

INK

. Computing in Real Time

Q’ ost people will agree that when developing

7
code for an embedded controller, there is usually

V
some degree of “real-time programming” involved. It’s

that ever so tenuous balance between code complexity,
code size, execution speed, and response time. Programs running on a
desk-top machine can handle unrelated tasks in any order and can take their
time doing so. Speed comes into play only when testing the user’s patience.

However, when the tables are turned and the microprocessor must
respond in a timely manner to any number of asynchronous external stimuli,
code complexity increases rapidly unless the programmer uses different
techniques when wriiing the code. Enter multitasking.

Multitasking kernels generally come in two flavors: preemptive and
nonpreemptive. In our first article, past design contest winner Mike
Podanoffsky shows how a simple preemptive multitasking kernel can be
written in C. In a nonpreemptive system (like Microsoft Windows), tasks can’t
be interrupted, so they must cooperate with each other to get useful work
done. In our second article, Robert Scott goes on lo describe some

techniques for making sometimes selfish tasks play nice together.
Related to real-time control is a special kind of microcontroller: the

PLC, or programmable logic controller. Francis Lyn walks us through some
of the history behind PLCs and gives examples of one system available
today.

Now that you’ve collected a large amount of data with your embedded

controller, what better way to save some space than to compress that data?
You’ve probably heard the names Lempel, Ziv, and Welch (what ever
happened to Smith and Jones?); now you can find out what they did for

compression algorithms. Dwayne Philips describes how the LZW compres-
sion method works and illustrates the algorithm with some working code.

Enough with the software. Let’s get down to the chip level again with a

comparison of two data logger designs: one using an SOC31 and the other a
Dallas Semicondudor DS5DOO. John Dybowski covers all the bases,
detailing how he made his component choices in the two designs.

In our columns, Ed wvers yet another HCS II module: the LCD-Link.

Now the HCS has a way to interad with humans on the fly. Jeff digs up an

old Circuit Cellar article and explores the use of simulators in checking the

characteristics of a design. Tom pulls out another industry buuword-
multimedia--and looks at what’s happening in the arena with his usual

skepticism. Finally, John Dybowski (hmm, that name keeps popping up)
describes how to make your embedded system more bulletproof through the

proper use of watchdog timers.
We have lots 01 signal processing articles in the roundup for the next

issue, plus we’ll be talking about embedded interfacing, so stick around.

CIRCUIT CELLAR FI FI r;;l o

THECOMPUTER
APPLICATIONS
JOURNAL

:OUNDERIEDITORIAL MRECTOR
iteve Ciarcia

dANAGING EDKOR
(en Davidson

BSOCIATE EDtTOR
ia Nadile

ZNGINEERING STAFF
leff Bach&hi 8 Ed Nisley

=oNTRIBIITING EDITORS
Tom Cantrell8 Chris Ciarcia

NEW PRODUCTS EDlTOR
Hat-v Weiner

MIT DIRECTOR
Lisa Ferry

STAFF RESEARCHERS:
Northeast
John Dybowski
Midwest
Jon Elson 8 Tim McDonough
Wert Cosst
Frank Kuechmann

Cover Illustration by Robert Tmney

PUBUSHER
Daniel Rodrigues

PUBUSHER’S ASStSTANT
Susan McGill

CIRCULATtON COORDINATOR
Rose Mansella

CIRCULATlON ASSISTANT
Barbara Maleski

CIRCULATK)N CONSULTANT
Gregory Spitzfaden

BUSINESS MANAGER
Jeannette Walters

ADVERTlSlNG COORDINATOR
Dan Gorsky

ClFiCUlT CELLAR INK (ISSN ‘X%6965) is
prt&bed timmhiy t+JrailCela Incupofakd
4 Palk Slfeet. we x). vwnm, CT 66666 (2003)
6752751. Sacddass postaee pdd at Vernon
C T nd ad&land c4lkez One-yey (6 issuesl
ut6clip(icm lab U.s.A and pXw6sims $17.95
CnadMexim621.95. dl odw ccuWie8 632.95
Al subscriplal orders p3y&lie in U.S. hnds cnly
viaintsr~lond~8lmaneycrderar~drawr
on U.S. b& Dire2 &suiptM crdus lo CM
Cdla~lNK,Sutwipkxs, P.O.Bax 3MQC,Swh
easkm, PA 19396 orcdl(215) 630.1914.

PCSTMASTER:Fieasewmia~essti~
to ciaril Cela INK. Circulti Ce#.. P.O. So
305&C. Soulheaskm. PA 193%.

HAJAR ASSOCIATES NATIONAL ADVERTISING REPRESENTATNES

NORTHEAST SOUTHEAST

Debra Andersen Christa Collins
(617) 769-6950 (305) 966-3939
Fax: (617) 769-8982 Fax: (305) 985-6457

MIDATLANTlC MIDWEST

Barbara Best Nanette Traetow

WEST COAST
Barbara Jones
;,~tie$gainel

1ax: (714) 540-7103

(908) 741-7744 (706) 789-3060
Fax: (908) 741-6623 Fax: (706) 789-3062

2 Issue #27 June/July, 1992 The Computer Applications Journal

14 Build a Real-Time Multitasking Executive
by Mike Podanoffsky

22 Resource Management in Cooperative Multitasking
by Robert Scott

28 Using Programmable Logic Controllers
by Francis Lyn

36 LZW Data Compression
by Dwayne Phillips

The Elements of a Data Logger
by John Dybowski

Editor’s INK/Ken Davidson
Computing in Real Time

Reader’s INK-Letters to the Editor

New Product News
edited by Harv Weiner

Firmware Furnace/Ed Nisley
An HCS II LCD Terminal

From the Bench/Jeff Bachiochi
Computers on the Brain (revisited)

Silicon Updatenom Cantrell
Multimedia Madness/Couch Potato Computing

Practical Algorithms/John Dybcwski
Use a Watchdog to Keep Your Controller in Line

ConnecTime-Excerpts from the Circuit Cellar BBS
conducted by Ken Davidson

Steve’s Own INK/Steve Ciarcia
Making “Sense” of the World

Advertiser’s Index

The Computer Applications Journal Issue #27 June/July, 1992 3

Watch That Stack
I enjoyed Peter Hiscocks’s article, “State Machines

in Software” (Computer Applications Journal, issue #26).
I’m glad to see a few more non-8031 articles.

For some years, I’ve used several of the techniques
Peter mentions-both the constructed J M P and the
“push and RTS hack.” He omitted one detail in the
latter, however. The 6502 increments the return address
when an RTS is performed. Consequently, the address
pushed should be address minus 1.

The following fragment is an example:

LDA ROUTINE : Which subroutine wanted?
ASL ; Multiply by 2
TAX : Use as offset
LDA TABLE.X
PHA ; Push hi byte of address
DEX
LDA TABLE.X
PHA ; Push lo byte
RTS : Jump to routine

; Addr are lo byte, hi byte
TABLE EOU *

DA FIRSTROUTINE- : Address minus one
DA SECONDROUTINE-
DA THIRDROUTINE-

Thanks for a great magazine.

James Brodsky, Shell Beach, CA

RF People Tracker
I read with great interest Steve’s IR-Link article

[Computer Applications fournal, issue #26), especially
the badge reader and the people-tracking section.
Personal identification by IR is great, but as you men-
tioned there is a problem in aiming the IR source at the
receiver. Increasing IR power might solve the problem
but raises another one: powering IR LEDs at 4 watts is a
lot power to get from batteries.

I think you should consider other solutions instead
of IR, like RF. Radio-Command (RC), such as that used
with toys or garage door openers, might be just what you
need. ICs already exist from Motorola or National

Semiconductor that don’t require anywhere near the
power.

There is also Dallas Semiconductor, which has ICs
related to identification and security with their Touch
Memory and Proximity Memory. I never experimented
with either, but recently I received a booklet titled 50
Ways to Touch Memory, and I think those components
have great potential. If you ever ask for information, be
sure to get this booklet. It shows many interesting
applications with Touch Memories.

Jocelyn Lacombe, Laval, Quebec

[George Martin, a member of the Circuit Cellar Design
Team, responds]

Close only counts in horse shoes and dancing.
We’ve done a lot of experimenting with the Dallas

ICs. Recently, we worked on an assignment to construct
a people tracking and locating system for a six-bilhon-
dollar man’s new digs.

The Dallas system consists of a buried loop an-
tenna, approximately 18”in diameter (transmitter in
kHz range), a simple dipole antenna of 24”overall
length (receiver in MHz range), and a battery-powered
ID key (receive = kHz and transmit = MHz) that indi-
viduals were to carry on their person.

The system worked well, just not suitable for what
we had in mind. The rooms were large (5O’by 50’) and
we needed to locate people within a S/diameter circle.

As delivered, the buried loop was too powerful,
sending signals out to a distance of 30‘. It looked like a
simple exercise to reduce the range of operation. We
made the transmit loop smaller and reduced its power.
But then the orientation of the portable tag became
significant. The orientation would affect whether the tag
recognized commands. The antenna in the tag was a
ferrite loop similar to those in portable radios. What we
created was a hand-held device that was orientation
dependent (a lot like a hand-held IR unit). GREAT.

So we tried a different type of antenna in the tag.
No good.

Then, we looked at a software scheme to help
eliminate the directionality of the tag. Not even Bill
Gates could have afforded those routines.

Next, we looked at a combination that included
optical along with the Dallas KS. One step away from
the Bl bomber’s inertial navigation system.

Well, we went back to the beginning and put
antennae in doorways and other passageways. The

4 lsweW27June/July,1992 TheComputer ApplicationsJournal

people had to pass over the antennae and their
movement would be recognized. 7’he location goal of
S’has been shelved for the present.

The Dallas part worked fine and we came close,
but....

Trainable R-Link
I applaud the design of the HCS II. Its networked

approach seems quite revolutionary for a domestic
product. Regarding home use, however, the IR-Link
sounds fine for security or tracking, but have you guys
forgotten that most of us use IR for TV and VCR
remote controls? Any chance of putting that function
in the HCS II?

Dan Draper, Washington, DC.

I must apologize because we did in fact forget
trainable IR remotes when designing the IR-Link.
Perhaps because tracking and security were so much
an issue at the time (see George Martin’s letter
above), I was blinded by the IR (pun intended).
Fortunately, because so many of you communicate
with the Circuit Cellar staff on the BBS, this fact did
not go unnoticed for long. I extend special thanks to
Stan Eker in particular for suggesting a plausible
solution to us as well.

The net result is that a little “Nisley Magic” in
the software will soon allow the original IR-Link
hardware to function as a trainable IR remote control
that sends commands to TVs, VCRs, and so forth,
under the HCS program control. The new trainable
unit will be designated as the MCIR-Link. There will
also be a software upgrade for original IR-Link
purchasers.

Steve

We Want to Hear from You

Our readers are encouraged to write letters of praise,
condemnation, or suggestion to the editors of
The Computer Applications Journal. Send them to:

The Cumputer Appliitiuns Journal
letters to the Editor
4 Park Street
Vernon, CT 06066

Task Manager 0
List Manager
Flag Manager 0
Resource & Sema- l
phore Manager 0
ROMable
User ConfIgure-able l
All CMX Functions
Contained in a 0
Library
Easily Interfaces to
Assembly Language
Event Manager

Timed Procedure
Manager
Message Manager
Memory Manager
Supports Nested
Interrupts
All Functions Written
in ‘C” for Portability
CMX Task Scheduler,
Timer Task, and
Interrupt Handler
Written in Assembly
for Speed and
Optimlzatlon

fl

Source Code No Royalties

CMX
Call For More InJonnation
5 0 8 - 8 7 2 - 7 6 7 5

COMPANY 19 Indian Head Heights
Framingham, MA 0 1701

12

iV0 moving Dar S.M.1.
v- Robust &

Reliable

4ONWOLATILE
latterv-backed SRAM

go IC Sockets Used 1

(0 SOFTWARE
lEEDED Take it out
If the box and plu~ it in

IDEAL FOR HARSH ENVIRONMENTS
Humidity, dust, vibration, shock

l 4 to 64 Mbytes l Seek time, less than 0.2 millisecs

l Standard AT ISA bus l Data retention at least 2 years

l Fully DOS Compatible l Device driver on-board

Business Machine Interfsices Inc.
2 13-05 39th Ave., Bayside NY 11361

Canada (4 16) 756-9477
FAX 1416)756-4118 U.S. 1~800~663+4605

I

!103
The Computer Applications Journal Issue #27 June/July, 1992 5

IN-I,b B~BI~~NEW~
CUSTOM the application. For
DATA LOGGER example, in scanning

eight lo-bit A/D chan-
For those situations nels, each can be

where you need a custom allocated 2 bytes, and a
data logger to store large single byte will suffice
amounts of nonvolatile for every eight digital
data, The Saelig Com- channels being logged.
pany offers a low-cost Data can be recov-
solution. The TDS2020C ered from a Card
Data Logger Module Memory through either
offers 8 MB or more of the TDS2020 or a PC-
removable flash or RAM compatible. For example,
card memory storage, use the TDS202OC
and its 4” x 3” size can programs, and up to 5 12K Additional features module in the field to
be built into your own bytes of RAM, EEPROM, or include four hardware collect measurements,
product. The TDS202OC Flash memory to keep vital counter-timers, PC bus, two bring the Card Memory
consists of the TDS2O20 data while the board is not separate watchdog timers, back to base and read it
computer and the working. nonvolatile time-of-day with another such
TDS2020CM Card Both alphanumeric and clock, and multitasking. module, or use the
Memory board. graphics LCDs connect The TDS2020CM sits remote computer to send

The TDS.2020 directly, and the built-in on top of the computer to the data periodically over
computer uses the software can scan a key- form a sandwich. Up to two a telephone line.
Hitachi H8/532 micro- board with a matrix up to 8 TDS2020CM boards, each The TDS202OC sells
processor and has on x 8. The board has between with Card Memories of up for $372 in small quanti-
board 16K of FORTH as 26 and 41 parallel I/O lines to 4 MB, can be included. ties.
well as a full symbolic [depending on options Card memories are accessed
assembler. Programs can selected) and two serial using a 32-bit address, and The Saelig Company
be written in high-level ports. The ADC has eight software is supplied on disk 1193MoseleyRd.
language, mixing with channels of lo-bit resolu- to allow a write or read to Victor, NY 14564
assembler if required. Up tion (better than 1 in 1000) any byte or 16-bit word. (716)425-3753
to 45K of memory is and the DAC has three The data can be Fax:(716)425-3835
available for compiled channels of g-bit (1 in 250). organized as appropriate to #502

STEPPER MOTOR CONTROL SYSTEM also available for the user port on Commodore 64 and
128 computers.

A stepper motor control system that can be driven A major advantage of the CSTEP#2 System is its
from the parallel port of a PC or compatible is available ease of setup and use. A motion control demonstration
from MAS Electronics. The CSTEP#P System consists of can be quickly set up and run with the CSTEP#2 System,
a 3.75” x 2.75” printed circuit interface and driver board, a personal or laptop computer, one or two motors, and a
an interface cable, and demonstration software. DC power supply. The System can be used to experiment

The interface and driver board will operate two 5- and develop applications for stepper motors. For portable
volt to 24-VDC stepper motors with up to 1.5 amperes applications with a laptop computer, the DC power
per phase drive current. The interface cable plugs into supply can be a battery pack.
the standard parallel port of any PC-compatible com- The CSTEP#2 System for 5-volt to 24VDC motors
puter. The user friendly, menu-driven demonstration is priced at $90 including software and interface cable.
software allows operation of the motors in full or half
steps, with options for single stepping, variable speed MAS Electronics
continuous rotation, directional control, and motion of a 931 Lincoln Rd.0 Birdsboro, PA 19508-1801*(215)582-4864
given number of steps. The software will run on any PC-
compatible computer. Software and interface cables are #503

The Computer Applications Journal Issue 127 June/July, 1992 9

DATA ACQUISITION BOARD TUTORIAL

ADAC Corporation has created a novel
method to change the way you feel about
data acquisition boards. Featuring ADAC’s
family of Direct Connect data acquisition
boards, Direct View software eliminates
long, painful, and costly learning curves, and
makes “out of the box and running in
minutes” a reality.

Supplied on a single floppy with no need
for a user’s manual, Direct View is a com-
plete I/O tutorial on a diskette. The tutorial
makes connecting transducer wiring and
understanding signal conditioning easy. The
friendly, mouse-driven interface guides you
through board jumper settings, with help
screens to explain the function of each
jumper. Problems setting the board’s
address, A/D input range, interrupt level,
and so forth, are eliminated.

Direct View guides you through all
selectable board options including board address, DMA
channel, and interrupt level. Graphic representations of
the Direct Connect data acquisition boards includes on-
line help screens fully explaining the function controlled
by each jumper option. By simply clicking on any board
jumper shown in Direct View, you can move it in
software, and be shown the resulting impact on the
board functionality. A summary page showing you
selected options provides a convenient board configura-
tion overview.

Direct View’s unique menu-driven tutorials explain
the proper use of thermocouples, strain gauges, and
RTDs. Running program examples for GW-BASIC, Turbo
Pascal, and Turbo C are included. In addition, Direct

View includes block diagrams explaining the proper
connection of field wiring to the I/O board.

Once the I/O board has been configured for your
application, Direct View can be used to perform data
acquisition on all channels, expressing the data as
counts, volts, and temperature or strain where appli-
cable. It also performs real-time display and storage of
data to an ASCII file. Direct View is free of charge.

ADAC Corporation
70 Tower Office Park a Woburn, MA 01801
(617) 935-6668 l Fax: (617) 938-6553

#504

CAPACITOR HANDBOOK

The Capacitor aluminum electrolytic,
Handbook has been tantalum, glass, and mica.
published by CJ Publish- Appendices in the
ing. Written by Cletus J. handbook include a useful
Kaiser, the handbook capacitor selection guide
begins with a general that summarizes key
introduction to capaci- characteristics of each kind
tors. It includes chapters of device, basic formulae,
covering most of the and often-used symbols. A
popular kinds of capaci- glossary, bibliography, and
tor construction, includ- index round out the hand-
ing ceramic, plastic film, book

The Capacitor Hand-
book contains 126 pages and
is available for $14.95 plus
$3.50 shipping.

CJ Publishing
2851 W. 127th St.
Olathe, KS 66061
(913) 764-3577
Fax: (913) 764-8909

#505

CAPZTOR
HANDBOOK

-L
I--
aehLs I. Kaiser

0 Issue #27 June/July, 1992 The Computer Applications Journal

XT/AT-BASED FUNCTION GENERATOR AND FREQUENCY COUNTER

StarPC Instruments
is offering a low-cost XT/
AT-based Function
Generator and Frequency
Counter for stand-alone,
automatic test, or data
acquisition applications.
The OscPC-100 features
include a programmable
timed sweep, a logarith-
mic sweep, and burst
output modes of opera-
tion. The frequency
range is 1 Hz to 25 kHz
with 16-bit resolution
accurate to 0.005%. The
level is programmable
from 0 to 10 volts peak
to peak in 20-mv
increments. The DC to

lo-MHz Frequency Counter
can detect pulses as narrow
as 12 ns and has a maxi-
mum count error of 1 Hz or
5 ppm. The ~-HZ to l-MHz
Pulse output includes a
time-programmable pulse at
a programmable rate; the
pulse width may be pro-
grammed in one-sixth of a
microsecond increments.

The OscPC consists of a
half-length card with dual
BNC I/O connectors. The
software runs in either
command line or menu
modes and requires no
system resources, such as
memory or interrupts, once
the hardware has been set.

Sweep or Burst may be
terminated automatically
after a preset number of
repeats or manually by
pressing ESC.

A Software Link Library
with a variety of direct call
functions is provided for
easier interface in automatic
test of data acquisition
systems. The libraries
include the object code of
the major frequency
generation and measure-
ment functions.

The OscPC-200 high-
performance version can
count pulses for frequencies
up to 12.0 MHz with a
maximum error of

0.00025% (2.5 ppm). The
pulse signal reaches a
maximum frequency of
2.0 MHz and the timing
pulse may be pro-
grammed in one-twelfth
of a microsecond step.

The OscPC- 100
retails for $180 and the
OscPC-20 for $200.

StarPC Instruments
P.O. Box 84418
Sunnyvale, CA 94086-4418
(408) 739-5 117

#/!I06

task manager
intertask comm. :
i/o, events, & timing 0
preemptive cl

E A S Y T O

memory manager
error manager
resource manager
ROM’able

USE
libraries for Microsoft C,B o r l a n d C / C + + ,

Zortech C/C++ and assembler
QuicSS;t, User’s Guide, and Reference

standalone, PC, and DOS platforms
smxProbe task debugger
6 months free support and updates

FAST & SMALL
15 usec max. interrupt latency
150 usec typical task switch
8 to 25 KB code size

Ask about our $95 evaluation kit.

wmo~dDlaT/c
6 4 0 2 Tulagi St.

ca; gD ;;6r;;;;n:
_ _ _

Cypress C A 9 0 6 3 0 - 5 6 3 0 F A X 714-891-2363

MICROCONTROLLERS
l C Programmable

l Data Acquisition

l Control / Test

l Excellent Support

l From $159 Qty 1
l Alew Keyboard

Display Modules

Use our Little GiantTM and Tiny GiantTM miniature
controllers to computerize your product, plant or
test department. Features built-in power supply,
digital I/O to 48+ lines, serial I/O (RS232 / l?S485),
A/D converters to 20 bits, solenoid drivers, time of
day clock, battery backed memory, watchdog, field
wiring connectors, up to 8 X 40 LCD with graphics,
and more! Our $195 interactive Dynamic CTM
makes serious software development easy. You’re
only one phone call away from a total solution.

Z-World Engineering
1724 Picasso Ave., Davis, CA 95616

(916) 757-3737 Fax: (916) 753-5141
Automatic Fax: (916) 753-0618

(Call from your fax, request catalog #18)

The Computer Applications Journal Issue W27 June/July, 1992 11

WINDOWS-BASED METER DISPLAY SOFTWARE

Attractive visual display of process values has been
simplified by new software introduced by Intelligent
Instrumentation/Burr-Brown. PCImeter is a graphic
meter software package specifically designed for the
Microsoft Windows environment.

Running under Windows 3.0 or higher, PCImeter
acquires analog data for display as on-screen digital and
analog meters and bar graphs. High and low alarm
setpoints can be visually displayed in each meter style.
In addition, each meter can be configured to trigger
digital outputs when setpoints are reached.

Process values can be modified to engineering units
using scaling factors, and linearization for thermocouples
is also supported. Meters can be saved to PCImeter
application files and can be reconfigured at any time.

Up to 16 meters can run simultaneously. Using
Windows’ Dynamic Data Exchange (DDE) feature,
PCImeter can also export data to Excel spreadsheets for
analysis and report generation. Dynamic Link Libraries
(DLLs), or hardware drivers for the PCI200998C series
Multifunction I/O boards, are included with PCImeter
software. Additional DLL drivers are currently under
development.

PCImeter runs on IBM PC/AT-compatibles and EISA
personal computers with a hard disk and floppy drive.
Other hardware requirements include 1 MB or more of
RAM, monochrome graphics, an EGA or VGA graphics
monitor, and an Intelligent Instrumentation I/O board.

PCImeter (PCI-20365S-1) sells for $95. A free demo
diskette in either 5.25” or 3.5” formats is also available.

Intelligent Instrumentation
1141 W. Grant Rd., MS 131 l Tucson, AZ 85705
(602) 623-9801 l Fax: (602) 623-8965

#507

2 issue (127 June/July, 1992 The Computer Applications Journal

UNIVERSAL INTEGRATED DEVELOPMENT/
COMMUNICATIONS ENVIRONMENT

Life Force Technology
has introduced Armadillo+
for the IBM PC and its
compatibles. Armadillo+
combines the power of
editors, cross-assemblers,
compilers, disassemblers,
simulators, and data
conversion utilities into an
ergonomic serial environ-
ment. The environment is
completely menu driven,
utilizing pull-down menus
with mouse support typical
of those found in Microsoft
language environments.
Armadillo+ supports all
families of cross-assemblers,
cross-compilers,
disassemblers, and simula-
tors.

Armadillo+ enables you
to edit a source file, as-
semble it, upload it to a
target microcontroller board
or other microprocessor-
based system, and debug all
without having to quit the
communications program.
This process eliminates the
need to manually type
lengthy, cryptic, and time
consuming command lines
for each of the applications
associated with traditional
microcontroller cross-
development methods.
Once configured to your
needs, each of the above
tasks is as simple as
pressing a couple of keys or
pointing and clicking a
mouse. After each task is
completed, you are auto-
matically returned to
communications with the
target microcontroller
board.

Armadillo+ supports
all families of cross-
assemblers and features
user-definable Utilities
menus for running
various development
applications associated
with a particular project.
Serial communications
support includes
COMlCOM4; choices of
5, 6, 7, or 8 data bits;
even, odd, or no parity; 1,
1.5, or 2 stop bits; XON/
XOFF, CTS/DTR, or both
types of handshaking;
line feed; control charac-
ter; and high-bit filtering.
The vendor has proven
that Armadillo+ can keep
up with a continuous
serial input at 9600 bps
on a 16-MHz ‘386 system
with no handshaking.
Video support includes
CGA, monochrome,
Hercules, EGA, VGA,
and LCD.

Armadillo+ (an
acronym for Asynchro-
nous Responsive
MultiAssembler Devel-
opment Integrated Link
to Logical Operation)
sells for $99.

Life Force Technology
5477 Rutledge Rd.
Virginia Beach, VA 23484
(804) 479-3893

FEATURES
Build a Real-Time
Multitasking Executive

Resource Management in
Cooperative Multitasking

Using Programmable
Logic Controllers

LZW Data Compression

Build a
Real-Time
Multitasking
Executive

Mike Podanoffsky

0 elephone
switching, medical

monitoring, un-
manned spacecraft, and

home control systems are a few good
examples of real-time multitasking
systems in action. These systems all
must respond to multiple, and at times
contradicting, events. Developing the
software for them would be impossibly
complex without some task manage-
ment, which at the very least sorts
priorities.

A real-time multitasking execu-
tive compartmentalizes tasks, events,
and responses that break down
complex problems into specific,
specialized, and responsive code.

A multitasking system executes
multiple tasks concurrently. A system
is real-time if it is able to run tasks in
a timely response to real events. The
executive is the code that controls
which tasks should be run, suspended,
and given higher priority.

Consider a state-of-the-art home
appliance control system as an
example of a real-time multitasker.
This system acts around activities that
occur periodically throughout the day
including turning appliances and lights
on and off, monitoring doors and
windows for traffic, monitoring and
arming fire, smoke, or motion detec-
tors, and supporting a control panel or
telephone response to accept program-
ming changes. Also, autodial and
alarm functions to police, fire, and
emergency services are needed. These
examples all represent real-time
events.

The real-time system would
contain a task responsible for monitor-
ing alarms, another for turning lights

14 lswe127 June/July,1992 The Computer Applications Journal

on and off, another for telephone

I once used this real-time system
to capture and distribute Associated

response, and so forth. The job of each

Press (AP) newswire to newspapers.
The wire service is transmitted by AP

task is narrow, focused, and indepen-

to subscribing newspapers (yes, they

dent of the remainder of the system.
The real-time executive determines
which task to run in response to which
events.

Apart from the real-time executive
itself, the demo program I wrote and

“remove” task only ran at certain low-

describe a bit later shows several tasks
running at the same time, utilizing the

peak times, which allowed wire

DOS file system. I still use my 12-

capture to be as efficient and timely as
possible. The wire-service program not
only multitasked but ran on an IBM
PC with MS-DOS, so I was able to
receive the benefits of both.

Listing I-Tasks are, in genwal, simpfy standard hdons. Their names are posed lo he multitasking
kernel so the kernel knows how b h&e them.

/* //flff/flfllfll/lllllllllllllllllllllllllllllllllllllll

any-task0
__ .___..__..___..___..____

a task is written as just a C function
or an ASM subroutine.

/lllllllllfll *I

void any_task(void far * argument 1

int chars-read:
FILE far * file;

file = fopen(argument. 'f-a'):

while (file 1 t

charge for it, and charge far more than
you’d want to pay for home newswire
delivery). Each news story is transmit-
ted with a unique identifier as to
subject, content, length, format,
edition, and urgency. The wire has no
start or stop; your system has to be
ready to receive the copy or the story
is lost. Eventually, your PC will
contain repeat and obsolete stories
requiring deletion.

physically serviced the serial data
communications received and buffered
the data in memory. A task waited for
data, received events, then “read” the
news story headers to determine where
the story should be stored. Another
task snooped for obsolete stories and

An Interrupt Service Routine (ISR)

remove them from the system. The

MHz ‘286 machine, and the perfor-
mance of the real-time executive on
that platform is very good.

course, in C and in assembly language.
The code has been tested on Microsoft

For those of you who already
know a bit about multitasking sys-
tems, the software offered here

c 5.1.

supports multiple tasks, preemptive
scheduling, time slicing between
tasks, differing priorities for tasks,

BASIC REAL-TIME CONCEPTS

dynamically alterable priorities,
watchdog timers, and time-triggered

A multitasking system gives the

tasks. Source code is provided, of

perception of running multiple tasks at
the same time. For example, you could

process multiple telephone data
transfers in one task while performing
text editing in another. In fact, only a
single task is running at any given
moment. Because the real-time .
executive responds to events, it
performs a task switch as events
mandate, which happens fast enough
to make the system appear to run
many tasks concurrently.

A task is a logically independent
piece of code that performs a job when
activated by an event. Events can be
many things including a key press, a
character received, a signal detected, or
a clock ticking. After a task processes
the event, it returns to waiting for
another. Other tasks are then given a
chance to run, and they in turn receive
and process events.

Tasks have priorities. The one
with the highest priority runs first,
followed consecutively by tasks of
lower priorities. Tasks may be pre-
empted. If an event occurs for a task of
higher priority, the lower priority task
is interrupted and the higher priority
task is given preferential treatment.
Such a setup is known as preemptive
scheduling.

Not all multitasking systems
allow preemption. Some systems
support only what is known as
cooperative multitasking [e.g., Mi-
crosoft Windows). Under cooperative
multitasking, the currently running
task must periodically voluntarily
yield to permit other tasks a chance to
run. Without preemptive scheduling, a
low priority task can completely take
over a system by never yielding.

Voluntary yielding happens more
often than you’d suspect. Every time a
task waits for input (or any other
event], it is voluntarily yielding.
Preemptive scheduling completely
eliminates the need for a task to
concern itself with overall system
performance. It also allows the
multitasker to support task time
slicing. A time slice is a period of time
given to a task in which to run. When
the time slice expires, a check is made
to determine if other tasks of the same
or higher priority are ready to run and
if a task switch is required.

Related to time slice is sleep.
Sleep is, of course, a period of time

The Computer Applicatii Journal Issue #27 June/July, 1992 15

during which a task doesn’t run. Tasks
may sleep for specific periods or until a
specific time of the day. Surprisingly,
there are cases where you want to
perform a function only every few
seconds or minutes.

Let me use a network-based
application I once wrote as an ex-
ample. If the network was not respond-
ing, I would store all records input on a
local disk. Once the network was up,
the saved transaction file would be
uploaded. Constantly checking for
network availability made no sense. In
fact, checking the network every 30
seconds was more than sufficient.

Using this capability makes
tremendous sense with a multitasking
system, but it could be problematic
with a more traditional program. In
my specific application, the data entry
task ran separate from the database-
updating or network-monitoring tasks.
The nuances of update speed or
network loading were removed from
the data entry task and the user
entering data. The physical update
happened in the background.

In order to be able to perform any
task switching at all, each task must
maintain its own independent stack,
which may be an obvious point. The
stack basically contains the thread of
your code. Each function call’s return
address is pushed onto the stack, as are
other data, including pushes and
temporary variable allocation. When
the task is restarted from an interrup-
tion, the stack must be in exactly the
same condition in order for execution
to resume, which means not sharing
the stack.

THE MULTITASKING SYSTEM
Let me now discuss the

multitasker. My intent is to describe
the architecture of the real-time
executive. The multitasker is written
in C except for some interrupt service
and stack manipulation routines,
which are written in assembly lan-
guage. I have also made an all-assem-
bler version available with the
downloadable source code if you are
more comfortable with this language. I
also include in the source code a usage
guide for each function within the
real-time executive.

Listing 2--Typ~/systemstarf-upow'einib;a/~~ timers anddefinesevents andtasks kxthemultitasking
kernel. Each task is referenced by name and is assigned, among other things, a stack size and a pforitj.

/* llllllll//ll/llllllllllllllll~/llllllllflllllllllllllllllllll

main0

a) initialize screen.
b) initialize tasking system.
c) create tasks.
d) let scheduler start after initialization.

lll//lllllllllllllllllllllllfffllllllffllllllllllllllllllllll *l

main0
{

initTaskSystem0:

setTimer(ONE_SECONO. one_second_interval. NULL);

defineEventFct(KEYBOARO_WAIT. &keyboardEventFct. NULL);

defineTask(monitor_tasks. NO-ARGUMENT. 8192. 1024. "namel");
defineTask(typeout_file. &rectZ, 8192. 96, "name2"):
defineTask(typeout_file. &rect3. 8192. 96. "name3"):
defineTask(task_4. NO-ARGUMENT. 8192. 96. "name4");

scheduler-O:
1

TASKS
A task is code that performs some

work. It has a current execution
address, a starting address, a stack, a
priority, and other variables pertinent
to execution. These parameters are
maintained by the real-time executive
in a tasks data structure. This task
data is maintained in the tusks array,
which is made up of entries containing
the task data for a respective task.

The order of the entries in the
tasks array is inconsequential and is
allocated on a first come, first served
basis. The order bears no relationship
to task priorities. The maximum
number of allocated tasks is
customizable, as I’ll describe later.

The index into the tasks array is
called the task ID. The pointer to the
task entry in the tasks array is called
the task pointer. It is not the task’s
execution address, but it is the pointer
to a structure of information that the
real-time executive maintains for the
task.

In order for a task to be managed
by the real-time executive, the entry in
the tusks array must be initialized
using the d ef i n eT a s k (1 function.
The task does not exist without calling

defineTaskO.Youmustpassthe
starting address of the task, the task’s
priority, and maximum stack size. A
stack will automatically be created for
your task.

Optionally, you may pass a single
far pointer argument to the task, and
you may assign your task a name. You
are not limited by the amount or type
of memory you pass to a task because
the argument you pass can be a pointer
to a structure of information anywhere
in memory. Task names are useful for
both debugging and intertask commu-
nications.

From a programming point of
view, a task appears as any C function.
Listings 1 and 2 show both sample
task code and the system start-up
code. I provide additional program-
ming information for the real-time
executive in the separate guide
available with the source code. A task
may be written in any computer
language.

The real-time executive organizes
tasks in priority order. Rather than
rearrange the order of the tasks in the
tusks array, which would invalidate
any task pointer or task ID, the real-
time executive maintains a separate

16 lssueW27 June/July,1992 TheComputer AppLicationsJournal

priorities array. The priorities array
maintains the priority and task ID for
each task in the tasks array in high-to-
low priority order, or in other words,
in inverse priority order. Each time the
priority of a task is altered, the change
is reflected in the priorities array.

EVENT FLAGS
Events are actions to which the

real-time system is required to
respond, and they are usually the
result of a physical action [e.g., a key is
pressed, data is received, or a phone
rings). With the right detectors, the

opening of doors, temperature changes,
and even verbal commands can be
events.

Events may also be logical.
Nothing prevents one task from
signaling another by setting or clearing
event flags. In my database problem
described above, one of the events was
a no-network detection. An expensive
view of events is best; use an event to
its fullest advantage.

The real-time executive’s job is to
find the task responsible for supporting
an event. Tasks inform the real-time
executive when they are waiting for an

Supports standard DOS 3.31 interrupt functions
Built-in real-time multitasking microkernel

low royalties ($b/topy and down)
Supports Pharlap DOS exten

A’ “I 8;‘.

