MICRZSOFT.

Printad in the
585-3074-02 United Strles of Amaerica

w HEATH

MICRSSOFT.

Z-BASIC
(Z-DOS™)

MMMMM

w data HEATH
systems

NOTICE
This software is licensed (not sold). It is licensed to sublicensees, including end-users, without either
express or implied warranties of any kind on an “as is” basis.

The owner and distributors make no express or implied warranties to sublicensees, including end-
users, with regard to this software, including merchantability, fitness for any purpose or non-infringe-
ment of patents, copyrights or other proprietary rights of others. Neither of them shall have any
liability or responsibility to sublicensees, including end-users, for damages of any kind, including
special, indirect or consequential damages, arising out of or resulting from any program, services
or materials made available hereunder or the use of modification thereof.

This publication could contain technical inaccuracies or typographical errors. Changes are periodi-
cally made to the information herein; these changes will be incorporated in new editions of this
publication.

Technical consultation is available for any problems you encounter in verifying the proper operation
of this product. Sorry, but we are not able to evaluate or assist in the debugging of any programs
you may develop. For technical assistance, write:

Zenith Data Systems Corporation
Software Consultation

Hilltop Road

St. Joseph, Michigan 49085

orcall:

(616) 982-3884 Application Software/SoftStuff Products
(616) 982-3860 Operating Systems/Languages/Utilities

Consultation is available from 8:00 AM to 7:30 PM (Eastern Time Zone) on regular business days.

RESTRICTED RIGHTS LEGEND ,
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
. paragraph (b) (3) (B) of the Rights in Technical Data and Computer Software clause in DAR
7-104.9(a). Contractor/Manufacturer is Zenith Data Systems Corporation, of Hilltop Road, St.
Joseph, Michigan 49085.

Trademarks and Copyrights

Microsoft is a registered trademark of Microsoft Corporation.
The Microsoft logo is a trademark of Microsoft Corporation.
Z-DOS is a trademark of Zenith Data Systems Corporation.

Copyright© by Microsoft, 1982, all rights reserved.
Copyright© 1982 by Zenith Data Systems Corporation.

Essentlal Requirements for using Z-BASIC:

a. Distribution Media: One 5.25-inch soft-sectored 48-ipi disk

b. Machine Configuration (minimum): Z-100, 128K memory, one floppy disk drive, and CRT
c. Operating System: Z-DOS

d. Microcomputer Languages: Not applicable.

HEATH COMPANY
BENTON HARBOR, MICHIGAN 48022

ZENITH DATA SYSTEMS CORPORATION
ST. JOSEPH, MICHIGAN 49085

IMPORTANT

NOTE: Z-BASIC supports a number of commands (such as LOCATE,
CLS, SCREEN, and COLOR) that allow you to easily control features
of the video display. Some previous versions of BASIC have not supported
these commands, but instead used special terminal escape sequences.

When writing programs that require screen functions, use only the applica-
ble, documented Z-BASIC commands. Do not use either terminal escape
sequences or Z-BASIC editing commands (expressed as CHR$(n) func-
tions) because they can produce unpredictable and undesirable results
and they may not be supported in future releases of Z-BASIC.

v

CONTENTS

Part: PIEIACE & v v vttt e e e e e xii
Introduction Major Features of Z-BasiCc.ccovvrueennenns xiii
Chapter 1 General Information

Manual Organization 1.1

Physical Organization 1.1

Content Organization ivin... 1.2

Using the Z-BASIC Manual 1.3

General Overview of Languages 1.4

Interpreters e 1.6

Compilers ... e 1.7

The Program Development Process 1.8

Applications Programs i, 1.10

vi

CONTENTS
Chapter 2 Program Entry Partll:
Starting Z-BASIC with the Z-DOS Operating System 2.1 BASIC
Modes of Operationciiiiiiiinn.. 2.4 .
Direct Modeo, 25 Overview
indirect Mode 2.6
Character Set and Reserved Words 2.7
Character Set i, 2.7
Reserved Words 29
Line Format e 2.10
Files and File Naming 2.12
Control Characters, 217
Syntax Notation 2.18
Delimiters Used in Z-BASIC Printing 2.19
The Comma ...ttt e e 2.19
The Semicolon 2.20
Chapter 3 Editing Z-BASIC Programs
The Full Screen Editor it 3.1
The Edit Command 3.2
Inputting Z-BASIC Programs 3.2
Changing a Z-BASIC Program 34
Syntax Errors ...t e 3.4
Logical Line Definition and INPUT Statements.......... 3.5

The Full Screen Editor— Key Assignments 3.6

vii

CONTENTS

Chapter 4 Programming in Z-BASIC
Loading the BASIC Interpreter 41
Writing a BASIC Program i, 4.4
Running a BASIC Program 4.6
Debugging a BASIC Program 4.7
Saving a BASIC Programccciiiiiininn... 4.9
Loading a BASIC Program 410
Listing a BASIC Program to a Line Printer 4.11
Chapter 5 Arithmetic and String Operators
Variables 5.1
Variable Names for Numbers and for Character Strings . 5.1
Exceptions to Naming Variables 52
Common Uses for Variables 53
Declaring Variable Types 5.7
Array Variables i 5.12
Array Declarator 512
Array Subscript e 5.13
OPTION BASE Statement 5.13
Vertical Arraysc.iiiiiiiiiiiinnn.. 5.14
Multi-Dimensional Arrays 5.14
Matrix Manipulation 5.16
Scalar Multiplication 517
Transposition of a Matrix 5.17
Arithmetic Operators and Expressions 5.19
Arithmetic Operators 519
Relational Operators 5.27
Logical Operators, 5.32
Numeric Functional Operators 5.46
Numeric Constants and Precisions 5.48
Converting Numeric Precisions 5.51

String Expressions and Operators 5.54

viii

CONTENTS

Chapter 6 File Handling
File Manipulation and Management 6.1
File Manipulation Commands 6.1
Protected Files L. 6.3
File Management Statements 6.3
Sequential Data Files 6.5
Creating a Sequential Data File 6.7
Adding Data to a Sequential Data File 6.14
Random Access Files 6.16
Creating a Random File 6.18
Opening a File for Random Access 6.19
Structuring the Random Buffer into Fields 6.20
- Assigning Data to Fields and Writing

the Buffer tothe Disk 6.21
Getting Records Out of the File 6.24
Storage and Retrieval of Numeric Data 6.26
Chapter 7 Plotting Coordinates
The Video Screen i, 71
Screen Statements 7.3
SCREEN Function 7.5
Locating and Activating Pixels 7.7
PSET Statement 7.9
PRESET Statement 711
Changing the Cursor Position 712
CSRLIN and POS Function 7.14
Chapter 8 Advanced Color Graphics
Using Color Graphicsciiiiiiiinnnn... 8.1
The Video Board 8.1
The COLOR Statement 8.2
LINE, CIRCLE and PAINT Statements 8.5
The LINE Statement 8.5
The CIRCLE Statement 8.9
The PAINT Statement 8.12
GET, PUT, and DRAW Statements 8.14
The DRAW Statement 8.14
Movement Commands 8.15
GET and PUT Statements 8.22

Z-BASIC Summary Program 8.30

ix

CONTENTS
Chapter 9 Basic Language Summary
Commands it e e 9.1
Statements e 9.3
Data Type Definition Statements 9.3
Assignment and Allocation Statements 9.3
Control Statements, 9.4
Conditional Execution Statements 9.5
NON-I/O Statements, 9.5
I/O Statements i 9.6
Functions e 9.8
Arithmetic Functions 9.8
String Functions i i, 9.9
Special Functions 9.10
Variables i 9.11
Color and Graphic Statements 9.12
Partlll: Chapter 10 Alphabetical Reference Guide
Reference
Guide
PartlV: APPENDIX A: Error Messagesco..u.. A.1
Appendices, APPENDIX B: Converting Programs to Z-BASIC B.1
Glossar APPENDIX C: ASCII Character Codes and
y H-19 Graphic Symbol C.1
phic Symbols
and Index APPENDIX D: Mathematical Functions D.1
APPENDIX E: Assembly Language Subroutines E.1
APPENDIX F: Communications I/O F.1
GloSSary i e e GA1
Bibliography H.1

INdeX . .o X.1

CONTENTS

List of Tables

1.1: Comparison BASIC vs. Assembly 1.5
2.1: Imput and Output Devices 213
3.1: Full Screen Editor Key Values 3.7
5.1 Precision Declaration on Various Values 5.11
5.2: Array Storage Allocation 5.14
5.3: Multi-Dimensional Array Storage Allocation 5.15
5.4: Order of Precedence 5.20
5.5: Algebraic Expressions and Their BASIC Counterparts . 5.23
5.6: Relational Operators 5.27
5.7: Negative Meaning of Relational Operators 5.28
5.8: Negated Structure of Relational Operators 5.28
59: Truth Table 5.33
5.10: DeMorgan's Laws, 5.34
511: IMP Operator 5.36
5.12: Bit Pattern Equivalence 5.40
5.13: Numeric Functions 5.47
6.1: File Management Statements 6.3
6.2: Sequential File Statements and Functions 6.7
6.3: Creating a Sequential File — Program Steps 6.8
6.4: Random File Statements and Functions 6.17
6.5: Program Steps for Creating a Random File 6.18

Xi

CONTENTS

List of Figures

1.1: Program Development Process 1.9
3.1 Function Keysoiiiiiiiiiina.n. 3.10
3.2 Alphanumeric Keys i, 3.11
33 Keypad...........iiiii 3.11
34 SpecialKeysiiiiiiiiii 3.11
7.1 XY Coordinates of the Four-Corner Points 7.2
81 AnglesofaCircle 8.9

xii

PREFACE

BASIC is a high-level computer programming language specifically de-
signed for use by people with little programming experience, as well as ex-
perienced computer programmers. The name stands for Beginner's
All-purpose Symbolic Instruction Code. As you begin to write and modify
programs or develop your own software, you will appreciate BASIC's fea-
tures.

BASIC's program commands and statements use ordinary English words
such as PRINT, LIST, and EDIT. its numeric calculations resemble elemen-
tary algebraic operations. These familiar terms make BASIC easy to learn,
remember, and use.

As a high-level language, BASIC accomplishes many functions with just a
few program statement lines. BASIC is an interactive language, which per-
mits you to enter data and modify programs while they are being developed.

The BASIC interpreter translates your program into machine code that the
computer understands. The interpreter’s job includes analyzing your pro-
grams, checking for errors, and performing the functions you request. The
BASIC interpreter assists in debugging programs and often pinpoints errors
before the code is stored. The usability factor of BASIC has made it a very
popular microcomputer language.

There are many technical advantages of BASIC. It supports most printers
and disk peripherals. Although various versions and “dialects” of BASIC
exist, one version can usually be adapted to another. Additionally, BASIC
programs are virtually machine independent and will run on most computer
systems with few modifications.

The version of BASIC referenced in this manual is called Z-BASIC.
Z-BASIC has many more commands and features than previous versions
of BASIC. These new commands will assist you in your efforts to create use-
ful BASIC programs.

xiii

PREFACE

Major Features of Z-BASIC

Z-BASIC has many features that will assist you in creating useful pro-
grams. Here are some of the enhanced features provided in this version.

1.

Four variable types: Integer (+ 32767), String (up to 255 characters),
Single-Precision Floating Point (7 digits), Double-Precision Floating
Point (16 digits).

Trace facilities (TRON/TROFF) for easier debugging.

Error trapping using the ON ERROR GOTO statement.

PEEK and POKE functions to read from and write to any memory
location.

Automatic line number generation and renumbering, including auto-
matic changing of referenced line numbers.

Arrays with up to eight dimensions.

Boolean operators OR, AND, NOT, XOR, EQV, and IMP.

Formatted output using the complete PRINT USING facility, includ-
ing asterisk fill, floating dollar sign, scientific notation, trailing sign,

and comma insertion.

Direct access to the 256 1/0 ports with the INP and OUT functions.

Xiv

PREFACE

10.

11.

12.

13.

14.

15.

16.

17.

The Full Screen Editor and the extensive program editing facilities via
EDIT command and EDIT mode subcommands.

Assembly language subroutine calls (up to 10 per program) are sup-
ported.

IF/THEN/ELSE and nested IF/ THEN/ELSE constructs, and WHILE/
WEND and nested WHILE/WEND constructs.

Variable length random and sequential disk files with a complete set
of file manipulation statements: OPEN, CLOSE, GET, PUT, KILL, and
NAME.

Event trapping which allows a program to trap the occurrence of a
specific communication event by trapping a specific line number.

Advanced graphic techniques including; LINE, CIRCLE, GET, PUT,
and DRAW statements.

RS-232 support.

Time and Date setting and retrieval.

Page 1.1

- CHAPTER 1 GENERAL INFORMATION
Manual Organization
BRIEF
The content of this manual is organized into four convenient parts:
PART 1. Introduction
PART 2. BASIC Overview
PART 3. BASIC Reference Guide
PART 4. Appendices, Glossary and Index
The information throughout this manual is physically structured according
to the following format:
e Brief
® Details
e Checkpoint
® Application
Details
PHYSICAL ORGANIZATION
Briet Brief is a short description of the key points covered in the section. It is lo-
cated at the beginning of each section. Those of you who are experienced
users can use this section as a concise reminder of the options available,
and then continue reading only if you find it necessary for a clearer under-
standing or for specific information. The brief is also valuable to the beginner
touse as a preview of the upcoming information.
Detalis Details is an easy-to-follow explanation-of all the information covered in the

section. Step-by-step procedures, sample programs, comparisons, and
analogies may be present in this section. This information was specifically
developed with the new user in mind; but if you are experienced, this portion
of the text may clarify aconcept or refresh your memory.

Y

Page 1.2

GENERAL INFORMATION

fanual Crganization

Checkpoint is the vehicle used to test your comprehension of the material
presented. It may contain information on how to recover from an error that
may have occurred while you were implementing previous instructions or
it may contain a sample program you can input to illustrate how associated
commands are integrated. It can also be a summary of the preceding mate-
rial. Checkpoint is designed to summarize and “tie-up-the-loose-ends” and
to test your understanding.

Application is used when necessary to provide additional technical consid-
erations or to provide a practical application of the material. Generally, this
section will be a complex extension of what has been covered. This portion
is included with experienced users in mind. However, if you are a beginner,
you may find it useful if you are comfortable with your understanding of the
material.

CONTENT ORGANIZATION

Chapter 1, Page 1.4, gives an informational overview of languages. This
chapter discusses high level languages, interpreters, compilers, and the
program development process.

Chapter 2, Page 2.1, provides general information on entering BASIC pro-
grams. In this chapter, you will find information on how to start BASIC, the
modes of operation, the character set and reserved words, how a program
line is formed, control characters, delimiters, and notation used in BASIC.

Chapter 3, Page 3.1, provides all the information necessary to use the
BASIC full screen editor.

Chapter 4, Page 4.1, is an overview of programming in BASIC. This section
does not attempt to teach BASIC programming, but it does provide general
information for getting started.

Chapter 5, Page 5.1, is a thorough discussion of arithmetic and string
operators. In this chapter you will find information on variables, array vari-
ables, arithmetic operators and expressions, numeric constants and preci-
sions, converting numeric precisions, and finally, string expressions and
operators.

Chapter 6, Page 6.1, “File Handling”, discusses file management, sequen-
tial-access, and random access disk operations.

Checkpoint

Application

Page 1.3

GENERAL INFORMATION

o

nual Oraganization

Chapter 7, Page 7.1, discusses the graphic capabilities of Z-BASIC, the
video screen, and the plotting of coordinates.

Chapter 8, Page 8.1, provides detailed information on the advanced color
commands of Z-BASIC and how to use the color video display input and out-
putcommands.

Chapter 9, Page 9.1, lists each command, function, statement, and variable
according to its function within a program. Following that, in Chapter 10, is
the Alphabetical Reference Guide, where each Z-BASIC statement, com-
mand, function and variable is referenced in alphabetical order.

Following the Alphabetical Reference Guide are the Appendices, Glossary
and an Index. The Appendices provide specific information on the topics that
follow:

Error Messages

Converting Programs to Z-BASIC

ASCIi Character Codes and H-19 Graphic Symbols
Mathematical Functions

BASIC Assembly Language Subroutines
Communication I/O

For specific information pertaining to the operation and capabilities of the
Z-100 Desktop computer, refer to the Z-100 User's Manual. Aiso within the
Z-100 User’'s Manual is information relative to the care and handling of disks.

Additionally, there are programming concepts in the User's Manual with
which you may want to familiarize yourself before reading this manual.

For infomation pertaining to the operational characteristics of the Z-DOS™
operating system, refer to the Z-DOS documentation.

USING THE Z-BASIC MANUAL

Some features of Z-BASIC are new even to the most experienced user. To
help facilitate easy understanding, we have included many program exam-
ples. We suggest that you read the chapters, study the examples and then
input them on your computer to watch the visual effects. Then, if you feel
comfortable with your understanding, try modifying the programs. This way
you will be able to see and take full advantage of Z-BASIC’s capabilities.

®Z-DOS is a trademark of Zenith Data Systems Corporation.

Page 1.4

GENERAL INFORMATION

General Overview of Languages

BRIEF

Programming languages provide a means of communication between com-
puters and users.

The computer interprets symbols (binary code) in order to know what in-
structions to execute.

Languages interpret and/or compile English terms and mnemonic codes
into binary codes so the computer can understand and execute the instruc-
tions.

The program development process involves creating a BASIC source file,
debugging and executing the programs.

Details

The following section explains the need for languages, how they are used
in general, and what interpreters and compilers actually do.

Computer languages are available to provide clear, direct and efficient com-
munication between people and computers. As with human languages,
computer languages have their own dialect, grammar, and syntax. There
are hundreds of different computer languages and language dialects that
can be classified into three (sometimes overlapping) categories. They are:
machine language, assembly languages, and high-level languages.
Z-BASICis a high-level language.

The development of languages was spurred by programmers who wanted
to use previously written and debugged programs developed by others. This
was often very difficult because of differences in notation, levels of precision,
and differences in the way parts of programs were linked together. it became
necessary to develop a library of facilities and routines, as well as the capa-
bility of easily linking parts of programs together.

Additionally, there was a demand for the capability of writing programs in
a computer shorthand. Programmers wanted shorter and more natural nota-
tion, which was not available in machine language. Programmers wanted
a language which was more natural, and like English, that would make ex-
pressing ideas simpler and more concise.

Why
Languages
Exist

Page 1.5

GENERAL INFORMATION

Advantages
of Using
High-Level
Languages

In response to these demands, high-level languages were developed.
A programming language can be defined as the rules for combining a set
of symbols or symbolic expressions into meaningful communication be-
tween a person and a computer.

One advantage of using a high-level language is that you do not have to
know machine code to write a program. It is sometimes helpful to know
about such things as memory allocation, addresses, input and output ports,
and how numbers are represented internally, because this knowledge can
help you develop your programs more efficiently. However, it is not neces-
sary to understand all of these hardware concepts before you begin learning
a high-levellanguage.

Another advantage is that programs written in high-level languages are, for
the most part, machine independent. They have the potential to be trans-
ferred to another computer using the same language with little modification
ofthe code.

Most programmming languages have a problem-oriented notation that
makes them easier to learn than machine code. Problem oriented means
the statement of the problem in code is relatively close to the statement of
the problem in English or arithmetic terms. For example, IF A=B+C THEN
100 is much easier to understand than the equivalent equation written in as-
sembly language (see the comparison in Table 1.1). This factor makes cod-
ing and the understanding of written codes easier.

BASIC Statement vs Assembly Statement

IFA=B+CTHEN 100 PUSH PSW
MOV AB
ADD C
MOV B,A
POP PSW
CMP B
JZ L100

Table 1.1
A comparison between a BASIC Statementand
an equivalent assembly language statement

Page 1.6

GENERAL INFORMATION

P yn pupesl CSezmmizimuns ;at | normeniinemn e
Leneral verview of Languages

& ko R

A microprocessor can execute only its own machine instructions; it cannot
execute BASIC statements directly. Therefore, before a program can be
executed, some type of translation must occur from the statements con-
tained in your BASIC program to the machine language of your micropro-
cessor. Compilers and interpreters are two types of programs that perform
this translation. This manual is the documentation for the Z-BASIC interpre-
ter; however, the following discussion explains the difference between these
two translation schemes, and explains why and when you would want to use
the compiler.

INTERPRETERS

Generally, an interpreter translates your BASIC program line by line during
program execution. To execute a BASIC statement, the interpreter must
analyze the statement, check for errors, and then perform the BASIC func-
tion requested.

If a statement is executed repeatedly, this interpretive process is repeated
each time the statementis executed.

During interpretation, BASIC programs are stored as a list of numbered
lines. Each line is not available as an absolute memory address. Therefore,
branch commands such as GOTO and GOSUB cause the interpreter to
search for line numbers.

Additionally, the interpreter maintains a list of all variables. When a BASIC
statement refers to a variable, the interpreter searches this list of variables
to find the referenced variable. (Absolute memory addresses are not usually
associated with the variables in interpreted programs.)

Interpreters
and
Compliers

page 1.7

GENERAL INFORMATION

COMPILERS

A compiler translates a source program and creates a new file called an ob-
ject file. The object file contains code that can be read by the computer. All
translation takes place before run time; no transiation of your BASIC source
file occurs during the execution of your program. In addition, absolute mem-
ory addresses are associated with variables and with the targets of GOTO
and GOSUB commands, so that lists of variables or of line numbers do not
have to be searched during execution of your program.

Note also that a compiler can be an optimizing compiler. Optimization is a
process by which a program is continually adjusted to achieve the best ob-
tainable set of operating conditions. Optimizations such as expression re-or-
dering and sub-expression elimination are made to either increase the
speed of execution or to decrease the size of your program.

It is important to remember that you do not need a compiler to develop or
execute BASIC programs. It is defined here so you will know the function
it serves whenitis used and its relationship to the interpreter.

Page 1.8

GENERAL INFORMATION

THE PROGRAMDEVELOPMENT PROCESS

- This discussion of the program development process is keyed to Figure 1.1
which is a flowchart that illustrates the process. You may find it useful to refer
to the Figure when reading this text.

1.

Program development begins with the creation of a BASIC
source file. The best way to create a BASIC source file is with
the editing facilities of BASIC, although you can use any gen-
eral purpose text editor.

Once you have written a program, you can use BASIC to debug
the program by running it to check for syntax and program logic
errors. In many instances the BASIC interpreter will “flag” errors
for you with an error message indicating the line number the
error is in and what type of error is present. However there are
instances when the only indication of an error is an unexpected
or undesired result. Correct the errors in your program and then
run the program again.

if your program is totally debugged you may wish to compile it.
If you intend to use a BASIC compiler, some additional steps
are required. Refer to a BASIC compiler manual for this infor-
mation.

page 1.9

GENERAL INFORMATION

&

3 § B . | R Y Ty
eneral Overview of Languages

The flow chart shown below illustrates the development process of a BASIC
program from the creation of the program with the BASIC interpreter through
the process of compilation.

WRITE BASIC

PROGRAM
WITH

INTERPRETER

\

RUN
PROGRAM
WITH
INTERPRETER

FINISHED
.BAS
PROGRAM

WISH TQ
COMPILE ?

Figure 1.1

The Program Development Process

Page 1.10

GENERAL INFORMATION

o
gty i By oo
il WY

y
of &
-

P 2 x
Lo BT 7 Gy, @ YTt N,
1518 givieew ol e

S

E
%

.

APPLICATION PROGRAMS

The final topic in the overview of languages is application programs. An ap-
plication program performs functions for the user directly. Unlike the previ-
ously discussed programs that compile, interpret, or in some way support
other programs, application programs actually perform the work you want
done.

Examples of what application programs can do include: prepare payrolls,
manage inventory, maintain and update records, and track purchasing. The
application program reads and processes data from the system software
and puts itinto an easily understood and accessible format.

Page 2.1

CHAPTER 2 | PROGRAM ENTRY
Starting Z-BASIC with the Z-DOS Operating System

BRIEF

Z-BASIC is loaded into memory by typing the command:
A: ZBASIC
The format of the Z-BASIC command line with options is:

ZBASIC [<filename>]
[/M:<highest memory location>]

Details

Z-BASIC is loaded and executed by typing ZBASIC in response to the
Z-DOS command line prompt: a:.

Afterloading, Z-BASIC responds with the following:

Z-BASIC rev. 1.0

[Z-DOS/MSDOS version]

Copyright 1982 (C). by Microsoft
Created: 20-AUG-82

xxxxx Bytes free

Ok

The oxmeans that Z-BASIC is ready to accept your commands.

The Z-BASIC operating environment may be altered by specifying options
following Z-BASIC on the command line. It is important to remember that
it is not necessary to specify these options to start using Z-BASIC. The for-
mat of the Z-BASIC command line with options is:

ZBASIC [<filename>]
[/M:<highest memory location>]

Page 2.2

PROGRAM ENTRY

If <filename> (the file name of a BASIC program) is present, BASIC
proceeds as if a RUN <filename> command were given after initialization
is complete. A default file extention of .BAS is assumed if none is given.
This allows BASIC programs to automatically run by putting this form of
the command line in a Z-DOS AUTOEXEC.BAT file. Programs run in this
manner will need to exit via the system in order to allow the next command
from the AUTOEXEC.BAT file to be executed.

There is no longer a need to specify the number of files, maximum record
size or maximum buffer size which were optional specifications in previous
versions of BASIC.

In Z-BASIC, disk buffers are allocated dynamically, meaning, the length of
the allocated workspace is automatically determined by how much space
your program requires. Record lengths may range from 1 to 65535 bytes.
The maximum number of files that can be open at one time is 255 files.

The COM1: device buffer is fixed at 120 bytes.

Filename

Number of
Flies

Maximum
Record Size

Buffer size

Page 2.3

PROGRAM ENTRY

Starting Z-BASIC with the Z-DOS Operating System

Highest The /M:<highest memory location> switch sets the highest memory loca-

Memory tion that will be used by BASIC. BASIC will attempt to allocate 64K of mem-

Locatlon ory for the data and stack segments. If machine language subroutines are
to be used with BASIC Programs, use the /M: switch to reserve enough
memory for them.

NOTE: <highest memory location> may be specified in decimal, octal (pre-
ceded by &0), or hexadecimal (preceded by &H).

Examples:

A: ZBASIC PAYROLL Use all of memory, load and execute
PAYROLL.BAS.

A: ZBASIC /M:32768 Use the first 32K of memory.

Page 2.4

PROGRAM ENTRY

Modes of Operation

BRIEF

When BASIC is at the command level, you can use it in either the direct
mode or the indirect mode.

In the direct mode, statements and commands are executed immediately
and the results can be stored for later use. However, the instructions are not
saved.

When BASIC is in the direct mode, statements and commands are not pre-
cededby line numbers.

The direct mode is especially useful for routine mathematical calculations
that do not require a program or to test the use of commands that are un-
familiar to you.

The indirect mode is used for running BASIC programs.

In the indirect mode, program lines are preceded by line numbers and are
stored in memory.

Details

When BASIC is initialized, it displays the sign-on information discussed in
the previous section and then types the prompt ok. ok indicates BASIC is
at the command level and is ready to accept commands. At this point, you
can use BASIC in either the direct mode or the indirect mode.

Page 2.5

PROGRAM ENTRY

es of Operation

DIRECT MODE

The direct mode is useful for learning BASIC, debugging programs and for
using BASIC as a calculator for quick computations that do not require a
complete program.

Here are some examples of expressions written in the direct mode:

PRINT 4*8

PRINT -3/6

PRINT -2+5

PRINT (2-3)+(6.5%*9.2)

In the direct mode, also known as the immediate mode, BASIC statements
and commands are not preceded by line numbers. They are executed when
they are entered (whenthe RETURN key is pressed).

In the direct mode, results of arithmetic and logical operations may be dis-
played immediately or stored for later use, but the instructions themselves
are lost after execution.

Variables are changeable quantities that are represented by a symbol or
name. These variables can be assigned to specific values in the direct mode
asfollows:

LET A =1

LET B = 2

LET A = A+B
PRINT A

LET C = B

PRINT (A*B)+(B*C)
LET C = C+1

PRINT (A*C)+(B*C)

LET is an optional statement (also covered on Page 10.88) that allows
you to assign specific values to variables. These assignments stay in effect
as long as you are in the direct mode and can be subsequently used
in other expressions as shown in the example above.

Page 2.6

PROGRAM ENTRY

des of

In the first PRINT statement on the previous page, “PRINT A”, the value for
A is 3. Notice that the statement LET A=A+B means “add the present
values of A and B and assignthe sumto A.”

The second PRINT statement “PRINT (A*B)+(B*C)” equates to 10 be-
cause (3*2)+(2*2)=6+4=10.

The third PRINT statement in the example above equates to 15 because
(3"3)+(2*3)=9+6=15. Notice that the statement LET C=C+1 means, in
effect, “increase the stored valueof Cby 1.”

NOTE: Using RUN will set all variables to zero, including those that have
been previously set in the direct mode, and any variables from a previous
run. If you want to execute your program without clearing the variables, use
the GOTO statement in the direct mode.

INDIRECT MODE

The indirect mode is normally used for entering programs that will be run
more than once. Program lines are preceded by line numbers and are stored
in memory. The program stored in memory is executed when you enter the
RUN command. Here is an example of a BASIC program written in the indi-
rect mode.

10 LET A=2
20 LET B=3
30 PRINT A+B
RUN

5

Ok

You can think of the preceding example as a sequential program that is a
series of immediate mode statements in which each line has been prefaced
by a line number. Such statements are said to be in indirect mode because
the computer defers execution until a RUN command is entered, instead of
executing the program lines immediately.

Page 2.7

PROGRAM ENTRY

Character Set and Reserved Words

CHARACTER SET
BRIEF

The BASIC character set is comprised of alphabetic characters, numeric
characters, and special characters.

The alphabetic characters in BASIC can be either capital or lower-case let-
ters.

The numeric characters in BASIC are the digits zero through nine.

Reserved words are words that have a special meaning in BASIC including
BASIC commands, statements, functions, and operators.

They may notbe used as variable names.

In order for reserved words to be recognized by BASIC, they must be de-
limited by spaces or special characters as allowed by syntax.

Details

The following special characters are recognized by BASIC:

Character Name

Blank space

Semicolon

Equal sign or assignment symbol
Plus symbol

Minus symbol or dash

Asterisk or multiplication sign
Slash or division symbol

Up arrow or exponentiation symbol
Left parenthesis

Right parenthesis

o Percent

Number or pound sign

o F -

\OVF\ > ~

Page 2.8

PROGRAM ENTRY

A

ggwg%;g; §“,\,% {m AA E

Character

—_— .- O

®/ VA

mhv—f;—h—«|

DELET
ESC
TAB

LINEFEED
RETURN

Name

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period

Single quotation mark (apostrophe)
Double quotes

Colon

Ampersand

Question mark

Lessthan

Greater than

Backslash or integer division symbol
At-sign

Underscore

Leftbrace

Rightbrace

Deletes last character typed.
Escapes edit mode subcommands.
Moves print position to the next

tab stop. Tab stops are every

eight columns.

Moves to the next physical line.
Terminates inputof a line.

Page 2.9

RESERVED WORDS

3

All of the reserved words recognized by BASIC are listed below:

ABS
AND
ASC
ATN
AUTO
BEEP
BLOAD
BSAVE
CALL
CDBL
CHAIN
CHR$
CINT
CIRCLE
CLEAR
CLOSE
CLS
COLOR
COM
COMMON
CONT
COSs
CSNG
CSRLIN
CvD
Cvi
CVS
DATA
DATE

DATES
DEF
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
DIM
DRAW
EDIT
ELSE
END
EOF
EQV
ERASE
ERL
ERR
ERROR
EXP
FIELD
FILES
FIX
FNDOOOOOOK
FOR
FRE
GET
GOSUB
GOTO

HEX$
IF

IMP
INKEY$
INPUT
INPUTS
INPUT #
INP
INSTR
INT
KEY
KILL
LEFTS
LEN
LET
LINE
LIST
LLIST
LOAD
LOC
LOCATE
LOF
LOG
LPOS
LPRINT
LSET
MERGE
MID$

MKD$
MKi$
MKS$
MOD
NAME
NEW
NEXT
NOT
NULL
OCT$
ON
OPEN
OPTION
OR
ouT
PAINT
PEEK
POINT
POKE
POS
PRESET
PRINT
PRINT#
PSET
PUT
RANDOMIZE
READ
REM

RENUM
RESET
RESTORE
RESUME
RETURN
RIGHT$
RND
RSET
RUN
SAVE
SCREEN
SGN
SIN
SPACE$
SQR
STEP
STOP
STR$
STRING$
SWAP
SYSTEM
TAN
THEN
TIME
TIME$
TO
TROFF
TRON
USING

PROGRAM ENTRY

USR
VAL
VARPTR
WAIT
WEND
WHILE
WIDTH
WRITE
WRITE#
XOR

Page 2.10

PROGRAM ENTRY

Line Format

BRIEF

The line format of program lines in BASIC is:

nnnnn BASIC statement[:BASIC statement...]comment]RETURN
nnnnn indicates the line number which can be from one to five digits.

You may have more than one statement on a line, but each statement must
be separated by a colon.

You can add comments to the end of the line by using the ’ (single quote)
or :REM to separate the comment from the rest of the line. The single quote
does not require a preceding colon.

Details

To enter a program line into a BASIC program in the indirect mode, you must
first type a line number, which can be from one to five digits. Line numbers
are used to show the order in which the program lines are stored in memory
and also are used as reference points for branching and editing. Line num-
bers must be in the range from 0 to 65529. The line number is followed by
a BASIC statement, which can be a command, statement, function, or vari-
able. A statemnent is a meaningful expression or an instruction in a source
language. Each statementis followed by a RETURN.

Example:

Ok

10 FOR I=1 TO 10
20 PRINT I

30 NEXT I

RUN

EO©OJ30 0N NN

(=]

Line
Numbers

page 2.11

PROGRAM ENTRY

Statements

Multiple
Statements
onaline

Executable
and Non-executable
Statements

In the preceding example, 10, 20, and 30 are line numbers. Each line
number is followed by a BASIC statement that contains instructions for the
program. In this case line 20 is an instruction to print I, which is defined in
line 10 as the numbers between 1 and 10. In line 30, NEXT is part of the
format necessary when any FOR statement is used. See the Alphabetical
Reference Guide, Pages 10.53 — 10.56, for additional information on FOR
... NEXT statements. RUN is the command used to execute a program.

You can have more than one BASIC statement on a line, but each statement
must be separated from the last statement by a colon, except for the single
quote for a remark at the end of the line. The total number of characters in
the line must notexceed 255.

OK
10 FOR I=1 TO 10: PRINT I: NEXT I
RUN

A BASIC statement is either executable or non-executable. Executable
statements are program instructions that tell BASIC what to do during the
execution of a program. In the above example, PRINT | is an executable
statement. Non-executable statements do not cause any program action.

A remark statement or comment is an example of a non-executable state-
ment. A comment, which is indicated by a single quote (') or the keyword
REM, preceded by a colon, can be added to the end of any line. Comments
are used to help make the program readable by explaining what is going on
inthat line. For example:

10 PRINT “ENTER YOUR NAME"; ‘Ask user's Name
20 INPUT NAM$ ‘Get response from keyboard
30 PRINT "OK "NAM$ '‘Print response on display screen
RUN
ENTER YOUR NAME? JOHN DOE
OK JOHN DOE
Ok
Checkpoint

To test your understanding of line format, input the example on Page 2-10.
Note that the line numbers are followed by BASIC statements. After you
input lines 10, 20, and 30, type RUN. If the numbers 1-10 appear on your
screen, you have input the sample correctly. If you receive a syntax error,
check the sample again.

Page 2.12

PROGRAM ENTRY

Files and File Naming

BRIEF

A physical file is identified by its file specification, or filespec for short. The
filespecis a string expression which uses the following format:

device:filename.extension (e.g. A:Inventry.BAS)
The device name tells BASIC where to look for the file (which device —e.g.
disk drive). The device name consists of one to four characters, followed by

acolon ().

The filename tells BASIC which file you are looking for, and may be up to
eight characters long.

The extension usually identifies the file type and may be up to three charac-
terslong.

Details

A file is a collection of related information treated as a unit. Information is
stored in a file on a disk. In order to use the information, you must tell BASIC
where the information is and then open the file. Then you may use the file
for input and/or output.

The file is described by its file specification, or filespec, which is a string ex-
pression with the following format:

device:filename.extension

The device name tells BASIC where to look for the file. A device can be inter-
nal, such as an inboard disk drive in the Z-100, or it may be a peripheral de-
vice (a device that is connected to the computer and controlled by the com-
puter). It is through these devices that input to and output from your file is
possible. The specification of the device is optional. If the file you wish to
open is in the default (current) drive, it is not necessary to specify the device
name.

Files

Fliespec

Device Name

Page 2.13

PROGRAM ENTRY

The device name consists of one to four characters followed by a colon ().
The following device name chart tells what device you use for input and out-

put.

Device

KYBD:
SCRN:
LPTH{:

Keyboard.
Screen.
PRN

Communication Devices

COM1:

Storage Devices

Tmo oW

AUX

Disk Drive#1
Disk Drive#2
Disk Drive#3
Disk Drive#4
Disk Drive#5
Disk Drive#6

/O

Inputonly
Output only
Output only

Input and Output

input and Output
Input and Output
Input and Output
input and Output
Input and Output
Input and Output

Table 2.1

Input and Output Devices

Page 2.14

%3
e
Eor o
Y
@
i
#LY
L
,ng
i
L
%{V\\g
iE
S
i

FILENAME

The filename tells BASIC which file you are looking for. The filename may
consist of two parts, separated by a period (.) in the following format:

name.extension

The name is a character string that is from one to eight characters long. The
extension, which usually indicates the type of file, may be no more than three
characters long. If the extension is longer than three characters, the extra
characters are truncated. Truncation means dropping the extra letters so
that the filename will be in accordance with file naming conventions.

If you input a name that is longer than eight characters and the extension
is not included, BASIC inserts a period after the eighth character and uses
the extra characters (up to the third character) for the extension.

The characters that are recognized and acceptable to BASIC in name and
extension are:

AthroughZ
Othrough9
$

@

Examples of filenames allowed in BASIC are:

01JAN8B2.YR
JDL
PROGRAM3.416
JOY.BAS
@%$3@$$.213

Recognized
Characters

Page 2.15

Sequential
Files

TR 5
L BT g S
v R e b w0 RE ¥

TRV ¢

The following examples illustrate how BASIC truncates names and exten-
sions in accordance with file naming conventions when the names are too
long.

B23335RS3JUTEW will be B23335RS.3JU
DISKETTE.BACKUP willbe DISKETTE.BAC
@@WRONGWAY.BAS will cause an error message to be displayed

Checkpoint

In summary, a file is identified by its file specification, which is the device
followed by a filename. A device name can be one to four characters fol-
lowed by a colon and can be an input device, output device or both. A
filename must conform to Z-DOS filename conventions; namely, the name
must be from one to eight characters long and the extension can be no
longer than three characters. When a filename is entered that is too long,
BASIC will truncate that name if possible.

A default extension of .BAS is used on LOAD, SAVE, MERGE and RUN
<filename> commands if no “.” appears in the filename, and the filename
is less than nine characters long.

7

Large random files are supported. The maximum logical record number is
32767. If a record size of 256 bytes is specified, then files up to eight mega-
bytes canbe accessed.

To open a file, you should understand the differences between a random
file and a sequential file, which are summarized in the following paragraphs
and covered in detail in Chapter 6, Page 6.1, “File Handling”.

A BASIC program can create and access two types of disk data files: se-
quential files and random access files. In sequential files, the data that is
written onto the disk is stored one item after the other, in the same order
it is sent. It is then read back in the same order. Thus, there are limitations
in terms of speed and flexiblity because BASIC has to read through all the
data sequentially, whenever the file is accessed.

One advantage to using sequential files is that there are fewer program
steps involved in opening, reading, or writing a sequential file. Another ad-
vantage is, that generally, sequential files require less “overhead” space
than random files.

Page 2.16

PROGRAM ENTRY

&

Random files are stored on the disk in packed binary formats and accessed
in distinct units called records. Each record is numbered, thus allowing the
data to be accessed randomly. Because the data can be accessed any-
where on the disk, it is not necessary to read through all the information, as
with sequential files.

For further information on creating and accessing data files, see “File Han-
dling,” Chapter 6, Page 6.1.

Random
Files

Page 2.17

PROGRAM ENTRY

Control Characters

BRIEF

Format: CTRL {}

Control characters are keyboard entries that affect the performance of your
terminal and/or the output of the program being executed.

To execute any of the following control characters, you must hold down the
control (CTRL) key and press the appropriate letter.

Details
The following control characters are used by Z-BASIC:

CTRL-C Interrupts program execution and returns to the BASIC
command level.

CTRL-G Rings the bell at the terminal.

CTRL-H BACKSPACE. Ijeletes the last character typed.

CTRL-I TAB. Tab stops are every eight columns.

CTRL-J LINE FEED. Subsequent text starts on the next line with-
outenteringa RETURN.

CTRL-S Suspends program execution. Any key resumes program

execution aftera CTRL-S.

CTRL-U Deletes the line that is currently being typed.

Page 2.18

PROGRAM ENTRY

Syntax Notation

BRIEF

The following notation is used throughout this manual in descriptions of
command and statement syntax. The syntax diagrams in the Alphabetical
Reference Guide are labeled “Format”.

Details

[1 Square brackets indicate that the enclosed entry is optional.

< > Anglebrackets indicate user-entered data. When the angle brack-
ets enclose lower-case text, the user must type in an entry defined
by the text; for example, <filename>. When the angle brackets
enclose upper-case text, the user must press the key named by
the text; forexample, <CTRL>.

{} Braces indicate that the user has a choice between two or more
entries. At least one of the entries enclosed in braces must be cho-
sen unless the entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as many times as
needed or desired.

CAPS Capital letters indicate portions of the statements or commands
that mustbe entered, exactly as shown.

The stile indicates either/or. You must use the syntax on either the
right or left side of the stile, but not both.

All other punctuation, such as commas, colons, slash marks, and equal
signs must be entered exactly as shown.

Page 2.19

PROGRAM ENTRY

Printing
Tabular
Formatted
Data

Delimiters Used in Z-BASIC Printing

BRIEF

Delimiters separate items by marking their ends (limits). Many different de-
limiters are used at all levels of the computer system to mark the beginning
and ending of things and to separate items in a series.

The comma is used to print separate expressions in fixed evenly-spaced
locations on the line. The semicolon prints expressions in non-tabular for-
mat, placing the expressions at short, fixed distances without regard to how
they line up.

Details

Often the words delimiter and terminator are used interchangeably. In this
section, delimiter will be discussed in relation to printing/formatting tech-
niques. In other words, delimiters are used to separate two adjacent expres-
sions, whereas terminators, (discussed in Chapter 6), mark the end of items
of data, including certain conditions that terminate data.

THE COMMA

The comma is used in PRINT statements to separate expressions, and it
causes them to be printed at fixed, evenly-spaced locations along the line.
This is a very useful technique for printing out tabular data. It is also very
useful for printing out several variables with one PRINT statement.

Enter the following characters and observe the results:

A = 1111

B = 2222

C = 3333

D = 4444

Ok

PRINT A,B,C,D

1111 2222 3333 4444
Ok

PRINT -D,-C,-B,-A
—-4444 -3333 -2222 -1111
Ok

Page 2.20

PROGRAM ENTRY

oy §’“\ o4 2 [P ik # P ST %“‘*« b -
2 S iR B EwFaY . BT < W St P Y B8 2o ey ey iy
i §54§§§§§§§§§§§ RGO I Lo b §*§§i§§§§%

The exact behavior of the comma in a PRINT statement depends on the
structure of the output line. Each line of print is divided into a certain number
of print zones or fields. The Z-100 has five print zones with 14 characters
per field. Therefore if there are more than five values, they will be printed
on more thanone line.

As you can see from the example, on Page 2.19, the comma instructs the
interpreter to print the next number beginning at the left edge of the next print
field. The output is said to be left-justified within each field. It is important
to remember if the number is positive the plus sign is not printed. A blank
is printed in front of all positive numbers.

THE SEMICOLON

Items delimited by the semicolon are not printed in a tabular format (unless
they all happen to be the same length). Instead, the interpreter prints num-
bers separated by a semicolon a short, fixed space apart from one another,
without regard for how they line up with values above or below. This is valu-
able for getting the maximum number of output values on a line, as shown
by the following example:

PRINT 1;2;3:;4;5;6;7;8;9;10
1 2 3 4 5 6 7 8 9 10

Ok

versus

PRINT 1,2,3,4.5,6,7,8,9,10
1 2 3 4 5
6 7 8 9 10

Ok.

CHAPTER 3

Page 3.1

EDITING Z-BASIC PROGRAMS

Cursor

The Full Screen Editor

BRIEF

The Z-BASIC full screen editor makes it possible to edit program lines any-
where on the screen.

With the full screen editor, the EDIT command simply displays the line
specified and positions the cursor under the first digit of the line number.

Format: EDIT <line number>
EDIT.

The full screen editor recognizes special key combinations as well as
numeric and cursor movement key-pad keys. These keys allow moving the
cursor to a location on the screen, inserting characters, and deleting charac-
ters as described later in this chapter.

More than one BASIC statement may be placed on a line, but each state-
menton a line mustbe separated from the last statement by a colon.

A Z-BASIC program line always begins with a line number, ends with a
RETURN, and may contain amaximum of 250 characters.

Details

The time saving benefit of the full screen editor during program development
cannot be over-emphasized. We suggest you enter a sample program and
practice each edit command until it becomes second nature.

In the following discussion of edit commands, the term cursor refers to the
marker (it can be blinking, reverse video, a block, or an underline) that indi-
cates the current position on the screen.

The ability to edit anywhere on the screen makes it difficult to provide clear
examples of command usage in printed text. The best way to get a “feel”
for the editing process is to try editing a few lines while you study the edit
commands that follow.

Page 3.2

THE EDIT COMMAND

With the full screen editor, the EDIT command simply displays the line
specified and positions the cursor under the first digit of the line number. You
can then modify the line by using the keys described in this chapter.

The format of the EDIT command is:

EDIT <line number>
EDIT.

Line number is the program line number of a line existing in the program.
If there is no such line, an Undefined line number error message is dis-
played.

A period (.) placed after the EDIT command always gets the last line refer-
enced by an EDIT command, LIST command, or error message.

Remember, if you have just entered a line and wish to go back and edit it,
the command EDIT. will enter EDIT at the current line. The line number sym-
bol “.” always refers to the currentline.

INPUTTING Z-BASIC PROGRAMS

Any line of text you type while BASIC is in the direct mode will be processed
by the full screen editor. BASIC is always in direct mode after the prompt
Ok.

Any line of text you type that begins with a numeric character is considered
aprogram statement and will be processed in one of six ways:

1. A new line is added to the program. This occurs if the line number
is legal (range is 0 through 65529) and at least one non-blank
character follows the line number in the line.

Line number

Page 3.3

EDITING Z-BASIC PROGRAMS

creen Editor

2. An existing line is modified. This occurs if the line number
matches the line number of an existing line in the program. This
line is replaced with text of the newly entered line.

3. An existing line is deleted. This occurs if the line number
matches the line number of an existing line and the entered line
contains only a line number.

4. An erroris produced.

5. If you attempt to delete a non-existent line, an Undefined line
numbe r €rror message is displayed.

6. If program memory is exhausted, and a line is added to the pro-
gram, the error out of Memory is displayed and the line is not
added.

You may place more than one BASIC statement on a line, but, separate
each statementon a line from the last with a colon (:).

A BASIC program line always begins with a line number, ends with a
RETURN and may contain a maximum of 250 characters.

It is possible to extend a logical line over more than one physical full screen
by using the line feed key, (CTRL-J). Typing a line feed causes subsequent
text to start on the next full screen without entering a RETURN. When you
finally enter a RETURN, the entire logical line is passed to BASIC for storage
in the program.

Occasionally, BASIC may return to the direct mode with the cursor
positioned on a line containing a message issued by BASIC such as ok.
When this happens, BASIC automatically erases the line. If the line were
not erased and you typed a RETURN, the message would be given to
BASIC and a syntax Error would result. BASIC messages are internally
terminated by HEX ‘FF’ to distinguish them from user text. This, however,
is transparent to you.

Page 3.4

EDITING Z-BASIC PROGRAMS

g P T
; - - -
gt G DB M g
= Bt B Rl B R e e ¥

g

CHANGING A Z-BASIC PROGRAM

You can modify existing programs by displaying program lines on the screen
with the LIST statement. You should first list the range of lines to be edited,
(see the LIST statement in the Alphabetical Reference Guide). Then, posi-
tion the cursor on the line to be edited, modify the line using the keys de-
scribed in this chapter. Then type RETURN to store the modified line in the
program.

NOTE: A program line is not actually modified within the BASIC program
until RETURN is pressed. Therefore, when several lines need alteration, it
is sometimes easier to move around the screen making corrections to sev-
eral lines at once, and then, go back to the first line changed and press
RETURN at the beginning of each line. By doing so, you will store the mod-
ifiedline inthe program.

It is not necessary to move the cursor to the end of the logical line before
typing the RETURN. The full screen editor remembers where each logical
line ends and transfers the whole line even if the RETURN is typed at the
beginning of the line.

To truncate a line at the current cursor position, type CTRL-E, followed by
aRETURN.

SYNTAX ERRORS

When a syntax error is encountered during program execution, Z-BASIC au-
tomatically enters EDIT at the line that caused the error. For example:

10 A=28§12

RUN

Syntax error in 10

Ok

10 A=2$12
The full screen editor has displayed the line in error and positioned the cur-
sor under the digit 1. To correct this error you would move the cursor right
to the dollar sign ($) and change it to a caret *, followed by a RETURN.
The corrected line is now stored in the program.

In this example, storing the line in the program causes all variables to be
lost. If you wanted to examine the contents of some variable before making
the change, you would type CTRL-C to return to the direct mode. The vari-
ables would be preserved since no program line was changed, and after you
are satisfied, you can then edit the line and rerun the program.

Page 3.5

EDITING Z-BASIC PROGRAMS

LOGICAL LINE DEFINITION AND INPUT
STATEMENTS

In the direct mode, a logical line always consists of all of the characters on
each of the physical lines which make up the logical line. However, during
the execution of an INPUT or LINE INPUT statement, this definition is mod-
ified slightly in order to allow for “forms” input. The logical line is restricted
to characters actually typed or passed over by cursor movement.

I CHR and DELETE only move characters within the logical line. DELETE
will decrease the size of the logical line. | CHR increases the logical line ex-
cept when the characters moved will write over non-blank characters on the
end of the logical line.

Page 3.6

EDITING Z-BASIC PROGRAMS

The Full Screen Editor — Key Assignments

BRIEF

The full screen editor uses special keys and special key combinations to per-
form the following tasks: moving the cursor, inserting text, and deleting text.

The keys used to move the cursor to a location on the screen are:

Cursorup

Cursordown

Cursor left

Cursorright

HOME key

TAB key (with insert off)

The keys usedtoinserttextare:

I CHR (Insert Mode Toggle)
CTRL-R

The keys used to delete text are:
DELETE key

BACKSPACE key
CTRL-U (eraseline)

CTRL-E (erasetoendofline)
CTRL-L (clears the screen)
CTRL-Z (erase to end of page)
D CHR

Page 3.7

EDITING Z-BASIC PROGRAMS

The Full Screen Editor — Key Assignments

Details

The full screen editor recognizes the cursor movement keys located on the
numeric keypad, the back space key, the ESC key, in addition to special key
combinations for moving the cursor to a location on the screen, inserting
characters, or deleting characters. The keys and their values are found in
Table 3.1.

HEX DEC KEY Function
15 21 CTRL-U eraseline
05 05 CTRL-E erase EOL(end of line)
oC 12 CTRL-L erase page
1A 26 = CTRL-Z erase EOP(end of page)
0B 11 HOME position cursorin
upper left-hand corner
15 21 FO same as CTRL-U
1E 30 1 cursor-up
1F 31 l cursor-down
1C 28 - cursor-right
1D 29 -« cursor-left
12 18 I CHR enterinsert mode
7F 127 D CHR delete character
03 03 CTRL-C break
OE 14 CTRL-N moveto EOL
06 06 CTRL-F forward word
02 02 CTRL-B back word
12 18 CTRL-R sameas| CHR (insertcharacter)
7F 127 DELETE sameasD CHR (delete character)
17 23 CTRL-W delete word right of cursor
8 8 BACKSPACE deletes last character typed
TABLE 3.1

Full Screen Editor Key Values

Page 3.8

Moves the cursor to the upper left hand corner of the screen.

Clears the screen and positions the cursor in the upper left-hand corner of
the screen.

Up arrow. Moves the cursor up one line.
Down arrow. Moves the cursor one position down.

Left-pointing arrow. Moves the cursor one position left. When the cursor is
advanced beyond the left of the screen, it will be moved to the right side of
the screen on the preceding line. If it is on the top line, it will stop at the left
corner.

Right-pointing arrow. Moves the cursor one position right. When the cursor
is advanced beyond the right of the screen, it will be moved to the left side
of the screen on the next line down. If it is on the bottom line, it will stop at
the right corner.

Depressing the CTRL and F key moves the cursor right to the next word.
The next word is defined as the next character after an intervening blank
to the right of the cursorinthe set A..Zor0..9.

Depressing the CTRL and B keys moves the cursor left to the previous word.
The previous word is defined as the next character after an intervening blank
to the left of the cursorinthe setA..Zor0..9.

HOME

CTRL-L

CURSORUP

CURSORDOWN

CURSOR LEFT

CURSORRIGHT

CTRL-F

CTRL-B

Page 3.9

CTRL-N

CTRL-E

| CHR
or
CTRL-R

DELETE
or
D CHR

Depressing the CTRL and N key moves the cursor to the end of the logical
line. Characters typed from this position are appended to the line.

Depressing the CTRL and E key erases to the end of logical line from the
current cursor position. All physical screen lines are erased until the ter-
minating RETURN is found.

Togglesinsert mode. If Insert Mode is off, turns iton. If on, then turns it off.

When the insert mode is off, characters typed will replace existing charac-
tersontheline.

When the insert mode is on, characters following the cursor are moved to
the right as typed characters are inserted at the current cursor position. After
each keystroke, the cursor moves one position to the right. Line folding is
observed. As characters advance off the right side of the screen they are
inserted from the left on subsequentlines.

When the insert mode is off, depressing the TAB key moves the cursor over
characters until the next tab stop is reached. Tab stops occur every eight
character positions.

When the insert mode is on, depressing the TAB key causes blanks to be
inserted from the current cursor position to the next tab stop. Line folding
is also observed.

Deletes one character immediately to the right of the cursor for each key de-
pression. All characters to the right of the character deleted are moved one
position to the left to fill in the character deleted. If a logical line extends
beyond one physical line, characters on subsequent lines are moved left
one position to fill in the previous space. The character in the first column
of each subsequent line is moved up to the end of the preceding line.

Page 3.10

EDITING Z-BASIC PROGRAMS

BACK SPACE Causes the last character typed to be deleted, or deletes the character to
the left of the cursor. All characters to the right of the cursor are moved to
the left, one position. Subsequent characters and lines within the current
logical line are moved up as with the DELETE key.

FOor CTRL-U Whentyped anywhere inthe line, it erases the entire logical line.

CTRL-C Returns to the direct mode, without saving any changes that were made to
the current line being edited.

CTRL-W Deletes the next word.

CTRL-Z Erases to the end of the page.

The following figures illustrate the Z-100 keyboard. For more, detailed, infor-
mation on the keyboard, refer to the Z-100 User’s Manual.

DEL LINE
INS LINE

OELETE

0

\I
1
|
RS p— R S S TS 2y o'\ o
(53|33 3160 0 0 0 3
/ N N N N\ N N/ > \

L

FIGURE 3.1
Function Keys

Page 3.11

EDITING Z-BASIC PROGRAMS

S

H LR
y//, W//”

R Ry
N
N
N /

\
ORI T R T R R NN

Z

S o)
N A
K. K> S K
[| ,@\
<

N S S S S

DR TS TR oy

NN
ﬂ// N//M,U//////////.,,,/,?,,//,//r,///////////., ////////,/,/A
m%%wﬁ%%%%%%%z/%m

2,

%/

7

(4

N
N
SRR RN
R R T Y
Nmitnmanmmaneniy
A HF T T it AR TR N

7

7
D CHR DEL LINE
I CHR INS LINE
) AS
BACK
SPACE
7 <
> T\\
DELETE
Y < Z,
1
RETURN {
2
LINE
-
Q0 <
<
D CHR DEL LINE
1 CHR INS LINE
N N\

S

N
~
AY

02 £y
</
2N

}
]

i

+

S
7
S
% r\\

<
F12
S
S
//G
Bi
2 L

S
%S

N

S
’/:]:
Q
X
N
E]/\\@
K>
S
Y. 42
|
X2

~

<
\;
%
>
:E-—]
pa
@
L

N,
\:[
K.
\[
S

[~]
-]
0))
[o][]
—
[<][]

[

S 5 &

0 N

T
(/:\]\ b

g
%

s

Tﬂ
N, //
<
<
7S
e
*
8
N\ //

S
%
%
S
g%

[o][+]

N,
%
N
%

FIGURE 3.3
Keypad
D
I
[]
[+]

i
x|lfc]|[v

f——

<
A
< 7,

)

FIGURE 3.2
Alphanumeric Keys

2

7]
o]

K
,/
S
I:)
{
XS
%
N
p
N
S

2

l'

F

[w]
[s]

e

CTRL
r
SHIFT

CTRL

Fo

0

Canm
< 2
HELP TAB
z ¢
CAPS
LOCK

FIGURE 3.4

Speclal Keys

Page 4.1

CHAPTER 4 PROGRAMMING IN Z-BASIC
Loading the BASIC Interpreter

BRIEF

This section will tell you how to operate Z-BASIC and explain the unique fea-
tures of the Z-BASIC programming environment. No attempt will be made
to teach the subject of BASIC programming, but enough information will be
provided so that you should be able to gain some experience using the
Z-BASIC Interpreter.

Details

The Z-BASIC Interpreter, which must be loaded into your computer’'s mem-
ory before you can use it, is an absolute binary file. This means that
it is in a form that can be directly executed by your computer. Before
you can perform the procedures listed below, you must “boot up” your
computer. If you are unsure of how to do this, refer to your Z-DOS manual.

The Z-DOS filename used to reference the Z-BASIC interpreter is Z BASIC.
So, to load the Z-BASIC Interpreter into memory, type the following re-
sponse to the prompt from Z-DOS:

A: ZBASIC

(Do not type the A:, as this represents the prompt from Z-DOS. Remember
to terminate the line by pressing the RETURN key.)

This assumes that the file Z-BASIC resides on the current default drive. If
the file does not reside on the current default drive, type the drive name and
then the file name. For example, if A is the current default drive and the
Z-BASIC file resides on drive B, you would use the following command to
load Z-BASIC:

A: B:ZBASIC

Page 4.2

PROGRAMMING IN Z-BASIC

L

After BASIC is loaded into memory, a sign-on message will be displayed on
your screen. The amount of free memory, as well as the BASIC version
number, will also be displayed (see “Starting Z-BASIC” Page 2.1). Take
note of the amount of free memory, as this will no doubt be an important
issue if you wish to write large, complex programs.

When BASIC is loaded in the manner described above, it will make certain
assumptions about the operating environment. BASIC assumes that:

Workspace will be allocated dynamically
All available memory will be used,
The maximum number of files that can be open at one time is 255.

If <filename> (the file name of a BASIC program) is present, BASIC pro-
ceeds as if a RUN <filename> command were given after initialization is
complete. A default file extension of .BAS is assumed if none is given. This
allows BASIC programs to be batch run by putting this form of the command
linein aZ-DOS AUTOEXEC.BAT file. Programs run in this manner will need
to exit via the system in order to allow the next command from the
AUTOEXEC.BAT file to be executed.

You can also specify the highest memory location BASIC will use with the
/M: switch. In some cases it is desirable to set the amount of memory to allow
reserved space for assembly language subroutines. If the /M: switch is omit-
ted, all available memory will be used.

Filename

Page 4.3

N Z-BASIC

M} ter

NOTE: The highest memory location number can be either decimal, octal
(preceded by &O), or hexadecimal (preceded by &H).

Examples:
A:ZBASIC PAYROLL.BAS

Use allmemory load and execute PAYROLL.BAS
A:ZBASIC /M:32768

Use first 32K of memory.

After the BASIC Interpreter has been loaded into memory, a program may
be written.

Page 4.4

PROGRAMMING IN Z-BASIC

Writing a BASIC Program

A BASIC program is composed of lines of statements containing instructions
to BASIC. Each of these program lines begins with a line number (in the Indi-
rect Mode), followed by one or more BASIC program statements. These line
numbers indicate the sequence of statement execution, although this se-
quence may be changed by certain statements.

The format of a BASIC programine is:

line statement statement line
number keyword text terminator
100 LET X=X+1 RETURN
| |
(space) (space)

Every program line constructed in the Indirect Mode must begin with a line
number, which must be an integer within the range 0 — 65529. This BASIC
line number is a label that distinguishes one line from another within a pro-
gram. Thus, each line number in the program must be unique.

Each program line in a BASIC program is terminated witha RETURN.

Program
Line
Format

Page 4.5

AUTO
Command

PROGRAMMING IN Z-BASIC

When numbering program lines, you could use consecutive line numbers
like 1,2,3,4. For example:

1X=1
2Y =2
3 Z = X+Y
4 END

However, a useful practice is to write line numbers in increments of 10. This
method will allow you to insert additional statements later between existing
program lines.

10 X =1
20y = 2
30 Z = X+Y
40 END

Another useful practice is to let BASIC automatically generate line numbers
for you. This is accomplished with the AUTO command. The AUTO com-
mand tells BASIC to automatically generate line numbers. For example, if
you type AUTO 100,10, then BASIC will generate line numbers beginning
with line number 100 and incrementing each line by 10. Then all you need
to do is type the BASIC program line after the generated line number. For
more information on using the AUTO command, see the Alphabetic Listing
of Commands in the Reference Guide, Page 10.4 of this manual.

