
MACHINE LANGUAGE PROGRAMMING

(AND SIMILAR MICROCOMPUTERS)

AUTHOR. NAT WADSWORTH

© COPYRIGHT 1975
SCELBI COMPUTER CONSULTING. INC.

1322 REAR - BOSTOM POST ROAD
MILFORD. CT. 06460

- ALL RIGKTS RESERVED -

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER POUR

CHAPTER FlUE

CHAPTER SIX

CHAPTER SEVEN

CHAPTER EIGHT

CHAPTER NINE

MACHINE LANGUAGE PROGRAMMING

POR THE -8 0 0 H-

(AND SIMILAR MICROCOMPUTERS)

•••••• * •• * ••••••• ~.* .. * •••••• *
TABLE 0 F CONTENTS

••••••••••••••••••••••••••••••

INTRODUCTION

THE -8008- CPU INSTRUCTION SET

INITIAL STEPS PUR DEVELOPING PROGRAMS

FUNDAMENTAL PROGRAMMING SKILLS

BASIC PROGRAMMING TECHNIQUES

MATHEMATICAL OPERATIONS

INPUT/OUTPUT PROGRAMMING

REAL-TIME PROGRAMMING

-PROM- PROGRAMMING CONSIDERATIONS

CREATIVE PROGRAMMING CONCEPTS

INTRODUCTION

THIS MANUAL IS ON MACHINE LANGUAGE PROGRAMMING METHODS AND ~ECH­
NIQUES FOR 8008 BASED COMPUTERS. WHILE MACHINE LANGUAGE PROGRAMMING
IS THE MOST FUNDAMENTAL TYPE OF COMPUTER PROGftAMMING POSSIBLE. IT IS
'Sf FAR THE MOST EFFICI ENT METHOD" IN TERMS OF UTILIZATION OF THE MACH­
INES'S CAPABILITIES" WITH WHICH TO PROGRAM OR SET UP A sees SYSTEM TO
PERFORM A JOB. MACHINE LANGUAGE PftOGRAMMING IS" ON THE OTHER HAND"
THE MOST DEMANDING METHOD OF COMPUTEft PROGRAMMING IN TERMS OF HUMAN
!NDFAVOR AND SKILL. HOWEVER" THE FUNDAMENTAL SKILLS AND TECHNIQUES
NECESSARY FOR MACHINE LANGUAGE PROGRAMMING CAN BE APPLIED TO VIRTUALLY
IWY LEVEL OF COMPUTER PROGRAMMING •. A CLEAR UNDERSTANDING OF M'ACHINE
~NGUAGE PROGRAMMING WILL GIVE ONE GREAT INSIGHT INTO ANY HIGHER LEVEL
LANGUAGE PROGRAMMING.

MACHINE LANGUAGE PROGRAMMING IS THE ACTUAL STEP-BY-STEP PROGRAM­
MING OF THE COMPUTER USING THE MACHINE CODES AND MEMORY ADDRESSES THAT
WILL BE USED BY THE COMPUTER DIRECTLY. IT IS CONSIDERABLY MORE DETAIL­
ED THAN PROGRAMMING IN A HIGH LEVEL LANGUAGE SUCH AS FORTRAN (RTM) OR
BASIC (RTM) - IT IS IN FACT" THE LEVEL OF PROGRAMMING FROM WHICH THOSE'­
HIGH LEVEL LANGUAGES ARE DEVELOPED. IN FACT" IF ONE KNOWS HOW TO DE­
VELOP PROGRAMS IN MACHINE LANGUAGE" ONE WILL HAVE THE BASIC SKILLS NEC­
ESSARY FOR DEVELOPING A HIGHER LEVEL LANGUAGE. (THAT IS A TREMENDOUS
ASSErT OVER ONE WHO ONLY KNOWS HOW TO PROGRAM I~ HIGHER LEVEL LANGUAG­
ES.)

THE PRIMARY REASON FOR H~VING A·MANUAL DEUOTED TO MACHINE LANGUAGE
PROGRAMMING FOR THE 8008 IS BECAUSE THIS METHOD IS BY FAR THE MOST
EFFICIENT METHOD FOR PACKING A PROGRAM INTO A SMALL AMOUNT OF MEMORY.
AS USER'S KNOW" MEMORY ELEMENTS COST A GOOD ,AMOUNT OF MONE'l" AND THE
MlRE ONE CAN PROGRAM INTO A GI VOl AMOUNT OF MEMORY" THE LESS MEMORY RE­
QUIRED FOR A GIVEN TASK- AND THE MORE ONE CAN DO WITH A LOW COST MACH­
INE. HIGH LEVEL LANGUAGES REQUIRE MUCH MORE MEMORY BECAUSE OF TWO MAJOR
RFASONS. FIRST" A LARGE AMOUNT OF MEMORY MUST BE USED BY THE HIGH LEVEL
LANGUAGE ITSELF. SECOND, HIGHER LEVEL LANGUAGES MUST CONVERT USER
STATEMENTS OR COMMANDS TO MACHINE LANGUAGE CODES AND THEY' GENERALLY CAN­
tilT DO THIS ANY WHERE NFAR AS EFFICIENTLY (MEMORY USAGE - WISE) AS A
1RAINED HUMAN PROGRAMMERI

ANOTHER RFASON FOR DISCUSSING MACHINE LANGUAGE PROGRAMMING AT
LENGTH 15 BECAUSE IT IS THE ONLY METHOD WHERE-BY MANY CAPABILITIES OF
114E MACHINE CAN BE TAKEN ADVANTAGE OF - THIS IS PARTICULARLY TRUE FOR
"REAL-TIME" AND I/O OPERATIONS. MANY USERS WILL WANT TO UTILIZE THEIR
8008 MINICOMPUTERS FOR UNIQUE APPLICATIONS AND THE CONTENTS OF THIS
MANUAL WILL PRESENT MANY IDEAS AND CONCEPTS FOR THESE PEOPLE TO APPLY
TO THEIR INDIVIDUAL APPLICATIONS.

MACHINE LANGUAGE PROGRAMMING IN GENERAL IS NOWHERE AS DIFFICULT TO
. LEARN AS MANY PEOPLE MIGHT TEND TO THINK WHEN FIRST INTRODUCED TO THE
SUBJECT. THIS IS ESPJ:;CIALLY TRUE FOR ,THE 8098 TYPE MINICOMPUTER. THERE
ARE ""NY FUNDAMENTAL CONCEPTS THAT CAN BE READILY LEARNED AND ONCE THIS
~S BEEN ACCOMPLISHED THE NOVICE IS ON THE WAY TO DEVELOPING ORIGINAL
SOLUTIONS TO PROGRAMMING PROBLEMS THAT MAY BE OF UNIQUE INTEREST TO THE
lNDI V I DUAL.

COMPUTER PROGRAMMING" AND MACHINE LANGUAGE PROGRAMMING IN PARTIC­
ULAR" IS IN MANY RESPECTS AN ART" AND IN OTHER RESPECTS A VERY RIGID
SCIENCE. THE FUN PART, AND WHAT CAN BE CONSIDERED ARTISTIC" IS THAf
INDIVIDUALS CAN TAILOR OR FASHION SERIES OF INSTRUCTIONS TO ACCOMPLISH
A PARTICULAR TASK IN A VARIETY OF WAYS. THE SCIENTIFIC PART OF PROGRAM-

1 - 1

MING INUOLVES ACQUIRING SOME BASIC SKILLS AND KNOWLEDGE ABOUT WHAT CAN
mD CANNOT BE DONE" AND AT A HIGHER LEVEL" PERHAPS" AN UNDERSTANDING
OF BASIC MATHEMATIC ALGORITHMS AND PROCEDURES THAT CAN BE READILY AP­
PLIED USING COMPUTER TECHNIQUES. SOME OF THE BASIC SKILLS INCLUDE KNOW­
ING JUST WHAT THE AVAILABLE MACHINE INSTRUCTIONS ARE" AND SOME OF THE
MOST FREQUENTLY USED COMBINATIONS OF INSTRUCTIONS THAT WILL PERFORM
FREQUENTLY REQUIRED TASKS :. THESE SKILLS ARE AS FUNDAMENTAL AS A PAINTER
HNOWING1HE PRIMARY COLORS AND HOW TO COMBINE THEM TO CREATE THE COMMON­
LY USED SECONDARY COLORS. HOWEVER" LIKE THE PAINTER WHO COMBINES THE
BASIC PIGMENTS" BEYOND A CERTAIN POINT THE TASK OF COMPUTER PROGRAMMING
BECOMES A HIGHLY CREATIVE INDIVIDUALISTIC ART. AND" IT IS AN ART IN
~ICH ONE CAN CONSTANTLY GAIN NEW SKILLS AND ABILITY. A HIGH SCHOOL
STUDENT OR ·A COLLEGE PROFESSOR CAN BOTH FIND EQUALLY REWARDING CHAL­
LENGES IN COMPUTER PROGRAMMING. THERE ARE OFTEN MANY 01 FFERENT WAYS TO
PROGRAM A COMPUTER TO PERFORM A GI~EN TASK AND MANY "TRADE - OFFS" TO
CONSIDER WHEN DEVELOPING A PROGRAM <SUCH AS HOW MUCH MEMORY TO USE" WHAT
FUNCTIONS HAVE PRIORITY" HOW MUCH BURDEN TO PLACE ON THE HUMAN OPERATOR
WHEN THE PROGRAM IS OPERATING). EACH INDIVIDUAL SOON LEARNS TO CAPI­
TALIZE ON THE ASPECTS ,CONSIDERED MOST IMPORTANT FOR THE SPECI FIC APPLI­
CATION AT HAND AND WILL DEVELOP THEIR OWN PERSONAL METHODS FOR HAND­
LING VARIOUS TYPES 0 F PROGRAMMING TASKS"

REMEMBER AS YOU RFAD THIS MANUAL THAT THERE ARE MANY OTHER WAYS OF
PROGRAMMING A COMPUTER TO PERFORM MANY OF THE EXAMPLE PROGRAMS ILLUSTRA­
TED. DON'T BE AFRAID TO DEVELOP YOUR OWN SOLUTIONS FOR PRACTICE AS you
GO THROUGH THE MATERIAL. TRY OUT YOUR SOLUTIONS - SEE IF THEY WORK AS
PLANNED.- PRACTICE BEING A "CREATIVE PROGRAMMER ,.. BY THE TIME YOU HAVE

. COMPLETED ABSORBING AND UNDERSTANDING THE CONTENTS OF THIS PUBLICATION
YOU SHOULD BE WELL EQUIPPED TO DEVELOP PROGRAMS OF YOUR OWN AND THUS BE
IN A POSITION TO REAP EVDJ GREATER BENEFITS FROM YOUR 8008 BASED MICRO­
COMPUTER THAN JUST BEING ABLE TO OPERATE PROGRAMS THAT OTHER PEllPLE HAVE
PREPARED.

THE FIRST CHAPTER OF THIS MANUAL CONTAINS A DETAILED PRESENTATION
OF THE INSTRUCTION SET THAT THE 8008 CPU IS CAPABLE OF PERFORMING. IT
GOES ALMOST WITHOUT SAYING" THAT THE FIRST STEP TOWARDS BECOMING A PRO­
FICIENT MACHINE LANGUAGE PROGRAMMER IS TO BECOME THOROUGHLY FAMILIAR
WITH ALL THE TYPES OF INSTRUCTIONS THAT THE MACHINE CAN EXECUTE AND ES­
PECIALLY TO LEARN ABOUT ANY SPECIAL CONDITIONS THAT APPLY TO THE EXEC­
UTION OF SPECIFIC TYPES OF COMMANDS. THE LEAD-OFF CHAPTER PRESENTS A
COMPR EHENS I VE EXPLANATION 0 F ALL THE INSTRUCTIONS IN THE 8008 REPER­
TOIRE ALONG WITH THE MNEMONICS AND MACHINE CODES. THE READER SHOULD
BECOME QUITE FAMILIAR WITH THE INFORMATION PRESENTED THERE BEFORE GOING
FURTHER IN THIS MANUAL. (AT LEAST TO THE POINT WHERE ONE CAN RAPIDLY
LOCATE ANY CLASS OF INSTRUCTIONS IN THE CHAPTER IN ORDER TO REFRESH
ONE'S MEMORY ON JUST HOW AN INSTRUCTION OPERATES AND TO BE ABLE TO RAP­
IDLY LOCATE THE "MACHINE CODES" WHEN ONE IS PREPARING A PROGRAM)!

I - 2

THE 'S008' CPU INSTRUCTION SET

THIS MINI-COMPUTER HAS QUITF A COMPREHENSIVE INSTRUCTION SET
THAT CONSISTS OF 48 BASIC INSTRUCTIONS~ WHICH~ WHEN THE POSSIBLY
PERMUTATIONS ARE CONSIDFRFD~ RESULT IN A TOTAL SET OF ABOUT 170
INSTRUCTIONS.

THE INSTRUCTION SET ALLOWS THE USER TO DIRECT THE COMPUTER TO
PERFORM OPERATIONS WITH MFMORY~ WITH THE 7 BASIC REGISTERS IN THE
CPU~ AND WITH INPUT AND OUTPUT PORTS.

IT SHOULD BE POINTED OUT THAT THE 7 BASIC REGISTERS IN THE CPU
CONSIST OF ONE ACCUMVLATOR - THAT IS A REGISTER THAT CAN PERFORM
MATHEMATICAL AND LOGIC OPERATIONS~ AND AN ADDITIONAL 6 REGISTERS
WHICH WHILE NOT HAVING THE FULL CAPABILITY OF THE ACCUMULATOR~ CAN
PERFORM CERTAIN OPERATIONS (INCPEMFNT AND DECRFMOlT) ~ CAN STORE
DATA~ AND CAN OPERATE VITH THE ACCt~ULATOR. TWO OF THE SIX FF~ISTERS
HAVE SPECIAL SIGNIFICANCF BECAUSF THEY MAY BE USED TO "POINT" TO AN
ADDRESS IN MEMORY.

THE SEVFN CPU REGISTERS HAVE ARBITRARILY BEEN ~IVEN SYMBOLS SO
THAT WE MAY REFER TO THEM IN A COMMON LANGUAGE. THE FIRST REGISTER
IS DESI GNATFD BY THE SYMBOL "A" IN THE FOLLOWING 01 SCtTSSION AND WILL
BE CONSIDERED THE ACCUMULATOR REGISTER. THF NFXT FOUR REGISTERS ~ILL
BE REFERRED TO AS THF "B~" "C~" "D~" AND "E~" RFGISTERS~ AND THE RF­
MAINING T'-10 SPECIAL MEMORY POINTING REGISTERS SHALL BE DESIr,NATED
THE "H" (FOR THE HIGH PORTION OF A MEMORY ADDRESS) AND THE 'tL" (FOR
THE LOW PORTION OF A MEMORY ADDRESS) REGISTERS.

THE CPU ALSO HAS SFVFRAL FLIP-FLOPS ~HICH SHALL BE REFERRED TO
AS "FLAGS." THESE FLIP-FLOPS ARE' SFT AS THE RESULT OF CERTAIN OPERA­
TIONS AND ARE IMPORTANT BECAUSE THEY CA~' BF. "TESTFD" BY MANY OF THE
INSTRUCTIONS AND THE INSTRUCTION'S MEANING CHANGED AS A CONSEQUFNCE
OF THE FLAGS PARTICULAR STATUS AT THE TIME IT IS TESTED. THEFE ARE
FOUR BASIC FLAGS WHICH WILL BE REFERRFD TO IN THIS MANUAL DESIGNATED
AS FOLLOWS t

THE "c" FLAG REFERS TO THF CARRY BIT STATUS. THE CARRY
BIT IS A 1 UNIT REGISTER WHICH CHANGES STATE WHEN THE AccnM­
ULATOR OVER-FLOWS OR UNDFR-FLOWS. THIS BIT CAN ALSO BF.
SET TO A KNOWN CONDITION BY CERTAIN TYPES OF INSTRUCTIONS •

. THIS IS IMPORTANT TO REMEMBER WHEN DEVELOPING A PROr,RAM BE­
CAUSE QUITE OFTEN A PROGRAM WILL HAVF A LONr, STRING OF
INSTRUCTIONS WHICH DO NOT UTILIZE THE CARRY BIT OR CARE ABOUT
ITS STATUS~ BUT ~HICH WILL BE CAUSING THE CARRY BIT TO CHANGE
ITS STATUS FROM TIME TO TIME. THUS~ WHEN ONE PFEPARES TO DO
A SERIES OF OPERATIONS THAT WILL RELY ON THE CARRY BIT~ ONF
OFTEN DESIRES TO SET THE CARRY BIT TO A KNOWN STATE.

THE "z" FOR ZERO FLAG REFERS TO A 1 UNI T REGI STEP THAT WHEN
DESIRED WILL INDICATE WHETHER THE VALUE OF THE ACCt~ULATOR
IS EXACTLY EQUAL TO ZERO. IN ADDITION~ IMMEDIATELY AFTER
AN INCREMENT OR DECREMENT OF THE B~ C~ DI E~ H OR L ~F.GIS­
TERS 1 THIS FLAG WILL ALSO, INDICATE \~ETHER THE INCREMENT
OR DECREMENT CAUSED THAT PARTICt~AR REGISTER TO GO TO ZERO.

THE "s" FOR SIGN FLAG REFERS TO A 1 UNIT REGISTER THAT INDI­
CATES VHETHER THE VALUE IN THE ACCUMULATO~ I S A POSITXUF OR
NEGATIVE VALVE (BASED ON TWO'S COMPLEMENT NOMENCLATURE).
ESSENTIALLY~ THIS FLAG MONITORS THE MOST SIGNIFICANT BIT IN
THE ACCUMULATOR AND IS "SFT" WHEN IT IS A ONE.

1 - 1

THE "P" FLAG REFERS TO THE LAST FLAG IN THE GROUP WHICH
IS FOR INDICATING WHEN THE ACCUMULATOR CONTAINS A VALUE
WHICH HAS EVEN PARITY. PARITY IS USEFUL FOR A NUMBER OF
REASONS AND IS USUALLY USED IN CONJUNCTION WITH TESTING
FOR ERROR CONDITIONS ON WORDS OF DATA PARTICULARLY WHEN
INPUTTING DATA FROM EXTERNAL SOURCES. EVEN PARITY OCCURS
WHEN THE NUMBER 0 F BITS THAT ARE A "I" IN THE ACCUMU­
LATOR (OUT OF THE EIGHT POSSIBLE) IS AN EVEN VALUE, I.E.,
2, 4, 6, OR 8; REGARDLESS OF WHAT ORDER THEY MAY BE IN
THE ACCUMULATOR REGISTER.

IT IS IMPORTANT TO NOTE THAT THE "Z," "5," AND "P" FLAGS (AS
WELL AS THE PREVIOUSLY MENTIONED "c" FLAG) CAN ALL BE SET TO KNO'WN
STATES BY CERTAIN INSTRUCTIONS. IT IS ALSO IMPORTANT TO NOTE THAT
SOME INSTRUCTIONS DO NOT RESULT IN THE FLAGS BEING SET SO THAT IF
11iE PROGRAMMER DESIRES TO HAVE THE PROGRAM MAKE "DECISIONS" BASED
(}J THE STATUS OF FLAGS, THE PROGRAMMER SHOULD ENSURE THAT THE PROPER
INSTRUCTION, OR SEQUEN~E OF INSTRUCTIONS IS UTILIZED. IT IS PARTIC­
tLARLY IMPORTANT TO NOTE THAT "LOAD REGISTER" INSTRUCTIONS DO NOT
~ THEMSELVES SET THE FLAGS. SINCE IT IS OFTEN DESIRABLE TO OBTAIN
A DATA 'WORD (I.E. LOAD IT INTO THE ACCUMULATOR) AND TEST ITS STATUS
FOR SUCH PARAMETERS AS 'WHETHER OR NOT THE VALUE IS ZERO, OR A NEG­
ATIVE NUMBER ETC., THE PROGRAMMER MUST REMEMBER TO FOLLOW A LOAD
INSTRUCTION BY A LOGICAL INSTRUCTION (SUCH AS THE NDA - "AND THE
ACCUMULATOR") IN ORDER TO SET THE FLAGS BEFORE USING AN INSTRUCTION
THAT IS CONDITIONAL IN REGARDS TO THE FLAG STATUS.

THE DESCRIPTION OF THE VARIOUS TYPES OF INSTRUCTIONS AVAILABLE
WITH AN 8008 CPU UNIT WHICH FOLLOWS WILL PROVIDE BOTH THE MACHINE
LANGUAGE CODE FOR THE INSTRUCTION GIVEN AS 3 OCTAL DIGITS, AND ALSO
A MNEMONIC NAME SUITABLE FOR WRITING PROGRAMS IN SYMBOLIC TYPE LANG­
u:\GE WHICH IS USUALLY EASIER THAN TRYING TO REMEMBER OCTAL CODES! IT
MAY BE NOTED THAT THE SYMBOLIC LANGUAGE USED IS THE SAME AS THAT
SUGGESTED BY INTEL CORPORATION 'WHICH ORI GINALLY DEVELOPED THE 8008 "CPU­
(}J-A-CHIP" WHICH IS AT THE HEART OF 8008 SYSTEMS, AND HENCE USERS WHO
~Y ALREADY BE FAMILIAR WITH THE SUGGESTED MNEMONICS WILL NOT HAVE ANY
"RELEARNING" PROBLEMS AND THOSE LFARNING THE MNEMONICS FOR THE FIRST
TIME WILL HAVE PLENTY OF "GOOD COMPANY." IF THE PROGRAMMER IS NOT AL­
READY AWARE OF IT, THE USE OF MNEMONICS FACILITATES WORKING WITH AN
"ASSEMBLER" PROGRAM WHEN IT IS DESIRED TO DEVELOP RELATIVELY LARGE AND
COMPLEX PROGRAMS. THUS THE PROGRAMMER IS URGED TO CONCENTRATE ON
LEARNING THE MNEMONICS FOR THE INSTRUCTIONS AND NOT 'WASTE TIME MEMORI­
ZING THE OCTAL CODES. AFTER A PROGRAM HAS BEEN WRITTEN USING THE
MNEMONIC CODES, THE PROGRAMMER CAN ALWAYS USE A LOOKUP TABLE TO CON­
VERT TO THE MACHINE CODE IF AN ASSEMBLER PROGRAM IS NOT AVAILABLE.
ITS A LOT EASIER TECHNIQUE (AND LESS SUBJECT TO ERROR) THAN TRYING TO
MEMORIZE THE 170 OR SO 3 DIGIT COMBINATIONS WHICH MAKE UP THE MACHINE
INSTRUCTION CODE SET!

THE PROGRAMMER MUST ALSO BE AWARE, THAT IN THIS MACHINE, SOME
INSTRUCTIONS REQUIRE MORE THAN ONE "WORD" IN MEMORY. "IMMEDIAT~'
TYPE COMMANDS REQUIRE TWO CONSECUTIVE WORDS AND JUMP AND CALL COM­
fwANDS REQUIRE THREE CONSECUTIVE WORDS. THE REMAINING TYPES OF INS-
7RUCTIONS ONLY REQUIRE ONE WORD. THI S WILL BE PRESENTED IN DETAIL
IN THE DESCRIPTION FOR EACH TYPE OF INSTRUCTION.

THE FIRST GROUP OF INSTRUCTIONS TO BE PRESENTED ARE THOSE THAT
ARE USED TO "LOAD" DATA FROM ONE CPU REGISTER TO ANOTHER, OR FROM
A CPU REGISTER TO A WORD IN MEMORY, OR VICE-VERSA. THIS GROUP OF
INSTRUCTIONS REQUIRES JUST ONE WORD OF MEMORY. IT IS IMPORTANT TO
NlTE THAT NONE OF THE INSTRUCTIONS IN THIS GROUP AFFECT THE "FLAGS."

1 - 2

LOAD DATA FROM ONE CPU REGISTFR TO ANOTHER CPU REGISTER

MNEMONIC MACHINE CODE

LAA 3 " " LBA 3 1 " • •
• •

LAB 3 "
THE LOAD REGISTER GROUP OF INSTRUCTIONS ALLOWS THE PROGRAMMER

TO MOVE THE CONTENTS OF ONE CPU REGISTER INTO ANOTHER CPU REGISTER.
THE CONTENTS OF THE ORIGINATING (FROM) REGISTER IS NOT CHANGED. THE
CONTENTS OF THE DESTINATION (TO) REGISTER BECOMES THE SAME AS THE,
ORIGINATING REGISTER. ANY CPU REGISTER CAN BE LOADED INTO ANY CPU
REGISTER. NOTE THAT FOR INSTANCE LOADING REGISTER "A" INTO REGISTER
"A" IS ESSENTIALLY A "NOP" (NO OPERATION) COMMAND, WHEN USING
MNEMONICS THE LOAD SYMBOL I S THE LETTFR "L" FOLLOVED BY THE "TO"
REGISTER AND THEN THE "FROM" REGISTER. THE MNEMONIC "LBA" MEANS
THE THE CONTENTS OF REGISTER "A" (THE ACCUMULATOR) IS TO BE LOADED
INTO REGISTER "B," THE MNEMONIC "LAS" STATES THAT REGISTER "B" IS
TO HAVE ITS CONTENTS LOADED INTO REGISTER "A." IT CAN BE SEEN THAT
THIS BASIC INSTRUCTION HAS MANY VARIATIONS, THE MACHINE LANGUAGE
CODING FOR THIS INSTRUCTION IS IN THE SAME FORMAT AS THF MNEMONIC
CODE EXCEPT THAT THE LETTERS USED TO REPRESENT THE REGISTERS ARE
REPLACED BY NUMBERS THAT THE MACHINE CAN USE. USING OCTAL CODE# THE
7 CPU REGISTERS ARE CODED AS FOLLOWS:

REG "A" • " REG "B" • 1
REG "c" • 2
REG "D" :I 3
REG "E" • .4
REG "H" • 5
REG "L" • f:,

ALSO SINCE THE MACHINE CAN ONLY UTILIZE NUMBERS# THE OCTAL NUMBER 3
IN THE MOST SIGNIFICANT LOCATION OF A VORD SIGNIFIES THAT THF COMP­
UTER IS TO PERFORM A "LOAD" OPERATION. THUS# IN MACHINE CODINGI THF
INSTRUCTION FOR LOADING REGISTER "S" "ITH THE CONTENTS OF RFGISTER
"A" BECOMESs 3 1 0 (IN OCTAL FORM) OR# I F ONE WANTED TO GET \7ERY
DETAILED# THE ACTUAL BINARY CODING FOR THF. 8 BITS OF INFORMATION IN
THE INSTRUCTION YORD WOULD BEt lie" 1 e e e. IT IS IMPORTANT
TO NOTE THAT THE LOAD INSTRUCTIONS DO NOT AFFECT ANY OF THE "FLAGS."

LOAD DATA FROM ANY CPU REGISTER TO A LOCATION IN MEMORY
LMA 3 7 " LMB 3 7 I
LMC 3 ., 2
LMD 3 7 3
LME 3 7 /I
LMH 3 7 5
LML 3 7 6

~

THIS INSTRUCTION IS VERY SIMILAR TO THE PREVIOUS GROUP OF
INSTRUCTIONS EXCEPT THAT NOW THE CONTENTS OF A CPU REGISTER WILL BE
LOADED INTO A SPECIFIED MEMORY. LOCATION, THE MEMORY LOCATION THAT
WILL RECEIVE THE CONTENTS OF THE PARTICULAR CPU REGISTER IS THAT
\.1HOSE ADDRESS 1 S SPECI 11 EO BY THE CONTENTS OF THE CPU "H" AND ','L"
REGISTERS AT THE TIME THE INSTRUCTION IS EXECUTED. THE "N" CPU
REGISTER SPECIFIES THE "HIGH" PORTION OF THE ADDRESS. DESIRED# AND
THE "L" CPU REGISTER SPECIFIES THE "LOW" PORTION OF THE ADDRESS

1 - 3

INTO WHICH DATA FROM THE SELECTED CPU REGISTER IS TO BE LOADED.
NOTE THAT THERE ARE 7 DIFFERENT INSTRUCTIONS IN THIS GROUP AS ANY
CPU REGISTER CAN HAVE ITS CONTENTS LOADED INTO ANY LOCATION IN
MEMORY. THIS GROUP OF INSTRUCTIONS DOES NOT AFFECT ANY OY THF
"FLAGS ."

LOAD DATA FROM A MEMORY LOCATION TO ANY CPU REGISTER

LAM 3 " 7
LBM 3 1 7
LCM 3 2 7
LDM 3 3 7
LEM 3 4 7
LHM 3 5 7
LLM 3 6 7

THIS GROUP OF INSTRUCTIONS CAN BE CONSIDERED THE OPPOSITE
OF THE PREVIOUS GROUP. NOW~ THE CONTENTS OF THE WORD IN MEMORY
WHOSE ADDRESS. IS SPECIFIED BY THE t'H" (FOR THE HIGH PORTION OF
THE ADDRESS) AND '-Lt

' (LOW PORTION OF THE ADDRESS) REGISTERS WILL
BE LOADED INTO THE CPU REGISTER SPECIFIED BY THE INSTRUCTION.
ONCE AGAIN~ THIS GROUP OF INSTRUCTIONS HAS NO AFFECT ON THE
STATUS OF THE 'tFLAGS."

LOAD "IMMEDIATE" DATA INTO A CPU REGISTFR

LAI " " 6
LBI S I f.
LCI 0 2 6
LDI 0 3 6
LEI 0 4 6
LHI " 5 6
LLI e 6 6

AN "IMMEDIATE" TYPE OF INSTRUCTION RF,QUIRES TWO WORDS IN ORDER
TO BE COMPLETELY SPECIFIED. THE FIRST WORD IS THE INSTRUCTION IT­
SELF~ THE SECOND WORD .. OR "IMMEDIATELY FOLLOWING" 'CiORD~ MUST CONTAIN
THE DATA UPON WHICH IMMEDIATE ACTION IS TAKEN. THUS" A LOAD "IMMED­
lATE" INSTRUCTION IN THIS GROUP MEANS THAT THE CONTENTS OF THE WORD
IMMEDIATELY FOLLOWING THE. INSTRUCTION ~ORD IS TO BE LOADED INTO THE
SPECIFIED REGISTER. FOR EXAMPLE" A TYPICAL LOAD, IMMEDIATE. INSTRUC­
TION WOULD BE: LAI 801. THIS WOULD RESULT IN THE VALUE.eSI BEIN~

PLACED. IN THE "A" REGISTER WHEN THE. INSTRUCTION WAS EXECUTED. IT IS
IMPORTANT TO REMEMBER THAT ALL !' IMMEDIATE" TYPE INSTRUCTIONS MUST BE
FOLLOWED BY A DATA WORD. AN INSTRUCTION SUCH AS LDI ALONE WULD
RESULT IN IMPROPER OPERATION BECAUSE THE COMPUTER WOULD ASSUME THY.
NEXT WORD CONTAINED DATA" AND IF THE PROGRAMMER HAS MISTAKENLY LEFT
OUT THE DATA WORD" AND IN ITS PLACE HAD ANOTHER INSTRUCTION" THE
COMPUTER WOULD NOT REALIZE THE OPERATORS ·'MI STAKE" AND HENCE THE PRO­
GRAM 'WOULD BE "FOtTLED-UP!" NOTF. TOO" THAT THE LOAD "IMMEDIATE"
GROUP OF INSTRUCTIONS DOES NOT AFFECT THE ·'FLAGS."

LOAD "IMMEDIATE" DATA INTO A MEMORY LOCATION

LMI " 7 6

THIS INSTRUCTION IS ESSENTIALLY THE SAME AS THE LOAD IMMEDIATE
. INTO THE CPU REGISTER GROUP EXCEPT THAT NOW~ USING THE CONTENTS OF

I - it

THE "H" AND ttL" REGISTE~S AS "POINTERS" TO THE DESIRED ADDRESS IN
MEMORY ~ THE CONTENTS OF THE "IMMEDIATELY FOLLOWING WORD" WILL BE
PLACED IN THE MEMORY LOCATION SPECIFIED. THIS INSTRUCTION DOES NOT
AFFECT THE STATUS OF THE "FLAGS."

THE ABOVF ~ATHER LARGE G~OUP OF "LOAD" INSTRUCTIONS PERMIT THE
PROG~AMMER TO DIRECT THE COMPUTER TO MO"£. DATA ABOUT. THEY ARE
USED TO BRING IN DATA FROM MEMORY WHERE IT CAN BE. OPERATED ON BY
THE CPU~ OR TO TEMPORARILY STORE INTERMEDIATE RFSULTS IN THF. CPU
REGISTER DURING COMPLICATED AND EXTENDED CALCULATIONS~ AND OF COURSE
ALLOW DATA~ SUCH AS RESULTS~ TO BE PLACED BACK INTO MEMORY FOR
LONG TERM STORA~F. SINCE NONE OF THEM \lILL ALTER THE CONTENTS OF
THE FOUR CPU FLAGSI THESE INSTRUCTIONS CAN BF CALLED UPON TO I FOR
EXAMPLE~ SET UP DATAl BEFOFE INSTRUCTIONS THAT MAY AFFECT OR UTILIZF
THF FLAGS' STATUS ARE EXECUTED. THE PROGRAMMEF WILL USE. INSTRUCTIONS
mOM THI S SET FREQUENTLY. THE MNEMONIC NAMES FOR THE INSTRUCTIONS
ARE EASY TO RE:MEMBER AS THEY ARE WELL ORDERED. THE MOST IMPORTANT

.. ITFM TO REMEMBER ABOUT THE MNEMONICS IS THAT THE "TO" PEGI STER IS
ALWAYS INDICATED FIRST IN THE MNEMONIC .. AND THEN THE "FROM" RFGI STER.
THUS "LBA" • "LOAD TO REGI STER "B" FROM REGISTER "A.'·

INCREMENT THE VALUE OF A CPU REGISTER BY I

INS " 1 " INC " 2 " IND 0 3 0
INF. 9 4 0
INH 0 5 " INL " 6 0

THI S GROCP OF INSTRUCTIONS ALLOWS THE PROGRAMMFR TO IIADD I" TO
THE PRESENT VALUE OF ANY OF THE CPU REGISTERS EXCEPT THF ACCUMULATOR.
(NOTE CAREFULLY THAT THE ACCUMULATOR CAN NOT BE INCRFMFNTED BY THIS
TYPE OF INSTl1UCTION. IN ORDER TO "ADD I" TO THE ACCt'MULATOR A MATH­
EMATICAL ADDITION INSTRUCTION~ DESCRIBED LATER~ MUST BE USED). THIS
INSTRUCTION FOR INCREMENTING THE DEFINED CPU REGISTERS IS VERY VAL­
VABLE IN A NUMBER OF APPLICATIONS. FOR ONE THING~ IT IS AN EASY
WAY TO HAVE THE ItL" ~EGISTER SUCCESSIVELY "POINT" TO A STRING OF LOC­
ATIONS IN MEMORY. A FEATURE THAT MAKES THIS TYPE OF INSTRUCTION FVEN
MORE POVERFULI IS THAT THE RESULT. OF THE INCRFMENTED REGISTER ~ILL
AFFECT THE "Z~" "S~" AND "P" FLAGS. (IT WILL NOT CHANGE THE ftC" OR
"CARRY" FLAG). THUS~ AFTER A CPU REGI5TER HAS BEEN INCREMENTED BY
THIS INSTRUCTION~ ONE CAN UTILIZE A "FLAG TEST" INSTRUCTION (SUCH AS
THE JUMP AND CALL. INSTRUCTIONS TO BE DESCRIBED LATER) TO DETERMINE
WHETHER THAT PARTICULAR REGI STER HAS A "ALUE OF ZERO ("Z" FLAG) ~ OR
IF IT IS A NEGATIVE NUMBER ("S" FLAG)., OR EVEN PARITY (t.p" FLAG).
IT IS IMPORTANT TO NOTE THAT THIS GROUP OF INSTRUCTIONS~ AND THE
DECREMENT GROUP (DESCRIBED IN THE NEXT PARAGRAPH) ARE THE ONLY. INSTF­
OCTIONS WHICH ALLOt.J THE "FLAGS" TO BE MANIPULATED BY OPERATIONS THAT
ARE NOT CONCERNED WITH THE ACCUMULATOR (ttA") REGISTER.

DECREMENT THE VALUE 0 F A CPU REGISTER BY 1

DCB " 1 1
Dec e 2 1
neD 0 3 1
DeE " 4
DCH " 5
DCL " 6

1 - 5

THE DECREMENT GROUP OF INSTRUCTIONS IS SIMILAR TO THE INCREMENT
GROUP EXCEPT THAT NOW THE VALUE 1 WILL BE SUBTRACTED FROM THE SPECI­
FIED CPU REGISTER. THIS INSTRUCTION WILL NOT AFFECT THE "C" FLAG
BUT IT DOES AFFECT THE "Z,," "5,," AND "P" FLAGS. IT SHOULD ALSO Bf;
NOTED THAT THIS GROUP" AS VITH THE INCREMENT GROUP" DOES NOT INCLUDE
THE ACCUMULATOR REGISTER. A SEPARATE MATHEMATICAL. INSTRUCTION
MUST BE USED TO SUBTRACT 1 FROM THE ACCUMULATOR.

ARITHMETIC INSTRUCTIONS USING THE ACCUMULATOR

THE FOLLOWING GROUP OF INSTRUCTIONS ALLOV THE PROGRAMMER TO
DIRECT THE COMPUTER TO PERFORM ARITHMETIC OPERATIONS BETWEEN OTHFR
CPU REGI STERS AND THE ACCUMULATOR" OR BETWEEN THE CONTENTS OF \'ORDS

. IN MEMORY AND THE ACCUMULATOR. ALL OF THE OPERATIONS FOR THE DES­
CRIBED ADDITION" SUBTRACTION" AND COMPARE INSTRUCTIONS AFFECT THE
STATUS OF THE "FLAGS."

ADD THE CONTENTS OF A CPU REGISTER TO THE ACCUMULATOR

ADA 2 0 0
ADB 2 0 1
ADC 2 " 2
ADD 2 0 3
ADE 2 0 4
ADH 2 0 5
ADL 2 " 6

THIS GROUP OF INSTRUCTIONS WILL SIMPLY ADD THE PRESENT CONTENTS
OF THE ACCUMULATOR REGISTER TO THE PRESENT VALUE OF THE SPECIFIED
CPU REGISTER AND LFAVE THE RESULT IN THE ACCUMULATOR. THE VALUE OF
THE SPECl FI ED REGI STER. I S UNCHANGED EXCEPT IN THE CASE OF THE "ADA"

.. INSTRUCTION. NOTE THAT THE 'tADA" INSTRUCTION ESSENTIALLY ALLOWS THE
PROGRAMMER TO DOUBLE THF "ALUE OF THE ACCUMULATOR (WHICH IS THE "A"
REGISTER) I I F THE ADDITION CAUSES AN "OVER-FLOlP' OR "UNDER-FLOW"
THEN THE "CARRY" ("C" FLAG) WILL BE AFFECTED.

ADD THE CONTENTS OF A CPU REGISTER llLUS THE \1ALUE OF THE
CARRY FLAG TO THE ACCt~ULATOR

ACA 2 1 0
ACB 2 1 I
ACC 2 I 2
ACD 2 I 3
ACE 2 1 4
ACH 2 1 5
ACL 2 1 6

THIS GROUP IS IDENTICAL TO THE PREVIOUS GROUP F~CEPT THAT NOW
THE CONTENT OF THE CARRY FLAG IS CONSIDERED AS AN ADDITIONAL BIT
(MSB) IN THE SPECIFIED CPU REGISTER AND THE COMSINED VALUE OF THE
CARRY BIT PLUS THE CONT~TS OF THE SPECIFIED CPU REGISTER ARE ADDED
TO THE VALUE IN THE ACCUMULATOR. THE RESULTS ARE LEFT IN THE ACCUM­
tLATOR. AGAIN" WITH THE EXCEPTION OF THE "ACA-' INSTRUCTION" THE
CONTENTS OF THE SPECIFIED CPU REGISTER IS LEFT UNCHA~GED. AGAIN TOO"
mE CARRY BIT ("C" fLAG) kTILL BE AFfECTED BY THE RESUL T5 OF THE OPER·.
ATION.

1 - 6

"

SUBTRACT THE CONTE~JTS 0 F A CPU REGISTER FROM THE ACCUMULATOR

SUA 2 2 0
sue 2 2 I
SUC 2 2 2
SUD 2 2 3
SUF 2 2 .4
SUH 2 2 5
SUL 2 2 6

THIS GROUP OF INSTRUCTIONS WILL CAUSE THE PRESENT UALUE OF THE _
SPECIFIED CPU REGISTER TO BE SUBTRACTED FPOM THE VALUE IN THE ACCt~U­
LATOR. THE VALUE OF THE SPECIFIED REGISTER IS NOT CHANGED EXCEPT IN
THE CASE OF THE "SUA" INSTRUCTION. (NOTE THAT THE "SUA" INSTRUCTION
IS A CONVENIENT INSTRUCTION WITH WICH TO ','CLFAR" THE. ACCUMULATOR).
THE CARRY FLAG WILL BE AFFECTED BY THE RESULTS OF A SUBTRACT INSTRUC­
TION.

SUBTRACT THE CONTENTS OF A CPU REGISTER AND THE VALUE OF THE
CARRY FLAG FFOM THE ACCUMULATOR

SBA 2 3 0
SBB 2 3 I
SBC 2 3 2
SBD 2 3 3
SBE 2 3 4
SBH 2 3 5
SBL 2 3 6

THIS GROUP IS IDENTICAL TO THE PREVIOUS GROUP EXCEPT THAT NO~
THE CONTENT OF THE CARRY FLAG IS CONSIDERED AS AN ADDITIONAL BIT
(MSB) IN THE SPECIFIED CPU REGISTER AND THE COMBINED VALUE OF THE
CARRY BIT PLUS THE CONTENTS OF THE SPECIFIED CPU REGISTER ARE SUB­
TRACTED FROM THE VALUE IN THE ACCt~ULATOR. THE RESULTS ARE LEFT IN
THE ACCUMULATOR" AND THE CARRY BI T ("C" FLAG) IS AFFECTFD BY THE
RESULT OF THE OPERATION. WITH THE EXCEPTION OF THE "SBA" INSTRUC­
TION THE CONTENTS OF THE SPECIFIED CPU REGISTER IS LEFT UNCHANGED.

COMPARE THE UALUE. IN THE ACCl~ULATOR AGAINST
THE CONTENTS OF A CPU REGISTER

CPA 2 7 0
CPB. 2 7 I
CPC 2 7 2
CPD 2 7 3
CPE 2 7 4
CPH 2 7 5
CPL 2 7 6

THE "COMPARE" GROUP OF INSTRUCTIONS ARE A VERY POWERFUL AND
SOMEWHAT UNIQUE SET OF INSTRUCTION.S. THEY DIRECT THE COMPUTER TO
COMPARE THE CONTENTS OF THE ACCUMULATOR AGAINST ANOTHER REGISTER
AND TO SET THE "FLAGS'· AS A RESULT 0 F THE COMPAR ING OPERATION.
IT IS ESSENTIALLY A SUBTRACTION OPERATION WITH THE UALUE OF T»E
SPECIFIED REGISTER BEING SUBTRACTED FROM THE VALUE OF THE ACCUMU­
LATOR EXCEPT THAT THE VALUE OF THE ACCUMULATOR IS NOT ACTUALLY
ALTERED BY THE OPERATION. HOWEVER" THE "FLAGS" ARE SET IN THE SAME
MANNER AS THOUGH AN ACTUAL SUBTRACTION OPERATION HAD OCCURED. THUS 1

BY SUBSEQUENTLY TESTING THE STATUS OF THE VARIOUS FLAGS AFTER A COM-

1 - 7

PARE INSTRUCTION HAS BEEN EXECUTED~ THE PROGRAM CAN DFTERMINE VHETHFR
1HE "COMPARE·' OPERATION RESULTED IN A HATCH~ OR NO"l-MATCH~ AND IN. THE
CASE OF A NON-MATCH WHETHEH THE COMPARED REGI STER CONTAINED A "ALUE
GRFATER OR LESS THAN THAT IN THE ACCUMULATOR. THIS ~ULD BF. ACCOMP­
LISHED BY TESTING THE "Z·· FLAG AND "c" FLAG RESPECTIVELY UTILIZING
A "JUMP" OR "CALL" FLAG TESTING INSTRUCTION (WHICH WILL BF. DESCRIBED
LATER) •

~

ADDITION~ SUBTRACTION~ AND COMPARE INSTBUCTIONS THAT USE
WORDS IN MEMORY AS'OPEFANDS

THE FIVE TYPES OF MATHEMATICAL OPERATIONS: ADD, ADD WITHCAR~Y,
SUBTBACT ~ SUBTRACT WI TM CARRY, AND THE COMPARE; WI CM HAl'E JUST
BEEN PRESENTED FOR PERFORMING THE OPERATIONS WITH THE CONTENTS OF
THF CPU REGISTERS, CAN ALL ALSO BE PFRFORMED WITH WORDS THAT APE IN
ME~10RY. AS WITH THE "LOAD" INSTRUCTIONS l-lITH MEMORY, THE ItH" A~lD "Lit
REG I STERS MUST CONTAI N THF ADDRESS 0 F THE WORD IN. MEMORY THAT I TIS
DESIP.ED TO ADD, StTBTRACT~ OR COMPARE TO THE ACCUMULATOR. THE SAME
CONDITIONS FOR THE OPERATIONS AS WAS DETAILFD WHEN USIN~ THE CPU PFGI~­
TEF5 APPLY. THUSI FOR MATHEMATICAL OPERATIONS WITH A ~OFD IN MFM-
ORY~ THE FOLLOWING INSTRUCTIONS ARE USFn:

ADD THE CONTENTS OF A MEMOF.Y WORD TO THE ACCUMULATOF

ADM 2 0 7

ADD THE CONTENTS OF A MEMORY \tlORD PLPS THF VALUE OF THE
CARRY FLAG TO THE ACCUMULATOR

ACM 2 1 7

SUBTRACT THE CONTENTS OF A MEMOF.Y \10RD FROM THE ACCUMULATOR

SUM 227

SUBTRACT THE CONTENTS OF A MEMORY WORD AND THE VALUE OF THE
CARRY FLAG FROM THE ACCUMULATOR

SBM 237

COMPARE THE VALUE IN THF ACCUMULATOF AGAINST
THE CONTENTS OF A MEMORY WORD

CPM 2 7 7

','IMMEDIATE" TYPE ADDITIONS~ SUBTRACTIONS 1 AND COMPARF INSTRUCTIOt-lS

THE 5 TYPES OF MATHEMAT1CAL OPERATIONS DISCUSSED CAN ALSO BE PER­
FORMED WITH THE OPERAND BEING THE WORD OF DATA IMMEDIATELY AFTER THE

,INSTRUCTION. THIS GROUP OF INSTRUCTIONS IS SIMILAR IN FORMAT TO THE
PREVIOUSLY DESCRIBED "LOAD IMMEDIATEIt INSTRUCTIONS. THE SAME CONDI­
TIONS FOR THE MATHFMATIC OPERATIONS AS DISCUSSED FOR THE OPERATIONS
WITH THE CPU REGISTERS APPLY.

1 - 8

ADI 0 '" 4

ADD WITH CARRY "IMMFDIATE"

AC! 0 1 4

SUBTRACT "IMMEDIATE"

SUI 0 2 4

SUBTRACT WITH CARRY "IMMEDIATE"

SBI 0 3 4

COMPARE "IMMEDIATE"

CPI 0 7 4

LOGICAL INSTRUCTIONS WITH THE ACCUMULATOR

THERE ARE SEVERAL GROUPS OF INSTRUCTIONS WHICH ALLO~ BOOLFAN
LOGIC OPERATIONS TO BE PERFORMED BETWEEN THE CONTENTS OF THE CPU
REG! STERS AND THE "AU OR ACCUMULATOR REGI STER" AS \TFLL AS BET\fFEN
CONTENTS OF LOCATIONS IN MEMORY AND THF "A·' REGISTER. IN ADDITION
THERE ARE LOGIC "IMMEDIATE" TYPE INSTRUCTIONS. THE BOOLEAN LOGIC
OPERATIONS ARE VALUABLE IN A NUMBER OF PROGRAMMING APPLICATIONS.
THE INSTRUCTION SET ALLOVS THREE BASIC BOOLF~N OPERATIONS TO BE PFP­
FORMED. THESE ARE THEI "LOGICAL AND;" "LOGICAL OR"" AND "EXCLPSIVE
OR" OPERATIONS. FACH TYPE OF LOGIC OPERATION IS PERFORMED ON A uBIT­
BY-BIT" BASIS BETWEEN THE ACCUMULATOR REGISTER AND THE CPU REGISTER
OR MEMORY LOCATION SPECIFIED BY THE INSTRUCTION. A DETAILED EXPLANA­
TION OF EACH TYPE OF LOGIC OPERATION" AND THE APPROPRIATF INSTRUCTIONS
FUR EACH TYPE IS PRESENTED BELO~. THE LOGIC INSTRUCTION SET IS ALSO
VALUABLE BECAUSE ALL OF THEM WILL CAUSE THF CARRY (UC") FLAG TO BE
SET TO THE ·'0" CONDITION. THIS IS IMPORTANT IF ONE IS GOING TO PF.F­
fORM A SEQUENCE OF INSTRUCTIONS THAT WILL EVENTUALLY USE THE STATUS
OF THE "C" FLAG TO ARRIVE AT A DECISION AS IT ALLOWS THE PROG~AMMER
TO SET THE "C" FLAG TO A KNOWN STATE AT THE START OF THF SEQUENCE.
ALL OTHER "FLAGS" ARE SET IN ACCORDANCE YITH RESULT OF THE LOGIC OPFR­
ATION AND HENCE THE GROUP OFTEN HAS VALUE WHEN THE PROGRAMMER DESIRES
TO DETERMINE THE CONTENTS OF A REGIST~ THAT HAS JUST BEEN "LOADED"

. INTO A REGISTER (SINCE THE "LOAD" INSTRUCTIONS DO NOT AFFECT THE STATF
OF THE "FLAGS").

THE BOOLEAN "AND" OPERATION AND INSTRUCTION SET

WHEN THE BOOLEAN "AND" INSTRUCTION I S EXECUTED" EACH Bl T OF THE
ACCUMULATOR WILL BE COMPARED WITH THE CORRESPONDING BIT IN THE REGISTER
OR MEMORY LOCATION SPECIFIED BY THE INSTRUCTION. AS FACH BIT IS
COMPARED A LOGIC RESULT WILL BF. PLACED IN THE ACCUMULATOR fOR EACH
BIT COMPARI SON. T"E LOGIC RESULT I S DETERMINED AS FOLLO"S: IF BOTH
THE BIT IN THE ACCUMULATOR AND THE BIT IN THE REGISTER~ITH WHICH THE
OPERATION I S BEING PERFORMED ARE A "1,," THEN THE ACCUMULATOR Bl T

1 - 9

WILL BE LEFT AS A "1." FOR ALL OTHER POSSIBLE COMBINATIONS (I.E.~

THE ACCUMULATOR BIT. 0 AND THE OTHER REGISTER'S BIT • I~ OF IF
THE ACCt~ULATOR BIT. I AND THF OTHER REGISTER'S BIT • 0~ OR IF. BOTH
THE ACCUMULATOR AND THE OTHER REGISTER HAVE THE PARTICULAR BIT • 0)~
11iEN THE ACCUMULATOR BIT WILL BE 5ET TO "0." AN EXAMPLE WILL ILLUS­
'mATE THE LOGICAL "AND" OPERATION:

INITIAL STATE OF THE ACCUMULATOR: o o

CONTENTS OF OPERAND REGISTERI o 0 o 0

FINAL STATE OF THE ACCUMULATOR: 000 o " 0

THERE ARE 7 LOGICAL "AND" INSTRUCTIONS THAT ALLO"-' ANY CPU REGI STER
TO 8E USED AS THE "AND" OPERAND. THEY ARE AS FOLLOlA'S:

NDA 2 4 0
NOB 2 4 I
NDC 2 4 2
NDD 2 4 3
NDE 2 4 4
NDH 2 4 5
NDL 2 4 ~

THE CONTENTS OF' THE OPERAND REGISTER IS NOT ALTERED BY AN "AND"
LOGICAL INSTRUCTION.

THERE I S ALSO A LOGICAL "AND" INSTRUCTION THAT ALLOWS A VORD IN
MEMORY TO BE USED AS AN OPERAND. THE ADDRESS OF THE WORD IN MEMORY
"IliAT WILL BE USED IS "POINTFD TO" BY THE CONTENTS OF THE "H" AND "L"
CPU REGISTERS.

NDM 247

AND FINALLY THERE I S ALSO A LOGICAL "AND" "IMMEDIATE" TYPE OF
INSTRUCTION THAT WILL USE THE CONTENTS OF THE ~ORD IMMEDIATELY FOLLO~­

.. ING THE INSTRUCTION AS THE OPERAND.

NOI fa 4 4

THE NEXT GROUP OF BOOLEAN LOGIC INSTRUCTIONS DIRECT THE
COMPUTER TO PERFORM THE LOGICAL "OR" OPERATION ON A "BIT-BY-BIT" BASI5
WITH THE ACCUMULATOR AND THE CONTENTS OF A C~U REGISTER OR_A. WORD IN
MEMORY. THE LOGICAL "OR" OPERATION WILL RESULT IN THE ACCUMULATOR
HAVING A BIT SET TO "I" IF EITHER THAT BIT IN THE ACCUMULATOR~ OR
niE CORRESPONDING BIT IN THE OPERAND REGISTER IS A "I." SINCE
THE CASE WHERE BOTH THE ACCUMULATOR BIT AND THE OPERAND BIT IS A "1"
ALSO SATISFIES THE RELATIONSHIP~ THAT CONDITION ~ILL ALSO RESULT IN
'mE ACCUMULATOR BI T BEING A "1." IF NEI THER RFGI STER HAS A ONE
IN THE BIT POSITION~ THEN THE ACCUMULATOR BIT REMAINS "e." AN
EXAMPLE ILLUSTRATES THE RESULTS OF A LOGICAL "OR" OPERATIONs

INITIAL STATE OF THE ACCUMULATOR: 010

CONTENTS OF THE OPERAND REGISTERt o 0 100

FINAL STATE OF THE ACCUMULATOR: o

1 - 10

THERE ARE 7 LOGICAL "OR" INSTRUCTIONS THAT ALLOW ANY CPU REGI S­
TER TO BE USED AS THE "OR" OPE~AND. THEY ARE!

ORA
ORB
ORC
ORO
ORE
O~H

ORL

2 6 e
2 6 I
2 6 2
2 6 3
2 6 4
2 6 5
266

AND .. BY USING THE "H" AND "L" REGISTERS AS "POINTERS" ONE CAN
ALSO USE A WORD., IN MEMORY AS AN "OR" OPERAND:

ORM 2 6 7

THERE IS ALSO THE LOGICAL "'OR" "IMMEDIATE" INSTRUCTION:

ORI o 6 4

AS WITH THE LOGICAL "AND" GROUP OF INSTRUCTIONS" THE LOGICAL "OR"
INSTRUCTION DOES NOT ALTER THE CONTENTS OF THE OPERAND REGISTER.

THE LAST GROUP OF BOOLEAN LOGIC INSTRUCTIONS IS A VAPIATION OF
THE LOGIC "OR." THE VARIATION IS TERMED THE LOGICAL "EXCLUSI"E
OR." THE uEXCLUSI\.IE OR" OPERATION IS SIMILAR TO THE "OP" EXCEPT THAT
WHEN THE CORRESPONDING BITS IN BOTH THE ACCUMULATOR AND THE OPFRAND
REGISTER ARE A "1" THEN THF ACCUMULATOR BIT ~ILL BE SET TO "0." THUS"
11iE ACCUMULATOR BI T t.lILL BE A "t" AFTER THE OPERATION ONLY I F JUST
ONE OF THE REGISTERS (ACCUMULATOR REGISTER OR OPERAND REGISTER) HAS
A "I" IN THE BIT POSITION. (AGAIN" THE OPERATION IS PERFORMED ON A
BIT-BY-BIT BASIS). AN EXAMPLE PROVIDES CLARIFICATION:

INITIAL STATE OF THE ACCUMULATOR: o "
CONTENTS OF THE OPERAND REGISTER: lIe 0 " "
FINAL STATE OF THE ACCUMULATOR: o 1 o 0 o

THE 7 INSTRUCTIONS THAT ALLOW THE CPU REGISTERS TO BE USED AS
OPERANDS ARE:

XRA 2 5 " XRB 2 5 1
XRC 2 5 2
XRD 2 5 3
XRE 2 5 4
XRH 2 5 5
XRL 2 5 6

THE INSTRUCTION THAT USES REGISTERS "H" AND "Lt' AS POINTFRS TO A
MEMORY LOCATION IS:

XBM 257

A"'D THE tfEXCLUSIVE OR" "IMMEDIATE" TYPE. INSTRUCTION IS:

XRl o 5 4

1 - 11

AS. IN THE CASE OF THF-. LOGICAL "OF" OPEFATION" THE OPF~AND Rf:(;ISTER
. 15 NOT ALTE:RED EXCEPT FOR THE SPECIAL CASF. WHFN THf. "X~Att INSTRtlCTIO~l
.,15 USED. THIS INSTRUCTIO~'" WHICH DIRECTS THF. COMPUTER TO "F.XCLtTSIVF

OR" THE ACCl"MULATOR (CPU REGISTER "AU) \fITH ITSFLF" WILL CAU5F THE
OPERAND REGISTER - SINCE. IT IS ALSO THE ACCCMULATOR" TO HAVE ITS CON­
TENTS ALTERED (UNLESS. IT IS ZFRO AT THE TIME THE INSTRUCTION IS ISS­
UED). THIS I S BECAUSE" REGARDLESS OF 'WHAT "ALUE I S IN THE ACCUMC­
LATOR" IF IT IS "EXCLUSIVE-ORED" WITH ITSELF" THE RFSULT \TILL AL"'AY5
BE ZEROI THE EXAMPLE ILLUSTRATES:

ORIGINAL VALUE OF THE ACCUMttLATOP.: o o

"EXCLUS I VE OR" WI TH I TSFLF: o o o o

FINAL VALUE OF THE ACCUMULATOR: o 0 0 0 0 0 0 "

THI S ONLY OCCURS WHEN THE LOGICAL "EXCLUSIVE OF" IS {,ERFORMED
ON THE ACCUMULATOF. ITSELF. IT CAN BE SHOWN THAT THE RESULTS OF PER­
FORMING THE LOGICAL "OF" OR LOGICAL "AND" BFT\1EEN THE ACCUMULATOR
AND .. ITSELF WILL RESULT. IN THE ORIGINAL ACCUMULATOR VALUE BFIN~
RETAINED.

INSTRUCTIONS FOR ~OTATING THE CONTENTS OF THE ACCUMULATOR

IT 1 SOFTEN DESIRABLF TO BE ABLE TO "SHI FT" THE CONTENTS OF THE
ACCUMCLATO~ EITHER RIGHT OF LEFT. IN A FIXED LENGTH REGISTER" A SIM­
PLE SHI FT OPERATION \t10ULD RESULT IN SOME INFORMATION BEING LOST BF­
CACSE WHAT WAS IN THE MSB OR LSB (DEPENDING ON IN '-'HICH DIRECTION THE
SHIFT OCCLRED) WOULD JUST BE SHIFTED RIGHT OUT OF THE REGISTER! THFRF.­
FORE~ INSTEAD OF JUST SHIFTING THE CONTENTS OF A REGISTER" AN OPERATION
TERMED "ROTATING" I S UTILIZED. NOW", INSTEAD OF JUST SHI FTING A BIT
OFF THE END OF THE REGISTER" THE BIT. IS BROUGHT AROUND TO THE OTHF~
DJD OF THE REGISTER. FOR INSTANCE". IF THE REGISTER IS "ROTATED" TO
THE RIGHT" THE LSB (LEAST SIGNIFICANT BIT) WOULD BE BROUGHT AROt~D TO
THE POSITION OF THE MSB (MOST SIGNIFICANT BIT) IN THE REGISTER WHICH
WOL~D HAVE BEEN VACATED BY THE SHIFTING OF ITS ORIGINAL CONTENTS TO THE
RIGHT. OR" IN THE CASE OF A SHIFT TO THE LEFT" THE MSB WOULD BE
BROUGHT AROCND TO THE POSITION OF THE LSB.

SINCE THE CARRY BIT (CARRY OR "C" FLAG) CAN BE CONSIDERED AS AN
EXTENSION OF THE ACCUMULATOR RFGISTER 1 IT IS OFTEN DESIRED THAT THE
CARRY BIT BE CONSIDERED AS PART OF THE ACCUMULATOR (THE MSB) DURING
A ROTATE OPERATION. THE INSTRUCTION SET FOR THIS MACHINE ALLOWS T~
TYPES OF ROTATE INSTRUCTIONS. ONE CONSIDERS THE CARRY BIT TO BE PART
OF THE ACCUMULATOR REGISTER FOR THE ROTATE OPERATION" AND THE OTHER
TYPE DOES NOT •. IN ADDITION" EACH TYPE OF ROTATE CAN BE DONE EITHER
TO THE RIGHT" OR TO THE LEFT •

. IT SHOULD BE NOTED THAT THE ROTATE OPERATIONS ARE. PARTICULARLY
VALUABLE WHEN. IT IS DESIRED TO MULTIPLY A NUMBER BECAUSE SHIFTING THE
CONTENTS OF A REGISTER TO THE LEFT. IS A QUICK WAY TO MULTIPLY A BINARY'
Nl~BER BY PO~ERS OF TWO" AND SHIFTING TO THE FIGHT P~OVIDES THE INVERSE
CPERATION.

ROTATING THE ACCUMULATOR LEFT

RLe 002

1 - 12

ROTATATING THE ACCUMULATOR LFFT \'71TH THE "RLC" INSTRUCTION MEANS
THE MSB OF THE ACCUMULATOR ~ILL BE BROUGHT AROUND TO THE LSB POSITION
AND ALL OTHER BITS ARE SHIFTED ONE POSITION TO THE LEFT. WHILE THIS

. INSTRUCTION DOES NOT SHIFT THROUGH THE CARRY BIT" THF CARRY BIT WILL
BE SET BY THE STATUS OF THE MSB OF THE ACCUMULATOR AT THE START OF
THE ROTATE OPERATION. (THIS FEATURE ALLO~S THE PROGRAMMER TO DETER­
MINE WHAT THE MSB WAS PRIOR TO THE SHIFTING OPERATION BY TESTING THE
"C" FLAG AFTER THE ROTATE INSTRUCTION HAS BEEN EXECUTED).

ROTATING THE ACCUMULATOR LEFT THROUGH THE CARRY BIT

RAL 022

THE uRAL" INSTRUCTION \lJlLL CAUSE THE MSB OF THE ACCUMULATOR TO (;0
INTO THE CARRY BIT. THE INITIAL VALUE OF THE CARRY BIT WILL BE SHIFT­
ED AROUND TO THE LSB OF THE ACCUMULATOR. ALL OTHER BITS ARE SHIFTED
ONE POSITION TO THE LEFT.

ROTATING THE ACCUMULATOR RIGHT

RRC 012

THE "RRC" INSTRUCTION IS SIMILAR TO THE "RLC" INSTRUCTION EXCFPT
THAT NOW THE LSB OF THE ACCUMULATOR IS PLACED IN THE MSB OF THE AC­
CUMULATOR AND ALL OTHER BITS ARE SHIFTED ONE POSITION TO THE RIGHT.
ALSO" THE CARRY BIT WILL BE SET TO THF INITIAL "ALUE OF THE LSB OF THE
ACCUMULATOR AT THE START OF THE OPERATION.

ROTATING THE ACCUMULATOR FIGHT THROUGH THE CARRY BIT

RAR (It 3 2

HERE" THE LSB OF THE ACCUMULATOR IS BROUGHT AROUND TO THE CARRY
BIT AND THE INITIAL VALUE OF THE CARRY BIT IS SHIFTED TO THE MSB OF
tHE ACCUMULATOR. ALL OTHER 8ITS APE SHIFTED A POSITION TO THE RIGHT.

IT SHOULD BY NOTED THAT THE "C" FLAG IS THE ONLY FLAG. THAT CAN SF
ALTERED BY A ROTATE INSTRUCTION. ALL OTHER FLAGS REMAIN UNCHANGED.

JUMP INSTRUCTIONS

THE INSTRUCTIONS DISCUSSED SO FAR HAVE ALL BEEN SORT OF "DIRECT
ACTION" INSTRUCTIONS. THE PROGRAMMER ARRANGES A SEQUENCE OF THESE
TYPES OF INSTRUCTIONS IN MEMORY AND WHEN THE PROGRAM IS STARTED THF
COMPUTER PROCEEDS TO EXECUTE THE INSTRUCTIONS IN THE ORDER IN WHICH
THEY ARE ENCOUNTERED. THE.COMPUTFR AUTOMATICALLY READS THE CONTENTS
OF A MEMORY LOCATION# EXECUTES THE INSTRUCTION IT FINDS THERE" AND
THEN AUTOMATICALLY INCREMENTS A SPECIAL ADDRESS REGISTFR CALLED A
"PROGRAM COUNTER" THAT WILL RESULT IN THE MACHINE READING THE INFOR­
MATION CONTAINED IN THE NEXT SEQUENTIAL MEMORY LOCATION. HO~EVER" IT
IS OFTEN DESIRABLE TO PERFORM A SERIES OF INSTRUCTIONS LOCATED IN ONF
SECTION OF MEMORY~ AND THEN SKIP OVER A GROUP OF MEMORY LOCATIONS AND
START EXECUTING INSTRUCTIONS IN ANOTHER SECTION OF MEMORY. THIS ACT­
ION CAN BE ACCOMPLISHED BY A GROUP OF INSTRUCTIONS THAT WILL CAUSF A
NEW ADDRESS VALUE TO BE PLACED IN THE "PROGRAM COUNTER." THIS WILL
CAUSE THE COMPUTER TO GO TO A NEW SECTION OF MEMORY AND TO CONTINUE
EXECUTING INSTRUCTIONS SEQUENTIALLY FROM THE NEW MEMORY LOCATION.

1 - 13

THE "JUMP" INSTRUCTIONS IN THIS COMPUTER ADD CONSIDERABLE POWER
TO THE MACHINE'S CAPABILITIES BECAUSE THERE ARE A SERIES OF "CONDI­
TIONAL" JUMP INSTRUCTIONS AVAILABLE. THAT IS, THE COMPUTER CAN BE
DIRECTED TO TEST THE STATUS OF A PARTICULAR FLAG (ltC," "Z," "5,,"
OR "P") AND I F THE STATUS 0 F THE FLAG I S THE DESI RED ONE, THEN A
"JUMP" WILL BE PERFORMED. IF IT IS NOT, THE MACHINE WILL CONTINUE
TO EXECUTE THE NEXT INSTRUCTION IN THE CURRENT SEQUENCE. THIS CAPA­
BILITY PROVIDES A MEANS FOR THE COMPUTER TO "MAKE DECISIONS" AND TO
MODIFY ITS OPERATION AS A FUNCTION OF THE STATUS OF THE VARIOUS
FLAGS AT THF. TIME THAT THE PROGRAM IS BEING EXECUTED.

IN A MANNER SIMILAR TO "IMMEDIATE" TYPES OF INSTRUCTIONS" THE
"JUMP" INSTRUCTIONS REQUI RE MORE THAN ONE WORD 0 F MEMORY. A JUMP
INSTRUCTION REQUIRES THREE WORDS TO BE PROPERLY DEFINED. (REMEMBER
THAT "IMMEDIATE" TYPE INSTRUCTIONS REQUIRED TWO WORDS). THE "JUMP"
INSTRUCTION ITSELF IS THE FIRST WORD. THE SECOND WORD MUST CONTAIN
THE "LOW ADDRESS" PORTION OF THE ADDRESS OF THE l,10RD IN MEMORY THAT
THE "PROGRAM COUNTER" I S TO BE SET FOR - I N OTHER WORDS, THE NEW LOC­
ATIoN FROM WHICH THE NEXT INSTRUCTION IS TO BE TAKEN. THE THIRD ~ORD
MUST CONTAIN THE "HI GH ADDRESS" (PAGE) 0 F THE MEMORY ADDRESS THAT THE
"PROGRAM COUNTER" WILL BE SET TO .. HENCE" THE "PAGE" OR HIGH ORDER POR­
TION 0 F THE ADDRESS THAT THE COMPUTER '-11 LL "JUMP TO" TO OBTAI NITS
NEXT INSTRUCTION.

THE UNCONDITIONAL JUMP INSTRUCTION

JMP 1 X 4

NOTE: THE MACHINE CODE 1 X 4 INDICATES THAT ANY CODE FOR THE
SECOND OCTAL DIGIT OF THE MACHINE CODE IS VALID. IT IS RECOMMENDED
AS A STANDARD PRACTICE THAT THE CODE 0 BE USED THUS THE TYPICAL
MACHINE CODE WOULD BE 1 0 4.

REMEMBER, THE JUMP INSTRUCTION MUST BE FOLLOVEO BY T~O MORE
WORDS WHICH CONTAIN THE LOW" AND THEN THE HIGH (PAGE) PORTION OF THE
ADDRESS THAT THE PROGRAM IS TO "JUMP" TO!

JUMP IF THE DESIGNATED FLAG IS TRUE (CONDITIONAL JUMP)

JTC
JTZ
JTS
JTP

4 0
5 (2)

6 0
7 0

AS WITH THE UNCONDITIONAL JUMP INSTRUCTION, THE CONDITIONAL JUMP
INSTRUCTIONS MUST BE FOLLOWED BY TWO WORDS OF INFORMATION - THE LOW
PORTION, THEN THE HIGH PORTION, OF THE ADDRESS THAT PROGRAM EXECUTION
I S TO CONTINUE FROM I F THE JUMP I S EXECUTED. THE "JUMP I F TRUE"
GROUP OF INSTRUCTIONS WILL ONLY JUMP TO THE DESIGNATED ADDRESS IF THE
CONDITION OF THE APPROPRIATE FLAG IS TRUE (LOGICAL "1"). THUS THE
"JTC" INSTRUCTION STATES THAT IF THE CARRY FLAG ("C") IS A LOGICAL "I"
(TRUE) THEN THE JUMP I S TO BE EXECUTED. I F IT I S A LOGICAL "A" (FALSE)
THEN PROGRAM EXECUTION IS TO CONTINUE WITH THE NEXT INSTRUCTION IN THE
CURRENT SEQUENCE OF INSTRUCTIONS. IN A SIMILAR MANNER THE "JTZ"
INSTRUCTION STATES THAT IF THE ZERO FLAG IS TRUE THEN THE JUMP IS TO
BE PERFORMED. OTHERWISE THE NEXT INSTRUCTION IN THE PRESENT SEQUENCE
IS EXECUTED. LIKEWISE FOR THE "JTS" AND "JTP" INSTRUCTIONS.

1 - 14

JUMP IF THE DESIGNATED FLAG IS FALSF (CONDITIONAL JL~P)

JFC
JFZ
JFS
JFP

100
1 1 0
120
1 3 0

AS WI TH ALL JUMP INSTRUCTIONS THESE INSTRUCTIONS MUST BF FOLLO\JED
BY THE LOW ADDRESS THEN HIGH ADDRESS OF THE MEMORY LOCATION THAT PRO­
GRAM EXECUTION IS TO CONTINUE FROM IF THE JUMP IS EXECUTED. THIS
GROUP OF INSTRUCTIO~lS IS THE OPPOSITf, OF THE JUMP IF THE FLAG IS TRlTE
GROVP. FOR INSTANCE THE ttJFC" INSTRUCTION COMMANDS THE COMPUTER TO
TEST THE STATUS OF THE CARRY ("C") FLAG. IF THE FLAG IS "FALSE,," I.F.
A LOGIC "0,,"THEN THE JUMP IS TO BE PERFORMED. IF IT IS "TRUE" THEN
PROGRAM EXECUTION IS TO CONTINUE WITH THE NEXT INSTRUCTION IN THE CUR­
RENT SEQUENCE OF INSTRUCTIONS. THE SAME PROCEDURE HOLDS FOR THE "JFZ,,"
"JFS,," AND ttJFP" INSTRUCTIONS.

SUBROUTINE CALLING INSTRUCTIONS

QUITE OFTEN WHEN A PROGRAMMER IS DEVELOPING COMPUTER PROGRAMS THE
PROGRAMMER WILL FIND THAT A PARTICULAR ALGORITHM (SEQEUNCE OF INSTFtJC­
TIONS FOR PERFORMING A FUNCTION) CAN BE USED MANY TIMES IN DIFFERENT
PARTS OF THE PROGRAM. RATHER THAN HAVE TO KEEP ENTERING THE SAME
SEQUENCE OF INSTRUCTIONS AT DIFFERENT LOCATIONS IN MEMORY - WHICH
~ULD NOT ONLY CONSUME THE TIME OF THE PROGFAMMER BUT WOULD ALSO RE­
SULT IN A LOT OF MEMORY BEING USED TO PERFORM ONE PARTICULAR FUNCTION~

" IT I S DES I RABLE TO BE ABLE TO PUT AN 0 FTF~T USED SEQUENCE 0 F COMMANDS
. IN ONE LOCATION IN MEMORY. THEN" WHENE\1ER THE PARTICULAR ALGORITHM
. IS REQUIRED BY ANOTHER PART 0 F THE PROGRAM" I T WOULD BE CONVENI ENT TO

"JUMP" TO THE SECTION THAT CONTAINED THE OFTEN USED ALGORITHM" PERFORM
11iE SEQUENCE OF INSTRUCTIONS" AND THEN RETURN BACK TO THE "MAIN" PART
OF THE PROGRAM. THIS, IS A STANDARD PRACTICE IN COMPUTER OPERATIONS.
TIiE FREQUENTLY USED ALGORITHM CAN BE DESIGNATED AS A "SUBROUTINE." A
SPECIAL SET OF INSTRUCTIONS ALLOWS THE PROGRAMMER TO "CALL" - IN OTHER
\.{)RDS SPECI FY A SPECIAL TYPE OF "JUMP TO,," A SUBROUTINE. A SECOND
TYPE OF INSTRUCTION IS USED TO TERMINATE A SEQUENCE OF INSTRUCTIONS
THAT IS TO BE CONSIDERED A SUBROUTINE. THIS SPECIAL TERMI~ATOR VILL
CAUSE THE PROGRAM OPERATION TO REVE~T BACK TO THE NEXT SEQUENTJAL LOC­
ATION IN MEMORY FOLLOWING THE INSTRUCTION THAT "CALLED" THE "SUB­
ROUTINE." A GREAT DEAL OF COMPUTER POWER IS PROVIDED BY THE INSTBUC­
TION SET IN THIS MACHINE FOR "CALLING" AND "RETURNING" FROM SUBROUTINES.
1HIS IS BECAUSE" IN A MANNER SIMILAR TO THE CONDITIONAL JUMP INSTRUC­
TIONS" THERE ARE A NUMBER OF "CONDITIONAL CALLING" COMMANDS AND A NUM­
BER OF "CONDITIONAL RETURN" COMMANDS. IN THE INSTRUCTION SET.

LIKE THE "JUMP" INSTRUCTIONS" THE "CALL" INSTRUCTIONS ALL REQUIRE
THREE WORDS IN ORDER TO BE FULLY SPECIFIED. THE FIRST WORD IS THE
"CALL" INSTRUCTION ITSELF. THE NEXT T'iO VORDS MUST CONTAIN THE LOttJ
AND HIGH PORTIONS OF THE STARTING ADDRESS OF THE SUBROUTINE THAT IS
BEING "CALLED."

WHEN A "CALL". INSTRUCTION I S ENCOUNTERED BY THE COMPUTER" THE
"CPU" WILL ACTUALLY SAVE THE CURRENT VALUE OF ITS PROGRAM COUNTER BY
STORING. IT IN A SPECIAL "PROGRAM COUNTER PUSH-DOWN STACK." THIS STACK

.IS CAPABLE OF HOLDING 7 ADDRESSES PLUS THE CURRENT OPERATING.ADDRESS.
WHAT THI S MEANS. I S THAT THE MACHINE. I S CAPABLE OF "NESTING" UP TO 7
SUBROUTINES AT ANY ONE TIME. THUS ONE CAN HAVE A SUBROUTINE" THAT IN
TURN CALLS ANOTHER SUBROUTINE - THAT IN TURN CALLS ANOTHER ONE" UP
TO 7 LEVELS AND THE MACHINE WILL BE ABLE TO "RETURN" TO THE INITIAL

1 - 15

LOCATION. THE PROGRAMMER MUST ENSURE THAT SUBROUTINES ARE NOT "NEST­
rolf AT MORE THAN 7 LEVELS OTHERWISE THE "PROGRAM COUNTER PUSH-DOW
STACK9

• WILL "PUSH" THE ORI GINAL CALLING ADDRESS(ES) COMPLETELY OUT
OF THE "PUSH-DOWN STACK" AND THE PROGRAM COULD NO LONGER AUTOMATICALLY
RETURN TO THE INITIAL "CALLING" ROUTINE.

THE "RETURN" INSTRUCTION 1r1HICH TERMINATES A SUBROUTINE ONLY RE­
QUIRES ONE WORD. WHEN THE CPu. ENCOUNTERS A "RETURN" INSTRUCTION IT
CAUSES THE "PROGRAM. COUNTER PUSH-DOWN STACK" TO "POP" UP ONE LEVEL.
THIS EFFECTIVELY CAUSES THE ADDRESS "SAVED" IN THE STACK BY THE CALLING
ROUTINE TO BE TAKEN AS THE NEW "PROGRAM COUNTER" AND HFNCE PROGRAM
EXECUTION RETURNS TO THE CALLING ROUTINE.

THE UNCONDITIONAL CALL INSTRUCTION

CAL X 6

THIS INSTFUCTION FOLLOWED BY TWO WORDS CONTAINING THF LO'" AND THFN
THE HIGH ORDER OF THE STARTING ADDRESS OF THE SUBROUTINE THAT IS TO BE
EXECUTED IS AN UNCONDITIONAL "CALL." THE SUBROUTINE WlLL BE EXECUTED
REGARDLESS OF THE STATUS OF THE "FLAGS." THE NEXT SEQUENTIAL f\DDRESS
AFTER THE "CAL" INSTRUCTION I S SAVED IN THE "PROGRAM COUNTER PUSH-DOWN
STACK ...

THE UNCONDITIONAL RETURN INSTRUCTION

RET o X 7

THIS INSTRUCTION DIRECTS THE CPU TO UNCONDITIONALLY "POP" THE
"PROGRAM COUNTER PUSH-DOWN STACK" UP ONE LEVEL. THUS PROGRAM EXECU­
TION WILL CONTINUE FROM THE ADDRESS SAVED BY THE SlffiROUTINE CALLING
INSTRUCTION.

CALL A SUBROUTINE IF THE DESIGNATED FLAG IS TRUE

CTC
CTZ
CTS
CTP

142
1 5 2
1 6 2
1 7 2

IN A MANNEH SIMILAR TO THE CONDITIONAL "JUMP IF TRUE" INSTRUCTIONS
THESE INSTRUCTIONS (\tTHICH MUST ALL BE FOLLO\tJED BY THE LOW AND HIGH
PORTIONS OF THE CALLED SUBROUTINE'S STARTING ADDRESS) WILL ONLY PER­
FORM THE "CALL". IF THE DESIGNATED FLAG IS IN THE TRUE (LOGICAL. "1")
STATE. IF THE DESIGNATED FLAG. IS FALSE THEN THE "CALL" INSTRUCTION 15
IGNORED AND PROGRAM EXECUTION CONTINUES VITH THE NEXT SEQUENTIAL IN­
STRUCTION.

RETURN FROM A SUBROUTINE IF THE DESIGNATED FLAG IS TRUE

RTC
RTZ
RTS
RTP

" La 3
o 5 3
o 6 3

" 7 3

THESE ONE l'ORD INSTRUCTIONS WILL CAUSE A SUBROUTINE TO BE TERM!­
NATED ONLY, IF THE DESIGNATED FLAG IS IN THE LOGICAL "1" (TRUE) STATE.

1 - 1 6

CALL A SUBROUTINE IF THE DESIGNATED FLAG IS FALSE

CFC
CFZ
CFS
CFP

102
1 1 2
122
1 32

THESE INSTRUCTIONS A~E THE OPPOSITE OF THE PREVIOUS GROUP OF
CALLING COMMANDS. THE SUBROUTINE IS CALLED ONLY. IF THE DESIGNATED
fLAG IS IN THE FALSE (LOGICAL 0) CONDITION. REMEMBER~ THESE INSTRUC­
TIONS MUST BE FOLLOWED BY T\70 WORDS WHICH CONT~IN THE LOt.' AND THEN
HIGH PART OF THE STARTING ADDRESS OF ·THE SUBROUTINE THAT, IS TO BE
EXECUTED IF THE DESIGNATED FLAG IS FALSE. IF THE FLAG IS TRUE~ THE
SUBROUTINE WILL NOT.BE CALLED AND PROGRAM OPERATION WILL CONTINUE
WITH THE NEXT INSTRUCTION IN THE CURRENT SEQUENCE.

RETURN FROM A SUBROUTINE I F THE DESIGNATED FLAG IS FALSE

RFC
RFZ
RFS
RFP

o " 3
013
e 2 3
033

THESE ONE WORD. INSTRUCTIONS WILL TERMINATE A SUBROUTINE (POP THE
"PROGRAM COUNTER STACK" UP ONE LEVEL) I F THE DESIGNATED FLAG~ I S FALSE.
OTHERWISE THE INSTRUCTION IS IGNORED AND PROGRAM OPERATION IS CONTIN­
UED WITH THE NEXT INSTRUCTION IN THE SUBROUTINE.

THE SPECIAL "RESTART-' SUBROUTINE CALL. INSTRUCTIONS

THERE IS A SPECIAL PURPOSE. INSTRUCTION AVAILABLE THAT EFFECTI"ELY
SERVES AS A ONE ~ORD SUBROUTINE CALL (REMEMBER THAT IT NORMALLY RE­
QUIRES THREE WORDS TO SPECI FY A SUBROUTINE CALL). THI S SPECIAL IN­
STRUCTION ALLOWS THE PROGRAMMER TO CALL A SUBROUTINE THAT STARTS AT
ANY ONE OF EIGHT SPECIALLY DESIGNATED MEMORY LOCATIONS. THE EIGHT
SPECIAL MEMORY. LOCATIONS ARE AT LOCATIONS: 000~ 010~ 020~ 030# 040#
050~ 060 AND 070 ON PAGE ZERO. THERE ARE EIGHT VARIATIONS OF THE FE­
START INSTRUCTION - ONE FOR EACH OF THE ABOVE ADPRESSES. THUS~ THE
ONE WORD INSTRUCTION CAN SERVE TO "CALL" A SUBROUTINE AT THE SPECI­
FIED STARTING LOCATION (INSTEAD OF HAyING TWO ADDITIONAL VOROS TO SPEC-

,IFY THE STARTING ADDRESS OF THE SUBROUTINE.) IT IS OFTEN CONVENIf,NT
TO.UTILIZE A RESTART COMMAND AS A QUICK "CALL" TO AN OfTEN USFD SUB­
ROUTINE~ OR AS AN EASY WAY TO CALL SHORT "STARTING" ROUTINES FOR LARGE
PROGRAMS - HENCE THE NAME FOR THE TYPE OF INSTRUCTION. THE EIG~T
RESTART INSTRUCTIONS - ALONG WITH THE STARTING ADDRESS OF THE SUBROUT-

... INE THAT EACH WILL AUTOMATICALLY "CALL". IS AS FOLLOWS:
-.

INSTRUCTION MACHINE SUBROUTINE
(MNDIONIC) CODE STARTING ADDRESS

RST " " " 5 000 9B0
RST 1 " 1 5 000 010
RST 2 " 2 5 000 020
RST 3 " 3 5 000 030
RST 4 " 4 5 000 0Q0
RST 5 0 5 5 000 050
RST 6 " 6 5 000 060
RST 7 0 7 5 0e0 070

1 - 17

INPUT INSTRUCTIONS

IN ORDER TO RECEIVE INFORMATION FROM AN EXTERNAL DEVICE THE COM-
PUTER MUST UTILIZE A GROUP OF SPFCIAL SIGNAL LINES. THE TYPICAL 8008
COMPUTER IS DESIGNED TO HANDLE UP TO EIGHT GROUPS (EACH GROUP HAVING
EIGHT SIGNAL LINES) OF INPUT SIGNALS. A GROUP OF SIGNALS IS ACCEPTED
AT THE COMPUTER BY WHAT IS REFERRED TO AS AN "INPUT PORT." THE
COMPUTER CONTROLS THE OPERATION OF THE "INPUT PORTS." UNDER PROGRAM
CONTROL" THE COMPUTER CAN BE DIRECTED TO OBTAIN THE INFORMATION THAT
IS ON THE GROUP OF LINES COMING IN TO ANY ttINPUT PORT" AND BRING IT
INTO THE ACCUMULATOR. VARIOUS TYPES OF FXTERNAL FQUIPMENT - SUCH
AS A KEYBOARD - CAN BE CONNECTED TO THE INPUT PORT(S). WHEN IT IS
DESIRED TO HAVE INFORMATION OBTAINED FROM A SPECI FIC ItINPUT PORT" AN
INPUT INSTRUCTION MUST BE USED. THE INPUT INSTRUCTION SIMPLY IDENTI-
FIES '''HICH INPUT PORT IS TO BE OPERATED AND WHEN EXECUTED CAUSES THE
SIGNAL LEVELS ON THE SELECTED INPUT PORT TO BE BROUGHT INTO THE "A"
CPU REGISTFR (ACCUMULATOR). UP TO 8 INPUT PORTS MAY BE PROVIDED ON A
TYPICAL 8008 SYSTF.M DESIGNATED PORTS 0 - 7. (NOTE THAT THE MACHINE CODE
FOR AN INPUT PORT INCRFASES BY A FACTOR OF TWO FOR EACH AVAILABLF. PORT).

INP eJ

INP 1

•
INP 6
INP 7

101
103

•
5
7

AN INPUT INSTRUCTION ONLY REQUIRES ONE MACHINF. CODE WORD. IT IS
ALSO IMPORTANT TO NOTE THAT AN INPUT INSTRUCTION - WHICH BRINGS NEW
DATA INTO THE ACCUMULATOR - DOES NOT AFFECT THE STATUS OF ANY OF THE
CPU FLAGS.

OUTPUT INSTRUCTIONS

IN ORDER TO OUTPUT INFORMATION TO AN EXTERNAL DEVICE THE COMPUTER
trrILIZES ANOTHER GROUP OF SIGNAL LINES WHICH ARE REFERRED TO AS "OUT-
PUT PORTS." A TYPICAL 8008 SYSTEM MAY BE EQUIPPED TO SERVICE UP TO
24 "OUTPUT PORTS." (EACH OUTPUT PORT ACTUALLY CONSIST OF EIGHT
SIGNAL LINES). AN OUTPUT INSTRUCTION CAUSFS THE CONTENTS OF THE CPU
"A" REGISTER (ACCUMULATOR) TO BE TRANSFERRED TO THE SIGNAL LINES OF THE
DESIGNATED OUTPUT PORT. THE OUTPUT PORTS ARE NORMALLY DESIGNATED PORTS
10 - 37. (NOTE AGAIN THAT THE MACHINE CODE INCREASES BY A FACTOR OF TWO
FOR FACH DES I GNATED PORT).

OUT 10 1 2 1
OUT 1 1 1 2 3

• •
OUT 21 4 1

• •
OUT 36 7 5
OUT 37 7 7

AN OUTPUT INSTRUCTION ONLY REQUIRES ONE MACHINE CODE WORD. IT
roES NOT AFFECT THE STATUS OF ANY OF THE CPU FLAGS. OUTPUT PORT(S)
ARE CONNECTED TO EXTERNAL DEVICES - SUCH AS AN OSCILLOSCOPE DISPLAY
SYSTEM" AND PROVIDE CAPABILITY FOR THE COMPUTER TO DISPLAY INFORMATION
OR OTHERWISE CONTROL THE OPERATION OF EXTERNAL DEVICES.

1 - 18

THE HALT INSTRUCTION

THERE I S ONE MORE INSTRUCTION FOR THE COMPUTER' S INSTRUCTION SET.
THIS INSTRUCTION DIRECTS THE CPU TO STOP ALL OPERATIONS AND TO REMAIN
IN THAT STATE UNTIL AN "INTERRUPT" SIGNAL IS RECEIVED. IN A TYPICAL
8008 SYSTEM AN "INTERRUPT" SI GNAL MAY BE GENERATED BY AN OPERATOR
PRESSING A SWITCH OR BY AN EXTERNAL PIECE OF F,QUIPMENT. THIS INSTRUCT-
ION IS NORMALLY USED WHEN THE PROGRAMMER DESIRES TO HAVE A PROGRAM BE
TERMINATED~ OR WHEN IT IS DESIRED TO HAVE THE MACHINE WAIT FOR AN
oPERATOR TO SET UP EXTERNAL CONDITIONS. THERE ARE THREE MACHINE
CODE INSTRUCTIONS THAT MAY BE USED FOR THE HALT COMMAND:

HLT
HLT
HLT

0'10
/{) 0 1
377

THF. HALT INSTRUCTION DOES NOT AFFECT THE STATUS OF THE CPU FLAGS.
IT IS A ONE WORD INSTRUCTION.

INFORMATION ON INSTRUCTION EXECUTION TIMES

WHEN PROGRAMMING FOR REAL-TIME APPLICATIONS IT IS IMPORTANT TO KNOW
mw MUCH TIME EACH TYPE OF INSTRUCTION REQUIRES TO BE EXECUTED. WITH
nus INFORMATION THE PROGRAMMER CAN DEVELOP "TIMING LOOPS" OR DETER-
MINE WITH SUBSTANTUAL ACCURACY HOW MUCH TIME IT TAKES TO PFFFORM A PART­
ICULAR SERI ES OF INSTRUCTIONS. THIS INFORMATION IS ESPECIALLY IMPORTANT
w-IEN DEALING WITH PROGRAMS THAT CONTROL THE OPERATION OF EXTERNAL DE­
VICES WHICH REQUIRE EVENTS TO OCCUR AT SPECI FIC TIMES.

THE FOLLOWING TABLE PROVI DES THE NOMINAL INSTRUCTION EXECUTION TIME
FOR EACH CATEGORY OF INSTRUCTION USED IN A 800B SYSTEM. THE PRECISE
TIME NEEDED FOR FACH INSTRUCTION DEPENDS ON HOW CLOSE THE MASTER CLOCK
HAS BEEN SET TO THE NOMINAL VALUE 0 F 501l' KHZ. THE TABLE SHOWS TH E NUM­
BER 0 F CYCLE STATES REQUIRED BY THE TYPE 0 F INSTRUCTION FOLLOWED BY THE
mMINAL TIME REQUIRED TO PERFORM THE ENTIRE INSTRUCTION. SINCE EACH
STATE EXECUTES IN 4 MICROSECONDS (U'SECS) THE TOTAL TIME REQUIRED TO
PERFORM THE INSTRUCTION AS SHOWN IN THE TABLE IS OBTAINED BY MULTIPLYING
TIiE NUMBER OF STATES BY 4 MICROSECONDS. BY KNOWING THE NUMBER OF STATES
REQUIRED FOR EACH INSTRUCTION THE PROGRAMMER CAN OFTEN REARRANGE AN
ALGORITHM OR SUBSTITUTE DIFFERENT TYPES OF INSTRUCTIONS TO PROVIDE PRO­
~AMS THAT HAVE SPECIFIC EVENTS OCCURRING AT PRECISELY TIMED INTERVALS.

INSTRUCTION EXF.cUTION TIME TABLF

TYPE OF INSTRUCTION II 0 F STATES TOTAL EXECUTION TIME

---~--~---~-~------------~---------------------------- ----------------

LOAD DATA FROM ONE CPU
REGI STER TO ANOTHER CPU
REG! STER

5 20 U' SECS

•••

LOAD DATA FROM A CPU
REGISTER TO A LOCATION
IN MEMORY

7

1 - 19

2ts U' S EG S

INSTRUCTION EXECUTION TIME TABLE

TYPE OF INSTRUCTION , OF STATES TOTAL EXECUTION TIME

----~-~-----~---~------------~-------------------~~------~-~~---~------

LOAD DATA FROM A
LOCATION IN MEMORY
TO A CPU REGISTER

8 32 U'SEes

•

LOAD ·'IMMEDIATE" DATA
INTO A CPU REGISTER

8 32 U'SEes

•

LOAD "IMMEDIATE" DATA
INTO A LOCATION IN
MEMORY

9 V'SECS

•

INCREMENT OR DECREMENT
A CPU REGISTER

5 2A U'SEes

•

ARITHMETIC INSTRUCTION
BETWEEN THE ACCUMULATOR
AND A CPU REGISTER

5 20 U'SECS

•

COMPARE BETWEEN THE
ACCUMULATOR AND A
CPU REGISTER

5 20 V'SECS

•

ARITHMETIC OR COMPARE
INSTRUCTION BETWEEN
THE ACCUMULATOR AND A
WORD IN MEMORY

8 32 U' SECS

•

"IMMEDIATE" TYPE
ARITHMETIC AND COMPARE
INSTRUCTIONS

8 32 U'SEes

•

BOOLEAN MATH OPERATIONS
BET~EEN ACCUMULATOR AND
CPU REBISTERS

5 20 U'SECS

•

1 - 20

INSTRUCTION EXECUTION TIME TABLE

TYPE OF INSTRUCTION , OF STATES TOTAL EXECUTION TIME

---------------~-------------------~--~----------------------------~---

BOOLEAN MATH OPERATIONS
BETWEEN ACCUMULATOR AND
A LOCATION IN MEMORY

8 32 U'SECS

•

BOOLEAN •• IMMEDIATE"
INSTRUCTIONS

8 32 U' SECS

•

ACCUMULATOR ROTATE
INSTRUCTIONS

5 20 U' SEes

•

UNCONDITIONAL JUMP OR
CALL INSTRUCTIONS

1 1 44 U'SECS

•

CONDITIONAL JUMP OR CALL
INSTRUCTIONS WHEN CONDI­
TION IS NOT SATISFIED

AND CONDITIONAL JUMP
OR CALL INSTRUCTIONS WHEN
CONDITION IS SATISFIED

9 36 U' SECS

1 1 44 U'SECS

•

UNCONDITIONAL RETURN
INSTRUCTION

5 20 U'SECS

•

CONDITIONAL RETURN
INSTRUCTION WHEN CONDI­
TION IS NOT SATISFIED

CONDITIONAL RETURN
INSTRUCTION WHEN CONDI­
TION IS SATISFIED

3

5

12 U'SECS

20 U'SECS

•
RESTART INSTRUCTION 5 20 U'SECS
•
OUTPUT INSTRUCTION 6 24 U'SEes · ' .. .
INPUT INSTRUCTION 8 32 U'SECS
•
HALT INSTRUCTION 4 16 U'SEes
•

1 - 21

INITIAL STEPS FOR DFVELOPING PROGRAMS

THE FIRST TASK THAT SHOULD BE DONE PRIOR TO STARTING TO ~RITE THE
INDIVIDUAL INSTRUCTIONS FOR A COMPUTER PROGRAM IS TO DECIDE EXACTLY
WHAT IT 15 THAT THE COMPUTER IS TO PERFORM .AND TO WRITE THE GOAL(S)
DOWN ON PAPERI WHILE TMI S STATFMFNT HI GMT SEEM UNNECESSARY TO SOME
BECAUSE IT IS SUCH AN OBVIOUS ONEI IT IS STATED 1 AND WILL BE RESTATED
BECAUSE THE MAJORITY OF PEOPLE LEARNING TO DEVELOP PROGRAMS WILL SOON
COME TO REALIZE THE SIGNI FICANCF OF THE AROVE STATEMENT WHEN THFY DI S­
COVER HALFWAY THROUGH THE WRITING OF THE MACHINE LANGUAGE INSTRUCTIONS
THAT THEY LEFT OUT A VI TAL STEP - AND OFTEN HAVE TO PRACT! CALLY START
WRI TING THE PROGRAM ALL OVER. THE PRACTI CE OF WRI TING DOWN JUST WHAT
TASKS A PRTICULAR PROGRAM IS TO PERFORM AND THE STEPS IN WHICH THEY ARE
TO BE DONE WILL SAVF A LOT OF \lORK IN THE LONG RUN. THE WRITTEN DES­
CRIPTION SHOULD BE AS COMPLETE AND DETAILED AS NECFSSARY FOR THE INDIVI­
DUAL TO ENSURE THAT EXACTLY EACH 5TFP OF THE PROGRAM WILL BE CLEAR TO
THE PERSON WHEN ACTUALLY WRITING THE PROGRAM IN MACHINE LANGUAGE. IT ,15
GENERALLY WISE FOR A NOVICE PROGRAMMFR TO TAKE PAINS TO SF QUITE DFTAIL­
ED IN THF INITIAL DESCRIPTION.

