MICRSSOFT.

Printed in the
United States of Amenca

HEATH

MICRZSOFT.

COBOL-86
(z-DOS™)
w data HE;TP:

systems

NOTICE
This software is licensed (not sold). It is licensed to sublicensees, including end-users,
without either express or implied warranties of any kind on an “as is” basis.

The owner and distributors make no express or implied warranties to sublicensees, includ-
ing end-users, with regard to this software, including merchantability, fitness for any pur-
pose or non-infringement of patents, copyrights or other proprietary rights of others. Neither
of them shall have any liability or responsibility to sublicensees, including end-users, for
damages of any kind, including special, indirect or consequential damages, arising out
of or resulting from any program, services or materials made available hereunder or the
use or modification thereof.

This publication could contain technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of this publication.

Technical consultation is available for any problems you encounter in verifying the proper
operation of this product. Sorry, but we are not able to evaluate or assist in the debugging
of any programs you may develop. For technical assistance, write:

Zenith Data Systems Corporation
Software Consuitation

Hilltop Road

St. Joseph, Michigan 49085

or call:

(616) 982-3884 - Application Software/SoftStuff Products
(616) 982-3860 Operating Systems/Languages/Utilities

Consuitation is available from 8:00-AM to 7:30 PM (Eastern Time Zone) on regular business
days.

Microsoft is a registered trademark of Microsoft Corporation.
The Microsoft logo is a trademark of Microsoft Corporation.
Z-DOS is a trademark of Zenith Data Systems Corporation.

Copyright © 1983 by Microsoft Corporation.
Copyright © 1983 Zenith Data Systems Corporation.

ESSENTIAL REQUIREMENTS fof using COBOL-86:

a. Distribution Media: Two 5.25-inch soft-sectored 48-tpi disks

b. Machine Configuration (minimum): Z-100, 128K memory, two disk drives, and CRT
¢. Operating System: Z-DOS

d. Microcomputer Language: Not Applicable

HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

ZENITH DATA SYSTEMS CORPORATION
ST. JOSEPH, MICHIGAN 49085

Page iii

ACKNOWLEDGMENT

Any organization interested in reproducing the COBOL report and specifi-
cations in whole or in part, using ideas taken from this report as the basis
for an instruction manual or for any other purpose is free to do so. How-
ever, all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short passage,
as in a book review, are requested to mention “COBOL” in acknowledg-
ment of the source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any con-
tributor, or by the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. In-
quiries concerning the procedures for proposing changes should be di-
rected to the Executive Committee of the Conference on Data Systems
Languages.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for
the UNIVAC (R) | and Il, Data Automation Systems copyrighted 1958,
1959, by Sperry Rand Corporation; IBM Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM; FACT DSI 27A5260-2760 copyright-
ed 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part,
in the COBOL specification in programming manuals or similar publication.

—from the ANSI COBOL STANDARD
(X3.23-1974)

Page V

CONTENTS

Partl
User’s Guide

introduction

How this Manual is Organized it iiinnniinnsns 1
Part I: User's GUideciiuiiiiiniiinnrronennenaenenns 1
Part Il: Language OVerviewiiiimiieninennnannnns 1
Part lll: COBOL-86 Reserved Wordsivviinenvnnnnnnnn 2
Part IV: Appendices and Index iiiiiiiiiiainnn 2
SUNAX NOIAHON ocooisvimnmnni s o i G i G e o o5 603 0505 fd e 3
Converting COBOL Programs to COBOL-86 4
Learning More about COBOL, 5
Chapter 1 Getting Started
EIVOINIOW s o iosmimesasmrsinni 318 S omian AR B AATS,) W15 1 SR F RS A NS > 1.1
The Compilation Processcciiiiiiiiiiiiinnnneennnn, 1.1
Your COBOL-86 System, 1.3
Digk Backup : .osnnivess s in o5 eneieiinmm ea s ve 8 Uh 5l a% S e s 1.4
Sample Program Developmentt 1.4
Sample SesSiONii i e e 1.5
Chapter 2 Compiling COBOL Programs
COVBIVIBW : i i s imaa i Vo oo S R A T hr i e 5 5% 4 S SR 2.1
Operating the Compiler ittt 2.1
Compiler ReSPONSESttt e 2.2
Partial Command Stringsottt 23
Using Compiler SWICHES . < iu sicsvmasemsimms o 5 s i 5 saisasmaimemans 25
SWIHCHES: o couvumminss wy be weedyspesn eoas i e % 7 oSS e e 25
The Source Listing File .. .: s cassvsussmvvves 6o ws o5 i s wasamasns 2.7
Compiling Large Programsc.c.otiininiinnnenenenennnnns 27
Chapter 3 Linking and Executing COBOL Programs
CVBINVIEW - = o svvamsiamamin v 66 60 T OSSR R S5 36 55 45 i P e 3.1
Using LINK . covnsiamais s ok ssaGnaeemaveag 5 o 55 08 s s ensiae see 3.1
Linking Programs That Use Overlayscoviniiinnenn.. 3.6
Linking Program Modules, 3.6
Linking Large Programsuiiiiimeeeenaenennnn., 37
Executing COBOL. PIOQraME: .. vo-ws s s s vie ais w05 v sk s s 3.8
Chapter 4 Batch Command Files
Chapter 5 Data Input and Output
VBB . .-« cvvmvains 7 o S0 0SRT O 815 455 558 58 554t 10. e mmioinre xrm acs sre sin 5.1
Using Disk Filesc..ioiiiiniiii e 5.1
Types of Disk Filesc.ouuiiiiiii e, 5.2

Page vi

CONTENTS

Chapter 6 The Interactive Debug Facility
EVBINIOW covcs o a5 Ganssvsawas i BateRisin we 15 5w 6790 Eemselvssl Ao aeneais, WO 337 310199 e5eva 6.1
The Debligging Protadiife - vucs it is os sssvieieuasaii s 5% &5 svayes 6.1
Use of Debitig COMMBINGS -:us s in o5 i 5 o snanameesion e o3 ok Ieaness 6.2
Chapter 7 Introduction Part Il
OVBIVABW, . cuivas s ie ssvasmien s wossle €58 s e oo SEEam TR0L SN S0 600 67U 7.1
The: ANSI Standard .- covssmmm o os v se am s sas s 966 5 e 7.1 Langu_age
Coding FUNCaMENBIE: . .o ouvainn s o v 5w e v ite din o o o5 Sl 74 Overview
CRARACIAE-SBL comimimimmins: s aus 558 501808 RibS 6y E e (en 208 S um sie mieeies 7.4
PUNCtUAtioN e e e 7.5
Word Formationt et e 7.6
SOUTCE LN SUCHITE o . i nssn v 50 ot wmasessseism ama s oF s sieae s 7.6
PYVOarITY STUBIING. v o sims v s s snimsnsealiuies 8 &9 B9wvvises 7.7
Chapter 8 DATA DIVISION
VIV Wot e e e e 8.1
DAA RGNS cn ws v aoviiinm smine s v wme 5is & s S8 w0 SR Ea ae S8 e 8.1
Data Hem SIUCUres :cuwwawn un vn an i snmesamsiiaaens os 56 o5 daamy s 8.2
Lavel NUMBEIS . oo v v &5 ik sl aisimama s 5 e 09w eamng 8.4
Data Description ENfryttt ininnnnnenns 8.6
Group Item Syntaxceiiii e 8.7
Eloementary Itom SYNAX:cvi ve v s simmivimsisme snomia s we s sn wssesm e s 8.8
Literals and Figurative Constantscit e 8.9
Non-Numeric Literalso, 8.9
NUmerc Literals ..o 5 ve o SVnesiomaeaeais o oe s 8.10
Figurative Constants i, 8.11
Size Limitationst e 8.12
Chapter 9 PROCEDURE DIVISION
ONEBIVIBW .s: s 5 wissinsivmsmiassir i Be o iee s salns a e s o v o aeneices 9.1
SIAOMBNIS 12 i i chvmsinen T 75 85 ¥6 SR ER e T e s N B e e e 9.1
Statement Typescouiiiiiiiiii ittt 9.1
Statement Structures e 9.2
Design of the PROCEDURE DIVISIONciiiiiienininiinnnn 9.2
OIGANIZAHION . v v sn o6 s @3 MeRraTmmEsd s s an &% B SHTsTE e 9.2
Division Header «.:vussimvs o o o s i sid@manvaiva i s w5 55 ok e 9.3
Declaratives and I/O Error Handling 9.4

Segmentation i e i 9.5

Page Vii

CONTENTS

Chapter 10 Indexed Files
OVBIVIBW & . vttt et et e e et et e et ettt e 10.1
Syntax in ENVIRONMENT DIVISIONt 10.1
SELECT ClAUSS uisv w5 5 o5 os waibls sl e andi sm 28 6 506 i e §im o et 10.1
RECORD KEY ClauSec'otvenrmmennenntrnannennanenennss 10.1
FILE STATUS Reportingcoivirnriinienennnannnnnnns 10.2
Syntax in PROCEDURE DIVISION . ..c.c.ovmv0ssm e v s s nimimaimmesiaa 10.3
OPEN STalOIMET: «ucomai e si ivmeim s sioss s 506 a6 o8 56 5056w $m8m 10.3
READ Statoment ..ccomuui s an an ainessaiensvirs ek s 50 605 smeralisies s 10.4
WRITE Statement: .- ou v s is vn v e e s i s o o o 5o 495505555 10.5
REWRITE Statementccit ittt ieae e eanns 10.6
DELETE Statement¢.iiimt i ineannens 10.6
START SIAIOMENL: .cvmiin i ins o ovmensmma s s e o 06 e s siasssminiassins 10.7
Chapter 11 Relative Files
OV IV BW . . . o e e 114
Syntax in ENVIRONMENT DIVISIONciiniiniiiniannn. 111
SELECT ClalBe ..o vnwen s 50 s oo waneawinavss i 5% s o alsaan s 11.1
RELATIVE KEY Clausec.iiiiiiiiiiiiiiiieninannnnens 11.2
Syntax in PROCEDURE DIVISIONcitiiitiiiiiiannn. 11.2
READ Statementt 11.2
WRITE SIalOmMONt o e mn s o cmsmsmseasranemsm 5 5 53 w5 i 6 ... 113
REWRITE Statementt i i 11.4
DELETE Statement ..o v i v dsadniatmess b o o s o8 s s aiios s 11.4
START Statementoiiint ettt e eanns 1.5
Part lll chapter 12 Alphabetical Reserved Word List
INtrOdUCHION .« . . . e e e e 121
COBOL-86 ACCEPT . ottt e e 12.8
Reserved Syntax in PROCEDURE DIVISIONo e 12.8
DSIAHE : v crnmmrsanmain v aRmEER R R S G ST B SRR SR 12.9
Words Application” : ceucvewie w s ermersieeEne 55 08 o se s Ve e 12.22
ADD: wion s s emaeiaia Bh 08 SRS T e BN B B e el el A 12.25
Syntax in PROCEDURE DIVISION 12.25
Details e ... 12.25
APPHEAHIONT 5 oo mmmman 5 ion wmammeinss s seten 55 a5 B wise e e sy 12.26
AETER! i o snvismacmurin 65 100 e s s Smis o6 0 9 a0 aieve e 8dn 12.27
Syntax in PROCEDURE DIVISION i'iiiinininnnenn. 12.27
DOIAIS ¢ 55 i 535 w38 55 575 518 fie Ao 03 dac s imioiin B8 erie m owiie nsiems g e mr s 12.27
Application e 12.27
BLANK e 12.28
Syntax in DATA DIVISION i 12.28
OIS oy oo sniiinies 6 18 SR E R SRR T T RS S 8 e 12.28

Page viii

CONTENTS
BLOGCK mnnnimn . 5555 5 i S n werannamn. 7 56 i in Geiamekmay s 12.29
Syntax in DATA DIVISION e nnnns 12.29
DIOVANS .o vrtmsmniescs wire iy e o oot el e o i iy 508, S imsi et ey) s 12.29
APPICAHON ... e 12.29
EALL v avimssnasssrai va oo s s @ inasmis s s 6 o6 i S eIsu s ae v s 12.30
Syntax in PROCEDURE DIVISIONcoun... 12.30
DAtAIS :vive v is o5 55 55 sRan e RS T T 55 U6 06 T STSReRREEYG A 12.30
ADDICAON ..o co s s s st ® 5 i 88 nn DdrhsSNE m S B 5 12.30
CHAIN L vvvice vt ain o eieie e sieaie ommeisa sis nie aia 1is 5 e 2 ee aie s ais siee oo 12.32
Syntax in PROCEDURE DIVISIONcciiiiniiuanannn 12.32
DELAIE . =sransmimin o answin i s e o am RS Ko & SR R SRR P GRS 12.32
APPHCAHON wavpviin wis o s v vis o s s 03 o4 Do sTnsrais g 12.32
CLOBE i .vvinsm s 56 65 36 68 s seiaom s il 74 i B8 sesiemayeimve & 12.33
Syntax in PROCEDURE DIVISIONciiiiiiiann. 12.33
Details i e e e e e e 12.33
APPHCANON couvvin 2 s s snsma s s wne wa sk 08 16VEE 0 R B A) S 12.33
CODE-SET & sriuvs s a0 won avassmam i st iioles $@ &6 808 56 80 a5 a1ea o 12.34
Syntax in DATA DIVISION i, 12.34
DetallS o 5 is o5 06 55 55 aEem R e N E H VS B SV e SRR v Se 12.34
ApPHCatioN e 12.34
COMBPUTE somigum vasss e i s Sriah st (of s o s e e b e Sheseis 12.35
Syntax in PROCEDURE DIVISIONcoiiiiiiinninnn, 12.35
DOMEIS o cvrvamsassn o anvimsinm s ms e weme 6 &5 % eares e e 12.35
APPHCEHON woovivivn o v sn s ims s esies g8 5 B e e e e 12.37
CONFIGURATION .. .icoieussinevanasoniivosessssassnsiassesis 12.38
Syntax in ENVIRONMENT DIVISION iuann. 12.38
MBS crncisscaraniam mon s (5o 6350 oo BRSSO 4B S B S804 A S 12.38
COPY i isinnnn e 5o w60 om0 s e aise S o 55 508 S0 7 m euinr e sase s o 12.40
Syntax in PROCEDURE DIVISIONc0viivnnnennnnn 12.40
Detalls = v onwinm oo 0 seosaaseesessaes DS G B e SRR e s 12.40
ADPPUCEHON 15,r0, 000 50 51 570 o 55 ST S5 S 50 S B R R0 0 B e BT 12.40
DATA (in DATA DIVISION Header)cciiiiinuunnnn. 12.41
Syntax in Division Header ciiiiinn... 12.41
Detail i oo cmanan 53 s smamnmenmasacams w0 w0 VSSRGS e SR 12.41
DATA (in DATA RECORD Clause)cuiiiiiiennnnienan.. 12.42
Syntax in DATA DIVISION0t 12.42
DatS s S T ST . S R S T e T S R T G 12.42
APPICAtION . .\t ettt ettt e e 12.42
DECLARATIVES: iiiis i svrisramsmromos anssmans s sia s sl sieisss samsese i i 12.43
Syntax in PROCEDURE DIVISIONccoiiiniin.. 12.43
DA - oo onam 56 43 SRETENERERTRA SR §5 85 0N IR EPREREIRRE 55t 12.43
DISELAY: .. cicoieit a2 i i i S A Wik 557 558 S8 e Brbnmodim B m o fism ms vae 12.45
Syntax in PROCEDURE DIVISIONiont. 12.45
Detailsot e e 12.45
APDHCAHON i cu v s e s wn wm o 56 BSOS R R B 6 12.47
BIVIDE: ccicvncamann s o srmmnimimes e i v 58 R i s @ues sy 50 5 12.48
Syntax in PROCEDURE DIVISION innun.. 12.48
BIOMAIIS: . o imn,n 5 o s iy s o (oo s esesara e ARG e oy K S 12.48

Page ix

CONTENTS

ENVIRONMENT i wsopmamie s v s ade 850 sraibaiaiere ssta il e s % & i 12.50
Syntax in Division Headero iiiiiiiiiinnn 12.50
Datails ... o oo it eoniois i sieiin s 303 5 0% 500 08 SARTRa S, U O 0 12.50
EXHIBIT .ot 12.51
Syntax in PROCEDURE DIVISION i, 12.51
B - s g o 12.51
Application . :: vi on ssmminiaEn wn oe i S SRR ATS Y §T8 8 S0 5T 12.51
BXIT cvusasinn sn on anesssaaess &5 v 67 o o8 saemameaes =8 &y o i 12.52
Syntax in PROCEDURE DIVISIONciiiuinn.. 12.52
DetailS . .. e 12.52
APPHCANION v oo connesrmmmarsrenssianis #8 an o s eussoar e &R S S04 e s Bielete 12.52
EXIT" PROGRAM iuwmmvmnm o6 s sv ssrs e abaniemess e o o @ 12.53
Syntax in PROCEDURE DIVISIONcoiiiiiiananonn. 12.53
Betails w.n i o svanernusinash 5 e 58 G SRR SR e T §R 5 e 12.53
Application e 12.53
FILE L. ovioswinis omn s sin simsiminne s mnetens s sin aiie e o simio s simie sse aie mis #7e s sy 12.54
Syntax in DATA DIVISION .. e v v svosaissas sesmsa s s n o oo e 12.54
DBLEIS oo i vi samrvassnman s e o0 s AR S & B 18 12.54
APPHEAION s o o mwvmmewsn wn o o5 G e o 57603 S e Wi Wl o8 76 G iy 12.55
GO TO s 5 SR REETTanm i 55 5% 58 S T erairatm R 5 5 e o% 12.56
Syntax in PROCEDURE DIVISION cciiiiiiiiiinnnn. 12.56
Details . ..o e e e 12.56
APDUCREION . o wnwmmaimmciine s s s sowsve e ase e oot 5o &s ok o5/ 12.56
IDENTIEFICATION.: . comvmmmnsi an w3 55 am ot g v saaiaisa el &5 s i i 6 12.57
Syntax in Division Header iiiiiiiiiinnnnnn.. 12.57
Detfils o o mi it el a0l 50 B DS SR B S Se By 12.57
I e e 12.58
Syntax in PROCEDURE DIVISIONc.ciiiiiienninnn.. 12.58
DOMAIS wacess s sinsnemmmmmrmnanms s w6 am denams i m i S AT B S G S5 12.58
APPHCATION o ou commvmaunies 2w i I ESige e e S0 S S 59 B EY 12.61
WM OF covm i o iaemnaions 56 o 55 55 SEesaamees saasi 5 us o ees b 12.63
Syntax in PROCEDURE DIVISIONc.coiiinninan.. 12.63
Detailsoi it e 12.63
Application e e 12.63
INPUTOUTPUT. o omsmmucasmsm s s s e s i, @ 5 5 98 s 12.64
Syntax in ENVIRONMENT DIVISION 12.64
DOl o o oo vy wiminni b5 5 65 SR SRR VT ERORY SN T 5 I SReTe 12.64
INSBEGT : i i 5 085 5500 55 5 b iinss 68 sl surtins i 08 s s m S 12.67
Syntax in PROCEDURE DIVISIONciuiivun.. 12.67
Details e 12.67
APDUGAIION iox wimimmumsmnrmna avs i s s e Sz Wi 4 35 SRR 12.69
JUSTIBIED) i o cvvmmmmnnan on e v swememymas i w1 69 5% 66 v oo 12.70
Syntax in DATA DIVISION. ... i viovusivmswinivesie s o8 o o3 5 viedns 12.70
Datalls o i oo smsnmmesn ¥ & 0 i s AT A i ik s 5E V0 S semhisasieeee 12.70
ApPliCatioON 12.70
LINAGE .. e 12.71
Syntax in DATA DIVISION i 12.71
RORAIE oo o counsemainn 54 vi S eRe TR B B8 B5 B8 BR s eme 12.71

Page X

CONTENTS

LINKAGE' 55 om o3 s sesmmm emiai v i 82 o i s aramsia s s & &5 i 12.73
Syntax in DATA DIVISION i 12.73
DBRAIIS . - x5 55 25 Esm e sl vabm s 55 05 55 28 SR ST R 6 B 0 e 12.73
Applicationottt e e e 12.73
MOVE & i i e e e e e 12.74
* Syntax in PROCEDURE DIVISIONcciiiiinnann, 12.74
Details ivs w5 v vy vy sl e W S B SR T R B BN B S 12.74
APDICAtON! - 5 is snswevanm i on 55 uv 16 B AR EEENE RTINS 39 ve 6% 12.75
MUUTIPLY: ... iv e e s st 8 s 58 55 5 5 i b e sl e i sl 54 58 54 52 12.77
Syntax in PROCEDURE DIVISION 12.77
Detailscii i e i e 12.77
APPIICALIONttt e 12.78
OCCURS: i i vvmmmmaaziimsmnses v 54 5% 96 w5 Balsin i s s Fsse ¥ o o s 12.79
Syntax in DATA DIVISIONttt iniannn 12.79
DOMBIIS . is i ii i um assimen o 25 5 6% 15 on e sEissaEe ve 08 BN S Shs 12.79
Application e 12.81
OPEN ..o e e e e 12.83
Syntax in PROCEDURE DIVISION ..., 12.83
DOAIlS : i i iswimemaamimees 05 e o SneeR e SRR S5 T e 12.83
APPICAHION : i wvnmmmaminaens 06 8% v o SREu e eI ER ea v 655 56 e s 12.84
PEBRFORM o oo i smvn s i 05 o oS onadm e aimantle o sa s i ... 12.85
Syntax in PROCEDURE DIVISIONcciiiiiininnnn.. 12.85
Details e e e 12.86
APPUCHHON. & oo ivanvenasiis s 5 50 s o sowmem v 08 s s 12.87
PIETURE! i oo suwanasasarmsins s o i s s s soai@rame S5 @ o semiis 12.89
Syntax in DATADIVISIONottt eianns 12.89
DatAils: : i s sxananmnasmie o8 66 i Ok Gl AR RN S ne he e e 12.89
Applicationiiii e e 12.95
PROCEDUREttt ittt ittt it ittt et e e 12.96
Syntax in Division Header i 12.96
Det8ils: cvuonvmnonmuniim v wn w6 08 s EsER R, B s 0 AT 12.96
READ (to Perform Sequential Input) 12.97
Syntax in PROCEDURE DIVISION 12.97
Details e e 12.97
Application e e 12.97
RECORD ... vvwsssmmassmm ae s bin smeesisme semamisimsbie s 05 s mmees 12.98
Syntax in DATA DIVISION i e eeann 12.98
Retails: socipavamnmanes i o o cueRaieR e S ERNE W U iE SR e 12.98
ADPHCANION 5.m 050 iniais i diciimrarisEssainss O & M sienaas 12.98
REDEFINES it ettt et e 12.99
Syntax in DATADIVISIONottt 12.99
DetAIS : .wcnimmmmasmmnms s s e s e SRR 8 SR R RS 12.99
APPHCAON v civwmuisn va 5% DaweriveirBEraeially. 75 08 PRV Ry 12.100
REWRITE (to Perform Sequential 1/0)0..... 12.101
Syntax in PROCEDURE DIVISIONc.ccivuvn... 12.101
Details e e 12.101

Page Xi

CONTENTS

SOREEN.. . . vo v i simmm g sie s we a0 58 Eaao s ey 55 55 74 3 12.102
Syntax in DATADIVISION e 12.102
DERAIS v von o s ssrae w6 506 S5 S0 AR I e 05 a8 b 65K o8 12.103
SEARCH i iais v v wmmimvimimamersin i s o 5 woens aisaya s e siam o8 5 aie @ 12.107
Syntax in PROCEDURE DIVISION 12.107
DAtaIS .wii v v i i W O 6 SR SR R R W B 12.107
APPNCANON: ;. i 55 s nanmimns e i i 93 68 8 SRR TR ER B 10 55 B 12.110
5 12.111
Syntax in PROCEDURE DIVISION cciiiiiiiiinn, 12.111
DORAUIS -0 w0 504 o0 simrirsiars s imusia s S o5 s5¥ €0 SRR BE BTV R RS W S o0 12.111
APPHCEtIoN’ . o oo cvusmeaumus o ws o5 w0 SRR R SRR a5 i 12.111
SIGN ecas w6 0y o6 SUEERENNGE Vi % vE SIS S 9 o 8 12.112
Syntax in DATA DIVISIONt 12.112
DOAIIS i s i oy S e s S S 08 i e o e e S m oo e 12.112
Application e 12.112
STOP oo oo soamas s smeam ws 6 65 @ imisesmssmnemm o & o 12.113
Syntax in PROCEDURE DIVISIONcoiiiiinnnn.. 12.113
DotailsS i cann wi se o wvmeesninn 55 55 v% 01 (Ve amE e i W 5E i 12.113
ADPPHCAHON. 5 . v cindimsm it e 5@ 53 BaisaE e dd S RRT T 0 B i 12.113
STRING ... i e e et e 12.114
Syntax in PROCEDURE DIVISIONciiiiiininn.. 12.114
DOMAIE ccoivan oo s munsmmmissamaes ©r x8 se s devE TS B § 3T e W 12.114
APPHCENION < i o s oy o5 o 60 R BTG SERNES 5 T S wE W 12.115
SUBTRACT i s s sreonminmsiedims £3 i 55 o hialeRrsiia o v 59 s o s 12.116
Syntax in PROCEDURE DIVISIONciienennn.. 12.116
DOMAIE: . oo ain ron s i 08 PR HES SRR e) R 78 2R s 12.116
Application e 12.117
SYNCHBONIZED .. .cvv s s o ot st waveasiaieie se o o se sl ive 12.118
Syntax in DATADIVISION i, 12.118
DOMAIS s oo covvmusamnns 8 o3 oy 55 DEEE BB YRS G 85 1% 4 12.118
APPICANON. 5 o chcovsaine e s v i Vo ad e 3 w0t viem o es s 55 50 i i 12.118
TIRBIOE: . ctimis w8 som msimin s sn srim sirn i o Pi7m G 1/ L i g g 12.119
Syntax in PROCEDURE DIVISIONcciiiiiiiinannan. 12.119
Details e 12.119
APPHCHNON! . o cowmamsmonmmn s sis w50 avas e s 5 Se s aies 12.119
UNSTRING oo v snnseisnmimis ve v o8 e wsineeessmee v o6 ¥ o 12.120
Syntax in PROCEDURE DIVISIONiiaa... 12.120
DISIAIIE: ... e som mrmimimainesmimom s s S S yimySiumeihmeohs oo s a8 il srie 12.120
Application 12.122
USAGE i e e 12.123
Syntax: In DATA DIVISIONcconevisaminsanas va an srwasionss 12.123
DEENS L i o cunmamnmaminam, 176 508 ek e S e 5 55 95 B R 12.123
APPHEANON' -« x comumssnape o s sssmsisreasess e i s o LEaerat 12.124
VALUE (to Define Truth Set of Condition-name) 12.125
Syntax in DATADIVISION 12.125
Details . . 12125

Page Xii

CONTENTS

VALUE (to Initialize Data Value)civiiniiinnnnnn 12.127
Syntax in DATA DIVISIONo ie i 12127
DRI . o e snimuies W o Se e SRR BN AR me v 4 i 12.127
BPDUCEION o5 snsnsisimnaii 5 0 03 is CRoR s o mas o5 1 Ha pl i g 12.128

VALUE (to Specify a Disk Filename) 12.129
Syntax in DATA DIVISION e 12.129
DO . o oo vmvanivmarsin @o o6 w16 v s miasea SowTesisae §3 We ol srawas 12.129
Application TR N PR SR SRR R A i R e 12.129

WORKING-STORAGE .- : 155 62 5oess808 95608088 by £ A8 mbm fe 12.130
Syntax in DATA DIVISIONt 12.130
DOLAIS: .. s mimsmmnommins st 56 bz sreiow s s o R e wr A6 S5 A eI 12.130

WRITE (to Perform Sequential Output) 12.131
Syntax in PROCEDURE DIVISIONcccoiviiiinnnnnnn. 12.131
DOREE o o ory e G 55 G SR e e B e S S 12.131
ADPHCAON; o.ovrvsmmonessinm vin win e minioimimreeimibieisrmmsnin o s 54-548) Fmiersrsine 12.132

Appendix A Interprogram Communication

OVBIVIBW ¢ < o s s Ui 58 o5 SR 5w S sy e wiaresias $Te o o SHiank A1

Calling COBOL ProgramiB . - . : <5 s i oo s wwwnivesssaias saws vs e evanis A2
SR S i oo i iR a0 SRR e 53 T o8 I8 SR SRR T S S b, A2
oo - A A2
DA v wcivmmmmmmern sa v 0 v Foewmmmee s A5 A 6 R A2
Sample Program Structureiiiiiiii i, A.3

Calling Assembly Language Subroutines A4
Sample Program Structure i AS

Chaining COBOL Programsc.cuuiiuieunnunennennennnn A6
SYTRE o000 s b s 0 35 VY0 LTS S BN B8 7 B e A.6
PUIPOSE wosvismmosaay e 36 a8 i S8 st Sn e silemas o5 o8 oy ie v aines A7
Delails) o mvansmosiing 26 8 0 SR SRS SR G LR ERE VT T o ST A7
Sample Program Structurettt A7

Chaining Assembly Language Programsccuunnn A8

Appendix B Customizations

Source Program Tab SIOpS: .. .o svavssaiaaass o6 o sseeass@mas B.1

Compiler Listing Page Lengtht iiiiiirinennnns B.1

Appendix C Compller Phases

Appendix D Rebuiid: Indexed File Recovery Utility

OVBIVIBW . . . oottt et e e e e e D.1

Running Rebuild D.2

Sample Rebuild Session D.7

Part IV
Appendices
and Index

Page Xiii

Appendix E COBOL-86 Error Messages
OVEINHBWE - = oo w0 5 e NFREEIES o U8 So e RS ERES S B B G EA
Command Input and Operating System I/O Errors E.2
Program Syntax EMmorsuiiimtminrnnnennneennnnns E.4
Runtime Ermorst e et e e aae e E.15
Program Load Ermorscoiiiiiineniteiineannnennnenn E7
Appendix F Demonstration Programs
COBOL-B6 Programsoviuernnrorensenarnnrnnenesnnns F.1

CRTEDT wiociicn cs waemmavsiosamiis i 6 o i avon s ssairenes s, it ave @ e F.A

CENTER cnic o sn eamimesiieiansi 76 o smlaist s maseain st 27 06 65 dEeis FA
COBOL-86 Demonstration Systemcoiiiieininiinan.. F.A
Appendix G ASCIl Character Set for ANSI-74 COBOL
Appendix H Additional ANSI Reserved Words

Index

Page 1

INTRODUCTION

The COBOL-86 Compiler is an extensive implementation of the COBOL
language for microcomputers. This compiler has been certified with the
Federal Compiler Testing Center at the Low Intermediate level of com-
pliance with the ANSI X3.23-1974 standard. COBOL-86 has many features
that are standard for higher levels of validation and includes extensions
to the standard that are designed to optimize COBOL'’s usefulness in the
microcomputer environment.

How this Manual is Organized

Part I: User’s Guide

Chapters 1 through 3 provide the information you need to compile, link,
load, and execute a COBOL-86 program.

Chapter 4 tells you how to set up a batch command file to "compile, link,
and go.”

Chapter 5 explains the four disk file organizations: sequential, line sequen-
tial, relative, and indexed. It also describes how to use disk input/output
files and other types of files.

Chapter 6 tells you how to use the Interactive Debug Facility to identify
program errors at runtime.

Part ll: Language Overview

Chapter 7 provides fundamental information that is pertinent to any use
of the COBOL language.

Chapter 8 describes the purpose, structure, and limitations of the DATA
DIVISION.

Chapter 9 covers the PROCEDURE DIVISION in a manner similar to that
used in Chapter 8.

Chapters 10 and 11 treat indexed and relative files, respectively. Both
general information and the syntax of specific reserved words are included.

Page 2

INTRODUCTION

How this Manual is Organized

Part lll: COBOL-86 Reserved Words

Chapter 12 is an alphabetical listing that includes a syntax diagram, an
elaboration of details, and, where appropriate, examples of common appli-
cations for each reserved word used in COBOL-86. This chapter provides
the principal programming aid for the experienced COBOL user.

Part IV: Appendices and Index

Appendix A explains interprogram communication with the CALL and
CHAIN statements.

Appendix B shows you how to customize some of the COBOL-86 features.

Appendix C gives an overview of the five phases of the COBOL-86 Com-
piler. This appendix may be useful if your program resuits in a Compiler
phase error.

Appendix D describes the REBUILD program, which allows you to recover
or restore information in damaged indexed files.

Error messages are listed in Appendix E. They are arranged alphabetically
within four sections: (1) command input and operating system /O errors,
(2) program syntax errors, (3) runtime errors, and (4) program load errors.

Appendix F gives you directions for compiling, linking, and running the
demonstration programs.

Appendix G contains the ANSI 1974 character set and the ASCII equiva-
lents in hexadecimal notation.

Appendix H is an alphabetical listing of words reserved in the ANSI 1974
syntax that are not used in COBOL-86. It is included to help you avoid
duplicating reserved words in names you define (programmer- or user-de-
fined names).

Page 3

INTRODUCTION

Syntax Notation

In this manual, required reserved words, COBOL-86 system com-
mands, and Z-DOS® commands are shown in underlined capital let-
ters, nonreserved words and operating system variables are lower-
case. Filenames and nonrequired reserved words are shown in capi-
tal letters.

The inclusion of all underlined reserved words is required unless the
portion of the syntax in which they occur is itself optional. The charac-
ters < > and = are not underlined but are required when you use
such formats. Reserved words that are not underlined are optional
and serve only to improve the readability of the source program.

Punctuation shown in user entries is required. Terminal periods re-
quired on each COBOL source statement are omitted in the syntax
diagrams unless the nature of the syntax necessitates that it end
a statement (e.g., STOP RUN.). At least one space is required any-
where one or more spaces are shown. Parentheses and commas
are required in syntax related to subscripts.

Words printed in lowercase letters in syntax lines represent generic
terms (e.g., data-names) for which you must insert a valid entry in
the source program.

Any part of a statement or data description entry that is enclosed
in square brackets is optional.

In order to facilitate reference to lowercase words in the explanatory
text, some of them are followed by a hyphen and a digit or letter.
This modification does not change the syntactical definition of the
word.

Alternate options are depicted by placing the mutually exclusive
choices in braces and separating them with a vertical stroke, (or by
listing them vertically), e.g.:

{AREA | AREAS}isequivalentto | AREA
AREAS

™Z-DOS is a trademark of Zenith Data Systems Corporation.

Page 4

INTRODUCTION

Syntax Notation

e The ellipsis (...) indicates that the immediately preceding unit may
occur once or any number of times in succession. A unit means
either a single lowercase word, or a group of lowercase words and
one or more reserved words enclosed in brackets or braces. If a
term is enclosed in brackets or braces, the entire unit of which it
is part must be repeated when repetition is specified.

e Comments, restrictions, and clarification on the use and meaning
of every syntax line are contained in narrative immediately following
the syntax diagram.

e COBOL-86 syntax and words that the computer displays on the
screen are listed in this type style:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

1234567890

Converting COBOL Programs to COBOL-86

The COBOL-86 version of the COBOL Compiler is different from previous
releases of the compiler in two respects. '

1. COMPUTATIONAL USAGE (COMP) has been changed to COMPU-
TATIONAL-0 (COMP-0). If you intend to use a COBOL program writ-
ten for a different release of the compiler, all references to COMPU-
TATIONAL or COMP must be changed to COMPUTATIONAL-0 or
COMP-0.

2. The default TAB table for COBOL-86 contains tab stops at the follow-
ing columns: 8, 12, 20, 28, 36, 44, 52, 60, 68, and 73. Either you
must change a program that was written using different tab stops,
or you must modify the tab stops in the COBOL-86 TAB table. See
Appendix B, “Customizations,” for an explanation of how to modify
the tab stops.

Page)

INTRODUCTION

Learning More about COBOL

If you are new to COBOL programming, you will probably want to learn
more about writing programs before using the COBOL-86 Compiler. The
following texts are all COBOL tutorials, written for the novice programmer:

Abel, Peter. COBOL Programming: A Structured Approach. Reston, Vir-
ginia: Reston Publishing Company, 1980.

McCracken, Daniel D. A Simplified Guide to Structured COBOL Program-
ming. New York: John Wiley & Sons, Inc., 1976.

Parkin, Andrew. COBOL for Students. Beaverton, Oregon: Edward Arnold,
Ltd., 1978.

Part |
User’s Guide

mmmmmmmmmmmm ‘/Nl/‘ﬂlm
%2
@:

4

1y4 4“5&”&1
o - s 4 - 1

- wurn.d.., AL g

bty

11111

CHAPTER 1

page 1.1

GETTING STARTED

Overview

The purpose of Part |, “User’'s Guide,” is to help you get a COBOL program
up and running on your computer. The steps necessary for using COBOL-
86—compilation, linking, and execution—are described in the following
chapters. This chapter provides an overview of the compilation process,
lists the contents of your COBOL-86 disks, tells you how to perform disk
backup; and presents a sample program development session.

Steps in the
Compilation
Process

The Compilation Process

The three major steps in compiling and executing a COBOL-86 program
(see Figure 1.1) are:

compiling
linking
loading and executing.

1. The COBOL-86 Compiler consists of the main software module
(COBOL.COM) and four phases or overlays (COBOL1.0OVR through
COBOL4.0VR). The routines contained in the compiler analyze your
COBOL program and produce an object code file. This file will have
a filename extension of .OBJ.

Compilation is performed in two passes. The first pass creates an
intermediate version of the program, which is stored in a binary work
file called COBIBF.TMP; and the second pass creates the final ver-
sion of the object code.

2. The object code produced by the compiler is not executable machine
code. The Object Linker is responsible for producing the machine
executable code, which will be placed in a file with a .EXE extension.

Page 1.2

GETTING STARTED

The Compilation Process

User's source
program
COBOL-86 Compiler (COBOL.COM plus
! COBOL1.0VR-COBOL4.OVR)
Object Code

Linking Loader (LINK.EXE plus COBOL1.LIB and

¥ coBOL2.LIB)
Executable
Code
Runtime Executor (COBRUN.EXE)
(see Chapter 3)
Program
Execution

Figure 1.1. Major Steps in Compiling and Executing a COBOL Program

The Object Linker (linker) performs the following tasks:

® combines separately-produced object files

@ searches library files for definitions of unresoived external refer-
ences

e resolves external cross-references

® produces a printable listing of symbols

e produces the executable program.

3. The runtime system (COBRUN.EXE) “runs” the executable program.

Page 1.3

GETTING STARTED

Your COBOL-86 System

The COBOL-86 system consists of parts entitled the “User's Guide,” the
“Language Overview,” and “COBOL-86 Reserved Words,” as well as ap-
pendices and an index contained in a single binder, and two distribution
disks. The disks are organized in the following manner:

Disk | files contain the COBOL-86 Compiler and the runtime system.

COBOL.COM
COBOL1.0VR
COBOL2.0VR
COBOL3.0VR
COBOL4.0VR
COBOL1.LIB
coBoL2.LiB

COBRUN.EXE
COBDBG.OBJ
REBUILD.EXE

the main compiler program

overlay 1

overlay 2

overlay 3

overlay 4

the runtime library of optional routines

the runtime library containing the routines necessary for
loading COBRUN.EXE

the common runtime executor

the Interactive Debug Facility

the utility for recovering damaged indexed files.

Disk Il files are test and demonstration programs.

CTEST.COB
CTEST.EXE
CRTEST.COB
CRTEST.EXE
CENTER.COB

CENTER.EXE
DEMO.COB

DEMO_.01.0VL
DEMO.EXE
BUILD.COB
UPDATE.COB

UPDATE.EXE
README.DOC

a test program for the color display system

an executable version of CTEST.COB

a test program for the terminal interface module

an executable version of CRTEST.COB

a test program for the COBOL-86 Compiler and runtime
system

an executable version of CENTER.COB.

a program to demonstrate the COBOL-86 screen sec-
tion, to call the subprogram BUILD, and chain to pro-
gram UPDATE

an overlay file generated by linking DEMO

an executable version of DEMQO already linked with
BUILD

a subprogram to create an indexed (ISAM) file of
names, addresses, and telephone numbers

a program to list or update the ISAM file created by
BUILD

an executable version of UPDATE already linked.
contains current release information

Page 1.4

GETTING STARTED

Disk Backup

The first thing you should do when you receive your disks is make copies
to work with and save the original disks for masters. This may be done
by using the FORMAT, CONFIGUR, and COPY utilities supplied on your
Z-DOS disk. The copies you make should include the operating system
files and the Object Linker, LINK.EXE. To do so, follow these steps:

Place Z-DOS disk | in drive A and a blank disk in drive B.

Enter FORMAT B: /S/V

Enter COPY LINK.EXE B:

Replace the Z-DOS disk (in A) with COBOL-86 distribution disk I.
Enter COPY *.* B:

When the function is complete the disk in drive B will contain a boot-
able COBOL-86 system. Before this system is used with your printer,
it must be properly configured with the CONFIGUR utility on Z-DOS
disk I.

onrLON =

You can create a bootable copy of the test and demo suite by skipping
step 3 and substituting COBOL-86 distribution disk Il in step 4. If you
wish to use EDLIN for development of your source programs, copy
EDLIN.COM from Z-DOS disk | to a separate, formatted system disk in
the same manner.

Having made backup copies, you should verify your copy of the compiler
and runtime system by compiling, linking, and executing the test program
CENTER.COB using your working copy. To do this, refer to the Sample
Program Development session.

Using FORMAT and
COPY for Disk Backup

Using the
Test Program

Sample Program Development

The compilation, linking, and loading/execution of a COBOL-86 program
are described in detail in Chapters 2 and 3 of this guide. To give you
an overview of the COBOL-86 system, however, the following sample
session is provided. We recommend that you work through the sample
session and then read Chapters 2 and 3 of this “User's Guide” before
beginning to compile your own programs.

Page 1.5

GETTING STARTED

Drives for Program
and Compiller Disks

Sample Program Development

Sample Session

[

Organize your disks.

Organize the files on your disks to minimize disk swapping and Disk
full errors during program development. Usually COBOL-86 program
development will require two working disks—one for your text editor
and your source and object programs, one for the COBOL-86 Com-
piler, runtime executor, runtime libraries, the Object Linker, and any
other necessary utilities. For example, if you used the backup proce-
dure included in this chapter your two working disks will contain the
following files:

PROGRAM DISK COBOL-86 SYSTEM DISK
Your COBOL-86 program COBOL.COM COBDBG.OBJ
EDLIN.COM (Source, object, COBOL1.0VR LINK.EXE
and executable files will COBOL2.0VR COBOL1.LIB
be placed on this disk) COBOL3.0VR coBoOL2.LIB
COBOL4.0OVR COBRUN.EXE
REBUILD.EXE

During development, the program disk will be kept in drive B, and
the COBOL-86 system disk in drive A.

Drive B should be selected as the default drive (the one where new
files are placed unless specified otherwise in the command). This
arrangement simplifies access to the program files by placing them
all on the same disk. Use of the programs on the COBOL-86 system
disk will then require an explicit drive specification (e.g., A:COBOL or

A: LINK).

Create the source program.

In this sample session, we’ll use CORN.COB as the filename for
the source program. Of course, you may use any filename you wish
for the COBOL-86 program you enter. It is up to you to supply the
COBOL-86 source program. If you don't want to enter a program
right now, skip this step and transfer the sample COBOL-86 program
CENTER.COB from the COBOL-86 distribution disk to your program
disk.

Page 1.6

GETTING STARTED

Sample Program Development

a. After booting the system as usual, place your COBOL-86 system
disk in drive A. Then place the program disk in drive B and
select B as the default drive by typing:

B:
b. Type the command
EDLIN CORN.COB

to run the EDLIN editor program so you can write your COBOL-
86 program.

c. When you have finished writing the program, use the EDLIN
E command to place the file CORN.COB on your program disk
and then exit to the operating system.

3. Check program syntax with trial compilation.
Before you go on, you can check your program for syntax errors
with a “quick” compilation. This is done by compiling the program
and displaying the error listing on the screen. No object or listing
files are created, so compilation is faster than usual.

To compile CORN.COB and display a list of errors on the terminal,
use the following command:

A:COBOL CORN, NUL;

(See Invoking the Compiler in Chapter 2, “Compiling COBOL Pro-
grams.”)

If you get errors during the trial compilation (see Appendix E for a
list of error messages), go back to step 2 and correct the source
file (with the COBOL-86 system disk in drive A). When the trial compi-
lation is completed without errors, you are ready to proceed to step
4.

Page 1.7

GETTING STARTED

Sample Program Development

Compile the source program.

Now the program is ready to be compiled, which produces the object
file. First, make sure the COBOL-86 system disk is in drive A and
you are logged on to drive B. The compiler looks for the overlay
phases (COBOL1.0VR-COBOL4.0VR) first on the disk in the default
drive (drive B in this example) and then in drive A. With the disks
arranged as in our example, the overlay phases will be found on
drive A.

To compile the program so that an object file (named CORN.OBJ)
is produced, enter one of the following commands:

A: COBOL CORN; produces just the object file

A: COBOL CORN, , PRN produces an object file and printed listing

A: COBOL CORN, , CORN produces an object file and a list file (named
CORN.LST).

When compilation is successfully completed, the message No Errors
or Warnings is displayed, and the compiler exits to the operating sys-
tem.

LINK the executable program.

NOTE: The linker expects to find the COBOL-86 common runtime
libraries (COBOL1.LIB and COBOL2.LIB) on the disk in the default
drive (drive B in this case). If the libraries are not there, you will
be prompted to specify the drive containing the disk on which they
are located, unless you instruct the linker to look elsewhere. In this
example, we will do just that by specifying drive A in the following
link command. Now enter the command:

A:LINK CORN,, ,A:;

and press RETURN.

This command links the object file with the runtime system, producing
the executable file. The A: at the end of the command line tells the
linker to look on drive A for the COBOL libraries. (See Chapter 3
for a discussion of the linker commands.) The executable file (called
CORN.EXE) is saved on the disk in drive B.

Page 1.8

GETTING STARTED

Sample Program Development

Your program disk now contains the following files: CORN.COB,
CORN.OBJ, CORN.EXE, and, if you requested a list file, CORN.LST.

6. LOAD and execute the program.
To run a program, you need the executable file (CORN.EXE) and
the common runtime executor (COBRUN.EXE). COBRUN.EXE may
be in either drive. The system will search for it first on the disk in
the default drive, then in drive A.

In this example, CORN.EXE is on the program disk and COBRUN
is on the COBOL-86 system disk in drive A. Since we are keeping
the program disk in drive B, and drive B is selected as the default
drive, type just the name of the executable file (the .EXE is not re-
quired).

Even though you've been very careful to remove all compiletime er-
rors, you may still get runtime errors when the program is run. Error
messages are described in Appendix E of this manual. If you get
runtime errors, return to step 2 and edit the program to correct the
errors.

Page 2.1

CHAPTER 2 COMPILING COBOL PROGRAMS
Overview

As in Chapter 1, the sample commands in this chapter assume that: the
COBOL-86 system disk is in drive A, your program disk is in drive B,
and drive B has been selected as the default drive.

The COBOL-86 Compiler may be operated in one of the two ways listed
in this chapter. Note that the discussions in Compiler Responses and
Partial Command Strings of this chapter apply to both of these methods,
and you should therefore read these descriptions before you begin to
compile your own programs.

Operating the Compiler

1. You may operate the compiler by entering the command
A: COBOL
and pressing RETURN.

(The drive specification is necessary because the compiler is not
in the default drive.) Then reply to the following prompts. Filenames
are discussed in Computer Responses of this chapter, on the follow-
ing pages.

a. Source filename [.COB]:

Name of your source program. A filename must be specified.
If no extension is specified, .COB will be appended by default.

b. Object filename [source filename.OBJ]:
Name of the object file to be created. The source filename is
the default filename. The extension .OBJ is the default exten-
sion.

C. Source listing [NUL.LST]:

Name of the file to which the program listing is to be written.

Page 2.2

COMPILING COBOL PROGRAMS

Operating the Compiler

If you enter a filename, its default extension is .LST. If you do not
enter a filename, the default is NUL (no list). See The Source Listing
File of this chapter for further discussion of the list file.

