cggm% Microprocessors:
oA A Short Course

TG COMMOR

e
e

LAB MANUAL

(Blank Page)

Microprocessors:
A Short Course

Lab Manual

Go

CONTROL
DATA

Pub. No. 76361376A

®© 1979, 1980 by Control Data Corporation.

All rights reserved. No part of this material may be
reproduced by any means without permission in writing

from the publisher.

Printed in the United States of America.
1/84

Table of Contents

IntEodnction o/ the Traner-Lab; oo s mmmms i eumos e ms S oalsn s S0 5 TAlnnm 8 1
Introduction to. Machine ‘Language Labiuqu s vemmnuuredsayns s aw Gesvnss 5o isie 20
Addressing TechIIQUES Fab woan ome nons b s R miesis 50 diion s #saies, sk s w s 25
e o N NI S A 36
Mnemonic Instructions Lab R S R T B 0 G S T S s 44
INStEliCHOT: DATA BIOW LaB o oiivisarei i s s als st S s ee ms ap s g s 5
ATHHTHEC PEOBIET T e i oo sriosssmrasie s siomamsitarms. evoldslots dhe s oo o mis s s 67
PEOSTATMMINE: TADL v wcwimmmicsimie wivrismmasesioate St st b persa i 6 d Smsin s 24 et & 75
The Asseribiled CPU LADE s oo iwmmen v o omiinmma s s o aumiises § R ISR B S s 4 gesls s 94
DA Conversion:Liabi . owieioess i suimm o sos caese b oo S 0ians s S5 IRnme m o SanEh s 102
AT ConVersion. Labi oo s smimmts o 58 a0 5 6 515 sibis b 6u8 w5 88 siip 345 5 sisiiing easii 127
DAC and ADC Programimiig: abiac . s s s g Ralevms s s obes-niaesie s 138
ATPOTIEE 5 5 s iiiinn o hnsivnmis oss wEmin SiE Ao S s G GERES 4§ S EpEe ¥ AR A-1

ROBO ITISTEUCLION BB 1iinse o immiatammimsn i scessiaitsis Tt el B ot 0% 4o e e U BRI G A-1

i

(Blank Page)

Introduction to the Trainer Lab

Purpose

The purpose of this laboratory is to introduce you to the operational characteristics of
the Mini-Micro Design Trainer (MMD-2) microprocessor trainer. You will also enter
and execute several programs.

Objectives

® To identify functional sections of the MMD-2

e To enter and execute simple programs

Equipment

° MMD-2 Mini-Micro Design/ Trainer

Introduction

The MMD-2 is a complete 8080-based microcomputer system, using a keyboard as the
data entry method. This system provides you with an opportunity to program a typical
microprocessor. For example, to enter a program using the MMD-2, you would enter
(key in) the instruction code or data on the DATA INPUT keyboard, then key the
STORE (STO) key on the FUNCTION INPUT keyboard. Depressing the STORE key
places the information, keyed in on the DATA INPUT keyboard, into the read/write
memory. The NEXT (NXT) key on the FUNCTION INPUT keyboard then selects the
next sequential address into which information is to be written. After all the
information has been stored and you are ready to execute the program, the starting
address of the program is selected, and the program is run (executed) when the GO key
on the FUNCTION INPUT keyboard is depressed. NOTE: This information will be
covered in greater detail later in this laboratory.

Address and data information is displayed on the seven-segment readout displays. This
information may also be displayed by the light-emitting diodes (LEDs) located on the
left of the trainer. The LEDs will display the information in binary format. Remember,
the binary format will have the least significant bit on the right of the LEDs. The
LEDs are lit when a logical ‘I* is present on the line.

The MMD-2 has the capability to allow you to enter or read the displayed information in
either the octal code or hexadecimal code. You also can switch between the two modes while
entering or stepping through a program. The first key stroke after the MODE switch is
changed will change the display readouts to the new mode.

Microprocessors: A Short Course

Functional Areas

The following short descriptions will introduce you to the basic functional circuit areas
of the MMD-2 trainer. Most of the major circuits will be covered throughout the
course. You should look at each area of the MMD-2 as it is being described to become
familiar with the types of components contained in that section.

Power

The Power switch is located in the left-rear area of the trainer next to the power fuse.
When this switch is on, AC power is applied to the power supply. The power supply
(not visible) is located inside the chassis and generates the required DC voltages for the
circuits.

STD Interface

The STD Interface (STD should not be confused with the abbreviation for “standard™)
area contains the circuits to buffer and control the signals for the STD bus structure.
The STD bus is the interface protocol used by the MMD-2 to connect various test and
peripheral equipment.

CPU

This section contains the 8080 microprocessor and its required system controller
(8228/8238). The system controller will monitor certain status conditions from the 8080
and select the correct read/write function. These functions include memory read,
memory write, I/ O read, and I/ O write. The system controller also contains (within the
chip) the data bus buffers. The CPU area also includes the address bus buffers.

Clock

This circuit establishes the operating timing of this microprocessor system. The crystal
sets the operating frequency and the integrated circuits (ICs) generate the correct
timing sequence.

PROM

This is the Erasable/ Programmable Read Only Memory (EPROM) that contains the
system operating program. The EPROM monitors the keyboards and mode select
switches and allows either octal or hexadecimal entry.

The program contained in this EPROM was developed by E & L Instruments, Inc. and
is called KEX for Keyboard Executive. It is this program that allows you to enter the
data from the keyboards.

Introduction to the Trainer lab

The remaining three locations in this section are spare and allow additional PROM:s to
be installed as needed. Thus, if additional programs are required or if you (the user)
createc new programs, written into PROM, the additional PROMs would be inserted
here.

The PROM installed is really an uEPROM (Erasable/Programmable Read Only
Memory). Note that the identification tag covers the center area of the EPROM. The
reason for this is that the EPROM uses ultraviolet light to erase the program. Since
almost all light contains this light frequency, the identification tag shades the enclosed
circuits to prevent this light from degrading the system program.

RAM

These Random Access Memory (RAM) devices are the read/write memory devices that
will contain the programs you generate in this and future labs. They are also known as
volatile memory, because when you power the trainer off, the programs contained in
these devices are erased (lost). The first RAM section (each section contains space for
two RAM chips), called System RAM, is two 256 x 4-bit RAMSs that are a “scratch
pad” for the system program and are not readily accessible to the user. The next
section, called User RAM, consists of two 1k x 4-bit RAMs that will contain your
programs. The last three sections are spares for future additions.

Serial 1/0 (not used)

This section would contain the circuits required to interface serial data communication
devices, such as a cassette tape recorder (CASS). It also provides for serial-to-parallel
conversion enabling the use of a video display system.

Control

This section contains the circuits for 1/O and memory address decoders; that is, these
circuits take the multiple address input lines and select a specific input port, output
port, RAM, or PROM device.

Keyboard and Display Interface

This section contains the circuits required to decode the data and function keys from
the keyboard and the circuits to encode the data for the seven-segment displays. This
section also contains these seven-segment displays.

The transistors located above the displays are the display drivers. These circuits supply
the drive current required by the displays. The displays are called seven-scgment
because each section contains seven separate segments arranged in the following
manner:

l

1

Each segment is independently driven and can “reproduce™ each number and most
alphabetic characters accurately. However, to avoid confusion between certain

Microprocessors: A Short Course

numbers and alpha characters, such as B (:j,) and 8 (H), certain “codings” of these
characters are required. The following segment arrangements are used with the MMD-
2. Note that the numerals are the same for both octal and hexadecimal. The “coding”
interpretations are required for the alpha characters in the hexadecimal mode only.

I | l i1 |

():I_l L= 5= 9= T D=0
i N 171 &
2 il 6 =1 A= E ==
i 3 I g
3= 7= | B =0 F=pf
Il 1”1 i
B 8 =1 C =i
callE] I
reg =1 1 H= 17
B I
go _: 1n_I | [=

Mode Selector

This Dual In-line Package (DIP) switch contains eight independent switches.

e Switch 6 Selects the octal or hexadecimal coding method for input and
display.

When this switch is in the OFF position, the OCTAL mode is
selected. When this switch is in the ON position, the
HEXADECIMAL mode is selected.

e Switch 8 Selects the output function of the PORTS 0, 1. and 2 lamp
monitors. This function is either an output port or binary data
display corresponding to the seven-segment display. This switch is
labeled PORTS.

When the PORTS switch is OFF, these ports (0, 1, and 2) are
outputs of the microprocessor. When the PORTS switch is ON,
the binary equivalent of the seven-segment display is shown,

e The remaining switches may perform other functions not related to this
course. One of these functions is Write Protect for the RAM circuits. This
means that if these switches are ON, you will NOT be able to enter data into
the memory circuits.

NOTE: CHECK THESE SWITCH SETTINGS EACH TIME YOU START A
NEW LAB. THE ONLY TWO SWITCHES YOU WILL NEED ARE 4 AND 8.
ALL OTHERS SHOULD BE “OFF.”

HALT, HOLD, ENABLE Indicators

These are lamp monitors for specific conditions of the 8080. These conditions are:

® HALT — When the program you write contains a HALT instruction and is
executed, this lamp will light.

Introduction to the Trainer Lab

e HOLD - When the 8080 is in a hold mode waiting some input, this lamp will
light.

e ENABLE - When the Interrupt circuits are enabled, this lamp will light. The
interrupt circuits are not used in this course.

RESET

This switch resets the microprocessor. When this switch is depressed, the initial starting
address for read/write memory is selected. The address is displayed and is 003 000s or
03 00+6.

You will enter and execute most of your programs starting at this address. Therefore,
you will only have to use the RESET switch to get to this starting address whenever
you start entry or execution of the program.

NOTE: Use caution when entering information using the FUNCTION kevboard so that the
RESET switch is not accidentally depressed, causing the program to reset.

Keyboard

The keyboard keys specify the data or function to be entered into the CPU. The
following text lists the keyboard keys that are available and explains their functions.

Function Input

PRE (PREVIOUS) This is a decrement address function and selects the memory
address one position back from the address being displayed each
time the key is depressed. The new address and data are

displayed.
STO (STORE) Writes (stores) the data entered into the RAM memory.
NXT(NEXT) This is an increment address function and selects the next

sequential memory address to either write or read data. The new
address and data are displayed.

STP(STEP) Steps through each program instruction. Each time this switch is
keystroked, the instruction is executed. This allows you to
execute an entire program instruction-by-instruction.

HI(HIGH) Selects the H register of the 8080 to enter the high-order 8 bits of
the 16-bit address.

LO (LOW) Selects the L register of the 8080 to enter the low-order 8 bits of
the 16 bit address.

GO Initiates the execution of the program.

MEM (MEMORY) Data will be written into or read from the memory at the address
specified (displayed).

Microprocessors: A Short Course

REG (REGISTER) Data will be written into or read from the specified (displayed)
register.

CAN (CANCEL) This key is basically a “clear entry,” which returns the displayed
data back to the previous data if the STORE key has not been
depressed.

Data Input
The DATA INPUT keybecard allows vou to enter the desired address and data.

When the MODE SELECT switch (the eight position DIP switch on the right side) is in
the OCTAL mode (OFF), the DATA INPUT keys 0 through 7 are usable. The remaining
keys (8 through F) will have no effect.

When the MODE SELECT switch (the eight position DIP switch on the right side) is in
the HEXADECIMAL mode (ON), the DATA INPUT keys 0 through F are usable.

Input Port

This is an external device input for address zero. The input bus to this chip is not used
during any of these labs.

Port 1, Port 0, Port 2

These are the output ports containing lamp monitors. When the PORTS—MODE
SELECT switch is in the binary (ON) position, these lamp monitors indicate the binary
code for the numbers being displayed in the seven-segment display. Following is the
format for this output:

° Port 1 indicates the upper 8 bits of the memory address.
° Port 0 indicates the lower 8 bits of the memory address.

° Port 2 indicates the 8-bit data word contained in the memory address.

When the PORTS—MODE SELECT switch is in the port (OFF) position, the lamps in
the selected output address will be enabled. Only the data being output to a specific
address (port) will be displayed.

Remember, the least significant bit (2°) is on the right, and the most significant bit (27) is
on the left. When all indicators are lit, the codes are 377s or FFs.

PROM Programmer (not used)

This area enables you to copy programs from the MMD-2 memory into a new PROM.
Thus, if you had written a program into RAM and wanted to store it permanently, you
could use this area to “burn” (program) a PROM device.

Introduction to the Trainer Lab

This completes the functional description of the MMD-2 at this time. You will now use the
MMD-2 and apply what you have just learned to enter and execute several simple programs
(routines).

Procedure

Step 1. Apply AC power to the trainer by plugging the power cord into a convenient AC
outlet.

Step 2. Set the MODE SELECT switches as follows:
HEX/OCTAL to octal (switch 6 OFF)
PORTS to binary (switch 8 ON)
ALL OTHER MODE SWITCHES OFF

Step 3. Apply DC power to the circuits by switching the power switch located on the rear of
of the unit. NOTE: When power is on, this switch will glow red.

The seven-segment displays are arranged in the following order:
HI ADDRESS LO ADDRESS DATA
7 TR sln

RHIN I]
i, RS i

When power-on occurs, the PROM program will set the starting address of a specific
RAM location. This address will be 003 000s, as displayed in the high and low address
sections of the display. The LSB position of each of these sections will also contain a
decimal point (period).

Question. Does the high address equal 003?

Question. Does the low address equal 000?

(The answer should be yes to both of these questions.)

The data section will display the data contained in memory location 003 000s. This data
will be randomly selected on power-up, because the memory (RAM) is volatile.

Step 4. Depress the MEM key on the FUNCTION keypad, then the 0 key on the DATA
INPUT keypad three times.

The MEM key verifics or sclects the MEMORY mode of operation. This cnables you to
read /write data in the read/ write (RAM) memory and not in a register.

Microprocessors: A Short Course

Question. Does the display now show 003.000.000? (ves)

Look at the lamp monitor (Ports 0, 1, and 2). These are shown as below:
Port | OO OO0 O®® High Address LEDs
Port 0 OO OO0 OO0 Low Address LEDs
Port2 OO OO0 OO0 Data LEDs

The two least significant bits in Port 1 should be lit, and all others should be off. If not,
check the PORTS switch on the MODE SELECT switch.

Step 5. Depress the 3 key on the DATA INPUT keypad.
Question. What is the number shown in the DATA display?

Question. What is the octal code displayed in Port 2?

(Both should show 003 displayed.)
Step 6. Depress the 2 key.
Step 7. Depress the 7 key.

Question. What is the number shown in the data display?

Question. What is the octal code displayed in Port 2?

(The display should read 327 and the octal code in Port 2 should be as shown by the filled
circles.)

Port 1 O O O o0
Port 0 O O O O
Port 2 ® @ O e O o o @

You have now selected 1 byte of data to be entered. Remember, when entering a code on
the MMD-2, the most significant bit is entered first.

® @ (ILSB)

Step 8. Depress the 4 key.
Step 9. Depress the 1 key.
Step 10. Depress the 3 key.

Question. What is the code displayed either on the seven-segment display or Port 2?

Introduction to the Trainer Lab

Question. 1f 413g was the number, why is the code displayed not equal to 413g?

(Octal codes are 3 bits each; therefore, to show an octal code for numbers between 400 and
777 requires 9 bits. Since this is an 8-bit device, the ninth, or most significant bit, is lost.
You cannot enter octal codes for numbers between 400 and 777.)

Address Selection

To set the starting address of a program (read or write), you must first enter the upper
byte, then the lower byte. The R/ W memories in which you can write data have addresses
from 000 000s through 003 377s.

To select address 002 000s:

Step [1. Depress 0 on the DATA keypad.

Step 12. Depress 0.

Step 13. Depress 2.

Step 14. Depress HI on the FUNCTION keypad.
Step [5. Depress 0.

Step 16. Depress 0.

Step 7. Depress 0.

Step 18. Depress LO on the FUNCTION keypad.

When the HI was depressed, the octal code (002) was stored in a register within the 8080
microprocessor called the H (for HIGH) register. This octal code was also placed on the
output lines in Port 1 and the left seven-segment display. When the LO was depressed, the
octal code (000) was stored in a register within the 8080 microprocessor called L (for
LOW) register. This octal code also was placed on the output lines in Port 0 and the center
seven-segment display.

Question. When you depressed either the HI or LO , did the code displayed in Port 2
change or DATA (right) seven-segment display change?

(Either yes or no would be a correct answer. When HI or LO was depressed, the
information stored in the R/ W memory at that location was displayed in Port 2 and the
DATA display.)

Step 19. Depress the RESET switch.

Microprocessors: A Short Course

Question. What happened to the HIGH and LOW address displays?

(They changed from 002 000s to 003 000. This is the program-controlled starting address
for the RAM memory.)

Step 20. Depress the NXT key on the FUNCTION keypad three times. Each time you
depress this key, notice what happens to the LOW address display and Port 0.

Question. Describe this change.

(Each time the NXT key is depressed, the LOW address counted up (incremented) by 1.)

Step 21. Depress the PRE (Previous) key on the FUNCTION keypad three times. Each time
vou depress this key, notice what happens to the LOW address display and Port 0.

Question. Describe this change.

(Each time the PRE key is depressed, the LOW address counts down (decrements) by 1.)

You should keep the function of these two keys in mind as they will become very helpful
when vou have to verify a program.

Enter a Program

So far you have learned how to enter information using the DATA keyboard and how to
select another memory address using the DATA keyboard and the Hl and LO keys on the
FUNCTION keyboard. You also learned how to increment and decrement the memory
address using the NXT and PRE keys. Finally, you saw that depressing the RESET switch
caused the RAM starting address to become 003 000s. Now, you will learn how to enter a
short program into the read/ write (RAM) memory.

Instead of seeing a single kev and the darker print in cach step, you will now see the data
byte and function keys as a complete step. Simply depress the keys as they are presented.

Step 22. PORTS-—MODE SELECT switch to port (switch 8 OFF).
Step 23. RESET

You have now set the lamp monitors to indicate an output device. All lamps should be out
in Ports 0, 1. and 2. You have also selected the starting address of 003 000s when RESET
was depressed.

Step24. 0 7 6 STO.

When you depress the STO key, you place the data (076) code into the RAM memory at
location 003 000s.

10

Introduction to the Trainer Lab

Question. How would you increment to the next memory location?

(See Step 25.)

Step 25. NXT.

Now we will continue entering this program.
Step 26. 0 0 5 STO NXT.
Step27. 3 2 3 STO NXT.
Step28. 0 0 0 STO NXT.
Step29. 1 6 6 STO

Question. Do the displays show 003 004 166?

(If not, you have an error in program entry. Repeat steps 23 through 29.)

Verify a Program

It is good practice to restep through a newly entered program and verify that the data
entered is correct. To verify the program you just entered:

Step 30. RESET.
Question. Does the DATA display equal 076?

Step 31. NXT.
Question. Does the DATA display equal 005?

Step 32. NXT.
Question. Does the DATA display equal 3237

Step 33. NXT.
Question. Does the DATA display equal 000?

Step 34. NXT.
Question. Does the DATA display equal 166?

(If your answer to any of the above questions is no, you have a code entry error.)

To correct a code entry error, you have several options available to get to the address that
contains the error.

Microprocessors: A Short Course

These include:
° Depressing the NXT key to step up to the incorrect data address.
® Depressing the PRE key to step back to the incorrect data address.

e Selecting the H and L address code of the incorrect address.

NOTE: If the address to be selected has the same high-order address byte (i.e.., 003)
then you need only to select the low-order address byte.

For example, change the code at address 003 003 to read 001 instead of 000. (You should
show address 003 004g presently.)

Step35. 0 0 3 L.
You have now selected address 003 003s, and the data should show 000.

Step36. 001 STO

You have now replaced the data (000) contained in location 003 003g with 001.

Execute the Program
You will now execute the program you have just entered and verified.

This program is a simple routine that will load the number 5 into the accumulator register
(A register) and output that number to output Port 1. Then stop.

Question. What is the starting address of this program?

(003 000)

Question. The initial or starting address is 003 000s. The casiest way to get to the initial or
starting address would be to key the _______ switch. Two other methods would be to key
LO or depressthe ________ key.

(RESET, 000, PRE)
Step 37. Key in RESET GO.

Question. Describe what happened.

(The DATA display displayed ::. i (GO) and output Port 1 showed the binary code
foras.)

12

Introduction to the Trainer Lab

Modify the Program

If you were told to modify the program so that the data displayed in Port 1 were 7 instead
of 5, several questions would immediately be asked. These questions could be “What is the

data instruction?” and “Where is it located?”

Now, you should start to see the importance of complete and accurate program
documentation. A proper program listing will identify all necessary information. The
program listing for your program is:

Address Code Mnemonic Comment

003 000 076 MVI A Move the immediately following data
003 001 005 (data) to the A register.

003 002 323 ouT Output the data to

003 003 001 (port address) Port 1.

003 004 166 HLT Halt.

Question. What is the address of the data (contents of the A register) to be output?

(The data is located at address 003 001.)

Since the program was started when the GO key was depressed, the microprocessor is in a
“run” condition even though a HALT command was executed. Although the
microprocessor has stopped execution of instructions, it is still in a GO condition. Before
you can modify any data, you must reset the 8080.

Question. How do you stop (reset) the program?

(The RESET key)
Now modify the contents of location 003 001 to change the data from 005 to 007.
Step 38. Select address 003 001 (after RESET key depressed).

Step 39. Key in 007 STO, RESET, GO.

Question. Did the Port 1 lamps change from binary 005 to binary 0077 __ If not, stop
the computer and verify the program as shown.

Address Data (Code)
003000 076
001 007
002 323
003 001
004 166

All mnemonics copyright Intel Corporation 1977 and 1975

Microprocessors: A Short Course

Final Program

You will now enter another program. It will also require you to enter the main
program at one address and a subrouting program starting at another address.

The program will operate as follows:

The accumulator register in the 8080 will be incremented by one. It will then output to all
output ports; at this time, it will jump to a time delay subroutine, The time delay will be
specified as 10 milliseconds (msec) in the subroutine. After 10 msec, the main program will
be jumped back to. The main program will now jump to the starting address and the
sequence will repeat.

(Do not enter the program at this time. You should become familiar with the codes and
comments. You will enter it later.)

The program listing is:

MAIN PROGRAM

Address Code Name Comment

003 000 074 INR A Increase A by 1.

003 001 323 ouT Output

003 002 002 to Port 2.

003 003 323 ouT Output

003 004 000 to Port 0.

003 005 323 ouT Output

003 006 001 to Port 1.

003 007 315 CALL Get the subroutine at location
003 010 030 low-order address byte,
003 011 003 high-order address byte.
003 012 303 JMP Jump to location
003013 000 low-order address byte,
003014 003 high-order address byte.

All mnemonics copyright Intel Corporation 1977 and 1975

Introduction to the Trainer Lab

TIME DELAY SUBROUTINE
Address Code Name Comment
003030 365 PUSH PSW Store the value of the stack pointer (SP)
register pair.
003 031 325 PUSH D Store the value of the D-E register pair.
003 032 021 LXID Enter the following data
003 033 046 into E (LOW-order byte).
003 034 001 into D (HIGH-order byte).
003 035 033 DCXD Decrement D-E by 1.
003 036 172 MOV AD Move register D to A.
003 037 263 ORA OR registers E and A.
003 040 302 JNZ If not equal to 0 go back
003 041 035 to LOW-order address byte,
003 042 003 HIGH-order address byte.
003043 321 POP Return the D-E value from memory.
003 044 361 POP Return the SP value from memory.
003 045 311 RET Return to the main program.

The time delay subroutine loads the value 001046g into the D-E registers and subtracts
one. It then moves the D register data byte and ORs the bytes (D and E). If not equal to 0,
it returns to the decrement instruction.

If equal to 0, it restores the address and contents of the main program, then returns control
to the main program. The main program then starts the entire process over again.

Question. What is the starting address of the main program?
(003 000)

Question. What is the starting address of the time delay subroutine?
(003 030)

You will now enter and execute the program. We will also delete the function key
notation. This will approximate a standard program load. Don’t forget the function of the
keys RESET (stop/reset), HI (high-address byte), L.LO (low-address byte), STO, NXT
(step/next), GO.

Step 40. Select main program starting address 003 000.

All mnemonics copyright Intel Corporation 1977 and 1975

Microprocessors: A Short Course

Step 41. Enter and store the following information:

074
323
002
323
000
323
001
313
030
003
303
000
003

Step 42. Select the subroutine starting address 003 030.
Step 43. Enter and store the following data:

365
325
021
046
001
033
172
263
302
035
003
321
361
311

Step 44. Select main program starting address and start (execute) the program 003 000.

Question. Are the output port LEDs incrementing?

16

Introduction to the Trainer Lab

(If they are not, there is an entry error; verify your program.)

Step 45. To increase the delay time of the LEDs, modify the contents of address 003
0345 to be 040s.

Step 46. To decrease the delay time of the LEDs, modify the contents of address 003
034 to be 000s.

After you have changed the delay times of the program and verified the various lamp
sequences, depress the RESET key to stop the program.