THE ACT OF ACTUALLY WRITING DOWN THE PROPOSED OPERATION OF THE PRO­
GRAM SERUFS SEVERAL VALUABLE PURPOSES. FIRST, IT FORCES ONE TO CA'RE­
F1JLLY REVI EW WHAT 1 S PLANNED AND OFTEN \11 'II DLY RFVEALS F'LA~lS IN ORI G­
INAL MENTAL IDEAS. SECONDLY 1 IT SERVES AS A GUIDE AND A CHECK LIST AS
THE MACHINE LANGUAGE PROGRAM IS DEUF.LOPFD. REMEMBER .. IT WILL OFTEN TAKE
A NUMBER OF HOURS TO COMPLETELY WRITE A FAIR SIZED PROGRAM - AND THESF.
HOURS MIGHT BE SPREAD O\lFR SEVERAL DAYS OR WFEKS. IN THI S PERIOD OF
TIME THE HUMAN MIND CAN EASILY FORGFT ORIGINAL INTFNTIONS AND PLANS IF
THE HUMAN "MEMORY" CANNOT RF. REFRESHED BY WRITTEN NOTES. A PROGRAM THAT
IS NOT KEPT CAREFULLY ORGANIZED AS IT IS DEVELOPED CAN BECOME A REAL
MESS I F' ONE KF.EPS FORGETTING KEY CONC EPT5 OR HAS TO CONSTA"ITLY ADD IN
"FORGOTTEN" ROUTINES. THE TIME WASTED BY SUCH SLOPPY PROCEDURES CAN BE
AVOIDED IF PROPER WORK HABITS ARE DEVELOPED RIGHT FROM THE BEGINNING.

ONCE ONE HAS WRITTEN A DFSCRIPTION OF THE GENERAL TASK(S) TO BE PER­
FORMED" AND HAS ASCERTAINED THAT THERE ARE NO FLAWS TO THE OVER-ALL CON­
CEPTS OR I DEAS I I TIS A GOOD 1 DFA TO DRAW UP A SET 0 F "FLOW CHARTS" FOR
THE PROPOSED PROGRAM. THE FLOW CHARTS ARE MORr. DETAILFD w~ITiF,N AND
SYMBOLIC DESCRIPTIVF DIAGRAMS OF THE "FLOW" OF' OPERATIONS THAT ARE TO
OCCUR AS THE PROGRAM IS OPERATE:D. THEY ALSO SHOW THE INTER-RFLATION­
SHIPS BETWEEN DIFFERENT PORTIONS OF THE PROGRAM.

OVER THE YEARS A VARI ETY OF SYMBOLS. AND ~ETHODS HAVE BEEN DEVELOPED
mR PRODUCING FLOW CHARTS. ALL OF THE VARIETIES HAVE THE SAME BASIC

PURPOSE: AND MOST OF THE Dl F'FERENCES ARE THE RESULT OF EDUCATIONALI ST
PUSHING THEIR OWN PREFERENCES. MOST PFOPLF CAN DO ADMIRARLY WELL USINA
JUST A FEW BASIC SYMBOLS TO DONOTE BASIC TYPES OF OPERATIONS IN A COM­
PUTER PROGRAM. THE SMALL GROUP TO BE PRESENTED HERE '-JILL ENABLE MOST
sees PROGRAMMERS TO DEVELOP FLOW CHARTS RAPIDLY I WITH LITTLE CONFUS­
IONI AND WITHOUT HAVING TO LEARN A HOST OF "SPECIAL" SYMBOLS.

A CIRCLE CAN BE USED AS A GENFRAL PURPOSE SYMBOL TO SPECIFY iHE
ENTRY OR EXIT POINT TO A ~OUTINE OR SUBROUTINE. INFORMATION MAY BE
PRINTED INSIDE THE CIRCLE AND MIGHT DENOTE WHERE THE ROUTINE IS COMING
FROM OR GOING TO (SUCH AS THE PAGE NUMBER AND LOCATION ON A PAGE FOR A
PROGRAM THAT REQUIRES SEVERAL SHEETS OF PAPER TO BE FLOW CHARTED) OR IT
CAN CONTAIN TRANSFEH INFORMATION OR DENOTE STARTING OR STOPPING POINTS
{"ITHIN A PROGRAM. SOME TYPICAL EXAMPLES OF THE CIRCLE SYMBOL ARE IL­
LUSTRATED ON THE NEXT PAGE.

2 - 1

8
~
~

~
~

I CLR THE ACC I

STORE THE
I N,COM I NG

MESSAGE

SET
1/0

FLAGS

2 - 2

A SQUARE OR RECTAN8EL CAN 8E USED TO DENOTE A GENERAL OR SPFC I FI C
OPERATION. THE TYPE OF OPERATION CAN BE DESCRIBED INSIDE THE BOXED
AREA SUCH AS IN THE EXAMPLES ON THE LOWER HALF OF THE PREVIOUS PAGE.

A DIAMOND FORM MAY BE USED TO SYMBOLIZE A 'DECISION OR BRANCHING
POINT IN A PROGRAM. THE DETERMINING FACTORCS) FOR THE DECISION OR
BRANCHING OPERATION MAY BE INDICATED INSIDE THE SYMBOL AND THE TWO SIDE
POINTS OF THE TRIANGLE USED TO ILLUSTRATE THE PATH TAKEN WHEN A DECI­
SION HAS BEEN MADE. THE DIAMOND SYMBOL IS ILLUSTRATED BELOV.

NO YES

NO YES

LINES WITH ARROWS MAY BE USED TO INTER-CONNECT THE THREE TYPES OF
SYMBOLS JUST PRESENTED. IN THIS WAY# THE SYMBOLS MAY BE CONNECTF.D TO
FORM READILY UNDERSTOOD "FLOW CHARTS" OF OPERATIONS THAT APE TO OCCUft
IN, A PROGRAM AND TO SHOW HOW VARIOUS OPERATIONS RELATE TO EACH OTHER.
FLO\l CHARTS ARE EXTREMELY VALUABLE REFERENCES WHEN DEVELOPING PROGRAM~
AS WELL AS WHEN WANTS TO UPDATE OR EXPAND A PROGRAM AND NEFDS TO QUICK­
LY REVIEW THE OPERATION OF A PARTICULAP PROGRAM.

BELOW IS AN EXAMPLE OF A FLOW CHART FOR A RELATIVELY SIMPLE PROGRAM
THAT IS TO ACCEPT CHARACTERS FROM AN ASCII TELETYPF MACHINF. AND SEND
OUT THE EQUI VELANT GHA~ACTE:R TO A BAUDOT TELETYPE' UNl T. IN THIS ILLUS­
TRATION IT IS ASSUMED THAT THE 1/0 INTERF'ACES TO THE TELETYPE MACHINF:S
ARF. "PARALLEL" INTfo~fACES (VERSUS BIT-SERIAL> SO THAT COMPLEX TIMING
OPERATIONS DO NOT HAVE TO BE DISCUSSED IN THE EXAMPLF. A WRITTEN DE­
SCRIPTION OF THE EXAMPLE PROGRAM COULD BE STATED AS FOLLOWS:

THE 8008 UNIT IS TO MONITOR BIT "B7" OF INPUT PORT 1211 .. WHICH IS THE
"CONTROL" PORT FOR AN INTERFACE TO AN ASCI I TELETYPE MACHINE. WHENEVER
BIT "B7" ON INPUT PO~T 01 GOES LOW (LOGIC 0) IT INDICATFS A NFW CHARAC­
TER IS WAITING IN PARALLEL FORMAT FROM THE TELETYPE AT INPUT PORT ee.
THE COMPUTER IS TO IMMEDIATELY'OBTAIN THE CHARACTER THAT IS WAITING AT
INPUT PORT 00 AND AS SOON AS IT HAS OBTAINED THE DATA IT IS TO SEND A
LOGIC I (HIGH) SIGNAL TO BIT "BS" OF OUTPUT PORT 11 TO SIGNAL THE ASCII
INTERFACE THAT THE CHARACTER HAS BEEN ACCEPTED BY THE COMPUTER. (THE
RECEIPT OF THIS SIGNAL BY THE ASCII INTERFACE WILL THEN CAUSE THE ASCII
INTERFACE TO RESTORE THE CONTROL 51 GNAL ON Bl T "B7" OF INPUT PORT 91 TO
A HIGH (LOGIC 1) CONDITION).

YHENEVER A CHARACTER HAS BEEN RECEIVED FROM THE ASCII TELETYPE ON
INPUT PORT 00" THE COMPUTER 1 S TO COMPARE THE CHARACTER JUST RECEIVED
AGAINST AN ASCII TO BAUDOT "LOOK-UP" TABLE WHICH IS STORED IN THE COM­
PUTER'S MEMORY UNTIL IT FINDS A MATCH. WHEN IT FINDS A MATCH IT WILL
THEN OBTAIN THE EQUIVFLANT BAUDOT CHARACTER FROM THE CONVERSION TABLE
AND SEND THE BAUDOT CODE FOR THE CHARACTER IN BIT POSITIONS "BS" THROUGH
"B0" OF OUTPUT PORT 10. BIT tlBS" WILL SERVE TO INDICATE TO THE BAUDOT

2 - 3

INTERFACE WHE1'HER THE CODE IN BITS '·84'· THR,OUQH "B"" I S TO BE PROCESSED
BY THE TELETYPE WHEN IT IS IN THE "LETTERS" OR uFI GURES" MODE. IT IS
ASSUMED THAT THE CHARACTER RATE (SUT NOT NECESSARILY THE 8AUD RATE) IS
THE SAME FOR BOTH MACHINES SO THAT THE EXAMPLE MAY 8E SIMPLIFIED BY
ELIMINATING THE ftEQUIREMDlT FOR CHARACTER BUFFERING OR STACKING·' IN THE
MEMORY OF THE COMPUTER. HOWFVER~ IN PRACTICAL APPLICATIONS SUCH CAPA­
BILITY MIGHT BE REQUIRED AND THE FEATURE COULD BE ADDED TO TH~ PROGRAM.
BUT ... FOR THIS CASE .. AS SOON AS THE BAUDOT CODE HAS BEEN TRANSMITTED (IN
PARALLEL FORMAT) TO THE BAUDOT INTERFACE .. THE CO'MPUTEA WILL SIMPLY 80
SACK TO WAITING FOR THE NEXT CHARACTER TO COME IN FROM THE ASCII MACH-

.INE_ THE WRITTEN DESCRIPTION PROVIDED HERE COULD BE REPRESENTED QUITE
CLEARLY BY THE FLOW CHART SHOWN BELOV.

NO

SEND A LOGIC 1 ON 80
OF OUTPUT PORT 11 TO

CLEAR THE ASCII
INTERFACE

GO TO LOOK-UP TABLE
ROUTINE AND FIND

THE EQUIUELANT BAUDOT
CHARACTER

SEND THE BAUDOT CODE
TO OUTPUT PORT 10 IN

BITS 85 THROUGH 80

2 - 4

YES

GET ASCII
CHARACTER

FROM INPUT
PORT 00

THE FLOW CHART OF' THF PROGRAM AS SHOWN ON TrlE PREVIOUS PAGE COULD
BE CONSIDERED AS AN "OUTLINE" OF THE P'ROGJ1AM. PORTIONS OF THAT FLOY
CHART COULD BE EXPANDED INTO MORE DETAILED FLOW CHARTS TO PRESENT A
DETAILED VIEW OF SPECIAL OPERATIONS. FOR INSTANCE THE RF.CTANGLF LABEL­
ED "GO TO LOOK-UP TABLE ROUTINE AND FIND THE EQUI VALENT BAUDOT CHARAC­
TER" REALLY REFE~S TO A PORTION OF T.tiF PROGRAM THAT CONSI STS OF A NU"1-
BER OF OPERATIONS. THFSE OPERATIONS COULD BE DESCRIBED IN A' SEPA~ATE
'FLOW CHART AS ILLUSTRATED BELOW.

INITIALIZE POINTERS TO
START OF LOOK-UP TABLF.

COMPARE THE CONTENTS 0 F TH E
Ct~RENT LOCATION IN THE LOOK -
UP TABLE AGAINST THE CHARACTFR

PRFSENTLY IN THE ACCUMULATOR

ADVANCF: THF
TABL.E PO INTER
BY TWO WORDS.

HAVE FUUND THE DESIRED
CHARACTER. ADVANCF THE

POINTFR TO THE NEXT WORD
IN THE TABLE AND FETCH
THE BAUDOT EQUIUFLANT.

THE READER CAN SEE THAT THE ABOVE FLO 111 CHART READILY ILLUSTRATES
THE OPERATION OF THE "TABLE LOOK-UP ROUTINE." WITH A LITTLE STUDY ONE
COULD DISCERN THAT THE LOOK-UP TABLF CONSIST OF AN AREA IN MEMORY THAT
HAS AN ASCII CHARACTER CODE IN ONE WORD" FOLLO'''ED IN THE NEXT WORD BY
THE SAME CHARACTER IN THE BAUDOT CODE. THIS SEQUENCE CONTINUES FOR ALL
THE POSSIBLE CHARACTERS AS SHOWN ON THF TOP OF THE NEXT PAGE. THE FLOW
CHART ILLUSTRATES HOW THE DATA IN THE LOOK-UP TABL.E IS SCANNED BY SKIP­
PING OVER FVERY OTHER MEMORY LOCATION (WHICH CONTAINS THE BAUDOT CODES)
UNTIL THE PROPER ASCII CHARACTEF IS LOCATED. WHEN THAT I~ LOCATED" THE
ROUTIN~ SIMPLY EXTRACTS THE PROPER BAUDOT CODE FROM THE NEXT MEMORy'LO­
CATION IN THE TABLE. THE FLOW CHART MAKES THE SEQUENCE FASIFR TO FOLLOW
AND UNDERSTAND THAN A PURELY VERBAL EXPLANATION OF THE ROUTINE.

2 - 5

ADDRESS MEMORY CONTENTS

PAGE: XX LOC: Z ASCII CODE FOR LETTER "A'·
PAGE: XX 1.0C: Z+1 BAUDOT CODE FOR LETTER "A"
PAGE: XX LOCI 1+2 ASCI.I CO DE Fa R 1. ETTER "B"

• • •
• • •
• • •
• • •

PAGE: XX LOC: Z+3 BAUDOT CODE FOR LETTER "S"
PAGE: XX LOC: Z+2CN-l) ASCII CODE FOR "N"TH CHARACTER
PAGE: XX LOC: Z+2(N-l)+1 BAUDOT CODE FOR "N"TH CHARACTER

ILLUSTRATION OF LOOK-UP TABLE ORGANIZATION FOR EXAMP1.E PROGRAM

1 TIS STRONGLY RECOMMENDED THAT BEGINNING PROGRAMMERS DEUELOP THE
HABIT OF FIRST WRITING DOWN THE FUNCTIONCS) OF THE DESIRED PROGRAM AND
THEN DRAWING UP F1.0W CHARTS AS DETAILED AS THE INDIVIDUAL FEELS 15 NEC­
~SARY TO CLEARLY SHOW THE INTFNDED OPERATIONS OF THE PROGRAM THAT IS TO
'BE DEVELOPED. A NOVICE PROGRAMMER WI1.L BE WISE TO PREPARF. QUITF DETAIL­
ED FLOW CHARTS. MORE EXPERI ENeED PROGRAMMERS MAY PREFER TO LEAUE OUT
DETAILS OF OPERATIONS THAT THEY THOROUGHLY UNDERSTAND. THE FLO'ol CHARTS
SHOULD SERVE, AS READY REFERENCES WHEN THE PROGRAMMER GOES ON TO ACTUAL­
LY DEVELOP THE STEP-BY-STEP MACHINE· LANGUAGE INSTRUCTION SEQUENCES FOR
THE COMPUTER.

FLOW CHARTS ARE ALSO AN EXCELLENT METHOD FOR COMMUNICATING PROGRAM­
MING CONCEPTS TO FELLOW COMPUTE'R PROGRAMMERS. 1 TIS THE COMMON LANG­
UAGE OF COMPUTER TECHNOLOGISTS. CREMEMBF.R - GFNFRAL FLOW CHARTS DO NOT
HAVE TO BE MACHINE SPECIFIC!) LEARNING HOW TO PREPARE AND READ FLOW
CHARTS IS AN IMPORTANT (YET EASY) SKILL FOR ALL COMPUTER PROGRAMMERS TO
ACQUIRE. IT CAN ALSO BE FUN AND A CREATIVE PROCESS AS ONE CAN VIEW THE
OVER-ALL OPERATION OF A PROGRAM UNDER DEVELOPMENT AND GAIN NEW INSIGHTS
INTO WHERE TO INTER-CONNECT ROUTINES" USE COMMON "LOOPS,," TO SAVE MEM­
ORY SPACE" OR OTHERWI SE DETECT WAYS TO ENHANCE THE PROGRAM' S CAPABI LI TV.

2 - 6

FUNDAMENTAL PROGRAMMING SKILL!

8EFOlItE ONE CAN EFFECTl VELY DEVELOP MACHINE LANGUAGE PROGRAMS FOft THE
8888 CPU ONE MOST BE THOJltOUGHLY FAMILIAR WITH THE INSTRUCTION SET FOR
THE MACHINE. IT 15 ASSUMED POR THE REMAINDER OF THIS MANUAL THAT THE
READER HAS STUDI ED THE DETAILED INP1lRMATION FOR THE INSTRUCTION SET OF
'!HE 8188 CPU WHICH VAS PROVIDED IN THE FIRST CHAPTER. THE PROGRAMM~
SHOULD BECOME INTIMATELY FAMILIAR VI TH THE MNEMONICS (PRONOUNCED uKNEE­
tIlNICS") FOR EACH TYPE OF INSTRUCTION. (MNEMONICS ARE EASILY REMEMBERED
SYMBOLIC REPRESENTATIONS OF MACHINE LANGUAGE INSTRUCTIONS. THEY ARE FAR
MSIEft TO WORK WITH THAN THE ACTUAL "NUM.ERIC CODES USED BY THE COMPUTER
WHEN THE PROGRAMMER IS DEVELOPING A PROGRAM. THE MNEMONICS USED TO RE­
PRESENT THE INSTRUCTIONS AVAILABLE IN AN 8"&8 SYSTEM WERE PRESENTED IN
THE PREVIOUSLY MENTIONED FIR!T CHAPTER or THIS 88"S PROGRAMMERS MANUAL.
WHILE THE P1'tOGRAMMER WILL DEVELOP PROGRAMS AND "THINK" IN TERMS OF THE
MNEMONICSI THE PROGRAMMER MUST EVENTUALLY CONVERT THE MNEMONICS TO THE
~CHINE CODES USED BY THE COMPUTER. THIS~ HOWEVE~I IS ALMOST PURELY A
"LOOK-UP" PJltOCEDUPtEI AND IN FACT ~ AS WILL BE SEEN SHORTLY 1 THl S TASK CAN
ITSELF BE PERFORMED BY THE COMPUTER THROUGH THE USE 0 F AN "ASSEMBLEft"
PftOGRAM.

MACHINE LANGUAGE PROGRAMMERS' SHOULD ALSO BE FAMILIAPt WITH MANIPU-
LATING NUMeERS IN BINAJitY AND OCTAL fORM. IT IS ASSUMED THAT READERS A~E
~MILIAR WITH REPRESENTING NUMBERS AS BINARY VALUESI HOWEVERI THERE MAY
BE A FEW READERS WHO ARE NOT USED TO THE CONVENTION 0 F REPRESENTING BIN­
ARY NUMBERS BY THEIR OCTAL EIVIVALENT. THE TECHNIeUE IS 8UITE SIMPLE AS
IT CONSIST MERELY OF GROUPING BINARY DIGITS INTO GROUPS OF THREE AND
REPRESENTING THEIR VALUE AS AN OCTAL NUMBER. THE OCTAL NUMBERING SYSTEM
~LY USES THE DIGITS " THROUGH 71 WHICH IS EXACTLY THE RANGE THAT A
GftOUP OF THREE BINARY DIGITS CAN REP1'tESENT. THE OCTAL NUMBERING SYSTEM
~KES IT A LOT EASIER TO MANIPULATE BINARY NUMBERS - FOR INSTANCE MOST
PEOPLE FIND IT CONSIDERABLY MORE CONVENIENT TO REMEMBER AS THREE DIGIT
NUMBER SUCH AS I". THAN THE BI NARY £lUI VALENT " I B " , I " ". AN
OCTAL NUMBER IS EASILY EXPANDED TO A BINARY NUMBER BY SIMPLY PLACING
THE OCTAL VALUE IN BINA~Y FORM USING THftEE BINARY DIGITS.

THE INFORMATION IN AN EIGHT BIT BINARY REGISTER CAN BE EASILY CON­
VEJltTED TO AN OCTAL NUMBER BY GftOUPING THE BITS INTO GROUPS OF THftEE
STAftTING W!TH THE LEAST SIGNIFICANT BITS. THE TWO MOST SIGNIFICANT BITS
IN THE REGI STER WHICH FORM THE LAST GROUP WILL ONLY BE ABLE TO REPRESENT
THE OCTAL NUMBEftS e TO 3. THE DIAGRAM BELOW ILLU!TftATES THE CONVENTION.

EIGHT CELL REGIST~
•

• •
• • • • • • • ••
• •

•••••• *.* •• ** ••• * •• ** ••••••• ** ••••• * •• ** •• * •••••••• **.*
• * * t • * t • * *
• 8 * e * 1 t 0 ."& • 0 t 1 * e * 8 *
• * • t * * t * ••
••••••••• *.*-_ •• * •• ** •••• ************ ••••• ******* •• *.**
• • • •
• ••••••• ••••••••••••••• ••••••••••••••• • •••••••

• • • • • •
f • •
I 1

CONVERTING AN 8 BIT REGISTER FROM BINARY TO OCTAL NUMBERS

3 -

NOTE IN THE DIAGRAM HOW AN IMAGINARY ADDITIONAL BINARY DIGIT WITH A
\l\LUE OF ZERO WAS ASSIGNED TO THE LE" OF TKE MOST SIGNIFICANT BIT SO
1HAT THE OCTAL CONVENTION FOft THE TVO MOST SIGNIFICANT BITS COULD BE
tM..1NTA'INED.

A TABLE ILLUSTRATING THE RELATIONSHIP BETWEEN THE'BINARY AND OCTAL
!YSTEMS IS PROVIDED FOR REFEJIItENCE BELOW.

BINARY PATTEftN REPRESENTATIVE OCTAL'

0 0 " " " I I I
e 1 " 2

" 1 1 3
1 8 ~ ~

1 " I 5
1 1 fa 6
1 1 I 7

A PERSON WHO DESIRES TO DEVELOP MACHINE LANGUAGE PROGRAMS FOft THE
8898 CPU SHOULD ALSO BECOME FAMILIAR WITH SOME STANDARD CONVENTIONS
mED WHDJ DEALING WITH "CLOSED" REGISTERS (GROUPS OF BINARY CELLS OF
FIXED LENGTH SUCH AS A MEMO"Y WORD OR CPU REGISTER). ONE VERY SIMPLE
POINT TO REMEMBER# AS A STARTER# IS THAT WHEN A GROUP OF CELLS IN A REG­
ISTER IS IN THE ALL ONES CONDITIONI

1 1 1 1 1 I I I

lIND THE COtJNT OF 1 IS ADDED TO THE REGISTEJIt# THE REGISTER GOES TO THE
Ul\LUE.

" I " e " " " it

OR# IF THE COUNT OFI 1 e (BINARY) VAS ADDED TO A REGISTER THAT CON-
TAINED ALL ONES# THE NEW VALUE IN THE REGISTER WOULD BE AS SHOWN.

1 1
+ 0"

o "

1 1 1

" " "
1 1 I

tJ 1 "

" " I

SIMILARLY# GOING THE OPPOSITE VAY# IF ONE SUBTRACTS A NUMBER SUCH AS
1 "" (BINARY) FROM A REGISTER THAT CONTAINS SOME LESSER VALUE# SUCH AS
" 1 9 (BINAftY) THE THE REGISTER WOULD CONTAIN THE RESULT SHOWN IN THE
FOLLOWING ILLUSTRATION.

" " " 8

I 1

" S "
e " "
1 1 I

81"

1 " "

I 1 "

IT SHOULD BE NOTED THAT I F ONE USES ALL THE BITS IN A FIXED LENGTH
REGISTER ONE CAN REPftESENT MATHEMATICAL VALUES OF AN ABSOLUTE MAGNITUDE
PROM ZERO TO THE IUANTITY TWO TO THE NTH POWER MINOS ONE FROM THE IUAN-
TITY (" TO (2'N - 1» WHERE "N I1 IS THE NUMBER OF BITS IN THE REGlSTEft.
HDVEVER# IF ALL THE BITS IN A REGISTER ARE USED TO REPRESENT THE MAGNI­
WDE OF A NUMBER" AND IT IS ALSO DESIRED TO PtEPIlESENT THE MAGNITUDE AS
BEING EITHER POSITIVE OR NEGATIVE IN SIGN# THEN SOME ADDITIONAL MEANS

3 - 2

MUST BE AVAILABLE TO RECORD THE ~IGN OF THE MAGNITUDE. GENERALLY# THIS
WOULD REQUIRE USING ANOTHER RF.GISTER OR MEMORY LOCATION SOLELY FO~ THE
PURPOSE OF KEEPING TRACK OF THE SIGN OF A NUMBER.

HOWEVER# IN MANY APPLICATIONS IT IS DF~IRABLE TO F5TA8LISH A CON-·
VENTION THAT WIL.L ALLOW ONE TO MANIPULA'TF POSITIVE AND NEGATI"E NUMBER~
WITHOUT ~AVING TO USE ADDITIONAL REGISTERCS) TO MAINTAIN THE,SIGN OF A
NUMBER OR OTHERWISE PLACE RESTRICTIONS ON OPERATIONS. ONE WAY THIS MAY
BE DONE IS TO SIMPLY ASSIGN THE MOST SIG~IFICANT BIT IN A REGISTER (OR
THE MOST SIGNFICANT BIT IN A GROUP OF' BITS) TO BE A "SI GN" INDICATOR.
THE REMAINING BITS REPRESENT THE MAGNITUDE OF THE NUMBER RFGARDLESS OF
WHETHER IT IS POSITIVE OR NFGATI\lE. 'NATURALLY, WHF.N THIS IS DONE, THFN
THE MAGNITUDE RANGE FOR A"I "N" CFLL RFGISTF.'R RF.r,O~F.S ~ TO (2'(N-l)-1)
RATHER THAN 0 TO (2,N) - 1. THF CONUFNTION NO~MALLY, U5F.D 15 THAT IF
THE MSB (MOST SIGNIFICANT BIT) IN THE REGISTER IS A ONE (1)# THEN THE
NUMBER REPRESENTED BY THE REMAINING Bl TS IS ttNF.GATI VE" IN 51 GN. I F THE
MSB I S ZERO (0) THEN THE REMAINING 81 TS SPECI FY THE MAGNI TUDE OF A POSI­
Tl\1E NUMBER. THIS CONVENTION ALLOWS COMPUTFR PROGRAMMERS TO MANIPULATE
MATHEMATICAL QUANTITI ES IN A FASHION THAT MAKES IT EASY FOR THE' COM­
PUTER TO KEEP TRACK OF THE SIGN OF A NUMBER. SOME EXAMPLES OF BINARY
NUMBERS IN AN EIGHT Bl T REGI STER SVCH AS THOSE USED IN AN 8008 SYSTEM
ARE SHOWN BELO\lI.

BINARY REPRESENTATION OCTAL DECIMAL

0 '" 0 ~ 0 0 0 " 1 Vl + B

1 ~ e 0 0 0 '" 2 1 ~ ts

0 1 1 7 7 +127

, 1 3 7 7 -1?7

'" 9 0 o 0 o 0 '" 0 1 +

0 0 0 0 0,0 2 0

WHILE THE SIGNED BIT CONVENTION ALLOWS THE SIGN OF A NUMRER TO SF,
STORED IN THE SAME REGISTER (OR WORD) AS THE MAGNITUDE~ SIMPLY USING
THF. "SIGNED BIT" CONVENTION ALONE CAN STILL BE A SOMEWHAT CLUMSY METHOD
TO USE IN A COMPUTER BECAUSE OF THE MET~OD IN WHICH A COMPUTER MATHE­
MATICALLY ADDS THE CONTENTS OF TWO BINARY REGISTERS IN THE ACCUMULATOR.
SUPPOSE FOR EXAMPLE THAT THE COMPUTFR WAS TO ADD TOGF.THER A POSITIUE AND
A NEGATIVE NUMBER THAT WERE STORFD IN REGISTERS IN THE SIGNED BIT FOR-
MAT JUST DESCRIBED.

PLUS

EQUAL

" " 1 0

1 "

001
001

010

000
000

000

(+ 8 DECIMAL)
(- B DECIMAL)

(TH I SIS NOT ""!)

THE RESULT OF THE OPERATION AS ILLUSTRATED WOULD NOT BE WHAT THE
PROGRAMMER INTENDED! IN 'ORDER FOR THE OPERATION TO BE PERFORMED COR­
RECTLY IT 15 NECESSARY TO ESTABLISH A METHOD OF PROCESSING THE NEGATIVE
NUMBER CALLED THE "TWO' S COMPLEMENT" CONVENTION. IN THE "TVa' S COMPLE­
MENT" CONVENTION A NEGATI VE NUMBER 15 REPRESENTED BY COMPLEMENTING WHAT

THE VALUE FOR A POSITIVE NUMBER WOULD BE (COMPLEMENTING IS THE PROCESS
OF REPLACING ALL BITS THAT ARE "0" WITH A "1" AND THOSF THAT ARE "I"
WITH A itA") AND THEN ADDING THE VALUE ONE (1) TO THE COMPLEMENTED VALUE.

3 - 3

AS AN EXAMPLE~ THE NUMBER MINUS EIGHT (- 8) DECIMAL WOULD BE DERIVED
FROM THE NUMBER PLUS EIGHT (+ 8) BY THE FOLLOWING OPERATIONS.

" 0

1 1

" 0

1 1

o 0

1 1 0
000

1 1 1

o 0 0 (ORIGINAL + 8)

1 1 1 (COMPLEMENTED)
" "1 (NOW ADD + I)

o "" (2'S COMPLEMENT FORM OF - 8)

SOME EXAMPLES OF NUMBERS EXPRESSED IN TWO'S COMPLEMENT NOTATION
WITH THE "SIGNED BIT'· CONVENTION RETA'INFD ARE SHOWN BELOW.

BINARY REPRESENTATION OCTAL DEC1MAL

0 0 o 0 0 o 0 0 1 " + B
"

1 1 1 " 0 0 3 7 0 8

0 1 1 1 1 7 7 + 127

1 " " 0 0 0 0 1 2 " -127

" 0 0 o 0 '" 0 0 0 1 +

1 3 7 7

o 0 0 o 0 " 0 0 o " (3 + 0

r 0 e o 0 0 o 0 2 0 0 -1 Z8

NOTE THAT WHEN USING THE TWO'S COMPLEMENT METHOD ONE MAY STILL RE­
TAIN THE CONVENTION OF HAVING THE KSB IN THE REGISTER ESTABLISH THE
"SIGN" NOTATION. I F THE MSB = 1 ~ AS IN THE ABOVE ILLUSTRATION~ THE NUM­
BER IS ASSUMED TO BE NEGATI VEe HOWEVER .. SINCE THE NUMBER 1 S IN THE
TWO'S COMPLEMENT FORM THE COMPUTER CAN READILY ADD A "POSITIVE" AND A
"NEGATI VE" NUMBER AND COME UP WITH A RESULT THAT 1 5 READILY INTERPRETED.
LOOKI

ADD " 0 1 1
001
III

" "0 (+ 8 DECIMAL)
" 0 0 (- 8 DECIMAL AS 2'5 COMPLEMENT)

---~-~-~-~-----------o 0 000 o 0 0 (CORRECT ANSWER OF ZERO!)

ANOTHER ESTABLISHED CONVENTION IN HANDLING NUMBERS WITH A COMPUTER
I S TO ASSUME THAT "0" I S A "POSI TIVEtf VALUE. BECAUSE OF THIS CONVEN­
TION THE MAGNITUDE OF THE LARGEST NEGATIVE NUMBER THAT CAN BE REPRESENT­
~~ IN A FIXED LENGTH REGISTER IS ONE MORE THAN THAT POSSIBLE FOR A POSI­
Tl VE NUMBER.

THE VARIOUS MEANS OF STORING AND MANIPULATING THE 51 GNS OF NUMBERS
AS JUST DISCUSSED HAVE A9VANTAGE5 AND·DRAWBACKS AND THE METHOD USED DE­
PENDS ON THE SPECIFIC APPLICATION., HOWEVER" FOR MOST USER'S THE TWO·S
COMPLEMtNT METHOD COUPLED WITH THE "SIGNED BIT" CONVENTION WIl.L BE THE
MOST CONVENIENT AND MOST OFTEN USED METHOD. THE PROSPECTIVE MACHINE
LANGUAGE PSOGRAMMER SHOULD MAKE SURE THAT THE CONVENTION IS WELL UNDER-
STOOD. .

ANOTHER AREA THAT THE MACH-IHE LANGUAGE PROGRAMMER MUST HA\1E A THOR-

3 - •

OUSH KNOWLEDGE OF IS THE CONVERSION OF NUMB~~ BETWEEN THE DECIMAL NUM­
BERING SYSTEM THAT MOST PFOPLE WORK WITH ON A DAILY BASIS AND THE BIN­
ARY AND OCTAL NUMBERING SYSTEM UTILIZED BY COMPUTER TECHNOLOGISTS. P~O­
GRAMMERS WORKING WITH THE 8118 CPU WILL GENERAl.LY ,.IND THE OCTAL NUMBER­
ING SYSTEM MOST CONVENI £NT BECAUSE- THE CONVERSION FROM OCTAL TO BINARY
IS SIMPLY A MATTER OF GROUPING BINARY BITS INTO GROUPS OF THREE AS DIS­
CUSSED AT THE STA"" 0,. ~HIS CHAPTER ON rnNDAMDITAL PftOGRAMMlliG SULLI.
IT IS EASIER TO REMEMBER OCTAL CODES THAN LONG STRINGS OF BINARY DIGITS
BUT ONE CAN READILY EXPAND THE OCTAL CODES INTO BINARY DIGIT STRINGS.
OF COURSE~ MOST PEOPLE ARE USED TO THINKING IN DECIMAL TE~MS~ WHICH THE
COMPUTER DOES NOT USE AT THE MACHINE LANGUAGE LEVFL~ AND SO IT IS NEC­
ESSARY TO BE ABLE TO CONVERT BACK AND FORTH BETWEEN THE VARIOUS NUMBER­
ING SY$TEMS AS PROGRAMS ARE DEVELOPED.

THE CONVERSION PROCESS THAT IS GENERALLY MORE TROUBLESOME FOR PEOPLE
TO LEARN (THAN THE OCTAL TO BINARY TRANSLATION) IS FROM DECIMAL TO RIN­
MY OR DECIMAL TO OCTAL (AND VICE-VERSA) I IT IS PROBABLY A BIT EASIER
FOR MOST PEOPLE TO LEARN TO CONVERT FROM DECIMAL TO OCTAL AND THEN USE
THE SIMPLE OCTAL TO BINARY EXPANSION TECHNIQUE~ THAN TO CONVE~T DIRECT­
LY FROM DECIMAL TO BINARY AND SO THE FASI ER METHOD WILL BE PRESENTED
HERE. SINCE IT IS ASSUMED THAT THE READER IS ALREADY FAMILIAR WITH GO­
ING FROM OCTAL TO BINARY (AND VICE-VERSA) ONLY THE CONVERSIONS BETWEEN
DECIMAL AND OCTAL (AND THE REVERSE) WILL BE PRESENTED IN THESE PAGES.

A DECIMAL NUMBER MAY BE RFADILY CONVERTED TO ITS OCTAL E."IVALENT
BY THE FOLLOWING METHOD:

DIVIDE THE DECIMAL NUMBER BY 8. RECORD THE REMAINDER (NOTE THAT IS
THE REM A I N D E ~ t!> AS THE LFAST SIGNIFICANT DIGIT OF THE OCTAL
NUMBER BEING DERIVED. ,TAKE THE QooTI £NT JUST OBTAINED AND USE I T AS THE
NEW DIVIDEND. DIVIDE THE NEW DIVIDEND BY 8. THE REMAINDER FROM THIS
OPERATION BECOMES THE NEXT SIGNIFICANT DIGIT OF THE OCTAL NUMBER. THE
QUOTIENT IS 'AGAIN USED AS THE NEW DIVIDEND. THE PROCESS IS CONTINUF.D
UNTIL THE QUOTIENT BECOMES 0. THE NUMBER OBTAINED FROM PLACING ALL THE
REMAINDERS (FROM EACH DI"ISION) IN INCREASING SIGNIFICANT ORDER (FIRST
REMAINDER AS THE LEAST SIGNIFICANT DIGIT~ LAS~ REMAINDER AS THE MOST
SIGNIFICANT DIGIT) IS THE OCTAL NUMBER E.VIVALENT OF THF O~IAINAL DECI­
MAL NUMBER. THE PROCESS IS ILLUSTRATED BELOW FOR CLARITY.

THE OCTAL El8IVALENT OF 1234 DECIMAL IS:

QUOTI ENT REMAINDER
ORIGINAL NUMBER 1234 - / 8 = 154 2

•
LAST QUOTIENT •

BECOMES NEW 01 VI DEND 154 / 8 = It) 2 •
• •

LAST QUOTI ENT • •
BECOMES NEW 01 VI DEND 1. / 8 = 2 3 • •

• • •
LAST QUOTIENT • • •

BECOMES N EV DI VI DEND 2 / 8 2 • • •
I·

THUS THE OCTAL D17IVALDJT OF 1234 IS: 232 2

THE ABOVE METHOD IS QUITE EASY AND STRAIGHT FORWARD. SINCE A MAJ-

3 - S

ORITY OF THE TIME THE USER WILL Bt INTERESTED IN CONVERSIONS OF DECIMAL
NUMBERS LESS THAN 255 (THE MAXIMUM DECIMAL NUMBER THAT CAN BE EXPRESSED
IN AN EIGHT BIT REGISTER) ONLY A FEW DIVISIONS ARE NECESSARY:

THE aC.TAL EQUIVALENT OF 255 DECIMAL IS:

QUOTI ENT
ORI GINAL NUMBER 255 I 8 = 31

LAST QUOTI ENT
BECOMES NEW DIVIDEND 31 I 8 = 3

LAST QUOTI ENT
BECOMES NEW DI VI DENT 3 I 8 •

THUS THE OCTAL. EQUIVALENT OF 255 IS:

REMAINDER
7

•
•

7 •
• •
• •

3 • •

3 7 7

FOR NUMBERS LESS THAN 63 DECIMAL (AND SUCH NUMBERS ARE USED FREQ­
UENTLY TO SET COUNTERS IN "LOOP" ROUTINES) THE ABOVE METHOD REOUCES TO
ONE DIVISION WITH THE REMAINDER BEING THE LSD AND THE QUOTIENT THE MSD.
THIS IS A FEAT MOST PROGRAMMERS HAVE LITTLE DIFFICULTY DOING IN THEIR
HEADI

THE OCTAL EQUI VALENT 0 F 63 DECIMAL IS:

QUOTIENT REMAINDER
ORIGINAL NUMBE~ 63 I 8 = 7 7

LAST QUOTl ENT
BECOHES NEW DIVIDEND 7 I 8

THUS THE OCTAL EQUIVALENT OF 63 IS:

•
•

7 •

7 7

GOING FROM OCTAL ·TO DECIMAL IS QUITE EASY TOO. THE PROCESS CONSIST
OF SIMPLY MULTIPLYING EACH OCTAL DIGIT BY THE NUMBER 8 RAISED TO ITS
POSITIONAL (WEIGHTED) POWER AND THEN. ADDING UP THE TOTAL OF EACH PRO­
DUCT FOR ALL THE OCTAL DIGITS:

\

·,l

2 3 2 2 OCTAL =
• • • •
• • • 2 X (8t8) == (2 X 1) == 2
• • •
• • 2 X (8, 1) = (2 X 8) • 1 6
• •
• 3 X (8'2) a (3 X 64) • 1 • 2

•
"2 X (8'3) • (2 X 512) = I 02.11

THUS THE DECIMAL EQUIVALENT OF 2322 OCTAL IS: 1 234

3 ~ 6 .

BESIDES THE BASIC MATHFMATICAL SKILLS INVOLVED WITH USING OCTAL
AND BINARY NUMBERS. THERE ARE SOME PRACTICAL "BOOK KEEPING" CONSIDER­
ATIONS THAT MACHINE LANGUAGE PROGRAMMERS MUST LEARN TO DEAL WITH AS THEY
DEVELOP PROGRAMS. THESE "BOOK KEEPING" MATTERS HAVE TO DO WI TM MEMORY
USAGE AND ALLOCATION.

AS THE USER WHO HAS RF,AD CHAPTER ONE IN THIS MAN'VAL NOW KNOWS,
EACH TYPE OF INSTRUCTION USED IN THE 8008 CPU REQUIRES ONE~ ·TVO OR
THREE WORDS OF MEMORY. AS A GENERAL RULE SIMPLF REGISTER TO REGISTER
OR REGISTER TO MEMORY COMMANDS REQUIRE BUT ONE MFMO"RY WORD. "IMMED­
IATE" TYPE COMMANDS REQUIRE TWO MEMORY LOCATIONS (THF. INSTRUCTION CODF:
FOLLOWED IMMEDIATELY BY THE "DATA" OR OPERAND). JUMP OR CALL INSTRUC­
TIONS REQUIRE THREE VOROS OF MEMORY STORAGF. ONE WORD FOR THE IN~TRUC­
TION CODE AND TWO MORE WORDS FOR THE ADDRESS OF THE LOCATION SPECIFIED
BY THE INSTRUCTION. THE FACT THAT 01 FFERENT TYPES OF INSTRUCTIONS RF­
QUIRE DIFFERENT AMOUNTS OF MEMORY IS IMPORTANT TO THE PROGRAMMER.

AS PROGRAMMERS WRITE A PROGRAM IT IS OFTEN NECESSARY FOR THEM TO
KEEP TABS ON HOW MANY WORDS OF MEMORY THE ACTUAL OPERATING PORTION OF
THE PROGRAM WI LL RFQUI RE (I N ADD! TI ON TO CONTflOLLI NG THE AREAS I N MEMORY
1HAT WILL BE USED FOR DATA STORAGE.) ONE REASON F'OR MAINTAINING A COUNT
OF THE NUMBER OF MEMORY WORDS A PROGRAM REQUIRES IS SIMPLY TO ENSURE
THAT THE PROGRAM WIl.L "FIT" INTO THE AVAILABLE MFMORY SPACE.

OFTEN A PROGRAM THAT IS A LITTLE TOO l.ONG TO RE STORED IN AN At1AIL­
ABLE AMOUNT OF MEMORY WHEN FIRST DEVELOPED CAN BE RE-WRITTFN AFTER SOME
1HOUGHT TO FIT IN THE AVAILABL.E SPACE. GENEftALLY., THE TRADE-OFF BETWEEN
~ITING "COMPACT" PROGRAMS VERSUS NOT-SO-COMPACT ROUTINES IS SIMPLY THE
PROGRAMMER'S DEVELOPMENT TIME. HASTILY CONSTRUCTED PROGRAMS TF-NO·TO RF­
QUIRE MORE MEMORY STORAGE AREA BECAUSE THE PROGRAMMER DOES NOT TAKE THF.
TIME TO CONSI.DER MEl-tORY CONSERVING INSTRUCTION COMBINATIONS.

HOVEVER 1 EVEN IF ONE IS NOT CONCERNED ABOUT CONSERVING THE AMOUNT OF
MEMORY USED BY A PARTICULAR PROGRAM~ ONE STILL OFTEN NEEDS TO KNOW HOW
MUCH SPACE A GROUP OF INSTRUCTIONS WILL CONSUME IN MEMORY SO THAT ONF
CAN TELL WHERE ANOTHER PROGRAM MIGHT BE PLACED WITHOUT INTERFERING WITH
THE FIRST PROGRAM.

FOR THESE REASONS, PROGRAMMERS OFTEN FIND IT ADVANTAGEOUS TO DEVFLOP
THE HABIT OF WRITING DOWN THE ,NUMBER OF MEMORY WORDS UTILIZED BY EACH
INSTRUCTION AS THEY WRITE THF MNEMONIC SEQUENCES FOR A ROUTINF.I AND'-O
ALSO MAINTAIN A COLUMN SHOVING THE TOTAL NBMBER OF WORDS REQUIRED FOR

'STORAGE OF THE ROUTINE. AN EXAMPLE OF A WORK SHEFT WITH THI5 PRACTICF.
BEING FOLLOWF.D 15 ILLUSTRATFD HERE:

MEMORY TOTAL
'-lORDS WORDS
THIS . THI S
INSTR. ROUTINE MNEMONICS COMMENTS

2 2 LAI 000 IPLACE 000 IN ACCUMULATOR
2 4 LHI 001 ISET REGI STF:R "H" TO 1
2 6 LLI 150 lAND REGIS "L" TO 150
1 7 ADM IADD THE CONTENTS OF MEMORY
t 8 INL ILOCATIONS 150 , 1 51 ON PAnE I
1 C) ADM IADDING SECOND NUMBER' TO FIR~T

1 10 RET lEND OF SUBROUTINE

IN THE' EXAMPLE THE TOTAL NUMBER OF WORDS USED COLUMN WAS KEPT USING

3 - 7

DECIMAL NUM8~S. MANY P~OGPAMMEftS P~EFF~ TO MAINTAIN THIS COLUMN USING
~TAL NUMBE~S BECAUSE OF THE Dl~ECT CO~~ELATION BETWFEN THE TOTAL NUM-
8E~ OF VORDI USED AND THF ACTUAL MFMO"Y AnD~ESSF.S USED 8Y THE ... 8.

THE EXAMPLE JUST P~ESENTED CAN BE USED TO INT~ODUCE ANOTHER CONSID­
~ATION DU~lNG P~OQftAM DEVELOPMENT - ~FMO"Y ALLOCATION AND THE DISTINC­
TION BETWErN Pft06ftAM ST'O"AGF. A~E.·AS IN MF.MO~Y AND AREAS USED TO HOLD
DATA THAT IS OPE"ATED ON BY THE P"OfiJilAM. NOTF: THAT THE SAMPLE StmftOUT­
INE IS DESIGNED TO HAVF THE COMPUTE" ADD THE CONTENTS OF MF.MO~ LOCA-
TIONS 15ft AND lSI ON PAGE 01. THUS~ THOSE TVO LOCATION~ MUST er ~E~£~V­
ED FO" DATA. ONE MUST ENSU~E' THAT THOSE SPECI FIC MEMOftY LOCATIONS A~E
NOT INADVE~TANTLY USED FO" ~OME OTHEJIt· PUftPOSF.. IN A TYPICAL PftOGiftAM ONI":
MAY HAV~ MANY LOCATIONS IN MEMOftY ASSISNFD FO~ HOLDING 0" MANIPULATING
DATA. IT IS IMPOPTANT THAT ONF MAINTAIN SOME: SO~T OF·SYSTE.M OF ~ECO~D­
ING VHE~E ONE PLANS TO STO~F BLOCKS OF DATA AND WHF~E VA"IOUS OPE~ATING

PG LOC RTN NOTES
¢I ¢~rp IJPD A/)0 $% S @IS¢eISI (N_-;~

¢I¢

tf;2.¢

¢3¢

¢iff>
¢S¢

¢6¢

¢7f;
I¢¢

II¢

/2. ¢
13(>

l'f¢

/5¢ FF Si"~I"It:-E. (IS¢J /51)

I' ¢
17¢

2.t/J¢

2. I¢

Z2¢

2.3~
2.4-¢

2.5¢

2.6¢

27¢

3¢¢ I
3/¢

32.¢ I
33¢

3"1-¢
3S¢ ,
36¢

w 3?(>

MEMOftY USAGE MAP

3 - 8

ROUTINES WILL ~F~IDE AS A P~OG~AM IS DFVELOPFD. THl~ CAN eE ~EADILY AC­
COMPLI SHED BY SETTING UP AN.D USING "MEMOJitY USAGF MAPS" (OFTFN COMMONLY
JltEFE'n~ED TO ALSO AS "CORE MAPS"). AN FXAMJlLF 0 F A MFMO~Y USAGE MAP SF-
INS STAJltTED roPt THE SUBJltOUTINE JUST DISCUSSFD IS SHOWN ON THE P~~UIOU~
PAGE.

THE SAME TYPE OF FO~M MAY ALSO BF USFD AS A p~nR~AMMING DEVFLOPMENT
SHEET AS SHOWN BELOW. WHEN THEY APtF USED FO" THIS PUJltPOSE.I THE ft~TN"
COLUMN MAY BE USED FO~ THE "LABELS" OPt NAMES OF ~OUTINES.l AND THE MNE­
MONICS AND COMMENT~ PLACED IN THE "NOTES" COLUMN. THF "FAD~ ~HOULD
NOTICE HOW SPACES A~E LEFT BETWEEN INST~UCTI0NS THAT OCCUpy MO~E THAN
ONE WOJltD IN MEMOJltY SO THAT THE ACTUAL ADD~F55E~ USED CAN BE DFTEPt~INF.D

AS THE ~OUTINE IS DEVELOPED.

PG LOC RTN NOTES
as, _;fJ APD, L.I'II ¢~¢ /¢¢¢ ~ACC

/

Z LHr ¢¢/ /#~J

3

4- LLZ 1.5¢ II- ~ IS¢

5 , ADM / M-?,4

7 /I\/L Ill,}". pNrR

¢I¢ AOIYI /A-tIYl=A'
II irE. (lEND $()SRTN

IZ,

/3

If-
/5

I'
17

¢z.¢
2,1

2.2.
2.3

Z4
2.5

2.'
2.7

¢3(J
31

32
33
.34
35

-
3'

'II' 37

3 - ')

•

MEMOftY USAGE MAPS AftE EXTPtEMELY VALUABLE FO" KEEPI NG LAPtGE PPtOGPtAMS
ORGANIZED AS THEY ARE DEVELOPED OR FOR DISPLAYING THE LOCATIONS OF A
VARIETY OF PJltOIPtAMS THAT ONE MIGHT DESIRE TO HAVE PtESIDING IN MEMO~V AT
THE SAME TIME. THE SAME FO~M IS ALSO USEFUL AS A PROGRAM DEVELOPM~NT
WOPtK SHEET. I TIS SUGGESTED THAT THE PERSON INTENDING TO DO EVEN A MOD­
ERATE AMOUNT OF MACHINE LANGUAGE PPtOG~AMMING MAKE UP A SUPPLY OF SUCH
FOlltMS (USING A DITTO OPt MIMEOGRAPH MACHINE·) TO HAVE ON HAND.

THERE ARE SOME IMPORTANT FACTORS ABOUT MACHINE LANGUAGE PJltOGJltAMMING
1HAT SHOULD BE POINTED OUT AS THEY HAVE CONSIDEPtABLE IMPACT ON THE TOTAL
EFFICIENCY AND SPEED AT WHICH ONE CAN D~IELOP SUCH PROGRAMS AND GET THEM
OPE"ATING COPtftECTLY. THE FACTO~5 RELATE TO ONE SIMPLE FACT -' PEOPLE
DEVELOPING MACHINE LANGUAGE PPtOG~AMS (ESPECIALLY BEGINNEJltS) A~E UEPtY
PRONE TO MAKING PROGRAMMING MISTAKES! ~EGARDLESS OF HOW CA~EFULLY ONE
PPtOCEEDS.. I T ALWAYS SEEMS THAT ANY FA I R 51 Z ED PROGRAM NEEDS TO BE ttJl!E­
VISED" BEFORE A PftOPEftLY OPE~ATING PPtOGRAM IS ACHIEVED. THE IMPACT THAT
CHANGES IN A PPtOGPtAM HAVE ON THE DEVELOPMENT (OPt REDEVELOPMENT) EFFORT
VAJI!Y ACCO~DING TO VHEPtE IN THE P~08PtAM SUCH CHANGF.S MUST BE MADE. THE
PtEASON FOPt THE SERIOUSNESS OF' THE PROBLEM I S BECAUSE PftOGPtAM CHANGES
GENERALLY RESULT IN THE ADDRESSES OF THE INSTRUCTIONS IN MEMOPtY BEING
ALTERED. REMEMBER .. IF AN INSTPtUCTION IS ADDED .. O~ DELETED .. THEN ALL THE
REMAINING INSTRUCTIONS IN THE ROUTINE BEING ALTERED MUST BE MOVED TO
DIFFERENT LOCATIONSI THIS CAN HAVE "MULTIPLYING" EFFECTS IF THE INST~­

UCTIONS THAT APtE MOVED A~E PtEFERRED TO BY OTHER ROUTINES (SUCH AS CALL
AND JUMP COMMANDS) BECAUSE THEN THE ADDPtESSES ~EFE~ftED TO BY THOSE TYPES
OF COMMANDS MUST BE ALTERED TOO! TO ILLUSTRATE THE SITUATION .. A CHANGE
~LL BE MADE TO THE SAMPLE PftOGftAM PRESENTED SEVE~AL PAGES AGO. SUPPOSE
IT VAS DECIDED THAT THE SUBROUTINE SHOULD PLACE THE RESULT OF THE ADDIT­
ION CALCULATION IN A WORD IN MEMORY BEFORE EXITING THE SUBROUTINE IN­
STEAD OF SIMPLY HAVING THE RESULT IN THE ACCUMULATO~. THE 0~I8INAL P~O­
GRAM .. FO~ EXAMPLE .. COULD HAVE BEEN RESIDING IN THE LOCATIONS SHOWN ON
THE P~OGRAM DEVELOPMENT WORK SHEET ON THE PftEUIOUS PAGE. CHANGING THE
PlItOGftAM WOULD lItESULT IN IT OCCUPYING THE FOl.LOWING MEMORY LOCATIONSt

MEMO lilY
PAG E LOC CONTENTS MNEMONICS COMMENTS

---01 000 006 LAI 000 IPLACE 000 IN ACCUMULATO~
81 001 000
01 002 056 LHI 001 ISET REG "H" TO 1
01 003 001
01 004 066 LLI 150 ISET REG "1.." TO 150
01 005 150
01 006 '207 ADM IADD CONTENTS OF MEMORY
01 007 060 INt. IL.OCATIONS 150 , 1 51
01 010 ,207 ADM IADD 2ND TO 1 ST
01 011 866 LLI 160 ISET 'REG "L'· TO 160

** 01 812 160

** 01 813 378 LMA ISAVE ANSWEJIt • 160

** 131 014 007 IIlET lEND 0 F SUBROUTINE

THE ** LOCATIONS DENOTE THE ADDITIONAL MEMO~Y LOCATIONS PtEQUlftED
BY THE MODIFIED SUBROUTINE. IF THE PROGRAMMER HAD ALREADY DEVELOPED A
ROUTINE THAT RESIDED IN LOCATIONS 912, 013 OR 8141 THE CHANGE WOULD RE­
QUIRE THAT IT BE MOVED'

IF ONE WAS USING A PftOGRAM DEVELOPMENT WOIllK SHEET .. ONE WOULD HAVE
HAD TO EPtASE THE OftlGINAL "RET" INSTRUCTION AT THE END OF THE ~OUTINE
AND THEN WRITTEN IN THE TWO NEW COMMANDS AND ADDED THE ":RET" INSTPtUCTION

3 - 19.

'f

AT THE END. THE EFFECTS WOULD NOT BE TOO DEVESTATING SINCE THE CHANG~
WAS INSERTED AT THE END Of THE SUBAOUTINE - BUT SUPPOSE A SIMILA~ CHANGE
\~S NECESSARY AT THE STA~T OF A SUBftOUTINE THAT HAD 50 INST~UCTIONS IN
IT? THE PftOGRAMME~ WOULD HAVE TO DO A LOT OF E~ASING'

THE EFFECTS OF CHANGES IN P~OGRAM SOUftCE LISTINGS WAS RECOGNIZED
EARLY AS A P~OBLEM IN DEVELOPING PftOGRAMS AND SO PEOPLE DEVELOPED PftO­
GRAMS CALLED "EDITORS" THAT WOULD ENABLE THE COMPUTEft TO ASS! 5T PEOPLE
IN THE TASK OF CREATING AND MANIPULATING SOURCE LISTINGS FOR PAOG~AMS.
AN "EDITO~" 15 A PROGRAM THAT WILL ALLOW A PE~SON TO USE THE COMPUTE~ AS
A "TEXT BUFFER. It SOURCE LI STINGS CAN BE ENTE~ED FPtOM A KEYBOA~D OPt
OTHER INPUT DEVICE AND STORED IN THE COMPUTEJIt' S MEMOPtY. I NFO"RMATI ON
THAT IS PLACED IN THE "TEXT BUFFEft" IS KEPT IN AN O'P.GANIZED FASHION .. US­
~LLY BY "LINES'· OF TEXT. AN EDITOR P~OGRAM GENE~ALLY HAS A VA'HETY OF
COMMANDS AVAILABLE TO THE OPERATOR TO ALLOW THE INFO~MATION IN THE TFXT
BUFFER TO BE MANIPULATED. FOft INSTANCE, LINES OF INFORMATION STO~ED IN
niE TEXT BUFFEft MAY BE ADDED" DELETED" "MOVED ABOUT OR INSEPtTED SF-FORE
OTHER LINES" AND SO FORTH. NATURALLY" THE INFORMATION IN THE BUFFEft CAN
BE DISPLAYED TO THE OPERATOPt ON AN OUTPUT DEVICE SUCH AS A CATHODE JltAY
TUBE OR ELECTRIC TYPING MACHINE. USING THIS TYPE OF PROG~AM" A PROGRAM~
MER CAN flAPIDLY CREATE A SOURCE LISTING AND MODIFY IT AS NEGES~ARY.
WHEN A PERMANENT COpy 1 S DESI~ED, THE CONTENTS OF THE "TEXT BUFFE"·' CAN
BE PUNCHED ONTO PAPER TAPE OR WRITTEN ONTO A MAGNETIC TAPE CASSETTE. IT
TURNS OUT THAT THE COpy PLACED ON PAPER TAPE OR A CASSETTE CAN OFTEN BE
FURTHER PROCESSED BY ANOTHE~ PROGRAM TO BE DISCUSSED SHORTLY WHICH IS
TERMED AN ASSEMBLER. HOWEVER" AN IMPORTANT ~EASON FOR MAKING A COPY OF
THE TEXT BUFFER ON PAPER TAPE OR MAGNETIC CASSETTE TAPE 15 BECAUSE IF IT
IS EVER NECESSARY TO MAKE CHANGES TO THE SOU~CE LISTING, THEN THE OLD
LISTING CAN BE QUICKLY RELOADED BACK INTO THE OOMPUTER" CHANGES RAPIDLY
IMPLEMENTED USING AN EDITOR PPOGRA"M" AND A NEW "CLEAN" Ll STING OBTAINED
IN A FRACTION OF THE TIME REQUIBED TO ERASE AND HE-WRITE A LA~GE NUMBER
OF LINES USING PENCIL AND PAPER I

RELATIVELY SMALL PROGRAMS CAN BE DEVELOPED USING MANUAL METHODS -
THAT IS BY WRITING THE SOURCE LISTINGS WITH PENCIL AND PAPFR - RUT ANY­
~E THAT 1 S PLANNING ON DOINGEXTENSI VE P~OGRAM DEVELOPMENT 'WO~K SHOULO
OBTAIN AN EDITOR PROGRAM IN OftOEft TO SUBSTANTUALLY INC~EASE THEIR OVER­
ALL PflOGRAM DEVELOPMENT EFFICIENCY. BESIDES" AN EDITOR PROGRAM CAN BE
PUT TO A LOT OF GOOD USED BESIDES MAKING UP SOURCE LISTINGS! SUCH AS
·ENABLING ONE TO EDIT CORRESPONDENCE OR P~EPA~E W~ITTEN DOCUMENTS THAT
ARE NICE AND NEAT IN LESS THAN HALF THE TIMF. ftEQUI~ED BY CONVENTIONAL
METHODS.

CHANGES IN SOURCE LISTINGS NATURALLY RESULT IN CHANGE~ TO THE MACH­
INE CODES (WHICH THE MNEMONICS SIMPLY "SYMBOLIZE"). E\1EN MORE IMPO~T­
ANTLY~ THE ADDRESSES ASSOCIATED WITH INSTRUCTIONS OFTEN MUST BE CHANGED
WE TO ADDITIONS OR DELETIONS OF "WOADS" OF' MACHINE CODE. FO" INSTANCE"
IN THE EXAMPLE flOUTINE BEING USED IN THIS SECTION~ MEMORY ADDRESS PAGE
01 LOCATION 011 O~IGINALLY CONTAINED THE CODE FOft A ""ET" (fltETU~N) IN-
STRUCTION WHICH IS 007. WHEN THE SUBROUTINE WAS CHANGED BY ADDING SEV­
ERAL MORE INSTRUCTIONS (SO THE ANSVEA WOULD BE STOftED IN A MFMO~Y LOCA­
TION) THE "RET" INSTRUCTION WAS SHI FTED DOWN TO THE ADDRESS PAGE 01
LOCATION 014. THE ADDftESS WHERE IT FORMERLY RESIDED WAS CHANGED TO HOLD
1HE CODE rOft THE FIRST PART OF THE "LLI 160" INSTRUCTION WHICH IS Af.6.
HAD CHANGES BEEN MADE EARLIER IN THE ROUTINE, THEN MANY MO~E MF.MO~Y
LOCATIONS WOULD NEED TO BE ASSIGNED DIFFERENT MACHINE CODES. HOVEVEft"
THE CHANGES CAUSED BY ADDING ON TO THE SAMPLE P"OGJltAM PftEVIOUSLY DISCUS­
SED ARE NOT QUITE AS FAft REACHING AS THOSE THAT WOULD OCCU~ IF CHANGES
WERE MADE TO A PROGRAM SUCH AS THE ONE PRESENTED ON THE FOLLOWING PAGE,
WHERE THE CHANGES ftESULT IN THE ADDRESSES OF SUB~OUTINES "EFE~RED TO BY
OTHE~ ~OUTINES BEING CHANGED - SO THAT IT IS THEN NECESSARY TO 60 BACK

3 - 11

AND MODIFY THE MACHINE CODES IN ALL OF THE ~OUTINE5 T~AT ~EFE" TO THE
5UH~OUTINE THAT 15 CHANGED!

MEMO~Y

P~GE LOC CONTENT-S LABELS/MNEMONICS COMMENTS

-~------~~-~--------~~----~~-~---~---~--------------------~~----------
tH" 000 026 OUE~., LeI 100 ILOAD ~EG 'C • WITH 1"'''
00 001 100
00 002 106 CAL NEWONE ICALL A NF.V SUB~OUTINE
00 003 013
00 004 "'fl0
00 005 106 CAL LOAD lAND THEN ANOTHE~
00- 006 023
00 007 M/ftA
00 019 104 JMP O"E~ IJUMP BACK , ~EPEAT SEQUENCE
00 01 1 wHI0
00 012 Ql00
00 013 056 NEWONE" LHI fJ~0 ILOAD ~EG 'H' WITH 0'5
00 014 000
00 01~ "'66 LLI 200 lAND • L • WITH 20ft
00 01~ 200
00 017 317 LBM I FETCH MEMOPtY CONTENTS TO • A •
90 020 010 INB II NC?ltEMENT THE UALtTE IN . ~ .
0et 021 371 LMB IPLACE • B' BACK IN,.O MEMO~Y
00 022 007 PtET lEX I T SUB~OUTINE
00 023 056 LOAD" LHI 003 ISET 'H • TO 0~3 (PARE)
00 024 003
00 025 361 LLB IPLACE ~EG 'B • INTO • L '
00 026 370 LMA IPLACE ACC INTO MF.MO~Y
00 027 821 DCC IDECPtEMENT VALUE IN PtEG • C '
00 03ft 013 ~FZ I~FTU~N IF • C • NOT a 000
00 ~31 000 HLT ISTOP IF 'C • = 00"

SUPPOSE IT WAS DECIDED TO INSERT A SINGLE VOPtD INSTPtUCTION PlIGHT
AFTE~ THE "LeI 100" COMMAND IN THE ABOVE PROGJltAM. THF NEW P~OGPtAM WOULD
APPEAR AS SHOWN BELOW.

MEMO~Y
PAGE LOC CON,.FNTS LABELS/MNEMONICS COMMENTS

~--~--~-~.---~--------~-~----~-~---------~----~-----------~-----------
00 0A0 026 OVER, LeI 100 ILOAD REG 'C • WITH lAA
00 001 IM0
00 002 250 XftA ICLEA~ THE ACCUMULATOA

*00 003 106 CAL NEWONE ICALL A NEW SUBPtOUTINE
.~0 004 **014
*00 005 000
*00 006 106 CAL LOAD lAND THEN ANOTHEft
*00 007 **02b
*00 01.0 00e

*~'" 01 1 104 JMP OUEPt IJUMP BACK , PtFPEAT ~EQUENCE
*'''~ "'12 000
*00 013 000
*00 014 056 NEWONE" LHI 000 ILOAD PtEG 'H' WITH 0'S
*00 015 000
*flU' 816 o 6f. 1.1.1 200 lAND 'I.' WITH 200
*00 017 20f)
*08 028 317 I.BM IFETCH MEMOPtY CONTENTS TO '8 •
*~9 021 010 INB I I NCftEMENT THE VALUE IN 'B'

3 - II

*00 022 371 LMA IPLACE '8 I BACK INTO MEMORY
*00 023 007 AET IEXIT SUBROUTINE
*00 024 056 LOAD;, LHI ft103 15ET 'H • TO 003 (PAGE)
*00 025 003
*00 02f, 361 LLB IPLACE REG • R ' INTO 'L •
*vH1 027 370 LMA IPLACE Ace INTO MFMO~Y
*00 030 021 DCC I D F.C fl EM EN T VALUF IN PtEG 'e I

*00 031 013 RFZ IRETURN IF I C I NOT = 000
*00 032 0~0 HLT 15TOP I F • C • = 000

NOTE IN THF. ILLUSTRATION HOW NOT ONLY THE AnD~ESSES OF ALL THE IN­
STRUCTIONS BEYOND LOCATION 002 (DENOTED BY THE *) CHANGE~ BUT EVFN MORE
IMPORTANT~ THAT PARTS OF THE INSTRUCTIONS THEMSELVES (THE ADDftESS POR­
TION OF THE "CAL" INSTRUCTIONS - DENOTED BY THE **> MUST NOW 8E ALTF.ftFD.
THE ESSENTIAL POINT BEING MADE HERE IS THAT IF THE STA~TING ADDRESS OF
A ROUTINE O~ SUBAOUTINE THAT IS REFERRED TO BY ANY OTHE~ PA~T OF THF
PROGRAM IS CHANGED~ THEN EACH AND EVEAY ~F.FF~ENCF. TO THAT ROUTINF. MUST
BE LOCATED AND THE ADDRESS POATION CORFECTED! THIS CAN RF AN EXTRF.MELY
FORMIDABLE~ TIME CONSUMING~ TEDIOUS~ AND DOWN RIGHT F~U~TRATING TASK IF
ALL THE REFEftENCES MUST BE FOUND AND CORRECTED BY MANUAL MEANS IN A
LARGE PROGRAM I

FORTUNATELY" THIS TYPE OF PROBLEM BECAME UI\lIDLY APPARENT TO FARLY
COMPUTER TECHNOLOGIST AND THEY SOON FOUND A METHOD TO FASF. THE TASK OF
MAKING SUCH CO~RECTIONS BY DEVELOPING A TYPE OF PROGRAM CALLED AN
"ASSEMBLE~" THAT WOULD UTILIZE THE COMPUTER TO DO SUCH TASKS. "ASSEM­
BLER" PROGRAMS APtE TYPES OF PROGRAMS THAT ARE ABLE TO PftOCF.S5 "SOURCE
L15TINGS" WRITTEN IN MNEMONIC (SYMBOLIC) FORM AND THEN TRANSLATE THEM
INTO THE "OBdECT" (ACTUAL MACHINE LANGUAGE) CODE THAT IS UTILIZED DIR­
ECTLY BY THE COMPUTER. AN ASSEMBLER ALSO KEEPS T~ACK OF ASSIGNING THE
PROPER ADDRESSES TO AEFERENCES TO ROUTINF~ (THROUGH A PftOCESS INIilAT­
ED BY ASSIGNING "LABELS" TO PtOUTINES IN THE SOURCE LISTING). ONE r.AN
NOW SEE THAT THE COMBINATION OF AN EDITOR AND AN ASSEMBLER PROGRAM CAN
G~EATL.Y EASE THE TASK OF DEVELOPING MACHINE LANGUAGE PROGRAMS O\lER THAT
OF THE PURELY MANUAL METHOD WHICH BECOMES UNWIELDY AND NEXT TO IMPOS­
SIBLE WHEN THE PAOGRAM SIZE BECOMES LAPtGE. ONF. REASON THE COMBINATION
IS SO VAL.UABLE IS BECAUSE IF A MISTAKE IN PAOGAAMMING IS MADE~ ONE CAN
USE THE RELATIVELY QUICK METHOD·OF UTILIZING AN EDITO~ P~OG~AM TO ~F.VISE

niE SOURCE LI STING~ AND THEN USE THE ASSEMBLE~ P"OC:;~AM TO P~OCES5 THE
CORRECTED SYMBOLIC LISTING AND PRODUCE A NEW VERSION OF THE MACHINE CODF.
A~SlGNED TO THE APPftOPPtIATE ADDRESSES.

FO~ QUITE SMALL PftOGRAMS - SAY LESS THAN 1~0 INSTRUCTIONS# THE USE
OF EDITOR AND ASSEMBLER PROGRAMS ARE NOT MANDATORY. IN FACT" EVEN I fi
ONE USES THESE AIDS FOR SMALL PROGRAMS" ONE SHOULD KNOW HOW TO CONVERT
MNEMONIC LISTINGS TO OBJECT (MACHINE CODE) AS IT WILL OCCASIONALLY SF.
BENEFICIAL TO BE ABLE TO MAKE MINOA PROGRAM CHANGES ("PATCHES") WITHOUT
HAVING TO GO THROUGH THE PROCESS OF USING AN EDITO~ AND ASSEMBLE~. THIS
IS PARTICULARLY TFtUE WHEN ONE I S "DEBUGGING" LARGE PftOGRAMS AND WANTS
TO ASCERTAIN WHETHER A MINOR CORRECTION WILL OPFRATE AS PLANNED. THE
P~OCESS OF CONVERTING FftOM A MNEMONIC LISTING TO ACTUAL MACHINE CODE IS
NOT DIFFICULT IN CONCEPT. MANY ftEADERS WILL HAVE DISCE~NED THE PftOCF~S
~OM THE EXAMPLES ALREADY PROVIDED. HOWE1'FJlt. FOR ANY WHO ARE IN DOUBT

THE PROCESS WILL BE REVIEWED FO~ THE SAKE OF CLAftlTY AT THIS TIME.

SUPPOSE A PERSON DESIRED TO PftODUCE A SMALL. PROGRAM THAT WOULD SET
THE 'CONTFNTS OF ALL THE WOftDS IN PAGE 01 OF MEMORY TO 00~ (OCTAL). THF:
PROGRAMMER WOULD FIRST DEVELOP THE ALGOPtITHM AND WRITE IT DOWN AS A MNE­
MONIC <SOURCE) LISTING. SUCH AN ALGORITHM MIGHT BE AS FOLLOWS.

3 -13

MNEMONIC

LHI 001
1.1.1 000

AGAIN~ LMI 000

IN!.

JFZ AGAIN

HLT

COMMENTS

'/SET TH~ HIGH ADDRESS RFGISTER ~O PAGE 1
15FT THE LOW ADDRESS REGISTER TO THE FIRST
ILOCATION ON THE PAGE ASSIC1NED BY REG. "Hit
ILOAD THE CONTENTS OF THE MEMORY LOCATION
I SPECI FI ED BY REG! STERS UHet & "L'" TO 000
IADVANCE REGI STER ttL" TO THE NEXT MEMORY
ILOCATION (BUT DO NOT CHANGE THE PAGE)
II F THE "ALUE 0 F REG! STFR "L" I S ~OT "''''0
IAFTER IT HAS BEEN INCREMENTED THEN JUMP
IBACK TO THE PART' OF THE P~OGRAM DENOTED RY
ITHE LABEL "AGAI Nit AND REPFAT THE PROCESS
IIF THE VALUE OF REGISTER "Lit IS TRULY 00'"
ITHEN HAVE THE PROGRAM STOP

TO CONVE~T THE SOURCE LISTING TO MACHINE (OBJECT) CODE THE P~Or,RAM­
MER MUST FI~ST DECIDE WHERE THE PROGRAM IS TO RESIDE IN MEMO~Y. IN THIS
PARTICULAR CASE IT WOULD CERTAINLY NOT BE WISE TO PLACE THE PRonRAM ANY-
'r.HERE ON PAGE 01 AS THE PROGRAM WOULD SOON "SELF DESTRUCT'" HOWFUER,
THE PROGRAM COULD SAFELY HE PLACED ANYWHERE ELSE AND FOR THE SAKE OF THE
DEMONSTRATION LET US ASSUME THAT IT IS TO RESIDE ON PAGE 02 STARTING AT
LOCATION 100. TO CONVEAT THE SOURCE LISTING TO MACHINE CODE THE PRO­
GRAMMER WOULD SIMPLY MAKE A LIST OF THE ADDRESSES TO BE OCCUPIED BY THE
PROG~AM AND THEN SIMPLY LOOK UP THE MACHINE CODE CORRESPONDING TO THE
MNEMONI C FOR EACH 1 NSTRUCTION AND PLACE THI S NUMBER NEXT TO THE ADD~ESS
IN WHICH IT WILL RESIDE. THE MACHINE CODE FOR EACH MNEMONIC USED BY THE
8'''J8 CPU' IS PROVI DED IN THE FIRST CHAPTER AS THE RFADER "ILL RECALL.
SINCE SOME INSTRUCTIONS ARE uLOCATION DEPENDENT" IN THAT THF.Y REQUIRE
THE ADDRESS OF REFERENCED ROUTINES, IT IS OFTEN NECESSARY TO ASSIGN THF
MACHINE CODE IN TVO PROCESSES. THE FIRST PROCESS CONSIST OF ASSIGNING
'niE MACHINE CODES TO SPECI FIC MEMORY ADDRESSES WHERE-EVF.~ PO~SI~LE.

WHEN THE MACHINE CODE REQUIRES AN ADDRESS THAT HAS NOT YET BEEN DETER­
MINED, THE MEMORY LOCATION 15 LEFT BLANK. THE SECOND PROCESS CONSIST OF
GOING BACK AND FILLING IN ANY BLANKS ONCE THE ADDRESSES OF REFERENCED
ROUTINES HAVE BEEN DETERMINED. IN THE EXAMPLE BEING ILLPSTRATED, ONLY
ONE PROCESS IS REQUIRED BECAUSE THE ADDRESS SPECIFIED BY THE LABEL
"AGAIN" 1 S DEFINED BEFORE THE LABEL (ADDRESS) IS REFERENCED BY THE "JFZ"
INSTRUCTION. THE SAMPLE PROGRAM CONVERTED TO MACHINE LANGUAGE WOULD
APPEAR AS FOLLOWS.

OPtl G I NAL ' MEMORY MEMORY
MNEMONI C ADDRESS CONTENTS COMMENTS -_ ... _----_ ... -~ .. -- .. --- -- .. _------- _ ... --_ .. _-------

LHI 001 02 100 056 IMACHINE CODE FOR "LHIu
02 101 001 I" IMMEDIATE" PART OF "LHI"

1.1.1 000 02 102 066 IMACHINF CODE FOR uLLI"
02 103 000 I" I MMEDI ATE" PART OF "LLI"

AGAIN, LMI 00'" 02 104 076 IMACHI NE CODF. FOR "LMI"
/NOTE THAT THE LABEL "AGA I Net
INOW DEFINES AN ADDRESS OF
ILOCATION 104 ON PAGE 02

02 105 000 I"IMMEDIATE" PART 0 F "LMI"
INL 02 106 060 IINCREMENT LOW ADDRESS
c.J FZ AGAIN 02 107 1 10 IMACHINE CODE FOR "JFZ"

02 1 10 184 ILOW ADD~ES5 PO~TlON OF THE
ICONDITIONAL JUMP INSTRUCTION
IDEFINED BY LABEL "AGAIN"

3 - 1.

02 111

HLT 02 112

002

377

IPAGE ADD~ESS PORTION OF THE
ICONDITIONAL JUMP INSTRUCTION
IDEF"INED BY LABEL "AGAIN"
IALTERNATELY 1 THE CODE 000 OR
1001 COULD HAVE B~EN USED HERE
IFOR THE "STOP" INSTRUCTION

ONCE THE PROGRAM HAS BEEN PUT IN MACHINE LANGUAGE FORM THE ACTUAL
MACHINE CODE MAY BE PLAGED IN THE ASSIGNED LOCATIONS IN MEMORY AND THE
PROGRAMMER MAY PROCEED TO VERI FY THE ALGORI THM' S "ALI Dl TY. FO~ SMALL
P~OGRAMS SUCH AS THE EXAMPLE JUST ILLUSTRATED THE MACHINE CODE CAN SIM­
PLY "BE LOADED INTO THE CORRECT MEMORY LOCATION! USING MANUAL METHODS
TYPICALLY PROVIDED ON 8188 SYSTEMS. SUCH SMALL PROGftAMS CAN THEN BE
FA5ILY CHECKED OUT BY "STEPPING" TKftOUGH THE PftOGftAM.

IF THE PAOGRAM IS RELATIVELY LA~GE THEN A SPECIAL LOADER PROGRAM
WHICH IS TYPICALLY AVAILABLE WITH AN ASSEMBLER PROGRAM WOULD BE USED TO
LOAD IN THE MACHINE CODE.

CHECKING OUT AND "DEBUGGING" LARGE PROGMAMS CAN SOMETIMES BE DIFFI­
CULT IF A FEW SIMPLE ~ULES ARE NOT FOLLOWED. A GOOD RULE OF THUMB IS
TO FIRST TEST OUT EACH SUBROUTINE INDEPENDENTLY. ONE CAN CHOOSE TO
"STEP" THROUGH A SUBROUTINE, OR ELSE TO PLACE "HALT" INSTRUCTIONS AT
THE END OF EACH SUBROUTINE AND VERI FY THAT DATA WAS MAN! PULATED PROPER­
LY BY THAT SUBROUTINE BEFORE GOING ON TO THE NEXT SECTION. THE USE OF
STRATEGICALLY LOCATED "HALT" INSTRUCTIONS IN A PROGRAM INITALLY BFING
TRIED OUT IS AN IMPORTANT METHOD FOR THE USER TO REMEMBER. WHEN A HALT
IS ENCOUNT~ED THE USER CAN CHECK THE CONTENTS OF MEMORY LOCATIONS AND
EXAMINE THE CONTENTS OF CPU REGISTERS TO DETEftMINE IF THEY CONTAIN THE
PROPER VALUES AT THAT POINT IN THE PROGRAM (USING THE MANUAL OPERATOR
CONTROLS AND INDICATOR LAMPS TYPICALLY PROVIDED ON 8008 DEVELOPMENT OR
GENERAL PURPOSE SYSTEMS). IF ALL IS WELL AT THE HALT CHECK POINT THEN
niE PROGRAMMER CAN REPLACE THE HALT INSTRUCTION WITH THE ACTUAL INSTRUC­
TION FOR THAT POINT AND CONTINUE CHECKING THF OPEftATION OF THE PROGRAM
AFTER MAKING CERTAIN THAT ANY REGISTERS THAT YERE ALTERED BY THE EXAMI­
NATION PROCEDURE (TYPICALLY tlH" AND "L") HAVE BEEN RESET TO THE DESIRED
~LUE IF THEY WILL EFFECT OPERATION OF THE PROGRAM AS IT CONTINUES!

IT IS OFTEN HELPFUL TO USE A UTI.LITY PftOGRAM KNOtlt1N AS A "MEMORY
DUMP" PROGRAM TO CHECK THE CONTENTS OF MEMORY LOCATIONS WHEN CREATING
A NEW PROGRAM. THE MEMORY DUMP PROGRAM IS A SMALL UTILITY PROGRAM THAT
WI LL ALLOW THE CONTENTS 0 F ARFAS 0 F MEMORY TO 8E DI SPLAYED ON AN OUTPUT
DEVICE. NATURALLY, THE MEMORY DUMP PROGRAM MUST BE PLACED IN AN AREA
OF MEMORY OUTSIDE THAT BEING USED BY THE P~OG~AM BEING DEVELOPED. BY
USING THI S TYPE OF PROGRAM THE OPERATOR CAN EASILY VERI FY THE CONTENTS
OF MEMORY LOCATIONS - SAY BEFORE AND AFTER A SPECIFIC OPERATION OCCURRED
to SEE IF THEIR CONTENTS ARE AS EXPECTED. A MEMORY DUMP PROGRAM IS ALSO
A VALUABLE AID IN DETERMINING THAT A PROGRAM HAS BEEN P~OPFRLY LOADED OR
!.HAT A PO~TION OF A PROGRAM IS STILL PRESENT, PERHAPS AFTE~ A PROGRAM
UNDER TEST HAS GONE ERRANT!

ONE 'WILL FIND THAT HAVING FLOW CHARTS AND MEMORY MAPS AT HAND DUFHN£1
1HE "DEBUGGING" PROCESS 1 S ALSO VERY HELPFUL AS A REFRESHER ON WHF:RF
ROUTINES ARE SUPPOSED TO BE IN MEMORY AND WHAT THF. ROUTINES ARE SUPPOSF.D
TO BE DOING.

JF MINOR CORRECTIONS ARE NECESSARY OR DESIRED, THEN ONE CAN OFTEN
MAKE PROGRAM CORRECTIONS - OR "PATCHES" AS THEY ARE COMMONLY REFERRED TO
BY SOFTWARE PEOPLEI TO SEE IF THE CORftECTIONS BELIEVED NECESSARY WILL
WRK AS PLANNED. ' AN FASY WAY TO MAKE A "PATCH'· TO A PFtOGRAM I S TO RF.-

3 - 1 i

PLACE A "CALL" OR "JUMP" INSTRUCTION WITH A "CALL" TO A NEW SUBROUTINE
THAT CONTAINS THE NECESSARY CORRECTIONS (PLUS THE Oftl GINAL "CALL'" OPt
"JUMP" INSTRUCTION I F NECESSARY) I 1 F A "CALL" OF "JUMP" INSTRUCTION IS
NOT AVAILABLE IN THE VICINITY OF THE AftEA WHERE A CORRECTION MUST BE
MADE THEN ONE CAN· REPLACE THftEE WORDS OF INSTAUCTIONS WI THA "CALL"
PATCH PROVI DED THAT ONE 1 S VERY CAftEFUL NOT TO SPLI T UP A MULTI-WORD I N­
STRUCTION .. OR .. 1 F THI S CANNOT BE AVOIDED" THAT THE ~F.MAINING .PORTION OF
A SPLIT UP MULTI-WORD INSTRUCTION IS ftEPLACED WITH A "NO OPF~ATION" IN­
STRUCTIONS SUCH AS "LAA." ONF MUST ALSO MAKE CERTAIN THAT THF INSTRUC­
TIONS Dl SPLACED BY THE INSERTED "CALL" INSTRUCTION APE PLACED IN THF.
"PATCHING" SUBROUTINE (PROVIDED THAT THEY ARE NOT BEING REMO\/ED PURPOSE­
LY) I AN EXAMPLE OF SEVERAL PATCHES BEING MADE TO THE SMALL SAMPLE PRO­
~AM JUST DISCUSSED WILL BE ILLUSTRATED BELOW.

SUPPOSE .. ' IN THE EXAMPLE JUST DI SCUSSED" THAT THE OPERATOR DFCI DED
NOT TO CLEA~ (SET TO 000) ALL THE WORDS IN PAGE 01 OF MEMORY~ BUT RATHER
TO ONLY CLEA~ THE LOCATIONS 000 TO 177 ON THE PAGE. THF. PAO~RAM COULD
BE MODI FI ED BY REPLACING THE "JFZ AGAIN" INSTRUCTION STARTING AT LOCA­
TION 107 OF PAGE 02 WITH THE COMMAND "CAL 000 003" (CALL THE SUBROUTINE
STARTING AT LOCATION 00e ON PAGE 03 YHICH WILL BE THE ·'PATCH"). NOW AT
LOCATION 000 ON PAGE 03 ONE COULD PUT:

MNEMONIC

LAI 200

CPL

dFZ AGAIN

~ET

MEMO~Y ,
ADDRESS

03 000
03 0el

03 002

03 803
03 004
03 0"5
03 006

MEMOPtY
CONTENTS

006
20"

276

110
104
802
007

COMMENTS

/PUT VALUE 200 INTO
ITHE ACCUMULATOPt
INOTE VALUE OF 200 USED BE­
ICAUSE CONTENTS OF ~F.GISTF.R
I"L" ALREADY INCREMENTED!
ICOHPA~E CONTENTS OF THF.
IACCUMULATOR WITH THE CON­
ITENTS OF ftEGI STER "L"
11 F ACCUMULATOR AND "L" DO
INOT MATCH THEN CONTINUE THE
IORIGINAL PROGRAM
I END 0 F "PATCH" SUB"OUTI NE

SUPPOSE INSTEAD OF FILLING EVERY WQftD ON PAGE 01 WITH 000 THE PRO-
aRAMMEft DECIDED TO FILL EVERY OTHER WOftD? A PATCH COULD BE MADE BY RE-
PLACING THE flLMl 000" COMMAND AT LOCATIONS ·104 AND 105 .. PLUS THE "INL"
COMMAND AT LOCATION 106 OF PAGE 02 AND 'AGAIN INSERTING A "CAL 000 003"
TO A PATCH SUBROUTINE THAT MIGHT APPEAR AS:

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS --_ _--_ ..

-----~--- ------------ _-._------ .. ------
LMI 000 03 ""0 176 IKFEP THE ··LMI" INST~UC-

03 881 000 lAS PART OF THE PATCH
INL 03 002 060 IOPU GINAL "INL"
INL. 03 003 060 IPLUS ANOTHER TO SKIP.

IEVERY OTHER WORD
RET 03 004 007 IEXIT FROM PATCH

FINALLY, TO ILLUST~ATE A PATCH THAT SPLITS A MULTI-WO~D COMMAND,

3 -, 16

CONSIDER A HYPOTHETICAL CASE WHERE THE PftOGftAMME~ DECIDED THAT PftIOR TO
DOING THE CLEARING ROUTINE~ IT WOULD BE IMPORTANT TO SAVE THE CONTENTS
or REG 1 STEJIt "H·' BEFORE SETTl NG I T TO PAGE 01. I F A TH~EE WORD "CALL"
ftOUTINE IS PLACED STARTING ~T LOCATION 100 ON PAGE 02 IN THE ORIGINAL
ROUTINE TO SERVE AS A PATCH# IT CAN BE SEEN THAT THE SECOND HALF OF THE
"LLl 00il u INSTPtUCTioN WOULD CAUSE A PROBLEM WHEN THE P~OGJltAM RETURNED
FAOM THE PATCH. (THE VALUE OF 000 AT LOCATION 103 ON PAGE 02 IN THE F,X­
AMPLE WOULD BE I NTREPPlETED AS A ttHLT" COMMAND BY THE COMPUTER ·WHEN IT
RETUltNED FROM THE PATCH SUBROUTINE) I IN OPtDEJIt TO AVOI D THIS PROBLEM THE
PROGRAMME~ COUl.D PLACE A "LAA" (EFFECTI VFl..Y A "NO OPEftATION" COMMAND) AT
LOCATION 103 ON PAGE 02 AFTER PLACING THE "CAL 000 003" INSTftUCTION BE­
GINNING AT LOCATION 100 ON PAGE 02 TO SERVE AS THE PATCH. THE ACTUAL
PATCH SUBROUTINE MIGHT APPEAR AS SHOWN:

M El'IO!ltY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS

~--------- _ .. ---------- --_ .. - _-
-~-~------~----~-

LEH 03 000 345 I SAVE "Het IN REGISTER "E"
LHI 001 03 001 056 INOW SFT REGISTEA "H" TO

03 002 001 IPOINT TO PAGE e 1
LLI 000 03 803 066 lAND SET THE LOlJ ADDRESS

03 e04 000 IPOINTER TO LOCATION.000
RET 03 005 007 lEND OF PATCH SUBROUTINE

IN THE BALANCE OF THIS MANUAL NUMEROUS TECHNIQUES FOR DFuELOPING
MACHINE LANGUAGE P~OGRAMS WILL BE PRESENTED AND DISCUSSED. MANY OF THE
EXAMPLES USED WILL BE PRESENTED AS SUBROUTINES THAT THE READER CAN USE
DIRECTLY WHEN DEVELOPING CUSTOM PROGRAMS. IT IS IMPORTANT FOR THE NEW
PROGftAMMER TO LEARN TO THINK OF PROGRAMS IN TERMS OF ROUTINES OR SUB­
ROUTINES AND THEN LEARN TO COMBINE SUBROUTINES INTO LARGER PROGRAMS.
THIS PRACTICE MAKES It EASIER FOR THE PROGRAMMER TO INITIALLY DEVELOP
PROGRAMS AS IT IS GENERALLY MUCH EASIER TO C~EATF SMALL ALGORITHMS AND
THEN COMBINE THEM., IN THE FORM OF SUBROUTINES" INTO THE LARGER ROUTINES.
REMEMBER", SUBROUTINES ARE SEQUENCES OF INSTRUCTIONS THAT CAN BE CALLEn
BY OTHER PARTS OF THE PROGRAM. THEY ARE TERMINATED BY "RET" OR CONDI­
TIONAL RETURN COMMANDS. IT IS ALSO WISE,WHEN DEVELOPING PROGRAMS TO
LEAVE SOME ROOM IN MEMORY BETWEEN SUBROUTINES so THAT PATCHES CAN BE IN­
SERTED OR ROUTINES LENGTHENED WITHOUT HAVING TO RE-ARRANGE THE CONTENTS
OF A LARGE AMOUNT OF MEMORY. FINALLY" WHILE SPEAKING OF SU8ROUTINESI
IT WILL BE POINTED OUT THAT THE USER WOULD BE WISE TO KEEP A NOTE BOOK
OF SUBROUTINES THAT THE INDIVIDUAL DEVELOPS IN ORDER TO BUILD UP A REF­
E1tENCE ItLIBRAPfY'" OF PEftTINENT ROUTINES. I T TAKES TIME TO THINK UP AND
CHECK OUT ALGORl THMS - AND I TS AWFUL EASY TO FORGET JUST H01.1 ONE HAD
SOLVED A PARTICULAR PROGRAMMING P~OBLEM SIX MONTHS AFTE~ ONE INITIALLY
ACCOMPLISHED THE GOAL. SAVE YOUR ACCRUED EFORTS - THE MORE ROUTINES
YOU HAVE TO UTILIZE - THE MORE VALUABLE YOUR MACHINE BECOMES# BECAUSE
THE POW~ OF THE MACHINE IS ALL DETERMINED BY WHAT YOr PUT IN ITS MEM­
ORY!

BEFORE GOING ON TO THE NEXT SECTION", THE ESSENTIAL STEPS IN THE
PROCESS OF CftFATING A PftOGftAM WILL BE PRESENTED AS A. SUMMARY FOR READY
REFERENCE ON THE FOLLOWING PAGE.

3 - 17

~E"IFV OF THE PROCESS OF CRFATING A MACHINE LAN(;tJARF PRO(;RAM

1.) FIRSTI THE PROGRA~MF~ SHOULD CLFARLV DFFINF ANn wRITF flowN 01\1
PAPFR EXACTLY WHAT THE PROGRAM IS TO ACCOMPLISH.

2.) NEXT, FLOW CHARTS TO AID IN THE COMPLFX TASK OF WRITING T~F.

MNEMONIC (SOURCE) LISTINGS ARE PREPARED. THFV SHou~n AE A~
D~TAILED AS NECESSARY FOR THE P'ROGRAMMFR"~ LFUFL OF F.XPFRIFNCE
AND ABILITY.

3.) MEMORY MAPS SHOULD BE USED TO DISTRIBUTF. AND KEEP TRACK OF
PROGRAM STORAGE AREAS AND DATA MANIPULATING REGIONS IN AUAIL­
ABLE MFMORY.

4.) USING THE FLOW CHARTS AND MEMORY MAPS AS GUI nE~, THF ACTUAL
SOURCE LISTINGS OF THE ALGORITHMS ARE WRITTEN USING THE SYM­
BOLIC REPRESENTATIONS OF THE INSTRUCTIONS. AN FOITOR PfH)RRAM
IS FREQUENTLY USED TO GOOD ADUANTAGF AT THI~ TIME.

5.) THE MNFMONI C SOURCE LI STINGS ARE CONVERTED INTO THE ACTUAL
MACHINE LANGUAGE NUMERICAL CODES ASSIGNED TO SPFCIFIC ADDRE~­
SFS IN MEMORV. AN ASSEMBLER PROGRAM MAKES THIS TA~K QUITF
EASY AND SHOULD BE USED FOR ALL AUT THF ~MALLE5T PROGRAM~.

6.)' THE PREPARED MACHINF CODE IS LOAnED INTO THE APPROPRIATE
ADDRESSES IN THE COMPUTER'S MEMORY AND OPERATION OF TriF PRO­
GRAM IS VERIFIED. OFTFN THE INITIAL CHECK OUT IS DONE USING
THE "STEP" MODE OF OPERATION, OR BY EXERCISING INDIUIDUAL
SUBROUTINES. THE JUDICIAL USE OF INSERTED ttHALT" IN~TRUC­
TIONS AT KEY LOCATIONS WILL OFTFN BE OF VALUE DURING THF IN­
ITIAL TESTING PHASF..

7.) IF THE PROGRAM IS NOT PERFORMING AS INTENDED THEN PROBLEM
AREAS MUST BE ISOLATED. PROGRAM "PATCHES" MAY BE UTILIZED
TO MAKE,MINOR CORRECTIONS. IF SFRIOUS PROBLEMS ARF FOVND
IT MAY BE NECESSARY TO RETURN TO STEP #3, OR EVEN STEP '1.

