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Preface

The material in this book has been put together from the many operating
manuals and system descriptions published by the various manufacturers mentioned
in this book. And, in many cases, the complete latest schematic revision of the par-
ticular board described has been included for handy reference. In total, this book
is intended to serve as a quick, handy compendium of technical information about
S-100 bus equipment. And, although some companies have changed names, been
acquired by others, or closed their doors, many thousands of their boards are in the
field, and this book will be one of the few places that data will be available.

The boards covered in this book span a wide range of functions, and although
it would be impossible to cover every manufacturer’s product in a single book, the
equipment described here is representative of the many other products that are avail-
able. Companies such as MITS and IMSAI were the pioneers in the field of “per-
sonal” computing, which has now opened up to an extremely large assortment of
low-cost completely assembled systems, some using the S-100 bus and others using
proprietary bus structures.

However, another controversy covered in this book is that of just what is
the S-100 bus. MITS introduced the original version of it on their Altair 8800 micro-
computer system, revised it for the 8800b system and then developed an entirely new
structure. The pin definitions picked by Imsai were very similar to those of MITS,
but there were some differences—differences that make some of the boards that
operate in one system incompatible on the other system. For future S-100 bus sys-
tems, many of the incompatibility problems should be eliminated as the “standard”
for S-100 bus systems that has been developed by a committee of IEEE (Institute
of Electrical and Electronic Engineers) becomes widely adopted. Included in Ap-
pendix D is a summary of the new standard, including a listing of all the pins and
their definitions.

Not only will this book serve as a handy compendium of information about
the boards, but it will serve as a simple guide to troubleshooting some of the basic
simple system failures beyond “it doesn’t work.” Detailed troubleshooting infor-
mation would require a book on each type of board, so the material included here
will just help track down the problem to a defective board, system component, or
program.

I would just like to add a word of thanks to all the microcomputer manu-
facturers that helped me put this material together and hope that for you, the user,
it serves its intended purpose.

DAvVE BURSKY
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CHAPTER 1

Basic Introduction to Computers
and Microprocessors

So you want to use a computer. But just buying one
and reading the instruction and operating manuals will
not get you very far, especially if you're not familiar with
programming or electronics.

By itself, a computer is nothing more than a collec-
tion of electronic circuits arranged to process informa-
tion that is fed into it. In addition to all the electronics,
therefore, a computer requires some sort of language to
communicate back and forth with the operator—you.
Such a language consists of a stable of commands that
can be combined in various ways to make the computer
do almost anything—solve business problems, simulate
speech, play music, play games, or even solve mathe-
matical equations.

A Little Computer Prehistory

Ever since man started counting on his hands and
toes, he has been trying to find easier and faster ways
to do everything. The Chinese abacus, developed before
2000 B.C., was one of the first calculating machines
(Fig. 1.1). It could add, subtract, multiply, and divide
under the skillful control of an operator. And even
today, if you were to go into the Chinese community
of any sizable city you would probably find some shop-
keepers still using the abacus to do their bookkeeping.

Fig. 1.1 The Chinese abacus, one of the first of man’s
calculating machines, is still in use today.

Early Western civilization, though, struggled along
without such a handy device. Moreover, it had to make
do with the numbering system devised by the Romans—
what today we call Roman numerals:

I=1 Vv=5 X=10,
C =100, and M = 1000

It wasn’t until the thirteenth and fourteenth centuries
that the decimal system of Arabic numerals we use
today—0, 1, 2, 3, 4, 5, 6, 7, 8, and 9—came into wide-
spread use. Except for the zero, the numbering system
dates back to about the fifth century. However, the idea
of a placeholder, the zero, was not developed until about
the ninth or tenth century.

Today, the decimal numbering system is used
throughout the world as a common mathematical tool.
However, most computers don’t operate with decimal
numbers—they use one of the forms of binary number
representations to perform their operations. We’ll talk
more about numbering systems and how they work in
the next chapter.

It wasn’t until the seventeenth century that modern
computing devices began to take shape. Two of Eu-
rope’s top philosopher-scientists—Blaise Pascal and
Gottfried von Leibnitz—improved on some basic math-
ematical concepts in a way that made some crude cal-
culators possible (crude, that is, by today’s standards).

Pascal’s contribution was to increase our under-
standing of the carry and borrow operations used in
addition and subtraction. About the middle of the
seventeenth century he developed an adding machine
(Fig. 1.2a) that could perform all four basic functions—
addition, subtraction, multiplication, and division—by
means of notched wheels interconnected by gears. Each
wheel had ten notches, and after every complete rota-
tion of a lower wheel the next higher wheel would move
ahead one notch. Multiplication consisted of nothing
more than repeated additions, and division of nothing
more than repeated subtractions. Most electric and gas
meters used by the utilities today use the same principle
to calculate power usage.
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(B)

Fig. 1.2 The first crude calculator, “Pascal's Machine
Arithmetique,” was developed in the seventeenth
century (a). During the nineteenth century, Babbage
conceived a fully automatic caiculating machine he
called an analytical engine (b). It used punched cards
to feed in the information.

Leibnitz improved on Pascal’s machine by develop-
ing a way to do multiplication directly. The principle
of his machine, called a stepped reckoner, was used in
many electromechanical calculators until the 1960s. Of
course, both Pascal’s and Leibnitz’s machines had to
be manually operated; someone had to feed in the num-
bers and turn the crank for each operation.

About 200 years had to pass before Charles Bab-
bage conceived of a fully automatic calculating ma-

chine—he called it the analytical engine (Fig. 1.2b).
Unfortunately, his machine was too complex for the
metal-working technology of the early 1800s, and it was
never built. Babbage’s concept of the analytical engine
also fostered the idea of using punched cards to feed
information (both instructions and data) into a machine
for processing. Many computer installations still use
Babbage’s punched-card concept for entering programs
and data.

While Babbage’s idea remained sidelined, another
mathematician, George Boole, developed a theory of
logical algebra (what today engineers refer to as Boolean
algebra) that has served as the basis for all modern
computer theory. A lot of other developments had to
take place, however, before modern computers could
even be imagined.

Electricity was still the experimenter’s parlor toy
in the nineteenth century, and the theory of electricity
had yet to be formulated. Once it had been, the great
cataclysms of the twentieth century’s two World Wars
brought forth many advances in electrical machinery
and computing devices. Not long after the end of World
War 11, several large computing machines were devel-
oped by researchers at Harvard and the University of
Pennsylvania—the Mark I at Harvard, and ENIAC at
the University of Pennsylvania.

By today’s standards, ENIAC (only 30 years old)
was a very primitive machine (Fig. 1.3). It used 18,000
vacuum tubes, weighed more than 30 tons, consumed
130,000 watts, and performed only 5000 operations per
second. Modern programmable pocket calculators that
can store instructions on magnetic cards have as much
capability as did ENIAC.

While scientists struggled to keep ENIAC running,
researchers at Bell Labs refined the principles of semi-
conducting materials. By the early 1950s semiconduc-
tors—transistors—started to replace vacuum tubes in
many applications. They not only offered almost unlim-
ited life compared to that of vacuum tubes, but were
only a fraction the size.

Fig. 1.3 World War il spurred scientists at the Univer-
sity of Pennsylvania to develop the first digital com-
puter—ENIAC. (Courtesy Sperry Univac)
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Fig. 1.4 Containing all the major logic sections that make up a computer, the 8048 microcomputer developed by Intel is built into a chip

of silicon less than a quarter of an inch on a side. (Courtesy Intel)

Use of these semiconductor materials—germanium
and silicon—to build miniaturized systems allowed
designers to build machines that required a fraction
of the power, were only a fraction the size, and only a
small percentage of the weight of ENIAC. The transis-
tor indeed marked the turning point of modern com-
puter design.

But even since the invention of the transistor there
have been major advances. In 1958, several companies

managed to combine several transistors and some other
components within a single tiny chip of silicon. These
all-solid-state circuits, now referred to as monolithic
integrated circuits, have reduced the number of actual
components needed to build a computer system to a
mere handful. As a matter of fact, today’s technology
has already made possible the complete computer on a
single chip of silicon only 0.25 in. on a side (Fig. 1.4).
The chip contains about 40,000 transistors and requires
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data and instructions. Boolean algebra can thus be used
to express many of the processes of computer systems
since it is a form of logic reasoning involving two states:
truth and untruth.

The ability of a computer to perform logic and math
operations rapidly is its only strength. In logic, all state-
ments must be either true or false; there are no inter-
mediate conditions such as “maybe.”

The binary numbering system provides us with just
the right symbols to work with, and we will adopt them
as a standard for the rest of the book. For a true logic
statement, the binary value of 1 will be assigned, and for
an untrue statement, a value of 0. Thus, a statement can
equal 1 or 0 but it cannot have any other value (that is, it
must be either true or false). Electronic circuits adapt
easily to this system because only two voltages are needed
and they can be as simple as ground (nothing, or 0 V)and
some level V (which can be positive or negative). The true
or false representation can be turned into an on and off
equivalent for electronic circuits. Thus, when the circuit
is turned on the statement could be true, and when the
circuit is turned off the statement could be false. Depend-
ing on the type of logic circuits used, the positive level or
ground could just as easily represent the true statement
or the false statement.

Either statement standing by itself is of little logical
interest. A statement has a truth value of 1 or0, and that’s
all. However, when several statements are grouped to-
gether, other logical inferences can be developed. The
three basic logic operators—AND, OR, and NOT—
help connect statements so that conclusions can be
drawn.

Using Logic Operators

The AND operator can be used to connect any num-
ber of logic statements, all of which must be true for the
conclusion to be true. For instance, suppose a friend
tells you that on Saturday you will find him at the park
if the weather is good AND he has the day off from work.
This remark can be written as a logic equation by using
symbols: Let A represent the statement that the weather
is good, B the statement that he has the day off from
work, and C that you will find him at the park. There-
fore, if A AND B then C.

Writing out an entire logic operation is often not
necessary; a shorthand notation can be used. Sometimes
the multiply dot - in the middle of a line is used to repre-
sent the AND function, and other times the dot is omitted
and the individual letters are placed next to each other:

if A - B then C; if AB then C

Each of the two statements A and B can be either
true or false. If true, we assign the statement a value of
I, if false, a value of 0. The statements can be tabulated
to show all four possible combinations and the possible
outcomes:

Statement A Statement B Outcome (A - B)

0 0 0
0 1 0
1 0 0
1 1 1

This type of listing is called a truth table since it
shows every possible combination of the two statements.

The OR operator can also be used to connect any
number of logic statements. However, unlike operations
with the AND operator, only one statement of all those
connected need be true for the outcome to be true. Let’s
use the same example we used for the AND operator but
modify it slightly: A friend tells you that on Saturday you
will find him at the park if the weather is good OR he has
the day off from work.

We can write this statement in the form of a logic
equation if we use the plus symbol + to represent the
logic OR operation. Thus, if A + B then C. Whenever A
or B is true, or they are both true, the outcome is true.
Again, this can be shown in truth-table form very simply:

Statement A Statement B Outcome (A + B)

0 0 0
0
1
1

1 1
0 1
1 1

The only time your friend won’t be at the park will
be if the weather is not good AND he doesn’t have the
day off from work.

The last basic logic operator, the NOT function, can
be used to invert or complement a logic statement. It is
usually symbolized in shorthand by an overscore of the
logic statement or statements you want to invert. Let’s
see how the logic statements used for the AND and OR
operators can be rewritten.

The statement A refers to the fact that “the weather
is nice”; therefore, A represents the statement that “the
weather is not nice.” Similarly, B represents the state-
ment that “he has the day off from work,” and B means
that “he does not have the day off from work.” Since A
is represented by the binary 1, A would then be binary 0
(A =1, A=0). Common pronunciations of A are “not A”
and “A bar,” although you may run across others. The
truth table for the NOT function is very simple since it
operates on one item at a time:

A A
0 I
I 0

Each of the logic operators has a physical equivalent
that you might find easy to relate to. The simplest ex-
ample is probably the common water faucet. If you take
a look at your kitchen sink, you’ll probably see some-
thing like the arrangement shown in Fig. 2.1. On top of
the sink are two faucets (call them A and C) and a com-
mon spout. Under the sink you’ll find two valves (call
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Fig. 1.4 Containing all the major logic sections that make up a computer, the 8048 microcomputer developed by Intel is built into a chip

of silicon less than a quarter of an inch on a side. (Courtesy Intel)

Use of these semiconductor materials—germanium
and silicon—to build miniaturized systems allowed
designers to build machines that required a fraction
of the power, were only a fraction the size, and only a
small percentage of the weight of ENIAC. The transis-
tor indeed marked the turning point of modern com-
puter design.

But even since the invention of the transistor there
have been major advances. In 1958, several companies

managed to combine several transistors and some other
components within a single tiny chip of silicon. These
all-solid-state circuits, now referred to as monolithic
integrated circuits, have reduced the number of actual
components needed to build a computer system to a
mere handful. As a matter of fact, today’s technology
has already made possible the complete computer on a
single chip of silicon only 0.25 in. on a side (Fig. 1.4).
The chip contains about 40,000 transistors and requires
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Fig. 1.4 (cont'd) Containing all the major logic sections that make up a computer, the 8048 microcomputer developed by Intel is built
into a chip of silicon less than a quarter of an inch on a side. (Courtesy Intel)

less power than even one of the vacuum tubes used in
ENIAC. And modern technology is striving to improve
on this circuit—another two years will see up to 100,000
transistors on a single chip of silicon.

What Is a Computer?

Basically, any device can be called a computer that,
once given instructions and information to process,
proceeds to carry out those instructions. Human beings
are forms of highly complex computers, too. Each of us
can accept many types of data through our senses, and,
based on our earlier experiences and learning (program-
ming), can react to solve the problem posed. However,

+ there is one major difference between mechanical and
human computers: Human “computers” are capable of
taking original action without instructions; mechanical
computers can only do what they are instructed to do

and cannot modify what they are doing without follow-
ing a preordained procedure.

Modern computers can be split into two basic fam-
ilies: analog and digital. The analog computer works
with signals that are continuous. By continuous, we
mean signals that can take on an infinite number of
values between two points, as shown in Fig. 1.5. Analog
computers must know the value of these signals, or at
least how a signal compares to the other signals also
being used as information.

Conversely, digital computers work on discrete,
discontinuous numerical values, such as those shown
in Fig. 1.6. Currency offers a good example of such
“discrete” values. The amount of money you pay for a
candy bar is a digital quantity—say, between 0 and $1.
Since only 100 discrete amounts (cents) exist between
these limits, the change from one value to the next is
discontinuous. But, since digital computers don’t care
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VALUE

TIME

Fig 1.5 Analog signals can take on an infinite number
of values between two points on the graph.

VALUE

TIME

Fig 1.6 Digital signals are represented by discrete,
discontinuous numerical values that can appear as
steps on a graph.

whether one value is larger than another, a simple way
to represent an amount had to be found. More about
computer numbering systems and information repre-
sentation will be presented in the next chapter.

Since this book deals with the use and circuit design
of digital computer systems, the rest of the discussions
pertain to digital computer systems only. (If you're
interested in finding out more about analog computers,
see the references in Appendix A.) Digital machines
perform arithmetic operations and can make logic
decisions based on instructions fed into the machine.
Therefore, basic computer mathematics includes the
operations of addition, subtraction, multiplication, and
division, as well as logic operations such as AND, OR,
NAND, NOR, Exclusive-OR (XOR), etc. (More about
these functions later in the book.)

No two digital computers are identical, especially
if you look inside. You can give them the same com-
mands and the same data and, in all probability, get the
same answers. But inside, each machine handles the
information in a different way. The internal organiza-
tion of a computer is often referred to as the machine’s
“architecture.” All computers can, at least for the sake
of analysis, be broken into five basic building blocks:
an input section, a memory section, a control section,
an arithmetic and logic section, and an output section.
A typical interconnection diagram of these building
blocks is shown in Fig. 1.7.

