MACHINE LANGUAGE PROGRAMMING
FOR THE '8 0 0 8°

(AND SIMILAR MICROCOMPUTERS)

AUTHORt NAT WADSWORTH

© COPYRIGHT 1975
SCELB!I COMPUTER CONSULTING, INC.
1322 REAR = BOSTON POST ROAD
MILFORD, CTe 86460

e« ALL RIGHTS RESERVED =

CHAPTER
CHRAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

CHAPTER

ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT

NINE

MACHINE LANGUAGE PROGRAMMING
FOR THE '8 0 0 &°
(AND SIMILAR MICROCOMPUTERS)
REREEEEEEREREEREELEREREEERERER
TABLE OF CONTENTS

BRRREEEERRRREEEEEEEERER KK Rk RK

INTRODUCTION

THE *8008°* CPU INSTRUCTION SET
INITIAL STEPS FOR DEVELOPING PROGRAMS
FUNDAMENTAL PROGRAMMING SKILLS

BASIC PROGRAMMING TECHNIQUES
MATHEMATICAL OPERATIONS

INPUT/0UTPUT PROGRAMMING

REAL=TIME PROGRAMMING

PROM PRQGRAHM!NG CONSIDERATIONS

CREATIVE PROGRAMMING CONCEPTS

INTRODUCTION

THIS MANUAL IS ON MACHINE LANGUAGE PROGRAMMING METHODS AND TECH-
NIQUES FOR 8008 BASED COMPUTERS. WHILE MACHINE LANGUAGE PROGRAMMING
IS THE MOST FUNDAMENTAL TYPE OF COMPUTER PROGRAMMING POSSIBLE. IT IS
BY FAR THE MOST EFFICIENT METHOD, IN TERMS OF UTILIZATION OF THE MACH~-
INES*S CAPABILITIES, WITH WHICH TO PROGRAM OR SET UP A 8008 SYSTEM TO
PERFORM A JOB. MACHINE LANGUAGE PROGRAMMING 1S, ON THE OTHER HAND,
THE MOST DEMANDING METHOD OF COMPUTER PROGRAMMING IN TERMS OF HUMAN
INDEAVOR AND SKILL. HOWEVER, THE FUNDAMENTAL SKILLS AND TECHNIQUES
NECESSARY FOR MACHINE LANGUAGE PROGRAMMING CAN BE APPLIED TO VIRTUALLY
ANY LEVEL OF COMPUTER PROGRAMMING. A CLEAR UNDERSTANDING OF MACHINE

LANGUAGE PROGRAMMING WILL GIVE ONE GREAT INSIGHT INTO ANY HIGHER LEVEL
LANGUAGE PROGRAMMING.

MACHINE LANGUAGE PROGRAMMING IS THE ACTUAL STEP-BY-STEP PROGRAM-
MING OF THE COMPUTER USING THE MACHINE CODES AND MEMORY ADDRESSES THAT
VILL BE USED BY THE COMPUTER DIRECTLY. IT IS CONSIDERABLY MORE DETAIL-
ED THAN PROGRAMMING IN A HIGH LEVEL LANGUAGE SUCH AS FORTRAN (RTM) OR
BASIC (RTM) - IT IS IN FACT, THE LEVEL OF PROGRAMMING FROM WHICH THOSE
HIGH LEVEL LANGUAGES ARE DEVELOPED. IN FACT, IF ONE KNOWS HOW TO DE=-
VELOP PROGRAMS IN MACHINE LANGUAGE, ONE WILL HAVE THE BASIC SKILLS NEC-
ESSARY FOR DEVELOPING A HIGHER LEVEL LANGUAGE. (THAT IS A TREMENDOUS
ASSETT OVER ONE WHO ONLY KNOWS HOW TO PROGRAM IN HIGHER LEVEL LANGUAG=-
ESe)

THE PRIMARY REASON FOR HAVING A -MANUAL DEVOTED TO MACHINE LANGUAGE
PROGRAMMING FOR THE 8008 1S BECAUSE THIS METHOD IS BY FAR THE MOST
EFFICIENT METHOD FOR PACKING A PROGRAM INTO A SMALL AMOUNT OF MEMORY.

AS USER'S KNOW, MEMORY ELEMENTS COST A GOOD AMOUNT OF MONEY, AND THE
MORE ONE CAN PROGRAM INTO A GIVEN AMOUNT OF MEMORY, THE LESS MEMORY RE~
QUIRED FOR A GIVEN TASK = AND THE MORE ONE CAN DO WITH A LOW COST MACH-
INE. HIGH LEVEL LANGUAGES REQUIRE MUCH MORE MEMORY BECAUSE OF TWO MAJOR
REASONS. FIRST, A LARGE AMOUNT OF MEMORY MUST BE USED BY THE HIGH LEVEL
LANGUAGE ITSELF. SECOND, HIGHER LEVEL LANGUAGES MUST CONVERT USER
STATEMENTS OR COMMANDS TO MACHINE LANGUAGE CODES AND THEY GENERALLY CAN-
NOT DO THIS ANY WHERE NEAR AS EFFICIENTLY (MEMORY USAGE - WISE) AS A
TRAINED HUMAN PROGRAMMER!

ANOTHER REASON FOR DISCUSSING MACHINE LANGUAGE PROGRAMMING AT
LENGTH 1S BECAUSE IT IS THE ONLY METHOD WHERE-BY MANY CAPABILITIES OF
THE MACHINE CAN BE TAKEN ADVANTAGE OF - THIS 1S PARTICULARLY TRUE FOR
*REAL-TIME™ AND I1/0 OPERATIONS. MANY USERS WILL WANT TO UTILIZE THEIR
8008 MINICOMPUTERS FOR UNIQUE APPLICATIONS AND THE CONTENTS OF THIS
MANUAL WILL PRESENT MANY IDEAS AND CONCEPTS FOR THESE PEOPLE TO APPLY
TO THEIR INDIVIDUAL APPLICATIONS.

MACHINE LANGUAGE PROGRAMMING IN GENERAL 1S NOWHERE AS DIFFICULT TO
. LEARN AS MANY PEOPLE MIGHT TEND TO THINK WHEN FIRST INTRODUCED TO THE
SUBJECT. THIS 1S ESPECIALLY TRUE FOR THE E@08 TYPE MINICOMPUTER. THERE
ARE maNY FUNDAMENTAL CONCEPTS THAT CAN BE READILY LEARNED AND ONCE THIS
HAS BEEN ACCOMPLISHED THE NOVICE IS ON THE WAY TO DEVELOPING ORIGINAL

SOLUTIONS TO PROGRAMMING PROBLEMS THAT MAY BE OF UNIQUE INTEREST TO THE
INDIVIDUAL.

COMPUTER PROGRAMMING, AND MACHINE LANGUAGE PROGRAMMING IN PARTIC-
ULAR, IS IN MANY RESPECTS AN ART, AND IN OTHER RESPECTS A VERY RIGID
SCIENCE. THE FUN PART, AND WHAT CAN BE CONSIDERED ARTISTIC, IS THAT
INDIVIDUALS CAN TAILOR OR FASHION SERIES OF INSTRUCTIONS TO ACCOMPLISH
A PARTICULAR TASK IN A VARIETY OF WAYS. THE SCIENTIFIC PART OF PROGRAM=-

1 -1

MING INVOLVES ACQUIRING SOME BASIC SKILLS AND KNOWLEDGE ABOUT WHAT CAN
AND CANNOT BE DONE, AND AT A HIGHER LEVEL, PERHAPS, AN UNDERSTANDING

'OF BASIC MATHEMATIC ALGORITHMS AND PROCEDURES THAT CAN BE READILY AP-
PLIED USING COMPUTER TECHNIQUES. SOME OF THE BASIC SKILLS INCLUDE KNOW-
ING JUST WHAT THE AVAILABLE MACHINE INSTRUCTIONS ARE, AND SOME OF THE
MOST FREQUENTLY USED COMBINATIONS OF INSTRUCTIONS THAT WILL PERFORM
FREQUENTLY REQUIRED TASKS - THESE SKILLS ARE AS FUNDAMENTAL AS A PAINTER
KNOWING THE PRIMARY COLORS AND HOW TO COMBINE THEM TO CREATE THE COMMON=-
LY USED SECONDARY COLORS. HOWEVER, LIKE THE PAINTER WHO COMBINES THE
BASIC PIGMENTS, BEYOND A CERTAIN POINT THE TASK OF COMPUTER PROGRAMMING
BECOMES A HIGHLY CREATIVE INDIVIDUALISTIC ART. AND, IT IS AN ART IN
WHICH ONE CAN CONSTANTLY GAIN NEW SKILLS AND ABILITY. A HIGH SCHOOL
STUDENT OR A COLLEGE PROFESSOR CAN BOTH FIND EQUALLY REWARDING CHAL-
LENGES IN COMPUTER PROGRAMMING. THERE ARE OFTEN MANY DIFFERENT WAYS TO
PROGRAM A COMPUTER TO PERFORM A GIVEN TASK AND MANY “TRADE - OFFS'" TO
CONSIDER WHEN DEVELOPING A PROGRAM (SUCH AS HOW MUCH MEMORY TO USE, WHAT
.FUNCTIONS HAVE PRIORITY, HOW MUCH BURDEN TO PLACE ON THE HUMAN OPERATOR
WHEN THE PROGRAM IS OPERATING). EACH INDIVIDUAL SOON LEARNS TO CAPIl~-
TALIZE ON THE ASPECTS CONSIDERED MOST IMPORTANT FOR THE SPECIFIC APPLI~-
CATION AT HAND AND WILL DEVELOP THEIR OWN PERSONAL METHODS FOR HAND-
LING VARIOUS TYPES OF PROGRAMMING TASKS.

REMEMBER AS YOU READ THIS MANUAL THAT THERE ARE MANY OTHER WAYS OF
PROGRAMMING A COMPUTER TO PERFORM MANY OF THE EXAMPLE PROGRAMS ILLUSTRA-
TED. DON'T BE AFRAID TO DEVELOP YOUR OWN SOLUTIONS FOR PRACTICE AS YOU
GO THROUGH THE MATERIAL. TRY OUT YOUR SOLUTIONS - SEE IF THEY WORK AS
PLANNED .~ PRACTICE BEING A “CREATIVE PROGRAMMER!'" BY THE TIME YOU HAVE
. COMPLETED ABSORBING AND UNDERSTANDING THE CONTENTS OF THIS PUBLICATION
YOU SHOULD BE WELL EQUIPPED TO DEVELOP PROGRAMS OF YOUR OWN AND THUS BE
IN A POSITION TO REAP EVEN GREATER BENEFITS FROM YOUR 8088 BASED MICRO-
COMPUTER THAN JUST BEING ABLE TO OPERATE PROGRAMS THAT OTHER PEOPLE HAVE
PREPARED.

THE FIRST CHAPTER OF THIS MANUAL CONTAINS A DETAILED PRESENTATION
OF THE INSTRUCTION SET THAT THE 8868 CPU 1S CAPABLE OF PERFORMING. 1IT
GOES ALMOST WITHOUT SAYING, THAT THE FIRST STEP TOWARDS BECOMING A PRO-
FICIENT MACHINE LANGUAGE PROGRAMMER IS TO BECOME THOROUGHLY FAMILIAR
VITH ALL THE TYPES OF INSTRUCTIONS THAT THE MACHINE CAN EXECUTE AND ES-
PECIALLY TO LEARN ABOUT ANY SPECIAL CONDITIONS THAT APPLY TO THE EXEC~-
UTION OF SPECIFIC TYPES OF COMMANDS. THE LEAD-OFF CHAPTER PRESENTS A
COMPREHENSIVE EXPLANATION OF ALL THE INSTRUCTIONS IN THE 80048 REPER~
TOIRE ALONG WITH THE MNEMONICS AND MACHINE CODES. THE READER SHOULD
BECOME QUITE FAMILIAR WITH THE INFORMATION PRESENTED THERE BEFORE GOING
FURTHER IN THIS MANUAL. (AT LEAST TO THE POINT WHERE ONE CAN RAPIDLY
LOCATE ANY CLASS OF INSTRUCTIONS IN THE CHAPTER IN ORDER TO REFRESH
ONE'S MEMORY ON JUST HOW AN INSTRUCTION OPERATES AND TO BE ABLE TO RAP=-
IDLY LOCATE THE *“MACHINE CODES' WHEN ONE IS PREPARING A PROGRAM)!

THE *80@08°* CPU INSTRUCTION SET

THIS MINI-COMPUTER HAS QUITF A COMPRFHENSIVE INSTRUCTION SET
THAT CONSISTS OF 48 BASIC INSTRUCTIONS, WHICH, WHEN THE POSSIBLF

PERMUTATIONS ARE CONSIDFRED, RESULT IN A TOTAL SET OF ABOUT 170
INSTRUCTIONS.

THE INSTRUCTION SET ALLOWS THF USFR TO DIRECT THE COMPUTER TO
PERFORM OPERATIONS WITH MFMORY, WITH THE 7 BASIC REGISTERS IN THE
CPU, AND WITH INPUT AND OUTPUT PORTS.

IT SHOULD BE POINTED OUT THAT THF 7 BASIC REGISTERS IN THE CPU
CONSIST OF ONE ACCUMULATOR - THAT IS A REGISTFR THAT CAN PERFORM
MATHEMATICAL AND LOGIC OPERATIONS, AND AN ADDITIONAL 6 REGISTERS
WHICH WHILF NOT HAVING THE FULL CAPABILITY OF THE ACCUMULATOR, CAN
PERFORM CERTAIN OPERATIONS (INCREMFNT AND DECREMENT), CAN STORE
DATA, AND CAN OPFRATE WITH THE ACCUMULATOR. TWO OF THF SIX RFEGISTERS
HAVE SPFCIAL SIGNIFICANCE BECAUSF THEY MAY BF USED TO "POINT" TO AN
ADDRESS IN MEMORY.

THE SEVFN CPU REGISTERS HAVE ARBITRARILY BEEN GIVEN SYMBOLS SO
THAT WE MAY REFER TO THEM IN A COMMON LANGUAGE. THE FIRST REGISTER
- 1S DESIGNATED BY THE SYMBOL *A' IN THE FOLLOVING DISCUSSION AND VWILL
BE CONSIDERED THE ACCUMULATOR REGISTER. THF NFXT FOUR REGISTFRS VWILL
BE REFERRED TO AS THE "B,* 'C,'" "D," AND "“E," REGISTERS, AND THF RE=-
MAINING TWVO SPECIAL MEMORY POINTING REGISTFRS SHALL BE DESIGNATED
THE "H'" (FOR THE HIGH PORTION OF A MEMORY ADDRESS) AND THE L' (FOR
THE LOW PORTION OF A MEMORY ADDRESS) REGISTERS.

THE CPU ALSO HAS SFVFRAL FLIP-FLOPS WHICH SHALL BE REFERRED TO
AS “FLAGS.'" THESE FLIP-FLOPS ARF SFT AS THE RESULT OF CFERTAIN OPERA-
TIONS AND ARE IMPORTANT BECAUSE THEY CAN BF “TESTFD' BY MANY OF THE
INSTRUCTIONS AND THE INSTRUCTION'S MEANING CHANGED AS A CONSEQUENCE
OF THE FLAGS PARTICULAR STATUS AT THF TIME IT IS TESTED. THERE ARE
FOUR BASIC FLAGS VHICH VILL BE RFFERRFD TO IN THIS MANUAL DESIGNATED
AS FOLLOWS:

THE “C*" FLAG REFERS TO THF CARRY BIT STATUS. THE CARRY

BIT IS A 1 UNIT REGISTER WHICH CHANGES STATE WHEN THF ACCUM-
ULATOR OVER-FLOWS OR UNDFR-FLOWS. THIS BIT CAN ALSO BE

SET TO A KNOWN CONDITION BY CERTAIN TYPES OF INSTRUCTIONS.
"THIS 1S IMPORTANT TO REMEMBER WHEN DEFVELOPING A PROGRAM BE=-
CAUSE QUITE OFTEN A PROGRAM WILL HAVF A LONG STRING OF
INSTRUCTIONS WHICH DO NOT UTILIZE THE CARRY BIT OR CARE ABOUT
ITS STATUS, BUT VWHICH WILL BE CAUSING THE CARRY BIT TO CHANGE
ITS STATUS FROM TIME TO TIME. THUS, WHEN ONE PREPARES TO DO
A SFRIES OF OPERATIONS THAT VWILL RELY ON THE CARRY BIT, ONF
OFTEN DESIRES TO SET THE CARRY BIT TO A KNOVN STATE.

THE “Z* FOR ZERO FLAG REFERS TO A | UNIT REGISTER THAT WHEN
DESIRED WILL INDICATE WHETHER THE VALUE OF THE ACCUMULATOR
1S EXACTLY FQUAL TO ZERO. IN ADDITION, IMMEDIATELY AFTER
AN INCREMENT OR DECREMENT OF THE B, G, D, E, H OR L REGIS~-
TERS, THIS FLAG WILL ALSO. INDICATE WHETHER THE INCREMENT
OR DECREMENT CAUSED THAT PARTICULAR REGISTFR TO GO TO ZFRO.

THE *S" FOR SIGN FLAG REFERS T0 A | UNIT REGISTFR THAT INDI=-
CATES WHETHER THE VALUE IN THE ACCUMULATOR IS A POSITIVE OR
NEGATIVE VALUE (BASED ON TWO0'S COMPLEMENT NOMENCLATURE).
ESSENTIALLY, THIS FLAG MONITORS THE MOST SIGNIFICANT BIT IN
THE ACCUMULATOR AND 1S *SFT"™ WHEN IT IS A ONE.

1 -1

THE '"P" FLAG REFERS TO THE LAST FLAG IN THE GROUP WHICH
IS FOR INDICATING WHEN THE ACCUMULATOR CONTAINS A VALUE
WHICH HAS EVEN PARITY. PARITY IS USEFUL FOR A NUMBER OF
REASONS AND IS USUALLY USED IN CONJUNCTION WITH TESTING
FOR ERROR CONDITIONS ON WORDS OF DATA PARTICULARLY WHEN
INPUTTING DATA FROM EXTERNAL SOURCES. EVEN PARITY OCCURS
WHEN THE NUMBER OF BITS THAT ARE A "I'" IN THE ACCUMU-
LATOR (OUT OF THE EIGHT POSSIBLE) IS AN EVEN VALUE, l.E..
2, 4, 6, OR 8; REGARDLESS OF WHAT ORDFR THEY MAY BE IN
THE ACCUMULATOR REGISTER.

IT IS IMPORTANT TO NOTE THAT THE "Z,' "S,' AND "P" FLAGS (AS
WELL AS THE PREVIOUSLY MENTIONED *C* FLAG) CAN ALL BE SET TO KNOWN
STATES BY CERTAIN INSTRUCTIONS. IT IS ALSO IMPORTANT TO NOTE THAT
SOME INSTRUCTIONS DO NOT RESULT IN THE FLAGS BEING SET SO THAT IF
THE PROGRAMMER DESIRES TO HAVE THE PROGRAM MAKE “DECISIONS"™ BASED
ON THE STATUS OF FLAGS, THE PROGRAMMER SHOULD ENSURE THAT THE PROPER
INSTRUCTION, OR SEQUENCE OF INSTRUCTIONS IS UTILIZED. IT IS PARTIC-
ULARLY IMPORTANT TO NOTE THAT "LOAD REGISTER* INSTRUCTIONS DO NOT
BY THEMSELVES SET THE FLAGS. SINCE IT IS OFTEN DESIRABLE TO OBTAIN
A DATA WORD (l.E. LOAD IT INTO THE ACCUMULATOR) AND TEST ITS STATUS
FOR SUCH PARAMETERS AS WHETHER OR NOT THE VALUE 1S ZERO, OR A NEG~-
ATIVE NUMBER ETC., THE PROGRAMMER MUST REMEMBER TO FOLLOW A LOAD
INSTRUCTION BY A LOGICAL INSTRUCTION (SUCH AS THE NDA =~ '"AND THE
ACCUMULATOR") IN ORDER TO SET THE FLAGS BEFORE USING AN INSTRUCTION
THAT IS CONDITIONAL IN REGARDS TO THE FLAG STATUS.

THE DESCRIPTION OF THE VARIOUS TYPES OF INSTRUCTIONS AVAILABLFE
WITH AN 8688 CPU UNIT WHICH FOLLOWS WILL PROVIDE BOTH THE MACHINE
LANGUAGE CODE FOR THE INSTRUCTION GIVEN AS 3 OCTAL DIGITS, AND ALSO
A MNEMONIC NAME SUITABLE FOR WRITING PROGRAMS IN SYMBOLIC TYPE LANG-
UAGE WHICH IS USUALLY EASIER THAN TRYING TO REMEMBER OCTAL CODES! IT
MAY BE NOTED THAT THE SYMBOLIC LANGUAGE USED 1S THE SAME AS THAT
SUGGESTED BY INTEL CORPORATION WHICH ORIGINALLY DEVELOPED THE 8608 “CPU-
ON-A=-CHIP" WHICH IS AT THE HEART OF 808068 SYSTEMS, AND HENCE USERS WHO
MAY ALREADY BE FAMILIAR WITH THE SUGGESTED MNEMONICS WILL NOT HAVE ANY
"RELEARNING' PROBLEMS AND THOSE LEARNING THE MNEMONICS FOR THE FIRST
TIME WILL HAVE PLENTY OF "GOOD COMPANY.'" IF THE PROGRAMMER IS NOT AL~
READY AVARE OF IT, THE USE OF MNEMONICS FACILITATES WORKING WITH AN
“YASSEMBLER" PROGRAM WHEN IT IS DESIRED TO DEVELOP RELATIVELY LARGE AND
COMPLEX PROGRAMS. THUS THE PROGRAMMER 1S URGED TO CONCENTRATE ON
LEARNING THE MNEMONICS FOR THE INSTRUCTIONS AND NOT WASTE TIME MEMORI=-
ZING THE OCTAL CODES. AFTER A PROGRAM HAS BEEN WRITTEN USING THE
MNEMONIC CODES, THE PROGRAMMER CAN ALWAYS USE A LOOKUP TABLE TO CON-
VERT TO THE MACHINE CODE IF AN ASSEMBLER PROGRAM IS NOT AVAILABLE.

ITS A LOT EASIER TECHNIQUE (AND LESS SUBJECT TO ERROR) THAN TRYING TO
MEMORIZE THE 178 OR SO 3 DIGIT COMBINATIONS WHICH MAKE UP THE MACHINE
INSTRUCTION CODE SET!

THE PROGRAMMER MUST ALSO BE AWARE, THAT IN THIS MACHINE, SOME
INSTRUCTIONS REQUIRE MORE THAN ONE “WORD" IN MEMORY. "“IMMEDIATEY
TYPE COMMANDS REQUIRE TWO CONSECUTIVE WORDS AND JUMP AND CALL COM-
MANDS REQUIRE THREE CONSECUTIVE WORDS. THE REMAINING TYPES OF INS-
TRUCTIONS ONLY REQUIRE ONE WORDe. THIS WILL BE PRESENTED IN DETAIL
IN THE DESCRIPTION FOR EACH TYPE OF INSTRUCTION.

THE FIRST GROUP OF INSTRUCTIONS TO BE PRESENTED ARE THOSE THAT
ARE USED TO "LOAD" DATA FROM ONE CPU REGISTER TO ANOTHER, OR FROM
A CPU REGISTER TO A WORD IN MEMORY, OR VICE-VERSA. THIS GROUP OF
INSTRUCTIONS REQUIRES JUST ONE WORD OF MEMORY. IT IS IMPORTANT TO
NOTE THAT NONE OF THE INSTRUCTIONS IN THIS GROUP AFFECT THE *FLAGS."

1 -2

LOAD DATA FROM ONE CPU REGISTFR TO ANOTHER CPU REGISTER

MNEMONIC MACHINE CODE

LAA 306
LBA 310
LAB 361

THE LOAD REGISTER GROUP OF INSTRUCTIONS ALLOWS THE PROGRAMMER
TO MOVE THE CONTENTS OF ONE CPU REGISTER INTO ANOTHER CPU REGISTER.
THE CONTENTS OF THE ORIGINATING (FROM) REGISTER IS NOT CHANGED. THF
CONTENTS OF THE DESTINATION (TO)> REGISTFR BECOMES THE SAME AS THE
ORIGINATING REGISTER. ANY CPU REGISTFR CAN BF LOADED INTO ANY CPU
REGISTER. NOTE THAT FOR INSTANCE LOADING REGISTER “A' INTO REGISTER
“A'" IS ESSENTIALLY A "NOP" (NO OPERATION) COMMAND. WHEN USING
MNEMONICS THE LOAD SYMBOL IS THE LETTER "L* FOLLOVED BY THE *To"
REGISTER AND THEN THE “FROM" REGISTER. THE MNEMONIC “LBA' MEANS
THE THE CONTENTS OF REGISTER "A" (THE ACCUMULATOR) IS TO BE LOADED
INTO REGISTER “B." THE MNEMONIC "LAB" STATES THAT REGISTER "B" IS
TO HAVE ITS CONTENTS LOADED INTO REGISTER "A." IT CAN BE SEFN THAT
THIS BASIC INSTRUCTION HAS MANY VARIJATIONS. THE MACHINE LANGUAGE
CODING FOR THIS INSTRUCTION IS IN THE SAME FORMAT AS THF MNEMONIC
CODE EXCEPT THAT THE LETTERS USED TO REPRESENT THE REGISTERS ARE
REPLACED BY NUMBERS THAT THE MACHINE CAN USE. USING OCTAL CODE, THE
7 CPU REGISTERS ARE CODED AS FOLLOWS:

REG "A" = @
REG "B” = |
REG *C" = 2
REG "D = 3
REG “E" = 4
REG "H" = §
REG "L" = 6

ALSO SINCE THE MACHINFE CAN ONLY UTILIZFE NUMBERS, THE OCTAL NUMBER 3
IN THE MOST SIGNIFICANT LOCATION OF A WORD SIGNIFIES THAT THE COMP-
UTER IS T0O PERFORM A “LOAD'" OPERATION. THUS, IN MACHINE CODING, THF
INSTRUCTION FOR LOADING REGISTER "B" WITH THE CONTENTS OF REGISTER
“A'" BECOMES: 3 1| @ (IN OCTAL FORM) OR, IF ONE WANTED TO GET VERY
DETAILED, THE ACTUAL BINARY CODING FOR THE 8 BITS OF INFORMATION IN
THE INSTRUCTION WORD WOULD BE: 1 1 e a1 ? 6 6. IT 1S IMPORTANT
TO NOTE THAT THE LOAD INSTRUCTIONS DO NOT AFFECT ANY OF THE “FLAGS."

LOAD DATA FROM ANY CPU REGISTER TO

A LOCATION IN MEMORY
LMA 31780
LMB 371
LMC 3172
LMD 373
LME 374
LMH 375
LML 376

THIS INSTRUCTION 1S VERY SIMILAR TO THE PREVIQUS GROUP OF
INSTRUCTIONS EXCEPT THAT NOV THE CONTENTS OF A CPU REGISTER VILL BE
LOADED INTO A SPECIFIED MEMORY. LOCATION. THE MEMORY LOCATION THAT
WVILL RECEIVE THE CONTENTS OF THE PARTICULAR CPU REGISTER IS THAT
VHOSE ADDRESS 1S SPECIFIED BY THE CONTENTS OF THE CPU '"H™ AND °*L"
REGISTERS AT THE TIME THE INSTRUCTION IS EXECUTED. THE "H" CPU
REGISTER SPECIFIES THE “HIGH™ PORTION OF THE ADDRESS. DESIRED, AND
THE “L' CPU REGISTER SPECIFIES THE "LOV" PORTION OF THE ADDRESS

1 -3

INTO WHICH DATA FROM THE SELECTED CPU REGISTER IS TO BE LOADED.
"NOTE THAT THERE ARE 7 DIFFERENT INSTRUCTIONS IN THIS GROUP AS ANY
CPU REGISTER CAN HAVE ITS CONTENTS LOADED INTO ANY LOCATION IN

MEMORY. THIS GROUP OF INSTRUCTIONS DOES NOT AFFECT ANY OF THF
“FLAGS."

LOAD DATA FROM A MEMORY LOCATION TO ANY CPU REGISTER

LAM 387
LBM 317
LCM 3227
LDM 337
LEM 3 417
LHM 357
LLM 3 617

THIS GROUP OF INSTRUCTIONS CAN BE CONSIDERED THE OPPOSITE
OF THE PREVIOUS GROUP. NOV, THE CONTENTS OF THE WORD IN MEMORY
WHOSE ADDRESS IS SPECIFIED BY THE "H" (FOR THE HIGH PORTION OF
THE ADDRESS) AND *“L* (LOV PORTION OF THE ADDRESS) REGISTERS VWILL
BE LOADED INTO0 THE CPU REGISTER SPECIFIED BY THE INSTRUCTION.
ONCE AGAIN, THIS GROUP OF INSTRUCTIONS HAS NO AFFECT ON THE
STATUS OF THE "“FLAGS."™

LOAD “IMMEDIATE" DATA. INTO A CPU REGISTFR

LAl 6 8 6
LBI g1 6
LC1 2 2 6
LDI e 3 6
LEI @ 4 6
LH1 8 5 6
LLI e 6 6

AN " IMMEDIATE" TYPE OF INSTRUCTION RFQUIRES TW0 WORDS IN ORDER
TO BE COMPLETELY SPECIFIED. THE FIRST WORD IS THE INSTRUCTION IT=-
SELF, THE SECOND WORD, OR "IMMEDIATELY FOLLOWING®" WORD, MUST CONTAIN
THE DATA UPON WHICH IMMEDIATE ACTION IS TAKEN. THUS, A LOAD " IMMED-
IATE" INSTRUCTION IN THIS GROUP MEANS THAT THE CONTENTS OF THE WORD
IMMEDIATELY FOLLOVWING THE INSTRUCTION WORD 1S TO BE LOADED INTO THE
SPECIFIED REGISTER. FOR EXAMPLE, A TYPICAL LOAD IMMEDIATE INSTRUC-
TION WOULD BE: LAl @@61. THIS WOULD RESULT IN THE VALUE @81 BEING
PLACED. IN THE "A* REGISTER WHEN THE INSTRUCTION WAS EXECUTED. 1IT IS
IMPORTANT TO REMEMBER THAT ALL "IMMEDIATE" TYPE INSTRUCTIONS MUST BE
FOLLOVED BY A DATA WORD. AN INSTRUCTION SUCH AS LDI ALONE WOULD
RESULT. IN IMPROPER OPERATION BECAUSE THE COMPUTER WOULD ASSUME THF
NEXT WORD CONTAINED DATA, AND IF THE PROGRAMMER HAS MISTAKENLY LEFT
OUT THE DATA WORD, AND IN ITS PLACE HAD ANOTHER INSTRUCTION, THE
COMPUTER WOULD NOT REALIZE THE OPERATORS "MISTAKE" AND HENCE THE PRO-
GRAM WOULD BE “FOULED-UP!" NOTE T00, THAT THE LOAD "IMMEDIATE"
GROUP OF INSTRUCTIONS DOES NOT AFFECT THE “FLAGS."

LOAD "IMMEDIATE" DATA INTO A MEMORY LOCATION
LMI g 76

THIS INSTRUCTION IS ESSENTIALLY THE SAME AS THE LOAD IMMEDIATE
. INTO THE CPU REGISTER GROUP EXCEPT THAT NOW, USING THE CONTENTS OF

! - 4

THE *H" AND “L® REGISTERS AS "POINTERS" TO THFE DESIRED ADDRESS IN
MEMORY, THE CONTENTS OF THE "IMMEDIATELY FOLLOVING WORD" VWILL BE

PLACED IN THE MEMORY LOCATION SPECIFIED. THIS INSTRUCTION DOES NOT
AFFECT THE STATUS OF THE “FLAGS."

THE ABOVF RATHER LARGE GROUP OF "LOAD"™ INSTRUCTIONS PERMIT THE
PROGRAMMER TO DIRECT THE COMPUTFR TO MOVE DATA ABOUT. THEY ARE
USED TO BRING IN DATA FROM MEMORY WHERE IT CAN BE_OPERATED ON BY
THE CPU, OR TO TEMPORARILY STORE INTERMEDIATE RFSULTS IN THFE CPU
REGISTER DURING COMPLICATED AND EXTENDED CALCULATIONS, AND OF COURSE
ALLOW DATA, SUCH AS RESULTS, TO BE PLACED BACK INTO MEMORY FOR
LONG TERM STORAGE. SINCE NONFE OF THEM VILL ALTER THE COMTENTS OF
THE FOUR CPU FLAGS, THESE INSTRUCTIONS CAN BE CALLED UPON TO, FOR
EXAMPLE, SET UP DATA, BEFOFE INSTRUCTIONS THAT MAY AFFECT OR UTILIZF
THE FLAGS®' STATUS ARE EXECUTED. THE PROGRAMMER VWILL USE. INSTRUCTIONS
FROM THIS SET FREQUENTLY. THE MNEMONIC NAMES FOR THE INSTRUCTIONS
ARE EASY TO REMEMBER AS THEY ARE WELL ORDERED. THE MOST. IMPORTANT
. ITEM TO REMEMBER ABOUT THE MNEMONICS IS THAT THE *TO" REGISTER IS
ALVAYS INDICATED FIRST IN THE MNEMONIC, AND THEN THE *FROM" REGISTER.
THUS “LBA* = “LOAD TO REGISTER *B" FROM REGISTER "A."

INCREMENT THE VALUE OF

>

CPU RECGISTER BY 1|

INB 210
INC 6286
IND 6 380
INF 6 48
INH 6 50
INL 2 66

TH1S GROUP OF INSTRUCTIONS ALLOWS THE PROGRAMMER TO “ADD 1 TO
THE PRESENT VALUE OF ANY OF THE CPU REGISTERS EXCEPT THF ACCUMULATOR.
(NOTE CAREFULLY THAT THE ACCUMULATOR CAN NOT BE INCRFMENTED BY THIS
TYPE OF INSTRUCTION. 1IN ORDER TO *ADD 1" TO THE ACCUMULATOR A MATH-
EMATICAL ADDITION INSTRUCTION, DESCRIBED LATER, MUST BE USED). THIS
INSTRUCTION FOR INCREMENTING THE DEFINFED CPU REGISTERS IS VERY VAL~
UAELE IN A NUMBER OF APPLICATIONS. FOR ONE THING, IT IS AN FASY
WAY TO HAVE THE “L' REGISTER SUCCESSIVELY "POINT" TO A STRING OF LOC-
ATIONS IN MEMORY. A FEATURE THAT MAKES THIS TYPE OF INSTRUCTION FVEN
MORE POWERFUL, 1S THAT THE RESULT OF THE INCREMENTED REGISTER VILL
AFFECT THE “Z," "S,' AND "P"™ FLAGS. (IT WILL NOT CHANGE THE "C" OR
“CARRY" FLAG). THUS, AFTER A CPU REGISTER HAS BEEN INCREMENTED BY
THIS INSTRUCTION, ONE CAN UTILIZFE A “FLAG TEST" INSTRUCTION (SUCH AS
THE JUMP AND CALL. INSTRUCTIONS TO BE DESCRIBED LATER) TO DETERMINE
WHETHER THAT PARTICULAR REGISTER HAS A VALUE OF ZERO ('Z* FLAG), OR
IF IT IS A NEGATIVE NUMBER ("S" FLAG), OR EVEN PARITY ("P" FLAG).
IT IS IMPORTANT TO NOTE THAT THIS GROUP OF INSTRUCTIONS, AND THE
DECREMENT GROUP (DESCRIBED IN THE NEXT PARAGRAPH) ARE THE ONLY. INSTR-
UCTIONS WHICH ALLOVW THE “FLAGS'" TO BE MANIPULATED BY OPERATIONS THAT
ARE NOT CONCERNED VWITH THE ACCUMULATOR ("A") REGISTER.

DECREMENT THE VALUE OF A CPU REGISTER BY 1
DCB 211
DCC g 21
DCD 8 31
DCE 0 41
DCH 2 51
DCL o 61

THE DECREMENT GROUP OF INSTRUCTIONS IS SIMILAR TO THE INCREMENT
GROUP EXCEPT THAT NOW THE VALUE | VILL BE SUBTRACTED FROM THE SPECI-
FIED CPU REGISTER. THIS INSTRUCTION WILL NOT AFFECT THE *C" FLAG
BUT IT DOES AFFECT THE "Z," *S,' AND "P" FLAGS. IT SHOULD ALSO BE
NOTED THAT THIS GROUP, AS WITH THE INCREMENT GROUP, DOES NOT INCLUDE
THE ACCUMULATOR REGISTER. A SEPARATE MATHEMATICAL INSTRUCTION
MUST BE USED TO SUBTRACT 1| FROM THE ACCUMULATOR.

ARITHMETIC INSTRUCTIONS USING THE ACCUMULATOR

THE FOLLOWING GROUP OF INSTRUCTIONS ALLOV THE PROGRAMMER TO
DIRECT THE COMPUTER TO PERFORM ARITHMETIC OPERATIONS BETVEEN OTHER
CPU REGISTERS AND THE ACCUMULATOR, OR BETWEEN THE CONTENTS OF WORDS
- IN MEMORY AND THE ACCUMULATOR. ALL OF THE OPERATIONS FOR THE DES-
CRIBED ADDITION, SUBTRACTION, AND COMPARE INSTRUCTIONS AFFECT THE
STATUS OF THE *FLAGS."

ADD THE CONTENTS OF A CPU REGISTFR TO THE ACCUMULATOR

ADA 200
ADB 201
ADC 206 2
ADD 203
ADE 2 0 4
ADH 20 5
ADL 28 6

THIS GROUP OF INSTRUCTIONS WILL SIMPLY ADD THE PRESENT CONTENTS
OF THE ACCUMULATOR REGISTER TO THE PRESENT VALUE OF THE SPECIFIFED
CPU REGISTER AND LEFAVE THE RESULT IN THE ACCUMULATOR. THE VALUE OF
THE SPECIFIED REGISTER. IS UNCHANGED EXCEPT IN THE CASE OF THE *ADA"™
.INSTRUCTION. NOTE THAT THE *“ADA"™ INSTRUCTION ESSENTIALLY ALLOWS THE
PROGRAMMER TO DOUBLE THF VALUE OF THE ACCUMULATOR (WHICH IS THE A"
REGISTER)! 1IF THE ADDITION CAUSES AN “OVER-FLOW" OR “UNDER-FLOWV"
THEN THE *CARRY'" ("C'" FLAG) WILL BE AFFECTED.

ADD THE CONTENTS OF A CPU REGISTER PLUS THE VALUE OF THF
CARRY FLAG TO THE ACCUMULATOR

ACA 2149
ACB 211
ACC 212
ACD 213
ACE 21 4
ACH 215
ACL 21 6

THIS GROUP IS IDENTICAL TO THE PREVIOUS GROUP EXCEPT THAT NOW
THE CONTENT OF THE CARRY FLAG IS CONSIDFERED AS AN ADDITIONAL BIT
(MSB) IN THE SPECIFIED CPU REGISTER AND THE COMBINED VALUE OF THE
CARRY BIT PLUS THE CONTENTS OF THE SPECIFIED CPU REGISTER ARE ADDED
TO THE VALUE IN THE ACCUMULATOR. THE RESULTS ARE LEFT IN THE ACCUM-
WATOR. AGAIN, VWITH THE EXCEPTION OF THE "ACA" INSTRUCTION, THE
CONTENTS OF THE SPECIFIED CPU REGISTER IS LEFT UNCHANGED. AGAIN T0O.,

THE CARRY BIT ("C" FLAG) WILL BE AFFECTED BY THE RESULTS OF THE OPER=
ATION.

SUBTRACT THE CONTENTS OF A CPU REGISTER FROM THE ACCUMULATOR

SUA 2280
SUB 2 21
suc 222
suD 223
SUE 2 2 a4
SUH 225
SUL 22 6

THIS GROUP OF INSTRUCTIONS WILL CAUSE THE PRESENT VALUE OF THE
SPECIFIED CPU REGISTER TO BE SUBTRACTED FROM THE VALUE IN THE ACCUMU-
LATOR. THE VALUE OF THE SPECIFIED REGISTER IS NOT CHANGED EXCFPT IN
THE CASE OF THE "SUA'" INSTRUCTION. (NOTE THAT THE " SUA* INSTRUCTION
IS A CONVENIENT INSTRUCTION WITH WHICH TO "CLEAR" THE ACCUMULATOR).

THE CARRY FLAG WILL BE AFFECTED BY THE RESULTS OF A SUBTRACT INSTRUC-
TION.

SUBTRACT THE CONTENTS OF A CPU REGISTER AND THE VALUE OF THE
CARRY FLAG FROM THE ACCUMULATOR

SBA 2 30
SBB 2 31
SBC 2 32
SBD 2 33
SBE 2 3 4
SBH 235
SBL 2 3 6

THIS GROUP IS IDENTICAL TO THE PREVIOUS GROUP EXCEPT THAT NOVW
THE CONTENT OF THE CARRY FLAG 1S CONSIDERED AS AN ADDITIONAL BIT
(MSB) IN THE SPECIFIED CPU REGISTER AND THE COMBINED VALUE OF THE
CARRY BIT PLUS THE CONTENTS OF THE SPECIFIED CPU REGISTER ARE SUB-
TRACTED FROM THE VALUE IN THE ACCUMULATOR. THE RESULTS ARE LEFT IN
THE ACCUMULATOR, AND THE CARRY BIT ("C" FLAG) 1S AFFECTFD BY THE
RESULT OF THE OPERATION. WITH THE EXCEPTION OF THE '"SBA'" INSTRUC-
TION THE CONTENTS OF THE SPECIFIED CPU REGISTER IS LEFT UNCHANGED.

COMPARE THE VALUE IN THE ACCUMULATOR AGAINST
THE CONTENTS OF A CPU REGISTER

CPA 2 78
CPB. 2 71
CPC 2 72
CPD 2 73
CPE 2 7 4
CPH 2 75
CPL 2 7 6

THE *'COMPARE" GROUP OF INSTRUCTIONS ARE A VERY POVWERFUL AND
SOMEWVHAT UNIQUE SET OF INSTRUCTIONS. THEY DIRECT THE COMPUTER TO
COMPARE THE CONTENTS OF THE ACCUMULATOR AGAINST ANOTHER REGISTER
AND TO SET THE "“FLAGS"™ AS A RESULT OF THE COMPARING OPERATION.

IT IS ESSENTIALLY A SUBTRACTION OPERATION VITH THE VALUE OF THE
SPECIFIED REGISTER BEING SUBTRACTED FROM THE VALUE OF THE ACCUMU-
LATOR EXCEPT THAT THE VALUE OF THE AGCUMULATOR IS NOT ACTUALLY
ALTERED BY THE OPERATION. HOVWEVER, THE "FLAGS" ARE SET IN THE SAME
MANNER AS THOUGH AN ACTUAL SUBTRACTION OPERATION HAD OCCURED. THUS,
BY SUBSEQUENTLY TESTING THE STATUS OF THE VARIOUS FLAGS AFTER A COM-

1 -7

PARE INSTRUCTION HAS BEEN EXECUTED, THE PROGRAM CAN DETERMINE WHETHFR
THE "COMPARE"™ OPERATION RESULTED IN A MATCH, OR NON-MATCH, AND IN THE
CASE OF A NON-MATCH WHETHER THE COMPARED REGISTER CONTAINED A VALUE
GREATER OR LESS THAN THAT IN THE ACCUMULATOR. THIS WOULD BFE ACCOMP-
LISHED BY TESTING THE "“Z* FLAG AND *"C*" FLAG RESPECTIVELY UTILIZING

A "JUMP* OR "CALL"™ FLAG TESTING INSTRUCTION (WHICH VILL BFE DESCRIBED
LATER) .

ADDITION, SUBTRACTION, AND COMPARE INSTRUCTIONS THAT USE
WORDS IN MEMORY AS OPERANDS

THE FIVE TYPES OF MATHEMATICAL OPERATIONS: ADD, ADD VITH CARRY,
SUBTRACT, SUBTRACT WITH CARRY, AND THE COMPARE; VWHICH HAVE JUST
BEFN PRESENTED FOR PERFORMING THE OPERATIONS WITH THE CONTENTS OF
THF. CPU REGISTERS, CAN ALL ALSO BE PERFORMED WITH WORDS THAT ARE IN
MEMOEY. AS WITH THE “LOAD" INSTRUCTIONS WITH MFMORY, THE 'H" AND "L"
REGISTERS MUST CONTAIN THF ADDRESS OF THE WORD IN MFMORY THAT IT IS
DESIRED TO ADD, SUBTRACT, OR COMPARE TO THE ACCUMULATOR. THE SAME
CONDITIONS FOR THE OPERATIONS AS WAS DETAILFD WHEN USING THE CPU RFGIS-
TERS APPLY. THUS, FOR MATHEMATICAL OPERATIONS WITH A WOFD IN MEM-
ORY, THE FOLLOWING INSTRUCTIONS ARE USED:

ADD THE CONTENTS OF A MEMORY WOED TO THE ACCUMULATOR
ADM 20 17
ADD THE CONTENTS OF A MEMOFY WORD PLUS THF VALUE OF THE
CARRY FLAG TO THE ACCUMULATOR
ACM 217
SUBTRACT THE CONTENTS OF A MEMORY WORD FROM THE ACCUMULATOR
SUM 227
SUBTRACT THE CONTENTS OF A MEMORY WORD AND THE VALUE OF THE
CARRY FLAG FROM THE ACCUMULATOR
SBM 237
COMPARE THE VALUE IN THF ACCUMULATOR AGAINST
THE CONTENTS OF A MEMORY WORD

CPM 2 77

“IMMEDIATE" TYPE ADDITIONS, SUBTRACTIONS, AND COMPARE INSTRUCTIONS

THE S5 TYPES OF MATHEMATICAL OPERATIONS DISCUSSED CAN ALSO BFE PFR-
FORMED WITH THE OPERAND BEING THE WORD OF DATA IMMEDIATELY AFTER THE
. INSTRUCTION. THIS GROUP OF INSTRUCTIONS IS SIMILAR IN FORMAT TO THE
PREVIOUSLY DESCRIBED "“LOAD IMMEDIATE" INSTRUCTIONS. THE SAME CONDI~
TIONS FOR THE MATHFMATIC OPERATIONS AS DISCUSSED FOR THE OPERATIONS
VITH THE CPU REGISTERS APPLY.

ADD “IMMEDIATE"™

ADI 08 4

ADD WITH CARRY “IMMFDIATE"

AC! 21 4

SUBTRACT " IMMEDIATE"

sul P 2 4

SUBTRACT WITH CARRY "“IMMEDIATE"

SBI 0 3 4

COMPARE "IMMEDIATE"

CPI1 8 7 4

LOGICAL INSTRUCTIONS WITH THE ACCUMULATOR

THERE ARE SEVERAL GROUPS OF INSTRUCTIONS WHICH ALLOY BOOLEAN
LOGIC OPERATIONS TO BE PERFORMED BETWEEN THE CONTENTS OF THE CPU
REGISTERS AND THE A" OR ACCUMULATOR REGISTER, AS VELL AS BETVEEN
CONTENTS OF LOCATIONS IN MEMORY AND THF "“A" REGISTER. IN ADDITION
THERE ARE LOGIC “IMMEDIATE" TYPE INSTRUCTIONS. THE BOOLEAN LOGIC
OPERATIONS ARE VALUABLE IN A NUMBER OF PROGRAMMING APPLICATIONS.
THE INSTRUCTION SET ALLOWS THREE BAS1IC BOOLEAN OPERATIONS T0O BE PFR-
FORMED. THESFE ARE THE: *“LOGICAL AND:" "LOGICAL OR3'" AND "EXCLUSIVE
OR" OPERATIONS. EACH TYPE OF LOGIC OPERATION IS PERFORMED ON A "BIT-
BY-BIT" BASIS BETWEEN THE ACCUMULATOR REGISTER AND THE CPU REGISTER
OR MEMORY LOCATION SPECIFIED BY THE INSTRUCTION. A DETAILED EXPLANA-
TION OF EACH TYPE OF LOGIC OPERATION, AND THE APPROPRIATF INSTRUCTIONS
FOR EACH TYPE 1S PRESENTED BELOVW. THE LOGIC INSTRUCTION SET IS ALSO
VALUABLE BECAUSE ALL OF THEM WILL CAUSE THF CARRY (“C'") FLAG TO BE
SET TO THE "@" CONDITION. THIS IS IMPORTANT IF ONE IS GOING TO PFR-
FORM A SFEQUENCE OF INSTRUCTIONS THAT WILL EVENTUALLY USE THE STATUS
OF THE "C" FLAG TO ARRIVE AT A DECISION AS IT ALLOWS THE PROGRAMMER
TO SET THE "C* FLAG TO A KNOWN STATE AT THE START OF THF SEQUENCE.
ALL OTHER “FLAGS" ARE SET IN ACCORDANCE WITH RESULT OF THFE LOGIC OPER-
ATION AND HENCE THE GROUP OFTEN HAS VALUE WHEN THE PROGRAMMER DESIRES
TO DETERMINE THE CONTENTS OF A REGISTER THAT HAS JUST BEFN "LOADED"
.INTO A REGISTER (SINCE THE “LOAD*" INSTRUCTIONS DO NOT AFFECT THE STATE
OF THE “FLAGS").

THE BOOLEAN “AND" OPERATION AND INSTRUCTION SET

WHEN THE BOOLEAN "AND* INSTRUCTION IS EXECUTED, EACH BIT OF THE
ACCUMULATOR WILL BE COMPARED WITH THE CORRESPONDING BIT IN THE REGISTER
OR MEMORY LOCATION SPECIFIED BY THE INSTRUCTION. AS FEACH BIT IS
COMPARED A LOGIC RESULT WILL BE PLACED IN THE ACCUMULATOR FOR EACH
BIT COMPARISON. THE LOGIC RESULT IS DETERMINED AS FOLLOWS: IF BOTH
THE BIT IN THE ACCUMULATOR AND THE BIT IN THE REGISTER WITH WHICH THE
OPERATION IS BEING PERFORMED ARE A "!," THEN THE ACCUMULATOR BIT

1 =9

VILL BE LEFT AS A "l." FOR ALL OTHER POSSIBLE COMBINATIONS (I.E.,
THE. ACCUMULATOR BIT = @ AND THE OTHER REGISTER'S BIT = 1, OR IF

THE ACCUMULATOR BIT = 1 AND THF OTHER REGISTER'S BIT = 8, OR 1F BOTH
THE ACCUMULATOR AND THE OTHER REGISTER HAVE THE PARTICULAR BIT = 8),
THEN THE ACCUMULATOR BIT WILL BE SET TO "“@." AN EXAMPLE WILL ILLUS~
TRATE THE LOGICAL "“AND" OPERATION: ’

INITIAL STATE OF THE ACCUMULATOR: 1106101 @6
CONTENTS OF OPERAND REGISTER: 112801100
FINAL STATE OF THE ACCUMULATOR: 1 0001 @066

THERE ARE 7 LOGICAL "AND" INSTRUCTIONS THAT ALLOW ANY CPU REGISTER
TO BE USED AS THE 'AND" OPERAND. THEY ARE AS FOLLOWS:

NDA 2 40
NDB 2 41
NDC 2 a2
NDD 2 4 3
NDE 2 4 4
NDH 2 45
NDL 2 4 6

THE CONTENTS OF THE OPFRAND REGISTFER IS NOT ALTERED BY AN "“AND"
LOGICAL INSTRUCTION.

THERE IS ALSO A LOGICAL "AND" INSTRUCTION THAT ALLOWS A VWORD IN
MEMORY TO BE USED AS AN OPERAND. THF ADDRESS OF THE WORD IN MEMORY
THAT WILL BE USED 1S “POINTED TO' BY THE CONTENTS OF THE “H*" AND "L*™
CPU REGISTERS.

NDM 2 477

AND FINALLY THERE IS ALSO A LOGICAL 'AND*" “IMMEDIATE" TYPE OF
INSTRUCTION THAT WILL USE THE CONTENTS OF THE WORD IMMEDIATELY FOLLOV-
. ING THE INSTRUCTION AS THE OPERAND.

NDI 8 4 4

THE NEXT GROUP OF BOOLEAN LOGIC INSTRUCTIONS DIRECT THE
COMPUTER TO PERFORM THE LOGICAL *"OR*" OPERATION ON A “BIT-BY=-BIT" BACFIS
WITH THE ACCUMULATOR AND THE CONTENTS OF A CPU REGISTER OR_A WORD IN
MEMORY. THE LOGICAL "OR"™ OPFRATION VWILL RESULT IN THE ACCUMULATOR
HAVING A BIT SET TO "1" IF EITHER THAT BIT IN THE ACCUMULATOR, OR
THE CORRESPONDING BIT IN THE OPERAND REGISTER 1S A *"l.'" SINCE
THE CASE WHERE BOTH THE ACCUMULATOR BIT AND THE OPERAND BIT IS A “1*
ALSO SATISFIES THE RELATIONSHIP, THAT CONDITION WILL ALSO RESULT IN
THE ACCUMULATOR BIT BEING A "1." IF NEITHFR RFGISTER HAS A ONE
-IN THE BIT POSITION, THEN THE ACCUMULATOR BIT REMAINS "@#." AN
EXAMPLE ILLUSTRATES THE RESULTS OF A LOGICAL *OR' OPERATION:

INITIAL STATE OF THE ACCUMULATOR: 181061018
CONTENTS OF THE OPERAND REGISTER: 11601180628
FINAL STATE OF THE ACCUMULATOR: 111811180

THERE ARE 7 LOGICAL *“OR*" INSTRUCTIONS THAT ALLOV ANY CPU REGIS=-
TER TO BE USED AS THE “OR" OPERAND. THEY ARE:

ORA 2 680
ORB 2 61
ORC 2 62
ORD 2 63
ORE 2 6 4
ORH 2 65
ORL 2 6 6

AND, BY USING THE "H" AND *"L" REGISTERS AS "POINTERS* ONE CAN
ALSO USE A WORD.IN MFMORY AS AN "OR' OPERAND:

ORM 2 617
THERE 1S ALSO THE LOGICAL "OR' " IMMEDIATE" INSTRUCTION:
ORI B 6 4

AS WITH THE LOGICAL '"AND* GROUP OF INSTRUCTIONS, THE LOGICAL °‘'OR"™
INSTRUCTION DOES NOT ALTER THE CONTENTS OF THE OPERAND REGISTER.

THE LAST GROUP OF BOOLEAN LOGIC INSTRUCTIONS IS A VARIATION OF
THE LOGIC '"OR."™ THE VARIATION IS TERMED THE LOGICAL "EXCLUSIVE
OR." THE *"EXCLUSIVE OR' OPERATION IS SIMILAR TO THE '"OR' EXCEPT THAT
WHEN THE CORRESPONDING BITS IN BOTH THE ACCUMULATOR AND THE OPERAND
REGISTER ARE A "1 THEN THF ACCUMULATOR BIT WILL BE SET TO *"@." THUS,
THE ACCUMULATOR BIT WILL BE A 1" AFTER THE OPFRATION ONLY IF JUST
ONE OF THE REGISTERS (ACCUMULATOR REGISTER OR OPERAND REGISTER) HAS
A 1" IN THE BIT POSITION. (AGAIN, THE OPERATION IS PERFORMED ON A
BIT-BY-BIT BASIS). AN EXAMPLE PROVIDES CLARIFICATION:

INITIAL STATE OF THE ACCUMULATOR: 1910610186
CONTENTS OF THE OPERAND REGISTER: i1 19606118680
FINAL STATE OF THE ACCUMULATOR: 711926110

THE 7 INSTRUCTIONS THAT ALLOW THE CPU REGISTERS TO BE ﬁSED AS
OPERANDS ARE:

XRA 25890
XRB 2 51
XRC 2 52
XRD 2 53
XRE 2 5 4
XRH 2 55
XRL 2 5 6

THE INSTRUCTION THAT USES REGISTERS "H" AND "L"™ AS POINTERS TO A
MEMORY LOCATION IS:

XRM 2 5 7 .
AND THE "EXCLUSIVE OR" “IMMEDIATE" TYPE. INSTRUCTIOM IS:

XRI 8 5 4

AS. IN THE CASE OF THE LOGICAL "“OR" OPERATION, THE OPFRAND REGISTER
. 1S NOT ALTERED EXCEPT FOR THE SPECIAL CASFE WHFN THFE “XRA*" INSTRUCTION
.18 USEDe THIS INSTRUCTION, WHICH DIRECTS THFE COMPUTER TO “EXCLUSIVFE
OR* THE ACCUMULATOR (CPU REGISTER *"A") WITH ITSFLF, WILL CAUSE THF
OPERAND REGISTER - SINCE IT IS ALSO THE ACCUMULATOR, TQ HAVE ITS COM-
TENTS ALTERED (UNLESS IT IS ZFRO AT THE TIME THE INSTRUCTION IS]ISS-
UED)e. THIS IS BECAUSE, REGARDLESS OF WHAT VALUE IS IN THE ACCUMU-
LATOR, IF IT IS "EXCLUSIVE-QORED" WITH ITSELF, THE RESULT WILL ALWAYS
BE ZERO! THE EXAMPLE ILLUSTRATES:

ORIGINAL VALUE OF THE ACCUMULATOR: 1918106180
“EXCLUSIVE OR" WITH ITSELF:? 1016106160
FINAL VALUE OF THE ACCUMULATOR: 00006000

TH1S ONLY OCCURS WHEN THE LOGICAL "“EXCLUSIVE OR"™ 1S PERFORMED
ON THE ACCUMULATOR. ITSELF. IT CAN BE SHOWN THAT THE RESULTS OF PER-
FORMING THE LOGICAL *OR"™ OR LOGICAL "AND" BETWEEN THE ACCUMULATOR
AND. ITSELF WILL RESULT. IN THE ORIGINAL ACCUMULATOR VALUE BEING
RETAINED.

INSTRUCTIONS FOR ROTATING THE CONTENTS OF THE ACCUMULATOR

IT IS OFTEN DESIRABLFE TO BE ABLE TO '"SHIFT" THE CONTENTS OF THE
ACCUMULATOR EITHER RIGHT OR LEFT. IN A FIXED LENGTH REGISTER, A SIM-
PLE SHIFT OPERATION WOULD RESULT IN SOME INFORMATION BEING LOST BE=-
CAUSE WHAT WAS IN THE MSB OR LSB (DEPENDING ON IN WHICH DIRECTION THE
SHIFT OCCURED) WOULD JUST BE SHIFTED RIGHT OUT OF THE REGISTER! THERF-
FORE, INSTEAD OF JUST SHIFTING THE CONTENTS OF A REGISTER, AN OPERATION
TERMED “ROTATING* 1S UTILIZED. NOW, INSTEAD OF JUST SHIFTING A BIT
OFF THE END OF THE REGISTER, THF BIT. 1S BROUGHT AROUND TO THE OTHER
END OF THE REGISTER. FOR INSTANCE, IF THE REGISTER IS “ROTATED"™ TO
THE RIGHT, THE LSB (LEAST SIGNIFICANT BIT) WOULD BE BROUGHT AROUND TO
THE POSITION OF THE MSB (MOST SIGNIFICANT BIT) IN THE REGISTER WHICH
WOULD HAVE BEEN VACATED BY THE SHIFTING OF ITS ORIGINAL CONTENTS TO THE
RIGHTs OR, IN THE CASE OF A SHIFT TO THE LEFT, THE MSB VOULD BE
BROUGHT AROUND TO THE POSITION OF THE LSB.

SINCE THE CARRY BIT (CARRY OR “C" FLAG) CAN BE CONSIDFRED AS AN
EXTENSION OF THE ACCUMULATOR REGISTER, IT IS OFTEN DESIRED THAT THE
CARRY BIT BE CONSIDERED AS PART OF THE ACCUMULATOR (THE MSB) DURING
A ROTATE OPERATION. THE INSTRUCTION SET FOR THIS MACHINE ALLOWS TWO
TYPES OF ROTATE INSTRUCTIONS. ONE CONSIDERS THE CARRY BIT TO BE PART
OF THE ACCUMULATOR REGISTER FOR THE ROTATE OPERATION, AND THE OTHER
TYPE DOES NOT. . IN ADDITION, EACH TYPE OF ROTATE CAN BE DONE EITHER
TO THE RIGHT, OR TO THE LEFT.

. IT SHOULD BE NOTED THAT THE ROTATE OPERATIONS ARE PARTICULARLY
VALUABLE WHEN. IT IS DESIRED TO MULTIPLY A NUMBER BECAUSE SHIFTING THE
CONTENTS OF A REGISTER TO THE LEFT. IS A QUICK WAY TO MULTIPLY A BINARY"
NUMBER BY POWERS OF TWO., AND SHIFTING TO THE RIGHT PROVIDES THE INVERSE
OPERATION.

ROTATING THE ACCUMULATOR LEFT

RLC 06 2

1 - 12

ROTATATING THE ACCUMULATOR LFFT VWITH THE *“RLC"™ INSTRUCTION MFANS
THE MSB OF THE ACCUMULATOR WILL BE BROUGHT AROUND TO THE LSB POSITION
AND ALL OTHER BITS ARE SHIFTED ONE POSITION TO THE LEFT. WHILE THIS
. INSTRUCTION DOES NOT SHIFT THROUGH THE CARRY BIT, THF CARRY BIT VWILL
BE SET BY THE STATUS OF THE MSB OF THE ACCUMULATOR AT THE START OF
THE ROTATE OPERATION. (THIS FEATURE ALLOWS THF PROGRAMMER TO DETER-
MINE WHAT THE MSB WAS PRIOR TO THE SHIFTING OPERATION BY TESTING THE
*C'" FLAG AFTER THE ROTATE INSTRUCTION HAS BEEN EXECUTED).

ROTATING THE ACCUMULATOR LEFT THROUGH THE CARRY BIT
RAL B 22

THE *RAL"™ INSTRUCTION VWILL CAUSE THE MSB OF THE ACCUMULATOR TO GO
INTO THE CARRY BIT. THE INITIAL VALUE OF THE CARRY BIT VWILL BE SHIFT-
ED AROUND TO THE LSB OF THE ACCUMULATOR. ALL OTHER BITS ARE SHIFTED
ONE POSITION TO THE LEFT.

ROTATING THE ACCUMULATOR RIGHT
RRC g1 2

THE "RRC" INSTRUCTION IS SIMILAR TO THE “RLC'" INSTRUCTIOM EXCFPT
THAT NOW THE LSB OF THE ACCUMULATOR 1S PLACFD IN THFE MSB OF THE AC-
CUMULATOR AND ALL OTHER BITS ARE SHIFTED ONE POSITION TO THE RIGHT.
ALSO, THE CARRY BIT WILL BE SET TO THF INITIAL VALUE OF THE LSB OF THE
ACCUMULATOR AT THE START OF THE OPERATION.

ROTATING THE ACCUMULATOR RIGHT THROUGH THE CARRY BIT
RAR a3 2

HERE, THE LSB OF THE ACCUMULATOR IS BROUGHT AROUND TO THE CARRY
BIT AND THE INITIAL VALUE OF THE CARRY BIT IS SHIFTED TO THE MSB OF
THE ACCUMULATOR. ALL OTHER BITS ARE SHIFTED A POSITION TO THE RIGHT.

IT SHOULD BY NOTED THAT THE *C' FLAG IS THE ONLY FLAG THAT CAN BF
ALTERED BY A ROTATE INSTRUCTION. ALL OTHER FLAGS REMAIN UNCHANGED.

JUMP INSTRUCTIONS

THE INSTRUCTIONS DISCUSSED SO FAR HAVE ALL BEEN SORT OF "DIRECT
ACTION" INSTRUCTIONS. THE PROGRAMMFR ARRANGES A SEQUENCE OF THESE
TYPES OF INSTRUCTIONS IN MEMORY AND WHEN THE PROGRAM IS STARTED THF
COMPUTER PROCEEDS TO EXECUTE THE INSTRUCTIONS IN THE ORDER IN WHICH
THEY ARE ENCOUNTERED. THE COMPUTER AUTOMATICALLY READS THE CONTENTS
OF A MEMORY LOCATION, EXECUTES THE INSTRUCTION IT FINDS THERE, AND
THEN AUTOMATICALLY INCREMENTS A SPECIAL ADDRESS REGISTFR CALLED A
“PROGRAM COUNTER" THAT VWILL RESULT IN THE MACHINE READING THE INFOR-
MATION CONTAINED IN THE NEXT SEQUENTIAL MEMORY LOCATION. HOVWEVER, IT
IS OFTEN DESIRABLE TO PERFORM A SFRIES OF INSTRUCTIONS LOCATED IN ONF
SECTION OF MEMORY, AND THEN SKIP OVER A GROUP OF MEMORY LOCATIONS AND
START EXECUTING INSTRUCTIONS IN ANOTHER SECTION OF MEMORY. THIS ACT-
ION CAN BE ACCOMPLISHED BY A GROUP OF INSTRUCTIONS THAT WILL CAUSF A
NEW ADDRESS VALUE TO0 BE PLACED IN THE "PROGRAM COUNTER." THIS VILL
CAUSE THE COMPUTER TO GO TO A NEW SECTION OF MEMORY AND TO CONTINUE
EXECUTING INSTRUCTIONS SEQUENTIALLY FROM THE NEW MEMORY LOCATION.

1 - 13

THE "JUMP" INSTRUCTIONS IN THIS COMPUTER ADD CONSIDERABLE POWER
TO THE MACHINE'S CAPABILITIES BECAUSE THERE ARE A SERIES OF *CONDI-
TIONAL'" JUMP INSTRUCTIONS AVAILABLE. THAT IS, THE COMPUTER CAN BE
DIRECTED TO TEST THE STATUS OF A PARTICULAR FLAG (*'C," "Z,"™ "S,*"
OR "P") AND IF THE STATUS OF THE FLAG IS THE DESIRED ONE, THEN A
*JUMP" WILL BE PERFORMED. IF IT IS NOT, THE MACHINE WILL CONTINUE
TO EXECUTE THE NEXT INSTRUCTION IN THE CURRENT SEQUENCE. THIS CAPA-
BILITY PROVIDES A MEANS FOR THE COMPUTER TO '"MAKE DECISIONS' AND TO
MODIFY ITS OPERATION AS A FUNCTION OF THE STATUS OF THE VARIOQUS
FLAGS AT THFE TIME THAT THE PROGRAM IS BEING FXECUTED.

IN A MANNER SIMILAR TO "IMMEDIATE" TYPES OF INSTRUCTIONS, THE
"JUMP* INSTRUCTIONS REQUIRE MORE THAN ONE WORD OF MEMORY. A JUMP
INSTRUCTION REQUIRES THREE WORDS TO BE PROPERLY DEFINED. (REMEMBER
THAT "IMMEDIATE"™ TYPE INSTRUCTIONS REQUIRED TWO WORDS). THE “JUMP"
INSTRUCTION ITSELF IS THE FIRST WORD. THE SECOND WORD MUST CONTAIN
THE *"LOW ADDRESS' PORTION OF THE ADDRESS OF THE WORD IN MEMORY THAT
THE ''PROGRAM COUNTER' IS TO BE SET FOR - IN OTHER WORDS, THE NEW LOC-
ATION FROM WHICH THE NEXT INSTRUCTION IS TO BE TAKEN. THE THIRD WQORD
MUST CONTAIN THE “HIGH ADDRESS'" (PAGE) OF THE MEMORY ADDRESS THAT THE
"PROGRAM COUNTER'" WILL BE SET TO, HENCE, THE "PAGE" OR HIGH ORDER POR~
TION OF THE ADDRESS THAT THE COMPUTER WILL "“JUMP TO' TO OBTAIN ITS
NEXT INSTRUCTION.

THE UNCONDITIONAL JUMP INSTRUCTION
JMP 1 X 4
NOTE: THE MACHINE CODE 1 X 4 INDICATES THAT ANY CODE FOR THE
SECOND OCTAL DIGIT OF THE MACHINE CODE IS VALID. IT IS RECOMMENDED
AS A STANDARD PRACTICE THAT THE CODE @ BE USED THUS THE TYPICAL
MACHINE CODE WOULD BE 1 @ 4.
REMEMBER, THE JUMP INSTRUCTION MUST BE FOLLOWED BY TW0 MORE

WORDS WHICH CONTAIN THE LOW, AND THEN THE HIGH (PAGE) PORTION OF THE
ADDRESS THAT THE PROGRAM IS TO "JUMP® TO!

JUMP 1F THE DESIGNATED FLAG IS TRUE (CONDITIONAL JUMP)

JTC 1 49
JTZ 1 50
JTS 1 60
JTP 1 70

AS WITH THE UNCONDITIONAL JUMP INSTRUCTION, THE CONDITIONAL JUMP
INSTRUCTIONS MUST BE FOLLOWED BY TWO0 WORDS OF INFORMATION - THE LOW
PORTION, THEN THE HIGH PORTION, OF THE ADDRESS THAT PROGRAM FXECUTION
IS TO CONTINUE FROM IF THE JUMP 1S EXECUTED. THE "JUMP IF TRUE"

GROUP OF INSTRUCTIONS WILL ONLY JUMP TO THE DESIGNATED ADDRESS IF THE
CONDITION OF THE APPROPRIATE FLAG IS TRUE (LOGICAL *1"). THUS THE
“"JTC' INSTRUCTION STATES THAT IF THE CARRY FLAG ("C%) IS A LOGICAL "1*
(TRUE) THEN THE JUMP IS TO BE EXECUTED. IF IT IS A LOGICAL "0" (FALSE)
THEN PROGRAM EXECUTION IS TO CONTINUE WITH THE NEXT INSTRUCTION IN THE
CURRENT SEQUENCE OF INSTRUCTIONS. 1IN A SIMILAR MANNER THE "JTZ"
INSTRUCTION STATES THAT IF THE ZERO FLAG IS TRUE THEN THE JUMP IS TO

BE PERFORMED. OTHERWISE THE NEXT INSTRUCTION IN THE PRESENT SEQUENCE
IS EXECUTED. LIKEWISE FOR THE "“JTS'" AND "JTP' INSTRUCTIONS.

JUMP IF THE DESIGNATED FLAG IS FALSF (CONDITIONAL JUMP)

JFC 1 860
JFZ 110
JFS 120
JFP 1 380

AS WITH ALL JUMP INSTRUCTIONS THESE INSTRUCTIONS MUST BF FOLLOVED
BY THE LOW ADDRESS THEN HIGH ADCRESS OF THE MEMORY LOCATION THAT PRO-
GRAM EXECUTION 1S TO CONTINUE FROM IF THE JUMP 1S EXECUTED. THIS
GROUP OF INSTRUCTIONS IS THE OPPOSITE OF THE JUMP IF THE FLAG IS TRUE
GROUP. FOR INSTANCE THE “JFC" INSTRUCTION COMMANDS THE COMPUTER TO
TEST THE STATUS OF THE CARRY (“C*") FLAG. IF THE FLAG IS "FALSE," 1.F.
A LOGIC "0, THEN THE JUMP 1S TO BE PERFORMED. IF IT IS “TRUE"™ THEN
PROGRAM EXECUTION IS TO CONTINUE WITH THE NEXT INSTRUCTION IN THE CUR-
RENT SEQUENCE OF INSTRUCTIONS. THE SAME PROCEDURE HOLLCS FOR THE '"JFZ,"
"JFS,*" AND "JFP" INSTRUCTIONS.

SUBROUTINE CALLING INSTRUCTIONS

OUITE OFTEN WHEN A PROGRAMMER IS DEVELOFING COMPUTER PROGRAMS THF
PROGRAMMER WILL FIND THAT A PARTICULAR ALGORITHM (SEQEUNCE OF INSTRUC-
TIONS FOR PERFORMING A FUNCTION) CAN BE USED MANY TIMES IN DIFFERENT
PARTS OF THE PROGRAM. RATHER THAN HAVE TO KEEP ENTERING THE SAME
SEQUENCE OF INSTRUCTIONS AT DIFFERENT LOCATIONS IN MEMORY ~ WHICH
WOULD NOT ONLY CONSUME THE TIME OF THE PROGRAMMER BUT WOULD ALSO RE=-
SULT IN A LOT OF MEMORY BEINCG USED TO PERFORM ONE PARTICULAR FUNCTION,
~IT 1S DESIRABLE TO BE ABLE TO PUT AN OFTEN USED SEQUENCE OF COMMANDS

. IN ONE LOCATION IN MEMORY. THEN, WHENEVER THE PARTICULAR ALGORITHM

- 1S REQUIRED BY ANOTHER PART OF THE PROGRAM, IT WOULD BE CONVENIENT TO
“"JUMP*" TO THE SECTION THAT CONTAINED THE OFTEN USED ALGORITHM, PERFORM
THE SEQUENCE OF INSTRUCTIONS, AND THEN RETURN BACK TO THE "MAIN" PART
OF THE PROGRAM. THIS 1S A STANDARD PRACTICE IN COMPUTER OPERATIONS.
THE FREQUENTLY USED ALGORITHM CAN BE DESIGNATED AS A '"SUBROUTINE."™ A
SPECIAL SET OF INSTRUCTIONS ALLOVWS THE PROGRAMMER TO “CALL' - IN OTHER
WORDS SPECIFY A SPECIAL TYPE OF “JUMP TO," A SUBROUTINE. A SECOND
TYPE OF INSTRUCTION IS USED TO TERMINATE A SEQUENCE OF INSTRUCTIONS
THAT 1S TO BE CONSIDERED A SUBROUTINE. THIS SPECIAL TERMINATOR VILL
CAUSE THE PROGRAM OPERATION TO REVERT BACK TO THE NEXT SEQUENTIAL LOC=-
ATION IN MEMORY FOLLOWING THE INSTRUCTION THAT *CALLED"™ THE “SUB=-
ROUTINE." A GREAT DEAL OF COMPUTER POWER IS PROVIDED BY THE INSTRUC-
TION SET IN THIS MACHINE FOR “CALLING"™ AND "RETURNING" FROM SUBROUTINES.
THIS IS BECAUSE, IN A MANNER SIMILAR TO THE CONDITIONAL JUMP INSTRUC-
TIONS, THERE ARE A NUMBER OF "CONDITIONAL CALLING" COMMANDS AND A NUM-
BER OF *CONDITIONAL RETURN' COMMANDS. IN THE INSTRUCTION SET.

LIKE THE "JUMP'" INSTRUCTIONS, THE "CALL" INSTRUCTIONS ALL REQUIRE
THREE WORDS IN ORDER TO BE FULLY SPECIFIED. THE FIRST WORD IS THE
*"CALL' INSTRUCTION ITSELF. THE NEXT TW0 WORDS MUST CONTAIN THE LOWV
AND HIGH PORTIONS OF THE STARTING ADDRESS OF THE SUBROUTINE THAT IS
BEING “CALLED." '

WHEN A "“CALL'. INSTRUCTION 1S ENCOUNTERED BY THE COMPUTER, THE
“CPU" VWILL ACTUALLY SAVE THE CURRENT VALUE OF ITS PROGRAM COUNTER BY
STORING. IT IN A SPECIAL "“PROGRAM COUNTER PUSH-DOWN STACK.'" THIS STACK
. 1S CAPABLE OF HOLDING 7 ADDRESSES PLUS THE CURRENT OPERATING_ADDRESS.
WHAT THIS MEANS IS THAT THE MACHINE IS CAPABLE OF "NESTING" UP TO 7
SUBROUTINES AT ANY ONE TIME. THUS ONE CAN HAVE A SUBROUTINE, THAT IN
TURN CALLS ANOTHER SUBROUTINE - THAT IN TURN CALLS ANOTHER ONE, UP
TO 7 LEVELS AND THE MACHINE WILL BE ABLE TO "RETURN" TO THE INITIAL

l - 15

LOCATION. THE PRQGRAMMER MUST ENSURE THAT SUBROUTINES ARE NOT “NEST-
ED" AT MORE THAN 7 LEVELS OTHERWISE THE "PROGRAM COUNTER PUSH-DOWN
STACK* WILL “PUSH" THE ORIGINAL CALLING ADDRESS(ES) COMPLETELY OUT

OF THE "PUSH-DOWN STACK" AND THE PROGRAM COULD NO LONGER AUTOMATICALLY
RETURN TO THE INITIAL *“CALLING" ROUTINE.

THE "RETURN®" INSTRUCTION WHICH TERMINATES A SUBROUTINE ONLY RE-
QUIRES ONE WORD. VWHEN THE CPU ENCOUNTERS A “RETURN" INSTRUCTION IT
CAUSES THE “PROGRAM COUNTER PUSH=-DOWN STACK"™ TO "POP"™ UP ONE LEVEL.
THIS EFFECTIVELY CAUSES THE ADDRESS "SAVED"™ IN THE STACK BY THE CALLING
ROUTINE TO BE TAKEN AS THE NEV "PROGRAM COUNTER" AND HFNCE PROGRAM
EXECUTION RETURNS TO THE CALLING ROUTINE.

THE UNCONDITIONAL CALL INSTRUCTION
CAL 1 X 6

THIS INSTRUCTION FOLLOWED BY TWO WORDS CONTAINING THE LOV AND THFN
THE HIGH ORDER OF THE STARTING ADDRESS OF THE SUBROUTINE THAT IS TO BE
EXECUTED IS AN UNCONDITIONAL *“CALL.'" THE SUBROUTINE WILL BE EXECUTED
REGARDLESS OF THE STATUS OF THE “FLAGS." THE NEXT SEQUENTIAL ADDRESS
AFTER THE *'CAL" INSTRUCTION IS SAVED IN THE “PROGRAM COUNTER PUSH-DOWN

STACK."
THE UNCONDITIONAL RETURN INSTRUCTION
RET e X 7
THIS INSTRUCTION DIRECTS THE CPU TO UNCONDITIONALLY “POP" THE

"PROGRAM COUNTER PUSH-DOWN STACK" UP ONE LEVEL. THUS PROGRAM EXECﬁ-

TION WILL CONTINUE FROM THE ADDRESS SAVED BY THE SUBROUTINE CALLING
INSTRUCTION.

CALL A SUBROUTINE IF THE DESIGNATED FLAG IS TRUE

CTC 1 4 2
CTZ 1 52
CTS 1 62
CTP 1 72

IN A MANNER SIMILAR TO THE CONDITIONAL “JUMP IF TRUE" INSTRUCTIONS
THESE INSTRUCTIONS (WHICH MUST ALL BE FOLLOVWED BY THE LOW AND HIGH
PORTIONS OF THE CALLED SUBROUTINE'S STARTING ADDRESS) VWILL ONLY PER-
FORM THE °*'CALL". IF THE DESIGNATED FLAG 1S IN THE TRUE (LOGICAL "1*')
STATE. IF THE DESIGNATED FLAG IS FALSE THEN THE "CALL' INSTRUCTION IS

1GNORED AND PROGRAM EXECUTION CONTINUES VITH THE NEXT SEQUENTIAL IN-
STRUCTION.

RETURN FROM A SUBROUTINE IF THE DESIGNATED FLAG !S TRUFE

RTC 4 43
RTZ 2 53
RTS ® 6 3
RTP 6 73

THESE ONE WORD INSTRUCTIONS WILL CAUSE A SUBROUTINE TO BE TERMI-
NATED ONLY IF THE DESIGNATED FLAG IS IN THE LOGICAL *1" (TRUE) STATE.

1 - 16

CALL A SUBROUTINE IF THE DESIGNATED FLAG IS FALSE

CFC 1 8 2
CFzZ 11 2
CFS 122
CFP 1 32

THESE INSTRUCTIONS ARE THE OPPOSITE OF THE PREVIOUS GROUP OF
CALLING COMMANDS. THE SUBROUTINE IS CALLED ONLY. IF THE DESIGNATED
FLAG IS IN THE FALSE (LOGICAL #) CONDITION. REMEMBER, THESE INSTRUC-
TIONS MUST BE FOLLOVED BY TWO WORDS WHICH CONTAIN THE LOVW AND THEN
HIGH PART OF THE STARTING ADDRESS OF THE SUBROUTINE THAT IS TO BE
EXECUTED IF THE DESIGNATED FLAG IS FALSE. 1IF THE FLAG IS TRUE, THE
SUBROUTINE WILL NOT BE CALLED AND PROGRAM OPERATION WILL CONTINUE
VITH THE NEXT INSTRUCTION IN THE CURRENT SEQUENCE.

RETURN FROM A SUBROUTINE IF THE DESIGNATED FLAG IS FALSE

RFC 6 8 3
RFZ g 13
RFS o 23
RFP @ 33

THESE ONE WORD. INSTRUCTIONS WILL TERMINATE A SUBROUTINE (POP THE
“PROGRAM COUNTER STACK' UP ONE LEVEL) IF THE DESIGNATED FLAG.!S FALSE.
OTHERWISE THE INSTRUCTION IS IGNORED AND PROGRAM OPERATION IS CONTIN-
UED WITH THE NEXT INSTRUCTION IN THE SUBROUTINE.

THE SPECIAL “RESTART*" SUBROUTINE CALL. INSTRUCTIONS

THERE IS A SPECIAL PURPOSE. INSTRUCTION AVAILABLE THAT EFFECTIVELY
SERVES AS A ONE WORD SUBROUTINE CALL (REMEMBER THAT IT NORMALLY RE-
QUIRES THREE WORDS TO SPECIFY A SUBROUTINE CALL)e THIS SPECIAL IN-
STRUCTION ALLOWS THE PROGRAMMFER TO CALL A SUBROUTINE THAT STARTS AT
ANY ONE OF EIGHT SPECIALLY DESIGNATED MEMORY LOCATIONS. THE EIGHT
SPECIAL MEMORY. LOCATIONS ARE AT LOCATIONS: @06, @10, 028, 0638, 040,
0508, @60 AND 876 ON PAGE ZERO. THERE ARE EIGHT VARIATIONS OF THE RE-
START INSTRUCTION - ONE FOR EACH OF THE ABOVE ADDRESSES. THUS, THE
ONE WORD INSTRUCTION CAN SERVE TO “CALL" A SUBROUTINE AT THE SPECI-
FIED STARTING LOCATION (INSTEAD OF HAVING TVO ADDITIONAL WORDS TO SPEC~
-IFY THE STARTING ADDRESS OF THE SUBROUTINE.) IT IS OFTEN CONVENIENT
TO UTILIZE A RESTART COMMAND AS A QUICK *“CALL" TO AN OFTEN USFD SUB-
ROUTINE, OR AS AN EASY WAY TO CALL SHORT "STARTING" ROUTINES FOR LARGE
PROGRAMS -~ HENCE THE NAME FOR THE TYPE OF INSTRUCTION. THE EIGHT
RESTART INSTRUCTIONS - ALONG WITH THE STARTING ADDRESS OF THE SUBROUT-

. INE THAT EACH WILL AUTOMATICALLY "CALL"™. IS AS FOLLOVS:

INSTRUCTION MACHINE SUBROUTINE
(MNEMONIC) CODE STARTING ADDRESS
RST @ @ @5 08 080
RST 1 1S 000 010
RST 2 625 006 020
RST 3 g 35 0@ @30
RST 4 P 45 888 0G40
RST 5 B S5 pop 050
RST 6 P 65 020 Q6@
RST 7 @ 75 oee 0670

b
[}
L
~

INPUT INSTRUCTIONS

IN ORDER TO RECEIVE INFORMATION FROM AN EXTERNAL DEVICE THE COM-
PUTER MUST UTILIZE A GROQUP OF SPFCIAL SIGNAL LINFS. THE TYPICAL 800&
COMPUTER IS DESIGNED TO HANDLE UP TO EIGHT GROUPS (FACH GROUP HAVING
EIGHT SIGNAL LINES) OF INPUT SIGNALS. A GROUP OF SIGNALS IS ACCEPTED
AT THE COMPUTER BY WHAT IS REFERRED TO AS AN "INPUT PORT.' THE
COMPUTER CONTROLS THE OPFRATION OF THE “INPUT PORTS.* UNDER PROGRAM
CONTROL, THE COMPUTER CAN BE DIRECTED TO OBTAIN THE INFORMATION THAT
IS ON THE GROUP OF LINES COMING IN TO ANY "INPUT PORT" AND BRING IT
INTO THE ACCUMULATOR. VARIOUS TYPES OF FXTERNAL FQUIPMENT - SUCH
AS A KEYBOARD - CAN BE CONNECTED TO THE INPUT PORT(S)>. WHEN IT IS
DESIRED TO HAVE INFORMATION OBTAINED FROM A SPFCIFIC "INPUT PORT" AN
INPUT INSTRUCTION MUST BE USED. THE INPUT INSTRUCTION SIMPLY IDENTI-
FIES WHICH INPUT PORT IS TO BE OPERATED AND WHEN EXECUTED CAUSES THE
SIGNAL LEVELS ON THE SELECTED INPUT PORT TO BE BROUGHT INTO THE "A"

CPU REGISTER (ACCUMULATOR)., UP TO & INPUT PORTS MAY BE PROVIDED ON A
TYPICAL 8008 SYSTEFM DESIGNATED PORTS ¥ - 7. (NOTE THAT THE MACHINE CODE
FOR AN INPUT PORT INCRFASES BY A FACTOR OF TWO FOR FACH AVAILABLF PORT).

INP 0 1 91
INP | 1 8 3
INP 6 1 15
INP 7 117

AN INPUT INSTRUCTION ONLY REQUIRES ONE MACHINF CODE WORD. IT IS
ALSO IMPORTANT TO NOTE THAT AN INPUT INSTRUCTION - WHICH BRINGS NEW
DATA INTO THE ACCUMULATOR - DOES NOT AFFECT THE STATUS OF ANY OF THE
CPU FLAGS.