3 - 18

BASIC PROGRAMMING TECHNIQUES

THE FIRST SECTION OF THIS CHAPTE~ WILL BE DEVOTED TO ILLUSTRATING A
NUMBER OF SIMPLE INSTRUCTIONS AND SF,QU£NCES OF INSTRUCTIONS THAT MAY BE
USED TO ACCOMPLISH COMMONLY REQUIRED FUNCTIONS. NOVICE P"Or,~AMME~S NEED
TO BUILD UP A REPE~TOI~E OF SUCH ~OUTINES IN THEI~ MIND SO THAT THEY CAN
LEARN TO THINK IN TE~M5 OF THE FUNCTIONS THFY P~FOAM A5 THEY P~EPA~F TO
DE\IELOP P'ROGRAMS OF THEIR OWN. ALTERNATIVE WAYS OF PE~RFORMING FUNCTIONS
WILL SOMFTIMES BE PRESENTED TO ILLUSTRATE: ADVANTAGES AND 01 SADVANTAGES
OF ONE METHOD OVER ANOTHER. THFRE WILL OFTFN HE MANY OTHER WAYS OF PF~-
FORMING THE DESIRED FUNCTION OTHF'A THAN'THAT PRESENTED AND THF READER
SHOULD FEEL F~EE TO THINK OF OTHER WAYS AND LOOK AT POSSIBLE ADUANTAGE~
AND NE.GATI "E ASPECTS OF SUCH ALTFRNATI VES.

CLEARING THE ACCUMULATOR

IT IS OFTEN DESI~ABLE TO SET THE CONTENTS OF THE ACCUMULATOR (ACC
FOR ABREVIATION IN THIS TEXT> TO ZERO BEFO~E STA~TING AN OPF.~ATION#

SUCH AS A MATHEMATICAL CALCULATION. ONE OBVIOUS WAY TO DO THIS IS TO
USE AN "LAl 000" INSTRUCTION. A LESS OBVIOUS WAY 1 S TO USE AN "X~A"
(EXCLUSI \IE OR THE CONTENTS 0 F THE Ace WI TH ITSELF)! THE "XRA" MF.THOn
ONLY REQUI ~ES ONE WORD" WHEREAS THE "LA I 000" PtBQUI RES TWO. ALSO" THF.
"XRA" METHOD '-,ILL SET ALL THE CPU "FLAGS" 10 KNOWN STATES AS ANY BOOL­
EAN LOGIC INST~UCTION CAUSES THE "Z:''' "5," AND "P" FLAGS TO RF AFFF.CTED
AND THE "C" FLAG TO BE SET TO THF Z FRO STATE. (WHENEVER NECE55ARY THE
~EADER SHOULD REFER TO THE APPROPRIATF SECTION IN CHAPTER ONE OF THIS
8Bets PROGRAMMING MANt'AL TO RE"lEW THE DETAILED FtTNCTION(S) OF EACH
TYPE OF INSTRUCTION AVAILABLE IN AN 808S BASED MINI-COMPUTER). SINCE
THE "XRA" INSTRUCTION WILL SET THE ACC TO ALL 0' S .. 'THEN THE "z" AND "P"
FLAGS '-1ILL BE PLACED IN THE "lit CONDITION" AND THE "s" FLAG TO THE "e"
STATE AT THE CONCLUSION OF THE INSTRUCTION'S EXFCUTION. IT I~ IMPORT­
ANT TO REMEMBER THE TYPES OF INST~UCTIONS THAT Ali'FECT THE OPERATION OF
THE CPU FLAGS BECAUSE IT IS OFTEN NECESSARY TO U5E THE 5TATUS OF A FLAG
OR FLAGS TO CONTROL THE OPERATION OF A PROGRAM - OP TO SEE IF A FLAr,'g
STATUS HAS CHANGED - AND TO DO THI S" ONE MUST AT SOMF TIME "KNO'W" WHAT
THE CONDITION OF A FLAG WAS - AND THAT IS On-EN ACHIF\1ED RY USING AN
INSTRUCTION SUCH AS THE "XRA" THAT WILL "FOPtCE" THEM TO DESIRED STAT'F:g.
(J.I THE OTHER HAND, WHILE THE "LA! 000" METHOD OF CLEARING THE Ace ~F.­

QUIRES TWO MEMORY WORDS" THE EXECUTION OF AN "LAI 000" INST~UC"ION
DOES NOT AFFECT THE STATUS OF THE CPU FLAGS .. AND THI5 FACT SHOULD BE ~F­
MEMBERED BECAUSE THERE MAY BE TIMES WHEN IT IS DESIRABLF TO gET THF. Ace
TO THE 0'5 CONDITION WITHOUT ALTERING THE CPU FLAGS!

SETTING THF. ACCUMULATOR TO ALL 1'5

THIS FUNCTION CAN BE ACCOMPLISHED WITH SEVERAL TYPES OF INSTRUCTIONS
SUCH AS THE "LAI 377" OR "ORI 377." WHILE BOTH THESE INSTRUCTIONS 'RE­
QUIRE TWO WORDS OF MEMORY" IT SHOULD BE NOTED AGAIN THAT THE "LAI 377"
TYPE WILL NOT AFFECT THE STATUS OF THE CPU FLAGS .. WHILE THE "ORI 377"
ONE WILL RESULT IN THE "c" AND "z" FLAGS BEING SET TO THE "0" STATE AND
THE "s" AND "P" FLAGS SET TO THE ".'. CONDITION. IF A PAPTICULAR PRO­
GRAM REQUIRES THE ACCUMULATOR TO BF SFT TO THE ALL 1'5 STATE FREQUEN­
TLY THEN IT MAY BE WORTHWHILE TO SET UP A CPU REGISTER TO CONTAIN 377
AND THEN USE A ONE WO~O INSTRUCTION SUCH AS "LAX" (X = A CPU REGI ~TFR)
Oft AN "ORX" DEPENDING ON WHETHER OR NOT ONE WANTS TO SAVE THE STATUS OF
THE CPU FLAGS.

• - I

COMPL!HENTING THE ACC9MULATOR

. OFTEN I TIS D"ESIRABLE TO ··COMPLa.DJTtI THE VALUE IN THE ACCt1MULATOA~,
1HAT IS TO CHANGE ALL THE BITS SET T9 A "I" TO BE "0" AND UICE-\1ERSA.
THIS CAN BE READILY ACCOMPLISHED BY USING AN "XRI 377" INSTRUCTION •

. AGAIN~ I F THE FUNCTION MUST BE PERFORMED onm IN A ROUTINE 1 T MAY BE
WORTHWHILE TO KEEP THE VALUE 377 IN A CPU REGISTER AND USE A "XRX" IN­
STRUCTION TO PERFORM THE OPERATION AND REDUCE THE COMMAND TO A ONE WORD
INSTRUCTION. THE COMPLEMENT FUNCTION IS OFTEN UTILIZED ~{FN PERFORMING
MATHEMATICAL OPERATIONS USING "51 GNED NUMBERS" (AS EXPLAINED IN THE PRE­
VIOUS CHAPTER) IN ORDER TO OB'rAIN THE "TWO' 5 COMPLEMENT" FOR'" OF A NUM­
BER. THE "TWO'S COMPLEMENT" OF A NUMBER IS OBTAINED BY FIRST COMPLE­
MENTING THE VALUF AND THEN ADDING ONE TO THE COMPLEMENTED VALUE. THUS
tHIS FUNCTION COULD BE OBTAINED BY PERFORMING TWO KINDS OF INSTRUCTIONS
IN SEQUENCE - FI RST AN "XRI 377'"' AND THEN AN 'tADI 001" COMMANO.

FORMING BIT nMASKS"

VHEN UTILIZING A COMPUTER IT IS FREQUENTLY DESIRABLE NOT TO U~E ALL
THE BIT POSITIONS WITHIN A WORD - OR TO ISOLATE AND DETERMINF. THF 5TATU~
OF A PARTICULAR BIT WITHIN A REGISTER. THIS TECHNIQUE FOR EXAMPLE, CAN
BE US£D TO QUICKLY DETE~MINE WHETHER A NUMBER IN A REGISTER IS ODD OR
EVEN·(BY EXAMINING JUST THE LEAST SIGNIFICANT RIT)~ OR WHETHFR A NUMBER
HAS REACHED A CERTAIN SIZE <BY SAMPLING THE MOST SIGNIFICANT BIT OF IN­
TEREST) .. OR WHETHER PERHAPS, SOME PARTICUlJ.AR EXTERNAL EUENT HAS OCCURF.O
(BY CHECKING A SPECIFIC BIT ON AN INPUT PORT).

THE PROCESS OF RIDDING A REGISTER OF UNWANTED DATA IN SELECTED BIT
POSITIONS IS COMMONLY REFERRED TO BY COMPUTER TECHNOLOGISTS AS "MASK­
ING." MASKING CAN BE ACCOMPLISHED IN SEVERAL WAYS DEPENDING ·ON WHAT THE
PROGRAMMER DESIRES. SUPPOSE~ FOR INSTANCE~ THAT ONE DESIRED TO DETER­
MINE WHETHER A NUMBER IN THE ACCUMULA'TOR WAS ODD OR EUEN. ONE 'JAY TO DO
THI S WOULD BE TO $IMPLY EXECUTE AN "NDI 001" INSTRUCTION AND THEN TEST
TO SEE I F THE ACCUMULATOR WAS ZEIlO (USING A ttJTZ" OR "Jrz" COMMAND).
SUPPOSE THE ORIGINAL NUMBER IN THE ACCUMULATOR HAD BEEN 251 (REMEMBER
THAT THIS TEXT IS USING OCTAL NUMBERS ~NLESS OTHERWISE STATED!) THE RE­
SULTS OF PERFORMING THE LOGIC AND OPERATION BETWEEN THE ACCUMULATOR CON­
TAINING 251 AND THE NUMBER 001 IS ILLUSTRATED BELOW.

ACCUMULATOR = 1 0 1 0 1 0 0
AND IMMEDIATE WITH 901 • 0 0 0 e 0 0 0

a OCTAL 251
• OCTAL 001

RESULT LEFT IN ACC = 0 0 0 B 0 0 A 1 = OCTAL 0~1

IT CAN BE·OBSERVEB THAT ALL THE BIT POSITIONS "ANDED" WITH A 0 WILL
GO TO THE 0 CONDITION REGARaLESS OF WHETHER THEY ARE A "1 tt OR A""."
THUS .. THE SEVEN MOST SIGNIFICANT BIT POSITIONS IN THE EXAMPLE HAUE BEF.N
EFFECTIVE~Y ELIMINATED. HOWEVE'R~ A BIT POSITION "ANDED" AGAINST A "I"
V ILL BE A "1" IF.. AND 0 NL Y I F ~ TH E PO SIT ION UN D ER TES T CON TA INS A .. I • If
IN THE ABOVE CASE .. A "I" WAS PRESENT IN THE "TEST" POSITION AND THUS
THE RESULT VAS A "I." A uJTZ" INSTRUCTION WOULD QUICKLY DIRECT THE PRO­
GRAM TO PROCEED ON THE BASIS THAT THE ORIGINAL NUMBER IN THE ACC HAD
BEEN AN ODD NUMBER.,·

NOTE THAT THE ABO UE· PARTI Ctn;.AR MASKING METHOD VAS DESTRUCTI \1E TO THE
ORIGINAL VALUE IN THE ACCUMULATOR. HAD IT BEEN IMPORTANT, THE ORIGINAL
NUMBER COULD HAVE BEEN SAVED IN A CPU REGI STE'R OR A M'EMORY LOCATION.

• - 2

A SLIGHTLY DIFFERENT APPROACH COULD HAVE BEEN TAKEN. THE NUMBE~' TO BE
·'MASKED·· COULD BE PL.ACED IN A MDiORY LOCATION .. OR A CPU REGISTER. THEN
THE' ACCtJMULATO~ COULD BE FI1.LED WITH THE APPROPJltIATE "MASK." FINALLY"
A SIMPLE ONE WO~D "NOM" OR "NDX" INSTRUCTION COULD BE UTILIZED. THE RE­
SULT OF THE MASKING OPERATION WOULD BE LEFT IN THE ACCUMULATO~ AFTEft THE
EXECOTION OF THE INSiftUCTION AND THE ORIGINAL NUMBE~ WOULD BE AVAILARLF.
FnR FURTHER MANIPULATION. THIS DIFFERENT APPROACH IS POINTED OUT AS AN
EXAMPLE OF HOW A PROGRAMMER SHOULD LOOK FOR THE BEST METHOD TO APPROACH
A PAR1ICULAR PROBLEM. THE COMPUTER, WITH ITS VARIETY OF IN5TRUCTION5"
PROVIDES MANY DIFFERENT METHODS TO CHOOSE FROM FOR SUCH PROBLEMS.

MASKING IS MOST EFFECTIVE WHEN THERE AftE SEVERAL BITS IN A REGISTER
TO BE ISOLATED" OR WHFN A BIT OF INTEREST IS IN THE MIDDLE OF A WORD" OR
WHEN IT MAY NOT BE, EXPEDIENT TO BRING A PIECE OF DATA INTQ THE ACCUMU­
LATOR. FOR" I F ONE DESIRES TO EXAMINE THE STATUS OF A Al T IN THE ACC
THAT 15 AT EITHER END OF THE REGISTER" ONE CAN DO THIS BY USING A ROTATE
INSTRUCTION SUCH AS "RAL" OR "RAR" TO PUT THE BIT OF INTEREST INTO THE
"CARRY" POSITION OF THE ACC (REPRESENTED BY THE CARRY FLAG) AND THEN 115E
A "JTC" OR "JFC" INSTRUCTION TO DETERMINE THE STATUS OF THE BIT. NATU­
RALLY~ IF THE PROGRAMMER WANTED TO RETAIN THE ORIGINAL SFTTINR OF THE
ACCUMULATOR AFTER THE TEST THE PROGRAM WOULD HAVE TO EXFCUTE THE RE"F.~5E
ROTATE INSTRUCTION (TO THE ONE ORIGINALLY USED) TO BRING THF. ACC BACK TO
ITS ORIGINAL PATTERN.

SETTING UP POINTEAS AND COUNTFRS

IN MANY APPLICATIONS IT IS DESIRABLE TO PERFORM A PARTICULAR SEQ­
UENCE OF OPERATIONS A PRECISE NUMBER OF TIMES. THE NUMRF.R OF TIMES AN
OPERATION IS PERFORMED CAN BE CONTROLLED IN A ROUTINE BY FORMING A "PRO­
GRAM LOOP." A PROGRAM LOOP 1 S ESTABLI SHED BY SETTING UP A COUNTER SyS­
TEM THAT KEEPS TRACK OF HOW MANY TIMES AN OPERATION IS PERFORMED AND IN­
CLUDING A PROGRAM TEST TO ASCERTAIN WHEN A PARTICULAR VALUE HAS SF-EN
REACHED SO THAT THE p~aGRAM CO~T~OL CAN BE "BRANCHED" OUT OF THE "LOOP."

IN AN 8908 SYSTEM CPU REGISTERS MAKE HANDY LOOP COUNT~S AS THEY NOT
ONLY CAN BE DIRECTLY INCREMENTEB OR DECREMENTED BY ONE WORD COMMANO~#
BUT THEY ALSO DIRECTLY AFFECT THE STATUS OF THE "Z,," "S~" AND "P" CPU
FLAGS AFTER EACH INCREMENT OR DECREMENT" MAKING IT AN EASY MATTER TO USE
~y ONE OF THE CONDITIONAL TYPE~ INSTRUCTIONS IMMEDIATELY FOLLOWING A CPU
REGISTEPt INCREMENT OR DECREMENT .. TO SEE IF A CRITICAL VALUE HAS BEEN
REACHED'

FOR INSTANCE# SUPPOSE REGISTER "B" IS INITIALLY SET TO THE VALUE 012
<10 DECIMAL} BY A "LSI '012" INSTRUCTION PPUOR TO EXECUTION OF THE FOL­
LOWING "PROGRAM LOOP."

MaRE"

DONE"

LMA
INL
DCB
JFZ MORE
HLT

ILOAD CONTENTS OF Ace INTO MEMO~Y
IADVANCE MEMORY POINTER
IDEC~EMENT THE LOOP COUNTE~
IIF REG "S" IS NOT = 00A.I CONTINUE LOOP
IEXIT SUBROUTINE WHEN COUNTER = 000

AS CAN BE OBSERVED, THE ABOVE SUBROUTINE WOULD "LOOP'· UPON ITSELF
AND LOA. DATA INTO CONSECUTIVE vo~ns IN MEMO~Y UNTIL THE UALUE PLACED
IN REGISTEA "8" (PRIOR TO STARTING THF SUBROUTINE) REACHED ZERO. IN THE
ABOVE EXAMPLE "S" WAS LOAOED WITH 012 SO 12 OCTAL ("!t' DECIMAL) LOCATIONS
IN MEMO~Y WOULD HAVE BEEN LOADED WITH DATA. (IT CAN BE ASSUMED THAT THE

.• - 3

"CALLING" ROUTINE SET UP REGI STERS "H" It "L" TO)lOINT TO THE PROPER MEM-
8ftY LOCATIONS AND PLACED THE CORRECT DATA INTO THE ACCUMULATOR!)

TO ILLUSTRATE HOW POWERFUL THE SIMPLE CONCEPT OF A PROGRAM LOOP I~,
A SECOND EXAMPLE WILL BE USED TO ILLUSTRATE HOW SUCH A LOOP TECHNIQUE
CAN BE USED TO PERFORM MULTIPLICATION OF SMALL Nt~BE~S. (THFRE ARE MUCH
MORE EFFICIENT PROGRAMMING TECHNIQUES AVAILABLE FOR USE WITH LARGE NUM-
BERS.) SINCE MULTIPLICATION IS REALLY JUST REPEATED ADDITION, ONE COULD
MULTIPLY TWO NUMBERS .. DESIGNATED "X" AND .. Y BY PE"FORMING THE FOLLOW-
ING OPERATIONS. ASSUME "X" IS THE Mt1J..TIPLICAND AND IT HAS BEEN LOADED
INTO CPU REGISTER "C." THE NUMBER "Y" IS THE MULTIPLIER AND IT HAS

\ "

BEEN PLACED IN REGISTER UB." THE FOLLOWING ROUTINE CONTAINING A PROnRAM
LOOP WILL "MULTIPLY" THE TWO NUMBERS.

START~ XRA ICLF.AR THE ACCUMULATOR
CONTI N" AOC IADD CONTENTS 0 F REGI STER "C" TO ACC

DCB IDECREMENT VALUE 0 F THE MULTI PLI FoR
JFZ CONTIN IREPEAT ADDITION IF MULT. IS NOT = ZERO

EXIT" RET IEXIT SUB~TN WITH MULT. ANSWER IN ACC

AS READERS KNOW" THE CPU REGISTERS tlH" AND ttL" WHILE BEING ABLE TO
SERVE AS ORDINARY CPU REGI STERS" ALSO HAVE THE SPEC IAL FUNCTION 0 Ii REI NG
ABLE TO "POINT" TO ADD"ESSES IN MEMORY WHENEVER "MEMORY REFERENCE" IN­
STRUCTIONS ARE USED. THE "H" REGISTER HOLDS THE HIGH ADDRESS OR "PAGE"
PORTION OF THE POINTER AND THE "1.." REGISTER HOLDS THE LOW ADDRE~S OR
LOCATION ON A PAGE. NATURALLY, WHEN ONE DESIRES TO OPERATE ON DATA AT
A LOCATION IN MEMORY "IA A MEMORY REFERENCE COMMAND, ONF I'1U~T FIR~T 5ET
tP THE "H" AND "L" REGISTERS TO CONTAIN THE DESIRED ADDRESS. THI SIS
READILY DONE WITH A tfLHI XXX" AND .ILLI YYY" COMBINATION OF INSTRUC­
TIONS. HOWEVER, MANY TIMES IT IS DESIRABLE TO DO A YHOLE SEQUENCE OF
OPERATIONS THAT OPERATE UPON SEQUENTIAL LOCATIONS IN MEMORY. IN THIS
CASE" ONCE THE INITIAL STARTING ADDRESS HAS REEN LOADED INTO THE MEMO~Y
POINTER REGISTERS" ALL THAT IS NEFDED"IS A SUBROUTINE THAT CAN BE REFER-
ED TO~ THAT WILL INCREMENT THE ADDRESS HELD IN THE TWO PEGISTERS. A
SIMPLE SUBROUTINE TO ACCOMPLI SH THAT OBJECTIVE IS P'AESFNTED HERE.

ADV, INL
RFZ
INH
RET

IINCREASE VALUE OF ~EGISTER "L" BY t
IEXIT SUBRTN IF NOT GOING TO NEW PAGE
I INCREMENT uH" BY 1 I F ON NE,., PAGE
I EXt T SUBRTN

THE ABOVE SUBROUTINE TAKES CARE OF THE CASE WHERE THE ADDRESS CROSS­
ES "PAGEtt BOUNDARIES. EACH TIME REGt STE'R ttL" t S ADtlANCED" THE "RFZ" IN­
STRUCTION I S USED TO TEST WHETHER OR NOT REGI STER "L" WENT TO 000. THI S
WJULD OCCUR I F THE li.AST VALUF IN THE REGI STE'R HAD BEEN 377, WHICH I S THE
LARGEST OCTAL ADDRESS THAT CAN BE REPRESENTED IN AN 8 BIT REGISTER, AND
CONSEQUENTLY THE HIGHEST ADDRESS THAT CAN BE ASSIGNED ON A "PAGE" OF
MEMORY. I F THE ttRFZ" INST~tlCTION I S EXECUTED (BECAUSE THE CONTENTS OF
"L" DID NOT GO TO 909) THEN THE ROt1TINE IS IMMEDIATELY EXITED. HOMF.VER,
IF THE "RFZ" COMMAND IS NOT FOLLOWED" THEN THE SUBROUTINE CONTINUES TO
ADVANCE THE CONTENTS OF REGl STER "H" TO UPDATE THE POINTER TO A NElJ

, PAGE. IN SOME CASES~ WHERE THE PROGRAMMER IS GOING TO LIMIT ALL THE
MANIPULATIONS OF DATA TO JUST ONE PAGE OF MEMORY" THE ABOHE SUBROUTINE
COU1.D BE SHORTENED TO Jl!JST TWO INSTRUCTIONS" "INl." FOLLOWED BY A "RFT"
COMMAND.

F'lNE. BUT WHAT ABOUT THE OPPOSITE CASE WHEN A PROGRAMMER HI GHT DE-

4 - 4

SIRE TO PROCESS AREAS OF MEMORY IN DE'SCENDING O~DER? "'ELL" A SIMILAR
SUBROUTINE TO DECREMENT THE MFMOAY POINTER "EGISTERS COULD BE USED BUT
NOV THE PROGRAMMER WILL HAVE TO BE CAREFUL WHEN GOING TO A NEW PAGE.
IN THE PREVIOUS CASE" WHEN THE ttL" REGl ST~ WA5 ADVANCED BEYOND LOCA­
TION 377 TO 000" IT WAS AN EASY MATTER TO CHFCK FOR THE ~00 CONDITION
TO SEE 1 FIT WAS NECESSA~Y TO ADUANCE THE "H" REGI ST~R TOO. NOW" HOW-
EVER" WHEN THE "L" ftEGI STER GOES F'ROM 000 TO 377 1 T WILL BE NECESSARY
TO DEC~EMENT THE "H" ~EGI STER TO THE NEXT LOWER PAGE. TE~TING FOR TH1 S
CONDITION IS NOT QUITE AS EASY. REMFMBER~ THE STATUS OF THE CPU FLAGS
ARE SET BY THE CQNJ:)ITIONS IN THE REGISTER IMMEDIATELY AFTER THEY HAVE
BEEN INCREMENTED O~ DEC~EMENTED - NOT BEFORE. AND~ WHILE ONE CAN U~E
A "JTZ" OR ·'RFZ" TYPE OF INSTRUCTION TO QUICKLY DETEPMINE IF A REGISTER
WENT TO 000" THE CASE WHE~E IT DID NOT GO TO 00~.1 DOES NOT MEAN IT IS
NECESSARILY AT 377 - IT COULD BE AT ANY NON-ZERO VALUE. HOWEUE~~ THE
CASE CAN BE HANDLED. ONE WAY TO HANDLE THE PROBLEM WOULD BE WITH THE
SaSROUTINE SHOWN BELOW.

DEC"

DECH"

XRA
CPL
JTZ DECH
DeL
RET
DCL
DCH
RET

ICLEAR ACC TO 000
ICOMPARE CONTFNTS OF ACC WI TH "L"
II F 000 NOW" THEN DEC)q ROTH "H" ~ "L"
IOTHERWI SE JUST DECREMENT "bit
lAND EXIT SUBROUTINE
IFOR THIS CASE DECREMENT "L"
lAND AFGISTFR "Hlf
I TH EN EX ITS UBRO UT IN E

WHILE THE ABOVE SUBROUTIN~ WILL ACCOMPL15H THE OBJECTIVE" IT DOES
HAVE SEVERAL MINOR FLAWS THAT THF PROGAAMME~ MIGHT WANT TO CON~InER.

FIRST~ IT ALTERS THE CONTENTS OF THE ACCUMULATOR. REMEMBER" THAT THF
ABOVE SUBROUTINE MIGHT OFTEN BE USED IN A PROGRAM THAT I~ MANIPULATING
DATA BETWEEN THE ACCUMULATOR AND MEMORY. THE ABOVE 5UBROUTINE WOULD ~E­
QUIRE THAT THE PROGRAMMER MAKE SURE ANY VALUABLE DATA IN THE ACCUMULATOR
IS "SAVED" ELSEWHERE BEFORE THE SUBROUTINE, I~ CALLED. THI!; IS ONE MORE
"BURDFN" ON THE PROGRAMMER WHO 15 DEVELOPING A LA~GF. P~OGRAM AND MAY
HAVE A LOT OF OTHER DETAILS TO THINK AROUT. SECONDLY" THE AROl1F ~OUTINF.
REQUIRES l~ DECIMAL MEMORY STORAGE LOCATIONS. IT IS AL~AY5 A GOOD P~AC­
TICE TO TRY AND DEUELOP ROUTINES THAT OPERATE IN A MINIMUM AMOUNT OF
MEMORY. LETS TAKE A LOOK AT ANOTHF~ SUBROUTINE THAT ACCOMPLISHES EXAC­
n,y THE SAME OBJECTIVE" THAT SAVES 20 PERCENT OF MEMORY SPACE,,, AND THAT
t.nLL NOT INTERFERE WITH THE ORIGINAL CONTENTS OF THE ACCt'MULATOR.

DECR~

NOT0"

DeL
INL
JFZ NOT0
DCH
DCL
RET

IDECREMENT CONTENTS OF "L"
IN OW CHECK TO SEE IF Ii HAD BEF.N AA~
IIF NOT 00A THEN NOT GOING TO NEW PAGE
I I F 000 THEN DFeR "H" TO NEXT LO\JER PAGE
IDECREMENT "L" TO COMPLETE SURROUTI NE
IEXIT SUBROUTINE

THE ABO\1E SUBROUTINE USED A LI TTLE PROGRAMMING CFEATI \11 TY TO COME UP
WITH A METHOD OF ACCOMPLISHING THE DESIRED OBJECTI "E. PEGI STER "L" WAS
DECREMENTED AND THEN INCREMENTED BACK TO ITS O~IGINAL VALUE. THE P~O­
CESS OF INCREMENTING I T BACK TO I TS O~I GINAL '1ALUE WOULD CAUSE THE CPU
FLAGS TO BE SET SO THAT A FLAG TESTING INSTRUCTION COULD BE USED TO SEE
I F THE ORI GINAL VALUE WAS 000. I F THAT WA~ THE CASE .. DECREMENTI NG IT
~"OULf) CAUSE IT TO GO TO 377" AND THUS REGISTER "H" SHOULD BE DECREMENTFD
TO THE NEXT LOWEP PAGE. THAT I S' DONE 1 F NECESSARY" AND THEN REGI STER
"L" I 5 DECREMENTED TO ITS FINAL VAl.UE WHETHER OR NOT THE ADDRESS IS GO-

• - 5

ING TO A NEW PAGEl
,

WHILE REGI STERS "Ht' AND "1..-' ARE THE ONLY REGI STERS THAT CAN BE USED
TO POINT TO MEMORY LOCATIONS WHEN USING MEMORY REFERENCE INSTRUCTIONS#
IT IS OFTEN NECESSARY TO USE QTHER CPU RF.GISTERS TO TEMPORARILY HOLD
MEMORY ADDRESSES. IT MAY BE DESIRABLE# FO~ INSTANCE~ TO TRANSFER BbOCKS
OF DATA FROM ONE ARFA IN MEMORY TO ANOTHER. THI S MUST BE DONE ONE WORD
AT A TIME. FIRST A WORD MUST BE EXTRACTED FROM MEMORY LOCATION "M" BY
SAY A "l.AM" INSTRUCTION WI TH REGI STERS "H" AND "L" POINTING TO ADDRESS
"M AND THEN tlH" AND "L" MUST BE ALTERED TO AN ADDRESSJI LETS CALL IT
"N WHERE THE DATA I S TO BE DEPOSITED. AN "LMA" INSTRUCTION COtn.D THEN
BE USED TO PLACE THE DATA IN THE NFW MEMORY LOCATION. OFTEN A STRING OF
DATA WORDS MIGHT BE TRANSFERRED IN SUCH A FASHION. IT WOULD BE RATHER
CUMBERSOME 1 F ONE HAD TO KEEP USING "LHI MMM" AND "1.1.1 MMM" COMMANDS
FOLl.OWED BY "LHI NNN" AND "LLI NNN" INSTRUCTIONS IN O'RDEA TO KEEP ALTER­
ING THE MEMORY POINTEA REGISTERS BETWEEN THE TVO DIFFERENT AREAS IN MEM­
OOY. HOWEVER# IF "H" AND ·'L" WERE INITIALLY SET TO POINT TO MEMORY LOC­
ATION "MJI" AND C~U REGISTFRS "D" <SAY FOR THE PAGE ADDRESS) AND "E" (FOR
THE ADDRESS ON THE PAGE) WERE SET TO PO INT TO MEMORY LOCATION "NJI" THEN
A "SWITCHING" PROGRAM TO EXCHANGE THE CONTENTS OF t'H" WITH "D" AND "L"
WITH "E" COUl.D BE DEVELOPED TO CONSI DERABLY FASE THE TASK. SUCH A SUB­
ROUTINE MIGHT BE AS FOL~OWS.

SWITCH# LeH
LHD
LDC
Let.
l.LE
l.EC
RET

ILOAD CONTENTS OF "H-' INTO "c" TEMPORARILY
INOW LOAD uD" INTO "H"
IMOVE ORI GINAL "H" FROM "c" INTO "D"
ISIMILARLY LOAD "L" INTO "c" TEMPO~ARILY
IPUT "E" INTO '"'L"
IAND'STORE ORIGINAL "L" IN "E"
IEXIT SUBROUTINE

NOW# BY SIMPLING CALl.ING THE SUBROUTINE TO "S'-'ITCH" THE: CONTENTS OF
THE REGl STERS .. THE PROGRAMMER HAS A MEANS OF CHANGING THE MEMORY POINTER
REGISTERS BETWEEN TWO DIFFERENT AREAS IN MEMORY. TO ILLUSTRATE HOW
QUICKLY A LIBPARY OF SMALL SUBROUTINES STARTS DEVELOPING INTO RFAL POT­
ENTIAL .. TVO SUBROUTINES ILLUSTRATED ON THE LAST SEVERAL PAGES WILL BE
USED IN A SMALL PAOGRAM TO ACCOMPLISH THE TASK JUST DISCUSSED - THAT OF
MOVING DATA FROM ONE AREA OF MEMORY iO ANOTHF.~. LETS ASSUME THAT A
PROGRAMMER DESIRED TO MOVE THE DATA IN 100 (OCTAL!) WORDS OF MEMORY
STARTING AT LOCATION 000 ON PAGE 02 UP TO AN AREA STARTING AT LOCATION
200 ON'PAGE 03. THE FOLLOWING PROGRAM WILL DO THE JOB NICELY.

SETUP~ l..HI 002
LLI 000
LDI 003
LEI 200
LBI 100
LAM
CAL ADV
CAL SWITCH
LMA
CAL ADV
CAL SWITCH
DCB
JFZ MOVIT
~ET

ISET UP "H" TO PAGE OF 1 ST MEMORY AREA
lAND "1.." TO STARTING LOCATION OF 1 ST AREA
I SET "D-' TO PAGE 0 F 2ND MEMORY AREA
lAND "E" TO STARTING LOCATION OF 2ND A~EA
ISET UP A COUNTER IN CPU REGISTER "B"
IGET CONTENTS OF WORD FROM 1ST HEM AREA
IADVANCE MEMORY POINTER (IN 1ST AREA)
ICHANGE ItH" & "L" TO POINT TO 2ND AREA
IDEPOSIT WORD IN 2ND AREA
IADVANCE MEMORY POINTER (IN 2ND AREA)
ICHANGE BACK TO POINT TO 1ST MEMORY AREA
IDECREMENT COUNTER
IIF COUNTE~ NOT = 000J1 THEN CONTINUE MOVING
IEXI T RTN (OR "HLT" OR "JMP'· ETC.)

• - 6

USING MEMORY LOCATIONS TO STORE POINTF:JltS AND COUNTEfotS

WHILE CPU REGISTERS MAKE IDEAL STORAGE PLACES FOR POINTERS AND
COUNTERS BECAUSE THEY CAN BE DIRECTLY INCREMENTED AND DEC~EMENTED~ THERE
ARE SIMPLY NOT ENOUGH OF THEM TO STaRE ALL THE POINTERS AND COUNTERS
THAT MIGHT BE USED IN A FAIR SIZED PROGRAM. IT THEN BECOMES NF.CESSA~Y
TO HOLD THE VALUES 'Of COUNTERS AND POINTERS IN MEMORY LOCATIONS SO THAT
THE CPU REGISTERS CAN BE OPENED UP FOR OTHER USES. THIS PRACTICE DOES
HAVE A DRAWBACK. SINCE THE CONTENTS OF MEMOPY LOCATIONS CANNOT BE DIR­
ECTLY INCREMENTED .. THE CONTENTS MUST FIR5T BE LOADED INTO A CPU REG I S­
TER" THEN THE INCREMENT OR DEC~EMFNT PERFORMED" THEN THE NEW \lALUE PUT
BACK INTO ! TS MEMORY;STORAGE LOCATION. THI S TAKES A LOT OF EXTRA IN­
STRUCTIONS OVER THAT REQUIRED IF THE COUNTER OR POINTER CAN BE KEPT PER­
MANENTLY IN A CPU REG! STER - ESPECIALLY SINCE TO EVEN OBTAIN THE COUNTER
FROM MEMORY IT WILL ALWAYS BE NECESSARY TO FIRST SET UP THE "H" & "L"
REGISTERS TO POINT TO THE MEMORY LOCATION WHERE THE COUNTFR OR POINTER
IS STORED! HOVEVERi SINCE THAT IS WHAT HAS TO BE DONE IN ALL BUT SMALL
PROGRAMSi THE BEST THING TO DO IS TO TRY AND ORGANIZE THE PROCESS USING
SUBROUTINES THAT WILL REDUCE THE AMOUNT OF MEMORY USED BY THE OPERATING
PROGRAM.

PERHAPS THE FIRST ITEM TO CONSIDER IS WHF.RE TO STORE THE COUNTERS
AND POINTERS FOR A PROGRAM. WELL" IT IS GENERALLY A GOOD IDEA TO SET
ASIDE A SECTION OF MEMORY TO BE USED EXCLUSIVELY FOR STORING COUNTERS
AND POINTERS FOR THE PROGRAM. PREFERABLY THIS SHOULD BE eN ONE PAGE OF
MEMORY (VERSUS CROSSING PAGE BOUNDARIES>. WHILE ESSENTIALLY ANY PAGE
CAN BE USEDI IT MAY BE THAT FOR LARGE PROGRAMSi HAVING THE POINTERS AND
COUNTERS ON PAGE Clt0 WILL SA\IE; A BIT OF PROGRAMMING ROOM. THIS IS BE­
CAUSE WHENE\1ER THE PROGRAM NF.:F.DS TO REFER TO A COUNTERi REGISTER "Hit (AS
WELL AS "L") MUST BE SET UP TO POINT TO THE PAGE WHERE THE COUNTER IS
STORED. IT SEEMS THAT THERE IS OFTEN A "ZERO" REGI STER (ONE SET TO 000)
AROtJND AMONG THE CPU REGI STERS AND THUS A "LHX" ONE WORD I NSTRUCT ION CAN
BE USED TO SET "Hit TO THE PAGE INSTEAD OF HAVING TO USE A"LHI XXX" COM­
MAND AS WILL GENERALLY BE THE CASE IF THE POINTERS AND COUNTERS ARE NOT
STORED.I N AN Af'EA ON PAGE 00.

ONCE ONE HAS DECIDED WHERE PARTICULAR COUNTERS A~E TO BE STOREDi A
SUBROUTINE TO RETRIEVE ANY ONE OF THEM AND INCREMENT OR DECREMF.NT THE
VALUE .. THEN 'RESTORE IT BACK TO MFMORY IS QUITE STRAIGHT-FORWARD.

CNTUP, LCM
INC
LMC
RET

CNTDWN.. LCM
DCC
LMC
RET

I FETCH CNTR I NDI CATED BY "H-' & "L"
I I NCREMENT VALUE 0 F THE COUNTER I N REG '''C''
IRESTORE NEW COUNTER \1ALUE TO MEMORY
IEXI T SUB~OUTINE

I FETCH COUNTER
IfJECRF.MENT \IALUE
IRETURN COUNTER TO STORAGE
IEXIT SUBROUTINE

THE TWO SUBROUTINES JUST ILLUSTRATED CAN BE CALLED AS DESIRED TO OB­
TAIN A COUNTER AND INCREMENT OR DECREMENT THE UALUE ONCE REGI STERS "H"
AND "L" HAVE BEEN LOADED WI TH THE ADDRESS 0 F THE COUNTER. NOTE TOO,
THAT THE SUBROUTINE WOULD ALSO ALLOW THE RESULT OF THE INC~EMENT OR DEC­
REMENT TO BE TESTEDSV A CONDITIONAL INST~UCTION AFTE~ THF. SUBROUTINE IS
FINI5HED BECAUSE THERE ARE NO INSTRUCTIONS AFTE~ THE "INC" OR "DCC" THAT
AFFECT THE STATUS OF THE CPU FLAGS!

~ - 7

STORING POINTERS IN MEMORY IS GENERALLY A LITTLE MORE COMPLICATED
THAN STORING COUNTERS BECAU~E POINTERS GENFRALLY REQUIRF TVO ~TORAG~

LOCATIONS. ONE WORD FOR THE PAGE ADDRESS ANn ONE FOR THF LOCATION ON
THE PAGE. IN ADDITION" SINCE THE "H" & "L" REGISTERS WILL HAUE TO BF
USED TO POINT TO WHERE THE POINTFRS ARE STORF.O IN MEMORY" AND SINCE THE
POINTERS STORED IN MEMORY CANNOT BE USED AS POINTERS UNTIL THEY ARE
PLACED IN THE "U" & "L" RFGISTERS" A METHOD OF FIR~T OBTAINING THE NEW
POINTER INTO UNUSED CPU REGISTERS, THEN SWAPPING IT tilTH THE "Htt & "L"
REGISTFRS, MUST BE U~ED. THE PROCESS IS NOT SO DIFFICULT IF USE IS MADE
OF SOME OF THE SUBROUTINES (SUCH AS SWITCH) WHICH HAVE ALREADY RF:EN PRE­
SENTED IN THIS CHAPTER.

THE EXAMPLE ILLUSTRATED NFXT SHOWS A GFNFRAL SUBROUTINE THAT WILL
OBTAIN A TWO WORD POINTFR STORED IN MEMORY" THEN USE THE POINTER OBTAIN­
ED TO PUT THE CONTENTS OF THE ACCUMULATOR INTO A MEMORY LOCATION SPECI-
FIED BY THE POINTER t.JUST OBTAINED. f"FXT-IT WILL INCRFMENT THE POINTER
AND THEN RESTORE I T BACK TO I T~ STO'RAGF PLACF IN MEMORY. THF. POUTI NF.
ASSUMES THAT THE "H" & "L" REGISTFRS WILI~ AF. SFT TO THE PAGE AnnRE~~ OF
THE LOCATION WHERE THE POINTER IS STORFO BY THE CALLING PROGRAM" AND
THAT THE POINTFR IS STORED IN TWO CONSECUTIVE"WORDS - FIRST THE PAGF. AND
1liEN TH F LOCATION ON TH E PAGE.

,
PO I NT 11 LDM

INL
LEM
CAL
LMA
CAL
CAL
LME
DCL
LMD
RET

SWITCH

ADU
SWITCH

IFETCH POINTER PAGE ADDR INTO REG un"
IADVANCE TOP! CK UP CONTENTS OF NF,XT WORD
InET LOCATION AODR INTO REGI~TER HE"
IPUT NF~ POINTER INTO "H" & ttL"
IPUT Ace INTO M EM I NDI CATED BY NF.'" PO I NTF:R
IINCREMENT THE NFW POINTER
IRESTORE NFW POINTFR STORAGE ADDRESS
IDEPOSIT POINTER LOCATION ADDR IN MEM
IDECREMENT BACK TO PAGE ADDR STORAGE unRD
IDEPOSIT POINTFR PAGE ADDR IN MEM
I EX ITS URRO UT IN E

THE READER SHOULD NOTF A NICE FEATURE OF THE ABO\1E SURROUTINE. WHF.N
THE SUBROUTINE IS f'INISHFD THE CONTENTS OF "H·' & ttL" ARE SET TO POINT TO
THE 5TORAGF AREA OF THE POINTER STORFD IN MEMORY. THUS" THE SUBROUTINE
COULD NOW BF CALLED AGAIN 1 F DESI RED WI THOUT HAVING TO SET UP THF. "H"
AND "L" REGISTFRS AGAIN. FURiHERMORE~ WHEN THE ROtITINE IS EXITED, CPU
REGISTERS UO" & "r" WILL CONTAIN THE LATE5T VALUE OF THE POINTER STORFD
IN. MEMORY" WHICH MIGHT BE VALUABLE IN MANY CASES l-,THFRF: FURTHER PROGF55-
ING lJJAS TO BE DONE IN THE SECTION OF MEMORY WHERE THE STORED POINTF:R WAS
OPERAT I NG.

FXAMINE THE SMALL PROGRAM ILLU~TRATED HERE.

BUFFIN, LHI 000
LLI 240

INAGN" CAL INPUT
CAL POINT1
CPI 21 5
JFZ INAGN
RET

ISFT PAGE WHERE BUFFER POINTER STORED
15ET LOCATION ON PAGE OF BUFFER POINTFR
IGFT A CHARACTER FROM I NPrT DE"! CE
IPUT THE CHARACTER INTO MEM BUFFER APEA
ISEE IF CHAR WAS ASCII CODE FOF 'CR'
IIF NOT I AFT ANOTHFR CHA'RACTFR
IEXIT RTN WHEN FIND A 'CP' CHARACTER

THE ABOVE PROGRAM I AS SHORT ANn SIMPLF AS IT LOOKS, IS REALLY QUITE
POWERFUL. THE READER SHOULD BE ABLF TO SEE THAT IT IS A PROGRAM THAT
~ILL STORE A STRING OF CHARACTERS RECEIVED FROM AN INPUT DEVICE INTO A

4 - 8

"BUFFER" AREA IN MEMORY. IT WILL CONTINUE PLACING CHARACTERS INTO THE
MEMORY BUFFER ARFA UNTIL IT DETECTS A 'CRt <CARRIAGE-RETURN) CHARACTER.
THE LOCATION OF THE MEMORY BUFFER AREA IS STORED IN A POINTER THAT IS
LOCATED AT LOCATIONS 240 (PAGE) AND 241 (LOCATION ON THE PAGE) ON PAGE
00. OF COURSE." BEFORE THE ABOVE ROUTINE WAS USFD" THE PROGRAMMER WOULD
WANT TO PUT THE PROPER ADDRESS FOR THE BUFFER AREA INTO TH05E LOCATIONS.
THE ABOVE ROUTINE IS 'REALLY A GENERAL PURPOSE R01JTINF TO ACCEPT "TEXT
SENTENCES" AND STORE THEM ·IN A MEMORY BUFFEB. TO EXPAND THE ABOVE SUB­
ROUTINE INTO A COMPLETE PROGRAM REAUIRES VERY LITTLE ADDITIONAL EFFORT.

DATA IN" LHI 000
LLI 2A0
LMI 003
INL
L.MI 000
LLI 25'"
LMI 012

MORIN" CAL BVFFIN
LHI 000
LLI 250
CAL CNTDWN
JFZ MORIN
HLT

15FT PAGE WHERE "POINTl" POINTFR STORED
lAND ADDRESS ON THE PAGE FOR "POINTl"
ISET START OF MEMORY BUFFER AREA (PAGE)
IADVANCE TO NEXT WORD
ISET STAPT OF MEM AUF·F AREA (LOC ON PAGE)
IADDRESS 0 F' A "LINE COeNTER"
ISET LINE COUNTER TO 10 DECIMAL
/GET A LI NF 0 F TF,XT
15FT UP STORAGE ADDR OF LIN~ COUNTER
I U It " "
IDECRf:MENT LINE COUNTER UALUF
IIF NOT 10 (DEC) LINES, GET ANOTHER LINF.
IFND OF PGM (COULD USE RET" JMP ETC.)

THE ABOVE PROGRAM FIRST "INITIALIZES" THE STAFTING LOCATION OF THE
"TEXT BUFFER" TO PAGE 03 L.OCATION 000 BY SETTING THOSE UALUF:S INTO THE
"POINTl" MEMORY STORAGE WORDS. I T ALSO INITIALIZES A COUNTER STO~ED IN
MEMORY TO A VALUE DETERMINED BY THE PROGRAMMER. THEN THE SUBROUTINE
THAT INPUTS LINES OF TEXT IS CALLED. EACH TIME A LINE OF TEXT IS OB­
TAINED" THE "LINE COUNTERtt IS DECRFMENTED AND A DECI SION MADE AS TO
1fHETHER OR NOT ANOTHER LINE OF TEXT SHOULD BE OBTAINED. WHEN· A PRE­
DETERMINED NUMBER OF LINES HAVE BEEN OBTAINED" THE PROGRAM STOPS. IN­
STEAD OF STOPPING, HOWEVER" THE PROGRAM COULD HAtlE BEEN DIRECTED TO PRO­
CEED ELSEWHERE BY USING A "JMP" COMMAND .. OR" THE ENTIRE PROGRAM COUL.D
HAVE BEEN MADE A SUBROUTINE ITSELF BY USING A "RET" AS THE LAST INSTRUC­
TION!

IT IS HOPED THAT THE READER IS RAPIDLY BEGINNING TO UNDERSTAND HOW
QUICKLY SMALL., GENERAL PURPOSE SUBROUTINES" START OF,\'F.LOPING TREMENDOUS
POTENTIAL AS THEY ARE TEAMED WITH OTHER ROUTINES. ALSO~ THE READER
SHOULD BEGIN T6 SFE HOW THE USE 0 F MEMORY AUGMENTS THE CAPABILI TY OF THE
CPU REGISTERS - BY USING MEMORY LOCATIONS TO STORE POINTERS AND COUNTERS
THE PROGRAMMER OPENS A WHOLE NEW DIMENSION TO THE WORLD OF PROGRAMMING.
IT IS HOPED THE BEGINNING PROGRAMMER BECOMES A LITTLE BIT EXCITED AS
THESE CONCEPTS ARE GRASPED AND UNDERSTOOD - FOR THESE CONCEPTS ARE JU~T
THE BEGINNING! AND EXCITEMENT STIMULATES THE IMAGINATION AND GIVES ONE
INCENTIVE TO GO F'ORWARD AND INVESTIGATE AND LEARN MORE!

BEFORE GOING FURTHER" HOWEVER" IT MIGHT 8E WISE TO SLOt., THINGS nOWN
FOR JUST A BIT AND RE-ITERATE THE IMPORTANCE OF KEEPING A PROGRAM ORGAN­
IZED AS I TIS DEVELOPED. IN THE LAST SEVERAL PAGES .. A NUMBER 0 F SUB­
ROUTINES WERE PRESENTED .. AND THEN COMBINED TO FORM LARGER SUBROUTINES.,
AND FINALLY THE tfTEXT BUFFER INPUT" PROGRAM JUST PRESENTED. THE PROGRAM
PRESENTED USES MEMORY STORAGE IN A VARIETY OF WAYS. FIRST THE PROGRAM
ITSELF MUST BE STORED IN MEMORY. SECONDLY .. OPERATIONAL PORTIONS OF THE
PROGRAM REQUIRE MEMORY STORAGE AREAS fOR POINTERS AND COUNTERS. AND,
LAST BUT NOT LEAST" THE PROGRAM REQUI RES THE USE 0 F MEMORY FOR "DATA"
MANIPULATION IN THE FORM OF THE TEXT BUFFER. FURTHERMORE" THE "TEXT
BUFFER INPUT" PROGRAM REALLY CONSIST 0 F A WHOLE GROUP 0 F SMALLER SUR-

4 - 9

ROUTINES. ~UBROUTINF~ TriAT MAY BF STORED IN DIffERENT ARFA~ IN M~HORY.
WHAT IS NFEDEJ)" A~ HAS BEEN DISCUSSED IN THE PREvIOUS r.HAPTER .. IS A MF.M-
MY MAP TO HE.l.P THE PROr,PAMMFR PLAN THF ALLOCATION 01 MF.MORY. IT MIGHT
HE A GOOD IDEA fOR THE READER TO DEVELOP A MEMORY MAP FOR THF ABOUF. PRO­
r,RAM AS PRACTICE. A GOOD MFTHOD TO FOLLOW WOULD SF TO ~FT A~lnF. ROOM
FOR THE MAIN PART OF TtiF. P~I)G~AM (PF.~RHAPS LEAUING A GOOD AMOUNT OF 5PACF
FOR EXPANDING THE PROr,RAM I" DESIRED>. THEN THF. UAPIOU~ ~nB~nUTlf\JFS r.AN
BF A~SIr;NFD TO AREA~" PO~~IBLY LFAVING A BIT OR RnOM HFTlIFFN FAr.H ONF IN
TrlF FVENT FUTURE MODIFICATIONS ARF DESIRFD. ONF CAN U~F A ~F.PARATF MAP
FOR EACH PAGE OF MF~nRY WrlERE ROUTINES AFE ~TORFn. FOP AREA~ ~~owINA
THE LOCATION~ OF COUNTE'PS AND POINTFR~" THE MAPS MAY HE "F.XPANDFD" TO
gHOw INDIuIDUAL ADDRF:g~FS.

PG LOC RTN NOTES
¢¢ 2.i-Cf> SUFFER. PG- I1DOIf!.. 01= f'Nrte ':IUI "sv,c-rIN"

241 PD INTE.R LOt:. I9P[)~ II " " /I

242.

2.43
244-

2.45

2.46

2.47

2S¢ COUNTER USED hS TE.XT ('LINe CtWNr€te II

2.5/

252.

253

2.54

255
256

257

26;

261

2.62
263

264

265
2.66

267

2. ?¢
2.71

2.72

Z73
2.74

2?5

2. 7'
,Ir 2.77 I

EXPANDED MAP SHOWING LOCATION~ OF COUNTF.~~
AND POINTERS FOR THF TEXT RUFFF~ INPUT PROr,PAM

... - 10

PG LOC RTN NOTES
02. ¢qj¢ /)11 T,q I N.J INPOT /¢ lJe~. i.iAlt!S (rf 1t!Jf t

I¢ IN rd 8VF!=E!!!. AH!.£/9 ON ptf t;l3

2(; tJ~/(,.. 1It!tf!.SidN ,E4!.?"IAt~S ~.j'

3¢ (I)' rA 1-) t.d~ 5 - L e .. lit!" ~CI>M F()I!.

1-¢ E-XP,4I\1SI()!\J

5¢
6¢

7fJ
I¢¢
II¢

12.¢
13¢

f1-¢
IS¢

/b¢
17¢
2¢¢ 8tJFFIN.,J INf'UT .z LINe Te.;r r - 'et€. ;'

2ft; eNOS LINE (2 t/J ,~c:::s)

22.¢

23¢ POINT1..) Fe:t"ch pN-tf(I.. OCS IN MeN!

24¢ f)E"SIC-,vI1T€/) BY C/'IL.LIN 6- ,.erN-

2S¢ DEP lice ~ JIIc!YI.,J f/1f)1I I'IIJT~.J .€EST~~E.

26¢ SW ITCH) /E.-,(c.nAIIJife H~L ""if-I, D("£
I

27¢ AOV) rNC/e. vRi..ue IN Htl.-

3¢¢ CNTDl.ON) DEC.te. . CNTI< S/~IzEO IN MSM

31tJ
32¢
33¢
3if¢

35¢ ._-----------
36¢

"I' 37¢

SAMPLE MAP OF TEXT BUF-FER INPUT PPOGRAM
WITH MAIN ROUTINE AND SUBROUTINES ASSIGNED ON PAGE 0?

THE SAMPLE MAPS SHOWN HERE ILLUSTRATE ONE MAY THE PROGRAM COULD BF
ASSIGNED TO MEMOBY LOCATIONS ON PAGE ~2. NOTE HOW THE USE OF THE MAPS
GIVES COHEPFNCE TO THE PROGRAM THAT IS NOT EASILY DISCERNED BY A PU~ELY
MENTAL IMAGE! (PAGE 03 15 ASSUMFD TO BE USF.O SOLELY AS A "TEXT BUFF-FR"
AREA AND A MEMORY MAP FOR THE AREA IS NOT SHOWN).

ONCE THE MEMORY MAPS HAVE BEEN MADE UP AND THF STARTING AnnRF5SES OF
ALL THE SUBROUTINES A5SIGNFD" IT IS AN EASY MATTER TO CONUE'RT THF MNE-
MONICS TO MACHINE CODE. AN ASSEMBLER PROGRAM MAY SF. USED If AVAILARLE.
FOR PRACTICE" THE READER MIGHT WANT TO TRY DEUFLOPING THF MACHINF. CODF.
BY HAND. FOR COMPARISON PURPOSES THE OBJECT CODE FOR THE PROGRAM WOULD
APPFAR AS SHOWN HERE 1 F THE SUBROUTINE!;; ARE A55IGNFD TO THF ADDRESSES

~ - 11

AS SHOWN IN TH E EX AHPL E MEMORY MAP.

AODR CODE MNEMONIC COMMENTS
----_ ... -.. ---- ... ---- .. ~- ~----~-~~-~--~~---~-~--~~-

~2 id00 056 DATAIN~ LHI 000 ISET PAGE WHERE "POINTl" POINTER STORED
02 ~01 000
02 002 066 l.Ll 240 lAND ADDRESS ON' THE PAGE FOR "POINTl"
02 003 240
fd2 004 076 LMI 003 ISET START OF MEMORY BUFFER AREA (PAGE)
02 0135 003
02 ~06 060 INL IADUANCE TO NEXT WORD
02 007 076 l.MI 000 ISET START OF MEM RUFF AREA (LOC ON P(;)
02 010 000
02 011 0n6 1.1.1 250 IADDRESS 0 F A "Ll NE COUNTER"
02 012 250
02 013 076 LMI 012 ISET LINE COUNTER TO 10 DEr.IMAL
02 1014 012
02 015 106 MORIN" CAL·BUFFIN IGET A LINE OF TEXT
02 016 200
02 017 002
02 020 056 LHI 000 ISET UP STORAGE ADDR OF LINE COUNTER
02 021 000
02 022 066 LLI 250 I It It It It ..
02 023 250
02 024 106 CAL CNTDWN IDECREMENT LINE COUNTER VALUE
02 025 300
02 026 002
02 027 1 10 JFZ MORIN 11 F NOT 10 (DEC) LINES .. GET ANOTHFR LINE
102 030 015
02 031 002
02 032 000 Hl.T lEND OF PGM (CO ULD' USE 'RET .. JMP ETC.)

•

02 2~0 056 BUFFIN .. LHI 000 ISET PAGE WHERE BUFFER POINTER STORED
02 201 000
02 202 066 LLI 240 ISET LOCATION ON PAGE OF BUFFER POINTER
02 203 240
02 204 10 ~ INAGN" CAL INPUT IGET A CHARACTER FROM INPUT DEVI CE
02 205 XXX
02 206 XXX
02 207 106 CAL POINT! IPUT THE CHARACTER INTO MEM RUFFER AREA
02 210 230
02 21 1 002
02 212 074 CPI 215 ISEE IF CHAR WAS ASCI I conE FOR 'CR •
02 213 215
02 214 110 JFZ INAGN IIF NOT .. GET ANOTHER CHARACTER
02 215 2v.14
02 216 002
02 217 007 RET IEXIT RTN WHFN FIND A 'CR • CHARACTER

02 230 337 PO INT1 .. LDM 'I FETCH PO INTER PAGE ADDR INTO RFG "n"
02 231 0f..0 INl. IADU TO PI CK UP CONTENT5 OF NEXT WORD
02 232 347 LEM IGET LOCATION ADDR INTO RF:GISTER ., EI.
02 233 106 CAL SWITCH IPUT NEW POINTER INTO "H" & "1."
02 234 260
02 235 002

• - 12

ADDR
------.
02 236
02 237
02 240
02 241
02 242
02 243
02 24b
02 245
02 246
02 257
~2 2510

02 260
02 ? 61
02 2f-2
02 263
02 264
02 265
02 266

02 270
02 271

'02 272
~2 273

02 30421
02 301
02 302
02 303

CODE

370
106
270
002
106
260
"'02
374
061
373
007

325
353
33P.
326
364
342
007

060
013
050
007

327
021
372
0(217

MNEMONIC

LMA
CAL ADV

COMMENTS

---~---------~------------

IPUT ACC INTO HEM INDICATED BY NF.VPNT~
IINCREMENT THE NEW POINTER

CAL SWITCH IRESTORE NEW POINT~R STORAGE ADDRESS

SWITCH"

AD\!"

LME
DCL
LMD
~ET

LCH
LHD
LDC
LCL
LLE
LEC
RET

INL
RFZ'
INH
RET

CN TD,.1N" LCM
DCC
LMC
RET

IDEPOSIT POINTER LOCATION ADDR IN MEM
IDECR BACK TO PAGF'ADDR STORAGE WORD
IDEPOSIT POINTER PAGE ADDR IN MF.M
lEX I T SUBROUTINE

ILOAD CONTFNTS OF "H" INTO "C" TrMP
INOW LOAD "0" INTO 9tH"
IMOUE OR I G "H" FROM "c" INTO uD"
ISIMILARLY LOAD "Lit INTO .. c .. TEMP
IPUT "E" INTO "L"
lAND STORF: ORIAINAL "L" IN "E"
IEXI T SUBROUTINE

IINCRFASE VALUE OF REG "Lit BY
IEXIT SUBRTN I F NOT GOING TO
IINCRFMFNT tlH" BY 1 I F ON NEll
IEXIT SUBRO UT IN E

I FFTCH COUNTER
IOECREMENT VALUE
IRE1uRN COUNTER TO STORAGE
IEXIT SUBROUTINE

1
NE~ PG

PAGF

ORGANIZING AND MANIPULATING TABLES

A '-'ERY POWERFUL FEATURE OF A DIGITAL COMPUTER I~ ITS ABILITY TO
STORE DATA AND TO PROCESS IT AS THE PROGRAMMER DESIRES - PERHAPS BY AR­
RANGING IT IN SOME SPECIFIC KIND OF ORDER# OR BY PERFORMING MATHEMATICAL
OPERATIONS# SUCH AS OBTAINING AN AVFRAGE# OR CONDENSING THE DATA IN SOME
MANNER. THE COMPUTER IS ALSO SUITED FOR RAPIDLY EXTRACTING INFORMATION
OF INTEREST FROM STORAGE BY PERFORMINr, SUCH FUNCTIONS AS "MATCHING" SIM­
ILAR TYPES OF DATA" AND AS A "CONUERTING" MACHINE - WHERE DATA IN ONE
TYPE OF CODE CAN BE QUICKLY CHANGED TO A DIFFERENT REPRESENTATION. IN
SUCH APPLICATIONS" IT IS FREQUENTLY NECESSARY TO DEVELOP PROGRAMS THAT
ORGANIZE DATA INTO "TABLES" OR TO PROCESS INFORMATIO!'J STORED IN "TABLE­
LI KE" FORMAT.

THERE ARE A VARIETY OF WAYS TO ORGANIZE TABLES FOR COMPUTER PROCFS-
SIN(3. THE READER HAS ALREADY" WHETHER 1 T HAS BEEN REALI ZED OR NOT" BEEN
INTRODUCED TO SEVERAL TYPES OF "TABLES" IN THIS MANUAL. IN THE FIRST
CHAPTER MENTION WAS MADE OF USING A "LOOK-UP" TABLE TO CONUF,RT BET1"EF.N
ASCII AND BAUDOT CODES USED IN VARIOUS KINDS OF ELECTRIC TYPING MACH-
INES. AND" IN THIS CHAPTER# THE DISCUSSION AND PROGRAMMING CONSIDE~A-
TIONS FOR A uTFXT BUFFER" WERE ACTUALLY CONCERNED WI TH A uFREE-FORM"
TYPE 0 F TABLE.

4 - 13

FOR THE P~~POSES OF THE FOLLOWING DISCUSSIGNI TWO BA~IC TYPES OF
TABLE OJitGANJZATIONS WILL BE DISCUSSED. ONE; WILL BE ftF.FEPt~ED TO AS
"FIXED-FORMAT" AND THE OTHE~ AS ·"JiftEF.-Ji"ORMAT.·· THE FIXF.D-FO~MAT TYPE OF
tABLE ~EFERS TO TABLES THAT ARE FIXED BY PROG~AMMING CONSIDEftATION~ INTe
STRICTI' UNCHANGING PATTERNS OF O~GANIZATION. THE FJltEE-FOPtMAT KIND USE
Dl FFF.ftENT PROGRAMMING TECHNIQUf:S TO ALLOW THE STORAGE OF DATA IN RANDOM
LENGTH SECTIONS OF MFMO'RY. THFJltF ARE ADVANTAGES AND DI SADUANTAGES TO
EACH FO~MAT AND THE CHOICE OF WHICH ONE TO USE IS GENE~ALLY A FUNCTION
OF THE TYPE OF TASK THAT IS TO BE PEAFO~ME~. FAEE-FO~MAT O~GANIZATION
IS GENERALLY MO~E ~UITABLF TO TEXT HANDLING TASKS. FIXED FOPtMAT O~GANI­
ZATION IS GENERALLY THE CHO ICE FOR "CONVERSION" TABLFS. 'TH!:~E A~F ALSO
CASE5 WHERE THE, CHOICE IS A ~ELATIVF.,LY MINOR ONF. AND IT BECOMES A MATTER
OF THE PROGRAMMER'S P~EFE~ENCE.

TO BEGIN DELVING INTO THF SUBJECTI A TABLE WI TH MANY PRACTICAL AP­
PLICA7IONS WILL BE DISCCSSED. P~OGRAMMING CONDIDERATIONS FO~ DEVELOPING
IT IN BOTH TYPES OF FO~MATS WILL BE P~ESENTED. IN MANY SITVATIONS I IT
IS DESIRABLE FO" A COM"UTE~ PROGRAM TO HAVE A "CONTROL" TABLE. THAT IS
A TABLE THAT WILL INTERPRET COMMANDS FROM AN INPUT DEVICEI AND DEPENDING
ON WHAT IS RECEIVED" PERF'ORM A SPECIfIC TYPE OF FUNCTION. FO~ THE P~-
POSES OF THIS ILLUSTRATION IT WILL BE ASSUMED THAT AN OPERATO~ WILL TYPE
IN COMMANDS FROM A KEYBOARD. THE COMMANDS WILL BF IN THE FORM OF WO~DS
THAT MAY VARY IN LENGTH FROM 2 TO 6 CHARACTERS. WHENEVER A "VO~O" HAS
BEEN INPUTTED TO THE COMPUTER, THE COMPUTE~ WILL CHECK TO SEE IF THE
"CONTROL TABLE" CONTAINS A MATCHING WOJltDI AND IF SOl THE COMPUTER WILL
OBTAIN THE ADDRESS OF A AOUTINE THAT I TIS TO PE'PtFORM AND EXECUTE THE
FUNCTION. WHEN I TIS THROUGH PERFORMING THE HOUTINEI OR I F A "MATCH"
FOR THE COMMAND WAS NOT FOUND, THE PROGRAM WILL RETURN TO THE "COMMAND"
MODE AND WAIT FOR A NEW KEYBOAftg ENTRY AFTER SENDING A RESPONSE ON AN
OUTPUT DEVICE TO NOTIFY THE OPERATQR IT IS READY FO~ A NEW ENT~Y. FO~

THIS EXAMPLE, THE OUTPUT DEVICE WILL BE ASSUMED TO BE AN ELECT~IC TYPE­
WRI TER.

FO~ A HYPOTHETICAL EXAMPLEI I T WILL BE PROPOSED THAT THY:: "CaNT~OL'f
WORDS WILL CONSIST OF THE FOLLOWING: uGO.'·./ If LIST." "MEDIAN." "AVG."
"C,aUNT." "ERASE." THESE CONTROL WORDS MIGHT BE ASSOCIATED WITH A PRO­
GRAM THAT IS TO BE USED BY A SCIENTIST CONDUCTING SOME TYPE OF EXPERI­
MENT. SWPPOSE THE CONTPtOL COMMAND "GO" INDICATED THE COM"UTEPt WAS TO
START A 10 SECOND TIMING LOOP. AT THE START OF THE 10 SECOND TIME PER­
IOD THE PROGRAM WOULD SEND A "'RESET" PULSE TO SOME SOPtT OF EXTEJltNAL
COUNTING DEVICE THAT WAS COUNTING THE "EVENTS" THAT OCtJFn~ED IN SOME KIND
OF EXPERIMENT. WHEN THE 10 SECOND PERIOD WAS OVERI THE COMP~TE~ WOULD
IMMEDIATELY OBTAIN THE VALUE REGISTERED BY THE EXTERNAL COUNTE~ AND
STORE THE NUMBER OBTAINED IN A "DATA BUFFEJIt. It THE "LI STU COMMAND HI GMT
Dl 'AECT THE COMPUTEPt TO PRINT OUT ALL THE DATA VALUES STOPtED IN THE "DATA
BUFFEf(" (PERHAPS 50 THE SCI ENTI 5T COULD LOOK FOR PATTERNS OR JUST HAVE
A COpy OF THE RAW EXP~IM!NTAL DATA). THE ··MEDIAN" COMMAND COULD DIRECT
THE COMPUTER TO DETERMINE THE MEDIAN OR MIDDLE VALUE OUT OF ALL THE
VALUES STOftED IN THE DATA BUFFER AND PRINT OUT THAT NUMBER. SIMILAALY I

niE "AUG" DIRECTIVE COULD SIGNI FY THAT THE PROGRAM WAS TO EXECUTE A
ROUTINE TO CALCULATE THE A\1EJ!tAGE VALUE OF THE DATA. THE "CAUNT" COM-
MAND HIAHT BE USED TO HAVE THE COMPUTER INDICATE HBW MANY 10 SECOND EX-
PERIMENTS HAD BEEN CONDUCTED. ANDI THE "ERASE" COMMAND COULD 51 GNI FY
THAT THE "DATA BUFFER" WAS TO BE "CLEANED OUT" FOPt A NEW SET OF EXPE'AI­
MENTS.

THE CONTROL TABLE NEEDS TO BE CQNSTPttJCTED SO THAT THE PRQG'AAM CAP.'
"SEAMCH" FOR A ttWQRD" THAT I S THE SAME AS TH-AT ENTERED ON THE KEYBOA"D
AND IF A "MATCH" IS FOUND, THEN THE TABLE WOULD CONTAIN INFO'AMATION (AN
ADDRESS) THAT WOULD DI~ECT THE COMPUTER TO THE PPtOPEPt ROUTINE TO BE EX-

4 - 14

a:UTED. THE CONTROL TABLE COULD BE CeNSTRUCTED BY S!H'ING ASI DE "AN AREA
IN MEMe~Y THAT CONTAINED THF. P~OPEA CODE FO~ THE LETTERS IN EACH "CON­
TftOL WOftD" FOLLOWED BY TWO MEMORY VOPIDS CONTAINING THE PAGE AND LOW AD­
DRESS WHERE ·THE APP~8PRIATE ~OnTINF. RESIDED. IF THE CONTROL TABLE VAS
eONSTRUCTED IN "FIXED-FOPtMAT" I T HI GHT APPFAR AS FOLLOWS.

FIXED-FORMAT CONTROL TABLE

ADDRESS

02 00~

02 001
92 092
02 003
02 00.4
02 005
02 006
02 007
02 010
02 011
02 012
02 013
~2 014
02 015
02 016
02 017
02 020
02 021
02 022
02 923
02 9211
02 025
02 026
02 027
02 030
02 031
02 032
02 033
02 034
02 035
02 036
02 037
02 0.Q0
02 '041
02 042
02 0.3
02 044
02 045
02 046
02 047
02 "50
02 051
92 052
02 053
92 054
02 055
0P 056
02 057
02 0~0

CONTENTS

307
317
000
000
000
000
001
100
314
31 1
323
324
000
000
001
140
315
305
304
31 1
301
316
001
200
301
326
307
000
000
000
001
240
303
317
325
316
324
000
001
300
30~

322
301
323
305
000
001
340
800

• - 15

AEMARKS

ICODE FO~ LETTER
I " " ••

"13"
"0"

INOT USED FOR THIS COMMAND
INOT USED FOR THIS COMMAND
INOT USED FOR THIS COMMAND
INOT USED FUR THIS COMMAND
IPAGF. WHF."E "GO" "OUTINE STAATS
ILOC ON PG WHERE "GO" STARTS
ICO DE FOR LETTER "L"
I "
I It

I It

.t
t.

ttl"
.. S ..
"Tit

INOT USED FO~ THIS COMMAND
INOT USED FOR THIS COMMA~n
IPG WHERE "LIST" ROUTINE STA~TS
ILOC ON PG WHERE "LIST" STARTS
ICODE FOR LETTEJIt "Mu
I ...
I II

I ..
I ..
I tt

"
..
It

"
"f

"E"
"0" .
"I"
"A"
"Nt'

IPG WHERE "MEDIAN" RTN 5TARTS
Il.OC ON PAGE FOR "MEDIAN"
ICODE FOR LETTER "A"
I" II .. ltV"
I" "G"
INOT USED FOR THIS COMMAND
INOT USED FOR THIS COMMANn
INOT USED FO~ THIS COMMAND
IPG WHEJlltE "A"G" AOUTINE STA"TS
ILOC ON PAGE WHERE "AVG" STARTS
ICODE FOR LETTER "c"
I" .. " "0"
I t. .. It "U"
I" " " "N"
I" ttTH

INOT USED FOR THIS COMMAND
IPS WHERE ttCOUNTtf ATN STARTS
ILOC ON PG WHF:RE "COUNT" STA~TS
ICO DE FO~ LETTER "E"
I ..

-/ .. , ..
I ..

tt

••
If ..

..
"

"

"''fit''
ttAu
... s ..
"E"

tNOT USED FOR THIS COMMANO
IPG VHE~E "F.RA~F" "'TN STARTS
Il.OC ON PG WHE'AF. "ERASE·' STAPfTS
I**END OF TABLE HA"KEJIt**

IT CAN BE NOTED THAT THE FIXE9-FORMAT TABLE OCCUPIES MFMO~Y FROM
LOCATION 000 TO 060 (INCLUDING AN "END OF TABLE MAJltKER" WHICH WILL BE
DISCUSSED LATER). OBSERVATION Qf THE TABLF~ SHOWS THAT THF.,"E IS A LOT
OF "WASTED" SPACE WHE"E MEMORY LOCATIONS ARE FILLEC WITH ZEROS A!i THE
"COMMAND'· WOFD DI D NOT MEQUI RE SIX CHARACTERS. MOPE CHAPtACTE'RI STI CS
OF THE ABOVE FORMAT WILL BE P'AESFNTED SHO~TLY. F'1~5T .. TWO SIMILAJIt
"~EE-rORMAT" VE~SIONS FOR THE SAMF "CONTROL" TABLF. WILL BE ILLt'STRATFn.

FRE:E- FORMAT CONTROL TAALF. - UFRSION # 1

ADDRESS CONTENTS REMA~K5 -----_ __ __ .. _-
... _--- .. -_ ..

~2 000 397 IconE FOP LF.TTE~ "G!'
02 0(1}1 317 I " "0"
02 002 000 I*ENP OF COMMAND WO~D MA'P.KE~*
02 003 001 IPAGE WHERE "GO" ROt:TINF STARTS
02 00~ 100 ILOC ON PC; WHE'AE "GO" STA~TS
02 o I!.'! 5 314 ICODE FOR LFTTER "L"
02 00 f. 31 1 I .. It .. "I"
02 007 323 I ,.

tt SIt
02 010 324 I .. " ,·t t'T"
02 01 I 000 I*END OF COMMAND WORD MARKER*
02 012 001 IPG WHERE ttLI!iT" ~OUTINE STARTS
02 fd13 140 ILOC ON PG WHE'RE "LIST" START5
02 01.4 315 ICODE FOR LFTTER "M"
A2 015 305 I It .. " "E"
92 016 30'- I .. " " "D"
02 017 31 1 I II "Itt
82 820 301 I .. " .. "A"
02 021 31~ I .. If If "N"
02 022 090 I*END OF COMMAND WORD MARKE'R*
02 023 001 IPG 1IHF~E "MEDIAN" RTN ~TAJitTS
02 024 200 ILOC ON PAGE FOR "MEDIAN"
02 025 301 ICODE FO~ LETTE~ "A"
02 026 326 I n " .. "V"
~2 A27 307 I If .. " "G"
92 030 000 I*ENC OF COMMAND YO~D MA"KE~*
92 031 001 IPG WHE~F "AUG" ~OUTINE 5TARTS
02 032 2~0 ILOC ON PAGF WHERE "AUG" STA~Tfoi
02 033 303 ICODE FO~ LETTE" .. c ..
02 034 317 I .. " " "0"
02 835 325 I " It If "U"
02 036 316 I " "N"
02 037 32. I •• " If "T"
02 'tI&0 000 I*END OF COMMAND WO"D MARKE~*
02 elll 001 IPG WHEBE "COUNT" ~TN START~
02 042 300 ILOC ON PG WHERE "COUNT" START.S
02 043 305 ICODE FOR LETTER "E"
02 0~4 322 I tt "R"
A? 0.5 301 I " "A"
02 046 323 I .. II It .. s ..
02 0.7 30S I " .. " "F"
02 050 080 l*mD OF COMMAND wO~D MARKER*
02 051 "01 /PG WHEJ1tE "ERASE" STA'ATS
02 052 3 .. 0 fLOC ON PG WHERF "El'tASF" STARTS
02 053 800 I**END OF TABLE MA~KF.R**

.fI - 16

FREE- FO~MAT CONTROL TABLE - VERSION #2

ADDPtESS CONTENTS REMARKS

---~ --- ... _-------- --- .. _-----
02 000 307 ICGDE FOR L'£TTE~ " G"
02 001 317 I "0"
02 002 001 IPAGE VHEJitE "GO" ROUTINE STA~TS
02 003 100 ILOC ON PG WHERF "GO" STA"TS
02 004 314 ICODE FOR LETTER ttL"
02 005 31 1 I " .. tt "I"
02 006 323 I If s ..
02 007 321t I "T"
02 010 001 IPG WHERE "LIST" ROUTINE STARTS
02 01 1 140 ILOC ON PG WHERE "LIST" STA~TS
02 012 315 ICODE FOR LETiER "M"
02 013 305 I It " It "E"
02 01La 304 I , . tiD"

02 015 31 1 I It "I"
02 016 301 I " .. tt itA"

02 017 316 I .. It " "N"
02 020 001 IPG WHERE "MEDIAN" RTN STAATS
02 021 200 ILOC ON PAGE FO~ "MEDIAN"
02 022 301 ICODE FOPt LETTER "A"
02 023 326 I tt "V"
02 024 307 I "G"
02 025 001 IPG WHERE "AVG" ROUTINE STARTS
02 026 240 ILOC ON PAGE WHERE uAUG" STA~iS
02 0P.7 303 I€ODE FOR LETTER "c"
02 030 317 I " " " "0"
02 031 325 I " .. If "U"
02 032 316 I " "N"
02 033 32i1 I .. II .. "T"
02 034 001 IPG WHERE "COUNT" RTN STARTS
02 035 300 ILOC ON PG WHERE "COUNT" 5TARiS
02 036 305 ICODE FOR LETTE~ "Ett
02 037 322 I It tlR"
02 040 301 I ,I. tt .. , "A"
02 041 323 I .. tf s ..
02 042 305 I .. It It "E"
02 043 001 IPG WHERE "E~ASE" 5TA~TS
02 044 340 ILOC ON PC:; WHERE "ERAS E" STARTS
02 045 000 I**END OF TABLE MARKER**

THE READE~ CAN IMMEDIATELY NOTICE THAT BOTH OF THE FREE-FORMAT OR­
GANIZATIONS TAKE LESS MEMOfty STORAGE FOR THE TABLE ITSELF THAN THE
FIXED-FORMAT AR~ANGEMENT. TH! SIS GE.NERALLY THE CASE WHEN THE~E ARE
LARGE VARIATIONS IN THE LENGTH OF THE DATA (NUMBER Of MEMORY WORDS TO A
"FI ELI)" SUCH AS THE "CONTROL WORDS" IN THE TABLES) THAT I 5 HELD IN THF.
TABLE. FOR FIXED-fORMAT TABLES" EACH "BLOCK" (IN THE EXAMPLE BEING 01 S­
CUSSF[l A BLOCK WOULD BE 8 MEMORY WORDS) MUST BE LONG ENOUGH TO CONTAIN
THE LA~GEST POSSIBLE FIELDS THAT COULO BF ENCOUNTERED I.N THE APPLICA-
Tl ON. (IN THE PRESFNT ILLUSTRATION" THE .tYI ELDS" I N A "BLOCK" wOtTLD BE
THE "CONTROL WORD" FI ELD AND THE "ADDRESS" F"I ELD. THE LARGEST "CONTJI'OL
W~D" FI ELO REQUI'RES (, MEMORY WO~DS. ALL THE "ADDRESS" FI ELDS REQUI AE
2 WORDS - SO EACH BLOCK MUST HAVE 8 MEMORY LOCATIONS AVAILABLE). NOTE
THAT A FIXFD FORMAT TA8LE MAY NOT ~EQUIRE MO~E ROOM THAN A F~F.E-F"O~MAT
TABLE OF THE TYPE SHOWN IN VERSION *1 IF THE~E IS NOT A LA~GE UA~IATION
IN THE LENGTH OF DATA WITHIN FIELD(S>. FOft INSTANCE# HAD ALL OF THE

~ - 17

CONTROL WORDS BEEN SEl.ECTED TO BF 5 AND f LETTERS IN LFNr,TH" THFN "FR­
SION #1 wOULD HAUF ACTUALLY REQUIRFD MORF MF'MORY SPACE FOR THF: TARLE
1HAN THF. FIXFD-FORMAT CONFIGURATION!

HOWEVFR" THE AMOUNT OF MEMORY SPACE OCCUPIED BY THE TARLF ITSELF IS
NOT THE ONLY PROGRAMMING POINT TO BE CONSIDFRFD WHFN CHOOSING THF. TAALF
mRMAT TO HE USFD IN A PARTICULAR PROGRAM. ONE MUST ALSO LOOK AT ~OMF
OTHER PARAMFTERS THAT WILL ALSO HAVF AN EFFECT ON THE TOTAL SIZF OF THF
JJPOr.;PAM. ONE SUBTLE PAP.AMFTFR" FOR INSTANCE" 15 HO'~ WILL THE INPUTTEn
CHARACTER STRING FOR A 'uCONTROJ,.. WORD" RF "DELIMITFD." SUPPOSF .. FOR FX-
~PLE" THAT A "CONTROL '-IORO" CliARACTFR STRING 15 INPt'TTFD VIA AN ASCII
KEYBOARD SUBROUTINF AND STORED IN A SMALL BUFFFR AREA IN MFMORY. ONF
CAN ASSUME THAT THE ACTUAL INPUT STRINr, WAS "DFLIMITFD" (FNf'FD> BY A
SPECIAL CHARACTFR SUCH AS A "CARRIAGE-RFTURN." THF ttCARRIA(,;F-RFTl'RN"
t.10ULD INfORM THE INPUT ROUTI~'F. TO CFASE ACCFPTING r.HARACTFP~ A~H" PFTTTP~~

m TH~ "CALLING" PROGRAM. HO\JF\1FR" SINCF THF CHAPACTFR STRING THAT I~

RFCFIUFD MUST ALSO BF USED BY SOMF OTHFR ROUTINE (~rHFN 5FARCHIN(~ THE
CONTROL TABLE FOR A MATCH)" AND ~INrF THE CHARACTER ~TRING CAN UARY l~J

LENGTH .. THFN SOMF MEANS MUST BE PROUIDFD FOR TELLIN('; THF TABLF SEARCH
ROUTINE JUST HOW MANY CHARACTERS ARE IN THE PARTICULAR 5TRINf, OF CHAP­
ACTFRS STORED IN THF BUFFER!

THIS CAN BE DONF IN SEUFRAL DI FFFAF'NT WAYS. ONE \fAY WOULD BF TO
HAVE THE ·'CARRIAGF-RETURN" CODF RFCEIUFD BY THF: ASCII INPUT ROUTINF
STORED AS THF LAST CHARACTER IN THF CHARACTER STPINn EUFFER. THF TABLF
SEARCH ROUTINF COULD USE THE "C-fP' SYMBOL AS A "DFLIMITFR" TO SIANIFY
1HF. END OF THE CHARACTF.'R STRING. THE CHARACTER ST~IN~ RlTFFFR ~'OULD
1HFN CONTAIN INFORMATION STORED AS SHOt.,JN HERF:

AnDRE,55 LOCATION CONTFNTS

WORD II CODF F"OR CHARACTF.R .. 1
'-'ORO 12 CODF FOR CHARACTFF #2

• •
•

WORD #N CODF FOR CHARACTER IN
11'ORD IN+l CODE fOR CARRIAGE-RETURN

NOTF" THFN, THAT THF CHARACTER BUFfF.R "'OULD HAVF TO BE A BLOCK OF
LOCATIONS IN MEMORY LONG FNOUr,H TO HOLD (N + 1) CHARACTF'R~ \THERE "~J" I ~
iHE MAXIMUM NUMBER OF CHARACTERS ALLO\'FD IN A CONTROL "'ORD.

A SECOND WAY TO DF-LIMIT THF. CHARACTFR ~TPING IN THE BUFFFR WOULD RF
Tn SFT PP A COUNTFR THAT INCREASED IN HALVE FACH TIMF A CHARACTER "'A~

ACCFPTED INTO THF BUFFF,R. THE "ALUF IN THE COUNTFR ltrotTLD THEN RE USED
BY THE TARLE SEARCH ROUTINE TO INDICATE HOl-J LONG THF CHARACTFP ~T~IN~
lJA S.

STILL ANOTHER TECHNIQUE WOULD BF TO UTILIZE A BUF~FR ADDRFSS POINTFR
'THAT WOULD POINT TO THE ACTUAL ADDRF~~ OF THF LA~T CHARACTFP IN "r:HF RUF­
FER.

THE SFCOND AND THIRD SCHEMES ALLOW THF CHARACTER BUFFFR TO RF JUST
"N" CHARACTERS IN LENGTH (INSTFAD OF N + 1). HOWF\1FR# THE SA"INn~ IN
BUFFER ~PACE IS HARDLY ENOUGH TO BE CONCFRNED "'ITH, PARTICtTLARLY SINCF
SOME OTHER LOCATION(5) "YOULf> HAUF TO BF SFT ASIDE FOR STO'RINC; THF "ALt!F~

OF ThF COeNTF~ OR BVFFFR ADDPF~~ POINTFR.

THE Dl FFFRFNT METHODS ARE MENTIONFD, HO"'FUEF" TO nFMON~TRATF THF IM-

• - 18

PORTANT FACT THAT THFRE 15 MORF THAN ONF WAY TO APPP.OACH THF PROBLEM ANn
mF PROGRAMMER MU~T DF."F.LOP THE PRACTICF OF FXAMINING ALTERNATIVF WAYS.
WHILF, THE DI FFFRFNCE5 ARE· OFTFN SUBTLF, .. CERTAIN CHOICFS MAY BE OF PARTI­
CULAR VALUE IN CERTAIN APPLICATIONS.

AN IDEA THAT SHOULD BF MFNTIONED AT THIS POINT CONCFPNS TH£,PRACTICF.
Of TRYINe; TO DEVELOP PROGRAMS THAT ARE "GOOF-PROOF" - OR "HUMAN-EN~INE-
FRED." THF IMPORTANCF OF THI S FACTOR ~HOULD NOT BE OVF'P-LOOKFD. FOR"

\

11iOSE THAT DO WILL OFTFN fIND THEMSFLl'FS SPFNDING MANY HOURS uP.FWORKING"
PROGRAMS THAT HA"F SUDDENLY "GONF BESERK" WHILF IN OPFRATION. THE ABI-
LITY TO PLAN PROGRAMS THAT TAKE THIS IMPORTANT PARAMETER INTO CONSIDF.PA­
TlnN GENFRALLY DISTINGUISHFS THE NOUICF FROM THF FXPFPIFNCF.D PROGRAMMFR.
WHAT IS MFANT BY "HUMAN-FNGINFFRING" CAN BF CLFARLY DFMONSTRATFD BY THF
FULLOWING DISCUSSION.

SUPPOSE FOR THF FXAMPLF BFING DFVFLOPFD HERF THAT THE PPOGRAMMFR FL­
FLTED TO DF"FLOP THF CHARACTFR STRING INPUT ROUTINF USING SCHFMF III PRF­
SENTED ABOVF: BY SETTING ASIDE A CHARACTFR BUFFF~ N + 1 lJnf?DS IN LFNCiTH
(WHICH WOULD BF 7 IN THI5 CA5F AS THE MAXIMt~ SIZF OF A CONTROL WORD IN
TIiE EXAMPL.E IS t- CHARACTERS). NOW" A NouIeF, OR UNWARY BFGINNFR MInHT
F'POCFED TO nFUF'LOP THF ROtJTINF ALONe; THF FOLLO\tllNG LINES.

MNEMON I C

INCTRL, LHI XXX
LLI VYY

INCHAR.. CAL INPUT
LMA
CPI Pl~
RTZ
CAL AD"
JMP INCHAR

COMMFNT5

ISF:T PAGf ADDP OF START OF CHAR RUFFFR
15FT LOC ON PAGE OF START OF CHAP BUFFER
IAFT A CHARACTER FROM INPUT 5URPnUTINF
ISTORE IN CHARACTFR STRINCi RUFFER
ISFF IF CHARACTFR WAS A "C-ptf
I EX 1 T SUB RO VT IN.F 1 F .. C - p'''

IADUANCE BUFFER POINTFR
ILOOP TO (iFT NEXT CHARACTFP

AN EXPERIFf\'CFD PROGRAMMER 1fTOtJLD MORJO' LIKELY HAUF THF SUBROUTINE
APPEAR SOMETHING LIKE:

MNF~ONIC

INCTRL, LHI XXX
LLI YYY
LBI A06

INCHAR" CAL INPUT
CPI 21S­
JFZ CHECK
LMA
RFT

CHECK, INS
DCB
JTZ INCHAR
DCB
L.MA
CAL ADU
JMP INCHAR

COM"'fFNTS

ISFT PAGF AnnR OF 5TA~T OF CHAR BUFFER
15FT LOC ON PAGF OF START OF CHAP RUFFFR
ISFT USAF ETY" COUNTEP
IGET A CHA~ACTFR FROM INPUT SUBROUTINF
ISEE I F CHARACTER \tJAS A "C-R"
II F NOT ItC-R" GO TO SAFFTY CHECK ROUTINF
II F ltC-Rtf THE'" STORF IN BUFFFR
lAND FXIT SUBROUTINE
IEXERCISE REGISTER B TO SFT FLAGS
IFOR ITS ORIGI~AL CONTENTS
IIF "8" WAS 000, IGNORF PRESFNT CHARACTER
IOTHFRWI SE I DECREMFNT UALUF OF "B"
ISTORE CHARACTFR IN RUFFER
IADUANCE RUFFER POINTER
lAND LOOP TO GFT NEXT CHARACTER

WHAT DOES THE SECOND SUBROUTINE DO THAT THF FIRST DIn NOT? IT GUAP-

~ - 19

ANTFE.5 THAT I F SOMEBODY TYPF.5 IN A CHARACTFR STRING MORF THAN ~IX CHAR­
ACTERS LON" THAT THF: "BUFFER" WILL NOT "F.XPAND" BFYOND ITS INTFNf'FD
LENGTH AND POSSIBLY RESULT IN CHARACTFRS REING LOADFD INTO PORTIONS nF
~MnRY THAT POSSIBLY CONTAIN PROGRAM INSTRUCTIONS OR OTHFP DATAl THF
ALTERING OF ~HICH MIGHT FUFNTUALLY RFSULT IN A PROGRAM "BLOW-UP'"

5TILL ANOTHFR WAY TO DELIMIT AN INPUT CHARACTER BUFFFR I AND A,METHon
PARTICULARLY SUITED TO DEALING WI TH A FIXED FORMAT TABLF, I S TO "CLFAP
OUT" THE BUFFER PRIOR TO THE START OF FNTFRINr, A CHARACTF.R STRING, BY
FOR INSTANCE .. INSERTING ALL "ZERO" WORDS INTO THF BUFFFR. WHFN U~IN~
'nilS METHOD IT IS NOT DESIRABLE TO INSERT A "C-P" AT THF END OF THF
STRING, BUT RATHER TO SIMPLY ALLOW THE PRF5FNCF OF A "ZERO" 'WORD flFNOTF
THF END OF THE CHARACTFR STRING.

ONCE THE INPUT CHARACTFR BUFFFR HAS RF:CF.Il1FD A CHARACTFR 5TRINn A"'D
A MF.THOD OF DFLIMITING THF STRING BEEN SFLECTED" ONF CA~t PBOr.FFD TO DF­
UELOP METHODS TO "SEARCH·' THf CONTFOL TABLF: FOR A "CONTPOL WOPJ)" ,.HAT
~TCHFS THE CHARACTER STRING IN THE BUFF FR. THF" SEARCH ~OUTINF WI LL RF.-
FLFCT THE METHOD USED TO ORGANIZF THF TARLF AS "'ELL A~ THE OFLIMI TIN(';
FORMAT USFe IN THE CHARACTfR STRING BUEFf,R. THF VARIOUS RAMIFICATIONS
OF WHAT IS MEANT BY THIS CAN PFRHAPS BFST RF CL~PIFIFn BY CONSInFRIN~ A
FEW PROGRAMMING FXAMPLF:S.

EXAMINE THF FOLLO\rINli PORTION OF A "SF'APC.H" ROtlTINF. DFSI GNED TO LOOK
Ff"R A MATCH BFTWF'EN THF CHARACTERS IN A BUFFFR (TERMINATED BY A ZFPO
WORD) AND THF CHARACTF.RS CONTAINED IN THE "CONTROL WORD'~ Fl ELI'S OF THF
£LOCKS MAKING UP THE TABLE:.

**

MNEMON I C

SFARCH"

INITRF"

CMATCH,

NXWORD"

SETNXW,

LOI ~02

LE:I 000
LHI XXX
LLI YYY
LBI A0 f­
LAM
CAL AOV
CAL SWITCH
CPM
JEZ NXWORD
DCC
JTZ FOUND""
CAL AD"
CAL SWITCH
JMP CMATCH
DCB
JTZ SFTNXW
CAL AD"
t.JMP NXWORD
CAL ADV
CAL ADV
CAL AD"
CAL SWITCH
JMP INITBF

COMMF'PIJT5

ISFT POINTERS TO STARTIN~ ADDP OF TABLF
I " It

, 15F'T POINTFRS TO STAPT O,F CHAP BUFFER
I It .. If "
15FT CONTROL WORD FIFLD SIZE COUNTER
IGFT CHAP FM BUFFFR (FORM CHA~ MATCH LOOP)
ISUBROUTINE TO AD"ANCF BUFFFR POINTER
IEXCHANGE BUFFFR PNTR FOR T~R.LF POINTFR
ISEE IF HAVF A MATCH CONDITION
IIF NO MATCH" GO TO NFXT FLOCK IN TARLE
IIF MATCH" DECR FIELD SIZE COUNTER
IALL CHARS IN FIELD MATCHED IF CNTR = ~
ICHAR MATCH BUT NOT FINISHED .. AD" PNTR
IFXCHANGF TARLE PNTR FOR BUFFER PO I NTFP
ILOOP TO SEE IF NEXT CHARACTFR MATCHES
IDFCR FIELD SIZE CNTR TO FIND F~D OF
ICURRENT CONTPOL "'ORfl FI ELD" JMP \-'HEN FND
10THERWISE ADVANCE TABLE POINTER
lAND LOOP TO LOOK FOR END OF C1t' FI FLO
IAT FND OF CONTROL WORD FIFLD NEED Tn
IADVANCE PNTR OVFR THE "ADnRF~S" '1 FLD
ITO THE START OF NFXT CONTROL WORD FIELD
lAND THEN EXCHANGF TABLE FOR BUFFFR PNTR
lAND FORM LOOP TO CHECK NEXT ALOCK IN TBL

REMEMBER" THF ABOUF ROUTINF ASSUMFS THAT THF INPUT CHA~ACTr,R 'BUFFFP
IS "CLEARED" BEFORF A NEW INPUT CHARACTER STRING IS ACCFPTFD. THUS, THE
INPUT EUFFFR ~OULD CONTAIN "ZEROS" IN THE LOCATIONS FROM "N + ." TO THE

4 - 28

END OF THF BUfFER (WHERE UN" 1 S THF LAST CHARACTF~ OF THF. INPUT 5TPINn).
IF~ FOR FXAMPLF~ THF INPUT BUFFER CONTAINED THF FOLLOWINA:

BUFFER ~TORO ,

2
3
4
!'
f-.

CONTFNTS

CODY FOR "GH

conF FOR "0"
"'0~
AA~

AA0
00'"

THFN THf' ROUTINE JUST PRESFNTED WOULD FIND A MATCH IN THF FIP~T "BLorKIt
OF THF. FIXED FORMAT TABLE DESCRIBED SFVFRAL PAGFS FABLI FR. t,THFN THF
~TCH WITH THF CONTROL WORD IN THF TABLF ~'AS FOUND., THF ROUTINF WOULD
Jt'MP TO THF AS YFT UNDFFINFD "FOUND"'" ROUTINE TO FXTRACT THE ADDRFSS
OF THE "r:;o" ROUTINF FROM THF TABLF. HOWF\'F.R., HAD THF INPt.;T CHAPACTFR
&'FFER CONTAINED:

BUFFF"R WORD , CONTENTS

1 conF FOP. "A"
2 CODF FOP ltv"
3 COOF FOR .. ~ ..
4 00(lJ
a; A~~

6 ~A~

1HEN TriF. ROUTINE WOULD FAIL TO FIND A MATCH IN THF FIR5T "CONTROL 1,JO'Rn"
FIELn. WHFN THF MATCH FAILED, IT '-'OULD JPMP TO THF "NXWORD" PORTION OF
1liF PRnnRAM Tn ADVANCE THE TABLF POINTFR TO THF START OF THF NFXT ftCON-
1F.OL WOfU)1t FIFLD IN THF TABLF, AND THEN JUMP RACK TO THF "I~JITBr" POR­
TION Tn INITIALIZF THY CHARACTER BUFFFR POINTER AN~ PPOCFFD TO LonK FOP
A "'1ATCH IN THF NFXT BLOCK OF THF TARLF'. TtiI5 LOOP \-10ULD Cn~lTINUF l'NTIL
1HE MATCHING CONTROL WORD "AUG" 'WAS FOUND ABOUT HALF-'(.1AY DOWN THF TABLF.