Step And Register Functions

The STP and REG FUNCTION keys will play an important role when you are
attempting to debug a program. They will also help you understand the operation of
this 8080 microprocessor. The STP key allows you to step through a program
instruction-by-instruction. That is, when the STP key is depressed, the instruction
(displayed) will execute and stop at the next instruction. For example, without
changing the program for incrementing the output port LEDs you have just
completed. do the following:

Step 47. RESET STP. The address displayed should read 003 001, and the data field
should read 323.

Step 48. STP. The address displayed should be 003 003, the data field should read 323,
and Port 2 should contain random data (this is because it is not known what data is
initially in the A-register).

Step 49. Depress STP two more times. You should now have 003 007 315 displayed.

This is the CALL instruction. Its function is to jump to the Time Delay Subroutine
located at address 003 030s. Therefore, when you STP again, the address and data
displays should show the address and first instruction of this subroutine.

Step 50. STP.

Question. Did the program execute correctly? (yes)

Step 51. Load the following program into memory starting at address 003 020:

076 MVI A Move immediate to A
010 (data to A).

075 DCR A Decrement A by 1.
303 JMP Jump to location

022 (022 L),

003 (003 H).

All mnemonics copyright Intel Corporation 1977 and 1975

Microprocessors: A Short Course

This program will load a number (10g) into the A register, decrement the A register by
one and jump back to the decrement instruction. The program will continue in this
loop until you stop it.

The REG key allows you to see the contents of the various registers of the 8080
microprocessor. The register selection will occur when the REG key is depressed.

Step 52. Select address location 003 020. (Remember, the RESET key will select
address 003 000 only.) Do not press GO at this time.

Step 53. Depress REG.

The display should now read rEG A (data). Each time you depress the NXT key, the
next successive register and its contents will be displayed. The order of these registers
is A,B,C,D,E,H,L.SH,SL,FL(repeat). The SH and SL registers are the high and low
bytes of the stack pointer register and the FL will display the flag register (covered
later).

Step 54. Depress NXT to verify the order of registers to be displayed. When you reach
the A register again, stop.

Step 55. Depress STP. The A register should now show 010 as the data.

Step 56. STP. As you depress STP, the A register was decremented by one.

Question. What are the contents of the A register now? (007)

(Remember, you are in the octal mode. 010g is equal to 810 and 81o0-110=7.
Therefore, the A register displays 007.)

Step 57. Continue to depress the STP key. Notice that the A register will change from
000 to 377 and will continue to count down. The program would continue to run in
this loop until you stopped it because the system is not looking for any condition such
as zero or negative sign. NOTE: The negative sign would occur at the 000 to 377 step
and is a status flag set by the results of the operation performed. This is done by the
ALU (arithmetic logic unit) in the 8080.

You may continue to experiment with any portion of this lab that you wish to. For
example, you could step through the time delay subroutine while observing the
registers, or you could continue to vary the time delay counts.

Step 58. Depress the RESET key and turn off the power to the MMD-2,

Introduction to the Trainer Lab

Summary

In this lab, you were introduced to the various functional areas of the MM D-2 Mini-Micro
Design/ Trainer. You learned the functions of the PRE, STO, NXT,STP, MEM, REG, HI,
LO, and RESET keys, as well as the data input keys. You entered, stored, verified,
modified, and executed several programs. These programs used Ports 0, 1, and 2 as output
ports. You also used these same ports as a binary indication of the address and data display.
One of the programs you entered contained a time delay routine. With this routine you
selected various parameters for the time delay and saw the effect these had on the output.
Finally, you used the STP key to step through a program. This enabled you to see what
happened during the execution of a program. You also selected the REG key and looked at
the contents of various registers, as well as watched the A register decrement through zero
and continue.

Introduction To Machine Language Lab

Purpose

The purpose of this laboratory is to provide you with practice in converting simple
programs from one base number system into another base number system. You will
also enter and execute these programs in both the octal and hexadecimal mode.

Objectives

e To convert simple programs written in one number system into octal and
hexadecimal codes

e To enter a program in both octal and hexadecimal and verify results of
program operation

e To convert results of program operation into octal, binary, decimal, or
hexadecimal code

Equipment

® MMD-2 Mini-Micro Design/Trainer

Introduction

Most 8-bit microprocessors list or identify their machine language instruction sets as a
string of ones and zeros. This string will be I byte (8 bits) in length and will be the
specific code for a specific operation or function (called instructions). A series of
specific instructions and data in the correct sequence is a program.

For example, this string of bits may appear as follows: 10100101. If you had to enter a
program containing 100 or more instructions by entering each bit separately, you can
see the probability of error is high. To lessen the entry error, many microprocessor
systems usc a keyboard entry method. This keyboard may usc cither the octal or
hexadecimal coding scheme. These codes are encoded by an electronic circuit called an
encoder. The encoder then places the corresponding bits on the input bus to the
MICTrOProcessor.

What you have to do, then, is to determine the octal or hexadecimal equivalent code
for the given bit string. You may also have to convert a program from one code to
another if the entry method has changed.

Let’s look at the bit string 10100101 again. This code would be 245 octal (10 100 101 =
245), or A5 hexadecimal (1010 0101 = AS5). Thus, if the keyboard entry method were
octal, you would have to key in 2, then 4, then 5. As you can see, this is much easier
than having to key in 10100101, and hexadecimal is easier vet.

20

Introduction to Machine Language Lab

Probably the easiest way to convert from octal to hexadecimal (or vice versa) is to
convert to binary code first, then into the required code. You should already be
familiar with these code conversions.

Procedure
Step 1. Convert the following binary coded program into octal and hexadecimal codes.

Binary Octal Hex.

00111110
01011011
11010011
00000000
0110110

L T R S

Step 2. Plug in the MMD-2 to a convenient AC outlet.

Step 3. Turn the power switch on.

Step 4. Verify the MMD-2 is in the memory function by depressing the MEM key.

Step 5. Place the MMD-2 in the octal entry mode by placing the HEX/OCTAL
MODE SELECT switch in the octal (switch OFF) position.

Step 6. You will now enter the octal code program from step [, starting at location
002000e.

Keyin 002 HI
000 LO
Octal codes — STO NXT
fromstep I — STO NXT
in order — STO NXT
— STO NXT
- STO
000 LO

Step 7. Verify MMD-2 is in the port mode of operation by placing the PORTS—
MODE SELECT switch in the OFF position.

Step 8. Execute the program you just entered by depressing GO.

The purpose of this program is to move a byte of data to the accumulator and to
output that data byte to Port 0, then stop. The program listing is as follows:

00111110 is move the following data to the accumulator
01011011 is the data

11010011 is an output instruction

00000000 is the output port

01110110 is halt

21

Microprocessors: A Short Course

Question. Does output Port 0 equal 010110117

(If it does not, you may have made a code conversion or entry error. Compare your
codes with the following: 076, 133, 323, 000, 166. If they compare, verify the entered
program by stopping the MMD-2. Enter RESET 002 HI 000 LO to start, then NXT,
comparing the data display with your program. When the program is operational,
continue on with the next step.)

The following program will add two numbers together and output the result to Port 2.

Step 9. Convert the following program into hexadecimal (if required) and record your
answers in the spaces provided following this listing.

1 076s Move the following data into the A register.
2 010010012 Data.

3 0168 Move the following data into the C register.
4 4916 Data.

8 100000012 Add the contents of C and A registers.

6 323s Output

7 0246 to Port 2.

8 01110110 Halt.

I Move the following data into the A register.
2 Data.

3 Move the following data into the C register.
4 Data.

] Add the contents of C and A registers.

6 Output

7 Port 2.

8 Halt.

22

Introduction to Machine Language Lab

Step 10. Place MODE SELECT to hexadecimal mode (HEX/OCTAL switch ON).

Step 11. Enter and execute the program, starting at location 0300+s.

Question. What are the binary contents of Port 2 when the program stops?

(100100102)
Question. Convert the contents of Port 2 into octal. (2228)
Question. Convert the contents of Port 2 into hexadecimal. (9216)
Question. Convert the contents of Port 2 into decimal. (14610)

Question. Which two positions (address locations) in the program contain the
data to be added together? (0301, 0303)

NOTE: If the program did not stop or your answers do not agree, you have either a
conversion or data entry error. Verify your program with the following in order: 3E,
49, OE, 49, 81, D3, 02, 76.

The following program will subtract 4 from 10 and place the results (6) in output Port
2. To complete this program you will have to locate the mnemonic for the instruction
in the instruction set and convert the given code into octal or hexadecimal. The
instruction set (mnemonics and codes) is found in the appendix of this manual.

Step 10. Code the following program (in either octal or hexadecimal).

Code Mnemonic Comments
PR MVI r, data DDD equals 111.
R (data) The decimal number 10.
— MVI r, data DDD equals 001.
oo (data) The decimal number 4.
A SUBr SSS equals 001.
i OUT port —
e (port number) Output Port 2.

HLT Stop.

The MVI instruction is located in the group called DATA TRANSFER and the SUB
is in the ARITHMETIC group. As you find each of these instructions, notice the
similarity between the instructions within the same group. In many cases it is only the
difference of one bit between two different types of operation.

All mnemonics copyright Intel Corporation 1977 and 1975

Microprocessors: A Short Course

As you can imagine, this can be the difference between a program’s operating properly
or not.

Step 11. Load and execute the program you just coded. Start at location 003000s or
030046. Don’t forget to set the MODE SELECT switch to the base system (octal/ hex)
you are using.

Question. What are the contents of Port 2 when the program stopped?

(0068 or 0616)

If your answer does not agree, you have either a coding or entry error. Compare your
codes with the following: octal = 076, 012, 016, 004, 221, 323, 002, 166 and
hexadecimal = 3E, 0A, OE, 04, 91, D3, 02, 76, then verify/ modify the program entry.

Step 12. RESET the trainer and turn off the power.

Summary

In this lab, you learned that it is very necessary to be able to convert from one base
number system into another. This is because of the various possible entry methods used
by computer/ microprocessor manufacturers. You practiced converting from several
different number systems into octal or hexadecimal so you could enter and execute
programs on MMD-2 trainer. Then you practiced converting the results back into the
original number system to verify proper operation.

You also learned how to code a simple program when given the mnemonics for the 8080
microprocessor. This entailed converting the binary digits and two decimal numbers into
octal or hexadecimal code for entry. You may have also learned that it is very easy to make a

conversion or entry error.

24

Addressing Techniques Lab

Purpose

The purpose of this laboratory is to demonstrate the various addressing modes of the 8080
microprocessor. These modes include direct, indirect, immediate, and register.

Objectives

e Toenter the various 8080 addressing modes

e Toexecute the various 8080 addressing modes

Equipment

e MMD-2 Mini-Micro Design, Trainer

Introduction

The 8080 is capable of addressing data stored in a register or memory by using any one of
four methods. These methods are called addressing techniques or addressing modes. As
mentioned above, these modes are:

° Direct mode - the following 2 bytes state the exact memory address.

e [ndirect mode - the address is contained in a register pair, and the register pair is
specified in the instruction.

¢ Immediate mode - the following | or 2 bytes of the instruction contain the data.

e Register mode - the instruction specifies a register or register pair in which data
is located.

Programs often contain branch or jump instructions that direct program operation to be
performed from some other address. It is these jump instructions that can cause a program
to “loop™ (repeat itself) until either certain conditions are met or to run indefinitely.
These branch instructions specify the address by either the direct addressing mode or
the indirect addressing modes.

Procedure

Direct Addressing

The LDA addr and the STA addr are two examples of a direct addressing mode. The LDA
will load the accumulator with the data contained in the memory address specified by the 2
bytes of data following the LDA op code. The STA will store the contents of the

All mnemonics copyright Intel Corporation 1977 and 1975

25

Microprocessors: A Short Course

accumulator into memory at the address specified by the 2 bytes of data following the STA
op code.

Step 1. Set the HEX/OCTAL MODE SELECT switch to OCTAL and PORTS switch to
OFL.

Step 2. Apply power to the MMD-2.

You may use the HEX mode if you want. However, you will have to recode the programs
into the hexadecimal code.

Step 3. Select address 002000s. This will be the location from which the data will be taken
by the LDA instruction.

Step 4. Enter 333 and store this data byte.
Step 5. Select address 003000s. This will be the program start location.
Step 6. Enter and store the following program.

Location Code Mnemonic Comment
003000 072 (START) LDA addr l.oad A with the
001 000 contents of this
002 002 location,
003 323 ouT Output
004 002 to Port 2.
005 166 HLT Stop.
Step 7. Execute the program at START (location 003000).
Question. What are the contents of output Port 27 (333)

Question. Describe the operation of this program.

(This program loaded the accumulator with the contents of 002000s, which was 333. Then
it output the contents of the accumulator to Port 2 and stopped. Port 2 now displayed
333s.)

All mnemonics copyright Intel Corporation 1977 and 1975

26

Addressing Techniques Lab

Step 8. Starting at location 003003s, enter the following:

Location Code Mnemonic Comment
003003 062 STA addr Store A at the
004 030 address
specified
005 003 by these two locations.
006 166 HLT Stop.

This program modification will now store the contents of the accumulator in memory at
location 003030s.

Step 9. Execute the program at START (003000s).

Step 10. Select address 003030s. (Don’t forget to RESET the trainer before attempting to
select the address.)

Question. What are the contents of address 003030s as displayed by the seven-segment
data display? (333)

As you can see, both the LDA and STA instructions referenced a storage location directly
by the 2 bytes following the instruction itself.

Question. Since the storage address is 16 bits (2 bytes) in length, which byte appears first in
the program (low or high)? (low)

Indirect Addressing

The LDAX rp and STAX rp are examples of an indirect memory addressing technique or
mode. In both of these instructions, bits 4 and 5 select which register pair contains the
address. Only two register pairs may be used, either B-C or D-E. (To find out what the bit
pattern is, see the introduction section of the 8080 Instruction Set found in the appendix of
this manual. Look under “Symbols and Abbreviations” for RP.) When specifying a
register pair, the low-order address byte must be in C or E and the high-order address byte
inBorD.

For this example we will continue to use address 002000g for the data contents and address
003030s to store that data.

The first thing the program must do is to load each register pair with the address bytes;
then it selects that pair, loads the data from memory, transfers the data from the register
pair to the A reg, then stores the data in memory specified by the STAX rp
instruction.

All mnemonics copyright Intel Corporation 1977 and 1975

27

Microprocessors: A Short Course

Step 11. Enter the following program, beginning at location 003000e.

Location Code Mnemonic Comments

003000 00I(START) LXIB Load register pair
001 000 (C data),
002 002 (B data).
003 021 LXID Load register pair
004 030 (E data),
005 003 (D data).
006 012 LDAX A Load A from B-C.
007 022 STAX D Store A at D-E.
010 166 HLT Stop.

Step 12. Execute the program at START (003000s).
Step 13. Select address 003030s.

Question. What is the data contained at this address? (333)
NOTE: If you want to verify this data again, change the contents of location 002000 to
some other value.

Question. Which location or locations would you have to modify if you wanted to
load A from 002010s?

(The only location modified would be 003001g, the low-order address byte for B-C. It
would change from 000g to 010s.)

Question. Which location or locations would you have to modify if you wanted to
store A at location 002050s?

(You would have to modify both location 003004g and 003005s. Location 004 would
become 0508, and 005 would become 002s.)

All mnemonics copyright Intel Corporation 1977 and 1975

28

Addressing Techniques Lab

Question. Which location or locations would you have to modify if you wanted to
store 030s instead of 333g?

(You would have to modify location 00200008 to 030s instead of 333s.)

Question. Why are the LDAX rp and STAX rp instructions classified as indirect
addressing modes?

(Because the instruction specifies a register pair that contains the address in memory
where the data is or where it will be located.)

Immediate Addressing

The instructions MVI r, data, LXI rp, data 16, ADI data, and SUI data are examples
of the immediate addressing mode. With these instructions, the data immediately
follows the op code. The MVI r, data must also specify the register (in the op code)
where the following data is to be placed. Bits 3, 4, and 5 are used to specify the
register. They are identified as DDD (for destination); later you will also find that you
have to specify a register in which data is contained. These will be identified as SSS
(for source). The bit patterns for either the destination or source registers are found in
the “Symbols and Abbreviations” section in the appendix entitled “8080 Instruction
Set.” Look at the portion labeled DDD,SSS under that section.

The LXI rp, data 16 must specify the register pair where the following data is to be
located. Again the RP (register pair) is identified by bits 4 and 5 of the op code. You
should already be familiar with these bit patterns.

All mnemonics copyright Intel Corporation 1977 and 1975

29

Microprocessors: A Short Course

In the previous program (step 11) you used the LXI rp, data 16 instruction to load the
address in a register pair for the LDAX and STAX instructions. You could have used
the MVI r, data to accomplish the same thing. For example:

Step 14. Enter the following program starting at location 003000s.

Location Code Mnemonic Comments

003000 016 (START) MVI C Load C with data.
001 000
002 006 MVI B Load B with data.
003 002
004 036 MVI E Load E with data.
005 030
006 026 MVI D Load D with data.
007 003
010 012 LDAX A Load A from B-C.
011 022 STAX A Store A at D-E.
012 166 HLT Stop.

Step 15. Execute the program at START.

Question. What are the contents of location 0030307 (333)

As you can see, this program accomplished the same thing as the previous program.
However, it required two extra locations and two extra memory accesses. Therefore, it
took slightly longer to execute (because of the fast execution time, you will not notice
the extra time required).

Step 16. Enter the following program starting at address 003000s.

Location Code Mnemonic Comments
003000 076 (START)MVI A Load A with data.
001 006
002 306 ADI Add to A data.
003 006
004 326 SUI Subtract from A data.
005 003
006 323 ouT Output A
007 000 to Port 0.
010 166 HLT Stop.

Step 17. Execute the program at START.

All mnemonics copyright Intel Corporation 1977 and 1975

30

Addressing Techniques Lab

Question. Describe the operation of this program.

(This program will move the data value 6 to the accumulator. Then it will add the
value 6 to the contents of the accumulator. Then the program will subtract the value 3
from the accumulator, output the result 910 (011) to output Port 0, and stop.)

Question. What is the content of output Port 07 (011g or 940)

Register Addressing

The MOV rl, r2, and ADD r are examples of register addressing techniques. In both
of these instructions, the register in which the data is contained is called the source (S).
The source register is identified by bits 0, I, and 2 of the instruction. You should
already be familiar with these bit patterns. The INR r and the DCR r are also
examples of register addressing. The first instruction increments the register (adds 1);
the second decrements it (subtracts 1).

The following program will load the B and E registers with data. Move this data from
each register to the A register and output the contents of B to Port 0 and E to Port 1.

Step 18. Enter the following program, starting at address 003000s.

Location Code Mnemonic Comments
003000 006 (START) MVI B Load B with

001 303 data.
002 036 MVI E Load E with
003 111 data.
004 170 MOV A.B Move B to A.
005 323 ouT Output
006 000 Port 0.
007 173 MOV A,E Move E to A.
010 323 ouT Qutput
011 001 Port 1.
012 166 HLT HALT.

All mnemonics copyright Intel Corporation 1977 and 1975

31

Microprocessors: A Short Course

Step 19. Execute the program at START.

Question. What are the contents of Ports 0 and 1?

(Port 0 = 303, Port 1 = 111)

Branch or Jump Instructions.

As mentioned earlier, branch or jump instructions cause the program to continue from some
other memory location.

These jump instructions are either conditional or unconditional. The conditional
instructions require the state of the microprocessor flags to be examined. These flags
are zero, sign, parity, and carry. There is an additional flag which is not examined and
that i1s the auxiliary carry. Bits 3, 4, and 5 of the instruction determine which flag is to
be examined. The coding of these bits is found in the appendix entitled “8080
Instruction Set” in the section “Branch Group.”

The unconditional jump will perform the program jump to the new location when this
instruction is encountered in the program. Jumps are either direct, in which the
following 2 bytes of the program specify the new location, or indirect, in which a
register pair will contain the new address. We will only look at the direct jumps at this
time.

The following program will start by clearing the A register. Increment it by 1, output,
and jump to location 003020. At this location, A will increment, output, and jump to
location 003050. At this location, A will increment, output, and the program will stop.

Step 20. Load the following program at location 003000s. Note that you have three
starting locations - 003000, 003020, and 003050.

Location Code Mnemonic Comments

003000 257 XRA Clear A.
001 074 INR A Increment A.
002 323 ouT Output to
003 000 Port 0.
004 303 JMP Jump to location
005 020 003020.
006 003

003020 074 INR A Increment A.
021 323 ouT Output to
022 001 Port 1.
023 303 JMP Jump to location
024 050 003050.
025 003

All mnemonics copyright Intel Corporation 1977 and 1975

32

Addressing Techniques Lab

Location Code Mnemonic Comments
003050 074 INR A Increment A.
051 323 ouT Output to
052 002 Port 2.
053 166 HLT Stop.

Step 21. Execute the program at 003000.

Question. What are the contents of Ports 0, 1, and 2?
Port® -~ Portl . . and Port2 (1, 2, 3)

Step 22. Modify the program starting at address 003053. Load the following
instructions.

003053 303 JMP Jump to location
054 020 003020.
055 003

Step 23. Execute the program at address 003000.

Question. Describe the operation of this program,

(This program starts by clearing the A register, then increments it by I, outputs to Port
0, then jumps to location 003020. At this location the A register is incremented by 1,
outputs to Port 1, and jumps to location 003050. At this location the A register is
incremented by 1. outputs to Port 2, and jumps to location 003020. The program is in
a loop between locations 003020 and 003050.)

All mnemonics copyright Intel Corporation 1977 and 1975

Microprocessors: A Short Course

Step 24. Load the following program at location 003000.

Location

003000
001
002
003
004
005
006
007
010
011
012
013
014
015

Code Mnemonic Comments

076 (START) MVI A Move the following
377 data to A.

075 DCR A Decrement A.

323 ouT Output to

000 Port 0.

302 INZ Jump to location
002 003002 if not equal 0.
003

315 CALL Get the subroutine
030 at location 003030.
003

303 JMP Jump to location
000 003000.

003

Step 25. Load the following program, starting at location 003030.

Location
003030

003031

003032
003033
003034
003035
003036
003037
003040
003041
003042
003043
003044
003045

Code
365

325

021
046
222
033
172
263
302
035
003
321
361
311

Time Delay Subroutine

Mnemonic
PUSH PSW

PUSH D

LXID

DCX D
MOV A,D
ORA E
JNZ

POP D
POP PSW
RET

Step 26. Execute the program at START.

Question. Describe the apparent action of output Port 0.

Step 27. RESET and turn off the trainer.

All mnemonics copyright Intel Corporation 1977 and 1975

34

Comments

Store the value of the stack
pointer (SP) register pair.
Store the value of the D-E
register pair.

Enter the following data
into E,

into D.

Decrement D-E by 1.
Move register D to A.

OR registers E and A.

If not equal to 0, go back
to location 003035.

Return the D-E value memory.

Return the SP value from memory.

Return to the main program.

(flashing)

Addressing Techniques Lab

Summary

In this activity you entered and executed the various addressing techniques of the 8080
microprocessor. These techniques or modes included direct, indirect, immediate, and
register. You also entered direct jump or branch instructions, both conditional and
unconditional types. These branch instructions are also considered an addressing mode

In this activity you learned there are various ways to retrieve or get information from
memory. You also learned how to move this data around.

You learned that the direct method gives the address of the data, the indirect method
references a register pair for the address, and the address must be pre-loaded into the
pair.

You also learned that the immediate technique has the data following the instruction
and the register technique references a register or register pair for the data.

You were also introduced to the branch instructions where direct jJumps were
concerned.

35

Registers Lab

Purpose

The purpose of this laboratory is to provide you with experience in moving data into
and out of the various 8080 microprocessor registers.

Objectives

® To code simple programs involving register
selection and data movement
Equipment
° MMD-2 Mini-Micro Design/Trainer

Introduction

Registers are temporary storage elements of any computer system. The capacity of
these registers is usually equal to one computer word. The 8080 microprocessor
contains six 8-bit general purpose registers, an 8-bit accumulator (known as the A
register), a 16-bit stack pointer register, and a 16-bit program counter register.

The general purpose registers are A, B, C, D, E, H, and L. These registers can be used
as a single 8-bit (1-byte) register or used in pairs to form three 16-bit registers. When
used in pairs, the combination B-C, D-E, and H-L is the register pair (RP).

To select a specific register or register pair, a code for that register is required in the
operation code (op code). The octal code assignments for the registers are:

Register Code

PoImU0w
AU EWRN—O

The code assignments for specific register pairs are:

RP Code
B-C 0
D-E 1
H-L 2
Stack Pointer (SP) 3

The location of the code bits within an op code are identified as DDD, SSS, or RP.

36

Registers Lab

DDD stands for the destination register (where you want the data to be upon
completion of the instruction). SSS stands for the source register (from where you
expect to receive or get data). RP stands for register pair and can be either the
destination or source, depending on the instruction itself.

