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A Race Well Run

TASK MANAGER

i’ ll never forget my first road race that cold
Thanksgiving Day 1996. I had to make so many

decisions that morning. What to wear? I didn’t want
to be cold, but it’s terrible to overheat. If I ate, would I

get sick halfway through the course? If I didn’t, would I
have the energy to finish? Where should I line up? If I was too close to the
front, would I get bowled over by speed-machines? Where was too close?
All the contestants looked like they ran hundreds of miles, did weights, and
then biked for leisure.

Looking back on it now, I know I just had a bad case of nerves. I had
been running for almost a year. I was ready, and besides, 5 miles isn’t far
for someone running 3–6 miles per morning. It was just the panic of bringing
myself up to the line and having to compete with others who might be
better. However, despite knowing this, every time I go to race, that knot in
my stomach comes back.

In truth, my reactions are pretty typical. Nearly everybody, when faced
with the opportunity/risk of competing with someone else, feels a little
intimidated. Whether it be a road race, a business proposal, a job interview,
or a Design98 submission, you don’t know how you’re going to fare. And,
it’s nerve-racking.

As I surveyed the entries when they came in, I noticed this same
anxiety. International competitors wrote cover letters apologizing for their
English, one fellow called up panicking that he’d left his name in the project
in three places, while others wanted to send in countless revisions to this or
that paragraph.

What does all this anxious energy indicate? That a lot of you poured a
whole lot of effort into your projects, that you were proud of your designs,
that you really wanted them to win. You didn’t want to be eliminated because
of your English, the inclusion of your name, a lack of a photo, whatever.

As I watched you turn the first corner and head up the mile-long hill,
you were an impressive pack. It was the largest showing we’d ever had. All
populated continents were represented, with 16% of the entries coming
from Europe, 8% from South America, 8% from Canada, and 9% from
Australia/New Zealand. We even received 2 from Asia and 1 from Africa.
And, in the final analysis, 60% of the winners are nonAmerican. Perhaps
coincidentally, 60% of Microchip’s sales are from international markets.

As you hustled your way across the finish line, I saw many good solid
finishers who, like myself, didn’t make it to the top ten, but are nonetheless
good designers. (I’m trying to get manuscripts from all the competitors. If we
can’t fit them in INK, we can cover the designs on our Web site.)

And, as you now enter your postrace moments, I hope you share
many of the same feelings that I experience. I look on those top winners
and marvel that anyone’s legs can cover ground quite as quickly as they
did. Then, I look around me and see the many others that finished at about
the same time as I did and I realize that yet again, I finished. I stepped up
to the mark, I ran the race, I finished the course. I accomplished what tens
of millions of other people would never dream of doing—I went above and
beyond the call of duty. I entered a contest and pitted my own skills against
another’s.

When you do that and you feel the pride well up within you, then you
know you really won, regardless of what the judges or the clock have to say.
And, with that feeling you know without a shadow of doubt that you’ll do it
again, only next time, you’ll do it just a little better and just a little smarter.
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READER I/O
NO NEED FOR DOOM

Many traffic lights operate on processors that track
the day of the week based on the date. This gives them
the ability to run weekend and “normal” schedules.

In the year 2000, a lot of these have clock chips
with only two digits of year, and the software will
believe that it’s 1900 (see Scott Lehrbuam’s “Year
2000 and Embedded PCs,” INK 90, for a clear exposi-
tion of the problem).

The fix, however, is simple. Instead of trying to
work around a two-digit year, all you have to do is
supply a year to the controller which is compatible for
the day of the week.

Secondly, the new standard for all traffic lights,
digital road signs, traffic sensors, and so forth is called
NTCIP (www.ntcip.org). All this equipment is to be
controlled via TCP/IP and SNMP. Therefore, the fix
will be easy to implement.

Rod Price
gacoac@netdepot.com

INTEL INFO
“MicroBot” (INK 92) uses an Intel D8479H control-

ler, which is considered an end-of-life part (developer.
intel.com/design/specenvn/seupdt2/index.htm), and
there is no direct replacement. The suggested upgrade
path is the MCS-51 processor family, but it doesn’t
share the same instruction set and isn’t pin-for-pin
compatible.

Although the Intel Publication #270646-005 (Em-
bedded Microcontrollers) is mentioned, its current
revision (-010) doesn’t contain information on the
8749. Rather than calling the general switchboard,
readers should contact Intel Customer Support at (800)
628-8686 (Fax: (916) 356-2892). The URL for informa-
tion on Intel Microcontrollers is developer.intel.com.

If anyone is interested in building MicroBot, they
may be able to find 8749 parts from America II Corp.
(www.americaii.com, (800) 767-2637).

Craig Miller
Craig_S_Miller@ccm.fm.intel.com
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NEW PRODUCT NEWS
Edited by Harv Weiner

CONFIGURABLE DEVELOPMENT SYSTEM
HOT Works, a Hardware Object Technology development

system, bundles all the hardware and software you need to
experiment with configurable computing. HOT Works
includes the Xilinx XC6200 reconfigurable processing unit
and the XC4000 FPGA. Their open architecture and dedicated
microprocessor interface are ideal for rapid partial recon-
figuration from within executable programs. The HOT Works
PCI plug-in board provides a standard platform for developing
applications using hardware objects (digital logic designs
translated into static arrays).

The HOT Works package enables the hardware engineer
to implement and test designs in real time. The HOT Works
board lets the user examine the XC6200 family through
real-time emulation. And via a high-level hardware-de-
scription language, hardware-object technology, and plug-
in coprocessing board, the software engineer can use this
development system for algorithm acceleration.

The package includes the Lola Programming System, which
is a simple hardware-description language for synchronous
digital circuits, and Xilinx’s XACTStep-6000, which is a map,
place, and route toolset. Also featured is the XC6200 VHDL
Elaborator, a third-party tool for converting VHDL to EDIF,
and the Hardware Object Technology Interface for inserting
designs into executable C programs (enabling run-time
reconfigurable computing). WebScope 6200, a Java tool for
real-time design emulation using the PCI-XC6200 board,
and design examples are included as well.

Together, the HOT Works PCI plug-in board and develop-
ment software kit sell for $995. The prototyping daughter-
board is priced at $199.

Virtual Computer Corp.
6925 Canby Ave., Ste. 103 • Reseda, CA 91335
(818) 342-8294 • Fax: (818) 342-0240
www.vcc.com #501

SUPER-FAST 8-BIT MICROCONTROLLER
The SX Series microcontrollers from Scenix

Semiconductor deliver up to 50-MIPS processing
power at 50 MHz and suit many applications con-
sidered the realm of 16- and 32-bit MCUs, low-end
DSPs, and custom ASIC designs. This performance
lets designers use virtual peripherals—software
implementations of functions previously requiring
costly dedicated hardware. This code occupies a
small part of the onboard 2K × 12-bit flash memory,
requiring relatively few MCU resources for execution.

A four-stage (fetch, decode, execute, write back)
pipeline executes one instruction per clock cycle,
yielding a 20-ns instruction cycle at 50 MHz. A
fast (12-ns access time) embedded flash program
memory and a correspondingly fast SRAM register
file give a deterministic interrupt response time of
60 ns for internal and 100 ns for external events.

The SX offers a 4-MHz (±3% accuracy) program-
mable oscillator, programmable three-level brown-out
reset, and power-on reset. It has a watchdog timer
with RC oscillator and multi-input wakeups, and
an on-chip analog comparator can be used with
hardwired components or software techniques to
provide potentiometer or temperature-sensing
capabilities. The SX architecture contains 43 in-
structions (33 are object-code compatible with
PlC16C5x MCUs).

The first production SX Series MCUs—the
SX18AC and SX28AC—are 18- or 28-pin package
(DIP, SSOP, and SOIC), 2048 word (×12) devices
priced at $3.49 in 1000 quantities.

Scenix Semiconductor, Inc.
3140 De La Cruz Blvd., Ste. 200
Santa Clara, CA 95054
(408) 327-8888 • Fax: (408) 327-8880
www.scenix.com #502
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NEW PRODUCT NEWS
LOW-POWER C-PROGRAMMABLE CONTROLLER

The LP3100 low-power C-programmable controller
from Z-World operates on 3.3 V and consumes only l6 mA.
Its power subsystems are independent, so resources can
be shut down to conserve power. This feature makes
the LP3100 ideal for operation in mobile or remote
installations, battery-powered embedded systems, and
OEM applications. Measuring only 2.5″ × 3.5″ × 0.5″,
the LP3100 can be embedded
into the tightest of spaces.

The LP3100 features 20
digital I/O lines, four channels
of conditioned 12-bit analog
input, two RS-232 serial chan-
nels, an RS-485 port, 512-KB
flash memory, a real-time
clock/calendar, and an LPBus
expansion port. The unit oper-
ates on input power in the
range of 3.5–24 VDC. The
LPBus expansion port facili-
tates the addition of user-
designed boards for direct use
with the LP3100 controller.

This unit comes equipped with a sleep mode, so it
can shut itself down to conserve power, reducing the
required current to 200 µA. Sleep mode is invoked by
software, and the real-time clock can be used to wake
up the LP3100 at a specified date or time.

The LP3100 is available with a development kit that
includes a reference manual, serial cables, programming

cable, wall power supply,
development board, 2 × 20
LCD, and mounting plate.

Pricing for the unit starts
at $119 in single quantities.

Z-World
2900 Spafford St.
Davis, CA 95616
(530) 757-3737
Fax: (530) 753-5141
www.zworld.com

#503
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NEW PRODUCT NEWS
MULTICHANNEL DATA-ACQUISITION CARD

The T8ADH provides eight channels of analog and
digital I/O on a credit-card–sized expansion board. All
eight channels are individually configurable as a 0–5-V
12-bit analog input, a digital input (with input latch), or
a high-sink-current digital output. Digital output and
analog input functions can coexist.

The T8ADH features five multidrop controllers
(DS2407), which provide five unique 64-bit registration
numbers (8-bit family code plus 48-bit serial number
plus 8-bit CRC). These codes assure error-free selection
and absolute identity of the device—no two parts are
alike. This unique addressing means that I/O functions
can be identified absolutely, virtually eliminating
DIP-switch confusion.

The T8ADH has a built-in RS-232 to one-wire
interface, enabling network expansion to drive up to
200 one-wire devices (e.g., temperature, pressure,
force, humidity, pH, etc.) over 2000′ of Cat-5 twisted
pair cable. All necessary power is derived from the
RS-232 port, and all data transfers are CRC 16 error
checked.

An included DDE driver allows interface to most
Windows applications. The T8ADH sells for $119.95.

Point Six, Inc.
138 E. Reynolds Rd., Ste. 201
Lexington, KY 40517
(606) 271-1744
Fax: (606) 271-4695
www.pointsix.com                #504
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Practical Analog Design

FEATURE
ARTICLE

Bob Perrin

a
Time for a refresher
on op-amps? If so,
here’s the article for
you. Bob covers op-
amps from the basics
of common op-amp
configurations and
modeling to the more
advanced aspects of
instrumentation
amplifiers and complex
circuit designs.

nalog design is
fraught with snares

and pitfalls. In all the
years I’ve been designing

mixed-signal instrumentation, I’ve
made my share of mistakes, but I’ve
learned a bit, too. I want to share some
practical circuit designs to make your
experiences easier.

As you know, many texts cover op-
amp modeling in detail. Why? Because
op-amps aren’t simple devices.

A typical SPICE model for a transis-
tor has about 30 parameters to describe
the transistor’s behavior. An op-amp
has 30 or more transistors. Imagine
the interaction of all of the various
transistor parameters.

OP-AMP BASICS
While real-life op-amps are complex

assemblies, we can still get a lot of
mileage out of simple models. I’ll give
you a refresher course on common
methods for predicting the behavior of
op-amp circuits.

To begin, an op-amp is a high-gain
differential amplifier. The voltage
difference between the noninverting
(+) and inverting (–) inputs is ampli-
fied by the open-loop gain, Ao.

The model shown in Figure 1 pre-
dicts op-amp behavior reasonably well
for most circuits. There are of course

 12
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evaluated at t = 0, π = 3, results in
60,000 V/s or 0.06 V/µs. So, your chosen
op-amp for this example circuit must
have a slew rate of at least 0.06 V/µs.

Many common op-amps (e.g., LM741,
LM324, OP497) have slew rates around
0.5 V/µs. Any of these would suffice
here. By contrast, the OPA643 has a
respectable slew rate of 1000 V/µs.

The output resistance of the op-amp,
Ro, is the final parameter I want to
discuss with respect to the model
shown in Figure 1. Ro is often mis-
taken as the output resistance of the
overall amplifier circuit, Rout.

In typical amplifier configurations,
the negative feedback desensitizes the
circuit to Ro. Therefore, the output
resistance Rout is not the same as the
op-amp’s Ro.

As seen in Figure 3, the feedback
network attaches to the output pin of
the op-amp after Ro. Negative feedback
drives the output pin to the required
level. The circuit’s overall output
resistance is:

Rout =
Ro

1 + Aob
[1]

The feedback factor, b, reflects the
attenuation of the output voltage before
it is fed back into the inverting input.
For the inverting and noninverting
configurations of Figure 3:

b =
R1

R1 + R2

Inverting and noninverting amplifi-
ers have an extremely low output
resistance. However, Rout increases as
the frequency increases and Ao rolls
off, which is a result of Ao in the de-
nominator of equation 1.

Ro limits the maximum current the
op-amp can source or sink. Datasheets
most often give a maximum value for
short-circuit current. This parameter

GBP and think of the behavior shown
in Figure 2. By dividing GBP by the
intended closed-loop gain, you got a
good idea of the bandwidth available
for the application. But, not anymore.

The GBP in Figure 2 is constant
anywhere along the slope of Ao. This
feature is what makes GBP a useful
parameter for figuring out the usable
bandwidth. Not all devices have a
constant GBP.

Current-feedback amplifiers (CFAs)
have open-loop gain characteristics that
depend on the closed-loop gain. Instru-
mentation amplifiers (IAs) have GBP
characteristics that depend on their
internal topology and the circuit gain.

GBPs for CFAs and IAs are horses
of entirely different colors. When you
select an op-amp for a high-frequency
application, look at all device param-
eters, not just GBP.

For example, consider Burr-Brown’s
OPA643 op-amp. The datasheet for this
useful, economical wide-bandwidth
device boasts a GBP of 1.5 GHz, which
means, qualitatively, it should be
useful at relatively high frequencies.

The device is a voltage-feedback
amplifier (versus a CFA). However,
when you look at a graph of Ao as a
function of frequency, the open-loop
gain isn’t as well-behaved as that in
Figure 2.

The datasheet also indicates the
OPA643 is a noncompensated device
and only stable for closed-loop gains
greater than 5 V/V. It can serve as a
10-dB video amp but is unsuitable as a
unity-gain follower in a high-frequency
measurement system.

In addition to the GBP, you need to
consider the slew rate in high-frequency
performance, which measures how fast
an op-amp can swing its output voltage.
The op-amp must be able to swing the
output voltage as fast as the maximum
derivative of the highest frequency
component of the wave form. Slew
rate is measured in V/µs.

Consider an amplifier designed to
provide 10 V/V gain for input signals up
to 1 Vp-p and 1 kHz. Maximum slew
rate would occur on an output wave-
form of (1 Vp-p × 10 V/V) 10 Vp-p at
1 kHz, right at the zero crossing. So,

d
dt

10sin 2π1000t = 10 × 2π1000cos 2π1000t

many second-order effects this model
doesn’t taken into account.

Ao is the single most important
parameter influencing op-amp behavior.
The open-loop gain is generally 106 or
107 V/V at DC. In the most common
op-amps (i.e., those that are internally
compensated), Ao typically begins a
20-dB-per-decade rolloff starting at a
few hertz. Figure 2 shows Ao as a
function of frequency.

Internally compensated op-amps have
a dominant pole at fo and trade open-
loop gain for stability. These are the
easiest op-amps to design with because
they’re stable over the widest range of
closed-loop gains and load impedances.

Noncompensated devices lack a
dominant pole at fo, enabling the ampli-
fier to perform well at higher frequen-
cies. However, the designer must ensure
the system remains stable. Datasheets
for noncompensated devices indicate
the range of stable closed-loop gains.

Both compensated and noncompen-
sated op-amps oscillate at some point
when driving some types of reactive
loads. A slightly capacitive load is
usually the cause.

Noncompensated devices are most
sensitive to load impedance. Unless
you need good high-frequency charac-
teristics, using compensated devices
makes life much simpler.

When you’re selecting an op-amp,
especially for a high-speed application,
it’s imperative to know the behavior of
Ao. Manufacturers talk about the gain
bandwidth product (GBP), which is the
product of Ao at unity gain (i.e., 0 dB
or 1 V/V) and frequency ft. The unit for
the GBP is Hz × V/V or hertz (usually
in the megahertz or gigahertz range).

In the good old days before market-
ers muddied the waters, you’d hear of

Figure 1 —The first-order op-amp model is simple yet
remarkably useful.
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Figure 2 —In internally compensated op-amps, the
open-loop gain has a dominant pole at fo.
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is forced to this same potential. Since
the two nodes are held at the same
potential by the negative feedback, and
that potential is not necessarily zero,
the inputs of the op-amps are said to
have a virtual short across them.

SECOND-ORDER EFFECTS
Now that we have examined op-amps

at the circuit level, let’s go on to mod-
eling and predicting behavior due to
second-order effects. Developing an
intuitive feel for these effects enables
you to select devices best suited to
your application.

Figure 4a shows how to model op-
amp input bias and offset currents. Ibias

is the tiny base current (or gate leakage)
the internal transistors need for opera-
tion. This value is orders of magnitude
smaller for FET-based input stages
than for BJT input stages [1].

Ioffset results from the mismatch
between the input transistors. Ioffset is
typically one order of magnitude
smaller than Ibias [1].

The polarity of Ibias is constant and
predictable if the topology of the input
stage is known. However, Ioffset may be
of either polarity.

To examine the effect of these
currents, remove the stimulus from
the circuit and look at the Vo generated
by the offset currents. With the inputs
grounded, the inverting and nonin-
verting configurations become the
same circuit. Figure 4b gives you a
glimpse of the circuit, assuming that
Rcompensation = 0.

This configuration offers no hope
for nulling offsets introduced by bias
currents, which is why Rcompensation has
been added. Analyzing the circuit
with Rcompensation ≠ 0 yields:

where I+ = Ibias + Ioffset and
I– = Ibias – Ioffset.

To compensate for
the bias currents, sim-
ply set Rcompensation equal
to the equivalent resis-
tance of R1 in parallel
with R2. However, this

can be used to back calculate Ro for
modeling. Simply take the maximum
output voltage and divide it by the
maximum source current to obtain a
value for Ro.

CIRCUIT-LEVEL ANALYSIS
Figure 3 shows schematics and

equations for the two most common
op-amp configurations—the inverting
and noninverting amplifiers. To analyze
these, sum the currents at the invert-
ing node.

To simplify the analysis, assume
Ro is zero. You greatly simplify the
analysis, yet still obtain useful results.
Other nonideal characteristics can be
analyzed separately and, through the
use of superposition, can be integrated
into an overall circuit model.

Figure 3 shows the equations de-
duced using the above technique. To
further simplify, let Ao approach in-
finity to obtain:

Gaininverting =
–R2
R1

Gainnoninverting= 1 +
R2
R1

Keep in mind that these
two gain equations were
derived with much simpli-
fication. They don’t reflect
the effects of the open-
loop gain rolloff. However,
these are the most com-
monly used equations for
describing the behavior of
the circuits in Figure 3.

When the frequency
response of Ao is relevant

(e.g., when high closed-loop gains are
needed), use the equations in Figure 3.
I recommend simulation tools like
SPICE or MicroCap when you require
highly accurate predictions.

SPICE models take into account
second-order effects like bias currents,
offset currents, and offset voltage. You
can find detailed op-amp models for
virtually every commercially available
op-amp. Most manufacturers supply
the models free of charge on the Inter-
net or on CD.

A common concept used to analyze
op-amp circuits is the idea of a “virtual
ground” or “virtual short,” which mean
the same thing. The voltage on the
op-amp’s inverting node is forced by
the negative feedback to be at the same
potential as the noninverting node.

This concept assumes that Ao ap-
proaches infinity, therefore requiring
the difference between the inverting
and noninverting inputs to approach
zero for Vout to be finite.

As with all approximations, there
are times when this one is useful and
times when it’s not. Figure 2 shows
Ao is generally pretty large at low
frequencies. So, the virtual-short idea
is most useful at low frequencies.

In the case of the inverting ampli-
fier, the term “virtual ground” is
applied to the inverting input of the
op-amp. The noninverting node is
held at ground. Negative feedback
forces the inverting node to be at the
same potential as the noninverting
node (i.e., ground). And, the inverting
input of the amplifier is said to be a
virtual ground.

The phrase “virtual short” is used
for the noninverting amplifier. The
input signal is applied at the nonin-
verting node, and the inverting input

Figure 3 —Op-amps can be configured as inverting (a)
or noninverting (b) amplifiers.
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doesn’t compensate for Ioffset. The over-
all error reduces to:

Vo = 1 +
R2
R1

–2 R1 || R2 Ioffset

Since Ioffset is typically an order of
magnitude less than Ibias, adding
Rcompensation (equal to R1||R2) is usually
sufficient.

Other methods to reduce error due
to Ioffset are to:

• keep R1||R2 small
• keep R2 small

Both increase power dissipation.
The tradeoff may seem simple, but a
quick look at a graph of Ibias versus dice
temperature reveals the insidious truth.
Many op-amps, especially those with
FET input stages, increase Ibias expo-
nentially as a function of temperature.

Devices with superbeta input stages,
like the OP297 and OP497 from Ana-
log Devices, offer a good compromise
between Ibias and the temperature
coefficient. Superbeta input stages
have moderately low initial Ibias cur-
rents and do not suffer from
an exponential temperature
dependence.

Increased power means
increased dice temperature.
Evaluate the tradeoffs care-
fully.

Ioffset is related to input
current noise. Intrinsic noise
on the dice creates a small
amount of fluctuation in
Ioffset. This current noise will
develop into a voltage across
R1||R2 and be multiplied
by:

Anoise = 1 +
R2
R1

The noise gain (Anoise) is the same for
both inverting and noninverting con-
figurations.

The op-amp input current noise is
typically very tiny—subpicoamps.
However, the voltage noise at the out-
put can become significant as current
noise is developed into a voltage across
2× R1||R2 and multiplied by Anoise.

Op-amp noise is frequency depen-
dent. Datasheets always list tabulated
data, and better datasheets have graphs.

Another source of error in op-amps
is the offset voltage (Vos). The cause of
Vos is the unavoidable mismatch of
devices and operating points on the
dice. Figure 5 shows the model for
offset voltage.

Vos is highly temperature dependent.
The polarity is unpredictable and may
reverse over temperature.

Using the model in Figure 5 with
the circuit topology from Figure 4b
(with Rcompensation = 0), I derive:

Vo = 1 +
R2
R1

Vos = Anoise × Vos [2]

Compensating for Vos can be accom-
plished via external nulling (i.e., intro-
ducing an external voltage at one of
the op-amp inputs) or internal nulling
(i.e., unbalancing one of the internal
differential pairs).

External nulling can be accomplished
by using a trimmer, digitally controlled
pot, or DAC to dial in the required
compensation voltage. Internal null-
ing is accomplished by connecting a

trimmer to the offset pin or pins on
the op-amp. The device datasheet has
trimmer-value recommendations and
suggested configurations.

A common problem occurs when
multiple op-amps are chained in a
circuit. Each op-amp contributes an
offset to the system. The most com-
mon question asked is, “Do I null each
op-amp’s Vos or null the overall sys-
tem at a single point?”

I lean toward nulling each op-amp
using internal nulling. I definitely shy
away from nulling the entire system
offset using the internal nulling on a
single stage. The latter is much sim-
pler but unreliable over temperature.

If you use internal nulling to intro-
duce a huge imbalance in a single stage
to compensate for the total system
offset, you are assured of temperature-
tracking problems. The grossly unbal-
anced op-amp can’t track the overall
system offset.

If you null each stage internally,
the system offset remains as stable as
practically possible over temperature.