Page 4.6

PROGRAMMING IN Z-BASIC

Running a BASIC Program

After a BASIC program has been written, the next step is to execute the pro-
gram. This can be accomplished by the RUN command. The following com-
mand would tell BASIC to execute the program currently in memory:

RUN

Execution would begin at the lowest line number and continue with the next
lowest number line (unless the sequence of execution was altered with a
statement like the GOTO statement). The RUN command can also specify
the first line number to be executed. For example, the following command
would cause execution to begin with line number 100:

RUN 100

You can also use the RUN command to execute a BASIC program that is
currently residing on a disk file. For example, assume the file ALBUM.BAS
resides on the current default disk. The following command would be used
to execute ALBUM.BAS:

RUN“ALBUM”
Note that no drive specification or file name extension was included in the

file name string. In this case, the current default drive and the extension
.BAS are assumed.

Program
Execution

Page 4.7

PROGRAMMING IN Z-BASIC

Syntax
and
Logical
Errors

Debugging a BASIC Program

In some cases, a BASIC program will not execute as you expected. This is
usually the result of either a syntax error or a logic error. A syntax error is
much easier to detect because BASIC will not only detect syntax errors for
you, but will also point out the offending program line and invoke the Edit
Mode. A logic error is much harder to detect, but several error trapping state-
ments have been provided to make this an easier task.

When BASIC detects a syntax error, it will automatically enter Edit Mode at
the line that caused the error. The full screen editor will automatically list the
line which caused the syntax error and place the cursor at the beginning of
the program line. At this point you can use the full screen editor to correct
the error.

Syntax errors are usually a result of a misspelled keyword or an incorrectly
structured program line. Remember that BASIC requires all reserved words
to be delimited by a space. The easiest way to correct a syntax error is to
refer to the appropriate syntax diagram (format) in the reference guide.

Because of the interactive nature of BASIC, it is very convenient to debug
a BASIC program. Several statements have been provided to help you
debug a BASIC program. But your first step is to find out the nature of the
“bug”.

A program “bug” may cause the wrong values to be output, or it may cause
a program to branch to the wrong statement. The results of a calculation may
be wrong or incomprehensible. A program “bug” might cause an error con-
dition to be flagged. Often you must discover what the program is doing at
the time of an error before you can determine the problem.

Also keep in mind that, in most cases, itis a bug in your program that is caus-
ing a problem. Itis highly unlikely that the BASIC Interpreter is at fault.

Page 4.8

PROGRAMMING IN Z-BASIC

Once you have decided what the program is doing, you can take steps to
discover why it is not executing correctly. For example, assume that a pro-
gram is branching to a line number that is different from where you want it
to branch. The trace flag has been provided to trace the flow of a program.
To enable the trace, the TRON statement is used, and to disable the trace,
the TROFF statementis used.

The trace flag will print each line number as it is being executed. The line
number will be enclosed in square brackets ([]). It is best to generate a hard
copy listing of the program first so you can follow this listing while the trace
is running.

Another important technique you can use in debugging is to set breakpoints
in a program. You can use the STOP statement to temporarily terminate pro-
gram execution, and then enter commands to print the values of various var-
iables. You can also assign new values to these variables. Then you can
continue program execution with a CONT command or a Command Mode
GOTO.

Although you can print and change the values assigned to variables, you
must not change the BASIC program after you interrupt execution with a
STOP statement. If you do change the program, all the previously stored
variable values will be lost, and all open files will be closed.

Trace
Flag

Breakpoints

Page 4.9

PROGRAMMING IN Z-BASIC

Options
Available
For
Saving

Saving a BASIC Program

When you have completed a BASIC programming session, you will no doubt
want to save a copy of your most current program on the disk. This is accom-
plished with the SAVE command. The general format of the SAVE com-
mandis:

SAVE“<filename>"

The <file name> must be a valid Z-DOS file name. If no device specification
is given, the current default drive will be assumed. If no file name extension
is given, the default extension of .BAS will be assumed. For example, if you
wish to save a program called GAME.BAS, you could use the following com-
mand:

SAVE“C:GAME.BAS”

Note that this file will be written on drive C. The file name extension of. BAS
could have been omitted, and then it would have been supplied as the de-
fault. BASIC will usually save files in a compressed binary format. A program
can optionally be saved in ASCII format, but it will take more disk space to
store it this way. Saving a file in ASCII format will permit you to print the file
on a line printer and also permits you to use the compiler if you desire to
do so. To save a program in ASCII format, append an A to the end of the
file name string. For example:

SAVE“C:GAME”,A
This will save the file on drive C in ASCII format with a file name of
GAME.BAS. You can aiso save a program in a protected format so it can
not be listed or edited. Just append a P to the end of the file name string.
Forexample:

SAVE“C:GAME”,P

This file will be saved in an encoded binary format.

Warning: When this protected file is later run or (loaded), any attempt to
LIST or EDIT this program will fail.

Page 4.10

PROGRAMMING IN Z-BASIC

Loading a BASIC Program

When you begin a BASIC programming session, you may want to load a
program from the disk into memory. This is accomplished with the LOAD
command. The general form of the LOAD command is:

LOAD#<filename>"

For example, if you wanted to load the program PAYROLL.BAS, you could
use the command:

LOAD “PAYROLL"

Note that the file name extension was omitted. BASIC will assume a file
name extension of .BAS. Also note that the drive specification was omitted.
Inthis case, the current default drive will be assumed.

You may specify the file name using capitals or lower-case letters. The
BASIC interpreter will automatically convert the file name into capital letters.
This applies to all string constants or variables that contain file names.

Itis also possible to execute a program with the LOAD command. If you want
to do this, append an R (for RUN) to the end of the file name string. For ex-
ample:

LOAD “PAYROLL",R

This form of the LOAD command will load a program into memory and exe-
cute it as if a RUN command had been typed. All currently open files will
remain open for use by the program.

Page 4.11

PROGRAMMING IN Z-BASIC

Listing a BASIC Program to a Line Printer

At some point during your programming effort, you may want a hard copy
listing of a BASIC program. A BASIC program is listed to a hard copy device
in much the same manner as it is listed to a console device. Use the LLIST
command.

The general form of the LLIST command is:

LLIST

This will list the current program on the hard copy device. It is also possible
to specify the range of line numbers to be listed. For example, in order to
lista single line, you can use the command:

LLIST 100

This will list only the line number 100. A range of line numbers can also be
specified:

LLIST 100 - 500

This will list line numbers 100 through 500, inclusive. The LLIST command
will direct the output to the Z-DOS LST: device. This logical device can be
assigned to several different physical devices. Refer to your Z-DOS manual
for information about this process.

Checkpoint

In summary, the process of creating a BASIC program usually consists of
the following steps:

LOAD Z-BASIC

Enter program lines

Use RUN to execute the program
Debug the program

Save the program

List the program to the printer

o0nh~0N =

Torerunthe program at a later time, LOAD the program with the “R” option.

CHAPTER 5

Page 5.1

ARITHMETIC AND STRING OPERATORS

Varlable Names

Variables

BRIEF

Variables in BASIC are treated exactly as if they were the value that they
represent. Variable names may not be any of the reserved words (see the
liston Page 2.9). The names may be up to 40 characters.

Variables occur in two distinct types — numeric and string. String variable
names are distinguished by a dollar sign ($) written as the last character.
Numeric variables may be declared as: integers (2 bytes), distinguished by
a percent sign (%); single-precision (4 bytes), distinguished by an exclama-
tion point (!); or double-precision (8 bytes), distinguished by a number sign
(#).

Both numeric and string variables may be used to define arrays. The
maximum number of dimensions for a BASIC array is 255. The maximum
number of elements per dimension is 32766.

Details

VARIABLE NAMES FOR NUMBERS AND FOR
CHARACTER STRINGS

Numeric and string variables are names that are used for assigned values.
A numeric variable always has a number as its value and a string variable
always has a character or string of characters as its value. Variables are
treated by BASIC in much the same way that constants are treated (see
Page5.48).

Names that you use for variables may consist of letters, numbers, and deci-
mal points (or periods). In some instances, symbols that declare the type
of the variable may be used as the last character of the variable name.

Page 5.2

ARITHMETIC AND STRING OPERATORS

For example: “XA”, “BILLING”, “MARK1” and “QUAD12", are all valid
names.

The names may be of any length from one to 40 characters. If you enter a
variable name that is longer than 40 characters, a syntax error message will
OcCCur.

EXCEPTIONS TO NAMING VARIABLES

Variable names must begin with a letter. Invalid names would be:
“17PAGE”, “1STONE” and “12MONTH7DAY".

The names you give to variables may neot be any of the reserved words (see
“Reserved Words” on Page 2.9), but the}ames may contain imbedded re-
served words. For instance, consider the following two examples:

10 LOG = .000142 This would be reported as an error,
however,
10 ANALOG = .000142 This would be okay since “LOG” is

only a part of the variable name.

Likewise,

10 ON$ = “Light On" Would cause an error,
and

10 ONL$ = “LightOn" Would notcause anerror.

No variable name should begin with FN because commands beginning with
FN are assumed to be user-defined functions (See “DEF FN” on Page
10.33).

Varlable
Name Length

Numbers

Reserved Words

Page 5.3

ARITHMETIC AND STRING OPERATORS

Symbols

Processing
Varlables
with Different
Values

No variable name should end with the symbols that are set aside specifically
for the declaration of variable types unless that variable is intended to be
of that specific type (these types are covered in the section on “Declaring
Variable Types”on Page 5.7).

The symbols used for declaration of variable type may also be considered
reserved because they are used for specific results in the use of variables.
These symbols are:

% ! # $

COMMON USES FOR VARIABLES

Variables have many uses, but four of the most common uses are:

1. You want to process more than one value in the same manner.

2. You want to use the same value several times within the same pro-
gram.

3. You wantto reserve space.

4. You need to pass the values in one program to another program or
want to retrieve values from a disk.

Examples of each of these four uses might be:
1. If you were calculating gross profit for each month, you would use the

same formula, but the values would most likely change from month
to month. Consider this formula:

Monthly gross profit = monthly sales
— monthly cost of goods sold.

Page 5.4

ARITHMETIC AND STRING OPERATORS

You may want to use the variable name “Sales” as the monthly value
of total sales, “Cost” as the monthly cost of the goods that you sold,
and “Gross” as the result, which would be the value of your gross prof-
its. You could then shorten the formula to:

Gross = Sales — Cost

“COST”, “SALES” and “GROSS” are all considered numeric variables
(note that they do not have a dollar sign, “$”, as their last character).

You would then assign each month’s values to the variable names in
the formula. When you are using long or complicated formulas this as-
signment makes it very easy to process different values without rewrit-
ing the formula each time.

2. If you want to write a program that creates a form letter to send out Repetition
to your clients, you can use variables to make the letter seem per- ::" ;;’:;::"e
sonalized by repeating the name of the person that will receive the Locations
letter in several places. with the same

' Value

To do this, you may write the program so that it would insert your
client's name everywhere you wantitto appear in the letter. Your letter
might be similar to the letter on the next page.

Page 5.5

ARITHMETIC AND STRING OPERATORS

Yariables

Dear (client's name):

We have some very interesting and startling
news that we would like to pass on to you
(client's name), that we think you will be
interested in hearing.

We are having our annual sale and we are
offering special discount rates to our good
customers like you, (client's name)...

‘Well, (client's name) that sums it all up. We
hope to hear from you soon.

Sincerely,

P.S. Don't forget (client's name),
only ten more days.

You could let the variable “N$” (pronounced “N-string”) equal the value of
the client’s name in your program. Wherever “(client's name)” appears in the
above letter, you could tell the program to use the value of N$. N$ is a string
variable (as is designated by the ending dollar sign, “$”).

Using 3. If you were writing a program to solve for the area contained in various
;:ﬂa::es to circular shapes, you could set a variable equal to a value that was sev-
splie emen eral digits long. For example, you could allow the numeric variable “PI”

to have the value of 3.141592653589887
Pl = 3.141592653589887

The variable name “P1” is only two characters long. The value of PI
which is 3.141592653689887 when written in double-precision, con-
sists of 17 characters (counting the decimal). If the value of Pl was
needed in 20 separate places in your program, you would save ap-
proximately 440 characters by using a numeric variable.

Page 5.6

ARITHMETIC AND STRING OPERATORS

4, If you needed a program to keep track of the names and addresses
, . . Passing
of your clients, you could use set up a variable (such as N$ in example Values
2) for the clients’ names, a variable for their street addresses (perhaps
A$), variables for their cities (C$), states (S$), zipcodes (Z$), and a
variable for the clients’ phone numbers (P$).

When you have input all six of these client data for each client into

the computer, you could store the data on a disk without typing each

item of data again. The transfer of data from one location to another
or from one variable name to another name is sometimes referred to
as passing values.

An example of this process in English would be to tell the computer:
Start with the value of variable n set to (1), where n is a variable
that counts the number of times that the instructions have been
repeated. For each of my 96 clients do the following instructions.
Letthe variable N$ equal the value of my nth client’'s name

Let the variable A$ equal the value of my nth client’s street ad-
dress

Letthe variable C$ equal the value of my nth client’s city
Letthe variable S$ equal the value of my nth client’s state
Letthe variable Z$ equal the value of my nth client’s zipcode

Let the variable P$ equal the value of my nth client's phone
number

Write N$, A$, C$, S$, Z$ and P$ to disk
Increment nby 1 (add one to the value of variable n)
If nis equal to 97 then stop

If nis less than 97 then return to the top of this instruction list and
getthe new nthclient's data

Page 5.7

ARITHMETIC AND STRING OPERATORS

This example would reduce the actual handling of each of the items of data
by allowing you to use variables whose values you could change in each
pass. For instance, on each repetition, the variable N$ (and all of the other
variables) would be assigned a different value. Then the value that was as-
signed to N$ (along with the values for the other variables) would be written
to the disk in the order defined by the line “Write N$, A$, C$, S$, Z$ and
P$...”

The following is a sample program included to demonstrate how this pro-
gramwould appear when written in BASIC.

90 OPEN “DATAFILE" FOR OUTPUT AS #1
100 N=1

110 LINE INPUT “CLIENTS NAME: “;N$
120 LINE INPUT “ADDRESS: " ;A%

130 LINE INPUT “CITY: “;C$

140 LINE INPUT “STATE: "“;S$

150 LINE INPUT “ZIPCODE: “;Z$

160 LINE INPUT “PHONE: *;P$

170 WRITE #1,N$,6A$,.C%,S%,28,P8
180 N=N+1

190 IF N=97 THEN END

200 GOTO 110

DECLARING VARIABLE TYPES

You may assign a type to variable names by using a symbol at the end of
that name. When you make this assignment, you are said to be “declaring”
that variable’s type. There are two types of variables that have been men-
tioned so far: string and numeric. Numeric variables also may be declared
to be of a specific precision.

Page 5.8

ARITHMETIC AND STRING OPERATORS

Declare string variables by using a dollar sign ($) as the last character of
the variable name.

Example:

EXAMPLE$ = “This is a literal expression”

In the above example, “EXAMPLE” is the variable name, “$” declares that
the variable name is a string variable, and “This is a literal expression” is
the value that has been assigned the name “EXAMPLE$". The dollar sign
($) tells BASIC that the variable name will be used to represent a string lit-
eral.

Numeric variables’ names may be declared as integer, single or double-pre-
cision. This tells BASIC how precisely it should retain the value you have
assigned to a numeric variable name.

A computation is more precise and accurate when you are using a variable
declared as double-precision. However, there are many instances when it
is better to use less precision. Here are some of the reasons that less preci-
sion might be more desirable:

o Higher precision variables occupy more storage space. If
memory space or disk space is critical to an application but
high precision is not, it is wise to declare variables to have
less precision so that they do not take up as much room.

e Higher precision numbers take the computer more time to
manipulate in an arithmetic operation. If the speed of a pro-
gram that must do several calculations is critical but precision
is not, declaring variables to have less precision will allow the
program to runfaster.

Declaring
String
Variables

Declaring
Numeric
Variable
Precision

Page 5.9

ARITHMETIC AND STRING OPERATORS

Declaring

Integer
Variables

Variables

Declaring a variable type to be of a specific precision will round off the value
in a known manner if that value exceeds the limitations placed on it by the
precision that is declared. Certain applications you want to use may require
specific limitations to the numeric values that are used by equations. Declar-
ing a variable’s precision can ensure that a value will be within the specified
limitations. The limitations for each of the precision types are covered below.

Declare integer variables by using a percent sign (%) as the last character
ofthe variable name.

Example:

AZ = 2.736
would cause the value of A% tobe 3

€% = —99.341
would cause the value of C%to be —99

INTEGERY = .87654321
would cause the value of INTEGER%tobe 1

The declaration of a variable as an integer causes the variable’s value to
be rounded to the closest integer (whole number) if the value is not already
an integer. In the case of a value of one-half (.5), the value is rounded up
to the next higher integer. In the case of a negative one-half (- .5), the value
is rounded down to the next lower integer. Examples of this would be:

VALUEZ = 17.5
would cause the value of VALUE% to be 18

DECLINEYZ = —42.5
would cause the value of DECLINE®to be — 43

RATEZ = -.5
would cause the value of RATE% to be — 1

A variable that is declared as an integer may not be set to a value that ex-
ceeds the range of — 32768 to +32767, or BASIC will report an overflow.

Page 5.10

ARITHMETIC AND STRING OPERATORS

Declare single-precision variables by using an exclamation point (!) as the
last character of the variable name.

Q! = 9876543210.0123456789
would cause the value of Q! to be 9.876544E + 09

COUNT! = 123.456789
would cause the value of COUNT!to be 123.4568

CAR3! = —123456789
would cause the value of CAR3!to be — 1.234568E+08

A variable that is declared as single-precision that exceeds seven digits is
rounded to its closest value. Although the seventh digitis displayed, its accu-
racy is notdependable. See Pages 5.48-5.53

Declare double-precision variables by using a number sign (#) as the last
character of the variable name.

Example:

DEBIT# = 91283764518.28
would cause the value of DEBIT# to be 91283764518.28

WORTH# = 998877665544332211 .998877665544332211
would cause the value of WORTH# to be 9.988776655443322D+17

DECIMAL# =.01234567890123456789
would cause the value of DECIMAL# to be 1.234567890123457D — 02

A variable that is declared as double-precision that exceeds 16 digits is
rounded to its closest value. Limitations apply to double-precision variables
the same as they do to double-precision constants on Page 5.50.

On the next page, you will find a table that shows how the three precision
declarations affect given values.

Declaring
Single

Precision
Variables

Declaring
Double

Precision
Variables

Page 5.11

ARITHMETIC AND STRING OPERATORS

Variables

Declared Declared
Original Declared Single Double
Value Integer Precision Precision
1234567890987654321 Overflow 1.234568E+ 18 1.234567890987654D+ 18
—1234567890987654321 Overflow —1.234568E+18 —1.234567890987654D+18
9876543210.0123456789 Overflow 9.876544E+09 9876543210.012346
—9876543210.0123456789 Overflow —9.876544E+09 —9876543210.012346
1234567890.0987654321 Overflow 1.234568E+09 1234567890.098765
—1234567890.0987654321 Overflow —1.234568E+09 —1234567890.098765
987654.321 Overflow 987654.3 987654.321
—987654.321 Overflow —987654.3 —987654.321
32769 Overflow 32769 32769
—32769 Overflow —32769 — 32769
32768 Overflow 32768 32768
—32768 —~32768 — 32768 — 32768
987.654321 988 987.6543 987.654321
—987.654321 —988 —987.6543 —987.654321
299.5 300 299.5 299.5
—299.5 - 300 —299.5 —299.5
123.4567890987654321 123 123.4568 123.4567890987654
—~123.4567890987654321 ~123 -123.4568 —123.4567890987654
5 1 5 5
-5 -1 -5 -5
0987654321 0 9.876543E — 02 .0987654321
—.0987654321 0] —9.876543E - 02 —.0987654321

Table 5.1

Precision Declaration on Various Values

Page 5.12

ARITHMETIC AND STRING OPERATORS

Array Variables

BRIEF

An array is an ordered list of data items. It can be a one-dimensional vertical
array or atable of data items consisting of rows and columns.

These data items may be either string or numeric. Each one is referred to
as an element.

Several sample routines have been provided which can be used to manipu-
late arrays. These sample routines can be used to add, multiply, transpose,
and perform other useful operations on numeric arrays.

Details
ARRAY DECLARATOR

An array is an ordered list of data items that may be a one-dimensional verti-
cal list or a table of data items consisting of rows and columns. Before an
array is referenced, it should be “declared” by use of an array declarator.
The DIM statement is used to declare and establish the maximum number
of elements in an array. The general form of the DIM statement is:

DIM <name>[(<integer expression>}]
where:

<name>> is a valid BASIC symbolic name.

The <integer expression> is any valid integer expression which, when
evaluated, will be rounded to a positive integer value. This positive integer
value will then become the maximum number of elements associated with
that specific array name. The maximum number of dimensions is 255. The
maximum number of elements per dimension is 32766.

An array can also be declared without the use of the array declarator. When
BASIC encounters a subscripted variable that has not been defined with a
DIM statement, it will assume a maximum subscript of 10. Thus, an array
can be established without the use of the DIM statement.

DIM
Statement

Page 5.13

ARITHMETIC AND STRING OPERATORS

Subscript
Errors

Changing
the
Defaults

Duplicate
Definltion
Error

ARRAY SUBSCRIPT

Each element of an array is referenced by an array subscript appended to
the end of the array name. This array subscript is an integer expression
which references a unique element of the array. Consider the following ex-
amples:

A(1),D$(I,J K)
Ql(2)
Z#(55)

Any attempt to reference an array element with a subscript that is negative
willresultinan I1legal Function Call error message. References to sub-
scripts which are larger than the maximum value established by a DIM state-
ment and references which contain too many or too few subscripts will gen-
eratea Subscript Out of Range errormessage.

OPTION BASE STATEMENT

The minimum subscript for an array element is assumed to be 0. The array
declarator A(10) actually establishes an 11-element array, A(0) —A(10). The
OPTION BASE statement can be used to establish the minimum array sub-
script value as 0 or 1. The default value is zero. The following example illus-
trates the use of the OPTION BASE statement.

OPTION BASE 1
DIM A (10)

This program segment will establish a 10-element array, A(1) — A(10). The
OPTION BASE statement must appear before any DIM statement or before
any subscripted variable is referenced. An attempt to use the OPTION
BASE statement after an array has already been established will result in
a Duplicate Definition error message . This same error message will
occur if you declare the same array later in the same program without eras-
ing the previous declaration of the array.

Page 5.14

ARITHMETIC AND STRING OPERATORS

VERTICAL ARRAYS

A vertical array is a 1-dimensional array. You can establish this type of array
by using the DIM statement or by letting BASIC establish the default array
size. Assuming that the default array size of 11 elements has been estab-
lished for the array A, Z-BASIC would allocate storage as follows:

Array element

Element #1
Element #2
Element #3
Element #4
Element #5
Element #6
Element #7
Element #8
Element #9
Element #10
Element #11

The variable A(9) would reference the tenth element of this vertical array.
(Although the OPTION BASE statement could be used to set the minimum
subscript to 1. In this case A(9) would reference the ninth element of the

array.)

MULTI-DIMENSIONAL ARRAYS

A multi-dimensional array is declared in the same manner as a vertical array,
except that both row and column size are declared. For example, to declare
a 3 x 3array, the following sequence of statements could be used:

OPTION BASE 1
DIM A(3,3)

Subscribed variable

Array Storage Allocation

A(0)
A(1)
A(2)
A(3)
A(4)
A(5)
A(6)
A(7)
A(8)
A(9)

A(10)

Storage
Allocation

Page 5.15

ARITHMETIC AND STRING OPERATORS

After this program segment is executed, BASIC would reserve nine storage
locations for the array. (Note that the minimum subscript value was set to
1 withthe OPTION BASE statement.)

Column 1 2 3
Row 1 A(1,1) A(1,2) A(1,3)
2 A(2,1) A@22) A(2)3)

3 A(3,1) A@B2) A(33)

Table 5.3

Mutti-Dimensional Array Storage Allocation

When you are reading from left to right, note that the second array subscript

varies most rapidly.
String String arrays can also be established in the same manner as numeric ar-
Arrays rays. A string array is declared when the DIM statement is used.
DIM A$(100)

This statement will establish a 101-element string array. To access an ele-
ment of the array, append an array subscriptto the end of the variable name.

A$(20)="A STRING ARRAY"

Page 5.16

ARITHMETIC AND STRING OPERATORS

MATRIX MANIPULATION

A collection of subroutines that are very useful for manipulating a matrix are
shown below. The subroutine line numbers in the following example may
have to be changed to be compatible with your program.

5000 ‘'SUBROUTINE NAME —— MATIN2

5010 'ENTRY I% = # OF ROWS, J% = # OF COLUMNS
5020 DIM MAT(I%,J%)

5030 FOR K% = 1 TO 1%

5040 PRINT "“INPUT ROW #" ;K%

5050 FOR LE = 1 TO J%

5060 INPUT MAT(K%,L%)

5070 NEXT L%,K%

5080 RETURN

The above subroutine will accept data from the terminal and assign this data
to the 2-dimensional array named MAT. Upon entry into this subroutine, the
integer variable 1% must contain the number of rows in the matrix and J%
must contain the number of columns.

5000 'SUBROUTINE NAME — MATIN3

5010 'ENTRY I = SIZE OF DIMENSION #1
5020 JZ = SIZE OF DIMENSION #2
5030 * KE = SIZE OF DIMENSION #3

5040 DIM MAT (I%.J%.K%)

5050 FOR L = 1 TO I%

5060 FOR M = 1 TO J%

5070 FOR N§ = 1 TO K%
5080 READ MAT(L%,M%,N%)

5090 NEXT N%,M%,L%

6000 RETURN

This subroutine listed above is used to read data from DATA statements and
assign this data to the 3-dimensional array named MAT. Upon entry into this
subroutine, the integer variable 1% must contain the number of elements for
dimension 1, J% must contain the number of elements for dimension 2, and
K% must contain the number of elements for dimension 3. Also, the data
must be contained in valid DATA statements.

Matrix
Input
Subroutines

Page 5.17

ARITHMETIC AND STRING OPERATORS

BE 5 e D B e
rray variaoies

SCALAR MULTIPLICATION

Multiplication 5000 'SUBROUTINE NAME —— MATSCALE

byasSingle 5010 ‘ENTRY 1% = SIZE OF DIMENSION #1

Variable 5020 * J% = SIZE OF DIMENSION #2
5030 K% = SIZE OF DIMENSION #3
5040 A—ORIGINAL ARRAY

5050 * X-——-SCALAR FACTOR
5060 ' B-—-NEW ARRAY
5070 FOR LE = 1 TO K%
5080 FOR MZ = 1 TO J%

5090 FOR NZ = 1 TO I%
6000 B(N%,M%Z,L%) = A(N%,M%,L%)*X
6010 NEXT N%

6020 NEXT M%
6030 NEXT L%
6040 RETURN

This subroutine will multiply each element in the 3-dimensional array A by
the value assigned to X and produce a new 3-dimensional array B. Upon
entry into this subroutine, 1% must contain the size of dimension #1,J% must
contain the size of dimension #2,K% must contain the size of dimension #3,
and X must be assigned the value to multiply by (scalar factor). Both arrays
A and B must also have previously been defined by a DIM statement.

TRANSPOSITION OF A MATRIX

5000 'SUBROUTINE NAME —— MATTRANS

5010 ‘ENTRY I% = # OF ROWS, J%Z = # OF COLUMNS
5020 ‘TRANSPOSE A INTO B

5030 FOR K% = 1 TO I%

5040 FOR LE = 1TOJ%

5050 B(L%,K%Z) = A(K%Z,L%)

5060 NEXT L%

5070 NEXT K%

5080 RETURN

This subroutine will transpose the 2-dimensional matrix A into the 2-dimen-
sional matrix B. Upon entry into the subroutine, 1% must contain the number
of rows in A and J% must contain the number of columns in A. The arrays
A and B both must have previously been defined by a DIM statement.

Page 5.18

ARITHMETIC AND STRING OPERATORS

5000 'SUBROUTINE NAME —— MATADD

5010 ‘ENTRY —— I% = SIZE OF DIMENSION #1 r::,'.',’,‘on
5020 ' J% = SIZE OF DIMENSION #2
5030 * K% = SIZE OF DIMENSION #3
5040 ‘ARRAY A+B = C
5050 FORL% = 1 TO K%
5060 FORM% = 1 TO J%
5070 FOR N§ = 1 TO I%
5080 C(N%.M%,L%) = B(N%,MZ,L%) + A(N%,M%,LE)
5090 NEXT N%
6000 NEXT M%
6010 NEXT L%
6020 RETURN
This subroutine will add the elements of arrays A and B to produce a new
array C. A, B, and C must have previously been defined by a DIM statement.
5000 ‘SUBROUTINE NAME —- MATMULT Matrix
5010 ‘ENTRY —— ARRAY A MUST BE D1% BY D3% ARRAY Multiplication
5020 ARRAY B MUST BE D3% BY D2% ARRAY
5030 * ARRAY C MUST BE D1% BY D2% ARRAY

5040 FOR I = 1 TO D13
5050 FOR J% = 1 TO D2%
5060 C(I%.9%) =0

5070 FOR K&=1 TO D3%
5080 C(I%,J%)=C(I1%,J%)+A(I%,K%)*B(K%,J%)
5090 NEXT K%

6000 NEXT J%
6010 NEXT I%
6020 RETURN

This subroutine will multiply the 2-dimensional array A by the 2-dimensional
array B and produce C.

Using array variables is an advanced programming technique. If you are
having problems understanding the preceding information, refer to other
BASIC programming resources. See the bibliography at the end of this man-
ual.

Page 5.19

ARITHMETIC AND STRING OPERATORS

Arithmetic Operators and Expressions

ARITHMETIC OPERATORS
BRIEF

The arithmetic operators in BASIC are the symbols +, —,/, \\, MOD, *, and
~, which stand for addition, subtraction, division, integer division, modulo
arithmetic, multiplication, and exponentiation, respectively.

Integer Division, denoted by a (\\) backslash, is an operator that rounds the
operands to the nearest integer within the range of — 32768 to 32767. The
operands are rounded before division is performed, and the answer is
rounded to a whole number as well.

Modulus Division, denoted by the operator MOD, gives the remainder of the
value that is the result of integer division.

Rules of precedence determine the order in which operators are evaluated.

Parentheses can be used to change the order of evaluation by indicating
which operations are to be performed first.

Details

The BASIC arithmetic operators perform common arithmetic operations
such as addition, subtraction, negation, division, multiplication and ex-
ponentiation. A numeric expression is any collection of operators and
operands that can be arithmetically evaluated to produce a single numeric
result.

operator

2 + 2 = numeric expression
\operandsf

Page 5.20

ARITHMETIC AND STRING OPERATORS

etic Operators a Iressi

Precedence is a predetermined order in which expressions are evaluated.
The following table demonstrates the order of precedence of BASIC arith-
metic operators. The order that the operators are listed in reflects the order
that they would be evaluated in an expression.

Operator Operation Example
A Exponentiation A*B
- Negation -B
*/ Multiplication and A’B,A/B
Floating-point Division
AN Integer Division A\B
MOD Modulus Division A MOD B
+ - Addition and Subtraction A+B,A-B
Table 5.4
Order of Precedence

It is important to take note of the order of precedence when you are setting
up numeric expressions because the order in which an expression is evalu-
lated can greatly affect the result.

Example:

10 PRINT 8+4"2/8*2
RUN

12
Ok

In this numeric expression, 4 * 2 (four raised to the power of two) is the first
expression that is evaluated, with a result of 16. Since the 16/8 is left of the
8*2, the division is carried out next. The value 16 is divided by 8 and then
multiplied by 2 with a result of 4. Then the 8 is added which makes 12 the
final result.

If the order of precedence was disregarded and the 8, for example, was
added to (4 * 2) first: 24 would be the value divided by 8, which would cause
3to be multipled by 2, yielding an incorrectresult of 6.

Precedence

Page 5.21

ARITHMETIC AND STRING OPERATORS

Exponentiation

Negation

Muitiplications
and
Divisions

xpressions

e a

Exponentiation is used to handle very large or very small numbers in an ab-
breviated form. Exponentiation means to raise the value of the numeral on
the left of the operator to the power of the numeral on the right. All exponenti-
ationis performed from left to right as it appears in the expression.

Negation, the minus sign (—), can function in two different ways. If it is be-
tween two numbers, it stands for the subtraction operation, as in PRINT
8- 5; but if itis in front of a number, it serves to indicate a negative quantity,
as in PRINT —5. In PRINT 8 - 5, the minus sign is called a binary operator,
because it has two operands (the numbers on either side of it); while in
PRINT -5, it is called a unary operator because it only has one operand
(the number followingiit).

In BASIC, the unary minus is a real operator, not just a piece of the number
it's attached to. The operation is called negation and is the equivalent of mul-
tiplying the number by — 1. Thus, the statement PRINT (— 1)*5 is equivalent

"~ to PRINT —-5. Unary operation is also used to demonstrate the relationship

between logical operators as described on Page 5.32.

Multiplications and divisions are then evaluated by BASIC, going from left
to right in the expression. Multiplication is denoted by the (*) asterisk, which
must be included between quantities, unlike mathematics where the symbol
can sometimes be omitted.

Page 5.22

ARITHMETIC AND STRING OPERATORS

Floating Point Division is denoted by a slash (/) and is performed in the usual

2 . . . » 0 . Floatl
arithmetic manner. However, a backslash (\}) indicates integer division, Polntng
which rounds the numbers to integers before division takes place. The quo- Division
tient is also truncated to an integer. The operands must be in the range
— 3276810 32767.

Example:

10N\4=2

25.68\.6.99=3
If a division by zero is encountered during the evaluation of an expression, Overfiow
thepivision by zero error message is displayed, machine infinity with the and

. . L) Divisi
sign of the numerator is supplied as the result of the division, and execution byv,:,z"

continues. If the evaluation of an exponentiation results in zero being raised
to a negative power, the Division by zero error message is displayed, and
execution continues.

Similarly, if overflow occurs, the over f1ow error message is displayed, and
execution continues.

Modulus division is denoted by the operator MOD. It gives the integer value Modulus
that is the remainder (also known as the modulo) of an integer division ex- Division
pression. The remainder is also expressed as an integer value.

Example:

Ok

10 LET A= 5 MOD 3
20 PRINT A

RUN

2

Ok

The resultis 2because 5\ 3is 1, with aremainder of 2.

Finally, all additions and subtractions are evaluated, going from left to right. Additions

i i heir BASIC counterparts: and
Here are some sample algebraic expressions and t SICc p Sutractions

Page 5.23

ARITHMETIC AND STRING OPERATORS

Sample
Expressions

Parentheses

x

vrithmetic Operators ¢

Algebraic Expression BASIC Expression
X+2Y X+Y*2
Y
X- va X-Y/Z
XY .
- X*Y/Z
Xty X+Y)Z
Y4
(x3Y X*2)*Y
XY X~ (Y*2)
X(-Y) X*(-Y)
Table5.5

Algebralc Expressions and Their BASIC Counterparts

Two consecutive operators must be separated by parentheses such as in
thecase X*(-Y).

Parentheses can be used to change the order of evaluation by indicating
which operation is to be performed first.
Checkpoint
Here are three examples that use parentheses to change the predetermined
order of evaluation. Before you go on to the next page, study these exam-
ples to see if you can determine how the interpreter will handle the expres-
sions.

A (8+4) " 2/(8*2)

B. 8+4"(2/8*2)

C. 8+(((4*2)8)*2)

Page 5.24

ARITHMETIC AND STRING OPERATORS

ri

A, (8+4)*2/(8"2)
12 2/(8"2)
144/(8*2)
144/16
9

B. 8+4~(2/82)

8+4 ~ (.25'2)

8+4* .5
8+2
10

C. 8+(((4*2)8)*2)

8+((16/8)*2)

8+(2"2)

12

Original expression.

Left-most set of parentheses: 8+4is 12.
Exponentiation: 12 * 2is 144.

Next setof parentheses: (8"2) is 16.

Division: 144/16is 9.

Original expression.

Expression in parentheses comes first; divi-
sion on the left is performed, replacing 2/8
with .25,

.25"2is .5.

4" 5is2.

8+2is10.

Original expression. Notice that nested
parentheses are evaluated from the inside

out.

Inner parentheses are evaluated first: (4 * 2)
becomes 16.

Next set of parentheses: (16/8) is 2.

8+4is12.

As you can see from these examples, the location of the parentheses in a
numeric expression affect the result of that expression. Understanding the
rules of precedence and the rules regarding parentheses will help you obtain
the desired results from your programs. However, if you write an expression
improperly or ask the computer to do something it cannot do, you will get
error messages (which are discussed on the following pages).

Page 5.25

ARITHMETIC AND STRING OPERATORS

Syntax
Errors

Arithmetic Operators and Expressions

Syntax errors occur when the BASIC interpreter attempts to translate a
statement that is improperly written. The interpreter will not translate the
statement and will print out a syntax error message.

Example:

You enter: PRNT2+2
BASICresponds: Syntax error

A syntax error occurred because PRINT was misspelled.

You enter: PRINT 32-/4
BASICresponds: Syntax error

A syntax error occurred in this case because the minus to the right of the
32 must be the binary subtraction operator. The / is always binary, and you
cannot have two adjacent binary operators.

You enter: ?2(2*(12—-4*3)
BASICresponds: Syntax error

A syntax error resulted because a parenthesis was omitted. This is a very
common mistake. There must always be an even number of parentheses,
since each left parenthesis must face toward a corresponding right paren-
thesis. The question mark causes no problems because Z-BASIC accepts
the ? as a shorthand notation of the PRINT statement. A corrected version
of this expression would be as follows:

? (2%(12-4%*3)) or 2 2%(12-4*3)

Page 5.26

ARITHMETIC AND STRING OPERATORS

Arithmetic Operators and Expres

Another kind of error you may get is called an execution error. An execution
error occurs when a properly written command tells the computer to do
something it cannot do. Processing stops, and an execution error message
is displayed. Below, we've included several examples of execution errors
and the conditions that cause them.

PRINT 2+

PRINT2/0

PRINT (-3) * .5

PRINT 100 * 999

READX (Nodata
statement included)

Missing the other operand.
Result is mathematically undefined.

Produces a value that cannot be represented
in the number system used by the interpreter.

Produces a number too large for the interpre-

terto handle. This is called an overflow condi-
tion.

Tries to read a nonexistent item of data.

Execution
Errors

Page 5.27

ARITHMETIC AND STRING OPERATORS

xpressions

RELATIONAL OPERATORS
BRIEF

A relational operator tells the interpreter to evaluate and compare the two
expressions on either side of the operators.

Relational operators must always stand between two valid expressions of
the same type, either both numeric or both string.

Usually, the result of the comparison is used to make decisions about pro-
gram flow.

The result of the comparison is either true or false, which is why relational
operators are used to form the condition of conditional branches.

Details

Relational operators are symbols used to evaluate and compare two ex-
pressions. They stand between two valid expressions, either both numeric
or both string. Following are the relational operators used in BASIC.

Operator Relation Example
= Equalto A=B

< Less than A Greater than A>B
<= Less than orequal to A<=B
>= Greater than or equal to A>=B
<> Not equal to A<>B

Table 5.6

Relational Operators

Each pf the relational operators listed in Table 5.6 can have an opposite or
negative meaning as shown in Table 5.7.

Page 5.28

ARITHMETIC AND STRING OPERATORS

i

Positive Meaning Operator Negative Meaning
Equalto = Notless than and
notgreaterthan
Lessthan < Not greater than and
notequalto
Greater than > Notless than and
notequalto
Less than or equal to <= Notgreater than
Greater than or equal to >= Notlessthan
Notequalto <> Not equalto
Table 5.7

Negative Meaning of Relational Operators

Additionally, expressions that contain relational operators can be written
using a negated structure.

Positive Meaning Operator Negation Negative Meaning

Equalto = <> Notequalto

Lessthan < >= Notless than

Greater than > <= Notgreater than

Less thanorequalto <= > Not less than and
notequal to

Greater than or equal to >= < Not greater than and
notequalto

Not equal to <> = Not less than and not
greater than

Table5.8

Negated Structure of Relational Operators

Negative
Meanings

Negation

Page 5.29

ARITHMETIC AND STRING OPERATORS

rators and Expressions

If you replace a relational operator with its negation, the statement “switches
branches” or takes the opposite course of action. The result of the following
line:

100 IF A=B THEN 500
will always be the exact opposite of the result of
100 IF A<>B THEN 500

If the first statement branches to 500, the second continues to the next line.
Conversely, a branch in the second statement will cause the condition to faii
inthefirst.

A relational operator is often replaced with its negation to save space on the
program line.

Page 5.30

ARITHMETIC AND STRING OPERATORS

tic Operators and Expressions

Slight inaccuracies can introduce minute differences between expressions
that are theoretically equal. This can cause occasional problems in condi-
tional statements.

Example:

10 A=99

20 B=SQR (4)

30 C=SQR (A}

40 IF B*C=A THEN PRINT "GOOD COMPARISON" ELSE PRINT “NOT
EQUAL"

This program tells BASIC to get the square root of 99, and assign that value
to variable B. Then in line 30, the square root of 99 is assigned to variable
C. Line 40 says if the square root of 99 multiplied by the square root of 99
is equal to 99, then print, “GOOD COMPARISON?, if it is not equal to 99 then
print “NOT EQUAL".

When BASIC computes the square root of 99, the result is not 9, it is actually
9.949874. When BASIC multiplies this number by itself, the result is
98.99999. The IF statement in line 40 will always be false, unless you build
a slight margin of error into the comparison. To correct this problem, the fol-
lowing program line was added:

50 IF (B*C-A)<0.0001 THEN PRINT “GOOD COMPARISON" ELSE
PRINT “NOT EQUAL"

to allow for a difference of up to .00001 between B*C and A, and still have
them treated as “equal”. Another way to avoid this problem is by using inte-
gersinyour calculations.

A numeric comparison evaluates and compares the values of two numeric
expressions. The result of the comparison of expressions can be either true
(—1) orfalse (0).

Arithmetic operations are always performed first when arithmetic operators
are combined with relational operators.

Example:
A+B<(C~-1)/D

This statement will be true (— 1) if the value of A+B is less than the value
of C —1divided by D.

Inaccuracies

Numeric
Comparisons

Page 5.31

ARITHMETIC AND STRING OPERATORS

String
Comparisons

erators and Expressions

PRINT 8<2; 8<12
0 -1
Ok

In this example, the first result is false (0) because 8 is not less than 2; and
the second resultis true (— 1) because 8 is less than 12.

String comparisons are made alphabetically. A string is considered less
than another string if it comes before another string alphabetically. Lower-
case letters are greater than capital letters. Capital letters are greater than
numbers. Punctuation values are divided, with the symbols : ; < = > and
? greater than the numbers 0-9, and ! " # $ % & ‘() *+ - and . less than
the numbers 0-9. See Appendix C for a complete list of ASCII codes and
their equivalent values.

String comparisons are made by taking one character at a time from each
string and comparing the ASCII code values. These values are compared
and evaluated with relational operators. Each character is compared sepa-
rately. If the ASCII codes are the same in both string expressions, then the
strings are said to be equal. If the ASCII code is different, the string with the
lower code is less than the string with the higher code.

If, during string comparison, the end of one string is reached, the shorter
string is said to be smaller. Spaces on either side of either expression are
also counted. All string constants used in comparison expressions must be
enclosed in quotation marks.

Examples:

IIAAII < IIABII

“FILENAME" = “FILENAME"

IIX&U > IIX#"

Ilkg" > IIKG"

“SMYTH" < “SMYTHE"

B$ < “9/12/78" where B$ = “10/12/60"

Thus, string comparisons can be used to test string values or to alphabetize
strings.

Page 5.32

ARITHMETIC AND STRING OPERATORS
ithmetic Operators and Expressions

LOGICAL OPERATORS
BRIEF

Logical operators are used to connect two or more relations (expressions
that contain relational operators) and return a true or false value, which is
used to make decisions regarding program flow.

The logical operators in BASIC are: NOT, AND, OR, XOR, IMP, and EQV.

Like relational operators, logical operators are governed by rules of prece-
dence, unless modified with parentheses.

Logical operators permit you to manipulate the value of a bit, which is a unit
of data in binary notation.

Logical operators are used to perform Boolean operations, which are used
to evaluate binary variables.

Details

Logical operators are used to connect two or more relations and return a
true (— 1) or false (0) value. These values can be evaluated to make deci-
sions about program flow. Like relational operators, logical operators are
most often used in conditional statements such as the IF... THEN...ELSE
statement.

Example:

1. IF D<200 AND F<4 THEN 80

2. IF I>10 OR K<O THEN 50

3. IF NOT P THEN 100
The logical operator returns a bitwise result which is either “true” (not zero)
or “false” (zero). In an expression, logical operations are performed after
arithmetic and relational operations. The result of a logical operation is de-
termined as shown in Table 5.9. This table is commonly known as a truth

table, which is an enumeration of all possible values of the operands and
their corresponding results. The operators are listed in order of precedence.

Page 5.33

ARITHMETIC AND STRING OPERATORS

NOT

X

T

F
AND

X Y XAND Y

T T T

T F F

F T F

F F F
OR :

X Y XORY

T T T

T F T

F T T

F F F
XOR

X Y XXORY

T T F

T F T

F T T

F F F
IMP

X Y XIMPY

T T T

T F F

F T T

F F T
EQV

X Y XEQVY

T T T

T F F

F T F

F F T

Table 5.9
Truth Table

yerators and Expressions

Page 5.34

ARITHMETIC AND STRING OPERATORS

hmetic Operators and Expressions

The NOT operator is the logical complement operator. The role of the NOT NOT
operator is to negate a logical expression. NOT is the only logical operator
that works with one operand. For example the following statement:

200 IF A=B THEN 500
is the logical complement of:
200 IF NOT A=B THEN 500
In another example:
300 IF A=B AND C=D THEN 500
is thelogical complement of:
300 IF NOT (A=B AND C=D) THEN 500

In other words, the second statement will produce the opposite result of the
first statement.

When two NOT operators are applied to the same expression, they cancel
each other out, just as two minus signs cancel each other in arithmetic.
Thus, an easier way to write a statement such as NOT(NOT A=B)is A=B.

Under some circumstances, it can be valuable to use an equivalent expres-
sion. Two statements are said to be equivalent if they produce identical re-
sults under all different conditions. The following table gives the rules for
equivalent expressions, called De Morgan’s Laws.

- De Morgan’s
DE MORGAN'S LAWS Laws

If = stands for logical equivalence, and the letters P and Q represent two
logical expressions, then:

1. NOT (P ORQ)=(NOT P) AND (NOT Q)
2. NOT (P AND Q)= (NOT P) OR (NOT Q)

3. PORQ=NOT((NOTP) AND (NOT Q))

4. PANDQ=NOT ((NOTP)OR (NOT Q))

Table5.10
DeMorgan’s Laws

Page 5.35

ARITHMETIC AND STRING OPERATORS

AND

OR

XOR

)erators and Expressions

For example, using DeMorgan’s Law, the following program lines can be
converted to a simpler form.

220 IF C$>=4A" AND C§<= “Z" THEN 250
230 IF C$>="0" ANDC$<= “9" THEN 250
240 SY =SY+1

Note that this segment determines whether C$ is a “symbol” (not an al-
phabetic or a numeric character), and if it is, adds one to the symbol counter
SY.

Step1. Use ORtocombinelines 220 and 230.

220 IF (C$>="A" AND CE§<= "Z")

OR (C$>=40" AND C$<= "9") THEN 250
230 (deleted)
240 SY=SY+1

Step2. Apply De Morgan’s Law #1 (twice).

220 IF (NOT(C$<"A" OR C$> “zZ"))
OR (NOT(C$<"0O" OR C$>"9")) THEN 250
240 SY=SY+1

Step 3. Negate the condition in line 220 to “switch branches”, which puts
SY=SY+1online 220.

220 IF NOT ((NOT(CH<“A"ORCE>HZ"))
OR (NOT(C$<“0" OR C$>"9"))) THENSY=SY+1
240 (deleted)

Step4. Apply De Morgan’s Law #4.

220 IF (C$<"A" OR CH>"Z'") AND
(C$<"0" OR C%>"9") THEN SY=SY+1

AND is the conjunction operator which tells the interpreter to compare two
expressions, bit by bit, and return a true value only if every pair of bits is
equivalent. A bit is a single binary digit that is the smallest element in com-
puter storage capability. If you look again at the truth table, AND is only true
whenboth X and Y are true.

OR is the disjunction operator that says either X or Y or both X and Y must
be true in order for the result of the expression to be true. An OR operator
returns a zero only whenboth X and Y are false.

XOR is the exclusive OR operator that means either X or Y can be true, but
not both of them. If both X and Y are true, or both X and Y are false, the
result will be false.

Page 5.36

ARITHMETIC AND STRING OPERATORS

=xpressions

IMP is an operator that means if the truth value of X implies the truth value
of Y, then the expression is true. The only time the result is false is when
the first logical expression is true and the second is false. The X assertion
could be false; but as long as the Y assertion is an implication of X, the result
is true. Consider the following program.

10 PRINT “SELECT TEMPERATURE (HOT, WARM, COOL, FRIGID): ";

20 T$=INPUTH$(1): PRINT T%:PRINT

25 IF T$="H" OR T$="W" THEN T=-1 ELSE T=0

30 PRINT “SELECT PRECIPITATION (NONE, RAIN, HAIL, SNOW): ";
40 P$=INPUT$(1l):PRINT P$:PRINT:PRINT

45 IF P$="N" OR P$="R" THEN P=-1 ELSE P =0

50 IF T IMP P THEN PRINT “THAT SOUNDS LOGICAL" ELSE PRINT
“THAT SOUNDS SILLY"

60 FOR Z=1 TO 800: NEXT Z: GOTO 10

In this program, if the temperature outside is either hot or warm, it is logical
to assume that there could be no precipitation or it may be raining. If it is
cool or frigid, it is logical to assume it may be hailing or snowing. You could
lie and say it was cold outside on a day when it was really hot. Then, if you
said it was snowing on a cold day, that would be a true and logical assertion
based on the first assertion that it was cold. A false or O value would only
be returned if the second statement is not implied by the first. The following
table may help you understand how the IMP operator was used in this exam-
ple.

Temperature Precipitation
HOT —1 NONE -1
WARM -1 RAIN -1
COOL 0 HAIL 0
FRIGID 0 SNOW 0
X Y XIMPY

T T | T

T F | F

F T | T

F F | T

Table5.11

The IMP Operator

IMP

Page 5.37

ARITHMETIC AND STRING OPERATORS

EQV

etic Operators and Expressions

The EQV operator denotes equivalence. As noted in our discussion of De
Morgan’s Laws, two logical expressions are said to be equivalent if they pro-
duce identical results under all different conditions. If both X and Y are true
orifboth Xand Y are false, thenthe result is true.

Example:

NOT (X OR Y) EQV ((NOT X) AND (NOT Y))
Precedence

You should remember that logical operators are governed by a certain order
of precedence. The order, unless modified by parentheses, is: NOT, AND,
OR, XOR, IMP, and EQV. If more than one of the same operator exist in
a given expression, they are evaluated from left to right. In other words two
NOTSs are performed first from left to right. This allows you to leave out many
of the parentheses you've added to complex logical expressions. However,
you may not want to remove all of the parentheses because they often help
you understand the structure of the expression. You will find the following
set of rules to be a good compromise between the two extremes.

1. NOT has the highest precedence of the logical operators. Therefore,
you can omit the parentheses around NOT clauses and simple rela-
tional expressions that follow a NOT:

NOTA=BANDNOTC=D

rather than
(NOT(A=B)) AND (NOT(C=D)).

Remember to always put parentheses around complex expressions
ifthe NOT applies to the whole expression.

2. You don't need to include parentheses around strings of simple rela-
tional expressions that are separated by a series of ANDs or ORs:

A=BANDC=DANDE=G
rather than

(A=BAND C=E) AND E=F.

Page 5.38

ARITHMETIC AND STRING OPERATORS

netic Operators and Expressions

3. You should always use parentheses to clarify expressions that con-
sist of mixed ANDs and ORs.

(A=BAND C=D)OR (E=F AND G=H)
is much clearer than
A=BAND C=DORE=FAND G=H.

Truth values are interpreted as numbers when they are referenced in a pro-
gram. The following discussion will show how numbers are interpreted when
they are supplied as truth values. The statement:

100 IF P THEN 500

means if P is any number other than zero, the program will branch to line
500. This statement forces the numeric value P to be taken as a truth value,
which speeds up program execution. In a statement such as this, the
numeric variable P has only two values. It is either TRUE or FALSE. When
this is the case, Pis called aflag.

A flag is a variable that has been assigned a truth value. Flags primarily
transmit information about the workings of the program from one place in
the program to another. A flag “remembers” a certain condition or occur-
rence at some pointin the program so it can be acted upon at a later point.

Your interpreter uses a — 1 to represent the value TRUE and 0 to represent
the value FALSE, while some BASIC interpreters use 1 to represent the
TRUE value. This is important to remember particularly when we discuss
the internal representation of numbers and bit manipulation.

How Logical Operators Work at Machine Level

To understand how logical operators really work, you must look at the
“machine level” operation of the interpreter. All forms of computer “data”, in-
cluding numbers, are stored as bit patterns. Bit patterns are arranged in
groups of eight, called bytes. A byte is equal to eight bits, and each bit is
identified by its position from the right. The logical operators perform simple
logical operations on these bit patterns.

Flags

—1Represents
True

Page 5.39

ARITHMETIC AND STRING OPERATORS

erators and Expressions

Machine In this version of BASIC, integer numbers from — 32768 to +32767 are rep-

;:‘;melon resented by two bytes (16 bits) at the machine level. The positive numbers
0 to 32767 are based on the powers of 2, instead of the powers of 10 in the
decimal number system. In the decimal number system, each position to the
left of the decimal point represents values 10 times greater than those in the
position to the right. Similarly, in base-two or binary notation, each position
represents values twice as great as those in the position to the right.

Forexample, the number 10101100 means
1°2740°25+1*2°+0%2% + 1°2%+1*22+0"2" +0*2°

or
1*128+1*32+1"8+1"4=172

Page 5.40

ARITHMETIC AND STRING OPERATORS

BASIC uses a system called “two’s complement” notation to represent Two’s
negative numbers. In this system 01111111 11111111 represents 32,767 Complement
and 11111111 11111111 represents —1, not —32,767. If you continue,
11111111 11111110 represents —2. Following is a table of expanded bit
pattern equivalence.
EQUIVALENCE TABLE
Decimal Two Byte Two Byte Decimal
Equivalent Internal Representation Internal Representation Equivalent
-1 11111111 11111111 00000000 00000000 0
-2 11111111 11111110 00000000 00000001 1
-3 11111111 11111101 00000000 00000010 2
—4 11111111 11111100 00000000 00000011 3
-5 11111111 11111011 00000000 00000100 4
-6 11111111 11111010 00000000 00000101 5
-7 11111111 11111001 00000000 00000110 6
-8 11111111 11111000 00000000 00000111 7
-9 11111111 11110111 00000000 00001000 8
=10 11111111 11110110 00000000 00001001 9
-11 11111111 11110101 00000000 00001010 10
-12 11111111 11110100 00000000 00001011 11
-13 11111111 11110011 00000000 00001100 12
-14 11111111 11110010 00000000 00001101 13
=15 11111111 11110001 00000000 00001110 14
-16 11111111 11110000 00000000 00001111 15
-32,765 10000000 00000011 01i11111 11111100 32,764
-32,766 10000000 00000010 01111111 11111101 32,765
-32,767 10000000 00000001 01111111 11111110 32,766
-32,768 10000000 00000000 01111111 11111111 32.767
Table5.12

Bit Pattern Equivalence

Page 5.41

ARITHMETIC AND STRING OPERATORS

NOT

AND and OR

etic Operators and Expressions

Logical operators work by converting their operands to sixteen bit, signed,
two’s complement integers in the range —32768 to +32767. (If the
operands are not in this range, an error results.) If both operands are sup-
plied as 0 or —1, logical operators return 0 or — 1. The given operation is
performed on these integers in bitwise fashion; i.e., each bit of the result is
determined by the corresponding bits in the two operands.

When the interpreter encounters an expression such as NOT 14, the com-
puter performs logical negation on each bit of the two-byte internal represen-
tation of the number 14 according to the truth table for NOT shown on Page
5-33. The truth table is repeated here with 1 and O instead of T and F.

X NOTX
1 0
0 1

The NOT operation simply reverses the truth value of any given bit. Thus,
1 becomes 0 and vice versa. Therefore, 14 becomes NOT 14 as follows:

Internal rep. of 14 00000000 00001110
Internal rep. of NOT 14 11111111 11110001

The bit pattern equivalence table shows that the second bit pattern will be
interpreted as the number — 15, which is what the interpreter will print if
PRINT NOT 14 is entered.

The operators AND and OR work in a similar manner on pairs of operands,
according to the truth tables shown on Page 5.33. The following truth tables
for AND and OR are written with 1 and O representing T and F respectively.

X Y XANDY X Y XORY
1 1 1 1 1 1
1 0 0 1 0 1
o 1 0 o 1 1
0 O 0 0 O 0

Page 5.42

ARITHMETIC AND STRING OPERATORS

Arithmetic Operators and Expressions

The interpreter evaluates the expression 5 AND 6, for example, by lining up
the bit representations of each number and then applying the AND table to
each corresponding pair of bits:

Internal rep. of 5: 00000000 00000101
Internalrep. of 6: 00000000 00000110
Internal rep. of 5 AND 6: 00000000 00000100

The result is interpreted as the number 4. At your computer the preceding
example will look like this:

PRINT 5 AND 6
4
Ok

The OR operator works the same way with the OR truth table:

Internal rep. of 5: 00000000 00000101
Internal rep. of 6: 00000000 00000110
Internal rep. of 5OR 6: 00000000 00000111

The result corresponds to the number 7, as shown in the bit pattern equiva-
lence table on Page 5.40.

When the interpretor encounters the XOR (exclusive OR) operator, it per-

forms an evaluation based on the XOR truth table, repeated here using 0
and 1insteadof T and F.

XXORY
0

oo_.n_.nx

Y
1
0 1
1 1
0 0

XOR

Page 5.43

ARITHMETIC AND STRING OPERATORS

erators and Expressions

The logical statement X XOR Y would appear as:
11 XOR3
00000000 00001011

00000000 00000011
00000000 00001000 (8)

Internalrep. of 11 is:
Internalrep. of 3is:
Internal rep. of 11 XOR 3:

The result corresponds to the number 8, as shown in the bit pattern equiva-
lence table on Page 5.40.

IMp When the interpreter encounters an IMP (Implied) operator, it essentially
combines the operations used in a NOT and OR evaluation. The logical
statement X IMP Y is the same as NOT X OR Y. The truth table for an IMP
operator is repeated here using 1 and Oinstead of Tand F.

IMP

X Y XIMPY

1 1 1

1 0 0

0 1 1

0 0 1
6IMP7
where6 is: 00000000 00000110
where NOT 6 is: 11111111 11111001
where 7 is: 00000000 00000111
where NOT 6 is: 11111111 11111001
ORedto 7: 00000000 00000111
equals 11111111 11111111 (1)

Theresultis — 1 whenthe expressionis 6 IMP 7.

Page 5.44

ARITHMETIC AND STRING OPERATORS

Finally, when the interpreter encounters EQV, it essentially performs two im- EQV
plication operations. The logical statement X EQV Y is the same as (X =>
Y) AND (Y => X). Through the law of implication, we arrive at (NOT X OR

Y) AND (NOT Y OR X).

6EQV7

where 6 is 00000000 00000110

where NOT 6 is 11111111 11111001

where 7 is 00000000 00000111

where NOT 6 is 11111111 11111001

ORedto7 00000000 00000111

is 11111111 11111111 (=1
and

where 7 is 00000000 00000111

where NOT 7 is 11111111 11111000

where6is 00000000 00000110

where NOT 7 is 11111111 11111000

ORedto 6 00000000 00000110

is 11111111 11111110 ~— (—2)
and where

NOT6OR7 11111111 11111111 < (-1)
is ANDed to

NOT70OR6 11111111 11111110 ~—4 (—2)
equals 11111111 11111110 (-2)

Thus, it is possible to use logical operators to test bytes for a particular bit
pattern. For instance, the AND operator may be used to “mask” all but one
of the bits of a status byte at a machine I/O port. The OR operator may be
used to “merge” two bytes to create a particular binary value. The following
examples will help demonstrate how the logical operators work.

Page 5.45

ARITHMETIC AND STRING OPERATORS

63AND 16=16

15AND 14=14

40R2=6

100R10=10

-10R —2=—1

NOT X=— (X+1)

perators and

63 = binary 111111 and 16 = binary 10000, so 63
AND 16 = 16 (binary 10000)

15 = binary 1111 and 14 = binary 1110, so 15
AND 14 = 14 (binary 1110)

4 = binary 100 and 2 = binary 10, s0 4 OR 2 =
6 (binary 110)

10 = binary 1010, s0 10 OR 10 = 10 (binary 1010)

-1 = binary 1111111111111111 and —2 = bi-
nary 1111111111111110, so -1 OR -2 = -1.
The bit complement of sixteen zeros is sixteen
ones, which is the two’s complement representa-
tionof —1.

The two’s complement of any integer is the bit
complement plus one.

Page 5.46

ARITHMETIC AND STRING OPERATORS

Numeric Functional Operators

BRIEF

A function is a predefined process or subprogram that takes one or more
quantities as input and returns a single related quantity as output.

An intrinsic function is one of the functions builtinto the BASIC interpreter.

The interpreter calls the function and passes arguments to the function. The
function processes the argument and returns the result.

