o

A Report On

General i

The NEC V20

Microprocessor Chip

For The “Z”” Machines
Part |

Richard L. Mueller, Ph.D.
11890-65th Avenue North
Maple Grove, MN 55369

Introduction

Some time last Fall, articles in magazines and notes on some of
the Bulletin Boards started to talk about the replacement micro-
processor chip for the 8088 chip from NEC. This chip is the V20,
oneinaseries of advanced microprocessor chips in the NEC V"
series. For those micros that may be using the 8086 chip, the V30is
the replacement for that one.

In this article, | would like to relate my experiences in the short
time that | have had the V20 chip and in a second article give a
brief overview/background/description of the V20 itself with a
mention of other V" chips coming in the future. The informa-
tion that | have seen on the V20 state that one can get anywhere
from 5% to 100% or more improvement in execution of pro-
grams. Well, needless to say, | decided to get one this past De-
cember and test it out on both my Z-160 and H-100.

The V20 microprocessor chip comes in either a 5 MHz
(uPD70108-5) version or an 8 MHz (uPD70108-8) version. In one
of the notes that | saw recently, it talked about a 10 MHz version.
However, | did not see that in the preliminary information that |
received from NEC. Since | have not upgraded my H-100to run at
the 8 MHz speed, which means both of my machines run at 4.77
MHz, | ordered the 5 MHz version.

Benchmark Background

While waiting for my V20 chip to arrive (I ordered it from a
hardware/software mail-order house), | decided to write a test
program (my “benchmark”) in assembly language and use MS-
DOS to time avariety of instruction sequences. First, | would run
my benchmark program on both machines using the 8088 chip
that came with my machines, then rerun the program after in-
stalling the V20 chip. My intention was not to get an absolute pre-

cise timing of each instruction (although one could certainly do
that with a lot of work), but basically to compare the timings of
the various instruction sequences or operations of the two chips.
I wanted to get a feeling on where the V20 chip was faster and
where it was about the same as the 8088 microprocessor chip.

Before discussing the actual instruction sequences or operations
that were used, | first want to describe how the timing was done.
Anytime one wants to ‘time’ a particular operation, a time stamp
must be taken immediately before the operation to be tested,
and again a time stamp must be taken immediately upon com-
pletion of the operation. If precise timing is a requirement of
your benchmark, then using the Operating System for getting
the “times’” may not be accurate enough. Some “overhead”
would be introduced into your results.

In my case, | was not concerned with precise timings. | just
wanted to get a “ballpark’”” comparison of several operations
using the two microprocessor chips. Using the MS-DOS “GET-
TIME" function was just fine for me. One must remember, this
MS-DOS time function only returns the time to the nearest hun-
dreth of a second, which was fine for my testing.

For curiosity’s sake, | called the MS-DOS “GETTIME” function
twice in succession, saved the results from the first reading and
compared them with the second reading. To my surprise, the
readings were the same which tells me that the Operating System
takes less than one hundreth of a second to process the time
request. This does not mean there is no overhead involved with
getting the time, it just means that the overhead is less than one
hundreth of asecond. Anyway, reading the time viathe M5-DOS
Operating System was negligible for my benchmark.

Justasthe MS-DOS time function took what appeared to be “no
time at all”’, since the time returned from the function itself is

REMark ¢ April * 1986

63

only carried to the nearest hundreth of a second, | expected my
instruction sequences or operations to also take “no time” to
execute. That's exactly what happened. To get around this situa-
tion, an instruction sequence or operation must be repeated a
very large number of timesto make sure the elapsed time ismuch
greater than one hundreth of a second. | just used 1,000 or
1,000,000 depending on the operation; more on the operations
in the next section.

List Of Operations Tested

The following is a list of the various instruction sequences or
operations that were used in this comparison study. The results
of the testing are contained in the next section. Although each
instruction sequence or operation is intended to test out a par-
ticular instruction as its primary purpose, it takes many other
instructions to accomplish the task. For example, a loop is
needed to control the number of times a particular operation is
executed. This means setting up counters, decrementing them,
branching depending on the status of the counters, etc. So each
instruction sequence or operation is more than just testing one
instruction. But that's okay since the purpose of this exercise was
just to compare various operations, not individual instruc-
tions.

1. 1000-Byte-Clear Test (1000 times). This sequence/operation
clears (sets to zero) 1000 “Bytes” of memory using the ‘REP
STOSB’ instruction. This 1000-byte buffer clearing opera-
tion is repeated 1000 times. Look at the results in the next
section.

2. 1000-Word-Clear Test (1000 times). This sequence/opera-
tion is the same as the preceding test except that it clears
1000 “Words" of memory using the ‘REP STOSW’ instruc-
tion. This operation is also executed 1000 times to get a
meaningful result.

3. 1000-Byte-Load Test (1000 times). This sequence/operation
uses the ‘REP LODSB' instruction. This sequence is not very
meaningful as far as a production program is concerned,
since it loads the same byte into the AL register 1000 times.
However, from a benchmarking point of view, the opera-
tion makes sense. The 1000-Byte-Load test is executed
1000 times.

4. 1000-Word-Load Test (1000 times). This is the same as the
preceding test except that a “Word"' is loaded into the AX
register instead of a “Byte”’.

5. 1000-Byte-Move Test (1000 times). Just as the name implies;
1000 “Bytes”” are moved from one section of memory to
another section of memory using the ‘REP MOVSB' instruc-
tion. This Move operation is repeated 1000 times.

6. 1000-Word-Move Test (1000 times). This test is the same as
the Byte Test above except “Words”” are moved using the
‘REP MOVSW!' instruction.

7. Byte-Add Test (1,000,000 adds). Although this test would not
be meaningful in a production program, it does, however,
provide a good test for the ADD instruction. This test simply
executes the following ADD instruction 1,000,000 times
along with the accompanying loop instructions: ‘ADD
AL,BL".

8. Word-Add Test (1,000,000 adds). Same as the previous test
except that “Words" are added together instead of “Bytes'":
‘ADD AX,BX'.

10.

il

12.

13.

4.

TS

16.

17,

18.

19.

20.

Byte-Subtract Test (1,000,000 subtractions). This test simply
subtractsone register fromanother 1,000,000 times using the
following: “SUB AL,BL". Similar to the ADD tests.

Word-Subtract Test (1,000,000 subtractions). Same as above
except “Words'" are subtracted instead of “Bytes’”: ‘SUB
AX,BX".

Byte-Divide Test (1,000,000 divides). Basically the same as
the other arithmetic tests above: one word register is di-
vided by a byte register. This operation is repeated 1,000,000
times using the following sequence: ‘MOV AX,n’ ‘DIV BL
where nisany unsigned integer, and likewise, BLcontainsan
unsigned integer. ‘DIV’ performs “unsigned’ divisions.

Word-Divide Test (1,000,000 divides). Same as the preceding
test except that this operation involves dividing a word reg-
ister pair by a word register: ‘'MOV AX,n’ ‘MOV DX,m’ ‘DIV
BX', where m is the most significant portion of a 32-bit
unsigned integer and n is the least significant portion of the
32-bitunsigned integer. BX contains a 16-bit unsigned inte-
ger. Again, ‘DIV’ performs “unsigned” divisions.

Byte-Integer-Divide Test (1,000,000 divides). This is the
same as the ‘DIV’ tests except that signed integers are used
by the ‘IDIV instruction (i.e., signed divisions).