OUTPUT INSTRUCTIONS

IN ORDER TO OUTPUT INFORMATION TO AN EXTERNAL DEVICE THE COMPUTER
UTILIZES ANOTHER GROUP OF SIGNAL LINFES WHICH ARE REFERRED TO AS *'OUT=-
PUT PORTS.'" A TYPICAL 8008 SYSTEM MAY BE FQUIPPED TO SERVICE UP TO
24 "OUTPUT PORTS.'" (EACH OUTPUT PORT ACTUALLY CONSIST OF EIGHT
SIGNAL LINES). AN OUTPUT INSTRUCTION CAUSFS THE CONTENTS OF THE CPU
A" REGISTER (ACCUMULATOR) TO BE TRANSFERRED TO THE SIGNAL LINES OF THE
DESIGNATED OUTPUT PORT. THE OUTPUT PORTS ARE NORMALLY DESIGNATED PORTS
16 - 37. (NOTE AGAIN THAT THE MACHINE CODE INCREASES BY A FACTOR OF TWO
FOR FACH DESIGNATED PORT).

oUT 10 1 21
ouT 11 1 23
ouT 21 1 41
QUT 36 75
OuUT 37 1 717

AN OUTPUT INSTRUCTION ONLY REQUIRES ONE MACHINE CODE WORD. IT
DOES NOT AFFECT THE STATUS OF ANY OF THE CPU FLAGS. OUTPUT PORT(S)
ARE CONNECTED TO EXTERNAL DEVICES - SUCH AS AN OSCILLOSCOPE DISPLAY
SYSTEM, AND PROVIDE CAPABILITY FOR THE COMPUTER TO DISPLAY INFORMATION
OR OTHERWISE CONTROL THF OPERATION OF EXTERNAL DEVICES.

1 - 18

THE HALT INSTRUCTION

THERE IS ONE MORE INSTRUCTION FOR THE COMPUTER'S INSTRUCTION SET.
THIS INSTRUCTION DIRECTS THE CPU TO STOP ALL OPERATIONS AND TO REMAIN
IN THAT STATE UNTIL AN "INTERRUPT* SIGNAL IS RECEIVED. IN A TYPICAL
8008 SYSTEM AN “INTERRUPT" SIGNAL MAY BE GENERATED BY AN OPERATOR
PRESSING A SWITCH OR BY AN EXTERNAL PIECE OF FQUIPMENT. THIS INSTRUCT=-
ION IS NORMALLY USED WHEN THE PROGRAMMER DESIRES TO HAVE A PROGRAM BE
TERMINATED, OR WHEN IT IS DESIRED TO HAVE THE MACHINE WAIT FOR AN
OPERATOR TO SET UP EXTERNAL CONDITIONS. THERE ARE THREE MACHINE
CODE INSTRUCTIONS THAT MAY BE USED FOR THE HALT COMMAND:

HLT 0 a0
HLT 0 0 1
HLT 377

THF. HALT INSTRUCTION DOES NOT AFFECT THE STATUS OF THE CPU FLAGS.
IT IS A ONE WORD INSTRUCTION.

INFORMATION ON INSTRUCTION EXECUTION TIMES

WHEN PROGRAMMING FOR REAL-TIME APPLICATIONS IT IS IMPORTANT TO KNOW
HOW MUCH TIME EACH TYPE OF INSTRUCTION REQUIRES TO BFE EXECUTED. WITH
THIS INFORMATION THE PROGRAMMER CAN DEVELOP "TIMING LOOPS'" OR DETER-
MINF WITH SUBSTANTUAL ACCURACY HOW MUCH TIME IT TAKES TO PERFORM A PART-
ICULAR SERIES OF INSTRUCTIONS. THIS INFORMATION IS ESPECIALLY IMPORTANT
WEN DEALING WITH PROGRAMS THAT CONTROL THE OPERATION OF EXTERNAL DE-
VICES WHICH REQUIRE EVENTS TO OCCUR AT SPECIFIC TIMES.

THE FOLLOWING TABLE PROVIDES THE NOMINAL INSTRUCTION EXECUTION TIME
FOR EACH CATEGORY OF INSTRUCTION USED IN A 8008 SYSTEM. THE PRECISE
TIME NEEDED FOR EACH INSTRUCTION DEPENDS ON HOW CLOSE THE MASTER CLOCK
HAS BEEN SET TO THE NOMINAL VALUE OF 508 KHZ. THE TABLE SHOWS THE NUM=-
BER OF CYCLE STATES REQUIRED BY THE TYPE OF INSTRUCTION FOLLOWED BY THE
NOMINAL TIME REQUIRED TO PERFORM THE ENTIRE INSTRUCTION. SINCE EACH
STATE EXECUTES IN 4 MICROSECONDS (U'SECS) THE TOTAL TIME REGUIRED TO
PERFORM THE INSTRUCTION AS SHOWN IN THE TABLE IS OBTAINED BY MULTIPLYING
THE NUMBER OF STATES BY 4 MICROSECONDS. BY KNOWING THE NUMBER OF STATES
REQUIRED FOR EACH INSTRUCTION THE PROGRAMMER CAN OFTEN REARRANGE AN
ALGORITHM OR SUBSTITUTE DIFFERENT TYPES OF INSTRUCTIONS TO PROVIDE PRO-
GRAMS THAT HAVE SPECIFIC EVENTS OCCURRING AT PRECISELY TIMED INTERVALS.

INSTRUCTION EXECUTION TIME TABLF

TYPE OF INSTRUCTION # OF STATES TOTAL EXECUTION TIME

LOAD DATA FROM ONE CPU
REGISTER TO ANOTHER CPU 5 28 U'SECS
REGISTER

0 000000600 000 0006000060006 00060006000 00000060600 06060686080060000000600009090 0000800000

IOAD DATA FROM A CPU

REGISTER TO A LOCATION 7 28 U'SECS
IN MEMORY

INSTRUCTION EXECUTION TIME TABLE

TYPE OF INSTRUCTION # OF STATES TOTAL EXECUTION TIME

LOAD DATA FROM A
LOCATION IN MEMORY 8 32 U'SECS
TO A CPU REGISTER

® S0 00 0000000 000D PO OOD DS ON PO OO OOSESON OGNS OOL0L NN LSS OONOONNNYSSOESEEDSTINESEESESEE

LOAD *IMMEDIATE"™ DATA & 32 U*SECS
INTO A CPU REGISTER

S 8 0 0 0 06000000 0005058 OB ODOOB OO N NO0ENLEE SO0 E00 NS0 G SO0 SEOIOOOISEPINPOSIOIOSEECEOSIEPOIEDTITOIEOS

LOAD "IMMEDIATE" DATA
INTO A LOCATION IN 9 36 U'SECS
MEMORY

6 6 60 00 000 000 OO OO OGO O S E B SO OGO LTS OL OO0 OO0 N NSNS NSO NS OINEOSPEOSESPOETSNS

INCREMENT OR DECREMENT 5 20 U'SECS
A CPU REGISTER

® 6 0 0600 0 00O ST SO CO PP OOP GO OO0 TSNS EN OO OOEN OSSOSO P OOON OSSN SSESSE

ARITHMETIC INSTRUCTION
BETWEEN THE ACCUMULATOR 5 286 U'SECS
AND A CPU REGISTER

® 0 00600000 800000 00 00000006000 00O B OLOEOOEE LN OSSN OO0 OODONSECOEOPNONNESPSTS LSS

COMPARE BETWEEN THE
ACGUMULATOR AND A 3] 280 U*SECS
CPU REGISTER

® © 0 00 080G 00OV T O OO GOD 0L OO0LO0 OO OT OO0 NSO LE SO EOOOE OO EORNOSENSECEETSIES

ARITHMETIC OR COMPARE

INSTRUCTION BETWEEN 8 32 U'SECS
THE ACCUMULATOR AND A

WORD IN MEMORY

LA B B B R B BB BN BN R BN BN R BN BE BN BN BK B K BYBE AN K B BN AR BN BE B RN R BN BN BE RK B NE Y AK B BN NC RY BN B BE R BN K N B NE BE B B BN B BN BN L BRI B BN]

"IMMEDIATE" TYPE
ARITHMETIC AND COMPARE & 32 U'SECS
INSTRUCTIONS

0 0 98 00 ¢G5O H ¢SO OO O OUE L OO0 TP OOENOT LSO BOCOOIPOLPEN BN PN SNBSS SN e

BOOLEAN MATH OPERATIONS
BETWEEN ACCUMULATOR AND 5 26 U'SECS
CPU REGISTERS

S04 0030000600000 000800000008 000000000000 0060¢6000086000000000600600000000000¢0000

1 - 20

INSTRUCTION EXECUTION TIME TABLE

TYPE OF INSTRUCTION # OF STATES TOTAL EXECUTION TIME

BOOLEAN MATH OPERATIONS
BETWEEN ACCUMULATOR AND 8 32 U'SECS
A LOCATION IN MEMORY

LG BB BB B A BB B BE BB B RN NY B BB BB B IR B BE AR B AN Y IR BN BN AN B RE RN IR B A B RN B BB BB B BB B YN B BN K B B AN A

BOOLEAN “IMMEDIATE" 8 32 U'SECS
INSTRUCTIONS

LI B 2 N BN BN B BN 2N BN BN S BN AK BN B BE BN BN BN BN B BN BN BN B BE B BN K IR BU BN B BE B N BN A IR BB BU BN BN R BRI B B BN AL N BB BRI BN IR O BRI R Y N

ACCUMULATOR ROTATE 5 20 U'SECS
INSTRUCTIONS

80 0 0 000 00 0O C O OOV OO OOP T OB OO OPP OO RN OOPLOOOENIRLEEOLPOONNONINPLNOERTIEENENPOEIPOGDS

UNCONDITIONAL JUMP OR : 11 44 U*SECS
CALL INSTRUCTIONS '

9 0000000000000 B OEPO P OO QN OOOO PGS OOP N OO0 NO 00000 OB OOPOOOESIOPLEOENINOLOSLOIOEOENINOSOEESLIOIDS

CONDITIONAL JUMP OR CALL
INSTRUCTIONS WHEN CONDI=- 9 36 U'SECS
TION IS NOT SATISFIED

AND CONDITIONAL JUMP
OR CALL INSTRUCTIONS WHEN 11 44 U'SECS
CONDITION IS SATISFIED

....‘.....‘.........‘.........0.....0........‘.".‘.‘..‘....QC..Q....‘Q.

UNCONDITIONAL RETURN 5 28 U'SECS
INSTRUCTION

® O 5 000000000000 000008500000V OOP 0GOSO L 0L 00SPPOSONEESSNTSSBEONEESSONNILDS

CONDITIONAL RETURN
INSTRUCTION WHEN CONDI- 3 12 U'SECS
TION IS NOT SATISFIED

CONDITIONAL RETURN
INSTRUCTION WHEN CONDIl~ 5 28 U'SECS
TION IS SATISFIED

LC B BB B I IR O B A B N N BB BN 2N N B B BN BN BE B BE BU Y S L B BU N BB BY BB Y BN BE BN B NK B BN NC Y BN A B IR N Y B N RN A B N Y N N N B NI Y

RESTART INSTRUCTION -] 28 U'SECS

® 00 0000500000000 0000008000000 PP BOORBOOCOOELIOSNGEELPOIOIELSIOITIOSOOEOIEOPINOTOIBDOLBNEOIOIOEEOLEOSEEOSE

OUTPUT INSTRUCTION 6 24 U'SECS

8 0 0000000000000 0000000000000 000000000000000PG0C0C00IOCC0CEEO0CIO0OCQ0O0CCECOCO0CBECEOCEOSTBOIEIES

INPUT INSTRUCTION 8 32 U'SECS

© 0000000000005 080 0000000800000 0000000¢0 0500800060 ¢6C000000sscso0cesnotsosscsnosccen

HALT INSTRUCTION 4 16 U'SECS

0808008080000 000080000 0000000090000 0000000002000 000 0000060006000 00OIIBOGIEOGES

1 - 21

INITIAL STEPS FOR DFVELOPING PROGRAMS

THE FIRST TASK THAT SHOULD BE DONE PRIOR TO STARTING TO WRITE THE
INDIVIDUAL INSTRUCTIONS FOR A COMPUTER PROGRAM 1S TO DECIDE FXACTLY
WHAT IT IS THAT THE COMPUTER IS TO PERFORM AND TO WRITE THE GOAL(S)
"DOWN ON PAPER! VWHILE THIS STATEMENT MIGHT SEEM UNNECESSARY TO SOME
BECAUSE IT IS SUCH AN OBVIOUS ONE, IT 1S STATED, AND WILL BE RESTATED
BECAUSE THE MAJORITY OF PEOPLE LEARNING TO DEVELOP PROGRAMS WILL SOON
COME TO REALIZF THE SIGNIFICANCFE OF THE ABOVF STATEMENT WHEN THFY DIS-
COVER HALFWAY THROUGH THE WRITING OF THE MACHINE LANGUAGE INSTRUCTIONS
THAT THEY LEFT OUT A VITAL STEP - AND OFTEN HAVE TO PRACTICALLY START
WRITING THE PROGRAM ALL OVER. THE PRACTICE OF WRITING DOWN JUST WHAT
TASKS A PRTICULAR PROGRAM 1S TO PERFORM AND THE STEPS IN WHICH THEY ARFE
TO BE DONE WILL SAVFE A LOT OF WORK IN THE LONG RUN. THE WRITTEN DES-
CRIPTION SHOULD BE AS COMPLETE AND DETAILED AS NECEFSSARY FOR THE INDIVI=-
DUAL TO ENSURE THAT EXACTLY EACH STFP OF THE PROGRAM VWILL BE CLFAR TO
THE PERSON WHEN ACTUALLY WRITING THE PROGRAM IN MACHINE LANGUAGE. IT IS
GENERALLY WISE FOR A NOVICE PROGRAMMFR TO TAKE PAINS TO BF QUITE DETAIL-
ED IN THF INITIAL DESCRIPTION.

THE ACT OF ACTUALLY WRITING DOWN THE PROPOSED OPERATION OF THE PRO-
GRAM SERVES SEVERAL VALUABLE PURPOSES. FIRST, IT FORCES ONE TO CARE-
FULLY REVIEW WHAT 1S PLANNED AND OFTEN VIVIDLY REVEALS FLAWS IN ORIG~
INAL MENTAL IDEAS. SECONDLY, IT SERVES AS A GUIDE AND A CHECK LIST AS
THE MACHINE LANGUAGE PROGRAM IS DEVFLOPED. REMEMBER, 1T WILL OFTEN TAKE
A NUMBER OF HOURS TO COMPLETELY WRITE A FAIR SIZED PROGRAM - AND THESF
HOURS MIGHT BE SPREAD OVFR SEVERAL DAYS OR WEEKS. IN THIS PFRIOD OF
TIME THE HUMAN MIND CAN EASILY FORGFET ORIGINAL INTFNTIONS AND PLANS IF
THE HUMAN "“MEMORY" CANNOT BFE REFRESHED BY WRITTEN NOTES. A PROGRAM THAT
1S NOT KEPT CAREFULLY ORGANIZED AS IT IS DEVELOPED CAN BECOME A REAL
MESS IF ONF KFEEPS FORGETTING KEY CONCEPTS OR HAS TO CONSTANTLY ADD IN
“"FORGOTTEN'" ROUTINES. THE TIME WASTED BY SUCH SLOPPY PROCEDURES CAN BE
AVOIDED IF PROPER WORK HABITS ARE DEVELOPED RIGHT FROM THE BEGINNING.

ONCE ONE HAS WRITTEN A DFSCRIPTION OF THE GENERAL TASK(S) TO BE PER-
FORMED, AND HAS ASCERTAINED THAT THERE ARE NO FLAWS TO THE OVER~-ALL CON-
CEPTS OR IDEAS, IT IS A GOOD IDFA TO DRAW UP A SET OF “FLOW CHARTS® FOR
THE PROPOSED PROGRAM. THE FLOW CHARTS ARE MORF DETAILFD WRITTEN AND
SYMBOLIC DESCRIPTIVE DIAGRAMS OF THE “FLOVW' OF OPERATIONS THAT ARE TO
OCCUR AS THE PROGRAM 1S OPERATED. THEY ALSO SHOW THE INTER-RFLATION-
SHIPS BETWEEN DIFFERENT PORTIONS OF THE PROGRAM.

OVER THE YEARS A VARIETY OF SYMBOLS AND METHODS HAVE BEEN DEVFLOPED
FOR PRODUCING FLOW CHARTS. ALL OF THE VARIETIES HAVE THE SAME BASIC
PURPOSE AND MOST OF THE DIFFERENCES ARE THE RESULT OF EDUCATIONALIST
PUSHING THEIR OWN PREFERENCES. MOST PFOPLF CAN DO ADMIRABLY WELL USING
JUST A FEW BASIC SYMBOLS TO DONOTE BASIC TYPES OF OPFRATIONS IN A COM-
PUTER PROGRAM. THE SMALL GROUP TO BE PRESENTED HERE WILL FNABLE MOST
8668 PROGRAMMERS TO DEVELOP FLOW CHARTS RAPIDLY, WITH LITTLE CONFUS~-
ION, AND WITHOUT HAVING TO LFARN A HOST OF "“SPECIAL' SYMBOLS.

A CIRCLE CAN BE USED AS A GENFRAL PURPOSE SYMBOL TO SPECIFY THE
ENTRY OR EXIT POINT TO A ROUTINE OR SUBROUTINE. INFORMATION MAY BE
PRINTED INSIDE THE CIRCLE AND MIGHT DENOTE WHERE THE ROUTINE IS COMING
FROM OR GOING TO (SUCH AS THE PAGE NUMBER AND LOCATION ON A PAGE FOR A
PROGRAM THAT REQUIRES SEVERAL SHEETS OF PAPFR TO RE FLOW CHARTED) OR IT
CAN CONTAIN TRANSFER INFORMATION OR DENOTE STARTING OR STOPPING POINTS

WITHIN A PROGRAM. SOME TYPICAL EXAMPLES OF THE CIRCLE SYMBOL ARE IL-
LUSTRATED ON THE NEXT PAGE.

HO®»®O

CLR THE ACC

STORE THE
INCOMING
MESSAGE

SET
/0
FLAGS

A SQUARE OR RECTANGEL CAN BE USED TO DENOTE A GENERAL OR SPFCIFIC
OPERATION. THE TYPE OF OPERATION CAN BE DESCRIBED INSIDE THE BOXED
AREA SUCH AS IN THE EXAMPLES ON THE LOWER HALF OF THE PREVIOUS PAGE.

A DIAMOND FORM MAY BE USED TO SYMBOLIZE A DECISION OR BRANCHING
POINT IN A PROGRAM. THE DETERMINING FACTOR(S) FOR THE DECISION OR
BRANCHING OPERATION MAY BE INDICATED INSIDE THE SYMBOL AND THE TWO SIDE
POINTS OF THE TRIANGLE USED TO ILLUSTRATE THE PATH TAKEN WHEN A DECI-
SION HAS BEEN MADE. THE DIAMOND SYMBOL 1S ILLUSTRATED BELOW.

NO YES

INFO
READY ?

NO YES

LINES WITH ARROWS MAY BE USED TO INTER~CONNECT THE THREE TYPES OF
SYMBOLS JUST PRESENTED. IN THIS WAY, THE SYMBOLS MAY BE CONNECTED TO
FORM READILY UNDERSTOOD '“FLOW CHARTS" OF OPERATIONS THAT ARE TO OCCUR
IN- A PROGRAM AND TO SHOW HOW VARIQOUS OPERATIONS RELATE TO EACH OTHER.
FLOY CHARTS ARE EXTREMELY VALUABLE REFERENCES WHEN DEVELOPING PROGRAMS
AS WELL AS WHEN WANTS TO UPDATE OR EXPAND A PROGRAM AND NFEFDS TO QUICK-
LY REVIEW THE OPERATION OF A PARTICULAR PROGRAM.

BELOW IS AN EXAMPLE OF A FLOW CHART FOR A RELATIVELY SIMPLFE PROGRAM
THAT 1S TO ACCEPT CHARACTERS FROM AN ASCII TELETYPFE MACHINFE AND SEND
OUT THE EQUIVELANT GHARACTER TO A BAUDOT TELETYPE UNIT. IN THIS ILLUS-
TRATION IT IS ASSUMED THAT THE 1/0 INTERFACES TO THE TELETYPE MACHINFS
ARF. "PARALLEL" INTFRFACES (VERSUS BIT-SERIAL) SO THAT COMPLEX TIMING
OPERATIONS DO NOT HAVE TO BE DISCUSSED IN THE EXAMPLF. A WRITTEN DE-
SCRIPTION OF THE EXAMPLE PROGRAM COULD BE STATED AS FOLLOWS:

THE 8008 UNIT 1S TO MONITOR BIT "B7" OF INPUT PORT @61, WHICH IS THE
"CONTROL"™ PORT FOR AN INTERFACE TO AN ASCII TELETYPE MACHINE. WVHENEVER
BIT *B7" ON INPUT PORT #1 GOES LOV (LOGIC @) IT INDICATFS A NF¥ CHARAC-
TER IS WAITING IN PARALLEL FORMAT FROM THE TFLETYPE AT INPUT PORT 8@.
THE COMPUTER 1S TO IMMEDIATELY OBTAIN THFE CHARACTER THAT IS WAITING AT
INPUT PORT 00 AND AS SOON AS IT HAS OBTAINED THE DATA IT IS TO SEND A
LOGIC 1| (HIGH) SIGNAL TO BIT "B8" OF OUTPUT PORT 11 TO SIGNAL THE ASCII
INTERFACE THAT THE CHARACTER HAS BEEN ACCEPTED BY THE COMPUTER. (THE
RECEIPT OF THIS SIGNAL BY THE ASClI INTERFACE WILL THEN CAUSE THE ASCll
INTERFACE TO RESTORE THE CONTROL SIGNAL ON BIT "B7" OF INPUT PORT 41 TO
A HIGH (LOGIC 1) CONDITION).

VHENEVER A CHARACTER HAS BEEN RECEIVED FROM THE ASC}I1 TELETYPE ON
INPUT PORT 80, THE COMPUTER IS TO COMPARE THF CHARACTER JUST RECEIVED
AGAINST AN ASCII TO BAUDOT *"LOOK=-UP"™ TABLE WHICH IS STORED IN THE COM-
PUTER'S MEMORY UNTIL IT FINDS A MATCH. WHEN IT FINDS A MATCH IT WILL
THEN OBTAIN THE EQUIVELANT BAUDOT CHARACTER FROM THE CONVERSION TABLE
AND SEND THE BAUDOT CODE FOR THE CHARACTER IN BIT POSITIONS "BS" THROUGH
“B8' OF OUTPUT PORT 1#. BIT *"BS" WILL SERVE TO INDICATE TO THE BAUDOT

2 -3

INTERFACE WHETHER THE CODE IN BITS "B4" THROUGH “B@" IS TO BE PROCESSED
BY THE TELETYPE WHEN IT IS IN THE "LETTERS" OR "FlGURES" MODE. IT IS
ASSUMED THAT THE CHARACTER RATE (BUT NOT NECESSARILY THE BAUD RATE) IS
THE SAME FOR BOTH MACHINES SO THAT THE EXAMPLE MAY BE SIMPLIFlED BY
ELIMINATING THE REQUIREMENT FOR CHARACTER BUFFERING OR STACKING" IN THE
MEMORY OF THE GCOMPUTER. HOWEVER, IN PRACTICAL APPLICATIONS SUCH CAPA-
BILITY MIGHT BE REQUIRED AND THE FEATURE COULD BE ADDED TO THE PROGRAM.
BUT, FOR THIS CASE, AS SOON AS THE BAUDOT CODE HAS BEEN TRANSMITTED (IN
PARALLEL FORMAT) TO THE BAUDOT INTERFACE, THE COMPUTER WILL SIMPLY &0
BACK TO WAITING FOR THE NEXT CHARAGTER TO COME IN FROM THE ASCII MACH-
.INE« THE WRITTEN DESCRIPTION PROVIDED HERE COULD BE REPRESENTED QUITE
CLEARLY BY THE FLOW CHART SHOWN BELOW.

N
/7
NO IS B7 YES
€ OF INP PORT @l
A LOGIC @ ?
\
AN
GET ASCII
CHARACTER
FROM INPUT
PORT @@
SEND A LOGIC 1 ON B@
OF OUTPUT PORT 11 TO
CLEAR THE ASCII
INTERFACE
\
60 TO LOOK-UP TABLF.
ROUTINE AND FIND
THE EQUIVFLANT BAUDOT
CHARACTER
A
Y
SEND THE BAUDOT CODE
TO OUTPUT PORT 18 IN
BITS BS THROUGH B®
\%

THE FLOW CHART OF THF PROGRAM AS SHOWN ON THE PREVIOUS PAGE COULD
BE CONSIDERED AS AN "“OUTLINE" OF THE PROGRAM. PORTIONS OF THAT FLOW
CHART COULD BE EXPANDED INTO MORE DETAILED FLOW CHARTS TO PRESENT A
DETAILED VIEW OF SPECIAL OPERATIONS. FOR INSTANCE THE RECTANGLF LABEL-
ED *"GO TO LOOK-UP TABLE ROUTINE AND FIND THE FQUIVALENT BAUDOT CHARAC~-
TER' REALLY REFERS TO A PORTION OF THFE PROGRAM THAT CONSISTS OF A NUM~
BER OF OPERATIONS. THESE OPERATIONS COULD BE DESCRIBED IN A SEPARATE
‘FLOW CHART AS ILLUSTRATED BELOW.

INITIALIZE POINTERS TO
START OF LOOK-UP TABLFE

\
‘Y
COMPARE THE CONTENTS OF THE
CURRENT LOCATION IN THE LOOK -
UP TABLF AGAINST THE CHARACTFR

PRFESENTLY IN THE ACCUMULATOR

ARE THEY |
THE SAME ?

N

h HAVE FOUND THE DESIRED

ADVANCE THE _ CHARACTER. ADVANCF THE
TABLFE POINTER POINTFR TO THE NEXT WORD
BY TWO WORDS. IN THE TABLE AND FFTCH

THE BAUDOT EQUIVFLANT.

N

THE READER CAN SEE THAT THFE AROVE FLOW CHART READILY ILLUSTRATES
THE OPERATION OF THE "“TABLE LOOK-UP ROUTINE." WITH A LITTLE STUDY ONE
COULD DISCERN THAT THE LOOK-UP TABLF CONSIST OF AN AREA IN MEMORY THAT
HAS AN ASC1I CHARACTER CODE IN ONF WORD, FOLLOWED IN THE NEXT WORD BY
THE SAME CHARACTER IN THE BAUDOT CODE. THIS SEQUENCE CONTINUES FOR ALL
THE POSSIBLE CHARACTERS AS SHOWN ON THE TOP OF THE NEXT PAGE. THE FLOW
CHART ILLUSTRATES HOW THE DATA IN THFE LOOK-UP TABLE 1S SCANNED BY SKIP-
PING OVER FVERY OTHER MEMORY LOGATION (WHICH CONTAINS THE BAUDOT CODES)
UNTIL THE PROPER ASCI1 CHARACTFR 1S LOCATED. WHEN THAT IS LOCATED, THE
ROUTINE SIMPLY EXTRACTS THE PROPER BAUDOT CODE FROM THE NEXT MEMORY LOw
CATION IN THE TABLE. THE FLOV CHART MAKES THE SEQUENCE FASIFR TO FOLLOW
AND UNDERSTAND THAN A PURELY VERBAL EXPLANATION OF THE ROUTINE.

2 -5

ADDRESS ' MEMORY CONTENTS

PAGE: XX LOC: 1 ASCI1 CODE FOR LETTER “A*™

PAGE: XX LOC: Z+1 BAUDOT CODE FOR LETTER "A"

PAGE: XX LOC: Z+2 ASC11 CODE FOR LETTER "B"
L4 ! * L4

PAGE: XX LOC: Z+3 BAUDOT CODPE FOR LETTER 'B"

PAGE:s XX LOC: Z+2(N=-1) ASCII CODE FOR “N"TH CHARACTER
PAGE: XX LOC: Z+2(N-1)+]1 BAUDOT CODE FOR "N'TH CHARACTER

ILLUSTRATION OF LOOK~-UP TABLE ORGANIZATION FOR EXAMPLE PROGRAM

IT IS STRONGLY RECOMMENDED THAT BEGINNING PROGRAMMERS DEVELOP THE
HABIT OF FIRST WRITING DOWN THE FUNCTION(S) OF THE DESIRED PROGRAM AND
THEN DRAWING UP FLOW CHARTS AS DETAILED AS THE INDIVIDUAL FEELS IS NEC-
ESSARY TO CLEARLY SHOW THE INTENDED OPERATIONS OF THE PROGRAM THAT 1S TO
BE DEVELOPED. A NOVICE PROGRAMMER WILL BE WISE TO PREPARF QUITF DETAIL-
. ED FLOW CHARTS. MORE EXPERIENCED PROGRAMMERS MAY PREFER TO LEAVE OUT
DETAILS OF OPERATIONS THAT THEY THOROUGHLY UNDERSTAND. THE FLOW CHARTS
SHOULD SERVE AS READY REFERENCES WHEN THE PROGRAMMER GOES ON TO ACTUAL-
LY DEVELOP THE STEP-BY-STEP MACHINE LANGUAGE INSTRUCTION SEQUENCES FOR
THE COMPUTER.

FLOW CHARTS ARE ALSO AN EXCELLENT METHOD FOR COMMUNICATING PROGRAM-
MING CONCEPTS TO FELLOW COMPUTER PROGRAMMERS. IT 1S THE COMMON LANG-
UAGE OF COMPUTER TECHNOLOGISTS. (REMEMBFR - GFNFRAL FLOW CHARTS DO NOT
HAVE TO BE MACHINE SPECIFIC!) LEARNING HOW TO PREPARE AND READ FLOW
CHARTS IS AN IMPORTANT (YET EASY) SKILL FOR ALL COMPUTER PROGRAMMERS TO
ACAQUIRE. IT CAN ALSOC BE FUN AND A CREATIVF PROCESS AS ONE CAN VIEW THE
OVER-ALL OPERATION OF A PROGRAM UNDER DEVELOPMENT AND GAIN NEW INSIGHTS
INTO WHERE TO INTER-CONNECT ROUTINES, USE COMMON “LOOPS,' TO SAVE MEM-
ORY SPACE, OR OTHERWISE DETECT WAYS TO ENHANCE THE PROGRAM'S CAPABILITY.

FUNDAMENTAL PROGRAMMING SKILLS

BEFORE ONE CAN EFFECTIVELY DEVELOP MACHINE LANGUAGE PROGRAMS FOR THE
8868 CPU ONE MUST BE THOROUGHLY FAMILIAR WITH THE INSTRUCTION SET FOR
THE MACHINE. 1IT IS ASSUMED FOR THE REMAINDER OF THIS MANUAL THAT THE
READER HAS STUDIED THE DETAILED INFORMATION FOR THE INSTRUCTION SET OF
THE 8008 CPU WHICH WAS PROVIDED IN THE FIRST CHAPTER. THE PROGRAMMER
SHOULD BECOME INTIMATELY FAMILIAR WITH THE MNEMONICS (PRONOUNCED *“KNEE-
MONICS") FOR EACH TYPE OF INSTRUCTION. (MNEMONICS ARE EASILY REMEMBERED
SYMBOLIC REPRESENTATIONS OF MACHINE LANGUAGE INSTRUCTIONS. THEY ARE FAR
FASIER TO WORK WITH THAN THE ACTUAL NUMERIC CODES USED BY THE COMPUTER
WHEN THE PROGRAMMER IS DEVELOPING A PROGRAM. THE MNEMONICS USED TO RE-
PRESENT THE INSTRUCTIONS AVAILABLE IN AN 8908 SYSTEM WERE PRESENTED IN
THE PREVIOUSLY MENTIONED FIRST CHAPTER OF THIS 8808 PROGRAMMERS MANUAL.
WHILE THE PROGRAMMER WILL DEVELOP PROGRAMS AND "THINK" IN TERMS OF THE
MNEMONICS, THE PROGRAMMER MUST EVENTUALLY CONVERT THE MNEMONICS TO THE
MACHINE CODES USED BY THE COMPUTER. THIS, HOWEVER, 1S ALMOST PURELY A
“LOOK~-UP'" PROCEDURE, AND IN FACT, AS VILL BE SEEN SHORTLY, THIS TASK CAN
ITSELF BE PERFORMED BY THE COMPUTER THROUGH THE USE OF AN "ASSEMBLER"
PROGRAM.,

MACHINE LANGUAGE PROGRAMMERS SHOULD ALSO BE FAMILIAR WITH MANIPU-
LATING NUMBERS IN BINARY AND OCTAL FORM. 1IT 18 ASSUMED THAT READERS ARE
FAMILIAR WITH REPRESENTING NUMBERS AS BINARY VALUES, HOWEVER, THERE MAY
BE A FEW READERS WHO ARE NOT USED TO THE CONVENTION OF REPRESENTING BIN-
ARY NUMBERS BY THEIR OCTAL EQUIVALENT. THE TECHNIQUE 1S QUITE SIMPLE AS
IT CONSIST MERELY OF GROUPING BINARY DIGITS INTO GROUPS OF THREE AND
REPRESENTING THEIR VALUE AS AN OCTAL NUMBER. THE OCTAL NUMBERING SYSTEM
ONLY USES THE DIGITS @ THROUGH 7, WHICH IS EXACTLY THE RANGE THAT A
GROUP OF THREE BINARY D1GITS CAN REPRESENT. THE OCTAL NUMBERING SYSTEM
MAKES IT A LOT EASIER TO MANIPULATE BINARY NUMBERS - FOR INSTANCE MOST
PEOPLE FIND IT CONS1DERABLY MORE CONVENIENT TO REMEMBER AS THREE DIGIT
NUMBER SUCH AS | @ 4 THAN THE BINARY FQUIVALENT @ | 0 9 8 1 8 8. AN
OCTAL NUMBER 1S EASILY EXPANDED TO A BINARY NUMBER BY SIMPLY PLACING
THE OCTAL VALUE IN BINARY FORM USING THREE BINARY DIGITS.

THE INFORMATION IN AN EIGHT BIT BINARY REGISTER CAN BE EASILY CON-
VERTED TO AN OCTAL NUMBER BY GROUPING THE BITS INTO GROUPS OF THREE
STARTING WITH THE LEAST SIGNIFICANT BITS. THE TWO MOST SIGNIFICANT BITS
IN THE REGISTER WHICH FORM THE LAST GROUP WVILL ONLY BE ABLE TO REPRESENT
THE OCTAL NUMBERS @ TO 3. THE DIAGRAM BELOV ILLUSTRATES THE CONVENTION.

EIGHT CELL REGISTER

L
L] []
.
® 0868600806000 05000000 00000 ® 0000000060080 0600089% 0000
[] *

o0 0o o oMk ok 2K K 2 o K ol 2 20 200 3¢ 028 20 2 2 20K 300 2003 3 K 26300 K e a0 2 e 2 2 2 o 3K ok K Ok 3K

. * *x \] * »® ? * * E
. (") * @ x 1 t P = @ x @ t 1 * g x 8 x
. * * t x * L *x x *

0 00 o oMok koK 3 Ak 2 3 3 2 35 2 30 30 26 o5k 2 2k e A e 2 e 20 30 3 3k 200 a0 20 o 8 i o8 ok K o ak ok oK K K
es0cccee ev0esvssssscrcoe s00vescsvcssece evsences
[[} L]

1 e |
CONVERTING AN 8 BIT REGISTER FROM BINARY TO OCTAL NUMBERS

3 -1

NOTE IN THE DIAGRAM HOW AN IMAGINARY ADDITIONAL BINARY DIGIT WITH A
VALUE OF ZERO WAS ASSIGNED TO THE LEFT OF THE MOST SIGNIFICANT BIT S0
THAT THE OCTAL CONVENTION FOR THE TWO MOST SIGNIFICANT BITS COULD BE
MAINTAINED.

A TABLE ILLUSTRATING THE RELATIONSHIP BETWEEN THE BINARY AND OCTAL
SYSTEMS 1S PROVIDED FOR REFERENCE BELOW.

BINARY PATTERN REPRESENTATIVE OCTAL ¢
e o o 8
8 0 1 1
e 1 o 2
g 1 1 3
1 @ o A
1 8 1 . 5
1 1 @ 6
1 11 7

A PERSON WHO DESIRES TO DEVELOP MACHINE LANGUAGE PROGRAMS FOR THE
8088 CPU SHOULD ALSO BECOME FAMILIAR WITH SOME STANDARD CONVENTIONS
USED WHEN DEALING WITH “CLOSED" REGISTERS (GROUPS OF BINARY CELLS OF
FIXED LENGTH SUCH AS A MEMORY WORD OR CPU REGISTER). ONE VERY SIMPLE
POINT TO REMEMBER, AS A STARTER, 1S THAT WHEN A GROUP OF CELLS IN A REG-
ISTER IS IN THE ALL ONES CONDITION:

11 111 P11

AND THE COUNT OF 1 IS ADDED TO THE REGISTER, THE REGISTER GOES TO THE
VALUE:

OR, IF THE COUNT OF: 1 @ (BINARY) WAS ADDED TO A REGISTER THAT CON-
TAINED ALL ONES, THE NEW VALUE IN THE REGISTER WOULD BE AS SHOWN:

11 1 11 111
+ 089 6 00 g1 6

00 2 00 8 e\

SIMILARLY, GOING THE OPPOSITE WAY, I1F ONE SUBTRACTS A NUMBER SUCH AS

1 80 (BINARY)? FROM A REGISTER THAT CONTAINS SOME LESSER VALUE, SUCH AS
@1 8 (BINARY) THE THE REGISTER WOULD CONTAIN THE RESULT SHOWN IN THE
FOLLOWING ILLUSTRATION:

09 U o190
- 069 000 1 860

! 1 111 110

IT SHOULD BE NOTED THAT IF ONE USES ALL THE BITS IN A FIXED LENGTH
REGISTER ONE CAN REPRESENT MATHEMATICAL VALUES OF AN ABSOLUTE MAGNITUDE
FROM ZERO TO THE QUANTITY TWO TO THE NTH POWER MINUS ONE FROM THE QUAN-
TITY (B TO (2*N - 1)) WHERE "N" IS THE NUMBER OF BITS IN THE REGISTER.
HOWEVER, IF ALL THE BITS IN A REGISTER ARE USED TO REPRESENT THE MAGNI-
TUDE OF A NUMBER, AND IT 1S ALSO DESIRED TO REPRESENT THE MAGNITUDE AS
BEING EITHER POSITIVE OR NEGATIVE IN SIGN, THEN SOME ADDITIONAL MEANS

3-¢

MUST BE AVALILABLE TO RECORD THE SIGN OF THE MAGNITUDE. GENERALLY, THIS
WULD REQUIRE USING ANOTHER RFGISTER OR MEMORY LOCATION SOLELY FOR THE
PURPOSE OF KEEPING TRACK OF THE SIGN OF A NUMBER.

HOWEVER, IN MANY APPLICATIONS IT 1S DFSIRABLE TO ESTABLISH A CON-.
VENTION THAT WILL ALLOW ONE TO MANIPULATE POSITIVE AND NEGATIVE NUMBERS
WITHOUT HAVING TO USE ADDITIONAL REGISTER(S) TO MAINTAIN THE SIGN OF A
NUMBER OR OTHERWISE PLACE RESTRICTIONS ON OPERATIONS. ONE WAY THIS MAY
BE DONE IS TO SIMPLY ASSIGN THE MOST SIGNIFICANT BIT IN A REGISTER (OR
THE MOST SIGNFICANT BIT IN A GROUP OF BITS) TO BE A '"SIGN'" INDICATOR.
THE REMAINING BITS REPRESENT THE MAGNITUDE OF THF NUMBFR RFGARDLESS OF
WHETHER IT 1S POSITIVE OR NFGATIVE. ‘NATURALLY, WHFN THIS IS DONE, THFN
THE MAGNITUDE RANGE FOR AN *N'" CFLL RFGISTFR BFECOMES @& T0O (2t (N=-1)-1)
RATHER THAN & TO (2tN) - 1. THF CONVFNTION NORMALLY USFD IS THAT IF
THE MSB (MOST SIGNIFICANT BIT) IN THE REGISTER IS A ONE (1), THEN THE
NUMBER REPRESENTED BY THE REMAINING BITS IS “NFEGATIVE" IN SIGN. IF THFE
MSB 1S ZERO (@) THEN THE REMAINING BITS SPECIFY THE MAGNITUDE OF A POSI-
TIVE NUMBER. THIS CONVENTION ALLOWS COMPUTFR PROGRAMMERS TO MANIPULATE
MATHEMATICAL QUANTITIES IN A FASHION THAT MAKES IT FASY FOR THE COM-
PUTER TO KEEP TRACK OF THE SIGN OF A NUMBER. SOME EXAMPLES OF BINARY
NUMBERS IN AN FEIGHT BIT REGISTER SUCH AS THOSE USED IN AN 80088 SYSTEM
ARE SHOWN BELOW.

BINARY REPRESENTATION OCTAL DECIMAL
e ev1 @800 @1 @ + 8
1 90061 o800 210 - ¥
AR RE 17 7 +127
S T N T I T I 377 -127
"8 ©0606 0 a. 3 a1 + 1
18 606 @@0.1 201 - 1

WHILE THE SIGNED BIT CONVENTION ALLOWS THE SIGN OF A NUMBER TO BF
STORED IN THE SAMF REGISTER (OR WORD) AS THE MAGNITUDE, SIMPLY USING
THE " SIGNED BIT* CONVENTION ALONF CAN STILL BE A SOMEWHAT CLUMSY METHOD
TO USE IN A COMPUTER BECAUSE OF THE METHOD IN WHICH A COMPUTER MATHE-
MATICALLY ADDS THE CONTENTS OF TWO BINARY REGISTERS IN THE ACCUMULATOR.
SUPPOSE FOR EXAMPLE THAT THE COMPUTER WAS TO ADD TOGFTHER A POSITIVE AND
A NEGATIVE NUMBER THAT WERFE STORFD IN REGISTERS IN THE SIGNED BIT FOR-
MAT JUST DESCRIBED.

00 g o1 U (+ 8 DECIMAL)
PLUS 1 0 e a1 g a9 (- 8 DECIMAL)
EQUAL 1 @ a1 0 0 0@ (THIS IS NOT @&!)

THE RESULT OF THE OPERATION AS ILLUSTRATED WOULD NOT BE WHAT THE
PROGRAMMER INTENDED! IN ORDER FOR THE OPERATION TO BE PERFORMFD COR-
RECTLY IT 15 NECESSARY TO ESTABLISH A METHOD OF PROCESSING THE NEGATIVE
NUMBER CALLED THE “TWw0'S COMPLEMENT®" CONVENTION. IN THE "TWO'S COMPLE~
MENT' CONVENTION A NEGATIVE NUMBER 1S RFPRESENTED BY COMPLEMENTING WHAT
THE VALUE FOR A POSITIVE NUMBER WOULD BE (COMPLEMENTING IS THE PROCESS
OF REPLACING ALL BITS THAT ARE "@*" WITH A 1" AND THOSF THAT ARE "1!"
WITH A “0*") AND THEN ADDING THE VALUE ONE (1) TO THE COMPLEMENTED VALUE.

3 -3

AS AN EXAMPLE, THE NUMBER MINUS EIGHT (- 8) DECIMAL WOULD BE DERIVED
FROM THE NUMBER PLUS EIGHT (+) BY THE FOLLOWING OPERATIONS.

a0 9081 @ & @ (ORIGINAL + 8)

11 1 1@ 111 (COMPLEMENTED)
e o8 0 [, . I | (NOVW ADD + 1)

11 111 @ 0 (2°'S COMPLEMENT FORM OF - 8)
SOME EXAMPLES OF NUMBERS EXPRESSED IN TWO'S COMPLEMENT NOTATION
WITH THE "SIGNED BIT" CONVENTION RETAINED ARE SHOWN BELOWV.

BINARY REPRESENTATION OCTAL DECIMAL

0o | 2 60 218 + %
11 111 000 3780 - 8
61 1 11 111 i 77 +127
1 @ 2 0 @ b ol 201 -127
o @ 089 é 21 2 a1 +« 1
11 111 111 377 - 1
09 Q60 a9 1 + @
I 2 880 o080 206208 -128

NOTE THAT WHEN USING THE TWO'S COMPLEMENT METHOD ONE MAY STILL RE-
TAIN THE CONVENTION OF HAVING THE MSB IN THE REGISTER ESTABLISH THE
*SIGN" NOTATION. IF THE MSB = 1, AS IN THE ABOVE ILLUSTRATION, THE NUM-
BER IS ASSUMED TO BE NEGATIVE. HOWEVER, SINCE THE NUMBER 1S IN THE
TWO'S COMPLEMENT FORM THE COMPUTER CAN READILY ADD A “POSITIVE' AND A
“NEGATIVE" NUMBER AND COME UP WITH A RESULT THAT IS READILY INTERPRETED.
LOOK!

60 e 9 1 8 86 (+ 8 DECIMAL)
ADD 11 111 6 8@ (-8 DECIMAL AS 2°'S COMPLEMENT)
0 0 2@ © 6@ (CORRECT ANSWER OF ZERO!)

ANOTHER ESTABLISHED CONVENTION IN HANDLING NUMBERS WITH A COMPUTER
IS TO ASSUME THAT "@'" IS A “POSITIVE" VALUE. BECAUSE OF THIS CONVEN=-
TION THE MAGNITUDE OF THE LARGEST NEGATIVE NUMBER THAT CAN BE REPRESENT-

ED IN A FIXED LENGTH REGISTER 1S ONE MORE THAN THAT POSSIBLE FOR A POSI-
TIVE NUMBER.

THE VARIOUS MEANS OF STORING AND MANIPULATING THE SIGNS OF NUMBERS
AS JUST DISCUSSED HAVE ADVANTAGES AND DRAWBACKS AND THE MFETHOD USED DE-
PENDS ON THE SPECIFIC APPLICATION. HOWEVER, FOR MOST USER'S THE TWO'S
COMPLEMENT METHOD COUPLED WITH THE *SIGNED BIT" CONVENTION WILL BE THE
MOST CONVENIENT AND MOST OFTEN USED METHOD. THE PROSPECTIVE MACHINE

LANGUAGE PROGRAMMER SHOULD MAKE SURE THAT THE CONVENTION 1S WELL UNDER-
STOOD.

ANOTHER AREA THAT THE MACHINE LANGUAGE PROGRAMMER MUST HAVE A THOR=-

3-a

OUGH KNOWLEDGE OF IS THE CONVERSION OF NUMBFRS BETWEEN THE DECIMAL NUM-
BERING SYSTEM THAT MOST PFOPLE WORK WITH ON A DAILY BASIS AND THE BIN=-
ARY AND OCTAL NUMBERING SYSTEM UTILIZED BY COMPUTER TECHNOLOGISTS. PRO-
GRAMMERS WORKING WITH THE 8888 CPU VWILL GENERALLY FIND THE OCTAL NUMBER-
ING SYSTEM MOST CONVENIENT BECAUSE THE CONVERSION FROM OCTAL TO BINARY
IS SIMPLY A MATTER OF GROUPING BINARY BITS INTO GROUPS OF THREE AS DIS-
CUSSED AT THE START OF THIS CHMAPTER ON FUNDAMENTAL PROGRAMMING SKILLS.
IT IS EASIER TO REMEMBER OCTAL CODES THAN LONG STRINGS OF BINARY DIGITS
BUT ONE CAN READILY EXPAND THE OCTAL CODES INTO BINARY DIGIT STRINGS.

OF COURSE, MOST PEOPLE ARE USED TO THINKING IN DECIMAL TERMS, WHICH THE
COMPUTER DOGES NOT USE AT THE MACHINE LANGUAGE LEVEL, AND SO IT 1S NEC-
ESSARY TO BE ABLE TO €ONVERT BACK AND FORTH BETWEEN THE VARIOUS NUMBER-~
ING SYSTEMS AS PROGRAMS ARE DEVELOPED.

THE CONVERSION PROCESS THAT IS GENERALLY MORE TROUBLESOME FOR PEOPLE

TO LEARN (THAN THE OCTAL TO BINARY TRANSLATION) 1S FROM DECIMAL TO BIN=-
ARY OR DECIMAL TO OCTAL (AND VICE-VERSA)! 1IT IS PROBABLY A BIT EASIER
FOR MOST PEOPLE TO LEARN TO CONVERT FROM DECIMAL TO OCTAL AND THEN USE
THE SIMPLE OCTAL TO BINARY FEXPANSION TECHN1QUE, THAN TO CONVERT DIRECT-
LY FROM DECIMAL TO BINARY AND SO THE FASIER METHOD WILL BE PRESENTED

HERE. SINCE IT IS ASSUMED THAT THE READER IS ALREADY FAMILIAR VITH GO-
ING FROM OCTAL TO BINARY (AND VICE~-VERSA) ONLY THE CONVERSIONS BETWEEN
DECIMAL AND OCTAL (AND THE REVERSE) VWILL BE PRESENTED IN THESE PAGES.

A DECIMAL NUMBER MAY BE READILY CONVERTED TO ITS OCTAL EQUIVALENT
BY THE FOLLOWING METHOD:

DIVIDE THE DECIMAL NUMBER BY #. RECORD THE REMAINDER (NOTE THAT 1S
TE R EMA I NDER !!) AS THE LFAST SIGNIFICANT DIGIT OF THE OCTAL
NUMBER BEING DERIVED. TAKE THE QUOTIENT JUST OBTAINED AND USE IT AS THE
NEW DIVIDEND. DIVIDE THE NEW DIVIDEND BY 8. THE REMAINDER FROM THIS
OPERATION BECOMES THE NEXT SIGNIFICANT DIGIT OF THE OCTAL NUMBER. THE
QUOTIENT 1S AGAIN USED AS THE NEV DIVIDEND. THE PROCESS IS CONTINUED
UNTIL THE QUOTIENT BECOMES é. THE NUMBER OBTAINED FROM PLACING ALL THE
REMAINDERS (FROM EACH DIVISION) IN INCREASING SIGNIFICANT ORDER (FIRST
REMAINDER AS THE LEAST SIGNIFICANT DIGIT, LAST REMAINDER AS THE MOST
SIGNIFICANT DIGIT) IS THE OCTAL NUMBER EQUIVALENT OF THF ORIGINAL DECI-
MAL NUMBER. THE PROCESS 1S ILLUSTRATED BELOW FOR CLARITY.

THE OCTAL EQUIVALENT OF 1234 DECIMAL IS:

- QUOTIENT REMAINDER
ORIGINAL NUMBER 1234 7 &

= 154 2

LAST QUOTIENT .
BECOMES NEW DI1VIDEND 154 s 8 = 19 2 .
LAST QUOTIENT o o
BECOMES NEW DIVIDEND 19 7 8 = 2 3 « &
LAST QUOTIENT « o s
BECOMES NEVW DIVIDEND 2 / 8 = - 2 s o

" .

THUS THE OCTAL EQUIVALENT OF 1234 1IS: 2 322

THE ABOVE METHOD IS QUITE EASY AND STRAIGHT FORWARD. .SINCE A MAJ-

3-8

ORITY OF THE TIME THE USER WILL BE INTERESTED IN CONVERSIONS OF DECIMAL
NUMBERS LESS THAN 255 (THE MAXIMUM DECIMAL NUMBER THAT CAN BE EXPRESSED
IN AN EIGHT BIT REGISTER) ONLY A FEW DIVISIONS ARE NECESSARY:

THE OCTAL EQUIVALENT OF 255 DECIMAL IS:

QUOTIENT REMAINDER

ORIGINAL NUMBER 255 / 8 = 31 7
LAST QUOTIENT : .
BECOMES NEV DIVIDEND 31 s/ 8 = 3 7.
LAST QUOTIENT . .
BECOMES NEW DIVIDENT 3 7/ 8 - - 3. .
THUS THE OCTAL EQUIVALENT OF 255 1S: 377

FOR NUMBERS LESS THAN 63 DECIMAL (AND SUCH NUMBERS ARE USED FREQ-
UENTLY TO SET COUNTERS IN *"LOOP'" ROUTINES) THE ABOVE METHOD REDUCES TO
ONE DIVISION WITH THE REMAINDER BEING THE LSD AND THE QUOTIENT THE MSD.
THIS IS A FEAT MOST PROGRAMMERS HAVE LITTLE DIFFICULTY DOING IN THEIR
HEAD!

THE OCTAL EQUIVALENT OF 63 DECIMAL 1S:

' ' QUOTIENT REMAINDER
ORIGINAL NUMBER 63 / 8

= 7 7

LAST QUOTIENT .
BECOMES NEW DIVIDEND 7 /7 8 = - T o
THUS THE OCTAL EQUIVALENT OF 63 1IS: ‘ 7 7

GOING FROM OCTAL TO DEGCIMAL IS QUITE EASY TOO. THE PROCESS CONSIST
OF SIMPLY MULTIPLYING EACH OCTAL DIGIT BY THE NUMBER 8 RAISED TO ITS
POSITIONAL (WEIGHTED) POWER AND THEN ADDING UP THE TOTAL OF EACH PRO-
DUCT FOR ALL THE OCTAL DIGITS:

»

2322 O0OCTAL =

. .2 X (8180 = (2X 1) = | 2
. .2 X (811) = (2 X 8) - ' 1 6
.3 X (8t2) = (3 X 64) = 192
2 X (813) = (2 X 512) = 102 a

THUS THE DECIMAL EQUIVALENT OF 2322 OCTAL IS: 1 234

3 -6

. BESIDES THE BASIC MATHFMATICAL SKILLS INVOLVED WITH USING OCTAL
AND BINARY NUMBERS, THERE ARE SOME PRACTICAL 'BOOK KEEPING" CONSIDER-
'ATIONS THAT MACHINE LANGUAGE PROGRAMMERS MUST LEARN TO DEAL WITH AS THEY
DEVELOP PROGRAMS. THESE "“BOOK KEEPING'" MATTERS HAVE TO DO WITH MEMORY
USAGE AND ALLOCATION.

AS THE USER WHO HAS READ CHAPTER ONE IN THIS MANUAL NOVW KNOVS,
EACH TYPE OF INSTRUCTION USED IN THE 8088 CPU REQUIRES ONFE, -TW0 OR
THREE WORDS OF MEMORY. AS A GENERAL RULE SIMPLF RFEGISTER TO REGISTER
OR REGISTER TO MEMORY COMMANDS REQUIRE BUT ONE MFMORY WORD. ‘' IMMED-
IATE" TYPE COMMANDS REQUIRE TWO MEMORY LOCATIONS (THE INSTRUCTION CODFE
FOLLOWED IMMEDIATELY BY THE '"DATA' OR OPERAND). JUMP OR CALL INSTRUC-
TIONS REQUIRE THREE WORDS OF MEMORY STORAGF. ONE WORD FOR THE INSTRUC-
TION CODE AND TWO MORE WORDS FOR THE ADDRESS OF THE LOCATION SPECIFIED
BY THE INSTRUCTION. THE FACT THAT DIFFERENT TYPES OF INSTRUCTIONS RF-
QUIRE DIFFERENT AMOUNTS OF MEMORY 1S IMPORTANT TO THE PROGRAMMER.

AS PROGRAMMERS WRITE A PROGRAM IT IS OFTEN NECESSARY FOR THEM TO
KEEP TABS ON HOW MANY WORDS OF MEMORY THE ACTUAL OPFRATING PORTION OF
THE PROGRAM WILL RFEQUIRE (IN ADDITION TO CONTROLLING THE ARFAS IN MFMORY
THAT WILL BE USED FOR DATA STORAGE.) ONE REASON FOR MAINTAINING A COUNT
OF THE NUMBER OF MEMORY WORDS A PROGRAM RFQUIRES IS SIMPLY TO FNSURE
THAT THE PROGRAM WILL "FIT®" INTO THE AVAILABLF MFMORY SPACE.

OFTEN A PROGRAM THAT IS A LITTLE TOO LONG TO BE STORED IN AN AVAIL-
ABLE AMOUNT OF MEMORY WHEN FIRST DEVELOPED CAN BE RE-WRITTFN AFTER SOME
THOUGHT TO FIT IN THE AVAILABLE SPACE. GENERALLY, THE TRADE~OFF BETWEEN
WRITING "COMPACT'" PROGRAMS VERSUS NOT-S0O-COMPACT ROUTINES IS SIMPLY THE
PROGRAMMER'S DEVELOPMENT TIME. HASTILY CONSTRUCTED PROGRAMS TEND TO RF-
QUIRE MORE MEMORY STORAGE AREA BECAUSE THE PROGRAMMER DOES NOT TAKE THF
TIME TO CONSIDER MEMORY CONSERVING INSTRUCTION COMBINATIONS.

HOWEVER, EUEN IF ONE IS NOT CONCERNED ABOUT CONSERVING THE AMOUNT OF
MEMORY USED BY A PARTICULAR PROGRAM, ONE STILL OFTEN NEEDS TO KNOW HOW
MUCH SPACE A GROUP OF INSTRUCTIONS WILL CONSUME IN MEMORY SO THAT ONF
CAN TELL WHERE ANOTHER PROGRAM MIGHT BE PLACED WITHOUT INTERFFRING WITH
THE FIRST PROGRAM.

FOR THESE REASONS, PROGRAMMERS OFTEN FIND IT ADVANTAGEQUS TO DEVELOP
THE HABIT OF WRITING DOWN THE NUMBER OF MEMORY WORDS UTILIZED BY EACH
INSTRUCTION AS THEY WRITE THE MNEMONIC SEQUENCES FOR A ROUTINF, AND TO
ALSO MAINTAIN A COLUMN SHOWING THE TOTAL NUMBER OF WORDS REQUIRED FOR
“STORAGE OF THE ROUTINE. AN EXAMPLE OF A WORK SHEFT WITH THIS PRACTICF
BEING FOLLOWED IS ILLUSTRATED HERE:

MEMORY TOTAL
WORDS WORDS
THI1S " THIS
INSTR. ROUTINE MNEMONICS COMMENTS
2 2 LAl @80 /PLACE @80 IN ACCUMULATOR
2 4 LHI 06l /SET REGISTER "H*" TO |
2 € LLI 150 /AND REGIS “L* TO 159
1 7 ADM /ADD THE CONTENTS OF MEMORY
1 8 INL /LOCATIONS 154 & 151 ON PAGE |
1 9 ADM /ADDING SECOND NUMBER' TO FIRST
1 10 RET /END OF SUBROUTINE

IN THE EXAMPLE THE TOTAL NUMBER OF WORDS USED COLUMN WAS KEPT USING

3 =7

DECIMAL NUMBERS. MANY PROGPAMMERS PREFFR TO MAINTAIN THIS COLUMN USING
OCTAL NUMBERS BECAUSFE OF THE DIRECT CORRELATION BETWFEN THE TOTAL NUM-
BER OF WORDS USED AND THF ACTUAL MEMORY ADDRESSFS USED BY THE 8088.

THE EXAMPLE JUST PRESENTED CAN BF USED TO INTRODUCE ANOTHER CONSID-
ERATION DURING PROGRAM DEVELOPMENT - MFMORY ALLOCATION AND THE DISTINC-
TION BETWEFN PROGRAM STORAGE AREAS IN MFMORY AND AREAS USED TO HOLD
DATA THAT 1S OPERATED ON BY THE PROGRAM. NOTE THAT THE SAMPLE SUBROUT-
INE IS DESIGNED TO HAVF THE COMPUTER ADD THE CONTENTS OF MEMORY LOCA-
TIONS 158 AND 151 ON PAGE @1. THUS, THOSE TWO LOCATIONS MUST BE RESERV-
ED FOR DATA. ONE MUST ENSURE THAT THOSE SPECIFIC MEMORY LOCATIONS ARE
NOT INADVERTANTLY USED FOR SOME OTHER PURPOSF. IN A TYPICAL PROGRAM ONE
MAY HAVF MANY LOCATIONS IN MEMORY ASSIGNFD FOR HOLDING OR MANIPULATING
DATA. IT IS IMPORTANT THAT ONF MAINTAIN SOME SORT OF -SYSTEM OF RECORD-
ING WHERE ONE PLANS TO STORF BLOCKS OF DATA AND WHEFRE VARIQUS OPFRATING

PG|LOC| RTN NOTES

gl |@2P| 40D ADPO =5 @ /158 £/5/ (bpo-plf)
g1p
@2p
P38
40
658
134
¢7¢
|80
1é
/128
/138
/14 &
/5@ | #F STORAGE| (158, 151)
Y
174
209
2/8
22¢
234
249
25¢
268
274
394
3¢
324
338
344
354
364
¢ |378

MEMORY USAGE MAP

3-8

ROUTINES WILL RESIDE AS A PROGRAM IS DFVFLOPFD. THIS CAN BE READILY AC-

COMPLISHED BY SETTING UP AND USING ""MEMORY USAGF MAPS'" (OFTFEN COMMONLY
REFERRED TO ALSO AS "CORE MAPS"™). AN EXAMPLF OF A MFMORY USAGE MAP BF-

ING STARTED FOR THE SUBROUTINE JUST DISCUSSED IS SHOWN ON THE PREVIOUS
PAGF. :

THE SAME TYPE OF FORM MAY ALSO BF USFD AS A PROGRAMMING DFVFLOPMENT
SHEET AS SHOWN BELOW. WHEN THEY ARF USED FOR THIS PURPOSE, THF "RTN"
COLUMN MAY BE USED FOR THE "LABELS"™ OR NAMES OF ROUTINES, AND THE MNE-
MONICS AND COMMENTS PLACED IN THE *“NOTES" COLUMN. THF RFADER SHOULD
NOTICF HOW SPACES ARE LEFT BETWFEEN INSTRUCTIONS THAT OCCUPY MORE THAN
ONE WORD IN MEMORY SO THAT THE ACTUAL ADDRFSSES USED CAN RE DFTERMINFD
AS THE ROUTINE IS DEVFELOPED.

PGILOC| RTN NOTES

gl|edp| APLD, LAL PeF /Pes —>AccC
!

LHLE @B/ IH > 2

LeT /5P Jl —> /5P

aln|plw|n

AdM S m=> 4
INL / Adv. PNTR
é1® ADm JA+m= A’
¥ RE T /END SUBRTN
12
13
4
!5
76
17
pgag
21
a2
23
24
25
26
27
43¢
3/
32
33
34
35
3é

~N

PROGRAM DEVELOPMENT WORK SHEET

- e it

MEMORY USAGE MAPS ARE EXTREMELY VALUABLE FOR KEEPING LARGE PROGRAMS
ORGANIZED AS THEY ARE DEVELOPED OR FOR DISPLAYING THE LOCATIONS OF A
VARIETY OF PROGRAMS THAT ONE MIGHT DESIRE TO HAVE RESIDING IN MEMORY AT
THE SAME TIME. THE SAME FORM IS ALSO USFFUL AS A PROGRAM DEVELOPMFNT
WORK SHEET. IT 1S SUGGESTED THAT THE PERSON INTENDING TO DO EVEN A MOD-
ERATE AMOUNT OF MACHINE LANGUAGE PROGRAMMING MAKE UP A SUPPLY OF SUCH
FORMS (USING A DITTO OR MIMEOGRAPH MACHINE) TO HAVE ON HAND.

THERE ARE SOME IMPORTANT FACTORS ABOUT MACHINE LANGUAGE PROGRAMMING
THAT SHOULD BE POINTED OUT AS THEY HAVE CONSIDERABLE IMPACT ON THE TOTAL
EFFICI1ENCY AND SPEED AT WHICH ONE CAN DEVELOP SUCH PROGRAMS AND GET THEM
OPFRATING CORRECTLY. THE FACTORS RELATE TO ONE SIMPLE FACT - PEOPLE
DEVELOPING MACHINE LANGUAGF PROGRAMS (ESPECIALLY BEGINNERS) ARE VERY
PRONE TO MAKING PROGRAMMING MISTAKES! REGARDLESS OF HOW CAREFULLY ONE
PROCEEDS, 1T ALWAYS SEEMS THAT ANY FAIR SIZED PROGRAM NEEDS TO BE "RE-
VISED" BEFORE A PROPERLY OPERATING PROGRAM IS ACHIEVED. THE IMPACT THAT
CHANGES IN A PROGRAM HAVE ON THE DEVELOPMENT (OR REDEVELOPMENT) EFFORT
VARY ACCORDING TO WHERE IN THE PROGRAM SUCH CHANGFS MUST BE MADE. THE
REASON FOR THE SERIOUSNESS OF THE PROBLEM IS BECAUSE PROGRAM CHANGES
GENERALLY RESULT IN THE ADDRESSES OF THE INSTRUCTIONS IN MEMORY BEING
ALTERED. REMEMBER, IF AN INSTRUCTION IS ADDED, OR DELETED, THEN ALL THE
REMAINING INSTRUCTIONS IN THE ROUTINE BEING ALTERED MUST BE MOVED TO
DIFFERENT LOCATIONS! THIS CAN HAVE "MULTIPLYING" EFFECTS IF THE INSTR=-
UCTIONS THAT ARE MOVED ARE REFERRED TO BY OTHER ROUTINES (SUCH AS CALL
AND JUMP GCOMMANDS) BECAUSE THEN THE ADDRESSES REFERRED TO BY THOSE TYPES
OF COMMANDS MUST BE ALTERED TOO! TO ILLUSTRATE THE SITUATION, A CHANGE
VILL BE MADE TO THE SAMPLE PROGRAM PRESENTED SEVERAL PAGES AGO. SUPPOSE
IT wWAS DECIDED THAT THE SUBROUTINE SHOULD PLACE THE RESULT OF THE ADDIT~
- ION CALCULATION IN A WORD IN MEMORY BEFORE EXITING THE SUBROUTINE IN~-
STEAD OF SIMPLY HAVING THE RESULT IN THE ACCUMULATOR. THE ORIGINAL PRO-
GRAM, FOR EXAMPLE, COULD HAVE BEEN RESIDING IN THE LOCATIONS SHOWN ON
THE PROGRAM DEVELOPMENT WORK SHEET ON THE PREVIOUS PAGE. CHANGING THE
PROGRAM WOULD RESULT IN IT OCGUPYING THE FOLLOWING MEMORY LOCATIONS:

MEMORY
PAGE LOC CONTENTS MNEMONICS COMMENTS
a1 963 206 LAl 409 /PLACFE @088 IN ACCUMULATOR
a1 geal pee -
a1 262 2856 LHI @@#1 = /SET REG "H" TO 1
21 #0O3 aa1
21 004 866 LLI 159 /SET REG "L TO 150
a1 205 1508
a1 Ba6 287 ADM /ADD CONTENTS OF MEMORY
al 807 260 INL /LOCATIONS 158 & 15!
21 o190 . 287 ADM ’ /ADD 2ND TO IST
91 a1l 1Y) LLI 16@ /SET REG "L TO 166
*%x @1 g12 160
*x 0] 213 378 LMA /SAVE ANSWER @ |60
*x @1 o014 837 RET /ZEND OF SUBROUTINE

THE =*x LOCATIONS DENOTE THE ADDITIONAL MEMORY LOCATIONS REQUIRED
BY THE MODIFIED SUBROUTINE. IF THE PROGRAMMER HAD ALREADY DEVELOPED A
ROUTINE THAT RESIDED IN LOCATIONS @12, @13 OR @14, THE CHANGE WOULD RE-
QUIRE THAT IT BE MOVED!

1F ONE WAS USING A PROGRAM DEVELOPMENT WORK SHEET, ONE WOULD HAVE
HAD TO ERASE THE ORIGINAL "RET"™ INSTRUCTION AT THE END OF THE ROUTINE
AND THEN WRITTEN IN THE TWO NEW COMMANDS AND ADDED THE "RET" INSTRUCTION

3 -~ 16.

AT THE END. THE EFFECTS WOULD NOT BE TOO DEVESTATING SINCE THFE CHANGE
WAS INSERTED AT THE END OF THE SUBROUTINE - BUT SUPPOSE A SIMILAR CHANGE
WAS NECESSARY AT THE START OF A SUBROUTINE THAT HAD 5@ INSTRUCTIONS IN
IT? THE PROGRAMMER WOULD HAVE TO DO A LOT OF ERASING!

THE EFFECTS OF CHANGES IN PROGRAM SOURCE LISTINGS WAS RECOGNIZFED
EARLY AS A PROBLEM IN DEVELOPING PROGRAMS AND SO PEOPLE DEVELOPED PRO-
GRAMS CALLED “EDITORS'" THAT WOULD ENABLE THE COMPUTER TO ASSIST PEOPLE
IN THE TASK OF CREATING AND MANIPULATING SOURGCE LISTINES FOR PROGRAMS.
AN “EDITOR"™ IS A PROGRAM THAT WILL ALLOW A PERSON TO USE THE COMPUTER AS
A “TEXT BUFFER."™ SOURCE LISTINGS CAN BE ENTEFRED FROM A KEYBOARD OR
OTHER INPUT DEVICE AND STORED IN THE COMPUTER'S MFMORY. INFORMATION
THAT IS PLACED IN THE “TEXT BUFFER" 1S KEPT IN AN ORGANIZED FASHION, US-
UALLY BY "LINES* OF TEXT. AN EDITOR PROGRAM GENERALLY HAS A VARIETY OF
COMMANDS AVAILABLE TO THE OPERATOR TO ALLOW THE INFORMATION IN THE TEXT
BUFFER TO BE MANIPULATED. FOR INSTANCE, LINES OF INFORMATION STORED IN
THE TEXT BUFFER MAY BE ADDED, DELETED, MOVED ABOUT OR INSERTED BEFORE
OTHER LINES, AND SO FORTH. NATURALLY, THE INFORMATION IN THE BUFFER CAN
BE DISPLAYED TO THE OPERATOR ON AN OUTPUT DEVICE SUCH AS A CATHODE RAY
TUBE OR ELECTRIC TYPING MACHINE. USING THIS TYPE OF PROGRAM, A PROGRAM~
MER CAN RAPIDLY CREATE A SOURCE LISTING AND MODIFY IT AS NEGESSARY.

WHEN A PERMANENT COPY 1S DESIREDs THE CONTENTS OF THE “TEXT BUFFER"™ CAN
BE PUNCHED ONTO PAPER TAPE OR WRITTEN ONTO A MAGNETIC TAPE CASSETTE. 1IT
TURNS OUT THAT THE COPY PLACED ON PAPER TAPE OR A CASSETTE CAN OFTEN BE
FURTHER PROCESSED BY ANOTHER PROGRAM TO BE DISCUSSED SHORTLY WHICH IS
TERMED AN ASSEMBLER. HOWEVER, AN IMPORTANT REASON FOR MAKING A COPY OF
THE TEXT BUFFER ON PAPER TAPE OR MAGNETIC CASSETTE TAPE IS BECAUSE IF IT
1S EVER NECESSARY TO MAKE CHANGES TO THE SOURCE LISTING, THEN THE OLD
LISTING CAN BE QUICKLY RELOADED BACK INTO THE COMPUTER, CHANGES RAPIDLY
IMPLEMENTED USING AN EDITOR PROGRAM, AND A NEW "CLEAN' LISTING OBTAINED
IN A FRACTION OF THE TIME REQUIRED TO ERASE AND RE-¥RITE A LARGE NUMBER
OF LINES USING PENCIL AND PAPER!

RELATIVELY SMALL PROGRAMS CAN BE DEVELOPED USING MANUAL METHODS -
THAT 1S BY WRITING THE SOURCE LISTINGS WITH PENCIL AND PAPFR -~ RBUT ANY-
ONE THAT 1S PLANNING ON DOING EXTENSIVE PROGRAM DEVELOPMENT WORK SHOULD
OBTAIN AN EDITOR PROGRAM IN ORDER TO SUBSTANTUALLY INCREASE THEIR OVER-
ALL PROGRAM DEVELOPMENT EFFICIENCY. BESIDES, AN EDITOR PROGRAM CAN BE
PUT TO A LOT OF GOOD USED BESIDES MAKING UP SOURCE LISTINGS! SUCH AS
-ENABLING ONE TO EDIT CORRESPONDENCE OR PREPARE WRITTEN DOCUMENTS THAT
ARE NICE AND NEAT IN LESS THAN HALF THE TIME REQUIRED BY CONVENTIONAL
METHODS.

CHANGES IN SOURCE LISTINGS NATURALLY RESULT IN CHANGES TO THE MACH~
INE CODES (WHICH THE MNEMONICS SIMPLY "SYMBOLIZE"). EVEN MORE IMPORT-
ANTLY, THE ADDRESSES ASSOCIATED WITH INSTRUCTIONS OFTEN MUST BE CHANGED
DUE TO ADDITIONS OR DELETIONS OF WORDS" OF MACHINE CODE. FOR INSTANCE,
IN THE EXAMPLE ROUTINE BEING USED IN THIS SECTION, MEMORY ADDRESS PAGE
@1 LOCATION 211 ORIGINALLY CONTAINED THE CODE FOR A “RET" (RETURN) IN-
STRUCTION WHICGH IS @@87. WHEN THE SUBROUTINE WAS CHANGED BY ADDING SEV-
ERAL MORE INSTRUCTIONS (SO THE ANSWER WOULD BE STORED IN A MFMORY LOCA-
TION) THE "RET" INSTRUCTION WAS SHIFTED DOWN TO THE ADDRESS PAGE 9!
LOCATION @14. THE ADDRESS WHERE IT FORMERLY RESIDED WAS CHANGED TO HOLD
ME CODE FOR THE FIRST PART OF THE “LLI 16@' INSTRUCTION WHICH IS @&é6.
HAD CHANGES BEEN MADE EARLIER IN THE ROUTINE, THEN MANY MORE MFMORY
LOCATIONS WOULD NEED TO BE ASSIGNED DIFFERENT MACHINE CODES. HOWEVER,
THE CHANGES CAUSED BY ADDING ON TO THE SAMPLE PROGRAM PREVIOUSLY DISCUS-
SED ARE NOT QUITE AS FAR REACHING AS THOSE THAT WOULD OCCUR IF CHANGES
WERE MADE TO A PROGRAM SUCH AS THE ONE PRESENTED ON THE FOLLOWING PAGE,
WERE THE CHANGES RESULT IN THE ADDRESSES OF SUBROUTINES REFERRED TO BY
OTHER ROUTINES BEING CHANGED - SO THAT IT IS THEN NECESSARY TO GO BACK

2 - 11

AND MODIFY THE MACHINE CODES IN ALL OF THE ROUTINES THAT REFER TO THE
SUBROUTINE THAT 1S CHANGED!

MEMORY
PAGE LOC CONTENTS LABELS/MNEMONICS COMMENTS

a9 a00 a26 OVER, LCl 180 /LOAD REG 'C*' WITH (06

80 201 100 \

80 202 106 CAL NEWONE /CALL A NFW SUBROUTINE

Y] 203 213 1 '

80 P04 e

(T 205 196 CAL LOAD /AND THEN ANOTHER

20 @006 323

1) A7 - A48

aa 218 164 JMP OVER /JUMP BACK & REPEAT SEQUENCE
T 211 200

20 212 a0e

1) 813 856 NEWONE, LHI @0é /LOAD REG 'H' WITH @°'S

00 914 200

a0 é1s XY LL1I 200 Z/AND ‘L' WITH 200

00 dle 200 ‘

20 017 317 LBM /FETCH MEMORY CONTENTS TO °'B°
89 220 g1 INB /INCREMENT THE VALUE IN °'R°
22 921 371 LMB /PLACE °'B' BACK INTO MEMORY
T, 922 007 ~ RET /EX1IT SUBROUTINE

1 823 256 LOAD, LHI @63 /SET 'H' TO 883 (PAGE)

Y 824 203

T 225 36! LLB /PLACE REG °*B*' INTO °'L°

29 826 370 LMA /PLACE ACC INTO MEMORY

Y] 027 a21 ‘ ' pce /DECREMENT VALUE IN REG °'C°
T 2304 213 RFZ /JRETURN IF *'C* NOT = Aad

a9 a3l 200 HLT /STOP IF 'C*' = @40#&

SUPPOSE IT WAS DECIDED TO INSERT A SINGLE WORD INSTRUCTION RIGHT

AFTER THE "“LCI 1@0' COMMAND IN THE ABOVE PROGRAM. THF NEV PROGRAM WOULD
APPEAR AS SHOWN BELOWV.

MEMORY

PAGE LOC CONTFNTS LABELS/MNEMONICS COMMENTS

a0 2na 226 OVER, LCl 109 /LOAD REG °‘C* WITH 104

20 231 190

T’ 202 250 XRA /CLEAR THE ACCUMULATOR

*30 203 196 CAL NEWONE /CALL A NEW SUBROUTINE

30 A04 =xxpl4

*A9 905 200

*00 886 196 CAL LOAD /AND THEN ANOTHER

=20 807 **x024 :

*00 210 ane

*@3 211 104 JMP OVER /JUMP BACK & RFPFEAT SFQUENCE
*@39 BE-] 200

*A @ 613 200

=20 Ala 256 NEWONE, LHI 0d@ " /JLOAD REG 'H' WITH 6°'S

*AQ a1s 0A6 ,

*@0 g16 B 66 LLI 200 /AND ‘L' WITH 200

*30 ° 617 200 :

=08 220 317 LBM /FETCH MEMORY CONTENTS TO 'R’
*3@ a2t a1 INB /INCREMENT THF VALUE IN 'B°

3-12

*3 2 a22 371 LMB /PLACE *B' BACK INTO MEMORY

*@3 0 823 087 ' RET /ZEXIT SUBROUTINE

*A9 nea 856 LOAD, LH! 03 /SET 'H' TO 403 (PAGE)

*9Q 225 P83

*30 826 361 LLB /PLACE REG 'B' INTO ‘L'

*@A A ve17 376 LMA /PLACE ACC INTO MEMORY

*@ @ 030 a2l bCcC /DFECRFEMENT VALUF IN REG 'C°®
*J@ ¥31 P13 RFZ /RETURN IF 'C' NOT = @80@
*@a a3z /20 HLT /STOP IF 'C' = 40600

NOTE IN THFE ILLUSTRATION HOW NOT ONLY THE ADDRESSES OF ALL THF IN-
STRUCTIONS BEYOND LOCATION 062 (DENOTED BY THE *) CHANGE, BUT EVFN MORE
IMPORTANT, THAT PARTS OF THE INSTRUCTIONS THEMSELVES (THE ADDRESS POR-
TION OF THE “CAL" INSTRUCTIONS - DENOTED BY THE *x) MUST NOW BE ALTERFD.
THE ESSENTIAL POINT BEING MADE HERE 1S THAT IF THE STARTING ADDRESS OF
A ROUTINE OR SUBROUTINE THAT IS REFERRED TO BY ANY OTHER PART OF THF
PROGRAM 1S CHANGED, THEN EACH AND EVERY REFFRENCE TO THAT ROUTINE MUST
BE LOCATED AND THE ADDRESS PORTION CORRECTED! THIS CAN BE AN EXTREMELY
FORMIDABLE, TIME CONSUMING, TEDIOUS, AND DOWN RIGHT FRUSTRATING TASK IF
ALL THE REFERENCES MUST BE FOUND AND CORRECTED BY MANUAL MEANS IN A
LARGE PROGRAM!

FORTUNATELY, THIS TYPE OF PROBLEM BECAME VIVIDLY APPARFNT TO FARLY
COMPUTER TECHNOLOGIST AND THEY SOON FOUND A METHOD TO EASF THE TASK OF
MAKING SUCH CORRECTIONS BY DEVELOPING A TYPE OF PROGRAM CALLED AN
“ASSEMBLER" THAT WOULD UTILIZE THE COMPUTER TO DO SUCH TASKS. *"ASSEM=-
BLER'" PROGRAMS ARE TYPES OF PROGRAMS THAT ARE ABLFE TO PROCFSS "SOURCE
LISTINGS'" WRITTEN IN MNEMONIC (SYMBOLIC) FORM AND THEN TRANSLATE THEM
INTO THE “OBJECT" (ACTUAL MACHINE LANGUAGE) CODE THAT 1S UTILIZED DIR-
ECTLY BY THE COMPUTER. AN ASSEMBLER ALSO KEFPS TRACK OF ASSIGNING THE
PROPER ADDRESSES TO REFERENCES TO ROUTINFS (THROUGH A PROCESS INITIAT-
ED BY ASSIGNING "LABELS" TO ROUTINFES IN THE SOURCE LISTING). ONE CAN
NOW SEE THAT THE COMBINATION OF AN EDITOR AND AN ASSEMBLER PROGRAM CAN
GREATLY EASE THE TASK OF DEVELOPING MACHINE LANGUAGE PROGRAMS OVER THAT
OF THE PURELY MANUAL METHOD WHICH BECOMES UNWIELDY AND NEXT TO IMPOS-
SIBLE WHEN THE PROGRAM SIZE BECOMES LARGE. ONF REASON THE COMBRINATION
IS SO VALUABLE IS BECAUSE IF A MISTAKE IN PROGRAMMING IS MADE, ONE CAN
USE THE RELATIVELY QUICK METHOD .OF UTILIZING AN EDITOR PROGRAM TO REVISE
THE SOURCE LISTING, AND THEN USE THE ASSEMBLER PROGRAM TO PROCESS THE
CORRECTED SYMBOLIC LISTING AND PRODUCE A NEW VERSION OF THE MACHINE CODFE
ASSIGNED TO THE APPROPRIATE ADDRESSES.

FOR QUITE SMALL PROGRAMS ~ SAY LESS THAN 1#4 INSTRUCTIONS, THE USE
OF EDITOR AND ASSEMBLER PROGRAMS ARE NOT MANDATORY. IN FACT, EVEN IF
ONE USES THESE AIDS FOR SMALL PROGRAMS, ONE SHOULD KNOW HOW TO CONVERT
MNEMONIC LISTINGS TO OBJECT (MACHINE CODE) AS IT WILL OCCASIONALLY BF
BENEFICIAL TO BE ABLE TO MAKE MINOR PROGRAM CHANGES ("PATCHES®) WITHOUT
HAVING TO GO THROUGH THE PROCESS OF USING AN EDITOR AND ASSEMBLER. THIS
IS PARTICULARLY TRUE WHEN ONE IS "“DFBUGGING'" LARGE PROGRAMS AND VANTS
TO ASCERTAIN WHETHER A MINOR CORRECTION WILL OPFRATE AS PLANNED. THE
PROCESS OF CONVERTING FROM A MNEMONIC LISTING TO ACTUAL MACHINE CODE IS
NOT DIFFICULT IN CONCEPT. MANY READERS VWILL HAVE DISCERNED THE PROCFSS
FROM THE EXAMPLES ALREADY PROVIDED. HOWEVFR, FOR ANY WHO ARE IN DOUBT
THE PROCESS WILL BE REVIEWED FOR THE SAKE OF CLARITY AT THIS TIME.

SUPPOSE A PERSON DESIRED TO PRODUCE A SMALL PROGRAM THAT WOULD SET
THE CONTENTS OF ALL THE WORDS IN PAGE 81 OF MFMORY TO #4#4 (OCTAL)>. THE
PROGRAMMER WOULD FIRST DEVELOP THE ALGORITHM AND WRITE IT DOWN AS A MNE-
MONIC (SOURCE) LISTING. SUCH AN ALGORITHM MIGHT BE AS FOLLOWS.

3~-13

MNEMONIC COMMENTS

LHI 001 "/SET THF HIGH ADDRESS RFEGISTER TO PAGE 1
LL1 @2e0 /SET THE LOW ADDRESS REGISTER TO THE FIRST
/LOCATION ON THE PAGE ASSIGNED BY REG. 'H"
AGAIN, LMI 000 /LOAD THE CONTFNTS OF THFE MEMORY LOCATION
: /SPECIFIED BY REGISTERS "H'" & “L" TO 200
INL /ADVANCE REGISTER "L TO THE NEXT MEMORY
/LOCATION (BUT DO NOT CHANGE THE PAGE)
JFZ AGAIN . /1F THE VALUE OF REGISTER "L" 1S NOT 409

/AFTER IT HAS BEEN INCREMENTED THEN JUMP
/BACK TO THE PART OF THE PROGRAM DENOTED RY
/THE LABEL *AGAIN'" AND REPEAT THE PROCESS

HLT /1F THE VALUE OF REGISTER "L" IS TRULY 400
/THEN HAVE THE PROGRAM STOP

TO CONVERT THE SOURCE LISTING TO MACHINE (OBJECT) CODE THE PROGRAM-
MER MUST FIRST DECIDE WHERE THE PROGRAM IS TO RESIDE IN MEMORY. IN THIS
PARTICULAR CASE IT WOULD CERTAINLY NOT BF WISE TO PLACE THE PROGRAM ANY=-
‘HERE ON PAGE #1 AS THE PROGRAM WOULD SOON "SELF DESTRUCT!'" HOWEVER,
THE PROGRAM COULD SAFELY BE PLACED ANYWHERE ELSE AND FOR THE SAKE OF THE
DEMONSTRATION LET US ASSUME THAT IT IS TO RESIDE ON PAGE 82 STARTING AT
LOCATION 196. TO CONVERT THE SOURCE LISTING TO MACHINE CODE THE PRO-
GRAMMER WOULD SIMPLY MAKE A LIST OF THE ADDRESSES TO BE OCCUPIED BY THFE
PROGRAM AND THEN SIMPLY LOOK UP THE MACHINE CODE CORRESPONDING TO THE
MNEMONIC FOR EACH INSTRUGTION AND PLACE THIS NUMBER NEXT TO THE ADDRESS
IN WHICH IT WILL RESIDE. THE MACHINE CODE FOR FACH MNEMONIC USED BY THE
8868 CPU 1S PROVIDED IN THE FIRST CHAPTER AS THE READER WILL RECALL.
SINCE SOME INSTRUCTIONS ARE "LOCATION DEPENDENT" IN THAT THFY REQUIRE
THE ADDRESS OF REFERENCED ROUTINES, IT IS OFTEN NECESSARY TO ASSIGN THF
MACHINE CODE IN TWO0 PROCESSES. THE FIRST PROCESS CONSIST OF ASSIGNING
THE MACHINE CODES TO SPECIFIC MEMORY ADDRESSES WHERE-EVFR POSSIBLE.
WHEN THE MACHINE CODE REQUIRES AN ADDRESS THAT HAS NOT YET BEEN DETER-
MINED, THE MEMORY LOCATION 1S LEFT BLANK. THE SECOND PROCESS CONSIST OF
GOING BACK AND FILLING IN ANY BLANKS ONCE THF ADDRESSES OF REFERENCED
ROUTINES HAVE BEEN DETERMINED. IN THE EXAMPLE BEING ILLUSTRATED, ONLY
ONE PROCESS IS REQUIRED BECAUSE THE ADDRESS SPECIFIFED BY THE LABEL
“"AGAIN" IS DEFINED BEFORE THE LABEL (ADDRESS) IS REFERENCED BY THE “JFZ"
INSTRUCTION. THE SAMPLE PROGRAM CONVFRTED TO MACHINE LANGUAGE WOULD
APPEAR AS FOLLOWS.