Details

A function is used in an expression to call a predetermined operation that
is to be performed on an operand. BASIC has intrinsic functions that reside
in the system, such as SQR (square root) or SIN (sine). Following is an ex-

ample of how functions work: How
Functions
You enter: PRINT SQR (4) Work
Computer Prints: 2
SQR (4)
Function name Argument
Boeeomnmnnenn > SQR(X) ------------- >2
argument function result

In the above description, the function performs a mathematical operation on
the argument and returns the result. Table 5.13, on the next page, lists the
numeric functions that are intrinsic to Z-BASIC.

Page 5.47

ARITHMETIC AND STRING OPERATORS

Standard Math Functions

SQR(X)

INT(X)

RND(X)
ABS(X)
SGN(X)

CDBL(X)

CINT(X)

CSNG(X)

FIX(X)

Exponentiation Functions

eric Functional

EXP(X)

LOG(X)
Trigonometric Functions

SIN(X)

COS(X)

TAN(X)

ATN(X)

Result

Square Root of (X)

Nearest integer less than or equal to

X)

Randomize (X)
Absolute value of (X)
Sign of (X)

Convert (X) to a double precision
number

Convert (X) to an integer by rounding

Convert (X) to a single precision
number

Truncates decimal part of (X).

Result
Raise e to the power of (X)

Natural logarithm of (X)
Result

Sine of angle (X), where (X) is in ra-
dians

Cosine of angle (X), where (X) isinra-
dians

Tangent of angle (X), where (X) is in
radians

Arctangent (in radians) of (X) -

Table5.13

Numeric Functions

Page 5.48

ARITHMETIC AND STRING OPERATORS

Numeric Constants and Precisions

BRIEF
Constants are the actual values BASIC uses during execution.
Constants can be either numeric or string.

A string constant is a sequence of up to 255 alphanumeric characters en-
closed in double quotation marks.

Numeric constants can be stored internally as integers, single precision
numbers, or double precision numbers.

Details

Constants are the actual values BASIC uses during execution. There are
two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters en-
closed in double quotation marks. Following are examples of string con-
stants:

“HELLO”
“$25,000.00"
“Number of Employees”

String
Constants

Page 5.49

ARITHMETIC AND STRING OPERATORS

Numeric
Constants

Numeric constants are positive or negative numbers. Numeric constants in
BASIC cannot contain commas. There are five types of numeric constants:

1. -Integerconstants

2. Fixedpoint
constants

3. Floating point
constants

Examples:

Whole numbers between —32768 and
+32767. Integer constants do not have de-
cimal points.

Positive or negative real numbers; i.e.,
numbers that contain decimal points.

Positive or negative numbers represented
in exponential form (similar to scientific no-
tation). A floating point constant consists of
an optionally signed integer or fixed point
number (the mantissa) followed by the let-
ter E and an optionally signed integer (the
exponent). The allowable range for floating
pointconstantsis 10 ~*8to 10+38,

235.988E — 7 = .0000235988
2359E6 = 2359000000

(Double-precision floating point constants use the letter D instead of E.)

4,

5.

Hex constants

Octal constants

Hexadecimal numbers with the prefix & H.
Examples:

&H76
&H32F

Octal numbers with the prefix &0 or &.
Examples:

&0347
&1234

Page 5.50

ARITHMETIC AND STRING OPERATORS

umeric Constants and P

Fixed and Floating point constants may be either single-precision or double- Single and
precision numbers. Single-precision numeric constants are stored with six f,’:’;‘l’:;n

digits of precision, and printed with up to seven digits. With double-
precision, the numbers are stored with 16 digits of precision and printed with
up to 16 digits.
A single-precision constant is any numeric constant that has:

1. Seven orfewerdigits; and/or

2. Exponential form using E; and/or

3. Atrailing exclamation point (!).
A double-precision constant is any numeric constant that has:

1. Eightormore digits; and/or

2. Exponential form using D; and/or

3. Atrailing number sign (#).

Examples:
Single-Precision Constants Double-Precision Constants
46.8 345692811
—1.09E-06 —-1.09432D - 06
3489.0 3489.0#
225! 7654321.1234

For more information on integers, and single and double-precision values,
see the following section on converting precisions. Also see “Variables,”
startingonPage 5.1.

Page 5.51

ARITHMETIC AND STRING OPERATORS

Converting Numeric Precisions

BRIEF

Numeric constants may be either integers, single-precision, or double-preci-
sion numbers.

Single-precision numbers have up to seven digits.
Double-precision numbers can have up to 16 digits.

Eachlevel of precision has a specific memory space requirement.

Details

Numeric constants may be integer, single-precision, or double-precision
numbers. It is sometimes necessary to extend the precision of a number,
according to what you want to do with that number.

Oftenitis necessary to change a double-precision number to a single-preci-
sion number or to change a single-precision number to an integer (whole
number). Each level of precision requires less space than the level which
precedes it. However, each level is less precise than the level that precedes
it. It is important to remember to use consistent calculations within a pro-
gram. It is often risky to mix precisions and maintain accuracy. You can go
from double-precision to single-precision to integer without problems, but
going from integer to single to double may yield an error.

Following is a list of the space requirements for each level of precision for
variables, arrays, and strings.

Space Requirements

VARIABLES: BYTES
INTEGER 2
SINGLE-PRECISION 4

DOUBLE-PRECISION

@

Page 5.52

]

ARITHMETIC AND STRING OPERATORS

ns
ARRAYS: BYTES
INTEGER 2 per element
SINGLE-PRECISION 4 perelement
DOUBLE-PRECISION 8 per element

STRINGS:
Three bytes overhead plus the present contents of the string.

From the space requirements listing you can see that a single-precision
number takes up twice as much space as aninteger does. And a double-pre-
cision number takes up twice as much space as a single-precision number.
If your major concern is the conservation of space, you may use an integer.
If your concern is with precise, accurate numbers, then you should use
single or double-precision.

Numeric variable names may declare integer, single, or double-precision
values. The type declaration characters for these variable names are as fol-
lows:

% Integervariable
! Single-precision variable
Double-precision variable

When you are converting a numeric constant from one type to another, keep
the following rules and examples in mind.

1. If a numeric constant of one type is set equal to a numeric variable
of a different type, the number will be stored as the type declared in
the variable name. (If a string variable is set equal to a numeric value
orvice versa, a Type mismatch error OCCUI’S.)

Example:

10 A% = 23.42
20 PRINT A%
RUN

23

ok

Type
Declaration

Conversion
Rules

Page 5.53

ARITHMETIC AND STRING OPERATORS

2. During expression evaluation, all of the operands in an arithmetic or
relational operation are converted to the same degree of precision,
i.e., that of the most precise operand. Also, the result of an arithmetic
operation is returned to this degree of precision.

Examples:

10 D# = 6#/7 The arithmetic was performed in double-

;gNPRINT b# precision, and the result was returned in D#

 B571428571428571 as adouble-precision value.

Ok

;0 D= 6#/7 The arithmetic was performed in double-

RgNPRINT D precision, and the result returned to D (single-

8571429 precision variable), was rounded and printed

Ok as a single-precision value.

3. Logical operators (see Page 5.32) convert their operands to integers
and return an integer result. Operands must be in the range — 32768
t0 32767 oran over flow €rror occurs.

4, When a floating point value is converted to an integer, the fractional
portion is rounded.

Example:

10 C% = 55.88
20 PRINT C%
RUN

56
Ok

5. If a double-precision variable is assigned a single-precision value,
only the first seven rounded digits, of the converted number will be
valid. This is because only seven digits of accuracy were supplied with
the single-precision value. The absolute value of the difference be-
tween the printed double-precision number and the original single-
precision value will be less than 6.3E-8.

Example:

10 A = 2.04

20 B# = A

30 PRINT A:B#

RUN
2.039999961853027
2.04

Ok

Page 5.54

ARITHMETIC AND STRING OPERATORS

String Expressions and Operators

BRIEF

A string expression is composed of an operator, constants, variables, and
functions.

A string constant (also known as string literal) is a sequence of characters
up to 255 characters long, bounded by quotation marks.

String functions are commands that allow the manipulation of a string con-
stant.

String variable names must have a dollar sign symbol ($) added to the end.
To concatenate two strings means to connect them into one string. The

strings are connected by the concatenation operator, which is a plus sign

(+).

Details

A string expression is formed like a numeric expression with the following
components:

String operator

String constants

String variables

String functions

A string constant is a sequence of up to 255 characters bounded by quota-
tion marks.

Example:
You enter: PRINT “ABCDEFG123”
Computerreplies: ABCDEFG123

Two strings may be joined together by the concatenation operator which is
the plus (+) sign.

Example:

Youenter: PRINT “ABCD” + “EFGH”
Computer replies: ABCDEFGH

String
Constants

Page 5.55

ARITHMETIC AND STRING OPERATORS

String Expressions and Operators

String variable names are formed in exactly the same way that numeric vari-
able names are formed, with the additional requirement that the string name
must have the dollar sign symbol ($) added to the end.

You enter: A$=“THIS IS A STRING”
You enter: PRINT A$
Computer replies: THIS IS A STRING
Mixing PRINT statements can contain numeric expressions or string expressions.
:“:“’"" You can also mix numeric and string expressions in a list, separating the
s:nrlng expressions with commas or semicolons. Most versions of BASIC provide
Expressions extra spaces when numeric expressions are separated by semicolons.
Strings behave differently.
Example:
A=1
B =2
cC=3
A$ = “ONE"
B$ = “TwWo"
C$ = “THREE"
PRINT A;B;C RESULT: 1 2 3
PRINT A$;B$;C$ ONETWOTHREE
PRINT A;A$;B;B$;C;C$ 1 ONE 2 TWO 3 THREE

Both string and numeric expressions behave the same when separated by

commas.
PRINT A,B,C, RESULT: 1 2 3
PRINT A$,B$,C$ ONE TWO THREE

Notice that the leading blank usually seen in numeric values is reserved for
apossible minus sign.

String String functions are used to manipulate a string constant. All string functions
Functions are referenced in detail in the reference guide of this manual. However, we
willdiscuss a few of them here to give you an idea of how they work.

Page 5.56

ARITHMETIC AND STRING OPERATORS

The MID$ creates a substring from a source string in the following manner:

You enter: A$ = “THIS IS A STRING”
Youenter: B$ = MID$ (A$,6,4)
You enter: PRINTBS$
Computer replies: I1SA
Function name List of arguments
MID$ (AS, 6, 4)
Source Starting Number of
String Position Characters
in substring

LEFT$ and RIGHT$ form substrings from the left end or right end of the
source string. The starting point does not need to be specified for LEFT$
or RIGHT$ because itis implied by the length of the substring.

Example:
A$ = “ABCDEFG"
PRINT LEFT$(A$,2) RIGHT$(A$,2) Computer prints: AB AAAAAA FG
PRINT LEFT$(A$,4),RIGHT$(A$,4) Computer prints: ABCD AAAAA DEFG
NOTE: In this example the A represents 2 spaces.

LEN is used to find the length of a string—that is, how many characters the
string has.

VAL and STR$ are used to convert back and forth from a numeric value to
the characters representing that value.

Example:
As = ugn
B$ = u3gn

PRINT A$*B$%

This creates an error condition called a “type mismatch” because A$ and
B$ are string characters while the multiplication operator works only with
numbers. However, you could use the VAL command to convert the string
to a numeric value. In the following example, the “2” and “3” are converted
to the numeric quantities 2 and 3 by the VAL function before multiplication
is attempted.

PRINT VAL(A$)*VAL(B$)

Page 5.57

ARITHMETIC AND STRING OPERATOR

The STRS$ function goes the other way — it converts values numbers to their
string representations.

To understand the last two string-related functions that we will discuss here,
ASC and CHR$, you should recall that data is represented in the computer
with bit patterns that form a binary code. (See “Logical Operators”, starting
on Page 5.32 for further information on bit patterns.) The system used to
represent characters is called ASC// (American Standard Code for Informa-
tion Interchange).

In BASIC, only the first 127 ASCII characters are used; therefore, each char-
acter is represented electronically by a unique seven-bit code. An ASCII
conversion chart can be found in Appendix C of this manual.

Bit patterns can be interpreted in many different ways, depending on the
code system you are using. You can interpret these patterns as characters,
or as binary numbers or decimal numbers. The job of converting between
these two interpretations is performed by the ASC and CHR$ functions.

The ASC function returns the decimal equivalent, while CHR$ function does
exactly the opposite. Given a number within a certain range, it produces the
corresponding character.

Again, this is just a summary of how string functions work. Detailed explana-
tions for each string function can be found in the Alphabetical Reference
Guide of this manual.

CHAPTER 6

Page 6.1

FILE HANDLING

FILES

KILL

LOAD

File Manipulation and Management

BRIEF

BASIC provides several sets of statements for creating and manipulating
program and data files.

The file manipulation commands are very useful for manipulating program
files. Some of these commands can also be used with data files.

The file management statements are used to open and close files, check
for end-of-file, and to obtain information about the size of afile.

Details

FILE MANIPULATION COMMANDS

This is a review of the commands and statements that are useful for mani-
pulating program and data files. These statements and commands are also
discussed in the next two sections of this chapter.

FILES [“<filename>"]

The FILES command lists the names of the files that are residing on the cur-
rent disk. If the optional <filename>> string is included, the names of the files
on any specified disk can be listed.

KILL “filename"

The KILL command deletes the file from the disk. “Filename” may be a pro-
gram file, or a sequential or random access data file. If “filename” is a data
file, itmustbe closed before itis killed.

LOAD “filename"[,R]

The LOAD command loads the program from disk into memory. The R op-
tion runs the program immediately. LOAD always deletes the current con-
tents of memory and closes all files before loading. If R is included, however,
open data files are kept open. Thus, programs can be chained or loaded in
sections and can access the same datafiles.

Page 6.2

FILE HANDLING

MERGE ‘filename"

The MERGE command loads the program from disk into memory but does
not delete the current contents of memory. The filename must be saved in
ASCII format. The program line numbers on disk are merged with the line
numbers in memory. If two lines have the same number, only the line from
the disk program is saved. After a MERGE command, the “merged” program
resides in memory, and BASIC returns to Command Mode.

NAME "“oldfile" AS “newfile"

To change the name of a disk file, execute the NAME Command, NAME
“oldfile” AS “newfile”. NAME may be used with program files, random files,
or sequential files.

RESET

RESET reads the directory information off of a newly inserted disk which you
have exchanged for the disk in the current default drive. RESET does not
close files that were opened on the former default disk. Therefore, use
RESET only after you have closed any open files and replaced the current
default disk.

RUN *“filename"[,R]

RUN “filename” loads the program from disk into memory and runs it. RUN
deletes the current contents of memory and closes all files before loading
the program. If the R option is included, however, all open data files are kept
open.

SAVE “filename"[,A]
The SAVE command writes to disk the program that is currently residing in

memory. The option writes the program in ASCI| format. (Otherwise, BASIC
uses a compressed binary format.)

MERGE

NAME

RESET

RUN

SAVE

Page 6.3

FILE HANDLING

PROTECTED FILES

If you wish to save a program in an encoded binary format, use the protect
option with the SAVE command. For example:

SAVE “MYPROG",P

Warning: A program saved this way cannot be listed or edited.

FILE MANAGEMENT STATEMENTS

BASIC provides a full set of I/0O statements to be used for disk file manage-
ment. These statements are listed in Table 6.1:

Statement Function

OPEN Opens adisk file and assigns a file number to the disk file.

CLOSE Closes a disk file and de-assigns the file number from the
diskfile.

EOF Returns - 1 (true) if the end of afile has been reached.

LOF Returns the length of the file in bytes.

LOC Returns the next record to be accessed for a random file and
the total number of sectors or “records” accessed for a se-
quential file.

Table 6.1

Flie Management Statements

Page 6.4

FILE HANDLING

File Manipulation and Management

The OPEN statement is used to assign a file number to a disk file name.
The OPEN statement is also used to define the mode in which the file is to
be used (sequential or random access).

The CLOSE statement performs the opposite function of the OPEN state-
ment. It will de-assign the file number from a disk file name.

The EOF function will return — 1 (true) if the end of a sequential file has been
reached. The EOF function can also be used with random files to determine
the lastrecord number.

The LOF function returns the length of the file in bytes. LOF divided by the
length of arecord is equal to the number of records in the file.

The LOC function, when used with a random file, will return the next sector
to be accessed. When it is used with a sequential file, it returns the number
of records accessed since the file was opened.

These statements are discussed along with specific examples that utilize
these statements in “Sequential Data Files” (Page 6.5) and “Random Ac-

cess Files” (Page 6.16).

Page 6.5

FILE HANDLING

Sequential Data Files

BRIEF

A sequential data file is a file that must be accessed in a sequential order,
starting at the beginning of the data block and proceeding in order until an
end-of-data marker is encountered or the required number of items has
beenread.

Sequential files are easier to create than random files, yet they are limited
in terms of speed and flexibility.

The BASIC interpreter communicates with I/O buffers, which are reserved
spaces in memory, maintained by the operating system for holding incoming
or outgoing data.

The data found in a sequential file can be retrieved, formatted, updated and
manipulated in a variety of ways.

Details

Sequential files must be accessed in the same sequential order that they
were written, starting at the beginning of the data block and proceeding in
order until an end-of-data marker is encountered or the required number of
items have been read.

Since the items must be read in order, this kind of data organization is called
sequential. It works fine for applications that process a batch of data in a
certain order, but not so well when you need to access individual items within
a data block. For this, you need a random access file structure (see Page
6.16).

Just as DATA statements are a simpler and more fundamental form of data
organization than arrays, sequential files are a simpler and more fundamen-
tal form of storage than random-access files.

Page 6.6

FILE HANDLING
Sequential Data Files

BASIC never “sees” the file of the disk unit. In fact, BASIC never sees any
of the 1/0 devices attached to the computer. Instead, BASIC sees a buffer,
a reserved space maintained by the operating system for holding incoming
or outgoing data. One buffer might hold data coming in from the keyboard,
another might hold data coming from or going to a particular disk file, and
goon.

It doesn’t make any difference to the BASIC interpreter how input data gets
into an I/O buffer or what happens to output data once it's placed there; all
the interpreter needs to know about the devices is where the corresponding
buffers are located in memory. Everything else is the responsibility of the
operating system and its various device drivers.

The fixed amount that can be physically written to or read from the disk at
one time is 256 bytes. This fixed amount of data is called a physical record.
The physical record is the same length as a disk sector, 256 bytes, so you
can think of a file buffer full of data as “one sector’s worth.”

There are two types of file buffers used with sequential files: input buffers
and output buffers. The buffers themselves are identical, but BASIC must
be told whether a given buffer is to be used for input or output.

When BASIC appears to be writing a sequence of data to a disk file, it’s really
placing one data item after another in an output buffer. When the output buf-
feris full, Z-DOS writes the entire physical record to the disk, resets a pointer
to the beginning of the buffer, and waits until the buffer fills up again before
it writes another physical record.

Input works in a very similar way. When BASIC appears to get data from
a sequential disk file, Z-DOS is really reading one physical record at a time
from the disk, and placing it in a way that is similar to the way it would read
a DATA statement or a line from the keyboard. When the contents of the
buffer have been exhausted, Z-DOS reads another physical record from the
disk, places it in the input buffer, and so on until it reaches the end of the
file or BASIC stops requesting data items from the buffer.

Buffers

Physical Records

OutputBuffers

Input Buffers

Page 6.7

FILE HANDLING

OPEN Statement

EOF Pointer

il

CREATING ASEQUENTIAL DATAFILE

The statements and functions that are used with sequential files are:

OPEN PRINT# INPUT # WRITE#
PRINT# USING LINEINPUT#

CLOSE EOF LOC

Table 6.2
Sequential Flle Statements and Functions

To create a sequential disk file (or read from one), you must designate a disk
I/0 buffer with the OPEN statement. The OPEN statement requires three
items of information: the mode (Input or Output); the number of the disk /O
buffer; and the file specification, which tells BASIC where to start accessing
the disk, according to the sector pointers maintained in the disk directory.

You must give the extension if there is one, and if necessary, you must also
give the drive number to distinguish between two files that have the same
name. The I/O buffer is specified as 1, 2, or 3. One of the three file buffers
automatically created by the DOS is associated with the specified physical
disk file. The Input or Output mode is also given by one of the designators
“I”or “O”. Thus, the statement:

OPEN "O",1,"TEST.ASC"

will designate buffer 1 as an output buffer and tell Z-DOS to associate this
buffer with the physical file it knows as “TEST.ASC”. The ASC extension
represents a naming convention for a mixed ASCII data file that contains
both string and numeric data. You can use any extension that you like.

In addition to setting up a buffer, the OPEN statement causes Z-DOS to
reset an essential directory pointer which points to the last physical record
in the file. This pointer, called EOF (end-of-file), is now set to point to the
“zero” record, which is the very beginning of the first record. This indicates
that the file contains no physical records (written disk sectors) yet. Since the
beginning of the file TEST.ASC is now the same as the end of the file as
far as Z-DOS is concerned, any preexisting file by that name disappears.

Page 6.8

FILE HANDLING

Sequential Data Files

The program steps listed in Table 6.3 are required to create a sequential Procedure
file and access the datain the file.

1. OPENthefilein “O”mode. OPEN "O", #1,"TEST.ASC"

2. Writedatatothefile PRINT#1, A$,B$, C$
using the PRINT # statement.
(WRITE# may be used instead.)

3. Toaccessthedatainthe CLOSE #1
file, you must CLOSE thefile OPEN “I", #1,6"TEST.ASC"
and reOPEN itin “l” mode.

4. Usethe INPUT# statementto INPUT#1,X$,Y$,2$
read data from the sequential
file into the program.

Table 6.3
Creating a Sequential File—Program Steps

Since we have already discussed the OPEN statement, we will now discuss PRINT #
the second step, the PRINT# statement, which is used to write the data to

the file. If, for example, you have just OPENed a file, you would want BASIC

to supply a string of characters to the output buffer, just as if a string of char-

acters were being sent out to be printed on the display. You would use an

expanded version of the PRINT statement called PRINT #. This works like

the usual PRINT statement, except that you must include the buffer number
immediately following the PRINT keyword.

Suppose, for example, you wanted to write the following set of data items
to the disk:

A=11 : B=222 : C=3.333 : D=4444 : E=5.5555

NOTE: It would probably be most helpful if you try this yourself by opening
a file named TEST.ASC in the immediate mode with the OPEN statement
repeated below.

OPEN "O",1,“TEST.ASC"

Page 6.9

FILE HANDLING

CLOSE

Sequential Data Files

Nothing happens when you write the five data items A,B,C,D,E to the disk,
because you haven'tfilled the 256-character output buffer. Use the up arrow
to position the cursor under the P in PRINT and then press RETURN to re-
peat the PRINT# statement, which will enter a few more sets of data into
the buffer.

PRINT #1,A,B,C,D.E
Ok

Eventually, you will hear the disk drive click when you fill the buffer and the
record gets written. If you entered a few more of these PRINT# statements,
creating a partially filled buffer, you have to finish the process by entering
the word CLOSE.

This writes the second physical record to the disk, updates the EOF pointer,
and releases buffer #1 for something else. CLOSE by itself closes all open
disk files. If you had more than one file open and didn’'t want to disturb the
others, you would enter CLOSE 1. You should make a habit of always clos-
ing files; otherwise, an OPEN statement could result in a File Already Open
error message.

The key to understanding the PRINT # statement is the fact that it sends the
same set of characters to the disk that the corresponding PRINT statement
would send to the terminal. To see what each of the statements you entered
has written to the disk, enter the corresponding PRINT statement in im-
mediate mode and look at the output.

PRINT A,B,C,D,E
1.1 2.22 3.333 4.444 5.55655
Ok

The series of characters you see on the display, including the string of
spaces between each pair of numbers, is exactly what each PRINT# state-
ment puts on the disk.

Page 6.10

FILE HANDLING
a

tial |

Characters are received from the disk the same way that they are received
from the terminal, except you use INPUT# instead of INPUT. To read data
from the file you created in the preceding example, open the file for input
with the following statement:

OPEN "I", 6 1,"TEST.ASC"

This designates I/0O buffer 1 as the sequential input buffer for the file
“TEST.ASC” and resets a Z-DOS pointer to the beginning of the disk file.
This operation is the disk equivalent of a RESTORE to the beginning of a
block of DATA statements.

Now you can read a series of data items from the disk file and assign them
to a series of variables in the same way they would be read from keyboard
input.

The following short program creates a sequential file, “DATA”, from informa-
tion you input at the terminal:

10 OPEN "O", #1,"DATA"

20 INPUT '"NAME";N$

25 IF N$="DONE" THEN END

30 INPUT "DEPARTMENT";D$

40 INPUT "DATE HIRED";H$

50 PRINT#1,N$;",";D$;"," ;H$
60 PRINT:GOTO 20

RUN

NAME? MIKE JONES
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? MARY SMITH
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? ALICE ROGERS
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? ROBERT BROWN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? DONE
Ok
Program 1

Create a Sequential Data File

INPUT #

Sample Program 1

Page 6.11

FILE HANDLING

Sample Program 2

Terminator

Now look at Program 2. It accesses the file “DATA” that was created in Pro-
gram 1 and displays the name of everyone hiredin 1978:

10 OPEN "I", #1, "DATA"

20 INPUT#1,N$,D$,H$

20 IF RIGHT$(H$,2)="78" THEN PRINT N§
40 GOTO 20

RUN

ALICE ROGERS

ROBERT BROWN

Input past end in 20

Ok

Program 2
Accessing a Sequential File

Program 2 reads, sequentially, every item in the file. When all the data has
been read, line 20 causes an input past end error messages. To avoid get-
ting this error message, insert line 15, which uses the EOF function to test
for end-of-file:

15 IF EOF (1) THEN END

andchange line 40to GOTO 15.

The word terminator refers to the same thing as the word delimiter. It is a
special character that marks the boundary of a data item, like the commas
used to separate items in DATA statements.

The word terminator is used in this discussion for two reasons. First, it
throws the emphasis on the function of marking the end of an item of data
rather than that of separating two adjacent items and second, it includes cer-
tain conditions as terminators as well as the special characters usually re-
ferred to as delimiters. For your purposes, a terminator is any condition,
character, or set of characters that will make INPUT# conclude that it has
reached the end of the series of characters that represent a given item of
datain adiskfile.

Page 6.12

FILE HANDLING

Sequential Data Files

There are only two terminators that will always cause INPUT# to stop ac-
cepting characters as part of a given item of data, and both of these universal
terminators are conditions rather than characters. They are:

1. The last character in a file. INPUT# will not attempt to read the
lastitem past the end of afile.

2. The 255th character in an item of data. INPUT# will not attempt
to read more characters than will fitin a single string.

Essentially, there are three different forms that data can take when stored
in @ BASIC sequential file. They are: numeric data, strings that are not en-
closed in quotation marks, and strings that are enclosed in quotation marks.

The usual item terminator in all three cases is the comma. With INPUT#,
however, the set of acceptable item terminators is somewhat different for
each storage type. For numeric data, the usual item terminator is a space,
or set of spaces. For unquoted strings, the usual item terminator is the
comma,; and for quoted strings the quotation mark at the end of each string
is the usual terminator.

The differences between the terminators mean that slightly different tech-
niques will have to be used to form the PRINT # statements used for each

type.

You will recall from our TEST.ASC example that numeric data items are
stored with one or more spaces. The statement, PRINT #A,B,C,D,E was
stored as follows:

PRINT A,B,C,D,E
1.1 2.22 3.333 4.444 5.55555
Ok

This form is an unnecessary waste of room on the disk, because INPUT#
will accept as little as one space as a valid numeric terminator. Con-
sequently, it is better to use the semicolon terminator (PRINT
#1,A;B;C;D;E) to put just one or two spaces between items. Semicolons be-
tween the variables in the PRINT # statement produce a series of charac-
ters that is identical to the earlier version as far as INPUT # is concerned,
but takes up less space on the disk.

Numeric Data

Page 6.13

FILE HANDLING

Unquoted Strings

Quoted Strings

Sequential Data Files

A numeric item input will also terminate if a RETURN is encountered.

When you are using PRINT # and INPUT # with unquoted strings, keep in
mind that spaces do not terminate a string read by INPUT# , which means
you can include spaces as part of the string itself (if placed after the first sig-
nificant character). The character you should use to properly end each string
is the comma.

The basic method for using commas is to insert a comma (“,”) with quotes
into the PRINT # list wherever a comma without quotes should appear in
the disk image. The INPUT# will then read back each string as terminated
by its comma. Just as with numeric data, the form PRINT #1,A$,“,”,B,*,",C$
should not be used. You should substitute semicolons for commas as vari-
able list delimiters so unwanted strings of spaces won't be created in the
diskimage.

Another terminator that works with unquoted string data is RETURN. You
don't need a comma to terminate the last item in the PRINT # statement.
The RETURN added to the end by PRINT # will automatically terminate an
unquoted string like C$. This properly ends input of the string when it's read
back later and separates it from whatever mightfollow it in the file.

String expressions are enclosed with quotation marks (”) to avoid confusion
when other terminators such as commas are used within the string you are
trying to input as data. When INPUT # encounters a quotation mark as the
first significant character in a string item, it takes this as a direction to include
all the following characters up to the next quotation mark as part of the string.
This allows you to put commas, RETURNS, or any other character you like
into the data string. The single exception is the quotation mark, that ends
it.

Page 6.14

FILE HANDLING

A program that creates a sequential file can also write formatted data to the
disk with the PRINT # USING statement. The PRINT # USING statement
is fully documented in the reference guide. It is mentioned here to advise
you of the capability of formatting the data in your sequential files to the for-
mat that you specify. For example, the statement

PRINT#1,USING"#### .##,";A,B,C,D

could be used to write numeric data to disk without explicit delimiters. The
comma at the end of the format string serves to separate the items in the
diskfile.

ADDING DATATO A SEQUENTIAL DATAFILE

If you have a sequential file residing on disk and later want to add more data
to the end of it, you cannot simply open the file in “O” mode and start writing
data. As soon as you open a sequential file in “O” mode, you destroy its cur-
rent contents. You can use the following procedure to add data to an existing
file called “NAMES™:

1. OPEN“NAMES”in“l” mode.

2. OPENasecondfile called “COPY”in “O” mode.

3. Read in the datain “NAMES” and write itto “COPY".

4. CLOSE“NAMES”andKILL it.

5. Write the new information to “COPY”.

6. Rename “COPY” as “NAMES” and CLOSE .

7. Now there is a file on disk called “NAMES?” that includes all the previ-
ous data plus the new data you just added.

Formatted Data

Updating

Page 6.15

FILE HANDLING

Sample Program 3

equential Data Files

Program 3 illustrates this technique. It can be used to create or add onto

a file cal

led NAMES. This program also illustrates the use of LINE INPUT#

to read strings with embedded commas from the disk file. Remember, LINE
INPUT# will read in characters from the disk until it sees a carriage return
(it does not stop at quotes or commas) or until it has read 255 characters.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
205
210
215
200
201

ON ERROR GOTO 2000
OPEN "I", #1, "NAMES"
REM IF FILE EXISTS, WRITE IT TO "COPY"
OPEN "O", #2,"COPY"

IF EOF(1) THEN S0
LINE INPUT#1, A$

PRINT#2, A%
GOTO 50

CLOSE #1

KILL "NAMES"

REM ADD NEW ENTRIES TO FILE

INPUT "NAME";N$

IF N§="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
LINE INPUT "ADDRESS? ";A$

LINE INPUT "BIRTHDAY? ";B$
PRINT#2,N§

PRINT#2, A$

PRINT#2,B$§

PRINT:GOTO 120

CLOSE

REM CHANGE FILENAME BACK TO "NAMES"
NAME "COPY" AS "NAMES"

END
0 IF ERR=53 AND ERL=20 THEN OPEN "O", #2,"COPY":RESUME 120
0 ON ERROR GOTO O

Program3
Adding Data to a Sequential File

The error trapping routine in line 2000 traps a File not found €rror mes-
sage in line 20. If this happens, the statements that copy the file are skipped,
and “COPY” is created as if it were a new file.

Page 6.16

FILE HANDLING

Random Access Files

BRIEF

Random-access files are accessed randomly, which makes it unnecessary
to read through all of the data records to get to a specific data record.

Although creating a random-access file involves more program steps than
a sequential file, the speed, flexibility, and the efficient use of storage space
aredistinct advantages.

The fundamental storage unit is called a record. Records are usually num-
bered to permit random access.

Random-access storage and retrieval takes place through a buffer.

Details

The biggest advantage to random files is that data can be accessed ran-
domly; i.e., anywhere on the disk — it is not necessary to read through all
the information, as with sequential files. This is possible because the infor-
mation is stored and accessed in distinct units called records, and each re-
cord is numbered.

Creating and accessing random files requires more program steps than se-
quential files, but there are advantages to using random files. Random files
require less room on the disk because BASIC stores them in a packed binary
format. (A sequential file is stored as a series of ASCll characters.)

A random-access file is very much like an array: both consist of a collection
of numbered units, any one of which you can immediately access simply by
specifying its number. In the case of random-access files, the numbered
units are much more complex than in the case of arrays. The fundamental
storage unitin an array is the individual array element, which is a single item
of data. The corresponding unit in a random-access file is the record, which
can have several items of data.

Random Flies Are Like
Arrays

Page 6.17

FILE HANDLING

Buffers

Statements
and
Functions

Random Access Files

Like all forms of disk I/0, random-access storage and retrieval takes place
through a buffer. Just as in the case of sequential I/O, the buffer used in ran-
dom-access /O is a fixed-length section of memory that holds data coming
from or going to the disk in a form that can be handled by the interpreter.
There are, however, some important differences between random-access
and sequential buffers in the way they are used.

First, once you assign a random-access buffer to a file by an OPEN state-
ment, you can use it for both input and output. You can use sequential buf-
fers for either input or output, but not both.

Second, random-access buffers are not written to or read from the disk auto-
matically as sequential buffers are. In random-access files, the buffer and
the disk are accessed by two separate processes. You must explicitly
specify the operations of reading a record into the buffer or writing a record
from the buffer to the disk by means of the GET and PUT keywords.

Finally, the buffer is organized differently in these two forms of disk access.
In a sequential buffer, the arrangement of data is not fixed, but is specified
by delimiters or terminators. That is, sequential buffers are delimiter-struc-
tured. By contrast, random-access buffers are field-structured. Each data
item occupies a predefined section of the buffer called a field. Also, external
pointers access these buffer fields rather than internal delimiters.

The statements and functions that are used with random files are:
OPEN FIELD LSET/RSET GET

PUT CLOSE LOC LOF EOF

MKI$ CVI
MKS$ CVS
MKD$ CVD

Table 6.4

Random File Statements and Functions

Page 6.18

FILE HANDLING

andom Access Files

CREATING A RANDOM FILE

Procedure
The program steps in Table 6.5 are required to create arandom file.

1. OPEN thefile forrandom-access (“R” mode). OPEN "R", #1,"FILE", 32
This example specifies a record length of 32
bytes. If the record length is omitted, the de-
faultis 128 bytes.

2. UsetheFIELD statement to allocate spacein FIELD #1, 20 AS N$,
the random buffer for the variables thatwillbe 4 As A$, 8 AS P$
written to the random file.

3. Use LSET to move the data into the random LSET N$=X$
buffer. Numeric values must be made into LSET A$=MKS$ (AMT)
strings when placed in the buffer. To do this, LSET P$=TEL$
use the “make” functions: MKI$ to make anin-
teger value into a string, MKS$ for a single-
precision value, and MKD$ for a double-pre-
cision value.

4. Write the data from the buffer to the disk using PUT #1, CODE%
the PUT statement.

Table 6.5
Program Steps for Creating a RandomFile

Now that you know the statements and functions used in random-access
files an the order in which they are used, we’'ll discuss opening a file for ran-
dom-accessin detail.

Page 6.19

FILE HANDLING

OPEN Statement

ccess Files

OPENING AFILE FOR RANDOM-ACCESS

As in the case of sequential files, you must associate a particular buffer with
a particular disk file and specify the buffers for both input and output. You
indicate their mode of operation by the single specifier “R”. For example, to
open a disk file named “INVNTRY.DAT"” for random-access and associate
it with buffer number 1, you would enter:

OPEN "R", #1,"INVNTRY.DAT"

Unlike the sequential OPEN “O” statement, this will not automatically kill a
previously existing file with that name. If no such file exists, OPEN “R” will
automatically create one. You cannot use random-access techniques on a
sequential file and vice versa.

In addition, a parameter at the end of the OPEN statement specifies the size
of the buffer in bytes.

Page 6.20

FILE HANDLING

Random Access Files

STRUCTURING THE RANDOM BUFFER INTO FIELDS

The record contained in the random-access buffer must be subdivided into FIELD Statement
fixed length-fields. Random records are like string records in the sense that

they can be accessed only through string variables. The FIELD statement

divides the characters in the buffer into a certain number of fields, each con-

sisting of a specified number of characters and referenced by a string vari-

able. The statement has the general form:

FIELD BU%, N1% AS Al$, N2F AS A2$, ...

Where BU% stands for the number of the random-access buffer, N1% for
the number of characters in the first field, A1$ for the string, N2% for the
number of characters in the second field, and so on. Thus, you could imple-
ment the field structure for an inventory program as follows:

FIELD#1, 1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
FIELD#1
Divides the record read from file #1 into the five sections that follow:

1ASF$
The first character can be referenced as F$.

30 ASD$
The next 30 characters canbe referenced as D$.

2ASQ$
The next 2 characters can be referenced as Q$.

2ASR$
The next 2 characters can be referenced as R$.

4 ASP$
The last 4 characters can be referenced as P$.

This statement divides the first 39 characters of buffer #1 into five fields,
which can each be referenced separately using their variable names. This
only affects the first 39 characters in the buffer. The rest are left undefined
and are wasted if the record size is more than 39 characters.

Page 6.21

LSET Statement

FILE HANDLING

ASSIGNING DATA TO FIELDS AND WRITING THE
BUFFER TO THE DISK

The FIELD statement sets up a system of pointers into a series of character
locations that permit you to refer to the contents of each field by name.
Therefore, PRINT P$ will print the last four characters in the buffer which
have been assigned to the P$ variable.

For example, in an ordinary string, the statement PRINT A$ instructs BASIC
to consult an internal table of string pointers to reference the particular sec-
tion of string space associated with the name A$. The difference between
referencing an ordinary string and referencing a FIELD string is that the lat-
ter has a fixed length and that its pointer indicates the section of memory
reserved for buffers rather than the section reserved for strings.

Itis for this reason that you cannot use the LET, INPUT, or READ statements
to assign values to field strings, because these statements will not put the
characters into the buffer. To properly store the strings in the buffer, you
must use one of the special buffer assignment keywords LSET or RSET.

The LSET statement instructs BASIC to store the given characters in the
buffer field specified by the given field name, starting at the leftmost end of
the field. For example,

LSET NA$="N BENCHLEY"

where NAS$ is a name string that has been assigned 16 character positions
and will create the series of characters:

N2BENCHLEYA 2 A 2 ~ 2

in the first 16 character positions of the buffer. The symbol Z denotes a
space character. You don’t need to include the six trailing spaces used to
“pad out” the 16 character name. They are automatically supplied by LSET.

Page 6.22

FILE HANDLING

les

Notice also that LSET begins to assign characters at the first (leftmost) po-
sition in the field. This is called “left-justified” within the NAS$ field. If the string
assigned to NAS$ is shorter than the length of the field, as in this example,
LSET adds spaces on the right. If the string is longer, LSET will chop off or
truncate the excess right-hand characters.

RSET works like LSET except that the string is right-justified in the name
field, if the string is shorter than the field length. Thus, the statement:

RSET NA$="N BENCHLEY"

creates the series of characters:

However, RSET will not truncate the excess characters on the left. Instead,
it will truncate the excess characters on the right, justas LSET will.

To write a record from a random buffer to a random file, you must use the
PUT statement. A sequence of immediate mode statements is shown below
that will open a random-access file, set up a field structure for your address
records, and place one of these records in the buffer. After which you will
see why the PUT statement is necessary.

F$="ADDRESS .DAT"
Ok

OPEN "R", #1,F$§
Ok

FIELD #1, 16 AS NA$, 33 AS SA$, 14 AS CY$, 8 AS SZ$
Ok

LSET NA$="N BENCHLEY"
Ok

LSET SA$="12 ASHMONT AVE APT 6"
Ok

LSET CY$="NEWTON"
Ok

LSET SZ$ "MA 02158"
Ok

RSET Statement

PUT Statement

If you continued to place records in the buffer using a series of LSET state-
ments, you would overwrite the data in the buffer with different data. In other
words, records are not automatically written to the disk, as in the case of
sequential files. To write the contents of buffer #1 to the disk, you must enter
the statement:

PUT #1
Ok

Now you can add more data to your “ADDRESS DAT” file without overwrit-
ing the information already in the buffer.

LSET NA$="A DUFFY"
Ok

LSET SA$="233 AUSTIN DR."
Ok

LSET CY$="0AK PARK"
Ok

LSET SZ$="1IL 66699"
Ok

PUT #1
Ok

LSET NA$="J POPE"
Ok

LSET SA$="3100 BROADWAY"
Ok

LSET CY$="NEW TOWN"
Ok

LSET SZ$="IL 60657"
Ok

PUT #1
Ok

CLOSE
Ok

At this point, you have written three address records to the file and closed
it. Next, you will retrieve the three records.

Page 6.24

FILE HANDLING

ccess Files

GETTING RECORDS OUT OF THE FILE

To retrieve records from the file that you have stored, you must perform the
following steps:

1. Open the file for random access (if it is not already open) and set up
field variables with an appropriate FIELD statement.

2. Read each record into the buffer with the keyword GET.

3. Process data in given fields of the record by referencing the corres-
ponding field variables.

Using the preceding example, you could retrieve the records from the file
you created by opening the file as follows:

OPEN "R",#1,F$
Ok

FIELD #1, 16 AS NA$, 33 AS SA$, 14 AS CY$, 8 AS SZ%
Ok

GET #1
Ok

7NA$; SA$; CYE; SZ§
N BENCHLEY 12 ASHMONT AVE APT 6 NEWTON MA 02158
Ok

GET #1
Ok

7NA$; SA$;CY$;SZ%
A DUFFY 233 AUSTIN DR. OAK PARK 1IL 66699
Ok

GET #1
Ok

?NAS;SAS;CY$;SZ%
J POPE 3100 BROADWAY NEW TOWN IL 60657
Ok

CLOSE
Ok

GET Statement

Page 6.25

FILE HANDLING

More About PUT

More About GET

This example shows that, as each record is brought into buffer #1 by the
GET 1 statement, the fields of that record are automatically assigned to the
field variables NA$ and so on simply because pointers into the buffer have
already been set up by the FIELD statement. The practical effect of this is
that the data in each field are immediately accessable through the corres-
ponding variable as soon as the record is read into the buffer, without need-
ing a separate statement like INPUT # to connect a given item (field) to a
variable name.

Otherwise, this example doesn't seem to differ that much from a series of
reads done on a sequential file. You put in three records in order and got
three records back out again in the same order. This apparent similarity
comes about only because we chose to default to a sequential kind of ac-
cess by usingincomplete forms of the PUT and GET statements.

The complete form of the PUT statement is PUT BU%,REC%, where BU%
is a buffer number and REC% is the number of a given record. The state-
ment PUT 1,23, for instance, means write the current contents of buffer #1
to disk as record 23. If you omit the specified record, as in the example you
saw before, the interpreter automatically assumes a record number one
greater than that of the “current record,” which is the last record written or
read from the disk.

When you open the file, the default “current record” is zero. A following PUT
without a specific record given will access the “next” record number 1.
Therefore, the three PUT statements in this example - PUT1...
PUT1...PUT1... are by default equivalent to PUT 1,1...PUT 1,2..PUT 1,3
and have therefore stored the three test records as records 1, 2, and 3 in
thefile.

The complete GET statement has the very similar form GET BU%,REC%,
where BU% and REC% stand for the buffer number and record number, re-
spectively. Just as with the PUT statement, the interpreter will assume arec-
ord number one higher than the last record accessed by GET or PUT if you
leave out the explicit record number of the GET statement. Since you began
the last example by reopening the file, the “current record” at the beginning
defaults to, and the series of statements GET1...GET1...GET1 was equiva-
lent to the three statements GET 1,1....GET 1,2...GET 1,3.

Page 6.26

FILE HANDLING

ccess Files

Itis often useful to know the last record numberin arandom-access file. This
number is returned by the LOF, or “last-of-file” function.

The function call LOC(2), for instance, will return the record number of the
last numbered record in the file associated with buffer #2. You can use this
information to terminate a read of the records in the file or to tell you where
to begin adding new records.

STORAGE AND RETRIEVAL OF NUMERIC DATA

Since all random-access storage and retrieval is done through string vari-
ables, you cannot store numeric quantities directly in random-access disk
files. They must somehow be converted to string representations before
they can be placed in a field and put on a disk. One way you can do this
is to convert the internal binary representation of the number to a string
(ASCII) representation using the STR$ function before placing it in the buf-
fer.

You would then use the VAL function to convert from the series of characters
back to a binary-encoded numeric quantity when reading the number back
from the disk. However, using this method would be both inefficient and
wasteful; inefficient because it takes time for the interpreter to translate the
series of ASCII characters to binary (and vice versa), and wasteful because
of the fixed-length field in which the ASCII representation must be stored,
regardless of the varying number of ASCII characters into which the numeric
quantity would actually be translated.

Instead of STR$ and VAL, BASIC provides a special set of functions that
allow the bytes that make up a binary number to be directly assigned to a
string variable as if they were characters and, conversely, allows the charac-
ters stored in a numeric data field on the disk to be directly read back to
memory as the bytes that make up the internal representation of a number.

This change is performed by the three “make compressed string” functions
MKI$, MKS$, and MKD$. MKI$ converts a two-byte integer to a two-byte
string. MKS$ converts a four-byte single-precision number to a four-byte
string, and MKD$ converts an eight-byte double-precision number to an
eight-byte string.

LOF Function

LOC Function

Converting Numeric
Quantities

Make String Functions

Page 6.27

Converslon Functions

Application

FILE HANDLING
File

When you are reading numbers back from a random-access file, you must
change them from strings back to numbers before they can be assigned to
numeric variables. This is accomplished by three conversion functions, CV]I,
CVS, and CVD. CVI changes a two-byte string into aninteger, CVS changes
a four-byte string into a single-precision number, and CVD changes an
eight-byte string into a double-precision number.

The inventory program starting on the next page illustrates random file ac-
cess. In this program, the record number is used as the part number, and
it is assumed the inventory will contain no more than 100 different part num-
bers. Lines 900-960 initialize the data file by writing CHR$(255) as the first
character of each record. This is used later (line 270 and line 500) to deter-
mine whether an entry already exists for that part number.

Lines 130-220 display the different inventory functions that the program per-
forms. When you type in the desired function number, line 230 branches to
the appropriate subroutine.

Page 6.28

FILE HANDLING

landom Access Files

120 OPEN"R", #1,"INVEN.DAT",39
125 FIELD#1,1AS F$,30 AS D$, 2 AS Q$.2 AS R§,4 AS P$
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT 1,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5, "SUBTRACT FROM STOCK"
180 PRINT 6, "DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTION" ; FUNCTION
225 IF (FUNCTION<1) OR (FUNCTION>6) THEN PRINT
"BAD FUNCTION NUMBER":GOTO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT"OVERWRITE";A$:
IF A$<>"Y" THEN RETURN
280 LSET F$=CHR$(0)
290 INPUT "DESCRIPTION";DESC$
300 LSET D$=DESC$
310 INPUT "QUANTITY IN STOCK";Q%
320 LSET Q$=MKI$(Q%)
330 INPUT "REORDER LEVEL";R%
340 LSET R$=MKI$(RZ)
350 INPUT "UNIT PRICE";P
360 LSET P$=MKS$(P)
370 PUT#1,PARTE
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ###"; PART%
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND #####";CVI(Q$)
450 PRINT USING "REORDER LEVEL #####";CVI(R$)
460 PRINT USING "UNIT PRICE $B##.##";CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT D$:INPUT "QUANTITY TO ADD";A%
520 QZ=CVI(Q$)+A%
530 LSET Q$=MKI$(Q%)
540 PUT#1, PART%
550 RETURN

Page 6.29

FILE HANDLING

560
570
580
590
600
610
620
630
640

650
660
670
680
690
710
T20

730
740
840
850

890
900
910
920
930
940
950
960

REM REMOVE FROM STOCK

GOSUB 840

IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN

PRINT D$

INPUT "QUANTITY TO SUBTRACT";S%

QZ=CVI(Q$)

IF (Q%—S%)<O0 THEN PRINT "ONLY";Q%;" IN STOCK": GOTO 600

QZ=Q%-S%

IF Q%¥=<CVI(R$) THEN PRINT "QUANTITY NOW";Q%;
" REORDER LEVEL";CVI(R$)

LSET Q$=MKI$(QZ)

PUT#1, PART%

RETURN

REM DISPLAY ITEMS BELOW REORDER LEVEL

FOR I=1 TO 100

GET#1,1

IF CVI(Q$)<CVI(R$) THEN PRINT D$;" QUANTITY";
CVI(Q$) TAB(50); "REORDER LEVEL";CVI(R$)

NEXT I

RETURN

INPUT "PART NUMBER";PART%

IF (PART#<1)OR(PART%>100) THEN PRINT "BAD PART NUMBER":
GOTO 840 ELSE GET#1,PART%:RETURN

END

REM INITIALIZE FILE

INPUT "ARE YOU SURE";B$:IF B$<>"Y'" THEN RETURN

LSET F$=CHR$(255)

FOR I=1 TO 100

PUT#1,1

NEXT I

RETURN

Sample Inventory Program

Page 7.1

CHAPTER 7 PLOTTING COORDINATES
The Video Screen

BRIEF

The screen display format has 25 lines numbered 1-25, and a width of 80
columns numbered 1-80.

The video resolution of the Z-100 is 640 horizontal addressable points,
and 225 vertical addressable points.

Vertical points on the screen are associated with the Y axis, and horizontal
points are associated with the X axis.

The screen can be changed to H-19 graphics mode or reverse video, via
the SCREEN statement. (See Page 7.3).

Format: Screen [graphics,] [reverse video]

The SCREEN function returns the ASCII value of a character on the screen
atthe specified location. (See Page 7.5).

Format: X = SCREEN(row,col [,z])

Details

The first step in using Z-BASIC graphic capabilities is to understand the
characteristics of the video screen and how to plot coordinates oniit.

The Z-100 All-in-One Monitor has a 12-inch diagonal screen. The display
format has 25 lines numbered 1—25, and a width of 80 columns numbered
1-80.

Video resolution is the density of the individual pixels (points) on the
screen. The video resolution of the Z-100 is 640 horizontal addressable
points, and 225 vertical addressable points. This high resolution permits
sharper and more detailed graphic images to be displayed on the screen.

Page 7.2

PLOTTING COORDINATES

The Video Screen

Vertical points on the screen are associated with the Y axis. Horizontal
points are associated with the X axis. To plot or locate coordinates on the
screen you should first understand the orientation of the coordinates on the
X and Y axis. Point 0,0 is the first point in the top left corner of the screen.
Point 639,0 is the top right point. Point 0,224 is the bottom left point and
639,224 is the bottom left point as illustrated in Figure 7.1.

Y
0,0 | 639, 0
[
|
|

)(oooo.ooo.oooo+.ooo.ooooo.o)(

0,224

|
|
[
|
I
| 639,224
Y

FIGURE 7.1
X,Y Coordinates of the Four-Comer Points

We will discuss plotting coordinates throughout this chapter, since many
Z-BASIC statements use the X,Y coordinates as arguments. In particular,
in our discussion of the LINE statement (Chapter 8), we will show you how
to use these four points to draw a border on your screen.

Page 7.3

PLOTTING COORDINATES
The Video Screen

SCREEN STATEMENT

The SCREEN statement allows you to put Heath/Zenith H-19 graphic char-
acters on the video display and also permits the use of reverse video. H-19
graphics have been included to assure compatibility with software programs
using H-19 graphics.

Reverse video will print black characters on a white background. This is a
convienent feature for highlighting text and other special affects.

Format: Screen [graphics,] [reverse video]

Graphics when it appears in the SCREEN statement is a numeric expres-
sion with the value of zero or one.

Reverse video is a numeric expression with the value of zero or one.

Graphics 0 —Clears H-19 Graphics mode
1—Sets H-19 Graphics mode

Reverse Video 0—Clears H-19reverse video
1—Sets H-19reverse video

Action: If all parameters are legal, the new screen mode is stored. If the new
screen mode is the same as the previous mode, nothing is changed.

Rules:

1. Any values entered outside of these ranges will result in an
Illegal FunctionCall Error. Previous values are retained.

2. Any parameter may be omitted. Omitted parameters assume
the previous value.

Example:
10 SCREEN 0,1 ‘No graphics, reverse video on.
20 SCREEN 1 ‘Switch to H-19 graphics mode.
40 SCREEN 1,1 'Switch to H-19 graphics

with reverse video on.
50 SCREEN ,0 'reverse video off.

Page 7.4

PLOTTING COORDINATES

The Video Screen

If you are using H-19 graphics for the first time, we advise that you draw your
graphic image first on a video layout grid. (You can make one by drawing
a grid with 25 vertical boxes by 80 horizontal boxes.) After you have the
graphics on paper it will be easier to transfer them to the screen.

In H-19 graphic mode, lower case letters are converted to graphic symbols.
Therefore you must refer to the Graphics Symbol Table in Appendix C of
this manual. After you decide which graphic character you want to use, note
it's lower case letter equivalent, and input this letter to BASIC. BASIC will
then convert this letter to the corresponding graphic symbol.

Example:

10 CLS

20 SCREEN1

30 PRINT "faac"
40 PRINT "eaad"
50 SCREEN 0O

When this program is run, faac will convert to the top half of a small box.
Inline 40, eaad will convert to the bottom half of a small box.

If H-19 graphics are in effect while in direct mode, all lowercase alphabetic
characters typed will produce H-19 graphic characters. Therefore, pro-
grams using H-19 graphics should clear graphic mode before returning to
command mode, as done in line 50 of the example above.

You can use the locate statement described on Page 7.12 to place the box
in the center of the screen by changing lines 30 and 40 to:

30 LOCATE 12,38:PRINT “faac”
40 LOCATE 13,38:PRINT “eaad”

Page 7.5

PLOTTING COORDINATES

SCREEN FUNCTION

The SCREEN function returns the ASCHl value of the character that is
located at the specified row and column on the screen.

Format: X = SCREEN(row,col [,z])
X is a numeric variable receiving the integer returned.
row is a number between 1 and 25, the row number.
col is a number between 1 and 80, the column number.
z is an optional number between 0 and 255, which, if present
and not zero, will cause the function to return the color attri-
butes of the location instead of the ASCII value of the charac-

ter.

NOTE: Any values entered outside these ranges will resuit in an 11-
legal Function Call eITor.

Action:
The integer value of the ASCII character at the specified location is stored

in the variable. If the optional parameter <z> is given and not zero, a
single byte, containing color attribute information is returned.

Exampile:
10 CLS Clear the screen.
20 COLOR 4,7 Set foreground attribute to red (4) and back-
ground attribute to white (7).
30 PRINT “H" Print the ASCII character H in the top left

corner of the screen (location 1,1).

40 X=SCREEN(1,1,1) Use the screen function to determine the color
attributes of H (at location 1,1).

50 PRINT HEX$(X) Print the hexadecimal value of the resuit.

60 Y=SCREEN(1,1) Use the screen function to return the ASCII
value of the character at 1,1.

70 PRINT Y Print the result.

RUN

74

72
Ok

Page 7.6

PLOTTING COORDINATES

The Video Screen

In this example, an H is printed in the top left corner of the screen. The
screen function is then used to determine the color attributes of H. To
interpret the results, you must use the HEX$ function to convert the deci-
mal variable stored in X to the hexadecimal equivalent. The first digit (a
7 in this case) tells you the background color attribute (white), while the
second digit (a 4) indicates the foreground color attribute (red).

The second number that is printed is the ASCII value of H (79). To verify
that this is correct, you could either look up the character in the ASCII
table in Appendix C or you could use the CHR$ function in the following

manner:

PRINT CHRS$ (72)

H
Ok

Page 7.7

PLOTTING COORDINATES

Locating and Activating Pixels

BRIEF

Three statements in Z-BASIC that use the X and Y pixel coordinates as ar-
guments are POINT, PSET, and PRESET.

The POINT function allows you to read the attribute value of a pixel from
thescreen.

Format: POINT (X,Y)

The PSET statement is used to turn on a point at a specified location on the
screen.

Format1: PSET (X coordinate , Y coordinate) [,attribute]
Format2: PSET STEP (X offset, Y offset)

The PRESET statement is used to turn off a point on the screen at a
specified location.

Format1: PRESET (X coordinate, Y coordinate) [,attribute]
Format2: PRESET STEP (X offset, Y offset)

Details

Now that you are familar with the orientation of the coordinates and charac-
teristics of the screen you will be able to locate pixels and turn them on or
off.

The POINT function allows the user to read the color value of a pixel from
the screen. The format of the POINT functionis:

POINT (X,Y)

If the point given is out of range the value -1 is returned. Valid returns are
any integer betweenOand 7.

Page 7.8

PLOTTING COORDINATES

An example of the programming statement that would determine the color
status of your computer follows:

Example:

10 FOR C=0 TO 7

20 PSET (10,10) ,C

30 IF POINT(10,10)<>C THEN PRINT
"Black and white computer"

50 NEXT C

You could also use the POINT function to invert the current state of a point,
as shown in the example below:

10 IF POINT{(I,I)<>0 THEN PRESET (I,I) ELSE PSET (I,I)
'invert current state of a point

Page 7.9

PLOTTING COORDINATES

PSET STATEMENT

The PSET statement is used to turn on a point at a specified location on the
screen.

Format1: PSET (X coordinate , Y coordinate) [,attribute]
Format2: PSET STEP (X offset, Y offset)

The first argument to PSET is the coordinate of the point that you wish to
plot. Format 1 is the absolute form, which means you specify a point without
regard to the last point referenced. An absolute point is the exact address
of a pixel on the screen.

Example:

PSET (10,10)
0,0

Inthis case PSET would turn on adot at
the location indicated by the asterick.

* 10,10

Suppose you had already plotted an absolute coordinate and you wanted
to plot several other points relative to the last point referenced. Instead of
trying to estimate the exact coordinate of your next point, you could use the
second format of the PSET statement. Using the example above, if you
wanted your next point to appear 10 horizontal points from 10,10 (the last
point referenced) you would use format 2, as follows:

PSET STEP (10,0) 'offset 10 in X and O in Y

Page 7.10

PLOTTING COORDINATES

This statement tells PSET to offset the point by 10 in X and zero in Y. Thus
your next point would be turned on at the 20,10 address.

Note that when BASIC scans coordinate values it will allow them to be
beyond the edge of the screen, however values outside the integer range
(—32768t0 32767) will cause an overflow error.

Note that (0,0) is aiways the upper left hand corner and the bottom left corner
is (0,225). It may seem strange to start numbering Y at the top, but, this is
standard. '

The last argument to the PSET statement allows you to specify the color you
want the point to be turned on in. It is not necessary to specify the color argu-
ment to PSET. If attribute is omitted then the default value is one, since this
is the foreground attribute. You can use the PSET statement with a color
argument to turn off points by adding a color argument that is the same as
the background color as shown in the example that follows.

Example:

5 CLS
10 FOR I=0 to 100
20 PSET (I,I)
30 NEXT
'draw a diagonal line to (100,100)
40 FOR I=100 TO O STEP -1
50 PSET (I,I),0
60 NEXT
'clear out the line by setting each pixel to O

page 7.11

PLOTTING COORDINATES

Locating and Activating Pixels

PRESET STATEMENT

PRESET has an identical format to PSET. The only difference is that if no
third parameter is given the background color, zero is selected. When a third
argument is given, PRESET is identical to PSET.

Format1: PRESET (Xcoordinate , Y coordinate) [,attribute]
Format2: PRESET STEP (X offset, Y offset)

Example:

5 CLS
10 FOR I=0 to 100
20 PSET (I,I)
30 NEXT
(draw a diagonal line to (100,100))
40 FOR I=100 TO O STEP -1
50 PRESET (I.I)
60 NEXT

Notice that this example is the same example given for PSET on Page 7.10.
The only difference is in line 50, where the third parameter is not specified.

The PRESET statement defaults to the background color and causes all of
the specified points to be turned off. If a color argument was added to this
line, the affect would be the same as using PSET.

If an out of range coordinate is given to PSET or PRESET no action is taken
nor is an error given. If an attribute greater than seven is given, this will result
in anillegal function call error message.

Page 7.12

PLOTTING COORDINATES

Changing the Cursor Position

BRIEF

Three statements that affect the cursor are: LOCATE, CSRLIN, and POS.
These statements use rows and columns as their arguments.

The LOCATE statement moves the cursor to the specified position on the
Screen.

Format: LOCATE [row], [col] [, [cursor]]

The CSRLIN function returns the current line (or Row) position of the cursor.
Format: X = CSRLIN

The POS function returns the current column position of the cursor.

Format: POS(I)

Details

The LOCATE statement moves the cursor to the specified position on the
Screen. The last optional parameter turns the cursor on and off.

Format: LOCATE [row], [col] [, [cursor]]

row Is the screen line number. A numeric expression returning an
unsigned integer inthe range 110 25.

col Is the screen column number. A numeric expression return-
ing an unsigned integer in the range 1 to 80.

Page 7.13

PLOTTING COORDINATES

cursor Is a Boolean value indicating whether the cursor is visible or
not, zero for off, non-zero for on.

Action:

The LOCATE statement moves the cursor to the specified position. Sub-
sequent PRINT statements begin placing characters at this location.

Rules:
1. Any values entered outside of the row and column ranges will
result in an Illegal Function Call error message. Previous

values areretained.