For example: The following series of responses compiles the source
file CORN.COB, producing the object fle CORN.OBJ and a listing
file CORN.LST on the default drive:

A: COBOL

Source filename [.COB]: CORN

Object filename [CORN.OBJ]: press the RETURN key
Source listing [NUL.LST]: CORN

2. The compiler can also be operated by entering
A:COBOL command string
where the command string contains
source filename, object filename, source listing

as explained for the first operation method and in Compiler Re-
sponses.

The separator character is the comma (,). No spaces are allowed.
When compilation has finished, you will be notified of any errors. If errors
exist, you must locate and correct them in the source program and recom-
pile before linking. If the compiler detected no errors, you will be toid

No Errors or Warnings

and you may proceed with linking (Chapter 3).

Compiler Responses

When you use either of the above methods to operate the compiler, each
of your responses can be the name of a disk file and/or system device.
The format is:

Error Displays

Entering the Filename

Page 2.3

COMPILING COBOL PROGRAMS

Entering a
Command String

Operating the Compiler

device filename extension

where: device is the name of a system device. This can be a disk drive,
terminal, line printer, or other device supported by the operating system.
If the device is a disk drive, the filename must also be given, unless a
default filename is available (see final example in Partial Command Strings
of this chapter). If the device is not a disk drive, only the device name
is required. The device may be followed by a colon (:) for readability (it
is required for disk drives). COBOL-86 recognizes the following device
names:

NUL Do not create

CON Display on terminal
A:orB: ... Disk drive (colon required)
PRN Printer

AUX RS-232.

filename is the name of the file on disk. If filename is specified without
a device, the default disk drive is assumed as the device. Maximum length
of the filename is 8 characters.

extension is a period (.) followed by a three-character suffix to the filename.
If you do not specify an extension, the following defauits are assumed:

.COB for the source program file
.OBJ for the object file
LST for the list file.

Partial Command Strings

You may also enter a partial command string when operating the compiler.
Note that the default object filename may be specified by entering only
the comma that normally follows the filename. Also note that if you enter
the comma that follows the object filename, the source listing filename
defaults to the source filename. You will be prompted for any files not
specified in the command string. For example, the command

A:COBOL CORN, ,
would (1) prompt you for the source listing filename (with the default name

CORN.LST), (2) compile the source from CORN.COB, and (3) produce
the object file CORN.OBJ.

Page 2.4

COMPILING COBOL PROGRAMS

Operating the Compiler

Each prompt displays its default, which you may accept by pressing
RETURN or override by entering another filename or device name.

If you enter an incomplete command string followed by a semicolon (;),
default entries will be assumed for the unspecified files.

The following examples assume the compiler is on drive A and that drive
B has been selected as the default drive:

A:COBOL CORN;

A:COBOL CORN, ;

A:COBOL CORN, , ;

A: COBOL CORN, ,CON

A:COBOL CORN, CORNOBJ, PRN

A:COBOL A: CORN, CORNOBJ, A: ;

Compiles the source from CORN.COB and
produces the object file CORN.OBJ. No listing
file is produced.

Performs exactly the same functions as the
previous example.

Compiles the source from CORN.COB and
produces the files CORN.OBJ and CORN.LST.
(The second comma (,) tells the compiler to
use the source filename as the default list
filename.)

Compiles the source from CORN.COB and
places the source listing file on the terminal.
The object program is CORN.OBJ.

Compiles the source from CORN.COB, places
the list file on the printer, and places the object
into CORNOBJ.OBJ.

Compiles CORN.COB from disk A, places the
object into CORNOBJ.OBJ on the disk in drive
B, and places the listing into CORN.LST on
the disk in drive A.

Page 2.5

COMPILING COBOL PROGRAMS

/ Used to
Indicate Switch

Using Compiler Switches

You can add one or more switches to the compiler command string or
at the end of any interactive response. A switch is indicated by a slash
(/). The switches and their effects are described here.

The syntax for a command string with switch(es) is:

drive: COBOL command string/switch(es)

Switches

/C

/T

Ordinarily, the compiler looks for the four overlay files
(COBOL1.0VR through COBOL4.0VR) on the default drive, then
it looks on drive A. To override the default drive, use the /C switch
with the letter of the drive you want. (The colon is not required
in the switch.)

Example: A: COBOL CORN, , /CB

In this example, the compiler looks for the overlay files on drive
B.

The compiler puts its intermediate file COBIBF.TMP on the default
drive unless you use the /T switch followed by the desired drive
designation. The disk in the drive you specify must not be write-pro-
tected.

This option is particularly helpful for compiling very large programs
on systems with more than two drives (see Compiling Large Pro-
grams in this chapter).

Example: A: COBOL CORN, ,A: CORNLIST/TC

In this example, the intermediate file is placed on drive C. (The
colon is not required in the switch.)

Page 2.6

COMPILING COBOL PROGRAMS

Using Compiler Switches

/P

/D

/Fn

Each /P allocates an extra 100 bytes of stack space for the com-
piler's use. Use /P if stack overflow errors occur during compilation.

Example: A: COBOL CORN/P/P/P;
In this example, 300 extra bytes of stack space are allocated.

This switch suppresses both generation of the debug information
file (.DBG) and source line numbers, which are normally placed
in the object file. The result is PROCEDURE DIVISION code that
is about 16% shorter. However, when this switch is used, the run-
time system will not be able to note the line number at which an
error occurs. (See Chapter 7 for a discussion of the debug informa-
tion file.)

Example: A: COBOL CORN/D;
In this example, the object file will not contain source line numbers.

Fn (FIPS) flagging lets you tell the compiler to output a warning
for each COBOL statement above the Federal Information Proc-
essing Standard level (n). The n must be a digit from 0 through
4 (4 is the default):

Flag everything above low level.

Flag everything above low intermediate level.
Flag everything above high intermediate level.
Flag everything above high level.

No flagging.

HLON-—+O

Example: A: COBOL CORN/F1;

In this example, the compiler will display a warning for each
COBOL statement above low intermediate level. If you create a
source listing file, the warning will be included with the error mes-
sages.

Page 2.7

COMPILING COBOL PROGRAMS

The Source Listing File

The source listing file is a line-by-line account of the source file(s) with
page headings and error messages. Each source line is preceded by a
four-digit decimal number. This number will be referenced by any error
messages pertaining to that source line.

Files that are included in the compilation via COPY statements in the
source file are also included in the listing.

Compiler error messages are shown at the end of the listing file (as well
as being displayed on the terminal). See Appendix E for a list and explana-
tion of error messages.

Compiling Large Programs

Occasionally a COBOL-86 program may be too large to compile in the
available memory space or may exhaust the available disk space. There
are four ways you can take care of this problem with COBOL-86:

1. Use the /D switch in your command string (see Using Compiler
Switches in this chapter) to prevent generation of a debug information
file and to suppress generation of line numbers in the object file.

2. Use the /T switch in your command string (see Using Compiler
Switches) to place the intermediate file (COBIBF.TMP) on a separate
disk.

3. Break the program into several program modules. These modules
can be separately compiled and then combined into one program
by the linker. See Appendix A, “Interprogram Communication,” for
information on using program modules.

4. Break the large program into several smaller programs that are
chained. These programs are separately compiled and linked. See
Appendix A, “Interprogram Communication,” for information on chain-
ing programs.

Page 2.8

COMPILING COBOL PROGRAMS

Compiling Large Programs

NOTE: If you want to check the contents of your disk to make sure that
COBIBF.TMP has been deleted after compilation is completed, use the
DIR operating system command. Then, to make sure the space has been
released, use the CHKDSK program supplied with your operating system.
CHKDSK reclaims available space from unclosed files and tells you the
total amount of available space on the disk.

CHAPTER 3

Page 3.1

LINKING AND
EXECUTING COBOL PROGRAMS

Overview

As in previous chapters, this discussion assumes that: the COBOL-86
system disk is in drive A, the program disk is in drive B, and drive B
has been selected as the default drive.

The linker converts the compiled object version of your program (the object
file) into a version that is executable (the run file). To do so, it searches
the disk in the default drive for the COBOL-86 runtime libraries
COBOL1.LIB and COBOL2.LIB, which make up part of the common run-
time system (described later in this chapter). COBOL1.LIB is a library
of optional routines that may be required for running the program, and
COBOL2.LIB contains the routines that are always necessary for running
the program. The routines you need are then linked to the object version
of your COBOL-86 program. The routines you need depend on which
COBOL-86 language features you used in the program and program mod-
ules.

The linker can also be used to combine separately compiled program
modules into one program. The modules may be specified individually
or extracted from a library. They may be written in COBOL-86 or in Macro-
86 Assembler language. See Linking Program Modules in this chapter
for details.

Files that are to be linked or that will contain linker output can be specified
in one of three ways: interactively, as part of the command line, or as
a command file.

Using Link

To operate the linker, use one of the following procedures:
1. To specify files interactively, enter
A:LINK

(The device specification is necessary because LINK is not in the
default drive.) Then reply to the following prompts:

Page 3.2

LINKING AND EXECUTING COBOL PROGRAMS

Using Link

a. Object Modules|[.0BJ]:

Name(s) of object file(s). If you do not specify an extension,
.OBJ will be used. If multiple object files are linked, they must
be separated by a plus (+).

Files that are to be linked must be in object format. (If they
were compiled with COBOL-86 or generated by the Macro-86
Assembler, they will already be in object format.)

b. Run File[object filename.EXE]:

Name of file to contain executable code. The object filename
is the default filename. The extension .EXE cannot be overrid-
den.

C. List File[NUL.MAP]:

Name of list file. Defaults work much the same way as in the
compiler. The default is no list file, unless the run file is followed
by a comma (see the discussion of partial command strings).
If the run file is followed by a comma, the default list filename
is the object filename, with the default extension .MAP.

d. Libraries[.LIB]:

Libraries refers to the runtime routines that COBOL-86 may need
to run your program. All of these routines are included in
COBOL1.LIB and COBOL2.LIB.

Normally you only have to press RETURN following this prompt.
The names of the libraries are supplied to the linker by the
COBOL-86 object file. If you wish however, you may specify
your own libraries (see LIB documentation in Z-DOS manual),
that will be searched before the COBOL-86 libraries.

The linker assumes that the COBOL-86 libraries are in the de-
fault drive. If they are not in the default drive, you must enter
a drive specification, regardless of which drive you have selected
as the default drive.

Page 3.3

LINKING AND EXECUTING COBOL PROGRAMS

Using Link

In all of our examples, the libraries are on drive A and not the
default drive. Therefore, you should indicate the drive specifica-
tion for the libraries. If you don't, the linker will prompt you for
the drive on which the libraries are located.

Filenames are specified in the same way as for the compiler
(see Chapter 2), except that the default extension is always .EXE
for the run file produced by the linker.

For example: The following series of responses links the files
CORN.OBJ and MYOBJ.OBJ and searches your library
MYLIB1.LIB before searching COBOL1.LIB and COBOL2.LIB.
The linker produces the executable file MYRUN.EXE and the
source listing file MYLIST.MAP.

A:LINK
Object Modules[.OBJ]: CORN-+MYOBJ
Run File[CORN.EXE]: MYRUN
List File[NUL.MAP]: MYLIST
Libraries[.LIB]: MYLIB1+A:COBOL1 +A:COBOL2
2. Touse acommand string, enter
A:LINK command string
where the command string contains
objfile(s), runfile, listfile, libfile(s)
as defined before.
You must specify an object filename. For the other files, a default
flename may be selected in the command string by entering only

the comma that would normally follow the filename (see examples
following).

Page 3.4

LINKING AND EXECUTING COBOL PROGRAMS

Using Link

As with the COBOL-86 Compiler, you may enter a partial command
string or the entire string. If you specify an entry for all four files,
or if an incomplete command string ends with a semicolon (;), linking
will proceed without further prompting. Otherwise, the linker prompts
for the remaining unspecified files. Each prompt displays its default,
which you may either accept (by pressing RETURN) or override (by
entering another filename and/or device name).

Examples (COBOL-86 system disk is in drive A, default drive is B):
Since the COBOL libraries are in drive A, and the default drive is
drive B, the linker will not find the libraries unless you specify the
drive for the libraries or respond with an A drive designation to the
linker prompts. In these examples, we have specified the library on
drive A, unless indicated otherwise.

A:LINK CORN;

links CORN.OBJ and puts the runfile into CORN.EXE. No list file
is produced. If CORN.OBJ was produced by the COBOL-86 Com-
piler, the linker prompts for the drive on which COBOL1.LIB and
COBOL2.LIB are found. Type A in response to the prompt.

A:LINK CORN,,,A:;

operates the same as the first example, except that a listing is pro-
duced in CORN.MAP. (The second comma (,) indicates that the ob-
ject filename is to be used as the default list filename.) The A: at
the end of the command line tells the linker to find the COBOL-86
libraries on drive A instead of the default drive.

A:LINK CORN+SUBFILEL+SUBFILE2,,,A:;

operates the same as the previous example, except that SUB-
FILE1.0BJ and SUBFILE2.0BJ will be linked with CORN.

Page 3.5

LINKING AND EXECUTING COBOL PROGRAMS

Using Link

3. You can also create one or more files that contain responses to the
linker prompts. They are especially useful when you are linking a
number of object modules more than once (during debugging, for
example), or when you are developing variations of a program. See
Chapter 4 of this manual or the Z-DOS manual for details on creating
response files.

To specify this option on the command line, use the command:
A:LINK @filename

where filename is the name of your response file. You must include
the drive if the file is not on the default drive. You may also specify
a file extension.

Example: A: LINK @RESFIL. LNK

After the command line is entered, the linker starts. If the linker needs
more memory space to link your program than is in the computer, it will
create a file called VM.TMP on the disk in the default drive and will display
a message to that effect.

CAUTION: Do not remove this disk during linking. If this additional space
is used up, or if the disk containing VM.TMP is removed before linking
is completed, the linker will abort.

When the linker has finished, VM.TMP will be erased from the disk, and
any errors that occurred during linking will be displayed. (Error messages
are listed in the Z-DOS manual.) The run file will be stored (with the exten-
sion .EXE) on the disk in the default drive or in the specified drive.

NOTE: If you want to check the contents of your disk to make sure that
VM.TMP has been deleted after a linker abort, use the DIR operating
system command. Then, to make sure the space has been released, use
the CHKDSK program supplied with your operating system. CHKDSK wiill
reclaim available space from unclosed files and tell you the total amount
of available space on the disk.

Page 3.6

LINKING AND EXECUTING COBOL PROGRAMS

Linking Programs That Use Overlays

The COBOL-86 segmentation facility lets you run programs that are larger
than the computer’s central memory. Segmented programs have overlays
that are referenced by COBOL-86 section numbers greater than 49 (see
Segmentation, in Part Il). Each section is an independent segment.

No special user commands are required for linking a segmented program.
The linker creates a file for each independent segment of the program,
with the filenames in the format:

PROGIDnn.OVL
where

e PROGID is the PROGRAM-ID that you defined in the IDENTIFICA-
TION DIVISION. If the PROGRAM-ID is less than six characters,
COBOL-86 extends it to six characters by adding underlines () to
the end.

® nnis a two-digit hexadecimal number that is computed by subtracting
49 (decimal) from the program segment number (decimal).

Example: If the PROGRAM-ID is “SAMPLE” and the program contains
segment number 99 (decimal), an overlay segment will be produced with
the name SAMPLE32.0VL.

.OVL File Format
After Linking

Linking Program Modules

If you have developed your program as separately compiled program mod-
ules, the linker can combine the modules into one program.

Before linking, compile or assemble all modules so that you have an object
version of each. Then start the linker, specifying in the command string
each module you want to link.

Example: A: LINK CORN+SUBFILE1+SUBFILE2, ,,A:;

See Appendix A, “Interprogram Communication,” for more information
about linking program modules.

Object File

Page 3.7

LINKING AND EXECUTING COBOL PROGRAMS

Methods for
Separating Files

Linking Large Programs

This discussion assumes that your files are arranged on two disks as
in the Sample Session in Chapter 1.

If your program disk will not hold all the object files, the run file, and
the list (.(MAP) file, you will need to separate the files. One of the following
methods should take care of this problem.

1.

6.

Do not request a list file ((MAP). Accept the no list default, or specify
NUL as its name, i.e., A: LINK CORN, , NUL, A:

Send the list file (.MAP) to the terminal (CON) or printer (PRN).

Copy all the .OBJ files to a separate disk. Use this disk in place
of the program disk.

Break the program into several programs that are chained. Compile
and link each program separately. Note that the common runtime
system works very efficiently with CHAIN; it only needs to be loaded
once, rather than once for each program in the chain. See Appendix
A, “Interprogram Communication,” for more information on chaining.

Break the program into program modules connected by CALL state-
ments. Compile the modules separately and link them together using
the linker. This procedure is similar to CHAIN except that the called
program contains a return instruction. See Appendix A, “Interprogram
Communication,” for instructions on linking program modules.

Purchase more system memory and/or disk storage.

NOTE: If you want to check the contents of your disk to make sure that
VM.TMP has been properly deleted after a linker abort, use the DIR operat-
ing system command. Then, to make sure the space has been released,
use the CHKDSK program supplied with your operating system. CHKDSK
will reclaim available space from unclosed files and tell you the total
amount of available space on the disk.

Page 3.8

LINKING AND EXECUTING COBOL PROGRAMS

Executing COBOL Programs

After your COBOL program has been compiled and linked successfully,
the final step is loading and execution. These functions are performed
by specifying the name of the executable file to the operating system,
as explained here.

Your runtime executor (COBRUN.EXE) is loaded automatically at the be-
ginning of execution. When you begin execution, COBRUN.EXE must be
in either the default drive or drive A.

To run your program, just enter the name of your run file, without the
.EXE filename extension. For example, if your program is in the current
drive, type:

CORN

Execution of CORN.EXE should begin immediately.

Using the
Runtime Executor

Entering Run
File Name

CHAPTER 4

Page 4.1

BATCH COMMAND FILES

.BAT Extension
Required

Expediting
Compilation

Z-DOS, the operating system that COBOL-86 uses, allows you to create
a batch file for executing a series of commands. This file must have the
extension .BAT. It should be kept on the program disk.

As shown in the example that follows, the batch file may contain symbols
that refer to parameters in its command line. The symbol %1 refers to
the first parameter on the line, %2 to the second parameter, etc. The
limit is %9. In the example below, %1 refers to the parameter, sourcefile.

The batch file may also pause, display a prompt (that you have defined),
and wait for you to continue. The PAUSE command, followed by the text
of the prompt, performs this function.

If your program is already debugged and you are making only minor
changes to it, you can speed up the compilation process by creating a
batch file that issues the compile, link, and run commands.

For example, use the EDLIN editor to create the batch file CLGO.BAT
(for “compile, link, and go”). The text of the file might be:

A: COBOL %1,
A:LINK %1, NUL,A:;
%1

To execute this file, iype

CLGO sourcefile

where sourcefile is the name of the source program you want to compile,
link, and run. The first line of the batch file compiles the program; the
second line links the object file; and the third runs the executable file.

NOTE: A .BAT file is only executed if there is neither a .COM file nor
EXE file with the same name.

For more information about batch command files, see the Z-DOS manual.

CHAPTER 5

Page 5.1

DATA INPUT AND OUTPUT

Overview

A COBOL program can read or write data to files on disk or to other
Z-DOS devices. The instructions for creating and using these files are
entered as part of the COBOL-86 source program. This chapter explains
disk files and other types of files and tells you how to use them with
your COBOL-86 programs. See Part |l of the manual for more information.

To specify that a disk file is to be used in a program, include the ASSIGN
TO DISK clause in the FILE-CONTROL paragraph of the ENVIRONMENT
DIVISION.

The filename of the disk file must be declared in the VALUE OF FILE-ID
clause in an FD paragraph, in the FILE SECTION of the DATA DIVISION.
The FD paragraph must also include the clause LABEL RECORDS ARE
STANDARD. BLOCK clauses are checked for syntax but have no effect
on any filetype. The FILE-ID must not be one of the Z-DOS device names
listed in Using Z-DOS and Nondisk Files in this chapter.

Specifying the
Flle Organization

Using Disk Files

Disk files may be organized in one of four ways:

Sequential
Line sequential
Relative
Indexed.

When a COBOL-86 program reads from or writes to a disk file, the OR-
GANIZATION clause in the FILE-CONTROL paragraph of the program’s
ENVIRONMENT DIVISION must specify the file organization of the disk
file, unless it is sequential. Disk files are assumed to be sequential unless
declared otherwise.

Note also that only line sequential files can be created with a text editor.
All others must be created by a COBOL-86 program or assembly language
program. See Part Il of the manual or one of the tutorials recommended

in the “Introduction” to this manual for more information about creating
disk files.

Page 5.2

DATA INPUT AND OUTPUT

Using Disk Files

Types of Disk Files

Following is a list of the four types of disk files. All formats are subject
to change without notice.

j

Sequential files have a two-byte count of the record length followed
by the actual record, for as many records as are in the file.

In Line sequential files the record is followed by a return/line feed
delimiter, for as many records as are in the file.

Both sequential organizations pad any remaining space in the last
physical block with CTRL-Z characters, indicating end of file. To make
maximum use of disk space, records are packed together with no
unnecessary bytes in between.

Relative files always have fixed length records of the size of the
largest record defined for the file. Since no delimiter is needed, none
is provided. Deleted records are filled with hex value “00.” Addition-
ally, six bytes are reserved at the beginning of the file to contain
system bookkeeping information.

Each indexed file declared in a COBOL-86 program will generate
two disk files: a key file and a data file. The file specification in the
VALUE OF FILE-ID clause specifies a file containing data only. The
filename included in the file specification is appended with an exten-
sion .KEY to form the file specification of the key file.

The key file contains keys, pointers to keys, and pointers to data.
The format of this file is very complicated, but follows the guidelines
for a prefix B + tree.*

A key file is divided into 256 byte units, called granules. There are
five possible granule types. A type indicator is located in the first
byte of each granule. The granule type indicators have the following
values:

*See Comer, Douglas. “The Ubiquitous B-Tree.” Computing Surveys of the ACM, Vol. 11,
no. 2 (June 1979), pp. 121-137.

Key Files

Types of Granules

Page 5.3

Data Files

DATA INPUT AND OUTPUT
Using Disk Files
Value Type Indicator
1 Data Set Control Block
2 Key Set Control Block
3 Node
4 Leaf
5 Deleted granule

The key file will have only one data set control block in the first granule,
one key set control block for the primary file key, and additional key set
control blocks for alternate keys.

Each data set control block and key set control block contains, in the
fourth byte, a “damaged” flag that notifies you when the last file use was
not terminated properly. The runtime executor sets these flags to nonzero
values when the file is opened for updating and restores them to zero
when the file is closed.

The data file consists of data records. Each data record is preceded by
a two-byte long field and a one-byte “reference count” that indicates
whether a record has been deleted. The data file is terminated by a control
record with a length field containing a 2, followed by two bytes of HIGH-
VALUES.

Using Z-DOS and Non-disk Files

Files that will only be output need not be placed on a disk, but should
be considered as a stream of characters going to a printer or other device.
No permanent file is created. Records should be defined as the fields
to appear on the output device. No extra characters are needed in the
record for carriage control. Return, line feed, and form feed are sent to
the output device between lines. Note, however, that blank characters
(spaces) on the end of a print line are truncated to make printing faster.

To send an output file to the printer, use the SELECT filename ASSIGN
TO PRINTER clause. Then in an associated FD, specify the clause LABEL
RECORD IS OMITTED. Do not specify the VALUE OF FILE-ID clause.

Page 5.4

DATA INPUT AND OUTPUT

Using Z-DOS and Non-disk Files

Z-DOS provides special device names for character devices. Data may
be sent to or read from the following devices:

CON display on terminal
AUX serial port (RS-232)
PRN printer

If you assign these names to the VALUE OF FILE-ID clause, COBOL-86
treats the files as disk files. That is, you assign the files to disk with the
SELECT clause, and the operating system uses the designated device.

Character
Device Names

CHAPTER 6

Page 6.1

THE INTERACTIVE DEBUG FACILITY

Overview

The COBOL-86 Interactive Debug Facility allows you to control the execu-
tion of a program and to examine or change data items in a COBOL-86
program. When a program is compiled, a “debug information file” is created
along with the object file. The information file contains line numbers and
data-names from the DATA DIVISION and PROCEDURE DIVISION of
your COBOL-86 program. The debug commands listed in this chapter
can use these line numbers and data-names to affect data items and
program execution in a number of ways.

The compiler will create the debug information file with the filename of
the COBOL-86 source file, but with the extension .DBG. For example,
compilation of a source file named MYFILE would produce MYFILE.OBJ
(object file) and MYFILE.DBG (debug information file).

To suppress creation of a debug information file, use the /D compiler
switch (see Using Compiler Switches in Chapter 2).

Requesting
Debug

The Debugging Procedure

To use the Interactive Debug Facility, include the file COBDBG.OBJ in
the command line when you link your program. For example:

A:LINK MYFILE +A: COBDBG, , NUL, A:

enables the debug facility. When you issue the command to execute your
program (MYFILE, in this example), the following message will be dis-
played:

COBOL-86 Interactive Debug Facility v. xxx
Program: MYFILE

Type help for list of commands
%

Page 6.2

THE INTERACTIVE DEBUG FACILITY

The Debugging Procedure

The asterisk prompt (*) indicates that the debug facility is ready to accept
any of the debug commands. The debug information file should be on
the current disk. If is it not, the message

**No debug information file found
will follow the messages already displayed.

Note that without a debug information file, limited debugging is possible.
By simply including COBDBG.OBJ in the linker command line, you can
enable the Interactive Debug Facility and execute any of the debug com-
mands except CHANGE, EXHIBIT, and GOTO line-number. However,
without the debug information file, the debug facility cannot verify that
line numbers specified in the BREAKPOINT command are valid PROCE-
DURE DIVISION line numbers that contain statements or section or para-
graph names.

*Prompt

Use of Debug Commands

Debug commands, as shown in Table 6.1, may be typed in full or ab-
breviated to the first letter of the command name. Upper- and lowercase
are equivalent. Arguments to the commands (line numbers, data-names,
ALL, OFF) must be given in full. Though spaces are shown, arguments
can be separated from commands by any nonalphabetic character. When
a numeric argument is expected, the debug facility will scan until the first
digit on the line is found. For example, the following list of commands
are all equivalent (they all set a breakpoint at line 100):

Breakpoint 100

BREAK @100

b100

break for me at line 100, if you would please

Syntax of Debug

Page 6.3

THE INTERACTIVE DEBUG FACILITY

Table 6.1.

Use of Debug Commands

Functions of the Interactive Debug Facility

FUNCTION

ADDRESS [data-name]

BREAKPOINTS

BREAKPOINT line-num

CHANGE data-name

DUMP [addrl[,addr2]]

EXHIBIT data-name

1S

2

KILL line-num
KILL All

LINE

QUIT

STEP

TRACE

TRACE Off

DESCRIPTION

Display absolute address (hexadecimal) of a data item
in memory.

List all breakpoints.

Set a breakpoint at line-number. You may have up
to 8 breakpoints set at any given time. Debug verifies
that line-number is a PROCEDURE DIVISION line that
contains a statement or a section or paragraph name.

Display the contents of data-name* and allow a new
value to be entered.

Display memory addresses (hexadecimal and ASCII
equivalents) from addr1 through addr2.

Display contents of data-name. *
Resume execution from the last breakpoint or current
program position until a breakpoint or end of program

is encountered.

Begin execution at line-number; continue until break-
point or end of program is encountered.

Display the list of debug commands.

Remove the breakpoint at line-number.

Remove all breakpoints from the breakpoint list.
Display the line-number of the current line.

Terminate the program (closing all open files).

Execute one statement.

Set trace mode. When trace mode is set, the line
number of each line will be displayed as the line is

executed.

Turn off trace mode. This command sets trace mode
off. (See description of Trace.)

*Subscripted variables cannot be used as data-names.

Part I
Language Overview

CHAPTER 7

Page 7.1

INTRODUCTION

Overview

Parts Il and Ill of this manual comprise a detailed reference guide to the
COBOL language as set forth in the 1974 ANSI definition and implemented
in the COBOL-86 Compiler. Students of COBOL are cautioned that this
reference guide assumes a level of familiarity with the language and is
not intended to be a substitute for a good tutorial textbook. Throughout
Parts Il and Ill, ANSI standard information is presented in parallel with
extensions and variations peculiar to this compiler.

Part Il treats elements of the COBOL language that are fundamental and
pervasive in nature. For the most part, it avoids dealing with the syntax
and function of specific reserved words. This material can be found in
Part Ill, which is organized as an alphabetical guide for quick access to
reserved words.

Exceptions are made, however, in the case of indexed and relative files.
Because the reserved words pertinent to the handling of these file types
are highly interrelated in their effects, a coherent explanation of their use
cannot be achieved by treating each word in isolation. Therefore, Chapters
10 and 11, respectively, describe in a comprehensive manner the use
of indexed and relative files. The reserved words treated there are
excluded from Part Ill unless they have an additional function not related
to these filetypes.

The figurative constants are also treated in Part Il, since they represent
values rather than logical functions and are used throughout COBOL pro-
grams in a variety of ways.

Processing
Modules

The ANSI Standard

COBOL-86 is based upon American National Standards Institute X3.23-
1974, Elements of the language are allocated to twelve functional process-
ing modules:

Nucleus

Table Handling
Sequential /0
Relative I/0

PN~

Page 7.2

INTRODUCTION

The ANSI Standard

©ENO®

Indexed I/O

Interprogram Communication
Library

Communication

Debug

10. Report Writer
11. Segmentation
12. Sort/Merge.

Each module has two defined levels of implementation—Level | and Level
IIl. In order to be called COBOL, a system must provide at least a Level
| implementation of the Nucleus, Table Handling, and Sequential I/O mod-
ules. In general, COBOL-86 provides all of Level | plus a substantial portion
of Level Il implementation for eight of the twelve modules. Specifically:

1. Nucleus—all Level | and Il plus USAGE COMP-3 or COMP-0 and
additional extensions to ACCEPT and DISPLAY. The following, how-
ever, are excluded:

a.

—FT T @000

no figurative constant ALL with an operand length greater than
1

no qualifiers in ENVIRONMENT DIVISION

no Switch Testing Facility (Level | feature)

no alphabet-name other than ASCII

no level 88 conditions with lists and ranges intermixed

no unsigned COMP items

no RENAMES phrase

no use of MOVE, ADD, or SUBTRACT CORRESPONDING
no multiple destinations in arithmetic statements

no REMAINDER

no arithmetic expressions in conditions

no ALTER with multiple procedure names.

Additionally, INSPECT is implemented at Level I.

2. Table Handling—All Level I, plus full Level Il SEARCH formats, ex-
cept no OCCURS DEPENDING ON.

Implementation Levels

Page 7.3

INTRODUCTION

10.

11,

The ANSI Standard

Sequential I/O—All Level | plus these Level |I:

a.

@~pao

RESERVE clause

OPEN and CLOSE with multiple operands and individual options
per file

VALUE OF FILE-ID IS data-name

OPEN EXTEND

WRITE ADVANCING data-name

LINAGE phrase

AT END-OF-PAGE clause.

Relative and Indexed I/O—All Level | plus these Level l:

RESERVE clause

OPEN and CLOSE with multiple operands and individual options
per file

VALUE OF FILE-ID IS data-name

DYNAMIC access mode with READ NEXT

START with key relations EQUAL, GREATER, or NOT LESS.

Interprogram Communication—Level I.

Library—Level I.

Communication—not implemented.

Debug—not implemented (however, numerous debugging extensions
are implemented, including the IBM COBOL Debug Facility, READY
TRACE procedure tracing feature, and WITH DEBUGGING MODE
in SOURCE-COMPUTER paragraph).

Report Writer—not implemented.

Segmentation—Level |.

Sort/Merge—not implemented.

Page 7.4

INTRODUCTION

Coding Fundamentals

In addition, several exclusions exist in the file-handling modules, most
of which pertain to tape systems (which are not supported). They are:

b N

N

no multiple index keys

no SELECT OPTIONAL filename clause

no functional RESERVE integer AREAS clause
no MULTIPLE FILE TAPE CONTAINS clause
no fully functional BLOCK CONTAINS or RECORD CONTAINS
clauses

no Level | Rerun facility
no multireeling, tape reversal, or tape positioning through the use

of OPEN or CLOSE.

Character Set

The COBOL source language character set consists of the following char-

acters:

ol o ey

+

T ANV *

O3 3 ~XTTTQTO A0 DD
— . S — =z -

Letters A through Z
Blank or space
Digits 0 through 9
Special characters:

Plus sign

Minus sign

Asterisk

Relational sign (equals)
Relational sign (greater than)
Relational sign (less than)
Dollar sign

Comma

Semicolon

Period or decimal point
Quotation mark

Left parenthesis

Right parenthesis
Apostrophe (alternate of quotation mark)
Slash.

Page 7.5

INTRODUCTION

Punctuation
of Source Code

Coding Fundamentals

In the case of non-numeric (quoted) literals, comment entries, and com-
ment lines, the COBOL character set is expanded to include the com-
puter’s entire character set.

Punctuation

The following characters are used for punctuation:

o0

(Left parenthesis
) Right parenthesis
, Comma

. Period

; Semicolon.

The following general rules of punctuation apply in writing source pro-
grams:

As punctuation, a period, semicolon, or comma should not be pre-
ceded by a space, but must be followed by a space.

At least one space must appear between two successive words and/
or literals. Two or more successive spaces are treated as single
space, except in non-numeric literals.

Relation characters should always be preceded by a space and fol-
lowed by another space.

When you use a period, comma, plus, or minus character in the
PICTURE clause, it is governed solely by rules for report items.

A comma may be used as a separator between successive operands
of a statement or between two subscripts.

A semicolon or comma may be used to separate a series of state-
ments or clauses.

Page 7.6

INTRODUCTION

Coding Fundamentals

Word Formation

User-defined and reserved words are composed of a combination of not
more than 30 characters, chosen from the following set of 37 characters:

1. 0through 9 (digits)
2. Athrough Z (letters)
3. —(hyphen).

All words must contain at least one letter or hyphen, except procedure-
names, which may consist entirely of digits. A word may not begin or
end with a hyphen. A word is ended by a space or by proper punctuation.
A word may contain more than one embedded hyphen; consecutive em-
bedded hyphens are also permitted. All words are either reserved words,
which have preassigned meanings, or programmer-supplied names.
Primarily, a nonreserved word identifies a data item or field and is called
a data-name. Other cases of nonreserved words are filenames, condition-
names, mnemonic-names, and procedure-names.

Source Line Structure

Since COBOL-86 is a subset of American National Standards Institute
(ANSI) COBOL, programs may be written on standard COBOL coding
sheets, and the following rules are applicable. If you are not familiar with
the standard COBOL coding form, a sample is shown in Figure 8.2.

1. Each line of code may have a six-digit number in columns 1-6, such
that the line numbers are in ascending order.

2. Reserved words for division, section, and paragraph headers must
begin in Area A (columns 8-11). Procedure-names must also appear
in Area A (at the point where they are defined). Level numbers may
appear in Area A. Level numbers 01, 77, and level indicator FD must
begin in Area A.

3. All other program elements should be confined to columns 12-72,
governed by the other rules of statement punctuation.

Legal Characters

Coding Rules for
COBOL-86 Programs

Page 7.7

INTRODUCTION

Coding Fundamentals

4. Columns 73-80 are ignored by the compiler.

5. Explanatory comments may be inserted on any line within a source
program by placing an asterisk in column 7 of the line. The line will
be produced on the source listing but serves no other purpose. If
a slash (/) appears in column 7, the associated line is treated as
a comment and will be printed at the top of a new page when the
compiler lists the program. See Part lll, TRACE and EXHIBIT, for
use of 0 in column 7.

6. Any program element may be “continued” on the following line of
a source program. The rules for continuation of a non-numeric
(“quoted”) literal are explained in Chapter 8. Any other word or literal
or other program element is continued by placing a hyphen in the
column 7 position of the continuation line. The effect is concatenation
of successive word parts, exclusive of all trailing spaces of the last
predecessor word and all leading spaces of the first successor word
on the continuation line. On a continuation line, Area A must be blank.

7. Tab stops are set at columns 8, 12, 20, 28, 36, 44, 52, 60, 68, and
73 unless the compiler has been modified as described in Appendix
B.

Program Structure

Every COBOL source program is divided into four required divisions,
namely: IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE.
Each division begins with a division header in the form division-name DIVI-
SION. Divisions are themselves subdivided into smaller logical units.
Listed in descending order of precedence, these subdivisions are: section,
paragraph, sentence, clause, phrase, and word.

Because the first two divisions are relatively limited in scope, complete
information regarding them can be found by looking up the words IDEN-
TIFICATION, ENVIRONMENT, CONFIGURATION, and INPUT-OUTPUT
in Part 1ll. (CONFIGURATION and INPUT-OUTPUT are sections within
the ENVIRONMENT DIVISION.)

Page 7.8

INTRODUCTION

Coding Fundamentals

Chapters 8 and 9 detail the information needed to write the DATA and
PROCEDURE divisions.

Program 7.1 shows the structure of a complete, generic COBOL program
as it would exist if the programmer made use of all available structural
options.

Program 7.1. Generic COBOL Program

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. comment-entry ...]
[INSTALLATION. comment-entry ...]
[DATE-WRITTEN. comment-entry ...]
[DATE-COMPILED. comment-entry ...]
[SECURITY. comment-entry ...]
ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.]
[SOURCE-COMPUTER. entry]
[OBJECT-COMPUTER. entry]
[SPECIAL-NAMES. entry]

[INPUT-QUTPUT SECTION.

FILE-CONTROL. entry ...
[I-0-CONTROL. entry ...]]

DATA DIVISION.

[FILE SECTION.

[file description entry

record description entry ...]...]
[WORKING-STORAGE SECTION.

[data item description entry ...]...]
[LINKAGE SECTION.

[data item description entry ...]...]
[SCREEN SECTION.
[screen-description-entry ...] ...]
PROCEDURE DIVISION [USING identifier-1 ...].

[DECLARATIVES.
[section-name SECTION. USE Sentence.
[paragraph-name. [sentence]...]...]...

_ END DECLARATIVES. |
[[section-name SECTION. [segment number]]
[paragraph-name. [sentence]...]...]...

Page 8.1

CHAPTER 8 DATA DIVISION
Overview
The DATA DIVISION allocates storage, defines the format, and specifies
the names for data items used in a COBOL program. It is subdivided
into four sections:
1. File Section
2. Working-Storage Section
3. Linkage Section
4. Screen Section.
Although each section is optional, they must occur in the order listed.
Each section is treated in Part lll, which is composed of Chapter 12, “Al-
phabetical Reserved Word List.” In Part lll, each section can be located
by its respective section name.
Data ltems
Structures Several kinds of data items can be defined and utilized in a COBOL pro-
andTypes gram. Data items are distinguished both by their structure and their type.

The four structures are:

group items

elementary items
stand-alone items
condition-names.

o ol

The five types are:

alphanumeric
alphanumeric-edited
numeric
numeric-edited (report)
index.

b 0P =

Although COBOL-86 accepts a sixth type, alphabetic, in source code state-
ments, it is treated internally as an alphanumeric.

NOTE: For a complete treatment of condition-names, see VALUE in Part
IIl; index data items can be found under OCCURS in Part Ill. Structures
and Types

Page 8.2

DATA DIVISION

Data Items

Data Item Structures

Group Items

A group item is one having further subdivisions, such that it contains one
or more elementary items. In addition, a group item may contain other
groups. An item is a group item if, and only if, its level number is less
than the level number of the immediately succeeding item (see Level Num-
bers in this chapter). Group items use level numbers in the range 1-49.
The maximum size of a group item is 4095 characters.

Elementary items

An elementary item is a data item contained within a group, but which
contains no subordinate items. Elementary items use level numbers in
the range 2-49.

Stand-Alone Items

A stand-alone item is identical to an elementary item in every respect,
except that it is not contained within a group. Stand-alone items are iden-
tified by level number 77.

Data Item Types

Alphanumeric and Alphanumeric-edited

Alphanumeric items store character string values. Any character or combi-
nation of characters constitutes a valid string. Alphanumeric items are
not valid operands in arithmetic operations, even if their contents are en-
tirely numeric. If special editing characters are included in the item'’s field
description, it becomes an alphanumeric-edited item. For a detailed treat-
ment of the editing characters, see PICTURE in Part Ill.

Page 8.3

DATA DIVISION

Internal
Storage
Formats

Data Items

Numeric and Numeric-edited

Numeric items store quantitative values in a format suitable for arithmetic
processing. Only the digits 0-9 and S, V, or P editing characters may
be included in a numeric field. The maximum field size is limited to 18
digits.

If special editing characters ($. , + —, etc.) are included in the field
description, it becomes a numeric-edited item. For a detailed treatment
of the editing characters, see PICTURE in Part Ill. Special editing charac-
ters may not extend the field size to more than 30 characters. A numeric-
edited item may act as a receiving field in an arithmetic process, but may
not act as a sending field.

Actually, three distinct internal formats are available for storage of numeric
items. The format you choose is governed by an optional USAGE clause,
with USAGE DISPLAY assumed if the clause is omitted (see USAGE
in Part Ill). The details of each format follow.

External Decimal Item. An external data item is an item in which one
computer character (byte) is employed to represent one digit. The exact
number of digit positions is defined by writing a specific number of 9 char-
acters in the PICTURE description. For example, PICTURE 999 defines
a three-digit item. That is, the maximum decimal value of the item is nine
hundred ninety-nine.

If the PICTURE begins with the letter S, then the item also has the capabil-
ity of containing an “operational sign.” An operational sign does not occupy
a separate character (byte), unless the SEPARATE form of SIGN clause
is included in the item’s description. Regardless of the form of representa-
tion of an operational sign, its purpose is to provide a sign that functions
in the normal algebraic manner.

An external decimal item corresponds to DISPLAY usage.

Internal Decimal Item. An internal decimal item is one that is stored
in packed decimal format.

Page 8.4

DATA DIVISION

Data ltems

A packed decimal item will occupy a number of bytes equal to the next
larger whole number than the result of dividing the number of characters
by 2. For example,

PIC S9(5).
5/2 =2.5.Bytesused = 3.
PIC S9(6).

6/2 =3.Bytesused = 4.

All bytes except the right-most contain a pair of digits, and each digit
is represented by the binary equivalent of a valid digit value from 0 to
9. The item’s low order digit and the operational sign are found in the
right-most byte of a packed item. For this reason, the compiler considers
a packed item to have an arithmetic sign, even if the original PICTURE
lacked an S-character.

The packed decimal format corresponds to COMPUTATIONAL-3 (COMP-
3) usage.

Binary ltem. A binary item uses the base 2 system to represent an
integer in the range —32768 to 32767. It occupies one 16-bit word. The
left-most bit of the reserved area is the operational sign. A binary item
corresponds to COMPUTATIONAL-0 (COMP-0) usage.

Level Numbers

For purposes of processing, the contents of a file are divided into logical
records. Level numbers allow you to specify subdivisions of a record nec-
essary for referring to data. Once a subdivision is specified, it may be
further subdivided to permit more detailed data reference. This is illustrated
by Figure 8.1, in which the weekly timecard record is divided into four
major items: name, employee-number, date, and hours, with more specific
information appearing for name and date.

Subdividing
Records

Page 8.5

DATA DIVISION

Level Numbers

LAST

— NAME FIRST-INIT
MIDDLE-INIT

— EMPLOYEE-NUM

TIMECARD —

MONTH

— WEEKS-END-DATE DAY-NUMBER
YEAR

— HOURS-WORKED

Figure 8.1 Example of Subdivided Records

Separate entries are written in the source program for each level. To illus-
trate the purpose of level numbers and their relationship to the contents
of a record, the weekly timecard in the previous example may be described
by DATA DIVISION entries having the level numbers, data-names, and
PICTURE definitions shown in Figure 8.2.

IBEM COBOL Coding Form e S IS

GRaReC

COBOL ETATEREY

B i s ——e e L e

gt STAMECARDE: — o o LR e
NAME. _

= . Sl e e S
e — 93 LAST-NAME _ PIC XCIBD. . .. _ _.___ ..
. 6.3 FIRST-INIT PIC Xoo . . SR
#3 MIDDLE-INIT PIC X.
7 1 EHELO[EE_NLLH_ _PIC 29999, —
S L e I _‘EE.K.S_E}D_D = =
= I — _MONTH _ BIC 99,

as DAY-NUMBER _PIC 99.
. @5 YEAR _ o PAC Wl
_ @2 _HOURS-WORKED. _ _PIC 99V9. . .

Figure 8.2. TIMECARD Data Definition

Page 8.6

DATA DIVISION

Level Numbers

Data items that contain subdivisions (group items) in the example are:
TIMECARD, NAME, and WEEKS-END-DATE. Subdivisions of a record
that are not themselves further subdivided are called elementary items.
The elementary items in the example are: LAST-NAME, FIRST-INIT, MID-
DLE-INIT, EMPLOYEE-NUM, MONTH, DAY-NUMBER, YEAR, and
HOURS-WORKED. All elementary items must include a PICTURE clause
uniess their USAGE IS INDEX.

Less inclusive groups are assigned numerically higher level numbers.
Level numbers may be assigned with gaps to facilitate program mainte-
nance. A group whose level is k includes all groups and elementary items
described under it until a level number less than or equal to k is encoun-
tered.

A logical record is always initiated by a 01 level entry. (Level numbers
less than 10 may be written as a single digit.) Additionally, a WORKING-
STORAGE data item that is logically unrelated to other items may be
coded as a stand-alone item with level number 77.

When a PROCEDURE DIVISION statement makes reference to a group
item, the reference applies to the area reserved for the entire group.

In the FILE SECTION, consecutive logical records under a given file de-
scription (FD) constitute implicit redefinitions of the same physical area
(see FILE and REDEFINES in Part lll). In the WORKING-STORAGE SEC-
TION, consecutive 01 levels define separate areas.

Data Description Entry

A data description entry specifies the characteristics of each field (item)
in a data record. Each item must be described in a separate entry in
the same order in which the items appear in the record. Each data descrip-
tion entry consists of a level number, a data-name, and a series of indepen-
dent clauses followed by a period.

Components of
the Entry

Page 8.7

DATA DIVISION

General
Syntax

Data Description Entry

The data-name is a programmer-supplied word used to refer to the area
being defined. Data-names must conform to the rules for word formation
listed in Chapter 7, and, additionally, must begin with an alphabetic charac-
ter. If an area is defined but not referred to in the program, the reserved
word FILLER may be substituted for a data-name.

The general syntax of a data description entry is:

data-name
level-number | FILLER [REDEFINES clause] [JUSTIFIED clause]

[PICTURE clause] [USAGE clause] [SYNCHRONIZED clause] [OCCURS clause]
[BLANK clause] [VALUE clause] [SIGN clause].

When this syntax is applied to specific items of data, it is limited by the
nature of the data being described. The format allowed for the description
of each data type follows. Clauses that are not shown in a format are
specifically forbidden in that format. Clauses that are mandatory in the
description of certain data items are shown without square brackets. The
clauses may appear in any order except that a REDEFINES clause, if
used, should come first. A detailed treatment of each clause can be found
in Part I11.

Group Item Syntax
level-number data-name [REDEFINES clause] [USAGE clause] [OCCURS clause]
[SIGN clause].
Example:
01 GROUP-NAME.

02 FIELD-B PICTURE X.

02 FIELD-C PICTURE X.
NOTE: A USAGE clause coded at a group level may not be contradicted

by an elementary level USAGE clause.
General Syntax

Page 8.8

DATA DIVISION

Data Description Entry

Elementary ltem Syntax

Alphanumeric or Alphanumeric-edited Item

data-name
level-number | FILLER [REDEFINES clause] [OCCURS clause]

PICTURE IS an-form ([USAGE IS DISPLAY] [JUSTIFIED clause]
[VALUE IS non-numeric-literal] [SYNCHRONIZED clause].
Examples:

02 MISC-1 PIC X(53).
02 MISC-2 PICTURE BXXXBXXB.

NOTE: Inclusion of a VALUE clause will not cause editing to occur. For
example, if MISC-2 included value “12345", the field would contain the
characters 12345 followed by three spaces.