Starting with this lab, you will have to code part of the given programs. You will be
given the mnemonic for the instruction, and you will have to look up the code for that
mnemonic in the 8080 instruction set. The instruction set is located in the appendix of
this lab manual. Then you will enter, execute, and verify the programs using the
MMD-2 trainer.

You will also use the REG (Register) and STP (Step) FUNCTION keys to look at the
data contained in these registers.

Procedure
General Registers
Step I. Complete the coding of the following program.

NOTE: Be sure you start with the following functions/ modes set MEM (Memory) and
PORTS OFF. (Compare your program with that listed in the Answer Key located at
the end of this lab.)

Code Mnemonic Comments
—— MVI B Move the following to B.
377 Data to B.

S MOV A,B Move contents of B to A.

S ouT Output
000 to Port 0.
HLT Halt.

Step 2. Enter the program you just coded, starting at address 3000s.

Step 3. Execute the program you just entered. (NOTE: If your program failed to
operate properly, compare your codes with those given in the Answer Key located at
the end of this lab.)

All mnemonics copyright Intel Corporation 1977 and 1975

37

Microprocessors: A Short Course

Question. Describe the operation of this program.

(Moves the data contained in the following location to the B register. The B register is

then moved to the A register. The program then outputs the contents of the A register
to Port 0 and stops.)

Question. What are the contents of output Port 07 (377)

Question. If you had not moved the data from B to A, would Port 0 equal the data?

(no)

Question. Why?

(Because the output instruction transfers (moves) the data contained in the A register

to output port. Because the data was not moved from register B to A, the output data
would not equal the desired data.)

Step 4. Select the REG (Registers) function, register A.

Question. What is the data contained in A? (377)

The following program will move data from one register to another until all general
registers have been affected. Each time you go to a different register, it will be

incremented with the last register (A) outputting the count. Therefore, the output count
should equal the number of general registers in the 8080.

Step 5. Complete the coding of the following program. (Compare your program with
that listed in the Answer Key located at the end of this lab.)

38

Location Code

003000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021

oo
oo

T

{]
(=]
<

Mnemonic

(START)MVI B

INR B
MOV C,B
INR C
MOV D,C
INR D
MOV E,D
INR, E
MOV H.E
INR H
MOV L,H
INR L
MOV AL
INR A
ouT

HLT

Comments

Move the following to B.
Data to B.
Increment B.

Move contents of B to C.

Increment C.

Move contents of C to D.

Increment D.

Move contents of D to E.

Increment E.

Move contents of E to H.

Increment H.

Move contents of H to L.

Increment L.

Move contents of L to A.

Increment A.
Output

to Port 0.
Halt.

Registers Lab

Step 6. Sclect MEM (Memory) function and enter the program at START.

Step 7. Use the REG (Registers) function key and observe the contents of each of the
registers as you STP (Step) through this program. NOTE: Remember, the order for the
register function is A,B,C,D,E,H.L.,.SH,SL,FL. The registers order for this program is

B.C.D.E,H.L, and A.

Question. What are the contents of the A register after step 15?

(7)

After step 16?

Question. What are the contents of Port 0 after step 20?

Register Pairs

(6)

(0073'—'710)

As stated earlier, the general registers can be combined into register pairs. When this
combination is requested, 16 bits of information are available. The register pairs are
identified as B (general registers B and C), D (general registers D and E), H (general
registers H and L), and a 16-bit register called stack pointer (SP). The stack pointer
register will be used to designate an area of the R/W memory (RAM) that will store
information for certain instructions. These instructions are called PUSH and POP. The
KEX MONITOR PROM has designated an area as the stack area for the MMD-2.

The following program will load data into the B register pair, then output the data.

Step 8. Select the MEM (Memory) function and load the following program, starting

at 3000s.

All mnemonics copyright Intel Corporation 1977 and 1975

Microprocessors: A Short Course

Location Code Mnemonic Comment
003000 001 (START) LXIB Load RP immediate.
001 345 Low-order data.
002 012 High-order data.
003 171 MOV CA Move C to A.
004 323 ouT Output
005 000 Port 0.
006 170 MOV B,A Move B to A.
007 323 ouT Output
010 001 Port 1.
011 166 HLT Halt.

Step 9. Execute the program at START.

Question. What are the contents of Port 1? (012g)

Question. What are the contents of Port 0? (345)

Question. Why was it necessary to have the two MOV instructions?

(Because the accumulator is | byte (8 bits) and in order to output the data in RP-B,
each byte had to be moved to the accumulator separately.)

Question. Which general register (B or C) contains the low-order byte? _____ (C)

Question. Which general register (B or C) contains the high-order byte?_____(B)

The following program will output the contents of the SP register. To do this, you will
have to clear the H-L register pair, add the contents of SP and HL, then output H-L.
The reason for using the H-L is that the SP register is not directly accessible to the A
register.

Step 10. Load the following program, starting at 3000s.

All mnemonics copyright Intel Corporation 1977 and 1975

40

Location Code Mnemonic
003000 041 (START) LXI H
001 000
002 000
003 071 DAD SP
004 175 MOV LA
005 323 ouT
006 000
007 174 MOV AH
010 323 ouT
011 001
012 166 HLT

Step 11. Execute the program at START.

Registers Lab

Comments

Load H-L with
low-order data,
high-order data.
Add RP to H-L.
Move L to A.
Output

Port 0.

Move H to A.
Output

Port 1.

Halt.

Question. What are the contents of the SP register (Ports 1 and 0)?

(003 376)

(Remember, you can “look™ at the contents of the Stack Pointer Register by selecting
REG (Registers) function and SH. SL. Don’t forget to return back to the MEM
function.)

Step 12. Code and enter the following program. Enter at START address 3000s.

Location Code Mnemonics
003000 — (START)LXID
001 000
002 000
003 s MVI A
004 005
005 - INX D
006 — DCR A
007 302 JNZ
010 005
011 003
012 gy MOV AE
013 323 ouT
014 000
015 — MOV AD
016 323 ouT
017 001
020 166 HLT
Step 13. Execute the program at START.

Comments

L.oad RP D-E with
low-order data.
high-order data.

Load A with

data.

Increment PR D-E.
Decrement A.

A not equal, jump to
low-order address,
high-order address.
Move contents E to A.
Output

Port 0.

Move contents D to A.
Output

Port 1.

Halt.

Question. What are the contents of Ports [and 07

(000 005)

All mnemonics copyright Intel Corporation 1977 and 1975

Microprocessors: A Short Course

Question. Describe the operation of this program.

(This program loaded register pair D-E with zero. Then it loaded the A register with
the quantity 5. It then incremented the RP and decremented A. It checked to see if A
was equal to zero; if not zero, it jumped back to the increment RP instruction. When
A equaled zero, it then moved the contents of E to A and output to Port 0; then it
moved the contents of D to A and output to Port I and stopped.)

Summary

In this lab you coded, entered, and executed various programs dealing with 8080
registers and register pairs. You selected the correct register as required and the code
for that register, which you then combined with the instruction to complete the
program.

In this lab you learned that the 8080 microprocessor has six 8-bit registers in which data can
be stored. You learned how to select these registers with a specific code. You also learned
that these registers could be combined to form 16-bit register pairs and that there is a register
called the stack pointer which contains a memory address for special operations. You also
learned how to code the register pairs. All of this required you to select the specified register,
code the instruction, enter, and execute programs.

42

Answer Key

Step 1. 006
37
170
323
000
166

Step 5. 006
000
004
110
014
121
024
132
034
143
044
154
054
175
074
323
000
166

Step 12.003000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020

All mnemonics copyright Intel Corporation 1977 and 1975

021
000
000
076
005
023
075
302
005
003
173
323
000
172
323
001
166

MVI B
(DATA)
MOV A,B
ouT

(PORT 0)

MVI B
(DATA)
INR B
MOV C,B
INR C
MOV D,C
INR D
MOV E,D
INR E
MOV H,E
INR H
MOV L.H
INR L
MOV A,L
INR A
OUT
(PORT)
HLT

LXID

MVI A
INX D

DCR A
JNZ

MOV AE
ouT

MOV A,D
ouT

HLT

Registers Lab

Mnemonic Instructions Lab

Purpose

The purpose of this lab activity is to give you an opportunity to complete and execute on
the trainer several simple machine language programs which utilize data transfer,
arithmetic, and logical group instructions.

Objectives
e To complete or debug a program listing to solve a problem statement

e To enter and execute the program on the microprocessor trainer

Equipment
e MMD-2 Mini-Micro Design/ Trainer

Introduction

As you know, the purpose of the DATA TRANSFER group of instructions is to move
(transfer) data around in the 8080 microprocessor. This data can be moved between
memory and the microprocessor and also between registers within the microprocessor.

Likewise, the purpose of the LOGICAL group is to perform logical operations (AND,
OR or X-OR) on the data. To be able to do this, you need two sets of data. One set
you select as a standard and the other set would be “unknown.”

One of the results of this type of operation is called masking, in which you can hide or
mask unwanted data. For example, if the data byte input contained the actual data and
several status bits, the status bits would be interpreted as data during calculations
unless they were masked out. This would result in an incorrect data processing. Let’s
look at an example of masking. If the lower 4 bits of the data byte were for data and
the upper 4 bits for status, you could input IN the byte and ANI (AND immediate)
the following byte 11110000. Since a zero on an AND function always results in zero,
the lower 4 bits would always be zero (masked). The upper 4 bits would be either 1 or
0, depending on the input data.

Some instructions from the data transfer and arithmetic groups can be interchanged with
each other to produce the same results. For example, if you wanted to place all zeros in
the A register you could either move immediately all zeros into A (MVI A, data), which
requires two memory accesses, or you could EXCLUSIVE OR the A register with itself
(XRA A). The XRA A requires one memory access. Remember the X-OR logic truth
table states: like terms = 0, unlike terms = 1.

All mnemonics copyright Intel Corporation 1977 and 1975

44

Mnemonic Instructions Lab

Finally, the ARITHMETIC group instructions allow you to perform arithmetic
operations, such as add and subtract, on two sets of data. Remember, multiplication is
only a form of successive adds, and division is successive subtracts.

Note that you will also use several BRANCH instructions during this activity.

Procedure

NOTE: The following steps require you to locate and code the various instructions. The
listing for these instructions is found in the appendix of this manual. Note also that no
specific step will tell you to use the REG (Register) function. However, feel free to use
this function (in fact, it is encouraged) to observe the contents of the various registers
you select to use. Don’t forget to return to the MEM (Memory) function before
attempting to alter, modify, or change your program instructions.

Data Transfer

Step 1. Write a routine to load (move) the number 10, into the B register; then output
the contents of B to Port 1 and stop. Your program should consist of six instructions.

Address Code Mnemonic Comments

003000

003001

003002

003003

003004

003005

Step 2. Enter and execute your program.

The easiest way to accomplish this program is to move immediate to B (MVI B, data)
the data (don’t forget to convert the data from decimal to octal). Since you cannot
output data from the B register, you will have to move it from B to A (MOV A,B),
output (OUT) and stop (HLT) (codes = 006, 012, 170, 323, 001, 166).

Step 3. Write a program that will load the accumulator directly from a memory location,
output this data to Port 2 and halt. The address containing the data will be 002000s. This
program will require six instructions plus data location.

All mnemonics copyright Intel Corporation 1977 and 1975

45

Microprocessors: A Short Course

Address Code Mnemonic Comment
002000 012 (data) Data to be loaded.

003000

003001

003002

003003

003004

003005

Step 4. Load and execute the program.

The easiest way to accomplish this program is to load the accumulator directly from the
memory address as specified (LDA addr). Since the data is contained in the register
already, you can output at this time (OUT) and stop (HLT) (codes = 072, 000, 002, 323,
002, 166). You will have to load location 002000; with the data (12;) prior to execution
of the program.

Step 5. Write a program that will load register pair H,L with data; then output the
contents of L to Port | and the contents of H to Port 2; then stop. The data to be loaded
is 125 in both registers. This program will require ten locations.

Address Code Mnemonic Comments

003000

003001

003002

003003

003004

003005

003006

003007

003010

003011

All mnemonics copyright Intel Corporation 1977 and 1975

46

Mnemonic Instructions Lab

Step 6. Enter and execute the program.

The easiest way to accomplish this program is to load the register pair H,L with the
immediately following data (LXI rp, data 16). Again, since you cannot output directly to
a port from these registers, the program will have to move each byte of data to A and
then output. (MOV 14, r2) (codes = 041, 012, 012, 175, 323, 001, 174, 323, 002, 166).

Arithmetic

Step 7. This program adds together two numbers and outputs the results.

Address Code Mnemonic Comments
3000 076 MVI A Move 5 to A.
3001 005 005

3002 . MVI B Move 1 to B.
3003 001 001

3004 _— ADD B Add.

3005 323 ouT Output sum.
3006 001 001

3007 166 HLT Stop.

Question. Fill in the code required at addresses 3002 and 3004.

(006, 200)
Step 8. Enter and execute the program.
Question. What result is displayed at Port 1?
Is this what you expected? (00000110, yes)

Step 9. Modify the program to add 5 + 6. Execute it.

Question. What modifications did you make in the program to add 5 + 6?

(modify location 3003 to read 006)

Question. What result is now displayed in Port 1?

(00001011)

Step 10. Modify the program to subtract 5 minus | and execute it.

Question. List the subtraction program you have just written and the result displayed in
Port 1.

All mnemonics copyright Intel Corporation 1977 and 1975

47

Microprocessors: A Short Course

Address Code Mnemonic Comments

(Program is the same as add except locations 3003 = 001 and 3004 = 220, result =
00000100.)

Step 11. Now modify the program to subtract 5 minus 6 and execute it.

Question. What are the results? Are the results correct? If not, what is wrong?

(Result: 1111 1111. This does not seem to be the binary code for -1. The problem is that

the subtraction resulted in a borrow which transferred through all digits making them all
ones.)

The result of this program indicates a situation that one has to be aware of during
programming. During arithmetic operations, such as subtraction, if the result is negative,
the microprocessor automatically changes the representation of the number from regular

All mnemonics copyright Intel Corporation 1977 and 1975

48

Mnemonic Instructions Lab

binary notation into 2’s complement notation. Thus, in the last problem, one would have
to know whether the result in Port 1 represented a number in regular binary code (in
which case, the result is 25510) or in 2’s complement notation (in which case the result

is -1).

The way to determine whether the result of a subtraction resulted in a negative number is
to check the Sign Flag in the status register. The sign flag will be set if the result of an
operation is negative. Various instructions such as jump allow you to branch to a
specified memory location if the sign flag is at logic 1 (set). This location could be a
routine that takes into account the changed representation of a negative number.

Let’s try to do this in the following way. If the result of a subtraction is negative, let’s
convert the result back to regular binary notation and send this to Port 1. To indicate it
is negative, let’s output a 1 to Port 0. Thus -1 would be represented by bit 0 of both Port
1 and Port 0 being set. For any positive result, the answer is seen at Port 1, with no bits
being set at Port 0.

A routine to handle the negative numbers will consist of two parts:

a. Convert from 2’s complement notation to regular binary notation. This is done by
complementing the number and adding 1 to it.

b. Set bit 0 of Port 0 by outputting a 1 there.

Step 12. Write a routine that accomplishes both of the above steps. Begin the routine
at address 3020. (Compare your program with that listed in the Answer Key located at
the end of this lab.)

Address Code Mnemonic Comments

All mnemonics copyright Intel Corporation 1977 and 1975

49

Microprocessors: A Short Course

Step 13. Modify the main program to contain an instruction that tests the sign bit and
branches to address 3020 if the bit is set. List the modified main program. (Compare
your program with that listed in the Answer Key located at the end of this lab.)

Address Code Mnemonic Comments

Step 14. Enter the entire program and execute it. The result should be a 1 in both Port 0
Port 1. If this is not the case, check over your work.

Step 15. Now try these problems by making the proper changes to your program.

N=RS e N

-8
- 10
-4
Logical

The Logical Group instructions are those which program Boolean-type operations on
data in the registers, memory, and condition flags. One of the advantages of these
instructions is that they allow you to output or perform other operations on specific data
bits. For example, you can compare 1 byte of data with another, or you can AND 2
bytes of data and output only those bits that are identical.

All mnemonics copyright Intel Corporation 1977 and 1975

50

Mnemonic Instructions Lab

Step 16. Enter and execute the following program.

Address Code Mnemonic Comment

003000 076 MVI A Move 111 to A.

003001 111

003002 006 MVIB Move 111 to B.

003003 111

003004 240 ANA B AND B with A.

003005 323 ouT Output to Port 0.

003006 000

003007 166 HLT Stop.

Question. What are the results displayed in Port 0? (111)

Step 17. Modify the program by changing the contents of location 003003 to read 222.

Question. What are the results displayed in Port 0 now? (000)
Question. Explain the results of Step 17.

(The program was an AND program, which was to AND the contents of A [01001001]
with the contents of B [10010010]. Since 1 AND 0 logically equal 0, all zeros arc
displayed in Port (.)

Step 18. Modify the program by changing the ANA B instruction to an ORA B
instruction (code = 260) and execute.

Question. What are the results displayed in Port 0 now? (333)

Question. Explain the results of step 18.

(OR function, therefore any | in will produce a | out)

Another function of the logical instructions is called masking. Masking is the concept
whereby céftain bits in the data word are cancelled (masked). For example, the data byte
from an external device might contain status (such as POWER-ON and READY) as well
as data. You would not want to process the status portion, because it would result in
incorrect results. Therefore, you mask these bits. To mask the bit positions is fairly
simple. In the bit positions we wish to mask out, place zeros; in the bit positions we wish
to keep, place ones.

All mnemonics copyright Intel Corporation 1977 and 1975

51

Microprocessors: A Short Course

For example, the input word we receive is 370s, with the upper 4 bits being status. To
mask these positions, the masking word would be 017s.

Step 19. Enter and execute the following program, which will mask the upper 4 bits from
an input data word and add the quantity five.

Address Code Mnemonic Comment
003000 076 MVI A Move 371 to A.
003001 371

003002 346 ANI AND 017 to A.
003003 017

003004 306 ADI Add 5to A.
003005 005

003006 323 ouT Output to Port 0.
003007 000

003010 166 HLT Stop.

Question. What are the results as displayed in Port 07 (016)

Step 20. Change the contents of locations 003002 and 003003 to 000 (NOP).
Question. What are the results as displayed in Port 0 now? (376)

The NOP instruction allows you to continue processing without having to reprogram.
You have seen the results of both programs operating on the same data. The first,
however, masked out the upper 4 bits; the second did not.

In this program we will attempt to produce a “marching light” effect on the LED outputs
on Port 1. We would like to light the LEDs in order from right to left along all 8 bits.

To do this, we will put a 1 in the A register and output it to Port 1. Then we will shift
this bit one place left and output the result to Port 1. We will execute this operation in
a continuous loop.

Address Code Mnemonic Comments

3000 076 MVI A Put | in A register.
3001

3002 Output to Port 1.
3003

3004 PR RLC Rotate A reg bit left.
3005 = ouT Output to Port 1.
3006 — 001

All mnemonics copyright Intel Corporation 1977 and 1975

52

Mnemonic Instructions Lab

3007 N JMP Jump back
3010 and rotate again.
3011

Step 21. Complete the program shown above. Enter and execute the program.

Question. What happens to the LEDs at Port 1?7

(all 1it)

To slow things down a bit, we need to add a time delay before outputting the data each
time. This is easily accomplished in a subroutine. We will use a subroutine similar to the
one illustrated in the lab that introduced you to the trainer. (The contents of A register
are preserved by this routine so that we don’t change what we want to output each

10-MS TIME DELAY

time.)

Address Code Mnemonic
3020 107 MOV B,A
3021 021 LXID
3022 046 046

3023 001 001

3024 033 DCX E
3025 172 MOV A,D
3026 263 ORA

3027 302 JNZ

3030 024 024

3031 003 003

3032 170 MOV A,B
3033 311 RET

Comments

Save A register.

Load into D-E reg pair.
046

001

Decrement D-E by 1.
Move D to A.

OR register E and A.
Jump not zero.

Restore A register.
Return.

As you remember, the contents of addresses 3022 and 3023 control the length of the time

delay.

To enter the delay subroutine, all you need do is call 3020 from the main program.

Step 22. Add the proper CALL statement to the main program. List the main program
with the CALL statement included. (Compare your program with that listed in the

Answer Key located at the end of this lab.)

All mnemonics copyright Intel Corporation 1977 and 1975

Microprocessors: A Short Course

Address Code Mnemonic Comments

Step 23. Execute the program.

Now, at least, the LEDs can be seen flashing. (If they don’t, check to see that the program
was entered correctly.)

Question. To slow the display flashing rate even more, the contents of which addresses must
be changed?

(3022, 3023)

Step 24. Modify the contents of those addresses until you obtain a display speed you like.

Step 25. Modify the program so that the display starts at the left and moves to the right (only
the contents of two addresses need changing).

All mnemonics copyright Intel Corporation 1977 and 1975

54

Mnemonic Instructions Lab

Question. List the addresses and contents that you modified.

(3001 200 data)

(3004 017 RRC)

In this lab, you completed and/or debugged, entered, and executed different programs
involving arithmetic, data transfer, and logic instructions.

In this lab, you learned about masking techniques and the representation of negative
numbers inside the microprocessor. You also learned how to test the condition of a status
flag and branch accordingly, and how to control the rate of execution of a program to allow
the output of the program to be easily observed.

All mnemonics copyright Intel Corporation 1977 and 1975

55

Microprocessors: A Short Course

ANSWER KEY

Step 12.

3020 057 CMA
3021 306 ADI
3022 001 001
3023 323 ouT
3024 001 01
3025 076 MVI A
3026 001 001
3027 323 ouT
3030 000 0

3031 166 HLT
Step 13.

3000 076 MVI A
3001 005 005
3002 006 MVI B
3003 006 006
3004 220 SUB B
3005 372 . IM
3006 020 020
3007 003 003
3010 323 ouT
3011 001 001
3011 166 HLT
Step 22.

3000 076 MVI A
3001 001 001
3002 323 ouT
3003 001 001
3004 007 RLC
3005 315 CALL
3006 020 020
3007 003 003
3010 323 ouT
3011 001 001
3012 303 JMP
3013 004 004
3014 003 003

All mnemonics copyright Intel Corporation 1977 and 1975

Complement A register.
Add one to it.

Output to Port 1.
Put | in A register.
Output to Port 0.

Stop.

Move 5to A.
Move 6 to B.
Subtract.

Jump if minus sign.
If not,

then

out.

Stop.

56

Instruction Data Flow Lab

Purpose

This activity covers 1-byte, 2-byte, and 3-byte instructions. You will be provided with a
given program from which you will determine if the given code is a I-byte, 2-byte, or 3-
byte instruction or data. Then you will verify the given program by executing it on an
MMD-2 trainer. Next, you will modify the program so that it produces errors. Finally,
you will be given a problem statement and partial program listing to complete the
program, and will enter, execute, and verify its operation on an MMD-2 trainer.

Objectives

¢ To identify 1-byte, 2-byte, and 3-byte instructions and their format
e To identify errors produced by improper program coding
e To complete a given program

e To enter, execute, and verify a program
Equipment
e MMD-2 Mini-Micro Design/ Trainer

Introduction

As you work more closely with computer systems, you will become more aware that
computers cannot think. Although computers can perform very complex operations
within seconds, they must be told when and how each step is to be done. This
“handholding” is done by the computer program, the sequential listing of instructions
that directs the computer to perform a specific process. The instructions will tell the
computer where or what the information is, what to do with the information, and what
to do with the end result.

“Fine,” you say, “but what does this have to do with me? I am going to be working with
hardware, not software.” The answer to that question is basically this: Whether you are

working with a design team on a new system or are attempting to troubleshoot a system.
you must be able to answer the following questions about the system:

® What is its overall purpose?
® What is it not doing correctly?

® s it receiving proper information?

51

Microprocessors: A Short Course

e s it processing information?
e [sit transmitting proper information?
® Where should it obtain information?

e Where should it place information?

To answer these questions, you must be familiar with the computer’s instruction data
flow, which will tell you what the system should do, where or what the information is,
and where to obtain or place the information.

Procedure

You will need to refer to the 8080 Instruction Set in the appendix of this manual as you
proceed through this lab.

Step 1. Complete the following program listing by filling in the Mnemonic and
Comments columns: (See figure 1 for a flowchart of step 1. Compare your answers with
the Answer Key located at the end of this lab for this step.)

Location Code Mnemonic Comments
003000 076

3001 000

3002 006

3003 100

3004 016

3005 100

3006 015

3007 302

All mnemonics copyright Intel Corporation 1977 and 1975

58

Instruction Data Flow Lab

Location Code Mnemonic Comments
3010 006
3011 003
3012 005
3013 302
3014 004
3015 003
3016 323
3017 001
3020 323
3021 002
3022 075
3023 303
3024 002
3025 003

Question. Which locations contain I-byte instructions?

(3006, 3012, 3022)

Question. Which locations contain 2-byte instructions?

(3000, 3002, 3004, 3016, 3020)

Question. Which locations contain 3-byte instructions?

