause the general shape is similar
to test case C3

• output 5 is just a little “on” even if
nobody knows why!

As you see from the
example I have given,
neural networks can gener-
alize or interpolate from
the training cases. Because
the number of training sets
is usually small, some-
times the network’s behav-
ior isn’t what we want (as
with output 5 above). In a
situation like this, you
simply need to add training
sets, making the network
learn what you want it to
do, and relaunch the learn-
ing algorithm!

DEVELOPMENT PROCESS
Developing an embedded applica-

tion like Neural Stamp may be a
nightmare without the appropriate
tools and method. On the tool side,
the ’GP20 development environment
has two big advantages—it’s freely
available via the Internet, and it in-
cludes a powerful simulator that can
work either offline or with I/O redi-
rected to the target.

Photo 3 —NS-Drive is windows-based software capable of real-time display of input and
output values.

34 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Photo 4 —The neural network recog-
nizes an input pattern close to the test
case in C4 and indicates this with an
active level on output 4.

I like to develop an embedded ap-
plication in an iterative, step-by-step
approach. I try to find bugs as soon as
possible, often before going on the
target or even writing assembler code!
Here are the different steps I used for
this project.

I first developed the NS Drive PC-
based software, with its floating-point
mode neural-network emulation. This
software was fully tested by compar-
ing its outputs with the Visible Neu-
ral Network outputs. This helped me
get a sense of how a neuron works.
All the serial communication to the
target was also emulated using a
palmtop computer (a PSION 5) con-
nected to the PC serial port and mac-
ros with the terminal emulator
application [7].

Still on the PC, I then developed
the NS Drive integer-mode neural-
network emulation, coding it with the
target architecture in mind. This step
let me debug rounding and truncating
problems, comparing the outputs in
integer and floating-point modes.

Then I wrote the target software in
assembler. First, the basic arithmetic
functions (multiply, divide, sigmoid
function, etc.) were written and de-
bugged with the simulator, and then
the rest of the application software.

I tested nearly 100% of the embed-
ded software with the simulator. The
same neural network simulation algo-
rithm was coded both in NS Drive
source and in the target code, so I
could single-step through both sets of
code in parallel on the same PC (NS
Drive with Visual C++, target code
with the ’GP20 simulator). This way,
I could flag any differences in the
intermediate results.

Finally, the real thing—download

the software into the target and test
it. Thanks to all the previous testing,
this phase was quick. In fact, the only
major remaining bug was related to
the PLL initialization, which is quite
difficult to simulate.

GOING FURTHER
Because a lot of parameters are

predefined, Neural Stamp can be a
quick and cost-effective solution for
medium-complexity embedded appli-
cations. Thanks to the speed of the
’GP20, the Neural Stamp’s quick
response time (under 50 ms) should be
adequate for most process control
applications. Moreover, several Neu-
ral Stamp macrochips can be chained
to build more complex networks.

Of course, a project like this one is
never really finished. New ideas al-
ways crop up before the previous ver-
sion is even finished!

Figure 9 —Support for five different operating modes
allows the quick development and debugging of neural
network-based applications

Training

Host PCMode Neural Stamp

In

Out

Simulation
In

Out

Emulation
In

Out

Download
In

Out

Monitoring
In

Out

 CIRCUIT CELLAR ®www.circuitcellar.com

SOFTWARE
The main program
(Nstamp09L.asm) and executable
files are available via the Circuit
Cellar web site.

REFERENCES
[1] C. S. Lindsey and T. Lindblad,

Survey of Neural Network Hard-
ware, Swedish Royal Institute of
Technology, http://
msia02.msi.se/~lindsey/pub/
spie.html

[2] Neural networks FAQ, ftp://
ftp.sas.com/pub/neural/
FAQ.html

[3] J. Hertz, A. Krogh, and R.
Palmer, Introduction to the
Theory of Neural Computation,
Addison-Wesley, Reading, MA,
1997.

[4] National Semiconductor,
LMC660 CMOS Quad Opera-
tional Amplifier, Datasheet
DS008767, 1999.

[5] G. Whitacre, In-circuit Program-
ming of Flash Memory in the
MC68HC908GP20, Motorola,
Application note AN1770, 1998.

[6] M. Johnson, M68HC08 Integer
Math Routines, Motorola, Appli-
cation note AN1219, 1996.

[7] A. Denver, “Serial Communica-
tions in Win32,” Microsoft Win-
dows Developer Support,
www.microsoft.com/win32dev/
base/serial.htm.

SOURCES
68HC908GP20
Motorola
(512) 328-2268
Fax: (512) 891-4465
www.sps.mot.com/

Visible Neural Network shareware
The Visible Neural Network, Inc.
ftp.industry.net/pub/sharewar/
ai_xprt/visnn20.exe

Robert Lacoste lives in France, near
Paris. He has 10 years of experience
in real-time software and embedded-

system developments but still loves
building innovative microcontroller-
based devices after hours. He is cur-
rently a senior project manager in the
wireless industry. You may reach him
at robert_lacoste@yahoo.fr.

Figure 10 —In this basic set of training cases, each
output is trained to be fully on when presented with a
specific input pattern.

Inputs Outputs
0 8 0 8

Case

C1

C2

C3

C4

C5

C6

C7

C8

The first improvement I’d make
would be to integrate flash-memory
writing algorithms in the application
software. That way, the external
4.9152-MHz clock wouldn’t be needed
to download the weight files. More-
over, the software could automati-
cally look for the next free block and
erase the flash memory if all blocks
are already used, hiding flash-memory
management from the user.

On the PC side, a better integration
of the NS Drive software with a good
window-based neural network simula-
tion package should also be planned
because the two tools are quite dis-
tinct. This necessitates selecting a
preferred tool from the extensive
available software and writing some
integration code.

And finally, why not include some
learning algorithms directly on the
target itself? This change could dra-
matically increase the number of
applications of the Neural Stamp,
allowing adaptive in-field training.
However, I’m still a little leery of this
approach. Learning algorithms some-
times give strange results, and are
definitely memory hungry!

To be honest, another goal of mine
is to find a partner to industrialize
and commercialize the Neural Stamp
concept, since this an after-hours
project not linked at all with my cur-
rent job. So, dear reader, if you’re
interested, don’t hesitate to contact
me! I

www.sps.mot.com/

36 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Embedded CAN Can

FEATURE
ARTICLE

Michael Howard

a
If you are looking for a
networking solution
and RS-485 and
Ethernet aren’t going
to cut it, you might
consider CAN, using
Microchip’s
MCP2510. Follow
Michael as he shows
us some of the ben-
efits of this stand-
alone controller.

few weeks ago, I
needed to get an

EEPROM datasheet
from Microchip’s web

site and happened to glance at the
flashing features section. The one
about the new standalone CAN con-
troller caught my eye, so I checked it
out.

The web page describes a chip that
matched my needs so well that I im-
mediately downloaded the 74-page
datasheet and ran off to the coffee
shop. So, here I am a few weeks later,
after having some first-hand experi-
ence with the MCP2510 part. And I
must say, if you have any plans to
network embedded devices, check
this one out. The MCP2510 is a good
solution when RS-485 and Ethernet
are not.

 As a software architect at
emWare, I spend many hours trying
to match customers’ requirements
for device networking with commu-
nications technologies appropriate for
their product. This activity continu-
ally reminds me that there is no
single right answer when it comes to
establishing remote connectivity.
Sometimes this means that there are
many reasonable ways to solve a
connection problem, but it often
seems there’s no good way to make it
happen at all.

The customers who desire to add
or enhance device networking in their
products have a notion of how valu-
able this connection is in their par-
ticular product. This value is
measured against the cost of imple-
menting network connectivity and it
governs the decision whether to go
ahead with the project. In other
words, they’re seeking a high level of
capability for a low overall system
cost increase.

 It’s common to have customers
consider using RS-485 networks to
achieve low-cost communication,
especially if the controller in an exist-
ing design has an unused serial port.
For some applications, a simple RS-
485 network is appropriate.

Other implementations must con-
sider the disadvantages. The CPU load
can be pretty high for this type of
network, even if 9-bit characters are
used to flag node addresses.

As well, the maximum speed is
often constrained to 115 kbps. This
limitation is due to the load imposed
on the CPU for address filtering and
capabilities of the UARTs in the con-
trollers on the network.

The lack of reliable collision detec-
tion generally leads to a master/slave
media access strategy. This means
that when a single point of failure
exists on the network, the communi-
cations bandwidth may be lost due to
bottlenecks in the network master.

One networking alternative is to
use Ethernet. There are many low-
cost, but reasonable, Ethernet control-
lers that include significant RAM
on-chip and can be used by small
controllers like a PIC16xxx or similar
8-bit device.

The Realtek 8019AS chip is a good
example of an NE2000-compatible
part with 16-KB SRAM and a modest
price of less than $5 in 1000-piece
quantities. Using this type of part is
easy on the software side because of
widely available Linux drivers for
NE2000 chips.

The code size can be significant,
though, because you need to manage
the memory in the device driver.
emWare customers who adopt
Ethernet are generally in need of a
high-speed connection, a hook into an

 CIRCUIT CELLAR ® Issue 114 January 2000 37www.circuitcellar.com

The Packet header for emNet is at least four bytes, so
only four are left for payload and a continuation flag.

SOH
Destination

address
Source
address

Command

Basic emNet Packet

Service
target

Payload
(1-254 bytes)

CRC

Simplified CAN Data Frame

Data (up to 8 bytes)Control
field

CRC

Unless the identifier portion is used in the addressing,
 all data and addressing must fit in eight bytes

Extended identifier
(18 bits)

Identifier
(11 bits)

whether the timing jitter in packet
arrival will disrupt the control algo-
rithm. You also need to have enough
I/O and program space to connect the
controller to the embedded system.
The controller and associated support
circuitry shouldn’t be too expensive.

The MCP2510 CAN controller
meets your needs when a bit rate of 1
Mbps will work and the network
latency must be predictable, espe-
cially for critical messages. This kind
of network requires only a small num-
ber of I/O pins and small amount of
program space, and it’s less expensive
than the Ethernet solution. It’s also a
good choice if a peer-to-peer or multi-
master system is required.

THE MCP2510
The MCP2510 is a CAN controller

that comes in an 18-pin PDIP/SOIC or
a 20-pin TSSOP package. The inter-
face to the controller is accomplished
through an SPI port, so adding CAN
with this part requires as little as four
control lines from the CPU. Addi-
tional pins can signal interrupts or be
used as generic I/O lines (replacing
the ones used by the SPI).

This part is a controller that sup-
ports Full CAN 2.0A, and 2.0B. The
term “Full CAN” means that it’s

better than BASIC CAN
because the part per-
forms address filtering
in hardware.

The address filters
screen the messages
placing them into one of
the two receive buffers.
The BASIC CAN parts
require the CPU to filter
all the messages to see if
that CPU is interested,
similar to address filter-
ing in a RS-485 network.

existing network, and available I/O
pins to dedicate to the interface.

Control area networks (CAN) offer
an alternative that falls somewhere
between these two in terms of system
cost and data rates. Also, its features
make it particularly well suited for
distributed, embedded systems. These
features include priority encoding on
the physical network, which guaran-
tees that the highest priority message
gets through.

Priority, coupled with a small
packet size, minimizes latency and
makes that latency predictable. When
there are collisions on an Ethernet
network, there’s no guarantee that the
important messages will arrive in a
timely fashion. Even though a 100-
Mbps Ethernet network that’s lightly
loaded can deliver the data faster, the
speed is often not as important as the
determinism offered by CAN.

Another characteristic of CAN is
that a node does not send messages to
a specific target. It places the message
on the bus, and any node that is inter-
ested in the message may use it.

The reception of messages is also
based on the identifier of the data, not
the sender. Unless you build a layer
on top of the message delivery offered
by the controller, the nodes have no
way of telling what other nodes are
sending or receiving messages.

This feature, similar to using
Ethernet in multicast mode, lets the
systems engineer add new nodes that
participate in the network without
modifying code in the original nodes.
A typical implementation has a node
sending messages when it is certain of
its variable’s change state. Other net-
work nodes can then receive these
updates and react
accordingly.

Consider a simple
HVAC control, for ex-
ample. The temperature
sensor may continually
send messages with the
current temperature
reading. The furnace and
air conditioner can then
watch for messages to
alter the temperature.

The master control
compares the desired

value input by a user-interface node
and generates the temperature- change
messages. If a new device is added to
the network, it can monitor the tem-
perature and commands to the other
equipment and supply another
method to input desired temperature.

A CAN node may request data by
issuing a remote frame. This message
is a request that some node places the
specified message on the bus. If each
node is the sole supplier of one spe-
cific message type, you can use the
remote frame to determine whether a
specific node is present.

So, as usual, the best choice for any
one customer depends on their par-
ticular project needs. My various re-
commendations are shown in Table 1.

For example, I recommend RS-485
if a bit rate of 115 kbps or lower will
work and if the latency inherent in a
polled master/slave bus is not too
high for appropriate reaction to events
on the device. Also, the load imposed
on all the nodes needed to accomplish
address filtering can’t be too high, and
sporadic interrupts caused by incom-
ing characters should not adversely
affect the application.

On the other hand, Ethernet is a
good choice if the required bit rate
exceeds 1 Mbps. Another factor is

Figure 1 —Note
the packet size
differences in
this diagram of
serial protocol
packet informa-
tion for basic
emNet and
Simplified CAN.

Figure 2 —Internal organization of the MCP2510 CAN interface controller. All access to CAN
controller functions can be accomplished through the SPI bus, but additional handshaking is
available through discrete status and control lines.

RXCAN

TXCAN

3 TX
buffers

2 RX buffers

6 Acceptance filters

Message assembly buffer

Control logic

SPI
interface

logic

*CS
SCK
SI
SO

SPI
bus

*INT
*RX0BF
*RX1BF
*TX0RTS
*TX1RTS
*TX2RTS

CAN
protocol
engine

Internal organization
 of the MCP2510 CAN

interface controller

38 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Table 1—When considering factors such as data rate, cost, and I/O pin requirements, the gap filled by MCP2510
becomes apparent.

The 2.0A and 2.0B compatibility
refers to the size of the message identi-
fier. The 2.0A-compatible CAN con-
trollers use an 11-bit identifier. The
extended message format of CAN 2.0B
allows a 29-bit message identifier.

The SPI port accessing the controller
uses six types of instructions: RESET,
READ, WRITE, RTS (Request to Send),
READ STATUS, and BIT MODIFY. The
READ and WRITE instructions inter-
nally increment an address counter, so
it’s easy and efficient to set up and
transfer messages to and from the part.

One of my goals in using a part like
this is to try to use as little program
space in the MCU as possible. Be-
cause our customers often employ a
fairly large EEPROM, I like to have as
much of the communications initial-
ization as possible placed into a data
table. This enables me to loop
through the table at startup and effi-
ciently initialize a complex part.

The MCP2510’s WRITE instruction
increments to the next address, so I
just have to move a large group of
configuration data from the EEPROM
onto the SPI bus. The READ STATUS
command returns, in one byte, the
status of the two receive buffers and
the three transmit buffers. The same
buffer-status information can be out-
put to discrete pins on the controller
and read via a port pin on the MCU.

A typical application of this capa-
bility is to set up one of the receive

buffer’s filters to accept only high-
priority messages. The buffer-full
output can then be signaled by a pin
on the MCP2510 and routed to an
external interrupt line of the MCU.

Using this, the MCU can poll the
SPI port for lower priority messages
but be alerted to the presence of a
high-priority message at any time. The
transmit buffers can take similar roles.

The controller can be set up by the
MCU at startup with a particular
emergency message and the REQUEST
TO SEND for that buffer can be tied to
an input pin. An emergency condition
can be attached in hardware to the
pin, so the message is quickly dis-
patched. Because the high-priority
messages will take precedence and the
longest message will be 136 bits, the
latency is extremely low.

The BIT MODIFY instruction on
the SPI bus permits the MCU to
modify specific bits in many of the
MCP2510’s 128 registers. This com-
mand eliminates the need to read,
modify, and then write over the bus
when the MCU needs to simply set
one bit.

DEVELOPMENT SYSTEM
The development system for this

part includes two of the CAN control-
lers on a local CAN bus that also has
a connector for tying into other nodes.
One of the controllers is wired to a
parallel port connector linked to a PC.

Included software provides functions
to manipulate the registers, view
CAN traffic, and send messages over
the network.

The second controller is wired to a
set of three sockets that are wired for
the various types of PIC microcontrol-
lers. You can remove the PIC and wire
a different controller to the second
MCP2510 via SPI.

When I first started to work with
the kit, I hooked a Phytec C164 devel-
opment board to the external CAN
port. I created an emWare interface to
the C164 board, which has a set of
variables that correspond to the mes-
sage buffers and a few status variables.

I used this second board as a tool to
see if the Siemens controller would
talk to my Microchip controller, be-
cause it seemed likely that I’d miss
problems if I used the same two types
of chips for development.

Using the software provided by
Microchip, I managed to interactively
initialize the controller hooked to the
parallel port so I could send and re-
ceive messages to the C164 board. I
guess I was just a little paranoid about
the compatibility. I was glad to have
this interactive session because the
128 registers in the MCP2510 are a
little daunting at first.

There are three configuration regis-
ters that control the bit timing for
CAN transactions that especially had
me worried, but they proved to be no
problem. Having taken these steps, I
felt ready to create a driver for a PIC
controller hooked directly to the
MCP2510.

CAN JUMP HURDLES
After becoming familiar with the

part, my next goal was to link
emWare SDK boards to a network
server using this part. The SDK
boards in question come in versions
that use controllers from Analog
Devices, Hitachi, Microchip,
Motorola, and Philips.

I replaced the RS-485 network
drivers on these controllers with an
SPI link to the MCP2510. The result
is a faster network that lets the con-
trollers asynchronously signal the
network device server when events
occur and variables change.

RS-485
bit rate of 115 kbps or lower
latency inherent in a polled master/slave bus is not too high for appropriate reaction to

events
load imposed on all nodes needed to accomplish address filtering is not too high
sporadic interrupts caused by incoming characters do not adversely affect the application

Ethernet
bit rate exceeding 1 Mbps is required
timing jitter in packet arrival will not disrupt the control algorithm
enough I/O and program space exists to connect the controller to the embedded system
controller and associated support circuitry is not too expensive

MCP2510 CAN controller
bit rate of 1 Mbps
network latency must be predictable, especially for critical messages
a small number of I/O pins and small amount of program space are available for network

use
Ethernet solution is too expensive
peer-to-peer or multimaster system is required

 CIRCUIT CELLAR ® Issue 114 January 2000 39www.circuitcellar.com

Of course, I really didn’t want to
change a lot of higher-level code in
the devices. The ideal integration
would simply be to send our packets
as messages to the devices. My serial
protocol looked something like the
series shown in Figure 1.

Because the CAN controller
handles the header/trailer and CRC
portions, I needed to handle the ad-
dress, command, and payload por-
tions. I first addressed the fact that the
minimum size of our packets exceeds
the maximum size of a CAN packet.

Our product encapsulates the capa-
bilities of an embedded application
into a table of function, variables, and
events, and creates a network object
representation at our server. Because
we do not dictate the variable types,
or the function input and output
types, I can’t use a single CAN mes-
sage for a transaction between the
Internet client and the device.

This problem isn’t new, as shown
by the many choices of application
layers available to CAN users. Some
examples are CAN Application Layer
(CAL), CANopen, and DeviceNet.

If I was trying to implement a net-
work from the ground up, I’d design
the whole set of controllers to work
with sections of distributed shared
memory. This way, the 8-byte limit
would never be a problem.

If I wanted the easiest path to a
CAN network hooked up to our
emGateway server, I would pillage
the 29-bit extended message identifi-
ers and encode the command, ID, and
offset into the identifier.

Our customers are generally inter-
ested in adding Internet connectivity
to existing networks. At the least,
they want the final result to be com-
patible with other systems.

So, even though the hacker in me
is eager just to get it working, I am off
on a tour through the available stan-
dards to find out how to fit emNet, a
simple protocol that provides remote
device access, inside one of these
application layers.

The MCP2510, diagrammed in
Figure 2, is a capable, low-cost com-
munications controller that provides a
simple way for any microcontroller
lacking integrated CAN support to

participate in a CAN system. A CAN
system meets the needs of embedded
developers who need a faster link than
a RS-485 connection and those who
need to build a reliable distributed
real-time control system.

Using SPI to access this controller
enables it to be used in situations
where a full microprocessor bus is not
available. The hardware send and
receive control lines on the device
provide an additional mechanism to
insure system reliability. I believe
these features will result in great
market success for this component. I

Mike Howard serves as chief archi-
tect for emWare, Inc. His responsi-
bilities include managing
development of the company’s Em-
bedded Micro Internetworking Tech-
nology (EMIT) device-networking
software. Mike has 16 years of experi-
ence in working with distributed
embedded systems in the areas of
robotics, ATE, and CAM. He can be
reached at mhoward@emware.com

SOURCES
MCP2510
Microchip Technology, Inc.
(888) 628-6247 • (480) 786-7200
Fax: (480) 899-9210
www.microchip.com

8019AS
RealTek Innovation Systems
(510) 351-5411
www.realtek.com

Siemens C164 development board
Phytec America LLC
(800) 278-9913 • (206) 780-9047
Fax: (206) 780-9135
www.phytec.com

SDK boards, emGateway, emNet
emWare, Inc.
(877) 4-emWare • (801) 453-9300
Fax: (801) 453-0150
www.emware.com

REFERENCES
W. Lawrenz, CAN System Engi-

neering: From Theory to Practical
Applications, Springer-Verlag,
New York, NY, 1997.