2. Any parameter may be omitted. Omitted parameters assume

the old value.
Example:
10 LOCATE 1,1 Moves to the home position in the upper
left hand corner.
20 LOCATE ,,1 Make the cursor visible, position re-
mains unchanged.
30 LOCATE 5,1,1 Move to line five, column one, turn cur-

soron.

Page 7.14

PLOTTING COORDINATES

Cursor Position

Changing the

CSRLIN AND POS FUNCTION

The CSRLIN function returns the current line (or row) position of the cursor.
The POS function returns to the current column.

Format: X =CSRLIN

X is @ numeric variable receiving the value returned.
The value returned will be inthe range 1 to 25.

x = POS()) will return the column location of the cursor. The
value returned will be inthe range 1 to 80.

Example:
10 Y = CSRLIN 'Record current line.
20 X = POS(I) 'Record current column.

30 LOCATE 24,1 :PRINT "HELLO" 'Print HELLO on the 24th line.
40 LOCATE Y,X 'Restore position to old line, column.

Unlike the coordinates of points, which start at point 0,0, the coordinates of
rows and columns start at position 1,1.

Page 8.1

CHAPTER 8 ADVANCED COLOR GRAPHICS
Using Color Graphics

BRIEF

When using color with any of the advanced graphics statements, you can
specify the attribute to be used. Available colors can be one of the following
eight.

Black
Blue
Green
Cyan
Red
Magenta
Yellow
White

NOoO O bhWN-—=-O

The color statement is used to select the foreground color and background
color for screen display.

Format: COLOR [Foreground] [, [Background]]

Details

THE VIDEO BOARD

The video board can be purchased with or without color capability. The dif-
ference between a computer that has color and one that does not is for the
most part in the video RAM chips that contain the information necessary for
producing color. A monochrome video board has 64K of video RAM (Ran-
dom Access Memory) and a color video board has at least 96K of video
RAM. Itis possible to upgrade a monochrome video board to color.

Note that the use of the extended character set with special H-19 graphic
characters is not considered “graphics”.

As mentioned in Chapter 7, the Z-100’s video resolution is 640 by 225 (with
the 25th line) — 3 bits per pixel.

Page 8.2

ADVANCED COLOR GRAPHICS
Using Color Graphics

When storing graphics memory with PSET, PRESET or LINE you can select
the “attribute” (color) from one of eight values.

it is fairly simple to produce graphics since a pixel (point) only has a value
of zero or one. A zero pixel is always associated with the color black. A one
pixel can associate with various intensities of white through the first argu-
mentto the color statement.

Advanced graphics extend the capabilities to manipulate the graphics mode
bit map provided by the color video card.

The statements we have included in our discussion of advanced graphics
are:

COLOR PUT
LINE GET
CIRCLE DRAW
PAINT

THECOLOR STATEMENT

The format of Color statement is:
COLOR [Foreground] [,Background]]

The Color statement is used to select the foreground colors and background
colors for screen display. If you have a monochrome video board, this state-
ment will be only partially effective. Those colors that contain green will dis-
play as green. Any other color will display as black. If you have a color video
board but are using amonochrome monitor your colors will appear in shades
of gray. (The Z-100 All-in-One model has a green non-glare screen, thus
your colors will appear in shades of green).

Foreground: = Foreground for character color. An unsigned integer in
the range zeroto seven.

Page 8.3

ADVANCED COLOR GRAPHICS

Using Color Graphics

Background: = Background color. An unsigned integer in the range
zerotoseven.

Valid Colors

Black
Blue
Green
Cyan
Red
Magenta
Yellow
White

NO O A WN O

Refer to first the example shown on Page 7.8 to determine if the computer
you are using has a monochrome or color video board.

Rules:

1. Any values entered outside of the range 0-255 will result in an
Illegal Function Call error. Previous values are retained.

2. Foreground color may equal background color. This has the ef-
fect of making any character displayed invisible. Changing the
foreground or background color will make the characters visible
again.

3. Any parameter may be omitted. Omitted parameters assume
the old value.

4, The COLOR statement may end in a comma (,). For example,
COLOR, 7, leave the background unchanged.

Page 84

ADVANCED COLOR GRAPHICS

Using Color Graphics

Example:
10COLOR?7,0 Select white foreground, and black background.
30COLOR6,4 Change foreground to yellow, background to red.

40COLOR,6 Changes background to yellow, any characters
displayed on the screen are now invisible.

Example:

10 CLS

20 FOR J=0 to 7

30 COLOR J,7-J: PRINT " "
40 NEXT J

This program will draw eight boxes in the upper left-hand corner of your
screen and will fill them with the eight valid colors. Black is the color of the
lastbox, however itis not visible on a black background.

Even though there are 8 valid colors, the range of numbers you may use
to specify colors is 0 to 255. If you specify a color larger than 7, BASIC will
use MOD 8 to reduce the number to its true value.

Page 8.5

ADVANCED COLOR GRAPHICS

LINE, CIRCLE and PAINT Statements

BRIEF

Three powerful graphic statements that Z-BASIC uses to create graphic im-
agesonthe screen are the LINE, CIRCLE, and PAINT statements.

The LINE statement permits the drawing of lines in absolute and relative lo-
cations on the screen. It can also be used to make boxes and filled boxes.

Format: LINE [(X1,Y1)]-(XR,Y2) [,[attribute]] [,b[f]]

The CIRCLE statement draws an ellipse with a center and radius as
specified by the arguments.

Format: CIRCLE (X center,Y center),radius
[,attribute[,start,end[,aspect]]]

The PAINT statement is used to fill graphic figured with the specified PAINT
attribute, until it reaches the specified border attribute.

Format: PAINT (X start,Y start)[,paint attribute
[.borderattribute]]

Details
THELINESTATEMENT

LINE is the most powerful of the graphic statements. It allows a group of
pixels to be controlled with a single statement. A pixel is the smallest point
that can be plotted on the screen.

The simplest form of line is:

LINE -(X2,Y2)

This will draw a line from the last point referenced to the point (X2,Y2) in
the foreground attribute. The foreground attribute is the default attribute.

Page 8.6

ADVANGED COLOR GRAPHICS

LINE, CIRCLE and PAINT Statements

We caninclude a starting point also:

LINE (0,0)-(319,199) ‘draw diagonal line down screen
LINE (0,100)—(319,100) ‘draw bar across screen

We can append a color argument to draw the line in green, which is color
2:

LINE (10,10)-(20,20),2 ‘'draw in color 2!

10 CLS
20 LINE —(RND*639,RND*224) ,RND*7
30 GOTO 20 'draw lines forever using random attribute

The final argument to LINE is “,b” — box or “,bf” — filled box. The syntax
indicates we can leave out the attribute argument and include the final argu-
ment as follows:

LINE (0,0)-(100,100),,b ‘*draw box in foreground attribute
orthe attribute can be included:
LINE (0,0)-(200,200),2,bf ‘filled box attribute 2

The “b” tells Z-BASIC to draw a rectangle with the points (X1,Y1) and
(X2,Y2) as opposite corners. This avoids using four LINE statements:

10 LINE (0,0)-(0,224),1
20 LINE (0,224)-(639,224),1
30 LINE (639,224)-(639,0),1
40 LINE (639,0)-(0,0),1

This program uses the four corner points of the screen (as mentioned in
Chapter 7) and forms a border around the screen. Using the box option of
the LINE statement, the equivalent function could be performed with the fol-
lowing statement:

10 LINE (0,0)-(639,224),1,b

The “,bf” means draw the same rectangle as “,b” but also fill in the interior
points with the selected attribute.

Page 8.7

ADVANCED COLOR GRAPHICS

When out of range coordinates are given in the LINE command, the coordi-
nate which is out of range is given the closest legal value. Negative values
become zero, Y values greater than 224 become 224 and X values greater
than 639 become 639.

STEP (X offset,Y offset), which is the relative form may be used in any of
the graphic statements that reference absolute points. Note that all of the
graphic statements and functions update the last point referenced. In a line
statement, if the relative form is used on the second coordinate, it is relative
to thefirst coordinate.

Example:

10 PSET (100,100)
20 LINE STEP (20,20)-STEP (50,50}

In this example the PSET statement was used to turn on a point at (100,100).
Then a line was drawn from the last point referenced (100,100). The STEP
offset of (20,20) tells BASIC to begin the line at point (120,120). The STEP
offset of (50,50) tells BASIC to end the line at (170,170).

Example:

10 CLS
20 LINE-(RND*639,RND*224),RND*7,bf
30 GOTO 20

In this example, the LINE statement is used to draw filled boxes at random
locations on the screen. Since the color argument is also randomized, these
boxes will appear in various shades or colors. This example is also a con-
tinuous loop. You will have to press CTRL-C to break program execution.

Page 8.8

ADVANCED COLOR GRAPHIGCS

LINE, CIRCLE and PAINT Statements

As a final example in our discussion of the LINE statement, we have in-
cluded a program that creates a bar graph.

10 CLS

20 Y=200

30 X=50

40 XI=50

50 LINE (0,0)-(640,215),2,B ‘border
60 LINE (X-5,Y)—-(X-5,10) 'y axis
70 LINE (X—-5,Y)-(600,Y) ‘X axis
80 FOR J=1 TO 10

90 READ PT

100 YPT=100-PT

110 LINE (X,Y)-(X+20,YPT),1,BF

120 X=X+XI

130 NEXTJ

140 END

150 DATA 10, 20, 15, 25, 30, 22, 30, 60, 70, 85

In this program the screen is cleared, and the variables Y, X, and X1 are in-
itialized. Program line 50 is a LINE statement with the box option included
to make a green border around the graph. Program lines 60 and 70 are lines
thatform the y and x axis respectively.

Line 80 is the beginning of the FOR... NEXT loop that tells BASIC it will per-
form the following function 10 times. Line 90 tells BASIC to read the DATA
statement in line 150 to determine what percent value each bar in the graph
should reflect.

Line 100 determines the height each bar will be. If you were drawing a bar
graph without the assistance of a computer, your zero mark would naturally
start in the lower left corner. However, as we mentioned before, the zero
point on the computer is in the top left corner. Thus itis necessary to change
the point of orientation, which is what line 100 is actually doing.

Line 110 draws filled boxes of different lengths, reflecting the percentages
in the DATA statement. Line 120 sets the distance between each bar of the
graph. Line 130 ends the FOR NEXT loop, and 140 ends the program.

Page 8.9

ADVANCED COLOR GRAPHICS

LINE, CIRCLE

THE CIRCLE STATEMENT

The CIRCLE statement draws an ellipse with a center and radius as indi-
cated by the first of its arguments.

Format: CIRCLE (X center,Y center),radius
[,attribute[,start,end[,aspect]]]

In the format, the X and Y are the coordinates of the center point of the el-
lipse. Radius is the distance from the center to the edge of the circle. Attri-
bute is an optional argument that determines the color of the circle. The de-
fault attribute is the foreground color.

The start, end parameters are angles described in radians where 6.28 is the
total amount of radians in the circle. 6.28=2*Pl. Pl is equal to 3.14159,
which is equal to half of a circle. Figure 8.1 illustrates the angles of acircle.

~|o
—

1l
o
(=3
°

0
2%PI = 360°

PI = 180°

_— - ————— =

g*PI: 2400

Figure8.1.

Angles of aCircle

The start and end angle parameters are radian arguments between 0 and

2* Pl which allow you to specify where drawing of the ellipse will begin and
end.

If the start and/or end angle is negative, the ellipse will be connected
to the center point with a line. The angles will be treated as if they were
positive (Note that this is different than adding 2*Pl). The start angle may
be less than the end angle, but neither may be 0 (the equivalent of zero
— avery small number — may be used in its place).

Page 8.10

ADVANCED COLOR GRAPHICS

Example:

10 CIRCLE (100,100),50,7,-.001,-1.5707

This program line will draw a pie slice as illustrated below. Note that 1.5707
is half of PI.

The aspect ratio describes the ratio of the X radius to the Y radius. It
determines what kind of ellipse is to be drawn. The default aspect ratio
is .4843 and will give a visual circle assuming a standard monitor screen
aspect ratio of 7/16.

If the aspect ratio is less than one, then the radius is given in X-pixels. If it
is greater than one, the radius is given in Y-pixels. The standard relative no-
tation may be used to specify the center point.

10 CLS
20 CIRCLE (320,110)},200*RND,7,0,2%3.14159,RND
30 GOTO 20

This example clears the screen and draws continuous circles on the screen.
The radius is 200 * a random number. The start angle is 0, and the end angle
is 2xPl or 360°. The aspect ratio is a random number from 1-0.

NOTE: Make sure your background color is not 7 before running this pro-
gram, otherwise the circles will not be visible.

Example:

10 RAD=5

20 CLS

30 CIRCLE (320,110),RAD,7,0,2%3.14159,
(RND+RND+RND+RND) /4

40 RAD=RAD+7.5

50 IF RAD>175 THEN END ELSE 30

This example is similar to the one above except instead of a random radius,
the radius is assigned the value of 5 and incremented by 7.5 each time an
ellipse is drawn. When the radius becomes larger than 175, the program
ends.

Page 8.11

ADVANCED COLOR GRAPHICS

ts

Notice in line 30 four RND functions are added together and then divided
by 4 to get an average random number. This helps decrease the variance
of the aspect ratio. More often than not the aspect ratio will be close to .5
since RND is anumber betweenOand 1.

For our last example of the CIRCLE statement, this program will draw two
cone shaped figures on the screen.

10 CLS: D=1
20 X=78: ¥Y=112
30 RAD=73: ASP=.9
40 AGl1=0
50 AG2 =2%3.14159
60 C=7
70 CIRCLE (X,Y),RAD,C,6AGl,6AG2,ASP
80 RAD=RAD-3*D
90 X=X+10
100 IF RAD<2 THEN D=-D:
GOTO 80 ELSE IF RAD>73 AND D=-1 THEN 120 ELSE 70
110 END

The program begins by clearing the screen and assigning the variable D a
value of 1, X=78, Y=112, radius=73, and the aspect ratio = .9. Angle 1=0
and angle 2=2"PI. The foreground color is number 7 which is white.

Line 70 tells BASIC to draw an ellipse using the previously assigned vari-
ables. Line 80 says each time an ellipse is drawn, decrease the radius by
—3. Decreasing the radius by —3 means the ellipse will get smaliler and
smaller.

Line 90 tells BASIC to increment the value of X by 10 for every ellipse drawn.
If you could connect the center point of each ellipse you would find they form
astraightline.

Line 100 says if the radius is less than two, then D becomes negative. When
— D is muitiplied by — 1 and added to RAD, the result is a positive number
and the ellipses begin to get larger as the radius increases.

Line 100 then tells BASIC to continue drawing ellipses until the radius is
largerthan 73and D is equalto — 1.

Page 8.12

ADVANCED COLOR GRAPHICS

THE PAINT STATEMENT

The PAINT statement will fill in any graphic figure with the attribute you
specify until it reaches the specified border attribute of that figure. If no paint
attribute is given, PAINT will default to the foreground attribute. If the border
attribute is not given, it defaults to the PAINT attribute.

Format: PAINT (X start,Y start)[,paint attribute
[,borderattribute]]

For example, you might want to fill in a circle of attribute one with attribute
two. Visually, this could mean a green ball with a blue border.

10 CLS
20 CIRCLE (320,112),100,1
30 PAINT (300,100),2,1

This example draws a circle with a center point of (320,112) and a radius
of 100, in the color blue. A point within that circle is selected (300,100). The
circle is then painted with the color green from that point, until it reaches the
blue border.

If the border attribute is not equal to the foreground attribute, (the color the
figure is drawn in) PAINT will never see the border and will fill the entire
screen with the PAINT attribute.

A problem that commonly occurs when using the PAINT statement s “holes”
in the border that permit the PAINT to seep out and place a color in undesira-
ble places. You must be sure your coordinates are correct and all of the
points that make up your boundaries are included in your graphic statement.

PAINT must start on a non-border poi'nt, otherwise PAINT will have no ef-
fect.

Page 8.13

ADVANCED COLOR GRAPHICS

The PAINT statement can be used with other graphic statements.

Example:

10 CLS: LINE (0,0)-(100,200),4,B
20 PRESET (100,100)

30 LINE (200,0)-(300,200),4,B

40 LINE (100,90)-(200,90),4

50 PRESET (200,100)

60 LINE (100,110)-(200,110),4

70 PAINT (1,1),1,4

This example will draw two retangular boxes down the screen and a smaller
rectangle in the middle. Then it paints the boxes blue until it gets to the red
border. PRESET is used to turn off a point within the graphic to begin paint-
ing from.

PAINT can fill any figure, but painting “jagged” edges or very complex fig-
ures may result in an out of Memory error. If this happens, you must use the
CLEAR statement to increase the amount of stack space available.

Page 8.14

ADVANCED COLOR GRAPHICS

GET, PUT, and DRAW Statements

BRIEF

The DRAW statement combines many of the capabilities of the other
graphic statements into a graphics macro language that permits the drawing
of graphic images on the screen.

Format: DRAW<"stringexpression">

After your graphic image is drawn you may want to use the GET, PUT state-
ments to transfer the image to and from the screen.

Format: GET (X1,Y1)-(X2,Y2) ,arrayname
Format: PUT (X1,Y1) ,array[,actionverb]

The GET and PUT statements are also used for computer animation and
for other special effects involving moving objects on the screen.

Details
THE DRAW STATEMENT

The DRAW statement combines most of the capabilities of the other
graphics statements into an easy-to-use object definition language called
Graphics Macro Language ®. A GML command is a single character within
a string, optionally followed by one or more arguments.

Format: DRAW<"stringexpression">

The DRAW statement can be assigned to a string expression, in the follow-
ing manner:

10 A$="“U2L2D2R2”
20 DRAW A$

Page 8.15

ADVANCED COLOR GRAPHICS

If a DRAW statement is assigned in this manner, you could use this move-
ment sequence in another place in your program without having to input the
entire DRAW statement.

The DRAW statement, when used with other graphic statements will begin
drawing at the last point referenced. When used with the CIRCLE statement,
it will begin drawing at the center point of the circle.

MOVEMENT COMMANDS

Each of the following movement commands begin movement from the “cur-
rent graphics position”. This is usually the coordinate of the last graphics
point referenced with another GML command, LINE, or PSET.

U [<n>] Move up (scale factor *N) points
D [<n>] Move down

L [<n>] Move left

R [<n>] Move right

E [<n>] Move diagonally up and right

H [<n>] Move diagonally up and left

G [<n>] Move diagonally down and left
F [<n>] Move diagonally down and right

These commands move one unit if no argument is supplied. The number
of points (n) always follows the command.

Example:
10 CLS
20 LINE (100,0)-(100,100) ‘draw a line
30 B$="H10"

40 DRAW B$ ‘draw a diagonal line up and left 5 points
RUN

Page 8.16

ADVANCED COLOR GRAPHICS

Absolute and Relative Moves

M <X,Y> Move to an absolute or relative address. As in other graphic state-
ments, the DRAW statements can be used in absolute and relative forms.
Relativity is indicated in the following manner:

If X is preceded by a “+” or “-*, X and Y are added to the current graphics
position, and connected to the current position with a line. Otherwise, a line
is drawn to point X,Y from the current position.

Example:

10 CLS

20 LINE (100,0)-(100,100) ‘draw a line
30 B$="M75,75 U1l0O"

40 DRAW B$

Ul0 =175, 65 -—100,0

75,75
«——100, 100
This example tells BASIC to draw a line from (100,0) to (100,100) and from

that point (100,100) draw a line to the absolute address of (75,75) then draw
alineup 10 points (75,65). If you inserted a “+” signin line 30:

30B$=“M+75,75U10"

the second line would be added to the current graphic position. The second
line would be drawn from (100,100) to (175,175) and the last point would
be at point (175,165). If you inserted a“ — " signinline 30:

Page 8.17

ADVANCED COLOR GRAPHICS

30B$="M-75,75U10

BASIC would draw a line similar to the one above except this line would be
in another direction. The second line would be drawn from (100,100) to
(25,175) and the last point would be at point (25,165). The “+” and the “—"
indicate relative starting points.

A[<n>] Set angle n. n may range from zero to three, where zero is
zero degrees, one is 90, two is 180, and three is 270. Figures
rotated 90 or 270 degrees are scaled so that they will appear
the same size as with zero or 180 degrees on a monitor screen
with the standard aspect ratio of 31/64. In the following example
we will demonstrate how the angle command is used to rotate
a box to different positions in relationship to the reference point
(100,100).

Example:

10 CLS

20 LINE (100,0)-(100,100)
25 LINE (0,100)-(100,100)
30 B$="U1l0 R50 D10 L50Q"
40 DRAW B$

This example draws a X and Y axis, and using 100,100 as the starting point,
draws a small box just to the right of the reference point as shown below.

[]

Page 8.18

ADVANCED COLOR GRAPHICS
ET, PUT, and DRAW Statements

If an angle command AQ was added to line 30,
30B$=“A0U10R50D10L50”

the box would appear in the same position it was in the previous example,
because zero is the default angle. If A1 was substituted in line 30,

30B$="“A1U10R50 D10L50"

the box would be rotated 90 degrees and appear as shown below.

If A2 was substituted in line 30,
30B$=“A2U10R50D10L50”

the box would be rotated 180 degrees and appear as shown below.

——

Finally, A3 would cause the box to be rotated 270 degrees and appear as
shown below.

Page 8.19

ADVANCED COLOR GRAPHICS

PREFIXCOMMANDS

B Move but don'’t plot any points. The B command permits you to move to
a different location without plotting any points. If you inserted a B in front of
amovementcommand in line 30:

N\ 30 B$ ="BM75,75U10”

(NOT DRAWN)/'\\\

The line created by M75,75 would not be drawn.

N Move and return to original position. If the N prefix were added in line 30
you could move back to the original position without specifying the original
coordinates.

30 B$ = “NM75,75U10R50"

i ———

L\(ORIGINAL POSITION}

The M75,75 was drawn and the cursor returned to the original position
(100,100) and then moved up ten. R50 (right 50) was included to demon-
strate where the next line would be drawn from.

C[<N>] Set the color. Using the same example, C4 was inserted before
the R50 to set thatline in the color red.

30 B$ =“NM75,75U10C4R50”

\ :(THISlINEIS RED)

Note: Remember to place the prefix commands in front of the movement

commands, otherwise you will receive an lllegal function call error message.
Forexample,

30 B$ =“NM75,75U10RC450”

would yield an error because the color prefix is in the middle of R50.

Page 8.20

ADVANCED COLOR GRAPHICS

nits

As you can see from these examples the angle command rotates the figure
in 90 degree increments using the last point referenced as a starting point.
Remember to change your angle back to the default angle if you wish to con-
tinue programming after you practice using this command. BASIC remem-
bers the last angle used and this will affect any design that follows.

S<n>

Example:

10
20
30
40
50
60
70

CLS

Set scale factor. n may range from zero to 255. The
scale command is used to increase or decrease the
size of a figure by the scale factor specified. The
scale factor multiplied by the distances given with
U,D,L,R or relative M commands is used to get the
actual distance traveled.

A scale factor of SO returns the orginal size of the fig-
ure. If you wanted the figure to be smaller than its or-
ginal size, you would select a size from one-three. S4
will also return the original size, and anything larger
than S4 will return a larger figure.

This program draws A$ 35 times, each time incre-
menting the scale factorby 1.

As with the angle command, the scale command
must also be returned to SO before programming
continues.

PSET (0,200),7
A$ ="U20R20D20L20"
FOR J=1 to 35
DRAW "S"+STR$(J)

DRAW A$
NEXT J

Page 8.21

ADVANCED COLOR GRAPHICS

GET, PUT, and DRA?

X <string;> Execute substring (not supported by BASIC com-
piler). This command allows you to execute a second
substring from a string, much like GOSUB in BASIC.
You can have one string execute another, which exe-
cutes a third, and so on.

Numeric arguments can be constants like “123” or
“variable”, where variable is the name of a variable.
(Not supported by BASIC compiler).

Example:

10 CLS

20 PSET (20,20),7

30 A$="U20R20D20L20"

50 DRAW "S1XA$;S10XA$;S20XA$; S50XA$;S100XA%;"

This program executes the substring A$ in 5 different
sizes.

Page 8.22

ADVANCED COLOR GRAPHICS

GET AND PUT STATEMENTS

The GET and PUT statements are used to transfer graphic images to and
from the screen and also make possible animation and high-speed object
motion.

The GET statement transfers the screen image into an array. The image is
contained within the boundaries of a rectangle defined by the specified
points. The rectangle is defined the same way as the rectangle drawn by
the LINE statement using the “,B” option. See Page 8.6.

The array is simply used as a place to hold the image and can be any type
except string. It must be dimensioned large enough to hold the entire image.

The PUT statement transfers the image stored in the array onto the screen.
The specified point is the coordinate of the top left corner of the image. An
Illegal Function Call error will result if the image to be transferred is too
large to fit on the screen.

The storage format in an array is as follows:

2 bytes giving X dimensionin BITS

2bytes giving Y dimension

The array dataitself
The data for each row of pixels is left justified on a byte boundary, so if there
are less than a multiple of eight bits stored, the rest of the byte will be filled
out with zeros. The formula used to determine required array size in bytes
is:
4+INT((X+7)/8)*3"Y
WHERE: bits per pixelis 3

X = number of columns to be stored

Y = number of rows to be stored

Page 8.23

ADVANCED COLOR GRAPHICS

GET, PUT, and DRAW Statements

The bytes per element of an array are:

2forinteger %
4 for single-precision !
8 for double-precision #

Following is a step-by-step procedure for using the GET PUT statements.

1. Create a graphic image using the DRAW statement and or any
of the other graphic statements.

2. Calculate the size of the array using the formula mentioned on
the preceding page.

3. GETtheimage andstoreitinto an array.
4. PUT the image on the screen in a new location.
5. RUN the program to see the image move to the new location.

10 CLS

20 PRINT: PRINT "AB"

30 LINE(0,0)-(20,20),3,B
40 DIM A#(25)

45 FOR J=1 TO 200:NEXT

50 GET (0,0)-(20,20}, A#
55 FOR J=1 TO 200:NEXT

60 CLS

70 PUT (25,25),A#

This program clears the screen, prints a blank line and then prints “AB”. In
line 30 a cyan box is drawn, 21 by 21 pixels in size. The value of 21 is used
in the formula, not 20. This is because coordinates start at the 0,0 address.

The rectangle is (line (0,0)-(20,20)) 21 by 21 pixels. In this example both X
andY are 21.

After the graphic image is drawn, you must determine the size and type of
array it is to be stored in. Arrays can be of three types, integer, single-preci-
sion or double-precision. In this program, double-precision is used as indi-
cated by the pound sign (#).

Page 8.24

ADVANGCED COLOR GRAPHICS

To determine the size the array should be, use the formula repeated below:
4+INT((X+7)/8)*3"Y
4+INT((21+7)/8)*3"21 = 193

The result of this calculation indicates you must have an array large
enough to hole 193 bytes. The next question is, how many bytes per
element will be in this array? If you declared the array to be integer, (%)
you would compute 193/2. If the array were declared single-precision,
(!) you would compute 193/4. This program declares the array double-pre-
cision, (#) thus you compute 193/8 which is 24.125.

The result of this division should be rounded up to the next largest whole
number. In this case the array is dimensioned to 25 bytes, (see line 40 on
the previous page).

Line 40 dimensions the array to 25 bytes per element.

Line 45 and 55 are pauses included so that you will have time to see what
is happening.

Line 50 uses the GET statement to get the objects found within the retangu-
lar boundaries and records the image in memory.

Line 60 clears the screen. Line 70 GETs the image and places it on the
screen at location (25,25).

ACTION VERBS
The action verb is used to interact the transferred image with the image al-
ready on the screen. PSET transfers the data onto the screen verbatum.

Other possible action verbs include: PRESET, AND, OR, XOR.

PRESET is the same as PSET except that a negative image (black on white)
is produced.

Page 8.25

AND is used when you want to transfer the image only if an image already
exists under the transferred image.

ORis used to superimpose the image onto the existingimage.

XOR is a special mode often used for animation. XOR causes the points on
the screen to be inverted where a point exists in the array image. This be-
havior is exactly like the cursor on the screen. XOR has a unique property
that makes it especially useful for animation: when an image is PUT against
a complex background twice, the background is restored unchanged. This
allows you to move an object around the screen without obliterating the
background.

The default action verb is XOR.

It is possible to GET an image in one mode and put it in another, although
the effect may be quite strange because of the way points are represented
in each mode.
Animation
Animation of an object is usually performed as outlined below:

1. PUT the object(s) on the screen.

2. Recalculate the new position of the object(s).

3. PUT the object(s) on the screen a second time at the old loca-
tion(s) to remove the old image(s).

4, Goto step one, this time, PUT the object(s) at the new location.

Movement done this way will leave the background unchanged. Flicker can
be reduced by minimizing the time between steps four and one, and by mak-
ing sure that there is enough time delay between one and three. If more than

one object is being animated, every object should be processed at once, one
stepatatime.

Page 8.26

ADVANCED COLOR GRAPHICS

tat

T, ents

Ifitis notimportant to preserve the background, animation can be performed
using the PSET action verb. The idea is to leave a border around the image
as large or larger than the maximum distance the object will move. Thus,
when an object is moved, this border will effectively erase any points. This
method may be desirable since only one PUT is required to move an object
(although you must PUT a larger image).

It is possible to examine the X and Y dimensions and even the data itself
if an integer array is used. The X dimension is in element zero of the array,
and the Y dimension is found in element one. Integers are stored low byte
first, then high byte, but the data is transferred high byte first (leftmost) and
then low byte.

The contents of the array after a GET will be meaningless when interpreted
directly unless the array is of type integer and you design a special program
that allows you to examine the contents of an array. We have included such
a program on the next page for the convenience of the experienced user.
For additional information on Arrays see Page 5.13.

Page 8.27

ADVANCED COLOR GRAPHICS

10

20

30
35

40
50

60

61

65

66

80

90
100

110

115

120

130

140
150
160
170
180

190
200

atements

! Character Image display program
CLEAR 100 * Clear some string space
INPUT"Character :",C$ ' Get the character to be imaged
GOSUB 480’ Sets up binary conversion string table
INPUT"Color Number <7>:",R ' Get the characters' color
IF R<1l OR R>6

THEN R=7 ' Default color when none specified
INPUT"Positive or Negative <P>:" I§ '

Get Image transformation
IF I$="" OR I$="P" OR I$="p"

THEN I=1
ELSE I=0 ' Default no-transformation
INPUT"Mask 0,1,None <None>" M§ ' Masking bit for string edit
IF M$§<>"0" AND M$<>"1"
THEN M$="" ' Default Masking bit
CLS ' Clear the Screen
COLOR R ' Set the character's color
DIM P0O0%(19),P01%(19),P02%(5) ' Set aside some array space
PRINT C§ ' Print the character in the upper
left corner of the screen
COLOR 7 ! Change color to seven
GET(7,8)-(0,0),P00% ' Copy the image of the character into
the image array
IF I=0
THEN PUT(0,0),P00%, PRESET:
GET(0,0)—(7,8),P00% ' If a negative image was requested,
copy the negative image into the array
PRINT ' Display the images' X and Y coordinates
PRINT "Pixels","Scan"
PRINT "Across","Lines"
PRINT PO0%(0)/4,P00%(1)
PRINT '
PRINT "Blue","Red","Green" ' Display headings for color planes

PRINT '

Page 8.28

ADVANCED COLOR GRAPHICS

210 FOR Y=2 TO 16 STEP 3 ' Set up loop for store/display
220 X=Y

230 GOSUB 300 ' Go store image

240 GOSUB 380 ' Edit image

250 GOSUB 440 Go display image

260 NEXT Y ' Store/display loop-back

270 END ' Termination of program

280 ‘'Subroutines
290 ! Store image into String array

300 XDEC=PO0%(X):GOSUB 570:P02%(0) =RIGHT$(STRING$(16,48) +BIN$, 8)
310 POR$(1)=LEFT$(RIGHTH(STRING$(16,48)+BIN$, 16),8)

320 XDEC=PO0%(X+1):GOSUB 570:P02$(2) =RIGHT$ (STRING$(16,48) +BIN$, 8)
330 POR%(3) =LEFT$ (RIGHT$ (STRINGS$ (16, 48) +BIN$, 16), 8)

340 XDEC=PO0%(X+2):GOSUB 570:P02$(4) =RIGHT$(STRING$(16,48) +BINE, 8)
350 POR%(5) =LEFT$(RIGHT$(STRING$(16,48) =BIN$, 16),8)

360 RETURN:' END OF STORE IMAGE SUBROUTINE

370" Edit String array

380 IF M$=""

THEN 420

385 FOR J=0 TO 5

390 K=INSTR(PO2$(J),M$)

400 IF K<>0
THEN MID$(POR2$(J),.K,1)=" ":
GOTO 390

410 NEXT J

420 RETURN ' End of Edit String subroutine

430 ! Display String array

440 PRINT PO2$(0),P02%(1),P02%(2)
450 IF X+2=16

THEN 470
460 PRINT POR$(3),P02%(4),P02%(5)
470 RETURN ' End of Display String array subroutine

480 B$(0)="000"

490 B$(1)="001"

500 B$(2)="010"

510 B$(3)="011"

520 B$(4)="100"

530 B$(5)="101"

540 B$(6)="110"

550 B$(7)="111"

560 RETURN

570 DPC$=0CT$(XDEC) :BIN$="":FOR YCOUNT=1 TO LEN(DPC$): 'Convert decimal value to binary stripe
580 Q99 =VAL(MID$(DPC$H,YCOUNT, 1)) :BIN)=BIN$+B$H(Q99) :NEXT YCOUNT
590 RETURN

Page 8.29

ADVANCED COLOR GRAPHICS

T, PUT, and Draw Statements

This is a program that draws a little stickman doing acrobatics. He springs
from platform to platform while doing jumping-jacks. Many of the statements
we have discussed in Z-BASIC are used in this program. The program is
documented with remark statements. Study the program carefully, input the
program on your computer, and then try to make some modifications. You
will find that GET and PUT can be used to make very creative graphic dis-

plays.
10 DIM A# (16) ' Set up array for 1lst stick figure
20 DIM B# (16) Set up array for 2nd stick figure
30 CLS Clear the Screen
40 CIRCLE (5,5),5 ' Draw ‘head' of stick figure
50 DRAW"BMS5, OD2NLSNRSD3NGSNF5" ! Draw 'body' with arms & legs extended
60 GET(0,0)—(10,19) ,A# ' Store image of 1lst figure
70 PRINT:PRINT:PRINT:
PRINT"1st stick figure is set up" ' Print a few blank lines, then the message
80 FOR I=1 TO 777:NEXT I:CLS ' Pause to say figure is set up, then CLS
90 CIRCLE (5,5),5 ° Now draw ‘head' of 2nd figure
100 DRAW"BM5,9D2NM-5,—2NM+5,—2D3NM+2, 5NM-2,5" '
Draw 'body' in a ‘'jumping jacks' position
110 GET(0,0)—(10,19),B# Store image of 2nd stick figure
120 PRINT:PRINT:PRINT:
PRINT"2nd stick figure is set up" 'Print a few blanks, then message
130 FOR I= 1 TO 777:NEXT I:CLS ' Give some time to read message, then CLS
140 LINE (30,45)-(100,0),6,B ' Draw border of acrobatics area
150 LINE (55,20)-(75,20) ' Draw top spring-board
160 LINE (80,45)-(100,45) ' Draw right spring-board
170 LINE (30,45)—(50,45) ' Draw left spring-board
180 FOR Y=25 TO 0 STEP -5
190 IF Y MOD 10 = O THEN GOSUB 310 ELSE GOSUB 350
200 NEXT Y ' These lines make figure go left & up
210 FOR Y=0 TO —-25 STEP -5
220 IF Y MOD 10 = 0 THEN GOSUB 310 ELSE GOSUB 350
230 NEXT Y ! These lines make figure go left & down
240 FOR Y=—25 TO 0 STEP 5
250 IF Y MOD 10 = 0 THEN GOSUB 310 ELSE GOSUB 350
260 NEXT Y ' These lines make figure go right & up
270 FOR Y=0 TO 25 STEP 5
280 IF Y MOD 10 = 0 THEN GOSUB 310 ELSE GOSUB 350 :
290 NEXT Y ' These lines make figure go right & down
300 GOTO 180 ! Program will end if CTRL & C is pressed
310 PUT(60+Y,ABS(Y)),A#,XOR ' Subroutine to put lst figure on screen
320 FOR I=1 TO 75:NEXT I ' pause for a short time
330 PUT(60+Y,ABS(Y)),A#,XOR and then erase 1lst figure
340 RETURN
350 PUT(60+Y,ABS(Y)),B#, XOR ' Subroutine to put 2nd figure on screen
360 FOR I=1 TO 75:NEXT I ' pause for a short time
370 PUT(60+Y,ABS(Y)),B#,X0R ' and then erase 2nd figure
380 RETURN

Page 8.30

ADVANCED COLOR GRAPHICS

Z-BASIC Summary Program

BRIEF

Followin

g is a summary program that uses Z-BASIC graphic commands. It

is designed to demonstrate the ease and flexibilty of Z-BASIC. The program
segments are fairly simple and you should have no problems determining
what is actually going on. If you do have problems, refer to the appropriate

sections

inthe manual and review statement(s) that are causing confusion.

The program is divided into two parts. DEMO | demonstrates the statements
relative to plotting coordinates. DEMO Il demonstrates the commands rela-
tive to advanced graphics. Again, it will probably be most helpful if you input

the prog

ram, note the visual effect of the program segments, and then try

some modifications of your own.

Details

l]
10
20
30

40
50

100
110
120
130
200

210
220
230
240
250
300

310

320

ZBASIC Demo I (c)1982 Zenith Data Systems
DEFINT I-N:RANDOMIZE TIME/DATE
CLS
FOR J= 0 TO 7 : PSET (0,0),J: IF POINT (0,0) <> J THEN
COLOR.COMPUTER=0
ELSE NEXT J: COLOR.COMPUTER=1
FOR J=0 TO 7:COLORS(J)=J:NEXT J ' COLORS CONTAINS AVAILABLE COLOR ATTRIB.
IF COLOR.COMPUTER=0 THEN FOR J=1 TO 7:COLORS(J)=7:NEXT J
' BLACK AND LOTS OF WHITE
CLS:PRINT"This is a demonstration of the PSET command....";:GOSUB 10000
CLS:FOR J=1 TO 150: PSET (RND*640,RND*215), COLORS((RND*7)+1):NEXT J
LOCATE 8,10:PRINT"Space...... ":LOCATE 9,10:PRINT"The final frontier..."
GOSUB 10000
CLS:PRINT"This is a demonstration of the PSET and PRESET commands.":
GOSUB 10000:CLS !
DIM A(150,3)
FOR J=1 TO 150 :A(J,1)=RND*640:A(J,2)=RND*215:A(J,3)=RND*7+1
PSET (A(J,1),A(J,2)),COLORS(A(J,3)): NEXT J
FOR J=1 TO 150: PRESET (A(J,1),A(J,2)),COLORS(0):NEXT J
ERASE A
CLS:PRINT"Here is a demonstration of the POINT command w/ PSET.":
GOSUB 10000:CLS
FOR K=1 TO 5:IF K=1 THEN
FOR J=100 TO 200: PSET (J,100),COLORS(4}:
PSET (J,200),COLORS(4):
PSET (100,J),COLORS(4):
PSET (200,J),COLORS(4): NEXT J
X=101+(2*K):Y=101

Page 8.31

ADVANCED COLOR GRAPHICS

330 IF POINT (X,Y)=COLORS(4) THEN LOCATE K,20:PRINT"I hit the
wall!":GOTO 390

340 PSET (X,Y),COLORS(K):Y=Y+1:X=X+1
350 GOTO 330
390 NEXT K:GOSUB 10000
400 CLS:PRINT"Here is a demonstration of the CSRLIN and POS com—
mands."
405 GOSUB 10000: CLS
410 CLS: FOR K=1 TO 5:ROW=INT(RND*23)+1:COL=INT(79*RND) +1
420 LOCATE ROW,COL:PRINT”*";:
NEWCOL=P0OS(0) —~1:
PRINT:PRINT"The star is at row";ROW;"and column";NEWCOL
430 GOSUB 10000:CLS:NEXT K
500 CLS
510 PRINT"Would you like to continue on with DEMO II";
520 INPUT A$:A$=LEFT$(A$,1)
530 IF A$="Y" OR A$="y" THEN RUN"DEMOII"
540 IF A$="n" OR A$="N" THEN CLS:PRINT"Thanks for watching.":END
550 PRINT"Please answer Yes or NO!":GOTO 510

10000 FOR J=1 TO 1000:TEMP.RND=RND:

IF INKEY$=CHR$(13) THEN RETURN
ELSE NEXT J: RETURN

Page 8.32

ADVANCED COLOR GRAPHICS

Z-BASIC Summary Program

1' ZBASIC Demo II (c)1982 Zenith Data Systems
10 DEFINT I-N:RANDOMIZE TIME/DATE

20 CLS
30 FOR J= 0 TO 7 : PSET (0,0),J: IF POINT (0,0) <> J THEN

COLOR.COMPUTER=0
ELSE NEXT J: COLOR.COMPUTER=1

40 FOR J=0 TO 7:COLORS(J)=J:NEXT J ‘' COLORS CONTAINS AVAILABLE COLOR ATTRIB.
50 IF COLOR.COMPUTER=0 THEN FOR J=1 TO 7:COLORS(J):=7:NEXT J:

' BLACK AND LOTS OF WHITE

100 CLS:PRINT"This is an example of the COLOR command."
IF COLOR.COMPUTER=0 THEN

110
120
130
200
210

220

230

240

300

310
320
330
340

PRINT"Sorry, this isn't very clear on a black and white system."

GOSUB 10000:CLS:BG=7:FOR J=0 TO 7:COLOR COLORS(J),COLORS(BG)
PRINT "This line is in color #";COLORS(J)

CLS:
CLS:

CLS:

CLS:

CLS:

CLS:

CLS:
CLS:
CLS:
CLS:

;"with a background color #";COLORS(BG):
BG=BG—1:NEXT J:GOSUB 10000
PRINT"The following are examples of the four LINE usages.'":GOSUB 10000

FOR J=1 TO 10: LINE —(RND*640,RND*215), COLORS(RND*7):NEXT J:GOSUB 10000
FOR J=1 TO 10:

LINE (RND*640,RND*215)~(RND*640,RND*215), COLORS(RND*7) :NEXT J:

GOSuUB 10000

FOR J= 1 TO 10:LINE (RND*640,RND*215)-(RND*640,RND*215), COLORS(RND*7),B:
NEXT J:GOSUB 10000

FOR J= 1 TO 10:LINE (RND*640,RND*215)—(RND*640,RND*215), COLORS(RND*7) ,BF:
NEXT J:GOSUB 10000
PRINT"The following are examples of the four CIRCLE usages.":
GOSUB 10000
CIRCLE (320,110),100,COLORS(RND*6)+1:G0SUB 10000
CIRCLE (320,110),100,COLORS(RND*6)+1, —2*3.14159,—-RND*2*3:G0OSUB 10000
CIRCLE {(320,110),100,COLORS(RND*6)+1, , ,.1:GOSUB 10000
CIRCLE (320,110),100,COLORS(RND*6)+1, —2*3.14158,-RND*2*3.1 , .1:GOSUB 10000

Page 8.33

ADVANCED COLOR GRAPHICS

400
405
410
415
420
425
430
435
440
445
450
500
510

520

530

540

550

600
610
620
630
640
650
660
670
680
690
700
710
720

Z-BASIC Summary Program

CLS:PRINT"The following are examples of GET and PUT":GOSUB 10000
DIM H%(13),E%(13),L%(13),0%(13): 'Dimension the arrays used for GET & PUT
CLS:PRINT"H":GET(2,1)—(6,7),H%:' Get H
CLS:PRINT"e":GET(2,1)-(6,7),E%:' Get e
CLS:PRINT"1":GET(2,1)-(6,7),L%:"' Get 1
CLS:PRINT"0":GET(2,1)-(6,7),0%:"' Get o
CLS:FOR 2=1 TO 15:°' Print Hello (slanted) 15 times
X=RND*600 : Y=RND*200
CLS:PUT(X,Y),H%:PUT(X+7,Y+2),E%:PUT(X+14,Y+4),L%
PUT(X+21,Y+6),L%:PUT(X+28,Y+8),0%
GOSUB 10000: NEXT 2
CLS:PRINT"The following are examples of the PAINT command.":GOSUB 10000
CLS: CIRCLE (320,110),50,COLORS(7):PAINT (320,110),COLORS(5),COLORS(7):
GOSUB 10000
CLS: LINE (100,100)—(200,200),COLORS(7),B:
PAINT (101,101),COLORS(2),COLORS(7):GOSUB 10000
CLS:LINE (0,0)-(600,20),COLORS(7),B:LINE —(590,20),COLORS(0):
LINE (590,20)-(590,200),COLORS(7):LINE(600,20)—(600,200),COLORS(7):
LINE (0,200)-(600,215),COLORS(7),B:LINE (599,200)—(590,200),COLORS(0)
LINE (0,200)-(300,20),COLORS(7):LINE (10,200)-(310,20),COLORS(7):
LINE (1,201)-(10,200),COLORS(0):LINE (300,20)-(309,20),COLORS(0}
PAINT (1,1),COLORS(5),COLORS(7):GOSUB 10000

CLS:PRINT"Following is an example of the DRAW statement":GOSUB 10000
DRAW"AOSOBM 320,112" ‘Sets pointer to normal
DOR=40' Size of door

ROOF$="ESOR120F50"

LSIDE$="BL100U65XRO0OF$;" ' Left side of house
DRAW"BM+100,23D65U20" ' Right side of house
DRAW"BM300, 200U=DOR; R=DOR; D=DOR; L=DOR; XLSIDE$; "
CIRCLE(305,185),2,7' Doornob

DRAW"BM234, 145D14L12U15R12" ' Left window
DRAW"BM390, 145 D15L12U15R12" ' Right window
DRAW"BM396, 110US0L45D25" ' Chimney

PRINT "HOME SWEET HOME"

LINE (0,0)-(639,224),1,B ' Border

9999 END
10000 FOR J=1 TO 1000:TEMP.RND=RND:

IF INKEY$=CHR$(13) THEN RETURN
ELSE NEXT J: RETURN

CHAPTER 9

Page 9.1

BASIC LANGUAGE SUMMARY

BRIEF

Commands

The command statements used in BASIC are listed below. When entered,
these commands will execute immediately. These commands are often
used in the direct mode. However, with the exception of the CONT com-
mand, they may also be used within a program.

Details

COMMAND

AUTO

BLOAD

BSAVE

CLEAR

CONT

DELETE

EDIT

FILES

KILL

LIST

LLIST

DESCRIPTION

Enables automatic line numbering.
Loads machine language programs into memory.

Saves machine language programs to the specified de-
vice.

Sets all numeric variables to zero and all string variables
to null.

Continues program execution.
Deletes program lines from memory.

Displays the specified line(s) and positions the cursor at
the first digit of the line number.

Displays the names of the files residing on the disk.
Erases specified disk file.
Displays all or part of the program currently in memory.

Lists all or part of the program in memory on the line
printer.

Page 9.2

BASIC LANGUAGE SUMMARY

Commands

COMMAND DESCRIPTION

LOAD Loads a file from the disk into memory.

MERGE Merges an ASCII disk program file into the program cur-
rently in memory.

NAME Renames adisk file.

NEW Deletes the program currently in memory and clears all
variables.

RENUM Renumbers program lines.

RESET Enables you to exchange a new disk for the disk in the
currentdrive.

RUN Executes the program currently in memory.

SAVE Writes to disk the program currently in memory.

SYSTEM Permits you to exit Z-BASIC and returnto Z-DOS.

TRON/TROFF

Turns trace on and off.

Page 9.3

BASIC LANGUAGE SUMMARY

Statements

BRIEF

The statements available in BASIC can be divided into five functional
groups: Data type definition, Assignment and Allocation, Control, Non I/O,
and I/0. Thefollowing list of BASIC statements are arranged by function.

Details

DATATYPE DEFINITION STATEMENTS

A DEF statement declares that the variable name beginning with a certain
range of letters is of the specified data type. If no data type definition state-
ments are encountered, BASIC assumes all variables without declaration
characters are single-precision variables.

DEFDBL Declares variable as double-precision.
DEFINT Declares variable as an integer.
DEFSNG Declares variable as single-precision.
DEFSTR Declares variable as string data type.

ASSIGNMENT AND ALLOCATION STATEMENTS

Assignment and allocation statements are used to assign values to vari-
ables and allocate the required storage space.

DIM Sets up the maximum values for array variables and al-
locates storage accordingly.

ERASE Removes arrays from a program.

LET Assigns value to a variable.

OPTIONBASE Specifies minimum value for array subscript.

REM Allows explanatory remarks to be inserted in a program.

SWAP Exchanges variable values.

Page 9.4

BASIC LANGUAGE SUMMARY

CONTROL STATEMENTS

Two types of control statements are available in Z-BASIC. One type affects
the sequence of execution, and the other type is used for conditional execu-
tion.

The sequence of execution statements are used to alter the sequence in
which the lines of a program are executed. Normally, execution begins with
the lowest numbered line and continues sequentially, until the highest num-
bered line is reached. The sequence of execution statements allow the pro-
grammer to execute the lines in any sequence that the program logic dic-
tates.

END Terminates program execution.

FOR/NEXT Allows a series of instructions to be performed in a loop
agiven number of times.

GOSUB/RETURN Branches to and returns from a subroutine.

GOTO Branches unconditionally to the specified line number.
ON COM Enables a trap routine for communications device.
GOSuUB

ON ERROR Enables an error trap routine at the specified line
GOTO number.

ON/GOTO Evaluates an expression and branches to one of sev-
and eral specified line numbers.

ON/GOSUB

ON KEY GOSUB Enables atrap routine for a specified key.

RESUME Returns from an error trap routine.

RETURN Returns from subroutine.

STOP Terminates program execution and returns to BASIC
command mode.

WAIT Suspends program execution while monitoring the

status of an input port.

Sequence
of
Execution

Page 9.5

BASIC LANGUAGE SUMMARY

Conditional
Execution

CONDITIONAL EXECUTION STATEMENTS

The conditional execution statements are used to optionally execute a state-
ment or series of statements. The statement(s) will be executed if a certain
condition is met.

IF/THEN/ELSE Makes a decision regarding program flow based on the
result returned by an expression.

WHILE/WEND Executes a series of statements in a loop as long as the
conditionis true.

NON-I/O STATEMENTS
CALL Calls an assembly language subroutine.
CHAIN Loads a program and passes current variables to it.

COM ON/OFF Enables and disables the trapping of communications

activity.

COMMON Passes variables to a CHAINed program.

DATA Stores numeric and string constants.

DATE Returns an integer value representing the day of the
year.

DATES$ Sets or retrieves the current date.

DEF FN Defines numeric or string functions.

DEF SEG Defines current segment of memory.

DEF USR Defines starting address for machine language sub-
routine.

ERROR Simulates the occurance of an error.

KEY Allows function keys to be designated “soft keys”.

KEY LIST Displays soft key assignments currently in effect.

Page 9.6

BASIC LANGUAGE SUMMARY

KEY ON/OFF Turns soft key display on or off.

LOCATE Moves the cursor to the specified position on the
screen.

MID$ Replaces a portion of one string with another string.

NULL Sets the number of nulls to be printed at the end of each
line.

OPENCOM Allocates a buffer for I/O.

RANDOMIZE Reseeds the random number generator.

READ Reads data into specified variables from a DATA state-
ment.

RESTORE Resets DATA pointer so that data may be reread.

TIME Returns an integer value representing the time in sec-
onds.

TIME$ Sets or retrieves the current time.

/O STATEMENTS

BEEP Sounds the speaker.

CLOSE Concludes I/0 to a diskfile.

CLS Clears the screen.

FIELD Defines fields in arandom file buffer.

GET Reads a record from a random disk file into a random
buffer.

INPUT Allows input from the keyboard during program execu-
tion.

INPUT# Reads data items from a sequential file.

Page 9.7

BASIC LANGUAGE SUMMARY

LINE INPUT

LINE INPUT#

LPRINT

LPRINT USING

LSET

OPEN

ouT

PRINT

PRINT USING

PRINT #

PRINT# USING

PUT

RSET

WRITE

WRITE#

Siatements

Allows input of an entire line,(up to 255 characters) to
a string variable without the use of delimiters.

Reads an entire line from afile.
Prints data on the line printer.

Prints data on the printer using the format specified by
string.

Left-justifies a string in a field.

Allows I/0O to a diskfile.

Sends a byte to a machine output port.

Displays data on the screen.

Displays data using the specified format.

Wirites data to a sequential file.

Writes data to a sequential file using specified format.
Writes data from a random file buffer to disk file.
Right-justifies a string in a field.

Outputs data on the screen.

Outputs data to afile.

Page 9.8

BASIC LANGUAGE SUMMARY

Functions

BRIEF

Z-BASIC provides a full set of intrinsic functions for use in your programs.
One group of functions is the arithmetic functions. These functions are refer-
enced by a symbolic name. When they are invoked, they return a single
value which can be either an integer or single-precision data type.

Other functions called mathematical functions are not intrinsic to BASIC, but
can be calculated when necessary with the formulas provided in Appendix
D.

Another category of functions is the string functions which allow you to build
strings, manipulate strings, convert strings, and form substrings.

Additionally, there are special functions available for enhanced program-
ming flexibility.

Details

ARITHMETIC FUNCTIONS

ABS Returns the absolute value.

ATN Returns the arctangent.

CDBL Converts to double-precision.

CINT Convertsto aninteger.

COS Returns the cosine in radians.

CSNG Converts to single-precision.

EXP Calculates the exponential value.

FiX Truncates the decimal part of a specified argument.

INT Returns the largest integer <= the variable.

Page 9.9

BASIC LANGUAGE SUMMARY

Functions

LOG Returns the natural logrithm.

RND Returns random number betweenOand 1.

SGN Returns the sign (+,- or0) of X.

SIN Returns the sine inradians.

SQR Returns the square root.

TAN Returns the tangent.

STRING FUNCTIONS

ASC Returns string to ASCII value conversion.

CHR$ Returns ASClII value to string conversion.

CVI,CVS,CVD Converts string values to numeric values.

EOF Returns-1 (true) if the end of sequential file is
reached.

HEX$ Returns decimal to hexedecimal conversion.

INPUT$ Reads characters from the keyboard.

INSTR Searches for substring.

LEFTS$ Returns leftmost characters.

LEN Returns length of string.

LOC Returns the record number just read or written from
aGET or PUT statement.

LOF Returns the length of the file in bytes.

Page 9.10

BASIC LANGUAGE SUMMARY

Functions

STRING FUNCTIONS

MID$ Returns a substring of string.

MKI$, MKS$, MKD$ Converts numeric values to string values.

OCT$ Converts decimal to octal.

RIGHTS Returns right most characters.

SPACES$ Returns string of spaces.

STR$ Returns string representation.

STRING$ Builds string.

USR Calls Assembly Language Subroutine.

VAL Returns numerical representation of the string.

SPECIAL FUNCTIONS

CSRLIN Returns current line position of the cursor.

DATE Retrieves an integer value representing the current
day as defined by DATES.

FRE Returns the number of bytes in memory that are not
being used by BASIC.

INP Returns input from port.

LPOS Returns the position of the print head.

PEEK Reads a byte from the memory address.

POKE Puts a specified byte into memory at a specified loca-

tion.

Page 9.11

BASIC LANGUAGE SUMMARY

Functions
POINT Reads the attribute value of a pixel from the screen.
POS Returns the current cursor position.
SCREEN Returns the integer value of the specified character.
SPC Prints blanks on the terminal or the line printer.
TAB Spaces to a position of the terminal or line printer.
TIME Retrieves an integer value representing the current

second of the day as defined by TIMES.

VARPTR Returns an address value which can be used to locate
where the variable <variable name> is stored in mem-

ory.

WIDTH LPRINT Sets the printed line width for the printer.

VARIABLES

ERR and ERL Traps an error by returning an error code and line
number associated with an error.

INKEY$ Reads one character from the keyboard.

This provides a summary of the various commands statements, functions,
and variables found in Z-BASIC. They have been listed here to demonstrate
their functional relationship to each other.

In the “Alphabetical Reference Guide”, which follows, you will find each
command, statement, function and variable, along with the arguments, and
details of how to use them in your programs. An argument is a variable upon
whose value the value of a function, command or statement depends. The
arguments for Z-BASIC commands are found in the format statements in
the Briefs that precede the commands, statements, etc.

Page 9.12

BASIC LANGUAGE SUMMARY

Color and Graphic Statements

COLOR

CIRCLE

DRAW

GET

LINE

PAINT

PRESET

PSET

PUT

SCREEN

Selects foreground and background color for screen
display.

Draws an ellipse with a center and radius as specified
by the arguments.

Permits the drawing of graphic images on the screen.
Transfers the screen image into anarray.

Permits the drawing of lines boxes and filled boxes on
the screen.

Fills graphic figures with the specified paint attribute
until it reaches the specified border attribute.

Turns off a point at a specified location on the screen.
Turns on a point at a specified location on the screen.
Transfers image stored in an array onto the screen.

Changes the screen to H-19 graphics mode or reverse
video.

Page 10.1

CHAPTER 10 ALPHABETICAL REFERENCE GUIDE
ABS Function

BRIEF

Format: ABS(X)

Action: Returns the absolute value of the expression X.

Details

The ABS function returns the absolute value of X without regarding the sign
of X. Given a positive value, it returns that value. Given a negative value,
it returns the corresponding positive value.

Example:

PRINT ABS (7*(-5))
35
Ok

Page 10.2

ALPHABETICAL REFERENCE GUIDE

ASC Function

BRIEF
Format: ASC(X$)

Action: Returns a numerical value that is the ASCII code of the first charac-
ter of the string X$.

Details

The system used to represent characters is called ASCIlI (American Stan-
dard Code for Information Interchange). There are 128 possible characters
that correspond to 128 seven-bit codes in the ASCII character set. In BASIC
you have the option of interpreting the seven-bit patterns as the decimal
equivalents.

The job of converting between these two interpretations is performed by the
ASC and CHRS$ functions. CHR$ is covered on Page 10.15. ASC returns
the decimal equivalent of the first character in the string acting as the argu-
ment. The ASC function can only operate on single characters since (like
all functions) it can only return a single result.

If X$ is null, an Il1legal Function Call error message is returned. (See Ap-
pendix C for ASClI codes.)

Example:

10 X$ = “TEST"
20 PRINT ASC(X$)
RUN

84

0k

See the CHRS$ function Page 10.15 for ASCII-to-string conversion.

Page 10.3

ALPHABETICAL REFERENCE GUIDE

ATN Function

BRIEF

Format: ATN(X)

Action: Returns the arctangent of X in radians.

Details

The ATN function (arctangent) is the inverse function of the tangent (TAN).
If Y is the tangent of zero, then zero is the arctangent of Y. The result of the
ATN function is in the range — Pl/2to Pl/2 where PI=3.14159.

The expression X may be any numeric type, but the evaluation of ATN is
always performed in single precision.

Example:

10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.249046
Ok

page 10.4

ALPHABETICAL REFERENCE GUIDE

AUTO Command

BRIEF

Format: AUTO [<line number>[,< increment>]]

Purpose: To generate aline number automatically after every RETURN.

Details

AUTO begins numbering at <line number> and increases each sub-
sequent line number by <increment>. If both the line number or the incre-
ment value is unspecified, the assumed value (default value) for both line
number and increment is 10. If the line number is followed by a comma but
the increment is not specified, the last increment specified inan AUTO com-
mand is assumed. If line number is unspecified and the increment value is
specified, the starting line number defaults to zero.

If AUTO generates a line number that is already being used, an asterisk is Asterisk
printed after the number to warn you that any input will replace the existing Warning
line. However, typing a carriage return immediately after the asterisk will

save the line and generate the next line number.

AUTO is terminated by typing CTRL-C. The line in which CTRL-C is typed
is not saved. After CTRL-C is typed, BASIC returns to command level, which
means you must type AUTO again to generate line numbers automatically.

Examples:

AUT0100, 50 Generates line numbers 100, 150, 200 ...

AUTO Generates line numbers 10, 20, 30, 40...

AUTO 60 Will start with line 60 and increment subsequentlines
using the defaultincrement value of 10.

AUTO, 60 Will start at 0 and increment subsequent lines using

the increment value of 50.

For information on editing program lines, see Chapter 3 Page 3.6.

Page 105

ALPHABETICAL REFERENCE GUIDE

BEEP Statement

BRIEF

Format: BEEP

Purpose: The BEEP statement sounds the speaker at 1000 Hz for 1/4
second.

Details

Non-graphic versions of BASIC use PRINT CHR$(7) to send an ASCII bell
character. Both BEEP and PRINT CHR$(7) have the same effect.

The BEEP statement can be used in a variety of applications. It can be incor-
porated into a game as a signal for some type of response, or it can be used
as an error trapping signal as shown below.

Example:

2420 REM If X is out of range, complain in line 2430.
2430 IF X< 20 THEN BEEP

Page 10.6

ALPHABETICAL REFERENCE GUIDE

BLOAD Command

BRIEF

Format: BLOAD <file spec> [,<offset>]

Purpose: The BLOAD statement allows a file to be loaded anywhere in

user memory.
Details
File spec Is a valid string expression containing the device and file
name. The file name may be one to eight characters in
length.
Offset Is a valid numeric expression returning an unsigned in-

teger in the range zero to 65535. This is the offset into the
segment declared by the last DEF SEG statement.

BLOAD and BSAVE are most useful for loading and saving machine lan-
guage programs. (See “CALL Statement”). However, BLOAD and BSAVE
are not restricted to only machine language programs. Any segment may
be specified as the source or target for these statements via the DEF SEG
statement. BLOAD and BSAVE provide a convenient way of saving and dis-
playing graphic images.