HAn SOMF "5MART ALECK" OPERATOR KEYED IN THF FOLLO\lfINf7 TO THF. INPUT
CHARACTE.R BUFFER:

BUFFFR WORD , CONTFNTS

CODF FOF "5"
? conF F'OP "I"
3 conF FOR "L"
~ CODF FOF teL"
~ CODF FOR "Y"
6 00"

-mEN THE PROGRAM WOULD EVFNTUALLY "BOMB!" FEASON? (HERF COMF~ HUMAN
mr:;lNEERING AGAIN!) SIMPLY THAT THF ABOUF ROUTINF HAS NO WAY OF nFTFR-
MINING WHFRF THF END OF THF TABLF FXISTS IN MFMO~Y. THE HANOLINf: nF
'l'HAT PP08LEM WILL BF nI5CUSSFD SHORTLY AFTER SOMF MORF FXAMPLFS RFLATFD
TO THY. CUP-RENT TOp·I C HAVE PEFN PPESENTED. THE RFADER SHOULO NOTE HERF
THAT THE *** MARK NEAR THF FND OF THF ROUTINE nFNOTF5 A POINT WHFRF AN

.. - 21

"END Of TAPLF" "'F'~T MI~H'" SF INSERTED IN THF ABOVF ROUTINF.

IT IS DESIRABLF AT THIS POINT TO ILLUSTPATF SFUFRAL OTHF'R "!;FAPCH"
Rnt·,.,INFS TO DEMONSTRATE. HOW THFY APE: AFFECTFD EY THF TAPLF OPGANI ZATION
AND THF METHOD USFD TO DFLIMIT THF INPUT CHARACTER Rt'FFFR. ~:n.rPP05F O"'F'
IS ~TILL USING THF FIXFD-FORMAT TABLE BUT INSTEAD OF CLFARINA nUT THF
INPUT B~FFFR BEFORE ACCEPTING A NEW CHARACTER STRINA (~O THAT IT I~ DF­
LIMITE,D BY LOCATIONS CONTAINING ZFROS)~ ONE USES AN INPUT ROtTTI"'E THAT
DELIMITS THF BUFFER BY USING A "e-R" !;YMBOL. THE: POtTTINF TO LOOK FOR
A MATCH BETWE.EN THE CONTENTS OF THF BUFF"F.R AND A "CONTROL "TORD" IN THE
TABLE MIGHT APPEAR A!; FOLLOVS.

MNEMONIC
-----. .. _-----

SFAPCH .. LDI ~02

LEI 000
INITBF~ LHI XXX

LLI YYY
LEI ~0f.

CMATCH~ LAM
CP I 21 5
JTZ LCHAR
CAL ADU
CAL SWITCH
CPM
JFZ NXWORD
CAL ADV
CAL SWITCH
DCB
t.JMP CMATCH

LCHAR.. XRA
CAL SWITCH
CPM

** JTZ FOUND~
INS
DCB

** JTZ FOUND'-'
NXWORD.. DCB

JTZ SETNXW
CAL AD"
JMP NXWORD

SETNXW~ CAL ADV
CAL AD"
CAL AD"

*** CAL SWITCH
JMP IN! TBF

COMMFNTS

ISFT POINTFR TO STARTING ADDR OF TABLF
I tt " " " " " ..
15FT POINTERS TO ~TAPT OF CHAR FUFFFP
I .. " " " .. ff

ISET CONTROL WORD FIELD Sl7.F CotWTER
IGFT CHAR FM BUFFER (FOBM CHAR MATCH LOOP)
ISFF. IF SYMBOL FOP "C-P"
IIF SO~ GO TO LAST CHARACTER ROUTINF
10THERWISE .. AD\JANGF RUFFFR POINTER
IF.XCHANGF BUFFFR PNrR FOR TABLF POINTFP
ISEE IF HA"F MATCH CONnx IN TARLF
IIF NO MATCH .. GO TO NFXT BLOCK IN TABLF
IIF MATCH~ ADVANCE TABLF POINTF'P
IFXCHANGF TARLF PO INTFR FOR FUFFF~ P~'TR
IDECREMENT COUNTFP VALUF (FOP NXWORD PiN)
ILOOP TO SFF IF NFXT CHARACTFP MATCHFS
I IF tIC-Rtf IN BUFFFR .. CLFAR ACClTMULATnR
IEXCHANGE BUFFER POINTER FOR TARLF PNTR
lAND SFF IF HAUE AAA CODF IN TABLE
IIF SO~ ALL CHARS IN FIFLD MATCHFD
IIF NOT .. SFF IF COUNTER IS AT 0~0
IINDICATING MAX CONTROL WORD FIFLD
IENCOUNTFRED SO HA\1E CONTROL WORn MATCH
IIF NOT~ DFCR FIFLD SIZF COUNTFR
I IF CNTR = "'.. AT END 0 F "CONTROL WORD" FLD
IIF NOT~ ADVANCF TABLE POINTER
lAND LOOP TO LOOK FOR FND OF FIELD
IAT END OF CONTROL WORn FIELD NEED TO
IADUANCE PNTR OUFR THY "ADDRES5" FI FLD
ITO THE START OF NFXT CONTROL WORD FIELr
lAND THEN FXCHANGF TABLE FOR BUFFER PNTP
lAND FORM LOOP TO CHFCK NFXT BLOCK IN TEL

. THE ABOVE ROUTINE IS A BIT MORF COMPLICATFD THAN THF PPFVIOU~ ONF
BECAUSE ONE MUST STILL KEF,P TRACK OF THF NUMBER OF CHA'RACTFRS THAT HAVE
BEEN FXAMINF.D WI THIN A "CONTROL WORD FI FLD" IN THF TABLF SFCTION (FOR
USE BY THE "NX~ORD" ROUTINE) ~ AND ALSO MAKE AN ADDI TIONAL TEST FOR THE
END OF THE CHARACTER ,STRINe IN THE, INPUT BUFFFR WHICH IS SI~NIFIFD BY
1HE CODE FOR A CARRIAGE-RETURN. IT IS ASSUMED IN THE ABOUE ROUTINE
'THAT THE ROUTINE THAT ACCEPTS A CHARACTER STRING' INTO THF INPUT BPFFFR
LIMITS THE STRING TO A MAXIMUM OF SIX CHARACTFRS. NOTF THAT ONF. MUST
ALSO MAKE SPECIAL PROU1 SIONS FOR THE CASE "rHFN THF CHARACTFR !;iPING I ~
SIX CHARACTFRS IN LENGTH BY TESTING THF COUNTFR IN THE "LCHAP" PORTION
OF THE ABOUF ROUTINE.

4 - 22

THf~ COMRINATION or USIN~ A ftC_Rtf iEFMINATE:D BUFFF'R AMD A FF'FF-FORMAT
TABLF. (SUCH AS THE F-RFE-FORMAT VFR~ION , 1 ILLUSTRATED EARLl ER) I S LF~~
COMPLICATFD TO "SFARCHtf BF'CAt'SF ONF' CAN DROP THF MAINTFNANCF' OF THr.
~BLF CONTROL \fORf' FI FLD COUNTFR AND INSTE'Af) TF5T FOP THF END OF BtTFFF'P
~BKFR (C-R) AND USF THF FND OF FIFLD MARKFR (00") IN THE' TARLF WHFN
A MATCH FAILS AND IT IS NFCE'SSAPY TO AD\1A,..lCF TO THF NFXT CONTROL tJnRD
IN THE TABLE. THIS SE'ARCH ROUTINF' IS ILLUSTRATFD NFXT.

MNFMONIC

SEARCH" LDI 002
LEI 0f'0

INITAF" LHI XXX
LLI YYY

CMATCH" LAM
cPt 21~

JTZ LCHAR
CAL ADU
CAL 5'.' ITCH
CPM
JFZ NX\JORD
CAL AD\}
CAL S\&.11 TCH
JMP CMATCH

LCBAR" XRA
CAL SWITCH
CPM

** JTZ FOCNDV
NX\tfORD" LAM

NDA
JTZ SETNXW
CAL ADV
JMP NXWORD

SFTNXW" CAL AOV
CAL An"
CAL ADV

*** CAL SWITCH
JMP IN ITBF'

COMMFNTS

15FT POINTER TO STAFTING ADDR OF TARLF
I If .. "
15FT POINTFR Tn START OF CHAR RUFFFR
I
IGET CHAR FM BUFFER (FOPM CHAP MATCH LOOP)
ISFF IF SYMBOL FOR "C_R"
IIF SO" (;0 TO LAST CHARACTF-R ROUTINF
IADVANCE BUFFFR POINTFR
IFXCHANCiF RUFFFR PNTR FOB TABLE POI NTF:R
ISEE IF HAVF MATCH CONnlTION IN TARLF
IIF NOT" GO TO NEXT BLOCK IN TARLE
I I F YES" ADUANC F TABLE PO I NTE.R
IFXCHANGE TABLE' Pf\JTR FOR BUFFFR POINTFP

, ILOOP TO TF'ST NFXT CHARACTER
leL FAR ACCUMULATO"R IF HAUE "C_FIt. IN RUFF
IEXCHANGE BUFFFR POINTFR FOR TAALF PNTP
I SFF I F ALSO HA"F FND OF FI FLD MARKFP
I I F SO" HAVF FOUND MATCHING CONTRnL 'lfORD
IIF NOT" 5FE IF HAVF FND OF FIFLn MA~KFR
I***TRICK TO SFT FLAGS AFTER A ~OAn OP***
IFOUND MARKER" r,0 TO NFXT BLOCK
IMARKER NOT FOUND" ADVANCE TABLE PO I NTF'R
lAND CONTINUF LOOKING FOP MARKER
IAFTFR MARKFR FOUND" ADUANCF TABLE PNTR
IOVE~ THF "ADI'lRFSS" FI FLf' TO THF START
IOF THE NEXT CONTROL WORD FIELD
IEXCHANGF TARLF' PNTR FOR Bt!FFFF. PO I NTFR
lAND FORM LOOP TO CHFCK NEXT BLOCK IN TRL

AT FIRST ALANCE" DEVELOPING A SEARCH ROUTINF FOP THE FIXED-FORMAT
TAALE - VERSION '2" WOULD APPEAR RATHFR DIFFICULT BFCAUSE THERE IS NO
APPARENT END 0 F CONTROL WORD FIELD MARKF.R! HOWEVFR" THAT TARL F ~JA S OR-
GAN I Z FD TO TAKE AD"ANTAG E O.F A PARTI CULAR FACT THAT THF f'FUF.LOPFR WA ~
AYAPF OF THAT WOULD FNABLF THE FI RST PAFT OF THE "ADDRFSS" FI ELD TO FE
USED AS AN END 0 F CONTROL WORD FI FLO MARKFR. THIS FACT 15 THAT ALL OF
1'HE CHARACTFR CODFS THAT MIGHT BF USED IN THE CONTROL WORD FIELD (WHIGH
CONSIST OF "ASCII" FORMATTED SYMBOLS) HAVF A "1" BIT IN ONE OR BOTH OF
THE TWO MOST SI~NIFICANT BITS WITHIN A MFMORY ~ORD THAT CONTAINS THY
CHARACTF'R. ADDITIONALLY" IT IS KNOWN THAT THF MAXIMUM PA(;E AnnRF~~ THAT
CAN BE UTILIZED IN A TYPICAL 88085YSTEM IS 077 (OCTAL) WHICH MFANS
ntAT A Mt'MORY WORD CONTAINING A MEMORY PAGE ADDRESS CANNOT HAUF A "1"
CONDITION IN EITHER ONE OF THY TWO MOST SI(;NIFICANT BITS OF THE MEMORY
WORD THAT HOLDS THF PAGE ADDRESS! THUS" BY MAKING A SIMPLE TEST" U~IN~

A "MASKING" OPFRATION DESCRIBED EARLIER IN THI5 5FCTION" A POUTINF CAN
BF DEVELOPED THAT CAN SAFELY UTILIZE THF PAGF ADDRESS PART OF THE AD-
DRESS FIELD TO SFRVF AS AN FND OF' A "CONTROL WORD" FI FLD! THUS" TO
SEARCH VERSION #2 OF THF FREE-FORMAT TABLE" ONF COULD REPLACE THY ROPT-
INES "LeMAR" AN'D "NXWORD" USED ABOVE WITH THE FOLLOWING SUBSTITUTE.

4 - 23

MNFMON I C COlWtMFNT5

LCHAR" CAL S~I'I TCH IEXCHANGF BUFFFP PO INTFP FOR 'TABLF PNTR

LAM ITF5T FOR F1"D OF CONTPOL. 'F I FLD
NDI 3~VI IBY SEEING IF TYO M~'R'S ARF ROTH .. ~ ..
JTZ FOUND'" IIF 50" HAUF Fnt:ND MATCHING CO",lTPOL MnRn

NX\'OR[)., LAM ITEST FOR END OF' CONTROL FI FLD
NDl 300 IBY SFE'ING IF TWO MSR'S ARF ROTH tt~"

JTZ SFTNXW I I YO- SO" HA\1F. MARKF'P, ~O TO NEXT BLOCK
CAL AD" IOTHFRWISF: ADHAMCF TA~LF POINTER
tJMP NX1JORD lAND CONT 1 NUF LOOi<ING

AS MFNTlnNFP FARLIFR, SOMF MFANS OF DFTFRMINING ~HFN THF FNTIPF
TAHLF HI~S I1FFN SFARCHED IN THF FUFNT A NON-EXISTENT TFPM I ~ PLACFD 1M
1riF INPUT HUfFFR MUST RF INCORPORATFD IN THF SFAR['H ROUTINF. AGAIN,
THI S TASK CAN BE ACCOMPLI SHFD IN SFVFRAL DI FfFPFNT ~JPYs. nNF ~.rAV M(HTJ ... D
HF TO SFT A COUNTE'P AT THF STAPT OF THF SFARCH ROUTINF THAT CONTAINFD
'THF TOTAL NUMHF:R OF "BLOCKS" IN THE TARLF ANI) f'FCPEMF"lT IT FACH TIMF A
RLnCK WAS CHECKFD. THE COUNTF'R COULD BF TFSTFD FOR A ZERO cnNf'I 1'1 nN TO
Sl~NIFY THAT THF TABLE HAD BFFN SFA~~HFD. ANOTHFP ~AY Tn AccnMPLI~H THF
n~t.JECTl\l£ WOULD BE TO TEST THE \1ALUE OF THF T.ABLF POINTFF Tn SF.F IF IT
HAD RFACHFD A SPFCIFIC VALtTF WHICH WOULO DENOTE THE FND OF THF TABLF.
THFSF. T"'O METHODS HA~lF SFUF'RAL DRA\.lBACKS. ONE 1 S THAT THF cnUNTFR MFTH-
DD WOULD RF(~UI RF STORAGE SPACE. A CPU REGI STFP COULD BE USFD, PUT MOPF
THAN LIKFLY ONE WOULD HAVf" TO RF~ORT TO MAINTAINING A COUNTFR IN A MFM­
~y LOCATION IN ORDFR TO CONSFRVF CPU RFGISTFRS - THIS ~OULD PFQVIRF A
SOMFMHAT MORl-" LFN(;THY ROUTINF TO HANDLE THF UpnATIM~ AND TFSTIN~ nF THF
COUNTER. TFSTING TO SFF IF THF TARLF POINTF.R ADDRFSS HAD PFACHFD Po CFR­
TAIN UALUF cot'Ln BF nONF' WITH AN "IMMFDIATF'· TYPF COMPARI~ON THUS AUOIn­
ING THE MAINTENANCE OF A STORAGE LOCATION PUT THF MFTHOD, ALONG ,.1ITH THF
Cot'NTFR METHOD, IS MOFE COMBFRSOM F 1 F THE PROr,'RAM~FR nFC I DFS TO FXPAND
TnE. SIZE OF THF TABLF AT SOME Fl!TrRF TIMF. THlS IS RFCAt'SF THE PROr,PAM
WOULD HAUF TO HE MODI FI ED AT TWO DJ FFFRFNT PO INTS - THE TABLE I TSELF I
AND THF PORTION OF THE ROCTINf THAT SI(;NIFIFS THF FND OF THF TARLF,
EITHER THE COUNTER VALUF, OR THE ADDRFSS POINTFR VALUE.

A METHon THAT I S GFNF~ALLY MORF CONHFNI FNT I S TO PLACE A "ZFRn "JO~D"

AT THF END OF THF TABLE AS WAS SHOWN FnR THF FXAMPLE TAPLFS. THFN" AT
"THF START OF FACH NFW BLOCK" THF SFARCH ROt'TINF r.AN r.nNnUCT A ~lMPLF

TE'ST Tn ~FF I F A ZFRO '''ORn I S PRESENT INDICATIN(:; THF FNn OF THF TABLF.
(NATURALLY, IN SPFCIAL CASES WHFRF FOR INSTANCE A nATA BLOCK MInHT CON­
TAIN A tlZF'RO YORD" AT THE FIRST LOCATION IN A ALaCK" THF MFTHon t.10ULD
NOT BE APPROPRIATE AND ONE COULD RFSORT TO ONf I)f THF ASOHF TFCHNIQUFS).
niE MFTHOD n F USING A "ZERO 1sfORD" ALSO MAKFS 1 T FASY TO FXPAND THF SI ZF
OF THE TABLE WITHOUT HAVING Tn MODIFY ANY PART OF THF SFARCH ROUTINF.
MORE "BLOCKS" CAN SIMPLY BE AnnFD (REPLACING THF FORMER "lFRO "lORn") AND
A NFW ZERO WORD ADDFD AFTFR THE ADDITIONAL BLOCKS. THF SFARCH ROUTINF"
USING THE ALGORITHM PRFSENTFD BELOW" WOULD THFN AUTOMATICALLY BE ABLF TO
FIND THF NEW "FNDING POINT" OF THF TABLF. THF FOLLOllTINf INST~UCTIONS
COULD SIMPLY BE INSERTED AT THF POINT INDICATED BY THF THRFFA~TFPISKS
IN THE SEARCH ROUTINES PRF'SF~TF'D EARLl ER.

MNEMONIC COMMFNTS

LAM IFFTCH FIRST rHAPACTFR IN NFU RLaCK
NDA I***TRICK TO ~FT FLAr,S AFTFR LnA~ OP*.*
JTZ NOSUCH IIF ZER0 1 FND OF TBL" NO MATCH FOUND

4 - 24

THE ROUTINF uNOSUCH" RFf'ERRED TO BY THE END OF TABLE TFST MIAHT BF
A SMALL ROUTINF TO DISPLAY A MFSSAGF TO THE OPERATOR INDICATING THAT
1HF.RE WAS NO SUCH COMMAND IN THF TABLF. OR" THF .J'rz INSTRUCTION MIr,HT
BE REPLACED BY AN "~TZ" IN5TRUCTION THAT WOULD RFTURN THF PROGRA~ TO
THE CALLIN~ ROUTINF WHICH MIGHT SIMPLY DIRFCT THE PROGRAM RACK TO THF
ROUTINE WHICH FFTCHES A NFW STRING OF CHARACTFRS INTO THF INPUT BUFFFR.

ONE OTHFR PORTION OF THF SFARCH ROUTINE THAT HAS NOT ~FFN TOUCHED
WON IS WHAT THF PRO(H,AM WOULD DO ONC F A MATCH \lAS FOUND BFTWFFN THF
Q{ARACTERS IN THF INPUT BUFFF'R Af\JD A CONTROL WORf) FI FLf' IN THF TABLF'.
1li1~ PORTION Of THE' ROt'TINF ,.fAS RF'FFRRF'P TO A~ "FOUNDlt'" IN THF PFFUIOUS
EXAMPLE'S. "fOUNDW" WO,ULD SIMPLY BE' A ROUTINF' THAT WOULD AIH1ANCF THE
"MHLF POINTF'R TO THF FNn OF THF CUR~F'NT CONTROL ~1OPP FI FLf) (~'HF~F THF
MATCH OCCURFD) AND THEN EXTRACT THE ADDRESS FROM THE: APDPFSS FIFLfl TO
ENABLE THE, PROGRAM TO JUMP TO THF LOCATION GIUFI\J ~Y THF AODRFSS AND
PROCF'f:n TO PFRFORM A SPECIFIC FUNCTION. THF ROUTINF "FOUND'-'" AS nluFN
IN THE EXAMPLF THPoT FOLLOWS CONTAINS AN INTRIGUE-ING POF'TION THAT ILLUS-
TRATES ONF' OF THF POWF''RFUL A~PECTS ABOUT A COMPt'TEP. THAT 1'5 .. A PPO~PAM
CAN BF DESIr,NFD TO ALTFR THE EXFCtTTION OF THF PPO(;PAM ITSFLF! THIS IS
lXlNE IN THF EXFCUTION OF THF "FOUNDW" RorTINF \lHFN THF PROGRAM EXTRACTS
'THE "ADDPFSS" FPOM THE TABLE' AND INSFRTS IT IN A PORTION OF THF PFO(;RAM
FOR THF ADDRFSS PORTION OF A "JUMP" INSTRUCTION "'HICH THF PFOGFAM THEN
PROCFFDS TO FXFCUTf! CAFF MUST BF TAKF'N WHFN DF"FLOPIN~ SUCH A PROr,RAM
m E.NSURE THAT FXACTLY THF RIGHT LOr.ATION~ ARF MODI FIFf) BY THF PPOf;PAM.
1111 ~ WILL BF APPAPFNT AFTFR FXAMINATION OF THF FOLLOWING ROtlTINF.

MNFMOf\J I C

FOUNDW" INR
DCB

FNDFND.. JTZ SETJMP
CAL ADU
DCB
JMP FNDEND

S ETJMP " CAL A D\1
LDM
CAL ADV
LEM
LHI MMM
LLI NNN
LMF
INL
LMD
JMP NNNMMM

NNN AAA
MMM HBB

COMMF'NTS

ICHFCK TO SFF IF THF fIFLD CNTP IS ~~~
IINDICATING END OF THF CONTROL ~ORn FIFLD
I IF "0,," SFT UP THF JUMP ADDRESS
IOTHF:R~r I SE ADUANC F TARLE PO INTER
IDECRF'MENT Fl FLD COUNTER
lAND KFEP. LOOKING FOP FND OF FIFL~
IADVANCF PNTP TO 1ST PA~T (PArE) OF AnnR
lAND FXT~ACT PAGF AnDRF~5 & ~TORF TFMP

.lNOW ADVANCF PNTR TO LOC ON PG ADDRESS
lAND STORF IT TEMPORARILY
INOW 5FT HFM PNTR (H & L) TO POINT TO THE
12ND BYTE OF THE JUMP INSTR. COMIN~ UP
IPUT THE LOW ORDFP ADDR IN BYTE 2
IADVANr:F THE MEMORY POINTER
lAND THE PAGE ADDR IN BYTE 3 OF THY JMP
INOW JUMP TO THF ADnR JUgT 'LOADFD INTO
ITHESE TWO (LOW ADOR)
IBYTES (PAGF ADDR)

THE ABO\JE "FOUNDw" ROUTINF WAS fOR THE CASF. WHFPF THE, TARLE WA5 I~J

mE FIXED-FORMAT ORGANIZATION AND A COUNTFP U5FD TO FIND THE END OF THE
CONTROL WORD F I FLO. HAD THF FRYE-FORMAT TABLE BEEN l'5FD" THEN THE BE-
GINNING PORTION OF "FOUND"'" WOULD BE APPROPRIATFLY MODIFIED TO FIND THF
END OF THF CONTROL WORD FIELD USING THE TECHNIQUES ILLPSTRATFD IN THF.
"NXWORD" PORTION OF THE PRFUIOUSLY ILLUSTRATED ROUTINFS FOR THAT TYPE OF
TABLE.

SINCE, THE DISCUSSION OF HANDLING TABLFS HAS FXTENDFD OUFR "tTITE A
FE\1 PAGES OF TEXT AND A VARI FTY OF ROUTINES HAVE BEEN PRESENTED SHOWING
\1ARIOUS PARTS Off THF PROCESS .. IT MIGHT BE BENEFICIAL TO THF READER TO

II - 25

PRESENT A NICFLY PACKAGFD SUMMARY BY PPFS'ENTING TWO TAHLF SFARCH' 'ROUT­
INFS. ONf' U~INr, THF. fiIXFD-FORMAT TABLE COUPLED WITH AN INPUT CHARACTER
STRlNG BUFFER (THAT l~ CLFARED PRIOR TO ACCFPTING A NEW CHARACTFR ~TR­
INA). ,THE OTHFR U~ING A FFFY-FORMAT TABLF (VERSION IP) COUPLED WITH AN
1~\PUT BUFFE',R THAT l~ DELIMITED BY A CA'PRIAGF-RFTtTPN. (THF'ACTUAL ROUT-

, INE THAT ACCEPTS CHARACTERS FROM AN 1/0 DF'''ICF "llLL ~IMPLY BF NOTFO A~
A ~UBROUTINF. CALL IN THF fOLL01.1ING FXAMPLF'S~ THAT pnUTINF wnOLf) BF A
mNCTION OF THF 1/0 DFUICF U~ED AND TYPICAL 'POUTINF~ uILL BE CONglnFPFn
IN THE CHAPTFR ON 1/0 PROGRAMMING IN THI~ MANUAL).

MNEMON I C

NFXCMD" CAL
CAL
CAL
JMP

CLEARB" LHI
LLI

'LEU
XRA

CLFARN" LMA
INL
nCR
JFZ
RFT

INCTRL" LHI
LLI
LBI

INCHAR" CAL
CPI
RTZ

CHECK" INR
DCB
JTZ
DCB
LMA
CAL
JMP

SEARCH, LDI
LEI

INITBF" LHI
LLI
LSI

CMATCH" LAM
CAL
CAL
CPM
JFZ

CLEARB
INCTRL
SEARCH
N EXC.MD

~03

372

~"'f.

CLFARN

003
372
A0 f.
INPl'T
21~

INCHAR

AOV
INCHAR

002
000
003
372
00.~

AD\1
SWITCH

NXWORD

COMMFNT~

I
IMAIN PPOGPAM CALLING ~F"t'FNCF

ICLEAR THF INPUT CHAR 5TRIN~ BUFFF~

IFF'TCH THF COMMAND 5TFING 'FM 'INPUT DFUICF
ISFARCH TABLF I PFRFOPM COMMAND INPUTTFD
IRFPEAT LOOP ~OR NF,XT COMMAND BY nPFRATnR
I
ICLEAR INPUT BUFFER 5VRROUTINF
15FT PAGE PNTR TO START OF RUFFFP
IA5SUMMFD TO BF AT LOC ~7? ON PAGF ~~3
15FT CLEARING COUNTFR
ICL FAR THF. ACCUMULATOR
IPUT ~~0 INTO BUFFFP POSITION
IAD"ANCE BUFFER PO INTFR
IDF.CRFMFNT COt~TFR
Ilf NOT THPOUGH~ PUT ~~0 IN NFXT LOCATION
IWHFN THFOUGH RFTURN TO CALLING POllTINF
I
tFFTCH INPVT COMMAND STRING
15FT PAGF ADDP OF START OF CHAR BUFFFR
ISFT LOC ON PAnE OF gTART OF CHAR BUFFFR
15FT CNTR FOR MAXIMUM SIZF OF RUFFFP.
ICALL SUBROUTINF TO INPUT rHARACTFR FM 1/0
ISEF IF CHARACTER WAS A ftC-Rtf
IIF SO" MAKF NO ENTRY
IFXFRCISE RFGISTER B (eNTR) TO SFT FLAG~
IACCORDIN.G TO ORIAINAL CONTENTS
II~NOPF NEW CHARACTFP. IF CNTR '-'AS AftV'
IOTHFR~1 SF. DFCRFMFNT VALUE OF CNTR
lAND STnRF CHARACTFR IN Al'FFFR
IADVANCF BUFFFR POINTFP
lAND LOOP TO FFTCH NFXT CHARACTFP FROM 1/0
1
ITAELF SFARCH ROUTINF - f,OMPAJ?FS CHA'PACT~P

15TRING IN INPUT RUFFFR A~AIN5T FNTRIF5 IN
ITHF CONTROL WORD FIFLDg OF FIXFD-FORMAT
ITABLF (SIX LnCATInNS IN THF FIFLn)
15FT PO'INTF'R5 TO STARTING ADDR OF TAALF
I " " , .
ISET POINTFRS TO START OF CHAP BUFFFR
1 " " II .. "
ISET CONTROL WORD FIELO SIZF COUNTFR
IGFT CHAR FM BUFFFR (FORM CHA~ MATCH LOOP)
/SUBROUTINF TO' ADUANCF. BUFFER POINTFR
IFXCHANGF RUFYFR PNTR FOP TABLF POINTFR
15£F IF HAUF A CHA~ACTFR MATCH CONnx
IIF NO MATCH# GO TO NEXT BLOCK IN TA8LF

4 - 26

MNFMONI C

DCB
JTZ FOUNDW
CAL ADU
CAL SWITCH
JMP CMATCH

NXWORD" DCB
JTZ SETNXW
CAL ADU
JMP NXWORD

SFTNXW" CAL AD"
CAL AD"
CAL ADV

, LAM
NDA
RTZ
CAL SWITCH
JMP INITBF

FOUNDW" CAL ADV
LDM
CAL ADV
LEM
LHI MMM
LLI NNN
LME
INL
LMD
JMP NNNMMM

NNN AAA
MMM BBB

COMMENTS

IIF MATCH" DECR FIELD SIZF COUNTER
IIF CNTR = 0" ALL CHARS IN FIELD MATCHFO
ICHAR MATCH BUT NOT FINISHED" ADV PNTP
IEXCHANGF TARLE PNTR FOR BUFFFR POINTFR
ILOOP TO SEE IF NFXT CHARACTFR MATCHES
IDF.CR FIELD SIZE CNTR TO FIND FND OF
ICURRENT CONTROL WORn FIFLn" JMP WHEN FND
IOTHFRWISF ADVANCE TABLF POINTFR
lAND LOOP TO LOOK FOR END OF CW FIFLn
IAT END OF CONTROL WOPD FIELD NFFO TO
IADVANCE PNTR OVER THE ItADDRE5S" FIELD
ITO THE START OF NFXT CONTROL ~ORD FIELD
lAND THEN FFTCH 1ST CHAR IN NEW BLOCK
ISET THE FLAGS AFTER THE LOAD OPERATION
IRFTURN IF END OF TARLE (NO MATCH FOUND)
IOTHERWISE FXCHANGE TABLE PNTP FOR RUFF
lAND FORM LOOP TO CHECK NFXT ALOCK IN TAL
IADVANCE PNTR TO 1 ST PART (PAGE) OF ADDR
lAND F-XTRACT PAGE ADDRESS TO STORE TEMP
IADVANCE PNTR TO LOC ON PG ADDRESS
lAND STORE IT TEMPORARILY
INOW SET MEM PNTR (H & L) TO POINT TO THE
12ND BYTE OF THE JUMP IN~TR. COMING UP
IPUT THE LOW ORDER ADDR IN BYTE 2
IADVANCE THF MEMORY POINTER
lAND THE PAGE ADDR IN BYTE 3 OF THE JMP
INOW JUMP TO THE ADDR JUST LOADFD INTO
ITHESE TWO (LOW ADDR)
IBYTES . (PAGE ADDP)
I
IAT THE CONCLUSION OF THE ROUTINF THAT
ITHF '·SEARCH" ROUTINE JUMPS TO WHEN A
IMATCH 1 S FOUND .. A "RFT" INSTRUCTION
ISHOULD BE EXECUTED TO RETURN THE PROGRAM
ITO THE MAIN CALLING ROUTINF
I

THE SUBROUTINFS "~WITCH" AND "ADV" HAUF BEEN DETAILED FARLIFR IN
nil S CHAPTER AND ARE NOT REPEATED IN THE ABO"F FXAMPLE.

THE NEXT EXAMPLE IS '"'OR THF CASF WHERE THF INPUT BUFFER IS DFLIMITFD
BY A CARRIAGE-RFTURN AND A FREF-FORMAT TABLE (OF THF. TYPE ILLUSTRATED AS
VF.RSION #2) IS USFD.

MNFMON I C

NEXCMD" CAL INCTRL
CAL SEARCH
JMP NEXCMD

INCTRL" LHI 003
LLI 371

COMMFNT5

I
IMAIN PROGRAM CALLING SFQUFNCF
IFEiCH THF COMMAND STRING FM INPUT DEVICF
ISEARCH TABLE & PERFORM COMMAND INPUTiFD
IRFPEAT LOOP FOR NEXT COMMAND BY OPF.RATOR
I

IFFTCH INPUT COMMAND STRIN~
15FT PAGE ADDR OF START OF CHAR BUFFER
15ET LOC ON PG OF 5TART OF BVFF eN+l)

1& - 27

MNEMONIC
-.. -------- ... ~

LBI 006
INCHAR I CAL INPUT

CPI 21 5
JFZ CHECK
LMA
RET

CHF,CK.. INS
DCB
tJTZ INCHAR
DCB
LMA
CAL ADV
JMP INCHAR

SEARCH .. LDt 002
LEI 00e

,INITBFI LHI 003
LLI 371

CHATCH.. LAM
CPl 215
JTZ LCHAR
CAL ADV
CAL SWITCH
CPM
JFZ NXWORD
CAL AD\1
CAL SWITCH
JHP CHATCH

LCHAP... CAL SWITCH
LAM
NDl 300
JTZ F'OtTNDW

NXVORD.. LAM
NDI 300
JTZ SFTNX\f
CAL ADV
JMP NXWORD

SFTNXW.. CAL ADV
CAL AD"
LAM
NDA
RTZ'
CAL SWITCH
JMP INITBF

FOUNDW .. LDM
CAL ADU
LEH
LHI MMM
LLI NNN
LMF
IN,L
LMD
JMP NNNMMM

NNN AAA
MMM BBB

COMMENTS

'/SET CNTR FOR MAX # USABLF CHARACTERS
ICALL SUBROUTINE TO INPUT CHAPACTFR ~M 1/0
ISEE IF CHAP WAS A "C-R"
11 F NOT I CHECK FOP. RUFFER OUERFLO\1
IIF YE5~ STORE "e-R" AS LAST CHAR IN BUFF
lAND RETURN TO CAL~ING ~OUTINF

IEXERCISE RFGISTF.P B <CNTP) TO ~F.T FLAn~

IACCORDING TO ORIGINAL CONTENTS
IIGNORF NE1-J CHA~AC"F~ IF CNTR telA!=; ~HH~

IOTHERWI SE DECFFMFNT "ALt'F 0 F CNT'R
lAND STORE CHARACTER IN BUFFER
IADVANCE BUFFER POINTFR
lAND LOOP TO FETCH NFX,. CHARACTER FROM 1/0
I
ITABLE SFARCH ROUTINF
ISET POINTERS TO ~TAP,TING ADDR OF TABLF
I .. It .. " It " tt

15FT POINTERS TO STAFT OF CHAR RUFFFF
I" .. "- .. "" It

IGET CHAR FM BUFFFF (FORM CHAR MATCH LOOP)
ISFE IF SYMBOL FOR "C-R"
IIF SOl GO TO LAST CHAPACTFR ROUTINF
10THFRWI SE ADt1ANCF RUFFFR PO INTER
IEXCHANGE BUFFFP PO INTER FOR TABLE PNTF
ISEE IF HAVE MATCH CONDITION IN TARL~
IIF NOT 1 GO ,.0 NFXT BLOr.K IN TABLF
I I F YES .. AD'1ANCE TABLF POINTER
IEXCHANGE TARLF PNTR FOR BUFFFR POINTFR
ILOOP TO TFST NFXT CHARACTER
IEXCHANGF BUFFFR POINTER FOR TABLE PNTR
ITEST FOR END OF CONTROL FI FLD
IBY SFE'ING IF TWO MSB'S ARF BOTH .. ~ ..
IIF SO .. HAVF FOUND MATCHING CONTROL WORD
ITEST FOR END Of CONTROL FI FLD
lEY SEEING IF TWO MSB'S APF BOTH "A"
IIF SO .. HAVF MARKFRI GO TO NFXT RLOCK
10THERWISE .. ADVANCE TABLE POINTER
lAND CONTINUE LOOKING
IAT FND OF CONTROL WOF~ FIFLD NFFD TO
IAD\1ANCE PNTR OVER THE "APDRESS" FI FLD
lAND THFN FETCH 1ST CHAR IN NEW BLOCK
ISET THE FLAGS AFTFR THE LOAD OPFRATION
IRETURN IF FND OF TABLF (NO MATCH FOt~D)

IOTHERWI SE EXCHANGE TABLE PNT'R FOR BUFF
lAND fORM LOOP TO CHFCK NFXT ALOCK IN TBL
IFXTRACT PAGF ADDRFSS AND STOPF TFMP
IADVANCE TABLF POINTF~
./STORF LOC ON PAGF TFMPORA'RILY
INOw SET HEM PNTR (H , L) TO POINT TO THF
12ND aYTE OF THE JUMP IN5TR. COMINr, UP
IPUT THF LOW OPDFR ADDR IN BYTE 2
IADVANCE THE MEMORY POINTFR
lAND THE PAGE ADDR IN BYTE 3 OF THE JMP
INOW JUMP TO THF Ann'R JUST LOADED INTO
ITHESE TWO (LOW ADDR)
IBYTFS (PAGF ADDR)
I
/AFTER PROCESSING CMND .. RETURN TO MAIN RTN

1& - 28

~OPTIN~ OPFPATION~

ANOTHFR PARTICULARLY POWFRFUL CAPABILITY OF A MINI-COMPUTFR l~ ITS
ABILITY TO RAPIDLY MANIPULATF AND O~GANIZF INFORMATION. A TYPICAL OP-
~ATInN IS TO SORT DATA INTO SOME DESIRED FORM ~UCH AS TO A~PAN~F A LIST
OF NAMES INTO ALPHABETICAL ORnFR~ OR pnSSIHLY TO ARRANGF A LIST OF AD­
~ESSF.S BY ZIP CODF ZaNF NUMAFRS.

THE KFY IN(H~EDI ENi IN DFVFLOpiN~ A PROC'iPAM TO PFRFORM SORTING OPFR­
ATIONS IS TO PLAN THF: ORGANIZATION OF THF STORARF OF THF DATA IN M~MnRY
SO THAT THF OPFRATING PORTION OF THF PF'OGRAM 15 RFLATIVELY 5IMPLF. A
SIMPLF TECHNIQUF IN"OLVFS JUSTIFYING THE DATA INTO FIFLfl5 SO THAT SIMPLE
COMPARING AL~nRI"HMS CAN 'RF' l'TILIZFD.

AN AN EXAMPLF OF A SORTING PROGRAM~ ASSt~E ONF HAn A LIST OF NAMFS
'THAT ON E WI SHFD TO HAVF THF r.OMPtrTFR PL~.CF IN ALPHABF.TI CAL ORDFR. A HY-
RlTHETICAL LIST MI~HT COMSIST OF THE f·OLLOt.lING NAME'S:

JONF.s~ R. M.
SMITH~ C.
t.rILLIAMS, P. K.
nAUI s~ Z. T.
THOMPSON., A. R.
THOMAS~ F.
ALLISON~ A. A.
SM I TH" T. P.

IT CAf\l BE SUPPOSFD THAT THE: NAMFS "HLL RF' INPUTTF'D AND STOPF"D IN
THE COMPUTF:B IN THF ORDER 5HO'~lN APO\'F. THE FIR~T ORJFCTIHF nF THF PPO-
GRAM lJOPLJl BF TO H~"E THF INCOMIN~ NAMFS HE STOPFD IN A MANNER THAT
1JOt'LD HF f'ASY FOR THE SORT ROUTI N F TO OP£RATF ON. A GOOD TFCHN I QUF TO
t~E MOULD AF TO SFT UP ItFI FL[lS·' f"OR THF INFORMATION BEING STORFD. IN
11115 CASE ONF WOULD WANT TO SFT UP THRFF FIELDS. Ot\IF FOR THF LA~T NAMF~
rnF FOR THE FIRST INITIAL" AND ONE. FOP THE MIDDLF INITIAL. THF ~I7.F OF
~CH FIFLD WOULD NEFD TO BF DETERMINFD. FOR THF EXAMPLF LIST SHowN
AB('IUE THF LONGEST LAST NAME ENCOUNTFRFD HAS FI GHT LFTTE.RS SO THF FI FLD
FOR THF LAST NAMFS MUST HAOF SPACE FOP AT LFAST FI~HT CHARACTFRS" SINCE
O\lF COMPt'iER "YOPD" IN MEMORY WILL STORF THE conF FOR ONE LFTTFR IN THF
NAME. HOWE"~~R~ IN ORDFR TO MAKF THF PROGRAM BF MORF nFNFRAL PURPOSE ..
mE COULD SELECT A LONGER fIELD LFNGTH TO ALLO~ LONGER NAMES TO BF STOR-
ED. FOR ILLUSi~ATI"E PURPOSES., A LAST NAMF FIFLD OF In (DFCIMAL) ttNITS
~ILL BE PLANNFD. (NOTE THAT THIS IS A PURELY ARBIT~ARV ~FLFCTInN.) THF
FI FLD LFNGTH FOR FACH IN 1 Tl AL "'OVLD ONLY HAVE TO EF I MFMOPY \.JORD. THUS
WE TOTAL LFNr,TH OF THE THREE FI FLOS MAKING UP A "BLOCK" ~TOULD RF If.
(DFCIMAL) OF 2~ OCTAL MEMORY WORDS. NOTE THAT IN SELFCTINr, THF FIFLn
LFNGTHS FOR THIS FXAMPLE~ SPACE WAS NOT INCLUDFn FOF THF COMMA (~) SIGN
AFTER THE LAST NAMF~ OR THE PERIODS (.) AFTER FACH INITIAL. THI5 15 BE­
CAUSE SINCE THESE, SIGNS ARE PEPITITIOVS ONE CAN SAVE VALUABLE MEMORY
SPACE BY DELETING THESE MARK~ nURINn THF INPUT OPFRATIO~J~ AND THFN ~IM­

PLY ADD THEM BACK IN AT THF APPROPRIATF POINT WHEN THE DATA 15 DISPLAYFD
BY THE OUTPUT DE"! CE.

THF INPUT ROUTINF WOULD NFED TO ALWAYS START INSFRTING CHARACTFRS AT
'THE SF-GINNING OF A FIELD- AND THEN INSFRT ~PACFS OR SOMF SPFCIAL COD1="
(SUCH AS A 000 WO'RD) IN ALL OF THF tTNUSFD MEMORY VOROS IN A FIFLP SO
1'HAT THE NAMES COULD BE CONSI DEREn AS BEING '·LFFT .JUSTI F I ED" IN E.ACH
FIELD. THE REASON FOR THIS WILL BF MADF CLFAP ~HORTLV.

THF FOLLOhllNG ROUTINE MIGHT BF USFD TO ACCFPT INFORMATION FROM A
KFYAOARD DFUleE AND STORF THF NAMFS IN MEMORY IN THE DESIRFD FORMAT.

.. - 29

, .

DEIIO.II

------------AI' EPT. LXI el4
LLI "89

IIOTJI1ID~ LAM
RDA
"TZ PWDEIID
LAI 82.
ADL
LLA

CXPAGE. GTZ lWCRH
LAI IlrtJ
GPH

• dTZ TOMUCH
.IMP .OTnrD

"'DDID. LB I 81.
CAL I.PUT
SPI 252
.In tlOTDON
XRA
LIlA
RET

ROTDOH. G:PI 215
.ITt ntDlWD
C:PI 256
.ITt P1IDDID
GPI 254
dTZ PWDEND
LIlA
DeB
IRL

•• NEXTI.. GAL I.PUT
GPI 215
JTZ RAVEC~
GPI 254
JTZ HAVEGM
LIlA
ItfL
DCB
dTZ JI'UL PLD
dtIP REXTI.

n VEG:R. XRA
LIlA
LAL
.DI II'
f:PI 81'
dTZ .EXBLK
I IlL
.nfP HAVEGR

HAVECH. XIlA
LMA
I IlL
DeB
tiT! P1JLPLD
.,IIP RA vanr

.EXBLK. In
.IMP IVAIE

•• P'tlLJl'LD. CAL I.PUT
CPI 251&
.IT! JI"OLPLD
IPI 215

GOIOl!3lTS

--------------IIRITIALIZE MAMES STORAGE AREA P.TR
ITO START OF STORAGE AREA
IMOW FETCH 1ST LOCATION IN A BLOGX
ISET PLASS AFTER LOAD OPERATIOR
lARD TEST .oR DrD OF STORAGE ARFA
IIF ROT DID. THEW ADVANCE POINTER
ITO NEXT BLOGK BY ADDIRa 21 OCTAL
ITO "EM PWTR ADDRESS • RESTORE PWTR
IADVAIICE PAGE ADDR OF PtlTR IF REQ·D
INOW TEST TO SEE I F STILL
11M STORAGE AREA (PAGES 04 - 0' OCTAL)
IOPTIONAL DISPLAY Msa IF STORAGE FILLED
IKEEP LOOXIRa .oR DID OF STORAgE ARM
ISETUP LAST MAMES FI nD eOUIITER
lARD FETGH A GHARACTER ~OM INPUT RTN
ICHECK JOR • CODE (FINISHED INDICATOR)
IPROtEED IF MOT. CODE
IIF • CODE. THEN PLASE A 000 WORD AT
ISTART OF BLOCK AS AM EIIDINa MARKER
lAND EXIT ROUTINE
ITEST .oR CARRIAGE-RETURN CODE
IAWD IGNORE IV 1ST CHAR I. FIELD
ITEST POR PERIOD (.) CODE
lARD IGRORE IF 1ST GHAR 1M FIELD
ITEST PaR COMMA (.) CODE
lAND IGNORE IF 1ST CHAR IN FIF.LD
I I V 110M E 0 F ABO VE. PUT GHAR I II FI ELD
IDaRE1IDfT THE FIELD SIZE COUlfTER
IADVANCE THE STORAGE POINTER
lARD FETCH THE NEXT CHAR IN LAST NAME
ITEST PUR GARRIAIE-RETURR
IFINISHED BLOCK I F HAVE G-R HERE
ITEST .oR GOMMA
IFINISHED LAST NAME FIELD IF HAVE SOMMA
IOTXERWISE PLACE CHAR IN LAST RAilE "I!2..D
IADVAlfCE THE STORAGE PO I lITER
IDESHDlDlT LAST NAMES FIELD SIZE GNTR
lAND SEE IF FIELD IS FILLED
IIF NOT. gET NEXT &HARACTER IN LAST RAME
IIF HAVE C-R. PUT A 899 IN MEM WORDS
IPOR REST OF CURRDfT BLOCK
IFETCH MEMORY POINTER TO A.GUWULATOR
IMASK OFF 4 MOST SI8NIFICA.T BITS
ITEST POR DID OF BLOCK
IPR £PAR E JI'OR NEXT BLOSK I F DONE
IOTHERWISE ADVANCE POINTER
lAND GOIITIRUE PUTTIIIG 999 WORDS IN BLOCK
II F RAVE COMMA. PUT 989 WORDS I. REST
/0 F "LAST NAllre FI ELD
IADVAMBE FIELD POI.TER
IDEt:REllDIT "LAST NAMES" FI ELD CMTR
180 PROCESS IRITIALS WHEW DORE
I!1.SE IOIfTI.UE TO GLEAR REST 0 F FI ELD

./ADVAIIGE MEII PRTR TO START OF .EXT BLOCK
IAIID PREPARE POR .EXT NAME Elf TRY
IGET f:RARACTER POR 1ST I·.ITIAI. OF NAME
ITEST fOR CGIOIA
II8IORE GOMMA AT THIS POINT
ITEST PO'R e-R

4 • 38

.rn SAVINI
XRA
LIlA
I IlL
JIIP SAVlW2

SAVIN 1. LIlA
I IlL

•• IRITF2. IAL IWPUT
GPI 256
dTZ IIIITF2
CPI 215
dJl'Z SAVIN2
XRA

SAVltl2. LIlA
I IlL
.IMP GKPAGE

I.IRH. INH
RET

IIF ROT C-R. STORE CHARACTER
IBUT. IF S-R. PUT I. lie WORD
I"'R BOTH I.ITIAL FI12.DS
IBY ABOVE IIISTRUCTIOW. TRill ADVAlICllla PIfTR
IAltD THEIl POLLOVINa THI S .rUIIP COIOlAJlD
ISTORE 1ST I.ITIAL I. 1ST I.ITIAL FIELD
ITKI1I ADVANCE STORAGE POIJIT~
ILOOX PaR 2.D I.ITIAL
ICHax POR PERIOD
IIG1fORE A PERIOD
ITEST POR C-R
II' NOT G-R THEN STORE 2.D INITIAL
IBUT I' WAS G-R. PLACE 8"8 WORD IN MD
ISTORE THE CHARACTER OR "88 SUBSTITUTE
IADVARCE POINTER TO NEW BLO'X
lAIrD CONTI"VE LOADING IN NAMES
ISUBROUTINE TO INCREXDfT REGISTER "r
lARD RETURJr TO CALLI.a ROUTINE

THE ABOVE ROUTINE HAS A NUMBER OF SPglAL FA£TORS IN£LUDED I. IT TO
ILLUSTRATE GONSIDERATIONS THAT PROGRAMMERS MUST LEARN TO TAKE INTO At-
COURT WX!!f DEVD.OPING SU&H PROGRAMS. SOME OF THESE FACTORS ARE POINTED
OUT IN THE POLLOWltfa DISCUSSION OF THE ABOVE ROUTINE.

THE FIRST FUNCTION THE ABOVE ROUTI.E PERPORMS IS TO LOOK POR THE
"DID" OF 'THE NAME STORAGE AREA. THIS IS DONE BY TESTING THE FIRST CHAR-
ASTER I. EACH "BLOE:X" TO SEE I F IT CONTAINS A """ WORD. AS SHon LATER

. III THE ROUTI"E. A 9"S WORD WILL BE !2fTERED AT THAT LOCATION WHEifEVER THE
OPmATOR HAS FINISHED DfTERIKO A SERIES OF MAMES THAT WILL BE SORTED.
IT SHOULD BE NOTED THAT WKDfEVER IT IS DFSIRED TO "INITIALIZE- THE RAME
STORAGE AREA SO THAT IT APPEARS TO THE PROGRAM THAT THE STORAGE ARFA IS
DlPTY. A SUBROUTINE THAT WILL PLAeE A 811 WORD AT PAGE 84 LOCATION 98"
SHOULD BE EXmUTED. (THAT SIMPLE SUBROUTINE IS NOT SHOW ABOVE). THE
ABOVE ROUTINE ALSO MAKES A TEST. EACH TIME THE MDfORY POINTER IS ADVAIf­
GED TO A REW _ BLOCK. TO DETERMINE WHETHER THE POI.TER IS STILL 1M THE
ALLOTED If AMES STORAaE AREA. POR THIS EXAMPLE THE STORAGE AREA WAS PLAN­
NED TO RESIDE IN LOCATIONS PROM PAGE "4 LOCATION 188 TO PAGE "., LOCATION
3.,.,.. SHOULD THE ROUTI.E GO BEYOND THE DESIGtlATED STORAGE ARFA BEPORE AN
DfD OF "TABLE" MARXER IS POUIIO. THE ROUTI.E WOLD JUMP TO A ROUTIIfE
TERMED "TOMUCH" WHICH MIGHT PRINT OUT A MESSAGE TO THE OPERATOR INDICA-
TING. THAT THE STORAGE AREA VAS ALREADY nLLED WITH NAMES. (THAT ROUTINE
IS NOT ING:LUDED IR THE EXAMPLE ABOVE).. THE REJrUlElICE TO THE ROUTI"!:
-TOMUQH- IS NOTED BY AN ASTERISK I. THE ABOVE PROGRAM SOURCE LISTING.

VHD THE ROUTI"E HAS POUIID THE DD O.Y THE MAIIES STORAGE AREA. INDI­
;ATING WHERE ADDITIONAL INCONIRa RAMES CAR BE STORED (PROVIDED THE STOR­
AGE AREA HAS ROT BED EXHAUSTED) THE ROUTINE T8D1 PROCEEDS TO ACCEPT
DATA PROM All IIfPUT SUBROUTINE. THE FIRST CRARACTDl ACCEPTED AT THE
START OF A NO RAME (BLOCK) IS TESTED TO SEE I,. IT IS A SPECIAL lODE
(All ASTERISK IN THIS CAS!:) THAT THE OPERATOR WOULD USE TO S18II1", TO THE
PROGRAM THAT ALL THE DESIRED WAMES HAD BEDI ElfTERm. I F THIS QODE VAS
RDEIVED THDf A III CODE WOULD BE PLACED IN THE FIRST MEMORY WORD .oR
THE "BLoex- POR THE 8D OF "TABLE" MARKER AS M!!ITIO.ED ABOVE. THE ROUT-

'INE WOULD THEW EXIT THE ABOVE ROUTI"E.

I,. THE FIRST CHARACTER IN A NEW BLQ,X I S ROT THE SPEC IAL "DID" CODE.
A CHnK IS MADE TO SEE IF IT IS A ,ARRIAGZ-RETURII. COIOIA. OR PERIOD
SID. AlfYORE OF THOSI CODES WOULD BE ItIfORED AS THI nRST IHARA8TER II
A BLOCK FOR THE FOLLOvlMa REASORS. I THE REIZIPT OF A ~ARRIAaE-RETUR. OR
COlIMA WOULD OBVIOUSLY BE INVALID ATI THIS POIWT BDAUSE NO LETTatS FOR A
WAME HAVE BEDI DTERED AlID THE A81EPTAlICE 0' EITHER OF THOSE OPERATORS

1& - 31

WOULD CAUSF THE LAST NAME FIELD TO BE COMPL~T~Y FILLED WITH 801 VORDS -
INCLUDING THE FIRST LOCATION. THIS ACTION WOULD RESULT IN AN EFFECTIVE
!!tD OF STORAOE AREA MARKER BEING PLACED AT THE LOCATION 0 F THE CURRElfT
BLOSK. THE RECEIPT OF A PERIOD SIaN WOULD MOST LIKELY BE THE PERIOD
SIaN FROM THE LAST INITIAL FIELD ENTERED (WHICH IS TO BE IGNORED) AND
CERTAINLY WOULD NOT BE A VALIP LETTER .oR THE BEGINNIIIG OF A LAST
NAME. THE INCORPORATION OF THESE CHFCKS ACT AS SAFEGUARDS .oR HUMAN OP­
ERATOR mRORS AND ARE ANOTHER EXAMPLE OF "HUMAN DfGINFERltfG" FACTORS IN
THE D!V!LOPMEWT OF A PROGRAM.

IF THE FI~ST CHARACTER IS NOT ONE OF THE ABOVF IT IS STORED IN THE
FIRST LOCATION IN THE "LAST NAME FIELD." AFTER THE FIRST CHARACTER HAS
BEEN STORED. FACH CHARACTER RECEIVED FROM THE INPUT ROUTINE IS TESTED TO
SEF. IF IT IS A CARRIAGE-RETURN OR COMMA. IF IT IS A COMMA. SIGNIFYING
THE END OF THE "LAST NAME FI !LD." ANY UNFILLED LOCATIONS IN THE FI E1.D
ARE FILLED WITH ZEROS AND THE PROGRAM PROCEEDS TO THE "INITIAL" FIELDS.
HOWEVER. I F A GAR~IAGE-RET~N IS NOTED. THE PROGRAM FILLS THE EMTIRF. RE­
MAINDER OF THE CURRltfT BLOCK. INCLUDING THE "INITIAL" FI !l.DS WITH ZERO
WORDS AS A CARRIAGE-RETURN SIGNIFIES THE COMPLETION OF A NAME ENTPY.
AN ADDITIONAL SAFEGUARD IS BUILT INTO THE ROUTINE IN THIS SECTION TO
PREVDfT TOO MANY CHARACTERS FROM BEING nrTERED INTO THE LAST NAME '1 £LD.
WHEN THE FIELD HAS BEEN FILLED. THE POINTER IS NOT ADVANCED UNTIL A,
CARRIAGE-RETURN OR COMMA IS RECEIVED.

ONCE THE LAST NAME FIELD HAS BEEN PROCESSED. THE ROUTIRE WILL ACCEPT
ANY MORE CHARACTERS AS INITIALS. BUT IGNORES THE PERIOD SIGNS AFTER THE
INITIALS. WHEN AN ENTIRE MAME HAS BEEN PROCESSED THE PROGRAM THEN LOOPS
TO ACCEPT ANOTHER NAME BLOCK AFTER GHEeKING TO MAKE SURF THE STORAGE
AREA IS NOT FILLED AND REPEATS THE PROCESS DESCRIBED.

THE ABOVE ROUTINE COULD BE MODIFIED TO INCLUDE AN OPERATOR CONVEN­
IENCE - THE ABILITY TO ERASE A CURRmT !HTRY IF THE OPERATOR MADE A MIS­
TAKE WHILE TYPING IN A NAME. THIS COULD BE DONE BY EXECUTING A ROUTINE
IMMEDIATELY AFTER THE POINTS DESIGNATED IN THE PROGRAM BY A DOUBLE AST­
ERISK (••). THE ROUTINE GOULD BE TJSED TO CHFCK POR A SPECIAL "ERASE"
CODE." IF THIS CODE VAS DETECTED. THE PROGRAM COULD RESET THE POINTERS
TO THE START OF THE GURR!JfT NAME BLOCK AND ALLOW RE-ENTRY OF THE NAME.
SUCH A ROUTINE MIGHT BE AS SHOWN HERE.

MNfXONIC

ERRORT. CPI 371

.In AWAY
LAL
NDI 360
LLA
JMP FNDDD

AWAY. • ••

COMMENTS

ICHECK FOR A "RUBOUT" CODE
IEXIT ROUTINE IF NOT A "RUBOUT"
IIF HAVE A "RUBOUT" TH'" FETCH POINTE'R
IREMOVE 4 LEAST SIGNIFICANT BITS
lAND RESTORE POINTFR TO START OF BLOCK
IJUMP TO RE-ENTER NAME
/ ••• NEXT INSTRUCTION IN CURRENT SEQUENCE

WHILE THE PREVIOUS ROUTINE SEEMS A BIT LONG AT FIRST GLANCE. ONE
MUST REMEMBER THAT IT IS DOING QUITE A FEW FU!fCTIONS AND IS QUITE Gm­
ERAL PURPOSE IN OVER-ALL DESIGH. THE PROGRAM ALLOWS ONE TO BUILD UP A
LIST OF NAMES IN A D£SIGNATED AREA OF MEMORY. PLACING THE DATA IN FOR­
MATTED FIELDS. CHECKS FOR SELECTED OPERATO~ ERRORS. AND BOUNDS OR LIMITS
THE STORAGE AREA. THE PROGRAM. USING THE BASIC CONCEPTS PRESENTED. CAN
BE MODIFIED TO SERVE AS A BASIC STRUCTURE PO~ INPt~TING A '~~IETV OF
TYPES OF DATA I.TO JUSTIFIED FIELDS OF DATA. TO PROVIDE A CLEA~ MENTAL
PICTURE OF HOW THE LIST OF NAMES GIUEN SEVERAL PAGES EARLIER WOULD AP­
PEAR WHEN INPUTTED TO MEMORY USING THE PROGRAM ILLUSTRATED. A DIAGRAM

4 - 32

SHO\\fIN(i MFMORV LOCATIONS AND THF'IR C{)NTfNTS 15 PFO\llDFO 8FLOW ~HOW1NG
Hen., THE DATA WOULD LOOK WHEN OR(;ANIZFD BY THY APOVF PROGRAM. TI1E DIAG-
~M SHOWS ADDRESSFS (O,N PAGE ~4) WITH THE CONTF,NTS Of THF MF.MO~Y LOCA­
TION SHOWN BENEATH IT" FOLLO~F'l') ~Y THF ALPHARFTICAL RFPRFSFNT~ION FOP
'TH F CODF ~'HFRF APPL I CAELF.

AnD~:

CONT:
LFTR:

Aonp:
cnNT:
LETR:

ADDF:
CONTI
LFTF:

ADnR:
CONTI
LFTR:

ADDR:
CONTI
LF:TR:

ADDF:
CONTI
Lfo:TR:

ADDRr
CONTI
LETR:

ADDR:
CONT:
LT- TR:

ADDR:
CONTI
LfTR:

~0~ ~~1 ~02 003 004 005 00~ ~07 010 011 AI? ~13 ~lb Al~ ~1~ ~17
312 317 31~ 305 323 000 000 00A 000 0~0 000 000 000 0A0 ~?? 31~
JON F S P M

02~ ~21 ~22 0?3 0?4 02~ 0?~ A?7 A30 ~~l ~3? ~33 ~34 ~3~ ~3~ A37
323 315 311 32Lt 310 0~0 000 ~00 000 ~00 ~0~ 00~ 000 ~00 303 00A

S MIT H C

.-
040 ~41 042 043 044 04~ 04f A47 0~~ 051 052 0~3 A~4 0~C ~~~ A~7
3?7 311 314 314 311 3~1 315 3?3 000 000 000 0~~ 0~0 000 3P0 313

", 1 L L 1 A M 5 P K

,,~'" PI f 1 0 f.2 0 ~ 3 0 ~4 '" to' 5 0 ~ f. 0 f. 7 "" 70 "71 0 72 ~ 73 0 74 (II 7 ~ (It 7 f.. (II 77
30LJ 301 32~ 311 323 000 000 e~0 00A A00 ~eA (IIA0 ~0~ ~~~ 33? 3?h

n A " I 5 Z T

10~ 1~1 102103104,1051"'6107110 111112113 114 Il~ IIf1 117
324 310 317 315 3~0 323 317 31~ 000 ~00 00~ 000 ~0~ ~~0 3~1 3??
THO M P 50 N A ~

120 121 122 123 124 125 12f. 127 130 131 132 133 13i1 13~ 13f1 137
32n 310 317 315 301 323 000 0~A ~00 ~~~ ~~~ ~~e 00~ 0~~ 3~f.. ~~0

THO MAS F

1 40 1 4 1 1 42 1 4 3 I 4 4 1 4 ~ 1 JJ. f. 1 4 7) 5'" I 5 1 1 ~?) 5 ~ 1 ~ JJ l~' c;. 1 c:. f.. I c: 7
301 314 314 311 323 317 31f. 000 ~00 000 000 00~ ~e0 0~~ 301 3A?
ALL ISO N A H

1~0 1,..1 If.2 If.3 If.4 If.~ If.f 16717017) 172173 171J 17~ 17~ 177
323 315 311 324 310 000 00~ 000 000 A0A 000 000 0~0 ~00 3P4 3P0

S MIT H T P

200 201 202 203 20b 2A~ 20f. 207 210 211 212 213 214 21~ 21~ 217
0~0 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

••••••• DON 'T CARE ABOUT MEMORY CONTFNT~ f<FYOND HFRF •••••••

ONCF' THF DATA HAS 8FEN ORGANIZFD IN A SUITA8LF MANNFR IN MFMO~Y" nNF
CAN PROCFFD TO DEVELOP A RELATIVELY SIMPLE SOPT ROUTINE TO APPANGF' THF
NAMES IN ALPHABETICAL ORDFR. THF TECHNIQUF TO BF ILLUSTRATFD CON~I~T OF
COMPARINf1 THF LETTERS" STARTING \llITH THF LFFT-MO~T P05ITION IN A BLorK
(AS SEEN IN THF MEMORY DIAGRAM ABOVF) AnAINST THF. LFTTF'R IN THE ~AMF
POSITION IN THF NEXT BLOCK IN MFMORY. BY ItLFTTF'R" "'HAT I~ ACTUALLY
MFANT IS THE ASCII CODF (IN THIS FXAMPLF) FOF A LFTTFF. IT 50 HAPPFN~
1'HAT THF, ASC I I CODE 1 S ARRAN(,;FD StTCH THAT THE ALPHABFT GOFS IN AN A5CFN­
DINA NUMFRICAL ORDFR. THF LFTTFR A IS RFPRF5FNTFD AS ~01" THF LFTTFR B
AS 302" C AS 3~3" AND SO FORTH ON UP TO THE LFTTFR Z ~~ICH HAS AN OCTAL
RFPRF.SENTATION OF 332. HO\l CONVFNIF'NT! THIS MFANS THAT IF THF VALUE
IN A MEMORY WORD (REPRESFNTING A LETTER IN ASCII FORMAT) IS COMPAFFD
AGAINST ANnTHFR MEMORY WORD CONTAINING AN ASCII CODFD LFTTFR" THAT THF
U)WER VALUF LOCATION CONTAINS A Ln1dFR ,OPDFR LF'TTFP IN THF ALPHARFT.

WITH THI5 INFORMATION ONF CAN QUICKLY DISCFPNTHAT ONE CAN QUITE
FASILY DFVFLOP A~ ALPnRITHM TO ARRAN(;YO: NAMES ALPHAAFTICALLY. IF THF

II - 33

VALUE OF MEMORY LOCATION IN THF FIRST POSITION Of SAY THE FIFST BLOCK
(THE NTH BLOCK) IS COMPARED AGAINST THE VALUE Of THF FIRST-POSITION IN
'tHE NFXT BLOCK (N+I BLOCK) AND FOUND TO BE (;RFATF'R IN \IALUF, THAN .THF
nRST (NTH) BLOCK HAS A NAME THAT 15 HIGHER ALPHAeETICALLY THAN THE NAMF,
IN THE SECOND (N+I) BLOCK AND THUS ONF CAN IMMEDIATELY P'ROCF.ED TO FX-
CHANGE THF CONTENTS OF THF TWO BLOCKS TO ARRANGE TH~ NAMES IN ASCENDING
ALPHABETICAL OPDER. I F, HOWEVER .. THF CODF IN THF' FI R~T BLOCK I S LESS IN
'~LUF THAN THE SECOND BLOCK" THEN THE PRFSENT OPDER 1 S CORRECT AND THE
PROGRAM CAN PROCEED TO CHECK THE SF'COND FLOCK AGAINST THE THIPD ONE.
IF THE LETTERS IN THE FIRST POSITION CHECKED ARE EQUAL IN VALUF. .. THFN
ONE CANNOT YFT MAKE A DECISION ABOVT THF ALPHABETICAL OFDFP .. RUT FATHFP
MU!-'T r;o ON TO COMPARF: THF "ALUES OF THE !=.FCOND LFTTER WITJ:iIN THF TWO
R...OCKS!

TO FURTHER COMPLETE THF ALGORITHM ONE MUST ALSO CONSIDFR THE POSSI­
BILITY THAT WHEN ONE FXCHANGFS THE CONTENTS OF BLOCKS "N" AND uN+l"
1HAT THE NE\1 CONTENTS OF "N" WILL NOW RF OF LFSSFR O~nF.R THAN THAT CON-
TAINED IN BLOCK UN-I." THUS .. "'HENFUER ONF PFRFORMS AN EXCHANGE OF 1''''0
B..OCKS . ONE MUST HAUF THE PROGRAM GO EACK AND DO A COMPARI SON BET"'EEN
1HE "N" AND "N-I" BLOCKS. ONF CAN FNVI~ION THF ALGORITHM AS PROCFFDING
IN A "SFE-SAW" MANNER - COMPARIN{i THF "NTH" ALOCK A(;AINST THE "~1+."
BLOCK tTNTIL AN F.XCHANGE I S NECESSARY" THFN SWI TCHING TO COMPAPF ~ET"'EEN
iHE "NTH" AND "N-." BLOCK UNTIL AN FXCHANGF I S NOT NECESSARY. AT THAT
PO INT THF PROCESS REUERTS BACK TO COMPARING THF "NTH" AND "N+ I" BLOCKS
tNilL ANOTHER EXCHANGE I S REQUIRED. LOOKED AT ANOTHFR WAY .. THE DA'TA
ELOCKS COULD BE VIEWED AS "RIPPLING" UP'''ARDS OR DOWNWARDS IN MFMORY AS
1HF PROCESS PROCEEDS. HIGHER ORDFRFD NAMES GETTING SHovFD TO HIGHF.R AD-
mESSED BLOCKS" LOWER ORDERFD NAMF5 BFING PUSHFD TO LOWER ADDRF~SEf)
ELOCKS.

'THIS TYPE OF ALGOfHTHM IS NOT THE ONLY "'AY ONF COULD PROCFFD TO SORT
1HF. DATA. THERE ARE OTHER TYPFS OF ALGORITHMS THAT CAN PERFORM THF SAME
JOB .. 50MF OF ~HICH ARF FASTFR WHFN LARGE DATA RASFS ARF INUOLUED <BUT
MORE COMPLICATED PROGRAMMING-WISE). SUCH ALGORITH~S GFNERALLY HAVE CON-
~DERABLE VALUE ON LARGE MACHINFS. HOWEUER~ THF A~OVE ALGORITHM 15
QUITE SUITABLE FOR TYPICAL SORTING JOBS THAT A S908 UNIT MIGHT BE CALLED
UPON TO PERFORM. FOR THOSE WHO MIGHT WANT TO IN\JFSTIGATF OTHFR. ALGO-
RITHMS THFY Mlr,HT CONSIDER THE CONCFPT Of HAVING A PROGRAM THAT IMMFD­
lATELY CLASSIFIES A NAME INTO .. SAY, THE FIRST .. SECOND, OR THIRD SECTION
OF THE ALPHABET.

A PROGRAM FOR THE "RIPPLE" SORTING ALnnRI THM DI SCU5SED ABOUF IS PRE­
SFNTE.D BELOW.

MNEMONIC

SORT .. LHI 004
LLI R00

INITBK .. LBI 020
LCM
LAL
ADI 020
LLA
CPI 020
CT5 INCRH
LAM
NDA
RTZ
CPC

COMMENTS

IINITIALIZE POINTFR TO START
10F NAMES BLOCK STORAGF. ARFA
ISET BLOCK LFNGTH COUNTFR
IGFT I ST CHAR FM ~LOCK "N·· I HTO "c" RFGI ~
IFETCH "N" BLOCK POINTF'R
IADVANCE POINTFR TO BLOCK "N+'"
IR FSTORF PO INTER
ICHFCK TO SFF IF GOIN~ TO NFw PAnF
IADlMNCF PAGE PNTR IF RFQUIRFn
IGFT 1ST CHAR FM BLOCK uN+l" INTO Ace
/SET FLAGS AFTER LOADING OPERATION
lEND OF STORAGE - SORT OPS COMPLFTED
/COMPARF uN+'" LFTTf,R TO "N" LETTE.R

4 - 3~

MNEMONIC

JTS XCHANG
JTZ CKNEXT
JMP IN.I TBK

CKNEXT .. DCE
JFZ NOTFIN

BACKER" SUI 017
JMP INliBK

NOTFIN" LAL
NDA
SUI (lJ17
LLA
CTC DECRH
LCM
LAL
ADI 020
LLA
CPI 020
CTS INCRH
LAM
CPC
,JTS XCHANG
JTZ CKNEXT

FINEND" DCB
JTZ BACKFR
INL
JMP FINFND

XCHANG" LAL
NDl 360
LLA
LEI 020

NOiYET" LCM
LAL
NDA
SUI 020
~LA
eTC DF'.CRH
LDM
LMC
LAL
ADI 020
LLA
cPt 020
CTS INCRH
LMD
INL
DCE
JFZ NOTYF.T
LAL
NOA
SUI 040
LLA
CTC DECRH
LAH
CPI 003
JFZ INITBK
JMP SORT

COMMENTS

IUN" > tlN+'" SO FXCHANGE BLOCK CONTENTS
IUN" • tlN+l" SO CHFCK NEXT LETTFRIN BLOCK
I"N" < UN+ I" so OPDFR O. K." DO NFXT ~LOCK
IDECRFMFNT BLOCK LENGTH COUNTFR
ICONTINUF IF NOT FINISHFD BLOCK
IPNTR FOR LAST 0 F "N+ I It BECOMES I ~T OF "N"
IBACK TO COMPARE NEXT BLOCK
I FFTCH UN+ 1" BLOCK PO INTE'P
ICLEAR THF CARRY FLAG WI TH TH 15 "NO-OP"
IDFCREASE POINTER TO "Nt. BLOCK
IRESTORE POINTER
IIF UNDFRFLOW THFN DFCRFMFNT PAGE POINTFR
IFFTCH CHARACTER FROM "N" BLOCK TO 'RF:C1 "r."
IFETCH UN" BLOCK POINTER
IINCRFASF POINTFR TO uN+l" BLOCK
IRESTORE POINTFR
ICHFCK TO 5EF IF GOING TO NFW PAGE
IADVANCE PAGE PNTR IF RFQUIRFD
IGET CHARACTER FROM "N+I" BLOCK
ICOMPARF "N+1" LETTER TO "N" LETTFR
I"N" ~ "N~l" SO EXCHANGE BLOCK CONTENTS
I"N" = "N+l" SO CHFCK NFXT LFTTFF IN ALOCK
I"N" < "N+l" SO ORDER O.K.~ DO NFXT ALOCK
IAT END OF BLOCK uN+l" RESET PNTR FOR "N"
IADVANCE POINTFP
IA"lD LOOP TO LOOK FOP END OF ALOCK
I FETCH tlN+ I" PO I NTFP
IMASK OFF LSR'S TO RFSTORE POIN~ER
ITO START 0 F "N+ I" ALOCK
ISET BLOCK LE~GTH COUNTER
IFETCH "N+l" INTO REGISTER "c"
IFETCH uN+1" POINTER TO ACCUMULATOR
ICLFAF THE CARRY FLAG
I[\EC~FASF POINTER TO "N" BLOCK
IRFSTORE PO INTER
IDECPF'MFNT PAGF PO INTER IF REQUI FE'n
IFETCH tiN" INTO REGISTER "D"
IPLACE FORMER tlN+l" INTO "N"
I FFTCH "N" PO I NTER TO ACCt'MULPTOP
IINCREASF PO INTER TO "N+ 1" BLOCK
IRESTORE POINTER
ICHFCK TO SEE IF ROING TO NFW PAGE
IINCRF~FNT PAGE POINTtR IF REQUIRED
IPLACE FORMFR tiN" INTO "N+I"
IADVANCE "N+l" POINTFR
IDECRFMfNT BLOCK LFNGTH COt~TFR
ICONTINUE IF NOT FINISHFD EXCHANGING
IIF FINISHFD EXCHANGING FETCH "N+l" PNTR
ICLEAR CARRY FLAG
IBACK POINTER FROM "N+l" TO "N-l" BLOCK
IRESTORE PO INTER
IDECREMENT PAGE POINTER IF REQUIRED
IFFTCH CURRENT PAGF
IMAKF 5URF STILL IN STORAGE AREA
IYES - DO AN EFFECTI \1E UN-Itt TO ·'N" TF.ST
IWENT BACK TOO YAP - GO TO STARTIN~ ALOCK!

" - 35

THF "INCRH" REfE~RED TO BY THE SORT ROUTINF WAS PRFSENTED FARLIFR
AS PART OF THE ROUTINE THAT ACCEPTFD NAMES INTO THF STORAGE APEA. THF
"DECRH" ROlTTINF NOT 5HO','N SHOULD RF A SNAP FOR ANYONE WHO HAS RFACHED
nils POINT IN THE MANUAL. (IF IT IS NOT .. F'OR HFA"F.NS SAKE GO RACK!)

1 F ONE MENiALLY PROCEEDS THROUGH tHE SORT ROtTTINF. "'HILE REFERRING
'ro THE DIAGRAM GIVEN SEVERAL PAGES FARLIFR SHOWING THE NAMES AS ORIGI­
NALLY STORED IN MEMORY .. ONE SHOULD BF. ABLE TO CLEARLY DISCERN THE OPFR-
ATION OF THE SORT PROGRAM. FOR EXAMPLE .. FOR THE F'I,RST THRFF NAMF'S iHF
PROGRAM ENCOUNTERS IN THE, ORIGINAL EXAMPLE SETUP .. 'THF PROGRAM t.YlLL ONLY
HAVE TO TEST THE FIRST LETTEF IN FACH BLOCK. WHFN THE NAME IN THF 4TH
aOCK I S EXAMINED, AN EXCHANGE WILL HAVF TO MADE WI TH THF NAME IN THF
1HIRD BLOCK .. THEN THE PROGRAM WILL FIND ,.fHFN CHFCKING THE UN-I" ALOCK
(WHICH WA5 THE ORIGINAL SECOND flLOCK) THAT THF NAME "DAVIS" Z. T." HAS
10 BE EXCHANGED AGAIN, AND THI S WILL HAPPEN ONE~ MORF TIME UNTIL THF
~MF "DA\llS" Z.T." ARRIl1FS AT THE FIRST BLOCK IN THE STORAGE AREA. AT
1HI S PO INT' THE PROGRAM GOES BACK TO CHFCKING AGAINST THF' "N+ 1" BLOCK.
1HF NAME,S It'OULD NOW APPFA'R IN MEMORY IN THE FOLLO~'lNC: ORDFR.

BLOCK '1 : DAVI S" z. T.
BLOCK 12: JONES .. R. M.
BLOCK 13: SMITH .. c.
BLOCK ,.a: WI L.L lAMS" P. K.

, BLOCK '5: THOMPSON, A. R.
BLOCK 16: THOMAS" F.
BLOCK 17: ALLISON" A. B.
BLOCK #8: SMITH" T. P.

NOW THE PROGHAM WOULD GFT DOWN TO BLOCK FI UF BFFORF I T FOUND IT NFC-
ESSARY TO EXCHANGF BLOCK FI VF WI TH BLOCK FOUR. THF NFXT "N-l" TFST
1a10ULD FAIL" HOWFtJER .. AND THE PROGRAM WOULD PROCFFD BACK UP TO BLOCK SIX
WHERE IT WOULD FIND THE NAMF ·'THOMAS .. F." AND HAUF TO FXCHANGF IT WITH
·""ILLIAMS .. P. K." AND THFN EXCHANGE IT AGAIN WITH "THOMPSON" A. R." AT
THIS POINT THE NAMES STORAGE AREA WOULD APPEAR A5:

BLOCK '1 : 01'\115 .. z. T.
ELOCK '2: JONES" R. M.
BLOCK 13: SMt TH .. C.
ALOCK ,LI: THOMAS, F.
BLOCK II r:.... , . THOMPSON" A. R.
BLOCK I f.: WILLIAMS, P. K.
BLOCK 17: ALLI SON" A. B.
BLOCK 18: SMITH" T. P.

AT THI S POINT THF PPOGRAM WOULI' (';FT UP TO BLOCK NUMBER SEVEN liHFRF
IT 1JOlJLD FIND "ALLISON .. A. B." AND IT VOULD THFN HAUF TO F.XCHAN~F

NAMES ALL THF WAY BACK DOWN THE LINE TO GET IT INTO BLOCK NUMBFR ONF.·
FINALLY .. THE P'POGRAM WOULD FIND THAT "SMITH" T. P ... HAD TO BE MOl'ED BACK
ENDING UP IN BLOCK NUMAER FIVF. ALL OF' THE ABOUE 1-10ULD HAVE HAPPENED
IN A MERE FRACTION OF A SECOND AS THE 8008 CPU EXECUTED THE INSTRUC­
TIONS AT MICRO-SFCOND SPEEDS - RFSULTING IN THF NAMES ORGANIZFD IN THE
FOLLOWING DESIRED M~NNFR.

BLOCK '1 : ALLISON" A. B.
BLOCK 12: DAVI5 .. Z. T.
BLOCK 13: JONES .. R. M.
BLOCK 14: SMI TH .. C.
BLOCK , 5: SMI TH" T. P.
BLOCK 16: THOMAS, F.
BLOCK 17: THOMPSON .. A. F.
BLOCK 181 WILLIAMS .. P. K.

" - 36

SIMILAR TYPES OF SORTING OR ARRANGING OPERATIONS CAN ALSO BE" DONE
VITH NUMBERS IN EITHER ASCII~ BCD" OR BINARY FORM OR WITH OTHER TYPES OF
MTA.

ONE COULD COMBINE A "CONTROL TABLE" USING ONE OF THE TYPES DISCUS­
SED EARLIER IN THIS CHAPTER WITH THE NECESSARY INPUT" FORMATTI.O# AND
SORT SUBROUTINE ADDRESSES STORED IN THE TABLE~ AND THUS MAKE UP A POW­
ERFUL YET EASY TO USE PROGRAM PACKAGE SUITED TO THE USER'S SPECI FIC RE­
QUIREMENTS.

BY UTILIZING THE CONCEPTS (AS WELL AS POSSIBLY SOME OF THE SPECI FIC
RlUTINES) PRESe.TED IN THIS SECTION" THE READm SHOULD BE ABLE TO SEE
THE WAY TOWARDS DEVELOPING SOPHISTICATED PROGRAMS CAPABLE OF PERFORMING
FUNCTIONS TAILORED TO THE INDIVIDUAL'S OWN REQUIREMENTS.

MORE INFORMATION ON HANDLING I/O ROUTINES WILL BE PRESENTED IN A
LATER CHAPTER. FOR THOSE INTERESTED IN UTILIZING THE MATHEMATICAL CAPA­
BILITIES OF THE DIGITAL COMPUTER (PERHAPS COMBINING SUCH OPERATIONS WITH
SOME OF.THOSE JUST DISCUSSED) SIMPLY PROCEED ON TO STUDY THE NEXT CHAP­
TER WHICH IS DEVOTED TO JUST THAT SUBJECT I

4 - 37

MATHEMATICAL OPERATIONS

THE ABILITY OF A DIGITAL COMPUTER TO BE ABLE TO HANDLE MATHEMATICAL
OPERATIONS COUPLED WITH IT'S ABILITY TO MANIPULATE TEXT GIVES THE MACH­
INE A UNIQUE COMBINATION OF FUNCTIONALITY THAT ACCOUNTS FOR IT'S GROW­
ING POPULARITY. PROGRAMMING A COMPUTER USING MACHINE LANGUAGE TO PER­
FORM MATHEMATICAL FUNCTIONS IS PERHAPS A BIT MORE COMPLICATED THANHAV­
ING IT PERFORM ROUTINE TEXT MANIPULATIONS~ BUT IT IS NOT AS DIFFICULT
AS SOME P!X)PLE TEND TO THINK BEFORE BEING INTRODUCED TO THE SUBJECT.
LIKE MOST OTHER PROGRAMMING TASKS~ THE KEY TO SUCCESS IS ORGANIZATION
OF THE PROGRAM INTO SMALL ROUTINES THAT ClN BE BUILT UPON TO FORM MORE
POWERFUL COMBINATIONS.

THE INSTRUCTION SET OF THE 8008 CPU CONTAINS A NUMBER OF PRIMARY
MATHEMATICAL INSTRUCTIONS THAT ARE THE BASIS FOR DEVELOPING MATHEMATI­
CAL PROGRAMS. THE GROUPS USED MOST On-EN INCLUDE THE ADDITION~ SUB­
TRACTION AND "ROTATE" INSTRUCTIONS. CDO YOU RECALL THAT ROTATING A
BINARY NUMBER TO THE LEn' EFFECTIVELY DOUBLES~ OR MULTIPLIES THE ORIG­
INAL VALUE BY TWO~ AND ROTATING IT TO THE RIGHT ESSENTIALLY DIVIDES
THE ORIGINAL VALUE IN HALF?)

DEALING WITH NUMBERS OF SMALL MAGNITUDE USING A 8008 CPU IS SIM­
PLICITY ITSELF. FOR INSTANCE~ IF ONE WANTED TO ADD~ SAY THE NUMBERS
2 AND 7~ ONE COULD LOAD ONE NUMBER INTO REGISTER "B" IN THE CPU AND
UlAD THE OTHER INTO THE ACCUMULATOR. THE SIMPLE DIRECTI VEl

ADB

\!nULD RFSULT IN THE VALUE 011 ,(OCTAL I) BEING LE" IN THE ACCUMULATOR.
SUBTRACTION IS JUST AS EASY. IF ONE PLACED 7 IN THE ACCUMULATOR AND 2
IN REGISTER ttB" AND EXECUTED AI

SUB

THE VALUE 5 WOULD BE LE" IN THE ACCUMULATOR.

MULTIPLICATION~ WITH SMALL NUMBERS~ CAN BE READILY ACCOMPLISHED US­
ING A SIMPLE ALGORITHM OF ADDING THE MULTIPLICAND TO ITSELF THE NUMBER
OF TIMES DICTATED BY THE MULTIPLI ER. SUPPOSE ONE DESIRED TO HAVE THE
COMPUTER MULTIPLY 2 TIMES 3. PLACING .THE VALUE 2 IN REGISTEFt "B" AND
3 IN REGISTER "c" AND EXECUTING THE FOLLOWING INSTRUCTION SEli»UENCEI

START~ XRA
MULTIP" ADB

DCC
JFZ MULTIP

STOP~ HLT

~ULD RESULT IN THE VALUE 6 ENDING UP IN THE ACCUMULATOR. AS SHALL BE
DISCUSSED FURTHER ON~ THE ABOVE ALGORITHM IS NOT VERY EFFICIENT WHEN THE
NUMBERS B,ECOME LARGE. MORE EFFICI ENT MULTIPLICATION ALGORITHMS ARE
BASED ON ROTATE OPERATIONS WHICH EFFECTIVELY MULTIPLY A NUMBER BY A POW­
ER OF TWO. FOR INSTANCE~ MULTIPLYING A NUMBER BY 32 (DECIMAL) WOULD RE­
QUIRE 32 (DECIMAL) LOOPS THROUGH THE ABOVE ROUTINE~ BUT ONLY 5 ROTATE
LEFT OP~ATIONS I HOWEVER~ THE ABOVE ROUTINE ILLUSTRATES HOW A NUMBER
CAN BE MULTIPLIED EVDJ THOUGH THE COMPUTER DOES NOT HAVE A SPECIFIC
"MULTIPLY" INSTRUCTION.

ONE CAN ALSO DIVIDE SMALL VALUED NUMBERS THAT HAVE INTEGEft RESULTS
USING A SIMILARLY SIMPLE ALGORITHM THAT SUBTRACTS INSTEAD OF ADDS. FOR

5 - 1

INSTANCE .. A REVERSE OF THE PREVIOUS EXAMPLE WOULD BE TO DIVIDE THE NUM­
BER 6 BY THE VALUE 2. THE SUBTRACTION ALGORITHM WOULD APPEAR AS&

START .. LCI 900
DI VI DE .. NDA

JTZ STOP
SUB
INC
JHP DI VIDE

STOP .. HLT

IN THE ABOVE ALGORITHM" THE ROUTINE STARTS WITH THE NUMBER 6 IN THE
ACCUMULATOR. THE DIVISOR IS IN REGISTER "B." REGIST~ "c" IS USED AS
A COUNTER TO COUNT HOW' MANY TIMES THE VALUE IN "B" CAN BE SUBTRACTED
WTIL THE CONTENTS OF THE ACCUMULATOR IS EQUAL TO ZERO. AS POINTED
OUT PREVIOUSLY" THE ALGORITHM ONLY WORKS IF THE RESULT IS AN INTEGER
~LUE. DIVISION IS PERHAPS THE MOST DIFFICULT BASIC MATHEMATICAL FUNC­
TION TO PERFORM ON A DI GITAL COMPUTER BECAUSE 0 F MATHEMATICAL PECUL­
IARITIES (INVOLVING THE MANIPULATION OF FRACTIONAL VALUES). HOWEVER" AS
WILL BE ILLUSTRATED LATER" THERE ARE WAYS AROUND THE ABOVE LIMITATION.
THE ABOVE ILLUSTRATION IS MERELY TO GIVE THE NOVICE ENCOURAGEMENT BY IL­
t5TRATING THAT SUCH OPERATIONS ARE POSSIBLE EVEN THOUGH A SPECIFIC "01\1-
IDE" COMMAND IS NOT A PART OF THE TYPICAL DIGITAL COMPUTER'S INSTRUCTION
SET I

THE DISCUSSION SO FAR HAS BEEN LIMITED TO NUMBERS OF RELATIVELY
SMALL MAGNITUDE. SPECIFICALLY" NUMBERS SMALL ENOUGH TO BE CONTAINED
IN A SINGLE EIGHT BIT BINARY REGISTER OR MEMORY LOCATION IN A 8008 UNIT.
~NY USER'S WHO WANT TO USE THE DIGITAL COMPUTER TO PERFORM MATHEMATICAL
CPERATIONS SEEM TO GET "STUMPED" WHEN FIRST COMING ACROSS A REQUIREMEN-T
TO MANIPULATE NUMBERS THAT ARE TOO LARGE IN MAGNITUDE TO FIT IN ONE MEM­
ORY WORD OR CPU REGISTER. WITH A 8008 BASED MACHINE .. AND INDEED MOST
MINI-COMPUTERS" SUCH A REQUIREMENT TYPICALLY ARRIVES SHORTLY AFTER ONE
HAS STARTED OPERATING THEIR MACHINEI THE REASON IS SIMPLY THAT THE
LARGEST VALUED NUMBER THAT CAN BE PLACED IN AN "N-BIT" REGISTER IS THE
~LUE (2tN)-I. SINCE THF 8098 CPU USES BUT 8 (DECIMAL) BITS IN A WORD ..
1HE LARGEST NUMBER THAT CAN BE REPRESENTED IN A SINGLE WORD 1 F ALL THE
BITS ARE USED IS A MERE 2SS (DECIMAL). IF ONE DESIRES TO MAINTAIN THE
"SIGN" (WHETHER IT IS "PLUS" OR "MINUS") AND USES ONE BIT IN A WORD FOR
mAT PURPOSE" THEN THE LARGEST NUMBER THAT CAN BE REPRESENTED IN A SIN­
GLE WORD IS A PALTRY 127 (DECIMAL) - HARDLY ENOUGH TO BOTHER USING A
COMPUTER TO MANIPULATE SUCH LIMITED MAGNITUDESI

BUT" THE SECRET TO RAPIDLY INCRFASING THE MAGNITUDES OF THE NUMBERS
THAT CAN BE HANDLED BY A DIGITAL COMPUTER IS HELD IN THAT FORMULA JUST
PRESENTED - (2tN)-I. FOR THAT FORMULA SAYS THAT THE SIZE OF THE NUMBER
mAT CAN BE STORED IN A BINARY REGISTER ESSENTIALLY DOUBLES FOR EV~Y
BIT ADDED TO THE REGISTER. THUS" IF ONE WERE TO STORE A NUMBER USING
THE AVAILABLE BITS IN TWO REGISTERS OR MEMORY WORDS IN A 8008 SYSTEMI
ONE WOULD BE ABLE TO REPRESENT NUMBERS AS LARGE AS (2'16>-1 OR ~51535
(DECIMAL). IF ONE OF THOSE 16.BITS WERE RESERVED FOR A "SIGN" INDICATOR
THE MAGNITUDE WOULD BE LIMITED TO (291S)-1 OR 32,,767. THAT IS CERTAIN­
LY A LOT MORE THAN THE -VALUE OF 127 THAT CAN BE HELD IN JUST ONE WORD!
BUT" WHY STOP AT HOLDING A NUMBER IN TVO WORDS? THERE IS NO NEED TO"
ONE CAN KEEP ADDING WORDS TO BUILD UP AS MANY BITS AS DESIRED. THREE
WORDS OF 8 BITS" LEAVING ONE BIT OUT FOR A SIGN INDICATOR WOULD ALLOW
NUMBERS UP TO (2t23)-1 OR 8 .. 388 .. 607 (DECIMAL). FOUR WORDS .. WOULD ALLOW
REPRESENTING A SIGNED NUMBER UP TO (2'31)-1 WHICH IS APPROXIMATELY
1" 197 "483,, 6471 ONE COULD ADD STILL MORE WORDS I F REQUIRED. GENERALLY ..
}f)WEVm" ONE SELECTS THE NUMBER OF "SIGNIFICANT DIGITS" THAT WILL BE IM­
PORTANT IN THE CALCULATIONS TO BE PERFORMED AND USES DJOUGH WORDS TO

5 - 2

ENSURE THAT THE "PRECISION,," OR NUMBER OF SIGNIFICANT DIGITS REQyIRED
FOR THE OP~ATIONS CAN BE REPRESENTED IN THE TOTAL NUMBER OF BITS AVAIL­
ABLE WITHIN THE "GROUPED" WORDS. THE USE OF MORE: THAN ONE COMPUTER WORD
OR REGISTER TO STORE AND MANIPULATE NUMBERS AS THOUGH THEY WERE IN ONE
lARGE CONTINUOUS REGISTER IS COMMONLY REFERRED TO AS "MULTIPLE-PRECIS­
ION" ARITHMETIC. ONE OFTEN HEARS COMPUTER TECHNOLOGISTS SPFAKING OF
"DOUBLE-PRECISIONtt OR uTRIPLE-PRECISION" ARITHMETIC. THIS SIMPLY MEANS
THAT THF MACHINE IS USING TECHNIQUES (GENERALLY PROGRAMMING TECHNIQUES)
THAT ENABLE IT TO HANDLE NUMBERS STORED IN TWO OR THREE REGISTERS ~S
nlOUGH THEY WERE ONE NUMBER IN A VERY LARGE REGISTER.

THE 8008 CPU IS CAPABLE OF MULTIPLE-PRECISION ARITHMETIC. IN FACT
IT DOES IT QUITE NICELY BECAUSE THE DESIGNERS OF THE INTEL 8008 CPU CHIP
1UOK PARTICULAR CARE TO INCLUDE SOME SPECIAL INSTRUCTIONS FOR ~UST SUCH
OPERATIONS. (SUCH AS THE ADD AND SUBTRACT WITH CARRY INSTRUCTIONS.)
~TLTIPLE-PRECI5ION ARITHMETIC IS NOT DIFFICULT - IT TAKES A LITTLE EXTRA
CONSIDERATION IN THE AREA OF ORGANIZING THE PROGRAM TO HANDLE AND STORE
NUMBERS THAT ARE CONTAINED IN MULTIPLE WORDS IN MEMORY" BUT WITH THE USE
OF EFFECTIVE "SUBROUTINING" OR SO CALLED "CHAINING" OPERATIONS THE TASK
~y BE HANDLED WITH RELATIVE EASE.

IN ORDER TO EFFECTIVELY DEAL WITH MULTIPLE-PRECISION ARITHMETIC ONE
M.JST ESTABLISH A CONVENTION FOR STORING THE SECTIONS OF ONE LARGE NUM­
BER IN SEVERAL REGISTERS. FOR THE PURPOSES OF THE CURRENT DISCUSSION"
IT WILL BE ASSUMED THAT "TRIPLE-PRECISION" ARITHMETIC IS TO BE ~ER­
mRMED. NUMBERS WILL BE STORED IN THREE CONSECUTIVE MEMORY LOCATIONS
ACCORDING TO THE FOLLOWING ARRANGEMENT.

MEMORY LOCATION UN"
MEMORY LOCATION "N+I"
MEMORY LOCATION "N+2"

• LEAST SIGNIFICANT 8 BITS
= NEXT SIGNIFICANT 8 BITS
= MOST SIGNIFICANT 7 BITS + SIGN BIT

11-IUS" THE THREF WORDS IN MEMORY COULD BE MENTALLY VI EWED AS BEING ONE
CONTINUOUS LARGE' REGISTER CONTAINING 23 BINARY BITS PLUS A SIGN BIT AS
SHOWN IN THE DIAGRAM BELOW.

MEM LOCATION "N+2tt MEM LOCATlbN tlN+ I" MEM LOCATION "N"

******************* ******************* *******************
S X X X X X X X *X X X X X X X X* '*X X X X X X X X*
******************* ******************* *******************

MOST SIGNIFICANT BITS NEXT SIGNIFICANT BITS LEAST SIGNIFICANT BITS

OF COURSE" ONE COULD REVERSE THE ABOVE SEQUENCE" AND STORE THE LEAST
SIGNIFICANT BITS IN MEMORY LOCATION "N,," THE NEXT GROUP IN "N+I#" AND
THE MOST SIGNIFICANT BITS PLUS SIGN BIT IN M·EMORY LOCATION "N+2." IT
MAKES LITTLE DIFFERENCE AS LONG AS ONE REMAINS CONSISTENT WITHIN A PRO­
GRAM. HOWEVER# THE CONVENTION ILLUSTRATED WILL BE THE ONE USED FOR THE
DISCUSSION IN THIS SECTION.