With the DC offset nulled, let’s
turn our attention to noise on Vos. All
Vos noise, regardless of origin, shows
up in the amplifier output multiplied
by Anoise (see equation 2).

Intrinsic noise on the dice causes
perturbations in Vos, which is referred
to as input voltage noise (Eos). Data-
sheets give tabulated data for Eos.

The power supply induces another
Vos noise. As the power-supply voltage
fluctuates, the internal bias points of
the op-amp shift. Because Vos is the

result of internal bias-point
mismatches, power-supply–
induced noise is modeled as
noise on Vos.

The power-supply rejec-
tion ratio (PSRR) is:

PSRR =
∆ Vos

∆ Vsupply

Another culprit introduc-
ing offset error is the com-
mon-mode voltage on the
op-amp’s inputs. As the
voltage on the inputs is
raised or lowered, the op-
amp’s internal bias points
shift and additional Vos

Figure 5 —Input voltage offset is modeled by the
inclusion of an independent voltage source in the simple
model shown in Figure 1.
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develops. Thus, common-mode noise
can be modeled as noise on Vos.

The common-mode rejection ratio
(CMRR) is:

CMRR =
∆ Vos

∆ Vcommon–mode

Both PSRR and CMRR generally
roll off with frequency. Some devices—
especially chopper-stabilized amps—
have a notch in the rolloff. Always
refer to graphs of these parameters,
and don’t forget that CMRR and PSRR
are referenced to Vos.

It’s incorrect to reason that if you
have x VRMS on your rail and the PSRR
is –60 dB, your output will only see
x/1000 V of noise. Wrong!

Instead, you need to think, “If I have
x VRMS of noise on my rail, my noise
gain is 40 dB, and my PSRR is –60 dB,
then my output will see x/10 V of
noise.”

Well, the basics review is over. Now,
let’s look at some real-life examples.

WATCH OUT FOR VIRTUAL SHORTS
A number of years ago, I was devel-

oping a hand-held instrument with
optical sensors on a meter-long probe.
The signal paths to the sensor formed
long loop antennae. The functional
geometry for the instrument required
this suboptimal electrical configuration.

In my signal path, I had the single-
pole low-pass filter/inverting amplifier
shown in Figure 6a. I needed an addi-
tional pole to provide sufficient band
limiting of noise.

I added a capacitor as shown in
Figure 6b. I expected R2 and Cpole to form
the first pole, and R1 and Cextra to form
the second pole. On testing the circuit, I
found it behaved as only a single-pole
(R2 and Cpole) circuit.

After much wailing and gnashing of
teeth (and a little algebra), I realized
that Cextra is attached between a virtual
ground and ground. Cextra had a virtual
short across it and was therefore super-
fluous. I added my second pole with a
passive RC on the output and obtained
satisfactory results.

As it turns out, Cextra isn’t entirely
superfluous. The virtual-ground concept
is predicated on the assumption that
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Ao >> Aclosed loop. As Ao rolls off and the
virtual ground degrades, Cextra enters into
the equation. The best way to analyze
these kinds of second-order effects is
with SPICE.

ANTIALIASING FILTER TRADEOFFS
The noninverting amplifier has an

interesting feature—an intrinsic zero.
By virtue of the circuit topology, there
is a zero that prohibits the closed-loop
gain from dropping below 1 V/V (0 dB).

The easiest way to see this is to
review at the transfer function for a
noninverting amplifier:

Vout
Vin

= 1 +
Z2
Z1

Regardless of what Z2 and Z1 do
(short of going negative), the gain is
always larger than unity. Keeping this
in mind, let’s compare the inverting
and noninverting topologies for use as
antialiasing filters.

Figure 7 shows four circuits used as
antialiasing filters. Figure 7a allows all
high-frequency noise beyond funity to be
aliased back into the pass band with-
out attenuation. The circuit in Figure
7b has inverted gain but is vastly
superior to the circuit in Figure 7a at
attenuating high-frequency noise.

The circuit in Figure 7c uses the op-
amp only as a gain block. A passive
network (LPnet) provides the antialias
function. This configuration doesn’t

attenuate the noise introduced into the
system by the op-amp, but other noise
is band limited by LPnet. The circuit
in Figure 7b is again superior to Figure
7c because Vos noise is attenuated.

The weakness in the circuit in
Figure 7c is the LPnet preceding the
gain block. You might argue that
LPnet could follow the gain block for
improved noise attenuation.

But this newly proposed configura-
tion doesn’t present a low impedance
to the ADC. The ADC may load LPnet,
thus introducing more error.

For example, the ADC’s sample and
hold (S/H) may gulp current out of
LPnet, and enter hold mode before
LPnet can deliver sufficient charge to
bring the voltage sampled up to the
proper value. A good rule of thumb is
to have an op-amp driving the input of
the ADC’s S/H.

If the Vos noise (intrinsic, power-
supply induced, and common mode)
in the circuit shown in Figure 7c mul-
tiplied by Anoise is suitably small for
the application, then this cir-
cuit is an acceptable solution.

If signal inversion is impor-
tant and high gain is required,
you can precede the circuit of
Figure 7b with a unity-gain
inverting stage (see Figure 7d).
The new stage introduces a
small amount of noise. Anoise for
a unity-gain inverting stage is
only 2 V/V.

The filter portion (U2 in Figure 7d)
band-limits the newly introduced noise.
As well, another pole can be added to
the filter by placing a capacitor in the
feedback loop of the unity-gain invert-
ing stage.

When you’re designing filters around
a noninverting amplifier, always keep
in mind the zero that exists as an
artifact of the topology.

SINGLE-ENDED ANALOG STAGE
Figure 8 illustrates a versatile single-

ended analog front end. The op-amp and
ADC can be powered by a single rail
supply while accepting bipolar or
unipolar inputs. Tiny signals can be
expanded to fill 0–Vref. Large input
signals can be compressed. The input
signal need not be center around zero.

For example a 4–20-mV range can be
mapped into 0 – Vref. If you select the
resistor values and Vref properly, this
circuit serves almost any application.

Input resistance versus gain is the
major tradeoff to consider with this

Figure 7a —The noninverting configuration has an intrinsic zero and does not allow attenuation below 0 dB. b—The inverting configuration permits attenuation below 0 dB. c—
LPnet continues to attenuate noise from Vin independently of the op-amp gain stage. d—A two-stage antialias filter can provide high gain, low noise, low Rout, and excellent
frequency rolloff.
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circuit. Rin must be large enough so
the circuit doesn’t load the sensor, but
small enough to allow the ratio Rg/Rin

to supply sufficient gain.
Designing with this circuit is simple:

• determine the sensor’s output volt-
age range

• determine the ADC’s input range
• determine the required gain (or at-

tenuation). Deduce ideal values for
Rg and Rin.

• determine required Voff. Deduce
ideal values for R1 and R2.

• select standard resistor values
• verify input range maps to output

range with the selected resistor
values

• repeat the last two steps until satisfied

Let’s walk through the procedure.
The governing equation is:

Vout = Voff – Vin
Rg

Rin + Voff

[3]

The first step is to figure out what
the application gain needs to be:

g =
Vref

Vinmax – Vinmin

From equation 3, you see that if Voff

is 0, the circuit gain is:

g = –
Rg

Ri
                       [4]

Now, select Rg and
Rin. Rin should be as
high as possible to
avoid loading the
sensor.

Next, determine
Voff. Note that the
circuit is an invert-
ing amplifier. When

Vinmax is applied, the desired Vout is zero.
Thus from equation 3, you obtain:

0 = Voff – Vinmax
Rg

Rin + Voff
[5]

Using equation 4 and rearranging
equation 5, you can determine Voff:

Voff =Vinmax
g

1 + g

Now, pick R1 and R2. R1 and R2 form
a voltage divider that dials in Voff. You
can select R1 and R2 by using:

Voff =
R1

R1 + R2
× Vref

Finally, pick standard resistor values
and use equation 3 to verify that the
design maps the Vsensor range in to the
VADC range.

If a pole is needed, you can add one
by placing a capacitor in the feedback
loop.

The circuit in Figure 8 is shown as
an input interface. However, the same
topology can be used to condition the
output of a DAC. A bipolar output is
possible if a negative rail is available.

You can use this circuit to map any
arbitrary input range to any arbitrary
output range. This is restricted only by
practical limits of available components.

COST-EFFECTIVE LOW-NOISE RAIL
To supply clean power to low-noise

analog circuits, you can add a linear
regulator just for the analog section.
Modern micropower amplifiers don’t
need huge amounts of current. Regu-
lators are bulky, and dropout voltage
is always a concern. In many cases, a
dedicated regulator is overkill.

In some cases, the nifty circuit in
Figure 9 may be an almost free solution.
It uses the following concepts to pro-
vide a low-noise power rail [2]:

• PSRR characteristics of the op-amp
• Ro desensitivity
• the high input impedance of the

noninverting node
• low Anoise

The op-amps are capable of sourcing
several milliamperes, which is often
enough current to drive many micro-
power analog stages. An op-amp in a
SOT-23/5 package and a couple 0402
passives may occupy less board space
than a bulky linear regulator.

If the circuit already has an extra
op-amp (e.g., in an existing dual or quad
package) powered from a noisy rail, the
two resistors and capacitor are all you
need for a low-noise power rail for
your quiet analog section.

INSTRUMENTATION AMPLIFIERS
Instrumentation amplifiers (IAs) are

differential. They have a schematic
symbol similar to op-amps, but are not
op-amps. Figure 10 shows its symbol
and a three op-amp implementation of
it. IAs can be built from discrete com-
ponents or purchased as single chips.

The voltage between the inverting
and noninverting inputs is amplified by
the IA’s gain. This gain is usually set
by a single resistor, Rg. Single-chip IAs
are often capable of 1–1000 V/V gains.

The IA’s two input op-amps are con-
figured as noninverting amplifiers. They
provide the IA’s high-impedance input
characteristics that it’s known for. The
output op-amp is configured as a dif-
ferential amp. The overall IA gain is:

IAgain = 1 + 2
R1

Rg

R3

R2

Although other
implementations
of IAs exist [1],
the one in Figure
10 is the most
widely known.

The advent of
the single-chip
monolithic IA is a
boon to instrumen-Figure 10 —Today, $3 can buy a single monolithic chip with a full-blown instrumentation amplifier.
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tation engineers. In the not-
so-good old days, a circuit
designer had to build an in-
strumentation amp from
discrete op-amps and resistors.
It looked pretty good on paper,
but in practice, matching the
discrete resistors was diffi-
cult and performance suffered.

For an IA to achieve CMRRs on the
order of 120 dB, the resistors must be
precisely matched in value and tempera-
ture coefficient. The mismatches associ-
ated with 1% resistors in discrete
designs were often unacceptable in high-
precision applications. Also, careful
consideration was needed to keep the
resistor pairs isothermal.

The single-chip IAs offer superbly
matched components. With all the
parts on a single die, everything stays
isothermal. Laser trimming of internal
resistors guarantees maximum preci-
sion. Monolithic IAs save board space,
reduce component count, save money,
and maximize performance.

Some manufacturers have single-chip
IAs with chopper-stabilized front ends.
These devices are designed to minimize
Vos. For example, the LTC1100 from
Linear Technologies has an admirable
Vos of 10 µV. This device has an inter-
nal oscillator and internal caps to
support the chopper stabilization.

Figure 10 shows that both inputs of
the IA have a high impedance. Notably,
10 GΩ is a fairly common equivalent
input resistance for an IA. This, coupled
with high CMRR and a wide range of
gains, makes the IA an easy-to-use
and versatile tool.

IA THERMOCOUPLE CONDITIONER
A thermocouple is a junction of dis-

similar metals that produces a voltage
proportional to temperature. Thermo-
couples typically have an absolute
accuracy of only a degree or two Cel-
sius. However, thermocouple mea-

surements are extraordinarily stable
and repeatable.

In a calibrated system, temperature
∆s of 0.001°C can be reliably measured
with thermocouples. Figure 11a shows
a simple thermocouple (TC) interface.
R1 prevents the high-impedance inputs
from developing sufficient charge to
drift outside of the supply rails.

Figure 11b offers a remedy for noise
induced on the sensor leads. The ferrite
bead and two capacitors form a com-
mon-mode filter. The twisted pair
ensures noise is picked up equally on
both conductors.

Briefly, let’s explore how much load-
ing error is introduced into the measure-
ment by the IA and common-mode
filter in Figure 11b. The leakage resis-
tance of an X7R dielectric ceramic
capacitor is about 10 GΩ. The addition
of the two capacitors cuts the DC
input resistance seen by the thermo-
couple by two-thirds, putting about a
3-GΩ load on the thermocouple.

Thermocouples are often modeled
as a voltage source with a series source
resistance, Rs. The size and type of junc-
tion determine the value of Rs. For my
needs, 10 Ω is a reasonable value for Rs.

The load resistance (3 GΩ) and Rs

(10 Ω) form a voltage divider, with the
tap of the divider being the actual
voltage observed. The loading error is
only about three parts in a billion.
This is a negligible effect for thermo-
couple applications.

Minimal loading of the TC, high
CMRR, high PSRR, and differential
front end are needed to measure tem-

perature changes on the
order of millidegrees
Celsius. IAs provide a
simple and economical
solution for applica-
tions measuring small
temperature changes.

For example, con-
sider a microcalorim-

eter. The maximum expected ∆ is 10°C.
The typical output of a type-E thermo-
couple is 60 µV/°C. If the system has
a 2.5-V full-scale ADC, then the gain
on the IA must be:

2.5
10 × 60 × 10–6 = 4166 V/V

This is achievable with a single $3
eight-pin IA from Burr Brown—the
INA118.

CHOP TO NULL SYSTEM OFFSET
Offset voltage is still a caveat. IAs

have an offset voltage much like op-
amps. For many IAs, this offset is
around 100 µV. In high-gain systems
like a microcalorimeter, Vos can be a
major problem (4166 × 100 µV = 0.42 V
of offset at the output).

Chopping the input is a technique
for reducing offset voltage. Two mea-
surements are made of different quan-
tities. Since the offset voltage shows
up in both measurements, a subtrac-
tion drops out the offset voltage.

Many chopper-stabilized ICs make
a measurement of the input voltage,
then internally measure a ground
potential. The two measurements are
subtracted and presented to the output.
All of this goes on internally and is
transparent to the external circuit.

For high-gain applications, selecting
an IA with low Vos is a good start. Two
low-offset nonchopper-stabilized IAs
are Analog Devices’ AD620B and Burr
Brown’s INA118 with a Vos of 50 µV.
The INA118’s Vos depends on the gain
setting and can be as much as 300 µV
at unity gain. The Linear Technology
LTC1100 is an internally chopper-
stabilized IA with a Vos of only 10 µV.

Chopping externally to the IA is an
outstanding and time-proven technique
for reducing channel offset. Figure 12
shows a signal-conditioning circuit that
uses chopping to null the system offset.

Figure 11a —A low-cost instrumentation amplifier can provide a nearly ideal thermocouple interface. b—A common-mode filter
and twisted-pair sensor cable clean up induced common-mode noise.
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This technique nulls the offset associ-
ated with the entire measurement
channel, not just the IA Vos.

The sequence of events in a mea-
surement cycle is:

• the input mux is set such that Vsens+

routes to the noninverting input and
Vsens– routes to the inverting input

• a measurement is taken with the
ADC: M1 = (Vsensor + Vos) Gain

• the input mux is reversed such that
Vsens+ routes to the inverting input
and Vsens– routes to the noninverting
input.

• a measurement is taken with the
ADC: M2 = (–Vsensor + Vos) Gain

• compute:

Vsensor = M1 – M2
2 × Gain

When M1 – M2 is computed, the Vos

introduced into the measurement
drops out.

For chopping to work, measurements
M1 and M2 should be taken as closely
together in time as possible. Normally,
the limiting factor is the settling time
of the system’s antialiasing filter.
Burr-Brown has an excellent app note
on fast-settling low-pass filters [3].

A major advantage of the chopped
input technique is the ability to null
the system offset with each measure-
ment. In real-world systems, system
offset voltages drift with time and
temperature. This technique enables
the system to compensate for the
unpredictable drift of offsets.

IA RESISTIVE BRIDGE SENSOR
INTERFACE

High input impedance makes the IA
ideal for measuring resistive bridge
sensors. Strain gages, pressure transduc-
ers, RTDs, and load cells are common
examples of resistive bridge sensors.

Bridge transducers are balanced or
unbalanced. Balanced bridges use feed-
back to force the voltage on the differ-
ential nodes to be the same by tweaking
one or more resistive elements in the
bridge. Unbalanced bridge systems sim-
ply measure the voltage on the differ-
ential nodes.

Both systems rely on precise mea-
surement of the voltage across the
differential nodes. This work demands
a high-impedance differential ampli-
fier—an IA.

Figure 13 shows a measurement
system using an IA as the bridge inter-
face. The IA amplifies the voltage across
the differential nodes of the bridge.
The ADC measures both the output
of the IA and the excitation voltage on
the top of the bridge.

From these two quantities, the
controller determines the magnitude
of the physical stimulus on the bridge.
The exact determination of the value
depends on the bridge characteristics.

Typical strain gages have bridge
elements between 120 and 350 Ω [4].
The IA has an input impedance a
hundred million times greater, and the
loading effect is negligible.

In a strain-gage or RTD application,
the full-scale differential output voltage
may only be 10 mV. IA gains of 60 dB
(1000 V/V) are therefore required to
bring the signal up to typical working
levels, but that’s not a problem for IAs
like the AD620.

As with high-gain thermocouple
applications, Vos must be considered in
the system design. For example, the
50-µV Vos of the AD620 times 60 dB
yields an output-voltage offset of 50 mV.

If the full-scale output voltage is 10 V
and measured with a 12-bit ADC, the
offset introduced by the IA is 20.4 codes
out of 4096. This error is manageable
and can be removed in software.

Bridge transducers are often located
on long cables, which tend to pick up
common-mode noise. Multiples of 50
and 60 Hz are the most common.

The high CMRR of IAs effectively
reduces this unwanted noise. Common-
mode RF can be significantly attenu-
ated by ferrite beads (see Figure 11b).

The single-chip IA greatly simplifies
the job of the analog instrumentation
engineer. Measuring bridge circuits is
still considered somewhat of an art. For
most of us, precanned IAs reduce the
problem to the paint-by-numbers level.

PRELOAD COMPENSATION
A sensor preload is a load that is

undesired but necessary for the mea-
surement. For example, a load cell in
a digital scale may use a bowl to hold
the product being measured. The bowl
is a preload.

One way to null a preload is to
sample the sensor with the preload and
subtract the preload from subsequent
measurements in software. At first
glance, this software nulling technique
seems like a good solution. But, the
tradeoff for simplicity is dynamic range.

For example, consider a system with
a 0–10-V ADC input corresponding to
a 0–1000-g stimulus on the load cell. If a
500-g bowl is placed on the load cell, the
ADC sees a 5-V preload. The remaining
5–10-V range is still available for mea-
surement, but half the system’s dy-
namic range is lost to the preload (see
Figure 14).

If a 1000-g limit is determined by the
system gain settings and not the load
cell’s capacity, you can restore the
dynamic range of the system via a pre-
load-compensation circuit. For Figure
15’s circuit to work, the load cell must
measure the maximum expected preload
plus the maximum load due to product.

For the sake of discussion, let’s say
the system needs to measure 0–1000 g
of product with up to a 1000-g preload.
So, the load cell must be capable of
measuring 2000 g.

The microcontroller sets the DAC
and mux to generate a compensating

Figure 13 —Instrumentation amplifiers can measure
unbalanced bridge transducers without significant
loading.
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voltage equal to the preload voltage on
the sensor (but of opposite polarity). The
summer adds the sensor output and
compensating voltage. Once the DAC
section is set up, the output of the sum-
mer is zero when the preload is present.

The ADC now sees 0 V when the
bowl is preloading the load cell. As
product is placed in the bowl, the load
on the sensor increases and the sum-
mer’s output increases. The ADC sees
a voltage corresponding only to the
product weight, and the full 0–10-V
range is available for measuring prod-
uct. The system’s usable dynamic
range is restored.

This technique differs from gain-
switching schemes because the product
placed on the sensor is always measured
in a zero to full-scale range for the ADC.
So, regardless of the preload, the scale
always has the same resolution. Using
the full range of the ADC for product
measurement ensures maximum
resolution.

There are limitations to this tech-
nique based on sensor linearity and
DAC versus ADC resolution. Although
I’ve simplified the technique, you can
get a good start with the topology
shown in Figure 15.

Gain-switching schemes can be
combined with this nulling technique
to provide an overall system capable
of incredibly fine measurement reso-
lution while accommodating a huge
preload.

If the Gain block in Figure 15 is
programmable, we could have a high-
gain mode and a low-gain mode. For
example, low-gain mode, may map 0–
1000 g of sensor stimulus to 0 to full-
scale on the ADC. High-gain mode

may map 0 to 1g of
sensor stimulus to 0 to
full-scale on the ADC.

Consider again the
case of the 500-g bowl
on the sensor. To com-
pensate for the preload:

• the microcalorimeter
selects low-gain mode
• the 500-g bowl is mea-
sured, and the DAC sec-
tion is set to null the
preload
• the microcalorimeter

selects high-gain mode
• the microcalorimeter tweaks with

the DAC until any remaining pre-
load disappears (this step assumes
the DAC is very high resolution,
which is a simplification)

Next the user places product—e.g.,
25 mg of salt—into the bowl. In high
gain mode, the system gives the user
maximum resolution in the 0–1-g range.

If the user pours another 750 g of salt
into the bowl, the system switches to
low-gain mode and gives a resolution
corresponding to the 0–1000-g range.

The technique in Figure 15 is a versa-
tile and powerful method of preload
compensation. For applications where
100% of the ADC’s dynamic range must
be used, Figure 15 offers a good start-
ing point. For less-demanding applica-
tions, a combination of gain switching
and pure software nulling suffices.

INFO YOU CAN USE
I’ve reviewed op-amps, as well as

examining some interesting mistakes
and some excellent interface circuits.
I didn’t discuss PCB-layout consider-
ations, but this topic is well-covered
elsewhere [5].

As you’ve seen, analog design is
full of tradeoffs. Models help, and
SPICE is a great tool. But, nothing
beats gaining insight and intuition by
examining other people’s successes
and failures. I

I  R  S
401 Very Useful
402 Moderately Useful
403 Not Useful
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a
To get rid of aliasing
in an ADC system,
you can use linear
active filters, switched-
capacitor filters, ….
You also better know
when a filter isn’t the
answer. So, check
out Mike’s hints for
anticipating as well
as solving aliasing
problems.

liasing can
contaminate any

analog-to-digital pro-
cess, but it’s poorly un-

derstood by most engineers. Much of
the time, aliasing causes poor data
quality. In the worst case, aliased data
is accepted and analyzed as fact with-
out anyone ever suspecting that the
data is bogus.

But, there’s good news, too. Aliasing
can be spotted and eliminated if you
apply a few simple rules of thumb.

Aliasing is the creation of a false,
low-frequency signal. The false signal
is the result of an insufficient sample
rate of a high-frequency signal.

Aliasing can take many forms. One
common example is the apparent
backward motion of spoked wagon
wheels in old western movies. The
wheels appear to spin backward because
the camera’s frame rate is slower than
the wheels’ angular velocity.

As the wagon slows down, the
wheels apparently change direction,
speed up, slow down, and stand still
until the wagon is slow enough that
the camera can capture the true mo-
tion of the wheels. Strictly speaking,
this is called temporal aliasing [1].

Spatial aliasing is the jagged edge
you sometimes see on lines drawn on
a computer screen. A chord played on

a musical instrument is another type
of aliasing, pleasing to the ear if done
correctly.

Of interest here, however, is aliasing
that affects A/D conversion. In this
article, I assume you have a prior
knowledge of ADCs, a general knowl-
edge of filters, and a desire to cut
through the theory and get to a few
helpful tips. However, if you need a
refresher, check out Bob Perrin’s “High-
Resolution ADCs” (INK 74) or Design
of Active Filters with Experiments [2].