Page 10.7

ALPHABETICAL REFERENCE GUIDE

Command

CTRL-C may be typed at any time during BLOAD or LOAD. If it is used be-
tween files or after a time-out period, BASIC will exit the search and return
to direct mode. Previous memory contents remain unchanged.

if the BLOAD command is executed in a BASIC program, the filenames skip-
ped and found are not displayed on the screen.

Rules:

1.

If the device identifier is omitted and the filename is less than one
character or greater than eight characters in length, a Bad File Name
erroris issued and the load is aborted.

If an offset is omitted, the offset specified at BSAVE is assumed. That
is, the file is loaded into the same location it was saved from.

If an offset is specified, a DEF SEG statement should be executed be-
fore the BLOAD. When offset is given, BASIC assumes you want to
BLOAD at an address other than the one saved. The last known DEF
SEG address will be used.

CAUTION: BLOAD does not perform an address range check. It is
possible to BLOAD anywhere in memory. You must not BLOAD over
BASIC stack, BASIC Program, or BASIC’s variable area.

Example:

10 'Load a machine language program into memory at 60:E000
20 DEF SEG 'Restore Segment to BASIC DS.
30 BLOAD"PROG1",&HEOOO

10 'Load the screen
20 DEF SEG= &HE0OO 'Point segment at green plane.
30 BLOAD "PICTURE" ,0 'Load file PICTURE into green plane.

Note the DEF SEG statement in line 20 and the offset of zero in line
30. This guarantees that the correct address is used.

The BSAVE example on Page 10.9 illustrates.how “PICTURE” was saved.

Page 10.8

ALPHABETICAL REFERENCE GUIDE

BSAVE Command

BRIEF

Format: BSAVE <filespec>,<offset>,<length>

Purpose: Allows portions of memory to be written and saved to the
specified device.

Details

Filespec Is a valid string expression containing the device and file
name. The file name may be one to eight characters in
length.

Offset Is a valid numeric expression returning an unsigned in-
teger in the range zero to 65535. This is the offset into the
segment declared by the last DEF SEG to start saving
from.

Length Is a valid numeric expression returning an unsigned in-
teger in the range one to 65535. This is the length of the
memory image to be saved.

BLOAD and BSAVE are most useful for loading and saving machine lan-
guage programs. (See “CALL Statement”). However, BLOAD and BSAVE
are not restricted to only machine language programs. Any segment may
be specified as the source or target for these statements via the DEF SEG
statement. BLOAD and BSAVE provide a convenient way of saving and dis-
playing graphic images.

Rules:

1. If filename is less than one character, or greater than eight characters
inlength, aBad File Name error is issued and the save aborted.

2. If offset is omitted, a Syntax error message is issued and the save
aborted. A DEF SEG statement should be executed before the
BSAVE. The last known DEF SEG address is always used for the
save.

3. If length is omitted, a Syntax error message is issued and the save
aborted.

Page 10.9

ALPHABETICAL REFERENCE GUIDE

Example:

10 'Save the green plane.

20 'Point segment at green plane.

30 DEF SEG= &HEO000

40 'Save green plane in file PICTURE.
50 BSAVE "PICTURE", 0, &HC8000

The DEF SEG statement must be used to set the segment address to the
start of the screen buffer. Offset of zero and length &H8000 specifies that
the entire 32K screen buffer is to be saved.

Page 10.10

ALPHABETICAL REFERENGE GUIDE

CALL Statement

BRIEF

Format: CALL <variable name> [(<argument list>)]
Purpose: To call an assembly language subroutine.

<variable name> contains the address that is the starting point in memory
of the subroutine being called.

<argument list> contains the variables or constants, separated by com-
mas, that are to be passed to the routine.

Details

The CALL statement is the recommended way of interfacing 8086 assembly
language programs with Z-BASIC. It is further suggested that the old style
user call (x=USR(n)) notbe used.

Invocation of the CALL statement causes the following to occur:

1. For each parameter in the argument list, the two byte offset of the pa-
rameter’s location within the data segment (DS) is pushed onto the
stack.

2. BASIC's return address code segment (CS) and oftset are pushed
onto the stack.

3. Control is transferred to the user’s routine via an 8086 long call to the
segment address given in the last DEF SEG statement and offset
given in <variable name>.

Example:

100 DEF SEG=&H8000
110 F00=0
120 CALL FOO(A,B$.C)

Page 10.11

ALPHABETICAL REFERENCE GUIDE

ALL Statement

In the preceding program, line 100 sets the segment to 8000 Hex. FOO is
set to zero so that the call to FOO will execute the subroutine at location Hex
8000H.

The following sequence of 8086 assembly language demonstrates access
of the parameters passed. Storing a return results in the variable ‘C’.

MOV BP,SP :Get current Stack posn in BP.
MOV BX,6([BP] ;:Get address of B$ dope.
MOV CL, [BX] ;Get length of B$ in CL.

MOV DX,1[BX] ;Get addr of B$ text in DX.

MOV SI,8[BP] ;Get address of 'A' in SI.
MOV DI,4[BP] ;Get pointer to 'C' in DI.
MOVS WORD :Store variable 'A' in 'C'.
RET 6 ;Restore Stack, return.

Note that, the called program must know the variable type for numeric pa-
rameters passed. In the above example, the instruction MOVS WORD will
copy only two bytes. This is fine if variables A and C are integers. We would
have to copy four bytes if they were single precision and copy eight bytes
if they were double precision.

For a more detailed explanation of this command see Appendix E, “Assem-
bly Language Subroutines”.

The CALL statement conforms to the INTEL PL/M-86 “Calling Conventions”
outlined in Chapter 9 of the INTEL PL/M-86 Compiler User’s Manual. BASIC
follows the rules described for the MEDIUM case.

For illustrations of how the stack is altered after a call statement is given,
in addition to the rules you must follow when coding a subroutine, see Ap-
pendix E of this manual.

Page 10.12

ALPHABETICAL REFERENCE GUIDE

CDBL Function

BRIEF

Format: CDBL(X)

Action: Converts X to a double-precision number.

Details

Many scientific, technical, and business applications require more digits
than single-precision can provide. This is particularly true in programs where
numeric quantities must be subjected to a long series of arithmetic process-
es.

Most operations performed on numeric data introduce small amounts of
error. These errors tend to accumulate. At the end of a complex chain of op-
erations, it is doubtful that you will have as many digits of precision as you
started with. To ensure accurate results under these conditions, BASIC pro-
vides a double-precision type that uses eight bytes to represent real num-
bers to 16 decimal digits of accuracy (16 to 17 internally) instead of the
sevendigits (eightinternally) attainable with the four byte, single-precision.

The CDBL function which converts numeric values to double-precision can
help alleviate this problem of inaccuracy. If you convert the values to double-
precision before the calculation is executed, you can then convert the values
back to single precision (to save space) before printing or storing.

Example:

10 A = 454.67

20 PRINT A;CDBL(A)

RUN

454 .67 454.6700134277344
Ok

Page 10.13

ALPHABETICAL REFERENCE GUIDE

Fllename

Line Number

ALL option

CHAIN Statement

BRIEF

Format: CHAIN [MERGE] <filename>[, [<line number exp>]
[,ALL] [,DELETE<range>]]

Purpose: To call a program and pass variables to it from the current
program.

Details

The <filename> in the CHAIN Statement is the name of the program that
is called.

Example:
CHAIN“PROG1"

<line number exp> is a line number or an expression that relates to a line
number in the called program. It is the starting point for execution of the
called program. If itis omitted, execution begins atthe first line.

Example:
CHAIN“PROG1", 1000

<line number exp> is not affected by a RENUM command.

With the ALL option, every variable in the current program is passed to the
called program. If the ALL option is omitted, the current program must con-
tain a COMMON statement to list the variables that are passed. The ALL
option only works if a line number is specified. If a line number is not
specified, no variables are passed if ALL is used. See Page 10.23.

Page 10.14

ALPHABETICAL REFERENCE GUIDE

CHAIN Statement

Example:
CHAIN“PROG1", 1000,A11

if the MERGE option is included, it allows a subroutine to be brought into
the BASIC program as an overlay. That is, a MERGE operation is performed
with the current program and the called program. The called program must
be an ASCllfileifitis to be merged.

Example:
CHAIN MERGE“OVRLAY", 1000

After an overlay is brought in, it is usually desirable to delete it so that a new
overlay may be broughtin. To do this, use the DELETE option.

Example:
CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are not affected by the RENUM command.

The CHAIN statement with MERGE option leaves the files open and pre-
serves the current OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve variable types
or user defined functions for use by the chained program. Any DEFINT,
DEFSNG, DEFDBL, DEFSTR, or DEF FN statements containing shared
variables mustbe restated in the chained program.

The Microsoft BASIC compiler does not support the ALL, MERGE, DE-
LETE, and <line number exp> options to CHAIN. Thus, the statement for-

mat is CHAIN <filename>. If you wish to maintain compatibility with the
Microsoft BASIC compiler, it is recommended that COMMON be used to
pass variables and that overlays not be used. The CHAIN statement leaves
the files open during chaining.

When using the MERGE option, user defined functions should be placed be-
fore any CHAIN MERGE statements in the program. Otherwise, the user de-
fined functions will be undefined after the merge is complete.

Overlay
MERGE
Option

Page 10.15

ALPHABETICAL REFERENCE GUIDE

CHRS$ Function

BRIEF
Format: CHR$(I)

Action: Returns a character which is the ASCIl code for value |.

Details

The CHRS$ function returns the character associated with the number en-
closed in the parenthesis. It is the inverse function of the ASC function
coveredon Page 10.2.

CHR$ is commonly used to send a special character to the terminal. For in-
stance, the bell character (CHR$ (7)) could be sent as a preface to an error
message, or a form feed could be sent (CHR$(12)) to clear the terminal
screen and return the cursor to the home position. (ASCII codes are listed
in Appendix C.)

Example:

PRINT CHR$(66)
B
Ok

See the ASC function for ASClI-to-numeric conversion.

Page 10.16

ALPHABETICAL REFERENCE GUIDE

CINT Function

BRIEF

Format: CINT(X)

Action: Converts X to an integer by rounding the fractional portion. If X is
notinthe range ~-32768 to 32767, an “Overflow” error occurs.

Details

The CINT function converts X to an integer by rounding the fractional portion
of the number to the closest whole number.

Example:

PRINT CINT(45.67)
46
Ok

See the CDBL and CSNG functions for converting numbers to the double-
precision and single-precision data types. See also FIX, Page 10.54 and
INT, Page 10.82. Both return integers.

Page 10.17

ALPHABETICAL REFERENCE GUIDE

CIRCLE Statement

BRIEF

Format: CIRCLE(Xcenter,Ycenter),radius
[,attribute[,start,end[,aspect]]]

Purpose: To draw an ellipse with a center and radius as specified by the
arguments.

Details

The CIRCLE statement draws an ellipse with a center and radius as indi-
cated by the first of its arguments. The default attribute is the foreground
color. The start and end angle parameters are radian arguments between
0 and 2" Pl which allow you to specify where drawing of the ellipse will begin
and end. If the start or end angle is negative, the ellipse will be connected
to the center point with a line, and the angles will be treated as if they were
positive (Note that this is different than adding 2*P1).

The aspect ratio describes the ratio of the X radius to the Y radius. The
default aspect ratio is .4844 and will give a visual circle, assuming a stan-
dard monitor screen aspect ratio of 31/64.

If the aspect ratio is less than one, then the radius is given in X-pixels. If it
is greater than one, the radius is given in Y-pixels. The standard relative no-
tation may be used to specify the center point.

The start angle may be less than the end angle.

Page 10.18

ALPHABETICAL REFERENCE GUIDE

CLEAR Command

BRIEF

Format: CLEAR [, [<expressionl>][,< expression2>]]

Purpose: To set all numeric variables to zero, all string variables to null,
and to close all open files. Optionally, it sets the end of memory
and the amount of stack space.

Details

<expression1> is a memory location which, if specified, sets the highest
location available for use by BASIC.

<expression2> sets aside stack space for BASIC. The default is 256 bytes
orone-eighth of the available memory, whichever is smaller.

The Microsoft BASIC compiler supports the CLEAR command with the re-
striction that <expression1> and <expression2> must be integer expres-
sions. If a value of zero is given for either expression, the appropriate default
is used. The default stack size is 256 bytes. The default top of memory is
the current top of memory. The CLEAR command performs the following ac-
tions:

Closes allfiles

Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers

Examples:
CLEAR
CLEAR , 32768
CLEAR ,,2000

CLEAR ,32768,2000

Page 10.19

ALPHABETICAL REFERENCE GUIDE

CLOSE Command

BRIEF

Format: CLOSE[[#]<file number>[,[#]<file number...>]]

Purpose: To conclude I/0 to a disk file.

Details

The CLOSE command concludes /O to a disk file. The <file number> is
the number under which the file was opened. A CLOSE with no arguments
closes all openfiles.

The relationship between a particular file and file number terminates upon
execution of a CLOSE. The file may then be reopened using the same or
different file number. Likewise, that file number may now be reused to open
any file. A CLOSE for a sequential output file writes the final buffer of output.

The END statement and the NEW command always close all disk files auto-
matically. (STOP does not close disk files.)

See Chapter 6, “File Handling”, for more information concerning how the
CLOSE command is used.

Page 10.20

ALPHABETICAL REFERENCE GUIDE

CLS Statement

BRIEF

Format: cLs
Purpose: The CLS statement erases the currentscreen.

Example:

1 CLS ‘Clearsthescreen.

Page 10.21

ALPHABETICAL REFERENCE GUIDE

COLOR Statement

BRIEF

Format: COLOR [Foreground] [, [Background]]

Function: The COLOR statement selects the Foreground, and Back-
ground screen display colors.

Details

The COLOR statement is used to select the foreground colors and back-
ground colors for screen display. If you have a monochrome video board,
this statement will be only partially effective. If you have a color video board
but are using a monochrome monitor, your colors will appear in shades of
gray. (The Z2-100 All-in-One model has a green non-glare screen, thus your
colors will appear in shades of green).

Foreground: = Foreground (for character color). An unsigned in-
teger in the range zero to seven.

Background: = Background Color. An unsigned integer in the
range of zero to seven.

Valid Colors are:

Black
Blue
Green
Cyan
Red
Magenta
Yellow
White

NOOW_,WN-—-O

Page 10.22

Rules:

1. Anyvalues entered outside of the range 0-255 will resultinan111egal
FunctionCall error. Previous values are retained.

2. Foreground color may equal background color. This has the effect of
making any character displayed invisib:e. Changing the foreground or
background color will make the characters visible again.

3. Any parameter may be omitted. Omitted parameters assume the old
value.

4, The COLOR statement may not end in comma (,). For example
COLOR 7is legal and will leave the background unchanged.

Example:

10 COLOR 7,0 Select white forground, and black background.

30 COLOR 6,4 Change foreground to yeliow, background to red.
40 COLOR ,6 Changes background to yellow, and any charac-

ters displayed on the screen.

Page 10.23

ALPHABETICAL REFERENCE GUIDE

COMMON Statement

BRIEF

Format: COMMON <list of variables>

Purpose: Topass variables to a chained program.

Details

The COMMON statement is used in conjunction with the CHAIN statement.
COMMON statements may appear anywhere in a program. It is recom-
mended that they appear at the beginning. The same variable cannot ap-
pear in more than one COMMON statement. Array variables are specified
by appending “()” to the variable name. If all variables are to be passed, use
CHAIN with the ALL option and omit the COMMON statement.

Example:

100 COMMON A,B,C,D(),G$
110 CHAIN “PROG3",10

Page 10.24

ALPHABETICAL REFERENCE GUIDE

COMMON Statement

Arrays in COMMON must be declared in preceding DIM statements.

The standard form of the COMMON statement is referred to as blank COM-
MON. FORTRAN style named COMMON areas are also supported; how-
ever, the variables are not preserved across chains. The syntax for named
COMMON: is as follows:

COMMON /<name>/ <listofvariables>

where <name>> is one to six alphanumeric character(s) starting with a letter.
This is useful for communicating with FORTRAN and assembly language
routines without having to explicitly pass parameters inthe CALL statement.

The blank COMMON size and order of variables must be the same in the
chaining and chained-to programs.

Page 10.25

ALPHABETICAL REFERENCE GUIDE

CONT Command

BRIEF

Format: coNT

Purpose: To continue program execution after a CTRL-C has been typed,
or a STOP or END statement has been executed.

Details

When the CONT command is used, execution resumes at the point where
the break occurred. If the break occurred after a prompt from an INPUT
statement, execution continues with the reprinting of the prompt or prompt
string.

CONT is used in conjunction with STOP for debugging. When execution is
stopped, intermediate values may be examined and changed using direct
mode statements. Execution may be resumed with CONT or a direct mode
GOTO, which resumes execution at a specified line number. CONT may be
used to continue execution after an error.

CONT is invalid if the program has been edited during the break. Any
modifications made to your program causes all variables to be set to zero.

See example provided on Page 10.163, for the STOP statement.

Page 10.26

ALPHABETICAL REFERENCE GUIDE

COS Function

BRIEF

Format: Ccos(X)

Action: Returns the cosine of X in radians.

Details

The trigonometric (or circular) COS function, is best explained in relation to
acircle (see figure below).

A given radius with length R defines a right triangle with base X, height Y
and enclosed angles A and B. The ratios of the three sides of the triangle
to one another can be expressed as functions of the angle A.

Specifically,

Y/Ris SIN(A)
X/Ris COS(A)
Y/Xis TAN(A)

where SIN, COS, and TAN stand for sine, cosine, and tangent. These re-
lationships can also be defined in terms of angle B.

The calculation of COS(X) is performed in single-precision.

Page 10.27

ALPHABETICAL REFERENCE GUIDE

COS Function

Example:
10 X = 2*C0S(.4)
20 PRINT X
RUN
1.842122
Ok

To convert from degrees to radians, use the formula:
Radians = degrees * Pl/180

where Pl = 3.14159

Page 10.28

ALPHABETICAL REFERENCE GUIDE

CSNG Function

BRIEF

Format: CSNG(X)

Action: Converts X to a single-precision number.

Details

The CSNG function is used to convert a number to a single-precision
number.

Example:

10 A#=975.321012345678

20 PRINT A#; CSNG(A#)

RUN

975.3421012345678 975.3421

Ok

See the CINT and CDBL functions for converting numbers to integer and
double-precision data types. Also see Chapter 5, “Converting Numeric Pre-
cisions”, Page 5.51.

Page 10.29

ALPHABETICAL REFERENCE GUIDE

CSRLIN Function

BRIEF

Format: x=CSRLIN

Action: Returns the currentline (or row) position of the cursor.

Details

The CSRLIN function returns the current Row position of the cursor. It is
most often used with the POS function, which returns the column position.

x = CSRLIN X is a numeric variable receiving the value returned. The
value returned will be in the range 1 t0 25.

x = POS(0) will return the column location of the cursor. This value will
be inthe range 1t0 80.

Example:
10 Y = CSRLIN ‘'Record current line.
20 X = POS(I) 'Record current column.

30 LOCATE 24,1 :PRINT “HELLO" ‘Print HELLO on the 24th line.
40 LOCATE Y,X 'Restore position to old line, column.

Page 10.30

ALPHABETICAL REFERENCE GUIDE

CV|, CVS, CVD Functions

BRIEF

Format: cvi(<2-bytestring>)
CVS(<4-bytestring>)
CVD(<8-bytestring>)

Action: Converts string values to numeric values.

Details

Numeric values that are read from a random disk file must be converted from
strings back into numbers. CVI converts a two-byte string to an integer. CVS
converts a four-byte string to a single-precision number. CVD converts an
eight-byte string to a double-precision number.

Example:

70 FIELD #1,4 AS N§, 12 AS B$...
80 GET #1
90 Y=CVS(N$)

See also MKI$, MKS$, MKD$, on Page 10.109, and Chapter 6, “File Han-
dling”, on Page 6.1.

Page 10.31

ALPHABETICAL REFERENCE GUIDE

DATA Statement

BRIEF

Format: DATA<listofconstants>

Purpose: To store the numeric and string constants that are accessed by
the program’s READ statement(s). (See READ, Page 10.144)

Details

Data stored in DATA statements are constants that must be accessed se-
quentially. DATA statements are non-executable and may be placed any-
where in the program. A DATA statement may contain as many constants
as will fit on a line (separated by commas), and any number of DATA state-
ments may be used in a program.

The READ statements access the DATA statements in order (by line
number). The data contained in the data statements may be thought of as
one continuous list of items, regardless of how many items are on a line or
where the lines are placed in the program.

The <list of constants> may contain numeric constants in any format, i.e.,
fixed point, floating point or integer. (No numeric expressions are allowed
inthe list.) String constants in DATA statements must be surrounded by dou-
ble quotation marks only if they contain commas, colons or significant lead-
ing or trailing spaces. Otherwise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must
agree with the corresponding constant in the DATA statement.

DATA statements may be re-read from the beginning by use of the RE-
STORE statement (Page 10.149).

See the examples in the discussion of the READ statement, Page 10.144.

Page 10.32

ALPHABETICAL REFERENCE GUIDE

DATE Function

BRIEF
Format: <var> = DATE

Purpose: DATE statement may be used to retrieve the numerical value
of the current day of the year as defined by DATES.

<var> is an integer variable.

Details

The current date, as defined by DATES, is returned and assigned to the
integer variable as the numerical value for that day of the year.

DATE can assume any value from 1 to 366.
if DATE$ =“01-01-82", then DATE will equal 1
If DATES$ =“12-31-82”, then DATE will equal 365 (366 for a leap year)

DATE cannot be assigned a value directly. However, the value of DATE
changes any time a new assignment is made to DATES.

EXAMPLE:
DATE$ ="10-28-82"
0K
PRINT DATE$, DATE
10-28-1982 301

OK

Page 10.33

ALPHABETICAL REFERENCE GUIDE

DATES Statement

BRIEF

Format: DATE$ = <string expr> TO Setthe currentdate.
<string var> = DATE$ Togetthecurrentdate.

Purpose: DATES$ statement may be used to set or retrieve the current
date.

<string expr> Is a valid string literal or variable.

Details

The current date is returned and assigned to the string variable if DATE$
is the expressionina LET or PRINT statement.

The currentdate is stored if DATES is the target of a string assignment.
Rules:

1. If <string expr> is not a valid string, a Type mismatch error will result.
Previous values are retained.

2. For <string var>= DATES$, DATE$ returns a 10 character string
in the form mn-dd-yyyy where mm is the month (01 to 12), a4 is the
day (01 to 31), and yyyy is the year (1980 to 2077).

3. For DATES$ = <string expr>, <string expr> may be one of the follow-
ing forms:

"mm—-dd-yy"
“mo-dd/yy"
“mm—dd-yyyy"
or
"mm/dd/yyyy"

If any of the values are out of range or missing, an I1legal Function
Callerror message isissued. Any previous date is retained.

Example:

DATE$ = “01-01-81"
Ok

PRINT DATE$
01-01-1981

Ok

Page 10.34

ALPHABETICAL REFERENCE GUIDE

DEF FN Statement

BRIEF

Format: DEF FN<name>[(<parameter list>)]=
<function definition>

Purpose: To define and name a function written by the user.

Details

The <name> in a DEF FN function must be a legal variable name. This
name, preceded by FN, becomes the name of the function. The <parameter
list> is comprised of those variable names in the function definition that are
to be replaced when the function is called. The items in the list are separated
by commas. The <function definition> is an expression that performs the
operation of the function. Itis limited to one line.

Variable names that appear in this expression serve only to define the func-
tion. They do not affect program variables that have the same name. A vari-
able name used in a function may or may not appear in the parameter list.
If it does, the value of the parameter is supplied when the function is called.
Otherwise, the current value of the variable is used.

The variables in the parameter list represent, on a one-to-one basis, the ar-
gument variables or values that will be givenin the function call.

User-defined functions may be numeric or string. If a type is specified in the
function name, the value of the expression is forced to that type before it
is returned to the calling statement. If a type is specified in the function name,
and the argument type does not match, a Type mismatch €rror occurs.

A DEF FN statement must be executed before the function it defines may
be called. If a function is called before it has been defined, an unde-
fined user function erroroccurs. DEF FNisillegalinthe direct mode.

Page 10.35

ALPHABETICAL REFERENCE GUIDE

o T .. s, s B,
DEF FN Statement

Example:

410 DEF FNAB (X,Y)=X*3/Y*2
420 T=FNAB(I,J)

Line 410 defines the function FNAB. The function is called in line 420. An
error in the function call will show up as an error in line 420 not in line 410
where it actually occurred. Therefore, you must look for the error in the line
number in which the function was called.

Page 10.36

ALPHABETICAL REFERENCE GUIDE

DEFINT/SNG/DBL/STR Statements

BRIEF

Format: DEF<type> <range(s) of letters>
where <type>isINT, SNG, DBL, or STR

Purpose: To declare variable types as integer, single-precision, double-
precision, or string.

Details

A DEF type statement declares that the variable names beginning with the
letter(s) specified will be that type variable. All value assignments made to
variables are cleared before a define type statement.

If no type declaration statements are encountered, BASIC assumes all vari-
ables without declaration characters are single-precision variables.

Examples:

10 DEFDBL L-P All variables beginning with the letters
L,M,N,O, and P will be double-precision vari-
ables.

10 DEFSTR A All variables beginning with the letter A will be
string variables.

10 DEFINT I-N,W-2Z All variables beginning with the letters |, J, K,
L M, N, W, X, Y, and Z will be integer vari-
ables.

Page 10.37

ALPHABETICAL REFERENCE GUIDE

DEF SEG Statement

BRIEF

Format: DEF SEG [=<address>]

Purpose: The DEF SEG statement assigns the current value to be used
by a subsequent BLOAD, BSAVE, PEEK, POKE, CALL, or user

defined function call.

Details

The <address> is a valid numeric expression returning an unsigned integer
in the range 0 to 65535.

The address specified is saved for use as the segment required by the
BLOAD, BSAVE, PEEK, POKE, and CALL statements.

Rules:

1. Any value entered outside of this range will result in an overf1ow error
message. The previous value is retained.

2. If the address option is omitted, the segment to be used is set to the
BASIC data segment. This is the initial default value.

3. NOTE: DEF and SEG must be separated by a space! Otherwise,
BASIC would interpret the statement, DEFSEG=100 t0 mean: “assign
the value 100 to the variable DEFSEG”.

Example:

10 DEF SEG=&HFEQO 'Set segment to Monitor ROM.
20 DEF SEG 'Restore segment to BASIC's DS

Page 10.38

ALPHABETICAL REFERENCE GUIDE

DEF USR Statement

BRIEF

Format: DEF USR[<digit>]=<integer expression>

Purpose: To specify the starting address of an assembly language sub-
routine.

Details

The <digit> may be any digit from zero to 9. The digit corresponds to the
number of the USR routine whose address is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of <integer expression> is the
starting address of the USR routine. See Appendix E, “BASIC Assembly
Language Subroutines.”

Any number of DEF USR statements may appear in a program to redefine
the subroutine starting addresses, allowing access to as many subroutines
as necessary.

Example:

200 DEF USR0=24000
210 X=USRO (Y*2/2.89)

See also the CALL statementon Page 10.10.

Page 10.39

ALPHABETICAL REFERENCE GUIDE

DELETE Command

BRIEF

Format: DELETE[<1line number>][-<line number>]

Purpose: Todelete programlines.

Details

BASIC always returns to command level after a DELETE command is exe-
cuted. If <line number> does not exist, an I11egal Function Call error
message is displayed.

Examples:
DELETE 40 Deletes line 40
DELETE 40-100 Deletes lines 40 through 100, inclusive

DELETE -40 Deletes all lines up to and including line 40

Page 10.40

ALPHABETICAL REFERENCE GUIDE

DIM Statement

BRIEF

Format: DIM <list of subscripted variables>

Purpose: To specify the maximum values for array variable subscripts and
allocates storage accordingly.

Details

The dimension statement is used to set up the maximum values for array
variable subscripts and to allocate storage accordingly. If an array variable
name is used without a DIM statement, the maximum value of its subscript
is assumed to be 10. If a subscript is used that is greater than the maximum
specified, a Subscript out of range error occurs. The minimum value for
a subscript is always zero, unless otherwise specified with the OPTION
BASE statement (see Page 10.124).

The DIM statement sets all the elements of the specified arrays to an initial
value of zero.

Example:

10 DIM A(20)

20 FOR I=0 TO 20

30 READ A(I)

40 NEXT I

50 DATA 1,4,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41

For additional information on the use of the DIM statement, see “Array Vari-
ables,”on Page 5.12. -

Page 10.41

ALPHABETICAL REFERENCE GUIDE

DRAW Statement

BRIEF

Format: DRAW <string expression>

Purpose: To combine the capabilities of other graphic statements into an
object definition language.

Details

The DRAW statement combines most of the capabilities of the other
graphics statements into an easy-to-use object definition language called
Graphics Macro Language. The GML command is a single character within
astring, optionally followed by one or more arguments.

MOVEMENT COMMANDS

Each of the following movement commands begin movement from the “cur-
rent graphics position”. This is usually the coordinate of the last graphics
point plotted with another GML command, LINE, or PSET.

U[<n>] Move up (scale factor * N) points
D[<n>] Move down

L[<n>] Move left

R[<n>] Move right

E[<n>] Move diagonally up and right
H[<n>] Move diagonally up and left
G[<n>] Move diagonally down and left
F[<n>] Move diagonally down and right

The above commands move one unit if no argument s supplied.

M <X,Y> Move absolute or relative. If X is preceded by a “+” or
“—”,XandY are added to the current graphics position,
and connected with the current position with a line.
Otherwise, a line is drawn to point X,Y from the current
position.

Page 10.42

ALPHABETICAL REFERENCE GUIDE

PREFIXCOMMANDS

The following prefix commands may precede any of the above movement

commands:
B
N

A<n>

CcC<n>

sS<n>

X<string;>

Move but don't plot any points.
Move but return to original position when done.

Set angle n. n may range from zero to three, where
zero is zero degrees, one is 90, two is 180, and three
is 270. Figures rotated 90 or 270 degrees are scaled
so that they will appear the same size as with zero
or 180 degrees on a monitor screen with the standard
aspect ratio of 7/16.

Setattribute n. nmay range from zero to seven.

Set scale factor. n may range from one to 255. The
scale factor is multiplied by the distances given with
U,D,L,R or relative M commands to get the actual dis-
tance traveled.

Execute substring (not supported by BASIC compiler).
This powerful command aliows you to execute a second
substring from a string, much like GOSUB in BASIC.
You can have one string execute another, which exe-
cutes a third, and so on.

Numeric arguments can be constants like “123” or “ = variable;”, where vari-
able is the name of a variable. (Not supported by BASIC compiler).

Page 10.43

ALPHABETICAL REFERENCE GUIDE

EDIT Command

BRIEF

Format: EDIT <linenumber>
EDIT .

Purpose: Todisplay the specified Line(s) and position the cursor under the
first digit of the line number. '

Details

The full screen editor recognizes special key combinations as well as
numeric and cursor movement key-pad keys. These keys allow moving the
cursor to a location on the screen, inserting characters, and deleting charac-
ters as described in chapter 3.

More than one BASIC statement may be placed on a line, but each state-
menton a line must be separated from the last statementby a colon.

A Z-BASIC program line always begins with a line number, ends with a
RETURN, and may contain a maximum of 250 characters.

With the full screen editor, the EDIT statement simply displays the line
specified and positions the cursor under the first digit of the line number.

The format of the EDIT statementiis:

EDIT <line number> OR
EDIT

page 10.44

ALPHABETICAL REFERENCE GUIDE

EDIT Command

Line number is the program line nurnber of a line existing in the program.
If there is no such line, an Undefined line number €rror message is dis-
played.

A period (.) placed after the EDIT statement always gets the last line refer-
enced by an EDIT statement, LIST command, or error message.

Remember, if you have just entered a line and wish to go back and edit it,
the command EDIT. will enter EDIT at the current line. The line number sym-
bol “.” always refers to the current line.

Page 10.45

ALPHABETICAL REFERENCE GUIDE

END Statement

BRIEF

Format: END

Purpose: To terminate program execution, close all files, and return to
command level.

Details

END statements may be placed anywhere in the program to terminate
execution. Unlike the STOP statement, END does not cause a BREAK mes-
sage to be printed. An END statement at the end of a program is optional.
BASIC always returns to command level after an END is executed.

Example:
520 IF K>1000 THEN END ELSE GOTO 20

Page 10.46

ALPHABETICAL REFERENCE GUIDE

EOF Function

BRIEF

Format: EOF (<file number>)

Purpose: Returns —1 (true) if the end of a sequential or random file has
been reached.

Details

The EOF function is used to test for end-of-file while inputting, in order to
avoid Input past end errors. If in a random access file, a GET is issued for
a record that is past the end of the file, EOF will be setto — 1, and no error
will occur. A zero will be returned if the end of the file has not been reached.
This function may be used to find the size of a file by using a binary search
or other algorithm.

Example:

10 OPEN “I",1,"“DATA"
20 C=0

30 IF EOF(l) THEN 100
40 INPUT #1,M(C)

50 C=C+1:GOTO 30

Page 10.47

ALPHABETICAL REFERENCE GUIDE

ERASE Statement

BRIEF

Format: ERASE<listofarrayvariables>

Purpose: To eliminate arrays from aprogram.

Details

The ERASE statement can be used to make more storage space available
while you are running your program by elirninating arrays from the program
that are no longer needed.

Arrays may be redimensioned after they are erased, or, the previously allo-
cated array space in memory may be used for other purposes. If an attempt

is made to redimension an array without first erasingit, aDuplicate Defini—
tion €rror occurs.

The Microsoft BASIC compiler does not support ERASE.

Example:

450 ERASEA,B
460DIMB(99)

Page 10.48

ALPHABETICAL REFERENCE GUIDE

ERR and ERL Variables

BRIEF

Format: X=ERR
Y =ERL

Purpose: To trap an error by returning an error code and line number as-
sociated with an error.

Details

When an error handling subroutine is entered, the variable ERR contains
the error code for the error, and the variable ERL contains the number of
the line in which the error was detected. The ERR and ERL variables are
usually used in IF... THEN statements to direct program flow in the error trap
routine.

If the statement that caused the error was a direct mode statement, ERL will
contain 65535. To test if an error occurred in a direct statement, use:

IF 65535 = ERL THEN ...
If the statement was an indirect mode statement use:
IF ERR = error code THEN ...

IF ERL line number THEN ...

If the line number is not on the right side of the relational operator, it cannot
be renumbered by RENUM. Because ERL and ERR are reserved variables,
neither may appear to the left of the equal sign in a LET (assignment) state-
ment. The BASIC error codes are listed in Appendix A.

Page 10.49

ALPHABETICAL REFERENCE GUIDE

ERROR Statement

BRIEF
Format: ERROR <integer expression>
Purpose: 1) To simulate the occurrence of a BASIC error.

2) Toallow error codes to be defined by the user.

Details

The value of <integer expression> must be greater than zero and less than
255. If the value of <integer expression> equals an error code already in
use by BASIC (see Appendix A), the ERROR statement will simulate the oc-
currence of that error, and the corresponding error message will be printed.
(See example below.)

Example:

10 S 10

20T 5

30 ERROR S + T

40 END

RUN

String too long in 30
Ok

Or, indirect mode:

Ok
ERROR 15 (you type this line)
Stringtoolong (BASIC types thisline)

ok

Page 10.50

ALPHABETICAL REFERENCE GUIDE

To define your own error code, use a value that is greater than any used
by the Z-BASIC error codes. (It is preferable to use the highest available
values, so compatibility may be maintained when more error codes are
added to Z-BASIC.) This user-defined error code may then be conveniently
handled in an error trap routine.

Example:

110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210

400 IF ERR
410 IF ERL

210 THEN PRINT “HOUSE LIMIT IS $5000"
130 THEN RESUME 120

If an ERROR statement specifies a code for which no error message has
been defined, BASIC responds with the message Unprintable Error.
Execution of an ERROR statement for which there is no error trap routine
causes an error message to be printed and execution to halt.

Page 10.51

ALPHABETICAL REFERENCE GUIDE

EXP Function

BRIEF
Format: EXP (X)

Action: Calculates the exponential value of X.

Details

The EXP function returns the mathematical value of e to the power of X. X
must be <=88.0296. If EXP overflows, the overflow error message is dis-
played, machine infinity with the appropriate sign is supplied as the result,
and execution continues.

Example:

10X =25

20 PRINT EXP (X-1)
RUN

54.59815

Ok

page 10.52

ALPHABETICAL REFERENCE GUIDE

FIELD Statement

BRIEF

Format: FIELD#<file number>,<field width> AS <string vari-
able>
[,<field width> AS <string variable>...]

Purpose: Toallocate space for variables in arandom file buffer.

Details

To get data out of a random buffer after a GET or to enter data before a PUT,
aFIELD statement must have been executed.

The <file number> is the number under which the file was opened. <field
width> is the number of characters to be allocated to <string variable>.

Example:
FIELD #1, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the random file buffer to the string
variable N$, the next 10 positions to ID$, and the next 40 positions to ADD$.
FIELD does NOT place any data in the random file buffer. (See LSET/RSET
and GET in chapter 6, “File Handling”. Also refer to these statements in the
Alphabetical Reference Guide.)

The total number of bytes allocated in a FIELD statement must not exceed
the record length that was specified when the file was opened. Otherwise,
aFIELD overflow error occurs. (The default record lengthis 128.)

Any number of FIELD statements may be executed for the same file, and
all FIELD statements that have been executed are in effect at the same time.

Do not use a fielded variable name in an INPUT or LET statement. Once
a variable name is fielded, it points to the correct place in the random file
buffer. If a subsequent INPUT or LET statement with that variable name is
executed, the variable’s pointer is moved to string space.

Page 10.53

ALPHABETICAL REFERENCE GUIDE

BRIEF

FILES Command

Format: FILES[<filename>]

Purpose: Todisplaythe names of files residing on the current disk.

Details

If <filename> is omitted from a FILES command, all the files on the cur-
rently selected drive will be listed. <filename> is a string formula which may
contain question marks (?) to match any character in the filename or exten-
sion. An asterisk (*) as the first character of the filename or extension will
match any file or any extension.

Examples:
FILES
FILES “* BAS"
FILES “B:*. *n"

FILES “TEST?.BAS"

List all files on default drive

List all files with .BAS extension

List all files on disk B

List all files with a primary name that begins
with “TEST” and has an an extension of .BAS.

The question mark could be any alpha-
numeric character.

Page 10.54

ALPHABETICAL REFERENCE GUIDE

FIX Function

BRIEF

Format: FIx(X)

Action: Returns the truncated integer part of X.

Details

The FIX function is used to truncate the integer portion of a number. FIX(X)
is equivalent to SGN(X)*INT(ABS(X)). The major difference between FIX
and INT is that FIX does not return the next lower number for a negative X.

Examples:

PRINTFIX (58.75)
58
Ok

PRINTFIX(-58.75)
-58
Ok

Page 10.55

ALPHABETICAL REFERENCE GUIDE

For
Next
Loops

Counters

Checks

FOR...NEXT Statement

BRIEF

Format: FOR <variable>=X TO Y [STEP z]

NEXT [<variable>] [, <variable>...]

Purpose: To allow a series of instructions to be performed in a loop struc-
ture a given number of times.

The <variable> in the format of the FOR... NEXT statement is
used as a counter.

X is the initial value of the counter and Y is the final value.

Details

Looping is a common program structure used in programming applications
when there is a need to repeat a series of instructions several times. The
FOR...NEXT statements are used to keep track of how many times the pro-
gram loops and to provide a way for the program to exit from the loop when
the specified number of loops has been completed.

The <variable> is used as a counter. The first numeric expression (x) is the
initial value of the counter. The second numeric expression (y) is the final
value of the counter. The program lines following the FOR statement are
executed until the NEXT statement is encountered. Then the counter is in-
creased by the amount specified by STEP. If no step value is specified, the
default value is one.

A check is then performed to see if the current value is below or equal to
the final value. If itis, the process is repeated. If greater, execution continues
with the statement following the NEXT statement.

We have included a flowchart of a FOR...NEXT loop to help you in under-
standing how these statements function. A flowchart is a graphic illustration,
using standard symbols, to represent the path of a program.

Page 10.56

ALPHABETICAL REFERENCE GUIDE

. 1¢ nt
FOR...
NEXT
FLOWCHART BEGIN
INITIALIZE
COUNTER
PROCESS
INCREMENT
COUNTER

HAS
COUNTER
REACHED AN EX |
VALUE

Now that you have seen the flow of the program, consider the examples
below:

Example 1:
10 Cc=1 10 FOR C=1 TO 10
20 PRINT C isthe same as 20 PRINT C
30 c=C+1 30 NEXT C

40 IF C<=10 THEN 20

The first part of this example uses the IF... THEN statement to execute the
loop. The second part of this example uses the FOR...NEXT sequence to
execute the same loop with the same results. Notice the FOR...NEXT exam-
ple is shorter and will run faster than the IF...THEN loop. If you compare the
example to the flowchart above, you will understand the program structure
of a counter-driven loop.

Page 10.57

ALPHABETICAL REFERENCE GUIDE

Step

Nesting
FOR...NEXT
STATEMENTS

A run of this program will look like this:

=
=z

N HO OO AWNRFEC

(=]
(@]

Notice, in the preceding example, STEP was not specified. If STEP is not
specified, the increment is assumed to be one. If STEP is negative, the final
value of the counter must be set to less than the initial value.

The body of the loop is skipped if the initial value of the loop times the sign
of the step exceeds the final value times the sign of the step. For example:

20FORI=1TOO
30PRINTI
40NEXT1I

In this example, the loop does not execute because the initial value of the
loop exceeds the final value. It is also important to remember that the final
value of the loop must be set before the initial value is set.

FOR...NEXT loops may be nested. That is, a FOR...NEXT loop may be
placed within the context of another FOR...NEXT loop. When loops are
nested, each loop must have a unique variable name as its counter. The
NEXT statement for the inside loop must appear before the NEXT statement
for the outside loop. If nested loops have the same end point, a single NEXT
statement may be used for all of them.

The variable(s) in the NEXT statement may be omitted, in which case the
NEXT statement will match the most recent FOR statement. If a NEXT
statement is encountered before its corresponding FOR statement, a
NEXT without FOR error message is issued, and execution is terminated. If
a FOR statement appears without a corresponding NEXT statement, a
FORWithout NEXT error is issued, and execution is terminated.

Page 10.58

ALPHABETICAL REFERENCE GUIDE

Following is an example of a nested FOR...NEXT statement that creates a
multiplication table of the multiples of five thru nine.

Example 2

10 PRINT " ",
20 FOR Z=5 TO 9
30 PRINT Z;" ";
40 NEXT Z

50 PRINT

60 PRINT " "; STRING$ (20, "—")
70 FOR X=5 TO 9
80 PRINT X;"™i";
90 FOR Y=5 TO 9
100 PRINT X*Y;
110 NEXT Y

120 PRINT

130 NEXT X

140 END

RUN
5 6 7 8 9

30 35 40 45
36 42 48 54
42 49 56 63
48 56 64 172

|
I
|
I
i 54 63 T2 81

o w300
[SN
O U o,

Checkpoint

The first FOR...NEXT statement found in lines 20-40 prints the numbers
5-9 across the top of the table. The nested FOR...NEXT statement is
found in lines 70-130. Within those line numbers is the process for comput-
ing the actual table. If you compare this program to the flowchart illustrated
on Page 10.56, you will be able to see where the two loops begin and
end.

Nesting is a fairly complicated program structure. If you are having problems
understanding how to do this, refer to the bibliography of this manual for re-
ferences to additional resources.

Page 10.59

ALPHABETICAL REFERENCE GUIDE

FRE Function

BRIEF

Format: FRE(0)
FRE(X$)

Action: Returns the number of bytes in memory not currently being used
by BASIC.

Details

The FRE function will return the number of bytes in memory that are
not being used by Z-BASIC. The arguments to FRE are dummy argu-
ments. FRE(“ ”) forces some system housekeeping before returning the
number of free bytes.

BE PATIENT: housekeeping may take as long as one and one half minutes.
BASIC will not initiate housekeeping until all free memory has been used.
Therefore, using FRE(“ ”) periodically will result in shorter delays for each
housekeeping.

Example:

PRINTFRE(O)
14542
Ok

Page 10.60

ALPHABETICAL REFERENCE GUIDE

GET Statement

BRIEF

Format: GET #<filenumber>[, <recordnumber>]

Purpose: Toread arecord from a random disk file into a random buffer.

Details

The <file number> in a GET statement is the number under which the file
was opened. If <record number> is omitted, the next record (after the last
GET) is read into the buffer. The largest possible record number is 32767.
See Chapter 6, “File Handling”.

After a GET statement, the variables are immediately accessable.

Page 10.61

ALPHABETICAL REFERENCE GUIDE

GET/PUT Statement

BRIEF

Format: GET (X1,Y1l)-—(X2,Y2), array name
Format: PUT (X1,Yl) ,array[,action verb]

Purpose: Totransfer graphicimages to and from the screen.

Details

The PUT and GET statements are used to transfer graphic images to and
from the screen. PUT and GET make animation and high-speed object mo-
tion possible in either graphic mode.

The GET statement transfers the screen image bounded by the rectangle
described by specified points into the array. The rectangle is defined the
same way as the rectangle drawn by the LINE statement using the “,B” op-
tion.

The array is simply used as a place to hold the image and can be of any
type except string. It must be dimensioned large enough to hold the entire
image. The contents of the array after a GET will be meaningless when inter-
preted directly (unless the array is of type integer).

The PUT statement transfers the image stored in the array onto the screen.
The specified point is the coordinate of the top left corner of the image. An
Illegal Function call error will result if the image to be transferred is too
large tofiton the screen.

The action verb is used to interact the transferred image with the image al-
ready on the screen. PSET transfers the data onto the screen verbatum.
Other possible action verbs include: PRESET, AND, OR, XOR.

PRESET is the same as PSET except that a negative image (e.g. black on
white) is produced.

AND is used when you want to transfer the image only if an image already
exists under the transferred image.

Page 10.62

ALPHABETICAL REFERENCE GUIDE

T/PUT Statement

ORis used to superimpose the image onto the existing image.

XOR is a special mode often used for animation. XOR causes the points on
the screen to be inverted where a point exists in the array image. This be-
havior is exactly like the cursor on the screen. XOR has a unique property
that makes it especially useful for animation: when an image is put against
a complex background once twice, the background is restored unchanged.
This allows you to move an object around the screen without obliterating the
background.

The default action mode is XOR.

It is possible to get an image in one mode and put it in another, although
the effect may be quite strange because of the way points are represented
in each mode.

ANIMATION

Animation of an object is usually performed as outlined below:
1. PUT the object(s) on the screen.
2. Recalculate the new position of the object(s).

3. PUT the object(s) on the screen a second time at the old loca-
tion(s) to remove the old image(s).

4. Go to step one, this time putting the object(s) at the new location.

Movement done this way will leave the background unchanged. Flicker can
be cut down by minimizing the time between steps four and one, and by
making sure that there is enough time delay between one and three. If more
than one object is being animated, every object should be processed at
once, one step atatime.

if itis notimportant to preserve the background, animation can be performed
using the PSET action verb. The idea is to leave a border around the image
when it is first gotten as large or larger than the maximum distance the object
will move. Thus, when an object is moved, this border will effectively erase
any points.

Page 10.63

ALPHABETICAL REFERENCE GUIDE

1

The storage formatin the array is as follows:

2bytes giving X dimension in bits
2bytes giving Y dimension
The array data itself

The data for each row of pixels is left justified on a byte boundary, so if there
are less than a multiple of eight bits stored, the rest of the byte will be filled
out with zeros. The required array size in bytes is:

4 +INT((X+7)/8)*3"Y
WHERE: bits per pixel is 3
X = number of columns to be stored
Y = number of rows to be stored
The bytes per element of an array are:

2forinteger %
4 for single-precision !
8 for double-precision #

Example:

If you wanted to GET a 10 by 12 image into an integer array the number
of bytes required is 4 + INT((10 + 7)/8)3*12 or 76 bytes. You would then di-
vide the number of bytes by the number of bytes per element. In this case,
76/2. Thus, you would need an integer with at least 38 elements. See pages
8.20-8.22 for further information regarding the calculation of the array size.

It is possible to examine the X and Y dimensions and even the data itself
if an integer array is used. The X dimension is in element zero of the
array, and the Y dimension is found in element one. It must be remem-
bered, however, that integers are stored low byte first, then high byte,
but the data is transferred high byte first (leftmost).

Page 10.64

ALPHABETICAL REFERENCE GUIDE

GOSUB...RETURN Statement

BRIEF

Format: GOSUB<1ine number>

RETURN

Purpose: Tobranchtoand returnfrom asubroutine.

Details

The <line number> in the format of the GOSUB...RETURN statement is the
first line of the subroutine.

A subroutine may be called any number of times in a program, and a sub-
routine may be called from within another subroutine. Such nesting of sub-
routines is limited only by available memory.

The RETURN statement(s) in a subroutine cause BASIC to branch back to
the statement following the most recent GOSUB statement. A subroutine
may contain more than one RETURN statement, should logic dictate a re-
turn at different points in the subroutine. Subroutines may appear anywhere
in the program. It is recommended that the subroutine be readily distinguish-
able from the main program. To prevent inadvertent entry into the sub-
routine, it may be preceded by a STOP, END, or GOTO statement to direct
program control around the subroutine.

Example:

10 GOSUB 40

20 PRINT “BACK FROM SUBROUTINE"
30 END

40 PRINT “SUBROUTINE";
50 PRINT * IN";

60 PRINT " PROGRESS"
70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

Page 10.65

ALPHABETICAL REFERENCE GUIDE

GOTO Statement

BRIEF

Format: GOTO <line number>

Purpose: To branch unconditionally out of the normal program sequence
to a specified line number.

Details

The GOTO statement forces the program to branch unconditionally to the
specified line number and continue execution of the program from that point.
If the line number is an executable statement, that statement and those fol-
lowing are executed. If it is a nonexecutable statement, execution proceeds
atthe first executable statement encountered after the line number.

USED WITHIF...THEN

Although the GOTO statement is not a decision making statement, it is often
used in conjunction with them. Alone, the GOTO statement will only cause
the program to branch to another segment of the program. But, when used
with a decision maker such as the IF... THEN statement, it becomes the ob-
ject of a conditional branch, that is executed only if the resuit of the condition
istrue.

Checkpoint

To check your understanding of the GOTO statement, consider the following
program:

10 print “LINE 10 HERE"
20 GOTO 40

30 PRINT “LINE 30 HERE"
40 PRINT “LINE 40 HERE"

Your understanding of the GOTO statement is clear if you imagined that a
run of this program would look like this:

RUN
LINE 10 HERE
LINE 40 HERE
Ok

Line 30 has become inoperative and was totally ignored by the program be-
cause of the unconditional program branch instruction in line 20.

Page 10.66

ALPHABETICAL REFERENCE GUIDE

HEX$ Function

BRIEF

Format: HEX$(X)

Action: Returns a string which represents the hexadecimal value of the de-
cimal argument evaluated.

Details

The HEXS$ function returns the hexadecimal value of a decimal argument.
Xis rounded to aninteger before HEX$ (X) is evaluated.

Example:

10 INPUT X

20 A$ = HEX$(X)

30 PRINT X “DECIMAL IS " A$ " HEXADECIMAL"
RUN

7 32

32 DECIMAL IS 20 HEXADECIMAL

Ok

See the OCT$ Function for octal conversion.

page 10.67

ALPHABETICAL REFERENCE GUIDE

GOTO

IF Statement

BRIEF

Format: IF <expression>THEN <statement(s)>|<linenumber>
[ELSE<statement(s)>I<line number>]

IF <expression>GOTO <line number>
[ELSE<statement(s}>I|<linenumber>]

Purpose: To make a decision regarding program flow based on the result
returned by an expression.

Details

Conditional branching allows a program to take one or more program paths,
depending on the result of an expression. The IF...THEN statement is one
way to maintain program control when an expression is evaluated as true.
If the result of an expression is true, the THEN or GOTO clause is executed.
THEN may be followed by either a line number for branching, or one or more
statements to be executed. If the result of the expression is false, the THEN
clause is ignored and the ELSE clause if present is executed. Execution
continues with the next executable statement.

GOTO statements are always followed by a line number. If the result of the
expression is false, the GOTO clause is ignored and the ELSE clause, if pre-
sent, is executed. Execution proceeds at the first executable statement en-
countered after the line number.

Page 10.68

ALPHABETICAL REFERENCE GUIDE

Example 1:

For an example of how these statements interact, input the example below:

10 REM #***»#*#*QUADRATIC ROQTS #*****#xux

20 REM

30 REM FIND THE TWO ROOTS, X1 AND X2, OF A QUADRATIC
40 REM EQUATION GIVEN COEFFICIENTS A,B,C

50 REM

100 REM INITIALIZE A,B,AND C,

110 PRINT: INPUT “COEFFICIENTS (A,B,C): ";A,B,C
200 REM CALCULATE ROOTS

210 X1=(-B+SQR(B*2—4*A*C))/(2*A)

220
300
310
320

X2=(-B-SQR(B*2—4*A*C))/(2*A)

REM PRINT OUT RESULTS

PRINT: PRINT “X1 IS ";X1:PRINT "X2 IS ";X2:PRINT
END

If you run this program a few times inserting random numbers for the coeffi-
cients (both negative and positive), you will notice that on many occasions
the program ends with the following error message:

Illegal FunctionCall in210

This happens when the values you enter for A, B, and C can not be calcu-
lated in the real number system. There are no real number values that
equate to the square root of a negative number. Thus if you enter coeffi-
cients of 1,0,1, an error message would be displayed and the program termi-

nated.

To maintain program control no matter what the values of A, B, and C are,
and to keep certain values away from the square root formula, we have in-
serted a data check which cause the program to have two paths to choose.
IF the value of B ~ 2~ 4*A*C is less than zero THEN the program will branch
to an error message printing routine.

Page 10.69

ALPHABETICAL REFERENCE GUIDE

Nesting

Example 2:

10 REM ***##**x%x*QUADRATIC ROOTS *#***x#xux
20 REM

30 REM FIND THE TWO ROOTS, X1 AND X2, OF A QUADRATIC
40 REM EQUATION GIVEN COEFFICIENTS A,B,C

50 REM
100 REM INITIALIZE A,B,AND C,
110 PRINT: INPUT "COEFFICIENTS (A,B,C): ";A,B,C

150 REM CHECK DATA

160 IF (B*2)—(4*A*C) <0 THEN 400

200 REM CALCULATE ROOTS

210 X1=(—B+SQR(B*2—4*A*C))/(2*A)

220 X2=(—B-SQR(B*2—4%*A*C))/(2*A)

300 REM PRINT OUT RESULTS

310 PRINT: PRINT "X1 IS ";X1:PRINT "X2 IS ";X2:PRINT
320 GOTO 999

400 REM PRINT MESSAGE

410 PRINT: PRINT "NO REAL ROOTS.":PRINT
999 END

Line 160 contains the data check. If the value of B * 2-4*A*C is less than
zero then the result is said to be true, and the program branches to line 400
printing the message, “NO REAL ROOTS". If the value is greater than zero,
then the program continues execution at line 200. Using conditional branch-
ing keeps the program under your control, no matter what values are input.

IF.. THEN... ELSE statements can be nested. The term nesting means to
embed a statement or any block of statements within a larger statement or
block of statements. Nesting is limited only by the maximum length of the
line, 255 characters. The ELSE must be in the same program line as the
IF..THEN clause. In the example below, the statement may appear to be
ontwo lines butitis still considered one program line if there is no intervening
carriage return.

Example 3:

10 IF Y>X THEN PRINT "GREATER" ELSE IF Y<X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement which means if the value of Y is greater than X, then
the first part of this statement is true, and the rest of this statement is ignored.
GREATER will be printed and the program will continue execution at the next
line. If Y is less than X, then print, LESS THAN will be printed. If both of these
statements are false, “EQuAL" will be printed.

page 10.70

ALPHABETICAL REFERENCE GUIDE

If the statement does not contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest unmatched THEN.

Example 4:

IFA=BTHENIFB=CTHENPRINT"A=C"
ELSE PRINT "A<>(C"

BASIC will look at the first part of this statement (IF A=B). If it is false and
because there is no corresponding ELSE statement, it will move to the next
program line without printing anything. If the first part of the statement is true,
but the second part (IF B=C) is false, then, it will print A<>c because the
ELSE clause of the statement is matched to the closest unmatched THEN.
If both parts of the statement are true then BASIC will print A=c .

Checkpoint

To test your understanding of nested IF... THEN statements, study the ex-
ample below and match the ELSE clauses to the correct IF...THEN state-
ments.

10 INPUT A: INPUT B: INPUT C
20 IF A=C THEN IF A=B THEN PRINT "A=B A=(C"
<operator-typed LINE FEED>

ELSE PRINT "A NOT = B"
<operator—-typed LINE FEED>

ELSE PRINT "A NOT =C"
30 PRINT A, B, C

This nested IF will first test to see if A=C. If A does not equal C, the second
ELSE will be executed. If A does not equal B, the message A NoT=c will be
printed and execution will be continued in line 30.

If A=C, the first THEN will be executed. This will result in another test. This
time, A will be compared to B. If A does not equal C, the message A NOT =B
will be printed, and execution will be continued in line 30.

If you understand how these statements were matched, you may want to
read the next page for the additional technical considerations. If you're still
alittle unclear, don’t worry. Nesting is a fairly complex program structure that
may require additional reading. Resources may be found in the bibliography
of this manual.

Page 10.71

ALPHABETICAL REFERENCE GUIDE

TECHNICAL DATA

If an IF...THEN statement is followed by a line number in the direct mode,
anUndefined 1ine number error results uniess a statement with the specified
line number was previously entered in the indirect mode.

When using IF to test equality for a value that is the result of a floating point
computation, remember that the internal representation of the value may not
be exact. Therefore, the test should be against the range over which the ac-
curacy of the value may vary. For example, to test a computed variable A
against the value 1.0 use:

IFABS (A-1.0)<1.0E—6THEN. ..

This test is true if the value of A is 1.0 with a relative error of less than
1.0E-6.

Following are three additional examples of using |IF... THEN statements:
200 IF I THENGET#1, I
This statement gets record number | if | is not zero.

100 IF(I<20)AND(I>10) THENDB=1979—1:GOTO 300
110 PRINT "OUT OF RANGE"

In this example, a test determines if | is greater than 10 and less than 20.
If I is in this range, DB is calculated, and execution branches to line 300.
Ifl is notin this range, execution continues with line 110.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to the terminal or the line
printer, depending on the value of a variable (IOFLAG). If IOFLAG is zero,
output goes to the line printer, otherwise output goes to the terminal.

Complex conditions are explained in Chapter 5, “Logical Operators,” Page
5.32.

Page 10.72

ALPHABETICAL REFERENCE GUIDE

INKEYS$ Variable

BRIEF

Format: X$=INKEY$

Purpose: Toread acharacter from the keyboard.

Details
The returned value is a zero, one, or two, character string.
Anull string, (zero length) indicates no character is pending at the keyboard.

A one character string will contain the actual character read from the
keyboard.

A two character string indicates a special extended code.

If the INKEY$ variable is in use, no characters are displayed on the screen
and all characters are passed through to the program except for Control-C
which terminates the program.

You must assign the result of INKEY$ to a string variable before using the
character with any BASIC statement or function

Example:

100 'stop program until a key is pressed
110 PRINT "PRESS ANY KEY TO CONTINUE"
120 A$=INKEY$: IF A$x'"" THEN 120

Also see INPUTS$ function, Page 10.80.

Page 10.73

ALPHABETICAL REFERENCE GUIDE

INP Function

BRIEF

Format: 1INP(I)

Purpose: Returns the byte read from port I.

Details

| must be in the range —32768 to 32767. The INP function is the com-
plementary function to the OUT statement, Page 10.125.

Example:

100 A=INP(255)

Page 10.74

ALPHABETICAL REFERENCE GUIDE

INPUT Statement

BRIEF

Format: INPUT[;][<"promptstring">;]<variablelist>

Purpose: To allow input from the keyboard during program execution.

Details

Most programs have the following capabilities: get data, process data,
and print results. The INPUT statement is one method of getting data from
the keyboard. When an INPUT statement is encountered, program execu-
tion stops, a prompt string is printed if one has been included, a question
mark is displayed (unless suppressed by a comma) and BASIC waits for
your input of data. After receiving the proper response, program execution
continues.

A prompt string can be included in an INPUT statement to remind you of the
value the input statement is requesting. This is particularly useful when your
programs use many input statements. Additionally, a prompt string advises
you as to what type of response is appropriate. Following on the next page
is an example of the use of a prompt string. Program 1 is a sample program
using the INPUT statement without a prompt string. Program 2 is a modifica-
tion of Program 1 with the prompt string included.

Input
Statements

Prompt
Strings

Page 10.75

ALPHABETICAL REFERENCE GUIDE

10 REM *#% %% %% *PYTHAGOREAN THEOREM® * * * % * ¥ % % % %
20 REM

30 REMGIVEN TWO SIDES A ANDBOF ARIGHT TRIANGLE,
40 REM FIND THEHYPOTENUSE, C

50 REM

100 INPUT A

110 INPUTB

120C=SQR(A*2+B"2)

130 PRINT "THEHYPOTENUSE IS";C

140 END

Program 1
INPUT Statement Without Prompt String

When this Program is run it will look like this:

RUN

? 79

? 83

THE HYPOTENUSE IS95.13149
Ok

10 REM *## % %% x*PYTHAGOREAN THEQREM¥¥** %%

20- REM

30 REM GIVEN TWO SIDES A AND B OF A RIGHT TRIANGLE,
40 REM FIND THE HYPOTENUSE, C

50 REM

100 INPUT "LENGTH OF SIDE A";A

110 INPUT "LENGTH OF SIDE B";B

120 C=SQR(A"2+B*2)

130 PRINT "THE HYPOTENUSE IS";C

140 END

Program 2,
INPUT Statement With Prompt String

Whenthe Programis run, it will look like this:

RUN

LENGTH OF SIDE A? 79
LENGTH OF SIDE B? 53

THE HYPOTENUSE IS 95.13149
Ok

page 10.76

ALPHABETICAL REFERENCE GUIDE

You will notice that in the format of an INPUT statement, there is an optional
semicolon included immediately following INPUT. In this case, the carriage
return typed by the user to input data does not echo a carriage return/line
feed sequence. This means that the cursor will remain on the same line as
the user’s response. A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.