Use Embedded DOS to

P ,<implify their product
development- Embedded
DOS, the only DOS
designed to run real-time
embedded applications like
motion controllers, high
speed data acquisition, and
satellite control systems.

leverage your DOS
experience. You can run it
with your code on a PC,
then boot it on the target
from ROM, solid-state disk,
floppy, or hard disk. Even
take luxurious advantage of
its full reentrancy and high-
performance multitasking
while developing with your
dependable DOS tools.

For a free bootable demo disk and an architectural
tour of Embedded DOS, plus information on how to
start using DOS in your next embedded application,
call (206) 391-4285 and ask for Dept C67.

GENERAL Ti. (206) 391-4285

SOFTWAREm Fax. (206) 746-4655 I
p.0. Box 2571 Redmond, WA 98073 The DOS Experts

I

event using the wai tEvent(1 func-
tion. You may set the current task
[your task) or any other task to wait for
an event. When the event occurs, the
task waiting on the event is started.
All events must be defined in the
custom files and are assigned event ID
numbers. The IDS should be assigned
sequentially starting with 1.

A system events array, named
SystemEvents, exists within thereal-
time executive. When an event occurs,
itisflaggedin SystemEvents.This
array is a bit array, where a single bit
represents an event. If the bit is set,
then the event has occurred.

Within each task entry in the
tasks array, there is also an event
array.Whilethe SystemEvents array
represents events that have happened,
the event array for the task entry
represents those events waiting for
this task.

The scheduler matches the
SystemEvents withthewaiting
events to determine if the task can be
restarted. The waiting bits for a task
are set using the wai tEvent(1
function. When waitEvent is
called, the waiting bit referenced is set
and the task is suspended until the
event occurs. Usually, SystemEvents
bits are set by an ISR, some code like
another task, or an event function (a
very useful mechanism augmenting
the SystemEvents).An eventfunc-
tion need not exist for every event.

The keyboard or any buffered
device is an excellent example of an
event helped by an event function.
When there is an event function
present for a given event ID, the bit
value in the SystemEvents array is
ignored. The event function is called
instead, and that value is considered
the valid state of the event.

An example of a single event is a
key is typed at a keyboard. The event
bit in the SystemEvents array is set
as expected by the keyboard ISR. As
long as the task is able to keep up with
the keyboard, each key typed follows
the same pattern: the event flag is set,
the task is activated to respond to the
event, then the event flag in the
Systemivents array is cleared.

When the keyboard gets ahead of
the task, that is, when there are

The Computer Applications Journal Issue #27 June/July, 1992 17

several characters stored in the
keyboard receive buffer, the pattern of
clearing the keyboard SystemEvents
bit will mask that additional charac-
ters are available. The SystemEvents
flag will state there are no keyboard
events left when in fact there are
characters left to process. By interro-
gating the event function for the
keyboard, the event function may
return a “true” whenever there are
characters to process.

Event functions are an ideal
mechanism for interfacing events and
IS&. SystemEvents are set by calling
the setSystemEvent(1 function and
can be set by any task, event function,
or ISR.

TIMERS
The time slice, task sleep, and

independent timers available within
the real-time executive are interre-
lated. Several timers can be built into
the real-time executive by changing
the value of MAX-T I M ERS in the
custom files. This simple adjustment
allows you to have hundreds of timers.

L~~ing~/nfL)9~~Lhekeyboardinfemrpt Makeyis defected andsavedtyfheROMBIOS, ifwillkme
the sef/WEvmf kg end call fhe scheduler to evaluafe faskprbifies.

III,IIIIIIIIII,,,,I11,,111,1,,,,11,,,11111111111111.III

: Int.090
:...:

into9 proc f a r

SaveRegisters

_Int _ori gi nal KbdHdwTrap : do normal kbd duties
mov ax.40h
mov ds.ax : look at bios kbd area
mov bx.lAh

c l i
mov ax.word ptr C b x l : 1Ah
cmp ax.word p t r [bx+21 : 1Ch
sti
Jz Int09-20 : if zero, no keys pending ->

mov ds. word ptr cs:[Rtx_OataSegmentl
call rtx_text:setKbdEvent ; say keyboard event occurred
call scheduler

IntOg_20:
RestoreRegisters
i ret

Into9 endp

The disk reliability problem is
widespread.

There c!s an Alternative!
Dust, moisture and vibration kill rotating disks every
day. Instant AccessTM No MotionTM solid state
memories offer extremely high reliability, light speed
access and hermetically-sealed data integrity.
Instant Access is available in FLASH EEPROM
and NVRAM and is programmable in DOS or
W INDOWS. Rely on Instant A c c e s s - t h e
demonstrably suoerior No Motion Memory.

Mission Critical Mobile
High Security D i s k l e s s P C
Banking Hazardous
Military E n v i r o n m e n t s

l Communications

26072 Merit Circle, Ste. 110 l Laguna Hills, CA 92653
l(600) 451-DISK l FAX (714) 346-1310

l HITACHI 6303. INTEL 80x88/x86,80x96,80x51
. MOTOROLA 68OxO,683xx, 68HC11,68HC16

l INMOS T400, T800 l ZILOG Z8O/Zl80

l Preemptive Scheduling l Written in C
l Fixed or Dynamic Priorities l Source Code Included
l Timeout on some services l No Royalties
l Configurable and ROMable l Technical Support
l Intertask Communications l Broad C Compiler Support

-Messages l Sensible License Agreement
-Queues l Most Popular C Compilers
-Semaphores supported

l Memory Management
l Resource Manager
l Over 50 Executive Services Available
l System Level Debugging Utility
l System Generation Utility
l 450 Page User Manual

One Time License Fee From $995
Discounts for Multiple Licenses/Ports

The only real-time kernel you’ll ever neecF(

Phone 8OOl525-4302 or 7131728-9688

18 Issue 127 June/July, 1992 The Computer Applications Journal

A timer is given a wait value.
When the required wait ticks have
been reached, the timer calls a routine
that you have specified and passes the
argument that you have specified
when the timer was armed. The
argument passed may be a pointer to
any structure of data. The function is
referred to as a timer function and in
no respect differs from any normal C
function. A timer function may be
written in any computer language.
Please refer to the guide that comes
with the source code.

Timers may automatically rearm
themselves by recomputing the wait
period. To make a timer a periodic
timer, pass the PERIODIC argument in
the function call.

Timers are supported by two
functions: setTimer(1 and set-
Timer_idO.setTimer_idO will
arm a specific timer, which will be
known by its t i me r-i d. If there are
nine timers, then the timer IDS will be
zero through eight. se tTi me r (1 will
arm the first available timer. Timers

may be cleared, extended, or shortened
at any time by using the c 1 ear -
Ti mer (1 function or sending a new
timer value to the timer.

Related to timers is the task sleep
function, which is supported by the
functions sleepTask() and
sl eepTi 11 (1. A sleeping task will
not execute until its sleep period
passes. Extending, contracting, or
canceling the sleep period for a task is
possible. Use the s 1 eepTa s k (1
function and change its sleep period by
extending, shortening, or clearing
(sending zeros) its sleep value.

Internally, the real-time executive
does not actually check all of the
timers, tasks, and time slices at each
clock tick. Doing so would be far too
time consuming. Instead, whenever
any time value is changed, that is,
whenever a task is scheduled to run,
either sleepTaskO,sleep-
TillO,setTimerO,orset-
T i mer_i d (1 is called. Then the real-
time executive computes the value of
the next nearest clock tick time and

Listing4-Thissample event function refums true (nonzero) when keyboarddatais availaNew false
(zero) when no keytird data is available.

i KeyboardEventFct
:...............................

entry keyboardEventFct

darg -argument
arg -event-id

push bx
push ds
mov ax.4Oh
mov ds.ax
mov bx.lAh

cli
mov ax.word ptr [bx]
cmp ax,word ptr [bx+Z]
sti

mov ax.0
.iz keyboardEventFct_08

mov ax.1

keyboardEventFct_08:
POP ds
POP bx
return Pascal

keyboardEventFct endp

: emulates Pascal conventions
: <must be in rev stack order>
; void far * argument
; event event-id

: look at bios kbd area

; 1Ah
: 1Ch

; false if no inpu
: if zero, no keys

t available
pending ->

: true if input available

ANALOG v-0
DIGITAL

ADC-16 A/D CONVERTER (16 channel, 8 I#)..$ 99.95
lrqut temperature., voftay , amperage, pmssure.enefgy
usage, energy demand, ight levels, joystick movement and
a Wide variety of other types of an&g signa&. lnputs may
be ex
AD-l %

anded to 32 analog or 128 status Inputs using the
M ST-32 expansion cards. 112 relays may be

controllad using W-16 expaflsion cards. An
may be configured for temperature input uscng t e.TTtsE.8
temperature input cowerston. RS-422 availat&. PS.4 porl
selectof may be used to connect satellite ADC-16
interfaces (up to 4,096 a&og inputs/l&384 stattts inputs
snd 14.336 relays). Call for info on 10 & 12 bit converters.
[terminal block and cable sold separately)
ST.32 STATUS EXPANSION CARD..*............,...... $79.9S
Input on/off status of relays, stitches. HVAC equipment,
Ihermostats, seCudty devices, smoke detectors and other
%vps incfuding keypads and binary codad outputs.
Prowdes 32 status inputs (opt0 isokxiors sold separately),
TE-8 TWPERATURE INPUT CCWERSJON __....... $49.95
ndudes 8 temperature sensors & terminal block.
Temperature ran e is minus 40 to 145 degrees F.
B-4 PORT SELgCTOR (4 channafs Ff!3422)......$79.Q5
>flVerts an RS-232
r0

!If e
CH TON

n IntO 4sek?dable RS-422 ports.

xo
DEC&ER and other serial interfacing

ucts avai able. Call for tree intormatton packet.
* FULL TECHNICAL SUPPORT...Pvxided over the

telephone by our staff. EACH ORDER INCLUDES A
FREE DISK WITH PROGRAMMING EXAMPLES IN
BASIC, C AND ASSEMBLY LANGUAGE. A detailed
technical reference manual 1s also included.

* HlGH RELlAEILlTY...engineered for continuous 24
hour industrial applications. All ICs socketed.

* Use with IBM and compatibles, Tandy, A Mac and
most other computers wiih RS-232 or Rd

pie
429 ports.

All standard baud rates and protocols may be used
(50 to 19.200 baud).

Use our800 number to order FREE JNFORMATION
PACKET. Technical Information (614) 464-4470.

24 HOUR ORDER LINE (800) 842.i714
Visa-Mastercard-American Express-COD

International 8 Domestic FAX (614) 464-9656
Use for information, technic& support & orders

ELECTRONIC ENERGY CONTROL, INC.
380 South Fifth Street, Suite W4

Columbus, Ohio 43215

The Computer Applications Journal lssueY27 June/July, 1992 19

passes it along to the real-time clock
ISR.

When the clock timer interrupts
and detects that the time of any one of
the timers has elapsed, the evaluation
of the timers and the scheduler is
called. The call is made to any expired
timer function, sleep tasks are reacti-
vated as expected, and the result is the
execution of the timed function. Once
the timer function has been executed,
all of the timers and task sleep values
are again checked, and the next nearest
clock tick time is computed and
passed to the real-time clock ISR.

INTERRUPT SERVICE ROUTINES
ISRs must inform the real-time

system when hardware-detected
events have occurred. All ISRs must
call the scheduler in order to deter-
mine which event causes which task
to run. Obviously, an interrupt that
did not detect any event need not call
the scheduler.

Within the PC environment,
letting the real-time system know that
an event has occurred and calling the

scheduler just prior to the I RET
instruction within the ISR are alI that
are really necessary. Whether you call
the scheduler before or after restoring
the registers saved by the ISR does not
matter, nor does whether interrupts
are enabled or disabled. Listing 3
shows how the ISR calls the scheduler.

The real-time system knows the
event has occurred only if the flag is
set in the SystemEvents array or if
there is an event function for the
pertinent events supported by this ISR.

To set the bit flags in the System-
Events array, use the setsystem-
Event (1 function. The event flag will
be set. There are cl earsystem-
Event() and toggl eSystemEvent(1
functions as well.

An event function is particularly
well suited for ISRs. You need to write
a function that returns a True or False
status for the event ID passed to the
routine. For example, an event func-
tion for the keyboard status would test
characters available in the BIOS save
area and return a True (a nonzero) or a
False (zero) status.

Looking for temp probes, pressure sensors, A/Ds, LCDs, enclosures?

Why waste time chasing components and controllers?
Vow there’s a single, easy source for thermocouples,
hermocouple interfaces, barometric sensors, position
;ensors, rotary encoders, LCD displays, enclosures,
md more. Use these with our nanoLINK controllers
jr with your own.

l Competitive prices on quantities as low as 1.
l Informative run-downs on each component--not

just product listings and technical
mumbo-jumbo.

l Every item supplied with technical information
and application notes.

l New! Complete line of nanoLINK peripherals
and accessories.

To get your free copy of The Bookcall 1 -WO-GEl--DATA

or fax l-602-996-0255 A dlwswn of AarDigital Corporation

YI,
XI

Listing 4 shows a sample event
function for the keyboard.

THE SCHEDULER
At this point, I have explained

almost all of the real-time system
except for the scheduler, the central
part of every real-time executive that
determines the next task to run. The
scheduler is called from a number of
circumstances and performs the same
action in all cases, making its job
straightforward.

The scheduler may be called by an
ISR when the it detects an event. The
ISR sets the SystemEvents (using the
setSystemEvent(1 function), and
then calls the scheduler, which
determines whether or not to run
another task.

The wai tEvent(1 and
suspendTask(1 functions call the
scheduler. The current task needs to
wait for an event. Again, the scheduler
determines whether or not to run
another task.

When the scheduler is called, it
saves the current machine state,
including all of the registers, in the
current task’s stack. The task’s restart
address is already saved on the stack
by the scheduler function call. Finally,
the current value of the stack pointer
is saved in the task’s entry in the tasks
array. At this point, the current task
can be suspended because all relevant
and important information has been
saved.

The scheduler determines which
task to run next by testing, in order of
priority, each task’s ability to run. If a
task is not sleeping, then the scheduler
determines if there are any waiting
events. If a task has no waiting events
in its task entry, then it is ready to
run. Otherwise, the task waiting
events are matched against the
SystemEvents. Amatchwillpermit
the task to be reactivated, and the
reactivated task may be the current
task if there are no other tasks waiting
to run.

When a task is ready to be reacti-
vated, the stack address is pulled from
the task’s entry in the tasks array, and
all of the registers are restored. A
return is made back to the caller and is
where the task activated by the

20 Issue #27 June/July, 1992 The Computer Applications Journal

scheduler was last suspended. Thus,
the task is completely restarted.

MS-DOS
MS-DOS was written to support a

single-user, single-application pro-
gram. It expects to continue executing
a command to completion. In order to
coexist successfully with DOS, the
real-time executive has its own
internal protection mechanisms.

Normally, outside of the real-time
executive, hardware interrupts present
no problem for MS-DOS. When an
interrupt occurs, registers are saved,
then restored, and DOS continues.

With the real-time executive, a
hardware interrupt may cause the
scheduler to run. If the scheduler runs,
another task may be started. Not only
does DOS have no chance to complete
as expected, but another task may
actually execute DOS commands
leading to serious confusion.

A switch implemented by the real-
time system called i ns i deDos is
incremented whenever a DOS com-
mand is executed by any code inside
and outside of the real-time executive
and decremented when the command
completes. You trap all DOS calls by
building a shell around DOS. All tasks
make normal calls to DOS, which are
redirected to this shell.

When a hardware interrupt leads
to a scheduler call, the scheduler
checks the insideDos flag. If it is
nonzero, the scheduler knows that the
interrupt occurred while in DOS and
does not run. The scheduler sets its
own schedulerpending flag,andthe
DOS command is allowed to complete.

A check is made for the
schedulerpending flagwhenthe
DOS command completes and returns
to the DOS shell you have built. The
task, now outside DOS, can be
suspended and the scheduler allowed
to run.

THE DEMO PROGRAM
The demo program divides the

screen into four squares. In the first
square (top left], the demo program
shows the priorities of each task. This
task waits on keyboard events. It
processes cursor keys to adjust the
priority of each task.

The time slice allocated to each
task can also be changed by making
the time-slice interval slower [press S)
or faster (press F). The time slice can
be restored to normal by pressing N.

In the next two squares, you
should see text files scrolling as fast as
possible. This aspect is handled by two
independent tasks. Neither task
actually waits on any event, instead
they are time-slice interrupted, giving
each task a chance to run. The default
time slice is defined in the header files
as half a second.

The last square displays the time
of day. A timer function is set to call
code for this display.

BUILDING YOUR OWN
APPLICATIONS

Now it’s your turn to use the real-
time executive to build your own
applications. Included with the source
code is a custom. h file to quickly
tailor some of the major parameters
used by the real-time executive.

These parameters include the
maximum number of tasks, maximum

number of timers, the minimum stack
size to allocate, the maximum time
slice for a task, and the all important
custom event names. You may want to
add events to the system events
section of the main header file.

Just add your own tasks and stir! q

Michael Podanoffsky has spent the
last 20 years as a software developer
building real-time systems, multiuser
networked databases, and language
compilers.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime” in this issue for
downloading and ordering infor-
mation.

401 Very Useful
402 Moderately Useful
403 Not Useful

MultiTask!” Execs and GOFMT”Math
Speed Time-to-Market
I

Z
a p y o u r application with peak Solutions for 80386/486 PROTECTED-
performance using tested code and MODE, 80x86 & V-Series, Z80/180/64180,

expert support. Control real-time scheduling 8085, 68xxx, 68HC16, 68HC11, 6801, 6809,
with MultiTask! source code executives, or 805 I, 80 196, i960, R3000, SPARC@ and more.
ROM-able,re-entranKK)FASTfloatingpoint: Call for free information diskettes today.
*Replace 80x87 MATH COPROCESSORS; PHONE 503-64-8446; FAX 503-6442413;
*Drop-in IEEE SOURCE LIBRARIES; USA TOLL FREE 800-356-7097.
*Link-and-Go with C compilers: Intel@,
Microsoft@,BorlandO,WATCbM@, Zortech, 14215 NW Science Park Drive

Metaware@, and more.. Portland, OR 97229

*1 ‘1992 us software Carpmmn GoFAsT and MmTasti XT traChna*s of us U S SOFTWAREs
s&ware coPpOra”On a,, omer trademarks belong VI their repecme ownem

t113

The Computer Applications Journal Issue #27 June/July, 1992 21

Robert Scott

Resource Management in
Cooperative Multitasking

ooperative
multitasking has

been defined in liter-
ature and compared with

other types of multitasking, such as
time-slicing. In cooperative multi-
tasking, the tasks themselves decide
when to give up control to the
scheduler, passing control to the next
task. The problem of resource sharing
in multitasking has been studied in
various textbooks [11. Therefore, I will
review the characteristics of coopera-
tive multitasking as they relate to the
effective management of resources.

You can implement cooperative
multitasking with a very simple
scheduler. All the scheduler has to do
is keep track of the stacks and certain
registers for each task. These stacks
are used primarily by the task pro-
grams, but the same stacks can also be
used by the scheduler to store registers
when a task gives up control. The
tasks are all assumed to be part of a
single application. This scenario is
very different from one in which a task
represents a user on a time-sharing
system. Instead, it is more like the
case of an industrial processing system
where each task represents a distinct
concurrent function.

The only resources the scheduler
itself manages in cooperative
multitasking are the stacks and the
order of task execution. The responsi-
bility of managing all other computer
resources is left up to the tasks. In
many cases, the application requires
little in the way of resource manage-
ment; however, one resource that all
applications must manage is CPU
time. Each task must deliberately give
up control to the scheduler within a
reasonable time. What is reasonable
depends on the application. For
example, if one of the tasks is a closed-
loop speed control for a DC motor
requiring a feedback response time of
less than 100 ms, then that task must
get control at least once every 100 ms.
Without a time-slicer in charge, you
must ensure all tasks cooperate by
having them give up control fast
enough to satisfy the timing require-
ments of the closed-loop task.

In general, cooperative multi-
tasking does not afford very fast
guaranteed response time without
imposing very strict requirements on
the program structure. But if the
application naturally has frequent
occasion to wait for external events,
then during those pauses the task can
give up control to the scheduler.

AN EXAMPLE
For example, an 80x86-based In my work with software that is

cooperative-multitasking scheduler controlling automated test equipment

managing programs written in Mi-
crosoft C using the small memory
model need only save the SI, DI, and
BP registers. The CS, DS, and SS
registers are common in this model
and do not need to be saved. Because
all floating point operations are
completed between calls to the
scheduler, there is no floating point
coprocessor information to be saved.
When multitasking is running under
MS-DOS, a nonreentrant operating
system, problems are avoided because
all calls to MS-DOS are completed
before a task gives up control. If
cooperative multitasking is imple-
mented on a 680x0-based system, then
the entire register set needs to be saved
by the scheduler because any of the
address or data registers could be used
as register variables.

22 Issue W27 June/July, 1992 The Computer Applications Journal

(industrial test stands), I often need to
control several identical but indepen-
dent test stations with the same
computer. Each test station runs a full
set of tests on some manufactured
part. Using cooperative multitasking
allows one copy of the test program to
control all the test stations. Each
instance of the test program is a task
in the system.

Let me use this example to
illustrate the various aspects of
resource management in cooperative
multitasking. Note that this example
is special in one respect: several tasks

SHARING MEMORY
If you allocate temporary variables

in registers or from the stack, then
memory allocation is automatic, and
no special precautions need to be
taken for multitasking. But watch out
for static variables! If two tasks
operate on the same static variable,
they will interfere with each other
unless that variable is specifically for
intertask communication. If a static
variable is not for intertask communi-
cation, then the variable must become
an array, and all task accesses are then
indexed by the task number.

Listing l-Dynamic respwtse-time CPUsharing reks on ktwwing the d&red response lime and the
expected execution time ol each 6z.sk

alloc_time(nr.ne) {
int sum.i.j;

i f ((nr<r[tasknuml) 11 (ne>e[tasknuml)) {
do I

for (j=O: j<=taskmax; j++) {
sum = 0:
for (i=O; i<=taskmax; i++)

if Ci!=j)
sum += eCi1;

if (rCj1 < sum) 1
suspend0:
break:

I
while (j<=taskmax):

1
r[tasknuml = nr;
e[tasknuml = ne:

run the same code. In the more general
case, each task is a different program.
With one block of code run by several

I tasks, occasionally the need for task
differentiation arises. For instance,
differentiating would be necessary
when deciding which physical output
needs to be set when the code calls the
function c 1 amp-p art () . If there are
four testing stations and four clamp
actuators, the function c 1 amp-part (1
must know which clamp to actuate.

When you need to differentiate
tasks, a system variable (maintained
by the scheduler but accessible to the
tasks) is used to identify which task is
currently in control. Then primitive
functions like c 1 a mp_p a r t (1 can
reference the task identifier to deter-
mine the actual physical I/O involved.

To share a display screen between
CUTTING UP DISPLAY SCREENS

tasks, you as the programmer can
divide up the screen (horizontally or
vertically) so each portion of the
screen is owned by a single task. For
example, a four-station tester can
divide up a 24-row screen giving each
task a band of six rows. But even if
different tasks use different portions of
the screen, there is still a shared
resource that cannot be divided: the
cursor. There is only one cursor and it
can only be in one place at a time.

Making all uses of the display
screen begin with a cursor-positioning
command and completing the output
to the screen without any intervening
calls to the scheduler is one way to
manage the cursor as a shared re-

source. This approach is the simplest
one, but it also has the worst response
time, particularly if the display screen
is on a slow serial interface, or if large
blocks of data must be displayed. This
delay exists because a task retains
control for the entire time it takes to
write its message to the screen.

Response time is better if the
display screen is memory mapped, or
in the case of the serial interface, if
output to the serial port is interrupt
driven through a large enough buffer so
the buffer never fills up. Another
alternative is to limit the message
length by dividing up long messages
into several short ones, relinquishing
control between each short message.

All these methods assume each
task wants to write to the display. But
often having a single task [a monitor

task) do all the writing is better. For
example, a monitor task would be
necessary if there had to be some
concurrent user interface that operated
independently of the testing tasks. The
monitor task could give up control
between each character sent to the
screen, and if any task wants to write
to the screen, it would have to pass the
message through the monitor task.

SHARED l/O HARDWARE
A data acquisition board is a

common shared resource in the field of
industrial test stands. For instance, a
16-channel ADC may be shared by
several test stations. If each test
station owns a separate set of these
analog inputs, then device sharing is
easy as long as each use of the device
is uninterrupted by calls to the
scheduler. With fast A/D conversion
times, a task can afford to trigger a
conversion and wait for the results all
on one scheduler turn. But if the ADC
board is too slow, special consider-
ations are needed.

When a task wants to use the
ADC board for any period of time
longer than one scheduler turn, it can
check and then set a global use flag (if
it was previously clear) or wait
otherwise. The use flag locks out all
other tasks from using the board until
the task that set the flag clears it.

The use flag is a special case of an
operating system mechanism known

TheComputer ApplicationsJournal lssueX27June/July, 1 9 9 2 2 3

MULTITASKING
KERNEL

9086188, 80x86188 8 0 3 8 6
Z80, 64 180 , 8080/85 68000/l O/20

n Fast, reliable operation
n Compact and ROMable
w PC peripheral support
w DOS file access
w C language support

Preemptive scheduler
Time slicing available
Configuration Builder
Complete documentation
Intertask messages
Message exchanges
Dynamic operations
- task create/delete
- task priorities
- memory allocation
Event Manager

n Semaphore Manager
n List Manager
w Insight’” Debugging Tool

THE BEST
Join over 1000 developers such as

IBM@, Xerox, Hewlett Packard,
Hayes, Hughes Aircraft and NASA.

CHOOSE AMX
The best low-cost, high-performance

real-time multitasking system
available today.

No Royalties
Source C o d a I n c l u d e d

Demo Disk and
Manual only $85 US Call for prices for
AMX 86 $3000 US other processors.
(Sh,,,pmglhandbng extra)

IBM 1s a registered trademark of IBM Corp
.ZBO IS a trademark of Zilog. Inc
AMX. AMX 86, fnS,ght are trademarks of

KAOAK Products Ltd.

KADAK Products Ltd.
206-1047 West Broadway
Vancouver. B.C.. Canada
V6J lY5

dk Telephone: (604) 734-2796
It Fax: (604) 734-6114

#

as a semaphore. Time-slicing systems
require special precautions when
implementing because other tasks may
modify the flag after it has been
checked by the first task. But in
cooperative multitasking, each block
of code between calls to the scheduler
is automatically a critical region. It
cannot be interrupted by the scheduler
without the cooperation of the task.
Therefore, semaphores and other
global variables change in a more
predictable manner.

Just to show how elaborate
resource sharing can become, consider
the following application. An ADC
board is programmed to trigger
periodic conversions based on a timer
and cause an interrupt when a conver-
sion is complete. This programming is
necessary in the application because
some logical decisions need to be made
based on the results and the required
sample rate is too high to be ensured
by cooperative multitasking.

After each conversion, the
interrupt service routine takes its
instructions for the next conversion
from a global table of channel num-
bers. Each task in the system is
allocated one slot in the table, and all
communications with the ADC board
are carried out through this table and
the interrupt service routine, which is
not considered part of any one task.

In addition to the dedicated table
entries for each task, there is also an
extra table entry that may be allocated
to any task by means of a use flag.
This way, a task can have fast access
to its dedicated table entry and slower
access to the shared entry for less
time-critical readings.

HOW MUCH TIME DO YOU NEED?
I mentioned CPU time as the

most obvious resource that needs
sharing. But instead of imposing one
uniform response-time requirement for
an application, varying the response
time during the running of the applica-
tion is often advantageous.

Returning to my example of a
multistation tester, suppose each
station has a test sequence fairly
noncritical as to response time, but
has a short section of the sequence
where faster response is needed.

Suppose a hydraulic solenoid valve is
actuated and the response time of the
resulting oil pressure needs to be
measured to within 2 ms. The straight-
forward way to ensure fast response
time is to have the task retain control
by not calling the scheduler for the
duration of the test (from the time the
solenoid is actuated to the time the oil
pressure responds). This arrangement
suspends multitasking for what could
be an indefinite period of time, which
will probably have unacceptable
effects on the other tasks.

TEMPORARY MONOPOLY
You can mitigate the effects

somewhat by having the task request
permission to retain control from the
other tasks through a semaphore. This
way, the requesting task will not begin
the time-critical portion of its test
sequence until it has permission to
complete that portion of the sequence
with multitasking disabled. Also, the
other tasks will only be interrupted
during a period of time in which the
indefinite suspension of multitasking
is less serious. If most of the total test
time is taken up by the wait for an
initial condition to be met (like
flooding the part with oil), then
occasionally suspending multitasking
would only affect testing throughput,
and only slightly at that.

But this aspect brings up another
problem. What if the other tasks never
give permission for the requesting task
to run all by itself for a while? The
requesting task could lock up indefi-
nitely waiting for this permission.
There are clearly special application-
dependent conditions that must be
met. This method of allocating an
extended CPU monopoly works under
the following conditions:

1. when other tasks give permis-
sion for a CPU monopoly frequently
enough that the requesting task is
guaranteed to be granted permission
within an acceptable length of time

2. when a task is requesting
permission to monopolize the CPU,
which also gives permission for other
tasks to do so (no deadlocks)

3. when a task gives permission
for other tasks to monopolize the
CPU, which allows it to tolerate all of

24 Issue t27 June/July, 1992 The Computer Applications Journal

the other tasks taking advantage of
that permission for the maximum
time allowed for such monopoly

4. when the overall effect of
granting the occasional extended
monopoly to a task has an acceptably
small effect on the system throughput

How likely are such conditions
met? That depends on the application.
If the maximum length of time that a
task monopolizes the CPU is small,
and requests for such monopolies are
infrequent, then this method will
likely work. If not, then more sophisti-
cated methods are needed.

A GENERALIZATION
The CPU needs of a task may be

characterized by two dynamic param-
eters: the response time that the task
needs from the scheduler and the
response time the task is willing to
give to the scheduler.

The first parameter refers to the
maximum period between the time
the task gives up control and the time
control is returned to it by the
scheduler. For task i, call this re-

sponse-time parameter ri. The second
parameter refers to the maximum
period during which the task will
retain contrcl before calling the
scheduler. For task i, call this execu-
tion-time parameter ei. At any mo-
ment in time, the CPU time is said to
be acceptably allocated for all tasks if
the following holds:

For each task j, rj > C ei Ill
i#j

This inequality assumes task-
switching time is either negligible or is
figured into the ei values. The inequal-
ity merely states that the response
time required by a task allows for the
worst-case execution times of all the
other tasks.

In the monopoly solution, inequal-
ity (1) is satisfied by having two
constant response-time requirements
for each task. The smaller one, r,,, is
the response time required by a task
when it is not giving permission for
monopoly by other tasks. The larger
response-time requirement, rslow) is the
response time required by a task when

it is giving permission for CPU
monopoly. Similarly, the usual
execution time for a task is e+,, but
when the task is engaged in CPU
monopoly, its maximum execution
time becomes eslOW. Inequality (1) is
satisfied for n tasks if both I,~,, and rslow
are at least n-l times as large as their
respective crest and eslow counterparts.
But the conditions may be improved to

and
rflst > (n-1 I x eflst

rslow ’ (n-Z) x efast + %ow

by simply requiring that, after one task
has exercised monopoly, no other task
may do so until one complete round of
the scheduler has occurred. That way
only one monopoly needs to be
allowed for by the nonmonopolizing
tasks.

These observations lead me to the
question: “Can CPU time sharing in
cooperative multitasking be refined by
a more precise control of the execu-
tion-time and response-time param-
eters?” There does seem to be room for
improvement.

In the general case, each task can
dynamically maintain its own ri and ei.
Certain rules can be established by
which tasks manipulate these param-
eters. A task may freely raise its
response-time requirement or lower its
execution-time limit at any time, but
movement in the other direction must
be coordinated with the other tasks.

For example, if task #l has started
a time-critical sequence based on the
current maximum execution times of
other tasks, then other tasks may not
arbitrarily raise their execution times.
If they did, then task #l would be
placed in the awkward position of
having to abort a time-critical se-
quence to which it had already
committed itself. Similarly, a task may
not arbitrarily lower its response-time
requirement unless such a lowering is
consistent with the execution-time
requirements of all the other tasks
(inequality [11). This aspect leads to
two criteria for changing ri and ei
p a r a m e t e r s :

1. Task i may raise ei only if the
new value of ei satisfies (1) for all other
tasks, j #i.

2. Task i may lower ri only if the
new value of ri satisfies (1) for the task

In the special case of temporary
monopoly I described earlier, giving
and revoking permission for monopoly
is equivalent to changing between the
rfJerat parameters and the r~low/eJlow
parameters. In that case, the two
change criteria are automatically
satisfied because when a task takes
advantage of permission to hog the
CPU, the other tasks that gave
permission don’t even get a chance to
run until the monopolizing task is
done. Therefore, those other tasks
never get a chance to revoke their
permission until the use of that
permission has been completed.

AVOIDING DEADLOCK
If the two criteria listed above are

used by all tasks, then you are guaran-
teed the required response time for
each task will always be satisfied. The
assumption is if these criteria prevent
a task from adjusting its ri or ei
parameter, then the task must keep
waiting until such an action becomes
allowable. In general, there is no
guarantee this will happen in any
reasonable length of time. Several
tasks could set their parameters so no
task can advance to its next required rI
and ei parameter values.

In the special case of CPU mo-
nopoly discussed earlier, condition #2
for that method prevents deadlocks.
That is because whenever a task is
waiting for more resources (a lower ri
or a higher e,), it is claiming the least
amount of resources. A similar rule
can also be established in the general
case. Whenever a task wants to
increase its resources, it must first
declare ownership of minimal re-
sources.

IMPLEMENTATION
Dynamic response-time CPU

sharing may be implemented com-
pletely within task programming; it
does not have to be part of the
scheduler. You can make a global array
of response times and execution times
available to all tasks. The units of time
referred to in the r [3 and e [1 arrays
may be arbitrary. No actual real-time
measurement of these times is

implied. However, you as the program-
mer still have to calculate execution
and response times in some form, but
the cooperative multitasking scheduler
does not have this problem.

Listing 1 shows a C function you
may use to implement CPU sharing.
Assume that the global variable
t a s kn urn is the task number for the
currently running task, and tas kmax
is the maximum task number. The
function a 11 oc_t i me (1 takes two
parameters, n r and n e. Parameter n r is
the desired new response time and
parameter ne is the desired new
execution time. The function
a 11 oc_t i me (1 does not return to the
task until it succeeds in changing to
the new parameters. The function
suspend (1 is the call to the scheduler
that gives up control.

Although al 1 oc_t i met 1 will
handle the general case, it should not
be necessary in most applications.
Having a set of programmer-defined
states (such as the two-state monopoly
model) in which response and execu-
tion-time requirements have been

checked by hand is a much more
efficient system to run.

CONCLUSION
While offering a very simple

framework in which to schedule tasks,
cooperative multitasking pushes more
of the problem of satisfactory resource
management onto the task programs
themselves. If these problems can be
solved in a way not too cumbersome
to the application, then the simplicity
of the scheduler may be preserved. q
Robert Scott is the owner and chief
engineer of Real-Time Specialties, a
developer of custom software for
embedded systems.

[l] P. B. Hansen, Operating System
Principles, Prentice Hall, 1973

404 Very Useful
405 Moderately Useful
406 Not Useful

Get Byfe-BOS” and leave
the MULTITASKING to us!

Byte-BOS Multitasking Operating System (Byte-BOS) is designed
for use in real-time applications on a PC and a wide range of
embedded processors. After several years of proven performance
in the field, Byte-BOS is now available for only $495 for PCs
and only $995 for embedded processors.

Byte-BOS is complete, requires no “add on” components, and
includes all theses features:

0 preemptive task scheduling

q timeslicing

0 multithreading

0 dynamic & static. task management

q multiple task events

0 multiple task message buffers

0 multiple task timeouts

q global resource management

0 fixed block memory management

0 on chip & PC serial I/O management

0 external serial I/O management

0 on chip & PC timer management

0 nested ISR & ISR stack management

q low power state management

q non-blocking & timeout return modes

0 conflgwed to your c compiler

0 working application for popular targets

q no royalty ANSI c source code

0 250 page reference manual

q 1yearoftechsupport&updates

q BOSVIEW multitasking monitor

q pmfder for task & code section timing

CaIl today to order, or request a detailed information packet. With
the time and money you save, you’ll be glad you left the
multitasking to Byte-BOS.