ORIGINAL - MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS
LH1 001 az2 100 256 /MACHINE CODFE FOR "LHI"™
g2 101 a081 /"IMMEDIATE" PART OF *'LHI"
LLI @29 a2 1082 P66 /MACHINE CODE FOR '"LLI"™
82 163 200 /" IMMEDIATE"™ PART OF *LLI"
AGAIN, LM1 00a 2 104 76 /MACHINE CODE FOR *“LMI*"
' /NOTE THAT THE LABEL "AGAIN"
/NOW DEFINES AN ADDRESS OF
/LOCATION 184 ON PAGE @2
82 105 31 /"IMMEDIATE' PART OF 'LMI"
INL . a2 106 P60 /INCREMENT LOW ADDRESS
JFZ AGAIN 02 107 110 /MACHINE CODE FOR '"JFZ"
62 119 184 /LOW ADDRESS PORTION OF THE

/CONDITIONAL JUMP INSTRUCTION
/DEFINED BY LABEL "AGAIN"

3 - 14

g2 111 a2 /PAGE ADDRESS PORTION OF THE
/CONDITIONAL JUMP INSTRUCTION
/DEFINED BY LABEL "AGAIN"
HLT - B2 112 377 /ALTERNATELY, THE CODE @88 OR
/7331 COULD HAVE BFEN USED HERE
/FOR THE ' STOP'" INSTRUCTION

ONCE THE PROGRAM HAS BEEN PUT IN MACHINE LANGUAGE FORM THE ACTUAL
MACHINE CODE MAY BE PLAGED IN THE ASSIGNED LOCATIONS IN MEMORY AND THE
PROGRAMMER MAY PROCEED TO VERIFY THE ALGORITHM'S VALIDITY. FOR SMALL
PROGRAMS SUCH AS THE EXAMPLE JUST ILLUSTRATED THE MACHINE CODE CAN SIM-
PLY BE LOADED INTO THE CORRECT MEMORY LOCATIONS USING MANUAL METHODS
TYPICALLY PROVIDED ON 8998 SYSTEMS. SUCH SMALL PROGRAMS CAN THEN BE
EASILY CHECKED OUT BY "STEPPING"” THROUGH THE PROGRAM.

IF THE PROGRAM IS RELATIVELY LARGE THEN A SPECIAL LOADER PROGRAM
WHICH IS TYPICALLY AVAILABLE WITH AN ASSEMBLFR PROGRAM WOULD BE USFD TO
LOAD IN THE MACHINE CODE.

CHECKING OUT AND "DEBUGGING" LARGE PROGRAMS CAN SOMETIMES BE DIFFI-
CULT IF A FEW SIMPLE RULES ARE NOT FOLLOWED. A GOOD RULE OF THUMB IS
TO FIRST TEST OUT EACH SUBROUTINE INDEPENDENTLY. ONE CAN CHOOSE TO
“STEP'" THROUGH A SUBROUTINE, OR ELSE TO PLACE “HALT" INSTRUCTIONS AT
THE END OF EACH SUBROUTINE AND VERIFY THAT DATA WAS MANIPULATED PROPER-~
LY BY THAT SUBROUTINE BEFORE GOING ON TO THE NEXT SFECTION. THE USF OF
STRATEGICALLY LOCATED "HALT' INSTRUCTIONS IN A PROGRAM INITALLY BRFING
TRIED OUT IS AN IMPORTANT METHOD FOR THE USER TO REMEMBER. WHEN A HALT
IS ENCOUNTERED THE USER CAN CHECK THE CONTENTS OF MEMORY LOCATIONS AND
EXAMINE THE CONTENTS OF CPU REGISTERS TO DETERMINE 1F THEY CONTAIN THE
PROPER VALUES AT THAT POINT IN THE PROGRAM (USING THE MANUAL OPERATOR
CONTROLS AND INDICATOR LAMPS TYPICALLY PROVIDED ON 8808 DEVELOPMENT OR
GENERAL PURPOSE SYSTEMS). 1IF ALL 1S WELL AT THE HALT CHECK POINT THEN
THE PROGRAMMER CAN REPLACE THE HALT INSTRUCTION WITH THE ACTUAL INSTRUC~-
TION FOR THAT POINT AND CONTINUE CHECKING THF NPERATION OF THE PROGRAM
AFTER MAKING CERTAIN THAT ANY REGISTFRS THAT WERE ALTERED BY THE EXAMI-
NATION PROCEDURE (TYPICALLY 'H* AND L") HAVE BEEN RESET TO THE DESIRED
VALUE IF THEY WILL EFFECT OPERATION OF THE PROGRAM AS 1T CONTINUES!

IT 1S OFTEN HELPFUL TO USE A UTILITY PROGRAM KNOWN AS A "“MEMORY
DUMP'* PROGRAM TO CHECK THE CONTENTS OF MEMORY LOCATIONS WHEN CREATING
A NEW PROGRAM. THE MEMORY DUMP PROGRAM IS A SMALL UTILITY PROGRAM THAT
WILL ALLOW THE CONTENTS OF AREAS OF MEMORY TO BE DISPLAYED ON AN OUTPUT
DEVICE. NATURALLY, THE MEMORY DUMP PROGRAM MUST BE PLACED IN AN ARFA
OF MEMORY OUTSIDE THAT BEING USED BY THE PROGRAM BEING DEVELOPED. BY
USING THIS TYPE OF PROGRAM THE OPERATOR CAN EASILY VERIFY THE CONTENTS
OF MEMORY LOCATIONS - SAY BEFORE AND AFTER A SPECIFIC OPERATION OCCURRED
TO SEE IF THEIR CONTENTS ARE AS EXPECTED. A MEMORY DUMP PROGRAM IS ALSO
A VALUABLE AID IN DETERMINING THAT A PROGRAM HAS BFEN PROPFRLY LOADED OR

THAT A PORTION OF A PROGRAM 1S STILL PRESENT, PERHAPS AFTER A PROGRAM
UNDER TEST HAS GONE ERRANT!

ONE WILL FIND THAT HAVING FLOW CHARTS AND MEMORY MAPS AT HAND DURING
T™E "DEBUGGING®" PROCESS 1S ALSO VERY HELPFUL AS A REFRESHER ON WHERFE

ROUTINES ARE SUPPOSED TO BE IN MEMORY AND WHAT THF ROUTINES ARE SUPPOSFD
TO BE DOING.

1lF MINOR CORRECTIONS ARE NECESSARY OR DESIRED, THEN ONE CAN OFTEN
MAKE PROGRAM CORRECTIONS - OR “PATCHES*" AS THEY ARE COMMONLY REFERRED TO
BY SOFTWARE PEOPLE, TO SEE IF THE CORRECTIONS BELIEVED NECESSARY WILL
WORK AS PLANNED. AN EASY WAY TO MAKE A "PATCH" TO A PROGRAM IS TO RE-

3~ 18§

PLACE A "CALL'" OR *"JUMP' INSTRUCTION WITH A "CALL'" TO A NEW SUBROUTINE
THAT CONTAINS THE NECESSARY CORRECTIONS (PLUS THE ORIGINAL 'CALL" OR
“JUMP' INSTRUCTION IF NECESSARY)>! 1F A “CALL' OF “JUMP*" INSTRUCTION IS
NOT AVAILABLE IN THE VICINITY OF THE AREA WHERE A CORRECTION MUST BE
MADE THEN ONE CAN. REPLACE THREE WORDS OF INSTRUCTIONS WITH A "CALL"
PATCH PROVIDED THAT ONE IS VERY CAREFUL NOT TO SPLIT UP A MULTI-WORD IN-
STRUCTION, OR, IF THIS CANNOT BE AVOIDED, THAT THE RFMAINING PORTION OF
A SPLIT UP MULTI-WORD INSTRUCTION IS REPLACED WITH A "NO OPFRATION® IN-
STRUCTIONS SUCH AS "LAA.' ONF MUST ALSO MAKE CERTAIN THAT THF INSTRUC-
TIONS DISPLACED BY THE INSERTED "CALL"™ INSTRUCTION ARE PLACED IN THE
“PATCHING'" SUBROUTINE (PROVIDED THAT THEY ARE NOT BEING REMOVED PURPOSE-
LY)! AN EXAMPLE OF SEVERAL PATCHES BFING MADE TO THE SMALL SAMPLE PRO-
GRAM JUST DISCUSSED WILL BE ILLUSTRATED BELOW.

SUPPOSE, IN THE EXAMPLE JUST DISCUSSED, THAT THE OPERATOR DFCIDED
NOT TO CLEAR (SET TO #@#8) ALL THE WORDS IN PAGE @&! OF MEMORY, BUT RATHER
TO ONLY CLEAR THE LOCATIONS @¢® TO 177 ON THE PAGE. THFE PROGRAM COULD
BE MODIFIED BY REPLACING THE "JFZ AGAIN"™ INSTRUCTION STARTING AT LOCA-
TION 187 OF PAGE 92 WITH THE COMMAND "CAL @60 @03 (CALL THE SUBROUTINEF
STARTING AT LOCATION 90@ ON PAGE @3 VHICH WILL BE THE “PATCH"). NOW AT
LOCATION 00@ ON PAGE @3 ONE COULD PUT:

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS
LAl 280 a3 o00a P 6 /PUT VALUE 24¢ INTO
63 001 200 /THE ACCUMULATOR

/NOTE VALUE OF 26@ USED BE-
/CAUSE CONTENTS OF REGISTER
/"L'" ALREADY INCREMENTED!
CPL 83 @é2 276 /COMPARE CONTFNTS OF THF
' /ACCUMULATOR WITH THE CON-
/TENTS OF REGISTER *L"

JFZ AGAIN a3 003 110 /1F ACCUMULATOR AND "L DO
p3 004 104 /NOT MATCH THEN CONTINUE THE
3 @65 ee2 /O0RIGINAL PROGRAM

RET 3 @é6 aa7 /END OF "PATCH" SUBROUTINE

SUPPOSE INSTEAD OF FILLING EVERY WORD ON PAGE &1 WITH 640 THFE PRO-
GRAMMER DECIDED TO FILL EVERY OTHER WORD? A PATCH COULD BE MADE BY RE-
PLACING THE '""LMl @@@'* COMMAND AT LOCATIONS 184 AND 14S, PLUS THE "INL"
COMMAND AT LOCATION 186 OF PAGE @2 AND AGAIN INSERTING A '"CAL 600 @03"
TO A PATCH SUBROUTINE THAT MIGHT APPEAR AS:

MEMORY MEMORY :
MNEMONIC ADDRESS CONTENTS COMMENTS
LMI 0066 63 o028 876 /KFEP THE *“LMI" INSTRUC-
: 23 681 00 /AS PART OF THE PATCH
INL 83 @8e 6o /ORIGINAL *INL"
INL 3 883 aed /PLUS ANOTHER TO SKIP.
/EVERY OTHER WORD

RET .33 064 a7 /EXIT FROM PATCH

FINALLY, TO ILLUSTRATE A PATCH THAT SPLITS A MULTI-WORD COMMAND,

3~ 16

CONSIDER A HYPOTHETICAL CASE WHERE THE PROGRAMMER DECIDED THAT PRIOR TO
DOING THE CLEARING ROUTINE, IT WOULD BE IMPORTANT TO SAVE THE CONTENTS
OF REGISTER "H' BEFORE SETTING IT TO PAGE #l1. IF A THREE WORD 'CALL"
ROUTINE 1S PLACED STARTING AT LOCATION 1648 ON PAGE 62 IN THE ORIGINAL
ROUTINE TO SERVE AS A PATCH, IT CAN BE SEEN THAT THE SECOND HALF OF THE
“LLI #00' INSTRUCTION WOULD CAUSE A PROBLEM WHEN THE PROGRAM RETURNED
FROM THE PATCH. (THE VALUE OF 000 AT LOCATION 103 ON PAGE @2 IN THE FX-
AMPLE WOULD BE INTREPRETED AS A “HLT' COMMAND BY THE COMPUTER WHEN IT
RETURNED FROM THE PATCH SUBROUTINE)! IN ORDER TO AVOID THIS PROBLEM THE
PROGRAMMER GOULD PLACE A "LAA"™ (EFFECTIVELY A 'NO OPERATION"™ COMMAND) AT
LOCATION 183 ON PAGE @2 AFTER PLACING THE 'CAL 008 #63" INSTRUCTION BE-
GINNING AT LOCATION 18@ ON PAGE 82 TO SERVE AS THE PATCH. THE ACTUAL
PATCH SUBROUTINE MIGHT APPEAR AS SHOWN:

MEMORY MEMORY
MNEMONIC ADDRESS CONTENTS COMMENTS
LFH A3 008 345 /SAVE “H'" IN REGISTER "E“
LHI @01 83 @91 256 . /NOW SET REGISTER "“H" TO
3 @e2 201 /POINT TO PAGE @1}
LL1 060 83 @43 266 /AND SET THE LOW ADDRESS
83 @84 200 /POINTER TO LOCATION 060

RET 63 @as 667 /END OF PATCH SUBROUTINE

IN THE BALANCE OF THIS MANUAL NUMEROUS TECHNIQUES FOR DFUVFLOPING
MACHINE LANGUAGE PROGRAMS WILL BE PRESENTED AND DISCUSSED. MANY OF THE
EXAMPLES USED WILL BE PRESENTED AS SUBROUTINES THAT THE READER CAN USE
DIRECTLY WHEN DEVELOPING CUSTOM PROGRAMS. IT IS IMPORTANT FOR THE NEW
PROGRAMMER TO LEARN TO THINK OF PROGRAMS IN TERMS OF ROUTINES OR SUB-
ROUTINES AND THEN LEARN TO COMBINE SUBROUTINES INTO LARGER PROGRAMS.
THIS PRACTICE MAKES IT FASIER FOR THE PROGRAMMER TO INITIALLY DEVELOP
PROGRAMS AS IT IS GENERALLY MUCH EASIFR TO CREATF SMALL ALGORITHMS AND
THEN COMBINE THEM, IN THE FORM OF SUBROUTINES, INTO THE LARGER ROUTINES.
REMEMBER, SUBROUTINES ARE SEQUENCES OF INSTRUCTIONS THAT CAN BE CALLED
BY OTHER PARTS OF THE PROGRAM. THEY ARE TERMINATED BY "RET" OR CONDI-
TIONAL RETURN COMMANDS. 1IT IS ALSO WISE WHEN DEVELOPING PROGRAMS TO
LEAVE SOME ROOM IN MEMORY BETWEEN SUBROUTINES SO THAT PATCHES CAN BE IN-
SERTED OR ROUTINES LENGTHENED WITHOUT HAVING TO RE~ARRANGE THE CONTENTS
OF A LARGE AMOUNT OF MEMORY. FINALLY, WHILE SPEAKING OF SUBROUTINES,
IT WILL BE POINTED OUT THAT THE USER WOULD BE WISE TO KEEP A NOTE BOOK
OF SUBROUTINES THAT THE INDIVIDUAL DFVELOPS IN ORDER TO BUILD UP A REF-
ERENCE "LIBRARY' OF PERTINENT ROUTINES. IT TAKES TIME TO THINK UP AND
CHECK OUT ALGORITHMS =~ AND ITS AWFUL EASY TO FORGET JUST HOW ONE HAD
SOLVED A PARTICULAR PROGRAMMING PROBLFM SIX MONTHS AFTER ONE INITIALLY
ACCOMPLISHED THE GOAL. SAVE YOUR ACCRUED EFORTS - THE MORE ROUTINES
YOU HAVE TO UTILIZE - THE MORE VALUABLE YOUR MACHINE BECOMES, BECAUSE

THE POWFER OF THE MACHINE IS ALL DETERMINED BY WHAT YOU PUT IN ITS MEM-
ORY!

BEFORE GOING ON TO THE NEXT SECTION, THE ESSENTIAL STEPS IN THE
PROCESS OF CREATING A PROGRAM WILL BE PRESENTED AS A. SUMMARY FOR READY
REFERENCE ON THE FOLLOWING PAGE.

3 -17

REVIFW OF THE PROCESS OF CRFATING A MACHINF LANGUAGF PROGRAM

€)'

FIRST, THE PROGRAMMER SHOULD CLFARLY DEFINF AND WRITF DOWN ON
PAPFR EXACTLY WHAT THE PROGRAM IS TO ACCOMPLISH.

NEXT, FLOW CHARTS TO AID IN THE COMPLFX TASK OF WRITING THF
MNEMONIC (SOURCE) LISTINGS ARE PREPARED. THFY SHOULD RE AS
DETAILED AS NECESSARY FOR THE PROGRAMMFR'S LFVFL OF FXPFERIFNCE
AND ABILITY. :

MEMORY MAPS SHOULD BE USED TO DISTRIBUTF AND KEFP TRACK OF
PROGRAM STORAGFE ARFAS AND DATA MANIPULATING REGIONS IN AVAIL-
ABLE MFMORY.

USING THE FLOW CHARTS AND MFMORY MAPS AS GUINES, THF ACTUAL
SOURCE LISTINGS OF THE ALGORITHMS ARE WRITTEN USING THE SYM-
BOLIC REPRESENTATIONS OF THE INSTRUCTIONS. AN FDITOR PRNOGRAM
1S FREQUENTLY USED TO GOOD ADVANTAGE AT THIS TIME.

THE MNEMONIC SOURCE LISTINGS ARF CONVERTED INTO THE ACTUAL
MACHINE LANGUAGE NUMERICAL CODES ASSIGNED TO SPFECIFIC ADDRES-
SES IN MEMORY. AN ASSEMBLER PROGRAM MAKES THIS TASK QUITF
EASY AND SHOULD BE USED FOR ALL RUT THF SMALLEST PROGRAMS.

THE PREPARED MACHINF CODE IS LOADED INTO THE APPROPRIATE
ADDRESSES IN THE COMPUTER'S MEMORY AND OPERATION OF THF PRO-
GRAM IS VERIFIED. OFTFN THE INITIAL CHECK OUT IS DONE USING
THE "“STEP" MODE OF OPERATION, OR BY EXERCISING INDIVIDUAL
SUBROUTINES. THE JUDICIAL USE OF INSFRTFD "HALT' INSTRUC-
TIONS AT KEY LOCATIONS WILL OFTFN BE OF VALUE DURING THF IN-
ITIAL TESTING PHASF.

IF THE PROGRAM 1S NOT PERFORMING AS INTFENDED THFN PROBLEM
AREAS MUST BE ISOLATED. PROGRAM “PATCHES" MAY BE UTILIZFD
TO MAKE MINOR CORRECTIONS. IF SFRIOUS PROBLEMS ARF FOUND
IT MAY BE NECESSARY TO RETURN TO STEP #3, OR EVEN STEP #1.

3 -18

BASIC PROGRAMMING TECHNIQUES

THE FIRST SECTION OF THIS CHAPTER WILL BE DEVOTED TO ILLUSTRATING A
NUMBER OF SIMPLE INSTRUCTIONS AND SFQUENCES OF INSTRUCTIONS THAT MAY BE
"USED TO ACCOMPLISH COMMONLY REQUIRED FUNCTIONS. NOVICE PROGRAMMERS NEED
TO BUILD UP A REPERTOIRE OF SUCH ROUTINES IN THEIR MIND SO THAT THEY CAN
LEARN TO THINK IN TERMS OF THE FUNCTIONS THEY PERFORM AS THEY PREPARF TO
DEVELOP PROGRAMS OF THFIR OWN. ALTERNATIVE WAYS OF PEFRFORMING FUNCTIONS
WILL SOMETIMES BE PRESENTED TO ILLUSTRATE ADVANTAGES AND DISADVANTAGES
OF ONE METHOD OVER ANOTHER. THFRE WILL OFTFN BE MANY OTHER WAYS OF PER-
FORMING THE DESIRED FUNCTION OTHFR THAN THAT PRESENTED AND THF READER
SHOULD FEEL FREE TO THINK OF OTHFR WAYS AND LOOK AT POSSIBLE ADVUVANTAGES
AND NEGATIVE ASPECTS OF SUCH ALTFRNATIVES.

CLEARING THE ACCUMULATOR

IT IS OFTEN DESIRABLE TO SET THE CONTENTS OF THE ACCUMULATOR (ACC
FOR ABREVIATION IN THIS TEXT) TO ZERO BEFORE STARTING AN OPFRATION,
SUCH AS A MATHEMATICAL CALCULATION. ONE OBUVIOUS WAY TO DO THIS IS TO
USE AN "LAl @90*" INSTRUCTION. A LESS OBVIOUS WAY IS TO USE AN "XRA"
(EXCLUSIVE OR THE CONTENTS OF THE ACC WITH ITSELF)! THE *XRA' MFTHOD
ONLY REQUIRES ONE WORD, WHEREAS THE 'LAI 6@0' RBQUIRES Tw0. ALSO, THFE
“XRA" METHOD WILL SET ALL THE CPU "FLAGS" TO KNOWN STATES AS ANY BOOL-
EAN LOGIC INSTRUCTION CAUSES THE "Z," *S,' AND "P" FLAGS TO BE AFFFCTED
AND THE ''C* FLAG TO BE SET TO THE ZFRO STATF. (WHENEVER NECESSARY THF
READER SHOULD REFER TO THE APPROPRIATE SECTION IN CHAPTER ONE OF THIS
8005 PROGRAMMING MANUAL TO REVIEW THE DETAILED FUNCTIONC(S) OF EACH
TYPE OF INSTRUCTION AVAILABLE IN AN 8008 BASED MINI-COMPUTFR). SINCE
THE "XRA* INSTRUCTION WILL SET THE ACC TO ALL 6°'S, THEN THE *Z*' AND "P"
FLAGS WILL BE PLACED IN THE "I1' CONDITION, AND THE "S" FLAG TO THE “eé"
STATE AT THE CONCLUSION OF THE INSTRUCTION'S EXFCUTION. IT IS IMPORT-
ANT TO REMEMBER THE TYPES OF INSTRUCTIONS THAT AFFECT THE OPFRATION OF
THE CPU FLAGS BECAUSE IT IS OFTEN NECESSARY TO USE THE STATUS OF A FLAG
OR FLAGS TQ CONTROL THE OPERATION OF A PROGRAM - OR TO SEE IF A FLAG'S
STATUS HAS CHANGED - AND TO DO THIS, ONE MUST AT SOMF TIME “KNOW"™ WHAT
THE CONDITION OF A FLAG WAS - AND THAT 1S OFTEN ACHIFVED BY USING AN
INSTRUCTION SUCH AS THE *“XRA'" THAT VWILL *“FORCE" THEM TO DESIRED STATES.
ON THE OTHER HAND, WHILE THE "LAl @40* METHOD OF CLEARING THE ACC RF-
QUIRES TW0 MEMORY WORDS, THE EXECUTION OF AN "LAI A@9*" INSTRUCTION
DOES NOT AFFECT THE STATUS OF THE CPU FLAGS, AND THIS FACT SHOULD BFE RF=-
MEMBERED BECAUSE THERE MAY BE TIMES WHEN IT IS DESIRABLF TO SET THFE ACC
TO THE @'S CONDITION WITHOUT ALTERING THE CPU FLAGS!

SETTING THF ACCUMULATOR TO ALL 1°'S

THIS FUNCTION CAN BE ACCOMPLISHED WITH SEVERAL TYPES OF INSTRUCTIONS
SUCH AS THE 'LAI 377" OR ORl 377.* WHILF BOTH THESE INSTRUCTIONS RE-
QUIRE TWO WORDS OF MEMORY, IT SHOULD BE NOTED AGAIN THAT THE LAl 377"
TYPE WILL NOT AFFECT THE STATUS OF THE CPU FLAGS, WHILE THF ‘ORI 377"
ONE WILL RESULT IN THE "C' AND “Z*" FLAGS BEING SET TO THE "@" STATE AND
THE "S*" AND "P'" FLAGS SET TO THE *1*" CONDITION. IF A PARTICULAR PRO-
GRAM RFEQUIRES THE ACCUMULATOR TO BF SET TO THE ALL 1°'S STATE FREQUEN-
TLY THEN IT MAY BE WORTHWHILE TO SET UP A CPU REGISTER TO CONTAIN 377
AND THEN USE A ONE WORD INSTRUCTION SUCH AS "LAX"™ (X = A CPY REGISTFR)
OR AN °**ORX' DEPENDING ON WHETHER OR NOT ONE WANTS TO SAVE THE STATUS OF
THE CPU FLAGS.

COMPLEMENTING THE ACCUMULATOR

"OFTEN IT 1S DESIRABLE TO “COMPLEMENT" THE VALUE IN THE ACCUMULATOR..
THAT IS TO CHANGE ALL THE BITS SET TO A 1" TO BE "@" AND VICE-VERSA.
THIS CAN BE READILY ACCOMPLISHED BY USING AN *“XRI 377" INSTRUCTION.

" AGAIN, IF THE FUNCTION MUST BE PERFORMED OFTEN IN A ROUTINE IT MAY BE
WORTHWHILE TO KEEP THE VALUE 377 IN A CPU REGISTER AND USE A "XRX" IN-
STRUCTION TO PERFORM THE OPERATION AND REDUCE THE COMMAND TO A ONE WORD
INSTRUCTION. THE COMPLEMENT FUNCTION 1S OFTEN UTILIZED WHEN PERFORMING
MATHEMATICAL OPERATIONS USING "“SIGNED NUMBERS®" (AS EXPLAINED IN THE PRF-~
VIOUS CHAPTER) IN ORDER TO OBTAIN THE "TW0'S COMPLEMENT'" FORM OF A NUM-
BER. THE "“TWO'S COMPLEMENT" OF A NUMBER IS OBTAINED BY FIRST COMPLE~-
MENTING THE VALUF AND THEN ADDING ONE TO THE COMPLEMENTED VALUE. THUS
THIS FUNCTION COULD BE OBTAINED BY PERFORMING TWO KINDS OF INSTRUCTIONS
IN SEQUENCE - FIRST AN "XRI 377" AND THEN AN "ADI @@1'" COMMAND.

FORMING BIT "MASKS"

WHEN UTILIZING A COMPUTER IT IS FREQUENTLY DESIRABLE NOT TO USE ALL
THE BIT POSITIONS WITHIN A WORD - OR TO ISOLATE AND DETERMINE THF STATUS
OF A PARTICULAR BIT WITHIN A REGISTER. THIS TECHNIQUE FOR EXAMPLE, CAN
BE USED TO QUICKLY DETERMINE WHETHER A NUMBER IN A REGISTER IS ODD OR
EVEN (BY EXAMINING JUST THE LEAST SIGNIFICANT BIT), OR WHETHFR A NUMBER
HAS REACHED A CERTAIN SIZE (BY SAMPLING THE MOST SIGNIFICANT BIT OF IN-
TEREST)» OR WHETHER PERHAPS, SOME PARTICULAR EXTERNAL EVENT HAS OCCURED
(BY CHECKING A SPECIFIC BIT ON AN INPUT PORT).

THE PROCESS OF RIDDING A REGISTER OF UNWANTED DATA IN SELECTED BIT
POSITIONS IS COMMONLY REFERRED TO BY COMPUTER TECHNOLOGISTS AS *MASK-
ING." MASKING CAN BE ACCOMPLISHED IN SEVERAL WAYS DEPENDING ON WHAT THE
PROGRAMMER DESIRES. SUPPOSE, FOR INSTANCE, THAT ONF DESIRED TO DETER-
MINE WHETHER A NUMBER IN THE ACCUMULATOR WAS ODD OR EVEN. ONE wWAY TO DO
THIS WOULD BE TO SIMPLY EXECUTE AN "NDI @01'" INSTRUCTION AND THEN TEST
TO SEE IF THE ACCUMULATOR WAS ZERO (USING A “JTZ" OR "JFZ* COMMAND).
SUPPOSE THE ORIGINAL NUMBER IN THE ACCUMULATOR HAD BEEN 251 (REMEMBER
THAT THIS TEXT IS USING OCTAL NUMBERS UNLESS OTHERWISE STATED!) THE RE-
SULTS OF PERFORMING THE LOGIC AND OPERATION BETWEEN THE ACCUMULATOR CON-
TAINING 251 AND THE NUMBER 0@! 1S ILLUSTRATED BELOV.

ACCUMULATOR = 1 @8 1 61 @881 = OCTAL 251
AND IMMEDIATE WiTH 601 = @6 & ©6 6 @6 @ 8 1 = OCTAL @01
RESULT LEFT IN ACC = @0 0 @606 @ @1 = O0CTAL @8]l

IT CAN BE OBSERVEDP THAT ALL THE BIT POSITIONS '"ANDED' WITH A & WILL
GO TO THE @ CONDITION REGARDLESS OF WHETHER THEY ARE A "1' OR A "@."
THUS», THE SEVEN MOST SIGNIFICANT BIT POSITIONS IN THE EXAMPLE HAVE BEFEN
EFFECTIVELY ELIMINATED. HOWEVER, A BIT POSITION "ANDED* AGAINST A *"i*
WILL BE A *"1*" IF, AND ONLY IF, THE POSITION UNDER TEST CONTAINS A 'l.™
IN THE ABOVE CASE, A 1" WAS PRESENT IN THE *"TEST" POSITION AND THUS
THE RESULT WAS A "l.” A "“JTZ' INSTRUCTION WOULD QUICKLY DIRECT THE PRO~-
GRAM TO PROCEED ON THE BASIS THAT THE ORIGINAL NUMBER IN THE ACC HAD
BEEN AN ODD NUMBER.~

NOTE THAT THE ABOVE PARTICULAR MASKING METHOD WAS DESTRUCTIVE TO THE
ORIGINAL VALUE IN THE ACCUMULATOR. HAD IT BEEN IMPORTANT, THE ORIGINAL
NYUMBER COULD HAVE BEEN SAVED IN A CPU REGISTER OR A MEMORY LOCATION.

4 -2

A SLIGHTLY DIFFERENT APPROACH COULD HAVE BEEN TAKEN. THE NUMBER TO BFE
“MASKED" COULD BE PLACED IN A MEMORY LOCATIONs OR A CPU REGISTER. THEN
THE ACCUMULATOR COULD BE FILLED WITH THE APPROPRIATE "MASK."™ FINALLY, .
A SIMPLE ONE WORD “NDM" OR "NDX'" INSTRUCTION COULD BE UTILIZED. THF RE-~
SULT OF THE MASKING QPERATION WOULD BE LEFT IN THE ACCUMULATOR AFTER THE
" EXECUTION OF THE INSTRUCTION AND THE ORIGINAL NUMBER WOULD BE AVAILARLF
FOR FURTHER MANIPULATION. THIS DIFFERENT APPROACH 1S POINTED OUT AS AN
EXAMPLE OF HOW A PROGRAMMER SHOULD LOOK FOR THE BEST METHOD TO APPROACH
A PARTICULAR PROBLEM. THE COMPUTER, VWITH ITS VARIETY OF INSTRUCTIONS,
PROVIDES MANY DIFFERENT METHODS TO CHOOSE FROM FOR SUCH PROBLEMS.

MASKING IS MOST EFFECTIVE WHEN THERE ARE SEVERAL BITS IN A REGISTER
TO BE 1SOLATED, OR WHEN A BIT OF INTEREST IS IN THFE MIDDLE OF A WORD, OR
WHEN IT MAY NOT BE EXPEDIENT TO BRING A PIECE OF DATA INTO THE ACCUMU-
LATOR. FOR, 1F ONE DESIRES TO EXAMINE THE STATUS OF A BIT IN THE ACC
THAT 1S AT EITHER END OF THE REGISTER, ONE CAN DO THIS BY USING A ROTATE
INSTRUCTION SUCH AS 'RAL'" OR "RAR" TO PUT THE BIT OF INTEREST INTO THE
"CARRY'" POSITION OF THE ACC (REPRESENTEP BY THE CARRY FLAG) AND THEN USE
A "JTC*" OR "JFC' INSTRUCTION TO DETERMINE THE STATUS OF THE BIT. NATU-
RALLY» 1F THE PROGRAMMER WANTED TO RETAIN THE ORIGINAL SFTTING OF THE
ACCUMULATOR AFTER THE TEST THE PROGRAM WOULD HAVE T0 EXFCUTE THE REVFERSE
ROTATE INSTRUCTION (TO THE ONE ORIGINALLY USED) TO BRING THF ACC BACK TO
ITS ORIGINAL PATTERN.

SETTING UP POINTERS AND COUNTERS
4

IN MANY APPLICATIONS IT IS DESIRABLE TO PERFORM A PARTICULAR SEQ-
UENCE OF OPERATIONS A PRECISE NUMBER OF TIMES. THE NUMBFR OF TIMES AN
OPERATION 1S PERFORMED CAN BE CONTROLLED IN A ROUTINE BY FORMING A *"PRO-
GRAM LOOP.'" A PROGRAM LOOP IS ESTABLISHED BY SETTING UP A COUNTER SYS-
TEM THAT KEEPS TRACK OF HOW MANY TIMES AN OPERATION IS PERFORMED AND IN-
CLUDING A PROGRAM TEST TO ASCERTAIN WHEN A PARTICULAR VALUE HAS BFEN
REACHED SO THAT THE PROGRAM CONTROL CAN BE "BRANCHED" QUT OF THE “LOOP."

IN AN 8008 SYSTEM CPU REGISTERS MAKE HANDY LOOP COUNTERS AS THEY NOT
ONLY CAN BE DIRECTLY INCRFEMENTED OR DECREMENTED BY ONF WORD COMMANDS,
BUT THEY ALSO DIRECTLY AFFECT THE STATUS OF THE *"Z,'"™ "S,'" AND "P" CPU
FLAGS AFTER EACH INCREMENT OR DECREMENT, MAKING IT AN EASY MATTER TO USE
ANY ONE OF THE CONDITIONAL TYPE INSTRUCTIONS IMMEDIATELY FOLLOWING A CPU
REGISTER INCREMENT OR DECREMENT, TO SEF IF A CRITICAL VALUE HAS BEEN
REACHED!

FOR INSTANCE, SUPPOSE REGISTER *“B*" 1S INITIALLY SET TO THE VALUE @12

(18 DECIMAL) BY A “LBI @12" INSTRUCTION PRIOR TO EXECUTION OF THE FOL-
LOWING "PROGRAM LOOP."

i

MORE, LMA 7LOAD CONTENTS OF ACC INTO MEMORY

INL 7ADUVANCE MEMORY POINTER

DCB /DECREMENT THE LOOP COUNTER

JFZ MORE /1F REG "B" 1S NOT = 8@d, CONTINUE LOOP
DONE, HLT /EX1IT SUBROUTINE WHEN COUNTER = @40

AS CAN BE OBSERVED, THE ABOVE SUBROUTINE WOULD 'LOOP" UPON ITSELF
AND LOAP DATA INTO CONSECUTIVE WORDS IN MEMORY UNTIL THE VALUYE PLACED
IN REGISTER “B" (PRIOR TO STARTING THE SUBROUTINE) REACHED ZERO. IN THE
ABOVE EXAMPLE 'B*" WAS LOADED WITH @012 SO 12 OCTAL (18 DECIMAL) LOCATIONS
IN MEMORY WOULD HAVE BEEN LOADED WITH DATA. (IT CAN BE ASSUMEDP THAT THE

a4 -3

“CALLING" ROUTINE SET UP REGISTERS "H" & "L TO POINT TO THE PROPER MEM-
ORY LOCATIONS ANDP PLACED THE CORRECT DATA INTO THE ACCUMULATOR!)

TO ILLUSTRATE HOW POWERFUL THE SIMPLE CONCEPT OF A PROGRAM LOOP IS,
A SECOND EXAMPLE WILL BE USED TO ILLUSTRATE HOW SUCH A LOOP TECHNIQUE
- CAN BE USED TO PERFORM MULTIPLICATION OF SMALL NUMBERS. (THFRE ARE MUCH
MORE EFFICIENT PROGRAMMING TECHNIQUES AVAILABLE FOR USE WITH LARGE NUM-
BERS.) SINCE MULTIPLICATION IS REALLY JUST REPEATED ADDITION, ONE COULD
MULTIPLY TWO NUMBERS, DESIGNATED "X" AND "Y,' BY PERFORMING THE FOLLOW-
ING OPERATIONS. ASSUME "X* IS THE MULTIPLICAND AND IT HAS BEEN LOADED
INTO CPU REGISTER “C.* THE NUMBER "Y" 1S THE MULTIPLIER AND IT HAS
BEEN PLACED IN REGISTER "B." THF FOLLOWING ROUTINE CONTAINING A PROGRAM
LOOP WILL '"MULTIPLY'" THE TWO NUMBERS.

START», XRA /CLFAR THE ACCUMULATOR
CONTIN, ADC /ADD CONTENTS OF REGISTER "C' TO ACC
DCB /DECREMENT VALUE OF THE MULTIPLIER
JFZ CONTIN /REPEAT ADDITION IF MULT. IS NOT = ZERO
EXIT, RET /EXIT SUBRTN WITH MULT. ANSWER IN ACC

AS READERS KNOVW, THE CPU REGISTERS "H' AND "L* WHILE BEING ABLE TO
SERVE AS ORDINARY CPU REGISTERS, ALSO HAVE THE SPFCIAL FUNCTION OF RBFEING
ABLE TO "POINT" TO ADDRESSFES IN MEMORY WHENEVER *MEMORY REFERENCE"™ IN-
STRUCTIONS ARE USED. THE *"H' REGISTER HOLDS THE HIGH ADDRESS OR "PAGE"
PORTION OF THE POINTER AND THE L' REGISTER HOLDS THE LOW ADDRESS OR
LOCATION ON A PAGE. NATURALLY, WHEN ONF DESIRES TO OPERATE ON DATA AT
A LOCATION IN MEMORY VIA A MEMORY REFERENCE COMMAND, ONF MUST FIRST SET
UP THE "H' AND *“L' REGISTERS TO CONTAIN THE DESIRED ADDRESS. THIS IS
READILY DONE WITH A "LHI XXX'" AND "LLI YYY' COMBINATION OF INSTRUC-
TIONS. HOWEVER, MANY TIMES IT 1S DESIRABLE TO DO A WHOLE SEQUENCE OF
OPERATIONS THAT OPERATE UPON SEQUENTIAL LOCATIONS IN MEMORY. IN THIS
CASE, ONCE THE INITIAL STARTING ADDRESS HAS REEN LOADED INT0 THE MEMORY
POINTER REGISTERS, ALL THAT 1S NEFDED IS A SUBROUTINE THAT CAN BE REFER-
ED TO, THAT WILL INCREMENT THE ADDRESS HELD IN THE TW0 REGISTERS. A
SIMPLE SUBROUTINE TO ACCOMPLISH THAT OBJECTIVE IS PRESFNTED HERE.

ADV, INL /INCREASE VALUE OF REGISTER '"L* BY {
RFZ /EXIT SUBRTN IF NOT GOING TO NEW PAGE
INH /INCREMENT *"H" BY | IF ON NEW PAGE
RET , /EX1T SUBRTN

THE ABOVE SUBROUTINE TAKES CARE OF THE CASE WHFRE THE ADDRESS CROSS~-
ES “PAGE" BOUNDARIES. FACH TIME REGISTER "L'" 1S ADUVANCED, THE "RFZ" IN-
STRUCTION 1S USED TO TEST WHETHER OR NOT REGISTER "L' WENT TO #88. THIS
WULD OCCUR IF THE LAST VALUFE IN THE REGISTER HAD BEEN 377, WHICH IS THE
LARGEST OCTAL ADDRESS THAT CAN BE REPRESENTED IN AN 8 BIT REGISTER, AND
CONSEQUENTLY THE HIGHEST ADDRESS THAT CAN BE ASSIGNED ON A "PAGE"™ OF
MEMORY. 1F THE "RFZ" INSTRUCTION 1S EXECUTED (BECAUSE THE CONTENTS OF
“L*" DID NOT GO TO #68)> THEN THE ROUTINE 1S IMMEDIATELY FXITED. HOWFVER,
IF THE "RFZ'" COMMAND 1S NOT FOLLOWED, THEN THE SUBROUTINE CONTINUES TO
ADVANCE THE CONTENTS OF REGISTER *H" TO UPDATE THE POINTER TO A NEW
PAGE. IN SOME CASES, WHERE THE PROGRAMMER IS GOING TO LIMIT ALL THE
MANIPULATIONS OF DATA TO JUST ONE PAGE OF MEMORY, THE ABOVE SUBROUTINE
COULD BE SHORTENED TQ JUST TWO INSTRUCTIONS = "INL"™ FOLLOWED BY A "RET"
COMMAND.

FINE. BUT WHAT ABOUT THE OPPOSITE CASE WHEN A PROGRAMMER MIGHT DE=-

A~ A

SIRE TO PROCESS AREAS OF MEMORY IN DESCENDPING ORDER? WELL, A SIMILAR
SUBROUTINE TO DECREMENT THE MEMORY POINTFR REGISTERS COULD BE USED BUT
NOW THE PROGRAMMER WILL HAVE TO BE CAREFUL WHEN GOING TO A NEW PAGE.

IN THE PREVIOUS CASE, WHEN THE L' REGISTER WAS ADUVANCED BEYOND LOCA-
TION 377 TO @848, IT WAS AN EASY MATTFR TO CHFCK FOR THE #@@ CONDITION
TO SEE IF IT WAS NECESSARY TO ADVANCE THE "H" REGISTER TOO. NOW, HOW-
EVER, WHEN THE "L" REGISTER GOES FROM @66 TO 377 IT WILL BE NECESSARY
TO DECREMENT THE "H"™ REGISTER TO THE NEXT LOWER PAGE. TESTING FOR THIS
CONDITION IS NOT QUITE AS FASY. REMFMBER, THE STATUS OF THE CPU FLAGS
ARE SET BY THE CONDITIONS IN THE REGISTER IMMEDIATELY AFTER THEY HAVE
BEEN INCREMENTED OR DECREMENTED - NOT BEFORE. AND, WHILE ONE CAN USE

A "JTZ'" OR "RFZ" TYPE OF INSTRUCTION TO QUICKLY PETERMINE IF A REGISTER
WENT TO @880, THE CASE WHERE IT DID NOT GO TO @04, DOES NOT MEAN IT IS
NECESSARILY AT 377 - IT COULD BE AT ANY NON-ZERO VALUE. HOWEVER, THE
CASF. CAN BE HANDLED. ONE WAY TO HANDLE THE PROBLEM WOULD BE WITH THE
SUBROUTINE SHOWN BELOW.

DEC, XRA /CLEAR ACC TO 00@
CPL /COMPARE CONTFNTS OF ACC WITH *“L*
JTZ DECH /1F 800 NOW, THEN DECR BOTH "H*" & "L
DCL /OTHERWISE JUST DECREMENT *“L°*
RET /AND EXIT SUBROUTINE

DECH., DCL /FOR THIS CASE DECREMENT “L°*

' DCH /AND RFGISTER "H"

RET /THEN EXIT SUBROUTINE

WHILE THE ABOVE SUBROUTINE WILL ACCOMPLISH THF OBJECTIVE, IT DOES
HAVE SEVERAL MINOR FLAWS THAT THF PROGRAMMER MIGHT WANT TO CONSIDER.
FIRST, IT ALTERS THE CONTENTS OF THE ACCUMULATOR. RFMEMBER, THAT THF
ABOVE SUBROUTINE MIGHT OFTEN BE USED IN A PROGRAM THAT 1S MANIPULATING
DATA BETWEEN THE ACCUMULATOR AND MEMORY. THE ABOVE SUBROUTINE WOULD RE-
QUIRE THAT THE PROGRAMMER MAKE SURE ANY VALUABLE DATA IN THE ACCUMULATOR
IS "SAVED" ELSEWHERE BEFORE THE SUBROUTINE 1S CALLED. THIS IS ONE MORE
“"BURDEN" ON THE PROGRAMMER WHO IS DEVELOPING A LARGF PROGRAM AND MAY
HAVE A LOT OF OTHER DETAILS TO THINK ABOUT. SECONDLY, THE ABOUF ROUTINF
REQUIRES 14 DECIMAL MEMORY STORAGE LOCATIONS. 1IT IS ALWAYS A GOOD PRAC-
TICE TO TRY AND DEVFLOP ROUTINES THAT OPFRATE IN A MINIMUM AMOUNT OF
MEMORY. LETS TAKE A LOOK AT ANOTHFR SUBROUTINE THAT ACCOMPLISHES EXAC-

" TLY THE SAME OBJECTIVE, THAT SAVES 20 PERCENT OF MEMORY SPACE, AND THAT
WILL NOT INTFRFERE WITH THF ORIGINAL CONTENTS OF THE ACCUMULATOR.

DECR, DCL /DECREMENT CONTENTS OF '"L"
INL /NOW CHECK TO SEE IF IT HAD BEFN 440
JFZ NOT@ /1F NOT 083 THEN NOT GOING TO NEW PAGE
DCH /1F @88 THEN DECR "H*" TO NEXT LOWER PAGE
NOT®., bCL /DECREMENT *"L" TO COMPLETE SUBROUTINE
RET /EXIT SUBROUTINE

THE ABOVE SUBROUTINE USED A LITTLE PROGRAMMING CREATIVITY TO COME UP
WITH A METHOD OF ACCOMPLISHING THE DESIRED OBJECTIVE. REGISTER L' WAS
DECREMENTED AND THEN INCREMENTED BACK TO ITS ORIGINAL VALUE. THE PRO-
CESS OF INCREMENTING IT BACK TO ITS ORIGINAL VALUE WOULD CAUSE THE CPU
FLAGS TO BE SET SO THAT A FLAG TESTING INSTRUCTION COULD BE USED TO SEE
IF THE ORIGINAL VALUE WAS @2@0@8. IF THAT WAS THE CASE, DECREMENTING IT
WOULD CAUSE IT TO GO TO 377, AND THUS REGISTER "H' SHOULD BE DECREMENTFED
TO THE NEXT LOWEP PAGE. THAT IS DONE IF NECESSARY, AND THEN REGISTER
"L 1S DECREMENTED TO ITS FINAL VALUE WHETHER OR NOT THE ADDRESS IS GO-

a4 -5

ING TO A NEW PAGE!

14

WHILE REGISTERS '"H'" AND "“L*" ARE THE ONLY REGISTERS THAT CAN BE USED
TO POINT TO MEMORY LOCATIONS WHEN USING MEMORY REFERENCE INSTRUCTIONS,
IT IS OFTEN NECESSARY TO USE OTHER CPU RFGISTERS TO TEMPORARILY HOLD
MEMORY ADDRESSES. IT MAY BE DESIRABLE, FOR INSTANCE, TO TRANSFER BLOCKS
OF DATA FROM ONE AREA IN MEMORY TO ANOTHER. THIS MUST BE DONE ONE WORD
AT A TIME. FIRST A WORD MUST BE EXTRACTED FROM MEMORY LOCATION "M' BY
SAY A "LAM™ INSTRUCTION WITH REGISTERS '"H'" AND "L"™ POINTING TO ADDRESS
“M,* AND THEN "H" AND "L" MUST BE ALTERED TO AN ADDRESS, LETS CALL IT
"“N,* WHERE THE DATA IS TO BE DEPOSITED. AN "LMA" INSTRUCTION COULP THEN
BE USED TO PLACE THE DATA IN THE NFW MEMORY LOCATION. OFTEN A STRING OF
DATA WORDS MIGHT BE TRANSFERRED IN SUCH A FASHION. 1IT WOULD BE RATHER
CUMBERSOME 1F ONE HAD TO KEEP USING "LHI MMM AND *“LLI MMM' COMMANDS
FOLLOWED BY *"LHI NNN'* AND "LLI NNN* INSTRUCTIONS IN ORDER TO KEEP ALTER~-
ING THE MEMORY POINTER REGISTERS BETWEEN THE TWO DIFFERENT ARFAS IN MEM-
ORY. HOWEVER, IF "H" AND *“L* WERE INITIALLY SET TO POINT TO MEMORY LOC-
ATION "M,' AND CPU REGISTFRS “D" (SAY FOR THE PAGE ADDRESS) AND “E (FOR
THE ADDRESS ON THE PAGE) WERE SET TO POINT TO MEMORY LOCATION "N,* THEN
A “SWITCHING" PROGRAM TO EXCHANGE THE CONTENTS OF *"H' WITH *D* AND "L*
WITH “E'" COULD BE DEVELOPED TO CONSIDERABLY EASE THE TASK. SUCH A SUB-
ROUTINE MIGHT BE AS FOLLOWS.

SWITCH, LCH /LOAD CONTENTS OF *"H"™ INTO '"C" TEMPORARILY
LHD /NOW LOAD "D*' INTO "“H"
LDC /MOVE ORIGINAL *H' FROM *“C* INTO "D"
LCL /SIMILARLY LOAD "L' INTO "C* TEMPORARILY
LLE /PUT "E" INTO *"L"
LEC /AND STORE ORIGINAL L' IN ™E"
RET 7EXIT SUBROUTINE

NOW, BY SIMPLING CALLING THE SUBROUTINE TO *SWITCH" THE CONTENTS OF
THE REGISTERS, THE PROGRAMMER HAS A MEANS OF CHANGING THE MEMORY POINTER
REGISTERS BETWEEN TWO DIFFERENT AREAS IN MEMORY. TO ILLUSTRATE HOW
QUICKLY A LIBRARY OF SMALL SUBROUTINES STARTS DEVELOPING INTO RFAL POT-
ENTIAL, TWO SUBROUTINES ILLUSTRATED ON THE LAST SEVERAL PAGES VILL BE
USED IN A SMALL PROGRAM TO ACCOMPLISH THE TASK JUST DISCUSSED - THAT OF
MOVING DATA FROM ONE AREA OF MEMORY TO ANOTHER. LETS ASSUME THAT A
PROGRAMMER DESIRED TO MOVE THE DATA IN 184 (OCTAL!) WORDS OF MEMORY
STARTING AT LOCATION #0808 ON PAGE @2 UP TO AN AREA STARTING AT LOCATION
200 ON PAGE A3. THE FOLLOVWING PROGRAM WILL DO THE JOB NICELY.

SETUP, LHI @@2 /SET UP "H" TO PAGE OF 1ST MEMORY AREA
LLI @@8 ZAND "L*" TO STARTING LOCATION OF 1ST AREA
LDl @@3 /SET D" TO PAGE OF 2ND MEMORY AREA
LEl 200 /AND "“E*" TO STARTING LOCATION OF 2ND AREA
LBl 100 /SET UP A COUNTER IN CPU REGISTER "B"
MOVIT, LAM /GET CONTENTS OF WORD FROM 1ST MEM AREA
CAL ADV /ADVANCE MEMORY POINTER (IN 1ST AREA)
CAL SWITCH /CHANGE "H" & "L*™ TO POINT TO 2ND AREA
LMA /DEPOSIT WORD IN 2ND AREA
CAL ADV /ADVANCE MEMORY POINTER (IN 2ND AREA)
CAL SWITCH /CHANGE BACK TO POINT TO !ST MEMORY AREA
DCB /DECREMENT COUNTER
JFZ MOVIT /IF COUNTER NOT = 0083, THEN CONTINUE MOVING
RET Z/EXIT RTN (OR "HLT" OR "“JMP®" ETG.)

USING MEMORY LOCATIONS TO STORE POINTERS AND COUNTERS

WHILE CPU REGISTERS MAKE IDFAL STORAGE PLACES FOR POINTERS AND
COUNTERS BECAUSE THEY CAN BE DIRECTLY INCREMENTED AND DECREMENTED, THERE
ARE SIMPLY NOT ENOUGH OF THEM TO STORE ALL THE POINTERS AND COUNTERS
THAT MIGHT BE USED IN A FAIR SIZFD PROGRAM. IT THEN BECOMES NECESSARY
TO HOLD THE VALUES 'OF COUNTERS AND POINTERS IN MFEMORY LOCATIONS SO THAT
THE CPU REGISTERS CAN BE OPENED UP FOR OTHER USES. THIS PRACTICE DOES
HAVE A DRAWBACK. SINCE THE CONTENTS OF MFMORY LOCATIONS CANNOT BE DIR-
ECTLY INCRFMENTED, THE CONTENTS MUST FIRST BE LOADED INTO A CPU REGIS~-
TER, THEN THE INCREMENT OR DECREMENT PERFORMED, THEN THE NEW VALUE PUT
BACK INTO ITS MEMORY :STORAGE LOCATION. THIS TAKES A LOT OF EXTRA IN-
STRUCTIONS OVER THAT REQUIRED IF THE COUNTER OR POINTER CAN BE KEPT PER-
MANENTLY IN A CPU REGISTER - ESPECIALLY SINCE TO EVEN OBTAIN THE COUNTER
FROM MEMORY IT WILL ALWAYS BE NECESSARY TO FIRST SET UP THE '"H" & *"L"
REGISTERS TO POINT TO THE MEMORY LOCATION WHERE THE COUNTFR OR POINTER
1S STORED! HOWEVER, SINCE THAT IS WHAT HAS TO BE DONE IN ALL BUT SMALL
PROGRAMS, THE BEST THING TO DO IS TO TRY AND ORGANIZE THE PROCESS USING
SUBROUTINES THAT WILL REDUCE THE AMOUNT OF MFMORY USED BY THE OPERATING
PROGRAM.

PERHAPS THE FIRST ITEM TO CONSIDER IS WHFRE TO STORE THE COUNTERS
AND POINTERS FOR A PROGRAM. WELL, IT IS GENERALLY A GOODP IDEA TO SET
ASIDE A SECTION OF MEMORY TO BE USED EXCLUSIVELY FOR STORING COUNTERS
AND POINTERS FOR THE PROGRAM. PREFERABLY THIS SHOULD BE ON ONE PAGE OF
MEMORY (VERSUS CROSSING PAGE BOUNDARIES). WHILE ESSENTIALLY ANY PAGE
CAN BE USED, IT MAY BE THAT FOR LARGE PROGRAMS, HAVING THE POINTERS AND
COUNTERS ON PAGE #9 WILL SAVE A BIT OF PROGRAMMING ROOM. THIS 1S BE-
CAUSE WHENEVER THE PROGRAM NEEDS TO REFER TO A COUNTER, REGISTER '"H" (AS
WELL AS "L") MUST BE SET UP TO POINT TO THE PAGE WHERE THE COUNTER 1S
STORED. IT SEEMS THAT THERE IS OGFTEN A 'ZERO" REGISTER (ONE SET TO @40)
AROUND AMONG THE CPU REGISTERS AND THUS A "LHX" ONE WORD INSTRUCTION CAN
BE USED TO SET '"H'" TO THE PAGE INSTEAD OF HAVING TO USE A "LHI XXX" COM-
MAND AS WILL GENERALLY BE THE CASE IF THE POINTERS AND COUNTERS ARE NOT
STORED IN AN AREA ON PAGE 04.

ONCE ONE HAS DECIDED WHERE PARTICULAR COUNTERS ARE TO BE STORED, A
SUBROUTINE TO RETRIEVE ANY ONEFE OF THEM AND INCREMENT OR DECREMFNT THE
VALUE, THEN RESTORE IT BACK TO MFMORY IS QUITE STRAIGHT-FORWARD.

CNTUP, LCM /FETCH CNTR INDICATED BY “H" & *L"
INC /INCREMENT VALUE OF THE COUNTER IN REG 'C"
LMC /RESTORE NEW COUNTER VALUE TO MEMORY
RET /EXIT SUBROUTINE
CNTDWN, LCM /FETCH COUNTER
bCC /DECREMENT VALUE
LMC /RETURN COUNTER TO STORAGE
RET /EXIT SUBROUTINE

THE TW0 SUBROUTINES JUST ILLUSTRATED CAN BE CALLED AS DESIRED TO OB-
TAIN A COUNTER AND INCREMENT OR DECREMENT THE VALUE ONCE REGISTERS "H"
AND "L' HAVE BEEN LOADED WITH THE ADDRESS OF THE COUNTER. NOTE TOO.,
THAT THE SUBROUTINE WOULD ALSO ALLOW THE RESULT OF THE INCREMENT OR DEC-
REMENT TO BE TESTED BY A CONDITIONAL INSTRUCTION AFTER THF SUBROUTINE 1S
FINISHED BECAUSE THERE ARE NO INSTRUCTIONS AFTER THE *INC"™ OR "DCC' THAT
AFFECT THE STATUS OF THE CPU FLAGS!

a -7

STORING POINTERS IN MEMORY IS GENERALLY A LITTLE MORE COMPLICATFD
THAN STORING COUNTERS BECAUSE POINTFRS GFNFRALLY REQUIRF TW0 STORAGE
LOCATIONS. ONE WORD FOR THE PAGE ADDRESS AND ONE FOR THF LOCATION ON
THE PAGE. IN ADDITION, SINCE THE “H* & L' REGISTERS WILL HAVE TO BF
USED TO POINT TO WHERE THE POINTFRS ARF STORED IN MFMORY, AND SINCE THFE
POINTERS STORED IN MEMORY CANNOT BE USED AS POINTFERS UNTIL THEY ARE
PLACED IN THE '"H' & "L'" RFGISTERS, A METHOD OF FIRST OBTAINING THE NEW
POINTER INTO UNUSED CPU REGISTERS, THEN SWAPPING IT WITH THE °*H" & *L*
REGISTFRS, MUST BE USED. THE PROCESS IS NOT SO DIFFICULT IF USE 1S5 MADE
OF SOME OF THE SUBROUTINES (SUCH AS SWITCH) WHICH HAVE ALREADY BEFN PRE-
SENTED IN THIS CHAPTER.

THE EXAMPLE ILLUSTRATED NFXT SHOWS A GFNFRAL SUBROUTINF THAT WILL
OBTAIN A TWO WORD POINTFR STORED IN MEMORY, THEN USE THF POINTER OBTAIN-
ED TO PUT THE CONTENTS OF THE ACCUMULATOR INTO A MEMORY LOCATION SPECI-
FIED BY THE POINTER JUST OBTAINED. NFXT IT WILL INCRFEMENT THE POINTER
AND THEN RESTORE IT BACK TO ITS STORAGF PLACF IN MEMORY. THFE ROUTINF
ASSUMES THAT THE "H' & "L* REGISTFRS WILL BF SET TO THE PAGE ADDRESS OF
THE LOCATION WHERE THE POINTER IS STORFD BY THE CALLING PROGRAM, AND
THAT THE POINTFR IS STORED IN TWO CONSECUTIVE WORDS - FIRST THE PAGF AND
THEN THE LOCATION ON THE PAGE.

POINTI, LDM /FETCH POINTER PAGF ADDPR INTO REG "D"
INL /ADVANCE TO PICK UP CONTENTS OF NFXT WORD
LEM /GET LOCATION ADDR INTO REGISTER "“E"
CAL SWITCH /PUT NFW POINTER INTO *H*' & *L"
LMA /PUT ACC INTO MEM INDICATED BY NFEW POINTER
CAL ADV /INCREMENT THE NFW POINTER
CAL SWITCH /RESTORE NFW POINTFR STORAGE ADDRESS
LME /DEPOSIT POINTFR LOCATION ADDR IN MEM
PCL /DECREMENT BACK TO PAGE ADDR STORAGE WNORD
LMD /DEPOSIT POINTFR PAGFE ADDR IN MEM
RET /EXIT SUBROUTINE

THE READER SHOULD NOTF A NICE FEATURE OF THE ABOVE SURROUTINE. WHEN
THE SUBROUTINE IS FINISHED THE CONTENTS OF “H*" & L' ARE SET TO POINT TO
THE STORAGE ARFA OF THE POINTER STORFD IN MEMORY. THUS, THE SUBROUTINE
COULD NOW BF CALLED AGAIN 1F DESIRED WITHOUT HAVING TO SET UP THE *H*
AND *L* REGISTFRS AGAIN. FURTHERMORE, WHEN THE ROUTINF IS EXITED, CPU
REGISTERS D' & "E" WILL CONTAIN THF LATEST VALUFE OF THE POINTER STORED
IN.MEMORY, WHICH MIGHT BE VALUABLE IN MANY CASFS WHFRF FURTHER PROCFSS-

ING WAS TO BE DONE IN THE SECTION OF MEMORY WHERE THE STORED POINTER WAS
OPERATING. v

\

FXAMINE THF SMALL PROGRAM ILLUSTRATED HERE.

BUFFIN, LHI 00@ /SET PAGE WHERE BUFFER POINTER STORED
LL1 2490 /SET LOCATION ON PAGF OF BUFFER POINTFR
INAGN, CAL INPUT /GET A CHARACTER FROM INPUT DEVICE
CAL POINT! /PUT THE CHARACTER INTO MEM BUFFER APEA

CPl1 215 /SEE 1F CHAR WAS ASCI1 CODF FOR °'CR’
JFZ INAGN /1F NOT, GFT ANOTHFR CHARACTFR
RET /EXIT RTN WHEN FIND A °*CR*' CHARACTER

THE ABOVE PROGRAM, AS SHORT ANDP SIMPLF AS IT LOOKS, 1S REALLY QUITE
POWFRFUL. THE READER SHOULD BE ABLF T0O SEE THAT IT IS A PROGRAM THAT
WILL STORE A STRING OF CHARACTERS RECEIVED FROM AN INPUT DEVICE INTO A

4 - 8

"BUFFER'" AREA IN MEMORY. IT WILL CONTINUE PLACING CHARACTERS INTO THE
MEMORY BUFFER ARFA UNTIL IT DETECTS A 'CR' (CARRIAGE-RETURN) CHARACTER.
THE LOCATION OF THE MEMORY BUFFER AREA IS STORED IN A POINTER THAT IS
LOCATED AT LOCATIONS 240 (PAGE) AND 241 (LOCATION ON THE PAGE) ON PAGE
#d. OF COURSE, BEFORE THE ABOVE ROUTINE WAS USFD, THE PROGRAMMER WOULD
WANT TO PUT THE PROPER ADDRESS FOR THE BUFFER AREA INTO THOSE LOCATIONS.
THE ABOVE ROUTINE IS REALLY A GENERAL PURPOSE ROUTINFE TO ACCEPT "TEXT
SENTENCES' AND STORE THEM IN A MEMORY BUFFER. TO EXPAND THE ABOVE SUB-
ROUTINE INTO A COMPLETE PROGRAM RFAUIRES VERY LITTLE ADDITIONAL EFFORT.

DATAIN, LH1 @0d /SET PAGE WHERE *"POINT!* POINTER STORED
LL1 240 /AND ADDRESS ON THE PAGF FOR "POINTI"™
LM1 093 /SET START OF MEMORY BUFFEFR AREA (PAGE)
INL /ADUANCE TO NEXT WORD
LMI 009 /SET START OF MEM BUFF ARFA (LOC ON PAGE)
LL1 250 /ADDRESS OF A “LINE COUNTER"
LMI 912 /SET LINE COUNTER TO 18 DECIMAL

MORIN, CAL BUFFIN /GET A LINF OF TEXT
LHI @ao0 /SET UP STORAGE ADDR OF LINFE COUNTER
LLI 25g / " " ”"” " " " .0

CAL CNTDWN /DECREMENT LINE COUNTER VALUF
JFZ MORIN /IF NOT 10 (DEC) LINES, GET ANOTHER LINF
HLT /END OF PGM (COULD USE RET, JMP ETC.)

THE ABOVE PROGRAM FIRST "INITIALIZES'" THE STARTING LOCATION OF THE
“TEXT BUFFER" TO PAGE @3 LOCATION #0@ BY SETTING THOSE VALUFES INTO THE
“"POINTI* MEMORY STORAGE WORDS. IT ALSO INITIALIZES A COUNTER STORED IN
MEMORY TNO A VALUE DETERMINED BY THE PROGRAMMER. THEN THE SUBROUTINE
THAT INPUTS LINES OF TEXT IS CALLED. EACH TIME A LINE OF TEXT IS OB~
TAINED, THE “LINE COUNTER"™ IS DECRFMFNTED AND A DECISION MADE AS TO
WHETHER OR NOT ANOTHER LINE OF TEXT SHOULD BE OBTAINFD. WHEN A PRE=-
DETERMINED NUMBER OF LINES HAVE BEEN OBTAINED, THE PROGRAM STOPS. IN-
STEAD OF STOPPING, HOWEVER, THE PROGRAM COULD HAVE BEEN DIRECTED TO PRO-
CEED ELSEWHERE BY USING A "JMP" COMMAND, OR, THE ENTIRE PROGRAM COULD
HAVE BEEN MADE A SUBROUTINE ITSELF BY USING A "RET" AS THE LAST INSTRUC-
TION!

IT IS HOPED THAT THF READFR IS RAPIDLY BEGINNING TO UNDERSTAND HOW
QUICKLY SMALL, GENFRAL PURPOSE SUBROUTINES, START DEVELOPING TREMENDOUS
POTENTIAL AS THEY ARE TEAMED WITH OTHER ROUTINES. ALS0O, THE READER
SHOULD BEGIN TO SFE HOW THE USE OF MEMORY AUGMENTS THE CAPABILITY OF THE
CPU REGISTERS ~ BY USING MEMORY LOCATIONS TO STORE POINTERS AND COUNTERS
THE PROGRAMMER OPENS A WHOLE NFW DIMENSION TO THE WORLD OF PROGRAMMING.
IT IS HOPED THE BEGINNING PROGRAMMER BECOMES A LITTLE BIT EXCITED AS
THESE CONCEPTS ARE GRASPED AND UNDERSTOOD - FOR THESE CONCEPTS ARE JUST
THE BEGINNING! AND EXCITEMENT STIMULATES THE IMAGINATION AND GIVES ONE
INCENTIVE TO GO FORWARD AND INVESTIGATE AND LFARN MORE!

BEFORE GOING FURTHER, HOWFVER, IT MIGHT BE WISE TO SLOW THINGS DOWN
FOR JUST A BIT AND RE-ITERATE THE IMPORTANCE OF KFEPING A PROGRAM ORGAN-
IZED AS IT IS DEVELOPED. IN THE LAST SEVERAL PAGES, A NUMBER OF SUB-
ROUTINES WERE PRESENTED, AND THEN COMBINED TO FORM LARGFR SUBROUTINES,
AND FINALLY THE “TEXT BUFFER INPUT" PROGRAM JUST PRESENTED. THE PROGRAM
PRESENTED USES MEMORY STORAGE IN A VARIETY OF WAYS. FIRST THE PROGRAM
ITSFLF MUST BE STORED IN MEMORY. SECONDLY, OPERATIONAL PORTIONS OF THE
PROGRAM REQUIRE MEMORY STORAGE AREAS FOR POINTERS AND COUNTERS. AND,
LAST BUT NOT LEAST, THE PROGRAM REQUIRES THE USE OF MEMORY FOR “DATA"™
MANIPULATION IN THE FORM OF THE TEXT BUFFER. FURTHERMORE, THE "“TEXT
BUFFER INPUT' PROGRAM REALLY CONSIST OF A WHOLFE GROUP 0OF SMALLER SUR-

ROUTINES. SUBROUTINFS THAT MAY BF STORFD IN DIFFFRENT ARFAS IN MFEMORY.
WHAT IS NFEDED, AS HAS BEEN DISCUSSED IN THE PREVIOUS CHAPTFR, IS A MEM-
ORY MAP TO HELP THF PROGRAMMFR PLAN THF ALLOCATION OF MFMORY. IT MIGHT
BE A GOOD IDEA FOR THE READER TO DFUFLOP A MEMORY MAP FOR THF ABOVUF PRO-
GRAM AS PRACTICE. A GOOD MFTHOD TO FOLLOW WOULD BF TO SET ASIDF ROOM
FOR THE MAIN PART OF THF PROGRAM (PFRHAPS LFAVING A GOOD AMOUNT OF SPACF
FOR FXPANDING THE PROGRAM IF DESIRED). THEN THE VARIOUS SUBRAUTINES CAN
BE ASSIGNFD TO ARFAS, POSSIRLY LFAVING A BIT NR RONM RETWFFN FACH ONF IN
T™HF FUENT FUTURE MODIFICATIONS ARF DESIRFD. ONF CAN USF A SFPARATE MAP
FOR FACH PAGF OF MFMORY WHERE ROUTINES ARE STORFN. FOR ARFAS SHOWING
THE LOCATIONS OF COUNTERS AND POINTFRS, THF MAPS MAY BFE '"FEXPANDFD" TO
SHOW INDIVIDUAL ADDRESSES.

PG|LOC[RTN NOTES

28| 24@| BUFFER | P6 ADDR oF PNTR FoR "8uFFIN”
241 | POINTER| Loc ~rAproR 0 " ’"
242
243
244
245
246
247
25@| COUNTER | USED AS TEXT "Line coonTer ”
251
252
253
254
255
256
257
2é6¢
26!
262
263
264
265
266
267
27¢
271
272
273
2749
275
276
Yiaz?7

EXPANDED MAP SHOWING LOCATIONS OF COUNTERS
AND POINTERS FOR THE TEXT BUFFFR INPUT PROGRAM

4 - 10

PGILOC| RTN NOTES

02| @BP| DATAIN, | INPUT I8 Dec. L/ nes of Texl
19 INTO BUFFER ARER onN PG @3
2¢ OrRIG VersioN Regurkes ¥ 3
3¢ (ocTAL) Locs — Leave [oom FOR
40 EXPANSION
S¢
64
7¢
PP
/1@
124
/3¢
149
/ISP
/6P
174
2PP|BUFFIN, | INPOT 2 LINE Tex? -CR’
219 ENDS LINE (2@ cocs)
228
238\ POINTL , |FeTch PNTR L ocs In mem
24¢ DESICNATED BY CALLING RTN —~
25¢ DEP AcC > MEM, ADV PNTR, RESTIRE
26f|SWITCH, |ExchANvge HeL with DfE
2786| ADYV, TNCR VRLUE v HE L
BPP|CNTDWN,| DECR. CNTR STIRED (N MEM
3¢
324
334
344
35¢
364
(| 374

SAMPLE MAP OF TEXT BUFFER INPUT PROGRAM
WITH MAIN ROUTINE AND SUBROUTINES ASSIGNED ON PAGE @?

THE SAMPLE MAPS SHOWN HFERE ILLUSTRATE ONE WAY THE PROGRAM COULD BF
ASSIGNED TO MEMORY LOCATIONS ON PAGFE #2. NOTE HOW THE USE OF THE MAPS
GIVES COHERFNCE TO THE PROGRAM THAT IS NOT FASILY DISCERNED BY A PURELY
MENTAL IMAGE! (PAGE @3 IS ASSUMFD TO BE USFD SOLELY AS A "TEXT BUFFFR"
AREA AND A MEMORY MAP FOR THE AREA IS NOT SHOWN).

ONCE THE MEMORY MAPS HAVF BEEN MADE UP AND THF STARTING ADDRFSSES OF
ALL THE SUBROUTINES ASSIGNED, IT IS AN EASY MATTER TO CONUVERT THEF MNE-
MONICS TO MAGHINE CODE. AN ASSEMBLER PROGRAM MAY BFE USFED IF AVAILABLE.
FOR PRACTICE, THE READER MIGHT WANT TO TRY PEVELOPING THE MACHINE CODE
BY HAND. FOR COMPARISON PURPOSES THE OBJECT CODE FOR THE PROGRAM WQULD
APPFAR AS SHOWN HERE IF THE SUBROUTINES ARE ASSIGNED TO THFE ADDRESSES

4 - 11

AS SHOWN IN THE EXAMPLE MEMORY MAP.

ve
a2
a2
az
a2
a2
a2
a2
a2
22
a2
22
02
a2
a2
a2

ve
ez
A2
a2
02
@2

- - v

CODE

456
260
Bée6
240
76
083
060
276
ey
@66
250
76
g12
106
200
ge?2
pseé
21.1%}
0ée6
259
106
309
g2
110
o1s
pae
289

56
1X51%
266
240
1836
XXX
XXX
106
2302
ne2
n74
218
11a
204
a2
a7

337
0648
347
106
260
B2

 MNEMONIC

DATAIN,

MORIN,

BUFFIN,

INAGN,

POINT!,

LH1

LLI

LMI

INL
LMI

LLI

LMI

CAaL

LHI

LLI

CAL

JFZ

HLT

LHI

LLI

CAL

CAL

CPI

JFZ

RET

LDM
INL
LEM

000

249

283

aae

250

o12

‘BUFFIN

0ee
250

CNTDWN

MORIN

a00
240

INPUT
POINTI

218

INAGN

COMMENTS

D D T D NP D D W Anan S S WD T Gh NS W D . WD WP .

/SET PAGE WHERE "POINTI'" POINTER STORED
/AND ADDRESS ON THE PAGE FOR '"POINT!"
/SET START OF MEMORY BUFFER AREA (PAGE)

/ADVANCE TO NEXT WORD
/SET START OF MEM BUFF AREA (LOC ON PG)

/ADDRESS OF A “LINE COUNTER"
/SET LINE COUNTER TO 16 DECIMAL

/GET A LINE OF TEXT

/SET UP STORAGE ADDR OF LINE COUNTER

/ e 10 13 " " " .

/DECREMENT LINE COUNTER VALUF

/1F NOT 1@ (DEC) LINES, GET ANOTHFR LINF
JEND OF PGM (COULD USE RET, JMP ETC.)
/SET PAGE WHERE BUFFER POINTER STORED

/SET LOCATION ON PAGF OF BUFFER POINTER

/GET A CHARACTER FROM INPUT DEVICFE
/PUT THE CHARACTFER INTO MEM BUFFER AREA

/SEE 1F CHAR WAS ASCII CODE FOR °‘CR®

/1F NOT» GET ANOTHFR CHARACTER

/EXIT RTN WHEN FIND A 'CR®' CHARACTER

‘/FETCH POINTER PAGE ADDR INTO REG "'n*

/ADYV TO PICK UP CONTENTS OF NEXT WORD
/GET LOCATION ADDR INTO REGISTER “E"

CAL SWITCH /PUT NEW POINTER INTO “H" & "L"

4 - 12

ADDR CODE MNEMONIC COMMENTS

- an - o - - - - - En e D en - - - G AR Ak W G W D WD S D R S @ e - - en e

@2 236 370 LMA /PUT ACC INTO MEM INDICATED BY NEV PNTR
g2 237 186 CAL ADV /INCREMENT THE NEW POINTER

¥2 248 2178

82 241 @02

22 242 106 CAL SWITCH /RESTORE NEW POINTER STORAGE ADDRESS

22 243 260

P2 2aa 0a2

n2 245 374 LME /DEPOSIT POINTER LOCATION ADDR IN MEM
22 24é @61 DCL /DECR BACK TO PAGF ADDR STORAGE WORD
we 257 373 LMD /DEPOSIT POINTER PAGE ADDR IN MFM

w2 250 @47 RET ZEXIT SUBROUTINE

B2 268 325 SWITCH, LCH /LOAD CONTENTS OF "H* INTO 'C'" TFMP
22 261 353 LHD /NOW LOAD D' INTO "H"

42 262 332 LDC /MOVE ORIG '"H' FROM “C' INTO D"

w2 263 326 LCL /SIMILARLY LOAD '"L' INTO *G' TEMP

B2 264 364 LLE /PUT “E" INTO "L

w2 265 342 LEC /AND STORF ORIGINAL *“L' IN "E"

e 266 007 RET /EXIT SUBROUTINE

ve 276 @668 ADV, INL /INCREASE VALUE OF REG '"L' BY 1

a2 271 @13 RFZ- /EXIT SUBRTN IF NOT GOING TO NEW PG
‘42 272 059 INH /INCREMFNT “H"™ BY 1 IF ON NEW PAGF
a2 273 Qa7 RET ZEXIT SUBROUTINE

P2 389 327 CNTDWN, LCM /FFETCH COUNTER

22 341 @21 DCC /DECREMENT VALUE

pe2 3e2 372 LMC /RETURN COUNTER TO STORAGE

2 303 da7 RET /EXIT SUBROUTINE

ORGANIZING AND MANIPULATING TABLES

A VERY POWERFUL FFATURE OF A DIGITAL COMPUTER IS ITS ABILITY TO
STORE DATA AND TO PROCESS IT AS THE PROGRAMMER DESIRES - PERHAPS BY AR-
RANGING IT IN SOME SPECIFIC KIND OF ORDFR, OR BY PERFORMING MATHEMATICAL
OPERATIONS, SUCH AS OBTAINING AN AVERAGE, OR CONDENSING THE DATA IN SOME
MANNER. THE COMPUTER IS ALSO SUITED FOR RAPIDLY EXTRACTING INFORMATION
OF INTEREST FROM STORAGE BY PERFORMING SUCH FUNCTIONS AS “"MATCHING" SIM-
ILAR TYPES OF DATA, AND AS A "CONUERTING' MACHINE - WHERE DATA IN ONE
TYPE OF CODE CAN BE QUICKLY CHANGED TO A DIFFERENT REPRESENTATION. IN
SUCH APPLICATIONS, IT IS FREQUENTLY NECESSARY TO DEVFELOP PROGRAMS THAT
ORGANIZE DATA INTO “TABLES" OR TO PROCESS INFORMATION STORED IN "TABLE~
LIKE'" FORMAT.

THERE ARE A VARIETY OF WAYS TO ORGANIZE TABLES FOR COMPUTER PROCFS-
SING. THE READER HAS ALREADY, WHETHER IT HAS BEEN REALIZED OR NOT, BEEN
INTRODUCED TO SEVERAL TYPES OF "TABLES'" IN THIS MANUAL. IN THE FIRST
CHAPTER MENTION WAS MADE OF USING A "LOOK-UP'" TABLE TO CONVFRT BETWEEN
ASGII AND BAUDOT CODES USED IN VARIOUS KINDS OF ELECTRIC TYPING MACH-
INES. AND, IN THIS CHAPTER, THE DISCUSSION AND PROGRAMMING CONSIDERA-
TIONS FOR A "TFXT BUFFER" WERE ACTUALLY CONCERNED WITH A '"FREE-FORM"
TYPE OF TABLE.

A - 13

FOR THE PURPOSES OF THE FOLLOWING DISCUSSION., TwWw0 BASIC TYPES OF
TABLE ORGANIZATIONS WILL BE DISCUSSED. ONE VILL BE REFERRED TO AS
“FIXED-FORMAT' AND THE OTHER AS “FREF-FORMAT." THE FIXFD-FORMAT TYPE OF
TABLE REFERS TO TABLES THAT ARE FIXED BY PROGRAMMING CONSIDERATIONS INTO
STRICT, UNCHANGING PATTERNS OF ORGANIZATION. THE FREE-FORMAT KIND USE
DIFFERENT PROGRAMMING TECHNIQUES TO ALLOV THE STORAGE OF DATA IN RANDOM
LENGTH SECTIONS OF MFMORY. THERF ARE ADVANTAGES AND DISADVANTAGES TO
EACH FORMAT AND THE CHOICE OF WHICH ONE TO USE IS GENERALLY A FUNCTION
OF THE TYPE OF TASK THAT IS TO BE PERFORMED. FREE-FORMAT ORGANIZATION
IS GENERALLY MORE SUITABLE TO TEXT HANDLING TASKS. FIXED FORMAT ORGANI-
ZATION IS GENERALLY THE CHOICE FOR "CONVERSION®" TABLFES. THERE ARF ALSO
CASES WHERE THE CHOICE IS A RELATIVELY MINOR ONF AND IT BECOMES A MATTER
OF THE PROGRAMMER'S PREFERENCE.

TO BEGIN DELVING INTO THE SUBJECT, A TABLFE WITH MANY PRACTICAL AP-
PLICATIONS WILL BE DISCUSSED. PROGRAMMING CONDIDERATIONS FOR DEVELOPING
IT IN BOTH TYPES OF FORMATS WILL BE PRESENTED. 1IN MANY SITUATIONS, IT
IS DESIRABLE FOR A COMPUTER PROGRAM TO HAVE A "CONTROL" TABLE. THAT IS
A TABLE THAT WILL INTERPRET COMMANDS FROM AN INPUT DEVICE, AND DEPENDING
ON WHAT IS RECEIVED, PERFORM A SPECIFIC TYPE OF FUNCTION. FOR THE PUR=-
POSES OF THI1S 1LLUSTRATION IT WILL BE ASSUMED THAT AN OPERATOR WILL TYPE
IN COMMANDS FROM A KEYBOARD. THE COMMANDS VWILL BFE IN THE FORM OF WORDS
THAT MAY VARY IN LENGTH FROM 2 TO 6 CHARACTERS. WHENEVER A "WVORD*" HAS
BEEN INPUTTED TO THE COMPUTER, THE COMPUTER WILL CHECK TO SEE IF THE
“CONTROL TABLE" CONTAINS A MATCHING WORD, AND IF SO, THE COMPUTER WILL
OBTAIN THE ADDRESS OF A RGUTINE THAT IT IS TO PERFORM AND EXFCUTE THE
FUNCTION. WHEN IT IS THROUGH PERFORMING THE ROUTINE, OR IF A 'MATCH"
FOR THE COMMAND WAS NOT FOUND, THE PROGRAM WILL RETURN TO THE °*'COMMAND"
MODE AND WAIT FOR A NEW KEYBOARD ENTRY AFTER SENDING A RESPONSE ON AN
OUTPUT DEVICE TO NOTIFY THE OPERATOR IT IS READY FOR A NEW ENTRY. FOR

THIS EXAMPLE, THE OUTPUT DEVICE WILL BE ASSUMED TO BE AN ELFCTRIC TYPE~-
WRITER.

FOR A HYPOTHETICAL EXAMPLE, 1T WILL BE PROPOSED THAT THE “CONTROL"
WORDS WILL CONSIST OF THE FOLLOWING: *GO.* . "LIST." "MEDIAN." ‘'AVG."
COUNT.'" "ERASE." THESE CONTROL WORDS MIGHT BE ASSOCIATED WITH A PRO-
GRAM THAT IS TO BE USED BY A SCIENTIST CONDUCTING SOME TYPE OF EXPERI-
MENT. SYPPOSE THE CONTROL COMMAND "GO* INDICATED THE COMPUTER WAS TO
START A 1@ SECOND TIMING LOOP. AT THE START OF THE 18 SECOND TIME PER-
IoD THE PROGRAM WOULD SEND A "RESET" PULSE TO SOME SORT OF FXTERNAL
COUNTING DEVICE THAT WAS COUNTING THE *“EVENTS'" THAT OCURRED IN SOME KIND
OF EXPERIMENT. WHEN THE 10 SECOND PFRIOD WAS OVER, THE COMPUTER WOULD
IMMEDIATELY OBTAIN THE VALUF REGISTERED BY THE EXTERNAL COUNTER AND
STORE THE NUMBER OBTAINED IN A "DATA BUFFER.'" THE "LIST* COMMAND MIGHT
DIRECT THE COMPUTER TO PRINT OUT ALL THE DATA VALUES STORED IN THE "“DATA
BUFFER'" (PERHAPS SO THE SCIENTIST COULD LOOK FOR PATTERNS OR JUST HAVE
A COPY OF THE RAV EXPERIMENTAL DATA). THE “MEDIAN®" COMMAND COULD DIRECT
THE COMPUTER TO DETERMINE THE MEDIAN OR MIDDLE VALUE OUT OF ALL THE
VALUES STORED IN THE DATA BUFFER AND PRINT OUT THAT NUMBER. SIMILARLY,
THE "AVYG" DIRECTIVE COULD SIGNIFY THAT THE PROGRAM WAS TO EXECUTE A
ROUTINE TO CALCULATE THE AVERAGE VALUE OF THE DATA. THE "COUNT' COM-
MAND MIGHT BE USED TO HAVE THE COMPUTER INDICATE HOW MANY 1@4 SECOND EX-
PERIMENTS HAD BEEN CONDUCTED. AND, THE "ERASE'" COMMAND COULD SIGNIFY

THAT THE DATA BUFFER"™ WAS TO BE "CLEANED OUT"” FOR A NEV SET OF EXPERI-
MENTS.

THE CONTROL TABLE NEEDS TG BE CONSTRUCTED S0 THAT THE PROGRAM CAMN
“SEARCH'" FOR A "WORD" THAT IS THE SAME AS THAT ENTERED ON THFE KEYBOARD
AND IF A "MATCH" IS FOUND, THEN THE TABLE VWOULD CONTAIN INFORMATION (AN
ADDRESS) THAT WOULD DIRECT THE COMPUTER TO THE PROPER ROUTINE TO BE EX=-

4 - 14

ECUTED. THE CONTROL TABLE COYLD BE CONSTRUCTED BY SETTING ASIDE AN AREA
IN MEMORY THAT CONTAINED THF PROPER CODE FOR THE LETTERS IN EACH “CON-
TROL WORD" FOLLOWED BY TWO MFMORY WORDS CONTAINING THE PAGE AND LOV AD-
DRESS WHERE .-THE APPROPRIATE ROUTINE RESIDED. IF THE CONTROL TABLE VAS
€EONSTRUCTED IN "FIXED-FORMAT" IT MIGHT APPFAR AS FOLLOVS.

FIXED-FORMAT GONTROL TABLE

ADDRESS CONTENTS REMARKS

g2 een 367 /CODE FOR LETTER "G

a2 fa1 317 PR " (1] v

82 @82 209 /NOT USED FOR THIS COMMAND

@2 @@3 aao /NOT USED FOR THIS COMMAND

A2 004 6ae /NOT USED FOR THIS COMMAND

B2 @65 a0 /NOT USED FOR THIS COMMAND

P2 0e6 P81 /PAGF WHFRE ' GO'" ROUTINE STARTS
n2 pa7 100 /LOC ON PG WHERE '"GO'" STARTS

p2 @1v 314 /COBE FOR LETTER "L*“

@2 a11 3t J " v (1) e

@ao 212 323 yARL " (1} g

92 0 l 3 324 / (1] " " |'T|'

a2 Pla 289 /NOT USED FOR THIS COMMAND

a2 015 ana /NOT USED FOR THIS COMMAND

82 ale a1 /PG WHERE "LIST" ROUTINE STARTS
g2 017 140 /LOC ON PG WHERE "LIST" STARTS
82 020 315 /CODE FOR LETTER “M"

a2 221 305 /7 " " " g

g2 822 304 /7 " " * D

@2 023 311 /7 " " " v

ar @24 331 VAR " . e

@2 @28 316 /" " " SN

a2 @826 a1 /PG WHERE “MEDIAN' RTN STARTS
p2 027 200 /LOC ON PAGE FOR *“MEDIAN"

92 @30 321 /CODE FOR LETTER "A"

a2 A3l 326 /7" " o rye

02 @32 307 yARL (1 " el

82 833 209 /NOT USED FOR THIS COMMAND

g2 @34 aea /NOT USED FOR THIS COMMAND

22 B3s eaa /NOT USED FOR THIS COMMAND

82 @36 eal /PG WHERE “AVG'" ROUTINE STARTS
82 037 249 /LOC ON PAGE WHERE '"AUG" STARTS
02 @a0 3683 /CODE FOR LETTER *'(C*

@32 ' Aal 317 FARL " "w ngu

@o 342. 328 YARL " " g

a2 P43 316 /" (1} .y L N L

62 0“4 324 /7 ” L (1] "Tu

22 e@as 203 /NOT USED FOR THIS COMMAND

82 @846 0al /PG WHERE "COUNT" RTN STARTS

82 @47 380 /LOC ON PG WHERE “COUNT" STARTS
02 050 3es /CODE FOR LETTER “Ep“

a2 2s1 322 VAL " " Ry

a2 @52 301 AR [" e

92 ©5%3 323 7 " " " nge

a2 @54 305 YA (1] [Hpn

a2 @s%ss aee /NOT USED FOR THIS COMMAND

82 @56 0ol /PG WHERE '"ERASE" RTN STARTS

g2 857 340 /LOC ON PG WHERE “ERASE"™ STARTS
02 @D 8oo /*%END OF TABLE MARKER* %

A - 15

IT CAN BE NOTED THAT THE FIXED-FORMAT TABLE OCCUPIFS MFMORY FROM
LOCATION 4060 TO @60 (INCLUDING AN '"END OF TABLE MARKER" WHICH WILL BE
DISCUSSED LATER). OBSERVATION OF THE TABLF SHOWS THAT THFRE IS A LOT
OF "WASTED" SPACE WHERE MFMORY LOCATIONS ARE FILLED WITH ZEROS AS THE
"COMMAND"™ WORD DID NOT REQUIRE SIX CHARACTERS. MORE CHARACTERISTICS
OF THE ABOVE FORMAT WILL BE PRESFNTED SHORTLY. FIRST, TW0 SIMILAR
"FREE-FORMAT" VERSIONS FOR THE SAMF "CONTKOL" TABLF WILL BE ILLUVSTRATED.