Microchip Technology, MCP2510
datasheet, 1999

Siemens, C164 datasheet, 2/98

http://www.microchip.com
http://www.realtrek.com
http://www.phytec.com
http://www.emware.com

40 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Tuning up the HCS-II

EMBEDDED
LIVING

Mike Baptiste

h
A problem with most
home automation
systems is that they
often take years to
develop, so some
parts may be out of
date. Mike looks at
the components of
an HA system to
make sure that old
and new work to-
gether peacefully.

ome automation
is a great hobby (or

in some cases an ob-
session). You get to play

with lots of neat stuff and (usually)
make your home a better place to
live. Most systems are the result of
months and often years of work.

It’s not that home automation is
that difficult. However, home auto-
mation is often a generic term cover-
ing just about anything that performs
an automated function in your home.
Serious home automation systems
handle things such as lighting control,
infrared control and distribution,
audio/video distribution, home secu-
rity, hard-wired control, heating and
air conditioning control, and some-
times even speech synthesis and rec-
ognition. These are often combined
into a system that controls most as-
pects of a home.

The problem is, most systems are
developed over long periods of time.
Very few people sit down and plan
their home-automation system from
start to finish. Functionality is often
added as money and free time allow.
The result can be a system prone to
strange behavior as new additions
intermittently conflict with old parts.

Although I’m a firm believer in “if
it ain’t broke, don’t fix it,” there are
changes you can make to improve the

stability and robustness of your home-
automation system. Many of my sug-
gestions are tailored for the HCS-II,
but others are more generic and can
be used in just about any HA setup.

POWER, THE GOOD AND THE BAD
The first step in any home-automa-

tion system is ensuring that it has a
clean and stable power supply. Most
HCS-II systems require a single
12-VDC power source that can supply
1–4 A. A cheap wall wart power sup-
ply will get the system running, but I
don’t recommend it because they
usually don’t have regulated DC out-
puts so their DC voltage varies de-
pending on the load and the line
voltage. To ensure that they maintain
their rated output voltage at full load,
they often put out higher voltages at
low loads. I’ve seen 12-VDC supplies
that put out 16–18 V at no load. Even
at 25–50% of their rated load, some
will still pump out 15 VDC or so.

“But, my HCS-II boards use on-
board regulators, so it shouldn’t mat-
ter,” you say. True, however, linear
regulators generate much more heat
when supplied with higher voltages. If
you have a couple add-on boards
stacked on your HCS-II controller
board, your regulator will be hot to
the touch when fed with 12 VDC.
Bump that up a few volts and the
7805 voltage regulator heat sink will
probably burn your finger. Although
the 7805 protects itself with a ther-
mal shutdown, any EE will tell you
that hot parts fail faster.

Another problem with wall warts
is that they are little more than trans-
formers with a diode bridge and
maybe a filter capacitor. Noise and
transients on the power line usually
come out the other side. The 7805
does a great job holding the voltage
steady, but boards like the PL-Link
are sensitive to power-supply noise.

For most systems, a linear-regu-
lated 12-VDC supply that can handle
2 A will do fine. However, if you have
a large system, you might consider
powering the SC and boards located
near it with 5 V and using the 12-V
supply to feed remote network boards.

Consult your HCS-II board manu-
als about the placement of a jumper to

 CIRCUIT CELLAR ® Issue 114 January 2000 41www.circuitcellar.com

bypass the 7805 so the boards can be
powered with 5 VDC directly. Be
careful! After you bypass the 7805 on
a board, applying anything other than
5 V will damage the board. Switching
supplies can also be used (I use one),
although some folks report problems
resulting from switching noise.

When you run power to your HCS-II
controller, make sure you use a
heavy-gauge wire (18 AWG), 22 or 24
AWG wire is too small where cur-
rents can reach an amp or so because
of the expansion boards. Most remote
network boards don’t draw that much
power, so running 12 VDC on another
twisted pair is generally no problem.

If you have a large system, a good
thing to monitor is its actual current
draw. Although this seems odd be-
cause the current draw shouldn’t
change much, monitoring the current
draw helps you spot potential trouble
in your system. Any unexplained
change in current needs to be investi-
gated. Flip through most electronics
catalogs these days and you’ll see
3.5-digit LCD displays with voltmeter
circuitry for around $15. All Electron-
ics, Mouser, Digi-Key, and Jameco can
provide these LCD voltmeters.

On my system, I simply use a
0.01-W power resistor and use the LCD
voltmeter to monitor the small voltage
drop, which is proportional to the
current passing through it. Because
V = IR and R = 0.01 W, I can display the
current by placing the decimal point in
the right place on the LCD display.

These LCD voltmeter displays
enable you to place the decimal point
anywhere. Photo 1 shows my setup.
You’ll notice a 9-V battery powering
the display. Most of these LCD volt-
meter displays cannot monitor their
own power source. However, new
versions that enable you to power the
current monitor from your main
power supply have recently shown up
on the market. Because my 9 V dies
every month or two, I plan to upgrade
to the newer type LCD voltmeter.

If you have an X-10 board in your
HCS-II system (PL-Link or HCS-
PLIX), your HCS-II can monitor for
power failures. The X-10 boards moni-
tor the 60-Hz signal sent from the
TW-523 and if that signal disappears,
the boards signal a power failure.

Many people like their HA system
to take various actions when the
power fails (e.g., turn on battery-pow-
ered emergency lights) and also when
the power comes back on. However
your HCS-II needs a backup power
source to do this.

A computer UPS can power an
HCS-II for quite a while. After hurri-
cane Fran, we lost power for a week,
but my HCS-II stayed up for two days
with a 400-VA UPS. The price of a
low-power (280–500 VA) UPS is now
between $100 and $200. Adding one
of these to your system can ensure
that it runs during a power outage and
will usually provide surge protection
to boot. For better protection, buy a
UPS that also has modem protection
and plug your HCS-DTMF or Caller
ID modem into it.

Some systems use 12-VDC batter-
ies to power the HCS-II. They provide
clean and stable power. One HCS user
has even designed an HCS-II UPS
using lead acid batteries. I highly
recommend this project, so check the
reference section for a link to the web
site. If a UPS isn’t for you, I recom-
mend plugging your system into a
good surge suppressor.

TAMING THE RS-485 NETWORK
One of the most powerful features

of the HCS-II system is the ability to
locate devices far away from the con-
troller. However, the RS-485 network
can be a source of much frustration to

some users. Before you go any further,
I suggest reading “The Art and Sci-
ence of RS-485” by Bob Perrin (Circuit
Cellar Online, July 1999). Bob’s ar-
ticle provides a great overview of RS-
485 and the many pitfalls of using an
RS-485 network.

One of the more common mistakes
in HCS-II networks is not running a
common ground wire along with the
RS-485 pair. Not only does this cause
data-integrity issues, it can also make
your network more susceptible to
damage from voltage transients. Be-
cause most people run CAT3 or CAT5
wire for their networks, there are
usually extra wires you can use for
carrying the ground.

A related error deals with any un-
used wires in your cable. Instead of
grounding them (as most people do),
Bob recommends using termination
resistors at each end of an unused
wire. An easy way to implement this
idea is with bussed resistor networks.
You can buy them in SIP or DIP form.
Simply tie the common pin to ground
and connect the other side of each
resistor to an unused conductor.

Anyone who designs RS-485 net-
works will tell you the only topology
to use is a daisy chain. Star topologies
are to be avoided. However, most
HCS-II users (myself included) use
them, and the rest are probably fib-
bing. At short distances and low data
speeds, signal reflections due to im-
proper topologies are seldom a problem.

Nevertheless, if you have network
nodes that sometimes fall off the
network and you are using a star (or
stars), get ready for some fun. First,
try moving your terminators. Nor-

Photo 1 —Here’s an LCD voltmeter monitoring the
current draw of my remote nodes (and HCS-II boards
on my test bench—thus the high reading). The boards
in the cabinet are powered by a separate 5-V supply.
The power resistor is on the lower left. A 3-W power
resistor is more than adequate at 0.01 W.

Figure 1— To modify your PL-Link, clip off C1, R2, and
D1. Install the MAX813L and 10-kW resistor in the
prototype area and connect it as shown.

MAX813L

/MR
VCC

GND
PFI

/WDO
RESET

WDI
/PFO

1
2

3
4 5

6

7
8

U1

+5V
J1 pin 11

J1 pin 15

8031 pin 9

J1 pin 2

R1
10 KΩ

42 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

mally, the extreme ends of an RS-485
network should be terminated. How-
ever, star topologies make this diffi-
cult and figuring out the right place to
terminate is an art, or just plain luck.
Remember, you should only have two
terminators on your RS-485 network.

If playing with the terminators
doesn’t help, try a slew-rate limited
RS-485 driver. These chips replace
your 75176 and reduce reflections
caused by improper topologies and
termination. The tradeoff is a lower
top-end network speed, but the HCS-II
runs at 9600 bps so this isn’t an issue.
Maxim’s MAX483 works well, but be-
fore rushing out to buy one, read on.

The number one repair I perform
on HCS-II controller boards is blown
RS-232 and RS-485 transceiver ICs.
Stringing hundreds of feet of wire in
your house is asking for trouble. Any
EE knows that the longer the wire,
the bigger the induced transients
should lightning strike nearby. Bob’s
article covers this subject in great
detail and he concludes with a recom-
mendation for Maxim’s new ESD
protected transceiver ICs. He couldn’t
zap one with 16 kV after 50 tries.

The Maxim MAX483E (the E is for
“ESD”) is a drop-in replacement for
the 75176 with +15 kV of ESD protec-
tion and slew-rate limiting in one
package. For almost a year now I’ve
used these ICs in every HCS-II net-
work node that I have without any
failures. Before, I’d replace three to
five 75176s each year, thanks to se-
vere thunderstorms. North Carolina
is a thunderstorm magnet. This sum-
mer, a lightning bolt hit a tree near
the house. Not a single IC failed and
the worst casualty was one module
that hung and had to be power cycled.

ESD protection doesn’t stop with
the RS-485 network. Most HCS users
have long cables running between
their PC and HCS-II SC (mine is over
30¢). To protect the HCS-II, I use a
Maxim MAX232E and haven’t had an
RS-232 failure since.

GREMLINS AND X-10
X-10 is probably the most widely

used home-automation technology
and refers to both a company and the
power-line transmission protocol they

developed to control devices over
existing electrical wiring. X-10 has
been around for more than 20 years
and continues to dominate the power
line carrier market with low prices
and a wide range of products.

Some X-10 installations work from
day one and never have any problems.
Others can work great for months and
then suddenly start turning things on
at random. Most of this is due to X-10
using the power line to transmit data.

Electrical power lines are not ideal
for transmitting data of any kind. X-
10 controls remote devices by sending
control codes in short 120-kHz bursts
synched to the zero-cross of the AC
power signal. For more technical de-
tails on how X-10 works, check out
the X-10 transmission theory paper on
X-10’s web site.

However, power lines are notori-
ously noisy and this noise can cause
all sorts of strange behavior in X-10
devices. After a while, you start to
wonder about the existence of grem-
lins. Nevertheless, electrical noise
isn’t the only issue.

Before I dive into improving X-10
installations, a word about the HCS-II
PL-Link. The PL-Link is the first-
generation X-10 gateway for the HCS-
II. Thousands of them are in service
and most work flawlessly. However, a
number of users (myself included)
have had problems with them locking
up in transmit mode. Once they lock
up, X-10 commands wouldn’t func-
tion. Thanks to the efforts of a num-
ber of HCS-II users who posted their
findings on the HCS-II newsgroup, we

discovered that the PL-Link’s were
spontaneously resetting as a result of
power-supply noise or transients.

I used a latching logic probe to
monitor my PL-Link’s reset line. Ev-
ery time my PL-Link locked up, the
latch light was flashing, meaning a
reset pulse was generated for some
reason. The reset pulse was not a
clean pulse (it never reached 5 V) so
the 8031 CPU would hang up after the
substandard reset pulse came in from
the simple RC reset circuit.

The exact cause was never found,
but it seemed to relate to noisy power
supplies or voltage fluctuations. Bat-
tery-powered HCS-II systems rarely
had these problems. Systems with
switching power supplies saw it the
most. Other COMM-Link boards like
the MCIR-Link never had these prob-
lems so it was specific to X-10.

To fix the lock-up problems, I re-
placed the PL-Link reset circuit with a
Maxim 813L watchdog chip. See Fig-
ure 1 for the simple circuit. This chip
performs two functions. It monitors
the supply voltage and issues a clean
reset to the CPU if the voltage drops
below 4.65 V. The MAX813L also has
a watchdog feature, which can issue a
reset pulse if the PL-Link stops run-
ning. The PL-Link has a heartbeat
output that toggles every second. If
this heartbeat stops, the MAX813L
resets the PL-Link.

CROSSING THE X-10 BRIDGE
Before I go on, here’s a note about

safety. Many of the X-10 improve-
ments I’m about to discuss require
you to connect devices to your electri-
cal power lines via your home’s cir-
cuit-breaker panel. If you decide to
perform any of these improvements,
please use extreme caution and turn
off the main breaker. If you have any
doubts or are unfamiliar with residen-
tial electrical wiring, have these de-
vices installed by a professional
electrician. Don’t take any chances!

The most common X-10 problem
in home automation is X-10 modules
that won’t turn on, or seem to only
respond at random times. Thankfully,
there is an easy fix to this problem.

Homes in the United States are fed
with 240 VAC. The 240-V feed is split

Photo 2 —An X-10 signal bridge looks like a dimmer
with no knob. You will need an extra deep, single-gang
electrical box to install it in due to its size. Use 14/3
cable wired to a 15-A 220-V circuit breaker.

44 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

at the circuit breaker panel into two
120-V legs. X-10 signals from an HCS-
II are injected into your power line
using a TW-523 interface. This inter-
face injects signals on the hot side of
the 120-V outlet it is plugged into.
Thus, the X-10 signals are only in-
jected into one 120-V leg. However, if
the module you are trying to control
is connected to the other 120-V leg,
the X-10 signals must travel all the
way out to the power transformer and
then all the way back to your house. If
the power transformer is far from
your home, this can cause modules on
the other hot leg to not respond.

You can easily see if a bridge will
help. Turning on your dryer or range
will “bridge” the two 120-V legs via
the heating element. If your X-10
modules start working, you need to
provide a path between the legs for
the X-10 signals.

Leviton and other X-10 manufac-
turers make a device called an X-10
signal bridge. This aptly-named device
creates a bridge for X-10 signals to
cross between the legs in your circuit
panel without shorting them together.
This arrangement can significantly
reduce the distance X-10 signals have
to travel between legs.

Photo 2 shows a Leviton signal
bridge. It can be mounted in a normal
electrical box right next to your cir-
cuit breaker box. X-10 signal bridges
must be wired into their own circuit
breakers to meet code. Follow the
instructions carefully.

X-10 signal bridges solve many
problems related to X-10 modules not
responding. However, just as long
distances can affect X-10 signals be-
tween the feeder legs, it can also be a
factor if you live in a large home.

If your home is 3000 sq. ft. or more
and you have many electrical circuits,
you may need an X-10 amplifier. X-10
amplifiers like the LV6201 from
Leviton take received X-10 signals and
amplify them to 5 V or so. Amplifiers
also act as a signal bridge so you don’t
need a bridge and an amplifier. How-
ever, amplifiers are not a magic bul-
let. Before you install one, make sure
you need one.

Professional X-10 installers use X-10
signal meters to measure the ampli-

tude of X-10 signals throughout a
home. If they notice that the ampli-
tude is too low (below 100 mV), an
amplifier is usually necessary.

Until recently, X-10 signal meters
were too expensive for the home-
owner, with the top models costing
hundreds of dollars. However, a new
device called the ESM1 is available for
less than $70 and indicates signal
strength and X-10 integrity. I’s worth
the cost if it prevents you wasting $200
on an X-10 amplifier you don’t need.

If you have an X-10 signal meter,
program your HCS-II to send X-10
commands on a regular basis. Plug
your meter into the various circuits in
your home with X-10 modules that
act strangely. Most X-10 modules will
not work with signals less than 100 mV
although anything under 1 V is weak.
X-10 transmitters inject signals with
amplitudes between 3 and 5 V.

If your X-10 signals are weak and
you do install an amplifier, read the
instructions carefully. The circuit
breakers you connect an amplifier to
must be turned on in a specific order.

NOISE YOU CAN’T HEAR
Electrical noise can wreak havoc

on X-10 devices. All sorts of house-
hold devices can generate noise in-
cluding microwaves, fluorescent
lights, and televisions. This noise can
sometimes interfere with an X-10
signal so the receiver doesn’t respond
or worse, it can fool an X-10 module
into turning on or off when it isn’t
supposed to.

Leviton makes a number of prod-
ucts designed to reduce or eliminate
noise from appliances and other elec-
trical devices. Photo 3 shows a few of

these devices. As you can see, some
can simply be plugged in and others
are directly wired into things like
fluorescent light fixtures.

To see if you have noisy appliances
causing problems, try to note what is
turned on when your X-10 modules
start acting funny. Fluorescent, mer-
cury vapor, and sodium vapor lights
with internal ballast can create noise
when turned off. If you have an X-10
signal meter, use it to see where the
noise is the worst. Track down which
electrical circuits the suspect X-10
modules are on and see what other
devices are on the same circuit. Once
you notice a pattern of problems
when specific devices are on, try turn-
ing them off one by one to see if
things improve. In the case of ballast
fixtures, see if X-10 devices turn on or
off when you turn the light fixtures
off. Note there may be multiple de-
vices causing problems.

For devices you don’t need to con-
trol with X-10, the best solution is an
X-10 noise block. For appliances like
televisions, the Leviton LV6288 en-
ables you to simply plug the noisy
device into it and it will block all
noise (and X-10 signals) in between
the device and the power line. If you
have a ballast fixture that’s noisy, use
a LV6287 noise block, which you wire
inside the light fixture.

Leviton’s LV6289 can filter noise
without impacting X-10 signals. To
prevent noise from crossing between
circuits and from coming in from
neighbor’s homes, use two LV6289s in
your main circuit breaker panel. Con-
nect one between neutral and each
incoming hot leg via a 220V 15A
breaker.

Photo 3 —Leviton makes a wide variety of X-10 noise blocks and filters to improve reliability. Take care when
installing filters into circuit panels and electrical fixtures/appliances. When in doubt—hire a professional electrician.

46 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

DON’T PULL YOUR HAIR OUT, YET
If you’ve tried everything else and

you still have X-10 modules with a
mind of their own, the X-10 modules
may be working fine. No, I’m not
crazy. Remember when I mentioned
how X-10 signals can travel between
legs without a signal bridge? If those
X-10 signals go all the way to the
power transformer, they will also go
to any other home that is nearby and
connected to your transformer. There-
fore, your X-10 modules may be re-
sponding to neighbors who use X-10
and the same house codes you do. Use
the HCS-II HOST display to monitor
various house codes to see if they are
changing states on their own.

If a module activates at a given
time each day and your system isn’t
on, you can bet a neighbor has caught
the home automation bug. If you only
have a few X-10 modules, try a differ-
ent house code. If you have a lot of
modules and can’t seem to find
enough available codes, you need to
install an X-10 whole-house signal
block in your circuit panel.

The LV6284 block is installed over
the neutral feeder coming from your
electric meter. This active filter will
cancel out any signals that enter your
home via your power lines. It also
serves as a signal bridge so signals can
cross between legs since they can’t
travel to the power transformer. This
device must be installed by a qualified
electrician and will often require that
your electricity be shut off (unless you
have external disconnect breakers).

SURGE SUPPRESSION TROUBLE
People with large home automa-

tion systems often have hundreds of
dollars of X-10 equipment installed in
their homes. To protect these devices,
some folks plug X-10 transmitters and
receivers into surge suppressors. Be-
lieve it or not, surge suppressors can
actually interfere with X-10 signals.
Actually, it is the RFI/Noise Filter
circuits in surge suppressors that
cause the trouble.

I had my TW-523 plugged into a
single outlet surge suppressor because
I figured it couldn’t hurt to protect it.
Recently, I was having trouble with a
couple of lights not turning on when

Mike Baptiste works for Nortel
Network’s R&D Facility in North
Carolina’s Research Triangle Park
where he manages the Desktop and
Intranet Services Support Groups.
You may reach him at baptiste@cc-
concepts.com.