Byte-609 Integrated Systems
PO Box 3067 Dd Mar CA WI14 800-788-7288 or 619-755-8836

The Computer Applications Journal Issue #27 June/July, 1992 2 7

Francis Lyn l/O PROCESSING

Using Programmable
Logic Controllers

0 he application of
Programmable

Logic Controllers
(PLCs) is generally

limited to the small segment of the
electrical community involved in
industrial control applications. I’d like
to introduce you to the exciting world
of PLCs. I will do so by describing the
design of an improved low-cost PLC
engine that runs on a popular micro-
controller platform.

Since its invention in the early
1970s by Dick Morley, the PLC has
evolved into a universally accepted
building block used in most logic con-
trol systems in industry today. The
PLC is available in sizes ranging from
plant-wide systems using several large
PLCs (each supporting thousands of
I/O points) connected together by a
local area network and costing mil-
lions of dollars, to a single small PLC
with several I/O points and a hand-
held programmer costing a few
hundred dollars.

Basically, a PLC is a special-
purpose computer designed to replace
hard-wired relay logic circuits and
built to survive in the electrically and
mechanically harsh environments of
typical industrial applications.

A PLC makes use of a computer’s
processing power to provide more than
just simple relay logic replacement

functions. Delay timers, real-time
clocks, flip-flops, edge-triggered inputs,
barrel shifters, event counters, com-
munication functions, math functions,
and user-defined macros are only some
of the advanced functions a modern
PLC provides.

A PLC may be viewed as a black
box with a number of input and output
terminals for connecting it into an
electrical circuit. The I/O signals are
digital; they are either ON or OFF just
like the signals in a traditional relay
control circuit. Inside the black box,
the PLC processor runs several real-
time tasks, such as the execution of
the user’s program, servicing commu-
nications requests, maintaining real-
time timers, and servicing the I/O by
automatically reading and writing to
inputs and outputs on a regular basis.

The PLC maintains a special
buffer area called an I/O table, where it
stores a bit image of all the input and
output conditions. When inputs are
read, the input bits in the I/O table are
set or cleared to make a snap-shot
image of the input signal conditions.
When outputs are updated, the I/O
table output bits are written to the
output terminals. I/O servicing is done
automatically for all I/O points, even
when not all are used by the applica-
tion program. Details of the servicing
task are hidden and the user may
ignore them.

The user can determine the state
of the inputs and can control the state
of the outputs by reading from and
writing to the I/O table. The bits in
the table represent the only “data” the
processing unit operates on, so they
are all the application program needs
to know about.

THE APPLICATION PROGRAM
The user’s application program is

simply a list of instructions that
directs the PLC on the sequence of
tasks to be performed. The program is
repeatedly executed during normal
PLC operation, and one complete pass
through the program is called a stun
cycle.

The application program specifies
the logic equations that describe the

28 Iaaue 127 June/July, 1992 The Computer Applications Journal

120 VAC, 60 HERTZ

FUSE 10A

RL2
OLI

4. n
Y

RLlC
I I

PUMP
,b - 3

X’ERLOAD

hOTOR

WN INDICATOA

X’ERLOAD
NDICATOR

Fiiun l--A sample PLC application might be cof~frolling an electric waler pump.

control scheme the PLC is implement-
ing. As the program steps execute, the
processing unit substitutes the input
status value stored in the I/O table
into the logic variable in the expres-
sion being solved, then it stores the
resulting output state in an output bit
of the I/O table.

TYING INTO THE REAL WORLD
A PLC would normally be

mounted close to the equipment it is
controlling, either in a control panel or
in an electrical equipment room. The
PLC I/O terminals are accessible on
the PLC processor board or on add-on
I/O modules connected to the PLC
processor in the case of a modular
system. The PLC is wired up to the
circuit and to the devices that make up
the control system; inputs are wired to
monitor the signals from sensing
devices and outputs are wired to
indicating or control loads. The
number of I/O terminals supported by
the PLC may be fixed or expandable
and is a basic sizing parameter for
matching a PLC to an application.

PLCs usually operate in electri-
cally harsh environments where inputs
are likely to contain large amounts of
noise-with the occasional voltage
spikes thrown in-and outputs are

normally called upon to drive loads
with high in-rush currents or large
reactive impedances. The typical PLC
may be directly connected to the
actual equipment it is controlling and
may not have any buffering from the
electrical conditions on the equip-
ment. For this reason the I/O interface
circuits must be designed and built to
conservative standards.

Industrial PLCs offer a wide range
of I/O options that cater to the range of
interface voltage levels a PLC is likely
to encounter. Voltages from 24 volts to
220 volts, AC or DC, are not uncom-
mon. PLC input circuits may use
transient suppressors, filters, and opto-
couplers or small relays for voltage
isolation. PLC output options may
include dry contact, triac, or transistor
output devices. In special cases, using
electromechanical buffer relays
between the PLC and the control
circuit may still be necessary; for
example, one would be necessary to
interface a PLC to a high-voltage
circuit breaker.

BASIC PLC OPERATION
A basic PLC consists of a set of

input terminals, a set of output
terminals, and a processing unit. Input
signals can come from any type of

switching device, including mechani-
cal switches, electromechanical and
solid-state relay output contacts, hall-
effect switches, optocoupler outputs,
and so forth. Switch contacts are
usually wired between a voltage source
and a PLC input. The voltage source
can be externally provided or may be
supplied by the PLC system itself.

PLC outputs can be connected to
any load device in the control system,
such as indicating lamps, solenoid
valves, motors, electromechanical and
solid state power relays, contactors,
and so forth.

The processing unit is the heart of
the PLC. It handles such overhead
chores as machine initialization, timer
service functions, I/O servicing,
communications functions, program
loading, scanning and processing input
signals, and executing the user’s
application program. Then, the unit
updates the outputs by writing new
results to them. Machine initialization
is normally done once immediately
after a power-up reset of the PLC.

l/O LABELS
Each I/O point supported by the

PLC has a related bit in the I/O table.
The application program may refer to
each bit in the table by either a
reference address or a label. Labels are
usually easier to use than addresses
because they can be assigned names
that match the I/O terminals.

The application program fetches
the status of an I/O signal through the
reading of the labeled input bit and
controls an output by writing the
labeled output bit. The program also
references internal bits in the same
way by using their labels or addresses.
Internal bits are data storage bits that
hold intermediate results. These bits
are named internal because they are
not associated with I/O points.

A PRACTICAL EXAMPLE
Now I will show how a PLC may

be used in a typical control applica-
tion. The control elementary diagram
of Figure 1 shows a small electric
water pump controlled by manual start
and stop push buttons and conven-
tional relays RLl and RL2. Indicator
lamps are used for local status indica-

The Computer Applicafions Journal issue X27 June/July, 1992 2 9

tion, and motor overload protection is
provided.

The elementary diagram shows
the electrical circuit and also defines
the control logic by the circuit topol-
ogy. Relay RLl is energized by mo-
mentarily pressing the start PB. The
RLlA contact seals in the circuit to
keep RLl energized when the start PB
is released. RLl can be deenergized by
pressing the stop PB or by opening the
RL2A overload contact. Under normal
conditions, the motor thermal over-
load contact OLl is closed, and RL2 is
kept energized. On a thermal overload
condition, OLl opens, drops out RL2,
and causes contact RL2A to open.

The first stage in any PLC imple-
mentation of a control circuit is to
physically wire up the circuit by
connecting all input devices to PLC
inputs and all output loads to PLC
outputs. Figure 2 shows a typical PLC
wiring diagram for implementing the
control circuit of Figure 1. Assume
here that the PLC inputs are designed
for 110 VAC voltage with a common
return to neutral, and that PLC out-
puts are relay contacts with one side of
each contact connected to a common
terminal. Notice that the PLC wiring
diagram shows only the wiring to the

I/O devices connected to the PLC and
does not convey any information on
the required control logic. In fact, the
order in which the input or output
terminals are used does not matter as
long as each device is wired to the
PLC. The user’s application program
will define the transformation between
inputs and outputs. The control
scheme is described by the program,
which must be developed and then
stored in the PLC’s program memory.

The next stage of program devel-
opment is both an obstacle and a
feature of the PLC solution to control
problems. Writing PLC application
programs requires some degree of
knowledge and expertise, but the
power and flexibility of the PLC
approach far outweighs the initial time
investment to learn how to program
them. Because PLC designs vary
significantly, the programming
method is highly dependent on the
chosen machine. In general, two
popular types of programming meth-
ods exist.

LADDER AND FUNCTIONAL
LOGIC DIAGRAMS

The ladder diagram method is an
attempt to ease the programming

The PLC program functional
diagram in Figure 3 illustrates the use
of function blocks to describe the
control logic scheme. In comparison,
note how much easier the functional
diagram is to read and understand than

the combined electrical
schematic and control
elementary diagram of Figure
1. With most well-designed
PLCs, the user is able to write
the application program
directly from the functional
diagram.

L 120 VAC. 60 HERTZ N

FUSE IOA
1

0 I
I

IN-COMM CUT-COMM

ST
INPUT OUTPUT PUMP

0
__M?____m__

,

STOP INPUT

a.. A l ,__--__________

IDEAS FOR A PLC DESIGN
Now for a look at the

OLl
INPUT

, J A2______________
LSL INPUT CUTPUT

A3 Xl___ _______ ____
LSH INPUT

A 4------_______-
HS-1

AUTO
INPUT OUTPUT

A5 X2
OFF ----_-__-_____

0 --o- INPUT
HAND

a-_-, A 6
- L I N E NEUTRAL

operation of the typical
modem small PLC and a
suggested set of design
specifications for improving
the overall performance
standards.

Most popular low-cost
PLCs offer a hand-held
programmer designed to
operate only with that one
type and model of PLC. To
keep costs down, an LCD
display and membrane-type
keyboard are usually em-
ployed. A better approachFigure 2-A PLC tiring diagram br the cim~it shown in Figure 1.

3 0 Issue U27 June/July, 1992 The Computer Applications Journal

effort by describing the program in
terms of a ladder diagram, which
closely resembles the elementary
diagrams that electricians are used to.
Ladder diagrams represent the physical
wiring diagram of the control circuit
where the logic expressions are
embodied in the diagrams’ circuit
topology. For example, two switch
contacts wired in series are equivalent
to an AND logic function, or to an OR
function if the switches are wired in
parallel.

The other popular method of
programming uses a functional
diagram to describe the control logic
scheme with logic function blocks
[i.e., gates, flip-flops, macros, etc.). It is
initially harder to learn, but it is far
more powerful and easier to read and
understand than the ladder diagram
method. A functional diagram can
precisely describe a logic statement
without the distracting elements of
the electrical circuit cluttering up the
diagram.

HS MANUAL - A6

START PB - A0

-

& -
+ S

--R
Q-1 MOTOR RUN 1

&-
Fliplbp Reset input takes precedence
over Set input

LS HIGH - A4

MOTOR RUN I MOTOR - X0 1
RUN IND - X0 I

MOTOR RUN I STOP IND -Xl 1
O V E R L O A D - OVL IND - X2 I

Figure 3--The PLC functional diagram illustrates the use olkmclion blcds to dtxaibe lYIe contrd logic scheme.

8 ZIF Sockets for Fast Gang
Proarammino and EQSV” ”

Splltdnb

* Completely stand-alone or PC-driven
*Programs E(E)PROMs
* 1 Megabit al DRAM
- User uogradabls III 32 Megabit
. S/ 6” ZIF Sock& RS-232

Parallel In and Oai ’
-32K mternal Flash EEPROM for easy

fllmware upgrades
* Quick Pulse AlaarAkm CT7256

in 5 sac, 1 Megabit in 17 sec.)
- 2 year warranty
. Made I” the U S A
*Technical suppolt by phone
*Complete manual and schematic
*Sk&de Sockal Pngnmmer also

avallable. $550.00
-Split and Shuffle 16 8 32 bit
* 100 User Definable Macros, 10 User

Debnable Conflguratlons
. lntell~aent ldentlfler
. Binary, Intel Hex, and Motorola S
- 2716 to 4 Meg&t

New lntelhgent AveragIng Algorithm Programs 64A fn 10 set 256 !n 1 ml”., 1 Meg (27010,011)
in 2 men 45 set 2 Meg (27C2001) in 5 men Internal card with external 40 pin ZIF

-Reads. Verlfles. and oroorams 2716. 32. 32A. 2 n. Cable ‘lo pin ZIF
64.64A. 126, 128Ai56.512, 513. 010, 011, 301
27C2001, MCM 66764I2532.4 Megabds

- Aalnmaticallr sets amgramming voltage
*Load and save bufter to disk
- Binary. Intel Hex, and Motorola S formats
-NO Denanalily modules nmdrad
* 1 Year warranty
- 10 days money back guarantee
. Adapters available for 8748,49, 51, 751, 52.

55. TMS 7742,27210,57C1024. and memory

EMFT&O.EXEavailable BBS (916)972-8042

NEEDHAM'SELECTRONICS
1539 Orange Grove Ave. -Sacramento, CA 95841

M

(916) 924-8037
:Monday-FrIday. 8 am-5 pm PST, C.O.D. FAX (916) 972~9960

118

We feature a series of single board computers for
process control applications. Each is available as a
bare printed circuit board, or fully assembled and

tested. Optional development software is also
available. Please contact us to discuss your

requirements and receive a literature package
covering technical specs and pricing.

The Computer Applications Journal Issue #27 June/July, 1992 31

SOLID STATE DISK - $124*
l/z Card 2 Disk Emulator

EPROM, Flash and/or SRAM
1 Meg Total, Bootable

TURBO XT WITH FLASH
DISK - $266*

2 Serial, 1 Parallel Port
Up to 2 Flash Drives, 1 Meg Total
Software Included, 2 Meg DRAM

386DX Complete CPU - $1099*

40Mhz, IDE, FDC, SVGA
lPar, 2Ser (232/422/485), Cache

Solid State Disk-2 drives to 1.5 Meg

All Tempustech VMAX@ products
are PC Bus Compatible. Made in

U.S.A., 30 Day Money BackGuarantee
*Qty. 10, 0 k, Call for Quantity Pricing

TEMPUSTECH, INC.
TEL: (800) 634-0701
FAX: (813) 643-4981

Fax for 295 Airport Road
fast response! Naples, FL 33942 #I19

APPLICATIONS POTPOURRI
Here is a selection of application programs that illustrate the simplic-

ity of the PLC solution to common control problems.

1.Push-on/push-offconlrol
Two push-button switches, PBl (A0 input) and PB2 (Al input), control

the load connected to YO output. Press any PB to switch the load on, and
press any PB again to switch off. Any number of PBS may be added by
ORing their transition inputs to the other inputs.

AXO. Read PBl input transition
AXl. Read PB2 input transition
OR Compute OR
YO. Read output status
XOR Compute exclusive OR
.YO Write result to output

2. Pulsing output
A pulsing output is often desired over a steady output (e.g., flashing a

warning beacon). When input A3 in ON, output Yl pulses at a rate deter-
mined by PLC internal square wave signal CLKA.

A3. Read control input
CLKA. Read internal square wave
AND Compute AND
.Y3 Write result to output

3. Real-time clock timers
Eight real-time timer channels with setable ON and OFF times are

useful for controlling time-of-day events. Timer RTO in this example
controls the load connected to output ZO.

TO.
.zo

Read timer RTO control bit
Write bit to output

4. Off delay timers
Off-delay timers are useful in “stretching” momentary signals. In this

example, push-button PBl on input B2 trigger delays timer DTl. The timer
output, TQl, controls output Zl. Timing starts when B2 input goes OFF.
Output TQl remains ON until DTI times out.

62.
.TKl
TQl.
.Zl

Read PBl input
Write to timer DTl trigger input
Read timer DTl output
Write to output

would be to make use of the ubiqui- The generation of the application
tous PC machine4esktop or por- program and its subsequent loading
table-running a standard terminal into the PLC are usually two separate
emulator program and using the tasks that may take several minutes to
terminal as the programming interface. complete. You gain a large perfor-
Most high-end PLCs and some low-end mance improvement if the program
models now offer PC-based software to generation task is integrated into the
generate the application programs, but PLC and can operate directly on the
you may still have to purchase the program storage buffer of the PLC. The
software package. need to transfer the program from the

32 Issue W27 June/July, 1992 The Computer Applications Journal

programmer to the PLC, and the time
to do it, is eliminated because editing
changes take effect immediately on
the PLC.

If the program generation task
[i.e., editing, interpreting, or compil-
ing), execution code generation, and
program loading is done directly in the
PLC, then switching between the
programming and operating modes of
the PLC becomes easy. In fact, execut-
ing single instructions at a time and
compiling the instructions incremen-
tally in the program storage buffer
becomes possible. The user may run
the compiled program at full speed at
any time. The benefits of this approach
are evident during application program
development, testing, and debugging,
where you may easily enter and test
short segments of a program with
immediate feedback of the results.

Moving the program generation
task out of the external programmer
and into the PLC has the added benefit
of cost savings due to programmer
hardware elimination. Also, because
the user interface is no longer con-

strained by hardware limitations, a far
more powerful and user-friendly
interface can be employed.

ARCHITECTURE
Figure 3 shows that describing

precisely the requirements of a control
logic scheme using a functional logic
diagram is very easy, and I have said
translating the diagram to the applica-
tion program on any well-designed
PLC should be equally easy. As a start,
choose instruction words that describe
exactly the function blocks and type of
operations available. For example, you
should be able to describe the AND,
OR, NOT, and flip-flop functions as
easily and intuitively as possible by
the instruction mnemonics.

The PLC is a “virtual” machine,
meaning it is a program that runs on
the microcontroller board and emu-
lates a logical machine. This emulated
or virtual machine is designed to
execute the PLC instruction “words,”
which are routines written in the
native language of the microcontroller.
The architecture of the PLC machine

should be designed for efficient bit-
processing operations because logic
control problems are characterized by
these types of operations.

A very powerful technique for
handling mathematical operations is
to use a stack mechanism for data
storage, manipulation, and transfer. A
stack is a first-in, first-out data
structure. New data is written onto
the top of the stack, forcing existing
data down. The data is read from the
stack by sequentially popping it from
the top of the stack, with the most
recent data being retrieved first. If you
employ a bit stack in your PLC, the
operations for data manipulation are
very straightforward and efficient. All
logical operations are performed on the
stack, and the results are left on the
stack. Data can be transferred to and
from the I/O table and the stack or the
internal storage locations and the
stack, or constants may be loaded to
the stack. The model for the stack
machine is very simple and the user
can easily visualize and follow the
stack operations.

Offering exceptional value in a single-board embedded controller, Micromint’s RTC-HCll combines
allofthemost-asked-forfeatures intoasmall3.Yx4.5’packageat areasonableprice. Featuringthepopular
Motorola MC88HCll 8-hit microcontroller, the RTC-HCl 1 gives you up to 21 lines of TTL-compatible I
ID; an 8-b% &channel analog-todigital converter; two serial ports; a real-time dock/calendar with
battery backup; 512 bytes of nonvolatile EEPROM; and up to 64K of on-board RAM or EPROM, 32K
of which can be battery backed. 1

Software development can be done directly on the RTC-HCll target system using
BASIC-1 1, an extremely fast integer BASIC interpreter with dedicated keywords for
ID port, A/D converter, timer, interrupt, and EEPROM support. In addition, a flexble
configuration system allows a BASIC program to be saved in the on-board, battery- .
backed static RAM, and then automatically executed on power-up. Micromint
alsooffersseveral hardwareandsoftwareoptionsfortheRTCHC11 including
thefulllineofRTC-seriese~sionboardsaswellasanassembler,ROM ~1
monitor, and C language cross-compiler.

.

Additional features include: 2
* Asynchronous serial port with fullduplex T

RS-232 and half-duplex RS-485 drivers
* l-MHz synchronous serial port

-TmJ**-,

* CPU watchdog security
* Low-power “sleep” mode SpEciAl DEVELOPMENT SYSTEM PRicE!
* 5-volt-only operation
* RTC stacking bus

RTC-HC 11 #DEV $300.00 -;;
Board wl 8-bit ADC, EEPROM, 32K battery-backed
RAM, Clock/Calendar, BASIC-1 1, ROM monitor, utility
diskette with assembler and complete manual set.

T

Other configurations also available starting at $239.

MICROMINT, INC. 4 Park Street l Vernon, CT 06066 l (203) 8716170 l Fax: (203) 872-2204

The Computer Applications Journal Issue X27 June/July, 1992 33

The architectures of many of
today’s small PLCs are not readily
apparent to the user, and the internal
operation of the machine is normally
hidden. If a bit stack architecture is
used and a display of stack operations
is provided, the user can follow the
internal operations of the PLC and
gain a better understanding of the
machine. It is for these reasons that I
specify a bit stack architecture for this
PLC.

Careful thought should be given to
the design of the instruction mnemon-
ics with an aim to make the instruc-
tions intuitively easy for the user to
remember and use. Most PLCs on the
market will support at least a common
set of logical operations, such as AND,
OR, NOT, EXCLUSIVE-OR, and
complex functions like timers and flip-
flops. This PLC design should be no
different, but because I use a stack
architecture, I can adopt the following
conventions to include the stack in the
data transfer mnemonics.

Data transfer operations have two
parts: the first part identifies the
source and the second part identifies
the destination of the data. The stack
is represented by a dot, “.” (shades of
Forth) and labels are used to reference
bit variables. Bit variables have a letter
and number designation. Input bits use
letters from the beginning of the
alphabet, virtual bits use letters from
the middle, and output bits use letters
from the end. For example, input bit
labels may be AO, Bl, or C2; virtual
bits may be UO, Vl, or W2; and output
bits may be X0, Y 1, or 22. The
instruction mnemonic to read input
bit A0 to the bit stack would be “AO.”
(pronounced “A0 dot”) while the
mnemonic to transfer the bit stack to
output bit X2 would be “X2” (pro-
nounced “dot X2”).

A logical operation on two
variables removes the two topmost
stack variables from the stack and
places the result of the operation on
the top of the stack. It has no source or
destination parts because the stack is
the implicit source and destination for
the operands and result. Unary
operations, such as NOT, SET, and
CLEAR, simply replace the top of
stack value with the new result.

Top of stack to flip-flop 0 set input

Let me show how the functional
diagram of Figure 3 would be trans-
lated to the application program, after
first defining the instructions for the
flip-flop in Figure 4.

The application program for the
functional diagram in Figure 3 is
shown in Listing la. Notice the
program is nearly a direct intuitive

value is the previous result (A5 AND
A3). The following two steps compute
the logical OR of these values and send
the result to the flip-flop SET input
(see Listing lc).

In a similar manner, you can write
by inspection the instructions for the
flip-flop reset input (see Listing Id).

All the input conditions have now_ -
translation of the functional diagram.

The result of the first AND gate is
on the top of the bit stack at this
point. When the following two inputs
are read, the result is still stored on the
stack, below the two new readings, as
shown in Listing 1 b.

The top of stack now contains the
result of (A6 AND AO). The next stack

been read and the flip-flop output
contains the control signal to send to
the pump motor. The program shown
in Listing 1 e simply transfers the
results to the output bits.

Programming this type of PLC
simply is a matter of setting down the
control requirements on a functional
diagram, then writing the application

Listing l--The ecfual T/E program for the functional diagram in Figure 3 may /o& uyptic, but is quite
straigh&vard. Based on stack operations, each operator is short but pnwdul.

(a)

(b)

Cc)

(d)

(e)

A5. Read HS-AUTO switch input
A3. Read LSL switch input
AND Compute (A5 AND A31

A6.
AO.
AND

Read HS-MAN switch input
Read START PB switch input
Compute (A6 and AO)

OR
.so

Read (A5 and A3) OR (A6 AND A01
Write to flip-flop SET input

A5.
A4.
NOT
AND
AO.
NOT
O R
A2.
OR
.RO

Read HS-AUTO switch input
Read LSH switch input
Complement LSH value
Compute (A5 AND NOT.A4)
Read STOP PB switch input
Complement STOP PB value
Compute (A5 AND NOT.A4) OR NOT.AD
Read DLl switch input
Compute OR
Write to flip-flop RESET input

00.
.x0
00.
NOT
.x2
A2.
.x3

Read flip-flop output
Write to Motor output
Read flip-flop output
Complement for Stop status
Write to STOP indicator
Read DL switch input
Write to Overload indicator

3 4 Issue 127 June/July, 1992 The Computer Applications Journal

program by inspection using mnemon-
ics and labels that are intuitive. Once
you use this method of programming,
there is no going back to the clumsy
ladder diagram method. The functional
diagram serves to document the
control scheme in an easily read and
understood form, and it greatly eases
maintenance and troubleshooting
tasks.

In completing the design specifica-
tions of this improved PLC, you can
add other functions to cater to special
requirements and to improve the
testing and debugging of application
programs. By making the source code
available, knowledgeable users may
extend the instruction “words” of the
PLC and customize it to special
applications.

CONCLUSIONS
Machine control and automation

projects benefit from the use of PLCs.
As prices continue to fall, and perfor-
mance and ease of use increases, more
areas of application will open up.
There is much room for improvement

in small PLCs in the areas of architec-
tural design, programming, and the
user interface. I have defined the
requirements for a small PLC that
offers improvements in these areas.

A PLC designed to these specifica-
tions has been developed to run on an
803 1 microcontroller board. Named
TILE, it supports up to 52 I/O points in
its maximum configuration. TILE fits
in a 16K EPROM that can be plugged
into a controller board. For access to
all the I/O functions, the board must
support the required I/O interface
devices, but TILE can operate with
reduced I/O functions if the interface
devices are missing, as in the cases
where a simple evaluation is needed.

With TILE, anyone can easily
tackle complex control and monitoring
tasks in cost-sensitive application
areas, such as home control and
security monitoring. TILE is well
suited for machine control and
automation applications and for
running test sequences on equipment
that require frequent program changes.
As a teaching tool, TILE is unbeatable

with its ability to switch between
program editing and full high-speed
operating modes instantly. Its ad-
vanced stack architecture and carefully
designed instruction words make
programming an enjoyable task. q

Francis Lyn is a control systems
engineer on petrochemical, power, and
mining and refining types of industrial
projects. He also does work with L.S.
Electronic.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime” in this issue for
downloading and ordering infor-
mation.

407 Very Useful
408 Moderately Useful
409 Not Useful

Tw523
Power Line Interface

Developers Eit
Interface Your Computer To Transmit And

Receive X-10 Codes Over Your AC Power Line.
Two-Way Communication.

Real Time Environment Control.

Kit Includes
TW523, Cable, Interface Connector (S/P)
Documentation. Source Code Supplied in

“C”, Pascal, BASIC or Run Time.
Disks 5.25in & 3.5in Format .

i

Baran-Harper Group Inc.
Voice (416) 294-6473 BBS (416) 471-6776

Fax (416) 471-3730

#I21

957 O N E MEGBYTE RAM/EPRU
riri 17Tr

I /O CONNECTOR

DIN TYPE C

Our FOUR layered CPU and I/O boards are
designed for tough factory floor environments.

Custom design and board mfg. available.
Please call for specifics.

TEL (510) 47b8147 l FAX (510) 489=5356
33476 Alvarado-Niles Blvd., Suite 6

Union City, CA 94587

The Computer Applications Journal Issue W27 June/July, 1992 3 5

Dwayne Phillips

LZW Data Compression

ne of the cliches
I learned in college

was “you never have
enough disk space.”

I’ve found this little saying to be true
all too often. One or two instances of
having too much data and too little
space, and I felt the ability to compress
data was no longer a convenience and
was instead a necessity. Several
commercial products are available that
meet this need, but how do they work?
The R EADM E file in PKWARE’s
compression utility mentions Huff-
man coding and Ziv-Lempel-Welch
schemes, but what do they do? To
answer these questions and others, I
will discuss some aspects of data
compression and describe and demon-
strate LZW data compression [l] [2].

An issue that was arround long
before computers, data compression
allows you to store more data in less
volume. Its first use was in communi-
cations because communicators
needed to transmit information in as
short a time as possible. One of the
best known data compression codes is
Samuel F. B. Morse’s code, shown in
Figure 1. The idea behind the Morse
code is to represent frequently occur-
ring characters by short codes and use
longer codes for the other characters.
For example, the letters e and t use
only one dot or dash while the y uses

four dots and dashes. The Morse code
is one of history’s best compression
schemes because it worked. It worked
so well that it almost killed Alexander
Graham Bell’s invention because
telegraph operators could communi-
cate faster than people could talk.

An excellent compression scheme
introduced in the 1950s was the
Huffman code [3]. Huffman created it
with telecommunications (not com-
puters) in mind. With Huffman coding,
you use fewer bits to represent the
most frequently occurring characters
and more bits to represent other
characters. The Huffman code pro-
vided minimum redundancy coding
(i.e., the fewest average number of bits
per character). In comparison, the
ASCII code uses seven bits for each
character. If a message contained 1000
a’s and only one b, then there is no
reason to use the same number of bits
to represent the a and the b. Whereas,
Huffman coding corrects this situa-
tion. It would represent the a with a
single 0 and the b with a 10. The
compressed message would only
require 1000 x 1 + 1 x 2 = 1002 bits
instead of 1001 x 8 = 8008 bits.

However, the Huffman code does
have its problems. One is you must
store the new code as a header to the
compressed file. Because the frequency
of characters is different in each file,
you will have a different code for each
file. Therefore, the decompression
routine must read the code for the
particular file before it can begin the
decompression process. Another

A .- s . . .
B -... T -
C -.-_ u ..-
D -.. v . ..-
E w .--
F . . - . x -..-
G - - . Y -_--
H _... Z - - .

. . 1 _ - - - -
J .- - - 2 .---
K - . - 3 __.--
L .-.. 4 .-
M __ 5
N -. 6 1::::
0 ___ 7 --. . .
P .--. 8 ---.
Q - - . - 9 ----.
R . - . 0 _ _ _ _ _

Figure l- Morse code compressas data with do$ and
dashes.

36 Issue 127 June/July, 1992 The Computer Applications Journal

Example message:

this is a test<CR><LF&is is a
test<CR><LF>

The input characters and output codes
are:

-116
-104
-105
- 115
- 32
- new code 256
- 3 2
- 9 7

t
e
:

<CR>
<LF>
th
is_
is_
a -
te
st
<CR><LF>

- 32
-116
- 101
-116 -115

- 10
-13
- new code 256
- new code 261
- new code 261
- new code 263
- new code 265
- new code 267
- new code 269

Figure 2-/n LZW wmpression, wde characters are
assigned to variable-length strings lo achieve
compression.

problem is two passes must be made
through a file to compress it. During
the first pass, you count the occur-
rences of each character. Then, in the
second pass, you code each character.

LZW COMPRESSION
LZW coding came along in the

198Os, and many commercial packages
use it today. The name LZW comes
from an article written by Terry Welch
[2] and earlier work by J. Ziv and A.
Lempel [l]. Note that UNISYS holds a
patent on the LZW algorithm; you
must talk to them before using it in a
commercial package. Most people use
some variation of the algorithm, and I
do not know if the patent also covers
these forms (see the last section,
entitled Variations).

Among the well-known packages
using LZW is the compress utility in
UNIK systems. The compression
packages from PKWARE also use
LZW. The V.42bis modem protocol
uses a form of LZW (the MNP-5
modem protocol uses a form of
Huffman coding). The V.42bis is an
example of things to come. You will
see more and more instances of data

compression in firmware and hard-
ware in modems and hard disk
controllers. V.42bis uses BTL.Z [British
Telecom Lempel-Ziv), another
variation of LZW. CCITT chose BTLZ
for their standard over MNP-5 and
Hayes Adaptive Data Compression
because it produced 3: 1 compression
for text instead of 2:l compression.

The difference between LZW and
Huffman coding is the unit of informa-
tion you code. With Huffman coding,
you create a code for each character,
but with LZW, you create a code for a
string of characters. For example, if
the input were abcabcd, you could
output abc#d. The #would be a new

Initialize string table with single chars

String w = first input character

STEP:
Read input character k
If input file is empty Then

output the code of string w
EXIT program

If wk is in string table Then
w = w k
go to STEP:

Else wk is not in string table Then
output the code of string w
put wk in string table
w = k
go to STEP:

L .
Ffgun 3-The L?W compression algontnm I
straightbnvani

code to represent abc. You create
these codes as you read the input file. Figure 3 shows the LZW compres-
You don’t need two passes to com-
press the file, nor do you need to read
a header to decompress the file.

Let me show you a simple file
containing “this is a test<CR>cLF>
this is a test<CRxLF>.” Instead of
sending characters,
codes should be sent
for the variable-

sion algorithm. In the algorithm, w is a
string and k is a character. The string
table is a translation table that holds
the strings and the codes (single
numbers) to represent them. During
compression, you read in a character k,

input string char output string table
W k

length strings. If the
string has not
occurred previously,
send the ASCII code
for that character.
When you reach a
string that has
occurred earlier, send
a new code (in a
moment, I’ll explain
how to create these
codes). Figure 2 shows
the input characters
and the corresponding
output codes.

I,
t

I :,
h t=ll6 256=th=ll6h
i h=l04 257=hi=l04i

S i S i=lO5 256=is=lO5s
S s=ll5

i i
259=s =115_

i
_=32 26O=_i=32i

S S none
is _ is=256 261 = is_ = 256

a a =32
a a=97

262=_a=32a-

t t
263=a_=97_

=32
t 1=116

264=_t=32t
e e 265=te=ll6e
S e S e=lOl 266=es=lOls
t S t s=ll5 267=st= 115t
CR t C R t=ll6 266=tCR=ll6CR
LF CR LF CR=10 269 = CR LF = 10 LF

:,
LF

:,
LF=l3 270 = LFt = 13 t

By sending codes
for the strings such as
th, is, and te, you
saved space. The
input was 32 charac-
ters and the output
was 22 codes. If you
use 9 bits for each
code, then the output
is9x22= 198bits,
while the input was
256 bits. This
compression was a
good one for such a
short file.

I k i
none
&I=256 271 = thi = 256 i

S I S none
is none

i is_ i is_=261 272=is_i=261 i
S I S none

is _ none
a is_ a is_=261 273 = is-a = 261 a

a none
i a- t a_=263 274=a_t=263t
e t e none
S te S te=265 275 = tes = 265 s
t S t none
CR C R St=267 276 = stCR = 267 CR
LF ;R LF none
none CRLF CRLF=269

Ffgurs 4-Taking tie text in fiure 2, rhe wmprkon a/gorithm assigns
characters to certain stings to reduce the final size.

The Computer Applications Journal Issue w27 June/July, 1992 37

DECOMPRESSION:
code = oldcode = first input code
k = code_of(code)
output character k
final-char = k

NEXT CODE:
code = next input code
incode = code
If input file is empty Then EXIT

If code is not in the string table Then
output character final-char
code = oldcode
incode = new_code_of(oldccde,

final-char)
end if

NEXT SYMBOL:
If code_of(code) is a number +

character Then
push k onto stack
code = number pointed to by code
go to NEXT SYMBOL:

end if

If code_of(code) is a single
character = k Then

output character k
final-char = k

do while stack is not empty
output character on top of stack
pop stack

end do while stack is not empty

put oldcode (number) and k
(character) into string table

oldcode = incode
go to NEXT CODE:

end if
I
Figure CDecomjv&on is more inv&ed tian
cofflj~5-s~on, but fakes less time.

append it to the string w you read
before, and see if this new string w k is
in the string table. If it is, then you
read in another character k and append
it to the string. When you finally find a
string w k that is not in the string table,
enter it there and output (write to the
compressed file) the code for the string
W. The string table allows you to
review all of the strings that have been
read from the decompressed file and
use them to build new, longer strings
and codes to represent them.