Numeric ltem

data-name
level-number | FILLER (REDEFINES clause] [OCCURS clause]

PICTURE IS numeric-form [SIGN clause] [USAGE clause]
[VALUE IS numeric-literal] ([SYNCHRONIZED clause].
Examples:
02 HOURS-WORKED PICTURE 99V9 USAGE IS DISPLAY.

02 HOURS-SCHEDULED PIC S99V9 SIGN IS TRAILING.
02 TAX-RATE PIC S99V999 VALUE 1.375 COMPUTATIONAL-3.

Page 8.9

DATA DIVISION

Data Description Entry

Numeric-edited Item
This is also called a report item.

data-name
level-number | FILLER [REDEFINES clause] [OCCURS clause]

PICTURE IS report-form [BLANK WHEN ZERO] [USAGE IS DISPLAY]
[VALUE IS non-numeric literal] [SYNCHRONIZED clause].
Example:

02 XTOTAL PICTURE $999,999.99-.

Literals and Figurative Constants

Literals and figurative constants are often used in place of data-names
in COBOL programs. A literal is a constant that is not identified by a
data-name in a program, but is completely defined by its own identity.
A figurative constant is a special type of literal identified by a reserved
word. Use of the reserved word causes the compiler to substitute the
appropriate literal value.

Non-Numeric Literals

A non-numeric literal must be bounded by matching quotation marks or
apostrophes and may consist of any combination of characters in the
ASCII set, except quotation marks or apostrophe, respectively. All spaces
enclosed by the quotation marks are included as part of the literal. A
non-numeric literal must not exceed 120 characters in length.

The following are examples of non-numeric literals:
“ILLEGAL CONTROL CARD”

‘CHARACTER-STRING'
“DO’S & DON'T'S”

Page 8.10

DATA DIVISION

Literals and Figurative Constants

Each character of a non-numeric literal (following the introductory delim-
iter) may be any character other than the delimiter. That is, if the literal
is bounded by apostrophes, then quotation (") marks may be within the
literal, and vice versa. Length of a non-numeric literal excludes the delim-
iters; minimum length is one.

A succession of two “delimiters” within a literal is interpreted as a single
representation of the delimiter within the literal.

Non-numeric literals may be continued from one line to the next. When
a non-numeric literal is of a length such that it cannot be contained on
one line of a coding sheet, the following rules apply to the next line of
coding (continuation line):

1. Ahyphenis placed in column 7 of the continuation line.

2. A delimiter is placed in Area B preceding the continuation of the
literal.

3. All spaces at the end of the previous line and any spaces following
the delimiter in the continuation line and preceding the final delimiter
of the literal are considered to be part of the literal.

4. Onany continuation line, Area A should be blank.

Numeric Literals

A numeric literal must contain at least one and not more than 18 digits.
A numeric literal may consist of the characters 0 through 9 (optionally
preceded by a sign) and the decimal point. It may contain only one sign
character and only one decimal point. The sign, if present, must appear
as the left-most character in the numeric literal. If a numeric literal is un-
signed, it is assumed to be positive.

A decimal point may appear anywhere within the numeric literal, except
as the right-most character. If a numeric literal does not contain a decimal
point, it is considered to be an integer.

Literals on
Continuation Lines

Page 8.11

DATA DIVISION

Literals and Figurative Constants

The following are examples of numeric literals:
72 +1011 3.14159 -6 —-.333 0.5

By use of the Environment specification DECIMAL-POINT IS COMMA,
the functions of the period and comma are interchanged, putting the “Euro-
pean” notation into effect. In this case, the value of “pi” would be 3,1416
when written as a numeric literal.

Figurative Constants

A figurative constant is a special type of literal. It represents a value to
which a reserved word has been assigned. A figurative constant is not
bounded by quotation marks.

ZERO may be used in many places in a program as a numeric or non-
numeric literal. Other figurative constants are available to provide non-
numeric data. The reserved words representing various characters are
as follows:

SPACE the blank character represented by hexadecimal 20

LOW-VALUE the character whose hexadecimal representation is 00

HIGH-VALUE the character whose hexadecimal representation is 7F

QUOTE the quotation mark, whose hexadecimal representa-
tion is 22

ALL literal one or more instances of the literal, which must be

a one-character non-numeric literal or another figura-
tive constant (in which case ALL is redundant but
serves for readability).

The plural forms of these figurative constants are acceptable to the com-
piler but are equivalent in effect. The plural of ZERO may be written as
ZEROS or ZEROES. A figurative constant represents as many instances
of the associated character as are required in the context of the statement.

A figurative constant may be used anywhere a literal is called for, except
that wherever the literal is restricted to being numeric, the only figurative
constant permitted is ZERO.

Page 8.12

DATA DIVISION

Size Limitations

There is a limit to the number of items that may be included in the Working-
Storage, Linkage, and File sections of the Data Division. The resuit of

W + 4095

2096 +F+L

must be less than or equal to 14, where W is the size of Working-Storage
in bytes, F is the number of files described in the File Section, and L
is the number of level 01 or 77 entries in the Linkage Section. Furthermore,
the maximum number of files that may be open in the same run unit
(main program linked together with an arbitrary number of subprograms)
is 14.

Maximum Data
Items per Section

CHAPTER 9

Page 9.1

PROCEDURE DIVISION

Overview

The PROCEDURE DIVISION contains the executable instructions of a
COBOL program. These instructions are expressed in statements similar
to English. They employ the concept of verbs to denote actions, and state-
ments and sentences to describe procedures. Examples of typical con-
structions for most reserved words can be found in the Application sections
of Chapter 12, “Alphabetical Reserved Word List,” in Part lll.

Statements

Statement Types

A statement consists of a verb followed by appropriate operands (data-
names or literals) and other words necessary to define a logical procedure.
The two types of statements are imperative and conditional.

Imperative Statements

An imperative statement specifies an unconditional action to be taken by
the object program. Such a statement consists of any reserved verb and
its operands, exciuding SEARCH and any statement containing an IF,
INVALID KEY, AT END, SIZE ERROR, or OVERFLOW clause.

Conditional Statements

A conditional statement directs program flow according to the result of
a specified test condition. The IF and SEARCH statements provide this
capability. Additionally, any I/O statement containing an INVALID KEY
or AT END clause, any arithmetic statement with a SIZE ERROR clause,
and any STRING or UNSTRING statement with an OVERFLOW clause
is also considered a conditional.

Page 9.2

PROCEDURE DIVISION

Statements

Statement Structures

Sentences

A sentence is a single statement or a series of statements terminated
by a period and followed by a space. If desired, a semicolon or comma
may be used between statements in a sentence.

Paragraphs

A paragraph is a logical entity consisting of any number of sentences.
Each paragraph must begin with a paragraph-name.

NOTE: Paragraph-names and section-names are procedure-names. Pro-
cedure-names must follow the rules for word-formation (see Chapter 7).
In addition, a procedure-name may consist entirely of digits. An all-digit
procedure-name may not consist of more than 18 digits. If it has leading
zeros, they are all significant.

Sections

A section is composed of one or more successive paragraphs, and must
begin with a section-header. A section header consists of a section-name
conforming to the rules for procedure-name formation, followed by the
word SECTION, an optional segment number, and a period. A section
header must appear on a line by itself. Each section-name must be unique.

Design of the PROCEDURE DIVISION

Organization
The PROCEDURE DIVISION may be organized in three possible ways:

1. paragraphs only, or

Page 9.3

PROCEDURE DIVISION

Passing Data items

Design of the PROCEDURE DIVISION

2. one or more paragraphs followed by one or more sections (each
section subdivided into one or more paragraphs), or

3. a DECLARATIVES portion and a series of sections (each section
subdivided into one or more paragraphs).

Division Header

The PROCEDURE DIVISION header occurs in three forms, depending
on how control is transferred to the program. If it is not called or chained
from an external program (see CALL and CHAIN in Part i), or it is chained

but without parameter passing, the format is standard:

PROCEDURE DIVISION.

If the program is operated by a CHAIN statement in an external program
and data items will be passed to it, the syntax is:

PROCEDURE DIVISION CHAINING data-name-1... .

If the program is operated by a CALL statement in an external program,
the syntax is:

PROCEDURE DIVISION USING [data-name-1...].

An external program operated by a CALL must be linked with the main
program, even though it is compiled separately. Include the optional
USING list only if data items will be passed to the subprogram.

Data items are passed according to the corresponding position between
the list in the PROCEDURE DIVISION header and the list in the associated
CALL or CHAIN statement. This eliminates any requirement to use identi-
cal data-names. However, the number of entries in corresponding lists
must be identical, and corresponding data-names must reference areas
of the same size and USAGE. Failure to do so will not be diagnosed
and will cause unpredictable results at runtime.

Page 9.4

PROCEDURE DIVISION

Design of the PROCEDURE DIVISION

A called subprogram accesses the same data storage area used by the
main program. Therefore, any values altered by the subprogram will re-
main in effect after control is returned to the main program. Since no
return is possible from a chained program, data items can be passed
in one direction only.

For a thorough understanding of the CALL and CHAIN processes, read
Appendix A, “Interprogram Communication.” Also see the entries for CALL
and CHAIN in Part I11.

Declaratives and I/O Error Handling

Inclusion of the DECLARATIVES portion is optional and provides a means
of creating programmer-defined error handling procedures (see DE-
CLARATIVES in Part Ill). If you include it, you may use only design #3,
described previously.

When an |/O error occurs, the following events take place:

1. The appropriate FILE STATUS item, if one exists, is set to the proper
two-character code (see INPUT-OUTPUT in Part lil).

2. a. |If the error occurs on execution of a statement containing an
AT END or INVALID KEY clause, the associated imperative
statement(s) is executed. Otherwise,

b. if you have specified a DECLARATIVES procedure, the error
handling logic included in it is executed. Control then passes
to the sentence following the one that produced the error. Other-
wise,

c. if a DECLARATIVES procedure does not exist but a FILE
STATUS item does exist, program flow continues normally on
the assumption that the STATUS item will be tested to determine
a course of action. Otherwise,

d. the runtime system receives control and program execution is
aborted.

This process applies to the processing of any file, regardiess of its OR-
GANIZATION type.

Hierarchy of
COBOL-86
Error Checks

Page 9.5

PROCEDURE DIVISION

Range for
Segmeni-Number

Fixed and
Independent Segments

Design of the PROCEDURE DIVISION

Segmentation

The program segmentation facility is provided to enable the execution
of COBOL-86 programs that are larger than physical memory. When seg-
mentation is used (that is, when any section header in the program con-
tains a segment number) the entire PROCEDURE DIVISION must be writ-
ten in sections. Each section is assigned a segment number by a section
header of the form:

section-name SECTION [segment-number].

Segment-number must be an integer with a value in the range from 0
through 99. If you do not include a segment-number, it is assumed to
be 0. DECLARATIVES must have a segment-number less than 50. All
sections that have the same segment number constitute a single program
segment and must occur contiguously in the source program.

Furthermore, all segments with numbers less than 50 must occur at the
beginning of the PROCEDURE DIVISION, after the DECLARATIVES (if

present), but before any segment with a segment-number greater than
49.

Segments with numbers 0 through 49 are called fixed segments and are
always resident in memory during execution. Segments with numbers
greater than 49 are called independent segments. Each independent seg-
ment is treated as a program overlay.

An independent segment is in its initial state when control is passed to
it from a segment with a different segment-number.

Segmentation causes the following restrictions on the use of the ALTER
and PERFORM statements:

1. A GO TO statement in an independent segment must not be referred
to by an ALTER statement in any other segment.

2. A PERFORM statement in a fixed segment may have within its range
only
a. sections and/or paragraphs wholly contained within fixed seg-
ments, or
b. sections and/or paragraphs wholly contained in a single indepen-
dent segment.

Page 9.6

PROCEDURE DIVISION

Design of the PROCEDURE DIVISION

3. A PERFORM statement in an independent segment may have
within its range only

a. sections and/or paragraphs wholly contained within fixed seg-
ments, or

b. sections and/or paragraphs wholly contained within the same
independent segment as the PERFORM statement.

CHAPTER 10

Page 10.1

INDEXED FILES

Overview

An indexed-file is one that permits random access of records by maintain-
ing a directory of the unique key value embedded in the contents of each
record. Indexed organization is limited to disk files.

You can access an indexed file in one of three ways: sequentially, dynami-
cally, or randomly.

Sequential access provides access to data records in ascending order
of RECORD KEY values.

In the random access mode, you control the order of access to records.
Each record desired is accessed by placing the value of its key in the
RECORD KEY prior to an access statement.

In the dynamic access mode, your logic may change from sequential ac-
cess to random access, and vice versa, at will.

Syntax in ENVIRONMENT DIVISION

SELECT Clause

In the ENVIRONMENT DIVISION, the SELECT entry must specify
ORGANIZATION IS INDEXED, and the ACCESS clause syntax is:

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC.

ASSIGN, RESERVE, and FILE STATUS clause formats are identical to
those specified in Chapter 12, the “Alphabetical Reserved Word List,” in
Part Ill. An indexed file must be assigned to disk. In the FD entry for
an INDEXED file, both LABEL RECORDS STANDARD and a VALUE OF
FILE-ID clause must appear, as for any file assigned to disk.

RECORD KEY Clause

The general syntax of this clause, which is required, is:

RECORD KEY IS data-name

Page 10.2

INDEXED FILES

Syntax in ENVIRONMENT DIVISION

where data-name is an item defined within the record descriptions of the
associated file description, and is a group item or an elementary al-
phanumeric item. The maximum key length is 60 bytes, and the key should
never be made to contain all nulls.

If you specify random access mode, the value of the data-name designates
the record to be accessed by the next DELETE, READ, REWRITE, or
WRITE statement. Each record must have a unique record key value.

FILE STATUS Reporting

If a FILE STATUS clause appears in the ENVIRONMENT DIVISION for
an indexed organization file, the designated two-character data item is
set after every |I-O statement. Table 10.1 summarizes the possible settings.

File status 21 arises if ACCESS MODE IS SEQUENTIAL and the REC-
ORD KEY is altered between execution of two WRITE statements or prior
to a REWRITE statement. In an OPEN INPUT or OPEN I-O statement,
a file status of 30 means File Not Found. File status 91 occurs on an
OPEN INPUT or OPEN I-O statement for a relative or indexed file whose
structure has been destroyed (for example, by a system crash during out-
put to the file). When this status is returned on an OPEN INPUT, the
file is considered to be open, and READ statements may be executed.
On an OPEN I-O, however, the file is not considered to be open, and
all I/0 operations fail. The other settings are self-explanatory.

Note that Disk Space Full occurs with Invalid Key (2) for indexed and
relative file handling, whereas it occurred with Permanent Error (3) for
sequential files.

if an error occurs at execution time and no AT END or INVALID KEY
statements are given and no appropriate DECLARATIVES procedure is
supplied and no FILE STATUS is specified, the error will be displayed
on the screen and the program will terminate. See Chapter 9.

Error Reporting

Page 10.3

INDEXED FILES
Syntax in ENVIRONMENT DIVISION

Table 10.1. File Status Values

STATUS DATA STATUS DATA ITEM RIGHT CHARACTER

ITEMLEFT NO FURTHER SEQUENCE DUPLICATE NO RECORD DISK SPACE

CHARACTER DESCRIPTION ERROR KEY FOUND FULL
(0) (1) 2) (3) (4)

Successful

Completion (0) X

AtEnd (1) X

Invalid

Key (2) X X X X

Permanent

Error (3) X

Special

Cases (9) X

Syntax in PROCEDURE DIVISION
OPEN Statement

The syntax of the sequential file OPEN statement (see OPEN in Part
1) also applies to Indexed files, except EXTEND is inapplicable.

Table 10.2 summarizes the available statement types and their permissibil-
ity in terms of ACCESS MODE and OPEN option in effect. Where X ap-
pears, the statement is permissible; otherwise it is not valid.

CLOSE Statement In addition to the statements listed in Table 10.2, CLOSE is permissible
under all conditions; the same format as shown for CLOSE in Part Il
is used.

Page 10.4

INDEXED FILES

Syntax in PROCEDURE DIVISION

Table 10.2. Procedure Statement Options

ACCESS PROCEDURE OPEN OPTION IN EFFECT
MODE STATEMENT INPUT OUTPUT I-O

READ X X

WRITE X
SEQUENTIAL REWRITE

START X

DELETE

>xX X X

READ X

WRITE X
RANDOM REWRITE

START

DELETE

>xX X X

>

READ X

WRITE X
DYNAMIC REWRITE

START X

DELETE

HK XXX X

READ Statement

Format 1 (sequential or dynamic access):

READ filename [NEXT] RECORD [INTO data-name-1] [AT END imperative-statement ...]
Format 2 (random or dynamic access):

READ filename RECORD [INTO data-name-1] [KEY IS data-name-2] [INVALID KEY imperative-statement...]

page 10.5

INDEXED FILES

Syntax in PROCEDURE DIVISION

Format 1 without NEXT must be used for all files having sequential access
mode. Format 1 with the NEXT option is used for sequential reads of
a dynamic access mode file. The AT END clause is executed when the
logical end-of-file condition arises. If this clause is not written in the source
statement, an appropriate DECLARATIVES procedure is given control,
if available.

Format 2 is used for files in random access mode or for files in dynamic
access mode when records are to be retrieved randomly.

In Format 2, the INVALID KEY clause specifies action to be taken if the
access key value does not refer to an existing key in the file. If the clause
is not given, the appropriate DECLARATIVES procedure, if supplied, is
given control.

The optional KEY IS clause must designate the record key item declared
in the file's SELECT statement. This clause serves as documentation only.
You must ensure that a valid key value is in the designated key field
prior to execution of a random access READ.

The rules for sequential files regarding the INTO phrase apply here as
well.

WRITE Statement

The WRITE statement releases a logical record to a file opened for
OUTPUT or I-O. Its general syntax is:

WRITE record-name [FROM data-name] [INVALID KEY imperative-statement...]
Just prior to executing the WRITE statement, a valid (unique) value must

be in that portion of the record-name (or data-name if FROM appears
in the statement) that serves as RECORD KEY.

Page 10.6

INDEXED FILES

Syntax in PROCEDURE DIVISION

In the event of an improper key value, the imperative statements are exe-
cuted if the INVALID KEY clause appears in the statement; otherwise
an appropriate DECLARATIVES procedure is executed, if available. The
INVALID KEY condition arises if:

1. for sequential access, key values are not ascending from one WRITE
to the next WRITE

2. the key value is not unique

3. the allocated disk space is exceeded.

REWRITE Statement

The REWRITE statement logically replaces an existing record in a file
opened for I-O; the syntax of the statement is:

REWRITE record-name [FROM data-name] [INVALID KEY imperative-statement...]

For a file in sequential access mode, the last READ statement must have
been successful in order for a REWRITE statement to be valid. If the
value of the record key in record-name (or corresponding part of data-
name, if FROM appears in the statement) does not equal the key value
of the immediately previous READ, then the INVALID KEY condition exists
and the imperative statements are executed, if present; otherwise an appli-
cable DECLARATIVES procedure is executed, if available.

For a file in a random or dynamic access mode, the record to be replaced
is specified by the RECORD KEY; no previous READ is necessary. The

INVALID KEY condition exists when the record key's value does not equal
that of any record stored in the file.

DELETE Statement

The DELETE statement logically removes a record from an indexed file.
The general syntax of the statement is:

DELETE filename RECORD [INVALID KEY imperative-statement...]

Page 10.7

INDEXED FILES

Syntax in PROCEDURE DIVISION

For a file in the sequential access mode, the last input-output statement
executed for filename would have been a successful READ statement.
The record that was read is deleted. Consequently, you should not specify
an INVALID KEY phrase for sequential access mode files.

For a file having random or dynamic access mode, the record deleted
is the one associated with the record key; if there is no such matching
record, the INVALID KEY condition exists, and control passes to the im-
perative statements in the INVALID KEY clause, or to an applicable DE-
CLARATIVES procedure if no INVALID KEY clause exists.

START Statement

The START statement enables an indexed file to be positioned for reading
at a specified key value. This is permitted for files open in either sequential
or dynamic access modes. The syntax of this statement is:

GREATER THAN
START filename KEY IS NOT LESS THAN (data-name| [INVALID KEY imperative statement...]
EQUAL TO

Data-name must be the declared RECORD KEY and the value to be
matched by a record in the file must be present in the data-name. When
you execute this statement, the file must be OPEN for INPUT or I-O.

If the KEY phrase is not present, equality between a record in the file
and the RECORD KEY value is sought. If you specify a key relation
GREATER or NOT LESS, the file is positioned for next access at the
first record greater than, or greater than or equal to, the indicated key
value.

If no matching record is found, the imperative statements in the INVALID
KEY clause are executed, or an appropriate DECLARATIVES procedure
is executed.

Page 11.1

CHAPTER 11 RELATIVE FILES
Overview

Records in a relative file are differentiated on the basis of a relative record
number that ranges from 1 to 32,767, or to a lesser maximum for a smaller
file. Unlike an indexed file, where the identifying key field occupies a part
of the data record, relative record numbers are conceptual and are not
embedded in the data records. Relative organization is restricted to disk
files.

A relative file may be accessed either sequentially, dynamically, or ran-
domly. In sequential access mode, records are accessed in the order
of ascending record numbers.

In random access mode, the sequence of record access is controlled by
the program, by placing a number in a RELATIVE KEY item. In dynamic
access mode, the program may intermix random and sequential access
at will.

Syntax in ENVIRONMENT DIVISION

SELECT Clause

In the ENVIRONMENT DIVISION, the SELECT entry must specify
ORGANIZATION IS RELATIVE, and the ACCESS clause syntax is:

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC.

ASSIGN, RESERVE, and FILE STATUS clause formats are identical to
those used for sequential or indexed files.

In the associated FD entry, you must declare LABEL RECORDS STAN-
DARD, and you must include a VALUE OF FILE-ID clause.

The first byte of the record area associated with a relative file should
not be described as part of a COMP-0 or COMP-3 item by any record
description for the file.

| Page 11.2

RELATIVE FILES

Syntax in ENVIRONMENT DIVISION

RELATIVE KEY Clause

In addition to the usual clauses in the SELECT entry, a clause of the
form

RELATIVE KEY IS data-name

is required for random or dynamic access mode. It is also required for
sequential access mode, if a START statement exists for such a file.

Data-name must be described as an unsigned binary integer item not
contained within any record description of the file itself. Its value must
be positive and nonzero.

Syntax in PROCEDURE DIVISION

Within the Procedure Division, the verbs OPEN, CLOSE, READ, WRITE,
REWRITE, DELETE, and START are available, just as for files whose
organization is indexed. (Therefore, Tables 10.1 and 10.2 also apply to
RELATIVE files.) The syntax for OPEN and CLOSE (see Part lll) are
applicable to Relative files, except for the EXTEND phrase.

READ Statement

Format 1:

READ filename [NEXT] RECORD [INTQ data-name] [AT END imperative statement...]
Format 2:

READ filename RECORD [INTO data-name] [INVALID KEY imperative statement...]

Page 11.3

RELATIVE FILES

Syntax in PROCEDURE DIVISION

Format 1 must be used for all files in sequential access mode. The NEXT
phrase must be present to achieve sequential access if the file's declared
mode of access is dynamic. The AT END clause, if given, is executed
when the logical end-of-file condition exists, or, if not given, the appropriate
DECLARATIVES procedure is given control, if available.

Format 2 is used to achieve random access with declared mode of access
either random or dynamic.

If a RELATIVE KEY is defined (in the file’'s SELECT entry), successful
execution of a format 1 READ statement updates the contents of the REL-
ATIVE KEY item so as to contain the record number of the record retrieved.

For a Format 2 READ, the record that is retrieved is the one whose relative
record number is present in the RELATIVE KEY item. If no such record
exists, however, the INVALID KEY condition arises, and is handled by
(a) the imperative statements given in the INVALID KEY portion of the
READ, or (b) an associated DECLARATIVES procedure.

The rules for sequential files regarding the INTO phrase apply here as
well.

WRITE Statement

The syntax of the WRITE statement is the same for a relative file as
for an indexed file:

WRITE record-name [FROM data-name] [INVALID imperative statement...]

If access mode is sequential, then completion of a WRITE statement
causes the relative record number of the record just output to be placed
in the RELATIVE KEY item.

If access mode is random or dynamic, then you must preset the value
of the RELATIVE KEY item in order to assign the record an ordinal (rela-
tive) number. The INVALID KEY condition arises if there already exists
a record having the specified ordinal number, or if the disk space is ex-
ceeded.

Page 11.4

RELATIVE FILES

Syntax in PROCEDURE DIVISION

REWRITE Statement

The syntax of the REWRITE statement is the same for a relative file as
for an indexed file:

REWRITE record-name [FROM data-name] [INVALID KEY imperative statement...]

For a file in sequential access mode, the immediately previous action
would have been a successful READ; the record thus previously made
available is replaced in the file by executing REWRITE. If the previous
READ was unsuccessful, a runtime error will terminate execution. There-
fore, no INVALID KEY clause is allowed for sequential access.

For a file with dynamic or random access mode declared, the record that
is replaced by executing REWRITE is the one whose ordinal number is
preset in the RELATIVE KEY item. If no such item exists, the INVALID
KEY condition arises.

DELETE Statement

The syntax of the DELETE statement is the same for a relative file as
for an indexed file:

DELETE filename RECORD {INVALID KEY imperative statement...]

For a file in a sequential access mode, the immediately previous action
would have been a successful READ statement; the record thus previously
made available is logically removed from the file. If the previous READ
was unsuccessful, a runtime error will terminate execution. Therefore, an
INVALID KEY phrase may not be specified for sequential access files.

For a file with dynamic or random access mode declared, the removal
action pertains to whatever record is designated by the value in the RELA-
TIVE KEY item. If no such numbered record exists, the INVALID KEY
condition arises.

Page 11.5

RELATIVE FILES

Syntax in PROCEDURE DIVISION

START Statement

The syntax of the START statement is the same for a relative file as
for an indexed file:

GREATER THAN
START filename | KEY IS { NOT LESS THAN ; data-name-1 |[INVALID KEY imperative statement...]
EQUAL TO

Execution of this statement specifies the beginning position for reading
operations; it is permissible only for a file whose access mode is defined
as sequential or dynamic.

Data-name may only be that of the previously declared RELATIVE KEY
item, and the number of the relative record must be stored in it before
START is executed. When executing this statement, the associated file
must be currently OPEN for INPUT or |-O.

If the KEY phrase is not present, equality between a record in the file
and the record key value is sought. If you specify a key relation GREATER
or NOT LESS, the file is positioned for next access at the first record
greater than, or greater than or equal to, the indicated key value.

If no such relative record is found, the imperative statements in the IN-
VALID KEY clause are executed, or an appropriate DECLARATIVES pro-
cedure is executed.

Part lll
COBOL-86 Reserved Words

page 12.1

CHAPTER 12 ALPHABETICAL RESERVED WORD LIST
Introduction

Parts Il and Il of this manual comprise a detailed reference guide to the
COBOL language as set forth in the 1974 ANSI definition and implemented
in the COBOL-86 Compiler. A full description of this system’s compliance
with the 1974 standard is provided at the beginning of Chapter 7. As
in Part Il, an effort has been made to simplify your work by combining
the treatment of ANSI standard information with the extensions and varia-
tions pertinent to COBOL-86. If you have questions about the syntax dia-
grams, refer to Syntax Notation in the “Introduction.”

An understanding of the organization of this part is essential to your suc-
cessful use of it. As much as possible, the syntax, details, and application
of each COBOL reserved word have been treated on an individual word
basis. Organization of this part is alphabetical by reserved word. Essential
information about the language that is inappropriate for such a format
can be found in Part Il, “Language Overview.”

The following organizational guidelines apply to the use of Part |II:

1. Primary reserved words are those that define the function of an entire
statement, e.g., ADD, COMPUTE, and SEARCH. These words are
the principal entries in the listing and are arranged in alphabetical
order. They are shown in Table 12.1 in boldface type.

2. Secondary reserved words only occur in conjunction with primary
words. In general, they serve to elaborate the syntax of the primary
word and cannot themselves define the function of the statement,
e.g., ROUNDED, VARYING, and DELIMITER. These words are
shown in Table 12.1 with cross-references that refer you to the pri-
mary word in whose syntax they appear.

(A few words fall into categories 1 and 2. These are shown in
boldface, but also include cross-references.)

3. Optional reserved words are not shown in the directory, e.g., ON,
AT, and ARE. They are, however, included in syntax diagrams wher-
ever they are legal and are also included liberally in the Application
examples.

Page 12.2

ALPHABETICAL RESERVED WORD LIST

Introduction

(A few words fall into categories 2 and 3. These are shown in the
directory only in their required uses.)

Appendix H lists additional words that are reserved in the ANSI 1974
standard, but are not used in COBOL-86.

Table 12.1. COBOL-86 Reserved Words

RESERVED WORD

ACCEPT

ACCESS

ADD

AFTER

ALL

ALPHABETIC
ALTER

AND

AREA (Input/Qutput)
ASCENDING
ASCII

ASSIGN

AUTHOR

AUTO

AUTO-SKIP
BACKGROUND-COLOR
BEEP

BEFORE

BELL

BLANK

BLOCK

BOTTOM

BY

CALL

CHAIN

CHAINING
CHARACTERS
CLOSE
CODE-SET

coL

COLUMN

COMMA
COMPUTATIONAL
COMPUTATIONAL-3

CROSS-REFERENCES

see INPUT-OQUTPUT

see DECLARATIVES, INSPECT, PERFORM, WRITE
see INSPECT, SEARCH, UNSTRING, also Part ll: "FIGURATIVE CONSTANTS"
seelF

see IF

see OCCURS, SEARCH
see CODE-SET, CONFIGURATION
see INPUT-OUTPUT
see IDENTIFICATION
see SCREEN

see ACCEPT

see SCREEN

see ACCEPT

see INSPECT, WRITE
see SCREEN

see SCREEN

see LINAGE
see DIVIDE, INSPECT, MULTIPLY, PERFORM, SET

see PROCEDURE
see CONFIGURATION, INSPECT, BLOCK, RECORD

see ACCEPT, DISPLAY, EXHIBIT
see SCREEN

see CONFIGURATION

see USAGE

see USAGE

Page 12.3

ALPHABETICAL RESERVED WORD LIST

Table 12.1 (continued).

COBOL-86 Reserved Words

Introduction

RESERVED WORD

COMPUTE
CONFIGURATION
CONTAINS
COPY

COUNT
CURRENCY
DATA (DIVISION header)
DATA (RECORD clause)
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DISK

DISPLAY
DIVIDE
DIVISION

DOWN
DYNAMIC

ELSE

END
END-OF-PAGE
ENVIRONMENT
EOP

EQUAL

ERASE

ERROR

ESCAPE
EXCEPTION
EXHIBIT

EXIT

EXIT PROGRAM
EXTEND

FD

FILE
FILE-CONTROL

CROSS-REFERENCES

see ENVIRONMENT
see BLOCK, RECORD

see IF, UNSTRING
see CONFIGURATION

see ACCEPT

see IDENTIFICATION
see IDENTIFICATION
see ACCEPT

see CONFIGURATION
see CONFIGURATION
see PROCEDURE

see Part Il: Chapter 10-11
see STRING, UNSTRING
see UNSTRING

see GO

see OCCURS, SEARCH
see INPUT-OUTPUT
see USAGE

see DATA (division), ENVIRONMENT, IDENTIFICATION, PROCEDURE

see SET
see INPUT-QUTPUT
see IF

see DECLARATIVES, READ, SEARCH, also Part Ii: Chapter 10-11

see WRITE

see WRITE

see IF, also Part ll: Chapter 10

see DISPLAY, EXHIBIT

see ADD, COMPUTE, DECLARATIVES, DIVIDE, MULTIPLY, SUBTRACT

see ACCEPT
see DECLARATIVES

see DECLARATIVES, OPEN

see FILE
see DATA (division)
see INPUT-OUTPUT

Page 12.4

ALPHABETICAL RESERVED WORD LIST
Introduction

Table 12.1 (continued). COBOL-86 Reserved Words

RESERVED WORD CROSS-REFERENCES

FILE-ID see VALUE (OF FILE-ID)

FILLER see Part IIl: 'DATA DESCRIPTION ENTRY"

FIRST see INSPECT

FOOTING see LINAGE

FOR see INSPECT

FOREGROUND-COLOR see SCREEN

FROM see ACCEPT, PERFORM, REWRITE, SCREEN, SUBTRACT, WRITE, also Part il: Chapter
10-11

GIVING see ADD, SUBTRACT, MULTIPLY, DIVIDE

GO

GREATER see IF, also Part Il: Chapter 10

HIGH-VALUE(S) see Part Il: “FIGURATIVE CONSTANTS"

-0 see DECLARATIVES, OPEN

I-O-CONTROL see INPUT-OUTPUT

IDENTIFICATION

IF

IN

INDEX see USAGE

INDEXED see INPUT-OUTPUT, OCCURS

INITIAL

INPUT see DECLARATIVES, OPEN

INPUT-OUTPUT see ENVIRONMENT

INSPECT

INSTALLATION see IDENTIFICATION

INTO see DIVIDE, READ, STRING, UNSTRING, aiso Part II: Chapter 10-11

INVALID see Part ll: Chapter 10-11

IS see CONFIGURATION

JUST see SCREEN

JUSTIFIED see SCREEN

KEY see ACCEPT, also Part |I: Chapter 10, also OCCURS

LABEL see FILE

LEADING see INSPECT, SIGN

LEFT-JUSTIFY see ACCEPT

LENGTH-CHECK see ACCEPT

LESS see IF, also Part ll: Chapter 10

LIN see ACCEPT, DISPLAY, EXHIBIT

LINAGE see DATA (division)

LINAGE-COUNTER see LINAGE

LINE see ACCEPT, INPUT-OUTPUT, SCREEN, WRITE

LINES see WRITE, also LINAGE

LINKAGE see DATA (division)

LOCK see CLOSE

LOW-VALUE(S) see Part |I: “FIGURATIVE CONSTANTS”

MEMORY see CONFIGURATION

Page 12.5

ALPHABETICAL RESERVED WORD LIST

Table 12.1 (continued).

COBOL-86 Reserved Words

Introduction

RESERVED WORD

MODE
MOVE
MULTIPLY
NATIVE
NEGATIVE
NEXT

NOT
NUMBER
NUMERIC
OBJECT-COMPUTER
OCCURS

OF
OMITTED
OPEN

OR
ORGANIZATION
OUTPUT
OVERFLOW
PAGE
PERFORM
PIC
PICTURE
PLUS
POINTER
POSITIVE
PRINTER
PROCEDURE
PROGRAM
PROGRAM-ID
PROMPT
QUOTE(S)
RANDOM
READ
READY
RECORD
RECORDS
REDEFINES
RELATIVE
REPLACING
RESERVE
RESET
REVERSE-VIDEO
REWRITE
RIGHT-JUSTIFY

CROSS-REFERENCES

see CONFIGURATION MODULES see CONFIGURATION

see CONFIGURATION

see IF

see |F, SEARCH, aiso Part lI: Chapter 10-11
see IF, also Part Il: Chapter 10

see ACCEPT, SCREEN

see IF

see CONFIGURATION

see IF (synonym)
see FILE

see UNSTRING

see INPUT-OUTPUT

see DECLARATIVES, OPEN
see STRING, UNSTRING
see WRITE

see SCREEN

see SCREEN

see SCREEN

see STRING, UNSTRING

see lF

see CONFIGURATION, INPUT-OUTPUT
see DECLARATIVES

see EXIT (PROGRAM)

see IDENTIFICATION

see ACCEPT

see Part II: “FIGURATIVE CONSTANTS”
see INPUT-OUTPUT

see Part ll: Chapter 10-11

see TRACE

see DATA (RECORD clause), FILE, INPUT-OUTPUT, READ
see BLOCK, DATA (RECORD clause), FILE

see INPUT-OUTPUT
see INSPECT

see INPUT-OUTPUT
see TRACE

see SCREEN

see Part Il: Chapter 10-11
see ACCEPT

Page 12.6

ALPHABETICAL RESERVED WORD LIST
Introduction

Table 12.1 (continued). COBOL-86 Reserved Words

RESERVED WORD CROSS-REFERENCES

ROUNDED see ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT

RUN see STOP

SAME see INPUT-OQUTPUT

SCREEN see DATA (division)

SEARCH

SECTION see CONFIGURATION, DATA (division), DECLARATIVES, ENVIRONMENT, FILE, INPUT-
OUTPUT, LINKAGE, PROCEDURE, SCREEN, WORKING-STORAGE

SECURE see SCREEN

SECURITY see IDENTIFICATION

SELECT see INPUT-OUTPUT

SENTENCE see IF, SEARCH

SEPARATE see SIGN

SEQUENCE see CONFIGURATION

SEQUENTIAL see INPUT-OUTPUT

SET

SIGN

SIZE see ADD, COMPUTE, DIVIDE, MULTIPLY, STRING, SUBTRACT

SORT see INPUT-OUTPUT

SORT-MERGE see INPUT-OUTPUT

SOURCE-COMPUTER see CONFIGURATION

SPACE(S) see PART II: “FIGURATIVE CONSTANTS"

SPACE-FILL see ACCEPT

SPECIAL-NAMES see CONFIGURATION

STANDARD see FILE

STANDARD-1 see CONFIGURATION

START see Part ll: Chapter 10

STATUS see INPUT-OUTPUT

STOP

STRING

SUBTRACT

SYNC

SYNCHRONIZED

TALLYING see INSPECT, UNSTRING

THROUGH see PERFORM, VALUE (in condition-names)

THRU see PERFORM, VALUE (in condition-names)

TIME see ACCEPT

TIMES see PERFORM

TO see ADD, ALTER, MOVE, RECORD, SCREEN, SET

TOP see LINAGE

TRACE

TRAILING see SIGN

TRAILING-SIGN see ACCEPT

UNSTRING

"UNTIL see PERFORM

Page 12.7

ALPHABETICAL RESERVED WORD LIST

Introduction

Table 12.1 (continued). COBOL-86 Reserved Words

RESERVED WORD

UP

USAGE

USE

USING

VALUE (OF FILE-ID)
VALUE (to initialize a)
VALUE (in condition-names)
VALUES

VARYING

WHEN

WITH

WORDS
WORKING-STORAGE
WRITE

ZERO (ZEROS, ZEROES)
ZERO-FILL

CROSS-REFERENCES
see SET UPDATE see ACCEPT

see DECLARATIVES
see CALL, CHAIN, PROCEDURE, SCREEN

see SCREEN

see VALUE (in condition-names)

see PERFORM, SEARCH

see SEARCH

see ACCEPT, also CLOSE, CONFIGURATION

see CONFIGURATION

see DATA (division)

see Part Il: Chapter 10-11

see BLANK, IF, SCREEN, also Part II: “FIGURATIVE CONSTANTS"
see ACCEPT

Page 12.8

ALPHABETICAL RESERVED WORD LIST

ACCEPT

Syntax in PROCEDURE DIVISION

Format 1:
DATE
ACCEPT identifier-1 FROM DAY
TIME
LINE NUMBER
ESCAPE KEY
Format 2:
ACCEPT identifier-2
Format 3:
f)
SPACE-FILL
ZERO-FILL
LEFT-JUSTIFY
RIGHT-JUSTIFY
ACCEPT position-spec identifier-3 [WITH { TRAILING-SIGN L vl
PROMPT
UPDATE
LENGTH-CHECK
AUTQ-SKIP
L BEEP
/
Format 4:

ACCEPT screen-name [ON ESCAPE imperative statement]

The function of the ACCEPT statement is to acquire data from a source
external to the program and place them in a specified receiving field or
set of receiving fields.

Page 12.9

ALPHABETICAL RESERVED WORD LIST

Use

Value Formats

ACCEPT

Details

The formats differ primarily in the data source with which they are designed
to interface. The Format 1 ACCEPT is used primarily to obtain date or
time information from the operating system clock. Formats 2 and 3 receive
data that you key in. For Format 2, this device is assumed to be a teletype,
a glass teletype, or a CRT terminal in scrolling mode. For Format 3, it
is assumed that the input device is a video terminal and that scrolling
is not desired. The Format 4 ACCEPT receives an entire data entry form
(as defined in the SCREEN SECTION) when it has been completed by
the terminal operator. Note that an ordinary terminal is suitable as an
input device for a Format 2, 3, or 4 ACCEPT, although the appearance
of the screen will differ as indicated in the following discussion.

Format1 ACCEPT Statement

Format 1 is used to obtain any of several standard values at execution
time.

The formats of the standard values are:

DATE—a six-digit value of the form YYMMDD (year, month, day). Exam-
ple: July 4, 1976 is 760704

DAY—A five-digit “Julian date” of the form YYNNN, where YY is the two
low-order digits of year and NNN is the day-in-year number between 1
and 366.

TIME—an eight-digit value of the form HHMMSSFF, where HH is from
00 to 23, MM is from 00 to 59, SS is from 0 to 59, and FF is from 00
to 99; HH is the hour, MM is the minutes, SS is the seconds, and FF
represents hundredths of a second.

LINE NUMBER—The ACCEPT...FROM LINE NUMBER statement is provided for
compatibility, but in the COBOL-86 system, the value of LINE NUMBER
is always zero.

Page 12.10

ALPHABETICAL RESERVED WORD LIST

ACCEPT

ESCAPE KEY—a two-digit code generated by the key that terminated
the most recently executed Format 3 or Format 4 ACCEPT statement.
Identifier-1 can be interrogated to determine exactly which key was typed.
You may terminate input using any of the following keys, and cause the
ESCAPE KEY value to be set as shown:

Backtab (terminates only format 3 ACCEPTs) 99

Escape 01

Field-terminator (of the last field if 00
format 4 ACCEPT is used)

Function key 02-nn

On Zenith Z-100 series computers, a backtab is entered as CTRL-B, and
an escape is entered with the ESC key. Field-terminator keys are
RETURN, LINE FEED, and TAB.

Function keys are CTRL-D, -E, -F, and -G. If input is terminated by the
AUTO-SKIP function (i.e., no terminator key is struck), the ESCAPE KEY
value is set to 00.

Identifier-1 should be an unsigned numeric integer whose length agrees
with the content of the system-defined data item. If it does not, the standard
rules for a MOVE govern truncation and zero-fill of the source value.

Format2 ACCEPT Statement

Format 2 of the ACCEPT statement is used to accept a string of input
characters from a scrolling device such as a teletype or a CRT in scrolling
mode. When the ACCEPT statement is executed, input characters are
read from the terminal until a RETURN is encountered, then a carriage
return/line feed pair is sent back to the terminal. The input data string
is considered to consist of all characters keyed prior to (but not including)
the RETURN.

For a Format 2 ACCEPT with an alphanumeric receiving field, the input
data string is transferred to the receiving field exactly as if it were being
moved from an alphanumeric field of a length equal to the number of
characters in the string. (That is, left justifying, space filling, and right
truncating occur by default, and right justifying and left truncating occur
if the receiving field is described as JUSTIFIED RIGHT.) If the receiving

Key Designations

Uses

Page 12.11

ALPHABETICAL RESERVED WORD LIST

Character
Validity Rules

ACCEPT

field is alphanumeric-edited, it is treated as an alphanumeric field of equal
length (as if each character in its PICTURE were X), so that no insertion
editing will occur.

For a Format 2 ACCEPT with a numeric or numeric-edited receiving field,
the input data string is subjected to a validity test that depends on the
PICTURE of the receiving field. The digits O through 9 are considered
valid anywhere in the input data string.

The decimal point character (period or comma, depending on the DECI-
MAL POINT IS clause of the CONFIGURATION SECTION) is considered
valid if:

1. itoccurs only once in the input data string, and

2. if the PICTURE of the receiving field contains a fractional digit posi-
tion, that is, a 9, Z, *, or floating insertion character that appears
to the right of either an assumed decimal point (V) or an actual deci-
mal point (.).

The operational sign characters + and — are considered valid only as
the first or last character of the input string and only if the PICTURE
of the receiving field contains one of the sign indicators S, +, —, CR,
or DB.

All other characters are considered invalid. If the input data string is invalid,
the message INVALID NUMERIC INPUT--PLEASE RETYPEis displayed on the screen,
and another input data string is read.

When a valid numeric data string has been obtained, data are transferred
to the receiving field exactly as if the instruction being executed were
a MOVE to the receiving field from a hypothetical source field with the
following characteristics:

1. aPICTURE of the form S9...9v9...9

2. USAGE DISPLAY

3. atotal length equal to the number of digits in the input data string

Page 12.12

ALPHABETICAL RESERVED WORD LIST

ACCEPT

as many digit positions to the right of the assumed decimal point
as there are digits to the right of the explicit decimal point in the
input data string (zero if there is no decimal point in the input data

string)

current contents equal to the string of digits embedded in the input
data string

a separate sign with a current negative status if the input data string
contains the — character (hyphen), and a current positive status other-
wise.

Format3 ACCEPT Statement

Format 3 of the ACCEPT statement is used to accept data into a field
from a nonscrolling video terminal. The following syntax rules must be
observed when the Format 3 ACCEPT is used.

1.

Identifier-3 must reference a data item whose length is less than
or equal to 1920 characters.

The options SPACE-FILL and ZERO-FILL may not both be specified
in the same ACCEPT statement.

The options LEFT-JUSTIFY and RIGHT-JUSTIFY may not both be
specified within the same ACCEPT statement.

If identifier-3 is described as a numeric-edited item, the UPDATE
option must not be specified.

The TRAILING-SIGN option may be specified only if identifier-3 is
described as an elementary numeric data item. If identifier-3 is de-
scribed as unsigned, the TRAILING-SIGN option is ignored.

For alphanumeric or alphanumeric-edited identifier-3, the SPACE-
FILL option is assumed if the ZERO-FILL option is not specified,
and the LEFT-JUSTIFY option is assumed if the RIGHT-JUSTIFY
option is not specified.

Uses

Syntax Rules

Page 12.13

ALPHABETICAL RESERVED WORD LIST

ACCEPT

7. For numeric or numeric-edited identifier-3, the ZERO-FILL option is
assumed if the SPACE-FILL option is not specified.

Characteristics of the Data Input Field

The position-spec and receiving field (identifier-3) specifications of the For-
mat 3 ACCEPT statement are used to define the location and characteris-
tics of a data input field on the screen of the terminal.

The position-spec is expressed in either of the following forms:
(LIN[{+ | -} integer-1], COL[{+ | -} integer-2])
(integer-3, integer-4)

The opening and closing parentheses and the comma are required. The
position-spec specifies the position on the screen where the data input
field will begin. LIN and COL are COBOL special registers. Each behaves
like a numeric data item with USAGE COMP, but they may be referenced
without being declared in the DATA DIVISION.

If you specify LIN, the data input field will begin in the screen row whose
number is equal to the value of the LIN special register. If + integer-1
or — integer-1 is included, the effective value of LIN will be increased
or decreased accordingly, without affecting the value in the LIN register.
If you specify integer-3, the data input field will begin on the row whose
number is integer-3. If you specify neither LIN nor integer-3, the data
input field will begin on the screen row containing the current cursor posi-
tion.

If you specify COL, the data input field will begin in the screen column
whose number is equal to the value of the COL special register. If +
integer-2 or — integer-2 is included, the effective value of COL will be
increased or decreased accordingly, without affecting the value in the COL
register. If you specify integer-4, the data input field will begin in the column
whose number is integer-4. If neither COL nor integer-4 is specified, the
data input field will begin in the screen column containing the current
cursor position.

Page 12.14

ALPHABETICAL RESERVED WORD LIST

ACCEPT

The characteristics (other than screen position) of the data input field are
determined by the receiving field's PICTURE specification. If identifier-3
is defined by an alphanumeric or alphanumeric-edited PICTURE clause,
the data input field is simply a string of characters starting at the screen
location specified by position-spec. The length of the data input field in
character positions is equal to the length of the receiving field in memory.

If identifier-3 if defined by a numeric or numeric-edited PICTURE clause,
the data input field may contain any or all of the following: integer digit
positions, fractional digit positions, sign position, and/or decimal point posi-
tion. There will be one digit position for each 9, Z, *, or P, noninitial floating
insertion symbol in the PICTURE of identifier-3. (A floating insertion symbol
maybea +, —, or$.) See PICTURE.