REFERENCES
Michel Clavette’s HCS Website

(HCS-II UPS)
http://www.dsuper.net/~clavettm/

hcs.html

“The Art and Science of RS-485,”
Bob Perrin

Circuit Cellar Online – July 1999
http://www.chipcenter.com/

circuitcellar/july99/c79TOC.htm

“X-10 Technology Transmission
Theory,” X-10 Inc.

http://www.x10.com/support/
technology1.htm

“PL-Link Reset Fix,” Creative Con-
trol Concepts

http://www.cc-concepts.com/prod-
ucts/plfix/

RESOURCE
HCS newsgroup,

news://bbs.circuitcellar.com/
local.cci.hcs2

SOURCES
All Electronics Corp.
(800) 826-5432
Fax: (818) 826-5432
www.allcorp.com

Jameco
(800) 536-4316 • (415) 592-8097
Fax: (415) 592-2503
www.jameco.com

Digi-Key Corp.
(218) 681-6674
Fax: (218) 681-3380
www.digikey.com

Mouser Electronics
(800) 346-6873
Fax: (619) 449-6041
www.mouser.com

ESD RS-485 and RS-232 ICs
Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

ESM1 X-10 signal strength meter
Home Controls, Inc.
(858) 693-8887
Fax: (858) 693-8892
www.homecontrols.com

X-10 home-automation products
X10 USA
(800) 675-3044 • (201) 784-9700
Fax: (201) 784-9464
www.x10.com

Leviton Manufacturing Co., Inc.
(800) 824-3005
www.leviton.com

they should have. When I used my
manual transmitters, the lights came
on without any problems.

I had read about the possible im-
pact of surge suppressors so I removed
it from the TW-523. Voila! The
troublesome modules started respond-
ing to X-10 commands again.

I’m not saying surge suppression is
a bad idea for X-10 devices. Just don’t
plug them into surge suppressing
power strips or modules, which can
interfere with the signals. The best
way to protect your X-10 investment
(and the other gadgets in your home)
is to install a whole-house surge sup-
pressor. Most circuit panel manufac-
turers sell surge suppressors that snap
into the panel like a 220-V breaker.
Note that these devices generally
have mid-level surge suppression
capabilities (~400 Joules).

If you live in an area with frequent
or severe thunderstorms, I recom-
mend the Leviton LV51120 surge
suppressor. It handles 950 Joules and a
maximum 50,000 A. If you use a
whole-house surge suppressor, you
should still keep your surge-protected
power strips for non-X-10 equipment.
A whole-house surge suppressor will
absorb a lot, but some of the surge
will still travel into your home and
the localized suppressors will reduce a
surge even more.

I hope that some of these tips will
help improve the stability of your
home automation system and you
make installing new parts easier. As
you can see, there are many areas you
can tweak to improve an existing in-
stallation. If you have some tips of
your own, post them to the HCS news-
group. There are thousands of HCS-II
users out there who will benefit. I

http://www.allcorp.com
http://www.jameco.com
http://www.digikey.com
http://www.mouser.com
http://www.maxim-ic.com
www.homecontrols,com
http://www.x10.com
http://www.leviton.com

CIRCUIT CELLAR JANUARY 200048

N
PC

www.circuitcellar.com

INDUSTRIAL SINGLE-BOARD COMPUTER
The PCI-944 SBC is an industrial single-board computer that

features a 64-bit 333-MHz mobile Pentium II processor with a
closely coupled 256-KB L2 cache and the 440BX Chipset.
Included on board are a PCI 64-bit flat panel/CRT controller with
2 MB of SDRAM memory and PanelLink interface, high-perfor-
mance PCI Ultra DMA/33 IDE, Ultra Fast/Wide SCSI 3, and
10Base-T/100BaseTX Ethernet controllers.

The PCI-944 SBC includes the
same features of the SEC car-
tridge Pentium II processor,
namely, dual independent bus
(DIB) architecture, dynamic ex-
ecution, Intel MMX technology,
and an on-die 256-KB 64-bit Level
2 cache running at full core speed.
In addition to support for error
checking and correction (ECC)
memory using standard 72-bit
66-MHz SDRAM, the processor
contains built-in power-manage-
ment features that help manage
power consumption and improve
reliability. Universal serial bus

PCNouveau
edited by Harv Weiner

MULTIMEDIA EMBEDDED PC

Arcom Control Systems
(888) 941-2224
Fax: (816) 941-7807
www.arcomcontrols.com

The SBC-MediaGX is an EBX-compliant
board based on the National Semiconductor

MMX-enhanced 233-MHz MediaGX processor. It
comes fully loaded with all the standard PC interfaces

plus a complete range of multimedia features. Included on
the board are video (Chips & Technologies 69000 HiQvideo

graphics accelerator); support for STN, TFT and EL flat-panel
displays; 10/100Base-TX Ethernet (PCI 2.1 compatible); flash-
memory disk (solid state, maximum capacity 16 MB); and an
analog resistive touchscreen interface. Also included are dual
USB and Soundblaster interfaces, four 16550 fast serial ports (RS-
232/422/485), and fanless operation to maximize MTBF. The
board is capable of driving high-resolution modes on CRT and
flat-panel displays simultaneously. Expansion is provided via PC/
104 and PC/104-plus interfaces.

The SBC-MediaGX will run all popular operating systems
including, DOS, Windows 95/98/NT/CE, QNX, and Linux.
Development kits are available for the SBC-MediaGX, bringing
hardware and software together to enable rapid development for
new applications.

The SBC-MediaGX sells for $450 in quantities of 50 (memory
excluded).

(USB) ports, serial/parallel ports, a floppy interface, CompactFlash
disk support and a PC/104-Plus expansion connector are also
onboard.

The Award Hi-flex BIOS, in bootable flash memory, supports
serial/parallel port remapping/disable, console redirection, and
advanced configuration and power management interface (ACPI).
In addition to ISA and PCI bus mastering, the CPU supports PCI-
to-PCI bridging, and has high ISA bus drive capability. Other

features include a CPU tempera-
ture monitor, two-stage watch-
dog timer, power-fail circuit, and
a two-year warranty.

The PCI-944 with an Intel
333-MHz mobile Pentium II pro-
cessor with video controller, but
no SDRAM memory sells for
$l,850.

Teknor Industrial
Computers, Inc.
(450) 437-5682
Fax: (450) 437-8053
www.teknor.com

http://www.arcomcontrols.com
http://www.teknor.com

 JANUARY 2000 EMBEDDEDPC 49

N
PC

www.circuitcellar.com

PCNouveau

communications, graphics, mass storage, and
industrial I/O options. The Mariner is also avail-
able with an optional mass storage card that lets
OEMs add a 2.5”, 6.4-GB IDE hard drive (or 244-MB
flash memory disk). When equipped with this mass storage
card, the Mariner occupies just one CompactPCl slot.

Software support for the Mariner C157 includes Windows NT
4.0, VxWorks, Linux, Solaris, and QNX. The Mariner also

provides 100% power-on-self-
test diagnostics, which includes
monitoring of all onboard volt-
ages, temperature, fan speed,
and other critical parameters.

The Mariner C157 starts at
$1995 in single-piece
quantities.

General Micro Systems
(909) 980-4863
Fax: (909) 987-4863
www.gms4vme.com

CPU BOARD
The Mariner C157 is a CompactPCl board based on the

embedded roadmap version of Intel’s Pentium III (Coppermine)
processor. The board occupies a single CPCI slot and provides a
600-MHz entry-level clock speed that is almost twice that of top-
of-the-line mobile modules. The Mariner can also be equipped
with a Celeron processor for applications requiring high perfor-
mance at a reduced cost.

Featuring 128/256 KB of on-die L2 cache and 512 MB of field-
upgradeable SODIMM main
memory, Mariner is equipped
with a 10/100 Base-Tx
Ethernet interface and dual
Ultra DMA-33 IDE hard driver
interfaces. The Mariner also
provides 32 MB of flash
memory, a pair of USB ports,
two PMC expansion slots, two
comm ports, a printer port, a
floppy port, and interfaces for
both a mouse and keyboard.

Two PMC sites facilitate
the addition of plug-and-play

EMBEDDED BIOS ON-LINE ADAPTATION KIT
server accepts and processes BIOS build requests 24 hours a day
and sends the resulting BIOS binary files, map files, and build logs
to the subscriber’s e-mail address in minutes.

The Embedded BIOS firmware provides a standard PC plat-
form for ‘x86 embedded applications. Features include built-in
ROM, RAM, and flash memory disk drivers; a remote-access

manufacturing mode for re-flashing
the BIOS and updating the NT embed-
ded OS and application software; a
burn-in hardware diagnostics suite;
and a comprehensive BIOS-level
debugger used during board power-
up. OEM engineers receive full source
code and the BIOStart rule-based ex-
pert system with the Embedded BIOS
Adaptation Kit or can build custom-
ized BIOS files using the new On-Line
Adaptation Kit.

General Software, Inc.
(800) 850-5755
Fax: (425) 454-5744
www.embeddedbios.com

The Embedded BIOS On-Line Adaptation Kit (OAK)
enables manufacturers to build custom BIOS firmware on the
Internet. It provides a fast and easy way to configure a customized
BIOS without actually using the source code.

A user subscribes to OAK during the hardware development
phase of a new project, or when modifications to an existing
platform are to be made.
After providing a valid sub-
scriber ID and password on
the OAK web page, the
user selects a standard ref-
erence platform as the base
model for a new BIOS. Then,
by navigating the OAK
menu, the user sets more
than 200 options to define a
unique configuration of the
embedded BIOS firmware
functionality. Once the BIOS
options are set, the user sub-
mits a request for a custom
BIOS binary file simply by
clicking a button. The OAK

http://www.gms4vme.com
http://www.embeddedbios.com

R
PC

 CIRCUIT CELLAR JANUARY 200050 www.circuitcellar.com

Figure 1—These are timings for the 100-Hz time-code subcarrier on
WWV/WWVH. Each pulse represents the 100-Hz tone is on. The actual
reference mark is 30 ms before the start edge of the tone and
represents the time when there is a tick in the audio.

Real-Time PC

Ingo Cyliax

A Matter of Time
Part 1: Accurate Timing and Frequency

OK, so we’ve made it to the year
2000. If everything went well, you should
have this copy of Circuit Cellar and the
Y2K bug didn’t collapse the power grid,
and many generators will soon be for
sale. But, I guess the worst is yet to come.

This year is leap year, isn’t it? Let’s see,
every four years, except for centenary
years not divisible by 400…. Yup, this is
a leap year. The irony here lies in the fact
that really naive software (i.e., software
that assumes every year divisible by four
is a leap year) will get this right.
But, this is not an article about
glitches.

Starting out this year with a
series about time seems fitting.
I’m going to write about keep-
ing time and methods we can
use to make sure the time is
correct and accurate. Having
accurate time is important in
many areas. File servers need
to be in-sync with the clients that

use services, perhaps on the other side of
the Pacific. Telephone exchange equip-
ment needs to be perfectly synchronized
to extract time-multiplexed channels from
high-speed serial data. Astronomers need
accurate time to synchronize observation
in different parts of the world for long-
base interferometry.

KEEPING TIME
Keeping accurate time is actually pretty

hard, but there are several solutions,

All the talk about timing issues and the Y2K bug have Ingo thinking about the
importance of keeping accurate time. Have a good time as Ingo kicks off this
series with a look at crystal oscillators and some ways of synchronizing them.

depending on the accuracy required.
Essential to keeping good time is some
kind of oscillator or frequency standard.

To describe the “goodness” or quality
of an oscillator, we use the terms accuracy
and stability. The accuracy is pretty obvi-
ous—it’s a measurement of how close the
actual frequency is to the desired fre-
quency. For example, a 5.0-MHz oscilla-
tor might actually run at 5.000001 MHz
(i.e., 1 high in 5 MHz accuracy [2 × 10-7]).

Stability describes frequency variations
caused by changes in tempera-
ture, voltage, or time. A typical
crystal oscillator might have a
temperature stability of 100 ppm
over its operating temperature
range.

For any kind of reasonable
frequency stability, we need at
least a quartz crystal oscillator.
Quartz crystals are devices that
use piezoelectric effects to con-
vert mechanical vibrations to elec-

1 S

30 ms

Mark

770 ms 170 ms +70 ms

Zero One

JANUARY 2000 EMBEDDEDPC

R
P
C

51www.circuitcellar.com

trical signals. Crystals resonate at some
fundamental frequency that depends on
the physical size of the material and the
way it has been cut. One can also reso-
nate a crystal at a multiple of the funda-
mental frequency (overtone) to get higher
frequencies, but this mode of operation
has more harmonics and is less accurate.

To build a crystal oscillator, we incor-
porate the crystal as a resonant filter in an
amplifier that has a feedback
path. There are several dif-
ferent crystal oscillator de-
signs. Furthermore, for com-
puter applications, you can
buy complete crystal oscilla-
tors in a module that outputs
a TTL- or CMOS-level square
wave. Every PC has several
quartz oscillators.

Quartz crystals suffer from
temperature stability prob-
lems and aging. Manufactur-
ing tolerance and in-circuit
capacitance affect the initial
accuracy. Stability is mea-
sured in ppm, and the accu-
racy in the number of deci-
mal places shown in the fre-
quency label. So, a 10.0-MHz
crystal is not as accurate as a
10.000-MHz crystal.

quency accuracy of the
processor is really an is-
sue. It’s one place a PC manu-
facturer can cut costs by using
even cheaper crystals and crystal
oscillators, which have worse stability.

One way you can increase the stability
of a crystal oscillator is to use a high-
quality temperature-compensated quartz
crystal. Although they cost more, these
crystals can have temperature stabilities
of 1 ppm over their operating temperature
range (e.g., 0–50°C).

You can also fix the temperature of the
crystal by using a temperature-controlled
oven. With an oven-controlled crystal
oscillator you can achieve impressive sta-
bilities (1 part/billion). A frequency source
of this type is likely to be an external
component, such as the Hewlett-Packard
105B, which can be bought used for
$2000. However, crystals will drift in
frequency over the lifetime of the crystal
and need to be occasionally recalibrated.

For more stable oscillators, we will use
the nuclear resonances in materials like
Rubidium and Cesium gases. Cesium
sources are the most stable, with long-
term stabilities of three parts in 1012 and
they cost the most ($15,000 and up). A
Rubidium source, on the other hand, has
reasonable stability (one part in 1011) and
is cheaper (under $10,000), but they age
at a rate of one part in 1011 per month.

Because high-stability frequency stan-
dards are large, we can’t really include

them in a PC so they have to
be external. Frequency stan-
dards can be used to provide
a highly stable signal (100
kHz–10 MHz) that a com-
puter can then use as an inter-
rupt source. You can also com-
pare a frequency standard to
the clock frequency of your PC
and then compute a correc-
tion factor that the software
can use to correct the PC clock.
This correction factor will work
reasonably well for short times,
if the temperature doesn’t
change much.

SYNCHRONIZING
COMPUTER TIME

Synchronizing a computer
to a frequency standard is
usually done with some kind

Bit Function

0 position 0
1-9 zero bits
10 position 1
11-14 minutes (BCD)
15 zero
16-18 tens of minutes (BCD)
19 zero
20 position 2
21-24 hours (BCD)
25 zero
26-27 tens of hours (BCD)
28-29 zero
30 position 3
31-34 days (BCD)
35 zero
36-39 tens of days (BCD)
40 position 4
41-42 hundreds of days (BCD)
43-49 zero
50 position 5
51-55 zero
56 daylight savings
57-59 offset in ms to UT1

A typical stability value is 100 ppm
(the crystal will be within 100 Hz/MHz
over the temperature). For a 10-MHz
crystal, the actual frequency may be any-
where between 9.999500 and
10.999499 MHz, which is adequate for
general-purpose uses like a processor clock,
or the dot-rate clock on a video card.

You may have noticed that when you
leave your computer on for a long time,
the system time will drift. This is because
the processor clock is used to time the
interrupt that the operating system uses to
keep track of the time. Remember, a
typical crystal-based oscillator can be off
by 100 ppm. This works out to:

24hr/day × 3600 s/hr × 30days =
2,592,000 s/month

2592000 s/month × 100 ppm = 259
s/month (4.32 min/month)

You can increase the stability (and
accuracy) by a factor of ten by synchro-
nizing the system time to the BIOS time.
The BIOS time is kept in a battery-pow-
ered real-time clock that’s controlled with
a more accurate tuning fork-type low
frequency (32.768 kHz) crystal that can
be as good as 10 ppm. When you reboot
your system, the system time gets updated
from the BIOS time.

Of course, these estimates are opti-
mum, in reality they can be much worse.
Many home PCs are not used in time-
critical applications where the clock fre-

Photo 1—A GPS module can be used for timing applications. This one has
a serial port and a pulse per second (PPS) signal. The serial port transmits
the date/time, while the leading edge of the PPS signal identifies the exact
moment the second starts. The protoboard has a backup battery for the GPS
module and RS–232-level converters. The flat metal object is a home-built
patch antenna.

 CIRCUIT CELLAR JANUARY 200052 www.circuitcellar.com

Table 2—Here are the bit assignments for
WWVB timecodes. In this timecode, we find
the beginning of the frame, but notice that
there are two position identifiers in the begin-
ning. The second position identifier is a posi-
tion reference, and its leading edge defines
the exact time the minute starts.

of time code. In the laboratory, if you had
a frequency standard available, you would
feed the output of the standard into a time-
code generator. A time-code generator is
a real-time clock that will encode the
current time using a bit serial protocol on
its output. The protocol varies, but is
usually one of the IRIG standards devel-
oped by the Range Commanders Coun-
cil, or based on one of the IRIG codes.

A single time-code signal thus encodes
data and because the data rate is derived
from the frequency standard, the data
transitions can be used to synchronize to
the frequency standard. Time codes can
be recorded on tape along with data,
distributed with distribution amplifiers, and
sent long distances over coax or RF. I’ll
describe IRIG code(s) in detail next month.

Not everyone can afford a time or
frequency reference, so I’ll discuss the
many time synchronization sources that
are freely available. Most of these are
radio based and thus aren’t as accurate
as having your own frequency standard.
The inaccuracies are due to variable
propagation delays and this introduces
uncertainties. However, because these
timing sources are themselves based on
Cesium sources, they do have excellent
long-term stability.

Probably the best-known radio time
signal is WWV/WWVH. This signal is
transmitted by NIST (National Institute of
Standards and Technology) on several
shortwave frequencies (2.5, 5, 10, 15,
20, and 25 MHz). The WWV/WWVH
timing signal has data components and
voice announcements. For computer tim-
ing, there is a pulse-per-second clock tick
and tones that can be used to find the
beginning of the minute (1 kHz) and hour
(1.5 kHz).

More interestingly, WWV/WWVH
also transmits a 100-Hz subcarrier that is
used to encode 60 bits of information
each minute. Each bit is encoded as either
a 0.170-s or 0.470-s 100-Hz tone for
zero and one marks and 0.770 s for a
positional mark. Figure 1 shows the tim-
ing of the pulses involved.

The reference for each pulse is actually
30 ms in front of the pulse start. The data-
bit position encoding for WWV/WWVH
is shown in Table 1. It’s fairly easy to build
a shortwave radio receiver and decode
this tone. Also, several commercial re-
ceiver models exist.

Bit Function

0 position 0
1 position reference
2-4 40,20,10 minutes (BCD)
5 zero
5-9 8,4,2,1 minutes (BCD)
10 position 1
11-12 zero
13-14 20,10 hours (BCD)
15 zero
16-18 8,4,2,1 hours (BCD)
19 zero
20 position 2
21-22 zero
23-24 200,100 days (BCD)
25 zero
26-29 80,40,20,10 days (BCD)
30 position 3
31-34 8,4,2,1 days (BCD)
35-36 zero
37 plus
38 minus
39 plus
40 position 4
41-44 0.800,0.400,0.200,0.100 ms

 UT1 offset (BCD)
45-49 zero
50 position 5
51-55 zero
56 leap year
58 zero
59 daylight saving

Because WWV/WWVH uses short-
wave frequency, the arrival time of the
signal is not very accurate. Depending on
conditions, shortwave signals bounce
around in our ionosphere and it would be
impossible to know how far the radio
signal travelled to get to the receiver. This
uncertainty can be up to tens of millisec-
onds. But WWV/WWVH is simple to use
and accurate enough to synchronize the
time on a PC for many applications.

Canada also has a time station (CHU)
that broadcasts time at 7.335 MHz. CHU
transmits pulse-per-second ticks and time
data using a 1200 bps FSK at several
specific time intervals each minute. Be-
cause CHU is also shortwave-based, it
has about the same performance as
WWV/WWVH.

NIST also operates a VLF (very low
frequency) time station beacon at 60 kHz
called WWVB. The propagation is more
predictable than at shortwave frequen-
cies, and once you’ve measured the propa-

JANUARY 2000 EMBEDDEDPC

R
PC

53www.circuitcellar.com

to a PC running RT-
Linux. A high-end
WWVB receiver
can cost over
$1500.

There are sev-
eral other beacons
in the VLF band.
There are two time
stations in Europe.
The one in England
transmits time code
on 60 kHz and the
one in Germany is

DCF77, which broadcasts at 77.5 kHz.
In the US, we can also use Loran-C

beacons. These navigational beacons
work roughly as follows. There is a master
station and several slave stations. The
master station sends a start pulse and the
slave stations respond with their own
pulses. To measure your position, you
would measure the relative delay of the
stations in their time slots and by knowing
the location of the station, you can triangu-
late your position.