Figure 4 shows how the compres-
sion algorithm created the codes for
the text in Figure 2. You initialize the
string table by placing the single
characters in it. These occupy slots 0
to 255 of the string table. The algo-
rithm inserts the strings created by
reading the input file into the table

Figure 6-L&@ al tie
intermediate steps as the
decompression algorithm
woks through a pfoM9m
can aidin undersfanding
how it tv0fk.s.

input oldcode k output string table

116
104
105
115
32
256
32
97
32
116
101
115
116
10
13
256
261
261
263
265
267
269

t t
116 h h 256=th =116h
104 I i 257= hi =104i
105 S S 256=is =105s
115 259 = s

i,s
7 =115__

32 IS 260=-T =32i
256 _ - 261 =is_ =256_
32 a a 262 = _a = 32a
97

t t
263 = a_ =97_

32 264=-t =32t
116 e e 265 =te =116e
101 S S 266=es =lOl s
115 t t 267= st =115t
116 C R C R 266=tw =116CR
10 LF LF 269 = CRLF = 10 LF
13 t,h th 270 = LFt = 13t
256 i,s,_ is_ 271 = thi = 256 i
261 i,s,_ is_ 272 = isi =261i
261 a a- 273 =is_a = 261a
263 t,: te 274 = a-t = 263t
265 st 275=tes = 265s
267 %,LF CRLF 276=stCR =267CR

starting at location 256. Figure 4 also input, then a single code would
shows that the algorithm outputs one represent four- and five-character
code for each of the first five input strings.
characters and adds two character Figure 5 shows the decompression
strings to the string table. When the algorithm. In Figure 5, code, 01 dcode,
algorithm encounters the word “is,” it and i nc ode are numbers, k and
outputs the code 258 because this f i n a 1 _c h a r are characters, and w is a
word is already in the string table. As string. In decompression, you read in a
the second “this is a test” is read, the code from the compressed file. If the
algorithm finds several of these strings code represents a single character, you
in the table. You added i S_ to the output that character to the decom-
string in location 261 during the first pressed file and go on. If the code
part of coding. Then, you output 261 represents a string, you recursively
twice during the last half of the pull the last character off the string
coding. The output codes require less until the string itself becomes a
space than the input character strings, character, and then output the charac-
and compression occurs. If “this is a ters. You build the string table as you
test” occurred a third time in the go, as with the compression algorithm.

Listing l-Each item in the sting taMe has a numiwanda character.

* This struct defines the items in the
* string table.
f
* code_num the number of the item in the table
*
* code-char - the character appended onto the
ii string in the table.
*

struct item 1
unsigned short code_num:
char code-char;

1;

38 Issue #27 June/July, 1992 The Computer Applications Journal

The decompression algorithm
does not need the string table that the
compression operation created.
Decompression re-creates the table as
it goes along. The first codes in any
compressed file correspond to single
characters. You already know the
codes for the single characters (they’re
just the standard ASCII table), so you
utilize these to build the codes for
strings.

Figure 6 illustrates how the
decompression algorithm reads in the
codes produced in Figure 4, outputs
the original characters, and re-creates
the string table. Notice how the first
codes read all represent single charac-
ters. Their character output is straight
ASCII. While these simple codes come
in, the 01 dcode and k build up the
additions to the string table. When the
code 258 [representing “is”) comes in,
it is in the string table. The N EXT
SYMBOL section of the algorithm takes
over and pushes the s down on the
stack. After the NEXT SYMBOL section
finishes, the algorithm outputs the i,
then pops the s off the stack and

Lirtlng2--Mosfo/~efunctionsneededkKthe'outpufhecodeofstring Wssgmentolthecompression

a/go&m are shown here.

output_the_code(w.string_table.out_buffer,out_counter,out_file_desc)
char w[l:
int *out_counter. out_file_desc;
short out_bufferCl:
struct item string_table[l:

t
short n:

I* A. *I
find_string(w. string-table. &n):

I* B. *I
write_code(n. out-buffer. out-counter. out_file_desc):

1,**f************f*ff*f*f*********f***t*f~~~~**~~~~~~*~~~~,

find_string(w. string-table. n)
char w11:
short *n:
struct item string_table[l:

I
char w2ClOOl. x:
int i. j, k. searching;
w2COl = '\O';

/* A. */
= TABLE 1:

x = last(w):
searching = 1:

/* B. *I
while (searching) 1

The EC-32TM is a versatile 8OC32 microcontroller
board. It is ideal for quickly developing products,
prototypes or test fixtures.

l 8OC32 microcontroller (8051 compatible)
l BASIC-52 or MONITOR-52 available
l Program in C, BASIC or assembly language
l 8 to 92K RAM, EPROM or EEPROM
l Breadboard area and expansion bus
l RS-232 port and 12 digital I/O lines
l $100 for 11 MHz, $145 for 20 MHz

40 Issue#27JunelJuly,1992 TheComputer ApplicationsJournal

ATTENTION: BASIC-52, BASIC- 180 and BASIC- 11 DEVELOPERS
F,na,,y, on advanced development environment for BASIC single-board COmPUters.
EOrcomblnes all the look you need-Including EdltW, Compile, DebUggero”d
Terminal emulator In o powerful, fast. easy-to-use. and totally Integrated package.

Edi tor
. Configurable keystrokes and colors . Memory resident text VASTI)
. Block move,cop~,de,ete,reod/write . Find 8 replace . Auto-indent
Compiler
. Strucfured progromr: DO/UNTIL. WHILE/WEND, BEGIN/END . No line numbers
. Up to 20-character vo,,ob,e and lobe1 names . Subroutine LOCAL vorlobles
. Five types of comments (Inc,ud,nQ multlllne) stripped during download
Debugger
. Up lo 1000 BREAK/PASSpol”ts . Execution PROFILE . Up to 40 WATCH vorbbled
. ,nteger vorlobles WATCHoble OS DEC/HEX/BIN . All. orportlol. orroY WATCH
lermlnal
. Editor, file, and Co,,,p,,e buffer download t0 SBC . FNe COPtUfe fro,” SBC
Host PC Requirements
. 5 IZK . One d&k d,,ve . One serial port . Mono.C/E/Y/GA l DOS 3.X-5.0

lndlvldual versions ore avallable for BASIC-52 (BO12). BASIC-180 (BD7fdO) o”d
BASIC-l 1 (BDTfl) SBCs 0 $199. SPECIAL OFFER--‘EDT-PAK’ combines 011 three
versions 0 $489 for a sayings of over $100. Order today-offer eXPlreS Soon...

40944 Cascade Place . Fremont. COllfornlO 94539
(510) 657-0254 . FAX (510) 657~5Ml n BBS (510) 657-5442 lzzaa@

t12

Listing 2-ccdnued

I” c. *I
if (x == string_tableCil.code_char) I

insert-in front(w2. x):
build_string(w2. string_table[il.code_num. string-table):
if(strcmp(w2. w) == O)(

searching = 0;
fn = i;

) /* ends if w2 == w *I
else (

i__;
w2[03 = '\O':

I* D. *I
else (

j__;
if (i < 0) (

printf("\n\nLZW: ERROR did not find ',
"string in table\n'):

searching = 0:
*n = 0:

)

insert_in_front(w. x1
char w[l. x;

outputs it, too. The string table builds
up and the process continues from
there.

WRITING THE CODE
Listings 1 through 9 show some of

the code that implements LZW data
compression and decompression (the
complete source and executable code
are available on the Circuit Cellar
BBS). The functions shown in the
listings implement the key steps in the
compression and decompression
algorithms given in Figures 3 and 5. I
wrote this program using Microsoft C
6.0, though nothing is unique to
Microsoft, so the code should port
quickly to other compilers and
operating systems. The program is not
intended to compete with commercial
compression products, but is a demon-
stration of the ideas behind LZW
compression. Compared to this code,
commercial products execute much
faster and with greater compression.
On my lo-MHz ‘286 machine, com-
pressing a lOOO-character file takes
around two minutes, and decompress-

Are you looking for a 68xxx or 386/486 ANSI C
MOSS compiler for DOS OR UNIX? Is complete
source code to your compiler important to you?
How about a complete Standard C library
implementation, including floating point
Emulation?

Hundred Acre Consulting is now offering GNU C support
packages in several cross compiler configurations. Each
package includes the GNU ANSI C compiler from the Free
Software Foundation, a complete Standard C library with
hooks for your own Ne system implementation, several
support utilities, and one year of support at no additional
:harge. Platforms supported include MS/DOS. Sun 3 and
Sun 4 with SunOS 4.1, and Interactive or SC0 UNIX. Call
:oday for more information!

1 GNU Sumort Package: $495 I

Hundred Acre Consulting
1280 TerminalWay.Suite 26,Reno NV89602
Phone:+%7023249333

&&Email: info@pooh.com

#127

Integrated
D eveloDment

hvironment
For (Almost)

DEAL brings together all of the tools used to develop software fol
jingle BoardComputers(SBC)and blendsthem intoamenu-driver
windowed environment that speeds your development process.

. Automates the Compile-Assemble-Link-Download Cycle
l Works with any Compiler, Assembler, Linker, etc.
l Use the built-in Editor or link to your own Editor, it’s easy
l Great for BASIC and FORTH interpreters too
l Interrupt driven serial communications to the SBC
l Swaps memory to make room for the largest tools
l Resizable, Zoomable Windows for Editing, Browsing and

Target Communications
l Fully integrated mouse and keyboard control
l In use for 2 years at Major Universities and Corporations
Requires PC/XT/AT wJ384K
Demo Available on BBS

30 day Money_&& Guarantee

Phone (415) 494-2363

engineer ing, inc.
Compuserve: 74156,1207
BIX: ecarryer

TO. Box 9524, Stanford, CA 93409 BBS (415).494-8363

The Computer Applications Journal Issue W27 June/July, 1992 41

ing takes about one-fourth of that
time. Disk I/O is not a factor in
performance.

Listing 1 shows the data structure
used to implement the string table.
Each item in the string table will have
a number and a character associated
with it. This feature takes care of the
number and character pairs shown in
the far right of Figure 4.

Listing 2 shows most of the
functions needed for the output the
code of string w segment of the
compression algorithm (Figure 3). The
function output_the_code has two
steps. First, it finds the code that
represents the string w. Then, it writes
the code. The f i n d-s t r i ng function
does the slow process of searching
through the string table to find the
string and the number representing it.
f i n d-s t r i n g sets the last character of
w to x (A) and searches for x using the
characters in the table (B). Then it
builds up the string and compares it to
w(C). find_stringcallsthenexttwo
functions of Listing 2, i n s e r t-i n_
front and build_string.insert_

Listing 2-cofllinued

{
char temp:
int i. j. not-finished;

I* A. */
i = 0;
not-finished = 1;
while (not-finished) I

if (w[il == '\O')
not-finished = 0:

else
i++;

/* i. */
w[i+l] = ‘\O’;
f o r (j=i: j>O:

w[.jl = w[.i-1
/* c. */

w[Ol = x:
1

__)

build_string(w. number. string-table)
char w[l:
short number;
struct item string_table[l;

1
/* A. *I

if(string_table[numberl.code_char != '\O'){
insert_in_front(w, string_table[numberl.code_char);

(continued)

42 lssue#27June/July,l

H Memory mapped variables
n In-line assembly language

option
n Compile time switch to select

805 l/803 1 or 8052/8032 CPUs

n Compatible with any RAM
or ROM memory mapping

n Runs up to 50 times faster than
the MCS BASIC-52 interpreter.

n Includes Binary Technology’s
SXA51 cross-assembler
& hex file manip. util.

I Extensive documentation

n Tutorial included

n Runs on IBM-PC/XT or
compa tibile

I Compatible with all 8051 variants

n BXC51$295.

603-469-3232
FAX: 603-469-3530

q
Binary Technology, Inc.
Main Street l P.O. Box 67 l Meriden. NH 03770

The Computer
1112

ApplicationsJournal

CS212 SART I/O network chip 8.10
MC1 45030 IR encoder/decoder 9.70
MT8809 8x8 analog crosspoint 10.30
TW523 Xl 0 2-way interface 45.00
PL513 Xl 0 bans-only interface 8.00
IL300 linearoptoisolator 8.00
Sharp IS1 U60 38 kHz IR ret 4.20
Sharp GPl U52X 40 kHz IR ret 6.75
LD273 dual IR LED (bright) 2.10
16C55 logicanalyzerw/DRAM 19.00

Experimenters: Our 8031-LINK ‘Chip Sack” has the
ICs you need to build an HCS II COMM-LINK for
$34.00...

UPS GroundlSnd daylnextday $6/6/16to 46 US states,
COD add $4. Check or MO only, no credit cards or POs.
CT residents add 6% sales tax. Quantity discounts!

b Your unusual parts sourGe 4
89 Burbank Road

Toiland,CT06084-2416
FAX/voice 12031870-9304

Liiting P-coflh~ed

I* B. *I
if(string_table[numberl.code_num ! = 0)

build_string(w.
string_tableCnumberl .code_num,
s t r i n g - t a b l e) :

1

write_code(n. o u t - b u f f e r . o u t _ c o u n t e r . o u t - f i l e desc)_
i n t * o u t _ c o u n t e r . o u t _ f i l e _ d e s c :
s h o r t n . out_buffer[l:

t
i n t by tes_wr i tten, i :

/* A. *I
if(*out_counter >= LENGTH2){

by tes -w r i t t en = short_output(out_buffer.
out_file_desc.
out_counter):

LZWTESTC printf(‘\nLZW: TEST: wrote %d bytes ’ ,
bytes_wri tten): 1

*out counter = 0:
for(i=O; i<LENGTH2: i++)

out_buffer[il = 0:
I

I* B. *I
out_buf ferC*out_counter l = n :
*out_counter = *out_counter + 1;
LZWTEST(printf(“\nLZW: T E S T : o u t p u t %3d - out coun

n. *out_counter):)
.er = %3d’.

i n-front puts a character into the
beginning of a string.

The b u i 1 d-s t r i n g function uses
the recursive nature of the string table
to build up a string. You give it a place
in the string table pointed to by
number. If there is a character in the
string table, then put that character
into the beginning of the string w (A).
If that place in the string table points
to another place, then b u i 1 d-s t r i n g
calls itself recursively (B). b u i 1 d_
s t r i n g keeps calling itself until the
place in the string table no longer
points to any strings.

The final function of Listing 2 is
w r i t e-c od e, which puts the code into
an array. If the array is full [A), it calls
the short_output function for
writing to disk.

Listing 3 shows the i s_pr es en t

function, which implements the If wk
is in string table segment of the
compression algorithm (Figure 3). This
function is similar to f i n d-s t r i n g
shown earlier. It searches the string
table looking for the character k. If it
finds k (B), it builds up the string w2

HARDWARE
Check out our complete line of DSP boards based on powerful
floating-point processors like the AT&T DSP32c (25 MFlops)
and the Analog Devices ADSP-21020 (75 MFlops). Several
analog interface modules are available. DSP boards start at just
$995.

SOFTWARE
W e have everything you need to do DSP software
development, including C compilers, assemblers, source-level
debuggers, algorithm development tools, and many example
programs. Data can be transferred between the DSP board and
host at up to 3 Mbytes/set with the host interface library (source
code included).

SOLUTIONS
Call our friendly, knowledgeable staff to discuss your
applications and we’ll show you how easy it is to take
advantage of DSP technology.