ALIASING IN AN ADC SYSTEM
Aliasing most often appears as a

very low-frequency roll in the data,
almost indistinguishable from a DC
drift. The aliasing is caused by noise
whose frequency is greater than the
Nyquist frequency.

The noise is undersampled, and the
difference between the noise and the
Nyquist frequency appears in the
data. The amplitude of the false signal
depends on the amplitude of the noise.

THE NYQUIST FABLE
The Nyquist rule says that the

minimum sample rate required to
describe a signal is at least two times
the frequency of interest [3]. This rule
only works when the signal to be
sampled has no frequency component
greater than half the sample rate [4].

In the real world, everything has
noise. So, every frequency above half
the sample rate is aliased or folded
back and appears as low-frequency
components of the signal. The closer
in frequency the noise is to the Ny-
quist frequency, the lower the fre-
quency of the contamination of the
data [5, 6, 7, 8].

Now, suppose you’re building an
ADC system. The signals you’re try-
ing to transduce are between DC and

Figure 1 —This hypothetical A/D system is set up with a
10-Hz signal and 60-Hz noise.
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ALIASING AND SOFTWARE
Contrary to popular

belief, it isn’t possible to
remove aliasing with soft-
ware. Once the signal is
acquired, there’s no way to
tease apart the real low-
frequency components of
the signal and any artifacts
caused by aliasing [8].

Aliased contamination is
sometimes masked by DC
offset in the signal as well
as genuine low-frequency
noise. Keep in mind that, in
a system with a sample rate
of 10,000 samples per second,
60 Hz is low-frequency noise.

The only real solution to
aliasing in a typical ADC
system is a good old-fash-

ioned low-pass analog filter [9]. The
filter’s cut-off frequency should be
above the highest frequency to be
transduced and below the Nyquist
frequency of the system.

Now, this example may be contrived,
but the problem is obvious. In the real
world, the noise is never monotonic.
The closer the noise frequency is to
the Nyquist frequency, the lower the
frequency of the aliased contamination.

10 Hz in frequency. Your
system is going to operate
in a room brightly lit with
fluorescent lamps, which
are producing 60-Hz noise.

As the sample rate, let’s
choose 119.95 samples per
second. What happens?

Figure 1 shows a block
diagram of the system, and
Figure 2 illustrates the
noise and signal wave-
forms. The Nyquist fre-
quency of the system is
59.975 Hz. The 60-Hz noise
is undersampled and folds
back.

The beat frequency be-
tween the sample rate and
the noise (i.e., 60.000 –
59.975 = 0.025 Hz) appears in the
data. Because 0.025 Hz is in the fre-
quency range you’re transducing, you
aren’t able to distinguish between the
aliased signal and a real signal, as
shown by the graphs in Figure 3.

Figure 2 —These waveforms (10-Hz input and 60-Hz noise) are input to the A/D
system shown in Figure 1.
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Figure 3— Here’s the data as seen by the processor shown
in Figure 1. a—The wave actually looks like this, with a
10-Hz signal combined with 60-Hz noise, sampled at 300
samples per second. b—This graph represents 0.5 s of a
10-Hz signal combined with 60-Hz noise, sampled at 119.95
samples per second. Note that there is no apparent distortion
of the wave. If we don’t know the noise is present, this is
exactly what we expect to see. c—This graph represents
25 s of a 10-Hz signal combined with 60-Hz noise, sampled
at 119.95 samples per second. The slow roll in the data
amplitude, caused by the undersampling of the aliased 60-Hz
noise, is only apparent when you view a long data record.
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frequency of interest is closer to the
Nyquist frequency, an elliptical filter
provides a steeper rolloff. But then,
you have to live with ripple in the
pass and stop bands.

ANTIALIASING FILTERS
The simplest antialiasing filter is a

capacitor between the signal and return.
Strictly speaking, this one-pole RC
filter is not the optimal solution (R is
the output impedance of the signal
source).

 However, I think it’s important to
mention this option because there
have been so many times I’ve been
called in after a system was built and
there was no hope of redesigning any-
thing—and, naturally, the customer
needed the system up and running
right away. Hey, a capacitor is better
than nothing.

So, use the reactance formulas,
pick the best value, and solder it in.
Cheap but effective, a well-placed
capacitor can reduce aliasing and
improve system performance. Some-
times, that’s all you can do.

Passive filters introduce the least
amount of extra noise into the signal,
but there is insertion loss or attenua-
tion of the signal’s DC portion [6].
Passive filters are most appropriate for
antialiasing where cut-off frequencies
exceed 50 kHz or in situations where
power is unavailable.

Active filters provide the best all-
around solution because they’re easy
to implement. A variety of active
solutions exist, and the filter can have
gain greater than one.

DO IT YOURSELF…
Generally, an ADC system has

some type of amplifier sitting be-
tween the signal source and the ADC,
and this amplifier can sometimes
serve as a filter.

There are a lot of implementations
of active filters using op-amps [1, 11].
Figure 5 shows a Sallen-Key imple-
mentation of a fourth-order Butter-
worth filter I’ve used with good results.

The trick to getting good results
when building up your own active
filters is to prototype and test. By
building your own filter, you can save
a lot in parts, but be sure to weigh

Of course, as with all things,
there are tradeoffs. In most situ-
ations, a flat-pass band is more
important than a steep cutoff.
But, that’s only true provided
that there is enough cutoff to
stop the aliasing.

Figure 4 shows pass- and
stop-band characteristics of
various filter types [10]. The
corner frequencies of the anti-
aliasing filter must be between
the highest frequency of interest
and the Nyquist frequency.

You want to place the anti-
aliasing filter as close as possible
to the input of the ADC. Also,
the filter should have as many

poles as possible, with eight being a
general, practical limit for most sys-
tems. The aliased noise must be below
the noise limit of the system at the
Nyquist frequency.

If you observe the 10× rule [4],
where the sample rate is chosen to be
ten times the highest frequency of
interest, then a Butterworth filter is a
good all-around choice. If the highest

There are several approaches to
this kind of filter problem. So, let’s
review them.

PASS BANDS AND POLYNOMIALS
People have written volumes about

which filter is the best. What’s the
bottom line? Go with the flattest pass
band and the steepest cutoff at the
Nyquist frequency that you can afford.

Figure 4 —This graph compares typical low-pass filter transfer
functions [10].
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These devices are available in several
response curve formats and frequency
ranges. Filter modules represent the
easiest, most direct way out of an
aliasing problem, but they certainly
aren’t the cheapest option.

READING THE VOLTAGE
If the system in question just needs

to read a voltage from time to time,
your frequency of interest is 0 Hz
(DC). This means that your sample
rate should be at least 2 × 0 Hz = 0 Hz,
which doesn’t make sense until you
realize that all frequencies are aliased
in this situation.

Luckily, this is the one situation
where software can help because any-

this against the added PCB real estate
and added design time.

…OR OFF THE SHELF
Some excellent linear active-filter

chips are on the market, one good
example being the MAX275 from
Maxim. As Figure 6 demonstrates,
this eight-pole analog active filter can
be configured for a variety of transfer
functions. Maxim sells a DOS soft-
ware package to help determine the
proper value of passive components.

Using a linear filter chip can save
design time and provide more consis-
tent results. Another company with a
great line of filters, Linear Technol-
ogy, offers a Windows filter design
program on CD-ROM.

SWITCHED-CAPACITOR FILTERS
Another option—the switched-

capacitor filter—is an active filter that
uses electronic switching of a capacitor
to imitate a high-order filter. Several
manufacturers produce switched-
capacitor filter chips.

The filter’s cut-off frequency is
controlled by a clock frequency ap-
plied to the chip, which controls the
electronic switch. Typically, the clock
frequency is 50–100 times the cutoff
frequency of the filter [6, 11].

The major advantage of this setup
is that the cutoff frequency is easy to
change. So, if the system requires a
variable sample rate, the antialiasing
filter can follow along.

The major disadvantage is that a
switched-capacitor filter is also sub-
ject to aliasing [6, 8, 11]. Eliminating
the aliasing in the switched-capacitor
filter sometimes requires a prefilter in
front of the switched-capacitor filter
and a reconstruction filter behind it.
Some switched-capacitor filter chips
have an op-amp linear filter onboard
the chip to provide pre- or post-filtering.

Clock feedthrough, which is an
extraneous signal that switched-ca-
pacitor filters create, can occur in the
signal. This feedthrough resides at 50–
100 times the filter’s corner frequency.
The presence of clock feedthrough can
cause additional aliasing problems.

Switched-capacitor filter designs
work best if the available space is
small, there is ample time to debug

the design, and especially if
the cutoff frequency has to
be variable.

“Reducing Noise in a
Switched-Capacitor Low-
Pass Filter” is an excellent
article detailing methods to
better apply switched-capaci-
tor filters [12]. Additionally,
The Art of Electronics in-
cludes a detailed example system
with a variable cut-off switched-ca-
pacitor antialiasing filter [11].

FILTER MODULES
A filter module is a prebuilt filter

unit that doesn’t require any external
components or adjustments. Filter
modules are expensive, but the results
are almost always good.

Two examples of filter modules are
the D74 series and the 858 series from
Frequency Devices. These are shown
in Photo 1.

The D74 series are 16-pin DIP
modules with a fixed frequency. The
858 series are programmable eight-
pole active filters in a plastic module.

Figure 5 —This four-pole Sallen-Key active filter can be built from
standard op-amps.
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thing that is not DC (i.e., anything
that is moving) is bad.

An analog filter is still a good idea.
But in addition to the filter, the ADC
can be read several times in a row and
all the results are then averaged. The
number of samples to average depends
on how much time is available, but a
good rule of thumb is 100 samples [8].

MULTIPLEXED INPUTS
Some systems have a multiplexed

input to a single ADC. In fact, most
off-the-shelf ADC boards fall into this
category.

These systems come in two types—
internal (including microcontrollers
with multiple A/D inputs) and exter-
nal. Figure 7 shows a multiplexed
system with an antialiasing filter.

With an internal multiplexer, the
point between the multiplexer’s out-
put and the input to the ADC is not
accessible. Therefore, the only choice
is to put an antialiasing filter on each
channel.

However, in a system where the
point between the
output of the multi-
plexer and the input
to the ADC is ac-
cessible, placement
of the filter is not

so clear. A filter between the
multiplexer and the input to
the ADC is best if all the
input signals are similar.

In a multiplexed system,
the signal is sampled twice—
once by the multiplexer and
once by the ADC.

So, if you have an eight-
channel multiplexer scan-
ning eight signals, then by
definition, the sample rate of
the ADC must be at least
eight times higher than the
switching rate of the multi-
plexer. Therefore, the settling

time of your filter or amplifier must
allow you to read the true signal [8].

ALIASING’S ALIBI
Sometimes, however, aliasing isn’t

even the problem. A mechanical im-
perfection in the system can also
produce alias-like effects. Unfortu-
nately, a filter can’t help you here.

Instead, consider a tachometer
speed sensor with eccentric gears. A
DC tachometer is mechanically con-
nected to a shaft by a set of gears (see
Figure 8). If the gears are not aligned
with the center of the shaft, they will
lope (i.e., speed up and slow down) as
the shaft spins.

The average velocity of the system
is true, but the instantaneous accel-
eration—and thus the instantaneous
velocity—is not constant. The output
of the tachometer is a DC voltage
with a small AC waveform on top of
it, which results from the eccentricity
of the gears.

This isn’t aliasing in the classic
sense. It’s the tachometer reporting

Photo 1 —These D74 and
858 series filter modules are
manufactured by Frequency
Devices.

Figure 6 —This eight-pole linear active filter (fo = 1000 Hz) was built
with the MAX275.
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Figure 8a —This DC tachometer is connected mechanically to a shaft by a set of gears. The gear on the shaft of the
tachometer is eccentric. b—This end view of the tachometer gear train shows the off-center tachometer gear. c—
The output waveform with ripple is caused by gear eccentricity. If the gears are large enough, the ripple could be
mistaken for aliasing.
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the truth. I’ll spare you a diatribe on
my disdain for gears and just point
out that the signal looks like it may
have alias contamination, but in fact
it does not.

Be on the lookout for such situations,
especially where the sensors aren’t
directly coupled to whatever they’re
monitoring.

RULES OF THUMB
With these rules of thumb, you

should be able to focus your efforts
whether you’re designing a new sys-
tem or troubleshooting an old one:

• If it is a sampled data system, alias-
ing can happen. Try not to hang
around people who think that alias-
ing is something that only happens
to Sigourney Weaver.

• When in doubt, filter it out. If you’re
designing a new system, plan on
placing an analog low-pass filter as
close as possible to the input of the
ADC. The filter should have as
many poles as you can afford, with
eight poles being a general, practical
limit for most systems.

• Cut off frequency. The filter’s cut-
off frequency should be below the
Nyquist frequency and above the

highest frequency of
the input signal.
• Many poles are
good, but a cap to

ground is better than nothing. Imag-
ine that you’re called in to “fix” a
problem in an existing system and
aliasing is the cause, but for some
reason, you can’t install a proper
analog filter.

A properly chosen capacitor
placed between the ADC input line
and signal return provides a one-
pole low-pass filter. This solution
isn’t the best, but it’s usually easy
to install, it reduces contamination,
and you’ll come out the hero.

• There is no antialiasing filtering in
software—unless you have worked
out the software implementation
for the Houdini-Copperfield Mystery
filter. Once the aliased low-fre-
quency signal gets mixed with the
real low-frequency signal, separation
is impossible.

• Don’t invite trouble. If possible,
choose your sampling frequency to
be something odd. Avoid choosing
the frequency of the predominate
noise source or its harmonics for
the ADC sample rate.

In other words, avoid 60 Hz and
harmonics of 60 Hz. (Believe me, I
wouldn’t include this rule here if I
hadn’t seen it done—more than
once.)

Antialiasing
Filter

Signal 1

Signal 2

Signal 3

ADC Processor

+
–

+
–

+
–

Electronic
Multiplexer

Figure 7 —Antialiasing filters
can also be used with multi-
plexed A/D systems.
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• Know your noise. Use all the
tricks—shielding, grounding, guard
ring, and so on—you have at your
disposal to keep the noise out.

• Understand system needs. Overkill
is expensive. A design is a series of
tradeoffs between conflicting goals.

• Look at the big picture. Aliasing
most often appears as a slow DC roll.
By looking at a long data record,
you can see the periodic nature of
the shift.

• Beware the finger-pointers. Make
sure there isn’t a mechanical or
other defect that’s producing an
artifact that resembles aliasing.

Sure, aliasing can contaminate the
data collected from an A/D system.
But by applying a few rules, you can
anticipate where and when aliasing
problems may occur, and you’ll have a
good idea of the solution as well.

In the words of a wise friend of
mine, per ardua ad astra (through
difficulty to the stars). I
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Selecting Position
Transducers

FEATURE
ARTICLE

Tom Anderson

a
Are you choosing a
position sensor or
transducer but aren’t
sure how to weigh
your options? Check
Tom’s parameter list.
Prioritizing movement,
environment, and
contact requirements
enables you to make
the best decision.

s an application
development man-

ager for a position-
transducer supplier, I get

numerous queries on how to solve a
broad range of position-measurement
challenges.

These inquiries run the gamut from
the common (aircraft flight-control
surface movement) to the exotic (For-
mula One racecar suspension travel)
to the seemingly impossible (three-
dimensional tracking of a golf ball in
flight from a fixed position).

These position-measurement chal-
lenges usually share one common
element. They can be solved using a
variety of solutions, but it’s not al-
ways easy to determine the best one.

There are possibly more
options for measuring position
than any other type of sensed
variable. While there may be
more suppliers for pressure
transducers, the variety of
position-transducer types and
technologies is unmatched.

The 1997 Thomas Register
lists 264 suppliers of pressure
transducers and 229 suppliers
of displacement and position
transducers. However, there
are 13 categories related to
displacement and position

measurement, compared to just four
categories for pressure measurement.

In this article, I introduce you to
various position-transducer selection
parameters. You’ll also find information
on position-measurement techniques,
technologies, and choices.

BASIC TERMINOLOGY
But first, a brief note on semantics:

for ease of communication, this guide
refers to transducers and sensors as
being the same. While not strictly
true, it’s not generally relevant whether
you are using a position sensor or
transducer. The goal of both is the
same—to find out where something is!

Many kinds of transducers exist—
pressure, temperature, velocity,….
Such devices provide position, dis-
placement, and proximity measure-
ments, which are defined as [1]:

• position—location of the object’s
coordinates with respect to a selected
reference

• displacement—movement from one
position to another for a specific
distance or angle

• proximity—a critical distance signaled
by an on/off output

In this article, I focus primarily on
transducers for position and displace-
ment measurement. And unless oth-
erwise noted, I use the term “position
transducer” to refer to displacement
and proximity transducers as well.

THE PARAMETERS
On what basis should you select a

position transducer? As a starting
point, let’s look at the laundry list of

Photo 1 —Cable position transducers provide extended ranges in
small sizes. Flexible cable allows for easy installation.
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view of some incremental rotary optical
encoders.

An important difference between
incremental and absolute transducers
is that incremental transducers typically
need to be reinitialized after power-
down by moving the monitored object
to a home position at powerup. This
limitation is unacceptable in some
applications.

Threshold measurements are on/off
in nature and usually involve limit
switches or similar devices. As you
might guess, absolute devices are
usually more expensive than incre-
mental or threshold devices.

Travel, also known as range, varies
from microns to hundreds of feet (or
more, depending on your definition of
“transducer”). The range of many
precision transducers is limited to 10′
or less.

If your application needs to operate
on the Space Station or some other
size- and weight-sensitive platform,
you need to specify the maximum
values for the transducer’s dimensions
and weight.

The application’s operating environ-
ment can have a large impact on your
technology choice as well. You need

to determine what
operating and storage
temperatures the
device will be in and
whether you need to
meet commercial,
industrial, or mili-
tary environmental
requirements.

Also consider
whether excessive
humidity, moisture,
shock, vibration, or
EMF will be encoun-
tered. See if your
environment has
other unique aspects,
such as high or low
pressure or the pres-
ence of hazardous or
corrosive chemicals.

An often-over-
looked parameter is
the method and time
required for trans-
ducer installation
and mounting. For

pulleys, levers, electronics, software,
and other methods can enable a rotary
transducer to measure linear motion,
and vice versa. Lack of space, cost,
and ease of mounting are a few rea-
sons for doing this.

Once you decide if you require a
contact or noncontact solution and are
measuring rotary or linear movement,
selecting a transducer technology
becomes much easier.

Next, determine if you’re monitoring
one-dimensional or multidimensional
motion. If the motion is multidimen-
sional, see if you need to measure in
multiple dimensions or if the object is
moving in multiple dimensions and
you only have to measure one of them.
Often, multidimensional motion is
measured with multiple one-dimen-
sional transducers.

Also, think about the type of signal
you need to obtain. If you need a signal
that specifies a unique position, be
sure to specify a transducer with abso-
lute output.

However, if all you need is relative
position from a prior position or a
simple on/off indicator, then incre-
mental or threshold technology is
more appropriate. Photo 2 gives you a

parameters shown in Figure 1. While
this list is not all-inclusive, it helps
you begin to decide what parameters
are relevant to your application.

Perhaps the first parameter to ad-
dress in any application is whether the
transducer can physically touch the
object being monitored. If your appli-
cation is sensitive to outside influences,
a noncontact transducer may be the
most appropriate. Otherwise, a con-
tact sensor might offer advantages not
found in a noncontact sensor.

At first thought, noncontact trans-
ducers may seem like the superior
solution for all applications. However,
the decision isn’t that clear cut.

Noncontact products can emit
potentially harmful laser- or ultrasonic-
based signals. These products also rely
on having a clear visual environment
to operate in. Frequency response isn’t
always as high as with a contact sen-
sor, but costs are often higher. Finally,
operating-temperature ranges are
typically not as broad.

Another parameter to consider
early on is whether you need to measure
linear or rotary movement. Note that
using cable position transducers (like
the one shown in Photo 1), cams,

Parameter Relevant? Ranking Choices

Contact ❑ Yes ❑ No ❑ Contact ❑ Noncontact

Motion Type ❑ Yes ❑ No ❑ Linear ❑ Rotary

Dimensions ❑ Yes ❑ No ❑ One Dimensional ❑ Multidimensional

Measurement Type ❑ Yes ❑ No ❑ Absolute ❑ Incremental ❑ Threshold (Proximity)

Range ❑ Yes ❑ No ❑ Less than 1″ ❑ 1–30″ ❑ Greater than 30″

Physical Size/Weight ❑ Yes ❑ No ❑ Size Restriction_____ ❑ Weight Restriction_____

Environmental ❑ Yes ❑ No ❑ Humidity ❑ Vibration ❑ Corrosion
❑ Moisture ❑ Temperature ❑ Other______

Installation/Mounting ❑ Yes ❑ No ❑ Removable ❑ Installation ❑ Time Limit _____

Accuracy ❑ Yes ❑ No ❑ Linearity ❑ Resolution ❑ Repeatability
❑ Hysteresis

Lifetime ❑ Yes ❑ No ❑ Cycles_____ ❑ Hours of Continuous Operation_____

Cost ❑ Yes ❑ No ❑ Less than $50 ❑ $50–$500 ❑ Greater than $500

Delivery ❑ Yes ❑ No ❑ Less than 1 Week ❑ 1–4 Weeks ❑ Greater than 4 Weeks

Output ❑ Yes ❑ No ❑ Analog Voltage ❑ Analog Current ❑ Digital
❑ Sensor Bus_____ ❑ Visual ❑ Other______

Frequency Response ❑ Yes ❑ No ❑ Less than 5 Hz ❑ 5–50 Hz ❑ Greater than 50 Hz

Figure 1 —What are your requirements? This table helps you rank your most important parameters and value specifications. Select the
relevant parameters, prioritize them, and then choose the appropriate value for the parameters.
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Price Legend

$ Less than $50

$$ $50–500

$$$ Greater than $500

Enco
der (

$$$)

Ultrasonic ($$)

Potentiometric ($)

Cable Position ($$)
Magneto-restrictive ($$$)

Inductive ($$)

Laser ($$$)

In the early stages of transducer
specification, product cost sometimes
doesn’t even make the list. More often
than not, this parameter gains impor-
tance as the project moves forward.

When you’re determining costs,
make sure to look at the initial acqui-
sition cost as well as the cost over the
product’s life. For example, are special
signal-conditioning electronics, power
supplies, electrical connectors, hous-
ings, installation tools, or mounting
fixtures required?

Ask the vendor for typical repair,
maintenance, and replacement costs.
And, inquire about the cost of the
transducer in volume and single-unit
quantities. The cost savings (e.g., a
cost of $100 in volume but $600 in
single quantities) may be an important
factor if small-quantity replacement
units will be needed in the future.

Another parameter that’s occasion-
ally overlooked is the time it takes
the product to be delivered to you
after you order it. The custom nature
of some transducers combined with
production processes and manufacturing
economics requires lead times of eight
weeks or more.

This delivery schedule might be
acceptable now, but what about in six
months when you need extra quanti-
ties or a spare part? Evaluate whether

or not you can afford to be
without a part for an extended
period of time.

Obviously, the transducer
is going to be a part of a
system. So, determine your
preferred electrical input
and output requirements.
Common output choices
include analog AC and DC
voltage, resistive, current
(4–20 mA), digital, and visual
(meter).

Increasingly, outputs
using sensor bus protocols
are being offered. Most posi-
tion transducers require 50 V
or less, and some are self-
powered.

Finally, for fast-moving
applications, determine the
maximum velocity or accel-
eration that needs to be
monitored. Ensure that your

Accuracy is typically specified in
absolute units like mils or microns or
in relative units such as percent of
full-scale measurement. If you are
comparing the accuracy of one device
against another, make sure you are
comparing apples to apples.

For example, see if the accuracies
being quoted are at a single temperature
or over a temperature range. If you
need it, find out if temperature com-
pensation is available.

If you expect to see significant
numbers of cycles or if the transducer
will be in service for an extended
period of time, specify the lifetime
and reliability requirements as well.
When choosing the transducer, find
out what warranties are offered as
well as how maintenance and repairs
are handled.

A transducer that can be repaired
in-house can reduce costs significantly.
You should also consider what type of
periodic recalibration is recommended
and whether calibration procedures
are provided.