The input part of the computer is often some man-
ually operated device similar to a typewriter, but it
could just as easily be a magnetic tape reader or a

INPUT/ ARITHMETIC
«—=| outrur f*—=} CONTROL AND LOGIC

!

MEMORY

Fig. 1.7 Any computer system can be broken down
into several basic building blocks.

punched tape reader or any of the many other types of
input devices. Part of the input system’s job is to trans-
late the information prepared by the operator into a
form the computer can digest.

Once information has been converted into digital
signals, it is usually fed into the memory section of the
computer, where 1t is stored until needed. The memory
section also holds the instructions and often the basic
operating procedures of the computer itself. Computer
memory devices include such units as magnetic tapes,
magnetic discs (mass storage devices), ferrite cores, and
semiconductor circuits called flip-flops, RAMs, or
ROMs.

To coordinate all the operations of the computer,
the control section selects information and instructions
from a storage location in memory in the proper se-
quence and lets it flow to the proper section for process-
ing. The control section is the decision-making element
of any computer. Inside an actual machine, however,
the control circuits are actually spread out through the
entire machine and are not grouped together as shown
in Fig. 1.7.

The actual processing is done by the arithmetic and
logic section of the computer. In this section, digital
information can be manipulated, analyzed, and re-
arranged under the direction of the control unit.

Once the information has been processed, it is often
fed back into the memory before you see the answer.
Under the direction of the control section, the answers
are delivered to you by means of some output device—
in some cases, the same machine that you entered the
instructions into, and, in other cases, possibly a printer,
a tv screen, or a magnetic-tape recorder.

Of course, there are several parts of the computer
that we’ve skipped over for the moment—the power
supply, the front panel, and the cabinet. However, these
sections are much like the “dressing” on a cake. They
must be there, but all you have to know is that they’re
there and they do their work. Some operations of the
front control panel will be discussed in a later chapter.

Often, the various sections of the computer are
built on separate circuit cards and then the cards are
connected together. The cards described in the follow-
ing chapters are all identical in physical size—5 in. X
10 in.—and have an edge connector on them that per-
mits up to 100 connections to the circuitry on the card
(Fig. 1.8). In a computer, many of these cards are inter-
connected by a wiring scheme called a bus—a common
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m——————

A

group of wires over which signals from all the boards
can be transmitted.

The computers and cards discussed in this book all
use the same bus structure, commonly referred to as the
S-100 bus. This bus was originated by MITS, when the
company introduced the Altair 8800—the first personal
computer—back in 1975. Since then over 50 companies
have adopted the same interconnect bus and offer a
wide variety of computer cards that connect to the bus.
The computers discussed in this book, the Altair 8800b
from MITS and the Imsai 8080 from Imsai Manufac-
turing (Fig. 1.9), use the S-100 bus and can accept all
of the bus-compatible cards made by other companies.

These computer systems are all based on electronic
circuits that have been in existence since 1970, and
some only in the last few years. The heart of these com-
puter systems is the central processor unit (CPU), which
contains the arithmetic and logic unit. Modern tech-

Fig. 1.8 Some typical S-100 bus compatible circuit
cards. (Courtesy Pertec)

nology has been able to shrink the circuitry needed to
build a CPU so that all the components needed fit on a
single chip of silicon a mere quarter of an inch on a
side—the microprocessor (Fig. 1.10). Of course, for it
to work, power and special signals must be supplied
and circuits to make the output signals stronger (buf-
fers) must be used.

What Is a Microprocessor?

But a microprocessor is not a computer. It is just
the processing section. Along with the basic microproc-
€ssor, many memory circuits, input/output circuits,
and other specialized components are needed to make a
full computer. And, just as with the large computers,
all microprocessors are not the same. There are about
30 different types, made by about as many different
companies, and each has its own architecture, instruc-
tion set, power supply requirements, and other
peculiarities.

‘Both the Altair 8800b and the Imsai 8080 were
designed to operate with one specific microprocessor
as the central processor—the 8080A made by Intel
Corp., and now available from about half a dozen
vendors. However, since the creation of the 8080A in
1973, newer microprocessors, the Z-80 from Zilog and
the 8085 from Intel, offer compatibility and improved
performance.
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'IMSAI 8080

Fig. 1.9 The heart of any computer system, the computer itself, typically comes in a large case with many front panel switches and indi-
cators. The Imsai 8080 (left) and the Pertec Altair 8800b (right) were two of the first personal computer systems. (Courtesy Pertec and

Imsai)

The microprocessor is just what its name implies—
a miniature processor. Buried within the silicon chip are
all the basic elements of a computer—the control sec-
tion, the processing section, and some memory (usually
referred to as temporary registers). Specifically, the
8080A has an internal structure as shown in Fig. 1.11.
As you can see, there are quite a few subsections
squeezed into that quarter-inch chip of silicon. To use
the computer system, it’s not necessary to know how
the microprocessor works or what each of its internal
subsections does. Also, for the most part, you must
have a fairly good technical background in computers
before you can even understand what the different sec-
tions do. For those of you with a reasonable background
in computers, the next few paragraphs will try to sum-
marize the characteristics of the 8080A. For those of
you with no background, some additional reading from
selections in Appendix A might be warranted if you
want to understand the inner workings of computers.

The 8080A microprocessor is a circuit designed to
process information in digital form. It operates on
digital information in groups of eight binary digits at a
time (each binary digit is referred to as a bit, and a group
of eight bits is referred to as a byte), and can perform
many different types of mathematical and logic opera-
tions on the digital information. There are four basic
internal sections of the 8080A—the register array and
address logic, the arithmetic and logic unit, the instruc-
tion register and control section, and the bidirectional,
three-state data bus interface.

The register section consists of an array of memory
cells organized so that six 16-bit information blocks
can be stored. Two of the 16-bit registers are assigned
specific purposes—they serve as the program counter
(PC) and the stack pointer (SP). The purpose of the pro-
gram counter is to keep track of the location of the cur-
rent program instruction in the computer’s memory.
The stack pointer maintains the location of a section of
memory called a stack, which is used to hold memory

addresses when a computer program calls a subroutine.
(More about programming in a later chapter.)

Three more of the 16-bit registers are actually
broken into six 8-bit registers that can be operated on
individually or in pairs. The 8-bit registers are referred
to as the B, C, D, E, H, and L registers and can be ac-
cessed in pairs as BC, DE, and HL. All of the registers
discussed so far can be manipulated by instructions.
One other register, called the temporary register, also
stores up to 16 bits, but it cannot be controlled by in-
structions. This register, referred to as the W, Z register,
is used only for the internal execution of instructions.

Bytes can be transferred between any of the regis-
ters inside the processor by the appropriate instruc-
tion. Double-byte transfers can also be performed be-
tween the register pairs and the SP and PC registers
and the address logic. The address logic in turn feeds a
16-bit binary number to the memory array external to
the processor, thus permitting the microprocessor to
access any one of 65,536 memory locations.

The arithmetic and logic unit (ALU) within the
8080A performs the actual manipulating of the com-
puter data. It performs the arithmetic, logic, and rotate
operations dictated by the instructions. In addition to
the circuits necessary to perform the operations, there
are several registers used to hold intermediate infor-
mation—an 8-bit register called the accumulator,
another 8-bit register called the temporary accumulator,
an 8-bit register called the temporary register, and a
5-bit register called the flag register that is used to hold
indicators from operations that took place in the arith-
metic and logic unit. The indicators are ZERO (shows
when an operation leaves a zero result in the accumu-
lator), CARRY (shows when an operation generates a
carry from the most-significant bit position), SIGN
(shows when an operation leaves a negative result in
the accumulator), PARITY (shows whether the sum of
all the bits left in the accumulator is odd or even), and
AUXILIARY CARRY (shows when there is a carry
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MICS-80 Systesn Design Ki

Fig. 1.10 Making the home computer system possible,
the microprocessor offers the computing power of
large computers in an extremely small package.
Housed in a 40-pin DIP, the 200 mil square chip of
silicon called the 8080 contains over 10,000 transistors.
(Courtesy Intel)

generated from the fourth to the fifth bits in the
accumulator).

The accumulator can be loaded from the ALU and
the internal bus, and can transfer data to the temporary

accumulator and the internal bus. A special instruction
permits the contents of the accumulator and the
AUXILIARY CARRY flag to be tested for decimal
correction when the processor is handling decimal
numbers in binary form. The DAA instruction permits
the results to be corrected back to the decimal format.
The instruction register and control section of the
microprocessor holds the current instruction and con-
trols all the internal operations of the processor for
the execution of that instruction. To properly synchro-
nize all the internal operations, special timing signals
called clocks are fed into the microprocessor.
Information flows in and out of the microprocessor
over an 8-bit path called the data bus. Digital informa-
tion can flow in either direction, depending on the oper-
ation the processor is performing. The bus is referred to
as a three-state bus because in addition to the normal
HIGH and LOW logic states possible, the bus can be
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Fig.1.11 The architecture of the 8080A microprocessor is similar to that of most computer central processors. An arithmetic and logic
unit does all the processing and it is controlled by instructions and data fed into it.

made to go into a state where it effectively uses no
power and has no effect on the other circuits it is con-
nected to. This third state is often referred to as a high-
impedance state. When the bus is not in use it is usually
placed in this third state just to minimize power
consumption.

The Microprocessor Operates in Cycles

Each time the microprocessor executes an instruc-
tion, it completes an instruction cycle. The duration of
an instruction cycle includes the time required to pull an
instruction from memory and execute it. During the
pull, or fetch, part of the cycle, the selected instruction
(one, two, or three bytes long) is extracted from the
memory and deposited in the processor’s instruction
register. Then, during the execution phase of the cycle,
the instruction is decoded and translated into specific
actions by the control logic.

Every instruction cycle consists of one, two, three,
four, or five machine cycles. The fetch portion of an
instruction cycle requires one machine cycle every time
a byte must be fetched from memory. The length of the
execution portion of the cycle depends on the instruc-
tion being executed—some instructions may not require
any machine cycles beyond those of the fetch operation,
others may require additional cycles.

Each machine cycle further consists of three, four,
or five states, where a state is the smallest unit of
processing activity and is defined as the interval between
two successive positive-going transitions of the phase-
one clock signal. (The 8080A has all of its timing signals
supplied by a two-phase clock generator that delivers
two signals to the phase-one and phase-two clock input
terminals, as shown in Fig. 1.12.)

Every instruction cycle has at least one memory-
reference operation during which the instruction is
fetched. An instruction cycle must always have a fetch,
even if the execution of the instruction requires no
further references to memory. The first machine cycle
in every instruction cycle is thus a fetch operation.
Beyond that, there are no restrictions; subsequent

; I\ /
9V [
g1 4 —d
i
} T
9V :
s2 4

| i
| ty |
i+——250 ns TO 480 ns,—!
! TYPICAL |

Fig. 1.12 Performing its instructions with timing de-
rived from a two-phase clock signal, the 8080A oper-
ates at frequencies of up to 4 MHz.
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machine cycles can perform any type of operation.
While no one instruction cycle will contain more than
five machine cycles, there are 10 types of machine
cycles that can possibly occur during an instruction
cycle:

. Instruction fetch
. Memory read

. Memory write
Stack read
Stack write
Input

Output
Interrupt

PN LB LN~

9. Halt
10. Halt - Interrupt

The processor identifies the machine cycle in prog-
ress by transmitting an 8-bit status word during the first
state of every machine cycle. Updated status informa-
tion is presented on the 8080A’s data lines during the
SYNC interval in the timing sequence. These data are
usually saved in a register and can be used to provide
control signals for external circuitry.

Before delving into computer operations any
further, let’s backtrack and go through a quick review of
computer mathematics and logic, as well as a simple sum-
mary of the basic electronics needed to understand the
various components used in the computers.



CHAPTER 2

Binary Mathematics and
Boolean Algebra

No matter which computer is used, or what instruc-
tions are given, the same number system performs all
the mathematical operations and the same logic gates
perform the Boolean operations. Computers use the bi-
nary numbering system to perform their operations since
for electronic circuits the two states of the binary sys-
tem—1 (HIGH) and 0 (LOW)—provide the simple equiv-
alents to the ON and OFF states used in electronic switch-
ing systems. But no matter which numbering system is
used, the operations performed—addition, subtraction,
multiplication, and division—are all done in the same
way; only the numbers change.

Computer Math: A Quick Review

Mathematics with the decimal numbering system has
become so commonplace that no one really has to sit
down and think about how a problem has to be done. If
we wanted to solve some simple problems such as these:

48 — 12 =7
13 + 26 =7
4 X 4=7
18+ 3 =7

we wouldn’t even slow down to give the answers; we
would just rattle off 36, 39, 16, and 6.

But if we switch numbering systems to one we aren’t
familiar with, such as the binary numbering system used
by all computers, some of us would be hard pressed to
solve the same problems:

110000 — 1100 = ?
1101 + 11010 = ?
100 X 100 =?
10010 ~ 11 =7

The answers are 100100, 100111, 10000, and 110. All the
same mathematical rules apply to any numbering system,
but the notation can confuse you. Let’s try to clarify all
numbering systems by first looking at the one we’re most
familiar with—the decimal system.

When we write down a number and then say it aloud,
we begin to get the organizational picture of our num-
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bering system. For instance, the number 3165 is pro-
nounced three-thousand, one-hundred sixty-five. Now,
if we break it down into the positional notation repre-
sented by each number spoken aloud, we get

3 X 1000 = 3000
1 X 100 = 100
6 X 10= 60
5 X 1 = 5

3165

As written, the center column of the breakdown is
nothing more than a listing of the powers of 10, similar to
the breakdown shown in Table 2.1. Each column of a
decimal number represents a power of 10, and the high-
est number that can appear in each column is a nine. The
name of this numbering system stems from the Latin
decema meaning 10, since there are a total of 10 symbols
used to represent all numbers.

Table 2.1 Positive Powers of 10
10° = 1=1
101 = 10=10
102 = 100=10X 10
103 = 1000=10X 10X 10
10*=  10,000=10X% 10X 10 X 10
105 = 100,000=10X 10X 10X 10X 10

10% =1,000,000=10X 10X 10 X 10X 10X 10

Since each column is represented by a power of 10, we
can say that the columns are ordered in ascending or de-
scending sequence, depending on which direction we read
from. Normally, a number is read with the largest power
of 10 first, so that the number follows a descending se-
quence. Another name for the highest order column is
the “most-significant digit,” and for the lowest order
column the “least-significant digit.” The total number of
columns defines the number of digits.

We often use a decimal point in writing numbers that
are a fraction of a whole number. To simplify the use of
the decimal point, we use negative powers of 10 to rep-
resent numbers to its right, as shown in Table 2.2. Thus,
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Table 2.2 Negative Powers of 10

101 =01 =1/10
1072 = 0.01 =1/100
1073=0.001  =1/1000
10~%=0.0001 = 1/10,000

1075 = 0.00001 = 1/100,000
1076 = 0.000001 = 1/1,000,000

a number such as 15.328 would be represented by

1 X 10 =10 =10
5X10° =5 X1 =5
3% 107" = 3/10 = 03
2 X 107 = 2/(10 X 10) = 0.02
8 X 107 = 8/(10 X 10 X 10) = 0.008
15.328

The 10 different symbols used for the decimal system
form the base, or radix, of the system (base 10). Any num-
ber, however, can be used as the base. Three of the other
most common numbering systems in use are the octal, the
hexadecimal, and, of course, the binary, where the respec-
tive bases are 8, 16, and 2.

Nondecimal Numbering Systems

In a numbering system based on eight symbols (the
octal), we can count from 0 to 7 before running out of
numbers. If we count higher, we must follow the same
procedure used for decimal counting. After we fill up the
first column, a placeholder (zero) must be inserted and a
carry placed in the next higher column. The following
octal count sequence, with the decimal equivalent shown
just below it, illustrates this very clearly:

0, 1, 2, 3, 4 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20
0,1, 2 3, 4 5 6,7 8 9, 10, 11, 12, 13, 14, 15, 16

Of course, numbers written in octal do not have the
same value as similar numbers written in decimal nota-
tion. In octal, any number filling a column represents a
power of eight instead of 10. For instance, the number
17625 can be broken into its parts to convert it back into
decimal notation.