ALSOI AS HAS BEEN POINTED OUT" IT IS NOT NECESSARY TO LIMIT THE
STORAGE TO JUST THREE WORDS - ADDITIONAL WORDS MAY BE USED IF ADDITIONAL
PRECISION IS REQUIRED. FOR MOST OF THE DISCUSSION IN THIS CHAPTERI
THREE WORDS WILL BE USED FOR STORING NUMBERS. USING THREE WORDS IN THE
ABOVE FASHION WILL ALLOW NUMBERS UP TO A UALUE OF 8,,388,,641 IN MAGNITUDE
TO BE STORED. THIS MEANS THAT 6 TO 7 SIGNIFICANT DIGITS CAN BE MAIN­
TAINED IN CALCULATIONS.

5 - 3

THE FIRST MULTIPLE-PRECISION ROUTINE TO BE ILLUSTRATED WILL BE AN
ADDITION ROUTINE THAT WILL ADD TOGETHER TWO MULTIPLE-PRECISON NUMBERS
AND LEAVE THE RESULT IN THE LOCATION FORMERLY OCCUPIED BY ONE OF THE
NUMBERS. THE ROUTINE TO BE PRESENTED HAS BEEN DEVELOPED AS A "GENERAL
PURPOSE" ROUTINE IN THAT" BY PROPERLY SETTING UP MEMORY ADDRESS POINTERS
AND LOADING A CPU REGISTER WITH A "PRECISION" VALUE PRIOR TO "CALLING"
THE ROUTINE" THE SAME ROUTINE CAN BE USED TO HANDLE MULTIPLE-PRECISION
ADDITION OF NUMBERS VARY ING IN LENGTH FROM "I TO N" REGISTERS {AS LONG
AS THE REGISTERS CONTAINING A NUMBER ARE IN CONSECUTIVE ORDER IN MEMORY"
AND WITH THE RESTRICTION THAT ALL THE REGISTERS CONTAINING A NUMBER ARE
~ ONE PAGE - LIMITING "N" TO 255 (DECIMAL WORDS)" WHICH IS A LIMITATION
FEW PROGRAMMERS WOULD FIND CUMBERSOME) I

THE KEY ELEMENT IN THE ADDITION ROUTINE TO BE ILLUSTRATED IS THE USE
OF THE HACM,," OR "ADD WITH CARRY" INSTRUCTION. THE ESSENTIAL DIFFERENCE
BETWEEN AN "ADD WITH CARRY" CACM) INSTRUCTION" AND AN "ADM" CADD WITHOUT
CARRY) COMMAND IS AS FOLLOWS:

AN "ADM" INSTRUCTION SIMPLY ADDS THE CONTENTS 0 F THE ACCUMULATOR
AND THE CONTENTS OF THE MEMORY LOCATION POINTED TO BY THE "H & Lit
REGISTERS. DURING THE ADDITION PROCESS" THE STATUS OF THE CARRY
FLAG I S I GNORED. HOWEVER" I F AT THE END 0 F THE PROCESS" AN "OVER­
FLOW" HAS OCCURED" THE CARRY FLAG WILL BE SET TO A "1" CONDITION
FOR EXAMPLE" ADDING THE FOLLOWING BINARY NUMBERS WOULD YIELD:

1 0 1 0 1 0 1 0
o 1 0 1 0 1 0.1

CARRY = 0: 1 1 1 1 1 1 1 1

AND ADDING THE NEXT TWO NUMBERS WOULD YIELD:

1 1 111 111
o 0 000 001

CARRY = 1: 0 0 0 0 0 0 0 0

REGARDLESS OF THE CONDITION OF THE CARRY FLAG AT THE START OF THE
ADDITION OPERATION.

AN "ACMIt COMMAND" ON THE OTHER HAND" EXAMINES THE CONTENTS 0 F
THE CARRY FLAG PRIOR TO THE START OF THE ADDITION OPERATION AND
CONSIDERS IT AS AN OPERATOR ON THE LEAST SIGNIFICANT BIT POSITION.
AT THE END OF THE PROCESS" THE CARRY FLAG IS SET OR CLEARED DE­
PENDING ON WHETHER OR NOT AN "OVERFLOW" OCCURED" AS IN THE "ADM"
CLASS OF INSTRUCTION. FOR EXAMPLE" ADDING THE FOLLOWING BINARY
NUMBERS YIELDS RESULTS THAT ARE DEPENDENT ON THE INITIAL STATUS
OF THE CARRY F1..AG.

CASE'lA 1 0 1 0 1 0 1 0 : 0 = CARRY BIT AT START
01010101

CARRY = 0: 1 1 1 1 1 1 1

CASE ,IB 1 0 1 0 1 0 1 0 I 1 = CARRY BIT AT START
01010101

------~---~--------CARRY • 1: 0 0 0 0 0 0 0 0

5 - 4

CASE 12A I 1 I 1 1 1 1 1 I 0 = CARRY BIT AT START
0 0 0 o " 0 0 I

---------~---------CARRY = 1 I " 0 0 0 " 0 0 0

CASE 12B 1 1 1 1 1 1 1 1 : 1 I: CARRY BIT AT START

" 0 0 0 0 0 " 1

--~--~-------------CARRY = 1 : " " " o 0 " " 1

IN SUMMARY ~ ONE CAN SEE THAT AN "ACM" TYPE OF INSTRUCTION MAKES
MULTIPLE-PRECISION ADDITION EXTREMELY EASY BECAUSE THE CARRY BIT ACTS
AS A LINK BETWEEN ANY "CARRY" FROM THE MOST SIGNIFICANT BIT OF ONE
ADDITION OPERATION INTO THE LEAST SIGNIFICANT BIT OF THE NEXT ADDITION
OPERATION - JUST AS THOUGH THE ADDITION PROCESS WAS PERFORMED IN ONE
lJ)NG REGISTER. FOR COMPARISON~ EXAMINE THE ~AMPLE BELOW WHICH FIRST
ILLUSTRATES AN ADDITION OpmATION IN A HYPOTHETICAL 16 (DECIMAL) BIT
REGISTER~ AND THEN SHOWS THE SAME RESULT WHEN TWO "ACM" OPERATIONS ARE
PERFORMED ON TWO 8 BiT REGISTERS.

HYPOTHETICAL 16 BIT REGISTER: I 1 1 1 1 1 1 1
0" "0" 0 0 0

10101010
11 01~ 101

CARRY = 1: 0" 0 0 0 0 0 0 01111111

FIRST ACM OPERATION. 1 " 1 " 1 0 1 0 : 0 = ASSUMED FOR CARRY
1 1 0 1 " 1 ~ 1 BIT AT START

-~--------~-~------
CARRY = 1 : 0 1 1 1 1 1 1 1 = LSB'S IN MEM LOC "N"

1 1 1 1 1 1 1 1 : 1 = CARRY STATUS FROM
0 " 0 0 " 0 0 0 OprnATION ABOVE

-------~-----~-~---
CARRY = 1 : " " " 0 0 " 0 0 = MSB'S IN MEM LOC "N+l"

PLACING THE RESULTS OF THE TWO 8 BIT REGISTrnS SIDE-BY-SIDE AFTER
t5ING THE "ACMn TYPE OF INSTRUCTION YIELDS THE SAME RESULT AS THOUGH THE
OPERATION HAD BEEN PERFORMED IN A SIXTEEN BIT REGISTER. THE CONCEPT CAN
BE APPLIED TO AS MANY 8 BIT REGISTERS AS NECESSARYI

ARMED WITH THE KNOWLEDGE OF HOW THE POWERFUL ttACH" TYPE OF INSTRUC­
TION OPERATES" ONE CAN PROCEED TO DEVELOP A "N'TH PRECISI'ON" ADDITION
SUBROUTINE. EXAMINE THE FOLLOWING ROUTINE.

MNEMONIC

ADDER~ NDA
ADDMOR~ LAM ,

CAL SWITCH
ACM
LMA
DCB
RTZ

COMMENTS

IALWAYS CLEAR CARRY FLAG AT RTN ENTRY
IGET FIRST NUMBER INTO ACCUMULATOR
ICHANGE POINTERS TO SECOND NUMBER
/PERFORM .ilADDITION WITH CARRY"
IPLACE RESULT BACK INTO MEMORY
IDECREMENT THE "PRECISION" COUNTER
IEXIT ROUTINE WHEN COUNTER REACHES 000

5 - 5

MNEMONIC

INL
CAL SWITCH
INL
JMP ADDMOR

COMMENTS

IADVANCE SECOND NUMBER' POINTER
ICHANGE POINTER BACK TO FIHST NUMBER
IADVANCE FIRST NUMBER POINTER
IREPEAT PROCESS FOR NEXT PRFCISION

NOTE THAT THE ABOVE "ADDER" SUBROUTINE REQUIRES THAT A NUMBER 0 F
mE CPU REGISTERS BE "SET U}-J" PRIOR TO CALLING THE HOUTINE. THE tlH & L"
REGISTERS MUST CONTAIN THE ADDRESS OF THE LEAST SIGNIFICANT BITS IN THE
FIRST MULTI-WORD NUMBER., REGISTERS "0 & Eft SIMILARLY MUST BE SET UP TO
CONTAIN THE ADDRESS OF THE LFAST SIGNIFICANT PART OF THE SECOND MULTI­
PRECISION NUMBER THA~ IS TO BE ADDED TO THE FIRST. FINALLY I REGISTER
"8" MUST BF INITIALIZED TO THE "PRECISIONI" OR NUMBER OF MEMORY WORDS
USED TO CONTAIN THE MULTI-PRECISION NUMBER. SUPPOSEI FOR EXAMPLEI THAT
A NUMBER IN "TRIPLE-PRECISION" FORMAT IS STORED IN THREE WORDS STARTING
AT LOCATION 100 ON PAGE 00 AND THAT A SECOND NUMBER IN SIMILAR FORMAT IS
STORED AT LOCATION 20~ ON PAGE 01. THE FOLLOWING INSTRUCTIONS WOULD BE
USED TO SFT UP THE CPU REGISTERS PRIOR TO CALLING THE "ADDER" SUBROUT­
INE.

MNEMONIC
__ ~4 ___ ~ _ ~ .. _ .. __

INITI LHI 000
LLI 100
LDI 001
LEI 200
LBI 0~3
CAL ADDER

•
•
•

COMMENTS

ISET PAGE FOR LSW OF FIRST NUMBER
15FT LOCATION ON PAGE FOR LSW OF 1ST"
IS ET PAGE FOR LSV 0 F S FCOND NUMBER
IS ET La CAT ION 0 N PA G E FO R LS W 0 F 2 N D ,
ISET PRECISION VALUE (3 WORDS)
ICALL THE N'TH PRECISION ADDITION RTN

IUSER ROUTINES TO PROCESS THE ANSWER

NOTE TOOl THAT THE "ADDER" SUBROUTINE IS "DESTRUCTIVE" TO THE ORIG­
INAL VALUE OF THE SECOND NUMBER THAT IS ADDED 8ECAUSF. THE ANSWFR IS LEFT

_ IN THAT LOCATION. IFI FOR SOME RFASONI THE USER WANTED TO SAVE THE
ORIGINAL SECOND NUMBER 1 THEN IT WOULD HAVE TO SF "SAVED" ELSEWHERE IN
MEMORY PRIOR TO PERFORMING THE ADDITION.

JUST AS THERE ARE TWO CLASSES OF INSTRUCTIONS FOR PERFORMING ADDI­
TION WITH THE 8008 CPUI ONE OF WHICH (ACM CATEGORY) IS SUITED FOR MUL­
TIPLE-PRECISION ARITHMFTICI THERE ARE TWO CLASSES OF SUBTRACT COMMANDS.
mE "SUM" (SUBTRACT ~TITHOUT CARRY) AND THE "SBM" (SUBTRACT WITH CARRY -
~ MORE APPROPRIATELY "BORROW"). THE "SBM" TYPE WORKS SIMILAR TO THE
"ACM" TYPE IN THAT THE CPU FIRST" CHECKS THE STATUS 0 F THE CARRY FLAG BF­
RJR PERFORMING THE SUBTRACTION OPERATION MAKING IT AN EASY MATTER TO
PROCESS MULTIPLE-PRECISION SUBTRACTION OPERATIONS. IN FACTI ONE CAN
SET UP AN ALMOST IDENTICAL ROUTINE TO THE ONE USED FOR ADDITION THAT
WILL ALLOW PROCESSING "N'TH PRECISION" SUBTRACTION OPERATIONS. AS IN
THE PREVIOUS EXAMPLEI ONE WOULD FIRST SET UP CPU REGISTERS AS POINTERS
10 THE LEAST SIGNIFICANT PORTIONS OF THE MULTIPLE-PRECISION NUMBERS IN
MEMORY AND LOAD REGISTER "B" WITH THE NUMBER OF MEMORY WORDS OCCUPI ED
FN A "N' TH PREC 1 5 ION" NUMBffi.

WHILE THE ROUTINES PRES ENTED HERE ONLY UTILIZE THE "ACM" OR "SBM"
INSTRUCTIONS - BECAUSE THE ALGORITHMS ,HAVE BEEN DEVELOPED AS GENERAL

5 - 6

PURPOSE ROUTINES TO HANDLE STRINGS OF NUMBERS IN MEMORY" THE READER IS
REMINDED THAT THERE ARE A WHOLE GROUP OF INSTRUCTIONS THAT HAVE SIMILAR
CAPABILITY FOR WORKING WITH DATA IN CPU REGISTERS (SUCH AS "ACE',," "ACC,,"
AND THE OTHER CPU REGISTERS PLUS It IMMEDIATE" OPERATIONS). THE READER
SHOULD REVIEW CHAPTER ONE OF THIS seS8 PROGRAMERS MANUAL FOR A SUMMA~Y
OF THE POSSIBLE VARIATIONS.

MNEMONIC

SUBBER" NDA
SUBTRA" LAM

CAL SWITCH
SSM
LMA
DCB
HTZ
INL
CAL SWITCH
INL
JMP SUBTHA

COMMENTS

IALWAYS CLEAR CAHRY FLAG AT START OF HTN
IGET FIRST NUMBER INTO ACCUMULATOR
ICHANGE POINTERS TO SECOND NUMBER
ISUBTRACT 2 'NO FROM l' ST ta11 TH BORRO\l!
IPLACE RESULT BACK INTO MEMORY
IDECREMENT THE PHEClSlON COUNTEH
IEXIT HOUTINE \I1HEN COUNTE:H = 0~H1

/ADVANCE SECOND NUMBER POINTER
/CHANGE POINTER BACK TO FIRST NUMBER
/ADVANCE FIHST NUMBER POINTER
IRE}JEAT PROCESS FUR NF,XT PHECISION

ONE THING A USER DEALING WITH MATHEMATICAL FUNCTIONS ON A COMPUTER
WILL SOON HAVE TO BE CONCERNED WITH .IS WHAT HAPPENS WHEN A LARGER NUM­
BER IS SUBTRACTED FROM A SMALLER NUMBER. THE ANS'tTER IS NATUHALLY A
MINUS OR NEGATIVE NUMBER. AS WAS INITIALLY DISCUSSED IN THE CHAPTER ON
FUNDAMENTAL PROGRAMMING SKILLS" THE 8808 CPU PROCESSES NEGATIVE NUM­
BERS UTILIZING THE "TWO'S COMPLEMENT" CONVENTION. THE READEH MAY WANT
TO REVIEW THE FIRST FEW PAGES OF THAT SECTION AT THIS TIME.

FOR INSTANCE" IF USING SINGLE PHECISION ARITHMETIC" THE NUMBER 8
(DECIMAL) WAS SUBTRACTED FROM 6" THE RESULT WOULD APPEAR IN THE ACCUMU­
LATOR AS SHOWN HERE:

6 DECIMAL = 0 0 0 0 0 1 1 0 IN A BINARY REGISTER
8 DECIMAL = 0 0 0 0 1 0 0 0 IN A BINARY REGISTER

WHICH IS = 1 1 1 1 1 1 1 0 WHEN SUBTRACTED

NOTE THAT THE MOST SlGNIFICANT BIT IN THE REGISTER CONTAINING THE
MINUS ANSWER IS A "I." BY ESTABLISHING A TWO'S COMPLEMENT CONVENTION
AND ALWAYS ENSURING THAT THE MAGNITUDE OF ANY NUMBERS HANDLED DO NOT
INTERFERE WITH THE MOST SIGNIFICANT BIT" ONE CAN QUICKLY DETERMINE
WHETHER A NUMBER IN A REGI STER (OR SERI ES 0 F R EGI STERS I N THE CAS E 0 F
MULTIPLE-PRECISION FORMATTING) IS POSITIVE OH NEGATIVE BY TESTING TO SEE
IF THE MOST SIGNIFICANT BIT IS A 1 (FOR A NEGATIVE) OR 0 <FOR A POSI­
TIVE) VALUE. THIS IS READILY DONE IN A 8008 CPU BY TESTING THE "SIGN"
FLAG WITH A "JFS,," "CTS" OR SIMILAR INSTRUCTION.

ALSO REMEMBER THAT A NUMBER CAN BE SUBTRACTED FROM ANOTHER NUMBER BY
fORMING THE TWO' S COMPLEMENT 0 F THE NUMBER TO BE SUBTRACTED AND PER FORM­
ING AN ADDITION OPERATION. THUS.

+ 8 DECIMAL = 0 0 0 0 o 0 0 IN A BINARY REGISTER

IT'S TWO'S COMPLEMENT IS. 1 1 1 o 0 0 IN A BINARY REGISTER

5 - 7

AND CONSEQUENTLY,

6 DECIMAL • I I • I 8 1 1 8 IN A BINARY REGISTER
TWO'S COMPLEMENT OF 8 • 1 1 1 1 1 0 e 8 IN A BINARY REGISTER

----~~---~-~---~---WHICH IS • 1 1 1 1 1 lie WHEN ADDEDI

IT 15 onEN DESIRABLE TO PFRFORM A STRAIGHT "TVO'S COMPLEMENT·' OP­
ERATION ON A NUMBER IN ORDER TO CHANGE IT FROM A POSITIVE TO A NEGATIVE
WMBER OR THE REVERSE. ONE EASY WAY TO ACCOMPLISH THIS IN A 8008 UNIT
IS TO SIMPLY SUBTRACT THE NUMBER fROM A VALUE OF ZERO. FOR MULTIPLE­
PRECISION WORK ONE COULD SIMPLY LOAD ONE STRING OF MEMORY LOCATIONS (THE
FIRST NUMBER) WITH ZEROS AND PLACE THE NUMBER TO BE NEGATED IN THE SEC­
OND STRING OF MEMORY LOCATIONS (THE SECOND NUMBER) AND CALL THE PREV­
IOUSLY ILLUSTRATED "SUBBER·· ROUTINE. HOWEVER" THERE MAY BE CASES WHERE
ONE DOES NOT WANT TO DISTURB VALUES IN MEMORY LOCATIONS OR PERPURM THE
TRANSFER OPERATIONS NECESSARY TO SET UP THE NUMBERS FOR THE "SUSBERe.
R)UTINE. WHAT IS DESIRED IS A "TWO'S COMPLEMENT" ROUTINE THAT WILL OP­
ERATE ON A VALUE IN THE LOCATION(S) IN WHICH IT ~ESIDES. THE FOLLOWING
R)UTINE WILL ACCOMPLISH THAT OBJECTIVE" AND CAN HANDLE "N'TH PRECISION"
t«JMBERS.

MNEMONIC ---_ .. --...... -_ ..
COMPLM" LAM

XRI 377
ADI 8el

MORCOM" LMA
RAR
LDA
DCB
RTZ
INL
LAM
XRI 37'
LEA
LAD
RAL
LAI 880
ACE
JMP MORCOM

COMMEliTS

IGET LEAST SIGNIFICANT BITS (1ST VORD)
I EXCLUS I VE "OR" • PUR E COMPLEMENT
INOW ADD 1 TO FORM TWO' 5 COMPLEMENT
IRETURN 2' S COMPLEMENT VALUE TO MEMORY
IGET THE CARRY BIT INTO THE ACCUMULATOR
lAND SAVE THE CARRY BIT STATUS
INOW DECREMENT THE "PRECISION" COUNTm
I FINI SHED WHEN COUNTER • ""8
IIF NOT DONE" ADVANCE MDiORY POINT~
lAND FETCH THE N!XT GROUP OF BITS
IPRODUCE A PURE COMPLEMENT
ISAVE PURE COMPLEMENT TEMPORARILY
IGET PREVIOUS CARRY BACK INTO ACCUMULATOR
lAND SHIFT IT BACK OUT TO THE CARRY FLA6
IDO A LOAD SO DOES NOT DISTURB CARRY
IADD COMPLEMENTED VALUE WITH ANY CARRY
IGO ON TO DO NEXT WORD IN STRING

NOTICE THAT IN THE ABOVE ROUTINE IT VAS NECESSARY TO SAVE THE STATUS
OF THE CARRY FLAG (BIT) IN A CPU REGISTER BECAUSE AN "XRI" OR ANY BOOL­
EAN LOGIC INSTRUCTION, AUTOMATICALLY "CLEARS" THE CARRY n.AS TO ZERO AND
l«>ULD DESTROY ANY PREVIOUS ttl" CONDITION. (ANY READERS WHO FORGOT THAT
MIGHT BE WISE TO SPEND A LITTLE MORE TIME STUDYING CHAPT~ ONE OF THIS
MANUAL!

AS WITH THE "ADDER" AND "SUBB~" ROUTINES IT IS ALSO NECESSARY TO
'DO SOME PRELIMINARY SETTING UP BEFORE CALLING THE "COMPLM" SUBROUTINE.
THE "H & L" REGISTERS MUST BE SET TO THE FIRST,WORD (LEAST SIGNIFICANT
BITS) OF THE MULTI-PRECISION NUMBER AND REGISTER "B" MUST INDICATE HOW
M\NY VORDS ARE OCCUPIED BY THE NUMBER.

IT WILL ALSO BE POINTED OUT HERE" THAT AS THE PROGRAMMER GETS INTO

5 - 8

DEVELOPING MORE AND MORE COMPLICATED ROUTINES~ THAT UTILIZE A LOT OF
SUBROUTINES~ THE PROGRAMMER MUST MAINTAIN STRICT CONTROL OVER WHICH CPU
REGISTERS ARE AFFECTED AND MAKE SURE THAT THE USE OF SELECTED CPU REGI­
ST~S BY ONE ROUTINE (ESPECIALLY, WHElf IT "CALLS" ANOTHER ROUTINE) DO NOT
INTERFERE WITH THE OVER-ALL OPERATION OF A PROGRAM. THE BEST RULE OF
THUMB IS TO TRY AND LEAVE A SUBROUTINE WITH ALL THE CPU REGI$TERS~ ~­
CEPT THOSE TRANSFERRING INFORMATION TO THE NEXT ROUTINE~ IN A "FREE" OR
'~N'T CAR~' STATE. THIS IS NOT ALWAYS POSSIBLE~ AND WHEN IT IS NOT~
niE PROGRAMMER MUST KEEP TRACK OF WHICH REGISTERS ARE BEING USED FOR A
SPECIFIC PURPOSE AND NOT ALLOW THEM TO BE UNINTENTIONALLY ALTERED. FOR
INSTANCE~ THE'ABOVE "COMPLM" ROUTINE REQUIRES THAT THREE OF THE CPU REG­
ISTERS BE SET UP PRIO~ TO ENTRY - THE "H~" "L~tt AND "B" REGISTERS. WHEN
IT LEAVES THE ROUTINE THOSE ROUTINES ARE ESSENTIALLY FREE FOR USE BY THE
NEXT ROUTINE. IT ALSO USES THE "A," "D" AND .. ~. CPU REGISTERS FOR OPER­
ATIONS THAT IT PERFORMS. IT DOES NOT CARE ABOUT THE STATUS OF THOSE
REGISTERS WHEN IT STARTS OPERATIONS BECAUSE IT "LOADS" THEM ITSELF. IT
ALSO LEAVES THOSE REGISTERS ESSENTIALLY "~EE" WHEN THE ROUTINE IS EXIT­
ED. CALL THE IMPORTANT OPERATIONS ARE DONE WITH LOCATIONS IN MEMORY).
HOWEVER, THE FACT THAT THE ROUTINE USES CERTAIN CPU REGISTERS - SUCH AS
REGISTERS "D & E~" IS VERY IMPORTANT TO REMEMBER IF ONE WAS USING OTHER
RlUTINES THAT MAINTAINED~ SAY, MEMORY PO INTERS IN REGISTERS "D & E. 1t

THE NOVICE PROGRAMMER (AND A LOT OF TIMES THE "NOT-SO-NOVIC!:" ONES) WILL
OFTEN FIND SOME VERY STRANGE OPERATIONS OCCURING IN A NEWLY DEVELOPED
PROGRAM BECAUSE OF PROBLEMS RELATED TO JUST THIS ASPECTI

THE ABOVE ROUTINES COULD BE USED BY THEMSELVES TO HANDLE ADDITION
AND SUBTRACTION OF LARGE NUMBERS. HOWEVER, A RESTRICTION ON THE TYPES
OF NUMBERS THEY COULD HANDLE WOULD BE THAT THE NUMBERS WOt~D HAVE TO BE
WHOLE NUMBERS. ALSO, AS THE MAGNITUDES OF THE NUMBERS TO BE HANDLED
INCREASED, THE NUMBER OF WORDS USED TO STORE A VALUE IN MULTI-PRECISION
FORMAT WOULD HAVE TO BE INCREASED. AS WAS PO INTED OUT EARLl ER, USUALLY,
WHEN ONE STARTS DEALING WITH NUMBERS OF LARGE MAGNITUDE, ONE IS PRIMAR­
ILY CONCERNED WITH A CERTAIN NUMBER OF "SIGNIFICANT" DIGITS IN A CAL­
CULATION. FOR lNSTANCE~ ONE COULD REPRESENT THE VALUE ONE MILLION AS
1~009~989. TO STORE THIS NUMBER IN MULTI-PRECISION fORMAT REQUIRES THE
USE OF THREE MEMORY WORDS IN A 8008 UNIT. HO.EVER~ THE NUMBER 1~889~909
ONLY CONTAINS ONE SIGNIFICANT DIGIT. THE NUMBER COULD JUST AS EASILY BE
REPRESENTED AS 1 RAISED TO THE 6TH POWER OF 19~ OR 1 E+6 IN WHAT IS OF­
TEN TERMED FLOATING POINT PORMAT. NOTE THAT IF THE NUMBER VAS STORED
IN SUCH A FORMAT, ONE WOULD ONLY NEED TO USE ONE MEMORY REGISTER (FOR
'!HE "I·' AS THE SIGNIFICANT DIGIT, AND ANOTHER REGISTER TO HOLD THE POWER
TO WHICH THE SIGNIFICANT DIGIT WAS TO BE RAISED. FLOATING POINT FORMAT
ALSO ENABLES ANOTHER PROBLEM TO BE READILY HANDLED - THAT OF PROCESSING
fRACTIONAL NUMBERS. UP TO THIS POINT~ NO DISCUSSION ON REPRESENTING
NlN-INTEGER NUMBERS HAS BEEN PRESENTED. THIS WILL BE DONE SHORTLY, HOV­
~ER~ AS AN INTRODUCTION~ NOTE THAT THE DECIMAL NUMBER 0.1 COULD BE REP­
RESENTED IN FLOATING POINT FURMAT AS 1 RAISED TO THE MINUS 1 POWER OF
10, OR 1 E-l.

THE READER HAS NOV BEEN INTRODUCED TO MULTI-PRECISION ARITHMETIC AND
Jt)PEFULLY HAS AN UNDERSTANDING OF HOV LARGE NUMBERS CAN BE STORED IN
SEVERAL SMALL REGISTERS. THE TERM LARGE NUMBE1tS CAN BE INTERPRETED AS
NUMBERS CONTAINING MORE THAN A COUPLE OF SIGNIFICANT DIGITS. THE READER
SHOULD UNDERSTAND THAT INCREASING THE NUMBER OF SIGNIFICANT DIGITS RE­
QUIRES AN INCREASE IN THE NUMBER OF BINARY BITS NEEDED TO STORE A NUMBER
AND HENCE INCREASES THE NUMBER OF MEMORY WORDS REQUIRED WHEN THE NUMBER
15 STORED IN MULTI-PRECISION PORMAT. ALSO~ WHEN THE fORMAT DESCRIBED
UP TO NOW 15 USED~ INCREASING THE MAGNITUDE OF A NUMBER (BY ADDIN6 ZEROS
10 THE RIGHT OF THE SIGNIFICANT DIGITS) RAPIDLY INCREASES THE NUMBER OF
WORDS OF MEMORY REQUIRED TO HOLD A NUMBER. FINALLY, JUST STORING A NUM­
BER IN A REGISTER~ WITHOUT REGARD TO A ·'DECJMAL POINT" LOCATION~ MAKES

5 - 9

I
J

IT IMPOSSIBLE TO PROPERLY MANIPULATE FRACTIONAL NUMBERS.

HOWEV!1t1 THE IDEA THAT NUMBERS CAN BE REPRESENTED AS A SERIES OF
SIGNIFICANT DIGITS RAISED TO A POWUI PRESENTS A SOLUTION TO THE LIMITA­
TIONS MENTIONED. HANDLING NUMB~S IN SUCH A FASHION IS GDI!1tALLY TERM-
ED "FLOATING-POINT" ARITHMETIC. THE REMAINDER OF THIS CHAPTER WILL BE
DEVOTED TO DEVELOPING ROUTINES FOR A "PLOATING-POINT" MATHEMATICAL PRO­
~AM FOR GEN!1{AL PURPOSE APPLICATIONS.

HOWEVER, BEFORE PROCEEDING INTO THE DEVELOPMENT OF FLOATING-POINT
RlUTINESI IT WILL BE NECESSARY TO DISCUSS A MATTER THAT HAS BEEN LEFT
ASIDE UP TO THIS POINT - REPRESENTING FRACTIONAL NUMBERS UTILIZING THE
LANGUAGE OF THE DIGITAL COMPUTER - BINARY ARITHMETIC.

IN THE DECIMAL NUMBERING SYSTEM WHICH VIRTUALLY EVERYONE HAS BEEN
mUCATED INI FRACTIONS OF A NUMBER ARE REPRESENTED BY DIGITS PLACED TO
THE RIGHT OF A DECIMAL POINT. EACH POSITION TO THE RIGHT OF SUCH A
POINT REPRESENTS UNITS OF DECREASING POWERS OF 10. THUS THE NUMBER.

ACTUALLY REPRESmTSa

PLUS:
PLUS.

o • 1 2 5 (DECIMAL)

1 •• TENTH (1/10 OR 18 TO THE -1 POWER)
2. HUNDREDTHS (OR 11 TO THE -2 POWER>

5 THOUSANDTHS (OR 10 TO THE -3 POWER)

THE CONCEPT IS EXACTLY THE SAME FOR BINARY ARITHMETIC EXCEPT THAT
NOV EACH POSITION TO THE RIGHT OF THE DECIMAL POINT REPRESENTS UNITS OF
DECREASING povms OF 21 THUS THE NUMBER.

REPR ES !NT S t

PLUS,
PLUS,

" • 1 1 1

1 • •
1 •

1

(BINARY)

HALF (112 OR 2 TO THE -1 PO"~)
QUARTER (OR 2 TO THE -2 POWER)
EIGHTH (OR 2 TO THE -3 POWER)

THUS THE ABOVE BINARY NUMBER 0.111 REPRESENTS A FRACTIONAL NUMBER
WlleH WHEN CONVERTED TO DECIMAL IS EQUAL TOt

1/2 + 1/4· + 1/8 • 7 18 OR .8'15 (DEC I MAL)

THE MANNER IN WHICH FRACTIONAL BINARY NUMBERS ARE REPRESENTED BRINGS
OOT AN INTERESTING POINT WHICH MANY READERS MAY HAVE HEARD OF, BUT NOT
TRULY UNDERSTOOD - THE INTRODUCTION OF ERRORS INTO CALCULATIONS DONE
WITH A DIGITAL COMPUTER DUE TO THE MANIPULATION OF FRACTIONS THAT CAN
t«)T BE ·'FINALIZED." AS AN ANALOGY I THERE ARE SIMILAR CASES IN DECIMAL
ARITHMETIC, SUCH AS THE CASE WHEN THE NUMBER 1 IS DIVIDED BY 3. THE
ANSWER IS,

0.33333333333333333333 •••••••

OR A NON-ENDING SERIES OF 3'S A"!1t THE DECIMAL POINT. THE ACCURACY OR
'~RECISION" WITH WHICH A CALCULATION INVOLVING SUCH A NUMBER CAN BE CAR­
RIED OUT IS DETERMINED BY HOW MANY "SIGNIFICANT" DIGITS ARE USED IN
PURTHER CALCULATIONS INVOLVING THE FRACTION, lOR INSTANCE, THEORETICAL­
LY I IF THE NUMBER 1 IS DIVIDED BY 3 AND THEN MULTIPLIED BY 3, ONE WOULD
GET BACK 1 AS A RESULT. HOWEVER, I F THE RESULT OF THE DIVISION IS AC­
TUALLY MULTIPLIED BY 31 THE ANSWER IS NOT ACTUALLY ONEI BUT APPROACHES

5 - 10

THAT VALUE AS THE NUMBFR OF SIGNIFICANT DIGITS USFD IN THE CAl.CULATION
15 INCRFAS ED. aBS ERVF.

0.3 (ONF SIGNIFICANT DIGIT USED)
X 3

.9 (AN5WFR IS OF'F BY 101)

0.33 (TWO SIGNIFICANT DIGITS USED)
X 3

.99 (ANSWER IS OFF BY IJ)

0.333 (THRFF SIGNIFICANT DIGITS USFD)
X 3

.999 (ANSWFR IS OFF BY 0.11)

A SIMI LA'R 5 I TUAT ION EX I STS \11 TH BINARY ARI THMFTIC EXC FPT THERF AR F
N')W MANY MORF CASFS WHERF. THE ttNON-FNDING" FRACTION SITUATION CAN OCCUR.
FOR INSTANCE" THF \1ALUF 0.1 IS TRULY REPRFSFNTFD IN THE DECIMAL SYSTEM"
BUT IN THE BINARY SYSTFM" THE DECIMAL VALUE 0.1 CAN ONLY BF APPROXIMAT­
ED - AND SIMILARLY TO THF ABOVE" THE MORE BINARY DIGITS USED" THF CLOSFR
1HF VALUF APPROACHES THE TRUE VALUF 0 F 0. I • OBS FRVF.

us ING 4 BINARY 01 GI T'~ • 0.000 I • 11 1 6 • .0 62 5 (0 F F 37. 5 X)

9 DIGITS • 0.000110011 • 1/16 + 1/32 + 1/256 + 1/512 = .0996 (OFF .41)

NOTE TOO" THAT THF BINARY REPRFSENTATION IS A NON-ENDING SERIES:

0.1 DECIMAL • 0.0001100110011001100110011001100 ••• (BINARY)

AND CAN NOT REACH THF THEORETICAL TRUE VALUE OF 0.1 AS IN THE DFCIMAL
SYS.TEM. THUS" IF' 0.1 AS REPRFSFNTED IN THE BINARY SYSTEM IS MULTIPLI ED
EW" SAY 10" (WHICH CAN BF TRULY RFPRESFNTFD IN THF BINA~Y SYSTFMI) THE
THEORETICAL VALUE OF' 1.0 CAN ONLY BE APPROACHFD~ AND THE MORF BITS USED
TO HOLD THE BINARY EQUIVELANT" THE CLOSER ONE CAN APPROACH THE TRUE' ANS­
"'FR •. THUS" ONE CAN SEE ANOTHER RFASON FOR USING MllLTIPLF-PRF.CISION
ARITHMETIC IN A DIGITAL COMPUTER EVEN IF ONF DOFS NOT WANT TO HANDLE BIG
NUMBERS I THIS IS BECAUSE THE MORE BITS AVAILABLE TO STORE A FRACTIONAL
NUMBFR - THE MORE "PRECISION" ONE CAN MAINTAIN IN PERFORMING CALCULA-
TIONS. ONE' SHOULD NOW ALSO RFALIZE" THAT THE MORE COMPLEX A SERIFS OF
MATHEMATICAL OPERATION BECOMFS" IN OTHER WORDS" THF. MORF TIMFS A NUMBER
11iAT CAN NOT TRULY BF RFPRESENTED IS MULTIPLI ED OR DI "IDED" THE WIDER
WILL BECOME THE MARGIN OF ERROR IN THE FINAL ANSWERI

NOW THAT ONE HAS A GRASP 0 F HOW BINARY NUMBFRS CAN RFPRESFNT FRAC­
TIONAL NUMBERS WHFN PLACED TO THE RIGHT OF A DECIMAL POINT" ONE CAN PRO­
CFED TO INVESTIGATE "FLOATING-POINT" ARITHMETIC USING A DIGITAL COM­
PUTER.

FLOATING-POINT ARITHMETIC

JUST AS ONE CAN RFPRF~FNT DECIMAL NUMBERS IN FLOATING-POINT FORMAT"
I.F." A STRING OF SIGNIFICANT DIGITS RAISED TO A POWER OF 10" ONF CAN
ALSO TRE'AT BINARY NUMBFRS IN A SIMILAR MANNFR AS A STRING OF BINARY
DIGITS RAISED TO A POWER OF 2.

5 - II

WHEN HANDLING NUMBERS IN FLOATING-POINT FORMAT THE NUMBER IS-REPRE-
SENTED AS TWO PARTS. THE "SIGNIFICANT DIGITS" PORTION IS REFERRED TO AS
niE "MANTISSA" AND THE POWER TO WHICH THE NUMBER IS TO BE RAISED IS RE­
FERRED TO AS THE "FXPONENT." IN DECIMAL FLOATING-POINT FORMAT THE NUM­
BER "se. COULD BE EXPRESSED AS:

5.0 E+0 • 5 X 1 == 5

OR 50 .0 E- 1 == 50 Xl/I 0 = 5

OR " • 5 E+ 1 = 0 • 5 X 1 0 = 5

WHILE IN BINARY FLOATING-POINT FnRMAT THE SAME NUMBER COULD BE EXPRESSED
AS:

101 ." E+0 • 5 X 1 = 5

OR 101000.0 E-3 • 40 X 1/6 == 5

OR 0.101 E+3 == 5/8 X 8 = 5

NOTE THAT THE "MECHANICS" OF THE CORRESPONDENCE BETWEEN THE EXPONENT
~D THE LOCATION OF THE DECIMAL POINT IN THE MANTISSA IS THE SAME FOR
81TH NUMBERI"NG SYSTEMS. IF THE SIGNIFICANT DIGITS ARE MOVED TO THE
RIGHT OF THE DECIMAL POINT THEN THE' EXPONENT IS INCREASED A UNIT FOR
~CH POSITION THE MANTISSA IS SHIFTED. IF THE DIGITS IN THE MANTISSA
ARE SHIFTED TO THE LEFT" THEN THE EXPONENT IS DECRFASED. THE ONLY DIFF-
ERENCE BETWEEN THE TWO SYSTEMS IS THAT THE EXPONENT IN THE DECIMAL SYS­
TEM IS SPECI FlED FOR POWERS OF 10" WHILE IN THE BINARY SYSTEM IT IS FOR
POWERS OF 2.

THE READER SHOULD NOW SEE THAT IT CAN BE QUITE A SIMPLE MATTER TO
HANDLE BINARY NUMBERS USING A FLOATING-POINT FORMAT IF ONE SIMPLY AR­
RANGES TO KEEP TABS ON THE "EXPONENT" PORTION IN ONE REGISTER (OR REGIS­
TERS) AND MAINTAINS THE "MANTI SSA" PORTION IN ANOTHFR REGI STER (OR SEV.
ERAL REGISTERS FOR MORE PRECISION). FURTHERMORE" A VERY SIMPLE RELA-
TIONSHIP CAN BE MAINTAINED BETWEEN THE MANTISSA AND THE EXPONENT TO
~CILITATE KEEPING TRACK OF A "DECIMAL" POINT. ONCE ONE HAS SEl.ECTED
A GIVEN POSITION AS A REFERENCE JL~CTION IN THE MANTISSA PORTION" ONE
HAS ONLY TO OBSERVE THE FOLLOWING PROCEDURE FOR MANIPULATING THE NUMBER
AND KEEPING TRACK OF THE "DECIMAL" POINT:

EACH TIME THE MANTISSA IS SHIFTED TO THE RIGHT - INCREMENT THE EXPONENT I

~CH TIME THE MANTISSA IS SHI "ED TO THE LEFT - DECREMENT THE EXPONENT I

FOR THE REMAINDER OF THIS CHAPTER" A CONVENTION FOR STORING NUMBERS
IN FLOATING-POINT FORMAT WILl. BE ESTABLISHED. NUMBERS WILL BE STORED IN
~UR CONSECUTIVE WORDS IN MEMORY. THE FIRST WORD IN A GROUP WILL BE
USED TO STORE THE "E'(PONENT" WITH THE MOST SIGNIFICANT BIT IN THE WORD
USED TO REPRESENT THE "SIGN·' OF THE- EXPONENT. A "I" IN THE MOST SIGNl-

~ nCANT BIT POSITION MEANS THE NUMBER 15 "NEGATIVE." THE NEXT THREE
WRDS WILL THDJ HOLD THE "MANTISSA" PORTION IN TRIPLE-PRECISION FORMAT"
WITH THE FIRST BIT IN THE FIRST WORD OF THE MANTISSA BEING USED AS THE
"SIGN" BIT. THE REMAINING BITS IN THAT WORD WILL BE THE MOST SIGNIFI-

5 - 12

CANT BITS OF THE NUMBER. THE REMAINING TWO WORDS IN A GROUP WILL HOLD
'tHE LESS SIGNl FICANT BITS OF THE MANTISSA. FURTHERMORE, THERE WILL BE
AN IMPLIED "DECIMAL" POINT IMMEDIATELY TO THE RIGHT OF THE "SIGN" BIT
IN THE MANTISSA. THE FORMAT IS ILLUSTRATED HERE:

•• • EXPONENT ••••
t t

•••••• MSW ••••••••••••• MANTISSA •••••••••••••• LSW ••••••

SEE E E E E E
t ,

MEM LOC "N+3tt

,
S.M M M H M M M
, t

MEM LOC "N+2"

M M M M M M M M
t t

HEM LOC "N+ I"

,
M M M M H M M M
t t

HEM LOC UN"

NOTE THE ORDER OF THE MEMORY ADDRESSES ASSIGNED TO THE STORAGE OF A
NUMBER. AS IN THE PAST, THE ORDER OF STORAGE IS AN ARBITRARY ASSIGNMENT
BUT ONCE IT HAS BEEN ASSIGNED IT MUST BE ADHERED TO WITHIN A PROGRAM.
THE ORDER SHOWN IS THE ONE THAT WILL BE USED IN THE DISCUSSION AND PRO­
~AM EXAMPLES USED FOR THE REMAINDER OF THIS SECTION.

NOTE TOO, THAT A CONVENTION HAS BEEN ESTABLISHED THAT WILL CONSIDER
A "DECIMAL POINT" (ACTUALLY, PERHAPS IT SHOULD BE TERMED A "BINARY"
POINT) TO BE LOCATED TO THE RIGHT OF THE DESIGNATED "SIGN" BIT FOR THE
MANTISSA. THIS MEANS THAT ALL NUMBERS STORED IN FLOATING-POINT FORMAT
WILL BE REPRESENTED AS A FRACTIONAL NUMBERI ALSO, THE RFADER CAN SEE
THAT WITH ONE BIT OUT OF THE THREE WORDS USED TO STORE THE MANTISSA USED
TO HOLD THE "SIGN" OF THE MANTISSA, THAT 23 (DECIMAL) BITS ARE LEFT TO
HOLD THE ACTUAL MAGNITUDE OF THE MANTISSA. SIMILARLY, THE EXPONENT HAS
7 BITS WITH WHICH TO REPRESENT THE MAGNITUDE OF IT'S VALUE. FURTHER-
KlRE, AN EXPONENT MUST BE AN INTEGER VALUE AS THERE WILL BE NO IMPLI ED
"DECIMAL POINT" IN THE EXPONENT REGISTER.

FLOATING-POINT NORMALIZATION

"NORMALIZATION" CAN BE CONSIDERED AS A "STANDARDIZING" PROCESS THAT
WILL PLACE A NUMBER INTO A FIXED POSITION AS A REFERENCE POINT FROM
WHICH TO COMMENCE OPERATIONS. FOR THE PURPOSES OF THIS DISCUSSION, THE
TERM "NORMALIZATION" WILL MEAN TO PLACE A NUMBER INTO ITS STORAGE REGI­
STERS SO THAT THE "MANTISSA" WILL HAVE A VALUE THAT IS GREATER THAN OR
S)UAL TO tt 1/2" BUT LESS THAN "1." PUT ANOTHER WAY, THI S MEANS THAT ANY
NUMBER TO BE MANIPULATED BY A· "FLOATING-POINT ROUTINE" WILL FIRST BE
SHIFTED SO THAT THE MOST SIGNIFICANT BINARY DIGIT IS NEXT TO THE IMPLIED
''BINARY'' POINT IN THE MOST SIGNIFICANT WORD OF THE MANTISSA STORAGE REG-
ISTERS. FOR INSTANCE IF A BINARY NUMBER SUCH AS:

1 01 .0 E+0 (DEC I MAL 5)

WAS RECEIVED BY AN INPUT ROUTINE TO A FLOATING-POINT PROGRAM, THE NUMBER
WULD BE "NORMALIZ ED" WHEN I TWAS PLAC EO IN THE FORM:

0.101 E+3 (WHICH IS 5/8 X 8 = 5 DECIMAL!)

SIMILARLY, IF AFTER SA~ A BINARY DIVISION OPERATION IN WHICH THE NUMBER
1 HAD BEEN DIVIDED BY 10 (DECIMAL) AND ONE HAD THE ANSWER:

0.000110011001100 ••• ~+0 (DECIMAL 0.1)

THE NUMBER WOULD BE CONSIDERED NORMALIZED WHEN IT WAS IN THE FORMAT:

0.1100110011001100 •• E-3 (DECIMAL 0.1)

5 - 13

NOTE THAT "NORMALIZING" A NUMBFR -IS A PRETTY FASY MATTER. IN THE
FIRST EXAMPLE ABOVE THE NUMBER WAS NORMALIZED BY SHIFTING THE ORIGINAL
NUMBER TO THE RIGHT UNTIL THE MOST SIGNIFICANT BIT 1.JAS JUST TO THE RIGHT
OF THE OFCIMAL POINT I WHILE INCREMENTING THE. "EXPONENT" FOR EACH SHI Fi
CPERATION. IN THE S FCONO FXAMPLEI THE NUMBF:R IS SHI FTF:O IN THE R EVF.RS E
DIRECTION WHILF DECREMENTING THE EXPONENT.

THFRF ARF SF\1ERAL REASONS FOR WANTING TO "NORMALIZE" A NUMBFR WHFN
WORKING WITH A FLOATING-POINT PROGRAM. THE FIRST HAS TO DO WITH THE
~CT THAT r,FNFRALLY NUMBERS WILL ORIGINATE FROM A HUMAN WHO WILL BE US­
ING THE COMPUTER TO MANIPULATE NUMBERS IN DECIMAL FORMAT AND THEREFORE
THE COMPUTER WILL HAVE TO CONVERT NUMBFRS FROM 5AYI A DECIMAL FLOATING­
POINT FORMAT I TO THF BINARY FORMAT USED BY THE COMPUTER. THERE WILL BE
M)RE DISCUSSION ON THIS MATTER LATER IN THIS CHAPTER AFTER A NUMBER OF
BINARY FLOATING-POINT OPERATIONS HAVE BEEN PRFSFNTED. THE SECOND REASON
FUR NORMALIZING NUMBFRS I AND A VERY IMPORTANT ONEI IS BFCAUSE THE PROC­
ESS WILL ALLOW MORE SIGNIFICANT BINARY DIGITS TO BF RETAINED IN A FIXED
LFNGTH REGISTER. THIS CAN BE SEEN BY OBSERVING IN THE ABOVE FXAMPLE OF
THE CASE WHERE 0.1 DFCIMAL IS NORMALIZEDI THAT SHIFTING THE BINARY NUM­
BFR TO THE LEFT THREE PLACES WOULD ALLOW SEVFRAL MORY LEAST SIGNIFICANT
BITS TO BE PLACED IN A FIXED LENGTH REGISTER FOR THF NON-ENDING BINARY
SFRIE5 OF "0.110011001100 ••• " AND THUS ALLOW MORE ACCURACY IN THE BINARY
CALCULATIONS THAT MIGHT FOLLOWI

A ROUTINE FOR "NORMALIZING" BINARY NUMBERS WILL BE PRESENTED SHORT-
LY. IN THE ROUTINE FOR "NORMALIZING" NUMBERSI AND VARIOUS OTHER MATH-
EMATICAL ROUTINES IN THIS CHAPTFR~ VARIOUS LOCATIONS ON PAGE 00 WILL BE
USED FOR STORING NUMBERS THAT ARE TO BE MANIPULATED BY THF ROUTINFS AS
WELL AS HOLDING "COUNTERS" AND "POINTERS" IN MEMORY LOCATIONS. A LIST
OF THE LOCATIONS USED WILL BE PROVIDED LATER. ALSO" BFFORF GETTING IN-
TO THE ACTUAL BINARY FLOATING-POINT ROUTINESI THE RFADFR SHOULD BE IN­
FORMED THAT IN THE FOLLOWING ROUTINES" REFERENCES WILL BE MADE TO A
"FLOATING-POINT ACCUMULATOR" AND "FLOATING-POINT OPFRAND." THE FLOAT-
ING-POINT ACCUMULATOR AND OPERAND WILL BE SEPARATE GROUPS CONSISTING OF
FOUR CONSECUTIVE MEMORY WORDS ON PAGE 00 USFD TO STORE THE "ACTIVE" NUM­
BERS THAT ARE MANIPULATED BY THE FLOATING-POINT ROUTINES. TH[Y WILLI OF
COURSEI BE ARRANGED IN THE FORMAT DESCRIBED EARLIER OF A SINGLE MEMORY
~RD "EXPONENT" AND A TRIPLE-PRECISION "MANTISSA." THE "FLOATING-POINT
ACCUMULATOR" WILL BE THE FOCAL POINT FOR ANY FLOATING-POINT ROUTINE AS
ALL THE RESULTS OF FLOATING-POINT CALCULATIONS WILL BE PLACED THERE.
11iE "FLOATING-POINT OPFRAND" WILL BE USED PRIMARILY FOR HOLDING AND MAN­
IPULATING THE NUMBER THAT THE FLOATING-POINT ACCUMULATOR OPFRATES ON.
~R BRFVITY IN FURTHER DISCUSSIONSI THE FLOATING-POINT ACCUMULATOR WILL
BE ABBREVIATED AS "FPACC" AND THE FLOATING-POINT OPERAND AS "FPOP."

MNEMONIC

FPNORMI LAB
NDA
JTZ NOEXCO
LLI 127
LMB

NOEXCO I LLI 126
LAM
LLI 100
NDA
JTS ACCMIN
XRA
LMA

COMMFNTS

ICHFCK RFGISTER "B" FOR SPECIAL CASE
ISET FLAGS AFTER LOAD OPFFATION
I IF "B" WAS 8 1 00 STANDARD NORMALIZAT ION
IOTHERWISE SET EXPONENT OF FPACC
ITO VALUF FOUND IN "B" AT START OF RTN
ISET POINTER TO MSW OF FPACC MANTISSA
lAND GET MSW OF FPACC MANTISSA INTO ACC
ICHANGE POINTER TO "51 GN" STORAGE ADDRESS
15FT FLAGS AFTF.R PREVIOUS "LAM" OPERATION
ISEE IF MSB IN MSW • 11 YES. MINUS'
IIF MSB • 0 1 HAVE POSITIVE VALUE MANTISSA
ISO SET "SIGN" STORAGE TO 000

5 - 104

MND40NIC --_ ---... _-
JMP ACZUlT

ACCMIN" LMA
LSI "94
LLI 123
CAL COMPLM

ACZ ERT" LLI 126
LBI "94

LOOK"" LAM
NDA
JFZ ACNONZ
DCL
DCB
JFZ LOOKa
LLI 127
XRA
LMA
RET

ACNONZ" LLI 123
LBI "a4
CAL ROTATL
LAM
NDA
JTS ACCSET
INL
CAL CNTDWN
JMP ACNONZ

ACCS ET" LLI 126
LBI 003
CAL ROTATR

. LLI 100
LAM
NDA
RFS
LLI 124
LBI 903
CAL COMPLM
RET

COMMENTS ----_ .. _----- .. -
IPROCEED TO SEE IF FPACC = ZERO
IORIG FPACC • NEG I" PUT DATA IN "SIGN"
ISET PRECISION CNTR TO 4 (USE EXTRA WORD)
lAND PNTR TO FPACC LSW-l (USE EXTRA WORD)
ITWO'S COMPLEMDfT FPACC + 1 EXTRA MDt WORD
ICHECK TO SEE IF FPACC CONTAINS ZERO
ISET A COUNTER
IGET A PART OF FPACC
ISET FLAGS AFTER LOAD OPE1lATION
IIF FIND ANYTHING THEN FPACC IS NOT ZERO
10THE1lWISE MOVE POINTER TO N~T PART
IDECRDtENT THE LOOP 'COUNTER
lAND IF NOT FINISHED CHECK NEj(T PART
IIF RFACH H~E FPACC WAS ZERO
ISO MAKE SURE EXPONENT 0 F FPACC I S ALSO
IZERO BY PUTTING ZERO IN ITI
ICAN THEN EXIT THE NORMALIZATION ROUTINE
IIF FPACC HAS VALUE" SET UP POINTERS
lAND "PRECISION" VALUE (P == 1& TO HANDLE
ISPECIAL CASES) AND ROTATE FPACC L EFT
ITHEN GET MSS OF MSW IN MANTISSA
ISET FLAGS AFTER LOAD OPERATION
IIF MSB = 1" HAVE FOUND MSS IN FPACC
II F NOT., ADVANCE PNTR TO FPACC EXPONENT
lAND DECREMENT THE VALUE OF THE £XPO~ENT
ITHEN CONTINUE IN THE ROTATING LEFT LOOP
ICOMPENSATE FOR LAST ROTATE LEFT WHEN MSB
IFoUND TO LEAVE ROOM FOR "SIGN" IN M58 OF
IFPACC MANTISSA BY DOING ONE ROTATE RIGHT
ISET POINTER TO ORIGINAL "SIGN" STORAGE
IGET ORIGINAL "SIGN" INDICATOR
ISET F1..AGS AFTER LOAD OPERATION
IFINISHED AS VALUE IN FPACC IS POSITIVE
IORIG "SIGN" NEGATI VE., SO SET PNTR TO LSW
10F FPACC AND SET PRECISION COUNTER
ITWO'S COMPLEMENT THE NORMALIZED FPACC
ITHAT'S ALL FOR "NORMALIZATION"

THERE ARE SEVERAL ITEMS IN THE ABOVE ROUTINE THAT MIGHT CONFUSE THE
READER IF NOT EXPLAINED. FIRST OF ALL., THE ROUTINE FIRST CHECKS CPU
REGISTER "Bft WHEN IT IS ENTERED. IF ·'S" CONTAINS e0e THEN THE ROUTINE
WILL PROCEED ON TO THE NEXT PART OF THE PROGRAM. IF "S" CONTAINS SOME
NlN-ZERO VALUE., THEN THAT VALUE WILL BE PLACED IN THE EXPONENT PORTION
OF THE FPACC. THIS WAS DONE SO THAT THE "FPNORM" SUBROUTINE COULD HAN­
ILE NUMBERS THAT W~E NOT IN FLOATING-POINT FORM. FOR INSTANCE., WHEN A
NUMBER IS FIRST RECEIVED FROM AN INPUT DEVICE IT WILL GENERALLY BE IN A
FORM SUCH AS THE EXAMPLE .oR THE BINARY EQUIVELENT OF 5 (DECIMAL) AS
ILLUSTRATED.

00 900 099 00 000 000 00 000 101

WHEN IN TRIPLE-PR~ISION FORMAT. NOW THE ABOVE FORMAT COULD BE CONVERT-
ED TO THE DESIRED FLOATING-POINT FORMAT BY ASSUMING A "BINARY" POINT
EKISTED TO THE RIGHT OF THE LEAST SIGNIFICANT BIT, AND SHIFTING THE F~­
TIRE NUMBER TO THE RIGHT WHILE INCREMENTING THE BINARY ~PONENT REGI-
STER. HOWEVER" THE TECHNIQUE WOULD CAUSE A SLIGHT PROBLEM. HOW COULD
ONE TELL WHERE THE MOST SIGNIFICANT 'SIT OF THE BINARY NUMBER WAS? A WAY

5 - 15

AROUND THAT PROBLEM IS TO SIMPLY SHIFT THE REGISTERS TO THE LEFT UNTIL
'!HE FIRST "1" (MOST SIGNI FICANT BIT) IS IN THE DESIRED POSITION. IF
mIS IS DONE .. ONE MUST FIRST SET THE "EXPONENT" TO THE HIGHEST POSSIBLE
VALUE THAT COULD BE CONTAINED IN THE REGISTERS AND THEN DECREMENT THAT
~LUE FOR EACH SHIFT TO THE LEFT. REMEMBERING EARLIER THAT THERE ARE
23 (DECIMAL) BITS AVAILABLE FOR STORING THE MANTISSA WHEN TRIPLE-PRECI­
SION FORMATTING IS BEING USED (AS ONE BIT IS RESERVED FOR THE "SIGN" OF
'mE NUMBER) THEN ONE WOULD SIMPLY LOAD REGISTER "B" WITH 27 (OCTAL WHICH
IS 23 DECIMAL) BEFORE CALLING THE "FPNORM" ROUTINE I F THE NUMBER TO BE
ttlRMALIZED WAS NOT IN FLOATING-POINT FORMAT. THE FOLLOWING ILLUSTRA-
TIONS SHOULD CLARIFY THE MATTER.

ORIGINAL NUMBER WHICH IS NOT IN FLOATING-POINT FORMAT

00 000 000 00 000 000 00 000 101

DESIRED FLOATING-POINT FORMAT

SE EEE EEE S.M MMM MMM MM MMM MMM MM MMM MMM

ORIGINAL NUMBER PLACED IN FPACC AND EXPONENT SET TO 27 (OCTAL)

00 010 111 0.0 000 000 00 000 000 00 000 000

ORIGINAL NUMBER IS THEN NORMALIZED BY ROTATING LEFT

. 00 000 011 0 •. 1 010 000 00 000 000 00 000 000

SINCE THE EXPONENT WAS DECREMENTED FACH TIME THE NUMBER WAS ROTATED LEFT
'!HE FINAL EXPONENT VALUE I S THE SAME AS I F THE NUMBER HAD BEEN ROTATED
1n THE RIGHT TO ACCOMPLISH THE NORMALIZATIONI

THE READER SHOULD ALSO NOTE THAT THE "FPNORMtt ALSO CHECKS TO SEE 1 F
1HE NUMBER TO BE NORMALIZED IS NEGATIVE. IF IT IS .. THE ROUTINE KEEPS
TRACK OF THAT FACT AND ~AKES THE NUMBER POSITIVE IN ORDER TO ACCOMPLISH
tHE NORMALIZATION PROCEDURE. IF IT DID NOT, THE NORMALIZATION ROUTINE
~ULD NOT WORK AS CAN BE SEEN WHEN ONE RECALLS WHAT A NUMBER SUCH AS
MINUS 5 APPEARS LIKE IN IT'S TWO'S COMPLEMENT FORMI

1 1 III 111 1 1 111 111 11 III 011

AFTER THE NUMBER 'HAS BEEN NORMALIZED IN IT'S POSITIVE FORM .. IT IS CON­
VERTED BACK TO THE NEGATIVE FORM SO THAT THE NUMBER MINUS 5 WOULD APPEAR
\HEN NORMALIZED AS:

00 000 011 1.0 110 000 00 000 000 00 000 000

'mE READER SHOULD WORK THROUGH THE PROCEDURE USING PENCIL AND PAPER TO
MAKE SURE THE PROCESS IS UNDERSTOOD FOR HANDLING NEGATIVE NUMBERS AS IT
~N BE CONFUSING AT FIRST GLANCE. NOTE THAT THE NORMALIZED MINUS VALUE
HAS THE MOST SIGNIFICANT BIT POSITION IN THE MANTISSA SET TO A "Itt TO
INDICATE A NEGATI VE VALUEI

ANOTHER POINT OF INTEREST IN THE "FPNORMu ROUTINE IS THAT THE ROUT-
INE TESTS TO SEE IF THE FPACC CONTAINS ZERO. NOTE THAT IF THIS TEST WAS
NOT MADE AND APPROPRIATE ACTION TAKEN TO EXIT THE ROUTINE, THAT THE
ROUTINE WOULD BECOME "HUNG-UP" IN THE ROTATE LEFT LOOP AS IT WOULD FAIL
TO EVER SEE A ttl" APPEAR IN THE MOST SIGNIFICANT BIT POSITION! WHEN A
ZERO CONDITION IS FOUND IN THE MANTISSAI THE ROUTINE SETS THE EXPONENT

5 - 1 t'

PART OF THE FPACC TO ZERO AS AN ADDITIONAL MEASURE.

FINALLY~ THE READER WILL NOTE THAT THE FIRST PART OF THE NORMALIZA­
TION ROUTINE ASSUMES THE MANTISSA USES FOUR MEMORY WORDS - THIS WAS DONE
SO THAT THE ROUTINE COULD HANDLE SOME SPECIAL CASES THAT CAN OCCUR AFTER
OPERATIONS SUCH AS MULTIPLICATION WHERE IT IS NECESSARY TO HAVE SOME AD­
DITIONAL "PRECISION." IN CASES WHERE THE FEATURE IS NOT NEEDED, THE EX­
'IRA MEMORY WORD SHOULD BE SET TO 000 BEFORE USING THE "FPNORM" ROUTINE.

THE "ROTATL" AND "ROTATR" SUBROUTINES CALLED BY "FPNORM" ARE SHORT
ROUTINES THAT HAVE BEEN SET UP FOR "NTH-PRECISION" OP~ATION AS WITH
OTHER ALGORITHMS DISCUSSED IN THIS CHAPTER. BEFORE ENTERING THE ROUT-
INES THE CALLING PROGRAM SETS THE STARTING ADDRESS OF THE STRING OF MEM­
ORY WORDS TO BE PROCESSED IN THE "H , L" REGISTERS AND THE NUMBER OF
l«)RDS IN THE STRING IN REGISTER "B." THE TWO ROUTINES ARE SHOWN BELOW.

MNEMONIC

ROTATL, NDA
ROTL, LAM

RAL
LMA

J DCB
RTZ
INL
JMP ROTL

ROTATR.- MDA
ROTR, LAM

RAR
LMA
DCB
RTZ.
DCL
JMP ROTR

COMMENTS

ICLEAR CARRY FLAG AT THIS ENTRY POINT
IFETCH WORD FROM MEMORY
IROTATE LEFT (WITH CARRY)
IRESTORE ROTATED WORD TO MEMORY
IDECREMmT "PRECISION" COUNTER
IRETURN TO CALLING ROUTINE WHEN DONE
IOTHERWISE ADVANCE PNTR TO NEXT WORD
lAND ROTATE ACROSS THE HEM WORD STRING

ICLEAR CARRY FLAG AT THIS ENTRY POINT
I FETCH WORD FROM MEMORY
IROTATE RIGHT (WITH CARRY)
IRESTORE ROTATED WORD TO MEMORY
IDECREMENT "PRECISION" COUNTER
IRETURN TO CALLING ROUTINE WHEN DONE
IGOING OTHER WAY SO DECREMENT MEM PNTR
lAND ROTATE ACROSS THE MEM WORD STRING

FLOATING-POINT ADDITION

FLOATING-POINT ADDITION IS QUITE STRAIGHT FORWARD, AND IN FACT ONE
CAN USE THE "ADDER" ROUTINE ALREADY DEVELOPED EARLl ER IN THIS CHAPTER
FOR THE MANTISSA PORTION OF A SET OF FLOATING-POINT NUMBERS. HOWEVER,
nlERE ARE A FEW OTHER PARAMETERS THAT MUST BE CONSIDERED IN DEVELOPING
1HE OVER-ALL ROUTINE.

WHEN TWO NUM8mS ARE TO BE ADDED IT WILL BE ASSUMED THAT THEY HAVE
BEEN POSITIONED IN THE "WACC" AND THE "FPOP" MEMORY STORAGE ARrAS. A
FEW ITEMS THAT SHOULD BF CONSIDERED IN DEVELOPING THE BASIC FLOATING­
POINT ADDITION ROUTINE INCLUDE THE fOLLOWING.

SUPPOSE EITHER THE uFPOp·· OR "WACC" CONTA"IN ZERO? OR THEY BOTH
CONTAIN ZmO? IN THE LATTER CASE THE ROUTINE COULD BE IMMEDIATELY EXIT­
ED AS THE ANSWER IS SITTING IN THE uFPACC.'· IF THE "WACC" IS ZERO" BUT
'lHE uFPOP" IS NOT, THEN ONE HAS MERELY TO PLACE THE CONTENTS OF THE
"FPOP" INTO THE ttFPACC" (AS THE CONVENTION WAS FSTABLISHED FARLI ER THAT
mE "RESULT" OF AN OPERATION WOULD ALWAYS BE LEFT IN THE "FPACC"). AND,
FOR THE CASE WHERE THE "WACC" CONTAINS A VALUE.- BUT THE "FPOP" IS ZERO,
~E CAN AGAIN IMMEDIATELY EXIT THE ROUTINE.

S - 17

BUT~ AS WILL MORE LIKELY BE THE CASE WHEN THE FLOATING-POINT" ADD
ROUTINE 15 CALLED~ BOTH THE "FPACC" AND THE "FPOP" WILL CONTAIN SOME
NON-ZERO -VALUE~ AND THUS ONE COULD IMMEDIATELY PROCEED TO PERFORM THE
ADDITION OPERATION~ RIGHT? WRONGI SINCE FLOATING-POINT OPERATIONS AL­
LDW THE MANIPULATING OF LARGE MAGNITUDES OF NUMBERS~ BECAUSE OF THE EX­
PONENT METHOD OF MAINTAINING MAGNITUDES~ IT IS QUITE POSSIBLE THAT AN
OPERATOR MIGHT ASK FOR AN ADDITION OF A Vmy SMALL NUMBER TO A VERY
LARGE NUMBER (OR THIS MIGHT OCCUR IN THE MIDDLE OF A VERY COMPLEX CALCU-
LATION WHERE AN OPERATOR DOES NOT SEE THE INTERMEDIATE RESULTS>. HOW-
EVER~ READERS KNOW THAT I F THE 01 FFERENCE BETWEEN THE TWO NUMBERS TO BE
ADDED IS $0 GREAT THAT THERE CAN BE iNO CHANGE IN THE "SIGNIFICANT" DIG­
ITS IN THE CALCULATION (THE VALUE STORED IN THE MANTISSA) THEN THERE IS
N) USE IN PERFORMING THE ADDITION PROCESS I SO~ THE 'NEXT STEP IN THE
FLOATING-POINT ADDITION ROUTINE WOULD BE TO CHECK to SEE WHETHER OR NOT
THE MAGNITUDES OF THE NUMBERS ARE WITHIN "SIGNIFICANT" RANGE OF ONE AN­
OTHER. I F THEY ARE NOT ~ THEN THE LARGEST VALUE SHOULD BE PLACED IN THE
"FPACC" AS THE ANSWER I

I F THE MAGNITUDES OF THE TWO NUMBERS ARE WITHIN "SIGNI FICANT" RANGE
THEN THE TWO NUMBERS MAY BE ADDED BUT BEFORE THIS CAN BE DONE~ THEY MUST
FIRST BE "ALIGNED" BY SHI FTING ONE OF THE NUMBERS UNTIL THE "EXPONENT"
IS EQUAL IN MAGNITUDE WITH" THE SECOND NUMBER. THE "ALIGNMENT" IS ACCOM-
PLISHED BY FINDING OUT WHICH EXPONENT IS THE SMALLEST AND SHIFTING THE
MANTISSA OF THAT NUMBER TO THE RIGHT (WHILE INCREMENTING THE EXPONENT
FOR FACH SHIFT) UNTIL IT IS PROPERLY ALIGNED. THE SHIFTING PROCEDURE IS
QUITE STRAIGHT-FORWARD SINCE IT CAN BE HANDLED BY A "NTH-PRECISION" REG­
ISTER ROTATE OPERATION. HOWEVER~ THERE IS ONE SPECIAL CONSIDERATION FOR
THE CASE OF A NEGATIVE NUMBER BEING SHIFTED TO THE RIGHT - ONE MUST IN­
SERT A ttl" "INTO THE MOST SIGNIFICANT BIT POSITION EACH TIME A SHIFT IS
MADE IN ORDER TO MAINTAIN THE "MINUS" VALUE PROpmLY (AND KEEP THE SIGN
BIT IN IT'S PROPER STATE). THIS CAN BE ACCOMPLISHED EASILY AS THE READ­
ER WILL SEE IN THE ttFPADD" ROUTINE BY INSERTING A "I" INTO THE CARRY BIT
AND THEN CALLING THE "'ROTR" SUBROUTINE WHICH IS SIMPLY ANOTHER ENTRY
POINT TO THE "ROTATR"" SUBROUTINE PRESENTED EARLIER (AVOIDING THE "NDAII
ENTRY POINT IN THE ROUTINE WHICH WOULD CAUSE THE CARRY BIT TO BE SET TO
A "0" CONDITION I F EXECUTED).

ONE MORE CONSIDERATION THAT THE READER WILL NOTE IN THE FOLLOWING
"FPADD" ROUTINE IS THAT THE TWO NUMBERS TO BE ADDED ARE SHIFTED TO THE
RIGHT ONCE BEFORE THE ADDITION IS PERFORMED SO THAT ANY OVER-FLOW FROM
11iE ADDITION WILL STAY WITHIN THE "F'PACC" THUS ALLOWING "NORMALIZATION"
TO BE HANDLED BY THE PREVIOUSLY PRESENTED ROUTINE INSTEAD 0 F HAVING TO
BE CONCERNED WITH THE STATUS OF THE CARRY FLAG AT THE END OF THE OPERA­
TION. BECAUSE OF THIS SHIFTING OPERATION~ AN ADDITIONAL MEMORY WORD IS
USED BY BOTH THE "FPACC" AND "FPOP" AND THE ADDITION IS PERFORMED USING
"QUAD-PRECISION." AT THE END OF THE ADDITION PROCESS THE RESULT IS
NlRMALIZED AND LEfT IN THE "FPACC."

MNEMONIC
--_ .. _---------

FPADD~ LLI 126
LBI 003

CKZACC~ LAM
NDA
JYZ NONZAC
DCB
JTZ MOooP
DCL
JMP CKZACC

COMMENTS

ISET POINTER TO MSW OF FPACC
ISET LOOP COUNTER
I FETCH PART 0 F FPACC
ISET FLAGS AFTER LOADING OPERATION
IFINDING ANYTHING MEANS FPACC NOT ZERO
II,. THAT PART = 0" DECREM~T LOOP COUNTER
IIF FPACC = 0~ MOVE FPOP INTO FPACC
INOT FINISHED CHECKING~ DECREMENT PNTR
lAND TEST NEXT PART OF FPACC

5 - 18

MNEMONIC

MOVOP 1 CAL SWITCH
LHD
LLI 134
LBI 004
CAL MOVEIT
RET

NONZACI LLI 136
LSI 003

CKZOP~ LAM
NDA
JFZ .CKEQEX
DCB
RTZ
DCL
JMP CKZOP

CKEQEXI LLI 127
LAM
LLI 137
CPM
JTZ SHACOP
XRI 377
ADI 001
ADM
JFS SKPNEG
XRI 377
ADI 001

SKPNEGI CPI 030
JTS LINEUP
LAM
LLI 127
SUM
RTS
LLt 124
JMP MOVOP

LINEUP 1 LAM
LLI 127
SUM
JTS SHI FTO
LCA

MORACCI LLI 127
CAL SHLOOP
DCC
JFZ MORACC
JMP SHACOP

SHI FTOI LCA
MOROP 1 LLI 137

CAL SHLOOP
INC
JFZ MOROP

SHACOP 1 LLI 127
CAL SHLOOP
LLI 137
CAL SHLOOP
LDH
LEI 123
LBI 004
CAL ADDER
LSI 000

COMMENTS

ISAVE POINTER TO LSW OF FPACC
ISET "H" • 000 FOR SURE
ISET POINTER TO LSW OF FPOP
ISET A LOOP COUNTER
IMOVE FPOP INTO FPACC = ANSWER
IEXIT FPADD
ISET POINTER TO MSW OF FPOP
ISET LOOP COUNTER
IGET MSW 0 F FPOP
ISET FLAGS AFTER LOAD OPERATION
IIF NOT" THEN HAVE A NUMBER I
I IF 0 1 DECREMENT LOOP COUNTER
IEXIT RTN IF FPOP = ZERO
IELSE DECREMENT PNTR TO NEXT PART OF FPOP
lAND CONTINUE TESTING FOR ZERO FPOP
ICHECK FOR EQUAL EXPONENTS
IGET FPACC EXPONENT
ICHANGE POINTER TO FPOP EXPONENT
ICOMPARE EXPONENTS .
IIF SAME CAN SET UP FOR ADD OPERATION
IIF NOT SAME~ TWO'S COMPLEMENT THE VALUE
10 F THE FPACC EXPONENT
lAND ADD IN FPOP EXPONENT
II F + GO 01 R EC TL Y TO AL I GNM ENT T ES T
IIF NEGATIVE pmFORM TWO '5 COMPLEMENT
ION THE RESULT
INOW SEE IF RESULT GREATER THAN 27 OCTAL
I I F NOT CAN PERFORM ALI GNMENT
IIF NOT ALIGNABLE GET FPOP EXPONENT
ISET POINTER TO FPACC EXPONENT
ISUBTRACT FPACC EXPONENT FROM FPOP EXP
I FPACC EXP GREATER SO JUST EXIT RTN
I FPOP WAS GREATER~ SET PNTR TO FPACC LSltJ
IGO PUT FPOP INTO FPACC & THEN EXIT RTN
IALIGN FPACC AND FPOP 1 GET FPOP EXP
ICHANGE POINTER TO FPACC EXP
ISUETRACT FPACC ~P FROM FPOP EXP
I WACC GREATER SO GO TO SHIFT OPERAND
IFPOP GREATER - SAVE 01 FFE:RENCE
IPO I NTER TO FPACC EXP
ICALL SHIFT LOOP
IDECREMENT DIFFERENCE COUNTER
ICONTINUE ALIGNING IF NOT DONE
ISET UP FOR ADD OPERATION
ISHIFT FPOP RTN~ SAVE DIFF CNT (NEG VAL)
IS ET PO I NT ER TO FPOP EXPON ENT
ICALL SHIFT LOOP
IINCREMDlT DIFFERENCE COUNTER
ISHI FT AGAIN I F NOT DONE
ISHIFT FPACC RIGHT ONCE - SET POINTER
ICALL SHIFT LOOP
ISHIFT FPOP RIGHT ONCE - SET POINTER
ICALL SHIFT LOOP
I SET UP PO INTERS - "0" = 0 FOR SURE
IPOINTER TO LSW OF fPACC
ISET PRECISION COUNTER
IADD FPACC TO FPOP QUAD-PRECISION
ISET "BU FOR STANDARD NORMALIZATION

5 - 19

MNEMONIC COMMENTS .. __ .. __ _----
-~----- .. ----- ..

CAL FPNORM INORMALIZE THE RESULT OF THE ADDITION
RET IEXIT FPADD HTN WITH RESULT IN FPACC

SHLOOP .. LBM ISHIFTING LOOP FOR ALIGNMENT
INB IFETCH EXPONENT INTO "B" AND INCREMENT IT
LMB IRETURN INCREMENTED VALUE TO MEMORY
DCL IDECREMENT THE PO INTER
LBI 004 ISET A COUNTER
CAL FSHI FT ICALL SPECIAL SHIFT ROUTINE
RET IEXIT "SHLOOP"

FSHI FT .. LAM IGET MSW OF FLOATING-POINT NUMBER
NDA ISET FLAGS AFTER LOADING OPERATION
JTS BRINGI IIF I IS MINUS .. NEED TO SHIFT IN A "I"
CAL ROTATR IOTHERWISE PERFORM NTH-PREC1.SION ROTATE
RET IEXIT "FSHI FT"

BRINGl .. RAL ISAVE "1" IN CARRY BIT
CAL ROTR IDO ROTATE WI THOUT CLEARING CARRY BIT
RET I EXI T .f FSHI FT"

MOVEIT .. LAM I FETCH A WORD FROM MEMORY STRING "A"
INL IADVANCE "A" STRING PO INTER
CAL SWITCH ISWITCH POINTERS TO STRING "B"
LMA IPUT WORD FROM STRING "A" INTO STRING "B"
INL IADVANCE "B" STRING POINTER
CAL SWITCH ISWITCH POINTERS BACK TO STRING "A"
DCB IDECREMENT COUNTER
RTZ IRETURN TO CALLING RTN WHEN COUNTER • 0
JMP MOVEIT IOTHERWISE CONTINUE MOVING OPERATION

FLOATING-POINT SUBTRACTION

NOW THAT ONE HAS A FLOATING-POINT ADDITION ROUTINE .. FLOATING-POINT
SUBTRACTION IS A "SNAP." ALL ONE REALLY HAS TO DO IS NEGATE THE NUMBER
IN THE "FPACC" AND dUMP TO THE FLOAT I NG - PO 1 NT ADD! Tl ON RO UT IN E I

FSUB ..

MNEMONIC

LLI 123
LBI 004
CAL COMPLM
JMP FPADD

COMMENTS

ISET POINTER TO LSW 0 F FPACC
ISET PRECI SION COUNTER
IPERFORM TWO '5 COMPLEMmT OF 'FPACC
ISUBTRACTION ACCOMPLISHED NOW BY ADDING!

FLOATING-POINT MULTIPLICATION

FLOATING-POINT MULTIPLICATION CAN BE ACCOMPLISHED BY UTILIZING A
"SHI FTING AND ADDING" ALGORITHM FOR THE MANTI SSA PORTION 0 F THE NUMBERS.
AS POINTED OUT EARLIER" SHIFTING A BINARY NUMBER TO THE RIGHT SERVES TO
ESSENTIALLY "DOUBLE" IT'S VALUE. AN ALGORITHM THAT TAKES ADVANTAGE OF
THAT FACT CAN BE DESCRIBED AS FOLLOWS.

CONSIDER THE TWO NUMBERS AS A "MULTIPLIER" AND A "MULTIPLICAND."
l!XAMINE THE LEAST SIGNIFICANT BIT OF THE "MULTIPLIER." IF IT IS A "1,,"
ADD THE CURRENT VALUE OF THE "MULTIPLICAND" TO A THIRD REGISTER (WHICH
INITIALLY STARTS WITH A VALUE OF ZERO). NOW" SHIFT THE MULTIPLICAND ONE

5 - 20

PO~ITION TO THF LEFT. FXAMINF THF NFXT BIT "'0 THF' LEFT Of' THF LEAST
SIGNIFICANT AIT IN THF MULTIPLIFR. IF IT 15 A .. 1 .. •• ADD THF CURRFNT
\1A L UF.O F TH F .. M PL TIP LIe AND" TO T H F TH I R D H:Eo (, 1 S T F P (~'H I C H CO tTL D H F CAL -
LED THE "PARTIAL-PPODUCT" REGISTER). SHIFT THE MULTIPLICAND TO THE RIGHT
MAIN. CONTINUF THE' PROCFSS BY FXAMINING ALL THF BITS IN THF MULTIPLI FB
FnR A "I" CONDITION. ~lHFNF,"FR THF MULTIPLIFR CONTAINS A "I" ADD THF
Ct'PRFNT \1ALPF OF THF Ml'LTIPLICAND TO THf PARTIAL-i.)RODUCT REGISTER. AFTFR
FA C H EXA MIN A T ION 0 F A BIT I NTH F M UL TIP L 1 FA (J-\ f\1 DAD nIT ION 0 F T H F M tTL T I -
PLI FR TO THF PARTIAL-PRODUCT RFGlSTFR I f A "1" "'AS OB5FRUFD) SHI FT THF
Mt"LTIPLICAND J-ilf1HT. CONTINVF CNTIL ALL HITS· IN THF Ml'LTIPLIFR HAVF BFE'N
~AMINFn. THF RFSULT OF THF MULTIPLICATION WILL HF IN THE PARTIAL-PRO-
DPCTS REGISTFR AT THF COMPLFTION OF THE ABOtlE Pl-<OCFS5. THE ALGORITHM
CAN PERHAPS BF 5FFN A LITTLF MOHF CLFARLY BY STUDYING THF FLOW-CHART
PRFSFNTFD BFLO\.J.

NO

CHFCK N FXT HIT
OF MULTI},.)LIFR

SH I FT MULT 1 PL 1-
CANO RlnHT

YFS

AnD t.1t'LTIPLICAND
TO PARTIAL-PHonVfT

THE RFADER CAN "FRI FY THE ALGORITHM BY FOLLOWING THF FXAMPLF BFLO~,1
mF TWO SMALL NUMBERS - THE NUMBER 3 (DFCIMAL) AS THF MeLTIPLICAND
ANn THF NUMBFR 5 AS THF MULTIPLI 'E'R.

(MULTIPLICAND AT START OF OPFRATIONS)

(M UL T I PL I FR)

(PARTIAL PRODUCT BFFORF OPFRATIONS START)

5 - 21

00 000 011

00 000 101
------- .. -------

00 000 011

00 000 110

00 000 101
.. _-------_ .. ---

00 000 01 1

00 001 100

00 000 101 -----_ .. _-._----
00 001 111

(MULTIPLICAND WHEN 1ST BIT OF MULTIPLIER
IS E'<AMINED)

(LEAST SIGNFICANT BIT OF MULTIPLIER • 1)

,(MULTIPLICAND IS ADDED TO PARTIAL-PRODUCT)

(MULTIPLICAND IS SHIFTED TO THE RIGHT BE­
FORE SECOND BIT OF MULTIPLIER E"AMINED

(SECOND BIT OF MULTIPLIER IS ZERO)

(SO NOTHING IS ADDED TO PARTIAL-PRODUCT)

(MULTIPLICAND IS SHIFTED TO RIGHT AGAIN
BEFORE NEXT BIT OF MULTIPLI ER IS EXAMINED
(T HI R D BIT 0 F MUL T I PL I ER I 5 A "1")

(SO MULTIPLICAND'S CURRENT VALUE IS ADDED
INTO THE PARTIAL-PRODUCT REGISTER. SINCE
ALL THE REMAINING BITS IN THE MULTIPLIER
ARE "0" NOTHING MORE WILL BE ADDED TO THE
PARTIAL-PRODUCT REGISTER WHICH THUS HOLDS
THE FINAL ANSWERI)

WHILE THE ABOVE ALGORITHM WAS PRESENTED FOR HANDLING NUMBERS IN REG­
ULAR FORMATI WITH JUST A LITTLE VARIATIONI THE BASIC PROCEDURE CAN BE
IMPLEMENTED FOR MULTIPLYING THE MANTISSA PORTION OF NUMBERS STORED IN
FLOATING-POINT FORMAT. A FLOW CHART OF THE MANTISSA MULTIPLYING PORTION
OF THE "FPMULT" ROUTINE TO BE PRESENTED SHORTLY IS SHOWN ON THE NEXT
PAGE. NOTE THAT IT IS EASY TO TEST EACH BIT OF THE "MULTIPLiER" BY SIM­
PLY ROTATING IT RIGHT AND TESTING THE STATUS OF THE CARRY FLAG AFTER THE
ROTATE OPERATION I

HANDLING THE EXPONENT PORTION WHEN MULTIPLYING TWO NUMBERS STORED IN
BINARY FLOATING-POINT FORMAT IS ACCOMPLISHED THE SAME WAY ONE WOULD HAN­
DLE EXPONENTS IN DECIMAL FLOATING-POINT FORMAT. THE EXPONENTS ARE SIM­
PLY ADDED TOGETHER.

THERE ARE SEVERAL OTHF~ PARAMETERS TO CONSIDER WHEN MULTIPLYING NUM­
BERS. FIRST 1 THE ALGORITHM" PRESENTED MAY ONLY BE USED ~HEN THE NUMBERS
ARE POSITIVE IN VALUE. THUS 1 ANY NEGATIVE NUMBERS MUST FIRST BE "NEGA­
TED" BEFORE USING THE ALGORITHM. FURTHERMORE" THE READER KNOWS THAT 1 F
TWO NUMBERS OF THE SAME "SIGN" ARE l'1ULTIPLI ED TOGETHEH THE ANSWER 'WILL
BE A POSITIVE VALUEI BUT IF THE "SIGNS" ARE DIFFERENTI THE ANSWER WILL
BE A NEGATIVE NUMBER. THEREFOREI ONE MUST KEEP ACCOUNT OF THE INITIAL
"51 GNS" OF THE NUMBERS BEING MULTIPLI EDI AND 1 F THE ANSWER DICTATESI THE
FINAL VALUE MUST BE NEGATED AFTER USING THE ALGORITHM. AS THE READER
WILL OBSERVE IN THE "FPMULT" ROUTINEI HANDLING THIS TASK 15 QUITE EASY.

SECONDLY I THE ALERT READER MAY HAVE OBSERVED THAT SINCE THE MULTI­
PLIcAND IS SHIFTED IN THE ABOVE ALGORITHM (THE PARTIAL-PRODUCT REGISTER
IS SHIFTED IN THE FLOATING-POINT ALGORITHM TO ACCOMPLISH THE SAME PUR­
POSE) ONE POSITION FOR EACH BIT IN THE MULTIPLIERI THEN IT 15 NECESSARY
TO MAINTAIN "WORKING" REGISTERS THAT ARE TWICE AS LONG AS THE ORIGINAL
NUMBERS TO BE MULTIPLIED. THUSI THE FINAL ANSWER MAY CONTAIN MORE BITS
OF PRECISION THEN THE OVER-ALL PROGRAM IS DESIGNED TO HANDLE. IN THE
"FPMULT" ROUTINEI THE MULTIPLICATION OF THE MANTISSAS IS ACCOMPLISHED
USING SIX MEMORY WORDS PER REGISTER. BUT I AT THE CONCLUSION OF THE ROU­
TINEI THE ,23RD BINARY BIT IS "ROUNDED" OFF (DEPENDING ON THE STATUS OF

5 - 22

THE 24TH LEAST SIGNIFICANT BIT) AND THE ANSWER IS NORMALIZED BACK TO A
23 BIT BINARY NUMBER WHICH IS THE LARGEST NUMBER THE PACKAGE BEING DIS­
CUSSED IS DESIGNED TO HANDLE. THE METHOD ALLOWS MAXIMUM PRECISION TO BE
~INTAINED DURING THE MULTIPLICATION PROCESS.

NO

NO

SHIFT Mt'LTIPLIFFi
RIGHT (INTO CA~HY)

SHI FT }JART IAL­
PPOneCT t< IGHT

YFS

ADD Mt'L TI"'L 1 CAf\lf'

1'0 PA P ,. I A L - P P () n T'C T

YFS

AN S t,1 Fh 1 S ~ Tn l' F J1 11\1
TH F PA R T I A L - t-' j-d) D t T T

PfGISTf,t-.

FLOATING-POINT MULTIPLICATION ALGORITHM FLOW CHART

MNEMONIC

FPMULT~ CAL CKSIGN
ADDEXP, LLI 137

LAM
LLI 127
ADM

COMMENTS

ISET UP ROUTINE AND CHECK 51 GN OF ,'S
ISET POINTER TO FPOP [XPONENT
IFETCH FPOP EXPONENT INTO ACCUMULATOR
15ET POINTER TO FPACC EXPONENT
1 ADD FPACC EXP TO FPOP EXP

5 - 23

MNEMONIC

ADI 001
LMA

S ETMCT" LLI 102
LMI 027

MULTIP" LLI 126
LBI 003
CAL ROTATR
CTC ADOPPP
LLI 146
LBI 006
CAL ROTATR
LLI 102
CAL CNTDWN
JFZ MULTIP
LLI 146
LBI 006
CAL ROTATR
LLI 143
LAM
.RAL
RAL
NDA
CTS MROUND
LLI 123
CAL SWITCH
LHD
LLI 143
LBI 004

EXMLDV~ CAL MOVEIT
LBI 000
CAL FPNORM
LLI 101
LAM
NDA
RFZ
LLI 124
LSI 003

.CAL COMPLM
RET

CKSIGN~ CAL CLRWRK
LLI 101
LMI 001
LLI 126
LAM
NDA
JTS NEGFPA

OPSGNT ~ LLI 136
LAM
NDA
RFS
LLI 101
CAL CNTDWN
LLI 134
LBI 003
CAL COMPLM
RET

NEGFPA~ LLI 101
CAL CNTDWN

COMMENTS

IADO ONE FOR ALGORITHM COMPENSATION
ISTORE RESULT IN J'PAce EXPONENT
ISET BIT COUNTER STORAGE POINTER
ISET BIT CNTR TO 23 DECIMAL (27 OCTAL)
IBASIC "X" ALGORITHM - PNTR TO MSW FPACC
ISET PRECISION COUNTER
IROTATE MULTIPLIER RIGHT INTO CARRY FLAG
IIF CARRY=I~ ADD M'CAND TO PARTIAL-PROD
ISET PNTR TO PARTIAL-PRODUCT MSW
ISET PRECISION COUNTEll
ISHIFT PARTIAL-PRODUCT RIGHT
ISET POINTER TO BIT COUNTER
IDECREMmT VALUE IN BIT COUNTER
IIF BIT CNTR NOT ZERO~ REPEAT ALGORITHM
ISET POINTER TO PARTIAL-PRODUCT MSW
ISETPRECISION COUNTER ~ ROTATE PIP ONCE
IMORE TO MAKE ROOM FOR POSSIBLE ROUNDING
ISET PNTR TO ACCESS 24TH BIT IN PIP
IFETCH 24TH BIT
IP~SITION IT TO MSB POSITION
I" It.... ..
ISET FLAGS AFTER ROTATE· OPERATION
IIF 24TH BIT = 1~ DO ROUNDING PROCEDURE
INOW SET PNTR TO FPACC
ISAVE FPACC POINTER
I ENSURE tlH" IS 000
ISET POINTER TO PARTIAL-PRODUCT
ISET PRECISION COUNTER
IMOVE ANSWER FROM PIP' INTO WACC
ISET "B" FOR STANDARD NORMALIZATION
INORMALIZE THE ANSWER
ISET PO INTER TO "SI GNS" INDICATOR
I FETCH "SI GNS" INDICATOR
ISET FLAGS AFTER LOAD OPERATION
I IF" SIGN S" HA 5 VAL U [" RES UL TIS + " EX 1 T
IBUT 1 F "SIGNS" = 0" SET FPACC LSW PNTR
lAND PRECISION COUNTER
lAND NEGATE THE ANSWER
IBEFORE EXITING "Ji'PMULT" ROUTINE
ICLEAR WORKING LOC'S FOR MULTIPLICATION
ISET PO INTER TO "SI GNS" STORAGE
IPLACE THE INITIAL VALUE "I" IN "SI GNS"
ISET POINTER TO MSW OF I'PACC
I FETCH MS W 0 F FPACC
ISET FLAGS AFTER L'OAD OPm,ATION
IIF I IS MINUS" NEED TO DO 2'5 COMPLEMENT
ISET POINTER TO MSW OF FPOP
I FETCH MSW 0 F FPOP
ISET FLAGS A"ER -LOAD OPERATION
IIF I IS +# RETURN TO CALLING ROUTINE
I I F I MINUS" SET POINTER TO "SI GNS"
IDECREMENT VALUE IN "SIGNS"
ISET POINTER TO LSW OF FPOP
'SET PRECISION COUNTER
IPERFORM TWO '5 COMPLEMENT Of' , IN fPOP
IGO BACK TO CALLING ROUTINE
ISET POINTER TO "SIGNS" STORAGE
IDECREMENT VALUE 0 F "51 GN5"

5 - 24

LLI 12A
1.81 113
f:AL CaMPUI "lIP OPSIWT

CLRVA.. LLI ... "
LBI III
XRA

CLRR!X. LIlA
DCB
tlTZ CLftOPL
I IlL
"lIP CLR.EX

CLROPL. Lal I.A
LL1 13.

CLRD I. LKA
DCB
RTZ
I IlL
"lIP ~LRIIX 1

ADOPPP .. LEI IAI
LDR
LLI 131

1.81 '" CAL ADDER
RFT

DOmlD.. 1.81 8.3
LAI 1.8
ADM

CROUIID. LMA
I IlL
LAI 1.,
AIM
~8

"P'Z CR8ttt1D
LMA
RET

ISET P81.T!:R T8 LSW 0,. WAG£
ISr.r PRmISIO. COUIITER
I"EIATE Till: uu.UE I. THE JPACe I. CllEeK SII. 0,. WOP
ICLEAR PART-PROD·S WOAK AR~A (I ... ·I .. ~)
ISET POIIITER Alii) eOU1lTIR
ISET AeCUMULATOft •• ,.
I.WISIT ACCttWULATOR corrl!lTs IIITG MIX
IDECRDldT COtJIIT!'R
11111. DOllE 10 TO .EXT ARFA
IILSE CO.TIWUE £LI"ARI.' PIP WORKI •• AREA
IBT STU,."I ••• ,. t. "EXT MEN LOCATI ••
ICLEAR AD.ITIO.AI. ROeM POR MULTIPLICAKD
IAT 131 TO 133 - Sri" CIUIITER • POIIITrR
IPUT .11 IN MEMORT
IDECRElldT COUIITER
IRETURII TO CALLI.' PRelRAM dEW DO.~
IELSE AD.WCE POI.TEA
IAWD COWTIIlUE CLEARIIfCi OPI:RATI •• S
IPOI.Tm TO LSV OF PARTIAL·PRODUCT
IIR P. 81 I. "D a E-
IP.TR TO LSV OF MULTIPLICAWD
ISET PRNISIOW COtJWTER
IPERFIRM ADDITI ••

ISET PRECISIO. COUNTER
IADD "I" TO 23-RD 81T 0' PARTIAL-PROD
IHERE
IRES TORE TO MEMORY
IAD~.CI POIMTFR
ICLEAR Ace VITKOUT DISTURBI •• CARRT
IAIfD P~OPO lATE ROutlDI.1
II. PA~TIAL-PRODUeT
IFI.ISKED VK~ C.TR • la.
IftES"O~E LAST WORD OF pep

I. A MAWWER TKAT IS SO~T OF TKE REVEftSE OF MULTIPLICATION (VXICH us·
ED ADDITIO. ARD ROTATE OPERATIO.S) OWE CAW PERP8RM 91VIS10. USIMa AW AL·
IORIT" THAT UTILIZES SUBTRACTIOW a.D ROTATE OPERATIO.S. THE ALIeRITHM
WILl. BE PRES!JfTEO DI'RmTLT I. TilE "JUI tySED I. JILOATI.a·POIMT OPII'ATIOMS
B£SAUSE I. TJlIS CASE IT IS SIMPLER THAW DESCRISI •• IT P'OR .uamE'RS TIIAT
ARE .IT I. PLOATI.'.POIWT PORII. _WEVER. TilE AL!:RT RFADER SHOULD RAVE
LITTLE DIF,.ICULTY 08Smvl •• THAT THE ALIORITRM COULD 8E usa PeR IftnIIBERS
TnT ARE WOT I. l'LGATIW'-PII.T P'ORIIAT I' OWE ,.IRST ALII.n TRt: MeST 511-
WIFICA.T BITS 0,. TKE DivISOR AW •• IVIBEIa. AMD TOGK APPROPRIATE ACTIOIf
TO JlA.DL~ TRF LOCATIOIf 0,. A -BI.ART" POIMT JlGR CASES WHERE THE RESULT
VAS .IT A PURE I.TEam.