800-848-0436

~~~L~v~~

SEALEVEL  SYSTEMS INC.

PO 80X 830
LIBERTY, SC 29857

’ COMMUNICATIONS 6 I/O (8031843-4343

#I 31

The Computer Applications Journal Issue 627 June/July, 1992 43



and compares that with w. i s_
present and find_stringareslow
becausetheycali build-string each
time they find a match in the string
table. There are faster ways for finding
a given string in the table, and I
describe these modifications in the
next section.

Listing 4 shows the i n s e r t_
i n t o-t a bl e function, which imple-
ments the put wk in string table
segment of the compression algorithm.
This function finds the first open place
in the string table (A). It then finds the
number that represents the string w (B)
and places this number and the
character k into the open place in the
table (C). Listings 1 through 4 contain
the key functions for the compression
process.

Listings 5 through 9 show the key
functions for the decompression
process. Listing 5 shows the w r i t e_
character-k function, which
performs the output task given in
several places in the decompression
algorithm of Figure 5. This function
puts the output character into a
character array for writing to disk. If
the array is full, then it is written to
disk (A).

Listing 6 shows the function
next-c ode, which implements the
incode = new_code_of(oldcode,
f ina l_cha t-1 portion of the decom-
pression algorithm. This function
looks for the place in the string table
where you would put the next code by
finding the first open place in the
string table.

Listing 7 shows the function
next_symbol,  which implements the
NEXT SYMBOL portion of the decom-
pression algorithm. This function
takes a string pointed to by code, pulls
characters off the string, and places
them on a stack for later output. It
first finds the place in the string table
pointed to by code (A). If the character
in that place is nonnull,  it pushes that
character onto the stack and calls itself
using the new place as the code (B).
This process continues until the code
represents a single character.

Listing 8 shows the code-of
function, which implements the
code-of (code 1 statement shown in
several places in the decompression

Listing 3-The kflent functions searches the sting fable br the given sting.

is_present(w. k. string-table)
char w[l. k:
struct item string_table[l:

(
int i. result. searching:
char w2[1001:

w2101 = '\O';
result = 0:
i = TABLE 1:
searching = 1:

/* A. *I
while (searching) {

I* B. */
if (k == string_table[il.code_char

build_string(w2.  string_table[i
if (strcmp(w.  ~2) == 0) {

result = 1;
searching = 0;

} /* ends if w2 == w */
else I

i__;
w2[01  = '\O':

) /* ends else w != w2 *I

,) (
I.code_num. string-table):

) /* ends if found a match for k */
/* c. */

else (
i-_;
if (i < 0) searching = 0:

1
1
return (result):

Listing 4-The insert_info_fab/e tuncl;on  impbane@  the ‘put wk  in sting  table’porbon  of We compression
algorithm.

insert_into_table(w,  k. string-table)
char w[l. k:
struct item string_table[l:

t
int i. j. searching:
short s;

i = TABLE - 1;
searching = 1:

/* A. */
while (searching) {

if (string_table[il.code_char  != '\O')
searching = 0:

else {
i__;
if (i < 0)

printf('\nLZW: ERROR- Table full--cannot insert");
1

1
/* B. */

find_string(w. string-table. &s);
/* c. */

string_table[i+ll.code_num  = s:
string_table[i+ll.code_char = k:
LZWTEST(printf("\nLZW:  TEST: inserted string %d".s):)
LZWTEST(printf(' and char %c into table", k): )

1

44 lssue#27June/July,1992 TheComputerApplicaGonsJoumal



algorithm. This function goes to the
place in the string table pointed to by
code and returns the code and charac-
ter in that place.

Lbtlng  Cwrite_character_kpetbms  tie ou$ut task given in several places  in fhe decompression
algorithm.  H pub Ihe  o@uf  character into an array br writing &I disk.

Listing 9 shows the write_character_k(k.  out-buffer, out_counter. out_file_desc)
put-i n_ta bl e function, which
implements the put o 1 dcode  (num-
ber) and k (character) into string table
portion of the decompression algo-
rithm. This function searches for the
first open place in the string table (A]
and puts the number and character
into that place (B).

char k, out_bufferCl:
int *out_counter. out_file_desc:

{
int bytes-written:

/* A. */

if (*out-counter >= LENGTHl)  t
As I stated earlier, this code

executes slowly. The decompression
process is much quicker than compres-
sion because it does not search the
table by comparing strings. The
compression process is especially slow
because of the way I implement and
search the string table. The functions
find-string and is-present both
search through the string table by
building up every possible string that
might match the target of the search.
Making these searches more efficient
would save time. I leave this exercise
for you.

bytes-written = write(out_file_desc.
out-buffer,
LENGTHl):

LZWTEST(printf('\nLZW:  TEST: wrote %d bytes".
bytes-written): )

*out-counter = 0:

/* B. */

out_buffer[*out_counter]  = k;
*out-counter = *out_counter  + 1:

1

The $595 Solution
to 8051 System Development

Call Now! 603-469-3232 or FAX 603-469-3530

Binary Technology, Inc.
Mm. Street . PO. Box 67 . Merlden. NH 03770

m FE?

RI33

DC/CAD
introducing.. .

1 THE TERMINATOR ]
Super High Density Router

(Complete with Schematic & PCB EDITOR)
Features the following powerful algori

-Rip-upandRet
n Pre-routing of S8T components
. Real-Time via minimization
= Real-Tie clean up passes
9 User  defined strateq!es
. Wmdow 3.0 capabl  sty as DOS Task
n 1-mil Auto lacer and Auto
= Two-way 8 x8erber and D

arming

n Automatic Ground Plane wl Cross-Hatching
. Complete wl Schematic & Doll Libraries
n Optional simulation capability 2 protected mode for 386 users

* PCB LAYOUT SERVICE AT LOW COST *
LEASE PROGRAM & SITE LICENSE AVAILABLE

m Design
m Computation

” DC/CAD . . . The focal point of future CAD market ”

46 lssueW27JunelJuly,1992 The Computer Applications Journal



Listing Gnext_code  finds the place  in the sting  tafie where he nexf  code would go by finding  fhe  first
open place in he string  taMe.

next_code(oldcode.  final-char. string-table)

char final-char:
short oldcode;
struct  item string_table[I;

i
int i. new-code. searching:

I* A. "I

searching = 1:
i = TABLE 1;
while (searching) I

if (string_table[i].code_char  != '\O')
searching = 0:

else
i--;

1

/* B. */

new-code = i+l:
LZWTEST(printf("\nLZW:  TEST: inserted into table'):)
LZWTEST(printf('  new-code = Xd". new-code): 1
return(new_code);

1

VARIATIONS
The LZW algorithm has several

variations. As with any algorithm, you
can tinker with portions of it and
improve on the speed. Most work on
LZW has to do with the implementa-
tion of the string table and how you
search it [4]. You can investigate any
searchable data structure and any
method of implementing it. The
possibilities are endless.

You can also investigate the
amount of compression. The program I
describe here represents the codes with
12 bits, which gives you 4096 possible
codes. What if you need more or fewer
codes? The program could automati-
cally examine the input file, “guess” at
the number of codes needed, and use
this number. Another idea is to use 9
bits for the first 5 12 codes, switch to
10 bits for codes 512 through 1023,
switch to 11 bits for codes 1024
through 2047, and so forth. How
would you keep track of the bits? How
would you pack and unpack them?
How could you do all of these things
quickly and efficiently?

Cross-l 6 Meta-Assembler: US$99  / CN$119

XDASM Cross-Disassembler: US$249/CN$299

Both MS-DOS products include support for ALL
of the above processor families.

EPROM emulators and Forth compilers too!

Request our catalog.

Credit cards are billed in Canadian dollars (CN$).

Canadian residents please add 7% G.S.T.



I invite you to experiment with
the code. There is room for improve-
ment in data compression-both in
implementation details and com-
pletely new techniques. Remember, no
one ever has enough disk space. q

Dwayne Phillips is a computer and
electronics engineer with the U.S.
Department of Defense. He has a
Ph.D. in Electrical and Computer
Engineering from Louisiana State
University. His interests include
computer vision, artificial intelli-
gence, software engineering, and
programming languages.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime”  in this issue for
downloading and ordering infor-
mation.

1. J. Ziv and A. Lempel, “Com-
pression of Individual Sequences
via Variable-Rate Coding,” IEEE
Transactions on Information
Theory, vol. 24, no. 5, (Septem-
ber 1978).

2. Terry Welch, “A Technique
for High-Performance Data
Compression,” IEEE  Computer,
vol. 17, no. 6, (June 1984).

3. David Huffman,  “A Method
for the Construction of Mini-
mum Redundancy Codes,”
Proceedings of the IRE,  vol. 40,
no. 9, (1952): 1098-l 101.

4. Timothy C. Bell, “Better
OPM/L Text Compression,”
IEEE Transactions on Communi-
cations, vol. 34, no. 12, (Decem-
ber 1986): 1176-l 182.

410 Very Useful
411 Moderately Useful
412 Not Useful

Listing ‘I-nexf_symbo/  takes a string pulls tiaracters oft  and puts  tt~em on a slack

next_symbol(code,  string-table. stack. stack_pointer)
char stack[l. *stack-pointer:
short *code:
struct item string_table[l:

t
short code2.  s:
char c;

/* A. "I
code2 = *code:
code_of(code2. &s. &c. string-table)

I* B. */
if (s != 0) (

push(c  > stack. stack_pointer):
if (s > 255) {

*code = s;
next_symbol(code,  string-table. stack. stack_pointer):

1
/* c. */

else
*code = s:

) /* ends if s != 0 */
1

Listing 8-code_ofgoes  to a specified place in the string  passed to it and returns  rhe  code and character
in Lhal place.

code_of(code. s. x. string-table)
char *x;
short code, *s;
struct item string_table[l;

(
*x = string_table[codel.code_char:
*s = string_table[codel.code_num;

1
I

Listing~putin_lableseardles  lorlhefirstopenplacain theslringtabfeandpuls  fhegivennumberand
characler inb  that p/ace.

put_in_table(n.  c. string-table)
char c:
short n:
struct item string_table[l;

1
int i. searching;

/* A. */
searching = 1:
i = TABLE 1;
while (searching) (

if (string_tableCil
searching = 0;

else
i-_;

1
I* B. */

string_table[i+ll code_num = n;
string_tableCi+ll code-char = c;

.code_char != '\O')

48 Issue127  June/July,1992 TheComputer  ApplicationsJournal





The
Elements
of a John Dybowski

Data Logger
accomplished in a

variety of ways. You may
use a dedicated PC equipped with an
ADC card, or elect to roll your own
and lash an integrated circuit ADC to
a general-purpose microcontroller card.
At the very least, the data collection
system should be tolerant of power
disturbances. Better yet, it should have
the capability to run exclusively from
a battery because AC power may not
be readily available where you want to
perform the analog measurements.
Having determined that battery
operation is a good thing, you can
dismiss the PC-based approach
immediately, but how long can you
run a microcontroller-based logger off
a battery? Four hours? Eight hours?
Hardly an attractive proposition.

The main power for the data
loggers I designed is sourced from a 9-
volt battery, either a NiCd  recharge-
able or a standard alkaline. The 9-volt
NiCd battery is typically made up of
either six or seven 1.2-volt cells
providing an overall output of 7.2 or
8.4 volts, respectively. I selected the
8.4-volt battery for my logger. The
primary difference between NiCds and
alkalines (aside from the fact that the
NiCd is rechargeable, of course) is that
the NiCd  is capable of supplying 100
mAH where an alkaline battery has
five times that capacity, or 500 mAH.
Before moving along, let me quickly
describe the care and feeding of NiCds.

The trick to battery operation, as
applied to low-power data logging, is to
run the power-hungry circuit elements
only during the acquisition and data
processing phase. Burning up limited
battery power while waiting for
something to happen makes no sense.

The charge rate of a NiCd battery
is usually expressed in multiples of a C
rate. The C rate is defined as the rate
in amperes or milliamperes numeri-
cally equal to the capacity rating of the
cell. For example, for a cell with a lOO-
mAH capacity, the rate of IC is 100
mA. These C rate charging currents
can be characterized into such descrip-
tive terms as Standard Charge, Quick
Charge, and Fast Charge.

In such a configuration, continu- Overcharge is the normal contin-
ously running low-power timing ued application of charging current to
circuitry is used to issue a wake-up a battery after it has reached its
call to the logic and converter ele- maximum state of charge. Charging
ments at predetermined intervals. On cells that are already fully charged
emerging from reset, the controller causes a rise in oxygen pressure within
reads the ADC; processes, time the cells. Along with the rise in
stamps, and stores the data; and pressure comes a corresponding rise in
rearms the timing circuitry for the cell temperature. Standard cells may
next reading before shutting down the be overcharged at rates up to 0. IC.
main power. You end up with a Quick-Charge cells and Fast-Charge
standard microcontroller core with cells, which are designed to withstand
nonvolatile RAM, an ADC, an W-232 higher overcharge rates, are normally
interface, a timekeeper, a power charged at 0.2C and lC, respectively.
manager, and a battery power source. At high charge rates, a control mecha-

I have designed and constructed
two different data loggers that incorpo-
rate these basic elements. Differing in
the controller and power supply
sections, these loggers use the same
ADC, timekeeper, and communica-
tions interface, and being based on
8031-style controllers, both operate
under control of what is basically the
same program. I’d like to describe
some of the more ccmmon  points
before looking at the actual device
implementation.

THE BAllERY

50 Issue 627 June/July, 1992 The Computer Applications Journal



. R3 CONTAINS THE SECONDS LOGGING INTERVAL INPUT BY CALLER
; R7 CONTAINS THE CURRENT SECONDS RETURNED BY GET-TIME

CALL GET-TIME : Get the real time
MOV A.R3 ; Seconds are in R3
ADD A.R7 . Add the logging interval
CJLE A.#59,L?STBl  ; Jump if no adjustment required
CLR C
SUBB A.#60 ; Adjust

L?STBl:  MOV R5.#0FFH ; Set hours to don't care
MOV R6.#0FFH ; Set minutes to don't care
MOV R7.A : Set the seconds value
CALL PUT-ALARM ; Set the alarm registers

nism is required to reduce the charge
current to O.lC for standard batteries
once a full charge has been attained.
Various methods may be used to
accomplish this reduction, such as
timed control, pressure sensing
control, or temperature sensing
control. Charging at the 0.1 C rate does
not require these controls, and in the
interest of simplicity my data loggers
utilize 0.1 C rate charging.

SYSTEM TIMING
The system timer’s function is to

peroidically issue a signal to power up
the data logger. This timer runs
continuously so must consume as
little current as possible. Because a
real-time clock is required for the time
stamping of collected data, why not
also use the RTC as the interval timer?

There are many timepieces
available for use with microcontrol-

lers, many of which feature time-base
outputs. Unfortunately, most of the
time bases are fixed or allow only the
selection of a limited number of
output frequencies. However, a part
does exist that provides more than
enough flexibility for our needs. The
MC146818A,  available from Motorola,
Hitachi, and others, combines a
complete time-of-day clock with an
alarm, a loo-year  calendar, and 50
bytes of static RAM.

The MC146818A  has three time-
base outputs: CKOUT, SQW, and
l IRQ. CKOUT is the time-base
frequency divided by 1 or 4, selected
by the CKFS pin. The SQW pin
provides more flexibility and can
output a signal from one of 15 taps
provided by the 22 internal divider
stages, and it is software program-
mable. ‘IRQ is an open-drain output
that goes low in response to an
internal interrupt condition. The RTC
includes three separate fully automatic
sources of interrupts. These sources
include the “update ended” interrupt,

Two approaches to the same data logger: one based on an 80~31 (right) and another based on a DS5ooO  [/elf).  The DS5ooo-based system is obvious/y smaller and has the
advantage ol more digital I/O.

The Computer ApplicationsJournal Issue#27JunelJuly,1992  5 1



the periodic interrupt, and the alarm
interrupt. An alarm interrupt sounds
like just the thing to me. Now let me
describe how it works.

Alarm bytes exist for Seconds
Alarm, Minutes Alarm, and Hours
Alarm. The three alarm bytes may be
used in two ways. First, when the
program sets the alarm time, the alarm
interrupt is initiated at the specified
time each day if the alarm enable bit is
high. The second usage is to insert a
“don’t care” code (hex CO through FF)
into one or more of the bytes. An
alarm interrupt each hour is created
with a “don’t care” code in the Hours
Alarm location. Similarly, an alarm is
generated every minute with “don’t
cares” in the minutes alarm location,
and so forth. With a little software, the
RTC’s alarming capability can be used
to generate signals at intervals from
once a second to once a day.

The procedure used to perform
interval timing using the MC146818A
consists of the following steps. At
configuration time, store the logging
interval value along with the incre-
ment (seconds, minutes, or hours) in
nonvolatile RAM. The final action the
controller performs following the
acquisition of data is to set the alarm
for the next interrupt. Begin by reading
the current time, then add the logging
interval to the appropriate element, set
the remaining elements to “don’t
cares,” and write the new values to the
alarm registers. If after the addition,
the value exceeds the limit for that
particular element, the limit is
subtracted. Say I am setting the
seconds registers and the current
seconds are 55 and the logging interval
is 10. The calculation results in 65 (55
+ 10 = 65). The limit in this case is 60,
so I subtract 60, and the new value is
5. Setting the minutes and hours to
“don’t cares” results in the interrupt
occurring when the seconds equal 5;
the desired result.

The MC 1468 18A allows either
BCD or binary representation of data.
Using the binary mode simplifies the
math, and the binary-to-ASCII conver-
sion routines are required anyway to
handle the other binary entities, such
as the ADC data, so this aspect is not a
problem.

Listing 2-The ADC08188ADCis  uwdforanabginpu~.  NOPsareusedfomaintaina  40?4  1080?4  dufy
cyc/e  on the dock.

* INPUT: ACC CONTAINS ADC CHANNEL
; OUTPUT: ACC CONTAINS ADC DATA

READ_ADC PRDC
CALL XLATE ; SET UP BIT PATTERN
CLR ADC_CLOCK : DROP CLOCK
CLR ADC_CS ; ASSERT SELECT
MOV R1.#5 : 5 BITS TO SEND

; WRITE ADC ADDRESS TO START CONVERSION

L?RAI: RLC A : POSITION DATA BIT
CLR ADC_CLOCK
NDP
MOV ADC_DATA.C : MOVE TO PORT PIN
SETB ADC_CLOCK ; CLOCK ON RISING EDGE
DJNZ Rl.L?RAl ; LOOP UNTIL DONE
SETB ADC_DATA ; PREPARE FOR INPUT
MDV Rl .#g : 8 BITS+SAMPLE TIME

: ADDRESS IS SET, NOW READ CONVERSION RESULT

i?RAP: CLR ADC_CLOCK : CLOCK ON FALLING EDGE
NOP
MDV C.ADC_DATA : PICK UP DATA BIT
RLC A ; POSITION
SETB ADC_CLOCK
NOP
DJNZ Rl.L?RAP : LOOP UNTIL DONE

SETB ADC_CS ; DEASSERT SELECl
RET
ENDPROC

; ADDRESS TO BIT PATTERN TRANSLATION

; INPUT: ACC CONTAINS ADC CHANNEL
: OUTPUT: ACC CONTAINS 5 BIT ADC CHANNEL SELECT PATTERN
: SINGLE-ENDED OPERATION IS SELECTED. START BIT IS IN MSB

SLATE PROC
INC
MOVC
RET
DB
DB
DB
DB
DB
DB
DB
DB
ENDPROC
END

A
A.@A+PC

11000000B
1llODOOOB
1lDDlOOOB
1llDlDDOB
1lOlOODDB
1lllOOOOB
1lDllOOOB
11111000B

The code in Listing 1 illustrates The MC 1468 18A’s on-board
how to set up the MC146818A  for an oscillator is designed to work with
alarm interrupt based on the current crystals up to 4.193 MHz. The time
logging interval. Although the base plays an important role in the
MC 1468 18A  does well in certain areas, accuracy of the timekeeping and the
it is not without problems. Let me power consumption of the RTC.
describe some of the attributes of the Quiescent power dissipation of CMOS
MC146818A  that I find particularly circuitry consists normally of only
annoying. leakage currents across reverse-biased

52 IsweY27June/July,1992 TheComputer  ApplicationsJournal



Figure l--The  MC31  data logger requires a latch, external memory, and an external reset circuit for tie core. The ADC, RTC, and M-232  interface are added to that

diode junctions. Dynamic dissipation
consists of two factors associated with
switching: the current delivered to the
load (primarily the load capacitance]
and the current that flows between the
supplies during switching when both
transistors are momentarily partially
on. Both the quiescent and dynamic
dissipation are greater at higher
voltages. Therefore, the lowest power
consumption is attained by running
the RTC with a 32-161~ crystal at the
lowest possible voltage. Unfortunately,
the on-chip oscillator, being sized to
operate at up to 4 MHz, draws a lot of
current even when operated with a 32-
kl+ crystal.

The addition of the parallel crystal
oscillator composed of two gates from
a CD401  1 fixes this problem-to an
extent. With this setup, the standby

current of the RTC is about 60 uA at 5
volts and drops to 25 pA at 3 volts.
This result isn’t great, but it is about
half of what would be consumed using
the RTC’s internal oscillator. The
second problem with the RTC,
especially when used with the 8OC3 1
controller, is the way the standby
mode is entered. Standby mode is
activated by pulling the l STBY pin
low. The wrinkle is that this signal is
latched internally by the occurrence of
‘RD going low followed by ALE going
high. Normally this arrangement isn’t
a problem but remember that all
program fetches performed by the 8031
use ‘PSEN, not *RD. A little software
monkey business can overcome this
deficiency.

I know some of you are thinking I
should be using the DS1287 real-time

clock module instead of going through
all this trouble with the MC146818A.
The DS 1287, originally produced by
Dallas Semiconductor and now
available from a number of manufac-
turers including Motorola, contains a
built-in crystal, lo-year lithium
battery, and standby control circuitry,
and is almost completely compatible
with the MC146818A.  I am aware of
the merits of this part and have
successfully used it in many designs.
The bad news is the output pins,
including l IRQ, are totally inoperative
when the RTC is running in standby
mode, which is true of all the DS1287-
type parts that I have seen. If you
study the DS1287 further, you will
find it has an AC parameter called Tra,
or power-on recovery time. Intended to
allow the system to stabilize after

54 Issue #27 June/July, 1992 The Computer Applications Journal



power on, this recovery period is the
time that l CS must remain high (and
the DS 128 7 inaccessible). It is speci-
fied as 200 ms maximum and would
require a long idle spin, burning all
kinds of power waiting for the RTC to
come on-line. Definitely unattractive
in a battery-powered application.

THE ADC
The ADC used in the data loggers

is the National Semiconductor
ADC08138 8-bit device. This con-
verter is the improved version of the
older ADC0838 and includes an on-
chip 2.5volt band-gap-derived refer-
ence and track-and-hold front end. If
you need more resolution, you can use
the ADC1038  that resolves 10 bits, but
you’ll have to provide your own
voltage reference and make a few
hardware and software tweaks.

The ADCO8138 is a serial device
that communicates with the controller
over the Microwire bus, which is
essentially a four-wire bus containing
transmit, receive, clock, and select
pins. By tying the receive and transmit
lines together, you can get by using
three processor pins for the interface
because the receive pin is only seen by
the ADC during the addressing
interval while the transmit pin is still
in a high-impedance state.

This ADC has a flexible multi-
plexing scheme that allows operation
as an eight-channel single-ended
converter referenced to ground, an
eight-channel pseudo differential
converter referenced to a common pin
that may be biased to some arbitrary
voltage, or as a four-channel differen-
tial mode converter. When used
differentially, the polarity for the
differential inputs can also be selected.
Actually, any combination of modes is
available because the front end is
configured each time a conversion is
started as part of the addressing
sequence.

A/D conversion is performed
using the standard successive approxi-
mation method referenced to the data
clock. National Semiconductor
recommends holding a 40% to 60%
duty cycle on the clock, which is
easily accomplished by sprinkling a
few NOPs through the ADC code. The

ADC code for single-ended operation is
shown in Listing 2.

M-232 INTERFACE
Communications with the data

loggers are carried out in accordance
with the RS-232 standard, with the
level shifting on the outgoing signals
performed using a MAX233 interface
chip. Similar to the MAx232,  this 20-
pin IC implements its internal charge
pump functions without the need for
any external capacitors. Vcc to the
MAX233 is switched using a PNP
transistor turned on only in the
presence of line power in order to
conserve power when running off the
battery. As you may have discovered,
with the MAX233 powered off, the
application of an RS-232 signal to the
receiver input has the undesirable side
effect of partially powering the chip.
Furthermore, this voltage has a
tendency of backfeeding the power
supply pin, which biases the system
Vcc rail to an indeterminate level if
the main power is off. Although not
harmful in itself, this phenomenon
may result in excessive battery drain
and the possible malfunction of the
RTC or RAM protection circuits,
resulting in the corruption of data.

Not feeling lucky, I elected to
avoid this problem altogether by using
an NPN transistor as a receiver. A 4.7
kn series resistor limits the line
current and a lN914  signal diode with
the cathode wired to the base and its
anode to ground limits the negative
excursions at the base to a safe level.
Providing a pull-up resistor on the
transistor’s collector is also a good idea
because the rather strange three-
transistor arrangement used on the
CMOS 8OC3  1 I/O pins makes for the
very slow rise times I have occasion-
ally observed, which may disrupt the
operation of the 8OC3  l’s on-chip
UART.

Actually, the transistor receiver is
not all that bad. The MAX chips do
incorporate hysteresis on their receiv-
ers, but they really don’t make use of
the negative signal component. That is
to say, the MAX233 (and other Maxim
RS-232 chips as well) will operate just
fine on an input signal with a O-&volt
range.

MAWMlNlAVERAGE MEMORY RECORD

RELATIVE MODE / DATA HOLD

DC/AC VOLTMETERS
DC Range: 400mV. 4V. 4OV. 400V. tOOiN
A C  RMge:  4OO”W.  4V.  4OV.  4OOV.  75OV

DC/AC AMP METERS
DC/AC  Rnngos:  4&A. 4mA. 4OmA.  4OOmA. IOA

OHM METER
Rsngr:  400.4K.  40K. 4OOK. 4M. 40M.  4003M  ohms

FREQUENCYCOUNTER-AUTOWINGING
Ran  e: 4KHz.  40KHz.  4OOKHz.  4MHz (Trigger L o w ) .
X)&r  (-Trigqs~  Hgh)

LOGIC PROBE

AUDIBLE CONTINUITY TESTER

CAPACITANCE TESTER
Ita”&,.:  4nF,  4OnF.  4OOnF,  4uF. 40°F

DIODE TESTER

dBm  TESTER
Rurp.:  -25.7 dam  (0 59.7 dEm

INDUCTANCE TESTER
Range:  40mH. 4OOmH.  4H.  40H

10 MEGA  OHM IMPEDANCE

10A HIGH-ENERGY FUSE PROTECTlOh

AUTO SLEEP & AUTO POWER OFF

MODEL 94 COMES COMPLETE WTH
TEST LEADS, YELLOW HOLSTER,

TILT STAND, BATTERY & FUSE
Stock  No.
990111

LIST PRICE ‘295 v9gg5oNL y

KEL,VIN
10 HUB DRIVE, MELVILLE, NY 11747

( 8 0 0 )  6 4 5 9 2 1 2
(516) 756-1750 (516) 766-1763/~~~

138
The Computer Applications Journal Issue W27 June/July, 1992 55



Figure  2-The power  manager cicuif  for the &X31 logger  pvides  separate power  suppks  Rx the /cgic  sections  (+5L), the analog section (tSA),  memory (thf),  and
communkabbns  (t5C).

Engineer’s Evaluation Kit
Release 1

C Compiler
Assembler

L inker

Debugger/Simulator
C Library

TH
AN

difl
bas
80(
In c
car
CirC

Pro
bat
dev
car
The

PO\
PO\

goo
verl
wh:
8OC

THI

wit
om:
con
uni

56 Issue #27 June/July, 1992 The Computer Applications Journal



Figure 34edesigning  the data Jcgger  with a DS5000  eliminates  much of the processwsupporl  circuitry and simplifies the wer managemenr  seeson.

Professional Developer’s Kit
Release V

OptimizingC  Compiler
Real Time Multitasking OS
Graphical User Interface
HLL Debugger/Simulator

Banked Linker
Macro Assembler

Extended C Library

The Computer Applications Journal Issue #27 June/July, 1992



THE GOOD, THE BAD,
AND THE UGLY

As I mentioned, I designed two
different data loggers. Both are 8OC3 1
based, although how I obtained the
8OC3  1 functionality differs quite a bit.
In one case, I used the Intel 8OC3 1
controller, an address latch, reset
circuit, PROM, RAM, discrete RAM
protection circuitry, and a RAM
backup power source. For the other
device, I was able to replace all these
components with a Dallas DSSOOO.
The only other difference is in the
power supply sections and the backup
power source.

You can judge for yourself what’s
good, bad, or ugly. I can say that both
versions work reliably, but I know
which one I prefer. Let me describe the
8OC3  1 -based logger first.

THE 8OC31 LOGGER
In the interest of keeping this epic

within manageable proportions, I will
omit a description of the 8OC3  1
controller section. This singularly
uninteresting configuration consists of

the usual 8OC3 1, PROM, RAM, and
glue as previously mentioned and
should be familiar [see Figure 1).

Figure 2 depicts the 803 1 data
logger’s power supply section. Battery
and line power are combined using
mixing diodes Dl and D2, and this
voltage is presented to the +5-volt
regulator Ul, a National Semiconduc-
tor LM2953. The LM2953 is a low-
dropout regulator featuring a moder-
ately low quiescent current of about 1
mA at a SO-mA  load and very tight
output regulation. Also included on
this chip is a comparator that I use as a
low-battery monitor set up to trip at
about 5.8 volts.

regulation and is wired to the
MC146818A’s  ‘SIB pin and to the
RAM’s enable gate U4. The other
function of U4 is to locate the RAM at
8000h by virtue of its inverting action.
R14, the 100 kn pull-down resistor on
the ‘ERR pin, ensures this line is at a
low level when the regulator ceases
operating.

At first, my natural inclination
was simply to use one of the integrated
RAM backup circuits, such as the
Dallas DS1210. However, aside from
its rather long recovery-time param-
eter, it may have caused other prob-
lems as well. Let me explain the
problem before I proceed.

A built-in crowbar is incorporated The DS1210 enters standby mode
into the regulator, which can be wired when Vcc drops below a selectable trip
to pull the output down quickly when point, at which time the chip select
the shutdown pin is activated. The use line to the RAM is clamped high. This
of the crowbar is intended to prevent point can be set to a nominal 4.62
operation with an indeterminate volts or 4.37 volts (the corresponding
voltage and forces the regulator to minimums are specified at 4.25 volts
function in a snap-on/snap-off mode at and 4.5 volts). The problem is that the
voltage levels of 5.8 volts and 5.7 volts, DS1210 doesn’t actually monitor the
respectively. The *ERR output pulls Vcc pin as you might expect. What is
low when the regulator starts losing actually sensed is the internal chip

CIRCUIT CELLAR KITS
Sonar Ranging Experimenter’s Kit

EEG Biofeedback Brainwave Analyzer Targeting + Ranging + Machine Vision
The Circuit Cellar TIOl Ultrasonic Sonar Ranger is based on the

The HAL-4 kit is a complete battery-oper- sonar ranging circuitry from the Polaroid SX-70 camera system. The
ated bchannel  electroencephalograph (EEG)  which TlOl and the original SX-70 have similar performance but the TIOl  Sonar
measures a mere 6”xT’.  HAL is sensitive enough Ranger requires far less support circuitry and interface hardware.
to even distinguish different conscious states- The TIOl ranging kit consists of a Polaroid 50-kHz,  300-V electro-
between concentrated mental activity and pleas static transducer and ultrasonic ranging electronics board made by Texas

AL gathers all relevent alpha, Instruments. Sonar Ranger measure ranges of 1.2 inches to 35 feet, has a
beta, and theta brainwave TTL output when operated on 5V, and easily connects to a parallel
signals within the range of printer port.
4-20  Hz and presents it in a
serial digitized format that TIOl Sonar Ranger kit. . . . . . . . . . .$79.00  plus shipping
can be easily recorded or
analyzed.

HAL’s operation is CHECK OUT THE NEW CIRCUIT CELLAR
straightforward. It samples four channels of analog brainwave data 64 HOME CONTROL SYSTEM
times per second and transmits this digitized data serially to a PC at 4800
bps. There, using a Fast Fourier Transform to determine frequency,
amplitude, and phase components, the results are graphically displayed
in real time for each side of the brain.

+ Expandable Network + IR Interface
+ Digital and Analog I/O + Remote Displays
+ X-10 Interface

HAL-4 kit. . . . . . . . . $179.00 plus shipping Call and ask about the HCS II

To order the products shown or to receive a catalog,

call: (203) 875-2751 or fax: (203) 872-2204
madicai  diapak purposes.  Fur(hetmae,  safe usa  requires  fiat HAL be baaecy operatad  only1

58

Circuit Cellar Kits l 4 Park Street . Suite 12 l Vernon, CT 06066
Y, I
,I.

Issue W27  June/July, 1992 The Computer Applications Journal

Ca
m:
tee
co1

Of
per
871
thf
PO!
the
mi
ma

to 1
I ra
red
set
bot

fea
boa
nor
DS.
relc
loaf
ate
mo
and

\h’IL
ill

60



voltage obtained by summing the
battery and Vcc pins. With the three-
cell NiCd battery I am using, I can
expect a float voltage of about 4.35
volts, which means the DS1210 may
never go into standby mode (because
the battery voltage may exceed the Vcc
trip point specification). Dallas plays it
safe and lists the maximum battery
level at 4 volts. Obviously this part is
meant to be used with a lithium cell!
The important point here is that
understanding how this chip works
will keep you out of trouble. I have
used it for years with a supercap power
source (with charge voltage limiting)
and have recently implemented a two-
cell NiCd backup scheme for a large
memory array with no problems
whatsoever.

Backup power to the RTC and
RAM is derived from a 3.6-volt NiCd
battery composed of three 60-mAH
cells. This battery receives charging
current from a semiconstant current
source made up of the blocking diode
D3 and limiting resistor R19. Because
this battery will attain a float voltage
of 4.35 volts, the blocking diode is a
Schottky type in order to minimize the
drop, ensuring an adequate charging
potential from the +5-volt  source.
Mixing diodes D4 and D5 route
uninterruptable power to the RTC and
RAM circuits, as well as to the power
control flip-flops.

The charger for the main battery
consists of an LM3 17 (U3),  R23, and
D6, wired as a constant current source
set to deliver the 10 mA charging
current. At this rate, the recharge time
is 16 to 20 hours, at which point the
cells reach a maximum potential of
about 1.45 volts (10.15 volts for the
battery). The series blocking diode
prevents backfeeding the LM3 17.
Switch Sl disables charging in case
you want to use a nonrechargeable
battery and don’t want to blow up the
data logger.

Incoming line power is detected
up by transistor Q3. The collector of
this transistor is monitored by the
controller to determine if it is running
off of line power. The collector also
connects to Q4-the  +5-volt  PNP
switch that goes on when line power is
present, providing power to the

Take the 8OC31,  add some RAM,
PROM, a nonvolatile RAM controller,
reset circuit, along with some glue and
you have the logic element for our data
logger. The Dallas DS5000 is com-
posed of all of these components and
includes the lithium RAM backup
battery and many other features as
well. Housed in a 40-pin DIP package,
the DS5000 not only provides an
industry-standard footprint but also
retains use of all of the ports for
general-purpose I/O. (All embedded
memory accesses are carried out over a
separate internal bus.)

communications circuit and charging
current to the backup battery.

The main battery power is
controlled by a D-type flip-flop U2a
that accepts inputs from the RTC’s
l IRQ pin and from a manual push-
button switch. When an alarm condi-
tion occurs, the MC146-818A  asserts
its ‘IRQ signal. If the disable switch is
closed, *SET is driven to its active
state and forces the Q output high.
This action results in the application
of base bias to the Darlington transis-
tor Q 1, which saturates the main PNP
battery switch Q2, providing power to
the system. Being connected to an
803 1 port pin, the OFF signal that ties
to the flop’s CLK input goes high at
this time, which is the I/O pin’s
default state.

Remember that on a D flip-flop,
the synchronous inputs-•‘CLR and
*SET-take precedence over the
asynchronous CLK input, so CLK is
not seen by the flip-flop at this time.
Once the controller regains control,
the RTC’s alarm condition is cleared,
thereby releasing l IRQ and effectively
enabling the CLK input. The controller
is now able to power down the system
at any time by issuing a rising edge on
CLK.

U2b is used as a pulse generator
for the manual push-button input. The
output of this section connects to the
‘SET  input of the master flip-flop
through a diode that, in essence,
transforms the Q pin into an open-
collector output. Finally, R4 and Cl
ensure the circuit assumes the off state
upon initial application of power.

THE DS5000 LOGGER

The Computer Applications Journal Issue x27 June/July, 1992 59



Referred to by some as a
Cadillac in the Volkswagon
market, the DS5000 is admit-
tedly pricey. As such, it does not
compete for most 803 1 sockets.
Of course, looking at things in
perspective, have you priced
87C5  1s lately? Actually, due to
the high integration the DS5000
possesses, it contains many of
the elements of the lower-end
microcontroller boards on the
market and it may be more fair
to justify its cost in that context.
I rather like the idea of having
reduced the entire controller
section to a single component,
both on paper and on the board!

One of the more powerful
features of the DS5000 is its on-
board bootstrap loader. All
nonvolatile areas within the
DS5000 may be completely
reloaded by invoking the serial
loader and issuing the appropri-

A simple temperature sensor using the  Fopular  LM34  may be oonneded
to either da& logger.

A number of useful func-
tions can be accessed in boot-
strap mode, such as dumping
the CRC- 16 checksum of
embedded RAM, filling embed-
ded RAM with a specified byte,
dumping embedded RAM in
Intel hex format, verifying
embedded RAM with an
incoming Intel hex file, and, of
course, loading an Intel hex file.
The MCON register may also be
written to in this mode, permit-
ting the setting of the partition
address (the address where
program memory ends and data
memory begins). Combined
with a PC-resident loader
utility, the DS5000 can serve as
a mini embedded system
development platform, obviat-
ing the need for a ROM emula-
tor to develop simple applica-
tions. (For more information on
the DS5000,  see my article in

ate commands via the serial port. This on the logger with a DPST switch, S4, issue #16 of Circuit Cellar INK,
mode is entered by pulling RST high wired appropriately. I include an LED “ONDI-The ON-line Device Inter-
and ‘PSEN low and is accomplished to indicate when this mode is in effect. face,” describing the ONDI remote

2% 4” EMBEDDED PC
wil
on-
net
the

as I
refc
ins
hig

co

eq

ei1
ba
in
clr
or
pit
en

res
no
thi

gel
Cir

up
eff
de1
pel
rel
so<
of I
co1
UP
ins
pri
co<
to I
AI:
ran
COI

Microcontroller. Microcomputer.
“Meg&l  Wildcards  provide PC @xtionality in a fkxi6le, small  format.”

Wildcard  88’” Multi/IO
l CPU  clock to IO MHz l On-board SCSI Host Adapter
l Replaces full PC motherboard (supports up to 7 devices)
l Co-processor and BIOS socket l Floppy Controller (1.44M, 1.2M)
l DMA. Bus, DRAM, Keyboard l 2 RS-232, I Parallel. I RS-485

controllers multi-protocol serial port

All Wildcards are low power single +5 volt operation.

125 Wendell Ave., Weston, Ont. M9N 3K9 Fax: (416) 245-6505

VidlMem:
l 640Kb User memory
l Videolcolour  LCD controls

CGA, Hercules@, IBM@ Mono:
(runs LCD Panels)

For information on our representhes  piem
contact our head office  at the number below.

(416)  245e3324
~kicard  88 and Megael are trademarks of Megatel  Computer Corp Hercules is a trademark of Hercules Carp  IBM is a trademark of IBM Corp. megatel’

#142

reg
bat

PO’
suF
feal
on
inp
2oc
lev

PO1
qui

din
also
tra1
on:

60 Issue W27 June/July, 1992 The Computer Applications Journal 6 2



control that featured the functionally
equivalent DS2250.)

The DS5000  is available with
either 8K or 32K of embedded lithium-
backed RAM, with or without an
integrated battery-backed real-time
clock, and with speed options of 8, 12,
or 16 MHz. For the data logger, I
picked the 12-MHz part with 32K of
embedded RAM and no RTC.

Containing an internal power-on
reset capability, the DS5000 requires
no external components to perform
this function. The reset signal is
generated by the internal control
circuitry to allow the oscillator to start
up from its halted state, which is in
effect when Vcc is below 4.5 volts. The
delay circuit counts 21,504 oscillator
periods ( 1.9 ms at 11.0592 MHz) before
releasing the internal reset line. The
sooner you can come up and take care
of business the less power will be
consumed. Actually, the system comes
up fast enough to necessitate the
insertion of a small delay, about 5 ms,
prior to entering the data collection
code. I found that the logger was ready
to roll before the capacitor on the
ADC’s  reference pin had a chance to
ramp up, which resulted in errant data
conversions.

As shown in Figure 3, when used
with the DS5000, the MC 1468 18A’s
on-board address latch eliminates the
need for any glue. Also, note that all
the pins of port 2 are available for use
as general I/O because the RTC is
referenced using MOV X A, @RO-type
instructions that have no effect on the
high-order address bus.

The MAX667 low-dropout pass
regulator (U4) steps down the main
battery power to 5 volts providing
power to the controller, ADC, and
support circuitry. This regulator
features very low quiescent current-
on the order of 20 PA-and  a typical
input/output differential of 150 mV at
200 mA. Pulling the SHDN pin up to a
level over 1.5 volts disables the output
power and brings the regulator’s
quiescent current down around 0.2 PA.

The SHDN pin is controlled
directly by the RTC’s l IRQ line and
also connects to the collector of NPN
transistor Ql that forces the regulator
on in the presence of line power. The

omission of the power control flip-flop
in this circuit does not really have
anything to do with the regulator
itself. After gaining a better under-
standing of how the MC146818A
worked, I discovered that it was not
required after all! (I’m hopeful that
with time we get smarter.) This