I X8 =1X8X8X8= 512
7X 8 =7X8X8 = 448
6 X8 =6X8 = 48
2 X8 =2X1 = 2

1010

A base that is larger than 10 can be used, but several
new symbols will have to be added. Our alphabet fortu-
nately provides a ready source of symbols. The letters
A, B, C, D, E, and F, for instance, have been used to
represent the numbers 10, 11, 12, 13, 14, and 15, respec-
tively, in the hexadecimal numbering system. A compari-
son between the four most popularcodes is given in Table
2.3.

Table 2.3 Comparison of Binary, Octal, Decimal, and
Hexadecimal Codes

Binary Octal Decimal Hexadecimal
0000 00 00 0
0001 01 01 1
0010 02 02 2
0011 03 03 3
0100 04 04 4
0101 05 05 5
0110 06 06 6
0111 07 07 7
1000 10 08 8
1001 1 09 9
1010 12 10 A
1011 13 1 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

Base 16 numbers also follow the same mathematical
guidelines, as you can see from the following hexa-
decimal-to-decimal conversion of the number B13E:

B=11X16 =11 X 16 X 16 X 16 = 45,056
1= 1X168= 1X16 X 16 = 256
3= 3X16'= 3X16 = 48
E=14X16" =14 X 1 = 14

45,374

The binary number system is perhaps the simplest of
systems to use and to understand. There are only two
symbols in the binary system—0 and 1—but all the same
rules again apply. A typical binary counting sequence,
with the decimal equivalents shown on the line below,
would be

0, 1, 10, 11, 100, 101, L10, 111, 1000, 1001, 1010
0,1, 2, 3, 4 5 6, 17, 8, 9, 10

Each binary digit, or bit, represents a power of two,
so that any number can be represented by adding bits
together. As a typical example, let’s break down the num-
ber 1100111 and convert it back into decimal notation:

=1X2 = X2X2X2= 64
1 X2 X 2 X2 = 3
0 x 2* X 2
0 x 2
1 X 2?
1 X 2!

1 X 2°

Il
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X X X X
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Converting a binary number into decimal notation is
easy enough, and going the other way is also simple. The
quickest conversion method is a simple process of divid-
ing and checking the remainder. Let’s look at an actual
example, the conversion of 241 into binary:
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Number  Divisor Result  Remainder Comments
241 + 2 = 120 + 1 if remainder = 1, 2° is present
120 = 2 = 60 + 0 if remainder = 0, 2' is not present
60 + 2 = 30 + 0 if remainder = 0, 2° is not present
30 = 2 = 15 + 0 if remainder = 0, 2’ is not present
5 = 2 = 7 + l if remainder = 1, 2* is present
7+ 2 = 3+ 1 if remainder = 1, 2° is present
3+ 2 = 1+ l if remainder = 1, 2° is present
1+ 2 = 0 + 1 if remainder = 1, 27 is present

The binary number is thus 11110001, with the left-
most digit representing the most-significant bit (MSB)
and the right-most digit representing the least-significant
bit (LSB).

Doing Math with Binary Numbers

In the binary system, the highest number that appears
in each column is, of course, 1. Therefore, every time two
Is get added together, they generate a 0 and a carry. Let’s
look at a few simple examples:

0 1 0 |

0 0 +1 1

0 1 1 10
L Carry bit

The sum of 1 + 1 is 2, but 2 can also be represented as 2'
and thus counts as a 1 in the next column. Let’s now look
at a more complicated example:

1011 (decimal 11)
+ 111 (decimal 7)

To do the addition, first combine the right-most bits
to form a sum of 0 and generate a carry of 1 that gets
placed in the next column. The second column then has
a total of 3, which, of course, cannot exist in binary. A
total of 2 must thus be carried into the third column
and that leaves a remainder of 1, which stays in the second
column. The 2 that was carried into the third column ap-
pears as a | and is summed, just as in the first column.
The sum is 0, and another carry is generated. The last
column follows the same procedure. Since the sum is
again 0, another carry is generated and gets added to a
placeholder 0. Diagramatically, the same problem can
be shown as follows:

(D QO Q) (1 Generated
‘_\ 1‘-\0‘-\1 ‘-\1 carries
0 0 1 1 1
1 0 0 1 0

Subtraction procedures are just the reverse; instead
of a carry to the left, you must generate a borrow to the
right. Here are a few simple examples that illustrate basic
subtraction:

(1) «—— Borrow

0 | | 0
-0 -0 - -1
0 0 1

Let’s take a closer look at the borrow with a more
complex subtraction example:

1001
- 110

For the right-most digits there is no borrow prob-
lem, and the difference is 1. The next digits, however, re-
quire a borrow from the left-most column, and the bor-
rowing goes from left to right until the borrow reaches
the second column. Since each column represents twice
what is stored in the previous column, the borrowing of
a | provides 2 for the column that needs the borrow.
Thus, when the 1 is subtracted there is a remainder of
I. In the third column, 1 has already been borrowed
from the 2 that was shifted right, so when 1 is subtracted
the difference becomes 0. Diagrammatically, the sub-
traction looks like this:

(n 2nd borrow
(10) (10) &———— Borrows
1 0 0 1
- 1 1 0
0 0 1 1

Let’s compare this operation to a similar decimal
subtraction:

2 (15) 8 (12) —— Borrow plus whatever
A 5 @ ) was in the column

1 9 3 8

1 6 5 4

The binary numbering system is the easiest one for
digital electronic circuits to use since only two electrical
levels are needed: one to represent the binary | and an-
other to represent the binary 0. Different computer sys-
tems use different electrical levels to represent 1 and 0,
but whatever voltage levels are used, electronic circuits
operate similarly.

The computing power of all computers is based on
their ability to perform logic operations controlled by
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data and instructions. Boolean algebra can thus be used
to express many of the processes of computer systems
since it is a form of logic reasoning involving two states:
truth and untruth.

The ability of a computer to perform logic and math
operations rapidly is its only strength. In logic, all state-
ments must be either true or false; there are no inter-
mediate conditions such as “maybe.”

The binary numbering system provides us with just
the right symbols to work with, and we will adopt them
as a standard for the rest of the book. For a true logic
statement, the binary value of 1 will be assigned, and for
an untrue statement, a value of 0. Thus, a statement can
equal | or 0 but it cannot have any other value (that is, it
must be either true or false). Electronic circuits adapt
easily to this system because only two voltages are needed
and they can be as simple as ground (nothing, or 0 V) and
some level V (which can be positive or negative). The true
or false representation can be turned into an on and off
equivalent for electronic circuits. Thus, when the circuit
is turned on the statement could be true, and when the
circuit is turned off the statement could be false. Depend-
ing on the type of logic circuits used, the positive level or
ground could just as easily represent the true statement
or the false statement.

Either statement standing by itself is of little logical
interest. A statement has a truth value of 1 or 0, and that’s
all. However, when several statements are grouped to-
gether, other logical inferences can be developed. The
three basic logic operators—AND, OR, and NOT—
help connect statements so that conclusions can be
drawn.

Using Logic Operators

The AND operator can be used to connect any num-
ber of logic statements, all of which must be true for the
conclusion to be true. For instance, suppose a friend
tells you that on Saturday you will find him at the park
if the weather is good AND he has the day off from work.
This remark can be written as a logic equation by using
symbols: Let A represent the statement that the weather
is good, B the statement that he has the day off from
work, and C that you will find him at the park. There-
fore, if A AND B then C.

Writing out an entire logic operation is often not
necessary; a shorthand notation can be used. Sometimes
the multiply dot - in the middle of a line is used to repre-
sent the AND function, and other times the dot is omitted
and the individual letters are placed next to each other:

if A - B then C; if AB then C

Each of the two statements A and B can be either
true or false. If true, we assign the statement a value of
1, if false, a value of 0. The statements can be tabulated
to show all four possible combinations and the possible
outcomes:

Statement A Statement B Outcome (A - B)

0 0 0
0 1 0
1 0 0
1 1 1

This type of listing is called a truth table since it
shows every possible combination of the two statements.

The OR operator can also be used to connect any
number of logic statements. However, unlike operations
with the AND operator, only one statement of all those
connected need be true for the outcome to be true. Let’s
use the same example we used for the AND operator but
modify it slightly: A friend tells you that on Saturday you
will find him at the park if the weather is good OR he has
the day off from work.

We can write this statement in the form of a logic
equation if we use the plus symbol + to represent the
logic OR operation. Thus, if A + B then C. Whenever A
or B is true, or they are both true, the outcome is true.
Again, this can be shown in truth-table form very simply:

Statement A Statement B Outcome (A + B)

0 0 0
0
1
1

1 1
0 1
1 1

The only time your friend won’t be at the park will
be if the weather is not good AND he doesn’t have the
day off from work.

The last basic logic operator, the NOT function, can
be used to invert or complement a logic statement. It is
usually symbolized in shorthand by an overscore of the
logic statement or statements you want to invert. Let’s
see how the logic statements used for the AND and OR
operators can be rewritten.

The statement A refers to the fact that “the weather
is nice”; therefore, A represents the statement that “the
weather is not nice.” Similarly, B represents the state-
ment that “he has the day off from work,” and B means
that “he does not have the day off from work.” Since A
is represented by the binary 1, A would then be binary 0
(A =1, A=0). Common pronunciations of A are “not A”
and “A bar,” although you may run across others. The
truth table for the NOT function is very simple since it
operates on one item at a time:

A A
0 1
1 0

Each of the logic operators has a physical equivalent
that you might find easy to relate to. The simplest ex-
ample is probably the common water faucet. If you take
a look at your kitchen sink, you’ll probably see some-
thing like the arrangement shown in Fig. 2.1. On top of
the sink are two faucets (call them A and C) and a com-
mon spout. Under the sink you’ll find two valves (call
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FAUCET

VALVE B VALVE D
HOT WATER COLD WATER

Fig. 2.1 A kitchen sink with two faucets, a common
spout, and two emergency valves underneath is a good
analogy for combined AND/OR logic statements.

DRAIN

Fig. 2.2 Just as valves are used to start and stop water
flow, switches (toggle, push button, rotary, etc.) are
used to start and stop electrical current flow. (Courtesy
Centralab and Micro Switch)

them B and D), one on the hot water line and one on the
cold.

For water to flow out of the tap (call this statement
E), the valve under the sink AND its respective faucet
must be opened: A - B+ C - D = E. This logic statement
combines both the AND and OR operators since the tap
is common to both hot and cold water lines. Water will
flow if both valves A AND B are opened OR valves
C AND D are open.

Just as we use valves to start and stop water flow, we
can use electrical switches to start and stop electrical cur-
rent flow (Fig. 2.2). Several switches connected in series
perform an AND function (Fig. 2.3a). Switches in par-

allel perform an OR function (Fig. 2.3b), and a simple
switch set up to function in a normal way can simulate
the NOT function (Fig. 2.3¢).

Combining Logic Operators

By mixing the three basic operators AND, OR, and
NOT together, several other logic functions can be cre-
ated. An AND combined with a NOT makes a NOT-
AND, or NAND function; an OR combined witha NOT
makes a NOT-OR, or NOR function; and two NOT func-
tions cancel each other out. The truth tables for these
functions and several others are shown in Fig. 2.4. Only
two truth statements are used as determining elements
in the examples although any number of statements can
be used.

Multiple statements can be combined into one logic
equation and there is no limit to the number of state-
ments that can be linked. You can have two, three, four,
eight, or more logic statements or expressions combined
on one operator. The electronic equivalent to the logic
operator is called a gate. It is possible to buy AND, OR,
NAND, NOR, NOT, Exclusive-OR (XOR), AND/OR,
and many other types of gates, each with different num-
bers of possible inputs. Many of the common symbols
for logic gates are shown in Fig. 2.5.

The mathematics of combining these different logic
gates is what we call Boolean algebra. Every form of
mathematics has some basic theorems, postulates, and
underlying truths. In the short space of this book, you’ll
just get an overview and rudimentary understanding of
the basic concepts. (For more about Boolean algebra,
see Appendix A for additional reading.)

OR
AND X
G g
(B)
T {INVERSE OF NORMAL)
o—o0——o0 o—o/_'o—o
X X
(C)

Fig. 2.3 Switch connections showing (a) AND, (b) OR,
and (c) NOT (inverse of normally open) equivalents of

logic gates.
A B |AB A B |A¥B AR A B |A@e8
00 | I 00 | I oo 00 0
o1 | o1 | o U o | [
I 1o |o I o |
1| o 1o I 0
(A) (B) (C) (D)

Fig.2.4 Truth tables for (a) NAND, (b) NOR, (c) NOT-
NOT, and (d) Exclusive-OR (XOR) gates.
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NOR BUFFER NOT

oD
B
XOR

Fig. 2.5 Commonly used symbols for logic gates.

The Basic Rules of Boolean Algebra

Thus far we’ve looked at truth statements, and if one
was true we assigned it a value of 1, and if false a value of
0. Let’s see what happens if we try combining statements.

When two true statements are ANDed together, the
outcome is always true. If one of the statements is false,
the outcome is always false. In symbolic form, some uni-
versal statements may be made, as follows:

1. The outcome of a logic AND equation where all
but one term is known to be true depends directly on the
unknown term:

A 1=A

2. The outcome of a logic AND equation where any

of the terms is false is always false:

A-0=0
3. Any logic statement ANDed with itself is equal
to the original logic statement:
A-A=A

4. Any logic statement ANDed with its complement
is always false (see statement 2):

, A-A=0
5. Any logic statement upon which a double NOT

operation has been performed is equal to the original
statement without any operations performed:

A=A
6. The outcome of a logic OR operation where any
number of statements are ORed with at least one true
statement will always be true;
A+1=1
7. The outcome of a logic OR equation where one
or more terms are known to be false depends on the re-
maining statements:
A+0=A
8. Any logic statement ORed with itself is equal to
the original logic statement:
A+ A=A

9. Any logic statement ORed with its complement
is always true:

COLUMN | 2 3 4 5
A B C | A+B+C | A-B-C A-B-C A+B+C
00 ] | I i
00 | 0 0 | I
01 0 0 0 | I
0 1 | 0 0 ! I
1 00 0 0 [ |
10 | 0 0 ! I
I 10 0 0 | i
[ 0 0 0 0

Fig. 2.6 Truth table for DeMorgan’'s theorem using
binary numbers.
A+ A=1

Boolean algebra also follows some common mathe-
matical laws, which can be illustrated as follows:

Commutative Laws
A-B=B- A
A+B=B+ A

Associative Laws
(A-B)-C=A-(B-0
(A+B)+C=A+ B+ 0O

Distributive Laws
A+B-C=A+B) A+ CO
A-B+CO=A-B+A-C

Two theorems were developed after Boole formulated
his basic postulates. These theorems, developed by
DeMorgan, bear his name. The DeMorgan theorems
simply state that:

1. The inverse of any series of OR operations is
equivalent to an identical series of inverted AND
statements:

A+B+C=A-B-C

2. The inverse of any series of AND operations is
equivalent to an identical series of inverted OR
operations:

A-B-C=A+B+C

Let’s go through the truth table for these two
theorems (Fig. 2.6). When all three statements are false,
the NOT-OR combination (column 2), the NOT-AND
combination (column 4), and their DeMorgan equiva-
lents (columns 3 and 5) are all true. However, for the
NOR function (column 2) and its equivalent in column
3, whenever any one or more of the logic statements in
column 1 are true, the outcome is false. On the other
hand, the NAND function shown in column 4 (and its
equivalent in column 5) remains true for all combina-
tions of the logic statements except for the case of all
three statements being true. When A, B, AND C are
true, the AND function requires that the output be
true; however, since a NOT operator covers the entire
expression, the outcome will be opposite to that nor-
mally expected.