FREE-FORMAT CONTROL TABLF - UFRSION #1

ADDRESS
g2 009
a2 001
82 Qo2
22 403
2 004
ae aes
B2 0ae
az ea7
02 ¢1o
g2 o011
o2 o012
¥v2 V13
g2 4la
a2 015
82 016
g2 917
a2 20
g2 821
82 622
a2 023
P2 @24
2 @825
02 @26
a2 @27
42 @39
82 @3\
a2 032
82 @33
22 @34
@2 a3s
22 836
a2 037
82 040
82 04l
B2 0a2
B2 @43
P2 Daa
A2 aas
82 Qa6
02 o447
82 @50
02 051
#2 052
p2 053

CONTENTS

387
317
171
el

180
31a
311

323
324
ave
pal

149
318
3@5
304
311

301

316
o0e
a1

200
301

326
387
101"
ho1

240
363
317
325
316
324
000
a1

308
345
322
381

323
345
(4T
Vel

349
400

"

REMARKS

/CODE FOR LETTER "G”

/ (1] " L1} "0.'

/*END OF COMMAND WORD MARKER=*
/PAGE WHERE '"GO' ROUTINE STARTS
/LOC ON PG WHERE "GO'" STARTS
/CODE FOR LFTTER "L

VAR " X ve g
/ ve (1] (1] (1) S"
VAR [3 " T

/*FND OF COMMAND WORD MARKER=*
/PG WHERE "LIST*" ROUTINE STARTS
/LOC ON PG WHERE "“LIST" STARTS
/CODE FOR LETTER "M

/ " . (1] (1] EI'
/ (2] " T . D!'
, (1] (1) (1] " IO'
, (1 ‘ " (1] 'IAOI
/ 1 (1} (1] IlNll

/*END OF COMMAND WORD MARKER=x*
/PG WHERE °*“MEDIAN'" RTN STARTS
/LOC ON PAGE FOR ""MEDIAN"

/CODE FOR LETTER "A"

/ " . (2] 1" Vl.

/ " " (4] (1] G!l

/*END OF COMMAND WORD MARKFERx
/PG WHERE "AVUG" ROUTINE STARTS
/LBC ON PAGF WHERE "AUG"™ STARTS
/CODE FOR LETTER *C*

/ i1} " " "0"
/ " " (1] D'U"
/ L] " (1) Q'N.l
, " " " ‘.T.'

/*END OF COMMAND WORD MARKERx
/PG WHERE "COUNT' RTN STARTS
/LGC ON PG WHERE "COUNT'" STARTS
/CODE FOR LETTER "E™

/ L 14 " e " Rll
/ (1] L1 ”"” ..A "
/ ”"” ”"” " " SI'
/ " " " " F"

/*END OF COMMAND WORD MARKER»
/PG WHERE "ERASE" STARTS

/LOC ON PG WHERE "ERASF" STARTS
/*%*END OF TABLE MARKFRxx :

FREE-FORMAT CONTROL TABLE - VERSION #2

ADDRESS CONTENTS REMARKS

62 @60 3817 /CODE FOR LETTER "G"

62 Gﬂl 31 7 , (4] " (1] "0"

a2 002 2ol /PAGF WHERE "GO" ROUTINE STARTS
a2 @a3 180 /LOC ON PG WHERF "GO" STARTS
a2 @o4 314 /CODE FOR LETTER “L"

a2 pas 311 VAL (1] (1] sy

“2 uﬂ 6 323 / "” " " " S‘l

A2 a7 324 VARL " [7] e

B2 01e a1l /PG WHERE "LIST' ROUTINE STARTS
2 atil 140 /LOC ON PG WHERE "LIST" STARTS
92 0212 315 /CODE FOR LETTER "M"

a2 a13 305 VARL " " LD Al

@o Bla 304 VAR " e ey

@2 ais 311 /7 " (1] L] e

B2 alé 341 /" [" npv

[12 »17 316 /7 " (1]] vopur

2 020 8e1 /PG WHERE "MEDIAN" RTN STARTS
g2 021 200 /LOC ON PAGE FOR 'MEDIAN"

g2 @e2 301 /CODE FOR LETTER "“A"

7} 823 326 /7 " 1] " e

g2 024 387 /7" * " vG"

@2 @25 va1 /PG WHERE "“AVUG' ROUTINE STARTS
P2 026 240 /LOC ON PAGE WHERE "“AVG" STARTS
2 027 363 /CODE FOR LETTER "C*»

@2 833 3! 7 / L] L1 " "0".

ﬂg @31 325 /7 . L 1] *” "U"

Bg 332 31 6 VAR 11 L1 I

a2 933 324 /7 " ' . Al

P2 434 aa1l /PG WHERE “COUNT'" RTN STARTS

82 835 38¢ /LOC ON PG WHERE “COUNT' STARTS
2 @36 305 /7CODE FOR LETTER “E"

22 237 322 VAL (1] 1] YR

82 B4y 381 /7 " * v AT

62 Gal 323 / " e ”"” Qe

[¥4 gae 305 VAR 11} (1] "E"

g2 043 001 /PG WHERE “ERASE'" STARTS

92 B44 340 /LOC ON PG WHERE "ERASE" STARTS
g2 @as vae /**END OF TABLE MARKER*x

THE READER CAN IMMEDIATELY NOTICE THAT BOTH OF THE FREE-FORMAT OR=-
GANIZATIONS TAKE LESS MEMORY STORAGE FOR THE TABLE ITSELF THAN THE
FIXED-FORMAT ARRANGEMENT. THIS IS GENERALLY THE CASE WHEN THERE ARE
LARGE VARIATIONS IN THE LENGTH OF THE DATA (NUMBER OF MEMORY WORDS TO A
“FIELD'" SUCH AS THE “CONTROL WORDS'" IN THE TABLES) THAT 1S HELD IN THF
TABLE. FOR FIXED-FORMAT TABLES, EACH "BLOCK" (IN THE EXAMPLE BEING DIS-
CUSSFD A BLOCK WOULD BE 8 MEMORY WORDS) MUST BE LONG ENOUGH TO CONTAIN
THE LARGEST POSSIBLE FIELDS THAT COULD BE ENGOUNTERED IN THE APPLICA-
TION. (IN THE PRESENT ILLYUSTRATION, THE “FIELDS" IN A “BLOCK'" WOULD BE
THE "CONTROL WORD'" FIELD AND THE "ADDRESS™ FIELD. THE LARGEST 'CONTROL
WORD* FIELD REQUIRES & MEMORY WORDS. ALL THE “ADDRESS" FIELDS REQUIRE
2 WORDS - SO EACH BLOCK MUST HAVE 8 MEMORY LOGCATIONS AVAILABLF). NOTE
THAT A FIXEFD FORMAT TABLE MAY NOT REQUIRE MORE ROOM THAN A FREE-FORMAT
TABLE OF THE TYPE SHOWN IN VERSION #]! IF THERE IS NOT A LARGE VARIATION
IN THE LENGTH OF BATA WITHIN FIELD(S). FOR INSTANCE, HAD ALL OF THE

4 - 17

CONTROL WORDS BEEN SELFCTED TO BF 5 AND & LETTERS IN LFNGTH, THEN VER-
SION #1 WOULD HAVF ACTUALLY REQUIRFD MORF MFMORY SPACE FOR THF TABLE
THAN THF FIXFD-FORMAT CONFIGURATION!

HOWEVER, THE AMOUNT OF MEMORY SPACE OCCUPIFD BRY THF TABLF ITSELF 1S
NOT THF ONLY PROGRAMMING POINT TO BE CONSIDERFD WHFN CHOOSING THFE TABLFE
FORMAT TO BE USFD IN A PARTICULAR PROGRAM. ONF MUST ALSO LOOK AT SOMF
OTHER PARAMFTERS THAT WILL ALSO HAVF AN EFFECT ON THFE TOTAL SIZF OF THF
PROGRAM. ONFE SUBTLE PARAMETER, FOR INQTANCF: IS HOW WILL THE INPUTTED
CHARACTER STRING FOR A "CONTROE WORD"Y “DELIMITFD." SUPPOSF, FOR FX-
AMPLE, THAT A *'CONTROL WORD" ARACTFR QTRINF IS INPUTTFD YVIA AN ASCII
KEYBOARD SUHROUTINF AND STORED IN A SMALL HKUFFFR ARFA IN MFMORY. ONF
CAN ASSUME THAT THE ACTUAL INPUT STRING WAS "DFLIMITED" (FENDPED) RY A
SPECIAL CHARACTEFR SUCH AS A “CARRIAGE~-RFETURN.'" THF ' CARRIAGF-RFTURN®
WOULD INFORM THE INPUT ROUTINF TO CFASE ACCFPTING CHARACTFRS AMD RFTIRN
T THF “CALLING' PROGRAM. HOWFUVFR, SINCF THF CHARACTFR STRING THAT IS
RECEIUFD MUST ALSO BF USED BY SOMF OTHFER ROUTINF (WHFN SFARCHIMG THF
CONTROL TABLE FOR A MATCH), AND SINCF THF CHARACTFR STRING CAN VARY IN
LENGTH, THFN SOMF MEANS MUST BE PROVIDFD FOR TELLING THF TABLF SFARCH
ROUTINE JUST HOW MANY CHARACTEFRS ARF IN THF PARTICULAR STRING OF CHAR-
ACTFFRS STORED IN THFE BRUFFER!

THIS CAN BF DONF IN SEUFRAL DIFFFRFNT WAYS., ONF WAY WOULD BF T0
HAVE THE "CARRIAGF=-RETURN' CODF RFCEIVED BY THFE ASCII INPUT ROUTINF
STORED AS THF LAST CHARACTFR IN THF CHARACTFR STRING RUFFFR. THF TABLF
SEARCH RAUTINF COULD USE THF "C-R*' SYMBOL AS A "DFLIMITFR'" TO SIGNIFY
THE. FND OF THF CHARACTFR STRING. THF CHARACTFR STRING RUFFFR WOULD
THEN CONTAIN INFORMATION STORED AS SHOWN HERF:

ADDRESS LOCATION CONTENTS
WORD #1 CODE FOR CHARACTFR #1
WORD #2 CODF FOR CHARACTFF #2
WORD #N CODF FOR CHARACTER #N

WORD #N+1 CODE FOR CARRIAGE-RFTURN

NOTF, THFN, THAT THF CHARACTER BUFFER WOULD HAVF TO BE A BLOCK OF
LOCATIONS IN MEMNORY LONG FNOUGH TO HOLD (N + 1) CHARACTFRS WHFRE *“N* 1S
THE MAXIMUM NUMBER OF CHARACTERS ALLOVWED IN A CONTROL WORD.

A SECOND WAY TO DFLIMIT THE CHARACTFR STRING IN THE RUFFFR WOULD RF
TN SET UP A COUNTER THAT INCRFASED IN VALUF FACH TIMF A CHARACTFR WAS
ACCFPTED INTO THF BUFFFR. THE VALUF IN THE COUNTFR WOULD THEN BF USED

BY THF TABLE SFARCH ROUTINF T0O INDICATFE HOW LONG THF CHARACTFR STRINAR
WAS.

STILL ANOTHFR TFCHNIQUE WOULD BF T0 UTILIZF A BUFFFR ADDRFSS POINTFR
THAT WOULD POINT TO THE ACTUAL ADDRFSS 0F THF LAST CHARACTFR IN THF RUF=-
FER.

THE SFCOND AND THIRD SCHEMES ALLOW THF CHARACTER RUFFFR T0 BF JUST
"N'"" CHARACTFERS IN LENGTH (INSTFAD OF N + 1). HOWFUFR, THE SAVINGS IN
BUFFER SPACE IS HARDLY ENOUGH TO BF CONCFRNED WITH, PARTICULARLY SINCF
SOME OTHER LOCATION(S) WOULD HAUVE TO RBRF SFT ASIDF FOR STORING THF VALUF
OF THE COUNTFR OR BUFFFR ADDRESS POINTFR.

THFE DIFFFRENT MFTHODS ARE MENTIONFD, HOWEVEPR, TO DFMONSTRATF THF IM-

4 - 18

PORTANT FACT THAT THFRE 1S MORF THAN ONF WAY TO0 APPROACH THF PROBLEM AND
THF PROGRAMMER MUST DFUELOP THE PRACTICF OF FXAMINING ALTERNATIVE WAYS.
WHILF THE DIFFFRENCFS ARF OFTEN SUBTLF, CFRTAIN CHOICFS MAY BF OF PARTI-
CULAR VALUF IN CERTAIN APPLICATIONS. '

AN IDEA THAT SHOULD BF MFNTIONFD AT THIS POINT CONCFRNS THE. PRACTICF
OF TRYING TO DEVELOP PROGRAMS THAT ARF *“GONF-PROOF" - OR "HUMAN-ENGINE-
FRFD." THF IMPORTANCF OF THIS FACTOR SHOULD NOT RF OVFF-LOOKFD. FOR,
THOSE THAT DO WVILL OFTEN FIND THEMSFLUFS SPFNDING MANY HOURS "RFWORKING*
PROGRAMS THAT HAVE SUDDENLY "GONF BESFRK' WHILF IN OPFRATION. THE ABIl-
LITY TO PLAN PROGRAMS THAT TAKE THIS IMPORTANT PARAMETFR INTO CONSIDFRA-
TION GENFRALLY DISTINGUISHFS THF NOVICF FROM THF FXPFRIFNCFED PROGRAMMFR.
WVHAT IS MFANT BY "HUMAN-FNGINFFRING' CAN BF CLFARLY DEMONSTRATFD RY THF
FOLLOWING DISCUSSION.

SUPPOSE FOR THF FXAMPLF BFING DEUVFLOPFD HERF THAT THE PROGRAMMFR FL-
FCTED TO DFVFLOP THFE CHARACTFR STRING INPUT ROUTINF USING SCHFME #1 PRF-
SENTFD ABOVE RY SETTING ASIDF A CHARACTFR BUFFFR N + | WORDS IN LFNGTH
(WHICH WOULD RF 7 IN THIS CASF AS THF MAXIMUM SIZF OF A CONTROL WORD IN
THE EXAMPLE IS & CHARACTERS). NOW, A NOVICF, OR UNVWARY BEGINNFR MIGHT
PROCEED TO DEVFLOP THF ROUTINF ALONG THF FOLLOWING LINES.

MNEMONIC COMMFNTS

INCTRL, LHI XXX /SET PAGF ADDR OF START 0OF CHAR BUFFFR
LLI YYY /SFT LOC ON PAGF OF START OF CHAR RUFFER

INCHAR, CAL INPUT /GFT A CHARACTFR FROM INPUT SURROUTINF
LMA /STORF IN CHARACTFR STRING RUFFER
CPI 218 /SEF IF CHARACTFR WAS A “C-R"
RTZ /EXIT SUBROUTINF 1F *C-R"
CaL ADV /ADUANCE BUFFER POINTFR

JMP INCHAR /LOOP TO GFT NEXT CHARACTFR

AN EXPERIFNCFD PROGRAMMFR WOULD MORF LIKFLY HAUF THF SUBROUTINE
APPEAR SOMETHING LIKF:

MNFMONIC ' COMMFNTS

INCTRL, LHI XXX /SET PAGF ADDR OF START OF CHAR RUFFER
LLI YYY /SFT LOC ON PAGFE OF START OF CHAR BUFFFR
LBl @86 /SET "SAFETY" COUNTER

INCHAR, CAL INPUT /GET A CHARACTFR FROM INPUT SUBROUTINFE
CPl 215 /7SEF 1F CHARACTFR VAS A "C=R"
JFZ CHECK /1F NOT "C-R" GO TO SAFFTY CHECK ROUTINF
LMA /1F “C=-R" THEN STORF IN BUFFFR
RFT /AND FXIT SUBROUTINE

CHECK, INB /EXERCISE REGISTER B TO SFT FLAGS
DCB /FOR ITS ORIGINAL CONTENTS
JTZ INCHAR /IF “B'" WAS @00, IGNORF PRFSFNT CHARACTER
DCB /0OTHFRWISE, DECREMFNT VALUFE OF "R
LMA /STORF CHARACTFR IN BUFFER
CAL ADV /ADVANCE BUFFFR POINTER

JMP INCHAR /AND LOOP TO GFT NFXT CHARACTFR

WHAT DOES THE SECOND SUBROUTINF DO THAT THF FIRST DID NOT? IT GUAR-

4 - 19

ANTEES THAT IF SOMEBODY TYPES IN A CHARACTFR STRING MORF THAN SIX CHAR-
ACTERS LONG THAT THF *BUFFER" WILL NOT '"EXPAND" BFYOND ITS INTFNDFD
LENGTH AND POSSIBLY RFSULT IN CHARACTFRS BRFING LOADFD INTO PORTIONS OF
MEMORY THAT POSSIBLY CONTAIN PROGRAM INSTRUCTIONS OR OTHFR DATA, THF
ALTFRING OF WHICH MIGHT FUFNTUALLY RFSULT IN A PROGRAM *"BLOW-UP!"

STILL ANOTHFR WAY TO DELIMIT AN INPUT CHARACTER BUFFFR, AND A METHOD
PARTICULARLY SUITED TO DFALING WITH A FIXED FORMAT TABLF, IS T0O "CLFAR
OUT* THE BUFFER PRIOR TO THE START OF ENTFRING A CHARACTFR STRING, BY
FOR INSTANCE, INSERTING ALL 'ZERO"™ VORDS INTO THF BUFFFR. WHEN USING
THIS METHOD IT IS NOT DESIRABLE TO INSERT A "C~-R™ AT THF END OF THF
STRING, BUT RATHER TO SIMPLY ALLOW THE PRESFNCF OF A “ZERO" WORD DFNOTE
THF END OF THE CHARACTFR STRING. :

ONCE THE INPUT CHARACTER BUFFFR HAS RFCEIUFD A CHARACTFR STRING AND
A METHOD OF DELIMITING THE STRING BEEN SFLECTED, ONFE CAN PROCFFD TO DF=-
VELOP METHODS TO *"SFARCH® THF CONTROL TABLF FOR A “CONTROL WORD' THAT
MATCHFS THE CHARACTER STRING IN THE BUFFFR. THF SFARCH ROUTINF WILL REF=-
FLFCT THE METHOD USFD TO ORGANIZF THE TABLF AS WFLL AS THFE DFLIMITING
FORMAT USFL IN THF CHARACTER STRING BUFFER. THF VARIOUS RAMIFICATIONS
OF WHAT IS MEANT BY THIS CAN PFRHAPS BFST BF CLARIFIFD BY CONSIDERING A
FFW PROGRAMMING FXAMPLES.

EXAMINF THF FOLLOWMING PORTION OF A “SFARCH" ROUTINF DESIGNFD TO LNNK
FOR A MATCH BETWFEN THF CHARACTERS IN A BUFFFR (TEFRMINATED BY A ZFRO
WNRD) AND THE CHARACTERS CONTAINED IN THE "CONTROL VWORD'" FIELDS OF THF
BLOCKS MAKING UP THF TARLE.

MNFEMONIC COMMFNTS

SFARCH, LDI 9@2 /SET POINTERS TO STARTING ADDR OF TABLF
LEI 660 / " ”"” " " (1] " L1

INITBF, LHI XXX " /SET POINTFRS TO START OF CHAR BUFFER
LL I YYY / " " e L) 1 1] " (1]
LBI Q3¢ /SFT CONTROL WORD FIELD SIZE COUNTER

CMATCH, LAM /GFT CHAR FM BUFFFR (FOFM CHAR MATCH LOOP)
CAL ADvV /SUBROUTINF TO ADVANCF BUFFFR POINTFR
CAL SWITCH /EXCHANGE BUFFFR PNTR FOR TABLF POINTFR
CPM /SEE 1F HAUF A MATCH CONDITION
JFZ NXWORD /IF NO MATCH, GO TO NFXT RLOCK IN TARLFE
DCC /1F MATCH, DECR FIFLD SIZE COUNTFR

*% JTZ FOUNDW /ALL CHARS IN FIELD MATCHED IF CNTR = @

CAL ADV /CHAR MATCH BUT NOT FINISHED, ADU PNTR

CAL SWITCH /FXCHANGFE TABLE PNTR FOR BUFFFR POINTFR
JMP CMATCH /LOOP TO SEE IF NEXT CHARACTFR MATCHES

NXWORD, DCB /DFCR FIFLD SIZFE CNTR TO FIND END OF
JTZ SFTNXW /CURRENT CONTROL WORD FIELD, JMP WHEN FND
CAL ADV /0THERWISE ADUVANCE TABLE POINTER
JMP NXWORD /AND LOOP TO LOOK FOR END OF CW FIFLD
SETNXW, CAL ADV /AT FND OF CONTROL WORD FIFLD NEED TO
CAL ANV /ADVANCFE PNTR OVFR THF "ADDRESS" FIFLD
CAL ADV /TO THE START OF NFEXT CONTROL WORD FIlELD
e CAL SWITCH /AND THEN EXCHANGF TABLE FOR BUFFFR PNTR

JMP INITBF /AND FORM LOOP TO CHECK NFXT RLOCK IN TBL

REMEMBER, THF ABOVF ROUTINF ASSUMFS THAT THF INPUT CHARACTFR RUFFFR
IS ""CLFARED" BEFORF A NEW INPUT CHARACTFR STRING IS ACCFPTED. THUS, THE
INPUT BUFFER WOULD CONTAIN *“ZFROS"™ IN THE LOCATIONS FROM "N + " TO THF

4 - 20

END OF THF BUFFFR (WHFRF *N'" 1S THF LAST CHARACTFR OF THF INPUT STRING).
IF, FOR EXAMPLF, THE INPUT BUFFER CONTAINED THF FOLLOWING:

BUFFFR WORD # CONTFNTS

CODF FOR "G"
CONF FOR "O"
(ddy
nao
nAd
o6

NADLDWN -

THFN THF ROQUTINE JUST PRESENTED WOULD FIND A MATCH IN THF FIRST *“BLOCK"
OF THE FIXED FORMAT TABLE DESCRIBED SFUFRAL PAGFS FARLIFR. WHFN THF
MATCH WITH THE CONTROL WORD IN THF TABLF WAS FOUND, THF ROUTINF WNULD
JUMP TO THF AS YFT UNDEFINED "FOUNDW" ROUTINE TO FXTRACT THFE ADDRFSS

OF THE "GO0 ROUTINE FROM THF TABLF. HOWFUER, HAD THF INPUT CHARACTER
BUFFER CONTAINFD:

BUFFFR WORD # CONTENTS

CODF FOR “A"
CODE FOR *ye
CODF FOR "G*

200

ARa

Aa0

AN WN -

THEN THF ROUTINF WOULD FAIL TO FIND A MATCH IN THF FIRST "CONTROL WORD*®
FIELD. WHFN THF MATCH FAILED. IT WOULD JUMP TO THF *NXWORD" PORTION OF

THF PROGRAM TN ADVANCE THE TABLE POINTFR TO THF START OF THF NEXT ''CON-
TROL WORD'" FIFLD IN THF TARLF, AND THEN JUMP RACK TO THF “INITEF" POR-

TION TO INITIALIZF THF CHARACTFR BRUFFFR POINTFR AND PROCFFD TO LNOK FOR
A MATCH IN THF NFXT BLOCK OF THF TABLF. THIS LOOP WOULD CONTINUF UNTIL
™E MATCHING CONTROL WORD 'AUG"™ WAS FOUND AROUT HALF-VAY DOWN THF TABLF.

HAD SOMF *SMART ALFCK" OPFRATOR KEYFD IN THF FOLLOWING TO THF INPUT
CHARACTER BUFFER:

BUFFFR WORD # CONTENTS
1 CODF FOR 'S"
2 CODF FOR "I*
3 CODF. FOR *"L"
4 CODFE FOR "L"
5 CODE FOR Y™
6 240
THEN THE PROGRAM WOULD FVFNTUALLY “BOMB!' RFASON? (HERF COMFS HUMAN

FNGINEERING AGAIN!) SIMPLY THAT THF ABOUVF ROUTINF HAS NO WAY 0OF DFTFR-
MINING WHFRF THF END OF THF TABLF FXISTS IN MFMORY. THF HANDLING NF
THAT PROBLEM WILL ERF DISCUSSFD SHORTLY AFTFR SOMF MORF FXAMPLFS RFLATED
TO THFE CURRENT TOPIC HAVF PFFN PRESENTED. THF RFADFR SHOULD NOTF HFRF
THAT THE =*%%x MARK NFAR THF FND OF THF ROUTINF DFNOTFS A POINT WHFRF AN

.

4 - 21

“END OF TABLF' TFST MIGHT BF INSFRTED IN THF AROVF ROUTINF.

IT IS DESIRABLE AT THIS POINT TO ILLUSTRATFE SFUFRAL OTHFR *SFAFCH"
ROUTINES TO DEMONSTRATE HOW THEY AFRE AFFECTFD RY THF TAFLF ORGANIZATION
AND THF METHOD USED TO DELIMIT THF INPUT CHARACTFER RUFFER. SUPPOSF ONF
IS STILL USING THF FIXFD-FORMAT TABLE BUT INSTEAD OF CLFARING NUT THF
INPUT BUFFER REFORE ACCEPTING A NEW CHARACTER STRING (SO THAT IT IS DF-
LIMITED BY LOCATIONS CONTAINING ZFROS), ONF USES AN INPUT ROUTINE THAT
DFLIMITS THF BUFFFR BY USING A “C=-R" SYMBOL. THE ROUTINF TO LOOK FOR
A MATCH BETWEEN THE CONTENTS OF THF BUFFFR AND A “CONTROL WORD" IN THE
TARLF MIGHT APPEAR AS FOLLOVWS.

MNEMONIC COMMENTS
SFARCH, LDl @a2 /SET POINTER TO STARTING ADDR OF TABLF
LEI Bea / ”"” " " ” LA " "
INITBF, LHI XXX /SFT POINTERS TO START OF CHAR RUFFFP
LLI YYY / " 11} " ”"” .°" " "
LBI 0@é /SET CONTROL WORD FIELD SIZFE COUNTER
CMATCH, LAM /GET CHAR FM BUFFFR (FORM CHAR MATCH LOOP)
CPI 215 /SFF 1F SYMBOL FOPR "“C-PR"
JTZ LCHAR /1F S0, GO TO LAST CHARACTER ROUTINF
CAL ADV /OTHFERWISE, ADUANCF RUFFFR POINTER
CAL SWITCH /FXCHANGF EUFFFR PNTR FOR TABLF POINTFR
cPM /SEF I1F HAVUF MATCH CONDX IN TARLE
JFZ NXWORD /IF NO MATCH, GO TO NFXT BLOCK IN TABLF
CAL AaDv /1F MATCH, ADUANCE TABLF POINTFR
CAL SWITCH /EXCHANGFE TARLF POINTFR FOR RUFFFR PNTR
DCR /DFCREMENT COUNTFR VALUF (FOF NXWORD RTN)
JMP CMATCH /LOOP TO SFF IF NFXT CHARACTFR MATCHES
LCHAR, XRA /1F *C-R" IN BUFFFR, CLFAR ACCUMULATOR
CAL SVITCH /EXCHANGE BUFFFR POINTER FOR TABLF PNTR
CPM /AND SFF IF HAVUF 9080 CODF IN TABLE
* % JTZ FOUNDW /I1F S0, ALL CHARS IN FIFLD MATCHFD
INB /1F NOT, SEF IF COUNTER IS AT 0@8
DCB /INDICATING MAX CONTROL WORD FIFLD
* K JTZ FOUNDW /FNCOUNTFRED SO HAVE CONTROL WORD MATCH
NXWORD, DCB /1F NOT, DFCR FIFLD SIZF COUNTER
JTZ SETNXW /IF CNTR = @, AT FEND OF “CONTROL WORD"™ FLD
CAL ADV /1F NOT, ADVANCF TABLF POINTFR
JMP NXWORD /AND LOOP TO LOOK FOR FND OF FIFELD
SETNXW, CAL ADV /AT FND OF CONTROL WORD FIFLD NFED TO
CAL ADU . /ADUANCE PNTR OUFR THF "ADDRESS" FIFLD
CAL ADV /TO THF START OF NFXT CONTROL WORD FIFLD
xR X CAL SWITCH /AND THEN FXCHANGF TABLE FOR BUFFER PNTPR

JMP INITBF /AND FORM LOOP TO CHFCK NFXT BLOCK IN TBL

" THE ABOVF ROUTINE IS A BIT MORF COMPLICATFED THAN THF PREVIOUS ONF
BECAUSE ONE MUST STILL KEFP TRACK OF THF NUMBFR OF CHARACTFRS THAT HAVF
BFEN FXAMINFD WITHIN A “CONTROL WORD FIFLD*" IN THF TABLF SFCTION (FOR
USE. BY THE "“NXWORD' ROUTINE), AND ALSO MAKE AN ADDITIONAL TEST FOR THE
EIND OF THE CHARACTFR STRING IN THE INPUT BUFFFR WHICH IS SIGNIFIFD BY
THE CODE FOR A CARRIAGE-RETURN. IT IS ASSUMED IN THF ABOVE ROUTINF
THAT THF ROUTINE THAT ACCEPTS A CHARACTFR STRING INTO THF INPUT BUFFFR
LIMITS THE STRING TO A MAXIMUM OF SIX CHARACTFRS. NOTF THAT ONF MUST
ALSO MAKE SPECIAL PROVISIONS FOR THE CASF WHFN THF CHARACTFR STRING IS
SIX CHARACTERS IN LENGTH BY TESTING THF COUNTFR IN THE “LCHAR'" PORTION
OF THE ABOVF ROUTINE.

4 - 22

THF COMRINATION OF USING A "C-R" TERMINATED BUFFFR AND A FFRFE-FORMAT
TABLF (SUCH AS THE FRFE-FORMAT VFRSION #1 ILLUSTRATED EARLIFR) IS LFSS
COMPLICATFD TO "SFARCH' BFCAUSF ONF CAN DROP THF MAINTENANCF OF THF
TRBLF CONTROL WORD FIFLD COUNTFR AND INSTEAD TFST FOR THE END OF RUFFFR
MARKER (C-R) AND USF THE END OF FIFLD MARKFR (@@@) IN THF TARLF WHFN
A MATCH FAILS AND 1T IS NFCESSARY TO ADUANCF TO THF NFXT CONTROL WORD
IN THE TABLF. THIS SFARCH ROUTINF IS ILLUSTRATED NFXT.

MNFMONIC COMMFNTS
SEARCH, LDI1 @e?2 /SET POINTER TO STARTING ADDR OF TARLF
LEI g@e / (1] (1] L1 (1] LU [T} "
INITBF, LH1 XXX /SET POINTFR TO START OF CHAR BUFFFR
LLI YYY / " " " " " " (1]
CMATCH, LAM /GET CHAR FM BUFFER (FORM CHAR MATCH LOOP)
CPI 215 /SEF IF SYMRBROL FOR "C-R"
JTZ LCHAR /1F SO0, GO TO LAST CHARACTFR ROUTINF
CAL ADV /ADUVANCE BUFFFR POINTFR
CAL SWITCH /FXCHANGF BUFFFR PNTR FOR TABLE POINTER
CPM /SEE 1F HAVF MATCH CONDITION IN TABLF
JFZ NXWORD /IF NOT, GO TO NEXT BLOCK IN TABLE
CAL ADV /IF YES, ADUANCF TABLF POINTER

CAL SWITCH /FXCHANGE TABLF PNTRF FOR BUFFFR POINTFP
JMP CMATCH " /LOOP TO TEST NFXT CHARACTFR

LCHAR, XRA /CLFAR ACCUMULATOR 1F HAVE "C-PF" IN BUFF
CAL SWITCH /EXCHANGE BUFFFR POINTFR FOR TABLF PNTR
CpPM /SFF IF ALSO HAVF FND OF FIFLD MARKFR
* % JTZ FOUNDW /I1F SO, HAVE FOUND MATCHING CONTROL WORD
NXWORD, LAM /1F NOT, SFE IF HAUF FND OF FIFLD MARKFR
NDA /*%xTRICK TO SFT FLAGS AFTFR A LOAD OPxxx%
JTZ SETNXW /FOUND MARKFR, GO T0O NEXT BLOCK
CAL ADV /MARKFR NOT FOUND, ADUVANCFE TABLE POINTFR
JMP NXWORD /AND CONTINUF LOOKING FOR MARKFR
SFTNXW, CAL ADV /AFTFR MARKFR FOUND, ADUVANCF TABLF PNTR
CAL ADVU /O0VER THFE "ADDRFESS" FIFLD TO THF START
CAL ADV /0F THF NEFXT CONTROL WORD FIFLD
* K CAlL. SWITCH /EXCHANGF TARLF PNTR FOR BUFFFR POINTFR

JMP INITBF /AND FORM LOOP TO CHFCK NFXT BLACK IN TBL

AT FIRST GLANCE, DEVELOPING A SFARCH ROUTIMF FOR THE FIXED-FORMAT
TARLE - VERSION #2, WOULD APPEAR RATHFR DIFFICULT BFCAUSE THFERE IS NO
APPARFNT END OF CONTROL WORD FIELD MARKER! HOWEUFR, THAT TABLFE WAS OR-
GANIZFD TO TAKE ADUANTAGE OF A PARTICULAR FACT THAT THF DEVELOPFR WAS
AWARF OF THAT WOULD FNABLF THFE FIRST PART OF THF 'ADDRFESS' FIFELD TO RE
USED AS AN END OF CONTROL WORD FIFLD MARKFR. THIS FACT IS THAT ALL OF
THE CHARACTER CODFS THAT MIGHT BF USED IN THE CONTROL WORD FIFLD (WHICH
CONSIST OF °*ASCII" FORMATTED SYMBOLS) HAVF A ™1" BIT IN ONF OR BROTH O0OF
THE TWO MOST SIGNIFICANT BITS WITHIN A MFMORY WORD THAT CONTAINS THF
CHARACTFR. ADDITIONALLY, IT IS KNOWN THAT THF MAXIMUM PAGE ADDRFSS THAT
CAN BE UTILIZFD IN A TYPICAL 88@8 SYSTEM IS 877 (OCTAL) WHICH MFANS
THAT A MEMORY WORD CONTAINING A MEMORY PAGFE ADDRESS CANNOT HAVF A 'I"
CONDITION IN FITHFR ONE OF THE TWO MOST SIGNIFICANT BITS OF THE MFMORY
WORD THAT HOLDS THFE PAGE ADDRESS! THUS, BY MAKING A SIMPLF TEST, USING
A "MASKING" OPFRATION DFSCRIBED FARLIFR IN THIS SECTION, A ROUTIMF CAN
BE DEVELOPED THAT CAN SAFFLY UTILIZE THF PAGF ADDRESS PART OF THE AD-
DRESS FIELD TO SFRVE AS AN FND OF A "CONTROL WORD" FIFLD! THUS, T0
SEARCH VERSION #2 OF THF FRFE-FORMAT TABLF, ONF COULD RFPLACFE THF ROUT-
INES "LCHAR'" AND '"NXWORD" USED ABOVE WITH THE FOLLOWING SUBSTITUTES

4 - 23

MNFMONIC COMMENTS

LCHAR, CAL SWITCH /EXCHANGF BUFFFR POINTFR FOR TABLF PNTR

LAM /TFST FOR FND OF CONTRNL FIFLD

NDI 3@ /BY SFEEING IF TWO MSR'S ARF BOTH “@é*

JTZ FOUNDW /I1F SN, HAUF FOUND MATCHING COMTROL WORD
NXWORD, LAM /TEST FOR FND OF CONTROL FIFLD

NDI 340 " /BY SFFING IF TWw0o MSR'S ARF BROTH “a»

JTZ SFTNXW /1IF S0, HAVF MARKFR, GO T0O NFXT BLOCK

CAL ADV /0THFRWISFE ANDVANCF TARLF POINTER

JMP NXWORD /AND CONTINUF LOOKING

AS MENTIONFD FARLIFR, SOMF MFANS OF DFTFRMINING WHFN THF FNTIPF
TARLF HAS BFFN SFARCHFD IN THF FUFNT A NON-EXISTENT TFRM IS PLACFD IN
THF INPUT BUFFFR MUST RF INCORPORATFD IN THF SFARCH ROUTINF. AGAIN,
THIS TASK CAN RF ACCOMPLISHFD IN SFUFRAL DIFFFRFNT WAYS. ONF WAY WAULD
BF TO SFT A COUNTER AT THF START OF THF SFARCH ROUTINF THAT CONTAINFD
THF TOTAL NUMRER OF '"RBLOCKS' IN THE TARLF AND DFCREMFMT IT FACH TIMF A
HLOCK WAS CHECKFDe THF COUNTEFR COULD RF TFSTFD FOR A ZFRO CONDITION TO
SIGNIFY THAT THF TABLF HAD BFFN SFARGCHFD. ANOTHFR WAY TO ACCNOMPLISH THF
OHJECTIVF WOULD BFE TO TEFST THF VALUFE 0OF THF TARLF POINTFR TO SFF IF IT
HAD RFACHFD A SPFCIFIC VALUEF WHICH WOULD DENOTF THF FND 0OF THF TARLF¥.
THFSF TWO METHODS HAUVF SFUFRAL DRAWBACKS. ONF IS THAT THF COUNTFR MFTH-
O WOULD RFQUIRF STORAGF SPACE. A CPU REGISTFP COULD BE USFD, RUT MORF
THAN LIKFLY ONE WOULD HAUVF TO RFSORT TN MAINTAINING A COUNTFR IN A MFM-
ORY LOCATION IN ORDFR TO CONSFRUF CPU RFGISTFRS - THIS WOULD RFQUIRF A
SOMFWHAT MORF LFNGTHY ROUTINF TO HANDLF THF UPDATIMG AND TESTING OF THF
COUNTER. TFSTING TO SFF IF THF TABLF POINTFER ADDRFSS HAD RFACHFD A CFR-
TAIN UALUF COULD RF DONF WITH AN "IMMFDIATFE' TYPF COMPARISON THUS AVOID-
ING THF MAINTENANCFE OF A STORAGE LOCATION RUT THF MFTHOD, ALONG WITH THF
COUNTFR MFETHOD, IS MORF COMBFRSOMF IF THE PROGRAMMFR DFCIDFS TO FXPAND
THE SIZF OF THF TABLF AT SOMF FUTURE TIMF. THIS IS BFCAUSF THE PROGRAM
WOULD HAUF TO BF MODIFIFD AT TWO DIFFFRFNT POINTS - THE TABRLE ITSELF,
AND THF PORTION OF THE ROUTINE THAT SIGNIFIES THF FND OF THF TARLF,
FITHFR THE COUNTER VALUF, OR THF ADDRESS POINTER VALUE.

A METHOD THAT IS GFNFRALLY MORF CONUFNIFNT IS T0O PLACE A “ZFRO WORD"
AT THF END OF THF TABLE AS VAS SHOWN FOR THF FXAMPLF TARLFES. THFN, AT
THFE START OF FACH NFW BLOCK, THF SFARCH ROUTINF CAN CONDUCT A SIMPLF
TEST TO SFE IF A ZFRO WORD IS PRFESENT INDICATING THF FND DOF THF TABLF.
(NATURALLY, IN SPFCIAL CASES WHFRF FOR INSTANCF A DATA BLOCK MIGHT CON-
TAIN A “ZFRO WORD*" AT THE FIRST LOCATION IN A BLOCK, THF MFTHOD WOULD
NOT BE APPROPRIATE AND ONE COULD RFSORT TO ONF DF THF ABOUF TFCHNIQUES).
THE METHOD OF USING A “ZFRO WORD"™ ALSO MAKFS IT FASY TO FXPAND THF SIZE
OF THE TABLF WITHOUT HAVING TO MODIFY ANY PART OF THF SFARCH ROUTINF.
MORE "RLOCKS' CAN SIMPLY BE ADDFD (REPLACING THFE FORMFR “ZFRO WORD") AND
A NFW ZERO WORD ADDFD AFTFR THE ADDITIONAL BLOCKS. THF SFARCH ROUTINF,
USING THF ALGORITHM PRESFNTED BRFLOW, WOULD THFN AUTOMATICALLY RF ABLF T0
FIND THF NEW “FNDING POINT' OF THF TABLF. THF FOLLOWING INSTRUCTIONS
COULD SIMPLY BE INSERTED AT THE POINT INDICATFED BY THF THRFEF ASTFRI SKS
IN THE SEARCH ROUTINES PRFSENTFD FARLIER.

MNFMONIC COMMFNTS
LAM /FFTCH FIRST CHARACTFR IN NFW RLOCK
N DA /*%%xTRICK TO SFT FLAGS AFTER LOAD OP*xx

JTZ NOSUCH /I1F ZFRO, END OF TEL, NO MATCH FOUND

4 - 24

THE ROUTINF “NOSUCH' RFFFRRED TO BY THE FEND OF TABLE TEST MIGHT BF
A SMALL ROUTINF TO DISPLAY A MFSSAGF TO THE OPFRATOR INDICATING THAT
THFRE WAS NO SUCH COMMAND IN THF TABLF. OR, THF JTZ INSTRUCTION MIGHT
BE REPLACED BY AN “RTZ'" INSTRUCTION THAT WOULD RFTURN THF PROGRAM TO:
THF CALLINR ROUTINF WHICH MIGHT SIMPLY DIRFCT THE PROGRAM BACK TO THF
ROUTINE WHICH FFTCHES A NFW STRING OF CHARACTFRS INTN THF INPUT BUFFFR.

ONE OTHFER PORTION OF THF SFARCH ROUTINE THAT HAS NOT BFFN TOUCHED
UWON 1S WHAT THF PROGRAM WOULD DO ONCF A MATCH WAS FOUND BFTWFFN THF
CHARACTERS IN THF INPUT BUFFFR AND A CONTROL WORD FIFLD IN THF TABLF.
THIS PORTION OF THE ROUTINF WAS RFFFRRFD TO AS "FOUNDW" IN THF PRFUVIQUS
EXAMPLES. “FOUNDW* WOULD SIMPLY BE A ROUTINF THAT WOULD ADVANCF THF
TABLF POIMTFR TN THF FND OF THF CURRFNT CONTROL WORD FIFLD (WHFRF THF
MATCH OCCURFD) AND THEN EXTRACT THE ADDRESS FROM THE ALDRFSS FIFLD TO
EINABLE THE PROGRAM TO JUMP TO THF LOCATION GIUFN RY THF ADDRFSS AND
PROCFED TO PFRFORM A SPECIFIC FUNCTION. THF ROUTINF "FOUNDW" AS GIVUFN
IN THE EXAMPLF THAT FOLLOWS CONTAINS AN INTRIGUEING PORTION THAT ILLUS-
TRATES ONF OF THF POWFRFUL ASPECTS ABOUT A COMPUTER. THAT IS, A PROGRAM
CAN RE DFSIGNEFD TO ALTFR THE FEXFCUTION OF THF PROGRAM ITSFELF! THIS IS
DONE IN THF EXECUTION OF THE "FOUNDW" ROUTINF WHFN THF PROGRAM EXTRACTS
THE "ADDRFSS' FROM THE TABLFE AND INSFRTS IT IN A PORTION OF THE PROGRAM
FOR THF ADDRFSS PORTION OF A “JUMP" INSTRUCTION WHICH THF PROGRAM THEN
PROCFEDS TO EXECUTF! CARF MUST BF TAKFN WHFN DFUFLOPING SUCH A PROGRAM
TO ENSURE THAT FEXACTLY THF RIGHT LOCATIONS ARF MODIFIFD BY THF PROGRAM.
THIS WILL BF APPARFNT AFTFR FXAMINATION 0F THF FOLLOWING ROUTINF.

MNFMOMIC COMMFNTS
FOUNDW, INR /CHFCK TO SFF 1F THF FIFLD CNTR 1S A4
DCR /INDICATING END OF THF CONTROL VWARD FIFLD
FNDFND, JTZ SETJMP /1F *@,*" SFT UP THF JUMP ADDRESS
CAL ADV /0THERWISE ADUVANCF TARLE POINTER
DCB /DECRFMENT FIFLD COUNTER
JMP FNDEND /AND KFEP LOOKING FOR FND OF FIFLD
SETJMP, CAL ADV /ADUVANCF PNTR TO 1ST PART (PACGE) OF ADDR
LDM /AND EXTRACT PAGFE ADDRFSS & STORF TFMP
CAL ADV ./NOW ADUVANCE PNTR TO LOC ON PG ADDRESS
LEM . /AND STORE IT TEMPORARILY :
LHI MMM /NOV SFT MFM PNTR (H & L) TO POINT TO THE
LLI NNN /2ND BYTE OF THE JUMP INSTR. COMING UP
LMF /PUT THF LOV ORDFR ADDR IN BYTE 2
INL /ADVANCF THE MEMORY POINTER
LMD /AND THE PAGF ADDR IN BYTE 3 OF THF JMP
JMP NNNMMM /NOW JUMP TO THF ADDR JUST LOADFD INTO
NNN AAA ~ /THESE TW0 (LOW ADDR)
MMM HBR ‘ /BYTES (PAGF ADDR)

THE ABOVE "FOUNDW"™ ROUTINE WAS FOR THE CASFE WHFRE THE TARLFE VAS IN
THE FIXED~FORMAT ORGANIZATION AND A GCOUNTFR USFD TO FIND THE END OF THE
CONTROL WORD FIFLD. HAD THF FRFF-FORMAT TABLE BEFN USFD, THEN THE BE-
GINNING PORTION OF “FOUNDW" WOULD BF APPROPRIATFLY MODIFIFD TO FIND THF
FND OF THE CONTROL WORD FIFLD USING THF TFCHNIQUFS ILLUSTRATFD IN THF
*NXWORD' PORTION OF THE PREUVIOUSLY ILLUSTRATED ROUTINES FOR THAT TYPF OF
TABLE.

SINCE THE DISCUSSION OF HANDLING TABLFS HAS FXTENDFD OVFER QUITE A
FEW PAGES OF TEXT AND A VARIFTY OF ROUTINES HAVE BEEN PRESENTED SHOVWING
VARIOUS PARTS OF THF PROCESS, IT MIGHT BE BENEFICIAL TO THF READER TO

4 - 25

PRESENT A NICFLY PACKAGFD SUMMARY RY PRESENTING TWO TABLF SFARCH 'ROUT-
INES. ONF USING THF FIXFD-FORMAT TABLE COUPLEFD WITH AN INPUT CHARACTER
STRING BUFFER (THAT IS CLFARED PRIOR TO ACCFPTING A NEW CHARACTFR STR-
ING). THE OTHFR USING A FRFF-FORMAT TABLF (UERSION #?) COUPLFD WITH AN
INPUT BUFFER THAT 1S DELIMITED BFY A CARRIAGF-RFTURN. (THF ACTUAL ROUT-
" INE THAT ACCEPTS CHARACTFRS FROM AN I1/0 DFVICF WILL SIMPLY BF NOTFD AS
A SUBROUTINFE CALL IN THF FOLLOWING FXAMPLFS. THAT ROUTINF WNULD BF A
FUNCTION OF THF 1/0 DEVICF USED AND TYPICAL ROUTINFS WILL RE CONSIDNERFD
IN THE CHAPTFR ON 1/0 PROGRAMMING IN THIS MANUAL).

MNEMONIC COMMFNTS

/MAIN PROGRAM CALLING SFQUFNCF
NEXCMD, CAL CLEARB /CLFAR THF INPUT CHAR STRING BUFFFR
CAL INCTRL /FFTCH THF COMMAND STRING FM 'INPUT DFVICF
CAL SEARCH /SFARCH TARLF @& PFRFORM COMMAND INPUTTED
JMP NEXCMD /RFPEAT LOOP FOR NFXT COMMAND BY OPFRATOR

/
/CLEAR INPUT BUFFFR SUBROUTINF
CLEARB, LHI 903 /SET PAGF PNTR TO START OF RUFFFR
LLI 372 /ASSUMMFD TO BF AT LOC 377 ON PAGF Aa3
‘LBI @AAe /SFT CLFARING COUNTEFR
, XRA /CLFAR THFE ACCUMULATOPR
CLFARN, LMA /PUT AA@ INTO BUFFFR POSITION
INL /ADUANCE BUFFER POINTFR
DCR /DFCRFMFNT COUNTER
JFZ CLFARN /IF NOT THROUGH, PUT #4Ad IN NFXT LOCATION
RET /WHFN THROUGH RFTURN TO CALLING ROUTINF
/
YFFTCH INPUT COMMAND STRING
INCTRL, LHI @@3 /SFT PAGF ADDR OF START OF CHAR BUFFFR
LLI 372 /SET LOC ON PAGF OF START 0OF CHAR BUFFFR
LBl Ade¢ /SET CNTR FOR MAXIMUM SIZF OF BUFFFR
INCHAR, CAL INPUT /CALL SUBROUTINF TO INPUT CHARACTER FM 1/0
CPI 21¢ /SEF 1F CHARACTER WAS A "C-R"
RTZ ' /1F S0, MAKF NO ENTRY
CHECK, INR /EXFRCISFE RFGISTER B (CNTR) TO SFT FLAGS
DCR /ACCORDING TO NRIGINAL CONTFNTS
: JTZ INCHAR /IGNORFE NEW CHARACTER IF CNTR WAS Q4@
! DCB /0THERVWISFE DFCRFMENT VALUFE OF CNTR
LMA / /AND STORF CHARACTER IN RUFFER
CAL ADV /ADUANCE BUFFFR POINTFR
JMP INCHAR /AND LOOP TO FETCH NFXT CHARACTFR FROM 1/0
/

/TABLF SFARCH ROUTINF - CNOMPARFS CHARACTFR
/STRING IN INPUT BUFFFR AGAINST FNTRIFS IN
/THF CONTROL WORD FIFLDS OF FIXFD-FNRMAT
/TABLF (SIX LNCATIONS IN THF FIFLD)

SEARCH, LDI 042 /SFT POINTFRS TO STARTING ADPDPR OF TARLF
) LEI GG“ / L1} " 1 1) " " " "
INITBF, LHI @a3 /SET POINTFRS TO START OF CHAR BUFFFR
\ LLI 372 / (1) (1] (1] *" (1] ”"” "
LBl @@6 /SET CONTROL WORD FIELD SIZF COUNTFR
CMATCH, LAM /GET CHAR FM BUFFER (FORM CHAR MATCH LOOP)
CAL ADV /SUBROUTINF TO'ADUANCE BUFFER POINTER
CAL SWVITCH /FXCHANGF BUFFFR PNTR FOR TABLF POINTFR
CPM /SEF 1F HAVE A CHARACTFR MATCH CONDX

JFZ NXWORD /IF NO MATCH, GO TO NEXT BLOCK IN TABLF

4 - 26

MNFMONIC COMMENTS

- e w W oy - - s e e W W

DCH /1F MATCH, DECR FIELD SIZF COUNTER
JTZ FOUNDW /1F CNTR = @, ALL CHARS IN FIFLD MATCHFD
CAL ADV /CHAR MATCH BUT NOT FINISHED, ADV PNTR

CAL SWITCH /EXCHANGF TABLFE PNTR FOR BUFFFR POINTFR
JMP CMATCH /LOOP TO SEE IF NFXT CHARACTFR MATCHES

NXWORD, DCBR /DFCR FIELD SIZE CNTR TO FIND FND OF
JTZ SETNXW /CURRENT CONTROL WORD FIFLD, JMP WHFEN FND
CAL ADV /0THFRVISFE ADVANCE TABLF POINTER
JMP NXWORD /AND LOOP TO LOOK FOR END OF CW FIFLD
SFTNXW, CAL ADV /AT END OF CONTROL WORD FIELD NFFD TO
CAL ADV /ADUANCE PNTR OUFR THE 'ADDRESS" FIELD
CAL ADV /TO THE START OF NFXT CONTROL WORD FIELD
. LAM /AND THEN FFTCH 1ST CHAR IN NEW BLOCK
NDA /SET THE FLAGS AFTER THE LOAD OPFRATION
RTZ /RETURN IF END OF TABLE (NO MATCH FOUND)

CAL SVWITCH /OTHERWISE FXCHANGE TABLE PNTR FOR RUFF
JMP INITBF /AND FORM LOOP TO CHFCK NFXT BLOCK IN TBL

FOUNDW, CAL ADV /ADUANCE PNTR T0O 1ST PART (PAGE) OF ADDR

LDM /AND FXTRACT PAGE ADDRESS TO STORE TEMP
CAL ADV /ADUANCE PNTR TO LOC ON PG ADDRESS
LEM /AND STORFE IT TEMPORARILY
LHI MMM /NOW SET MEM PNTR (H & L) TO POINT TO THE
LLI NNN /2ND BYTE OF THFE JUMP INSTR. COMING UP
LME /PUT THE LOW ORDER ADDR IN BYTFE 2
INL /ADUANCE THF MEMORY POINTER
LMD /AND THE PAGE ADDR IN BRYTE 3 OF THE JMP
JMP NNNMMM /NOW JUMP TO THE ADDR JUST LOADFD INTO

NNN AAA ' /THESE TW0 (LOV ADDR)

MMM BBB /BYTES -(PAGE ADDR)

/

/AT THE CONCLUSION OF THE ROUTINE THAT
/THE “SEARCH" ROUTINF JUMPS TO WHFN A
/JMATCH 1S FOUND, A "RFT"™ INSTRUCTION
/SHOULD BE EXECUTFD TO RETURN THE PROGRAM
/TO THE MAIN CALLING ROUTINF

/

THE SUBROUTINFS "SWITCH" AND *ADV*' HAVF BFEN DETAILED FARLIER IN
THIS CHAPTER AND ARFE NOT REPEATFD IN THE ABOVF FXAMPLF.

THE NFXT EXAMPLE IS FOR THF CASF WHERE THF INPUT BUFFER IS DFLIMITFD
BY A CARRIAGE~RFTURN AND A FREF-FORMAT TABLE (O0F THE TYPF ILLUSTRATED AS
VERSION #2) IS USEFED.

MNEMONIC COMMENTS

/
/MAIN PROGRAM CALLING SFQUENCF
NEXCMD, CAL INCTRL /FETCH THF COMMAND STRING FM INPUT DEVICF
CAL SEARCH /SFARCH TABLE & PFRFORM COMMAND INPUTTFED
JMP NEXCMD /REPEAT LOOP FOR NEXT COMMAND BY OPFRATOR
/
/FETCH INPUT COMMAND STRING |
INCTRL, LHI @@3 /SFT PAGFE ADDR OF START OF CHAR BUFFFR
LLI 371 /SET LOC ON PG OF START OF BUFF (N+1)

4 - 27

NNN
MMM

MNEMONIC

LBI
INCHAR, CAL
CPI1
JFZ
LMA
RET
CHECK, INB
DCB
JTZ
DCB
LMA
CAL
JMP

SEARCH, LDI
LFI
INITBF, LHI
LLI
CMATCH, LAM
CPl
JTZ
CAL
CAL
cPM
JFZ
CAL
CAL
JMP
LCHAR, CAL
LAM
NDI
JTZ
NXWORD, LAM
NDI
JTZ
CAL
JMP
SFTNXW, CAL
CAL
LAM
NDA

RTZ~

CAL
JMP
FOUNDW, LDM
CAL
LEM
LHI
LLI
LMF
INL
LMD
JMP
AAA
BBB

206

INPUT
218 -
CHECK

INCHAR

ADV
INCHAR

eae
ana
P83
371

215
LCHAR
ADV
SWITCH

NXWORD
ADV

SWITCH
CMATCH
SWITCH

300
FOUNDW

300
SETNXW
ADV
NXWORD
ADV
ADU

SWITCH
INITBF

ADV

MMM
NNN

NNNMMM

COMMENTS

-/SET CNTR FOR MAX # USABLF CHARACTERS

/CALL SUBROUTINE TO INPUT CHARACTFR FM 1/0
/SEE IF CHAR WAS A “C=-R"

/1F NOT, CHECK FOR BUFFER OVERFLOW

/IF YES, STORE "C-R" AS LAST CHAR IN BUFF

/AND RETURN TO CALLING ROUTINF

/EXFRCISE RFGISTFER B (CNTR) TO SFET FLAGS
/ACCORDING TO ORIGINAL CONTENTS

/1IGNORF NFW CHARACTFR IF CNTR WAS 0@Q
/OTHERWISE DECRFMENT VALUFE OF CNTR

/AND STORE CHARACTER IN BUFFER

/ADVANCE BUFFER POINTFR

/AND LOOP TO FETCH NEXT CHARACTER FROM 1/0
/

/TABLE SEARCH ROUTINE

/SET POINTERS TO STARTING ADDR OF TABLF

VAL (1] " L] (1] " .
/SET POINTFRS TO START OF CHAR BUFFFR
VARL (1] " (7] (1) 1] "

/GET CHAR FM BUFFFR (FORM CHAR MATCH LOOP)
/SEFE IF SYMBOL FOR "“C-R"

/1F SO0, GO TO LAST CHARACTFR ROUTINF
/0THFRWISE ADUANCF BUFFFR PNINTER
/EXCHANGE BUFFFFR POINTER FOR TAELE PNTR
/SEE IF HAVE MATCH CONDITION IN TABLF
/1F NOT, GO TO NEXT BLOCK IN TABLF

/1F YES, ADVANCE TABLF POINTER

/EXCHANGE TABLF PNTR FOR BUFFFR POINTFR
/LOOP TO TEST NFXT CHARACTER

/EXCHANGF BUFFFR POINTER FOR TABLE PNTR
/TEST FOR END OF CONTROL FIFLD

/BY SFFEING 1IF TWO MSB'S ARE BOTH “a“

/1F SO, HAVF FOUND MATCHING CONTROL WORD
/TEST FOR END OF CONTROL FIFLD

/BY SEFING IF TWO MSB'S ARF BOTH "@*

/1F SO0, HAVF MARKFR, GO TO NEXT BLOCK
/O0THERWISE, ADVANCE TABLE POINTER

/AND CONTINUE LOOKING

/AT FND OF CONTROL VWORD FIFLD NFFD TO
/ADUANCE PNTR OVFR THE Y“ADDRESS" FIFLD
/AND THEN FETCH 1ST CHAR IN NFW BLOCK
/SET THE FLAGS AFTFR THE LOAD OPFRATION
/RETURN IF FND OF TABLF (NO MATCH FOUND)
/0THERWISFE FXCHANGE TABLE PNTR FOR BUFF
/AND FORM LOOP TO CHFCK NFXT BLOCK IN TBL
/EXTRACT PAGFE ADDRESS AND STORF TFMP
/ADUVANCFE TARLE POINTER

//STORE LOC ON PAGF TFMPORARILY

/NOVW SET MEM PNTR (H & L) TO POINT TO THF
/2ND BYTE OF THE JUMP INSTR. COMING UP
/PUT THF LOV OFPDER ADDR IN BYTE 2

/ADVANCE THE MEMORY POINTFR

/AND THE PAGE ADDR IN BYTE 3 OF THF JMP
/NOW JUMP TO THFE ADDR JUST LOADED INTO
/THESE TW0 (LOW ADDR) '

/BYTES (PAGE ADDR)

/

/7AFTER PROCESSING CMND, RETURN TO MAIN RTN

4 - 28

SORTING OPFRATIONS

ANOTHFR PARTICULARLY POVWFRFUL CAPABILITY OF A MINI-COMPUTFR IS ITS
ABILITY TO RAPIDLY MANIPULATF AND ORGANIZF INFORMATION. A TYPICAL OP~
FRATION IS TO SORT DATA INTO SOMF DESIRED FORM SUCH AS TO ARRANGF A LIST
OF NAMES INTO ALPHARETICAL ORDFR, OR PNSSIBLY TO ARRANGF A LIST OF AD-
DRESSES BY ZIP CODF ZONF NUMBRFRS.

THE KFY INGREDIENT IN DFUFLOPING A PROGRAM TO PFRFORM SORTING OPFR-
ATIONS IS TO PLAN THF ORGANIZATION OF THF STORAGF OF THF DATA IN MFMORY
SO THAT THE OPFRATING PORTION OF THF PFOGRAM IS RFLATIUVFLY SIMPLF. A
SIMPLF TECHNIQUF INVOLVFS JUSTIFYING THE DATA INTO FIFLDS SO THAT SIMPLF
COMPARING ALGORITHMS CAN RF UTILIZED.

AN AN EXAMPLFE OF A SORTING PROGRAM, ASSUMF ONF HAD A L1ST OF NAMFS
THAT ONE WISHFD TO HAVF THF COMPUTFR PLACF IN ALPHABFTICAL ORDIPFR. A HY-
POTHETICAL LIST MIGHT CONSIST OF THE FOLLOWING NAMES:

JONFS, R. M.
SMITH, C.
WILLIAMS, P. K.
DAVIS, Z. T.
THOMPSON, A« Re.
THOMAS, F.
ALLISON, A. B.
SMITH, T. P.

IT CAN BRF SUPPOSFD THAT THE NAMFS WILL BF INPUTTFD AND STORFD IN
THE COMPUTFR IN THF ORDER SHOWN ARQUVFE. THF FIRST OBJFCTIVF NF THF PRO=-
GRAM WOULD BF TO HAVE THE INCOMING NAMES BF STORFD IN A MANNFR THAT
WOULD RF FASY FOR THE SORT ROUTINF T0 OPERATF ON. A GOOD TFCHNIQUE TO
USE WOULD BE TN SFT UP “FIFLDS"™ FOR THF INFORMATION RFING STORFD. IN
THIS CASE ONF WOULD WANT TO SFT UP THRFFE FIFLDS. ONF FOR THF LAST NAMF,
ONF FOR THE FIRST INITIAL, AND ONE FOR THE MIDDLF INITIAL. THF SIZF OF
FACH FIFLD WOULD NEFD TO BF DETERMINFD. FOR THF FXAMPLF LIST SHOWN
ABOVE THFE LONGEST LAST NAME FNCOUNTERFD HAS FIGHT LFTTERS SO THF FIELD
FOR THF LAST NAMFS MUST HAUF SPACFE FOF AT LFAST FIGHT CHARACTFRS, SINCF
ONE COMPUTER "WORD'™ IN MEMORY WILL STORF THF CODF FOR ONF LETTFR IN THF
NAME. HOWEVEFK, IN ORDFR TO MAKF THF PROGRAM BF MNRF GENFRAL PURPOSE.,
ONE. COULD SELFCT A LONGER FIELD LFENGTH TO ALLOW LONGER NAMFS TO BF STOR-
ED. FOR ILLUSTRATIVE PURPOSES, A LAST NAMF FIFLD OF a4 (DFCIMAL) UNITS
WILL BE PLANNFD. (NOTF THAT THIS IS A PURFLY ARRITRARY SFLFCTION.) THF
FIFLD LENGTH FOR FACH INITIAL WOULD NNLY HAVE TO BF | MFMORY WORD. THUS
THE TOTAL LFNGTH OF THE THREE FIELDS MAKING UP A "BLOCK" WOULD RF 1é&
(DECIMAL) OP 2¢# OCTAL MEMNRY WORDS. NOTFE THAT IN SFLECTING THF FIFLD
LFNGTHS FOR THIS FXAMPLE, SPACE WAS NOT INCLUDFD FOR THF COMMA (,) SIGN
AFTER THE LAST NAMF, OR THE PERIODS (.) AFTFR FACH INITIAL. THIS IS BE-
CAUSE SINCE THESE SIGNS ARF REPITITIOUS ONE CAN SAVE VALUABLF MEMORY
SPACE. BY DFLETING THESE MARKS DURING THF INPUT OPFRATION, AND THEN SIM=-
PLY ADD THEM BACK IN AT THE APPROPRIATE POINT WHFN THF DATA IS DISPLAYED
BY THE OUTPUT DEVICE.

THF INPUT ROUTINF WQULD NFED TO ALWAYS START INSFRTING CHARACTFRS AT
THE BEGINNING OF A FIFLD- AND THEN INSFRT SPACFS OR SOMF SPFCIAL CODF
(SUCH AS A ##@ WORD) IN ALL OF THF UNUSFD MEMORY WORDS IN A FIFLD SO
THAT THE NAMES COULD BE CONSIDERFD AS BEING '"LFFT JUSTIFIFD" IN EACH
FIFLD. THE REASON FOR THIS WILL BF MADF CLFAR SHORTLY.

THF. FOLLOWING ROUTINF MIGHT BF USFD TO ACCFPT INFORMATION FROM A
KFYBOARD DFVICE AND STORE THF NAMFS IN MFMORY IN THE DESIRFD FORMAT.

4 - 29

NNEMONIC

ACCEPT,

NOTFND,

CXPAGE,

FNDEND,

NOTDON,

es NEXTIN,

HAVEGR,

HRAVECHM,

NEXBLK,

s* FULYLD,

LRI

‘LLI

LAM
NDA
JTZ
LAL
ADL
LLA
€TZ
LAl
EPH
JTZ
JMP
LB!
CAL
€Pl
JFZ
XRA
LMA
RET
€Pl
JTZ
€Pl
JTZ
€P1
JTZ
LMA
DEB
INL
€AL
eP1
JTZ
6Pl
JTZ
LMA
INL
DEB
JTZ
JNP
XRA
LNA
LAL
NDI
cPl
JTZ
INL
JMP
XRA
LMA
INL
DEB
JTZ
JNP
INL
JNP
CAL
cP1
JTZ
€SPl

004
200

FNDEND
020

INCRR
g1e

TOMUCH
NOTFND
816
INPUT
252
NOTDON

218
FNDEND
256
FNDEND
284
FNDEND

INPUT
218
HRAVECER
254
HRAVECHM

FULFLD
NEXTIN

o117
817
NEXBLK

HAVEEGR

FULFLD
RAVECM

EKPAGE
INPUT
254
FULFLD
218

COMMENTS
Z7INITIALIZE NAMES STORAGE AREA PNTR
/TO START OF STORAGE AREA
/NOW FETEHR 1ST LOCATION IN A BLOEK
/SET FLAGS AFTER LOAD OPERATION
/AND TEST FOR END OF STORAGE AREA
/1F NOT END, THEN ADVANCE POINTER
/TO NEXT BLOCK BY ADDING 20 OCTAL
/TO MEM PNTR ADDRESS & RESTORE PNTR
/ADVANCE PAGE ADDR OF PNTR IF REQ®D
/NOV TEST TO SEE IF STILL
/1IN STORAGE AREA (PAGES @4 -« @7 O€TAL)
/0PTIONAL DISPLAY MSG IF STORAGE FILLED
/KEEP LOOKING@ FOR END OF STORAGE AREA
/SETUP LAST NAMES FIFLD €OUNTER
/AND FETER A CHARACTER FROM INPUT RTN
/CHECK FOR = CODE (FINISRED INDICATOR)
/PROCEED IF NOT = CODE
/1F & CODE, THEN PLACE A 000 WORD AT
/START OF BLOCK AS AN ENDING MARKER
/AND EXIT ROUTINE
/TEST FOR CARRIAGE-RETURN CODE
/AND IGNORE IF 1ST CHAR IN FIELD
/TEST FOR PERIOD (o) CODE
/AND 1GNORE IF 1ST €RAR IN FIELD
/TEST FOR COMMA (,) CODE
/AND 1GNORE IF 1ST €HAR IN FIELD
/1F NONE OF ABOVE, PUT €HAR IN FIELD
/DECREMENT THE FIELD SIZE €COUNTER
/ADVANCE THE STORAGE POINTER
/AND FETEK THE NEXT CHAR IN LAST NAME
/TEST FOR GARRIAGE-RETURN
/FINISRED BLOCK IF HAVE €«R HERE
/TEST FOR GOMMA
/FINISHED LAST NAME FIELD IF HAVE €OMMA
/0THERVISE PLACE CHAR IN LAST NAME FlELD
/ADVANCE THE STORAGE POINTER
/DECREMENT LAST NAMES FIELD SIZE €NTR
/AND SEE IF FIELD IS FILLED
/1F NOT, GET NEXT CHARACTER IN LAST NAME
/1F HAVE €«R, PUT A 008 IN MEM WORDS
/FOR REST OF CURRENT BLOCK
/FETEK MEMORY POINTER TO ACCUMULATOR
/MASK OFF 4 MOST SIGNIFICANT BITS
/TEST FOR END OF BLOEK
/PREPARE FOR NEXT BLOCK 1F DONE
/OTHERVISE ADVANCE POINTER
/AND CONTINUE PUTTING 060 WORDS IN BLOEK
/1F HAVE COMMA, PUT 048 WORDS IN REST
/0F "LAST NAME™ FIELD
/ADVANECE FIELD POINTER
/DECREMENT “LAST NAMES™ FlELD ENTR
/G0 PROCESS INITIALS WHEN DONE
/ELSE CONTINUE TO ELEAR REST OF FIELD

. /ADVANCE MEM PNTR TO START OF NEXT BLOCK

/AND PREPARE FOR NEXT NAME ENTRY

/GET CHARACTER FOR 1ST INITIAL OF NAME
/TEST FOR COMMA o

/1GNORE CEOMMA AT TRIS POINT

/TEST FOR €=R

4 = 30

JFZ SAVINl /1F NOT €-Ry, STORE CHARACTER

XRA /BUT, 1IF C=R, PUT IN 800 WORD
LMA /FOR BOTH INITIAL FIELDS
INL /BY ABOVE INSTRUCTION, THEN ADVANCING PNTR
JMP SAVINZ2 /AND THREN FOLLOVING THIS JUMP COMMAND
SAVIN1, LMA /STORE 1ST INITIAL IN 1ST INITIAL FIELD
INL v /THEN ADVANCE STORAGE POINTER
ss INITF2, GAL INPUT /L00X FOR 2ND INITIAL
GPl 2356 /CRECK FOR PERIOD
JTZ INITF2 /IGNORE A PERIOD
€Pl 218 /TEST FOR €eR :
JFZ SAVIN2 /1F NOT €-R THEN STORE 2ND INITIAL
XRA /BUT 1lF WAS €-R, PLACE 08¢ WORD IN MEM
SAVIN2, LMA /STORE THE CHRARACTER OR @000 SUBSTITUTE
INL /ADVANCE POINTER TO NEW BLOCK
JMP CKPAGE /AND CONTINUE LOADING IN NAMES
INEGRH, INH /SUBROUTINE TO INCREMENT REGISTER "H"
RET /AND RETURN TO CALLING ROUTINE

THE ABOVE ROUTINE HAS A NUMBER OF SPECIAL FACTORS INCLUDED IN IT TO
ILLUSTRATE GCONSIDERATIONS THAT PROGRAMMERS MUST LEARN TO TAKE INTO A€~
COUNT VHEN DEVELOPING SUCH PROGRAMSe SOME OF THESE FACTORS ARE POINTED
OUT IN THE FOLLOVING DISCUSSION OF THE ABOVE ROUTINE,

THE FIRST FUNCTION THE ABOVE ROUTINE PERFORMS IS TO LOOK FOR THE
WEND®™ OF THE NAME STORAGE AREAe TKIS IS DONE BY TESTING THE FIRST CHAR=
ACTER IN EACH "BLOCK™ TO SEE IF IT CONTAINS A 008 WORDe AS SHOWN LATER
"IN THE ROUTINE, A 063 WORD WILL BE ENTERED AT THAT LOCATION WHENEVER THKE
OPERATOR HAS FINISHED ENTERING A SERIES OF NAMES THAT WILL BE SORTED.

IT SROULD BE NOTED THAT WHENEVER IT IS DESIRED TO "INITIALIZE™ THE NAME
STORAGE AREA SO THAT IT APPEARS TO THE PROGRAM THAT THE STORAGE AREA 1S
EMPTY» A SUBROUTINE THAT VILL PLACE A 680 VORD AT PAGE 04 LOCATION @20
SHOULD BE EXEGUTEDe (THAT SIMPLE SUBROUTINE 1S NOT SHOWN ABOVE)e THE
ABOVE ROUTINE ALSO MAKES A TESTs EACH TIME THE MEMORY POINTER IS ADVAN-
€ED TO A NEV BLOCK, TO DETERMINE WHETHER THE POINTER IS STILL IN THRE
ALLOTED NAMES STORAGE AREAe FOR THIS EXAMPLE THRE STORAGE AREA WAS PLAN-
NED TO RESIDE IN LOCATIONS FROM PAGE 24 LOCATION 60@ TO PAGE 07 LOCATION
377« SHOULD TRE ROUTINE GO BEYOND THE DESIGNATED STORAGE AREA BEFORE AN
END OF “TABLE™ MARKER 1S FOUND, THRE ROUTINE WOULD JUMP TO A ROUTINE
TERMED "“TOMUCH™ WHICH MIGHT PRINT OUT A MESSAGE TO THE OPERATOR INDICA~
TING THAT THE STORAGE AREA WAS ALREADY FILLED WITH NAMES. (THAT ROUTINE
1S NOT INCLUDED IN THE EXAMPLE ABOVE)s THE REFERENCE TO THRE ROUTINE
“TOMUCH™ 1S NOTED BY AN ASTERISK IN THE ABOVE PROBRAM SOURCE LISTING,

VHEN THE ROUTINE HAS FOUND THE END OF THE NAMES STORAGE AREA, INDl-
CATING WHERE ADDITIONAL INGOMING NAMES CAN BE STORED (PROVIDED THE STORe
AGE AREA HAS NOT BEEN EXRAUSTED) THE ROUTINE THEN PROCEEDS TO ACCEPT
DATA FROM AN INPUT SUBROUTINEs TRE FIRST CHRARACTER ACCEPTED AT THE
START OF A NEV NAME (BLOCK) IS TESTED TO SEE IF IT IS A SPECIAL GCODE
(AN ASTERISK IN TRIS €ASE) THAT THE OPERATOR WOULD USE TO SIGNIFY TO THE
PROGRAM THAT ALL TRE DESIRED NAMES HAD BEEN ENTEREDe, IF THIS CODE WAS
"RECEIVED TREN A 600 CODE WOULD BE PLACED IN THE FIRST MEMORY WORD FOR
THE "BLOCK™ FOR THE END OF "TABLE™ MARKER AS MENTIONED ABOVEe: THE ROUT~
"INE WOULD THEN EXIT THE ABOVE ROUTINE:

IF THE FIRST CHARACTER IN A NEVW BLOCK IS NOT THE SPECIAL "“END™ CODE,
A CHRECK IS MADE TO SEE IF IT IS A CARRIAGE-RETURN, COMMA, OR PERIOD
S16Ms ANYONE OF THOSE GODES WOULD BE IGNORED AS TKE FIRST GHARAGTER IN
A BLOGCK FOR THE FOLLOWING REASONS. ' THE REGEIPT OF A CARRIAGE~-RETURN OR
COMMA WOULD OBVIOUSLY BE INVALID AT' THIS POINT BEGAUSE NO LETTERS FOR A
NAME HAVE BEEN ENTERED AND THE ACCEPTANGCE OF EITHER OF THOSE OPERATORS

4 - 31

VOULD CAUSE THE LAST NAME FIELD TO BE COMPLETELY FILLED VITH 0080 WORDS =
INCLUDING THE FIRST LOCATIONe THIS ACTION WOULD RESULT IN AN EFFECTIVE
END OF STORAGE ARFA MARKER BEING PLACED AT THE LOCATION OF THE CURRENT

" BLOGKe THE RECEIPT OF A PERIOD SIGN WOULD MOST LIKELY BE THE PERIOD
SIGN FROM THE LAST INITIAL FIELD ENTERED (WHICK IS TO BE IGNORED) AND

- CERTAINLY WOULD NOT BE A VALID LETTER FOR THE BEGINNING OF A LAST

NAME. THE INCORPORATION OF THESF CHFCKS ACT AS SAFEGUARDS FOR HUMAN OPe
FRATOR FRRORS AND ARE ANOTHER EXAMPLE OF “HUMAN ENGINFERING™ FACTORS IN
THE DEVELOPMENT OF A PROGRAM,

IF THE FIRST CHARACTER IS NOT ONE OF THE ABOVE IT IS STORED IN THE
FIRST LOCATION IN THE "LAST NAME FIlELD."™ AFTER THE FIRST CHARACTER HAS
BEEN STOREDs EACH CHARACTER RECEIVED FROM THE INPUT ROUTINE IS TESTED TO
SEF IF IT IS A CARRIAGE-RETURN OR COMMA, IF IT IS A COMMA, SIGNIFYING
THE END OF THE "LAST NAME FlELD,"™ ANY UNFILLED LOCATIONS IN THE FIELD
ARE FILLED VITH ZFEROS AND THE PROGRAM PROCEEDS TO THE "INITIAL™ FIELDS.
HOWVEVER, IF A CARRIAGE=-RETURN IS NOTED, THE PROGRAM FILLS THE ENTIRFE REe~
MAINDER OF THE CURRENT BLOCK, INCLUDING THE “INITIAL"™ FIELDS WITK ZERO
WORDS AS A CARRIAGE-RETURN SIGNIFIES THE COMPLETION OF A NAME ENTRY,

AN ADDITIONAL SAFEGUARD 1S BUILT INTO THE ROUTINE IN THIS SECTION TO
PREVENT TOO MANY EHARACTERS FROM BEING ENTERED INTO THE LAST NAME FIlELD.
WHEN THE FIELD HAS BEEN FILLED, THE POINTER IS NOT ADUVANCED UNTIL A.
CARRIAGE-RETURN OR COMMA IS RECE!VED,

ONCE THE LAST NAME FIELD HAS BEEN PROCESSED, THE ROUTINE VWILL ACCEPT
ANY MORE CHARAETERS AS INITIALS, BUT IGNORES THE PERIOD SIGNS AFTFR THE
INITIALSe WHEN AN ENTIRE NAMFE HAS BEEN PROCESSED THE PROGRAM THEN LOOPS
TO ACCEPT ANOTHER NAME BLOCK AFTER CHECKING TO MAKE SURF THE STORAGF
AREA IS NOT FILLED AND REPFATS THE PROCESS DESCRIBED.

THE ABOVE ROUTINE COULD BE MODIFIED TO INCLUDE AN OPERATOR CONVEN-
IENCE « THE ABILITY TO ERASE A CURRENT ENTRY lF THE OPERATOR MADE A MIS~
TAKE WHILE TYPING IN A NAME, THIS COULD BE DONE BY EXECUTING A ROUTINE
IMMEDIATELY AFTER THE POINTS DESIGNATED IN THE PROGRAM BY A DOUBLE AST=
ERISK (#%), THE ROUTINE COULD BE USED TO GHECK FOR A SPECIAL " ERASE"
CODEe™ 1IF THIS CODE WAS DETECTEDs THE PROGRAM COULD RESET THE POINTERS
TO THE START OF THE CURRENT NAME BLOEK AND ALLOW RE=ENTRY OF THE NAME.
SUCH A ROUTINE MIGHT BF AS SHOWN HERES

MNFMONIC COMMENTS

ERRORT, CPl 377 /CHECK FOR A "RUBOUT"™ CODE
JFZ AVAY /EXIT ROUTINE IF NOT A “RUBOUT"
LAL /1F RAVE A "RUBOUT™ THEN FETEH POINTER
NDl 360 /REMOVE 4 LEAST SIGNIFICANT BITS
LLA /AND RESTORE POINTFR TO START OF BLOCK
JMP FNDEND /JUMP TO RE-ENTFER NAME

AVAY, L4 2] /%%%x NEXT INSTRUCTION IN CURRENT SEQUENCE

WHILE THE PREVIOUS ROUTINE SEEMS A BIT LONG AT FIRST GLANCE, ONE
MUST REMEMBER THAT IT IS DOING QUITE A FEV FUNCTIONS AND IS QUITE GENe
ERAL PURPOSE IN OVEReALL DESIGN. THE PROGRAM ALLOVWS ONE TO BUILD UP A
LIST OF NAMES IN A DESIGNATED ARFA OF MEMORY, PLACING THE DATA IN FOR~
MATTED FIELDS, CHECKS FOR SELECTED OPERATOR ERRORS, AND BOUNDS OR LIMITS
THE STORAGE AREAe. THE PROGRAM, USING THE BASIC CONCEPTS PRESENTEDs CAN
BE MODIFIED TO SERVE AS A BASIC STRUCTURE FOR INPUTTING A VARIETY OF
TYPES OF DATA INTO JUSTIFIED FIELDS OF DATAe TO PROVIDE A CLEAR MENTAL
PICTURE OF HOVW THE LIST OF NAMES GIVEN SEVERAL PAGES FARLIER WOULD AP=-
PEAR WHEN INPUTTED TO MEMORY USING THE PROGRAM ILLUSTRATED, A DIAGRAM

4 =« 32

SHOWING MEMORY LOCATIONS AND THFEIR CONTENTS 1S PROVIDFD BFLOV SHOWING
HOW THE DATA WOULD LOOK WHEN ORGANIZED RY THF AROUF PROGRAM. THE DIAG-

RAM SHOWS APDRESSFS (ON PAGE @4) WITH THE CONTENTS OF THF MFMORY LOCA-
TION SHOWN BENFATH 1T, FOLLOWFD RY THF ALPHARFTICAL RFPRESFNTATION FOF
THFE CODF WHFRF APPLICARLF.

ADDR: @0V ARl AR2 GB3 004 GAS A6 A7 A1V A1) @12 A13 Ala ALS A16 17
CONT: 312 317 316 3@5 323 000 000 000 00@ AR A0A 008 AAA ARG 322 315
LFTR: J 0 N F S - - - - - - - - - P M

ANDR: Q@20 @21 422 @23 (24 A25 A2& (A27 A3G A1 A22 B33 A34 A35 ARF AlT7
CONT: 323 315 311 324 310 420 A0@ P00 00 ¥R AAAR AGA AW AGY 3A3 A0A
LETR: S M I T H - - - - - - - - - C -

ADDR: @4 Q4] Q42 D43 G4s G4 BLE 4T ASA OS] @52 PR3 PG4 ASE ARK A&7
CONT: 327 311 314 314 311 381 315 3923 @¢@ PRV AGA ARG AAG AGA 390 313
LFTRt ¥ 1 L L I A M S = = = = = = P K

W

ADPR: (6@ A€l BR2 PE3 V6L PES P66 BET G760 B7) @72 AT3 BT74 A15 AT AT7
CONT: 304 3@1 326 311 323 000 006 GG GAA AP AAA ARG AMA AAR 332 324
LFTR: n A v I S - - - - - - - - - z T

ADDR: 100 101 102 103 104. 105 106 107 11@ 111 112 113 114 115 116 117
CONT: 324 31@ 317 315 320 323 317 316 200 408 000 AG0 AAG AA@ 3Rl 39?2
LETR? T H 0 M P s 0 N - - - - - - A R
ADDR: 120 121 122 123 124 125 126 127 13@ 131! 132 133 134 135 136 137
CONT: 324 310 317 315 301 323 900 A60 00 A3 0@ A0 A0A AAn 3AF KAR
LETR: T H 0 M A S - - - - - - - - F -

ADDR: 14@ 14l 142 143 144 145 146 1a7 150 181 182 18R |64 |85 |FR | F7

CONT: 31 314 314 311 323 317 31¢ 809 400 000 4RO A0A A0A 400 3A1 342
LE TR: A L L I S 0 N - - - - - - - A R

ADDR: 1668 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177
CONT: 323 315 311 324 310 600 000 A0A MGG A3 GAS GG AWV AOA 3P4 323
LFTR: S§ M I T H = = = = =« « = = = T P

ADDR: 204 281 202 283 204 285 206 287 210 211 212 213 214 215 216 217
CONT: VO %,kx sk kakk Rk okoakok dkokok Nk okokk okl dokok dokok koK oKk kokok kok K
LETR: - seeseee DON*T CARE ABOUT MFMORY CONTFNTS REYOND HFRFeceoooo

ONCF THF DATA HAS BFFEN ORGANIZFD IN A SUITABLF MANNFR IN MFMORY, ONF
CAN PROCEFED TO DEVELOP A RFLATIVELY SIMPLF SORT ROUTINE TO ARRANGF THF
NAMES IN ALPHARETICAL ORDER. THFE TFCHNIQUF TO RF ILLUSTRATFD CONSIST OF
COMPARING TH¥ LETTERS, STARTING WITH THF LFFT-MOST POSITION IN A RLNCK
(AS SEEN IN THF MEMORY DIAGRAM ABOVF) AGAINST THE LFTTFR IN THF SAMF
POSITION IN THF NFXT BLOCK IN MFMORY. RY “LFTTFR" WHAT 1S ACTUALLY
MEANT 1S THE ASCII CODF (IN THIS FXAMPLF) FOR A LFTTFR. IT SO HAPPFNS
THAT THF ASCII CODE 1S ARRANGFD SUCH THAT THF ALPHABFT GOFS IN AN ASCFN-
DING NUMFRICAL ORDFR. THF LETTFR A IS RFPRESFNTFD AS 381, THF LETTFR B
AS 302, C AS 3683, AND SO FORTH ON UP TO THE LFETTFR Z WHICH HAS AN OCTAL
REPRESENTATION OF 332. HOW CONVENIFNT! THIS MFANS THAT IF THF VALUF
IN A MFMORY WNORD (REFPRESENTING A LETTFR IN ASCII FORMAT) IS COMPARFD
AGAINST ANNDTHFR MEMORY WORD CONTAINING AN ASCII! CODFD LFTTFR, THAT THF
LOWER VALUF LOCATION CONTAINS A LOWFR ,0RDFR LFTTFR IN THF ALPHARFT.