Word-Integer-Divide Test (1,000,000 divides). Same as the
preceding tests except that a 32-bit signed integer is divided
by a16-bitsigned integer. The DX AX register pairisdivided
by the BX register.

Byte-Multiply Test (1,000,000 multiplications). In this opera-
tion, the 8-bit unsigned integer in the AL register is mul-
tiplied by the unsigned integer in the BL register 1,000,000
times. This operation uses the ‘MUL’ instruction along with
the accompanying loop instructions.

Word-Multiply Test (1,000,000 multiplications). Same as the
Byte-Multiply test above except that the 16-bit unsigned
integer in the AX register is multiplied by the 16-bit un-
signed integer in the BX register.

Byte-Integer-Multiply Test (1,000,000 multiplications). This
isthe same asthe Byte-Multiply test above except that the 8-
bit signed integer in the AL register is multiplied by the
signed integer in the BL register (i.e., signed multiplication
operations). The ‘IMUL" instruction was used here.

Word-Integer-Multiply Test (1,000,000 multiplications).
Same as the preceding Byte-Integer test except that the 16~
bit signed integer in the AX register is multiplied by the
signed integer in the BX register.

Write 640 512-Byte Blocks Test. This operation writes 640
blocks of 512-bytes long on a floppy disk that was formatted
as 9-sector per track disk. In other words, 320K of informa-
tion was written on a 360K capacity disk. The purpose of this
test was to see if the NEC V20 chip had any affect on floppy
disk operations. See the results in the next section.

Read 640 512-Byte Blocks Test. This operation is similar to
the precedingtest except the blocks that were written above
are now read. Nothing is done with the data that is read;
each block read overwrites the previous block read into
memory. Again, the purpose of this operation is just to see if
the V20 chip has any affect on floppy disk reads.

REMark = April ¢ 1986

Benchmark Results

Z-160 (secs) H-10@ (secs)
Test | 8888 | V2@ | 8088 | vae
e i i i

1. Byte-Clear I 2.14 | 88 || 2.16 | .98

2. Word-Clear | 3.7 | 1.87 |} 3.86 | 1.79

3. Byte-Load i 2.80 | 1.93)| 2.87] 1.95

4. Word-Load | 3.79) 291 |{{ 3.7 | 2.86

5. Byte-Move i 3.79 | 1.81)| 3.69 | 1.79

6. Word-Move | 5.49 ! 3.62 || 5.48 | 3.55

7. Byte-Add ! 6.76 | 6.26 || 6.56 | 6.11

8. Word-Add | 6.70 | 6.26 || 6.56 | 6.11

9. Byte-Subtract { 6.75) 6.26 || 6.56 | 6.11

18. Word-Subtract ! 6.70 ! 6.26 || 6.56 | 6.10
11. Byte-Divide (unsigned) | 25.71 | 11.37 !| 25.74 ! 11.26
12, Word-Divide (unsigned) | 42.02 | 15.10 !! 42.31 | 15.19
13. Byte-Divide (signed) | 30.26 | 15.16 || 38.5@ | 15.09
14. Word-Divide (signed) | 45.43 | 19.22 || 46.68 | 19.20
15. Byte-Multiply (unsigned)} 22.69 | 19.82 || 22.94 | 18.79
16. Word-Multiply (unsigned) 34.05 | 13.24 !! 34.24 | 13.19
17. Byte-Multiply (signed) | 25.21 | 12.97 !} 25.13 ! 12.93
18. Word-Multiply (signed) | 36.03 | 15.10 || 36.46 | 15.35
19. Floppy Disk Write 1142.48 [142.47 | 1135.06 |135.06
20. Floppy Disk Read 1142.7@ 142,69 |)135.23 |135.24

1
1

1 i I i

Conclusions

Except for the floppy disk operation tests, all the other tests
showed animprovement, some very significantly, when the NEC
V20 microprocessor chip was used. The reason why the floppy
disk operations remained the same is that the operations were
very dependent on the physical disk drives themselves, rather
than on any specific instruction or set of instructions. The dif-
ferences between the Z-160 runs and the H-100 runs are due to
different physical disk drives, and different BIOS/Disk Drivers
being used.

As you can see from the results, the Divide and Multiply opera-
tions showed tremendous improvement with the NEC V20 chip,

while other operations, such asthe Add and Subtract operations,
showed only very little improvement. The Load, Store, and Move
operations also showed very significant improvement with the
NEC V20 chip.

What all this means is that depending on the application that is
being used, you could see little or no improvement over the 8088
chip or see a significant improvement. Those applications which
depend heavily on disk activity will most likely show no improve-
ment. However, those applications which have very little disk
activity and have very high usage of the Multiply and Divide
instructions, along with Loads, Stores, and Moves, will show a
significant improvement. If your spreadsheet application has
many formulas that perform multiplications and divisions, you
will notice an improvement.

The application being used with its unique activity will deter-
mine whether there isany improvement or not with the NEC V20
chip. In most cases, you won't notice an improvement but it will
be there. As | said earlier, | used the 5 MHz version of the V20. If
you have upgraded your Z-Machine to run at 8 MHz, you have
undoubtedly seen an improvement just running your 8088 chip
at that'speed. Adding the 8 MHz V20 chip should give you yet
another improvement.

The purpose of this article was not to promote or sell you the NEC
V20 microprocessor chip, but to give you some idea of some of
the differences between it and the 8088 chip in terms of execu-
tion speed. The choice is yours. However, | can tell you that | am
sold and | went out and purchased a second V20 chip so | could
have a V20 chip in each of my Z-Machines. In my second article
onthe NECV20chip, I will discuss the additional instructions, the
enhanced instructions, and the 8080 emulation mode that are all
part of the NEC V20 (or V30) chip. | did write a test program that
does switch between 8088 native mode and the 8080 emulation
mode to perform a task, and | will discuss this in my next arti-

cle. X%

Hard disk upgrade kits are available for the Zenith System

CCT Implements Tomorrow’s Technology Today™

CCT and Printerfacer 1 are trademarks of CCT.

CCT /1 CCT Plaza » Box 4160 / West Sedona, AZ 86340 / 800-222-8686 / In AZ: 602-282-6299

CCT,® the Nation’s leading 1 parallel port, residing at the
S-100 OEM, now offers same physical address, which
products and support for the are software and keyboard
Z100 system. We have selectable. Increases system
compatible 256K and 512K speed and throughput
static memory boards, and the tremendously! Runs two
CCT Printerfacer 1™ The devices simultaneously! Fast!
Printerfacer 1 is an intelligent Printerfacer 1 with cable set
I/0 board with 256K of on- and CCT 12 month warranty.
board memory, expandable to
1 megabyte, for printer/plotter | bufferring. The board comes Liberal Dealer Package Available—
intensive application standard with 1 serial and Inquire with CCT Marketing.
Zenith Data Systems
Z-138 PC Transportable CALL Z-148 PC Desktop CALL Z-158 PC Desktop CALL
Z-171 Lap Top Portable. CALL Z-200 PC-AT System. CALL

REMark = April = 1986

65

General - 16-Bit &

¢ A Report On The NEC V20
Microprocessor Chip

For The “Z’”” Machines
Part Il

Richard L. Mueller, Ph.D.
11890-65th Avenue North
Maple Grove, MN 55369

Overview

In my lastarticle onthe NEC V20 microprocessor chip, | covereda
comparison of some operations using the 8088 chip and V20 chip.
In this article, | will cover the enhanced instructions, the addi-
tional instructions, and the 8080 emulation mode of the V20 and
V30 chips.