CHAPTER 3

Introductory Electronics and
Logic Functions

Computers are built from a wide variety of elec-
tronic components and hardware—resistors, capaci-
itors, integrated circuits, transistors, diodes, trans-
formers, cabinets, switches, sockets, indicators, printed
circuit boards, and a multitude of other items. However,
unless you are going to troubleshoot the computer when
it breaks down, or you intend to build your own com-
puter boards, you really don’t have to know how the
various components work. This chapter will provide a
brief summary of the operation of most of the major
components encountered in a computer. For detailed
explanations and theoretical discussions consult Ap-
pendix A for additional reading.

Very simply, electricity is the flow of electrons from
one point to another. Materials that permit an easy flow
of electrons are called conductors and they offer a
low resistance to the flow. Materials that totally block
or tremendously impede the electron flow are called
insulators; they offer a high resistance to the flow.
There are also materials that fall somewhere in between
the conductors and insulators; these we call semicon-
ductors, and they form the basis for all solid-state
circuits,

The force that moves electrons is called the electri-
cal potential (often referred to as voltage); it is measured
in units called volts. The flow of electrons caused by
the voltage is called current and is measured in units
called amperes. Opposition to the flow of current is
called resistance; it is measured in units called ohms.
The triad of volts, amperes, and ohms forms a simple
mathematical relationship known as Ohm’s law:

voltage = current X resistance

Standard abbreviations for voltage, current, and
resistance are as folllows:

V = volt (unit of voltage)

A = ampere (unit of current)

Q1 = ohm (unit of resistance; symbolized by the
capital Greek letter omega)

The basic numerical relationship between these three
terms can be expressed with the help of symbols:
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However, whenever numbers are not used, the letter E
represents the voltage potential.

Electricity takes two forms: alternating current (ac)
and direct current (dc). In your home, office, and most
places of business, the power available at the wall outlet
is a form of sinusoidally alternating current. The poten-
tial that forces the current to flow follows a pattern such
as the one shown in Fig. 3.1. The voltage starts at a zero
level, increases to a positive maximum value, then de-
creases through zero to a maximum negative value, and
finally rises back to zero. This cyclic operation repeats
many times a second and each complete variation is
called a cycle. The ac power supplied in the United
States provides 60 cycles every second at an average
of 115 V. To measure the number of cycles per second,
we use the unit Hertz (abbreviated Hz); thus the ac
power is said to be 115 V, 60 Hz.

Dc voltages don’t vary in cyclic patterns; they are
constant. A simple example of a dc source is the com-

Vak

Fig. 3.1 Representation of an ac power source.

+V

—H e

—*{u|n|e— BaTERY

TIME

+ — _ ARBITRARY
SOURCE

Fig. 3.2 A dc power source shown in graphic and
schematic representations can be as simple as an
ordinary flashlight battery or as complex as an entire
rack of equipment.
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mon flashlight battery. Its voltage remains almost con-
stant, but slightly decreasing, as shown in Fig. 3.2 on the
previous page, until the chemical processes inside the cell
can’t produce any more electricity. When that happens,
the cell has served its useful life and is either discarded or

recharged.

FIXED -—

RESISTOR POTENTIOMETER

Fig. 3.3 Some typical resistors and their various sche-
matic symbols. (Courtesy Allen-Bradley and Bournes)

Let’s Look at the Components

Components specially designed to provide resis-
tance, called resistors, form an important part of every
electronic circuit. They are available in many different
forms, in both fixed and adjustable types, as shown in
Fig. 3.3. The type of resistor to be used depends on
many design criteria, from resistance value to operating
temperature. For many applications, low-cost resistors
made from molded carbon are quite sufficient. How-
ever, when high power-handling capability or high
precision is needed, more expensive metal-film or wire-
bound resistors are usually selected. Many resistors are
often used in the same circuit, and sometimes several
resistors must be combined either in series or in parallel
to make a larger or smaller value. Combinations of
resistors are often used to split currents and divide
voltages.

Every electronic component has resistance, even
conductors. Wire, for example, has a very low resis-
tance—typically thousandths of an ohm for short
lengths. And, in most cases the resistance can be ig-
nored. But it can’t be ignored in the power connections
within the computer. Here, voltage losses of half a volt
might occur, and that, combined with heat build-up
from the power loss (I’R), can cause problems. Basi-
cally, wire resistance depends on four factors—Ilength,
material, temperature, and diameter—but is most often
directly compared to diameter. The thicker the wire
the lower the resistance.

Another component often encountered is the ca-
pacitor, which is represented by the symbol shown in
Fig. 3.4a; some representative samples are shown in
Fig. 3.4b. The capacitor has a characteristic called ca-
pacitance, which is a sort of storage capability for elec-
trons, and is measured in units called farads, F. Most
capacitance values today are small compared to the
farad, and in many cases capacitance is specified in
millionths or millionth-millionths of a farad—uF
(microfarads) and pF (picofarads), respectively.

In its simplest form a capacitor consists of two
closely spaced parallel conducting plates separated
by some form of insulating material. The type of insu-
lator used to separate the plates has a lot to do with
the storage capacity. Commonly used insulators include
ceramics, mica, glass, oil, and even waxpaper. Most
small-valued capacitors (under 1 uF) “don’t care” as to
the type of voltage (ac or dc) connected to them since
the materials used are not sensitive to positive or
negative voltages. However, larger-valued capacitors,
known as electrolytics, use a special combination of
materials and chemicals to obtain the high capacitance
(tenths of a farad). Because of their special construc-
tion, the capacitor terminals have a fixed voltage polar-
ity and can literally explode if polarities are not
observed.
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e

Fig. 3.4 Some typical capacitors and their schematic
symbols. (Courtesy Sprague)

Capacitors are not only rated for their capacitance,
but for their maximum operating voltage as well. Be-
cause of the nature of the materials used, the larger
the capacitance value, the larger the physical size and
the lower the voltage rating. A typical electrolytic
capacitor used in a computer power supply might have
a rating of, say 5000 uF at 35 V and have a physical
size of 5 in. long by 2 in. diameter. In contrast, a tiny
disc capacitor, about 0.5 in. diameter and only 0.1 in.
thick, might have a rating of 0.01 uF at 1000 V.

Capacitors act as an open circuit for dc voltages;
since there is no connection between the plates, no cur-
rent flows. The amount of voltage the capacitor can °
withstand and the capacitance value are determined by
the separation and size of the plates and the insulating
material used. In ac circuits, the voltage, which is con-
stantly cycling, seems to pass right through the
capacitor.

Resistors and capacitors are known as passive
components since they cannot perform any control
function and do not require a source of power aside
from the voltage connected to them. Another class of
components—active devices—require a power source
in addition to the signal coming in. Active devices in-
clude such components as electronic tubes, transistors,
diodes, silicon-controlled rectifiers, and integrated
circuits.

The Basics of Solid-State Technology

Except for tubes, all active components are built
from semiconducting material —nowadays silicon, al-
though some early devices in the 1950s and 1960s were
built from germanium. Appendix A lists many books
that discuss the history of semiconductors and their
theory of operation. The rest of this chapter will pro-
vide a capsule view of some electronic components to
familiarize you with some symbols and terms.

The semiconducting material used is made from
specially processed silicon that has been refined to ex-
tremely pure levels and then made impure with special
materials. Silicon with an excess of electrons is called
n-type material, and silicon with a deficiency of elec-
trons is called p-fype material.

A diode consists of two layers of silicon grown on
top of each other—one p type and one n type—as shown
in Fig. 3.5 (note its symbol). When an alternating volt-
age is placed across the diode, the electrons are pushed
from the n-type material only for the first half of the
cycle. On the other half of the cycle, no electrons flow,
since electrons are forced to go back into the material.
The diode is often called a rectifier, since for ac signals
half of the signal is removed, as shown in Fig. 3.6. This
process is called rectification.

The diode is biased so that current will flow if the
p section is more positive than the n section. Because of
the nature of silicon (not discussed in this book), about

METAL
LEAD
P-TYPE P TYPE/ ?TYPE )
1Y CATHODE
MATERIAL — N-TYPE {ANODE)
MATERIAL

P-N JUNCTION

Fig. 3.5 A semiconductor diode consists of two layers
of silicon grown on top of each other—one p type and
the other n type.
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Fig. 3.6 When an ac signal is imposed on a diode, the voltage causes current to flow in only one direction.
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Fig. 3.7 Diodes must be biased so that current will
flow if the p section is biased more positively than the
n section.

Fig. 3.8 Diodes are hard to tell apart due to their
similar packaging. However, their functions vary—
signal handling, power rectification, voltage refer-
ence, light emitting, light sensing, switching, etc.
(Courtesy Motorola)

0.7 V is required to forward bias the diode (Fig. 3.7).
Germanium diodes, although not common now, are
still in use; they require a forward voltage bias of 0.4 V.

There are also several families of diodes—signal
handling, power rectification, voltage reference, light
emitting, switching, and others—but if you look at the
packages shown in Fig. 3.8 you can see they are hard to
tell apart.

Voltage-reference diodes, called zeners, are used
to set voltage levels. When forward biased, these diodes
behave just like normal diodes and permit current flow.
However, when they are reverse biased at a point above
what is known as the breakdown region the p-n junc-
tion goes into an avalanche, or zener, mode, and the
potential across the p-n junction remains at an almost
constant voltage, known as the zener voltage, Vz.
(Fig. 3.9). (More zener diode information is available
in the reference books listed in Appendix A.)

Another major family of diodes used in building a
computer is the light-emitting diode, better known as
an LED. These devices, when forward biased, emit
colored light (either red, green, yellow, or orange).
Typically, bias voltages of 1.5 to 2 V are necessary to
make the diodes emit light, with currents ranging from
5 to 50 milliamperes. Some LEDs are available pre-
packaged with a series resistor so that they can operate
from a higher voltage without burning out, as shown in
Fig. 3.10. LEDs are used as indicators in many elec-
tronic applications; more about how to use them will be
discussed in succeeding chapters.

Transistors: Semiconductor Control Elements

If two diodes are placed back to back so that both
p regions are connected or so that both n regions are
connected as shown in Fig. 3.11, they roughly approxi-
mate the structure of a bipolar transistor. Actually, a
transistor is made up of three regions. If it’s an npn

PN NP ?2
»f fe _
] 1
., v AN l v
o b2 -~ Vom07V |
(V)= 0=

ZENER MODE

Fig. 3.9 Zener diodes are used to set voltage levels.
They behave like a normal diode when forward biased,
but when reverse biased at a point above the break-
down region, the p-n junction goes into avalanche
(the zener mode). The potential across the p-n
junction then remains almost constant. This voltage is
known as the zener voltage.
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Fig. 3.10 Various forms of light-emitting diodes and
their basic schematic symbols. (Courtesy Texas

Instruments)
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Fig. 3.11 The basic transistor structure can be simu-
lated by placing two diodes anode-to-anode or
cathode-to-cathode (pnp and npn structures).

transistor, it has a p material sandwiched between two
n-type materials; if it’s a pnp transistor, it has an n mate-
rial sandwiched between two p-type materials. The
symbols for npn and pnp transistors, along with some
typical devices, are shown in Fig. 3.12.

The central region (where both diode p or n regions
combine) is called the base of the transistor and serves
as the control terminal. The leg of the device with the
arrow superimposed is called the emirter, and the leg
without the arrow is called the collecror.

Because the base acts as a control element, much
like a water faucet, the transistor can act as a switch.

NPN PNP

Fig. 3.12 Various transistor packages and the two
basic transistor symbols. (Courtesy Amperex)

R
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Fig.3.13 A simple transistor switch, controlled by
two power supplies, can turn an LED on or off depend-
ing on the polarity of the supply connected to the base
terminal.

When the base-emitter junction is reverse biased, no
current can flow in the collector circuit; but when it is
substantially forward biased, current can easily flow in
the collector circuit. For more about basic bipolar tran-
sistor operation, see the books listed in Appendix A.

The circuit shown in Fig. 3.13 can be used to illus-
trate the switch concept simply. In the base-emitter
circuit is a switch that can select either a forward or
negative bias. When connected to the negative bias V2,
the LED will not light up, but if the switch connects to
the forward bias source, the LED lights, thus showing
current flow. This general principle is used in all digital
computer circuits to indicate the ones and zeros of bi-
nary arithmetic.

There are many types of three-terminal control
semiconductors other than bipolar devices. Some use
an electric field-effect to permit or stop current flow.
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Fig.3.14 Field-effect transistors are available in two
forms: the junction FET (JFET) in both p- and n-
channel versions (a and b), and the insulated gate
FET (c and d), which is better known as the metal-
oxide FET (MOSFET).

These devices, called field-effect transistors or FETs,
are available in two forms: the junction field-effect
transistor (JFET) and the insulated-gate field-effect
transistor (IGFET), which is more commonly known
as a metal-oxide semiconductor transistor, or MOSFET.
FETs do not have a collector, emitter, or base. Instead,
their terminals are called the source, drain, and gate,
respectively. Both types of FETs are shown in Fig. 3.14,
along with their schematic representations.

Other types of devices such as silicon-controlled
rectifiers (SCRs) and triacs are also used in computer
systems, mainly to perform necessary control functions
that require high current-handling capability. The SCR
and the triac are three-terminal devices like transistors,
but that’s where the similarities end. The terminal used
as the control element is referred to as the gate, and
when a control voltage is applied to the gate, the SCR
or triac is turned on like a switch. If the control volt-
age is then removed, the SCR or triac will continue
conducting as long as the voltage difference between
the anode and cathode remains at a minimum positive
value. The symbols and basic structures of both devices
are shown in Fig. 3.15.

Basically, the SCR is a controlled diode. If a volt-
age is placed across the SCR’s anode and cathode so
that the “diode” structure is forward biased, no conduc-
tion will take place until the gate is also brought positive
with respect to the cathode (triggered). When the SCR is
“triggered,” it will conduct current in the forward direc-
tion until the current drops below the minimum needed
to support conduction. When the current drops below
the minimum value, the SCR or triac resets itself to the
blocking condition and will not conduct again until
another voltage is placed on the gate. Although opera-
tion of the triac is similar to that of the SCR, the triac
can conduct current in both directions and thus handle
ac current as well as dc. The gate can be triggered each
time the voltage difference between anode 1 and 2 or
between 2 and 1 goes above the minimum value neces-
sary to permit conduction. Current capabilities for
both SCRs and triacs range from tens of milliamps to
hundreds of amps.

ANODE

TRANSISTOR
EQUIVALENT
OF SCR

GATE CATHODE

SCR
ANODE
O
CATHODE CATHODE
ANODE | GATE
ANODE 2
[3
N
TRIAC
P
GATE
N N
ANQOE |
ANODE 2

Fig. 3.15 Silicon-controlled rectifiers and triacs are
also three-terminal devices like transistors and are
often housed in transistor-like packages. Their char-
acteristics, however, are quite different than those
of transistors.



Introductory Electronics and Logic Functions 23

ot
INPUT 1#
OUTPUT
GROUND
O- O

TTL

out

% LEVEL

IN
LEVEL
+v
CHANNEL
oUTPUT
NPUT | HANNEL OuTPUT
INPUT
CMOS NMOS

Fig.3.16 The inverter function is similar to a seesaw—whatever the input state is, the output state is the opposite.

The Integrated Circuit

Almost all the different components discussed so
far—the resistor, capacitor, diode, and transistor—can
be combined in various forms within a single, minute
piece of silicon less than 0.2 in. per side. Circuits formed
in this way are called integrated circuits and form the
basis for all modern computer structures. There are
four major classes of logic circuits in use today:

1. complementary metal-oxide semiconductor (CMOS)
logic circuits

2. n- and p-channel MOS (NMOS, PMOS) logic

circuits

transistor-transistor logic (TTL) circuits

4. emitter-coupled logic (ECL) circuits

W

Each of these logic families can be broken down
into three levels of circuit complexity: small-scale inte-
gration (SSI), which usually consists of simple gate
functions; medium-scale integration (MSI), which con-
sists of storage elements and multiple-gate arrays; and
large-scale integration (LSI), which consists of large
arrays of storage elements, processing systems, and
complex control circuits.