WITH THIS INFORMATION ONF CAN QUICKLY DISCFRN THAT ONF CAN QUITE
EASILY DFUFLOP AN ALGORITHM TO ARRANGF NAMFS ALPHARFTICALLY. IF THFE

4 - 33

VALUE OF MEMORY LOCATION IN THF FIRST POSITION OF SAY THF FIRST BLOCK
(THFE NTH BLOCK) IS COMPARED AGAINST THE VALUE OF THF FIRST POSITION IN
THE NEXT BLOCK (N+1 BLOCK) AND FOUND TO RBF GRFATFR IN VALUF, THAN THE
FIRST (NTH) BLOCK HAS A NAME THAT IS HIGHFR ALPHABETICALLY THAN THE NAME
- IN THE SFCOND (N+1) BLOCK AND THUS ONF CAN IMMFDIATFLY PROCFED TO FX-
"CHANGE THF CONTENTS OF THF TW0 BLOCKS TO ARRANGE THE NAMES IN ASCENDING
ALPHABETICAL ORDFR. 1F, HOWEVER, THF CODF IN THF FIRST BLOCK IS LESS IN
VWLUE THAN THE SECOND BLOCK, THEN THE PRFSENT ORDER 1S CORRECT AND THE
PROGRAM CAN PROCFED TO CHECK THF SECOND EBLOCK AGAINST THE THIRD ONE.

IF THE LETTERS IN THF FIRST POSITION CHECKED ARE EQUAL IN VALUE, THEN
ONE CANNOT YFT MAKE A DECISION ABOUT THF ALPHARETICAL ORDFR, BUT RATHFR

MUST G0 ON TO COMPARF THE VALUES OF THE SFCOND LETTER WITHIN THF TwO
H.OCKS! '

TO FURTHER COMPLETE THE ALGORITHM ONE MUST ALSO CONSIDER THF POSSI-
BILITY THAT WHEN ONE FXCHANGES THE CONTENTS OF BLOCKS *N* AND *'N+}I"
T™AT THE NEW CONTENTS OF *N*' WILL NO¥W RF OF LFSSFR ORDFR THAN THAT CON-
TAINED IN BLOCK "N-1." THUS, WHENFVER ONF PFRFORMS AN EXCHANGE OF TWVWO0
HLOCKS ONE MUST HAVE THE PROGRAM GO BACK AND DO A COMPARISON BETWEEN
THE “'N* AND *“N-1'" BLOCKS. ONF CAN FNVISION THF ALGORITHM AS PROCFFDING
IN A SFFE-SAV'" MANNER - COMPARING THF '"NTH" BLOCK AGAINST THE "N+]*"
BLOCK UNTIL AN FXCHANGF 1S NECESSARY, THFN SWITCHING TO COMPAFF BRETWEEN
THE *“NTH" AND *N=~1*" BLOCK UNTIL AN FXCHANGF IS NOT NECESSARY. AT THAT
POINT THF PROCESS REVERTS BACK TO COMPARING THF *NTH" AND '"N+1' BLOCKS
INTIL ANOTHER EXCHANGE 1S REQUIRED. LOOKFD AT ANOTHFR WAY, THE DATA
BLOCKS COULD EBE VIEWED AS "RIPPLING'" UPWARDS OR DOWNVWARDS IN MFMORY AS
THF. PROCESS PROCEEDS. HIGHFER ORDFRFD NAMES GETTING SHOVED TO HIGHFR AD-
DRESSED BLOCKS, LOWFR ORDERED NAMFS BFING PUSHFD TO LOWER ADDRESSED
BLOCKS.

TH1IS TYPE OF ALGORITHM IS NOT THE ONLY WAY ONF COULD PROCEFD TO SORT
THFE. DATA. THFRE ARE OTHER TYPFS OF ALGORITHMS THAT CAN PFRFORM THF SAME
JOB, SOMF OF WHICH ARF FASTFR WHEN LARGE DATA RASFS ARF INVOLVED (BUT
MORE COMPLICATFD PROGRAMMING-WISFE). SUCH ALGORITHMS GFNFRALLY HAVE CON-
SIDERABLE VALUFE ON LARGE MACHINFS. HOWEUVER, THF AROVE ALGORITHM IS
QUITE SUITABLE FOR TYPICAL SORTING JOBS THAT A 88686 UNIT MIGHT BE CALLED
UPON TO PFRFORM. FOR THOSE WHO MIGHT WANT TO INVESTIGATE OTHFR ALGO-
RITHMS THEY MIGHT CONSIDER THE CONCFPT OF HAVING A PROGRAM THAT IMMFED-
IATELY CLASSIFIFS A NAME INTO, SAY, THF FIRST, SECOND, OR THIRD SECTION
OF THE ALPHABET.

A PROGRAM FOR THE “RIPPLE" SORTING ALGORITHM DISCUSSED ABOVE IS PRE-
SFNTED BELOW.

MNEMONIC COMMENTS
SORT, LHI @04 ZINITIALIZE POINTFR TO START
‘ LLI @@ /0F NAMES BLOCK STORAGF ARFA
INITBK, LBI 828 /SET BLOCK LFNGTH COUNTFR
LCM /GET 1ST CHAR FM BLOCK *N* INTO "C'" RFGIS
LAL /FETCH *N*' BLOCK POINTFR
ADI p2a /ADUVANCE POINTFR TO BLOCK *“N+1*
LLA /RESTORE POINTER
CPI 8290 /CHECK TO SFF IF GOING TO NFW PAGF
CTS INCRH /ADVANCF PAGF PNTR IF RFQUIRFD
LAM /GFT 1ST CHAR FM BLOCK *“N+1" INTO ACC
NDA /SET FLAGS AFTER LOADING OPFRATION
RTZ /END OF STORAGE -~ SORT OPS COMPLETED
CPC /COMPARF 'N+1* LFTTER TO "“N'" LETTER

A - 34

CKNEXT,
BACKER,

NOTFIN,

FINEND,
XCHANG

NOTYET.,

MNEMONIC

JTS
JTL
JMP
DCR
JFZ
sul
JMP
LAL
NDA
sul
LLA
CTC
LCM
LAL
ADI
LLA
CPI
CTS
LAM
CPC
JTS
JTZ
DCB
JTZ
INL
JMP
LAL
NDI
LLA
LBI
LCM
LAL
NDA
sul
LLA
CTC
LDM
LMC
LAL
ADI
LLA
CP1
CTS
LMD
INL
DCB
JFZ
LAL
NDA
sul
LLA
CTC
LAH
CP1
JFZ
JMP

XCHANG
CKNEXT
INITBK
NOTFIN
217

INITBK
ay7

DECRH

A20
Y
INCRH
XCHANG
CKNEXT
BACKFR
FINEND
360

Aze

n2e

DECRH

g2a

gen
INCRH

NOTYET

P40
DECRH
203

INITBK
SORT

COMMENTS

ZYN" » "N+1" SO FXCHANGE BLOCK CONTENTS
/"N = “N+|" SO CHECK NFEXT LETTER .IN BLOCK
/"N < *“N+1* SO ORDFR 0.K., DO NFXT BLOCK
/DECREMFNT BLOCK LFENGTH COUNTFR

/CONTINUF. IF NOT FINISHED BLOCK

/PNTR FOR LAST OF *N+i'" BECOMES 1ST OF “N"
/BACK TO COMPARE NEXT BLOCK

/FFTCH “N+1" BLOCK POINTER

/CLEAR THF CARRY FLAG WITH THIS 'NO-OP"
/DFECREASE POINTER TO “N" BLOCK

/RESTORE POINTER

/1F UNDFRFLOW THFN DFECRFMFNT PAGE POINTFR
/FETCH CHARACTER FROM “N" BLOCK TO REG '"C“
/FETCH *N" BLOCK POINTER

/ INCREASF POINTER TO '"N+1* BLOCK

/RESTORE POINTFR

/CHECK TO SEF IF GOING TO NEW PAGE
/ADVANCE PAGE PNTR IF RFQUIRED

/GET CHARACTER FROM °'N+1* BLOCK

/COMPARF '"N+1' LETTFR TO '"N*" LETTFR

/UN'"™ > “N+1" SO0 EXCHANGE BLOCK CONTENTS
/YN'" = UN+1" S0 CHFCK NEXT LFTTFR IN BLOCK
/N*" < “N+1" SO ORDFER O.K., DO NFXT BLOCK
/AT END OF BLOCK *N+1" RESEFT PNTR FOR '"N*“
/ADUANCE POINTFPR

/AND LOOP TO LOOK FOR END OF RLOCK

/FFTCH “N+1" POINTFR

/MASK OFF LSKE'S TO RESTORE POINTER

/TO START OF *N+1" BLOCK

/SET BLOCK LENGTH COUNTER

/FETCH “N+i1" INTO REGISTER “C"

/FETCH "N+1'" POINTER TO ACCUMULATOR
/CLFAR THF CARRY FLAC

/DFCREASE POINTER TO 'N*' BLOCK

/RESTORFE POINTER .

/DECRFMENT PAGF POINTER IF REQUIRED
/FETCH "N INTO REGISTFR D"

/PLACE FORMFR "N+1'" INTO "N"

/FETCH "N" POINTER TO ACCUMULATOR
/INCREASFE POINTER TO °*N+1* BLOCK

/RESTORE POINTER

/CHECK TO SEFE IF GOING TO NFW PAGE
/INCRFMFNT PAGF POINTFR IF REQUIRED
/PLACE FORMFR "N" INTO *N+1"

/ADVANCE *N+1" POINTFR

/DECREMFNT BLOCK LENGTH COUNTFR

/CONTINUE IF NOT FINISHFD EXCHANGING

/IF FINISHFD EXCHANGING FETCH "N+1' PNTR
/CLEAR CARRY FLAG ‘

/BACK POINTFR FROM "N+1" TO 'N-1' BLOCK
/RESTORE POINTER

/DECREMENT PAGE POINTER IF REQUIRFED
/FFTCH CURRENT PAGF

/MAKF SURF STILL IN STORAGE AREA

/YES - DO AN EFFECTIVE *"N-1" TO *N" TEST
/WENT BACK TOO FAP - GO TO STARTING BLOCK!

4 - 35

THF *INCRH" REFERRED TO BY THE SORT ROUTINF WAS PRESENTED FARLIFR
AS PART OF THE ROUTINE THAT ACCEPTFD NAMES INTO THF STORAGE ARFA. THF
“DECRH'" ROUTINF NOT SHOWN SHOULD RF A SNAP FOR ANYONE WH0O HAS RFACHED
THIS POINT IN THF MANUAL. (IF IT IS NOT, FOR HFAVENS SAKFE GO BACK!)

IF ONE MENTALLY PROCEEDS THROUGH THE SORT ROUTINF WHILF REFERRING
T0 THE DIAGRAM GIVEN SEVFRAL PAGFES FARLIFR SHOWING THE NAMES AS ORIGI-
NALLY STORED IN MFEMORY, ONF SHOULD BF ABLF TO CLEARLY DISCERN THE OPFR-
ATION OF THE SORT PROGRAM. FOR EXAMPLE, FOR THE FILRST THRFF NAMFS THF
PROGRAM ENCOUNTEFRS IN THE ORIGINAL EXAMPLE SETUP, THF PROGRAM WILL NNLY
HAVE TO TEST THE FIRST LETTER IN FACH BLOCK. WHFN THF NAMF IN THF 4TH
HLOCK 1S EXAMINED, AN EXCHANGE WILL HAVF TO MADF WITH THF NAME IN THF
THIRD BLOCK, THEN THF PROGRAM WILL FIND WHFN CHFCKING THFE *"N-1* BLOCK
(WHICH WAS THF ORIGINAL SECOND BLOCK) THAT THF NAME '"DAVIS, Z. T." HAS
T0O BE EXCHANGED AGAIN, AND THIS WILL HAPPEN ONE MORF TIME UNTIL THE
NAMF "DAVIS, Z.T." ARRIUFS AT THF FIRST BLOCK IN THF STORAGE AREA. AT
THIS POINT THE PROGRAM GOES BACK TO CHFCKING AGAINST THF '"N+1' BLOCK.
THF NAMES WOULD NOW APPFAR IN MFMORY IN THF FOLLOWING ORDFR.

BLOCK #2: JONES, Re. M.
BLOCK #3: SMITH, C. . .
BLOGK #4: WILLIAMS, P. K.
. BLOCK #%5: THOMPSON, A. R.
BLOCK #6é: THOMAS, F.
BLOCK #7: ALLISON, A. B.
BLOCK #8: SMITH, T. P.

NOW THE PROGRAM WOULD GET DOWN TO BLOCK FIVE BEFORF IT FOUND IT NEC-
ESSARY TO EXCHANGF BLOCK FIVF WITH BLOCK FOUR. THF NFXT "N-1' TEST
WOULD FAIL, HOWFUER, AND THE PROGRAM WOULD PROCFFD BACK UP TO BLOCK SIX
WHERE IT WOULD FIND THE NAMF “THOMAS, F.' AND HAVE TO FXCHANGF IT WITH
*WILLIAMS, P. K. AND THEN EXCHANGE IT AGAIN WITH “THOMPSON, A. R." AT
THIS POINT THE NAMES STORAGE ARFA WOULD APPEAR AS:

BLOCK #1: DAVIS, Z. T.
BLOCK #2: JONFS, R. M.
BLOCK #23: SMITH, C.

BLOCK #4: THOMAS, Fe.
BLOCK #%: THOMPSON, A. R.
BLOCK #6é: WILLIAMS, P. K.
BLOCK #7: ALLISON, A. B.
BLOCK #8: SMITH, T. P.

AT THIS POINT THF PROGRAM WOULD GET UP TO BLOCK NUMEER SEVEN WHFRF
IT WOULD FIND “ALLISON, A. B."™ AND IT WOULD THFN HAUF TO FXCHANGF
NAMES ALL THF WAY BACK DOWN THE LINE TO GET IT INTO BLOCK NUMBFR ONF.
FINALLY, THE PROGRAM WOULD FIND THAT "SMITH, T. P." HAD TO BF MOUVED BACK
ENDING UP IN BLOCK NUMBFR FIVF. ALL OF THE ABOVE WOULD HAVE HAPPENED
IN A MERE FRACTION OF A SECOND AS THE 8008 CPU EXECUTED THE INSTRUC-
TIONS AT MICRO~-SFCOND SPFEDS - RFSULTING IN THF NAMES ORGANIZFD IN THE
FOLLOWING DESIRFD MANNER.

BLOCK #1: ALLISON, A. B.
BLOCK #2: DAVIS, Z. T.
BLOCK #4: SMITH, C.

BLOCK #S: SMITH, T. P.
BLOCK #6: THOMAS, F.
BLOCK #7: THOMPSON, A. R.
BLOCK #&: WILLIAMS, P. K.

4 - 36

SIMILAR TYPES OF SORTING OR ARRANGING OPERATIONS CAN ALSO BE DONE

VITH NUMBERS IN EITHER ASCII, BCD, OR BINARY FORM OR WITH OTHER TYPES OF
DATA.

ONE COULD COMBINE A "CONTROL TABLE"™ USING ONE OF THE TYPES DISCUS-
SED EARLIER IN THIS CHAPTER WITH THE NECESSARY INPUT, FORMATTING, AND
SORT SUBROUTINE ADDRESSES STORED IN THE TABLE, AND THUS MAKE UP A POV-

FRFUL YET EASY TO USE PROGRAM PACKAGE SUITED TO THE USER'S SPECIFIC RE-
QUIREMENTS.

BY UTILIZING THE CONCEPTS (AS WELL AS POSSIBLY SOME OF THE SPECIFIC
ROUTINES) PRESENTED IN THIS SECTION, THE READER SHOULD BE ABLE TO SEE
THE WAY TOVARDS DEVELOPING SOPHISTICATED PROGRAMS CAPABLE OF PERFORMING
FUNCTIONS TAILORED TO THE INDIVIDUAL'S OWN REQUIREMENTS.

MORE INFORMATION ON HANDLING I/0 ROUTINES WILL BE PRESENTED IN A
LATER CHAPTER. FOR THOSE INTERESTED IN UTILIZING THE MATHEMATICAL CAPA-
BILITIES OF THE DIGITAL COMPUTER (PERHAPS COMBINING SUCH OPERATIONS WITH
SOME OF THOSE JUST DISCUSSED) SIMPLY PROCEED ON TO STUDY THE NEXT CHAP-
TER WHICH IS DEVOTED TO JUST THAT SUBJECT!

4 - 37

MATHEMATICAL OPERATIONS

THE ABILITY OF A DIGITAL COMPUTER TO BE ABLE TO HANDLE MATHEMATICAL
OPERATIONS COUPLED WITH IT'S ABILITY TO MANIPULATE TEXT GIVES THE MACH=-
INE A UNIQUE COMBINATION OF FUNCTIONALITY THAT ACCOUNTS FOR IT'S GROW~-
ING POPULARITY. PROGRAMMING A COMPUTER USING MACHINE LANGUAGE TO PER~-
FORM MATHEMATICAL FUNCTIONS IS PERHAPS A BIT MORE COMPLICATED THAN HAV-
ING IT PERFORM ROUTINE TEXT MANIPULATIONS, BUT IT IS NOT AS DIFFICULT
AS SOME PEOPLE TEND TO THINK BEFORE BEING INTRODUCED TO THE SUBJECT.
LIKE MOST OTHER PROGRAMMING TASKS, THE KEY TO SUCCESS IS ORGANIZATION
OF THE PROGRAM INTO SMALL ROUTINES THAT CAN BE BUILT UPON TO FORM MORE
POWERFUL COMBINATIONS.

THE INSTRUCTION SET OF THE 8008 CPU CONTAINS A NUMBER OF PRIMARY
MATHEMATICAL INSTRUCTIONS THAT ARE THE BASIS FOR DEVELOPING MATHEMATI-
CAL PROGRAMS. THE GROUPS USED MOST OFTEN INCLUDE THE ADDITION, SUB-
TRACTION AND “ROTATE" INSTRUCTIONS. (DO YOU RECALL THAT ROTATING A
BINARY NUMBER TO THE LEFT EFFECTIVELY DOUBLES, OR MULTIPLIES THE ORIG~
INAL VALUE BY TWO, AND ROTATING IT TO THE RIGHT ESSENTIALLY DIVIDES
THE ORIGINAL VALUE IN HALF?)

DEALING WITH NUMBERS OF SMALL MAGNITUDE USING A 8008 CPU IS SIM-
PLICITY ITSELF. FOR INSTANCE, IF ONE WANTED TO ADD, SAY THE NUMBERS
2 AND 7, ONE COULD LOAD ONE NUMBER INTO REGISTER "“B'" IN THE CPU AND
LOAD THE OTHER INTO THE ACCUMULATOR. THE SIMPLE DIRECTIVE:

ADB

WULD RESULT IN THE VALUE @11 (OCTAL!) BEING LEFT IN THE ACCUMULATOR.
SUBTRACTION IS JUST AS EASY. 1IF ONE PLACED 7 IN THE ACCUMULATOR AND 2
IN REGISTER "B" AND EXECUTED A:

SUB
THE VALUE 5 WOULD BE LEFT IN THE ACCUMULATOR.

MULTIPLICATION, WITH SMALL NUMBERS, CAN BE READILY ACCOMPLISHED US=-
ING A SIMPLE ALGORITHM OF ADDING THE MULTIPLICAND TO ITSELF THE NUMBER
OF TIMES DICTATED BY THE MULTIPLIER. SUPPOSE ONE DESIRED TO HAVE THE
COMPUTER MULTIPLY 2 TIMES 3. PLACING THE VALUE 2 IN REGISTER "“B" AND
3 IN REGISTER “C" AND EXECUTING THE FOLLOWVING INSTRUCTION SEQUENCE!

START, XRA
MULTIP, ADB
DCC

JFZ MULTIP
STOP, HLT

WULD RESULT IN THE VALUE 6 ENDING UP IN THE ACCUMULATOR. AS SHALL BE
DISCUSSED FURTHER ON, THE ABOVE ALGORITHM 1S NOT VERY EFFICIENT WHEN THE
NUMBERS BECOME LARGE. MORE EFFICIENT MULTIPLICATION ALGORITHMS ARE
BASED ON ROTATE OPERATIONS WHICH EFFECTIVELY MULTIPLY A NUMBER BY A POV~
ER OF TWO. FOR INSTANCE, MULTIPLYING A NUMBER BY 32 (DECIMAL) WOULD RE-
QUIRE 32 (DECIMAL) LOOPS THROUGH THE ABOVE ROUTINE, BUT ONLY 5 ROTATE
LEFT OPERATIONS! HOWEVER, THE ABOVE ROUTINE ILLUSTRATES HOW A NUMBER
CAN BE MULTIPLIED EVEN THOUGH THE COMPUTER DOES NOT HAVE A SPECIFIC
MULTIPLY" INSTRUCTION.

ONE CAN ALSO DIVIDE SMALL VALUED NUMBERS THAT HAVE INTEGER RESULTS
USING A SIMILARLY SIMPLE ALGORITHM THAT SUBTRACTS INSTEAD OF ADDS. FOR

$ - 1

INSTANCE, A REVERSE OF THE PREVIOUS EXAMPLE WOULD BE TO DIVIDE THE NUM-
BER 6 BY THE VALUE 2. THE SUBTRACTION ALGORITHM WOULD APPEAR AS:

START, LCI1 000
DIVIDE, NDA
JTZ STOP
SUB
INC
JMP DIVIDE
STOP, HLT

IN THE ABOVE ALGORITHM, THE ROUTINE STARTS WITH THE NUMBER 6 IN THE
ACCUMULATOR. THE DIVISOR IS IN REGISTER "B.'" REGISTER "C*" IS USED AS

A COUNTER TO COUNT HOV MANY TIMES THE VALUE IN “B" CAN BE SUBTRACTED
UINTIL THE CONTENTS OF THE ACCUMULATOR IS EQUAL TO ZERO. AS POINTED

OUT PREVIQUSLY., THE ALGORITHM ONLY WORKS 1lF THE RESULT IS AN INTEGER
VALUE. DIVISION IS PERHAPS THE MOST DIFFICULT BASIC MATHEMATICAL FUNC-
TION TO PERFORM ON A DIGITAL COMPUTER BECAUSE OF MATHEMATICAL PECUL-
IARITIES (INVOLVING THE MANIPULATION OF FRACTIONAL VALUES). HOWEVER, AS
WILL BE ILLUSTRATED LATER, THERE ARE WAYS AROUND THE ABOVE LIMITATION.
THE ABOVE ILLUSTRATION IS MERELY TO GIVE THE NOVICE ENCOURAGEMENT BY IL-
USTRATING THAT SUCH OPERATIONS ARE POSSIBLE EVEN THOUGH A SPECIFIC “DIv-
IDE" COMMAND IS NOT A PART OF THE TYPICAL DIGITAL COMPUTER'S INSTRUCTION
SET!

THE DISCUSSION SO FAR HAS BEEN LIMITED TO NUMBERS OF RELATIVELY
SMALL MAGNITUDE. SPECIFICALLY, NUMBERS SMALL ENOUGH TO BE CONTAINED
IN A SINGLE EIGHT BIT BINARY REGISTER OR MFMORY LOCATION IN A 60668 UNIT.
MANY USER'S WHO WANT TO USE THE DIGITAL COMPUTER TO PERFORM MATHEMATICAL
OPERATIONS SEEM TO GET "STUMPED"™ WHEN FIRST COMING ACROSS A REQUIREMENT
TO MANIPULATE NUMBERS THAT ARE TO0 LARGE IN MAGNITUDE TO FIT IN ONE MEM~-
ORY WORD OR CPU REGISTER. WITH A 8008 BASED MACHINE, AND INDEED MOST
MINI-COMPUTERS, SUCH A REQUIREMENT TYPICALLY ARRIVES SHORTLY AFTER ONE
HAS STARTED OPERATING THEIR MACHINE! THE REASON IS SIMPLY THAT THE
LARGEST VALUED NUMBER THAT CAN BE PLACED IN AN "N=-BIT" REGISTER IS THE
\WLUE (2tN)=-1. SINCE THE 8@A@A8 CPU USES BUT 8 (DECIMAL) BITS IN A WORD,
THE LARGEST NUMBER THAT CAN BE REPRESENTED IN A SINGLE WORD IF ALL THE
BITS ARE USED IS A MERE 255 (DECIMAL). IF ONE DESIRES TO MAINTAIN THE
"SIGN* (WHETHER IT 1S "PLUS" OR “MINUS") AND USES ONE BIT IN A WORD FOR
THAT PURPOSE, THEN THE LARGEST NUMBER THAT CAN BE REPRESENTED IN A SIN-
GLE WORD IS A PALTRY 127 (DECIMAL) - HARDLY ENQUGH TO BOTHER USING A
COMPUTER TO MANIPULATE SUCH LIMITED MAGNITUDES!

BUT, THE SECRET TO RAPIDLY INCREASING THE MAGNITUDES OF THE NUMBERS
THAT CAN BE HANDLED BY A DIGITAL COMPUTER IS HELD IN THAT FORMULA JUST
PRESENTED - (2tN)>=-l. FOR THAT FORMULA SAYS THAT THE SIZE OF THE NUMBER
THAT CAN BE STORED IN A BINARY REGISTER ESSENTIALLY DOUBLES FOR EVERY
BIT ADDED TO THE REGISTER. THUS, IF ONE WERE TO STORE A NUMBER USING
THE AVAILABLE BITS IN TWO REGISTERS OR MEMORY WORDS IN A @08 SYSTEM,
ONE WOULD BE ABLE TO REPRESENT NUMBERS AS LARGE AS (2t]16)-1 OR £5,535
(DECIMAL). 1IF ONE OF THOSE 16 BITS WERE RESERVED FOR A "SIGN"™ INDICATOR
THE MAGNITUDE WOULD BE LIMITED TO (2t15)-1 OR 32,767. THAT 1S CERTAIN-
LY A LOT MORE THAN THE VALUE OF 127 THAT CAN BE HELD IN JUST ONE WORD!
BUT, WHY STOP AT HOLDING A NUMBER IN TWO WORDS? THERE IS NO NEED TO.,
ONE CAN KEEP ADDING WORDS TO BUILD UP AS MANY BITS AS DESIRED. THREE
WORDS OF 8 BITS, LEAVING ONE BIT OUT FOR A SIGN INDICATOR WOULD ALLOW
NUMBERS UP TO (2t23)-1 OR 8,388,607 (DECIMAL). FOUR WORDS, WOULD ALLOV
REPRESENTING A SIGNED NUMBER UP TO (2t31)-1 WHICH IS APPROXIMATELY
1,107,483,647! ONE COULD ADD STILL MORE WORDS IF REQUIRED. GENERALLY,
HOWEVER, ONE SELECTS THE NUMBER OF “SIGNIFICANT DIGITS*" THAT WILL BE IM-
PORTANT IN THE CALCULATIONS TO BE PERFORMED AND USES ENOUGH WORDS TO

5=-2

EINSURE THAT THE "PRECISION,'" OR NUMBER OF SIGNIFICANT DIGITS REQUIRED
FOR THE OPERATIONS CAN BE REPRESENTED IN THE TOTAL NUMBER OF BITS AVAIL-
ABLE WITHIN THE "GROUPED" WORDS. THE USE OF MORE THAN ONE COMPUTER WORD
OR REGISTER TO STORE AND MANIPULATE NUMBERS AS THOUGH THEY WERE IN ONE
LARGE CONTINUQOUS REGISTER IS COMMONLY REFFRRED TO AS "MULTIPLE-PRECIS-
ION** ARITHMETIC. ONE OFTEN HFARS COMPUTER TECHNOLOGISTS SPEAKING OF
“DOUBLE=-PRECISION" OR "TRIPLE-PRECISION' ARITHMETIC. THIS SIMPLY MEANS
THAT THF MACHINE IS USING TECHNIQUES (GENERALLY PROGRAMMING TECHNIQUES)
THAT ENABLE IT TO HANDLE NUMBERS STORED IN TWO OR THREE REGISTERS AS
THOUGH THEY WERE ONE NUMBFR IN A VERY LARGE REGISTER.

THE 8008 CPU IS CAPABLE OF MULTIPLE=-PRECISION ARITHMFETIC. IN FACT

IT DOES IT QUITE NICELY BECAUSE THE DESIGNERS OF THE INTEL 8888 CPU CHIP
TOOK PARTICULAR CARE TO INCLUDE SOME SPECIAL INSTRUCTIONS FOR JUST SUCH
OPERATIONS. (SUCH AS THE ADD AND SUBTRACT WITH CARRY INSTRUCTIONS.)
MULTIPLE-PRECISION ARITHMETIC IS NOT DIFFICULT - IT TAKES A LITTLE EXTRA
CONSIDERATION IN THE AREA OF ORGANIZING THE PROGRAM TO HANDLE AND STORE
NUMBERS THAT ARE CONTAINED IN MULTIPLE WORDS IN MEMORY, BUT WITH THE USE
OF EFFECTIVE "SUBROUTINING'" OR SO CALLED *"CHAINING" OPERATIONS THE TASK
MAY BE HANDLED WITH RELATIVE EASE.

IN ORDER TO EFFECTIVELY DEAL WITH MULTIPLE=-PRECISION ARITHMETIC ONE
MJST ESTABLISH A CONVENTION FOR STORING THE SECTIONS OF ONE LARGE NUM-
BER IN SEVERAL REGISTERS. FOR THE PURPOSES OF THE CURRENT DISCUSSION.,
IT WILL BE ASSUMED THAT “TRIPLE-PRECISION* ARITHMETIC IS TO BE PER=-
FORMED. NUMBERS WILL BE STORED IN THREE CONSECUTIVE MEMORY LOCATIONS
ACCORDING TO THE FOLLOWING ARRANGEMENT.

MEMORY LOCATION "N LEAST SIGNIFICANT 8 BITS
MEMORY LOCATION "N+1" = NEXT SIGNIFICANT & BITS
MEMORY LOCATION 'N+2" = MOST SIGNIFICANT 7 BITS + SIGN BIT

THUS, THE THREF WORDS IN MEMORY COULD BE MENTALLY VIEWED AS BEING ONE
CONTINUOUS LARGE REGISTER CONTAINING 23 BINARY BITS PLUS A SIGN BIT AS
SHOWN IN THE DIAGRAM BELOW.

MEM LOCATION ''N+2" MEM LOCATIDN "N+1* MEM LOCATION 'N"
ke e 20 ke e e e o e e e o ok o ke ok oK K oK 4 2 e e e o e o b ok ok 3 o oK oK ok oK K ke ke 2 2 o0 oK o ok 2 e ok ke 0 0 ke ok o ok
x5 X X X X X X Xx *X X X X X X X Xx *X X X X X X X Xx
e e e 2 o ke 3 2 2 ke o ok o o o o o oK e 2 o e o A o K KoK oK oK o oK 2 ke 2 e o o o R e R R o

MOST SIGNIFICANT BITS NEXT SIGNIFICANT BITS LEAST SIGNIFICANT BITS

OF COURSE, ONE COULD REVERSE THE ABOVE SEQUENCE, AND STORE THE LEAST
SIGNIFICANT BITS IN MEMORY LOCATION "N," THE NEXT GROUP IN "N+l1,' AND
THE MOST SIGNIFICANT BITS PLUS SIGN BIT IN MEMORY LOCATION 'N+2,." IT
MAKES LITTLE DIFFERENCE AS LONG AS ONE REMAINS CONSISTENT WITHIN A PRO-
GRAM. HOWEVER, THE CONVENTION ILLUSTRATED WILL BE THE ONE USED FOR THE
DISCUSSION IN THIS SECTION.

ALSO, AS HAS BEEN POINTED OUT, IT IS NOT NECESSARY TO LIMIT THE
STORAGE TO JUST THREE WORDS - ADDITIONAL WORDS MAY BE USED IF ADDITIONAL
PRECISION IS REFQUIRED. FOR MOST OF THE DISCUSSION IN THIS CHAPTER,
THREE WORDS WILL BE USED FOR STORING NUMBERS. USING THREE WORDS IN THE
ABOVE FASHION WILL ALLOW NUMBERS UP TO A VALUE OF 8,388,647 IN MAGNITUDE
TO BE STORED. THIS MEANS THAT 6 TO 7 SIGNIFICANT DIGITS CAN BE MAIN-
TAINED IN CALCULATIONS.

THE FIRST MULTIPLE-PRECISION ROUTINE TO BE ILLUSTRATED WILL BE AN
ADDITION ROUTINE THAT WILL ADD TOGETHER TWO0 MULTIPLE-PRECISON NUMBERS
AND LEAVE THE RESULT IN THE LOCATION FORMERLY OCCUPIED BY ONE OF THE
NUMBERS. THE ROUTINE TO BE PRESENTED HAS BEEN DEVELOPED AS A “GENERAL
PURPOSE" ROUTINE IN THAT, BY PROPERLY SETTING UP MEMORY ADDRESS POINTERS
AND LOADING A CPU REGISTER WITH A "PRECISION" VALUE PRIOR TO '"CALLING"
THE ROUTINE, THE SAME ROUTINE CAN BE USED TO HANDLE MULTIPLE-PRECISION
ADDITION OF NUMBERS VARYING IN LENGTH FROM "1 TO N" REGISTERS €AS LONG
AS THE REGISTERS CONTAINING A NUMBER ARE IN CONSECUTIVE ORDER IN MEMORY,
AND WITH THE RESTRICTION THAT ALL THE REGISTERS CONTAINING A NUMBER ARE
ON ONE PAGE - LIMITING "N' TO 255 (DECIMAL WORDS)>, WHICH IS A LIMITATION
FEW PROGRAMMERS WOULD FIND CUMBERSOME)!

THE KEY ELEMENT IN THE ADDITION ROUTINE TO BE ILLUSTRATED IS THE USE
OF THE "ACM,' OR "ADD VWITH CARRY" INSTRUCTION. THE ESSENTIAL DIFFERENCE
BETWEEN AN "ADD WITH CARRY"™ (ACM) INSTRUCTION, AND AN *"ADM" (ADD WITHOUT
CARRY) COMMAND IS AS FOLLOWS:

AN "ADM*" INSTRUCTION SIMPLY ADDS THE CONTENTS OF THE ACCUMULATOR
AND THE CONTENTS OF THE MEMORY LOCATION POINTED TO BY THE “H & L"
REGISTERS. DURING THE ADDITION PROCESS, THE STATUS OF THE CARRY
FLAG IS IGNORED. HOWEVER, IF AT THE END OF THE PROCESS, AN '"OVER-
FLOW" HAS OCCURED, THE CARRY FLAG WILL BE SET TO A *1' CONDITION
FOR EXAMPLE, ADDING THE FOLLOWING BINARY NUMBERS WOULD YIELD:

CARRY = @ : 11 111 111
AND ADDING THE NEXT TWO NUMBERS WOULD YIELD:

11 111 111
0 6006 001

CARRY =1 ¢+ ©9 0 06 0606 200

REGARDLESS OF THE CONDITION OF THE CARRY FLAG AT THE START OF THE
ADDITION OPERATION.

AN "ACM" COMMAND, ON THE OTHER HAND, EXAMINES THE CONTENTS OF

THE CARRY FLAG PRIOR TO THE START OF THE ADDITION OPERATION AND
CONSIDERS IT AS AN OPERATOR ON THE LEAST SIGNIFICANT BIT POSITION.
AT THE END OF THE PROCESS, THE CARRY FLAG IS SET OR CLEARED DE-
PENDING ON WHETHER OR NOT AN "OVERFLOW' OCCURED, AS IN THE "ADM"
CLASS OF INSTRUCTION. FOR EXAMPLE, ADDING THE FOLLOWING BINARY

NUMBERS YIELDS RESULTS THAT ARE DEPENDENT ON THE INITIAL STATUS
OF THE CARRY FLAG.

CASE #1A 18 181 @610 : 0 = CARRY BIT AT START
21 610 101

CARRY = 8 : 11 111 111

CASE #1B 18 161 @610 1+ 1 = CARRY BIT AT START
a1 8106 101

LA X K F R X X X 2 N B ¥ T 2 X ¥ 3

CARRY = 1 : @0 0 06 060 0020

CASE #2A 11 1 11 111 t @ = CARRY BIT AT START
60 6006 001

CARRY = 1 ¢+ @0 0 @6 60 ©0 00

CASE #2B 11 111 111 ¢ 1 = CARRY BIT AT START
e 6060 00!

CARRY =1 ¢+ 080 @0 060 001

IN SUMMARY, ONE CAN SEE THAT AN '"ACM" TYPE OF INSTRUCTION MAKES
MULTIPLE-PRECISION ADDITION EXTREMELY EASY BECAUSE THE CARRY BIT ACTS
AS A LINK BETWEEN ANY "CARRY" FROM THE MOST SIGNIFICANT BIT OF ONE
ADDITION OPERATION INTO THE LEAST SIGNIFICANT BIT OF THE NEXT ADDITION
OPERATION - JUST AS THOUGH THE ADDITION PROCESS WAS PERFORMED IN ONE
LONG REGISTER. FOR COMPARISON, EXAMINE THE EXAMPLE BELOW WHICH FIRST
ILLUSTRATES AN ADDITION OPERATION IN A HYPOTHETICAL 16 (DECIMAL) BIT
REGISTER, AND THEN SHOWS THE SAME RESULT WHEN TWO 'ACM" OPERATIONS ARE
PERFORMED ON TWO 8 BIT REGISTERS.

HYPOTHETICAL 16 BIT REGISTER: 1 1 1 11 111 10 161 2610
b6 0060 00290 11 861 v 161

CARRY = 1 ¢+ 0 4 060 V040 1 111 111

FIRST ACM OPERATION: 1 ¢ | 1 81 ©® ¢ @& = ASSUMED FOR CARRY
11 v p 1 o1 BIT AT START

CARRY = 1 ¢+ ¥ 1 111 111

2
!

LSB'S IN MEM LOC ''N"

11 111 111 ¢ 1 = CARRY STATUS FROM
806 6006 00v° OFPERATION ABOVE

CARRY = 1 ¢+ 0 ¢V @8 006 0 ¢ 0

MSB'S IN MEM LOC "N+I"

PLACING THE RESULTS OF THE TWO 8 BIT REGISTERS SIDE-BY~SIDE AFTER
USING THE "ACM" TYPE OF INSTRUCTION YIELDS THE SAME RESULT AS THOUGH THE
OPERATION HAD BEEN PERFORMED IN A SIXTEEN BIT REGISTER. THE CONCEPT CAN
BE APPLIED TO AS MANY 8 BIT REGISTERS AS NECESSARY!

ARMED W1TH THE KNOWLEDGE OF HOW THE POWERFUL “ACM" TYPE OF INSTRUC-
TION OPERATES, ONE CAN PROCEED TO DEVELOP A “N'TH PRECISION' ADDITION
SUBROUTINE. EXAMINE THE FOLLOWING ROUTINE.

MNEMONIC COMMENTS
ADDER, NDA /ALWAYS CLEAR CARRY FLAG AT RTN ENTRY
ADDMOR, LAM L /GET FIRST NUMBER INTO ACCUMULATOR
CAL SWITCH /CHANGE POINTERS TO SECOND NUMBER
. ACM /PERFORM "ADDITION WITH CARRY"
LMA /PLACE RESULT BACK INTO MEMORY
DCB /DECREMENT THE "PRECISION'" COUNTER

RTZ /EXIT ROUTINE WHEN COUNTER REACHES 000

5 -5

MNEMONIC COMMENTS

- A . On e w e e s W - an wm eo W -

INL /ADVANCE SECOND NUMBFR POINTER
CAL SWITCH /CHANGE POINTER BACK TO FIRST NUMBER
INL /ADVANCE FIRST NUMBER POINTER

JMP ADDMOR /REPEAT PROCESS FOR NEXT PRFCISION

NOTFE THAT THE ABOVE "ADDER" SUBROUTINE REQUIRES THAT A NUMBER OF
THE CPU REGISTFRS BE "SET UP'" PRIOR TO CALLING THFE ROUTINE. THE "H & L"
REGISTFRS MUST CONTAIN THE ADDRESS OF THE LEAST SIGNIFICANT BITS IN THE
FIRST MULTI-WORD NUMBER. REGISTERS "D & E'" SIMILARLY MUST BE SET UP TO
CONTAIN THE ADDRESS OF THE LFAST SIGNIFICANT PART OF THE SECOND MULTI=-
PRECISION NUMBER THAT, IS TO BE ADDED TO THE FIRST. FINALLY, REGISTER
B' MUST BF INITIALIZED TO THE "PRECISION," OR NUMBER OF MEMORY WORDS
USED TO CONTAIN THE MULTI-PRECISION NUMBER, SUPPOSE, FOR FXAMPLE, THAT
A NUMBER IN “TRIPLE-PRECISION' FORMAT IS STORED IN THREE WORDS STARTING
AT LOCATION 149 ON PAGE 80 AND THAT A SECOND NUMBER IN SIMILAR FORMAT IS
STORED AT LOCATION 200 ON PAGE @1. THE FOLLOWING INSTRUCTIONS WOULD BE
USED TO SET UP THE CPU REGISTFRS PRIOR TO CALLING THE '"ADDER'" SUBROUT=-
INE.

MNEMONIC COMMENTS
INIT, LHI 0oo /SET PAGE FOR LSV QF FIRST NUMBER
LLI 100 /SET LOCATION ON PAGE FOR LSW OF IST #
LDI 9@l /SET PAGE FOR LSW OF SFCOND NUMBER
LEI 209 /SET LOCATION ON PAGE FOR LSV OF 2ND #
LBI 043 /SET PRECISION VALUE (3 WORDS)

CAL ADDER /CALL THE N'TH PRECISION ADDITION RTN

. /USER ROUTINES TO PROCESS THE ANSWER

NOTE T0OO, THAT THE "ADDERY SUBROUTINE IS "DESTRUCTIVE" TO THE ORIG=-
INAL VALUE OF THE SECOND NUMBFR THAT 1S ADDED BECAUSF THE ANSWFR 1S LEFT
_IN THAT LOCATION. 1IF, FOR SOME REASON, THE USER WANTED TO SAVE THE
ORIGINAL SECOND NUMBER, THEN IT WOULD HAVE TO BF "“SAVED" ELSEWHERE IN
MEMORY PRIOR TO PERFORMING THE ADDITION.

JUST AS THERE ARE TWO CLASSES OF INSTRUCTIONS FOR PERFORMING ADDI=-
TION WITH THE 8@68 CPU, ONE OF WHICH (ACM CATEGORY) IS SUITED FOR MUL=-
TIPLE-PRECISION ARITHMETIC, THERE ARE TW0 CLASSES OF SUBTRACT COMMANDS.
THE "'SUM' (SUBTRACT WITHOUT CARRY) AND THE "SBM" (SUBTRACT WITH CARRY =
OR MORE APPROPRIATELY *BORROW'")., THE "SBM" TYPE WORKS SIMILAR TO THE
“ACM" TYPE IN THAT THE CPU FIRST CHECKS THE STATUS OF THE CARRY FLAG BF-
FOR PERFORMING THE SUBTRACTION OPERATION MAKING IT AN FASY MATTER TO
PROCESS MULTIPLE-PRECISION SUBTRACTION OPERATIONS. IN FACT, ONE CAN
SET UP AN ALMOST IDENTICAL ROUTINE TO THE ONE USED FOR ADDITION THAT
WILL ALLOW PROCESSING "“N'TH PRECISION' SUBTRACTION OPERATIONS. AS IN
THE PREVIOUS EXAMPLE, ONE WOULD FIRST SET UP CPU REGISTERS AS POINTERS
TO THE LEAST SIGNIFICANT PORTIONS OF THE MULTIPLE-PRECISION NUMBERS IN
MEMORY AND LOAD REGISTER "B WITH THE NUMBER OF MEMORY WORDS OCCUPIED
BY A “N'TH PRECISION" NUMBER.

WHILE THE ROUTINES PRESENTED HERE ONLY UTILIZE THE '"ACM" OR “SBM"
INSTRUCTIONS - BECAUSE THE ALGORITHMS HAVE BEEN DEVELOPED AS GENERAL

s -6

PURPOSE ROUTINES TO HANDLE STRINGS OF NUMBERS IN MEMORY, THE READER IS
REMINDED THAT THERE ARE A WHOLE GROUP OF INSTRUCTIONS THAT HAVE SIMILAR
CAPABILITY FOR WORKING WITH DATA IN CPU REGISTERS (SUCH AS 'ACB,"™ "ACC,"
AND THE OTHER CPU REGISTERS PLUS "IMMEDIATE" OPERATIONS). THE READER
SHOULD REVIEW CHAPTER ONE OF THIS 908 PROGRAMERS MANUAL FOR A SUMMARY
OF THE POSSIBLE VARIATIONS.

MNEMONIC » COMMENTS
SUBBER, NDA /ALWAYS CLEAR CARRY FLAG AT START OF RTN
SUBTRA, LAM /GET FIRST NUMBER INTO ACCUMULATOR
CAL SWITCH /CHANGE POINTERS TO SECOND NUMBER
SBM /SUBTRACT 2°'ND FROM 1'ST WITH BORROV
LMA /PLACE RESULT BACK INTO MEMORY
DCB /DECREMENT THE PRECISION COUNTEH
RTZ ZEXIT ROUTINE WHEN COUNTER = ¥ud
INL /ADVANCE SECOND NUMBER POINTER
CAL SWITCH /CHANGE POINTER BACK TO FIRST NUMBER
INL /ADVANCE FIRST NUMBER POINTER

JMP SUBTRA /REMPEAT PROCESS FOR NEXT PHECISION

ONE THING A USER DEALING WITH MATHEMATICAL FUNCTIONS ON A COMPUTER
WILL SOON HAVE TO BE CONCERNED WITH IS WHAT HAPPENS WHEN A LARGER NUM-
BER 1S SUBTRACTED FROM A SMALLER NUMBER. THE ANSWER IS NATURALLY A
MINUS OR NEGATIVE NUMBER. AS WAS INITIALLY DISCUSSED IN THE CHAPTER ON
FUNDAMENTAL PROGRAMMING SKILLS, THE 6688 CPU PROCESSES NEGATIVE NUM-
BERS UTILIZING THE "TWO'S COMPLEMENT' CONVENTION. THE READER MAY WANT
TO REVIEW THE FIRST FEVW PAGES OF THAT SECTION AT THIS TIME.

FOR INSTANCE, IF USING SINGLE PRECISION ARITHMETIC, THE NUMBER 8§
(DECIMAL) WAS SUBTRACTED FROM 6, THE RESULT WOULD APPEAR IN THE ACCUMU-
LATOR AS SHOWN HERE:

6 DECIMAL = © ¥ © 0 @ 1 1 06 IN A BINARY REGISTER
8 DECIMAL = 0 0 @06 81 © 0 06 1IN A BINARY REGISTER
WHICH IS = 11 111 11 @& WHEN SUBTRACTED

NOTE THAT THE MOST SIGNIFICANT BIT IN THE REGISTER CONTAINING THE
MINUS ANSWER IS A "l." BY ESTABLISHING A TWO'S COMPLEMENT CONVENTION
AND ALWAYS ENSURING THAT THE MAGNITUDE OF ANY NUMBERS HANDLED DO NOT
INTERFERE WITH THE MOST SIGNIFICANT BIT, ONE CAN QUICKLY DETERMINE
WHETHER A NUMBER IN A REGISTER (OR SERIES OF REGISTERS IN THE CASE OF
MULTIPLE-PRECISION FORMATTING) IS POSITIVE OR NEGATIVE BY TESTING TO SEE
IF THE MOST SIGNIFICANT BIT IS A 1 (FOR A NEGATIVE) OR 8 (FOR A POSI=-
TIVE) VALUE. THIS IS READILY DONE IN A &@08 CPU BY TESTING THE '"SIGN"
FLAG WITH A "JFS,*" “CTS'" OR SIMILAR INSTRUCTION.

ALSO REMEMBER THAT A NUMBER CAN BE SUBTRACTED FROM ANOTHER NUMBER BY
FORMING THE TwW0'S COMPLEMENT OF THE NUMBER TO BE SUBTRACTED AND PERFORM-
ING AN ADDITION OPERATION. THUS:

+ 8 DECIMAL = @0 6 @4 01 0@ @ IN A BINARY REGISTER

IT*S TWO'S COMPLEMENT IS. = 11 111 @¢@ INA BINARY REGISTER

S -1

AND CONSEQUENTLY:

6 DECIMAL = @ 0

@ 1 1 & IN A BINARY REGISTER
TWO'S COMPLEMENT OF 8 = 1 1 1
1

")
1 8 8 6 IN A BINARY REGISTER
1

a
]
1

WHICH IS =] 1 1 1 @ WHEN ADDED!

IT IS OFTEN DESIRABLE TO PERFORM A STRAIGHT “TWO'S COMPLEMENT" OP~
ERATION ON A NUMBER IN ORDER TO CHANGE IT FROM A POSITIVE TO A NEGATIVE
NUMBER OR THE REVERSE. ONE EASY WAY TO ACCOMPLISH THIS IN A §068 UNIT
IS TO SIMPLY SUBTRACT THE NUMBER FROM A VALUE OF ZERO. FOR MULTIPLE-
PRECISION WORK ONE COULD SIMPLY LOAD ONE STRING OF MEMORY LOCATIONS (THE
FIRST NUMBER) WITH ZEROS AND PLACE THE NUMBER TO BE NEGATED IN THE SEC~-
OND STRING OF MEMORY LOCATIONS (THE SECOND NUMBER) AND CALL THE PREV=-
IOUSLY ILLUSTRATED "SUBBER" ROUTINE. HOWEVER, THERE MAY BE CASES WHERE
ONE DOES NOT WANT TO DISTURB VALUES IN MEMORY LOCATIONS OR PERFORM THE
TRANSFER OPERATIONS NECESSARY T0 SET UP THE NUMBERS FOR THE “SUBBER"
ROUTINE. WHAT IS DESIRED IS A “TWO'S COMPLEMENT” ROUTINE THAT WILL OP~-
ERATE ON A VALUE IN THE LOCATION(S) IN WHICH IT RESIDES. THE FOLLOVING
ROUTINE WILL ACCOMPLISH THAT OBJECTIVE, AND CAN HANDLE "N°'TH PRECISION"™
NUMBERS .

MNEMONIC COMMENTS
COMPLM, LAM /GET LEAST SIGNIFICANT BITS (1ST WORD)
XR1 377 /EXCLUSIVE "OR" = PURE COMPLEMENT
ADl1 @81 /NOW ADD | TO FORM TWO'S COMPLEMENT
MORCOM, LMA /RETURN 2°'S COMPLEMENT VALUE TO MEMORY
RAR /GET THE CARRY BIT INTO THE ACCUMULATOR
LDA /AND SAVE THE CARRY BIT STATUS
DCB /NOW DECREMENT THE “PRECISION" COUNTER
RTZ /FINISHED WHEN COUNTER = 080
INL /IF NOT DONE, ADVANCE MEMORY POINTER
LAM /AND FETCH THE NEXT GROUP OF BITS
XRI 377 /PRODUCE A PURE COMPLEMENT
LEA /SAVE PURE COMPLEMENT TEMPORARILY
LAD /GET PREVIOUS CARRY BACK INTO ACCUMULATOR
RAL /AND SHIFT IT BACK OUT TO THE CARRY FLA€
LAl 000 /D0 A LOAD SO DOES NOT DISTURB CARRY
ACE /ADD COMPLEMENTED VALUE WITH ANY CARRY

JMP MORCOM /GO ON TO DO NEXT WORD IN STRING

NOTICE THAT IN THE ABOVE ROUTINE IT WAS NECESSARY TO SAVE THE STATUS
OF THE CARRY FLAG (BIT) IN A CPU REGISTER BECAUSE AN "XRI"™ OR ANY BOOL~-
EAN LOGIC INSTRUCTION AUTOMATICALLY *“CLEARS"™ THE CARRY FLAG6 TO ZERO AND
WOULD DESTROY ANY PREVIOUS * 1" CONDITION. (ANY READERS WHO FORGOT THAT
MIGHT BE WISE TO SPEND A LITTLE MORE TIME STUDYING CHAPTER ONE OF THIS
MANUAL'!

AS VITH THE “ADDER" AND "SUBBER"™ ROUTINES IT IS ALSO NECESSARY TO
‘D0 SOME PRELIMINARY SETTING UP BEFORE CALLING THE "COMPLM" SUBROUTINE.
THE "H & L* REGISTERS MUST BE SET TO THE FIRST WORD (LEAST SIGNIFICANT
BITS) OF THE MULTI-PRECISION NUMBER AND REGISTER “B"™ MUST INDICATE HOW
MANY WORDS ARE OCCUPIED BY THE NUMBER.

IT WILL ALSO BE POINTED OUT HERE, THAT AS THE PROGRAMMER GETS INTO

5~ 8

DEVELOPING MORE AND MORE COMPLICATED ROUTINES, THAT UTILIZE A LOT OF
SUBROUTINES, THE PROGRAMMER MUST MAINTAIN STRICT CONTROL OVER WHICH CPU
REGISTERS ARE AFFECTED AND MAKE SURE THAT THE USE OF SELECTED CPU REGI-
STERS BY ONE ROUTINE (ESPECIALLY WHEN IT “CALLS'" ANOTHER ROUTINE)> DO NOT
INTERFERE WITH THE OVER-ALL OPERATION OF A PROGRAM. THE BEST RULE OF
THUMB IS TO TRY AND LEAVE A SUBROUTINE WITH ALL THE CPU REGISTERS, EX-
CEPT THOSE TRANSFERRING INFORMATION TO THE NEXT ROUTINE, IN A "FREE" OR
"DON*'T CARE" STATE. THIS IS NOT ALWAYS POSSIBLE, AND WVHEN IT IS NOT,
THE PROGRAMMER MUST KEEP TRACK OF WHICH REGISTERS ARE BEING USED FOR A
SPECIFIC PURPOSE AND NOT ALLOW THEM TO BE UNINTENTIONALLY ALTERED. FOR
INSTANCE, THE ABOVE "COMPLM™ ROUTINE REQUIRES THAT THREE OF THE CPU REG-
ISTERS BE SET UP PRIOR TO ENTRY = THE "H," "L," AND "B REGISTERS. WHEN
IT LEAVES THE ROUTINE THOSE ROUTINES ARE ESSENTIALLY FREE FOR USE BY THE
NEXT ROUTINE. IT ALSO USES THE "A,'" *D' AND "“E" CPU REGISTERS FOR OPER~
ATIONS THAT IT PERFORMS. IT DOES NOT CARE ABOUT THE STATUS OF THOSE
REGISTERS WHEN IT STARTS OPERATIONS BECAUSE IT *"LOADS*'" THEM ITSELF. IT
ALSO LEAVES THOSE REGISTERS ESSENTIALLY "“FREE" WHEN THE ROUTINE IS EXIT-
ED. (ALL THE IMPORTANT OPERATIONS ARE DONE WITH LOCATIONS IN MEMORY).
HOWEVER, THE FACT THAT THE ROUTINE USES CERTAIN CPU REGISTERS - SUCH AS
REGISTERS "D & E," IS VERY IMPORTANT TO REMEMBER IF ONE WAS USING OTHER
ROUTINES THAT MAINTAINED, SAY, MEMORY POINTERS IN REGISTERS "D & E."

THE NOVICE PROGRAMMER (AND A LOT OF TIMES THE “NOT=-SO-NOVICE' ONES) WILL
OFTEN FIND SOME VERY STRANGE OPERATIONS OCCURING IN A NEWLY DEVELOPED
PROGRAM BECAUSE OF PROBLEMS RELATED TO JUST THIS ASPECTI!

THE ABOVE ROUTINES COULD BE USED BY THEMSELVES TO HANDLE ADDITION
AND SUBTRACTION OF LARGE NUMBERS. HOWEVER, A RESTRICTION ON THE TYPES
OF NUMBERS THEY COULD HANDLE WOULD BE THAT THE NUMBERS WOULD HAVE TO BE
WVHOLE NUMBERS. ALSO, AS THE MAGNITUDES OF THE NUMBERS TO BE HANDLED
INCREASED, THE NUMBER OF WORDS USED TO STORE A VALUE IN MULTI-PRECISION
FORMAT WOULD HAVE TO BE INCREASED. AS WAS POINTED OUT EARLIER, USUALLY,
WHEN ONE STARTS DEALING WITH NUMBERS OF LARGE MAGNITUDE, ONE 1S PRIMAR=-
ILY CONCERNED WITH A CERTAIN NUMBER OF *"SIGNIFICANT* DIGITS IN A CAL~
CULATION. FOR INSTANCE, ONE COULD REPRESENT THE VALUE ONE MILLION AS
1,000,080. TO STORE THIS NUMBER IN MULTI-PRECISION FORMAT REQUIRES THE
USE OF THREE MEMORY WORDS IN A 40908 UNIT. HOWEVER, THE NUMBER 1,000,000
ONLY CONTAINS ONE SIGNIFICANT DIGIT. THE NUMBER COULD JUST AS EASILY BE
REPRESENTED AS 1 RAISED TO THE 6TH POWER OF 18, OR | E+6 IN WHAT 1S OF-
TEN TERMED FLOATING POINT FORMAT. NOTE THAT IF THE NUMBER WAS STORED
IN SUCH A FORMAT, ONE WOULD ONLY NEED TO USE ONE MEMORY REGISTER (FOR
THE *1" AS THE SIGNIFICANT DIGIT, AND ANOTHER REGISTER TO HOLD THE POVER
TO WHICH THE SIGNIFICANT DIGIT WAS TO BE RAISED. FLOATING POINT FORMAT
ALSO ENABLES ANOTHER PROBLEM TO BE READILY HANDLED - THAT OF PROCESSING
FRACTIONAL NUMBERS. UP TO THI1S POINT, NO DISCUSSION ON REPRESENTING
NON-INTEGER NUMBERS HAS BEEN PRESENTED. THIS WILL BE DONE SHORTLY, HOW-
EVER, AS AN INTRODUCTION, NOTE THAT THE DECIMAL NUMBER @.1 COULD BE REP-
RESENTED IN FLOATING POINT FORMAT AS | RAISED TO THE MINUS 1| POWER OF
16, OR 1 E-1l.

THE READER HAS NOW BEEN INTRODUCED TO MULTI-PRECISION ARITHMETIC AND
HOPEFULLY HAS AN UNDERSTANDING OF HOV LARGE NUMBERS CAN BE STORED IN
SEVERAL SMALL REGISTERS. THE TERM LARGE NUMBERS CAN BE INTERPRETED AS
NUMBERS CONTAINING MORE THAN A COUPLE OF S1GNIFICANT DIGITS. THE READER
SHOULD UNDERSTAND THAT INCREASING THE NUMBER OF SIGNIFICANT DIGITS RE=-
QUIRES AN INCREASE IN THE NUMBER OF BINARY BITS NEEDED TO STORE A NUMBER
AND HENCE INCREASES THE NUMBER OF MEMORY WORDS REQUIRED WHEN THE NUMBER
IS STORED IN MULTI-PRECISION FORMAT. ALSO, WHEN THE FORMAT DESCRIBED
UP TO NOV 1S USED, INCREASING THE MAGNITUDE OF A NUMBER (BY ADDING ZEROS
T0 THE RIGHT OF THE SIGNIFICANT DIGITS) RAPIDLY INCREASES THE NUMBER OF
WORDS OF MEMORY REQUIRED TO HOLD A NUMBER. FINALLY, JUST STORING A NUM-
BER IN A REGISTER, WITHOUT REGARD TO A “DECIMAL POINT" LOCATION, MAKES

5=~-9

IT IMPOSSIBLE TO PROPERLY MANIPULATE FRACTIONAL NUMBERS.

HOWEVER, THE IDEA THAT NUMBERS CAN BE REPRESENTED AS A SERIES OF
SIGNIFICANT DIGITS RAISED TO A POWER PRESENTS A SOLUTION TO THE LIMITA~
TIONS MENTIONED. HANDLING NUMBERS IN SUCH A FASHION 1S GENERALLY TERM-~
ED “FLOATING-POINT* ARITHMETIC. THE REMAINDER OF THIS CHAPTER VILL BE
DEVOTED TO DEVELOPING ROUTINES FOR A “FLOATING-POINT" MATHEMATICAL PRO-
GRAM FOR GENERAL PURPOSE APPLICATIONS.

HOWEVER, BEFORE PROCEEDING INTO THE DEVELOPMENT OF FLOATING-POINT
ROUTINES, IT WILL BE NECESSARY TO DISCUSS A MATTER THAT HAS BEEN LEFT
ASIDE UP TO THIS POINT - REPRESENTING FRACTIONAL NUMBERS UTILIZING THE
LANGUAGE OF THE DIGITAL COMPUTER - BINARY ARITHMETIC.

IN THE DECIMAL NUMBERING SYSTEM WHICH VIRTUALLY EVERYONE HAS BEEN
EDUCATED IN, FRACTIONS OF A NUMBER ARE REPRESENTED BY DIGITS PLACED TO
THE RIGHT OF A DECIMAL POINT. EACH POSITION TO THE RIGHT OF SUCH A
POINT REPRESENTS UNITS OF DECREASING POWERS OF 16. THUS THE NUMBER:

g . 125 (DECIMAL)
ACTUALLY REPRESENTS?t
| S TENTH (1/18 OR 186 TO THE -1 POWER)
PLUS: 2 . HUNDREDTHS (OR 18 TO THE =2 POVER)
PLUS: 5 THOUSANDTHS (OR 18 TO THE -3 POVER)
THE CONCEPT IS EXACTLY THE SAME FOR BINARY ARITHMETIC EXCEPT THAT
NOW FACH POSITION TO THE RIGHT OF THE DECIMAL POINT REPRESENTS UNITS OF
DECREASING POVERS OF 2! THUS THE NUMBER1

g . 111 (BINARY)

REPRESENTS
1 « o HALF (1/2 OR 2 TO THE -1 POWER)
PLUS: 1 . QUARTER (OR 2 TO THE -2 POVER)
PLUS:s 1 EIGHTH (OR 2 TO THE -3 POVER)

THUS THE ABOVE BINARY NUMBER #.111 REPRESENTS A FRACTIONAL NUMBER
WHICH WHEN CONVERTED TO DECIMAL IS EQUAL TO?

172 + 174 + 1/8 = 7/8 OR .875 (DECIMAL)

THE MANNER IN WHICH FRACTIONAL BINARY NUMBERS ARE REPRESENTED BRINGS
OUT AN INTERESTING POINT WHICH MANY READERS MAY HAVE HEARD OF, BUT NOT
TRULY UNDERSTOOD - THE INTRODUCTION OF ERRORS INTO CALCULATIONS DONE
WITH A DIGITAL COMPUTER DUE TO THE MANIPULATION OF FRACTIONS THAT CAN
NOT BE "FINALIZED."™ AS AN ANALOGY, THERE ARE SIMILAR CASES IN DECIMAL
ARITHMETIC, SUCH AS THE CASE WHEN THE NUMBER 1 IS DIVIDED BY 3. THE
ANSWER 1St

3.33333333333333333333¢ccvcese

OR A NON-ENDING SERIES OF 3'S AFTER THE DECIMAL POINT. THE ACCURACY OR
“PRECISION"™ WITH WHICH A CALCULATION INVOLVING SUCH A NUMBER CAN BE CAR~-
RIED OUT 1S DETERMINED BY HOW MANY "SIGNIFICANT" DIGITS ARE USED IN
FURTHER CALCULATIONS INVOLVING THE FRACTIONs FOR INSTANCE, THEORETICAL=-
LY, IF THE NUMBER | 1S DIVIDED BY 3 AND THEN MULTIPLIED BY 3, ONE WOULD
GET BACK 1| AS A RESULT. HOWEVER, IF THE RESULT OF THE DIVISION IS AC~-
TUALLY MULTIPLIED BY 3, THE ANSWER IS NOT ACTUALLY ONE, BUT APPROACHES

5-10

THAT VALUE AS THE NUMBER OF SIGNIFICANT DIGITS USFD IN THE CALCULATION
1S INCRFASED. OBSERVF,

#.3 (ONF SIGNIFICANT DIGIT USED)
X 3

+9 (ANSVWFR IS OFF BY 10%)

©.33 (TWO SIGNIFICANT DIGITS USED)

+99 (ANSVFR IS OFF BY 1%

2.333 (THREF SIGNIFICANT DIGITS USFD)

+999 (ANSVWFR IS OFF BY 0.1%2)

A SIMILAR SITUATION EXISTS VWITH BINARY ARITHMETIC EXCFPT THERF ARF
NOW MANY MORF CASFS WHERF. THF “NON-FNDING'" FRACTION SITUATION CAN OCCUR.
FOR INSTANCF, THF VYALUF @.1 IS TRULY REPRFSENTED IN THF DFCIMAL SYSTFM,
BUT IN THE BINARY SYSTFM, THE DECIMAL VALUE #.1 CAN ONLY BF APPROXIMAT-
FD -~ AND SIMILARLY TO THF ABOVE, THE MORE BINARY DIGITS USED, THF CLOSER
THE VALUF APPROACHES THE TRUE VALUF OF #.l. OBSFRVF,

USING 4 BINARY DIGITS a §.,000) = l/16 = ,0625 (OFF 37.5%)
9 DIGITS = 0.000110011 = 1/16 + 1/32 + 1/256 + 1/512 = .0996 (OFF .4%)
NOTE TOO, THAT THE BINARY RFEPRESENTATION IS A NON-ENDING SFERIES:

.1 DECIMAL = 0.00011001100110011001106110081100... (BINARY)

AND CAN NOT RFACH THF THFORETICAL TRUE VALUE OF 0.! AS IN THE DFCIMAL
SYSTEM. THUS, IF @.1 AS REPRFSFNTED IN THE BINARY SYSTEM IS MULTIPLIED
BY, SAY 16, (VHICH CAN BE TRULY RFPRESENTFD IN THF BINARY SYSTFM!) THE
THEORETICAL VALUE OF 1.8 CAN ONLY BE APPROACHFD», AND THF MORF BITS USED
To HOLD THE BINARY EQUIVELANT, THE CLOSER ONE CAN APPROACH THE TRUFE ANS-
WER. THUS, ONE CAN SFF ANOTHER RFASON FOR USING MULTIPLF-PRFCISION
ARITHMETIC IN A DIGITAL COMPUTER EVEN IF ONF DOFS NOT WANT TO HANDLE BIG
NUMBERS! THIS IS BECAUSF THE MORE BITS AVAILABLE TO STORE A FRACTIONAL
NUMBFR - THE MORE “PRECISION" ONE CAN MAINTAIN IN PERFORMING CALCULA~
TIONS. ONF SHOULD NOW ALSO RFALIZE, THAT THE MORE COMPLEX A SERIES OF
MATHEMATICAL OPFRATION BECOMFS, IN OTHER WORDS, THF MORF TIMFS A NUMBER
THAT CAN NOT TRULY BF REPRESENTED IS MULTIPLIED OR DIVIDED, THE WIDER
WILL BECOME THE MARGIN OF ERROR IN THE FINAL ANSWER!

NOW THAT ONE HAS A GRASP OF HOW BINARY NUMBFRS CAN RFPRESFNT FRAC-
TIONAL NUMBERS WHFN PLACED TO THE RIGHT OF A DECIMAL POINT, ONE CAN PRO-
CEED TO INVESTIGATE “FLOATING=-POINT'" ARITHMETIC USING A DIGITAL COM-
PUTER.

FLOATING~POINT ARITHMETIC

JUST AS ONE CAN REPRFSFNT DECIMAL NUMBERS IN FLOATING-~POINT FORMAT,
I.Fe, A STRING OF SIGNIFICANT DIGITS RAISED TO A POWER OF 18, ONE CAN

ALSO TREAT BINARY NUMBFRS IN A SIMILAR MANNER AS A STRING OF BINARY
DIGITS RAISED TO A POWER OF 2,

5« 11

WHEN HANDLING NUMBFRS IN FLOATING-POINT FORMAT THE NUMBER 1S- REPRE-
SENTED AS TWO PARTS. THE "SIGNIFICANT DIGITS' PORTION 1S REFERRED TO AS
THE "MANTISSA* AND THE POWER TO WHICH THE NUMBER 1S TO BE RAISED IS RE-
FERRED TO AS THE "“FXPONENT.” IN DECIMAL FLOATING-POINT FORMAT THE NUM=-
BER *5" COULD BE EXPRESSED AS:

S.80 E+8 = 5 X 1 = 5

OR S8.0 E-1 = 5@ X l/16 = 5

t

OR 6.5 E+1 = @.5X 186 = 5

WHILE IN BINARY FLOATING-POINT FORMAT THE SAME NUMBER COULD BE FXPRESSED
AS:

161.8 E+8 = 5 X 1 = §
OR 101008.6 E-3 = 40 X 1/8 = §

OR #.101 E+3 = S/8 X & = S

NOTE THAT THE “MECHANICS'" OF THE CORRESPONDENCE BETWEEN THE EXPONENT
AND THE LOCATION OF THE DECIMAL POINT IN THE MANTISSA IS THE SAME FOR
BOTH NUMBERING SYSTEMS. IF THE SIGNIFICANT DIGITS ARE MOVED TO THE
RIGHT OF THE DECIMAL POINT THEN THE EXPONENT IS INCREASED A UNIT FOR
FACH POSITION THE MANTISSA IS SHIFTED. 1IF THE DIGITS IN THE MANTISSA
ARE SHIFTED TO THE LEFT, THEN THE EXPONENT 1S DFECRFASED. THE ONLY DIFF-
FRENCE BETWEEN THE TWO SYSTEMS 1S THAT THE EXPONENT IN THE DECIMAL SYS-
TEM 1S SPECIFIED FOR POWERS OF 10, WHILE IN THE BINARY SYSTEM IT IS FOR
POWERS OF 2.

THE READFR SHOULD NOW SEE THAT IT CAN BE QUITE A SIMPLE MATTER TO
HANDLE BINARY NUMBERS USING A FLOATING~-POINT FORMAT lF ONE SIMPLY AR~
RANGES TO KEEP TABS ON THE *"EXPONENT®" PORTION IN ONE REGISTER (OR REGIS-
TERS) AND MAINTAINS THE ''MANTISSA' PORTION IN ANOTHER RFGISTER (OR SEV-
ERAL REGISTERS FOR MORE PRECISION). FURTHERMORE, A VERY SIMPLE RELA-
TIONSHIP CAN BE MAINTAINED BETWEEN THE MANTISSA AND THE EXPONENT TO
FACILITATE KEEPING TRACK OF A "DECIMAL" POINT. ONCE ONE HAS SELECTED
A GIVEN POSITION AS A REFERENCE JUNCTION IN THE MANTISSA PORTION, ONE
HAS ONLY TO OBSFRVE THE FOLLOVING PROCEDURE FOR MANIPULATING THE NUMBER
AND KEFPING TRACK OF THE "“DECIMAL' POINT:

FACH TIME THE MANTISSA IS SHIFTED TO THE RIGHT - INCREMENT THE EXPONENT!

EACH TIME THE MANTISSA IS SHIFTED TO THE LEFT - DECREMENT THE EXPONENT!

FOR THE REMAINDER OF THIS CHAPTER, A CONVENTION FOR STORING NUMBERS
IN FLOATING-POINT FORMAT VWILL BE ESTABLISHED. NUMBERS WILL BE STORED IN
FOUR CONSECUTIVE WORDS IN MEMORY. THE FIRST WORD IN A GROUP VWILL BE
USED TO STORE THE "EXPONENT* WITH THE MOST SIGNIFICANT BIT IN THE WORD
USED TO REPRESENT THE “SIGN™ OF THE EXPONENT. A *"1" IN THE MOST SIGNI-
FICANT BIT POSITION MEANS THE NUMBER 1S "NEGATIVE." THE NEXT THREE
WORDS WILL THEN HOLD THE *MANTISSA' PORTION IN TRIPLE-PRECISION FORMAT,
WITH THE FIRST BIT IN THE FIRST WORD OF THE MANTISSA BEING USED AS THE
“SIGN" BIT. THE REMAINING BITS IN THAT WORD WILL BE THE MOST SIGNIFI-

5 - 12

CANT BITS OF THE NUMBFR. THE REMAINING TWO WORDS IN A GROUP WILL HOLD
THE LESS SIGNIFICANT BITS OF THE MANTISSA. FURTHERMORE, THERE WILL BE
AN IMPLIED "“DECIMAL" POINT IMMEDIATELY TO THE RIGHT OF THE *"SIGN" BIT
IN THE MANTISSA. THE FORMAT 1S ILLUSTRATED HERE:

eo o EXPONENT ¢ e 0 o eeoseoMSWeoseoosooeoeeMANTISSAcessscssvssseeslLSWeoeaooo
L 4 t *
SEEETETETEHTE S\MMMMMMM MMMMMMMM MMMMMMMM
4 t 4 1 * * 4 t
MEM LOC "N+3" MEM LOC "N+2" MEM LOC *N+1" MEM LOC *N"

NOTE THE ORDER OF THE MEMORY ADDRESSES ASSIGNED TO THE STORAGE OF A
NUMBER. AS IN THE PAST, THE ORDER OF STORAGE 1S AN ARBITRARY ASSIGNMENT
BUT ONCE IT HAS BEEN ASSIGNED IT MUST BE ADHERED TO WITHIN A PROGRAM.
THE ORDER SHOWN IS THE ONE THAT WILL BE USED IN THE DISCUSSION AND PRO-
GRAM EXAMPLES USED FOR THE REMAINDER OF THIS SECTION.

NOTE TOO», THAT A CONVENTION HAS BEEN ESTABLISHED THAT WILL CONSIDER
A "DECIMAL POINT' (ACTUALLY, PERHAPS IT SHOULD BE TERMED A '"BINARY"
POINT) TO BE LOCATED TO THE RIGHT OF THE DESIGNATED *"SIGN' BIT FOR THE
MANTISSA. THIS MEANS THAT ALL NUMBERS STORED IN FLOATING-POINT FORMAT
WILL BE REPRESENTED AS A FRACTIONAL NUMBER! ALSO, THE READER CAN SEE
THAT WITH ONE BIT OUT OF THE THREE WORDS USED TO STORE THE MANTISSA USED
TO HOLD THE "SIGN' OF THE MANTISSA, THAT 23 (DECIMAL) BITS ARE LEFT TO
HOLD THE ACTUAL MAGNITUDE OF THE MANTISSA. SIMILARLY, THE EXPONENT HAS
7 BITS WITH WHICH TO REPRESENT THE MAGNITUDE OF IT'S VALUE. FURTHER=-
MORE, AN EXPONENT MUST BE AN INTEGER VALUE AS THERE WILL BE NO IMPLIED
“"DECIMAL POINT'" IN THE EXPONENT REGISTER,

FLOATING-POINT NORMALIZATION

“NORMALIZATION" CAN BE CONSIDERED AS A “STANDARDIZING" PROCESS THAT
WILL PLACE A NUMBER INTO A FIXED POSITION AS A REFERENCE POINT FROM
WHICH TO COMMENCE OPERATIONS. FOR THE PURPOSES OF THIS DISCUSSION, THE
TERM "NORMALIZATION'" WILL MEAN TO PLACE A NUMBER INTO ITS STORAGE REGI-
STERS SO THAT THE "MANTISSA" VWILL HAVE A VALUE THAT 1S GREATER THAN OR
ERUAL TO "1/2" BUT LESS THAN "1." PUT ANOTHER WAY, THIS MEANS THAT ANY
NUMBER TO BE MANIPULATED BY A "FLOATING~-POINT ROUTINE" WILL FIRST BE
SHIFTED SO THAT THE MOST SIGNIFICANT BINARY DIGIT IS NEXT TO THE IMPLIED
“BINARY" POINT IN THE MOST SIGNIFICANT WORD OF THE MANTISSA STORAGE REG-
ISTERS. FOR INSTANCE IF A BINARY NUMBER SUCH AS:

101.0 E+8 (DECIMAL 5)

WAS RECEIVED BY AN INPUT ROUTINE TO A FLOATING-POINT PROGRAM; THE NUMBER
WOULD BE 'NORMALIZED" WHEN IT WAS PLACED IN THE FORM:

@.1061 E+3 (WHICH IS 5/8 X 8 = 5 DECIMAL!)

SIMILARLY, IF AFTER SAY A BINARY DIVISION OPERATION IN WHICH THE NUMBER
1 HAD BEEN DIVIDED BY 18 (DECIMAL) AND ONE HAD THE ANSVWER:

#.800110011001100... F+@ (DECIMAL 0.1)
THE NUMBER WOULD BE CONSIDERED NORMALIZED WHEN IT WAS IN THE FORMAT:

0.110011001100611066.. E-3 (DECIMAL 8.1)

S - 13

NOTE THAT 'NORMALIZING" A NUMBFR-IS A PRETTY FASY MATTFR. |IN THE
FIRST EXAMPLE ABOVF THF NUMBFR WAS NORMALIZED BY SHIFTING THE ORIGINAL
NUMBFR TO THE RIGHT UNTIL THF MOST SIGNIFICANT BIT WAS JUST TO THE RIGHT
OF THE DFCIMAL POINT, WHILE INCREMENTING THE "EXPONENT" FOR EACH SHIFT
OPFRATION. IN THE SFCOND FXAMPLE, THE NUMBER IS SHIFTED IN THE REVFRSE
DIRECTION WHILF DECREMENTING THE EXPONENT.

THFRF ARF SFUERAL REASONS FOR VWANTING TO “NORMALIZE'" A NUMBFR WHFN
WORKING WITH A FLOATING-POINT PROGRAM. THF FIRST HAS TO DO WITH THE
FACT THAT GENFRALLY NUMBERS WILL ORIGINATE FROM A HUMAN WHO WILL BE US-
ING THE COMPUTER TO MANIPULATE NUMBFRS IN DECIMAL FORMAT AND THEREFORE
THE COMPUTER WILL HAVE TO CONVERT NUMBFRS FROM SAY, A DECIMAL FLOATING-
POINT FORMAT, TO THF BINARY FORMAT USED BY THE COMPUTER. THERF WILL BE
MORE DISCUSSION ON THIS MATTER LATFR IN THIS CHAPTFR AFTER A NUMBER OF
BINARY FLOATING=POINT OPERATIONS HAVE BEEN PRESFNTED. THE SECOND RFASON
FOR NORMALIZING NUMBERS, AND A VERY IMPORTANT ONE, IS BFCAUSE THE PROC-
ESS WILL ALLOW MORE SIGNIFICANT BINARY DIGITS TO BF RETAINED IN A FIXED
LENGTH REGISTFR. THIS CAN BE SEEN BY OBSERVING IN THE ABOVE EXAMPLE OF
THE CASE WHERE @.1 DFCIMAL IS NORMALIZED, THAT SHIFTING THE BINARY NUM-
BFR TO THE LEFT THREE PLACES WOULD ALLOW SEVFRAL MORF LEAST SIGNIFICANT
BITS TO BE PLACED IN A FIXED LENGTH REGISTER FOR THF NON-ENDING BINARY
SFRIES OF "0.110011001100..." AND THUS ALLOW MORE ACCURACY IN THE BINARY
CALCULATIONS THAT MIGHT FOLLOW!

A ROUTINE FOR "NORMALIZING' BINARY NUMBERS WILL BE PRESENTED SHORT-
LY. IN THE ROUTINE FOR "NORMALIZING" NUMBERS, AND VARIOUS OTHER MATH=-
EMATICAL ROUTINES IN THIS CHAPTFR, VARIOUS LOCATIONS ON PAGE 0@ VWILL BE
USED FOR STORING NUMBERS THAT ARE TO BE MANIPULATED BY THF ROUTINFS AS
WELL AS HOLDING "COUNTERS"™ AND *"POINTERS' IN MEMORY LOCATIONS. A LIST
OF THE LOCATIONS USED WILL BE PROVIDED LATER. ALSO, BFFORF GETTING IN=-
TO THE ACTUAL BINARY FLOATING-POINT ROUTINES, THE RFADFR SHOULD BE IN-
FORMED THAT IN THFE FOLLOWING ROUTINES, REFFRENCFS WILL BE MADE TO A
“FLOATING-POINT ACCUMULATOR'" AND "FLOATING-POINT OPFRAND."™ THE FLOAT-
ING-POINT ACCUMULATOR AND OPERAND WILL BE SEPARATE GROUPS CONSISTING OF
FOUR CONSECUTIVE MEMORY WORDS ON PAGE @@ USFD TO STORE THE "ACTIVE'" NUM=-
BERS THAT ARF MANIPULATED BY THE FLOATING-POINT ROUTINES. THEY WILL, OF
COURSE, BE ARRANGED IN THE FORMAT DESCRIBED FARLIER OF A SINGLE MEMORY
WORD '""EXPONENT' AND A TRIPLE-PRECISION "MANTISSA.* THFE "FLOATING=-POINT
ACCUMULATOR" WILL BE THE FOCAL POINT FOR ANY FLOATING-POINT ROUTINE AS
ALL THE RESULTS OF FLOATING-POINT CALCULATIONS WILL BE PLACED THERE.
THE *“FLOATING-POINT OPFRAND'" WILL BE USED PRIMARILY FOR HOLDING AND MAN-
IPULATING THE NUMBER THAT THE FLOATING-POINT ACCUMULATOR OPFRATES ON.
FOR BRFVITY IN FURTHER DISCUSSIONS, THE FLOATING~-POINT ACCUMULATOR WILL
BE ABBREVIATED AS '"FPACC" AND THE FLOATING-POINT OPERAND AS "FPOP."

MNEMONIC COMMENTS
FPNORM, LAB /CHFCK REGISTER “B* FOR SPECIAL CASE
NDA /SET FLAGS AFTER LOAD OPFRATION
JTZ NOEXCO /IF "B" WAS @, DO STANDARD NORMALIZATION
LLI 127 /JOTHERVISE SET EXPONENT OF FPACC
LMB /TO VALUF FOUND IN “B" AT START OF RTN
NOEXCO, LLI 126 /SET POINTER TO MSW OF FPACC MANTISSA
LAM /AND GET MSW OF FPACC MANTISSA INTO ACC
LLI 100 /CHANGE POINTER TO "SIGN'" STORAGE ADDRESS
NDA /SET FLAGS AFTER PREVIOUS '"LAM"™ OPERATION
JTS ACCMIN /SEE IF MSB IN MSW = |, YES = MINUS #
XRA /1F MSB = @, HAVE POSITIVE VALUE MANTISSA
LMA /50 SET "SIGN" STORAGE TO 000

5~ 14

MNEMONIC COMMENTS

JMP ACZERT /PROCEED TO SEE IF FPACC = ZERO .
ACCMIN, LMA /0RIG FPACC = NEG #, PUT DATA IN "SIGN"

‘LBl 004 /SET PRECISION CNTR TO 4 (USE EXTRA WORD)
LLI 123 /AND PNTR TO FPACC LSW-1 (USE EXTRA WORD)
CAL COMPLM /TWO'S COMPLEMENT FPACC + 1 EXTRA MEM WORD
ACZERT, LLI 126 /CHECK TO SEE IF FPACC CONTAINS ZERO
LBl @6a /SET A COUNTER
LOOK8, LAM /GET A PART OF FPACC
NDA /SET FLAGS AFTER LOAD OPERATION

JFZ ACNONZ /IF FIND ANYTHING THEN FPACC IS NOT ZERO

DCL /0THERWISE MOVE POINTER TO NEXT PART

DCB /DECREMENT THE LOOP COUNTER

JFZ LOOK®@ /AND 1F NOT FINISHED CHECK NEXT PART

LLI 127 /1F REACH HERE FPACC WAS ZERO

XRA /S0 MAKE SURE EXPONENT OF FPACC IS ALSO

LMA /ZERO BY PUTTING ZERO IN IT!