It’s a good idea to ask vendors what
type of use their transducers see most
often. Common uses include OEM,
retrofit, industrial control, commercial,
and test and measurement. Hopefully,
the transducer has seen previous use
in your type of application.

testing applications, this parameter
may not be so important. However,
OEM and large-volume applications
often require simple installation and
removal to reduce labor costs and
enable easy maintenance.

See if the transducer can only be
mounted with manufacturer-provided
special mounting bases or if a variety
of mounting techniques can be used.
Besides the common threaded-fastener
approach, some other nonpermanent
mounting techniques include suction
cups, magnets, industrial adhesives,
grooved fittings, and clamping.

In going through the previous pa-
rameters, you might have asked your-
self, “Hey, what about accuracy?”
While accuracy is certainly important
and sometimes critical, it’s often the
last degree of freedom in the selection
of a transducer.

As you may know from experience,
accuracy is not a well-agreed-on term.
Typically, various components of
accuracy—linearity, repeatability,
resolution, and hysteresis—are quoted
for vendor convenience or per user
requirements.

With the availability of software
calibration tools today, linearity isn’t
as important as it once was. For many
applications, in fact, repeatability is
the most important component.

Figure 2 —It’s true: you can’t have it all. As with many specification decisions, tradeoffs must be made when you’re selecting a
position transducer. This graph shows the typical performance of some linear position transducers as compared by maximum
range, best accuracy, and cost.
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data-acquisition or control
system has an adequate
sampling rate to record
the resulting datastream.

CHECK YOUR
REQUIREMENTS

Now that you’re aware
of the key parameters,
you need to determine
which ones are relevant
to your application and of
these relevant parameters,
which are most critical.

If you don’t prioritize your require-
ments, it’s going to be difficult to
make a selection decision. You may
come to the conclusion that there is
no transducer that can meet your
needs. This may be true, but it’s more
likely that your requirements are too
stringent and that you need to make a
tradeoff to arrive at the optimum
selection.

For example, an engineer recently
approached our company looking for a
transducer with ±0.0001″ resolution
over 30′, and he wanted to keep the

cost under $500. He was adamant that
all three specifications be met. Our
products didn’t meet all his specifica-
tions, and we were at a loss as to where
we would refer him.

After some more discussion, we
found out that the resolution require-
ment was only necessary over a limited
portion of the total range and that the
cost goal, while important, did have
some flexibility. Hence, in this situa-
tion, range was most important, fol-
lowed by resolution, and then cost.

The moral of this story: focus on
your top requirements. Make the best

decision you can,
given the specifica-
tions you need. And
keep in mind, you
can’t have every-
thing—unfortunately.

NEXT STEPS
In this article, I’ve

given you some param-
eters for selecting
position transducers.
But in case you hadn’t

noticed, I didn’t provide any information
on what type of technology you should
select for your position transducer.

The constant change in transducer
technology and the difficulty in gener-
alizing about a particular technology’s
capabilities and limitations mean
there’s no way I can cover this area in
detail here.

Additionally, choosing the technol-
ogy should come after determining
and prioritizing your requirements.
Once your requirements are well-
known, the choice of technology tends
to be self-selecting.

Photo 2 —These incremental rotary optical encoders provide quadrature digital output. Encoder
use is increasing as more transducers are being connected directly to digital processing systems.
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I  R  S
407 Very Useful
408 Moderately Useful
409 Not Useful

SOURCES

Sensors
Dynamic Control Systems
7088 Venture St., Ste. 205
Delta, BC
Canada  V4G 1H5
(604) 940-0141
Fax: (604) 940-0793
www.dynavision.com

MicroStrain, Inc.
294 N. Winooski Ave.
Burlington, VT 05401
(802) 862-6629
Fax: (802) 863-4093
www.microstrain.com

Midori America
2555 E. Chapman Ave., Ste. 400
Fullerton, CA 92831
(714) 449-0997
Fax: (714) 449-0139
www.thomasregister.com/midori

OakGrigsby, Inc.
84 N. Dugan Rd.
Sugar Grove, IL 60554
(630) 556-4200
Fax: (630) 556-4216
www.oakgrigsby.com

Senix Corp.
52 Maple St.
Bristol, VT 05443
(802) 453-5522
Fax: (802) 453-2549
www.senix.com

SpaceAge Control, Inc.
38850 20th St. E
Palmdale, CA 93550
(805) 273-3000
Fax: (805) 273-4240
www.spaceagecontrol.com

Tom Anderson is application develop-
ment manager at SpaceAge Control, a
manufacturer of miniature and sub-
miniature position transducers and
flight test air data products. For over
10 years, he has been involved in
computer and instrumentation prod-
uct design and development at Pacific
Bell, Apple Computer, and Hewlett-
Packard. You may reach him via
email@spaceagecontrol.com.
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Photo 3 —Laser position sensors have resolutions of 0.1 µm or better.

For example, just knowing whether
you require a contact or noncontact
technology can cut your choices al-
most in half. If you need the latter, a
laser position sensor like the one in
Photo 3 may be a good choice.

To get a feel for the capabilities of
some of the more prevalent linear
position-measurement technologies,
Figure 2 maps out how these tech-
nologies compare against each other
based on cost, accuracy, and maximum
range. Note that not all technologies
are shown.

Now, it may be difficult to clearly
define the parameter values you require
as well as which parameters are most
important in your application. How-
ever, it can be even more difficult to
obtain these parameters from vendors
and then compare one vendor’s state-
ments against another’s.

To get information on products
beyond what you see in the vendor’s
product literature, review transducer-
related publications such as Measure-
ments & Control and Sensors for
articles on position-measurement
products and technologies.

Also, be sure to ask your colleagues
about their experiences and recommen-
dations. They may have a position
transducer on hand that you may be
able to test for your application.

Of course, in this day and age,
make an effort to search Web engines
and Internet newsgroups. Numerous
engineering, instrumentation, and
measurement-oriented newsgroups
can be reached via search engines.
Extensive sources of position-trans-

ducer manufacturers
can be found in the
Thomas Register and
the Sensors Buyer’s
Guide.

Contact vendors
and request references
of similar applications.
Ask these references
why they selected the
product they did and
whether they’re happy
with their decision.
Also, find out what
other options they
considered.

Finally, see if the
vendor has product samples or evalua-
tion units you can use for testing
before purchase. If the vendor is hesi-
tant to do this, offer to provide them
with a test report summarizing your
evaluation. This information may be
valuable to them, and they may be
more willing to assist you. I

Photos 1, 2, and 3 are courtesy of
SpaceAge Control, OakGrigsby, and
Dynamic Control Systems, respectively.



Photo courtesy of
National Instruments

41 Nouveau PC
edited by Harv Weiner

46 Real-Time PC
Graphical User Interfaces
in RTOSs

Ingo Cyliax

54   Applied PCs
A New View
Part 1: Virtual
Instrumentation

Fred Eady



 MAY 1998 EMBEDDEDPC 41

N
P
C
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SCALABLE CPU
The Complete Scalable CPU module is a highly integrated,

scalable, PC/AT platform that conforms to the PC/104 standard.
Design options, using the CardIO credit-card–sized CPU series by
S-MOS, include an 8086, 80386, or 80486 processor that
features IBM-PC–compatible functions.

The module accommodates up to 16-MB RAM, operates at
clock speeds up to 100 MHz, and
comes in 8- and 16-bit bus ver-
sions. Applications include remote
monitors, ATMs, medical devices,
factory automation, and telecom-
munications.

The Scalable CPU features two
serial ports, one parallel port, LCD/
CRT controller, IDE and floppy
disk controllers, keyboard/mouse
controller, and IBM-compatible
BIOS. It is available with PC/104
industry-standard power and util-
ity connections, and it offers sepa-
rate connections for reset, speaker,
and external battery. The unit uses

WEB SOFTWARE DEVELOPMENT KIT
The Voyager Software Development Kit (SDK) enables

QNX developers to build full-featured Internet applications for the
embedded marketplace. It contains all the industry-standard tools
and code needed to develop a complete, customized Web
browser. The SDK includes the source code for the Voyager
browser interface, source code for E-mail, Internet dialer and
newsreader applications, a demo with source code for controlling

the browser with a hand-held remote, configuration files for the
Photon Application Builder, and a Widget Library.

Voyager is based on the QNX real-time operating system and
Photon microGUI (an embeddable windowing system). These
systems, along with the Voyager browser, TCP/IP stack, and
Internet dialer are functional in under 2-MB flash memory and
40-MB RAM. Voyager SDK supports all the current Internet
standards, including HTML 3.2, frames, tables, proxy servers,
SOCKS, server push, client pull, progressive image display,
animated GIFs, JPEGs, FTP, basic and digest authentication,
printing gopher, cookies, helpers, plug-ins, CGI, POP3, SMTP,
and more. Voyager provides a command-driven interface so the
browser can be controlled from any input device.

Pricing for the Voyager SDK, including source code, is
$10,000. OEM run-time pricing is also available.

QNX Software Systems, Ltd.
175 Terence Matthews Cres.
Kanata, ON
Canada  K2M 1W8
(613) 591-0931
Fax: (613) 591-3579
www.qnx.com #511

RS-232 voltage generation, operates from one
+5-VDC supply, and features low power consump-
tion. A watchdog timer and a socket for M-Systems’ flash
DiskOnChip are also included.

The Scalable CPU is compatible with industry-standard
software applications and development tools such as IBM PC-

DOS, Microsoft MS-DOS, Win-
dows, Windows 95, Pen OSs, Vi-
sual Basic, Visual C++, and real-
time operating systems like QNX.

Pricing for the Scalable CPU
starts at $199 (without a flash
module).

The parvus Corp.
396 W. Ironwood Dr.
Salt Lake City, UT 84115
(801) 483-1533
Fax: (801) 483-1523
www.parvus.com

#510



CIRCUIT CELLAR INK MAY 199842

N
P
C

PC/104 FLASH MODULE
The PCM-3820 is a high-density PC/104 flash module

that uses the latest TSOP flash-memory chips for diskless
nonvolatile storage. This bootable, high-speed storage mod-
ule allows programs and data to be read and written
(executed and copied) just like a standard disk drive but with
extremely fast access speed and the reliability of no moving
parts. It is compatible with a wide range of operating
systems. Also, the included TrueFFS software makes it a
simple to use, powerful solution for embedded data storage.

The PCM-3820 features a transfer (read) rate of up to
2 MBps and an average seek time less than 0.1 ms. Its MTBF
is greater than 1 million hours, and its data retention is 10 years
minimum without a power source. It also features unlimited
read cycles and a minimum of 100,000 write cycles. The
module can be ordered with 1–32 MB of storage space, and
up to 128 MB (four cards) can be used per system.

The 4-MB version of the PCM-3820 is priced at $127 in
OEM quantities.

VersaLogic Corp.
3888 Stewart Rd.
Eugene, OR 97402
(541) 485-8575
Fax (541) 485-5712
www.versalogic.com

#513

PCNouveau

DATA-CAPTURE SOFTWARE
WinWedge 32 Pro adds serial data-acquisition

and instrument control to any Windows, Windows 95,
or Windows NT applications. It automatically collects data

from instruments or serial devices such as lab equipment, pH
meters, balances, moisture analyzers, bar-code readers and

scanners, titrators, spectrometers, ion meters, radiation counters,
data loggers, and modems.

Real-time analysis, charting, and graphing of your instrument data
in popular PC applications can be easily performed. Different instru-
ments can simultaneously send data to different applications or to
different fields within the same application.

TCPWedge is now included at no additional charge. TCPWedge
enables the user to communicate with any TCP/IP address over any
network directly from any Windows application. So, data can be
collected directly from instruments linked to a PC’s serial ports via serial
cables (up to 100 devices simultaneously on one PC), over an internal
TCP/IP network (i.e., Ethernet) from any IP address on the network, or
over the Internet from any IP address on the Internet, even at remote
sites. WinWedge 32 Pro can send data and commands out through
serial ports to devices, and TCP/Wedge can send data out over
networks to any IP addresses.

WinWedge 32 Pro sells for $495. TAL Technologies also offers
other versions of this software priced between $199 and $395.

TAL Technologies, Inc.
2027 Wallace St. • Philadelphia, PA 19130
(215) 763-7900 • Fax: (215) 763-9711
www.taltech.com       #512
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PC-BASED CONTROLLER
The ADAM-4500 is a fully functional IBM-compatible PC in

a small package. Its built-in ROM-DOS is an MS-DOS-equivalent
operating system, providing the basic functions of MS-DOS
except for the BIOS. As a result, the module can run standard
PC software written in a high-level language like C or C++.
The ADAM-4500 can relieve the host computer of many
controller functions, enhancing overall system perfor-
mance. Additionally, it also permits the automation
system to be isolated from the host controller.

The unit features an 80188 CPU, 256-KB flash
memory, 256-KB SRAM, two serial ports (COM1
and COM2), real-time clock, watchdog timer,
and a download port. The COM1 port can be
configured for either RS-232 or RS-485,
while COM2 is a dedicated RS-485 port.
Also, 170 KB of flash memory is available
to the user for installing applications via the
download port. An additional 234-KB RAM is

available for running applications or for string
data or results. An installation utility helps

users transfer programs from the
development PC, since appli-
cations must be converted into

80188-compatible code before they
can be installed and run on the ADAM-

4500.
The ADAM-4500 is priced at $350 in

single quantities.

Advantech America
750 E. Arques Ave.

Sunnyvale, CA 94086
(408) 245-6678

Fax: (408) 245-5678
www.advantech-usa.com

#514
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Real-Time PC

Ingo Cyliax

Graphical User

Interfaces in RTOSs

Often, your embedded system needs
some kind of GUI. This month, I want to
take a close look at two popular GUI
systems for embedded real-time PCs�X
Windows and QNX�s Photon microGUI.

X Windows wasn�t originally devel-
oped for embedded systems, but it has
become a popular GUI system that�s avail-
able under several RTOSs. And, it�s freely
available on the Internet, making it a
portable GUI programming environment.

Photon, on the other hand, is a propri-
etary GUI system developed by QNX. It
offers advantages such as a small footprint
and QNX�s message-passing interface.

I�ll briefly contrast these interfaces to
Web-based GUIs, but I won�t go into
detail about Web-based GUIs because
they�ve received a lot of coverage lately
(�Remote Internet Data Logging and Sens-
ing,� INK 88, �Interfaces and GUI-Building

Packages,� INK 88 and 89, �Converting
PC GUIs for NonPC Devices,� INK 91).

When looking at GUIs for embedded
PC RTOSs, we need to consider memory
requirements and real-time response is-
sues, as well as how distributed the GUI
system is. We also have to worry about
hardware compatibility with the PC.

Of course, memory requirements de-
pend on the application. Some GUIs are
fairly small and can be ROMed. However,
they can be limited in functionality. But if a
small memory footprint is required, that
tradeoff is probably OK.

X Windows, for example, is scalable.
Its display engine can be fairly small, and
applications have the choice of libraries to
make the GUI either Spartan or flashy,
which is likely to enlarge the application.

Real-time response is probably harder
to nail down. As a user, I�m concerned
about how the user interface responds to
inputs. For example, if I click on a pop-up
menu, I expect it to pop up right away.

RTOS developers know that this kind of
real-time response is just soft real time.
Most users probably can�t tell the differ-
ence in feedback if the response varies
between 10 and 30 ms. In fact, any

We can interface with an embedded PC via the Web, but  how about a view that
doesn�t depend on HTML? And, what counts as real time for GUIs, anyway? Ingo
has the answers as he gives us a close-up look at X Windows and QNX�s Photon.

Figure 1�Here we have a monolithic GUI
architecture. The application and the GUI sys-
tem are linked into one object.

Application

GUI API Lib

GUI System

Application

GUI API Lib

MouseKeyboard
Display
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PCspecial features. Under Windows, you

can use the card vendor�s device drivers to
abstract these differences and present a
consistent API to the OS.

However, card vendors typically don�t
provide device drivers for RTOSs, so it�s
on the RTOS vendor�s shoulders to de-
velop device drivers for various cards. X
Windows� popularity is probably due to
many SVGA/VGA cards being supported
by the freely available distribution of the X
Windows system, XFree86.

DISPLAY AND INPUT DEVICES
With GUIs, three devices are of particu-

lar interest�the display, keyboards, and
pointing interfaces. I�ve already talked a
little about the display device, which is
typically standard VGA or SVGA cards
for PCI, Vesabus, or ISA bus.

In the embedded world, however, you
find VGA/SVGA-based cards for embed-
ded buses like PC/104, PC/104+, and
STD-32. These cards are based on chipsets
like those from Western Digital and Cirrus.
The chipsets support nonaccelerated or
accelerated operations, and some offer
2D and 3D rendering/acceleration.

I already mentioned the importance of
making sure your RTOS vendors support
the GUI interface for the chipset on the
card you choose. But if you plan to use the
standard VGA resolution of 640 × 480
and 16 colors, don�t worry. Almost all
cards are compatible in this mode.

The trouble comes when you want to
use an SVGA mode like
1024 × 768 or extended
color space. If the card is
accelerated, make sure the
device driver supports this
functionality. Otherwise, just
save the money and buy a
cheaper nonaccelerated
card.

Vendors that sell SVGA
cards for embedded systems
buses like PC/104 and STD-
32 include Versalogic
(which supports PC/104+),
Ampro, Real Time Devices,
and WinSystems. These
cards may be supported by
some RTOS vendors, but
check them out to make sure.

Many display cards es-
pecially targeted for the em-
bedded-PC market also

have a LCD interface.
The LCD interface isn�t as
standardized as the VGA in-
terface for CRTs, so you have to
ensure your display card also sup-
ports the LCD panel in your system. The
LCD backlights require a high-voltage
power supply, which isn�t included on
most LCD-capable display cards.

Keyboards are much easier on PCs.
They come in AT (5-pin DIN) or PS/2 (mini-
DIN) varieties.

The keyboard interface is handled by
the keyboard controller and presents a
standard interface to the system, so sup-
port usually isn�t a problem. A keyboard is
a good way to interface external devices
to the system.

Some available devices include mini-
keypads or special boxes that generate
preprogrammed key sequences depend-
ing on an external stimulus. Bar-code and
card scanners can also be made to talk to
the system via the keyboard interface, by
using an RS-232�to�keyboard converter.

Pointing devices may be the most inter-
esting interfaces. We�re all used to the
standard mouse, which works through a
standard serial port (COM port) or PS/2
interface. There�s also the bus mouse,
which uses a special card.

Mice use a variety of protocols. Logitech,
Microsoft, and Mouse Systems are some of
the more popular brands.

Other pointing devices include track
balls and touch-sensitive screens. Touch-

response below 30 ms seems instantaneous.
Contrast this with hard real-time responses,
where you want consistent and determin-
istic responses to events like interrupts.

A real-time system designer should be
more concerned about how the GUI af-
fects the deterministic behavior of the
whole system. This issue may be problem-
atic if having a GUI subsystem adds signifi-
cant uncertainty to the interrupt response.

One way to address real-time issues
with GUIs is to decouple the GUI, which is
soft real-time, from the processes in the
system that need deterministic hard real-
time responses. This separation is achieved
by putting the GUI in separate tasks that
run at lower priority than time-critical tasks.

Many GUIs take this concept a step
further by separating application-specific
code from the rendering and frame-buffer
device-driver code. In X Windows, the X
application code is called the X client, and
the code driving the hardware is the X
server. Photon also follows this model.

Client- and server-based GUI systems
enable the design of distributed systems.
For example, the server may be on one
node, driving the display hardware, and
several client applications then run on
other nodes networked together. Contrast
this setup to a monolithic GUI system,
where the GUI and device driver are part
of the same program on the same node.

Finally, GUIs on embedded real-time
PCs present an extra twist. While running
GUI-based OSs like Windows on PCs
using VGA displays is commonplace, it�s
easy to forget VGA cards vary quite a bit
in their implementations.

VGA chipsets are programmed differ-
ently at the low level to take advantage of

Figure 2�The X Windows architecture sepa-
rates the application (i.e., the X clients) from
the device drivers (i.e., the X server), enabling
X applications to be distributed.
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Photo 1�Here�s what our example GUI looks like under X
Windows. The Athena widget library I used fits in with the look
and feel implemented by the tiled window manager (TWM),
which handles all the decorations (e.g., title bars).
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based and overlay the dis-
play device. The coordinates

where the user touches the film are
sent to the system. There are also

wireless tracking devices, like 3D mice
and pointing devices, that interface via
serial ports or PS/2 interfaces.

While most pointing and tracking de-
vices emulate popular mouse protocols
and ease interfacing to your GUI systems,
some do not. So, just like the display
device, make sure the pointing device is
supported by the GUI.

TECHNIQUES
There are two basic strategies for GUI

systems�monolithic and distributed.
In a monolithic system, as diagrammed

in Figure 1, the GUI, GUI-support libraries,
and possibly even the device driver are
linked into the application. This approach
is good if you want to minimize memory
requirements and achieve the highest per-
formance of your graphics subsystem.

The distributed method separates the
application from the device driver and
display system. It uses remote procedure
calls or message passing to communicate
between them. Figure 2 illustrates one
such implementation, X Windows.

X Windows has two major compo-
nents�the X server and the X client. The  X
server contains the device-dependent driv-
ers for the display, keyboard, and pointing
devices. Its device-independent driver ele-
ment abstracts the differences in devices to
present a more consistent interface.

At the other end, the X protocol inter-
face implements an RPC-based protocol.
The X protocol runs on many network
implementations, but typically it runs over
TCP/IP or whatever message-passing
mechanism the OS implements for local-
node communications.

Unlike OSs such as MS Windows, X
Windows doesn�t prescribe the look and
feel. Each X client, however, controls how
its windows appear and how events from
the keyboard and pointing device are handled.

An X client connects to the X server and
typically creates a window on the display.
Windows from different clients can overlap.

The events from the keyboard and
pointing device are sent to the clients that
are interested in the events. The client calls
primitives on the X server via its RPC
protocol to render bitmaps or characters

using fonts. To enhance performance, the
X client stores fonts, bitmaps, and color
mappings in the X server.

You can use a special X client�the
window manager�to implement the
system�s desktop. X Windows even lets
you implement a Windows 95-like desktop!

Programming using the X protocol directly,
however, is tedious. So, X Windows fea-
tures a toolkit for developing widgets.

Widgets define an windows object,
like a button, and handle the details of
managing it. For example, a button-wid-
get handles drawing and redrawing itself.

Listing 1�This program illustrates the basics of a widget-based X application. The developer
initializes the widgets and calls MainLoop to handle event processing and call-back
dispatching.

#include <stdlib.h>
#include <X11/Xmd.h>
#include <X11/Xlib.h>
#include <X11/Xresource.h>
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/keysym.h>
#include <X11/Shell.h>
#include <X11/Xatom.h>
#include <X11/Xaw/Form.h>
#include <X11/Xaw/Label.h>
#include <X11/Xaw/Command.h>
#include <X11/Xaw/Box.h>

void cmdBut1()
{
  printf("Button 1 was pressed\n");
}
void cmdBut2()
{
  printf("Button 2 was pressed\n");
}
main(argc,argv)
  int argc;
  char **argv; {
  XtAppContext Context;
  Widget toplevel,frm1,but1,but2,lbl1;
  Window outw;
  toplevel = XtAppInitialize(&Context,"ex1",
    NULL,0,
    &argc, argv, NULL,
    NULL,0);
  frm1 = XtVaCreateManagedWidget("topform", formWidgetClass, toplevel,
    XtNresizable, True, NULL);
  lbl1 = XtVaCreateManagedWidget("Hello World", labelWidgetClass, frm1,
    XtNresizable, False,
    XtNfromHoriz, NULL,
    XtNfromVert, NULL,
    XtNleft, XtChainLeft,
    NULL);
  but1 = XtVaCreateManagedWidget("Button1",commandWidgetClass, frm1,
    XtNresizable, False,
    XtNfromHoriz, NULL,
    XtNfromVert, lbl1,
    XtNleft, XtChainLeft,
    NULL);
  XtAddCallback(but1, XtNcallback, cmdBut1, NULL);
  but2 = XtVaCreateManagedWidget("Button2", commandWidgetClass, frm1,
    XtNresizable, False,
    XtNfromHoriz, but1,
    XtNfromVert, lbl1,
    XtNleft, XtChainLeft,
    NULL);
  XtAddCallback(but2, XtNcallback, cmdBut2, NULL);
  XtRealizeWidget(toplevel);
  XtAppMainLoop(Context);
  exit(1);}
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pressed, the widget handles
the animation feedback, such as

inverting colors or 3D effects.
X Windows handles widgets differ-

ently than other windowing systems. In X
Windows, the widget library implements
the appearance and the feel of the widget
(e.g., getting an event to redraw itself).