(3007, 3013, 3023)

Question. Which 2-byte instructions contain data in the second byte?

(000, 002, 004)

(Remember, in location 3021 is the address of the output port, not data.)

All mnemonics copyright Intel Corporation 1977 and 1975

59

Microprocessors: A Short Course

Question. Which 2-byte instructions contain address data in the second byte?

(3016, 3020)

Question. Which 3-byte instructions contain raw data in the second and third bytes?

(none)

Question. Which 3-byte instructions contain address data in the second and third bytes?

(3007, 3013, 3023)

Question. Describe in detail the operation of this program.

(This program starts by moving zeros to the A register, 100s to the B register, and 1005 to
the C register. Then it decreases the C register by | until the C register equals zero
[loops]. When the program detects zero in the C register, it continues by decrementing
the B register by 1. If the B register does not equal zero, the program jumps back and
loads the C register with 100s and repeats the C register loop. This “loop within a loop”
continues until the B register equals zero. At that time the program outputs the contents
of the A register to Port 1, then Port 2. The program then decrements the A register by |
and jumps back to location 003002 and repeats the process.)

60

Instruction Data Flow Lab

START

ENTER ZERO
INTO A

]

\7 ..

ENTER 100
INTO B
ENTER 100
INTO C
DECREMENT
REGISTER C
MOVE (A) TO
NO PORT 1
YES #
DECREMENT MOVE (A) TO
REGISTER B PORT 2
(B) = DECREMENT
ZERO? NO REGISTER A
YES

Figure 1. Flowchart for Program to Decrement Output

61

Microprocessors: A Short Course

Step 2. Enter and execute the program using the MMD-2.

Question. Are the indicators in Ports | and 2 decrementing?

(if not, verify program)

Step 3. Modify the program by changing the contents of location 3003 to read 000 and
execute the program at 003000.

Question. The output indicators are decrementing at a
(slower/faster) rate. (slower)

Step 4. Modify the program by changing the contents of location 3005 to read 000 and
execute the program at 003000.

Question. The output indicators are decrementing at a
(slower/faster) rate. (slower)

Question. In this program, you have now moved zeros into both the B and C registers.
Locations 3007 and 3013 will cause the program to jump back (loop) if B and C are not
equal to zero and to output if they are equal. The indicators should appear to be
constantly on. Why aren’t they?

(Because both registers are decremented before being tested for zero. This decrement
causes the registers to be 377 [000-1=377].)

Question. This program could be used as a

(time delay)

You will now introduce some “errors” into the program and observe their effects. These
errors could be the result of incorrect program entry (software) or hardware problems.

Step 5. Return the program to its original condition. Change the contents of locations
3003 and 3005 to read 100.

Step 6. Verify the program by executing it at 003000.

Step 7. Modify program contents of location 3002 to read 004. Execute the program at
003000. The purpose of this change is to “accidentally” change the instructions from
00 000 1 IO2 to 00 000 100, so that instead of loading B with 1008 the program is
incrementing B by one. You will find out what a difference a bit makes!

Instruction Data Flow Lab

Question. Describe indicator performance now.

(Upper indicators are changing very fast. It is not clear if they are incrementing or
decrementing.)

Question. What instruction results from the “dropping” of bit 1?

(increment B)

Step 8. Modify program contents of location 3002 to read 014. Execute the program at
003000.

Question. Describe indicator performance now.

(decrementing slowly)

(The new instruction 014¢ = 00 001 100, is INRC. a one-byte instruction. The old
instruction was MVIB. a two-byte instruction. As vou did not delete the second byte.
located at 3003 [01 000 0007]. the PC thought that old data was the instruction MOVB.
B a do-nothing instruction.)

Step 9. Modify program contents of location 3002 to read 006 and location 3010 to read
014. Execute the program at 003000.

Question. Describe indicator performance now.

(constant 377 both ports)

Question. Describe the effect of this “bit shift” (programming error).

(This error causes the program to jump to location 3014 instead of looping back. At
location 3014, the low-order address bvte now becomes an instruction to increment the
B register and. at location 5. to increment the register pair BC. The program will
continue in this large loop.)

Step 10. Modify program contents of location 3010 to read 006. location 3024 to read
003. and location 3025 to read 002. Execute the program at 003000.

Question. Describe the performance of the program now.

63

Microprocessors: A Short Course

(The program is jumping to location 002003. where the information is unknown. The
result is that the program will not perform as expected and the LEDs will have various
actions. This is an example of the result of misprogramming of the second and third
bytes of a destination-type instruction.)

The preceding steps have shown you the problems that can arise from program entry
error: “drop” bits, “add” bits, shift of bit position, and so forth. These problems can
occur in either software or hardware.

For this final section, you are to modify the program you have been working with in this
lab to meet the following parameters:

1. Clear A register with the EXCLUSIVE OR function
2. Load register pair DE with the same data as before; i.e. 100 and 100
3. Decrement the two registers (the register pair)
4. Qutput to Ports 1 and 2
5. Increment the A register
Step 11. Rewrite the program to meet the five parameters listed above. Enter and

execute the program. NOTE: Your program should perform like the one listed.
(Compare your program with the Answer Key located at the end of this lab for this

step.)
Location Code Mnemonic Comments (optional)

003000

3001

3002

3003

All mnemonics copyright Intel Corporation 1977 and 1975

64

Instruction Data Flow Lab

Location Code Mnemonic Comments (optional)

3004

3005

3006

3007

3010

3011

3012

3013

3014

3015

3016

3017

3020

3021

3022

3023

Summary

In this lab, you identified the various I-byte, 2-byte, and 3-byte instructions contained in
a given program and the bytes containing raw data and address data. You then modified
several locations to produce “errors.” Finally, you rewrote the program to do the same
job; however, it required fewer locations.

In this lab, you learned the format of 1-byte, 2-byte, and 3-byte instructions. You also
learned whether the codes contained raw data or address data, which helped you
determine the data flow of the program. You also learned the effect of hardware or
software problems on a program’s operation. Finally, by “modifying” a program, you
have started programming with machine language instructions.

All mnemonics copyright Intel Corporation 1977 and 1975

65

Microprocessors: A Short Course

Answer Key

Step 1. MVI A
(data)
MVI B
(data)
MVIC
(data)
DCR C
JNZ
(data)
(data)
DCR B
JNZ
(data)
(data)
ouT
(data)
ouT
(data)
DCR A
JMP
(data)
(data)

Step 11. 257
021
100
100
035
302
004
003
025
302
001
003
323
002
323
001
074
303
001
003

All mnemonics copyright Intel Corporation 1977 and 1975

Move (data) to A.
Data for A.

Move (data) to B.
Data for B.

Move (data) to C.
Data for C.
Decrement C.

If C not equal 0, go to
low address,

high address.
Decrement B.

If B not equal 0 go to
low address,

high address.
Output to

device number.
Output to

device number.
Decrement A.
Jump to

low address,

high address.

XRA A
LXID

DCRE
JNZ

DCRD
JNZ
ouT
ouT

INR A
JMP

Arithmetic Problem Lab

Purpose

The purpose of this lab activity is to provide you with some practice in completing or
debugging some simple arithmetic programs and then executing them on the
microprocessor trainer.

Objectives

After completion of this activity you will be able:
° To complete or debug a simple arithmetic program

° To enter and execute the program on a microprocessor trainer

Equipment
° MMD-2 Mini-Micro Design/Trainer

Introduction

During this lab activity you will either complete and /or debug different arithmetic
programs. These programs will use the ADD or DAD instructions available in the
8080 microprocessor instruction set. Then each program will be entered on the MMD-2
trainer and executed to verify the results.

Procedure
Program 1
Write a program to add the decimal integers 3+7+12+18 and display the results.

This program will execute by fetching the numbers to be added one at a time from
memory and accumulate the results in the A register. In order to know how many
numbers there are to fetch, we will keep count of the numbers as they are fetched using
the B register.

STORED DATA

2000 003 DATA, 3.
2001 007 DATA 7.

2002 o DATA 12.
2003 DATA 180.

All mnemonics copyright Intel Corporation 1977 and 1975

67

Microprocessors: A Short Course

3000
3001
3002
3003
3004
3005
3006
3007
3010
3011
3012
3013
3014
3015
3016

Step

MAIN PROGRAM

257 XRA A Clear A registe!

006 Put 4 into B

004 004 register.

041 LXI H Load memory

000 000 pointer into L and H.

002 002

206 Add memory to A register.
— DCR B Decrement count in B reg.

— INX H Increment memory pointer.
302 JNZ Jump if count

006 006 is not

003 003 zero.

— ouT Output results to

001 001 Port 1.

166 HLT Stop.

1. Complete the program by filling in the blanks. (Compare your answers with the

Answer Key located at the end of this lab.)

A few comments about the program:

1

2)

5)

Notice that the memory location for the data is well away from the main program.
This allows more data to be added later without having to juggle around other
information. The program itself starts at location 3000s. Since the data is not in the
main body of the program, there is no danger of data being executed as an
instruction; this can happen if data is included within the body of the program.

The number 4 is stored in the B register as a count of how many numbers to add.

The instruction at 3003 loads the memory location of the first piece of data into

register pair HL. This register pair is used to “point” at the memory location that
contains the data to be added to the A register. The ADD M instruction at 3006
always uses the memory location pointed at by the contents of HL.

The DCR B at 3007 keeps track of how many numbers have been added. Each
time a number is added, the B register is decremented by 1. When the last number
is added, the DCR B instruction will have caused the B register contents to be
zero. Also at this time the Zero Flag will be set to I; previously the Zero Flag had
been reset to 0.

The INX H at 3010 changes the memory pdinter in HL by | to point to the next
memory location containing data.

The JNZ at 3011 checks the Zero Flag. As long as the Zero Flag is reset (logic 0)
the program will go back to location 3006s to continue execution. When the Zero
Flag is set, as it will be once the B register contents are zero. the JNZ instruction
will be ignored.

All mnemonics copyright Intel Corporation 1977 and 1975

68

Arithmetic Problem Lab

Question. What binary word do you expect to see displayed at Port | after program
has executed?

(00101000)

Step 2. Enter and execute the program. If the results are not as you predicted, check
your work.

Step 3. Modify the program to perform the following addition:
3+7+12+18+21+15

Question. List the changes and additions you made.

(2004 025 DATA.21)
(2005 017 DATA,15)
(3002 006)

Question. Predict the results to be displayed at Port 1.

(01001100)

Step 4. Enter the modifications into the trainer and execute. Check your work if the result is
incorrect.

As you can see, this program is quite flexible for adding a list of numbers. Storing the
data in sequential memory locations and using the INX H instruction make it easy for
the program to index its way through the data to calculate the results.

You should be aware of certain limitations of this program. There is a maximum to the
number of pieces of data which can be added by this program.

Question. What's the maximum number of pieces of data that this program can add
together the way it is currently written?

(256 since that is the number of memory locations between 2000 and 3000g)
The next limitation has to do with the magnitude of the total.

Step 5. Modify the program to add the following list of numbers:
3+7+12+18+21+15+190

Step 6. Enter and execute the program.

Question. Are the results what you expected? (no)

All mnemonics copyright Intel Corporation 1977 and 1975

69

Microprocessors: A Short Course

The problem here is not so much with a “bug™ in the program but, rather, with a
limitation of the program.

Question. Why are the results incorrect?

(The expected result is 26610 which is larger than the number that can be displayed.
The highest number is 25510 = 111111112.)

As you can see. even though we have a program that works properly on our initial
data list, you must be careful when trying to apply it to all situations.

Along the same line as this second limitation, limiting the maximum total result, there
is a third limitation that deals with the largest number that can appear in the data list.

Question. What is this number (base 10)?____ (255)

A “Bug.” An interesting “bug” can occur in this program if you reverse the instructions
at locations 3006 and 3007.

Step 7. Change the program so that it will add the original list of numbers. Then
reverse the code for the instructions at locations 3006 and 3007. Execute the program.

As you can see, the result is (0, which is obviously not correct. If you consider the logic
of the program with the instructions reversed, at first sight there doesn’t appear to be
anything wrong. You must dig a bit deeper and examine exactly what each of these
instructions does as it is executed.

Both the DCR B and the ADD M instructions affect the Zero Flag. The Zero Flag is
important because, as long as it remains reset, the program will loop around. fetching
data and adding it to the A register. When the instructions are reversed, even though
the Zero Flag may become set by the DCR B instruction as the last picce of data has
been fetched, the ADD M instruction will reset the flag as it is executed; hence. the
program will continue execution even though all of the data has been added.

Yet, why do you suppose we get a result of 0 displayed at Port | every time this
program is executed and not some random result? (Try it if you are skeptical.)

All mnemonics copyright Intel Corporation 1977 and 1975

70

Arithmetic Problem Lab

The answer is this: The program will continue adding random numbers obtained from
memory locations past the end of our data until the result in the A register is 0. Once
this occurs, the ADD M instruction also causes the Zero Flag to be set. and so the

program will output the 0 to Port 1.

Therefore, you must be aware of all of the actions of an instruction as it is executed.

Program 2

Write a program that will add numbers together and allow the result to be larger than
255. Allow for up to 16 bits in your answer. Display the results in two output ports.

In this program we will use a special arithmetic instruction called the “double add”
instruction, DAD. This instruction allows for 16-bit arithmetic.

3000 046 MVI H
3001 000 000
3002 — MVI L
3003 000 000
3004 026

3005 000 000
3006 006

3007 000 000
3010 — LXID
3011 000 000
3012 002 002
3013 032

3014 117 LA
3015 b ADI
3016 001 001
3017 332 JC
3020 026 026
3021 003 003
3022 011 DAD B
3023 023 INX D
3024 303 JMP
3025 013 013

All mnemonics copyright Intel Corporation 1977 and 1975

71

Clear H.

Clear L.

Clear D.

Clear B.

Load memory location of
first data item
into DE.

Load accumulator with data from
address given in register pair DE.

Move data to register C from
accumulator.

Check for flag
by adding 1.
and jump

il a

carry occurs.

If no carry. add result to
HL.

Increment memory pointer.
Jump back

to this

Microprocessors: A Short Course

3026
3027
3030
3031
3032
3033
3034
3035

003 003 address.

s MOV AL Send L regto A

323 ouT for output

000 000 as LSB.

174 R Send H register to A
323 ouT for output

001 001 as MSB.

166 HLT Stop.

Step 8. Complete the blanks in the program.

A few notes about this program:

1

2)

6)

Since the DAD instruction accumulates the results in register pair HL. these
registers cannot be used as the memory pointer. Therefore, we will use register
pair DE as the pointer.

The DAD instruction requires that the numbers to be added appear in another
register pair. We have selected pair DE.

The LDAX D at 3013 puts the contents of the memory location pointed at by
pair DE into the accumulator. Since this data is only 8 bits. it is stored by the
MOV C,A instruction into register C.

Since all registers are being used by this program, we must use a method other
than counting to know how many numbers to add together. This time we will use
a flag. A flag is a piece of data appearing at the end of the list which signals that
this is the end of the data. Our flag will be 377 = 111111112. By adding one to
the flag and checking for a carry (JC instruction at 3017). we can determine
whether all of the data has been exhausted. Thus, the instructions from locations
3016 to 3020 check for the flag.

At 3022, the contents of register pair BC (which contain the data loaded from
memory) are added. 16 bits at a time, with register pair HL. At 3023, the memory
pointer is incremented by one and we jump back to load the next piece of data.

Once all of the data has been added. we branch to the output section of the
program beginning at 3027 where the LSB of the result are output to Port 0 and
the MSB output to Port .

To try this program out, we will add together two numbers that require more than 8
bits to display the result.

Let’s

add 25440 + 25440.

Question. Where in memory will you load each number. and what will you store there?

(at 2000=376s)

(at 2001=376s)

All mnemonics copyright Intel Corporation 1977 and 1975

72

Arithmetic Problem Lab

Question. What will you store as a flag in the next memory location? (Remember the
flag signals the end of the data.) (at 2002=377s)

Step 9. Load the data and program into the microprocessor trainer memory.
Question. What result do you expect? Show your answer below.

Port | Port 0

D7(D6|D5({D4| D3| D2({DI{D0| |D7|D6{D5|D4|D3|D2|D1|D0

(00000001 TTTT11100)
Step 10. Execute the program and verify the results.
Question. What modification must be made to add together:
254 + 254 + 254

(at 2002=376g)

(at 2003=377g)

Step 11. Make the modifications and execute the program.

Question. What is your result?
(00000010 11111010)

If your result is incorrect, check the data in memory.

Question. What is the largest number that can appear in the data list? Why?

(3768 = 111111102 is the largest, because 3775 is used as a flag and will not be treated
as data. Numbers larger than this are not allowed, because the program only loads 8-
bit words from memory into the BC register [see instructions at locations 3013 and
30141,

As you can see, this program accomplishes much the same result as Program 1 but

allows for a larger range of results and uses a different method to check for the end of
the data.

73

Microprocessors: A Short Course

Summary

In this lab you completed and/or debugged a variety of programs dealing with
arithmetic problems. Once completed you entered the program and verified its result.

In this lab you learned about the arithmetic instructions ADD, DAD. You learned
about the importance of the order of instructions when the status of the flags is
important. You learned how to extend the range of the arithmetic possible with the
8080 by using the 16-bit double add instruction DAD. You learned how to use the
instructions involving memory pointers and finally you learned how to keep track of
items in a data list by either counting them or using a flag.

Answer Key

Step 1.

2002 014

2003 022

3001 MVI B
3006 ADD M
3007 005

3010 043

3014 323

Step 8.

3002 056

3004 MVI D
3006 MVI B
3010 021

3013 LDAX D
3014 MOV C,A
3015 306

3027 175

3032 MOV AH
All mnemonics copyright Intel Corporation 1977 and 1975

74

Programming Lab

Purpose

In this activity you will generate and code a program to solve a problem.

Objectives

® To generate and code a program to solve a problem

® To enter and execute the program on a microprocessor trainer

Equipment

e MMD-2 Mini-Micro Design/ Trainer

Introduction

This lab activity presents programming problems for you to solve. It is your goal to

generate and code a well-documented program that will solve the problem. How you
solve the problem will be up to you. However, if you model the way you go about it
along the lines of good programming style (which you learned about earlier), you are
likely to make fewer mistakes and to end up with an efficiently running program.

It is possible for you to take off on your own as soon as you read the problem
statement and write your program. If you decide not to do this or get stuck along the

way, a guide appears in the lab that suggests one way of proceeding. Feel free to use
all or just parts of the guide as you proceed.

Procedure

Problem 1.
Write a program that uses the output ports to simulate a traffic light control. The time
delays are “green” on for 30 seconds, “yellow™ on for 10 seconds, and “red” on for 20

seconds. The operation is continuous, and no two colors are on at the same time.

(Space is provided for your work. The guide, if you need it, follows the blank
programming sheet.)

75

Microprocessors: A Short Course

Your General Outline

76

Programming Lab

Your Refined Outline

77

Microprocessors: A Short Course

Your Flowchart

78

Programming Lab

Your Flowchart (Continued)

79

Microprocessors: A Short Course

Your Assembly Language Program

Step
Number Label Operand Argument Comments

All mnemonics copvright Intel Corporation 1977 and 1975

80

Programming Lab

Your Assembly Language Program (Continued)

Step
Number Label Operand Argument Comments

All mnemonics copyright Intel Corporation 1977 and 1975

81

Microprocessors: A Short Course

Your Address Assignment

82

Programming Lab

Your Address Assignment (Continued
&

All mnemonics copyright Intel Corporation 1977 and 1975

83

Microprocessors: A Short Course

Your Svymbol Table

All mnemonics copyright Intel Corporation 1977 and 1975

84

Programming Lab

Your Machine Language Program

Address Code Label Mnemonic Comments

All mnemonics copyright Intel Corporation 1977 and 1975

85

Microprocessors: A Short Course

Your Machine Language Program (Continued)

Address Code lLabel Mnemonic Comments

All mnemonics copyright Intel Corporation 1977 and 1975

86

Programming Lab

Your Machine Language Program (Continued)

Address Code Label Mnemonic Comments

All mnemonics copyright Intel Corporation 1977 and 1975

87

Microprocessors: A Short Course

Guide for Problem 1

The General Qutline. The general outline for this problem is fairly simple and straight-
forward. You will have to initialize the data for the green light and output it to a port.
Then get a 30-second time delay. Turn off the green port, initialize and output the
yellow port, and get the 10-second time delay. Third, you will have to turn off the
yellow port, initialize and output the red port, and get the 20-second time delay.
Finally, you have to repeat the entire process.
The outline could be as follows:

1) Data for green on.

2) Output to port.

3) Get 30-second delay.

4) After 30 seconds, turn off green.

5) Data for yellow on.

6) Output to port.

7) Get 10-second delay.

8) After 10 seconds, turn off yellow.

9) Data for red on.

10) Output to port,

11) Get 20-second delay.

12) After 20 seconds, turn off red.

13) Loop.

The Refined Outline. The refined outline should identify the parts of the machine you
will use in each step. For example:

1. Data will be moved to A and should be 377s to light all lamps for a specific port.
2. The ports should be Port 2 = green, Port 0 = yellow, and Port [= red.

3. You will need three time-delay routines.
4.

Data will be moved to A and should be 000s to turn the lamps in that port off.

The refined outline should look something like:
1. Load 377s into A.
2. OQOutput A to Port 2.
3. Get 30-second delay.
a. Load delay loop count into B.
b. Load 2 counter bytes into RP D-E.

c. Decrement count by I.

88

Programming Lab

d. Move upper byte from D to A.

e. OR A and E.

f. If result equals zero, continue; if not equal zero, go back to 3-C.
g. Decrement B by 1.

h. Move zeros into A.

s

Compare B and A.
j. Equal continue; not equal, go back to 3-b.

k. Return to main program.

4. Load 000g into A.

5. Output A to Port 2.

6. Load 377s into A.

7. Output A to Port 0.

8. Get 10-second delay (same as 3 except 3-a small).
9. Load 000s into A.

[0. Output A to Port 0.

[1. Load 377s into A.

[2. Output A to Port I.

[3. Get 20-second delay (same as 3 except 3-a slightly smaller).
4. Load 000g into A.

[5. Output A to Port 1.

16. Jump back to I.

It should be noted that this program could be one continuous program listing or could
contain three CALL statements to get the time delays. Since it is usually easier to
debug short routines, you should use the CALL statements.

All mnemonics copyright Intel Corporation 1977 and 1975

89

Microprocessors: A Short Course

The Flowchart. The following basic flowcharts shown in figures 2 and 3 represent one
possible method to solve this problem. Note the new symbol that stands for a predefined
process. The time delay flowchart is for a basic timer, and the data for each time delay

cycle will have to change.
START

1 A 377

8
2
30 SEC
3 TIME
DELAY
4 A4000
5

GREEN LIGHT

Figure 2. Basic Flowchart

90

3A

3B

3C

3D

3E

3F

3G

3H

3l

3K

CALL

B4€COUNT

&

D4DATA
E €@DATA

4

D 4D-1

A€D

AVE

NO

YES

Ag0
B ¢B-1

Programming Lab

RETURN

Figure 3. Basic Timer

91

Microprocessors: A Short Course

Now you can start to code the flowchart into Assembly language. This step should use
the symbolic addressing at the present time. This section contains the lamp routines,
with the appropriate CALL statement for the time delay subroutine. The time delay
subroutines will follow this section.

MAIN PROGRAM

Step Label Operand Arguments Comments
1. START MVI A 377 377 in A.
2 ouT 002 Output Port 2.
3. 30-sec D CALL Get 30-sec time delay.
4. MVI A 000 Zero in A.
5. ouT 002 Output Port 2.
6. MVI A 377 377 in A.
T ouT 000 Output Port 0.
8. 10-sec D CALL Get 10-sec time delay.
9. MVI A 000 Zero in A.
10. ouT 000 Output Port 0.
11. MVI A 377 377 in A.
2. ouT 001 Output Port 1.
13. 20-sec D CALL Get 20-sec time delay.
14. MVI A 000 Zero in A.
13, ouT 001 Output Port .
16. JMP START Go back.
BASIC TIME DELAY
Step Label Operand Arguments Comments
3a START MVI B NNN Count in B.
3b LOOP | LXID 377 377 Count in D-E.
Jc LOOP 2 DCX D D-E minus .
3d MOV A, D Move D to A.
3e ORA E OR it with E.
3f JNZ LOOP 2 Not zero, go back.
3g DCR B B minus 1.
3h MVI A 000 Zero in A.
3i CMP B Compare B and A.
3] JNZ LOOP 1 Not zero, go back.
3k RET Finished, get main program.

All mnemonics copyright Intel Corporation 1977 and 1975

92

Programming Lab

As stated, this is the basic time delay routine. The argument field for 3a (NNN) will
vary, depending on the number of total loops required for each time delay. To help
you figure this delay, the program listed requires about 1.7 seconds to run from 3b

through 3k. You will have to supply the number of times (NNN) this program will

have to run.

The Symbol Table and Machine Language Program. All of the required information
has been provided in the Assembly language listings for you to complete these two
sections yourself. Therefore, you can assign the required addresses for the symbol table
and then list the instructions and codes in order. After you have completed the
programming, enter and execute your program.