RET /CAN THEN EXIT THE NORMALIZATION ROUTINE
ACNONZ, LLI 123 /1F FPACC HAS VALUE, SET UP POINTERS

LBI 004 /AND "PRECISION* VALUE (P = 4 TO HANDLE

CAL ROTATL /SPEC1AL CASES) AND ROTATE FPACC L E F T

LAM /THEN GET MSB OF MSW IN MANTISSA

NDA /SET FLAGS AFTER LOAD OPERATION

JTS ACCSET /I1F MSB = 1, HAVE FOUND MSB IN FPACC

INL /1F NOT, ADVANCE PNTR TO FPACC EXPONENT

CAL CNTDWN /AND DECREMENT THE VALUE OF THE EXPONENT
JMP ACNONZ /THEN CONTINUE IN THE ROTATING LEFT LOOP

ACCSET, LLI 126 /COMPENSATE FOR LAST ROTATE LEFT WHEN MSB

LBl @063 /FOUND TO LEAVE ROOM FOR '"SIGN" IN MSB OF
CAL ROTATR /FPACC MANTISSA BY DOING ONE ROTATE RIGHT
. LLI 1060 /SET POINTER TO ORIGINAL *"SIGN" STORAGE
LAM /GET ORIGINAL "SIGN"™ INDICATOR

NDA -/SET FLAGS AFTER LOAD OPERATION

RFS /FINISHED AS VALUE IN FPACC 1S POSITIVE
LLI 124 /0RIG "SIGN' NEGATIVE, SO SET PNTR TO LSW
LBl 003 /0F FPACC AND SET PRECISION COUNTER

CAL COMPLM /TWO'S COMPLEMENT THE NORMALIZED FPACC

RET /THAT'S ALL FOR “NORMALIZATION"

THERE ARE SEVERAL ITEMS IN THE ABOVE ROUTINE THAT MIGHT CONFUSE THE
READER IF NOT EXPLAINED. FIRST OF ALL, THE ROUTINE FIRST CHECKS CPU
REGISTER "B" WHEN IT IS ENTERED. IF "B*" CONTAINS €8¢ THEN THE ROUTINE
WILL PROCEED ON TO THE NEXT PART OF THE PROGRAM. 1IF "B" CONTAINS SOME
NON-ZERO VALUE, THEN THAT VALUE WILL BE PLACED IN THE EXPONENT PORTION
OF THE FPACC. THIS WAS DONE SO THAT THE *FPNORM* SUBROUTINE COULD HAN-
OLE NUMBERS THAT WERE NOT IN FLOATING-POINT FORM. FOR INSTANCE, WHEN A
NUMBER IS FIRST RECEIVED FROM AN INPUT DEVICE IT WILL GENERALLY BE IN A
FORM SUCH AS THE EXAMPLE FOR THE BINARY EQUIVELENT OF 5 (DECIMAL) AS
ILLUSTRATED:

00 000 000 00 006 000 00 000 101

WHEN IN TRIPLE-PRECISION FORMAT. NOW THE ABOVE FORMAT COULD BE CONVERT=-
ED TO THE DESIRED FLOATING=-POINT FORMAT BY ASSUMING A "BINARY" POINT
EXISTED TO THE RIGHT OF THE LEAST SIGNIFICANT BIT, AND SHIFTING THE EN-
TIRE NUMBER TO THE RIGHT WHILE INCREMENTING THE BINARY EXPONENT REGI -
STER. HOWEVER, THE TECHNIQUE WOULD CAUSE A SLIGHT PROBLEM. HOW COULD
ONE TELL WHERE THE MOST SIGNIFICANT BIT OF THE BINARY NUMBER WAS? A WAY

5 - 18

AROUND THAT PROBLEM IS TO SIMPLY SHIFT THE REGISTERS TO THE LEFT UNTIL
THE FIRST "1* (MOST SIGNIFICANT BIT) IS IN THE DESIRED POSITION. IF
THIS 1S DONE, ONE MUST FIRST SET THE “EXPONENT" TO THE HIGHEST POSSIBLE
VALUE THAT COULD BE CONTAINED IN THE REGISTERS AND THEN DECREMENT THAT
VALUE FOR EACH SHIFT TO THE LEFT., REMEMBERING EARLIER THAT THERE ARE
23 (DECIMAL) BITS AVAILABLE FOR STORING THE MANTISSA WHEN TRIPLE-PRECI-
SION FORMATTING IS BEING USED (AS ONE BIT 1S RESERVED FOR THE *SIGN" OF
THE NUMBER) THEN ONE WOULD SIMPLY LOAD REGISTER "“B' WITH 27 (OCTAL WHICH
IS 23 DECIMAL) BEFORE CALLING THE *“FPNORM" ROUTINE IF THE NUMBER TO BE
NORMALIZED WAS NOT IN FLOATING-POINT FORMAT. THE FOLLOWING ILLUSTRA=-
TIONS SHOULD CLARIFY THE MATTER.

ORIGINAL NUMBER WHICH IS NOT IN FLOATING~-POINT FORMAT
20 ﬁﬂﬁ 000 00 980 000 00 000 101
DESIRED FLOATING=-POINT FORMAT
SE EEE EEE S.M MMM MMM MM MMM MMM MM MMM MMM
ORIGINAL NUMBER PLACED IN FPACC AND EXPONENT SET TO 27 (OCTAL)
00 2106 111 0.0 000 000 e 000 000 00 000 060
ORIGINAL NUMBER 1S THEN NORMALIZED BY ROTATING LEFT

.86 008 211 6.1 2010 000 02 000 000 09 000 000

SINCE THE EXPONENT WAS DECREMENTED EACH TIME THE NUMBER WAS ROTATED LEFT
THE FINAL EXPONENT VALUE IS THE SAME AS IF THE NUMBER HAD BEEN ROTATED
TO THE RIGHT TO ACCOMPLISH THE NORMALIZATION!

THE READER SHOULD ALSO NOTE THAT THE ' FPNORM" ALSO CHECKS TO SEE IF
THE NUMBER TO BE NORMALIZED IS NEGATIVE. 1IF IT IS, THE ROUTINE KEEPS
TRACK OF THAT FACT AND MAKES THE NUMBER POSITIVE IN ORDER TO ACCOMPLISH
THE NORMALIZATION PROCEDURE. IF IT DID NOT, THE NORMALIZATION ROUTINE
WOULD NOT WORK AS CAN BE SEEN WHEN ONE RECALLS WHAT A NUMBER SUCH AS
MINUS S5 APPEARS LIKE IN IT'S TWO'S COMPLEMENT FORM:

11 111 111 11 111 111 11 111 @11

AFTER THE NUMBER HAS BEEN NORMALIZED IN IT'S POSITIVE FORM, IT IS CON=~
VERTED BACK TO THE NEGATIVE FORM SO THAT THE NUMBER MINUS 5 WOULD APPEAR
WHEN NORMALIZED AS:

00 000 011 1.0 116 000 00 000 VOO 0o 000 0080

THE READER SHOULD WORK THROUGH THE PROCEDURE USING PENCIL AND PAPER TO
MAKE SURE THE PROCESS IS UNDERSTOOD FOR HANDLING NEGATIVE NUMBERS AS IT
CAN BE CONFUSING AT FIRST GLANCE. NOTE THAT THE NORMALIZED MINUS VALUE
HAS THE MOST SIGNIFICANT BIT POSITION IN THE MANTISSA SET TO A "1" TO
INDICATE A NEGATIVE VALUE!

ANOTHER POINT OF INTEREST IN THE "“FPNORM" ROUTINE IS THAT THE ROUT~-
INE TESTS TO SEE IF THE FPACC CONTAINS ZERO. NOTE THAT IF THIS TEST WAS
NOT MADE AND APPROPRIATE ACTION TAKEN TO EXIT THE ROUTINE, THAT THE
ROUTINE WOULD BECOME "HUNG-UP*" IN THE ROTATE LEFT LOOP AS IT WOULD FAIL
TO EVER SEE A '"1' APPEAR IN THE MOST SIGNIFICANT BIT POSITION! WHEN A
ZERO CONDITION 1S FOUND IN THE MANTISSA, THE ROUTINE SETS THE EXPONENT

5« 16

PART OF THE FPACC TO ZERO AS AN ADDITIONAL MEASURE.

FINALLY, THE READER VWILL NOTE THAT THE FIRST PART OF THE NORMALIZA-
TION ROUTINE ASSUMES THE MANTISSA USES FOUR MEMORY WORDS - THIS WAS DONE
SO THAT THE ROUTINE COULD HANDLE SOME SPECIAL CASES THAT CAN OCCUR AFTER
OPERATIONS SUCH AS MULTIPLICATION WHERE IT IS NECESSARY TO HAVE SOME AD-
DITIONAL "PRECISION." IN CASES WHERE THE FEATURE IS NOT NEEDED, THE EX-
TRA MEMORY WORD SHOULD BE SET T0O 009 BEFORE USING THE " FPNORM'" ROUTINE.

THE "ROTATL" AND "ROTATR' SUBROUTINES CALLED BY *FPNORM" ARE SHORT
ROUTINES THAT HAVE BEEN SET UP FOR “NTH=-PRECISION" OPERATION AS WITH
OTHER ALGORITHMS DISCUSSED IN THIS CHAPTER. BEFORE ENTERING THE ROUT-
INES THE CALLING PROGRAM SETS THE STARTING ADDRESS OF THE STRING OF MEM-
ORY WORDS TO BE PROCESSED IN THE “H & L' REGISTERS AND THE NUMBER OF
WORDS IN THE STRING IN REGISTER "B." THE TWO ROUTINES ARE SHOWN BELOWV.

MNEMONIC COMMENTS
ROTATL, NDA /CLEAR CARRY FLAG AT THIS ENTRY POINT
ROTL., LAM /FETCH WORD FROM MEMORY
RAL /ROTATE LEFT (WITH CARRY)
LMA /RESTORE ROTATED WORD TO MEMORY
s DCB /DECREMENT "PRECISION"™ COUNTER
RTZ /RETURN TO CALLING ROUTINE WHEN DONE
INL /0OTHERWISE ADVANCE PNTR TO NEXT WORD
JMP ROTL /AND ROTATE ACROSS THE MEM WORD STRING
ROTATR, NDA /CLEAR CARRY FLAG AT THIS ENTRY POINT
ROTR, LAM /FETCH WORD FROM MEMORY
RAR /ROTATE RIGHT (WITH CARRY)
LMA /RESTORE ROTATED WORD TO MEMORY
DCB /DECREMENT “PRECISION" COUNTER
RTZ. /RETURN TO CALLING ROUTINE WHEN DONE
DCL /GOING OTHER WAY SO DECREMENT MEM PNTR
JMP ROTR /AND ROTATE ACROSS THE MEM WORD STRING

FLOATING-POINT ADDITION

FLOATING~-POINT ADDITION IS QUITE STRAIGHT FORWARD, AND IN FACT ONE
CAN USE THE "ADDER" ROUTINE ALREADY DEVELOPED FARLIER IN THIS CHAPTER
FOR THE MANTISSA PORTION OF A SET OF FLOATING-POINT NUMBERS. HOWEVER,
THERE ARE A FEW OTHER PARAMETERS THAT MUST BE CONSIDERED IN DEVELOPING
THE OVER-ALL ROUTINE.

WHEN TWO NUMBERS ARE TO BE ADDED IT WILL BE ASSUMED THAT THEY HAVE
BEEN POSITIONED IN THE “FPACC'" AND THE “FPOP" MEMORY STORAGE AREAS. A
FEW ITEMS THAT SHOULD BE CONSIDERED IN DEVELOPING THE BASIC FLOATING-
POINT ADDITION ROUTINE INCLUDE THE FOLLOVING.

SUPPOSE EITHER THE "FPOP" OR "FPACC'" CONTAIN ZERO? OR THEY BOTH
CONTAIN ZERO? IN THE LATTER CASE THE ROUTINE COULD BE IMMEDIATELY EXIT-
ED AS THE ANSWER IS SITTING IN THE “FPACC."™ IF THE "FPACC" 1S ZERO, BUT
THE “FPOP"™ IS NOT, THEN ONE HAS MERELY TO PLACE THE CONTENTS OF THE
“FPOP" INTO THE “FPACC" (AS THE CONVENTION WAS ESTABLISHED EARLIER THAT
THE "RESULT"™ OF AN OPERATION WOULD ALWAYS BE LEFT IN THE " FPACC"). AND,
FOR THE CASE WHERE THE "FPACC" CONTAINS A VALUE, BUT THE "FPOP"™ IS ZERO.,
ONE CAN AGAIN IMMEDIATELY EXIT THE ROUTINE.

5 - 17

BUT, AS VILL MORE LIKELY BE THE CASE WHEN THE FLOATING-POINT ADD
ROUTINE IS CALLED, BOTH THE " FPACC'" AND THE "FPOP" WILL CONTAIN SOME
NON-ZERO VALUE, AND THUS ONE COULD IMMEDIATELY PROCEED TO PERFORM THE
ADDITION OPERATION, RIGHT? WRONG! SINCE FLOATING-POINT OPERATIONS AL~
LOW THE MANIPULATING OF LARGE MAGNITUDES OF NUMBERS, BECAUSE OF THE EX-
PONENT METHOD OF MAINTAINING MAGNITUDES, IT IS QUITE POSSIBLE THAT AN
OPERATOR MIGHT ASK FOR AN ADDITION OF A VERY SMALL NUMBER TO A VERY
LARGE NUMBER (OR THIS MIGHT OCCUR IN THE MIDDLE OF A VERY COMPLEX CALCU~
LATION WHERE AN OPERATOR DOES NOT SEE THE INTERMEDIATE RESULTS). HOW-
EVER, READERS KNOW THAT IF THE DIFFERENCE BETWEEN THE TWO NUMBERS TO BE
ADDED IS §$0 GREAT THAT THERE CAN BE NO CHANGE IN THE "SIGNIFICANT" DIG-
ITS IN THE CALCULATION (THE VALUE STORED IN THE MANTISSA) THEN THERE 1S
NO USE IN PERFORMING THE ADDITION PROCESS! SO, THE NEXT STEP IN THE
FLOATING=-POINT ADDITION ROUTINE WOULD BE TO CHECK TO SEE WHETHER OR NOT
THE MAGNITUDES OF THE NUMBERS ARE WITHIN "SIGNIFICANT" RANGE OF ONE AN-
OTHER. 1IF THEY ARE NOT, THEN THE LARGEST VALUE SHOULD BE PLACED IN THE
"FPACC'" AS THE ANSWER! '

IF THE MAGNITUDES OF THE TWO NUMBERS ARE WITHIN "SIGNIFICANT" RANGE
THEN THE TW0 NUMBERS MAY BE ADDED BUT BEFORE THIS CAN BE DONE, THEY MUST
FIRST BE "ALIGNED" BY SHIFTING ONE OF THE NUMBERS UNTIL THE " EXPONENT"
IS EQUAL IN MAGNITUDE WITH THE SECOND NUMBER. THE '"ALIGNMENT" 1S ACCOM~-
PLISHED BY FINDING OUT WHICH EXPONENT 1S THE SMALLEST AND SHIFTING THE
MANTISSA OF THAT NUMBER TO THE RIGHT (WHILE INCREMENTING THE EXPONENT
FOR EACH SHIFT) UNTIL IT IS PROPERLY ALIGNED. THE SHIFTING PROCEDURE 1S
QUITE STRAIGHT-FORWARD SINCE IT CAN BE HANDLED BY A "NTH-PRECISION" REG~-
ISTER ROTATE OPERATION. HOWEVER, THERE 1S ONE SPECIAL CONSIDERATION FOR
THE CASE OF A NEGATIVE NUMBER BEING SHIFTED TO THE RIGHT - ONE MUST IN-
SERT A "1 'INTO THE MOST SIGNIFICANT BIT POSITION EACH TIME A SHIFT 1S
MADE IN ORDER TO MAINTAIN THE “MINUS" VALUE PROPERLY (AND KEEP THE SIGN
BIT IN IT'S PROPER STATE). THIS CAN BE ACCOMPLISHED EASILY AS THE READ-
FR WILL SEE IN THE "FPADD'" ROUTINE BY INSERTING A *1" INTO THE CARRY BIT
AND THEN CALLING THE "ROTR" SUBROUTINE WHICH IS SIMPLY ANOTHER ENTRY
POINT TO THE *"ROTATR' SUBROUTINE PRESENTED EARLIER (AVOIDING THE *“NDA"
EINTRY POINT IN THE ROUTINE WHICH WOULD CAUSE THE CARRY BIT TO BE SET TO
A "@" CONDITION 1F EXECUTED).

ONE MORE CONSIDERATION THAT THE READER WILL NOTE IN THE FOLLOWING
“FPADD" ROUTINE IS THAT THE TWO NUMBERS TO BE ADDED ARE SHIFTED TO THE
RIGHT ONCE BEFORE THE ADDITION IS PERFORMED SO THAT ANY OVER-FLOW FROM
THE ADDITION WILL STAY WITHIN THE “FPACC'" THUS ALLOWING "NORMALIZATION"
TO BE HANDLED BY THE PREVIOUSLY PRESENTED ROUTINE INSTEAD OF HAVING TO
BE CONCERNED WITH THE STATUS OF THE CARRY FLAG AT THE END OF THE OPERA-
TION. BECAUSE OF THIS SHIFTING OPERATION, AN ADDITIONAL MEMORY WORD IS
USED BY BOTH THE " FPACC'" AND “FPOP" AND THE ADDITION IS PERFORMED USING
“QUAD-PRECISION." AT THE END OF THE ADDITION PROCESS THE RESULT IS
NORMALIZED AND LEFT IN THE "FPACC."

MNEMONIC COMMENTS

FPADD, LLI 126 /SET POINTER TO MSW OF FPACC
LBI 003 /SET LOOP COUNTER

CKZACC, LAM / FETCH PART OF FPACC
NDA /SET FLAGS AFTER LOADING OPERATION
JFZ NONZAC /FINDING ANYTHING MEANS FPACC NOT ZERO .
DCB /1F THAT PART = @8, DECREMENT LOOP COUNTER
JTZ MOVOP /1F FPACC = @8, MOVE FPOP INTO FPACC
DCL /NOT FINISHED CHECKING, DECREMENT PNTR

JMP CKZACC /AND TEST NEXT PART OF FPACC

S - 18

MNEMONIC

MOVOP, CAL SWITCH
LHD
LLI 134
LBI @04
CAL MOVEIT
RET
NONZAC, LLI 136
LBI 863
CKZOP, LAM
NDA
JFZ CKEQEX
DCB
RTZ
DCL
JMP CKZOP
CKEQEX, LLI 127
LAM
LLI 137
CPM
JTZ SHACOP
XRI 377
ADI 001
ADM
JFS SKPNEG
XRI 377
ADI 081
SKPNEG, CPl @30
JTS LINEUP
LAM
LLI 127
SUM
RTS
LLI 124
JMP MOVOP
LINEUP, LAM
LLI 127
SUM
JTS SHIFTO
LCA
MORACC, LLI 127
CAL SHLOOP
DCC
JFZ MORACC
JMP SHACOP
SHIFTO, LCA
MOROP, LLI 137
CAL SHLOOP
INC
JFZ MOROP
SHACOP, LLI 127
CAL SHLOOP
LLI 137
CAL SHLOOP
LDH
LEI 123
LB1 804
CAL ADDER
LBl 000

COMMENTS

/SAVE POINTER TO LSW OF FPACC

/SET “H* = @00 FOR SURE

/SET POINTER TO LSW OF FPOP

/SET A LOOP COUNTER

/MOVE FPOP INTO FPACC = ANSVER

/EX1T FPADD

/SET POINTER TO MSW OF FPOP

/SET LOOP COUNTER

/GET MSW OF FPOP

/SET FLAGS AFTER LOAD OPERATION

/IF NOT © THEN HAVE A NUMBERI

/1F 0, DECREMENT LOOP COUNTER

/EXIT RTN IF FPOP = ZERO

/ELSE DECREMENT PNTR TO NEXT PART OF FPOP
/AND CONTINUE TESTING FOR ZERO FPOP
/CHECK FOR EQUAL EXPONENTS

/GET FPACC EXPONENT

/CHANGE POINTER TO FPOP EXPONENT
/COMPARE EXPONENTS

/1F SAME CAN SET UP FOR ADD OPERATION
/1F NOT SAME, Tw0O'S COMPLEMENT THE VALUE
/0F THE FPACC EXPONENT

/AND ADD IN FPOP EXPONENT

/1F + GO DIRECTLY TO ALIGNMENT TEST

/1F NEGATIVE PERFORM TW0'S COMPLEMENT
/0N THE RESULT

/NOVW SEE IF RESULT GREATFR THAN 27 OCTAL
/1F NOT CAN PERFORM ALIGNMENT

/1F NOT ALIGNABLE GET FPOP EXPONENT
/SET POINTER TO FPACC EXPONENT
/SUBTRACT FPACC EXPONENT FROM FPOP EXP
/FPACC EXP GREATER SO JUST EXIT RTN

/ FPOP WAS GREATER, SET PNTR TO FPACC LSV
/G0 PUT FPOP INTO FPACC & THEN EXIT RTN
/ALIGN FPACC AND FPOP, GET FPOP EXP
/CHANGE POINTER TO FPACC EXP

/SUBTRACT FPACC EXP FROM FPOP EXP

/ FPACC GREATER S0 GO TO SHIFT OPERAND

/ FPOP GREATER - SAVE DIFFERENCE
/POINTER TO FPACC EXP

/CALL SHIFT LOOP

/DECREMENT DIFFERENCE COUNTER

/CONTINUE ALIGNING IF NOT DONE

/SET UP FOR ADD OPERATION

/SH1FT FPOP RTN, SAVE DIFF CNT (NEG VAL)
/SET POINTER TO FPOP EXPONENT

/CALL SHIFT LOOP

/INCREMENT DIFFERENCE COUNTER

/SHIFT AGAIN IF NOT DONE

/SHIFT FPACC RIGHT ONCE - SET POINTER
/CALL SHIFT LOOP

/SHIFT FPOP RIGHT ONCE - SET POINTER
/CALL SHIFT LOOP :

/SET UP POINTERS =- "D" = @6 FOR SURE
/POINTER TO LSW OF FPACC

/SET PRECISION COUNTER

/ADD FPACC TO FPOP QUAD-PRECISION

/SET "B" FOR STANDARD NORMALIZATION

S - 19

MNEMONIC COMMENTS

CAL FPNORM /NORMALIZE THE RESULT OF THE ADDITION

RET /EXIT FPADD RTN WITH RESULT IN FPACC
SHLOOP, LBM /SHIFTING LOOP FOR ALIGNMENT

INB /FETCH EXPONENT INTO *'B' AND INCREMENT IT

LMB /RETURN INCREMENTED VALUE TO MEMORY

DCL /DECREMENT THE POINTER

LBI 604 /SET A COUNTER

CAL FSHIFT /CALL SPECIAL SHIFT ROUTINE

RET /EXIT "“SHLOOP"™
FSHIFT, LAM /GET MSW OF FLOATING~POINT NUMBER

NDA /SET FLAGS AFTER LOADING OPERATION

JTS BRINGl! /IF # IS MINUS, NEED TO SHIFT IN A *"1I"
CAL ROTATR /OTHERWISE PERFORM NTH=-PRECISION ROTATE

RET /EXIT " FSHIFT"
BRING1, RAL /SAVE 1" IN CARRY BIT
CAL ROTR /D0 ROTATE WITHOUT CLEARING CARRY BIT
RET /EXIT “FSHIFT"
MOVEIT, LAM /FETCH A WORD FROM MEMORY STRING A"
INL /ADVANCE "A" STRING POINTER
CAL SWITCH /SWITCH POINTERS TO STRING “B"
LMA /PUT WORD FROM STRING "A'" INTO STRING "B"
INL /ADVANCE "B' STRING POINTER
CAL SWITCH /SWITCH POINTERS BACK TO STRING '"A"
DCB /DECREMENT COUNTER
RTZ /RETURN TO CALLING RTN WHEN COUNTER = @

JMP MOVEIT /OTHERWISE CONTINUE MOVING OPERATION
FLOATING=-POINT SUBTRACTION

NOW THAT ONE HAS A FLOATING-POINT ADDITION ROUTINE, FLOATING-POINT
SUBTRACTION IS A "SNAP." ALL ONE REALLY HAS TO DO IS NEGATE THE NUMBER
IN THE “FPACC" AND JUMP TO THE FLOATING-POINT ADDITION ROUTINE!

MNEMONIC COMMENTS
FSUB, LLI 123 /SET POINTER TO LSW OF FPACC
’ LBl 064 /SET PRECISION COUNTER

CAL COMPLM /PERFORM TWO'S COMPLEMENT OF FPACC
JMP FPADD /SUBTRACTION ACCOMPLISHED NOW BY ADDING!

FLOATING-POINT MULTIPLICATION

FLOATING-POINT MULTIPLICATION CAN BE ACCOMPLISHED BY UTILIZING A
“SHIFTING AND ADDING' ALGORITHM FOR THE MANTISSA PORTION OF THE NUMBERS.
AS POINTED OUT EARLIER, SHIFTING A BINARY NUMBER TO THE RIGHT SERVES TO
ESSENTIALLY “DOUBLE" IT'S VALUE. AN ALGORITHM THAT TAKES ADVANTAGE OF
THAT FACT CAN BE DESCRIBED AS FOLLOWVS.,

CONSIDER THE TWO NUMBERS AS A "MULTIPLIER"™ AND A “MULTIPLICAND."™
EXAMINE THE LEAST SIGNIFICANT BIT OF THE “MULTIPLIER." 1IF IT IS A "l,"
ADD THE CURRENT VALUE OF THE "MULTIPLICAND" TO A THIRD REGISTER (WHICH
INITIALLY STARTS WITH A VALUE OF ZERO). NOW, SHIFT THE MULTIPLICAND ONE

s - 20

POSITION TO THF LFFT., FXAMINF THF NFXT RIT TO THF LFFT OF THF LFAST
SIGNIFICANT BIT IN THF MULTIPLIFR, IF IT IS A *"1," ADD THF CURRFNT
VALUF OF THF "MULTIPLICAND'" TO THF THIRD KEGISTFF (WHICH COULD BF CAL~-
LED THE "PARTIAL=-PRODUCT' REGISTER). SHIFT THE MULTIPLICAND TO THE RIGHT
AGAIN. CONTINUF THE PROCFSS BY FXAMINING ALL THF BITS IN THF MULTIPLIFF
MR A 1" CONDITION. WHFNEVFR THF MULTIPLIFE CONTAINS A "1™ ADD THF
CURRENT VALUF OF THF MULTIPLICAND TO THF PARTIAL-PKODUCT REGISTFR. AFTFR
FACH EXAMINATION OF A BIT IN THF MULTIPLIFR (AND ADDITION OF THF MULTI~
PLIFR TO THF PARTIAL-PRODUCT REGISTFR IF A "1' WAS OBSFRVED) SHIFT THF
MULTIPLICAND KIGHT. CONTINUF UNTIL ALL BITS.IN THF MULTIPLIFR HAVF BFEN
EXAMINFD, THF RESULT OF THF MULTIPLICATION WILL BF IN THE PARTIAL-FPRO=-
DUCTS RFGISTFR AT THF COMPLFTION OF THE ABOVE PHROCESS. THFE ALGORITHM

CAN PFRHAPS BF SFFN A LITTLF MORF CLFARLY BY STUDYING THF FLOW=-CHART
PRFSFNTFD BFLOW,

CHFCK NFXT BIT
OF MULTIPLIFR

NO YFS

IS IT A 1 2
Ly 7
¥

ADDN MULTIPLICAND
TO PARTIAL-PRODUCT

SHIFT MULTIPLI=-
CAND RIGHT

<

THE RFADFR CAN UFRIFY THE ALGORITHM BY FOLLOWING THF FXAMPLF BFLOW
FOR TWO SMALL NUMBERS -« THF NUMBFER 3 (DFCIMAL) AS THF MULTIPLICAND
AND THF NUMBFR 5 AS THF MULTIPLIEFR.

VA v4a 411 (MULTIPLICAND AT START OF OPFRATIONS)
A3 0Wae 101 (MULTIPLIER)
e A0e 0vee (PARTIAL PRODUCT BFFORF OPFRATIONS START)

5 - 21

00 800 @811

(MULTIPLICAND WHEN 1ST BIT OF MULTIPLIER
1S EXAMINED) .

00 000 101 (LEAST SIGNFICANT BIT OF MULTIPLIER = 1)
00 000 ﬁli .(MULTIPLICAND IS ADDED TO PARTIAL-PRODUCT)
20 000 110 (MULTIPLICAND IS SHIFTED TO THE RIGHT BE-
FORE SECOND BIT OF MULTIPLIER EXAMINED
00 000 181 (SECOND BIT OF MULTIPLIER 1S ZERO)
e ¢6e 811 (SO NOTHING IS ADDED TO PARTIAL-PRODUCT)
00 001 100 (MULTIPLICAND 1S SHIFTED TO RIGHT AGAIN
BEFORE NEXT BIT OF MULTIPLIER 1S EXAMINED
0o 006 101 (THIRD BIT OF MULTIPLIER IS A "1')
00 001 111 (SO0 MULTIPLICAND'S CURRENT VALUE IS ADDED

INTO THE PARTIAL~-PRODUCT REGISTER. SINCE

ALL THE REMAINING BITS IN THE MULTIPLIER
ARE 0" NOTHING MORE VILL BE ADDED TO THE
PARTIAL-PRODUCT REGISTER WHICH THUS HOLDS
THE FINAL ANSWERt)

WHILE THE ABOVE ALGORITHM WAS PRESENTED FOR HANDLING NUMBERS IN REG-
ULAR FORMAT, WITH JUST A LITTLE VARIATION, THE BASIC PROCEDURE CAN BE
IMPLEMENTED FOR MULTIPLYING THE MANTISSA PORTION OF NUMBERS STORED IN
FLOATING-POINT FORMAT. A FLOW CHART OF THE MANTISSA MULTIPLYING PORTION
OF THE " FPMULT* ROUTINE TO BE PRESENTED SHORTLY 1S SHOWN ON THE NEXT
PAGE. NOTE THAT IT IS FASY TO TEST EACH BIT OF THE “MULTIPLIER" BY SIM-
PLY ROTATING IT RIGHT AND TESTING THE STATUS OF THE CARRY FLAG AFTER THE
ROTATE OPERATION!

HANDLING THE EXPONENT PORTION WHEN MULTIPLYING TWO NUMBERS STORED IN
BINARY FLOATING-POINT FORMAT 1S ACCOMPLISHED THE SAME WAY ONE WOULD HAN-
DLE EXPONENTS IN DECIMAL FLOATING-POINT FORMAT. THE EXPONENTS ARE SIM~
PLY ADDED TOGETHER.

THERE ARE SEVERAL OTHER PARAMETERS TO CONSIDER WHEN MULTIPLYING NUM-
BERS. FIRST, THE ALGORITHM PRESENTED MAY ONLY BE USED WHEN THE NUMBERS
ARE POSITIVE IN VALUE. THUS, ANY NEGATIVE NUMBERS MUST FIRST BE 'NEGA-
TED" BEFORE USING THE ALGORITHM. FURTHERMORE, THE READER KNOWS THAT IF
TWO NUMBERS OF THE SAME 'SIGN' ARE MULTIPLIED TOGETHER THE ANSWER VWILL
BE A POSITIVE VALUE, BUT IF THE "SIGNS" ARE DIFFERENT, THE ANSWER WILL
BE A NEGATIVE NUMBER. THEREFORE, ONE MUST KEEP ACCOUNT OF THE INITIAL
“"SIGNS'" OF THE NUMBERS BEING MULTIPLIED, AND IF THE ANSWER DICTATES, THE
FINAL VALUE MUST BE NEGATED AFTER USING THE ALGORITHM. AS THE READER
WILL OBSERVE IN THE “FPMULT'" ROUTINE, HANDLING THIS TASK IS QUITE EASY.

SECONDLY, THE ALERT READER MAY HAVE OBSERVED THAT SINCE THE MULTI-
PLICAND IS SHIFTED IN THE ABOVE ALGORITHM (THE PARTIAL-PRODUCT REGISTER
1S SHIFTED IN THE FLOATING-POINT ALGORITHM TO ACCOMPLISH THE SAME PUR-
POSE) ONE POSITION FOR EACH BIT IN THE MULTIPLIER, THEN IT 1S NECESSARY
TO MAINTAIN "WORKING" REGISTERS THAT ARE TWICE AS LONG AS THE ORIGINAL
NUMBERS TO BE MULTIPLIED. THUS, THE FINAL ANSWER MAY CONTAIN MORE BITS
OF PRECISION THEN THE OVER~ALL PROGRAM 1S DESIGNED TO HANDLE. IN THE
“FPMULT' ROUTINE, THE MULTIPLICATION OF THE MANTISSAS 1S ACCOMPLISHED
USING SIX MEMORY WORDS PER REGISTER. BUT, AT THE CONCLUSION OF THE ROU-
TINE, THE 23RD BINARY BIT IS "ROUNDED" OFF (DEPENDING ON THE STATUS OF

5 - 22

THE 24TH LEAST SIGNIFICANT BIT) AND THE ANSWER 1S NORMALIZED BACK TO A
23 BIT BINARY NUMBER WHICH IS THE LARGEST NUMBER THE PACKAGE BEING DIS-
CUSSED 1S DESIGNED TO HANDLE. THE METHOD ALLOWS MAXIMUM PRECISION TO BE

MAINTAINED DURING THE MULTIPLICATION PROCESS.

SHIFT MULTIPLIFFK
RIGHT C(INTO CAEKKY)

NO YFS
CARRY = 1 ?

ADD MULTIPLICAND
TO PAFTIAL-PFODUCT

y

SHIFT PARTIAL-
PRODUCT KIGHT

CHFCKFD
ALL BITS IN
MULTIPLIFR?

NO YFS

ANSWFH 18 STOKFD IN
THF PARTIAL=-FRENDUCT
FPEGISTEHF.

FLOATING-POINT MULTIPLICATION ALGORITHM FLOW CHART

MNEMONIC COMMENTS

FPMULT, CAL CKSIGN /SET UP ROUTINE AND CHECK SIGN OF #°'S

ADDEXP, LLI 137 /SET POINTER TO FPOP EXPONENT
LAM /FETCH FPOP EXPONENT INTO ACCUMULATOR
LLI 127 /SET POINTER TO FPACC EXPONENT
ADM /ADD FPACC EXP TO FPOP EXP

5 - 23

SETMCT,

MULTIP,

EXMLDV,

CKSIGN,

OPSGNT.,

NEGFPA,

MNEMONIC

ADI
LMA
LL1
LMI
LLI
LBI1
CAL
CTC
LLI
LBI1
CAL
LLI
CAL
JFZ
LLI
LBl
CAL
LLI
LAM
RAL
RAL
NDA
CTS
LLI
CAL
LHD
LLI
LBI1
CAL
LBI
CAL
LLI
LAM
NDA
RFZ
LLI
LBI
.CAL
RET
CAL
LLI
LMI1
LLI
LAM
NDA
JTS
LLI
LAM
NDA
RFS
LLI
CAL
LLI
LB1
CAL
RET
LLI
CAL

va1

182
827
126
803
ROTATR
ADOPPP
l46
a0 6
ROTATR
182
CNTDWN
MULTIP
146
86
ROTATR
143

MROUND
123
SWITCH

143
oo4
MOVEIT
pooY
FPNORM
101

124
003
COMPLM

CLRWRK
101
2ol
126

NEGFPA
136

101
CNTDWN
134
883
COMPLM

181
CNTDVN

COMMENTS

/ADD ONE FOR ALGORITHM COMPENSATION
/STORE RESULT IN FPACC EXPONENT

/SET BIT COUNTER STORAGE POINTER

/SET BIT CNTR TO 23 DECIMAL (27 OCTAL)
/BASIC "X'" ALGORITHM - PNTR TO MSW FPACC
/SET PRECISION COUNTER

/ROTATE MULTIPLIER RIGHT INTO CARRY FLAG
/1F CARRY=1, ADD M'CAND TO PARTIAL=-PROD
/SET PNTR TO PARTIAL-PRODUCT MSW

/SET PRECISION COUNTER

/SHIFT PARTIAL-PRODUCT RIGHT

/SET POINTER TO BIT COUNTER

/DECREMENT VALUE IN BIT COUNTER

/1F BIT CNTR NOT ZERO, REPEAT ALGORITHM
/SET POINTER TO PARTIAL=-PRODUCT MSW
/SET PRECISION COUNTER - ROTATE P/P ONCE
/MORE TO MAKE ROOM FOR POSSIBLE ROUNDING
/SET PNTR TO ACCESS 24TH BIT IN P/P
/FETCH 24TH BIT

/POSITION IT TO MSB POSITION

/ 11} ” " " "

/SET FLAGS AFTER ROTATE OPERATION

/1F 24TH BIT = 1, DO ROUNDING PROCEDURE
/NOW SET PNTR TO FPACC

/SAVE FPACC POINTER

/ENSURE “H" IS 900

/SET POINTER TO PARTIAL=-PRODUCT

/SET PRECISION COUNTER

/MOVE ANSWER FROM P/P INTO FPACC

/SET “B" FOR STANDARD NORMALIZATION
/NORMALIZE THE ANSWER

/SET POINTER TO “SIGNS" INDICATOR

/FETCH “SIGNS" INDICATOR

/SET FLAGS AFTER LOAD OPERATION

/1F “S1GNS" HAS VALUE, RESULT IS +, EXIT
/BUT IF “SIGNS" = @8, SET FPACC LSV PNTR
/AND PRECISION COUNTER

/AND NEGATE THE ANSWER

/BEFORE EXITING "FPMULT" ROUTINE

/CLEAR WORKING LOC'S FOR MULTIPLICATION
/SET POINTER TO "SIGNS* STORAGE

/PLACE THE INITIAL VALUE " 1" IN *"SIGNS"
/SET POINTER TO MSV OF FPACC

/FETCH MSW OF FPACC

/SET FLAGS AFTER LOAD OPFERATION

/1F # 1S MINUS, NEED TO DO 2'S COMPLEMENT
/SET POINTER TO MSW OF FPOP

/FETCH MSW OF FPOP

/SET FLAGS AFTER LOAD OPERATION

/1F # 1S +, RETURN TO CALLING ROUTINE
/1F # MINUS, SET POINTER TO "SIGNS"
/DECREMENT VALUE IN “SIGNS"

/SET POINTER TO LSW OF FPOP

/SET PRECISION COUNTER

/PERFORM TW0'S GOMPLEMENT OF ¢ IN FPOP
/G0 BACK TO CALLING ROUTINE

/SET POINTER TO "SIGNS™ STORAGE
/DECREMENT VALUE OF "SIGNS"

§ - 24

LLI 124 /SET POINTER TO LSW OF FPACC
LBl 683 /SET PRECISION COUNTER

CAL COMPLM /NEGATE THE WALUE IN THE FPACC
JMP OPSGNT /@0 CHEEX SIGN OF FPOP

CLRWRK, LL1 140 /CLEAR PART=PROD*S WORK ARFA (148-147T)
LBl @16 /SET POINTER AND COUNTER
XRA /SET ACCUMULATOR = 0068
CLRNEX, LMA /DEPOSIT ACCUMULATOR CONTENTS INTO MEM
DCB /DECREMENT COUNTER
JTZ CLROPL /WHEN DONE G0 TO NEXT ARFA
14 A /ELSE CONTINUE CLEARING P/P WORKING AREA
JNP CLRNEX /BY STUFFING 608 IN NEXT MEM LOCATION
CLROPL, LBl 0604 /CLEAR ADDITIONAL ROOM PFOR MULTIPLICAND
LLI 130 /AT 130 T0 133 - SET COUNTER & POINTER
CLRNX1, LMA /PUT 066 IN MEMORY
DCB /DECREMENT COUNTER
RTZ /RETURN TO CALLING PROGRAM VNEN DONE
1. /ELSE ADUANCE POINTER
JHP CLRNX! /ARD CONTINUE CLEARING OPERATIONS
ADOPPP, LEI 14l /POINTER TO LSV OF PARTIAL-PRODUCT
LDX /0% PG 60 IN "D & E™
LLI 131 /PHTR TO LSV OF MULTIPLICAND
LBl 066 /SET PRECISION GOUNTER
CAL ADDER /PERFORM APDITION
RET
MROUND, LBl @63 /SET PRECISION COUNTER
LAL 100 /ADD "1*® TO 23°RD BIT OF PARTIAL-PROD
ADNM /RERE
CROUND, LMA /RESTORE TO MEMORY
INL /ADVANCE POINTER
LAl @08 /CLEAR ACC VITNOUT DISTURBING E€ARRY
AGCY /AND PROPOGATE ROUMDING
DEB /1IN PARTIAL-PRODUCT
JFZ CROUND /FINISKED WHEN CNTR = 800
LMA /RESTORE LAST WORD OF PeP
RET

FLOATING-POINT DIVISION

IN A MANNER TMAT IS SORT OF THE REVERSE OF MULTIPLICATION (WMICH USe
ED ADDITION AND ROTATE OPERATIONS) ONE CAN PERFORM DIVISION USING AN AL~
GORITHM THAT UTILIZES SUBTRACTION AND ROTATE OPERATIONSe. THE ALGORITHM
VILL BE PRESENTED DIRFCTLY IN THE FORM USED IN FLOATING-POINT OPERATIONS
BECAUSE IN TNI1S CASE IT IS SIMPLER THMAN DESCRIPING IT FOR NUMBERS TNAT
ARE WOT IN FLOATING-POINT FORMe MOVEUVER, THME ALERT RFADER SHOULD HAVE
LITTLE DIFFICULTY OBSERVING THAT THE ALGORITHM COULD BE USED FOR NUMBERS
THAT ARE NOT IN FLOATING-POINT FORMAT IF ONE FIRST ALIGNED TKE MOST Sl@-
NIFICANT BITS OF THE DIVISOR AND DIVIDEND, AND TOOK APPROPRIATE ACTION
TO NANDLF THF LOCATION OF A “BINARY™ POINT POR CASES WHERE THE RESULT
VAS NOT A PURE INTEGER,

IN RAMBLING ENSLISM, TKE AL@RITHM COULD BF STATED AS FOLLOWSs SUB-
TRACT THRE VALUE OF TEE DIVISOR FROM THKE VALUE OF TRE ORIGINAL DIVIDEWD,
TEST THE RESULT OF THE SUBTRACTIONs 1IF THE RESULT IS NEGATIVE, MEANING
TRE ENTIRE DIVISOR COULD NOT BE SUBTRACTED, PLACE A "#" IN TRE LEAST
SIGNIFICANT BIT OF A REGISTER TERMED TRE “QUOTIENT."” LFEAVE THE €CUR~-
RENT DIVIDEND ALONE, IF TNE RESULT OF THE SUBTRACTION 1S POSITIVE, OR
ZERO, INDICATING THF DIVIDEND WAS LARGER TMAN THE DIVISOR, PLACE A *"1*
IN TEE LEAST SIGNIFICANT BIT OF TRE “QUOTIENT™ RFEISTFR AND CHANGE THE
DIVIDEND TO BE THE VALUE OF THNE “REMAINDER® (OR RESULT) OF THE SUBTRAC-
TION OPERATION, NEXT, ONCE THE APPROPRIATE ACTION MAS BEEN TAKEN AS A

s - 28

FUNCTION OF TRE RESULT OF THE SUBTRACTION OPERATION, ROTATE THE CONTENTS
OF TRE DIVIDEND (WHETHER IT*S ORIGINAL VALUE OR THE NEV “"REMAINDER™) ONE
POSITION TO THE RIGHT, AND SIMILARLY ROTATE THE QUOTIENT ONCE TO THE
RIGET TO ALLOV ROOM FOR THE NEXT LEAST SIGNIFICANT BITe NOV REPFAT THEY
ENTIRE PROCEDURE UNTIL ONE HAS PERFORMED THE ABOUF OPFRATIONS AS MANY
TINES AS THERE ARE BIT POSITIONS IN THE REGISTFR USED TO HOLD THE OR1@6l~
NAL DIVIDEND! (TRAT WOULD BE 23 (DECIMAL) TIMES FOR THE FLOATING-POINT
PACKAGE BEING DISCUSSED HERE.)

TRE ALGORITHM MAY BE VISUALIZED A LITTLF MORE CLFARLY BY STUDYING
THE FLOV CHART PRESENTED BFLOWe ADDITIONALLY, A STEP«BY«STFP PRESEN-
TATION ILLUSTRATING THE ALGORITHM BEING USFD TO DIVIDF THF BINARY EQUlVe
ALENT OF 15 (DEGIMAL) BY S IS PRESENTED ON THF NEXT PAGF, THE LENGTH
OF THE REGISTERS HAVE BEEN REDUCED TO SHORTEN THF ILLUSTRATIONe. REMEM-
BER, THE ALGORITHM SHOWN 1S FOR TRE MANTISSA PORTION OF NUMBERS ALREADY
STORED IN "NORMALIZED™ FLOATING-POINT FORMAT,

SUBTRACT DIVISOR
FROM DIVIDEND

IS
RESULT
® OR +

YES

Y

PLACE 1" IN LSE
OF QUOTIENT

PLACE "@" IN LSB
OF QUOTIENT

PLACE REMAINDER AS
+ NEW DIVIDEND

T_¢

ROTATE CURRENT
DIVIDEND LEFT

I

ROTATE WUOTIENT
" TO THE LEFT

NO Y ES
ANSWVER 1IN
QUOTIENT

8 =« 26

g . 1111 ORIGINAL DIVIDEND AT START OF ROUTINE.

g .1010 DIVISOR (NOTE FLOATING-POINT FORMAT!)

g .01801 RESULT OF FIRST SUBTRACTION OPERATION
THIS IS THE "REMAINDER"™ FROM THE SUB~
TRACTION OPERATION. SINCE RESULT WAS
“POSITIVE" A "1" IS PLACED IN THE LSB
OF THE QUOTIENT REGISTER:

@ «. 06 01 QUOTIENT AFTER I1ST LOOP

NO¥ BOTH QUOTIENT AND DIVIDEND (NEW REMAINDER) ARE ROTATED LEFT

g . 10180 NEV DIVIDEND (VHICH IS THE LAST REMAIN-
DER ROTATED ONCE TO THE LEFT)

o .1018 DIVISOR (DOES NOT CHANGE DURING ROUTINE)

e . 00600 RESULT OF THIS SUBTRACTION 1S ZERO AND

THUS QUALIFIES TO BECOME NEW DIVIDEND.
QUOTIENT LSB GETS A "1™ FOR THIS CASE!

@ . 808 11 QUOTIENT AFTER 2ND LOOP

AGAIN BOTH QUOTIENT AND DIVIDEND (NEW REMAINDER) ARE ROTATED LEFT

? .0020080 NEV DIVIDEND (WHICH IS THE LAST REMAIN-
DER ROTATED ONCE TO THE LEFT)

g .10180 DIVISOR - STILL SAME OLD NUMBER

1 .26 1180 RESULT OF THIS SUBTRACTION IS A MINUS

NUMBER (NOTE THAT THE "SIGN™ BIT CHANG-
ED!) THUS, OLD DIVIDEND STAYS IN PLACE
AND QUOTIENT GETS A “@*" IN LSB POSITION.
® . 1 1 6 QUOTIENT AFTER 3RD LOOP

NOW BOTH QUOTIENT, AND IN THIS CASE THE OLD DIVIDEND ARE ROTATED LEFT

2 .00800 OLD DIVIDEND ROTATED ONCE TO THE LEFT
g .10 10 SAME OLD DIVISOR
1 .6 1180 RESULT OF THIS SUBTRACTION IS AGAIN A

MINUS. OLD DIVIDEND STAYS IN PLACE.
QUOTIENT GETS ANOTHER “@"™ IN LSB.

@ . 11868 QUOTIENT AFTER 4TH LOOP

SINCE THERE WERE JUST 4 BITS IN THE MULTIPLICAND REGISTER, THE ALGO~-
RITHM VOULD BE COMPLETED AT THE END OF THE FOURTH LOOP AND THE ANSWER
WOULD BE THAT SHOWN. IN THE QUOTIENT. REMEMBER, THAT SINCE. FLOATING-
POINT FORMAT. IS BEING USED, THAT THERE WOULD BE BINARY EXPONENTS INVOLV-
ED. SIMILAR TO THE WAY ONE WOULD HANDLE EXPONENTS IN DECIMAL FLOATING-
POINT NOTATION, ONE SUBTRACTS THE EXPONENTS FOR THE TWO NUMBERS (DIVISOR
EXPONENT FROM THE DIVIDEND EXPONENT) TO OBTAIN THE EXPONENT VALUE FOR A
DIVISION OPERATION. IN THE ABOVE EXAMPLE, THE MULTIPLICAND WOULD HAVE
HAD THE BINARY EXPONENT. & (DECIMAL) TO REPRESENT THE NORMALIZED STORING
OF 15 AND THE DIVISOR WOULD HAVE HAD A BINARY EXPONENT OF 3. THE ABOVE
ALGORITHM RFEQUIRES A COMPENSATION FACTOR OF + | AFTER SUBTRACTING THE

5 - 27

EXPONENTS (CAN THE READER THINK OF WAYS IN WHICH THIS COULD BE AVOIDED?)
IN ORDER TO HAVE THE CORRECT FLOATING-POINT RESULT. IN THE SAMPLE IL-
LUSTRATED ABOVE, (4 -~ 3) + 1 = 2, AND INDEED IF THE ANSVWER SHOWN WAS
MOVED TWO PLACES TO THE LEFT (OF THE IMPLIED "BINARY POINT"™) ONE CAN
VERIFY THAT THE RESULT IS THE BINARY FQUIVELANT OF 3 (DECIMAL)! THE
READER MIGHT WANT TO TRY USING OTHER SMALL VALUED NUMBERS TO TEST THE
VALIDITY OF THE ALGORITHM AND DEVELOP A THOROUGH UNDERSTANDING OF THE
PROCESS. A GOOD CASE T0 EXAMINE IS ONE WHERE THE RESULT 1S "NON-ENDING"
SUCH AS THE NUMBER ! DIVIDED, SAY, BY 3.

JUST AS IN THE MULTIPLICATION ROUTINE, THERE ARE SEVERAL OTHER PARA-
METERS THAT MUST BE CONSIDERED IN DEVELOPING THE DIVISION ROUTINE. FOR
INSTANCE, THERE IS AGAIN THE MATTER OF THE SIGNS OF THE NUMBERS. THE
ALGORITHM REQUIRES THAT THE NUMBERS BE IN POSITIVE FORMAT SO AGAIN ONE
MUST KEEP TRACK OF THE SIGNS OF THE ORIGINAL NUMBERS AND CONVERT ANY
NEGATIVE ONES TO POSITIVE FOR THE ROUTINE. IF THE SIGNS OF THE TWO
NUMBERS INVOLVED ARE IDENTICAL, THE RESULT MUST BE POSITIVE, IF THEY ARE
DIFFERENT, THEN THE PROGRAM MUST NEGATE THE ANSWER OBTAINED FROM THE AC~-
TUAL DIVISION PROCESS. AND, BECAUSE SOME CALCULATIONS VWILL RESULT IN A
NON=-ENDING SERIES FOR AN ANSWER, SOME "ROUNDING*" CAPABILITY MUST BE IN-
CLUDED IN THE PROGRAM. THEN, THERE IS A SPECIAL CASE IN DIVISION THAT
ONE MUST CHECK FOR: DIVISION BY ZERO! IN THAT CASE THE PROGRAM MIGHT
BRANCH OFF TO TELL THE OPERATOR A THING OR TWO0., THE FLOATING=-POINT
DIVISION ROUTINE SHOWN BELOW CONSIDERS THESE MATTERS AS THE READER WILL
OBSERVE.

MNEMONIC COMMENTS

FPDIV, CAL CKSIGN /SET UP REG*'S AND CHECK SIGN OF NUMBERS

LLI 126 /SET POINTER TO MSV OF FPACC (DIVISOR)

LAl 200 /CLEAR ACCUMULATOR

CPM /SEE 1IF MSW OF FPACC = ZERO

JFZ SUBEXP /IF FIND ANYTHING - PROCEED TO DIVIDE

DCL /DECREMENT POINTER

CPM /SEE IF NSW OF DIVISOR = ZERO

JFZ SUBEXP /IF FIND ANYTHING - PROCEED TO DIVIDE

DCL /DECREMENT POINTER

CPM /SEE IF LSV OF DIVISOR = ZERO

JTZ DERROR /1F DIVISOR = ZERO, TELL SOMEBODY!
SUBEXP, LLI 137 /SET POINTER TO DIVIDEND (FPOP) EXPONENT

LAM /FETCH DIVIDEND EXPONENT

LLI 127 /SET POINTER TO DIVISOR (FPACC) EXPONENT

SUM /SUBTRACT DIVISOR EXP FM DIVIDEND EXP

ADI @01 /COMPENSATE FOR DIVISION ALGORITHM

LMA /STORE EXPONENT RESULT IN FPACC EXP
SETDCT, LLI 182 /SET POINTER TO BIT COUNTER STORAGE

LMI 827 /SET IT TO 27 OCTAL (23 DECIMAL)

DIVIDE, CAL SETSUB /MAIN DIVISION RTN - SUB DIVIS FM DIVID
JTS NOGO /1F RESULT 1S NEGATIVE - PUT @ IN QUOT

LEl 134 Z1IF « OR 8, MOVE REMAINDER INTO DIVIDEND
LLI 131 /SET POINTERS
LBl 083 /AND PRECISION COUNTER
CAL MOVEIT /AND MOVE REMAINDER INTO DIVIDEND
LAl 061 /PUT A "1” INTO ACCUMULATOR
RAR /AND MOVE IT INTO THE CARRY BIT
JMP QUOROT /PROCEED TO ROTATE IT INTO THE QUOTIENT
‘NOGO, LAl 088 /VHEN RESULT IS NEG, PUT “@%" INTO ACC
RAR /AND MOVE IT INTO CARRY BIT
QUOROT, LLI laa /SET POINTER TO LSW OF QUOTIENT

5 - 26

MNEMONIC COMMENTS

LA L L L X0 L XX XX X 1 X X 2 2 L X L L X 3 4

LBl 0883 /SET PRECISION COUNTER

CAL ROTL /7MOVE CARRY BIT INTO LSB OF QUOTIENT
LLI 134 - /SET POINTER TO DIVIDEND LSW

LBl 863 /SET PRECISION COUNTER

CAL ROTATL /ROTATE DIVIDEND LEFT

LLI 182 /SET POINTFR TO BITS COUNTER

CAL CNTDWN /DECREMENT BITS COUNTER

JFZ DIVIDE /IF NOT FINISHED - CONTINUE ALGORITHM
CAL SETSUB /DO ONE MORE DIVIDE FOR ROUNDING OPS
JFS DVEXIT /2A4TH BIT = B, NO ROUNDING

LLI 144 /24TH BIT = 1, SET PNTR TO QUOTIENT LSW
LAM /FETCH LSW OF QUOTIENT
ADI 001 /ADD "1 TO 23RD BIT
LMA /RESTORE LSV
LAl 0990 /CLEAR ACCUMULATOR WHILE SAVING CARRY
INL /ADUVANCE POINTER TO NSW OF QUOTIENT
ACM /ADD WITH CARRY
LMA /RESTORE NSV
LAl 009 /CLEAR ACCUMULATOR WHILE SAVING CARRY
INL 7ADVANCE POINTER TO MSV OF QUOTIENT
ACM /ADD WITH CARRY
LMA /RESTORE MSWV
JFS DVEXIT /IF MSB OF MSW = @, PREPARE TO EXIT
LBl 8063 JOTHERVWISE SET PRECISION COUNTER
CAL ROTATR /MOVE QUOT RIGHT TO CLEAR SIGN BIT
LLI 127 /SET POINTER TO FPACC EXPONENT
LBM /FETCH EXPONENT
INL /INCREMENT IT FOR ROTATE RIGHT OP ABOVE
LMB /RESTORE EXPONENT
DVEXIT, LLI 144 /SET POINTERS TO TRANSFER
LEl 124 /QUOTIENT TO FPACC
LBl 863 /SET PRECISION COUNTER
JMP EXMLDV /EXIT THRU FPMULT RTN AT "EXMLDV
SETSUB, LLI 131 /SET PNTR TO LSW OF WORKING REGISTER
CAL SWITCH /SAVE POINTER
LHD /SET H = @ FOR SURE
LLI 124 /SET POINTER TO LSV FPACC
LBI 003 /SET PRECISION COUNTER
CAL MOVEIT /MOVE FPACC VALUE TO WORKING REGISTER
LEI 131 /RESET PNTR TO WORKING REG'S LSW (DIVISOR)
LLI 134 /SET PNTR TO LSW OF FPOP (DIVIDEND)
LBl 603 /SET PRECISION COUNTER
CAL SUBBER /SUBTRACT DIVISOR FROM DIVIDEND
LAM /GET MSV OF RESULT FROM SUBTRACTION OPS
NDA /AND SET FLAGS AFTER LOAD OPERATION
RET /BEFORE RETURNING TO CALLING ROUTINE

DERROR, CAL DERMSG /**USER DEFINED ERROR ROUTINE FOR ATTEMPT-
JMP USERDF /ING DIVISION BY @ - EXIT AS DIRECTED#*x*

THE FIVE FUNDAMENTAL FLOATING-POINT ROUTINES, °*FPNORM,*" *FPADD,*"
“FPSUB,'" *“FPMULT" AND "FPDIV,” WHEN ASSEMBLED INTO OBJECT CODE VWILL
FIT WITHIN THREE PAGES OF MEMORY IN AN 8808 SYSTEM. ADDITIONALLY, THE
ROUTINES AS PRESENTED IN THIS CHAPTER USE SOME SPACE ON PAGE 66 FOR
STORING DATA AND COUNTERS. NEEDLESS TO SAY, THE PROGRAMS AS DEVELOP-
ED FOR DISCUSSION COULD BE MODIFIED TO USE OTHER MEMORY LOCATIONS WITH
LITTLE DIFFICULTY. FOR REFERENCE PURPOSES, THE LOCATIONS USED ON PAGE
83 BY THE FUNDAMENTAL FLOATING-POINT ROUTINES JUST PRESENTED ARE LISTED

5 - 29

HERE:

LOCATION(S) USAGE

100 SIGN INDICATOR

181 SIGNS INDICATOR (MULT & DIVIDE)
192 BITS COUNTER

123 FPACC EXTENSION

124 FPACC LEAST SIGNIFICANT WORD
125 FPACC NEXT SIGNIFICANT WORD
126 FPACC MOST SIGNIFICANT VWORD
127 FPACC EXPONENT

136 - 133 WORKING ARFA

a

134 FPOP LEAST SIGNIFICANT WORD
138 FPOP NEXT SIGNIFICANT VORD
136 FPOP MOST SIGNIFICANT WORD
137 FPOP EXPONENT

146 - 147 WORKING AREA

THE FUNDAMENTAL FLOATING-POINT ROUTINES WHICH HAVE BEEN PRESENTED
AND DISCUSSED ARE EXTREMELY POWERFUL ROUTINES WHICH SHOULD BE OF CONSID-
FRABLE VALUE TO ANYONE DESIRING TO MANIPULATE MATHEMATICAL DATA WITH AN
8008 SYSTEM. THE ROUTINES IN THE FORM PRESENTED FOR ILLUSTRATIVE PUR=-
POSES ARE CAPABLE OF HANDLING BINARY NUMBERS THAT ARE THE DECIMAL EQ-
UIVALENT OF 6 TO 7 SIGNIFICANT DIGITS RAISED TO APPROXIMATELY THE PLUS
OR MINUS 38TH POVER OF TEN! THE ROUTINES. CAN BE USED TO SOLVE A VIDE
VARIETY OF MATHEMATICAL FORMULAS BY SIMPLY CALLING THE APPROPRIATE SUB~-
ROUTINES AFTER LOADING THE “FPOP" AND “FPACC*" REGISTERS WITH THE VALUES
THAT ARE TO BE MANIPULATED (WHEN THEY ARE IN NORMALIZED FLOATING-POINT
FORMAT). FURTHERMORE, THE BASIC ROUTINES ILLUSTRATED CAN BECOME THE
FUNDAMENTAL ROUTINES IN MORE SOPHISTICATED PROGRAMS THAT MIGHT BE DEVE-
LOPED TO CALCULATE SUCH FUNCTIONS AS "SINES"™ AND "COSINES' USING NUMER~-
ICAL TECHNIQUES THAT CLOSELY APPROXIMATE THOSE FUNCTIONS BY TECHNIQUES
SUCH AS "EXPANSION SERIES™ FORMULAS.

THE INTERESTED PROGRAMMER SHOULD HAVE LITTLE DIFFICULTY IN MODIFYING
THE ROUTINES ILLUSTRATED TO UPGRADE THEIR CAPABILITY TO PROVIDE MORE
SIGNIFICANT DIGITS (BY INCREASING THE LENGTH OF THE MANTISSA) OR TO EX-
TEND THE " EXPONENTS* CAPABILITY BY PROVIDING DOUBLE OR TRIPLE-PRECISION
REGISTERS FOR THE EXPONENT PORTION. FOR MANY APPLICATIONS, HOWEVER, THE
USER MAY BE VELL SATISFIED WITH THE CAPABILITY PROVIDED BY THE ROUTINES
AS THEY HAVE BEEN PRESENTED FOR EDUCATIONAL PURPOSES.

THE FLOATING~POINT ROUTINES WHICH HAVE BEEN PRESENTED CAN BE USED TO
MANIPULATE NUMBERS ONCE THEY ARE IN BINARY FORMAT. IN SOME APPLICATIONS
SUCH AS WHEN FORMULAS ARE BEING SOLVED BY THE COMPUTER TO CONTROL THE
OPERATION OF A MACHINE, OR TYPES OF APPLICATIONS WHERE THERE 1S LITTLE
OR NO NEED TO COMMUNICATE WITH HUMANS, THE ABOVE ROUTINES COUPLED WITH
SOME 170 ROUTINES AND WHATEVER OTHER OPERATING PROGRAMS ARE DICTATED BY
THE APPLICATION WOULD BE SUFFICIENT FOR HANDLING THE MATHEMATICAL OPERA-
TIONS« HOWEVER, IN PROBABLY THE MAJORITY OF APPLICATIONS, AT SOME TIME
OR OTHER IT WILL BE DESIRABLE FOR HUMANS TO COMMUNICATE VWITH THE COMPU-
TER AND FOR THE COMPUTER TO PRESENT INFORMATION BACK TO HUMANS. NOW, IT
SEEMS THAT THE VAST MAJORITY OF PEOPLE PREFER TO MANIPULATE MATHEMATICAL

5 - 30

DATA USING DECIMAL NOTATION AND WOULD NOT WANT TO CHANGE THEIR WAYS BY
WRKING IN FLOATING-POINT BINARY NOTATION. SO, MOST PROGRAMMERS WOULD
FIND IT BENEFICIAL TO HAVE SOME CONVERSION ROUTINES THAT WOULD CONVERT
NUMBERS FROM DECIMAL FLOATING-POINT NOTATION TO BINARY FLOATING~-POINT
NOTATION AS WELL AS THE REVERSE. THE NEXT SECTION OF THIS CHAPTER IS
DEVOTED TO DISCUSSING AND DEVELOPING ROUTINES THAT ACCOMPLISH SUCH A
WORTHWHILE OBJECTIVE!

CONVERTING FLOATING-POINT DECIMAL TO FLOATING-POINT BINARY

MOST USER°'S OF A COMPUTER FOR MATHEMATICAL FUNCTIONS WOULD PROBABLY
DESIRE TO INPUT DATA IN THE FORM:

1234.567
OR
1.234 E+15

USING AN INPUT DEVICE SUCH AS A KEYBOARD OR TELETYPE MACHINE. IN ORDER
TO ACCEPT DATA IN SUCH FORMAT ONE NEEDS TO DEVELOP A PROGRAM THAT WILL
FIRST CONVERT THE INFORMATION FROM THE DECIMAL MANTISSA AND EXPONENT
FORM OVER TO THE BINARY EQUIVALENT. THE PROCESS 1S FAIRLY STRAIGHT-FOR~
WARD CONCEPTUALLY. .

FIRST, ONE NEEDS TO DEVELOP A METHOD FOR BREAKING DOWN THE MANTISSA
PORTION INTO A "DECIMAL NORMALIZED" FORMAT. THIS CAN BE DONE QUITE
READILY BECAUSE:

1234.567 = 1234567.8 E-3
AND
1.234 E+15 = 1234.0 E+12

THUS, TO EFFECTIVELY "NORMALIZE“ A DECIMAL NUMBER ONE HAS TO SIMPLY KEEP
TRACK OF WHERE THE DECIMAL POINT IS PLACED BY THE OPERATOR IN THE MANT-
ISSA AND COMPENSATE FOR THAT FACTOR BY REMOVING THE DECIMAL POINT (MAK-
ING THE MANTISSA AN INTEGER VALUE) AND CHANGING THE EXPONENT PORTION TO
ACCOUNT FOR THE REMOVAL OF THE DECIMAL POINT!

NEXT, ONE NEEDS TO CONVERT THE MANTISSA PORTION OF THE NUMBER FROM
DECIMAL TO ITS BINARY BEQUAL. THAT CONVERSION PROCESS CAN ACTUALLY BE
ACCOMPLISHED AS EACH DECIMAL NUMBER 1S INPUTTED BY THE OPERATOR BY USING
THE ALGORITHM DESCRIBED BELOV.

DECIMAL TO BINARY CONVERSION:t EACH TIME A DIGIT IS RE~-
CEIVED IN DECIMAL FORM, IMMEDIATELY CONVERT IT TO IT'S
BINARY FQUIVELANT. IN MANY CASES THIS CONSISTS OF SIM~-
PLY “"MASKING OFF” EXTRA BITS TO LEAVE A VALUE IN BCD
FORMAT. NEXT, IN ORDER TO COMPENSATE FOR THE POVERS OF
TEN DENOTED BY THE POSITIONAL VEIGHT OF DECIMAL NUMBERS.,
MULTIPLY ANY PREVIOUS NUMBER(S) THAT ARE ALREADY STORED
IN BINARY FORM BY MULTIPLYING THEM BY 1@ (DECIMAL).

THEN ADD IN THE BINARY EQUIVALENT OF THE NUMBER THAT HAS
JUST BEEN RECEIVED.

THE ALGORITHM CAN BE ILLUSTRATED BY CONSIDERING THE FOLLOWING EXAM-
PLE WHERE AN OPERATOR ENTERS THE DECIMAL NUMBER " 63" BY FIRST ENTERING

5 - 31

THE NUMBER " 6' AND THEN *"3* FROM AN INPUT DEVICE SUCH AS AN ASCI1 CODED
KEYBOARD?

o8 6006 000 INPUT REGISTER INITIALLY CLEARED

OPERATOR INITIALLY TYPES IN THE CHARACTER FOR A "6."
THIS 1S IMMEDIATELY CONVERTED TO 1 1 @ AS IT'S BINARY
EQUIVALENT. SINCE IT IS THE FIRST CHARACTER RECEIVED
IT 1S NOT NECESSARY TO MULTIPLY TME PRESENT VALUE OF
THE STORAGE REGISTER BY TEN. THE BINARY VALUE 1 1 @
CAN SIMPLY BE PLACED IN THE INPUT REGISTER GIVING:

66 6666 110 INPUT REGISTER AFTER IST # RECEIVED

THE OPERATOR THEN ENTERS THE CHARACTER FOR A "3." ONCE
AGAIN THIS 1S IMMEDIATELY CONVERTED TO @ 1 1 AS IT'S
BINARY EQUIVALENT. BUT, BEFORE THIS NEW DIGIT IS ADDED
TO THE BINARY STORAGE REGISTER, THE CONTENTS OF THE
REGISTER MUST BE MULTIPLIED BY TEN TO ACCOUNT FOR THE
POSITIONAL VALUE OF THE PREVIOUS DIGIT. A SIMPLE VAY
TO MULTIPLY A BINARY REGISTER BY TEN IS TO PERFORM THE
FOLLOWING STEPS:

g0 66 1186 INPUT REGISTER CONTAINS I1ST # “6."

a 2061 106080 ROTATE LEFT = MULTIPLY BY 2

0
g0 @11 86060 ROTATE LEFT = MULTIPLY BY 4
2

a 11 1180 ADD IN ORIGINAL VALUE = MULT BY 5

#686 111 1028 ROTATE LEFT = MULTIPLY BY 18

WITH THE PREVIOUS VALUE OF "é" NOW MULTIPLIED BY TEN TO
REPRESENT "60'" IN THE BINARY REGISTER, THE NEW VALUE OF
*3" CAN NOV BE ADDED IN TO YIELD:

20 111 111 BINARY EQUIVELANT OF " 63" DECIMAL.

THE ABOVE ALGORITHM IS THUS REPEATED EACH TIME AN ADDITIONAL DECI-
MAL CHARACTER IS RECEIVED TO MAINTAIN THE BINARY EQUIVALENT. NATURAL-
LY THE ALGORITHM IS VALID FOR MULTIPLE-PRECISION STORAGE OF NUMBERS.

FINALLY, IT IS NECESSARY TO CONVERT THE DECIMAL EXPONENT VALUE
(WHICH AGAIN IS IMMEDIATELY CONVERTED TO A BINARY NUMBER AS IT IS RE-
CEIVED FROM THE INPUT DEVICE) TO REPRESENT THE BINARY NUMBER RAISED
TO AN EQUIVALENT VALUE. CONVERSION AT THIS POINT MAY BE ACCOMPLISHED
BY FIRST CONVERTING THE BINARY REPRESENTATION OF THE MANTISSA TO IT'S
“NORMALIZED” FORMAT (USING THE SPECIAL CAPABILITY OF THE “FPNORM"™ ROUT-
INE TO CONVERT THE REGULAR FORMATTED BINARY NUMBER TO IT'S NORMALIZED
FORM) AND THEN MULTIPLYING THE NORMALIZED FLOATING-POINT BINARY NUMBER
BY 180 (DECIMAL) FOR EACH UNIT OF A POSITIVE DECIMAL EXPONENT OR MULTI-
PLYING IT BY @.1! FOR EACH UNIT OF A MINUS DECIMAL EXPONENT. THIS CAN
BE ACCOMPLISHED BY USING THE “FPMULT" ROUTINE PREVIOUSLY DESCRIBED!

THE DECIMAL TO BINARY INPUT PROGRAM TO BE PRESENTED SHORTLY HANDLES
THE ABOVE CONSIDERATIONS PLUS ALLOWS SEVERAL OTHER FUNCTIONS TO BE PER-
MRMED. THE ROUTINE WILL ALLOW AN OPERATOR TO SPECIFY THE SIGN OF THE
DECIMAL MANTISSA AND EXPONENT AND TAKES APPROPRIATE ACTION TO NEGATE

s - 32

NUMBERS DESIGNATED AS BEING MINUS IN VALUE. IT ALSO ALLOWS FOR ERASURE
OF THE CURRENT INPUT STRING BY TYPING A SPECIAL CHARACTER. THE ROUTINE
ASSUMES THAT CHARACTERS ARE RECEIVED FROM AN INPUT DEVICE THAT USES
ASCII CODE AND THAT AN OUTPUT DEVICE USING ASCII CODE IS USED TO "ECHO™
INFORMATION RECEIVED BACK TO THE OPERATOR. NEITHER THE ACTUAL INPUT OR
OUTPUT ROUTINES ARE SHOWN IN THE SAMPLE PROGRAM. (INFORMATION ON ACTUAL
Ir0 ROUTINES VILL BE PRESENTED IN A LATER CHAPTER). THE ROUTINE ALSO
ASSUMES THAT CERTAIN LOCATIONS ON PAGE 006 VWILL BE USED FOR STORAGE OF
NUMBERS RECEIVED AND FOR MAINTAINING COUNTERS AND INDICATORS. A LIST-
ING OF THE LOCATIONS USED VWILL BE PROVIDED LATER. ADDITIONALLY, THE
PROGRAM CALLS ON OTHER ROUTINES PREVIOQUSLY DETAILED IN THIS MANUAL SUCH
AS "FPNORM*" AND “FPMULT."

MNEMONIC COMMENTS
DINPUT, LH1 000 7/SET POINTERS TO INPUT
LLI 150 /STORAGE REGISTERS
XRA /CLEAR ACCUMULATOR
LBI 010 /SET A COUNTER
CLRNX2, LMA /AND CLEAR MEMORY LOCATIONS 158 - 157
INL /BY DEPOSITING @6°'S AND ADVANCING PNTR
DCB /AND DECREMENTING LOOP COUNTER
JFZ CLRNX2 7UNTIL FINISHED
LLI 163 /SET POINTERS TO CNTR/INDICATOR STORAGE
LBl @60a /SET A COUNTER
CLRNX3, LMA /AND CLEAR MEMORY LOCATIONS 103 - 186
INL /IN A SIMILAR FASHION BY DEPOSITING @6°'S
DCB /AND DECREMENTING LOOP COUNTER

JFZ CLRNX3 /UNTIL FINISHED
CAL INPUT /NOVW BRING IN A CHARACTER FROM 1/0 DEVICE

CP1 253 /TEST TO SEE IF IT IS A “+" SIGN

JTZ SECHO /IF YES, GO TO ECHO AND CONTINUE

CP1 255 /1F NOT "+ SEE IF "= S1GN

JFZ NOTPLM /IF NOT "+ OR "-" TEST FOR VALID CHAR
LLI 163 /1F MINUS, SET POINTER TO "INPUT SIGN"
LMA /AND MAKE IT NON-ZERO BY DEPOSITING CHAR

SECHO, CAL ECMO /70UTPUT CHAR IN ACC AS ECHO TO OPERATOR
NINPUT, CAL INPUT /FETCH A NEW CHARACTER FROM 1/0 DEVICE

NOTPLM, CPl 377 /SEE IF CHARACTER 1S CODE FOR *“RUBOUT"
JTZ ERASE /1F YES, PREPARE TO START OVER
CPI 256 /1F NOT, SEE 1F CHARACTER 1S A PERIOD "."
JTZ PERIOD /IF *." PROCESS AS DECIMAL POINT
CP1 305 /1F NOT, SEE IF CHAR IS “E" FOR EXPONENT
JTZ FNDEXP /IF “E" PROCESS AS EXPONENT INDICATOR
CP1 260 /1F NOT, SEE 1F CMAR A VALID NUMBER
JTS ENDINP 7I1F NONE OF ABOVE, TERMINATE INPUT STRING
CPl 272 /STILL CHECKING FOR VALID NUMBER
JFS ENDINP /IF NOT, TERMINATE INPUT STRING
LLI 156 /MAVE A ¢#, SET PNTR TO MS¥W OF INPUT REG'S
LBA /SAVE CHARACTER IN REGISTER "B"
LAl 370 /FORM A MASK AND CHECK TO SEE IF INPUT
NDM /REG'S CAN ACCEPT LARGER NUMBER
JFZ NINPUT /1F NOT, IGNORE PRESENT INPUT
LAB 7/1F 0.K., RESTORE CHARACTER TO ACC
CAL ECHO /AND ECMO # BACK TO OPERATOR
LLI 165 /SET POINTER TO DIGIT COUNTER
LCM /FETCH DIGIT COUNTER
INC 7/ INCREMENT IT'S VALUE
LMC /7AND RESTORE IT TO STORAGE

5 - 33

PERIOD,

ERASE,

MNEMONIC

CAL
JMP
LBA
LLI
LAM
NDA
JFZ
LLI
LMA
INL
LMB
LAB
CAL
JMP
LAl
CAL
LAl

- CAL

FNDEXP,

EXECHO.
EXPINP,
NO EXPS.,

ENDINP,

CAL
JMP
CAL
CcAaL
CPI1
JTZ
CP1
JFZ
LLI
LMA
CAL
CAL
CPI
JTZ
CPI
JTS
CP1
JFS
NDI
LBA
LLI
LAl
CPM
JTS
LCM
LAM
NDA
RAL
RAL
ADC
RAL
ADB
LMA
LAl
-ADB
JMP
LLI
LAM
NDA
JTZ

DECBIN
NINPUT

186

ENDINP
185

ECHO
NINPUT
274
ECHO
240
ECHO
ECHO
DINPUT
ECHO
INPUT
253
EXECHO
255
NO EXPS
104

ECHO
INPUT
377
ERASE
260
ENDINP
272
ENDINP
217

157
863

EXPINP

260

EXECHO
183

FININP

COMMENTS

/PERFORM DECIMAL TO BINARY CONVERSION
/GET NEXT CHARACTER FOR MANTISSA

/SUBRTN TO PROCESS *"."™ - SAVE IN "B"”
/SET POINTER TO "." STORAGE INDICATOR
/FETCH CONTENTS

/SET FLAGS AFTER LOAD OPERATION

7IF *." ALREADY PRESENT, END INPUT STRING
/0THERWISE SET PNTR TO DIGIT COUNTER
/AND RESET DIGIT COUNTER TO @

/ADVANCE POINTER BACK TO “." STORAGE
/AND PUT A "." THERE

/RESTORE "." TO ACCUMULATOR

/AND ECHO IT BACK TO OPERATOR

7GET NEXT CHARACTER IN NUMBER STRING
/PUT ASCI1 CODE FOR "<" IN ACCUMULATOR
/DISPLAY IT

/PUT ASCII CODE FOR "SPACE" IN ACC

/AND LEAVE A COUPLE OF SPACES

/BEFORE GOING BACK TO

/START THE INPUT STRING OVER

/SUBRTN TO PROCESS EXPONENT, ECHO "E"
/GET NEXT PART OF EXPONENT

/TEST FOR A "+" SIGN

7/1F YES, PROCEED TO ECHO IT

7/1F NOT, TEST FOR A "-'" SIGN

/1F NOT, SEE IF A VALID CHARACTER

/1F HAVE "=-" THEN SET PNTR TO “EXP SIGN"
/SET “EXP SIGN" MINUS INDICATOR

/ECHO CHARACTER BACK TO OPERATOR

/GET NEXT CHARACTER FOR EXPONENT PORTION
/SEE IF CODE FOR 'RUBOUT"

7/1F YES, PREPARE TO RE~ENTER ENTIRE STRING
70THERWISE CHECK FOR VALID DECIMAL NUMBER
71F NOT, END INPUT STRING

/STILL TESTING FOR VALID NUMBER

/1F NOT, END INPUT STRING

/HAVE VALID #, FORM MASK AND STRIP ASCII
/CHARACTER TO PURE BCD, SAVE IN REG "B"
/SET PNTR TO INPUT EXPONENT STORAGE LOC
/SET ACCUMULATOR = 3

/SEE 1F 1ST EXPONENT # WAS GREATER THAN 3
/1F YES, IGNORE INPUT (LIMITS EXP TO < 48)
7IF 0.K., SAVE PREV EXP VALUE IN *“C*"

/AND ALSO PLACE IT IN ACCUMULATOR

/CLEAR THE CARRY BIT

/MULT X 10 ALGORITHM, 1ST MULT X 2

/MULT X 2 AGAIN

/ADD IN ORIGINAL VALUE

/MULT X 2 ONCE MORE

/ADD IN NEW ¢ TO COMPLETE THE DECIMAL TO
/BINARY CONV FOR EXP AND RESTORE TO MEMORY
/RESTORE ASCI! CODE BY ADDING "268"

/TO0 BCD VALUE OF THE NUMBER

/AND ECHO # THEN LOOK FOR NEXT INPUT

/SET POINTER TO MANTISSA '"SIGN' INDICATOR
/FETCH SIGN INDICATOR

/SET FLAGS AFTER LOAD OPERATION

/1F NOTHING IN INDICATOR, # IS POSITIVE

5 - 34

FININP,

POSEXP,

EXPOK,

EXPFIX,

FPX10,

MINEXP,

FPDI10,

MNEMONIC

LLI
LBI
CAL
LLI
XRA
LDA
LMA
LEI
LBI
CAL
LBI
CAL
LLI
LAM
NDA
LLI
JT2Z
LAM
XR1
ADI
LMA
LLI
LAM
NDA
JTZ
LLI
XRA
SUM
LLI
ADM
LMA
JTS
RTZ
CAL
JFZ
RET
LEI
LDH
LLI
LBI
CAL
LLI
LMI
DCL
LMI
pCL
XRA
LMA
DCL
LMA
CAL
LLI
CAL
RET
cAL
JFZ
RET
LEI

154
P63
COMPLM
153

123
004
MOVEILT
627
FPNORM
164

157
PO SEXP

377
a0l

186

EXPOK
185

157

MINEXP

FPX10@
EXPFIX

134

124
804
MOVEIT
127
284

120

FPMULT
157
CNTDWN

FPD16@
MINEXP

134

COMMENTS

/SET PNTR TO LSV OF INPUT MANTISSA

/SET PRECISION

/PERFORM 2°'S COMPLEMENT TO NEGATE NUMBER
/SET PNTR TO INPUT STORAGE LSV-1

/CLEAR ACCUMULATOR

/CLEAR REG *'D"

/CLEAR INPUT STORAGE LOC LSW-1

/SET PNTR TO FPACC LSW-1

/SET PRECISION COUNTER

/MOVE INPUT & LSW=-1 TO FPACC & LSV-1
/SET SPEC FPNORM MODE BY SETTING BIT CNT
/IN REG "B" AND CALL NORMALIZATION ROUTINE
/SET POINTER TO EXPONENT SIGN INDICATOR
/FETCH FXPONENT SIGN INDICATOR TO ACC
/SET FLAGS AFTER LOAD OPERATION

/SET POINTER TO DECIMAL EXP STORAGE

/1F EXP POSITIVE, JUMP AHFAD

/1F EXP NEGATIVE, FETCH IT INTO ACC

/AND PERFORM TWO0'S

/COMPLEMENT

/THEN RESTORE TO STORAGE LOCATION

/SET POINTER TO PFRIOD INDICATOR

/FETCH CONTENTS TO ACCUMULATOR

/SET FLAGS AFTER LOAD OPERATION

/1F NOTHING, NO DECIMAL POINT INVOLVED
/1F HAVE DECIMAL POINT, SET PTR TO DIGIT
/COUNTER THEN CLEAR ACCUMULATOR
/SUBTRACT DIGIT CNTR FROM @ TO GIVE NEG
/SET POINTER TO DECIMAL EXPONENT STORAGE
/ADD IN COMPENSATION FOR DECIMAL POINT
/RESTORE COMPENSATED VALUE TO STORAGE
/1F COMPENSATED VALUE MINUS, JUMP AHEAD
/1F COMPENSATED VALUE ZEROt FINISHED!
/COMPEN DEC EXP 1S +, MULT FPACC X 10
/LOOP TIL DECIMAL EXPONENT = @

/EXIT WITH CONVERTED VALUE IN FPACC
/MULT FPACC X 18 RTN, SET PNTR TO FPOP LSW
/SET D = @ FOR SURE

/SET PNTR TO FPACC LSV

/SET PRECISION COUNTER

/MOVE FPACC TO FPOP (INCLUDING EXPONENTS)
/SET PNTR TO FPACC EXPONENT

/PLACE FP FORM OF 18 (DECIMAL) IN FPACC

” L1 ” *"” " " " ”
" " 50 L1 " " (1] (1]
LU " *"” » o L0 " *"”
” " " ” ” 4] " "
" " [4] ” ” " " L1

" " L 1] ” L " " [1]

NNN NN

" L 1] " ” " " (1] ”

/NOW MULTIPLY ORIG BIN ¢ (IN FPOP) X 10
/SET POINTER TO DECIMAL FXPONENT STORAGE
/DECREMENT DEC FXP VALUE

/RETURN TO CALLING PROGRAM

/COMPEN DEC EXP IS -, MULT FPACC X @.1

/LOOP TIL DECIMAL EXPONENT = @

/EXIT VWITH CONVERTED VALUE IN FPACC
/MULT FPACC X 8.1 RTN, PNTR TO FPOP LSV

5 - 35

WNENONIC COMMENTS

LA L L L 2 L X 2 XX X 4 2 J L L L X 2 2 X 1 X 2 4

LDR /SET D = @ FOR SURE
LLI 124 /SET POINTER TO FPACE
LBl @@a /SET PRECISION COUNTER
€AL MOVEIT /MOVUE FPACE TO FPOP (INCLUDING EXPONWENT)
LLI 127 /SET POINTER TO FPACC EXPOMENT
LMI 378 /PLACE FP FORM OF @41 (DECIMAL) IN FPACC
CAL FPMULT /NOV MULTIPLY ORIG BIN # (IN FPOP) X Bl
LLl 187 /SET POINTER TO DECIMAL EXPONENT STORAGE
LBM /FETER VALUE
INB /INCREMENT IT
LMB /RESTORE IT TO MEMORY
RET /RETURN TO CALLING PROGRAM

DECBIN, LLI 153 /DEC TO BIN CONV, SET PNTR TO TEMP STORAGE
LAB /RESTORE CHARACTER TO ACCUMULATOR
NDl 617 /MASX OFF ASCI! BITS TO LEAVE PURE BED ¢
LMA /PLACE CURRENT BED # 1IN TEMP STORAGE
LEI 1S@ /SET POINTER TO VORKING AREA LSV
LLY 1S4 /SET AROTHER PNTR TO LSB OF INPUT REB®S
LDR /SET D = @ FOR SURE
LBl @63 /SET PRECISION COUNTER _
€AL. MOVEIT /MOVE ORIGINAL UVALUE TO WORKING AREFA
LLI 183a /SET PNTR TO LSV OF INPUT STORAGE
LBl @63 /SET PRECISION COUNTER '
€AL ROTATL /ROTATE LEFT (X 2) (TOTAL = X 2)
LLL 18a /SET PHNTR TO LSV AGAIN
LBl @63 /SET PRECISION COUNTER
CAL ROTATL /ROTATE LEFT (X 2) (TOTAL WOV = X 34)
LELl 184 /SET PNTR TO LSV OF ROTATED VALUE
LLl 1%@ /AND ANOTEER TO LSW OF ORIGINAL UALUVE
LBl @03 /SET PRECISION GOUNTER
€AL ADDER /ADD OR1IG TO ROTATED (TOTAL NOW = X S)
LL1 18a /SET PNTR TO LSV AGAIN
LBl 083 /SET PRECISION COUNTER
€AL ROTATL /ROTATE LEFT (X 2) (TOTAL WOV = X 18)
LLI 1852 /SET POINTER TO CLEAR WORKING ARFA
XRA /CLEAR AECUNULATOR
LMA /BEPOSIT IN NSV OF WORKING AREA
DEL /DECREMENT PNTR TO NSW
LKA /PUT ZFRO TRERFE TOO
LL! 183 /SET PNTR TO CURRENT DIGIT STORAGE
LAM /FETER LATEST BED NUMBER
LLl 1850 /SET PNTR TO LSV OF WORKING AREFA
L¥A ' /DEPOSIT LATEST BCD NUMBER IN LSV
LEI 184 /SET UP POINTER
LBl 663 /SET PRECISION COUMTER
€AL ADDER /ADD IN LATEST # TO COMPLETE DECBIN CONV
RET /RETURN TO CALLING PROGRAM

CONVERTING FLOATING+POINT BINARY TO FLOATING-POINT DECIMAL

THE FOLLOWING PROGRAM WILL CONUERT BINARY NUMBERS STORED IN FLOAT-
ING=POINT FORNAT TO DECIMAL FLOATING~POINT FORMAT AND DISPLAY THNEM ON AN

3 -~ 36

OUTPUT DEVICE SUCH AS A TELETYPE MACHINE IN THE FOLLOWING FORMAT:
+0.1234567 E+087

THE ROUTINE WHICH IS SHOWN BELOW OPERATES ESSENTIALLY IN THE REVERSE
MANNER TO THE INPUT ROUTINE. FIRST THE FLOATING-POINT BINARY NUMBER IS
CONVERTED TO A REGULARLY FORMATTED BINARY NUMBER, AND THEN THE NUMBER 1S
CONVERTED TO A DECIMAL NUMBER USING A MULTIPLY BY TEN ALGORITHM. SINCE
THE READER SHOULD NOW BE QUITE ADEPT AT FOLLOVING THE OPERATION OF A
PROGRAM FROM THE COMMENTED SOURCE LISTING, THE FLOATING=-POINT BINARY TO
FLOATING-POINT DECIMAL CONVERSION ROUTINE WILL BE PRESENTED WITHOUT FUR-
THER DISCUSSION AT THIS POINT. IT SHOULD BE REMEMBERED THAT THE ROUTINE
ILLUSTRATED ASSUMES AN ASCII CODED OUTPUT DEVICE IS BEING UTILIZED. IN
ADDITION, SEVERAL SUBROUTINES USED BY THE PREVIOUSLY ILLUSTRATED. INPUT
PROGRAM ARE CALLED BY THE ROUTINE.