Even though Loran-C beacon stations
are used for navigation, the station’s

Figure 2—For WWVB, the 100-Hz timing is similar to an IRIG-H signal.
Each pulse represents a 100-Hz pulse. So, a 200-ms pulse represents
two cycles, a 500-ms pulse—five cycles, and so on. The reference is the
leading edge of the pulse, which is the zero crossing time of the first cycle
in the 100-Hz tone.

gation time from the station to your loca-
tion, this method is accurate down to 1–
10 µs. Similar to those in the shortwave
band, this station transmits a 100-Hz time-
code signal. Here the timing is 0.2 s for
zero, 0.5 s for one, and 0.8 s for a mark.
The timing is shown in Figure 2 and the
reference is the leading edge of the timing
pulse. The encoding differs from WWV/
WWVH as seen in Table 2. WWVB also
has no voice announcements.

Again, commercial receivers exist for
this time station. Next month, we will look
at an economical receiver and interface it

1 S

Mark

800 ms 200 ms 500 ms

Zero One

broadcast frequencies
and pulses are all syn-
chronized using Cesium fre-
quency standards. We can use
the frequency and pulse timing to
synchronize our clock rate down to
±500-ns accuracy, if you know the range
to the nearest beacons. Loran-C stations
do not transmit absolute timing informa-
tion as WWVB does, so you’ll need some
way to initially set the clock on your PC.

VLF beacons have one nice feature.
The frequency is low and will penetrate
buildings and structures easily. Often only
a simple loop-stick antenna is needed to
pick up VLF stations.

If your PC connects to a digital telecom-
munication network like ISDN or T1, you
can use the recovered data clock as a
frequency standard. The national digital
telecommunication network is synchronized
using frequency and time standards.

Essentially, the phone system works
because it uses time-division multiplexing
and you need accurate time to find out the
time slot that data needs to be inserted. If
you have a synchronous communication
card attached to a T1 or ISDN network,

R
PC

 CIRCUIT CELLAR JANUARY 200054 www.circuitcellar.com

you can use the in-
terrupts from this to syn-

chronize and calibrate
your PC.
Finally, there is GPS. Each

GPS satellite has an atomic clock
that is monitored and calibrated. Each

satellite broadcasts its current time, which
is received by a GPS receiver. By know-
ing where the satellite is located, the
receiver computes the range to each sat-
ellite and thus uses trilateration to find its
location. Once you know where you are,
you can then compute the time.

SOURCES
WWVB Receiver
Parallax, Inc.
(916) 624-8003/8333
Fax: (916) 624-8003
www.parallaxinc.com

Ultralink, Inc.
1547 Anthony Ct.
Gardnerville, NV 89410
(775) 782-9758
Fax: (775) 782-2128
www.ulio.com

Timecode and Frequency Standards
Products
Datum, Inc.
(512) 721-4000
Fax: (512) 251-9685
www.datum.com

GPS Time Receiver Products
Trimble Navigation Ltd.
(408) 481-8000
Fax: (408) 481-6885
www.trimble.com

Ingo Cyliax has written for Circuit Cellar
on topics such as embedded systems,
FPGA design, and robotics. He is a re-
search engineer at Derivation Systems Inc.,
a San Diego–based formal synthesis com-
pany, where he works on formal-method
design tools for high-assurance systems and
develops embedded-system products. You
may reach him at cyliax@derivation.com.

REFERENCES
P. Horowitz, The Art Of Electronics, Winfield Hill,

Cambridge University Press, Cambridge, UK.
Range Commanders Council, IRIG Standard 200-

98, http://tecnet0.jcte.jcs.mil:9000/RCC/
oldoc.htm

Datum, Inc., Timing & Time Code Reference, Datum
Inc., http://www.datum.com/res_technical.html

Accuracy of ±300 ns can be achieved
with commercial GPS time receivers, and
up to ±200 ns if you average your loca-
tion over several days to eliminate the
dither that the GPS system introduces.
With a consumer-grade receiver module,
you can achieve accuracy down to micro-
seconds. Photo 1 shows a GPS module
from Trimble. This module will provide a
pps (pulse per second) signal and a serial
data stream for the time/date data.

However, one of the problems with
GPS is that it’s a line-of-sight system. The
antenna must have an unobstructed view

of the sky. Also, because the system uses
microwave frequencies, the antenna can’t
be too far from the receiver, unless high-
quality coaxial cable is used.

Having the high accuracy of GPS avail-
able even with an inexpensive GPS re-
ceiver makes the other time stations mostly
obsolete. As I mentioned before, WWVB
(and other VLF stations outside the US)
have an advantage if you can’t erect a
GPS antenna with a clear sky view.

TIME OUT
Now, you know what timing and fre-

quency sources are available to synchro-
nize the time on your PC. Next month, I’ll
show you how you can interface an eco-
nomical WWVB receiver to a PC and
generate an IRIG-B signal. This will illus-
trate some common software techniques
you can use. OK, so maybe you’re not as
much of a time junky as I am. Perhaps, my
obsession with time and time signals stems
from my German heritage. RPC.EPC

http://www.parallaxinc.com
http://www.ulio.com
http://www.datum.com
http://www.trimble.com

JANUARY 2000 EMBEDDEDPC

A
P
C

55www.circuitcellar.com

Applied PCs

Fred Eady

Not the sequel to the Harper Lee classic, but Fred’s account of fitting a PIC
peg into an 80188 hole. The PIC17C42A can sing a variety of songs, Fred
shows us how to reason when it’s a viable replacement for the 80188.

As a teen, I was into music. There were
bands that rocked and bands that, frankly,
did not rock. (Some of them are still
attempting to rock today.)

There were “hip” songs and there
were Gregorian chants. Good or bad, it
was all music. What I called “good”
was dog-awful to some of my friends,
and some of the stuff my friends
drooled over I couldn’t swallow
with a bucket of water.

Embedding a processor com-
plex into a product is akin to music
appreciation. In each discipline,
there differing beats and messages
wrapped in a multitude of formats.

The ear and emotions of the
listener determine the mood the
music extends. In a similar fashion,
ease of product development and
end-user functionality is music to an
embedded developer’s ears.

Been to a music store lately?
There are literally thousands of art-
ists to choose from.

Shopped for an embedded hardware
platform lately? Yep, there are hundreds
of vendors and thousands of products.
There are even some vendors sporting
exclusive catalogs of nothing but embed-
ded hardware.

Where am I going here? Think about
this. Dolly Parton’s “I Will Always Love
You” was done later by Whitney Houston.
Same melody, same words, two very
different artists. The result? A hit song both
times.

So, with that, instead of intro-
ducing a fancy new Intel-processor-
based SBC, I’m going to step off the
normal embedded PC trail into the
embedded PC twilight zone and let
you listen to an old 80188 song as
performed by a PIC.

SINGIN’ LIKE A MOCK-
INGBIRD

The 80188 and the Microchip
embedded way of doing things
aren’t really so different on the
result side of the equation. But,
getting them to that final result is a
very different process.

I’m not here to take sides. There
are instances where a PIC-to-80188
reverse process just won’t work.

The Mockingbird Trial
PIC vs. 80188

Photo 1—Note the two single binding posts near the power
connector. I tend to smoke-test stuff often (especially when I use
point-to-point construction). So, I added a couple of logic-probe
power pins. Note also the open pins on the SRAM sockets that
can take on higher density SRAM, EPROM, or flash memory.

A
P
C

CIRCUIT CELLAR JANUARY 200056 www.circuitcellar.com

program this part with a minimal learning
curve. And if you don’t know how to
pronounce “PIC,” you’re not at a great
disadvantage either. All of the ’17C42A
instructions execute in a single cycle with
the exception of program branch and
table read/write instructions, which take
two cycles.

Mockingbird’s instruction cycle is
250 ns with a 16-MHz clock. The maxi-
mum clock frequency for the Mockingbird
with a ’17C42A is 33 MHz, which yields
a 121-ns cycle time.

I said I wouldn’t take sides, but in the
real world, the PIC is quite a bit faster than
the 80188 on instruction cycle times.
Time-based or compute-intensive applica-
tions may force you to count the nanosec-
onds, but instruction-cycle times are of no
concern in our device-programmer appli-
cation.

About 100 commands make up the
80188 command set. For programmers
who know 8088, 8086, 80386, and
80486 assembly language, programming
the 80188 is not much different because
the 80188 is actually a core 808x with
commonly used 808x peripherals built on

the chip.
A typical 80188 variant like AMD’s

can operate with a maximum clock fre-
quency of around 40 MHz. At that speed,
a 70-ns memory device can be accommo-
dated. The 16-MHz memory access calcu-
lations for Mockingbird’s ’17C42A also
specified a 70-ns SRAM.

As you see in Figure 1, the standard
’17C42A bears a total of 33 I/O lines.
Mockingbird uses many of them to imple-
ment the external SRAM. The remaining
I/O pins are programmable and thus
multipurpose.

By setting bits within internal ’17C42A
registers, the Mockingbird’s I/O lines are
capable of interrupting the processor on
input change, capturing pulse widths and
PWM output, and timing functions.

This PIC is a full-function microcontroller
that includes interrupt capability, a 16-
level stack, direct and indirect addressing
modes, and 64K ´ 16 addressable
memory space. And, a synchronous/asyn-
chronous USART is standard equipment.

The 80188 has 32 programmable I/O
pins and 64 KB of I/O address space. The
PIC17C42A can be configured to imitate

There are just as many
instances where it will.
My purpose is to illus-

trate what it takes to stuff a PIC
where an 80188 or equivalent

would or could normally go. To that
end, I assembled a typical PIC17C42A

embedded complex that I call the Mock-
ingbird. A birdwatcher’s-eye view of the
Mockingbird can be seen in Photo 1.

Just like the 80188 (and the real-life
feathered flying chirper), the Mocking-
bird can assume many differing roles
depending on its firmware load and the
type of electronics externally attached to
its I/O port pins.

Programming devices like flash
memory, EEPROMs, and PICs are “in.” So
today, let’s make device programming
the Mockingbird’s example application.

HARDWARE IS HARDWARE IS
HARDWARE

The PIC17C42A firmware is assembled
using a 58-word command set, with each
command consisting of 16 bits. The up-
side to this is, if you’ve programmed with
other parts of the PIC family, you can

System

Data latch

Address latch

Program
memory

(EPROM/ROM)

Table PTR<16>

Stack
16 × 16

PCH PCL

PCLATH<8>

Table latch <16> ROM latch <16>

Literal

Instruction
decoder

Control outputs

IR latch <16>

FSR0

FSR1

88

8

IR bus <16>

RAM ADDR buffer

Data latch

READ/WRITE
decode

for registers
mapped
in data
space

WREG <8>
BITOP

ALU

Shifter

IR bus <16>

Port B

Port A

RB0/CAP1
RB1/CAP2
RB2/PWM1
RB2/PWM2
RB4/TCLK12
RB5/TCLK3
RB6
RB7

RA0/INT
RA1/T0CKI
RA2
RA3
RA4/RX/DT
RA5/TX/CK

RA1/

Timer1, Timer2, Timer3
Capture

PWM

Digital I/O
Port A, B

Serial port

Timer0 module

Data bus <8>

BSR<7:4>

RA1/T0CKI

RA0/INT

8

8

6

26

6

4 3

IR <2:0>

D
at

a
bu

s
<

8>

Control
signals
to CPU

CHIP_RESET
and other

control
signals

Q1, Q2, Q3, Q4

16

16

13

AD <15:0>
Port C and

ALE, *WR,*OE
Port E

OSC1, OSC2

VDD, VSS

*MCLR/VPP

TEST

Decode

BSR

Interrupt
module

12

RDF WRF

T0CKI

Peripherals

IR <7>

bus
interface

16

8 × 8 mult

PRODH PRODL

 Data RAM

454 × 8 PIC17C43

8K × 16 - PIC17C44

4K × 16 - PIC17C43

IR BUS<7:0>

4K × 16 - PIC17CR43

454 × 8 PIC17CR43
454 × 8 PIC17C44

232 × 8 PIC17C42A
232 × 8 PIC17CR42

2K × 16 - PIC17C42A
2K × 16 - PIC17CR42 Port D

Clock generator
Power on reset
Watchdog timer

OSC startup timer
Test mode select

Figure 1—The PIC17C42A is designed to be a microcontroller in the standard sense and a microprocessor in the embedded sense. Note that there
are many internal RAM sizes available in the PIC17C4x family.

 JANUARY 2000 EMBEDDEDPC 57www.circuitcellar.com

the 64 KB of I/O space, but that comes
with the negatives of added address de-
coding hardware and support code over-
head for the decode hardware.

The 80188 can address 1 MB of
memory and includes all of the interrupt
and addressing modes to match or sur-
pass the ’17C42A. Again, 1 MB of
memory can be accessed by the PIC, but
with the same expense as adding “virtual”
I/O address space.

Two full-featured serial ports are in-
cluded with most 80188 variants, and
using them as such will sacrifice some of
the 32 dedicated I/O lines. The AMD part
even includes a multidrop 9-bit serial port
protocol and a PWM input.

Although it’s supported on the 80188
parts, DMA capability is nonexistent on
this manufacturer’s microcontroller. A logi-
cal block diagram of AMD’s 8018x part
is shown in Figure 2.

The PIC17C42A can access external
static RAM, EPROM, and flash memory as
well as its internal EPROM and RAM (see
Figure 3). Program execution between
internal (’17C42A EPROM) and external
memory (SRAM in the Mockingbird) is
automatically taken care of by the PIC’s
microcode.

A 16-MHz oscillator drives the micro’s
16-bit processor core, which is comple-
mented by 2 KB of 16-bit on-chip EPROM.
And, there’s plenty of 8-bit on-chip RAM
(232 bytes) that is augmented by 30 KB of
fast external 16-bit SRAM.

Two industry-standard 74LS573 latches
tie the external SRAM to the PIC’s 16-bit
memory interface. In addition to the micro’s
in-house features, the Mockingbird’s 7-IC
configuration includes 10 bidirectional
I/O lines, two input-only data lines, and a
serial port.

Two of the 10 bidirectional lines (RA2
and RA3) are high voltage, high current
(+12 V at 60 mA) open-collector I/Os and
are pulled up by resistors R1 and R2. Most
of the Mockingbird I/O is accessible via
a female DB-25 connector.

With the exception of the high-voltage
pins and a few of the memory statistics, I
could almost write exactly the same
paragraph to describe the 80188. The
similarity also shows up on the drawing
board.

The 80188 configuration in Figure 4
looks much like the ’17C42A lashup you
see in the schematic in Figure 3. Both the

-

CIRCUIT CELLAR JANUARY 200058 www.circuitcellar.com

80188 and the PIC were designed to
minimize external parts count.

Even with all this power, the Mocking-
bird or an 80188 system is useless if data
can’t be passed between the user and the
application. A nine-pin female shell con-
nector is the portal to the Mockingbird’s
Maxim MAX233 RS-232 IC.

The Maxim IC interfaces a PC’s serial
port to the microcontroller serial port and
is used here in its standard configuration.
The Maxim or any other similar RS-232 or
RS-485 part would be implemented iden-
tically in a similar 80188 embedded
system.

I’ve seen designs that cleverly substi-
tute discrete components that emulate an
RS-232 driver/receiver. They work just
fine. The advantage of using “real” bilevel
RS-232 signals from the MAX233 is that
noisy, fluttering, or marginal RS-232 volt-
age levels won’t fool the host and embed-
ded serial ports.

The Mockingbird firmware communi-
cates with the host PC control program at
19.2 kbps. The 80188 serial ports can
chirp this fast, too.

MOCKINGBIRD’S MONITOR
Although the 80188 and PIC17C42A

hardware is proven, the monitor and
application code executing in external
SRAM form the foundation that enables
the universal nature of both devices. The
monitor firmware that resides within the
micro’s on-chip EPROM is written to take
advantage of a powerful feature of the
PIC17C42A—table read/write.

In a word, table read/write instruc-
tions let the user/programmer read and
write the PIC17C42A’s 30 KB of external
SRAM in 8- and 16-bit word lengths.
Data is transferred in 16-bit chunks be-
tween its internal registers and the bank
of SRAM.

Once inside the PIC’s holding register,
the data can be manipulated as two 8-bit
words or a single 16-bit word. Once the
desired data is transferred to the external
read/write memory, that data, if it is an
application program, can be addressed
and executed. If the downloaded data is
not an application, then it can be manipu-
lated just as you’d manipulate data in any
other RAM storage area.

Interrupt
control unit

Bus
interface

unit

Execution
unit

Chip-select
unit

Clock and
power

management
unit Max count A

registers
20-bit destination

po inters

20-bit source
po inters

Control
registers

Control
registers

Max count B
registers

Refresh
control

unit

control
registers

CLKOUTB

CLKOUTA INT6–INT4**

INT3/*INTA1/IRQ

INT2/*INTA0**

INT1/*SELECT

INT0 TMROUT0 TMROUT1

DRQ0** DRQ1**TMRIN0 TMRIN1

TXD0
RXD0

NMI

A19–A0

AD7–AD0

ALE

*RFSH 2/*ADEN

*WR

*WB

*RD

*LCS/*ONCE0

*MCS2–*MCS0

*PCS6/A2

*PCS3–*PCS0**

*PCS5/A1

*UCS/*ONCE1

X2
X1

PSRAM
control

unit

*MCS3/*RFSH

PIO
unit

PIO31–
PIO0*C

on
tr

ol
re

gi
st

er
s

TXD1
RXD1

*CTS0/*ENRX0

*CTS1/*ENRX1**

*RTS0/*RTR0

*RTS1/*RTR1**

watchdog
timer (WDT)

Pulse-
width

demod-
ulator
(PWD)

PWD**

Asynchronus
serial Port 1

Asynchronous
serial Port 0*S2–*S0

VCC

GND

ARDY

SRDY

DT/*R
*DEN/*DS

HOLD
HLDA

*RES

S6/*LOCK/

*UZI
*CLKDIV2

AO15–AO8

t
g r

con rol
re iste s

t
Control
regis ers

t
i

16-bit coun
reg sters
control
registers

control
registers

16-bit count
registers

Timer control
unit

0 1 2

DMA
unit

0 1

Figure 2—Remember the old 8088 in the first personal computers? Well, this is it with the addition
of powerful on-chip peripherals that eliminate most of the support ICs necessary to run an 8088.
Here you see AMD’s 80188 variant.

JANUARY 2000 EMBEDDEDPC

A
P
C

59www.circuitcellar.com

dump the SRAM to a standard Intel hex file
on the host PC. This code resides in the first
2 KB of program space, which is the on-
chip ’17C42A EPROM. This PIC17C42A-
resident 2 KB is part of the 32-KB total
memory area of the Mockingbird.

If you choose not to implement code
within the micro, you may install a blank
’17C42A on the Mockingbird and install
EPROM where the SRAM resides. This
approach assumes you have access to an
EPROM programmer, as the monitor code
would reside there with your application
code.

Of course, the drawback to this modi-
fication is that the Mockingbird would be
dedicated to the EPROM application and
SRAM would be nonexistent. Another
approach would be to use battery-backed
SRAM or flash-memory form “instantly
reprogrammable” EPROM.

Mockingbird relies on some prepro-
gramming of vital components to imple-
ment a “programmable” PIC SBC. In the
80188 environment, the same prepro-
gramming would be necessary, and de-
pending on the complexity of the off-chip
peripheral set, that may be as little as a

Figure 3—The Microchip PIC17C42A didn’t spend years gestating inside a personal computer, but It can access
all kinds of memory devices, both internal and external, and has adequate capabilities to keep part counts
down.

Taking this concept a step further, this
implies that Mockingbird programs and
data can be downloaded from the host PC
and stored in Mockingbird’s 30 KB exter-
nal RAM area using the PIC’s table read/
write capability. On the other side, data
can be uploaded to the host PC for pro-
cessing.

Unless you build your 80188 system
from scratch, some type of monitor will
most likely be included with the 80188
SBC you purchase. The 80188 is struc-
tured in a logical fashion, and hand-cod-
ing a monitor similar to that of the
PIC17C42A’s shouldn’t present any major
problems. All of the 80188-based SBCs
I’ve encountered and described in past
columns have included good monitors.

In this application, the ’17C42A moni-
tor code is responsible for receiving and
decoding commands in the form of ASCII
characters from the host-PC control pro-
gram via the serial port and placing
downloaded data and applications into
designated areas of the 30-KB external
RAM space.

The monitor code has the ability to test
the 30 KB of SRAM, clear the SRAM, and

single PAL or a couple
of EPROMs or flash ICs.

Although you can write
the host-PC control code in any
language, my device programmer
is written with Bill’s Visual Basic 6.0.
All of the command codes and data
passed between the Mockingbird and the
host PC are ASCII characters or Intel hex
files. Any language that can address the
PC serial port and send and receive ASCII
files can be used to deploy an application
on the Mockingbird.

If you choose to program a PIC device,
the Mockingbird device programmer can
be used with the Microchip MPLAB 4.0
environment, which can be downloaded
free from Microchip’s web site. MPLAB
enables the user/programmer to write,
test, and simulate PIC code for the entire
PIC line.