Each digit position in the data input field is a fractional digit position if
the corresponding PICTURE character is to the right of an assumed deci-
mal point (V) or actual decimal point (.) in the PICTURE of identifier-3.
Otherwise it is an integer digit position. There will be one sign position
if identifier-3 is defined as signed, and no sign position otherwise. There
will be one decimal point position if there is at least one fractional digit
position, and no decimal point position otherwise.

The data input positions that are defined will occupy successive character
positions on the screen beginning with the position specified by position-
spec. If TRAILING-SIGN is specified in the ACCEPT statement, the data
input positions will be in the following sequence: integer digit positions
(if any), decimal point position (if any), fractional digit positions (if any),
sign position (if any). If TRAILING-SIGN is not specified, the data input
positions will be in the following sequence: sign position (if any), integer
digit positions (if any), decimal point position (if any), fractional digit posi-
tions (if any).

Each character entered from the terminal is treated either as a terminator
character, a data character, or an editing character.

The terminator keys are RETURN, LINE FEED, and TAB. When you press
a terminator key, the ACCEPT is terminated and the ESCAPE KEY value
is set as described in Format 1 ACCEPT Statement. This value can be
interrogated by using a Format 1 ACCEPT identifier FROM ESCAPE KEY state-
ment.

Terminator
Characters

Page 12.15

ALPHABETICAL RESERVED WORD LIST

Data Character
with Alphanumeric
Receiving Field

ACCEPT

An alphanumeric-edited receiving field is treated as an alphanumeric field
of the same length (as if every character in its PICTURE were X). Insertion
editing does not occur.

The initial appearance of the data input field depends on the specifications
in the WITH phrase of the ACCEPT statement. If you specify UPDATE,
the current contents of identifier-3 are displayed in the input field. In this
case all data input positions will be treated as if they were keyed from
the terminal. If you do not specify UPDATE, but PROMPT is specified,
a period (.) is displayed in each input data position. If you specify neither
UPDATE nor PROMPT, the data input field is not changed.

The cursor is placed in the first data input position, and characters are
accepted as you key them until a terminator character (normally RETURN)
is encountered. If you specify AUTO-SKIP in the ACCEPT statement, the
ACCEPT will also be terminated if you key a character into the last (right-
most) data input position. If you specify LENGTH-CHECK, terminator char-
acters are ignored until every data input position is filled.

As each input character is received, it is echoed to the screen, except
that nondisplayable characters are echoed as ? (question marks). If all
positions of the data input field are filled, additional input is ignored until
a terminator character or editing character is encountered. If RIGHT-
JUSTIFY was specified in the ACCEPT statement, the operator-keyed
characters are shifted to the right-most positions of the data input field
when the ACCEPT is terminated. All unkeyed character positions are filled
on termination; the fill character is either space (which is the default) or
zero (if ZERO-FILL was specified).

The contents of the receiving field will be the same set of characters
as appear in the input field; however, the justification will be controlled
by the JUSTIFIED specification that is operative in the receiving field's
data description, not by the RIGHT- or LEFT-JUSTIFY option of the
ACCEPT. Excess positions of the receiving field will be filled with spaces
unless the ZERO-FILL specification is included in the ACCEPT statement.

Page 12.16

ALPHABETICAL RESERVED WORD LIST

ACCEPT

As with the alphanumeric ACCEPT, the data input field may be initialized
in a way determined by the WITH options specified in the ACCEPT state-
ment. If UPDATE is specified (which is not permitted for a numeric-edited
receiving field), the integer and fractional parts of the data input field will
be set to the integer and fractional parts of the decimal representation
of the initial value of the receiving field, with leading and trailing zeros
included, if necessary, to fill all digit positions. Except for leading zeros,
these initialization characters are treated as data. If you do not specify
UPDATE, but PROMPT is specified, a zero will be displayed in each input
digit position. In either of these cases (UPDATE or PROMPT) a decimal
point will be displayed at the decimal point position.

If you specify neither UPDATE nor PROMPT, the input field on the screen
will not be initialized, except for the sign position. The sign position is
always initialized positive unless UPDATE is specified, when it is initialized
according to the sign of the current contents of the receiving field. A posi-
tive sign position is shown as a space, and a negative sign position is
shown as a minus sign.

The cursor is initially placed in the right-most integer digit position, and
characters are accepted one at a time as you key them. A received charac-
ter may be treated in one of several ways. If the incoming character is
a digit, previously keyed digits are shifted one position to the left in the
input field and the new digit is displayed in the right-most integer digit
position. If all integer digit positions have not been filled, the cursor remains
on the right-most digit position and another character is accepted. If the
entire integer part of the input field has been filled and AUTO-SKIP was
specified, the integer part is terminated and the cursor is moved to the
left-most fractional digit position.

If the integer part has been filled and AUTO-SKIP was not specified, the
cursor is moved to the decimal point position, and any further digits keyed
are ignored until the integer part is terminated with a decimal point.

If the character entered is a sign character (+ or —), the sign position
is changed to a positive or negative status, respectively. Cursor position
is not affected.

Data Character
with Numeric
Receiving Fleld

Page 12.17

ALPHABETICAL RESERVED WORD LIST

ACCEPT

If the character entered is a decimal point character, the integer part is
terminated and the cursor is moved to the left-most fractional digit position.

If the character entered is a field terminator (normally RETURN), the
ACCEPT is terminated and the cursor is turned off. Any other character
is ignored.

When the integer part is terminated, the cursor is placed in the left-most
fractional digit position, and operator-keyed characters are again accepted.
Digits are simply echoed to the terminal. The sign characters (+ and
—) are treated exactly as they were while integer digits were being en-
tered. The field-terminator character terminates the ACCEPT. (If AUTO-
SKIP is in effect, filing the entire fractional part also terminates the
ACCEPT.) Other characters are ignored. After all digit positions of the
fractional part have been filled, further digits are also ignored.

If no fractional digit positions are present, the decimal point is ignored
as an input character, and entry of integer digits may be terminated only
by terminating the entire ACCEPT. If no integer digit positions are present,
the cursor is initially placed in the left-most fractional digit position and
entry of the fractional part digits proceeds as described above.

When a valid numeric data input field has been obtained, data are transfer-
red to the receiving field exactly as if the instruction being executed were
a MOVE to the receiving field from a hypothetical source field with the
following characteristics:

1. aPICTURE of the form S9...9V9...9

2. USAGE DISPLAY

3. atotal length equal to the number of digits in the data input field

4. as many digit positions to the right of the assumed decimal point
as there are digits to the right of the explicit decimal point in the

data input field (zero if there is no decimal point in the data input
field)

Page 12.18

ALPHABETICAL RESERVED WORD LIST

ACCEPT

5. current contents equal to the string of digits embedded in the data
input field

6. a separate sign with a current negative status if the data input field
contains the — character (hyphen), and a current positive status other-
wise.

After termination, if SPACE-FILL is in effect, leading zeros in the integer
part of the data input field (not in the receiving field) will be replaced
by spaces, and the leading operational sign, if present, will be moved
to the right-most space thus created.

The editing characters are line-delete (CTRL-X), forward-space (CTRL-L),
BACK SPACE (or CTRL-H), and DELETE. These characters may be used
to change data that have already been keyed (or supplied as a result
of a WITH UPDATE specification).

Entering the line-delete character will cause the ACCEPT to restart and
all data keyed by the operator or initially present in the receiving field
to be lost. The data input field on the console screen will be reinitialized
if PROMPT is in effect. Otherwise, the data input field will be filled with
spaces or zeros according to the SPACE-FILL or ZERO-FILL specification.

Typing the forward-space or BACK SPACE characters will move the cursor
forward or back one data input position in the case of an alphanumeric
or alphanumeric-edited receiving field, or one digit position in the case
of a numeric or numeric-edited receiving field. In no case, however, will
the forward-space or BACK SPACE characters move the cursor outside
the range of positions, including (1) the positions already keyed (or filled
by specifying WITH UPDATE) and (2) the right-most data input position
that the cursor has occupied during the execution of this ACCEPT. If the
cursor is moved to a position within this range other than the right-most,
and a legal data character is entered, it is displayed at the current cursor
position and the cursor is moved forward one data position (for al-
phanumeric or alphanumeric-edited fields) or one digit position (for
numeric or numeric-edited fields).

Editing Characters

Page 12.19

ALPHABETICAL RESERVED WORD LIST

WITH Phrase Summary

ACCEPT

Entering DELETE cancels the last data character or digit entered. The
cursor is moved back one position and a fill character (space or zero)
is displayed above the cursor, except when the cursor is to the left of
the decimal point for a numeric ACCEPT. In this case no fill character
is displayed and the cursor is not moved, but the digit at the cursor position
is deleted and all digits to the left of it are shifted one position to the
right. The DELETE key has no effect if the cursor has previously been
moved from the position where the next character (or digit) would normally
be entered.

For alphanumeric receiving fields:

1.

SPACE-FILL causes unkeyed character positions of the data input
field and the receiving field to be space-filed when the ACCEPT
is terminated.

ZERO-FILL causes unkeyed character positions of the data input
field and the receiving field to be set to ASCIl zeros when the
ACCEPT is terminated.

LEFT-JUSTIFY is treated by this compiler as commentary.

RIGHT-JUSTIFY causes operator-keyed characters to occupy the
right-most positions of the data input field after the ACCEPT is termi-
nated. The justification of data in the receiving field is controlled by
the JUSTIFIED declaration or default of the receiving field's data de-
scription, not by the WITH RIGHT-JUSTIFY phrase.

PROMPT causes the data input field to be set to all periods (.) before
input characters are accepted.

UPDATE causes the data input field to be initialized with the current
contents of the receiving field. The data displayed by UPDATE are
treated as if they were operator-keyed data. UPDATE supercedes
the action of PROMPT if both are specified.

LENGTH-CHECK causes a field-terminator character to ignored un-
less every data input position has been filled.

AUTO-SKIP forces the ACCEPT to be terminated when all data input
positions have been filled. A terminator character explicitly keyed has
its usual effect.

page 12.20

ALPHABETICAL RESERVED WORD LIST

ACCEPT

9. BEEP causes an audible tone to sound when the system is ready

to ACCEPT operator input.

For numeric and numeric-edited fields:

1. SPACE-FILL causes unkeyed integer digit positions of the data input
field (not the receiving field) to be space-filled. Any leading opera-

tional sign is displayed in the right-most blank space.

2. ZERO-FILL causes all unkeyed digit positions of the data input field

to be set to zero when the ACCEPT is terminated.

3. LEFT-JUSTIFY and RIGHT-JUSTIFY have no effect for a numeric

or numeric-edited receiving field.

4. TRAILING-SIGN causes the operational sign to appear as the right-
most position of the data input field. Ordinarily the sign is the left-most

position of the field.

5. PROMPT causes the data input field to be initialized as follows: digit
positions to zero, decimal point position (if any) to the decimal point

character, and sign position (if any) to a space.

6. UPDATE causes the data input field to be initialized to the current
contents of the receiving field. These initial data are treated as if
they were data you keyed. UPDATE supercedes the action of

PROMPT if both are specified.

7. LENGTH-CHECK causes a received decimal point character to be
ignored unless all integer digit positions have been keyed and a field
terminator character to be ignored unless all digit positions have been

keyed.

8. AUTO-SKIP causes the integer part of the ACCEPT to be terminated
when all integer digit positions have been keyed and the entire

ACCEPT to be terminated when all digit positions have been keyed.

9. BEEP causes an audible tone to sound when the system is ready

to accept operator input.

Page 12.21

ALPHABETICAL RESERVED WORD LIST

Uses

Effects of
Escape Key

ACCEPT

Format4 ACCEPT Statement

Format 4 of the ACCEPT statement causes each data input field in the
group data item “screen-name” to be transferred from the terminal to its
respective TO or USING field. Screen items having only VALUE or FROM
clauses have no effect on the operation of the ACCEPT statement. Each
such transfer consists of an implicit Format 3 ACCEPT of a field defined
by the appropriate elementary screen item's PICTURE followed by an
implicit MOVE to the associated TO or USING field.

If you press the ESC key during data input, the entire ACCEPT is termi-
nated, the current field is not moved, the ESCAPE KEY value is set to
01, and the ON ESCAPE statement is executed. If you press a function
key, the appropriate ESCAPE KEY value is set and the entire ACCEPT
is terminated. If you press a field-terminator key (RETURN, TAB, etc.),
the ESCAPE KEY value is set to 00 and the cursor moves to the next
input field (if any) defined under screen-name. If the current field is the
last field, the entire ACCEPT is terminated. If the backtab key is typed,
the current field is terminated and the cursor moves to the previous input
field defined under screen-name. If the current field is the first field, the
cursor does not move from that field. When a field is terminated by a
function key, field-terminator key, or backtab key, the contents of the cur-
rent field are moved to the associated TO or USING item, except in the
case where no data characters and no editing characters have been en-
tered in that field. This allows you to tab forward or backward through
the input fields without affecting the contents of the receiving items.

All the editing and validation features described in Format 3 ACCEPT
statement also apply to the Format 4 ACCEPT. Furthermore, the PROMPT
and TRAILING-SIGN functions that are optional in Format 3 are always
in effectin a Format 4 ACCEPT.

If the screen item’s PICTURE specifies a numeric-edited or alphanumeric-
edited input field, the ACCEPT is executed as if the field were numeric
or alphanumeric, respectively. When the field is terminated the data are
edited according to the PICTURE and redisplayed in the specified screen
position. In this case, the JUSTIFIED clause has no effect.

Page 12.22

ALPHABETICAL RESERVED WORD LIST

ACCEPT

Moves from screen fields to receiving items follow the standard COBOL-86
rules for MOVE statements, except that moves from numeric-edited fields
are allowed. In this case, the data are input as if the field were numeric
and the move uses only the sign, decimal point, and digit characters.
Displaying text or prompts in conjunction with a Format 4 ACCEPT re-
quires the DISPLAY statement (see DISPLAY).

Application

Format 1:

Current system date is 6/30/82.
Current system time is 13:20:14:00.

77 WS-DATEPIC X(6).
7T WS-TIME PICX(8).

ACCEPT WS-DATE FROM DATE
Result: ¥S-DATE = 820630
ACCEPT WS-TIME FROM TIME

Result: ¥S-TIME = 13201400

Format 2:

77 NUMERIC-VALUE PIC S9(5).

77 ALPHA-VALUE PIC X(8).

77 EDIT-VALUE PIC XX/XX/XX.
ACCEPT NUMERIC-VALUE

Terminal input = 123
Result: NUMERIC-VALUE = +00123

ACCEPT ALPHA-VALUE

Page 12.23

ALPHABETICAL RESERVED WORD LIST

ACCEPT

Terminal input = “Mississippi”
Result: ALPHA-VALUE = “Mississi"

ACCEPT ALPHA-VALUE

Terminal input = “Utah”
Result: ALPHA-VALUE = "Utah "

ACCEPT EDIT-VALUE

Console input = “lllinois”
Result: EDIT-VALUE = “Illinois"

Format 3:
77 ALPHA-VALUE PIC X(8).

MOVE 10 TO LIN
MOVE 20 TO COL
ACCEPT (LIN, COL) ALPHA-VALUE

Terminal input = “New York”
Result: Cursor moves to line 10, column 20 before input is accepted;
ALPHA-VALUE = “New York"

MOVE 10 TO LIN
MOVE 20 TO COL
ACCEPT (LIN + 5, COL - 10) ALPHA-VALUE

Terminal input = “New York”
Result: Cursor moves to line 15, column 10 before input is accepted;
ALPHA-VALUE = “New York"

ACCEPT (20, 10) ALPHA-VALUE
Terminal input = “New York”

Result: Cursor moves to line 20, column 10 before input is accepted;
ALPHA-VALUE = “New York"

Page 12.24

ALPHABETICAL RESERVED WORD LIST

ACCEPT

Format 4:
ACCEPT SCREEN-1 ON ESCAPE NEXT SENTENCE

Result: The cursor will move, in sequence, to the beginning of each on-
screen data input field (as defined for SCREEN-1 in the SCREEN SEC-
TION of the DATA DIVISION) and wait for terminal input. The data item
entered will be temporarily loaded into the appropriate data-name (as de-
signated in the SCREEN SECTION) and then immediately moved to the
data-name specified after TO or USING. The MOVE follows the rules
governing Format 3 ACCEPT statements. If at any time you press ESC,
the ACCEPT statement will be aborted at its current state of completion
and the NEXT SENTENCE will be executed.

Page 12.25

ALPHABETICAL RESERVED WORD LIST

ADD

Syntax in PROCEDURE DIVISION

ADD Jnumeric-literall ... ! TO data-name-n
data-name-1 GIVING

[ROUNDED] [ON SIZE ERROR statement...]

The ADD statement adds two or more numeric values and stores the
resulting sum.

Details

Use of the TO option causes all of the literals and data-names preceding
the word TO to be added to the value found in data-name-n. Use of the
GIVING option causes the sum of all the data-names and literals preceding
the word GIVING to be placed in data-name-n. At least two values must
be entered ahead of the word GIVING.

All of the operands (excluding literals) must be elementary numeric data
items, except that the operand following GIVING may be a numeric edited
item. Decimal point alignment and proper sizing of intermediate storage
fields is provided automatically by the compiler, except that any inter-
mediate result that cannot fit in 18 digits will be left-truncated.

Inclusion of the ON SIZE ERROR option makes the ADD statement condi-
tional rather than imperative. If the integer portion of the result cannot
fit in the specified receiving field, the receiving field will be unchanged
and the statement(s) in the SIZE ERROR clause will be executed. If a
size error occurs and no SIZE ERROR clause is present, no assumption
should be made about the contents of the receiving field.

If the number of digits to the right of the decimal point in the resuit exceeds
the number available in the result PICTURE clause, right truncation will
occur unless you include the optional ROUNDED clause. If ROUNDED
is specified, the right-most digit transferred to the result field will be in-
creased by 1 whenever the most significant digit of the truncated portion
is equal to or greater than 5. Negative values are affected in a similar
fashion. If the result field is an integer containing one or more P editing
characters, ROUNDED will add 1 to the right-most digit stored in the result
field when the value masked by the left-most P is 5 or greater.

Page 12.26

ALPHABETICAL RESERVED WORD LIST

ADD

Application

Data values at start of each application:
05 DATA-1 PIC S99 VALUE +99.
05 DATA-2 PIC 5999 VALUE +99.
05 DATA-3 PIC SV9 VALUE +.9.
ADD 1 TO DATA-2

Result: DATA-2 = +100

ADD 1 DATA-1 GIVING DATA-2
Result: DATA-2 = +100

ADD DATA-3 TO DATA-2

ADD DATA-3 TO DATA-2 ROUNDED
Result: DATA-2 = + 100

ADD 1 TO DATA-1 ON SIZE ERROR DISPLAY “OVERFLOW"

Result: DATA-1 = 499, display statement executed

Page 12.27

ALPHABETICAL RESERVED WORD LIST

ALTER

Syntax in PROCEDURE DIVISION

ALTER paragraph-name TO PROCEED TO procedure-name

The ALTER statement is used to change the operand of a GO TO state-
ment or add an operand to a GO TO statement written without one.

Details

The line to be altered must be a single-line paragraph consisting of only
a GO TO statement. The operand of the GO TO that follows paragraph-
name will be replaced by the address of procedure-name. In practice,
the alter statement usually follows the affected GO TO statement and
modifies it to jump around code that should only be executed once. How-
ever, if GO TO is written without an operand, an ALTER statement must
precede the GO TO during execution.

Application

GATE.

GO TO MF-OPEN.
MF-OPEN.

OPEN INPUT MASTER-FILE.

ALTER GATE TO PROCEED TO NORMAL.
NORMAL.

READ MASTER-FILE

Page 12.28

ALPHABETICAL RESERVED WORD LIST

BLANK

Syntax in DATA DIVISION
BLANK WHEN ZERO

This clause is appended to a data definition statement and causes the
associated data item to contain only spaces if its numeric value is 0.

Details

When this clause is used with a numeric PICTURE, the field is considered
areport field.

Application

77 REPORT-VAL PIC +9,999.999 BLANK WHEN ZERO.

Page 12.29

ALPHABETICAL RESERVED WORD LIST

BLOCK

Syntax in DATA DIVISION

BLOCK CONTAINS integer {RECORDS | CHARACTERS}

The BLOCK CONTAINS clause is appended to an FD paragraph and
serves to specify the size of physical records in relation to the concept
of logical records.

Details

Files you ASSIGN to the PRINTER must not have a BLOCK clause in
the FD paragraph. Furthermore, the BLOCK clause has no effect on DISK
files in COBOL-86, but it is examined for correct syntax. It is normally
applicable to tape files, which are not supported by COBOL-86.

You should usually state the size of a physical block in RECORDS, except
when the records are variable in size or exceed the size of a physical
block. In these cases, express the size in CHARACTERS.

When you omit the BLOCK clause, it is assumed that records are not
blocked. If you include neither the CHARACTERS nor the RECORDS
option, CHARACTERS is assumed. When the RECORDS option is used,
the compiler assumes that the block size provides for integer records of
maximum size and then provides additional space for any required control
characters.

Application

FD INPUT-FILE LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 5 RECORDS

Page 12.30

ALPHABETICAL RESERVED WORD LIST

CALL

Syntax in PROCEDURE DIVISION

CALL literal [USING data-name ...]

The CALL statement transfers control to a separately compiled subpro-
gram whose PROGRAM-ID is specified by the literal.

Details

Only a quoted (alphanumeric) literal may be used to specify the name
of the subprogram. The subprogram name must be identical to the name
given in its PROGRAM-ID paragraph.

Data-names you specify in the optional USING list are used to create
a positional list of addresses to be passed to the subprogram. This permits
data items defined in the calling program to be accessed by the subpro-
gram. Since correspondence is by position, identical spelling of the data-
names in each USING list is not required. Both lists, however, must contain
the same number of data-names.

In addition to specifying them in both USING lists, data items to be shared
must also be defined in the LINKAGE SECTION of the subprogram (see
LINKAGE).

Application
Main program WORKING-STORAGE SECTION:
01 SHARED-DATA.
05 SHARE-1 PIC 999.
05 SHARE-2 PIC 999.
01 COMMON-DATA.
05 COMMON-1 PIC XXX.
05 COMMON-2 PIC XXX.
Main program PROCEDURE DIVISION:

CALL "SUBPROG" USING SHARED-DATA COMMON-DATA.

Page 12.31

ALPHABETICAL RESERVED WORD LIST

CALL

Subprogram LINKAGE SECTION:
01 GROUP-1.

05 ITEM-1 PIC 999.

05 ITEM-2 PIC 999,
01 GROUP-2.

05 ITEM-3 PIC XXX.
05 ITEM-4 PIC XXX.

Subprogram PROCEDURE DIVISION header:

PROCEDURE DIVISION USING GROUP-1 GROUP-2.

Page 12.32

ALPHABETICAL RESERVED WORD LIST

CHAIN

Syntax in PROCEDURE DIVISION

CHAIN data-name-1 [USING data-name-2...]
literal

The CHAIN statement loads and executes another program. The chaining
program is not preserved.

Details

Literal and data-name-1 must be alphanumeric. Data-name-1 must be
followed by at least one space character. Each data-name-2 must be de-
fined in the WORKING-STORAGE, LINKAGE, or FILE SECTION. If an
identifier-2 is defined in the FILE SECTION, the associated file must be
OPEN at the time CHAIN is executed.

When the CHAIN statement is executed, the value of identifier-1 or literal
is interpreted as the name of a program executable under Z-DOS. When
the program is found and loaded, all data and program structures of the
chaining program are destroyed, except those passed to the chained pro-
gram in the optional USING list.

There is no requirement that the chained program be a COBOL program.
If it is, it must be a main program.

Application

Chaining program WORKING-STORAGE SECTION:

77 DATA-1 PIC X(8).

Chaining program PROCEDURE DIVISION:

PROCECURE DIVISION.
CHAIN "NEXT-PROGRAM. EXE" USING DATA-1.
STOP RUN.

Page 12.33

ALPHABETICAL RESERVED WORD LIST

CLOSE

Syntax in PROCEDURE DIVISION

CLOSE {filename [WITH LOCK]}...

A CLOSE statement is required to provide proper disposition of a file
that will not be accessed again during the current job. Its function is oppo-
site that of the OPEN statement.

Details

You may not attempt a READ, WRITE, or REWRITE function on a closed
file, nor may you CLOSE a file that is not currently open. A fatal runtime
error will result in each case.

Once the LOCK phrase is executed, any subsequent attempt to OPEN
the file during the current job will cause a runtime error. If LOCK is omitted,
the file may be reopened as needed by program logic.

Application

CLOSE MASTER-FILE-IN WITH LOCK, WORK-FILE.

CLOSE PRINT-FILE, TAX-RATE-FILE, JOB-PARAMETERS WITH LOCK.

Page 12.34

ALPHABETICAL RESERVED WORD LIST

CODE-SET

Syntax in DATA DIVISION

CODE-SET IS ASCII

The CODE-SET clause normally specifies the character representation
code used on a tape file when it is different from the internal code. Since
tape files are not supported, this statement is nonfunctional in COBOL-86.

Details

All file character representation in COBOL-86 will be in the ASCII code.
However, any signed numeric data description entries in the file's record
should include the SIGN IS SEPARATE clause and all data in the file
should be of DISPLAY USAGE.

Application

FD INPUT-FILE LABEL RECORDS ARE STANDARD
CODE-SET IS ASCII

Page 12.35

ALPHABETICAL RESERVED WORD LIST

Operands

Operators

COMPUTE

Syntax in PROCEDURE DIVISION

data-name-2
COMPUTE data-name-1 [ROUNDED]... = { numeric-literal
arithmetic expression

[ON SIZE ERROR statement...]

The COMPUTE statement evaluates the expression to the right of the
equal sign and stores the value in data-name-1.

Details

The operands to the right of the equal sign must be elementary numeric
data items or numeric literals. The operands to the left of the equal sign
may be numeric edited items. Decimal point alignment is provided auto-

matically by the compiler.

The operators may be any of the following:

* K specifies exponentiation

* specifies multiplication

/ specifies division

+ specifies addition

- specifies subtraction

(and) specify alteration of evaluation priority.

Each of these operators must be preceded and followed by one or more
spaces, except that a space is not required after a left parenthesis or
before a right parenthesis. Additionally, the following unary operators are
permitted:

+ specifies a positive value
= specifies a negative value.

Enter a unary operator immediately preceding the associated literal. No
space is allowed.

Page 12.36

ALPHABETICAL RESERVED WORD LIST

COMPUTE

Expression evaluation occurs from left to right. Unless parentheses are
used, the following order of precedence applies:

1. perform all unary operations

2. perform all exponentiation

3. perform all multiplication and division
4. perform all addition and subtraction.

Parentheses may be nested to any level to alter the normal evaluation
sequence. The operation in the most deeply nested parentheses is com-
pleted first and the result stored in an intermediate field created by the
compiler. An intermediate result that cannot fit in 18 digits will be left-trun-
cated. The evaluation proceeds outward in a similar fashion until the opera-
tion in the outer-most parentheses is completed. The appropriate inter-
mediate values are substituted at the proper time for each pair of paren-
theses and the operands and operators they enclose. When parentheses
enclose only portions of an expression, operators not separated from their
operands by a parenthesis follow the default evaluation priority.

Inclusion of the ON SIZE ERROR option makes the COMPUTE statement
conditional rather than imperative. If the integer portion of the result cannot
fit in the specified receiving field, the receiving field will be unchanged
and the statement(s) in the SIZE ERROR clause will be executed. If a
size error occurs and no SIZE ERROR clause is present, no assumption
should be made about the contents of the receiving field.

If the number of digits to the right of the decimal point in the result exceeds
the number available in the result PICTURE clause, right truncation will
occur unless you include the optional ROUNDED clause. if ROUNDED
is specified, the right-most digit transferred to the result field will be in-
creased by 1 whenever the most significant digit of the truncated portion
is equal to or greater than 5. Negative values are affected in a similar
fashion. If the result field is an integer containing one or more P editing
characters, ROUNDED will add 1 to the right-most digit stored in the resulit
field if the value masked by the left-most P is 5 or greater.

Precedence for
Evaluating the
Expression

Page 12.37

ALPHABETICAL RESERVED WORD LIST

COMPUTE

Application

Data values at start of each application:

05 DATA-1 PIC S999 VALUE +120.

05 DATA-2 PIC S999 VALUE +140.

05 DATA-3 PIC S999 VALUE +160.

05 DATA-4 PIC ----.99 "6666.00"

COMPUTE DATA-4 = DATA-1 + DATA-2 / DATA-3
Result: DATA-4 = 120.87

COMPUTE DATA-4 ROUNDED = DATA-1 + DATA-2 / DATA-3
Result: DATA-4 = 120.88

COMPUTE DATA-1 ROUNDED = (DATA-1 + DATA-2) / DATA-3
Result: DATA-4 = 1.63

COMPUTE DATA-4 = 10 *#3 ON SIZE ERROR DISPLAY "OVERFLOW".

Result: DATA-4 is unchanged, display statement executed

Page 12.38

ALPHABETICAL RESERVED WORD LIST

CONFIGURATION

Syntak in ENVIRONMENT DIVISION

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE].
OBJECT-COMPUTER. computer-name

(MEMORY SIZE integer {WORDS | CHARACTERS | MODULES}]

[PROGRAM COLLATING SEQUENCE IS ASCII].

SPECIAL-NAMES.
[PRINTER IS mnemonic-name]

(ASCII IS {STANDARD-1 | NATIVE}]

[CURRENCY SIGN IS literal]

(DECIMAL-POINT IS COMMA].

The CONFIGURATION SECTION describes elements of the hardware
environment not related to file processing. If included, the CONFIGURA-
TION SECTION must occur first within the ENVIRONMENT DIVISION.

Details

The CONFIGURATION SECTION contains three possible paragraphs:
SOURCE-COMPUTER, OBJECT-COMPUTER, and SPECIAL-NAMES.

The contents of the first two paragraphs are treated as commentary, ex-
cept for the clause WITH DEBUGGING MODE. If this clause is included,
PROCEDURE DIVISION statements containing a D in column seven will
be compiled. If this clause is omitted, such statements are skipped during
compilation.

The third paragraph, SPECIAL-NAMES, relates implementor names to
names you define and changes default editing characters. The PRINTER
IS phrase allows definition of a mnemonic name to be used in a DISPLAY
UPON statement. A mnemonic name must follow the rules for word forma-
tion (see Part Il).

Page 12.39

ALPHABETICAL RESERVED WORD LIST

Currency Symbols

ASCII Clause

CONFIGURATION

If a currency symbol other than the dollar sign is desired, you may specify
a single character non-numeric literal in the CURRENCY SIGN clause.
However, the designated character may not be a quotation mark, a digit,
nor any of the characters defined for PICTURE clause representations.

The “European” convention of separating integer and fractional positions
of numbers with the comma character may be employed by specifying
the DECIMAL-POINT IS COMMA clause.

The ASCII clause specifies that data representation adheres to the Ameri-
can Standard Code for Information Interchange. However, this convention
is assumed even if the ASCII clause is not specifically included. In this
compiler, NATIVE and STANDARD-1 are identical and refer to the charac-
ter set representation specified in Appendix G.

Page 12.40

ALPHABETICAL RESERVED WORD LIST

COPY

Syntax in PROCEDURE DIVISION

COPY filename. cob

The COPY statement inserts the contents of a disk file (other than the
source file) in the source code input to the compiler.

Details

The filename must be a Z-DOS text file and must include an extension.
You may include the COPY statement in a line that contains other source
code.
Application
If a disk file named BDEF.COB contains this source code:
05 B.

10 Bl PIC X.

10 B2 PIC X.

these two blocks of source code will compile exactly the same:

05 A.
10 A1 PIC 9.
05 B. 05 A
10 B1 PIC X. and 10 A1 PIC 9 COPY BDEF.COB.
10 B2 PIC X. 05 C.
05 C. 10 C1 PIC Z.
10 C1 PIC Z.

Use this option to simplify source file development or to include optional
or experimental modules in your compilation.

Page 12.41

ALPHABETICAL RESERVED WORD LIST

DATA (in DATA DIVISION Header)

Syntax in Division Header
DATA DIVISION.
[FILE SECTION.]

[WORKING-STORAGE SECTION. |

(LINKAGE SECTION. |

[SCREEN SECTION. |

The DATA DIVISION defines data storage areas used by the program.

Details

The DATA DIVISION is required and must follow the ENVIRONMENT
DIVISION in every COBOL program. It is subdivided into four sections
(see FILE, WORKING-STORAGE, LINKAGE, and SCREEN).

Page 12.42

ALPHABETICAL RESERVED WORD LIST

DATA (in DATA RECORD Clause)

Syntax in DATA DIVISION

DATA {RECORD | RECORDS} {IS | ARE} data-name-1 (data-name-2...]

This clause is appended to an FD paragraph and serves to identify the
records in the file by name.

Details

This clause is documentary only in all COBOL systems. The presence
of more than one data-name indicates that the file area is defined by
more than one record structure (01 level item). The order of the data-
names is not significant.

Application

FD INPUT-FILE LABEL RECORDS ARE STANDARD
DATA RECORDS ARE RECORD-1 RECORD-2.

01 RECORD-1.
05 ITEM-1 PIC XXX.
05 ITEM-2 PIC XXX.
01 RECORD-2.

05 ITEM-3 PIC X(6).

Page 12.43

ALPHABETICAL RESERVED WORD LIST

Additional
Procedures

DECLARATIVES

Syntax in PROCEDURE DIVISION

DECLARATIVES.

{section-name SECTION. USE AFTER STANDARD lEXCEPTION} PROCEDURE
ERROR

ON QUTPUT
INPUT
1-0
EXTEND
filename. ..

{paragraph-name. {sentence.}...} ...} ...
END DECLARATIVES.

The DECLARATIVES subdivision provides a method with which you can
create procedures that deal with /O errors. These procedures are exe-
cuted, not as part of the regular program logic flow, but rather when a
condition occurs that you cannot normally test.

Details

If you include the DECLARATIVES subdivision, it must occur immediately
below the PROCEDURE DIVISION header. The statements DECLARA-
TIVES and END DECLARATIVES are both written in area A. The USE
sentence must immediately follow a SECTION header within the DE-
CLARATIVES subdivision and must be terminated by a period/space se-
quence.

Although the COBOL-86 system automatically handles checking and crea-
tion of standard labels and executes error recovery routines when 1/O
errors occur, you may, at your option, specify additional procedures.

Related procedures are grouped under the same SECTION header and
USE sentence. The USE sentence is not executed, but serves to specify
the applicability of the procedure. The details of the procedure are then
coded in standard sentence and paragraph formats. A declarative section
ends with the occurrence of a SECTION header for a subsequent section,
or, if none exists, the END DECLARATIVES statement.

Page 12.44

ALPHABETICAL RESERVED WORD LIST

DECLARATIVES

The words EXCEPTION and ERROR may be used interchangeably. The
appropriate declarative section is executed (by the PERFORM
mechanism) after the standard 1/O recovery procedures for the files desig-
nated, or after the INVALID KEY or AT END condition arises on a state-
ment lacking the INVALID KEY or AT END clause. A given filename may
not be associated with more than one declarative section.

Within a DECLARATIVES procedure there must be no reference to any
nondeclarative procedure. Conversely, in the nondeclarative portion there
must be no reference to procedure-names that appear in the DECLARA-
TIVES subdivision, except that PERFORM statements may refer to a USE
statement and its procedures. (If PERFORM THRU is used to refer to
a DECLARATIVES procedure, its entire range must lie within the DE-
CLARATIVES subdivision.)

An implicit EXIT from a declarative section is inserted by the compiler
following the last statement in each section. All logical paths within the
section must terminate at this exit point.

Implicit EXIT

Page 12.45

ALPHABETICAL RESERVED WORD LIST

DISPLAY
Syntax in PROCEDURE DIVISION
data-name
DISPLAY [position-spec] screen-name ... [UPON mnemonic-name|
literal
ERASE

The DISPLAY statement permits low-volume data to be output to the
screen or printer; a file definition is not required.

Details

The position-spec may be repeated for each display-item. The length of
the display-item may not be greater than 1920 characters. If you include
the mnemonic-name, it must be defined in the PRINTER IS clause of
the SPECIAL-NAMES paragraph in the CONFIGURATION SECTION. A
screen-name, if included, must be defined in the SCREEN-SECTION.

Output is directed to the screen unless UPON mnemonic-name is included. The
printer is the only device assignable through the mnemonic-name option.

Each display-item is processed in the order of its occurrence in the DIS-
PLAY statement. After every item has been processed, a return/line-feed
sequence will be sent, provided no position-specs were used in the state-
ment.

A position-spec, if included, positions the cursor at the coordinates you
choose prior to the transfer of data. It may be expressed in either of the
following forms:

(LIN[{+ | -} integer-1], COL[{+ | -} integer-2])

(integer-3, integer-4)

The opening and closing parentheses and the comma are required. The

position-spec specifies the position on the screen where the data output
field will begin.

Page 12.46

ALPHABETICAL RESERVED WORD LIST

DISPLAY

LIN and COL are COBOL special registers. Each behaves like a numeric
data item with USAGE COMP, but you may reference a special register
without having declared it in the DATA DIVISION.

If you specify LIN, the data output field will begin on the screen row whose
number is equal to the value of the LIN special register. If + integer-1
or — integer-1 is included, the effective value of LIN will be increased
or decreased accordingly, without affecting the value in the LIN register.
If you specify integer-3, the data output field will begin on the row whose
number is integer-3. If you specify neither LIN nor integer-3, the data
output field will begin on the screen row containing the current cursor
position.

If you specify COL, the data output field will begin in the screen column
whose number is equal to the value of the COL special register. If +
integer-2 or — integer-2 is included, the effective value of COL will be
increased or decreased accordingly, without affecting the value in the COL
register. If you specify integer-4, the data output field will begin in the
column whose number is integer-4. If you specify neither COL nor integer-
4, the data output field will begin in the screen column containing the
current cursor position.

Use of Data-name, Literal, and ERASE

If you specify either a data-name or a literal among the operands, the
contents of the data-name or the value of the literal is sent to the receiving
device. Since no data conversion occurs during processing, only data-
names whose USAGE IS DISPLAY should be included as operands.

If you include ERASE among the operands and a position-spec has been
coded for this or any previous operand, the screen will be cleared from
the current cursor position to the bottom of the screen. If no position-spec
has been coded for the next display-item, the initial cursor position will
be the position from which the ERASE was begun. If you specify ERASE
and no position-spec has been coded prior to its occurrence, it will be
ignored.

Special
Registers LIN
and COL

Page 12.47

ALPHABETICAL RESERVED WORD LIST

DISPLAY

Use of Screen-name

If you include a screen-name among the operands, the contents of each
elementary data-item that includes a VALUE, FROM, or USING clause
will be transferred to the appropriate position on the screen. Except in
the case of a VALUE clause, DISPLAY of a screen-item consists of a
MOVE from its source into the appropriate field of the screen definition,
followed by a “DISPLAY data-name” utilizing the associated position-spec.
For a field having only a TO clause, the effect will be as if FROM ALL
“." (period) had been specified.

Application

77 WS-ENROUTE-TIME PIC 99 VALUE 34.

DISPLAY “TIME ENROUTE: " WS-ENROUTE-TIME " MINUTES"

Result: Screen displays "TIME ENROUTE: 34 MINUTES" at the current cursor
position.

MOVE 10 TO LIN
MOVE 1 TO COL
DISPLAY (LIN, COL) “TIME ENROUTE:" (LIN + 2, COL + 4)
WS-ENROUTE-TIME " MINUTES"
Resuit: After positioning the cursor at line 10, column 1, the screen displays
TIME ENROUTE:
34 MINUTES
DISPLAY (1, 1) ERASE "TIME ENROUTE: " WS-ENROUTE-TIME " MINUTES"

Result: The entire screen is cleared, the cursor is repositioned at line
1, column 1, and the screen displays

TIME ENROUTE: 34 MINUTES.

Page 12.48

ALPHABETICAL RESERVED WORD LIST

DIVIDE

Syntax in PROCEDURE DIVISION

DIVIDE data-name-1 BY data-name-2 GIVING data-name-3
numeric-literal-1 numeric-literal-2

INTO data-name-2 [GIVING data-name-3]
numeric-literal-2

[ROUNDED] [ON SIZE ERROR statement...]

The DIVIDE statement divides two numeric values and stores the quotient.

Details

When you use BY in a DIVIDE statement, the first value in the statement
is the dividend and the second value is the divisor. When INTO is used,
the first value is the divisor and the second is the dividend. The quotient
is stored in the dividend unless you include the optional GIVING clause.
GIVING causes the quotient to be stored in data-name-3. GIVING is re-
quired if the dividend is a numeric literal or with the BY clause.

All of the operands (excluding literals) must be elementary numeric data
items, except that the operand following GIVING may be a numeric edited
item. Decimal point alignment and proper sizing of intermediate storage
fields is provided automatically by the compiler, except that any inter-
mediate result that cannot fit in 18 digits will be left-truncated.

Inclusion of the ON SIZE ERROR option makes the DIVIDE statement
conditional rather than imperative. If the integer portion of the result cannot
fit in the specified receiving field, the receiving field will be unchanged
and the statement(s) in the SIZE ERROR clause will be executed. If a
size error occurs and no SIZE ERROR clause is present, no assumption
should be made about the contents of the receiving field. Division by 0
always causes a size error condition.

Page 12.49

ALPHABETICAL RESERVED WORD LIST

DIVIDE

If the number of digits to the right of the decimal point in the result exceeds
the number available in the result PICTURE clause, right truncation will
occur unless you include the optional ROUNDED clause. If ROUNDED
is specified, the right-most digit transferred to the result field will be in-
creased by 1 whenever the most significant digit of the truncated portion
is equal to or greater than 5. Negative values are affected in a similar
fashion. If the result field is an integer containing one or more P editing
characters, ROUNDED will add 1 to the right-most digit stored in the resuit
field when the value masked by the left-most P is 5 or greater.
Application

Data values at start of each application:

05 DATA-1 PIC 99 VALUE 10.
05 DATA-2 PIC 99 VALUE 20.

DIVIDE DATA-1 INTO DATA-2

Result: DATA-2 = 2

DIVIDE DATA-2 BY DATA-1 GIVING DATA-2
Result: DATA-2 = 2

DIVIDE 40 BY DATA-2 GIVING DATA-1
Result: DATA-1 = 2

DIVIDE DATA-2 INTO DATA-1

Result: DATA-1 = 0

DIVIDE DATA-2 INTO DATA-1 ROUNDED
Result: DATA-1 = 1

DIVIDE DATA-1 BY .1 GIVING DATA-2 ON SIZE ERROR DISPLAY “OVERFLOW".

Result: DATA-1 = 10, display statement executed

Page 12.50

ALPHABETICAL RESERVED WORD LIST

ENVIRONMENT

Syntax in Division Header

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION. |

[INPUT-QUTPUT SECTION.]

The ENVIRONMENT DIVISION provides a standard method of describing
the aspects of a COBOL program that are dependent upon the physical
aspects of the host computer.

Details

The ENVIRONMENT DIVISION is required and must follow the IDENTIFI-
CATION DIVISION in every COBOL program. It is subdivided into two
sections (see CONFIGURATION, INPUT-OUTPUT).

Page 12.51

ALPHABETICAL RESERVED WORD LIST

EXHIBIT

Syntax in PROCEDURE DIVISION

literal
EXHIBIT NAMED [position-spec] data-name
ERASE

[UPON mnemonic-name]
EXHIBIT is a debugging function that causes the values of selected data
items to be displayed at key points during program execution.
Details
The position-spec, ERASE, and UPON follow the same syntax conven-
tions as those described for the DISPLAY statement. If you write the
EXHIBIT statement in a line that includes a D in column 7, it will be ignored
unless you specify WITH DEBUGGING MODE in the SOURCE-COM-
PUTER paragraph in the CONFIGURATION SECTION.
Application
Source code:
WORKING-STORAGE SECTION.

77 VAL1 PIC XXX VALUE "YES".

77 VAL2 PIC XXX VALUE "NO ".
PROCEDURE DIVISION.
MAIN.

EXHIBIT VAL1 " " VAL2.

Screen displays:

VALL = YES VAL2 = NO

Page 12.52

ALPHABETICAL RESERVED WORD LIST

EXIT

Syntax in PROCEDURE DIVISION

paragraph-name.
EXIT.

The EXIT statement is used to terminate execution of a procedure prior
to completion.

Details

The EXIT statement may be used only as a single-word paragraph pre-
ceded by a paragraph-name. It may be invoked by transferring control
to paragraph-name or by “falling through.” Control will then be transferred
to the same statement that would have been executed after the last instruc-
tion in the procedure.

Application

000010 MAINLINE-CONTROL.

000020 PERFORM ANOTHER-PROCEDURE.
000030 PERFORM STILL-ANOTHER-PROCEDURE.
000040 STOP RUN.

000050 EXIT-PROCEDURE.
000060 EXIT.

000070 ANOTHER-PROCEDURE.
000080 IF ERR-FLAG NOT = "YES" GO TO EXIT-PROCEDURE.
000090 PERFORM PROCESS-ERROR.

If EXIT-PROCEDURE is executed (@ line 80), line 90 will be skipped
and control will return to line 30.

Page 12.53

ALPHABETICAL RESERVED WORD LIST

EXIT PROGRAM

Syntax in PROCEDURE DIVISION

paragraph-name.
EXIT PROGRAM.

This statement terminates execution of a subprogram.

Details

The EXIT PROGRAM statement must be a paragraph by itself. Control
returns to the statement following the CALL statement in the main program,
unless program flow is affected by completion of an active PERFORM
statement. If EXIT PROGRAM is encountered in a main program, it is
assumed to mean EXIT.

Application

SUBPROG-MAINLINE.
PERFORM PROCEDURE-FIRST.
PERFORM PROCEDURE-LAST.
EXTT-PROCEDURE.
EXIT PROGRAM.

Page 12.54

ALPHABETICAL RESERVED WORD LIST

FILE

Syntax in DATA DIVISION
FILE SECTION.
{FD filename

LABEL {RECORD | RECORDS} {IS | ARE) {OMITTED | STANDARD}

{data-description-entry}... }...

The FILE SECTION contains one or more FD paragraphs in which the
data file structures used by the program are defined. Every file that ap-
pears in a SELECT clause in the ENVIRONMENT DIVISION must also
have an FD (file definition) paragraph in the FILE SECTION. This para-
graph precedes data definition statements for the file.

Details

The FILE SECTION is required, unless a program relies exclusively on
ACCEPT and DISPLAY statements for its I1/0. When included, it must
occur first in the DATA DIVISION.

The filename must be constructed according to the rules for word formation
presented in Chapter 7 of Part Il. Filename as specified in an FD paragraph
refers to the data structure coded within the DATA DIVISION and refer-
enced in I/O related statements such as OPEN, CLOSE, and READ. it
is not to be confused with FILE-ID as used in the VALUE OF FILE-ID
clause.

Numerous optional clauses applicable to the FD paragraph are treated
separately. See VALUE, DATA, BLOCK, RECORD, CODE-SET, and LIN-
AGE.

The OMITTED option specifies that no labels exist for the file. You must
specify OMITTED for files assigned to the PRINTER. The STANDARD
option specifies that labels exist and conform to system specifications;
you must specify the STANDARD option for files assigned to disk.

Selection of the singular or piural expression has no effect on the compila-
tion.

Page 12.55

ALPHABETICAL RESERVED WORD LIST

FILE

Application
FILE SECTION.
FD INPUT-FILE LABEL RECORDS ARE STANDARD.

01 INPUT-RECORD.
05 FILLER PIC X(80).

FD OUTPUT-FILE LABEL RECORDS ARE OMITTED.

01 OUTPUT-RECORD.
05 FILLER PIC X(132).

Page 12.56

ALPHABETICAL RESERVED WORD LIST

GOTO

Syntax in PROCEDURE DIVISION

GO TO procedure-name
[... DEPENDING ON data-name]

The GO TO statement is used to transfer control to a specific section
or paragraph.

Details

The procedure-name may be either a section-name or a paragraph-name.
Multiple procedure-names may be used if the DEPENDING clause is
specified. Control will then be passed to the procedure-name in the posi-
tion that corresponds to the value of the data-name. For example, if data-
name has a value of 2, control will pass to the second procedure-name
listed. If data-name has a value that is not equal to the position of any
of the procedure-names, the GO TO instruction will be ignored during
execution. The data-name must be an elementary item and a whole
number.