MNEMONIC COMMENTS
FPOUT, LLI 157 /SET POINTER TO DECIMAL EXPONENT STORAGE
LM1 000 /CLEAR DECIMAL EXPONENT STORAGE LOCATION
LLI 126 /SET POINTER TO MSW FPACC MANTISSA
LAM /FETCH MSW FPACC MANTISSA TO ACCUMULATOR
NDA /SET FLAGS AFTER LOAD OPERATION
JTS OUTNEG /IF MSB = | HAVE NEGATIVE NUMBER
LAl 253 /0THERVISE # 1S POS, SET ASCII CODE FOR +
JMP AHEAD] /GO TO DISPLAY *+' SIGN
OUTNEG, LLI 124 /HAVE NEG #, SET PNTR TO LSW FPACC MANT
LBl @03 /SET PRECISION COUNTER
CAL COMPLM /PERFORM TWO'S COMPLEMENT ON FPACC
LAl 255 /SET ASCI1 CODE FOR "~ SIGN
AHEAD], CAL ECHO /DISPLAY SIGN OF MANTISSA
LAl 260 /SET ASCI1 CODE FOR "@g"
CAL ECHO /DISPLAY "@*
LAl 256 /SET ASCil CODE FOR ",.”
CAL ECHO /DISPLAY *,"
LLI 127 /SET POINTER TO FPACC EXPONENT
LAl 377 /PUT ~1 IN ACCUMULATOR
ADM 7EFFECTIVELY SUBTRACT *1" FROM EXPONENT
LMA /RESTORE COMPENSATED EXPONENT
DECEXT, JFS DECEXD /1F COMPEN EXP @ OR POS, MULT MANT X @.1
LAl 0804 /1F COMPEN EXP NEGATIVE
ADM /ADD 4" (DECIMAL) TO THAT VALUE

JFS DECOUT /IF EXPONENT @ OR POS NOVW, OUTPUT MANTISSA
CAL FPX10 /0THERWISE, MULT MANTISSA BY 18

DECREP, LLI 127 /SET POINTER TO FPACC EXPONENT
LAM /GET EXPONENT AFTER MULTIPLICATION RTN
NDA /SET FLAGS AFTER LOAD OPERATION

. JMP DECEXT /REPEAT ABOVE TEST FOR @ OR POS CONDITION
DECEXD, CAL FPDI1#0 /MULTIPLY FPACC X 0.1
- JMP DECREP /CHECK STATUS OF FPACC EXP AFTER MULTIP

DECOUT, LEI 164 /SET POINTER TO LSW OF OUTPUT REGISTERS
LDH /JMAKE D = @& FOR SURE
LLI 124 /SET POINTERS TO LSW OF FPACC
LBl 003 /SET PRECISION COUNTER
CAL MOVEIT /MOVE FPACC TO OUTPUT REGISTERS
LLI 167 /SET PNTR TO MSW+1 OF OUTPUT REGISTER
LMl @00 /AND CLEAR THAT LOCATION
LLI lea /NOV SET POINTER TO LSW OF OUTPUT REG'S

LBl 203 /SET PRECISION COUNTER - PERFORM ONE

5 - 37

MNEMONIC

COMPEN,

OUTDI1G,

OUTDGS,

DECRDG,

ZERODG.,

oUTX10,

CAL
CAL
LLI
LBM
INB
LMB
JTZ
LLI
LBl
CAL
JMP
LLI
LMl
LLI
LAM
NDA
JTZ

LLI.

LAl
ADM

CAL.

LLI
CAL
JTZ
CAL
JMP
LLI
CAL
LL1
LAM
NDA
JFZ
DCL
LAM
NDA
JFZ
DCL
LAM
NDA
JFZ
LLI
LMA
JMP
LL1
LMl
LLI
LDH
LEl
LBI
CAL
LLI
LB1
CAL
LLI
LBI
CAL
LLI1
LEl

ROTATL
oUTX1@
127

O0UTD1G
167
084
ROTATR
COMPEN
167
087
167

Z ERODG
167
260

ECHO
187
CNTDWN
EXPOUT
ouUTX1@
OUTDGS
157
CNTDWN
166

DECRDG

DECRDG

DECRDG
157

DECRDG
167
000
164

1608
804
MOVEIT
164
004
ROTATL
164
804
ROTATL
160
164

COMMENTS

L X B X X T X X ¥ E X X ¥ 1

/ROTATE OP TO COMPEN FOR SPACE OF SIGN BIT
/7MULT OUTPUT REG X 18, OVERFLOW INTO MSW+l
/SET PNTR TO FPACC EXPONENT
/COMPENSATE FOR ANY REMAINDER IN BINARY
/EXPONENT BY PERFORMING A ROTATE RIGHT ON
/0UTPUT REG'S UNTIL BIN EXP BECOMES ZERO
/G0 TO OUTPUT DIGITS WHEN COMPEN DONE
/BIN EXP COMPENSATION ROTATE LOOP
/SET PNTR TO OUT MSW+1 AND SET COUNTER
/PERFORM COMPENSATING ROTATE RIGHT OP
/REPEAT LOOP UNTIL BIN EXP = @
/SET PNTR TO OUTPUT DIGIT COUNTER
/SET DIGIT COUNTER TO "7" TO INITIALIZE
/SET PNTR TO MSD IN OUT REG MSW+l
/FETCH BCD FORM OF DIGIT TO BE DISPLAYED
/SET FLAGS AFTER LOAD OPERATION
/SEE IF 1ST DIGIT WOULD BE A *@%
/1F NOT, SET PNTR TO MSwW+!1 (BCD CODE)
/FORM ASCII NUMBER CODE BY ADDING 260
/TO BCD CODE
/AND DISPLAY THE DECIMAL NUMBER
/7SET POINTER TO OUTPUT DIGIT COUNTER
/DECREMENT VALUE OF OUTPUT DIGIT CNTR
/WHEN = @, GO DO EXPONENT OUTPUT RTN
/0THERVISE MULT OUTPUT REG'S X 10
/AND OUTPUT NEXT DECIMAL DIGIT
/1F 1ST DIGIT = @, SET PNTR TO DEC EXP
/DECR VALUE TO COMPEN FOR SKIPPING DISPLAY
/OF 1ST DIGIT, THEN SET POINTER TO MSW
70F OUTPUT REG'S - FETCH CONTENTS
/SET FLAGS AFTER LOAD OPERATIONS
7CHECK TO SEE IF ENTIRE MANTISSA IS "@*

"

" " [1] *"” L] " .
L [L) " " " " " "
" L] " " " (L] ” L]
" " *” " " ” .” "
" " " L1 *"” " "
*” *” ” *” " " *” [L]
*" ” " " ” 11 " "

" " ” " [" " "

/1F ENTIRE MANTISSA 1S ZERO, SET PNTR TO
/DECIMAL EXPONENT STORAGE AND SET IT TO @
/BEFORE PROCEEDING TO FINISH DISPLAY
/7MULTIPLY OUTPUT REG'S BY 10 TO PUSH OUT
/BCD CODE OF MSD, IST CLEAR OUTPUT MSW+l
/SET PNTR TO LSV OF OUTPUT REGISTERS
/MAKE SURE D = @ :

/SET ANOTHER PNTR TO WORKING AREA

/SET PRECISION COUNTER

/7MOVE ORIGINAL VALUE TO WORKING AREA
/SET POINTER TO ORIGINAL VALUE LSV

/SET PRECISION COUNTER

NNNNNNNN
H

/START MULT X 18 ROUTINE (TOTAL = X 2)
/RESET PNTR
/AND COUNTER
/JMULT X 2 AGAIN (TOTAL = X 4)

/7SET POINTER TO LSV OF ORIG VALUE
/AND ANOTHER TO LSV OF ROTATED VALUE

5 - 38

MNEMONIC COMMENTS

LBl 88a /SET PRECISION COUNTER
€AL ADDER /ABD OR1@ VALUE TO ROTA‘!’ED (TOTAL = X 8)
LLI. 1 6A /RESET PNTR
LBl @da /AND COUNTER
€AL ROTATL /MULT X 2 ONCE MORE (TOTAL = X 10)
RET /FINISRED MULT OUTPUT REG®S X 18

EXPOUT,» LAl 2308 /SET ASGIl CODE FOR “E™
CAL FCNO /DISPLAY “E™ FOR “EXPONENT®
LLI 187 /SET POINTER TO DFEIMAL EXP STORAGE LOC
LAU /FETCR DECIMAL EXPONENT TO ACC
NDA /SET FLAGS AFTER LOAD OPERATION
JTS EXOUTN /1F MSB = 1, VALUE IS NEGATIVE
LAl 283 /1¥ VALUE 1S POSs SET ASCII CODE FOR “e¢*
JMP AXEAD2 /G0 TO DISPLAY S16N

EXOUTN, XRI 377 /FOR WE@ EXP, PERFORM TWO®S COMNPLEMENT
ADl1 @01 /IR STANDARD MANNER
LXA /AND RESTORE TO STORAGE LOCATION
LAl 283 /SET ASEI1 CODE FOR o™

ANEAD2, CAL FENO /DISPLAY S1GN OF EXPONENT
LBl @00 /CLEAR REGISTER "B™ FOR COUNTER
LAN /FETCHE DECIMAL EXPONENT VALUE

SUB12s SUL 12 /SUBTRACT 16 (DECIMAL)
JTS TOMUEGH /LOOKX FOR NEGATIVE RESULT
LMA /RESTORE POS RESULT, MAINTAIN COUNT OF ROV
INB /7MANY TIMES 18 (DECIMAL) CAN BE SUBTRACTED
JNP SUB12 /TO OBTAIN MOST S1G@ DIGIT OF EXPONENT

TONUCKs LAl 268 /FORM ASECIl C€RAR FOR MSD OF EXPONENT BY

' ADB /ADDING 260 TO GOUNT IN RFGISTER “B™

CAL ECHO /AND DISPLAY MOST SIGNIFICANT D161T OF EXP
LAM /FETEX REMAINDER IN DEC EXP STORAGE LOC
ADl 268 /AND FORM ASEll GRAR PFOR LSD OF EXPONENT
CAL ECHO /DISPLAY LEAST SIGRIFICANT DIGIT OF EXP
RET /7EXIT “FPOUT™ ROUTINE

ONCE ONE NAS A DECIMAL TO BINARY INPUT ROUTINE, AND BINARY TO DECIl~
WAL OGUTPUT ROUTINE TO WORK WITE THNE FUNDANENTAL FLOATING-POINT ROUTINES
IT IS A RELATIVELY SINPLE MATTER TO TIE THEM ALL TOGETRER TO FORN AN
“OPERATING PACKAGE™ THAT WOULD ALLOV AN OPERATOR TO SPECIFY NUMERICAL
VALUES IN FLOATING-POINT DECIMAL NWOTATION AMD INDICATE WKETEER ADDITION,
SUBTRACTION, WULTIPLICATION OR DIVISION WAS DESIRED, THEN OBTAIN AN ANS-
VER FROM TRE CONPUTERe AN ILLUSTRATIVE "OPERATING PROGRAMN™ THRAT UTILIl-
ZES ALL THE DEMONSTRATION ROUTINES PRESENTED IN THIS SECTION IS SHOWN
BELOVe TRE PROGRAM VWILL ALLOV AN OPERATOR ro MAKE ENTRIES AND RECEIVE
RESULTS IN THEE FORMAT SHOWVN NERES

433.0E¢2 X <4 = <«@,1320000E¢+6

NNEMONIC COMMENTS

FPCONT, CAL CRLF2 /DISPLAY A FEV €R & L¥*S FOR 1/0 DEVICE
€AL DINPUT /LET OPERATOR ENTER A FP DECIMAL NUNMBER
CAL SPACES /DISPLAY A FFV SPACES AFTER NUNBER

LLI 124 /SEY PNTR TO LSW OF FPACC

LDH /SET D = 8 FOR SURE

LEl 170 /7SET PETR TO TENP # STORAGE AREA
LBl @04 /SET PRECISION €OUNTER

S - 39

MNEMONIC

CAL

NVALID, CAL
LBl

CP1

JTZ

CP1

JTZ

CP1

JTZ

CP1

JTZ

CPI

JFZ

JMP

OPERAl, DCB
DCB

OPERA2, DCB
DCB

OPERA3, DCB
DCB

OPERAA, LCA
LAl

ADB

LLI

LMA

LAC

- CAL

CAL

CAL.

CAL
LAl
CAL
CAL
LLI
LDH
LEI
LBI
CAL
LLI
LLM
LH1
LEM
INL
LDM
LLI
LME

MOVEIT
INPUT
200
253
OPERAI
255
OPERA2
330
OPERA3
257
OPERAA
317
NVALID
FPCONT

L2 2

110

ECHO
SPACES
DINPUT.
SPACES
27%
ECHO
SPACES
170

134
6oa
MOVEIT
110

XXX

Z+1

INL -

LMD
LHI
LDH
JMP
CRLF2, LAl
CAL
LAl
CAL
Lal
CAL
LAl

000

RESULT
215
ECHO
212
ECHO
218
ECHO
212

COMMENTS

/MOVE FPACC TO TEMP STORAGE AREA
/FETCH “OPERATOR" FROM INPUT DEVICE
/CLEAR REGISTER *“B"

/TEST FOR “+" SIGN

/GO SET UP FOR "+ SIGN

/1F NOT *+," TEST FOR "-* SIGN

/GO SET UP FOR *=" SIGN

/1F NOT ABOVE, TEST FOR X' (MULT) SIGN
/GO SET UP FOR %X SIGN

/1F NOT ABOVE, TEST FOR "/* (DIV) SIGN
/GO0 SET UPF FOR "/ SIGN

/1F NOT ABOVE, TEST FOR “RUBOUT"

/1F NONE OF ABOVE, IGNORE INPUT

/1F “RUBOUT" START NEW INPUT SEQUENCE
/SET UP REGISTER "B* BASED ON ABOVE

, *” " " L] " L "
, " ”"” " ” ” " "
, ”"” " 1 4] " " " "”
/ " " " ” . ” "

/ L4 ” " " w . ” ”

/SAVE "OPERATOR" CHARACTER IN REG *“C"
/*%x% = NEXT TO LAST LOC IN "LOOKUP*" TABLE
/MODIFY "x%x'" BY CONTENTS OF “B*

/SET PNTR TO "LOOKUP*" TABLE ADDR STORAGE
/PLACE "LOOKUP"™ ADDR IN STORAGE LOCATION
/RESTORE “OPERATOR" CHARACTER TO ACC

'/DISPLAY THE "OPERATOR" SIGN

/DISPLAY FEW SPACES AFTER “OPERATOR" SIGN
/LET OPERATOR ENTER 2ND FP DECIMAL NUMBER
/PROVIDE FEW SPACES AFTER 2ND NUMBER
/PLACE ASCl1l CODE FOR *'=" IN ACCUMULATOR
/DISPLAY *=* SIGN

/DISPLAY FEW SPACES AFTER "=" SIGN

/SET POINTER TO TEMP NUMBER STORAGE AREA
/SET D = @ FOR SURE

/SET ANOTHER POINTER TO LSW FPOP

/SET PRECISION COUNTER

/MOVE 1ST NUMBER INPUTTED TO FPOP

/SET PNTR TO "LOOKUP" TABLE ADDR STORAGE
/BRING IN LOV ORDER ADDR OF "LOOKUP" TABLE
/XXX = PAGE THIS PROGRAM LOCATED ON
/BRING IN AN ADDR STORED IN "LOOKUP" TABLE
/RESIDING ON THIS PAGE (XXX) AT LOCATIONS
/"%x%x 4+ B* AND “xxx + B + 1* AND PLACE IT
/1IN REGS "D & E* THEN CHANGE PNTR TO ADDR
/PART OF INSTRUCTION LABELED “RESULT'" BE-
/LOVW AND TRANSFER THE “LOOKUP" TABLE CON~-
/TENTS TO BECOME THE ADDRESS FOR THE IN-
/STRUCTION LABELED “RESULT." THEN RESTORE
/REGISTERS “D" AND “H'" BACK TO "@v

/NOVW JUMP TO COMMAND LABELED “RESULT"
/SUBRTN TO PROVIDE CR & LF'S

/PLACE ASCII CODE FOR CR IN ACC & DISPLAY
/PLACE ASC11 CODE FOR LINE FEED IN ACC
/AND DISPLAY

/D0 ‘1T AGAIN ~ CODE FOR CR IN ACC
/DISPLAY. IT

/CODE FOR LF

5 - 40

MNEMONIC COMMENTS

CAL ECHO /DISPLAY IT

RET /RETURN TO CALLING ROUTINE
SPACES, LAl 2a¢ /SET UP ASCI! CODE FOR SPACE IN ACC
CAL ECHO /DISPLAY A SPACE
LAI 248 /D0 IT AGAIN - CODE FOR SPACE IN ACC
CAL ECHO /DISPLAY SPACE
RET /RETURN TO CALLING ROUTINF
"z RESULT, CAL DUMMY /CAL RTN AT ADDRESS IN NEXT TW0 BYTES!

CAL FPOUT /DISPLAY RESULT
JMP FPCONT /GO BACK AND GET NEXT PROBLEM!

“LOOKUP TABLE" AAA /LOV ADDRESS FOR START OF "FPADD" RTN
BBB /PAGE ADDRESS FOR START OF "FPADD"™ RTN
ccc /LOV ADDRESS FOR START OF 'FPSUB"™ RTN
DDD /PAGE ADDRESS FOR START OF "“FPSUB'" RTN
EEE /LOW ADDRESS FOR START OF “FPMULT' RTN
FFF /PAGE ADDRESS FOR START OF "“FPMULT"™ RTN

kK GGG /LOV ADDRESS FOR START OF “FPDIV" RTN
HHH /PAGE ADDRESS FOR START OF "FPDIV" RTN

THE THREE ROUTINES, “FPINP," "“FPOUT,' AND “FPCONT*" AS PRESENTED
WOULD REQUIRE ABOUT THREE PAGE OF MEMORY FOR STORAGE. HOWEVER, AS WVILL
BE DISCUSSED SHORTLY, THF ROUTINES COULD BE MODIFIED TO FIT INTO A CON-
SIDERABLY LESS AMOUNT OF MEMORY. THE DEMONSTRATION ROUTINES ALSO USED
CERTAIN LOCATIONS ON PAGE 88 FOR STORAGE OF TRANSIENT DATA AND THESE
ARE LISTED BELOV FOR REFERENCE. NATURALLY, THE ROUTINES COULD BE EASI-
LY ALTERED TO USE OTHER TEMPORARY STORAGE LOCATIONS. '

LOCATION(S) USAGE
183 INPUT MANTISSA SIGN STORAGE
104 INPUT EXPONENT SIGN STORAGE
185 INPUT DIGIT COUNTER
106 INPUT “PERIOD*" INDICATOR
167 OUTPUT DIGIT COUNTER
110 TEMP STORAGE FOR CONTROL "OPERATOR"
156 - 183 INPUT WORKING AREA
154 - 156 INPUT STORAGE REGISTERS (FOR DECBIN CONV)
157 INPUT EXPONENT (DECIMAL FQUIVELANT)
160 - 163 OUTPUT WORKING AREA ‘
164 - 167 OUTPUT STORAGE REGISTERS (FOR BINDEC CONV)
176 - 173 TEMPORARY NUMBER STORAGE

TECHNIQUES FOR SHORTENING LENGTHY PROGRAMS

THE "FPINP,* "FPOUT," AND "FPCONT" ROUTINES DESCRIBED PREVIOUSLY
MIGHT APPEAR SOMEWHAT LENGTHY TO THE READER. INDEED THEY ARE BECAUSE
MANY OF THE SECTIONS WERE DEVELOPED IN A MANNER THAT WOULD ENABLE ONE
TO MORE EASILY FOLLOW THE LOGIC OF THE PROGRAM RATHER THAN TO SAVE MEM=-
ORY SPACE IN A COMPUTER SYSTEM. AS READERS KNOW, HOWEVER, IT IS OFTEN
DESIRABLE TO REDUCE PROGRAMS TO FORMS THAT USE LESS MEMORY STORAGE.
BUT, THERE ARE TRADE-OFFS TO CONSIDER. DESIGNING A PROGRAM TO MINIMIZE
THE AMOUNT OF MEMORY USED GENERALLY REQUIRES SIGNIFICANTLY MORE HUMAN

5 - a4l

PROGRAM DEVELOPMENT TIME, AND IT GENERALLY MAKES THE PROGRAM MORE "COM-
PLEX' OR DIFFICULT FOR SOMEONE ELSE TO UNDERSTAND, BECAUSE ONE OF THE
FUNDAMENTAL TECHNIQUES IN REDUCING A PROGRAM'S LENGTH IS5 TO CAPITALIZE
ON MAKING AS MANY “SUBROUTINES"™ OUT OF DIFFERENT SECTIONS OF THE PROGRAM
AS POSSIBLE. THERE IS ALSO ANOTHER PARAMETER THAT CAN BE AFFECTED BY
DESIGNING A PROGRAM TO USE LESS MEMORY - THE SPEED AT WHICH THE PROGRAM
IS EXECUTED 1S GENERALLY DECREASED BECAUSE A LOT OF EXTRA TIME IS SPENT
EXECUTING TIME CONSUMING "CALL®" INSTRUCTIONS. MORE DISCUSSION ON THE
CONSIDERATIONS OF A PROGRAM'S OPERATING SPEED WILL BE PRESENTED IN A
LATER CHAPTER.

PERHAPS THE FIRST RULE OF THUMB TO APPLY TOWARDS REDUCING THE AMOUNT
OF MEMORY A PROGRAM REQUIRES IS TO MAXIMIZE THE AMOUNT OF SUBROUTINING
UTILIZED PROVIDED THAT THE SUBROUTINING MEETS THE FOLLOWING SIMPLE MATH=-
EMATICAL RELATIONSHIP:

BXN > 3XNG+B+1

WHEREt "B" = THE NUMBER OF BYTES IN A REPEATED INSTRUCTION SEQUENCE
AND: “N* = THE NUMBER OF TIMES THE SEQUENCE IS USED IN THE PROGRAM

EXAMINING THE FORMULA ABOVE WILL SHOW THAT IT DOES NO GOOD IN TERMS OF
CONSERVING MEMORY SPACE TO CALL A ROUTINE THAT UTILIZES ONLY 3 BYTES OF
MEMORY. THIS IS BECAUSE A "CAL" INSTRUCTION ITSELF REQUIRES 3 BYTES OF
MEMORY! HOWEVER, ONCE AN INSTRUCTION SEQUENCE EXCEEDS 3 BYTES OF MEMORY
THE POINT AT WHICH SUBROUTINING BECOMES PROFITABLE FOR CONSERVING MEMORY
SPACE IS A FUNCTION OF "N,* THE NUMBER OF TIMES THE INSTRUCTION SEQUENCE
NEEDS TO BE REPEATED IN A PROGRAM. FOR EXAMPLE, IF “B" = 4, ONE STARTS
SAVING MEMORY SPACE BY SUBROUTINING WHEN “N" = 6., THE ABOVE FORMULA
SHOWS THAT THE VALUE OF “N" REQUIRED TO MEET THE CONDITION WHERE MEMORY
SPACE 1S SAVED BY SUBROUTINING DROPS QUITE RAPIDLY AS “B" IS INCREASED
SO THAT BY THE TIME ONE IS DEALING WITH INSTRUCTIONAL SEQUENCES WHICH
USE 8 OR MORE BYTES OF MEMORY, ONE CAN SAVE MEMORY SPACE BY FORMING A
SUBROUTINE IF THAT SAME SFQUENCE 1S USED MORE THAN ONCE IN A PROGRAM!

A SUMMARY OF THE MINIMUM VALUES OF *“B" AND "N'" THAT WILL RESULT IN MEM~-
ORY SPACE BEING SAVED BY SUBROUTINING BASED ON THE ABOVE FORMULA IS PRO-
VIDED BELOV.

B =4 AND N = 6
B =5 AND N = S
B = 6 AND N = 3
B= B8 AND N = 2

THE AMOUNT OF MEMORY SPACE THAT ONE SAVES BY APPROPRIATE SUBROUTIN-
ING CAN BE CHECKED BY REARRANGING THE ABOVE FORMULA:

BXN - (3XN+B+1) = 2Z

AND SOLVING FOR "Z," THE AMOUNT OF BYTES SAVED. FOR EXAMPLE, IF “B"
IS 8 AND "N*" IS 3, THEN *"Z" 1S3 :

B8X3 « (3X3+84+ 1) = ¢

WHEN DEVELOPING SUBROUTINES, ONE CAN OFTEN USE ONE ROUTINE TO SERVE
SEVERAL FUNCTIONS BY ALLOWING FOR MULTIPLE ENTRY POINTS TO THE SUBROUT-
INE. AN EXAMPLE OF THIS METHOD WAS USED IN THE FLOATING-POINT PACKAGE
DISCUSSED WHERE TWO ENTRY POINTS TO THE ROTATE SUBROUTINES WERE PROVI-
DED, SUCH AS THE "ROTATL" SUBROUTINE WHICH HAD A SECOND ENTRY POINT LAB-%
ELED “ROTL* WHICH ALLOVED ONE TO ENTER THE ROUTINE BY "SKIPPING" THE
"NDA" INSTRUCTION WHICH RESIDED. IN THE LOCATION LABELED “ROTATL."

5 - 42

-

ANOTHER WAY TO OFTEN SAVE SIGNIFICANT AMOUNTS OF MEMORY 1S BY CARE-
FUL ORGANIZATION OF THE PROGRAM AND ASSIGNMENT OF DATA STORAGE AREAS IN
MEMORY. FOR EXAMPLE, THE READER MAY HAVE NOTED THAT ALL THE NUMERICAL
DATA STORAGE AREAS USED IN THE FLOATING-POINT ROUTINES ALONG WITH THE
COUNTERS AND INDICATORS STORED IN MEMORY WERE LOCATED ON PAGE #8. THIS
WS DONE TO MINIMIZE THE RESETTING OF THE PAGE POINTER (REGISTER “H").
SCATTERING DATA ON DIFFERENT PAGES OF MEMORY IN A LARGE PROGRAM CAN RE-
SULT IN QUITE A BIT OF WASTED MEMORY BECAUSE REGISTER "“H" MUST BE FREQ-
UENTLY ALTERED (WHICH REQUIRES A TWO BYTE INSTRUCTION) TO CHANGE THE
MEMORY POINTER ADDRESS. CAREFUL ORGANIZATION OF DATA STORAGE CAN EVEN
BE HELPFUL IN MINIMIZING THE AMOUNT OF TIMES THAT REGISTER "L'" MUST BE
IDADED WITH A NEVW ADDRESS (REQUIRING A TWO BYTE INSTRUCTION) BY LOCAT~-
ING STORAGE AREAS IN ACCORDANCE WITH HOW THEY ARE ACCESSED IN A PRO-
GRAM SEQUENCE SO THAT AN "INL™ OR "“DCL" (ONE BYTE COMMAND) MAY BE USED
T0O ACCESS A STORAGE LOCATION RATHER THAN AN *LLI XXX* INSTRUCTION.

IN LINE WITH THE ABOVE CONSIDERATIONS IS THE SIMPLE RULE TO MAIN-
TAIN POINTERS AND COUNTERS AND OTHER FREQUENTLY USED “INDICATORS' IN CPU
REGISTERS AS MUCH AS POSSIBLE. THIS CONSIDERABLY REDUCES THE NUMBER OF
TIMES THAT THE *"H & L" REGISTERS HAVE TO BE CHANGED TO "POINT'" TO LOCA-
TIONS THAT CONTAIN SUCH INFORMATION AND THEN CHANGED BACK TO HANDLE THE
CURRENT DATA THAT 1S BEING MANIPULATED.

ANOTHER GENERAL RULE OF THUMB TO FOLLOW FOR REDUCING PROGRAM MEMORY
USAGE IS TO CAPITALIZE ON "LOOPS." A FORMULA FOR DETERMINING WHEN ONE
CAN SAVE MEMORY SPACE BY USING A “LOOP"™ (ASSUMING THE LOOP COUNTER IS
STORED IN A CPU REGISTER") IS PRESENTED HERES

BXN > B + 6

WHERE: “B*" = THE NUMBER OF BYTES FORMING THE “REPEATED'" PORTION OF
THE SEQUENCE THAT MUST BE CONSECUTIVELY REPEATED.
AND: "N* = THE NUMBER OF TIMES THE SEQUENCE MUST BE CONSECUTIVELY
REPEATED.

THUS, BY USING THE FORMULA, ONE CAN SEE THAT IF A PROGRAMMER HAS A FOUR
BYTE INSTRUCTION THAT MUST BE CONSECUTIVELY REPEATED THE PROGRAMMER CAN
SAVE MEMORY BY SETTING UP A "LOOP" IF THE SEQUENCE MUST BE CONSECUTIVELY
REPEATED THREE OR MORE TIMES. 1IF "B" IS ONLY TwO, THEN A "LOOP" CONSER~
VES MEMORY IF IT MUST BE CONSECUTIVELY PERFORMED FIVE OR MORE TIMES.
(THE ABOVE FORMULA IS DERIVED FROM THE FACT THAT IT REQUIRES SIX BYTES
TO SET UP A "COUNTER,' INCREMENT OR DECREMENT THE COUNTER EACH TIME A
*LOOP" 1S COMPLETED, AND MAKE A "CONDITIONAL'" BRANCHING TEST).

A SUBTLE CONCEPT THAT CAN SAVE MEMORY SPACE INVOLVES THE POSSIBILI~
TY OF INCLUDING A FEW CAREFULLY CHOSEN INSTRUCTIONS IN SUBROUTINES TO
INCREASE THEIR GENERAL USEFULNESS. FOR EXAMPLE, CONSIDER THE SUBROUT=-
INE ILLUSTRATED BELOW:

SAMPLE, LCH /SAVE VALUE OF "H" IN "C"
LHI XXX /SET PNTR TO "“DATA" PAGE
LAM /FETCH A BYTE OF “DATA"
LHC /RESTORE ORIG VALUE OF *“H"
NDA /SET FLAGS FOR ACC CONTENTS
RET

SUCH A SUBROUTINE MIGHT BE EXTREMELY VALUABLE IN A LARGE PROGRAM WHERE
“DATA" WAS STORED ON ONE PAGE, BUT "COUNTERS" AND "INDICATORS"™ HMAD TO
BE STORED ON ANOTHER. BEFORE CALLING THE ABOVE ROUTINE, THE PROGRAM
WOULD MAVE SET REGISTER "L" TO THE APPROPRIATE ADDRESS ON THE PAGE
WHERE "DATA" WAS TO BE OBTAINED. SUPPOSE THAT SOMETIMES THE MAIN PRO~

5 - 43

GRAM NEEDED TO SIMPLY TRANSFER DATA FROM ONE LOCATION TO ANOTHER, AND
AT OTHER TIMES IT MADE "TESTS'" ON THE DATA IT OBTAINED. THE SIMPLE IN~-
CLUSION OF THE "NDA'" INSTRUCTION IN THE ABOVE ROUTINE DOES NO HARM IN
CASES WHERE DATA IS TO BE SIMPLY TRANSFERRED, BUT IT CAN SAVE VALUABLE
MEMORY STORAGE IF THERE ARE TWO OR MORE TIMES IN WHICH THE DATA MUST BE
“TESTED" IN THE MAIN PROGRAM BY HAVING THE “NDA" IN THE SUBROUTINE!

FOR, THE “NDA" SETS UP THE FLAGS ALLOWING ONE TO IMMEDIATELY EXECUTE A
CONDITIONAL BRANCHING INSTRUCTION UPON RETURN FROM THE SUBROUTINE WHEN
DESIRED BASED ON THE “DATA" LOADED INTO THE ACCUMULATOR BY THE SUBROUT~-
INE. TO PUSH THE POINT BEING MADE ONE STEP FURTHER - ADDING ONE MORE
INSTRUCTION TO THE ABOVE SUBROUTINE - AN "INL" PLACED JUST BEFORE THE
“NDA" INSTRUCTION COULD MAKE THE ROUTINE EVEN MORE "GENERAL PURPOSE."
FOR INSTANCE, IN A TYPICAL DATA MANIPULATING PROGRAM ONE MIGHT BE SEQ-
UENTIALLY ACCESSING LOCATIONS IN THE “DATA"™ STORAGE AREA WHILE POSSI-
BLY SEARCHING FOR A CERTAIN *“CODE." AT OTHER TIMES ONE MIGHT BRANCH OFF
TO PERFORM WORK IN ANOTHER AREA OF MEMORY IN WHICH CASE ONE WOULD PRO~-
BABLY HAVE TO PERFORM AN *LLI XXX* INSTRUCTION. THUS, THE INCLUSION OF
THE " INL" COMMAND IN THE SUBROUTINE TAKES CARE OF ALL THE TIMES THAT ONE
NEEDS TO ACCESS THE NEXT LOCATION IN THE “DATA"™ AREA, YET DOES NO HARM
IF THE PROGRAM WILL BE DIRECTED TO A DIFFERENT MEMORY AREA! (NOTE, HOW~-
EVER, THAT ONE WOULD HAVE TO EXAMINE CAREFULLY, HOW OFTEN THE MAIN PRO-
GRAM MIGHT BE REQUIRED TO ACCESS THE EXACT SAME LOCATION AGAIN, THUS RE-

QUIRING A COMPENSATING *DCL"™ INSTRUCTION IN THE MAIN PORTION OF THE PRO-
GRAM!)

HOWEVER, ONE OF THE MOST POWERFUL MEMORY SAVING TECHNIQUES FOR 8008
SYSTEMS 1S BASED ON THE USE OF A CLASS OF INSTRUCTIONS THAT MANY NOVICE
PROGRAMMERS COMPLETELY OVERLOOK! THIS CLASS OF INSTRUCTIONS IS THE
"RESTART" (RST XXX) GROUP. FOR, WHILE THE MNEMONIC FOR A “RESTART" IN-
STRUCTION 1S SHOWN AS CONSISTING OF TWO PARTS, THE ACTUAL COMMAND IS AN
EFFECTIVE ONE BYTE “CALL" INSTRUCTION! WHILE THE "RST" COMMANDS WERE
INCLUDED IN THE 8008 INSTRUCTION SET TO FACILITATE IMPLEMENTING '"START~
UP" OPERATIONS IN CONJUNCTION WITH THE “INTERRUPT" FACILITY ON TYPICAL
8008 SYSTEMS, THEY MAY ALSO BE PUT TO EXTREMELY EFFECTIVE USAGE IN GEN-
ERAL PROGRAMMING APPLICATIONS. THE REASON IS EASY TO UNDERSTAND ONCE
IT HAS BEEN POINTED OUT - BEING ABLE TO "CALL"™ A SUBROUTINE WITH A ONE
BYTE INSTRUCTION INSTEAD OF A THREE BYTE INSTRUCTION CAN SAVE A LARGE

AMOUNT OF MEMORY SPACE IF A ROUTINE HAS TO BE “CALLED" FREQUENTLY IN A
PROGRAM.

THE READER SHOULD REVIEW THE MATERIAL ON PAGE 17 OF THE CHAPTER
WICH EXPLAINS THE 80068 INSTRUCTION SET IN THIS MANUAL PERTAINING TO
THE "“RESTART" INSTRUCTIONS. SINCE THERE ARE 8 "RESTART" LOCATIONS ON
PAGE 606, THAT MEANS THAT ONE CAN HAVE UP TO EIGHT DIFFERENT SUBROUTINES
IN A PROGRAM THAT CAN BE ACCESSED WITH BUT A ONE BYTE CALL! WHILE THE
"RESTART" LOCATIONS ARE SPACED BUT 8 (DECIMAL) LOCATIONS APART, ONE CAN
STILL USE THE "RESTART" LOCATIONS FOR REACHING THE DESIRED OBJECTIVE
OF SAVING MEMORY SPACE EVEN IF TME DESIRED SUBROUTINE WILL NOT FIT IN
THE 8 LOCATIONS BY SIMPLY MAVING A “JUMP" INSTRUCTION AT A RESTART LOC-
ATION THAT DIRECTS THE PROGRAM TO THE ACTUAL SUBROUTINE!

TO SEE THE IMPORTANCE OF USING "RSTY COMMANDS. IN LARGE PROGRAMS CON
SIDER THE FACT THAT IT MAY OFTEN BE NECESSARY TO CALL A PARTICULAR SUB-
ROUTINE 30 OR 4@ (DECIMAL) TIMES. USING A ONE BYTE “RESTART" INSTRUCT-
ION INSTEAD OF A THREE BYTE "CAL' COMMAND CAN THUS SAVE 60 TO 8@ (DECI-
MAL) MEMORY LOCATIONS. THAT IS ROUGHLY ONE-FOURTH OF A "PAGE" OF MEM-
ORY IN AN 8088 SYSTEM! MULTIPLY THAT BY A FACTOR OF 8 - THE NUMBER OF
*RST** LOCATIONS AVAILABLE - AND ONE CAN SEE A VERY CONSIDERABLE SAVINGS
IN MEMORY USAGE! THE PERSON WHO HAS DEVELOPED FAIRLY DECENT SIZED PRO~-
GRAMS FOR AN 8068 SYSTEM WITHOUT TAKING ADVANTAGE OF THE "RST' COMMANDS
T0 CONSERVE MEMORY 1S OFTEN AMAZED WHEN SUCH PROGRAMS ARE RE~WRITTEN TO

5 = a4

UTILIZE THE TECHNIQUE AND THME PROGRAMMER FINDS MEMORY USAGE CUT BY A
CONSIDERABLE PERCENTAGE!

AS A CHALLENGE TO THE READER WHO IS INTERESTED IN DOING A LITTLE
CREATIVE "TRIMMING" OF A PROGRAM, WHY NOT GO TO WORK ON REDUCING THE
SIZE OF THE “FPINP," "FPOUT,'" AND “FPCONT" ROUTINES PRESENTED IN THIS
CHAPTER? USING THE TECHNIQUES DESCRIBED IN THE LAST SEVERAL PAGES.,
ONE SHOULD BE ABLE TO WORK THOSE ROUTINES DOWN FROM THE ROUGHLY THREE
PAGES OF MEMORY THEY REQUIRE AS PRESENTED, TO WITHIN ABOUT TWO PAGES!

S - 48

INPUT/OUTPUT PROGRAMMING

THIS CHAPTER VILL BE CONCERNED WITH DISCUSSING PROGRAMMING TECHNI~
G@UES FOR TRANSFERRING INFORMATION TO AND FROM THE COMPUTFR AND EXTERNAL
DEVICES. EXTERNAL DEVICES ARE CONNECTED TO THE COMPUTER IN AN 8808
SYSTEM VIA PHYSICAL CONNECTIONS WHICH CARRY ELECTRONIC SIGNALS. SINCE
.IT 1S OFTEN DESIRABLE TO HAVE A NUMBER OF DIFFERENT DEVICES CONNECTED
TO A SYSTEM AT ONE TIME, A HARDWARE ARRANGEMENT. 1S GENERALLY PROVIDED
THAT ENABLES A NUMBER OF DEVICES TO BE CONNECTED AT ONE TIME, BUT ONLY
ONE SUCH DEVICE MAY ACTUALLY “COMMUNICATE™ WITH THE COMPUTER AT ANY Glv-
W INSTANT OF TIME. TO ALLOV CONTROL OF WHICH DEVICE 1S ABLE TQ0 COMMU~
NICATE VITH THE COMPUTER, AN ELECTRONIC ARRANGEMENT. 1S PROVIDED THAT
ALLOVS "“SOFTWARE" SELECTION OF INPUT AND OUTPUT “PORTS.™ AS FAR AS A
PROGRAMMER IS CONCERNED, A “PORT™ CONSISTS OF EIGHT SEPARATE ELECTRONIC
SIGNALS THAT CAN BE IN A "1™ OR “@#™ STATE. THE EIGHT SIGNALS CORRES~
POND TO THE EIGHT BIT POSITIONS AVAILABLE IN THE ACCUMULATOR OF THE CPU.
AN "INPUT" PORT ACCEPTS INFORMATION FROM AN EXTERNAL DEVICE AND PRESENTS
.IT T0O THE ACCUMULATOR OF AN 8€68. AN "OUTPUT"™ PORT TAKES INFORMATION
FROM TME ACCUMULATOR AND PASSES IT TO AN OUTPUT DEVICE. THE SELECTION
OF A PARTICULAR INPUT OR OUTPUT PORT 1S SPECIFIED BY THE PROGRAMMER
WEN UTILIZING AN 170 COMMAND. THNE READER MAY DESIRE TO REVIEW THE DIS~
CUSSION OF TME 170 INSTRUCTIONS PRESENTED ON PAGE 18 OF THME CMAPTER DE-
SCRIBING TME INSTRUCTION SET FOR THE 8088 CPU AT THIS TIME.

NOTE¢ FOR TME PURPOSES OF THE DISCUSSION. IN THIS CMAPTER,
ALL 170 OPERATIONS WILL BE ASSUMED TO TAKE PLACE BETVEEN
THE 1y0 "PORTS® AND THE ACCUMULATOR OF THE CPU. WNILE SOME
READERS MAY BE AWVARE THMAT IT IS POSSIBLE TO COMMUNICATE
WiTH A COMPUTER VIA TECMNIQUES KNOWN AS “DIRECT MEMORY AC~
CESS, WVMEREBY AN EXTERNAL DEVICE PLACES DATA DIRECTLY. INTO
AREAS IN MEMORY, OR VICE~-VERSA, SUCM CAPABILITY IS RARELY
FOUND ON 8808 BASED SYSTEMS. FURTHERMORE, SUCH TRANSFER
TECHNIQUES ARE ESSENTIALLY “MARDWARE CONTROLLED™ AND ARE
OUTSIDE THE PURELY PROGRAMMING REALM TO WHICM THIS MAN-
UAL IS DEVOTED.

THE BASIC CONCEPT BEMIND COMMUNICATING WITH A COMPUTER LIES. IN PRO-
VIDING SOME FORM OF SYSTEMATIC SYSTEM FOR ENCODING. INFORMATION FROM AN
EXTERNAL DEVICE TMAT WILL ALLOV A PROGRAM TO DECODE TME INFORMATION AND
TAKE APPROPRIATE ACTION, AND TO ALLOW A PROGRAM TO SEND CODES TO AN EX-
TERNAL DEWCE THMAT VILL DIRECT. IT TO PERFORM IN A PRESCRIBED MANNER.

SUCH A SYSTEM CAN BE CREATED ENTIRELY BY TME PROGRAMMER. INDEED.,
.IN MANY SPECIAL APPLICATIONS, SUCM AS CONTROLLING A UNIQUE PIECE OF
MACHINERY, TMAT 1S JUST THE APPROACM TAKEN. FOR EXAMPLE, SUPPOSE SOME
MANUFACTURER MAD A MACHINE THAT WAS TO BE CONTROLLED BY THE COMPUTER.
THE MACHINE COULD BE CONSTRUCTED SO TMAT WHEN. IT WAS PERFORMING A CER~
TAIN TYPE OF FUNCTION. IT WOULD CLOSE A PARTICULAR ELECTRICAL SVWITCHN.
TRERE MIGMT BE A NUMBER OF SUCH SWITCHMES ON TME MACHINE AND EACH ONE
COULD BE CONNECTED TO AN INPUT LINE, REPRESENTING ONE "BIT” OF AN INPUT
FPORT. FOR TME SAKE OF DISCUSSIONM, SUPPOSE A MACHNINE MAD EIGHT SUCHM. IN-
PUT SWITCHMES, ONE CONNECTED TO EACH POSSIBLE LINE MAKING UP AN INPUT
FORT. WMEN THE SWITCHR VAS "CLOSED™ A "1™ COMDITION VOULD BE PLACED ON
THE LINE AND WMEN. IT WAS "OPEN" THE LINE WOULD REPRESENT A "@" CONDI-
TION. FOR THE SAKE OF SIMPLICITY, IT COULD ALSO BE ASSUMED THAT ONLY
ONE SVITCM COULD BE CLOSED AT ANY B8IVEN TIME,

NOVW, ASSUME TME COMPUTER WAS TO MONITOR TME STATUS OF THE SWITCHES

6 -1

BY PERIODICALLY EXECUTING AN INPUT INSTRUCTION FOR THE INPUT PORT TO
WHICH THE SWITCHES VERE ATTACHED. TMEN, DEPENDING ON WHICH SVWITCH WAS
IN THE CLOSED CONDITION, THE COMPUTER WOULD. DIRECT. INFORMATION TO BE
OUTPUTTED ON. AN OUTPUT PORT, SAY, TO DIRECT ANOTHER PART OF THE MACHINE
TO PERFORM A SPECIFIC OPERATION. A PROGRAMMER MIGHT MAKE UP AN “INPUT™
PROGRAM. IN THE FOLLOWING MANNER.

MNEMONIC COMMENTS

INCTRL, INP X - YREAD DATA FROM PORT X INTO ACCUMULATOR
NDA 7SET FLAGS AFTER INPUT OPERATION
JTZ INCTRL 7NO SWITCHES CLOSED = KEEP LOOKING
CP1 @al ri1S. 1T SWITCH #17
JTZ START1 /sYES, DO REQUIRED ROUTINE
CPl1 @02 ~71S. 1T SVITCH #27?
JTZ START2 /YES, DO REQUIRED ROUTINE
CPl 66a 71S. IT SVITCH #37
JTZ START3 sYES, DO REQUIRED ROUTINE
CPl 016 71IS IT SVWITCH #A4?

JTZ STARTA /sYES, DO REQUIRED ROUTINE

L]
CPl1 208 71S. 1T SVITCH #87
JTZ START8 7YES, DO REQUIRED ROUTINE
JMP ERROR 71F PROGRAM EVER GETS HERE SOMETHING WRONG

THE ABOVE INPUT ROUTINE. IS QUITE SIMPLE AND LACKS A TECHNICAL CONSI~
DERATION THAT MIGHT BE NECESSARY. IN A REAL SYSTEM (HOW CAN THE ROUTINE
TELL WMETHER A READING. INDICATES A "NEW™ SWITCH CLOSURE OR A “PREVIOUS"”
CONDITION STILL PRESENT?) HOVEVER, IT DOES ILLUSTRATE THE CONCEPT OF
. INPUTTING INFORMATION AND HAVING THE COMPUTER INTERPRET THAT INFORMA~-
TION.

IN A SIMILAR MANNER TO THE INPUT ROUTINE, ONE COULD CONNECT, SAY,
THE COILS OF ELECTRONIC RELAYS TO THE OUTPUT LINES OF A SPECIFIC OUTPUT
PORT. EACH OF THE EIGHT POSSIBLE LINES CONNECTED TO AN OUTPUT PORT
COULD ACTIVATE THE ASSOCIATED RELAY VHEN A "1™ CONDITION WAS PRESENT,
BUT NOT VHEN A “@" CONDITION EXISTED. SINCE EACH LINE CORRESPONDS TO
ONE *BIT". IN THE ACCUMULATOR, ONE COULD EASILY. DEVELOP A PROGRAM TO CON-
TROL THE OPERATION OF THE RELAYS BY PLACING APPROPRIATE CODES IN THE AC-
COMULATOR OF THE CPU AND THEN EXECUTING AN *“OUT Z= INSTRUCTION WHERE "“Z%
REPRESENTED THE OUTPUT PORT WHOSE LINES WERE CONNECTED TO THE RELAYS.

IN THE ABOVE EXAMPLE INPUT PROGRAM TO MONITOR THE STATUS OF A SET OF
SVITCHES IT WAS ASSUMED THAT ONLY ONE SWITCH COULD BE CLOSED AT A GIVEN
TIME. THUS, THERE VERE ONLY NINE POSSIBLE SIGNAL CONDITIONS THAT COULD
BE RECEIVED BY THE COMPUTER -~ ANY OME OF THE EIGHT SWITCHES, EACH REPRE-
SENTED BY THE STATUS OF A PARTICULAR BIT IN THE ACCUMULATOR, COULD BE
*ON,” OR NONE OF THEM VERE ACTIVATED. THUS, THE PARTICULAR CODING TECH-
NIQUE FOR THE EXAMPLE VAS REALLY QUITE LIMITED. HAD. IT BEEN STATED THAT
/MY NUMBER OF THE SWITCHES COULD BE "ON*” AT ANY GIVEN TIME, THEN THERE
WULD BE 256 DIFFERENT CODES POSSIBLE ON THE 8 INPUT LINES AT ANY GIVEN
TIME! SUCH AN ENCODING SCHEME WOULD ALLOV QUITE A LOT MORE INFORMATION
T0 BE CONVEYED TO THE COMPUTER ON ONE INPUT PORT. ONE COULD READILY
INVISION COMING UP WITH A SYSTEM WHNEREBY AN EXTERNAL MACHINE COULD USE
THE 256 POSSIBLE STATES AVAILABLE ON ONE INPUT PORT TO PROVIDE A LOT OF
. INFORMATION TO THE COMPUTER. BY ASSIGNING DIFFERENT CODES TO REPRESENT
DIFFERENT "ARTIFACTS™ ONE COULD EASILY COME UP WITH A DEVICE THAT COULD
ESSENTIALLY ENCODE ALL THE LETTERS OF THE ALPHABET, TMNE NUMBERS @ - 9,

6 - 2

AND A LOT OF SPECIAL SYMBOLS AND STILL HAVE UNUSED STATES! WELL, AS THE
READER UNDOUBTABLY KNOWS, PEOPLE DEVELOPED SUCH ENCODING SYSTEMS QUITE
SOME TIME AGO. IN FACT, A NUMBER OF DIFFERENT “STANDARDIZED" ENCODING
SYSTEMS HAVE BEEN DEVELOPED OVER THE YEARS. ONE OF THE MOST POPULAR EN-
CODING SYSTEMS, ONE THAT 1S USED ON MANY KINDS OF MACHINES SUCH AS ELEC-
TRONIC KEYBOARDS, TYPEWRITER, NUMBERICAL CONTROL MACHINES AND IN A VAR-
. IETY OF COMMUNICATION DEVICES, 1S COMMONLY ABBREVIATED AND REFERRED TO
AS TME "ASC11I" CODE. “ASCII" IS THE ABBREVIATION FOR "AMERICAN STANDARD
CODE FOR INFORMATION INTERCHANGE.™ *“ASCI1" CODE ITSELF IS ACTUALLY DE-
SIGNED TO USE JUST 7 BITS OF INFORMATION €¢THUS ALLOWING FOR THE ENCOD-
ING OF 128 DIFFERENT "SYMBOLS™), HOWEVER, "ASCIlI" CODE IS OFTEN USED IN
DEVICES THAT USE & BITS BECAUSE THE LAST BIT OF DATA CAN BE USED TO TEST
FOR TRANSMISSION ERRORS BY SERVING AS A "PARITY" INDICATOR. MORE WILL
BE SAID ABOUT "PARITY" A LITTLE LATER,

WHILE THE ENTIRE "ASCII"™ CODE 1S BASED ON THE DIFFERENT PATTERNS
THAT WILL FIT IN SEVEN BITS OF A REGISTER, THUS YIELDING 128 (DECIMAL)
DIFFERENT "“CODES,™ A COMMONLY USED "SUBSET" OF THE ASCII1 CODE IS OFTEN
UTILIZED. TME “SUBSET" DOES NOT USE EVERY POSSIBLE PATTERN BUT ONLY
THOSE PATTERNS DESIRED. THE “SUBSET" REFERRED TO IS FREQUENTLY USED IN
“ASCIlI CODED KEYBOARDS, TELETYPE MACHINES, AND OTHER DEVICES. IN THE
LISTING SHOWN BELOY, THE 8°'TH BIT NOT USED BY THE “ASCIlI* CODE WILL BE
SHOWN AS A "1™ CONDITION AND TME CODES WILL BE PRESENTED AS THEY COULD
APPEAR IN THE REGISTERS OF AN 8088 CPU.

CHARACTERS BINARY OCTAL CHARACTERS BINARY OCTAL

SYMBOLIZED CODE REP SYMBOLIZED CODE REP
A 11 000 @81 . 301 ! 18 100 @01 241
B 11 060 @10 382 w 1e 160 @816 242
c 11 600 011 303 , ’ 18 106 0211 243
D 11 060 100 384 L 10 188 10680 244
E 11 68066 181 385 x 190 106 1061 245
F 11 0006 110 386 & 16 100 1106 246
G 11 000 111 387 ' 16 162 111 247
H 11 0061 808 316 4 16 101 800 250
1 11 601 @061 311) 18 101 001 251l
J 11 001 010 312 * 19 181 @10 252
K 11 0081 211 313 + 19 181 811 253
L 11 001 14e 31a ’ 10 101 100 254
™ 11 88} 101 315 - 18 181 101 255
N 11 @8t 1180 316 . 16 161 110 256
0 11 801 111 317 ’ 16 161 111 257
P 11 610 800 320 0 16 110 000 268
Q 11 610 691 321 1 16 110 001l 261
R 11 210 010 322 2 10 110 o010 262
S 11 816 @11 323 3 16 118 9211 263
T 11 @10 100 324 A 18 110 100 264
U 11-810 101 325 5 16 110 161 265
v 11 610 110 326 6 16 110 110 266
| J 11 6106 111 327 7 19 110 111 267
X 11 @11 @90 330 8 10 111 600 278
Y 11 211 @01 331] 10 111 @01 271
z 11 011 @610 332 : 19 111 @1e@ 272
€ 11 811 811 333 3 10 111 811 273
\ 11 811 100 334 < 16 111 1028 274
] 11 811 161 335 = 19 111 101 275
* 11 611 11e@ 336 > 10 111 110 276
- 11 811 111 337 ? 16 111 111 277
] 11 000 9068 380

SPACE 11 160 000 240

THE SUBSET OF THE “ASCii* CODE JUST PRESENTED HAS SEVERAL NICE FEA-
TURES WORTH NOTENG. FOR ENSTANCE, TME 26 LETTERS OF THE ALPMABET ARE
ALL ENCODED €N A SEQUENCE STARTING WEITH 381 (OCTAL) AND ENDING WITHM 332
WCTAL). THUS ONE CAN EASELY CHMEGK DATA, FOR EXAMPLE, BEING ENPUTTED
BY AN OPERATOR TO SEE iF THE CODE BEING RECEIVED REPRESENTS A LETTER OF
THE ALPNABET BY PERFORMEING A "RANGE TEST™ AS SLLUSTRATED BELOVW.

MNEMONIC COMMENTS
CKALFA, INP X FAGCEPT A CHARACTER FROM INPUT DEVICE
cPI 361 ¥SEE 1F INPUT IN RANGE FROM 381
JTS CKALFA rTO0. 332, 4F IT 1S NOT, 1GNORE THE
eP4 333 ¥INPUT, &F IT 1S WITHIN THE RANGE
JFS CKALFA FTHEM NMAVE AN ALPHABETICAL CHARACTER
4SALFA, ... FTO PROCESS AS DESIRED

THE READER MAY NOTE TMAT THME NUMBERS @ THMROUGHM 9 ARE ALSO GROUPED
TOGETMER AN THE SEAUENCE FROM 268 TO 27} AND THE PROGRAMMER CAN THUS
READILY. PERFORM A SEMILAR RANGE TEST TO ONLY ACCEPT NUMBERS.

THERE ARE SEVERAL OTHER “CHARAGCTERS™ TMAT ARE USED BY MANY MACMINES
THAT OPERATE WiITH ASCil CODE THAT WiLL BE MENTIONED FOR REFERENCE. TME
MONCTEONS “CARRIAGE-RETURN™ ¢215), "LENE~-FEED" ¢212), "BELL"™ (207) AND
"ROUBOUT™ €377), ARE MOST OFTEN FOUND ON TELETYPE MACNINES WHICH MAKE
VERY NICE $70 DEVICES FOR A COMPUTER.,

. WHEN AN INPUT INSTRUCTION 1S EXECUTED, TME COMPUTER WILL RECEIVE
FIGNT BITS OF INFORMATION SIMULTAINEOUSLY. - CORRESPONDING TO THE EIGHT
POSSIBLE LINES OF AN. INPUT PORT WNiCH ARE FED INTO TME ACCUMULATOR. 1IN
OTHER WORDS, THE DATA {S ACCEPTED. §N PARALLEL. LIKEWISE, WHNEN AN OUT-
PUT INSTRUCTION. iS EXBECUTED, TME COMPUTER WILL SEND ALL EIGHT BITS OF
THE ACCUMULATOR OUT TO TME APPROPRIATE OUTPUT PORT SIMULTAINEOUSLY.
MOVWEVER, SOME DEVICES WHICH ONE DESIRES TO OPERATE WITH TNE COMPUTER MAY
NOT BE "PARALLEL" DEVICES. TMEY MAY INSTEAD BE “SERIALLY" OPERATED
WICH MEANS THEY DO NOT TRANSMIT.INFORMATION OVER A GROUP OF WIRES, BUT
PMATHER SEMD THE INFORMATION “ONE BIT AT A TIME"™ OVER A SINGLE VWIRE,

SUCH DEVICES MAY, MOVEVER, STILL BE CONNECTED TO AN 8868 SYSTEM SINCE
ONE MAY SIMPLY "DISCARD"™ TME UDNUSED BITS CORRESPONDING TO UNUSED LINES
OF AN 170 PORT. N SUCH CASES, THE PROGRAMMER MUST KNOW WNICH LINE OF
A PORT 1S TRE “ACTIVE™ LINE AND TAKE CARE TO ENSURE TMAT THE PROGRAM
MANZIPULATES BITS OF. INFORMATION SO THAT TMEY APPEAR ON THAT LINE AT TME
FROPER TIME. WHETMER A PARTICUKAR DEVICE CONNECTED TO A COMPUTER IS
“SERIAL" OR "PARALLEL" IN OPERATION ¢AS FAR AS TME COMPUTER IS CONCERN~-
ED) §3 OFTEN A FUNCTEON OF THE TYPE OF NARDWARE INTERFACE PROVIDED FOR
THE EXTERNAL DEVICE. FOR INSTANCE, TELETYPE MACHMINES ARE ESSENTIALLY
“SER4AL™ DEVICES SINCE THEY ACT ON. INFORMATION ONE BiT AT A TIME. HNOV-
EVER, WHEN ACTUALLY CONNECTED TO A COMPUTER ONE CAN ELECT TO MAVE A
"HARDVARE"” INTERFACE THAT CONVERTS. {NFORMATION RECEIVED FROM THE MACHINE
. 3N SERIAR FORM AND PLACES (T IN A "PARALLEL" REGISTER BEFORE PASSING TNME
PATA TO THE COMPUTER., AND GOENG. IN THE OTMER DIiRECTION, MAVE THE COMPUT-
R SEND. DATA N PARALLEL FORM TO THE INTERFACE WHICM MILL THEN PASS IT
Of TG THE MACHINE IN BIT-SERIAL FASHION. SUCHM AN INTERFACE CAN SAVE

A LOT OF COMPUTER TIME BECAUSE THE EXTERNAL NARDWARE INTERFACE IS ABLE
T0 MANDLE THE TIME CONSUMING SERIAL TO PARALLEL AND PARALLEL TO SER{IAL
TASKS. HNMOVEVER, SUCHN MARDWARE COSTS MONEY, AND. IN MANY APPLICATIONS ONE
MAY DESIRE TO MAVE THE COMPUTER D8 THE SERIAL T0 PARALLEL CONVERSION AND
VICE-VERSA. THIS CAN BE ACCOMPLISMED QUITE READILY WITH A SUITABLE PRO-
@RAM THAT ACTUALLY UTILIZES TME COMPUTER'S OWN TIMING TO DETERMINE WNEN

6= 4

T0 "LOOK™ OR "SAMPLE” FOR THE NEXT BIT OF INFORMATION FROM TME SERIAL
DEVICE OR WHEN TGO SEND THE NEXT BIT OF INFORMATION TO TME SERIAL DEVICE,
WIILE TME DETAILS OF CAREFULLY CONTROLLING TME TIMING FOR SUCH A PROGRAM
WLL BE DISCUSSED. IN THE NEXT CMAPTER, TME CONCEPT OF HAVING TME COM-
PUTER PERFORM PARALLEL TO SERIAL OR SERIAL TO PARALLEL CONVERSION VILL
BE DEMONSTRATED WITH SEVERAL ROUTINES AT TMIS POINT. TME TECHNIQUE CON-
SIST OF USING ACCUMULATOR "ROTATE™ INSTRUCTIONS TO SMIFT TME SERIAL DATA
IN OR OUT OF THE COMPUTER.

IN THE PARALLEL TO SERIAL ROUTINE SMOWN NEXT, IT WILL BE ASSUMED
TMAT A DEVICE THAT ACCEPTS SERIAL DATA 1S CONNECTED TO THME LEAST SIGNI-
FICANT BIT LINE OF OUTPUT PORT "X" AND THAT THE REMAINING LINES AVAIL-
ABLE ON THME PORT ARE UNUSED. TME DEVICE VILL BE ASSUMED TO BE A UNIT
THAT OPERATES WITH "ASCII™ CODE AND BEFORE THE ILLUSTRATED ROUTINE IS
"CALLED” THAT THE CODE FOR A CHARACTER HAS BEEN PLACED. IN THE ACCUMULA-
TOR.

MNEMONIC COMMENTS

PARSER, LCI 010 YSET UP REGISTER "C"™ AS A BIT COUNTER
NEXOUT, OUT X 7OUTPUT DATA IN ACC TO PORT X, ONLY THE
RRC 7DATA IN LSB USED, NOW ROTATE ACC RIGHT
DCC 71GNORE CARRY TMEN DECREMENT BIT COUNTER
JFZ NEXBIT 7DO NEXT BIT IF CNTR NOT ZERO
RET 7EXIT RTN WMEN ALL 8 BITS TRANSMITTED

IN THE FOLLOWING SERIAL TO PARALLEL ROUTINE IT 1S ASSUMED TMAT DATA
IS ARRIVING AT THE MOST SIGNIFICANT BIT POSITION OF AN INPUT PORT AND
THAT IT IS TO BE ASSEMBLED. INTO AN EIGHT BIT FORMAT.

"MNEMONIC COMMENTS
SERPAR, XRA 7CLEAR ACCUMULATOR AND ALSO CLEAR
. LBA ' 7REGISTER "B"™ AT START OF ROUTINE
LCI 618 = /SET A BIT COUNTER
NEXTIN, INP X /BRING. IN DATA FROM INPUT PORT X
NDI 200 * JSINCE ONLY MSB HAS. IMPORTANT DATA, MASK
RAL 7OFF OTMER BITS & CLR CARRY, NOW ROTATE
ADB JLEFT TO SAVE NEV BiIT, TNEN ADD IN ANY
RAR /PREVIOUS BITS FROM “B™ AND ROTATE RIGKT
LBA" YTO ADD ON LATEST BiT, STORE IN "B"
DCC 7DECREMENT BIT COUNTER
JFZ NEXTIN /1F NOT FINISHMED, GET NEXT BiIT
RET 7EXIT RTN VMEN 8 BITS RECEIVED & STORED

ANOTHER POPULAR “STANDARDIZED"™ CODE FOR OPERATING 170 DEVICES IS
MIOWN AS “BAUDOT™ CODE. BAUDOT CODE IS A "S5 LEVEL™ CODE IN THAT IT RE-
QUIRES FIVE BITS TO SPECIFY A PARTICULAR CHNARACTER. THUS, THNERE ARE
THEORETICALLY 32 DIFFERENT PATTERNS THAT CAN BE REPRESENTED WMEN USING
BPAUDOT CODE. NOV, BAUDOT CODE KAS LONG BEEN USED IN A VARIETY OF TELE-
- TYPES AND OTHER COMMUNICATION DEVICES AND TME CODE. IS OF INTEREST TO
MANY COMPUTER OWNERS BECAUSE OLDER MODEL TELETYPE MACMINES, PAPER TAPE
PUNCHES AND PAPER TAPE RFADERS CAN OFTEN BE OBTAINED FROM SECOND NAND
SOURCES AT QUITE REASONABLE PRICES, AND USED AS AN 170 DEVICE FOR A COM~
PUTER. WMILE BAUDOT CODE CAN ONLY REPRESENT 32 DIFFERENT BIT PATTERNS,

6=95

TMESE MACHMINES CAN PRINT ALL TME LETTERS OF THE ALPHABET, TME NUMBERS
@ THROUGH 9, AND A VARIETY OF PUNCTUATION SYMBOLS! THAT IS A LOT MORE
THAN 32 DIFFERENT CHARACTERS! MOVW. IS IT DONE?

WELL, THE DESIGNERS OF TMOSE MACHINES USED A LITTLE. INGENUITY TO
INABLE TME MACMINE TO HANDLE ALMOST DOUBLE THE NUMBER OF CHARACTERS
THAT COULD BE REPRESENTED BY A FIVE BIT CODE BY USING SEVERAL OF TME
CODES TQ "SHIFT" THE MACHINE BETWEEN TWO MODES, SO TMAT IN ONE MODE IT
WOULD INTERPRET THE CODES TO MEAN ONE SET OF CHMARACTERS AND IN THE OTMER
MODE IT VOULD INTERPRET THNE CODES TO REPRESENT A DIFFERENT SET OF CHAR-
ACTERS. IN ONE MODE, TERMED TME “LETTERS” MODE, ALL TNE LETTERS OF THE
ALPHABET MAY BE PRINTED. IN THE "FIGURES™ MODE, NUMBERS AND PUNCTUAT=-
. I0N ARE PRINTED. THE “BAUDOT"” CODE. IS PRESENTED BELOVW.

CHARACTERS 5 LEVEL CODE OCTAL
LC UC, BIT POSITION CODES

Vo3
031

gleé
a1l

001

o185
032
24
206
213
01T
p2e
v34
vla
B30
26
@27
12
bos
b20
a7
a3e
823
83%
w25
p21

a4
sl1e
a02
1%
633
237

NS X E- T NI UOCZXERIrXLEQAMENUOUOTD
zm‘smtoq<pE:>~cDOb o w A -attg-@:u-'da

SPACE
CARs RETe
LINE FEED

NULL

FI1GURES

LETTERS

o N RN RDNE o o v o e D e D OO -S
e L R L R R e N ol T

o N e R N DO e QE ot b GO E oot o e RO =S
- N E O = ==~ SRS =S - -

IN THE BAUDOT TABLE SHOWN ABOVE THE OCTAL CODES COLUMN WAS SHOWN
ASSUMING TMAT THE CODES WERE STORED. IN THE LEAST SIGNIFICANT BIT POSI-
TIONS OF AN 80068 RESISTER WITH THE THREE MOST SIGNIFICANT BITS SET TO #.
THE READER CAN NOV SEE TMAT 26 OF THE POSSIBLE 32 CODES CAN REPRESENT
TWO DIFFERENT CHARACTERS DEPENDING ON WHICH MODE THE MACMINE IS IN. THE
FUNCTIONS “SPACE," "CARRIAGE-RETURN,"” “LINE-FEED,"” AND “NULL"™ MEAN TNE
SAME REGARDLESS OF WHICHM MODE THE MACHINE IS IN, AND TWO CODES "FIGURES™
AND “LETTERS” ARE USED TO SWITCH TNE MODE OF THE MACMINE. VWNILE EVERY-
THING MAY SEEM FINE AT THIS POINT, IT IS IMPORTANT TO DISCUSS HANDLING

6= 6

THE CODE AS PART OF AN 1/0 ROUTINE BECAUSE THERE IS A SUBTLE FACTOR THAT
CAN BE OVER~LOOKED BY SOME BEGINNING PROGRAMMERS!

IN ACTUAL OPERATION, A BAUDOT TELETYPE OPERATES IN THE “MODE" THAT
IT WAS LAST PLACED IN BY A "FIGURES"™ OR “LETTERS" KEY AND REMAINS IN
THAT MODE UNTIL THE OPPOSITE MODE CODE 1S RECEIVED. THUS, A MECHANICAL
ARRANGEMENT ACTUALLY SERVES TO “REMEMBER" A “BIT" OF INFORMATION. THE
‘FACT THAT AN EXTERNAL MECHANICAL LINKAGE 1S USED TO HOLD A “BIT" OF IN-
FORMATION MUST BE TAKEN IN ACCOUNT IF A COMPUTER PROGRAM IS TO PROCESS
THE CODE VWITH PRACTICAL RESULTS!

FOR INSTANCE, 1F ONE HAD AN INPUT ROUTINE THAT SIMPLY LOOKED FOR A
FIVE BIT PATTERN FROM A BAUDOT DEVICE ONE COULD GET THAT PATTERN IN MANY
INSTANCES FROM TWO POSSIBLE CONDITIONS OF THE TELETYPE MACHINE. FOR IN-
STANCE WHEN THE OPERATOR TYPED AN "A" OR AN "~-" MARK. IF THE PROGRAM
WAS DESIGNED TO PERFORM A CERTAIN FUNCTION ON RECEIPT OF THE LETTER "A"
IT WOULD ALSO PERFORM IT IF THE PUNCTUATION *=-" WAS RECEIVED! TO AVOID
THAT HAPPENING, ONE MIGHT INFORM THE HUMAN OPERATOR TO ALWAYS ENTER IN-
FORMATION DURING THAT PART OF THE PROGRAM WITH MACHINE IN THE "LETTERS"
MODE, BUT THAT IS NOT THE SAFEST WAY IN WHICH TO DESIGN A PROGRAM.

INSTEAD, ONE WOQULD BE BETTER OFF TO ADD A BIT TO THE BAUDOT CODE
WHEN IT WAS MANIPULATED IN THE COMPUTER THAT WOULD SERVE TO DIFFERENT~
IAT BETWEEN "LETTERS™ AND "FIGURES." FOR INSTANCE, THE CODE 00011
COULD BE USED TO INDICATE THE LETTER "A" AND . 100811 TO INDICATE THE
PUNCTUATION *“-* MARK. IN ORDER TO INSTITUTE THIS METHOD, ONE WOULD
HAVE TO HAVE A PROGRAM THAT KEPT TRACK OF WHICH MODE THE TELETYPE MACH-
INE WVAS OPERATING IN WHENEVER IT WAS RECEIVING DATA FROM THE MACHINE,

BY “REMEMBERING® THE LAST “LETTERS" OR "FIGURES" CODE RECEIVED. FURTH=-
FRMORE, IN ORDER TO ENSURE THAT THE MODE WAS PROPERLY RECEIVED (SUCH AS
WHEN THE PROGRAM WAS FIRST STARTED OR POWER TURNED ON THE TELETYPE MACH-
INE), IT WOULD BE WISE TO HAVE THE COMPUTER OUTPUT A COMMAND THAT WOULD
PLACE THE MACHINE IN A KNOWN STATE SUCH AS WOULD BE ACCOMPLISHED BY OUT-
PUTTING A “LETTERS™ OR "FIGURESY CODE AT THE START OF SUCH OPERATIONS.
THEN, FOR STORAGE AND MANIPULATION IN THE COMPUTER, THE INPUT ROUTINE
COULD SET A SIXTH BIT TO A *“1*" CONDITION WHENEVER A CODE WAS RECEIVED
WHILE THE MACHINE VAS IN, SAY, THE “FIGURES"™ MODE, AND LEAVE THE SIXTH
BIT AS A "@" VHEN CODES WERE RECEIVED IN THE "LETTERS" MODE. THE SIX
BIT CODES COULD THEN BE MANIPULATED AND STORED BY THE PROGRAM IN MUCH
THE SAME MANNER AS ONE MIGHT PROCESS “ASCII"™ CODES WITH THE ABILITY TO
IMMEDIATELY RECOGNIZE THE CLOSE TO 6@ DIFFERENT CHARACTERS. WHEN IT WAS
DESIRED TO OUTPUT INFORMATION, THE SIXTH BIT WOULD BE USED TO INDICATE
WHETHER IT WAS NECESSARY TO FIRST OUTPUT A "FIGURES" OR "LETTERS" CODE
T0 SET THE MACHINE IN THE PROPER MODE. (1T WOULD NOT BE NECESSARY TO
OUTPUT A “FIGURES"™ OR “LETTERS™ MODE COMMAND BEFORE EVERY CHARACTER WAS
SENT BECAUSE ONE COULD USE AN ALGORITHM THAT WOULD ONLY SEND A “MODE"
COMMAND WHEN THE *"SIXTH BIT" WAS NOTED TO HAVE CHANGED FROM THAT PRESENT
WHEN THE PREVIOUS CHARACTER WAS TRANSMITTED).

TWO SAMPLE ROUTINES FOR PERFORMING SUCH A FUNCTION, ONE FOR INPUT-
TING DATA FROM A BAUDOT MACHINE, AND ONE FOR OUTPUTTING DATA TO SUCH A
MACHINE, WILL BE ILLUSTRATED BELOW.

MNEMONIC COMMENTS

BAUDIN, LAY 837 /LOAD "LETTERS" CODE INTO ACCUMULATOR
CAL OUTPUT /CALL ROUTINE TO SEND BAUDOT CHAR
CAL LETCOD Z/INITIALIZE REG "B TO "LETTERS"™

INBAUD, CAL INPUT /NOVW ACCEPT BAUDOT CHARS FM MACHINE

6=7

MM ENONIC Co COMMENTS

L2 X 2 L o L 1 2 T X ¥ X 2 J D D D WGP OP G AN av Eb dv WD WD

CPt 833 /SEE IF "FIGUR!!S" CoDE
CTZ Fl1GCOD /G0 SET UP “i™ AS SIXTH POSITION BIT
CP1 837 /SEE. 1¥ “LETTERS"™ CODE
CTZ LEYCOD /G0 SET UP “@" AS SIXTH POSITION BIT
: ADB /ADD IN STATUS OF SIXTH BIT POSITION
STORBD, CAL MANIP /USER SUBRTN TO PROCESS DATA
JMP INBAUD '/GET NEXT CHAR IN SEQUENCE IF APPLICABLE

FI6COD, LBI 84@ . /SET SIXTH BIT. IN "B = |
RET " /RETURN TO MAIN ROUTINE
LETCOD, LBI 888 ~ /SET SIXTH BIT IN “B" = @

RET /RETURN TO MAIN ROUTINE

_THE READER SHOULD NOTE THAT THERE ARE ACTUALLY TWO ENTRY POINTS TO
THE ROUTINE JUST PRESENTED. THE SUBROUTINE “BAUDIN" SHOULD BE CALLED
T0 INITIALIZE THE CONDITION OF THE BAUDOT MACHINE WHENEVER THE ' PROGRAM
1S FIRST STARTED OR AT OTHER TIMES WHEN THE "MODE™ OF THE MACHINE 1S NOT
CERTAIN. ONCE THE MACHINE AND ROUTINE HAS BEEN "INITIALIZED" THEN THE
PROGRAM. MAY BE CALLED AT "INBAUD™ AS LONG AS SOME OTHER ROUTINE DOES NOT
INTERFERE WITH THE STATUS OF REGISTER "B.™* THE READER WHO IS INTERESTED
IN “LOGIC” MIGHT NOTE THAT REGISTER “B* IN THE ABOVE PROGRAM ACTS AS A
“FLEP~-FLOP™ TO REMEMBER THE “MODE"™ IN WHICH THE TELETYPE 1S OPERATING.

THE ROUTINE SHOWN NEXT ALSO HAS TWO ENTRY POINTS. THE FIRST TERMED
"BAUDOT*" IS USED WHEN THE FIRST CHARACTER OF A STRING OF CHARACTERS IS
TO BE OUTPUTTED IN ORDER TO “INITIALIZE" THE BAUDOT MACHINE AND SET UP
REGISTER "C.” THE ENTRY POINT "OTBAUD" MAY THEN BE USED UNTIL- THE
MODE” MEMORY REGISTER ¢"C™) 1S INTERFERED WITH BY ANY OTHER EXTERNAL
ROUTINE. NOTE TOO, THAT-THE ROUTINE BELOVW EXPECTS THE CHARACTER TO BE
OUTPUTTED T0 BE RESIDING. IN REGISTER "B™ WHEN THE SUBROUTINE 1S CALLED!

 MNEMONIC ' COMMENTS

" BAUDOT, LAI 037 /LOAD "LETTERS"” CODE INTO ACCUMULATOR
CAL OUTPUT /CALL ROUTINE TO SEND BAUDOT CHARACTER
LCI oee /SET INDICATOR FOR "LETTERS™. IN "C"
OTBAUD, LAB " /MOVE CHAR FM “B™ TO ACCUMULATOR
: NDiI 040 /SEE IF SIXTH BIT = 1, IF YES = “FIGURES"
JTZ LTCHAR /CHARACTER, IF NOT = “LETTERS" CHARACTER
NDC /1F “ri@” SEE IF LAST OUT ALSO "FIE"
JTZ LASLET /3iF @ HERE THEN LAST WAS A "LETTERS"™
O0UTCOD, LAB /PUT PRESENT CHARACTER IN ACCUMULATOR
' ‘CAL OUTPUT /SEND THE BAUDOT CHARACTER
. RET /RETURN TO CALLING ROUTINE
LASLET, LAlI £33 /SINCE LAST WAS “LTR" PUT "FIG“ CODE
LASFri@, CAL OUTPUT /SEND CODE
LCB /SAVE LATEST N REG "C" FOR COMPARISON
_ . JMP OUTCOD /SEND CURRENT CHARACTER
- LTCHAR, LA 840 /7SET MASK & _SEE IF LAST WAS “LETTERS"™
: NDC /BY COMPARISON OF SIXTH BIT POSITION
JTZ OUTCOD /1iF 6 NERE, LAST WAS ALSO "LETTERS™
LAl 837 . /3F WOT, SEMD "LETTERS™ CODE FIRST

JMP LASFi€ /BY USING ABOVE RTN TO SEND “"LETTERS™ CODE
IT 1S OFTEN DESIRABLE T0 HAVE 1/0 ROUTINES TNAT WILL CONVERT BETVEEN

I
i

VEG"G

ONE TYPE OF 1/0 CODE AND ANOTHER, SUCH AS BETWEEN "ASCI1" AND “BAUDOT.”
THIS MAY BE DESIRED FOR A NUMBER OF REASONS - FOR INSTANCE BECAUSE ONE
HAS ONE TYPE OF INPUT DEVICE USING ONE CODE AND A DIFFERENT OUTPUT DE-
VICE USING ANOTHER CODE. OR, ONE MIGHT DESIRE TO USE A PARTICULAR PRO-
GRAM THAT WAS VRITTEN TO USE ONE KIND OF CODE, WITH A MACHINE THAT USED
A DIFFERENT KIND OF CODE, WITHOUT HAVING TO MODIFY A LOT OF LOCATIONS

IN THE ORIGINAL PROGRAM THAT MIGHT HAVE BEEN TESTING FOR SPECIFIC 1/0
CODES FROM AN EXTERNAL DEVICE. IN SUCH CASES, THE COMPUTER'S CAPABILITY
TO PERFORM CONVERSION FUNCTIONS IS READILY CAPITALIZED UPON BY CONSTRUC-
TING A "LOOKUP" TABLE AND USING A SUITABLE PROGRAM TO CONVERT FROM ONE
CODE TO ANOTHER.

FOR EXAMPLE, SUPPOSE IT WAS DESIRED TO USE A "BAUDOT" MACHINE WITH
A PROGRAM THAT WAS DEVELOPED ORIGINALLY TO OPERATE WITH A MACHINE THAT
USED “ASCII™ CODE. ONE COULD PROCEED TO FIRST CONSTRUCT A "LOOKUP"
TABLE SIMILAR IN FORMAT TO THAT SHOWN HERE:

ADDRESS CONTENTS COMMENTS
10 900 301 : "AY (ASCID)

18 6861 203 A" (BAUDOT)

16 @82 382 “B*" (ASCII)

18 @63 231 “B* (BAUDOT)

.

16 0876 240 “SPACE" (ASCII)
186 877 004 “SPACE™ (BAUDOT)
190 1606 241 i (ASCII)

18 1061} 215 i (BAUDOT)

. .) . . .

16 174 277 " (ASCID)

18 175 aT1 "2 (BAUDOT)

19 176 380 e (ASCIID)

18 177 208 SUBSTITUTE “NULL" (BAUDOT)

IN CONSTRUCTING THE TABLE, ONE COULD ELECT TO LEAVE OUT OR "IGNORE"
CHARACTERS THAT WERE NOT REPRESENTED BY BOTH CODES, OR TO SUBSTITUTE A
“SUBSTITUOTE" CHARACTER WHEN ONE CODE DOES NOT HAVE AN BQUIVALENT CHAR-
ACTER. EITHER METHOD REQUIRES CONSIDERATION WHEN THE SEARCH ROUTINE IS
DEVELOPED. THE FORMER METHOD LEAVES THE POSSIBILITY THAT A HUMAN OPERA-
TOR MIGHT TYPE IN A CHARACTER THAT DID NOT EXIST IN THE TABLE AND SO THE
PROGRAMMER WOULD HAVE TO BE CAREFUL TO “LIMIT" THE TABLE SEARCH ROUTINE.
NOTE THAT IF EVERY POSSIBLE ENTRY EXIST IN THE TABLE, THEN THE TABLE
SEARCH ROUTINE WILL BE "SELF LIMITING" IN THAT A MATCH WILL ALWAYS BE
FOUND. ON THE OTHER HAND, THE LATTER CHOICE OF USING A SUBSTITUTE CHAR-
ACTER REQUIRES THAT THE TABLE BE ORGANIZED SO THAT THE "PREFERRED” CHAR~
ACTER FOR CASES OF MULTIPLE SUBSTITUTION VILL BE THE ONE FOUND "FIRST"
BY THE TABLE LOOKUP ROUTINE. FOR INSTANCE, THERE ARE SEVERAL CHARACTERS
- BESIDES THE "@" MARK, SUCH AS ™1" AND *(*" WHICH COULD BE INCLUDED IN THE

~ ABOVE TABLE WHICH ARE REPRESENTED BY ASCI1 CODES BUT NOT BAUDOT CODES.

IF ONE DECIDED TO. INCLUDE THEM. IN THE TABLE, BUT HAVE “NULL" CHARACTERS
AS THEIR CONVERSION FRUIVALENT, ONE CAN SEE THAT A PROBLEM ARISES WHEN

ONE USES THE SAME TABLE TO CONVERT FROM BAUDOT TO ASCII AS NOW THERE

6 =9

ARE SEVERAL PLACES IN THE TABLE THAT HAVE THE “NULL'" CODE. AS VILL BE
CLEAR SHORTLY, THE ROUTINE THAT CONVERTS FROM BAUDOT TO ASCIl, WILL AL~
WAYS REPRESENT A "NULL" CHARACTER. IN BAUDOT AS A "e" SYMBOL IN ASCIl BE-
CAUSE THE BAUDOT ROUTINE “SEARCHES® THE TABLE FROM HIGHEST ADDRESS TO
LOWEST AND WILL FIND THE “NULL" TO *“@*" ENTRY FIRST. NATURALLY, THE TAB-
LE COULD BE RE-ORGANIZED SO THAT SOME OTHER “NULL®' CONVERSION ENTRY WVAS
LOCATED FIRST. OR, A DIFFERENT TYPE OF LOOKUP ROUTINE THAN THE ONE TO
BE PRESENTED CAN BE DEVELOPED. THESE FACTORS ARE SIMPLY BEING POINTED
OUT TO INCREASE THE READER'S AWARENESS AS TO THE TYPES OF FACTORS THAT
MUST BE CONSIDERED WHEN PERFORMING SUCH OPERATIONS.

A ROUTINE THAT WILL USE THE "LOOKUP" TABLE TO CONVERT "“ASCII" CHAR~
ACTERS TO "BAUDOT*" IS ILLUSTRATED NEXT. THIS PROGRAM, AND THE “BAUDOT"™
ROUTINE DISCUSSED EARLIER COULD BE USED TO OUTPUT CHARACTERS FROM A
PROGRAM THAT WAS ACTUALLY DOING INTERNAL PROCESSING WITH ASCII CODES.

MNEMONIC , COMMENTS
ASBAUD, LHI 0610 /SET PAGE ADDR PNTR TO LOC OF TABLE
LLI @00 /SET LOW ADDR PNTR TO "TOP" OF TABLE
FASC11, CPM /COMPARE (ASC11) CODE IN ACC TO CONTENTS
JTZ FNDBDO /OF TABLE, IF MATCH, DO CONVERS1ON
INL /0THERWISE ADVANCE LOW ADDR POINTER
- INL /TO NEXT "ASCII" CODE LOCATION IN TABLE
: JMP FASCII /AND KEEP LOOKING FOR A MATCH
FNDBDO, INL /WHEN HAVE ASCII MATCH, ADV PNTR 1 LOC
LAM /AND FETCH BAUDOT EQUIVALENT INTO ACC
RET /EXIT LOOKUP ROUTINE

THE ABOVE ROUTINE ASSUMES THAT THE CODE (IN ASCII) FOR A CHARACTER
THAT EXISTS IN THE TABLE IS IN THE ACCUMULATOR WHEN THE ROUTINE IS ENT-
FRED. NOTE THAT THE ROUTINE DOES NOT TEST FOR THE "END" OF THE TABLE
BECAUSE OF THAT ASSUMPTION. 1F FOR ANY REASON IT MIGHT BE POSSIBLE FOR
A CODE TO BE IN THE ACCUMULATOR THAT WAS NOT IN THE TABLE, THEN IT WOULD
BE NECESSARY TO ADD AN “END OF TABLE"” TEST EACH TIME THE TABLE POINTER
WAS ADVANCED AND TO TAKE APPROPRIATE ACTION IF "NO MATCH" WAS FOUND IN
THE TABLE.

THE NEXT ROUTINE DOES ESSENTIALLY THE REVERSE PROCESS, USING THE
SAME TABLE, TO CONVERT BAUDOT CODES TO ASCII CODES. IT COULD BE USED
ALONG WITH THE PREVIOUSLY DESCRIBED "BAUDIN" ROUTINE TO ACCEPT CHARAC-
TERS FROM A BAUDOT MACHINE AND CONVERT THEM FOR USE IN A PROGRAM THAT
UTILIZED ASCII CODES. AS IN THE ABOVE ROUTINE, THE PROGRAM ASSUMES
THAT A VALID BAUDOT CODE 1S IN THE ACCUMULATOR WHEN THE ROUTINE IS CAL-
LED. NOTE THAT THE ROUTINE STARTS SEARCHING THE TABLE IN THE OPPOSITE
IKRECTION THAN THE ROUTINE PRESENTED ABOVE.