1M RAIfBLIII •• ILISK. T.r. ALeRITRII COULD BE STATED AS JOLlAVS, SUB­
TRACT TKE VALUE 0,. THE DIVISOR meN TilE VALUE 0,. TJI~ OAlal.AI. DIVIDDD.
TEST THE RESULT 0,. THE SUBTRACTIOW. I,. THE RESULT IS .EIATIVL •• _1 ••
TIlE _TIRE DI VISOR C01JLJl Wo.T BE SUBTRACTED. PLA~E A -'" I. THE LEAST
sr.WI,.ICAWT BIT e,. A RElrSTER TERMED THE "QUOTIEIIT." LUVE THE CUR­
RIBT DIVIDDJ. AURE. IF TilE RESULT e,. TilE SUBTRACTIO. IS POSITIVE. OR
ZERO. I.DI£ATI •• THE DIVID~D VAS LAR.ER T"~ THE DIVISOR. PLACE A -.­
I. TKE LEAST SIIWIFICa.T BIT 0,. THE "QUOTIElT- R£IISTlR Awn CHA.I~ THE
Dlvl.IIID TO BE TXE VALUE .,. TirE "RDlAI.DER" (OR 'RESULT) 0' THE SUBTRAC­
TI •• IPDATI... .EXT •• weE THE APPROPRIATE ACTIO. HAS BEnt TAKEII AS A

I - as

P'tJIICTIOW tt,. TRF. RFSULT 0,. THE SUBTRACTIOW OPERATIO •• ~GTATE THE~O.T!JITS
.,. THE DIVIDDD (VR!:THD IT·S ORIIIWAL uu.UE OR TilE MEV -R!MAI.DER-) OME
POSITIOJl TO THE RIIRT. A.D SIMILARLY ROTATE THE QUOTIEIT OWCE TO THE
RIIIIT TO ALLeV 'ROOM PG'R Till: .EXT LEAST SI_I,.ICAIIT BIT. .oV RIPI"AT THF.
EIITIRE PROCEDU'R!: nIITIL OWE HAS PERP'ORIIEI) THE AB8vF OPDtATIOJlS AS MAIIT
TIWES AS THERE ARE BIT POSITIOWS I. THE REllST!'R usn TO HOLD TRF ORlar-
.AI. DIVID!2IDI (THAT liOULD BE 23 (DdIJlfAL) TI.ES JI'OR THE PLOATI.'-POIJlT
PAf:XAI2 SElwa DISCUSSED HERE.)

TRF ALGORITHM HAY BE VISUALIZED A LITTLF MORE CLFARLY BY STUDYI.a
THE rLlw CHART PFES!NTED BlL"". ADDITIOJlALLY. A STEP-BY-STEP PRIS!1f­
TATION Iu"USTRATIJlO THE ALIORITHIf BElwa USFD TO DIVIDF THF BINARY EQUIV­
AL!.WT OF 15 (DEGIMAL) 8T 5 IS PRESl1ITED O. TH!' R!'XT PAtlF. THE LENgTH
OF THE 'RESISTERS HAVE BEnt REDUCED TO SB8RTEII THE ILLUSTRATION. ADlDI­
B~. THE ALIO'RITIIII SHOW IS FOR THE JlA.TISSA PORTIO. OF WUllBERS ALRFADY
STORED III "WORJlALIZED- FLOATl •• -POl.T POP.AT.

NO

NO

SUBTRACT DIVISOR
FROM DI VI DEND

PLAC E "0" 1 N LSB
OF QUOTI ENT

ROTATE CURR FNT
01 VI DEND LEFT

ROTAT E blUOT lENT
. TO THE LEFT

YES

PLA C E "1" 1 N L S b
OF (.;IUOT lENT

PLACE REMAINDFH AS
NEW 01 VI DFND

YES

ANSWER IN
QUOT lENT

I • 1 I I 1

8 • I 8 I 8

---------------" • I 1 I 1

ORIGINAL DIVIDEND AT START OF ROUTINE·

DIVISOR (NOTE FLOATING-POINT PORMATI)

RESULT OF FIRST SUBTRACTION OPERATION
THIS IS THE .tRDlAINDm" FROM THE SUB­
TRACTION OPERATION. SINCE RESULT WAS
"POSITIV~' A "I" IS PLACED IN THE LSB
OF THE QUOTIENT REGISTER.

" • I I "1 QUOTIOfT A"ER 1 ST LOOP

NOW BOTH QUOTIENT AND DIVIDDfD (NEW REMAINDER) ARE ROTATED LEn

8 • I 8 1 8

" • 1 I "

---------------e • I I I fJ

NEV DIVIDEND (WHICH IS THE LAST REMAIN­
DER ROTATED ONCE TO THE LE")
DIVISOR (DOES NOT CHANGE DURING ROUTINE)

RESULT OF THIS SUBTRACTION IS ZERO AND
THUS QUAL1FIES TO BECOME NEW DIVIDEND.
QUOTIENT LSB GETS A "I" FOR THIS CASEI

I • I I 1 1 QUOTIOJT AnER 2ND LOOP

AGAIN BOTH QUOTIENT AND DIVIDEND (NEW REMAINDER) ARE ROTATED LEFT

fJ • " 888

8 • 1 8 I 8
.. __ .. _-----_ .. _--

1 • ell "

NEW DIVIDEND (WHICH IS THE LAST REMAIN­
DEJt ROTATED ONCE TO THE LE")
DIVISOR - STILL SAME OLD NUMBER

RESULT OF THIS SUBTRACTION IS A MINUS
NUMBER (NOTE THAT THE "SIGN" BIT C'HANG­
EDI) THUS# OLD DIVIDEND STAYS IN PLACE
AND QUOTIENT GETS A He" IN LSB POSITION.

8 • ., I I I QUOTI ENT AFTER 3RD LOOP

NOW BOTH QUOTIENT# AND. IN THIS CASE THE OLD DIVIDEND ARE ROTATED LEFT

OLD DIVIDEND ROTATED ONCE TO THE LEn

8.1818 SAME OLD DIVISOR

---------------1.8118 RESULT OF THIS SUBTRACTION IS AGAIN A
MINUS. OLD DIVIDEND STAYS IN PLACE.
QUOTI DlT GETS ANOTHER "I" IN LSB.

8 • liB I QUOTIENT AFTER 4TH LOOP

SINCE TH~E WERE JUST 4 BITS. IN THE MULTIPLICAND REOISTER# THE ALGO­
RITHM WOULD BE COMPLETED AT THE DID OF THE FOURTH LOOP AND THE ANSWER
WOULD BE THAT SHOWN. IN THE QUOTI ENT. RDlDlBER# THAT SINCE PLOATINS-
POINt FORMAT, IS BEING USED~ THAT THERE WOULD BE BINARY ~PONDITS INVOLV­
m. SIMILAR TO THE WAY ONE WOULD HANDLE EXPONENTS IN DECIMAL FLOATING­
'OINT NOTATION# ONE SUBTRACTS THE EXPONENTS POR THE TWO NUMBERS (DIVISOR
IDCPONDIT PROM THE DIVIDDfD EXPONENT) TO OBTAIN THE EXPONDIT VALUE FOR A
DIVISION OPERATION. IN THE ABOVE EXAMPLE~ THE MULTIPLICAND WOULD HAVE
HAD THE BINARY EXPONINT .• (DlCINAL) TO REPRISIWT TH! NORMALIZED STORING
OF t 5 AND THE DI VISOR WOULD HA.VE HAD A BINARY ~PONENT OF 3. THE ABOVE
ALGORITHM RdUIRES A COMPDJSATION FACTOR OF + 1 A"ER .SUBTRACTING THE

5 - 27

~PONDfTS (CAN THE READER THINK OF WAYS IN WHICH THIS COULD BE AVOIDED?)
IN ORDER TO HAVE THE CORRECT FLOATING-POINT RESULT. IN THE SAMPLE IL­
LUSTRATED ABOVE# (. - 3) + 1 • 2~ AND INDEED IF THE ANSWER SHOWN WAS
K)VED TWO PLACES TO THE LEn (OF THE IMPLIED "BINARY POINT") ONE CAN
VERI", THAT THE RISULT IS THE BINARY EQUIVELANT OF 3 (DECIMAL). THE
READER MIGHT WANT TO TRY USING OTHER SMALL VALUED NUMBERS TO TEST THE
~LJDITY OF THE ALGORITHM AND DEVELOP A THOROUGH UNDERSTANDING OF THE
PROCESS. A GOOD CASE TO EXAMINE IS ONE WHERE 'HE RESULT IS "NON-DIDINO"
SUCH AS THE NUMBER 1 DIVIDED~ SAY~ BY 3.

JUST AS IN THE MULTIPLICATION ROUTINE~ THERE ARE SEVERAL OTHER PARA­
METERS THAT MUST BE CONSIDERED IN DEVELOPING THE DIVISION ROUTINE. FOR
INSTANCE~ THERE IS AGAIN THE MATTER OF THE SIGNS OF THE NUMBERS. THE
ALGORITHM REQUIRES THAT THE NUMBERS BE IN POSITIVE PORMAT SO AGAIN ONE
MUST KEEP TRACK OF THE SIONS OF THE ORIGINAL NUMBERS AND CONVERT ANY
NEGATIVE ONES TO POSITIVE FOR THE ROUTINE. IF THE SIGNS OF THE TWO
NUMBERS INVOLVED ARE IDENTICAL~ THE RESULT MUST BE POSITIVE~ IF THEY ARE
DI FFERENT" THEN THE PROGRAM MUST NEGATE THE ANSWER OBTAINED JiROM THE AC­
TUAL DIVISION P~OCESS. AND~ BECAUSE SOME CALCULATIONS WILL RESULT IN A
tl)N-DlDING SERI ES FOR AN ANS"ER~ SOME "ROUNDING" CAPABILITY MUST BE IN­
CLUDED IN THE PROGRAM. T~EN~ THERE IS A SPECIAL CASE IN DIVISION THAT
ONE MUST CHECK FORt DIVISION BY ZERO. IN THAT CASE THE PROGRAM MIGHT
BRANCH OFF TO TELL THE OPERATOR A THING OR TWO. THE FLOATING-POINT
DIVISION ROUTINE SHOWN BELOW CONSIDERS THESE MATTERS AS THE RFADER WILL
(J3S~VE.

MNEMONIC -------- ... _-----
FPDIV~ CAL CKSIGN

LLI 126
LAI eee
CPM
JFZ SUBEXP
DCL
CPM
JFZ SUBEXP
DCL
CPM
JTZ DEAROR

SUBEXP .. LLI 137
LAM
LLI 121
SUM
ADI 801
LMA

SETDCT~ LLI 182
LMI 927

DIVIDE~ CAL SETSUB
JTS NOGO
LEI 13.
LLI 131
LBI '''3
CAL MOVEIT
LAI 081
RAR
.IMP QUOROT

NOGO" LAI """ RAR
QUOROT, J,.LI l~.

COMMDlTS
... ---_ .. _------

ISET UP REG'S AND CHECK SIGN OF NUMBERS
ISET POINTER TO MSV OF FPACC (DIVISOR)
ICLEAR ACCUMULATOR
ISEE I F MS. OF WACC • ZERO
IIF FIND ANYTHING - PROCEED TO DIVIDE
IDECREMENT POINTER
ISEE IF MS. OF DIVISOR • ZERO
IIF FIND ANYTHING - PROCEED TO DIVIDE
IDECREMENT POINTER
ISEE IF LSV OF DIVISOR • ZERO
/IF DIVISOR • ZERO~ TELL SOMEBODY I
ISET POINTER TO DIVIDEND (FPOP) ~PONENT
IFETCH DIVIDEND EXPONENT
/SET POINTER TO DIVISOR (FPACC) EXPONENT
ISUBTRACT DIVISOR EXP FM DIVIDEND EXP
ICOMPENSATE FOR DIVISION ALGORITHM
ISTORE EXPONENT RESULT IN WACC EXP
ISET POINTER TO BIT COUNTER STORAGE
ISET IT TO 27 OCTAL (23 DECIMAL)
IMAIN DIVISION RTN - SUB DIVIS FM DIVID
IIF RESULT IS NEGATIVE - PUT 8 IN QUOT
IIF + OR 0~ MOVE REMAINDER INTO DIVIDEND
ISET POINTERS
lAND PRECISION COUNTER
lAND MOVE REMAINDm INTO DIVIDEND
IPUT A "1" INTO ACCUMULATOR
lAND MOVE IT INTO THE CARRY BIT
IPROCEED TO ROTATE IT INTO THE QUOTIENT
IWHEN RESULT. IS NEG~ PUT "S" INTO Ace
lAND MOVE IT INTO CARRY BIT
ISET POINTER TO LSV OF QUOTI EMT

5 - 28

MNEMONIC -- ... _-_ .. --- .. _-

LBI ""3
CAL ROTL
LLI 134
LBI 993
CAL ROTATL
LLI 102
CAL CNTDWN
JFZ DIVIDE
CAL SETSUB
JFS DVPXIT
LLI 144
LAM

ADI ""I
LMA
LAI 000
INL
ACM
LMA
LAI 000
INL
ACM
LMA
JFS DVEXIT

LBI ""3
CAL ROTATR
LLI 127
LBM
INL
LMB

DVEXIT I LLI 1~l&
LEI 1211
LBI 093
JMP EXMLDV

S ETSUB .. LLI 131
CAL SWITCH
LHD
LLI 12.
LBI 083
CAL MOVEIT
LEI 131
LLI 13.
LBI 803
CAL SUBBER
LAM
NDA
RE1'

DERRORI CAL DERMSG
JMP USEftDF

COMMENTS
~----, .. ---

ISFT PRECISION COUNTER
IMOVE CARRY BIT INTO LSB OF QUOTIENT
ISET POINTER TO DIVIDEND LSW
ISET PRECISION COUNTER
IROTATE DIVIDEND LEFT
ISET POINTER TO BITS COUNTER
IDECREM!HT BITS COUNTER
IIF NOT FINISHED - CONTINUE ALGORITHM
IDO ONE MORE DIVIDE FOR ROUNDING OPS
124TH BIT • 0 .. NO ROUNDING
12~TH BIT • II SET PNTR TO QUOTIENT LSW
lynCH LSW OF QUOTlmT
IADD "I'· TO 23RD BIT
IRESTORE LSW
ICLEAR ACCUMULATOR WHILE SAVING CARRY
IADVANCE POINTER TO NSW OF QUOTIDJT
IADD WITH CARRY
IRESTORE NSW
ICLEAR ACCUMULATOR WHILE SAVING CARRY
IADVANCE POINT~ TO MSW OF QUOTl DJT
IADD WITH CARRY
IRESTORE MSW
IIF MSB OF MSW • 0 .. PREPARE TO EXIT
IOTHERWISE SET PRECISION COUNTER
IMOVE QUOT RIGHT TO CLEAR SIGN BIT
ISET POINT~ TO WACC EXPONfNT
I FETCH £,(PONENT
IINCREMENT IT FOR ROTATE RIGHT OP ABOVE
IRESTORE ~PONENT
ISET POINTERS TO TRANSFER
IQUOTI!NT TO JiPACC
IS£T PRECISION COUNT~
IEXIT THRU FPMULT RTN AT "~MLDV"
ISET PNTR TO LSW OF WORKING REGISTER
ISAVE POINTER
ISET H." FOR SURE
ISET POINTER TO LSW FPACC
ISET PRECISION- COUNTER
IMOVE P'PACC VALUE TO WORKING REGISTER
IRESET PNTR TO WORKING REG'S LSW (DIVISOR)
ISET PNTR TO LSW OF FPOP (DIVIDEND)
ISET PRECISION COUNTER.
/SUBTRACT DIVISOR FROM DIVIDEND
IGET MSV OF RESULT FROM SUBTRACTION OPS
lAND SET FLAGS A"ER LOAD OPERATION
IBEPORE RETURNING TO CALLING ROUTINE
I**USER DEFINED ERROR ROUTINE FOR ATTEMPT­
lING DIVISION BY e - EXIT AS DIRECTED**

THE FIVE FUNDAMENTAL FLOATING-POINT ROUTINES FPNORM "FPADDI"
.. FPSUB "FPMULT" AND ··WDI v .. •• WH9I ASSEMBLED INTO OBJECT CODE WILL
FIT WITHIN THREE PAGES OF MEMORY IN AN 8188 SYST9I. ADDITIONALLY .. THE
R)UTINES AS PRESENTED IN THIS CHAPTER USE SOME SPACE ON PAGE '''' FOR
STORING DATA AND COUNTERS. NEEDLESS TO SAY .. THE PROGRAMS AS DEVELOP-
ED FOR DISCUSSION COULD BE MODIFIED TO USE OTHER MEMORY LOCATIONS WITH
LITTLE DI FFICULTY.. FOR REFERENCE PURPOSES .. THE LOCATIONS USED ON PAGE
"" BY THE FUNDAM!NTAL FLOATING-POINT ROUTINES JUST PRESmTED ARE LISTED

5 - 29

HERE.

LOCATION(S) -----_ ... _-------
108
101
182

123
124
125
126
127

130 - 133

13.
135
136
137

USAGE

SIGN INDICATOR
SIGNS INDICATOR (MULT & DIVIDE)
BITS COUNTER

WACC ~TmSION
FPACC LEAST SIGNIFICANT WORD
WACC NEXT SIGNIFICANT WORD
FPACC MOST SIGNIFICANT WORD
WACC EXPONDIT

WORKING AREA

FPOP LEAST SIGNIFICANT WORD
FPOP NEXT SIGNIFICANT WORD
FPOP MOST SIGNIFICANT WORD
FPOP EXPONENT

WORKING ARM

THE FUNDAMENTAL FLOATING-POINT ROUTINES WHICH HAVE BEEN PRESENTED
AND DISCUSSED ARE EXTREMELY POW~FUL ROUTINES WHICH SHOULD BE OF CONSID­
!RABLE VALUE TO ANYONE DESIRING TO MANIPULATE MATHEMATICAL DATA VITH AN
8008 SYSTDt. THE ROUTINES IN THE FORM PRESENTED FOR ILLUSTRATIVE PUR­
POSES ARE CAPABLE OF HANDLING BINARY NUMBERS THAT ARE THE D!X:lMAL EQ­
UIVALENT OF 6 TO 7 SIGNIFICANT DIGITS RAISED TO APPROXIMATELY THE PLUS
OR MINUS 38TH POWER OF TENI THE ROUTINES. CAN BE USED TO SOLVE A WIDE
~RIETY OF MATHEMATICAL fORMULAS BY SIMPLY CALLING THE APPROPRIATE SUB­
RlUTINES AnER LOADING THE "F'POP" AND "F'PACC" REGISTERS WITH THE VALUES
THAT ARE TO BE MANIPULATED (WHEN THEY ARE IN NORMALIZED FLOATING-POINT
PORMAT). FtmTHFRMORE" THE BASIC ROUTINES ILLUSTRATED CAN BECOME THE
PUNDAMENTAL ROUTINES IN MORE SOPHISTICATED PROGRAMS THAT MIGHT BE DEVE­
lJ)PED TO CALCULATE SUCH FUNCTIONS AS "SINES·' AND "COSINES" US ING NUMER­
ICAL TECHNIQUES THAT CLOSELY APPROXIMATE THOSE FUNCTIONS BY TECHNIQUES
SUCH AS "EXPANSION SEftI ES" FORMULAS.

THE INTERESTED PROGRAMMER SHOULD HAVE LITTLE DIFFICULTY IN MODIFYING
THE ROUTINES ILLUSTRATED TO UPGRADE THEIR CAPABILITY TO PROVIDE MORE
SIGNIFICANT DIGITS (BY. INCREASING THE LENGTH OF THE MANTISSA) OR TO EX­
TEND THE "EXPONENTS" CAPABILITY BY PROVIDING DOUBLE OR TRIPLE-PRECISION
REGISTERS FOR THE EXPONDlT PORTION. FOR MANY APPLICATIONS" HOWEVER" THE
USER MAY BE Wf1.L SATISFIED WITH THE CAPABILITY PROVIDED BY THE ROUTINES
AS THEY HAVE BEEN PRESENTED FOR EDUCATIONAL PURPOSES.

THE FLOATING-POINT ROUTINES WHICH HAVE BEEN PRESENTED CAN BE USED TO
~NIPULATE NUMBERS ONCE TH~ ARE IN BINARY FORMAT. IN SOME APPLICATIONS
SUCH AS WH9I FORMULAS ARE BEING SOLVED BY THE COMPUTUl TO CONTROL THE
CPERATION OF A MACHINE" OR TYPES OF APPLICATIONS WHERE THERE IS LITTLE
OR NO NEED TO COMMUNICATE WITH HUMANS" THE ABOVE ROUTINES COUPLED WITH
SOME 1/0 ROUTINES AND WHATEVER OTHdl OPERATING PROGRAMS ARE DICTATED BY
1lI£ APPLICATION WOULD BE SUFFICI rHT FOR HANDLING THE MATHEMATICAL OPERA­
TIONS. HOWEVEft~ IN PROBABLY THE MAJORITY OF APPLICATIONS" AT SOME TIME
OR OTHER IT WILL BE DESIRABLE POR HUMANS TO COMMUNICATE WITH THE COMPU­
TER AND FOR THE COMPUTUl TO PRESENT INFORMATION BACK TO HUMANS. NOV" IT
SEEMS THAT THE VAST MAJORITY OF PEOPLE PREFER TO MANIPULATE MATHEMATICAL

5 - 30

DATA USING DECIMAL NOTATION AND WOULD NOT WANT TO CHANGE THEIR WAYS BY
10RKING IN FLOATING-POINT BINARY NOTATION. SO~ MOST PROGRAMMERS WOULD
FIND IT BENEFICIAL TO HAVE SOME CONVERSION ROUTINES THAT WOULD CONVERT
NUMBERS FROM DECIMAL PLOATING-POINT NOTATION TO BINARY FLOATING-POINT
NlTATION AS Wn.L AS THE REVERSE. THE NEXT SECTION OF THIS CHAPTER IS
DEVOTED TO DISCUSSING AND DEVELOPING ROUTINES THAT ACCOMPLISH SUCH A
.,RTHVHILE OBJECTIVEI

CONVERTING FLOATING-POINT DECIMAL TO FLOATING-POINT BINARY

MOST USER'S OF A COMPUTER PUR MATHEMATICAL FUNCTIONS WOULD PROBABLY
DESIRE TO INPUT DATA IN THE FORMI

1234.567

OR

1.234 £+15

USING AN INPUT DEVICE SUCH AS A KEYBOARD OR Tn.ETYP£ MACHINE. IN ORDER
10 ACCEPT DATA IN SUCH FORMAT ONE NEEDS TO DEVELOP A PROGRAM THAT WILL
nRST CONVERT THE INFORMATION FROM THE DECIMAL MANTISSA AND EXPONENT
PORN OVER TO THE BINARY EQUIVALENT. THE PROCESS IS FAIRLY STRAIGHT-FOR-
_RD CONCEPTUALLY.

FIRST~ ONE NEEDS TO DEVELOP A METHOD FOR BREAKING DOWN THE MANTISSA
FORTION INTO A "DECIMAL NO~MALIZED" FORMAT. THIS CAN BE DONE QUITE
RFADILY BECAUSE.

AND

1.234 E+15 • 1234.8 E+12

11IUS .. TO EFFECTIVELY "NORMALIZE" A DECIMAL NUMBER ONE HAS TO SIMPLY KEEP
TRACK OF WHERE THE DECIMAL POINT IS PLACED BY THE OPERATOR IN THE MANT­
ISSA AND COMPENSATE FOR THAT FACTOR BY REMOVING THE DECIMAL POINT (MAK­
ING THE MANTISSA AN INTEGER VALUE) AND CHANGING THE EXPONENT PORTION TO
ACCOUNT FOR THE REMOVAL OF THE DECIMAL POINTI

N!XT~ ONE NEEDS TO CONVUtT THE MANTISSA PORTION OF THE NUMBER FROM
DECIMAL TO ITS BINARY EQUAL. THAT CONVERSION PROCESS CAN ACTUALLY BE
ACCOMPLISHED AS FACH DECIMAL NUMBER_ IS INPUTTED BY THE OPEftATOR BY USING
tHE ALGORITHM DESCRIBED BELOV.

DECIMAL TO BINARY CONVERSIONI EACH TIME A DIGIT IS RE-
CEIVED IN DECIMAL PORM~ IMMEDIATELY CONVERT IT TO IT'S
BINARY iSlU1VELANT. IN MAllY CASES THIS CONSISTS OF SIM-
PLY "MASKING OFF" EXTRA BITS TO LFAVE A VALUE IN BCD
FORMAT. NEXT, IN ORDER- TO COMP.SATE FOR THE POV~S OF
TEN DENOTED BY THE POSITIONAL WEIGHT OF DECIMAL NUMBERS ..
MULTIPLY ANY PREVIOUS NUMB!RCS) THAT ARE ALREADY STORED
IN BINARY FORM BY MULTIPLYING THIM BY 18 (DECIMAL).
THDY ADD IN THE BINARY EIUIVALENT OF THE NUMBER THAT HAS
JUST BEDl RECEIVED.

THE ALGOAITHM CAN BE ILLUSTRATED BY CONSIDERING THE FOLLOWING EXAM­
PLE VH!1tE AN OPERATOR DlTERS THE DECIMAL NUMBER "63" BY FIRST ENTERING

5 - 31

THE NUMBER "6" AND TH!W "3" FROM AN INPUT DEVICE SUCH AS AN ASCI I CODED
KEYBOARD.

o 8 e 8 8 e 0 e INPUT REGI$TER INITIALLY CLEARED

OPERATOR INITIALLY TYPES IN THE CHARACTER FOR A "6."
THIS IS IMMEDIATELY CONVERTED TO lie AS IT'S BINARY
EQUIVALENT. SINCE IT IS THE FIRST CHARACTER RECEIVED
IT IS NOT NECESSARY TO MULTIPLY TftE PRESENT VALUE OF
THE STORAGE REGISTER BY TEN. THE BINARY VALUE 1 1 8
CAN SIMPLY BE PLACED IN THE INPUT REGISTER GIVING.

o 0 0 8 ell 0 INPUT REGISTER AFTER 1ST' RECEIVED

THE OP!RATOR THEN ENTERS THE CHARACTER FOR A "3." ONCE
AGAIN THIS IS IMMEDIATELY CONVERTED TO ell AS IT'S
BINARY EQUIVALENT. BUT, BEFORE THIS NEV DIGIT IS ADDED
TO THE BINARY STORAGE REGISTER" THE CONTENTS OF THE
REGISTER MUST BE MULTIPLIED BY TEN TO ACCOUNT FOR THE
POSITIONAL VALUE OF THE PREVIOUS DIGIT. A SIMPLE WAY
TO MULTIPLY A BINARY REGISTER BY Tm IS TO PERFORM THE
FOLLOWING STEPS.

e 0 e e 8 110 INPUT REGISTER CONTAINS 1ST, "6."

o 0 881 108 ROTATE LEFT • MULTIPLY BY 2

8 0 0 I 1 080 ROTATE LEFT • MULTIPLY BY 4

0" "1 1 1 1 " ADD IN ORIGINAL VALUE • MULT BY 5

o ell 1 100 ROTATE LEFT • MULTIPLY BY 10

WITH THE PREVIOUS VALUE OF "6" NOW MULTIPLI ED BY TDI TO
R~RESENT "6"" IN THE BINARY REGISTER" THE NEW VALUE OF
"3" CAN NOV BE ADDED. IN TO YI ELDt

00111111 BINARY EQUI VELANT 0 F "63" DEC I MAL.

THE ABOVE ALGORITHM IS THUS REPEATED EACH TIME AN ADDITIONAL DECI-
M\L CHARACTER IS RECEIVED TO MAINTAIN THE BINARY EQUIVALENT. NATURAL-
LY THE ALGORITHM IS VALID POR MULTIPLE-PRECISION STORAGE OF NUMBERS.

FINALLY, IT IS NEX:ESSARY TO CONVERT THE DECIMAL EXPONENT VALUE
(WHICH AGAIN IS IMMEDIATELY CONVERTED TO A BINARY NUMBER AS IT IS RE­
CEIVED FROM THE INPUT DEVICE) TO R~RESDJT THE BINARY NUMBER RAISED
1n AN EQUIVALENT VALUE. CONVERSION AT THIS POINT MAY BE ACCOMPLISHED
sr FIRST CONVERTING THE BINARY REPRESENTATION OF THE MANTISSA TO IT'S
"NORMALIZED" FORMAT (USING THE SPECIAL CAPABILITY OF THE "FPNORM" ROUT­
INE TO CONVERT THE REGULAR FORMATTED BINARY NUMBER TO IT'S NORMALIZED
IORM) AND THEN MULTIPLYING THE NORMALIZED FLOATING-POINT BINARY NUMBER
'fN 11 (DEX:IMAL) FOR !'ACK UNIT OF A POSITI VE DECIMAL EXPONENT OR MULTI­
PLYING IT BY 1.1 FOR EACH UNIT OF A MINUS DECIMAL EXPONENT •. THIS CAN
BE ACCOMPLISHED BY USING THE "P'PMULT" ROUTINE PREVIOUSLY DESCRIBEDI

THE DECIMAL TO BINARY INPUT PROGRAM TO BE PRESENTED SHORTLY HANDLES
1IIE ABOVE CONSIDERATIONS PLUS ALLOWS SEvmAL OTHER JrUNCTIONS TO BE PDt-
!IORMED. TftE ROUTINE WILL ALLOW AN OP·DlATOR TO SP!X:I" THE SI GN 0 F THE
DECIMAL MANTISSA AND EXPONENT AND TAKES APPROPRIATE ACTION TO NEGATE

5 - 32

NUMBERS DESIGNATED AS BEING MINUS IN VALUE. IT ALSO ALLOWS FOR ERASURE
OF THE CURRDlT INPUT STRING BY TYPING A SPECIAL CHARACTER. THE ROUTINE
ASSUMES THAT CHARACTERS ARE RECEIVED FROM AN INPUT DEVICE THAT USES
ASCII CODE AND THAT AN OUTPUT DEVICE USING ASCII CODE IS USED TO "ECHO"
INFORMATION RECEIVED BACK TO THE OPERATOR. NEITHER THE ACTUAL INPUt OR
OUTPUT ROUTINES ARE SHOWN IN THE SAMPLE PROGRAM. (INFORMATION ON ACTUAL
1,0 ROUTINES WILL BE PRESENTED IN A LATER CHAPTER). THE ROUTINE ALSO
ASSUMES THAT CERTAIN LOCATIONS ON PAGE ee WILL BE USED FOR STORAGE OF
tI1MBERS RECEIVED AND FOR MAINTAINING COUNTERS AND INDICATORS. A LIST·
ING OF THE LOCATIONS USED" WILL BE. PROVIDED LATER. ADDITIONALLY, THE
PROGRAM CALLS ON OTHER ROUTINES PREVIOUSLY DETAILED IN THIS MANUAL SUCH
AS "FPNORM" AND .. F'PMUL T •• ,

MNEMONIC ----_ .. _--- .. _--
DINPUT,

CLRNX2,

SECHO,
NINPUT,
NOTPLM,

LHI 000
LLI 150
XRA
LBI 810
LMA
INL
DCB
JFZ CLRNX2
LLI .13
LBI 0e4
LMA
INL
DCB
JFZ CLRNX3
CAL INPUT
CPI 253
JTZ SECKO
CPI 255
JFZ NOTPLM
LLI 103
LMA
CAL ECHO
CAL INPUT
CPI 377
JTZ mASE
CPI 256
JTZ PERIOD
CPJ 305
JTZ FNDEXP
CPI 260
JTS ENDINP
CPI 272
JFS ENDINP
LLI 156
LBA
LAI 370
NDM
J JI"Z NI NPUT
LAB
CAL ECHO
LLI lS5
LCM
INC
LMC

COMMENTS

ISET POINTERS TO INPUT
ISTORAGE REGISTERS
ICLEAR ACCUMULATOR
ISET A COUNTER
lAND CLEAR MEMORY LOCATIONS 15S - 157
IBY DEPOSITING S'S AND ADVANCING PNTR
lAND DECREMENTING LOOP COUNTER
'UNTIL FINISHED
ISET POINTERS TO CNTR/INDICATOR STORAGE
ISET A COUNTER
lAND CLEAR MEMORY LOCATIONS 103 - 106
lIN A SIMILAR FASHION BY DEPOSITING 0'S
lAND DECREMENTING LOOP COUNTER
IUNTIL FINISHED
INOW BRING IN A CHARACTER ~OM.I/O DEVICE
ITEST TO SEE IF IT IS A "+" SIGN
I I F YES, GO TO ECHO AND CONTINUE
I I F NOT ft+ •• SEE I F It." SIGN
I I F NOT ft+" OR "_It TEST FOR VALl D CHAR
I I F MINUS, SET PO INTER TO .. INPUT SIGN"
lAND MAKE IT NON-ZERO BY DEPOSITING CHAR
10UTPUT CHAR IN ACC AS ECHO TO OPERATOR
IFETCH A NEW CHARACTER FROM 1/0 DEVICE
ISEE IF CHARACTER IS CODE FOR ··RUBOUT"
IIF YES~ PREPARE TO START OVER
I I F NOT, SEE I F CHARACTER IS A PERIOD It."
111' PROCESS AS DECIMAL POINT
I I l' NOT, SEE I F CHAR IS "E'- FOR EXPONENT
I I l' "E" PROCESS A.S EXPONENT INDICATOR
111' NOT, SEE IF CIIAR A VALID NUMBER
IIF NONE OF ABOVE, TERMINATE INPUT STRING
ISTILL CHECKING FOR VALID NUMBER
111' NOT, TERMINATE INPUT STRING
I"AVE A I, SET PNTR TO MSV OF INPUT REG'S
ISAVE CHARACTER IN REGISTER "B"
IFORM A MASK AND CHECK TO SEE IF INPUT
IREG'S CAN ACCEPT LARGER NUMBER
II F NO T, I GNOR E PR ES ENTI NPUT
I IF O.K., RESTORE CHARACTER TO ACC
lAND ECftO • BACK TO OPERATOR
ISET POINTER TO DIGIT COUNTER
IFETCH DIGIT COUNTER
IINCREMENT IT'S VALUE
lAND RESTORE IT TO STORAGE

5 - 33

•

MN!MONIC ---.-_- .. -------
CAL DEtBIN
JMP NINPOT

PERIOD" LBA
LLI 186
LAM
NDA
JFZ ENDINP
LLI 185
LMA
INL
LMB
LAB
CAL ECHO
JMP NINPUT

ERASE.. LAI 274
CAL ECHO
LAI 240
CAL ECHO
CAL ECHO
JMP DINPUT

FNDEXP.. CAL ECHO
CAL INPUT
CPI 253
JTZ EXECHO
CPI 255
JFZ NOEXPS
LLI 101&
LMA

EXECHO" CAL ECHO
EXPINP" CAL INPUT
NOEXPS" CPI 377

dTZ ERASE
CPI 260
dTS FNDINP
CPI 272
JFS ENDINP
NDI 017
LBA
LLl 157
LAI 003
CPM
dTS ~PINP
LCM
LAM
NDA
RAL
RAL
ADC
RAL
ADB
LMA
LAl 260
ADB
JMP EXD::HO

ENDINP" LLI 103
LAM
NDA
JTZ FININP

COMMENTS

IPERFORM DECIMAL TO BINARY CONVERSION
IGET N£XT CHARACTER FOR MANTISSA
ISUBRTN TO PROCESS "." - SAVE IN "B"
ISET POINTER TO "." STORAGE INDICATOR
IFETCH CONTmTS
ISET FLAGS AFTER LOAD OPERATION
I IF"." ALREADY PRESENT" END INPUT STRING
10THERWISE SET PNTR TO DIGIT COUNTER
lAND RESET DIGIT COUNTER TO e
IADVANCE POINTER BACK TO STORAGE
lAND PUT A THERE
IRESTORE It.M TO ACCUMULATOR
lAND ECHO IT BACK TO OPERATOR
IGET N~T CHARACTER IN NUMBER STRING
IPUT ASCII CODE FOR .. <n IN ACCUMULATOR
IDISPLAY IT
IPUT ASCII CODE FOR "SPACE" IN ACC
lAND LEAVE A COUPLE OF SPACES
IBEFORE GOING BACK TO
ISTART THE INPUT STRING OVER
ISUBRTN TO PROCESS EXPONENT" ECHO "E-'
IGET NEXT PART OF EXPONENT
ITEST FOR A n+n SIGN
1 I F YES" PROCEED TO ECHO IT
IIF NOT" TEST FOR A "_U SIGN
IIF NOT" SEE IF A VALID CHARACTER
II F HAVE ,,_It THEN SET PNTR TO .. EXP SIGN"
ISET .tEXP SIGN" MINUS INDICATOR
IECHO CHARACTER BACK TO OPERATOR
IGET NEXT CHARACTER FOR EXPONENT PORTION
ISEE I F CODE FOR "RUBOUT"
II F YES .. PREPARE TO RE-ENTER ENTIRE STRING
IOTH~VISE CHECK FOR VALID DECIMAL NUMBER
IIF NOT" END INPUT STRING
ISTILL TESTING FOR VALID NUMBER
IIF NOT" END INPUT STRING
IHAVE VALID I .. FORM MASK AND STRIP ASCII
ICHARACTER TO PURE BCD .. SAVE IN REG "B"
ISET PNTR TO INPUT EXPONENT STORAGE LOC
ISET ACCUMULATOR = 3
ISEE IF 1ST EXPONENT I WAS GREATER THAN 3
IIF YES" IGNORE INPUT (LIMITS EXP TO < 40)
llF O.K ... SAVE PREV £XP VALUE IN "e"
lAND ALSO PLACE IT IN ACCUMULATOR
ICLEAR THE CARRY BIT
IMULT X 10 ALGORITHM .. 1ST MULT X 2
IMULT X 2 AGAIN
IADD IN ORIGINAL VALUE
IMULT X 2 ONCE MORE
IADD IN NEW I TO COMPLETE THE DECIMAL TO
IBINARY CONU FOR EXP AND RESTORE TO MEMORY
IRESTORE ASCI I CODE BY ADDING "269"
ITO BCD VALUE OF THE NUMBER
lAND ECHO I THEN LOOK FOR NEXT INPUT
ISET POINTER TO MANTISSA "SIGN" INDICATOR
IFETCH SIGN INDICATOR
ISET FLAGS AFTER LOAD OPERATION
IIF NOTHING IN INDICATOR .. , IS POSITIVE

5 - 34

MND10NIC --- _-_ _-
LLI I 54
LBI SS3
CAL COMPLM

FININP" LLI 153
XRA
LDA
LMA
LEI 123
LBI 004
CAL MOVEIT
LBI 027
CAL FPNORM
LLI IS.t&
LAM
NDA
LLI 157
JTZ POSEXP
LAM
XRl 377
ADI SSI
LMA

POSEXP" LLI 1 S6
LAM
NDA
JTZ ~PO,K
LLI ISS
XRA
SUM

£XPOK" LL'I 1 57
ADM
LMA
JTS MINEXP
RTZ

EXPFIX" CAL FPXI0
J JiZ EXPFIX
RET

YPXI e" LEI 134
LDH
LLI 124
LBI 001&
CAL MOVEIT
LLI 127
LMI sa ..
DeL
LMI 128
DCL
XRA
LMA
DeL
LMA
CAL FPMULT
LLI iS7
CAL CNTDWN
RET

MINEXP" CAL FPDle
JFZ MINrxP
RET

JrPDI0" LEI 134

COMMENTS

ISET PNTR TO LSW OF INPUT MANTISSA
ISET PRECISION
IP!:RFORM 2' 5 COMPLFMENT TO NEGATE NUMBER
ISET PNTR TO INPUT STORAGE LSW-I
ICLEAR ACCUMULATOR
ICLEAR REG "D"
ICLEAR INPUT 5TQRAGE LOC LSW-l
ISET PNTR TO FPACC LSW-I
15FT PRECISION COUNT~
IMOVE INPUT & LSW-I TO FPACC & LSW-I
I-SET SPEC FPNORM MODE BY SETTING BIT CNT
lIN REG "B" AND CALL NORMALIZATION ROUTINE
15FT POINTER TO EXPONENT SIGN INDICATOR
IFETCH EXPONENT SIGN INDICATOR TO ACC
ISET FLAGS AFTER LOAD OPERATION
ISET POINTER TO DECIMAL EXP STORAGE
IIF ,EXP POSITIVE" JUMP AHFAD
IIF EXP NEGATIVE" FETCH IT INTO ACC
lAND PERFORM TWO'S
ICOMPLEMENT
ITHEN RESTORE TO STORAGE LOCATION
ISET POINTER TO PFRIOD INDICATOR
IFETCH CONTENTS TO ACCUMULATOR
ISET FLAGS AnER LOAD OPERATION
IIF NOTHING" NO DECIMAL POINT INVOLVED
IIF HAVE DECIMAL POINT" SET PTR TO DIGIT
ICOUNTER THEN CLEAR ACCUMULATOR
ISUBTRACT DIGIT CNTR FROM" TO ,GIVE NEG
ISET POINTER TO DECIMAL EXPONENT STORAGE
IADD IN COMPENSATION fOR DECIMAL POINT
IRESTORE COMPENSATED VALUE TO STORAGE
IIF COMPENSATED VALUE MINUS" JUMP AHEAD
II., COMPENSATED VALUE ZEROr FINISHED!
ICOMPEN DEC EXP IS +" MULT FPACC x Ie
ILOOP TIL DECIMAL EXPONENT • 0
IEXIT WITH CONVERTED VALUE IN FPACC
IMULT FPACC X 10 RTN" SET PNTR TO FPOP LSW
ISET D." FOR SURE
ISET PNTR TO YPACC LSW
ISET PRECISION COUNTER
IMOVE FPACC TO FPOP (INCLUDING EXPONENTS)
ISFT PNTR TO FPACC EXPONENT
IPLACE FP FORM OF 10 (DECIMAL) IN FPACC
I " " " It.. " .t It

I " "" ••
I .. " .t ".~ "

I It " " " ..

I" .1
I"
I It .. " It

INOW MULTIPLY ORIG BIN' (IN FPOP) X 10
ISET POINTER TO DECIMAL EXPONENT STORAGE
IDECREMENT DEC F,XP VALUE
IRETURN TO CALLING PROGRAM
ICOMPEN DEC EXP IS - .. MULT FPACC X 0. I
ILOOP TIL DECIMAL EXPONENT = 0
IEXIT WITH CONVERTED VALUE IN FPACC
IMULT FPACC x e.1 RTN" PNTR TO FPOP LSW

5 - 35

.. DlOWle
-._-_ .. -.. _---

LDR
LLI 124
LBI ."11
CAL 110 \1EI T
LLI 12.,
Lilt 3'.
DeL
L.I 1.-,
DeL
LMI 146
DeL
LIII 14'
SAL FPIIULT
1.1.1 IS.,
LBM
IIIB
LIfB
RET

DaBIW .. LLI 153
LA-
81)1 II'
LilA
LEI II"
LLl 1511
LOR
LSI 113
GAL IIOVEIT
LLI I~
LBI .13
CAL RITATL
Ul.15.
LBI .13
CAL ROTATL
LEI 151&
LLI. III
LBI 113
GAL ADDER
LLJ Ih
LBI 113
CAL ReTATL
LLt 152
XRA
LIlA
DeL
LIlA
Lt.1 153
LAM
LLI 1 se
LIlA
LEI; 154
LSI ".3
CAL ADDER
RET

COIOlIWTS

--------------Isn D •• JI'O~ SURE
Isn POI1fTER TO WAce
ISFT PRECISION COURTER
IMOUE JrPAC£ TO wop (11ICLUDlwa rxPOWEIIT)
ISET POI.TEA TO WAce IXPO.ERT
IPLACE P'P FORM 0,. e.1 (DEClllAL) I. PPACC
I • • • •• • • •
I • • • •• • • •
I • • " "" • " • I·· " ." · · ·
I • • • ." • • •
I " • • ." • " "
IWO. MULTIPLY ORII SI. , (I. WOP) X e.1
ISET POIWTER TO DECIMAL EXPO.DlT STORAIE
IP'£TCII VALUE
IIWCRElfDT IT
IR~STORE IT TO MEMORY
IRETUR. TO GALLJ •• PROIRAM
IDEC TO BI. C'.V .. SFT P~R TO TEMP STORAI!
IRESTGRE CKARA;TER TO ACCUMULATOR
IIIASK 0,.,. ASCII BITS TO LEAVE PURE B£D ,
IPLACE cmmaT BCD' 18 TDIP STORAaE
ISET POIWTER TO VORKI •• ARIA LSV
ISfT AWOTKER PffT'R TO LSB 0,. 11IPt1T Rd·S
ISET D •• reR SURE
ISET PRIEISI.W COUNTER
IMOVE ORI81.AL VALUE TO WORKI.a ARM
ISET PWTR TI LSV 0,. IIIPUT STeRA8E
ISET PRECISIO. COUWTER
IR'TATE LEFT (X 2) (TOTAL • x 2)
ISET PWTR TO LSV AlAIN
ISET p~ICISla. COURTER
IROTATE LEFT (X 2) (TOTAL IOv • X 4)
ISET PlITIt TO LSV 0,. ROTATED VALUE
I.WD AIIOTKER TO LSV OF ORIII.AL VALVE
ISET PRECISIO. COUWTER
IADD 8RII TO R8TATED (TOTAL lOW • X 5)
ISET PWTR TI LSV AlAI.
ISET PRECISIO. COt1I1T~
IROTATE LEn (X 2) (TOTAL .0" • X If))

ISrI' POI.Tm TO CLEAR _REI •• AltFA
I£LEAR ACCUKULATOR
IDEPOSIT I. MSV S,. WORKIN8 AREA
IDECREMEIT PWTR TO wsw
IPUT zmo TIIDF TIO
ISET PWTR T8 CURREWT DIGIT STORAIE
IFETeH LATEST BCD auMBER
ISET PIITR TO LSV .,. WORKI •• AREA
IDEPOSIT LATEST BCD auMBER I. LSV
ISET UP POl"TER
ISET PRECISION COtnlTE7t
IADD III LATEST , TO COMPLETE DEGBI. C'.V
IRET~. TO CALLI •• PROGRAM

TKE PeLlAVI.1 PRI'RAM _I.LL CO.~T BIlIARY IlUIIBERS ST()Rm I. PLeAT­
I.'·POI~ PORMAT T' DICI.A~ PLOATI •• ·POI~ PORMAT AR~ DISPLAY TKEM O. A.

5 - 36

OUTPUT DEVICE SUCH AS A TELETYPE MACHINE, IN THE FOLLOWING FORMAT.

+1.1234567 E+07

THE ROUTINE WHICH IS SHOWN BELOW OPERATES ESSENTIALLY IN THE REVERSE
~NNER TO THE' INPUT ROUTINE. FIRST THE FLOATING-POINT BINARY NUMBER IS
OONVEftTED TO A REGULARLY FORMATTED BINARY NUMBER" AND THEN THE NUMBER IS
CONVERTED TO A DECIMAL NUMBER USING A MULTIPLY BY TEN ALGORITHM. SINCE
'DiE READER SHOULD NOW BE IUITE ADEFT AT FOLLOWING THE OPERATION OF A
PROGRAM FROM THE COMMENTED SOURCE LISTING" THE FLOATING-POINT BINARY TO
PLOATING-POINT DECIMAL CONVERSION ROUTINE WILL BE PRESENTED WITHOUT FUR-
THER DISCUSSION AT THIS POINT. IT SHOULD BE REMEMBERED THAT THE ROUTINE
ILLUSTRATED ASSUMES AN ASCII CODED OUTPUT DEVICE IS BEING UTILIZED. IN
ADDITION" SEVERAL SUBROUTINES USED BY THE PREVIOUSLY ILLUSTRATED. INPUT
PROGRAM ARE CALLED BY THE ROUTINE.

MNEMONIC

FPOUT" LLI 157
LMI 110
LLI 126
LAM
NDA
..ITS OUTNEG
LAI 253
..IMP AHEADI

OUTNEG" LLI 124
LBI 8"3
CAL COMPLM
LAl 255

AHEADl" CAL ECHO
LAI 261
CAL ECHO
LAI 256
CAL EHO
LLI 127
LAI 377
ADM
LMA

DECEXT" JFS DEC!XD
LAI 084
ADM
JFS DECOUT
CAL FPX10

DECREP" LLI 127
LAM
NDA
.IMP DECEXT

DEC !XD" CAL FPD 1"
..IMP DECREP

DECOUT" LEI 164
LOH
LLI 124
LBI 803
CAL MOVEIT
LLI 167
LMI 009
LLI 1 611
LBI 093

COMMENTS -... --- .. --... ---~-
ISET POINTER TO DECIMAL EXPONENT STORAGE
ICLEAR DECIMAL EXPONENT STORAGE LOCATION
ISET POINTER TO MSW FPACC MANTISSA
IFETCH MSW FPACC MANTISSA TO ACCUMULATOR
ISET FLAGS AFTER LOAD OPERATION
IIF MSB • 1 HAVE NEGATIVE NUMBER
10THERWISE I IS POS" SET ASCII CODE FOR +
IGO TO DI SPLAY ft+" SIGN
IHAVE NEG ,,, SET PNTR TO LSW FPACC MANT
ISET PRECISION COUNTER
IPERFORM TWO' S COMPLEMENT ON FPACC
ISET ASCII CODE FOR "-" SIGN
IDISPLAY SIGN OF MANTISSA
ISET ASCII CODE FOR "0"
101 SPLAY "et

•

ISET ASCI I CODE FOR ... ,t
IDI SPLAY tt ...

ISET POINTER TO FPACC E'(PONENT
IPUT -I IN ACCUMULATOR
I EFFECT! VELY SUBTRACT .. 1" FROM !:XPONENT
IRESTORE COMPmSATEO EXPONENT
IIF COMPEN EXP I OR POS" MULT MANT X 8.1
I IF COMPEN EXP NEGATI VE
IADO , (DECIMAL) TO THAT VALUE
IIF EXPONENT e OR POS NOW" OUTPUT MANTISSA
IOTHERWISE" MULT MANTISSA BY 10
ISET POINTER TO FPACC EXPONENT
IGET EXPONENT AFTER MULTIPLICATION RTN
ISET FLAGS AFTER LOAD OP!1'ATION
IREPEAT ABOVE TEST FOR 8 OR POS CONDITION
IMULTIPLY FPACC X 0.1
ICHECK STATUS OF FPACC EXP A"ER MULTIP
ISET POINTER TO LSW OF OUTPUT ~EGISTERS
/MAKE D • 8 FOR SURE
ISET POINTERS TO LSW OF FPACC
15ET PRECISION COUNTER
IMOVE FPACC TO OUTPUT REGISTERS
ISET PNTR TO MSW+l OF OUTPUT REGISTER
lAND CLEAR THAT LOCATION
INOW SET POINTER TO LSW OF OUTPUT REG'S
ISET P'AECISION COUNTER - PERFORM ONE

5 - 37

MNEMONI.C

CAL ROTATL
CAL OUTX10

COMPOII LLI 121
LBM
INB
LMB
JTZ OUTDIG
LLI 167
LBI 004
CAL ROTATR
JMP COMPEN

OUTDI GI 1..1..1 107
LMI 881
1..1..1 167
LAM
NDA
JTZ ZERODG

OUTDGS. LLI. 167
LAI 261
ADM
CAL. ECHO

DECRDG. LLI 187
CAL CNTDWN
JTZ EXPOUT
CAL OUTX10
JMP OUTDGS

Z ERODG. LLI 1 57
CAL CNTDWN
LLI 166
LAM
MDA
JFZ DECRDG
DCL
LAM
NDA
JFZ DECRDG
DCL
LAM
NDA
JFZ DECRDG
LLI 157
LMA
JMP DECRDG

OUTX 1 e. LLI 161
LMI e"8
LLI 16.
LDH
LEI 161
LBI 8 ••
CAL MOVEIT
LLI 161&
LSI .8.
CAL ROTATL
LLI 16.
LBI "11&
CAL ROTATL
LLI 168
LEI 161&

COMMENTS

IROTATE OP TO COMPEN FOR SPACE OF 51 GN BIT
IMULT OUTPUT REG X 10. OVERFLOW INTO MSW+l
ISET PNTR TO FPACC £'(PONENT
ICOMPENSATE FOR ANY REMAINDER IN BINARY
IEXPONENT BY PEJltFOFtMING A ROTATE RIGHT ON
10 UTPUT REG' S UNT I L BI N EXP B ECOHES ZERO
IGO TO OUTPUT DIGITS WHEN CaMPEN DONE
IBIN EXP COMPENSATION ROTATE LOOP
ISET PNTFt TO OUT M5W+l AND SET COUNT~
IPERFO~M COMPENSATING ROTATE RIGHT OP
IREPEAT LOOP UNTIL BIN EXP = "
15ET PNTR TO OUTPUT DIGIT COUNTER
ISET DIGIT COUNTER TO "7" TO INITIALIZE
ISET PNTR TO MSD IN OUT REG MSW+l
IFETCH BCD FORM OF DIGIT TO BE DISPLAYED
ISET n.AGS AFTER LOAD OPERATION
ISEE 1 F 1ST DIGIT WOULD BE A ",,_.
IIF NOT. SET PNTR TO MSW+l (BCD CODE)
IPORM ASCII NUMBER CODE BY ADDING 260
ITO BCD CODE
lAND DISPLAY THE DECIMAL NUMBER
ISET POINTER TO OUTPUT DIGIT COUNTER
IDECREMENT VALUE OF OUTPUT DIGIT CNTR
IWHEN • e. GO DO EXPONENT OUTPUT RTN
10THERWISE MULT OUTPUT REG'S X 10
lAND OUTPUT NEXT DEC I MAL- DIGIT
IIF 1ST DIGIT. 0. SET PNTR TO DEC EXP
IDECR VALUE TO COMP.EN FOR SKIPPING DISPLAY
10F 1ST DIGITI THEN SET POINTER TO MSW
10F OUTPUT REGIS - FETCH CONTENTS
ISET n.AGS AnER LOAD OPERATIONS
ICHECK TO SEE I F ENTIRE MANTISSA IS •• " ..
I""" .. ""
I .. •• .. If.. .. ., ..
I ".. ,. II " ..

I " •• It.... .. II ..

I" II

I""
I •• II I'

I " If If ,.

II F EMTIRE MANTISSA IS ZEROI SET PNTR TO
IDECIMAL EXPONENT STORAGE AND SET IT TO "
IBEFORE PROCEEDING TO FINISH DISPLAY
IMULTIPLY OUTPUT REO'S BY IS TO PUSH OUT
IBCD CODE OF MSDI 1ST CLEAR OUTPUT MSW+l
ISET PNTR TO LSW OF OUTPUT REGISTERS
IMAKE SURE D."
ISET ANOTHER PNTR TO W·RKING AREA
ISET PRECISION COUNTER
IMOVE ORIGINAL VALUE TO WORKING AREA
I.SET POINTER TO ORIGINAL VALUE LSW
ISET PR~ISION COUNTER
ISTART MULT X 19 ROUTINE (TOTAL • X 2>
IRESET PNTR
lAND COUNTER
IMOLT x 2 AGAIN {TOTAL • X ~)
ISET POINTdl TO LSW OF ORIG VALUE
lAND ANOTHER TO LSW OF ROTATED VALUE

5 - 38

--------------LBI I ••
CAL ADDER
LLI.114
LSI .1.
CAL ROTATL
~!!T

EXPIUT. LAI 3 ••
CAL .KO
LL! 11'
LA.
nA
.ITS EXOUT.
LAI 253
"lIP ABEAD2

EXOUT •• XRI 3"
AD! .1.
LIlA
LA! 211

A.MD.. CAL RKG
LBI •••
LAir

S.12. SUI 12
"TS T01lU~R
LIfA
IllS
.. lIP StJB12

TOInJ£K. LAl 268
ADS
CAL ECHO
LAII
ADI oQII
CAL mHO
RET

CIIOIEliTS

--------------ISET PRECISIOR COUWTER
IADD ORlt VALUE TO ROTATED (TOTAL. X I)
IRESET P.TR
IAWD COUJIT!R
IMOLT X 2 OWCE MORE (TOTAL. x II)
1,IWISJlED IlULT OUTPUT REI·S X 1.
ISET ASCII COD!: POR -r-
IDI SPLAY -!'I)lOR -!XPO.EIIT"
ISET PIIWTER TO D!£IIIAL IXP STORAGE LOC
IFETCH DI£IMAL IXPO.EIT TO Ace
ISET FLA.S AnER· LOAD OPt:RATIOW
IIF IIS8 • I. VALUE IS RElATIVE
II,. VALUE IS POS. SET AS':II CODE PeR -.-
110 TI DISPLAY 51 ••
IFOR WEI EXP .. PERPORM TWO·S 'OIlPLI1I!JIT
IIW STARDARI> MAnER
I .. D RESTIRE TO ST8RA8E LOCATIO.
ISET ASCII CODE paR ---
IDISPLAY SIaM e,. IXPO.EIIT
ICLEAR RESISTER -8- .oR COURTER
IPETeR DECIMAL EXPO.arr VALU~
ISUBT~CT I. (DECIMAL)
n.oox JOR RElATIVE RESULT
IRESTORE POS RESULT. IIAIIITAI. COUIIT OF ROW
IlIA1ft' TINES 11 (DECIMAL) CA. BE SUBTRACTED
IT. GSTAI. IIOST 518 DlalT OF IXPO.mrr
IPeRM Ase II CHAR FOR "SD 0,. EXPO.I:IIT BT
IADDI •• 268 T' leUIIT I. RnlSTER -S-
IAilD DISPLAT MOST 51181 nCAft BlatT OF IXP
IFnCII RDlAI.8D I. DE£ EXP STO~AflE t.O&
IAIID PORK ASSII CHAR pOR LSD 0,. EXPOwarr
IDISPLAY LEAST Sla.IFICA~ DI.IT OF EXP
IEXIT -JI'POUT- ROUTI.E

•• SE '.E lIAS It 1).IICAL TO BI.ARY IlIPtJT ROUTIRE. AIIJ) BlllAftY TO DICI­
WAL IUTPtrr ROUTI.E TO WORK WIT. TBI: nJIIDAllIIITAL PLOATI .. -POIIIT ROUTIWES
IT IS A RILATI V!2.Y SIIlPLE IlATTER TO TI E THEM ALL TOIETBER TO PORK A.
-.pmATI •• PACKAgE" THAT VlULD ALLOW AW GPDATIR TO SPEC I Py IItnIERICAJ.
VALUES. I. PLOATI .. -POIWT DI:CIIIAL IIOTATlew AIID IlmlCATE WXETBn ADDITIOM.
SUBTRACTl' •• KULTIPLICATIO. OR DIVISION ¥AS DESIRED. TKEI OBTAI. AN A8S­
VER FR •• TWE COIIPVTER. AW ILLUSTRATI VI: -oPERATI .. PROIAA ... THAT UTILI­
lES ALL TBE DEIO.STRATI08 R'UTI.ES PRESERTED I. THIS SECTI08 IS SHOWN
aaA.. TKE PMIRAM WILL ALJ..D,W All OPERATOR TO MAXE IIITRI!:S AWD R!:CEIVE
RESULTS. I. T8. PORUT SRe"" BDEI

.33.1£.3 X •• • -1.132111IE.'

.-.------------
ppce.,.. CAL SRLn

CAL. DJIIPUT
IAL SPASES
LLI 12A
LDH
LEI I"
LSI 114

co nEIIT S

IDISPLAY A FEW eR • L,.·s FOR 1/0 DEVICE
ILET OPERATOR DlTEIt A PP DFCIIlAL WIlBER
IDISPLAY A FF.V SPA£ES AnER IItJIIBER
ISET PIITR Te LSV or P'PA££
ISET D •• POR St1RE
ISET P.~ TO TDIP , STaRAIE A~F.A
ISET PR~ISIO. Sau.TER

5 - 3.

MN£)tONIC

CAL MOVEIT

NVALID~ CAL INPUT

LBI """ CPI 253
JTZ OPERA 1
CPI 255
JTZ OPERA2
CPI 330
JTZ OPERA3
CPI 257
JTZ OPERA4
CPI 377
JFZ NVALID
JMP P'PCONT

OPERAI ~ DCB
DCB

OPERA2~ DCB
DCB

OPERA3~ DCB
DCB

OP!RA4~ LCA

LAI ***
ADB
LLI 110
LMA
LAC
CAL ECHO
CAL SPACES
CAL. D INPUT.
CAL SPACES
LAI 275
CAL ECHO
CAL SPACES
LLI 170
LDH
LEI 134
LSI 8"4
CAL MOVEIT
LLI 119
LLM
LHI XXX
Lm
INL
LDM
LLI Z+.
LME
INL -
LMD
LHI 088
LDH
JMP RESULT

CRLF2~ LAI 215
CAL ECHO
LAI 212
CAL ECHO
LAI 215
CAL ECHO
LAI 212

COMM!NTS

IMOVE FPACC TO TEMP STORAGE AREA
IFETCH "OP~ATOR" FROM INPUT DEVICE
ICLEAft REGISTER "B"
ITEST FOR It+" SI GN
IGO SET UP FOR It." SIGN
IIF NOT .. + TEST FOR If_" SIGN
IGO SET UP FOR tt_ .. SIGN
IIF NOT ABOVE .. TEST FOR "X" (MULT) SIGN
IGO SET UP FOR "X" SIGN
11 F NOT ABOVE# TEST FOR "I" (01 V) SIGN
IGO SET UPF fOR "I" SIGN
I I F NOT ABOVE .. TEST FOR "RUBOUT't
I I F NONE OF ABOVE .. IGNORE INPUT
IIF "RUBOUT" START NEW INPUT SEIUa.CE
ISET UP REGISTER "S" BASED ON ABOVE I.... " II It " ••

I It It It

I It.. t. " t.

I"" .. " It " " I.... " " I.

I SAVE "OP mATOR" CHARACTER IN REG "C"
1*** • NEXT TO LAST LOC IN "LOOKUP" TABLE
IHO 01 FY ,t***" BY CONTENTS 0 F "B"
ISET PNTR TO "LOOKUP" TABLE ADDR STORAGE
IPLACE "LOOKUP" ADDR IN STOftAGE LOCATION
IRESTORE "OPERATOR" CHARACTER TO ACC
'IDISPLAY THE "OPERATOR" SIGN
IDISPLAY FEW SPACES AFTER "opmATOR" SIGN
ILET OP~ATOR mTER 2ND FP DECIMAL NUMBER
IPROVIDE FEW SPACES APTER 2ND NUMBER
IPLACE ASCII CODE FOR U=" IN ACCUMULATOR
IDISPLAY "." SIGN
IDISPLAY FEW SPACES An-Eft SIGN
ISET POINTUl TO TEMP NUMBER STORAGE ARFA
ISET D • e FOR SURE
ISET ANOTHi1t POINTER TO LSW FPOP
ISET PRECISION COUNT~
IMOVE 1 ST NUMBER INPUTTED TO FPOP
ISET PNTR TO "LOOKUP" TABLE ADDR STOftAGE
IBRING IN LOW ORDER ADDR OF "LOOKUP" TABLE
IXXX • PAGE THIS PROGRAM LOCATED ON
IBRING IN AN ADDR STORED IN "LOOKUP" TABLE
IRESIDING ON THIS PAGE (XXX) AT LOCATIONS
1"*** + BU AND "*** + B • 1" AND PLACE IT
lIN REGS "D & E" THEN CHANGE PNTR TO ADDR
IPART OF INSTRUCTION LABELED "ftESULT" BE­
lLOW AND TRANSFER THE "LOOKUP" TABLE CON­
ITENTS TO SECOME THE ADDRESS FOR THE IN-
ISTRUCTION LABELED "ftESULT." THEN RESTORE
IREGI STERS "D" AND "H" BACK TO "0"
INOW JUMP TO COMMAND LABELED "RESULT"
ISUBRTN TO PROVIDE CR & LF'S
IPLACE ASCII CODE FOR CR IN Ace & DISPLAY
IPLACE ASCII CODE FOR LINE FEED IN ACC
lAND DISPLAY
IDO ·IT AGAIN - CODE FOR CR IN ACC
IDISPLAY. IT
ICODE FOR LF

5 - 40

MNEMONIC COMMENTS

.. _------------ --- ---_ _-
CAL ECHO IDISPLAY IT
RET IRETURN TO CALLING ROUTINE

SPACES., LAI 240 ISET UP ASCII CODE FOR SPACE IN ACC
CAL ECHO IDI SPLAY A SPAC E
LAI 240 IDO IT AGAIN - CODE FOR SPACE IN ACC
CAL ECHO IDISPLAY SPACE
RET IRETURN TO CALLING ROUTINE

"Z" RESULT ., CAL DUMMY ICAL RTN AT ADDRESS IN NEXT TWO BYTES I
CAL FPOUT IDISPLAY RESULT
JMP FPCONT IGO BACK'AND GET NEXT PROBLEM I

"LOOKUP TABLE" AAA ILOW ADDRESS FOR START OF "FPADD" RTN
BBB IPAGE ADDRESS FOR START OF "FPADD" RTN
cec ILOW ADDRESS FOR START OF "FPSUB" RTN
DDD IPAGE ADDRESS FOR START OF "FPSUB" RTN
EEE ILOW ADDRESS FOR START OF "FPMULT" RTN
FFF IPAGE ADDRESS FOR START OF "FPMULT" RTN

*** GGG ILOW ADDR ESS FOR START 0 F '1 FPDI V" RTN
HHH IPAGE ADDRESS FOR START 0 F .. FPDI V" RTN

THE THREE ROUTINES., "FPINP,," "FPOUT.," AND "FPC.ONT" AS PRESENTED
WULD R!:IUIRE ABOUT THREE PAGE OF MEMORY FOR STORAGE. HOWEVER .. AS WILL
BE DISCUSSED SHORTLY .. THF ROUTINES COULD BE MODIFIED TO FIT INTO A CON-
SIDERABLY LESS AMOUNT OF MEMORY. THE DEMONSTRATION ROUTINES ALSO USED
CERTAIN LOCATIONS ON PAGE 09 FOR STORAGE OF TRANSIENT DATA AND THESE
ARE LISTED BELOW FOR REFERDtCE. NATURALLY'; THE ROUTINES COULD BE FASI-
LY ALTERED TO USE OTHER TEMPORARY STORAGE LOCATIONS.

LOCATION(S)

193
194
195
116
107

11 "

158 - 153
154 - 156
157
168 - 163
164 - 167
178 - 173

USAGE

INPUT MANTISSA SIGN STORAGE
INPUT EXPONENT SIGN STORAGE
INPUT DIGIT COUNTER
INPUT "PERIOD" INDICATOR
OUTPUT DIGIT COUNTER
TEMP STORAG E FOR CONTROL "OP ERATOR"

INPUT WORKING AREA
INPUT STORAGE REGISTERS (FOR DECBIN CONV)
INPUT EXPONENT (DECIMAL ElUIVELANT)
OUTPUT WORKING AREA
OUTPUT STORAGE REGISTERS (FOR BINDEC CONV)
TEMPORARY NUMBER STORAGE

TECHNIIUES FOR SHORTENING LENGTHY PROGRAMS

THE "FPINP.," ·'FPOUT.," AND "F'PCONT" ROUTINES DESCRIBED PREVIOUSLY
MIGHT APPEAR SOMEWHAT LENGTHY TO THE RFADER. INDEED THEY ARE BECAUSE
MANY OF THE SECTIONS WERE DEVELOPED IN A MANNER THAT WOULD ENABLE ONE
TO MORE EASILY FOLLOW, THE LOGIC OF THE PROGRAM RATHER THAN TO SAVE MEM-
(lty SPAC E IN A COMPUTER SYSTEM. AS READERS KNOW" HOWEVER" I TIS O"EN
DESIRABLE TO 'REDUCE PROGRAMS TO FORMS THAT USE LESS MEMORY STORAGE.
BUT" THERE ARE TRADE-OFFS TO CONSIDER. DESIGNING A PROGRAM TO MINIMIZE
THE AMOUNT OF MEMORT USED GDJERALLY RElUIRES SIGNIFICANTLY MORE HUMAN

5 - 41

PROGRAM DEVELOPMENT TIME" AND IT GENERALLY MAKES THE PROGRAM MORE "COM­
PLEX" OR 01 FFICULT FOR SOM!DNE aSE TO UNDERSTAND" BECAUSE ONE OF THE
FUNDAMENTAL TECHNIIUES IN REDUCING A PROGRAM'S LENGTH IS TO CAPITALIZE
(14 MAKING AS MANY '·SUBROUTINES" OUT OF Dl FFERENT SECTIONS OF THE PROGRAM
AS POSSIBLE. THERE 15 ALSO ANOTH~ PARAMETER THAT CAN BE AFFECTED BY
DESIGNING A PROGRAM TO USE LESS MEMORY - THE SPEED AT WHICH THE PROGRAM
IS EXECUTED IS GOIERALLY DECREASED BECAUSE A LOT OF EXTRA TIME IS SPDtT
EXECUTING TIME CONSUMING "CALL" INSTRUCTIONS. MORE DISCUSSION ON THE
CONSIDERATIONS OF A PROGRAM'S OPERATING SPEED WILL BE PRESENTED IN A
LATER CHAPTER.

PERHAPS THE FIRST RULE OF THUMB TO APPLY TOWARDS REDUCING THE AMOUNT
OF MEMORY A PROGRAM REQUIRES IS TO MAXIMIZE THE AMOUNT OF SUBROUTINING
UTILIZED PROVIDED THAT THE SUBROUTINING MEETS THE FOLLOWING SIMPLE MATH­
EMATICAL RELATIONSHIPs

B X N > 3 X N + B + 1

WHERE. "B":& THE NUMBER OF BYTES IN A REPEATED INSTRUCTiON SEQUENCE
ANDs "N". THE NUMBER OF TIMES THE SEQUENCE IS USED IN THE PROGRAM

EXAMINING THE FORMULA ABOVE WILL SHOW THAT IT DOES NO GOOD IN TERMS OF
CONSERVING MEMORY SPACE TO CALL A ROUTINE THAT UTILIZES ONLY 3 BYTES OF
MEMORY. THIS IS BECAUSE A "CAL'· INSTRUCTION ITSELF REQUIRES 3 BYTES 0 F
MEMORY I HOWEVER" ONCE AN INSTRUCTION SEQUENCE EXCEEDS 3 BYTES OF MEMORY
THE POINT AT WHICH SUBROUTINING BECOMES PROFITABLE FUR CONSERVING MEMORY
SPACE IS A FUNCTION OF "N,," THE NUMBER OF' TIMES THE INSTRUCTION SEQUENCE
NEEDS TO BE REPEATED IN A PROGRAM. FOR EXAMPLE .. IF "B" • 4 .. ONE STARTS
SAVING MEMORY SPACE BY SUBROUTINING WHEN "N" • 6. THE ABOVE FORMULA
SHOWS THAT THE VALUE OF "N" REQ1JIRED TO MEET THE CONDITION WHERE MEMORY
SPACE IS SAVED BY SUBROUTINING DROPS QUITE RAPIDLY AS "B" IS INCREASED
SO THAT BY THE TIME ONE IS DEALING WITH INSTRUCTIONAL SEQUENCES WHICH
USE 8 Oft MORE BYTES OF MEMORY .. ONE CAN SAVE MEMORY SPACE BY FORMING A
SUBROUTINE IF THAT SAME SEQUENCE IS USED MORE THAN ONCE IN A PROGRAMI
A SUMMARY OF THE MINIMUM VALUES OF "B" AND "N" THAT WILL RESULT IN MEM­
ORY SPACE BEING SAVED BY SUBROUTINING BASED ON THE ABOVE fORMULA IS PRO­
VIDED BELOW.

B :I ~ AND N = 6
B :I 5 AND N. 5
B • 6 AND N. 3
B • 8 AND N. 2

THE AMOUNT OF MEMORY SPACE THAT ONE SAVES BY APPROPRIATE SUBROUTIN­
ING CAN BE CHECKED BY REARRANGING THE ABOVE FORMULA:

B 'X N (3 X N + B + 1) • Z

PHD SOLVING FOR .. Z THE AMOUNT 0 F BYTES SAVED.
IS 8 AND "N" IS 3" THEN "Z" 1St

FOR EXAMPLE" IF "B" .

8 X 3 <3 X 3 + 8 + 1) • 6

WHDl DEVELOPING SUBROUTINES .. ONE CAN OFTEN USE ONE ROUTINE TO SERVE
SEVERAL FUNCTIONS BY ALLOWING FOR MULTIPLE ENTRY POINTS TO THE SUBROUT­
INE. AN ~AMPLE OF THIS METHOD WAS USED IN THE FLOATING-POINT PACKAGE
DISCUSSED WHERE TWO mTftT POINTS TO THE ROTATE SUBROUTINES WERE PROVI-
DED .. SUCH AS THE "ROTATLtt SUBROUTINE WHICH HAD A SECOND ENTRY POINT LAB~:.'
PLED "ROTL" WHICH ALLOWED ONE TO ENTER THE ROUTINE BY "SKIPPING" THE
"NDA·' INSTRUCTION WHICH RESlDED. IN THE LOCATION LABELED "ROTATL.·'

5 - 42

ANOTHER WAY TO OFTEN SAVE SIGNIFICANT AMOUNTS OF MEMORY IS BY CARE­
FUL ORGANIZATION OF THE PROGRAM AND ASSIGNMENT OF DATA STORAGE AREAS IN
MEMORY. FOR EXAMPLE~ THE READER MAY HAVE NOTED THAT ALL THE NUMERICAL
DATA STORAGE AREAS USED. IN THE FLOATING-POINT ROUTINES ALONG WITH THE
COUNTERS AND INDICATORS STORED IN MEMORY WERE LOCATED ON PAGE 00. THIS
\f:\S DONE TO MINIMIZE THE RESETTING OF THE PAGE POINTER (REGISTER "H").
SCATTERING DATA ON DIFFERENT PAGES OF MEMORY IN A LARGE PROGRAM CAN RE­
SULT IN QUITE A BIT OF WASTED M910RY BECAUSE REGISTER "H" MUST BE FREQ­
UENTLY ALTERED (WHICH REQUIRES A TWO BYTE INSTRUCTION) TO CHANGE THE
MEMORY POINTER ADDRESS. CAREFUL ORGANIZATION OF DATA STORAGE CAN EVEN
BE HELPFUL IN MINIMIZING THE AMOUNT OF TIMES THAT REGISTER ttL" MUST BE
LOADED WITH A NEW ADDRESS (REQUIRING A TWO BYTE INSTRUCTION) BY LOCAT­
ING STORAGE AREAS IN ACCORDANCE WITH HOW THEY ARE ACCESSED IN A PRO­
GRAM SEQUENCE SO THAT AN "INL" OR "DCL" (ONE BYTE COMMAND) MAY BE USED
11) ACCESS A STORAGE LOCATION RATHER THAN AN "LLI XXX" INSTRUCTION.

IN LINE WITH THE ABOVE CONSIDERATIONS IS THE SIMPLE RULE TO MAIN­
TAIN POINTERS AND COUNTERS AND OTHER FREQUENTLY USED "INDICATORS" IN CPU
REGISTERS AS MUCH AS POSSIBLE. THIS CONSIDERABLY REDUCES THE NUMBER OF
TIMES THAT THE "H & L" REGISTERS HAVE TO BE CHANGED TO "POINT" TO LOCA­
TIONS THAT CONTAIN SUCH INFORMATION AND THEN CHANGED BACK TO HANDLE THE
CURRENT DATA THAT IS BEING MANIPULATED.

ANOTHER GENERAL RULE OF THUMB TO FOLLOW FOR REDUCING PROGRAM MEMORY
USAGE IS TO CAPITALIZE ON "LOOPS." A FORMULA FOR DETERMINING WHEN ONE
CAN SAVE MEMORY SPACE BY USING A "LOOP" (ASSUMING THE LOOP COUNTER IS
STORED IN A CPU REGISTERn) I S PRESENTED HERE.

B X N > B + 6

WHERE. "B". THE NUMBER 0 F BYTES FORMING THE "REPEATED'" PORTION 0 F
THE SEQUENCE THAT MUST BE CONSECUTIVELY REPEATED.

AND. nN" = THE NUMBER OF TIMES THE SEQUENCE MUST BE CONSECUT·IVELY
REPEATED.

T.HUS~ BY USING THE FORMULA~ ONE CAN SEE THAT IF A PROGRAMMER HAS A FOUR
BrTE INSTRUCTION THAT MUST BE CONSECUTIVELY REPEATED THE PROGRAMMER CAN
SAVE MEMORY BY SETTING UP A "LOOP" IF THE SEQUENCE MUST BE CONSECUTIVELY
REPFATED THREE OR MORE TIMES. I F ~'B" I S ONLY TWO~ THEN A "LOOP" CONS ER­
VES MEMORY IF IT MUST BE CONSECUTIVELY PERFORMED FIVE OR MORE TIMES.
(THE ABOVE FORMULA IS DERIVED FROM THE FACT THAT IT REQUIRES SIX BYTES
TO SET UP A "COUNTER~" INCREMENT OR DECREMENT THE COUNTER EACH TIME A
'~OOP" IS COMPLETED~ AND MAKE A "CONDITIONAL" BRANCHING TEST).

A SUBTLE CONCEPT THAT CAN SAVE MEMORY SPACE INVOLVES THE POSSIBILI­
TY OF INCLUDING A FEW CAREFULLY CHOSEN INSTRUCTIONS IN SUBROUTINES TO
INCREASE THEIR GENERAL USEFULNESS. FOR EXAMPLE~ CONSIDER THE SUBROUT-
INE ILLUSTRATED BELOW.

SAMPLE~ LCH /SAVE VALUE OF "R" IN "~CIt

LHI XXX / SET PNTR TO "DATA" PAGE
LAM / FETCH A BYTE 0 F "DATA"
LHC /RESTORE ORIG VALUE OF "H"
NDA ISET FLAGS FOR ACC CONTENTS
RET

SUCH A SUBROUTINE MIGHT BE EXTREMELY VALUABLE IN A LARGE PROGRAM WHERE
''DATA'' WAS STORED ON ONE PAGE, BUT "COUNTERS" AND "INDICATORS" IiAD TO
BE STORED ON ANOTHER. BEFORE CALLING THE ABOVE ROUTINE~ THE PROGRAM
WOULD HAVE SET REGISTER "L't TO THE APPROPRIATE ADDRESS ON THE PAGE
WHERE "DATA" WAS TO BE OBTAINED. SUPPOSE THAT SOMETIMES THE MAIN PRO-

5 - 43

GRAM NEEDED TO SIMPLY TRANSFER DATA FROM ONE LOCATION TO ANOTHER~ AND
AT OTHER TIMES IT MADE "TESTS" ON THE DATA IT OBTAINED. THE SIMPLE IN-
CLUSION OF THE "NDA" INSTRUCTION IN THE ABOVE ROUTINE DOES NO HARM IN
CASES WHERE DATA IS TO BE SIMPLY TRANSFERRED~ BUT IT CAN SAVE VALUABLE
MEMORY STORAGE IF THERE ARE TWO -OR MORE TIMES IN WHICH THE DATA MUST BE
"TESTED·' IN THE MAIN PROGRAM BY HAVING THE "NDA" IN THE SUBROUTINE!
R)R~ THE "NDA" SETS UP THE FLAGS ALLOWING ONE TO IMMEDIATELY EXECUTE A
CONDITIONAL BRANCHING INSTRUCTION UPON RETURN FROM THE SUBROUTINE WHEN
DESIRED BASED ON THE "DATA" LOADED INTO THE ACCUMULATOR BY THE SUBROUT­
INE. TO PUSH THE POINT BEING MADE ONE STEP F1JRTHER - ADDING ONE MORE
INSTRUCTION TO THE ABOVE SUBROUTINE - AN "INL" PLACED JUST BEFORE THE
"NDA" INSTRUCTION COULD MAKE THE ROUTINE EVEN MORE "GENERAL PURPOSE."
FOR INSTANCE~ IN A TYPICAL DATA MANIPULATING PROGRAM ONE MIGHT BE SEQ­
UENTIALLY ACCESSING LOCATIONS IN THE "DATA" STORAGE ARFA WHILE POSSI-
BLY SFARCHING FOR A CERTAIN "CODE." AT OTHER TIMES ONE MIGHT BRANCH OFF
TO PERFORM WORK IN ANOTHER ARFA OF MEMORY IN WHICH CASE ONE WOULD PRO-
BABLY HAVE TO PERFORM AN "LLI XXXt~ INSTRUCTION. THUS" THE INCLUSION OF
'DIE "INL" COMMAND IN THE SUBROUTINE TAKES CARE OF ALL THE TIMES THAT ONE
NEEDS TO ACCESS THE NEXT LOCATION IN THE "DATA" ARFA", YET DOES NO HARM
IF THE PROGRAM WILL BE DIRECTED TO A DIFFERENT MEMORY AREAl (NOTE", HOW-
!YER~ THAT ONE WOULD HAVE TO EXAMINE CAREFULLY", HOW OFTEN THE MAIN PRO­
GRAM MIGHT BE REQUIRED TO ACCESS THE EXACT SAME LOCATION AGAIN", THUS RE­
QUIRING A COMPENSATING "DCL" INSTRUCTION IN THE MAIN PORTION 0 F THE PRO­
GRAMI)

HOWEVER", ONE OF THE MOST POWERFUL MEMORY SAVING TECHNIQUES FOR 8008
SYSTEMS IS BASED ON THE USE OF A CLASS OF INSTRUCTIONS THAT MANY NOVICE
PROGRAMMERS COMPLETELY OVERLOOK! THIS CLASS OF INSTRUCTIONS IS THE
"RESTART" (RST XXX) GROUP. FOR" WHILE THE MNEMONIC FOR A "RESTART" IN­
STRUCTION IS SHOWN AS CONSISTING OF TWO PARTS", THE ACTUAL COMMAND IS AN
EFFECT I VE ONE BYTE "CALL" INSTRUCTION I WHILE THE "RST" COMMANDS WERE
INCLUDED IN THE 8008 INSTRUCTION SET TO FACILI TATE IMPLEMENTING "START­
tp" OPERATIONS IN CONJUNCTION WITH THE "INTERRUPT" FACILITY ON TYPICAL
8008 SYSTEMS~ THEY MAY ALSO BE PUT TO EXTREMELY EFFECTIVE USAGE IN GEN-
FRAL PROGRAMMING APPLICATIONS. THE REASON IS FAST TO UNDERSTAND ONCE
IT HAS BEEN POINTED OUT - BEING ABLE TO "CALL" A SUBROUTINE WITH A ONE
arTE INSTRUCTION INSTEAD OF A THREE BYTE INSTRUCTION CAN SAVE A LARGE
AMOUNT OF MEMORY SPACE 1 F A ROUTINE HAS TO BE "CALLED" FREQUENTLY IN A
PROGRAM.

THE READER SHOULD REVI EW THE MATERIAL ON PAGE 17 0 F THE CHAPTER
~lCH EXPLAINS THE 8008 INSTRUCTION SET IN THIS MANUAL PERTAINING TO
1HE "RESTART" INSTRUCTIONS. SINCE THERE ARE 8 "RESTART" LOCATIONS ON
PAGE 00" THAT MEANS THAT ONE CAN HAVE UP TO EIGHT DIFFERENT SUBROUTINES
IN A PROGRAM THAT CAN BE ACCESSED WITH BUT A ONE BYTE CALLI WHILE THE
'1ftESTART" LOCATIONS ARE SPACED BUT 8 (DECIMAL) LOCATIONS 'APART", ONE CAN
STILL USE THE "RESTART" LOCATIONS FOR RFACHING THE DESIRED OBJECTIVE
OF SAVING MEMORY SPACE EVEN IF THE DESIRED SUBROUTINE WILL NOT FIT IN
TKE 8 LOCATIONS BY SIMPLY HAVING A "JUMP" INSTRUCTION AT A RESTART LOC­
ATION THAT DIRECTS THE PROGRAM TO THE ACTUAL SUBROUTINEI

TO SEE ,.HE IMPORTANCE OF USING "RST~ COMMANDS. IN LARGE PROGRAMS CON­
SIDER THE FACT THAT IT MAY OFTEN BE NECESSARY TO CALL A PARTICULAR SUB­
RlUTINE 30 OR _0 (DECIMAL) TIMES. USING A ONE BYTE "RESTART" INSTRUCT­
ION INSTEAD OF A THREE BYTE "CAL" COMMAND CAN THUS SAVE 60 TO 80 (DECI-
~L) MEMORY LOCATIONS. THAT IS ROUGHLY ONE-FOURTH OF A "PAGE" OF MEM-
ORY IN AN 8008 SYSTEM I MULTIPLY THAT BY A FACTOR OF 8 - THE NUMBER OF
''RST'' l.OCATIONS AVAILABLE - AND ONE CAN SEE A VERY CONSIDERABLE SAVINGS
IN MEMORY USAGEI THE PERSON WHO HAS DEVELOPED FAIRLY DECENT SIZED PRO­
~AMS FOR AN 8888 SYSTEM WITHOUT TAKING ADVANTAGE OF THE fiRST" COMMANDS
TO CONS~VE MDIORY IS OMEN AMAZED WHEN SUCH PROGRAMS ARE RE-WRITTEN TO

5 - 44

trrILIZE THE TECHNIQUE AND THE PROGRAMMER FINDS MEMORY USAGE CUT BY A
OONS I DERABLE P Utc ENTAG EI

AS A CHALLDIGE TO THE RFADER WHO IS INTERESTED IN DOING A LITTLE
CREATIVE "TRIMMING" OF A PROGRAM" WHY NOT GO TO WORK ON REDUCING TH·E
SIZE OF THE "FFINP,," "FPOUT,," AND "WCONT" ROUTINES PRESENTED IN THIS
QiAPTER? USING THE TECHNIQUES DESCRIBED IN THE LAST SEVERAL PAGES"
ONE SHOULD BE ABLE TO WORK THOSE ROt]TINES DOWN FROM THE ROUGHLY THREE
?AGES OF MEMORY THEY REQUIRE AS PRESENTED" TO WITHIN ABOUT TWO PAGESI

5 - 115

IWPUT/OUTPUT PftOGRAMMING

THIS CHAPTER WILL BE CONCERMED WITH DISCUSSING PROaRAJIIJIJNa TECH.l-
801'S mit TJIlANSFEltIU.S.lNPQRMATIOIi TO AIID FROM THE COMPUT!Jt AND EXTERNAL
DEVICES.. EXTEIlRAL DEVICES ARE CONNU:TED TO THE COMPUTDt. IN All 8888
SYSTEM VIA PHYSICAL COIIND:TIONS WHICK CARRY I'LICTJltONIC SIGNALS. SlNCE

.IT IS onDJ DESIRABLE TO HAVE A NUMBER OF DIFF~DfT DEVICES CO.REeTED
1'0 A SYSTEM AT ONE TIME.. A HARDWARE ARRANGEMENT. IS GDiERALLY PROVIDED
11IAT DlABL.ES A NtJMBEROJr DEVICES TO BE CONNECTED AT ONE. TIME" BUT ONLY
(liE SUCH DEVICE MAY ACTUALLY "COMMUlliCATE" WITH THE COMPUTER AT AllY GIV-
IN 'NSTANT OF TIME. TO ALLOW CONTROL OF WHICH DEVICE IS ABLE TO COMMU-
RICATE WITH THE COMPUTER" AN ELECTRONIC ARftANGDfDlT. IS PROVIDED THAT
ALLOWS "SOnWARE- SELECTION OF INPUT AND OUTPUT ··PORTS." AS FAR AS A
PROGRAMM'" IS CONCmNED .. A "PORT" CONSISTS OF EIGHT Sm-ARATE ELECTRONIC
mGNALS TRAT CAN BE IN A. "I" OR "8" STATE. THE EIGHT SIGNALS COR~ES-
POND TO THE EIGMT BIT POSITIONS AVAILABLE, IN T"E ACCUMULATOR OF THE cpu •
., "INPUT" POJitT ACCEPTS INFORMATION FAOM AN !JCTERNAL DEVICE AND PRESDITS

.IT TO THE ACCUMULATOR OF AN S888. AN "OUlPOT" PORT TAKES INFORMATION
JlROM THE ACCUMULATOR AND PASSES IT TO AN OUTPUT DEVICE. THE SELECTION
OF A PARTICULAR INPUT OR OUTPUT PORT IS SPECIFIED BY THE PROGRAMMER
.. EN UTILIZIIIG AN. 110 COMMAND. THE READER MAY DESIRE TO REVIEW THE DIS­
CUSSION OF TilE. 1/0 INSTRUCTIONS PRESENTED ON PAGE 18 OF TilE CftAPTIJ' DE­
SCRIBING TilE INSTRUCTION SET FOR THE 8818 CPU AT TMIS TIME.

NOTE. FOR TilE PURPOSES OF THE DISCUSSION. IN TMIS CKAPTER"
ALL 110 OPDATIONS WILL BE ASSUMED TO TAKE PLACE BETVED
THE 1'0 "PORTS" AND TKE ACCUMULATOR OF THE cpu. VRILE SOME
READERS MAY BE AWARE THAT. IT IS POSSIBLE TO COMMUNICATE
WITII A COMPUTER VIA TB:IDIIIUES KNOWN AS "DIR~T MDiORY AC­
CESS4t nERDY AN gTEflNAL DEVICE PLACES DATA ·DIRmTLY,·lNTO
AREaS IN MEMORY4t OR V!CE-VEftSA4t SUCK CAPABlLITY. IS RARELY
POUIID OM 81.8 BASED SYSTEMS. FURTIIE2'MORE.. SUCH TRANSFUt
TEC1DJ"UES ARE ESSENTIALLY -BARDWARE CO.TROLLED" ANn ARE
OUTSIDE TR! PURELY PROGRAMMING REALM TO VIIICII THIS MAN-
UAL IS J)EVQTED.

TilE BASIC CONCEPT BEMIND COMMUNICATING WITH A COMPUTER LIES. IN PRO-
1IIDI.8 SOME FORM OF SYSTDIATIC SYSTDt fOR ENCODING. INFORMATION "'OM AN
fXT!2lNAL. DEVICE TKAT WILL ALLOW A PROGRAM TO DECODE TilE. INFORMATION AltD
TAKE APPROPRIATE ACTION" AND TO ALLOW A PJltOGRAM TO Sl!IfD CODES TO AN EX­
TERNAL D£VlCE TIIAT WILL. D·IJIlECT. IT TO PERPORM. IN A PRESCR·18ED MAIINER.

SUCII A SYSTDI CAN BE CftFATED !JfTIRELY 8Y TilE PROGJIlAMMER. INDEED ..
,IN MANY SPECIAL. APPLICATIONS" SUCR AS CONTROLLING A UIIIIUE PI ECE OF
_CUMERY" TKAT IS dUST THE APPROACK TAKER. POR EXAMPLE4t SUPPOSE SOME
."UFACTtJ1Itdt RAD A MACIlINE TIIAT WAS TO BE CONTROLLED BY TIlE COMPUTER.
'nIE MACKINE COULD BE CONSTRUCTED so TRAT VJIIEN_ IT VAS PdPOlUtlllG A CER­
_III TYPE 0' FUNCTION. IT WOULD CLOSE A PARTICULAR ILECTRICAL SWITCII.
1IIERE Ifl GilT BE A NUMBi2t OF SUCR SVITCIlES 011 TilE MACIIINE AND EACH ONE
mULD BE CONNIX:TED TO AN INPUT. LINL REPRESENTIIIG ONE "BIT" OF AN. INPUT
PORT. FOR TRE SAKE OF DISCUSSiG.~ SUPPOSE A MACRIN!: IlAD EIGHT 5UCIIIII­
PUT SVITCIIES" 0.£ CONRECTED TO FACR POSSIBLE. UNE MAKING UP AN IIIPUT
JIOItT. OBI THE S-ITCII WAS "CLOSED- A "1" CO.DITJON VOULD BE PLACED ON
111£ L·INE AND eDt. IT WAS "opm" TRE LINE WOULD RJ2tftESENT A "I" CONDI­
TION. FOR THE SAKE 0,. SIMPLICITY" .IT COULD ALSO BE ASSUMED THAT ONLY
(liE SW1TCII COULD BE CLOSED AT AflY81VDI TIME.

-ow. ASSUME TilE COMPUTER "AS TO ".'TOR THE STATUS OF TilE SVITCIIES

6 - 1

fit PDtIODICALLT !XEUTING All INPUT. J.STRUCTION FOR THE INPUT PORT TO
1IHICH THE SWITCHES V"'E ATTACHED. TMDI" D!7ENDINa ON WHICH SWITCH VAS
De THE CLOSED CORDITIOtl" THE COMPUTER WOULD. D·IRI.CT~ IflJl'ORMATI0N TO BE
OUTPUTTED ON. AN OUTPUT PORT" SAY" TO DIRECT ANOTHER PART OF THE MACHINE
10 P!2tJl'ORM A SPD:I,.IC OPdtATION. A PROGRAMMER .. tGHT MAKE UP All ~INPUT"
PROaRAM. IN THE FOLLOWING MAtfNER.

MNDtONIC

I NCTRL.. IMP X

NDA
JTZ INCTRL
CPt III
dTZ STARTl
CPl .12
dTZ START!
CPI II.
dTZ START3
CPI III
dTZ STARTli

•
•

CPI 2"1
dTZ STARTS
.IMP ERROR

COMMENTS

IREAD DATA FROM PO~T X INTO ACCUMULATOR
ISET FLAGS. AnER INPUT OPERATION
'NO SWITCHES CLOSED - KEEP LOOKI.a
'IS. IT SWITCH ,.,
IYES" DO RElUIRED ItOtJTl.E
115 .. IT SWITCH #21
lTD" DO RElUIRED ROUTINE
'IS. IT SWITCH 131
ITES .. DO REQUIRED ROUTINE
lIS. IT SWITCHI4?
'YES" DO RdUIRED ROUTINE

liS. IT SWITCH IS?
IYES" DO RElUIRED ROUTINE
IIF PROGRAM EVER GETS HERE SOMETHlNG VRONG

THE ABOVE INPtJT ROUTINE. IS IUITE SIMPLE. AND LACKS A TECHNICAL CONSI­
DERAT'ION THAT MIGHT BE. NECESSARY. IN A REAL SYSTDI (HOV CAN THE ROUTINE
TELL WBETKER A READINS. INDICATES A ... Et- SWITCH CLOSURE OR A "PREVIOUS"
(J)NDITION STILL. PRESDlT?) HOWEVER". IT DOES. ILLUSTRATE THE CONCEPT OF

. INPUTTING INFORMATION AND HAVINa THE COMPUTER INTE.1lPRET THAT INFORMA­
TlOII.

IN A SIMILAR IIAIItfi2t TO THE. INPUT ROUTINE# ONE COULD CONNECT.. SAY ..
1HE COILS OF ELECTRONIC R!LAYS TO THE OUTPUT LINES OF A SP~I FIC OUTPlJT
PORT. FACH OF THE EIGHT POSSIBLE- LINES. CONNECT.ED TO AN OUTPUT PORT
OOULD ACTIVATE THE ASSOCIATED RILAY WKDJ A "I" CONDITION VAS PRESENT ..
BUT NOT VHDI A CONDITION EXlST.ED. SINCE. EACH LIRE CORRESPONDS TO
ORE "BIT". IN THE ACCUMULATOR" ONE COULD EASILY. DEVELOP A PROGRAM TO CON­
TROL THE OPERM'IOII OF THE RELAYS BY PLACING APPROPftlATE CODES IN THE AC­
CUMULATOR OF THE CPU AND THDI aB:UT'INaAN "OUT Z" INSTRUCTION WHERE HZ"
JtD»RESENTED THE OUTPUT PORT WHOSE. LIRES VEftE CONNECTED TO THE RELAYS.