Some time ago, NEC came out with a new family of high-per-
formance, low power CMOS, microprocessor chips, the V"'
series. The ones that are interesting today are the V20 and V30
chips which are the replacements for the 8088 and 8086 chips,
respectively. The instruction sets for the V20 and V30 are super-
sets of the 8088 and 8086, and are compatible with those earlier
micros in terms of pins, functions, and object code. I'm not a
“hardware” person, so | won't go into details of the chip hard-
ware itself. | will discuss the software aspect of the chips; that is,
the instructions and modes.

Modes

First, let me discuss the various modes of the V20/V30 chips.
There are three modes: Native, 8080 Emulation, and Standby
modes. All three modes are mutually exclusive; that is, the mi-
croprocessor can be in only one of three states at a time. In the
Native mode (8088/8086), all the instructions of the 8088/8086, as
well as the enhanced and additional instructions of the V20/V30,
can be executed. In 8080 Emulation mode, the microprocessor
executes 8080 code (programs). What this means is that CP/M-80
programs based on the 8080 instruction set can be executed.
More on this later.

Standby Mode

The third mode (state) of the V20/V30 is the Standby mode. This
places the V20/V30 in an idle state where the microprocessor

consumes only 10% of its normal operating current while retain-
ing all data necessary to keep the microprocessor operative. The
only way to enter Standby mode is to execute an HLT instruction
in either the Native mode or 8080 Emulation mode. The proc-
essor exits Standby mode in response to a RESET, NMI (non-
maskable interrupt), or an external INT (interrupt).

8080 Emulation Mode

Before discussing the Native mode new instructions, let me
spend some time discussing the 8080 emulation mode. The vV20/
V30 chips have a special Mode Flag (MD) to select between the
two operating modes. When initialized, the V20/V30 micro-
processors are in Native mode and the Mode Flag is setto 1. In
8080 Emulation mode, the Mode Flagis set to 0. The Mode Flagis
set and reset, directly and indirectly, by executing the mode
manipulation instructions, three of which are new instruc-
tions.

Two of the new instructions are provided to allow one to switch
the operating state from Native mode to 8080 Emulation mode
and back again. The instructions are BRKEM (Break for Emula-
tion) and RETEM (Return from Emulation). BRKEM is the basic
instruction used to start 8080 Emulation mode. It operates basi-
cally the same as an INT instruction, except that the BRKEM sets
the Mode Flag to 0. The Flags, Code Segment, and Instruction
Pointer are all saved on the stack just as for an INT. The Interrupt
Vector specified by the operand of the BRKEM instruction is
loaded into the Code Segment and Instruction Pointer. The code
pointed to by the Interrupt Vector is 8080 code and the CPU starts
executing this code.

In 8080 Emulation mode, the registers and flags used are as
follows:

REMark ¢ May * 1986

45

8080 8088/8086

AL
CH
CL
DH
DL
BH
BL
BP
1P

CY
Z
S
P
AC

Registers:

SSrrImON® >

= N

Flags:

A TwvNMN

>

In the Native mode, SPis used for the stack pointer, while the BP
register is used for this function in 8080 Emulation mode. The SP,
51, DI, and AH registers along with the segment registers CS, SS,
and ES are not affected by 8080 emulation mode operations. The
Data Segment (DS) register is used in the Emulation mode for
data and must be set to the Code Segment value by the user
before entry is made to the 8080 Emulation mode.

When finished executing 8080 code, the execution of the RETEM
instruction returns the operating mode to Native mode and sets
the Mode Flag to 1. The microprocessor can now continue with
the execution of 8088/8086 instructions.

NEC literature states that the V20/V30 microprocessors will run
CP/M-80 (the version written in 8080 code and not in Z-80 code)
operating system and programs. This is true, but it doesn’t hap-
pen by magic. Since you are in the Native mode when the system
isinitialized and you are running MS-DOS (PC-DOS), you need
a way to load CP/M-80 and 8080 programs into memory before
you can execute the code. A small load program may be all that is
necessary. However, there still is the question of disk files.

I haven't really looked into this very closely yet, but it may be
necessary to convert CP/M-80 files to MS-DOS formats and util-
ize the second part of the 8080 Emulation mode which I will talk
about shortly. Two companies have looked into this very closely
and have productsavailable for sale that will allow you to execute
your CP/M-80 programs. Both of these companies have ADs in
the February 1986 issue of REMark.

What | like about this 8080 Emulation mode is that while you are
executing 8080 code, you can call an 8088/8086 routine by
switching back to the native mode temporarily, execute the code
there, and then return to 8080 Emulation mode. This is accom-
plished with a new instruction which is similar to the BRKEM and
anexisting instruction. The new instruction isthe CALLN instruc-
tion which makes it possible to call Native mode subroutines.
When the CALLN is executed, the Mode Flag is set to 1 and the
Interrupt Vector pointed to by the operand of this instruction is
loaded into the Code segment and Instruction Pointer registers.
The microprocessor can now execute 8088/8086 code. Return
back to 8080 Emulation mode by executing an existing instruc-
tion, the IRET (Interrupt Return) instruction.

To get a feeling how this switching between Native and 8080
Emulation modes works, | wrote a small test program in 8086/
8088 assembly langauge that switched to 8080 Emulation to start

processing a request, the 8080 code called a Native subroutine to
complete the request, return to 8080 Emulation mode, and fi-
nally back to my main program in Native mode. The object of the
program was to convert a series of binary numbers to ASCII
decimal and display the numbers on the CRT.

The program sequence went like this:

¢ SetuplInterrupt Vectorsat 200and at 201 to point to the start of
8080 Emulation code and Native mode subroutines, respec-
tively.

* Place an 8-bit binary number in the AL register.

* BRKEM 200 — This causes the switch to 8080 Emulation
code.

* The 8080 code starts the conversion process by determining
what the hundreds digit is, converts that to ASCII, and saves it
in the C register (CL). The remaining portion of the original
number is left in the A register (AL).

¢ CALLN 201 — This causes a switch to Native mode to take
place and the conversion processes continue. The tens digit is
converted to ASCIl and stored in the AL register (A) and the
units digit converted to ASCII is stored in the CH register
(B).

* [IRET is executed by my Native mode subroutine to return to
8080 Emulation mode with the original number now fully con-
verted to ASCII decimals stored in the registers indicated
above.

* RETEM is executed by the 8080 Emulation mode to switch the
state back to Native mode.

* The result is now displayed on the console CRT.

* Theabovesequenceisrepeated a number of times, each time
using a different 8-bit integer to convert to ASCII decimals.

Now you are going to ask how | entered 8080 code into my pro-
gram. Well, the way | did it, because the number of 8080 instruc-
tionswere buta few, was by using ‘DB’ statements containing the
HEX code of the 8080 instructions. | first wrote a small subroutine
in 8080 code, used the 8080 assembler on CP/M-85 to assemble
the code, got the HEX code from the listing, and put that into my
8086/8088 assembly program using the ‘DB’ statements. It's a
way, but not necessarily the best way. However, it works. An-
other way would be to write a small disk read subroutine into
your Native program that would read a file containing 8080 code
and store it into your code segment where you want it. I’'m sure
there are other ways, as well. This little test program was tried on
both of my Z-Machines and worked fine in both cases.