The Athena Widget library comes with
the standard X client library set, and Motif
is a commercial implementation that adds
a 3D look to your X Windows system.

PROGRAMMING LANGUAGES
The most common programming lan-

guage for RTOS applications is probably
C, and most GUI programming environ-
ments have C libraries.

Widget libraries for X Windows, even
though they�re object oriented, are written
and called by C. Some C++ based appli-
cation libraries are also compatible.

Listing 1 is a sample C program using
the Athena Widget library (Xaw). Xaw
doesn�t have the fancy look and feel you
get with Windows or Motif, but it�s smaller.

Listing 1 simply opens a windows, says
�Hello World,� and creates two buttons.
Since widgets are event driven, I assigned
call-back functions to the buttons, which
are called when a button is pressed.

Once the widgets are programmed,
MainLoop is called. This code deals with

all likely events (e.g.,
uncovering Windows-
handling mouse-button
press events). Photo 1
shows it all.

HTML is making its
mark as a GUI program-
ming language, even
though it�s not a stan-
dard programming lan-
guage like C or Pascal.

HTML-based GUIs
rely on HTTP, the proto-
col for transferring infor-
mation on the Web. The
server (i.e., the applica-
tion) sends HTML files to
the client (i.e., the Web
browser), which renders
the display and handles
user inputs. The Web server is often em-
bedded in the RTOS application and can
be fairly small because all the hard work
is done on the node running the browser.

Another popular language for GUI de-
velopment is Tk/Tcl, which has two com-
ponents�toolkit (Tk), the GUI�s interface
to the language, and task-control lan-
guage (Tcl), the interpreter for the pro-
gramming language.

Tk is widget oriented and commonly
implemented on X Windows, although
implementations exist for Windows and
MacOS as well. Although Tk/Tcl is inter-

preted, it�s widely accepted because it
makes GUI development portable.

And because Tk/Tcl is interpreted, it�s
easy to test new ideas and alter the
interface. Tcl is small and written in C and
has been ported to many OSs and RTOSs.

And then, there�s Java. Java is more
than just a language. It�s really three
components.

The Java language is a C++ like object-
oriented language that promises to be the
new standard in programming languages
(it�s less complex than C++). Although first
implementations of Java compilers gener-
ated Java byte code for the Java virtual
machine, there are now Java-compatible
compilers that target native code.

The original intention of the Java system
was to use the Java language to compile
into Java byte code, which is platform/
architecture independent and interpret-
able by a Java virtual machine (JVM).

What does this have to do with GUI
development? Java also defines a stan-
dard library or toolkit for GUI program-
ming, which developers can use to program
GUIs to run on any platform JVM and
toolkit have been ported to.

Typical implementations of the JVM
and toolkit are limited to Web browsers
like Netscape Navigator and Microsoft
Internet Explorer. However, some OS ven-
dors, such as WindRiver and MicroWare,
include JVMs as plug-ins for their OSs.

Because the environment is relatively
new, there are still growing pains. For
example, Sun, the developers of Java,
and Microsoft, one of the licensees of

Photo 2�In this typical setup for building an application with Phab,
you can see the GUI prototype as well as how the widgets are
wired together in the application.

Photo 3�Once the GUI is designed, the C source modules are generated and the project is built
using make. The complete development cycle can be handled from Phab, which also functions
as a project manager.
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Java, each have their own
implementation of Java com-
pilers, virtual machines, and
toolkits. These systems have
subtle differences, so true
cross-platform compatibility is
impractical for some applica-
tions.

Although embedded Java implementa-
tions of the toolkit and JVM are available,
they�re large (8+ MB image). Embedded

Java and JavaOS are apt to go head to
head with WinCE, especially in markets
like set-top boxes or smart communication
devices.

#ifdef __USAGE
%C - This is a QNX/Photon application
%C [options]
Options:
  -s server Server node or device name
  -x x Initial x position
  -y y Initial y position
  -h h Initial h dimension
  -w w Initial w dimension
Examples:
  %C -s4 Run using Photon server on node 4
  %C -s//4/dev/photon Same as above
  %C -x10 -y10 -h200 -w300Run at initial position 10,10 with

  initial dimension of 200 x 300
#endif
#include <stdio.h> /* Standard headers */
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <Ph.h> /* Toolkit headers */
#include <Pt.h>
#include <Ap.h>
#include "abimport.h" /* Local headers */
#include "proto.h"
#include "abwidgets.h"
#include "ablinks.h"
#include "abevents.h"
#include "abvars.h"
char  ab_exe_path[PATH_MAX]; /* AppBuilder globals */
void main (int argc, char *argv[])
{
  ApInitialize(argc, argv);   /* AppBuilder Initialization */
  ApClassInit();  /* Set up class table used by this application */
  ApLinkWindow( NULL, &appl_links[0], NULL ); /* Display main window */
  PtMainLoop(); /* Loop until user quits application */
}
void ApClassInit()
{
  ApAddClass("PtWindow", &PtWindow);
  ApAddClass("PtLabel", &PtLabel);
  ApAddClass("PtButton", &PtButton);
}

Listing 2�The program generated by the application builder looks quite different from
Listing 1. Much of the configuration is handled by global data structures, which are
implemented in the various header files, also generated by Phab.

Photo 4�The GUI has been de-
signed and compiled. Now, the
stand-alone program imple-
ments the prototype GUI.
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JVM relies on garbage collection to
manage memory. Current implementations
aren�t deterministic with respect to gar-
bage collection, so you can�t use Java in
systems with hard real-time requirements.

But, GUIs only require soft real time.
So, Java is a viable option if the JVM is
implemented as a separate low-priority task.

To help with Java�s dynamic memory
requirements, a fixed amount of memory
can be allocated to the JVM task. A pool
of memory is then preserved for tasks
needing traditional memory-management
techniques.

INTERFACE BUILDERS
Interface builders run on the develop-

ment host and enable you to layout and
design the GUI. These tools even have
GUIs themselves. So, let�s use an interface
builder to design that little two-button �Hello
World� GUI. I�ll use QNX�s Phab (Photon
Application Builder).

Incidentally, Photon looks a lot like X to
the developer. But, its underlying architec-
ture is designed to work with QNX�s RTOS
in a real-time environment.

Start Phab in Photon�s desktop under
the developer tab or by typing phab into
a console window. On startup, Phab dis-
plays a standard project-manager�type
development interface.

Next, drag widget objects you want
into an application window. Several display
tools let you view the application architec-
ture. Photo 2 shows a typical session.

Extract it in Makefile and various C
program modules and header files to
implement this GUI, and go ahead and
build the application (see Photo 3).

Or, use make to compile the project
outside the interface builder (see �Soft-
ware Development for RTOSs,� INK 93).
Once the application is compiled and
executed, it should look like Photo 4.
Listing 2 shows the Phab-generated code.

Once the GUI is designed,  interface it
with the application by implementing call-
backs for buttons, menus, and so forth.

LOOK OUT
Now you�ve seen two implementations

of GUIs for embedded systems�X Windows
and Photon. But, that�s just the beginning.

There are many books on X Windows,
Motif, and Tk/Tcl, not to mention all the
Java literature. There isn�t much on embed-
ded real-time PCs, but you can pretty much

SOURCES
Photon microGUI, Phab
QNX Software Systems Ltd.
175 Terence Mathews Cres.
Kanata, ON
Canada M2M 1W8
(613) 591-0931
Fax: (613) 591-3579
www.qnx.com

SVGA cards
Ampro Computers, Inc.
990 Almanor Ave.
Sunnyvale, CA 94086
(408) 522-2100
Fax: (408) 720-1305
www.ampro.com

Real Time Devices, USA
200 Innovation Blvd.
State College, PA 16804-0906
(814) 234-8087
Fax: (814) 234-5218
www.rtdusa.com

Versalogic Corp.
3888 Stewart Rd.
Eugene, OR 97402
(541) 485-8575
Fax: (541) 485-5712
www.versalogic.com

WinSystems, Inc.
715 Stadium Dr.
Arlington, TX 76011
(817) 274-7553
Fax: (817) 548-1358
www.winsystems.com

Keyboard interfaces
Vetra Systems Corp.
275-J Marcus Blvd.
Hauppauge, NY 11787
(516) 434-3185
Fax: (516) 434-3516
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IRS
410 Very Useful

411 Moderately Useful
412 Not Useful

ignore this issue with respect to GUIs
because they�re soft real-time applications.
Just make sure the GUI for your application
doesn�t affect its hard real-time response.

Well, with a GUI, at least you have
something to look at. But I�m guessing you
want bells and whistles, too. So, next time,
I�ll discuss multimedia applications for
real-time PCs. RPC.EPC
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Applied PCs

Fred Eady

A New View
Part 1: Virtual Instrumentation

Got a budget limit on test instruments for those one-of-a-kind gadgets? Well, don�t
spend your money. Instead, do what Fred does�generate virtual test equipment
using National Instruments� LabVIEW.

Some time ago, I was talking to an
engineer at the Kennedy Space Center about
the many types of test equipment  engineers
find necessary for everyday activities. Of
course, the conversation turned to who�s
who in test equipment and who had what.

As it turned out, I�d spent way too much
for all my goodies. �You see,� the engineer
stated, �We don�t buy test instruments any-
more. We generate them.�

Generate them? Hey, if
I could �generate� a few
Tek scopes from thin air, I�d
be rich. Well, once I re-
turned from dreamland, it
hit me what he was really
saying. His engineering
team had converted to vir-
tual instrumentation.

At the Space Center,
there�s an abundance of one-
of-a-kind widgets designed
specifically for a single mis-
sion to those places �where
no one has gone before.�

And, every engineer knows that spe-
cial widgets sometimes require special test
equipment.

It could get (and is) really expensive
tooling up new test fixtures and special-
ized test gear for every little quirk project
that comes along.

Virtual instruments? What a concept!
Sounds like article fodder to me!

LOOKING AROUND
Virtual instrumentation is one of those

phrases that defines itself. Virtual implies
that the entity exists but not in a form that
can be grasped or physically handled.
And instrumentation is, well, instrumenta-
tion. The words �virtual instrumentation�
lead me to thinking in terms of software
emulation of said instrumentation.

To me, a good defini-
tion of virtual instrumen-
tation is a fully functional
test platform built with
software containing all
the physical properties
of its hardware counter-
part. With software be-
ing the working entity of
the instrument, the only
hardware you�d need to
put a virtual instrument to
work would be the input
conversion circuitry.

Of course, as I was
listening to the engineer

Photo 1�Looks like trouble! Don�t worry, it looks complicated, but the process is
really very logical.
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describe some of the applications his team
used virtual instruments for, I was thinking
about how I could employ this technology
in the embedded-PC world. If they could
run their stuff on a laptop, I could surely run
it on an embedded hummer. I walked
away from this encounter with bunches of
ideas for applying virtual instrumentation
to the embedded PC.

After some market research in the back
of a bunch of all those free technical
magazines I receive, I decided to get familiar
with the National Instruments offering.
After all, their ad says, �The Software is
the Instrument.� Can�t get any more to the
point than that. Well, I picked up the
phone and here�s what happened.

AT FIRST SIGHT
�Re: Hardware, Software, and Manu-

als. Oh my!� That�s how the header of my
letter from Erin Nelson at National Instru-
ments read. What an understatement!

The hardware I received consisted of a
single PCMCIA (or PC Card for the enlight-
ened of you) that made up the hardware
side of a virtual DMM. I also received a
ready-to-run DMM VI (virtual instrument)
package, which I�ll put to use in a later
installment.

As for software, how about a full-blown
version of National Instruments� LabVIEW
V.4.1 for Windows 95/NT. And manu-
als? There�s about 5.5″ worth.

The bounty of printed material includes
a LabVIEW tutorial, a LabVIEW data-
acquisition basics manual, a LabVIEW
user manual, a LabVIEW code interface
reference manual, and a LabVIEW func-
tion and VI reference manual. It took me a

couple of hours to read through the tutorial
alone, which brought me to a realization
of how I should approach this subject of VI.

There�s simply too much information to
convey in a single article. For those who
are neophytes to LabVIEW and data ac-
quisition, it would be unjust to feed them by
firehose. On the other hand, for the old
dogs acquiring data in their sleep, it
would just be more techno-babble to sort
through to the new and innovative ideas.

OK. We�re all some kind of engineer or
at least an engineer wannabe here, so
let�s apply some simple logic. Ever read a
primer about anything you were new to?
Or, did you jump right into the advanced
text?

Did you ever laugh at a newbie in your
shop who had to learn the ways of a world

you�d been in for years?
Remember when you were
a newbie?

Repeat after me, �LabVIEW
primer.�

HAVE A LOOK-SEE
LabVIEW is short for Laboratory Virtual

Instrument Engineering Workbench. Re-
member some time ago, I wrote a piece on
machine shop G code? Well, G is back
but in a different light. LabVIEW sequences
are assembled with what National Instru-
ments calls G language.

G can be thought of as graphical
source code. Instead of lines of code, G is
�pictures� of code. In other words, Lab-
VIEW�s terminology is geared towards the
technician, scientist, and engineer.

Graphical symbols are used instead of
lines of text as source for LabVIEW appli-
cations. You�ll see how this works as we
get deeper into this project. LabVIEW is
also communications ready and can be
interfaced to GPIB, VXI, RS-232, RS-485,
and plug-in data-acquisition boards.

As you can ascertain from the descrip-
tion, LabVIEW is a flexible development
environment composed of built-in libraries
and instrument drivers. Standard program-
ming tools like breakpoints and program
single-step are also incorporated into
LabVIEW.

This flexibility enables custom instru-
mentation applications to be built easily
by both novice and expert data-acquisi-
tion engineers.

Photo 2�All that trouble in Photo1 gives way to this human interface.

Photo 3�As you can see, the Controls Palette is graphically designed to be easy to use and
understand.
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As I stated, LabVIEW is
a virtual-instrument environ-

ment. Instead of adjusting dials
and switches on your physical instru-

ment with your hands, you adjust them on
your virtual instrument with a mouse, key-

board, or touchscreen. LabVIEW provides a
visual interface that�s much like the physi-
cal interface of the instrument it�s emulating.

LabVIEW applications are created us-
ing graphical programming. Nodes are
LabVIEW objects that execute functions.
These nodes are assembled on the com-
puter screen and resemble a flow chart.

Tying independent nodes together with
�wires� enables execution results to flow
from node to node. Photo 1 is a typical
representation of LabVIEW nodes and
wires configured to make a dynamic sig-
nal analyzer virtual instrument.

There are two main parts to any VI�a
front panel and a block diagram. The front
panel is the actual user interface. Photo 2
is the front panel on the other side of the
block diagram you see in Photo 1.

The block diagram is the graphical
source code. Controls are obtained from

the Controls palette. When a control is
selected and placed on the front panel, a
companion terminal is placed on the block
diagram.

There are two types of front panel
objects�controls and indicators. Controls
are usually data sources, whereas indica-
tors, well, indicate. Indicators look a lot

Photo 4�Note that every control is represented by a corresponding object in the block diagram
and the Functions palette is similar in design to the Controls palette.
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around the control sets them apart.
Pop-up menus let you change the

characteristics of front-panel objects.
Photo 3 is a shot of various controls
and indicators along with the Con-
trols palette.

Block-diagram nodes are ac-
cessed via the Functions palette. The
Functions palette is where the VIs,
custom VIs, and functions live. Func-
tions are built into LabVIEW and thus
don�t have �bodies� like front pan-
els and block diagrams do.

Execution order within a block dia-
gram is governed by data flowing
from one node to another. Photo 4
shows us the Functions palette along
with objects associated with control
and indicators on the front panel.

Functions and subVIs don�t work
until all of their respective inputs are
available. A function in LabVIEW be-
haves just like a function you write in
a common language like C.

Think of a subVI as a textual subroutine
equivalent. A VI is really treated just like a
textual subroutine in LabVIEW.

Normally, VI functions should be kept
as simple as possible. Once a particular VI
is realized, it can be reduced to an icon

Photo 5�This is ab-
solutely the easiest do-
while loop I have ever
written (or drawn)!

and used as a subVI in a block
diagram. In other words, VIs used in
other VIs are called subVIs. By as-
sembling your LabVIEW task into mul-
tiple VIs, you can obtain a top-down
programming model just like one
you�d implement in a standard text-
based programming language like
BASIC or C.

SubVIs also contain a third compo-
nent: the icon/connector. The icon/
connector is the interface between VIs
used as subVIs. The icon is the visual
representation of a VI when it is used
as a subVI. SubVIs at the block-diagram
level normally include an input and
output terminal. This is the way subVIs
connect logically to each other.

The output terminal of a down-
stream subVI connects to the next

logical upstream subVI input terminal. The
location of the input and output terminals
are defined by the connector. Both the



CIRCUIT CELLAR INK  MAY 199858

A
PC icon and con-

nector can be ed-
ited from the front

panel. A connector
pane represents each front-

panel object.
For instance, if a front panel

consisted of one digital control and
one digital indicator, the connec-
tor pane would consist of two
terminal panels. One panel would
represent the control output termi-
nal and the other panel would
designate the indicator input ter-
minal. Control terminal panes are
usually on the left side of the
connector pane and indicator
panes are on the right.

In that LabVIEW can output
data to a spreadsheet file, execu-
tion order can sometimes be very impor-
tant. In other cases that don�t require
external file I/O operations or statistical
number crunching, the order of execution
can be relatively lax.

Wires connect nodes on the block
diagram. Because there are various types

of data flowing between nodes, it would
seem that there should be a scheme to
differentiate what data is flowing over
what wire. LabVIEW delineates data types
by color. For instance, green represents
Boolean values, while orange objects and
wires denote floating-point values.

LOOKING SHARP
Yep, pretty neat stuff, huh? It

doesn�t take long to get up to
speed with LabVIEW. If you�ve
ever written a single line of code,
this logical development environ-
ment will come to you quickly.
Let�s walk through building a
simple virtual instrument.

Selecting the New VI from the
LabVIEW menu screen results in
screens we saw in the earlier
photos sans controls and indica-
tors. The first thing we want to do
is assemble a front panel. As-
sume we want to graph some
random data. We�ll choose a
switch and a graphical window
for the front-panel objects. To
keep it simple for now, that�s all
we�ll put on the front panel.

The next step is to put the remaining
block-diagram elements in place. We al-
ready have a couple of block-diagram
objects (terminals) that correspond with
the front-panel objects I just added.

Since I don�t have a real signal to track,
I�ll emulate an input signal by applying
random numbers into the VI�s input. This is
done easily in LabVIEW by selecting the
Random Number Generator VI from the
Functions palette. This VI generates a
random number between 0 and 1.

Earlier I mentioned that LabVIEW�s
programming techniques paralleled stan-
dard text-based techniques. Here I�ll use
the graphical equivalent of a do-while loop
structure to control the logic of our simple
VI. As you can see in Photo 5, the while
loop is actually a boundary that runs all of
the code contained within its boundaries
while the conditional terminal is TRUE. I�ll
tie the front-panel switch which is a Bool-
ean entity to the conditional terminal.

The final task needed to complete our
simple VI is to logically attach all of the
terminals� inputs and outputs. In our case,
that involves connecting the Boolean switch
to the while loop�s conditional terminal
and connecting the output of the Random
Number Generator terminal to the input of
the graphic display window. This is really
a �door bell� LabVIEW app, but this is the
primer. As you can imagine (because I can�t
make the graph move on this page), the
resulting waveform is displayed on the
graphic window in Photo 6 when the
Boolean switch is turned on or TRUE.

Photo 6�It�s not as complex as the instrument in Photo 1, but this
one is just as functional.
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413 Very Useful

414  Moderately Useful
415  Not Useful

Fred Eady has over 20 years� experience
as a systems engineer. He has worked
with computers and communication sys-
tems large and small, simple and com-
plex. His forte is embedded-systems de-

SOURCE
LabVIEW
National Instruments Corp.
6504 Bridge Point Pkwy.
Austin, TX 78730
(512) 794-0100
Fax: (512) 794-8411
www.natinst.com

sign and communica-
tions. Fred may be reached
at fred@edtp.com.

Most data-acquisition schemes don�t
move this quickly. There are limits to available
acquisition memory and in most cases avail-
able power over time. So, it would be nice
to have a means of selecting time intervals
for certain data gathering applications.

LabVIEW handles this with the Wait
Until Next ms Multiple VI. To incorporate
this feature into our VI, I simply select the
icon from the Features palette and plop it
onto the block diagram inside the while-
loop boundary. Once the timer icon is in
place, a right click of the mouse button
enables me to create a constant. The
constant contains the number of millisec-
onds to delay.

In today�s world, spreadsheets have
moved off the banker�s desk onto the
engineer�s workstation, and it�s not enough
to just collect the data. These days,
everything�s analyzed. Well, to be politi-
cally correct, LabVIEW can do spread-
sheets and analysis.

In our application, we can calculate the
mean of our random readings by placing
the Mean VI outside our existing while
loop and connecting the output of the
RandomNumber VI to the X input. At the
same time, spreadsheets are covered by
placing the Write To Spreadsheet File VI in
the same vicinity.

Our data is one-dimensional, so the
output from the Random Number VI will
connect to the 1D input of the spreadsheet
VI. This action forms a small black tunnel
on the while loop boundary. This tunnel is
the logical exit for the data being fed to the
Mean and spreadsheet VIs.

To pass the collected data as a data set
to the Mean VI, a right mouse click on the
tunnel lets me enable indexing. Indexing
allows the while loop to collect the ran-
dom-number data and pass it to the Mean
VI when the loop terminates.

To see the mean value on the front panel,
I need to create an indicator. This is done by
right clicking the Mean VI and choosing the
Create Indicator option. Once that�s done,
the mean indicator is placed on the front
panel. Photo 7 brings all of this to light.

PEEKING AHEAD
There�s only about five more inches of

doc left, but I�m out of time. The intent here
was to introduce you to LabVIEW, while at
the same time planting the embedded-PC
seed. Now that the basics have been
covered, I can move on to mating this

virtual world to the physical world we live
in every day.

Next time, I�ll install LabVIEW on an em-
bedded platform and gather real data.
Once you see how easy it is to create
embedded virtual instruments, you�ll see
I�ve once again proven that it doesn�t have
to be complicated to be embedded. APC.EPC
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PostScript
Flutterwumpers

FEATURE
ARTICLE

Don Lancaster

i’
The sound of
“flutterwumpers”
brings on a sort of
Alice in Wonderland
enchantment that’s
not unlike the
peculiar magic Don
Lancaster pulls out
of PostScript. Listen
in on how to make
PostScript move
PIC-powered robots.

m a long-time
fan of the superb,

general-purpose Post-
Script language. For years,

it’s been my first and foremost tool
for most of my columns, engineering
designs, and technical illustrations.

I also use PostScript for many other
tasks, ranging from investment models
to magic sine-wave research, Smith
charts, shaft encoders, Web-site traffic
analyzers, and hot-tub controllers. And
as you’ll see, it also lets us explore
some low-end robotics opportunities.

Until recently, you had to want to
use PostScript as a language in the worst
sort of way to be able to do so. In
particular, needing a PostScript printer
to serve as the host computer was
horribly limiting. PostScript hard drives
were few and far between, as was the
lack of a real-time visual display. Even
more crippling was the one-way paral-
lel port that nearly all early PC systems
forced on PostScript users.

But, these limitations are ancient
history. PostScript is now busting out
all over with brand-new capabilities.
For example, the free Ghostscript 5.01
clone provides full host-based Post-
Script computing combined with full-
screen visuals.