The basic building block of digital computers is the
logic gate; it is the “glue” that holds all the more com-
plex circuits together. In the previous chapter some
basic guidelines were set up for logic notation, and
they bear some repeating:

I. A logic ONE level is the most positive voltage level
used in the system.

2. A logic ZERO level is the lowest or most negative
voltage level used in the system.

Many circuits in use today have been “standard-
ized” to work within predetermined voltage changes.
Almost all forms of TTL, CMOS, and NMOS can oper-
ate from a power supply of 5 V dc and have logic ONEs
and ZEROs that obey the following rules:

i = any voltage above 2 V
! Logic 0 = any voltage below 0.8 V

.
o
QS.~
)

I

Let’s take a look at the simple NOT, or inver-
ter, circuit and see how the input logic level controls
the output logic level. Basically, the inverter can be
thought of as the pivot of a seesaw (Fig. 3.16). What-
ever the condition of the input, the output is the oppo-
site. Thus, when the input is a logic ZERO, the output
is a logic ONE, and vice versa.

More Complex Circuits

The simple inverter is just the beginning. There
are many types of standard logic circuits, as mentioned
in Chapter 2 in the discussion of basic Boolean func-
tions. Some of the more common circuits include the
7400 quad 2-input NAND gate, the 7404 hex inverter,
the 7410 triple 3-input NAND gate, the 7402 quad 2-

7400 7402
PWRI 1312 1109 8 PWR| I3 1211 10 98
"D D] ]
(D [, <] r<,
12 3 45 elcun [ 23 4 5 6 JGND
7404 7408
PWR| I3 12 1 PWR| 1312 Il 109

D D
D (D,

S
L >,

-Yi
VY

5 6 leno 3 45 6 IGND
_ 7450
Vee  BI X X ol v
PWR| I3 1211109 8 4 |13 2 Ju Jio |9 s

00,

12 345 slcno

! 2 3 Ja |5 s T7
Al A2 B2 B3 D2 Y2 GND

Fig. 3.17 Package layouts of some commonly used
logic gate functions.
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Fig.3.18 A typical decoding circuit (a) accepts a 4-bit BCD input code and provides seven outputs that can supply power to a seven-

segment display, thus forming the numbers 0 to 9 (b).

input NOR gate, the 7408 quad 2-input AND gate, and
the 7450 expandable dual 2-input AND-OR-INVERT
gate (see Fig. 3.17 on p. 23). These TTL circuits are often
referred to as SSI (small-scale integration), and they
form the logic “glue” that binds all the more complex
circuits together.

A form of TTL circuit that uses a newer technology,
the low-power Schottky TTL circuit, has just about
replaced almost all of the older TTL circuits for new
computer designs. These circuits, referred to as the
741.S00 family are, for the most part, directly substitut-
able in circuits for the older 7400 family. Basic opera-
tion of the functions is identical; however, the 74L.S00
family components require less power and operate
faster.

More complex arrays of gates can be built to de-
code binary bit patterns or to encode one bit pattern
into another. A typical combination decoding and drive
circuit is the 7447 (Fig. 3.18). It accepts a four-bit BCD
input code and provides seven outputs that can power

the correct lamps in a seven-segment display to form the
numbers 0 through 9. The four-bit input at A, B, C, and
D determines which of the seven outputs stays HIGH
or goes LOW. Each output of the seven inverters has
an open collector transistor that can handle up to 20 mA
and whose structure is similar to that shown in Fig. 3.19.

SUPPLY
[ L $
’ 7 CURRENT
LIMITING
RESISTOR
OUTPUT XY LOAD
- —f

GND

Fig. 3.19 The open-collector output structure of many
logic circuits permits the output voltage and current
to be defined by the application.
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Fig.3.20 To form the number 0 on an LED display, all
segments but the g segment must be turned on and
lit up. Other numbers can be formed by lighting the
appropriate segments.
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Whenever the output transistor is turned on, any load
connected from the supply to the output will have cur-
rent flowing (logic ZERQO). When the transistor is
turned off (logic ONE), the current stops flowing.

For the input code 0000, all outputs but g go LOW
and cause bars a, b, c, d, e, and f to light up on the dis-
play, generating the number 0 (Fig. 3.20). For a 0001
input, all outputs except the b and c lines stay HIGH,
thus displaying the number 1. For the code 0010, the
f and c outputs stay HIGH, thus displaying the num-
ber 2; for 0011, f and e stay HIGH, thus displaying 3;
for 0100, a, e, and d stay HIGH, thus displaying 4; for
0101, b and e stay HIGH, thus displaying 5; for 0110,
a and b stay HIGH, thus displaying 6; for 0111, f, g, e,
and d stay HIGH, thus displaying 7; for 1000, no lines
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Fig. 3.21 The R-S flip-flop (a) is the simplest form of
storage element that can be made by cross coupling
two gates. The flip-flop’s Q output will go HIGH when
S goes HIGH and LOW when R goes HIGH (b).

stay HIGH, thus displaying 8; and for 1001, e and d stay
HIGH, thus displaying 9.

All gate circuits discussed so far, however have out-
puts that depend directly on the present state of the
input signals. If the input signals are changed, the output
will follow the input in accordance with the gate logic.
All combinatorial logic circuits have this shortcoming—
a lack of memory. If you need a circuit whose output
depends on previous states, the circuit must be able
to remember, or store, the result of the previous input.
Another logic element called the bistable multivibrator
(better known as the flip-flop) is needed to hold infor-
mation about the previous input. Usually, a flip-flop has
two outputs, each the complement of the other. When
one output is LOW, the other is HIGH, and vice versa.
The condition of the flip-flop outputs is often referred
to as the state of the ourput; in many cases, the outputs
are labeled Q and Q.

The most basic form of flip-flop, the R-S, can be
formed by cross-coupling two NOR or NAND gates
(Fig. 3.21). Input leads R and S refer to the control
signals RESET and SET, which determine the state of
the Q and Q outputs. If the R and S signals are assumed
to be voltage levels corresponding to the logic 1 and 0
values, the R and S inputs work as follows: Regardless
of the output state, whenever a logic | appears at the
reset input, the flip-flop’s output will always go to
Q=0and Q= 1. And, when a logic 1 appears on the set
line, the output will always go to Q=1 and Q = 0.

For this simple flip-flop, there is one condition
for which the output cannot be defined—when R = 1|
and S = 1. Since this is an illogical request anyway —
trying to set and reset the flip-flop at the same time—
the output-can be said to be indeterminate. The opera-
tion of a flip-flop can be summarized in what is called
a transition table—a form of truth table for flip-flops
(Fig. 3.22). In the first column is the present state of
the Q output, and in the next two columns are the input
conditions of the R and S lines. The last column indi-
cates the new Q output after the input signal has been
fed in. The first column can also be said to indicate the
flip-flop’s output at time t and the last column at time
t + 7, where 7 is an incremental period of time needed
for the flip-flop to change its state. The table can be
reorganized to simply indicate what input conditions
are needed to make the output change in the fashion
desired (Fig. 3.23). This type of table can be called an

o) | R S Q(t+r)

0 0 0 0

0 0 | |

0 | 0 0

0 | | INDETERMINATE
I 0 0 !

I 0 | !

I ! 0 0

| | | INDETERMINATE

Fig. 3.22 Transition table for a R-S flip-flop.
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STATE CHANGE | REQUIRED INPUT
FROM T0 R S
0 0 a* 0
0 | 0 |
i 0 | 0
I ] 0 d*

*DON'T CARE STATE.

Fig. 3.23 The excitation table for the R-S flip-fiop.
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Fig. 3.24 In a computer system, the source of all the
timing signals is often referred to as the system clock
(a). The clock often generates either a square or
pulsed type of signal in from one to four phases (b).

excitation table. In the table, d indicates don’t-care
states, where it doesn’t matter whether the signal is a
ONE or ZERO.

Let’s step back for a minute and look at how the
NOR gate flip-flop works. To start with, assume an
output condition, say Q= 1, Q = 0. If a signal of R =0,
S = 0 is input, gate A has an input of 00 and its output
stays at 1, and gate B has an input of 01 and its output
stays at 0. However, if the input changesto R=1,S=0,
the input to gate A becomes 10 and its output changes to
0. Now, the input to gate B changes to 00 and its output
changes to 1. The time it takes for gate A to change can
be called A1 and for gate B A2. The total flip-flop transi-
tion time previously called 7 can be represented by
Al + A2. Since these times are often identical: 7 =2 A .

An equivalent to the NOR circuit built with NAND
gates and two inverters works similarly. With both of
these circuits, any time a signal comes along on the
input lines, the flip-flop will trigger. By adding a gate
at each input that can be synchronized to some form of
timing generator in the overall system, however, you can
effectively lock out signals that occur outside of the
window you allow. The timing generator most often
used is called the system clock. It is just a circuit that
generates a square wave or pulse train at a precise fre-

R R

Q Q
Cp Cp
Q Q
S S
R Q
S ¢p Q

f

Fig. 3.25 The R-S flip-flop can readily be modified
to respond to inputs only when a clock is present.

I )
SN N N I |
o N .

Fig.3.26 The timing diagram of the clocked R-S
flip-flop shows that the output of the flip-flop will only
change when an input and a clock pulse are present
at the inputs.
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Fig. 3.27 By adding an inverter on the R input of an
R-S flip-flop, the circuit becomes a D flip-flop.

quency and pulse width (Fig. 3.24). The width of the
positive portion of the square wave or pulse (W or w,
respectively) is the window. Figure 3.25 shows the
actual modification to the flip-flop circuit. Now no
matter what happens on the R and S inputs, the outputs
will remain unaffected until the clock signal goes HIGH.
The timing diagram of Fig. 3.26 shows what happens
when the clock signal locks out unwanted set and reset
signals. The flip-flop can change only when the clock
pulse is present.

If an inverter is now added to the clocked R-S flip-
flop, as shown in Fig. 3.27 another type of flip-flop
with only one input can be built. This type of flip-flop,
called a D flip-flop or latch, is used very often for
temporary storage of data. The inverter prevents both
the R and S inputs from getting logic one inputs simul-
taneously. Also, there are only two possible input con-
ditions—a 0 or 1 on the D line. As you can see from the
transition table of Fig. 3.28, whenever the input is I,
the output will become 1 after the clock pulse comes
along.

Sometimes the basic R-S flip-flop is needed, but it
must have the capability to respond to an R=1, S =1
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Fig. 3.28 The response of the D flip-flop is described
by this transition table.
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Fig. 3.29 A J-K flip-flop can be created by adding
two feedback inputs to the AND gates of the clocked
R-S inputs of the circuit in Fig. 3.25.

condition. By adding two feedback inputs to the AND
gates of the clocked R and S inputs, as shown in Fig.
3.29, another flip-flop called a J-K flip-flop can be
created. The K input (clear) replaces the reset function
and the J input does the same job as the S input. In
general, the J-K flip-flop functions similarly to the
R-S except that both inputs can become 1| simulta-
neously. When this occurs, whatever the output states
are, they get reversed. The J-K flip-flop must have a
clock signal to operate, just like the clocked R-S
flip-flop.

If Q=0, K=0,J=0, and a clock pulse is applied,
nothing happens since the inputs are 0. When the inputs
change to JK = 01 and a clock pulse comes along, noth-
ing will happen if Q = 0 since the flip-flop is already reset.
However, if Q = 1, the AND gate connected to the R
input has a 1 output when the clock pulse occurs and
thus triggers the reset (Q goes to 0). Similarly, when
Q =0, JK = 10, and a clock pulse is applied, the AND
gate feeding the S input has a | output, thus causing the
Q output to go to 1. However, if the flip-flop originally

J K Qt | Qt+4
0 0 ¢] 0
0 | ¢] 0
| 0 0 |
I | ¢] |
0 0 | |
0 t | 0
| 0 [ l
[ [ | 0

Fig.3.30 The excitation table of the J-K flip-flop
shows all possible outputs for all possible input condi-
tions, even a 1-1 input for the J-K input terminals.

J Q o—
T{ —l T

K Cp 6 ——o Cp ah—.

t (A) t (8)

Fig.3.31 By connecting the J and K inputs together,
a T flip-flop can be made from a J-K flip-flop (a). The
T flip-flop (b) changes its output state every time an
input signal coincides with the ciock.
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Fig.3.32 If a J-K and an R-S flip-flop are cascaded,
a master-slave J-K flip-flop is created. It is often
used when triggering is desired only on the falling
edge of an input puise.

had an output of Q = 1 and it got inputs of JK = 10 and
a clock pulse, nothing gets through the AND gates and
the output remains at Q = 1. The special case of JK = 11,
Q = 0, and an applied clock pulse lets a 1 feed into the
set input, thus reversing the flip-flop’s output, setting
Q = 1. If with Q = 1, the same input conditions are
applied, a 1 feeds into the R input, also causing the flip-
flop to reverse its output, and resetting Q to 0. A com-
plete excitation table is shown in Fig. 3.30.

By connecting the J and K inputs together, the
flip-flop can be made to reverse state every time a 1 input
is applied along with a clock pulse (Fig. 3.31). This type
of flip-flop, called a clocked T flip-flop because the
reversing action is called roggling, is very handy when
counting circuits are to be made.

The last type of flip-flop to be discussed here is a
combination of two flip-flops, as shown in Fig. 3.32.
When two flip-flops are used to act as one flip-flop, the
arrangement is referred to as a master-slave combina-
tion. In this circuit, when the clock input is a logic 1
to the master flip-flop, the J-K inputs control its output.
However, nothing takes place at the slave output since
the inverter changes the clock to logic 0 for the slave
flip-flop. When the master’s clock goes to logic 0, the
slave clock input goes to logic 1, and the output of the
slave flip-flop obeys its R-S control inputs. Thus, the
J-K/R-S master-slave flip-flop is said to trigger on
the falling edge of the input clock pulse.

Cascaded Flip-Flops Count

If flip-flops are connected as shown in Fig. 3.33,
they can be used to count the number of input pulses,
divide frequencies, shift data, or just store data. Cir-
cuits like those shown are indispensable for all com-
puter applications. Let’s take a quick look at how some
of them work.

Starting with the counting circuitry of Fig. 3.34 and
the timing and output diagram of Fig. 3.35, assume that
all the flip-flops are J-K master-slave types. If you
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Fig. 3.33 Several flip-flops can be connected together —Op> CLOCK
to (a) count the number of input pulses, (b) divide fre- K
quencies, (c) shift data, and (d) store data. ?

look at all four outputs of the counting circuit at the
same time, the digital signals that appear on those lines
can represent a four-bit code for the binary numbers
0000 to 1111 (decimal 0 to 15). Before any pulses arrive,
all flip-flops are set to zero, and if you look at their
voltage outputs, all outputs would be LOW (logic 0).
After the first count pulse, FF1 changes state and its
output is a 1. When the next count pulse comes, FFI
changes its state again, and in doing so, it triggers FF2
so that the output of FF2 goes to logic 1 and FF1’s out-
put is at logic 0. The next count pulse makes FFI’s out-
put rise to logic 1 and has no other effect on the remain-
ing flip-flops, since J-K flip-flops only respond on the
falling edge of a waveform—not on the rising edge.
The fourth pulse has a more devastating effect that
ripples all the way to FF3. On the falling edge of count
pulse 4, FFI’s output goes to logic 0, thus triggering
FF2 also to change its output from 1 to 0. The change
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Flip-flops can also be used to transfer data from one
place to another. If several flip-flops are cascaded so
that both the inputs and both the outputs are connected,
as shown in Fig. 3.37, data entered on one end can be
pulled through to the other end. This type of circuit is
called a shift register. There are about seven different
varieties of shift registers: unidirectional shifters, bi-
directional shifters, recirculating shifters, parallel input/
parallel output, parallel input/serial output, serial
input/parallel output, and serial input/serial output.