Example:

10INPUT “ENTER YOUR NAME”,N$
willrun as
ENTER YOUR NAME_

Data entered are assigned to the variable(s) given in the variable list. The
number of data items supplied must be the same as the number of variables
inthe list. Dataitems are separated by commas.

The variable names in the list may be numeric or string variable names (in-
cluding subscripted variables). The type of each data item that is inputted
must agree with the type specified by the variable name. (Strings entered
in response to an input statement need not be surrounded by quotation
marks.)

Responding to INPUT with too many or too few items, or with the wrong type
of value (string instead of numeric etc.) causes the message ?Redo from
start to be printed. No assignment of input values is made until an accept-
able response is given.

Semicoions

and

Variable
List

Page 10.77

ALPHABETICAL REFERENCE GUIDE

INPUT Statement

Checkpoint

As a final example of using INPUT statements, we have included another
sample program. This application program calculates mortgage payments.
Enter the program and then study it to see how it works. Then, run it a few
times and take note of the results. Be sure to save the program as you may
want to modify it later.

10 REM *****»*xx**MORTGAGE PAYMENTS*****»xxx

20 REM

30 REM CALCULATE MONTHLY MORTGAGE PAYMENTS GIVEN THE
40 REM TOTAL COST, DOWN PAYMENT, NUMBER OF YEARS,

50 REM AND YEARLY INTEREST RATE

60 REM

100 REM GET DATA

110 PRINT

120 PRINT "ENTER THE FOLLOWING:"

130 INPUT "TOTAL COST OF HOUSE AND PROPERTY: ", T
140 INPUT "DOWN PAYMENT: ",D

150 INPUT "NUMBER OF YEARS FOR LOAN: ",NY

160 INPUT "YEARLY INTEREST RATE (E.G. 16). ", IY
170 PRINT

180 REM CALCULATE PRINCIPAL

200 P=T-D

220 REM CALCULATE MONTHLY RATE & CHANGE % TO DECIMAL
230 IM=IY/1200

240 REM CALCULATE TOTAL NUMBER OF PAYMENTS

250 NM=NY*12

300 REM CALCULATE PAYMENTS ETC. & REPORT RESULTS

310 PRINT

320 PRINT "YOUR PRINCIPAL IS $";P

330 MP=(P*IM*(1+IM)~NM)/((1+IM)~NM~-1)

340 PRINT "THE MONTHLY PAYMENT WILL BE $";MP

350 PRINT "THE TOTAL PAYMENT FOR ";NY;" YEARS WILL BE $";NM*MP
360 PRINT "THE TOTAL INTEREST PAID WILL BE $";NM*MP-P
999 END

Page 10.78

ALPHABETICAL REFERENCE GUIDE

When the mortgage payments program is run it should look like this:

RUN

ENTER THE FOLLOWING:

TOTAL COST OF HOUSE AND PROPERTY: 120000
DOWN PAYMENT: 40000

NUMBER OF YEARS FOR LOAN: 30

YEARLY INTEREST RATE (E.G., 16): 16

YOUR PRINCIPAL IS $§ 80000

THE MONTHLY PAYMENT WILL BE $ 1075.806

THE TOTAL PAYMENT FOR 30 YEARS WILL BE § 387290.1
THE TOTAL INTEREST PAID WILL BE $ 307290.1

The formula used to calculate the mortgage program was:

Pi(1 +i)"

A= T+ir—1

which translates into the BASIC assignment statement:
MP=(P*IM*(1+IM) * NM)/((1+IM) * NM—1)

where: MP= monthly payment
P = principal
IM= monthly interest rate
NM= number of monthly payments

Page 10.79

ALPHABETICAL REFERENCE GUIDE

INPUT# Statement

BRIEF

Format: INPUT#<filenumber>,<variablelist>

Purpose: To read data items from a sequential disk file and assign them
to program variables.

Details

The INPUT# statement is used to read data items from a sequential disk

file and assign them to program variables. The <file number> is the number
used when the file was opened for input. The <variable list> contains the

variable names that will be assigned to the items in the file. (The variable

type must match the type specified by the variable name.) With INPUT #,

no question mark is printed, as with INPUT.

The data items in the file should appear just as they would if data were being

“typed in response to an INPUT statement. Numeric values, leading spaces,
carriage returns and line feeds are ignored. The first character encountered
that is not a space, carriage return, or line feed is assumed to be the start
of a number. The number terminates on a space, carriage return, line feed,
orcomma.

If BASIC is scanning the sequential data file for a string item, leading spaces,
carriage returns, and line feeds are also ignored. The first character encoun-
tered that is not a space, carriage return, or line feed is assumed to be the
start of a string item. If this first character is a quotation mark (”), the string
item will consist of all characters read between the first quotation mark and
the second.

Thus, a quoted string may not contain a quotation mark as a character. If
the first character of the string is not a quotation mark, the string is an un-
quoted string and will terminate when it reaches a comma, return, or line
feed (or after 255 characters have been read). If end of file is reached when
anumeric or string item is being INPUT, the item is terminated.

See Chapter 6, “File Handling,” Page 6.1.

page 10.80

ALPHABETICAL REFERENCE GUIDE

INPUT$ Function

BRIEF
Format: INPUTS(X,[[#]Y))

Action: Returns a string of X characters, read from the terminal or from file
numberY.

Details

If the terminal is used for input, no characters will be echoed, and all control
characters are passed through except CTRL-C, which is used to interrupt
the execution of the INPUT$ function.

Example 1:

5 'LIST THE CONTENTS OFA SEQUENTIAL FILE IN
HEXADECIMAL

10 OPEN"I",1,"DATA"

20 IF EQF(1) THEN 50

30 PRINT HEX$(ASC(INPUT$(1,#1)));

40 GOTO 20

50 PRINT: CLOSE

60 END

Example 1 opens a disk file called DATA (line 10). It then reads one charac-
ter at a time until the end of file (EOF) is reached (line 20). As each character
is read, it is converted into ASCIl value and then into its hexadecimal value
and printed as such. The input and conversion is done in line 30.

Example 2:

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUT$(1)

120 IF X$="P'" THEN 500

130 IF X$="S" THEN 700 ELSE 100

Page 10.81

ALPHABETICAL REFERENCE GUIDE

INSTR Function

BRIEF

Format: INSTR([I,]X$.Y$)

Action: Searches for the first occurrence of the string Y$ in X$ and returns
the position at which the match is found.

Details

Optional offset | sets the position for starting the search. | must be in the
range one to 255. If I>LEN(X$), if X$ is null or if Y$ cannot be found, the
INSTR function returns one. If Y$ is null, INSTR returns | or one. X$ and
Y$ may be string variables, string expressions or string literals.

Example:

10 X$ "ABCEDB"

20 Y$ np"

30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN

2 6

Ok

IF 1<=0 or I>255 is specified, the error message I111egal Function Call in
<1line number> Will be returned.

Page 10.82

ALPHABETICAL REFERENCE GUIDE

INT Function

BRIEF
Format: INT(X)

Action: The INT function returns the largest integer less than X.

Details

Examples:

PRINT INT(99.89)
99
Ok

PRINT INT(—12.11)
-13
Ok

See FIX, Page 10.54, and CINT, Page 10.16, which also return integer
values.

Page 10.83

ALPHABETICAL REFERENCE GUIDE

KEY Statement
BRIEF
Format: KEY <key number>,<string expression>
KEY LIST
KEY ON
KEY OFF

Purpose: To allow any of the twelve special function keys to be assigned
to a 15 byte string which, when the key is pressed, will be input
to BASIC.

Details

The KEY statement allows function keys to be designated “Soft Keys”. Any
one or all of the twelve special function keys may be assigned a 15 byte
string which, when the key is depressed, will be inputted to BASIC.

Initially, the Soft Keys are assigned the following values:

F1—LIST F7 —AUTO
F2—RUN F8 —FOR
F3—LOAD" F9 —NEXT
F4—SAVE*“ F10—GOSuUB
F5—CONT F11—TRON
F6—PRINT F12—TROFF

NOTE: F2, F5, F11 and F12 are executed immediately, because a carriage
returnis appended at the end.

<key number> is the key number. An expression returning an unsigned
integerinthe range oneto 12.

<string expression> is the key assignment test, which can be any valid
string expression.

KEY ON Causes the key values to be displayed on the 25th Line.
10 of the 12 soft keys are displayed. Only the first six
characters of each value are displayed.

Page 10.84

ALPHABETICAL REFERENCE GUIDE

KEY OFF Erases the Soft Key display from the 25th line.

KEY LIST Lists all 12 Soft Key values on the screen. All 15 charac-

ters of each value are displayed.

KEY <key number>,<string expression> Assigns the
string expression to the Soft Key specified (1to 12).

Rules:

1. if the value returned for <key number> is not in the range one
to 12, an111egal Function Call error is taken. The previous key

string assignment is retained.

2. The key assignment string may be one to 15 characters in length.
If the string is longer than 15 characters, the first 15 characters

are assigned.

3. Assigning a null string (string of length zero) to a Soft Key dis-

ables the function key as a Soft Key.

4. When a Soft Key is assigned, the INKEY$ function returns one
character of the Soft Key string per invocation. if the Soft Key is
disabled, INKEY$ returns a string of length two. The first charac-

ter is binary zero, the second is the key scan Code.

Page 10.85

ALPHABETICAL REFERENCE GUIDE

Examples:

S0 KEY ON

200KEY OFF

10KEY 1, "MENU"+CHR$(13)

20KEY1,""

EY Statement

Display the Soft Key on the 25th
Line.

Erase Soft Key display

Assigns the string ‘MENU'<car-
riage return> to Soft Key 1. Such
assignments might be used for
rapid data entry. This example
might be used in a program to
select a menu display when en-
tered by the user.

Would erase Soft Key 1.

The following routine initializes the first five Soft Keys:

1 KEY OFF 'Turn off key display during init.
10 DATA KEY1,KEY2,KEY3,KEY4,KEYS
20 FOR I=1 TO 5:READ SOFTKEYS$(I)

30 KEY I,SOFTKEYS$(I)
40 NEXT I

50 KEY ON 'now display new softkeys.

Following is a practical application of the KEY statement you can use to RUN
the DEMO programs on Pages 8.27-8.30. Input this program before you run

the Demo.

10 KEY OFF
20 KEY 1, "RUN"

30 KEY 2,CHR$(34) +"DEMOI" +CHR$(34) + CHR$(13)
40 KEY 3,CHR$(34) +"DEMOII" + CHR$(34) +CHR$(13)

50 KEY 4,"LIST" +CHR$(13)

60 KEY ON

Page 10.86

ALPHABETICAL REFERENCE GUIDE

KILL Command

BRIEF

Format: KILL<filename>

Purpose: Todelete afile from disk.

Details

KILL is used for all types of disk files: program files, random data files, and
sequential data files.

If a KILL Command is given for a file that is currently open, a File already
open €IrOr OCCuUrs.

Example:
200 KILL "FILE.BAS"

Seealso Chapter 6, “File Handling” Page 6.1.

Note: Kill does not assume .BAS extension.

Page 10.87

ALPHABETICAL REFERENCE GUIDE

LEFT$ Function

BRIEF

Format: LEFT${X$.I)

Action: Returns a string comprised of the leftmost | characters of X$.

Details

The LEFTS$ function forms a substring from the left end of a source string.
In reference to the format, | must be in the range zero to 255. If | is greater
than LEN(X$), the entire string (X$) will be returned. If I=0, the null string
(length zero) is returned.

Example:

10 A% "BASIC"

20 B$ LEFT$ (A$, 3)
30 PRINT B$

RUN

BAS

Ok

Also see “MID$” Page 10.107 and “RIGHT$,” Page 10.152.

Page 10.88

ALPHABETICAL REFERENCE GUIDE

LEN Function

BRIEF

Format: LEN(X$)

Action: Returns the number of characters in X$. Non-printing characters
and blanks are counted.

Details
The LEN function returns the length of X$ in characters.

Example:

10X$ = "PORTLAND, OREGON"
20 PRINT LEN (X$)
RUN
16
Ok

Page 10.89

ALPHABETICAL REFERENCE GUIDE

LET Statement

BRIEF

Format: [LET]<variable>=<expression>

Purpose: To assignthe value of an expressionto a variable.

Details

The LET statement is optional, i.e., the equal sign is sufficient when assign-
ing an expression to a variable name.

Example:

110LETD=12
120LETE=12"2
130LETF=12 " 4
140 LET SUM=D+E+F

is equivalentto

110D=12
120E=12"2
130F=12"4
140 SUM=D+E+F

Page 10.90

ALPHABETICAL REFERENCE GUIDE

LINE Statement

BRIEF
Format: LINE [(X1,Y1)]-(X2,Y2) [,[attribute]] [,b[f]]

Purpose: To permit the drawing of lines in absolute and relative locations
on the screen.

Details

LINE is the most powerful of the graphics statements. It allows a group of
pixels to be controlled with a single statement. A pixel is the smallest point
that can be plotted on the screen.

The simplest form of lineis:
LINE - (X2,Y2)

This will draw from the last point to the point (X2,Y2) in the foreground attri-
bute.

We caninclude a starting point also:

LINE(0,0)—(639,224) 'draw diagonal line down screen
LINE (0,100) - (639,100) 'draw bar across screen

We can append a color argument to draw the line in green, which is color
two:

LINE (10,10)-(20,20),2 'draw in color 2!
10 CLS

20 LINE — (RND*639,RND*224),RND*7
30 GOTO 20

(Draws lines forever using random attribute.)

The final argument to line is “,b” -- box or “,bf’ — filled box. The syntax indi-
cates that we can leave out the attribute argument and include the final argu-
ment as follows:

LINE (0,0)—-(100,100),,b ‘'draw box in foreground attribute.

LINE (0,0)-~(200,200),2,bf 'filled box attiribute 2

Page 10.91

ALPHABETICAL REFERENCE GUIDE

LINE Statement

v

The “ b” tells BASIC to draw a rectangle with the points (X1,Y1) and (X2,Y2)
as opposite corners. This avoids giving the four LINE commands:

LINE (X1,Yl)-(X2,6Y2)
LINE (X1,Yl)-(X1,Y2)
LINE (X2,Y1l)-(X2,Y2)
LINE (X1,Y2)-(X2,6Y2)

which perform the equivalent function.

The “,bf’ means draw the same rectangle as “,b” but also fill in the interior
points with the selected attribute.

When out of range coordinates are given in the line command, the coordi-
nate which is out of range is given the closest legal value. In other words,
negative values become zero, Y values greater than 224 become 224 and
Xvalues greater than 639 become 639.

In the examples and syntax the coordinate form STEP (Xoffset, Yoffset) is
not shown. However, this form can be used wherever a coordinate is used.
Note that all of the graphic statements and functions update the last point
referenced. In a line statement if the relative form is used on the second co-
ordinate itis relative to the first coordinate.

Example:
10 CLS
20 LINE- (RND*639,RND*224),RND*7,bf
30 GO TO 20

In this example, the LINE statement is used to draw filled boxes at random
locations on the screen. Since the color argument is also randomized, these
boxes will appear in various shades or colors. This example is also a con-
tinuous loop. You will have to press CTRL-C to break program execution.
For more information on this statement, see Chapter 8, “Advanced Color
Graphics”.

page 10.92

ALPHABETICAL REFERENCE GUIDE

LINE INPUT Statement

BRIEF

Format: LINEINPUT[;][<"promptstring">;] <stringvariable>

Purpose: To input an entire line (up to 255 characters) to a string variable,
without the use of delimiters.

Details

The prompt string is a string literal printed at the terminal before input is ac-
cepted. A question mark is not printed unless it is part of the prompt string.
All input from the end of the prompt to the RETURN is assigned to <string
variable>. If a line feed/RETURN sequence (this order only) is encountered,
both characters are echoed. The RETURN is ignored. The line feed is put
into <string variable>, and data input continues.

if the LINE INPUT statement is immediately followed by a semicolon, the
RETURN you type to end the input line does not echo a RETURN/line feed
sequence atthe terminal.

A LINE INPUT may be aborted by typing CTRL-C. BASIC will return to com-

mand level and display OK. Typing CONT resumes execution at the LINE
INPUT.

See example, Page 10.93, LINE INPUT#.

Page 10.93

ALPHABETICAL REFERENCE GUIDE

LINE INPUT# Statement

BRIEF

Format: LINE INPUT#<file number>,<stringvariable>

Purpose: To read an entire line (up to 255 characters), without delimiters,
from a sequential disk data file to a string variable.

Details

A <file number> is the number under which the file was opened. A <string
variable> is the variable name that the line will be assigned. LINE INPUT#
reads all characters in the sequential file up to a RETURN. Then it skips over
the RETURN/line feed sequence, and the next LINE INPUT # reads all char-
acters up to the next RETURN. (If a line feed/RETURN sequence is encoun-
tered, itis preserved.)

The LINE INPUT# statement is especially useful if each line of a data file
has been broken into fields, or if a BASIC program saved in ASCIl mode
is being read as data by another program.

Example:

10 OPEN "O",1,"LIST"

20 LINE INPUT "CUSTOMER INFORMATION? ";C$%
30 PRINT #1,C$

40 CLOSE 1

50 OPEN "I",1,"LIST"

60 LINE INPUT #1,C$

70 PRINT C$

80 CLOSE 1

RUN

CUSTOMER INFORMATION? LINDAJONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS

Ok

Page 10.94

ALPHABETICAL REFERENCE GUIDE

LIST Command

BRIEF
Format 1: LIST([<linenumber>]
Format 2: LIST[<linenumber>[-[<linenumber>]]]}

Purpose: To list all or part of the program currently in memory at the termi-
nal.

Details

BASIC always returns to command level after a LIST command is executed.
Format 1: If <line number> is omitted, the program is listed beginning at

the lowest line number. (Listing is terminated either by the end of the pro-

gram or by typing CTRL-C.) If <line number> is included, only the specified

line will be listed.

Format 2:This format allows the following options:

1. If only the first number is specified, that line and all higher-
numbered lines are listed.

2. if only the second number is specified, all lines from the begin-
ning of the program through that line are listed.

3. If both numbers are specified, the entire range is listed.

Page 10.95

ALPHABETICAL REFERENCE GUIDE

i
Examples:
Format 1:
LIST Lists the program currently in memory.
LIST500 Lists line 500.
Format 2:
LIST 150~ Lists all lines from 150 to the end.
LIST-1000 Lists all lines from the lowest number through

1000.

LIST 150-1000 Lists lines 150 through 1000, inclusive.

Page 10.96

ALPHABETICAL REFERENCE GUIDE

LLIST Command

BRIEF

Format: LLIST[<linenumber>[-[<linenumber>]]]

Purpose: To list all or part of the program currently in memory at the line
printer.

Details

The LLIST command is used to list all or part of a program at the line
printer. LLIST assumes a 255-character wide printer.

BASIC always returns to command level after an LLIST is executed. The
options for LLIST are the same as for LIST.

See the examples for LIST, Page 10.94.

page 10.97

ALPHABETICAL REFERENCE GUIDE

LOAD Command

BRIEF

Format: LoAD<filename>[,R]

Purpose: Toload a file from disk into memory.

Details

The <filename> in the LOAD command is the name that was used when
the file was saved. The operating system appends a default filename exten-
sion of .BAS if one was not supplied in the SAVE command. (Refer to Chap-
ter 2, “Files and File Naming” Page 2.12, for information about possible
filename extensions under Z-DOS Operating System.)

Roption LOAD closes all open files and deletes all variables and program lines cur-
rently residing in memory before it loads the designated program.

However, if the “R” option is used with LOAD, the program is run after it is
loaded and all open data files are kept open. Thus, LOAD with the “R” option
may be used to chain several programs (or segments of the same program.)
information may be passed between the programs using their disk data files.

Example:

LOAD "STRTRK" ,R

Page 10.98

ALPHABETICAL REFERENCE GUIDE

LOC Function

BRIEF

Format: LOC(<filenumber>)

Action: With random disk files, LOC returns the record number just read
orwritten from a GET or PUT statement.

Details

If the file was opened but no disk I/O has been performed yet, the LOC func-
tion returns a zero. With sequential files, LOC returns the number of sectors
(128 byte blocks) read from or written to the file since it was opened.

Example:

200 IFLOC(1)>50 THEN STOP

Page 10.99

ALPHABETICAL REFERENCE GUIDE

LOCATE Statement

BRIEF

Format: LOCATE [row], [col] [.[cursor]]

Purpose: The LOCATE statement moves the cursor to the specified posi-
tion on the active screen. Optional parameters turn the blinking

cursor on and off.
Details
row Is the screen line number. A numeric expression return-
ing an unsigned integer in therange 1 to0 25.
col Is the screen column number. A numeric expression
returning an unsigned integer in the range 1 to 80.
cursor Is a Boolean value indicating whether the cursor is visi-

ble or not: Zero for off, non-zerofor on.

The LOCATE Statement moves the cursor to the specified position. Sub-
sequent PRINT statements begin placing characters at this location. Option-
ally it may be used to turn the cursor on or off.

page 10.100

ALPHABETICAL REFERENCE GUIDE

LOCATE Statement

Rules:

1. Any values entered outside of these ranges will resultin an 11-
legal FunctionCall error. Previous values are retained.

2. Any parameter may be omitted. Omitted parameters assume

the old value.
Example:
10 LOCATE 1,1 Moves to the home position in the upper
left hand corner.
20 LOCATE ,,1 Make the blinking cursor visible, posi-
tion remains unchanged.
30 LOCATE 5,1,1 Move to line five, column one, turn cur-

sor on.

Page 10.101

ALPHABETICAL REFERENCE GUIDE

LOF Function

BRIEF

Format: LOF({<filenumber>)

Purpose: Returnsthe length of the file in bytes.

Details

The LOF function returns the length of the file in bytes. This command is
also used in random files to determine the last record number of the file. LOF
divided by the length of a record is equal to the number of records in the
file.

Example:

10 QPEN "R",1,"PARTS", 128

20 FIELD #1,128 AS DESC$

30 INPUT "ENTER PART# TO EXAMINE"; PN

40 IF PN <=0 THEN END

50 IF PN > LOF(1)/128 THEN PRINT "BAD REQUEST": GOTO 30
60 GET #1, PN

70 PRINT "DESCRIPTION:"; DESC$

80 GOTO 30

Page 10.102

ALPHABETICAL REFERENCE GUIDE

LOG Function

BRIEF
Format: LOG(X)

Action: Returns the natural logarithm of X. X mustbe greater than zero.

Details

Example:

PRINTLOG(45/7)
1.860752
Ok

Page 10.103

ALPHABETICAL REFERENCE GUIDE

LPOS Function

BRIEF

Format: LPOS(X)

Action: Returns the current position of the line printer print head within the
line printer buffer.

Details

The LPOS function does not necessarily give the physical position of the
print head. X is a dummy argument.

Example:

100 IFLPOS(X)>60 THENLPRINT CHR$ (13}

page 10.104

ALPHABETICAL REFERENCE GUIDE

LPRINT and LPRINT USING Statements

BRIEF

Format: LPRINT [<listofexpressions>]
LPRINTUSING <stringexp>;<listofexpressions>

Purpose: To printdata atthe line printer.

Details

The LPRINT statement is the same as PRINT and PRINT USING, except
output goes to the line printer. See Pages 10.132 — 10.137.

LPRINT assumes a 255-character-wide printer.

page 10.105

ALPHABETICAL REFERENCE GUIDE

LSET and RSET Statements

BRIEF

Format: LSET <stringvariable> = <stringexpression>
RSET <stringvariable> = <stringexpression>

Purpose: To move data from memory to a random file buffer.

Details

If <string expression> requires fewer bytes than were fielded to <string
variable>, LSET left-justifies the string. (Spaces are used to pad the extra
positions.) If the string is too long for the field, characters are dropped
from the right. RSET right-justifies the string. If the characters are too
long for the field, RSET drops characters from the left. Numeric values
must be converted to the strings before they are LSET or RSET. See
the MKI1$, MKS$, and MKD$ functions, Page 10.109.

Examples:

150 LSET A$=MKS$ (AMT)
160 LSET D$=DESC$%

See also Chapter 6, “File Handling,” Pages 6.21,6.22.

LSET or RSET may also be used with a non-fielded string variable to left-
justify or right-justify a string in a given field. For example, the program lines:

110 A$=SPACE$ (20)
120 RSET A$=N$§

right-justify the string N$ in a 20-character field. This can be very useful for
formatting printed output.

Page 10.106

ALPHABETICAL REFERENCE GUIDE

MERGE Command

BRIEF

Format: MERGE<filename>

Purpose: To merge a specified disk file into the program currently in
memory.

Details

<filename> is the name used when the file was saved. (Your operating sys-
tem may append a default filename extension if one was not supplied in the
SAVE command. Refer to Chapter 2, Page 2.12 for information about possi-
ble filename extensions under the Z-DOS Operating System.) The file must
have been saved in ASCII format. (If not, aBad rile mode error occurs.)

If any lines in the disk file have the same line numbers as lines in the program
in memory, the lines from the file on disk will replace the corresponding lines
in memory. (Merging may be thought of as “inserting” the program lines on
disk into the program in memory.)

BASIC always returns to command level after executing a MERGE com-
mand.

Example:

MERGE "NUMBERS"

page 10.107

ALPHABETICAL REFERENCE GUIDE

MID$ Function

BRIEF

Format: MID$(X$.I[.J])

Action: Returns a string of length J from X$ beginning with the Ith charac-
ter.

Details

I must be in the range one to 255. The range of J is from zero to 255. If J
is omitted, or if there are fewer than J characters to the right of the ith charac-
ter, all rightmost characters beginning with the Ith character are returned.
If I>LEN(X$), or J =0. MID$ returns a null string.

Example:

10 A$="GooD"

20 B$=""MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,8,8)

RUN

GOOD EVENING

Ok

Also see LEFT$, Page 10.87 and RIGHT$, Page 10.152.

If 1=0 is specified, the error message Illegal Function Call in
<linenumber> Will be returned.

Page 10.108

ALPHABETICAL REFERENCE GUIDE

MID$ Statement

BRIEF

Format: MID$ (<stringexpl>,n[,m])=<stringexp2>

where n and m are integer expressions and <string exp1> and <string
exp2> are string expressions.

Purpose: Toreplace a portion of one string with another string.

Details

The characters in <string exp1>, beginning at position n, are replaced by
the characters in <string exp2>. The optional m refers to the number of
characters from <string exp2> that will be used in the replacement. If m is
omitted, all of <string exp2> is used. However, regardless of whether m is
omitted or included, the replacement of characters never goes beyond the
original length of <string exp1>.

Example:

10 A5=""KANSAS CITY, MO"
20MID$ (A%, 14) ="KS"

30 PRINT A$

RUN

KANSASCITY, KS

Ok

MID$ is also a function that returns a substring of a given string.

Page 10.109

ALPHABETICAL REFERENCE GUIDE

MKIS$, MKS$, MKD$ Functions

BRIEF

Format: MKI$(<integerexpression>)
MKS$(<singleprecisionexpression>)
MKD$ (<doubleprecisionexpression>)

Action: Convert numeric values to string values.

Details

Any numeric value that is placed in a random file buffer with an LSET or
RSET statement must be converted to a string. MKI$ converts an integer
to a two-byte string. MKS$ converts a single-precision number to a four-byte
string. MKD$ converts a double-precision number to an eight-byte string.

Example:

90 AMT=K+T

100FIELD #1,8ASD$, 20 ASN$
110 LSET D$§ = MKS$ (AMT)

120 LSETN$ =A$

130 PUT #1

See also CVI, CVS, CVD, Page 10.30 and Chapter 6, “File Handling.”

page 10.110

ALPHABETICAL REFERENCE GUIDE

NAME Command

BRIEF

Format: NAME <old filename> AS <new filename>

Purpose: Tochange the name of adisk file.

Details

The <old filename> must exist and <new filename> must not exist; other-
wise an error will result. After a NAME command, the file exists on the same
disk, in the same area of disk space, with the new name.

Example:

Ok
NAME "ACCTS" as "LEDGER"
Ok

NOTE: NAME does not assume .BAS extension.

page 10.111

ALPHABETICAL REFERENCE GUIDE

NEW Command

BRIEF

Format: NEW

Purpose: To delete the program currently in memory and clear all vari-
ables.

Details

NEW is entered at command level to clear memory, closes all files and turns

trace off before entering a new program. BASIC always returns to command
level after a NEW command is executed.

Page 10.112

'ALPHABETICAL REFERENCE GUIDE

NULL Statement

BRIEF

Format: NULL <integer expression>

Purpose: To setthe number of nulls to be printed atthe end of each line.

Details

For 10-character-per-second tape punches, <integer expression> should
be >=three. When tapes are not being punched, <integer expression>
should be zero or one for Teletypes and Teletype-compatible terminal
screens. <integer expression> should be two or three for 30 cps hard copy
printers. The default value is zero. The range is between zero and 255.

Example:

Ok

NULL 2

Ok

100 INPUTX

200 IFX<50 GOT0 800

Two null characters will be printed after each line.

Page 10.113

ALPHABETICAL REFERENCE GUIDE

OCTS$ Function

BRIEF

Format: ocT$(x)

Action: Returns a string which represents the octal value of the decimal
argument.

Details
Xis rounded to an integer before OCT$(X) is evaluated.

Example:

PRINTOCT$(24)
30
Ok

See the HEX$ function for hexadecimal conversion, Page 10.66.

Page 10.114

ALPHABETICAL REFERENCE GUIDE

ON ERROR GOTO Statement

BRIEF

Format: ONERRORGOTO <line number>

Purpose: To enable error trapping and specify the first line of the error han-
dling subroutine.

Details

Once error trapping has been enabled all errors detected, including direct
mode errors (e.g., syntax errors), will cause a jump to the specified error
handling subroutine. If <line number> does not exist, an Undefined line
number error results. To disable error trapping, execute an ON ERROR
GOTO 0. Subsequent errors will print an error message and hait execution.

An ON ERROR G0TO 0 statement that appears in an error trapping subroutine
causes BASIC to stop and print the error message for the error that caused
the trap. It is recommended that all error trapping subroutines execute an
ON ERROR GOTO 0 if an error is encountered for which there is no recovery ac-
tion.

if an error occurs during execution of an error handling subroutine, the
BASIC error message is printed and execution terminates. Error trapping
does not occur within the error handling subroutine.

Example:

10 ON ERROR GOTO 80

20 INPUT “Enter number 1" ;N1

30 INPUT “Enter number 2'";N2

40 A=N1/N2

50 B=N1*N2

60 PRINT A.,B

70 GOTO 20

80 IF ERR=11 THEN PRINT"Do not enter zero for number 2!":RESUME 30
90 IF ERR=6 THEN PRINT"Do not enter such large numbers!":RESUME 20
100 PRINT“Error has occured. It is error number:";ERR

Page 10.115

ALPHABETICAL REFERENCE GUIDE

ON ERROR GOTO Statement

Line 10is the statement that tells BASIC where to go in the event of an error.
In lines 20 and 30 the input statements ask for two numbers to be entered.
In line 40 the first number (N1) is divided by the second number (N2) and
the result is assigned to variable A. In line 50, the numbers are multiplied
together and the result is assigned to variable B. Both A and B are then
printed on the screen (line 60).

If you input a zero for the second number you will cause an error condition,
and the program goes to line 80. Line 80 says if error number 11 occurs,
which is BASIC'’s division by zero error (see Appendix A), then print “Do not
enter zero for the number 2!” Line 90 says if error 6 occurs, which is the over-
flow error, then print “Do not enter such large numbers”.

Page 10.116

ALPHABETICAL REFERENCE GUIDE

ON...GOSUB and ON...GOTO Statements

BRIEF

Format: oN<expression>GOTO<listoflinenumbers>
ON <expression>GOSUB<listofline numbers>

Purpose: To branch to one of several specified line numbers, depending
on the value returned when an expression is evaluated.

Details

The value of <expression> determines which line number in the list will be
used for branching. For example, if the value is three, the third line number
in the list will be the destination of the branch. (If the value is a non-integer,
the fractional portion is rounded.)

If the value of <expression> is zero or greater than the number of items
in the list (but less than or equal to 255), BASIC continues with the next
executable statement. If the value of <expression> is negative or greater
than 255,an I11egal Function Call €rror OCCurs.

Example:

1000NL —-1GOTO 150, 300, 320, 390

Page 10.117

ALPHABETICAL REFERENCE GUIDE

OPEN Statement

BRIEF

Format: OPEN<'"mode">, <#><filenumber>,<filename>,
[<reclen>]

Purpose: Toallow l/Oto adisk file.

Details

A disk file must be opened before any disk 1/O operation can be performed
on that file. The OPEN statement allocates a buffer for 1/O to the file and
determines the mode of access that will be used with the buffer.

<mode> is a string expression whose only character is one of the following:

0 specifies sequential output mode
| specifies sequential input mode
R specifies random input/output mode

<file number> is an integer expression whose value is between one and
255. The number is then associated with the file for as long as itis open and
is used to refer other disk I/O statements to the file.

<filename> is a string expression containing a name that conforms to your
operating system'’s rules for disk filenames. You may also need to specify
adevice name if the file you are opening is not on the default drive.

<reclen> is an integer expression which, if included, sets the record length
for random files. The default record length is 128 bytes.

A file can be opened for sequential input or random access on more than

one file number at a time. A file may be opened for sequential output, how-
ever, on only one file number at a time.

Example:
10 OPEN "I", 2, "INVEN"

This program opens a sequential file called “INVEN” on unit two.

Also see “File Handling” (Page 6.1).

Page 10.118

ALPHABETICAL REFERENCE GUIDE

OPEN Statement

BRIEF

Format: OPEN [<dev>] <filename>[FOR <mode>] AS <#>
<file number> [LEN=<lrecl>]

Purpose: To establish communication between a physical device and an
I/0 buffer in the data pool.

Details

<dev> is optionally part of the filename string and may be one of the follow-
ing:

A:-D: for Disk
KYBD: Keyboard — input Only
LPT1: Printer — Output Only
SCRN: Screen— Qutput Only
COM1: RS-232 Communications 1
<filename> Is a valid string literal or variable optionally containing a

<dev>. If <dev> is omitted, the default disk is assumed.
Refer to “DISK FILES” for naming conventions.

<mode> Determines the initial positioning within the file and the ac-
tion to be taken if the file does not exist. The valid modes
and actions taken are:

INPUT — Position to the beginning of an existing file. A
Filenot found erroris given if the file does not exist.

OUTPUT — Position to the beginning of the file. If the file
does not exist, oneis created.

Page 10.119

ALPHABETICAL REFERENCE GUIDE

<file number>

Irecl

Action:

OPEN Statement

APPEND — Position to the end of the file. If the file does
not exist, one is created.

If the FOR <mode> clause is omitted, the initial position
is at the beginning of the file. If the file is not found, one
is created. This is the random I/O mode. That is, records
may be read or written at will at any position within the file.

Is an integer expression returning a number in the range
one thru 255. The number is used to associate an I/0 buf-
fer with a disk file or device. This association exists until
a CLOSE or CLOSE <file number> statement is exe-
cuted.

Is an integer expression in the range one to 65535. This
value sets the record length to be used for random files
(see the FIELD statement). If omitted, the record length
defaultsto 128 byte records.

For each device, the following OPEN modes are allowed:

KYBD:
SCRN:
COM1:
LPT1:

INPUT only.

OUTPUT only.

INPUT, OUTPUT or random only.
OUTPUT only.

Disk files allow all modes.

When a disk file is opened FOR APPEND, the position is initially at the
end of the file and the record number is set to the last record of the file
(LOF(x)/128). PRINT, WRITE or PUT will then expand the file. The Program
may position elsewhere in the file with a GET statement. If this is done, the
mode is changed to random and the position moves to the record indicated.

Page 10.120

ALPHABETICAL REFERENCE GUIDE

tatement

Once the position is moved from the end of the file, additional records
may be appended to the file by executing a GET #x,LOF(x)/<Irecl> state-
ment. This positions the file pointer at the end of the file in preparation for
appending.

Rules:

1. Any values entered outside of the ranges given will result in an
Illegal Function Call error. Thefile is notopened.

2. If the file is opened as INPUT, attempts to write to the file will
resultin aBadFileMode error.

3. if the file is opened as OUTPUT, attempts to read the file will
resultinaBadFile Mode error.

4, At any one time, it is possible to have a particular disk filename
open under more than one file number. This allows different
modes to be used for different purposes. Or, for program clarity,
to use different file numbers for different modes of access. Each
file number has a different buffer, so several records from the
same file may be kept in memory for quick access.

A file may not be opened FOR QUTPUT, on more than one file
number atatime.

Example:

10 OPEN "PARTS.DAT" AS #1 'for random I/0 on Disk A:
10 OPEN "KYBD:" FOR INPUT AS #2

10 OPEN "B:INVENT.DAT" FOR APPEND AS #1

Page 10.121

ALPHABETICAL REFERENCE GUIDE

OPEN COM Statement

BRIEF

Format: OPEN "DEV: <speed>,<parity>, <data>,<stop>"
AS [#]<file number>

Function: OPEN “COM...” allocates a buffer for I/O in the same fashion as
OPEN for disk files.

Details
OPENINGACOMFILE

This section describes the BASIC statements required to support RS-232
asynchronous communication with other computer and peripherals.

DEV: Is a valid communications device. The valid device is
COM1:
<speed> Is a literal integer specifying the transmit/receive baud

rate. Valid speeds are: 75, 110, 150, 300, 600, 1200,
1800, 2400, 4800, 9600.

<parity> Is a one character literal specifying the parity for trans-
mit and receive as follows:

S SPACE, Paritybitalways transmitted and received
as space (0 bit).

O ODD, Odd transmit/receiver parity checking.

M MARK, Parity bitalways transmitted and received as
mark (1 bit).

E EVEN, Even transmit/receive parity checking.

N NONE, Notransmitparity, no receive parity checking.

Page 10.122

ALPHABETICAL REFERENCE GUIDE
OF COM Statement

<data> Is a literal integer indicating the number of transmit/receive
databits. Valid values are: 4,5,6,7, or 8.

Parity is a method by which data is checked to make sure it hasn't changed
during transmission.

When odd parity is used, a parity bit is sent along with each character that
is sent to the I/0O device. Before transmission, this bit is set to either one or
zero to ensure that the sum of all of the transmitted bits is an odd number.
If the 1/O device receives a byte of data bits and a parity bit that do not all
add up to an odd number, then an error must have occurred during transmis-
sion.

NOTE: Four data bits with no parity is illegal. Also, eight data bits with any
parity is illegal.

<stop> Is a literal integer indicating the number of stop bits.
Valid values are: 1 or 2. If omitted then 75 and 110
bps transmit two stop bits, all other transmit one stop
bit.

<file number> Is an integer expression returning a valid file number.
The number is then associated with the file for as long
as itis open and is used to refer other COM 1/O state-
ments to the file.

Missing parameters invoke the following defaults:
Speed — 300bps

Parity — Even
Bits —7

NOTE: A COMdevice may be openedto only one file number at a time.

Page 10.123

ALPHABETICAL REFERENCE GUIDE

Possible Errors:

Any coding errors within the filename string will resultina I11egal Filename
error. An indication as to which parameter is in error will not be given.

A pevice Timeout error will occur if Data Set Ready (DSR) is not detected.
Refer to hardware documentation for proper cabling instructions.

Example:

10 OPEN "COM1l: " AS #1

File one is opened for communication with all defaults. Speed at 300 bps,
even parity, and seven data bits, one stop bit.

20 OPEN "COM1:2400 " AS #2

File two is opened for communication at 2400 bps. Parity and number of data
bits are defaulted.

10 OPEN "COM1:1200,N,8" AS #1

File number one is opened for asynchronous I/O at 1200 bps, no parity is
to be produced or checked, and eight bit bytes will be sent and received.

For more information concerning communication I/O, see Appendix F.

page 10.124

ALPHABETICAL REFERENCE GUIDE

OPTION BASE Statement

BRIEF

Format: OPTIONBASEn
wherenis1or0

PURPOSE: To declare the minimum value for array subscripts.

Details

The OPTION BASE statement is used to declare the minimum value for
array subscripts. The default base is 0. This may be changed to 1. The OP-
TION BASE statement must be executed before any DIM statement is exe-
cuted. If an OPTION BASE statement appears after an array has been di-
mensioned, abuplicateDefinition error will result. If the statement:

OPTIONBASE 1

is executed, the lowest value an array subscript may have is one.

Page 10.125

ALPHABETICAL REFERENCE GUIDE

OUT Statement

BRIEF

Format: ouTI,J
where | is an integer expression in the range —32768 — 65535.
Jis aninteger expression in the range zero to 255.

Purpose: Tosend abyte to amachine outputport.

Details

The OUT statement is used to send a byte to a machine output port. The
integer expression | is the port number, and the integer expression J is the
data to be transmitted.

Example:
100 0UT 32, 100

Inthis example, the value 100 is sent to port 32.

Page 10.126

ALPHABETICAL REFERENCE GUIDE

PAINT Statement

BRIEF

Format: PAINT (Xstart,Ystart)[,paint attribute
[.border attribute]]

Purpose: To fill a graphics figure of the specified border at the specified
border attribute with the fill attribute.

Details

The PAINT statement will fill in an arbitrary graphics figure of the specified
border attribute with the specified fill attribute. The paint attribute will default
to the foreground attribute if not given, and the border attribute defaults to
the paint attribute.

For example, you might want to fill in a circle of attribute one with attribute
two. Visually, this could mean a blue ball with a green border.

PAINT must start on a non-border point, otherwise PAINT will have no ef-
fect. -

PAINT can fill any figure, but painting “jagged” edges or very complex fig-
ures may result in an out of Memory error. If this happens, you must use the
CLEAR statementto increase the amount of stack space available.

Page 10.127

ALPHABETICAL REFERENCE GUIDE

PEEK Function

BRIEF

Format: PEEK(I)

Action: Returns the byte (decimal integer in the range zero to 255) read
from memory location |.

Details

| must be in the range —32768 to 65536. PEEK is the complementary
command to the POKE function on Page 10.129.

Example:

A=PEEK (&H5A00)

Page 10.128

ALPHABETICAL REFERENCE GUIDE

POINT Function

BRIEF
Format: POINT (X,Y)

Function: Allows the user to read the attribute value of a pixel from the
screen.

Details

The POINT function allows you to read the color value of a pixel from the
screen. If the point given is out of range, the value negative one is returned.
Validreturns are any integer between zero and seven.

Example:

10 FOR C=0 TO 7

20 PSET (10,10) ,C

30 IF POINT(10,10)<>C THEN PRINT
"Black and white computer!”

50 NEXT C

10 IF POINT (i,i}<>0 THEN PRESET (i,i} ELSE PSET (i,i)
'invert current state of a point

For further information on the POINT function, see Chapter7.

Page 10.129

ALPHABETICAL REFERENCE GUIDE

Poke Function

BRIEF

Format: POKEI,J
where | and J are integer expressions

Action: Writes a byte into a memory location.

Details

The POKE function will change the contents of a memory location. The in-
teger expression | is the address of the memory location to be changed. The
integer expression J is the value to be placed into memory location I. J must
be inthe range 0t0 255. | mustbe inthe range —32768 to 65535.

The complementary command to POKE is PEEK. The argument to PEEK
is an address from which a byte is to be read. See Page 10.127.

POKE and PEEK are useful for efficient data storage, loading assembly lan-
guage subroutines, and passing arguments and results to and from assem-
bly language subroutines.

Example:
10 POKE 34000, 1

This example places the value one in memory location 34000.

WARNING: The POKE function should only be used by experienced users
who know exactly what they are doing. It is possible to damage or destroy
important data located in memory by using this function in the wrong way.

page 10.130

ALPHABETICAL REFERENCE GUIDE

POS Function

BRIEF

Format: Pos(I)

Action: Returns the current cursor position.

Details

The POS function will return the current cursor position. The leftmost posi-
tionis 1. lisadummy argument.

Example:

IF POS(I) >60 THEN PRINT CHR$(13)

Page 10.131

ALPHABETICAL REFERENCE GUIDE

PRESET Statement

BRIEF
Format1: PRESET (Xcoordinate , Y coordinate) [,attribute]
Format2: PRESET STEP (X offset, Y offset)[,attribute]

Purpose: Toturn off a point on the screen at a specified location.

Details

PRESET has an identical syntax to PSET. The only difference is that if no
third parameter is given, the background color — zero is selected. When a
third argumentis given, PRESET is identical to PSET.

Example:

10 FOR I=0 to 100
20 PSET (I,I)
30 NEXT
(draw a diagonal line to (100,100))
40 FOR I=100 TO O STEP -1
50 PRESET (I,I)
60 NEXT

Notice that in the preceding example is the same example given for PSET
on Page 10.141. The only difference is in line 50;

50 PRESET (I,I)

Notice there is no third parameter given. The PRESET statement causes
all of the specified points to be turned on to the background color. If a color
argument was added to this line, the effect would be the same as using
PSET.

If an out of range coordinate is given to PSET or PRESET, no action is taken
nor is an error given. If an attribute greater than seven is given, this will result
in anillegal function call.

For further inforhation on PRESET, see Chapter 7.

Page 10.132

ALPHABETICAL REFERENCE GUIDE

PRINT Statement

BRIEF

Format: PRINT (<List of Expressions>)

Purpose: To outputdata atthe terminal.

Details

If <list of expressions> is omitted from a PRINT statement, a blank line is
printed. If <list of expressions> is included, the values of the expressions
are printed at the terminal. The expressions in the list may be numeric and/or
string expressions. (Strings must be enclosed in quotation marks.)

PRINT POSITIONS

The position of each printed item is determined by the punctuation used to
separate the items in the list. BASIC divides the line into print zones of 14
spaces each. In the list of expressions, a comma causes the next value to
be printed at the beginning of the next zone. A semicolon causes the next
value to be printed immediately after the last value. Typing one or more
spaces between expressions has the same effect as typing a semicolon.

If acomma or a semicolon terminates the list of expressions, the next PRINT
statement begins printing on the same line, spacing accordingly. If the list
of expressions terminates without a comma or a semicolon, a carriage re-
turnis printed at the end of the line. If the printed line is longer than the termi-
nal width, BASIC goes to the next physical line and continues printing.

Printed numbers are always followed by a space. Positive numbers are pre-
ceded by a space. Negative numbers are preceded by a minus sign. A ques-
tion mark may be used in place of the word PRINT in a PRINT statement.

Example 1:

10X=5

20 PRINTX+5, X-5, X*(-5),X"*5
30 END

RUN

10 0 —25 3125
Ok

Page 10.133

ALPHABETICAL REFERENCE GUIDE

Additional
Consldera-
tions

In Example 1, the commas in the PRINT statement cause each value to be
printed at the beginning of the next print zone.

Example 2:

10 INPUT X

20 PRINT X "SQUARED IS"™ X"*2 "AND";
20 PRINT X "CUBED IS" X"3

40 PRINT

50 GOTO 10

RUN

79

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

In Example 2, the semicolon at the end of line 20 causes both PRINT state-
ments to be printed on the same line, and line 40 causes a blank line to be
printed before the next prompt.

Example 3:

10FORX=1TO05

20J=J+5

30K=K+10

40 ?7J;K;

50 NEXT X

RUN

5 10 10 20 15 30 20 40 25 50
Ok

In Example 3, the semicolons in the PRINT statement cause each value to
be printed immediately after the preceding value. (Don't forget, a number
is always followed by a space and positive numbers are preceded by a
space.) Inline 40, a question mark is used instead of the word PRINT.

Single-precision numbers that can be represented with seven or fewer digits
in the unscaled format no less accurately than they can be represented in
the scaled format are output using the unscaled format. For example, 1E-7
is output as .0000001, and 1E-8 is output as 1E-08. Double-precision num-
bers that can be represented with 16 or fewer digits in the unscaled format
no less accurately than they can be represented in the scaled format are
output using the unscaled format. For example, 1D-16 is output as
.0000000000000001, and 1D-17 is outputas 1D-17.

Page 1 0.134

ALPHABETICAL REFERENCE GUIDE

PRINT USING Statement

BRIEF

Format; PRINTUSING, <stringexp>; <listof expressions>

Purpose: To print strings or numbers using a specified format.

Details

<list of expressions> is comprised of the string expressions or numeric ex-
pressions that are to be printed, separated by semicolons or commas.
<string exp> is a string literal (or variable) comprised of special formatting
characters. These formatting characters (see below) determine the field and
the format of the printed strings or numbers.

STRING FIELDS

When PRINT USING is used to print strings, one of three formatting charac-
ters may be used to format the string field:

“ Specifies that only the first character in the given string is
to be printed.

“\\nspaces\” Specifies that 2+n characters from the string are to be
printed. If the backslashes are typed with no spaces, two
characters will be printed; with one space, three charac-
ters will be printed, and so on. If the string is longer than
the field, the extra characters are ignored. If the field is
longer than the string, the string will be left-justified in the
field and padded with spaces on the right.

Example:

10 A$="Hello" :B$="you"

20 PRINT USING “\\\!";A$,B%

30 PRINT USING "\ N\ \ \\";A$,B$
RUN

Hey

Hello you

Page 10.135

ALPHABETICAL REFERENCE GUIDE

PRINT USING Statement
“&” Specifies a variable length string field. When the field is
specified with “&”, the string is output exactly as input.

Example:

10 A$="LOOK":B$="0UT"

20 PRINT USING "!";A$;

30 PRINT USING "&":B$

RUN

LOUT

Ok
NUMERIC FIELDS

When PRINT USING is used to print numbers, the following special charac-
ters may be used to format the numeric field:

A number sign is used to represent each digit position.
Digit positions are always filled. If the number to be printed
has fewer digits than positions specified, the number will
be right-justified (preceded by spaces) in the field.

A decimal point may be inserted at any position in the field.
If the format string specifies that a digit is to precede the
decimal point, the digit will always be printed (as 0 if neces-
sary). Numbers are rounded as necessary.

Example:

PRINT USING "## . ##"; .78
0.78
Ok

PRINT USING "### . ##";987.654

987.65

Ok

PRINT USING "## . ## ";10.2,5.3,66.789, .234
10.20 5.30 66.79 0.23

Ok

In the last example, three spaces were inserted at the end of the format
string to separate the printed values on the line.

+ A plus sign at the beginning or end of the format string will
cause the sign of the number (plus or minus) to be printed
before or after the number.

A minus sign at the end of the format field will cause nega-
tive numbers to be printed with a trailing minus sign.

page 10.136

ALPHABETICAL REFERENCE GUIDE

* %

$$

**$

PRINTUSING " +## . ## ",—-68.95,2.4,56.6, - .9
—~68.95 +2.40 +55.60 -0.90

Ok

PRINTUSING "## . ## — ", —68.95,22.449, -7.01
68.95 - 22.45 7.01-

Ok

A double asterisk at the beginning of the format string
causes leading spaces in the numeric field to be filled with
asterisks. The ** also specifies positions for two more di-
gits.

PRINT USING "**# . # ";12.39,-0.9,765.1
*12.4 *-0.9 765.1
Ok

A double dollar sign causes a dollar sign to be printed to
the immediate left of the formatted number. The $$
specifies two fhore digit positions, one of which is the dol-
lar sign. The exponential format can be used with $$.
Negative numbers can also be used.

PRINTUSING "$B### . ##";1456.78
$1456.78
Ok

The **$ at the beginning of a format string combines the
effects of the above two symbols. Leading spaces will be
asterisk-filled and a dollar sign will be printed before the
number. **$ specifies three more digit positions, one of
whichis the dollar sign.

PRINTUSING "**$## . ##",2.34
*xxB2 34
Ok

A comma that is to the left of the decimal pointin a format-
ting string causes a comma to be printed to the left of every
third digit to the left of the decimal point. A comma that is
at the end of the format string is printed as part of the
string. A comma specifies another digit position. The
comma has no effect if used with exponential (*) format.

PRINTUSING "####, . ##,"1234.5
1,234.50
Ok

PRINT USING "#### . ##,",1234.5
1234.50,
Ok

Page 10.137

ALPHABETICAL REFERENCE GUIDE

AAAA

%

Four carets (or up-arrows) may be placed after the digit
position characters to specify exponential format. The four
carats allow space for E+xx to be printed. Any decimal
point position may be specified. The significant digits are
left-justified, and the exponent is adjusted. Unless a lead-
ing + or trailing + or — is specified, one digit position will
be used to the left of the decimal point to print a space or
aminus sign.

PRINTUSING"## . ## " * * ~";234.56
2.35E+02
Ok

PRINTUSING" . #### ~ ~ * ~—" ;888888
.8889E+06
Ok

PRINTUSING"+ . ##* *~ * ~";123
+.12E+03
Ok

An underscore in the format string causes the next char-
acter to be output as a literal character.

PRINTUSING " _ | ## . ##_1";12.34
112.34!

You may print the underscore as a literal character itself
by placing “__"in the format string.

If the number to be printed is larger than the specified
numeric field, a percent sign is printed in front of the
number. If rounding causes the number to exceed the
field, a percent sign will be printed in front of the rounded
number.

PRINT USING "## . ##";111.22
%111.22
Ok

PRINTUSING" . ##"; .999
%1.00
Ok

If the number of digits specified exceeds 24, an I11egal
Function Call error will result.

Page 10.138

ALPHABETICAL REFERENCE GUIDE

PRINT# and PRINT# USING Statements

BRIEF

Format: PRINT#<filenumber>, [USING <string exp>;]<listof exps>

Purpose: To write datato a sequential disk file.

Details

<file number> is the number used when the file was opened for output.
<string exp> is comprised of formatting characters as described in PRINT
USING. The expressions in <list of expressions> are the numeric and/or
string expressions that will be written to the file.

PRINT # does not compress data on the disk. An image of the data is written
to the disk, just as it would be displayed on the terminal screen with a PRINT
statement. For this reason, care should be taken to delimit the data on the
disk so that it will be input correctly from the disk.

In a list of expressions, numeric expressions should be delimited by semico-
lons or commas.

Example:
PRINT#1,A,B,C;X;Y;2

(If commas are used as delimiters, the extra blanks that are inserted be-
tween print fields will also be written to disk.)

String expressions must be separated by semicolons in the list. To format
the string expressions correctly on the disk, use explicit delimiters in the list
of expressions.

Example:

A$="CAMERA": B$="93604-1".

Page 10.139

ALPHABETICAL REFERENCE GUIDE

The statement:
PRINT #1, A$; B$

would write CAMERA93604-1 to the disk. Because there are no delimiters,
this could not be input as two separate strings. To correct the problem, insert
explicit delimiters into the PRINT# statement as follows:

PRINT#1,A%;",";B$%

The image written to disk is:
CAMERA,93604-1
which can be read back into two string variables.

If the strings themselves contain commas, semicolons, significant leading
blanks, carriage returns, or line feeds, write them to disk surrounded by
explicit quotation marks, CHR$(34).

Example:

100 A$="FRANK, RICHARD"
110 PRINT #1, CHR$(34) +A$ +CHR$(34)

Since the data written to the disk contains a comma, it has been explicitly
surrounded by quotation marks (CHR$(34)). The statement, INPUT #1, N$
would read in the complete data item — FRANK, RICHARD.

The PRINT# statement may also be used with the USING option to control
the format of the disk file.

Example:

PRINT#1,USING "$$###.##,";J;K;L

page 10.140

ALPHABETICAL REFERENCE GUIDE

PSET Statement

BRIEF
Format1: PSET (X coordinate , Y coordinate) [,attribute]
Format2: PSET STEP (X offset, Y offset) [,attribute]

Purpose: Toturnonapointata specified location on the screen.

Details

The first argument to PSET is the coordinate of the point that you wish to
plot. Coordinates always can come in one of two forms:

STEP (X offset, Y offset) or
(absolute X, absolute Y)

The first form is a point relative to the most recent point referenced. The sec-
ond form is more common and directly refers to a point without regard to
the last point referenced.

(10,10) absolute form
STEP (10,0) offset 10 in X and 0 in Y
(0,0) origin

Page 10.141

ALPHABETICAL REFERENCE GUIDE

T Statement

When BASIC scans coordinate values it will allow them to be beyond the
edge of the screen, however values outside the integer range (— 32768 to
32767) will cause an overflow error.

(0,0) is always the upper left hand corner. it may seem strange to start num-
bering Y at the top so that the bottom left corner is (0,224), but this is stan-
dard.

It isnot necessary to specify the color argument to PSET. If attribute is omit-
ted then the default value is one, since this is the foreground attribute.

Example:

5 CLS
10 FOR I=0 to 100
20 PSET (I,I)
30 NEXT
(draw a diagonal line to (100,100))
40 FOR I=100 TO O STEP -1
50 PSET (I,I),0
60 NEXT
{clear out the line by setting each pixel to 0)

For more information concerning the PSET statement, see Chapter 7.

Page 10.142

ALPHABETICAL REFERENCE GUIDE

PUT Statement

BRIEF

Format; PUT <#><filenumber>[,<recordnumber>]

Purpose: To write arecord from a random buffer to arandom disk file.

Details

<file number> is the number under which the file was OPENed. if <record
number> is omitted, the record will have the next available record number
(after the last PUT). The largest possible record number is 32767. The
smallestrecord numberis 1.

See Pages 6.22 -6.23.

PRINT#, PRINT# USING, and WRITE# may be used to put characters in
the random file buffer before a PUT statement.

In the case of WRITE#, BASIC pads the buffer with spaces up to the car-
riage return. Any attempt to read or write past the end of the buffer causes
a Field overflow error.

Page 10.143

ALPHABETICAL REFERENCE GUIDE

RANDOMIZE Statement

BRIEF

Format: RANDOMIZE [<expression>]

Purpose: To reseed the random number generator.

Details

The RANDOMIZE statement is used to reseed the random number
generator. <expression> is used as the random number seed value. If <ex-
pression> is omitted, BASIC suspends program execution and asks for a
value by printing:

RandomNumber Seed (—32768 t032767)?

The value input is used as the random number seed.

If the random number generator is not reseeded, the RND function returns
the same sequence of random numbers each time the program is run. To
change the sequence of random numbers every time the program is run,
place a RANDOMIZE statement at the beginning of the program and change
the argument with each run.

Example:

10 RANDOMIZE
20FORI=1TO5
30 PRINTRND;
40 NEXT I

RUN

RandomNumber Seed (-32768t032767)?3 (usertypes3)

.88598 .484668 .586328 .119426 .709225
Ok

RUN

RandomNumber Seed (— 32768 t0 32767) 74 (user types 4 for new sequence)
.803506 .162462 .9290364 .292443 .322921
Ok

RUN

RandomNumber Seed (-327681032767)?3 (Same sequence as firstrun)
.88598 .484668 .586328 .119426 .709225
Ok

Note: These numbers may vary.

Page 10.144

ALPHABETICAL REFERENCE GUIDE

READ Statement

BRIEF

Format: READ<listofvariables>

Purpose: To read values from DATA statements and assign them to vari-
ables. (See DATA, Page 10.31.)

Details

A READ statement must always be used in conjunction with a DATA state-
ment. READ statements assign variables to DATA statement values on a
one-to-one basis. READ statement variables may be numeric or string, and
the values read must agree with the variable types specified. If they do not
agree, a Syntax error Will result.

A single READ statement may access one or more DATA statements (they
will be accessed in order), or several READ statements may access the
same DATA statement. If the number of variables in <list of variables> ex-
ceeds the number of elements in the DATA statement(s), an out of DATA
message is printed. If the number of variables specified is fewer than the
number of elements in the DATA statement(s), subsequent READ state-
ments will begin reading data at the first unread element. If there are no sub-
sequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement
(see RESTORE, Page 10.149).

Page 10.145

ALPHABETICAL REFERENCE GUIDE

EAD Statement

Example 1:

80 FOR I=1 TO 10

90 READ A(I)

100 NEXT I

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment reads the values from the DATA statements into the
array A. After execution, the value of A(1) will be 3.08, and so on.

Example 2:

10 PRINT "CITY", "STATE", "ZIP"

20 READ C$,S%,Z

30 DATA "DENVER", “COLORADO", 80211
40 PRINT C$,S§,2

Ok
RUN
CITY STATE ZIP
DENVER COLORADO 80211
Ok

This program reads string and numeric data from the DATA statement in line
30.

Page 10.146

ALPHABETICAL REFERENCE GUIDE

REM Statement

BRIEF

Format: REM[<remark>]

Purpose: To allow explanatory remarks to be insertedin a program.

Details

REM statements are not executed, but are output exactly as entered when
the program is listed.

REM statements may be branched into (from a GOTO or GOSUB state-
ment), and execution will continue with the first executable statement after
the REM statement.

You may add remarks to the end of a line by preceding the remark with a
single quotation mark instead of REM.

WARNING: Do not use this in a data statement, as it would be considered
legal data.

Example:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1 TO 20
140 SUM=SUM + V(I)

or:

120 FOR I=1 TO 20 'CALCULATE AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

page 10.147

ALPHABETICAL REFERENCE GUIDE

RENUM Command

BRIEF

Format: RENUM [<newnumber>][, <oldnumber>][, <increment>]

Purpose: Torenumber program lines.

Details

The RENUM command is used to automatically renumber program lines.
<new number> is the first line number to be used in the new sequence. The
defaultis 10. <old number> is the line in the current program where renum-
bering is to begin. The default is the first line of the program. <increment>
is the increment to be used in the new sequence. The defaultis 10.

RENUM also changes all line number references following GOTO, GOSUB,
THEN, ON. . .GOTO,ON. . .GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number appears after one of these state-
ments, the error message Unde fined line xxxxx in yyyyy is printed. The in-
correct line number reference (xxxxx) is not changed by RENUM, but line
number yyyyy may be changed.