'N THE ABOVE EXAMPLE.. INPUT PROGRAM TO MONITOR THE STATUS OF A SET OF
SWITCHES IT VAS ASSUMED THAT ONLY ONE S1IITCH COULD BE CLOSED AT A GIV.
nME. THUS .. TH~E VDE O.LV NINE. POSSIBLE SIGNAl. CONDITIONS THAT COULD
BE RECEIVED BY THE COJIPOTEIIl. - Atrf OIlE OF THE EIGHT SWITCHES .. EACH REPRE­
SUITED BY THE STATUS OF It PAIlTICtlLAJIl B1T. IN THE ACCUMULATOR., COULD BE
'1»11,," OR NONE 0,. TRIM WERE ACTIVATED. THUS" THE PARTICULAR CODING TECH­
.1t1E POR THE DAMP!.£ VAS REALLY IUITE LIMITED. HAD. IT BEEN STATED THAT
II« NUMBdt OF THE' S.:ITCHES COULD BE "0." AT ANT Glvm TIME.. THEN THERE
.OLD BE 256 DIFFDIIIT CODES POSSIBLE ON THE, 8 INPUT LINES AT ANY'SIVDI
TIME' SUCII AN DlCODING SCHEME WOOLD. ALLOW IUITE A LOT MORE lllPORMATION
10 BE COWVErm TO THE COMPUTER III ONE.I.PUT PORT. ONE COULD RMDlLY
.VISIOR COMI ... UP WITH It SYSTEM WKDEBY AN "'TdIlAL MACHINE COULD USE
THE 256 POSSIBLE STATES AVAILABLE 0 .. ailE.. 'RPUT POR' TO PROVIDE A LOT 0'

. INP'ORIIATION TO THE COMPUTat. BY ASSl8111NQ. DI FFERQlT. CODES TO R~RESorr
DlFFEIlIJIT "ARTIFACTS" ON£ COULD. I"ASILT COME UP .ITII A DEVICE THAT COULD
ISSUITIALLY mCODE ALL TltELETTdS OF TIlE ALPHABET" THE NUMBERS " - 9"

6 - 2

AND A LOT OF SPECIAL SYMBOLS AND STILL HAVE UNUSED STATESI WELL, AS THE
JltFADER UNDOUBTABLT KNOWS, pmPLE DEVELOPED SUCH mCODING SYSTEMS QUITE
SOME TIME AGO. IN FACT, A NUMB!1t 0,. DI,.,.I'JtENT "STANDARDIZED" ENCODING
STSTDIS HAVE BED DEVELOPED OVDt THE TrAitS. ON'E 0,. THE MOST POPULAR EN­
CODING STSTDtS .. ONE THAT IS USED ON MAHY KINDS G,. MACHINES SUCH AS £LEe­
~ONIC KEfBGARDS .. TTPEWRITER, NUMBERICAL CONTROL MACHINES AND IN A VAR-

. lETT OF COMMUNICATION DEVICES .. IS COMMONLY ABBft£VIATED AND 'REFERRED TO
AS TilE "·ASCII" CODE. "ASCII" IS THE ABBREVIATION FOR "AMERICAN STANDARD
CODE FOR INFORMATIGN INTERCHANGE." "ASCII" CODE. ITSELF IS ACTUALLY DE­
SIGNED TO USE JUST '7 BITS OF INFORMATION 'THUS ALLOWING FOR THE ENCOD­
ING OF 121 DIFF!7ImT "SYMBOLS")" HO"EVD, "ASCII" CODE IS O"m USED IN
DEVICES THAT USE' BITS BECAUSE THE LAST BIT OF DATA CAN BE USED TO TEST
POft TRANSMISSION ER'RORS BY SERVING AS A "PARITY" INDICATOR. MORE WILL
BE SAl D ABOUT "PARI TT" A LI TTLE LATER.

WHILE THE ENTIRE "ASCII" CODE IS BASED ON THE DIFFERENT PATTERNS
THAT WILL FIT IN SEVEN BITS OF A RESISTER .. THUS YIELDING 128 (DECIMAL)
DlFFEADlT "CODES .. " A COMMONLY USED "SUBSET" OF THE ASCII CODE. IS O"EN
UfILIZED. TftE "SUBSET" DOES NOT USE EVERT POSSIBLE PATT~N BUT ONLY
1II0SE PATT~NS DESIRED. THE "SUBSET'· REFERRED TO IS FREQUENTLY USED IN
"ASCII" CODED K!.TBOAADS .. TELETYPE MACtlINES .. AND OTHER DEVICES. IN THE
USTING· SHOWN BELOW .. THE 8 'TH BIT NOT USED BY THE "ASCII" CODE WILL BE
SHOWN AS A '·1" CONDITION AND TilE CODES WILL BE PRES9fTED AS THEY COULD
APPFAR IN THE REGISTERS 0,. AN 8''''1 CPU.

~

CftARAC T EJI' S BINARY OCTAL CHARACTE1'S BINARY OCTAL
STMBOLIZED CODE ft!P SYMBOLIZED CODE RW

A 1 I 881 081 301 10 1"" 881 24'
B • 1 881 810 382 " 18 18" ele 2.2
C 11 ''''8 811 383 , 19 199 " 11 243
D 1 1 8"" 1610 3"" S 18 180 108 244
E 1 • """ 111 305 S Ie .,," 181 245
p- 11 888 118 396 " 19 le9 118 246
G 1 1 119 III 381 18 1"" 111 247
H 1 1 "81 088 318 (18 101 999 258
I 1 I 801 8"1 311) 18 191 8"1 251
J 11 e81 818 312 • 18 181 018 252
K 1 I 801 " 11 313 + 18 181 811 253
L 1 1 081 100 3111 .. 10 101 18" 2511
M 1 1 881 191 315 10 lei 181 255
N 1 I III 118 316 • 10 181 11 " 256
0 I I 801 111 31'7 1 Ie 181 1 I 1 251
P II 810 ""9 32" 8 18 118 009 260

• 1 1 8161 "". 321 1 10 lie 6101 261
R 1 1 118 118 322 2 19 118 018 262
S 11 819 811 323 3 18 118 III 263
T 11 811 18fJ 324 .. 10 11" 188 264
U 11 '811 181 325 5 18 118 181 265
V 11 811 118 326 6 18 lie lie 266

• 11 111 III 321 '7 10 11 e 111 267
X 11 III '''If' 338 • 18 111 .88 2'78
T 11 III 881 331 , 18 III 881 2'71
Z 11 811 III 332 t 18 111 818 272
[11 811 811 333 J 19 111 811 213
\ 11 III .1" 3311 c 18 111 188 2111
] 11 811 lei 335 • 10 111 101 2'75
t II 811 III 336 > .8 .11 III 276 .. 11.,11 111 33'7 ? 18 111 111 277

SPACE I 1 ."., 888 2118 • 1 1 888 .80 381
~

6 - 3

TilE SUBSET OF TilE "ASCII" ;OD£ JUST PRESENTED HAS SEVERAL NICE FEA­
TURES WGRTJI ."TIN.. FORINSTUCK .. TilE 26 LETTUtS OF THE ALPIIABET AilE
ALL ENCODED.'. A sauDlc!: STAJIt,T" ••• 'TII 311 'OCTAL) AND END,I.a .ITII 332
"~TAL). TitUS 0.1:. CAN !:ASCI-Tell_It, DATA .. FeR E'CAMPLE" BEllla. ·INPUTTED
.. AN OPERATOR TO SE~ I F TilE CODI •• Na RECEIVED ftEPRESEIITS A LETTER ttF
11IE ALPlIABET BT PDPORIUNG A • ... 81! TEST" AS ILLUSTRATED BELOW.

IOID1ONIC

8KALFA.. INP X

~PI 311
dTS curALp'A
QN 333
.J FS CKALFA

ISALJI'A

ceMMDlTS

'ACCIPT A QHARACTER FROM INPUT DEVICE
'SEE.'FINPtJT IN RANGE FROM 311
,Te- 332 .. _I F IT IS NOT" tGNORE TilE
'1 IIPUT " " I,. ,IT IS WITHIN TilE RAIIGE ,TIl" RAVE AN ALPHABEf.ICAL CIIARACTER
'TO PROCESS AS DESIRED

THE READER IllAY NOTE TIIAT TilE .UIIBERS • TIIPtOUGR , ARE ALSO GROUPED
TeSETRa, eN TilE S.U!IICE FIlOM 261 TO 8'" AIID TilE PROGRAMMER CAN TKUS
ItFADILT. PI!lFORM A SIIdLAJll ftMGE. TEST TO DilLY ACCEPT NUMBmtS~

TIIERE ARE 'SEVDlAL OTBD "CRAIlAITEIlS" TftAT ARE USED BY MANT MACIII.ES
11IAT OPERATE WITII ASCII CODE ,TJlAT WILL BE MENTIONED FO~ REP'DtEilCE. TilE
JIONCNeNS "C.llllIAGE-RETURN" tltl)" "WWE-P'EED" '212)". "BILL" (.11) AND
-RouaGtJTW f311)" AilE .. 1ST 8nDl. JI'OOIID ON TELETYPE MACReNES WIll'" MAKE
VERY II'ICE. 1'0 DEVICES POll A CCUIPUTEIl.

nEIl AII.IIIPOT INSTRUCTIO. IS EXECUTED .. TIlE COMPUTER WILl. RECEIVE
d(4l1t BITS OF I M ... ItMA!'1 ON SI.MULTAJ.lDtlSLT: - CORIlESPOHDllia TO TilE EJGHT
POSSIBLE LlNE$ IF AN. ,IRPUT peRT DlGJI ARE FED. INTO TilE ACCUMULATOR. IN
erllER WORDS .. THE, DATA'S A'CIPTED. ,I. PARALLEL. LIKEWISE.. WIlEN. AN OUT­
POT I NSTlttJe'rIO •. IS EX!SUTED~ TIlE GOllPUTER WILL saD ALL ElGHT BITS OF
TIlE A'CUMDLAT81t' OUT Te TIlE APPMPMAT£ eUTPUT PORT SIMULTAINJ.X)USLT •
• WEVD .. SOME DDiCES WIIICH 611E. ,DESIIt.1S Te OPDlATE WITH TIlE COMPUTER MAT
leT BE "PARALLEL",. DblCIS. TREY MAT.I.STEAD BE "SERIALLY" OPERATED
•• ell "FAIlS TIIJ!f. De .eT TJIlANSIIIT ... ·I.fOltllArION ova A GROUP OF 1flRES.- BUT
Mftlat S;DlD TilE. INFIRMATION " •• £ _T AT A TIME" ovm A SINGLE WIRE"
SOCII DEVIGES MAT" II01fEVIJl" S71LJ. BE C ••• £eTED TO AN .1.1 SYSTEM SINCE
tilE MAT SIMPLY ~'DlSCAJlD" TilE DRUSD BITS CORRESPOtlD.lIIG TO UNUSED LJNES
... AN "0 PORT. .N StieR CASES" TilE PJlOaftAMM~ IlUST XIIOW WlUCR. L1NE OF
A PORT_ I S Tilt "ACTS VI." LINE ."D TAKE CARE TO DfSUltE TOT THE PROGRAM
".Ptn.ATES BITS OF, '''P'G~MA~IO. SO TJlAT TIlEY APPFAR Oil THAT LIIIE AT TilE
PROPER T·IME. WJlI!T1I£R. A PAKTI8m.AR. DEVIIE CONNECTED TO A CeMPUTER IS
"SDIAL" OR "PAJlAJr. .. a.", 'N OPIRATto. lAS FAR AS TIlE, COMPUTEIt ,IS c: •• .:dtM-
1») IS In_ A F1MCTle 11IE Tl'PE 8F IIARD.ARE- •• TERFACE PWeVIDED raft
TIlE EXTER.AL DEVICE. P'Dft ,,,HANeL T.ETYPE MACIIINES ARE ESSIBTIAI..1.T
"SIIN DEVICES 9'1.'E TilEY. ACT O.~J."lbcATIO. ONE BIT AT A TIME. 118W­
!NEB" D. ACTtJALJ.T_ ' •••• TED T8_ It. COMPUTD ORE ~AN ELa:T TO IlAVE A
"!IARDWARrllfTDlFACE TllAT C •• VERTS.'"JI8RMATION ~U:El9ED FROM TilE MACIIINE

. '. S'DJAJ., JI'8_ AIID PLAct;S. ·,IT .• II A "PARALL." REGlSTi2t BEnRE PASSIRO TilE
IIlTA TI TilE CIJlPUTat" AJID,a.'N THE .TIIER DIRECT"." RAVE TilE 'IMPUT-
• SDlD~ DATA .•• PARAUEL_ Pellll TO TIIE..IIITER,.ACE WlUCft RLL TBDI PASS IT
• TI TilE MACJlINE. I. BIT-SD'·IAL.. ,..5111011. SUCH All lI1TDFAC;E CAN SAVE
A LeT 'F COMPUTER TIME BECAUSE TIlE. EXTlJttlAL IlAIlD.ARE. lINT.FACE IS ABLE
,. IIAIIDLE THE TillE. ".slJIf,.a SEltlAL TO PARALJ.EL AND PAIlAI.L& TO SERiAL
-._5. 1I0.ZVat,,!VCR IIIdlDW._E caSTS MGNIY # AIID. IN MAllY APPLICATIONS OIlE
taT DESIRE TO JlAVI TKE CGMPtrrER DO tilE SERIAL TO PAItALLEL_ CeNVERSION AND
VJCE-V.S~. TillS CAlI BE ACCOIIPUSIlED _01TE READILY WJTJt A SUITABLE PRO­
.AM THAT AeTUALLT UT'ILIZES TIlE ' •• PUTER'S 0 .. Tlllilla Te DETERMINE OUf

6 - 4

TO "LOOK- Gil "SAJlPJ.P. P'OR TilE NEXT BIT OF INFORMATION '""OM T"E IEftJAIa.
DEVICE OR WHEN Te IBID TilE N"'T BIT 0,. INFORMATION TO TIt! SERIAL DEVIC!~
WIlLE THE DETAIL.SO,. CAREFUl.LY CONTROLLING THE T!M,ING PUR SUCII A PROGRAM
.... 1. BE DISCUSSED. IN TilE N~T CKAPTI2'" TH! CONCEPT OF IIAVI_G TilE COM­
PUTER PEftJl"8J1tM PARALLEL TO $ERIAL IR SERIAL TO PARALLEL CONVDtSI8N WILL
BE DIMONSTRATED WIT" S!VDtAL ROUTINES AT T"IS POINT. THE TECKNIIUE CON­
MST 0,. USING ACCtJIIIULATOR "ROTATE" INSTRUCTIONS TO S'MI" THE S!2'IAL DATA
IN Oft OUT OF TilE COMPUTER.

.
IN TftE PARALLEl. TO SERIAL ROUTINE SHOWN NEXT" IT WILL BE ASSUMED

1'IIAT A DEVICE TRAT ACCEPTS SERIAl. DATA IS CONNE£TED TO THE LEAST SIGNI­
nCANT BIT LINE 0,. OUTPUT PORT "X" AND THAT THE "EMAI_ING LINES AVAIL­
ABLE ON TilE PORT ARE UNUSED. TftE DEVICE WILL BE ASSUMED TO BE A UNIT
'ntAT OP~ATES WITft. "ASCI I" CODE AND BEFORE Tft! ILLUSTRATED ROUTINE IS
"GALLED" TIIAT TilE CODE FOR A CRARACT£ft HAS BEg PLACED. IN THE ACCUMULA-
10ft.

MNEMONIC

PARS St" Lei II"
NEXOUT" OUT X

JltRC
DCC
dFZ NEXBIT
RET

COMMDfTS ---... _---------
'SET UP REGISTER "C" AS A BIT C:OUNT'"
'OUTPUT DATA IN Ace TO PeRT X" ONLY THE
'DATA IN ~SB USED" NOW ROTATE ACC RIGlfT
IIGNOIIIE CARRY TIID DECRDtENT BIT COUNTER
fDO NEXT BIT IF CNTR NOT ZERO
ImelT RTN WltEN ALL' 8·ITS TRANSMITTED

IN TilE FOLLOWING SEftIAL TO PARALLEL ROUTINE IT IS ASSUMED TKAT DATA
IS ARR·IVING AT TftE MOST SIGNIFICANT B.IT POSITION OF AN INPUT PORT AND
1ftAT IT IS TO BE ASS DtBLED. INTO AN EIGHT BIT FORMAT •

. MNEMONIC

S £RPAR" XRA

. LBA
LeI 811

NEXTIN" IMP X
JlDI 218
RAL
ADB
RAR
LBA'
Dec
tin NEXT'.
RET

COMMENTS --..... ----------
'ChEAR ACCUMULATOR AND ALSO C1.EAR
IRESISTER "B" AT START OF ROUTINE
'SET "A BIT C:OONTEJIt
IBR·ING. IN DATA FRO" INPUT PORT X
'SINCE ONLY M58 RAS.IMPORTANT DATA" MASK
fO,.,. OTKDt BITS & CLR CARRY" I NOW ROTATE
fL.E" TO SAVE NEI BIT" TIIEN ADD IN ANT
IPREVIOUS B:I T5 FROM "B" AND ROTATE ft18"T
ITO ADD ON UTEST B,IT" STOltE IN "B"
IDD:RDlENT BIT COUNTi7t
'IF NOT FiNJSIIED" GET NEXT BIT
"EXIT RTN ""EM 8 BITS RECEI VED & STaRED

ANOTIIDt POPULAR "STANDARDIZED" CODE FeR OPEftATJNG 1"0 DEVICES IS
••• AS "BAtmoT" CODE. BAUDIT 'lot. IS A "S "£VEL" CODE IN TRAT. IT RE-
IOlftES FI VE BITS TO !lPD:l PT A PAIlTICUUR CIIAJltACTd. TIIU9" T"ERE ARE
nrEORETICALLY 32. Dl ""~INT PATTERNS TIIAT CAN BE "EP~ESINTED 1fIIDi USING
_UDOT CODE. NOW" BAUDIT CODI lIAS. LONG BEDl USED. IN A VARIETY OF TELE-

TrPES AND OTII. COIOl~.ICM.lO. DEYIG£! AND TltE CODE. IS OF I NT Eft EST TO
IMIfT COMPUTER GWDS BECAOSEOLDER MODEL. TELETYPE MACIIINES" PAPER TAPE
PDNQIID AND PAPD TAPE RaDIIS ;AN '"Df BE OBTAINED "'OM S!GOlfD llANO
.tJ1ICES AT .UITE REAS •• AB .. ! PRICES" AND USED AS AN.I,e DEVICE FOR A ~OM­
PUT"'. ...,11.1: BAUDOT CODE CAlI ONLY REPRESDfT 32 DIFFDlDfT BIT PATTIRNS"

6 • 5

1IIESE MACRI"I:! CAli PRINT ALL TIlE. L.ETTIltS 0,. TIlE ALPHABET" TilE NUMBERS
• TJllltOUGR ,# AWD A VAIlIETY 0,. PUII~TUATI0N SYMBOLSI THAT IS A LOT MORE
1IIAN 32 DI,. .. DDlT CBARACTaS I IIOW. I SIT DONE?

.ELL" TilE DESIUIJlS OF T1I091: MACHINES USED A UTTLE .. INGEIIDITY TO
!NABLE TilE MACIiINE TO IIAN.DLE ALMOST DOUBLE THE NUMBER OF CHARACTERS
'!HAT COULD BE RrPltESDITED BY A F,IVE BIT CODE BY USING SEVIJ'AL OF TilE
CODES TO "SHI n" THE MACHINE BETWEDI TWO MODES" SO TIIAT. IN ONE MODE IT
WOULD INTDPIlET THE. C,ODES TO MEM OIlE SET OF CKARACTE.1lS AND t. THE OTJlER
mDE IT WOULD INTERPRET THE CODES TO REPJltESDIT A DI,.FDENT SET OF CHAR­
ACTERS. IN OIlE MODE" TERMED THI: "LETTERS" MODE" ALL TilE L.ETT"'S OF THE
ALPHABET MAY BE. PRINTED. . IN THE "FIGURES" MODE" NUMBERS AND PUNCTUAT-

. JON AilE PRt.TED. THI: "BAUDOT" CODE. IS PRESENTED B&OW.

CHARACTERS
LC UC,

A
B .,
C :
D S
E ·3
F I
6 &
H ,
I ts

J •
)((
L)
M •
N •
o 9
P 121
Q 1
R 4
5
T

BELL
5

U
V
W
X
Y
Z
SPACE

.,
J
2
I
6 ..

CAR. RET.
LINE FEED

NULL
FIGURES
LETTERS

5 LEVEL CODE
BIT POSITIOH

o 0 0 1 1
1 1 0 0 1

" 1 1 1 0
121 1 " 121 1
o 0 " 0 1
o 1 1 0 1

1 1 0 1 "
1 " 100
ttJ 0 1 1 0
o 1 0 1 1
o 1 1 1 1
10010
1 1 1 0 0
o 1 1 0 0
1 1 0 0 0
1 0 lie
10111
o 1 " 1 ~
o 0 101

1 0 0 " '"
" 0 1 1 1
1 1 1 1 0
1 0 0 1 1
1 1 1 0 1
1 0 1 0 1
1 0 0 0 1

" 0 1 0 0
o 1 " 0 0
00010
o 0 0 0 0
1 1 0 1 1
11111

OCTAL
CODES

003
031
016
011
001
015
~32

024
00 f\
013
017
022
034
014
030
026
027
012
005
020
007
036
,023
035
025
021
004
010
002
000
033
037

IN THE BAUDOT TABLE SHOWN ABOVE TN'E OCTAL CODES COLUMN WAS SHOWN
ASSUMING TOT TII£ CODES WEllE STeRED. IN THE LEAST SIGNIFICANT BIT POSI­
TIONS OF AN •• 1. R_aSTER WITH THE THREE MOST SIGMIFICANT BITS SET TO 8.
1KE RFADER CAlI NOW SEE TIIAT 16 OF THE POSSIBLE 31. CODES CAli REPRESDIT
TWO DJFFDIJIT CHARACTERS DI'PENDI.S ON WHICH MODE- TIlE MACIIJ.E. IS IN. THE
PUNCTIONS "SPAGE#- "GAftftIA8Z-RETVft8#" "LJIIZ-FEED#" AND "NULL" MEAN TKE
.ME JIlESARDLESS OF 10UCB MODE TIlE MACHINE. IS IN" AND TWO CODES "FIGURES"
MID "LETTERS" ARE USED TO SWITCR TilE MODE OF Tit! MACHINE. WIIILE EVPY-
1MINa MY IEDI FINE AT THIS POIIIT .. IT 15 lllPOftTANT TO DISCOSS HANDLING

6 - 6

1HE CODE AS PART OF AN 1/0 ROUTINE BECAUSE THERE IS A SUBTLE FACTOR THAT
CAN BE OVER-LOOKED BY SOME BEGINNING PROGRAMMERS!

IN ACTUAL OPERATION .. A BAUDOT TELETYPE OPERATES IN THE "MODE:-' THAT
IT WAS LAST PLACED IN BY A "FIGURES·f OR "LETTERS" KEY AND REMAINS IN
THAT MODE UNTIL THE OPPOSITE MODE CODE 15 RECEIVED. THUS .. A MECHANICAL
ARRANGEMENT ACTUALLY SERVES TO "REMEMBER" A "BIT" OF INFORMATION. THE
·MCT THAT AN EXTERNAL MECHANICAL LINKAGE 15 USED TO HOLD A "BIT" OF IN-
FORMATION MOST BE TAKEN IN ACCOUNT IF A COMPUTER PROGRAM IS TO PROCESS
THE CODE WITH PRACTICAL RESULTSI

FOR INSTANCE, IF ONE HAD AN INPUT ROOTINE THAT SIMPLY LOOKED FOR A
flUE BIT PATTERN FROM A BAUDOT DEVICE ONE COULD GET THAT PATTERN IN MANY
INSTANCES ntOM TWO POSSIBLE CONDITIONSO·FTHE TELETYPE MACHINE. FOR IN-
STANCE WHEN THE OPERATOR TYPED AN ··A" OR AN 'f_" MARK. IF THE PROGRAM
\MS DESIGNED TO P~FORM A CERTAIN FUNCTION ON RECEIPT OF THE LETTER itA"
IT WOULD ALSO PERFORM IT I F THE PUNCTUATION .'-" WAS RECEIVEDI TO AVOID
1HAT HAPPENING .. ONE MIGHT INFORM THE HUMAN OPERATOR TO ALWAYS ENTER IN­
FORMATION DURING THAT PART OF THE PROGRAM WITH MACHINE IN THE "LETTERS"
MODE, BUT THAT IS NOT THE SAFEST WAY IN WHICH TO DESIGN A PROGRAM.

INSTEAD, ONE WQULD BE BETTER 0 FF TO ADD A BIT TO THE BAUDOT CODE
\liEN IT VAS MANIPULATED IN THE COMPUTER. THAT WOULD SERVE TO DI FFER~T-
lAT BETWEEN "LETTERS" AND "FIGURES." FOR INSTANCE, THE CODE 000011
COULD BE USED TO INDICATE THE LETTD "A" AND . 100011 TO INDICATE THE
PUNCTUATION "_" MARK. IN ORDER TO INSTITUTE THIS METHOD .. ONE WOULD
HAVE TO HAVE A PftOGl'AM THAT KEPT TRACK OF WHICH MODE THE TELETYPE MACH­
INE VAS OPERATING IN VHIl'EVER IT VAS RECEIVING DATA FROM THE MACHINE,
fN "JIl£MEMBEJIlING" THE LAST. "LETTERS" OR "FiGURES" CODE RECEIVED. FURTH­
ERMORE, IN ORDER TO ENSURE THAT THE MODE WAS PROPEftLY RECEIVED (SUCH AS
WH·EN THE PROGRAM WAS FIRST STARTED OR POWER TURNED ON THE TELETYPE MACH­
INE), IT WOULD BE WISE TO HAVE THE COMPUTER OUTPUT A COMMAND THAT WOULD
PLACE THE MACHINE IN A KNOWN STATE SUCH AS WOULD BE ACCOMPLISHED BY OUT­
POTTING A 'fLETTERS" OR "FIGURES" CODE AT THE START OF SUCH OPERATIONS.
THEN .. FOR STORAGE AND MANIPULATION IN THE COMPUTER, THE INPUT ROUTINE
mULD SET A SIXTH BIT TO A "1" CONDITION WHENEV~ A CODE WAS RECEIVED
WIlLE THE MACHINE VAS IN, SAY, THE "FIGURES" MODE, AND LEAVE THE SIXTH
BIT AS A .,"" WHEN CODES WERE RECEIVED IN THE "LETTERS" MODE. THE SIX
BIT CODES COULD THEN BE MANIPULATED AND STORED BY THE PROGRAM IN MUCH
'!HE SAME MANNER AS ONE MIGHT PROCESS "ASCII" CODES WITH THE ABILITY TO
IMMEDIATELY RECOGNIZE THE CLOSE TO 61 DIFFEftmT CHARACTERS. WHm IT WAS
IESIRED TO OUTPUT ·INFORMATION, THE SIXTH BIT WOULD BE USED TO INDICATE
WHETHER IT WAS NECESSARY TO FIRST OUTPUT A "FIGURES" OR "LETTERS" CODE
TO SET THE JllACHINE IN THE PROPER MODE. (IT WOOLD NOT BE NECESSARY TO
OOTPUT A "FIGURES" Oft "LETTERS" MODE COMMAND BEFORE EVERY CHARACTER WAS
SENT BECAUSE ONE COULD USE AN ALGORITHM THAT WOULD ONLY SEND A "MODE"
COMMAND WHEN THE "SIXTH BIT" WAS NOTED TO HAVE CHANGED FROM THAT PRESENT
w.HEN THE PREVIOUS CHARACTER WAS TRANSMITTED).

TWO SAMPLE ROUTINES FOR PERFORMING SOCH A FUNCTION.. ONE FOR INPUT­
TING DATA FROM A BAUDOT MACHINE, AND ONE fOR OUTPUTTING DATA TO SUCH A
~CHINE, WILL BE ILLUSTRATED BELOW.

MNEMONIC
.. _ ---------

BAUDIN, 1A~ 037
CAL OUTPUT
CAL LETCOD

INBAUD, CAL INPUT

COMMENTS
.-.. _-_ _-----

/LOAD "LETTERS" CODE INTO ACCUMULATOR
ICALL ROUTINE TO SEND BAUDOT CHAR
IINITIALIZE REG '9B" TO "LETTERS"
INOw ACCEPT BAUDOT CHARS 1M MACHINE

6 - .,

-------------- --------------

Flacon.

CPI .33
CTZ ,.laCOD
CPt .31
CTZ LITCOn
ADB
CAL MAIlIP
JMP I.BAOD
LBI •••
RET

IIEE I,. -,.ISURU" CODE
lao In UP "I" AS SIXTH POSITION BIT
ISBS. I t "LETT_I" CODE
180 SIT UP "8" AS SIXTH POSITION BIT
IADD 'N STATUS 0,. SIXTH BIT POSITION
IUS ER SUBJitTN TO PROC ESS DATA
'IGET IIEXT CHAR III SE8UlliC! I' APPLICABLE
ISET SIXTH BIT. IN "B" • 1
IR !!TURN TO MAl Ii itO UT'1 N!

LETCOD~ ,LSI ••• /S£T· SIXTH BIT, I. "B" • •
RET IRETUIl. TO MAIN ROUTINE

. TIlE IlEAD-" SHOULD NOTE THAT THEftE AilE ACTUALLY TWO ENTIty POINTS TO
1IIE ROUTINE dUST PRES_TED. THE St1BROOTINE "BAUDIN" SHOULD BE CALLED
10 INITIALIZE THE CONDITION OF THE BAUDOT MACHINE WHEREVER THE· PROGRAM
IS FIRST STARTED OR AT OTHER TIMa WKIN THE ·'MODE" OF THE MA~HINE IS NOT
CERTAIN. O.CE THE MACHINE AND ROUTINE HAS BEDI "INITIALIZED" THEN THE
PROGRAM. MAY BE CALLED AT "I.BAUD" AS LONG AS SOME OTHER ROUTINE DOES NOT
INTDFD'E WITH THE STATUS 0,. REGISTER "B." THE RDDD WHO IS INTERESTED
IN "LeGIC". 1116HT NOTE THAT RESISTER "S" IN THE ABOVE PJltOGRAM ACTS AS A
"n.IP-rLOP" TO JIl"'DIB~ THE -MODE" '111 WHICH THE TELETYPE IS OPD'ATING.

TIll ROUTINE IHOP NEXT ALSO HAS TVO !lITRY POINTS. THE FIRST T~MED
"BAUDOT" IS USED om THE FI1l5T CHARACTER 0 F A STRING 0 F CHARACTERS IS
1'0 BE OtITP1.'JTTEDIN ORDER TO "INITIALIZE" THE BAUDOT MACHINE AND SET UP
REGISTER "e." TRE INTRY POI.T "OTBAOD" MAY THOI BE USED UNTIL· THE
"IIODE" MEMORY RaSISTER ,"e") IS IIiTERFDED WITH BY ANY OTHm EXTERNAL
RaUTI.E. NOTE TOO" THAT· THE ItO.UTIIIE BELOW EXP~TS THE CHARACTER TO BE
OOTPUT?m TO BE RESIDING. IN REGI.TD "B" 1fHDtTHE SUBROUTINE IS CALLED I

.... £MONIC COMMENTS

-------------- --... -~-- --.... .-
BAUDOT" LAI 831 ILOAQ "LETTDS" CODE. INTO ACCUMULATOR

CAL OUTPUT ICAU ROOTINE TO saD BAUDOT CHARACTER
LCI ••• ISET INDICATOR FOil "LETTERS". IN "c"

OT8Atn)" LAB . IMOVE CHAR Ji'M "B" 'TO ACCOMULATOR
NDI I.. ISEE I F SIXTH BIT • 1" I' YES • ·'FIGURES"
.ITt LTCHAR /CHARACTEIl" I F NOT • "LETT"'S" CHARACTER
NDC I'IF "n8" SEE IF LAST OUT ALSO "FIG"
dTZ LASLET II F I RIJIE TH. LAST WAS A "LETTERS"

OMCOD, LAB IPUT PIlUIMT CHARACTER IN ACCUMULATOR
CAL OUTPUT ISblD THE BAUDOT CHARACTER '.
RET 1.!:TUft. TO CALLING ROUTINE

LASLET. LAI '33 ISI.CI. LAST WAS "LTJIl" PUT e'FIG" CODE
Ulna" CAL OUTPUT IlaD CODE

LeB IIAVElLATEST IN REa "C" FOR COMPARISON
"MP OUTCH' 'SDID CUltWDlT CHAftACTER

L7CHAR. LA, ,.1 ISET lIAR &-ISE. I F LAST VAS "LETTD'S"
Moe ,.., COIIPABIIO. OF SIXTH BIT POSITION
dTZ OUTCOD 111" LAH WAS AUO "LETTDS"
LAI '3' . .I_I" 1107. '.D "LETTD!" CODE FIRST
.IMP LASP',e 1ft .DlI •• ABOVE RTII TO SOlD ""ETTERS" CODE

I

IT lion_ DIlIRA8 .. B TO SA.V&. In, llIw •• a TllAT WII.L. CO_VERT BETWEEN

6 - •

(If! TYPE OF 1/0 CODE AND ANOTHER" SUCH AS BETWEEN '·ASCII" AND "BAUDOT.M
'tHIS MAY BE DESlltED FOR A NUMBER OF RFASONS - FOR INSTANCE BECAUSE ONE
HAS ONE TYPE OF INPUT DEVICE USING ONE CODE AND A DIFFEftENT OUTPUT DE­
VICE USING ANOTHER CODE. OR" ONE MIGHT DESIRE TO USE A PARTICULAR PRO­
GftAM THAT WAS VRITTDt TO OSE ONE KIND OF CODE" WITH A MACHINE THAT USED
A DJ DDT KIND OF CODE" WITHOUT HAVING TO MODI" A LOT OF LOCATIONS
IN THE ORIGINAL PROGRAM THAT MIGHT HAVE BEEN TESTING FOR SPECIFIC 1/0
CODES FROM AN EXTERNAL DEVICE. IN SOCH CASES" THE COMPUTER'S CAPABILITY
1n PERFORM CONVERSION FUNCTIONS IS READILY CAPITALIZED UPON BY CONSTRUC­
TING A "LOOKUP" TABLE AND USING A SUI TABLE PROGRAM TO CONVERT FROM ONE
CODE TO ANOTHER.

FOR EXAMPLE" SUPPOSE IT VAS DESIRED TO USE A "BAUDOT" MACHINE WITH
A PROGRAM THAT VAS D£VELOPED ORIGINALLY TO OPERATE WITH A MACHINE THAT
USED "ASCII" CODE. ONE COULD PROCEED TO FIRST CONSTRUCT A "LOOKUP"
TABLE SIMILAR. IN FORMAT TO THAT SHOWN HEftEr

ADDRESS CONTENTS COMMDiTS --_ .. _----- 4e __ .. ~ __ _ ----.... ----
18 8"" 381 '4A" (ASCII)
18 8el '1'13 "A" (BAUDOT)
11 ""2 382 "B" (ASCII)
f8 883 031 "B" (BAUDOT)

• • • • •
• • • • •
• • • • •
• • • • •

19 976 2.8 ·'SPACE" (ASCII)
11 877 0"~ "SPACE" (BAUDOT)
II 118 241 ... " (ASCII)
11 III '115 ".tt (BAUDOT)

• • • • •
• • • • •
• • • • •
• • • • •

II 174 277 n? tt (ASCI!')

1" 175 0~1 "1 •• (BAUDOT)
19 176 38" (ASCII)
II 177 118 SUBSTITUTE "NULL" (BAUDOT)

IN CONSTRUCTING THE TABLE" ONE COULD ELECT TO LFAVE OUT OR "IGNORE"
afARACTERS THAT VERE NOT REPRESDITED BY BOTH CODES" OR TO SUBSTITUTE A
"SUBSTITUTE" CHARACTER VHnf ONE CODE DOES NOT HAVE AN EIltrlVALENT CHAR-
N::TER. EITHER METHOD RE.UIRES CONSIDERATION WHEN THE SEARCH ROUTINE IS
DEVELOPED. THE FORMER METHOD LEAVES THE POSSIBILITY THAT A HUMAN OPERA­
TOR MIGHT TYPE IN ,. CHARACTER THAT DID NOT EXIST IN THE TABLE AND SO THE
PROGRAMMER WOULD HAVE TO BE CAREFUL TO "LIMIT" THE TABLE SFARCH ROUTINE.
NlTE THAT I F EVERY POSSIBLE ENTRY EXIST IN THE TABLE .. THEN THE TABLE
SEARCH ROtJTINE WILL BE "SELF LIMITING" IN THAT A MATCH WILL ALWAYS BE
FOUND. ON THE OTHER HAND .. THE LATTER CHOICE 0 F USING A SUBSTITUTE CHAR­
ACTER. RE8UIRES THAT THE TABLE BE ORGANIZED SO THAT THE "PREFERRED" CHAR­
ACTER FOR CASES OF MULTIPLE SUBSTITUTION WILL BE THE ONE FOUND "FIRST"
'Bt THE TABLE LOOKUP ROUTINE. FOJIl INSTANCE" THERE ARE SEVERAL CHARACTERS
BESIDES THE "'" MARK" SUCH AS ••] •• AND "[" WHICH COULD BE INCLUDED IN THE
ABOVE TABLE WHICH ARE REPRESDfTED BY ASCII CODES BUT NOT BAUDOT CODES.
IF ONE DECIDED TO. INCLUDE THElt.IN THE TABLE" BUT HAVE "NULL" CHARACTERS
AS THEIR CONVERSION aDIVALENT .. ONE CAN SEE THAT A PROBLDt ARISES WHEN
C»tE USES THE SAME TABLE TO CONVUlT FftOM BAUDOT TO ASCI I AS NOW THERE

6 - 9

ARE SEVDAL PLACES IN THE TABLE THAT HAVE THE "NULL" CODE. AS WILL BE
CLEAR SHORTLY~ THE ROUTINE THAT CONVERTS FROM BAUDOT TO ASCII~ 'WILL AL­
laYS REPJIlESDlT A "NULL" CHARACTER, IN BAUDOT AS A " ••• SYMBOL IN ASCI I BE­
CAUSE THE BAUDOT ROUTINE "SEARCHES" THE TABLE flItOH HIGHEST ADDRESS TO
(DWEST AND WILL FIND THE "NOLL" TO "." Elf TRY FIRST. NATURALLY~ THE TAB-
LE COULD BE RE-ORGANIZED SO THAT SOME OTHER "NULL" CONVERSION mTRY WAS
IDCATED FIRST. OR~ A DI FFEftgT TYPE OF LOOKUP 'ROUTINE THAN THE ONE TO
BE PRESEWTED CAN BE DEVELOPED. THESE FACTORS ARE SIMPLY BEING POINTED
OUT TO INCREASE.THE READER'S AVAPlEJfESS AS TO THE TYPES OF FACTORS THAT
t«JST BE CONSJ DEfIED WHDf PERFORMING SUCH OPERATIONS.'

A ROUTINE THAT WILL USE THE "LOOKup·' TABLE TO CONVEJtT "ASCII" CHAR­
N;TERS TO "BAUDOT·· IS ILLUSTRATED' NEXT. THIS PROGRAM~ AND THE "BAUDOT"
ROUTINE DISCUSSED EARLIER COULD BE USED TO OUTPUT CHARACTERS FROM A
PROGRAM THAT VAS ACTUALLY DOING INTERNAL PROCESSING WJTH ASCII CODES.

MNDtONIC COMMENTS

ASBAUD", LHI 018 ISET PAGE ADDR PNTR TO LOC OF TABLE
LLI 000 ISET LOW ADDR PNTR TO ·'TOP" OF TABLE

FASCII, CPM ICOMPARE (ASCII) CODE IN ACC TO CONTENTS
JTZ FN DB DO IOF TABLE.. I F MATCH~ DO CONVERSI0tl
INL IOTHERWISE ADVANCE LOW ADDft POINTER
INL ITO NEXT ·'ASCI Itt CODE LOCATION IN TABLE
JMP FASCI I lAND KEEP LOOKING FOR A MATCH

FNDBDO~ INL IWHEN HAVE ASCII MATCH", ADV PNTR 1 LOC
LAM lAND FETCH BAUDOT EQUIVALENT INTO ACC
RET IEXIT LOOKUP ROUTINE

THE ABOVE 'ROUTINE ASSUMES THAT THE CODE (IN ASCII) FOR A CHARACTER
THAT EXISTS IN THE TABLE IS IN THE ACCUMULATOR WHEN THE ROUTINE IS ENT-
ERED. NOTE THAT THE ROUTINE DOES NOT TEST FOR THE- "END" OF THE TABLE
BECAUSE OF THAT ASSUMPTION. IF FO~ ANY REASON IT MIGHT BE POSSIBLE FOR
A CODE TO BE IN THE ACCUMULATOR THAT WAS NOT IN THE TABLE, THEN IT WOULD
BE NECESSARY TO ADD AN '-DlD OF TABLE'· TEST EACH TIME THE TABLE POINTER
~S ADVANCED AND TO TAKE APPROPRIATE ACTION IF "NO MATCH" WAS FOUND IN
11-IE TABLE.

THE ND(T ROUTINE DOES ESSDlTIALLY THE REV~SE PROCESS, USING THE
~ME TABLE~ TO CONVERT BAUDOT CODES TO ASCII CODES. IT COOLD BE USED
ALONG WITH THE PREVIOUSLY DESCRIBED "BAUDIN" ROUTINE TO ACCEPT CHARAC­
TE7tS FROM A BAUDOT MACHINE AND CONVDtT THEJ4 FOR USE IN A PROGRAM THAT
UfILIZED ASCII CODES. AS IN THE ABOVE ROUTINE~ THE PROGRAM ASSUMES
tHAT A VALID BAUDOT CODE IS IN THE ACCUMULATOR WHEN THE ROUTINE IS CAL­
LED. NOTE THAT THE ROUTINE STARTS SEARCHING THE TABLE IN THE OPPOSITE
DIRECTION THAN 'THE ROUTINE PRESENTED ABOVE.

MNEMONIC __________ 41._ .. __ _

BAUDAS~ LHI 811
LLI 177

FBA1!JDO ~ CPM
JTZ FNDASC
DeL
DCL
.IMP FBAUDO

COMMENTS

ISET PAGE ADDR PNTR TO LOC OF TABLE
ISET LOW A DOl'- PNTR TO ·'SOTTON·· OF TABLE
ICOMPARE (BAUDOT) CODE IN Ace TO CONTENTS
IOF TABLE~ IF MATCH~ DO CONVERSION
IOTHERWISE DECREMENT LOW ADDR POINTER
ITO NEXT ·'BAUDOT'" CODE LOCATION IN TABLE
lAND KElP LOOKING FOR A MATCH

6 - 1"

MNEMONIC

FNDASC" DCL
LAM
RET

COMMDlTS

------------_ ..
IWHEN HAVE BAUDOT MATCH" DEeR PNTR I LOC
lAND FETCH ASCI I EQUIVALENT INTO ACC
IEXIT LOOKUP ROUTINE

NATURALLY" THE TECHNIIUES ILLUSTRATED TO CONVERT BETWEEN "ASCII"
AND "BAUDOT" CODES MAY BE APPLIED TO MANY OTHER TYPES OF CODES., INDEED"
11iE SMALL COMPUTER MAKES AN IDEAL DEVICE FOR "COUPLING" aETWEm A VAR­
IETY OF 1/0 DEVICES" PARTICULARLY IN COMMUNICATION APPLICATIONS" THUS
ENABLING MACHINES OF DIFFERENT CHARACTERISTICS AND USING DIFFERENT CODES
10 COMMUNICATE WITH ONE ANOTHER.

A CONCEPT THAT WILL BE DISCUSSED MORE FULLY IN ,THE NEXT CHAPTER WILL
BE BRIEFLY MENTIONED AT THIS TIME TO POINT OUT AN IMPORTANT CONCEPT WHEN
DEALING VITH 1/0 DEVICES CONNECTED TO THE COMPUTER. AS THE READER UN-
DJUBTABLY KNOWS" M~NY MACHINES THAT MIGHT BE CONNECTED TO A COMPUTER ARE
MUCH SLOWER IN OPERATION" IN FACT On-EN TIMES ORDERS OF MAGNITUDE SLOW­
St" THAN THE BASIC OPERATING CYCLE OF A COMPUTER. FOR INSTANCE" AN 8008
SYSTEM RElUIRES BUT A MERE 32 MILLIONTHS OF A SECOND IN A TYPICAL SYSTEM
10 EXECUTE AN "INPUT'· INSTRUCTION. THAT IS" IN THAT SHORT AMOUNT OF
TIME IT CAN "ACCESS" AN INPUT PORT AND BRING IN 8 PARALLEL BITS OF IN­
fORMATION INTO THE ACCUMULATOR OF THE CPU.

THE EXTREME SPEED OF THE COMPUTER CAN IN FACT CAUSE PROBLEMS WHEN
PERFORMING 1/0 OPERATIONS I F STEPS ARE NOT TAKEN TO "CONTROL" THE SIT­
u\TION. ASSUME FOR ¥AMPLE" THAT A POlSON DESIRED TO CONNECT AN ELEC­
TRONIC KEYBOARD UNIT" SIMILA~ TO A TYPEWRITER" THAT WOU~D PRESENT THE
ASCII CODE FOR THE KEY BEING DEPRESSED IN PARALLEL ON THE LJNES OF AN
INPUT PORT. IF THE PERSON JUST CONNECTED THE KEYBOARD OUTPUT LINES TO
mE INPUT LINES OF ,AN INPUT PORT" AND WANTED TO DEVELOP A PROGRAM THAT
WULD ACCEPT. INFOJltMATION FROM THE KEYBOARD" THERE WOULD BE A NUMBER OF
RATHER TOUGH PROBLEMS" AND THEY WOULD BE RELATED TO THE SPEED AT WHICH
1HE COMPUTER CAN OPERATE RELATIVE TO THE SPEED AT WHICH A HUMAN CAN DE-
PRESS THE KEYS ON A KEYBOARD. .

SUPPOSE THAT THE KEYBOARD VAS OIRECTLY CONNECTED TO AN INPUT PORT
AND A PROGRAMMER TRI ED TO DEVELOP A ROUTINE THAT WOULD SIMPLY READ THE
CODE BEING SENT' BY THE KEYBO~RD" STORE THE CHARACTOl IN MEMORY" AND GO
(If TO READ THE NEXT CHARACTER. IN THE FIRST PLACE" HOW WOULD THE PRO-
CJtAM BE ABLE TO EVnI TELL IF A KEY HAD BEEN DEPRESSED? TRUE.. ONE COULD
ASSUME THAT I l' NO KEYS VOtE DEPRESSED" THAT THE CODE BEl HG REe EI VED
WOULD BE ALL ZIltO.s" AND A PROGRAM COULD CHECK FOR THAT CONDITION. BUT"
810i I F THAT VAS DONE" THE PROGRAMMER WOULD SOON HAVE ANOTH~ PROBLEM.
liIIEN A KEY VAS ACTUALLY DEPRESSED AND. A "NON-ZEllO" CONDITION RECEIVED"
A SHORT PROGRAM TO PLACE THE CHARACTER IN MEMORY AND ADVANCE THE MEMORY
POINTER WOULD BE ACCOMPLISHED, IN THE ORDER OF A HUNDRED-MILLIONTHS OF
A S~OND. THE POOR HUMAN DEPRESSING THE KEY WOULDN'T HAVE A CHANCE OF
GETTING A FINGER OFF THE DEPRESSED KEY IN THAT AMOUNT OF TIME" AND IN
mCT IT WOULD TAKE ON THE ORDER OF SEVERAL TFBTHS OF A SECOND FOR A PElt-
9)N TO REMOVE A FINGER FROM A KEY. IN THAT AMOUNT OF TIME" THE SIMPLE
INPUT ROUTINE COULD HAVE .tRFAD" THAT SAME CHARACTER AND PACKED IT INTO
MEMORY LOCATIONS A FEW HUNDRED TIMESI NOT EXACTLY THE DESIRED RESULT.
VlAT NOW? WELL" ONE COULD DEVELOP THE INPUT ALGORITHM SO THAT" ONCE A
'~ON-ZERO" CODE WAS RECEIVED" ONE WOULD NOT ACCEPT ANOTHD CHARACTER UN­
TIL A ··ZERO·· CODE WAS OBSERVED. THAT MIGHT IMPROVE THINGS SOMEWHAT" BUT
IT WOULD PRiX:LUDE ACTUALLY BEING ABLE ,.0 RECEIVE A ~ZEftO" CODE (THAf
MIGHT REPRESENT A VALID CONDITION) AND" BECAUSE OF TECHNICAL CONSID­
ERATIONS <SUCH AS "CONTACT .BOUNCE" ON THE MECH4NICAL SWITCHES OF THE

(, .. 11

'I

KEYBOARD) IT WOULD NOT BE A VERY RELIABLE METHOD TO UTILIZE •

. INSTEAD" IT WOUbD BE FAR BETTER TO PLACE AN "INTERFACE" BETWEEN THE
KEYBOARD AND THE COMPUTER INPUT PORT THAT WOULD ACCOMPLISH THE FOLLOW­
ING OBJECTIVES. WHENEVER A KEY ON THE KEYBOARD WAS D~RESSED" THE IN­
TERFACE WOULD "LATCH" (HOLD) THE CODE R:EPRES~TED BY THE KEY IN AN ELEC­
TRONIC "BUFFER" THAT WAS CONNECTED TO THE LINES or AN INPUT PORT. THE
''BUFFER'' WOULD THUS HOLD "DATA" FROM THE KEYBOARD. NEXT" WHEN THE KEY

'THAT HAD BEm DEPRESSED VAS RELEASED" THE "INT~FACEtI WOULD PRESENT A
SIGNAL TO AN INPtrr LINE OF ANOTHER INPUT PORT - TERMED A "CONTROL" PORT.
FINALLY" THE INTUlFACE WOULD HAVE A LINE COMING FROM AN OUTPUT PORT OF
THE COMPUTER" THAT WOULD ALLOW THE COMPUTER TO SIGNAL TO THE INTERFACE
'tHAT IT HAD TAKEN APPROPRIATE ACTION. A DIAGRAM or AN ELECTRONIC INTER-
~CE WITH THE CHARACTERISTICS' DESCRIBED IS SHOWN IN THE NEXT ILLUSTRAT­
ION.

MACHINE
DATA

'OUTPUT

PA,.A
INTO

PORT X

LATe H------t.

STROBE +

NEW
CYC.L E
5 t GNAl.. o

CONTROL
INTO PORT Y

CO.MT.JtOL

OUT OF PORT Z

WITH SUCH AN INTERrACE" ONE COULD DEVELOP A MUCH MORE RELIABLE SYS­
TEM USING AN INPUT PROGRAM THAT WOULD PERfORM IN THE FOLLOWING MANNER.

MNEMONIC

MACHIN" INP Y
JFS MACHIN
INP X
LBA
LAI .81

.. DUT Z
XRA
OUT Z
LAB
RET .

COMMENTS

ICHECK STATUS or ·'CONTROL" FM MACHINE
IIF DATA NOT RFADY - WAIT BY LOOPING
IDATA RFADY NOW' SO FETCH "DATA"
ISAVE "DATA" IN REGISTER "B"
IPREPARE TO PULSE LINE ON PORT "Z"
ISEND LOGIC "1" ON PORT Z CONTROL LINE
ICLEAR ACCUMULATOR
ISOID LOGIC •• " .. ON PORT Z CONTROL LINE
Ift.ESTOIlE "DATA" TO ACCUMULATOR
IEXIT ItTN WITH "DATA" IN ACCUMULATOR

THE ABOVE ROUTINE ASSUMED THAT THE "CONTROL" LINE "'OM THE INTERFACE

6. 12

CAME INTO THE MOST SIGNIFICANT 81T OF THE ACCUM'ULATOR AND THAT THE CON­
TROL LINE GOING TO THE INTERFACE ORIGINATED-rAOM THE LEAST SIGNIFICANT
BIT IN THE ACCOMt1LATOJit. FtJRTHDtMORE" WHILE THE ABOVE ROUTINE "WAITED"
PeR NEW DATA TO AR~IVE FftOM THE EXTERNAL DEVICE BY MONITO~ING THE INPUT
CONTROL PORT CONTINUOUSLY" THE "JFS MACHIN" INSTRUCTION COULD HAVE BEEN
REPLACED BY A DIRECTIVE TO HAVE THE COMPUTER PERFORM SOME OTHER ruNC­
TION(S) BEFORE TESTING INPUT PORT tty .. AGAIN INSTEAD OF WASTING TIME DO­
ING NOTHING I

A SIMILAR TYPE OF INTERFACE" AND SIMILAR PAOGRAMMING TECHNIQUES CAN
BE APPLIED TO A WIDE VARIETY OF DEVICES THAT MIGHT BE CONNECTED TO THE
COMPUTER. WHILE THE EXAMPLE SHOWED BUT ONE LINE BEING USED ON EACH CON-
TROL PORT~ ONE SHOULD NqTE THAT-WITH EIGHT LINES AVAILABLE ON ONE PORT"
~E CAN USE JUST A FEW "CONTROL" PORTS IN A SYSTEM TO MONITOR AND CON­
TROL A LARGE GROUP OF EXTERNAL INSTRUMENTS BY USI~G THE AVAILABLE BIT
POSITIONS.

TESTING FOR ERRORS DURING 1/0 OPERATIONS

IT IS OFTEN .DESIRABLE TO TRANSMIT DATA TO AN EXTERNAL DEVICE THAT
WILL STORE THE DATA IN SOME SORT OF PERMANENT FORM, SUCH AS ON PAPER
TAPE OR MAGNETIC TAPE. THEN" AT SOME LATER TIME" READ THE DATA BACK
INTO THE COMPUTER. DURING SUCH A PROCESS IT IS POSSIBLE FOR ERRORS TO
occtm. THAT IS" BITS OF INFORMATION WITHIN A "WORD" MAY BE ALTERED BE-
CAUSE OF "NOISE" Oft RANDOM E1UtORS OCCURING IN THE 1/0 SYSTEM. WHILE
SUCH ERRORS ARE LIKELY TO OCCUR AT A VERY LOW RATE IN A WELL DESIGNED"
PROPERLY OPERATING 1/0 SYSTEM" IT IS OFTEN DESIRABLE TO UTILIZE TECHNIQ-
UES THAT WILL AT LEAST INDICATE WHEJi AN ERROR HAS OCCURRED. THERE ARE
A VARIETY OF ERROR CHECKING TECHNIQUES AVAILABLE" SOME SO SOPHISTICATED
'DIAT THEY CAN OFTm "CORRECT'· CERTAIN TYPES 0 F OtRORS ,THAT OCCUR DURING
1./0 OpmATIONS. TWO TECHNI8UES WILL BE DISCUSSED HERE. WHILE NEITHER
~E OF THEM HAS ~EftROR CORRECTING" CAPABILITY, THEY ARE CAPABLE OF DE­
TECTING THE MOST COMMON TYPE OF 1/0 ERROR WHICH IS FOR A BIT IN A WORD
CHANGING STATE.

THE FIRST METHOD TO BE .DISCUSSED CONCERNS THE USE OF USING "PARITY"
T!CHNI.UES TO DETECT TRANSMISSION ERRORS. THE TECHNIQUE CONSISTS OF
!XAMINING A GROUP 0 I' BITS FOR THE NUMBER 0 Ii BITS THAT ARE IN THE .f I"
CONDITION WHEN IT IS BEING RFADI ED FOR "TRANSMISSION" AND THEN SETTING
A BIT SET ASIDE FOR THE PURPOSE TO THE STATE THAT WILL MAKE THE TOTAL
NUMBER OF BITS THAT ARE IN THE ,"1" CONDITION EITHEJit AN "ODD" OR .fEVENIt

COUNT (FOR THE iNTIRE GROUP). FOR INSTANCE" I T WAS MENTIONED EARLl Eft
mAT THE "ASCII" CODE·JltEGUIRED 7 BITS TO REPRESENT ALL THE POSSIBLE 128
CHARACTERS DEFINED BY THE CODE" BUT THAT MANY SYSTEMS EMPLOYED AN S'TH
BIT FOR "PARITY" PlJlltPOSES. THUS" THE "ASCII" CODE IS IDEAL FOR USE IN
TfPICAL 8"e8 SYSTEMS BECAUSE THERE ARE EXACTLY 8 BITS TO A COMPUTm
WORD.

FURTHERMORE~ THE 8188 CPU HAS AS PART OF IT'S INSTRUCTION SET" SPEC-
IFIC INSTRUCTIONS TO FACILITATE THE USE OF PARITY TECHNIIOES. REMEMBER
"IHE "PARITY" FLAG THAT VAS DISCUSSED IN THE CHAPTER ON THE 8008 INS,TftUC­
TION SET AND THE VARIOUS CONDITIONAL BRANCHING INSTRUCTIONS THAT USE THE
STATUS OF THE PAftlTY FLAG?

WHEN THE CODES nUll THE "ASCII" SUBSET WERE DESCRIBED FAIlLI Eft, IT VAS
MENTIONJD THAT THE EIGHTH BIT POSITION (MOST SIGNIFICANT BIT) IN THE
USTING WAS ARBITRARILY SET TO THE "I" CONDITION AS THE "ASCII" CODE DID
NOT USE THAT BIT. HOWEVER, THAT BIT POSITION MAY BE USED TO SPECIFY THE
DESIRED "PARITY" IN A SYSTEM WHERE PARITY CH!X:KING IS TO 8E EMPLOYED.

6 - 13

, FOR INSTANCE" I F ONE WANTED 'TO £STABLI SH AN EVEN PARI TV SYSTEM". ONE
WOULD PROCEED IN THE FOLLOWING MANNER.

~AMINE THE SEVEN BITS MAKING UP THE CODE FOR THE CHARACTER TO .BE
~ANSMITTED (ASSUMING "ASCI I", CODE FOR THIS EXAMPLE). . I F THE NUMB.ER 0 I"
BITS IN THE CHARACTER THAT ARE A LOGIC "I" ARE "EVEN,," THAT IS THERE ARE
0" 2" 4 OR 6 BITS IN THE "I" STATE" SET THE 8'TH BIT TO A ""." IF THE
NUMBER OF BITS ARE "ODD,," THAT I S THERE ARE 1" 3" 5 OR 7 81TS IN THE" 1"
STATE" SET THE 8'TH BIT TO A "I" CONDITION SO THAT THE TOTAL NUMBER OF
BITS IN THE ENTIRE GROUP BECOMES AN EVEN NUMBER I SOME EXAMPLES ARE IL­
WSTRATED BELOW.

ORIGINAL 7 BIT ASCII CODE 8 Bl T "EVEN" PARI TY CODE

~-~-----~~-----~----~---~ ---~----~--~--------~-~-

(A) 1 " 8 e 9 9 1 " 1 9 " 9 " " 1
(B) 1 " " " " I 0 " 1 " e 9 9 I " (C) . 1 " " " " 1 1 1 1 " " " " 1 1
(D) 1 " " " 1 " 0 " 1 " 9 0 1 0 e
(E) 1 . " 8 " 1 " 1 1 1 " " " 1 " 1
(8) " 1 1 " '" e " " " 1 1 0 0 0 0·
(1) " 1 1 "

.,
" 1 1 " 1 1 " " " 1

ONE COULD ALSO ELECT TO USE AN "ODD" PARITY SYSTEM BY ESSENTIALLY
REVERSING THE SCHEME SO THAT THE 8'TH BIT IS ALWAYS SET TO MAKE THE TOT-
AL NUMBER OF BITS IN A GROUP THAT ARE IN THE .. I" STATE BE AN "ODD" NUM-
BER. "ASCI Itt CODE USING AN 8 'TH BIT TO PRODUCE AN "ODD PARITY" SYSTEM
IS ILLUSTRATED BELOW FOR SEVERAL CHARACTERS.

ORIGINAL 7 8IT ASCII CODE 8 BIT "ODD'· PARI TV CODE

--------------~--~------- ---~---~~~-----------~-

(A) 1 . ., " "
.,
" 1 1 ·1 .,

" " fa " 1
(B) 1 e I " e 1 " 1 1 " " " 9 1 9
(C) 1 I e I " I 1 e 1 e 0 fa " 1 1
(D) 1 8 " " 1 " " 1 1 " 8 0 1 " 0
(E) 1 .,

" " 1 " 1 " 1 " " " 1 " 1
<0) " 1 1 " fJ e " 1 S 1 1 " 0 " 0
(1) " 1 1 " " I 1 8 e 1 1 " 0 0 1

ONCE ONE HAS SELECTED WHICH PARITY (ODD OR EVEN) TO USE WITH A SYS­
TEM ONE SIMPLY SENDS THE DATA IN THE DESIRED MODE TO THE 1/0 DEVICE.
niOl,,' WHEN THE DATA IS LATER READ INTO THE COMPUTER" A CHECK IS MADE ON
~CH "WORD" 0 F DATA ,,£eEl VED TO DETERMINE I I" THE PARI TY IS CORREX:T. IF
IT IS NOT" TH.EN AN ERROR HAS OCCURRED. SAMPLE ROUTINES TO GENERATE
"EVEN't PARITY WORD,S FOR AN OUTPUT ROUTINE" AND FOR CHECKING FOR ItEVEN"
P-ARITY IN AN INPUT ROUTINE ARE SHOWN HEXT.

MNDtONIC ---.. _-----_ .. _ .. -
SEVDJP~ NDA

JTP GOUT
XRI 218

GO UT " CAL 0 UTPUT
RET

COMMENTS

IAsSUME 7 BIT ASCII CODE, IN ACC# 8'TH BIT
IINIT it, IF PARITY EVEN AS IS" SEND DATA
IOTHERWISE SET ,MSB • 1 TO GET EVEN PARITY
IUSER ROUTINE TO TRANSMIT DATA TO 110
IEXIT EVDJ PARITY GENERATOR ROUTINE

6 - 14

MNEMONIC -- __ .. _------
REVENP., NDA

RTP
JMP PERROR

COMMDlTS

IASSUME DATA FM 1/0 DEVICE IN A'CCUMULATOR
ISET FLAGS., IF EVEN PARITY., ALL O.K.
IIF NOT EVEN PARITY DO USER 'ERROR ROUTINE

SIMILAR ROUTINES ARE FASILY DEVELOPED FOR UTILIZING "ODD" PARITY.
THE PROGRAMMER SHOULD NOTE THAT "PARITY" TECHNIQUES CAN BE USED WITH
VIRTUALLY ANY CODING TECHNIQUE AS LONG AS ONE BIT IS SET ASIDE FOR THE
PAAITY INDICATOR. FOR INSTANCE~ ONE COULD EASILY ADAPT PARITY TECH­
NIQUES FOR THE BAUDOT CODE DISCUSSED EARLIER PROVIDED THAT THE 1/0 DE­
VICE COULD HANDLE THE EXTRA BIT. THAT MIGHT NOT BE POSSIBLE WITH A
BAUDOT tELETYPE MACHINE BUT IT MIGHT BE APPLICABLE~ SAY, IF BAUDOT CODE
WAS BEING WRITTEN ON A ,MAGNETIC TAPE UNIT WHERE EXTRA BITS COULD BE AD­
DED TO THE CODE AND PROCESSED BY THE 1/0 UNIT.

THE READER SHOULD ALSO BE AWARE OF THE FACT THAT THE USE OF PARITY
CHECKING TECHNIQUES IS NOT INFALLIBLE. IT DOES DETECT ERRORS THAT RE­
SULT IN AN ODD NUMBER OF BITS CHANGING STATE WITHIN A GROUP~ BUT NOT IF
AN EVEN . NUMBER OF STATE CHANGES OCCUR. 'IT IS THUS MOST USEFUL IN A SyS­
TEM WHERE THE EX'PECTED PROBABILITY OF· MORE THAN ONE ERROR OCCURRING IN A
GROUP OF EIGHT BITS IS EXTREMELY LOW. THE PROGRAMMER MIGHT ALSO WANT TO
CONSIDER., WHEN USING A, ·'PARITY·· CHECKING SCHEME~ THE POSSIBILITY OF
TRANSMITTING EACH GROUP OF BITS TWICE. THEN~ WHEN DATA IS READ BACK
FROM THE 1/0 DEVICE., AN ALGORITHM THAT WILL SKIP THE SECOND GROUP IF THE
GROUP IS RECEIVED CORRECTLY THE FIRST TIME, OR READ THE SECOND GROUP IF
AN ERROR WAS DETECTED IN THE FIRST GROUP., CAN BE UTILIZED. SUCH A FOR­
MAT., WHILE REQUIRING A LONGER TRANSMIT AND RECEIVE TlME~ CAN RESULT IN
HIGHLYR!LIABLE 1/0 DATA HANDLING OPERATIONS.

ANOTHER ERROR CHECKING METHOD THAT IS OnEN USED WHEN PASSING DATA
TO AND FROM 1/0 DEVICES. IS TERMED THE "CHECK-SUM" TECHNIQUE •. THE METHOD
IS IUITE SIMPLE 'IN APPLICATION YET REMARKABLY POWERFUL IN DETECTING ER­
RORS. THE TECHNIIUE CONSISTS OF SIMPLY MAINTAINING A ONE REGISTER SUM
OF ALL THE DATA TRANSMITTED WITHIN A "BLOCK." THAT IS~ AS EACH WORD IS
SENT OUT., IT IS SUMMED WITH A REGISTER THAT CONTAINS THE SUM OF ALL PRE~
VIOUS DATA VORDS TRANSMITTED IN THE. BLOCK. (OVm-FLOWS IN THE SUMMING
REGISTER ARE IGNORED). AT THE END OF A BLOCK OF DATA., THE TWO'S COMPLE­
MOlT OF THE SUM THAT HAS BEEN COMPILED IS SENT AS THE FINAL PIECE OF
D\TA IN THE BLOCK.

WHEN THE BLOCK OF DATA IS READ BACK INTO THE COMPUTER A SIMILAR SUM
IS FORMED AS EACH DATA VORD IS RECEIVED. THEN., WHEN THE LAST PIECE OF
MTA IS RECEIVED., WHICH IS THE TWO'S COMPLEMENT OF THE "CHECK-SUM," THAT
~LUE IS ADDED TO THE SUM OBTAINED FROM ALL THE PREVIOUS DATA WORDS IN
THE BLOCK. THE RESULT, IF NO TRANSMISSION ERRORS HAVE OCCURRED., WILL BE
ZERO - THE RESULT OF ADDING ANY NUMaER TO IT'S TWO'S·COMPLEMENT. IF IT
IS NOT Z ~o., THDI A TRANSMISSION ERROR HAS OCCURED. THE METHOD IS
SIMPLE AND QUITE RELIABLE. THE READER CAN READILY DETERMINE., THAT IF
etRORS HAVE OCCURRED., IT WILL AFFECT THE VALUE OF THE SUM AS IT IS FORM­
ED., AND THUS LIKELY RESULT IN A NON-ZERO VALUE AS A FINAL RESULT WHEN
T.KE CHECK-SUM AND IT'S TWO'S COMPLEMENT ARE ADDED. (NOTEI IT IS THEOR­
ErICALLY POSSIBLE FOR "U5T THE RI GHT NUMBER 0 F ~RORS TO OCCUR WHEN
READING A BLOCK OF DATA TO RESULT IN A "ZEPtO" CONDITION BUT IT IS QUITE
SMALL - HARDLY DOUGH TO LOSE SLEEP OVER) I

A ROUTINE FOR GENERATING A CHECK-SUM AND PLACING THE TWO'S COMPLE­
MENT OF THAT VALUE AS THE LAST WORD SENT IN A BLOCK OF DATA., FOLLOWED BY

6 - 15·

MNEMONIC COMMENTS --------......... _- ... _ -.--_-

A ROUTINE THAT WILL READ BACK A BLOCK OF DATA USING A CHECK-SUM TECH­
NIQUE AND TEST TO SEE I F ANY ERRORS OCCURED IS SHOWN BELOW.

SCKSUM" LHI XXX
LLI YYY
'LEI ZZZ
LDI 000

NXCKSM" LAM
ADD
LDA
LAM
CAL OUTPUT
INL
DCE
JFZ NXCKSM
LAD
XRI 377
ADI 001
CAL OUTPUT
RET

RCKSuM" LHI XXX
LLI YYY
LEI ZZZ

LDI """ INCKSM" CAL INPUT
LMA
ADD
LDA
INL
DCE
JFZ INCKSM
CAL INPUT­
ADD
RTZ
JMP CKSMER

ISET PAGE ADDR WHERE BLOCK OF DATA STORED
15ET LOC ON PAGE FOR START OF DATA BLOCK
ISET I WORDS IN BLOCK COUNTER
ISET CHECK-SUM REGISTER TO " AT START
IFETCH DATA WORD FROM MEMORY
IADD PRESENT DATA TO CHECK-SUM VALUE
ISAVE NEW CHECK-SUM VALUE
IRESTORE ORIG DATA WORD FROM MEMORY
IOUTPUT THE DATA WORD TO 1/0 DEVICE
IADVANCE MEMORY POINTER
IDECREMENT WORD COUNTER
IIF CNTR NOT "" FETCH NEXT DATA WORD
IPUT CHECK-SUM VALUE IN ACCUMULATOR
I FORM (TWO' 5 COMPLEMENT VALUE
lIN STANDARD MANNER
ISEND 2 '5 COMPLEMENT OF CK-SUM AS LAST
IWORD IN BLOCK AND EXIT ROUTINE

ISET PAGE ADDR WHERE BLOCK OF DATA GOES
ISET STARTING LOC ON PAGE FOR DATA
ISET , WORDS IN BLOCK COUNTER
ISET CHECK-SUM REGISTER TO " AT START
IFETCH DATA FROM 1/0 DEVICE
ISTORE DATA WORD IN MEMORY
IADD NEW DATA TO CURRENT CHECK-SUM VALUE
ISAVE NEW CHECK-SUM VALUE
IADVANCE MEMORY POINTER
IDECREMENT WORD COUNTER
IGET NEXT DATA WORD 1 F CNTR NOT 0
INEXT WORD FROM 1/0 IS 2'S COMP OF CK-SUM
IADD IT TO CHECK-SUM FORMED BY DATA
IIF RESULT IS 0" O.K." EXIT ROUTINE
10THERWISE GO TO USER ERROR ROUTINE

THE ABOVE ROUTINES" AS THE READER WILL NOTE" ASSUME THAT DATA BLOCKS
ARE ONE PAGE OR LESS IN LENGTH AND DO NOT CROSS PAGE BOUNDARI ES. HOW­
EVER" BY THIS TIME THE READER SHOULD HAVE LITTLE DIFFICULTY WRITING A
CHECK-SUM ROUTINE THAT COULD HANDLE LARGER BLOCKS.

THE NEXT CHAPTER WILL CONTAIN MORE INFORMATION OF INTEREST TO THOSE
DEVELOPING PROGRAMS FOR I/O' OPERATIONS THAT REQUIRE CONSIDERATION OF
''REAL-TIME'' PARAMETERS.

6 - 16

REAL-TIME PRO GRAMMING

REAL-TIME PROGRAMMING AS DISCUSSED IN THIS MANUAL APPLIES TO THE DE­
VELOPMENT OF PROGRAMS WHOSE PROPER EXECUTION ARE DEPENDENT ON THE LENGTH
OF TIME IT TAKES FOR THE COMPUTER TO PERFORM AN OPERATION OR" SEAl ES 0 F
INSTRUCTIONS.. THE NEED FOR REAL-TIME PROGRAMMING I S INVARIABLY RELATED
TO THE RECEIPT OF INFORMATION FROM DEVICES AT SPECI FIC TIMES OR THE CON­
TROL OF DEVICES lXTERNAL TO THE COMPUTER WHOSE PROPER OPERATION DEPEND
tPON RECEIVING COMMANDS FROM THE COMPUTER AT SPECIFIC TIMES.

THE DISCUSSION OF THE SUBJECT OF REAL-TIME PROGRAMMING HAS BEEN DE­
FERRED TO THE LATTER PART OF THIS MANUAL AS REAL-TIME PROGRAMMING IS
GENERALLY MORE DI FFICULT THAN THE DEV£LOPMENT 0 F PROGRAMS THAT ARE NOT
RESTRICTED BY EXECUTION TIMES. THE REASON IS SIMPLY THAT IN ADDITION TO
THE "LOGIC" AND '·TECHNIQUEtt FACTORS THAT THE PROGRAMMER MUST CONSIDER
WHEN DEVELOPING ANY PROGRAM~ THE PROGRAMMER MUST NOW ADD IN THE FACTOR
OF HOW MUCH TIME IT WILL TAKE FOR THE COMPUTER TO EXECUTE VARIOUS IN­
STRUCTIONS AND INSTRUCTIONAL SEQUENCES. THE PROBLEM IS REALLY ONE OF
"COMPLICATION ."

HOWEVER~ REAL-TIME PROGRAMMING I F OFTEN VITALLY NECESSARY IN CERTAIN
APPLICATIONS AND HENCE THE PROGRAMMER MUST BECOME AWARE OF SOME OF THE
CRITICAL ASPECTS OF SUCH PROGRAMMING. THE READER SHOULD NOT~ HOWEVER~
BE OVER-WHELMED BY THE PROSPECTS OF SUCH COMPLICATIONS. FOR~ ONCE ONE
HAS AN UNDERSTANDING OF STANDARD MACHINE LANGUAGE PROGRAMMING PROCEDURES
AND HAS GAINED A LITTLE EXPERIENCE~ WHICH ONE SHOULD HAVE OBTAINED BY
THE TIME ONE IS DELVING INTO THIS SECTION~ ONE SHOULD FIND THE ASPECTS
OF REAL-TIME PROGRAMMING SIMPLY "ONE STEP UP" AND AN EJOYABLE CHALLENGE.

AS WITH MANY OTHER ASPECTS OF PROGRAMMING~ PROPER PREPARATION SUCH
AS CLEARLY DEFINING THE PROBLEM TO BE HANDLED~ AND PROCEEDING IN AN OR­
DE1ILY FASHION~ CAN GREATLY FASE THE OVER-ALL TASK OF DEVELOPING REAL-
TIME PROGRAMS. .

THE LASt SEVERAL PAGES OF CHAPTER ONE PRESENTED THE TYPICAL EXECU­
TION TIMES FOR THE VARIOUS CLASSES OF INSTRUCTIONS AVAILABLE. THE TIMES
SHOWN ARE THOSE FOR AN 8808 UNIT WHOSE MASTER CLOCK HAS BEEN ADJUSTED TO
A NOMINAL FREQUENCY OF 5"0 KILOHERTZ. WHEN GETTING DOWN TO PRACTICAL
APPLICATIONS~ ONE MUST REALIZE THAT ANY SYSTEM WILL HAVE SOME FINITE
DEVIATION FROM THE NOMINAL FREQUENCY. FOR INSTANCE~ IF AN 8088 SYSTEM
~S "A CRYSTAL CONTROLLED MASTER CLOCK~ THE POSSIBLE VARIATION FROM THE
tl)MINAL FR!:QUDlCY MIGHT BE IN THE ORDER OF 0.05 TO 0.1 PERCENT. SOME
ee88 SYSTDIS MIGHT HAVE RESISTOR-CAPACITOR CONTROLLED MASTER· CLOCKS AND
THE POSSIBLE VARIATION FROM THE NOMINAL COULD BE CONSIDERABLY WIDER -
tP TO ~ OR 5 PERCENT. IN ANY EVENT~ WHEN CONTEMPLATING THE DEVELOPMENT
OF ~EAL-TIME PROGRAMS~ ONE MUST ALWAYS TAKE INTO ACCOUNT THE POSSIBLE
VARIATION FROM NOMINAL 0 F THE MASTER CLOCK FREQUmcy .. AND IN FACT SHOULD
PLAN PROGRAMS TO OPE7tATE UNDER ··WORST CASE" VARIATION CONDITIONS. THUS ..
IF ONE WAS THINKING 0 F USING AN 80"S SYSTEM TO CONTROL A PROC ESS THAT
REQUIRED TIMING ACCtmACI ES OF 0.01 PERCmT~ ONE COULD IMMEDIATELY STOP
CONSIDERING USING A COMPUTER THAT HAD A MASTER CLOCK ACCURATE TO'ONLY
0.05 PERCINTI A SECOND CONSIDERATION ABOUT WHETHER TO USE A COMPUTER TO
CONTROL TIME-DEPENDENT EVmTS~ INVOLVES HOW CLOSE TOGETHER EVENTS THAT
ARE TO BE CONTROLLED NEED TO OCCUR. IT CAN BE OBSERVED BY EXAMINING THE
INFORMATION AT THE END OF CHAPTER ONE~ THAT ALMOST ALL THE INSTRUCTIONS
REQUIRE A MINIMUM 0"' 20 MICROSECONDS TO BE EXECUTED. THUS~ O~E CANNOT
PLAN ON USING THE COMPUTER TO CONTROL EVENTS THAT ARE LESS THAN THAT FAR
APART IN rIME. IN FACT~ BECAUSE 1/0 INSTRUCTIONS THEMSELVES TAKE 2~ AND
32 MICROSECONDS~ AND BECAUSE THOSE INSTRUCTIONS WOULD INVARIABLY BE RE­
QUIRED TO DEAL WITH EXTERNAL DEVICES~ ALONG WITH THE FACT THAT ONE WILL

., - 1

ALMOST CERTAINLY WANT TO DO SOME OTHER INSTRUCTIONS BETWEEN I/O,COM­
MANDS~ IT IS A PRETTY GOOD RULE OF THUMB TO DISQUALI FY THE USE OF AN
8008 SYSTEM AS A REAL-TIME CONTROLLER 1 F ANY TWO EVENTS DEPENDENT UPON
TIMING FROM THE COMPUTER WILL OCCUR WITHIN 100 MICROSECONDS. A SECOND
RULE OF THUMB TO IMMEDIATELY REJECT THE USE OF SUCH A SYSTEM AS A TIME
DEPENDENT CONTROLLER., ONE THAT I S PRETTY MUCH DERI VED FROM EXPERl ENC E.,
IS IF THE APPLICATION WILL REQUIRE MUCH MORE THAN 1000 1/0 OPERATIONS
PER SECOND. UNLESS., SUCH OPERATIONS ARE STRICTLY REPETITI VE AND THE
~EVIOUS RULE CAN BE MET. THIS SECOND RULE OF THUMB IS DERIVED FROM
PRACTICAL EXPERlmCE WITH "PRC>GRAMMING OVE!iHEAD" WHICH RESULTS WHEN A
~RI £TY OF TIME-DEPENDENT EVENTS MUST BE "JUGGLED" IN A REAL-TIME PROG­
RAM.

THE PROSPECTIVE REAL-TIME PROGRAMMER SHOULD BECOME FAMILIAR WITH
1HE LENGTHS OF TIME REQUIRED TO ~ECtJTE THE VARIOUS CLASSES OF INSTRUC-
TIONS. ONE OF THE FIRST NEW HABITS TO LEARN WHEN PREPARING REAL-TIME
PROGRAMS IS TO WRITE OOWN THE EXECUTION TIME REQUIRED FOR EACH INSTRUC­
TION ALONGSI DE THE MNEMONIC AS THE PROGRAM IS WRI TTEN. I T THEN BECOMES
PN EASY MATTER TO FIGURE OUT ttTOTALS" FOR VARIOUS PORTIONS OF THE ROUT-
INE(S>. ADDITIONALLY" IT IS OFTEN HELPFUL TO WRITE DOWN THE "TOTAL"
EXECUTION TIMES ALONG "PATHS" AND "LOOPS" ON A FLOW CHART 0 F THE PROG­
RAM. REAL-TIME PROGRAMMING OFTEN REQUIRES A FAIR AMOUNT OF "JUGGLING"
BETWEEN CHOICES OF INSTRUCTIONS USED AND ALTERNATE SEQUENCES OF COMMANDS
IN ORDER TO OBTAIN DESIRED PROGRAM EXECUTION TIMES. HAVING CRITICAL
TIMING INFORMATION ON HAND IN THE FORMS SUGGESTED CAN PROVIDE THE PRO­
GRAMMER WITH A QUICK VIEW OF HOW THE PROGRAM DEVELOPMENT EFFORT IS PRO­
CEEDING.

IN ANY PROGRAMMING APPLICATION., FLOW CHARTING IS AN EXTREMELY VAL­
mBLE AID TO ENABLING ONE OBTAIN AN "OVER-ALL" VIEW OF A PROGRAM'S OP-
ERATION. IN REAL-TIME PROGRAMMING ANOTHER TOOL OF EQUAL IMPORTANCE
SHOULD BE BROUGHT INTO USE. THAT TOOL IS A "TIMING DIAGRAM." A "TIM-
ING DIAGRAM" ILLUSTRATES THE RELATIONSHIP. IN TIME BETWEEN THE OCCUR­
!NCE OF SPECI FIC EVENTS 0 F INTEREST TO THE PROGRAMMER.

A TIMING DIAGRAM IS SHOWN ON THE TOP OF THE NEXT PAGE. THE DIAGRAM
ILLUSTRATES THE DESIRED STATUS 0 F A SIGNAL LINE AS A FUNCTION 0 F TIME
FOR AN ELECTRONIC SIGNAL THAT IS TO PROVIDE INFORMATION TO A "BAUDOT"
TELETYPE MACHINE. THE DIAGRAM SHOWS THE SIGNAL CONDITIONS REQUIRED TO
DIRECT THE MACHINE TO PRINT THE LETTER "Y" OR THE FIGURE "6" DEPENDING
~ WHICH MODE THE TELETYPE IS OPERATING IN ("LETTERS" OR "FIGURES").
THIS DIAGRAM WILL BE USED TO DEVELOP A SAMPLE PROGRAM FOR OPERATING A
TELETYPE PRINTER MECHANISM AS AN INTRODUCTION TO THE CONSIDERATIONS RE­
QUIRED WHEN DEALING WITH REAL-TIME PROGRAMMING.

IN ORDER TO CLARIFY THE DIAGRAM A BRIEF EXPLANATION OF THE OPERATION
OF A BAUDOT TELETYPE MACHINE WILL BE PRESENTED. A TELETYPE MACHINE IS
IW "ASYNCHRONOUS" DEVICE IN THAT IT REQUIRES "START" AND "STOP" INFOR­
MATION. ONCE THE MECHANISM IN THE TELETYPE HAS BEEN STARTED IN MOTION
g(A "START" SIGNAL., TH.E MACHINE "EXAMINES" THE STATUS OF A SIGNAL LINE
WRING SPECI FIC TIME P!llIODS IN ORDER TO RECEIVE A "COD~' THAT WILL EN-
ABLE IT TO PRINT A SPECI FIC CHARAC'TER. AT THE END OF THE PERIOD 0 F TIME
OCCUPIED BY THE "CODE SIGNALS" THE MACHINE ~PECTS A "STOP" SIGNAL SO
1HAT VARIOUS MECHANICAL OPERATIONS MAY BE COMPLETED AND THE INTERNAL
MECHANISMS SET UP TO BEGIN ANOTHER "CYCLE" OF OPERATION. WHEN DEALING
WITKTELETYPE MACHINES A "CYCLE" IS O"EH TERMED AS REQUIRING A CERTAIN
NUMBER OF "UNITS OF TIME." THE DIAGRAM ILLUSTRATES A "CYCLE" FOR CER-
TAIN KINDS OF BAUDOT TELETYPE MACHINES. (THOSE THAT REQUIRE A "STOP"
LENGTH 0 F TWO UN I TS) I THE CYCLE IS SHO WN D1 VI DED INTO 8 EQUAL UN ITS 0 F
TIME. THE FIRST UNIT OF TIME IS RESERVED FOR A "START" PULSE. BY DEFI-
NITION., THE START PULSE MUST BE A LOGIC "0" AS SHOWN IN THE DIAGRAM •

., - 2

I START 1. 2. 3 + 5 I STOP1 I STOP2. I

Sl ss
0 1. 0 0 1. 1- 1

t t t t t t t t

~A-1
8)1

TIMING DIAGRAM FOR SENDING BAUDOT CHARACTER. "Y" OR "6" TO PRINTER

11iE NEXT 5 UNITS OF TIME ARE USED TO TRANSMIT THE "BAUDOT" CODE FOR
WHATEVER CHARACTER IS TO BE PRINTED BY THE MACHINE. THE LAST 2 UNITS OF
TIME MUST BE A LOGIC .. 1" TO PLACE THE MACHINE IN THE "STOP" MODE AND AL-
LOW IT TO COMPLETE THE CYCLE. THE DIAGRAM ABOVE SHOWS A CYCLE IN UNITS
OF TIME. TO PUT THE DIAGRAM INTO PRACTICAL USE# ONE MUST DEFINE THE
WIT OF TIME. FOR INSTANCE# SUPPOSE ONE HAD A TEl..ETYPE MACHINE THAT
USED THE CYCLE FORMAT ILLUSTRATED THAT WAS DESI GNED TO OPERATE CORRECT­
LY WHEN EACH UNIT OF TIME (THE LENGTH OF TIME NOTED BY THE ARROWS MARK-
m "A" ON THE ABOVE DIAGRAM) WAS 29 MILLI SECONDS (NOMINALLY). AN EN-
TIRE CYCLE WOULD THUS REQUIRE 160 MILLISECONDS (FOR THE TIME SPAN MARK­
ED "B" ON THE ABOVE DIAGRAM).

IF IT WAS DESIRED TO HAVE THE COMPUTER SEND A SIGNAL ON AN OUTPUT
LINE THAT CLOSELY APPROXIMATED THE DESIRED,SIGNAL PATTERN# ONE WOULD
HAVE TO DEVELOP A PROGRAM THAT WOULD CHANGE THE "STATE" 0 F THE LINE ON
AN OUTPUT PORT THAT WAS SUPPLYING THE SIGNAL TO THE MACHINE AT THE TIMES
rnDICATED BY THE SHORT UPWARD POINTING ARROWS SHOWN UNDERNEATH THE DIA-
~AM. THE RESULTING PROGRAM WOULD BE A UREAL-TIME" PROGRAM!

REAL-TIME PROGRAMMING FOR THIS TYPE OF APPLICATION IS RELATIVELY
STRAIGHT-FORWARD. FIRST OF ALL# THERE IS ONLY ONE SIGNAL LINE TO BE
CONCERNED WITH (IN MANY REAL-TIME APPLICATIONS THERE MAY BE A MULTITUDE
OF LINES TO CONTROL)' SECONDLY # THE AMOUNT OF TIME BETWEEN "EVENTS" IS
QUITE LARGE SO THERE WILL NOT BE ANY REQUIREMENT FOR FANCY PROGRAMMING
STREAMLINED FOR SPEED 0 F OPERATION. IN FACT # ALL ONE REALLY HAS TO DO
IS MAKE SOME SIMPLE MATHDJATICAL CALCULATIONS AND DEVELOP SOME "TIMING
WOPS·· THAT WILL MAKE THE PROGRAM "WAI Tit FOR THE DESIRED LENGTH 0 F TIME
BETWEEN SENDING "BITS" OF INFORMATION TO THE OUTPUT PORT THAT WILL CARRY
tHE SIGNAL TO THE TELETYPE UNIT. THE PROGRAM BECOMES SIMPLY A LITTLE
fJ\NCIER VERSION OF THE "PARALLEL TO SERIAL" OUTPUT PROGRAM DISCUSSED IN
niE PREVIOUS· CHAPTEIt.

A SUITABLE PROGRAM IS PRESENTED BELOW. A DISCUSSION WILL BE PRE-
SENTED AFTER THE PROGRAM. NOTE NOV THAT THE EXECUTION TIMES HAVE BEEN
PROVIDED ALON,GSIDE TIME-DFPENDENT PORTIONS OF THE PROGRAM.

MNEMONIC ---.. ---.. -----~
BDOUT" LCI 006

NDA
RAL

COMMENTS

ISET BIT CNTR • I BITS +

ISET CARRY BIT • """
IBRING "0" FM CARRY INTO LSB 0 FAce

., - 3

2A MORBDO~ OUT X ISEND "START" OR "CODE:-'. 81 TS TO MACHINE
20 RAft IPOSITI,ON NEXT BIT OF CODE
44 + 19,,81&8 CAL BDFJ...AY IGI VE MACHINE ONE UNIT 0 F TIME
2e DCC ISEE IF FINISHED START & CODE BITS
44 I 36 JFZ' MORBDO IIF HOT~ S~D NEXT BIT
32 LAI eel IPREPARE TO SEND STOP BITS
2A OUT X ISEND STOP BIT '1
1&4 + 19~848 CAL BDELAY IGI VE MACHINE ONE UNIT OF TIME
44 + 20 CAL DUMMY IPROVIDE LITTLE MORE TIME
44 .+ 20 CAL DUMMY IPROVIDE LITTLE MORE TIME
24 OUT ~ ISEND STOP BIT 12
44 +" 1~~848 CAL BDELAY IGIVE MACHINE ONE UNIT OF TIME
44 + 20 CAL DUMMY IPROVIDE LITTLE MORE TIME
44 + 20 CAL DUMMY IPROVIDE LITTLE MORE TIME

RET IEXIT OUTPUT A CHARACTER RTH

28 DUMMY~ RET ISHORT RTN TO EAT UP TIME

32 BDELAY ~ LDI 215 ISET TIMER LOOP COUNTER
24 OUT Z 10UTPUT TO UNUSED PORT TO' TRIM TIME
24 OUT Z 10UTPUT TO UNUSED PORT TO TRIM TIME
44 + 20 CAL DUMMY IUSE,A LITTLE TIME BEFORE STARTING LOOP
44 + 20 MDELAY~ CAL DUMMY IFOR A TIME CONSUMING LOOP
29 DCD ISEE IF TIME EXPIRED (CNTR = 0)1
12 I 20 RTZ IEXIT BACK TO CALLING RTN WHEN F.INISHED
41& JMP MDELAY 10THERWISE CONTINUE USING UP TIME

THE ABOVE ROUTINE ASSUMED THAT THE DATA TO THE TELETYPE MACHINE OR­
-IGINATED FROM THE LEAST SIGNIFICANT BIT IN THE ACCUMULATOR.

THE READER SHOULD NOTE THAT FOR CASES WHERE THF..RE ARE TWO POSSIBLE
EXECUTION TIM"ES FOR AN INSTRUCTION" SUCH AS A CONDITIONAL INSTRUCTION"
'tHAT THE TIME REQUIRED FOR THE CONDITION "MOST OFTEN" TO OCCUR IN THE
PROGRAM VAS SHOWN FIRST~ FOLLOWED BY THE TIME REQUIRED WHEN THE OTHER
CONDITION OCCURED.

THE PROGRAM WAS INITIALLY DEVELOPED BY WRITING THE "MAIN" PORTION
WITH THE TIME REQUIRED FOR THE "BDELAY" SUBROUTINE CONSIDERED AS AN "UN­
*OVN" FACTOR. WHEN THE BASIC, FORMAT OF THE PROGRAM HAD BEEN DETERMINED
1HE EXECUTION TIME 0 F THE "LOOP" STARTING AT THE LABEL "MORBDO" WHICH
INCLUDED THE FIVE INSTRUCTIONS,

MORBDO~ OUT X
RAR
CAL BDELAY
DCC
JFZ MORBDO

WAS CALCULATED - LEAVING OUT THE AS- YET UNDETERMINED TIME OF "BDELAY."
THE TIME REQUIRED BY THE FI vt INSTRUCTIONS WHEN t1LOOPING" WAS FOUND TO
BE 152 MICROSECONDS. SINCE IT WAS KNOWN THAT A TOTAL OF 20~000 MICRO­
SECONDS (20 MILLISECONDS) VAS DESIRED BETWEEN OUTPUTTING EACH BIT IN
-nlE "CODE-' IT' WAS THEN EASY TO CALCULATE THAT 20,,000 - 152 = 19,,848
MICROSECONDS DELAY WAS REQUIRED IN "BDELAY.·t

THE SUBROUTINE "BDELAY" IS A TYPICAL ~AMPLE OP'-A TIMING DELAY LOOP.
11IE MAIN PORTION OF THE- DELAY LOOP STAPtTS AT "MDELAY" AND" 'INCLUDES THE
POUR INSTRUCTIONS.

T - 4

MDELAY~ CAL DUMMY
DCD
RTZ
..IMP MDELAY

nlE THEORY BEHIND THE "BDELAY" SUBROUTINE WAS TO EXECUTE THE "MDELAY"
LOOP THE REQUIRED NUMBER OF TIMES TO GET CLOSE TO A DELAY OF 19~848 MIC­
ROSECONDS AND THEN CLOSE ANY GAP BY THE "SET UP" INSTRUCTION FOR THE
"LOOP" AND PERHAPS A FEW" FILLER" INSTRUCTIONS.

THE TIME REQUIRED TO COMPLETE THE FOUR INSTRUCTIONS IN THE "MDELAY"
LDOP WHEN THE "RTZ" CONDITION IS NOT MET IS 140 MICROSECONDS. FINDING
OUT HOW MANY TIMES IT IS 'NECESSARY TO EXECUTE THE LOOP TO GET CLOSE TO
A DELAY OF 19 .. 848 MICROSECONDS IS A SIMPLE MATTER OF DIVIDING. DOING SO
YIELDED A FIGURE OF ALMOST 142 (DECIMAL). TAKING INTO ACCOUNT THE FACT
THAT IT WAS NOT DESIRABLE TO GO OVER THE ALLOTED TIME~ AND THE FACT THAT
SETTING UP THE LOOP WOULD TAKE SOME TIME~ THE FIGURE OF 141 DECIMAL WAS
CHOSEN - WHICH 1 S 215 OCTAL. ONE OTHER FACTOR HAD TO BE CONSI DERED.
WHEN THE COUNTER IN THE LOOP REACHED ZERO" THE uRTZ" INSTRUCTION WOULD
BE EXECUTED AND THE "JMP MDELAY" COMMAND WOULD NOT. THUS" THE FULL LOOP
~ULD ONLY BE EXECUTED 140 (DECIMAL) TIMES - THE LAST TIME THROUGH THE
''MDELAY'' ROUTINE WOULD ONLY TAKE 104 MICROSECONDS. THUS~ AT THIS POINT
IT WAS POSSIBLE TO CALCULATE THE TOTAL DELAY CAUSED BY EXECUTING THE
• ... DELAY·· LOOP THE SELECTED NUMBER OF TIMES: 140 X 140 = 19~600 PLUS 104
RlR A TOTAL OF 19~70" MICROSECONDS. THEN IT WAS AN FASY MATTER TO DE-
TERMINE HOW MUCH TIME TO USE TO "SET UP" THE "MDELAY" ROUTINE. THE DE-
SIRED TOTAL DELAY OF 19~848 MINUS THE 19~704 MICROSECONDS CONSUMED BY
!XECUTING THE ·'MDELAY'· ROUTINE 141 (DECIMAL) TIMES LEFT 144 MICROSECONDS
TO BE CONSUMED. THE "LDI 215" AT THE START OF "BDELAY" ONLY REQUIRED
32 MICROSECONDS SO 112 MORE MICROSECONDS WERE CONSUMED BY ADDING THE
"FILLER" INSTRUCTIONS "CAL DUMMY" AND TWO "OUT X" COMMANDS. THE TO-
TAL "BDELAY" SUBROUTINE THEN EQUALLED EXACTLY THE DESIRED DELAY TIME OF
19 .. 848 MICROSECONDSI

AFTER SENDING THE START AND 5 CODE BITS IT WAS NECESSARY TO SEND
A "T.WO UNIT" STOP PULSE. SINCE THE STOP PULSE BY DEFINITION WAS TO BE
A LOGIC "1~tt IT WAS NECESSARY TO SET UP THE STOP BIT AS A ttl" IN THE
ACCUMULATOR. THE READER CAN CALCULATE THAT THE ACTUAL DELAY BETWEEN
THE SENDING OF THE LAST CODE BIT AND THE FIRST "STOP" UNIT IN THE ROUT­
INE COMES OUT TO BE 20 .. 021r MICROSECONDS. REMEMBER" IN MAKING THE CALC­
tLATION THAT THE .tJFZ MORBDO" INSTRUCTION WILL ONLY REQUIRE 36 MICRO­
SECONDS ON THE FINAL EXECUTION OF THE "LOOP" THEREBY REDUCING THE LOOP
EXECUTION TIME TO 19~992 MICROSECONDS AND THE "LAI 001" WILL ADD 32
MICROSECONDS TO THAT VALUE BEFORE THE NEXT "OUT X" INSTRUCTION CAN BE
EXECUTED. HOWEVm, FOR THE APPLICATION" THE VALUE OF 20,,024 IS Pl.ENTY
CLOSE ENOUGH TO 20,,000 (OFF BY ABOUT 0.1 I) TO OPERATE A TELETYPE WHICH
CAN TYPICALLY OPERATE RELIABLY WITH THE TIMING OFF BY 10 TO 20 PERCENT!