Basically, a serial shift register is like a hollow
tube filled with Ping-Pong balls (Fig. 3.38). If a new

INFUT Roll) Rol2)  NC Vec  Rall) Rq(2) ball is pushed in one end, the far ball inside the tube will
7490 (+10) be forced out. Let’s use shaded balls to represent zeros
DATA DATA DATA up DOWN  DATA
LOAD CLEAR INPUT D IN PuT C INPUT B COUNT COUNT INPUT A
(an 4 Proy (10) T (s) @ us)
.
o] o] o) o]
Q L} Q L) Q
VT v1 VT T
]QLEAR PRESET o ]_CLEAR PRESET jo- ]QLEAR PRESET Jo- CLEAR PRESET Jo-
Qp op Qc Q¢ 0p Qg Qa Qs
—— I— I— L
(7} (6) (2) (3) (12) {13)
o) o o o) o)
OUTPUT OUTPUT oUTPUT OUTPUT CARRY BORROW
QD Oc Qg OA OUTPUT OQUTPUT

74193

Fig.3.36 Some commonly used multiple flip-flop counter circuits.

in FF2 causes FF3 to reverse its output state and make
its output logic 1. This rippling effect continues with all
the ensuing count pulses, and, unless the pulses stop,
the counting circuit continues to cycle from 0000 to
1111, back to 0000 and so on.

If you measure the frequency of the signals on the
output from each flip-flop, you’ll note that each succes-
sive flip-flop divides the input clock frequency by 2.
So if you needed to divide by 2, 4, 8, or 16, all you have
to do is employ a few flip-flops and just use the tap you
want off the chain. There are many different types of
counting/dividing circuits available; some of the most
common types are shown in Fig. 3.36.

and white balls to represent ones. Inside the tube then,
is the bit pattern 1010101. If a zero is entered on the
left, then all bits shift right by one place, and the new
bit pattern is 0101010 (the one that was forced out is
discarded). When the output of the register is fed back
to the input, the data will not be lost, but rather go
in circles—thus the term recirculating. Some registers
include circuitry that permits control of the direction
of data flow—from left to right, right to left, serial to
parallel, or parallel to serial. Commonly used devices
are shown in Fig. 3.39.

Large arrays of flip-flops can be ganged together
to make memories for computer systems and temporary
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Fig. 3.36 (cont'd) Some commonly used multiple flip-flop counter circuits.
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Fig. 3.37 When the output of one flip-flop is directly connected to the input of another, and another, the cascaded array of flip-flops is
called a shift register.
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Fig. 3.38 A serial shift register can be likened to
this tube filled with black and white Ping-Pong balls.
Whatever comes in on one end forces something out
the other.

turers, and probably close to the same number of
CMOS, PMOS, and NMOS circuits. In the TTL family
of circuits, the most prevalent series is the 7400 series
and its different variations—the 74L00, 74S00, 74HO00,
and 74LS00. They are designed to function over a 0 to
70°C temperature range and from a 5-V power supply.
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Fig. 3.39 Some commonly used shift registers from
the TTL circuit family.

data storage areas for data being transferred or to be
displayed. The D flip-flop is ideal for temporary stor-
age, and arrays of four, six, or eight flip-flops in a single
package are commonly available.

Modern digital design treats these logic circuits as
building blocks; just consider their function and the
number of inputs and outputs. There are over 200 stand-
ard TTL circuits available from various manufac-

O
CLOCK  CLOCK SHIFT/LOAD

INHIBIT

Standard TTL and 74LS circuits are listed in Ap-
pendix C. The other 74 series families are performance
variations of the original 7400 series: L refers to low
power, S to Schottky, H to high speed, and LS to low-
power Schottky. Don’t get too confused by the part
numbers if you see a 5400 series; the parts are the same
as for the 7400 series except that they can operate over
a wider temperature range. Standard CMOS circuits
include the 4000 series and a 74C series; both are avail-
able from many vendors. Typical packages and sizes of
circuits are shown in Fig. 3.40, and a list of most avail-
able types is given in Appendix B

Connecting the circuits to each other requires some
special checks and considerations. Starting with TTL,
here are some guidelines to follow when using logic
circuits:

TTL

1. Each circuit requires a +5 V dc source and a ground
connection.

2. Use a capacitor of about 0.01 uF connected across
the power supply and ground lines for every three
to five packages.
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Fig. 3.40 Typical IC packages used in computer
systems.

3. Each logic input or output can handle up to a maxi-
mum of 10 TTL inputs or outputs; don’t overload a
gate or other circuit.

CMOS

1. Each circuit usually requires a +5 to +15 V dc
source and a ground connection.

2. Same as Rule 2 for TTL.

3. Each logic circuit input or output can handle about
100 or more other CMOS circuit inputs or outputs,
but since they are designed for low power operation,
they may not be able to handle the comparatively
high current of TTL circuits.

NMOS and PMOS

1. Check the specifications carefully; most PMOS and
NMOS circuits made today feature TTL compati-
bility, which means that they operate from a 5 V
supply and can accept or deliver enough voltage
and current to handle one TTL input. Some of the
older devices require special voltages and interface
circuits.

2. Same as Rule 2 for TTL.

3. Since these circuits have very different intercon-
nection requirements and drive capabilities, read
the data sheets carefully.

A newer form of TTL and MOS logic circuit uses
what is now referred to as three-state logic. This
logic form has, in addition to the normal HIGH and
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Fig. 3.41 A typical circuit for three-state logic devices.

LOW states, a third state that has no voltage associated
with it but instead merely presents a very high resistance
to the signal lines connected to the line.- The high im-
pedance reduces the current that flows in the circuit and
thus minimizes the power required and the loading
caused by many circuits being connected together.

Without three-state capability, a normal gate such
as a 7400 can have up to 10 other logic circuit lines
connected to its output before the output becomes over-
loaded. Each connected line requires 40 pA for a HIGH
level and —1.6 mA for a LOW level. So, when 10 lines are
ganged together, the total current can reach 400 nA for
a HIGH signal and —1.6 mA for a LOW signal. How-
ever, what is the purpose of that much current if the
circuits aren’t really used all the time? That’s where
three-state logic comes in. By disabling the output of
the gate driving the 10 lines or the inputs of the gates,
almost no current is used until the signals are actually
needed. This arrangement permits loads of up to 100
logic circuits to be connected to a single gate’s. output
without overloading the gate.

The typical output circuit for three-state circuits
is shown in Fig. 3.41. When the base of QI is kept near
zero, Q1 does not conduct and thus keeps Q2 turned off,
which, in turn, leaves point A in a “floating” state.
The impedance of the point is thus very high (equivalent
to that of a reverse-biased diode). If the base of QI is
raised to near V¢c, QI is turned on and it, in turn,
turns on Q2, which then brings point A to a voltage
(logic 1) near V¢c also (assuming that the input to the
base of Q3 is near zero). Now, however, if the base of
Q3 is brought HIGH, Q3 conducts and brings the voltage
at point A down to near zero (logic 0). At any time, the
input to QI can be brought LOW, thus forcing point A
back to the high-impedance third state and disabling
the logic circuit.



CHAPTER 4

The Basic S-100 Bus and the
Computer Mainframe

The computer systems that we’ll look at through-
out the rest of the book use the same interconnect struc-
ture (bus) between the various boards used to compose
the computer. This bus structure, as mentioned in Chap-
ter |, was started by MITS (now part of Pertec Computer
Co.) in its Altair 8800 microcomputer and has been
adapted by over 50 other manufacturers, who also offer
products that connect to the bus.

Basically, the Altair bus (more commonly referred
to as the S-100 bus) consists of 100 parallel lines either
made of wire or an etched pattern on a printed-circuit
card. When made in the form of a printed-circuit card,
such as the one shown in Fig. 4.1, taps are made every
inch or so for a connector (Fig. 4.2) to be inserted so
that the various computer cards can be plugged in and
thus interconnected by the bus. The printed-circuit
board that has all the connectors on it (typical boards
hold from four to 22 connectors) is often referred to as

Fig. 4.1 A typical S-100 bus motherboard. (Courtesy
Sigma Computers)
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Fig. 4.2 Commonly used edge-card connectors for
the S-100 boards. (Courtesy Vector Electronics)

the “motherboard.” Although both the Altair and
Imsai motherboards use 100-pin connectors, there are
some differences that prevent the same connector from
being plugged on both. The pin-to-pin spacing on the
rear of the connectors for the Altair and Imsai mother-
boards is 0.125 in., while the row-to-row spacing for
the Altair motherboards is 0.14 in. and 0.25 in. for the
Imsai motherboard.

Almost every one of the 100 pins of the bus has a
predefined function. Table 4.1 lists the functions as de-
fined by MITS for their 8800b computer system. (A new
standard definition for the bus has been sponsored by
the Institute of Electrical and Electronic Engineers. See
Appendix D for a capsule summary of the proposed
standard.) Many of the signal lines will have no meaning
to you at this point, but as our use of the bus grows,
yow’ll need all the functions. Basically, the pins of the
connector can be divided into five groups:

1. Power and ground lines
Address lines
Data lines
Control signal lines
Undefined lines (spares)

ok
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Table 4.1 Definitions of the S-100 Pins
The Altair 8800b system bus has 100 lines. These are arranged 50 on each side of the plug-in
boards. The following general rules apply to the Altair 8800b bus.

SYMBOLS a “P"” prefix denotes a processor command/control signal. ‘S’ denotes a
processor status signal.

LOADING All inputs to a card are loaded with a maximum of one TTL low power load
except for the Turnkey Module.

LEVEL All bus signals except those for the power supply are TTL compatible. Signals
whose names are barred (DO DSBL, for example) are active low {0 volts). All
others are active high (+5 volts).

In the listing below, those signal names accompanied by * are ineffective or not used in the Altair
8800b Turnkey computer.
Number Symbol Name Function
1 +8V +8 volts Unregulated input to 5 volt reguiators
2 +18Vv +18 volts Positive unregulated voltage
3 XRDY External Ready For special applications: pulling this line low causes the processor to enter a wait
state and allows the status of the normal ready line (PRDY) to be examined.
4q VI 0 Vectored Interrupt Line O
5 Vi1 Vectored Interrupt Line 1
6 VI 2 Vectored Interrupt Line 2
7 VI 3 Vectored Interrupt Line 3
8 Vi 4 Vectored Interrupt Line 4
9 VI 5 Vectored Interrupt Line 5

10 Vi 6 Vectored Interrupt Line 6

11 vi 7 Vectored interrupt Line 7

12 XRDY?2 Extra Ready line For special applications.

13

to To be assigned
17

18 STA DSB STATUS DISABLE Puts buffers for the 8 status lines in their high-impedance third state. In this state,
no information can be transferred.

19 C/C DSB COMMAND/CONTROL Puts the buffers for the 6 command/control lines in their high-impedance third

DISABLE state.

*20 UNPROT UNPROTECT Input to the memory protect flip-flop.
*21 SS SINGLE STEP Indicates that the computer is in the process of performing a single step.

22 ADD DSB ADDRESS DISABLE Puts the buffers for the 16 address lines in their high-impedance third state.

23 DO DSBL DATA OUT DISABLE Puts the buffers for the 8-data out lines in their high-impedance third state.

24 02 Phase 2 clock

25 o1 Phase 1 clock

26 PHLDA Hold Acknowledge Processor output signal which appears in response to the HOLD signal indicates
that the data and address buffers will go to the high-impedance third state.

27 PWAIT WAIT Processor output indicates that the processor is in the WAIT state.

28 PINTE Interrupt Enable Indicates interrupts are enabled; displays contents of the CPU interrupt flip-flop.
This flip-flop may be set or reset by the El or D! instructions. When reset, it
prevents the CPU from acknowledging interrupt requests.

29 A5 Address Line 5

30 A4 Address Line 4

31 A3 Address Line 3

32 A15 Address Line 15

33 A12 Address Line 12

34 A9 Address Line 9

35 DO1 Data Out Line 1

36 DOO Data Out Line O

37 A10 Address Line 10

38 D04 Data Out Line 4

39 DO5 Data Out Line 5

40 DO6 Data Out Line 6

41 Di2 Data In Line 2

42 Di3 Data In Line 3

43 DI7 Data In Line 7

44 SM1 M1 Status output that indicates that the processor is in the fetch cycle for the first
byte of an instruction.

45 SOouUT ouT Indicates that the address bus contains the address of an output device and the
data bus will contain the output data when PWR is active.

46 SINP INP Indicates that the address bus contains the address of an input device.
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Definitions of the $-100 Pins

Number
47
48
49
50
51
52

*53

55
56
*57

*58
59
to
67
68

69

*70

*71
72

73

74

75

76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

99
100

Symbol Name

SMEMR MEMR

SHLTA HLTA

CLOCK Clock

GND Ground

+8V +8 volts

—18V —18 volts

SSW DSB SENSE SWITCH DISABLE

EXT CLR EXTERNAL CLEAR

RTC Real Time Clock

STSTB STATUS STROBE

DIG1 DATA INPUT GATE #1

FRDY Front Panel READY
To be assigned

MWRT MEMORY WRITE

Ps PROTECT STATUS

PROT PROTECT

RUN RUN

PRDY READY

PINT INTERRUPT REQUEST

PHOLD HOLD

PRESET RESET

PSYNC SYNC

PWR WRITE

PDBIN DATA BUS IN

A0 Address Line 0

A1l Address Line 1

A2 Address Line 2

A6 Address Line 6

A7 Address Line 7

A8 Address Line 8

A13 Address Line 13

A14 Address Line 14

A1l Address Line 11

D02 Data Out Line 2

DO3 Data Out Line 3

DO7 Data Out Line 7

Di4 Data In Line 4

Di5 Data In Line 5

DI6 Data In Line 6

Di1 Data In Line 1

DIO Data In Line O

SINTA INTA

SWO WRITE OUT

SSTACK STACK

POC Power-On-Clear

GND Ground

Function
Indicates that the data bus will carry memory read data.
Acknowledges a HALT instruction.
Inverted output of the 2 MHz oscillator that drives the clock.

Disables the data input buffers so that the inputs from the sense switches may be
strobed onto the bidirectional data bus at the processor.
Clear signal for 1/0 devices.

Front panel control line. It is an output signal from the Display/Control logic
that determines which set of Data Input drivers have control of the CPU board’s
bidirectional data bus. If DIGI is high, the CPU drivers have control; if low, the
Display/Control logic drivers have control.

Indicates that the current data on the Data-Out bus is to be written into the
memory location currently on the address bus.

Indicates the status of the memory protect flip-flop on the memory board cur-
rently being addressed.

Input to the memory protect flip-flop on memory board currently being
addressed.

Indicates that the RUN/STOP flip-flop is reset.

Input that controls the run state of the processor. If the line is pulled low the
processor will enter a WAIT state until it is released.

The processor recognizes a request on this line at the end of the current instruc-
tion or while halted. |If the processor is in the HOLD state or the Interrupt
Enabte flip-flop is reset it will not honor the request.

Requests the processor to enter the HOLD state. This allows an external device
to gain control of the bus as soon as the processor has completed its current
machine cycle.

While activated, the contents of the program counter are cteared and the instruc-
tion register is set to 0.

Provides a signal to indicate the beginning of each machine cycle.

Used for memory write or 1/0 control. Data on the data bus are stable while PWR
is active,

Indicates to external devices that the data bus is in input mode.

Acknowiledge signal for interrupt request.

Indicates that the operation in the current machine cycle is a WRITE memory or
output function.