MPLAB includes an assembler that pro-
duces an Intel hex file that can be down-
loaded to the Mockingbird via our VB6
PC host program. MPLAB can be used to
write, test, simulate, and assemble both
the Mockingbird device-programmer ap-
plication code and the code that will be

programmed into the target
PIC device.

I haven’t attempted to find
it, but I’m sure there’s an abun-
dance of 80188 freebie devel-
opment code floating around
on the Internet. Although the
“free” development environ-
ment offered by Microchip is
an advantage here, you can
spend just as much money on
serious PIC development tools
(i.e., ICE boxes and in-depth
development/debug software)
as you would on 80188 build-
ing blocks.

Either way, on the PC side,
the way you approach an ap-
plication depends on what
compilers and development
tools you already own or can
find on the web and whether
you desire to run under DOS
or Windows. There is no rea-
son that you can’t write a host-
PC control program using any
version of DOS BASIC or DOS-
based C.

At a minimum, if you own a
PC, most likely you own a

A
P
C

CIRCUIT CELLAR JANUARY 200060 www.circuitcellar.com

more user-friendly. Photo 2 is a
screenshot of the device-programmer
GUI. From the command button cap-
tions, you can see that the
Mockingbird’s monitor recognizes the
Load Program, Load Data, and
Run commands.

Earlier, I pointed out that the moni-
tor also had the ability to test, clear,
and dump the SRAM. As you see, there
are also command buttons for those
diagnostic tasks.

By using MPLAB to build the appli-
cation code that is ultimately pro-
grammed into a target, the user/pro-
grammer can incorporate all of the PIC
configuration information into the source
file. This configuration fuse information is
inserted into the assembler’s Intel hex
output file and used by our device
programmer’s application code.

Embedding the configuration fuse in-
formation into the assembler’s output Intel
hex file eliminates the need to display and
manipulate configuration settings with your
host-PC control code. Because I don’t
have to manipulate the configuration fuse
information, it simplifies the device-pro-
grammer GUI.

The location of the fuse information for
Mockingbird is consistent with MPLAB’s
placement of that same data. For ex-
ample, __CONFIG _WDT_OFF &
_CP_OFF & _XT_OSC sets the watchdog
timer off (WDT), code protection off (CP),
and instructs the part to use the XT oscilla-
tor option.

For the PIC12C508, this information
would be placed at 0xFFF inside the PIC
and 0x1FFE in the Intel hex file. This
location (0xFFF) is where the configura-

tion word is found on the ’12C508. Obvi-
ously, this is just a SMOP (simple matter of
programming) for both the 80188 and
’17C42A.

I chose to incorporate the PIC program-
mer command buttons into the same win-
dow as the monitor commands. The PIC
programmer buttons become active when
the PIC programmer application code is
loaded and executed.

The Load Data command button loads
the code that gets programmed into the
target PIC. The Run command button does
double duty as it changes its caption to an
exit message while the application is
executing.

A COM port status area and a commu-
nications status area round out the host
control GUI. The host-PC program keeps in
constant communication with the Mocking-
bird and this is displayed in the Heartbeat
area. By “reusing” command buttons, the
GUI design is simple and highly functional
because it is programmable and can be
configured for multiple devices.

TELLING STORIES
Comparing Figures 1 and 2, you’d con-

clude that the mechanics of assembling an
80188 versus a PIC17C42A embedded
system would be worlds apart. It’s obvious
that the 80188 is much more bus-oriented
with tons of sense and status lines popping
out of its silicon, whereas the PIC17C42A is,
well, a big, fat microcontroller.

Underneath it all, both processors are
capable and programmable in terms of I/
O. Many of the advantages the 80188
has in on-chip hardware can be emulated
by the ’17C42A with some tricky coding.

Conversely, hardware goodies on this
micro like PWM and pulse width capture

Photo 2—Say what you will about Bill G., but it’s hard to beat his GUI-based compilers for good
looks and ease of assembly.

Figure 4—The song remains the same. Only the
names of the control lines are different between the
PIC and the 80188.

Am186ES
microcontroller

X2

X1

*WHB

*WLB

Flash PROM

A19-A0

*WE

*WE

*WE
*WE

Address

DataAD15-AD0

Address

Data

*OE
*CS

*OE
*CS*LCS

*RD

*UCS

PWD

PWD
input

Serial port 0
Serial port 1

RS-232
level

converter

40 MHz
crystal

copy of DOS.
QBASIC included with

DOS 6.22 in this case is
virtually free.
With Windows in the forefront

these days, and the beauty of using a
GUI, I wrote this app with VB6 to run

under Windows 95/98/NT. Visual Basic
code tends to be self-documenting if you
use real words. (I did.) So porting the basic
program theme to other languages like Bill
Zales’s PB5 should be relatively painless.

The executable program area defined
by the PIC17C42A monitor begins at
0x800, which is SRAM just above the
EPROM program area of the PIC. The
program space defined for the device
programmer application including the
micro’s EPROM area is 16KB x 16 and
ends at 0x3FFF.

The data area begins at 0x4000 and
extends the remaining 16KB to end at
0x7FFF. This memory configuration allows
the programmer to write a ’17C42A appli-
cation that could be a maximum of 30 KB.

Of course, this assumes that no external
RAM needs to be accessed. For this device
programmer, the memory is allocated so
that the actual program size is held down
to to 14B x 16 and the maximum data
space size is 16 KB of 16-bit memory.

This memory-mapping scheme equates
to 16 KB of PIC instructions that can be
downloaded and transferred to the Mock-
ingbird using a 14-KB ’17C42A applica-
tion. If this isn’t enough space, by simply
adding larger SRAM ICs, Mockingbird
can be upgraded to address 64 KB of
16-bit memory.

A command-line interface can be used
to talk to the Mockingbird, but a GUI is

JANUARY 2000 EMBEDDEDPC

A
P
C

61www.circuitcellar.com

SOURCES
PIC17C42A, PIC12C508
Microchip Technology, Inc.
(888) 628-6247
(480) 786-7200
Fax: (480) 899-9210
www.microchip.com

MAX233
Maxim Integrated Products
(408) 737-7600
Fax: (408) 737-7194
www.maxim-ic.com

Fred Eady has over 20 years’ experience as
a systems engineer. He has worked with
computers and communication systems large
and small, simple and complex. His forte is
embedded-systems design and communica-
tions. Fred may be reached at fred@edtp.com.

can be SMOPed on the 80188. The high-
voltage I/O lines on the ’17C42A be-
come a couple of transistors and some
resistors if such a feature is needed on an
80188 embedded system.

As I mentioned earlier, there are cir-
cumstances and applications where a PIC
or any other similar micro simply can’t do
the job an 80188 would. The whole
discussion boils down to what is easiest to
implement, what has to be done and how
quickly, and most importantly, how much
it costs to produce.

If the programmer application required
DOS to run at the embedded end, the
’17C42A would have been quickly elimi-
nated as a processor choice. If your shop
were full of PIC coders, the 80188 wouldn’t
stand a chance. A C programmer as-
signed to this project wouldn’t care which
processor was chosen because his or her
C code would look pretty much the same
either way.

For simple dedicated projects like this
one, it may cost less to use a PIC instead
of a more full-featured microprocessor
complex like the 80188. That reminds me
of a story....

While attending a Microchip seminar,
I overheard a heated conversation be-
tween a couple of seasoned embedded
programmers as to why they should be
forced to move the projects they develop
from their familiar 68k platforms to the
“lowly” PIC.

“I can do anything that PIC can do and
just as fast!” one of them said.

“OK, what do you do with all of those
leftover cycles and hardware on the small
projects?” the other retorted.

As you can imagine, this went on all
morning and into the afternoon breaks. I
learned a great deal about the 68k plat-
form just listening to these guys wrangle.
Neither party yielded, yet both were
“sent” to this seminar by their supervisors.

It became obvious to me that neither of
these guys had either read nor had any-
thing to do with their company’s financial
statement. The 68k and its spin-offs were
and are a viable embedded solution for a
host of applications, but anyone else at that
seminar would have told them that you
don’t put a $1 part in a $0.59 product.

Those two guys were wearing blinders
and couldn’t see that they were being

offered an alternative
method to be heroes. Hav-
ing the 68k and PIC join
forces in their company’s prod-
ucts was their reason for sitting
there beside me.

I couldn’t imagine designing every-
thing with a 68k! I sincerely hope these
folks read Circuit Cellar now because at
that time they obviously didn’t know that it
doesn’t have to be complicated to be
embedded. APC.EPC

http://www.microchip.com
http://www.maxim-ic.com

62 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

3
3

High-Definition TV

MICRO
SERIES

Mark Balch

d
Now that
Mark’s
given us

some information on
HDTV signal technol-
ogy, it’s time to look
at the distribution
and production as-
pects of this versatile
new medium and just
how it will benefit
viewers.

igital television
(DTV) is bringing

completely new
equipment and para-

digms to the U.S. terrestrial broadcast
industry. Not only do content produc-
ers have their choice of multiple digi-
tal video formats, but broadcasters are
being given powerful flexibility in the
range of services they can offer.

These changes come at a cost—all
new studio, production, and transmis-
sion infrastructures. However, DTV’s
many enhancements stand to benefit
both consumers and the broadcast
industry once the initially choppy
waters of the DTV transition period
become calm.

The FCC’s current plan calls for
termination of the familiar analog
NTSC TV broadcasts at the end of
2006. From May 1, 1999 through
2006, the U.S. is embarking on the
largest single move in television tech-
nology since the beginning of broad-
cast TV earlier in the twentieth
century.

We’re leaving the realm of purely
analog video and entering the domain
of digital pipelines carrying bits and
bytes in myriad groupings. Whereas a
TV used to be as simple as extracting
the NTSC signal from a modulated RF
carrier and displaying it on a CRT,
DTVs incorporate MPEG-2 decoders

and RTOSs running on embedded
microprocessors.

Parts 1 and 2 discussed the nature
of the digital video formats and the
data structures that enable the proper
reception and viewing of DTV pro-
grams. However, you can’t gain a
complete grasp of DTV production
and broadcast without understanding
how the many new pieces of equip-
ment fit together to form a usable
system. Let’s get started on that
journey and finish up this series.

BROADCASTING BITS
Unlike a conventional TV broad-

cast signal, where the analog video
signal directly modulates an RF car-
rier, DTV’s RF channel carries a gen-
eral bitstream. Therefore, DTV is a
flexible digital medium whose bits
can be allocated according to the busi-
ness model of a particular broadcaster.
This contrasts with analog TV, where
all broadcasters have to transmit the
same basic signal.

The FCC chose 8-VSB (vestigal side
band) as the mandatory modulation
scheme for terrestrial DTV broadcast
in the U.S. Conventional TV trans-
mission is performed with an analog
VSB modulation scheme. Given the 6-
MHz channel bandwidth allocated to
individual broadcasters, 8 VSB yields a
digital bandwidth of ~19.39 Mbps.

Aside from the technical contro-
versy surrounding the FCC’s selection
of 8 VSB versus COFDM (coded or-
thogonal frequency division multi-
plex; a popular modulation scheme
used in Europe), there are some inher-
ent signal-reception differences be-
tween DTV and conventional TV. In
short, there is the digital “cliff effect”
versus a more gradual degradation
with analog.

People have become used to the
idea that their rabbit-ear antennas
might not provide clear reception—
especially when the TV is located
outside the broadcaster’s primary
coverage area. However, these people
are still able to watch TV despite the
degradation in quality.

Digital communications systems
tend to exhibit a flatter quality versus
signal-strength curve until a certain
minimum signal threshold is reached.

DTV System Architecture

P
ar

t 3
3of

 CIRCUIT CELLAR ® Issue 114 January 2000 63www.circuitcellar.com

At this threshold, the bit error rate of
the channel increases dramatically and
the integrity of the data link falls apart.

Therefore, it’s realistic to expect
that some people will experience
higher quality TV reception while
some are unable to receive a usable
DTV signal with their current an-
tenna configuration. The exact distri-
bution of these differences in a given
area depends on many variables, in-
cluding local terrain, tall buildings,
transmission power, and individual
antenna size and placement.

TRANSMITTING BITS
Recall that the DTV bitstream is

an MPEG-2 transport stream and that
MPEG-2 transport streams are formed
by the combination of multiple el-
ementary streams in a multiplexer.
The Society of Motion Picture and
Television Engineers (SMPTE) has
defined an interface between an
MPEG-2 transport multiplexer and an
8-VSB DTV modulator.

Dubbed SMPTE 310M, this syn-
chronous serial interface (SSI) runs at
exactly the bit rate of the DTV chan-
nel—19,392,658.46 Hz. The master
clock in the multiplexer that drives
the SSI must be within 2.8 ppm in its
accuracy because this clock figures
directly into the 8-VSB modulation
process.

Although a DTV station may con-
tain multiple multiplexers, only the
final multiplexer, called the emission
multiplexer, drives the modulator.
Therefore, only the emission multi-
plexer generally contains a 310M
output port because 310M isn’t used
as a generic data link.

310M was developed to address a
narrow communications application—
conveying the final broadcast MPEG-2
transport stream to the modulator. As
such, it is a relatively expensive data
link because of the tight tolerances of
its transmission clock.

The 310M data link consists of a
single coaxial cable with data that is
biphase mark encoded to enable re-
covery of the bit clock at the modula-
tor. Biphase mark encoding is a
scheme whereby the state of a bit is
determined by the number of master
clock transitions on the link.

In Figure 1, observe that the
310M master clock is twice the
bit rate—38,785,316.92 Hz.
Whenever a binary 1 is transmit-
ted, the encoded output toggles at
half the master clock rate. When-
ever a binary 0 is transmitted,
the encoded output toggles at one
quarter the master clock rate. (In
contrast, biphase space encoding
has the opposite toggling rela-
tionship.)

In such a system, the down-
stream receiver (modulator, in
this context) is able to recover
the transmit clock with a PLL
because the data link is guaranteed to
contain regular state transitions, re-
gardless of the binary data being sent
across.

QUALITY VS. BANDWIDTH
Each broadcaster is given the same

19.39 Mbps of bandwidth. So, how
much of that should be used for trans-
mitting a single program? What if the
broadcaster wishes to take advantage
of the much-discussed multichannel
capabilities of DTV (i.e., multicast-
ing)?

The question of MPEG-2 bit rate
versus quality is as religious as it is
technical. Video quality is a highly
subjective metric and you could get
five different opinions if you asked
four people!

The quality of an MPEG-2 encoded
program depends on three factors—
the complexity of the video, the com-
pressed bandwidth allocated to the
MPEG-2 encoder, and the capabilities
of the specific MPEG-2 encoder.

MPEG-2 exploits the inherent tem-
poral (frame to frame) and spatial
(pixel to pixel) redundancy in a video
signal to gain the tremendous com-
pression ratios it provides. Generally,
successive frames of video contain
similar content, and within frames,
neighboring pixels follow similar
shading.

Consider a scene of a person walk-
ing down a street. Successive frames
have a gradually shifting background,
a person moving, and perhaps a car
passing by. Between each frame, the
unique content doesn’t change much.

In this same scene, the asphalt

street is a large patch of similar col-
ors, as are the person’s flesh tones. All
of this redundant information is com-
pressed according to the MPEG-2
algorithm.

Clearly, video content that con-
tains a lot of detail reduces the effec-
tiveness of spatial redundancy.
Likewise, content with rapid motion
reduces the temporal redundancy.

That’s why it’s easier to compress
the average talk show, compared to
the average action-packed basketball
game. Talk shows contain soft detail
and low motion, whereas sporting
events contain higher detail (crowds,
wide shots of many players, etc.) and
fast motion.

An MPEG-2 encoder does not com-
press the incoming video into an arbi-
trarily small bandwidth. It is assigned
an output bandwidth and works to
achieve this target regardless of the
video complexity. So, encode quality
can be varied according to how many
bits are assigned to the encoder.

The final contributing factor to
encode quality is the ability of the
encoder itself. I guarantee you, each
manufacturer of MPEG-2 encoders
will have their own opinion of who
provides the best quality! Here’s
where head-to-head competition and
subjective viewing comes into play.

A savvy potential MPEG-2 encoder
buyer may carry a videotape with
tough scenes when visiting different
manufacturers. It’s then up to the
subjective opinion of the buyer to
look at each vendor’s quality at a
common bit rate to determine the
winner.

Figure 1 —Bi-phase encoding allows both clock and data
information to be sent over the same piece of wire. A receiver is
able to recover the clock using a PLL because the bi-phase
encoded signal contains regular transitions that serve as a PLL
reference. Data is extracted by observing the number of transi-
tions on the wire over a period of two master clock cycles.

Bit clock
~19.39 MHz

Emissions
data input

Master clock
~38.76 MHz

Bi-phase mark
encoded data

output

"1" "1" "1""0" "0" "0"

64 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

BANDWIDTH RULES OF THUMB
Invariably, customers want to

know at what bit rate a given digital
video format will compress with good
quality. They want a set of numbers,
not a lot of shuffling around with
vagaries.

There are rules of thumb, but they
differ depending on whom you ask.
And, once again, no number is carved
in stone. With that disclaimer aside,
we can discuss the relative demands
of the various digital video formats
and estimate what each would realis-
tically require with low- and high-
complexity content.

The standard definition (SD) digital
formats, 480I and 480P, each have the
least raw information and therefore
compress into the least bandwidth.
These SD formats each contain nearly
350,000 pixels per frame. A single SD
program encoded at a constant bit rate
requires about 1.5 Mbps for low- and
perhaps 4 Mbps for high-complexity
content.

High definition (HD) formats con-
tain much greater spatial resolution
and require higher compression band-
widths. 720P contains more than
900,000 pixels per frame. As such, a
720P program requires approximately
8 Mbps for low- and perhaps 15 Mbps
for high-complexity content.

1080I and 1080P each contain more
than 2,000,000 pixels per frame!
These two detailed formats require
anywhere from 10 Mbps for low- to as
much as 22 Mbps for high-complexity
content.

Although the HD bandwidth num-
bers, especially those for 1080I/P, may
look high, realize that they’re in the
context of today’s capabilities. HD
compression is still a relatively new
technology. Yet even with today’s bit
rates, there are additional tricks that
increase the number of programs a
broadcaster can transmit.

STATISTICAL MULTIPLEXING
When compressing a video signal at

a constant bit rate, the instantaneous
complexity often doesn’t match well
with the selected rate. At times, the
content is too static and bits are
wasted.

Or, if there is fast motion, quality
suffers because too few bits are avail-
able. When only one program is being
transmitted over a constant bit-rate
interface, not much can be done to
alleviate these problems.

However, imagine being able to
connect multiple encoders that share
a common bandwidth pool. In a sce-
nario like this, each encoder figures
out the incoming signal’s complexity

and arbitrates for varying
amounts of bandwidth in
real time. This practice,
known as statistical multi-
plexing, has become com-
mon in the SD encoding
world over the last few
years.

The idea is to exploit
the statistically low prob-
ability that all members of
a pool will require maxi-
mum bandwidth at any
given time. For example, it
is possible that during an
explosion in an action
drama, another program is
showing a scene where
two people are talking.

As is the case with
most statistically based
concepts, the benefit im-
proves as the size of the
pool increases. The prob-

ability of ten programs all requiring
maximum bandwidth at the same
time is less than that of two pro-
grams.

Digital broadcast satellite providers
reap significant benefits from statisti-
cal multiplexing because they typi-
cally transmit numerous compressed
SD programs over a transponder with
30+ Mbps of bandwidth. This provides
them with a large pool of encoders to
maximize the statistical payoff.

Figure 2 illustrates a typical statis-
tical multiplexing architecture. Ob-
serve that each encoder contains two
processing elements—an MPEG-2
compression engine and a complexity
look-ahead engine.

When video first enters the en-
coder, it is assessed for complexity.
This measure is converted into a de-
sired bit rate according to the quality
targets set by the operator.

Each encoder then communicates
this desired bit rate to a central band-
width arbiter. The arbiter divides the
available bandwidth pool among the
encoders according to their individual
requests and operator-defined priority
attributes.

Meanwhile, each encoder feads the
video through an internal delay path
so that it can wait for a bandwidth
response from the arbiter. The band-
width setting for each encoder arrives
and is fed to the compression engines
along with the delayed video.

Statistical multiplexing provides
benefits for pools with as few as two
or three encoders. So, a broadcaster
who is trying to evaluate the number
of programs that can be transmitted
doesn’t have to simply add up all of
the maximum rule-of-thumb bit rates.
Instead, depending on the material’s
complexity and video format, any-
where from two to four (and possibly
more) encoders can be configured as a
statistical multiplexing pool with
favorable results.

In this manner, it’s quite realistic
for a TV station to offer an HD main
event along with one or more SD
sideshows. In the absence of a show
that truly merits the resolution of
HD, perhaps eight SD programs could
be multicast in the 19.39-Mbps DTV
channel.

Figure 2 —Multiple MPEG-2 video encoders can share a fixed pool of
bandwidth through a central arbiter. Each encoder assesses the com-
plexity of its incoming video signal and requests a certain bandwidth
from the arbiter. Based on the collective requests, the arbiter divides the
available bandwidth among the requestors. The encoders then adjust
their compression rates to comply with the bandwidth grant. A video
delay buffers the video during the time it takes the arbiter to receive,
process, and distribute the bandwidth requests.