Summary

In this lab you have applied your knowledge about programming to solve a problem
statement. You generated the general outline of the problem and refined this outline to
state all the conditions. Then you developed a flowchart for the refined outline. From
this flowchart, you were able to generate a simple Assembly language program. Finally
you coded the program, assigned address locations to the instructions, entered the
program, using the trainer, and executed the program,

93

The Assembled CPU Lab

Purpose

This lab provides you with the opportunity to identify microprocessor support circuits.
This identification includes chip-pin number location, circuit connection, and function
within the system.

Objectives

e To identify circuiit components
e To identify circuit connections

e To identify circuit functions

Equipment

e MMD-2 Mini-Micro Design/ Trainer

Introduction

By now you should be familiar with several microprocessor support circuits and the
8080 microprocessor itself; but do you know how these individual components combine
to form a microcomputer, how to decide which integrated circuit (IC) pin is number 1,
or what the schematic diagram of a microcomputer looks like? These and other
questions will be answered in this lab. The schematic diagrams appearing in this lab are
reprinted with permission from E & L Instruments, Inc.

Procedure

All integrated circuits will have either a notch located at one end with pin 1 the first
pin immediately to the left of this notch, or, in addition to the notch, some ICs will
have a small circular indentation next to pin 1. All ICs on your MMD-2 have notches
at one end.

The pins are numbered in a counterclockwise system. For example, a typical 14-pin IC
would have the pins numbered in the following manner:

Notch
| - ~ - 14
2= ~ 13
34 — 12
4 — 11
5 — 10
6 — — 9
7 ~ 8

94

The Assembled CPU Lab

Step 1. Locate and identify the following pins on the 8080 as shown on the CPU and
MEMORY schematic diagram (figure 4). Compare your answer with the Answer Key
at the end of this lab.

NOTE: The notch and numbering method apply to the actual IC and will not apply to
schematic diagrams.

Address 1
Address 5

Address 15
Data |
Pata 5
Data 7
WR
+ Sv

N RN~

Step 2. Locate the 8228/38 (IC15) on the CPU and MEMORY schematic diagram
(figure 4). This is the SYSTEM CONTROLLER for the 8080. Now locate and identify
the following pins on this IC. Compare your answers with the Answer Key at the end
of this lab.

1. Memory Read

Data Bus In

2

3 Bidirectional Data Bit 4______
4. Hold Acknowledge

5. System Status Strobe

Question. The System Status Strobe is generated by IC
pin_ ThislCisan____ and its function
is . (14, 7, 8224, clock generator)

Step 3. Locate ICs 24 and 26. These are the 1K x 4 read/write memories.

Question. Which pin is the Write Enable signal? (10 on both)
Question. Which IC contains the low-order nibble (bits 0 through 3)? (26)
Step 4. Locate ICs 16 and 17 on the CPU and MEMORY schematic (figure 4).

Question. What are the functions of these two 1Cs?

(address bus drivers/buffers)

Step 5. Look at the KEYBOARD/DISPLAY CIRCUIT schematic diagram (figure 5).

Question. 1C 11, pin 6 is active. Which display is enabled? (D6)

Step 6. On the top right side of the schematic (figure 5) for the KEYBOARD]DISPLAY
CIRCUIT s the pin number and alpha designation for each section of the seven-segment
display. The numbers in parenthesis are the pin numbers for that segment of the display.

95

Microprocessors: A Short Course

Question. 1C 12 has the following pins active: 1, 2, 9, 12, and 14. What is the character
being displayed? (E)

Step 7. On the MMD-2 trainer, locate the following 1Cs:

8080
2708
2111A
2114
8228/38
8279
741574
CA3081

Sosiehibvas Loy e

When you locate each of these ICs, you should note the physical characteristics of each
of these devices. These should include the size, number of pins, and type of
construction material (plastic or ceramic).

Note that ceramic is a much better heat conductor than plastic. Therefore, on certain
ICs that require more stability or that perform a greater amount of work, the
construction may be of ceramic.

You should become familiar with these types of configurations to help you when
working with future systems.

Study the schematic diagrams shown in figures 4 and 5 and see if you can trace the
various connections on the printed circuit board (the MMD-2).

In general, become familiar with the drawings, assembly configurations. and functions
of the various circuits.

See if you can trace the operation and flow of various signals.

Summary

In this lab, you were shown partial schematic diagrams of the MMD-2 trainer. These
arc typical schematics showing the various circuit symbols. connections, and
operational characteristics for a specific microprocessor system. You also saw or noted
the size, shape, and construction of various 1Cs including the 8080. ROM, RAM, and
system controller.

In this lab, you identified various circuit components, connections, and functions. You
were able to locate pin | of various 1Cs, circuit connections for address and data lines,
and the functions of various circuits.

In this lab, you learned the operation of various circuits by tracing the circuit data

flow. You learned how to identify pin | on these ICs. You also learned how the
various circuits are connected to form a microcomputer.

96

The Assembled CPU Lab

MEMW
RAM 374/034

P10 [15|BA9| A9

P10 | 14| BAB!

jrefsfas} 2
[rrofre]oac] Yo
[reofoofnc}——=
jrefsfo} ——

>
8

ic2a
214

1]

=01

1]
1

i

2]
=]
L£]
R\‘ &
|-

el e

| WE
Em BUSRQ HOLD o RAM 07340
= WMEMW
saso— lascs Wwe
8asg— 1618
1 458
INT 80— a7 oy
A6 2114

01

f
L

i
F

T

EE YS RESET
*OPTIONAL PENDING
XTAL USED
SYS RESET

o

£
>

f

2

23]
o] o]
Hib
E

1/02

@

1ACK HOLD LED

CR-26
o) o]

RESET
PB. 1 10 LAST DESIGNATION USED ON SHEET 4
s2 SEE SHEET 7 FOR CONTINUATION

1c20 R67

74504 126

CR29
cs

Figure 4. CPU and Memory Schematic Diagram

97

The Assembled CPU Lab

13]14]1
oA cB Al
i :
2 ivee 1c10 ano |2
745142 <,
0.4, 72 3
1] 2[3] a
1] 2| 3| 4 1 Nl_u 4
12 5
800 O DBO 2
14 7 K1 6 K2
801 O oB1 DATA S| Fune
7
802 O W 0Bz Rz KEYPAD KEYPAD
1 8 5
803 O- 5 oes mu3 |2 B
i 5
8D4 O- DB4 RL4
i 6
805 O- DBS ALS
18 7
BDG O- DB6 RLE
807 O 9 og7 Au7 |2
+5A o= 5A
01 R27 R31 R3S R39
o 22k 22kQ 22kQ 22K
02 o——3 ok 5
W o Wl = az R29 R33 R7 S | Rar
= o i3 22k2 22k 22K9 22k2 D | 22k R
outo——U W 7
p cc fo 102 A NN,
sroo——Z op g2), Ra0
mo——2al G 22 102 A A A
9 33 1 1c1 o
SYS RESET O————— RESET 7 109
gl s L & qms € 3 ANV
s 1109
3 enre 3 R3a WV
2 s 108
Vss siaf® Bl 4 oz NN
= 4 1100
=a
wls 5 3 0 A%
o 3 1100
2 = VN
2 1109
1 53 A%
ol 100 a1 Q2 Q4 as os \V a7 a8 Q9
L 22005 2N2905 2N2905 2N2905 2ves 22905 2n2905 2N2905
8279 Te
=a
+5A
ul 3 | 3 ul 3 u] 3 ul 3 ul 3 | 3 ul 3
Vec 4%
H.S D1 02 03 04 5 o5 o7 8 D9
Raa a5 Ras RS0
_— » ||._u| WNN o W 2% ke W 2ok |k TiL32 L3 L2 TIL312 L2 nL3n L3z TiL32 L2
— ’D sof | a F_GRD F G RD rol [A F G RD
= Ra3 Ra5 Re7 Ra9 2 0 0 Bp z fol La
22kQ 22k0S | 22x0S | 22ke ic12 RS1 1[13[10] 8 7] 2[1] o 8] 7] 2[1] o] 1]=| 0] 8] 7[2[1] o]]3] 0] 8] 7 2[11] o 1[13[10] 8] 7[2[41[= __Ei-un:n IEEEEEBEED 1[1a[10] [7] 2[1] o] 1] e[10| 8] 7] 2[11| o
CA3081 29
g T :
B1 S ——— +
RS2
B2 M
83
ol
%
M

nH. TANT CaP Figure 5. Keyboard/ Display Circuit Schematic Diagram

10MFD

20V
GND A

Reprinted courtesy of E&L Instruments, Inc.

99

The Assembled CPU Lab

Answer Key

Step 1.

26
31
36
9
4

G0 o3 O WAL B =
D — O
S o0

w
s
@
=
[N)
gl

AWk -
—_— b h B

101

D/A Conversion Lab

Purpose

This lab will have two purposes. The first will be to introduce you to the digital-to-
analog circuits and operation, as configured on the Experimental Interface Designer
(EID-1). The second will be to enable you to program this typical digital-to-analog

converter.

Objectives

e To identify the functional operation of a D/A converter

e To generate, enter, and execute a simple D/A conversion program

Equipment

° MMD-2 Mini-Micro Design/ Trainer
e EID-1 Experiment Interface Designer
e MMD-2 to EID-I Interface Ribbon Cable

Introduction

The Experimental Interface Designer (EID-1) contains the required circuitry for you to
write programs for both D/A and A/D conversion processes.

The D/ A circuits consist of a D/A converter and an analog DC meter representing one
type of loading device. A DC motor is also supplied as a second loading device. Since
this motor is DC-operated, its speed will depend on the amount of voltage applied to
it. Therefore, it is a variable speed motor. (See figures 9 and 10.)

The A/D portion (used in following labs) consists of a photocell, a temperature sense
circuit, a linear slidepot, and a hardware-constructed A/D converter similar to those
previously studied. The photocell, temperature sense, and slidepot are independent
analog inputs that are switch selectable (S2). (See figures 11 through 13.)

The EID-1 also has an eight-position DIP (Dual In-line Package) rocker switch that is
connected to the I/O Bus and an output port with red, yellow, and green LEDs as
displays. The red LEDs are the two most significant bits, and the green LEDs are the
first three least significant bits. (See figure 7.) Each circuit (A/D, D/A, input, and
output) is independent of each other. The interconnection of the circuits is controlled
by the programs you are about to develop.

102

D/A Conversion Lab

Digital-to-analog converters, as you should know, are devices that will convert (change)
a digital (on/off) input signal into an analog (variable) output signal that can control
some process. This process could include speed or position control. This lab allows you
to develop a program to control the rotational speed of the DC motor.

Procedure

The locations of the analog devices and controls you are about to use are as follows:
(locate each as it is described)

In the bottom center of the EID-1 is the eight position input DIP switch labeled S3. (The
switch numbered 1 is the MSB.) To the right of this switch (in the lower right corner)
is the position sensor. This is labeled R39 and is the slidepot. The solder connections

for the slidepot are located above it and are labeled GND, WIPER, and + 5V. Now,
look at the device located just above the solder joint labeled WIPER. This device is
labeled Alternate Light Devices and is the photocell. Directly above the photocell is a
black plastic transistor labeled Q3. This is the temperature sensing device.

Now, to the right of the photocell is a four position slide switch labeled S2. This switch

is located along the right edge of the EID-1 and selects the analog input device. The top
position selects the temperature sensor, the second position down from the top selects
the photocell, the third position selects the position sensor, and the fourth position
“opens” the analog section. When the fourth position (bottom) is selected, the meter
and motor will indicate maximum conditions. This position should NOT be used
during any of these labs.

Located just above the device select switch (S2) is another switch labeled S1. This is
the motor on/off switch. When the switch is in the left position, the motor is on.

Now, perform the following steps to connect the EID-1 and perform the lab experiment.

Step 1. Interface Connection

WARNING: When connecting or disconnecting the MM D-2 and EID-1 together, the
following practices MUST be observed to prevent damage to the equipment, the
cireuits, and vourself.

I. MMD-2 Power must be OFF.

2. CARE must be taken when CONNECTING or DISCONNECTING interface
cable connectors.

The interface cable has a 40-pin receptacle (female) connector that plugs into the 40-pin
plug (male) connector mounted on the EID-1.

The other end of the ribbon cable also has a 40-pin connector that connects to a
printed circuit card. This PC card is called a “paddle card” and contains the circuits for
generating several required STD bus interface signals.

103

Microprocessors: A Short Course

—p-+12
J1-10
< 4
In| 340T Out +5 A
-5 |
Gnd o 10 mfd

hi = Tant
AG
< J1-12
» -12
i in[320T
n | Out 5A
ZHE.
T T ™
AG
J141 » Gnd
AG

Figure 6. EID-1 Power Connections Schematic Diagrams

Reprinted courtesy of E&L Instruments. Inc.

104

D/ A Conversion Lab

AU CSIUDUNIISUL R3] JO ASDIN0D pautiday

s110d O /1 'L 2an31g

€LE N0

Ll
v0 €L€ Ul

) v m@ hT

— M —D - 00~ PR
oLy o_:wx Emo.% £ . ¢)
—" VWV @ m 9 A 6 o >]
BOLy L wo A= 2d80- §.STwL GOEYL z
—A N/ ﬂ > 20 =— T R
Wy Pl £ L zL
BOLy Zwo £d8 O £
) > £0 - 8

L z £l vl
BOLy €I18A
zL 5 8 ol
puo G+ pun G+
S+ —9
£l v m_H ﬂ_F

d8 0— v

6
DYV~ - T
BOLY ¥ I19A mn_mollom” L £ z s
.vI\/\/\/\lll@I:l -+ G0 - T A
B 0Ly S IPA 9dg 00— 9 6 ol

Si| GLS1vL S9EVL 9

Y

. £ el) zl S 1
B0y 9o > Ldd O D ,
s R TATAY, (8] > /(] - o}
oL (= z el vl ',

U 0Ly Lpa3Y

YorIMms
zL g 8 ol
puo A E G+ pug G+ dia

105

Microprocessors: A Short Course

+5
|16
I ITET I S@cs ! C -
5
e 15 Lo -
Out] J1-13 > 6
A7 | J1-16 12
7
A6 | J1-18 1
A5 [J1-20 6
| ' [74155
Ad @——5 7430 Jo- |
A2 | 41-26 343 h -
1 11
Al | J1-28 > 10
N 9
A0 [J130 >
B
Gnd

Figure 8. EID-1 Device Decoding

Reprinted courtesy of E&L Instruments. Inc.

106

In 373
In 372
In 371

In 370

Out 373
Out 372
Out 371

Out 370

45 P 12
| 13] |3
2
D7 2 :g {ms8
D6 741875
- 6 10 6
D4 7 9 7] DAC-08
8 or
4|13| l NE-5007
| Gnd
+5
2 16
D3
Do 3| 74Ls75 [15 9
o 6 10 10
7 9 11
DO LSB
12
9 gl 4|13 | 15 |1
U Gnd
10k
Qut 370 1%
AG AG

16

\ |

AG

Figure 9. EID-1 D/A Converter

Reprinted courtesy of E&I. Instruments. Inc.

107

D/A Conversion Lab

A out

Microprocessors: A Short Course

+12

From D/A
converter

1 k Thumbwheel
{(under board)
0~ 5md

E + L meter

Motor +12
on
S1
47 1/2 w
1 k&2
2N3055
\5 @
_J —4— 10 mfd
= 1 P “T~ Tant
f]"\
N4003
(M ZS1 00
AG AG AG AG

Figure 10. EID-1 Motor and Meter Circuit

Reprinted courtesy of E&I. Instruments. Inc.

108

D/A Conversion Lab

+5 A

10k -5 A—ANAN\~—15 A
1% 10k
thumb
pot

— *Mounted
5 under

10k 1% board

Ambient
Sensor oN3642

47 k
5% 1k

AG

| To
“temp”’
AG leg
of S1
1% AG
/)
Student 2n3642

sensor
10k

1%
+5 A

Calibration 1) Turn on
2) Warm up 5 min
3) Adj pot to yield +2.0 VDC at
“temp’’ leg of S1
4) Seal pot with glyptol

Figure 11. EID-1 Temperature Circuit

Reprinted courtesy of E&L Instruments, Inc.

109

Microprocessors: A Short Course

EBIAM L e oS oa SRS B -
From
lf_templl
Alternate circuit
devices
—_— — — Feey b e — . i ”Temp"
“Light” To A/D
o)
52 converter
100 k2
“Position” 0 °
OPEN
AG
+5 A
“100 k"
e slide pot
AG

Figure 12. EID-1 Light and Position Circuit

Reprinted courtesy of E&L Instruments. Inc.

110

D/A Conversion Lab

sunoa) [engdiq 01 oreuy ‘¢ aindig

aNo

DU CSIUAWNLSUL T[RH JO ASIN0d pauniday

anNo S anN9 S+
ot — s z oL s
<_ OL-Lr
6L < £6vL o
a 2 a8 v
[] 6 a0 n 8 [
R —— vl_
n— E%
zZL
5 LLE LNO
3 ano %
v t] m _» \
u u
0
o :
————T
o i
anp OLENI
G -
) L
z
1
L9802
9 L1540
HidimOL
oL
o
5
m.,_M s| o] ¢ =
asw
411"
_.|| 80ava
o
€ L £l St
H{ ov Zis

111

Microprocessors: A Short Course

When connecting the ribbon cable connectors, be sure the pin alignment (pin 1 to pin
1) and all others are correct to avoid bending the connecting pings. Pin 1 has a small
arrow molded on the plastic connector.

The paddle card also has a 56-pin card edge connector (male) that connects to the
MMD-2. The MMD-2’s 56-pin connector is located on the left-side chassis. Again, be
sure of the pin alignment before insertion.

Step 2. After you have verified the interface connections, apply power to the MMD-2,

Step 3. Write a program that will continuously input from the DIP switches and
output to the port.

The input and output port address is 373.

Code Mnemonic Comment
LOOP A s IN Input 373.
e e ouT Output 373.
JMP LOOP Go back.

This program will output to the LEDs the bit positions representing the switch setting.
Execute the program. As you SET and RESET the various input switches, verify the
corresponding output LED is lit.

Step 4. Turn the MOTOR switch off. Modify your program to output to the D/A
converter. The program should now look like:

Address Code Mnemonic Comment

003000 333 IN Input 373.

003001 373 373

003002 323 ouT Output 373.
003003 373 373

003004 323 ouT Output 370.
003005 370 370

003006 303 JMP Go back to 003000.
003007 000 000

003010 003 003

Step 5. Place all of the DIP switches in the OFF (zero) position.

The eight DIP switches represent an 8-bit binary number. When the program is
executing, it runs in an endless loop and continually reads in the binary number on the
switches; then it displays it on the eight LEDs on the interface board; and finally, it
outputs the binary number to the D/ A converter. The analog output of the converter is
measured by the small voltmeter on the interface board.

The leftmost bit of the binary number and the DIP switch is the most significant bit.
When it is on, it represents 5.0 volts. The next bit to the right is the next most

All mnemonics copyright Intel Corporation 1977 and 1975

112

D/A Conversion Lab

significant bit, and it represents 2.5 volts, or exactly one-half of the value of the most
significant bit. Each bit to the right represents a voltage that is one-half its left
neighbor. The following table shows what voltage each switch or bit position
represents:

Switch or Bit Voltage (in volts)
8 5
7 2.5
6 1.25
5 0.62
4 0.3125
3 0.15625
2 0.078125
1 0.0390625

Starting with the least significant bit, each succeeding position is twice as large as the
previous one. This is exactly like binary coding except that the least significant bit,
instead of representing a one, represents 0.0390625 volts.

Now suppose that switches | through 6 were all set to zeros, and switches 7 and 8 were
set to ones.

Question. What voltage would you expect to find on the meter?

(7.5 volts)

Step 6. Set switches 1 through 6 to zero and switches 7 and 8 to 1.

Question. What do you observe on the meter?

(7.5 volts)

Just as in a binary number, each bit position represents a binary weight to be added
“in” to form a resulting number, each position for the D/A converter represents a
voltage weight that will be summed by the converter to form the resulting analog
voltage. Since only switches 7 and 8 are ones in this case, the voltage weights that these
switches represent (i.e., 5.0 volts for switch 8 and 2.5 volts for switch 7) will be
summed to get the final result, 5.0 + 2.5 = 7.5 volts.
Step 7. Try the different combinations of switches shown below.
Switches Voltage
87654321

A) 10100000

B) 01100000

C) 01100001

D)y 1110111t

113

Microprocessors: A Short Course

Question. What was the difference between B and C?

(B and C are only 0.0390625 volts apart, and we could not observe this small difference
on our meter.)

Question. What was D?

(Actually, D is the sum of all possible voltage weights, or
50+25+ 1.25+ .625+ 3125+ 15625 + .078125 + .0390625

which all adds up to 9.9609375 volts. The sum is so close to 10.0 volts that you can’t
detect the difference on our meter.)

Question. Can you see how to generate a voltage that is as close as possible to any
voltage between 0.0 and 10.0 volts?

(Yes, by setting the various combinations of the switches, you can generate almost any
voltage between 0.0 and 10.0 volts.)

Step 8. Generate the voltage that is closest to 4.0 volts.

Question. Which switches should be set to ones and which should be zeros?
Switches
87654321

(Switches 7, 6, 3 and 2 to one and all others to zero. This adds up to 3.984375 volts. If
we wanted a voltage a little larger than 4.0 volts, we could have made switch | also a
one. That would have given us 4.0234375 volts which is not as close to 4.0 volts as
3.984375. With just switches 7, 6 and 4 as ones and all the rest zeros, we would get
4.0625 which is still further away from 4.0 volts, but not by much.)

Step 9. Set your switches to generate the following voltages:

Switches
Voltage 87654321

S
1.0
2.6
3.0
6.5
7.0
8.0
9.5

114

D/A Conversion Lab

Step 10. Turn the MOTOR switch on.
Set the DIP switches to read 377g (all ones).
Record the meter reading.

This reading may be slightly lower than the 10 volts previously read due to the current
losses in the windings of the motor. However, the motor is buffered, which keeps most
of this loading from affecting the circuit.

Step I1. Set all the DIP switches to zero. With the MOTOR switch ON, gradually set
the switches until the motor starts to run. Record the value as read on the EID-1
meter._ Try it several times to verify your reading. The value should be
approximately 2.5 vdec.

Then, with the motor running, gradually decrease the voltage applied by resetting the
switches until the motor stops. Record the value as read on the EID-1 meter.
— Try it several times to verify your reading. The value should be
approximately 2.0 vdc.

What you found in the first part of this step was the initial start-up voltage of the
motor. This is the “force” required to overcome the stationary conditions of the motor.
This stationary condition is called inertia. As you can see in the second part of this
step, once inertia has been overcome, the motor will run at a lower voltage.

Remember, this motor does not have a load on it; therefore, the inertia is lower. If the
motor were attempting to drive something, the inertia of this load would also have to
be considered.

Step 12. Modify the first two address locations of your program to read

076 MVI A
200

Execute your program.

Question. What does the meter read now? (5 volts)

Step 13. Modify address location 003001 to result in a voltage of 10.

Execute the program.

Question. What is the value in A? (377)

You have now used the microprocessor to control the output of an analog device,
using two methods. The first was a switch input to set the bit on the output device.
The second method (steps 12 and 13) loaded the A register with a digital value and
output this value to the D/A converter.

As you remember, one of the functions of a D/A converter could be to control the
speed of a motor. For example, the fluid control during a chemical process may
require the pump to gradually increase the flow until the maximum flow is reached.
When the required amount of fluid has been reached, the pump must gradually
decrease until it is shut off, or it may be required to maintain a minimum flow.

All mnemonics copyright Intel Corporation 1977 and 1975

115

Microprocessors: A Short Course

Step 14. Write a program that will monitor the LSB on the DIP switch. When the
switch is turned on, the microprocessor will control the motor speed by slowly
increasing the speed until a specified maximum output (speed) is reached. It will
maintain this maximum output until the switch is turned off. When the switch is
turned off, the motor speed will slowly decrease until a specified minimum speed is
reached. It will maintain this minimum output speed until the switch is toggled on
again.

The flowchart (figure 14) on the next page represents the program you should write.
The following guide will help you to write this program. Finally, the entire program is
listed at the end of this guide.

The Guide

The first part of your program should be the swirch monitor routine. This section
should input the switch input port and look at the settings. If they are correct start the
main program. If not correct, go back and look again.

Step 15. Write this routine and compare it with the program listing, or complete the
comment section of the program listing. The program listing is located at the end of
this lab.