A GO TO statement may be written without an operand provided it consti-
tutes a single-sentence paragraph and is modified by an ALTER statement
before it is executed (see ALTER).

Application

GO TO SECTION-ONE.

GO TO PARAGRAPH-ONE.

GO TO PARA-1 PARA-2 PARA-3 DEPENDING ON JUMP-VECTOR.

Page 12.57

ALPHABETICAL RESERVED WORD LIST

IDENTIFICATION

Syntax in Division Header

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. comment-entry. |
[INSTALLATION. comment-entry. |
[DATE-WRITTEN. comment-entry. |
|DATE-COMPILED. comment-entry. |
[SECURITY. comment-entry. |

The IDENTIFICATION DIVISION provides program documentation.

Details

The IDENTIFICATION DIVISION is required at the beginning of every
COBOL program.

PROGRAM-ID is the only required paragraph. Optional paragraphs, if you
include them, must follow the PROGRAM-ID.

The program-name may be any alphanumeric string of characters that
begins with an alphabetic character and does not contain an embedded
period. Only the first six characters are retained by the compiler. The
program-name identifies the object program and is printed in the heading
portion of each listing page.

Page 12.58

ALPHABETICAL RESERVED WORD LIST

IF

Syntax in PROCDURE DIVISION

class-test

IF) condition-name\ ... action... [ELSE alternate-action...]
sign-test
relation-test

The IF statement causes a series of statements to be executed contingent
on the basis of one or more specified conditions. An alternate series of
statements may be specified that will be executed only if the initial series
is not. If more than one subject is specified, each must be joined to the
others by an AND or OR operator.

Details

If you specify more than one subject (i.e., class-test, condition-name, sign-
test, or relation-test), each must be joined to the others by an AND or
OR operator to stipulate their logical interrelationship. Also, the logical
operator NOT may precede any of the subjects to specify logical negation.

If you specify more than two subjects, the following order of evaluation
is applied: First, each simple subject is evaluated, then, reading from left
to right, each pair of subjects joined by AND is evaluated, finally, beginning
again at the left, each of the resultant OR relationships is evaluated.
Parentheses may be inserted to alter the normal evaluation precedence,
to clarify the precedence in a lengthy statement, or to include compound
conditions within other compound conditions.

If the entirety of the compound subject evaluates true, the statements
immediately following are executed. If it evaluates false, the statements
following ELSE are executed. If ELSE is not specified, control is passed
to the next sentence.

Compound conditional statements may be abbreviated if each condition
shares a common subject. If both the subject and the relational operator
are common to each condition, both may be omitted. For example, these
two statements are equivalent:

Evaluation
of Muitiple
Subjects

Page 12.59

ALPHABETICAL RESERVED WORD LIST

Nesting
IF-ELSE
Statements

IF

IFA=BORA<SCORAKY...

IF A

BOR<CORY...
If NOT is included in an abbreviated condition, two considerations apply:

1. If the item immediately following NOT is a relational operator, then
the NOT participates as part of the relational operator.

2. If the item following NOT is not a relational operator, then the ab-
breviated condition ends and a new condition begins.

You may specify multiple actions for both the true and the false alterna-
tives. The expression NEXT SENTENCE may be used for either alternative.

The power of conditional statements may also be enhanced through nest-
ing, a structure in which IF occurs more than once in a single statement.
ELSE may also be repeated up to the number of times IF is used in
the same statement. There are two forms of nesting: linear and nonlinear.
They may be combined in a single statement.

The execution of each IF in a linear nested conditional is contingent upon
the result of the entire preceding portion of the conditional statement. Each
occurrence of ELSE is associated with the nearest preceding IF. For exam-
ple:

IF condition-1
IF condition-2 action-1
ELSE IF condition-3 action-2
ELSE action-3.

If condition-1 is false, control passes out of the statement. If condition-1
and condition-2 are true, action-1 is performed. If -1 is true and -2 is
false, either action-2 or action-3 is performed, dependent upon condition-3.

Page 12.60

ALPHABETICAL RESERVED WORD LIST

IF

In a nonlinear nested conditional, ELSE clauses do not intervene between
two IF clauses. Instead, the first IF is paired with the last occurrence
of ELSE. The second IF is paired with the next to the last ELSE, and
so on. For example:

IF condition-1
IF condition-2 action-2
ELSE action-3
ELSE action-1.

Condition-2 is evaluated only if condition-1 is true. If condition-1 is false,
action-1 is performed. See the Application for further examples of nested
conditions.

Relation-test

A relation-test evaluates the logical or mathematical relationship of two
operands, both of which must be either data items, literals, or figurative
constants. The relation to be tested is specified by coding one of the
expressions [NOT) EQUAL TO, [NOT] LESS THAN, or [NOT] GREATER THAN between
the operands being tested. The symbols =, <, and > are accepted equi-
valents of these expressions.

If the operands being tested are numeric, the test procedure provides
automatic decimal point alignment. Negative values are considered to be
less than zero and positive values greater than zero. Numeric operands
need not be of the same USAGE. Index names and index data items
are legal operands.

If the operands being tested are alphanumeric, the collating sequence
is ASCII. The test is performed character by character from left to right.
When items of unequal length are compared, the shorter item is assumed
to contain enough trailing spaces to match the length of the longer item.
An alphanumeric item may be compared to a numeric item if the numeric
item is an integer whose USAGE IS DISPLAY. A relation-test that includes
a group data item is always treated as an alphanumeric comparison.

Page 12.61

ALPHABETICAL RESERVED WORD LIST

IF

Class-test

A class-test determines whether the contents of a specified data item
are (or are NOT) alphabetic or numeric. Itis coded in the form:

data-name IS [NOT] {NUMERIC | ALPHABETIC}

The NUMERIC test cannot be applied to an item with an alphabetic PIC-
TURE (e.g., PIC AA). The ALPHABETIC test may be applied only to an
item with an alphanumeric PICTURE (e.g., PIC XX). For the NUMERIC
test to return true, the data item may contain only valid digits, a sign,
and an assumed decimal point. For the ALPHABETIC test to return true,
the data item may contain only the letters A-Z and spaces. A class-test
may be applied to both group and elementary data items.

Sign-test

A sign-test determines whether the sign of a numeric data item is (or
is NOT) a specified sign. It is coded in the form:

data-name IS [NOT] {NEGATIVE | ZERO | POSITIVE}

Condition-name

A condition-name, as defined by an 88-level entry in the DATA DIVISION,
may be used as the subject of a conditional statement. It may be preceded
by NOT to imply logical negation. For the test to return true, the current
value of the associated elementary data item must equal (or NOT equal)
a value within the list or range specified in the 88-level entry.
Application

Simple conditions:

Relation—

IF A > B PERFORM ERROR-ROUTINE.

Page 12.62

ALPHABETICAL RESERVED WORD LIST

IF

Class—
IF C IS NOT NUMERIC PERFORM ERROR-ROUTINE.
Sign—

IF A IS NEGATIVE PERFORM ERROR-ROUTINE
ELSE PERFORM NEGATIVE-BALANCE-ROUTINE.

Condition—
IF OUT-OF-RANGE GO TO EXIT-PROCEDURE.
Compound conditions:

IFA>BANDB >COR A > 8 NEXT SENTENCE
ELSE PERFORM ERROR-ROUTINE.

IF A IS NEGATIVE OR NOT NUMERIC PERFORM ERROR-ROUTINE.

IFA=T0R9 OR 11 GO TO JACKPOT
ELSE PERFORM NEXT-ROLL.

Linear nested conditional:

IF A > B MOVE "YES" TO RELATION-SWITCH
ELSE IF A < B MOVE "NO " TO RELATION-SWITCH
ELSE MOVE SPACES TO RELATION-SWITCH.

Nonlinear nested conditional:

IF NO-ERROR
IF BALANCE-IN IS POSITIVE
IF FLAG-OFF PERFORM MONTHLY-STATEMENT
ELSE PERFORM FLAGGED-ACCT-REPORT
ELSE PERFORM NEG-BALANCE-STATEMENT
ELSE PERFORM ERROR-ROUTINE.

Page 12.63

ALPHABETICAL RESERVED WORD LIST

IN, OF

Syntax in PROCEDURE DIVISION
identifier-1 {IN | OF} identifier-2
Reserved words OF and IN permit the use of non-unique data-names,

condition-names, and paragraph-names by specifying the intended loca-
tion as a qualifier.

Details

Identifier-1 is non-unique and is defined at a higher level number than
identifier-2, which is a group item or filename containing the first. The
second name must either be unique or must itself be qualified. You may
chain qualifiers of data-names and condition-names up to a limit of five.
Paragraph-names may be qualified by a section-name. Filenames and
mnemonic-names must be unique. They cannot be qualified.

A qualified name may only be written in the SCREEN SECTION or PRO-
CEDURE DIVISION. A reference to a multiply defined paragraph-name
need not be qualified when referred to from within the same section.
Application

YEAR OF RETIREMENT-AGE

RATE OF AUTO-EXPENSE IN TRAVEL-EXPENSE-TABLE

CONTROL-FIELD IN INPUT-FILE

Page 12.64

ALPHABETICAL RESERVED WORD LIST

INPUT-OUTPUT

Syntax in ENVIRONMENT DIVISION

INPUT-QUTPUT SECTION.

(FILE-CONTROL.]

[SELECT filename ASSIGN TO {DISK | PRINTER}

[RESERVE integer {AREAS | AREA}]
[FILE STATUS IS data-name-1]
[RECORD KEY IS data-name-2]
(RELATIVE KEY IS data-name-3]

[ACCESS MODE IS {SEQUENTIAL | RANDOM | DYNAMIC} |

(ORGANIZATION IS
{SEQUENTIAL | LINE SEQUENTIAL | INDEXED | RELATIVE}]]...

[I-0-CONTROL. |

[SAME {RECORD | SORT | SORT-MERGE} AREA FOR filename...]...

The INPUT-OUTPUT SECTION describes elements of the hardware envi-
ronment that pertain to file processing. If both the INPUT-OUTPUT SEC-
TION and CONFIGURATION SECTION are included, the INPUT-OUT-
PUT SECTION must appear last.

Details

The INPUT-OUTPUT SECTION is required if the program uses data files.
It contains two possible paragraphs, FILE-CONTROL and |-O-CONTROL,
which are used to define file assignment parameters and buffering specifi-
cations.

Page 12.65

“ALPHABETICAL RESERVED WORD LIST

Serial Files

RESERVE Clause

FILE STATUS
and Operation
Qutcome

INPUT-OUTPUT

FILE-CONTROL Paragraph

Each file defined by an FD entry in the DATA DIVISION must have a
SELECT statement in the FILE-CONTROL paragraph. Clauses shown as
optional in the SELECT syntax may be written in any order. Random and
dynamic access modes are applicable only to files whose ORGANIZA-
TION is relative or indexed. The RECORD KEY clause is applicable only
to indexed files, and the RELATIVE KEY clause is applicable only to rela-
tive files. A detailed treatment of indexed and relative files is provided
in Chapters 10 and 11 in Part Il.

Serial files utilize either of two formats, which are specified by the phrases
ORGANIZATION IS SEQUENTIAL and ORGANIZATION IS LINE SEQUENTIAL. Both formats
assume the file records are variable-length. The regular SEQUENTIAL
organization is a two-byte count of the record length followed by the record
itself for each record in the file. LINE SEQUENTIAL organization follows
each record in the file with a return/line feed delimiter.

No COMP-0 or COMP-3 information should be written into a LINE SE-
QUENTIAL file, since these items may contain the same binary codes
used for return/line feed, thus causing an erroneous end-of-record indica-
tion.

Both organizations pad any remaining space in the last physical record
with CTRL-Z characters to indicate end of file. All records are placed in
the file with no gaps; they span physical block boundaries.

The RESERVE clause is not functional in COBOL-86, but is scanned for
correct syntax. One physical block buffer is always allocated to the logical
record area assigned to it. This allows logical records to span physical
block boundaries. For files assigned to PRINTER, the logical record area
is used as the physical buffer as well.

In the FILE STATUS clause, data-name-1 must refer to a two-character
alphanumeric item defined in the WORKING-STORAGE or LINKAGE
SECTION. After each |-O statement is executed, the runtime data manage-
ment facility places information in the FILE STATUS item that describes
the outcome of the operation. Data-name-1 assumes one of the following
values:

Page 12.66

ALPHABETICAL RESERVED WORD LIST

INPUT-OUTPUT

‘00’ for successful completion

‘10’ for end-of-file indication

‘20" for INVALID KEY (pertains to indexed and relative files)
‘30’ for file not found

‘34’ for disk space full

A ‘0’ in the right-hand character of data-name-1 indicates that no STATUS
information exists for the I-O operation beyond what is expressed by the
left-hand character. Additional FILE STATUS values that pertain to index-
ed and relative files can be found in Chapters 10 and 11 in Part II.

I-O-CONTROL Paragraph

Only the SAME RECORD AREA form is functional in COBOL-86. The
other forms are permitted only in versions that support the SORT utility
and, when allowed, are only scanned for correct syntax.

The SAME RECORD AREA form causes all the named files to share
the same logical record area in order to conserve memory space. It is
not necessary for the named files to have the same ACCESS or ORGANI-
ZATION; however, no filename may be listed in more than one SAME
AREA clause.

Page 12.67

ALPHABETICAL RESERVED WORD LIST

INSPECT
Syntax in PROCEDURE DIVISION
CHARACTERS
INSPECT data-name-1 [TALLYING data-name-2 FOR { LEADING operand-3
ALL operand-3
CHARACTERS

AFTER FIRST operand-5

[!BEFORE] INITIAL operand-4]] [REPLACING | LEADING operand-5
ALL operand-5

AFTER

BY operand-6 | [BEFORE} INITIAL operand-T])

The INSPECT statement allows a program to examine a character-string
item. Options permit various combinations of the following actions:

1. count the occurrences of a character.

2. replace a specified character with another.

3. limit the above actions by requiring the occurrence of other specified
characters.

NOTE: Either the TALLYING or the REPLACING clause must be specified;
they may not both be omitted.

Details

data-name-1 must be of DISPLAY usage. data-name-2 must be numeric. Fields
designated operand-n must have a length of one character and may be
quoted literals, figurative constants, or data items. The TALLYING clause
must precede a REPLACING clause if both are used in the same state-
ment. The effect of including both TALLYING and REPLACING is as if
two INSPECT statements had been written, one including only a TALLY-
ING clause and the other only a REPLACING clause.

TALLYING causes character by character comparison, from left to right,
of data-name-1 with the character specified by operand-3. Data-name-2
is incremented by 1 each time a match is found. If you include the optional
AFTER INITIAL operand-4 clause, counting begins only after a match is found
with the character specified by operand-4. Similarly, if you include BEFORE
INITIAL operand-4, counting stops when a match is found for the character
specified by operand-4.

Page 12.68

ALPHABETICAL RESERVED WORD LIST

INSPECT

REPLACING causes substitution, from left to right, of the character
specified by operand-6 for each occurrence in data-name-1 of the charac-
ter specified by operand-5. If the optional BEFORE or AFTER is included,
the substitution ends or begins when the character specified by operand-7
is first matched.

These general descriptions must be supplemented by the effects of the
words CHARACTERS, ALL, LEADING, and FIRST.

CHARACTERS—stipulates that every character in data-name-1 is to be
affected by the TALLY and/or REPLACE operation. The only means to
limit its scope is by inclusion of the optional BEFORE AFTER clause.

AlLL—stipulates that all characters matching the succeeding operand are
to be affected.

LEADING—stipulates that all characters that match the succeeding
operand and that occur contiguously from the first position of data-name-1
be affected.

FIRST—stipulates that only the first occurrence of the succeeding operand
be affected. Since the result would always be equal to 1, this option is
illegal in a TALLYING clause.

Because TALLYING increments data-name-2, its final value is equal to
its initial value plus the number of matches found.

Data-name-1 is always treated as a character string, regardless of its
PICTURE. Therefore a position containing an embedded sign will be
treated as a single unsigned character.

Page 12.69

ALPHABETICAL RESERVED WORD LIST

INSPECT

Application
Data values at start of each application:

05 STRING-1 PIC X(13) VALUE "0000123456789".
05 COUNTER PIC 9(18) VALUE 0.

INSPECT STRING-1 TALLYING COUNTER FOR CHARACTERS
Result: COUNTER = 13

INSPECT STRING-1 TALLYING COUNTER FOR CHARACTERS AFTER “1"
Result: COUNTER = 8

INSPECT STRING-1 TALLYING COUNTER FOR ALL “5" AFTER "1"
Result: COUNTER = 1

INSPECT STRING-1 TALLYING COUNTER FOR ALL “5" BEFORE “1"
Result: COUNTER = 0

INSPECT STRING-1 REPLACING LEADING “0" BY * "

Result: STRING-1 = " 123456789"

INSPECT STRING-1 REPLACING CHARACTERS BY “+" AFTER "1"
Result: STRING-1 = “00001++++++++"

INSPECT STRING-1 REPLACING ALL “5" BY "+" AFTER “1"
Result: STRING-1 = “00001234+6789"

INSPECT STRING-1 REPLACING ALL “5" BY “+" BEFORE "1"

Result: STRING-1 = “0000123456789"

Page 12.70

ALPHABETICAL RESERVED WORD LIST

JUSTIFIED

Syntax in DATA DIVISION

JUSTIFIED RIGHT

This clause is appended to a data definition statement, and causes right
justification when the data item is used as a receiving field.

Details
JUSTIFIED is only allowed with unedited alphanumeric fields. If the field
is larger than the item it receives, left space fill will occur. If the field

is shorter than the item, left truncation will occur. JUST is an acceptable
abbreviation of JUSTIFIED.

Application

77 ALPHA-VAL PICX(6) JUSTIFIED RIGHT.

Page 12.71

ALPHABETICAL RESERVED WORD LIST

Moditying the
LINAGE-COUNTER

LINAGE

Syntax in DATA DIVISION
LINAGE IS {data-name-1 | integer-1} LINES
[WITH FOOTING AT {data-name-2 | integer-2} |
[LINES AT TOP {data-name-3 | integer-3} |
(LINES AT BOTTOM {data-name-4 | integer-4} |

The LINAGE clause provides a means for specifying the size of the print-
able portion of a page (called the “page body”), the size of the top and
bottom margins, and the line number at which the footing area begins.

Details

The LINAGE clause should be specified only for files assigned to the
PRINTER. All data-names must refer to unsigned numeric integer data
items. Integer-1 must be greaater than zero and integer-2 must not be
greater than integer-1.

The total page size is the sum of the values in each phrase except for
FOOTING. If TOP or BOTTOM margin sizes are not specified, zero is
assumed. The footing area comprises the part of the page body between
the line indicated by the FOOTING value and the last line of the page
body, inclusive.

The values in each phrase at the time the file is opened specify the number
of lines that comprise each of the sections of the first logical page.
Whenever a WRTIE statement with the ADVANCING PAGE phrase is
executed or a “page overflow” condition occurs (see WRITE), the values
in each phrase, at that time, will be used to specify the number of lines
in each section of the next logical page.

A LINAGE-COUNTER is created by the presence of the LINAGE clause.
The value in the LINAGE-COUNTER at any given time represents the
line number at which the printer is positioned within the current page body.
LINAGE-COUNTER may be referenced, but may not be modified, by PRO-
CEDURE DIVISION statements. It is automatically modified during execu-
tion of a WRITE statement, according to the following rules:

Page 12.72

ALPHABETICAL RESERVED WORD LIST

LINAGE

1. When you specify the ADVANCING PAGE phrase of the WRITE statement
or a page overflow condition occurs (see WRITE), the LINAGE-
COUNTER s resetto 1.

2. When you specify an ADVANCING data-name LINES or ADVANCING integer LINES
phrase, LINAGE-COUNTER is incremented by the ADVANCING
value.

3. When you do not specify the ADVANCING phrase, LINAGE-
COUNTER is incremented by one.
Application

FD PRINT-FILE LABEL RECORDS ARE OMITTED
LINAGE 55 TOP 5 BOTTOM 5

Page 12.73

ALPHABETICAL RESERVED WORD LIST

LINKAGE

Syntax in DATA DIVISION

LINKAGE SECTION.

The LINKAGE SECTION is the section in which externally stored data
items are described. This section is permitted only in a subprogram, and,
if used, occurs immediately after the WORKING-STORAGE SECTION.

Details

No storage is allocated by data descriptions written in the LINKAGE SEC-
TION. Instead, these data descriptions duplicate the structure of data items
defined in the DATA DIVISION of the main (calling) program, where stor-
age is actually reserved. Consequently, VALUE clauses other than condi-
tion-names are prohibited in the LINKAGE SECTION.

Only descriptions of data items that are passed to or from the main pro-
gram are included in the LINKAGE SECTION. Memory mapping is
achieved through the USING list (see CALL).
Application
In main program:
WORKING-STORAGE SECTION.
01 SHARED-DATA-ITEMS.
05 REAL-DEFINITION-1 PIC S9(5)V99.
05 REAL-DEFINITION-2 PIC SV999.
In subprogram:
LINKAGE SECTION.
01 LINKED-ITEMS.

05 ITEM-1 PIC 89(5)V99.
05 ITEM-2 PIC SV999.

Page 12.74

ALPHABETICAL RESERVED WORD LIST

MOVE

Syntax in PROCEDURE DIVISION

MOVE {data-name-1 | literal} TO data-name-2 [data-name-3...]

MOVE is the COBOL assignment statement. It is used to move data from
one area of main storage to another and to perform conversions and/or
editing on the data that are moved.

Details

The data represented by data-name-1 or the specified literal are moved
to the area designated by data-name-2. Additional receiving fields may
be specified (data-name-3, etc.). When a group item is a receiving field,
characters are moved without regard to the level structure of the group
involved and without editing.

Subscripts or indexes associated with data-name-2 are evaluated im-
mediately before data are moved to the receiving field. The same is true
for any optional receiving fields. However, any subscripts associated with
the sending field (data-name-1) is evaluated only once, before any data
are sent. For example, in the following statement the receiving fields B
and C(B) are set to the same value, which is the value of A(B) before
the instruction is executed:

MOVE A(B) TO B, C(B).
The following considerations pertain to use of the MOVE instruction:

1. Numeric or alphanumeric source with a numeric or numeric-edited
(report) destination:

a. Decimal alignment will occur with truncating or zero padding
both ends of the field, as needed. If the source is alphanumeric,
it is treated as an unsigned integer and should not be longer
than 31 characters.

Rules for
Using MOVE

Page 12.75

ALPHABETICAL RESERVED WORD LIST

MOVE

b. The data moved assume the type specified in the destination
PICTURE clause. USAGE IS DISPLAY is assumed for alphanumeric
sending fields.

c. Editing will occur as specified by editing symbols contained in
the destination PICTURE clause. Editing will not occur, however,
if the destination is a group item.

d. An alphabetic or alphanumeric edited item cannot be moved
to a numeric or numeric-edited (report) field. Moves to alphabetic
fields are limited to items containing only letters of the alphabet.
Unsigned numeric integers and numeric-edited items can be
moved to alphanumeric or alphanumeric-edited fields.

2. Non-numeric source and destination:

a. Characters are placed in the receiving area from left to right,
unless you specify JUSTIFIED RIGHT for the destination.

b. Padding with spaces will occur if the receiving field is longer
than the data item.

c. Truncating will occur if the receiving field is shorter than the
data item.

3. Results are unpredictable when field boundaries are not aligned in
a group move.

4. Table 12.2 contains all legal source and destination field combina-
tions.

5. Data items for which you specify USAGE IS INDEX are not legal operands
in the MOVE statement (see SET).

Application

Examples of data moves (b represents a blank) are shown in Table 12.3.

Page 12.76

ALPHABETICAL RESERVED WORD LIST
MOVE

Table 12.2. Permissible MOVE Operands
RECEIVING OPERAND IN MOVE STATEMENT

SOURCE NUMERIC NUMERIC NUMERIC- ALPHANUMERIC-

OPERAND INTEGER NONINTEGER EDITED EDITED ALPHANUMERIC GROUP

Numeric OK OK OK OK (A) OK (A) OK (B)
Integer

Numeric OK OK OK OK (B)
Noninteger

Numeric-edited OK OK OK (B)

Alphanumeric- OK OK OK (B)
Edited

Alphanumeric OK (C) QK (C) OK (C) OK OK OK (B)

Group OK (B) OK (B) OK (B) OK (B) OK (B) OK (B)

KEY: (A) Source sign, if any, is ignored.
(B) Ifthe source operand or the receiving operand is a group item, the move is considered to be a group MOVE.
(C) Source is treated as an unsigned integer; source length may not exceed 31.

NOTE: No distinction is made in the compiler between alphabetic and alphanumeric; however, you should not move numeric
items to alphabetic items and vice versa.

Table 12.3. Data Moves with PICTURE

SOURCEFIELD RECEIVING FIELD
PICTURE Value PICTURE Before MOVE After
99Vve9 1234 S99Vva9 9876 — 1234 +
99Vvee 1234 29V9 987 123
S9ve 12- 99Vv9a99 98765 01200
XXX A2B XXXXX Y9X8W A2Bbb

9Vvas 123 99.99 87.65 01.23

Page 12.77

ALPHABETICAL RESERVED WORD LIST

MULTIPLY

Syntax in PROCEDURE DIVISION

MULTIPLY | data-name-1 BY
numeric-literal-1

data-name-2 [GIVING data-name-3]
numeric-literal-2 GIVING data-name-3 [ROUNDED]

[ON SIZE ERROR statement...]

The MULTIPLY statement multiplies two numeric values and stores the
product.

Details

The result is stored in data-name-2 unless the optional GIVING clause
is included. GIVING causes the result to be stored in data-name-3. If
data-name-2 is replaced by a literal, the GIVING clause is required.

All of the operands (excluding literals) must be elementary numeric data
items, except that the operand following GIVING may be a numeric edited
item. Decimal point alignment and proper sizing of intermediate storage
fields is provided automatically by the compiler, except that any inter-
mediate result that cannot fit in 18 digits will be left-truncated.

Inclusion of the ON SIZE ERROR option makes the MULTIPLY statement
conditional rather than imperative. If the integer portion of the result cannot
fit in the specified receiving field, the receiving field will be unchanged
and the statement(s) in the SIZE ERROR clause will be executed. If a
size error occurs and no SIZE ERROR clause is present, no assumption
should be made about the contents of the receiving field.

If the number of digits to the right of the decimal point in the result exceeds
the number available in the result PICTURE clause, right truncation will
occur unless you include the optional ROUNDED clause. If ROUNDED
is specified, the right-most digit transferred to the result field will be in-
creased by 1 whenever the most significant digit of the truncated portion
is equal to or greater than 5. Negative values are affected in a similar
fashion. If the result field is an integer containing one or more P editing
characters, ROUNDED will add 1 to the right-most digit stored in the result
field when the value masked by the left-most P is 5 or greater.

Page 12.78

ALPHABETICAL RESERVED WORD LIST

MULTIPLY

Application
Data values at start of each application:

05 DATA-1 PIC 99 VALUE10.
05 DATA-2 PIC 99 VALUEO.

MULTIPLY 2 BY DATA-1

Result: DATA-1 = 20

MULTIPLY DATA-1 BY 2 GIVING DATA-2
Result: DATA-2 = 20

MULTIPLY .05 BY DATA-1

Result: DATA-1 = 0

MULTIPLY .05 BY DATA-1 ROUNDED
Result: DATA-1 = 1

MULTIPLY 10 BY DATA-1 ON SIZE ERROR DISPLAY "UNDERFLOW".
Result: DATA-1 = 10, display statement executed

Page 12.79

ALPHABETICAL RESERVED WORD LIST

Use of
Subscripts

OCCURS

Syntax in DATA DIVISION

OCCURS integer TIMES [INDEXED BY index...]

[ASCENDING [KEY IS data-name...]
DESCENDING

The OCCURS clause is appended to a data definition statement at any
level other than 01 or 77. It is used to define related sets of data such
as tables, lists, and arrays by specifying the total number of times that
the same data format is repeated.

Details

The maximum legal value of the integer is 1023 and the maximum size
of a table in memory is 4095 bytes. Data description clauses associated
with an item whose description includes an OCCURS clause apply to
each repetition of the item being described.

When you use the OCCURS clause, you must subscript or index the data-
name that is the defining name of the entry whenever it appears in the
PROCEDURE DIVISION (except when it is the operand of a SEARCH
statement). If this data-name is the name of a group item, then all data-
names belonging to the group must be subscripted or indexed whenever
they are used.

A subscript is written by enclosing it in parentheses after the terminal
space of the associated data-name. Subscripts other than literals may
be qualified.

Subscripts provide the means for identifying data items in a table, list,
or array that have not been assigned individual data-names. This may
be achieved through the use of simple subscripts, which indicate an occur-
rence number in the table, or indexes, which define a displacement from
the first byte of storage allocated to the table.

A simple subscript is a positive nonzero integer or a data-name having
such a value. The value may not be larger than the table size defined
in the OCCURS clause. A subscript value of 20, for example, would refer-
ence the twentieth data item in a table, provided the table contained at
least 20 items. A data-name used as a simple subscript must be of DIS-
PLAY or COMPUTATIONAL-0 USAGE. COMPUTATIONAL-0 USAGE re-
sults in a more efficient algorithm.

Page 12.80

ALPHABETICAL RESERVED WORD LIST

OCCURS

An index is a data item whose size, memory location, and storage format
are assigned automatically by the compiler when an INDEXED BY clause
is included. You may make no other definition of the index other than
inclusion of the INDEXED BY clause. The desired value of an index is
achieved either by assigning it in a SET statement, or by automatic varia-
tion of the index in a SEARCH statement. An index may only be used
or referred to in:

aSET

a SEARCH statement

a CALL statement’s USING list

a PROCEDURE DIVISION USING list

a relation condition

the variation item in a PERFORM VARYING statement
a subscript.

N bR

Relative indexing may be implemented by following an index with a plus
or minus sign, which is then followed by an integer. The sign must be
preceded and followed by a space. The effective index is then equal to
the index value plus or minus the integer value. The effective index must
lie within the range of the table.

COBOL-86 tables are limited to three dimensions. Therefore, one, two,
or three subscripts may be necessary, depending upon the number of
OCCURS clauses that pertain to a given item. When more than one sub-
script is required, they are separated by commas and written in order
of successively less inclusive dimensions of the table.

A data-name may not be subscripted if it is being used for:

a subscript.

the defining name in a data definition.
data-name-2 in a REDEFINES clause.
a qualifier.

GRS =

For an explanation of ASCENDING KEY and DESCENDING KEY, see
SEARCH (Format 2) in Part lIl.

Use of Indexes

page 12.81

ALPHABETICAL RESERVED WORD LIST

Application
One-dimensional table using simple subscripts:
DATA DIVISION.

01 ARRAY.
05 ELEMENT OCCURS 10 TIMES PIC XXX.

77 SUBSCRIPT-STORAGE PIC 99 COMP-0 VALUE 5.

PROCEDURE DIVISION.
PARA-1.
MOVE ELEMENT (8) TO ELEMENT (SUBSCRIPT-STORAGE)

One-dimensional table using a relative index:
DATA DIVISION.

01 TINY-TABLE.
05 TINY-DATA OCCURS 3 TIMES
INDEXED BY TINY-INDEX
PIC 998.

PROCEDURE DIVISION.
PARA-1.
SET TINY-INDEX TO 1.

MOVE TINY-DATA (TINY-INDEX) TO TINY-DATA (TINY-INDEX + 1)

OCCURS

TINY-DATA (TINY-INDEX + 2).

Result: Each element is set to the value of the first element.

Two-dimensional table using indexes:
DATA DIVISION.

01 BIG-ARRAY,

05 MAJOR-ELEMENT OCCURS 5 TIMES INDEXED BY MAJOR-INDEX.

10 MINOR-ELEMENT OCCURS 8 TIMES
INDEXED BY MINOR-INDEX
PIC 999.

Page 12.82

ALPHABETICAL RESERVED WORD LIST

OCCURS

PROCEDURE DIVISION.
PARA-1.
SET MAJOR-INDEX TO 3.
SET MINOR-INDEX TO 5.
MOVE MINOR-ELEMENT (MAJOR-INDEX, MINOR-INDEX) TO
OUTPUT-FIELD.

Page 12.83

ALPHABETICAL RESERVED WORD LIST

OPEN

Syntax in PROCEDURE DIVISION

INPUT

OPEN) I-0 filename. ..
QUTPUT
EXTEND

The OPEN statement makes a file available for processing.

Details

For a sequential INPUT file, entering OPEN prepares the file for reading
the file's first available records into memory, so that subsequent READ
statements may be executed without waiting.

For an OUTPUT file, OPEN makes available a record area for develop-
ment of one record, which will be transmitted to the assigned output device
upon the execution of a WRITE statement. An existing file that has the
same name will be superceded by the file created with OPEN OUTPUT.

An OPEN I-O statement is valid only for a DISK file; it permits you to
use the REWRITE statement to modify records that have been accessed
by a READ statement. The WRITE statement may not be used in |I-O
mode for files with sequential organization. The file must exist on disk
when OPEN is EXECUTED; it cannot be created by OPEN I-O.

When the EXTEND phrase is specified, the OPEN statement positions
the file pointer immediately following the last logical record of the file.
Subsequent WRITE statements referencing the file will add records to
the end of the file. Thus, processing proceeds as though the file had
been opened with the OUTPUT phrase and positioned at its end. EXTEND
can be used only for sequential or line sequential files.

Attempting to READ or WRITE to a file that has not been opened is a
runtime error. A file cannot be opened if it has been closed WITH LOCK
during the same program run.

Page 12.84

ALPHABETICAL RESERVED WORD LIST

OPEN

Sequential files opened for INPUT or I-O access must conform to the
format described in INPUT-OUTPUT of Part lll.

Application

OPEN INPUT data-source-1
data-source-2
OUTPUT data-destination-1
data-destination-2
I-0 disk-filename

Page 12.85

ALPHABETICAL RESERVED WORD LIST

PERFORM

Syntax in PROCEDURE DIVISION

Format1:

section-name
PERFORM paragraph-name
procedure-name THRU procedure-name

[{ integer | data-name } TIMES)
The PERFORM statement, in its simplest form, permits the execution of

a program module either once or the number of times specified in the
optional TIMES clause.

Format 2:
section-name
PERFORM paragraph-name
procedure-name THRU procedure-name

[VARYING | index-name | FROM amount-1 BY amount-2]
data-name

UNTIL condition

The PERFORM/UNTIL construction causes the PERFORM statement to
be executed repetitively until a specified condition is met. The condition
is tested prior to each execution of PERFORM. Use of the optional VARY-
ING clause simplifies table handling by automatically adjusting an index
or subscript each time PERFORM is executed.

Format 3:

section-name
PERFORM paragraph-name
procedure-name THRU procedure-name

Page 12.86

ALPHABETICAL RESERVED WORD LIST

PERFORM

VARYING | index-name | FROM amount-1 BY amount-2
data-name

UNTIL condition-1

AFTER | index-name | FROM amount-3 BY amount-4
data-name

UNTIL condition-2

AFTER | index-name | FROM amount-5 BY amount-6
data-name

UNTIL condition-3

A functional equivalent of the complex PERFORM statement, using VARY-
ING, UNTIL, and AFTER clauses, is shown in the Application.

Details

The program module may be either a section, a paragraph, or (if THRU
is used) any number of contiguous sections and/or paragraphs.
THROUGH may be written for THRU. When the module has been exe-
cuted, control returns to the next statement after the PERFORM statement.

Anytime you specify UNTIL, the condition is tested before PERFORM is
executed. Therefore, if the condition is initially true, the PERFORM will
be skipped during execution. Similarly, in Format 1, if data-name is less
than or equal to zero, the PERFORM will be skipped.

Anytime you specify VARYING, the value following FROM is moved to
the data item that follows VARYING on the first pass. On subsequent
passes, the data item following VARYING is adjusted according to the
value that follows BY.

In Format 2, the operands designated amount-1 and -2 may be numeric
literals, index-names, or data-names. In Format 3, the operands desig-
nated identifier-1, -2, and -3 may be data-names or index-names. Those
designated amount-1, -3, and -5 may be data-names, index-names, or
literals. Amount-2, -4, and -6 may be data-names or literals only.

Page 12.87

ALPHABETICAL RESERVED WORD LIST

PERFORM

It is a runtime error to have concurrently active PERFORM ranges whose
terminus points are the same.

Application

Format 1:
Example A:
PERFORM PARAGRAPH-ONE
Example B:

PERFORM SECTION-ONE 2 TIMES

Format 2:
Example A:
PERFORM PARAGRAPH-ONE UNTIL RESULT < 0
Example B:
PERFORM PARAGRAPH-ONE
VARYING TABLE-INDEX FROM 1 BY 1
UNTIL TABLE-INDEX = 100
OR RESULT = TRUE

Format 3:
(This is not an application example. It is a coding analogy that will have

the same functional effect as the construction shown under Format 3 in
Syntax in PROCEDURE DIVISION.)

Page 12.88

ALPHABETICAL RESERVED WORD LIST

PERFORM

START-PERFORM
MOVE amount-1 TO identifier-1
MOVE amount-3 TO identifier-2
MOVE amount-5 TO identifier-3.

TEST-CONDITION-1.
IF condition-1 GO TO END-PERFORM.

TEST-CONDITION-2.
IF condition-2
MOVE amount-3 TO identifier-2
ADD amount-2 TO identifier-1
GO TO TEST-CONDITION-1.

TEST-CONDITION-3.
IF condition-3
MOVE amount-5 TO identifier-3
ADD amount-4 TO identifier-2
GO TO TEST-CONDITION-2.

PERFORM procedure-name THRU procedure-name
ADD amount-6 TO identifier-3
GO TO TEST-CONDITION-3.

END-PERFORM. Next statement.
NOTE: If any identifier above were an index-name, the associated MOVE

would instead be a SET (TO form), and the associated ADD would be
a SET (UP form).

Page 12.89

ALPHABETICAL RESERVED WORD LIST

Types of PIC

Valid Characters

Valid Characters

PICTURE

Syntax in DATA DIVISION

PICTURE IS {numeric-form | an-form | report-form

A PICTURE clause is required to define the size and type of an elementary
data item. It may also specify editing characters to be assumed in the
defined field.

Details

PICTURE IS is commonly shortened to the legal abbreviation PIC. There
are three possible types of pictures: An-form (alphanumeric), Numeric-
form, and Report-form.

Alphanumeric AN-Form Option

This option applies to alphanumeric (character string) items. The PICTURE
of an alphanumeric item is a combination of data description characters
X, A, or 9 and, optionally, editing characters B, 0, and /. An X indicates
that the character position may contain any character from the computer's
ASCII character set. A PICTURE that contains at least one of the combina-
tions:

(a)Aand 9, or
(b) Xand 9, or
(c)Xand A

in any order is considered as if every 9, A, or X character were X. The

characters B, 0, and / may be used to insert blanks or zeros or slashes
in the item. This is then called an alphanumeric-edited item.

Numeric-Form Option

The PICTURE of a numeric item may contain a valid combination of the
following characters:

Page 12.90

ALPHABETICAL RESERVED WORD LIST

PICTURE

9 The character 9 indicates that the actual or conceptual digit position
contains a numeric character. The maximum number of 9's in a
PICTURE is 18.

\" The optional character V indicates the position of an assumed deci-

mal point. Since a numeric item cannot contain an actual decimal
point, an assumed decimal point is used to provide the compiler
with information concerning the scaling alignment of items involved
in computations. Storage is never reserved for the character V.
Only one V is permitted in any single PICTURE, and is redundant
if it is the right-most character.

S The optional character S indicates that the item has an operational
sign. It must be the first character of the PICTURE. See SIGN
in Part lIl.

P The character P indicates an assumed decimal scaling position.

It is used to specify the location of an assumed decimal point when
the point is not within the number that appears in the data item.
The scaling position character P is not counted in the size of the
data item; that is, memory is not reserved for these positions. How-
ever, scaling position characters are counted in determining the
maximum number of digit positions (18) in numeric-edited items
or in items that appear as operands in arithmetic statements. The
scaling position character P may appear only to the left or right
of the other characters in the string as a continuous string of P’s
within a PICTURE description.

The sign character S and the assumed decimal point V are the
only characters that may appear to the left of a left-most string
of P’s. Since the scaling position character P implies an assumed
decimal point (to the left of the P’s if the P's are left-most PICTURE
characters and to the right of the P’s if the P’s are right-most PIC-
TURE characters), the assumed decimal point symbol V is redun-
dant as either the left-most or right-most character within such a
PICTURE description.

Page 12.91

ALPHABETICAL RESERVED WORD LIST

Valid Characters

PICTURE

Report-Form Option

This option describes a data item suitable as an “edited” receiving field
for presentation of a numeric value. The editing characters that may be
combined to describe a report item are as follows:

9V.ZCRDB,$ + *xBO - P/

The characters 9, P, and V have the same meaning as for a numeric
item. The meanings of the other allowable editing characters are described
as follows:

The decimal point character specifies that an actual decimal
point is to be inserted in the indicated position and the source
item is to be aligned accordingly. Numeric character positions
to the right of an actual decimal point in a PICTURE must
consist of characters of one type. The decimal point character
must not be the last character in the PICTURE character
string. PICTURE character ‘P’ may not be used if .’ is used.

Z, * The characters Z and * are called replacement characters.
Each one represents a digit position. During execution, lead-
ing zeros to be placed in positions defined by Z or * are
suppressed, becoming blank or *. Zero suppression termi-
nates at the decimal point (. or V) or the first nonzero digit.
All digit positions to be modified must be the same (either
Z or *), and contiguous starting from the left. Z or * may
appear to the right of an actual decimal point only if all digit
positions are the same.

CR,DB CR and DB are called credit and debit symbols and may ap-
pear only at the right end of a PICTURE. These symbols oc-
cupy two character positions and indicate that the specified
symbol is to appear in the indicated positions if the value of
a source item is negative. If the value is positive or zero,
spaces will appear instead. CR and DB and + and — are
mutually exclusive.

Page 12.92

ALPHABETICAL RESERVED WORD LIST

PICTURE

The comma specifies insertion of a comma between digits.
Each insertion character is counted in the size of the data
item, but does not represent a digit position. The comma may
also appear in conjunction with a floating string. It must not
be the last character in the PICTURE character string.

A floating string is defined as a leading, continuous series of either $
or + or —, or a string composed of one such character interrupted by
one or more insertion commas and/or decimal points. For example:

$$,558,58%
+++ +

+(8j.+ +

$$,$55.8%

A floating string containing N + 1 occurrences of $ or + or — defines
N digit positions. When a numeric value is moved into a report item, the
appropriate character floats from left to right, so that the developed report
item has exactly one actual $ or + or — immediately to the left of the
most significant nonzero digit, in one of the positions indicated by $ or
+ or — in the PICTURE. Blanks are placed in all character positions
to the left of the single developed $ or + or — (see Table 12.4). If the
most significant digit appears in a position to the right of positions defined
by the floating string, then the developed item contains $ or + or —
in the right-most position of the floating string, and nonsignificant zeros
may follow. The presence of an actual or implied decimal point in a floating
string is treated as if all digit positions to the right of the point were indicated
by the PICTURE character 9. In the following examples, b represents
a blank in the developed items.

Table 12.4. A Floating String Example

PICTURE Numeric Value Developed Item
$$$999 14 bb$014
-——,———,999 —456 bbbbbb-456

83385 14 bbb$14

Floating String

Page 12.93

ALPHABETICAL RESERVED WORD LIST

PICTURE

A floating string need not constitute the entire PICTURE of a report item,
as shown in the preceding examples. Restrictions on characters that may
follow a floating string are given later in the description.

When a comma appears to the right of a floating string, the string character
floats through the comma in order to be as close to the leading digit as

possible.

+ # -

The character + or — may appear in a PICTURE either singly
or in a floating string. As a fixed sign control character, the
+ or = must appear as the last symbol in the PICTURE.
The plus sign indicates that the sign of the item is indicated
by either a plus or minus placed in the character position,
depending on the algebraic sign of the numeric value placed
in the report field. The minus sign indicates that blank or minus
is placed in the character position, depending on whether the
algebraic sign of the numeric value placed in the report field
is positive or negative, respectively.

Each appearance of B in a PICTURE represents a blank in

the final edited value.

Each slash in a PICTURE represents a slash in the final edited
value.

Each appearance of 0 in a PICTURE represents a position
in the final edited value where the digit zero will appear.

Other Rules for a Report-Form PICTURE

1. The appearance of one type of floating string precludes any other
floating string.

There must be at least one digit position character.

The appearance of a floating sign string or fixed plus or minus inser-

tion character precludes the appearance of any other of the sign
control insertion characters, namely, +, —, CR, DB.

Page 12.94

ALPHABETICAL RESERVED WORD LIST

PICTURE

4. The characters to the right of a decimal point up to the end of a
PICTURE, excluding the fixed insertion characters +, —, CR, DB
(if present), are subject to the following restrictions:

a.

Only one type of digit position character may appear. That is,
Z * 9 and floating-string digit position characters $ + - are
all 6, mutually exclusive.

If one of the numeric character positions to the right of a decimal
point is represented by + or — or $ or Z, then all the numeric
character positions in the PICTURE must be represented by
the same character.

5. The PICTURE character 9 can never appear to the left of a floating
string or replacement character.

Additional Notes on the PICTURE Clause

1.

2.

A PICTURE clause must only be used at the elementary level.

An integer enclosed in parentheses and following X 9 $ Z P
* B — or + indicates the number of consecutive occurrences
of the PICTURE character.

Characters V and P are not counted. in the space allocation
of a data item. CR and DB occupy two character positions.

A maximum of 30 character positions is allowed in a PICTURE
character string. For example, PICTURE X(BQ) consists of five
PICTURE characters.

A PICTURE must contain at least one of the characters A Z *
X 9 or at least two consecutive appearances of the + or —
or $ characters.

The characters ‘.’ S V CR and DB can appear only once in
aPICTURE.

When DECIMAL-POINT IS COMMA is specified, the explana-
tions for period and comma are understood to apply to comma
and period, respectively.

Page 12.95

ALPHABETICAL RESERVED WORD LIST

PICTURE
Table 12.5. Editing DATA with PICTURE
SOURCE DATA RECEIVING AREA
DATA

PICTURE VALUE PICTURE EDITED DATA
9(5) 12345 $$$,$$9.99 $12,345.00
9(5) 00123 $$%,$89.99 $123.00
9(5) 00000 $$%,$$9.99 $0.00
9(4)V9 12345 $$%,$$9.99 $1,234.50
V9(5) 12345 $5%,5%9.99 $0.12
S9(5) 00123 ———-—-—-=- .99 123.00
S9(5) -00001 @ —————=—- 99 -1.00
S9(5) 00123 +++++++.99 +123.00
S9(5) 00001 ~——————-99 1.00
9(5) 00123 ++4+++++.99 +123.00
9(5) 00123 ———=--== 99 123.00
S9(5) 12345 #*%x%xx 99CR *%12345,00
S999Va9 02345 ZZZNZZ 2345
S999Vv99 00004 zZzZvzz 04
Application

The examples in Table 12.5 illustrate the use of PICTURE to edit data.
In each example, a movement of data is implied, as indicated by the
column headings. (Data value shows contents in storage; scale factor
of this source data area is given by the PICTURE.)

Page 12.96

ALPHABETICAL RESERVED WORD LIST

PROCEDURE

Syntax in Division Header

PROCEDURE DIVISION

[{USING [data-name-1...] | CHAINING data-name-1...}].

[section-name SECTION.

paragraph-name. ..]...

The PROCEDURE DIVISION contains the executable portion of a pro-
gram.

Details

The PROCEDURE DIVISION is required and must follow the DATA DIVI-
SION in every COBOL program. The optional USING list may be included
only if the program is a subprogram. The CHAINING list is used only
if the program is invoked by a CHAIN statement in another program and

parameters are to be passed (see CALL, CHAIN). The use of sections
you define is treated in Part I, Chapter 9.

Page 12.97

ALPHABETICAL RESERVED WORD LIST

READ (to Perform Sequential Input)

Syntax in PROCEDURE DIVISION

READ filename RECORD [INTO data-name| [AT END imperative-statement...]

The READ statement makes available the next logical record of the
specified fle. It also updates the FILE STATUS data item, if you have
specified one. READ for relative and indexed files is discussed in Chapters
10and 11.