Bandwidth request
Bandwidth allocation

Baseband
video
input

Complexity
look-ahead

engine

MPEG-2
compression

engine

MPEG-2
encoded

video

Video delay pipeline

Bandwidth request
Bandwidth allocation

Baseband
video
input

Complexity
look-ahead

engine

MPEG-2
compression

engine

MPEG-2
encoded

video

Video delay pipeline

B
an

dw
id

th
 a

rb
ite

r

 CIRCUIT CELLAR ® Issue 114 January 2000 65www.circuitcellar.com

BEST VIDEO FORMAT?
As with video quality, the video-

format debate often gets religious.
Although some have a single preferred
format, the question should be posed
in terms of the type of content and
picture quality you want.

The 480P SD format is an improve-
ment over 480I, the digital version of
what we’ve been watching all these
years. At its highest frame rates,
59.94 and 60 Hz, motion is smooth
and flicker is nonexistent. It com-
presses well into relatively low band-
width because the spatial resolution is
no greater than that of 480I.

480P is a great general-purpose
format for daytime TV and news in-
terviews, where you want a crisp
picture. But, the greater spatial resolu-
tion of HD wouldn’t significantly add
to the viewing experience.

Although the SD formats are speci-
fied in both conventional (4:3) and
wide-screen (16:9) aspect ratios, most
SD material is shot in 4:3. Note that
at 16:9, the effective horizontal reso-
lution decreases because the image is

“stretched” over the same number of
horizontal pixels.

720P is an interesting format be-
cause of its high frame rates (59.94
and 60 Hz), its improved spatial reso-
lution, and its relatively modest band-
width requirements. With nearly
three times the pixels of SD and a
fixed 16:9 aspect ratio, the 720P for-
mat is great for sports programming—
especially when the bandwidth
savings is used for multicasting alter-
native programming.

1080I/P has the highest spatial
resolution of all DTV formats. It is
also the most bandwidth-intensive
format. 1080 line formats bring out
the maximum detail in movies by
providing more than twice the spatial
resolution of 720P. Because movies
are shot at 24 frames per second, the
29.97-/30-Hz frame rate does not
limit the quality of motion.

The video-format debate may go on
for a long time. In the end, consumers
and the broadcast industry together
will decide which formats are best
suited to various programming.

CLOSED CAPTIONING
As with analog TV, closed

captioning (CC) is an integral part of
the DTV system. CC places text sub-
titles on screen so hearing-impaired
viewers are able to follow spoken
dialog. Like many other parts of the
TV world, CC has gotten a facelift
with the coming of DTV.

In the analog world, CC is encoded
two characters at a time into line 21
of each NTSC video frame, according
to the EIA-608 standard. Televisions
decode the CC information and dis-
play the characters if the viewer so
requests.

For several years, the FCC has
mandated that all TVs sold in the U.S.
must have CC support. Likewise, CC
is a required part of DTV.

The vertical blanking interval of a
video signal is not transmitted under
DTV, so CC information is now
placed into reserved data structures. A
new standard, EIA-708, defines many
similar CC concepts as well as more
advanced screen controls. Under EIA-
708, CC authors can more accurately

66 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

the CA datastreams, and encrypt
descrambling keys.

Second, an MPEG-2 transport
stream scrambler is required to apply
the scrambling process to selected
programs. Third, potential customers
need access to a receiver with built-in
security and authentication hardware
(e.g., a smartcard).

CA management systems and
smartcards are proprietary compo-
nents, and MPEG-2 scramblers are
often integrated into multiplexers and
are therefore obtained from the multi-
plexer manufacturers. Receivers or
set-top boxes are made by a variety of
consumer electronics manufacturers.

Appropriate receivers already exist
for satellite customers, but these
boxes are unsuitable for terrestrial
broadcast reception. It may take a
while before security features like
smartcards make their way into ter-
restrial receivers.

DATACASTING
DTV is all about data. Most of the

data that will be present in early
broadcast installations will be MPEG-
2–compressed programs and the
MPEG-2 and Advanced Television
Systems Committee data structures
that enable reception and decoding of
the transport stream.

Also, some portion of the 19.39-Mbps
transmission bandwidth may be allo-
cated for generic data, which may or
may not be related to a given pro-
gram. Datacasting is the term used to
describe the broadcast of generic data.
Data is grouped into three classifica-
tions—unsynchronized, opportunistic,
and synchronized.

Unsynchronized data is the easiest
to implement. It can be constant bit-
rate data where a fixed bandwidth is
allocated and data is simply placed
into MPEG-2 transport stream pack-
ets and transmitted. It can also be
variable bit-rate data where the data
source is incorporated into a statisti-
cal multiplexing pool.

The only unique requirement
placed on the system is for a data
encapsulation engine that takes ge-
neric data from an external source and
inserts it into the payload of MPEG-2
transport stream packets. There are
many multiplexer products that can
do this today.

Opportunistic data seeks to occupy
unused bandwidth in an otherwise
fully allocated transport stream. A
real-world encoding system periodi-
cally emits null packets, wasting
valuable bandwidth. An opportunistic
data inserter looks for these packets
and replaces them with useful data
packets. Such systems require multi-
plexers smart enough to perform the
packet-substitution process and that
can either cache data locally or com-
municate with an external data
server.

Delivery is not guaranteed with
opportunistic data. Transmission is
based solely on the presence of null
packets. Also, given the continuing
efficiency improvements of MPEG-2
encoders, the quantity of null packets
emitted continues to drop as more
sophisticated algorithms are em-
ployed to maximize video quality.

However, if a broadcaster decides
it’s worth the expense of implement-
ing an opportunistic data system to
gain a small bandwidth advantage, the
pieces are falling into place to allow
it. Some multiplexer vendors already
support internal opportunistic data
insertion whereby the multiplexer
also serves as the data server.

define the placement and appearance
of CC text on the viewer’s DTV.

CONDITIONAL ACCESS
Multicast DTV brings with it some

interesting possibilities. Among these
is new possibilities the idea of sub-
scription-based programming.

With inherent support for condi-
tional access (CA), DTV enables
broadcasters to send some of their
programs scrambled and to only dis-
tribute viewing rights to those cus-
tomers who have paid a fee. The FCC
has mandated that broadcasters must
transmit their primary programming
in the clear (i.e., without scrambling).
However, once that requirement is
met, the law allows for new revenue
from subscription programming. Will
this happen?

At this point, it is purely a busi-
ness decision because the technical
problems are resolved. Digital broad-
cast satellite and cable providers have
successfully used complex CA sys-
tems to protect their services for quite
some time.

In order for a broadcaster to imple-
ment CA into a new or existing DTV
system, several components are nec-
essary. First, a CA management sys-
tem is needed to manage the
individual viewing rights, generate

Network HD feed

MPEG-2
decoder

HD VTR

HD camera

SD VTR

NTSC to
259M

292M
router

259M
router

HD editor

Upconverter

SD editor

HD
MPEG-2
encoder

Closed
caption
server

SD
MPEG-2
encoder

Emission
multiplexer

PSI/PSIP
generator

Broadcast
decoder/monitor

Studio-transmitter
link

8-VSB
modulator

Transmitter

NTSC plant
(existing station facilities)

"DTV" island

Figure 3 —Many early DTV stations will contain the minimum equipment necessary to get on the air and will func-
tion as islands off to the side of the main NTSC facility. Sources range from digitized NTSC, to SD and HD video-
tapes, to digital network feeds. Early network feeds are compressed at high bit rates (greater than 30 Mbps), sent via
satellite to local affiliates, decoded to baseband at the local station, and then re-encoded at the desired emission rate.

 CIRCUIT CELLAR ® Issue 114 January 2000 67www.circuitcellar.com

Primary encoders

MPEG-2 encoder

Video input
sources

Video
router

Router port selector

Fault monitor and
redundancy controller

Emission
multiplexer

Multiprogram MPEG-2
transport stream

MPEG-2 encoder

MPEG-2 encoder

MPEG-2 encoder
(backup)

For implementing opportunistic
data with an external data server,
SMPTE and the ATSC collaborated on
a standard dubbed SMPTE 325M. This
standard, an outgrowth of the
ATSC’s Data Implementation Work-
ing Group, defines an opportunistic
data flow control protocol that allows
the multiplexer and data server to
properly coordinate their activities.

The protocol consists of simple
data request commands embedded
within MPEG-2 transport stream
packets. Carriage of this protocol and
opportunistic data is defined for three
data links: Ethernet, DVB-ASI, and
SMPTE 305M.

DVB-ASI is a 270-Mbps serial inter-
face over a coaxial cable and is the
common medium for carrying MPEG-
2 transport streams within studio
facilities. SMPTE 305M, also referred
to as SDTI (serial data transmission
interface), is a 270/360-Mbps serial
interface that encapsulates data
within an SD video structure over a
coaxial cable.

The most complex data type—
synchronized data—has interesting
potential applications. Basically, ge-
neric data objects (or continuous
datastreams) are sent along with and
synchronized to a program’s video
stream.

A given data object is marked with
a timestamp that tells the receiver
when to display that object relative to
the video. The data object might be a
graphical overlay that pops onscreen
exactly when a corresponding event
occurs in the video. Or, it could be an
audible sound effect or an action such
as spawning a local application on the
intelligent set-top box.

Synchronized data affects almost
every element in DTV production and
distribution. The data itself must be
created and then closely timed with
the video program at a postproduction
(authoring) console.

Then, the video, audio, and syn-
chronized datastreams that compose
the program must be recorded in a
way that preserves the timing rela-
tionships. When handed over to a
broadcaster, the streams may need to
be routed around the studio, perhaps
separately, without losing timing.

Near the time of transmission, these
streams are passed through encoders
for compression, and the relative
timing of the streams must be pre-
served here as well.

Finally, the receiver needs a stan-
dard way to handle the incoming
generic data objects. This handling
includes not only decoding and dis-
playing the object at the correct time
but also buffer management to ensure
that the object is ready in memory at
the appointed time.

Standard interfaces, equipment,
and practices to implement end-to-
end synchronized data implementa-
tions do not yet exist, but groups
within ATSC and SMPTE are working
to fill in these gaps. Once the end-to-
end timelines, data interface formats,
and time-triggering methods are fully
developed, manufacturers can add
synchronized data support to their
products.

STATION ARCHITECTURE
All of the equipment and data-

streams I’ve discussed so far can be
arrayed in myriad combinations to
produce a DTV broadcast with unique
offerings. In the early stages of the
transition period from NTSC to DTV,
broadcasters will deploy relatively
limited infrastructures as they learn
the day-to-day operational realities of
DTV.

These small-scale installations will
feature a mix of mostly upconverted
SD content with nuggets of native HD

programming to highlight special
events and popular shows. As the
population accepts DTV and more
equipment becomes available, the
mix will begin to take advantage of
DTV’s power and flexibility.

LEARNING THE ROPES
In an environment of limited na-

tive HD content, most broadcasters
realistically have very little exciting
material to transmit. A lot of the
material will come from their na-
tional network as a live HD feed, with
the balance being composed mostly of
prerecorded HD material.

The more aggressive and motivated
stations will purchase HD cameras
and shoot some of their own program-
ming in HD. This is no small under-
taking because such HD equipment is
fairly expensive in the beginning.

For the remainder of the day and in
the absence of additional true HD
material, the station will take SD
programming—very often their main
NTSC signal—and upconvert it to an
HD format.

Unlike with NTSC, broadcasters
now have several format choices. It’s
important for each broadcaster to
choose a “house format” because of
the expense incurred when converting
back and forth between different for-
mats at this early time in the indus-
try. Most broadcasters will choose the
house format of their affiliated net-
work for consistency. As of press
time, CBS and NBC have chosen

Figure 4 —Fault tolerance across certain DTV equipment can be practically achieved without installing spares for
every item. Encoders, for example, can be spared “1 for N” whereby a single backup encoder sits ready to handle
the video signal for any other encoder that fails. In such a circumstance, the fault-recovery procedure would
require routing the particular video signal to the backup encoder and changing the multiplexer’s input configuration
from the failed encoder to the backup.

68 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

1080I, ABC has chosen 720P, and Fox
has chosen 480P.

Figure 3 illustrates a typical early
DTV station architecture. Note that
the layout consists of a DTV island
alongside the main bread-winning
NTSC plant.

On the left side of the DTV island
are the video feeds: MPEG-2 com-
pressed HD network feed (usually via
digital satellite link), local HD video
tape recorder (VTR), local SD digital
VTR, and local NTSC analog feed.
Intrepid broadcasters will have one or
more HD cameras as well.

The NTSC feed is passed through
an A/D formatter where it is con-
verted to 480I over the SMPTE 259M
serial digital interface (SDI). Remem-
ber, in a DTV plant, video is distrib-
uted digitally, not as analog.

The network’s HD source is fed
into a studio-quality MPEG-2 de-
coder where it is uncompressed to
baseband—SMPTE 292M SDI. This
step is performed for a number of
reasons.

First, for the best quality, the net-
work distributes their HD program-
ming at a high bit rate. Second,
baseband video can be more easily
edited, stored, and manipulated with
today’s technology. Third, the local
station can visually monitor the net-
work feed.

The baseband network feed and the
HD VTR’s output is fed into a 292M
router for easy signal distribution to
other pieces of equipment. HD cam-
eras, if present, would also feed into
the 292M router.

A 259M router distributes the digi-
tal SD sources—the VTR and the
converted NTSC feed. One of the SD
router’s outputs drives an upconverter
that converts the 480I digital signal
into that paticular station’s HD house
format.

The upconverter’s 292M output
feeds back into the 292M router. Two
of the 259M router’s outputs feed a
simple real-time digital SD editing
platform that enables a director to
perform baseband effects (e.g., splices
and fades). The editor’s output drives
an SD MPEG-2 encoder, providing the
compressed SD signal source as part
of the DTV multicast.

The output side of the 292M router
is configured similarly. Two outputs
feed a simple real-time HD editing
platform for baseband effects. An HD
MPEG-2 encoder then compresses
this broadcast-ready HD signal that
comprises the real “wow” of the DTV
broadcast.

CC servers provide data to both
HD and SD encoders. However, many
SD sources already have caption data
embedded in the vertical blanking
interval, so this may not be necessary
for the SD signal. SMPTE is still
working to embed captions within the
HD signal, so an external caption
server for HD is required early on.

The last and vital component of
the DTV multiplex is the PSI and
PSIP data structures that are neces-
sary to adequately describe the sepa-
rate digital datastreams. A dedicated
PSI/PSIP generator takes configuration
information from station personnel
and emits the properly formatted
streams to the emission multiplexer.

All of the MPEG-2 transport
streams to be broadcast (in this case,
the output of the HD and SD encoders
and PSI/PSIP packets) are fed into the
emission multiplexer. The emission
multiplexer combines these separate
streams and produces a single broad-
cast-ready transport stream that is
19.39 Mbps in bandwidth.

Depending on the station, the 8-
VSB modulator and transmitter may
or may not be in the same general
vicinity as the other equipment. If the
modulator is nearby, it is driven di-
rectly by the emission multiplexer via
the SMPTE 310M SSI.

If the modulator is at a different
location, a studio-transmitter link is
driven by the multiplexer, perhaps
310M, which then drives the remotely
located modulator. Lastly, the modu-
lator excites a transmitter that broad-
casts the DTV multiplex.

GETTING FANCY
That’s what a simple DTV station

might look like, but much, much
more can be done with the other
pieces of equipment. The broadcaster
may try to attract viewers by offering
more programs in the multicast. As I
mentioned, this could be done by

statistically multiplexing additional
SD encoders with those already in
service.

More flexible editing and MPEG
stream manipulation hardware will
soon become available. One immedi-
ate benefit of a so-called transcoder
would be to translate the network HD
feed directly into a lower bit rate
suitable for broadcast without the
need for a full decode and re-encode
step. Such a process would result in a
higher quality picture.

MPEG-domain splicing offers a
quality improvement effect similar
to transcoding by allowing program-
ming to be stored and edited in a
compressed form. It also makes ad
insertion easier. Format conversion
enables easier sharing of material
between stations that use different
house formats.

Easy MPEG-domain editing will
allow the proliferation of MPEG video
servers. Instead of libraries of tapes
storing uncompressed video, video
servers with huge hard-drive arrays
will store large selections of program-
ming compressed at high enough bit
rates to maintain archival quality yet
still save space.

Data-enhanced programming is
another way to attract viewers. Educa-
tional programming could provide
supporting interactive material, and
sporting events could be supple-
mented by player and team statistics.
Data servers would be loaded with
program-related data that would be
emitted at the proper times into the
emission multiplexer.

With all of these complicated
boxes sitting around the studio and all
the detailed parameters needed to
configure them, an automation sys-
tem becomes more of a necessity than
a luxury. The industry is grappling
with this problem, and hopefully,
such equipment will become available
sooner rather than later. When it does,
a broadcaster will be able to easily
manage a complex DTV system in a
truly reliable fashion.

As DTV gains popularity, broad-
casters will want to sell ad space.
When this happens, the station will
be on the hook to guarantee a reliable
broadcast. If the football game is

 CIRCUIT CELLAR ® Issue 114 January 2000 69www.circuitcellar.com

Mark Balch is a senior hardware design
engineer and has participated in a
variety of MPEG-2 product designs,
including an HDTV MPEG-2 encoder.
Mark actively attends meetings of the
ATSC and SMPTE industry standards
groups. You may reach him at
mark_balch@hotmail.com.

REFERENCES
SMPTE 310M, Synchronous Serial
Interface for MPEG-2 Digital
Transport Stream, 1998.

SMPTE 325M, Opportunistic Data
Broadcast Flow Control, 1999.

www.atsc.org
www.fcc.gov
www.mpeg.org
www.smpte.org

dropped, the ads drop and the station
loses money.

So, the high reliability that broad-
casters have implemented in their
NTSC plants will become necessary
in the DTV plants. A certain amount
of redundancy with failure detection
and automatic recovery systems is
required to ensure that any single
failure will not significantly disrupt
the real-time end product for the
viewer.

Redundancy is costly, but not to
the point of providing complete dupli-
cates of an entire station. Some items
(e.g., MPEG-2 encoders) can be backed
up on a 1-for-n basis whereby one
encoder sits ready to provide single-
fault recovery for an array of encoders.

As Figure 4 shows, the backup
encoder is fed by a completely sepa-
rate router output port and has its
own connection into the MPEG-2
transport multiplexer. If the redun-
dancy controller detects a failure on a
primary encoder, it selects the proper
video source for the backup and modi-
fies the multiplexer’s configuration to

switch in the backup and switch out
the failed unit.

Video servers might also be backed
up inexpensively by preloading the
program onto a smaller backup server.
In this manner, if the main video
server experienced an on-air fault, the
backup could be switched in.

ONWARD TO THE DIGITAL
FUTURE

After many years of innovation and
preparation, the U.S. television indus-
try is launching into a new age. Tech-
nology has matured to the point
where these high-definition programs
can be economically produced and
broadcast.

No one knows exactly what path
the industry will take, but it is guar-
anteed that significant change is hap-
pening at this very moment. Whether
some people begin watching DTV on
their computers and use interactive
data enhancements to gain new infor-
mation, or others begin to enjoy the-
ater-like programming in their homes
on a daily basis, this transformation

will affect everyone differently and at
different points in the future.

And from a technical point of view,
DTV opens up new business opportu-
nities across the board. Who knows?
You may find yourself drawn behind
the scenes, too! I

70 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Speed
Racer

In the
hustle of
modern
life,
speed is

essential. Jeff knows
this. He thinks there
is no time like the
present to cover the
inner workings of
today’s fastest
microcontrollers.

e are driven by
speed. We expect

to get what we want
right now. Give me

food now—instant breakfast, fast food
lunch, and pizza delivery for supper.
Give me weather now—plan the
whole week based on a 10-s forecast.
Give me phone service now—call
from anywhere, anytime, but don’t
put me on hold. Give me Internet
now—bring up this site now (what
good is a 500-MHz processor if it still
takes thirty seconds to download site
data). Get me there now—raise the
speed limit, use the drive-through,
and pay at the pump. Road rage is
spreading because we hate to wait. If
we can’t keep pace, it all starts to
crumble.

Maybe we should just let it
crumble a bit. Just enough to let you
feel like you’re in charge. When you
do, the food will taste better, the
weather will seem more predictable,
and you might even figure out what
day of the week it is before Friday
comes!

If you work with processors, you
know that execution speeds continue
to increase. Some of the latest
technologies are now using internal
PLLs to create execution clocks faster
than the crystals that run them. One
advantage to this internal speed,
beyond the obvious, is less EMI,

which is a serious threat to any
product’s acceptance. A disadvantage
of PLL clocks is jitter (edge accuracy).
Whatever the potential disadvantage,
programmers usually agree, more
speed is better.

TALKING ‘BOUT MY GENERATION
Do today’s speeds lend themselves

to the generation of waveforms?
Certainly, the creation of a TTL
output square wave isn’t a big deal.
Merely setting and clearing an output
bit over and over again doesn’t take a
lot of overhead. Let’s use 1 µs as a
typical instruction cycle. This setting
and clearing would result in a
500-kHz square wave. There will be a
glitch in the timing as you try to jump
back to the loop unless you filled the
micro’s code memory with set, clear,
set, clear allowing the eventual wrap
to automatically bring you back to the
beginning.