RENUM cannot be used to change the order of program lines (for example,
RENUM 15,30 when the program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529. An Illegal Function Call
error will result.

Examples:

RENUM Renumbers the entire program. The first new
line number will be 10. Lines willincrement by
10.

RENUM 300, , 50 Renumbers the entire program. The first new
line number will be 300. Lines will increment
by 50.

RENUM 1000, 900, 20 Renumbers the lines from 900 up so they

start with line number 1000 and increment by
20.

Page 10.148

ALPHABETICAL REFERENCE GUIDE

RESET Command

BRIEF
Format: RESET

Purpose: To close all disk files and write the directory information to a disk
before itis removed from a disk drive.

Details

Always execute a RESET command before removing a disk from a disk
drive. Otherwise, when the diskette is used again, it will not have the current
directory information written on the directory track.

RESET closes all open files on all drives and writes the directory track to
every disk with open files.

Page 10.149

ALPHABETICAL REFERENCE GUIDE

RESTORE Statement

BRIEF

Format: RESTORE [<linenumber>]

Purpose: To allow DATA statements to be reread from a specified line.

Details

After a RESTORE statement is executed, the next READ statement acces-
ses the first item in the first DATA statement in the program. If <line
number> is specified, the next READ statement accesses the first item in
the first DATA statement at or following <line number>.

Example:

10 READ A,B,C

20 RESTORE

30 READ D,E,F

40 DATA 57, 68, 79

page 10.150

ALPHABETICAL REFERENCE GUIDE

RESUME Statement

BRIEF

Formats: RESUME
RESUME 0
RESUME NEXT
RESUME <1ine number>

Purpose: To continue program execution after an error recovery proce-
dure has been performed.

Details

Any one of the four formats shown above may be used, depending upon
where execution is to resume:

RESUME Execution resumes at the

or statement which caused the

RESUMEO error.

RESUME NEXT Execution resumes at the statement im-
mediately following the one which
caused the error.

RESUME <line number> Execution resumes at <line number>.

A RESUME statement that is not in an error trap routine causes a RESUME
without error message to be printed.

Example:

10 ONERROR GOTO 900

900 IF (ERR=230) AND (ERL=90) THEN PRINT "TRY
AGAIN":RESUME 80

page 10.151

ALPHABETICAL REFERENCE GUIDE

RETURN Statement

BRIEF

Format: RETURN <line number>

Purpose: To allow the use of a non-local return for event trapping.

Details

This optional form of RETURN is primarily intended for use with event trap-
ping. The event trap routine may want to go back into the BASIC program
at a fixed line number while still eliminating the GOSUB entry that the trap
created.

Use of the non-local RETURN must be done with care! Any other GOSUB,
WHILE or FOR that was active at the time of the trap will remain active. If
the trap comes out of a subroutine, any attempt to continue loops outside
the subroutine will resultin a NEXT wi thout FOR error.

See the GOSUB...RETURN statement on Page 10.64 for a discussion
of normal use of RETURN.

Page 10.152

ALPHABETICAL REFERENCE GUIDE

RIGHTS Function

BRIEF

Format: RIGHT$(X$.I)

Action: Returnsthe right-most | characters of string X$.

Details

The RIGHTS$ function will return the right-most | characters of string X$. If
| is greater than or equal to the length of the string X$, the function will return
the entire string. If =0, the null string (length zero) is returned. | must be
inthe range of zero to 255.

Example:

10 A$="DISKBASIC"

20 PRINTRIGHT$ (A$,5)
RUN

BASIC

Ok

Also see the MID$ and LEFT$ functions.

Page 10.153

ALPHABETICAL REFERENCE GUIDE

RND Function

BRIEF

Format: RND(X)

Action: Returns arandom number betweenQand 1.

Details

The RND function returns a random number between 0 and 1. The same
sequence of random numbers is generated each time the program is run
unless the random number generator is reseeded (see RANDOMIZE). How-
ever, X<0 always restarts the same sequence for any given X.

X>0 or X omitted generates the next random number in the sequence. X=0
repeats the last number generated.

Example:

10 FOR I=1 TO 5

20 PRINT INT(RND*100);
30 NEXT I

RUN

24 30 31 51 5
Ok

NOTE: The RND function with no argument specified is the same as RND
with a positive argument.

Page 10.154

ALPHABETICAL REFERENCE GUIDE

RUN Command

BRIEF

Format1: RUN[<linenumber>]

Format2: RUN<filename>[,R]

Purpose: To execute the program currently in memory, or (format 2) to
load a file from disk into memory, and runiit.

Details

The RUN command is used to execute the program currently in memory.
If <line number>is specified, execution begins on that line. Otherwise,
execution begins at the lowest line number. BASIC always returns to com-
mand level after a RUN is executed.

In format 2, <filename> is the name used when the file was saved. (Your
operating system may append a default filename extension if one was not
supplied in the SAVE command.)

RUN closes all open files and deletes the current contents of memory before
loading the designated program. However, with the “R” option, all data files
remain open.

Example:

RUN"NEWFIL",R

The BASIC Compiler supports both the RUN and RUN <line number >
forms of the RUN command. The BASIC Compiler does not support the “R”
option with RUN. If you want this feature, use the CHAIN statement.

Page 10.155

ALPHABETICAL REFERENCE GUIDE

SAVE Command

BRIEF

Format. SAVE <filename>[,A|,P]

Purpose: To save aprogram file ondisk.

Details

The SAVE command is used to save a program file on a disk. <filename>
is a quoted string that conforms to your operating system’s requirements for
filenames. Your operating system may append a default filename extension
if one was not supplied in the SAVE command. Refer to your Z-DOS Manual
for information about possible filename extensions under the Z-DOS operat-
ing system. If <filename> already exists, the file will be written over.

Use the A option to save the file in ASCII format. Otherwise, BASIC saves
the file in a compressed binary format. ASCII format takes more space on
the disk, but some disk access operations or procedures requires that files
be in ASCII format. For instance, the MERGE command requires an ASCII
format file, and some operating system commands such as LIST may re-
quire an ASCll formatfile.

Use the P option to protect the file by saving it in an encoded binary format.
When a protected file is later run (or loaded), any attempt to LIST or EDIT
it will fail.

Examples:

SAVE“COM1" A
SAVE“PROG", P

Page 10.156

ALPHABETICAL REFERENCE GUIDE

SCREEN Function

BRIEF

Format: X=SCREEN(row,col [,z])

Function: The SCREEN Function returns the ASCII value of the charac-
ter that is located at the specified row and column on the

screen.
Details
X is a numeric variable receiving the integer returned.
row is a number between 1 and 25, the row number.
col is a number between 1 and 80, the column number.
z is an optional number between 0 and 255, which, if present

and not zero, will cause the function to return the color attri-
butes of the location instead of the ASCII value of the character.

NOTE: Any values entered outside these ranges will result in an I11legal
Function Call €rror.

Action:
The integer value of the ASCII character at the specified location is stored

in the variable. If the optional parameter <z> is given and not zero, a
single byte, containing color attribute information is returned.

Example:
100 X=SCREEN(10,10) If the character at location 10,10 is A, then
65 will be returned.
110 X=SCREEN(1,1,1) Return the color attribute of the character
located in the upper left-hand corner of the
screen.

For more information, see the discussion on the “SCREEN Function” on
pages 7.5and 7.6.

Page 10.157

ALPHABETICAL REFERENCE GUIDE

SCREEN Statement

BRIEF i

Format: Screen [graphics,] [reversevideo]

Purpose: The SCREEN statement setsthe screen attributes.

Details

The SCREEN statement allows you to put H-19 graphic characters on the
video display and also permits the use of reverse video.

Graphics is a numeric expression with the value of zero or one.
Reverse video is a numeric expression with the value of zero or one.

Graphics 0—Clears H-19 Graphics mode
1 — Sets H-19 Graphics mode

Reverse Video 0—Clears H-19reverse video
1—Sets H-19reverse video

Action:

If all parameters are legal, the new screen mode is stored. If the new screen
mode is the same as the previous mode, nothing is changed.

Rules:

1. Any values entered outside of these ranges will result in an 11-
legal Function Call error. Previous values are retained.

2. Any parameter may omitted. Omitted parameters assume the
old value.

For further information concerning the SCREEN statement, see Chapter 7.

Example:
10 SCREEN 0,1 'No graphics, reverse video on
20 SCREEN 1 'Switch to H-19 graphics mode.
40 SCREEN 1,1 'Switch to H-19 graphics

with reverse video on.
50 SCREEN ,0 'graphics off and reverse video off.

Page 10.158

ALPHABETICAL REFERENCE GUIDE

SGN Function

BRIEF
Format: scN(X)

Action: Returns the mathematical sign value.

Details

If X>0, SGN(X) returns 1.
If X=0, SGN(X) returns 0.
If X<0, SGN(X) returns — 1.

Example: The statement
ON SGN(X)+2 GOTO 100,200,300

branchesto 100 if X is negative, to 200 if X is 0, and to 300 if X is positive.

Page 10.159

ALPHABETICAL REFERENCE GUIDE

SIN Function

BRIEF
Format: SIN(X)

Action: Returns the sine of X inradians.

Details
SIN(X) is caluclated in single precision. COS(X)=SIN (X+3.145159/2).
Example:

PRINTSIN(1.5)
.9974951
Ok

Page 10.160

ALPHABETICAL REFERENCE GUIDE

SPACES$S Function

BRIEF
Format: SPACES$(X)

Action: Returns a string of spaces of length X.

Details

The expression X is rounded to an integer and must be in the range 0 to
255.

Example:

10 FORI =1TO0 5
20 X$ = SPACE$(I)
30 PRINT X$;I
40 NEXT I
RUN
1
2
3
4
5
Ok

Also see the SPC function on Page 10.161.

Page 10.161

ALPHABETICAL REFERENCE GUIDE

SPC Function

BRIEF

Format: spc(I)

Action: Prints | blanks on the terminal or printer.

Details

The SPC function may only be used with PRINT and LPRINT statements.
I must be in the range — 32768 to 65535. A’; is assumed to follow the SPC(])
function.

Example:

PRINT “OVER" SPC(15) “THERE"
OVER THERE
Ok

Note: When this command is used on the screen, values greater than 80

wrap around to the beginning of the same line rather than going down to the
next line. Thus, SPC(85) is the same as SPC(5).

Also see the SPACES$ function Page 10.160.

NOTE: Negative numbers are treated as zero.

Page 10.162

ALPHABETICAL REFERENCE GUIDE

SQR Function

BRIEF

Format: SQRrR(X)

Action: Returnsthe squarerootof X. X mustbe >=0.

Details

The SQR function returns the square root of X. X must be greater than or
equalto 0.

Example:

10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)

30 NEXT
RUN
10 3.162278
15 3.872984
20 4.472146
25 5
Ok

Also see “Numeric Functional Operators”, Page 5.46.

page 10.163

ALPHABETICAL REFERENCE GUIDE

STOP Statement

BRIEF
Format: STOP

Purpose: Toterminate program execution and return to command level.

Details

STOP statements may be used anywhere in a program to terminate execu-
tion. When a STOP is encountered, the following message is printed:

Break in nnnnn

Unlike the END statement, the STOP statement does not close files.

BASIC always returns to command level after a STOP is executed. Execu-
tion is resumed by issuing a CONT command (see Page 10.25).

Example:

10 INPUT A,B,C
20 K=A"2*5.3:L=B"*3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN

? 1,2,3
Break in 30

Ok

PRINT L

30.76923
Ok
CONT

115.9
Ok

Page 10.164

ALPHABETICAL REFERENCE GUIDE

STRS Function

BRIEF

Format: STR$(X)

Action: Returns a string representation of the value of X.

Details
The STR function is used to convert numbers to a string representation.

Example:

10 INPUT “TYPE A NUMBER";N
20 B$="Number entered was" + STR$(N)
30 PRINT B$

This example converts the number that is input to a string so that it can be
attached to the sentence and placedin B$.

The VAL function is the inverse function of STR$.

Page 10.165

ALPHABETICAL REFERENCE GUIDE

STRINGS Function

BRIEF

Formats: STRING$(I,J)
STRINGS(I,X$)

Action: Returns a string of length | whose characters all have ASCII code
Jorthe first character of X$.

Details

The STRINGS$ function returns a string of length | whose characters all have
ASCli code J or the first character of X$. See Appendix C for ASCI| values.

Example:

10 X$ = STRING$(10,45)
20 PRINT X$ “MONTHLY REPORT" X$

RUN
————————MONTHLY REPORT—~—————

Ok

Page 10.166

ALPHABETICAL REFERENCE GUIDE

SWAP Statement

BRIEF

Format: SwAP <variable>, <variable>

Purpose: Toexchange the values of two variables.

Details

Any type variable may be swapped (integer, single-precision, double-
precision, string), but the two variables must be of the same type or a Type
mismatch error results.

Example:

10 A$="ONE" : B$="ALL" : C$=" FOR "
20 PRINT A$ C$ B$

30 SWAP A$, B$

40 PRINT A$ C$ B$

Ok

RUN

ONE FOR ALL

ALL FOR ONE

Ok

Page 10.167

ALPHABETICAL REFERENCE GUIDE

SYSTEM Command

BRIEF

Format: SYSTEM

Purpose: To exit BASIC and returnto the operating system.

Details

The SYSTEM command closes all files, clears all variables, removes all pro-
grams from memory and returns to the operating system. The programs in
memory should be saved prior to typing this command, or they will be lost
if they are not already on the disk.

Page 10.168

ALPHABETICAL REFERENCE GUIDE

TAB Function

BRIEF

Format: TaAB(I)

Action: Spaces to position | on the terminal.

Details

If the current print position is already beyond space |, TAB goes to that posi-
tion on the next line. Space 1 is the leftmost position, and the rightmost posi-
tion is the width minus one. | must be in the range —32768 to 65535. TAB
may only be used in PRINT and LPRINT statements.

Example:

10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ A$,B$

30 PRINT A$ TAB(25) B$

40 DATA “G. T. JONES",“$25.00"

RUN

NAME AMOUNT
G. T. JONES $25.00
Ok

Note: When this command is used on the screen, values greater than 80
wrap around to the beginning of the same line rather than going to the next
line. Thus, TAB(85) is the same as TAB(5).

Page 10.169

ALPHABETICAL REFERENCE GUIDE

TAN Function

BRIEF
Format: TAN(X)

Action: Returnsthetangentof Xinradians.

Details

TAN(X) is calculated in single-precision. If TAN overflows, the overflow
error message is displayed, machine infinity with the appropriate sign is sup-
plied as the result, and execution continues.

Example:

10 Y = Q*TAN(X)/2

Page 10.170

ALPHABETICAL REFERENCE GUIDE

TIME Function

BRIEF
Format: <var> = TIME

Purpose: TIME statement may be used to retrieve the numerical value
of the current second of the day as defined by TIMES$.

<var> is an integer variable.

Details

The current second of the day, as defined by TIMES, is returned and
assigned to the integer variable as the numerical value of that second
within one day.

TIME can assume any value from 0 to 86,399.
If TIMES = “00:00:00", then TIME will equal 0.

If TIMES$ =“00:00:59”, then TIME will equal 59.
If TIMES =“00:02:07", then TIME will equal 127.

TIME cannot be assigned a value directly. However, the value of TIME
changes any time a new assignment is made to TIMES.

EXAMPLE:

TIME$="00:05:10"
OK

PRINT TIME$, TIME
00:05:13 313

Page 10.171

ALPHABETICAL REFERENCE GUIDE

TIMES Statement

BRIEF

Format: TIME$ = <stringexpr> To setthe currenttime.
<string var> = TIME$ To getthe currenttime.

Purpose: The TIMES$ statement may be used to set or retrieve the current
time.

Details
<string expr> is a valid string literal or variable.

The current time is returned and assigned to the string variable if TIMES is
the expressionin a LET or PRINT statement.

The currenttime is stored if TIMES is the target of a string assignment.
Rules:

1. If <string expr> is not a valid string, a Type mismatch error will
result.

2. For <string var>= TIME$, TIME$ returns an 8- character string
in the form “hh:mm:ss”, where hh is the hour (00 to 23), mm is
the minutes (00 to 59), and ss is the seconds (00 to 59).

3. For TIME$ = <string expr>, <string expr> may be one of the
following forms:

A. “hh” Sets the hour. Minutes and seconds default to
00.

B. “hh:mm:* Sets the hour and minutes. Seconds de-
fauit to00.

C. “hh:mm:ss” Setsthe hour, minutes, and seconds.

Page 10.172

ALPHABETICAL REFERENCE GUIDE

TIMES Statement

if any of the values are out of range, an I1legal Function Call error is
issued. The previous time is retained.

Example:

TIME$ = “08:00"
Ok

PRINT TIME$
08:00:04

Ok

The following program displays the current date and time on the twenty-fifth
line of the screen, and updates the displayed time every minute.

10 KEY OFF:CLS

20 LOCATE 25,5

30 PRINT DATE$, TIME$

40 T = TIME

50 IF TIME — T >59 THEN 20
60 GOTO 50

Page 10.173

ALPHABETICAL REFERENCE GUIDE
TRON/TROFF Statements

BRIEF

Format: TRON
TROFF

Purpose: To tracethe execution of program statements.

Details

As an aid in debugging, the TRON statement (executed in either the direct
or indirect mode) enables a trace flag that prints each line number of the pro-
gram as it is executed. The numbers appear enclosed in square brackets.
The trace flag is disabled with the TROFF statement (or when a NEW com-
mand is executed).

Example:

10 K=10
20 FOR J=1 TO 2

30 L=K+10

40 PRINT J;K;L

50 K=K+10

60 NEXT

70 END

TRON

RUN

[10][20]1[30][40] 1 10 20
[50]1[601[301[40] 2 20 30
(50]1[601([70]

Ok

TROFF

Ok

Page 10.174

ALPHABETICAL REFERENCE GUIDE

USR Function

BRIEF

Format: USR[<digit>] (X)

Action: Calls the user’s assembly language subroutine with the argument
X.

Details

<digit> is in the range zero to 9 and corresponds to the digit supplied with
the DEF USR statement for that routine. If <digit> is omitted, USRO is as-
sumed. See Appendix E, “BASIC Assembly Language Subroutines.”

Example:
50 C = USR(B/2)
60 D = USR2(B/2)

These two program lines call “user” programs that have been previously
input to memory by the user.

See the DEF USR statement, Page 10.38

page 10.175

ALPHABETICAL REFERENCE GUIDE

VAL Function

BRIEF
Format: vAL(X$)

Action: Returns the numerical value of string X$.

Details

The VAL function also strips leading blanks, tabs, and line feeds from the
argument string. For example,

VAL(* -3")
returns — 3.
Example:

10 READ NAME$, CITY$, STATE$, ZIP$

20 IF VAL(ZIP$)<60000 OR VAL(ZIP$)>60999 THEN
PRINT NAME$ TAB(25) "OUT OF STATE"

30 IF VAL(ZIP$)>=60601 AND VAL (ZIP$)<=60699 THEN
PRINT NAME$ TAB(25) "IN TOWN"

See the STR$ function for numeric to string conversion.

Page 10.176

ALPHABETICAL REFERENCE GUIDE

VARPTR Function

BRIEF
Format1: VARPTR(<variablename>)
Format2: VARPTR(#<filenumber>)

Action: Format 1: Returns the address of the first byte of data identified
with <variable name>.

Format 2: For sequential files, returns the starting address of
the disk I/O buffer assigned to <file number>.

Details

A value must be assigned to <variable name> prior to execution of
VARPTR. Otherwise, an I11egal Function Call error results. Any type vari-
able name may be used (numeric, string, array), and the address returned
will be an integer in the range 32767 to —32768. If a negative address is
returned, add it to 65536 to obtain the actual address.

The VARPTR function is usually used to obtain the address of a variable
or array so it may be passed to an assembly language subroutine. Specify
a function call of the form VARPTR(A(0)) when an array is passed, so that
the lowest-addressed element of the array is returned.

Assign all simple variables before you call VARPTR for an array because
the addresses of the arrays change whenever a new simple variable is as-
signed.

For random files, VARPTR returns the address of the FIELD buffer assigned
to <file number>.

Example:

100 X=USR(VARPTR(Y))

Page 10.177

ALPHABETICAL REFERENCE GUIDE

Format:

Function:

VARPTR(<filename>)

VARPTR Function

For files, the VARPTR function returns the address of the first
byte of the File Control Block (FCB) for the opened file.

File number is tied to a currently open file. Offsets to information in the FCB
from the address returned by VARPTR are:

OFF

0

39

41

42

43

46

1

38

SIZE CONTENTS

Mode

FCB

CURLOC

ORNOFS
NMLOFS

*k%

DEVICE

The mode in which the file was opened:

1 —Input Only
2— Output Only
4—Random /O

16 — Append Only

32— Internaluse

64 — Future use
128 — Internal use

Disk File Control Block.
Referto Z-DOS User’s Guide for Contents.

Number of sectors read or written
for sequential access. Forrandom
access, it contains the last record
number + 1 read or written.

Number of bytes in sector when read or written.
Number of bytes left in input buffer.
Reserved for future expansion.

Device Number:
0-9-Disks A:thru J:
255—KYBD:

254 —SCRN:
253—LPT1:

251 —COM1:

Page 10.178

ALPHABETICAL REFERENCE GUIDE

VARPTR Function

47
48

49

50

51

179

181
183
185

186

188

Example:

128

<n>

WIDTH

POS

FLAGS

OuUTPOS

BUFFER

VRECL

PHYREC

LOGREC

*hkk

OUTPOS

FIELD

Device width.
Position in buffer for PRINT.

Internal use during LOAD/SAVE not used for
datafiles.

Output position used during tab expansions.

Physical data buffer. Used to transfer
databetween Z-DOS and BASIC. Use
this offset to examine data in
sequential /0 mode.

Variable length record size. Defaultis 128.
Set by length option in OPEN statement.

Current physical record number.
Current logical record number.
Future use.

Disk files only. Output position for
PRINT, INPUT and WRITE.

Actual FIELD databuffer. Size is
determined by length specified.

in OPEN statement. VRECL bytes
are transferred between BUFFER
and FIELD on I/O operations. Use
this offset to examine file data

in Random [/O mode.

10 OPEN "DATA.FIL" as #1

20 FCBADR
30 DATADR

40 A% =

CHR$ (PEEK DATADR)

VARPTR(#1)
FCBADR + 188

'FCBADR contains start of FCB.
'DATADR contains address of data
buffer.
'A$ contains lst byte in data
buffer.

Page 10.179

ALPHABETICAL REFERENCE GUIDE

WAIT Statement

BRIEF

Format: WAIT <port number>, I[,J]
where | and J are integer expressions

Purpose: To suspend program execution while monitoring the status of a
machine input port.

Details

The WAIT statement causes execution to be suspended until a specified
machine input port develops a specified bit pattern. The data read at the port
is exclusive OR’ed with the integer expression J, and then AND’ed with .
If the result is zero, BASIC loops back and reads the data at the port again.
If the result is non-zero, execution continues with the next statement. If J
is omitted, itis assumed to be zero.

It is possible to enter an infinite loop with the WAIT statement, in which case
itwill be necessary to manually restart the machine.

Example:

100 WAIT 32,2

Page 10.180

ALPHABETICAL REFERENCE GUIDE

WHILE...WEND Statement

BRIEF

Format: WHILE <expression>
[<loop statements>]
WEND

Purpose: To execute a series of statements in a loop as long as a given
conditionis true.

Details

If <expression> is not zero (i.e., true), <loop statements> are executed
until the WEND statement is encountered. BASIC then returns to the WHILE
statement and checks <expression>. If it is still true, the process is re-
peated. If it is not true, execution resumes with the statement following the
WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match
the most recent WHILE. An unmatched WHILE statement causes a WHILE
without WEND error, and an unmatched WEND statement causes a WEND
without WHILE error.

Example:

90 'BUBBLE SORT ARRAY A$
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=0
120 FOR I=1 TO 10-1
130 IF A$(I)>A$(I+1) THEN
SWAP A$(I),A8(1+1):FLIPS=1
140 NEXT 1
150 WEND

Page 10.181

ALPHABETICAL REFERENCE GUIDE

WIDTH Statement

BRIEF

Format: WIDTH<LPRINT><integer expression>

Purpose: To set the printed line width in number of characters for the line
printer.

Details
WIDTH LPRINT sets the line width at the line printer.

<integer expression> must have a value in the range one to 225. The only
valid width for the terminal is 80 characters.

If <integer expression> is 255, the line width is “infinite,” that is, BASIC
never inserts a carriage return. However, the position of the cursor or the
print head, as given by the POS or LPOS function, returns to zero after posi-
tion 255.

Example:

10 LPRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ"
RUN

Ok

WIDTH LPRINT 18

Ok

RUN

Ok

This is what will appear on the printer.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQR
STUVWXYZ

Page 10.182

ALPHABETICAL REFERENCE GUIDE

WRITE Statement

BRIEF

Format: WRITE[<listofexpressions>]

Purpose: To outputdata atthe terminal.

Details

If <list of expressions> is omitted, a blank line is output. If <list of expres-
sions> is included, the values of the expressions are output at the terminal.
The expressions in the list may be numeric and/or string expressions, and
they must be separated by commas.

When the printed items are output, each item will be separated from the last
by a comma. Printed strings will be delimited by quotation marks. After the
lastitem in the list is printed, BASIC inserts a carriage return/line feed.

WRITE outputs numeric values using the same format as the PRINT state-
ment, Page 10.132.

Example:

10 A=80:B=90:C$="THAT'S ALL"
20 WRITE A,B,C$

RUN

80, 90, “THAT'S ALL"

Ok

Page 10.183

ALPHABETICAL REFERENCE GUIDE

WRITE # Statement

BRIEF

Format: WRITE#<file number>,<list of expressions>

Purpose: To write datato a sequential file.

Details

<file number> is the number under which the file was OPENed in “O” mode.
The expressions in the list are string or numeric expressions, and they must
be separated by commas or semicolons.

The difference between WRITE# and PRINT# is that WRITE # inserts
commas between the items as they are written to disk and delimits strings
with quotation marks. Therefore, it is not necessary for the user to put explicit
delimiters in the list. A carriage return/line feed sequence is inserted after
the lastitem in the list is written to disk.

Example:
A$="CAMERA" and B$="93604—1".

The statement:
WRITE#1, A$, B$

writes the following image to disk:
“CAMERA", 93604 —1"

A subsequent INPUT # statement, suchas:
INPUT#1,A$,B$

would input “CAMERA”" to A$ and “93604 — 1"to BS.

page A.1

APPENDIX A

Error Messages

SUMMARY OF ERROR CODES AND ERROR
MESSAGES

Number Message
1 NEXT without FOR

A variable in a NEXT statement does not correspond to
any previously executed, unmatched FOR statement vari-
able.

2 Syntax error
A line is encountered that contains some incorrect se-
quence of characters (such as an unmatched parenthesis,
misspellied command or statement, incorrect punctuation,
etc.).

3 RETURN without GOSUB
A RETURN statement is encountered for which there is no
previous, unmatched GOSUB statement.

4 Outof DATA
A READ statement is executed when there are no DATA
statements with unread data remaining in the program.

5 lllegal function cali
A parameter that is out of range is passed to a math or

string function. An FC error may also occur as the result
of:

A. anegative orunreasonably large subscript
B. anegative or zero argument with LOG
C. anegative argumentto SQR

D. anegative mantissa with a non-integer exponent

Page A.2

APPENDIXA

Error Messages
Number Message
E. acalltoaUSR function for which the starting address
has not yet been given

10

F. an improper argument to MID$, LEFT$, RIGHTS,
INP, OUT, WAIT, PEEK, POKE, TAB, SPC,
STRINGS$, SPACES$, INSTR, ASC$ FN...() or
ON...GOTO.

Overfiow

The result of a calculation is too large to be represented
in BASIC'’s number format. If overflow occurs, the result is
zero and execution continues without an error.

Out of memory

A program is too large, has too many FOR loops or
GOSUBs, too many variables, or expressions that are too
complicated.

Undefined line number
A line reference in a GOTO, GOSUB, IF...THEN...ELSE,
or DELETE isto a nonexistentline.

Subscript out of range

An array element is referenced either with a subscript that
is outside the dimensions of the array, or with the wrong
number of subscripts.

Duplicate Definition

Two DIM statements are given for the same array, or a
DIM statement is given for an array after the default dimen-
sion of 10 has been established for that array.

Page A.3

APPENDIXA

Number

11

12

13

14

15

16

Error Messages

Division by zero

A division by zero is encountered in an expression, or the
operation of involution results in zero being raised to a
negative power. Machine infinity with the sign of the
numerator is supplied as the result of the division, or posi-
tive machine infinity is supplied as the result of the involu-
tion, and execution continues.

Hlegal direct
A statement that is illegal in direct mode is entered as a
direct mode command.

Type mismatch

A string variable name is assigned a numeric value or vice
versa; a function that expects a numeric argument is given
a sfring argument or vice versa.

Out of string space

String variables have caused BASIC to exceed the
amount of free memory remaining. BASIC will allocate
string space dynamically, untit it runs out of memory.

String too long
An attempt is made to create a string more than 255 char-
acters long.

String formulatoo complex
A string expression is too long or too complex. The expres-
sion should be broken into smaller expressions.

Page A.4

APPENDIXA

Error Messages
Number Message
17 Can’tcontinue

18

19

20

21

22

23

An attemptis made to continue a program that:

A. hashalted dueto anerror,

B. hasbeen modified during a break in execution, or
C. doesnotexist.

Undefined user function
A USR function is called before the function definition
(DEF statement) is given.

No RESUME
An error trapping routine is entered but contains no RE-
SUME statement.

RESUME without error
A RESUME statement is encountered before an error
trapping routine is entered.

Unprintable error
An error message is not available for the error condition
which exists. This is usually caused by an error with an un-
defined error code.

Missing operand
An expression contains an operator with no operand fol-
lowing it.

Line buffer overflow
An attempt is made to input a line that has too many char-
acters.

Page A.5

APPENDIXA

Number

24

25

26

27

29

30

Disk Errors

50

Error Messages

Message

Device Timeout

An attempt at I/O was made with a device that was not
ready. After a given amount of time, this error message
is produced. Check the device being called in the pro-
gram fine.

Device Fault

An attempt at /O was made with a device that has a
problem. This error message may be caused by any
number of conditions, from using the wrong diskette type
to being out of paper. Check the device being called in
the program line and correct the fault.

FOR without NEXT
A FOR was encountered without a matching NEXT.

Out of paper

If your printer can transmit error conditions via the parallel
lines, this error condition can be detected. Check the print-
erand replace the paper.

WHILE without WEND
A WHILE statement does not have a matching WEND.

WEND without WHILE
A WEND was encountered without a matching WHILE.

FIELD overfiow
A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random file.

Page A.6

APPENDIX A

Error Messages
Number Message
51 internal error

52

53

55

57

58

61

An internal malfunction has occurred in BASIC. Report to
Zenith the conditions under which the message appeared.

Bad file number

A statement or command references a file with a file
number that is not OPEN or is out of the range of file num-
bers specified at initialization.

File not found
A LOAD, KILL or OPEN statement references a file that
does not exist on the current disk.

Bad file mode

An attempt is made to use PUT, or GET, with a sequential
file, to LOAD a random file or to execute an OPEN with a
file mode otherthan|, O, or R.

File already open
A sequential output mode OPEN is issued for a file that is
already open, or a KILL is given for a file that is open.

Device /O error

An I/O error has occurred on a device I/0O operation. Check
the device being called in the line where the error oc-
curred.

File already exists
The filename specified in a NAME statement is identical
to afilename already in use on the disk.

Disk full
All disk storage spaceisinuse.

Page A.7

'APPENDIX A
- A,

Number Message
62 Input pastend

An INPUT statement is executed after all the data in the
file has been INPUT, or for a null (empty) file. To avoid this
error, use the EQF function to detect the end of file.

63 Bad record number
In a PUT or GET statement, the record number is either
greater than the maximum allowed (32767) or equal to
zero.

64 Bad file name
An iliegal form is used for the filename with LOAD, SAVE,
KILL, or OPEN (e.g., a filename with too many charac-
ters).

66 Direct statement in file
A direct statement is encountered while LOADing an
ASCIl-format file. The LOAD is terminated.

67 Too many files
An attempt is made to create a new file (using SAVE or
OPEN) when all 255 directory entries are full.

68 Device Unavailable
An attempt at I/O made with a device that is unavailable
to the system.

69 Communication buffer overflow

Your program has not properly maintained the communi-
cation buffer and has allowed it to fill up with data.

70 Disk write protected
An attempt has been made to write to a disk that is write
protected. Check the disk to ensure that it is the correct
disk before you remove the write protect tab.

Page A.8

APPENDIX A

Error Messages

Number

71

72

73

74

Message

Disk not Ready
This may be caused by the disk not being in the drive.
Insert the disk and close the door.

Disk Media Error
A fault has been discovered during a read/write opera-
tion, probably caused by a damaged disk.

Advanced feature
An attempt was made to use a feature not available in
this version of BASIC.

Rename across disks

An attempt was made to rename a disk file specifying
a device other than the one the file is on. Check the
command for disk name continuity.

Page B.1

APPENDIX B

String
Dimension

Concatenation

Substring

Converting Programs to Z-BASIC

BRIEF

If you have programs written in a BASIC other than Zenith BASIC, some
minor adjustments may be necessary before running them with this version.
Following are some specific things to look for when converting BASIC pro-
grams.

Details

Replace all statements that are used to declare the length of strings. A state-
ment such as DIM A$(l,J), which dimensions a string array for J elements
oflength |, should be converted to the Z-BASIC statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation. Each
of these must be changed to a plus sign, which is the operator for Z-BASIC
string concatenation.

Additionally, in this BASIC, the MID$, RIGHT$, and LEFT$ functions are
used to take substrings from strings. Forms such as A$(n) to access the nth
character in A$, or A$(l,J) to take a substring of A$ from position | to J, must
be changed as follows:

Other BASIC Z-BASIC
X$=A$(I) X$=MID$(A$,I.1)
X$=A$(I,J) X$=MID$(A$,I,J~I+1)

if the string reference is on the left side of an assignment and X$ is used
to replace characters in A$, convert as follows:

Other BASIC Z-BASIC

AB(I)=X$ MID$(A$,I,1)=X$
A$(I,J)=X$ MID$ (A$,I,J-I+1)=X$

Page B.2

APPENDIXB

Converting Pr

Some BASICs allow a statement of the form:
10 LET B=C=0

to set B and C equal to zero. Z-BASIC would interpret the second equal sign
as a logical operator and set B equal to minus one (—1) if C equaled zero.
Instead, convert this statement to two assignment statements:

10 C=0:B=0

Some BASICs use a backslash (\\) to separate multiple statements on a
line. With Z-BASIC, be sure all statements on a line are separated by a colon

().

Programs using the MAT functions available in some BASICs must be re-
written using FOR...NEXT loops to execute properly.

The data that is in field variables when a record is read from a file is
set to null values when the file is closed. This is in contrast to MBASIC,
where the data in the field variable is preserved when the file is closed.

The escape sequence that clears the screen in Z-BASIC leaves the cursor
at the current position. Whereas in MBASIC the cursor is left in the home
position.

Multiple
Assignments

Multiple
Statements

Mat
Functions

Field
Variables
Data

Clear
Screen

Page B.3

APPENDIXB

Converting Programs to Z-BASIC

NEW FEATURES IN Z-BASIC, RELEASE 1.00

The execution of BASIC programs written under previously released ver-
sions of BASIC, may be affected by some of the new features in Z-BASIC.
Before attempting to run such programs, check for the following:

1.

New reserved words: CALL, CHAIN, COMMON, WHILE, WEND,
WRITE, OPTION BASE, RANDOMIZE, COM, KEY, LOCATE, BEEP,
DATES$, and TIMES.

Conversion from floating point to integer values results in rounding,
as opposed to truncation. This affects not only assignment state-
ments (e.g., 1%=2.5 results in 1%=3), but also affects function and
statement evaluations (e.g., TAB(4.5) goes to the 5th position, A(1.5)
yields A(2), and X=11.5MOD 4 yields 0 for X.)

The body of a FOR...NEXT loop is skipped if the initial value of the
loop times the sign of the step exceeds the final value times the sign
ofthe step.

Division by zero and overflow no longer produce fatal errors.

The RND function has been changed so that RND with no argument
is the same as RND with a positive argument. The RND function gen-
erates the same sequence of random numbers with each RUN, un-
less RANDOMIZE is used.

The rules for printing single-precision and double-precision numbers
have been changed.

String space is allocated dynamically, and the first argument in a two-
argument CLEAR statement sets the end of memory. The second ar-
gument sets the amount of stack space.

Page B.4

APPENDIXB

10.

11.

12.

13.

Responding to INPUT with too many or too few items, or with non-
numeric characters instead of digits, causes the message “?Redo
from start” to be printed. If a single variable is requested, a carriage
return may be entered to indicate the default values of 0 for numeric
input or null for string input.

However, if more than one variable is requested, entering a carriage
return will cause the “?Redo from start” message to be printed be-
cause too few items were entered. No assignment of input values is
made until an acceptable response is given.

There are two new field formatting characters for use with PRINT
USING. An ampersand is used for variable length string fields, and
anunderscore signifies a literal character in aformat string.

If the expression supplied with the WIDTH statement is 255, BASIC
uses an “infinite” line width, that is, it does not insert carriage returns.
WIDTH LPRINT may be used to set the line width of the line printer.

The at sign (@) and underscore are no longer used as editing charac-
ters.

Variable names are significant up to 40 characters and can contain
embedded reserved words. However, reserved words must now be
delimited by spaces. To maintain compatibility with earlier versions of
BASIC, spaces will be automatically inserted between adjoining re-
served words and variable names. WARNING: This insertion of
spaces may cause the end of a line to be truncated if the line length
is close to 255 characters.

BASIC programs may be saved in a protected binary format.

page C.1

APPENDIX C

ASCIl Character Codes and Graphic Symbols

OCT = Qctal; DEC = Decimal; HEX = Hexadecimal; CHAR = The ASCII
character (or function) represented by the code; KEY = The key pressed
to produce the code; CTRL = The key pressed in conjunction with the CTRL
(Control) key to produce the code; DESCRIPTION = A brief description of
the character/function; SYMBOL = The graphics character normally pro-
duced while in the graphics mode (unless user-defined).

OCT DEC HEX CHAR KEY CTRL DESCRIPTION
000 0 00 NUL .. @ Null, tape feed.
001 1 01 SOH .. A StartofHeading.
002 2 02 STX .. B Startoftext.
003 3 03 ETX .. C Endoftext.
004 4 04 EOT .. D Endoftransmission.
005 5 05 ENQ .. E Enquiry.
006 6 06 ACK .. F Acknowledge.
007 7 07 BEL .. G RingsBell.
010 8 08 BS BACK H Backspace;alsoFEB,
SPACE Format Effector
Backspace.
011 9 09 HT TAB | Horizontal Tab.
012 10 OA LF LUNE J LineFeed: advances
FEED cursor to nextline.
013 11 OB VT K Verticaltab (VTAB).
014 12 0OC FF L Formfeedtotop of
next page.
015 13 0D CR RETURNM Carriage Returnto
beginning ofline.
016 14 OE SO N ShiftOut.
017 15 OF Si O Shiftin.
020 16 10 DLE .. P Datalinkescape.
021 17 11 DCt Q Devicecontrol 1:turns
transmitter on (XON).
022 18 12 DC2 .. R Devicecontrol 2.
023 19 13 DC3 .. S Devicecontrol 3: turns
‘ transmitter off (XOFF).
024 20 14 DC4 .. T Device control 4.
025 21 15 NAK .. U Negative acknowledge:
also ERR (error).
026 22 16 SYN . V Synchronousidle (SYNC).

Page C.2

APPENDIX C

ASCII Character Codes and Graphic Symbols

OCT__DEC HEX CHAR KEY CTRL DESCRIPTION

027 23 17 ETB .. W Endoftransmission
block.

030 24 18 CAN ... X Cancel (CANCL). Cancels
current escape sequence.

031 25 19 EM .. Y Endofmedium.
032 26 1A SUB .. Z Substitute.
033 27 1B ESC ESC [Escape.

034 28 1C FS .. \. File separator.
|

035 29 1D GS Group separator.

036 30 1E RS Record separator.

037 31 1F US .. — Unitseparator.

040 32 20 SP ... Space (Spacebar).

041 33 21 ! ! ... Exclamation point.

042 34 22 " Quotation mark.

043 35 23 # # ... Numbersign.

044 36 24 $ $... Dollarsign.

045 37 256 % % ... Percentsign.

046 38 26 & & ... Ampersand.

047 39 27 '’ ! ... Acuteaccentor
apostrophe.

050 40 28 ((Open parenthesis.

051 41 29)) Close parenthesis.

052 42 2A = * Asterisk.

053 43 2B + + Plus sign.

054 44 2C , Comma.

055 45 2D - - ... Hyphen or minus sign.

056 46 2E Period.

057 47 2F / / Slash.

060 48 30 O 0 Number 0.

061 49 31 1 1 Number 1.

062 50 32 2 2 Number 2.

063 51 33 3 3 Number 3.

064 52 34 4 4 Number 4.

065 53 35 5 5 Number 5.

066 54 36 6 6 Number 6.

067 55 37 7 7 Number 7.

070 56 38 8 8 Number 8.

071 57 39 9 9 Number 9.

072 58 3A : : ... Colon.

Page C.3

APPENDIX C

ASCIl Character Codes and Graphic Symbols

OCT DEC HEX CHAR KEY CTRL DESCRIPTION SYMBOL
073 59 3B ; ; ... Semicolon.
074 60 3C < < Lessthan.
075 61 3D = = Equal sign.
076 62 3E > > Greater than.
077 63 3F *? ? Question mark.
100 64 40 @ @ Atsign.

101 65 41 A A Letter A.

102 66 42 B B LetterB.

103 67 43 C C LetterC.

104 68 44 D D LetterD.

105 69 45 E E LetterE.

106 70 46 F F Letter F.

107 71 47 G G LetterG.

110 72 48 H H Letter H.

111 73 49 | | Letter|.

112 74 4A J J LetterJ.

113 75 4B K K Letter K.

114 76 4C L L LetterL.

115 77 4D M M Letter M.

116 78 4E N N LetterN.

117 79 4F O O Letter O.

120 80 50 P P Letter P.

129 81 51 Q Q Letter Q.

122 82 52 R R Letter R.

123 83 53 S S Letter S.

124 84 54 T T LetterT.

126 85 55 U U Letter U.

126 86 56 V \' Letter V.

127 87 57 W w Letter W.

130 88 58 X X Letter X.

131 89 59 Y Y LetterY.

132 90 BH5A Z V4 LetterZ.

133 91 5B | [Open brackets.
134 92 5C \ N Reverse slash.
135 93 5D | 1 Close brackets.

o

L2 22 L B
¥XKxy 3

O xaxxx 3

136 94 S5E ~ ~ .. Uparowrcaret. < "}

Page C.4

APPENDIX C

Il Character Codes and

OCT_DEC HEX CHAR KEY CTRL DESCRIPTION SYMBOL

(—mmmmmmm 3
S ITITTY
{ EXXXX%3;

137 95 5F _ _ ... Underscore. ¢
¢
140 96 60 \ ... Graveaccent. ¢
R
—
141 97 61 a a .. Lettera.
<
e
142 98 62 b b s Letterb. Ell'::u:;
€ " ¥
e
—
¢ ;
143 99 63 c c ... Letterc. (e 2
¢ e
144 10064 d d .. Letterd.
¢ e
(4 " 3

145 101 65 e e ... Lettere. e

Page C.5

APPENDIX C

ASCIl Character Codes and Graphic Symbols

OCT DEC_HEX CHAR KEY _ CTRL DESCRIPTION SYMBOL

146 10266 f f .. Letterf. ¢t
147 10367 g g .. Letterg. <o
< 2

150 104 68 h h ... Letterh.

(~—mmmmms }

(mmmmmm e H

(r & % %

{*r ¥ 2}

(s ¢ x &

{r*

(¢ * x ¢)

. . . { x x 3 %3
151 105 69 i i .. Letteri. SOUE!
(S B B B 53

(¢ * x %)

e H

(eaaa 3}

{(enaa 3

(wuun 3

{(waun 3

lllllllll)

152 106 6A j j ... Letterj. ¢
< HNE)

<)

{-————==3

153 107 6B k k ... Letterk.

¢
[
¢
154 108 6C | | ... Letterl. ¢ e
{
¢

Page C.6

APPENDIX G

ASCIl Character Codes and Graphic Symbols

OCT_DEC HEX CHAR KEY CTRL DESCRIPTION SYMBOL

155 1096D m m .. Leterm. aa
156 110 6E n n ... Lettern. <

157 111 6F o (o} ... Lettero.

(sss8a88N)
(EFEsNLER)
(xRRxnss}
{(xsxxxxs8)
{EsERNERN)

160 112 70 p p ... Letterp. ﬁ ;

161 113 71 q q ... Letterq.

e e R e e R s
-
-
-
-
w

(RxreRnns;
{(¥RENEss)
(xxgxxy)

H
162 11472 r r ... Letterr. (s ,
3

163 11573 s S ... Leftters. "

{

{ 2
{ 2
< b
< 2
(31233 1333)
{ }
{ }
< }
< " }
{

Page C.7

APPENDIX C

OCT DEC HEX CHAR KEY CTRL DESCRIPTION SYMBOL

164 116 74 t t ... Lettert. Cannsn

< "
< L]
< b2]
< L2

165 117 75 u u ... Letteru.

[4
¢
¢
< ¥
(REEXXAER)
4 M
¢
¢
¢

[GECEEEE 3
{ %
4 % ¥
€ % >
166 118 76 v v .. lLetterv. L
€ 1138387
€ %
{ K b
€ %
€ 13
(== =3
(mmmme— 3
(x)
(xx %3
{ %% 1 § I
€ e 3
167 119 77 w w ... Letterw. Cono
(1% b $ S
(¥ x>
x)
(= 3
(—=mm~—— H
4 t #d
€ xR}
€ L §
170 120 78 «x X ... Letterx. ¢ w3
Ce
(xx
x 3
(mmmmm e)
(——mm—)
x 3
{xx bl
171 121 79 Lett e
y y ettery. Coaro0
€ =)
{ x)
(4 b ¢)
(4 X}
(m=mm————— H
(-~ Y
{EXXXXAXN)
{EXXEEXXX)
€ b
172 122 7A 2z z «. Letterz. ¢ ;
¢ ;
{ M
<

page C.8

APPENDIX C

ASCIl Character Codes and Graphic Symbols

OCT _DEC HEX CHAR KEY CTRL DESCRIPTION SYMBOL
173 123 7B { { ... Leftbrace. % ________ ;
174 124 7C ! { ... Verticalbar (broken)ég ______ i;
175 125 7D } } ... Rightbrace. %g?
176 126 7E ~ ~ ... Tilde.

% o

177 127 7F DEL DELETE ... Delete (rubout).

200- 128-80-
377 255 FF unassigned.

Page D.1

APPENDIXD

DERIVED FUNCTIONS

Mathematical Functions

Functions that are not intrinsic to BASIC may be calculated as follows.

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

BASIC Equivalent

SEC(X)=1/COS(X)
CSC(X)="1/SIN(X)
COT(X)=1/TAN(X)
ARCSIN(X)=ATN(X/SQR(— X*X+1))
ARCCOS(X)= — ATN(X/SQR(— X*X+1))+1.5708
ARCSEC(X)=ATN(SQR(X*X - 1))

— SGN(SGN(X) — 1)*SGN(X)*3.1416
ARCCSC(X)=ATN(1/SQR(X*X — 1)

— SGN(SGN(X) — 1)*SGN(X)*3.1416
ARCCOT(X)=1.5708 — ATN(X)
SINH(X)=(EXP(X) — EXP(—X))/2
COSH(X)=(EXP(X)+EXP(—X))/2
TANH(X)=(EXP(X) — EXP(— X))(EXP(X) + EXP(— X))
SECH(X)=2/(EXP(X)+EXP(~ X))
CSCH(X)=2/(EXP(X) — EXP(—X))
COTH(X)=(EXP(X) + EXP(— X))/(EXP(X) — EXP(— X))

ARCSINH(X)=LOG(X+SQR(X*X+1))
ARCCOSH(X)=LOG(X+SQR(X*X - 1))
ARCTANH(X)=LOG((1+X)/(1 —X))/2
ARCSECH(X)=LOG((SQR(— X"X+1)+1)/X)
ARCCSCH(X)=LOG((SGN(X)*SQR(X"X+1)+1)/X)

ARCCOTH(X)=LOG((X+1)/(X—1))/2

Page E.1

APPENDIXE

Assembly Language Subroutines

BRIEF

All versions of Zenith BASIC have provisions for interfacing with assembly
language subroutines via the USR function and the CALL statement.

Following is a detailed discussion of assembly language interface, memory
allocation and stack space.

Details

The USR function allows assembly language subroutines to be called in the
same way BASIC Intrinsic functions are called. However, the CALL state-
ment is the recommended way of interfacing 8086 machine language pro-
grams with BASIC. It is compatible with more languages than is the USR
function call, it produces more readable source code, and it can pass multi-
ple arguments.

MEMORY ALLOCATION

Memory space must be set aside for an assembly language subroutine be-
fore it can be loaded. During initialization, enter the highest memory location
minus the amount of memory needed for the assembly language sub-
routine(s) with the \\ M: switch.

In addition to the BASIC interpreter code area, Z-BASIC uses up to 64K of
memory beginning atits data (DS) segment.

If, when an assembly language subroutine is called, more stack space is
needed, BASIC's stack can be saved and a new stack set up for use by the
assembly language subroutine. BASIC'’s stack must be restored, however,
before returning from the subroutine.

Page E.2

APPENDIX E

Assembly Language Subroutines

The assembly language subroutine may be loaded into memory by means
of the operating system or the BASIC POKE statement. If the user has the
Zenith Utility Software Package, the routines may be assembled with the
MACRO-86 assembler and linked using the MS-LINK Linker, but not loaded.
To load the program file, the user should observe these guidelines:

1. Thesubroutines must not contain any long references.

2. Skip over the first 512 bytes of the MS-LINK output file, then read in
the restof thefile.

As we mentioned earlier, the CALL statement is the recommended way of
interfacing 8086 machine language programs with BASIC. It is further
suggested that the old style user-call USR(n) not be used.

Format: CALL <variable name> [(<argument list>)]

<variable name> contains the segment offset that is the starting point in
memory of the subroutine being CALL ed.

<argument list> contains the variables or constants, separated by com-
mas, that are to be passed to the routine.

The CALL statement conforms to the INTEL PL/M-86 calling conventions
outlined in Chapter 9 of the INTEL PL/M-86 Compiler Operator's Manual.
BASIC follows the rules described for the MEDIUM case (summarized in the
following discussion).

Invoking the CALL statement causes the following to occur:

1. For each parameter in the argument list, the two-byte offset of
the parameter's location within the data segment (DS) is
pushed onto the stack.

2. BASIC’s return address code segment (CS), and offset (IP) are
pushed onto the Stack.

3. Control is transferred to the user’s routine via an 8086 long call
to the segment address given in the last DEF SEG statement
and the offset given in <variable name>.

CALL

invoking
CALL
Statement

Page E.3

APPENDIXE

Assembly Language Subroutines

These actions are illustrated by the two following diagrams, which illustrate
first, the state of the stack at the time of the CALL statement, and second,
the condition of the stack during execution of the called subroutine.

g:'ck high
sgram1 addresses parameter 0
parameter 1
C Each parameter is a two-byte
Slo POINTER into memory
t|u :
aln parameter n
c|t
k|e return segment address
r
return offset
low Stack pointer
addresses (SPreg. contents)
Diagram 1
Stack Layout when CALL Statement
is activated

The user’s routine now has control. Parameters may be referenced by mov-
ing the stack pointer (SP) to the base pointer (BP) and adding a positive
offsetto (BP).

Page E.4

APPENDIXE

Assembly Language Subroutines

high

addresses parameter 0
parameter 1

para;‘neter n
return segment address
return offset

old stack marker

local variables

O ~W
-~ @ ~>3c 0O

This space maybe
used during pro-
cedure execution

low
addresses

Diagram 2

Stack Layout During Execution of

aCALL statement

Absent if any parameteris
referenced within a nested
procedure

Absentin local procedure

Stack pointer
(SPreg. contents)
New stack marker

Only inreentrant procedure

Stack pointer may change
during procedure execution

Diagram 2

Page E.D

APPENDIXE

Coding Rules You must observe the following rules when coding a subroutine:

1.

The called routine may destroy the SX, BX, CX, DX, Sl, DI,
and BP registers.

The called program MUST know the number and length of the
parameters passed. References to parameters are positive
offsets added to (BP) (assuming the called routine moved the
current stack pointer into BPl i.e., MOV BP,SP). That is, the lo-
cationof P1is at8(BP), p2is at6(BP), p3is at4(BP),...etc.

The called routine must do a RET <n> (where <n> is two
times the number of parameters in the argument list) to adjust
the stack to the start of the calling sequence.

Values are returned to BASIC by including in the argument list
the variable name(s) which will receive the result.

if the argument is a string, the parameter’s offset points to
three-bytes called the “String Descriptor.” Byte zero of the
string descriptor contains the length of the string (0 to 255).
Bytes one and two, respectively, are the lower and upper eight-
bits of the string starting address in string space.

NOTE: If the argument is a string literal in the program, the string descriptor
will point to program text. Be careful not to alter or destroy your program this
way. To avoid unpredictable results, add +" " to the string literal in the pro-

gram.

Example:

20 A$ = "BASIC"+""

This will force the string literal to be copied into string space. Now the string
may be modified without affecting the program.

6.

Strings may be altered by user routines, but the length must not
be changed. BASIC cannot correctly manipulate strings if their
lengths are modified by external routines.

Page E.6

APPENDIXE

Assembly Language Subroutines

Example:

Assemble the subroutine.

A:MASM CALL,CALL,CALL;

The Microsoft MACRO Assembler

Version 1.06, Copyright (C) Microsoft Inc. 1981,82
Warning Severe

Errors Errors
4] 4]

Link the subroutine.

A:LINKCALL:

Microsoft Object Linker V1.10
(C) Copyright 1981 by Microsoft Inc.

Warning: No STACK segment

There was 1 error detected.

(NOTE: This error is ok. The subroutine does not contain a stack since it
uses Z-BASIC's.)

Convert the subroutine to binary code.
A:EXE2BIN CALL

Exe2bin versionl.5

Page E.7

APPENDIXE

Assembly Language Subroutines

This is alisting of the subroutine generated by MASM.

A:TYPE CALL.LST

The Microsoft MACRO Assembler 08-20-82 PAGE 1-1
PAGE ,132

0000
FUNC SEGMENT

ASSUME CS:FUNC

0000 START PROC FAR
0000 8B EC MOV BP,SP ;Set up frame pointer
0002 8B 76 06 MOV SI,6[BP] ;SI = pointer to paraml
0005 8B 04 MOV AX,WORD PTR [SI] ;AX = integer value
0007 8B 76 04 MOV SI,4[BP] ;SI = pointer to param?
000A 03 CO ADD AX, AX ;AX = AX * 2
000C 89 04 MOV WORD PTR [SI], AX ;Save it
O000E CA 0004 RET 4
0011 START ENDP
0011 FUNC ENDS

END START
The Microsoft MACRO Assembler 08-20-82 PAGE Symbols-1

Segments and groups:

Name Size align combine class
FUNC 0011 PARA NONE
Symbols:
Name Type Value Attr
START. F PROC 0000 FUNC Length =0011

Warning Severe
Errors Errors
0 0

Page E.8

APPENDIX E

ssembly Language Subroutines

When calling Z-BASIC, set the /M switch to 32768:
ZBASIC /M:32768

The following is the BASIC program. The value in line 10 is for a 192K Z-100.
For a 128K machine, make the value &H1FQ0.

10 DEF SEG = &HRFQO 'set base of Call/Peak/Poke to 2F00:0000
20 GOSUB 80 'load program

30 Y%=5 '‘set Y%

40 MULT = &HO 'set address of program

50 CALL MULT(Y%,X%) '‘call routine

60 PRINT X% 'print result

70 END 'done

80 OPEN "R",1,"CALL.BIN",2 'Open binary file

90 FIELD #1, 2 AS A$ '‘setl 2-byte field

100 FOR X=&HO TO (LOF(l1)+1) STEP 2 'for next to read every byte
110 GET #1,X/2+1 'get next pair of bytes

120 QZ=CVI(A$%) 'convert to 16-bit integer
130 MZ=Q% MOD 256 'split into 8 high and

140 LE=1INT (Q%/256) " 8 low-bits

150 POKE X,M% AND &HFF 'poke data into memory

160 POKE X+1,L% AND &HFF ' locations

170 NEXT X ‘get next pair

180 RETURN

Page E.9

APPENDIXE

Format

Assembly Language Subroutines

USRFUNCTIONCALLS

Although the CALL statement is the recommended way of calling assembly
language subroutines, the USR function call is still available for compatibility
with previously-written programs.

The format of the USR function call is:
USR[<digit>][(argument)]

<digit> is from 0 to 9. <digit> specifies which USR routine is being called.
If <digit> is omitted, USRO is assumed.

(argument) is any numeric or string expression. Arguments are discussed
in detail below.

In this implementation of BASIC, a DEF SEG statement must be executed
prior to a USR call to assure that the code segment points to the subroutine
being called. The segment address given in the DEF SEG statement deter-
mines the starting segment of the subroutine.

For each USR function, a corresponding DEF USR statement must have
been executed to define the USR call offset. This offset and the currently
active DEF SEG address determine the starting address of the subroutine.
When the USR function call is made, register [AL] contains a value which
specifies the type of argument that was given. The value in [AL] may be one
of the following:

2 Two-byte integer (two’s complement)

3 String

4 Single-precision floating point number

8 Double-precision floating pointnumber ¢

Page E.10

APPENDIXE

Assembly Language Subroutines

If the argument is a number, the [BX] register pair points to the floating point
accumulator (FAC) where the argumentis stored:

FAC is the exponent minus 128, and the binary point is to the left of the
most significant bit of the mantissa.

FAC-1 contains the highest seven bits of mantissa with leading 1 sup-
pressed (implied). Bit seven is the sign of the number (0=positive,
1=negative).

Ifthe argument is n integer:

FAC-2 contains the upper eightbits of the argument.

FAC-3 contains the lower eight bits of the argument.

If the argument is a single-precision floating point number:

FAC-2 contains the middle eightbits of mantissa.

FAC-3 contains the lowest eight bits of mantissa.
If the argument is a double-precision floating point number:

FAC-7toFAC-4 contain four more bytes of mantissa (FAC-7 contains the
lowest eight bits).

Ifthe argumentis a string:

the [DX] register pair points to three-bytes called the “string descriptor.” Byte
zero of the string descriptor contains the length of the string (0 to 255). Bytes
one and two, respectively, are the lower and upper eight bits of the string
starting address in BASIC's data segment.

NOTE: If the argument is a string literal in the program, the string descriptor
will point to program text. Be careful not to alter or destroy your program this
way. See the CALL statement above.

Usually, the value returned by a USR function is the same type (integer,
string, single-precision, or double-precision) as the argument that was

passedtoit.

Page F.1

APPENDIX F

Communication 1/O

Since the communication port is opened as a file, all Input/Output state-
ments that are valid for disk files are valid for COM.

COM sequential input statements are the same as those for disk files. They
are: INPUT#<file name>, LINE INPUT # <file number>, and the INPUTS
function.

COM sequential output statements are the same as those for disk, and are:
PRINT #<file number>, and PRINT # <file number> USING.

Referto INPUT and PRINT sections for details of coding syntax and usage.

GET and PUT are only slightly different for COM files, see The GET and PUT
statements for COM files.

THE COM /O FUNCTIONS

The most difficult aspect of asynchronous communication is being able to
process characters as fast as they are received. At rates above 2400 bps,
itis necessary to suspend character transmission from the host long enough
to “catch up”. On some systems, this can be done by sending XOFF (CTRL-
S) to the host and XON (CTRL-Q) when ready to resume. (Be sure to obtain
this information in the case you need to use this method.)

BASIC provides three functions which help in determining when an “over-
run” condition is eminent. These are: '

LOC(x) Returns the number of characters in the input queue waiting
to be read. The input queue can hold 120 characters. If there
are more than 120 characters in the queue, LOC(X) returns
120. Since a string is limited to 255 characters, this practical
limit alleviates the need for the programmer to test for string
size before reading data into it. If fewer than 120 characters
remain in the queue, LOC(X) returns the actual count.

Page F.2

APPENDIX F

LOF(x) Returns the amount of free space in the input queue. That
is, 120 —LOC(x). Use of LOF may be used to detect when
the input queue is getting full. In practicality, LOC is adequate
for this purpose as will be demonstrated in the programming
example.

EOF(x) If true (— 1), indicates Z (1AH) has been received. Returns
false (0) Z has not been received. If there are no characters
in the inut queue, then the system will wait until a character
is received.

Possible Errors:

1. CommunicationBuffer Overflow If a read is attempted after the
input queueis full, (i.e. LOF(x) returns 0).

2. Device I/0 Error If any of the following line conditions are de-
tected on receive; Overrun Error (OE), Framing Error (FE), or
Break Interrupt (Bl). The error is reset by subsequent inputs but
the character causing the error s lost.

This error message will also be returned if the input queue holds less than
the number of characters requested by the INPUT$ function. To avoid this
condition, use the example shown in the following discussion, or poll the
input queue for the number of characters with the LOC(x) function.