Details

The imperative statement(s) in the optional AT END clause specifies the
action to be taken if an end-of-file indication is received from the assigned
storage device. If an end of file occurs and no AT END procedure is
specified, an applicable declarative procedure will be performed. If you
specify neither an imperative statement nor a DECLARATIVES procedure,
and no FILE STATUS data item has been established, a runtime error
will occur. If a FILE STATUS item has been established, execution will
proceed normally on the assumption that the file status will be checked
to determine a course of action.

When INTO is included, the record will be read into the appropriate file
description and immediately copied into the area designated by the data-
name. You should not specify INTO if the file includes variable-size
records. Any subscript or index in the data-name is evaluated after the
record is read but before it is moved to data-name.

Right truncation or left justification with space padding will occur if the
length of a record differs from the length of its associated file description.
Application

READ INPUT-FILE INTO WS-IMAGE

AT END MOVE “Y" TO EOF-SWITCH
GO TO EXIT-PROCEDURE.

Page 12.98

ALPHABETICAL RESERVED WORD LIST

RECORD

Syntax in DATA DIVISION

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

This clause is appended to an FD paragraph and specifies the size of
the logical record in characters.

Details

Since the actual size of a record is determined by the PICTURE clauses
contained in the group, this clause is always documentary in nature.

Integer-2 contains the record size if all records are of the same size
‘(integer-1 is omitted). If variable size records are used, the size of the
smallest and the largest should be placed in integer-1 and integer-2, re-
‘spectively.

Application

FD INPUT-FILE LABEL RECORDS ARE STANDARD
RECORD CONTAINS 80 CHARACTERS.

Page 12.99

ALPHABETICAL RESERVED WORD LIST

REDEFINES

Syntax in DATA DIVISION
REDEFINES data-name-2

The REDEFINES clause is appended to a data definition statement and
either specifies that the same memory area is to contain different data
items or provides an alternative grouping or description of the same data.

Details

When written, the REDEFINES clause should be the first clause following
the data-name (data-name-1) that defines the entry. The data description
entry for data-name-2 should not contain a REDEFINES clause nor an
OCCURS clause.

When an area is redefined, all descriptions of an area remain in effect.
Thus, if B and C are two separate items that share the same storage
area due to redefinition, the procedure statements MOVE X TO B or MOVE
Y TO C could be executed at any point in the program. In the first case,
B would assume the value of X and take the form specified by the descrip-
tion of B. In the second case, the same memory area would receive Y
according to the description of C.

For purposes of discussion of redefinition, data-name-1 is termed the sub-
ject, and data-name-2 is called the object. The levels of the subject and
object are denoted by s and t, respectively. The following rules must be
obeyed in order to establish a proper redefinition.

1. s mustequal t, but must not equal 88.

2. The object must be contained in the same record (01 level item),
unless s=t=01.

3. Prior to definition of the subject and subsequent to definition
of the object, there can be no level numbers that are numerically
less than s.

Page 12.100

ALPHABETICAL RESERVED WORD LIST

REDEFINES

The length of data-name-1 (multiplied by the operand of any OCCURS
clause that may be present) may not exceed the length of data-name-2,
unless the level of data-name-1 is 01 (permitted only outside the FILE
SECTION). Data-name-1 and entries subordinate to it must not contain
any VALUE clauses, except level 88 conditions.

In the FILE SECTION, multiple level 01 entries subordinate to any given
FD clause represent implicit redefinitions of the same area and do not
require a REDEFINES clause.

Application
WORKING-STORAGE SECTION.

01 FIRST-GROUP-ITEM.
05 ALPHA-VAL-1 PIC XXX.
05 ALPHA-VAL-2 PIC XXX.

01 SECOND-GROUP-ITEM REDEFINES FIRST-GROUP-ITEM.
05 NUMERIC-VAL PIC 9(6).

01 ANOTHER-GROUP.
05 SUBGROUP-1.
10 ALPHA-VAL-3 PIC XXX.
10 ALPHA-VAL-4 PIC XXX.
05 SUBGROUP-2 REDEFINES SUBGROUP-1.
10 ALPHA-VAL-6 PIC X(6).

Page 12.101

ALPHABETICAL RESERVED WORD LIST

REWRITE (to Perform Sequential I/0)

Syntax in PROCEDURE DIVISION

REWRITE record-name [FROM data-name]

The REWRITE statement replaces the most recently READ record in a

sequential disk file. REWRITE for indexed and relative files is discussed
in Chapters 10 and 11.

Details

Record-name is the name of a logical record defined in the FILE SECTION
of the DATA DIVISION and may be qualified. Record-name and data-name
must refer to separate storage areas. If the FROM clause is included,
the effect is as if the statement MOVE data-name TO record-name were executed
just prior to the REWRITE.

The file containing record-name must be OPEN in the /0O mode at the
time REWRITE is executed. The READ executed prior to the REWRITE
must be completed successfully. If the record is lengthened during pro-
cessing, it will be truncated to the size of the original record when
REWRITE is executed. If the record is shortened during processing, unpre-
dictable information will be stored between the end of the logical record
and the end of the physical record.

Application

READ employee-file INTO employee-detail-line.
PERFORM modify-employee-record.
REWRITE employee-record FROM employee-detail-line.

Page 12.102

ALPHABETICAL RESERVED WORD LIST

SCREEN

Syntax in DATA DIVISION
SCREEN SECTION.

level-number {screen-name | screen-item}.
[BLANK SCREEN]

[LINE NUMBER IS [PLUS] integer-1]

[COLUMN NUMBER IS [PLUS] integer-2]
(BLANK LINE]

[BELL]

[REVERSE-VIDEQ]

[FOREGROUND-COLOR integer-3]

[BACKGROUND-COLOR integer-4]

(BLANK WHEN ZERO]

[JUSTIFIED RIGHT]

[AUTO]

[SECURE]

{IVALUE IS] literal-1} | {PICTURE IS picture-string

{USING identifier-3} | {[FROM] data-name-1][T0 data-name-2]}}
literal-2

The SCREEN SECTION contains data definitions for formatted screens.
If you include it, it must be the last section in the DATA DIVISION.

Page 12.103

ALPHABETICAL RESERVED WORD LIST

Use of Levels

Effects of
Optional Clauses

SCREEN

Details

As in the FILE and WORKING-STORAGE sections, descriptions may be
grouped through the assignment of appropriate level numbers. Thus there
are two types of screen items. Elementary screen items define the indi-
vidual display and/or data entry fields within the screen layout.

Group screen items are used to name any group of elementary screen
items that you ACCEPT or DISPLAY by executing a single PROCEDURE
DIVISION statement.

A 01 level entry must be followed by a screen-name, and an entry at
level 02-49 must be followed by the name of a group or elementary screen-
item. Each group item must be followed by one or more elementary items,
indicated by the assignment of a higher level number.

All optional clauses are applicable at the elementary level. Only the options
AUTO and SECURE may be included at a group level. If used, the effect
is as if AUTO or SECURE had been specified for each of the elementary
items within the group. AUTO and SECURE may only be included if each
elementary item affected contains a PICTURE clause. If you specify PIC-
TURE, then you must include either USING or at least one FROM or
TO. The order in which optional entries are coded is not significant.

Each optional clause has a specific effect on data input and data display
operations when ACCEPT and DISPLAY statements are executed at run-
time. The effects of each specification are as follows:

1. BLANK SCREEN causes the entire screen to be erased and
the cursor to be placed at the home position (line 1, column

1),

2. LINE and COLUMN affect the screen location associated with
an elementary screen item. As the SCREEN SECTION is pro-
cessed at compiletime, a current cursor position is maintained
so that each elementary screen item can be identified with a
particular region of the screen. When a level 01 screen item
is encountered, the current screen position is reset to line 1,
column 1. Then, as each elementary screen data description
is processed, the current position is adjusted for the size of each
definition encountered. Therefore, by default, successively de-
fined fields appear end to end in successive areas of the CRT
screen.

Page 12.104

ALPHABETICAL RESERVED WORD LIST

SCREEN

You may change the position current at the start of any elementary
screen data description by using the LINE and COLUMN specifica-
tions. If you code neither the LINE nor COLUMN, the current screen
position is not changed. If you code the COLUMN without LINE, the
current screen line is not adjusted. If you code the LINE without COL-
UMN, COLUMN 1 is assumed. The LINE integer or COLUMN integer
clause without PLUS causes the specified integer to be taken as
the line or column at which the current screen item should start.
The LINE PLUS integer or COLUMN PLUS integer clause causes
the specified integer to be added to the current screen line or column;
the result is used as the line or column at which the current screen
item should start. If LINE (COLUMN) is given without integer-1 (in-
teger-2), LINE PLUS 1 (COLUMN PLUS 1) is assumed.

3.

WN =0

el

BLANK LINE causes erasure of the screen from the current cur-
sor position to the end of the current line.

BELL will sound the terminal’'s audio tone when a program is
ready to ACCEPT keyboard input.

REVERSE-VIDEO causes a DISPLAY item to appear with back-
ground and foreground colors inverted.

FOREGROUND-COLOR controls the color of the characters
when a color video display terminal is installed. The color is
chosen by the value of integer-1, which must be in the range -
0-7. White is the defaulit. Color definitions are as follows:

black 4 red

blue 5 magenta
green 6 yellow
cyan 7 white

BACKGROUND-COLOR controls the color of the background.
Integer-2 must contain a value taken from the table above. Black
is the default.

page 12.105

ALPHABETICAL RESERVED WORD LIST

10.

11.

12.

13.

14.

SCREEN

BLANK WHEN ZERO causes a screen item to be displayed
as spaces if its value is zero.

JUSTIFIED and JUST specify that operator-keyed data or data
from a FROM field, USING field, or literal will be aligned with
the right boundary of the screen item when the data are dis-
played on the screen.

VALUE IS literal explicitly specifies the character string that
should be displayed on the screen when the screen item being
defined is referenced by a DISPLAY statement. A screen item
for which VALUE is specified is ignored by all ACCEPT state-
ments.

PICTURE specifies the format in which data are to be presented
on the screen. It is coded according to the rules for WORKING-
STORAGE PICTURE clauses (see PICTURE). During a DIS-
PLAY statement, the contents of a FROM or USING field are
moved to an implicit temporary item with the specified PICTURE
before the field contents are displayed on the screen. During
an ACCEPT statement, the displayed contents of the field being
entered are punctuated to conform with the given PICTURE for-
mat.

FROM, TO, and USING describe relationships between a screen
item and literals and/or fields in the FILE, WORKING-STOR-
AGE, and/or LINKAGE sections. On DISPLAY of a screen item,
a MOVE occurs from any FROM or USING literal or field to
a temporary item defined by the screen item's PICTURE. The
resulting contents of the temporary item are then exhibited on
the screen. On an ACCEPT of the screen item, the runtime sys-
tem implicitly moves the accepted data to any TO or USING
field you have specified for the item.

AUTO specifies that when you have filled a field with input, the
cursor automatically skips to the next input field, rather than
waiting for you to type a terminator character. If there are no
more input fields remaining, the ACCEPT is terminated.

SECURE suppresses the echoing of input characters. Instead,
an asterisk is displayed for each data character accepted.

Page 12.106

ALPHABETICAL RESERVED WORD LIST

SCREEN

NOTE: The following functions are always executed in the order shown
below, regardless of the order in which you specify them:

1. BLANK SCREEN

2. LINE/COLUMN positioning

3. BLANKLINE

4. DISPLAY or ACCEPT of data.

Page 12.107

ALPHABETICAL RESERVED WORD LIST

SEARCH

Syntax in PROCEDURE DIVISION

Format 1:

SEARCH table-name [VARYING index-data-name | index-name]

[AT END imperative-statement-1]

{WHEN condition-1 {NEXT SENTENCE imperative-statement-2}}...

The Format 1 SEARCH statement is used to perform a linear search of
a table by automatically varying its index until a specified condition is
met.

Format 2:

SEARCH ALL table-name (AT END imperative-statement-1...]

WHEN condition-1 {NEXT SENTENCE imperative-statement-2...}

~ The Format 2 SEARCH statement is used to perform a nonserial search
of a table of ordered data.

Details

Format 1

Table-name is the name of a data-item having an OCCURS clause that
includes an INDEXED BY phrase. Table-name must be written without
subscripts or indexes because the nature of the SEARCH statement
causes automatic variation of the associated index.

Use of the optional VARYING phrase permits an additional index or index-
data-name to be varied simultaneously with the index associated with
table-name. This option is most often used to correlate related positions
in separate tables.

Page 12.108

ALPHABETICAL RESERVED WORD LIST

SEARCH

The following rules apply to values of index as you SEARCH:

1. The initial value must be preset by a SET statement before a
SEARCH is performed.

2. If the initial value of an index exceeds the maximum declared
in the OCCURS clause, the SEARCH will terminate immediately
and the AT END clause, if present, will be executed.

3. If the value of the index falls within the range of legal values,
then each WHEN clause is evaluated until one is found to be
true or all are found to be false. That is, the WHEN clauses
are considered to be connected in an OR relationship. If one
is true, its associated imperative statement is executed and the
SEARCH operation terminates. If none is true, the index (plus
any items coded with VARYING) is incremented by one and
the SEARCH is repeated.

If the table is subordinate to another table (a dimension of a multidimen-
sional table), an index must be specified in an INDEXED BY phrase for
each OCCURS clause. However, since the SEARCH statement varies
only a single index (plus any items coded with VARYING), searching an
entire multidimensional table requires coding multiple SEARCH state-
ments. The indexes not being varied are preset before each dimension
is searched, often by using a PERFORM VARYING construction.

Format 2

Only one WHEN clause is permitted, and the following rules apply to the
condition:

1. Only simple relational conditions or condition-names may be em-
ployed, and the subject must be properly indexed by the index
associated with the table (or table dimension) being searched.
Furthermore, each subject data-name (or the data-name as-
sociated with the condition-name) in the condition must be men-
tioned in the KEY clause of the table. The KEY clause is an
appendage to the OCCURS clause of the format

Rules of
Index Values

Rules of
WHEN Condition

Page 12.109

ALPHABETICAL RESERVED WORD LIST

SEARCH

{ASCENDING | DESCENDING} KEY IS data-name...

where data-name is an item defined at a higher level number within
the same group item. The KEY phrase indicates that the repeated
data are arranged in ascending or descending order according to
the data-names that are listed (in any given KEY phrase) in decreas-
ing order of significance. More than one KEY phrase may be
specified.

2. In a simple relational condition, only the equality test (using IS
EQUAL TO or =) is permitted.

3. Any condition-name (level 88 item) must be defined as having
only a single value.

4. The condition may be compounded by use of the logical operator
AND, but not OR.

5. In a simple relational condition, the object (to the right of the
equal sign) may be a literal or a data item. A data item must
not be listed in the KEY clause of the table or be indexed by

.the index associated with table-name.

Failure to conform to these restrictions may yield unpredictable results.
Unpredictable results also occur if the table data are not ordered in con-
formity to the declared KEY clauses, or if the keys referenced in the WHEN
condition are not sufficient to identify a unique table element.

In a Format 2 SEARCH, a nonserial type of search operation takes place,
which relies upon the declared ordering of data. The initial setting of the
index for table-name is ignored and its value is varied automatically within
the bounds of the table as the search progresses. If the WHEN condition
cannot be satisfied for any valid index value, the AT END clause, if present,
will be executed. If no AT END clause is specified, the next executable
sentence receives control.

If all the simple conditions in the single WHEN condition are satisfied,
the resultant index value points to a table item that causes those conditions
to be true. If no such table item is found, the final index value is unpredict-
able.

Page 12.110

ALPHABETICAL RESERVED WORD LIST

SEARCH

Application

Format 1:

WORKING-STORAGE SECTION.

01 WATER-TABLE.
05 WATER-RATE-TABLE OCCURS 40 TIMES INDEXED BY RATE-INDEX.
10 USAGE-LIMIT PIC 9(6).

10 MONTHLY-CHARGE PIC 9(3)V99.
PROCEDURE DIVISION.

SEARCH-ROUTINE.
SET RATE-INDEX TO 1.
SEARCH WATER-RATE-TABLE AT END PERFORM TABLE-ERROR-ROUTINE
WHEN USAGE-LIMIT (RATE-INDEX) > USAGE-IN
MOVE MONTHLY-CHARGE (RATE-INDEX) TOUSER-CHARGE.

Format 2:
WORKING-STORAGE SECTION.

01 QUANTITY-TABLE.
05 QUANTITY-DISCOUNT-TABLE OCCURS 100 TIMES
INDEXED BY DISCOUNT-INDEX
ASCENDING KEY PURCHASE-QUANTITY.
10 PURCHASE-QUANTITY PIC 999.
10 DISCOUNT-FACTOR PIC V99.

PROCEDURE DIVISION.

SEARCH ROUTINE.
SET DISCOUNT-INDEX TO 1.
SEARCH ALL QUANTITY-DISCOUNT-TABLE
AT END MOVE MAX-DISCOUNT TO USER-DISCOUNT
WHEN PURCHASE-QUANTITY (DISCOUNT-INDEX) = QUANTITY-IN
MOVE DISCOUNT-FACTOR (DISCOUNT-INDEX) TO USER-DISCOUNT.

Page 12.111

ALPHABETICAL RESERVED WORD LIST

SET

Syntax in PROCEDURE DIVISION

Format 1:
index-1 index-2
SET < index-item-1 p ... TO ! index-item-2
data-name-1 data-name-2
integer
Format 2:

SET index... {UP BY | DOWN BY} {data-name | integer}

The SET statement permits the manipulation of indexes, index data items,
or binary subscripts for table-handling purposes.

Details

Because they are stored in a special internal format, use of the MOVE,
ADD, and SUBTRACT statements is not permitted with either indexes
or index data items. Format 1 of the SET statement provides the effect
of a MOVE, and Format 2 provides the effect of an ADD or SUBTRACT.
Operands of the SET statement are limited to positive integer values.
Application

SET TABLE-1-INDEX TO 1

SET TABLE-1-INDEX TO INDEX-ITEM-1

SET TABLE-1-INDEX INDEX-ITEM-1 UP BY 5

Page 12.112

ALPHABETICAL RESERVED WORD LIST

SIGN

Syntax in DATA DIVISION

SIGN IS {LEADING | TRAILING} [SEPARATE CHARACTER]

The SIGN clause is appended to a data definition statement whose
USAGE IS DISPLAY. It determines the method of internal sign representa-
tion.

Details

The following summarizes the effect of the four possible forms of this
clause:

SIGN clause Representation mode
TRAILING Embedded in right-most byte (default)
LEADING Embedded in left-most byte

TRAILING SEPARATE Stored in separate right-most byte
LEADING SEPARATE Stored in separate left-most byte

When these forms are coded, the PICTURE must begin with an S. If
no S appears, the item is unsigned and the SIGN clause is prohibited.
When S appears at the front of a PICTURE but no SIGN clause is included
in the definition, the default case SIGN IS TRAILING is assumed.

The SIGN clause may be written at a group level. Such a clause specifies
the sign’s format for any signed DISPLAY item within the group.

The SEPARATE CHARACTER phrase increases the size of the data item
by one character.

NOTE: When the CODE-SET clause is specified for a file, all signed
numeric data for that file must be described with the SIGN IS SEPARATE
clause.

Application

17 NUMERIC-VAL PIC S999 SIGN IS TRAILING SEPARATE.

Page 12.113

ALPHABETICAL RESERVED WORD LIST

STOP

Syntax in PROCEDURE DIVISION

STOP {RUN | literal).

The STOP statement is used to terminate or delay execution of the object
program.

Details

STOP RUN terminates execution of a program, closing all files and return-
ing control to the operating system. The last executable statement in a
program must be a STOP RUN. If used in a sequence of imperative state-
ments, it must be the last statement in that sequence.

When followed by a literal, the STOP statement displays the specified
literal on the screen and suspends execution. Execution resumes when
you press RETURN. Generally you use the pause to perform a function
suggested by the literal.

Application

STOP “Place data disk #2 in drive B and press RETURN. "

STOP "Press RETURN when printer is ready."

STOP RUN.

Page 12.114

ALPHABETICAL RESERVED WORD LIST

STRING

Syntax in PROCEDURE DIVISION

STRING {operand-1 DELIMITED BY {operand-z‘ b,
SIZE

INTO identifier-1 [WITH POINTER identifier-2]
[ON OVERFLOW imperative-statement]

The STRING statement allows concatenation of one or more alphabetic
or alphanumeric data items into a single receiving data item.

Details

Operand-1 and -2 may be data-names, non-numeric literals, or single-
character figurative constants. Identifier-1 is the receiving field. It may not
contain editing symbols or a JUSTIFIED clause. |dentifier-2 is a position
counter. It must be an elementary numeric integer data item of a size
that allows storage of a value 1 greater than the length of identifier-1.

If the POINTER phrase is omitted, the internal pointer defaults to a value
of 1. This causes concatenation to occur at the beginning of the string
found in identifier-1. If the POINTER phrase is included, concatenation
occurs at the position that corresponds to the value of identifier-2.

Termination of the character transfer process is controlled by the DE-
LIMITED clause. DELIMITED BY SIZE causes the entire sending field
to be moved. DELIMITED BY operand-2 terminates the move when the
character string specified by operand-2 is found in operand-1. The match-
ing characters are not transferred.

The imperative-statement will be executed anytime the position pointer
assumes a value less than 1 or greater than the length of identifier-1.
If no imperative-statement is provided, control is passed to the next execut-
able statement.

Page 12.115

ALPHABETICAL RESERVED WORD LIST

STRING

There is no automatic space fill into any position of identifier-1. Unacces-
sed positions are unchanged at the completion of the STRING statement.
The value of the pointer (identifier-2) is incremented by 1 for each charac-
ter moved. Its value at completion is equal to its starting value plus the
number of characters moved.

Application
Data values at start of each application:
05 MESSAGE-FIELD-1 PIC X(21) VALUE "ACCOUNT BALANCE DOES NOT .
05 MESSAGE-FIELD-2 PIC X(5) VALUE "MEETS".
05 MESSAGE-FIELD-3 PIC X(13) VALUE " REQUIREMENTS.".
05 DELIMITER-1 PIC X(4) VALUE "DOES".
05 DISPLAY-MESSAGE PIC X(43) VALUE SPACES.
STRING MESSAGE-FIELD-1 DELIMITED BY SIZE

MESSAGE-FIELD-2 DELIMITED BY “S"

MESSAGE-FIELD-3 DELIMITED BY SIZE

INTO DISPLAY-MESSAGE.

Result:
DISPLAY-MESSAGE = “ACCOUNT BALANCE DOES NOT MEET REQUIREMENTS.
STRING MESSAGE-FIELD-1 DELIMITED BY DELIMITER-1

MESSAGE-FIELD-2 DELIMITED BY SIZE

MESSAGE-FIELD-3 DELIMITED BY SIZE.

Result:

DISPLAY-MESSAGE = "ACCOUNT BALANCE MEETS REQUIREMENTS.

Page 12.116

ALPHABETICAL RESERVED WORD LIST

SUBTRACT

Syntax in PROCEDURE DIVISION

SUBTRACT | data-name-1... FROM
numeric-literal-1..

data-name-m (GIVING] data-name-n] (ROUNDED]
numeric-literal-m GIVINGdata-name-n

[ON SIZE ERROR statement...]

The SUBTRACT statement subtracts one or more numeric values from
a numeric literal or data item and stores the difference.

Details

All of the values that precede the word FROM are subtracted from the
value that follows FROM. The result is stored in the data item that follows
FROM unless the optional GIVING clause is included. GIVING causes
the result to be stored in data-name-n. If the value that follows FROM
is a numeric literal, the GIVING clause is required.

All of the operands (excluding literals) must be elementary numeric data
items, except that the operand following GIVING may be a numeric edited
item. Decimal point alignment and proper sizing of intermediate storage
fields is provided automatically by the compiler, except that any inter-
mediate result that cannot fit in 18 digits will be left-truncated.

Inclusion of the ON SIZE ERROR option makes the SUBTRACT statement
conditional rather than imperative. If the integer portion of the result cannot
fit in the specified receiving field, the receiving field will be unchanged
and the statement(s) in the SIZE ERROR clause will be executed. If a
size error occurs and no SIZE ERROR clause is present, no assumption
should be made about the contents of the receiving field.

If the number of digits to the right of the decimal point in the result exceeds
the number available in the result PICTURE clause, right truncation will
occur unless you include the optional ROUNDED clause. If ROUNDED
is specified, the right-most digit transferred to the resuilt field will be in-
creased by 1 whenever the most significant digit of the truncated portion
is equal to or greater than 5. Negative values are affected in a similar
fashion.

Page 12.117

ALPHABETICAL RESERVED WORD LIST

SUBTRACT

If the result field is an integer containing one or more P editing characters,
ROUNDED will add 1 to the right-most digit stored in the result field when
the value masked by the left-most P is 5 or greater.

Application

Data values at start of each application:

05 DATA-1 PIC 99 VALUE 99.

05 DATA-2 PIC 999 VALUE 100.

05 DATA-3 PIC V9 VALUE .5.

SUBTRACT 1 FROM DATA-2

Result: DATA-2 = 99

SUBTRACT 1 FROM DATA-2 GIVING DATA-1

Result: DATA-1 = 99

SUBTRACT DATA-3 FROM DATA-2

Result: DATA-2 = 99

SUBTRACT DATA-3 FROM DATA-2 ROUNDED

Result: DATA-2 = 100

SUBTRACT DATA-2 FROM DATA-1 ON SIZE ERROR DISPLAY “UNDERFLOW".

Result: DATA-1 = 99, display statement executed

Page 12.118

ALPHABETICAL RESERVED WORD LIST

SYNCHRONIZED

Syntax in DATA DIVISION

SYNCHRONIZED [LEFT | RIGHT]

The SYNCHRONIZED clause is appended to a data definition statement
and indicates that memory allocation for the associated item should begin
or end on a word boundary.

Details

In COBOL-86, this statement is checked for correct syntax, but is treated
only as commentary. SYNC is an acceptable abbreviation of SYN-
CHRONIZED.

Application

77 BIN-VAL PIC 9999 COMP SYNC.

Page 12.119

ALPHABETICAL RESERVED WORD LIST

TRACE

Syntax in PROCEDURE DIVISION

{READY | RESET} TRACE

TRACE is a debugging function that causes the name of each section
or procedure to be displayed on the screen each time it is executed.

Details

The TRACE function is activated when the READY TRACE statement is encoun-
tered in the source code. It is suspended when the RESET TRACE statement
is encountered. If these statements are written on a line that includes
a D in column 7, they will be ignored unless you specify WITH DEBUG-
GING MODE in the SOURCE-COMPUTER paragraph in the CONFIG-
URATION SECTION. By comparing the ordered list of section and proce-
dure names with the performance of the program being debugged, you
can easily detect the point at which the intended program flow departed
from the actual program flow.

Application

Source code: INITIALIZE.
READY TRACE.

MAIN.
MOVE 0 TO VAL.
PERFORM INCREMENT UNTIL VAL=5.
STOP RUN.

INCREMENT.
ADD 1 TO VAL.
DISPLAY VAL.
IF VAL > 3 RESET TRACE.

Screen output: MAIN
1
INCREMENT
2
INCREMENT
3
INCREMENT
4
5

Page 12.120

ALPHABETICAL RESERVED WORD LIST

UNSTRING

Syntax in PROCEDURE DIVISION

UNSTRING data-name-1

(DELIMITED BY [ALL| operand-1 [OR [ALL] operand-2]...]|
INTO {data-name-2

(DELIMITER IN data-name-3] [COUNT INdata-name-4}}. ..
[WITH POINTER data-name-5] [TALLYING IN data-name-6]
[ON OVERFLO¥ imperative-statement]

The UNSTRING statement causes characters in a single alphanumeric
sending field to be separated into subfields and moved to individual receiv-
ing fields.

Details

Data-name-1 and data-name-3 must be alphanumeric group or elementary
data items. Operands must be non-numeric literals, single-character
figurative constants, or alphanumeric data items. Data-name-2 must be
an alphabetic or alphanumeric group or elementary item, or an elementary
numeric item with USAGE DISPLAY and no P characters in its PICTURE.
Data-name-4, -5, and -6 must be elementary numeric items.

During execution, one or more variable length character strings is de-
veloped, as determined by the length of the current receiving field or the
effect of delimiting operands. When the string is completely developed,
it is transferred to the receiving field in standard MOVE fashion.

If you include the DELIMITED BY clause, each operand specified is com-
pared in order to the characters being moved from data-name-1. When
a match is found, the move into the current data-name-2 is terminated
and any remaining positions are either zero- or space-filled, as appropriate.
The delimiter itself is not transferred. The UNSTRING function then con-
tinues, utilizing each subsequent data-name-2 until the end of data-name-1
is reached.

Page 12.121

ALPHABETICAL RESERVED WORD LIST

UNSTRING

When you specify the ALL phrase, muitiple contiguous occurrences of
the associated delimiter will be treated as a single occurrence. If, at any
time, two contiguous delimiters are found, the current receiving field will
be entirely zero- or space-filled, depending on its type.

If you include the DELIMITED BY clause, you may also include the DELIM-
ITER IN phrase after any data-name-2. The character(s) used to delimit
the associated data-name-2 will then be stored in data-name-3. If you
also include the COUNT IN phrase, it will contain the number of characters
moved to data-name-2.

The value found in data-name-5 determines the character position in data-
name-1 where the UNSTRING function will begin. If you do not include
a POINTER phrase, an internal pointer is maintained that has a starting
value of 1. When execution of the statement is completed, identifier-5
will contain the final value of the POINTER.

If the POINTER should assume a value less than 1 or greater than the
length of data-name-1, an overflow condition exists and control passes
to the imperative statement(s) in the ON OVERFLOW clause, if you include
one. An overflow condition also exists if all of the receiving fields (data-
name-2) are exhausted prior to scanning the entire length of the sending
field (data-name-1).

If there is a TALLYING IN phrase, 1 will be added to data-name-6 for
each receiving field (data-name-2) acted upon. Thus, the final value of
data-name-6 will be its starting value plus the number of receiving fields
acted upon during execution of the statement.

Any subscript or index of data-name-1, -5, or -6 is evaluated only once
at the beginning of the UNSTRING statement. Any subscript associated
with the operands or with data-name-2, -3, or -4 is evaluated immediately
before access to that item.

Page 12.122

ALPHABETICAL RESERVED WORD LIST

UNSTRING

Application
Data values at start of each application:

77 STRINGI PIC X(13) VALUE “ABCDEFGGHIJKL".
77 DEST1 PIC X(5).

77 DEST2 PIC X(5).

77 DEST3 PIC X(35).

77 DEST4 PIC X(5).

77 PTR-VAL PIC 99 VALUE 8.

UNSTRING STRING1 INTO DEST1 DEST2 DEST3
Result: DEST1 = "“ABCDE", DEST2 = “FGGHI", DEST3 = "JKL “.

UNSTRING STRING1 DELIMITED BY “G" INTO DEST1 DEST2 DEST3 DEST4

" [
L

Result: DEST1 = “ABCDE", DEST2 = “F “, DEST3
DEST4 = “HIJKL".

UNSTRING STRING1
DELIMITED BY ALL “G" INTO DEST1 DEST2 DEST3

Result: DEST1 = "ABCDE", DEST2 = 'F “, DEST3

"HIJKL".
UNSTRING1 STRING1 INTO DEST1 DEST2 WITH POINTER PTR-VAL

Result: DEST1 = "GHIJK", DEST2 = "L ", PTR-VAL = 13.

Page 12.123

ALPHABETICAL RESERVED WORD LIST

Restrictions
for Index Data
Item

USAGE

Syntax in DATA DIVISION

USAGE IS | DISPLAY
COMPUTATIONAL-0
COMPUTATIONAL-3
INDEX

The USAGE clause is written as part of the definition of a group or elemen-
tary data item. Its function is to specify the form in which numeric data
are represented internally.

Details

The USAGE clause is optional and may be written at any level. When
included at the group level, the specified USAGE applies to all subordinate
items. When written at the elementary level, the USAGE clause must not
contradict any USAGE specified for the group.

If the clause is omitted, USAGE IS DISPLAY is assumed. DISPLAY
USAGE allocates one byte of storage for each digit defined in a picture
clause. The sign, if present, is normally embedded in the lowest order
byte. Values are limited to a maximum of 18 digits.

COMPUTATIONAL-0 USAGE allocates a single 16-bit word for storage

. of a value as a true binary number. The highest order bit represents the

sign. COMP-0 is a valid abbreviation.

COMPUTATIONAL-3 USAGE allocates a half-byte for each digit plus a
half-byte for the sign. Each digit is stored as a binary number in the range
0-9. COMP-3 is a valid abbreviation.

INDEX USAGE provides a means to store the value of a table index in
a data item that is not itself an index. A data item containing a USAGE
IS INDEX phrase is referred to as an index data item. Such an item has
two restrictions applicable to it that do not affect other storage formats:

Page 12.124

ALPHABETICAL RESERVED WORD LIST

USAGE

® An index data item may not have a PICTURE clause. Its size and
structure are determined automatically by the compiler.

® Anindex data item may be used only in a SET or SEARCH statement,
the USING list of a CALL statement or a PROCEDURE DIVISION
header, a relation test, or as the variation item in a PERFORM VARY-
ING statement.

For a complete understanding of indexes and index data items, see OC-
CURS, SEARCH, and SET. Also see Numeric Items in Chapter 8 for
a further discussion of numeric values in COBOL.

Application
01 WS-ACCUMULATORS COMP-3.
05 PAGE-COUNT PIC 89(5).
05 LINES-USED PIC 89(3).
77 RECORDS-READ PIC S9(4) COMP-0.
01 WS-INDEX-ITEMS.

05 TABLE-1-POINTER INDEX.
05 TABLE-2-POINTER INDEX.

Page 12.125

ALPHABETICAL RESERVED WORD LIST

VALUE (to Define Truth Set of Condition-name)

Syntax in DATA DIVISION

Format 1:

VALUE IS literal-1 [literal-2...]

Format 2:

VALUES ARE literal-1 THRU literal-2

A VALUE clause is required in a level 88 condition entry to specify the
value(s) or value range that resulits in the condition-name being true.

Details

A level 88 entry must be preceded by either another level 88 entry (as
in the case of multiple condition-names associated with a single data item)
or by an elementary data item (which may be FILLER). INDEX data items
may not be followed by level 88 items.

A nonunique condition-name may be qualified by the name of the elemen-
tary item associated with it and by the elementary item’s qualifiers (see
OF, IN).

When used in the PROCEDURE DIVISION, a condition-name replaces
a simple relational condition. A condition-name may be associated with
an elementary item requiring subscripts. In this case, the condition-name,
when written in the PROCEDURE DIVISION, must be subscripted accord-
ing to the same requirements as the associated elementary item.

The type and size of the literal that follows VALUE IS must be consistent
with the PIC clause of the associated elementary item. If the PIC clause
contains editing characters, the literal must be non-numeric. A VALUE
clause may contain either a series or a range of literals, but not both.

Page 12.126

ALPHABETICAL RESERVED WORD LIST

VALUE (to Define Truth Set of Condition-name)

Application
Used with VALUE range:

05 FILLER PIC 99.
88 UNDER-AGE VALUES ARE 0 THRU 20.

Used with VALUE series:

05 FILLER PIC X(3).
88 LEGAL-HOLIDAY VALUE "1/1 " "T/4 " "12/25".

Multiple conditions used with an edited field:
05 FILLER PIC Z,ZZ9.
88 MAXIMUM-LEVEL VALUE "“8,750".
88 AVERAGE-LEVEL VALUE “4,320".
88 MINIMUM-LEVEL VALUE " 120".
Qualified condition-name:
In DATA DIVISION:

05 SYSTEM-PRESSURE PIC 999.
88 INSUFFICIENT VALUES ARE 0 THRU 124.

In PROCEDURE DIVISION reference:

IF INSUFFICIENT IN SYSTEM-PRESSURE

Page 12.127

ALPHABETICAL RESERVED WORD LIST

VALUE (to Initialize Data Value)

Syntax in DATA DIVISION

Format 1:
VALUE IS “ABCD"
Format 2:
VALUE IS -1234

A VALUE clause specifies the initial value of a data field defined in the
Working-Storage Section.

Details

Use of a VALUE clause is optional. If it is omitted, no assumption should
be made about the initial contents of a data item. A VALUE clause may
not be used outside the Working-Storage Section, nor may it be used
with a data item that includes or is subordinate to an OCCURS or REDE-
FINES clause.

The size of the specified VALUE must fit in the field size defined by the
PICTURE clause. If the PIC clause defines a larger field, an alphanumeric
value will be left-justified with space fill and a numeric value will be decimal
point aligned with zero padding. A figurative constant may replace a literal
value.

A VALUE clause ignores editing characters in the PIC definition, as well
as the BLANK WHEN ZERO and JUSTIFIED RIGHT clauses. However,
an alphanumeric edited PICTURE clause can properly align an al-
phanumeric VALUE entry if the VALUE entry includes the editing charac-
ters (see the Application).

VALUE may be used at the group level provided the group does not con-
tain a PICTURE clause with any 9 characters. You may specify either
a non-numeric figurative constant or a non-numeric literal of a size not
greater than the size of the group. Do not use this option if the reserved
words JUSTIFIED, SYNCHRONIZED, or USAGE (other than DISPLAY)
occur anywhere within the group. If you specify a VALUE at a group level,
it may not be specified at a higher level number.

Page 12.128

ALPHABETICAL RESERVED WORD LIST

VALUE (to Initialize Data Value)

Application

Use of figurative constant:

PIC X(5) VALUE SPACES

PIC 9(5) VALUE ZERO

Left justification with space fill:

PIC X(5) VALUE “YES"

PIC X(5) VALUE "YES" JUSTIFIED RIGHT
Decimal point alignment with zero padding:
PIC 99V99 VALUE 1.2

Only legal method to accommodate edited field:
PIC XX/XX/XX VALUE “10/20/48"

lilegal, PIC too small:

PIC 99V99 VALUE 100.2

PIC X(5) VALUE “RESULT"

Use at group level:

01 WS-SWITCHES VALUE " NO NO".

05 ERROR-SWITCH PIC XXX.
05 EOF-SWITCH PIC XXX.

page 12.129

ALPHABETICAL RESERVED WORD LIST

VALUE (to Specify a Disk Filename)

Syntax in DATA DIVISION

VALUE OF FILE-ID IS {data-name | literal}

The VALUE OF clause is required in the FD entry of any file assigned
to DISK. Its function is to designate the specific file to be opened.

Details

The value of the file ID may be specified as either a data-name or a
quoted literal not longer than 16 characters. This clause may not be used
for a file assigned to PRINTER. Any time you use the VALUE OF clause,
it is also necessary to include the LABEL RECORDS ARE STANDARD
clause.

Application

VALUE OF FILE-ID IS “A:MASTER,DAT"

Page 12.130

ALPHABETICAL RESERVED WORD LIST

WORKING-STORAGE

Syntax in DATA DIVISION

WORKING-STORAGE SECTION.

The WORKING-STORAGE SECTION is the section in which internally
stored data items are defined. If you include this section, it must im-
mediately follow the FILE SECTION.

Details

Data definitions in this section may employ level numbers 01-49, as in
the FILE SECTION, as well as level 77. Value clauses, including 88-level
condition-names, are permitted throughout the WORKING-STORAGE SECTION.

Page 12.131

ALPHABETICAL RESERVED WORD LIST

WRITE (to Perform Sequential Output)

Syntax in PROCEDURE DIVISION

WRITE record-name [FROM data-name-1]

[{AFTER | BEFORE} ADVANCING {PAGE | [integer } {LINE | LINES}}]
data-name

[AT {END-OF-PAGE | EOP} imperative-statement]

The WRITE statement causes a record of a file opened in the output
mode to be sent to the assigned storage or output device. WRITE with
indexed and relative files is discussed in Chapters 10 and 11.

Details

LINE may be coded in the singular or plural. END-OF-PAGE and EOP
are identical in effect. Record-name must be one of the 01 level data
items in the file being written. It may be qualified by the filename. Execution
of a WRITE statement updates the FILE STATUS data item (if defined)
for the associated file.

If you attempt to WRITE beyond the physical boundary of a disk file,
a declarative procedure will be executed if you have provided one. If no
declarative procedure exists and you have not defined a FILE STATUS
item, a runtime error will occur. If a FILE STATUS item has been specified,
it will be set to indicate a boundary violation. Execution will then proceed
normally on the assumption that the FILE STATUS will be tested to deter-
mine a course of action.

Inclusion of the FROM clause will cause the data to be moved from another
storage area (defined in either the File or Working-Storage Section) to
the specified record area before the data are written. It functions exactly
as if a MOVE statement were coded immediately ahead of the WRITE
statement.

The ADVANCING clause is allowed only for records being output to a
printer. Between 0 and 120 line feeds, as specified by the value of integer
or data-name, are sent either BEFORE or AFTER the line is printed. If
you omit the ADVANCING clause, a one-line advance is assumed. Use
of the PAGE option causes the printer to advance to the next top-of-form,
rather than a specified number of lines. If you include a LINAGE clause
in the associated file description, PAGE will advance to the top of the
next logical page as defined in the LINAGE clause.

Page 12.132

ALPHABETICAL RESERVED WORD LIST

WRITE (to Perform Sequential Output)

Use of the AT clause is also restricted to printed records. It may be in-
cluded only if a LINAGE clause is included in the associated file descrip-
tion. Imperative-statement is executed when the linage counter indicates
an END-OF-PAGE condition. The END-OF-PAGE condition exists
whenever execution of a WRITE statement causes printing in the FOOT-
ING area of the page.

Application

WRITE record-line FROM ws-report-image
AFTER ADVANCING 2 LINES

WRITE record-line AFTER ADVANCING 1f-counter LINES
AT END PERFORM select-page-format

PartIV
Appendices and Index

APPENDIX A

Page A.1

INTERPROGRAM COMMUNICATION

Overview

Interprogram communication is accomplished by using the CALL or CHAIN
statement. CALL temporarily transfers control to another program or as-
sembly language subroutine, and CHAIN permanently transfers control
to another program. In linking, the calling and called programs or sub-
routines are linked together, while chained programs are linked separately.
The various communications possible with CALL and CHAIN are:

1. Temporary transfer of control from one COBOL-86 program to
another (CALL).

2. Temporary transfer of control from a COBOL-86 program to an as-
sembly language subroutine (CALL).

3. Permanent transfer of control from one COBOL-86 program to
another (CHAIN).

4. Permanent transfer of control from a COBOL-86 program to an as-
sembly language program (CHAIN).

In addition to transferring program control, these statements can transfer
data between programs. This is done with the USING and chaining
clauses. In a CALL statement, the USING clause lists parameters that
give the addresses of data to be acted on within the called program. These
data are specified in a corresponding USING clause in the PROCEDURE
DIVISION statement of the called program. The called program makes
any necessary changes and then returns control to the calling program.

When a program is chained, the USING clause of the CHAIN statement
also contains parameters, but in this case the actual values of the parame-
ters in the chaining program are substituted for those of the chained pro-
gram. This happens because the runtime system copies the data values
listed in the chaining program to high memory, loads the chained program
into memory, and copies the data values into their corresponding parame-
ters in the chained program. These parameters are specified by a chaining
clause in the PROCEDURE DIVISION statement of the chained program.

Note that COBOL-86 programs may pass no more than 12 parameters,
and the maximum number of files that may be open in one run unit (a
program linked together with other programs or subroutines) is 14.

Page A.2

INTERPROGRAM COMMUNICATION

Calling COBOL Programs

Syntax
CALL literal [USING data-name...]

literal is the PROGRAM-ID defined in the IDENTIFICATION DIVISION
of a COBOL program. The literal must be non-numeric and enclosed in
quotation marks. Data-name (s) are references whose addresses are passed
to the called program.

Purpose

CALL temporarily transfers control to another COBOL-86 program. The
two programs are compiled separately and then linked together (see Chap-
ter 3). Control will be returned to the calling program by an EXIT PRO-
GRAM statement in the called program.

Details

The USING clause specifies data items in the calling program that can
be used by the called program. For example, a program that needed inven-
tory totals could CALL another program to calculate the totals and place
them into designated data-names in the calling program. When this clause
is used, the following requirements must be met:

1. Within the calling program: The data-names listed in the USING
clause must be declared in the WORKING-STORAGE SECTION of
the DATA DIVISION.

2. Within the called program: The data-names corresponding to those
in the USING clause of the calling program must be declared in the
LINKAGE SECTION of the DATA DIVISION and in a USING clause
after the PROCEDURE DIVISION header. The names in the LINK-
AGE SECTION and in the PROCEDURE DIVISION header must be
in the same order.

Control is returned to the calling program by an EXIT PROGRAM
statement in the PROCEDURE DIVISION.

Page A.3

INTERPROGRAM COMMUNICATION

Calling COBOL Programs

You must make sure that the data items listed in the calling program
and in the called program are equivalent. See CALL and CHAIN in Part
11, “Reference Guide,” for more detailed information on data items.

Sample Program Structure

Calling Program

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DATA-NAME PIC 99.

PROCEDURE DIVISION.
CALL PROG2 USING DATA-NAME.

Called Program

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG2.

DATA DIVISION.
LINKAGE SECTION.
01 LOCAL-REFERENCE PIC 99.

PROCEDURE DIVISION USING LOCAL-REFERENCE.

EXIT PROGRAM.

Page A4

INTERPROGRAM COMMUNICATION

Calling Assembly Language Subroutines

A COBOL-86 program may call assembler subroutines. (See the MACRO-
86 Assembler portion of the Z-DOS manual for instructions on writing
assembly language programs.) The runtime system transfers execution
to a subroutine by means of a machine language FAR CALL instruction.
Execution should return via the MACRO-86 RET instruction.

Parameters are passed by reference (i.e., by passing the address of the
parameter). Parameter addresses are passed on the stack (see Figure
A.1).

The called routine must preserve the BP register contents and remove
the parameter addresses from the stack before returning.

The subroutine can expect only as many parameters as are passed, and
the calling program is responsible for passing the correct number of param-
eters. You must determine that the type and length of arguments passed
by the calling program are acceptable to the called subroutine; neither
the compiler nor the common runtime system checks for the correct
number of parameters. Numeric values to be passed should be declared
as binary (i.e., USAGE IS COMP-0 in the WORKING-STORAGE SEC-
TION of the calling program).

1 High memory MAIN PROGRAM STACK
parameter 1 PROGRAM MODULE
STACK
b~ v

parametern-1

parametern
P — return address (Intersegment
return segment return vector)

Figure A.1. Contents of Stack at Entry to a Routine

page A.5

INTERPROGRAM COMMUNICATION

Calling Assembly Language Subroutines

Because the stack space used by a COBOL-86 program is contained
within the program boundaries, assembler programs that use the stack
must not overflow or underflow the stack. The best way to assure safety
is to save the COBOL-86 stack pointer upon entering the routine and
to set the stack pointer to another stack area. The assembler routine must
then restore the saved COBOL-86 stack pointer before returning to the
main program.

To call an assembler program module, use the name of the module in
the CALL statement. The name of an assembler program module is de-
fined by a PUBLIC directive and is declared as PROC FAR. Compile
and/or assemble the program(s) and assembly language subroutine(s).
Then link the called program module to the calling program using the
linker, as described in Chapter 3 and in the Z-DOS manual.