Indicates that the address bus holds the push down stack address from the Stack
Pointer.
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The power and ground lines provide the voltage
needed by the computer. There are six pins assigned to
provide the three unregulated voltages and a ground
return: Pins | and 51 have the +8 V supply, pins 50 and
100 have the ground return, pin 2 has the +18 V supply,
and pin 52 has the —18 V supply. There are also 16
address lines that are used to provide the memory ad-
dress to the memory circuits. These lines are scattered
such that lines AQ to A2 are on pins 79 to 81; A3 to A5
are on pins 31, 30, 29; A6 to A8 are on pins 82 to 84;
A9 is on pin 34; A10 is on pin 37; All is on pin 87; A12
is on pin 33; A13 and Al14 are on pins 85 and 86; and
Al5 is on pin 32.

For the transfer of instructions and data to and
from the microprocessor, 16 other lines are put aside—
eight for data that feed into the processor (DI0 to D17)
and eight for data that are fed out of the processor (DOO
to DO7). These lines are also scattered on the connector,
with DIO on pin 95, D12 and DI3 on pins 41 and 42, D14
to DI6 on pins 91 to 93 and D17 on pin 43. The DO lines
are set up so that DOO is on pin 36, DOI is on pin 35,
DOQ2 and DO3 are on pins 88 and 89, DO4 to DOG6 are
on pins 38 to 40, and DO7 is on pin 90.

Before looking at the fourth group, the control sig-
nal lines, let’s quickly look at the pins left as spares,
with no preassigned functions. Connector pins 13 to 17
and 59 to 67 have no assigned functions and can be used
by you to carry any signal desired when a custom circuit
is designed. However, some manufacturers of S-100
compatible boards have already selected a few of these
lines so that their own boards can take advantage of
these available signal paths. So far, 52 of the 100 pins
have been used by basic interconnections to the boards.
The remaining 48 bus lines are used to carry timing and
control signals for the various sections of the computer.

Pins 4 to 11 of the connector are assigned for inter-
rupt signals. These signals, generated by external con-
ditions, can interrupt the processor so it stops whatever
it is doing and starts to perform a specific program in
answer to the signal. The clock signals generated by
the processor’s timing circuit are available on pins 24
and 25 as phase 2 and phase 1, respectively, and on pin
49 (the inverse of phase 2).

Two pins are assigned an external ready function,
which permits an external signal fed in to either of these
computer lines (pins 3 and 12) to stop the microproces-
sor (when the signal is logic 0), force it to enter a WAIT
(pause) state and allow the status of the processor’s nor-
mal ready line (PRDY) to be examined.

FEach of the remaining 35 control lines has a dif-
ferent function and the simplest way to examine what
each line does is to go in numerical sequence starting
with pin 18. This is the status disable line and when the
line is brought to a logic 0 condition, it disables the
buffers for the eight status bits (pins 44 to 48, 96 to
98) and puts the buffer outputs in their high-impedance
state, thus preventing any status information from be-

ing transmitted from the processor board to any other
part of the computer. Pin 19 serves as the command
control disable line. When it is brought to a logic 0 con-
dition it places the three-state buffers for the six com-
mand/control lines (pins 26 to 28 and 76 to 78) in their
high-impedance third state, thus preventing the lines
from performing any command or control functions.

Pin 20 is a memory unprotect/protect control line-—
when kept at a logic 1, it permits information to be
written into or read from the computer’s memory;
when brought to a logic 0, it prevents information from
being written into the memory but information can still
be read out. This control line is usually manually set
to either its 1 or 0 state by a switch. Connector pin 21
buses a signal that tells the processor to execute only
a single instruction (often known as single step). When
pin 22 is brought to a logic 0 state, it causes the 16 ad-
dress buffer outputs on the processor card to go to the
high-impedance third state, thus preventing the mem-
ory from being addressed by the processor. Pin 23, when
brought to logic 0, performs the same job on the eight
DO buffer outputs.

One of the six command/control outputs from the
processor, pin 26 goes to logic 1 when the processor
receives a HOLD signal, otherwise pin 26 stays at a
logic 0 level. Pin 27, also a processor output, goes to a
logic 1 to indicate when the processor has been placed
in the WAIT state; otherwise the line stays at a logic 0
level. The interrupt enable line, pin 28, is also an output
from the processor. When at a logic 1, it indicates that
the processor interrupt is enabled and that an input to
any of pins 4 to 11 or pin 73 will interrupt the processor.
This line (pin 28) can be controlled by the EI and DI
instructions, which set the processor’s interrupt flip-flop
to logic 1 or 0, respectively. When at logic 0, it prevents
the processor from acknowledging interrupt requests.

The next five pins (44 to 48) are status outputs from
the processor. Pin 44, when at logic 1, is used to indicate
that the processor is in the fetch portion of an instruction
cycle. Pin 45, when at logic 1, indicates that the address
bus contains the address of an output device and the data
bus will contain the output data when PWR line (pin
77) is at logic 0. Pin 46, when at logic 1, indicates that
the address bus contains the address of an input device.
Pin 47, when at logic 1, indicates that the data bus has
data that have been read from memory. And pin 48,
when at logic 1, acknowledges that the processor re-
ceived a HALT instruction, and is stopping.

There are still 21 control lines left, so let’s forge on-
ward. Pin 53, when at logic 0, disables the data input
buffers to the processor so that the inputs from man-
ually set control panel sense switches can be loaded
onto the processor’s data bus. On pin 54 is an EXTER-
NAL CLEAR signal, which when brought to logic 0
clears input/output devices. Pin 55 is used for a REAL-
TIME CLOCK signal, that can be used to time events
external to the computer. The STATUS STROBE sig-
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nal on pin 56 is an output from the central processor
board that tells the rest of the computer system that
status information is available on the status lines.

A control line whose state is determined by front-
panel operations, pin 57, combines with other signals
on the CPU card to enable the data-input buffers so
data can flow from the data bus to the input of the pro-
cessor. Pin 58 of the bus handles a signal coming from
the front panel that indicates to the CPU when the com-
puter is ready for operation. To tell the memory that
data are to be written into the array, pin 68 carries a
MEMORY WRITE strobe signal generated by the com-
bination of the signals on bus pins 45 and 77 or the front-
panel DEPOSIT switch. Pin 69, when at logic 0, indicates
that the state of a program-controlled flip-flop on MITS
memory boards is in the PROTECT mode, thus pre-
venting data from being loaded into the memory. When
at logic 1 the line indicates that the memory is
unprotected.

The next pin, connector pin 70, provides a manual
control path for a front panel switch to the memory
protect control flip-flop on the MITS memory boards.
This permits a front-panel switch to protect or unpro-
tect the memory. Pin 71 shows the state of the front
panel’s RUN flip-flop. When the line is at logic 0 the
processor is in the halted state, and when at logic 1 the
processor is running a program. The next line, pin 72,
is a signal generated by the front panel and it controls
the RUN state of the processor. When pulled to logic 0,
the line forces the processor to enter a WAIT state and
stay there until the line goes to logic 1. When at logic 1,
the line permits the processor to run normally.

Pin 73 has a $ignal that controls the interrupt capa-
bility of the processor. When brought to logic 0 the
processor recognizes it as a request so that at the end
of its current instruction the processor goes to handle
the interrupt. If the processor is in the HOLD state or
the interrupt enable flip-flop in the processor is set, the
request will not be honored. When kept at logic 1, the
line has no effect on the processor. The next line, pin
74, is used to request that the processor enter the HOLD
state when brought to logic 0. This permits another de-
vice to control its bus as soon as the processor has fin-
ished its current machine cycle. Clearing the processor,
line 75 initializes the program counter and instruction
register of the processor when brought to logic 0.

An output from the processor, pin 76, provides a
pulse to the rest of the system each time the processor
begins a machine cycle. Pin 77 is used by the processor
to transmit the memory write output operations. Data
on the data bus are stable when pin 77 goes to logic 0.
The next line, pin 78, handles an output signal from the
processor. When at logic 1, it indicates to external de-
vices that the data bus is in an INPUT mode. Skipping
down to pin 96, this processor output line, when at
logic 1, acknowledges that the processor has received
an interrupt request. Pin 97, also an output from the

processor, is used to indicate that the operation in the
current machine cycle is a write to memory or an output
function when at logic 0. The next signal, a processor
output on pin 98, when at logic 1, indicates that the ad-
dress bus holds the push-down stack address from the
stack pointer. Finally, the last signal line, pin 99, is an
output from the processor that occurs when power is
turned on. When the line goes to logic 0, it generates a
CLEAR signal to initialize the entire computer system.

Control and Signal Lines Hold the System
Together

All 100 bus lines interconnect the various cards
that comprise an Altair or Imsai computer system. And
each system consists of a box that contains the various
boards that perform the various functions—central pro-
cessor, memory, input/output, and peripheral control.
On the front of the computer is a control panel that con-
tains switches and indicators that permit you to manu-
ally control all computer operations. Often referred to
as a front panel, the array of control switches (see Fig.
1.9) can basically be grouped into three areas—ad-
dress/data switches, basic machine control, and sec-
ondary control.

Address and data switches permit data to be manu-
ally loaded into selected memory locations or informa-
tion in memory locations to be examined. Basic ma-
chine control switches include functions such as RUN/
STOP, RESET/EXTERNAL CLEAR, POWER ON/
OFF, MEMORY EXAMINE/EXAMINE NEXT, and
MEMORY DEPOSIT/DEPOSIT NEXT. Other con-
trol functions such as SINGLE STEP or SLOW RUN,
MEMORY PROTECT/UNPROTECT, ACCUMULA-
TOR DISPLAY/LOAD and ACCUMULATOR IN-
PUT/OUTPUT are not absolutely necessary for man-
ual machine operation, but they are helpful.

The RUN/STOP switch provides direct control of
the computer by controlling the state of the READY
line of the bus. The RESET/EXTERNAL CLEAR
switch provides a pulse that resets the central processor
when flipped to the RESET position and when moved
to the EXTERNAL CLEAR position provides a
CLEAR command to all external input/output equip-
ment. The POWER ON/OFF control is self-explana-
tory. The MEMORY EXAMINE/EXAMINE NEXT
permits addresses to be set on the address switches and
then the contents of that location examined by flipping
the switch to the MEMORY EXAMINE position. The
next sequential memory location can be examined
by then flipping the switch to the EXAMINE NEXT
position. Once the desired memory address has been
set and examined, data can be set on the address/data
switches and then loaded into that location by flipping
the MEMORY DEPOSIT/DEPOSIT NEXT switch
into the DEPOSIT position. Now data can then be set
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on the data/address switches and loaded into the next
sequential memory location by flipping the switch to
the DEPOSIT NEXT position.

Non-basic functions such as the SINGLE STEP or
SLOW RUN switches permit the processor to execute
either a single instruction or operate at a rate of about
two machine cycles per second (normal operation is
500,000 cycles per second). A MEMORY PROTECT/
UNPROTECT switch permits manual control of the
bus MEMORY PROTECT/UNPROTECT line, thus
preventing undesired memory-write operations when
in the PROTECT position, and permitting write opera-
tions in the UNPROTECT position. Accumulator con-
trols are handy for displaying the contents of the ac-
cumulator and altering the data if necessary. Accumu-
lator input/output controls permit data present at an
I/0 device to be loaded into the accumulator to an out-
put device.

Front-panel indicators are used to display address,
data, and several status signals (HOLD, WAIT, RUN,
INTERRUPTS ENABLED). However, when the com-
puter operates at full speed all indicators that are ac-
tually flickering on and off will appear to be on all the
time. Signals from the front panel connect to the bus
and from there are distributed to the various circuit
cards that make up the computer system. The main
card controlled by the various front-panel switches is,
of course, the central processor. So, without any fur-
ther delay, let’s examine the central processor card of
the Altair and Imsai computer systems.

The CPU Works like This . . .

The basic design of the Altair and Imsai CPU cards
is very similar—both are built around an 8080A micro-
processor and provide buffering on the output signal
lines so that they can drive signals on the S-100 bus. The
actual circuitry on the two boards really isn’t important,
but the signals entering and leaving the board are.
Basically, each board contains the microprocessor, a
crystal controlled clock that generates all the timing
signals, a latch to hold all the status information, and
the various line drivers and receivers to connect with
the bus (Fig. 4.3). Also on the board are the voltage regu-
lators needed to supply constant voltages to the circuits.

The bus interface signals can be grouped into seven
classes of signals:

Address bus

Data bus

Timing

Power

Input control lines
Output control lines
Status outputs

Not all of the 100 bus pins are used by the CPU card
to do its job. However, more than half of the pins are

N A W~
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Fig.4.3 The heart of either the Altair or Imsai systems
is the 8080-based central processor board. Both
boards are identical in basic operation and their block
diagrams, (a) Altair and (b) Imsai, show similar func-
tions performed. (Courtesy Pertec and Imsai)

needed. The address and data bus account for 32 lines,
timing accounts for only three, power lines include six
pins, and the other functions add up to another 27 or
28 lines, depending on whether the board comes from
Imsai or MITS. The actual schematics of the CPU
boards (Altair 8800b and Imsai 8080) are shown in
Appendix C.

The CPU board is the main source of most of the
control signals on the S-100 bus. To start with, all
three clock signals originate on the CPU card (pins 24,
25, and 49), all nine status signals (pins 44 to 48, 56, and
96 to 98), the POWER ON CLEAR signal (pin 99), and
the HOLD, WAIT, INTERRUPT, SYNC, POWER,
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and DATA bus in signals (pins 26 to 28 and 76 to 78)
all come from the CPU. Inputs to the board include an
ADDRESS DISABLE line (pin 22),a DATABUSOUT
DISABLE (pin 23), a DATA BUS IN DISABLE (pin
57), a STATUS DISABLE (pin 18), a PRESET IN-
PUT (pin 75), two EXTERNAL READY lines (pins
3 and 12), two READY lines (pins 58 and 72), an IN-
TERRUPT input (pin 73), a HOLD line (pin 74), and a
COMMAND CONTROL DISABLE input (pin 19).
The difference between the Altair and Imsai 8080 CPU
boards is pin 12—the Altair board uses that pin for the
second EXTERNAL READY signal, which is not avail-
able on the Imsai board.

In addition to the S-100 bus interface, each CPU
card contains another interface bus that connects to
the board that contains the switches and displays of the
front panel. This eight-line interface is just a buffered
version of the data bus (MITS board) or an unbuffered
version (Imsai board) that permits data to be manually
loaded into the CPU by the front panel.

The 8080 CPU boards from Pertec and Imsai are
not the only CPU boards that can mate with the S-100
bus. Other companies offer boards that perform the
same function—and some of the boards don’t even use
the 8080 processor. Since the S-100 bus was introduced
in 1974, many new microprocessors such as the Z-80,
the 6800, the 6502, and newer versions of the 8080 (the
8085), have been adapted to mate with the S-100 bus.

These next-generation CPU boards offer faster operat-
ing speeds, more or different instructions, and more
flexibility for the user.

Basically, any of the other S-100 CPU boards con-
tains the same circuitry as the MITS or Imsai boards.
There will be some subtle differences in the way pro-
cessor control lines are interfaced to the bus, but the
board will still accept data and instructions, perform
the operations, and deliver data back out. If the micro-
processor on the board is not an 8080, there will be some
extra logic on the board to supply the extra control sig-
nals needed by the rest of the system that are not gen-
erated by the new processor.

There are more than 20 different CPU boards avail-
able for the S-100 bus system, from as many manufac-
turers. In addition to the schematics for the 8080-based
Altair and Imsai boards in Appendix C, a diagram for
the Xitan (Technical Design Labs) Z-80 board is
included.

The CPU and its front panel are needed for a mini-
mal computer system but it’s still lacking two major ele-
ments to perform any useful functions—memory and
input/output sections. The memory section is used to
hold instructions and data that the CPU will operate
with while the I/O section permits the CPU to com-
municate with external machines to provide data en-
try or output.