All of this assumes that the
processor did not require any kind of
initialization code. So as it stands, the
shortest loop would be a bit slower
than just set, clear, set, clear. It is
necessary to introduce a slight delay
between the set and the clear. The
delay should have the same number of
cycles as the jump instruction needs
after the clear.

• Start—set bit, 1 instruction cycle
• Nops—2 instruction cycles
• Clear bit—1 instruction cycle
• Jump start—2 instruction cycles

The number of nops depends on the
number of instructions cycles in the
jump command to keep the square
wave symmetrical (50% duty cycle).
This number can vary from two to
many, especially if the instructions
are pipelined. The best case is six
instruction cycles per loop (166-kHz
square wave).

Now, let’s suppose that a single
frequency output isn’t good enough.
You want to have the ability to
change the frequency. You might
choose to use a number of input bits
to select the frequency. Reading a byte
value from an input port certainly is
quick, and it gives you 256 different
frequencies.

Virtual Speed with the SX

w

 CIRCUIT CELLAR ® Issue 114 January 2000 71www.circuitcellar.com

Although using the timer can be
easier than jump+offset, without
interrupts it’s a pain.

The advantage of using interrupts
is that the set and reset commands
can be part of the interrupt back-
ground routine allowing other things
to take place in the foreground, but
interruptable (at a lesser priority). An
important pitfall to avoid when using
the timer is that any count placed into
the timer must not overflow before
the interrupt routine exits. Overflows,
which take place during a timer inter-
rupt, will cause another interrupt
immediately upon exiting. In this case
not only is the timing wrong (late),
but no other code will ever be exe-
cuted except for the interrupt routine.

There are several ways of prevent-
ing this from happening. If a prescaler
is available, you can choose a prescale
divisor, which will only send the
timer an increment every other
instruction cycle (or other multiple
thereof). This enables a few more
instructs to execute before increment-
ing the timer and essentially slows
down the timer, creating a longer tick.
The longer the tick, the greater the
difference in minimum frequency
change.

Alternately, the timer can be
turned off while the count is loaded
and reenabled just before the reti.
This method adds a few instruction
cycles to the delay, but it keeps the
timing accurate. Still, the minimum
timing (maximum frequency) is the

The time between interrupts can be
adjusted by altering the counter value
anytime after an interrupt yet before
the next interrupt. In fact, careful
attention must be paid to updating the
count, especially with 16-bit counters,
as the count may be incorrectly incre-
mented if the low byte of the count
overflows into the high byte before
the high byte is updated.

Of course, the timer can be used
without interrupts. Some processors
don’t have interrupts. Without inter-
rupts you are required to stay in a
loop waiting for the overflow to occur.

To place variable delays between
the set and clear commands you
might choose to place 256 nops
between them and use a
jump+offset command to jump to
specific points within the nop delays.
The byte read from the input port
could provide the offset of the jump.
So, you add the port read command,
which adds another instruction cycle
to the loop (actually it adds double
because you need to balance the added
instructions on both half cycles of the
waveform). The loop is now a min-
imum of eight instructions long, for a
maximum frequency of 125 kHz.

TIME IS ON MY SIDE
Using the processor’s timer func-

tion is a much better idea. This
method will also allow for longer
delays if it has a 16-bit timer avail-
able. However, an 8-bit timer can also
be used. Timers are normally in-
cremented by the instruction clock.
The timer generates an interrupt
when the time increments (or decre-
ments) past its maximum or mini-
mum count and overflow (or
underflow) of the counter. If the timer
is allowed to count without the user
altering the count value, it will in-
terrupt again in 256 counts (or 65536
counts for 16-bit counters).

Photo 1 —This is
the output pro-
duced by the SX
processor. On
close inspection,
you can see the
actual output steps
produced by the
R2R ladder. This
DAC was con-
structed with 5%
resistors.

Figure 1— The R2R
ladder is a programmable
current source into R. Vout

can vary from 0 volts to
VCC /2N where N is the
number of output bits.

72 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

These micros do include an 8-bit
timer with an interrupt. Additionally,
interrupts have a hardware context
save/restore to automatically take
care of some necessary housecleaning.
There is no timer overflow flag to
poll, so if you don’t use the interrupt
service routine, you must continuous-
ly read the timer to determine if it has
rolled over.

Because the SX’s timer can’t be
stopped and started, turning off the
timer isn’t an option. Therefore, in
order to prevent reload values from
timing out before the routine has
exited, the reload value must be
greater than the longest path through
the routine.

In Listing 1, we are trying to get
our square wave output to be as fast
as possible, yet still be able to vary its
frequency.

The longest path through this
interrupt routine requires 20 in-

struction cycles. The timer must be
loaded with a value, which will not
cause a rollover until after the inter-
rupt exits. If you want any real work
done before the next interrupt comes
along, you must adjust this value
appropriately. Doubling the 20-
instruction count to 40 would balance
the execution to 50% interrupt, 50%
other work. Adjusting the reload value
sets the tick time (minimum duty
cycle) of the output waveform. This is
the highest possible frequency, so it
makes sense to keep this tick as fast
as possible. Here I use a value of 32
(eight cycles have passed by the time I
get to reload the count).

Producing the output waveform is
handled by the interrupt routine, so
what else is left? If we wish the
output frequency to be variable, we
need to collect a control value from
somewhere. Although an 8-input port
allows for 256 possibilities, I wanted
to use a potentiometer to make
tuning easier than plugging and
unplugging jumpers. I decided to add a
simple serial 8-bit A/D (see Figure 1),
because producing a virtual A/D
really requires use of the RTCC (or at
least no interrupting) and an external
capacitor to charge and discharge.

A small 8-pin dual-channel A/D is
available from a number of manu-
facturers (e.g., National’s ADC0832).
The nice thing about using these
serial devices is that the clocking is
asynchronous. The main loop, which
reads the A/D, can be interrupted by
the RTCC interrupt without causing
problems in getting the A/D’s
converted value (see Listing 2). The 8-
bit value read is used as the reload
value of the tick counter (POT1).

maximum code path through the
interrupt. In this case, save registers
turn off the timer, complement the
output bit, reload the timer, turn on
the timer, restore registers, and exit.
This might be as little as 17 instruc-
tions/half cycle (~30 kHz).

You might be getting the picture
about now. It doesn’t take long before
the steps necessary to perform a func-
tion begin to detract from the original
purpose (to program a variable high-
frequency square wave oscillator).

Imagine now that we also want
other things like PWM on the square
wave output or alternately, a sine or
triangle output. If we choose to create
a sine wave using 256 discrete steps,
that would (at the absolute minimum)
limit the output frequency to 111 Hz.
If we could find a micro with a faster
instruction cycle certainly that would
help things, right?

BIT-BALL WIZARD
I received my first samples of

Scenix Semiconductor’s first 50-MHz
microcontroller in early 1998. Their
first flash memory-based micros were
poised to pounce on Microchip’s low-
end micros. Flash memory makes for
quick development. Their idea at
Scenix is to keep the price lower by
eliminating all the on-chip hardware
peripherals.

Scenix figures if they give you
enough speed, you can create virtual
peripherals on an as-needed basis.

Listing 1 —In the timer overflow interrupt routine, the value of A/D channel #1 determines how many
interrupts must occur before the square wave output bit is flipped.

org $000
TMR0VF mov RTCC,#$E0 ; (2)
TMR0_SQR test POT1 ; (1)

jz TMR0_SQR0 ; (2,4 skip)
dec POT1 ; (1)
jmp TMR0_SQRX ; (3)

TMR0_SQR0 mov POT1,CNT1 ; (2)
inc CNT ; (1)
movb CNT.0,RC.0 ; (4)

TMR0_SQRX reti ; (3)

Figure 2— The SX processor
handles A/D through an external
serial ADC and D/A via an R2R
ladder. Configuration jumpers
can select between high speed
50% duty cycle squarewave
output and PWM, sine, or
triangle wave outputs.

Single Bit DAC

Two Bit DAC

 CIRCUIT CELLAR ® Issue 114 January 2000 75www.circuitcellar.com

one as duty cycle. Right off the bat,
the maximum frequency is going to go
down by a factor of 256 (the control
range of the duty cycle parameter). So
the most we could hope for is about
2500 Hz. The math necessary to
produce a value for the duty cycle on
or off time based on the total cycle
time is eliminated with this scheme.

The 8-bit frequency value (POT1) is
used as a loop-count value. Every time
the interrupt loop is entered this value
is decremented until it reaches zero.
This produces the variable-frequency
portion of the output. However, once
it reaches zero, an 8-bit counter (CNT)
is incremented. Whenever this
counter reaches zero, the square wave

I can add a second pot because I
have two A/D inputs. This little
change adds a second A/D channel to
increase the tick counter value from
an 8-bit to a 16-bit value. It adds eight
execution cycles to the interrupt loop,
but because I didn’t readjust the
reload value, all the timing remains
the same. This 16-bit count creates a
50% square wave variable from 625
kHz down to 10 Hz. Ultimately this
maximum speed is reached, thanks to
the 50-MHz clock and the 20-ns
execution cycle of the SX micro.

The next step brings us to PWM
square waves. We’ve already got a
couple of 8-bit inputs to the processor,
so let’s set up one as frequency and

Listing 2 —The second A/D channel adds a “fine” adjustment to extend the half cycle count to a 16-bit
value.

org $000
TMR0VF mov RTCC,#$E0 ; (2)
TMR0_SQR test POT1 ; (1)

jz TMR0_SQR ; (2,4 skip)
dec POT1 ; (1)
jmp TMR0_SQRX ; (3)

TMR0_SQR test POT2 ; (1)
jz TMR0_SQR0 ; (2,4 skip)
dec POT1 ; (1)
dec POT2 ; (1)
jmp TMR0_SQRX ; (3)

TMR0_SQR0 mov POT1,CNT1 ; (2)
mov POT1,CNT2 ; (2)
inc CNT ; (1)
movb RC.0,CNT.0 ; (4)

TMR0_SQRX reti ; (3)

Listing 3 —In this PWM implementation, the A/D channel #2 value becomes a count of how long the output
will remain low for each cycle.

org $000
TMR0VF mov RTCC,#$E0 ; (2)

jnb PC.CFG,TMR0_SQR ; (2,4 jump)
TMR0_PWM test POT1 ; (1)

jz TMR0_PWM0 ; (2,4 jump)
dec POT1 ; (1)
jmp TMR0_PWMX ; (3)

TMR0_PWM0 inc CNT ; (1)
test POT2 ; (1)
jz TMR0_PWM00 ; (2,4 jump)
dec POT2 ; (1)
jmp TMR0_PWM000 ; (3)

TMR0_PWM00 mov POT2,CNT2 ; (2)
setb RC.0 ; (1)

TMR0_PWM000 test CNT ; (1)
jnz TMR0_PWM0000 ; (2,4 jump)
clrb RC.0 ; (1)
mov POT2,CNT2 ; (2)

TMR0_PWM0000 mov POT1,CNT1 ; (2)
TMR0_PWMX reti ; (3)

output bit is cleared. Although this
reduces the frequency by 256, it does
divide the selected frequency set by
POT1 into 256 equal pieces.

Because the duty cycle value (POT2)
is also 0–255, this value can be used
to directly control duty cycle without
any math. The off time is this value
in relation to the counter (CNT).
Remember that the output bit is
cleared when CNT = 0 ? In the same
way, the output bit is set when the
duty cycle decrements to zero. So, the
output bit goes low once every 256
counts (CNT) and goes high at one of
those counts, when POT2 decrements
to zero. Again, most of the real work
is done in the interrupt routine (see
Listing 3).

The maximum number of execu-
tion cycles through the interrupt loop
is now 29. We still don’t have to
increase the minimum interrupt time
(RTCC reload value). Because our
operation is performed on each half
cycle of 625-kHz/256 frequency, the
maximum output frequency is ~5 kHz
and not 2.5 kHz as suggested pre-
viously. Duty cycle is frequency
independent and adjustable in <0.5%
increments.

You might wish to trade off duty
cycle increment size for maximum
frequency. Reducing the duty cycle
resolution to 128 allows the max-
imum frequency to go up by a factor
of two resulting in ~10 kHz. I chose to
use 256 because it greatly simplifies
the programming, and it leads into the
next section quite nicely.

SURFIN’ USA
Certainly there must be life beyond

square waves. In fact, most signal
generators provide sine and triangle
outputs in addition to square waves.
One of the easiest ways of producing
sinewaves is to provide a PWM output
from which you could filter out most
of the harmonics, leaving a clean (as
clean as they get) sinewave. I don’t
want to use this method, because it
doesn’t lend itself well to a varying
frequency output.

The more direct approach is to use
a DAC. The cycles necessary for
writing (rapidly enough) to a serial
DAC would greatly reduce the

76 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCES
SX-28
Scenix Semiconductor, Inc.
(408) 327-8888
Fax: (408) 327-8880
www.scenix.com

SX-KEY
Parallax, Inc.
(916) 624-8003/8333
Fax: (916) 624-8003
www.parallaxinc.com

ADC0832, LMC6492
National Semiconductor
(408) 721-5000
Fax: (408) 739-9803
www.national.com

maximum frequency available here
even more than the 5 kHz we present-
ly have. So, I don’t want to use this
method either.

A third possibility uses an R2R
ladder as a parallel DAC by writing 8-
bit values directly to an output port.
Using either DAC method requires
some computations or a lookup table
for determining the appropriate
output values. As if you haven’t
figured it out already, notice that I’ve
been paving the way for a 256-byte
lookup table by the way I’ve designed
the PWM square wave interrupt
routine.

The CNT variable which was used
to divide the square wave into its 256
possible duty cycle points can now
become the offset into a lookup table.
Instead of getting the off-time from
POT2 for the PWM square wave
output, in this method POT2 is not
needed, since the table will supply all
of the necessary wave shape data. The
value returned from the table is
simply placed into Port B’s output
register. Where did this data come
from?

Attempting to calculate the
necessary sine data on the fly at each
new degree point within the 360° of a
cycle would again be too time
consuming. I wrote a few QBASIC
program lines on my PC to calculate
the hex values for each table entry.
Although I could have had this
program create a file properly format-
ted for direct copying into my source
code, I opted for just a simple program
to print a paper list of the table offset
and entry data.

I entered this data by hand into the
source code. However, I did need to
make a small adjustment. Using
Parallax’s SK-KEY development
system I noticed that the jmp PC+W
command is actually jmp PC+W+1
and it can jump to the first 256 bytes
of each 512-byte page. Because the
actual jump command must reside in
the same 256 bytes, when W = $FF,
the jump will actually end up back on
top of itself (because it can’t roll into
the upper 256 bytes). To prevent this
from playing havoc with program
execution, I test for W=$FF and force it
to W=$00. This means that the offset

data at $00 will in fact be used twice
for each cycle.

The data presented to Port B is the
same data that would be passed to an
8-bit hardware DAC. I create a DAC
by using an R2R ladder on these
output pins and following the ladder
with an OP-AMP to buffer the output
signal. For more detail, see the analy-
sis of how the R2R ladder works in
Figure 2. Each bit of the R2R ladder
creates a voltage divider capable of
controlling the voltage difference
between its output pin and the next
lower bit’s output.

The higher the number of bits in
the resistor DAC, the closer to VCC

the output can reach. With a single bit
the R2R output switches between ½
VCC and ground. With two bits, the
R2R output can reach ¾ VCC with all
output bits high. At 8-bits the R2R
output will reach 99.6% of VCC with
an LSB of 19.5 mV (sound familiar?)
The actual output impedance will
always equal R. Take a look at the
actual output waveform produced by
the SX chip in Photo 1.

From this you can see that adding
other special waveforms is no more
difficult than pointing to a different
table. The number of possible
waveforms is limited only by the
amount of space available for the
tables. The total space needed for the
code is less than 256 bytes (not
counting any tables). You might find
that you could develop algorithms,
which require less table space.

You can do sine waves of the same
resolution with a table of only
64 bytes. However, figuring out which
quadrant you’re in and in which
direction you would need to read
through the table, would seriously
reduce the maximum frequency.
Often simpler is better, since you’d be
trading fanciness for crucial time.
Note that many compilers can be
optimized for either maximum speed
or minimum code size.

SLOW RIDE
When I look back at what I started

with (a 50-MHz processor with a
20-ns execution time), I can’t help but
feel that there is something basically
wrong here. Although I could get

some fairly fast square wave outputs
(>600 kHz), when it comes to
generating some of the other useful
basic waveforms, speed deteriorates
quickly. There is a 10,000:1 difference
between the execution cycle time and
the maximum sine wave frequency
output (based on my resolution
criteria).

It’s true I haven’t yet delved too
deeply into cutting every corner and
tightening up the code to its absolute
minimum execution times. I thought
it would be better to work through
this based on clarity as opposed to
absolute maximum attainable speed.
Besides, no matter what I come up
with, I’m sure there are many of you
out there who will program cycles
around me. You don’t see many
waveform generators based on a
microcontroller, and I guess this is for
several good reasons. Achieving
complex variable high-frequency
waveforms takes precious cycle time.

It’s not very often that the ideas I
investigate actually end up as a piece
of useful equipment. But I seem to
always have the need for a simple
waveform generator. After all,
10,000:1 sounds pretty good when
compared to the odds of winning the
lottery. I

http://www.sceinix.com
http://www.parallaxinc.com
http://www.national.com

78 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

8-pin SOIC

ATtiny11L

ATtiny11

ATtiny12V

ATtiny12L

ATtiny12

ATtiny22L

ATtiny22

I/O
 P

in
s

Fl
as

h
m

em
or

y
(K

B)

EE
PR

O
M

 (B
yt

es
)

R
AM

 (B
yt

es
)

In
st

ru
ct

io
ns

In
te

rru
pt

s
Ex

t.
in

te
rru

pt
s

SP
I

UA
RT

8-
bi

t t
im

er

1

1

1

1

1

1

1

-

-

64

64

64

128

128

-

-

-

-

-

128

128

90

90

90

90

90

90

90

6

6

6

6

6

5

5

3

3

3

3

3

2

2

1

1

1

1

1

1

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1

1

1

1

1

1

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Y

Y

Y

Y

Y

Y

Y

-

-

-

-

-

-

-

Y

Y

Y

Y

Y

-

-

-

-

-

-

-

-

-

Y

Y

Y

Y

Y

Y

Y

-

-

Y

Y

Y

-

-

Y

Y

Y

Y

Y

Y

Y

2.7-5.5

4.0-5.5

1.8-5.5

2.7-6.0

4.0-6.0

0-2

0-6

0-1

0-4

0-8

0-4

0-8

8-pin DIP

An
al

og
 c

om
p

16
-b

it
tim

er
)

PW
M

W
at

ch
do

g
tim

er

RT
C

 ti
m

er

10
-b

it
A/

D
 c

ha
nn

el
s

O
n-

ch
ip

 o
sc

illa
to

r

Br
ow

n-
ou

t d
et

ec
to

r

In
-s

ys
te

m

pr
og

ra
m

m
in

g
Vc

c
(V

)

1)

1)

1)

1)

1)

2)

2)

2)

3)

3)

2.7-5.5

4.0-5.5

C
lo

ck
 s

pe
ed

Pa
ck

ag
es

8-pin SOIC
8-pin DIP
8-pin SOIC
8-pin DIP
8-pin SOIC
8-pin DIP
8-pin SOIC
8-pin DIP
8-pin SOIC
8-pin DIP

8-pin DIP
8-pin SOIC

1) One external interrupt + interrupt and
 wake-up on pin change (all I/O pins)

2) High accuracy (5%) internal RC
 oscillator with programmable speed

3) Requires 12V signal on RESET pin
 during programming

s mall is beauti-
ful. That’s the

name of the game in
the 8-bit microcontroller

biz these days. You need look no fur-
ther than Microchip—they’ve ridden
the quaint little ´70s-era PIC from
obscurity to number two in the 8-bit
MCU market, behind only perennial
leader Motorola who move even more
massive quantities of minimalist ’05s.

What’s the big deal with these
small and cheap micros anyway? It’s
the silicon version of Econ101: cut the
price of a chip and more (many more,
as in hundreds of millions of units)
will get sold.

Some of the volume boost is sim-
ply a result of pass-through price sav-
ings as existing gadgets are redesigned
to cut their BOM. More profound, it
seems there are certain inflection
points (e.g., under a buck) at which a

bunch of completely new applications
emerge, spiking demand upward.

The latest generation of econo-
MCUs, by their stripped-down nature,
have much in common (small
memory arrays, tiny packages, mi-
serly power consumption, and low-fat
peripherals) to cut application costs to
the bone. Dig a bit deeper and you’ll
find small, but perhaps critical for
your application, differences.

Atmel has hopped on the down-
sizing bandwagon by introducing 8-pin
versions of their AVR microcontroller.
Those of you not familiar with the
AVR should check out my column in
Circuit Cellar 81, “Not Your AVRage
MCU.” In short, AVR is a modern
8-bit architecture (i.e., pipelined, load/
store, 32 × 8 general-purpose registers)
that counts on youth to give it an
advantage over the existing, and
somewhat long-in-the-tooth, favorites
like PIC, ’68, ’51, Z8, and so on.