Sample Program Structure
COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
*DEMONSTRATE CALLING AN ASSEMBLY LANGUAGE PROGRAM
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PARM1 PIC 99 COMP-0 VALUE 50.
77 PARM2 PIC 99 COMP-0 VALUE 45.
77 PARM3 PIC 99 COMP-0 VALUE 0.
17 PAR1 PIC 99.
77 PAR2 PIC 99.
77 PAR3-DIF PIC 99.
PROCEDURE DIVISION.
MAIN.
CALL 'SUBIT' USING PARM1, PARM2, PARM3
MOVE PARM1 to PARI.
MOVE PARM2 to PAR2.
MOVE PARM3 to PAR3-DIF.
DISPLAY PAR1 ' — ' PAR2 ' = ' PAR3-DIF.
STOP RUN

Page A.6

INTERPROGRAM COMMUNICATION

Calling Assembly Language Subroutines

Assembly Language Program

assume cs:codeseg
parm struc ;stack definition

savebp dw ? ;saved caller's bp
dw ? ;caller's ip reg
dw ? ;caller's cs reg

parm3 dw ? ;addr 3rd parameter

parm2 dw ? ;addr 2nd parameter

parml dw ? ;addr 1st parameter
parm ends

codeseg segment para

public subit ;entry point
subit proc far ; long call
push bp ;save bp of caller
mov bp, sp ;set up stack frame
mov bx, [bp].parml ;get addr of parml
mov ax, [bx] ;put value in ax
xchg ah,al ;swap bytes (COBOL stores
ihigh-order byte first)
mov dx, [bx] ;get 2nd value
xchg dh,dl ;swap bytes
sub ax, dx ;compute difference

mov bx, [bp].parm2 ;get addr of parm2
mov di, [bp].parm3 ;get addr of parm3

xchg ch,al ;swap bytes back for COBOL
mov [di],ax ;put result into parm3
pop bp ;restore caller's bp
ret 6 ;restore stack
subit endp
codeseg ends
end

Chaining COBOL Programs
Syntax

CHAIN {literal | data-name-1} [USING data-name-2...]
Literal or data-name-1 is the filename of an executable program. The only

difference between them is that the literal must be enclosed in quotation
marks, while the data-name does not use quotation marks. Either must

Page A.7

INTERPROGRAM COMMUNICATION

Chaining COBOL Programs

be alphanumeric. Data-nane-2 is a data item identified in the WORKING-
STORAGE SECTION of the chaining program.

For more details about CHAIN format, see Part |1l of the manual.

Purpose

CHAIN permanently transfers control to a separately compiled and sepa-
rately linked program, which is loaded into memory and executed. The
chained program can issue its own CHAIN statement or may even issue
a CHAIN statement to its original chaining program, but it cannot issue
an actual return to the original program.

Details

If you include the USING clause, the values of the data items listed there
will be copied to high memory, and when the chained program is loaded
and run, they will be substituted for the equivalent values in the chained
program. This allows you to run a new program using values established
in an earlier program. When you use this clause, the following require-
ments must be met:

1. Chaining program: The data items listed in the USING clause must
be declared in the WORKING-STORAGE SECTION of the DATA
DIVISION.

2. Within the chained program: The data items corresponding to those
in the USING clause of the chaining program must be declared in
the WORKING-STORAGE SECTION of the DATA DIVISION and in
a chaining clause after the PROCEDURE DIVISION.

Sample Program Structure

Chaining Program:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 READ DATA-NAME PIC 99.

Page A.8

INTERPROGRAM COMMUNICATION

Chaining COBOL Programs

PROCEDURE DIVISION.

CHAIN PROG2 USING DATA-NAME.
Chained Program

DATA DIVISION.
LINKAGE SECTION.
01 LOCAL-REFERENCE PIC 99.

PROCEDURE DIVISION CHAINING LOCAL-REFERENCE.

Chaining Assembly Language Programs

Assembly language programs are chained exactly as are COBOL-86 pro-
grams (see Chaining COBOL Programs of this appendix). The following
additional information will be useful when you are writing assembly lan-
guage programs that will be chained.

When the USING clause is included in the CHAIN statement, the parame-
ters passed between programs are stored at the highest available memory
address. This address is determined from byte 2 of the program header
(see Z-DOS system documentation for more information).

The memory layout is as follows, starting at the highest available address
and proceeding toward location zero (see Figure A.2):

1. First, 256 bytes are reserved for stack space.

Page A.9

INTERPROGRAM COMMUNICATION

Chaining Assembly Language

« highestmemory location

Stack
space Z
256 bytes

—N—

« length of parameter 1 (high byte)

« length of parameter 1 (low byte)

« lastbyte of parameter 1

2\
]
Y
A]

« firstbyte of parameter 1

« length of parameter 2 (high byte)

«— length of parameter 2 (low byte)

< lastbyte of parameter 2

Figure A.2 Memory Layout for Chained Programs

2. Then the first parameter in the USING list follows, preceded by its
length in bytes. The parameter length is stored in two bytes, high-
order byte first. The parameter itself is stored as a string of bytes
in the same order as the bytes were stored in the DATA DIVISION,
beginning at the address of the length minus the length itself (see
Figure A.2).

3. Each parameter in the USING list follows in order, each preceded
by its length.

The chained program must expect the same number and format of param-

eters as were passed. No checking will be done by the compiler or the
common runtime system.

Page B.1

APPENDIX B CUSTOMIZATIONS
Source Program Tab Stops

This appendix is intended for those who are proficient with a debugger
and/or assembly language and would like to change some of the built-in
parameters of COBOL-86.

If tab characters (hex 09) are used in the COBOL-86 source program,
the compiler converts them into enough spaces to reach the next tab
stop as defined in its internal TAB table. The table originally defines ten
stops at the following columns (counting from column 1):

8, 12, 20, 28, 36, 44, 52, 60, 68, and 73

These may be changed by patching the table, whose address is 15 bytes
from the start of COBOL.COM. There is one byte in the table for each
tab stop. You may supply any values you like, provided that: (1) the num-
bers are in ascending order; (2) no more than ten stops are defined; (3)
the last tab stop is 73.

Compiler Listing Page Length

One byte in the compiler defines the page length of the listing as 55
(hex 37) lines. Its location is 14 bytes from the start of COBOL.COM,
and it may be patched to any value between 1 and 255.

Page C.1

APPENDIX C COMPILER PHASES

The COBOL-86 Compiler creates an object code program from your
source program. This is done in five phases, consisting of the root portion
of the compiler (COBOL.COM) and four overlays, COBOL1.0VR through
COBOL4.0VR. These are the phases referenced by an error message
such as ?Compiler error in phase n. They are used as follows.

Compilation is performed in two passes: The first pass creates an inter-
mediate version of the program, which is stored in a binary file called
COBIBF.TMP. This is done in three steps:

e The root portion of the compiler (Phase 0) compiles the IDENTIFICA-
TION and ENVIRONMENT DIVISIONS of the source program

® Phase 1 (COBOL1.0OVR) compiles the DATA DIVISION of the source
program.

® Phase 2 (COBOL2.OVR) compiles the PROCEDURE DIVISION of
the source program.

The compiler's second pass reads the intermediate file and creates the
object code:

® Phase 3 (COBOL3.0VR) reads the intermediate file and creates the
object code.

e Phase 4 (COBOL4.0OVR) allocates file control blocks and finalizes
the object code.

page D.1

APPENDIX D REBUILD: INDEXED FILE RECOVERY UTILITY
Overview

The Indexed File Recovery Utility (REBUILD) can be used to recover or
restore information contained within indexed files. The indexed files that
are compatible with this utility are those that have been created by a
program compiled under COBOL-86 Version 1.00 or later.

REBUILD works by reading the data file portion of an indexed file and
generating new key and data files for that indexed file. The new indexed
file has the same structure as the old one. The utility will skip over all
deleted records and any other control records within the data file.

Use of REBUILD is recommended in the following situations:

1. When disk space is exhausted during a WRITE operation (file status
= 24).

2. When electrical power to the computer system is interrupted or the
operating system is rebooted while an indexed file is OPEN in I-O
or OUTPUT mode.

3. When the data file portion of the indexed file contains large areas
of unused space, usually as a result of numerous record DELETE
and REWRITE operations, and especially when records within the
file have varying lengths.

Situation 1 occurs when WRITE produces a boundary error (file status
“24”), indicating that the disk is full. When this happens, you should perform
a CLOSE in order to write as much information as possible to disk. It
is likely, however, that the CLOSE will also return with a boundary error.
As in the case of a system failure during the addition of records, the
last 256 bytes of information will not be present within the data file, and
is therefore not recoverable by REBUILD.

Recovery from situation 2 may also be limited, because without a transac-
tion file to rebuild the indexed file, recovery from some types of system
failure is a problem. Because of the high degree of disk file buffering
in memory, a system failure may leave the data file with partially-written
data records. This may cause REBUILD to fail to completely recover an
indexed file for two reasons:

Page D.2

REBUILD: INDEXED FILE RECOVERY UTILITY

Overview

a. Because a good deal of information is kept in memory, if the system
failure occurred during a file update job, the file may contain records
with both original and new information. The recovery utility cannot
determine which part of the data was written during the aborted job,
and therefore cannot exclude the new, incomplete data from the re-
built file. Adding a current date field to data records may help discrimi-
nate between original and new data.

b. If the system failure occurred while records were being added to
the indexed file, the last 256 bytes of data will not be written to disk.
The recovery utility will detect that information is missing from the
end of the file but cannot add it to the recovered file.

Running Rebuild

Since REBUILD is itself a COBOL-86 program, COBRUN.EXE must be
present on a disk in the default drive or drive A when you are running
REBUILD. Invoke the recovery utility by entering:

REBUILD

in response to the operating system prompt.

The utility will respond with the following header information:

REBUILD by Microsoft Corporation

Indexed File Recovery Utility

V. 1.0

Use this utility to recover indexed files when they are damaged, or to

reorganize indexed files by removing unused space. Compatible indexed
files are those generated by COBOL-86 for versions 1.00 and later.

Page D.3

REBUILD: INDEXED FILE RECOVERY UTILITY

Running Rebuild

The recovery utility will then ask a series of questions. Your answers will
provide the information necessary for rebuilding a new indexed file from
the original data file. The steps you follow while using REBUILD are dia-
gramed in Figure D.1. Following the diagram are detailed descriptions
of the individual recovery steps and a sample REBUILD session.

1.

Input Key Length: Enter the key length in reply to the prompt:

Input the key length (in bytes)
or <RETURN> to terminate program ---->

Enter a key length or press the RETURN key to immediately terminate
the program. If you enter a key length, the program will proceed
to the next prompt.

The key length should be a positive integer that represents the
number of bytes contained in the item specified by the RECORD
KEY clause of a COBOL-86 program. Failure to enter the correct
key length may not hamper the execution of REBUILD, but programs
will not be able to access the generated indexed file.

Input Key Position: Enter the key position in reply to the prompt:

Input the byte position of the key field,
starting at 1,
or <RETURN> to return to the Key Length prompt ---->

Enter the position of the key data item within the record; or press
the RETURN key to move back to the Input Key Length prompt in
order to correct information or terminate the program. If you enter
a key position, the program will proceed to the next prompt.

The key position should be a positive integer that represents the
position within the record of the data item specified by the RECORD
KEY clause of a COBOL-86 program. As with the key length, RE-
BUILD does not check whether an incorrect response has been en-
tered; but the result of an incorrect response will be that programs
will not be able to access the generated indexed file.

Page D.4

REBUILD: INDEXED FILE RECOVERY UTILITY

Running Rebuild

DISPLAY
TITLE
L
INPUT TERMINATE
> KeYLENGTH [~ RETURN -~ RUN
|
valid
INPUT
KEY POSITION

le—— RETURN —— valid

INPUT

SOURCE FILENAME
~—— RETURN valid not found
i
INPUT
TARGET FILENAME ‘
<—— RETURN valid no space
\
RECOVER
FILES

Figure D.1. Control Flow within REBUILD

page D.5

REBUILD: INDEXED FILE RECOVERY UTILITY

Running Rebuild

3. Input Source Filename: Enter the filename of the source file in reply
to the prompt:

Input the filename of the source data file
(should not have extension of .KEY)
or <RETURN> to return to the Key Length prompt ---->

Enter a filename or press the RETURN key to move back to the
Input Key Length prompt so that you can correct and re-enter previ-
ous information or terminate the program.

The source filename should be the name that is used in the VALUE
OF FILE-ID clause in COBOL-86 programs that refer to the indexed
file. The filename used here should be the name of the data file.
The key file, which has the same name but an extension of .KEY,
will not be used in the recovery operation and should not be entered
in response to this prompt.

The source filename may contain a drive specifier.

After the source filename is entered, REBUILD will check for the
presence of the file. If it is not present, the following message will
be displayed:

#*xSource file not found
and the Input Source Filename prompt will be redisplayed.

4. Input Target Filename: Enter the filename of the indexed file to be
generated in reply to the prompt:

Input the filename of the target data file
(should not have extension of .KEY)
or <RETURN> to return to the Key Length prompt ---->

Enter a filename or press the RETURN key. As usual, RETURN
moves you back to the Input Key Length prompt so that you can
re-enter information or terminate the program.

As with the source file, this name is the name of the data file. Do
not enter the key file, which has the same name but the .KEY exten-
sion.

Page D.6

REBUILD: INDEXED FILE RECOVERY UTILITY

Running Rebuild

The target filename should be unique within a directory. Therefore,
if you wish to use a name identical to the source filename, you should
send the target file to a different disk by including a drive specifier
in the filename. The target file can be generated on the same disk
as the source file, but you will have to use a different name. Once
the recovery operation is complete, you can then rename the target
filename to the source filename.

If the recovery utility cannot successfully create a new indexed file,
either because the disk directory is full or because of insufficient
space on the disk, the program will display the message:

**#*x No space for target file
and will redisplay the Input Target Filename prompt.

5. Recover File: After you have answered all questions, the recovery
utility will display:

Now reading <source-file>
and creating <target-file>

The program will begin building the new indexed file from the old
data file. When this process is finished, the following message will
be displayed:

Conversion successfully completed.
Source records read: - XxXX,Xxx
Target records read: xxx,XxX

The record counts should match. If they do not, some type of input-
output error occurred during the recovery operation.

Regardless of whether the record counts match, REBUILD will then
display another Input Key Length prompt. You can begin another
file recovery operation (or redo the one that had an input-output error)
or terminate the program.

Page D.7

REBUILD: INDEXED FILE RECOVERY UTILITY

Sample Rebuild Session

The following program fragment accesses the indexed file IXFILE.DAT:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL

SELECT IX-FILE

ASSIGN TO DISK
ORGANIZATION INDEXED
ACCESS DYNAMIC
RECORD KEY IX-KEY
FILE STATUS IX-STAT.

DATA DIVISION.
FILE SECTION.
FD IX-FILE
LABEL RECORD STANDARD
VALUE OF FILE-ID "IXFILE.DAT"
RECORD CONTAINS 75 CHARACTERS
DATA RECORD IX-REC,
01 IX-REC.
05 IX-DATE PIC X(6).
05 IX-TIME PIC X(6).
05 IX-KEY.
10 IX-STATE PIC XX.
10 IX-CITY PIC X(20).
10 IX-STREET PIC X(30).
05 IX-ZIP PIC X(5).
05 IX-ZONE PIC X(6).

For this program fragment, the responses to the REBUILD utility would
be:

Input Key Length: 52

Input Key Position: 13

Input Source Filename: IXFILE.DAT
Input Target Filename: NEWIX.DAT

The result of the recovery operation would be to generate a new indexed
file with the key filename NEWIX.KEY and the data filename NEWIX.DAT.

APPENDIX E

Page E.1

COBOL-86 ERROR MESSAGES

Overview

This appendix lists all the error messages you may encounter while compil-
ing and executing a COBOL-86 program. Included here are:

1. Compile time errors, which can be:

a.

Command input errors and operating system input/output errors.
These errors will be displayed as the errors occur during the
compile. When you receive one of these messages, correct the
problem and recompile.

Program syntax errors in the COBOL-86 source program. These
messages are placed at the end of the listing file and are also
shown on the screen. They consist of:

(1) The source program line number, which is four digits fol-
lowed by a colon (:).

(2) An explanation of the error. If the explanation begins with
an /F/ (inconsistent file usage) or a /W/ (warning), then
the message is only a warning; if not, the error is severe
enough to prevent you from linking and executing the ob-
jectfile.

Whether or not a listing has been requested, the syntax error
messages will always be listed on your screen at the end of
compilation. A message displaying the total number of errors
or warnings is also displayed. This feature allows you to make
a simple change to a program, recompile it without a listing,
and still receive any error messages.

Program syntax error messages in this manual are listed in al-
phabetical order, with /F/ and /W/ warnings placed at the end
of the list. The line number found with an /F/ waming represents
the order of files in the FILE SECTION of the COBOL-86 pro-
gram.

2. Runtime errors, which can be:

a.

COBOL-86 execution errors. Some programming errors cannot
be detected by the compiler but cause the program to end pre-
maturely during execution. These runtime errors are displayed
in the format:

Page E.2

COBOL-86 ERROR MESSAGES

Overview

*+RUN-TIME ERR:

reason

line number (see Using Compiler Switches in Chapter 2)
program-id

b. COBOL-86 program load errors: chained programs, independent
segments (i.e., overlays), and the common runtime executor
need to be loaded by the COBOL-86 runtime system. During
loading, the normal mechanism for reporting runtime errors may
have been overlaid by the new program. Therefore, the COBOL-
86 loader generates its own error messages. The syntax is:

**COBOL: problem

Command Input and Operating System I/O Errors

?Bad filename

A filename is not constructed according to the rules of the operating sys-
tem.

7Bad switch: /X
You have entered a switch parameter that the compiler does not recognize.
’Can't create file

An output file cannot be opened. For example, the output disk is write
protected.

?Command error: 'X'

You have an invalid character (X) in the command line. For example,
a file name contains an @.

Page E.3

COBOL-86 ERROR MESSAGES

Command Input and Operating System I/O Errors

?Compiler Error in Phase n at address

This is caused by a damaged source program or damaged compiler or
overlay file. In the latter case, try your backup copy. If this does not work,
you can sometimes determine the cause of the error by compiling increas-
ingly larger portions of the program, starting with only a few lines, until
the error recurs.

See Appendix C for a discussion of compiler phases.
Disk X full

The disk in the specified drive is full. If X is blank, it refers to the default
drive.

?File not found
You have specified a filename for input that does not exist.
?Memory full

This occurs when there is insufficient memory for all the symbols and
other information obtained from the source program. It indicates that the
program is too large and must be decreased in size or split into modules
and compiled separately. :

The symbol table of data-name(s) and procedure-names usually occupies
the most space during compilation. All names require as many bytes as
there are characters in the name, with an overhead requirement of about
10 bytes per data-name and 2 bytes per procedure-name. On the average,
each line in the DATA DIVISION uses about 14 bytes of memory during
compilation, and each line in the PROCEDURE DIVISION uses about
3 1/4 bytes.

?0verlay n not found

One of the COBOL-86 Compiler overlay files (COBOLNn.OVR) is not on
the disk. It may have been written to another disk or destroyed. Recompil-
ing and relinking may eliminate the problem.

page E.4

COBOL-86 ERROR MESSAGES

Program Syntax Errors

A FILE-ID NAME IS UNDEFINED.

A data-name specified in a VALUE OF FILE-ID clause is not defined.

A PARAGRAPH DECLARATION IS REQUIRED HERE.

An EXIT statement is not followed by a section or paragraph header.

AREA A NOT BLANK IN CONTINUATION LINE.

A character was encountered in Area A.

AREA-A VIOLATION; RESUMPTION AT NEXT PARAGRAPH/SECTION/DIVISION/VERB.

The entry starting in one of columns 8-12 cannot be interpreted as a
division header, section name, paragraph name, file description indicator,
or 01 or 77 level number.

CLAUSES OTHER THAN VALUE DELETED.

The data description of a level 88 item includes a descriptive clause other
than VALUE IS.

ELEMENT LENGTH ERROR.

The length of the quoted literal is over 120 characters, the numeric literal
is over 18 digits, or the identifier/name is over 30 characters.

ERRONEQUS FILENAME IS IGNORED.

An entry that has not been declared as a filename appears where a
filename is required.

ERRONEQUS QUALIFICATION; LAST DECLARATION USED.

The qualifiers used with a data-name are incorrect or not unique.

Page E.5

COBOL-86 ERROR MESSAGES

Program Syntax Errors

ERRONEOUS SUBSCRIPTING; STATEMENT DELETED.
Too few or too many subscripts are provided for a data-name.
EXCESSIVE LITERAL POOL OR DISPLAY STRING LENGTH.

The total length of the literals contained within a single paragraph is greater
than 4096 bytes.

EXCESSIVE NUMBER OF FILES/4KB WORKING-STORAGE BLOCKS.

The sum of (number of files declared) + (size of WORKING-STORAGE
divided by 4KB and rounded up) + (number of level 01 and level 77
entries in the LINKAGE SECTION) is greater than 14.

EXCESSIVE OCCURS NESTING IS IGNORED.

OCCURS clauses are nested to more than three levels.

EXCESSIVE SEGMENT NUMBER.

A section header contains a segment number greater than 99.

EXCESSIVE SEGMENT NUMBER IN DECLARATIVES.

A section header in the DECLARATIVES region contains a segment
number greater than 49,

FILE NOT SELECTED; ENTRY BYPASSED.

An FD is given for a filename that does not appear in any SELECT sen-
tence.

FILL CHARACTER CONFLICT.

In a Format 3 ACCEPT statement, SPACE-FILL and ZERO-FILL are both
specified.

Page E.6

COBOL-86 ERROR MESSAGES

Program Syntax Errors

FRACTIONAL EXPONENT OR NEGATIVE SCALED BASE (99P).

In a COMPUTE statement, an exponent is a numeric literal with a decimal
point or a numeric data item described with a digit to the right of an as-
sumed decimal point; or the PICTURE of an exponentiation base (entry
preceding **) contains the character P as the right-most digit.

GROUP ITEM, THEREFORE PIC/JUST/BLANK/SYNC IS IGNORED.

A phrase that is only allowed for elementary data items is used in the
description of an item that is followed immediately by an item of a higher
level number.

GROUP SIZE GREATER THAN 4095; LENGTH SET TO 1.

The size of an item at a level other than 01 is declared to be greater
than 4095 bytes.

ILLEGAL CHARACTER.

An invalid character has been encountered.
ILLEGAL COPY FILENAME,

The filename for the copy file is invalid.
ILLEGAL MOVE OR COMPARISON IS DELETED.

The operands of a MOVE statement or relational condition are of incompat-
ible class.

IMPERATIVE STATEMENT REQUIRED. STATEMENT DELETED.

A conditional statement is contained within a conditional statement other
than IF.

IMPROPER CHARACTER IN COLUMN 7.

An invalid character in column 7 has been encountered.

Page E.7

COBOL-86 ERROR MESSAGES

Program Syntax Errors

IMPROPER PICTURE. PIC X ASSUMED.
An invalid PICTURE clause has been encountered.
IMPROPER PUNCTUATION.

Incorrect punctuation has been encountered. For instance, a comma or
period must be followed by a space.

IMPROPER REDEFINITION IGNORED.

The data-name specified in a REDEFINES clause is not at the same level
as the current data-name, or it is separated from it by an item with a
lower level number.

IMPROPERLY FORMED ELEMENT.

Incorrect syntax for an item has been encountered. For instance, you
could have ended a word with a hyphen or used multiple decimal points
in @ numeric literal.

INCOMPLETE (OR TOO LONG) STATEMENT DELETED.

A verb immediately follows a partial statement form, or an otherwise ac-
ceptable statement is too large for the compiler to read.

INDEXED/RELATIVE REQUIRES DISK ASSIGNMENT.

A file assigned to PRINTER is described as having indexed or relative
organization.

INVALID KEY SPECIFICATION.
The key item for a relative or indexed file should not be subscripted, or

it is inconsistent with the file organization in class or USAGE. This mes-
sage is issued when the OPEN statement is processed.

Page E.8

COBOL-86 ERROR MESSAGES

Program Syntax Errors

INVALID QUOTED LITERAL.

A literal of zero length, improper construction, or missing end quotes has
occurred.

INVALID SELECT-SENTENCE.

The syntax of a SELECT sentence in the FILE-CONTROL paragraph is
incorrect.

INVALID VALUE IGNORED.
The value specified in a VALUE IS phrase is not a properly formed literal.
JUSTIFICATION CONFLICT.

In a Format 3 ACCEPT statement, LEFT-JUSTIFY and RIGHT-JUSTIFY
are both specified.

KEY DECLARATION OF THIS FILE IS NOT CORRECT.

The RELATIVE KEY clause is missing for a relative file, or the RECORD
KEY clause is missing for an indexed file.

KEYS MAY ONLY APPLY TO AN INDEXED/RELATIVE FILE.

A RECORD KEY or RELATIVE KEY clause was specified for a file with
sequential or line sequential organization.

LITERAL TRUNCATED TO SIZE OF ITEM.

The literal specified in a VALUE IS phrase is larger than the data item
being declared.

MISORDERED/REDUNDANT SECTION PROCESSED AS IS.

A section in the IDENTIFICATION, ENVIRONMENT, or DATA DIVISION
is out of order or repeated.

page E.9

COBOL-86 ERROR MESSAGES

Program Syntax Errors

NAME OMITTED; ENTRY BYPASSED.
The data-name is missing in a data description entry.
NON-CONTIGUQUS SEGMENT DISALLOWED.

Two sections with the same number, larger than 49, are separated by
one or more sections with a different number.

NO PICTURE; ELEMENTARY ITEM ASSUMED TO BE BINARY.
No PICTURE is given for an elementary data item.
OCCURS DISALLOWED AT LEVEL 01/77, OR COUNT TOO HIGH.

An OCCURS clause appears in a data description entry at level 01 or
77, or the number of occurrences specified is greater than 1023.

OMITTED WORD "SECTION" IS ASSUMED HERE.

The required word SECTION is missing from the header of a section in
the DATA DIVISION.

PROCEDURE-NAME IS UNRESOLVABLE.

A reference to a section-name or procedure-name is not sufficiently qual-
ified or is not unique.

PROCEDURE RANGE NOT IN CURRENT SEGMENT.

A PERFORM statement in a section with a number greater than 49 refers
to a procedure in a section with a different number greater than 49.

PROCEDURE RANGE SPANS SEGMENTS.

A procedure range (procedure-name-1 THRU procedure-name-2) men-
tioned in a PERFORM statement contains paragraphs in sections with
different section numbers greater than 49, or in sections numbered both
less than or equal to 49 and greater than 49.

Page E.10

COBOL-86 ERROR MESSAGES

Program Syntax Errors

REDUNDANT FD PROCESSED AS IS.

The same filename appears in more than one file description.

REWRITE VALID ONLY FOR A DISK FILE.

The filename entry in a REWRITE statement is a file assigned to PRINT-

ER.

SEMANTICAL ERROR IN SCREEN DESCRIPTION.

This message can be caused in five different ways:

The SCREEN SECTION does not begin with a level 01 screen item
description.

A level 01 screen item description does not include a screen name.

A group screen item is described with a clause that is allowed only
for elementary items.

An elementary screen item description is missing FROM, TO, USING,
or VALUE.

A screen item description contains inconsistent clauses (such as
USING and VALUE).

SIGN CLAUSE IGNORED FOR UNSIGNED ITEM.

The PICTURE of a numeric item with USAGE IS DISPLAY describes it
as unsigned, but a SIGN IS clause is present.

SINGLE-SPACING ASSUMED DUE TO IMPROPER ADVANCING COUNT.

The operand of the RESTORE or AFTER phrase of a WRITE statement
is not numeric, or it is outside the range 0-120.

SOURCE BYPASSED UNTIL NEXT FD/SECTION.

An error in a file description prevents further analysis.

Page E.11

COBOL-86 ERROR MESSAGES

Program Syntax Errors

STATEMENT DELETED BECAUSE INTEGRAL ITEM IS REQUIRED.

A numeric data item whose PICTURE specifies digits to the right of the
decimal point is used where an integer is required.

STATEMENT DELETED BECAUSE OPERAND IS NOT A FILENAME.

A name appearing where a filename is required has not been declared
as a filename.

STATEMENT DELETED DUE TO ERRONEOUS SYNTAX.

A syntax error, to which no more specific message applies, is present.
STATEMENT DELETED DUE TO NON-NUMERIC OPERAND.

An alphanumeric or alphanumeric-edited item is used as an operand of
an arithmetic statement; a numeric-edited item is used as an operand
other than the result; or a number is longer than 18 digits.

SUBSCRIPT 0 OR OVER MAX. NO. OCCURRENCES; 1 USED.

A literal used as a subscript is inconsistent with the range defined by
the associated OCCURS clause.

SUBSCRIPT OR INDEX-NAME IS NOT UNIQUE.
A name that requires qualification is used as a subscript.
SYNTAX ERROR IN SCREEN DESCRIPTION.

A screen item description contains a clause that is unrecognizable, improp-
erly constructed, or redundant.

UNRECOGNIZABLE ELEMENT IS IGNORED.

A required keyword is missing, or a data-name or procedure-name is un-
identified.

Page E.12

COBOL-86 ERROR MESSAGES

Program Syntax Errors

USING-LIST ITEM LEVEL MUST BE 01/77.

A name used in the PROCEDURE DIVISION header USING list is not
declared at level 01 or level 77.

VALUE DISALLOWED-OCCURS/REDEFINES/TYPE/SIZE CONFLICT.

The VALUE IS clause is specified for a data item described with (or in-
cluded within an item described with) an OCCURS or REDEFINES clause;
or the literal given in a VALUE IS clause is not compatible with the PIC-
TURE of the declared item.

VALUE OF FILE-ID REQUIRED.

The VALUE OF FILE-ID clause is not specified in the file description of
a file assigned to DISK.

VARYING ITEM MAY NOT BE SUBSCRIPTED.

The data item controlled by the VARYING phrase of a PERFORM state-
ment is subscripted.

/F/ FILE NEVER CLOSED.

No CLOSE statement is present for the file.
/F/ FILE NEVER OPENED.

No OPEN statement is present for the file.
/F/ INCONSISTENT READ USAGE.

An OPEN INPUT statement is present for a file, but no READ statement;
or vice versa.

/F/ INCONSISTENT WRITE USAGE.

An OPEN OUTPUT statement is present for a file, but no WRITE state-
ment; or vice versa.

Page E.13

COBOL-86 ERROR MESSAGES

Program Syntax Errors

/W/ BLANK WHEN ZERQ IS DISALLOWED.

The BLANK WHEN ZERO phrase appears in the description of an al-
phanumeric or alphanumeric-edited item.

/W/ DATA DIVISION ASSUMED HERE.
The DATA DIVISION header is missing.
/W/ DATA RECORDS CLAUSE WAS INACCURATE.

The record-name(s) given in a DATA RECORDS clause are not consistent
with the record descriptions following the file description.

/W/ ERRONEOUS RERUN-ENTRY IS IGNORED.
A RERUN clause of the I-O-CONTROL paragraph contains a syntax error.
/W/ FD-VALUE IGNORED SINCE LABELS ARE OMITTED.

The VALUE OF FILE-ID clause is used in the description of a file that
is assigned to PRINTER.

/W/ FILE SECTION ASSUMED HERE.

The FILE SECTION header is missing.

/W/ INVALID BLOCKING IS IGNORED.

The BLOCK clause of an FD contains an error.
/W/ INVALID RECORD SIZE(S) IGNORED.

The RECORD clause of an FD contains an error.
/W/ “LABEL RECORD STANDARD" REQUIRED.

The LABEL RECORD(S) STANDARD phrase is not present in the FD
of a file assigned to DISK.

Page E.14

COBOL-86 ERROR MESSAGES

Program Syntax Errors

/W/ LABEL RECORDS OMITTED ASSUMED FOR PRINTER FILE.

The LABEL RECORDS OMITTED clause is missing in the file description
of a file assigned to PRINTER.

/W/ LEVEL 01 ASSUMED.

A record description begins with a level number other than 01.
/W/ PERIOD ASSUMED AFTER PROCEDURE-NAME DEFINITION.

A section or paragraph header does not end with a period.

/W/ PICTURE IGNORED FOR INDEX ITEM.

A data item described with USAGE IS INDEX phrase also has a PICTURE
phrase.

/W/ PROCEDURE DIVISION ASSUMED HERE.
The PROCEDURE DIVISION header is missing.

/W/ RECORD MAX DISAGREES WITH RECORD CONTAINS; LATTER SIZES
PREVAIL.

The record size specified in the RECORD CONTAINS clause of an FD
is inconsistent with the sizes of the associated record descriptions.

/W/ REDUNDANT CLAUSE IGNORED.

The same clause is specified more than once in a file description.
/W/ RIGHT PARENTHESIS REQUIRED AFTER SUBSCRIPTS.

The closing parenthesis for a subscript is missing.

/W/ TERMINAL PERIOD ASSUMED ABOVE.

A data description entry or paragraph does not end with a period.
/W/ WORKING-STORAGE ASSUMED HERE.

The WORKING-STORAGE header is missing.

Page E.15

COBOL-86 ERROR MESSAGES

Runtime Errors

DATA UNAVAILABLE.

You tried to reference data in a record of a file that is not open or has
reached the AT END condition.

DELETE; NO READ.

You tried to DELETE a record of a sequential access mode file when
the last operation was not a successful READ.

FILE LOCKED.
You tried to OPEN after an earlier CLOSE WITH LOCK.
GO TO (NOT SET).

You tried to execute a null GO statement that has never been altered
to refer to a destination.

ILLEGAL DELETE.

Relative or indexed file not opened for I-O.

ILLEGAL READ.

You tried to READ a file that is not open in the INPUT or I-O mode.

ILLEGAL REWRITE.

You tried to REWRITE a record in a file not open in the 1-O mode.

ILLEGAL START.

File not opened for INPUT or I-O.

ILLEGAL WRITE.

You tried to WRITE to a file that is not open in the OUTPUT mode for

sequential access files, or in the OUTPUT or |-O mode for random or
dynamic access files.

Page E.16

COBOL-86 ERROR MESSAGES

Runtime Errors

INPUT/OUTPUT.

Unrecoverable I/O error, with no provision in the user's COBOL-86 pro-
gram for acting upon the situation by way of an AT END clause, INVALID
KEY clause, FILE STATUS item, or DECLARATIVES SECTION.

NEED MORE MEMORY.

The indexed file manager has ended abnormally because of insufficient
dynamically allocatable memory.

NON-NUMERIC DATA.

Whenever the content of a numeric item does not conform to the given
PICTURE, this condition may arise. You should always check input data,
if they are subject to error (because input editing has not yet been done)
by use of the NUMERIC test.

OBJ. CODE ERROR.

An undefined object program instruction has been encountered. This
should occur only if the absolute version of the program has been dam-
aged in memory or on the disk file.

PERFORM OVERLAP.

An illegal sequence of PERFORMSs, as, for example, when paragraph
A is performed and another PERFORM A is initiated prior to exiting from
the first.

REDUNDANT OPEN.

You tried to open a file that is already open.

REWRITE; NO READ.

You tried to REWRITE a record of a sequential access mode file when
the last operation was not a successful READ.

Page E.17

COBOL-86 ERROR MESSAGES

Runtime Errors

SEG nn LOAD ERR.

An error occurred while you were attempting to load an overlaid segment.
nn is 31 hex (49 decimal) less than your overlay segment number.

SUBSCRIPT FAULT.

A subscript has an illegal value. This error may be caused by an index
reference whose value is less than 1.

Program Load Errors

**COBOL: ATTEMPT TO USE NON-UPDATED RUNTIME MODULE (COBRUN.EXE).

This message appears when the version number in the runtime libraries
is not the same as that in the runtime interpreter (COBRUN.EXE).

*xCOBOL: ERROR IN EXE FILE.

Error in loading chained or common runtime EXE file.

*+COBOL: FILE "filename" NOT FOUND. ENTER NEW DRIVE LETTER.

The chained file, segment file, or common runtime file could not be found.
¥*COBOL: PROGRAM TOO BIG TO FIT IN MEMORY.

There is not enough memory available to load a chained program or com-
mon runtime file.

page F.1

APPENDIX F DEMONSTRATION PROGRAMS
COBOL-86 Programs

This is a brief description of demonstration programs included with
COBOL-86. See also Key Designations in Chapter 12.

CRTEST

CRTEST is a test program for the terminal interface. CRTEST must be
compiled and linked before it can be run. (See Program Development
in Chapter 1.) CRTEST will prompt you for input.

CENTER

CENTER is a program that takes a line of text and centers it or aligns
it with the left or right margin. It is a simple COBOL program that does
not use sophisticated screen handling features. Like CRTEST, it also must
be compiled and linked before running it. It will also prompt you for input.

COBOL-86 Demonstration System

The COBOL-86 Demonstration System consists of three COBOL pro-
grams:

DEMO.COB
BUILD.COB
UPDATE.COB

Linked versions of these programs are also included (DEMO.EXE,
DEMO_01.0VL, and UPDATE.EXE).

DEMO is the executive program of the system. It asks if you would like
a demonstration of the COBOL-86 SCREEN SECTION, or whether you
would like to create or update an indexed (ISAM) file of name, addresses,
and phone numbers.

Use the following procedure to run the COBOL-86 Demonstration System.

Page F.2

DEMONSTRATION PROGRAMS

COBOL-86 Demonstration System

1. Either copy COBRUN.EXE onto the disk containing the files
DEMO.EXE, UPDATE.EXE, and DEMO_01.0VL or insert a disk con-
taining COBRUN.EXE into drive A.

2. Insert the disk containing the files DEMO.EXE, DEMO_01.0VL, and
UPDATE.EXE into drive B.

3. Type
B:
and press RETURN to make drive B the default drive.

4. Now type

DEMO
and press RETURN. When DEMO has been loaded, it will prompt
you for input by providing menus and information screens to guide
you through the demonstration.
The COBOL source files for DEMO, BUILD, and UPDATE are in-
cluded to allow you to see the code that produces screens and files
of the system. To recreate the system from the source files, you
perform the following steps:

1. Insert a disk containing the compiler (COBOL.COM) and COBOL
overlays (COBOL1.0VR_COBOL4.0VR) into drive A. Insert the disk
containing DEMO.COB, BUILD.COB, and UPDATE.COB into drive
B. We recommend that you copy these files onto a blank disk to
allow room for object (.OBJ) and executable (.EXE) files on the disk.
Make drive B the default drive by typing
B:

and press RETURN.

Page F3

DEMONSTRATION PROGRAMS

COBOL-86 Demonstration System

Now type

A: COBOL DEMO, , CON;

and press RETURN. This compiles DEMO.COB and produces
DEMO.OBJ. The use of “CON" in the command line directs the com-
pile listing to the terminal screen; this allows you to watch the program
compile. You should receive the message No errors or warnings
when the compilation process is finished.

Type

A: COBOL BUILD, ,CON;

and press RETURN to compile BUILD.COB.
When the compilation process is finished, type

A:COBOL UPDATE, , CON;

and press RETURN to compile UPDATE.COB. When the compilation
process is finished, type

DIR *.0BJ.

You should find the files DEMO.OBJ, BUILD.OBJ, and UPDATE in
the directory listing.

Replace the disk in drive A with your utility disk (see Program De-
velopment in Chapter 1) containing LINK.EXE, COBOL1.LIB,
COBOL2.LIB, and COBRUN.EXE.

Link DEMO.OBJ and BUILD.OBJ together by typing

A:LINK DEMO+BUILD,,,A:;

Note that DEMOO01.0VL is produced in addition to DEMO.EXE.
Link UPDATE.OBJ by typing

A:LINK UPDATE, , ,A:;

You may now run the system as before.

Page G.1

APPENDIX G ASCII CHARACTER SET FOR ANSI-74 COBOL

CHARACTER HEXADECIMALVALUE CHARACTER HEXADECIMAL VALUE

A 41 0 30
B 42 1 31
C 43 2 32
D 44 3 33
E 45 4 34
F 46 5 35
G 47 6 36
H 48 7 37
I 49 8 38
J AA 9 39
K 4B (SPACE) 20
L 4C . 22
M 4D $ 24
N 4E " (non-ANSI) 27
o} 4F (28
P 50) 29
Q 51 * 2A
R 52 + 2B
S 53 ; 2C
T 54 - 2D
U 55 : 2E
Vv 56 / 2F
W 57 : 3B
X 58 < 3C
p 59 = 3D
Z 5A > 3E
Plus-zero (zero with embedded positive sign); 7B

Minus-zero (zero with embedded negative sign); 7D

APPENDIX H

Page H.1

ADDITIONAL ANSI RESERVED WORDS

The following words are reserved in the ANSI 1974 standard, but are
not used by COBOL-86. To ensure program portability, you should not
use these words as names.

ALSO
CD
CLOCK-UNITS

COMMUNICATION

DE
DEBUG-LINE
DEBUG-SUB-2
DETAIL

EGI

ENTER

FINAL
HEADING
LENGTH
MESSAGE

NO
PAGE-COUNTER
POSITION

RD
REFERENCES
REMOVAL
REPORTING
REVERSED
RH

SEGMENT
SOURCE
SUB-QUEUE-3
SYMBOLIC
TERMINAL
TYPE

ALTERNATE
CF

COBOL
CONTROL(S)

DEBUG-CONTENTS

DEBUG-NAME
DEBUG-SUB-3
DISABLE

EMI

ESI
GENERATE
INITIATE
LIMIT(S)
MULTIPLE
OFF

PF

PRINTING
RECEIVE
RELEASE
RENAMES
RERUN
REWIND
ROUND
SEGMENT-LIMIT
SUB-QUEUE-1
SUM

TABLE
TERMINATE
UNIT

CANCEL

CH

CODE
CORRESPONDING
DEBUG-ITEM
DEBUG-SUB-1
DESTINATION
DUPLICATES
ENABLE

EVERY

GROUP

LAST
LINE-COUNTER MERGE
NAMES(non-ANS)
OPTIONAL

PH

QUEUE

REEL
REMAINDER
REPORT(S)
RETURN

RF

SD

SEND
SUB-QUEUE-2
SUPPRESS
TAPE

TEXT

Index 1

INDEX

A
ACCEPT
characteristics of the data input fieild with, 12.13
character validity rules with, 12.11
editing characters with, 12.18
key designations with, 12.10
as reserved word, 12.2, 12.8-12.24
terminator keys with, 12.14
ACCESS as reserved word. See INPUT-OUTPUT
ADD as reserved word, 12.2, 12.25-12.26
AFTER as reserved word. See DECLARATIVES, INSPECT,
PERFORM, WRITE
ALL as reserved word. See INSPECT, SEARCH,
UNSTRING
ALPHABETIC as reserved word. See IF
Alphanumeric items
in DATA DIVISION, 8.2, 8.8
with PICTURE, 12.89
Alphanumeric-edited items in DATA DIVISION, 8.2, 8.8
ALTER as reserved word, 12.2, 12.27
AND as reserved word. See IF
ANSI language
additional reserved words in, H.1
ASCII character set for, G.1
elements of, 7.1-7.2
processing modules of, 7.1-7.2
AREA as reserved word. See INPUT-OUTPUT
ASCENDING as reserved word. See OCCURS,
SEARCH
ASCIl as reserved word. See CODE-SET,
CONFIGURATION
ASCIl character set for ANSI-74 COBOL, G.1
ASSIGN as reserved word. See INPUT-OUTPUT
* prompt to indicate debug facility, 6.2
AUTHOR as reserved word. See IDENTIFICATION
AUTO as reserved word. See SCREEN
AUTO-SKIP as reserved word. See ACCEPT

B

BACKGROUND-COLOR as reserved word. See
SCREEN

Backing up disks, 1.4

Batch command files, 4.1

BEEP as reserved word. See ACCEPT

BEFORE as reserved word. See INSPECT, WRITE

BELL as reserved word. See SCREEN

Binary item in DATA DIVISION, 8.4

BLANK
as reserved word, 12.2, 12.28
with SCREEN, 12.102-12.106
BLOCK as reserved word, 12.2, 12.29
BOTTOM as reserved word. See LINAGE
BY as reserved word. See DIVIDE, INSPECT, MULTIPLY,
PERFORM, SET

C
CALL
as reserved word, 12.2, 12.30-12.31
to temporarily transfer control of a program, A.1, A.2-
A6
CENTER as a COBOL-86 demonstration program, F.1
CHAIN
to permanently transfer control of a program, A.1, A.6—
A9
as reserved word, 12.2, 12.32
CHAINING as reserved word. See PROCEDURE
Characteristics of the data input field with ACCEPT,
12.13
CHARACTERS as reserved word. See CONFIGURATION,
INSPECT, BLOCK, RECORD
Character validity rules with ACCEPT, 12.11
Class-test with IF, 12.61
CLOSE
as reserved word, 12.2, 12.33
statement with indexed files, 10.3-10.4
COBOL-86 programs
with ANSI standard, 7.1-7.3
coding rules for, 7.6-7.7
compile time errors in, E.1, E.2-E.3
compiling, 2.1-2.8
character set in, 7.4-7.5
customizing, B.1
demonstration programs with, F.1— F.3
error messages in, E.1-E.17
executing, 3.8
expediting compilation with, 4.1
linking, 3.1=-3.7
program load errors in, E.2, E.17
program syntax errors in, E.1, E.4—E.14
punctuation in, 7.5
runtime errors in, E.1-E.2, E.15-E.17
structure of, 7.7-7.8
word formation, 7.6
CODE-SET as reserved word, 12.2, 12.34

Index 2

INDEX

COL as reserved word. See ACCEPT, DISPLAY,
EXHIBIT

COLUMN as reserved word. See SCREEN
COMMA as reserved word. See CONFIGURATION
Command input errors, E.1, E2-E.3
Command strings with operating the compiler, 2.3-2.4
Compiler

defining page length with, B.1

operating the, 2.1-2.4

phases of, C.1

switches, 2.5-2.6, 2.7
Compile time errors, E.1, E.2-E.3
Compiling

COBOL programs, 1.1-1.2, 2.1-2.8

large programs, 2.7-2.8
COMPUTATIONAL-0 as reserved word. See USAGE
COMPUTATIONAL-3 as reserved word. See USAGE
COMPUTE as reserved word, 12.3, 12.35-12.37
Conditional statements in PROCEDURE DIVISION, 9.1
Condition-name with IF, 12.61
CONFIGURATION as reserved word, 12.3, 12.38-12.39
CONTAINS as reserved word. See BLOCK, RECORD
COPY as reserved word, 12.3, 12.40
COPY utility used to back up disks, 1.4
COUNT as reserved word. See IF, UNSTRING
CRTEST as a COBOL-86 demonstration program, F.1
CURRENCY as reserved word. See CONFIGURATION
Currency symbols with CONFIGURATION, 12.39

D
DATA
as reserved word with DIVISION header, 12.3, 12.41
as reserved word with RECORD clause, 12.3, 12.42
Data description entry
components of, 8.6-8.7
--syntax in, 8.7-8.9
DATA DIVISION, 8.1-8.12
data description entry in, 8.6-8.9
data items in, 8.1-8.4
level numbers in, 8.4-8.6
literals and figurative constants in, 8.9-8.11
size limitations in, 8.12
structures and types in, 8.1-8.4
Data files, 5.3
Data input and output, 5.1-5.4
types of disk files in, 5.2
using disk files with, 5.1-5.3
using Z-DOS and nondisk files with, 5.3-5.4

Data items
passing, in PROCEDURE DIVISION header, 9.3
structures and types of, 8.1-8.4
Data-name, use of, 12.46
DATE as reserved word. See ACCEPT
DATE-COMPILED as reserved word. See
IDENTIFICATION
DATE-WRITTEN as reserved word. See
IDENTIFICATION
DAY as reserved word. See ACCEPT
Debug facility
* prompt used with, 6.2
commands of, 6.2-6.3
procedure for, 6.1-6.2
DEBUGGING as reserved word, See CONFIGURATION
DECIMAL-POINT as reserved word. See
CONFIGURATION
DECLARATIVES
in PROCEDURE DIVISION, 9.4
as reserved word, 12.3, 12.43-12.44. See also
PROCEDURE
DELETE
as reserved word, 12.3
statement with indexed files, 10.6-10.7
statement with relative files, 11.4
DELIMITED as reserved word. See STRING, UNSTRING

DELIMITER as reserved word. See UNSTRING
Demonstration programs, F.1-F.3
DEPENDING as reserved word. See GO
DESCENDING as reserved word. See OCCURS,
SEARCH
Design of the PROCEDURE DIVISION, 9.2-9.6
DISK as reserved word. See INPUT-OUTPUT
Disk files
granules in, 5.2
types of, 5.1, 5.2-5.3
using, 5.1-5.3
DISPLAY
as reserved word, 12.3, 12.45-12.47. See also
USAGE
use of data-name, literal, and ERASE with, 12.46
use of screen-name with, 12.47
DIVIDE as reserved word, 12.3, 12.48-12.49
DIVISION as reserved word. See DATA (division),
ENVIRONMENT, IDENTIFICATION, PROCEDURE
Division header with PROCEDURE DIVISION, 9.3-9.4
DOWN as reserved word. See SET
DYNAMIC as reserved word. See INPUT-OUTPUT