Enhanced Instructions

In addition to the “standard’’ set of 8086/8088 instructions, the
V20/V30 have the following “enhanced"” instructions:

® PUSH im — Pushes immediate data onto the stack.

¢ PUSH R — Pushes the contents of the four 16-bit general
registers onto the stack (AX, BX, CX, DX).

* POPR — Popsthe four 16-bit general purpose registers from
the stack.

* MULregl6,im16 — Multiplies the contents of a 16-bit register
by 16-bit immediate data.

* MULmem16,im16 — Multiplies the 16-bit contents of a mem-
ory location by 16-bit immediate data.

* SHL reg,im — Shifts specified register left by immediate
value.

* SHR reg,im — Shifts specified register right by immediate
value.

* SAR reg,im — Shifts specified register ‘arithmetic right’ by
immediate value.

46

REMark » May » 1986

* ROL reg,im — Rotate specified register left by immediate
value.

* ROR reg,im — Rotate specified register right by immediate
value.

* RCLreg,im — Rotate specified register left through carry by
immediate value.

* RCRreg,im — Rotate specified register right through carry by
immediate value.

* CHKIND reg16,mem32 — Checks array index against desig-
nated boundaries. This is added for support for high-level
languages. The index value isin reg16 and the lower limit is in
location mem32 and the upper limit is in mem32+2.

* INM —Usedtoinputastringinto memory when preceded by
arepeat prefix (REP). The address for storing the string is con-
tained in the DI register and the 1/O port is specified in
DX.

* OUTM — Used to output a string from memory when pre-
ceded by arepeat prefix (REP). The address of the string is con-
tained in the Sl register and the 1/0 port is specified in DX.

¢ PREPARE im16,im8 — Generate stack frames required by
high-level languages such as PASCAL and ADA that use block
structures. This instruction provides the facilities of creating
and linking the stack frames. The stack frame is pointed to by
the BP register. The stack framer is composed of a local vari-
able area (im8) and a copy area for frame pointers (im16).

* DISPOSE — This instruction releases the last stack frame gen-
erated by the PREPARE instruction. It returns the stack and
base pointers to the values they had before the PREPARE
instruction was used to call a procedure.

Additional Instructions (Unique)

In addition to all the “standard’” 8086/8088 instructions and the
enhanced instructions above, there are a number of unique
instructions in the V20/V30 microprocessor chips. A number of
these unique instructions have been added to support advanced
business applications (packed BCD string operations); and to
support engineering work stations, computer graphics, higher-
language computing environments, and record-type data struc-
tures used in high-level languages (bit field manipulations).

* INSreg8,reg8— Thisinstruction transfers low bits from the AX
register (the number of bits specified by the second operand)
to the memory location specified by the ES Segment Register,
plus the byte offset specified by the DI register with the bit
offset specified by the low 4-bits of the first operand.

* INS reg8,imm4 — Same as the preceding instruction.

* EXTreg8,regd — This instruction loads to the AX register the
bit field data whose bit length is specified by the second
operand fromthe memory location specified by the Data Seg-
ment Register DS with the byte offset specified by the SI regis-
ter and the bit offset by the lower 4-bits of the first oper-
and.

* EXT reg8,im4 — Same as the preceding instruction.

* ADD4S — This instruction adds the packed BCD string ad-
dressed by the Sl register to the packed BCD string addressed
by the DI register, and stores the result in the string addressed
by the DI Register. The length of the string, number of BCD
digits) is specified by the CL register.

* SUB45 — This instruction subtracts the packed BCD string
addressed by the SI register from the packed BCD string
addressed by the Dl register, and stores the result in the string
addresses by the DI register. The length of the string in BCD
digits is specified by the CL register.

* CMP4S — This instruction performs the same operation as

SUB4S, except that the resultis not stored and only the Over-
flow Flag, Carry Flag, and Zero Flag are affected.

* ROL4 — This instruction treats the byte data of a register or
memory location specified by the instruction byte as BCD
data and uses the lower 4-bits of the Al register to rotate that
data one BCD digit to the left.

* ROR4 — this is the same as the preceding instruction except
that it rotates the data one BCD digit to the right.

* TEST1 — Tests a specified bit in a register or memory location
and resets the Zero Flag to 0 if the bitisa 1, and sets the Zero
Flag to a 1if the bitisa 0.

¢ NOTT—Thisinstruction inverts a specified bit in a register or
memory location.

* CLR1 — Clears a specified bit in a register or memory loca-
tion.

* SET1 — Sets a specified bit in a register or memory loca-
tion.

* REPC — Repeats the next instruction until the Carry Flag
becomes cleared or the CX register becomes zero.

® REPNC — Repeats the next instruction until the Carry Flag
is set.

® FPO2 — Currently performs the same function as the ESC
instruction used in conjunction with other processors, such as
the 8087 coprocessor.

Other V-Series Chips

The only thing left to cover in this article is to say a few words
about some of the other chips in the “V" series that are either
available or will be inthe future. Atthe time of writing thisarticle,
I did not have the current status of the other chips. However, |
willtalk about them briefly based on the literature that | received
from NEC.

The V25 is a single-chip microcomputer aimed at portable mi-
crocomputer applications. The processing unit is the V20 chip
with on-chip ROM and RAM for the application programs. It
also has on-chip timers and DMA and Serial Interface Chan-
nels.

The V40 and V50 microprocessors integrate four independent
DMA channels, three programmable timers, programmable in-
terrupt controller, and on-chip clock generator along with the
V20 and V30, respectively.

The only other chipsin this series, that | am aware of, are the V60
and V70. The information that I have at this time is a little sketchy
since | was not able to get much information on these from NEC.
However, | do have some general information on them. These
are 32-bit general-purpose microprocessors that realize main-
frame functions on a single chip. The performance estimation at
this time is from 1 million to 3 million instructions per second. It
will support up to 4 gigabytes of virtual memory space with fast
translation from virtual addresses to physical (or real) addresses.
More information, I'm sure will be available later this year.

Conclusion

Hopefully, this article and the previous one will give you some
idea of what the NEC V20 (and other V"' series chips) microproc-
essor chip is, how it performs with relation to the 8088 chip, what
are some of the new instructions or enhanced instructions, and
how the 8080 Emulation mode works. %

REMark = May = 1986

47

&

General - 16-Bit =

Installing

And Programming
The NEC V20

In recent months, there has been con-
siderableinterestinthe NEC V20 CPU chip.
For example, a recent pair of articles in
REMark discussed its speed improvements
(April 1986, p.63), and its additional fea-
tures (May 1986, p.45) relative to the 8088,
However, neither explained how to use
these new features in an actual program.
This articleis an attempt to provide such an
explanation. It begins with some general
background information on the 8088, V20
and related CPU chips, follows with de-
tailed explanations of the new machine
instructions the V20 offers, and ends with a
discussion of my experience with the hard-
ware aspects of installing a V20 (which
wasn't quite as simple as | had expected,
thanks to other modifications | had made
previously).