Atmel’s Tiny lineup consists of ’1x
and ’2x variants. The basic difference
between the two (as shown in Figure
1) is the ’1x core is limited to 1-KB
program memory and no RAM (i.e.,
the only working storage is the 32-
byte register set) and gets by with a
smaller instruction set (90 versus 118
instructions) than the ’2x.

The latest chip, so new it’s not
even on the chart in Figure 1, is the
ATtiny15 shown in Figure 2. Let’s
take a closer look.

8-PINS, WILL TRAVEL
The ATtiny15 includes 1 KB of

flash memory for code and 32 bytes of
RAM, quite on par for the entry-level
course. However, it also includes 64
bytes of EEPROM, with 100,000
write/erase cycle endurance. The

Atmel Gets Tiny

 Today’s
econo-
MCUs
are
stripped

down to the smallest
size possible and yet
loaded with enough
features to satisfy
plenty of applications.
Not to be left out,
Atmel introduces the
ATtiny15 to the mix.

SILICON
UPDATE

Tom Cantrell

Figure 1 —The line of “Tiny” 8-pin AVR micros makes Atmel a player in the small-is-beautiful MCU biz.

 CIRCUIT CELLAR ® Issue 114 January 2000 79www.circuitcellar.com

addition of EEPROM to the
on-chip memory mix is a
major advantage for applica-
tions that would otherwise
require an external
EEPROM chip or battery
back-up scheme.

I/O-wise, with 8-pin
packages all the rage, doing
it right demands careful
attention to precise pin
assignment and peripheral
integration. The idea is to
serve the broadest range of
applications while imposing
no cost penalty for the
luxury of such flexibility.
Simple in theory, but quite
difficult in practice.

The Tiny15 does a good
job of making do with only
six pins (you still need
power and ground after all),
as you can see in Figure 3.
First, notice there are no
external clock inputs. Like
many recent entrants, the
Tiny15 incorporates an on-
chip RC oscillator, a feature
that’s becoming a must-have to re-
duce system cost, power, noise, and
size. Unlike most other MCUs with
on-chip oscillators, there’s absolutely
no option or provision for an external
clock, so it’s take what the Tiny15
offers (1.6 MHz) or leave it.

Now, 1.6 MHz doesn’t sound like
much in these days of GHz-or-bust
high-end machines. Just remember the
AVR pipelined RISC design delivers
close to 1 MIPS per megahertz and 1–3
MIPS is exactly where the high-vol-
ume nuts-and-bolts apps are.

Of course, the accuracy of RC os-
cillators is such that voltage and tem-
perature drift are inevitable. However,
the Tiny15 has an 8-bit calibration
register allowing dynamic clock ad-
justment in applications where the
MCU can access an external timebase.
Software could retune the oscillator,
just as you would periodically adjust a
clock running a bit fast or slow.

POWER IS EVERYTHING
“How long will the battery last?”

(along with, “How big is it?” “How

much does it weigh?” and
“How much does it cost?”) is
what econo-MCUs are all
about.

Power management and
flexibility are reflected in
many aspects of the Tiny15
design, starting with integra-
tion of all the functionality of
an external supervisor IC
including power-on-*RESET,
brown-out detection, and
watchdog timer (see Figure 4).
This arrangement not only
cuts chip count and so on, but
saves up to three pins that
would otherwise go to waste.
Every pin counts when
there’s so few to play with.

At the same time, the
Tiny15 does offer *RESET
and INT pin options. Gener-
ally speaking, the integration
of power-on and brown-out
*RESET on-chip would seem
to eliminate the need for an
external *RESET pin. In es-
sence, VCC becomes the *RE-
SET pin so you could just

cycle the power.
However, if buried in an otherwise

non-stop application, cycling power to
the MCU may be cumbersome, so the
*RESET pin option is available. In
addition to *RESET, there’s plenty of
external interrupt capability in the
form of a specific pin option (INT0) as
well as an interrupt-on-pin-change
feature.

Even the INT0 pin can be part of
the interrupt-on-pin-change scheme,
in which case, two interrupts (INT0
and pin change) could be caused by

activity on the INT0 pin. I’m
not sure what such a feature
might be good for, but it is
interesting.

Interrupt response is four
cycles minimum, which in-
cludes stacking of the PC. How-
ever, multicycle instructions
(the longest being four clocks)
are allowed to complete before
the interrupt is taken and using
an interrupt to wakeup from
power down mode incurs a
four-cycle delay. Typically,
another couple of cycles are

Figure 3 —“Keep it simple” is a good strategy
when you’ve only got six pins to play with.

Figure 2 —The ATtiny15 is the newest addition to the Tiny line, notably the first
to incorporate a 10-bit A/D.

Program
counter

Program
flash memory

Instruction
register

Instruction
decoder

Control
lines

Stack
pointer

Hardware
stack

General-
purpose
registers

ALU

Status
register

8-bit databus

Programming
logic

Watchdog
timer

MCU control
register

MCU status
register

Timer/
counter0

Timer/
counter1

Interrupt
unit

Data
EEPROM

Internal
oscillator

Timing and
control

Tunable inter-
nal oscillator

A
na

lo
g

co
m

pa
ra

to
r

+ –

Data register
port B

Data dir.
reg. port B

Port B drivers

ADC

MUX/
gain

PB0–PB5

Vcc

GND

PDIP/SOIC

(*RESET/ADC0) PB5

PB4

PB3

GND

(ADC3)

(ADC2)

Vcc

PB2 (SCK/ADC1/T0/INT0)

PB1 (MISO/AIN1/OCP)

PB0 (MOSI/AIN0/AREF)

1

2

3

4

5

6

7

8

Port pin Alternate function

PB0 MOSI (SPI data input)
AIN0 (analog comparator input channel 0
VREF (ADC voltage reference)

PB1 SCK (SPI clock input)
AIN1 (analog comparator input channel 1)
OCP (T/C1 PWM output)

PB2 SCK (SPI clock input)
INT0 (external interrupt 0 input)
ADC1 (ADC input channel 1)
T0 (timer/counter 0 external counter input

PB3 ADC2 (ADC input channel 2)
PB4 ADC3 (ADC input channel 3)
PB5 RESET (external reset input)

ADC0 (ADC input channel 0)

 CIRCUIT CELLAR ® Issue 114 January 2000 81www.circuitcellar.com

write this, based on the low
clock rate and specs for other
members of the Tiny family,
expect power consumption to
be extremely low, on the order
of a few mA active and a few
µA in power down. This is
especially true for the L ver-
sion that extends the standard
part’s 4–5.5 V operating volt-
age range downward to 2.7 V.

TINY TIMERS
Given the pin constraint,

the Tiny15 manages to inte-
grate surprisingly powerful I/O

capabilities starting with two 8-bit
timers.

The first (T0, shown in Figure 5), is
the same as on other members of the
Tiny1x family and is a fairly basic
unit that runs off a five-stage prescaler
(clock/1 to clock/1024) or optional
external input (T0 pin). Note that in
external clocking mode, the time
between transitions on the pin must
be greater than 1 CPU clock cycle.
Also, activity on T0 will clock the

constants) should be stored in the
program flash memory which, unlike
the EEPROM, can only be written to
during device programming and can-
not be accessed by the CPU.

The Tiny15 features the usual idle
(instruction execution stops) and
power down (everything turned off)
options with wakeup via a variety of
internal and external *RESETs and
interrupts. Although the final AC/DC
characteristics aren’t available as I

Figure 4 —Tiny15 features like built-in oscillator, power-on-*RESET, brown-
out detection, and watchdog timer eliminate the need for external chips and
extra pins.

required to execute a jump to
the handler.

Tiny15 supports both high-
(12 V) and low- (i.e., single sup-
ply, VCC only) voltage serial
programming. The latter is ideal
for programming the chip in situ
for designs that don’t have 12 V
built-in. If you do have 12 V
handy, you’re only using it to
tell the chip to enter program-
ming mode, rather than deliver-
ing programming power. Note
that the *RESET pin is used to
select between high- and low-
voltage programming modes. If
you set the fuse that disables the *RE-
SET pin function, you won’t be able to
use low-voltage programming mode.

In either programming mode, com-
munication with the chip is accom-
plished via a clocked serial port taking
advantage of an extensive sequence of
built-in commands to program and
verify the flash memory, EEPROM,
and various configuration fuses. Un-
like some other flash-memory MCU
chips, all the complicated timing is
handled with features like auto-erase,
self-timed write, and data polling.
They make incorporating in-system
programmability (ISP) into your de-
sign that much easier so you won’t
have to spend a lot of design time,
software, or silicon to take advantage
of the ISP concept.

Software access to the on-chip
EEPROM is just as easy, involving
little more than setting up address and
data registers and setting a write-
enable bit. Some 2.5 ms later, a status
bit (or optional interrupt) signals the
completion of the write cycle.

Actually, it’s a little more compli-
cated by virtue of a built-in EEPROM
protection mechanism. There are two
write-enable bits, a regular (EEWE)
and a main (EEMWE) counterpart.
First you set EEMWE and then, within
four clocks, set EEWE. Should the
EEWE bit not be set within four
clocks, the EEMWE bit will automati-
cally time out, preventing write ac-
cess.

This timeout ensures that a soft-
ware crash doesn’t inadvertently blitz
the EEPROM. The datasheet also
reminds us that non-volatile data (i.e.,

Data bus

MCU status
register (MCUSR)

Power-on
reset circuit

Brown-out
reset circuit

Reset circuit

Watchdog
timer

On-chip
oscillator

*Reset

Vcc

BODEN
BODLEVEL

Delay counters

CKSEL[3:0]

P
O

R
F

B
O

R
F

E
X

T
R

F
W

D
R

F

C
O

U
N

T
E

R
R

E
S

E
T

S

R

Q Internal
reset

Full

82 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

counter, even if the pin is
configured as an output.

The new timer (T1) is
similar to T0, but somewhat
more sophisticated by virtue
of two major enhancements.
First, an on-chip PLL gener-
ates an up to 16× clock (i.e., 25.6 MHz
at the nominal 1.6-MHz clock rate) to
drive T1. This process expands the list
of optional prescale divide ratios to
more than a dozen between clock × 16
and clock/1024. The overclock op-
tions (×2, ×4, ×8, ×16) deliver
multimegahertz resolution (e.g., <100
ns), quite a bit better than that nor-
mally expected of an econo-MCU.

Second, T1 has the extra bells and
whistles (two output compare regis-
ters and an output pin (OCP)) that
turn a plain timer into a PWM. Nota-
bly, it includes glitch-free operation
by only effecting changes to the PWM
ratio on cycle boundaries, avoiding
the glitches that plague less-sophisti-
cated designs. At 8-bit resolution, the
maximum frequency is the PLL clock
(25.6 MHz) divided by 256, which
works out to a nice, round 100 kHz.

LET’S GET ANALOG
As their role as nerve cells between

the real and digital worlds expands,
look for MCUs to invest more silicon
in analog functions. The Tiny15 is no
exception.

Like other members of the Tiny1x
family, the Tiny15 incorporates an
analog comparator, which compares
the voltage on two pins (AIN0 and
AIN1). When the voltage on AIN0 is
higher than AIN1, the comparator
output is set. The comparator output
can be monitored directly via status
bit or specific states (comparator high,
low, or toggle) can be selected to gen-
erate an interrupt.

Another comparator option substi-
tutes an on-chip 1.22-V reference (also
used by the brownout detection cir-
cuits) for one of the external inputs. If
brownout detection isn’t enabled (by a
fuse setting), the reference voltage

must be enabled in software and given
time to stabilize before accurate com-
parisons can be made.

Comparators are useful, and clever
designers can make them do many
things. A common trick would be to
configure T1’s PWM output as a DAC
(using an R/C for smoothing) and
connect it to one of the comparator
inputs. Then, the PWM/DAC can be
driven by software to create a poor-
man’s successive approximation A/D.

That’s nice, but Tiny15 goes for the
gusto by incorporating a dedicated 4-
channel 10-bit A/D (see Figure 6).
Once again, the unit is surprisingly
powerful for an entry-level MCU.
Features start with speedy conversion
(minimum 65 µs) and both single-
ended (0–Vcc) and differential (0–2.56
V) inputs are provided. The differen-
tial channel even includes a 20× gain
selection that handles low-level sig-
nals without sacrificing resolution or
having to add an external amp.

Single and free run (continuous)
conversion modes are offered. Single
conversions can take advantage of a
noise-canceling feature which is basi-
cally a special variant of power down
mode that quiets the rest of the chip
while a conversion is in progress.

Conversion completion can be
monitored by either status bit or in-
terrupt. There’s also special logic that
insures that readings from both data
registers (ADCL—8 least significant
bits, and ADCH—2 most significant
bits) belong to the same conversion.
Once ADCL is read by software, the
A/D converter cannot access either
data register until ADCH is read.
Don’t forget to always read both
ADCL and ADCH (in that order),
especially before you go calling Atmel
swearing their A/D is broken!

Figure 5 —Timer T0 is a rather basic unit
common to many members of the Tiny
family. The Tiny15 incorporates a second
timer, T1, with more features as well.

T/C0 overflow IRQ

Timer int. mask
register (TIMSK)

Timer int. flag
register (TIFR)

Timer/counter0
(TCNT0)

07

Control logic

T/C0 control
register (TCCR0)

T/C CLK source

TO
IE

0

TO
V

0
TO

V
0 C
S

02
C

S
01

C
S

00

CK

T0

CIRCUIT CELLAR Test Your EQ

Problem 2 —The figure shows a MOSFET-based ½ H-bridge
circuit. This type of circuit is typically used to drive one side of
a stepper motor coil. What is the function of U1?

Problem 4 —You are responsible for sustaining a product
that has an infrared receiver. The engineering documenta-
tion for the circuit indicates the receiver consists of a dis-
crete IR photo-diode driving a high gain amplifier followed
by an op-amp based band-pass filter.

As a diligent engineer, you break open one of the
products on your bench and begin poking around the IR
receiving front end just to see what you can see. You
notice a fairly high magnitude 120-Hz signal between the
high gain amplifier and the band-pass filter. You check
the DC power rails, and find they are clean. You shut off
the lights in the room and the 120-Hz signal disappears.

The signal induced by the room’s 60-Hz fluorescent
lighting is 120 Hz. Why isn’t it 60 Hz?

Problem 3 —A semiconductor-based photo emitter, such as
an LED, inherently emits energy in fairly tight bands. That’s

CIRCUIT CELLAR

What’s your EQ?—The answers and 4
additional questions and answers are
posted at www.circuitcellar.com.

You may contact the quizmasters
at eq@circuitcellar.com.

8 more EQ

questions

each month in

Circuit Cellar Online

see pg. 2

Figure 6 —A/D specs (four channels, 10-bits, and +10-kHz sampling rate) belie the
Tiny15’s humble entry-level positioning.

ADC conversion complete IRQ

ADC multiplexer
select (ADMUX)

ADC ctrl. and status
register (ADCSR)

10-bit DAC

09

Conversion logic

ADC register
(ADCH/ADCL)

Sample and hold comparator

A
D

F
A

D
IE

A
D

P
S

1

M
U

X
2

M
U

X
1

M
U

X
0

A
D

P
S

0

A
D

P
S

2
A

D
IE

A
D

IF
A

D
F

R

A
D

S
C

R
E

F
S

1
R

E
F

S
0

4-
channel

MUX
and
gain

stage

8-bit data bus

Internal/external
reference voltage

Analog
Inputs

+
–

A
D

E
N

Tom Cantrell has been
working on chip, board, and
systems design and market-

ing in Silicon Valley for more than ten
years. You may reach him by e-mail
at tom.cantrell@circuitcellar. com,
by telephone at (510) 657-0264, or by
fax at (510) 657-5441.

SOURCE

Tiny15
Atmel Corp.
(408) 441-0311
Fax: (408) 436-4200
www.atmel.com

When used as simple
parallel I/O, the pins fea-
ture software-selectable
pullups. One precaution for
PB5 (*RESET pin) is to
make sure the voltage
stays below VCC + 1 V.
Remember that it’s used
for the 12-V high-voltage
programming mode and
thus lacks the voltage-
limiting (i.e., ESD pro-
tection) diode the other
pins have. If you’re care-
less, a beyond-VCC glitch
could inadvertently force
the chip into programming mode.

WALKING TALL
They may be tiny, but these latest

AVRs walk tall when it comes time to
decide who offers the most MCU
bang-for-buck. The AVR pipelined-
RISC architecture itself is quite mod-
ern and elegant, but the fact is, the
8-bit MCU market remains stub-
bornly committed to historic favorites
such as the ’51 (including Atmel’s

own ’51 offerings), ’68s, PICs, Z8s,
and the rest of the lineup.

It takes more than just a fancy
architecture to make an impression,
and the Tinys have what it takes.
Forget the rocket science stuff and
focus on the flash memory, EEPROM,
plenty of built-ins, impressive periph-
erals and, of course, the tiny package,
power consumption, and price. Fur-
thermore, the small memory works in
Atmel’s favor when it comes time to

fight the software-compat-
ibility battle. After all, with
room for only 512 instruc-
tions on a Tiny15, argu-
ments about running a
bunch of legacy code are a
moot point.

The latest generation of
micro-MCUs are going to
enable designers to do big
things with tiny chips. It’s a
small world after all. I

Problem 1 —What is the primary identifying feature of a
Harvard architecture processor?

why we have red, green, yellow, or-
ange and blue LEDs. Currently, there
are white LEDs available. How do the
semiconductor companies make an
LED emit white light? (hint: There are
at least two methods.)

+12 V

Output

+12 V

High-side
switch

U1

U1: 7403 open collector
(drain) NAND gate

Low-side
switch

Digital
inputs

http://www.atemel.com
http://www.circuitcellar.com

96 Issue 114 January 2000 CIRCUIT CELLAR ® www.circuitcellar.com

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

It Starts with an Idea

b y now you’re probably sick of hearing dire warnings about January 1, 2000. Don’t worry, I’m not
going to bore you to death with more talk on the subject. I said my piece a few months ago and believe

me, I’m just as happy as you are to have this media hype over and done with.
I witnessed some absurd levels of preparedness. A friend of mine was describing the plan in his town.

Their readiness got to the point of having hundreds of civil preparedness “block-watchers” throughout the
community whose job was to place special colored flags on houses and at road intersections so roving police cars
could find people in distress. While remotely plausible I suppose, I wonder if the kind of readiness that assumes a
total failure of the infrastructure of things like telephones, cellphones, and the 911 system only served to feed the
media hype on all this.

We know the truth, of course. If there were any problems, it was the result of lazy programming, not divine
intervention or doomsday conspiracy. And, if systems weren’t fixed before January 1, it probably had more to do
with some bean-counter determining that it was cheaper to fix things that actually failed rather than performing a
lot of expensive preventive maintenance.

So, now that we’ve made it to January 2000, what’s in store at Circuit Cellar? Perhaps the best way to answer
that is to look at what we started last year. For Circuit Cellar, 1999 was a banner year. When many other technical
magazines were imploding, consolidating, or restructuring, Circuit Cellar was expanding. We’ve increased our
circulation, doubled the editorial content we bring you each month, doubled the number of design contests we
sponsor, and greatly expanded our technical coverage.

If past achievement offers a clue about doing things that will be successful in the future, it certainly has to be
Internet related. Last year we started Circuit Cellar Online and it has become a tremendous success. Unlike many
other publications, our online magazine isn’t an HTML rehash of the print version. Instead, it contains 100% new
editorial with many web-specific features and enhancements (and printable PDFs for the web-phobic types). I
appreciate the fact that so many of you frequent it each month (which keeps the sponsors happy).

Last year was a beginning. If I have to admit to having a long-term objective, it would be to make the Circuit
Cellar brand into a serious “dot com” resource. When I say serious, I mean that wherever you see a Circuit Cellar-
sponsored activity on the Internet, you know it’s unique or just plain better than elsewhere.

Our latest venture may seem a little like déjà vu. If you’ve been hanging around this technical stuff as long as I
have, you might remember “Ask BYTE.” It’s fifteen years later, but the need for an informative technical Q&A
forum is still there.

Starting this month, Circuit Cellar brings you the latest in question-and-answer authorities—Ask Us. Managed
by Jeff Bachiochi and hosted on ChipCenter.com, Ask Us offers readers a convenient channel directly to experts
who are ready to answer your most pressing technical questions. Have a nagging analog interfacing problem?
Want to know how acoustically correct MP3 is before you buy those $8000 B&W speakers? Pose your question
to the Ask Us team of researchers.

Of course, all the things you like seeing at Circuit Cellar each month began as ideas. Many of them came from
reader correspondence or from guys like Bob Perrin (Circuit Cellar Online—Considering the Details column). Our
future depends on keeping these ideas flowing. If you’ve got a great inspiration or an idea for something that you’d
like to see done at Circuit Cellar, tell me about it. I’ve told you all along that our magazine is a community and it’s
that community of ideas that keeps it all worthwhile.