omission is possible because when
indicating an alarm interrupt, the
MC146818A  forces ‘IRQ low for the
duration of time the alarm interrupt
bit in register C is set. After perform-
ing its data acquisition task, the
controller reads the RTC’s C register,
clearing the alarm interrupt bit and

releasing l IRQ, thereby disabling
power to the system.

DD is the dropout detector pin,
which is the collector of a PNP
transistor that changes as the dropout
voltage approaches its limit. DD starts
to source current when the regulator
begins to lose regulation and is
dependent on the input voltage, output
current, and temperature (as is the
dropout voltage). Connected to an
NPN transistor Q4, this signal gener-
ates the low-battery indicator to the
controller.

Rather than include a separate
battery for the RTC, I decided to add a

x141

6 2

#146

Issue 127 June/July, 1992 The Computer Applications Journal 6



second regulator to provide the
uninterruptable power for the timing
subsystem. The MAX666 (U6),  with its
typical 6+tA quiescent current and 40
mA output capability, does the job
nicely. LBI, the low-battery input,
monitors the logic +5 volts and trips
the output, LBO, at 4.75 volts on the
way down, providing the l STBY signal
to the MC146818A.  I was able to lower
the RTC’s standby current by operat-
ing the ‘666 at 3.25 volts after biasing
the SET pin with a couple of trim
resistors, R16 and R17. Finally, the
3.25volt feed is summed with the 5
volts using two Schottky diodes, D4
and D5, in order to provide the proper
operating voltage to the RTC when the
main regulator is active.

CODE
The data logger control program

runs about 4K in size and is coded
entirely in assembly language. Funda-
mentally, this program is composed of
three parts: the boot code, the console
code, and the data collection code.

The mainline gets control imme-
diately after the boot sequence
completes and simply decides whether
to proceed to either the console code
or the data collection code. This
decision is made on the state of the
‘LlNE  pin. When *LINE is low,
indicating that the logger is operating
under line power, control passes to the
console code. A high level on *LINE
indicates the data logger is running
under battery power and, in this case,
the main data collection code is
executed.

Although the data logger is
downloadable, and to an extent
programmable, this aspect is primarily
intended to provide the system with
different personalities for various data
collection tasks. A facility is required
to configure and check out the system
prior to performing any data logging,
which is accomplished from the
console mode.

On entry into console mode, the
data logger presents the log-on mes-
sage shown at the top of Figure 4. At
this point, any of the supported
commands may be executed directly,
or a list of choices may be viewed by
pressing the I’?” key.

Online Devices (C) 1992 Logger 1 .O is
ON-LINE!

>?
T - Set/Read Time
D - SeVRead Date
A - Set/Read Active List (01234567)
I - SetRead  Logging Interval (ii)
V - View Status in Real Time
U - Unload Collected Data
P - Purge Collected Data
L - Load ADC On Line
Q - Quit (Abort)

>I
CURRENT LOGGING INTERVAL:
15M 05, SECONDS OR MINUTES (SI
M): M
CURRENT LOGGING INTERVAL:
05M

>A
CURRENT ACTIVE LIST: (01234567)
AAAAAAAA AAIIIIIA
CURRENT ACTIVE LIST: (01234567)
AAIIIIIA

>v
02/20/92 21:00:38 05M OA:005 1 A:003
21:002 3l:OOQ 41002  5l:OOQ  61003
7A:OOQ

>u
UNLOADING...
ACTIVE LIST: Alllllll
INTERVAL: 5QM

01/17/92 00:15:00
0:115

01/17/92 01:14:00
0:lll

Olll7l92  02:13:00
0:107

01/l 7192  03:12:00
0:lOO

01117/92 04:ll:OO
0:093

01117/92 05:lO:OO
0086

01/l 7192  06:OQ:OO
0:077

01/l 7192  07:08:00
0:069

01/l 7192  08:07:00
0064

END OF DATA

>

Figure 4-A test run of the data fogger chmnfcles he
output of a wcwd  stove on a cold winter night.

The Computer Applications Journal Issue #27 June/July, 1992 63



The conventions I adopted are
simple and work in a consistent
manner. When a function is invoked, if
dealing with a parameter that can be
modified, the current value of the
parameter is first displayed and a
prompt is issued for a new entry. At
this point, you may enter a new value,
or abort the function by hitting the
“Q” key.

Obviously, the time and date
functions read or set the real-time
clock. Using the “A” and “I” com-
mands, the active list and interval
time may be read or set, defining the
analog points that will be logged to
memory and the amount of time the
logger will wait between readings.
“V’iew  displays the date and time,
logging interval, and the eight analog
inputs in real time along with their
status as active or inactive.

“U”nload performs a data dump to
the computer for displaying or logging
to disk. When simply displaying the
collected data, the space key may be
used to pause the dump, and striking
any key resumes activity. The dump of

a test run, shown at the bottom of
Figure 4, chronicles the output of my
wood stove on a cold winter night.

“P”urge clears the data buffer of
all collected data (the active list and
interval time are unaffected).

Finally, “L”oad  allows doing an
on-line load to memory in accordance
with the active list and interval time.

All communications are per-
formed at 9600 bps, with SIO synchro-
nization performed by polling the
UART. Although breaking old habits
is hard, and I’ve generally imple-
mented my communications routines
on an interrupt-driven basis, polling is
more appropriate for the logger’s
communications needs because things
generally operate on a stop-and-wait
basis. The screen formatting is
intended for a computer running a
communications program operating as
an ANSI terminal. Where there is a lot
of output, such as in the Unload and
View modes, XON/XOFF protocol is
supported in order to prevent swamp-
ing the computer, which is especially
important when logging data to disk.

Upon removal of line power, the
logger goes into its idle state. At this
time, the RTC interval timer is
disabled. The push-button switch may
now be used to activate the logger, and
if any of the analog points are enabled
via the active list, a conversion is
performed and stored. Furthermore, if
the interval time is set to a nonzero
value, the interval timer is started
prior to a self power down, and data
collection now proceeds automatically
at the selected interval. Data collec-
tion can be suspended by opening the
disenable switch or entering console
mode by attaching line power. Once in
console mode, it is possible to modify
certain parameters, such as the active
list or interval time, before resuming
data collection without affecting data
already stored. Certain fault condi-
tions, such as a low battery or full
buffer, will terminate data collection
by killing the RTC interval timer and
powering down the system in order to
safeguard any data already in RAM.

To conserve memory, certain
items are stored only when they

New Prices for 1992
I D 1 6 0  (SOMHz)  $ 5 9 5
ID161  (100  MHz)  $695

*High Speed *SK Trace Buffer l 16 timing channels
expandable to 32 state channels *Multi-Level Triggering
*State Pass Counting l Event Timer/Counter *Performance
Histograms *Hardcopy Output l Disassembles 8-bit micros
*Supports VGA /EGA/HGA l Demo diskette available

30 Day Money Back Guarantee

I N N O T E C  D E S I G N ,  I N C .
6910 Oslo Circle, Suite 207
Buena Park, CA 90621
Tel: 714-522-1469 FAX:714-527-1812

BACKGROUND MODE EMULATOR

68332
68340

68HC16
and 68330,68331,68333

Complete hardware testing and C source level
debugging for thousands less than an ICE.

Call for a free trial unit.

10 Elmwood St. Canton, MA 02021

The Computer Applications Journal Issue  127 June/July, 1992 6 5



change. These include the date and
time, the logging interval, and the
active list. Analog conversions are
stored in raw binary format and
consume one byte per channel. When
unloading the data to a PC, the various
elements, such as the date and time,
are picked out of the storage buffer and
reconstructed into a meaningful
format. The active list, being stored
each time it is modified, is used by the
extraction routine to determine how
many analog readings there are per
data record and allows tagging these
readings with their appropriate
channel IDS at transmission time.

HOW LONG IS LONG?
The 8OC3  1 data logger uses

separate batteries for the RAM and
RTC power, and the logic elements
and converter. As I mentioned earlier,
the current consumption of the real-
time clock circuit varies depending on
the level of Vcc. This amount can vary
from about 60 pA at 4.35 volts to 25
uA at 3 volts because it is being
powered directly from the backup

battery in standby mode. If you split
the difference

60 mAH = 1428.5 hours
0.042 mA

you get a backup time of about two
months.

Operating current is consumed at
the rate of 35 mA, which is main-
tained for about 70 ms. Most of the
power is wasted because of the less-
than-optimal power-on reset circuit;
the actual processing time is really
quite short. Accepting these values,
each conversion consumes

35mAx70ms
3600 s/hr

- 0.68 @II

of battery capacity.
Using the above value, you should

be to get

loo mAH = 147,058 samples
0.68 @II

before the NiCd battery goes flat.
Although the power requirements

of the timekeeping and processing
sections are quite different, the main

battery provides power to both the
backup and active circuits in the
DS5000 data logger.

In standby mode, with current
consumption running about 25 PA, the
previous calculations indicate the
timekeeper will run for over 5 months
off of the NiCd battery. Using the
alkaline battery, over two years can be
attained. The memory is another story.
The RAM is powered by the DS5000’s
internal lithium power source, and
Dallas guarantees a minimum data
retention time of ten years in the
absence of primary power. This
support is good because the RAM also
contains the program code.

During data acquisition, the
DS5000 logger consumes 30 mA. The
good news is this rate of consumption
is maintained for a very short time.
The duration during which actual
processing takes place is on the order
of 5 ms as in the 8OC31  logger. Add
another 20 milliseconds or so to allow
for the reset interval, for the power-on
delay, and for Vcc to ramp up and
down, and basically that’s it. Figure on
30 ms to be safe and you can calculate
the amount of battery capacity used
per sample, which is 0.25 @II.

Considered alone, this time frame
indicates that 400,000 samples can be
taken using the lower capacity NiCd.
Although quite impressive in itself,
the number is frankly ridiculous in
practical terms. q

John Dybowski has been invloved in
the design and manufacture of
hardware and software for industrial
data collection and communications
equipment.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime”  in this issue for
downloading and ordering infor-
mation.

413 Very Useful
414 Moderately Useful
415 Not Useful

c

68



,RTll :NTI

I Firmware Furnace

1 From the Bench

Silicon Update

Practical Algorithms

I ConnecTime

An HCS II
LCD
Terminal Ed Nisley

00 b nce you have the

V HCS II essentials
down pat, the

r WIBMs  (Wouldn’t It Be
Nice Ifs) appear. Both Steve and Ken
thought, “Wouldn’t it be nice if there
was some way to display HCS II status
and debugging information?” After all,
putting display terminals right on that
RS-485 network with all the other
gadgets makes sense, right?

My topic this issue is, truly, a
simple matter of firmware: an RS-485
networked LCD terminal called LCD-
Link. In addition to character display,
the firmware handles ANSI cursor-
positioning commands, implements C-
style character escape sequences, and
remembers which buttons have been
pressed until the Supervisory Control-
ler (SC) can interrogate it.

Longtime readers will recall the
Furnace Firmware project included an
assembly language ANSI LCD driver
[see Circuit Cellar  INK, issue #17).
This time around I used Micro-C so
you can compare and contrast the two
approaches. The earlier code is both
smaller and faster, but this version is
small enough, fast enough, and a lot
easier to understand. Take your pick!

SIMPLE HARDWARE
LCD panels based on the Hitachi

HD44780  controller are old friends,
having appeared in a variety of my
projects since I discussed them in issue
#7. Figure 1 shows the requisite
circuitry: one such LCD panel, four
switches, and the same COMM-Link
board we’ve used for the previous
projects in this series (see Circuit
Cellar INK, issue #25).  Can’t get much
simpler than that!

.

.

.

.

.
-

DM:
inpi
110
DM’
ana
t i m f

ant

DM
82E-

izi
an:
paf
82!
bu!
TC
die
Wit

DII
bu
pa
AI
bc
ml
ml
DI
CII

Al
W

kt
D
Cl

t2

v

Sl

IC

C
ir

1

S

i

68 Issue W27  June/July, 1992 The Computer Applications Journal

70



COMM-Link

The HD44780  supports a CPU
interface with either 4 or 8 data bits.
We agreed that four input buttons
were enough for the HCS II project [a
full alphanumeric keyboard was out!),
so I used the LCD’s 4-bit mode to
eliminate an additional I/O port. Bits
O-3 of Port 1 connect to the LCD data
bus, while three Port 3 bits provide the
controls.

The buttons are simple NO
(Normally Open] SPST switches
connected to Port 1, bits 4-7, but as
you can see from Figure 1, bit 7 also
drives the heartbeat LED. Although
not strictly necessary, this feature
allows me to work on a neat hack I’ve
been saving for about a year: cramming
two unrelated functions on one 803 1
pin. I’ll describe this detail later.

ANSI CONTROLS
Unlike most “terminals” that

display serial data directly on the
screen, LCD-Link must coexist with
other devices on the RS-485 network,
which means that it must get text as
part of a command and return button
presses only when prompted by the
HCS II SC. My approach was to graft
new LCD character display routines
onto the command decoder base used
in previous projects in this series.

Figure 2 presents the complete
LCD-Link command set, which should
look familiar by now. As usual, the

Figure l-The LCD-Link is based on tie same COMM-Link  module as most of fhe ober /KS //neW& modules.
The addition of an LCD display, fou  butfons,  and some cuskxn firmware complete the package.

Q(uery)  and S(how)  commands will be
used most heavily. The former reports
button presses, while the latter is the
sole means of displaying text on the
LCD panel. The “A” command sets
the network address; I’ll discuss that
in a moment.

The solution appears in Figure 3,
which shows the C-style character
escape sequences accepted by the
LCD-Link firmware, including a line
break that requires only the characters
\n in the LCD data. Both are printable
ASCII codes that make it easy to see
what is going on. Remember that
“escape sequence” in this context
simply means the backslash marks an
escape from the normal character
definitions. It has nothing to do with
the ASCII 27 “escape character” you
will encounter shortly.

One complication arises when you
create LCD data strings using the C
s p r i n t f ( 1 function. Because C also
uses the backslash character to mark
escape sequences, you must include
two backslashes for each one in the
final data string. For example, to clear
the screen and put the words “Hello,
world!” on the first two lines, use

When the SC queries the buttons,
the result is returned as two hex
characters. The four buttons are
presented in the most significant bits,
so the result for all four buttons would
be FO. The button status is cleared sprintf(Buffer."\\fHello.\\nworld!\\n")
after each Q command, so each one
returns “new” button presses. The Most of the escape sequences are
buttons do not autorepeat. “just for nice” because LCD-Link will

A&ring
D
E
Ln

Nn

Q

RESET
S=string

Set network address (16 chars max, capitalized, blanks discarded)
Dump program status (debugging use)
Show and clear error flags (debugging use)
Set logging mode (bit mapped)

L report current mode
LO disable (default)
Ll show ANSI decoding sequence
L2 show LCD command processing

Set network/interactive mode
N report current mode
NO set interactive mode
Nl network mode (no error messages) (default)
N2 network mode with command echo and err msgs
N3 same as Nl with command acknowledgement

Query buttons, only presses since last Q are reported
Buttons are bit-mapped in hex byte
Current hardware returns buttons 60,40,20, 10 only

perform power-on reset must be completely spelled out!
Send string to LCD panel via ANSI decoder

(string continues to end of line)

Given the LCD driver routines
I’ve already written, transferring
characters from the S command to the
panel was a simple matter. However,
there is no obvious way to include
multiple lines in the data because
network commands end with a
carriage return; the first line break in
the LCD data will terminate the
network command!

Figure 2-The LCD-Link  firmware indudes commands to query the button  status  and display characters on the LCD
panel. The other commands are marl&  Rx debugging and setvp.

The Computer Applications Journal Issue W27 June/July, 1992 69



Exciting New Products!

l 12-bit  125 kHz A/D Conversion
l 16 Analog Input Channels
l 3 Timers and 16 DIO Lines
l Supports DMA & Pacer Clock
l AT Bus Version Available!

for AMPRO  CPUs
DM200 12-bit 40 kHz 8 channel analog
input board; 8254 timer and 16 digital
I/O lines $295
DM406 12-bit 100 kHz 16 channel
analog I/O board; 2 D/A outputs; 8254
timer; 16 digital I/O lines; Supports DMA
and pacer clock. $449
DM806 Hiqh current digital I/O board;
8254 timerropto-22 compatible $195

PC/XT/AT Boards
AD2700 -16 channel 12-bit  150 kHz
analog input board; Supports DMA,
pacer- clock and programmable gain;
8254 timer: 16 diaital I/O lines: 16-bit  AT
bus operation y. $525
TC48 Dual Am951 3 Timer/Counters; 24
digital I/O lines; 16-bit AT bus operation
wi th expanded interrupts.  $398
Dl024 High current digital I/O board; 24
buffered DIO lines; 8254 timer; Com-
patible with opto-22 equipment. $195
AD3110 Super fast 16 channel A/D
board! 12-bit 200 kHz A/D rate; Burst
mode operation; On board FIFO
memory; Programmable gain; Timers;
DIO lines; Supports DMA and pacer
clock; Optional D/A outputs $665
AD3710 Low cost version of AD31 10
with on board FIFO memory and 200
kHz burst  mode operat ion $525
DA810 8 channel 12-bit D/A; Voltage or
current loop output; 8254 timer; 24 digi-
tal I/O lines $589
MR16 110 VAC mechanical relay expan-
sion board; Computer control of 16 AC
loads........................$215
0P16 Optoisolated 16 channel digital
input expansion board $225
TS16 16 channel thermocouple expan-
sion board; Supports J & K types. $298

Ur~pc~rc~lleled  c h o i c e s  ,filr  recrl  ~~)rll
c o n t r o l .  OLser 50 hut&are rrr~n’  sof t -
bvcire  prociuc’ts ,fbr  sitlgle  cinn OEM
users.

FREE 80 PAGE CATALOG!

Real  Time Devices,  Inc .
State College, PA USA

Tel.:814/234-8087
FAX:814/234-5218

11154

i \cn
\e

\f
ill
\r
\t
\xnn
\ \

Control character n (W = CM-Z)
Escape character, ASCII 27
Form feed, ASCII 12
New line (linefeed and carriage return)
Carriage return (to current line, leftmost column)
Tab to next stop: column 4, 8, 12, 16, 20
Send hex char nn directly to LCD panel (must have two hex digits)
Single backslash

Flguro 3-The 3' wmmand  sfring  may include  C&y/e character escape  squences to represent nonpr%taMe

accept the corresponding ASCII codes
directly in the string. For example, you
may use either \ t or ASCII 9 to
produce a horizontal tab. The only
essential ones are \ n and \ r, because

Listing 1 shows how the firmware

the network interface uses those

decodes these sequences into either
LCD actions or special characters.

characters to delimit commands, and

Notice the gyrations needed for the \ x
direct character output: the blank
character handles the “end of line”

\ x to access oddball LCD characters.

case, then the code returns to that spot
to deposit the special character. Ugh!

Using these escape sequences you
can produce a fairly neat screen, but
you cannot move the LCD cursor “up”
or “back” to overwrite a section of the
display. Because Ken intended to use
the terminal to present a collection of
relatively fixed items that are updated
at random intervals, providing some
sort of cursor control made sense.

Rather than define a whole new
command set, using the standard ANSI
commands makes more sense because
the SC can use the same general
output for a 4 x 20 LCD panel or a full
25 x 80 display on a PC. While the
latter would take a bit of additional
firmware, the SC wouldn’t know the
difference. Of course, you can’t get as
much on a 4 x 20 panel as a 25 x 80
display, but at least the commands
look the same.

As an aside, the firmware will
handle smaller LCD panels, but not
the larger 8 x 40 character or IBM PC
200 x 640 pel graphic displays. If you
need more area, writing code for a PC
laptop makes more sense than creating
custom hardware; the latter is prob-
ably more expensive than the former!

Figure 4 shows the complete set of
ANSI commands accepted by the LCD
firmware. Because each command

starts with an ASCII 27 character, I
added \e to the repertoire of the
character escape sequence decoder.
Thus, we have a C-style character

The ANSI command ESC [6n is an

escape sequence to create the ASCII

exception to the “output only” rule
because it returns the current cursor

Escape character. You can also use an

location over the network. Your
program must be able to extract the
row and column information from the

actual ASCII 27 if you don’t mind an

ANSI sequence you’ll get back:

unreadable character in the data string.

E SC [ 1: 3 R means that the cursor is at
row 1 and column 3. ANSI rows and
columns are numbered starting from 1
rather than zero, of course.

One note of caution is in order.
The LCD firmware allows up to 200
characters in any network command
line, which should be enough for an
go-character  display. However, over-
flowing this buffer is possible if you
seriously overuse ANSI commands.
The firmware will simply truncate the
excess characters, so the display may
not be quite what you expect, although
no other damage will be done.

NONVOLATILE ADDRESSES
The IR-Link firmware used three

Port 1 bits to select one of eight
different network addresses: IRO
through IR7. Allowing more than one
LCD-Link terminal Would Be Nice,
but the LCD and switches I/O use up
all the available I/O bits. What to do?

The solution takes advantage of
the Dallas Semiconductor
SmartSocket  battery-backed RAM
socket. The DS1213C  accepts either
8K or 32K byte static RAM chips and
provides automatic power protection
for the RAM data. When the power
supply fails (or is simply turned off!),
the DS1213C  disables RAM write

1

803
ir

803
2R
Th
si

80C
1 AS
socl
open

2k El

c
5

H

70 Issue W27 June/July, 1992 The Computer Applications Journal



VIDEOFRAME
GRABBER5

+ Simplicity
+ Functionality
+ Affordability
+ Accuracy

+ Real-Time Capture
+ Half Slot XT/AT
+ 512x484x8Bit
+ RS- 17O/CCIR
+ External Trigger

+ Dual Video Input
+ Opt. XMS Mapped
+ Low Power Options
+ STD-80 or 32 Bus

+ 4tol MUX
+ Half Slot XT/AT

includes 5oftwatz ,.

+ C Library & Source
+ Image Capture

Utility
+ Tiff Utilities
+ “Image” Drive

Ram Disk Emulation

+ NEC/TI-23EX  Camera
With Lens

+ 9” Video Monitor
+ Frame Grabber
+ Software & Cables

OEM PRICING AVAILABLE

OMAGENATION CORP.
P.o.B0~84568

Vancouver, WA 98684

PH/FX  (206)  944-9 13 1

7 2 Issue X27 June/July, 1992 The

1158

Computer Applic

Listing l-This code shows how the LCD driverin1erpet.s  charactw  ascape  sequences in the data
sbing. Note that the C syntax for a single backslash is II:

ANSISendString(pString)
char *pString:
t
char RepString[lO];
char *pRep:
B Y T E  Temp.OldRow.OldCol.NewRow.NewCol:  *

while (*pString)  {
if ('\\I == *pString)  { I* escape sequence? *I
switch (tolower(*(pString+l)))  (
case 'c' : /* control chars */

RepStringEOl = *(pString+Z) & OxlF:
RepString[l]  = 0;
pString  += 1: /* account for char */
break:

case 'e' : /* escape char itself */
strcpy(RepString.'\xlB.):
break:

case 'f' : /* formfeed *I
strcpy(RepString.'\xOC'):
break:

case 'n' : /* newline  (LF and CR) */
strcpy(RepString.'\xOA');
break:

case ‘r’ : /* bare CR */
strcpy(RepString.'\xOD'):
break:

case 't' : /* tab */
Temp = TABINTERVAL ((CurrentCol+l) % TABINTERVAL):
memset(RepString.'  '.Temp):
RepStringLTemp] = 0:
break:

case 'x' : /* direct hex output */
OldRow = CurrentRow:
OldCol  = CurrentCol:
ANSIDriver(' '): /* fake a single blank */
NewRow = CurrentRow:
NewCol  = CurrentCol:
Temp = GetHexits(pString+2.2):
LCDSetCursor(OldRow.OldCol): /* back to starting pnt */
LCDSendByte(Temp.LCDWAIT(LCDDATA):/*  show the byte */
LCDSetCursor(NewRow.NewCol): /* to new location */
RepString[O]  = 0;
pString  += 2: /* account for hexits  */
break;

case '\\' :
RepString[Ol = I\\'; /* send single slash */
RepString[l]  = 0;
break:

default :
RepString[Ol = *(pString+l): /* send next char anyway */
RepString[l]  = 0;

1
PString  += 2;
nRep = RepString:
while (*pRep)  (

ANSIDriver(*pRep):
++pRep:

1
1
else 1

ANSIDriver(*pString);
++pString:

1

I* jus t copy the char */

:ations



operations by pulling the l CE line (pin
20) high.

The SmartSocket  is bright enough
to avoid shutting the RAM down in
the middle of the “last write” while
power is failing, and it also switches to
battery power before the supply drops
be!ow the RAM’s lower voltage
tolerance. Basically, you get a RAM
that just won’t quit!

Although the SmartSocket
includes a battery test routine, the
current firmware does not take
advantage of it because the lithium
battery is rated for ten years at 1
microampere drain. Just make sure
that your RAM chip enters power-
down mode when ‘CE is pulled high,
and you should be all right.

The A command sets the LCD-
Link network address by storing a
string into RAM and computing a
check value. When the power goes on
again, the firmware compares the
address string and the check value; if
the address is valid, it’s used. Other-
wise [and for every power on with
ordinary volatile RAM) the firmware
uses the default address of “TERMO,”
which is stored in EPROM.

You should change the network
address using an RS-232 serial termi-
nal, because changing the address “on
the fly” will probably confuse the SC!
Unlike the m-Link  and PL-Link code,
the LCD-Link firmware uses P1.4 to
activate the interactive mode because
P1.0 is used by the LCD data bus.
Simply press the button while reset-
ting the CPU and the firmware will
assume it is connected to a serial
terminal.

BI-DI BITS
Now, for the neat hack.
Under normal circumstances an

803 1 pin serves for either input or
output, but not both. For output, you
simply write the data to the pin and it
drives the external device either high
or low. For input, you write a logic 1 to
the pin’s output latch and then read
the input appearing at the pin. Recall
that the value read by the CPU is the
logical AND of the pin output latch
and the external signal at the pin, so
the latch must be a 1 to allow both
input states.

Command Example

ESC[#A ESC[2A
ESC[#B ESC[B
ESC[#C ESC[lOC
ESC[#D ESC[SD

ESC[t;#H ESC[H
ESC[#;# ESC[ 1;2f
ESC[#;#j ESC[3j

ESC[s ESC[s
ESC[u ESC[u

ESC[PJ ESC[PJ
ESC[K ESC[K

ESC[Gn ESC[Gn
ESC[#;#R ESC[3;4R

Function

Cursor up It rows (up 2)
Cursor down # rows (down 1)
Cursor right t columns (right 10)
Cursor left # columns (left 5)

Set cursor to row;column  (to 1 ,l)
Set cursor to row;column  (to 1,2)
Set cursor to row;column  (to 3,l)

Save current cursor location (1 level)
Restore saved cursor location

Clear display and home cursor
Clear from cursor to end of row

Query current cursor location
Terminal’s response to location query
(cursor at row 3, col 4 = ESC[3;4R)

ESC[#h

ESC[#l

ESC[7h

ESC[7l

Set display mods
(ESC[7h to wrap at end of rows)
Set display mode (that’s an “ell”)
(ESC(7l  to force cr/lf at end of row)

T h e  f o l l o w i n g  c o m m a n d s  w i l l  b e  a c c e p t e d  a n d  i g n o r e d .

ESC[#;#m ESC[3m Set display attributes
ESC[#;#p ESC[3;4p Reassign key code

Flgun 4-The 3’ cotnmandsting  may include  ANSl cursor positioning  and cmti stings. ‘ESC’  represmS  fhe
ASCII Escape character (ASCII 27)  which may be represented by the 7e’  escape sequence.

1

%#  /,, * “r*,,  ,, 1 ” $, ,,,.r
~T-_~~

Rental And 1 O-Day Trials Available
iceMASTER  delivers productivity: easy to learn,
easy to use and fast!

Hyperlinked On-line help guides you through the
emulation process.

iceMASTER  is FAST! The 115.2K  baud serial link
keeps typical download times to under 3 seconds using a
standard COMM port!

iceMASTER  is Versatile: iceMASTER-8051,
iceMASTER68HCll and iceMASTER-COP8  support most
family derivatives.

Call today for FREE DEMO DISK!. . .
Call today  to ask about FREE 8051 Macro Assembler!

ice/MASTER’”
Your Window
To Emulation
Productivity

Flexible user interface: you can completely config-
ure the windows for size, content, location and color.

iceMASTER  is convenient! It connects easily  to your
PC, requires no  disassembly, nor does it take up any
expansion slots. It works on any PC (DOS or OS/Z),
Micro Channel or EISA. Even laptops!

Supports source level debug (C  and Pi/M)  and
source level trace. 4Ktrace bufferwith advanced
searching and tiltering  capabilities.

N e w  Produds!  68HCll
A D E F. 8XC552; 8XC528;, , I I
8XC515Aand8XC517A

Metatink  Corporotion P.0.  Box 1329 Chandler, AZ 85244-l 329 Phone: (602)  9264797  FAX: (602) 9%! 198 TELEX: 4998050MTLNK

1159

The Computer Applications Journal Issue #27  June/July, 1992 73



In Circuit Emulators
The DrylCE Plus is a modular emulator

designed so you can get maximum
flexibility from your emulator purchase.
The base unit contains all the hardware
necessary to support pods containing

many of the most popular members of the
8051 family of embedded control

microprocessors. Buy one base unit, and
select one or all of the pods you need to
do the job at a much reduced cost. You
get the same great functionality found in
our popular DrylCE 8031 emulator plus

real-time Execute-to-Breakpoint,
Line-by-Line Assembler, and much more.
And the price is (almost) unbelievable!

(Yes,itworkswiththe Ma&too!)

Base Unit (w/W-232 IF) -- $299
Available Pods: $149 each

8031/32,80C31/32,80C154,80C451,
8OC535,8OC552/562,80(;652,8OC51  FA,

8751/52,87C51/52.
Call about 87C751/752  support

16K Trace Bufferoption:Avail,2nd  Qtr'92
Standard 8031 DrylCE -- Still only $199

Enhanced 8031 DrylCE -- $269

The8051SIM  softwarepackagespeeds
the developmentof 8051 family

programs by allowing execution and
debug without atargetsystem. The
8051 SlMulator is a screen oriented,
menucommand driven program

doubling as a great learning tool. $99.

8031SBC  - A fast and inexpensive way to
implement an embedded controller.

8031/32 processor, 8+ parallel l/O, up to
2 RS232 serial ports, +5 volt operation.
The development board option allows
simple debugging of 8031151  family

programs. $ggea
8OC552SBC  - 10 bit 8 ch. A/D, 2 PWM,

1 RS232 & 2 RS232/422/485  serial ports,
sockets for 64k ROM, 64k RAM, +5 volt
operation; optional RT Clock wl battery,

2k EEPROM.Development  board version
available. Call for pricing!

(619) 566-1892
itI lx7

However, using the heartbeat LED

A few special cases, like the LCD
panel data bus, call for bidirectional
I/O. The firmware must ensure that

is a completely different situation. The

the pin latch is set to 1 whenever data
is arriving from the external device,

pin output latch switches between 0

but doing so is straightforward because
the firmware controls what the LCD is

and 1 every second, but the switch

doing and data never arrives unexpect-

may be pressed at any time. The

edly. If the external device can source
a large amount of current, you can
damage the 803 1 hardware by trying to
pull a pin down to ground with a 0
output, so you must be careful to
ensure valid controls.

firmware must scan it many times a
second to capture the switch value,
but half the time the 0 output over-
rides the input.

Unlike many CPUs,  the 803 1
includes a wide variety of bit manipu-

Obviously, because of the way the
hardware works, you must set the

lation instructions. These instructions

latch to 1 before reading the input,

can be applied equally well to both

then restore the original value after-
ward. The catch is all of the ordinary

internal CPU bits (such as the ALU

“read the port” instructions (e.g., MOV
A , P 1) return the latch state ANDed
with the input signal. When the
output is 0, the CPU cannot tell
whether the input is 0 or 1.

Llsllng  2-The state elan 8031  t/Opin is he logical  AND oifhe cwrpuf la&/~  and tie input signal:  if the
oufpu~  is 0, the pin will  a/ways be read as 0. This  code section shows how to mord the latch state,  set it
high, read the actual  input signal, and lhen  restore the latch.  This trick  cannot be used for pulse outputs
because it causes a low g/itch each time the pin .&  read.

J8 FlagPortBusy.swdone ; skip if port is in use

MOV B.#f F

JBC P1.7
CLR B.7

SW?7 JBC P1.6.

CLR B.6
sw?6 JBC PI.5

CLR B.5

F

SW??

sw?6

SW?5

set up output latch memory

branch if latch set. clr latch
latch was off. record in B

SW?5 JBC P1.4.sw?4
CLR 8 . 4

SW?4 JBC P1.3.sw?3
CLR 8 . 3

SW?3 JBC P1.2.sw?2
CLR B . 2

SW?2 JBC Pl.l.sw?l
CLR B.l

SW?1 JBC Pl .O.sw?O
CLR B.0

SW?0 EQU *

MOV P1.B ; restore latches
ORL Pl .#INPUTMASKASM ; set input bits high for read
MOV A.Pl ; fetch inputs

MOV P1.B : r e s t o r e  l a t c h e s  a g a i n

CPL A . convert to pos. logic (l=ON)
ANL A.#INPUTMASKASM I isolate input bits
MOV B.A : save for later update
XRL A.KeysLast ; compare with previous sample
MOV KeysLast.B ; and update previous sample
JZ swdone ; if zero. nothing changed

ANL A.B
ORL KeysHit.A

: 1 bits = new ON buttons
; record the fact...

swdone EOU *

74 Issue W27  June/July, 1992 TheComputerApplicationsJournal



Carry flag) and external inputs (such as
Port 1 bits). Becoming familiar with
these instructions will help you write
better firmware-and in this case, one
instruction will help you achieve the
seemingly impossible.

The J BC instruction tests a bit,
clears it to 0, then branches if the bit
was originally 1. Normally you would
J BC on a status flag set by one routine,
typically an ISR, and used by another,
typically mainline code. Because the
test-and-clear takes place within single
instruction, an interrupt handler
cannot “get in between” to create an
invalid condition.

However, when applied to I/O
pins, J BC tests only the output latch,
not the “latch AND input data” used
by the other instructions. The J BC will
branch if the output latch was 1 and
fall through if the bit was 0. In either
case, the output latch will go to 0. See
how this instruction comes in handy!

Listing 2 is extracted from LCD-
Link’s Timer 0 interrupt handler. The
timer ticks every 5 ms, so the switches
are sampled 200 times each second.
This amount is admittedly excessive,
but the CPU generally isn’t doing
much else and it was easy to keep the
timer tick at about the same rate for
all these projects.

The HCS II SC must poll the
LCD-Link to determine which
switches were pressed, so the firmware
uses two global variables to record
both the previous state of the port and
each new key press as it occurs. The
firmware clears the key states, so each
Q command gets new presses.

Because J BC clears the bit after
testing it, the output device must be
able to withstand a short glitch to 0
whenever the bit was originally 1. In
the case of the heartbeat LED, this
action causes only a dim glow when
the LED should be off (remember that
a LOW output is ON), but devices like
relays may object to the mistreatment.

A further complication arises
when the port bits are shared between
several unrelated functions. For
example, consider what would happen
if the LCD driver had set up a com-
mand in the low order bits and
activated the control lines to send it to
the LCD panel when a timer interrupt

glitched  the port bits. The LCD panel
objects to data glitches while the
control lines are active [and rightfully
so! J, so we must ensure that they occur
only when the LCD panel control lines
are inactive.

The solution is a semaphore that
prevents the timer code from sampling
the input port when the LCD is busy.
The first statement in Listing 2 tests
Fl agPortBusy,  which theLCD code
sets while it is using the port. This
feature does not interfere with reading
the switches because the LCD is
generally idle and LCD hardware
operations are quite brief. In any event,
with 200 samples per second, the
switches are read often enough!

In summary, there are a few
special cases where you can use an
8031 I/O bit for unrelated input and
output functions, but you must be
careful about side effects. That you
cannot get this level of bit-banging in
C should also be apparent; there is still
room for assembly language!

RELEASE NOTES
The BBS files include LCD-Link’s

executable EPROM hex file and the
source code sections shown in the
listings. The complete LCD-Link
source code may be licensed from
Circuit Cellar Inc. (not INK). q

Ed Nisley is a Registered Professional
Engineer and a member of the Com-
puter Applications loumal’s engineer-
ing staff. He specializes in finding
innovative solutions to demanding
and unusual technical problems.

HCS II components are available
in both kit form and assembled
and tested. Contact:

Circuit Cellar Kits
4 Park St.
Vernon, CT 06066
(203) 8752751
Fax: (203) 872-2204

416 Very Useful
417 Moderately Useful
418 Not Useful

CP-1 128
Combination Programmer

$1295.00

GAO,  10/210/12&~:0;
Supports

2 3 0  EPLDs,  Altera’s  900 ,
18OWseries  and MAX EPLDs,

Cypress’CY7C361, lawice’s
irp I511032 8 pLSl1032,
National Semiconductor’s
-SD & -7D devices and MAP1

devices.

ti Qualified and recommended

by AMD, Lattice, NatIonal Semi-

conductor, Signeticsand others.

d Utilizes  only manufocturerap

proved programming algo-

rithms.

. . . . . . . . . . .

/Supports upto 28.pin  E/
E P R O M s  a n d  biDolor

PROMS  includini  t h e

microwlre  PC devices.

/Supports Dallas Semi-
conductor  NVRAMs
and TI DSP320, Micro-
chip PIC microcontrollers.

d Lifetime FREE software
updates available via BBS

and US Mail.

fl Call for o DEMO disk

and literature pack.
.J Made ,n the USA

. . . . . . . . .

EP-1140
E/EPROM & pontroller

Programmer

r/ The EP-I 140 supports

NEC’s  27CBOO1,  a-Mbit

E P R O M ,  011  27C240 d-Mbit

16 b i t  E P R O M s ,  F L A S H

EPROMs, NVRAMs and al l

microwire EPROMs.

$695.00
d Qualified and recom-

mended by Intel. Signetics,

National Semiconductor, and

others
/Lifetime FREE software up-

dates available via BBS and

US Mail.
r/ Risk-free thirtyday money-

bock guarantee.
,‘Mode ,n the USA

r/ A l l  I n t e l ,  A M D ,  and

Signetics d&pin  controllers

supported directly.

. . . . . . . . . . . . . . . . . . . .
With lifetime FREE software updates, you can’t
go wrong and BP Microsystems offers a thirtyday
money-back guarantee to ensure product satis-
faction.  Remember, BP Microsystems is...

The Engineer’s ProgrammerTM

B P -MICROSYSTEMS
1068 I Haddington l Houston, TX 77043-3239

(713)461-9430.  FAX(713)461-7413

w 1991 BP Microsvstems  Inc

The Computer Applications Journal Issue W27  June/July, 1992 75



(revisited) Jeff Bachiochi

amazed at the

certain projects, particu-
larly the “Hemispheric Activation
Level detector” introduced by Steve in
the June 1988 issue of BYTE. Here it is,
four years later, and HAL’s popularity
has not decreased one bit. Sometimes a
project you were involved with comes
back from the dead to haunt you.
Sometimes, as in HAL’s case, it haunts
you continuously from the beginning.

Like many of Steve’s projects,
HAL is a bit unusual. With HAL, Joe
Average now had the ability to
monitor brain activity in the 4- to 24-
Hz region (theta, beta, and alpha
waves). HAL’s input comes from
electrodes placed at various positions
on a subject’s head (most commonly
on the front and rear of each hemi-
sphere). Microvolt input signals are
amplified and then sampled by an
ADC. Finally, the samples are trans-
mitted in a serial bit stream to a host
computer. HAL operates on batteries
and the serial link is optoisolated,
preventing any possibility of electrocu-
tion. The host, any computer that will
accept RS-232, is responsible for
storing the transmissions and analyz-
ing and displaying the results, all in
real time.

DATA FLOOD
A tip of the hat to the software

gurus Robert Schenck and Dave
Shultz. The timings involved within
HAL and the host must be matched
precisely to allow the FFT software to
dissect HAL’s sampled composite
waveform data into individual compo-
nents of frequency and amplitude for

76 lswc 127  June/July, 1992 The Computer Applications Journal

each channel. An example of host
software was written for the IBM PC
that displays two of the four channels
HAL actually transmits. This sample
code was meant as a starting point for
experimenters, each of whom has their
own ideas of what should be done with
HAL’s continuous deluge of 4800-bps
data. Developing code for HAL
requires expert programming skills.
Fortunately, you can study the
example software and shorten the
learning curve by taking advantage of
the source code’s availability.

HAUNTING HARDWARE
Having the source does eliminate

many questions and minimizes
software support. It does not reduce
the questions about the hardware and
what can be done to change the
specifications. Let me provide a look at
HAL’s specifications and at the design
of the analog front end. I believe this
information will help to answer many
questions on the potential flexibility of
HAL.

Analog front-end specifications are
as follows:

*Input DC current < 50 nA
*Equivalent input noise level of

co.5 uv
*Flat bandwidth between 4 and 20

Hzoff l  db
018 db/octave roll-off (-50/60 db at

60 Hz)
*Minimum input detection of 5 uV

From these specs you can deter-
mine that HAL must pick up and
amplify microvolt signals between 4
and 20 Hz while rejecting noise and
other signals outside of the passband.
Refer to Figure 1 for the analog front
end of HAL. Notice I’ve broken down
the front end into stages, so you can
investigate them by reverse engineer-
ing at each stage.

All op-amps used are Texas
Instruments’ TLO84s,  which have JFET
inputs, extremely low picoampere
input bias currents, and a low cost.
The quad packaging, keeps the real
estate down to a minimum.

The first three op-amps in each
channel’s input circuitry are used as an
instrumentation preamplifier. Two

C!
Fig1

SCk
mc
Yo’
int

Yo’
Rat
nai
thi
ma
ma
wh

fro:
chc

78



noninverting op-amps create a high
input impedance front end with their
negative inputs connected together
rather than to ground as in a normal
noninverting amplifier. The gain of
each amplifier is

I+R3a=I+470k=29
R l a 16k

The total gain for this stage of the
instrumentation preamplifier is the
sum of each front end amplifier, 29 +

29 = 58. The third

as a differential

common to

amplified
equally by amplifiers #l and #2 and
canceled by the differential amplifier
#3, regardless of the gain set and as
long as the inputs are equal. Signals
produced by the brain will be unequal