Address Code Label Mnemonic Comment

All mnemonics copyright Intel Corporation 1977 and 1975

116

D/A Conversion Lab

START

LY

MONITOR
SWITCH

NO
YES

INCREASE

MOTOR
SPEED (SPEED) 4 (MAX)

MAINTAIN
MOTOR
SPEED

YES
[N

DECREASE
MOTOR
SPEED

(SPEED) % (MIN)

YES

N

MAINTAIN
MOTOR
SPEED

Figure 14. Flowchart for Motor Control

117

Microprocessors: A Short Course

The second part of your program should be the moror on—increase speed routine. The
following conditions should be met:

e Maximum speed count to a register

° Minimum speed count to another register

e Start increasing speed count

® Output the speed

° Get a time delay routine to control speed rate

® Compare present speed to maximum speed

e If equal. go monitor switch again; if not, go back and increase speed.

You should also note that you want to be able to alter the speed count so you can
reach maximum speed faster without having to change the time delay.

Step 16. Write this routine and compare it with the program listing, or complete the
comment section of the program listing.

Address Code Label Mnemonic Comment

All mnemonics copyright Intel Corporation 1977 and 1975

118

D/A Conversion Lab

Address Code Label Mnemonic Comment

The third part of your program should now check to determine if the switch has been
turned off. 1f it has not been turned off, continue to output maximum speed. If it has
been turned off, start to decrease the speed.

Step 17. Write this routine and compare it with the program listing or complete the
comment section of the program listing.

Address Code l.abel Mnemonic Comment

119

Microprocessors: A Short Course

The fourth part of your program should be the moror decrease speed routine. The
following conditions should be met:

° Minimum speed count to a register

® Start decreasing the speed

e Qutput that speed

® Get a time delay routine to control speed rate

° Compare present speed to minimum speed

e If equal to or less than minimum, go monitor switch again; if not equal, go
back and decrease speed some more

Again, you want to be able to alter speed count without having to change time delay.

Step 18. Write this routine and compare with the program listing, or complete the
comment section of the program listing.

Address Code Label Mnemonic Comment

All mnemonics Copyright Intel Corporation 1977 and 1975

120

D/A Conversion Lab

Address Code Label Mnemonic Comment

The fifth part of your program should monitor the switch again to see if it has been
turned on again. If it has, start the whole process over again; if it has not, maintain
minimum speed.

Step 19. Write this routine and compare with the program listing, or complete the
comment section of the program listing.

Address Code Label Mnemonic Comment

All mnemonics copyright Intel Corporation 1977 and 1975

121

Microprocessors: A Short Course

Finally, you need to write the time delay routine. This routine should save the present
speed count. Load a register pair with the time count and start counting down. When
the time is up, go back to the main program.

Step 20. Write this routine and compare with the program listing, or complete the
comment section of the program listing.

Address Code Label Mnemonic Comments

Step 21. Enter and execute the program. Verify its operation. (Don’t forget to set DIP
switches to zeros and the MOTOR switch ON before starting program.)

Does it meet the following specifications?
1. No output until switch (DIP) is turned on?
2. Slow increase in speed until maximum?

If switch (DIP) is turned off as soon as motor starts, does the speed continue to
increase until maximum, then to decrease speed slowly?

All mnemonics copyright Intel Corporation 1977 and 1975

122

D/A Conversion Lab

4. If switch (DIP) is left on, does the motor maintain maximum speed?
5. When switch (DIP) is turned off, does motor speed decrease slowly?

6. If switch (DIP) is turned on as soon as the motor starts decreasing speed,
does the motor reach minimum speed before increasing again?

7. If switch (DIP) is left off, does the motor maintain the minimum speed?

8. When switch (DIP) is turned on again, does motor speed start to increase?

(Your answers should be yes to all questions.)

Now let’s take a look at some of the possible applications of this program. For example, a
security device, such as a combination lock, could be developed. Forexample, you could set
the initial compare value to some code other than bit position 1 (location 3003 in the
program listing at the end of the lab). Remember, by doing this, the codes would have to be
the same before the motor would start. Unless you know what the code is, it will take a rather
long time to set and clear all the various combinations of switch settings.

Want to try it? Here’s one method you can use.

Cover the data display so you can’t see the codes. Select address location 003003, Put
your hand on the DATA INPUT keyboard and move your hand around slightly. This
should cause some “random number” for data in. Enter that data (don’t look at the
display) and execcute the program. Now start setting the various switch patterns to see
if you can find the setting that will start the motor.

To increase the security of this code, you could start the program with another
compare looking for any switch ON, and then have a time delay look for the correct
code within that time; if not received, stop the microprocessor.

Other examples of applications are:

® You could increase the number to be added to the output level (location
003014). This causes the motor to “step up” to speed. Changing location
003047 causes the motor to “step down.” In both cases, the motor stabilizes
at each step (time delay routine) before the next step.

® You could have the motor “jump” to maximum speed (or minimum) and
slowly decrease (increase) by altering the same location (3014 or 3047) or
change location 003012 for “jump to max.” Since the maximum speed is
already in the contents of A, “jump to min” would have to be the subtract
number.

® You could have the motor maintain a smooth but fast “start-up and slow
down™ by altering the time delay count. Another time delay would have to
be written if you wanted one of these to be slow (slow start up, fast down, or
vice versa).
Feel free to make any of these alterations to the program if you want. Don’t hesitate to
experiment.

123

Microprocessors: A Short Course

Program Listing

Address Code Label Mnemonic Comment
003000 333 LOOP 1 IN

3001 373

3002 376 CPI

3003 001

3004 302 JNZ LOOP 1

3005 000

3006 003

3007 006 COND MVI B

3010 301

3011 076 MVI A

3012 001

3013 306 LOOP-2 ADI

3014 001

3015 323 ouT

3016 370

3017 315 CALL

3020 350

3021 003

3022 270 CMP B

3023 312 JZ NEXT

TEST 1

3024 031

3025 003

3026 332 JC LOOP 2

3027 013

3030 003

3031 323 NEXT ;
TesT1 Y%

3032 370

3033 117 MOV C, A

3034 333 IN

3035 373

3036 376 CPI

3037 000

3040 171 MOV A, C

3041 302 JNZ NEXT

TEST 1

3042 031

3043 003

3044 006 MVI B

3045 012

3046 336 LOOP 3 SBI

3047 001

3050 323 ouT

3051 370

All mnemonics copyright Intel Corporation 1977 and 1975

124

Address

3052
3053
3054
3055
3056
3057
3060
3061

3062
3063
3064
3065
3066
3067

3070
3071
3072
3073
3074
3075
3076
3077
3100
3101
3102

3103
3104

Address

003350
3351
3352
3353
3354
3353
3356
3357
3360
3361
3362
3363

Code

315
350
003
270
312
067
003
332

067
003
303
046
003
323

370
117
333
373
376
001
312
007
003
171
303

067
003

Code

117
021
050
010
033
172
263
302
354
003
171
311

Program Listing (Continued)

[abel

NEXT
TEST 2

Label

COUNT

Mnemonic Comment

CALL

D/A Conversion Lab

CMP B

JZ NEXT

JC NEXT

TEST 2

JMP LOOP 3

ouT

MOV C, A

IN

CPI

JZ COND

MOV A, C

JMP NEXT

TEST 2

Time Delay

Mnemonic Comment

MOV C, A

LXID

DCX D

MOV A, D

ORA E

JNZ COUNT

MOV A, C

RET.

All mnemonics copyright Intel Corporation 1977 and 1975

125

Microprocessors: A Short Course

Summary

In this lab you were introduced to the Experimental Interface Designer (EID-1) trainer,
which contains D/A, A/D converters, an input port (DIP switch), and another output
port.

You studied the schematic diagrams to see how each of these typical devices is
interfaced to a microprocessor. You also saw how each was configured within its
circuit.

You started the lab experiment by doing an IN/OUT routine and saw how the switches
could control the output. Then you also used these switches to output to a D/A
converter. With this program, you saw how the bit setting (digital) affected the D/A
output (analog); this output level was read on a meter, and a digital bit weight was
found. Then you turned on the motor; by using the microprocessor to generate the
various bit patterns, you saw how this affected the speed of the motor.

Then you generated, entered, and executed a program to turn the motor on when a
switch was set and controlled the speed of the motor with the same program.

Finally, you were able to alter certain parameters in the program to have the motor

perform in different mannerisms. Some of these mannerisms were step-up, step-down,
fast up, fast down, and security on.

126

A /D Conversion Lab

Purpose

The purpose of this lab is to introduce you to one of the programming techniques
required for analog-to-digital converters.
Objectives

e To generate a program to use A/D converters

e To enter and execute a program for use with A/D converters

Equipment
e MMD-2 Mini-Micro Design/Trainer
e EID-1 Experimental Interface Designer
e MMD-2to EID-1 Interface Ribbon Cable

Introduction

As you should know, an analog-to-digital converter is a device that converts an analog
signal (speed, temperature, light intensity, etc.) into a digital signal. The digital signal is
then used by a microprocessor to make a decision.

Located on the EID-I device are three analog type input devices, a temperature sensing
circuit, a photocell for light intensity, and a precision slidepot. Each of these devices is
switch selectable and connects that device to the analog-to-digital converter. When the
microprocessor (MMD-2) is programmed to do so, the A/D converter is an input
device to the microprocessor.

You will use each of the analog inputs and see the effects they have. You will also take
some digital measurements of these devices for use in a later lab.

Procedure

Step 1. Connect the EID-1 to the MMD-2.
NOTE: MMD-2 Power MUST be OFF.

Use care when inserting the ribbon cable connectors to avoid damage to the connector
pins. Also be sure of the pin sequence alignment (pin 1 to pin [).

Step 2. Check EID-1 and MMD-2 connections and apply power to the MMD-2.

Step 3. On the EID-I, select the POSITION SENSOR using the select switch S2. Slide

the position sensor all the way to the left.

127

Microprocessors: A Short Course

When working with A/D converters, several things must be done in sequence in order
to have the A/D input data to the microprocessor. These are:

e A Start Convert instruction

e A Converter Ready status

L] Input data
The Start Convert instruction is an output to the device address. The address you will
use is 371. The Converter Ready status is an input instruction from the device (A/D).

This address is 371. The data input is also an input instruction. The address for this
instruction is 370.

The program to input data from this A/D converter is:

Code Mnemonic Comment

323 ouT Start convert.

371

333 IN Input READY status.

371

346 ANI AND ready with 001.

001

312 JNZ If not zero, device
NNN is not ready. Go back
NNN and check again.

333 IN Input data when ready.

370

The following diagrams for the A/D converter show the analog input devices and the
A/D converter circuit. (See figures 15 through 17).

All mnemonies copyright Intel Corporation 1977 and 1975

128

+5 A

10k
1%

Reference

SeNs0r 9N3642

\

10k

/ 2N3642

Measurement

sensor
10k

1%
+5 A

Calibration 1) Turn on
2) Warm up 5 min

AG

A/D Conversion Lab

-5 A—AAN\—+5A

250 k
1%

1%

3) Adj pot to yield +2.0 VDC at

“temp”’ leg of S1

4) Seal pot with glyptol

47 k
5% 1k
5%
AG

Figure 15. EID-1 Temperature Input to ADC

Reprinted courtesy of E&L Instruments. Inc.

129

Microprocessors: A Short Course

g - 5 O S
From
utempu
! Alternate ircuit
devices
— e VLo = “Temp"’
“Light”o
S2
100 k&2 i
“Position”” ?
@
AG OPEN
+5 A

“100 k"
slide pot

BN L

>
o

Reprinted courtesy of E&I Instruments. Inc.

Figure 16. EID-1 Light and Position Input to ADC

To A/D
converter

A /D Conversion Lab

12119AU0)) [eNB1(]-01-F0jvuy L] 2undig

131

L£ 10
N s ano st
oL S z oL S
£6¥L A!, EB¥L
a o5 & v c
[T N [T I [T C 3
L — _
g st
(38 i
oa < _orir — z LELND
o < eeir f— - :
20 < seir b—1 5
"
z
9 [}
N 4 ouemn
5 e
8] L
va < e |— z
sa i —; v
L9EvL
90 < wwar —
£ 2 15 40
H3dIM OL
ta < Eir [
ai
G+
Ol_w 9 9 [8 6 oL 113
asw
FLETY
_|| 209va
18
£ L £l A3 vl
=l %l
2 ov 2l naoL nx oL
ov

Reprinted courtesy of E&L Instruments. Inc.

Microprocessors: A Short Course

Step 4. Let’s write a program to get data from the A/D converter and display it on the
EID output LEDs (Port 373).

You could use the program as listed above and add an output to Port 373 and jump
back. However, you would find it easier to use a subroutine for the A/D status and
data input. This subroutine will remain constant throughout this lab, whereas the other
programs will change. Therefore, your program should look something like:

Address Code Label Mnemonic Comment
003000 323 ouT Start convert.

3001 371
3002 315 LOOP CALL Get the subroutine
3003 200 at 003200.
3004 003
3005 323 ouT Display to LEDs.
3006 373
3007 303 JMP LOOP Go do it over.
3010 002
3011 003

ANALOG IN SUBROUTINE

003200 333 IN Ready status in.
3201 371
3202 346 ANI Ready there?
3203 001
3204 312 JNZ ANALOGIN No, go back.
3205 200 Yes, go on.
3206 003
3207 333 IN Get data.
3210 370
3211 323 ouT Start convert again.
3212 371
3213 311 RET Go back to main

program

Step 5. Enter and execute the program.

Step 6. While the program is running, slide the position sensor slide back and forth a
few times while watching the Experimental Interface Designer’s LEDs. As you can see,
different binary numbers appear in the LEDs as the position is changed.

The A/D converter works exactly like the D/A converter in the previous lab, except
that it takes a voltage and turns it into a binary number; the D/A converter turns a
binary code into a voltage. Both the D/A and A/D converters on your analog
interface board use exactly the same code:

All mnemonics copyright Intel Corporation 1977 and 1975

132

A/D Conversion Lab

Bit Position Voltage
5.0

2.5

1.25
0.625
0.3125
0.15625
0.078125
0.0390625

Most Significant

—_— Oy Co

Least Significant

When the position indicator is all the way to the left, and all the LEDs are off or
zeros, the voltage is zero. When the position sensor is all the way to the right, all the
LEDs should be on and the voltage is near 9.9609375 volts or, more approximately,
ten volts.

Step 7. Now see if you can set the position sensor to obtain 7.5 volts (bits 8 and 7 on).
Can you set the position sensor to any of the other values? (ves)

Remember though, because the A/D converter ‘works’ in definite steps, there is a slight
amount of play in these settings and may be difficult to obtain exact settings.

Step 8. Set the INPUT switch to the PHOTOCELL position. This is a light sensor.

Question. What is the level in the room as displayed on the LEDs?

(Remember, this reading will vary depending on the various environmental conditions
you are experiencing. For example, fluorescent lamps or incandescent, distance from
the source, etc.)

Question. What voltage does this represent?

Step 9. Cover the PHOTOCELL with your hand.

Question. What is the level as displayed now?

Question. Is the voltage more or less than room light?

Step 10. Set the INPUT switch to the thermistor temperature sensor.

Question. What is the binary temperature as displayed?

Step 11. Put your fingers around the temperature sensor. NOTE: Because there is very
little voltage and current present, you will NOT be affected. However, be careful that
you do not damage the circuit by moving the temperature sensor around. The
component leads could break.

133

Microprocessors: A Short Course

Question. What happens to the binary display as you touch the temperature sensor?

(increase)

Question. When you let go of the temperature sensor, does the display go back to the
old value immediately?

(no)

The light and temperature sensors have some special properties of their own. They do
not always fall smoothly in the range of voltages that we might like. Sometimes it is
necessary to scale them by adding, subtracting, or multiplying and dividing a constant
correction factor. The computer makes this ecasy for us because of its computational
capabilities.

The following program will enable you to see the data (digital) that is output by the
A/ D converter to the microprocessor.

This program will clear the MMD-2’s seven-segment displays, setting them to all zeros.
It will then get the A/D signal input and convert it to the octal/hex code, and display
that value in the leftmost three displays (HIGH address). To do most of these tasks,
the program will use some of the PROM (KEX monitor) program. You will notice the
least significant digit of the reading is not very “stable.” The stability of this digit is
controlled by the time delay routine. The longer the delay, the more stable the
information will become. However, the response time will also become longer. This
means you will have to wait for the reading to settle before recording.

Step 12. Complete the comment field of the following program; then enter and execute
the program.

134

A/D Conversion Lab

Address Code Mnemonic Comment
003000 323 ouT
3001 371
3002 076 MVI A
3003 000
3004 041 LXI H
3005 000
3006 374
3007 167 MOV M,A
3010 054 INR L
3011 167 MOV M,A
3012 054 INR L
3013 167 MOV M,A
3014 315 CALL ANALOGIN
3015 200
3016 003
3017 167 MOV M,A
3020 315 CALL HLDOUT
3021 375
3022 343
3023 315 CALL DELAY
3024 100
3025 003
3026 303 JMP
3027 014
3030 003
TIME DELAY ROUTINE
Address Code Mnemonic Comment
003100 117 MOV C,A
3101 021 LXI D
3102 050
3103 002
3104 033 DCX D
3105 172 MOV AD
3106 263 ORA E
3107 302 JNZ
3110 104
3111 003
3112 171 MOY A.C
3113 311 RET
All mnemonics copyright Intel Corporation 1977 and 1975

135

Microprocessors: A Short Course

The ANALOGIN routine is the one you should have already entered for this lab.
However, it is repeated here so you can verify it.

ANALOGIN ROUTINE

003200 333 IN
371
346 ANI
001
312 JNZ
200
003
333 IN
370
323 ouT
371
311 RET

You can now see the various effects each of the analog sensing devices has. This is
displayed in the same base code you entered your program in (octal/hex). You will
now take some readings, using these input devices. These should be taken as accurately
as possible because you will use them in the next lab. As these readings vary from
environment to environment, there is no standard or correct reading.

Step 13. Set the INPUT switch to PHOTOCELL. Record the ambient room light
(photocell uncovered).
Cover the photocell with your hand and record the reading.

Step 14. Set the INPUT switch to the temperature sensor. Record the ambient room
temperature reading.

Step 15. Put your fingers on the temperature sensor. Record the reading after a few
minutes.

Question. How close to the binary readings yvou took earlier are these readings?

(These readings should be fairly close. However, any differences would be due to length
of time you let the device “settle” before the measurement was taken.)

Step 16. Set the INPUT switch to POSITION SENSOR. Vary the slide on this sensor
while watching the display.

Step 17. Modify the delay count in the time delay routine at location 003103 to
different values. Notice the different stability and response rates.

All mnemonics copyright Intel Corporation 1977 and 1975

A/D Conversion Lab

Summary

In this lab you experimented with three different analog measuring devices. Using an
A/D converter, you entered and executed several different programs to see the digital
data representing the analog output of these devices.

You learned that to get the A/D converter to work, you had to: output a Start Convert

signal; check the Ready Status of the A/D; and if it was ready, input the data. Feel
free to experiment on your own using any of the programs developed in this lab.

137

DAC and ADC Programming Lab

Purpose

The purpose of this lab is to provide you with some experience with programming
DAC and ADC control programs.

Objectives
e To write, code, and document control programs

e To enter and execute the programs on the microprocessor trainer

Equipment
e MMD-2 Mini-Micro Design/ Trainer
e EID-1 Experimental Interface Designer
® MMD-2 to EID-1 Interface Ribbon Cable

Introduction

As vou know and have seen from previous labs, analog signals can be converted into a
digital quantity. Similarly, a digital quantity can be converted into an analog value.
When these two processes are combined and controlled by a computer or a
microprocessor, in a process control application, the A/D is monitoring some process,
and if something changes the A/D will inform the microprocessor. The microprocessor,
in turn, will make a decision about whether or not the change needs corrective action.
If corrective action is needed, the microprocessor will output the change required to the
D/ A device. The D/A will then make the necessary analog change.

Procedure
Step 1. Write a program that uses the position control sensor to control the speed and
output time of the motor. This program should meet the following parameters:

e Start the motor at zero

® Check the position sensor value

e Store this value as a timing byte

e When the time is up, output the value to the motor

e Go back and get the next position sensor value and repeat the process

138

DAC and ADC Programming Lab

This program should require nineteen locations, plus the ANALOGIN and DELAY
subroutines previously programmed in other labs. Put the ANALOGIN routine at
location 003200 and the DELAY at location 003100. The DELAY should be long
enough to ‘see’ the change. Location 3103 should be 100. (Compare your program
with that listed in the Answer Key located at the end of this lab.)

Address Code Label Mnemonic Comments

All mnemonics copyright Intel Corporation 1977 and 1975

139

Microprocessors: A Short Course

Step 2. Write a program that will monitor either the light sensor or the temperature
sensor. Use the coding sheets provided in this lab (next few pages). The following
conditions should be met:

A) With ambient room light/temp, the green lamps (LEDs) on the EID-I, and all
Port 2 lamps (LEDs) of the MMD-2 are on. The MOTOR switch is ON.
(Remember, if you use the light sensor, it will have maximum output with light
and will decrease as it gets darker, and the motor will run at maximum.)

B) With light/temp at a slightly higher setting, the green and Port 2 lamps are off.
The yellow lamp and Port 0 lamps are on. The motor starts tracking input (i.e.,
as temperature continues to increase, motor speed increases.)

C) With light/temp at a second higher setting, yellow and Port 0 lamps are off. The
red lamp and Port | lamps flash, and the motor continues tracking input.

D) With the light/temp greater than, or equal to the value of, a third-level setting,
the red and Port 1 lamps turn off, the motor goes to maximum speed, and the
microprocessor halts.

The threshold settings for each of these parameters should be as follows:
e The A parameter is the ambient value that was recorded in the A/D lab for

the sensor you are using; add a small count to allow for tolerance settings.

e The B parameter is halfway between minimum and maximum values
obtained in the A/D lab for the sensor you are using.

e The C parameter is halfway between B parameter setting and maximum
value obtained in the A/D lab for the sensor you are using.

e The D parameter is the maximum value minus a small count.

Step 3. Enter and execute your program.

Compare your program with the Answer Key located at the end of this lab. This is one
possible solution program.

140

DAC and ADC Programming Lab

Address Code label Mnemonic Comments

All mnemonies copyright Intel Corporation 1977 and 1975

141

Microprocessors: A Short Course

Address Code Label Mnemonic Comments

All mnemonics copyright Intel Corporation 1977 and 1975

142

DAC and ADC Programming Lab

Address Code Label Mnemonic Comments

All mnemonics copyright Intel Corporation 1977 and 1975

Microprocessors: A Short Course

Address Code Label Mnemonic Comments

All mnemonics copyright Intel Corporation 1977 and 1975

144

DAC and ADC Programming lL.ab

Address Code Label Mnemonic Comments

All mnemonics copyright Intel Corporation 1977 and 1975

145

Microprocessors: A Short Course

Address Code Label Mnemonic Comments

All mnemonics copyright Intel Corporation 1977 and 1975

146

DAC and ADC Programming Lab

Step 4. Enter the following program.f

Address Code Label Mnemonic Comments
003 000 041 LEARN LXI H Set pointer to
001 000 * bottom of learn
002 000 * table.
003 323 ouT Clear A/D Converter.
004 371
005 333 A/D IN Do A/D Conversion,
006 371
007 346 ANI Check Status For
010 001 Conversion Complete.
011 312 JZ
012 005 *
013 003 *
014 333 IN Conversion complete,
015 370 fetch movement data.
016 167 STORE MOV M, A Store in learn
017 315 CALL table.
020 037 * END Out of storage?
021 003 * CHECK
022 303 JMP No, fetch next
023 003 * movement.
024 003 *
025 041 MIMIC LXI H Set pointer to
026 000 * bottom of learn
027 000 * table.
030 176 MOV A, M Fetch movement from
031 315 CALL table; has all
032 037 * END movement been
033 003 * CHECK mimicked?
034 303 JMP No, do next
035 030 * movement.
036 003 *
037 323 END ouT Send motor speed to
040 370 CHECK D/A.
041 323 ouT Show binary of
042 373 speed on LEDs.
043 043 INX H Increment table
044 174 MOV A, H pointer. Check for
045 376 CPI end of table.
046 003
047 302 JNZ Not end, wait a
050 056 * TIMER while or we will
051 003 * run through the demo
052 227 SUB A in just a few
053 323 ouT seconds. Done, turn
054 370 motor off.

¥Reprinted courtesy of E & L Instruments, Inc.

All mnemonics copyright Intel Corporation 1977 and 1975

147

Microprocessors: A Shortcourse

Address Code Label Mnemonic Comments
003 055 166 HALT Show’s over.
056 021 TIMER LXID Set up a counter
057 000 to chew up time by
060 004 down counting to
061 172 MOV A, D zero.
062 247 ANA, A Test mechanism for register pair.
063 310 RZ Timer done; Return.
064 033 DCX D Timer not done, down count.
065 303 JMP Repeat timer test.
066 061
067 003

Many microcomputers are used to control industrial processes these days. In some
applications, microcomputers are set up to be self-teaching; that is, an operator guides
some machine through its paces. Meanwhile, the microprocessor is tracking the events
and storing them in its memory. When a special program is run by the operator, the
microprocessor looks up the stored values and, consequently, makes the machine
imitate the procedures the operator did. In one sense, the microprocessor taught itself
what to do by following the actions of the machine operator.