CHAPTER 5

Computer Memory Systems

Without some form of memory, the computer is just
a useless pile of electronic circuits. For a computer to
work it must be able to store instructions and data. And
to store the instructions and data there are three main
types of memories that can be used to hold information:

1. Solid state memories, with no moving parts. These
devices typically consist of read/write and random-
access memories built from flip-flops for temporary
storage, and programmable read-only random-
access memories for permanent storage.

2. Magnetic memories, using cassettes, cartridges, or
flexible magnetic discs. These provide permanent
but alterable storage for data and instructions.

3. Paper tape storage, using holes punched in paper
tapes to hold non-alterable data or instructions that
must be loaded into the computer.

This chapter will discuss only the first family of
memory devices, and subsequent chapters will cover the
other memory types. Within the family of solid-state
memories there are many different types that store vari-
ous amount of information. As mentioned back in Chap-

Fig. 5.1 The random access memory of a computer
is very similar to this mailman’s sorting bin set-up—
any item can be retrieved just by knowing the row and
column number.
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ter 2, the basic memory element of solid-state memories
is the flip-flop and by connecting the flip-flops in vari-
ous ways, large arrays of serial memories (shift registers)
or randomly accessible memories can be built.

The Random-Access Memory: What Is It?

Computer memory arrays are often called random-
access memories because the same amount of time is re-
quired to reach any location within the array. The ar-
ray can be likened to a mailman’s letter-sorting box with
a different slot for each person on the delivery route (Fig.
5.1). Letters in the slots can be said to represent 1s and
no letter (an empty box) can represent 0Os. If the mail-
man’s route consists of 64 blocks set up in a grid of 8 X
8 blocks, any one block of mail can be accessed in the
same amount of time just by knowing the row and
column number (street and avenue). Much the same
way, an array of flip-flops can be accessed by defining
the row and column of the desired flip-flop (Fig. 5.2).

For most microprocessor memory systems' each
memory location contains eight bits of data, much like
the eight vertical columns of letters slots. The horizontal
rows then represent words of memory. To better famil-
iarize yourself with the terminology of memory circuits,
here are some definitions of many of the commonly
used terms:

Memory Cell. A device or circuit subsection that
is used to hold a single bit of computer data. A single
flip-flop can be called a cell.

Memory Word. A word consists of several com-
puter bits delivered simultaneously to a system. Com-
mon numbers of bits used to make up a word in most
computers start at four bits and go as high as 40 or more.

Byte. A collection of eight binary bits, sometimes
equivalent to a complete word, as in many microcom-
puter systems, or used to signify an §-bit portion of a
larger word. When the word size is the same size as a
byte the two are often used interchangeably.

Nibble. A fairly recent addition to the designer’s
vocabulary, this word refers to a 4-bit grouping of binary
numbers, or half of an 8-bit byte.

Random-Access Memory. This type of memory
circuit permits information to be written to or read from
any storage cell or word in the same amount of time.
Commonly abbreviated as RAM.
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Fig. 5.2 Inside a semiconductor memory, the storage cells are arranged just like the mail sorting bins.

Read-Only Memory. This is a special form of ran-
dom-access memory from which information can only
be read out. Information in these memories cannot be
altered once it is put in by the memory manufacturer.
It is commonly abbreviated as ROM, and it is a form
of RAM.

Programmable Read-Only Memory. A form of
ROM, the programmable ROM, or PROM, lets the user
enter in data or instructions to be permanently stored.
There are different types of PROM, some of which use
microscopic metal links (called fuses) that must be
burned away by large current pulses for programming,
and once burned cannot be restored. Other types store
electrical charges in a microscopic dielectric material
to represent binary bit patterns and can be wiped clean
(erased) by shining an ultraviolet light through a clear
quartz window on top of the package and then repro-
grammed. Whether the fused-link PROM or the UV
EPROM is used, they are indispensable for microcom-
puter programming.

Memory Size. The number of bits or bytes that
are available in the memory circuits. The qualifier bits
or bytes should be present to make clear the capacity of
the memory. For instance, the 8080A or Z-80 can handle
a memory size of 65,536 bytes (often rounded off to 64k
or 65k), or 524,288 bits.

Memory Bank. A term often used to refer to the
entire processor memory, although individual boards
that contain 4096, 8192, 16,384, 32,768 or 65,536 bytes
(4k, 8k, 16k, 32k, and 64k) are often referred to as 4k
banks, 8k banks, etc.

Memory Address. This is the designation used to
determine where the desired memory word is located in
a large array of words. It is much like the street address
of your home, telling someone where to look.

Access Time. This is the time required by the
memory to output the contents of a location and is meas-
ured from the time it first received a command to look
up a word until it presents the word at its output.

Cycle Time. The cycle time is the access time plus
the time necessary for the memory circuit or circuits to
prepare themselves for the next request.

Read (Fetch), or Write (Store) Operation. This is
the sequence of signals that locates the memory cell or
cells from which or into which information will be trans-
ferred (written or stored).

Most semiconductor read/write RAMs lose all the
information stored in them when power is shut off; all
ROMs will retain their stored data and when power is
returned data will be present. ROMs, in general, re-
quire no timing signals to control the memory. Usually,
a single control signal is needed to tell the memory to
get ready to be addressed. Once addressed, the memory
outputs the contents of the location and that’s that.

Some read/write RAMs perform similarly. These
types are referred to as static RAMs. There are, though,
many other types of RAMs that require special timing
signals to control the memory and make sure all the
internal circuits operate in the proper sequence. These
memory circuits are called dynamic memories because
timing signals are constantly present to replenish the
data stored within the memory cells. This is necessary
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Fig. 5.3 Pinout and block diagram of the 2102, a
1024-bit static memory circuit.

because in dynamic RAMs data bits are stored in tran-
sistor-capacitor cells that are slightly “imperfect”—the
charge in the capacitor that represents the data leaks
away. Thus, every fraction of a second, the charge must
be replenished—this process is referred to as the dy-
namic memory refresh and is very important.
Although what goes on inside RAM is important to
the RAM designer, as a user you don’t really have to
know about these processes as long as you supply the
proper signals to the inputs of the circuits. However,
when you gather together components for a memory

system you must make some important decisions be-
fore buying components.

1. Decide whether you will use static or dynamic
memories in each of the banks. All circuits in each bank
(on each board) should be the same type, although you
can often mix banks if each bank appears identical to
the processor circuits.

2. Decide on the speed of the memory circuits in the
memory System (access and cycle times). The maximum
speed is often determined by the speed of the processor
or the memory itself—the faster the processor clock,
the shorter the access time required. For instance, the
8080A CPU card operates at a 2 MHz clock rate and
therefore, for the memory to be ready every clock cycle,
it must have a cycle time of 1/(2 MHz) or 500 ns. Nor-
mally, access times are shorter or equal to the cycle time
so all you have to look for is the minimum cycle time
specification to pick the right speed memory. If the
processor runs faster than the memory, special allow-
ances can be made by programming the processor to
wait for the memory to finish.

3. Lastly, decide on how large a memory array you
want on a memory board. Typical sizes are 4096, 8192,
12,288 and 16,384 bytes for static memory boards, and
16,384 to 65,636 bytes for dynamic memories on a sin-
gle board.

Start with the Static Memories

The most common static memory circuit available is
the 2102 RAM (Fig. 5.3). This circuit, housed in a 16-
pin DIP, contains 1024 storage cells arranged in an ar-
ray of 1024 X 1. Each of the 1024 cells can be accessed
by supplying a binary number to the 10 address lines
(A0 to A9). Data to be fed into the memory must be sent
to the D, input and data to be read out appear at the
Douw pin. Another line called the R/W line controls
whether the RAM is performing a read or write opera-
tion. When the line is HIGH a read operation can be
done and when LOW a write operation can be per-
formed. The last control line is a chip-select line which,

2102's(8)
A6 PINI/QI_/QI_'//—Q'G
MR = N N e N
As‘_/‘fh_/wh_/‘f@_/f
Al RN NN -
R—e Y Y Y
[\ pm— - - -
A4 —
AQ —
Dino Dini Din2
D00 Dol D02 D03

Din3

N g N 2~ _
N N a5
===t
T P G ) g
p ot - - -
+5Vv
GND
Ding Dins Dine DNz
D04 D05 D06 D07

Fig.5.4 To access eight bits at a time, eight 2102s must be connected so that the same location in each is accessed at the same time.
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when HIGH, puts the data output line into a high-imped-
ance state, permitting many RAM output lines to be
wire-ORed together without loading the outputs. When
LOW, the output assumes either its 1 or O state, as
determined by the state in the addressed cell. The other
two pins of the package are used to supply power to
the array (+5 V and ground).

If eight of the 2102s are connected so that all the
outputs appear at the same time you have the bare es-
sentials of a 1k X 8 bit memory (Fig. 5.4). All the ad-
dress lines must be connected in parallel so that all the
AOs are connected, all the Als, etc. Next, all the chip-
select lines can be connected together and wired to a
ground line since there are no other banks of RAMs
to select from. All the R/W lines can also be connected
together and this common connection is used to control
the simultaneous operation of all eight RAMs. Each
data input line from the RAMs must be kept separate,
just like the data output lines. Both sets of lines are
eventually connected to the DI and DO buses of the
mainframe bus.

Actual memory boards used in the S-100 systems
have a lot of other circuitry included. For starters, the
array of eight 2102s is repeated seven more times and
then some special circuitry must be added to control the
flow of data, to decode the memory address and to
buffer the memory outputs (Fig. 5.5). A typical 8-kbyte
memory board, then, might have the following struc-
ture: Eight 1-kbyte banks of 2102s are set in an array so
that all 10 address lines are connected in parallel and
the chip-select lines from each array of eight 2102s are
connected to a decoder (typically a BCD-to-decimal)
and enable circuit. The decoder determines which of the
eight banks is accessed by decoding address lines A10,
All, and A12 from the S-100 bus.

Another circuit, possibly consisting of three exclu-
sive-OR gates, three switches, and some NAND gates
can be used to decode address bits A13, Al4, and Al5to
place the 8k bank at any one of eight possible memory
areas in the overall 64k address range. For instance, if
all three switches are open the board will respond to
address locations 0000 to 8191. However, if an address
greater than 8191 appears, the decoding circuit does
not enable any of the RAMs in the bank, and the entire
8k bank is disabled and another bank set to respond to
this address will output the data.

Signals that flow into and out of memory boards
are very straightforward—the 16 address inputs, the
eight data inputs, and the eight data outputs for start-
ers. Next are the control signals such as the MEMORY
WRITE input, the DATA BUS INPUT ENABLE, a
MEMORY READ ENABLE signal, and input and
OUTPUT ENABLE signals inputs. Control outputs from
the board include a status indicator line (PROTECT or
UNPROTECT) and a READY line. Most memory
boards use the same control line and have the same
address and data buses. Depending on the memory cir-

cuits used, the board may require just the 8 V connec-
tion to the supplies or also the 18 V connections as
well. Some boards also have provisions for an external
battery backup so if power fails, data held on the board
won’t be lost.

Recently developed static memory circuits can
squeeze even more into a single package. For instance,
just now available in large quantities are 4096 X 1 bit
memory circuits. With these arrays only 16 packages are
needed to make an 8192 X 8 bit memory. Since the pack-
ages (18, 20, or 22 pin) don’t require much more space,
32 of them can be comfortably put on a single card that
plugs into the computer mainframe, thus permitting up
to 16,384 bytes on a single card. Pertec, Seals Electron-
ics, and Xitan (Technical Design Labs) are just some
companies that offer the boards (Fig. 5.6).

Memory boards that use dynamic memory circuits
require several additional control signals for operation.
In most cases, timing signals from the S-100 bus must be
used to time refresh operations so they don’t interfere
with the computer when it is trying to access or write data.
Typical additional signals then would include the clock
phase 1 or phase 2, the RUN, WAIT, and HALT lines,
the M1 status line, and the SYNC line, which can all be
used by the memory board to handle timing.

The one disadvantage of dynamic and static RAMs
is that when power is turned off the RAMs lose all the
information held inside, whether that information is
data or instructions. When the computer is set up with a
CPU card as described in Chapter 4 and some static
and dynamic RAM cards you are ready to enter a pro-
gram via the front-panel switches and test it out. The
user may play a short game with the indicator lights, or
learn how to perform basic machine operations such as
loading data from the switches, reading the data back
out, or doing simple mathematical and logic routines.
However, after all the switch flipping and light blinking
you shut off the power and the next time you turn the
power on you must start all over again.

Read-only memories can save you many of the
switch-flipping operations necessary to get the com-
puter ready for operation. Without the ROMSs, to pre-
pare the computer you must do many different switch
operations, depending on the function you want the
computer to perform. If, for instance, you want the
computer to accept information from a CRT terminal
or teletypewriter or send information to the terminal,
not only must you put instructions into the computer’s
memory to tell it how to handle the incoming or out-
going data but a special interface circuit must be
plugged into the main bus to change the serial informa-
tion from the terminal into parallel information for
storage in the computer’s memory or the reverse. (More
about the interface circuit and the actual instructions
in later chapters.)

Every time you turn power on you’ll have to ini-
tialize the system by hand—a tedious and unnecessary
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job if you take advantage of any of the forms of read-
only memories. There are many available prepro-
grammed ROMs that companies offer for many differ-
ent applications, and not just for the 8080A and Z-80.
The ROMs that hold the special operating programs
do not work by themselves; in addition to the ROM, a
RAM must be used to hold the information being en-
tered or outputted and intermediate computational
results.

When the instruction is executed it usually causes
the program counter inside the processor to change
value and access another memory location that starts
the initialization procedure. This process is often called
vectoring since one address points to another address.
Once the initialization procedure is completed (it usu-
ally occurs so fast that when the button is pressed you
can start immediately), a program designed to accept
inputs and deliver outputs to a terminal and handle
other functions such as displaying the data and loading
information is usually loaded into the RAM from the
ROM storage area. This type of program is usually
called a monitor program since it oversees the opera-
tion of the computer and its peripherals.

The process of loading information from ROM into
RAM is usually referred to as bootstrap loading and is
used in almost every computer system to initialize the
system and load the preliminary programs to handle the
terminal, possibly a cassette tape interface, floppy disc
drive, and a printer. Inclusion of a board that can hold
the ROMs and possibly a small amount of RAM is es-
sential for any system. For instance, the PROM/RAM
board made by Vector Graphic can hold 4096 words
of permanent storage in the form of 1702A ultraviolet-
erasable programmable read-only memories and an-
other 1024 words of static RAM in the form of 2102
RAMs (Fig. 5.7). Other boards, made by MITS, Solid
State Music, Seals Electronics, and Pertec offer up to
16 kwords of PROM but no RAM (Fig. 5.8).

There are even combination boards that can take
the place of the front-panel switches, load programs into
RAM, and even contain some of the input and output
interface circuitry to handle the peripheral equipment.
One such example is the System Monitor Board made
by Xitan (TDL) (Fig. 5.9).

ROMs: ICs That Remember

The read-only memory, as mentioned at the begin-
ning of this chapter, is a form of random-access mem-
ory. However, data stored within the circuit can be
looked at (read out) but not altered. There are several
methods available to put data into a read-only mem-
ory. Manufacturers that use thousands of the same
product will usually tell the IC supplier exactly what
to put inside the circuit and will obtain a very low-cost
part. However, if the manufacturer makes a mistake
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Fig.5.6 Some typical larger memory cards: (a) Pertec
88-16 MCD, (b) Xitan/Technical Design Labs Z16, and
(c) Seals Electronics 16k. (Courtesy Pertec, Xitan/
Technical Design Labs, and Seals Electronics)

he’ll be stuck with literally thousands of useless
memories.

To avoid this problem of ordering a large number
of parts before the program or data stored in the ROM
are tested, IC suppliers developed several types of mem-
ories that the manufacturer (you) can program and then
test in the computer or other circuit. The two major
types of programmable read-only memories (PROM)
are the bipolar fusible link PROM and the ultraviolet
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