Variations on Ghostscript can be
customized for new commercial apps.
In fact, Videonics now offers the Power-
Script 1000 fully animated video char-
acter generator, thus turning zillions
of fonts and all the standard desktop-
publishing tools loose on video editing.

Originally, PostScript lacked most
transparency features. But, Videonics’
workaround redefines the CMYK
color space, with K serving as a new
alpha transparency channel.

Host-to-printer interactions have
dramatically improved as well, with
higher speed two-way parallel commu-
nications added to serial, AppleTalk,
and Ethernet options. Program apps
such as Download Mechanic simplify
PostScript-as-a-language and printer
interactions.

Meanwhile, Adobe improved its
Acrobat 3.01 PostScript variant, too.
Acrobat greatly revolutionizes the
distribution of information, both off
and on line.

I find it much better than HTML
because it offers exact control of what
the end user will see, with full-screen
magnifiable displays online and im-
proved antialiased visibility. Acrobat
also features URL hot linking, interac-
tive forms, wipes, full text and library
searches, bookmarks, thumbnails, byte
range loading, scan capture, and pow-
erful handicapped-access provisions.

A typical single-file size is 11 KB per
illustrated page, which prints equally
well to PostScript and non-PostScript
printers. And one element of Acrobat,
the Distiller 3.01, lets you convert
complex PostScript code into simpler
Acrobat .PDF files.

ACROBAT DISTILLER
A PC-, Unix-, or Macintosh-based

Acrobat Distiller 3.01 makes a fairly
powerful general-purpose PostScript
computer. At its input, Distiller accepts
PostScript code from a disk text file.
It can also be taught to read nearly
any file format in any language!

At the output, Distiller can gener-
ate its (usually intended) .PDF file or
write messages or calculated results
to its (usually ignored) .LOG file. Al-
ternatively, it can write any custom-
disk–based text file in almost any
format.

Pick a Peck of PostScript PICs
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Ghostscript offers one debugging
advantage. Distiller gags on any error,
outputting only a stack dump. Ghost-
script gives you a visual screen output
up to the point your error was made,
thus showing you where to pin down
an obtuse bug.

Nevertheless, I prefer Distiller, per-
haps because I’m an Adobe developer
and beta tester. The use of Distiller
for PostScript-as-language that I am
the most excited about involves…

PostScript FLUTTERWUMPERS
A “flutterwumper” is my term for

any autonomous process controller
whether it be hardware or software
based. Some examples include printed
circuit drillers, wood routers, fabric
shears, panel engravers, animation
stands, cutters for vinyl, embroidery
machines, shop mills, laser trimmers,
and box makers.

As Figure 1 illustrates, PostScript
provides a unique way of partitioning
any flutterwumper, greatly reducing
the cost of dedicated hardware.

The key is to let PostScript handle
the higher level stuff—managing disks
and other resources, interfacing design
software or clip-art libraries, dealing
with fonts, doing coordinate transforma-
tions, making tool-path corrections,
or converting curves to individual
machine space steps. After the hard
stuff is done, your onboard PIC only
needs to deal with the simplest tasks.

To start this process, use transfer
documents, which I call flutfiles. Two
obvious languages for flutfile documents
are Gerber Format and HPGL. Note

hidden restrictions, so you have
to decide whether to pick the
quick and dirty “free” log file or
write a custom output file.

Let me go over some of the log-
file limitations. Adobe Distiller
does a flushfile after every new
line, which is nice because you
can see problems as they occur.
However, it slows you down and
causes a lot of disk clatter on

extended outputs.
Also, long strings are truncated to

200 characters in the log file. Carriage
returns are tricky as well, and you get
a mix of status, error, and data messages.

One big gotcha when writing any
PostScript-as-language code that needs
PC disk access: always use “\\” when
you mean “\” inside a PostScript string.
The confusion comes about because
“\” acts as a directory boundary in
Windows filenames, whereas it’s a
fully reserved PostScript string char-
acter. Ghostscript gets around this by
substituting “/” for “\” in filenames.

And finally, don’t be alarmed if you
see “Warning: No PDF file produced.”
If your primary goal is writing your
own custom disk file, you may not
need a .PDF viewable file at all.

DISTILLER VS. GHOSTSCRIPT
Distiller is amazingly fast and 100%

genuine Adobe. Ghostscript, by con-
trast, is slow, klutzy, and not at all
friendly. Ghostscript clearly flaunts its
Unix heritage, but a new View add-on
provides a graphical interface.

Both Distiller and Ghostscript offer
visual displays. But even with the two
mouse clicks required to switch to
Exchange, Distiller displays are faster
and considerably clearer.

Ghostscript lacks some of the latest
PostScript features, and it has some
unofficial bugs. However, it can be
customized to make anything you like.
Ghostscript font additions are a hassle,
but Ghostscript source code is easily
obtained. In short, Distiller costs
money; Ghostscript doesn’t.

Distiller can easily analyze Web-
site log files or extract special content
from private search-engine internals.
It can also convert file and font formats,
as well as filter all the Fourier trans-
forms from millions of magic sine
waves, keeping only those scant few
good ones. It can even design digital
filters or solve higher order linear
equations.

The final results can be displayed
onscreen using Acrobat Exchange,
Reader, or Ghostscript. Both Exchange
and Reader let you print to either
PostScript and non-PostScript printers.

Let’s go over a simple example that
shows how fast and easy it is to use
PostScript as a computing language—
finding the sine of 35.4°. First, create
this text file:

%!
% Find sine of 35.4 degrees
35.4 sin ==

If you drag and drop this file into
Distiller, the value of 0.579281 should
pop up on your log-file display.

Distiller obeys the rule that any
print (e.g., print or ==) commands go
to the .LOG file. Write commands
(e.g., write or writestring) are
output to your custom .TXT disk output
file. Marking commands (e.g., show,
stroke, or showpage) go to the gen-
erated .PDF file.

The log file is intended for error and
status messages, but you can write
nearly anything to it at any time for
any reason. Unfortunately, the log file
isn’t quite transparent. It has a few

PC with
Acrobat
Distiller

PIC
Micro x-axis

Stepper

y-axis
Stepper

Pen
Up/Down

Home
Sensor

Custom
vinyl cutter,

wood  routing,
milling machine,
animation stand,
awards engraver,
embroidery  setup,

circuit  board  drilling,
etc.

Task Feedback

Task Commands

Serial Port

Table 1—Here’s one possible flutfile command set. The
single characters handle elemental tasks.

0  Go one step due east
1  Go one step northeast
2  Go one step due north
3  Go one step northwest
4  Go one step due west
5  Go one step southwest
6  Go one step due south
7  Go one step southeast
B  Begin sequence
D  Pen down or cutter on
H  Reset to home position
Q  Quit sequence
Rn  Repeat last n – 32 times
U  Pen up or cutter off
X  Breaking debugger
%  Ignore comments until CR

Figure 1 —Flutfile partitioning brings genuine
PostScript to PIC flutterwumpers.



62       Issue 94 May 1998       Circuit Cellar INK®

east 7, which needs a
positive x step and a
negative y step.

Single letters desig-
nate simple actions,
like U (up), D (down), H
(home), X (breaking
debugger), and Q (quit).
Also, comments are

permitted between any % and the next
carriage return or line feed.

A repeat is done via Rn, which means
“repeat the last command n – 32 times.”
The 32 occurs because I restrict this
application to printing ASCII charac-
ters. The ASCII dollar sign has a code
of decimal 36, so R$ means “repeat
the last command 36 – 32 = 4 times.”

But, it’s inefficient to use R for fewer
than four repeats. For more than 95
steps, just repeat repeat. repeat
significantly shortens a flutfile that
involves mostly cardinal direction
moves and actions.

A formal flutfile spec also needs to
include handshaking. Although you
don’t want to limit the data rate, you
must not overrun your mechanism—
especially on time-intensive homing
or repeats. Handshaking details are
system specific, but buffered XON and
XOFF are often the optimal choices.

FLUTFILE EXAMPLES
The PostScript routines generate

flutfiles, which then get used by your
robot system in real time or in a deferred
production mode where the same file
gets resent once per piece. With such
partitioning, you can get by with simple
and cheap dedicated hardware on the
flutterwumper.

PostScript is also especially adept
at handling the oddball transformations
you need for nontraditional-axis sys-
tems (e.g., rectangular to polar or az-el).

Any terminal program can manage
the communications. Plain old Hyper-
term works just fine.

that any Gerber or HPGL to flutfile
format disk conversion is a trivial
task for PostScript.

But, let’s create a simple language—a
language that asks as little as possible
in the way of flutterwumper smarts.

I want to limit flutfile commands
to printable ASCII text characters that
use ordinary higher data-rate serial
communications. This rate turns out
to be more than fast enough for the
maximum chomping speed of most
mechanical flutterwumpers.

I’ll initially restrict my flutfile
language to one that is immediately
interpreted. I’m not going to use loops
or subroutines, but I want to allow for
comments, a breaking debugger, and a
simple repeat.

Let’s assume a flutterwumper system
that requires precise steps in the x and y
directions but only simple up and down
actions in the z direction. The system
can use any coordinate system, and
PostScript is in charge of creating x-y–
equivalent motions.

A suitable flutterwumper metalan-
guage command set appears in Table 1. I
use numerals 0–7 for cardinal directions.
Let’s stick with the PostScript conven-
tion of due east being 0 and positive
degrees going counterclockwise.

Thus, ASCII numeral 0 means go due
east by generating one positive step in
the x-axis stepper direction. The nu-
meral 1 means to shift northeast by
generating positive x- and y-axis steps. A
2 means head north with a single
positive y step, and so it goes around
all the compass points to the south-

This PostScript code:

 /inch {72 mul} def
 0.4 inch 0.6 inch moveto  
 0 inch 0.8 inch rlineto   
 1.2 inch 0 inch rlineto    
 0 inch -0.8 inch rlineto   
 closepath stroke

Generates the following portion of a flutfile:

BH
121121121121121121121121121121121121121121121121121121121121
D
2222222222222222222222222222222222222222222222222222222222222222
2222222222222222000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000066666666666666666666666666666666666666666666666666666666
6666666666666666666666664444444444444444444444444444444444444444
4444444444444444444444444444444444444444444444444444444444444444
4444444444444444
UHQ

Here is a compressed version of the same flutile:

BH1Rh2R4D2Rp0R]R[6Rp4RRUHQ

Figure 2 —Here’s how some
basic PostScript code can turn
into a simple rectangle.
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This PostScript code:

/inch {72 mul} def
2 inch 2.5 inch 1.5 inch 
0 360 arc   
closepath stroke
 
   
                          

Generates the following portion of a flutfile: 

BUH
1101101110110111011011101101110110111011011101101110110111011011
1011011101101110110111011011101101110110111011011101101110110111
0110111011011101101110110111011011101101110110111011011101101110
1101110110111011011101101110110111011011101101110110111011011101
1011101101110110111011011101101110110111011011101101110110111011
011101101110110111011011101101
D222222222222322222223222223222223222322322232232232223232323232
2332232332323233233233233233333233333333333333433334333343343433
3434343343434343434434434434443443444434443444344444443444444443
4444444444444444444445444444454444454444454445445444544544544454
5454545445544545545454554554545545554555555455555555555555655556
5555655656555656565565656566565656566566656656666656666666566666
6665666666666666666666666766666667666667666667666766766676676676
6767676767667766767767676776776776776777677777767777777777777707
7770777707707077707070770707070707007007070707007000070007000700
0000070000000070000000000000000000000100000001000010001001000100
1001000101010101001100101010101101101110111111011111111111111211
1121111211212111212121121212121212212212121212212221221222212221
222212222222212222222222
UQ

Let’s take a look at three simple
PostScript flutfile examples. Since
flutfiles are all resolution dependent,
let’s assume that the required system
resolution is 100 steps per inch, or
10 mils per step.

Figure 2 shows a simple rectangle.
First, you home with pen or cutter up.
Then, shift to the lower left corner of
the rectangle and drop the pen. Next,
trace the entire rectangular path, raise
the pen, and return home.

To get from PostScript into your
flutfile, you need a PostScript routine
that intercepts PostScript commands,
finds their paths, converts the paths to
straight-line vectors, resolves these
vectors down into machine-dependent
steps, and then creates a flutfile. These
tasks are all trivial in PostScript.

A PostScript routine builds a flutfile
by intercepting the moveto, lineto,
curveto, and closepath operators.
Since nearly anything PostScript can
be redefined at any time for any purpose,
all these operators are redirected to
generate the output flutfile commands.
Acrobat automatically reduces com-
plex PostScript code into these funda-
mental elements.

The usual way to deal with fancy
artwork is to send it on through the
Distiller first and then print to disk to
extract the elemental PostScript com-
mands. Those commands are then
pasted into a PS flutfile generator. Or,
they are read and inter-
preted directly from a
disk textfile.

Flutfiles can be sent
in real time or saved to
disk and reused for pro-
duction. You can also
host-create elemental
flutfile libraries. Several
ready-to-use examples
of suitable tools are in
FLUTOOLS.PS on the
Flutterwumper Library
Shelf at <www.tinaja.
com>.

Note that any existing PostScript
code application can generate all of
your desired paths. Although I prefer
to write custom code in raw PostScript,
using Illustrator or any PostScript-
compatible drawing program works
just fine. In fact, nearly any existing
PostScript or Acrobat program can
automatically generate robotic flutfiles.

This means your robotic system
will automatically speak PostScript
from day one—royalty free and using
nothing but a PIC or two. Figure 2
shows us the PostScript code for a
simple rectangle.

A version using repeats and removal
of unneeded characters is also shown,
which dramatically shortens this
particular flutfile. Any positioning
commands now take slightly longer to
execute because they’re limited to 0–7
cardinal moves. If you always use
inches as the unit of measurement,
you can simply do a 72 dup scale
at the start of your file instead.

Figure 3 shows a 3″ circle. As you
can see, the code is even simpler.
Figure 4 depicts a Palatino R. Again,
you can use any PostScript artwork
creator or these simple raw PostScript
commands.

One minor gotcha: The font you
pick must already be ATM resident in
your host. If it isn’t, Courier is substi-
tuted for misspellings or non-Adobe
fonts. A rectangular bounding box is

Figure 3 —This code generates a
large 100-dpi circle.
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substituted for any real but unavailable
Adobe fonts.

A second minor point: Notepad has
problems with newline control char-
acters, so use Wordpad or some other
editor instead.

Above all, it’s important to realize
that your flutterwumper electronics
don’t care about all this fancy stuff. All
your custom hardware has to do is
convert ASCII characters into simple
steps, which is something a PIC can
do in its sleep.

IMPROVING RESOLUTION
Flutterwumper resolution tends to be

much poorer than what you see in any
laser printer. Obviously, there isn’t
much point in routing out some large
wooden display sign closer than, say,
1⁄16″. And, it is real tricky to force
better than 10-mils resolution from
any larger positioning hardware.

A flutfile can be set to almost any
resolution, so there’s no limit on how
fine you slice things. But on coarser
systems, there are a few tricks you can
pull that greatly improves your results.
With practice, you can easily “sight
read” any flutfile and make adjust-
ments on-the-fly.

First, retouch any grungy flutfile
elements so they look best at your
chosen resolution. For example, the

I  R  S
416 Very Useful
417 Moderately Useful
418 Not Useful

Don Lancaster is the author of 35 books
and countless articles. Don maintains
a U.S. technical help line at (520)
428-4073 and also offers books, reprints,
and consulting services. You may
reach him at don@tinaja.com.

SOFTWARE

To learn more about using PostScript
as a computing language, check the
tutorial DISTLANG.HTML at <www.
tinaja.com/acrob01.html>. Flutfile
generators and utilities are at <www.
tinaja.com/flut01.html>. Informa-
tion on Ghostscript is available at
<www.cs.wisc.edu/~ghost>.

SOURCES

Acrobat, Exchange, Distiller
Adobe Systems, Inc.
345 Park Ave.
San Jose, CA 95110-2704
(408) 536-6000
Fax: (408) 537-6000
www.adobe.com

Download Mechanic
Acquired Knowledge, Inc.
3655 Nobel Dr., Ste. 380
San Diego, CA 92122
(619) 587-4668
Fax: (619) 587-4669
www.acquiredknowledge.com

PowerScript
Videonics, Inc.
1370 Dell Ave.
Campbell, CA 95008
(408) 866-8300
Fax: (408) 866-4859
www.videonics.com

initial Palatino R in
Figure 4 looks a little
jaggy and unbalanced.
The retouched version
seems somewhat less
“Palatino-ish” but more
suited to a lower reso-
lution flutterwumper.

Retouching is slightly
different than the usual
font hinting processes
for coarse bitmaps
because diagonal paths
are permitted. It’s
especially useful for
character or libraries of
forms or other locations
where standardized code
is reused a lot.

A second resolution-
enhancing trick is step-
per-phase interleaving.
Most steppers employ
four phases or incre-

ments to complete a step. Each phase
moves you one quarter of the way
towards your goal.

So, as Figure 5 shows, instead of
jumping a whole x then y step on a 1-
3-5-7 slant move, you do a quarter x
then quarter y step. Your paths end up
much smoother and less jaggy.

For low-cost larger systems, you can
convert any automotive alternator into a
cheap power-stepper motor. Alternator
conversions often use three, not four,
phase steps, but the concept of stepper
phase interleaving remains the same.

PostScript P.S.
So, now you have some powerful

new tools to dramatically lower the
cost, reduce the complexity, and im-

a)

Figure 5a —Normal vector-to-step conversion produces
a quite jagged output. b—By contrast, stepper phase
interleaving improves the apparent resolution.

b)

This PostScript code:

  /Palatino-Bold findfont 100 scalefont setfont
  100 200 moveto
  (R) show 

Generates this portion of a flutfile:

BUH
1211212112121121121211211212112121121121211211212112121121121211
2112121121211211212112121121121211211212112121121121211211212112
1211211212112121121121211211212112121121121211211212112121121121
2112121121121211211212112121121121211211212112121121121211211212
1121211211212112121121121211211212112121121121211211212112121121
1212112
D
0101010101111111112121222122222222232232333233434343444344444444
4444444444444444444444444444444444444444444444444446666600000000
7676666666666666666666666666666666666666666666666666666666666666
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prove the performance of any low-end
to midrange robotics you develop.

Just split your motion-control prob-
lem in thirds. You only need to use
the simplest dedicated PIC hardware
on your robot. Have this hardware
respond to a flutfile or similar “el-
emental motions only” intermediate
file structure you create in PostScript
by using host-based Acrobat Distiller
or Ghostscript application utilities. I

Figure 4 —Flutfiles easily handle shapes as detailed as a Palatino R.



66       Issue 94 May 1998       Circuit Cellar INK®

Transient-Suppression Design
Technique

MICRO
SERIES

Joe DiBartolomeo

i

EMI Gone
Technical

To tie
together all
his ideas on

protecting against EMI
and transient threats,
Joe presents the
protocol he uses when
designing for transient
protection. These
general guidelines
help you stop EMI
from sneaking through.
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From the Bench

Silicon Update

DEPARTMENTS

4

n the previous
installments of

this MicroSeries, I’ve
given you a look at the

most common types of transient elec-
tromagnetic threats and their associ-
ated waveforms.

You’ve also become well-acquainted
with the components most commonly
used to protect electronic equipment
from these transient threats.

In this final article, I take all the
discussion and put it together as a
straightforward design protocol. It’s
the method I use when designing
transient protection.

DEFINING THE PROBLEM
When you’re designing transient

protection—or any EMI protection for
that matter—keep in mind the classic
source-path-receptor model shown in
Figure 1.

For an EMI problem to occur, you
need three components—a source of
EMI, a receptor susceptible to it, and a
coupling path between the source and
receptor. Although this model is nor-
mally applied on a systems level, it is
also valid on a circuit level.

4

Figure 1 —The source-path-receptor model is often
used as a starting point for detailed EMI designs and
solutions.

Source Receptor

Coupling Path
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The solution to any EMI problem
lies in breaking this chain. You can
eliminate the source of EMI, break the
path between the source and receptor,
or as I’ll discuss in this article, design
the receptor so that it’s not susceptible
to transient EMI.

At the systems level, the source of
the transient and the coupling path are
rarely under the control of the recep-
tor designer. So, to protect against
transient threats at the system level,
you have to protect the receptor.

However, the situation improves
when the transient enters or is gener-
ated within the equipment. Inside the
equipment, you have some control
over the coupling path and, in some
cases, the transient source.

Another thing to keep in mind
when designing for transient protection
is that transients are RF problems.
This factor complicates the process.

In RF design, things aren’t what
they seem to be. A wire is a not a
wire—it’s a resistor and an inductor.
Components such as capacitors vary
greatly with frequency, depending on
lead inductance and composition.

For an example of how components
change at high frequencies, take a
look at the diode in Figure 2a. The
ideal diode blocks the negative portion
of the sine wave and passes the posi-
tive portion.

However, many diodes exhibit this
ideal behavior only at low frequencies.
As the frequency of the input sine
wave increases, the diode junction
capacitance comes into play, as illus-
trated in Figure 2b.

As a result, at high enough frequen-
cies, the diode passes both the positive
and negative portions of the AC wave-
form. This nonideal behavior can fool
you into thinking you have protection
when you don’t.

In Figure 2c, an electrostatic dis-
charge (ESD) is applied to a reverse-
biased diode. With a risetime of 0.7 ns,
the ESD has frequency components
into the gigahertz. Therefore, the ESD
is coupled across the diode via junction
capacitance.

You can think of the diode junction
capacitance as a hidden element. At
higher frequencies, all components
have them. These hidden elements

can make it difficult to design transient
protection. It’s a good idea to draw
out your circuits with all the hidden
elements, thereby exposing any hid-
den paths a transient might take.

But please, don’t get intimidated by
RF and EMI and think you need to
solve Maxwell’s equations. Start with
the basics and go from there.

For example, plan the route the
transient current will take. Don’t
leave it to chance. Transient currents
are normally routed to ground, so make
sure you have a good RF connection to
a good RF ground.

Place suppression components as
close to the devices being protected as
possible. Keep leads to suppression
components as short as possible. Basi-
cally, follow good RF design practices.

Now, there are many approaches to
hardening a system or circuit to tran-
sients—probably as many approaches
as there are designers. Of course, I have
my own, which I consider fairly simple.
In fact, my approach is more a general
thought process than a technique. I
missed my calling as a philosopher.

The best way to illustrate the pro-
cess is by example. Let’s say you’re
designing transient protection for a
piece of test equipment—an automatic
circuit-board tester or oscilloscope.

These types of instruments are
normally connected to the mains
(lightning). Their attached I/O cables
are subjected to ESD and electrical
fast transients/bursts (EFT/B).

PROTECTION ZONES
My first task is to divide the equip-

ment into three zones or levels of
required protection—interface, inter-
board, and IC—as illustrated in Figure
3. Each zone has its own characteris-
tics and requirements.

When considering the interface-
protection zone, I am concerned with
how as well as how much of the tran-
sient will enter the equipment.

At the interboard-protection level,
I’m thinking about what happens once
transients enter the equipment and
are distributed via the wiring to the
PC boards.

And at the IC level, I’m consider-
ing what happens once a transient
reaches the individual IC.

The idea of the three protection
zones is quite simple. Among the
three, any transient will be suppressed
because each zone serves a particular
purpose. That is, it handles the por-
tion of the transient it’s responsible
for and leaves the remainder for the
other zones.

In general, the components used in
each zone have specific characteris-
tics. These are listed in Table 1.

The components in the interface-
protection zone can handle the great-
est amount of transient energy, thereby
preventing as much of the transient as
possible from entering the equipment.
They also tend to have slower turn-on
times and are coarse with high turn-
on voltages.

One example of a component used
in the interface-protection zone is the
gas discharge tube. Gas discharge
tubes can handle a great deal of energy,
but their turn-on voltages are far too
high to protect individual ICs.

Even though interface-protection
components are what transients nor-
mally encounter first, it is the inter-
board- or even the IC-level protection
components that turn on first. There-

Figure 2a —The ideal diode blocks the negative portion,
whereas the nonideal diode (b) passes the entire sine
wave due to junction capacitance. c—The very high-
frequency components will get coupled across the
diode even though it’s reverse biased.