Background

To begin with, it will be useful to describe
briefly the differences between members
of the Intel 8086 family. The 8086 itself is a
true 16-bit CPU chip, which can transfer
data to/from memory and I/O devices in
16-bit words. To reduce the pin count, the
first 16 address lines (of 20) are multiplexed
(shared) with data lines. The 8088, which is
used in the H/Z-100, H/Z-100 PCs and
“clone” PCs, is identical to the 8086 from
the software point of view (except for
timing). It is also very similar electrically,
except that only 8 of the address pins are
multiplexed with data. This allows the

Richard L. Ferch
1267 Marygrove Circle
Ottawa, ON K2C 2E1

8088 to interface readily with 8-bit mem-
ory and peripherals (and makes the H/Z-
100's dual processor design feasible). As a
result, though, the 8088 has to transfer 16—
bit data words in two separate consecutive
8-bit bytes. Therefore, even at the same
clock speed, an 8088 will be considerably
slower than an 8086. Unfortunately, you
cannotspeed up an 8088-based system by
substituting an 8086, without major rede-
sign of the rest of the system.

The next members of the 8086 family are
the 80186 and 80188. Electrically, these are
completely incompatible with their pred-
ecessors, since many support functions
were formerly done by auxiliary chips and
are included on one chip. To the program-
mer, they are “upward-compatible”,
meaning that they execute all of the 8086/
8088 instructions, plus several “enhanced”
instructions. There are also a number of
speed improvements: The calculation of
effective addresses, which takes 5 to 12
clock cycles on the 8086/8088, takes only
2 cycles; iterative instructions (string moves
and multi-bit shifts/rotates) are a lot faster;
and multiply and divide speeds are much
improved.

The H/Z-200 or “AT"-type computers use
the 80286 CPU. This chip, which only
comes in a 16-bit version, includes all of
the software-related 80186 improve-
ments, plus further hardware changes and
additional instructions intended to sup-

port multi-user virtual-memory operating
systems. However, MS-DOS does not
make use of these “protected mode” in-
structions. Instead, it treats the 80286 as if it
were an 80186. For example, recent ver-
sions of MASM have a “.286C" pseudo-
operation to support 80286 instructions,
and all of these new instructions are avail-
able on the 80186/80188 as well.

Now for the NEC V20: The V20, or
uPD70108, is intended as a direct plug-in
replacement for the 8088. (There is also a
V30, or uPD70116, which replaces the
8086, and more advanced members of the
“V" series may be able to replace other
Intel CPUs.) Electrically, the V20 is the
same as the 8088, except that it draws less
power, and hence runs cooler. To the pro-
grammer, however, it looks like an 80188
with 8080 emulation added, and it also has
several other new “unique” instructions.
That is, when compared to the original
8088, the V20 does effective address cal-
culationsin only 2 clock cycles; string, shift/
rotate, multiply and divide instructions run
faster; the “enhanced” 80186/80286 in-
structions can be executed; there are sey-
eral brand new instructions for packed
BCD arithmetic and bit manipulation; and
the V20 can be switched to 8080 mode to
run 8-bit 8080 code.

Much of the initial interest in the V20 was
based on its 8080 emulation capability.
This is of particular interest to H/Z-100 PC

REMark ® June ¢ 1987

35

Table 1
““Enhanced’’ V20 Instructions (Intel Mnemonics)

BOUND regl6,mem32 = 62 (mod reglé r/m) [disp-low] [disp-high]
ENTER aabb,cc = C8 bb aa cc

IMUL regl6,aabb = 69 (11 regl6 regl6) bb aa

IMUL regl6,cc = 6B (11 reglé regls) cc

IMUL regl6,meml6/reglé,aabb = 69 (mod reglé r/m) [disp-low] [disp-high] bb aa
IMUL regl6,meml6/reglé,cc = 6B (mod regl6 r/m) [disp-low] [disp-high] cc
INS string,DX = 6C/6D (for byte/word "string" type)

INSB = 6C

INSW = 6D

LEAVE = C9

OUTS DX,string = B6E/6F (for byte/word "string" type)

QUTSB = 6E

QUTSW = 6F

PUSH aabb = 68 bb aa

PUSH cc = 6A cc

PUSHA = 60

POPA = 61

RCL memB/reg8,cc = C@ (mod @10 r/m) [disp-low] [disp-high] cc
RCL meml6/reglf,cc = Cl1 (mod @18 r/m) [disp-low] [disp-high] cc
RCR memB/reg8,cc = CO (mod 011 r/m) [disp-low] [disp-high] cc
RCR meml6/regl6,cc = Cl (mod @11 r/m) [disp-low] [disp-high] cc
ROL memB/regB,cc = CO (mod @00 r/m) [disp-low] [disp-high] ecc
ROL meml6/regl6,cc = Cl (mod 008 r/m) [disp-low] [disp-high] cc
ROR mem8/reg8, cc = C@ (mod 001 r/m) [disp-low] [disp-high] cc
ROR meml6/regl6,cc = Cl (mod @01 r/m) [disp-low] [disp-high] cc
SAR mem8/reg8,cc = C@ (mod 111 r/m) [disp-low] [disp-high] cc
SAR meml6/regl6,cc = Cl (mod 111 r/m) [disp-low] [disp-high] cc
SHL mem8/reg8,cc = C@ (mod 100 r/m) [disp-low] [disp-high] cc
SHL meml6/reglé,cc = Cl (mod 100 r/m) [disp-low] [disp-high] cc
SHR mem8/reg8,cc = CO (mod 181 r/m) [disp-low] [disp-high] cc
SHR meml6/regl6,cc = Cl (mod 121 r/m) [disp-low] [disp-high] cc

Note: The (mod reg r/m) byte and "‘disp” bytes are explained in Table 2.

(and “clone”) owners, since they don’t
have the 8085 processor that H/Z-100
owners do. Commercial software is avail-
able for the H/Z-100 PC computers to run
CP/M using the V20, giving them similar
capabilities to the H/Z-100's CP/M-85.
The V20 appears to be somewhat slower
than the 8085 at the same clock speed. On
the other hand, it has the advantage that
improvements to the V20's clock speed
will also speed up its 8080 emulation,
whereas the 8085 on the H/Z-100 always
runs at 5 MHz, regardless of the 8088's
clock speed. The one simple benchmark
8080 program | tried took 103 seconds on
the 8085 at 5 MHz, 123 seconds onthe V20
at 5 MHz, and 82 seconds onthe V20 at 7.5
MHz. The exact speed ratio probably de-
pends on the instruction mix.

The speed improvements of some individ-
ual 8088 instructions on the V20 have been
described elsewhere. In my experience,
using typical higher-level language code,
the V20 is about 5 to 10 percent faster
overall than the 8088 at the same clock
speed, although certain specialized appli-
cations may be improved slightly more.
This speed-up is almostall due to the faster
effective address calculations, since the
other improvements affect only a small
proportion of the typical instruction mix

(evenwhen doing number-crunching jobs,
the CPU spends much of its time just
moving data around and performing sim-
ple logical operations).

Without software changes, the other capa-
bilities offered by the V20 (apart from this
slight speed improvement) will go to
waste. If your compiler (or assembler) has
an 80186 or 80286 switch, you can take
advantage of the “enhanced” instructions
simply by telling the compiler you have an
80186 or80286. Without such aswitch, the
only way to use these instructions is to
hand-code them in Assembly language (or
to write macros to do the encoding). The
“unique” V20 instructions, including those
related to 8080 emulation, always have to
be hand-coded.