unless the electrodes are equidistant
from the source, so the outputs from
amplifier #l and #2 will be different.
Differential amplifier #3 will amplify
the difference by a gain of

kc%= 100

The total gain for the instrumentation
preamplifier stage is 58 x 100 = 5800 at
the fc (center frequency)

I use the term fc because Cla and
C2a remove any DC offsets from
amplifiers #l and #2, acting as a high-
pass filter that has an fcO (cutoff
frequency) of

1
2 x  (R5a)(C2a) -2(3.14)[5.:k)(3.3pF)

- 9.5 Hz

with a -3-db attenuation per octave.
Feedback capacitor C3a acts as a low-
pass filter with the differential ampli-
fier stage that has an fcO of

1 1
2x (R6a)(C3a) ~2(3.14)(510k)(O.O1~F)

-31.2Hz

with an attenuation of -3 db per
octave.

Between the instrumentation
amplifier and the first active filter
section is a passive RC high-pass filter.
This filter eliminates any DC offset
from the previous amplifier section
and has a calculated fco of

1 1
2x (R8a)(C4a) *2(3.14)(10k)(5.6l.rF)

- 2.8 Hz

with a -3db per octave attenuation.
The first filter stage is a a-pole

Butterworth low-pass active filter. The
fcO is calculated as

1.392 1.392
2 x  (R9a)(C5a) ~2(3.14)(100k)(O.1~F)

- 2 2 H z

with an attenuation of -18 db per
octave.

Between the two filter sections is
a passive RC high-pass filter. Again,
this feature eliminates DC offset from
the first filter section and has a
calculated fcO of

1 1
2 x  (R12a)(C8a) _ 2(3.14)(4.7k)(lO~F)

- 3.4 Hz

with an attenuation of -3 db per
octave.

The second filter section is
identical to the first and as such has
the same characteristics, an fcO of 22
Hz with an attenuation of -18 db per
octave.

Finally, a high-pass filter with an
fco of 3.4 Hz removes the DC offset
from the second filter section and
feeds the composite AC signal into the
final amplifier for a gain of 2. This
amplifier’s positive input is biased at
0.5 Vcc. The resultant amplifier’s
output is at a DC level of 0.5 Vcc with
the composite AC signal swinging
about that DC level.

A 2.5-volt reference diode with
equal tail resistors between Vcc and
ground provide the ADC with a
positive reference of 1.25 volts above
0.5 Vcc and a negative reference of
1.25 volts below 0.5 Vcc. With only
the DC bias of 0.5 Vcc and no AC
input to the ADC, the A/D count will
be approximately 128, or half the full
scale. When an AC signal is present,
the count will rise above and fall
below 128 in proportion to its ampli-

tude. The reference voltage (2.5 V)
divided by the resolution for the ADC
equals about 10 mV per count, mean-
ing if the AC signal is 20 mV peak-to-
peak, then the count will be 128,129,
128, 127, 128 for one AC cycle.
Because the overall gain of the front
endis58x100x2or11600,ifyou
divide 20 mV by 11600, you get the
minimum size the input signal must
be for the ADC to recognize it as one
count: 1.7 PV.

If I graph each of these calculated
sections, I end up with the overall
response shown in Figure 2 (theoreti-
cal).

SPICE IT UP
Whether your poison be solderless

breadboards, wire-wrapping, or the
sweet smell of solder, there is nothing
like “hands-on” hardware for trying
out a new circuit idea. Although
solderless breadboards are the quickest
to use, they are not suitable for many
kinds of applications nor do they give
the permanence of the latter two
choices. But what other alternatives
are there?

Circuit simulation today is where
PC-board layout packages were ten

However,
like all
good
products,
competi-
tion is
driving
down
simulation’s prices while raising the
level of performance. Simulation of
digital and analog circuits is now
becoming affordable, and allows the
computer to simulate not only
circuitry but equipment such as power
supplies, sweep generators, meters,
and scopes-the kind of equipment
you ordinarily might not be able to
afford.

Many “Spice-like” programs
require only a list of circuit compo-
nents that contain type, value, and
connection information. Some sche-
matic and layout packages have
integral simulators built in, and the
input information is passed from the

The Computer Applications Journal Issue #27 JunslJuly, 1992 7 7



F I L T E R  1

Flgura  I--HALk an&g front end oonsisfs olnumerous  amplifiem  and iikers.  The other  three channel  are idenbcal.

schematic module to the simulation
module. If you don’t have one of these,
you can still do simulations. Let me
introduce one of these packages to
you. B%pice [for Windows) from Beige
Bag Software. I am fighting tooth and
nail to stay away from Windows, but
this software is so easy to use that it
makes putting up with Windows’
many aggravations is almost worth-
while.

I entered the schematic of HAL’s
front end into the simulator by simply
choosing a component, placing it,

entering its value, and making the
appropriate connections to other
components. I used the minimum
input necessary (2 pV), which should
give an output of about Xl mV. Next, I
will show what happens to the circuit
with an AC input from 0.1 Hz to 1000
Hz.

I placed the appropriate “signal
generators” and “voltmeters” into the
schematic, then started the simulation
by entering the starting and ending
frequencies as well as the number
steps of simulation per decade to get a

table, a graph, or both, of calculated
points. Because gain is not a factor at
these low frequencies, I did the circuit
simulation using the ideal op-amp
from the component list and not a
TL084-type model.

The ease of twiddling values and
getting back simulation results almost
immediately is truly addictive (cau-
tion: for this reason, simulation should
only be used in small doses). I found
myself playing the “What if?” game
with component values while hours
slipped away!

Affordable 8031 Development
Single Board Computers, Assemblers
Simulators, and EPROM Emulators

Conlrol-R  Series, Single  Roard Computers

Two models of Control-R series computers make
pmtotyping, one of a kind products, or small
production runs easy and economical. Both feature
RS232 compatible serial ports, single 5 volt supply
operation, and direct access to Ports 1 and 3 of the 8031.
Additional features are as follows:

Control-R Model 1 $49.95

Fully populated board with I/O header for Ports 1 and
3, serial port, and 8K EPROM socket. 3.0” x 4.0”

Control-R Model 2 $79.95

Same features as the Control-R 1 plus 8K of SRAM and
expansion bus with data, address, RST, INTl,  WR,
RD, PSEN, ALE and Tl. 3.5” x 4.5”

Compilers,

Software and Hardware Development Tools

Control-C 8031 Cross-Compiler $200.00

The Control-C 8031 cross-compiler is a full featured K&R style C
development system available at an affordable price. Optimized
for embedded system use, it will produce  ROMable  code for any
8051 based system including designs using only the 128 bytes of
internal RAM. Package includes compiler, pre-pmcessor,
assembler, simulator, printed documentation and complete library
source code. Requires IBM PC or compatible. 5.25”, 360K disk.

PROMulator 256 $189.95

An EPROM emulator lets you avoid “Bum and Test” development
cycles. In circuit  emulation of 2K-32K  27xx series EPROMs. ABS
Plastic case. Assembled or compiled code is downloaded directly to
the target hardware.

cottage Reson Corporation
Suite 151, 10271 South 1300 East

Sandy, Utah 84094
VISA/MC,  COD. Call to Order: (801) 268 - 2875

78 lswe 127  June/July, 1992 The Computer Applications Journal



FILTER 2 / AMPLIFIER

Confidence is built when the
simulator results (Figure 3) are com-
pared to the theoretical calculations
done previously. So much for theory
and simulation; what about reality?
What about the the real thing?

FROM THE BENCH
Although HAL is meant for

amplifying brain waves, the thought of
sticking electrodes on my scalp while
trying to measure stage gains seemed
self-defeating. I decided to use artificial
input: a signal generator.

The first problem I ran into was
two-fold: there was too much signal
strength, and the generators had a low
output impedance (50 ohms). A buffer
op-amp took care of both. I placed a
15M/lSk  resistor divider on the
buffer’s output to approximate the
electrode impedance and get the signal
down into the microvolt range. At this
amplitude you can’t see the signal for
the trees, ah, noise. It’s really hidden
deep in the forest!

With an oscilloscope, I made
output measurements of each stage,

listing the amplitudes at various
frequencies. After all the measure-
ments were made, I regraphed by
decibels versus frequency, similar to
the previous ones, so they could be
compared easily. I checked the slopes
and found the upper slope to be about
right, 39 db per octave. However, the
lower slope seemed a bit steep, which
bothered me because there shouldn’t
be any more than a 24-db roll-off here.
In rechecking the setup, I noticed the
signal generator was not linear below 5
Hz; it rolled off at about 12 db per
octave. After compensating for the
input error, the plot better resembled
what I had originally expected. If you
compare Figure 4 with the previous
two, you will see that all are indeed
similar.

THE BOTTOM LINE
Initial specifications for input DC

current ~50 nA are met by using the
TL084 op-amp. The TL.084’~  FET
inputs are a high lOI ohms with input
offset and bias currents of 5 pA and 30
PA, respectively. Bandpass  specifica-

THE $99.95
EMBEDDED EDUCATION

THE PRIMER MICROPROCESSOR
TRAINING SYSTEM

TEACHES: ’ INTEL 8085 PROGRAMMING
l DIGITAL 8. ANALOG INTERFACING
’ PROGRAMMING INTEL PERIPHERALS
’ MICROCOMPUTER DESIGN & ASSEMBLY

FEATURES: ’ MONITOR O.S. SOFI-WARE  IN EPROM
l OVER 100  PAGE SELF INSTRUCTION MANUAL
l 6 DIGIT, 7 SEGMENT, LED DISPLAY
’ 20 KEY KEYPAD
’ DIGITAL INPUT PORT WITH DlPSWlTCH
’ DIGiTAL  OUTPUT PORT WITH LEDs
l ANALOG TO DIGITAL CONVERTER
+ DIGITAL TO ANALOG CONVERTER
‘TIMER/COUNTER WITH SPEAKER OUTPUT

OPTIONS: * BASIC OR FORTH LANGUAGES IN EPROM
’ RS232 SERIAL PORT CONNECTS TO PC
’ BATTERY BACKED CLOCK AND RAM
l 9 VOLT 500 MA. POWER SUPPLY

EMAC OFFERS A COMPLETE LINE OF MICROPROCESSOR TRAINING
SYSTEMS STARTING AT $99.95 QUANTITY 10 FOR THE PRIMER KlT.

EIilAc  inc.
616-526-4525 FAX: 6; 6-457-0110

P.O.BOX 2042 CARBONDALE, IL 62902
;3

Cross-Assemblers from $SO.OO

Simulators from $100.00

Cross-Disassemblers from $roo.oo

Developer Packages
from $200.00 (a $50.00 Savings)

Make Programming Easy
Our Macro Cross-assembten are easy to use. With powerful conditional
assembly and unlimited indude files.

Get It Debugged - FAST
Don’t wait until the hardware is finished. Debug your software witi  our
Simulators.

Recover Lost Source!
Our line  of disass-embiers  can help you reaeate  the original assembly
language source.

Thousands Of Satisfied Customers Worldwide
PseudoCwp  has been providing quality solutions for microprocessor
problems since 1985.

Processors
Intel  8048 RCA 1802.05 Intel 8051 Motorola 68%
Motorola 6800 Motorola 6801 Motomia  68HCll WDC 65CO2
Hitachi 6301 Motorola 6809 MOS Tech 6502 NSC 800
Rockwell @X02 Intel  8080,85 Zib  280
Hitachi HD84180 Mot. 68k.  8,10 Intel 8096,196kc

New For Information Or To Order Call:
Zilog za
Zilog Super a PseudoCorp
- All products
require an IBM  PC
or compatible.

IA,

716 Thimble Shoals Blvd., Suite E
Newport News, VA 23606

(804) 873-1947
FAX: (804) 873-2154

The Computer Applications Journal Issue #27  June/July, 1992 79



db

0.1 1 IO

Frequency
100 1000

- Series 1 -+ Series 2 --;lc  Series 3
I n s t r u m e n t a t i o n  A m p l i f i e r RC Highpass 3-Pole  Butterworth  Lowpass

++ Series 4 ++-- Series 5 --+- Series 6
RC Highpass 3-Pole B u t t e r w o r t h  Lowpass Fine/  Highpass  A m p l i f i e r

Figure 2-Equalions and a calculator  give the fheureikai frequency response of HAL’s front end.

tions are between 4 and 20 Hz. As you Hz. However, this range does not quite to 2 Hz). The upper f_ could be
can see from the expanded view in meet with passband  specifications. improved by reducing R9-11  and R13-
Figure 5 (passband), the actual (present) The lower fW could be improved by 15 to 75k (f,, from 22 Hz to 30 Hz).
-3-db passband is about 12 Hz to 20 increasing C2 to 15 uF [fc, from 9.5 Hz These adjustments would reduce the

db

. I . . . .
.

- 108- .,,_
_120_ ,-.,. I_.. 1 .,..,

-144-

0.1

. . . . , , ..j . . . ,. a.,I I I I III1 I I I I IllI I I I I 1111_

1 IO 100 1000

Frequency

- Series 1 + Series 2 + Series 3
I n s t r u m e n t a t i o n  A m p l i f i e r RC Highpass 3-Pole But ter  wor th Lowpass

--+  Series 4 ++-- Series 5 -+-- Series 6
RC Highpass S-Pole  B u t t e r w o r t h  Lowpass Final Highpass  A m p l i f i e r

Figure 3-Running  HAL’S  hont  end  through an anabg  circuit simulator gives results similar  ~b  tie heoretical  cakulahs.

8 0 Issue  127 June/July, 1992 The Computer Applications Journal



d b
0

- 1 2
- 2 4
- 3 6
- 4 8
- 6 0
- 7 2
- 8 4
- 9 6

- 1 0 8
- 1 2 0
- 1 3 2
- 1 4 4

. . . ; _. i.. _. ” .i I . . f ..i , )q T . . ..a

/ .!  :I
?..-.r- I. ; #,+*

i ’ I,<;.

. I . .i . ; i. i
I I I I I ,,,I, I I I Illll

._. : i... i ,.. ..i...;..
lllll

. . . . .._.._. i
I

. . . . _: ,.
I I lllll

0.1 1 10

Frequency
1 0 0 1 0 0 0

- Series 1 + Series 2 --+ Series 3
Inst rumentat ion Ampl i f ier RC Highpass 3 - P o l e  Butterworth  Lowpass
+ Series 4 +- Series 5 ++ Series 6

RC Highpass 3-Pole Butterworth  Lowpass Final  Highpass Amp l i f i e r

Figure 444easuring  key points on Ihe circuit in action confinns both the theoretical and simulated K&S.

60-I& attenuation by about 9 db. The
actual attenuation of 60 Hz is about 63
db. Even with the 9-db reduction, 60-
Hz attenuation falls within specifica-
tions. By modifying six resistors and
two capacitors, you improve the
passband  dramatically.

As demonstrated here, passband
specifications can be altered by
adjusting the appropriate sections of
HAL’s front end. Adjusting compo-
nents in stages 1, 2, 4, and 6 alters the
lower fc. Adjusting components in
stages 1,3, and 5 alters the upper fc. In
order to remain within the physical
limitations of HAL’s layout, some
sense of part size must be realized. Just
because you can calculate a compo-
nent value does not necessarily mean
it will fit in the existing space pro-
vided. In addition, larger capacitors
may not be available with the same
lead spacing, body diameter, or
tolerance.

Resistors are easily available in
5% or even 1% tolerances, but
capacitors are most commonly found
with tolerances as high as 20%.
Because you and I would like all four
of HAL’s channels to be accurate not

only on their own, but with respect to Thanks to Chris White for his assis-

each other, the actual capacitor values tance  with the graph presentation

must be held to at least a 5% toler- using Harvard Graphics.

ante. This limit can be met by pur-
chasing capacitors already closely leff Bachiochi (pronounced “BAH-key-
matched (5% or less tolerance) or by AH-key”) is an electrical engineer on
selecting capacitors yourself, using a the Computer Applications Journal’s
capacitance meter. engineering staff. His background

includes product design and manufac-
CONCLUSION turing.

I may be a bit naive to think this
article will cut down on the number of
HAL support calls that I field. It
probably raises more questions than it Beige Bag Software
answers. But isn’t that what life’s 715 Barclay Ct.
about-the search for answers? q Ann Arbor, MI 48 105

(3 13) 663-4309

HAL.  kits are available from

Steve Ciarcia, “Ciarcia’s Circuit
Cellar-Computers on the Brain,
Part 1,” BYTE, June 1988.

Steve Ciarcia, “Ciarcia’s Circuit
Cellar-Computers on the Brain,

Circuit Cellar Kits
4 Park St.
Vernon, CT 06066
(203) 875-2751
Fax (203) 872-2204

Part 2,” BYTE, July 1988.

Willis J. Tompkins &John G.
Webster (editors), Interfacing
Sensors to the IBM PC, Prentice
Hall, 1988.

419  Very Useful
420 Moderately Useful
421 Not Useful

82 Issue W27 June/July, 1992 The Computer Applications Journal



db

Frequency

- Series 1 + Series 2
Present Adjusted

Figun CBy changiq the valus  ot six resistors  and two capacitors,  Ihe passband  of he original circuit  (series 1) can be greati  expanded (series 2).

T&e It

M
Take it easy on your cargo with a custom Cabbage Case
built to the exact dimensions of VOW eauiament.
Take it easyonyour back
with our extension handle
and tilt wheels options.
Take it easy on your
wallet. Let Cabbage Cases
show you how easy it is to
save money on quality, custom-built road cases that make
shipping and traveling with your valuable cargo safer and
easier. Prices quoted over the phone.
Call 800-888-2495  today.

1166-C Steelwood Rd.
Columbus, OH 43212

099/09&2495
614/49&2495
FAX/4862798

REMOTE POWER CARD!3vERsloHs:
!!i!!!s~~~~FIT HANGS  FOR  HARDWARE
ORsoFiwAREREAsoNs

,p,H,F!,E,E
WAREW.X/MOLlOUUtiE,

iiiiiiI1
UTE  NITE  BACKW/  MODEd,
azwrt?aAc-

9% O E M

23
ALL~CARDSINCUIDEA,~,ANDCSOVRCEFOPCOASK

8 CHAN ADCDATAMuismON,SEFlvo~AomrTREsLlrrm22KHZSMIPLERAlE
st4ARPcuTOFFAKn~nLTER
CREATE STEREO MASTER  (.WX)  FILES 9%

2 CHAN DAC
WCEtMll_MUSC,JUARMS,CTLVOLT
&%lTRE-4MHZSAWi.ERATE
PLAYSMCt+3/?JEREOBFllES
PJtm!asAsMGrrALAlTENu4ToR~ 7%

wl ~i$!fH

5 YEAR LIMITED WARRANTY
F R E E  S H I P P I N G  I N  U S A

166

The Computer Applications Journal Issue #27 June/July, 1992 8 3



Multimedia
Madness

Tom Cantrell

Couch Potato
Computing

he future is
clear. The differ-

ence between audio,
video (also known as

A/V), and computing has blurred and
will eventually disappear. That’s right,
someday “Superboxes” will incorpo-
rate all the functionality of today’s
curious and incompatible mix of TVs,
stereos, computers, video games, and
so forth. Ultimately, the barrier to the
Superbox  may be misguided marketing
strategies rather than technology. Isn’t
selling lots of assorted proprietary
boxes, media, and cables, all with
built-in obsolescence, better than a
single, multifunctional product?

Seeing who will ultimately drive
the market will be interesting: the
current A/V suppliers (e.g., Sony),
computer suppliers (e.g., Applej,  or
new hybrids (e.g., Sony + Apple].

While the Superbox is clearly
located at our point of destination,
getting there from here is another
story. In fact, right now we’re at that
ugly phase all infant markets go
through, characterized by multiple
suppliers using multiple technologies
with multiple standards pursuing
multiple customers who have multiple
applications. One byproduct of the
confused market state is an explosion
of acronyms, each claimed by its
proponent to be the multimedia Holy
Grail, such as CD-I, CD-DA, CD-XA,
CDTV, DVI, PVI, AVK, DCT, MPEG,
JPEG, IMA, MPC, PCM, MIDI, PAL,
SECAM, NTSC, RGB, VI-IS, VISCA,
MTS, UHF, VHF, FCC, AVSF, PCS,
CCIR601, H.261, and Px64.

Oh, well. Nobody said the trip
would be easy. Maybe the best way to
define multimedia is to follow Associ-

ate Justice Potter Stewart’s lead when
he said of obscenity: “I shall not today
attempt further to define the kinds of
material...but I know it when I see it.”

Anyway, Superbox-capable silicon
is right around the comer, and now is
the time to start checking it out.

PEG IN A BLACK HOLE
Because I have a day job, I won’t

be able to cover all the above buzz-
words here. Instead, I’ll try to hit a few
of the high notes and give you my
opinion of what’s hot and what’s not.

By far, the fundamental shift of
information from the analog to the
digital realm has revolutionized
multimedia at its heart. As with any
revolution, there are winners and
losers; for example, those that have
invested in “analog” HDTV (high-
definition television] schemes will
have to go back to the drawing board.

Digital schemes also face a big
challenge, namely “so many bits, so
little bandwidth.” Consider that
broadcast-quality video [say 640 H x
480 V x 24 bits per pixel x 30 frames
per second) requires an astounding
36.8 megabytes per second! Obviously,
the storage speed and capacity require-
ments are somewhat problematic,
amounting to a bandwidth “black
hole.” Don’t expect to fit Hollywood’s
latest overblown epic on your dinky
hard disk anytime soon.

So, we’re clearly not going to be
able to force the issue, despite the
inevitable improvement in storage
price and performance. Instead, the
situation calls for some finesse in the
form of A/V “compression.”

To achieve this end, various
“PEG” standards are being developed
including JPEG (Joint Photography
Experts Group], MPEG (Motion
Picture Experts Group], and MPEG 2
under the auspices of ANSI/IS0
(American National Standards Insti-
tute/International Standards Organiza-
tion).

These models are differentiated by
the type of material being compressed
and the tradeoff in demands placed on
the compression scheme and the
storage devices. JPEG, which has
achieved “draft” standard status, is
designed for single or still images,

84 Issue 127 June/July,  1992 The Computer Applications Journal



Frequency Domain

Figure l-(a) DCTspatia/-->  frequency ccwemh.
(b) Zig-zag heqwncy  spectrum generation.
(c)  Frsquency  spctnrm  qvantizatkn.
(d) Quantized frequency spectrum.

Spatial  Domain

Frequency Domain
Energy

I

Frequency
I Low High
- 64 Samples +

while MPEG targets motion pictures
as its name implies. MPEG has
achieved proposal status and targets
minimal bandwidth, namely 1.5
megabits per second or so; within the
capability of CD drives. While MPEG
2, which is just now being debated (40
initial proposals!), promises high-
quality video at the expense of more,
but (hopefully) still feasible, band-
width that will be within the realm of
PCs, hard disks, LANs, and so forth.

Meanwhile, CCITT also has its
hat in the ring with the H.261 stan-
dard, designed for video phones and
video conferences. It’s sometimes
referred to as Px64 where the “64”
refers to the 64K bit-per-second
bandwidth granularity of digital phone
lines offered by ISDN, while “P” can
vary from 1 to 32 for low- to high-
quality video.

An aside about video phones: I
hope society is ready to deal with this
idea. Besides having to button your
shirt and comb your hair before
answering the phone (Murphy says it
will only be a “junk call” from some
insurance salesman), I imagine
problems like crank or obscene phone
calls will reach new depths. Oh, well.
Technology marches on and if it can
be done, it must be done, right?

cl

4

Energy

_..1.___1
Quantitization Stepsize

Transformed Coefficients

Energy

-._.1---1
Quantitization  Stepsize

Transformed Coefficients

Quantitized Coefficients

Essentially, compressing or “encod-
ing” an image is done using a three-
step process.

First, a block of pixels (typically 8
x 8 or 16 x 16) is operated on with a
Discrete Cosine Transform (DCT),
which effectively converts that portion
of the image from the spatial domain
into the frequency domain as shown in
Figure la. Conceptually, the low-
frequency components of the signal are
shifted to the upper left corner and the
high-frequency components to the
lower right. Thus, an ordered fre-
quency spectrum is generated when
the block is scanned in a zig-zag
fashion (see Figure 1 b).

Second, the frequency spectrum is
“quantized,” which simply means the
signal level is quantified with a certain
degree of resolution (quantization step
size) as shown in Figure lc. For

Frequency
ILOW High

Frequency
High

DCT TIME
All these standards share common

technical underpinnings. The key
difference between JPEG and MPEG or
H.261 is the former deals with still
pictures while the latter two handle
motion pictures. In other words, still
pictures are only compressed spatially
[a single frame at a time or intraframe)
while motion pictures are compressed
both spatially and temporally (across
frames or interframe).

The spatial compression is
common to both, so let me start there.

instance, a signal that varies from 0 to
255 (8 bits) could be quantized in steps
of 128 (1 bit), 64 (2 bits), 32 (3 bits), and
so forth.

Most importantly, the step size
used can and should be different for
each frequency component. The key
point behind the DCT scheme is it
relies on the human eye’s penchant for
noticing low-frequency errors much
more than high-frequency errors.
Thus, the low-frequency components
should be quantized with higher
fidelity, or smaller step size. The final

The Computer Applications Journal Issue W27  Juns/July, 1992 85



result of quantization is the reduction
of all data in magnitude (e.g., 8 bits to
2 bits), and many coefficients become
zero, especially high-frequency ones,
thanks to a large step size (Figure Id).

The zig-zag order in which the
frequency spectrum was generated in
the first step exploits the fact that
images feature spatial frequency
locality; a pixel tends to look like
those around it. This trait, along with
the many zeros generated by quantiza-
tion, is well suited to run-length
encoding, which is performed on the
output of the second step.

Third, the run-length-encoded
quantized frequency spectrum (the
output) is further coded using a
statistical scheme known as the
Huffman code. Briefly, this code
exploits redundancies in the data by
assigning shorter codes to the more
frequent elements and longer codes to
those less frequent. Statistical codes
require that both the encoder and
decoder have a table mapping each
code to the real data it represents; the
optimal coding varies depending on
the data. Thus, the standards contain
provisions for standard tables in both
the encoder and decoder as well as a
way for an encoder to send a custom
table to a decoder.

One key point is the DCT and
quantization steps are “lossy,”
meaning the original input cannot be
completely regenerated by reversing
the compressing and encoding steps.
Understanding that “lossless” com-
pression just wouldn’t be feasible, the
PEGS  chose the “losses” to exploit the
fallibilities of our visual system (what
you can see is only what you get). Of
course, the variable quantization step
size is the ultimate bandwidth safety
valve: just keep making the quantiza-
tion more coarse until the bandwidth
falls to that of your storage device
[within reason-I suggest you don’t try
storing video on paper tape!).

A “Silicon Update” brownie point
if you hack some JPEG software on
your PC (it has been done). It may run
rather slowly, but hey-it’s an ideal
response to those “skeptical others”
who dare question why upgrading to a
faster computer is really smarter than
buying a new car.

Just remember, JPEG is only for Static scenes compress well
still images. Doing what’s called indeed, but what happens when the
“Motion JPEG” in which a sequence of director shouts, “Action!” You
individually compressed frames are discover some types of motion aren’t
strung together is possible. It’s a short- that hard to deal with. One example is
term hack that works, but the ulti- “panning,” the smooth movement of
mate solution is to compress across the camera in a linear manner. This
frames (i.e., MPEG). function is analogous to scrolling on a

I 1 I

N’N
Data -
Block

Left
Upper
S e a r c h  *
Window

Right
Upper
Search
Wtndow  ’

Left Right
_  L o w e r

S e a r c h  ’
Lower
Search

Window Window 6

w*w WT

Array of 32 Processors

I / /
/ I
16

Search
Window
InDUt

Search
Window
Input

Figure 2464720  motion  estimation processor  block  diagram.

WILD THING, YOU MOVE ME
You don’t have to be a genius to

understand the concept of frame
differencing. Just as pixels have spatial
locality [one pixel tends to look like
others around it), they have temporal
(time) locality as Well; a pixel in a
given frame will tend to look the same
as in preceding and following frames.
Sports scenes are a great example.
Imagine lining up the putt (or waiting
for the windup or snap) in which
seconds, or hundreds of frames, may
transpire with little actually taking
place, making you yearn for the
“highlights at 1 l:OO.” Instead of
sending all these idle frames, you can
send the equivalent of an NOP (“The
pitcher is still checking the sign.“)
with only a few differences from the
last frame (“The pitcher is still
checking the sign, but he did spit.“).

terminal. The simplest way [like JPEG)
is to rewrite the entire screen. How-
ever, more sophisticated terminals
include a programmable start address,
so scrolling is as simple as specifying a
new start address and transmitting
only the newly visible information (a
new line). Similarly, an MPEG-like
motion compressor can just specify the
equivalent of a new camera angle
relative to the previous frame without
transmitting the entire new frame.

If static or panning scenes are the
good news, the bad news is random
motion (i.e., after the snap) and
zooming, not to mention complete
discontinuities accompanying scene
changes. Here, the technology gets
pushed to come up with motion
estimation schemes. Basically, the
process requires high-speed compari-
sons between each block of pixels with

86 Issue t27  June/July, 1992 The Computer Applications Journal



Input Processing Feature

ND
Video 1 + TDA6706

DMSD
SAA7191

‘)Y

Source
Video 2 + select,

damp,
AGC,

V i d e o  3+ A,D

I

Processing

r

u’,v

H

\,’3

Y = Luminance ---_
SAA71 92 6 R-I kupsample.  6

G

’ -li
Analog I?U, V = Chroma

H = Horizontal Sync
V = Vertical Sync

6 Bits Y:lJ:V 4:2:2
NTSC: 12.272727 MHz, 640 pike/s/line
PAL, Secam:  14.75MHz.  768 p’xelsdine

Output Processing

AVP
TDA4660

analog
matrix

a
video
switch

G4

B-

In fact, while the DCT, quantiza-
tion, and Huffman coding [i.e., JPEG)
may require a few MOPS each, motion
estimation (i.e., MPEG) ups the ante

into the rarified
atmosphere of BOPS!
Fortunately, the
silicon wizards are
always willing to rise
to a challenge.

One contributing
complexity factor is
that the MPEG
encoder must also
contain an decoder in
order to perform
motion estimation.
Thus, the computa-
tional complexity of
MPEG encode and
decode is asymmetric;

transmitting (encoding) is much harder
than receiving (decoding). JPEG is
much more symmetric because it
doesn’t deal with motion, which has
key implications for applications that
may want to author (transmit) multi-
media, to read (receive] multimedia, or
both.

all the other blocks of pixels (the
“search window”) that surrounds
them!

As you can imagine, doing this in
real time [i.e., 30 frames per second)
calls for some pretty heavy duty
hardware. Check out the LSI Logic
L64720  Motion Estimation Processor

(see Figure 21,  one of the leaders in
JPEG and MPEG chips. Notice the
little block labeled “Array of 32
Processors”!

Figure %-Signet&  video
encoder and decoder.

Micromint’s BRUTE-52 is the ultimate compact controller.
One look at the list of features will tell you that this full-
featured controller has the power to crush your most de-
manding applications:

. CMOS 80052/6OC32

. Three l&bit  counter timers

. 11.0592 MHz  System Clock
l Hardware Watchdog Timer
. Hardware Clockcalendar
l Optoisolated  Serial Communications

. 12-bii  pamllel  TTL I/O

. &bits  buffered high-voltage. hiihcurrent outputt
l &bits  optoirolated  non-polarized  IX inputs
l 12-bit  plus sign analog-to-digital converter

8 chonnek!  60 Sam~terlsecond!  1.2 mV resolution!
. 12-bii  diittal-toa&g  converter

R5232  or RS485!  3OC-9600  bps! 2 channels!  1.2 mV resolution! Selectable  ranges!
. Optokokrted  Serial Printer Port. l Onb 3.5 x 5.3 Inches!

R-232  1 SC-96OJ  bps l Operates at C-70°C
l sv-onty  Operation . Corwnwr  only 103-200  m4 (dependng on cmnguotlan)
. Up to 56 Kbyies RAM and/or  EPROM l Use networked or stand-alone
. 1 Kbti  EEPROM . DEMO/Diagn&ii  ROM

BRUTE-52 offers you all these features at only $459!  ($379/100
quantity OEM) We also have a starter system for $289. When
you add in Micromint’s renowned quality, sevices,  and
support, you won’t find a better value in compact control.

To order BRUTE-52, or for more information, contact:

Micromint, Inc.
4 Park Street l Vernon, CT 06066

Phone (203) 87 1-6 770 l FAX (203) 872-2204

88 Issue 127  June/July, 1992 The Computer Applications Journal

#16



Today, the spectrum of
alternatives spans the conceivable
thickness of your wallets; every-
thing from the software-only JPEG
to zillion-transistor chip sets.
Anyway, it’s only a matter of time
before it all ends up in a $5 chip.

VL

L L

D L

ABANDON THE PAST? C L K

Despite the inevitability of
Superboxes, I’m not quite ready to
start heaving my CDs, cassettes,
and videocassettes. Heck, I’ve still
got LPS!

In the case of video, what’s
clear is you and I are going to have
to coexist with NTSC for some
time. Thus, the need for adapter
circuits between the old analog Flgm 4-AU1666  bioc%  dragram.
realm and the new digital one

VBL

vs

VOL

N R L

shouldn’t be overlooked. feature processor.
Fortunately, Philips/Signetics  and

others are responding with chips that
bridge the gap between existing analog
I/O and the emerging digital
wonderchips. An example shown in
Figure 3 illustrates how the analog
interface chips surround the digital

Meanwhile, don’t forget that
multimedia includes sound as well as
video. Thus, keep your eye out for
digital audio chips like the Analog
Devices AD1866 +5-volt-only  dual-
channel (stereo) 16-bit PCM audio
DAC (see Figure 4).

AND THE WINNER IS...
The fact is, all the chips and

standards I’ve mentioned are sure
to do well. But focusing only on
these implementation technolo-
gies without considering the
fundamental changes required to
put all this stuff to use is like
evaluating a few trees when
constructing a forest’s ecological
model; most definitely a mistake.

Stepping back, assume that
your PC will be able to deliver
full-motion A/V-now what?
Where will you get A/V to play, or
even more critical, how will you
create your own A/V! How will
the A/V interact with the com-
puter software? After all, multime-
dia has got to do more than just

make your PC act like a TV or stereo.
Indeed, with the increasing reliance on
A/V for criminal trials, television
news, and so forth, how will you know
whether a “clip” is real or the product
of some depraved hacker’s sense of
humor? If I “grab” some A/V off the
airwaves and put it on a disk without

ROM Borland or Microsoft C
Complete 80x86 ROM development kit!

Place your Microsoft or Borland C code in to ROM with
the C_thru_ROM complete ROM development kit.

Whether you use Borland C or Microsoft C to develop for
ROM, C_thru ROM will help speed your projects to
completion This complete ROM development package is the
only product that gives you all the tools you need for easy
development of 80x86 ROM code on your PC. C_thru_ROM
includes: ROMable startup code; floating point support; a
ROMable library that includes printf, malloc,  free, etc.; and a
full 80x86 locator that outputs binary, Intel OMF, and hex
formats. You can debug with your Turbo debugger or use
Datalight’s remote debugger. Either debugger will work
through an available UART or ROM socket UARTs.  This
comprehensive ROM development package is available for
only $495. Call, write or fax today for your free demo disk
and full details about C thru ROM.- -

Free Demo Disk! Call Today Toll-Free l-800-221-6630

The Computer Applications Journal Issue W27  June/July, 1992 8 9



the expressed written permission of
the owner, will I get a visit from the
intellectual property police?

I don’t know the answers, but
we’ll find out soon because in my
opinion the first “viable” multimedia
product is now available. And the
winner is.. . Apple and QuickTime.

The day job hearkens, so I can’t do
it justice. All I’ll say is that the
Macintosh, and QuickTime,  is way
ahead of everyone else. Consider the
following:

news is that it is a little pokey,
meaning the video resolution and
frame rate is limited. The good news is
it runs on existing Mats (at least the
faster ones] without having to add any
new hardware. The important news is
that QuickTime  can “transparently”
adapt to evolution in the A/V compres-
sion arena [e.g., hardware motion JPEG
to MPEG to MPEG 2).

*QuickTime  “movies” are just
another data type to the Mac. Indeed,
my understanding is that existing Mac
application software already works
with QuickTime.  If your program can
cut and paste text or a PICT, it can
already cut and paste a movie.

*They’ve thought out a lot of the
details including a standard “player”
interface (i.e., play button, rewind
button, etc.) and compatibility with
the heathen masses (Windows users
will be able to at least play QuickTime
movies]. One contribution from the
no-doubt well-staffed Apple legal
department is that each “frame” has a
field for copyright info.

*The details of A/V compression aWatch the alliances with A/V
are handled in a BIOS-like manner leaders like Sony. I suspect a “MacTV”
“underneath” and decoupled from is right around the corner.
QuickTime.  For now, QuickTime Ironically, QuickTime  is the
relies on software compression of winner because, as Apple says, “It isn’t
various types; JPEG for still images multimedia,” that meaningless
and Apple proprietary schemes for gobbledygook of acronyms, “it’s
motion, animation, and audio. The bad Macintosh.” q

Tom Cantrell holds a B.S. and an
M.B.A. from UCLA. He owns and
operates Microfuture Inc., and has
been in Silicon Valley for ten years
working on chip, board, and system
design and marketing.

LSI Logic Corp.
155 1 McCarthy Blvd.
Milpitas, CA 95035
(408) 433-8000
Fax: (408) 434-6457

Philips/Signetics  Company
811 East Arques Ave.
Sunnyvale, CA 94088-3409
(8OOj227-1817

Analog Devices, Inc.
18 1 Ballardvale St.
Wilmington, MA 01887
(617) 937-1428
(617) 821-4273

422 Very Useful
423 Moderately Useful
424 Not Useful

High Performance
Multimegabyte Disk Emulators

NEW MODELS / LOWER PRICES
l Floppy Drive and multimegabyte

emulators for ISA bus computers
l 180K to 14 MB capacities
l EPROM, Flash or SRAM technologies
l Autobooting, Single or Dual disk

emulation under PC or MS DOS
l List prices from $195

CURTIS, INC.
418 W. Country Road D l St. Paul, MN 55112

6121631-9512  FAX 612/631-9508
PC DOS IS a trademark of IBM, MS DOS IS a trademark of Mwxcoft

tt7

R-IT
EPROM-tTEM

NEW
4-MEGABIT
VERSION

H Emulates up to 8
4-Megabit EPROMS with

n Accepts Intel Hex,
Motorola S-Record

one control card. and Binary files.
n Downloads 2-Megabit w Software available
programs in less than for IBM PC and
23 seconds. compatibles and
n Allows you to examine Macintosh systems.
and modify individual n Base 27256 EPROM
bytes or blocks. System $395.00 Other

configurations available.
ORDER TODAY--IT’S EASY

CALL OR FAX FOR MORE INFORMATION
Incredible Technologies, Inc.
(708) 437-2433
(708) 437-2473 Fax

VISA now accepted.

90 Issue 827 June/July, 1992 The Computer Applications Journal



Use a
Watchdog
to Keep John Dybowski

Your
Controller
in Line

xamining the
terminology of our

craft with some
attention to detail is at

times informative. Sometimes the
descriptive terms become common-
place and overused, obscuring their
true meaning. We all know about
embedded controllers but what does
this term really mean to us?

To embed means to deposit,
locate, implant, or enclose closely by a
surrounding mass. As designers, we
know that these definitions strike
close to the mark because our contriv-
ances are often concealed by the
mechanisms they are intended to
control or monitor. This description,
far from being merely a matter of
semantics, denotes the differentiating
factor between general-purpose
computing devices and dedicated
embedded controllers.

If we take this meaning to be
indicative of the types of environ-
ments that our embedded controllers
exist in, the need for reliable operation
becomes quite clear because should
these devices prove to be faulty,
accessing the malfunctioning control-
ler for repair can in of itself prove to be
a problem. Furthermore, many of the
applications themselves may be
critical in nature. Embedded control-
lers are commonly used in such
applications as access control systems,
automobile controllers, and controllers
for industrial machinery to name a
few. Imagine a malfunctioning access
controller that decides flinging all the
doors open is a good idea. Worse still,
what if a controller did not respond
properly in an emergency situation and
did not fling the doors open!

WATCHDOGGING
Most experienced engineers are

well aware that, even using dubious
design practices, one of anything can
be made to work on the lab bench.
This realm is in fact that of the
hobbyist and is the point farthest from
the actual operating environment of
commercial embedded controllers (As
is the projected quantity, hopefully!).

Even if the hardware and firmware
are well designed to begin with, the
problems associated with external
disturbances still have to be addressed.
Now I know this area is difficult to
assess because basically it involves
unknown elements that may be
unique to the prevailing conditions
present only in certain installations.
Although the causes vary, the result is
often the loss of the controlled
execution of software, which can send
the microcontroller into an indefinite
period of seemingly random operation
[the processor goes off the rails and
starts running off in the fuzz). This
situation is sometimes the result of
electrical transients induced by power
fluctuations (perhaps aggravated by a
deficient reset circuit), static dis-
charges, or electrical disturbances
caused by machinery or close lightning
strikes. A direct lightning strike will
make loss of software control look like
a walk in the park. All things are
relative, aren’t they?

This type of interruption of
normal operation can damage essential
data elements stored in nonvolatile
RAM, causing ongoing problems as
well. After having covered the topic of
coding for this eventuality in my last
article, I’ll not belabor this point any
further.

Ever since the first controllers
misbehaved, designers have been
contriving schemes to keep them in
line. Although many circuit imple-
mentations have been tried over the
years to resolve this problem, the idea
consistently used is based on the
principal of the retriggerable one-shot.

The premise behind this scheme is
a properly executing program will
strobe the watchdog at critical check
points so the time-out condition of the
one-shot is never reached during
normal program execution. Should this

92 Issue #27 June/July, 1992 The Computer Applications Journal



activity cease for the duration of the
time-out period, the watchdog insists
the processor reset and restarts the
system, effectively restoring controlled
software execution. In other words, as
long as the watchdog gets stroked
everything is OK, otherwise it hits the
processor with what amounts to a two
by four over the head, gaining atten-
tion by yanking the reset line. Crude
but effective. Yes folks, brute force has
its place in controller work.

For simple applications, pulsing
the watchdog from various points in
the mainline code may be accurate.
Alternatively, the pulse can be emitted
from a timer interrupt routine.
However, making the issuance of this
pulse contingent on the operation of
both a foreground and an interrupt-
driven process is much better. The
problem with the mainline approach is
that the program may be running the
foreground code just fine, but the
interrupts may have become inopera-
tive. On the other hand, the interrupts
may continue to execute long after the
foreground has fallen into a tight do-
nothing loop.

Most programs generally perform