0

0 0

0

0.7 ns

a)

b)

c)

Figure 3 —Between the three zones—interface, inter-
board, and IC—an incoming transient is suppressed,
with each zone absorbing its portion of the transient.
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fore, another important
function of the interface-
protection component is
to protect the interboard
and chip-level transient
suppressors.

The interboard-protec-
tion components bridge the
gap between the interface
and IC-level components. These devices
have two primary functions—to turn
on before the interface components and
to protect the IC-level components.

By comparison, the chip-level pro-
tection components, which protect
the individual ICs, have the fastest
turn-on times and lowest on-voltages
but they handle the least energy.
Depending on the transient, IC-level
components are the first to turn on.

But as I mentioned, IC-level sup-
pressors depend on the other suppres-
sion components for protection. On
its own, a TVS diode provides little
protection from a lightning transient.

In Part 3, I presented a table of
specification for each type of transient
suppressor, and in Part 1, I gave the
technical details of the transient wave-
forms. Taken together, they should
make it fairly straightforward for you
to select suppression components for
the interface, interboard, and chip-
level protection zones.

Any component may be required in
any protection zone. For example, at
the interface-protection zone, there
are basically two places a transient
can enter the system—the power mains
and the I/O ports.

The transients that the mains sees
normally differ from those encountered
at the I/O ports. The mains are sub-
ject to lightning and EFT/B, whereas
ESD normally isn’t a concern. I/O
ports on the other hand, are subject to

ESD, but lightning and EFT/B may not
be of concern, depending on the appli-
cation.

However, take care that the zone
can handle the current generated by
the transient. For example, the wiring
to a gas tube must be able to handle
the currents generated by lightning.

If a gas tube is placed on a PC board,
then the tracks of the PC board must
be able to handle the lightning’s tran-
sient current.

SUSCEPTIBLE POINTS
After breaking the system down

into three zones, I identify points
within each zone where transients
can enter. I also identify every point
in the system that is susceptible to
transients.

I then draw the circuits, as the tran-
sient would see them—from every sus-
ceptible point to every entry point. For
each schematic, I ask several questions:

• what are the transients I expect to
see at this point, and what do their
waveforms look like?

• what level of protection is required?
• what protection components are at

my disposal?
• how will the protection component

protect my circuit/system?
• how will the protection components

affect the operation of my circuit/
system?

So, let’s put all this information
together and see how it works.

Figure 4 depicts a generic
line being protected. At the
interface to the outside world is
a gas tube. A series impedance
leads to the metal oxide varistor
(MOV) in the interboard zone,
and the IC-protection zone has
a TVS diode.

Generally, there are two
types of transients—those that

Figure 4 —In this generic protection scheme for an I/O line, each
suppression component handles a specific function. Together,
they provide complete protection.

Chassis

Gas
Tube

Series
Z

MOV TVS
Diode

IC to be
Protected

Table 1—Suppression components used in each zone have general
characteristics.

Current
Zone Capa bilities Turn On On Voltage

Interface High Slow High
Interboard Moderate Moderate Moderate
Chip Low Fast Low
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are very fast with low
energy content (e.g., ESD)
and those that are slow
but with high energy
content (e.g., lightning).
What happens when ei-
ther one of these tran-
sients hits the system?

In the case of ESD, the
interface components are
of no use. The transient will have
come and gone by the time the protec-
tion device turns on.

Recall that a gas tube takes 100 ns
to turn on, and the ESD pulse is typi-
cally in the nanosecond range with a
rise time of less than 1 ns. An MOV
turns on in about 50 ns, so it too is
unable to follow the ESD.

Faced with an ESD, only the board
TVS diodes can provide protection.
Luckily, the TVS diode has enough
energy-handling capability to suppress
the ESD on its own.

In the case of lightning, the rising
edge generally gets by the gas tube
devices. This is known as overshoot.

The MOV can normally follow the
leading edge of the lightning, and if
anything gets through, there’s still the
IC-level protection. However, since
MOVs derate with use, it’s important
that the series impedance and gas
tube protect the MOV after it has
handled the lightning’s leading edge.

Figure 5 gives another example.
Here you see a typical RX line on an
RS-232 link. The RX line comes in via
a DE-9 connector and is wired to the
TX/RX IC. How do you protect the RX
line on the transceiver IC?

Draw the schematic at the RX
input to the transceiver. What does
the input to the transceiver look like,
and what is connected to the trans-
ceiver? (Don’t forget the power pins
on the IC.)

Identify transient inputs that can
couple to this point, and draw out the
coupling circuit for each transient
source. Then ask yourself the above
questions.

The RX line could be exposed to any
or all of the common transients—ESD,
EFT/B and lightning. However, ESD is
most likely the biggest threat. Clearly,
the power lines and the RX line to the
DE-9 will be sources of transients.
Depending on your system, however,
more transient threats could arise.

Standards require RS-232 lines to
be able to withstand up to 15 kV of
ESD. There are TX/RX ICs that can
handle transients of this size without
needing external suppression compo-
nents. However, the level of protection
required may be more than 15 kV.

Since the RX line is most likely to
see ESD, the protection components
are limited to the TVS and perhaps
zener diodes. If it were my choice, I’d
go with TVS diodes (see Part 3).

Place the TVS or zener diode in shunt
with the RX line, and protect the RX
line by diverting the transient current
to ground. The capacitance of the TVS
diode or the zener won’t affect the edges
of the RS-232 line, but for higher speed
links, you should consider the shunt
capacitance of the protection devices.

GET THE DETAILS
Detailing every point in this manner

may seem a little obsessive. Surely,
some points can be ignored. How-
ever, even when it seems that
transient protection is well under
control, detailing it points out
potential problem spots.

Figure 6 illustrates a simple
power supply I designed using two
commercial bricks. The external
brick converts the AC to DC, and
an internal brick provides DC-DC
conversion.

Figure 6 —To avoid EMI problems, designers may buy off-the-
shelf power converters. However, you need to ensure that the
EMI specs of the commercial converters meet the EMI specs
of the final system.

AC to DC
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DC to DC
Converter

±VI

±Vn

AC
Line

Figure 5a —Here’s a standard RX line interface. b—The addition of the hidden components
make it much easier to design for transient suppression. You should repeat this technique at
every transient-susceptible point.
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Joe DiBartolomeo, P. Eng., has over
15 years’ engineering experience. He
currently works for Sensors and Soft-
ware and also runs his own consult-
ing company, Northern Engineering
Associates. You may reach Joe at
jdb.nea@sympatico.ca or by telephone
at (905) 624-8909.

With this setup, I
avoided a lot of the tran-
sient-protection details.
The designers of the
bricks took care of it,
right? Oops, this could get
me into a lot of trouble.

There’s no doubt the
designers of the bricks
provided transient pro-

tection, but just because the transient
protection was sufficient for their
needs doesn’t mean it’s sufficient for
mine. I need to reask myself the ques-
tions I asked above.

Normally, ESD isn’t a power-port
problem because the mains are wired
into the unit. ESD is most common
when a person comes in contact with
the system/circuit. However, with the
external brick, ESD becomes a problem
that I’ll have to address.

Well, there you have it—my approach
to transient design. As you see, I take
a general approach filling in the details
on a case-by-case basis. Why? Because
the interaction between a transient
and a system or circuit depends as
much on the system or circuit as it
does on the transient.

HEADS UP
On a related note, a new version of

the generic immunity standard for
residential, commercial, and light
industry is now in place. EN 50082-1:
1997 replaced EN 50082-1:1992 and
came into effect March 1, 1998.

If you ship to the European Com-
munity, be aware that the new standard
expands the immunity tests. For more
information on EMI tests, please refer
to my MicroSeries in INK 79–83. I
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FROM THE
BENCH

Jeff Bachiochi

y

Rebirth of
the Z8

Want to
see the
future?
Jeff’s
project

merges a piece of the
past (remember your
old Magic 8-ball?)
with Zilog’s new OTP
processors. It’s
crystal clear how
easy it is to implement
one of these new Z8s.

ou can’t do any-
thing useful in

0.5 KB. I used to hear
that all the time.

Nowadays, we know better. There
are plenty of small tasks out there that
can be performed adequately by the
new generation of small processors.

Last month, I talked a bit about
Zilog’s new OTP line of processors
using the proven Z8 core. This time, I
want to base a project on Zilog’s bot-
tom-of-the-line device, the Z86C02.

This 18-pin DIP or SOIC device has
11 I/Os plus three inputs, which can
be either digital/interrupt or comparator
inputs. The single timer can be exter-
nally clocked or gated. What could I
possibly do with this little beastie?

And then it rolled right in front of
me. What’s black and
round, looks like an en-
larged billiard ball, and
answers all the great ques-
tions of the young? I had
one as a child. My young-
est now plays with one.

And it looks like the Magic 8-ball has
survived another fall to the ground.

For those of you who aren’t famil-
iar with the 8-ball, it is a liquid-filled
sphere that has a small clear window.
You ask the 8-ball a yes/no question
as the ball is agitated.

One side of a polygon within the
liquid then settles against the clear
window, revealing the 8-ball’s remark-
able prophecy. What better introductory
project for this Zilog processor than
the Mystic Z8-ball shown in Photo 1?

This project requires an LCD, a
couple of switches, and a few batter-
ies. The smallest single-line LCD I
could find was an eight-character
display. That’s too small because I
want the whole message to be dis-
played at once.

I settled on a 1 × 16 character display.
I also wanted to have at least 16 separate
messages. So let’s see, 16 messages
times 16 characters, that’s 256 bytes
of text. Wait, that’s half the available
code space! This doesn’t look good.

HARDWARE
Despite the queasy feeling in my

stomach, I went ahead and drew up a
schematic, shown in Figure 1. Notice
that SW1 applies the power to the
circuitry. This microswitch is located
just inside the Z8-ball’s base. It closes
when the ball is lifted from the desk,
coffee table, or other flat surface.

The second switch, SW2, is a mer-
cury switch that opens when the LCD
(mounted in the base) is tilted up and
closes when it’s flipped back over (or
agitated).

Penlight (AA size) batteries power

Part 2: Let Your Micro Answer All

Photo 1 —I used a plastic ceiling
globe for the Z8-ball. It’s slightly larger
than the original 8-ball. The circuitry is
barely larger than the 1 ×  LCD
module.
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the processor LCD and
backlighting for the dis-
play. Although the
display’s backlight is by
far the highest current
draw, the on-time is char-
acteristically short, so the
batteries should last a
long time.

Most parallel LCDs
can be set up to run with
either an 8- or 4-bit data path. Having
plenty of I/O pins available, I opted
for the simpler 8-bit mode.

Handshaking with the LCD can be
accomplished via the RD/*WR control
line. The LCD signals that it’s busy
processing data by holding the busy
data bit high until it’s again ready for
more data.

But, this particular feature can’t be
used during the reset sequence. The
reset sequence is regulated by strict
minimum data-to-data timing. Since
the ability to handle this timing must
be incorporated for the reset sequence,
you can use this minimum timing as
a guide to the readiness of the LCD
without getting into a more compli-
cated test for busy/not busy.

Very few different LCD controller
chips are used on LCDs. And, the
ones that are used are so flexible they
can interface with many glass formats,
alone (for small LCDs) or expanded
with additional segment drivers.

But, this flexibility doesn’t come
for free. The cost is an initialization
that must be performed to configure
the processor for the format of the
display it will be driving.

Most controllers adhere to a de
facto standard. The controller must
know the data path width (8- or 4-bit),
the format of the character generator
(5 × 7 or 9 × 11), and the number of
lines to the display (1 or 2).

Next, the controller needs to know
if you want it to shift the characters
(scrolling) or the print position (swip-
ing). Finally, you need to enable and
disable the display as well as indicate
whether or not the cursor should be
invisible, blinking, or steady.

Other commands sent to the pro-
cessor clear the display and enable the
cursor to be positioned anywhere on
the display. All these commands are

carried out by communicating with
the control register.

To print a character to the display,
you need to communicate with the
data register. The character passed to
the data register is used as an offset
into the character generator’s table.

The table stores the 5 × 7 character
matrix. This matrix is the row/column
pixel array which, when transferred to
the display position, is a picture repre-
senting the character being sent.

SOFTWARE
I always like to map out my strategy

with some simple flowcharts. Figure 2
shows the direction I expected to
take. A study of the reset conditions
of the Z86C02 processor identifies the
registers that need to be initialized
prior to getting any real work done.

The code I started out with used
only direct register addressing–that is,
calling out the full 8-bit address of
every register I used. No shortcuts on
this first pass.

After initializing all the
registers (and I/O ports), I
turn my attention to the
LCD initialization. The 8-bit
LCD mode lets me commu-
nicate twice as fast as with
the 4-bit mode, but speed
here isn’t an issue. Only five
control bytes need to be
passed to the LCD processor
to complete its initialization.

There are eight services
you can instruct the LCD
processor to do. These are
discerned by the number of
zero bits preceding the first
one bit in the control word
sent to the LCD processor.

Not all of these services
need to be used. At a mini-
mum, it’s necessary to set up

the 001xxxxx function
set, the 0001xxxx
shift set, 00001xxx
display set, 000001xx
entry set, and
00000001 clear set
(see Table 1). The x’s
are bit selections for
choosing the set-up
parameters for that
service (e.g., cursor

on/off).
Since I wasn’t going to do any soft-

ware-busy checking, I needed to pay
attention to time. All commands are
finished in less than 20 ms. Most take
less than 50 µs.

I chose 2 ms as my standard waiting
period (clear screen takes 1.64 ms). So,
I can clear and print a message in under
50 ms. The wait routine is done as soft-
ware loops instead of using the timer.

Even though it might be easier (and
a lot more accurate) to use the timer, I
may not have the code space available
to set up the timer for each individual
time spec. Besides, this way I can let
the timer free run to give me a pseudo-
random number whenever the user
moves the Z8-ball and closes SW2
without having to set it up to free run
each time I need a random message.

Once the user asks a question of
the Mystic Z8-ball and turns up the
LCD, SW2 opens and the timer is
read. The lower four bits of the timer

Figure 1 —Zilog’s OTP processor needs little external support for this simple application.

Function Set = 001dnfxx
where d = data width 8/4 bits

n = 2/1 display lines
f = 5 × 10/5 × 7 character font
x = no parameters

Shift Set = 0001wdxx
where w = display/cursor shift

d = shift left/right
x = no parameters

Display Set = 00001dcb
where d = enable/disable display

c = enable/disable cursor
b = blinking/steady cursor

Entry Set = 000001is
where i = increment/decrement position

s = shift/no shift display window with cursor

Clear Set = 00000001
(no parameters)

Table 1—The position of the leftmost 1 determines the control
register written to within the LCD.
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are masked (number of possible mes-
sages to choose from) and the result is
shifted (multiplied by 16, the number
of possible characters in a display
message) to give an offset to the begin-
ning of the chosen (random) message.

The actual message table address is
then added to the offset so the block
move loop can find the message and
pass each character to the display. I
chose not to use the canned multiply
routine, although Zilog has a number
of useful canned routines available.

After displaying the message on the
LCD, the program jumps back in
anticipation of another earth-shattering
question. Turning over or agitating
the Z8-ball closes SW2, blanking the
display, and the process begins again.

MASM
With the moment of truth at hand,

I load my code into Zilog’s MASM,
pop a Coke, and watch for the inevi-
table error messages to appear. Sure
enough, they scroll off the screen and
end with the message “too many
errors.”

OK, it couldn’t identify some of
the register names I used. A little
more research corrected most of these
errors.

Another pass through MASM and a
bunch more errors with the final mes-
sage “not enough space in ROM for
code.” Ouch. A view of the .LST file
showed the code filling the 0.5 KB of
space about halfway into the message
table. Hmm….

The I/O port registers I needed to
write to were in the first working regis-
ter bank (the first group of 16 registers),
so I mapped the registers I needed into
that space. The Z8 has 16 groups of
working registers, with the control
registers residing in the upper bank.

By changing from direct register
addressing to indirect register address-
ing, I could save a byte on each of
those instructions. By setting the
working register group number in the
RP register, I can call out registers of
interest using a nibble (indirectly)
instead of a byte (directly). This im-
provement made a big dent in the
code space needed, but it wasn’t enough.

A look at each of the routines
showed the LCD initialization requiring

Figure 2 —Drawing a flowchart helps me organize my
thoughts when I’m beginning a project.

a big chunk of code. Each control
word written had a lot in common.

Given the millisecond-loop setup, I
could move the data strobing into the
millisecond loop where it would take
up minimum space. True, that’s not
where it belongs, but I could still
jump into the middle of that wait
routine and avoid strobes when I was
timing things other than the period
between LCD writes.

Now, I was able to assemble the
code and stay within the bounds of
the Z86C02’s available memory.
However, a successfully assembled

file does not necessarily make a logi-
cally correct process.

Z8 ICEBOX
I don’t want to guess how much

this ICEBox costs Zilog to produce,
but for $99, it’s a real deal. Getting
these things into engineer’s hands is
bound to help Zilog get designed in,
and that’s really the bottom line.

There are a number of jumpers on
the Z86CCP00ZEM in-circuit emula-
tor. It certainly pays to read the docu-
mentation before trying to use this
board.
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I  R  S
422 Very Useful
423 Moderately Useful
424 Not Useful

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar INK’s engineering staff.
His background includes product design
and manufacturing. He may be reached
at jeff.bachiochi@circuitcellar.com.

SOURCE

Z8, ICEBox
Zilog, Inc.
210 E. Hacienda Ave.
Campbell, CA 95008-6600
(408) 370-8000
Fax: (408) 370-8056
www.zilog.com

The ’ZEM has typical windows
software for keeping track of general-
purpose and control registers, timers,
I/O, and the like. The debug window
permits single-stepping, step-over, and
breakpoint entries. You can run your
code in real-time or animation (auto-
matic single stepping) mode.

I found myself missing the reset-
table execution counter found on
other tools. This counter enables you
to take accurate timings of specific
routines.

In place of a cycle counter, I often
flip an unused output bit going into
and out of the routine in question.
With a scope, it’s easy to monitor the
bit and get an accurate reading of the
routine’s timing.

After setting up the ’ZEM, attaching
my circuit with the included 18-pin
cable, and downloading the assembled
code, I clicked Go. The display jumped
to life by printing eight 5 × 7 blocks.

Well, these blocks are typical for a
display that hasn’t been initialized.
So, not only was the initialization
code not working, but only the first
half of the display was working.

A look at the LCD’s datasheet
revealed the words “16 character ×
1 line.” I was setting it up right, right?

I seem to remember that, many
times, the display isn’t exactly as it
seems. The 20-character × 4-line dis-
plays I used were in fact 40 characters
× 2 lines. The last half of each line
was chopped off and placed under the
first two lines.

So, if you didn’t control the posi-
tioning, the message started out on
the first line, continued on the third
line, jumped up to the second line,
and continued on the fourth line.
Could the datasheet be misleading?

A look at the LCD’s block diagram
indicated that the processor could
handle two 64-byte segments. Could
this display be 8 character × 2 lines?

I had to append the display mes-
sage (see Figure 3) routine to include
a test for the ninth character. When
the ninth character was encountered,
the cursor had to be repositioned to
the 40H byte before the final eight
characters were displayed.

Unfortunately, this added enough
source code to put me back over the
top again. Arrgh.

A second look at the timing rou-
tine simplified the code enough for an
assembly within bounds (two bytes
shy of full). By using a single-byte
loop register as the minimum time
increment (750 µs), I could use a byte
pair (word) as an outer loop counter
(that’s up to 50 s).

The DECW instruction lets the reg-
ister pair be decremented (it takes
care of the byte boundary carry task),
saving a few instructions over the

Figure 3 —Adjustments to the display routine were
required because the 1 × 16 LCD turned out to be a 2 ×
8 display.
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three-byte, three-nested loop routine I
used previously. Success at last.

I’m nearly done. As I look over the
display routine, I see that I set up the
routine to use any number of random
choices. It so happens that I’m limited
in this program to 16 choices.

Instead of multiplying my lower
timer nibble (1 of 16) by 16 (the num-
ber of characters in a message), I could
have just used the SWAP (nibbles)
instruction and saved a bunch of rotate
instructions. Oh, well. There’s always
room for improvement!

JUST ASK!
Presentation is a big part of this

project, and finding the right spherical
container can be a challenge. For the
best effect, try to make it resemble
the original 8-ball as closely as possible.
Then, you’re ready.

Pick up the Z8-ball and turn it
over, and the backlit LCD reads “Mystic
Z8-ball.” After a few seconds, another
message appears, “Ask and shake me.”

Asking the mighty know-it-all,
“Do you truly have psychic powers?”
I shake it wildly. Without a second
thought, the Z8-ball answers, “No, I
doubt it.”

Ahh. I guess this seeing into the
future doesn’t work after all. But wait
a sec…if the Mystic Z8-ball knows it
doesn’t have psychic powers, doesn’t
that mean it does? I
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SILICON
UPDATE

Tom Cantrell

l

FPGA Tool Time

It’s fine to
have a
low-cost
FPGA,
but if the

tools cost a mint,
you’re still in trouble.
However, Tom’s
found some bargain
basement tools just
as far away as your
local Internet
connection.

ast month, we
looked at Xilinx’s

Spartan line of FPGAs.
The premise behind their

(and competitors like Altera, Actel, and
Lucent) bargain-priced chips is simple.
If you build it (and the price is right),
they (high-volume designs) will come.

Sounds good, but hold your horses.
There’s the small matter of tools needed
to turn a blank FPGA into something
other than a high-tech paperweight. In
fact, the performance-at-any-price image
of FPGAs is as much a by-product of
expensive, complex tools as the cost of
the chips themselves.

Historically, FPGA suppliers have
seemed more interested in making
money on the tools than promoting
chip design-ins. For many years, Xilinx
kept tight control over their place and
route technology, giving new meaning
to the concept of
one-stop shopping.
Without access to
internal P&R tech-
nology, a would-be
FPGA tool supplier
faces a situation
akin to writing a C
compiler for a chip
with a secret in-
struction set.

Fortunately,
FPGA suppliers
have realized that

you’ll probably sell more blades if you
don’t charge $10,000 for the razor. A
bit of browsing in the tool department
finds wider selection, more function-
ality, and lower prices.

DIALING FOR DEVELOPMENT
SYSTEMS

Phil Freidin, local FPGA guru, turned
me on to a great programmable-logic
Web site. Poke around www.optimagic.
com/lowcost.html, and you’ll find
your way to a bunch of good deals.

For instance, the Foundation toolset
from Xilinx is a shrink-wrap total
solution that runs on PCs or worksta-
tions and includes everything you need
to enter, simulate, and implement a
design. However, at $3995 ($5995 with
VHDL synthesis), it doesn’t exactly
encourage casual experimentation.

But look closely. You’ll find they’re
offering a promotional version for $95
that’s fully functional but restricted to
8k gates. Better yet, head on over to
Associated Professional Systems (www.
associatedpro.com) and you find the
Xilinx promo package bundled with
PC-plug in evaluation boards starting
at $340.

Bleeding-edge ASIC designers increas-
ingly use FPGAs to prototype their gate
arrays before signing that big, noncan-
celable PO. Synopsis leverages the trend
with FPGA Compiler, a version of
their popular Design Compiler ASIC
synthesis tools that run under Unix.

They also offer FPGA Express, spe-
cifically targeting FPGAs and running
on PCs (assuming your box is up to
snuff; 64-MB RAM is recommended).
A free evaluation version (1k-gate limit)
of FPGA Express can be had at www.
synopsys.com/products/fpga_pc.html.

Figure 1 —A virtue of FPGA signal processing is that it allows designers to tune
price and performance tradeoffs optimally for their particular application.
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INK 68). For instance, confronted
with the seemingly innocuous:

if (GATE = '1') then
  Q <- DATA;

the synthesizer creates a latch to re-
member the previous value of DATA
to know what to output on Q when
GATE = '0'.

While a bit of headscratching is the
price to pay for explicit control over the
hardware implementation, other dis-
turbing gotchas hide in the gap between
tool and chip. It’s a two-edged sword,
imposed by the inability of synthesis
tools to both insulate designers from,
and grant access to, the specifics of
the underlying FPGA architecture.