The following information is based on the
NEC specification sheets, IBM documenta-
tion for MASM, and experiments with my
V20. You will need experience with 8086
Assembly language to understand the ex-
planations below.

“Enhanced"” Instructions

The actual hexadecimal machine codes for
these instructions are given in Table 1. The
NEC mnemonics for many of these instruc-
tions differ from the Intel 80186/80286
mnemonics. | have used the Intel mne-

monics, since they are more widely known,
and are supported by recent versions of
MASM. If your assembler has the “.286C"
or equivalent pseudo-operation, you will
be able to use all addressing modes with
these instructions. Otherwise, you will not
be able to use relocatable (i.e. assembler-
or linker-resolved) addresses without re-
sorting to undesirable techniques. Only
addressing modes based on registers and
fixed offsets (e.g., 4[BX + SI]) can be readily
hand-encoded.

ENTER (NEC: PREPARE): This instruction
is used to prepare the stack frame for sub-
routines in higher-level languages. The first
argument, “aabb”, is aword containing the
number of bytes of local storage to reserve.
The secondargument, “cc”, isabyte. Inthe
most common case, when “‘cc” is zero,
“ENTER aabb,0” is equivalent to:
PUSH BP

MOV BP,SP
SUB SP,aabb

The “aabb” bytes of local storage are ad-
dressed using negative offsets from BP,
while the subroutine’s arguments are ad-
dressed using positive offsets from BP. It is
also possible to specify a non-zero value
for “cc”, in which case “cc” words of pre-
vious frame pointers are also saved:

PUSH BP

MOV FP,SP

REPT cc-1

SUB BP,2

PUSH BP

ENDM

MOV BP,FP

PUSH BP

SUB SP,aabb

(FP is an inaccessible hardware register.)
Regardless of which form of ENTER is used,
LEAVE should be used before every RET in
the subroutine.

LEAVE (NEC: DISPOSE): This releases the
frame set up by ENTER, and is equivalent
to:

MOV SP,BP
POP BP

It is normally followed immediately by a
RET.

PUSH immediate: An immediate word
“aabb”, or byte “cc” sign-extended to a
word, is pushed onto the stack:

MOV FP,aabb
PUSH FP
or:
MOV FP,cc
PUSH FP
PUSHA (NEC: PUSH R): Registers AX, CX,

DX, BX, the original SP, BP, Sl and DI are
pushed onto the stack:

36

REMark ® June ® 1987

MOV FP,SP
PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH FP
PUSH BP
PUSH SI
PUSH DI

POPA (NEC: POP R): Registers DI, SI, BP,
SP (discarded), BX, DX, CX and AX are
popped from the stack:

POP DI

POP ST

POP EP

POP FP

POP BX

POP DX

POP CX

POP AX

IMUL immediate (NEC: MUL imme-
diate): The first operand is always a 16-bit
destination register, and the last operand is
an immediate word ““aabb” or byte “cc”’. If
three operands are specified, the signed
word addressed by the second operand
(“mod”,"r/m" and “disp” — forasummary
of the “mod"”, “reg"” and “r/m" bits, see
Table 2) is multiplied by the immediate
quantity “aabb”, or “cc” sign-extended to
16 bits, and the lower 16 bits of the result
are placed in the first operand register. If
the result is longer than 16 bits, the carry
and overflow flags are set; AF, PF, SFand ZF
are undefined. If only two operands are
specified, the source and destination are
the same register.

ROL immediate, ROR immediate, RCL
immediate (NEC: ROLC immediate),
RCR immediate (NEC: RORC imme-
diate), SAL/SHL immediate (NEC: SHL
immediate), SHR immediate, SAR imme-
diate (NEC: SHRA immediate): All of
these instructions are exactly like their
counterparts which use CL for the shift
count, except that the shift count “cc”is an
immediate byte quantity. Note that, like
the 8088 but unlike the 80286, the V20
allows shift/rotation counts greater than
31. (Of course, large shift counts don’t do
anything small shifts can't do — they just
take longer.)

INS/INSB/INSW (NEC: INM): This in-
struction works the same way as STOS, ex-
cept that the data comes from the 1/O port
addressed by DX, instead of from AL or AX.
The destination string is addressed by ES:
[DI], and Dl is modified after every transfer,
depending on the data type of the string
and on DF. Ifthis instructionis preceded by
a repeat prefix, the input device must be
fast enough to supply a new data value
every 8 clock cycles; if INSW is used, the
port must transfer 16 bits at a time. These

Table 2
Explanation of Effective Address Calculations
mod = 00 mod = @1 mod = 1@ mod = 11
r/m bits (byte) (word)
oee [BX+ST] [BX+SI+disp8| |[BX+SI+displ6] AL AX
001 | BX+DI] |BX+DI+disp8] [BX+DI+displ6] CL CcX
218 [BP+SI| |BP+SI+disp8| |BP+SI+displ6| DL DX
g11 [BP+DI| [BP+DI+disp8] [BP+DI+displ6] BL BX
108 [SI] [SI+disp8] |SI+displ6) AH SP
101 [DI] |DI+disp8] |DI+displ6] CH BP
110 |displ6] | BP+disp8] |BP+displ6] DH 51
111 |BX) [BX+disp8] [BX+displ6] BH DI
Notes:

1. “reg"” bits are the same as “r/m"” bits (for the case mod = 11).
2. “disp8" is sign-extended to 16 bits for effective address calc.
3. “disp” byte(s) follow(s) (mod reg r/m) byte, lower byte first.
4. The byte/word choice depends on the preceding byte.

conditions are unlikely to be met in most
systems.

OUTS/OUTSB/OUTSW (NEC: OUTM):
This instruction works like LODS, except
the data is sent to the I/O port addressed
by DX. The source string is addressed by
Ds:[SIL. If arepeat prefix is used, the output
device must be fast enough to accept a
new data item every 8 cycles; if OUTSW is
used, the port must transfer 16 bits at a
time. These conditions are unlikely to be
met in most systems.

BOUND (NEC: CHKIND): The second
operand must be a doubleword memory
location (mod=11 is not allowed). If the
signed value of the first operand is either
less than the first word or greater than the
second word, an INT 5 interrupt occurs. If
your system uses INT 5 for the Print Screen
interrupt {as Z-DOS/MS-DOS/PC-DOS
do), you will be unable to use this instruc-
tion (unless your desired response to an
out-of-range value happens to be a print
screen operation!).

“Unique” Instructions

The following NEC-only instructions are
not supported by widely-available soft-
ware. Therefore, they will have to be hand-
coded, and relocatable addresses cannot
be used. They can be divided into three
groups: Packed BCD instructions, bit ma-
nipulation instructions, and processor con-
trol (including 8080 emulation). NEC
mnemonics are used. The actual hexa-
decimal machine codes are given in
Table 3.

ADDA4S: This adds the packed BCD string
at DS:[SI] to the packed BCD string at ES:
[DI], and stores the result at ES:[DI]. The
length of the strings (1-254) is specified by
CL. Carry and zero flags are affected, but
they will only be as expected if CLis even. If

CL is odd, the upper 4 bits of the highest
byte may also be affected by this instruc-
tion, and the flag values will depend on
their contents. The AF, OF, PF and SF flags
are undefined after this operation.