certain functions on an intermittent
basis, usually timing them with a
timer interrupt as a time base. My
personal preference when implement-
ing these functions is to allow the
interrupt handlers to do as little
processing as possible. The approach I
usually take is to run an interrupt-
based idle timer that gets loaded in the
mainline code and is decremented by
the timer interrupt handler (counting
stops when the timer equals zero).
Often, I run the timer interrupt at 1
ms and use a reload value of 20 for the
idle timer. A solid 20-ms  time base
makes counting much longer delays
easier without imposing any additional
burden on the timer interrupt routine.

I make this adjustment by allocat-
ing the required number of timers and
nesting each in successively deeper
layers of the foreground process code.
A timer is reloaded every time it
expires, then the program falls
through, servicing the next lower layer
along with an associated timer. I use
this method to obtain very long delays
with a minimum amount of overhead.

Keyboard Scanning,
Switch Debouncing

f-lDecrement 1
Second Timer

Noncritical System
Housekeeping
Functions

Don’t Underflow the
Idle Timer, Mainline
Code  Will Reload

lniba~5” Reinitialize the
UART, Baud Timer,

Functions and Other SIO
Variables

Exit 1 ms
Interrupt

Valid SIO  Stan
Sentinel, Envelope
Characters, Address,
etc. Received

$ Perform Standard
St0 Communications
Operations

(Ti%i---)

Figure 1--Theapproach  f&en  hereis torvnaninlemrpl-basedidle  timerlhatgels  loaded in lhemainline  code and
is decremenfed by he timer infermpt handler (counting slops when the timer equa!s  zero).

The Computer Applications Journal Issue W27  June/July, 1992 9 3



Figure 1 illustrates how such code is
structured.

Being dependent on the proper
operation of the mainline application
program as well as the timer interrupt
handler, this arrangement provides just
the place to put the watchdog service
code. Of course, you still need to
provide the stimulus to the watchdog
if you leave the mainline for any
length of time, something that is
especially true when doing the usual
power-on diagnostics, such as the
PROM and RAM test. In this situa-
tion, the pulses can be issued directly
from the diagnostic routines because,
in some cases, they may take a long
time to execute. Another possible
scenario exists if the mainline is exited
during normal execution. Say I am to
accept a download from the host and I
elect to perform this function from a
dedicated piece of code. Here, I may
also use the idle timer to an advantage
not only as a reference for the watch-
dog, but also to provide accurate ticks
that can be used to count an abort
interval should the host drops off-line.

The principal of the system
watchdog can be extended to other
ancillary functions as well. One area
that can easily be protected using this
scheme is the SIO. However, the
feasibility of this usage does depend on
the type of communications the
system incorporates. Good results can
be obtained when using host-driven
protocols, especially polled protocols.
Again, the idea of the retriggerable
one-shot is employed where a timer is
decremented in the timer interrupt
routine. The SIO ISR reloads this timer
at some point sufficiently deep in the
protocol, ensuring that some intelli-
gible communications activity is being
detected. That the reload does not
occur merely on an SIO interrupt is
important because this condition
could occur while receiving nothing
but gibberish.

On expiration of the SIO watchdog
timer, the timer interrupt invokes the
SIO initialization routine that recon-
figures the UART, baud rate timer, and
so forth. This procedure could also be
extended to determine the appropriate

communications parameters, eliminat-
ing the need for manual configuration.
In this case, the SIO initialization
could be tried with different baud
settings, parities, and word lengths
each time until valid communications
were established.

WATCHDOG CIRCUITS
Many chip manufacturers have

recognized the need for a reliable
microprocessor watchdog, and many
ICs are now available that perform
these functions. The development of
reliable integrated watchdog circuits
relegates the homegrown techniques
consisting of counters, one-shots, and
discrete implementations to the realm
of relics. Being familiar with the
Dallas DS1232, I’d like to discuss this
part briefly.

The first problem addressed by the
DS1232 is that of providing a reliable
processor reset signal. (The DS1232
has both active-high and active-low
reset outputs.) This signal is produced
using a precision temperature-compen-
sated reference and comparator circuit

Easy to Use PC Software - ICON Based
Ultra Fast Performance - Mouse Driven
Complete With Advanced Editing Tools
Output to Printers, Plotters & Lasers

>CB  BOARD  DFSfGN

Full range of products available from entry level
through to auto routing.

ATIC CAPTURE
A family of products that feature modern graphical
user interface & an intelligent diagram editor.

R4 SYSTEMS Inc.
P.O.Box 451
West Hill, Ontario
Canada Ml E 4Y9
(416) 439-9302

Download DEMO from BBS at 416 289-4554 (2400/8/N/l)

Low Cost, Reliable, High Quality
ROM Emulation from the

Creators of PROMO~IS
l Emulation of up to 1 Mbit ROMs (4 Mbit-soon)

l Supports any ROM type (DIP or PLCC)
l Supports high speed ROMs

. Supports any word size up to 2048 bits wide
l Host software for DOS, Unix, Mac, VMS

l Battery backed memory
l Intelligent micro-controller based unit

. SMT CMOS layout for robustness
l Tiny size: 2.5” x 3.8” x 0.9”

l Unbelievably low price!

ROMboy...
from the authority in firmware development tools

Orders: (614)471-l 113 Grammar
West:  (415)750-0219
F A X :  (614)475-6871

Engine
Inc.

issue t27 June/July, 1992 The Computer Applications Journal



Lkting 1-A wafchdog  can be wed  to keep a setid  porl  hum  losing ifs power-up  ccdgwabon.

:POWER  UP ENTRY

MOV

MOV
MOV
MOV
MOV

MOV

MOV
MOV
MOV

MOV

MOV

CALL
CALL

MOV
MOV
MOV
MOV
SETB

JMP
RESET_INT:

RETI

P0.#111111116
Pl.#llllllllB
P2.#11111111B
P3.#11111111B

IP.#OOOOOOOOB

PCON.%OOOOOOOOB
TCON.b00000000B
TMOD.#00100001B

Psw.#oooooooo

SP.#7

RESET_INT
RESET_INT

SCON.#01010000B
A,#OFDH
TH1.A
TL1.A
TRl

MAIN

:DISABLE  ALL INTERRUPTS

:SET PORTS TO IDLE STATE

:SET INTERRUPT PRIORITY

;NORMAL  POWER, NORMAL BAUD RATE
:TIMERS  OFF
;TIMER  0: NONGATED MODE 1
:TIMER  1: NONGATED MODE 2

:SELECT  REGISTER BANK 0

:SETUP  SYSTEM STACK

;REARM  INTERRUPT PRIORITY LOGIC

;SET UART TO 8 BITS, RECEIVE ON
:9600 BAUD

;LOAD TIMER REGISTERS
:BAUD TIMER ON

that monitors the status of the Vcc.
When an out-of-tolerance condition
occurs (which may be set at 4.5 volts
or 4.75 volts), reset is forced to its
active state. When Vcc returns to an
in-tolerance condition, reset is kept
active for 250 ms to allow the power
supply and processor to stabilize. This
status remedies the problems associ-
ated with brownouts and power dips in
which simple RC circuits just don’t
work. [The DS1232  also provides for a
push-button reset.)

The main capability of the
DS1232 is the function of a watchdog
timer. This usage is established using
an internal timer (which requires no
external components) that forces the
reset to an active state if the strobe
input does not see an active-low
transition prior to time-out. This time-
out interval can be set to 150 ms, 600
ms, or 1.2 seconds.

Unlike a regular one-shot that
needs an initial pulse to start up, the
DS1232 watchdog operates as a free-
running timer that will continuously

reset the processor in the absence of
strobe pulses. On expiration of the
watchdog timer, the reset interval
begins and ensures a reset pulse of
adequate duration before the watchdog
timer starts free-wheeling again.

SOFTWARE RESET CODE
The power-up code is the part of

the program that gets control immedi-
ately following the processor’s emer-
gence from reset. Mundane and
somewhat tedious functions related to
system initialization are performed
here, configuring the processor and
peripherals for subsequent operation.
Microprocessors and particularly
microcontrollers, especially those that
integrate many peripheral functions
on-chip, usually have a number of
parameters set to default conditions as
a result of a hardware reset. Often,
these defaults are just what will be
required, and the temptation is to
leave well enough alone and proceed
with setting up only those functions
that differ from their default settings.

This approach can cause problems
because if the code is entered by a
means other than from a hardware
reset, things may not be as you expect.
For example, using the power-on entry
point as a target for certain error
conditions that by their nature inhibit
further processing during normal
program execution is not unreason-
able. Having reached an impasse and
being unable to resolve a system
conflict, the process code may simply
do a jump to reset with the intention
that the power-on sequence may be
able to sort out the mess and either
restart the system, issue a distress call
to the host computer, or take some
other corrective action. The reset point
may also be reached because of errant
program execution. Perhaps the
processor got lost and ran through
memory, wrapping around back to the
reset entry point. Finally, I have seen a
communications protocol that actually
defined an embedded reset command
as part of the protocol layer!

What all these possible problems
amount to is that assuming a set of
default conditions on entry into the
software reset sequence is not a good
idea. All system functions should be
defined explicitly in this piece of code.
Although simple in principal, this
approach requires some careful
thought. For example, say you are
forced to implement the screwy
protocol I described, where resetting
the system must be done directly from
the interrupt level. For the moment,
say this function will run on an 803 1
processor. Now, you may think that if
the power-on code sets all the regis-
ters, ports, and other processor
resources to the desired state, all will
be well. This assumption is not at all
the case and you end up instead with a
nonfunctioning system.

What may not be immediately
obvious is the SIO (and any lower
priority interrupts as well) will not be
functional following this maneuver.
What happens is the in-service bit for
the SIO interrupt level [which is only
cleared on the execution of a RETI
instruction) remains set, blocking any
interrupts of equal or lesser priority.
The bad news is the in-service bits are
buried in the innards of the 803 1 and

The Computer Applications Journal issue 127 June/July, 1992 95



cannot be manipulated directly. The
good news is there does exist a way to
work around this aspect. The problem
can be remedied by performing a call
to a dummy routine consisting of a
single RETI instruction, which has the
effect of clearing the lowest priority in-
service bit in effect at the time. (If no
in-service bits are set, no problems are
caused.) Do two such calls in sequence
and you’re covered if things really have
gotten botched. Of course few of us
would be so foolish as to jump volun-
tarily to reset from an interrupt level,
but the fact remains that such an
event could be the result of a system
anomaly.

CRASHPROOF CONTROLLERS
The watchdog circuits that I’ve

described up to this point are append-
ages that can be applied to general-
purpose processors and controllers to
enhance their reliability. The need for
such features is now becoming widely
recognized and these circuits have
appeared as integral components of
some of the newer processing elements
on the market. Therefore, a look at a
couple of these implementations to see
how they surpass the capabilities
attainable using the add-on approach is
instructive.

The Dallas DS5000 [and function-
ally equivalent DS2250) microcontrol-
lers have an apparent similarity to the
popular 8031 device. However, several
features have been added to help
ensure the orderly execution of the
application software in the face of
harsh electrical environments. Specifi-
cally, timed access control, a watchdog
timer, and a power-fail interrupt have
been built into these parts to help
provide control and recovery under
difficult operating conditions.

The timed access feature is used
to control access to the critical
configuration and control bits in the
DS5000 special function registers.
These protected bits, which include
the enable watchdog timer, the reset
watchdog timer, and stop mode, may
only be written through the execution
of a specific instruction sequence
involving the timed access register.

In order to modify any of the
protected bits, a pattern of two bytes

consisting of an AAh and 55h must be
written to the timed access register
within two cycles of each other. After
this sequence is performed, the
protected bits may be modified within
four cycles of the second write (the
55h). If either of these timing con-
straints are violated, then the timed
access is reset. The timed access
function can protect against the
possibility of inadvertent write
operations of a critical bit. Of course,
it cannot protect against the case of
inadvertently entering a loop that
contains the correct instruction steps,
but it does greatly reduce the chances
of unintentionally affecting these
system areas. This controlled access
means of affecting the watchdog
circuit emphasizes the need for
limiting the possibility of unintention-
ally affecting this critical system
function. When using an external
watchdog circuit, don’t tie the strobe
pin to an extra chip-select line that
you may have available. In such an
arrangement, an errantly executing
program can defeat the watchdog far
too easily by falling into a loop that
will inadvertently issue strobes to the
watchdog.

ing potential as a sophisticated
watchdog controller in a system
hosted by a more powerful controller.
Having decision-making capabilities,
the PIC can be used not only to detect
the master controller’s activity, but to
qualify this activity and make a
determination whether or not the
system master is operating in an
appropriate manner. If a problem
exists, the PIC can try restarting the
system using the proverbial two by
four. If that attempt fails to remedy
the situation, the master controller
can be switched out and a backup
system activated. This arrangement
would be epitomized in a system
running under the control of a compu-
tational power house with the aid of
the street smart PIC to keep it in line.
Or is it really running under control of
the PIC?

The DSSOOO also contains status
bits that indicate the cause of the
reset. These embedded bits, along with
user-defined indicators, may be
interrogated on power on to help sort
out the mess I alluded to earlier.

The bottom line remains the
same: Stuff Happens (putting it
delicately). This fact exists because of
the action of forces that we may not
fully appreciate, influenced by the
vagaries of the moment. Armed with
this knowledge, we shape our thinking
accordingly. As good engineers, we
trust nothing and craft our designs
conservatively and carefully. q

The PIC microcontrollers from
Microchip also have built-in watchdog
timer circuits. These small, low-cost
controllers serve best in relatively
simple applications. What’s interesting
here is the watchdog timer is free
running and uses an independent on-
chip RC oscillator. Not requiring any
external components, the watchdog
timer will run even if the CPU clock is
stopped (which could be the result of
executing a SLEEP instruction).
Furthermore, the PIC uses a Harvard
architecture that separates the pro-
gram and data areas, and the possibil-
ity of getting out of sync or executing
data as code does not exist because all
instructions are in one-word lengths.

Iohn Dybowski has been involved in
the design and manufacture of
hardware and software for industrial
data collection and communications
equipment.

Dallas Semiconductor Corp.
440 1 South Beltwood  Pkwy.
Dallas, TX 75244-3292
(214) 450-0448
Fax: (214) 450-0470

Microchip Technology, Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
(602) 963-7373
Fax: (602) 345-3390

With a capacity for intelligent 425 Very Useful
operation, a low cost, and presumed 426 Moderately Useful
reliability, the PIC presents an intrigu- 427 Not Useful

96 Issue #27 June/July, 1992 The Computer Applications Journal



The Circuit Cellar BBS
300/1200/2400  bps, 24 hours/7 days a week
(203) 871-1988-Four  incoming lines
Vernon, Connecticut

In this issue’s ConnecTime,  I’m going to wander away from comput-
ers slightly with one of the threads. We had a very informative
discussion involving photography, shutters, and strobe f/ashes I
thought you might find interesting. First, though, 1’11  start with a topic
many of us have encountered in the past af least once: choosing a
real-time clock for a microcontroller.

Msg#:49982
From: ROBERT SCHULTZ To: ALL USERS

Does anyone use or know of a product that will keep
time for a microcontroller? I need date and current time of
day; any date format will do. I have room in the design to
access it serially or via the bus. I have looked into Dallas
Semi’s products. Is there anything else?

Msg#:50012
From: AL DORMAN To: ROBERT SCHULTZ

Try the RTC 58321 by SaRonix,  (415) 856-6900, (800)
227-8974. I did figure out how to talk to the Dallas serial
chip a while ago; it should be posted here somewhere.

Msg#:50170
From: MICHAEL MILLARD To: ROBERT SCHULTZ

I just finished a project that needed a real-time clock
and I selected the National Semiconductor MM58274C.
This chip is pretty standard in a lot of the designs I have
seen over the years so it must work OK. I had very little
difficulty getting it up and running. It’s a 4-bit addressed
device so it was real easy to hang it off one of the project’s
many 8255 PPIs.

It’s also simple to back up the contents of the clock
RAM with a small 3V battery. There is some extra cir-
cuitry, however [a couple transistors and a diode or two).
The part uses a 32-kHz  crystal for a timebase. Not to
mention...everybody stocks them. They are here to stay!

Standby current is just 10 pA at 2.2 VOltsi  16-pin DIP or
20 pin PLCC. Same pinout  as National’s MM58 174A and
MM58274B.  You can get the part for anywhere from $2 to
$6 each.

National publishes a databook on these things: Na-
tional Semiconductor -Advanced Peripherals, Real Time
Clock Handbook. It is available from Digi-Key, phone (800)
DIGI-KEY,  part#  9129B.

Msg#:50096
From: ED NISLEY To: ROBERT SCHULTZ

The goofy little Oki MSM6242 works OK, but you
ought to leave room for a variable capacitor on the board
because the out-of-the-box accuracy isn’t too good. It’s a
bus-connected device with a four-bit interface...other than
remembering to start the fool thing the first time you
“talk” to it, there’s nothing tricky about making it play.

The C and assembler code I did for the thing back in
the Furnace Firmware project is still spinning around on the
BBS if that’s of any help.

Msg#:50217
From: FRANK KUECHMANN To: ED NISLEY

Er, Ed, isn’t the “out-of-the-box” accuracy of the 6242
clock chip essentially determined by the caps you use in the
oscillator rather than by the 6242 chip itself?

For accuracy (or lack thereof] you can truly and justifi-
ably pin on the manufacturer, there’s a pin-compatible
clock chip made by Epson with an on-board crystal. No way
to tune it even if you want to. Available in 10 PPM and 50
PPM max error versions. I think it has a 72421 part number.
Digi-Key has had ‘em in the recent past.

Msg#:50356
From: ED NISLEY To: FRANK KUECHMANN

Well, it’s crystal controlled, but the specs indicate that
“even so” you’re in the few tens-of-parts-per-million range.
It’s got a test mode that you can use to twiddle the thing to
the right value; methinks.

The basic accuracy should be a few seconds per month,
but the two I’ve used have been off by a -lot_  in a few
weeks without adjustments. One of these days I’ll have to
set one up and let it run for a few months while recording
the time once a day or so, then plot deviation versus time
and temperature and see what comes out. Might make for
an intersting article.. .

Msg#:60446
From: FRANK KUECHMANN To: ED NISLEY

I’d guess variations and inconsistencies in the 6242’s
timekeeping are more likely to be found in places other
than the clock chip itselk  Things like capacitors, board
layout, temperature variations, and so forth would seem

The Computer Applications Journal Issue W27  June/July, 1992 99



more important than the chip itself. I usually just use the
Epson 72421 with the on-board crystal and have had no
problems with erratic timekeeping.

Msg#:60474
From: ED NISLEY To: FRANK KUECHMANN

All my times are in “house temperature” environ-
ments, so [in principle) there shouldn’t be too much
thermal effect...and I don’t believe that either. Gad, one
more variable to explore.. . .

Msg#:60439
From: JEFF SUTHERLAND To: ED NISLEY

I’ve had a bit of experience with that Oki RTC chip in
8088 and 8031 circuits. It is VERY noise sensitive! Not
routing signals properly will cause that thing to gain time
like nobody’s business. Note that the crystal has to be
bypassed to Vcc, NOT ground. This will enhance noise
immunity. Keep data and address lines away from the
crystal, and if you’re laying out a PC board, run a heavy
ground trace all around the crystal parts. Run no signals
under the crystal area on the other side of the board or on
inner layers unless they’re on the other side of a ground
plane. With a variable cap (5-20  pF) in parallel with one of
the crystal bypass caps I’ve been able to get my thermostat
computer that runs my boiler to hold to within about 2
seconds/month. Since the chip only draws about 2 l.tA in
standby mode, it’s great for something that has to be battery
backed-up. It’ll run off a coin cell for a year or more easily.

While photography may have nothing to do with computers in the
strictest sense, the world of stop-motion photography deals with
sometimes sophisticated electronics and timings in the milliseconds
or even microseconds.

h+lsg#:50664
From: DAVID MACDONALD To: ALL USERS

I need a fast responding (presumably electromechanical]
camera shutter that can be placed in front of a single lens
reflex camera lens and that will fully open in 2 ms or less
following electronic triggering. Once open, several elec-
tronic flashes have to be fired, then the shutter has to close
(after being open for a maximum of l/60 sec.). The camera’s
own shutter would, of course, be open all the time.

Conventional camera shutters take 10 to 100 ms to
open. Since I will be relying entirely on artificial light, the
shutter need only be a disk that rotates away from the lens
and not a complicated multileaf device. It seems to me that

100 Issue W27 June/July, 1992 The Computer Applications Journal

electromagnetic devices such as solenoids are inherently
slow because of the time required to build the magnetic
field. Does anyone have any experience with or ideas about
this problem?

Msg#:60676
From: STEVE LANGER To: DAVID MACDONALD

There are things called Kerr cells, which are extremely
fast electrochemical shutters based on partial depolarization
of polarized light when it travels between electrostatically
charged electrodes in a nitrobenzene dielectric. Not difficult
to build, but can be had for some $$ already ready made.
They are faster than anything you described. Need a special
power supply and driving circuitry, though.

Msg#:60836
From: MIKE RAPP To: DAVID MACDONALD

I’ll make several suggestions, all of which circumvent
the need for a high-speed shutter.

1. Just lock the camera shutter open for the duration.
Your message states that your only light will be artificial
(the strobes?). If this is the case then the only image that
you’ll record is that produced by the strobes. You can have
the shutter open for seconds, minutes, or even hours in the
dark with no problem. This is how all those slick strobe
photos are taken: turn out the lights, open the shutter, drop
the marble toward the bowl of milk [or whatever), flash the
strobe at the proper time [either time delay or sound
activated), close the shutter. All this does assume you can
lock the shutter open; that’s what the “B” [bulb) setting is
for. Older cameras need a lockable cable release, newer
cameras can be controlled via an electric switch. You can
even do this sort of thing in less than total darkness by
combining a colored light source and a filter on the lense.
Stopping way down can help, as can slower film.

2. If you absolutely, positively (sounds like a UPS ad)
have to synchronize a shutter to a fast action then consider
triggering from an earlier event (with a possible delay). Say
you need to photograph a bullet passing by 50 ms after it
was fired. Let’s assume your shutter takes 16 ms to open.
Start a 34-ms delay at the time the gun is fired. At the end
of the delay you activate the shutter. Sixteen milliseconds
later the shutter is fully open-just as the bullet goes by.

3. Another common technique is to turn everything on
its head: have the camera control the experiment instead of
being controlled. The normal socket for flash cables (X
sync, I believe) gets its contacts closed at the exact time the
shutter reaches full open. If circumstances allow, just use
this to start the experiment and you’ll be sure of the shutter
being open in plenty of time.

If none of these ideas help then maybe you should tell
us a little more about what you’re trying to do. It may not



mTIME
get any better replies but I would sure like to know why the
above ideas wouldn’t work! :-)

Msg#:50857
From: DAVID MACDONALD To: MIKE RAPP

Thanks for your very interesting and detailed reply. I
will try to explain just what I’m up to, as I should have
done right from the beginning. I want to photograph insects
in flight. The general setup (indoors) will have an insect
such as a bee or a butterfly flying out of a flight tunnel
towards a light (its motivation) and the camera. Several
strobes (409s duration approx.) will freeze the wing
motion, which can exceed several hundred beats per second.

You are clearly very knowledgeable about photography,
so you’ll be well aware that at magnifications of 1:2 or l:l,
depth of field is very, very shallow. Couple that with an
insect moving in an erratic fashion and at perhaps 2-5 mm
per millisecond, and one has a challenging technical
problem. I know of one photograher (Stephen Dalton) who
overcame these difficulties and produced astounding
pictures of insects, birds and other creatures in motion. He
used an interrupted light beam to trigger the camera, and a
fast homemade shutter placed over the lens of the SLR
camera that could open fully l/450  second after being
triggered. All I know about his shutter is it used springs. I
have, unfortunately, been unable to access his design.

I can see that a complementary approach is to use
several light beam sensors to estimate the insect’s velocity
and predict when to fire the camera shutter. Nevertheless,
it still holds that the faster opening one can make the
shutter, the greater success rate one will have overall.

I’ve toyed a very little bit with a rotary solenoid and a
cheap DC milliammeter, reasoning that both have a rotary
action that would facilitate rotating a disk out from in front
of the camera lens. The solenoids seems to actuate in about
20 ms; doubling its rated voltage certainly helps its speed
considerably, but that is still far away from 2 milliseconds.
The meter (undamped I think) seems to be even slower.
Electromagnetic devices have always baffled me, so I don’t
really know how to proceed in this direction, or whether
indeed it might ultimately be fruitful.

Not only must the shutter open quickly, it must also
close rapidly so the total open time won’t exceed about l/60
second because there will be ambient artificial and perhaps
natural light that could impress an image on the film if the
shutter was held open any longer.

I will certainly welcome any and all suggestions.

Msg#:51130
From: MIKE RAPP To: DAVID MACDONALD

OK, I see your problem. I’m not yet ready to concede
that you need a super fast shutter, though. Here’s what I

would try: Set up a dark background. A sheet of black velvet
is what is most often recommended. Stop down as far as
you can-f16, at least, f22 or f32 is better if your lens can.
Choose a slow film-1 assume you want color so load up
some Kodachrome 25 (ASA  25 J. Believe me, you won’t have
problems with ambient light at any normal shutter speeds
indoors [heck, normal exposure for ASA  25 is l/30 at f16 in
bright sun!). I assume you have some way of detecting the
approaching insects (how else would you fire strobes at the
right time?). To me your biggest problem might be getting
nice, even lighting on your little subjects so you get
pleasing results. At close distances the angle between the
camera and the light source can become very great, which
results in severe cross lighting and shadows [that’s why the
Medical Nikkor lens has a circular strobe around the lens).

A few other thoughts: I’m not familiar with Dalton’s
work, but if he was working outside then he had different
requirements; bright sky is far from a dark background :-).
Second, be wary of any solutions that involve a moving slit
or slot. These are not compatible with strobes since you’ll
just get a stripe of image on the film. That is why focal
plane shutters have a maximum strobe flash speed [usually

1 MORE CKUIT CEllRR PAOJECTS!

The Circuit Cellar Pra’ect File, Volume 1 has over 200 pages
of new and expand4 hands-on projects and tutorials.
The Computer Applications Journal’s editors have chosen a dozen
of the top
pendent  su

roiects  from the Circuit Cellar Design Contest, inde
Lmissions, and top-response articles to make a book

with something for every interest!

now only $17.95! .(mcluder  domestic delivery*]

Order your copy today1
‘S17.%  m h4smxd,  cl&, Q Mmay  cxav (Is Fund a7&)
(MdLW&delivsrybC~acrMerim.WdOk~vcrym~ncrrU.S~~atsarJ

Tk Circuit  Cellar Proiecl  File. VMne I
4 Park Street, Vernon, CT 06066 l Tel:  (203) 8752199 l Fox: (203) 872-2204

The Computer Applications Journal Issue #27 June/July, 1992 101



l/60  or l/125). At higher speeds they are really a slot
moving from right to left across the film. Lastly, be pre-
pared to waste some (perhaps a lot] of film. It’s surprising
how much film the pros go thru sometimes to get just a
couple of good images (even when the subject is well lit and
stationary), I’m not arguing in favor of film waste; it’s just
that in this case film might be cheaper than a high-tech
shutter. You’re going to be wasting film anyway because of
the uncertainties in distance and lighting, no matter how
fast your shutter might be.

Msg#:51166
From: ED NISLEY To: MIKE RAPP

Speaking of film waste.. .
“If your photographs don’t look as good as those in

National Geographic, there is a reason. Each year when
National Geographic’s 18 staff, 10 contract, and 35
freelance photographers take to the field, they take their
pick from 900 cameras and 3000 lenses. They shoot 35,000
rolls of file a year or over 90,000 photographs per issue. And
these are professionals.”

From Illustrating Computer Documentation, William
Horton, ISBN O-471-53845-0, $32.95. A good book if you
-think_ you know how to write manuals and suchlike.. .

Msg#:51278
From: DAVID MACDONALD To: MIKE RAPP

Thanks for your further thoughts on the subject. I have
intended to use Kodachrome 25 at f16 and l/60 second.
Should I work outdoors on a sunny day, would I not be able
to eliminate the effect of ambient lighting by:

- using f22 with the flashes closer would then put the
ambient light two stops lower than the flashes

- realize another stop diminishment from lens exten-
sion (already designed into the flash energy)

- shade the subject from direct sunlight
- perhaps use polarizing or ND filters with the flashes

even closer (initially I have them being 1.5 ft. from the
subject). This could put the ambient light four or more
stops lower than that required for correct exposure.

Do you think an image due to that light would still
register on the film? I don’t have a good sense of the range
of light values on slide film, from shadow to highlight.

I love the excerpt provided by Ed on National Geo-
graphic photographers. Makes me feel better about getting
only 1 or 2 (or 0) satisfactory images on a roll!

Msg#:51611
From: JOHN MUCHOW To: MIKE RAPP

The focal plane shutters I’ve seen have the curtains run
from bottom to top. When the flash duration of the strobes
I’m using exceeds the full open time of the shutter (approx.

102 Issue  127 June/July, 1992 The Computer Applications Journal

1.5 milliseconds at l/250 sec. exposure], I get the image of
the second curtain across the bottom of my shot. Of course,
there are several brands of shutters and they might all run
in different directions. I know...1  know, nitpicking, we
photographers are like that! :-)

Msg#:51612
From: JOHN MUCHOW To: DAVID MACDONALD

Using the lens extension and the ND or polarizing filter
will reduce the light from the ambient source and your
flash at the same time, giving you the same ratio between
the sources, just at a lower light level. You have to get the
flash as bright as possible (which you’re doing by moving
them closer and blocking direct sunlight), preferably at least
4 stops. Be sure your background is also not bright (a lot of
nature guys use black velvet to help separate their subject,
insect and flower for example, from the background clutter).

Kodachrome is quite a contrasty film. A ratio of more
than 2 to 2-l/2  stops from highlight to shadow side of
subject will begin to wash out highlights or blacken out
your shadow detail. Ektachrome is a little more forgiving.
Negative film, ‘especially* Ektar 25, is very forgiving and
the detail is incredible! It doesn’t matter what film speed
you use, just close down as far as possible, use the highest
shutter speed that will sync to your flash, and reduce the
ambient light level as much as possible and you’ll be fine.

Msg#:51638
From: MIKE RAPP To: DAVID MACDONALD

Yes, anything you do to increase the ratio of controlled
(strobe) light to ambient will help. Again, even outside, I
would make every attempt to darken the background. At
your close focus distances most of the background will be
out of focus anyway. For a scientific study, a dark back-
ground is no problem. For “pretty” pictures you might
consider some creative darkroom work to combine fore-
ground subjects with separately shot backgrounds; it’s more
common than you may think!

Color slide film does not have as much range in light
values as black W white, but Kodachrome 25 is about as
good as you’ll get in this regard.

One or two good shots per roll may not be that bad.
One cost saving tip if you use commercial processing is to
have the lab just develop the film and not do any mounting.
You then just mount the few good shots. Nature photogra-
phy is always a test of patience. Throw in close focus, rapid
motion, and strobe sync and you have a severe challenge.

Msg#:51642
From: MIKE RAPP To: JOHN MUCHOW

In the old days (1970s) all 35mm focal plane shutters
traveled from right to left with one exception. The oddball



was the Nikkormat, which was the “economical” Nikon of
the day and used a vertical-moving bladed shutter that I
think was called a Copal  shutter if memory serves. The rest
used a horizontally moving curtain of rubberized fabric
except for the Nikon and Canon Fl which had titanium foil
curtains. I know today’s Nikon F4 uses a vertical shutter
and achieves l/8000  sec. shutter speeds. The rest of the
industry may well have moved in that direction also.
Perhaps some patents have expired. A vertical shutter
would seem to have the advantage of only having to move
2/3  as far.

The partial image that you are seeing in flash shots
faster than l/250 is not because the flash duration is too
long. Rather, it’s caused by the fact that at speeds faster
than l/250 [or whatever a given camera’s flash sync speed
is) the closing curtain has started in motion before the
opening curtain has reached full open. Since the signal is
sent to the strobe at the instant the opening curtain reaches
full open, you wind up with less than a full image. At
maximum shutter speed you may see only l/4 or less of the
image.

We invite you call the Circuit Cellar BBS and exchange
messages and files with other Circuit Cellar readers. It is
available 24 hours a day and may be reached at (203) 871-
1988. Set your modem for 8 data bits, 1 stop bit, no parity,
and 300,1200,  or 2400 bps.

Software for the articles in this and past issues of The
Computer Applications Journal may be downloaded from
the Circuit Cellar BBS free of charge. For those unable to
download files, the software is also available on one 360K
IBM PC-format disk for only $12.

To order Software on Disk, send check or money order
to: The Computer Applications Journal, Software On Disk,
P.O. Box 772, Vernon, CT 06066, or use your VISA or
Mastercard and call (203) 8752199. Be sure to specify the
issue number of each disk you order. Please add $3 for
shipping outside the U.S.

431 Very Useful 432 Moderately Useful 433 Not Useful

The Ciarcia
Design War
Does your big-company marketing

department come up with more ideas than

the engineering department can co

Are you a small company that can’t

afford a full-time engineering staff

for once-in-awhile designs?

Steve Ciarcia and the Ciarcia Design

Works staff may have the solution for you.

We have a team of accomplished programmers

and engineers ready to design products or solve

tricky engineering problems. Need an infrared

remote controller, multi-channel data logger,

or 74s  drill controller? The team has the talent

to design and manufacture itl

Whether you need an on-line solution for a unique

problem, a product for a startup venture, or just plain

experienced consulting, the Ciarcia Design Works

stands ready to work with you. Just send me a fax

discussing your problem and we’ll be in touch.

f?emember...a  Ciarcia design works!
Call (203) 875-2199  9 Fax (203)  872-2204

#221

IIITEGRRTE THE POWER OF
+ Editors + Cross Rssemblers + Disassemblers +
+ Cross Compilers + Data Conversion Utilities +

+ Simulators + Serial Communications +

- RRIIlRDILLO +rm
R Unique, Universal Development /

Communications Environment Supporting :
+ Rll families of cross-assemblers and compilers.
+ Communications with your target CPU.
+ User definable utilities menu.
+ Pull-down menus with mouse or keyboard control.
+ IBIII PC or compatible.

nom you can EDIT, ESSElDBLE.  UPLOBD.
DEBUG,and IDOBE, all from within  ODE, FBST.
ERSY-TO-USE mEnu  DBIVED EnvmonmEnT  I

$99.00 + $2.00 P/H
TO ORDER CRLL(804)479-3893

LIFE FORCE TECHDOLOGY
5477 RUTLEDGE ED.. Vfl. BEBCH.  Vfl. 23464

The Computer Applications Journal leaue #27 June/July, 1992 103



Making “Sense” of the World

t seems like the more I am able
to achieve in implementing the

Circuit Cellar Home Control System
(HCS II), the more tasks seem to present

themselves. I spent many years asserting the benefits of
distributed control and here I am ripping out all the
individual control systems I’ve installed in the last 8 years
and replacing each of them with a few lines of HCS code.

The reality is that the HCS’s  vastly expanded l/O
capacity and network capability allow it to make decisions
based on a global connection to the process rather than
just an isolated segment. A simple attic vent fan can be
transformed into a useful air conditioning system when the
HCS combines data on in/out differential temperatures,
time of day, and door and window openings into a
proportionally controlled temperature program. While
sensing all these parameters directly is within the capability
of a local controller, duplicating the process for more than
a few independent positions is hard to justify. Sensing all
parameters within one system and allocating the task to a
networked controller is a more sensible goal.

Of course, setting a goal doesn’t necessarily indicate
the cost or effort in achieving it. Some control goals can be
difficult. Let me explain.

had to work with minimal illumination at night but also had
to produce pictures in the brightest sunlight or with
headlights aimed at it without being destroyed at the same
time. I finally concluded that capturing just the license plate
would have to do. A fixed-iris, low-light-level CCD camera
coupled with appropriate illumination at night (a 250-watt
spotlight flashed on the back of the car) produced a decent
picture.

I have a friend who is a police officer. As I was
showing him the driveway video camera and recording
system, he chuckled sheepishly.

‘I don’t mean to diminish your achievement here,
Steve, but with the recruits I’m seeing these days, you
won’t help arrest any perpetrators unless you have a
picture of their license plate or of their face with their social
security number tattooed across their forehead.”

Aha,  a goal! Snapping a picture of a driver or license
plate didn’t appear to be a difficult task. After all, I had a
powerful HCS to coordinate the action. All I needed was a
few sensors and other stuff.

Unfortunately, taking a picture of a moving car is not
as easy as it sounds. (Did I ever tell you about the jerk in
the VW Bus who came down my driveway at 60 MPH
[claimed he thought he was still on the highway], drove
over a cliff, and ended up with his car hanging in the
trees?) To further complicate matters, the camera not only

OK, we have video, but have we accomplished the
goal when its out in the garage 150’ from the HCS?
Where exactly do we present this snapshot? Well, to make
a long story short, I did it both ways. Using a video digitizer
from a previous Circuit Cellar project, I grabbed the
camera output when the HCS sensed the interrupted IR
beam and sent it serially back to the house as RS-422
(remember RS-232 is only good for 50 feet) where it was
reconstructed as video and displayed on a monitor. At the
same time I ran the camera’s raw video, using the
appropriate long line amplification and compensation
electronics, to a monitor next to the other unit. Finally, to
actually record  the snapshot, I added a Sony hard copy
video printer that could  also be triggered by the HCS.
Experimentation would determine whether the live video or
digital frame grab would be the better picture.

In either case, the whole control code in the HCS was
barely 20 lines to handle all the initialization, sensing, and
printing.

When my friend showed up again and reviewed my
achievement he was somewhat surprised by the efforts I
went through to achieve it. Perhaps that really is a failure in
the HCS. A system that is so easy to use promotes setting
far-fetched goals while neglecting the potential cost  of
achieving them. Of course, since I have the excuse of all
you Circuit Cellar INKreaders  when I do something, I can
call it entertainment. My friend had a few alternative choice
descriptions.

112 Issue  #27  June/July, 1992 The Computer Applications Journal