Mimic is a special program that lets you demonstrate the self-teaching aspect of your
microprocessor. The mimic program? is reprinted with permission from the
programmer, Matt Veslocki, E & L. Instruments, Inc. When you execute this program,
you will have about one-half minute to vary the position sensor in any manner you
desire. At the end of this delay, the motor and program will stop. You will now have
taught the microprocessor what you wanted it to learn. When you initiate the mimic
part of the program, it will repeat exactly what you did.

Step 5. Set the INPUT switch to POSITION sensor and MOTOR switch on.
Step 6. Start the program at location 003000.

Step 7. For the next one-half minute, vary the position sensor in any manner or speed
you want.

Step 8. When the program stops, set the address to 003025 and run. The
microprocessor will play back the exact sequence and speed you entered in step 7.

tCourtesy of E & L Instruments, Inc.

All mnemonics copvright Intel Corporation 1977 and 1975

148

DAC and ADC Programming Lab

Summary

In this lab you generated two programs. The first program demonstrated how the
setting of the position sensor could vary the time delay of the start-up speed on the
motor. That is, the output of the A/D converter placed the digital value for the time
delay into the microprocessor. The microprocessor then used this value to set the time
between output signals to the motor.

The second program you wrote monitored one of the sensors and controlled the output
conditions. This program could represent a thermostat control for heating--if the
temperature went too high, the system would stop the process, leaving a fan on to cool
down. It could also represent a form of “intrusion detector” that sets off an alarm
whenever a shadow is cast by an intruder.

There are various applications for this type of program. Finally, you entered a program
that tracked and stored all the different inputs. When requested to do so, the
microprocessor played back the exact same settings.

This type of program finds widespread application on various assembly lines where
numerous repetitive steps are controlled by the processor.

149

Microprocessors: A Short Course

Answer Key

Step 1.

Address Code Mnemonic

003000 323 ouT
3001 371
3002 006 MVI B
3003 000
3004 170 MOV A,B
3005 323 ouT
3006 370
3007 315 CALL ANALOGIN
3010 200
3011 003
3012 062 STA
3013 103
3014 003
3015 315 CALL DELAY
3016 100
3017 003
3020 303 JMP
3021 005
3022 003

Step 2.

Address Code Mnemonic

003000 323 ouT
3001 371
3002 315 CALL ANALOGIN
3003 200
3004 003
3005 376 CPI
3006 NNN (value you supply)
3007 332 JC
3010 000
3011 002

3012 376 CPI

3013 NNN (value you supply)
3014 332 JC

3015 050

3016 002

All mnemonics copyright Intel Corporation 1977 and 1975

150

Comment

Start convert.
Set ramp to zero.

Get ready to output.
Output.

Get analog sig.

Store it.

Get delay time.

Go back; do it again.

Comment

Start convert.

Get analogin routine.

Compare values.
A parameter value.
Jump if less.
Green light.

Compare values.

B parameter value.
Jump if less.
Yellow light.

Address

3017
3020
3021
3022
3023
3024
3025
3026
3027
3030
3031

Step 2. Subroutines

Address

002000
2001
2002
2003
2004
2005
2006
2007
2010
2011
2012
2013
2014
2015
2016

002050
2051
2052
2053
2054
2055
2056
2057
2060
2061
2062
2063
2064
2065
2066
2067
2070

Code Mnemonic

376 CPI
NNN (value you supply)
332 JC

100

002

376 CPI
NNN (value you supply)
332 JC

150

002

166 HLT

Green Light

Code Mnemonic
076 MVI A
007

323 ouT
373

076 MVI A
377

323 ouT
002

076 MVI A
000

323 ouT
002

303 JMP
002

003

Yellow Light

323 ouT
370

076 MVI A
070

323 ouT
373

076 MVI A
377

323 ouT
000

076 MVI A
000

323 ouT
000

303 JMP
002

003

All mnemonics copyright Intel Corporation 1977 and 1975

151

DAC and ADC Programming Lab

Comments

Compare value.

C parameter value.
Jump if less.

Red light flash.
Compare value.

D parameter value.
Jump if less.

Red light on.

Stop.

Comments

Green light data.
Green lights out.
Port 2 data.
Port 2 out.

Port 2 data.
Port 2 out.

Go back; do it again.

Output to the motor.
Yellow light data.
Yellow lights out.
Port 0 data.

Port 0 out.

Port 0 data.

Port 0 out.

Go back; do it again.

Microprocessors: A Short Course

Red Light (flashing)

Address Code Mnemonic Comments

002100 323 ouT Output to the motor.
2101 370
2102 076 MVI A Red light data.
2103 300
2104 323 ouT Red light out.
2105 373
2106 076 MVI A Port 1 data.
2107 377
2110 323 ouT Port | out.
2111 001
2112 315 CALL Get ON time.
2113 050
2114 001
2115 076 MVI A Red light data.
2116 000
2117 323 ouT Red light out.
2120 373
2121 323 ouT Port | out.
2122 001
2123 313 CALL Get OFF time.
2124 050
2125 001
2126 303 JMP Go back; do it again.
2127 002
2130 003

Red Light On

Address Code Mnemonic Comments

002150 323 ouT Motor out.
2151 370
2152 076 MVI A Red light data.
2153 300
2154 323 ouT Red light out.
2155 373
2156 076 MVI A Port | data.
2157 377
2160 323 ouT Port | out.
2161 001
2162 303 JMP Go back; do it again.
2163 002
2164 003

All mnemonics copyright Intel Corporation 1977 and 1975

152

DAC and ADC Programming Lab

ANALOGIN
003200 333 IN Ready status.
3201 371
3202 346 ANI Ready match.
3203 001
3204 32 JNZ No, go back.
3205 200
3206 003
3207 333 IN Data in.
3210 370
3211 323 ouT Start convert again.
3212 371
3213 311 RET Go back.
Red Light Timer
001050 117 MOV C, A Save the data in A.
1051 021 LXID Set up time delay,
1052 050
1053 020
1054 033 DCX D Count down one.
1055 172 MOV A, D Move D to A.
1056 263 ORA E OR it with E.
1057 302 JNZ Not zero; go back.
1060 054
1061 001
1062 171 MOV A, C Get the data saved.
1063 311 RET Return to the program.

All mnemonics copyright Intel Corporation 1977 and 1975

153

(Blank Page)

Appendix

(Blank Page)

Appendix A
8080 Instruction Set*

A computer, no matter how sophisticated, can only do what it is “told” to do. One “tells”
the computer what to do via a series of coded instructions referred to as a Program. The
realm of the programmer is referred to as Software, in contrast to the Hardware that
comprises the actual computer equipment. A computer’s software refers to all of the
programs that have been written for that computer.

When a computer is designed, the engineers provide the Central Processing Unit (CPU)
with the ability to perform a particular set of operations. The CPU is designed such that a
specific operation is performed when the CPU control logic decodes a particular
instruction. Consequently, the operations that can be performed by a CPU define the
computer’s Instruction Set.

Each computer instruction allows the programmer to initiate the performance of a specific
operation. All computers implement certain arithmetic operations in their instruction set,
such as an instruction to add the contents of two registers. Often logic operations (e.g., OR
the contents of two registers) and register operate instructions (e.g., increment a register)
are included in the instruction set. A computer’s instruction set will also have instructions
that move data between registers, between a register and memory, and between a register
and an I/ O device. Most instruction sets also provide Conditional Instructions. A
conditional instruction specifies an operation to be performed only if certain conditions
have been met; for example, jump to a particular instruction if the result of the last
operation was zero. Conditional instructions provide a program with a decision-making
capability.

By logically organizing a sequence of instructions into a coherent program, the
programmer can “tell” the computer to perform a very specific and useful function.

The computer, however, can only execute programs whose instructions are in a binary
coded form (i.e., a series of I's and 0’s), that is called Machine Code. Because it would be
extremely cumbersome to program in machine code, programming languages have been
developed. There are programs available which convert the programming language
instructions into machine code that can be interpreted by the processor.

One type of programming language is Assembly Language. A unique assembly language
mnemonic is assigned to each of the computer’s instructions. The programmer can write a
program (called the Source Program) using these mnemonics and certain operands; the
source program is then converted into machine instructions (called the Object Code). Each
assembly language instruction is converted into one machine code instruction (1 or more
bytes) by an Assembler program. Assembly languages are usually machine dependent (i.e.,
they are usually able to run on only one type of computer).

*Reprinted by permission of Intel Corporation,
copyright 1977 and 1975

A-1

Appendix

The 8080 Instruction Set

The 8080 instruction set includes five different types of instructions:
e Data Transfer Group—move data between registers or between memory and
registers

e Arithmetic Group—add, subtract, increment or decrement data in registers or in
memory

® Logical Group—AND, OR, EXCLUSIVE-OR, compare, rotate or complement
data in registers or in memory

e Branch Group-—conditional and unconditional jump instructions, subroutine call
instructions and return instructions

e Stack, I/0 and Machine Control Group—includes I/ O instructions, as well as
instructions for maintaining the stack and internal control flags.
Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quantities, called Bytes. Each byte has a
unique 16-bit binary address corresponding to its sequential position in memory.

The 8080 can directly address up to 65,536 bytes of memory, which may consist of both
read-only memory (ROM) elements and random-access memory (RAM) elements
(read /write memory).

Data in the 8080 is stored in the form of 8-bit binary integers:

DATA WORD

D7|06195TD4T03|02|D1|D0

MSB LSB

When a register or data word contains a binary number, it is necessary to establish the
order in which the bits of the number are written. In the Intel 8080, BIT 0 is referred to as
the Least Significant Bit (LSB), and BIT 7 (of an 8 bit number) is referred to as the Most
Significant Bit (MSB).

The 8080 program instructions may be one, two or three bytes in length. Multiple byte
instructions must be stored in successive memory locations; the address of the first byte is
always used as the address of the instructions. The exact instruction format will depend on
the particular operation to be executed.

A-2

8080 Instruction Set

Single Byte Instructions

D, T T T T T Tg B Cod

Two-Byte Instructions

Byte One D, I I I | I ! I Dy Op Code
Byte Two Dy I I I I I I I Dy Data or
Address

Byte One D, I I ! l ! | ! Dg Op Code
Byte Two D, I [I I I I | Do Data
or
Byte Three D7 I I I I ! I I Do Address
Addressing Modes:

Often the data that is to be operated on is stored in memory. When multi-byte numeric
data is used, the data, like instructions, is stored in successive memory locations, with the
least significant byte first, followed by increasingly significant bytes. The 8080 has four
different modes for addressing data stored in memory or in registers:

Direct—Bytes 2 and 3 of the instruction contain the exact memory address of
the data item (the low-order bits of the address are in byte 2, the high-order bits
in byte 3).

Register—The instruction specifies the register or register-pair in which the data
is located.

Register Indirect—The instruction specifies a register-pair which contains the
memory address where the data is located (the high-order bits of the address are
in the first register of the pair, the low-order bits in the second).

Immediate—The instruction contains the data itself. This is either an 8-bit
quantity or a 16-bit quantity (least significant byte first, most significant byte
second).

Appendix

Unless directed by an interrupt or branch instruction, the execution of instructions
proceeds through consecutively increasing memory locations. A branch instruction can
specify the address of the next instruction to be executed in one of two ways:

e Direct—The branch instruction contains the address of the next instruction to
be executed. (Except for the ‘RST’ instruction, byte 2 contains the low-order
address and byte 3 the high-order address.)

e Register indirect—The branch instruction indicates a register-pair which
contains the address of the next instruction to be executed. (The high-order bits
of the address are in the first register of the pair, the low-order bits in the
second.)

The RST instruction is a special one-byte call instruction (usually used during
interrupt sequences). RST includes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents of this three-bit field.

Condition Flags:

There are five condition flags associated with the execution of instructions on the 8080.
They are Zero, Sign, Parity, Carry, and Auxiliary Carry, and are each represented by a 1-
bit register in the CPU. A flag is “set” by forcing the bit to 1; “reset” by forcing the bit to 0.

Unless indicated otherwise, when an instruction affects a flag, it affects it in the following
manner:

Zero: If the result of an instruction has the value 0, this flag is set;
otherwise it is reset.

Sign: If the most significant bit of the result of the operation has the
value I, this flag is set; otherwise it is reset.

Parity: If the modulo 2 sum of the bits of the result of the operation is 0,
(i.e., if the result has even parity), this flag is set; otherwise it is reset
(i.e., if the result has odd parity).

Carry: If the instruction resulted in a carry (from addition), or a borrow
(from subtraction or a comparison) out of the high-order bit, this
flag is set; otherwise it is reset.

Auxiliary Carry: If the instruction caused a carry out of bit 3 and into bit 4 of the
resulting value, the auxiliary carry is set; otherwise it is reset. This
flag is affected by single precision additions, subtractions,
increments, decrements, comparisons, and logical operations, but
is principally used with additions and increments precedinga DAA
(Decimal Adjust Accumulator) instruction.

A-4

8080 Instruction Set

Symbols and Abbreviations:

The following symbols and abbreviations are used in the subsequent description of the
8080 instructions:

SYMBOLS MEANING
accumulator Register A
addr 16-bit address quantity
data 8-bit data quantity
data 16 16-bit data quantity
byte 2 The second byte of the instruction
byte 3 The third byte of the instruction
port 8-bit address of an 1/O device
r,rl,r2 One of the registers A,B,C,D,E,H,L
DDD,SSS The bit pattern designating one of the registers A,B,C,D,E,H,L
(DDD=destination,SSS=source):
DDD or SSS REGISTER NAME
111 A
000 B
001 C
010 D
011 E
100 H
101 L
rp One of the register pairs:
B represents the B,C pair with Basthe high-order registerand Casthe
low-order register;
D represents the D,E pair with D as the high-order register and E as
the low-order register;
H represents the H,L pair with H as the high-order register and L as
the low-order register;
SP represents the 16-bit stack pointer register.
RP The bit pattern designating one of the register pairs B,D,H,SP;
RP REGISTER PAIR
00 B-C
01 D-E
10 H-L
11 SP
rh The first (high-order) register of a designated register pair.
rl The second (low-order) register of a designated register pair.

A-5

Appendix

SYMBOLS MEANING
PC 16-bit program counter register (PCH and PCL are used to refer to
the high-order and low-order 8 bits respectively).
SP 16-bit stack pointer register (SPH and SPL are used to refer to the
high-order and low-order 8 bits respectively).
L Bit m of the register r (bits are number 7 through 0 from the left to
right).
Z:S,P.CY AC The condition flags:
Zero,
Sign,
Parity,
Carry,
and Auxiliary Carry, respectively.
() The contents of the memory location or registers are enclosed in the
parentheses.
— “Is transferred to”
A Logical AND
v Exclusive OR
Vv Inclusive OR
+ Addition
- Two’s complement subtraction
" Multiplication
— “Is exchanged with”
= The one’s complement (e.g., (A))
n The restart number O through 7
NNN The binary representation 000 through 111 for restart number 0

through 7 respectively.

Description Format

The following pages provide a detailed description of the instruction set of the 8080. Each
instruction is described in the following manner:

1. The MAC 80 assembler format, consisting of the instruction mnemonic and
operand fields, is printed in BOLDFACE on the left side of the first line.

2. The name of the instruction is enclosed in parenthesis on the right side of the
first line.

A-6

8080 Instruction Set

3. The next line(s) contain a symbolic description of the operation of the
instruction.

4. Thisis followed by a narrative description of the operation of the instruction.

The following line(s) contain the binary fields and patterns that comprise the
machine instruction.

6. The last four lines contain incidental information about the execution of the
instruction. The number of machine cycles and states required to execute the
instruction are listed first. If the instruction has two possible execution times, as
in a Conditional Jump, both times will be listed, separated by a slash. Next, any
significant data addressing modes (see pp. A3 and A4) are listed. The last line lists
any of the five Flags that are affected by the execution of the instruction.

Data Transfer Group

This group of instructions transfers data to and from registers and memory. Condition
flags are not affected by any instruction in this group.

MOV ri,r2 (Move Register)
(r1) = (r2)
The content of register r2 is moved to register rl.
ol 1]op'p'p|sTs'ts
Cycles: 1
States: 5
Addressing: register
Flags: none
MOVr,M (Move from memory)
(r) = ((H) (L) , = ,
The content of the memory location, whose address is in registers H and L, is moved to
register r.

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: none

A-7

Appendix

MOV M, r (Move to memory)
HLY)-@© _ N
The content of register r is moved to the memory location whose address is in
registers H and L.

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: none

MVIr, data (Move Immediate)
(r) — (byte 2)
The content of byte 2 of the instruction is moved to register r.

|
00D|DID1|1IO

data

Cycles: 2

States: 7
Addressing: immediate

Flags: none

MVI M, data (Move to memory immediate)
((H) (L)) (byte 2) N
The content of byte 2 of the instruction is moved to the memory location whose
address is in registers H and L.

data

Cycles: 3
States: 10

Addressing: immed./reg. indirect
Flags: none

A-8

8080 Instruction Set

LXI rp, data 16 (Load register pair immediate)
(rh) — (byte 3),
(rl) — (byte 2)
Byte 3 of the instruction is moved into the high-order register (rh) of the register pair
rp. Byte 2 of the instruction is moved into the low-order register (rl) of the register

pair rp.

low-order data

high-order data

Cycles: 3

States: 10
Addressing: immediate

Flags: none

LDA addr (Load Accumulator direct)
(A) — ((byte 3)(byte 2))
The content of the memory location, whose address is specified in byte 2 and byte 3
of the instruction, is moved to register A.

low-order addr

high-order addr

Cycles: 4
States: 13
Addressing: direct

Flags: none

Appendix

STA addr (Store Accumulator direct)
((byte 3)(byte 2)) — (A) _ _
The content of the accumulator is moved to the memory location whose address is
specified in byte 2 and byte 3 of the instruction.

010|1I1|0I0I1I0

low-order addr

high-order addr

Cycles: 4
States: 13
Addressing: direct

Flags: none

LHLD addr (Load H and L direct)
(L) = ((byte 3)(byte 2))
(H) — ((byte 3)(byte 2) + 1)
The content of the memory location, whose address is specified in byte 2 and byte 3
of the instruction, is moved to register L. The content of the memory location at the
succeeding address is moved to register H.

low-order addr

high-order addr

Cycles: b
States: 16
Addressing: direct

Flags: none

A-10

SHLD addr
((byte 3)(byte 2)) — (L)
((byte 3)(byte 2) + I) — (H)

8080 Instruction Set

(Store H and L direct)

The content of register L is moved to the memory location whose address is specified
in byte 2 and byte 3. The content of register H is moved to the succeeding memory

low-order addr

high-order addr

location.
[
0 0 I 1 ! 0
Cycles:
States:
Addressing
Flags:
LDAX rp
(A)—((rp)

5
16

: direct

none

(Load accumulator indirect)

The content of the memory location, whose address is the register pair rp, is moved to
register A. Note: only register pairs rp=B (registers B and C) or rp=D (registers D and

E) may be specified.

Cycles:
States:
Addressing:
Flags:

STAXrp
((rp)) — (A)

reg. indirect
none

(Store accumulator indirect)

The content of register A is moved to the memory location whose address is in the
register pair rp. Note: only register pairs rp=B (registers B and C) or rp=D (registers

D and E) may be specified.

OID RIP

Cycles:
States:
Addressing:
Flags:

reg. indirect
none

A-11

Appendix

XCHG (Exchange H and L with D and E)
(H) — (D)
(L)— (E) '
The contents of registers H and L are exchanged with the contents of registers D and
E.

Cycles: 1
States: 4
Addressing: register

Flags: none

Arithmetic Group:

This group of instructions performs arithmetic operations on data in registers and
memory.

Unless indicated otherwise, all instructions in this group affect the Zero, Sign, Parity,
Carry, and Auxiliary Carry flags according to the standard rules.

All subtraction operations are performed via two’s complement arithmetic and set the
carry flag to one to indicate a borrow and clear it to indicate no borrow.

ADDr (Add Register)
A—-A+@® |
The content of register r is added to the content of the accumulator. The result is
placed in the accumulator.

Cycles: 1

States: 4
Addressing: register

Flags: Z,5,P,CY ,AC

A-12

ADDM
(A)— (A) +((H) (L)

8080 Instruction Set

(Add memory)

The content of the memory location whose address is contained in the H and L
registers is added to the content of the accumulator. The result is placed in the

accumulator.

Cycles:
States:
Addressing:

Flags

ADI data
(A)—(A) + (byte 2)

2

7

reg. indirect
ZS,PCY,AC

(Add immediate)

The content of the second byte of the instruction is added to the content of the
accumulator. The result is placed in the accumulator.

data

Cycles:
States:
Addressing:
Flags:

ADCr
(A)~ (A)+(1) + (CY)

2

7

immediate
Z2S5PCY,AC

(Add Register with carry)

The content of register r and the content of the carry bit are added to the content of
the accumulator. The result is placed in the accumulator.

Cycles:
States:
Addressing:
Flags:

1

4

register
ZS5,PCYAC

A-13

Appendix

ADCM (Add memory with carry)
(A)— (A) +((H) (L)) +(CY) _
The content of the memory location whose address is contained in the H and L
registers and the content of the CY flag are added to the accumulator. The result is
placed in the accumulator.

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: Z,5,P,CY AC

ACI data (Add immediate with carry)
(A) = (A) + (byte 2) + (CY)
The content of the second byte of the instruction and the content of the CY flag are
added to the contents of the accumulator. The result is placed in the accumulator.

data

Cycles: 2

States: 7
Addressing: immediate

Flags: Z,S,P,CY,AC

SUBr (Subtract Register)
(A)— (A) - (1)
The content of register r is subtracted from the content of the accumulator. The result
is placed in the accumulator.

Cycles: 1

States: 4
Addressing: register

Flags: Z,S,P,CY,AC

8080 Instruction Set

SUBM (Subtract memory)
(A)— (A) - ((H) (L)) _
The content of the memory location whose address is contained in the H and L
registers is subtracted from the content of the accumulator. The result is placed in the

accumulator.
| |
1 0 0 I 1 ! 0 ! 1 ! 1 ! 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,5,P,CY,AC

SUI data (Subtract immediate)

(A)— (A) - (byte 2) _
The content of the second byte of the instruction is subtracted from the content of the
accumulator. The result is placed in the accumulator.

data

Cycles: 2

States: 7
Addressing: immediate

Flags: Z,S,P,CY,AC

SBBr (Subtract Register with borrow)
(A)— (A) - (1) -(CY)
The content of register r and the content of the CY flag are both subtracted from the
accumulator. The result is placed in the accumulator.

1|0l0[1l1 s‘s’s

Cycles: 1

States: 4
Addressing: register

Flags: Z,S,P,CY,AC

Appendix

SBB M (Subtract memory with borrow)
(A)= (A) - (H) L) -(CY) LR
The content of the memory location whose address is contained in the H and L
registers and the content of the CY flag are both subtracted from the accumulator.
The result is placed in the accumulator.

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: Z,S,P,CY,AC

SBI data (Subtract immediate with borrow)
(A)— (A) - (byte 2) - (CY)
The contents of the second byte of the instruction and the contents of the CY flag are
both subtracted from the accumulator. The result is placed in the accumulator.

data

Cycles: 2

States: 7
Addressing: immediate

Flags: Z,S,P,CY,AC

INRTr (Increment register)
(N—(@+1
The content of register r is incremented by one. Note: All condition flags except CY
are affected.

Cycles: 1

States: 5
Addressing: register

Flags: Z,5,P,AC

A-16

INRM
((H) (L)) = ((H) (L)) + 1

8080 Instruction Set

(Increment memory)

Th{: content of the memory location whose address is contained in the H and L
registers 1s incremented by one. Note: All condition flags except CY are affected.

Cycles:
States:
Addressing:

Flags

DCRr
() ~—{r)=1

(Decrement

The content of register r is decremented by one. Note: All condition flags except CY

are affected.

3

10

reg. indirect
i LS, PAC

Register)

|

0 0

Cycles:
States:
Addressing:

Flags

DCRM
(H)(L)— (H) (L) -1
The content of the memory location w
registers is decremented by one. Note:

(Decrement

1
5

register

: ZSPAC

memory)

hose address is contained in the H and L
All condition flags except CY are affected.

Vo b o 1

0 0 1 1

Polalol,

Cycles:
States:
Addressing:

Flags

INX rp
(rh) (r) = (rh) (r]) + 1

3

10

reg. indirect
: ZSPAC

(Increment register pair)

The content of the register pair rp is incremented by one. Note: No condition flags

are affected.

I

R P

Cycles:
States:
Addressing:
Flags:

A

1

5
register
none

-17

Appendix

DCX rp (Decrement register pair)
(rh) (r]) = (rh) (r1) - 1

The content of the register pair rp is decremented by one. Note: No condition flags
are affected.

OIO R[P1'0|TI1

Cycles: 1
States: 5
Addressing: register

Flags: none

DADrp (Add register pairto H and L)
(H) (L)~ (H) (L) + (rh) (r])
The content of the register pair rp is added to the content of the register pair H and L.
The result is placed in the register pair H and L. Note: Only the CY flag is affected. It
is set if there is a carry out of the double precision add; otherwise it is reset.