SUB4S: The same as ADD4S, except sub-
tracts instead of adding,.

CMP4S: The same as SUBA4S, except that
the result of the subtraction is not stored,
50 ES:[DI] is unchanged. Only the zero and
carry flags are affected; if CLis odd, the flag
values will not be as expected, but will
depend on the contents of the upper 4 bits
of the highest byte.

ROL4: The single byte addressed by
“mod”, “r/m" and “disp” is rotated left by
4 bits through the lower 4 bits of AL. The
flag bits and the upper 4 bits of AL are
unaffected.

ROR4: The same as ROL4, except the rota-
tion is to the right.

INS: (Warning: note the conflict in mne-
monics between this instruction and the
“enhanced” Intel input string instruction.)
The lower 4 bits of the second operand,
which may be either an 8-bit register or an
immediate byte, are used as a bit count.
The specified bits are moved from the low
end of AX to the memory location spe-
cified by ES:[DI] at the bit offset specified
by the lower 4 bits of the first operand,
which must be an 8-bit register. The first
operand register, and DI if necessary, are
updated to point to the next bit field in
memory.

EXT: This instruction is the inverse of INS.
The bit field at DS:[SI], bit offset in the
lower 4 bits of the first operand, length in
the lower 4 bits of the second operand, is
transferred to the low end of AX. The first
operand register, and possibly Sl, is/are up-
dated to point to the next bit field.

REMark ® June ® 1987

37

Table 3
“Unique” Instructions (NEC Mnemonics)

000 r/m) [disp-low] [disp-high]
908 r/m) [disp-low] [disp-high]
@90 r/m) [disp-low] [disp-high] cc
@88 r/m) [disp-low] [disp-high] cc

(11 regBb reg8a)
(11 @08 regBa) bb

zzz) OR
ZZZ)
r/m) [disp-low] [disp-high] OR

67 (mod yyy r/m) [disp-low] [disp-high]

ADD4S = @F 20
BRKEM co = @F FF cc
CLR1 mem8/reg8,CL = OF 12 (mod
CLR1 meml6/regl6,CL = @F 13 (mod
CLRl mem8/reg8,cc = @F 1A (mod
CLRl meml6/regl6,cc = @F 1B (mod
CMP4S = @F 26
EXT reg8a,reg8b = @F 33
EXT reg8a,bb = @F 3B
FP0O2 fpop =66 (11 yyy
67 (11 yyy
FP02 fpop,mem = 66 (mod yyy
INS regBa,reg8b = @F 31
INS reg8a,bb = @F 39
NOT1 mem8/reg8,CL = @F 16 (mod
NOT1 meml6/regl6,.CL = @F 17 (mod
NOT1 mem8/reg8,cc = OF 1E (mod
NOT1 meml6/reglé,cc = OF 1F (mod
REPC = 65
REPNC = 64
ROL4 mem8/reg8 = @F 28 (mod
ROR4 mem8/regB = @F 2A (mod
SET1 mem8/reg8,CL = @F 14 (mod
SET1 meml6/regl6,CL = @F 15 (mod
SET1 mem8/reg8.cc = OF 1C (mod
SET1 meml6/reglé,cc = @F 1D (mod
SUB4S = @F 22
TEST1 mem8/reg8,CL = OF 1@ (mod
TEST1 meml6/regl6,CL = @F 11 (mod
TEST1 memB8/reg8,cc = @F 1B (mod
TEST1 meml6/regl6,cc = OF 19 (mod
CALLN cc = ED ED cc
RETEM = ED FD
Note:

{11 reg8b regBa)
(11 @88 regBa) bb

@08 r/m) [disp-low] [disp-high]
0@ r/m) [disp-low] [disp-high]
000 r/m) |[disp-low] [disp-high] cc
000 r/m) [disp-low] [disp-high] cc
280 r/m) [disp-low] [disp-high]
800 r/m) |disp-low] [disp-high]
P00 r/m) [disp-low] [disp-high]
280 r/m) [disp-low] [disp-high]
009 r/m) [disp-low]| |disp-high] cc
600 r/m) |disp-low| |disp-high] cc
008 r/m) [disp-low]| [disp-high]
000 r/m) [disp-low] [disp-high]
000 r/m) [disp-low] [disp-high] cc
@28 r/m) [disp-low] [disp-high] cc

(WHILE IN 8088 MODE)
(WHILE IN 8080 MODE)

The (mod reg r/m) byte and “disp” bytes are explained in Table 2.

TEST1: The second operand is either CL or
an immediate byte. The first operand may
be eitherabyte oraword, eitherin memory
or a register. The bit specified by the bit
offset in the lower 3 (byte) or 4 (word) bits
of the second operand, at the address spe-
cified by the first operand, is tested. If the
bitis zero, ZFissetto 1,and ifthe bitis 1, ZF
isresetto 0. The carry and overflow flags are
cleared, and AF, PF and SF are undefined.

CLR1: The bit specified by the bit offset in
the second operand, at the address spe-
cified by the first operand, is cleared; the
flags are unaffected.

SET1: Like CLR1, except the specified bitis
set to one.

NOT1: Like CLR1 or SETT, except that the
specified bit is inverted.

REPC/REPNC: These repeat prefixes are
similar to REPZ/REPNZ, except that CF is
used instead of ZF. That is, the following
string operation is repeated until CF is
cleared (REPC) or set (REPNC), or until CX
becomes zero.

FPO2: This instruction is similar to ESC. Its
existence leads me to speculate that the

NEC replacement for the Intel 8087 may
have additional new instructions (above
and beyond the 8087 instruction set).

BRKEM: This instruction is used to enter
8080 emulation mode. It works the same
way as “INT cc”, except that the CPU is
placed in 8080 mode (by clearing the
Mode Flag, which is bit 15 of the Flag
Word). Only the 8080 instruction setis sup-
ported (neither the Z-80 nor the 8085 en-
hancements are implemented). While in
8080 mode, instruction addresses are cal-
culated relative to CS (set by the interrupt
vector), and data addresses are relative to
DS (normally set to the same value as CS by
the calling program, immediately before
executing the BRKEM). The following 8088
registers are used as 8080 registers: AL as A,
CHasB,CLasC,DHasD,DLasE,BHasH,
BLas L, BPasSP,and IPas PC. TheSP, SI, DI,
AH and segment registers are unaffected.
While the CPU is in 8080 mode, external
interrupts are handled in “native” 8088
mode as usual, but IRET causes a return to
8080 mode. The RETEM instruction is used
to return to “native’”’ mode.

RETEM (8080 MODE ONLY): This instruc-
tion plays the same role after a BRKEM that

IRET does afteran INT. It causes a return to
“native” mode, at the instruction immedi-
ately following the BRKEM.

CALLN (8080 MODE ONLY): While in
8080 mode, this instruction can be used in
exactly the same way that “INT cc” would
be used in “native” mode. The interrupt
routine it invokes will be in “native” 8088
mode, and must not include BRKEM. The
IRET at the end of the interrupt routine will
cause a return to 8080 mode at the instruc-
tion following the CALLN,

Hardware Notes

The V20 is supposed to be a plug-in re-
placement for the 8088, and many users
have had success with a simple direct sub-
stitution. However, there are some pos-
sible pitfalls, especially when sped-up
older systems are involved, as my exper-
ience shows.