As an example of the former, the
obvious way to code a 16-bit barrel
shifter is as sixteen 16:1 multiplexers
as shown in Listing 1a. Of course, you
could get tricky and come up with a

two-tier scheme (see
Listing 1b) comprising
a 0-, 1-, 2-, or 3-bit
rotate followed by a 0-,
4-, 8-, or 12-bit rotate,
but that seems dumb.

Or is it? It turns out
that for Xilinx chips the
latter design is a better
fit. It consumes less
than half the CLBs (32
vs. 80) and even runs
faster (3 CLB delays vs.
4) than the “obvious”
design option.

Xilinx
Core CLBs Supplier

8051, 6502, 500+ (est.) VAutomation, Virtual IP Group,
   Z80-compatible CPU    Mentor Graphics
V8 8-bit CPU 268 VAutomation
   with 64-KB addr. space
TX400-series CPU (scalable) 120+ T7L
16450-type UART 130 Comit Systems
Multimaster I2C 137 Memec Design Services
HDLC controller 200 CoreEl Microsystems
146818-type real-time clock 100 (est.) Virtual IP Group
PCMCIA interface library 20–30 Digital Objects Corp.
USB function, hub controllers 600–960 Mentor Graphics

Table 1—Mining IP gold starts with a core sampling. The emergence and growth of third-party IP
providers enables FPGA system-on-a-chip aspirations.

approach to hardware develop-
ment. The problem: schematics
would eventually run out of
gas, with designers buried
under thousands of pages.

Was I right? HDL tech-
niques are now widely used
for complex chips. However,
the life of schematics has been
extended by the development
of macros that bury many
gates into a single symbol,
and they remain many designers’ first
choice for lower gate-count designs.

Though describing hardware in HDL
is much like programming, there are
fundamental differences. For instance,
software types generally needn’t be
concerned about the difference between
statements like:

X = A + B + C + D

and

X = (A+B) + (C+D)

However, these statements certainly
don’t generate equivalent circuits in
HDL. The former cascades three adders
in series, whereas the latter pairs two
adders feeding a third, so it’s faster.

Watch out for inferred memory—
latches created by if statements
without an else clause (a subject I
discussed in “Pick a Peck of PLDs,”

Exemplar, now a subsidiary of EDA
Mentor Graphics, is known as one of the
early pioneers of FPGA-optimized syn-
thesis. Their Galileo tool automatically
infers technology-specific RAMs,
eliminating the need to manually force-
fit a particular FPGA’s scheme and
maximizing device portability.

Similarly, their module generation
approach (MODGEN) automatically
detects many common arithmetic and
relational operators and synthesizes
technology-specific solutions rather
than random logic. An entry-level
package, GalileoFSxi, specifically
targets Xilinx FPGAs and includes
VHDL or Verilog tutorials. Check out
demo deals at www.exemplar.com.

Although it’s a relative newcomer,
Synplicity is garnering a reputation for
quality output and fast compile times
with their Synplify package. If your PC
is a bit pokey (Synplify is one of the few
packages that runs on Windows 3.1 as
well as 95, NT, and workstations) and
you get tired of hour-long coffee breaks,
check out their 20-day evaluation
package at www.synplify.com/down-
loads/platform.html.

Other big players and good deals
include OrCAD with their Express NT-
based VHDL package (get a free demo
CD via www.orcad.com), Accolade’s
PeakVHDL and PeakFPGA (www.acc-
eda.com), and Minc (recently acquired
Synario from Data I/O) with their
$495 VHDL Easy (www.minc.com/
html/vhdl0.html).

SYNTHESIS GETS REAL?
Hard to believe it was way back in

1990 when I wrote my first article on
the subject of logic synthesis (“VHDL—
The End Of Hardware,”
INK 17). Guess I’ve been
having fun because the
time’s sure flown.

The article introduced
VHDL, an Ada-like lan-
guage originally designed
for simulation but called
into duty for chip design
(like that other popular
HDL, the C-like Verilog).

Back then, I predicted
that typing in a chip using
HDL would replace the
traditional schematic

Photo 1 —Configurable library modules,
like this Xilinx filter, insulate designers from
the gory details of FPGA-specific architec-
ture and optimization.
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different than any others. But,
as we saw last month, mod-
ern FPGAs do understand
the difference, offering dedi-
cated pins, routing channels,
buffers, and so on.

Treat clocks and reset like
any other signal in your HDL
code, and you’ll end up with
some wimpy connection
routed hither and yon, lead-
ing to all kinds of headaches.
Yes, it’s possible to get around
the problem with nonstand-
ard, device-specific hacks in
your HDL, but you’ll have to
keep track of two versions of
your code—one that synthe-
sizes and one that simulates.

 The myriad details are
hard to learn, and they vary
across different vendors’
architectures. However, for

big chips, there’s really no other choice.
Echoing Winston Churchill’s com-
ments about capitalism, synthesis
may be a terrible system, but it’s the
best there is.

JUST DO IP
Until synthesizers get to the point

where they understand what should be
done, rather than just doing whatever
you tell them to do, a solution comes in
the form of IP (Intellectual Property).
It comes from the vendor and encapsu-
lates device-specific know-how.

Don’t write your own barrel-shifter.
Just pop in a canned one that’s already
been tested and optimized. Xilinx offers
a spectrum of IPs under the umbrella
of CORE Solutions, which is composed
of reference designs, LogiBLOX, Logi-
CORE, and AllianceCORE.

Reference designs comprise a collec-
tion of application notes describing
techniques and/or specific designs for
commonly used functions like the afore-
mentioned barrel shifter, counters,
FIFOs, PWMs, and so on. Note that
these, like typical application notes,
aren’t warranted or supported. But the
price—free—is certainly right.

LogiBLOX goes one step further,
wrapping generic functions in a GUI
that allows easy modification of param-
eters such as counter, shifter, decoder,

On the other side of the coin, syn-
thesizers’ high-level pretensions often
mean they’re oblivious to nitty-gritty
details. For instance, to a synthesizer,
signals like clock and reset are no

Figure 2 —The V8 from VAutomation is the first in a wave of new CPU
cores designed specifically for the IP market.
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or multiplexer width, as well as memory
type (ROM, RAM, dual-port RAM) and
size. So, rather than having to juggle a
library of, for instance, 6-, 7-, and 8-bit
counters, the one you need is always
just a few point and clicks away.

LogiBLOX also bridges the gap
between schematic and HDL design
styles. Module lookup and configura-
tion can be invoked directly from third-
party schematic editors (e.g., Aldec,
Viewlogic, Mentor Graphics, Cadence,
etc.), creating a placeable symbol.
Alternatively, modules can be instan-
tiated into an HDL design for simula-
tion (both behavioral and gate level)
and synthesis.

While LogiBLOX is included with
basic development-tool packages, Logi-
COREs are higher level, extra-cost func-
tions sold and supported directly by
Xilinx. For example, a PCI core enables
designers to integrate PC plug-and-play
with application-specific logic.

Deliverables include schematics,
netlist, and both VHDL and Verilog
simulation models. Options such as
initiator/target, burst transfer timing,
and FIFO size are easily customized to
tune performance from 20 to 100 MBps.

The other major LogiCORE offering
is the DSP Core Generator, a library
of parameterized DSP functions. Like
LogiBLOX, the DSP functions (adders,

accumulators, and even com-
plete filters) are configured
with point and click dialogs
as you see in Photo 1. They
also deliver output for both

schematic and HDL design regimes.
DSP applications are an especially

good match with Xilinx FPGAs, thanks
to distributed-arithmetic algorithms.
For instance, a filter distributes coeffi-
cients across multiple CLBs, using the
LUTs as “ROM.” Sample bits are pro-
cessed serially, but all taps of the
filter are processed in parallel.

Furthermore, unlike a “have it our
way” standard DSP, the precision of an
FPGA-DSP can be tuned to exactly
what’s required. Need a 19-bit multi-
plier instead of the usual 16 or 24 bits?
No problem. In fact, a myriad of choices
are available, everything from 6 × 6 to
32 × 16 in both speed- and area-opti-

Photo 2— Whether silicon or IP, a CPU
needs good support tools including
evaluation boards such as these from
VAutomation (a) and T7L (b).

a) b)
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mized variants. Figure 1 gives you an
idea of what I mean.

ROLL YOUR OWN RISC
Xilinx’s AllianceCORE program

recognizes one of the most interesting
and potentially profound trends—
third-party IP cores that boost FPGA
design options with a buy-versus-
make alternative.

As illustrated in Table 1, IP cores
include CPUs, peripherals, and sup-
port logic. Buy what you need and
stitch it together with your own ap-
plication-specific functions. Voilà,
instant FPGA system on a chip.

The idea of putting a CPU in an
FPGA is particularly intriguing, in-
spiring one to question conventional
design-partitioning wisdom. Just what
is the difference between hardware
and software anyway, and which
should do what?

One of the earliest references
(1994) I found on the FPGA-CPU
subject was an application note writ-
ten by Ken Chapman of Xilinx [1].
Constrained by yesterday’s silicon, he
came up with a minimalist multi-
MIPS programmable state machine in
a mere 50 CLBs.

Ken reports that simply porting the
original design to new chips boosts
performance 3×. Additionally, opti-
mizing to take advantage of the new
synchronous dual-port RAM cuts
logic and doubles performance.

That’s a 6×+ performance boost in
three years—I love this business! It’s
the march of silicon that makes IP
cores, formerly an academic curiosity,
increasingly viable for volume com-
mercial application.

Today, designers can choose from a
wide selection of mainstream control-
ler cores (standbys like the ’51, 6502,
and Z80). These are obviously useful
when compatibility with existing
software and tools is paramount, as
when sweeping a board’s worth of
logic into one chip.

There are also brand new cores
emerging. Freed of compatibility bag-
gage and reflecting the latest architec-
ture trends, these devices offer great
potential for new designs.

Check out the V8 from VAutoma-
tion diagrammed in Figure 2. It’s a

Listing 1 —Be careful what you wish for. The straightforward implementation of a 16:1 mux in VHDL (a) con-
sumes more silicon and runs slower than a less obvious version (b) that better matches the FPGA architecture.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
entity barrel_org is
  port (S:   in  STD_LOGIC_VECTOR (3 downto 0);
        A_P: in  STD_LOGIC_VECTOR (15 downto 0);
        B_P: out STD_LOGIC_VECTOR (15 downto 0);
end barrel_org;
architecture RTL of barrel_org is
begin
  SHIFT: process (S, A_P)
    begin
      case S is
        when "0000" =>

B_P <=A_P;
        when "0001" =>

B_P(14 downto 0) <= A_P(15 downto 1);
B_P(15) <= A_P(0);

        when "0010" =>
B_P(13 downto 0) <= A_P(15 downto 1);
B_P(15 downto 14) <= A_P(1 downto 0);

        when "0011" =>
B_P(12 downto 0) <= A_P(15 downto 3);
B_P(15 downto 13) <= A_P(2 downto 0);

        when "0100" =>
B_P(11 downto 0) <= A_P(15 downto 4);
B_P(15 downto 12) <= A_P(3 downto 0);

        when "0101" =>
B_P(10 downto 0) <= A_P(15 downto 5);
B_P(15 downto 11) <= A_P(4 downto 0);

        when "0110" =>
B_P(9 downto 0) <= A_P(15 downto 6);
B_P(15 downto 10) <= A_P(5 downto 0);

        when "0111" =>
B_P(8 downto 0) <= A_P(15 downto 7);
B_P(15 downto 9) <= A_P(6 downto 0);

        when "1000" =>
B_P(7 downto 0) <= A_P(15 downto 8);
B_P(15 downto 8) <= A_P(7 downto 0);

        when "1001" =>
B_P(6 downto 0) <= A_P(15 downto 9);
B_P(15 downto 7) <= A_P(8 downto 0);

        when "1010" =>
B_P(5 downto 0) <= A_P(15 downto 10);
B_P(15 downto 6) <= A_P(9 downto 0);

        when "1011" =>
B_P(4 downto 0) <= A_P(15 downto 11);
B_P(15 downto 5) <= A_P(10 downto 0);

        when "1100" =>
B_P(3 downto 0) <= A_P(15 downto 12);
B_P(15 downto 4) <= A_P(11 downto 0);

        when "1101" =>
B_P(2 downto 0) <= A_P(15 downto 13);
B_P(15 downto 3) <= A_P(12 downto 0);

        when "1110" =>
B_P(1 downto 0) <= A_P(15 downto 14);
B_P(15 downto 2) <= A_P(13 downto 0);

        when "1111" =>
B_P(0) <= A_P(15);
B_P(15 downto 1) <= A_P(14 downto 0);

        when others =>
B_P <= A_P;

      end case;
    end process; --End SHIFT
end RTL;

a)

(continued)
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library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
entity barrel is
port (S:   in  STD_LOGIC_VECTOR (3 downto 0);
      A_B: in  STD_LOGIC_VECTOR (15 downto 0);
      B_P: out STD_LOGIC_VECTOR (15 downto 0);
end barrel;
architecture RTL of barrel is
signal SEL1,SEL2: STD_LOGIC_VECTOR (1 downto 0);
signal C:         STD_LOGIC_VECTOR (15 downto 0);
begin
  FIRST_LVL: process (A_P, SEL1)
    begin
      case SEL1 is
        when "00" => -- Shift by 0
          C <= A_P;
        when "01" => -- Shift by 1
          C(15) <= A_P(0);
          C(14 downto 0) <= A_P(15 downto 1);
        when "10" => -- Shift by 2
          C(15 downto 14) <= A_P(1 downto 0);
          C(13 downto 0) <= A_P(15 downto 2);
        when "11" => -- Shift by 3
          C(15 downto 13) <= A_P(2 downto 0);
          C(12 downto 0) <= A_P(15 downto 3);
        when others =>
          C <= A_P;
      end case;
    end process; --End FIRST_LVL
  SECND_LVL: process (C, SEL2)
      case SEL2 is
        when "00" => -- Shift by 0
          B_P <= C;
        when "01" => -- Shift by 4
          B_P (15 downto 12) <= C(3 downto 0);
          B_P (11 downto 0) <= C(15 downto 4);
        when "10" => -- Shift by 8
          B_P (7 downto 0) <= C(15 downto 8);
          B_P (15 downto 8) <= C(7 downto 0);
        when "11" => -- Shift by 12
          B_P (3 downto 0) <= C(15 downto 12);
          B_P (15 downto 4) <= C(11 downto 0);
        when others =>
          B_P <= C;
      end case;
    end process; --End SECND_LVL
  SEL1 <= S(1 downto 0);
  SEL2 <= S(3 downto 2);
end rtl;

b)

Listing 1 —continued
midrange 8-bit, 64-KB address load/store
machine with a concise set (33 opcodes,
4 addressing modes) of variable length
(1–3 byte, 1–7 clock) instructions.

Delivered in either VHDL or Verilog,
the V8 comes with a quiver of periph-
erals including timer, UART, I2C, and
DMA. USB and 1394 cores are available
for extra cost. Before you go overboard,
keep in mind the CPU core alone con-
sumes 268 Xilinx CLBs (remember their
Spartans ranged from 100 to 784 CLBs).

Once a CPU is in an FPGA, the
temptation is to tweak it with applica-
tion-specific add-ons. The V8 accom-
modates such desires with two spare
opcodes that can handle operations like
512-/1024-bit math ops for cryptogra-
phy, multiply and accumulate with
saturation for DSP, block move, search
and sort for networking, and so on.
Multiple register sets can be tailored
to provide superior interrupt response.

The TX40x series from T7L takes
customization to the limit. The cores
shown in Table 2 comprise variants of
a base architecture in which the process-
ing power (ALU width, number of regis-
ters), program and data address space,
and instruction set are all scalable.

Performance is impressive with
Harvard design and a three-stage pipe-
line executing fixed-length single-word
(i.e. 10–24 bits, depending on the model)
instructions at up to 33 MHz. Entry-
level models (e.g., 8-bit TX401) are in
the 120–170-CLB range, well within
the means of today’s FPGAs.

But, cores need all the support and
debug tools of a regular CPU. Both
VAutomation and T7L cover the basics
with PC-based software tools (ASM and
C), evaluation boards (see Photos 2a and
2b, respectively), and test and verifica-
tion info. Obviously, tools for IP cores
have to measure up for the concept to
take off.

LET’S MAKE A DEAL
The idea of IP-based FPGA system-

on-chip is starting to get real, but don’t
get too starry-eyed. Further advances in
FPGAs are required for even better
price/performance tradeoffs, especially
when it comes to on-chip RAM.

Tools will mature and improve as
they deal with the increasing design
and verification challenges posed by

evermore gates. It won’t be easy, but
technology will inexorably march on.

Nontechnical IP business and legal
issues mustn’t be overlooked. For
instance, how should a core be sold?
Fixed price, royalties, by site, by project,
percent of die size? Source code or net-
lists? Service, support, customization?

Core prices may vary from a few
thousand (netlist only) to hundreds of
thousands (source, customization ser-
vices, etc.). For now, all IP deals in-
volve a lot of individual negotiation.

What about patents, especially in
the case of IP clones of existing chips?
One article I read describes how Ca-
dence is establishing design centers in
offshore lawyer-free zones [2]. Check
your IP fine print carefully.

As questions are answered, the pace
of FPGA system-on-chip development
will quicken. So, stay tuned…. I

Tom Cantrell has been working on
chip, board, and systems design and
marketing in Silicon Valley for more
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SOURCES

Spartan series FPGAs, Alliance CORE
Xilinx Inc.
2100 Logic Dr.
San Jose, CA 95124
(408) 559-7778
Fax: (408) 559-7114
www.xilinx.com

16450-type UART
Comit Systems
1250 Oakmead Pkwy., Ste. 210
Sunnyvale, CA 94088
(408) 988-7966
Fax: (408) 988-2133
www.comit.com

HCDL controller
CoreEl Microsystems
46750 Fremont Blvd., Ste. 208
Fremont, CA 94538
(510) 770-2277
Fax: (510) 770-2288
www.coreel.com

PCMCIA interface libary
Digital Objects Corp.
3550 Mowry Ave., Ste. 101
Fremont, CA 94538
(510) 795-2212
Fax: (510) 795-2219
www.digitalobjects.com

16450-type UART
Memec Design Services

I  R  S
425 Very Useful
426 Moderately Useful
427 Not Useful

819 S. Dobson Rd., Ste. 203
Mesa, AZ 85202
(602) 491-4311
Fax: (602) 491-4907
www.memecdesign.com

USB function, hub controllers,
Galileo FSxi
Mentor Graphics
Inventra Business Unit
1001 Ridder Park Dr.
San Jose, CA 95131-2314
(503) 685-8000
Fax: (408) 451-5690

Synplicity, Synplify
Synplify, Inc.
624 E. Evelyn Ave.
Sunnyvale, CA 94086
www.synplify.com

TX40x
T7L Technology, Inc.
780 Charcot Ave.
San Jose, CA 95131
(408) 321-9728
Fax: (408) 383-9613
www.t7l.com

V8
VAutomation
20 Trafalgar Sq., Ste. 443
Nashua, NH 03063
(603) 882-2282
Fax: (603) 882-1587
www.vautomation.com

8051,6502,Z80-compatible CPU,
146818-type RTC
Virtual IP Group
1094 E. Duane Ave., Ste. 211
Sunnyvale, CA 94086
(408) 733-3344
Fax: (408) 733-9922
www.virtualipgroup.com

Data Width Data Address Width Inst. Width Inst. Address Width
TX Series (bits) (bits) (bits) (bits) #Inst.

TX401 8, 10 8, 10 10, 12 10, 12 47+
TX402 8, 10 10, 12, 14 12, 16 12, 14, 16 80+
TX403 12, 16 12, 14, 16 12, 16 14, 16, 18 47+
TX404 12, 16 12, 16 12, 16 14, 16, 18 80+
TX405 12, 16 12, 14, 16 12, 16 14, 16, 18 140+
TX406 24, 32 24, 32 16, 24 18, 24 80+
TX407 24, 32 24, 32 16, 24 18, 24 140+

Table 2—Shades of bit-slice! The T7L architecture is fully scalable in terms of processing power and address space.

than ten years. You may reach him by
E-mail at tom.cantrell@circuitcellar.
com, by telephone at (510) 657-0264,
or by fax at (510) 657-5441.
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Design98—A Marketer’s PICnic

i f you hang around me long enough, you learn that I tend to use a lot of metaphors when I’m trying to make a
point. Invariably, when I’m talking about the evolution of embedded control, I eventually get to a comment that,

someday, even toasters will contain microprocessors. Of course, I’ve been saying this to emphasize how far
embedded processors have come both in application and cost effectiveness. In truth, it’s just a metaphor and I’ve never

really looked to see if any toasters use them.
Well, I guess I have to coin a new metaphor. I’ve finally seen a design for a microprocessor-controlled toaster oven. Mind you, this

is no schlock control scheme. It’s a serious demonstration of surface-mount technology, with a platinum RTD temperature sensor, 2 × 8
LCD display, rotary-encoded input dial, and RS-232 interface!

No, I didn’t whip this up in the cellar. It was one of the designs submitted among the tremendous volume of entries we received for
Design98, the Circuit Cellar/Microchip PIC design contest. Probably the best part about these contests is the richness of design ideas
that are presented. Here was a group of people who had solved engineering problems and they wanted to tell the world about it.

And tell about it they did. We received projects on RF remote control, video digitizing, motor controls, image scanning, security keys,
energy management, electronic games, a single-chip Internet server, smart switches, I/O expanders, data loggers, rocket telemetry,
fuzzy-logic buck conversion, a taxi meter, and assorted transmitters, receivers, programmers, interpreters, etc., etc., etc. And, oh yes,
there was a toaster-oven controller.

While everyone could not be a winner, they all were worthy of winning. And no doubt, they’ll be rewarded in the marketplace. Of
course, certain projects really caught my eye. In the necessity is the mother of invention category, there was the Great Highland Bagpipe
Chanter. Apparently, learning to play the bagpipe is a demanding physical task. It’s equally demanding on anyone who’s around you when
you’re practicing. The only volume control on a bagpipe is distance! With the addition of a few buttons and a 12″ PVC pipe, this ingenious
entrant made a PIC-based electronic bagpipe simulator so his students could practice without creating a riot.

 In the proverbial 10 pounds in a 5-pound bag category, we had a couple graphing data loggers. The first was a weather monitor with
a built-in 128 × 240 LCD. It monitored, stored, and displayed pressure and temperature as a continuously updated scrolling graph
showing the present conditions as well as the previous 48 hours of weather data. The second project was an x-y graphing data logger with
eight 12-bit ADC inputs, 20 KB of data space, and a 200-hour battery life. Using a Casio graphing calculator as the display (64 × 128
LCD), the combined system performed sophisticated analytical and statistical math processing on the analog data.

In the it’s better to see you category, I loved the electronic automobile sun-visor project. This one answers the question, what do
you do (besides swear a lot) when the sun isn’t blocked by the usual flip-down sun visors? This circuit uses two CCD linear arrays to
continuously track the sun’s x-y position. With that information and some neat calculations, it automatically blocks the blinding sun from
reaching the driver’s eyes by darkening the appropriate pixels on a 24 × 64 pixel (0.4″ × 0.6″ each) optically clear automotive LCD sun
visor. When can I get one?

Finally, in the why didn’t I think of that category, there was an X-10 Remote Temperature Sensor. The circuit used a Dallas digital
thermometer and 2 × 16 LCD (as a local display) combined with a TW523 X-10 transceiver as you might typically expect. Without using
X-10 extended data, however, designers tend to resort to using a whole bunch of house and unit codes to represent the wide range of
potential temperatures. This circuit relied instead on the host controller and a single house code. The sensor decodes two consecutive On
commands to ask a specific comparison temperature value. The sensor responds with an On command if the comparison temperature is
greater than or equal to actual temperature or an Off if it’s less. It takes a few commands to zero in on the measured temperature, but this
technique allows many sensors.

Some of the Design98 entries were elaborate; others ingeniously simple. For Microchip, it only confirmed their assertion that cost-
effective 8-bit processing ultimately expands all the potential applications. As for us, we’ve got a boatload of great designs and a whole
new group of potential authors. Our task will be turning many of these entries into published projects on our Web site and in the
magazine. Congratulations to all the entrants for a job well done.