0'0 RIP1|0I0|1

Cycles: 3
States: 10
Addressing: register
Flags: CY

DAA (Decimal Adjust Accumulator)
The eight-bit number in the accumulator is adjusted to form two four-bit Binary-
Coded-Decimal digits by the following process:

1. If the value of the least significant 4 bits of the accumulator is greater than
9 orif the AC flag is set, 6 is added to the accumulator.

2. If the value of the most significant 4 bits of the accumulator is now greater
than 9, or if the CY flag is set, 6 is added to the most significant 4 bits of the
accumulator.

NOTE: All flags are affected.

Cycles: 1
States: 4
Flags: Z,5,P,CY,AC

A-18

8080 Instruction Set

Logical Group:

This group of instructions performs logical (Boolean) operations on data in registers and
memory and on condition flags.

Unless indicated otherwise, all instructions in this group affect the Zero, Sign, Parity,
Aucxiliary Carry, and Carry flags according to the standard rules.

ANATr (AND Register)
(A) = (A) A(D) _ _
The content of the register r is logically anded with the content of the accumulator.
The result is placed in the accumulator. The CY flag is cleared.

1 0 1 0 0 S S S

Cycles: 1

States: 4
Addressing: register

Flags: Z,S,P,CY,AC

ANAM (AND memory)
(A)— (A)A((H) (L)
The contents of the memory location whose address is contained in the H and L
registers is logically anded with the content of the accumulator. The result is placed in
the accumulator. The CY flag is cleared.

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: Z,S,P,CY,AC

ANI data (AND immediate)
(A)— (A) A (byte 2)
The content of the second byte of the instruction is logically anded with the contents
of the accumulator. The result is placed in the accumulator. The CY and AC flags are
cleared.

data

Cycles: 2

States: 7
Addressing: immediate

Flags: Z,S,P,CY,AC

A-19

Appendix

XRAT (Exclusive O

(A) = (A)V (1)

R Register)

The content of the register r is exclusive-or’d with the content of the accumulator.

The result is placed in the accumulator.

The CY and AC flags are cleared.

Cycles:
States:
Addressing:
Flags:

XRAM
(A)— (A) ¥ ((H) (L)

1

4

register
ZS,PCY,AC

(Exclusive OR Memory)

The content of the memory location whose address is contained in the H and L
registers is exclusive-OR’d with the content of the accumulator. The result is placed
in the accumulator. The CY and AC flags are cleared.

I

; I

0 1 !

0

Vo

s Lty !

1

Cycles:
States:
Addressing:

Flags

XRI data
(A)— (A) ¥ (byte 2)

2

7

reg. indirect
ZSPCYAC

(Exclusive OR immediate)

The content of the second byte of the instruction is exclusive-OR’d with the content

of the accumulator. The result is placed
cleared.

in the accumulator. The CY and AC flags are

data

Cycles:
States:
Addressing:

Flags

2

7

immediate
ZSPCY,AC

A-20

ORAT
(A)—(A) V()

8080 Instruction Set

(OR Register)

The content of register r is inclusive-OR’d with the content of the accumulator. The
result is placed in the accumulator. The CY and AC flags are cleared.

Cycles:
States:
Addressing:
Flags:

ORAM
(A)— (A) V((H) (L)

(OR memory)

1

4

register
ZSPCYAC

The content of the memory location whose address is contained in the H and L
registers is inclusive-OR’d with the content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

1I_0|1I10I1|1|0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,SP,CY,AC
ORI data (OR immediate)
(A)— (A) V (byte 2)

The content of the second byte of the instruction is inclusive-OR’d with the content
of the accumulator. The result is placed in the accumulator. The CY and AC flags are

cleared.

data

Cycles:
States:
Addressing:
Flags:

2

7

immediate
ZS,P.CYAC

A-21

Appendix

CMPr (Compare Register)
(A) - (r)
The content of register r is subtracted from the accumulator. The accumulator
remains unchanged. The condition flags are set as a result of the subtraction. The Z
flag is set to 1if (A) = (r). The CY flag is set to 1 if (A) << (r).

1'0‘111I1 SIS[S

Cycles: 1

States: 4
Addressing: register

Flags: Z,5,P,CY,AC

CMPM (Compare memory)
(A) - (H) (L)
The content of the memory location whose address is contained in the H and L
registers is subtracted from the accumulator. The accumulator remains unchanged.
The condition flags are set as a result of the subtraction. The Z flag is set to | if
(A)=((H) (L)). The CY flag is set to 1if (A) < ((H) (L)).

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: Z,S,P,CY,AC

CPI data (Compare immediate)
(A) - (byte 2)
The content of the second byte of the instruction is subtracted from the accumulator.
The condition flags are set by the result of the subtraction. The Z flag is set to 1 if
(A) = (byte 2). The CY flagis set to | if (A) < (byte 2).

data

Cycles: 2

States: 7
Addressing: immediate

Flags: Z,5,P,CY,AC

A-22

8080 Instruction Set

RLC (Rotate left)
(Anv1) = (An); (Ag) — (A7)
(CY)— (A7)
The content of the accumulator is rotated left one position. The low order bit and the
CY flag are both set to the value shifted out of the high order bit position. Only the

CY flag is affected.
010|0|0‘0I1|1|1
Cycles: 1
States: 4
Flags: CY
RRC (Rotate right)
(An) = (An+1); (A7) — (Ag)
(CY)— (Ag)

The content of the accumulator is rotated right one position. The high order bit and
the CY flag are both set to the value shifted out of the low order bit position. Only the
CY flag is affected.

Cycles: 1
States: 4
Flags: CY
RAL (Rotate left through carry)
(An+1) = (An); (CY) — (A7)
(Ag) — (CY)

The content of the accumulator is rotated left one position through the CY flag. The
low order bit is set equal to the CY flag and the CY flag is set to the value shifted out
of the high order bit. Only the CY flag is affected.

OIO—IOIIIOI1'1IT

Cycles: 1
States: 4
Flags: CY

A-23

Appendix

RAR (Rotate right through carry)
(An) = (An+1); (CY) = (Ap)
(A7) = (CY)
The content of the accumulator is rotated right one position through the CY flag.
The high order bit is set to the CY flag and the CY flag is set to the value shifted out
of the low order bit. Only the CY flag is affected.

Cycles: 1
States: 4
Flags: CY

CMA e (Complement accumulator)
(A)—(A)
The contents of the accumulator are complemented (zero bits become 1, one bits
become 0). No flags are affected.

Cycles: 1
States: 4
Flags: none

CMC 2 8 (Complement carry)
(CY) - (CY)
The CY flag is complemented. No other flags are affected.

0l011l1!1|1I1|1

Cycles: 1
States: 4
Flags: CY

STC (Set carry)
(CY)—1
The CY flag is set to 1. No other flags are affected.

Cycles: 1
States: 4
Flags: CY

A-24

8080 Instruction Set

Branch Groups

This group of instructions alter normal sequential program flow.

Condition flags are not affected by any instruction in this group.

The two types of branch instructions are unconditional and conditional. Unconditional
transfers simply perform the specified operation on register PC (the program counter).

Conditional transfers examine the status of one of the four processor flags to determine if
the specified branch is to be executed. The conditions that may be specified are as follows:

CONDITION COC

NZ — not zero (Z=0) 000
Z—zero(Z=1) 001

NC —nocarry (CY = 0) 010
C—carry (CY=1) 011

PO — parity odd (P = 0) 100

PE — parity even (P = 1) 101

P —plus (S=0) 110

M — minus (S= 1) 111

JMP addr (Jump)

(PC) — (byte 3) (byte 2)
Control is transferred to the instruction whose address is specified in byte 3 and byte
2 of the current instruction.

low-order addr

high-order addr

Cycles: 3

States: 10
Addressing: immediate

Flags: none

A-25

Appendix

Jeondition addr (Conditional jump)
H{CCO):
(PC) — (byte 3) (byte 2)
If the specified condition is true, control is transferred to the instruction whose
address is specified in byte 3 and byte 2 of the current instruction; otherwise, control
continues sequentially.

1i1 CICIC 011l0

low-order addr

high-order addr

Cycles: 3

States: 10
Addressing: immediate

Flags: none

CALL addr (Call)

((SP) - 1)~ (PCH)
((8P)-2)— (PCL)

(SP)— (SP)-2

(PC) — (byte 3) (byte 2)
The high-order eight bits of the next instruction address are moved to the memory
location whose address is one less than the content of register SP. The low-order
eight bits of the next instruction address are moved to the memory location whose
address is two less than the content of register SP. The content of register SP is
decremented by 2. Control is transferred to the instruction whose address is specified
in byte 3 and byte 2 of the current instruction.

low-order addr

high-order addr

Cycles: 5
States: 17

Addressing: immediate/reg. indirect
Flags: none

A-26

8080 Instruction Set

Ccondition addr (Condition call)
If (CCC),
((SP) - 1)~ (PCH)
((SP -2)~— (PCL)
(SP)—(SP) -2
(PC) — (byte 3) (byte 2)
If the specified condition is true, the actions specified in the CALL instruction (see
above) are performed; otherwise, control continues sequentially.

1IICIC|C1I0IO

low-order addr

high-order addr

Cycles: 3/5
States: 11/17

Addressing: immediate/reg. indirect
Flags: none

RET (Return)
(PCL)— ((SP));
(PCH) — ((SP) + 1);
(SP)— (SP) +2);
The content of the memory location whose address is specified in register SP is
moved to the low-order eight bits of register PC. The content of the memory location
whose address is one more than the content of the register SP is moved to the high-
order eight bits of register PC. The content of register SP is incremented by 2.

Cycles: 3

States: 10
Addressing: req. indirect

Flags: none

A-27

Appendix

Rcondition (Conditional return)
If (CCOQ),
(PCL) - ((SP))
(PCH)— ((SP)+ 1)
(SP)~— (SP) +2
If the specified condition is true, the actions specified in the RET instruction (see
above) are performed; otherwise, control continues sequentially.

111 C!CIC 0'0'0

Cycles: 1/3

States: 5/11
Addressing: reg. indirect

Flags: none

RSTn (Restart)

((SP) - 1)— (PCH)
((SP)-2)— (PCL)

(SP)— (SP)-2

(PC) — 8 * (NNN)
The high-order eight bits of the next instruction address are moved to the memory
location whose address is one less than the content of register SP. The low-order
eight bits of the next instruction address are moved to the memory location whose
address is two less than the content of register SP. The content of register SP is
decremented by two. Control is transferred to the instruction whose address is eight
times the content of NNN.

1|1NININ1|1‘1

Cycles: 3

States: 11
Addressing: reg. indirect

Flags: none

1514131211109 8 76 564 3 2 10

0|0j0|0O(0|0O|O|O|O|OIN|N|N|O]O|O

Program Counter After Restart

A-28

8080 Instruction Set

PCHL (Jump H and L indirect—move H and L to PC)
(PCH) — (H)
(PCL)— (L)
The content of register H is moved to the high-order eight bits of register PC. The
content of register L is moved to the low-order eight bits of register PC.

1]1[1I0|1|0]0]1

Cycles: 1
States: 5
Addressing: register

Flags: none

Stack, I/0, and Machine Control Group

This group of instructions performs I/ O, manipulates the Stack, and alters internal
control flags.

Unless otherwise specified, condition flags are not affected by any instructions in this
group.

PUSH rp (Push)

((SP) - 1) = (rh)
((SP)-2)— (r])

(3P)~ (BF)-2
The content of the high-order register of register pair rp is moved to the memory
location whose address is one less than the content of register SP. The content of the
low-order registerof register pair rp is moved to the memory location whose address
is two less than the content of register SP. The content of register SP is decremented
by 2. Note: Register pair rp = SP may not be specified.

1]1R]P 0|1[011

Cycles: 3

States: 11
Addressing: reg. indirect

Flags: none

A-29

Appendix

PUSH PSW
((SE) - 1)*=(A)
((SP)-2)o— (CY), ((SP)-2);— 1
((SP)-2),— (P), ((SP)-2);+-0
((SP) - 2),— (AC), ((SP)-2)s— 0
((SP) = 2)g— (Z), (5P) - 2); — (S)

(SP)— (SP) -2

The content of register A is moved to the memory location whose address is one less
than register SP. The contents of the condition flags are assembled into a processor
status word and the word is moved to the memory location whose address is two less
than the content of register SP. The content of register SP is decremented by two.

1'1'1I1IOI1|0|1

(Push processor status word)

Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none
FLAG WORD
S Z 0 |AC| O P 1 CY
POP rp (Pop)
(r) — ((SP))

(rh)y—= ((SP)) + 1)
(SP) — (SP) +2

The content of the memory location, whose address is specified by the content of
register SP, is moved to the low-order register of register pair rp. The content of the
memory location, whose address is one more than the content of register SP, is
moved to the high-order register of register pair rp. The content of register SP is
incremented by 2. Note: Register pair rp = SP may not be specified.

1 ! 1 R ! P 0 ! 0 ! 0 ! 1
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none

A-30

8080 Instruction Set

POP PSW (Pop processor status word)
(CY) = ((SP))o
(P)— ((SP))2
(AC)— ((SP))4
(Z)— ((SP))s
(S)— ((SP));
(A)=((SP)+1)
(SP)— (SP)+2
The content of the memory location whose address is specified by the content of
register SP is used to restore the condition flags. The content of the memory location
whose address is one more than the content of register SP is moved to register A. The
content of register SP is incremented by 2.

Cycles: 3

States: 10
Addressing: reg. indirect

Flags: Z,5,P,CY AC

XTHL (Exchange stack top with H and L)
(L) — ((SP))
(H)— ((SP) + 1)
The content of the L register is exchanged with the content of the memory location
whose address is specified by the content of register SP. The content of the H register
is exchanged with the content of the memory location whose address is one more
than the content of register SP.

Cycles: b

States: 18
Addressing: reg. indirect

Flags: none

SPHL (Move HL to SP)
(SP)— (H) (L)
The contents of registers H and L (16 bits) are moved to register SP.

Cycles: 1
States: b
Addressing: register

Flags: none

A-31

Appendix

IN port (Input)
(A)— (data)
The data placed on the eight bit bi-directional data bus by the specified port is moved
to register A.

port

Cycles: 3
States: 10
Addressing: direct

Flags: none

OUT port (Output)
(data) — (A)
The content of register A is placed on the eight bit bi-directional data bus for
transmission to the specified port.

port

Cycles: 3
States: 10
Addressing: direct

Flags: none

EI (Enable interrupts)
The interrupt system is enabled following the execution of the next instruction.

Cycles: 1
States: 4
Flags: none

DI (Disable interrupts)
The interrupt system is disabled immediately following the execution of the DI
instruction.

Cycles: 1
States: 4
Flags: none

A-32

HLT

NOP

The processor is stopped. The registers and flags are unaffected.

(Halt)

(No op)

Cycles: 1
States: 7
Flags: none

8080 Instruction Set

No operation is performed. The registers and flags are unaffected.

0

0

0

Cycles: 1
States: 4
Flags: none

A-33

Appendix

8080 Instruction Set

Summary of Processor Instructions

Instruction Code[1] Clock [2]
Mnemonic Description D, Dg Dg Dy D3 D, Dy Dy Cycles
MOVE, LOAD, AND STORE
MOVr1,r2 Move register to register 0 1 D DD S S § 5
MOV M,r Move register to memory o 1 1 1 0 & & S 7
MOV r M Move memory to register o 1 DD D 1 1 0 7
MVIr Move immediate register 0O o DDD 1 1 0 7
MVI M Move immediate memory o o1 1 0 1 1 0 10
LXIB Load immediate register Pair B & C 0O 0 0 0 0O 0O 0 1 10
LXID Load immediate register Pair D & E 0O 0 0 1 0 O 0 1 10
LXIH Load immediate register Pair H & L 0O 01 0 0 0 0 1 10
STAXB Store A indirect 0 0 0 0O o O 1 O 7
STAXD Store A indirect 0O 0 01 0 0o 1 O 7
LDAX B Load A indirect o 0 0 0o 1 0 1 O 7
LDAX D Load A indirect 0o 0o o 11 0 1 O 7
STA Store A direct o o1 1 0 O 1 O 13
LDA Load A direct o o 1 1 1 0 1 0 13
SHLD Store H & L direct 0 0 1 0 0 0 1 0 16
LHLD Load H & L direct 0O 0 1 0 1 06 1 0 16
XCHG Exchange D & E, H & L Registers 1T 1 1 0 1 0 1 1 4
STACK OPS
PUSH B Push register Pair B & C on stack 1 1 0 0 0 1 0 1 11
PUSH D Push register Pair D & E on stack 1T 1 0 T @ 1 0 1 11
PUSH H Push register Pair H & L on stack 1 1 1 0 0 1 0 1 11
PUSH PSW Push A and Flags on stack 1T 1 1 1 0 1 0 1 1
POP B Pop register Pair B & C off stack 1 1 0 0 0 0O 0 1 10
POPD Pop register Pair D & E off stack i1 1 0 17 0 0 0 1 10
POPH Pop register Pair H & L off stack i1 1 0 0 0 O 1 10
POP PSW Pop A and Flags off stack 1 1 1 1 0 ¢ 0 1 10
XTHL Exchange top of stack, H & L 1 1 1 0 0 0 1 1 18
SPHL H & L to stack pointer Tt 1 1 1 1 0 0 1 5
LXI SP Load immediate stack pointer 0098 1 1 0 0 O T 10
INX SP Increment stack pointer o 0 1 1 0 0 1 1 5
DCX SP Decrement stack pointer 0 0 % 94 1T O 31 1 5
Notes:

1. DDD or SSS: B000,C001, D010, EO11, H 100, L 101, Memory 110, A 111.

2. Two possible cycle times. (6/12) indicate instruction cycle dependent on condition

flags.

*All mnemonics copyright
@Intel Corporation 1977

A-34

8080 Instruction Set

Instruction Code[1] Clock[2]
Mnemonic Description D; Dg Dg Dy D3 Dy, Dy Dy Cycles
JUMP
JMP Jump unconditional 1 1. 0 0 0 0 1 1 10
JC Jump on carry 1 1 0 1 1 0 1 0 10
JNC Jump on no carry 1 1 0 1 0 @ 1 0 10
JZ Jump on zero 1T 1 0 0 1 0 1 O 10
JNZ Jump on no zero 1 1 0 0 0 0 1 O 10
JP Jump on positive 1T 1 1 1 0 0 % 0 10
JM Jump on minus T 1 1 1 1 0 1 0 10
JPE Jump on parity even 1T 1 1.0 19 0 41 0 10
JPO Jump on parity odd 1 11 0 0 0 1 O 10
PCHL H & L to program counter 1T 1 1 0 1 0 0 1 5
CALL
CALL Call unconditional 1 1 0 0 1 1 0 1 17
cc Call on carry 1 1 0 1 1 1 0 O 11/17
CNC Call on no carry 1 1. 0 1 0 1 0 0 11/17
cZ Call on zero 11 0 0 1 1 0 0 11/17
CNZ Call on no zero 1 1. 0 0 0 1 0 O 11/17
CcP Call on positive 1T 11 1 0 1 0 O 11/17
CM Call on minus T 1 1 1T 19 1 0 ©° 11/17
CPE Call on parity even 1 1 1 0 1 1 0 0 11/17
CPO Call on parity odd 1 11 0 0 1 0 O 11/17
RETURN
RET Return 1 1 0 0 1 0 0 1 10
RC Return on carry 1 1 0 1 1 0 0 0O 5/11
RNC Return on no carry 11 0 1 0 0 0 O 5/11
RZ Return on zero 1 1 0 0 1 0 0 O 5/11
RNZ Return on no zero 11 0 0 0 0 0 O 5/11
RP Return on positive 11 1 1 0 0 0 O 5/11
RM Return on minus 11 1 1 1 0 0 O 5/11
RPE Return on parity even 1 17 1 0 1 0 0 O 5/11
RPO Return on parity odd 1 1 1 0 0 0 0 O 5/11
RESTART
RST Restart T 1 A A A 1 1 1 11
INCREMENT AND DECREMENT
INRr Increment register 0 0 DDD 1 0 0 5
DCRr Decrement register 0O 0o DD D 1 0 1 5
INRM Increment memory 0 o 11 0 1 0 O 10
DCR M Decrement memory o 0 1 1 0 1 0 1 10
Notes:

I. DDD or SSS: B000,C001, D010, EO11, H 100, L 101, Memory 110, A 111.
2. Two possible cycle times. (6/12) indicate instruction cycles dependent on condition
flags.

*All mnemonics copyright
@Intel Corporation 1977

A-35

Appendix

Instruction Code[1] Clock[2]

Mnemonic ~ Description D; Dg Dg Dy D3 Dy, Dy Dy Cycles
INXB Increment B & C registers 0O 0 0 0O 0O 0 1 1 5
INX D Increment D & E registers o o o 1 0 O 1 1 b
INXH Increment H & L registers 0o 01t 0 0 O 1 1 5
DCXB Decrement B & C o o 0o 0 1 0 1 1 b
DCX D Decrement D & E 0 0D 0 4 9 @ 1 1 5
DCX H Decrement H & L o o 1 0 1 0 1 1 5
ADD
ADD r Add register to A 1 0 0 0 0O s S S 4
ADCr Add register to A with carry 1 0 0 0 1 8§ S S 4
ADD M Add memory to A 1 0 0 0o O 1 1 O 7
ADCM Add memory to A with carry 1 0 0 0 1 1 1 0 7
ADI Add immediate to A 1 1 0 0 0 1 1 O 7
ACI Add immediate to A with carry 1 1 0 0 1 1 1 0 7
DADB AddB&CtoH&L 0o 0 0o 01 0 0 1 10
DADD AddD&EtoH&L 0o 0 0 1 1 0 0 i 10
DADH AddH& LtoH&L 0 0 1 0 1 0 0 1 10
DAD SP Add stack pointer to H & L o o 1 1 1 0 0 1 10
SUBTRACT
SUBTr Subtract register from A 1 0 0 1 S § 4
SBB r Subtract register from A 1 0 0 1 1 &8 8§ § 4

with borrow
SUB M Subtract memory from A 1 0 0 1 0 1 1 0 7
SBB M Subtract memory from A 1T @ 8 ¥ 1T 1 1 0 7

with borrow
SUI Subtract immediate from A 01 0 1 1 0 7
SBI Subtract immediate from A T 17 0 3 % 1T 1 B 7

with borrow
LOGICAL
ANA r And register with A T 0 1. 0 8 § § S 4
XRAr Exclusive Or register with A 1 0 1 0 1 § § § 4
ORATr Or register with A 1 0 1 1 0 8 § S 4
CMPr Compare register with A 1 0 1 1 1 & 8§ 8§ 4
ANA M And memory with A 1 0 1 0 0 1 1 0 7
XRA M Exclusive Or memory with A 1 0 1 0 1 1 1 0 7
ORAM Or memory with A 1 01 1 01 1 O 7
CMP M Compare memory with A 101 1 1 1 1 0 7
ANI And immediate with A 1 1T 1 0 0 1 1 O 7
XRI Exclusive Or immediate with A T 1T 10 % 1 1 0 7
Notes:

1. DDDor SSS: B000, C001, D010, EOQLI, H 100, L. 101, Memory 110, A 111.
2. Two possible cycle times. (6/12) indicate instruction cycles dependent on condition
flags.
*All mnemonics copyright
©]Intel Corporation 1977

A-36

8080 Instruction Set

Instruction Code[1] Clock[2]
Mnemonic Description D; Dg Dg D,y Dy D, Dy Dy Cycles
ORI Or immediate with A 11 1 1 0 1 1 0 7
CPI1 Compare immediate with A T 1T 1 1 1 1 1 0 7
ROTATE
RLC Rotate A left O o o 0o 0 1 1 1 4
RRC Rotate A right 0o 0 0 0 1 1 1 1 4
RAL Rotate A left through carry 0 90 ¢ 1T o 1 1 1 4
RAR Rotate A right through carry 0 o 0o 1T 1T 1 1 2 4
SPECIALS
CMA Complement A o 0 1 06 1t 1 1 1 4
STC Set carry g 0 T 1 0 1 1 1 4
cMC Complement carry 0o o0 t 1 1t 1 1 1 4
DAA Decimal adjust A o 0 1 0o 0 1 1 1 4
INPUT/OUTPUT
IN Input 1 19 1T 1 0 1 13 10
ouT Qutput 1 1 0 1 0 0 1 1 10
CONTROL
El Enable interrupts 1T 1 1 1 9 @& 1 1 4
DI Disable interrupt T 1 1 1 0 0 1 1 4
NOP No-operation 0O 0 0 0 0O 0 0O O 4
HLT Halt o1 1 1 0 1 1 0 7
Notes:

1. DDD or SSS: B000, C001, D010, E011, H 100, L 101, Memory 110, A 111.
2. Two possible cycle times. (6/12) indicate instruction cycles dependent on condition
flags.

*All mnemonics copyright
@Intel Corporation 1977

A-37

(Blank Page)

(Blank Page)

(Blank Page)

(Blank Page)