I have an old H-100 (85-2653-1 mother-
board), to which | have added the CDR
Z5100 7.5 MHz speed-up and the FBE Re-
search ZMF100 768k memory modifica-
tion. This system was working fine at 7.5
MHz with the original 1Cs (except for the
new 256k RAM chips, which are rated at
150 ns). When | substituted an 8 MHz-
rated V20 (UPD70108D-8) for the 8088,
however, | started experiencing intermit-
tent system crashes. These went away at 5
MHz, orat eitherspeed when the 8088 was
re-installed.

My first reaction was to try upgrading some
of the support chips, as suggested in var-
ious letters and articles in REMark. Far from
fixingthe problem, however, the new chips
made it much worse. The more high-
speed chips there were in the system, the
shorter the interval between crashes. Evi-
dently, there is a timing glitch on the old
board when fast parts with rapid switching
times are used.

My next step was to replace the original
support chips and the 8088 CPU, while |
studied the wiring changes suggested for
installing the HA-108 upgrade kit on older
H/Z-100s (REMark, July 1985, p.22). The
memory modification and 256k RAM mod-
ification were not relevant, since the ZMF-
100 did the same job and | knew it worked
at 7.5 MHz. (Actually, the ZMF100 upsets
the H/Z-100's memory map options, but
none of my operating systems or other
software uses this feature anyway.) The
wait state modification was likewise not
needed, and the ICreplacement had made
things worse, while | preferred the ZS§100
speed-up to the crystal replacement (if
something goes wrong, | can try it again at

38

REMark ¢ June ¢ 1987

the lower speed to make sure it isn’t clock-
related). That left the refresh clock, ready
logic and swap logic modifications to be
considered. The ready logic change was an
obvious candidate if my hypothesis about
a timing glitch was right, but | decided to
make all three changes while | was at it,

Being very reluctant to cut traces on the
motherboard, | used the prepared IC sock-
et technique for all wiring changes. That is,
wheneverthe connections to an IC were to
be modified, | removed the IC, installed a
“prepared” |C socket with some pins bent
up, wired the required jumpers to the
bent-up pins, and then inserted the IC into
the new socket. All jumpers were wired
either to bent-up IC socket pins, circuit
board feedthroughs, orresistor or capacitor
leads using wire wrapping type wire (for a
detailed description, see the Appendix). In
order to accommodate the swap logic
change, | also had to replace the smaller
ZMF100 board using a similar technique.

The resulting changes are completely re-
versible from the component side of the
motherboard, but luckily they didn’t need
to be reversed — the system now works
perfectly with either CPU chip at either
speed, with all the original support chips.

The lesson here is that the relationship be-
tween clock speed changes and IC speed
ratings can be surprising. | now suspect that
I might have had the same problems with
an 8 MHz 8088-2 that | had with the V20.
On the other hand, if I'd bought a 5 MHz
V20 (uPD70108D-5), there's a chance it
might have worked at 7.5 MHz without
problems, justthe way my original 8088 did
(although I understand that NEC may not
be quite as conservative with their speed
ratings as Intelis, so | wouldn't recommend
you try this unless you can exchange your
slow V20 for a faster one if need be),

If you have an old H/Z-100 motherboard
and are planning to experiment with clock

speed and CPU chip changes, you should
consider making the wiring changes | made
(which are also all described on p.26 of the
July 1985 REMark). If you have a different
speed-up modification than the ZS100,
you should first check how it works. The
Z5100 module simply replaces the oscil-
lator, and doesn't affect other aspects of
system timing (for more details, see REM-
ark, April 1985, p.20). It is possible that
other third-party speed-up modules are
wired differently and might not be subject
to the same problems when “fast” chips
are used on the old motherboard.

For the price of the V20, a few IC sockets,
the ZMF100 and ZS100 kits and 27 256k
RAM chips, my old H-100 is now a 768k
machine which runs about as fast as the 8
MHz H/Z-108, and it also has the “en-
hanced” and “unique” V20 instruction set
improvements. If only | hadn't bought
those unneeded fast support ICs!

Appendix

Recommended Wiring Changes For Old (85-2653-1) H/Z-100 Motherboards

Ready Logic Modification

U205 - 14-pin IC socket, pins 12 and 13
bent up, plugged into old socket
- connect pin 13 to new U206
socket pin 1 (bent up)
- connect pin 12 to new U206
socket pin 13 (bent up)
- plug U205 into new socket

U206 - 14-pin IC socket, pins 1 and 13
bent up, plugged into old socket

- connect pin 1 to U205 socket pin
13, U220 socket pin 5 (both
bent up)

- connect pin 13 to U205 socket
pin 12, U236 socket pin 4 (both
bent up)

- plug U206 into new socket

U220 - 14-pin IC socket, pins 5 and 6
bent up, plugged into old socket
- connect pin 5 to U206 socket pin
1 (bent up)
- connect pin 6 to U236 socket pin
- 3 (bent up)
- plug U220 into new socket

U236 - 18-pin ICsocket, pins 3,4 and 15

bent up, plugged into old socket

- connect pin 4 to U206 socket pin
13 (bent up)

- connect pin 3 to U220 socket pin
6 (bent up)

- connect pin 15 to keyboard
(GND) end of R123

~ if you are using a ZS100 or similar
speed-up module, plug it into

this prepared socket; otherwise,
plug U236 into new socket

Refresh Clock Modification

First, check that there are no jumpers con-
nected to U130 pins 8, 9 and 10 on the
back of the motherboard; if there are, this
change has already been made.

U130 - 14-pin ICsocket, pins 8,9 and 10

bent up, plugged into old socket

- connect pin 10 to keyboard end
of R104

- connect pin 8 to feedthrough be-
side (connected to) U152 pin 1

- connect pin 9 to feedthrough
1/8" out from inner end of U243,
just left of centerline of U243
(connected to U225 pin 3)

- plug U130 into new socket

U168 - 14-pin IC socket, pin 11 bent up
(N.C)), plugged into old socket
- plug U168 into new socket

Swap Logic Modification

If you have a ZMF100 kit installed, you will
have to replace the small piggyback board
at U173 to make room for the U156 sock-
et:

U173

20-pin IC socket, pins 1 and 2
bent up, plugged into old socket
- connect pins 1 and 2 together,
and to the keyboard (GND) end
of C168

connect the P1 pin nearest the
keyboard on the ZMF100 large

piggyback board to the feed-
through between U156 pin 7 and
C169 (formerly connected to
U173 pin 1)

- connect the other P1 pin to the
feedthrough nearest U173 pin 4
(formerly connected to U173
pin 2)

- plug U173 into new socket and
set ZMF100 small board aside

U155 - 14-pin IC socket, pin 8 bent up,
plugged into old socket
- connect pin 8 to U156 pin 13
(bent up)
- plug U155 into new socket

U156 - 14-pin IC socket, pins 11, 12 and
13 bent up, plugged into old

socket

- connect pin 13 to U155 pin 8
(bent up)

- connect pin 11 to U171 pin 10
(bent up)

- connect pin 12 to feedthrough
next to (connected to) U171 pin
1

- plug U156 into new socket

U171 - 14-pin IC socket, pin 10 bent up,
plugged into old socket
- connect pin 10 to U156 pin 11
(bent up)
- plug U171 into new socket

¥*

REMark e June ® 1987

39