10 OPEN "COM1:1200,N,8,2" AS #1 :REM OPEN COM1l: CHANNEL

20 GOSUB 100 : PRINT A% :REM READ 10 CHARACTERS FROM COM1: BUFFER
30 GOTO 20 :REM GO INTO A LOOP

100 IF LOC(1)<10 THEN 100 :REM WAIT FOR 10 CHARACTERS IN BUFFER

110 A$=INPUT(10, #1) :REM READ 10 CHARACTERS

120 RETURN

3. DeviceFault If Data Set Ready (DSR)is lost during I/O.

Page F.3

APPENDIX F

THE INPUT$ FUNCTION FOR COMFILES

The INPUTS$ function is preferred over the INPUT and LINE INPUT state-
ments when reading COM files, since all ASCII characters may be signifi-
cantin communications. INPUT is least desirable because input stops when
a comma (,) or RETURN is seen and LINE INPUT terminates when a RE-
TURN s seen.

INPUTS$ allows all characters read to be assigned to a string. Recall from
the rules for coding that INPUT$ will return X characters from the #Y file.
The following statements then are most efficient for reading a COMfile:

10 WHILE LOC(1)<>0

20 A$=INPUT$(LOC(1),#1)

30 ...

40 ... Process data returned in A$...

50 ...

60 WEND
The previous sequence of statements read: “.. While there is something in
the input queue, return the number of characters in the queue and store
them in A$. Continue as long as there are characters present in the input
queue.

The GET and PUT Statements for COM Files

Format: GET <filenumber>,<nbytes>
PUT <file number>, <nbytes>

Function: GET and PUT allow fixed length I/0 for COM.

<file number> Is an integer expression returning a valid file number.

<nbytes> Is an integer expression returning the number of bytes
to be transferred into or out of the file buffer. nbytes can-
notexceed 120.

Because of the low performance associated with telephone line communi-
cation, it is recommended that GET and PUT not be used in such applica-
tions.

Page F.4

APPENDIX F

Examples:

The following program enables the Z-100 computer to be used as a conven-
tional terminal. Besides full duplex communication with a host, the TTY pro-
gram allows ASCII text to be “down-loaded” to a file. Conversely, a file may
be “up-loaded” (transmitted) to another machine.

In addition to demonstrating the elements of asynchronous communication,
this program should be useful in transferring BASIC programs (Saved with
the A option) and ASClI text to and from the Z-100.

NOTE: This program is set up to communicate with Microsoft's DEC-20, that
is, the use of XON and XOFF. You may want to further modify it for your
environment.

The TTY Program (An exercise in communication 1/0).

10 SCREEN 0,0

15 KEY OFF:CLS:CLOSE

20 DEFINT A-Z

25 LOCATE 25,1

30 PRINT STRING$(60," ")

40 FALSE=0:TRUE= NOT FALSE

50 MENU=5 ' When CTRL-E is hit, the menu is displayed
60 XOFF$=CHR$(19) :XON$=CHR$(17)

100 LOCATE 25,1:PRINT "Async TTY Program, Press CTRL-E to display menu";
105 LOCATE 1, 1:PRINT "Async TTY Program"

110 LINE INPUT "Speed? ";SPEED$

120 COMFIL$="COM1l:" +SPEED$+",N, 8"

130 OPEN COMFIL$ AS #1

140 OPEN "SCRN:" FOR OUTPUT AS #2

200 PAUSE=FALSE

210 A$=INKEY$: IF A$="" THEN 230

220 IF ASC(A$)=MENU THEN 300 ELSE PRINT #1,A$;
230 IF LOC(1)=0 THEN 210

240 IF LOC(1)>82 THEN PAUSE=TRUE: PRINT #1, XOFF$;
250 A$=INPUT$(LOC(1), #1)

260 PRINT #2,A%;:IF LOC(1)>0 THEN 240

270 IF PAUSE THEN PAUSE=FALSE:PRINT #1,6XON$;

280 GOTO 210

300 LOCATE 1, 1:PRINT STRING$(30," ") :LOCATE 1,1
310 LINE INPUT"FILE? " ;DSKFIL$
400 LOCATE 1,1:PRINT STRING$(30," "):LOCATE 1,1

410 LINE INPUT"(T)ransmit (R)eceive, or (E)xit? ";TXRX$
415 IF (TXRX$<>"T") AND (TXRX$<>"R") AND (TXRX$<>"E") THEN 400

Page F.5

APPENDIX F

Communication /O

417 IF TXRX$="E" THEN 9999

420 IF TXRX$="T" THEN OPEN DSKFIL$ FOR INPUT AS #3:GOTO 1000
430 OPEN DSKFIL$ FOR OUTPUT AS #3

440 PRINT #1,CHR$(13) ;

500 IF LOC(1l)=0 THEN GOSUB 600

510 IF LOC(1)>82 THEN PAUSE=TRUE: PRINT #1,6 XOFF$;

520 A$=INPUT$(LOC(1),#1)

530 PRINT #3,A%;:IF LOC(1)>0 THEN 510

540 IF PAUSE THEN PAUSE=FALSE:PRINT #1, XON$;

550 GOTO 500

600 FOR I=1 TO 5000

610 IF LOC(l)<>0 THEN I=9999

620 NEXT I

630 IF I>9999 THEN RETURN

640 CLOSE #3:CLS:LOCATE 25,10: PRINT "* Download complete*";
650 GOTO 200

1000 WHILE NOT EOF(3)

1010 A$=INPUT$(1, #3)

1020 PRINT #1,A$;

1030 WEND

1040 PRINT #1,CHR$(26); 'CTRL-Z to make close file.

1050 CLOSE #3:CLS:LOCATE 25,10:PRINT "** Upload complete **
".

1060 GOTO 200

9999 CLOSE:KEY ON

NOTES ONTHE TTY PROGRAMMING EXAMPLE:

Line No. Comments

10 Turns off the graphics mode and clears the reverse video
mode (returns to normal display).

15 Turns off the soft key display, clears the screen, and
makes sure that all files are closed.

Asynchronous implies character I/O as opposed to line or block I/0. There-
fore, all prints (either to the COM file or screen) are terminated with a semi-

colon (;). This retards the RETURN line-feed normally issued at the end of
aPRINT statement.

20 Define all numeric variables as INTEGER.

25-30 Clears the 25th line starting at column 1.

Page F.6

APPENDIX F

tion i/

Line No. Comments

40 Define Boolean TRUE and FALSE.

50 Defines the value of the control key (CTRL-E) that will dis-
play the MENU.

60 Defines the value for the XON and XOFF characters (11H,
17 Dec and 13H, 19 Dec, respectively).

100-130 Prints program-ID and asks for baud rate (speed). Opens
communications to file number one, no parity, eight data
bits.

200-280 This section performs full-duplex 1/0 between the video
screen and the device connected to the RS-232 connector
asfollows:

1. Read a character from the keyboard into A$. Note
that INKEY$ returns a null string if no character is
waiting.

2. Ifnocharacteris waiting then go see if any characters
are being received. If a character is waiting at the
keyboard then:

3. If the character was the MENU Key, then the user is
ready to download afile, so go get file name.

4. If character (A$) is not the MENU key then send it by
writing to the communication file (PRINT #1...).

5. At 230 see if any characters are waiting in COM buf-
fer. If not, then go back and check keyboard.

6. At 240, if more than 82 characters are waiting then,
set PAUSE flag saying we are suspending input and
send XOFF to host stopping further transmission.

Page F.7

APPENDIX F

Line No.

300-310

400-430

440

Communication

Comments

7. At250-260, read and display contents of COM buffer
on screen until empty. Continue to monitor size of
COM buffer (in 240). Suspend transmission if we fall
behind.

8. Finally, resume hose transmission by sending XON
only if suspended by previous XOFF. Repeat pro-
cess until MENU Key struck.

Get disk file name we are down-loading to.

Asks if file named is to be transmitted (up-load) or received
(down-loaded). Open the file as number 3.

Sends a RETURN to the host to begin the down-load. This
program assumes that the last command sent to the host
was to begin such a transfer and was missing only the ter-
minating RETURN. If a DEC System is the host, then such
acommand might be:

COPY TTY:=MANUAL.MEM<CTRL-E>

WHERE: The MENU Key (CTRL-E) was struck instead of RETURN.

500

510

520-530

540-550

When no more characters are being received (LOC(x) re-
turns 0), then perform a timeout routine (explained later).

Again, if more than 82 characters are waiting, signal a
pause and send XOFF to the host while we catch-up.

Read all characters in COM queue (LOC(x)) and write
themto disk (PRINT #3..) until we are caught up.

If a pause was issued, restart host by sending XON and
clear the pause flag. Continue process until no characters
are received for a predetermined time.

Page F.8

APPENDIX F

&

Line No.

600-650

1000-1060

9999

Comments

This is the time-out subroutine. The FOR loop count was
determined by experimentation. In short, if no character is
received from the host for 17-20 seconds, then transmis-
sion is assumed complete. If any character is received
during this time (line 610) then set | well above FOR loop
range to exit loop and then return to caller. If host transmis-
sion is complete, close the disk file and return to being a
terminal.

Transmit routine. Until end of disk file do:

Read one character into A$ with INPUT$ statement. Send
character to COM device in 1020. Send a CTRL-Z at end
of file in 1040 to close the receiving devices file. Finally,
in lines 1050 and 1060, close our disk file, print completion
message and go back to conversation mode in line 200.

This line closes the COM file left open and restores the soft
key display.

EVENT TRAPPING

The following are defined as “event specifiers”:

COM (n)

KEY (n)

where n is the number of the COM channel (one or two)

where n is a function KEY Number (1-16). 1 through
12 are the soft keys F1 through F12 and 13 through
16 are the arrow keys.

We add the following statements:

ON <event specifier>GOSUB <line number>

page F.9

APPENDIX F

This sets up an event trap line number for the specified event. A <line
number> of 0 disables trapping for this event.

<event specifier>0ON
<event specifier>0FF
<event specifier>STOP

These statements control the activation/deactivation of event trapping.
When an eventis ON, if a non-zero line number is specified for the trap with
an ON statement then everytime BASIC starts a new statement it will check
to see if the specified event has occurred (a function key was struck, a com
character has comein) and if so, it will perform a GOSUB to the line specified
in the ON statement.

When an event is OFF, no trapping takes place and the event is not remem-
bered even ifit takes place.

When an event is “stopped” (it must be turned on first) no trapping can take
place, but if the event happens this is remembered so an immediate trap
will take place when an <event> ON is executed.

When a trap is made for a particular event the trap automatically causes a
“stop” on that event so recursive traps can never take place the “return” from
the trap routine automatically does an ON unless an explicit OFF has been
performed inside the trap routine.

When an error trap takes place this automatically disables all trapping.
Trapping will never take place when BASIC is not executing a program.
Special notes about each type of trap:

KEY Trapping.

No type of trapping is activated when BASIC in direct mode. In particuiar,
function keys resume their standard expansion meaning during input.

A key that causes a trap is not available for examination with the INPUT or
INKEY$ statements so the trap routine for each key must be different if a
different function is desired.

Page F.10

APPENDIX F

COM Trapping.

Typically the COM trap routine will read an entire message from the COM
port before returning back. It is not recommended to use the COM trap for
single character messages since at high baud rates the overhead of trap-
ping and reading for each individual character may allow the interrupt buffer
for COMto overflow.

Here is an example of event trapping using the F1 key:

10 KEY(1)ON
20 ON KEY(1) GOSUB 100
30 GOTO 30

100 BEEP: KEY(1)OFF : RETURN

The program will turn on the event trapping and cycle in line 30 until you
press the F1 key. At that point, the program will execute line 20 and go to
the subroutine in line 100 where it will sound the tone, turn the key event
off and return from the subroutine. If you press the F1 key a second time,
nothing will happen because the event trapping has been turned off.

Page G.1

APPENDIXG

Glossary

A GLOSSARY OF COMMONLY USED COMPUTER
TERMS

Acoustic coupler (Modem) - One of the two types of modems: a device
you can connect between a standard telephone handset and a Computer
to communicate with other Computers. A modem will translate the normal
digital signals of the Computer into tones (and back again) that are trans-
mitted over standard telephone lines. By using an acoustic coupler
modem, you can use any telephone with a standard handset on a tempo-
rary basis and avoid a permanent connection to the telephone lines. See
“Modem” and “Direct-Connect Modem.”

Acronym - A word formed from letters found in a name, term, or phrase.
For example, FORTRAN is formed from the words FORmula TRANSslator.

Address - The label, name, or number identifying a register, location, or unit
where datais stored. In most cases, address refers to a location in Computer
memory.

Algorithm- A defined set of instructions that will lead to the logical conclu-
sion of atask.

Alpha- The letters of the English alphabet.

Alphanumeric - Letters, numbers, punctuation, and symbols used to repre-
sentinformation or data.

ALU - Arithmetic Logic Unit. This section of the Computer performs the arith-
metic, logical, and comparative functions of an operation.

ANSI - American National Standards Institute. This organization publishes
standards used by many industries, including the Computer industry. Most
noted are those standards established for Computer languages such as
FORTRAN and COBOL.

Analyst - A person who has been trained to define problems and develop
solutions. In the Computer industry, an analyst will also develop algorithms
for Computer programs.

Page G.2

APPENDIX G

Application - A system, problem, or task to which a Computer has been
assigned.

Application program - A program or set of programs designed to accom-
plish a specific task like word processing.

Argument - A term used to describe a value in a variable, statement,
command, or element of an array or matrix table.

Array - A series of items arranged in a pattern. In computing, this term
is used to describe a table with one or more dimensions.

Artificial Intelligence- A term used to describe the capability of a machine
that can perform functions normally associated with human intelligence:
reasoning, creativity, and self-improvement.

ASCII - American Standard Code for Information Interchange, a code used
by most Computers, including those sold by Heath and Zenith. 1t is the
industry standard used to transmit infcrmation to printers, other Com-
puters, and other peripheral devices. The most notable exception is some
of the IBM equipment which uses an EBCDIC code. See “EBCDIC.”

Assemble - To prepare a machine usable code from a symbolic code.

Assembler- A Computer program used to assemble machine code from
symbolic code.

Assembly language - A Computer programming language that is heavily
machine oriented and makes use of mnemonics for instructions, operands,
and pseudo-operations.

Asynchronous - A mode of operation where the next command is started
and stopped by special signals. In communication, the signals are referred
to as start and stop bits.

Backup - 1. A copy preserved as a protection from the destruction of
the original (or processed) data and/or programs. 2. The process of pro-
ducing a backup.

Page G.3

APPENDIX G

Glossary

BASIC - Beginner's All-purpose Symbolic Instruction Code. An easily
learned programming language consisting largely of English words and
terms.

Batch processing- An operation where a large amount of similar data
is processed by a Computer with little or no operator supervision. See
“Interactive Processing.”

Baud rate - The rate at which information is transmitted serially from
a Computer. Expressed in bits per second.

BCD - Binary Coded Decimal. The method of encoding four bits of Com-
puter memory into a binary representation of one decimal digit (number).

Binary - A numbering system based on two’s rather than ten’s (decimal).
The individual element (or digit) can have a value of zero or one and
in Computer memory is known as a bit.

Bit - 1. A single binary element or digit. 2. The smallest element in Com-
puter storage capability.

Bit density - A measure of the number of bits recorded in a given area.

Block diagram - 1. A graphic representation of the logical flow of opera-
tions in a Computer program, usually more general than a flow chart.
2. A graphic representation of the hardware configuration of a Computer
system.

Boolean algebra - A symbolic system (algebra) named after its developer,
George Boole. It is concerned with Computer and binary processes and
includes logical operators.

Boot - The process of initializing (or loading) a Computer operating system.
Also referred to as “Booting Up.”

Bootstrap - A program used by a Computer to initialize (or load) the operat-
ing system of the Computer.

Branch - To depart from the sequential flow of an operation as the result
of adecision.

Page G.4

APPENDIX G

Glossary

Break - The process of interrupting and (temporarily) halting a sequence of
operations, as in a Computer program.

Buffer - An auxiliary storage area for data. Many peripherals have buffers
which are used to temporarily store data which the peripheral will use as time
permits.

Bug - A term that is widely used to describe the cause of a Computer misop-
eration. The “bug” may be either in the hardware design or in the software
(programs) used by the Computer.

Bus - A circuit (line) used to carry data or power between two or more
sources. The S-100 bus, which is used in the Z-100 series Desktop Com-
puter, is composed of one hundred separate bus lines.

Byte - A term used to describe a number of consecutive bits. in microCom-
puters, a byte refers to eight bits and is used to represent one ASCIi or
EBCDIC character.

Cable - An assembly of one or more conductors used to transmit power or
data from a source to a destination and, in some cases, vice-versa.

Character - A letter, number, punctuation, operation symbol, or any other
single symbol that a Computer may read, store, or process.

Check (sum) - A method of checking the accuracy of characters transmit-
ted, manipulated, or stored. The check sum is the result of the summation
of all the digits involved.

Chip - The term applied to an integrated circuit that contains many electronic
circuits. It is sometimes called an IC or an IC chip and sometimes refers to
the entire integrated circuit package.

Circuit - A system of electronic elements and connections through which
current flows.

COBOL- COmmon Business Oriented Language. This common high-level
language is used in a wide number of operations, most notably those dealing
with financial transactions.

Page G.5

APPENDIX G

Glossary

Code- A method of representing data in some form, as in an ASCII or
EBCDIC form.

Column - A character position in a side-by-side relationship as opposed to
arow position which is one above another.

Command - A portion of code that represents an instruction for the Com-
puter.

Communication - The process of transferring information from one point
to another.

Compile - The process of producing machine code or pseudo-operational
code from a higher-level code, or language, such as COBOL or FORTRAN.

Compiler- The program that compiles machine code from a higher-level
code. See “Compile.”

Computer - A machine capable of accepting information, processing it by
following a set of instructions, and supplying the results of this process.

CP/M - Control Program for Microcomputers. This is a disk-based operating
system commonly used by many microcomputers. CP/M is a registered
trade mark of Digital Research, Inc.

CPS - Characters Per Second. This term is sometimes used in relating
transmission speed, and is more commonly used in rating a printer’s instan-
taneous printing speed.

CPU- Central Processing Unit. The CPU is the brain of a Computer. Itis the
circuitry which actually processes the information and controls the storage,
movement, and manipulation of that data. The CPU contains the ALU and
a number of registers for this purpose.

Crash - Aterm that refers to a Computer or peripheral failure.
CRT - Cathode Ray Tube. This term is used interchangeably with display,

screen, and video monitor. It refers to the television-like screen in a Com-
puter or terminal.

Page G.6

APPENDIX G

Cursor - A character, usually an underline or graphics block, used to indi-
cate position on a display screen.

Cylinder - Used to describe the tracks in disk units with multiple read-write
heads, which can be accessed without mechanical movement of the heads.

Daisy wheel printer - A hard copy device that produces images on paper
when a hammer strikes an arm or projection of the print wheel, which
looks somewhat like a daisy. The print quality from such printers is usually
quite high, similar to that of a quality office electric typewriter.

Data - The general term used to describe information that can be process-
ed by a Computer. Although the term is plural, it is commonly used in
a singular form to denote a group of datum.

Data base - A large file of information that is produced, updated, and
manipulated by one or more programs.

Data processing - This term usually refers to the act of processing raw
data, as by the use of a Computer.

Debug - The process of locating and removing any “bugs” in a Computer
system; usually as it applies to software.

Decimal - The numbering system based on ten and comprising the digits
Othrough9.

Delete - To remove or eliminate.

Density - The closeness of space distribution on a storage medium such
as adiskette.

Device - A separate mechanical or electronic unit, such as a printer, disk
drive, terminal, and soon.

Digit - A single element or sign used to convey the idea of quantity, either
by itself or with other numbers of its series.

Digital computer - A Computer in which numbers are used to express
data and instructions.

Page G.7

APPENDIX G

Direct-connect modem - One of the two types of modems; a device
you can connect between a telephone line and a Computer to communi-
cate with other Computers. A modem will translate the normal digital sig-
nals of the Computer into tones (and back again) that are transmitted
over standard telepho’he lines. By using a direct-connect modem, you
avoid problems associated with high levels of noise and make a more
permanent connection to the telephone lines. See “Modem” and “Acoustic
Coupler.”

Directory - A disk file, listing all of the other files on the diskette and
pertinent information about each file.

Disk - A circular metal plate coated with magnetic material and used to
store large amounts of data. Also called a hard disk. See “Diskette.”

Digk drive - A device used to read data from and to write data onto
diskettes.

Diskette - A thin, flexible plastic platter, coated with magnetic material
and enclosed in a plastic jacket. It is used to store data and comes in
two standard sizes: 5-1/4” and 8" in diameter. Also called a “floppy disk,”
“floppy diskette,” “flexible disk,” or “flexible diskette.”

Disk operating system - See “DOS.”

Display - The television-like screen used by the Computer to present
information to the operator.

DOS - Disk operating system - A program or programs that provide basic
utility operations and control of a disk based Computer system.

Dot-matrix printer - A hard copy printer that works by forming the printed
character through the selection of wires which strike the paper.

Double density - This term is most often applied to the storage character-
istics of diskettes, and generally refers to the density of the storage of
bits on the diskette surface on each track. It also refers to the density
of the diskette tracks, though this is not the common usage.

Page G.8

APPENDIX G

Glossary

EBCDIC - Expanded Binary Coded Decimal Interchange Code. This code,
used primarily in IBM equipment, is used to transmit information to
peripheral equipment and other Computers. ASCIl code is the Computer in-
dustry’s standard and is similar. See “ASCII".

Edit - To change data, aprogram, or a program line.

Execution - The process which is performed by a Computer according to
instructions.

Field - A set of related characters that make up a piece of data. For instance,
a field of characters spelling a person’s first name would be one field in a
person’s name and address record in a mail program’s data file. See “Rec-
ord” and “File.”

File - A collection of related records that are treated as a unit. A file nﬁay
contain data or represent a Computer program. A file can exist on diskette
or hard disk. See “Field” and “Record.”

Firmware - A Computer program that is part of the physical makeup of the
Computer. See “Software” and “Hardware.”

Fixed disk - See “Disk.”

Flowchart - A symbolic representation of the logical flow of operations in
a Computer program, usually very detailed.

Formatting - The process of organizing the surface of a diskette or disk to
accept files of data and programs.

FORTRAN - FORmula TRANSslator. A popular high-level programming lan-
guage used primarily in scientific applications.

Graphics - This term generally refers to special characters which may be
displayed or printed. In other uses, it indicates that the specified device may
be able to reproduce any type of display, from photographs to line and bar
charts. Often graphics’ capabilities are expressed in pixels, or points which
may be lit (number of points per row by number of rows).

Page G.9

APPENDIX G

Glossary

Hard copy - Typewritten or printed characters on paper, produced by
a peripheral, called a printer.

Hard-sectored - This term applies to diskettes and indicates a type of
diskette that has multiple timing holes which mark sector boundaries as
well as the beginning of a track.

Hardware - The physical Computer and all of its component parts, as
well as any peripherals and inter-connecting cables. See “Firmware” and
“Software.”

Hexadecimal - A numbering system based on sixteen and represented
by the digits 0 through 9 and A through F. A single byte of data may
be represented by two hexadecimal digits.

High level language - A programming language which uses symbol and
command statements that an operator can read. Each statement repre-
sents a series of Computer instructions if expressed in machine language.
Examples of high level languages are BASIC, COBOL, and FORTRAN.

Home - This term usually means the upper left-hand corner of the display
screen, and specifically the first displayable character location.

I/O - Input/Output. This term refers to the devices which enter and/or store
data and/or the paths through which such data passes. See “Port.”

IC - Integrated Circuit- See “Chip.”
Input - 1. Information or data transferred into the Computer. 2. The route
through which such information passes. 3. The devices which supply a

source of input data, such as the keyboard or disk drive.

Instruction - A program step that tells the Computer exactly what to do for
asingle operationin a program.

Integer - A whole entity (number). Not a pant, fraction, or a number with a
decimal point.

Page G.10

APPENDIX G

los

Interactive processing - An operation where data is processed by a Com-
puter under the supervision of an operator, often requiring many inter-
mediate keyboard entries. See “Batch Processing.”

Interface - A device that serves as a common boundary between two other
devices, such as two Computer systems or a Computer and peripheral. See
“RS-232 Interface.”

Interference - This is usually termed RF Interference, for Radio Frequency
Interference, and in recent years has come to the attention of the FCC (Fed-
eral Communications Commission). Interference is the presence of un-
wanted signals in an electrical circuit. In radio and television, it causes noise,
static, and picture distortion and disruption. The FCC ruled that Computers
must meet certain standards with regard to the amount of interference they
cause in nearby radios and televisions.

Interpreter - A special program that interprets (usually) the code in a high
level language for use by the Computer. It performs an interpretation each
time an instruction is executed. Usually, this results in slower operation as
compared to a compiled Computer language. However, the process of test-
ing and debugging an interpreted Computer program is much easier and
faster. BASIC is a high level language that is usually found in an interpreter
form.

Interrupt - A temporary suspension of processing by the Computer and pos-
sible override by a high priority routine caused by input from another part
of the Computer or a peripheral.

Jump - A departure from the normal sequential line-by-line flow of a pro-
gram. A jump may be either conditional — based upon the outcome of a test
—orunconditional (i.e., absolute).

Justify - To adjust exactly — the perfect alignment of a margin. Normal text
applications are left justified — that is, the left margin is always aligned. A
feature of many word processors is right justification where the right margin
is also perfectly aligned by adding extra spaces between words or incre-
ments of a space between letters.

Page G.11

APPENDIX G

K - The symbol used to equal 1024. Aiso the abbreviation of kilo, which
stands for 1000. However, in Computers it is the power of two closest to the
number (2 * 10); hence, the amount of 1024. As an example, 16K would
equal 16 times 1024, or 16384. See “kilo.”

Keyboard - A device used to enter information into a Computer. It is made
up of two or more keys, often grouped as is a typewriter and/or calculator
keyboard.

Keypad - A small keyboard or section of a keyboard containing a group of
10, 12, or 16 keys, generally those used on simple calculators.

Keyword - This is a single word in a high-level language that defines the
primary type of operation to be performed.

Kilo - A prefix meaning one thousand. In Computers, it is abbreviated as
K and also may refer to the power of two closest to a number — 4,096 is
4K. See “K.”

Kilobyte - 1,024 bytes. See “Byte.”

Language - A defined set of characters which, when used alone or in combi-
nations, form a meaningful set of words and symbols. When we are speak-
ing of a Computer language, we mean a set of words and operations, and
the rules governing their usage. Examples of Computer languages are
Machine Language, Assembler Language, BASIC, COBOL, and FOR-
TRAN.

Load - The process of entering information (data or a program) into a Com-
puter from keyboard, diskette, or other source.

M - Abbreviation for Mega. See “Mega.”

Machine language - A programming language consisting only of numbers
or symbols that the Computer can understand without translation.

Page G.12

APPENDIXG

Glossary

Main frame - 1. The actual central hardware of a Computer, containing
the Central Processing Unit (CPU). 2. A large, multi-tasking, multi-user
Computer, usually associated with financial and government institutions

and having the ability to process very large amounts of data in a batch
processing mode.

Maintenance - The process of maintaining hardware and software. With
hardware, in addition to corrective maintenance or repair, this also includes
preventive maintenance, or cleaning and adjustment. With software,
maintenance refers to updating critical tables and routines to maintain ac-
countability with established standards (as updating tax tables for income
and Social Security tax deductions in a payroll program).

Matrix - 1. A rectangular array of datum, usually numeric, subject to
mathematical operations or manipulation. Any table is a matrix. 2. A rectan-
gular array of elements which, when used in combination, may form symbols
and/orcharacters, as in a dot-matrix printer or video display.

Mega - A term meaning one million. Abbreviated M. When used in Com-
puters, it usually means one thousand K. One Megabyte equals 1,000
Kbytes, or 1,024,000 bytes.

Megabyte - 1,024,000 bytes. See “Mega.”

Memory - A portion of a Computer that is used to store information (either
data or programs). The size of a microcomputer is often determined by the
amount of user memory (measured in Kilobytes) in the system. See “RAM,”
“ROM.”

Microcomputer - A term that applies to a small, (usually) desktop Computer
system, complete with hardware, software, and peripherals. See also
“Minicomputer” and “Main Frame.”

Minicomputer - A term that applies to medium sized Computer systems.
See “Microcomputer” and “Main Frame.”

Mnemonic - A term applying to an abbreviation or acronym that is easy to
remember.

Mode - Method of operation. For instance, BASIC has two modes of opera-
tion: Direct Mode and Indirect Mode.

Page G.13

APPENDIX G

Glossary

Modem - MOdulator DEModulator. A device that converts the digital signals
from a Computer into a form compatible with transmission facilities and vice-
versa. Used most commonly with telephone communications.

Modulo - A mathematical operation resuiting in the remainder of a division
operation. 42 modulo 5 = 2 (the remainder of 42 divided by 5).

Monitor - 1. A control program in a Computer. 2. A black and white or color
(CRT) display.

Multi-processing - A term which means doing two or more processes
at the same time. While this usually applies to Computers with more than
one CPU, it sometimes also applies to time-sharing. See “Time Share.”

Multi-tasking - Often used synonymously with multi-processing, this term
means doing two or more tasks at the same time. Further, as differing
from multi-programming, which deals with unrelated tasks, multi-tasking
is related and often deals with the same disk files.

Network - A network is the interconnection of a number of points by means
of communications facilities, such as the telephone.

Numeric - Composed of numbers. The value of a number as contrasted to
acharacter representation.

Octal - A numbering system based on eight and represented by the digits
Othrough 7. A single byte of data may be represented by three octal digits.

OS - Operating System - A program or programs that provide basic utility
operations and control of a Computer system.

Operation - A defined action; the action specified by a single Computer in-
struction.

Operator - The person who actually manipulates the Computer controls,
places the diskette into the disk drive, removes printer output, etc.

Output - The results of Computer operations; this may be in the form of dis-
played or printed information, or data stored on, (for example) a diskette.

Page G.14

APPENDIX G

Glossary

Parallel - In Computers, this refers to information which is sent as a group,
rather than serially. For instance, the eight bits of a byte are transmitted
simultaneously over eight channels or wires. See “Serial.”

Parameter - A specification or value used in an operation or statement.

Parity - Refers to a method used to check the validity of data that is stored,
transmitted, or manipulated. The value of a Parity bit (which is added to the
number of bits which make up one character) will be determined by the de-
sired outcome of the sum of the bits for that character (i.e., to be either an
odd oreven number).

Peripheral - A device that is connected to the Computer for the purpose of
supplying input and/or output capability to that Computer. A peripheral is
also not under direct control of the Computer; it may be capable of some
independent operation (selftest, etc.).

Port - The path through which data is transferred into and/or out of the Com-
puter.

Precision - The degree of exactness, often based upon the number of sig-
nificant digits in a value.

Printer - A device used to produce Computer output in the form of (type)writ-
ten or printed characters and symbols on paper. The output of a printe: is
called “hard copy” or a “Computer printout”.

Problem - A situation where an unknown exists among a given set of
knowns. The finding of the unknown might be assigned as the objective of
aprogram or task.

Process - The act of completing or executing an instruction or set of instruc-
tions. It may include compute, assemble, compile, interpret, generate, etc.

Processor - AComputer or its CPU. See “CPU.”

Program - A set of Computer instructions which, when followed, will result
inthe solution to a problem or the completion of a task.

Page G.15

APPENDIX G

Program language - Any one of a number of languages created for a
Computer. Examples include BASIC, COBOL, FORTRAN, and Assembly
Language.

Programmer - A person who prepares and writes a Computer program.

Prompt - A symbol, character, or other sign that the Computer is waiting
for some form of operator input. The prompt may request data and be made
up of a query, requesting specific data. In other instances, the prompt may
simply mean that the Computer is finished executing the latest command
and is waiting for new instructions in the form of a command.

Pseudo - A prefix meaning an arbitrary substitution for.

Query - A specific request for data, usually accompanied by an operator
prompt.

RAM - Random Access Memory. Volatile read-write memory in which data
may be written to (stored) or read from (retrieved) directly. See “Random
Access,” and “volatile.”

Random access - This term refers to the ability to access locations without
regard to sequential position; that is, access may be accomplished by
going directly to the location. On occasion, this is called “direct access.”

Read - The process of obtaining data from some source, such as a disk-
ette.

Read/write head - This is a magnetic recording/playback head similar
to those used by tape recorders. The function of the head is to read
(playback) and write (record) information on magnetic material such as
disks or diskettes.

Real time clock - This portion of the Computer maintains a time function
which may be used for making a record of the time used to complete
an application. In many small Computers, this is a function of software,
rather than hardware, and is subject to timing interrupts caused by certain
operations.

Reset - The process of restoring the equipment to its initial state; which
was reached by applying power to the system and turning it on.

Page G.16

APPENDIX G

Glossati

ROM - Read Only Memory. Memory which is similar to RAM, except that
data cannot be written to it. Data can be read from it directly, as in the case
of RAM, but ROM is non-volatile; that is, it will retain the information stored
in it whether power is applied or not. It is most often used for special pro-
grams such as the monitor program in the Z-100 Desktop Computer. See
“Volatile,” “RAM,” “PROM,” “EPROM,” and “EEPROM.”

Routine - A sequence of instructions that carry out a well-defined function.
A program may be called a routine, although programs usually contain many
routines. If a routine is separated from the main body of the program it is
referred to as a “subroutine.”

RS-232 interface - A standardized interface adopted by the Electronic
Industries Association (EIA) to ensure uniformity of interfacing signals be-
tween Computers and peripherals. This capability is built into most Com-
puter devices. See “Interface.”

Search - The systematic examination of data to locate a specific item.
Searches are characterized by several different methods including sequen-
tial (items are examined in a specific sequence) and binary (ordered data
containing the desired item is repeatedly halved until only the desired item
remains).

Sector - A portion of a disk track. The location of a particular sector on the
disk track is a matter of timing. In a diskette, timing is handled by timing
holes. Diskettes containing only one timing hole are said to be soft-sectored
because the timing is handled by software. Diskettes containing many tim-
ing holes are said to be hard-sectored because the timing is handled by
hardware. See “Track.”

Sequential - The order in which things follow, one after the other.
Serial - Refers (as referenced to data in computers) to data that has

been broken down into a component part (character or bit) and handled
in a sequential manner.

Page G.17

APPENDIX G

Sign- An indication of whether the value is greater than zero (>0) or
less than zero (<0). The dash or hyphen (-) is used to indicate a negative
(less than zero) value. The absence of the dash or a plus sign (+) indi-
cates a value greater than zero (positive).

Single density - This term is most often applied to the storage characteris-
tics of diskettes, and generally refers to the density of the storage of bits
on the diskette surface on each track. It also refers to the density of the
diskette tracks, though this is not the common usage.

Software - This is a general term that applies to any program (set of
instructions) that may be loaded into a Computer from any source. See
“Firmware” and “Hardware.”

Sort - To arrange (or place in order) data according to a pre-defined
set of rules.

Syntax - The rules governing the use of a language.

System - An assembly of components into a whole — A Computer system
is made up of the Computer plus one or more peripheral devices.

Table - A collection of data into a form suitable for easy reference. This
glossary could be called a table.

Task - A job, usually to solve a problem or follow a specific set of instruc-
tions.

Telecommunications - This term refers to the transmission and/or recep-
tion of signals by wire, radio, light beam, telephone, or any other electronic
means.

Terminal - An Input/Output device, usually consisting of keyboard and
display screen. A terminal also may consist of a printer and keyboard;
this is referred to as a “printing terminal.” Either type may include a modem
(either acoustic coupler type or the direct-connect type) for remote opera-
tion. Some (usually older models) may also include a paper tape punch
and reader.

Page G.18

APPENDIXG

Time share - The process of accomplishing two or more tasks at (appar-
ently) the same time. The Computer will process one task at a time, but
only a small portion before switching to the next. Because a Computer
can process a great amount of data in a very short time, the switching
between tasks is transparent to human observation except when many
tasks are executed at the same time.

Track - The portion of a disk that one read/write head passes over while in
a stationary position. Track density is measured in TPI (Tracks Per Inch).

Utility - A program that accomplishes a specific purpose, usually quite com-
monly needed by a wide range of applications. Most utilities are furnished
free with a Computer system, while some, like sort routines, are sold by vari-
ous vendors.

Variable - This term applies to an assigned memory location (represented
by a symbol or name) where a value is stored by a program. The mainte-
nance of the variable is handled by the program.

Verify - The act of comparing original data against stored data to assure cor-
rectness of the data.

Word processing - The ability to enter, manipulate, correct, delete, and
format text; an application which is widely used in microcomputers. Word
processors are used to write letters; and to prepare documents such as
magazine articles, manuscripts, manuals, and books; to name only a few
of their applications.

Write - The process of recording data on some object, such as display termi-
nal, diskette, or paper.

Page H.1

BIBLOGRAPHY

BIBLOGRAPHY

Instant BASIC, Brown, Jerald R., Dilithium Press, 1978.

BASIC BASIC: An Introduction to Computer Programming in BASIC Lan-
guage, Coan, James S., Hayden Book Co., second edition, 1978.

Programming in BASIC for Personal Computers, Heiserman, David L.,
Prentice Hall, 1981.

Microsoft BASIC, Knecht, Ken, Dilithium Press, 1979.

The BASIC Handbook: An Encyclopedia of the BASIC Computer Language,
Lien, David A., Compusoft Publishing, second edition, 1981.

Page X.1

INDEX

A
A option, 10.155
ABS function, 10.1
Absolute address, 7.9,8.16
Absolute value, 10.1
Action verb, 8.24,10.61
Adding Data to a Sequential File, 6.14
Addition, 5.22
Advanced graphics, 8.1,8.33
Algebraic expressions, 5.23
ALL option, 10.13,10.23
AND, 5.32-5.35,5.37-5.45,8.25,10.61
Angles, 8.9,8.10
Angle brackets, 2.18
Angle command, 8.17,8.20,10.42
Angles of a Circle, 8.9,8.10,10.17
Angle parameters, 8.9,10.17
Animation, 8.14,8.22,8.23,8.2510.62
Appenda P, 4.9,10.155
Append an A, 4.9,10.155
Application programs, 1.10
Application

definition of, 1.2
Argument, 5.46,9.11
Arithmetic Functions, 5.46
Arithmetic operations, 5.29
Arithmetic operators, 5.19-5.24
Array, 5.1,5.12-5.18,8.14,8.22,

10.61,10.123

Array Declarator, 5.12-5.13
Array size formula, 8.23,8.24
Array storage allocation, 5.14
Array Subscript, 5.13,10.40
Array variables, 5.21,10.23,10.40
Array

one-dimensional vertical, 5.12
ASC, 557,6.7,10.2
ASCII, 4.9,5.31,56.57,6.16,6.26,

7.1,10.2,10.155,10.165

Aspect ratio, 8.10,8.11,10.17

Assembly language, 1.4,1.5,10.10,10.11
Assembly language programs, 10.10
Assembly language routines, 10.24
Assigned values, 5.1

Assignment and Allocation Statements, 9.3
Asynchronous communication, 2.13,10.121
ATN function, 10.3

Attribute value, 8.1-8.13,10.17,10.126
AUTO command, 4.5,10.4

B
BACK SPACE, 2.17,3.6,3.7,3.10
Background color, 8.1,8.3,10.21,10.22
Backslash (\), 5.19,5.20,5.22
Bar graph, 8.8
Base-two, 5.39
BASIC Command Mode, 2.4
BASIC statement, 2.10,2.11
Batch mode, 2.2
BEEP statement, 10.5
Bell, 10.5,10.15
Binary code, 1.4,5.57
Binary file, 4.1
Binary format, 4.9
Binary notation, 5.39
Binary operator, 5.21
Bit, 5.32
Bit manipulation, 5.38
Bit patterns, 5.38,5.40,5.41,5.57
BLOAD command, 10.6,10.7,10.8
Boot up, 4.1
Border, 7.2,8.6
Border attribute, 8.12
Boundaries, 8.12,8.22
Box option, 8.6
Braces, 2.18
Branch commands, 1.6
Brief
definition of, 1.1

Page X.2

INDEX
BSAVE, 10.6,10.8 Compiler, 1.6,1.7,10.14,10.47,10.154
BU%, 6.25 Compressed binary, 4.9,6.2,10.155
Buffer, 6.6,6.17,6.20,6.21 Computer languages, 1.4
Bug, 4.7 Conditional Execution Statements, 9.5
Bytes, 8.24 Conditional Branching, 10.65
Bytes free number, 4.1 Cone, 8.11
Conijuction operator, 5.35
Constants, 5.1,5.48-5.50
CONT command, 10.25
C 4.8,10.163
Calculator, 2.5 Contents of an array, 8.26
CALL statement, 10.10,10.11,10.24 Content Organization, 1.2
Capital letters, 2.18,5.31 Control Characters, 2.17
CAPS, 2.18 Control Statements, 5.4
Carriage return, 3.3,3.4 Control-C, 2.17
CDBL function, 5.47,10.12 Control-G, 2.17
Changing a Z-BASIC Program, 3.4 Control-H, 2.17
CHAIN Statement, 10.13,10.23 Control-l, 2.17
Character Image display program, 8.27 Control-J, 2.17
Character set, 2.7 Control-S, 2.17
Checkpoint Control-U, 2.17
definition of, 1.2 Conversion functions, 6.27,10.30,10.109
CHRS$ function, 5.57,7.5,10.2,10.15 Converting a numeric constant, 3.51-3.53,5.51-5.53
CHR$(34), 10.139 COS function, 10.26
CINT function, 10.16 Creating a Random File, 6.18
CIRCLE Statement, 8.5,8.9-8.11,10.17 Creating a Sequential Data File, 6.7
CLEAR Command, 10.18 CSNG function, 5.47,10.28
CLOSE statement, 6.3,6.4,6.8,10.19 CSRLIN function, 7.12,7.14,10.29
CLS statement, 10.20 CTRL-C,3.4,3.7,3.10,8.7,10.4,10.94
Colon, 3.1 CTRL-E, 3.7,3.9
COLOR statement, 8.1-8.13,8.19,9.12,10.21,10.22 CTRL-F, 3.7,3.8
Comma, 2.19,2.20,6.13,10.132 CTRL-G, 2.17
Command level, 2.4 CTRL-L, 3.6-3.8
Command line options CTRL-N, 3.7,3.9
<highest memory location>, 2.1,4.2,4.3 CTRL-U, 3.6,3.7,3.10
Command line with options, 2.1 CTRL-W, 3.7,3.10
Commas, 5.55,6.13,10.132 Cursor, 3.1-3.4,3.6,4.7,10.29
Comments, 2.10,2.11 Cursor movement, 3.6,3.7
COMMON statement, 10.13,10.14,10.23 CVD, 6.27,10.30

Compatibility, 7.3 CVI, 6.27,10.30

Page X.3

INDEX

CVS, 6.27,10.30

D
DATA statements, 8.8,10.31,10.144,10.149
Data type definition statements, 9.3
DATE Function, 10.32
DATES$ statement, 10.33
Debugging, 1.8,4.7,4.8,10.173
Decimal point, 10.135
Declaring Variable Types, 3.7
Default, 2.12
Default aspect ratio, 8.10,10.17
Default attributes, 8.5,8.9
Default drive, 4.1,4.9
Default extension, 2.2,2.15,4.9
DEFDBL statement, 9.3,10.36
DEF statement, 9.3
DEF type statement, 9.3,10.36
DEF SEG statement, 10.6,10.10,10.37
DEF USR statement, 10.38
DEF USRO statements, 10.38
DEFINT, 9.3,10.36
DEFSTR, 9.3,10.36
DELete Key, 3.6,3.7,3.9
Deleting characters, 3.6,3.9
DELETE option, 10.14
DELETE command, 10.39
Delimiters, 2.19,2.20
DEMO|, 8.30,8.31
DEMO I, 8.32,8.33
Details

definition of, 1.1
Device, 2.12,2.13
Device name, 2.12,2.13
Device specification, 2.13,4.9
DIM statements, 5.12-5.15,10.24,10.40
Dimensions, 5.12,5.17,8.22
Direct Mode, 2.4,2.5,3.2-3.5
Directory pointer, 6.7
Disjunction operator, 5.35,5.37,5.42

Disk directory, 6.7

Disk 110, 6.17

Disk sector, 6.6

Display format, 7.1

Displaying graphic images, 10.6,10.8

Division, 5.21,5.22

Division by zero, 5.22

Dollar sign, 5.8,5.54,10.136

Double asterisk, 10.136

Double dollar sign, 10.136

Double-precision, 5.1,5.48-5.53,8.23,9.3,
10.28,10.30,10.109

Double-precision constant, 5.49

Double-precision numbers, 5.48

Double-precision variables, 5.10,5.51

Double quotation marks, 5.48

Draw statement, 8.14-8.21,8.23,10.41,10.42

Drive number, 6.7

Drive specification, 4.10

Duplicate definition error, 5.13

E

EDIT command, 3.1,3.2,10.43
Edit Mode, 4.7,10.43

Editing Z-BASIC, 3.1-3.11
Element, 5.1,5.12

Ellipse, 8.9-8.11

ELSE clause, 10.67,10.69,10.70
END statements, 10.45
End-of-data marker, 6.5

EOF function, 10.46

EOF pointer, 6.9

Equivalence, 5.37

Equivalence table, 5.40

EQV operator, 5.37,5.44
ERASE statement, 10.47
ERASEing, 5.13

ERR and ERL variables, 9.11,10.48
ERROR statement, 10.49, 10.50

Page X.4

INDEX

Error trapping, 4.7,4.13,6.15, 10.114
Event Trapping, 10.151

See also Appendix F
Exceptions to Naming Variables, 5.2
Exclamation point, 5.1
Exclusive OR operator, 5.35
Executable statements, 2.11
Execution error, 5.26
EXP function, 10.51
Exponentiation, 5.20
Exponentiation Functions, 5.47
Expressions, 5.27
Extension, 2.12,2.14,6.7
Extension .BAS, 2.15,4.6,4.9

F

Field, 2.20,6.17,6.22

Field buffer, 10.176

FIELD statement, 6.20,6.21,6.24,6.25,10.52

FIELD string, 6.21

Field variables, 6.25

Field-structured, 6.17,6.22

File, 2.12

File buffers, 6.6,6.7

File Control Block, 10.177

File Management Statements, 6.3

File Manipulation Commands, 6.1

File naming conventions, 2.15

File structure, 6.5

Filename, 2.14,2.15,4.6,4.9,
4.10,6.1

FILES command, 6.1,10.63

Filespec, 2.12

Filling a graphic figure, 8.12,8.13,10.126

FIX function, 10.54

Fixed Point, 5.49

Flag, 5.38

Flicker, 8.25
Floating point, 5.49,5.50
Floating Point Division, 5.22
FOR...NEXT statements, 10.55-10.58
Foreground color, 7.10,8.1,8.3,8.4
8.12,10.21
Formatting printed output, 10.138
Four carats, 10.137
FRE function, 10.59
Free memory, 4.2
Full Screen Editor, 3.1-3.11
Deleting text, 3.6
Inserting text, 3.6
Key assignments, 3.6
Functions, 5.46-5.47,9.8-9.10

G

GET statement, 6.17,6.25,10.60

GET/PUT, statement, 8.14,8.22-8.29,
10.61-10.63

Getting Records Out of the File, 6.24

GOSUB...RETURN statement, 10.64

GOTO statement, 4.6,4.8,10.65

Graphic Transfer, 8.22

Graphic Statement, 8.1,8.12,8.13

Graphic Symbols, 7.4

Graphics Macro Language, 8.14,10.41

H

H-19 Graphics mode, 7.1,7.4,10.157
Hex constants, 3.49

HEXS$ function, 10.66

High-level language, 1.5

Highest memory location, 2.3
Highlighting, 7.3

Holes, 8.12

HOME key, 3.6-3.8

Horizontal, addressable points, 7.1,7.2

Page X.5

INDEX

|

I/0O statements, 10.117

IF...THEN statements, 10.67-10.71

/O buffers, 6.5-6.7

/O devices, 6.6

I/O statements, 6.3,9.6

lllegal Function Call, 5.13

Image storage procedure, 8.23

Image transfer, 10.61

Immediate mode, 2.4

IMP operator, 5.36,5.43

Inaccuracies, 5.30

Indirect Mode, 4.4

Initialization, 2.2

INKEY$ variable, 10.72

INP function, 10.73

Input buffers, 6.6

INPUT statement, 10.74-10.78

INPUT # statement, 6.10-6.13,10.79

INPUTS$ function, 10.80

Inputting Z-BASIC Programs, 3.2

Insert Mode, 3.6,3.9

Inserting text, 3.6

Integer constants, 5.49

INSTR function, 10.81

INT function, 8.22,9.21,10.82

Integer, 8.23,10.16,10.54,10.82

Integer Array, 8.26

Integer Division, 5.19,5.20,5.22

Integer value, 5.12

Integer variables, 5.9

Integers, 5.1,5.9,5.48,5.51,
10.16,10.82

Internal Representation, 5.38,5.40,5.41,6.26
Interpreter, 1.4,1.5,1.6,1.8,1.9,4.1,4.3,

4.7,4.10,5.23,5.25,6.5,6.25
Intrinsic function, 5.46
I/0O devices, 10.121

K

KEY statement, 10.83-10.85
Key values, 3.7

Key-pad keys, 3.1

KILL command, 6.1,10.86

L

LEFT$ function, 3.56,10.87

Left-justified, 6.22,6.23,10.105

LEN, 3.54,5.56,10,88,10.107

LET, 2.5,4.4,10.89

LET statement, 10.89

Line folding, 3.9

LINE INPUT statement, 10.92

LINE INPUT#, 6.15,10.93

Line number, 2.6,2.10,2.11,3.1,3.2,
444546

Line-feed, 3.3

LINE statement, 7.2,8.5-8.8,10.90-10.91

LIST command, 3.2,10.94

Listing a BASIC Program to a Line Printer, 4.11

Literal quotes, 6.13

LLIST command, 4.11,10.96

LOAD command, 6.1,10.97

Loading a BASIC Program, 6.1

Loading the BASIC Interpreter, 4.2

LOC function, 6.3,6.4,6.17,10.98

LOCATE statement, 7.12,7.13,10.99,10.100

LOF function, 6.3,6.4,10.101

LOG function, 10.102

Logic error, 4.7

Logical line, 3.3-3.5

Logical operators, 5.32-5.45

Lower case, 3.30

Lower case letters, 5.31,7.4

LPOS function, 10.103,10.181

LPRINT statement, 10.104

LSET statement, 6.18,6.21,6.22,10.105

Page X.6

INDEX

M

Machine independent, 1.5

Machine level, 5.37-5.38
Mathematical functions, 9.8

Matrix Manipulation, 5.16

Memory, 1.5,4.2,4.3,4.6,6.2,6.6
Memory space, 5.8

Memory space requirement, 5.51-5.53
MERGE command, 6.2,10.106,10.155
MERGE option, 10.14
Microprocessor, 1.6

MIDS$, function, 10.107

MIDS$, statement, 5.56,10.108

Minus sign, 10.135

MKDS$ function, 10.109

MKI$ function, 10.109

MKSS$ function, 10.109

Modulo Arithmetic, 5.19

Modulus division, 5.20,5.22
Movement Commands, 8.15-8.19,10.43
Multi-Dimensional Arrays, 5.14
Multiplication, 5.21

N

N spaces/, 10.134

Name command, 6.2,10.110
Negation, 5.21,5.27

Nested FOR NEXT statement, 10.57,10.58
Nesting of subroutines, 10.64

NEW command, 10.19,10.111,10.173
Non-executable statements, 2.11
NON-I/O Statements, 9.5

Non-local RETURN, 10.151

NOT, 5.32-5.34,5.37

Notation, 2.18

Null statement, 10.112

Number sign, 10.135

Numeric comparison, 5.30

Numeric constants, 5.47-5.49

Numeric expressions, 5.19,5.20,5.24
Numeric Fields, 10.135

Numeric Functional Operators, 5.47
Numeric value, 5.38

Numeric variables, 5.1,5.5,5.7,5.8,5.52

(o]

O mode, 6.14

OCTS$ function, 10.113

Octal constants, 5.49

Offset, 10.6-10.8

0K, 2.1,2.4

ON ERROR GOTO statement, 10.114
ON...GOSUB statement, 10.116

OPEN COM statement, 10.121-10.123
OPEN “O” statement, 6.19

OPEN“R”, 6.19

OPEN statement, Z-BASIC, 6.4,6.7,6.17,10.117
OPEN statement, Z-BASIC, 10.117-10.120
Opening a File for Random Access, 5.19
Operands, 5.19,5.21,5.22,5.41

Operating system, 6.6

Operators, 5.19-5.47

Optimization, 1.7

OPTION BASE Statement, 5.13-5.15,10.123
Options, 2.2

OR operator, 5.35,5.38,5.41,5.43

Order of precedence, 5.20,5.37

OUT statement, 10.124

Output buffers, 6.6,6.7,6.10

Overflow, 5.22,5.52

Overlay, 10.106

P

P options, 4.9,6.3,10.155
Packed binary format, 2.16
Pad out, 6.21

Page X.7

INDEX

PAINT statement, 8.5,8.12,8.13,10.126
Painting jagged edges, 8.13
Parentheses, 5.19,5.23,5.24,5.25,5.37,5.38
Parity, 10.121
PEEK function, 10.127
Percent sign, 10.137
Period, 3.2,10.43
Peripheral device, 2.12
Physical Organization, 1.1
Physical record, 6.6,6.7
PI, 5.5,8.9,8.10
Pixels, 7.1,7.7,8.22,8.23,
10.63,10.128
Plotting Coordinates, 7.1-7.14,8.30
Plus sign, 10.135
Pointers, 6.6,6.7,6.21
POINT function, 7.7,7.8,10.128
POKE function, 10.126,10.129
POS function, 7.12,7.14,10.29,10.130
Precedence, 5.20,5.37
Prefix commands, 8.19-8.21
PRESET statement, 7.7,7.11,8.13,8.24,10.131
PRINT #,6.12-6.14,10.138
PRINT CHR$(7), 10.5
Print positions, 10.132,10.134,10.135
PRINT statement, 2.6,2.19,5.25,5.55,6.8,
10.132-10.133
PRINT USING statement, 10.134-10.137
Print zones, 2.20
PRINT# statement, 6.8-6.12
PRINT# and PRINT# USING, 10.138-10.139
Printing/formatting techniques, 2.19
Printed numbers, 10.135
Problem oriented, 1.5
Program development process, 1.8,1.9
Program line, 3.3-3.4,4.4
Program line format, 4.4
Programming language, 1.4,1.5
Prompt string, 10.74-10.75
Protect option, 4.9,6.3,10.155

Protected Files, 6.3

PSET statement, 7.7-7.10,8.7,8.24
10.62,10.140-10.141

Punctuation, 2.18,5.31

PUT and GET statements, 8.22,10.61-10.63

PUT Statement, 6.17,6.22,6.25,10.142

Q
Question mark, 5.25,10.53,10.174
Quotation marks, 5.54,6.13,10.139

R

R option, 4.10,6.1,6.2,10.97

Radius, 8.9,8.10,10.17,10.26

Random access, 6.4,6.16

Random access - buffer, 6.17

Random access files, 6.16-6.29

Random file buffer, 6.17

RANDOMIZE statement, 10.143

READ statement, 10.31,10.144

Recognized characters, 2.14

Record, 6.16,6.17,6.25

Record number, 6.4

Relational expressions, 5.37

Relational Operators, 5.27-5.31

Relative form, 8.7

REM statements, 2.10,2.11,10.146

REMARK statement, 2.10,2.11,10.146
(see also comment)

RENUM command, 10.147

RESET command, 6.2,10.148

RESTORE statement, 10.31,10.144,10.149

RESUME statement, 10.150

RETURN command, 10.64,10.92,10.151

RETURN key, 3.4,4.1,4.4

Reverse video, 7.3,10.157

RIGHTS$ function, 5.56,10.152

Right-justified, 6.22,10.105

page X.8

INDEX

RND function, 10.153

Rotating figures, 8.18

Row, 7.12,10.29

RSET statement, 6.22,10.105

RS-232 communications, 10.118,10.121,App.F
RUN command, 2.6,2.11,4.6,4.10,6.2,10.154
Running a BASIC Program, 4.6

S

SAVE command, 6.2,6.3,10.154,10.155

Saving a BASIC Program, 4.9

Scalar Multiplication, 5.17

Scale factor, 8.20,10.42

Screen display format, 7.1

SCREEN function, 7.1,7.2,7.5,10.156

SCREEN statement, 7.1,7.3,7.4,10.157

Sector, 6.6

Semicolon, 2.19,2.20,5.55,6.12,6.13,
10.132,10.133,10.134

Semicolon terminator, 6.12

Sequence of execution statements, 9.4

Sequential buffers, 6.7,6.17

Sequential data files, 6.5-6.15

Sequential input, 10.117

Sequential /O, 6.17

Set attribute, 8.17

SGN function, 10.158

SIN function, 10.159

Sign-on,2.1,4.2

Single-precision, 5.1,5.10,5.48

Single-precision constant, 5.48-5.49

Single-precision number, 8.23,10.30,10.109

Single-precision variables, 5.10

Slash (/), 5.22

SPACES$ function, 10.160

SPC function, 10.161

Space Requirements, 5.51,5.52

Special Functions, 9.10

SQR function, 5.46,10.162

Square brackets, 2.18,4.8

Standard Math Functions, 5.47

Starting Z-BASIC, 2.1

Statement, 2.10,2.11

STEP, offset, 7.9,7.11,8.7

Stickman, 8.29

STOP statement, 4.8,10.163

Storage format, 8.22,10.63

Storage and Retrieval of Numeric Data, 6.26

STR$ function, 5.54-5.57,6.26,10.164

String arrays, 5.15

String comparisons, 5.31

String constants, 5.54

String expressions, 5.30,5.54,8.14

String Fields, 10.134

STRINGS$ function, 10.165

String variables, 5.8,5.54,5.55,5.56,
6.26,10.72,10.92,10.93

Strings, 3.54

Structuring the Random Buffer into Fieid, 6.20

Subroutine, 10.64

Subscript, 5.12-5.15

Subscript Out of Range, 5.13

Substring, 5.56,8.21

Subtraction operation, 5.21

Subtractions, 5.22

Superimpose the image, 8.25,10.62

SWAP statement, 10.166

Symbols, 5.3,5.31

Syntax, 2.18

Syntax diagrams, 2.18

Syntax errors, 3.4,4.7,5.25

Syntax notation, 2.18

SYSTEM statement, 10.167

Page X.9

INDEX

T

TAB, 3.6,3.9

TAB function, 10.168

TABkey, 3.9

Tabular data, 2.19,2.20

TAN function, 10.169
Terminator, 6.11,6.12,6.13
TIME Function, 10.170

TIMES statement, 10.171-10.172
The Program Development Process, 1.8
Trace flag, 4.8

Translation, 1.6

Transposition of a Matrix, 5.17
Trigonometric Functions, 3.47
TROFF statement, 4.8,10.173
TRON statement, 4.8,10.173
Truncate, 2.14,6.22

Truncation, 2.14

Truth table, 5.32-5.33,5.41,5.42
Truth values, 5.38

Two’s complement, 5.40,5.45

u

Unary minus, 5.21

Unary operator, 5.21
Underscore, 10.137

Unquoted strings, 6.13
Updating Sequential Files, 6.14
Using the Z-BASIC manual, 1.3
USR function, 10.174

Vv

VAL, 5.56

VAL function, 5.56,6.26,10.175

Valid Colors, 8.1,8.3,10.21

Variable name, 5.1,5.8

Variables, 2.5,2.6,3.4,4.8,5.1-5.18
10.13,10.23

VARPTR function, 10.176-10.178

Vertical addressable points, 7.1
Vertical Arrays, 5.14

Video board, 8.1

Video RAM chips, 8.1

Video Resolution, 7.1

Video screen, 7.1

w

WAIT statement, 10.179
WEND statement, 10.180
WHILE statement, 10.180
WIDTH statement, 10,181
WRITE statement, 10.182
WRITE# statement, 10.183
Writing a BASIC Program, 4.5

X
X axis, 7.1,7.2
XOR,5.35,5.42,8.25,10.62

Y
Y axis, 7.1,7.2

y4

Z2-100, 2.12,2.20

Z-100 All in One monitor, 7.1
Z-100 keyboard, 3.10-3.11
Z-BASIC command line, 2.1
Z-BASIC graphic capabilities, 7.1
Z-BASIC signon, 2.1

Z-BASIC OPEN statement, 10.117
Z-BASIC summary program, 8.30-8.33
Z2-D0OS,4.1,6.6,6.7

Z-DOS AUTOEXEC. BAT, 2.2
Z-DOS filename conventions, 2.15

- el L

LEnimy
HEATH

data
systems

IMPORTANT NOTICE

Dear Customer,

The following unique features of Z-BASIC version 1.00 need to be noted. The following
may not necessarily be the same or true in future releases of Z-BASIC.

Invalid Device Names

There may be occasions when a program attempts to access invalid drives such as those
with names above driveD (e.g.,E, F, G, and so on). Z-BASIC reads this invalid drive name
and, instead of generating an error message, accesses the last legal drive that the program
or the operator used. It is currently up to the user to ensure that his or her Z-BASIC pro-
gram accesses only those drives (e.g., A, B...) that are available in their system configura-
tion.

Filename References

Z-BASIC allows a wide range of allowable filenames. Since this feature may not be sup-
ported in future releases of Z-BASIC, it is recommended that all file references follow
present Z-DOS conventions as defined in your Z-DOS manual.

Color and Optimized Scrolling

The Z-100 Desktop Computer optimizes the scrolling speed of the screen when color is
not being used in the system. The computer must be told when Z-BASIC will be working
with color on the screen so that it can use the proper scrolling method. Otherwise, the op-
timized screen scrolling action will cause the color in the display to be lost under certain
circumstances.

To make sure that your programs are going to operate correctly, place the following line
of code near the beginning of each affected program:

10 CLS:COLOR 1,0:PRINT “ “:COLOR 7,0:LOCATE 1,1:PRINT “ “:LOCATE 1,1

Programming Note

The 25th line of the display may be assessed while in Z-BASIC. The preferred method to
clear (and re-enable) the 25th line is PRINT CHR$(27);“y1”;CHR$(27);“x1";

Page 10f 1
MS-463-1
591-3965
Thank you,
Zenith Data Systems

P-0