THE DELAY BETWEEN THE FIRST STOPUNIT,AND THE SECOND" AS WELL AS
nIE FINAL DELAY TO COMPLETE THE SECOND STOP UNIT~ WAS MADE TO COME OUT
NICELY TO 20~""" MICROSECONDS BY TH! INSERTION OF THE ··CAL DUMMY" COM­
_NDS FOLLOWING THE ··CAL BDELAY" INSTRUCTIONS.

THE ABOVE ROUTINE, AS THE READER CAN UNDOUBTABLY SEE~ COULD BE MODI­
n ED TO SERVE TO OPERATE A VARI ETY 0 F TELETYPE MACHINES OPERATING AT
DIFFERENT SPEEDS BY CHANGING THE "TIMING LOOPS." THE PROGRAM COULD ALSO
BE-MODIFIED FOR ASCII CODED MACHINES, OR OTHER TYPES OF CODES BY CHANG­
ING .THE "BIT COUNTER" AND POSSIBLY ALTERING THE LENGTH OF THE "STOP"
PULSE DEPENDING ON THE TYPE 0 F MACHINE BEING DRI VEN. FURTHERMORE" THE
TECHNIQUES DEMONSTRATED CAN BE APPLIED TO MANY OTHER TYPES OF PROBLEMS.

-, - 5

A SIMILAR ROUTINE COULD BE DEVELOPED TO RECEIVE DATA FROM THE SAME
KIND OF BAUDOT MACHINE. HOWEVER" WHEN RECEI VING DATA FROM SUCH A UNIT
THERE ARE A FEW NEW CONCEPTS TO' CONSIDER.

WHEN THE COMPUTER WAS SENDING INFORMATION TO THE TELETYPE PRINTER
IT HAD AN ADVANTAGE IT WILL NOT HAVE WHEN IT IS USED TO RECEIVE INFOR­
~TION FROM THE MACHINE. NAMELY" WHEN TRANSMITTING" THE COMPUTER HAD
''CONTROL'' OF WHEN THE EXTERNAL MACHINE WOULD BE OPERATED. IN THE RE­
VERSE MODE" THE COMPUTER WILL HAVE NO "KNOWLEDGE" OF WHEN THE EXTERNAL
DEVICE WILL BEGIN TO OPERATE AND SEND DATA TO THE COMPUTERI

ADDITIONALLY" ONCE A "CHARACTER" STARTS ARRIVING ON A LINE OF AN
INPUT PORT" THE "TOLERANCE" SITUATION REVERSES. WHAT IS MEANT BY THIS
IS THAT WHEN TH'E "COMPUTER SENT DATA TO THE PRINTER MECHANISM" IT WAS
POSSIBLE FOR THE COMPUTER TO BE MUCH, MORE ACCURATE IN PROVIDING PROPER
TIMING TO THE MACHINE" THAN THE MACHINE REQUIRED TO OPERATE SUCCESS-
FULLY. THUS" I F THE TIME PERIOD FOR A "UNIT" OF TIME WAS OFF A FEW
TENTHS OF A PERCENT WHEN GENERATED BY THE COMPUTER" IT WOULD NOT AFFECT
11iE OPERATION 0 F THE MACHINE. HOWEVER" WHEN THE COMPUTER 1 S RECEI VING
MTA FROM THE MACHINE" THE START 0 F EACH UNI T 0 F TIME M~Y BE OFF BY AS
MUCH AS' 10 PERCENT OR SO" BECAUSE OF THE LOOSE TOLERANCE OF THE ELECTRO­
MECHANICAL MACHINERY INVOLVED. IF THE COMPUTER PROGRAM DOES NOT MAKE
PROPER ALLOWANCES FOR SUCH POSSIBLE VARIATIONS" THEN .. INCORRECT" DATA
MAY BE RECEIVED.

FORTUNATELY" THE PROBLEMS RELATED TO THESE CONCEPTS ARE NOT TOO DI F-
FicULT TO OVERCOME. THE FIRST PROBLEM" DETERMINING WHEN THE EXTERNAL
MACHINE IS STARTING TO SEND" CAN BE SOLVED BY PERIODICALLY CHECKING THE
INPUT LINE FOR THE PRESENCE OF A "0" CONDITION INDICATING A "START" BIT.
(NOTE: WHILE THERE IS ANOTHER MANNER IN WHICH ONE COULD DETECT THE BE-
GINNING OF AN EXTERNAL OPERATION IN PROPERLY EQUIPPED 8008 SYSTEMS"
11iROUGH THE USE 0 F A HARDWARE GENERATED ~'l NTERRUPT" SCHEME" SUCH A MET­
HOD IS MORE PROPERLY CONCERNED WITH HARDWARE CONSIDERATIDNS WHICH ARE
NOT WITHIN THE INTENDED SUBJECT MATTER OF THIS MANUAL. IF SUCH A DET-
ECTION SCHEME WERE USED" THE REMAINDER 0 F THI S DI SCUSSION ON HANDLING
THE RECEIPT OF THE INCOMING DATA WOULD STILL APPLY). NATURALLY 6 HOW OF-
TEN ONE CHECKED FOR THE PRESENCE 0 F A "START" BIT WOULD HAVE AN AFFECT
CW THE OVER-ALL ABILITY 0 F A REAL-TIME PROGRAM TO RECEI VE THE DATA. FOR
INSTANCE" ASSUMING A START BIT IS PRESENT FOR 20 MILLISECONDS AS IN THE
CASE FOR THE ,TYPE OF MACHINE BEING DISCUSSED" IT WOULD BE FOOl.ISH TO
TEST FOR THE PRESENCE 0 F SUCH A "START" BlT AT PERIODS THAT WERE 21 MIL­
USECONDS APART! IN FACT" BECAUSE OF·OTHER CONSIDERATIONS" IT WOULD NOT
BE WISE TO CHECK FOR A "START" BIT MUCH LESS OFTEN THAN EVERY FEW MILLI­
SECONDS.

THE SECOND PROBLEM OF DEALING WITH THE LOOSE TOLERANCE OF THE MACH­
INERY CAN BE EFFECTIVELY DEALT WITH BY ADJUSTING THE RECEIVE ROUTINE SO
1HAT IT ·'SAMPLES·· THE INCOMING 51 GNALAT THE THEORETICAL MIDDLE OF A
'-uNIT'~ OF TIME RATHER THAN AT THE BEGINNING OR END OF A TIME PERIOD. OF
COURSE THE ABILITY TO DO THIS ALSO DEPENDS ON HOW CLOSELY ONE IS ABLE
TO DETECT THE ACTUAL "START" 0 F A CHARACTER FllOM THE MACHINE.

A TIMING DIAGRAM SHOWING A "BAUDOT" CHARACTER BEING SENT BY "A MACH­
INE IS ILLUSTRATED AT THE TOP OF THE NEXT PAGE. SHORT UPWARD POINTING
ARROWS ALONG THE BOTTOM OF THE DIAGRAM ILLUSTRATE THE TIMES AT WHICH A
"REAL-TIME" PROGRAM WOULD NEED TO "SAMPLE" THE INCOMING LINE IN ORDER
TO CORRECTLY RECEIVE THE DATA. NOTE THAT PRIOR TO THE TIME A "START"
SIGNAL I 5 DETECTED" THE" COMPUTER SHOULD SAMPLE THE LINE 0 FTEN IN ORDER
TO MINIMIZE THE PERIOD OF TIME IN WHICH A START SIGNAL MAY BE PRESENT
BUT UNDETECTED. NEXT" IT IS DESIRABLE TO ADJUST THE "SAMPLE'! PEftIOD SO
'nIAT IT COINCIDES WITH THE THEl)RETICAL MIDDLE OF A UNIT OF TIME" RATHER

., - 6

I START I .1 2 3 41- 5 I STOP1 I STOP2

sl SS
0 1 0 1 0 1 1

tttt t t t t t t 1ftt

-+i c

~ ~ 0

TIMING DIAGRAM POR RECEJ Villa BAUDOT CHARACTER MY" OR "6"

1HA. SAMPLE AT. INTEGERS .01' UNITS OF TIME A"D THE START SIGNAL VAS DE-
~TED. THIS METHOD CONJ'ENSATES JOIl. THE "TOLERANCE" P .. OBLEN MENTIONED
PREVIOtJSLY.

FIliALLY". Anm THE S'TH CODE ,BIT HAS BEEN RECEIVED" ONE CAN OBSERVE
1HAT IT WILL _OT BE NEe,ESSARY TO'START TESTING POR A NEW "START" PULSE
10ft ABOUT 2 AND 1/2 TIME- UNITS AS IT IS KNOWN THAT THE MACHINE WILL BE
tBING THAT TIM& -ro COMPLETE. IT'S OPI:RM'ION. THUS" THE COMPUTER WOULD BE
_LE TO PDroRM SOME OTHIJIt FUIIC!'lONS POR ABOUT 58 MILLISECONDS BEFORE
mINa BACK TO THE ·SAMPLE-MODE TO LOOK POR A. NEW STARt BIT - THAT IS
aoe8H YINE TO PDP'ORM A JrEW. THOUSAIID.INST1!UCTIONS ON AN 8188 SYSTEM.

A SAMPLE !lOm.lNE JrOR flEC.El.VlNI_ lRFOftMATION nOM A DEVICE. IN ACCORD­
MlCE.ITH THE ABOVE DIAGRAM" ASSUMINa THAT THE TIME SPAN MARKED "C". IN
1IIE ABOVE DIAGRAM WAS 1.8 IIILLI.SECOII.DS.- AND THAT MARKED "D" VAS 28 MILLI­
SECOROS IS ILLUSTRA,.m NEXT. THE READER MAY, NOTE THAT IT 15 ESSENTIALLY
,. EXPANDED ,V.SIOR OF A "SERIAL TO PARALLEL" 1tOm'IN!: WITH INSTRUCt'IONS
m CO.TROL THE TIMING ADDED.

BDIN ..

31 STaTI ...
31
.. I 36
.. + '7'6
31
31
36 I ••
~ + II -~.19?48 MORBDI ..
31!
31
21 ..
• • • .. I 36

LBI •••
Lei .• 15
IIIP X
NDI •••.
"TS STltT1 •
CAL HDELAY
IMP X
NDI 28.
.ITS STItTI.
CAL DVIDIY
"MP NOItSDI
CAL. lJ)ELAY
I lIP X
N1)1 I'.'
RAL
LAB
RAR
LIlA
DeC ",.z ... aDI

COMMDfTS --... __ .. _-------
ICLEAR. IIICOIIING .obING & STORAGE REGISTER
.ISET 81 T COUNT'"
'LOOK PO.1t "START" BIT
INASK 0,.,., IRRELEVANT DATA
II F NO START BIT" FORM "SAMPLING LOOP"
/IF 7IMD-L081C ·1" ASSUME START .. DELAY
ITO MIDDLE OF START ONIT & VERIFY RECEIPT
10,. A START BIT BY MAKI.a APPROPRIATE TEST
IIF .OT "e" HERE ASSUME FALSESTAltT
ISTRETCH THE DELAY A LITTLE
/STRErCH THE DELAY A LI TTL!: MORE
'MAI,t DELAY LOOP. ALMOST I FULL 71"E UNIT
IOET •. EXT BIT
.ITRIM TO JUST- DESIRED, DATA BIT
ISAVE INCOMIRa BIT. I,M CARAY FLAG
ISET ANY PIlEVIOUS BITS
IROTATE .0 SIT PRO" CAMY INTO REGISTER .
ISAVE 'N. REGISTER "B"
'DEeR_aT BITS COUNTER
IDELAT • ,FITCH .meT INcoMI.a BIT

., - .,

MNEMONIC COMMENTS

-----._----_ --_ .. __ .-_.-... _---

• Rite IHAVE ALL 5 BAUDOT BITS - RIGHT JUSTIFY
28 RftC liN ACCUMULATOR BY ROTATE!

• RftC IBEFORE PREPARING TO EXIT RTN .. + 9196 CAL HDILAY lOPTIONAL DELAY TO MAKE SUftE I.TO "STOP" .. + 28 CAL DUMMY IPART OF OPTIO.AL DIl.AY .. + 2 • CAL DUMMY IPART 0 F OPTIONAL DELAY
21 RET IUNITS ARFA BEFORE EXITING ROUTINE

32 ID!:LAY" LDI 215 ISET TIME LOOP COUNTER
12 RTS ITRIM TIME - CONDX NEVEl' MET
~ + 2. RDELAY" CAL DUMMY ITIME CONSUMING LOOP

• DeD IDECRDlENT COUNTO'
It I .8. RTZ IEXIT TO CALLING RTN WHDf CNTR • I .. JMP RDELAY IOTHERWISE CONTIMUE USING UP TIME

32 HDELAY" LDI. 1" 6 ISET TIME LOOP COUNTER .. dMP RDELAY IGO USE UP ABOUT 1/2 A TIME UNIT

,. DUMMY" RET ISHORT HTN TO USE UP TIME

WHILE THE ABOVE ROUTINE IS SIMILAR.. IN MANY RESPECTS TO THE ONE DES­
atIBED FARLI m FOR TRANSMITrlNG .DATA PROM THE COMPUTER" SEVERAL DI FFER­
!NT FEATtJftES WILL BE HJaH-LIGHTED. FIRST" THE RFADER CAN NOTE THAT THE
PROGRAM EXPECTS DATA TO BE ARRIVING-AT THE MOST-SIGNIFICANT BIT POSITION
OF THE ACCUMULATOR (AS IN THE SEJtlAL 10 PARALLEL BOUTINE_ IN THE PREVIOUS
afAPTEft) •

NIXT" THE READER SHOULD NOTE THAT THE TH~EE INSTRUCTIONS STARTING AT
THE LABEL "STJIlTIN'· FORM A "LOOP" TO TEST FOR A "STAltT" BIT Al.,'IVING JiftOM
1IIE INPUT PORT. THE READER CAN SEE THAT THE LOOP RElUIftES 118 MICRO­
SECONDS TO EXECUTE AND THUS IT IS POSSIBLE FOR A STAJitT UNIT TO HAVE BEEN
JllltE!ENT FOR ALMOST THAT LENGTH OF TIME BEFORE IT IS DETEC;TED. FOil IN-
STANCE" IF THE START PULSE ACTUALLY STARTED JUST A MICROSECOND AFTER THE
"INP X" INSTIUJCTION AT "STftTIN" WAS EXECUTED" THAT PULSE WOULD NOT BE
DETECTED UNTIL THE "INP X" INSTRUCTION VAS EXECUTED ON THE NEXT ROUND.
H)WEVER" IT IS ALSO POSSIBLE FOR THE PROGRAM TO DETIX:T THE START BIT AT
dUST ABOUT THE INSTANT IT ACTUALLY HAPPEN! - THU!" THERE CAN BE A VARI­
ATION IN DETECTING THE BESI .. I_G OF THE "START" TIME UNIT OF ABOUT 188
MlCflOSECOUDS. NOV" THE ACTUAL. DETECTION OF THE START PULSE. IS USED AS
A REFERENCE JI'OIl "DELAYING" TO THE MID.DLE OF THE TIME UNIT IN OIlDER TO
'-SAMPLE" THE 1llKAIliING BITS. IN THE DESIRED REGION. 011 THE A.VERASE" ONE
OOULD ASSUME THAT THE START PULSE WAS DETECTED. IN ABOUT THE KIDDLE OF
'!HE POSSIBLE ItANSE OF VARIATION6 WHICH WOULD BE ABOUT 5. MICROSECONDS
A"ER THE PULSE ACTUALLY STARTED. THIS .INPOJitMATION 15 USED TO ESTABLISH
APnOXIMATELY HOW LONG THE "HDELAY" LOOP SHOULD BE IN ORDER TO GET
CLOSE TO THE THEORETICAL MIDDLE 0." A TIllE tJNIT. THUS,," IF OME ASS-UMES
"!HAT ON AN AVERAGE" THE START PULSE IS DETECTED 54 MICROSECONDS A"ER IT
BEGAN" AND ONE ADDS. I MICROSECOROS .F'OllTHE EXEC.UTION OF THE. INSTRUC­
TIONS FROM MST~TIN" TO THE "CAL HDELAY 6 - ONE CAN DETERMINE THAT "HDELAY"
NEEDS TO CONSUME 988. MICJIlOSECo.ns.. THE VALUE "'6 ACTUALLY DEVELOPED
was A "CLOSE ENOUGH- COMPROMISE fOR THE SITUATION.

AIIOTHER AREA OF INTEREST NEAR THE !ND OF THE MAIN ROUT1NE. IS MARK­
m BY THE CO" TS AS AN "OPTIONAL DELAY TO MAKE SURE INTO "STOP" UNITS
MfA BEFORE melTINS ItO.TIME." AS POINTED 011T DilL I Eft" A"ER THE FI VE
mTA BITS RAVE BEg SAMPLED THE COMPUTER HAS ."ITE A BIT OF TIME - UP
10 ABOUT. 5. MILLISECO.DS. IN WHICH TO PERFORM SOME OTHER FVIIC~IONS BE-

, _ 8

CAUSE THE MODEL MACHINE WOULD BE UNABLE TO SEND A NEW "START" PULSE
UNTIL IT HAD COMPLETED IT'S CYCLE DENOTED BY THE TWO STOP UNITS IN THE
mAORAM. HOVEVER~ IN SOME INSTANCES~ THE COMPUTER MAY NOT REQUIRE ANY
WHEftE NEAR THAT LENGTH 0,. TIME TO PROCESS THE CHARACTER JUST RECEIVED.
IN SUCH CASES# THE PROGRAMMER WOULD WANT TO MAKE SOftE THE PROGRAM DID
II)T START "LOOKINS" FOR A NEV START BIT BEFORE THE LAST "DATA" BIT HAD
BEEN COMPLETED. THE "OPTIONAL" HALF UNIT DELAY ENSURES IN SUCH A CASE
1HAT THE MACHINE WOULD BE IN IT'! "STOP UNITS" PHASE# WHICH BY PJltEV-'
10US DEFINITION WOULD BE A LOGIC ••• " 'CONDITION# BEFORE IT BEGAN "LOOK­
ING" FOR A NEV LOGIC "S" CONDITION SIGNI flYING A NEW START PULSE.

FINALLY# THE JIlEADER MIGHT TAKE NOTE OF AN INTEJIlESTING "T1'ICK" TO GET
A RATH~ SHOftT ADDITIONAL DELAY BY THE USE 0 F THE "JIlTS" INSTJIlUCTION AS
THE SECOND COMMAND IN THE "IDELAY" SUBROUTINE. A CONDITIONAL RETUJltN, IN­
STRUCTION WHEN THE CONDITION IS NOT MET IS THE ONLY TYPE OF COMMAND THAT
WILL USE BUT .2 MICROSECONDS OF TIME. THE "RTS" INSTRUCTION INSERTED AT
THAT POINT WILL NEVER HAVE THE TRUE CONDITION MET AS THE READER MAY VER­
IFY BY CLOSE EXAMINATION OF THE POSSIBLE CONDITION OF THE "SIGN" FLAG
WHENEVER THAT INSTRUCTION IS EXECUTED. IT IS A GOOD TECHNIIUE TO REMEM-
BER I F A 12 MICROSECOND DELAY IS HE'VIRED BUT THE PROGRAMMER MUST MAKE
CERTAIN THAT THE CONDITION WILL NEVER BE SATISFIED WHEN USED fOR THAT
PURPOSE! (REMEMBER# VIRTUALLY ALL OTHER TYPES OF INSTRUCTIONS TAKE UP
AT LEAST 28 MICROSECONDS OF EXECUTION TIME IN .A NOMINALLY ADJUSTED 8888
SYSTEM) •

AS ANOTHER EXAMPLE OF THE DETAILS OF ftEAL-TIME PROGRAMMING# THE
ABOVE EXAMPLE WILL BE EXPANDED TO DEMONSTRATE HOW THE PROGRAM COULD BE
IMPROVED TO INCREASE THE RELIABILITY OF RECEIVING CORRECT DATA FROM THE
IXTERNAL MACHINE. AS MANY READERS MAY KNOV~ THE INCOMING DATA FftOM AN
ELECTRO-MECHANICAL MACHINE SUCH AS A TELETYPE MAY BE "NOISY." THAT IS#
A SIGNAL THAT IS SUPPOSED TO BE~ FOR INSTANCE# IN THE LOGIC "I" STATE
POI' AN ENTIRE UNIT OF TIME MAY OCCASIONALLY GO TO THE "S" CONDITION FOR
!MALL FRACTIONS OF A UNIT OF TIME~ OR VICE-VER!A. IN THE ABOVE PROGRAM
THE COMPUTER "SAMPLES" FOR THE STATE OF THE INCOMING SIGNAL JUST ONCE
IN EACH UNIT OF TIME. I' BY CHANCE IT SHOULD SAMPLE THE SIGNAL AT THE
I'OMENT THAT "NOISE-' VAS PRESENT ~ INCORRECT DATA COULD 8E RECEI VED. IN
A "CRITICAL" APPLICATION#. IT MJGHT BE DESIRABLE TO REDUCE THE CHANCE OF
SUCH AN EPtROR OCCURING. THIS COULD BE DONE BY "SAMPLING" THE INCOMING
SIGNAL SEVERAL TIMES DURING EACH UNIT OF TIME AND COMPUTING AN AVERAGE
OF THE "VALUE" RECEIVED TO DETERMINE WHETHER THE SIGNAL VAS TRULY IN A
"I" OR "S" STATE. FO" INSTANCE# ONE COULD ELECT TO "SAMPLE" TME ! I G­
Na\L FIVE TIMES NEAR THE "MIDDLE" OF EACK UNIT OF TIME AND THEN MAKE A
IECISION AS TO WHETHEJIt THE SIGNAL VAS A "." OR A "i" BY DETERMINING
WHICH STATE VAS DETECtED 3 OR MORE OUT OF THE 5 SAMPLED TIMES. SUCH A
"SAMPLING" METHOD WOULD GREAT1.Y REDUCE THE CHANCES OF "NOISE" CAUSING
AN INCORRECT SIGNAL LEVEL TO BE ~ECEIVED.

THE TIME DIAGRAM AT THE TOP OF THE NEXT PAGE ILLUSTRATES A SIGNAL
WITH THE UPWARD ARROWS .ALONG THE BOTTOM OF THE DIAGRAM REPRESENTING THE
MULTIPLE SAMPLING POINTS. IN EACH UNIT OF TINE. DEVELOPING A PROGRAM TO
GIVE THE IMPROVED PERFORMANCE IS NOT DIFFICULT BUT IT DOES REIUIRE A
FEW MORE TIME RELATED CONSI DERATION! WHEN DEVELOPING THE "SOFTVAJltE."
'I1IESE ILLUSTRATIONS W1LL BE POINTED OUT IN THE DISCUSSION THAT FOLLOWS •

. TO' BEGIN DEVELOPMENT. OF THE MU1.TIPLE-SAMPLING PROGRAM AMAdOR SUB­
MUTINE WAS DEVELOPED THAT WOULD PERFORM THE TASK OF "SAMPLING" FIVE
TIMES IN SUCCESSION# KEEPING TRACK OF WHETHER A "I" OR .. " .. WAS JltECEIV­
m~ AND FINALLY DETERMINING WHICH STATE VAS RECEIVED MOST O"EN. THE
SUBROUTINE WITH EXECUTION TIMES JOR EACH INSTRUCTION IS PR£SENTED AFTER
THE DIAGRAM ON THE NEXT PAGE. THE READER MIGHT PAY SPECIAL ATTENTION TO
'!HE MANNER IN WHICH THE ·'PFtEDOMINANT" SIGNAL STATE VAS DETERMINED •

., - ~

I START I 1. 2. 3 4 5 I STOP1. I STOP2

1
SS

0 1. 0 .1 0 1. 1 1.

1m ttttt tmt tfftt tmt ttttt ttttt
1"IMING DIAGRAM fOPt MULTIPLE SAMPLING OF INCOMING SIGNAL

32
32
32
32
~ I 36
32
36 I ~~

28
~ I 36
28
32
2iI

29
28

28
28

MNEMONIC .. _---_ _-_ ... -
!AMPLE .. LDI 815

LEI 371
BITEST .. INP X

NDI 288
CTS PLUSE
NDl 2"0
CFS MINUSE
DCD
tfn BITEST
LAE
NDI'281
RET

PLUS&: .. INE
RET

"INUSE .. DeE
RET

COMMENTS

ISET COUNT~ FOR NUMBEJI! Of SAMPLES
ISET UP REG "E" FOR STORING SIGNAL STATE
ISAMPLE CURRENT SIGNAL ON INPUT LINE
IMASK OFF UNUSED INPUT LINES
IINCREMENT "E" IF SIGNAL A LOGIC "I"
IRESTORE FLAGS TO REFLECT ACC CONTENTS
IDECREMENT "Elt IF 91 GNAL A LOGIC 'tS"
IDECREMENT SAMPLING COUNTER
ISAMPLE AGAIN IF COUNTER NOT • "
I"HEN HAVE 5 SAMPLES PLACE "E" INTO ACC
IMASK OFF ALL BUT MOST SIGNIF1CANT BIT
IEXIT VITH PREDOM SIG STATE IN M58 OF ACC

IINCREMENT REGISTER ItE"
IEXIT

IDECREMENT REGI STEJIt "E"
IEXIT

INFORMATION REGARDING THE AMOUNT OF TIME RE.VIRED TO EXECUTE POR­
TIONS OF THE ··MULTIPLE SAMPLING" ROUTINE dUST PRESENTED IS REaUIRED
BEFORE THE OVER-ALL ROUTINE CAN BE DEVELOPED FOR REASONS THAT WILL SOON
BE APPARDT.

THE ftEADEft CAN CONFIRM THAT THE TIME BETWEEN EACH OF THE FIVE SAM­
PLE! WILL BE 288 MlCftO!ECONDS FOR A TYPICAL 8088 SYSTEM ftEGARDLESS OF
,"AT SIGNAL STATE VAS R£CE·IVED. ,IT IS IMPOftTANT TO NOTICE HOV THE
SAMPLING ftOUTINE WAS "BALANCED" BY THE APPROPRIATE CHOICE OF INSTftUC­
TION! SO THAT THE ftECEIPT OF EITHP SIGNAL STATE RESULTS IN THE SAME
TOTAL TIME TO EXECUTE THE ·'SAMPLING LOOP." I,. THI S REIUIREMENT VERE
t«>T MET THE PROGRAMMEPt WOULD HAVE IUITE A "HEAD-ACH~' TRYING TO DEVEL­
(liE AN ACCURATE ROUTINE BASED ON ALL THE POSSIBLE COMBINATIONS OF "I"
MD ·'e" SIGNAL STATES THAT COULD BE RECEIVEDI

THE READER SHOULD ALSO TAKE. NOTE THAT THE "SET UP" TIME. THAT IS THE'
TIME TO EXECUTE TJIIE INSTl'ttTCTIONS FROM THE LABEL ·'SAMPL~' TO "BI TEST··
PLUS THE TIME TO 'ACTUALLY "CALL" THE !'UBJIlOtJTINE WOULD REIUI"E I 08 MICRO­
SECONDS. THAT IS .. IT WILL TAKE 108 MICROSECONDS FROM THE T1ME THE PRO­
GRAM !TAftT! TO "CALL" THE SUBROUTINE UNTIL THE FIRST ·'INP X" INSTRUCTION
IS ENCOUNTERED.

ADDITIONALLY .. THE READER SHOULD NOTE THAT IT WILL REIUIRE 3_4 MICRO­
SECONDS '""OM THE TIME THE I'TH SAMPLE ·15 TAKEN UNTIL THE SUBROUTINE IS

7 - 10

ACTUALLY EXITED!

IT IS IMPORTANT TO KNOW THESE RELATIONSHIPS SO THAT THE ENTIRE SUB­
ROUTINE CAN BE PROPERLY LOCATED WITHIN A TIME FRAME. FOA INSTANCE~
SINCE IT WOULD BE DESIRABLE TO HAVE THE 3 1 RD "SAMPLE" TAKE PLACE AT THE
THEORETICAL ·'MIDDLE" OF A ··UNIT OF TIME" IT WILL B£ NECESSARY TO START
'-CALLING" THE "SAMPLE" SUBROUTINE wHEN THERE ARE ABOUT 668 MICftOSECONDS
J1tEMAINING BEFORE THE THEOftETICAL MIDDLE or THE ·'UNIT OF TIME." THIS IS
BF.CAUSE IT WILL HE.UIRE 108 MICftOSECONDS TO "CALL" AND "SET uP" THE SAM­
PLING SUBJltOUT'INE~ PLUS 280 MI CROSECONDS BETWEEN THE I' ST AND 2 'ND SAMPLE
MND ANOTHEJit 288 MICROSECONDS BETWEEN THE 2'ND AND 3'RD SAMPLE.

SIMILARLY IT I! IMPRTANT TO KNOW THAT THERE WILL BE 90. MICROSECONDS
~OM THE TIME THE 3'JItD SAMPLE 15 TAKEN UNTIL THE ROUTINE 15 EXITED. AS~
280 MICROSECONDS WILL BE TAKEN BETWEEN SAMPLE NUMBER 3 AND ~~ ANOTHER
280 MICROSECONDS BETWEEN SAMPLE. AND J~ AND AN ADDITIONAL 3 •• 'MICRO­
SECONDS FJltOM S'AMPLE NUMBEIt 5 TO THE TIME THE ROUTINE IS EXITED.

WITH T.HlS INFO~MATION NOV AVAILABLE ONE CAN CALCULATE HOW MUCH TIME
SHOULD BE USED FROM THE TIME A START BIT IS RECEIVED UNTIL IT IS TIME TO
"CALL" THE "SAMPLE"SUSJltOUTIN! SO THAT THE 3 'RD SAMPLE POINT WILL BE IN
THE MIDDLE OF A "UNIT OF TIME." AND_ AFTEJIt THAT_ HOW MUCH DELAY TO PRO­
VIDE FROM'THE TIME THE "SAMPLE'· SUBROUTINE IS EXITED IN ONE UNIT OF TIME
UNTIL IT IS TO BE CALLED AGAIN TO SAMPLE THE SIGNAL IN THE MIDDLE RANGE
OF THE NEXT UNIT OF TIME.

IN A SITUATION SUCH AS THE ONE BEING DlSCUSSED~ IT IS OFTEN HELPFUL
TO PRODUCE AN '·EXPANDED TIMING DIAG'RAM'· TO lLLUS.TRATE SMALLER PORTIONS
OF '·CRITICAL" TIME RELATION!HIP5. AN EXPANDED DIAGRAM SHOVING THE IN­
Jl'QPlMATION tJU!T DEJltIV£D AS IT APPLIES TQ THE "START" BIT AND THE l'ST
'-nATA" BIT OF THE EXAMPLE INCOMING SIGNAL IS SHOWN BELOV.

START I i I
51 I

1 iittt ttitf
54 r- ~"8 'O .. ~ ~.... .0+1

j-'1J3741 r- '~~8--1

Ls
1006---' C?JODO -__. ----- 20" 000 -----..

EXPANDED TJMING DIAGRAM

WITH THE TIMING RElUIREMENTS OF THE ··SAMPLE" SUBROUTINE KNOWN~ THE
APPROPRIATE DELAYS TO PLACE THE "SAMPLING·' SUBROUTINE SUCH THAT THE 3 'I'D
!AMPLE IS AT THE MIDDLE OF It ·'UNIT OF TIME" CAN BE ASCEJltTAINED AS SHOWN
~ THE ABOVE EXPANDED DIAG~AM. IT IS THEN A JltELATIVELY EASY MATTER TO
KJD1" THE PftOGftAM PftEVIOUSLY DEVELOPED ,FOR THE CASE IHD ONLY A SINGLE
SAMPLE VAS TAKEN PEft TIME UNIT SO TKAT IT "CALLS" THE "SAMPIi.E" SUS .. OUT-
IHE. AN EXAMPLE OF SUCH A ROUTINE IS PRESENTED NEXT.

7 • 11

32
32
~ I 36
.. + 918.
~ + 1128
36 I ••
.. + 28
28
28
~+182."
~ + 1128
28
28
28
2iJ
28
U I 36
28
28
28
.. +·'18.
28

32
28
2fJ
.. + 28
28
12 I 28
.....

MNEMONIC

.... --- ... -~- .. ----
8DIN# 1.81 """

Lei ""' STRTIN# INP X
·NDI 218
"TS STRTIN
·CAL HDELAY
CAL SAMPLE
dTS STRTIN
CAL DUMMY
NDA
NDA

MORBDI" CA~ IDELAY
GAL SAMPLE
RAL
LAB
RAft
LBA
DCC
'~FZ MORBDI
IItRC
RftC
RJltC
CAL tlDELAY
RET

IDELAY, LDI 282
NDA
NDA

RDELAY" CAL DUMMY
DCD
RTZ
dMP RDELAY

HDELAY. LDI 181'
NDA
NDA
dMP PlDELAY

DUMMY. RET

COMMENTS

-----------_
ICLEAft INCOMING FORMING & STORAGE REGISTER
ISET BIT COUNTER
ILOOIC FOR "START·' BI T
IMASK OFF, IRRELEVANT DATA
II F NO START Bl T # FOftM "SAMPLING 1.00P"
II F FIND LOGIC •• " •• ASSUME START .. DELAY ,
lAND THEN DO M1JLTIPLE SAMPLE ON START BIT
II F RESULT NOT "e" ASSUME FALSE START
IADD COMPENSATING DELAY BEFORE ENTERING
IMAIN'''DATA" SAMPLING ROUTINE
IWITH THESE THREE INSTRUCTIONS
IEXECUTE MAIN DELAY LOOP
IMULTIPLE SAMPLE ROUTINE ON "DATA" BITS
ISAVE RESULTING STATE IN CARRY FLAG
IGET ANY PREVIOUS BITS
IROTATE NEV BIT FROM CARRY INTO Ace
ISAVE FORMATION IN REGISTER t'8"
IDECREMENT BITS COUNTER
IDELAY " THEN FETCH NEXT "DATA" 81 T
IHAVE AL.L I "DATA" BITS - RIGHT dUSTI"
ItN ACCUMULATOR BY ROTATES
IBEFORE PREPARING TO EXI T
IOPTIONAI.. DELAY TO, REACH "STOP" AREA
IEXIT BAUDOT INPUT ROUTINE

ISET TIME LOOP COUNTER
ITRIM TIME DELAY
ITRIM TIME DELAY
ITIME CONSUMING LOOP
IDECRDlENT COUNTEJIt
IEXIT TO CALLING RTN WHEN CNTR • 0
10THERWISE CONTINUE USING UP TIME

ISET TIME LOOP COUNTER
ITRIM TIME DELAY
ITRIM TIME DELAY
IGO USE UP MORE TIME

ISHORT RTN TO USE UP TIME

THE INFORMATION PRESENTED TO THIS POINT IN THE CHAPTER HAS BEEN CON­
CERNED WITH ILLUSTRATING TECHNIIUES TO COORDINATE THE EXECUTION OF A
PROGRAM WITH THE TIMING REIUIPtEMENT OF AN EXTERNAL DEVICE" THROUGH THE
METHOD OF PROVIDING TIME DELAYS., TO EFFECTIVELY "SLOW DOW" THE EXECU­
TION OF A P~OGRAM. HOWEVER" ANOTHER ASPECT OF REAL-TIME PROGRAMMING IN­
tOLVES ESSENTIALLY THE OPPOSITE OBJECTIVE. THAT IS TO OBTAIN MAXIMUM
SPEED OF OPERATION FROM A COMPUTER PROGRAM SO THAT IT MAY HANDLE EVENTS
THAT MIGHT BE OCCURING IUITE RAPIDLY. THE BALANCE OF THIS CHAPTER WILL
PPtESrMT Si.17EftAt. BASIC GUIDE LINES FOfi "STREAMLINING" THE OPERATION OF A
PROGRAM TO 'OBTAIN MAXIMUM SPEED OF EXECUT10N.

PERHAPS THE FIRST POINT TO PRESENT IS THAT THEftE IS A COROLLARY BE­
TWEEN OBTAINING MAXIMUM OPERATING SPEED AND THE AMOUNT OF MEMORY RE.UIR­
ED BY THE P~OGRAM THAT MAY AT FIRST SEEM A LITTLE STRANGE. THAT IS., AS
ONE ATTEMPTS TO PROG~AM AN 8888 SYSTEM TO EXECUTE A PROGRAM THAT WILL
PERFORM A FUNCTION IN A MINIMtlJM AMOUNT 0 F TIME .. ONE GENERALLY WILL IN-
~EASE THE AMOUNT OF MEMOftT NEEDED TO STORE THE OPERATING PROGRAM. Tft£

., - 12 '

REASON FOR THIS ftEhATIONSKIP IS THAT STREAMLINING A PROGRAM GENERALLY
HE_VIRES THE ELIMINATION OR REDUCTION IN THE USE OF "LOOPS" AND SUBROUT­
INES,. WHICH., THE READER MAY JIlECALL., VEftE EARLl Eft STRESSED FOR THEI R AB­
ILITY TO SAVE MEMORY STORAGE SPACEI

TO ILLUSTRATE HOW THE ELIMINATION OF ·'LOOPS·· CAN DRAMATICALLY REDUCE
1HE TIME RElUIRED TO EXECUTE A SPECI FIC FUNCTION" CONSIDER THE EXAMPLE
PRESENTED NEXT. IN THIS CASE" A PROGRAMMER NEEDS TO LOAD THREE CONSECU­
TIVE WORDS IN MEMORY WITH THE CONTENTS OF THE ACCUMULATOR IN AS LITTLE
TIME AS POSSIBLE. A ROUTINE USING A "LOOP" MIGHT BE AS SHOWN HEREr

32
28 AGAIN"
20
28
4./36

LSI 803
LMA
INL
DCB
JFZ AGAIN

THE READER MAY EASILY CALCULATE THAT THE TOTAL TIME REQUIRED TO EXEC­
ME THE ABOVE LOOP WOULD 8E 368 MICROSECONDS. A ROUTINE THAT DID NOT
USE A LOOP COULD BE EXECUTED IN ABOUT 1/3 THE TIME IN THIS PARTICULAR
CASE AS ILLUSTRATED NEXT.

28
28
28
20
28

LMA
INL
LMA
INL
LMA

11iE "STRAIGHT" ROUTINE ONLY REClOlftES 124 MICROSECONDS TO DO THE SAME
dOB. WHILE THE COROLLARY MENTIONED ABOVE MIGHT NOT SEEM EVI DENT WHEN
SUCH A SHORT LOOP IS INVOLVED" CONSIDER THE SAME CASE IF 29 LOCATIONS
IN MEMORY VEltE TO BE LOADED WITH THE DATA IN THE ACCUMULATOR. ONE CAN
CALCULATE THAT THE LOOP METHOD WOULD ONLY REiDIRE 8 (DECIMAL) LOCATIONS
IN MDIORY FOR THE OPERATING PORTION OF THE PROGRAM' AND WOULD EXECUTE
'!HE PROGI'tAM IN 22~ MICROSECONDS. ON THE OTHER HAND" THE "STRAIGHT"
mUTINE METHOD VOVLD REGUIRE SOME 3. LOCATIONS IN MEMORY FOR STORAGE OF
'DiE OPERATING PROGRAM" BOT THAT "STRAI GHT-' ROUTINE WOULD BE EXECUTED IN
A M~E ••• MICROSECONDS.

THE ELIMINATION OF SUBROUTINES CAN AbSO GREATLY SPEED UP THE OPERA­
TION OF A CRI'TICAL' PORTION OF A PROGRAM AS SHOWN BY THE FOLLOWING EXAM­
PLE. THE FOLLOWING "SUBROUTINE" METHOD MIGHT BE USED AS PART OF A PRO­
GRAM THAT WAS TO RAPIDkY OVTPUT THE CONTENTS OF THE ACCUMULATOR AS A
SIRlES OF OCTAL DIGITS. I.E." THE OUTPUT DEVICE WOULD ONLY RECEIVE THE
1HREE LEAST SIGNIFICANT BITS. IN THE ACCUMULATOR.

24 OUT X + 88 CAL ROTAND
24 OUT X
44 + 88 CAL ROTAND
24 OUT X
16 HLT

WHERE THE 'S1fBROCTINE "IlOTAND" APPEARS AS.

28 ROTAND" RAR
21 RAR
28 RAPt
21 ,RIT

(liE CAN CALCUUTE TRAT EXECUTING THE ABOVE "SUBJIlOUTINED" PROGRAM WOULD

, - 13

ftElUIRE 336 MICROSECONDS. -THE "STRAIGHT" PROGRAM METHOD SHOWN-BELOV ON­
LY RZ •• IRES 288 MICRO$ECONDS TO DO' THE SAME FtJNCTION.

24 OUT X
28 RAft
28 RAR
28 RAft
24 OUT X' 2. RAft
28 RAR
28 RAR
24 • OUT X
16 HLT

VHI~E THE ABOVE EXAMPLE DOES NOT SUPPORT THE "MEMORY USAGE CORALL­
MY·' ONE CAN SEE THAT 1 F THE StmftOUTINE WERE SOMEWHAT LONGER - SAY 1 T
OONTAINED EIGHT OR NINE INSTRtJCTIONS~THAT .THE CORALLAI'tY WOULD BE TRUE.

ANOTHER RULE OF THUMB TO APPLY TOWARDS DEVELOPING PROGRAMS TO OPER­
ATE IN A MINIMUM AMOUNT OF TIME IS TO DO AS MUCH WORK AS POSSIBLE WITH
CPU REGISTERS INSTEAD OF WITH MEMORY. FOR INSTANCE~ SUPPOSE ONE HAD AN
INSTRUMDIT INTERFACED TO A 8888 SYSTEM THAT PERIODICALLY NEEDED TO SEND
A SHORT "BURST" OF DATA TO THE COMPUTER FOR STORAGE. FOR TECHNICAL CON-
SIDERATIONS ASSUME THAT IT WAS DESIRED TO RECEIVE THE "BURST" AS RAPID­
LY AS POSS18LE~ APTER WHICH THE COMPUTER WOULD HAVE SOME "I DLE'- TIME TO
JiIIIlOCESS THE DATA. ONE CAN READlLY SEE BY THE FOLLOWING EXAMPLE THAT IT
VIhL TAKE MUCH LESS TIME TO STORE, SAY FOUR "CHARACTERS" IN CPU REGIS-
TERS# THAN TO STORE THE SAME AMOUNT DIRECTLY IN MEMORY. A ROUTINE TO
STORE THE CHARACTERS DIRECTLY IN MEMORY WOULD REQUIRE.

32
28
28
32
28
28
32
28
28
32
28

INP X
LtiA
INL
INP X
LMA
INL
IMP X
LMA
INL
INP X
LMA

OR A TOTAL OF 308 MICROSECONDS. STORING THE DATA IN CPU REGISTERS WOULD
(ffLY RElUIIIE 216MJCROSECONDS USING THE FOLLOWING ROUTINE.

32 2.
32
28
32
21
32
28

INP X
LBA
IMP X
LCA
INP X
LDA
INP X
LEA

THE FACTOR THAT MIGHT BE PARTICULARLY VALUABLE IN A "TIME-TIGHT" APPLI­
CATION IS THAT EACH CHARACTER IN THE SECOND ROUTINE COULD BE ACCEPTED
AT 12 MICROSECOND INTERVALS 'WHILE THE FIRST ROUTINE COULD NOT ACCEPT THE
CHARACTERS AT'A RATE FASTER THAN EWERY 81 MICROSECONDS. NATUftALLY~ THE
MOVE EXAMPLE IS STRICTLY LIMITED '0 THE CASE VHERE VERY SHORT "BURSTS"
ME BEING HAIIDL!D AS THERE ARE A LIMITED NUMBER OF CPU REGISTERS AVAIL­
ABLE I. WHICH TO STOllE -DATA. HO.EYD~ THE PRINCIPLE CAN BE VALUABLE.

, - 14

THE CONCEPT OF UTILIZING CPO ftEGISTERS AS MUCH AS POSSIBLE CAN "BE
EXTENDED TO A VAllI ETY 0,' APPLICATIONS BESIDES THE ONE ILLUSTRATED ABOVE.
FOR INSTANCE. IT IS 0"_ ADVAlfTAalDUS TO SET UP CPU REGISTERS IN AD­
~NCE OF A "CRITICAL" TIME PERIOD IN ORDER TO STREAMLINE A PROGRAM DUR-
ING SELECTED OPDATINO PDtIODS. pOJl INSTANCE. SUPPOSE ONE NEEDED TO IN-
PUT DATA AT A FAST RATE AND ALSO PERFORM SOME MANIPtJLATION OF THE DATA.
SUCH AS. PERFORM A TIO'S COMPLDlENT OPBATION ON THE DATA AND THEN DEPO­
SIT THE DATA IN MDIORY. ONE WAY TO DEVil.OP THE ROtrrINE WOULD BE AS FOL­
LOWS.

32 REeEI V~ INP X
32 NDI 377
32 ADI 901
28 LMA
2. INL
~4/36 .:IFZ RECEIV

THE ABOVE ROOTINE COULD HAVE THE TIME FACTOR DECREASED BY ABOUT 12
PERCENT I F, PRIOR TO ENTERING THE "LOOP" (A NECESSAftY EVIL IN THIS EX­
AMPLE BECAUSE A "LARGE-' BI.OCK OF DATA IS HYPOTHETICALLY BEING PROCESSED)
mE FIRST SET CPU REGISTER "B-' TO CONTAIN "377" AND CPU REGISTER "e·' TO
Jl)LD "I" 1," AND USED THE ROUTI NE SHOWN NEXT.

32 RECEIV ..
20
28
28
28
~~/36

INP X
NDB
ADC
LMA
lNL
dn REeDV

A FEW CI.OSING COMMENTS ON THE SUBdECT 0 F "STREAMLINING·' REAL-TIME
PROGRAMS WOULD IMeLODE THE MENTION THAT 1 F "SUBROUTINES·· ARE NEe ESSARY,
TO USE THOSE VALl1ABLE;"RESTARTt. COMMANDS WHICH ONLY REIUIRE 28 MICRO-
SECONDS FOR AN EFFECTIVE "CALL" INSTEAD OF ~~ MICROSECONDS. ADDITION-
ALLY .. THE PROGRAMMER SHOULD PAY STRICT ATTENTION TO OVER-ALL PROGRAM OR­
GANIZATION IN ORDER TO REDUCE TIME CONSUMING "OVERHEAD" OPERATIONS. OR
AT LEAST TO DEFER SUCH OPERATIONS .oR EXECUTION DURING NON-CRITICAL TIME
PERIODS.

FINALLY ~ REAL-TIME PROGRAMMING I S AN AREA WHEftE THE CREATl VE PROG-
RAMMER CAN HAVE A LOT OF FUN. EXPDtIMDlT .. LOOK FOR NEV METHODS TO SOLVE
A PARTICULAR PROBLEM - YOU MAY FIRD A BETTER .. FASTER VAYt SUCH AS.

HAVE THE FIRST INSTRUCTION OF THE ABOVE ROUTINE LOCATED AT THE ADD­
RES! OF RESTART LOCATION .. x MODI FYTHEROUTINE AS ILLUSTRATED. AND CUT
MOTHER? PERCENT 0,.,. THE IlEltJIRED EXECUTION TIME OF THE ROUTINEl

32 IMP "X"
2" NOB
21 ADC
28 LItA
al INL
12/21 RTZ

2" RST "X"

T - 15

'PROM' PROGRAMMING CONSIDERATIONS

FOR READERS WHO MAY NOT BE FAMILIAR WITH THE ABBREVIATION~ A "PROM"
IS A "PROGRAMMABLE READ-ONLY MEMORY" ELEMENT. A PROGRAMMABLE READ-ONLY
MEMORY ELEMENT IS AN ELECTRONIC DEVICE THAT CAN BE "PROGRAMMED" WITH A
PROGRAM USING A SPECIAL INSTRUMENT SO THAT IT CONTAINS A "PERMANENT"
PROGRAM. SOME "PROM" ELEMENTS CAN BE "ERASED" AND RE-PROGRAMMED BY US­
ING SPECIAL INSTRUMENTS WHICH ARE GENERALLY TOO EXpmSIVE FOR THE AVER­
AGE USER TO HAVE READILY AVAILABLE. WHEN THE "PROGRAMS" IN SUCH ELE­
MENTS NEED TO BE CHANGED IT IS GENERALLY NEC,ESSARY TO SEND THE DEVICE
8\CK TO THE MANUFACTURER OR REPRESENTATIVE FOR PROCESSING.

THE KEY FEATURE THAT A "READ-ONLY MEMORY" ELDIENT HAS OVER A "RAM"
mEAD AND WRITE MEMORY) DEVICE IS THAT ONCE A PROGRAM HAS BEEN PLACED IN
A "ROM" IT IS NON-VOLATILE~ OR PERMANENT. A SEMI-CONDUCTOR "RAM" DEVICE
WILL LOSE IT'S CONTENTS IF POWER IS RntOVED FROM THE DEVICE. A "ROM"
WILL RETAIN THE INJiORMATION PLACED IN IT I F POWER IS REMOVED. THUS~ THE
"ROM" IS ,AN IDEAL MEMORY DEVICE IN WHICH TO STORE PROGRAMS THAT ARE PER­
~NENT IN NATURE OR THAT HAVE FREQUDlT USE IN A SYSTEM WHERE POWER MAY
fREQUENTLY BE REMOVED. IT ELIMINATES THE PROCESS OF HAVING TO "LOAD"
PROGRAMS BACK INTO MEMORY WHEN A COMPUTER'SYSTEM IS INITIALLY "POWERED­
\P" FOR A PERIOD OF OPERATION.

THE KEY DISADVANTAGE OF THE "ROM" IS THAT THE COMPUTER CANNOT ALTER
11IE CONTENTS OF THOSE MEMORY LOCATIONS ASSI GNED TO A "ROM" DEVICE. THUS
ONE MUST TAKE SPECIAL PRECAUTIONS WHEN DESIGNING PROGRAMS THAT ARE TO
RESIDE IN A "ROM" DEVICE.

FOR INSTANCE~ ONE CANNOT USE MEMORY ADDRESSES IN A ROM TO STORE TEM­
PORARY POINTERS AND COUNTERS FOR A PROGRAM THAT NEEDS TO ALTER SUCH
POINTERS AND COUNTERS DURING THE PROGRAM'S OPERATION - AND SIMILARLY ONE
CANNOT USE ANY SUCH LOCATIONS FOR ANY KIND OF TEMPORARY STORAGE 0 F DATA
OR OTHER "TEMPORARY· INFORMATION~ BECAUSE~ AS JUST MENTIONED~ THE COM­
PUTER WILL NOT BE ABLE TO "WRITE- THE INFORMATION INTO THE ROMI

THUS~ IF A PROGRAM IS TO BE STORED IN A ROM~ AND IT IS NECESSARY TO
USE POINTERS AND COUNTERS IN A PROGRAM (AS WILL CERTAINLY BE THE CASE IN
~NY APPLICATIONS) ONE SHOULD ARRANGE THE PROGRAM TO USE CPU REGISTERS
PDR THOSE PURPOSES~ OR TO USE ADDRESSES IN MEMORY THAT WILL CONTAIN RAM
ELEMENTS.

A ROM ELEMENT CAN BE CONSIDERED AS A "HARDWARE" MEMORY ELEMENT AND
AS SUCH, ONE OF THE FIRST MATTERS ONE SHOULD CONSIDER WHEN PLANNING ON
INSTALLING ROMS IN A COMPUTER SYSTEM~ IS WHERE TO ASSIGN THE ROM ELE­
MENTS IN MEMORY. A GOOD RULE OF THUMB IS TO PLACE SUCH ELEMENTS AT THE
tpPER EXTREME ADDRESSES AVAILABLE. IN THE SYSTEM. FOR INSTANCE~ I F ONE
~S AN 8808 SYSTEM CAPABLE OF ADDRESSING UP TO 4 K OF MEMORY, (PAGES 90
1HROUGH 17) IT WOULD BE ADVISABLE IN MOST CASES TO DEVELOP PROGRAMS FOR
FOM(S) THAT ARE ON PAGE 11~ OR IF MORE PAGES ARE REQUIRED FOR ROMS~ TO
WORK DOWNWARD FROM THAT ADDRESS. (MOST ROM AND PROM DEVICES CAN CONTAIN
256 EIGHT BIT WORDS - OR ONE "PAGE" IN A TYPICAL 8998 SYSTEM.) THIS AL­
lDWS ALL ADDRESSES BELOW THE ROM ELEMENT(S) TO BE AVAILABLE AS ONE CON­
TINUOUS BLOCK OF "READ AND WRITE" MEMORY WHICH IS GENERALLY A MORE CON­
VENIENT ARRANGEMENT THAN~ SAY~ STICKING A ROM ELEMENT ON PAGE 10 IN SUCH
A SYSTEM~ THUS DIVIDING THE AVAILABLE ADDRESSES FOR RAM MEMORY INTO TWO
SEPARATE AREAS.

ALTERNATIVELY, ONE MIGHT WANT TO CONSIDER PLACING ROM ELEMENTS AT
11IE LOWEST AVAILABLE ADDRESSES FOR THE SYSTEJt~ AND LFAVING THE UPPER AD­
a:iESSES AVAILABLE AS ONE CONTINUOUS BLOCK fOR RAM ELDlDlTS. HOWEVER~

ts - I

UNLESS A SYSTEM IS BEING DESIGNED TO SERVE AS A SPECIAL FUNCTION. DEVICE.
IT IS GENERALLY VISE TO NOT USE A ROM ON PAGE 88 IN AN 888S SYSTEM AS IT
WILL OCCUPY ALL THE POSSIBLE "RESTART" (RST) INSTRUCTION LOCATIONSI THE
mcCEPTION TO THIS WOULD BE I F ONE DELIB~ATELY WANTED TO HAVE "POWER-UP"
MUTINES THAT USED THE INTERRUPT FACILITY OF THE 8008 SYSTEM IN CONJUN­
CTION WITH A ROM TO AUTOMATICALLY GO TO A "RESTART" LOCATION. THE
-RST" CLASS OF INSTRUCTIONS. WHICH USE THE SPECIAL LOCATIONS ON PAGE 00.
ARE PARTICULARLY USEFUL COMMANDS WITH GENERAL PURPOSE APPLICATIONS. AS
DISCUSSED ELSEWHERE IN THIS MANUAL. AND ONE SHOULD CONSIDER THEIR GEN­
ERAL PURPOSE CAPABILITIES CAREFULLY BEFORE DECIDING TO RESTRICT THEM TO
A ROM APPLICATION.

THE TYPES OF PROGRAMS THAT ARE GENERALLY MOST SUITABLE FOR PLACE­
MENT ON ROMS INCLUDE ROUTINES TO ASSIST GETTING A SYSTEM "ON-LINE" IM­
MEDIATELY FOLLOWING POWER TURN-oN. SUCH AS I/O ROUTINES AND "PROGRAM
LOADERS." FREQUENTLY UTILIZED PROGRAMS THAT ONE MAY NOT WANT TO HAVE TO
BE BOTHERED LOADING EACH TIME A SYSTEM IS STARTED. OR PROGRAMS FOR DEDI­
MTED APPLICATIONS.

FOR INSTANCE. A USER WITH A TELETYPE SYSTEM MIGHT WANT TO PUT A
STANDARD ROUTINE TO INPUT AND OUTPUT INFORMATION TO THE DEVICE (WHICH
COULD BE.CALLED BY GENERAL ROUTINES) AND POSSIBLY A "LOADER PROGRAM"
THAT WOULD ENABLE THE USER TO QUICKLY LOAD PROGRAMS INTO RAM MEMORY VIA
A PAPER TAPE READER. IN SUCH AN APPLICATION. ONE MI GHT ALSO HAVE SPACE
(II A PROM TO INCLUDE A SIMPLE PROGRAM THAT WOULD ENABLE ONE TO EXAMINE
AND MODIFY MEMORY LOCATIONS USING THE TELETYPE DEVICE. THUS. WHENEVER
POWER WAS APPLIED TO THE COMPUT!R SYSTEM. ONE WOULD INSTANTLY BE IN. A
POSITION TO "LOAD" LARGER PROGRAMS INTO RAM MEMORY. OR TO IMMEDIATELY
mE THE TELETYPE TO PLACE INFORMATION INTO RAM MDIORY. WITHOUT A ROM.
11IE USER WOULD HAVE TO USE MANUAL CONTROL METHODS TO "LOAD" A "LOADER"
PROGRAM OR OTHER ROUTINES INTO MEMORY. THE SAVINGS IN TIME ONE CAN ACH­
IEVE BY USING A. ROM TO STORE "START-UP" PROGRAMS OVER HAVIN~·1b USE PUR­
ELY MANUAL PROCEDURES CAN BE WELL WORTH THE COST OF A ROM OR PROM DE­
VICE.

HOWEVER. A USER WHO DESIRED TO DEVELOP SUCH A PACKAGE FOR STORAGE
ON A ROM DEVICE WOULD HAVE TO BE PARTICULARLY CAREFUL WHEN DEVELOPING
1HE TELETYPE I/O ROUTINE I F SUCH A ROUTINE REQUIRED "RFAL-TIME PROGRAM­
MING- CONSIDERATIONS. SUCH AS A "TI~ING LOOP." POR INSTANCE, THE READ­
!It WHO HAS READ THE PREVIOUS CHAPTER WILL REALIZ E THAT I F THE COMPUTER
PROGRAM ITSELF WILL CONTROL THE ACTUAL OPERATION OF A DEVICE SUCH AS A
TELETYPE MACHINE. AND -TIMING LOOPS" ARE ESTABLISHED TO CONTROL THE PRE­
CISE TIME AT WHICH EVENTS WILL OCCUR. THAT THE ACTUAL TIMING REQUIRED
TO PROPERLY OPERATE A DEVICE WILL BE A FUNCTION OF THE DEVICE BEING CON­
TROLLED AS WELL AS THE TIMING IN THE COMPUTER ITSE1.F. AND THAT THE AC­
CURACY AT WHICH SUCH TIMING MUST BE MAINTAINED. IS A FUNCTION OF THE AC­
CURACY OF THE TIMING IN THE COMPUTER SYSTEM AND THE DEVICE ITSELF. THIS
ACCURACY MAY VARY BETWEEN DIFFERENT UNITS •. IF A FIXED "TIMING LOOP" WAS
PROGRAMMED INTO A "PROM" AND AT SOME LATER DATE THE EXTERNAL DEVICE WAS
REPLACED WITH A DI FFERENT ONE, OR THE TIMING OF THE COMPUTER WAS ADJUST­
ED. THE ORIGINAL "TIMING LOOP" MIGHT BE MADE INVALID. THUS, IN SUCH AN
APPLICATION. IT MIGHT BE WISE TO PLACE THE ACTUAL "DATA" VALUE THAT IS
TO CONTROL THE "TIMING LOOP" IN A "RAM" LOCATION AND HAVE THE PROGRAM IN
11IE PROM ACCESS THAT VALUE. WHICH WOULD BE MANUALLY INSERTED BY THE OP­
!RATOR. RATHER THAN HAVING THE VALUE BE "FIXED" IN THE PROM. THE FOL­
LOWING TWO SUBROUTINES WILL HELP CLARIFY THE POINT.

PROM PROGRAM WITH A "FIXED" TIMING LOOP VALUE

TIME, LDI 180 /SET TIMING LOOP COUNTER ..

~ - 2

TIMER~ CAL DUMMY
DCD
RTZ
JMP TIMER

IDELAY SUBROUTINE
IDECREMENT TIMING LOOP COUNTER
IEXIT SUBROUTINE WHEN TIME DELAY DONE
IOTHERWISE CONTINUE TIMING LOOP

PROM PROGRAM WITH CAPABILITY TO ALTER TIMING LOOP -VALUE

TIME~ LHI XXX
LLI YYY
LDM

TIMER" •••

ISET POINTER TO "RAM" LOCATION WHERE
ITIMINe LOOP COUNTER VALUE STORED
ISET TIMING LOOP COUNTER VALUE
ISAME AS ABOVE ROUTINE

THE SECOND ROUTINE ILLUSTRATED ABOVE ASSUMES THAT THE CPU MEMORY
POINTER REGISTERS WILL BE SET UP TO POINT TO A LOCATION IN RAM MEMORY
lIiERE THE ACTUAL "LOOP COUNTER" VALUE WILL HAVE BEEN PLACED BY THE OP-
!RATOR. WHILE THE METHOD NECESSITATES THE OP~ATOR HAVING TO SET THE
PROPER VALUE INTO RAM MEMORY BEFORE USING THE PROGRAM STORED ON THE ROM ..
IT AVOIDS THE PROBLEM OF HAVING A "USELESS" PROGRAM IN THE PROM IF A
TIMING VALUE MUST BE ALTERED AT SOME FUTURE DATE. IT SHOULD BE APPARENT
1HAT THIS KIND OF SCHE14E CAN BE APPLIED TO ANY SIMILAR SITUATION WHERE A
"VALUE" USED BY A PROGRAM MIGHT CONCEIVABLY NEED TO BE ALTERED.

IF .. FOR SOME REASON~ ONE DID NOT WANT TO HAVE TO DEDICATE A LOCATION
IN RAM MEMORY FOR A "VARIABLE" VALUE IN SUCH A ROUTINE - THERE IS STILL
ANOTHER TRICK THAT CAN "SAVE" THE DAY IN SUCH A SITUATION. THE OPERATOR
COULD MANUALLY LOAD THE "D" REGISTER IN THE CPU PRIOR TO USING THE ABOVE
TfPE OF SUBROUTINE (OR HAVE AN EXTERNAL ROUTINE IN 'RAM MEMORY PERFORM
'!HE SAME JiUNCTION BEFORE USING THE ROUTINE)~ IN WHICH CASE ONE COULD EL­
IMINATE THE PORTION OF THE ABOVE ROUTINE LABELED "TIME" AND SIMPLY USE
1HAT PORTION LABELED "TIMER."

A GOOD RULE 0 F THUMB TO APPLY WHEtl CONSI DERING THE USE OF ROM IN A
SYSTEM IS TO TAILOR THE PROGRAM FOR COMPACTNESS. A"ER ALL .. THE MORE
ROUTINES OR SUBROUTINES ONE CAN STORE ON A PROM .. THE MORE USEFUL THE DE-
VICE WILL BE. MAKE EVERY EFFORT TO SAVE MEMORY SPACE BY JUDICIOUS USE
OF SUBROUTINING~ WITH MULTIPLE ENTRY POINTS IF APPLICABLE. AND BY USE OF
PROGRAM LOOPS. AN EARLIER CHAPTER S~RESSED THE CONCEPT AND PROVIDED
GOI DELINES AND FORMULAS FOR CALCULATING WHEN SUCH TECHNI GlUES ARE APPLI­
CABLE. ONE SHOULD FIGURE ON SPBJDING SOME EXTRA TIME WHEN DEVELOPING
PROGRAMS TO BE STORED ON ROMS IN ORDER TO LOOK AT WAYS TO SAVE MEMORY
SPACE. TRY TO USE EVERY AVAILABLE. LOCATION ON A PROM - AFTER ALL .. ANY
tJlUSED LOCATIONS WILL BE "PERMANDlTLY" WASTED. I F ONE FINDS ONE HAS
SOME ROOM LEn' IN A PROM AFTER ONE HAS PLACED THE PROGRAMS REQUIRED TO
BE ON THE DEVICE FOR A PARTICULAR APPLICATION .. CONSIDER THE POSSIBILITY
OF "TUCKING IN" A FEW SMALL ROUTINES THAT WOULD HAVE GENERAL USEFULNESS.
SUCH ROUTINES AS .. SWITCH "ADV~" AND "CHTDWN" WHICH WERE PRESENTED AND
t.5ED FREQUENTLY IN EXAMPLES THROUGH-OUT THIS MANUAL ARE TYPICAL KINDS OF
GENERALLY USEFUL SUBROUTINES THAT ONE MIGHT CONSIDER HAVING ON A ROM
FATHER THAN "WASTING" ANY LOCATIONS. THESE TYPES OF ROUTINES WOULD THEN
ALWAYS BE AVAILABLE IN THE SYSTEM FOR USE BY PROGRAMS RESIDING IN RAM.

ABOVE ALL .. HOWEVER .. ONCE ONE HAS DEVELOPED ROUTINES FOR A PROM~ ONE
SHOULD THOROUGHLY TEST AND CHECK THE PROGRAM(S) TO MAKE SURE THEY ARE
ABSOLUTELY OPERATING AS INTENDED. AFTER ALL .. IT IS A BIT COSTLY TO MAKE
A "PROGRAM PATCH" ON A READ-ONLY M9tORY ELEMENT I

ts - 3

CREATIVE PROGRAMMIRO CONCEPTS

ORCE ONE HAS BECOME FAMILIAR WITH THE FUNDAMENTAL ASPECTS OF MACH-
INE LANaUAIE PR08RAKKINa. ONCE ORE IS FAMILIAR WITH THE KMEMONICS THAT
REPRESENT THE MACHINE LAlf8UAGE COJlllAilDS OD CAlf MDfTALLY THINK OF THE
.uNCTIONS THAT THOSE MNEMOMICS .REPRESENT. ONCE ONE HAS LEARNED HOW TO
JIORMALIZE AND PLAN OUT A PROGRAM. UNDERSTANDS PLOW CHARTING. AND MDIORY
jLLQCATION OR MAPPING. ONCE ONE HAS HAD SOME PRACTICE AT DEVELOPING AL-
(l)RITHMS AND CONSItiING SMALLER ALGORITHMS INTO PULL SIZED PROGRAMS BY
SUBROUTININS. ONCE ONE IS FAMILIAR WITH SETTING UP POINTERS. COUNTERS.
JORMINI PROIRAM LOOPS. UTILIZING BIT "MASKS." ONCE ONE HAS A "FEEL"
POR ORSANIZINS DATA FOR TABLES. AND UNDERSTANDS HOW DATA CAN BE SORTED.
ONCE ONE UNDERSTANDS HOW MATHEMATICAL INPORMATION MAY BE PROCESSED BY
1KE COMPUTER. AND. ONCE ONE KNOWS HOW TO GET DATA INTO AND OUT OF THE
CPU JlROM AND TO SOME EXTERNAL .. DEVICES. I.E •• ONCE ONE HAS SPENT A LIT­
TLE TIME STUDYIN. THE ASPECTS OF MACHINE LANGUAGE PROGRAMMING A COMPUT­
!1i - AS ONE WILL HAVE DONE BY READING (AND HOPEFUlLY LEARNING') THE
mP'ORMATIGM PRESENTED IN THE PRECEEDING SECTIONS OF THIS MANUAL. THEN.
ONE SHOULD BE IN A POSITION TO UNDERSTAND AND APPRECIATE THE TRUE POT­
atTIAL OF A DI8ITAL COMPUTER WHEN IT-S POWER IS UNLEASHED UNDER THE
AUSPICES ·OF A CREATIVE PROGRAMMER. THEN. IS WHEN ONE CAN REALLY START
~VINa. FUN CREATIlfG A.D DEVELOPING COMPLETELY ORIGINAL PROGRAMS TO PER-
JlDRM MYRIADS OF PERSOIfALLY DESIRED FUNCTIONS. THIS IS THE POINT AT
WHICH ONE MAY TAKE A "BROAD VIEW" OF THE IMMENSE CAPABILITY OF THE MACH­
INE BY STANDINS BACK AND PONDERING SOME "SCENES" MUCH THE WAY AN ARTIST
WOULD PONDER A BLANK CANVAS BEPORE STARTING TO PAINT A "CONCEPT" OR "IM­
ME" THAT EXISTED PURELY. IN THE ARTIST-S "IND. THE DISCUSSION THAT FOL­
LOWS MERELY PRESENTS SONE WAYS IN WHICH TO VIEW THE CAPABILITY OF A DIG-

.ITAL COMPUTER. SOME POINTS OF VIEW THAT MAY HELP PROGRAMMER-S APPROACH
PROaRAXMI •• TASKS WITH CREATIVITY. NO GREAT "MAGIC" IS CLAIMED .oR THE
IDEAS PRESENTED. .0 GUARANTEE IS MADE THAT THE POINTS OF VIEW WILL IN-
SPIRE EVERYONE TO ,REATER PROGRAMMING CREATIVITY OR ABILITY. BUT. IT IS
JtfOWN THAT THE VIEWS PRESENTED .HAVE HELPED AT LEAST ONE PROGRAMMER TO
CREATE COUNTLESS PROaRAMS. SOME OF WHICH OTHERS HAD CLAIMED "COULDN-T BE
mWE ON A SMALL KACHINE." AND SOLVE NUMEROUS PR09RAMMING PROBLEMS. WHILE
HAVINS A LOT OF JI'Ulf - AND QUITE OrrEN SAVING A LOT OF TIME' THUS. THE
IDEAS WILL BE PRESENTED IN THE HOPES THAT PERHAPS A PEW OTHERS WILL BEN­
EFIT A LITTLE. OR A LOT.

IT MUST BE ADMITTED THAT TO SOME READERS THE CONCEPTS DISCUSSED. IN
THIS SECTION KIIHT SEEM "TRIVIAL- AT FIRST GLANCE. PERHAPS THE REASON

. SOliE PEOPLE IlflTIALLY SEE THE CONCEPTS AS TRIVIAL IS BECAUSE THEY ARE
PROFOUNDLY BROAD AIID TO SOME LUCKY P!x)PLE. PERHAPS. INSTINCTIVELY OB-
VIOUS. HOWEVER. MOST READERS WILL PROBABLY ,.IND THE CONCEPTS "GROW"
AS ORE DOES MORE AND IIORE PRO GRAIOU.a •. UNTIL ONE DAY. THE READER "DI S­
COVERS" A PROPOUUDLY "SIMPLE" WAY TO HANDLE. A PROGRAMMING PROBLEM BASED
(If A VARIATION OF ORE SORT OR AIIOTHER OF THE CONCEPTS PRESENTED IN TH·IS
SECTION.

FOR WHAT THrt ARE WORTH. THE CONCEPTS TO BE PRESENTED WILL BE DIS­
CUSSED IN THREE PARTS.

THE OlfE DIMElfSIONAL VI EW

THE UNDERLYINa PRINCIPAL' IN THIS _TIRE DISCUSSION ON CREATIVE PRO­
~AMlIINe IS TO LEAVE OUT THE DETAILS OF THE OPERATION OF THE CPU AND
IT-S ASSOCIATED RESISTERS. IT IS XMOWN THAT THE CPU AND THE ASSOCIATED

~ - 1

REGISTERS CAN DO A· WHOLE HOST OF SPECI FlC OPERATIONS - MATHDIATICAL. BO-
OLEAN LOGIC. EXECUTE CONDITIONAL BRANCHES AND WHATEVER. THESE FUNCTIONS
WILL BE TAXa ..oR GRANTED IN THE POLLOWING DISCUSSION. WHAT IS IMPOR-
TANT IN THE PRESENT SITUATION IS TO REALIZE THAT THE POWER OF THE COMPU-
TER IS IN IT·S MEMORY. THE CPU OBTAINS IT·S INSTRUCTIONS PROM MEMORY.
AND THE CPU IS ABLE TO MANIPULATE INPORMATION IN MEMORY. THE CPU IS
ABLE TO ACCESS A PARTICULAR WORD -IN MEMORY. IN THE CASE OF AN 8888 SYS-
TEM. BY POINTINa TO THE "ADDRESS" USING THE "H & L" REGISTERS. .oR EACH
SPEC I FIC "ADDRESS" THERE I S A "SPECI FIC WORD IN MEMORY" THAT CONTAINS
EIGHT BINARY BITS.

ONE WAY TO VIEW THE ORGANIZATION 0' MEMORY IS TO THINK OF MEMORY
AS BEING ONE LONG LINE OF WORDS - STACKED ONE APiER THE OTHER. IN FACT.
THIS IS THE WAY VIRTUALLY ANY MACHINE LANGUAGE PROGRAMMER FIRST STARTS
1HINKING OF MEMORY BECAUSE OF THE SIMPLE WAY IN WHICH EACH MEMORY AD­
tRESS CORRESPONDS TO A WORD 1M MEMORY - AND MEMORY ADDRESSES ARE SIMPLY
A SERIES OF CONSECUTIVE NUMBERS •

•••••••••••••••••••••••••••••••
• ADDR • Wff" • MEM WORD • "N" •

•••••••••••••••••••••••••••••••
• ADDR •• +1 • MEM WORD. N+l •
• ADDR • N+2 • MEM WORD • .+2 •

•••••••••••••••••••••••••••••••
• • • • •
• • •• • •••••••••••••••••••••••••••••••

• ADDR • .+X • MEN WORD • N+X •

THUS ONE CANCO.SIDER M!lfORY AS SIMPLY BEING ONE LONG STRING OF LOC­
ATIONS THAT MAY BE FILLED WITH WHATEVER INPORMATION IS DESIRED IN A SER­
IAL SEQUEXCE. I F ONE WERE TO FILL EACH MEXORY WORD WITH A ·CODE" THAT
SYMBOLIZED A LETTER OR DIGIT. OR PUNCTUATION SYMBOL. ONE COULD PROCEED
TO FILL A "STRING" OF MEMORY LOCATIONS WITH DlGLISH (OR PRERCH. OR GER­
*N. OR WHATEVER) WORDS. AltD GO ON TO PORN SDITENCES. AND BY USING OTHER
OODES. TO SEPARATE S!JITENCES INTO PARAGRAPHS.

N o SPACE I S

ADDR M ADDR N+l ADDR •• 2 ADDR .+3 ADDR .+4 ADDR .+5

OR. ONE COULD PLACE MATHEMATICAL VALUES IN MEMORY LOCATIONS. SEPA­
~TE THOSE VALUES BY ·OPERATOR" SYMBOLS. AND PROCESS ·COLUMNS" OF MATH-
EMATICAL DATA. (ASSUMING IN THIS STRICT CASE THAT THE VALUES WERE SMALL
!HOUGH TO BE STORED IN ONE MDORY WORD.)

ADDR N I +100
ADDR .+1 I MINUS
ADDR .+2 I - 50
ADDR "+3 I EQUAL

OR. THE CONTENTS OF MEMORY WORDS MAY BE USED TO SYMBOLIZE JUST ABOUT
/JlIY ABSTRACT I TEll THAT THE PROGRAIIMER KI GHT DESI RE. THE PROGRAMMER NEED

~ - 2

SIMPLY PORM A CODE THAT THE PR08RAMMER DESIRES TO HAVE SYMBOLIZE SOIlZ-
1HIRG.

ADDR N • SYMBOL .oR "APPLES"
ADDR .+1 • SYMBOL .oR "PEARS"
ADDR .+2 • SYMBOL .oR "BANANAS"
ADDR N+3 • SYMBOL .oR "CHERRIES"
ADDR .+3 • SYMBOL .oR "LEMONS"
ADDR .+4 • SYMBOL .oR "BELLS"

THE READER SHOULD REALIZE HERE. THAT THE CONCEPT BEING PRESENTED. IS
CONCENTRATING ON HOW MEMORY IS UTILIZED .oR HANDLING "DATA" OR INPCR-
.. TIOR. IT IS TAXEN JOR GRANTED THAT A PORTION OF MEMORY WILL BE USED
lOR THE ACTUAL OPERATING PROGRAM THAT "CONTROLS" THE MANIPULATION OF THE
MEMORY THAT IS BEING USED POR THE "DATA." THUS. IN THE ABOVE EXAMPLES
(lfE MUST REALIZE THAT AN "OPERATING PROGRAM" WILL PLACE THE CODES .oR
LETTERS OR DIGITS. PUNCTUATION MARKS. SPACES. AND SO PORTH. AND PERfORM
\11HATEVER PROCESSING IS DESIRED. AN OPERATING PROGRAM WILL TAXE THE VAL-
UES aluDt IN THE MATHEXATICAL EXAMPLE AND "INTERPRET" THE SYMBOLS AND
PERFORM T~E DESIRED FUNCTIONS. AND~ AN OPERATING PROGRAM 1M THE THIRD
EXAMPLE WOULD RECOGYIZE A PARTICULAR CODE TO MEAN "APPLES" AND PRINT OR
~SPLAY THE ENTIRE WORD (OR PICTURE') WHEN IT INTERPRETED THAT CODE.
11IE PRIMARY POINT BElNG MADE IS THAT THE DATA IS ORGANIZED AS A LONG
"LINE" OF IlfPORMATION. THAT LINE OF IH.oRMATION CAN BE ARBITRARILY
SPLIT UP INTO MAttY PARTS AIID PI ECES 0 F THE LINE BE CONSI DERED AS PORKING
(liE PARTICULAR SECTION. AS IN THE CASE WEB ONE "EHOLISH WORD" IS FORMED
PROM A SERIES OF "LETTERS." THE LONG LINE IS SIMPLY .oRMED. AND LOCA­
TIONS ALONG THE,LINE ARE MARXED. BY A "MEMORY ADDRESS."

HOWEVER. AND THIS THE CREATIVE PROGRAMMER SHOULD TAXE PARTICULAR
t«)TE OF. THE FACT THAT LOCATIONS ARE MARKED ALOMG THE LINE BY· "MEMORY
ADDRESSES" CAN BE TRABSPQRMED BY THE PROGRAMMER 50 THAT MEMORY ADDRES­
SES ESSENTIALLY STAND FOR ANY ARBITRARILY ASSIGNED "MARKER." IN OTHER
WORDS. TO THE PROGRAMMER. MEMORY ADDRESS NUMBER "N" CAN CORRESPOND TO
TIME "T." OR DISTANCE "D." OR POINT "Z." THUS. ONE CAN STORE. SAY.
1HE VALUE OF THE AMPLITUDE OF A SIGNAL AT TIME "T" IN ONE LOCATION. THE
~UE AT TIME T + T· IN THE NEXT LOCATION. THE VALUE AT TIME T + 2T· IN
1KE NEXT LOCATION. PURTHERMORE. IT SHOULD BE APPARENT THAT T· CAN BE
-SCALED" AS DESIRED BY APPROPRIATE PROGRAMMING SO THAT T· REPRESENTS ONE
MlCROSECOSD. OR MILLISECORD. OR SECORD. OR A YEAR'

FURTHERMORE. ONE CAN ACTUALLY SO BE.YOND THE POINT. OF CONSIDmING
THE LOCATIONS TO BE A LONG STRAIGHT LINE. BY CONSIDERING THE POSSIBILITY
OF MAUIPULATING THE LINE 0 F LOCATIONS AS A PI ECE 0 F STRING. ONE CAN
nSURATIVELY "CUT" THE PIECE OF "STRING" AT AMY DESIRED LOCATION AND
fORM THE "STRINa- INTO A "RING" OR "CIRCLE." THIS IS EASILY ACCOMPLISH­
ED BY SIMPLY HAVING THE "MEMORY ADDRESS POINTER" GO BACK TO LOCATION
'W" WHDf IT REACHES LQCATIOIJ ••• + X." CONSIDER THE POSSIBILITY OF DO­
ING SUCH AN OPERATION WITH THREE SECTIONS 0 F THE LINE AND USING THE
TECHlJIQUE TO SIMULATE A "ONE ARMED BANDIT" MACKINE.

ADDR N APPLE ADDR .+X+l PEAR ADDR N+2X+l BANANA
ADDR .+1 PEAR ADDR .+X+2 BANANA ADDR .+2X+2 LEMON
ADDR N+2 CHERRY ADDR B+X+3 LEMON ADDR N+2X+3 APPLE
AD DR 11+3 BAIAIIA ADDR N+X+4 Br.LL ADDR Y+2X+4 BELL
ADDR .+'" LEMON ADDR N+X+5 CHERRY ADDR .+2X+5 PEAR
ADDR N+X BELL ADDR N+X+6 APPLE ADDR N+2X+6 CHERRY

'l - 3

ONE COULD DEVELOP ALGORITHMS TO "SPIN" THE MEMORY POINTER AROU.D.EACH
-RING" AND RARDOKLY COME TO A STOP AT A LOCATION WITHIN EACH RING. THE
RESULTS OF THE EVERTS IN ALL THREE "RINOS" COULD THEM BE PROCESSED TO
DETER.IRE WHETHER ONE "HIT A JACKPOT" OR MISSED. THE DETAILS OF SUCH A
PROGRAM WILL BE LEn TO THE CREATIVE PROGRAMMER .. BUT THE CONCEPT OF HOW .

. OME COULD APPROACH SUCH A SIMULATION,PROJECT IS HOPEFULLY CLEAR.

FINALLY. TO TAKE THE "ONE DIMENSION" VIEW A LITTLE FURTHER. ONE CAN
lI) DOW TO THE "BIT- LEVEL. SINCE A MEMORY WORD IN All 8818 SYSTEM AC­
TUALLY CONSIST OF 8 INDIVIDUAL -BITS.- ONE COULD CONSIDER MEMORY TO BE
A LONO LINE OF -1·S- AND ""·S... EACH MEHORY LOCATION CONTAINS EIGHT
BITS AIID BY USINa CONSECUTIVE MEMORY LOCATIONS ONE CAR BUILD UP LONG
-STRINGS- OF BiTS. AGAIN. THE "STRINS- CAN BE "BROKEJI" AT AlfY DESIRED
POINT AND MAIIIPULATED AS DESIRED. THIS TECHNIQUE CAlf BE USED. SAY. TO
SIMULATE A HUGE "SHIFT REGISTER" (USING ROTATE INSTRUCTIONS) OR TO RE­
PRESENT AN EVERT OCCURINa. OR NOT OCCURING AT POINTS 1M TIME. OR AT DIS-
~CES ALOMa A LINE. IN THIS VIEW. A BIT IS "ADDRESSED- AS BEING AT A
SPECIFIC -POSITIO.- WITHIN A SPECIFIC -MEMORY ADDRESS LOCATION.- WHILE
'IKE PROaRAMlfI.a -OVERHEAD- TO MAlIIPULATE SUCH -DATA- WILL GDfERALLY BE
IIlRE COMPLICATED THAll THE CASE WHERE DlTIRE MEMORY "WORDS" ARE USED TO
REPRESENT A "SYMBOL" OR PIECE OF DATA. ONE CAN SEE THAT THE BASIC CON­
CEPT 0,. CONSIDERI.a ALL BITS IN MEMORY AS· BEING .oRMED 0,. ONE CONTINUOUS
-LINE- 0,. ONES AND ZEROS IS A VALID. AltD onm USEFUL IMAGE.

THE TWO DIMENSIONAL VIEW

THE CONCEPT OF VIEWING MEMORY AS A TWO DIMDfSIONAL PLANE WILL BE
STARTED BY CONSIDERING AN IMAGE AT THE BIT LEVEl..

ADDR If

ADDR .+X

ADDR If • ADDR .+X+l • ADDR N+2X+l

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l' 1 1 1 1
100 0 0 0 0 0 000 100 0 000 000 0 1
1 0 1 0 0 000 0 0 lOt 0 0 0 0 0 0 0 101
100 1 000 0 0 100 0 1 0 0 0 0 0 100 1
1 000 1 000 1 000 0 0 1 000 100 0 1
1000010 100 000 0 0 1 0 100 0 0 1
1 0 000 0 1 000 0 100 0 0 1 000 001
1 000 0 1 0 000 0 1 000 0 0 100 0 0 1
100 0 100 000 0 100 0 000 1 000 1
100 100 0 000 0 1 000 0 0 0 0 100 1
1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 ·0 0 0 1 0 1
100 1 000 000 0 1 000 0 0 0 0 100 1
1 000 100 0 0 0 0 1 000 0 0 0 100 0 1
1 000 0 1 000 0 0 1 000 0 0 100 001
10000 100 000 1 000 0 0 100 0 0 1
1 000 0 0 100 0 0 100 0 0 1 000 0 0 1
1000010 1 000 0 000 1 0 100 0 0 1
100 0 1 000 100 0 0 0 1 000 100 0 1
100 1 000 0 0 100 0 1 0 0 000 100 1
1 0 100 000 0 0 1 0 1 000 0 000 101
100 000 0 0 0 0 0 1 0 0 0 0 000 0 001
1 11 1

ADDR •• X • ADDR •• 2X • ADDR •• 3X

THE ABOVE DIAGRAM ILLUSTRATES AN IMAGE CRFATED BY THE STATUS 0,. THE

~ - 4

BITS IN A "PLANE" OF MEMORY. THE "PLANE WAS ESTABLISHED BY ESSDlTIAL­
LV TAKING "LINES" OF "EXORY ADDRESSES (AS PRESENTED IN THE "ONE DIMEN­
SIONAL VIEW") AND PLACING THEM ALONGSIDE O.,E ANOTHER TO PORM A SURFACE
OR "PLANE." THIS CONVENTION WOULD BE ESTABLISHED BY THE MANNER IN WHICH
11IE PROGRAMMER MAIIIPULATED THE MDIORY POINTER IN THE CPU. IN THE ABOVE
ILLUSTRATION THE "PLANE- IS ESTABLISHED AT THE MOST FUNDAMENTAL (AND
COMPLEX) LEVFl. AND BITS WITHI. EACH WORD ARE MANIPULATED. AS MAY BE OB-
SERVED IN THE ABOVE DIAGRAM. ONE CAN VIEW AND MANIPULATE BITS IN MEKORY
SO AS TO FORM "PICTURES" OR "DIAGRAMS." THE ABOVE REPRESENTS A RECT­
ANGLE. A DIAMOND. AND A CROSS AS AN IMAGE MADE UP OF APPROPRIATE ONES
AND ZEROS IN SELECTED BIT POSITIONS. ONE COULD THUS MANIPULATE PORTIONS
OF MEMORY TO REPRESENT "PICTURES." (OR CHARTS. GRAPHS. PLOTS I) THE DE­
OREE OF DETAIL WHICH ONE CAN OBTAIN BY SUCH MANIPULATIONS IS A FUNCTION
OF HOW MANY "BITS" A-RE USED TO REPRESDIT A GIVEN "AREA" OF A REAL (OR
PROPOSED "REAL") OBJECT. THE ABOVE EXAMPLE PRESDITS ALL KINDS OF POSSI-
BILITIES FOR THE CREATIVE PROGRAMMER. ONE CAN USE SUCH TECJDfIQUES TO
JIORM "MODELS." CREATE PATTERNS. AND SO FORTH.

IN FACT. GOING THE OTHER WAY SO TO SPEAK. THAT IS PROM HAVING THE
COMPUTER GEMERATE PATTERNS OR OBJECTS. ONE CAN ALSO TAXE THE TWO DIMEN­
SIONAL CONCEPT AND APPLY. IT TOWARDS HAVING THE COMPUTER RECOGNIZE OB­
JECTS BY-"PROJECTING" THEIR SHAPE OR PORM AS A SIMILAR IMAGE OF ONES
.#ltD ZEROS IN MEMORY.

MUCH RESEARCH IS CURREXTLY BEING CONDUCTED TOWARDS DEVELOPING ALGO­
RITHMS THAT CAN RECOGNIZE "OBJECTS." ONE APPROACH THAT IS BEING STUDIED
IS AN INTERESTING APPLICATION OF THE TWO DIMDlSIONAL CONCEPT. A "PIC-
TURE- OF AN "OBJECT" IS "MAPPED" INTO MEMORY WITH ".'5" BEING USED TO
REPRES91T THE AREA OCCUPIED BY THE "OBJECT" AND ""'5" POR AREAS "OUT­
SIDE." THEIl. THE COMPUTER IS "TRAINED" TO IDmTI FY' OBJECTS BY USING AL­
GORITHMS BASED ON A "NEIGHBORING BITS" SCHEME. 1M THIS MANNER. THE COM­
PUTER DETERMINES HOW MANY "0'S" SURROUND A "I", AND PERPORMS .CALCULATIONS
TO FIND THE "OUTLINE" AND SHAPE OF THE OBJECT. THESE FINDINGS ARE THEN
COUPLED WITH COMPLEX ALGORITHMS TO ATT!XPT TO IDDITIFY' THE OBJECT PROM A
-CLASS" OF POSSIBILITIES.

SUCH PROGRAMS ARE OF COURSE QUITE COMPLEX AND THE DETAILS OF SUCH
MANIPULATIONS ARE SOMEWHAT ESOTERIC. BUT. THE IDEA IS INTRIGUEING AND
CAN PROVIDE FERTILIZATION POR THE CREATIVE PROGRAMMER'S IMAGINATION.

TAKING THE TWO DIMENSIONAL VIEW TO THE M!MORY WORD LEVEL IS PERHAPS
A BIT LESS COMPLICATED (IT lSI IT lSI) THAN CONSIDERING IT AT THE BIT
LEVEL. IN THIS CASE. ONE ,NEEDS OIlLY EJlVISION A "PLANE- OF MEMORY WORDS
WKICH CAN CONTAIN CODES PaR LETTERS. NUMBERS. SYMBOLS OR ACTUAL MATHE­
~TICAL VALUES. THE READER HAS ALRFADY SED EXAMPLES OF PROGRAMS THAT
COULD BE CONSIDERED AS TWO DIMEJlSIONAL IN ORGANIZATION. ONE FOR IN-
STANCE. WAS DESCRIBED IN CHAPTER POUR III THE PRES_TATION OF THE NAMES
SORTIJIG PROGRAM. . THERE. LINES 0 F NAMES WERE FORMED ·ONE BENEATH THE
OTHER" 1M ORDER TO MAXE THE SORT ROUTINE FASI ER TO PROGRAM. ONE KIGHT
REVIEW THE DIAGRAM SHOWING THE SAMPLE NAMES STORED IN MEMORY AS THEY RE­
lATE TO THE M!XORY ADDRESSES. WHICH WAS PRESEHTED NEAR THE END OF CHAPT­
ER FOUR.

THE PROGRAMMER IS AGAIN REMINDED THAT AS IN THE ONE DIMENSIONAL
VI EW. THE MEMORY ADDRESSES THAT PORM THE "X" AND "Y- BOUWDARI ES 0 F A
TWO DIM!JISIONAL MEMORY PLANE CAN ACTUALLY BE THOUGHT OF AS ARBITRARY
t)fITS - SUCH AS TIME. P'REQUDlCY. OR DISTANCE. AND THE PROGRAMMER ALSO
HAS THE FR!EMM TO -SCAL!" BOTH THE "X- AND tty .. BOUNDARl ES BY APPROP­
RIATE SOnWARE. THE NEXT ILLUSTRATION SHOWS HOW AN "ALTITUDE MAP" OF
A GEOGRAPHICAL AREA HI GHT BE STORED IN A "PLANE" 0 F MEMORY.

9 - 5

N •• X N.2X •• 3X •• I&X •• 5X N.6X

tI 968 065 01" 015 014 018 064 500 YDS

•• 1 061 8'6 881& 883 980 "76 018 480 YDS

•• 2 962 "'8 888 998 096 891 882 380 YDS

•• 3 962 0'8 099 182 101 989 012 209 YDS

•• 4 055 019 975 953 047 063 039 100 YDS

N+(X-l) 940 835 020 010 011 009 088 0 YDS.

o YDS 180 YDS 200 YDS 300 YDS 499 YDS 500 YDS 600 YDS

IN THE ABOVE ILLUSTRATION EACH MEMORY LOCATION CONTAINS A VALUE
THAT REPRESDlTS THE ELEVATION OF A PIECE OF LAND. THE TOP AND LEFT SIDE
OF THE ILLUSTRATION SHOWS THE ACTUAL MEMORY ADDRESSES IN THE COMPUTER
WKILE THE BOTTOM AND RIGHT SIDE, ILLUSTRATE THAT EACH "ADDRESS" ACTUALLY
STANDS FOR "100 YARDS DISTANCE." IT SHOULD BE APPARENT THAT THE EL­
EVATION FACTORS COULD BE. INSTEAD. INCHES OF RAINWATER. OR A TEMPERATURE
PROFILE FOR THE AREA. OR. AS PREVIOUSLY MENTIONED. THAT THE "YARDS" CAN
SE ALMOST ANYTHIWG ELSE THE PROGRAMMER MIGHT DESIRE TO DEFINE.

AS A FINAL EXAMPLE OF THE TWO DIMENSIONAL CONCEPT. THE READER WILL
BE LEFT WITH THE POLLOWING DIAGRAM - WHICH HOPEFULLY WILL ENCOURAGE ONE
10 CONSIDER THE POSSIBILITIES .oR MUCH MORE COMPLEX "BOARD GAMES'"

N •• X.l •• 2X+l

• •
N X • 0 • X N+2X+I

• • ••••••••••••••••••••••••••• • • •• 1 0 • X • 0 .N+2X+2

• • ••••••••••••••••••••••••••• • • N+X 0 • X • X N.3X

• •
.,+X .+2X N+3X

FINALLY. THE READER WILL BE REMINDED. THAT IN A MANNER SIMILAR TO
PORMING A "RING" AS DISCUSSED IN THE ONE DIMENSIONAL VIEW. ONE CAN ALSO
roNSI DER FORMING A "CYLINDER" OUT 0 F A "PLANE" WITH INTERESTING RAMI­
nCATIONSI

THE THREE DIMENSIONAL VIEW

IT SHOULD NOW BE APPARDfT THAT'" ONE CAN Sf.;! UP "DIORY LOCATIONS
Fli APPROPRIATE ADDRESSING TO REPRESDfT "LINES" AND "PLANES." ONE CAN EX­
TEND THE PRINCIPLE OUT TO' THE "THIRD DIMENSION" TO PORM "CUBES" OF MEM­
ORY. THERE ARE MANY INTERESTING POSSIBILITIES WHEN MEMORY IS VIEWED, IN

9 - 6

11115 lIAJIlIER. ONE CAlI PLOT THREE DIMDlSIOMAL GRAPHS OR VECTORS. 'OME CAN
APPROACH MANY TYPES 0,. -IIOD!'l.IIIG" MID MANIPULATE SUCH MODI1.S SO AS TO
OBTAIN DIFFERENT -CROSS-SECTIONAL" VIEWS.

AS Iff THE CASE OF THE OIlE AlfD TWO DIII!2fSIONAL IMAGES. THE PROGRAM­
MER CAlI SUBSTITUTE (EFFECTIVELY) IIEXORY ADDRES.SES .oR SCALE FACTORS. NOW
ALONG THREE AXIS. AND. AS IN THE PREVIOUS EXAMPLES. ONE CAM TAKE SUCH
*HIPULATIONS DOWN TO THE BIT LEVEL I F DESIRED.

THE DIAGRAM BELOW PRESEWT5 AN IMAGE OF MEXORY WHEW VIEWED AS A THREE
DIMENSIONAL WORKING AREA.

N

N+1.

N+2.

M+3 · • •
~+x

X

X

X

X X

N+X N+2.X N+3X N-t+X N+SX N+'X

~.~- "'(AJ+~)()
~-- 3 (N.,.~)fJ

~--- 2. (N+~1CJl
(N+'X)

IT 15 HOPED. THAT BY THIS TIME. THE READER HAS RECEIVED. SUFFICIENT
DlFORMATION ON THE PRACTICAL ASPECTS OF MACHINE LAIIGUAGEPROGRAantIIIG
PROM THE PRECEEDIRG CHAPTERS. AND THAT THIS CONCLUDING CHAPTER HAS PRO­
VIDED SOME STIMULATING CONCEPTS. SO THAT THE READER MAY GO 011 TO DE-
VELOP PROGRAMS THAT WILL BE OF PARTICULAR VALUE TO THE I.DIVIDUAL. IT
IS ALSO HOPED THAT THOSE WHO HAVE BEEN INTRODUCED TO THE SUBJECT BY THIS
~UAL. WILL FI8D MACHINE LANGUAGE PROGRAMMING AN EXCITING. ENJOYABLE.
_D IN AS MAHY WAYS· AS POSSIBLE. A REWARDING DfDEAVOR'

9 - .,

	0001
	0002
	001
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	8-01
	8-02
	8-03
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07