Index 3

INDEX

E
Editing
characters with ACCEPT, 12.18
data with PICTURE 12.95
Effects of optional clauses in SCREEN, 12.103
Elementary items
in DATA DIVISION, 8.2
syntax in, 8.8
ELSE as reserved word. See IF
END as reserved word. See DECLARATIVES, READ,
SEARCH
END-OF-PAGE as reserved word. See WRITE
ENVIRONMENT as reserved word, 12.3, 12.50
ENVIRONMENT DIVISION
syntax in, with indexed files, 10.1~10.3
syntax in, with relative files, 11.1-11.2
EOP as reserved word. See WRITE
EQUAL as reserved word. See IF
ERASE
as reserved word. See DISPLAY, EXHIBIT
use of, 12.46
ERROR as reserved word. See ADD, COMPUTE,
DECLARATIVES, DIVIDE, MULTIPLY, SUBTRACT
Error messages with COBOL-86 programs, E.1-E.17
Error reporting with indexed files, 10.2
ESCAPE as reserved word. See ACCEPT
ESC key, effects of, 12.21
EXCEPTION as reserved word. See DECLARATIVES
Executing COBOL programs, 3.8
EXHIBIT as reserved word, 12.3, 12.51
EXIT as reserved word, 12.3, 12.52
EXIT PROGRAM as reserved word, 12.3, 12.53
Expediting compilation, 4.1
Expression evaluation, precedence for, 12.36
EXTEND as reserved word. See DECLARATIVES,
OPEN
External decimal item in DATA DIVISION, 8.3

F

FD as reserved word. See FILE

Figurative constants in DATA DIVISION, 8.8, 8.11

FILE as reserved word, 12.3, 12.54-12.55. See also DATA
(division)

FILE-CONTROL as reserved word. See INPUT-QUTPUT

FILE-CONTROL paragraph, 12.65

FILE-ID as reserved word. See VALUE (OF FILE-ID)

Files
batch command, 4.1
source listing, 2.7
FILE STATUS
clause with indexed files, 10.2
table of, 10.3
FILLER as reserved word, 12.4
FIRST as reserved word. See INSPECT
Fixed segments, 9.5
Fleating string with PICTURE, 12.92-12.93
FOOTING as reserved word. See LINAGE
FOR as reserved word. Ses INSPECT
FOREGROUND-CCLOR as reserved word. See
SCREEN
FORMAT utility used to back up disks, 1.4
FROM as reserved word. See ACCEPT, PERFORM.
REWRITE, SCREEN SUBTRACT, WRITE

G
GIVING as reserved word. See ADD, SUBTRACT,
MULTIPLY, DIVIDE
GO TO as reserved word, 12.4, 12.56
Granules, types of, 5.2
GREATER as reserved word. See IF
Group items
in DATA DIVISION, 8.2
syntax in, 8.7

H
HIGH-VALUE(S) as reserved word, 12.4

|
-0

etror handling, 9.4

as reserved word. See DECLARATIVES, OPEN
O-CONTROL as reserved word. See INPUT-QUTPUT
-O-CONTROL paragraph in INPUT-QUTPUT, 12.66
IDENTIFICATION as reserved word, 12.4, 12.57
IF

class-test with, 12.61

condition-name with, 12.61

nesting ELSE statements with, 12.59

relation-test with, 12.60

as reserved word, 12.4, 12.58-12.62

sign-test with, 12.61
Imperative statements in PROCEDURE DIVISION, 9.1

Index 4

INDEX

IN, OF as reserved word, 12.4, 12.63
Independent segments, 9.5
INDEX as reserved word. See USAGE
Index data item, restrictions for. with, USAGE 12.123
INDEXED as reserved word. See INPUT-OUTPUT,
OCCURS
Iindexed file' recovery utility, D.1-D.7
Indexed files, 10.1-10.7
DELETE statement with, 10.6—10.7
FILE STATUS clause with, 10.2
OPEN statement with, 10.3
READ statement with, 10.4
RECORD KEY clause with, 10.1-10.2
REWRITE statement with, 10.6
SELECT clause with, 10.1
START statement with, 10.7
syntax in ENVIRONMENT DIVISION with 10.1-10.3
syntax in PROCEDURE DIVISION with 10.3-10.7
WRITE statement with, 10.5-10.6
Indexes
rules applied to values of, with SEARCH, 12.108
use of, with OCCURS, 12.80
INITIAL as reserved word, 12.4
Interactive debug facility, 6.1-6.3
Internal storage formats with numeric items, 8.3
Interprogram communication with CALL or CHAIN, A.1—
A9
INPUT as reserved word. See DECLARATIVES, OPEN
INPUT-OUTPUT
FILE-CONTROL paragraph in, 12.66
I-O-CONTROL paragraph in, 12.66
as reserved word, 12.4, 12.64-12.66. See also
ENVIRONMENT
INSPECT as reserved word, 12.4, 12.67-12.69
INSTALLATION as reserved word. See
IDENTIFICATION
Internal decimal item in DATA DIVISION, 8.3-8.4
INTO as reserved word. See DIVIDE, READ, STRING,
UNSTRING
INVALID as reserved word, 12.4
IS as reserved word. See CONFIGURATION

J

JUST as reserved word. See SCREEN

JUSTIFIED as reserved word, 12.4, 12.70. See also
SCREEN

K
KEY as reserved word. See ACCEPT, OCCURS
Key files, 5.2

L
LABEL as reserved word. See FILE
LEADING as reserved word. See INSPECT, SIGN
LEFT-JUSTIFY as reserved word. See ACCEPT
LENGTH-CHECK as reserved word. See ACCEPT
LESS as reserved word. See IF
Level numbers, subdividing records of, 8.4-8.6
LIN as reserved word. See ACCEPT, DISPLAY,
EXHIBIT
LINAGE as reserved word, 12.4, 12.71-12.72. See also
DATA (division)
LINAGE-COUNTER as reserved word. See LINAGE
LINE as reserved word. See ACCEPT, INPUT-OUTPUT,
SCREEN, WRITE
LINES as reserved word. See WRITE, LINAGE
LINK, using, 3.1-3.5
LINKAGE as reserved word, 12.4, 12.73. See also DATA
(division)
Linking
large programs, 3.7
program modules, 3.6
programs that use overlays, 3.6
Literals
in DATA DIVISION, 8.8-8.11
use of, 12.46 LOCK as reserved word. See CLOSE
LOW-VALUE(S) as reserved word, 12.4

M
Methods for separating files with COBOL programs, 3.7
MEMORY as reserved word. See CONFIGURATION
MODE as reserved word. See CONFIGURATION
MOVE

as reserved word, 12.5, 12.74-12.76

rules for using, 12.74-12.75

tables of, 12.76
MULTIPLY as reserved word, 12.5, 12.77-12.78

N
NATIVE as reserved word. See CONFIGURATION
NEGATIVE as reserved word. See IF
Nesting IF-ELSE statements with IF, 12.59
NEXT as reserved word. See IF, SEARCH
Non-numeric literals

on continuation lines, 8.10

in DATA DIVISION, 8.9-8.10

Index B

INDEX

NOT as reserved word. See IF
NUMBER as reserved word. See ACCEPT, SCREEN
NUMERIC as reserved word. See IF
Numeric items

in DATA DIVISION, 8.3, 8.8

with PICTURE, 12.89
Numeric-edited items in DATA DIVISION, 8.3, 8.9
Numeric literals in DATA DIVISION, 8.10-8.11

0
OBJECT-COMPUTER as reserved word. See
CONFIGURATION
OCCURS
as reserved word, 12.5, 12,79-12.82
use of indexes with, 12.80
use of subscripts with, 12.79
OF as reserved word. See IF
OMITTED as reserved word. See FILE
OPEN
as reserved word, 12.5, 12.83-12.84
statement with indexed files, 10.3-10.4
Operating system /O errors, E.1, E.2-E.3
Operating the compiler, 2.1-2.4
partial command strings in, 2.3-2.4
Optional clauses, effects of, 12.103
OR as reserved word. See UNSTRING
ORGANIZATION as reserved word. See INPUT-
QUTPUT
Organization of the PROCEDURE DIVISION, 9.2-9.3
OUTPUT as reserved word. See DECLARATIVES,
OPEN
OVERFLOW as reserved word. See STRING, UNSTRING

P
PAGE as reserved word. See WRITE
Paragraphs in statement structures, 9.2
Passing data items in PROCEDURE DIVISION header,
9.3
PERFORM as reserved word, 12.5, 12.85-12.88
Phases of the compiler, C.1
PIC as reserved word. See SCREEN
PICTURE
alphanumeric items with, 12.89
editing DATA with, 12.95
numeric items with, 12.89
fioating string with, 12.92
report-form option with, 12.91-12.94
as reserved word, 12.5, 12.86-12.95, See also
SCREEN

PLUS as reserved word. See SCREEN
POINTER as reserved word. See STRING, UNSTRING
POSITIVE as reserved word. See IF
Precedence for evaluating the expression with COMPUTE,
12.36
PRINTER as reserved word. See CONFIGURATION,
INPUT-OUTPUT
PROCEDURE as reserved word, 12.5, 12.96. See also
DECLARATIVES
PROCEDURE DIVISION, 9.1-9.6
design of, 9.2-9.6
segmentation facility in, 9.5
syntax in, with indexed files, 10.3-10.7
syntax in, with relative files, 11.2~11.5
types of statements in, 9.1-9.2
Program
load errors, E.2, E.17
syniax errors, E.1, E.4-E.14
PROGRAM as reserved word. Sge EXIT (PROGRAM)
PROGRAM-ID as reserved word. See IDENTIFICATION
PROMPT as reserved word. See ACCEPT
Punctuation of source code, 7.5

Q
QUOTE(S) as reserved word, 12.5

R
RANDOM as reserved word. See INPUT-OUTPUT
READ
as reserved word {to perform sequential input), 12.5,
12.97
statement with indexed files, 10.4-10.5
statement with relative files, 11.2-11.3
READY as reserved word. See TRACE
AEBUILD utility
to recover or restore information, D.1-D.7
running, D.2-D.6
RECORD
KEY clause with indexed files, 10.1-10.2
as reserved word, 12.5, 12.98. See also DATA (RECQRD
clause), FILE, INPUT-QUTPUT, READ
RECORDS as reserved word. See BLOCK, DATA
(RECORD clause), FILE
Recovering information with REBUILD, D.1-D.7
REDEFINES as reserved word, 12.5, 12.99-12.100
Relation-test to evaluate operands, 12.60

Index 6

INDEX

RELATIVE
KEY clause with relative files, 11.2
as reserved word. See INPUT-OUTPUT
Relative files, 11.1-11.5
DELETE statement with, 11.4
READ statement with, 11.2-11.3
RELATIVE KEY clause with, 11.2
REWRITE statement with, 11.4
SELECT clause with, 11.1
START statement with, 11.5
syntax in ENVIRONMENT DIVISION with, 11.1-11.2
syntax in PROCEDURE DIVISION with, 11.2-11.5
WRITE statement with, 11.3
REPLACING as reserved word. See INSPECT
Report-form option with PICTURE, 12.91-12.94
RESERVE as reserved word. See INPUT-OUTPUT
Reserved words, 12.1-12.132
ACCEPT as, 12.2, 12.8-12.24
ACCESS as, 12.2. See also INPUT-OUTPUT
ADD as, 12.2, 12.25-12.26

AFTER as, 12.2. See also DECLARATIVES, INSPECT,

PERFORM, WRITE
ALL as, 12.2. See also INSPECT, SEARCH,
UNSTRING,
ALPHABETIC as, 12.2. See also IF
ALTER as, 12.2, 12.27
AND as, 12.2. See also IF
AREA as, 12.2. See also INPUT/OUTPUT
ASCENDING as, 12.2. See also OCCURS, SEARCH
ASCII as, 12.2. See also CODE-SET,
CONFIGURATION
ASSIGN as, 12.2. See also INPUT-QUTPUT
AUTHOR as, 12.2. See also IDENTIFICATION
AUTO as, 12.2. See also SCREEN
AUTO-SKIP as, 12.2. See alsec ACCEPT
BACKGROUND-COLOR as, 12.2. See also SCREEN
BEEP as, 12.2. See also ACCEPT
BEFORE as, 12.2. See also INSPECT, WRITE
BELL as, 12.2. See also SCREEN
BLANK as, 12.2, 12.28. See also SCREEN
BLOCK as, 12.2, 12.29
BOTTOM as, 12.2. See aiso LINAGE

BY as, 12.2. See also DIVIDE, INSPECT, MULTIPLY,

PERFORM, SET
CALL as, 12.2, 12.30-12.31
CHAIN as, 12.2, 12.32
CHAINING as, 12.2. See also PROCEDURE

CHARACTERS as, 12.2. See also CONFIGURATION,
INSPECT, BLOCK, RECORD

CLOSE as, 12.2, 12.33

CODE-SET as, 12.2, 12.34

COL as, 12.2. See also ACCEPT, DISPLAY,
EXHIBIT

COLUMN as, 12.2. See also, SCREEN

COMMA as, 12.2. See also CONFIGURATION

COMPUTATIONAL as, 12.2. See also USAGE

COMPUTATIONAL-3 as, 12.2. See also USAGE

COMPUTE as, 12.3, 12.35-12.37

CONFIGURATION as, 12.3, 12.38-12.39. See also
ENVIRONMENT

CONTAINS as, 12.3. See also BLOCK, RECORD

COPY as, 12.3, 12.40

COUNT as, 12.3. See also IF, UNSTRING

CURRENCY as, 12.3. See also CONFIGURATION

DATA (in DATA DIVISION header) as, 12.3, 12.41

DATA (in DATA RECORD clause) as, 12.3, 12.42

DATE as, 12.3. See also ACCEPT

DATE-COMPILED as, 12.3. See also
IDENTIFICATION

DATE-WRITTEN as, 12.3. See also IDENTIFICATION

DAY as, 12.3. See also ACCEPT

DEBUGGING as, 12.3. See also CONFIGURATION

DECIMAL-POINT as, 12.3. See also
CONFIGURATION

DECLARATIVES as, 12.3, 12.43-12.44. See also
PROCEDURE

DELETE as, 12.3

DELIMITED as, 12.3. See also STRING, UNSTRING

DELIMITER as, 12.3. See also UNSTRING

DEPENDING as, 12.3. See also GO

DESCENDING as, 12.3. See also OCCURS,
SEARCH

DISK as, 12.3. See also INPUT-OUTPUT

DISPLAY as, 12.3, 12.45-12.47. See also USAGE

DIVIDE as, 12.3, 12.48-12.49

DIVISION as, 12.3. See also

DIVISION as, 12.3. See also DATA (division),
ENVIRONMENT, IDENTIFICATION, PROCEDURE

DOWN as, 12.3. See also SET

DYNAMIC as, 12.3. See also INPUT-QUTPUT

ELSE as, 12.3. See also IF

END as, 12.3. See also DECLARATIVES, READ,
SEARCH

END-OF-PAGE as, 12.3. See also WRITE

Index 7

INDEX

ENVIRONMENT as, 12.3, 12.50

EOP as, 12.3. See also WRITE

EQUAL as, 12.3. See also IF

ERASE as, 12.3. See also DISPLAY, EXHIBIT

ERROR as, 12.3. See also ADD, COMPUTE,
DECLARATIVES, DIVIDE, MULTIPLY, SUBTRACT

ESCAPE as, 12.3. See also ACCEPT

EXCEPTION as, 12.3. See also DECLARATIVES

EXHIBIT as, 12.3, 12.51

EXIT as, 12.3, 12.52

EXIT PROGRAM as, 12.3, 12.53

EXTEND as, 12.3. See also DECLARATIVES, OPEN

FD as, 12.3. See also FILE

FILE as, 12.3, 12.54-12.55. See also DATA (division)

FILE-CONTROL as, 12.3. See also INPUT-OUTPUT

FILE-ID as, 12.4. See also VALUE (OF FILE-ID)

FILLER as, 12.4

FIRST as, 12.4. See also INSPECT

FOOTING as, 12.4. See also LINAGE

FOR as, 12.4. See also INSPECT

FOREGROUND-COLOR as, 12.4. See also SCREEN

FROM as, 12.4. See also ACCEPT, PERFORM,
REWRITE, SCREEN, SUBTRACT, WRITE

GIVING as, 12.4. See also ADD, SUBTRACT,
MULTIPLY, DIVIDE

GO as, 124, 12.56

GREATER as, 12.4. See also IF

HIGH-VALUE(S) as, 12.4.

I-O as, 12.4. See also DECLARATIVES, OPEN

I-O-CONTROL as, 12.4. See also INPUT-OUTPUT

IDENTIFICATION as, 12.4, 12.57

IF as, 12.4, 12.58-12.62

IN, OF as, 124, 12.63

INDEX as, 12.4. See also USAGE

INDEXED as, 12.4. See also INPUT-OUTPUT,
OCCURS

INITIAL as, 12.4

INPUT as, 12.4. See also DECLARATIVES, OPEN

INPUT-OUTPUT as, 12.4, 12.64-12.66. See also
ENVIRONMENT INSPECT as, 12.4, 12.67-12.69

INSTALLATION as, 12.4. See also IDENTIFICATION

INTO as, 12.4. See also DIVIDE, READ, STRING,
UNSTRING

INVALID as, 12.4

IS as, 12.4. See also CONFIGURATION

JUST as, 12.4. See also SCREEN

JUSTIFIED as, 12.4, 12.70. See also SCREEN

KEY as, 12.4. See also ACCEPT, OCCURS

LABEL as, 12.4. See also FILE

LEADING as, 12.4. See also INSPECT, SIGN

LEFT-JUSTIFY as, 12.4. See also ACCEPT

LENGTH-CHECK as, 12.4. See also ACCEPT

LESS as, 12.4. See also IF

LIN as, 12.4. See also ACCEPT, DISPLAY, EXHIBIT

LINAGE as, 12.4, 12.71-12.72. See also DATA
(division)

LINAGE-COUNTER as, 12.4. See also LINAGE

LINE as, 12.4. See also ACCEPT, INPUT-OUTPUT,
SCREEN, WRITE

LINES as, 12.4. See also WRITE, LINAGE

LINKAGE as, 12.4, 12.73. See also DATA (division)

LOCK as, 12.4. See also CLOSE

LOW-VALUE(S) as, 124

MEMORY as, 12.4. See also CONFIGURATION

MODE as, 12.5. See also CONFIGURATION

MOVE as, 12.5,12.74-12.76

MULTIPLY as, 12.5,12.77-12.78

NATIVE as, 12.5. See also

NEGATIVE as, 12.5. See also IF

NEXT as, 12.5. See also IF, SEARCH

NOT as, 12.5. See also |F

NUMBER as, 12.5. See also ACCEPT, SCREEN

NUMERIC as, 12.5. See also IF

OBJECT-COMPUTER as, 12.5. See also
CONFIGURATION

OCCURS as, 12.5, 12.79-12.82

OF as, 12.5. See also IF

OMITTED as, 12.5. See also FILE

OPEN as, 12.5, 12.83-12.84

ORas, 12.5. See alsoUNSTRING

ORGANIZATION as, 12.5. See also INPUT-OUTPUT

QUTPUT as, 12.5. See also DECLARATIVES, OPEN

OVERFLOW as, 12.5. Seg also STRING, UNSTRING

PAGE as, 12.5. See also WRITE

PERFORMas, 12.5, 12.85-12.88

PIC as, 12.5. See also SCREEN

PICTURE as, 12.5, 12.89-12.95. Seg also SCREEN

PLUS as, 12.5. See also SCREEN

POINTER as, 12.5. See also STRING, UNSTRING

POSITIVE as, 12.5. See also IF

PRINTER as, 12.5. See also CONFIGURATION, INPUT-
OUTPUT

PROCEDURE as, 12.5, 12.96. See also DECLARATIVES

PROGRAM as, 12.5. See also EXIT (PROGRAM)

Index 8

INDEX

PROGRAM-ID as, 12.5. See aiso IDENTIFICATION

PROMPT as, 12.5. See a/so ACCEPT

QUOTE(S) as, 12.5.

RANDOM as, 12.5. See also INPUT-OUTPUT

READ (to Perform Sequential Input) as, 12.5, 12.97
READY as, 12.5. See also TRACE

RECORD as, 12.5, 12.98. See a/so DATA (RECORD
clause), FILE, INPUT-OUTPUT, READ

RECORDS as, 12.5. See also BLOCK, DATA (RECORD
clause), FILE

REDEFINES as, 12.5, 12.99-12.100

RELATIVE as, 12.5. See also INPUT-QUTPUT

REPLACING as, 12.5. See also INSPECT

RESERVE as, 12.5. See also INPUT QUTPUT

RESET as, 12.5. See also TRACE

REVERSE-VIDEO as, 12.5. See also SCREEN

REWRITE (to Perform Sequential I/O) as; 12.5, 12.101

RIGHT-JUSTIFY as, 12.5. See also ACCEPT

ROUNDED as, 12.6. See a/so ADD, COMPUTE, DIVIDE,
MULTIPLY, SUBTRACT

RUN as, 12.6. See also STOP

SAME as, 12.6. See also INPUT-OUTPUT

SCREEN as, 12.6, 12.102-12.106. See also DATA
(division)

SEARCH as, 12.6, 12.107-12.110

SECTION as, 12.6. See also CONFIGURATION, DATA
(division), DECLARATIVES, ENVIRONMENT, FILE,
INPUT-OUTPUT, LINKAGE, PROCEDURE, SCREEN,
WORKING-STORAGE

SECURE as, 12.6. See also SCREEN

SECURITY as, 12.6. See also IDENTIFICATION

SELECT as, 12.6. See also INPUT-OUTPUT

SENTENCE as, 12.6. See also IF, SEARCH

SEPARATE as, 12.6. See also SIGN

SEQUENCE as, 12.6. See alsc CONFIGURATION

SEQUENTIAL as, 12.6. See also INPUT-OUTPUT

SETas, 12.6,12.111

SIGNas, 12.6,12.112

SIZE as, 12.6. See also ADD, COMPUTE, DIVIDE,
MULTIPLY, STRING, SUBTRACT

SORT as, 12.6. See also INPUT-OUTPUT

SORT-MERGE as, 12.6. See also INPUT-OUTPUT

SOURCE-COMPUTER as, 12.6. See also
CONFIGURATION

SPACE(S) as, 12.6

SPACE-FILL as, 12.6. See also ACCEPT

SPECIAL-NAMES as, 12.6. See also

CONFIGURATION

STANDARD as, 12.6. See also FILE

STANDARD 1 as, 12.6. See also CONFIGURATION

START as, 12.6

STATUS as, 12.6. See also INPUT-OUTPUT

STOPas, 12.6,12.113

STRING as, 12.6,12.114-12.115

SUBTRACT as, 12.6,12.116-12.117

SYNCas, 12.6

SYNCHRONIZEDas, 12.6,12.118

table of, 12.2-12.7

TALLYING as, 12.6. See also INSPECT, UNSTRING

THROUGH as, 12.6. See also PERFORM, VALUE (in
condition-names)

THRU as, 12.6. See also PERFORM, VALUE (in
condition-names)

TIME as, 12.6. See also ACCEPT

TIMES as, 12.6. See also PERFORM

TO as, 12.6. See also ADD, ALTER, MOVE, RECORD,
SCREEN, SET

TOP as, 12.6. See also LINAGE

TRACEas, 12.6,12.119

TRAILING as, 12.6. Seealso SIGN

TRAILING-SIGN as, 12.6. See also ACCEPT

UNSTRING as, 12.6,12.120-12.122

UNTIL as, 12.6. See also PERFORM

UPas, 12.7. See also SETUPDATE, ACCEPT

USAGE as, 12.7,12.123-12.124

USE as, 12.7. See also DECLARATIVES

USING as, 12.7. See also CALL, CHAIN, PROCEDURE,
SCREEN

VALUE (to define truth set of condition-name) as, 12.7,
12.125-12.126

VALUE (to initialize data value) as, 12.7, 12.127-12.128.
See also SCREEN

VALUE (to specify adisk filename) as, 12.7,12.129

VALUES as, 12.7. See also VALUE (in condition-names)

VARYING as, 12.7. See also PERFORM, SEARCH

WHEN as, 12.7. See also SEARCH

WITH as, 12.7. See also ACCEPT, CLOSE,
CONFIGURATION

WORDS as, 12.7. See also CONFIGURATION

WORKING-STORAGE as, 12.7, 12.130. See also DATA
(division)

WRITE (to Perform Sequential Output) as, 12.7, 12.131—
12.132

ZERO (ZEROS, ZEROES) as, 12.7. See also BLANK, IF,
SCREEN

Index 9

INDEX

ZERO-FILL as, 12.7. See also ACCEPT
RESET as reserved word. See TRACE
Restoring information with REBUILD, D.1-D.7
Restrictions for index data item with USAGE, 12.123
REVERSE-VIDEOQ as reserved word: See SCREEN
REWRITE
as reserved word (to perform sequential I/0), 12.5, 12.101
statement with indexed files, 10.6
statement with relative files, 11.4
RIGHT-JUSTIFY as reserved word. See ACCEPT
ROUNDED as reserved word. See¢ ADD, COMPUTE,
DIVIDE, MULTIPLY, SUBTRACT
Rules for using MOVE, 12.74-12.75
RUN asreserved word. See STOP
Runtime errors, E.1,E.15-E.17
Runtime executor with COBOL programs, 3.8

S
SAME as reserved word. See INPUT-OUTPUT SCREEN
effects of optional clauses with, 12.103-12.105
as reserved word, 12.6, 12.102-12.106. See also DATA
(division)
useoflevelsin, 12.103
Screen-name, use of, 12.47
SEARCH
asreservedword, 12.6, 12.107-12.110
rules of index values with, 12.108
rules of WHEN condition with, 12.108-12.109
SECTION as reserved word. See CONFIGURATION, DATA
(division), DECLARATIVES, ENVIRONMENT, FILE,
INPUT-OUTPUT, LINKAGE, PROCEDURE, SCREEN,
WORKING-STORAGE
Sections in statement structures, 8.2
SECURE as reserved word. See SCREEN
SECURITY asreserved word. See IDENTIFICATION
Segmentation facility
to enable execution, 9.5
range for segment-number with, 9.5
SELECT
clause with indexedfiles, 10.1
clause with relative files, 11.1
asreserved word, 12.6. See also INPUT-OUTPUT
SENTENCE asreserved word. See IF, SEARCH
Sentences in statement structures, 9.2
SEPARATE as reserved word. See SIGN
SEQUENCE asreserved word: See CONFIGIIRATION
SEQUENTIAL as reserved word. See INPUT-OUTPUT

SET as reservea word, 12.6, 12.111
SIGN as reserved word, 12:6, 12.112
Sign-test with IF, 12.61
SIZE as reserved word. See ADD, COMPUTE, DIVIDE,
MULTIPLY, STRING, SUBTRACT
Size limitations in DATA DIVISION; 8.12
L used to indicate switch, 2.5-2.8
SORT as reserved word. See" INPUT-OUTPUT
SORT-MERGE as reserved word. Sge INPUT-OUTPUT
SOURCE-COMPUTER as reserved word. See
CONFIGU‘RATION
Source listing file, 2.7
Source program, changing tab stops in, B.1
SPACE(S) as reserved word, 12.6
SPACE-FILL as reserved word. See ACCEPT
SPECIAL-NAMES ' as reserved word. See
CONFIGURATION
Specifying the file organization with data input and output,
5.1
Stand-alone items in DATA DIVISION, 8.2
STANDARD as reserved word. See FILE
STANDARD-1 as reserved word. See CONFIGURATION
START
as reserved word, 12.6
statement with indexed files, 10.7
statement with relative files, 11.5
Statements, types of, 9.1-9.2
STATUS as reserved word. See INPUT-QUTPUT
Steps in the compilation process, 1.1-1.2
STOP as reserved word, 12.6, 12.113
STRING as reserved word, 12.6, 12.114-12.115
Subscripts, use of, 12.79. See also OCCWRS
SUBTRACT as reserved word, 12.6, 12.116-1213F
Switches, 2.5-2.6, 2.7
SYNC as reserved word, 12.6
SYNCHRONIZED as. reserved word, *12.6, 127118

T

Tab stops changed in source: program,. B.1

TALLYING as reserved word. See INSPECT,

UNSTRING

Terminator keys, 12.14

THROUGH as reserved word. Sée. PERFORBMPVALUE
(in condition-names)

THRU as reserved word. See PERFORM, VALUE fin
condition-names)

TIME as reserved.word. See ACCEPT

TIMES as reserved word. See PERFORM

TO as reserved word. See ADD, ALTER, MOVE, RECORD,
SCREEN, SET

index 10

INDEX

TOP as reserved word. See LINAGE

TRACE asreservedword, 12.6, 12.118
TRAILING as reserved word. See SIGN
TRAILING-SIGN as reserved word. See ACCEPT

U
UNSTRING as reserved word, 12.6, 12.120-12.122
UNTIL as reserved word. See PERFORM
UP asreserved word. See SET UPDATE, ACCEPT
USAGE
asreservedword, 12.7,12.123-12.124
restrictions for index data item with, 12.123
USE as reserved word. See DECLARATIVES
USING as reserved word. See CALL, CHAIN, PROCEDURE,
SCREEN

v
VALUE as reserved word
{(in condition-names), 12.7, 12.1256-12.126
(offile D), 12.7,12.129
(toinitialize data value), 12,7, 12.127-12.128
VALUES as reserved word. See VALUE (in condition-names)
VARYING as reserved word. See PERFORM, SEARCH

w
WHEN
as reserved word. See SEARCH
rules of, with SEARCH, 12.108-12.109
WITH as reserved word. See ACCEPT, CLOSE,
CONFIGURATION
WORDS as reserved word. See CONFIGURATION
WORKING-STORAGE as reserved word, 12.7, 12.130.
See also DATA (division)
WRITE
as reserved word (to perform sequential output), 12.7,
12.131-12.132
statement with indexed files, 10.5-10.6
statement with relative files, 11.3

z
Z-DOS
backing up disks with, 1.4
used with data input and output, 5.4
ZERO (ZEROS, ZERQES) as reserved word. See BLANK, IF,
SCREEN
ZERO-FILL as reserved word. See ACCEPT

;f_gaﬂ data
systems HEATH

HILLTOP ROAD, ST. JOSEPH, MICHIGAN 49085

591-4204

Dear Customer,

The second distribution disk contains several additional files that are not described in

the

MK

COBOL-86 manual.

DEMO.BAT is a batch file that will compile and link the demonstration program. set.

The batch routine assumes that you have a two-drive 5.25-inch floppy disk system where

the

COBOL-86 system disk is in drive A and the program disk is in drive B. If you are

using higher capacity disks (i.e., 8-inch or the Winchester hard disk), the COBOL compiler,
linker, and runtime files may fit on one disk. If this is the case, you may use the following
procedure to copy the distribution disk(s) and then compile, link, and run the demonstration
program set.

1.

5.

Select a formatted Winchester partition (or other high capacity disk) that contains
Z-DOS as the default disk by entering the drive name and then pressing the- RE-
TURN key. For instance, if you selected the first Winchester partition, enter E:
and then press RETURN.

Place the COBOL distribution disks one at a time in drive A and copy each by
entering COPY A:*.*.

If the program, LINK.EXE, is not on the default disk, copy it from the Z-DOS distribu-
tion disk by replacing the COBOL distribution disk with the Z-DOS distribution
disk | and entering COPY A:LINK.EXE and pressing RETURN.

Compile the demonstration program set by entering each of the following com-
mands and pressing RETURN.

COBOL DEMO, , CON;
COBOL BUILD, , CON;
COBOL UPDATE, , CON;
LINK DEMO+BUILD;
LINK UPDATE;

To run the program, enter DEMO and press RETURN.

The second disk also contains five sample programs that demonstrate the five types
of file organization supported by COBOL-86. You should study these examples to become
familiar with the sequence of operations that may be used for each file type. The programs
are:

EX-11.COB—Indexed files
EX-R1.COB—Relative files
EX-S1.COB—Sequential files
EX-L1.COB—Line sequential files
EX-P1.COB—Printer output samples

PO

Note to Users of Previous Versions of Microsoft™ COBOL

There are three differences between COBOL-86 and previous versions of Microsoft
COBOL. They are described in the following paragraphs along with revisions necessary so
that the source code may be modified to be compatible with the current version of Microsoft
COBOL.

First, in previous versions, data items described as COMP or COMPUTATIONAL were
treated as 16-bit binary fields. In the present version, these must be described as COMP-0
or COMPUTATIONAL-0. ltems described as COMP or COMPUTATIONAL will be stored
as ASClI characters in the present version.

Second, there is a change in the default tab stops. Previous versions used 7, 17, 25, 33,
41, 49, 57, 65, and 73. The current version uses 8, 12, 20, 28, 36, 44, 52, 60, 68, and 73.
Either you must modify the source programs that used different tab stops and recompile
them or modify the COBOL-86 tab stop table. To modify the tab stop table, see Appendix
B, “Customizations.”

The third difference is in the format of index files which was changed between versions
4.01 and 4.60 of COBOL-80. If you have programs that were written under COBOL-80
version 4.01 and want to convert those indexed files to the format used by COBOL-86,
you must write two programs for each index file. The first program, which must be written
in COBOL-80 under CP/M, converts the COBOL-80 (version 4.01) index file into a sequen-
tial file. It does this by reading all the records of the index file and then writing them
as a sequential file. Once that is done, you can move the sequential file to Z-DOS (Ms-
DOS) with the RDCPM utility (described in your Z-DOS manual). The second program,
written in COBOL-86, converts the transferred sequential file back into an index file.
It does this by reading the sequential file information into memory and then writing it
outas an indexed file.

~Microsoft is a trademark of Microsoft Corporation.

	COBOL86_ZDOS_man_Page_001
	COBOL86_ZDOS_man_Page_002
	COBOL86_ZDOS_man_Page_003
	COBOL86_ZDOS_man_Page_004
	COBOL86_ZDOS_man_Page_005
	COBOL86_ZDOS_man_Page_006
	COBOL86_ZDOS_man_Page_007
	COBOL86_ZDOS_man_Page_008
	COBOL86_ZDOS_man_Page_009
	COBOL86_ZDOS_man_Page_010
	COBOL86_ZDOS_man_Page_011
	COBOL86_ZDOS_man_Page_012
	COBOL86_ZDOS_man_Page_013
	COBOL86_ZDOS_man_Page_014
	COBOL86_ZDOS_man_Page_015
	COBOL86_ZDOS_man_Page_016
	COBOL86_ZDOS_man_Page_017
	COBOL86_ZDOS_man_Page_018
	COBOL86_ZDOS_man_Page_019
	COBOL86_ZDOS_man_Page_020
	COBOL86_ZDOS_man_Page_021
	COBOL86_ZDOS_man_Page_022
	COBOL86_ZDOS_man_Page_023
	COBOL86_ZDOS_man_Page_024
	COBOL86_ZDOS_man_Page_025
	COBOL86_ZDOS_man_Page_026
	COBOL86_ZDOS_man_Page_027
	COBOL86_ZDOS_man_Page_028
	COBOL86_ZDOS_man_Page_029
	COBOL86_ZDOS_man_Page_030
	COBOL86_ZDOS_man_Page_031
	COBOL86_ZDOS_man_Page_032
	COBOL86_ZDOS_man_Page_033
	COBOL86_ZDOS_man_Page_034
	COBOL86_ZDOS_man_Page_035
	COBOL86_ZDOS_man_Page_036
	COBOL86_ZDOS_man_Page_037
	COBOL86_ZDOS_man_Page_038
	COBOL86_ZDOS_man_Page_039
	COBOL86_ZDOS_man_Page_040
	COBOL86_ZDOS_man_Page_041
	COBOL86_ZDOS_man_Page_042
	COBOL86_ZDOS_man_Page_043
	COBOL86_ZDOS_man_Page_044
	COBOL86_ZDOS_man_Page_045
	COBOL86_ZDOS_man_Page_046
	COBOL86_ZDOS_man_Page_047
	COBOL86_ZDOS_man_Page_048
	COBOL86_ZDOS_man_Page_049
	COBOL86_ZDOS_man_Page_050
	COBOL86_ZDOS_man_Page_051
	COBOL86_ZDOS_man_Page_052
	COBOL86_ZDOS_man_Page_053
	COBOL86_ZDOS_man_Page_054
	COBOL86_ZDOS_man_Page_055
	COBOL86_ZDOS_man_Page_056
	COBOL86_ZDOS_man_Page_057
	COBOL86_ZDOS_man_Page_058
	COBOL86_ZDOS_man_Page_059
	COBOL86_ZDOS_man_Page_060
	COBOL86_ZDOS_man_Page_061
	COBOL86_ZDOS_man_Page_062
	COBOL86_ZDOS_man_Page_063
	COBOL86_ZDOS_man_Page_064
	COBOL86_ZDOS_man_Page_065
	COBOL86_ZDOS_man_Page_066
	COBOL86_ZDOS_man_Page_067
	COBOL86_ZDOS_man_Page_068
	COBOL86_ZDOS_man_Page_069
	COBOL86_ZDOS_man_Page_070
	COBOL86_ZDOS_man_Page_071
	COBOL86_ZDOS_man_Page_072
	COBOL86_ZDOS_man_Page_073
	COBOL86_ZDOS_man_Page_074
	COBOL86_ZDOS_man_Page_075
	COBOL86_ZDOS_man_Page_076
	COBOL86_ZDOS_man_Page_077
	COBOL86_ZDOS_man_Page_078
	COBOL86_ZDOS_man_Page_079
	COBOL86_ZDOS_man_Page_080
	COBOL86_ZDOS_man_Page_081
	COBOL86_ZDOS_man_Page_082
	COBOL86_ZDOS_man_Page_083
	COBOL86_ZDOS_man_Page_084
	COBOL86_ZDOS_man_Page_085
	COBOL86_ZDOS_man_Page_086
	COBOL86_ZDOS_man_Page_087
	COBOL86_ZDOS_man_Page_088
	COBOL86_ZDOS_man_Page_089
	COBOL86_ZDOS_man_Page_090
	COBOL86_ZDOS_man_Page_091
	COBOL86_ZDOS_man_Page_092
	COBOL86_ZDOS_man_Page_093
	COBOL86_ZDOS_man_Page_094
	COBOL86_ZDOS_man_Page_095
	COBOL86_ZDOS_man_Page_096
	COBOL86_ZDOS_man_Page_097
	COBOL86_ZDOS_man_Page_098
	COBOL86_ZDOS_man_Page_099
	COBOL86_ZDOS_man_Page_100
	COBOL86_ZDOS_man_Page_101
	COBOL86_ZDOS_man_Page_102
	COBOL86_ZDOS_man_Page_103
	COBOL86_ZDOS_man_Page_104
	COBOL86_ZDOS_man_Page_105
	COBOL86_ZDOS_man_Page_106
	COBOL86_ZDOS_man_Page_107
	COBOL86_ZDOS_man_Page_108
	COBOL86_ZDOS_man_Page_109
	COBOL86_ZDOS_man_Page_110
	COBOL86_ZDOS_man_Page_111
	COBOL86_ZDOS_man_Page_112
	COBOL86_ZDOS_man_Page_113
	COBOL86_ZDOS_man_Page_114
	COBOL86_ZDOS_man_Page_115
	COBOL86_ZDOS_man_Page_116
	COBOL86_ZDOS_man_Page_117
	COBOL86_ZDOS_man_Page_118
	COBOL86_ZDOS_man_Page_119
	COBOL86_ZDOS_man_Page_120
	COBOL86_ZDOS_man_Page_121
	COBOL86_ZDOS_man_Page_122
	COBOL86_ZDOS_man_Page_123
	COBOL86_ZDOS_man_Page_124
	COBOL86_ZDOS_man_Page_125
	COBOL86_ZDOS_man_Page_126
	COBOL86_ZDOS_man_Page_127
	COBOL86_ZDOS_man_Page_128
	COBOL86_ZDOS_man_Page_129
	COBOL86_ZDOS_man_Page_130
	COBOL86_ZDOS_man_Page_131
	COBOL86_ZDOS_man_Page_132
	COBOL86_ZDOS_man_Page_133
	COBOL86_ZDOS_man_Page_134
	COBOL86_ZDOS_man_Page_135
	COBOL86_ZDOS_man_Page_136
	COBOL86_ZDOS_man_Page_137
	COBOL86_ZDOS_man_Page_138
	COBOL86_ZDOS_man_Page_139
	COBOL86_ZDOS_man_Page_140
	COBOL86_ZDOS_man_Page_141
	COBOL86_ZDOS_man_Page_142
	COBOL86_ZDOS_man_Page_143
	COBOL86_ZDOS_man_Page_144
	COBOL86_ZDOS_man_Page_145
	COBOL86_ZDOS_man_Page_146
	COBOL86_ZDOS_man_Page_147
	COBOL86_ZDOS_man_Page_148
	COBOL86_ZDOS_man_Page_149
	COBOL86_ZDOS_man_Page_150
	COBOL86_ZDOS_man_Page_151
	COBOL86_ZDOS_man_Page_152
	COBOL86_ZDOS_man_Page_153
	COBOL86_ZDOS_man_Page_154
	COBOL86_ZDOS_man_Page_155
	COBOL86_ZDOS_man_Page_156
	COBOL86_ZDOS_man_Page_157
	COBOL86_ZDOS_man_Page_158
	COBOL86_ZDOS_man_Page_159
	COBOL86_ZDOS_man_Page_160
	COBOL86_ZDOS_man_Page_161
	COBOL86_ZDOS_man_Page_162
	COBOL86_ZDOS_man_Page_163
	COBOL86_ZDOS_man_Page_164
	COBOL86_ZDOS_man_Page_165
	COBOL86_ZDOS_man_Page_166
	COBOL86_ZDOS_man_Page_167
	COBOL86_ZDOS_man_Page_168
	COBOL86_ZDOS_man_Page_169
	COBOL86_ZDOS_man_Page_170
	COBOL86_ZDOS_man_Page_171
	COBOL86_ZDOS_man_Page_172
	COBOL86_ZDOS_man_Page_173
	COBOL86_ZDOS_man_Page_174
	COBOL86_ZDOS_man_Page_175
	COBOL86_ZDOS_man_Page_176
	COBOL86_ZDOS_man_Page_177
	COBOL86_ZDOS_man_Page_178
	COBOL86_ZDOS_man_Page_179
	COBOL86_ZDOS_man_Page_180
	COBOL86_ZDOS_man_Page_181
	COBOL86_ZDOS_man_Page_182
	COBOL86_ZDOS_man_Page_183
	COBOL86_ZDOS_man_Page_184
	COBOL86_ZDOS_man_Page_185
	COBOL86_ZDOS_man_Page_186
	COBOL86_ZDOS_man_Page_187
	COBOL86_ZDOS_man_Page_188
	COBOL86_ZDOS_man_Page_189
	COBOL86_ZDOS_man_Page_190
	COBOL86_ZDOS_man_Page_191
	COBOL86_ZDOS_man_Page_192
	COBOL86_ZDOS_man_Page_193
	COBOL86_ZDOS_man_Page_194
	COBOL86_ZDOS_man_Page_195
	COBOL86_ZDOS_man_Page_196
	COBOL86_ZDOS_man_Page_197
	COBOL86_ZDOS_man_Page_198
	COBOL86_ZDOS_man_Page_199
	COBOL86_ZDOS_man_Page_200
	COBOL86_ZDOS_man_Page_201
	COBOL86_ZDOS_man_Page_202
	COBOL86_ZDOS_man_Page_203
	COBOL86_ZDOS_man_Page_204
	COBOL86_ZDOS_man_Page_205
	COBOL86_ZDOS_man_Page_206
	COBOL86_ZDOS_man_Page_207
	COBOL86_ZDOS_man_Page_208
	COBOL86_ZDOS_man_Page_209
	COBOL86_ZDOS_man_Page_210
	COBOL86_ZDOS_man_Page_211
	COBOL86_ZDOS_man_Page_212
	COBOL86_ZDOS_man_Page_213
	COBOL86_ZDOS_man_Page_214
	COBOL86_ZDOS_man_Page_215
	COBOL86_ZDOS_man_Page_216
	COBOL86_ZDOS_man_Page_217
	COBOL86_ZDOS_man_Page_218
	COBOL86_ZDOS_man_Page_219
	COBOL86_ZDOS_man_Page_220
	COBOL86_ZDOS_man_Page_221
	COBOL86_ZDOS_man_Page_222
	COBOL86_ZDOS_man_Page_223
	COBOL86_ZDOS_man_Page_224
	COBOL86_ZDOS_man_Page_225
	COBOL86_ZDOS_man_Page_226
	COBOL86_ZDOS_man_Page_227
	COBOL86_ZDOS_man_Page_228
	COBOL86_ZDOS_man_Page_229
	COBOL86_ZDOS_man_Page_230
	COBOL86_ZDOS_man_Page_231
	COBOL86_ZDOS_man_Page_232
	COBOL86_ZDOS_man_Page_233
	COBOL86_ZDOS_man_Page_234
	COBOL86_ZDOS_man_Page_235
	COBOL86_ZDOS_man_Page_236
	COBOL86_ZDOS_man_Page_237
	COBOL86_ZDOS_man_Page_238
	COBOL86_ZDOS_man_Page_239
	COBOL86_ZDOS_man_Page_240
	COBOL86_ZDOS_man_Page_241
	COBOL86_ZDOS_man_Page_242
	COBOL86_ZDOS_man_Page_243
	COBOL86_ZDOS_man_Page_244
	COBOL86_ZDOS_man_Page_245
	COBOL86_ZDOS_man_Page_246
	COBOL86_ZDOS_man_Page_247
	COBOL86_ZDOS_man_Page_248
	COBOL86_ZDOS_man_Page_249
	COBOL86_ZDOS_man_Page_250
	COBOL86_ZDOS_man_Page_251
	COBOL86_ZDOS_man_Page_252
	COBOL86_ZDOS_man_Page_253
	COBOL86_ZDOS_man_Page_254
	COBOL86_ZDOS_man_Page_255
	COBOL86_ZDOS_man_Page_256
	COBOL86_ZDOS_man_Page_257
	COBOL86_ZDOS_man_Page_258
	COBOL86_ZDOS_man_Page_259
	COBOL86_ZDOS_man_Page_260
	COBOL86_ZDOS_man_Page_261
	COBOL86_ZDOS_man_Page_262
	COBOL86_ZDOS_man_Page_263
	COBOL86_ZDOS_man_Page_264
	COBOL86_ZDOS_man_Page_265
	COBOL86_ZDOS_man_Page_266
	COBOL86_ZDOS_man_Page_267
	COBOL86_ZDOS_man_Page_268
	COBOL86_ZDOS_man_Page_269
	COBOL86_ZDOS_man_Page_270
	COBOL86_ZDOS_man_Page_271
	COBOL86_ZDOS_man_Page_272
	COBOL86_ZDOS_man_Page_273
	COBOL86_ZDOS_man_Page_274
	COBOL86_ZDOS_man_Page_275
	COBOL86_ZDOS_man_Page_276
	COBOL86_ZDOS_man_Page_277
	COBOL86_ZDOS_man_Page_278
	COBOL86_ZDOS_man_Page_279
	COBOL86_ZDOS_man_Page_280
	COBOL86_ZDOS_man_Page_281
	COBOL86_ZDOS_man_Page_282
	COBOL86_ZDOS_man_Page_283
	COBOL86_ZDOS_man_Page_284
	COBOL86_ZDOS_man_Page_285
	COBOL86_ZDOS_man_Page_286
	COBOL86_ZDOS_man_Page_287
	COBOL86_ZDOS_man_Page_288
	COBOL86_ZDOS_man_Page_289
	COBOL86_ZDOS_man_Page_290
	COBOL86_ZDOS_man_Page_291
	COBOL86_ZDOS_man_Page_292
	COBOL86_ZDOS_man_Page_293
	COBOL86_ZDOS_man_Page_294
	COBOL86_ZDOS_man_Page_295
	COBOL86_ZDOS_man_Page_296
	COBOL86_ZDOS_man_Page_297
	COBOL86_ZDOS_man_Page_298
	COBOL86_ZDOS_man_Page_299
	COBOL86_ZDOS_man_Page_300
	COBOL86_ZDOS_man_Page_301
	COBOL86_ZDOS_man_Page_302
	COBOL86_ZDOS_man_Page_303
	COBOL86_ZDOS_man_Page_304