MNEMONIC COMMENTS
ocoeoocaandbonocan . - e s e - -
BAUDAS, LH1 @180 /SET PAGE ADDR PNTR TO LOC OF TABLE
LLI 177 /SET LOV ADDR PNTR TO “BOTTOM” OF TABLE
FBAUDO, CPM /COMPARE (BAUDOT) CODE IN ACC TO CONTENTS
JTZ FNDASC /OF TABLE, IF MATCH, DO CONVERSION
DCL /0THERVISE DECREMENT LOW ADDR POINTER
DCL /TO NEXT “BAUDOT" CODE LOCATION IN TABLE

JMP FBAUDO /AND KEEP LOOKING FOR A MATCH

6« 10

MNEMONIC ' - COMMENTS

- . Enes e o G O W ey R« D YD WS WS G ES W S W OB G e W

FNDASC, DCL /WHEN HAVE BAUDOT MATCH, DECR PNTR 1 LOC
' LAM /AND FETCH ASCII EQUIVALENT INTO ACC
RET /EXIT LOOKUP ROUTINE

NATURALLY, THE TECHNIQUES ILLUSTRATED TO CONVERT BETWEEN "ASCI1"™
AND “BAUDOT™ CODES MAY BE APPLIED TO MANY OTHER TYPES OF CODES. INDEED,
THE SMALL COMPUTER MAKES AN IDEAL DEVICE FOR "“COUPLING" BETWEEN A VAR~
IETY OF 1/0 DEVICES, PARTICULARLY IN COMMUNICATION APPLICATIONS, THUS
ENABLING MACHINES OF DIFFERENT CHARACTERISTICS AND USING DIFFERENT CODES
TO GOMMUNICATE WITH ONE ANOTHER.

\ A CONCEPT THAT WILL BE DISCUSSED MORE FULLY IN THE NEXT CHAPTER WILL
BE BRIEFLY MENTIONED AT THIS TIME TO POINT OUT AN IMPORTANT CONCEPT WHEN
DEALING WITH 1/0 DEVICES CONNECTED TO THE COMPUTER. AS THE READER UN-
DOUBTABLY KNOWS, MANY MACHINES THAT MIGHT BE CONNECTED TO A COMPUTER ARE
MUCH SLOWER IN OPERATION, IN FACT OFTEN TIMES ORDERS OF MAGNITUDE SLOV-
ER, THAN THE BASIC OPERATING CYCLE OF A COMPUTER. FOR INSTANCE, AN 8088
SYSTEM REQUIRES BUT A MERE 32 MILLIONTHS OF A SECOND IN A TYPICAL SYSTEM
TO EXECUTE AN "INPUT" INSTRUCTION. THAT IS, IN THAT SHORT AMOUNT OF
TIME IT CAN “ACCESS'" AN INPUT PORT AND BRING IN & PARALLEL BITS OF IN-
FORMATION INTO THE ACCUMULATOR OF THE CPU.

THE EXTREME SPEED OF THE COMPUTER CAN IN FACT CAUSE PROBLEMS WHEN
PERFORMING I/0 OPERATIONS 1F STEPS ARE NOT TAKEN TO "CONTROL" THE SIT-
UATION. ASSUME FOR EXAMPLE, THAT A PERSON DESIRED TO CONNECT AN ELEC-
TRONIC KEYBOARD UNIT, SIMILAR TO A TYPEWRITER, THAT WOULD PRESENT THE
ASCII CODE FOR THE KEY BEING DEPRESSED IN PARALLEL ON THE LINES OF AN
INPUT PORT. IF THE PERSON JUST CONNECTED THE KEYBOARD OUTPUT LINES TO
THE INPUT LINES OF AN INPUT PORT, AND WANTED TO DEVELOP A PROGRAM THAT
WOULD ACCEPT. INFORMATION FROM THE KEYBOARD, THERE WOULD BE A NUMBER OF
RATHER TOUGH PROBLEMS, AND THEY WOULD BE RELATED TO THE SPEED AT WHICH
THE COMPUTER CAN OPERATE RELATIVE TO THE SPEED AT WHICH A HUMAN CAN DE-
PRESS THE KEYS ON A KEYBOARD.

SUPPOSE THAT THE KEYBOARD WAS DIRECTLY CONNECTED TO AN INPUT PORT
AND A PROGRAMMER TRIED TO DEVELOP A ROUTINE THAT WOULD SIMPLY READ THE
CODE BEING SENT BY THE KEYBOARD, STORE THE CHARACTER IN MEMORY, AND GO
ON TO READ THE NEXT CHARACTER. IN THE FIRST PLACE, HOV WOULD THE PRO-
GRAM BE ABLE TO EVEN TELL IF A KEY HAD BEEN DEPRESSED? TRUE, ONE COULD
ASSUME THAT IF NO KEYS WERE DEPRESSED, THAT THE CODE BEING RECEIVED
WOULD BE ALL ZEROS, AND A PROGRAM COULD CHECK FOR THAT CONDITION. BUT.,
EVEN 1F THAT WAS DONE, THE PROGRAMMER WOULD SOON HAVE ANOTHER PROBLEM.
WHEN A KEY WAS ACTUALLY DEPRESSED AND A "NON-ZERO™ CONDITION RECEIVED.
A SHORT PROGRAM TO PLACE THE CHARACTER IN MEMORY AND ADVANCE THE MEMORY
POINTER WOULD BE ACCOMPLISHED. IN THE ORDER OF A HUNDRED-MILLIONTHS OF
A SECOND. THE POOR HUMAN DEPRESSING THE KEY WOULDN'T HAVE A CHANCE OF
GETTING A FINGER OFF THE DEPRESSED KEY IN THAT AMOUNT OF TIME, AND IN
FACT IT WOULD TAKE ON THE ORDER OF SEVERAL TENTHS OF A SECOND FOR A PER~
SON TO REMOVE A FINGER FROM A KEY. IN THAT AMOUNT OF TIME, THE SIMPLE
INPUT ROUTINE COULD HAVE "READ™ THAT SAME CHARACTER AND PACKED IT INTO
MEMORY LOCATIONS A FEW HUNDRED TIMES! NOT EXACTLY THE DESIRED RESULT.
WHAT NOW? WELL, ONE COULD DEVELOP THE INPUT ALGORITHM SO THAT, ONCE A
"NON~-ZERO" CODE WAS RECEIVED, ONE WOULD NOT ACCEPT ANOTHER CHARACTER UN-
TIL A "ZERO"” CODE WAS OBSERVED. THAT MIGHT IMPROVE THINGS SOMEVHAT, BUT
IT WOULD PRECLUDE ACTUALLY BEING ABLE TO RECEIVE A "ZERO™ CODE (THAT
MIGHT REPRESENT A VALID CONDITION) AND, BECAUSE OF TECHNICAL CONSID~-
FRATIONS (SUCH AS "CONTACT BOUNCE" ON THE MECHANICAL SWITCHES OF THE

6= 11

KEYBOARD) IT WOULD NOT BE A VERY RELIABLE METHOD TO UTILIZE.

. INSTEAD, IT WOULD BE FAR BETTER TO PLACE AN “INTERFACE" BETWEEN THE
KEYBOARD AND THE COMPUTER INPUT PORT THAT WOULD ACCOMPLISH THE FOLLOW~-
ING OBJECTIVES. WHENEVER A KEY ON THE KEYBOARD WAS DEPRESSED, THE IN-
TERFACE WOULD “LATCH™ (HOLD) THE CODE REPRESENTED BY THE KEY IN AN ELEC-
TRONIC "BUFFER" THAT WAS CONNECTED TO THE LINES OF AN INPUT PORT. THE
"BUFFER" WOULD THUS HOLD “DATA™ FROM THE KEYBOARD. NEXT, WHEN THE KEY
" THAT HAD BEEN DEPRESSED WAS RELEASED, THE " INTERFACE" WOULD PRESENT A
SIGNAL TO AN INPUT LINE OF ANOTHER INPUT PORT - TERMED A "CONTROL" PORT.
FINALLY, THE INTERFACE WOULD HAVE A LINE COMING FROM AN OUTPUT PORT OF
THE COMPUTER, THAT WOULD ALLOW THE COMPUTER TO SIGNAL TO THE INTERFACE
THAT IT HAD TAKEN APPROPRIATE ACTION. A DIAGRAM OF AN ELECTRONIC INTER-
FACE VITH THE CHARACTERISTICS DESCRIBED IS SHOWN IN THE NEXT ILLUSTRAT-
ION.

—>—] —— .
> ————————
—y————— b
MACHINE - P 7::2
QUTPUT | ———
> A
> JLATCH [o,
STROBE +
, [_ CONTROL
NEW I 9 INTO PORT ¥

CYCLE -b—{>
SI1GNAL cLK 0
CONTROL

~——<— oUT OF PORT 2

’

WITH SUCH AN INTERFACE, ONE COULD DEVELOP A MUCH MORE RELIABLE SYS-
TEM USING AN INPUT PROGRAM THAT WOULD PERFORM IN THE FOLLOWING MANNER:

MNEMONIC COMMENTS
MACHIN, INP Y /CHECK STATUS OF “CONTROL' FM MACHINE
- JFS MACHIN /I1F DATA NOT READY - WAIT BY LOOPING
INP X /DATA READY NOVW SO FETCH “DATA"
" LBA - /SAVE "“DATA" IN REGISTER "B"
LAl 981 /PREPARE TO PULSE LINE ON PORT "Z"
-0uUT 2 /SEND LOGIC "1" ON PORT Z CONTROL LINE
XRa /CLEAR ACCUMULATOR
ouUT Z : /SEND LOGIC *9" ON PORT Z CONTROL LINE
LAB - /RESTORE "DATA" TO ACCUMULATOR
RET - ZEXIT RTN VWITH "DATA"™ IN ACCUMULATOR

THE ABOVE ROUTINE ASSUMED THAT THE “CONTROL" LINE FROM THE INTERFACE

6 12

CAME INTO THE MOST SIGNIFICANT BIT OF THE ACCUMULATOR AND THAT THE CON~-
TROL LINE GOING TO THE INTERFACE ORIGINATED FROM THE LEAST SIGNIFICANT
BIT IN THE ACCUMULATOR. FURTHERMORE, WHILE THE ABOVE ROUTINE *“WAITED"
FOR NEV DATA TO ARRIVE FROM THE EXTERNAL DEVICE BY MONITORING THE INPUT
CONTROL PORT CONTINUOUSLY, THE "JFS MACHIN* INSTRUCTION COULD HAVE BEEN
REPLACED BY A DIRECTIVE TO HAVE THE COMPUTER PERFORM SOME OTHER FUNC-
TION(S) BEFORE TESTING INPUT PORT “Y" AGAIN INSTEAD OF WASTING TIME DO~
ING NOTHING!

- A SIMILAR TYPE OF INTERFACE, AND SIMILAR PROGRAMMING TECHNIQUES CAN
BE APPLIED TO A VIDE VARIETY OF DEVICES THAT MIGHT BE CONNECTED TO THE
COMPUTER. WHILE THE EXAMPLE SHOWED BUT ONE LINE BEING USED ON EACH CON-
TROL PORT, ONE SHOULD NOTE THAT WITH EIGHT LINES AVAILABLE ON ONE PORT,
ONE CAN USE JUST A FEW "CONTROL' PORTS IN A SYSTEM TO MONITOR AND CON-
TROL A LARGE GROUP OF EXTERNAL INSTRUMENTS BY USING THE AVAILABLE BIT
POSITIONS.

TESTING FOR ERRORS DURING 1/0 OPERATIONS

IT 1S OFTEN DESIRABLE TO TRANSMIT DATA TO AN EXTERNAL DEVICE THAT
WILL STORE THE DATA IN SOME SORT OF PERMANENT FORM, SUCH AS ON PAPER
TAPE OR MAGNETIC TAPE. THEN, AT SOME LATER TIME, READ THE DATA BACK
INTO THE COMPUTER. DURING SUCH A PROCESS IT IS POSSIBLE FOR ERRORS TO
OCCUR. THAT IS, BITS OF INFORMATION WITHIN A "WORD" MAY BE ALTERED BE-
CAUSE OF "NOISE"” OR RANDOM ERRORS OCCURING IN THE 1/0 SYSTEM. WHILE
SUCH ERRORS ARE LIKELY TO OCCUR AT A VERY LOW RATE IN A WELL DESIGNED.,
PROPERLY OPERATING 1/0 SYSTEM, IT 1S OFTEN DESIRABLE TO UTILIZE TECHNIQ-
UES THAT WILL AT LEAST INDICATE WHEN AN EFRROR HAS OCCURRED. THERE ARE
A VARIETY OF ERROR CHECKING TECHNIQUES AVAILABLE, SOME SO SOPHISTICATED
THAT THEY CAN OFTEN “CORRECT*" CERTAIN TYPES OF ERRORS -THAT OCCUR DURING
170 OPERATIONS. TWO TECHNIQUES VWILL BE DISCUSSED HERE. WHILE NEITHER
ONE OF THEM HAS "ERROR CORRECTING*" CAPABILITY, THEY ARE CAPABLE OF DE-
TECTING THE MOST COMMON TYPE OF 1/0 ERROR WHICH IS FOR A BIT IN A WORD
CHANGING STATE.

THE FIRST METHOD TO BE DISCUSSED CONCERNS THE USE OF USING “PARITY"
TECHNIQUES TO DETECT TRANSMISSION ERRORS. THE TECHNIQUE CONSISTS OF
EXAMINING A GROUP OF BITS FOR THE NUMBER OF BITS THAT ARE IN THE *"1“
CONDITION WHEN IT IS BEING READIED FOR " TRANSMISSION" AND THEN SETTING
A BIT SET ASIDE FOR THE PURPOSE TO THE STATE THAT VWILL MAKE THE TOTAL
NUMBER OF BITS THAT ARE IN THE 1" CONDITION EITHER AN "ODD" OR “EVEN"
COUNT (FOR THE ENTIRE GROUP). FOR INSTANCE, IT WAS MENTIONED EARLIER
THAT THE "ASCI1* CODE REQUIRED 7 BITS TO REPRESENT ALL THE POSSIBLE 128
CHARACTERS DEFINED BY THE CODE, BUT THAT MANY SYSTEMS EMPLOYED AN 8°'TH
BIT FOR "PARITY" PURPOSES. THUS, THE *ASCl1I" CODE 1S IDEAL FOR USE IN
TYPICAL 8008 SYSTEMS BECAUSE THERE ARE EXACTLY 8 BITS TO A COMPUTER
WORD.)

FURTHERMORE, THE 806068 CPU HAS AS PART OF IT'S INSTRUCTION SET, SPEC-
IFIC INSTRUCTIONS TO FACILITATE THE USE OF PARITY TECHNIQUES. REMEMBER
THE "PARITY" FLAG THAT WAS DISCUSSED IN THE CHAPTER ON THE 80088 INSTRUC-
TION SET AND THE VARIOUS CONDITIONAL BRANCHING INSTRUCTIONS THAT USE THE
STATUS OF THE PARITY FLAG?

WHEN THE CODES FOR THE "ASCI1" SUBSET WERE DESCRIBED EARLIER, IT VAS
MENTIONED THAT THE EIGHTH BIT POSITION (MOST SIGNIFICANT BIT) IN THE
LISTING WAS ARBITRARILY SET TO THE "1" CONDITION AS THE *“ASCII" CODE DID
NOT USE THAT BIT. HOWEVER, THAT BIT POSITION MAY BE USED TO SPECIFY THE
DESIRED "PARITY" IN A SYSTEM WHERE PARITY CHECKING IS TO BE EMPLOYED.

6~ 13

. FOR INSTANCE, 1F ONE WANTED TO ESTABLISH AN EVEN PARITY SYSTEM., ONE
WOULD PROCEED IN THE FOLLOWING MANNER. '

EXAMINE THE SEVEN BITS MAKING UP THE CODE FOR THE CHARACTER TO BE
TRANSMITTED (ASSUMING *ASCI1* CODE FOR THIS EXAMPLE). IF THE NUMBER OF
BITS IN THE CHARACTER THAT ARE A LOGIC "1' ARE "EVEN," THAT IS THERE ARE
@, 2, A4 OR 6 BITS IN THE "1* STATE, SET THE 8°'TH BIT TO A "8.* IF THE
NUMBER OF BITS ARE "ODD,* THAT 1S THERE ARE 1, 3, 5 OR 7 BITS IN THE "1"
STATE, SET THE 8°'TH BIT TO A *1* CONDITION SO THAT THE TOTAL NUMBER OF
BITS IN THE ENTIRE GROUP BECOMES AN EVEN NUMBER! SOME EXAMPLES ARE IL-
LUSTRATED BELOV.

ORIGINAL 7 BIT ASCI1 CODE 8 BIT “EVEN" PARITY CODE
Q) 1 860 601 01 6066 601
(B) 1 860606 61080 g1 2068 61686
) i1 9006 011 11 0006 0611
() i 6060 1| 66e 61 068 1068
(E) 1. 8806 101 11 60606 1| 8
@) - e 1106 o600 20 110 0668
(48 e 110 001 16 1106 0061

ONE COULD ALSO ELECT TO USE AN *"ODD"™ PARITY SYSTEM BY ESSENTIALLY
REVERSING THE SCHEME SO THAT THE 8°'TH BIT IS ALWAYS SET TO MAKE THE TOT-
AL NUMBER OF BITS IN A GROUP THAT ARE IN THE “1* STATE BE AN "ODD" NUM-
BER. “ASCII™ CODE USING AN 8'TH BIT TO PRODUCE AN *"ODD PARITY" SYSTEM
IS ILLUSTRATED BELOW FOR SEVERAL CHARACTERS.

ORIGINAL 7 BIT ASCII CODE . 8 BIT “ODD” PARITY CODE

@) 1- 2060 801 11 200 @01
®) 1 286 818 11 0e¢ @1 @
> 1 6806 811 21 eee 811
(D> 1 860 1668 11 6860 100
(E) 1 €060 101 21 @@ 101
@) 2 1186 600 18 110 0060
1) 2 118 @81 28 11¢ 00,1

ONCE ONE HAS SELECTED WHICH PARITY (ODD OR EVEN) TO USE WITH A SYS-
TEM ONE SIMPLY SENDS THE DATA IN THE DESIRED MODE TO THE 1/0 DEVICE.
THEN, WHEN THE DATA IS LATER READ INTO THE COMPUTER, A CHECK IS MADE ON
EACH "WORD™ OF DATA RECEIVED TO DETERMINE IF THE PARITY IS CORRECT. IF
IT IS NOT, THEN AN ERROR HAS OCCURRED. SAMPLE ROUTINES TO GENERATE
“EVEN" PARITY WORDS FOR AN OUTPUT ROUTINE, AND FOR CHECKING FOR " EVEN"
PARITY IN AN INPUT ROUTINE ARE SHOWN NEXT.

MNEMONIC \ ‘ COMMENTS

SEVENP, NDA /ASSUME 7 BIT ASCII CODE IN ACC, 8'TH BIT
JTP GOUT /INIT @, IF PARITY EVEN AS 1S, SEND DATA
XR1 200 /O0THERWISE SET MSB = 1 TO GET EVEN PARITY

GOUT., CAL OUTPUT /USER ROUTINE TO TRANSMIT DATA TO 1/0
RET . /EXIT EVEN PARITY GENERATOR ROUTINE

6= 14

MNEMONIC COMMENTS

REVENP, NDA /ASSUME DATA FM 1/0 DEVICE IN ACCUMULATOR
RTP /SET FLAGS, IF EVEN PARITY, ALL O.K.
'~ JMP PERROR /I1F NOT EVEN PARITY DO USER ERROR ROUTINE

SIMILAR ROUTINES ARE EASILY DEVELOPED FOR UTILIZING "ODD" PARITY.
THE PROGRAMMER SHOULD NOTE THAT "PARITY" TECHNIQUES CAN BE USED WITH
VIRTUALLY ANY CODING TECHNIQUE AS LONG AS ONE BIT 1S SET ASIDE FOR THE
PARITY INDICATOR. FOR INSTANCE, ONE COULD EASILY ADAPT PARITY TECH~
NIQUES FOR THE BAUDOT CODE DISCUSSED EARLIER PROVIDED THAT THE 1/0 DE-
VICE COULD HANDLE THE EXTRA BIT. THAT MIGHT NOT BE POSSIBLE WITH A
BAUDOT TELETYPE MACHINE BUT IT MIGHT BE APPLICABLE, SAY, IF BAUDOT CODE
WAS BEING WRITTEN ON A MAGNETIC TAPE UNIT WHERE EXTRA BITS COULD BE AD-
DED TO THE CODE AND PROCESSED BY THE 1/0 UNIT.

THE READER SHOULD ALSO BE AWARE OF THE FACT THAT THE USE OF PARITY
CHECKING TECHNIQUES IS NOT INFALLIBLE. IT DOES DETECT ERRORS THAT RE~-
SULT IN AN ODD NUMBER OF BITS CHANGING STATE WITHIN A GROUP, BUT NOT 1IF
AN EVEN NUMBER OF STATE CHANGES OCCUR. IT IS THUS MOST USEFUL IN A SYS-
TEM WHERE THE EXPECTED PROBABILITY OF MORE THAN ONE ERROR OCCURRING IN A
GROUP OF EIGHT BITS 1S EXTREMELY LOW. THE PROGRAMMER MIGHT ALSO WANT TO
'CONSIDER, WHEN USING A “PARITY" CHECKING SCHEME, THE POSSIBILITY OF
TRANSMITTING EACH GROUP OF BITS TWICE. THEN, WHEN DATA IS READ BACK .
FROM THE 1/0 DEVICE, AN ALGORITHM THAT WILL SKIP THE SECOND GROUP IF THE
GROUP 1S RECEIVED CORRECTLY THE FIRST TIME, OR READ THE SECOND GROUP IF
AN ERROR WAS DETECTED IN THE FIRST GROUP, CAN BE UTILIZED. SUCH A FOR~-
MAT, WHILE REQUIRING A LONGER TRANSMIT AND RECEIVE TIME, CAN RESULT IN
HIGHLY RELIABLE 1/0 DATA HANDLING OPERATIONS.

ANOTHER ERROR CHECKING METHOD THAT 1S OFTEN USED WHEN PASSING DATA
TO AND FROM I/0 DEVICES 1S TERMED THE “CHECK~SUM" TECHNIQUE. THE METHOD
IS QUITE SIMPLE IN APPLICATION YET REMARKABLY POWERFUL IN DETECTING ER~-
RORS. THE TECHNIQUE CONSISTS OF SIMPLY MAINTAINING A ONE REGISTER SUM
OF ALL THE DATA TRANSMITTED WITHIN A “BLOCK."™ THAT 1S, AS EACH WORD IS
SENT OUT, IT 1S SUMMED VWITH A REGISTER THAT CONTAINS THE SUM OF ALL PRE-
VIOUS DATA WORDS TRANSMITTED IN THE BLOCK. (OVER-FLOWS IN THE SUMMING
REGISTER ARE IGNORED). AT THE END OF A BLOCK OF DATA, THE TWO'S COMPLE-
MENT OF THE SUM THAT HAS BEEN COMPILED IS SENT AS THE FINAL PIECE OF
DATA IN THE BLOCK.

WHEN THE BLOCK OF DATA 1S READ BACK INTO THE COMPUTER A SIMILAR SUM
IS FORMED AS EACH DATA WORD IS RECEIVED. THEN, WHEN THE LAST PIECE OF
DATA IS RECEIVED, WHICH IS THE TWO'S COMPLEMENT OF THE "“CHECK-SUM,'" THAT
VALUE 1S ADDED TO THE SUM OBTAINED FROM ALL THE PREVIOUS DATA WORDS IN
THE BLOCK. THE RESULT, IF NO TRANSMISSION ERRORS HAVE OCCURRED, WILL BE
ZERO - THE RESULT OF ADDING ANY NUMBER TO IT'S TWO'S COMPLEMENT. 1IF IT
IS NOT ZERO, THEN A TRANSMISSION ERROR HAS OCCURED. THE METHOD 1S
SIMPLE AND QUITE RELIABLE. THE READER CAN READILY DETERMINE, THAT IF
ERRORS HAVE OCCURRED, IT WILL AFFECT THE VALUE OF THE SUM AS IT IS FORM-
ED, AND THUS LIKELY RESULT IN A NON-ZERO VALUE AS A FINAL RESULT WHEN
THE CHECK-SUM AND IT'S TWO*'S COMPLEMENT ARE ADDED. (NOTE: 1IT IS THEOR~-
ETICALLY POSSIBLE FOR JUST THE RIGHT NUMBER OF ERRORS TO OCCUR WHEN
READING A BLOCK OF DATA TO RESULT IN A "ZERO"™ CONDITION BUT IT IS QUITE
SMALL - HARDLY ENOUGH TO LOSE SLEEP OVER)!

A ROUTINE FOR GENERATING A CHECK-SUM AND PLACING THE TWO'S COMPLE-
MENT OF THAT VALUE AS THE LAST WORD SENT IN A BLOCK OF DATA, FOLLOVWED BY

6 =15

MNEMONIC

COMMENTS

A ROUTINE THAT WILL READ BACK A BLOCK OF DATA USING A CHECK-SUM TECH-
NIQUE AND TEST TO SEE IF ANY ERRORS OCCURED IS SHOWN BELOW.

SCKSUM, LHI
LLI
LEI
LDI
NXCKSM, LAM
ADD
LDA
LAM
CAL
INL
DCE
JFZ
LAD
XR1
ADI1
CAL
RET

RCKSUM, LHI
LLI
LEI
LDI
INCKSM, CAL
LMA
ADD
LDA
INL
DCE
JFZ
CAL
ADD
RTZ
JMP

THE ABOVE ROUTINES,

XXX
YYyy
YA A A
0oe

OUTPUT

NXCKSM

377
ool
OUTPUT

XXX
YYY
YAAA
poe
INPUT

INCKSM
INPUT -

CKSMER

/SET PAGE ADDR WHERE BLOCK OF DATA STORED
/SET LOC ON PAGE FOR START OF DATA BLOCK
/SET # WORDS IN BLOCK COUNTER

/SET CHECK-SUM REGISTER TO @ AT START
/FETCH DATA WORD FROM MEMORY

/ADD PRESENT DATA TO CHECK-SUM VALUE
/SAVE NEW CHECK-SUM VALUE

/RESTORE ORIG DATA WORD FROM MEMORY
/0UTPUT THE DATA WORD TO I1/0 DEVICE
/ADVANCE MEMORY POINTER

/DECREMENT WORD COUNTER

/1F CNTR NOT @, FETCH NEXT DATA WORD
/PUT CHECK-SUM VALUE IN ACCUMULATOR
/FORM«TWO'S COMPLEMENT VALUE

/1N STANDARD MANNER

/SEND 2'S COMPLEMENT OF CK-SUM AS LAST
/WORD IN BLOCK AND EXIT ROUTINE

/SET PAGE ADDR WHERE BLOCK OF DATA GOES
/SET STARTING LOC ON PAGE FOR DATA

/SET # WORDS IN BLOCK COUNTER

/SET CHECK-SUM REGISTER TO 6 AT START
/FETCH DATA FROM 1/0 DEVICE

/STORE DATA WORD IN MEMORY

/ADD NEW DATA TO CURRENT CHECK-SUM VALUE
/SAVE NEW CHECK-SUM VALUE

/ADVANCE MEMORY POINTER

/DECREMENT WORD COUNTER

/GET NEXT DATA WORD IF CNTR NOT 0

/NEXT WORD FROM 1/0 IS 2°'S COMP OF CK~-SUM
/ADD IT TO CHECK-~-SUM FORMED BY DATA

/1F RESULT IS 0, 0.K., EXIT ROUTINE
/0THERWISE GO TO USER ERROR ROUTINE

AS THE READER WILL NOTE, ASSUME THAT DATA BLOCKS

ARE ONE PAGE OR LESS IN LENGTH AND DO NOT CROSS PAGE BOUNDARIES. HOW-
EVER, BY THIS TIME THE READER SHOULD HAVE LITTLE DIFFICULTY WRITING A
CHECK~-SUM ROUTINE THAT COULD HANDLE LARGER BLOCKS.

THE NEXT CHAPTER WILL CONTAIN MORE INFORMATION OF INTEREST TO THOSE
DEVELOPING PROGRAMS FOR I/0 OPERATIONS THAT REQUIRE CONSIDERATION OF
'"REAL-TIME" PARAMETERS.

6=16

REAL-TIME PROGRAMMING

REAL-TIME PROGRAMMING AS DISCUSSED IN THIS MANUAL APPLIES TO THE DE~
VELOPMENT OF PROGRAMS WHOSE PROPER EXECUTION ARE DEPENDENT ON THE LENGTH
OF TIME IT TAKES FOR THE COMPUTER TO PERFORM AN OPERATION OR SERIES OF
INSTRUCTIONS. THE NEED FOR REAL-TIME PROGRAMMING IS INVARIABLY RELATED
TO THE RECEIPT OF INFORMATION FROM DEVICES AT SPECIFIC TIMES OR THE CON~-
TROL OF DEVICES EXTERNAL TO THE COMPUTER WHOSE PROPER OPERATION DEPEND
UPON RECEIVING COMMANDS FROM THE COMPUTER AT SPECIFIC TIMES.

THE DISCUSSION OF THE SUBJECT OF REAL-TIME PROGRAMMING HAS BEEN DE-
FERRED TO THE LATTER PART OF THIS MANUAL AS REAL-TIME PROGRAMMING IS
GENERALLY MORE DIFFICULT THAN THE DEVELOPMENT OF PROGRAMS THAT ARE NOT
RESTRICTED BY EXBECUTION TIMES. THE REASON IS SIMPLY THAT IN ADDITION TO
THE "LOGIC*" AND "TECHNIQUE" FACTORS THAT THE PROGRAMMER MUST CONSIDER
WHEN DEVELOPING ANY PROGRAM, THE PROGRAMMER MUST NOW ADD IN THE FACTOR
OF HOW MUCH TIME IT WILL TAKE FOR THE COMPUTER TO EXECUTE VARIQUS IN-
STRUCTIONS AND INSTRUCTIONAL SEQUENCES. THE PROBLEM IS REALLY ONE OF
“COMPLICATION.*

HOWEVER, REAL-TIME PROGRAMMING IF OFTEN VITALLY NECESSARY IN CERTAIN
APPLICATIONS AND HENCE THE PROGRAMMER MUST BECOME AWARE OF SOME OF THE
CRITICAL ASPECTS OF SUCH PROGRAMMING. THE READER SHOULD NOT, HOWEVER,
BE OVER-WHELMED BY THE PROSPECTS OF SUCH COMPLICATIONS. FOR, ONCE ONE
HAS AN UNDERSTANDING OF STANDARD MACHINE LANGUAGE PROGRAMMING PROCEDURES
AND HAS GAINED A LITTLE EXPERIENCE, WHICH ONE SHOULD HAVE OBTAINED BY
THE TIME ONE IS DELVING INTO THIS SECTION, ONE SHOULD FIND THE ASPECTS
OF REAL-TIME PROGRAMMING SIMPLY "ONE STEP UP" AND AN EJOYABLE CHALLENGE.

AS VITH MANY OTHER ASPECTS OF PROGRAMMING, PROPER PREPARATION SUCH
AS CLEARLY DEFINING THE PROBLEM TO BE HANDLED, AND PROCEEDING IN AN OR-
DERLY FASHION, CAN GREATLY EASE THE OVER-ALL TASK OF DEVELOPING REAL~-
TIME PROGRAMS.)

THE LAST SEVERAL PAGES OF CHAPTER ONE PRESENTED THE TYPICAL EXECU-
TION TIMES FOR THE VARIOUS CLASSES OF INSTRUCTIONS AVAILABLE. THE TIMES
SHOWN ARE THOSE FOR AN 8008 UNIT WHOSE MASTER CLOCK HAS BEEN ADJUSTED TO
A NOMINAL FREQUENCY OF 5080 KILOHERTZ. WHEN GETTING DOWN TO PRACTICAL
APPLICATIONS, ONE MUST REALIZE THAT ANY SYSTEM VILL HAVE SOME FINITE
DEVIATION FROM THE NOMINAL FREQUENCY. FOR INSTANCE, IF AN 80068 SYSTEM
HAS A CRYSTAL CONTROLLED MASTER CLOCK, THE POSSIBLE VARIATION FROM THE
NOMINAL FREQUENCY MIGHT BE IN THE ORDER OF #.65 TO @.1 PERCENT. SOME
8008 SYSTEMS MIGHT HAVE RESISTOR=-CAPACITOR CONTROLLED MASTER' CLOCKS AND
THE POSSIBLE VARIATION FROM THE NOMINAL COULD BE CONSIDERABLY WIDER -

UP TO 4 OR S PERCENT. IN ANY EVENT, WHEN CONTEMPLATING THE DEVELOPMENT
OF REAL-TIME PROGRAMS, ONE MUST ALWAYS TAKE INTO ACCOUNT THE POSSIBLE
VARIATION FROM NOMINAL OF THE MASTER CLOCK FREQUENCY, AND IN FACT SHOULD
PLAN PROGRAMS TO OPERATE UNDER "WORST CASE"™ VARIATION CONDITIONS. THUS,
IF ONE WAS THINKING OF USING AN 8008 SYSTEM TO CONTROL A PROCESS THAT
REQUIRED TIMING ACCURACIES OF #.81 PERCENT, ONE COULD IMMEDIATELY STOP
CONSIDERING USING A COMPUTER THAT HAD A MASTER CLOCK ACCURATE TO ONLY
8.8S PERCENT! A SECOND CONSIDERATION ABOUT WHETHER TO USE A COMPUTER TO
CONTROL TIME-DEPENDENT EVENTS, INVWLVES HOW CLOSE TOGETHER EVENTS THAT
ARE TO BE CONTROLLED NEED TO OCCUR. IT CAN BE OBSERVED BY EXAMINING THE
INFORMATION AT THE END OF CHAPTER ONE, THAT ALMOST ALL THE INSTRUCTIONS
REQUIRE A MINIMUM OF 20 MICROSECONDS TO BE EXECUTED. THUS, ONE CANNOT
PLAN ON USING THE COMPUTER TO CONTROL EVENTS THAT ARE LESS THAN THAT FAR
APART IN TIME. IN FACT, BECAUSE 1/0 INSTRUCTIONS THEMSELVES TAKE 24 AND
32 MICROSECONDS, AND BECAUSE THOSE INSTRUCTIONS WOULD INVARIABLY BE RE=-
QUIRED TO DEAL WITH EXTERNAL DEVICES, ALONG WITH THE FACT THAT ONE WILL

7 -1

ALMOST CERTAINLY WANT TO DO SOME OTHER INSTRUCTIONS BETWEEN 1/0 COM-
MANDS, IT IS A PRETTY GOOD RULE OF THUMB TO DISQUALIFY THE USE OF AN
8088 SYSTEM AS A REAL-TIME CONTROLLER IF ANY TWO EVENTS DEPENDENT UPON
TIMING FROM THE COMPUTER WILL OCCUR WITHIN 108 MICROSECONDS. A SECOND
RULE OF THUMB TO IMMEDIATELY REJECT THE USE OF SUCH A SYSTEM AS A TIME
DEPENDENT CONTROLLER, ONE THAT 1S PRETTY MUCH DERIVED FROM EXPERIENCE,
IS IF THE APPLICATION WILL REQUIRE MUCH MORE THAN 100606 170 OPERATIONS
PER SECOND. UNLESS, SUCH OPERATIONS ARE STRICTLY REPETITIVE AND THE
PREVIOUS RULE CAN BE MET. THIS SECOND RULE OF THUMB 1S DERIVED FROM
PRACTICAL EXPERIENCE WITH "PROGRAMMING OVERHEAD" WHICH RESULTS WHEN A
VARIETY OF TIME-DEPENDENT EVENTS MUST BE "JUGGLED" IN A REAL-TIME PROG-
RAM.

THE PROSPECTIVE REAL-TIME PROGRAMMER SHOULD BECOME FAMILIAR WITH
THE LENGTHS OF TIME REQUIRED TO EXECUTE THE VARIOUS CLASSES OF INSTRUC-
TIONS. ONE OF THE FIRST NEV HABITS TO LEARN WHEN PREPARING REAL-TIME
PROGRAMS 1S TO WRITE DOWN THE EXECUTION TIME REQUIRED FOR EACH INSTRUC-
TION ALONGSIDE THE MNEMONIC AS THE PROGRAM IS WRITTEN. IT THEN BECOMES
AN EASY MATTER TO FIGURE OUT *"TOTALS'" FOR VARIOUS PORTIONS OF THE ROUT-
INE(S>). ADDITIONALLY, IT IS OFTEN HELPFUL TO WRITE DOWN THE "TOTAL"
EXECUTION TIMES ALONG *PATHS'" AND "LOOPS*" ON A FLOW CHART OF THE PROG=-
RAM. REAL-TIME PROGRAMMING OFTEN REQUIRES A FAIR AMOUNT OF “JUGGLING"
BETWEEN CHOICES OF INSTRUCTIONS USED AND ALTERNATE SEQUENCES OF COMMANDS
IN ORDER TO OBTAIN DESIRED PROGRAM EXECUTION TIMES. HAVING CRITICAL
TIMING INFORMATION ON HAND IN THE FORMS SUGGESTED CAN PROVIDE THE PRO-
GRAMMER WITH A QUICK VIEW OF HOW THE PROGRAM DEVELOPMENT EFFORT IS PRO-
CEEDING.

IN ANY PROGRAMMING APPLICATION, FLOW CHARTING IS AN EXTREMELY VAL-
UABLE AID TO ENABLING ONE OBTAIN AN "OVER-ALL" VIEW OF A PROGRAM'S OP~
ERATION. IN REAL-TIME PROGRAMMING ANOTHER TOOL OF EQUAL IMPORTANCE
SHOULD BE BROUGHT INTO USE. THAT TOOL IS A “TIMING DIAGRAM."™ A "TIM-
ING DIAGRAM'" ILLUSTRATES THE RELATIONSHIP. IN TIME BETWEEN THE OCCUR-
INCE OF SPECIFIC EVENTS OF INTEREST TO THE PROGRAMMER.

A TIMING DIAGRAM IS SHOWN ON THE TOP OF THE NEXT PAGE. THE DIAGRAM
ILLUSTRATES THE DESIRED STATUS OF A SIGNAL LINE AS A FUNCTION OF TIME
FOR AN ELECTRONIC SIGNAL THAT IS TO PROVIDE INFORMATION TO A “BAUDOT™
TELETYPE MACHINE. THE DIAGRAM SHOWS THE SIGNAL CONDITIONS REQUIRED TO
DIRECT THE MACHINE TO PRINT THE LETTER "Y" OR THE FIGURE ' 6" DEPENDING
ON WHICH MODE THE TELETYPE 1S OPERATING IN ("LETTERS" OR "FIGURES").
THIS DIAGRAM VILL BE USED TO DEVELOP A SAMPLE PROGRAM FOR OPERATING A
TELETYPE PRINTER MECHANISM AS AN INTRODUCTION TO THE CONSIDERATIONS RE=-
QUIRED WHEN DEALING WITH REAL-TIME PROGRAMMING.

IN ORDER TO CLARIFY THE DIAGRAM A BRIEF EXPLANATION OF THE OPERATION
OF A BAUDOT TELETYPE MACHINE WILL BE PRESENTED. A TELETYPE MACHINE IS
AN "ASYNCHRONOUS"™ DEVICE IN THAT IT REQUIRES *START' AND "STOP" INFOR=-
MATION. ONCE THE MECHANISM IN THE TELETYPE HAS BEEN STARTED IN MOTION
BY A "START" SIGNAL, THE MACHINE “EXAMINES* THE STATUS OF A SIGNAL LINE
DURING SPECIFIC TIME PERIODS IN ORDER TO RECEIVE A "“CODE" THAT WILL EN-
ABLE IT TO PRINT A SPECIFIC CHARACTER. AT THE END OF THE PERIOD OF TIME
OCCUPIED BY THE "“CODE SIGNALS" THE MACHINE EXPECTS A “STOP" SIGNAL SO
THAT VARIOUS MECHANICAL OPERATIONS MAY BE COMPLETED AND THE INTERNAL
MECHANISMS SET UP TO BEGIN ANOTHER "CYCLE" OF OPERATION. WHEN DEALING
VITH TELETYPE MACHINES A “CYCLE" 1S OFTEN TERMED AS REQUIRING A CERTAIN
NUMBER OF "UNITS OF TIME."” THE DIAGRAM ILLUSTRATES A "CYCLE" FOR CER=-
TAIN KINDS OF BAUDOT TELETYPE MACHINES. (THOSE THAT REQUIRE A “STOP"
LENGTH OF TWO UNITS)! THE CYCLE 1S SHOWN DIVIDED INTO 8 EQUAL UNITS OF
TIME. THE FIRST UNIT OF TIME 1S RESERVED FOR A "“START" PULSE. BY DEFI-
NITION, THE START PULSE MUST BE A LOGIC "@" AS SHOWN IN THE DIAGRAM.

T2

| START | 1 | 2 | 3 | 4 | s | STOPL | STOP2 |

S5— 5

R T .
o
® g

TIMING DIAGRAM FOR SENDING BAUDOT CHARACTER."Y" OR “6" TO PRINTER

THE NEXT 5 UNITS OF TIME ARE USED TO TRANSMIT THE *BAUDOT'" CODE FOR
WHATEVER CHARACTER 1S TO BE PRINTED BY THE MACHINE. THE LAST 2 UNITS OF
TIME MUST BE A LOGIC "1 TO PLACE THE MACHINE IN THE "STOP'" MODE AND AL-
LOV IT TO COMPLETE THE CYCLE. THE DIAGRAM ABOVE SHOWS A CYCLE IN UNITS
OF TIME. TO PUT THE DIAGRAM INTO PRACTICAL USE, ONE MUST DEFINE THE
INIT OF TIME. FOR INSTANCE, SUPPOSE ONE HAD A TELETYPE MACHINE THAT
USED THE CYCLE FORMAT ILLUSTRATED THAT WAS DESIGNED TO OPERATE CORRECT-
LY WHEN EACH UNIT OF TIME (THE LENGTH OF TIME NOTED BY THE ARROWS MARK-
ED "A" ON THE ABOVE DIAGRAM) WAS 26 MILLISECONDS (NOMINALLY). AN EN-
TIRE CYCLE WOULD THUS REQUIRE 166 MILLISECONDS (FOR THE TIME SPAN MARK-~-
ED "B' ON THE ABOVE DIAGRAM).

IF IT WAS DESIRED TO HAVE THE COMPUTER SEND A SIGNAL ON AN OUTPUT
LINE THAT CLOSELY APPROXIMATED THE DESIRED _SIGNAL PATTERN, ONE WOULD
HAVE TO DEVELOP A PROGRAM THAT WOULD CHANGE THE "“STATE" OF THE LINE ON
AN OUTPUT PORT THAT WAS SUPPLYING THE SIGNAL TO THE MACHINE AT THE TIMES
INDICATED BY THE SHORT UPWARD POINTING ARROWS SHOWN UNDERNEATH THE DIA-
GRAM. THE RESULTING PROGRAM WOULD BE A "REAL-TIME" PROGRAM!

REAL-TIME PROGRAMMING FOR THIS TYPE OF APPLICATION IS RELATIVELY
STRAIGHT-FORWARD. FIRST OF ALL, THERE IS ONLY ONE SIGNAL LINE TO BE
CONCERNED WITH (IN MANY REAL-TIME APPLICATIONS THERE MAY BE A MULTITUDE
OF LINES TO CONTROL)! SECONDLY, THE AMOUNT OF TIME BETWEEN *EVENTS" IS
QUITE LARGE SO THERE WILL NOT BE ANY REQUIREMENT FOR FANCY PROGRAMMING
STREAMLINED FOR SPEED OF OPERATION. IN FACT, ALL ONE REALLY HAS TO DO
IS MAKE SOME SIMPLE MATHEMATICAL CALCULATIONS AND DEVELOP SOME “TIMING
LOOPS" THAT WILL MAKE THE PROGRAM "WAIT* FOR THE DESIRED LENGTH OF TIME
BETWEEN SENDING "BITS*™ OF INFORMATION TO THE OUTPUT PORT THAT WILL CARRY
THE SIGNAL TO THE TELETYPE UNIT. THE PROGRAM BECOMES SIMPLY A LITTLE
FANCIER VERSION OF THE "PARALLEL TO SERIAL" OUTPUT PROGRAM DISCUSSED IN
THE PREVIQUS CHAPTER. -

A SUITABLE PROGRAM 1S PRESENTED BELOW. A DISCUSSION WILL BE PRE-
SENTED AFTER THE PROGRAM. NOTE NOW THAT THE EXECUTION TIMES HAVE BEEN
PROVIDED ALONGSIDE TIME-DEPENDENT PORTIONS OF THE PROGRAM.

MNEMONIC COMMENTS
BDOUT, LCI @06 /SET BIT CNTR = ¢ BITS + 1
NDA /SET CARRY BIT = *@*
RAL /BRING "@" FM CARRY INTO LSB OF ACC

73

24 MORBDO, OUT X /SEND "“START" OR “CODE"™ BITS TO MACHINE
20 RAR /POSITION NEXT BIT OF CODE
a4 + 19,848 CAL BDELAY /GIVE MACHINE ONE UNIT OF TIME ,
29 , DCC . /SEE IF FINISHED START & CODE BITS
an s 36 JFZ MORBDO /IF NOT, SEND NEXT BIT
32 LAl 00} /PREPARE TO SEND STOP BITS
24 : ouUT X /SEND STOP BIT ¢1
a8 + 19,848 CAL BDELAY /GIVE MACHINE ONE UNIT OF TIME
44 + 20 CAL DUMMY /PROVIDE LITTLE MORE TIME
a8 + 20 ‘ CAL DUMMY /PROVIDE LITTLE MORE TIME
24 OUT X /SEND STOP BIT #2
44 + 19,848 CAL BDELAY /GIVE MACHINE ONE UNIT OF TIME
an + 20 CAL DUMMY /PROVIDE LITTLE MORE TIME
44 + 20 CAL DUMMY /PROVIDE LITTLE MORE TIME
: RET _ /EXIT OUTPUT A CHARACTER RTN
o9 DUMMY, RET . /SHORT RTN TO EAT UP TIME
32 BDELAY, LDI 215 /SET TIMER LOOP COUNTER
24 ouUT Z 70UTPUT TO UNUSED PORT TO TRIM TIME
24 oUT Z /0UTPUT TO UNUSED PORT TO TRIM TIME
4a + 20 CAL DUMMY /USE A LITTLE TIME BEFORE STARTING LOOP
44 + 20 MDELAY, CAL DUMMY /FOR A TIME CONSUMING LOOP
29 DCD /SEE IF TIME EXPIRED (CNTR = £)?
12 7 20 RTZ /EXIT BACK TO CALLING RTN WHEN FINISHED
44 JMP MDELAY /OTHERWISE CONTINUE USING UP TIME

THE ABOVE ROUTINE ASSUMED THAT THE DATA TO THE TELETYPE MACHINE OR-
1GINATED FROM THE LEAST SIGNIFICANT BIT IN THE ACCUMULATOR.,

THE READER SHOULD NOTE THAT FOR CASES WHERE THERE ARE TWO POSSIBLE
EXECUTION TIMES FOR AN INSTRUCTION, SUCH AS A CONDITIONAL INSTRUCTION,
THAT THE TIME REQUIRED FOR THE CONDITION "MOST OFTEN" TO OCCUR IN THE
- PROGRAM WAS SHOWN FIRST, FOLLOWED BY THE TIME REQUIRED WHEN THE OTHER
CONDITION OCCURED.

THE PROGRAM WAS INITIALLY DEVELOPED BY WRITING THE "MAIN" PORTION
WITH THE TIME REQUIRED FOR THE "BDELAY" SUBROUTINE CONSIDERED AS AN *"UN-
KNOWN" FACTOR. WHEN THE BASIC FORMAT OF THE PROGRAM HAD BEEN DETERMINED
THE EXECUTION TIME OF THE "LOOP"™ STARTING AT THE LABEL "MORBDO'" WHICH
INCLUDED THE FIVE INSTRUCTIONS:

MORBDO, OUT X
RAR
" CAL BDELAY
pCC
JFZ MORBDO

WAS CALCULATED =- LEAVING OUT THE AS YET UNDETERMINED TIME OF "BDELAY."
THE TIME REQUIRED BY THE FIVE INSTRUCTIONS WHEN "LOOPING" WAS FOUND TO
BE 152 MICROSECONDS. SINCE IT WAS KNOWN THAT A TOTAL OF 28,0006 MICRO-
SECONDS (20 MILLISECONDS) WAS DESIRED BETWEEN OUTPUTTING EACH BIT IN
THE "CODE" IT WAS THEN EASY TO CALCULATE THAT 208,000 - 152 = 19,848
MICROSECONDS DELAY WAS REQUIRED IN “BDELAY." -

THE SUBROUTINE "BDELAY™ 1S A TYPICAL EXAMPLE OF A TIMING DELAY LOOP.
THE MAIN PORTION OF THE DELAY LOOP STARTS AT “MDELAY"™ AND INCLUDES THE
FOUR INSTRUCTIONS:

MDELAY, CAL DUMMY
DCD
RTZ
JMP MDELAY

THE THEORY BEHIND THE "BDELAY"™ SUBROUTINE WAS TO EXECUTE THE *“MDELAY"
LOOP THE REQUIRED NUMBER OF TIMES TO GET CLOSE TO A DELAY OF 19,848 MIC-
ROSECONDS AND THEN CLOSE ANY GAP BY THE "SET UP" INSTRUCTION FOR THE
“LOOP"™ AND PERHAPS A FEW “FILLER*" INSTRUCTIONS.

THE TIME REQUIRED TO COMPLETE THE FOUR INSTRUCTIONS IN THE *“MDELAY"
LOOP WHEN THE "RTZ*" CONDITION IS NOT MET 1S 140 MICROSECONDS. FINDING
OUT HOW MANY TIMES IT 1S NECESSARY TO EXECUTE THE LOOP TO GET CLOSE TO
A DELAY OF 19,848 MICROSECONDS IS A SIMPLE MATTER OF DIVIDING. DOING SO
YIELDED A FIGURE OF ALMOST 142 (DECIMAL). TAKING INTO ACCOUNT THE FACT
THAT IT WAS NOT DESIRABLE TO GO OVER THE ALLOTED TIME, AND THE FACT THAT
SETTING UP THE LOOP WOULD TAKE SOME TIME, THE FIGURE OF 141 DECIMAL VWAS
CHOSEN - WHICH IS 215 OCTAL. ONE OTHER FACTOR HAD TO BE CONSIDERED.
WHEN THE COUNTER IN THE LOOP REACHED ZERO, THE “RTZ"™ INSTRUCTION WOULD
BE EXECUTED AND THE *"JMP MDELAY" COMMAND WOULD NOT. THUS, THE FULL LOOP
WOULD ONLY BE EXECUTED 148 (DECIMAL) TIMES - THE LAST TIME THROUGH THE
MDELAY" ROUTINE WOULD ONLY TAKE 184 MICROSECONDS. THUS, AT THIS POINT
IT WAS POSSIBLE TO CALCULATE THE TOTAL DELAY CAUSED BY EXECUTING THE
"MDELAY*" LOOP THE SELECTED NUMBER OF TIMES: 140 X 1406 = 19,600 PLUS 1064
FOR A TOTAL OF 19,784 MICROSECONDS. THEN IT WAS AN EASY MATTER TO DE-
TERMINE HOW MUCH TIME TO USE TO “SET UP" THE "MDELAY" ROUTINE. THE DE-
SIRED TOTAL DELAY OF 19,848 MINUS THE 19,784 MICROSECONDS CONSUMED BY
EXECUTING THE “MDELAY" ROUTINE 141 (DECIMAL) TIMES LEFT 144 MICROSECONDS
To BE CONSUMED. THE "LDl 215" AT THE START OF "BDELAY' ONLY REQUIRED
32 MICROSECONDS SO 112 MORE MICROSECONDS WERE CONSUMED BY ADDING THE
“FILLER" INSTRUCTIONS "CAL DUMMY®" AND TWO *"OUT X' COMMANDS. THE TO~-
TAL "BDELAY" SUBROUTINE THEN EQUALLED EXACTLY THE DESIRED DELAY TIME OF
19,848 MICROSECONDS!

AFTER SENDING THE START AND 5 CODE BITS IT WAS NECESSARY TO SEND
A "TWO UNIT" STOP PULSE. SINCE THE STOP PULSE BY DEFINITION WAS TO BE
A LOGIC *1," IT WAS NECESSARY TO SET UP THE STOP BIT AS A 1" IN THE
ACCUMULATOR. THE READER CAN CALCULATE THAT THE ACTUAL DELAY BETWEEN
THE SENDING OF THE LAST CODE BIT AND THE FIRST "STOP" UNIT IN THE ROUT-
INE COMES OUT TO BE 28,024-MICROSECONDS. REMEMBER, IN MAKING THE CALC-
ULATION THAT THE "JFZ MORBDO"™ INSTRUCTION VWILL ONLY REQUIRE 36 MICRO-
SECONDS ON THE FINAL EXECUTION OF THE "LOOP* THEREBY REDUCING THE LOOP
EXECUTION TIME TO 19,992 MICROSECONDS AND THE “LAl 001" WILL ADD 32
MICROSECONDS TO THAT VALUE BEFORE THE NEXT "OUT X" INSTRUCTION CAN BE
EXECUTED. HOWEVER, FOR THE APPLICATION, THE VALUE OF 20,024 IS PLENTY
CLOSE ENOUGH TO 20,888 (OFF BY ABOUT @.1 %) TO OPERATE A TELETYPE WHICH
CAN TYPICALLY OPERATE RELIABLY WITH THE TIMING OFF BY 10 TO 20 PERCENT!

THE DELAY BETWEEN THE FIRST STOP UNIT AND THE SECOND, AS WELL AS
THE FINAL DELAY TO0 COMPLETE THE SECOND STOP UNIT, WAS MADE TO COME OUT
NICELY TO 20,8068 MICROSECONDS BY THE INSERTION OF THE “CAL DUMMY'" COM-
MANDS FOLLOWING THE "“CAL BDELAY" INSTRUCTIONS.

THE ABOVE ROUTINE, AS THE READER CAN UNDOUBTABLY SEE, COULD BE MODI~
FIED TO SERVE TO OPERATE A VARIETY OF TELETYPE MACHINES OPERATING AT
DIFFERENT SPEEDS BY CHANGING THE “TIMING LOOPS."™ THE PROGRAM COULD ALSO
BE MODIFIED FOR ASCII CODED MACHINES, OR OTHER TYPES OF CODES BY CHANG~-
ING THE "BIT COUNTER™ AND POSSIBLY ALTERING THE LENGTH OF THE "STOP"
PULSE DEPENDING ON THE TYPE OF MACHINE BEING DRIVEN. FURTHERMORE, THE
TECHNIQUES DEMONSTRATED CAN BE APPLIED TO MANY OTHER TYPES OF PROBLEMS.

T=-5

A SIMILAR ROUTINE COULD BE DEVELOPED TO RECEIVE DATA FROM THE SAME
KIND OF BAUDOT MACHINE. HOWEVER, WHEN RECEIVING DATA FROM SUCH A UNIT
THERE ARE A FEW NEW CONCEPTS TO CONSIDER.,

WHEN THE COMPUTER WAS SENDING INFORMATION TO THE TELETYPE PRINTER
IT HAD AN ADVANTAGE IT WILL NOT HAVE WHEN IT IS USED TO RECEIVE INFOR=-
MATION FROM THE MACHINE. NAMELY, WHEN TRANSMITTING, THE COMPUTER HAD
“CONTROL" OF WHEN THE FXTERNAL MACHINE WOULD BF OPERATED. IN THE RE-
VERSE MODE, THE COMPUTER WILL HAVE NO "KNOWLEDGE'" OF WHEN THE EXTERNAL
DEVICE WILL BEGIN TO OPERATE AND SEND DATA TO THE COMPUTER!

ADDITIONALLY, ONCE A "CHARACTER'" STARTS ARRIVING ON A LINE OF AN
INPUT PORT, THE "TOLERANCE" SITUATION REVERSES. WHAT IS MEANT BY THIS
IS THAT WHEN THE -COMPUTER SENT DATA TO THE PRINTER MECHANISM, IT WAS
POSSIBLE FOR THE COMPUTER TO BE MUCH MORE ACCURATE IN PROVIDING PROPER
TIMING TO THE MACHINE, THAN THE MACHINE REQUIRED TO OPERATE SUCCESS-
FULLY. THUS, IF THE TIME PERIOD FOR A "UNIT' OF TIME WAS OFF A FEW
TENTHS OF A PERCENT WHEN GENERATED BY THE COMPUTER, IT WOULD NOT AFFECT
THE OPERATION OF THE MACHINE. HOWEVER, WHEN THE COMPUTER IS RECEIVING
DATA FROM THE MACHINE, THE START OF EACH UNIT OF TIME MAY BE OFF BY AS
MUCH AS 18 PERCENT OR SO, BECAUSE OF THE LOOSE TOLERANCE OF THE ELECTRO-
MECHANICAL MACHINERY INVOLVED. IF THE COMPUTER PROGRAM DOES NOT MAKE
PROPER ALLOWANCES FOR SUCH POSSIBLE VARIATIONS, THEN *“INCORRECT" DATA
MAY BE RECEIVED.

FORTUNATELY, THE PROBLEMS RELATED TO THESE CONCEPTS ARE NOT TOO DIF-
FICULT TO OVERCOME. THE FIRST PROBLEM, DETERMINING WHEN THE EXTERNAL
MACHINE IS STARTING TO SEND, CAN BE SOLVED BY PERIODICALLY CHECKING THE
INPUT LINE FOR THE PRESENCE OF A "@'" CONDITION INDICATING A “START" BIT.
(NOTE: WHILE THERE IS ANOTHER MANNER IN WHICH ONE COULD DETECT THE BE-
GINNING OF AN EXTERNAL OPERATION IN PROPERLY EQUIPPED 8008 SYSTEMS,
THROUGH THE USE OF A HARDWARE GENERATED "INTERRUPT" SCHEME, SUCH A MET-
HOD IS MORE PROPERLY CONCERNED WITH HARDWARE CONSIDERATIONS WHICH ARE
NOT WITHIN THE INTENDED SUBJECT MATTER OF THIS MANUAL. IF SUCH A DET-
ECTION SCHEME WERE USED, THE REMAINDER OF THIS DISCUSSION ON HANDLING
THE RECEIPT OF THE INCOMING DATA WOULD STILL APPLY). NATURALLY, HOW OF-
TEN ONE CHECKED FOR THE PRESENCE OF A “START" BIT WOULD HAVE AN AFFECT
ON THE OVER-ALL ABILITY OF A REAL~-TIME PROGRAM TO RECEIVE THE DATA. FOR
INSTANCE, ASSUMING A START BIT 1S PRESENT FOR 28 MILLISECONDS AS IN THE
CASE FOR THE TYPE OF MACHINE BEING DISCUSSED, IT WOULD BE FOOLISH TO
TEST FOR THE PRESENCE OF SUCH A "START" BIT AT PERIODS THAT WERE 21 MIL-
LISECONDS APART! IN FACT, BECAUSE OF OTHER CONSIDFERATIONS, IT WOULD NOT
BE WISE TO CHECK FOR A “START" BIT MUCH LESS OFTEN THAN EVERY FEW MILLI-
SECONDS .

THE SECOND PROBLEM OF DEALING WITH THE LOOSE TOLERANCE OF THE MACH~-
INERY CAN BE EFFECTIVELY DEALT VITH BY ADJUSTING THE RECEIVE ROUTINE SO
THAT IT “SAMPLES" THE INCOMING SIGNAL AT THE THEORETICAL MIDDLE OF A
“UNIT* OF TIME RATHER THAN AT THE BEGINNING OR END OF A TIME PERIOD. OF
COURSE THE ABILITY TO DO THIS ALSO DEPENDS ON HOW CLOSELY ONE 1S ABLE
TO DETECT THE ACTUAL *“START" OF A CHARACTER FROM THE MACHINE.

A TIMING DIAGRAM SHOWING A "BAUDOT" CHARACTER BEING SENT BY A MACH-
INE IS ILLUSTRATED AT THE TOP OF THE NEXT PAGE. SHORT UPWARD POINTING
ARROWS ALONG THE BOTTOM OF THE DIAGRAM ILLUSTRATE THE TIMES AT WHICH A
“REAL-TIME" PROGRAM WOULD NEED TO “SAMPLE" THE INCOMING LINE IN ORDER
TO CORRECTLY RECEIVE THE DATA. NOTE THAT PRIOR TO THE TIME A "STARTY
SIGNAL IS DETECTED, THE COMPUTER SHOULD SAMPLE THE LINE OFTEN IN ORDER
TO MINIMIZE THE PERIOD OF TIME IN WHICH A START SIGNAL MAY BE PRESENT
BUT UNDETECTED. NEXT, IT 1S DESIRABLE TO ADJUST THE *“SAMPLE" PERIOD SO
THAT IT COINCIDES WITH THE THEORETICAL MIDDLE OF A UNIT OF TIME, RATHER

7«6

|START| 1 | 2 | 3 | 4 | 5 |SToPiL | STOP2 |

5 55

ottt ot 4 s

T

TIMING DIAGRAM FOR RECEIVING BAUDOT CHARACTER Y™ OR "é&*
'

THAN SAMPLE AT INTEGERS OF UNITS OF TIME AFTER THE START SIGNAL VAS DE-
TECTED. THIS METHOD COMPENSATES FOR THE “TOLERANCE" PROBLEM MENTIONED
PREVIOUSLY.

FINALLY, AFTER THE S°TH CODE BIT HAS BEEN RECEIVED, ONE CAN OBSERVE
THAT IT WILL WOT BE NECESSARY TO START TESTINGE FOR A NEVW "START" PULSE
FOR ABOUT 2 AND 1/2 TIME UNITS AS IT IS KNOWN THAT THE MACHINE VILL BE
. USING THAT TIME TO COMPLETE 1T°S OPERATION. THUS, THE COMPUTER WOULD BE

ABLE TO PERFORM SOME OTHER FUNCTIONS PFOR ABOUT S@ MILLISECONDS BEFORE
B0ING BACK TO THE “SAMPLE™ MODE TO LOOK FOR A NEW START BIT - THAT 1S
ENOUGH TIME TO PERFORM A FEVW THOUSAND. INSTRUCTIONS ON AN 8088 SYSTEMI

A SAMPLE ROUTINE FOR RECEIVING. INFORMATION FROM A DEVICE. IN ACCORD-
ANCE WITH THE ABOVE DIAGRAM, ASSUMING THAT THE TIME SPAN MARKED "C™ IN
THE ABOVE DIAGRAM WAS 10 MILLISECONDS, AND THAT MARKED “D™ WAS 20 MILLI~
SECONDS IS ILLUSTRATED NEXT. THE READER MAY NOTE THAT IT IS ESSENTIALLY
AN EXPANDED VERSION OF A “SERIAL TO PARALLEL®" ROUTINE WITH INSTRUCTIONS
T0 CONTROL THE TIMING ADDED.

MNEMONIC ' COMMENTS
BDIN, LBl 888 /CLEAR_ INCOMING FORMING & STORAGE REGISTER
LC1 083 /SET BIT COUNTER
STRTIN, INP X ~ /LOOK FOR “START” BIT
NDI 208 /MASK OFF. IRRELEVANT DATA
/7 36 JTS STRTIN /IF NO START BIT, FORM “SAMPLING LOOP*
+ 9796 CAL HDELAY /IF FIND LOSIC "0 ASSUME START, DELAY
INP X /TO MIDDLE OF START UNIT & VERIFY RECEIPT
NDI 200 /0F A START BIT BY MAKING APPROPRIATE TEST
/7 AA JTS STRTIN /IF NOT "6" HERE ASSUME FALSE START
* 20 CAL DUMMY /STRETCH THE DELAY A LITTLE
JMP MORBDI /STRETCH THE DELAY A LITTLE MORE
+19748 MORBDI, CAL. IDELAY /MAIN. DELAY LOOP = ALMOST | FULL TIME UNIT
INP X /GET NEXT BIT
NDI 260 /TRIM TO JUST DESIRED DATA BIT
RAL ‘ /SAVE INCOMING BIT. IN CARRY FLAG
LAB . /GET ANY PREVIOUS BITS
RAR /ROTATE NEV BIT FROM CARRY INTO REGISTER
LBA /SAVE IN REGISTER "B"
DCC /DECREMENT BITS COUNTER
/7 36 JFZ MORBDI /DELAY & FETCH NEXT INCOMING BIT

PRTEBRIREERIORREERR

77

MNEMONIC COMMENTS

20 RRC /HAVE ALL S BAUDOT BITS = RIGHT JUSTIFY
290 RRC /IN ACCUMULATOR BY ROTATES

20 RRC /BEFORE PREPARING TO EXIT RTN

M+ 9796 CAL HDELAY /OPTIONAL DELAY TO MAKE SURE INTO “STOP"
aa + 20 CAL DUMMY /PART OF OPTIONAL DELAY

A + 20 CAL DUMMY /PART OF OPTIONAL DELAY

28 RET /UN1TS AREA BEFORE EXITING ROUTINE

32 IDELAY, LDI 215 /SET TIME LOOP COUNTER

12 . RTS /TRIM TIME - CONDX NEVER MET

A + 20 RDELAY, CAL DUMMY /TIME CONSUMING LOOP

20 DCD /DECREMENT COUNTER

12 7 28 RTZ /EXIT TO CALLING RTN WHEN CNTR = @

a JMP RDELAY /OTHERVISE CONTINUE USING UP TIME

3 HDELAY, LDI 1066 /SET TIME LOOP COUNTER

Al . JMP RDELAY /GO USE UP ABOUT 1/2 A TIME UNIT

20 DUMMY, RET /SHORT RTN TO USE UP TIME

VHILE THE ABOVE ROUTINE IS SIMILAR IN MANY RESPECTS TO THE ONE DES~-
CRIBED EARLIER FOR TRANSMITTING DATA FROM THE COMPUTER, SEVERAL DIFFER-
INT FEATURES WILL BE HIGH~LIGHTED. FIRST, THE READER CAN NOTE THAT THE
PROGRAM EXPECTS DATA TO BE ARRIVING AT THE MOST SIGNIFICANT BIT POSITION
OF THE ACCUMULATOR (AS IN THE SERIAL TO PARALLEL ROUTINE IN THE PREVIOUS
CHAPTER) . i

NEXT, THE READER SHOULD NOTE THAT THE THREE INSTRUCTIONS STARTING AT
THE LABEL *“STRTIN" FORM A “LOOP"™ TO TEST FOR A "START" BIT ARRIVING FROM
THE INPUT PORT. THE READER CAN SEE THAT THE LOOP REQUIRES 108 MICRO-
SECONDS TO EXECUTE AND THUS IT IS POSSIBLE FOR A START UNIT TO HAVE BEEN
PRESENT FOR ALMOST THAT LENGTH OF TIME BEFORE IT IS DETECTED. FOR IN-
STANCE, IF THE START PULSE ACTUALLY STARTED JUST A MICROSECOND AFTER THE
“INP X" INSTRUCTION AT “STRTIN" WAS EXECUTED, THAT PULSE WOULD NOT BE
DETECTED UNTIL THE "INP X" INSTRUCTION VWAS EXECUTED ON THE NEXT ROUND.
HOVEVER, IT 1S ALSO POSSIBLE FOR THE PROGRAM TO DETECT THE START BIT AT
JUST ABOUT THE INSTANT IT ACTUALLY HAPPENS - THUS, THERE CAN BE A VARI-
ATION IN DETECTING THE BEGINNING OF THE “START" TIME UNIT OF ABOUT 188
MICROSECONDS. NOW, THE ACTUAL DETECTION OF THE START PULSE IS USED AS
A REFERENCE FOR "DELAYING®” TO THE MIDDLE OF THE TIME UNIT IN ORDER TO
“SAMPLE"” THE REMAINING BITS. IN THE DESIRED REGION. ON THE AVERAGE, ONE
COULD ASSUME THAT THE START PULSE WAS DETECTED. IN ABOUT THE MIDDLE OF
THE POSSIBLE RANGE OF VARIATION, WHICH WOULD BE ABOUT 54 MICROSECONDS
AFTER THE PULSE ACTUALLY STARTED. THIS INFORMATION IS USED TO ESTABLISH
APPROXIMATELY HOWV LONG THE "HDELAY"™ LOOP SHOULD BE IN ORDER TO GET
CLOSE TO THE THEDRETICAL MIDDLE OF A TIME UNIT. THUS, IF ONE ASSUMES
THAT ON AN AVERAGE, THE START PULSE 1S DETECTED 54 MICROSECONDS AFTER IT
BEGAN, AND ONE ADDS 144 MICROSECONDS FOR THE EXECUTION OF THE INSTRUC-
TIONS FROM “STRTIN"™ TO THE “CAL HDELAY.,*” ONE CAN DETERMINE THAT “HDELAY"
NEEDS TO CONSUME 9862 MICROSECONDS. THE VALUE 9796 ACTUALLY DEVELOPED
WAS A “CLOSE ENOUGH™ COMPROMISE FOR THE SITUATION.

ANOTHER AREA OF INTEREST NEAR THE END OF THE MAIN ROUTINE IS MARK-
ED BY THE COMMENTS AS AN “OPTIONAL DELAY TO MAKE SURE INTO *“STOP*™ UNITS
AREA BEFORE EXITING ROVUTINE."™ AS POINTED OUT FARLIER, AFTER THE FIVE
DATA BITS HAVE BEEN SAMPLED THE COMPUTER HAS QUITE A BIT OF TIME - UP
TO ABOUT S# MILLISECONDS IN WHICH TO PERFORM SOME OQTHER FUNCTIONS BE-

7 -8

CAUSE THE MODEL MACHINE WOULD BE UNABLE TO SEND A NEW “START" PULSE
UINTIL IT HAD COMPLETED IT'S CYCLE DENOTED BY THE TWO STOP UNITS IN THE
DIAGRAM. HOVEVER, IN SOME INSTANCES, THE COMPUTER MAY NOT REQUIRE ANY
WHERE NEAR THAT LENGTH OF TIME TO PROCESS THE CHARACTER JUST RECEIVED.
IN SUCH CASES, THE PROGRAMMER WOULD WANT TO MAKE SURE THE PROGRAM DID
NOT START "LOOKING" FOR A NEVW START BIT BEFORE THE LAST "DATA™ BIT HAD
BEEN COMPLETED. THE “OPTIONAL" HALF UNIT DELAY ENSURES IN SUCH A CASE
THAT THE MACHINE WOULD BE IN IT'S "STOP UNITS" PHASE, WHICH BY PREV-
I0US DEFINITION WOULD BE A LOGIC “1" CONDITION, BEFORE 1T BEGAN "“LOOK-
ING* FOR A NEV LOGIC "@" CONDITION SIGNIFYING A NEW START PULSE.

FINALLY, THE READER MIGHT TAKE NOTE OF AN INTERESTING "TRICK" TO GET
A RATHER SHORT ADDITIONAL DELAY BY THE USE OF THE “RTS*" INSTRUCTION AS
THE SECOND COMMAND IN THE “IDELAY" SUBROUTINE. A CONDITIONAL RETURN. IN~-
STRUCTION WHEN THE CONDITION 1S NOT MET IS THE ONLY TYPE OF COMMAND THAT
WILL USE BUT 12 MICROSECONDS OF TIME. THE “RTS" INSTRUCTION INSERTED AT
THAT POINT VWILL NEVER HAVE THE TRUE CONDITION MET AS THE READER MAY VER~-
IFY BY CLOSE EXAMINATION OF THE POSSIBLE CONDITION OF THE "SIGN" FLAG
WHENEVER THAT INSTRUCTION IS EXECUTED. IT IS A 600D TECHNIQYE TO REMEM-
BER IF A 12 MICROSECOND DELAY IS REQUIRED BUT THE PROGRAMMER MUST MAKE
CERTAIN THAT THE CONDITION WILL NEVER BE SATISFIED WHEN USED FOR THAT
PURPOSE! (REMEMBER, VIRTUALLY ALL OTHER TYPES OF INSTRUCTIONS TAKE UP
AT LEAST 20 MICROSECONDS OF EXECUTION TIME IN A NOMINALLY ADJUSTED 8@68
SYSTEM) .

AS ANOTHER EXAMPLE OF THE DETAILS OF REAL-TIME PROGRAMMING, THE
ABOVE EXAMPLE VILL BE EXPANDED TO DEMONSTRATE HOW THE PROGRAM COULD BE
IMPROVED TO INCREASE THE RELIABILITY OF RECEIVING CORRECT DATA FROM THE
EXTERNAL MACHINE. AS MANY READERS MAY KNOW, THE INCOMING DATA FROM AN
ELECTRO~-MECHANICAL MACHINE SUCH AS A TELETYPE MAY BE "NOISY."™ THAT IS,
A SIGNAL THAT 1S SUPPOSED TO BE, FOR INSTANCE, IN THE LOGIC *"1" STATE
FOR AN ENTIRE UNIT OF TIME MAY OCCASIONALLY GO TO THE *8*" CONDITION FOR
SMALL FRACTIONS OF A UNIT OF TIME, OR VICE-VERSA. IN THE ABOVE PROGRAM
THE COMPUTER °''SAMPLES"™ FOR THE STATE OF THE INCOMING SIGNAL JUST ONCE
IN EACH UNIT OF TIME. 1IF BY CHANCE IT SHOULD SAMPLE THE SIGNAL AT THE
MOMENT THAT *NOISE™ WAS PRESENT, INCORRECT DATA COULD BE RECEIVED. IN
A "CRITICAL" APPLICATION, IT MIGHT BE DESIRABLE TO REDUCE THE CHANCE OF
SUCH AN ERROR OCCURING. THIS COULD BE DONE BY "SAMPLING" THE INCOMING
SIGNAL SEVERAL TIMES DURING EACH UNIT OF TIME AND COMPUTING AN AVERAGE
OF THE "VALUE* RECEIVED TO DETERMINE WHETHER THE SIGNAL WAS TRULY IN A
1 OR 8" STATE. FOR INSTANCE, ONE COULD ELECT TO “SAMPLE" THE S1G-
NAL FIVE TIMES NEAR THE “MIDDLE" OF EACH UNIT OF TIME AND THEN MAKE A
DECISION AS TO WHETHER THE SIGNAL WAS A 1" OR A “@" BY DETERMINING
WHICH STATE VAS DETECTED 3 OR MORE OUT OF THE S SAMPLED TIMES. SUCH A
“SAMPLING" METHOD WOULD GREATLY REDUCE THE CHANCES OF "NOISE"™ CAUSING
AN INCORRECT SIGNAL LEVEL TO BE RECEIVED.

THE TIME DIAGRAM AT THE TOP OF THE NEXT PAGE ILLUSTRATES A SIGNAL
VITH THE UPWARD ARROWS ALONG THE BOTTOM OF THE DIAGRAM REPRESENTING THE
MULTIPLE SAMPLING POINTS IN EACH UNIT OF TIME. DEVELOPING A PROGRAM TO
GIVE THE IMPROVED PERFORMANCE 1S NOT DIFFICULT BUT IT DOES REQUIRE A
FEW MORE TIME RELATED CONSIDERATIONS WHEN DEVELOPING THE "SOFTWARE."
THESE ILLUSTRATIONS WILL BE POINTED OUT IN THE DISCUSSION THAT FOLLOWS.

. TO BEGIN DEVELOPMENT OF THE MULTIPLE-SAMPLING PROGRAM A MAJOR SUB-
ROUTINE WAS DEVELOPED THAT WOULD PERFORM THE TASK OF “SAMPLING" FIVE
TIMES IN SUCCESSION, KEEPING TRACK OF WHETHER A *|" OR "@*" WAS RECEIV-
ED, AND FINALLY DETERMINING WHICH STATE WAS RECEIVED MOST OFTEN. THE
SUBROUTINE VITH EXECUTION TIMES FOR EACH INSTRUCTION 1S PRESENTED AFTER
THE DIAGRAM ON THE NEXT PAGE. THE READER MIGHT PAY SPECIAL ATTENTION TO
THE MANNER IN VHICH THE "PREDOMINANT®" SIGNAL STATE WAS DETERMINED.

7 -9

| START|] 1 | 2 | 3 | 4 | S | SToPi | STOP2 |

£C
P2

0 i o i 0 i 1 1

B M M M it

TIMING DIAGRAM FOR MULTIPLE SAMPLING OF INCOMING SIGNAL

MNEMONIC COMMENTS
32 SAMPLE, LDl @05 /SET COUNTER FOR NUMBER OF SAMPLES
32 LEl 377 /7SET UP REG "E" FOR STORING SIGNAL STATE
32 BITEST, INP X /SAMPLE CURRENT SIGNAL ON INPUT LINE
32 NDI 288 . /MASK OFF UNUSED INPUT LINES
aa 7 36 CTS PLUSE /INCREMENT “E" IF SIGNAL A LOGIC "1"
32 ' NDI 200 /RESTORE FLAGS TO REFLECT ACC CONTENTS
36 /7 AA CFS MINUSE /DECREMENT “E" IF SIGNAL A LOGIC "e"
28 DCD /DECREMENT SAMPLING COUNTER
a4 /7 36 dFZ BITEST /SAMPLE AGAIN IF COUNTER NOT = @
28 LAE /WHEN HAVE S SAMPLES PLACE “E" INTO ACC
32 NDI 200 /JMASK OFF ALL BUT MOST SIGNIFICANT BIT
20 RET /EX1IT W1ITH PREDOM SIG STATE IN MSB OF ACC
20 PLUSE, INE /INCREMENT REGISTER “E"
29 RET /EXIT
20 MINUSE, DCE /DECREMENT REGISTER “E"
20 ’ RET /7EXIT)

INFORMATION REGARDING THE AMOUNT OF TIME REQUIRED TO EXECUTE POR-
TIONS OF THE "MULTIPLE SAMPLING'" ROUTINE JUST PRESENTED IS REGUIRED

BEFORE THE OVER-ALL ROUTINE CAN BE DEVELOPED FOR REASONS THAT WILL SOON
BE APPARENT.

THE READER CAN CONFIRM THAT THE TIME BETWEEN EACH OF THE FIVE SAM-
PLES VWILL BE 280 MICROSECONDS FOR A TYPICAL 80088 SYSTEM REGARDLESS OF
WHAT SIGNAL STATE VWAS RECEIVED. . IT IS IMPORTANT TO NOTICE HOV THE
SAMPLING ROUTINE WAS "BALANCED" BY THE APPROPRIATE CHOICE OF INSTRUC-
TIONS SO THAT THE RECEIPT OF EITHER SIGNAL STATE RESULTS IN THE SAME
TOTAL TIME TO EXECUTE THE "SAMPLING LOOP.* IF THIS REQUIREMENT VWERE
NOT MET THE PROGRAMMER WOULD HAVE QUITE A "HEAD-ACHE"™ TRYING TO DEVEL-
OPE AN ACCURATE ROUTINE BASED ON ALL THE POSSIBLE COMBINATIONS OF *1“
AND @' SIGNAL STATES THAT COULD BE RECEIVED!

THE READER SHOULD ALSO TAKE NOTE THAT THE "“SET UP™ TIME, THAT IS THF
TIME TO EXECUTE THE INSTRUCTIONS FROM THE LABEL “SAMPLE" TO “BITEST"
PLUS THE TIME TO ACTUALLY *“CALL" THE SUBROUTINE WOULD REGUIRE 108 MICRO-
SECONDS. THAT 1S, IT WILL TAKE 108 MICROSECONDS FROM THE TIME THE PRO-

GRAM STARTS TO “CALL™ THE SUBROUTINE UNTIL THE FIRST “INP X* INSTRUCTION
1S ENCOUNTERED.

ADDITIONALLY, THE READER SHOULD NOTE THAT IT WILL REQUIRE 344 MICRO-
SECONDS FROM THE TIME THE $°'TH SAMPLE 1S TAKEN UNTIL THE SUBROUTINE I8

T =18

ACTUALLY EXITED!

IT IS IMPORTANT TO KNOW THESE RELATIONSHIPS S0 THAT THE ENTIRE SUB-
ROUTINE CAN BE PROPERLY LOCATED WITHIN A TIME FRAME. FOR INSTANCE,
SINCE IT WOULD BE DESIRABLE TO HAVE THE 3°'RD "SAMPLE"™ TAKE PLACE AT THE
THEORETICAL "MIDDLE" OF A “UNIT OF TIME" 1T VWILL BE NECESSARY TO START
“CALLING" THE '"SAMPLE" SUBROUTINE WHEN THERE ARE ABOUT 668 MICROSECONDS
REMAINING BEFORE THE THEORETICAL MIDDLE OF THE “UNIT OF TIME." THIS IS
BFCAUSE IT WILL REQUIRE 108 MICROSECONDS TO "CALL" AND “SET UP*" THE SAM-
PLING SUBROUTINE, PLUS 280 MICROSECONDS BETWEEN THE 1°'ST AND 2°'ND SAMPLE
AND ANOTHER 280 MICROSECONDS BETWEEN THE 2°'ND AND 3°RD SAMPLE.

SIMILARLY IT IS IMPRTANT TO XKNOV THAT THERE WILL BE 904 MICROSECONDS
FROM THE TIME THE 3°RD SAMPLE IS TAKEN UNTIL THE ROUTINE IS EXITED. AS,
260 MICROSECONDS VWILL BE TAKEN BETWEEN SAMPLE NUMBER 3 AND 4, ANOTHER
280 MICROSECONDS BETWEEN SAMPLE 4 AND $, AND AN ADDITIONAL 344 MICRO-
SECONDS FROM SAMPLE NUMBER § TO THE TIME THE ROUTINE IS EXITED.

WITH THIS INFORMATION NOW AVAILABLE ONE CAN CALCULATE HOW MUCH TIME
SHOULD BE USED FROM THE TIME A START BIT IS RECEIVED UNTIL IT IS TIME TO
“CALL" THE "SAMPLE" SUBROUTINE SO THAT THE 3°'RD SAMPLE POINT VILL BE IN
THE MIDDLE OF A "“UNIT OF TIME."” AND, AFTFR THAT, HOW MUCH DELAY TO PRO-
VIDE FROM THE TIME THE *SAMPLE" SUBROUTINE 1S EXITED IN ONE UNIT OF TIME
UNTIL IT IS TO BE CALLED AGAIN TO SAMPLE THE SIGNAL IN THE MIDDLE RANGE
OF THE NEXT UNIT OF TIME.

IN A SITUATION SUCH AS THE ONE BEING DISCUSSED, 1T 1S OFTEN HELPFUL
TO PRODUCE AN "EXPANDED TIMING DIAGRAM" TO ILLUSTRATE SMALLER PORTIONS
OF “CRITICAL" TIME RELATIONSHIPS. AN EXPANDED DIAGRAM SHOWING THE iIN-
FORMATION #UST DERIVED AS IT APPLIES TO THE "START"™ BIT AND THE 1°ST
“DATA* BIT OF THE EXAMPLE INCOMING SIGNAL IS SHOWN BELOW.

START 1
5

Y terr

54 - 668+ 704 66851 104
9,374 18,428 .

f¢—— 10,000 20,000 >

JL

EXPANDED TIMING DIAGRAM

_ VITH THE TIMING REQUIREMENTS OF THE “SAMPLE"™ SUBROUTINE KNOVN, THE

APPROPRIATE DELAYS TO PLACE THE "SAMPLING" SUBROUTINE SUCH THAT THE 3°'RD
SAMPLE IS AT THE MIDDLE OF A “UNIT OF TIME" CAN BE ASCERTAINED AS SHOWN
ON THE ABOVE EXPANDED DIAGRAM. IT IS THEN A RELATIVELY EASY MATTER TO
MODIFY THE PROGRAM PREVIOUSLY DEVELOPED FOR THE CASE WHEN ONLY A SINGLE
SAMPLE WAS TAKEN PER TIME UNIT SO THAT IT "CALLS" THE “SAMPLE" SUBROUT-
INE. AN EXAMPLE OF SUCH A ROUTINE IS PRESENTED NEXT.

7« 11

MNEMONIC - COMMENTS

L L 1 2 X 2 T 2 1L ¥ 3 L X 2 L X X L T & X X 2 4 J

BDIN, LBl 000 7/CLEAR INCOMING FORMING & STORAGE REGISTER

LC1 908§ /SET BIT COUNTER

K STRTIN, INP X /LOOK FOR “START" BIT

32 ‘ND1 200 /MASK OFF IRRELEVANT DATA

aA /7 36 TS STRTIN /1F NO START BIT, FORM “SAMPLING LOOP*

A4 + 9184 'CAL HDELAY /1F FIND LOGIC "@" ASSUME START, DELAY

AL + 1828 CAL SAMPLE /AND THEN DO MULTIPLE SAMPLE ON START BIT

36 /7 AA 4TS STRTIN /IF RESULT NOT "0 ASSUME FALSE START

AL + 20 CAL DUMMY /ADD COMPENSATING DELAY BEFORE ENTERING

20 NDA /MAIN "DATA"™ SAMPLING ROUTINE

20 NDA " /WITH THESE THREE INSTRUCTIONS

Aa+1824@ MORBDI, CAL IDELAY /EXECUTE MAIN DELAY LOOP

A + 1§28 CAL SAMPLE /MULTIPLE SAMPLE ROUTINE ON "DATA"™ BITS

20 RAL /SAVE RESULTING STATE IN CARRY FLAG

20 LAB /GET ANY PREVIOUS BITS

29 RAR /JROTATE NEVW BIT FROM CARRY INTO ACC

20 LBA /SAVE FORMATION IN REGISTER "“B*

20 'DCC /DECREMENT BITS COUNTER

aa /7 36 'dFZ MORBDI /DELAY & THEN FETCH NEXT "“DATA" BIT

29 RRC /HAVE ALL § "DATA" BITS - RIGHT JUSTIFY

20 RRC /71N ACCUMULATOR BY ROTATES

20 RRC /BEFORE PREPARING TO EXIT

aa + 9184 CAL HDELAY /OPTIONAL DELAY TO REACH *“STOP" AREA

20 RET /EXIT BAUDOT INPUT ROUTINE

a2 I1DELAY, LDI 202 /SET TIME LOOP COUNTER

20 NDA /TRIM TIME DELAY

20 NDA /TRIM TIME DELAY

44 + 280 RDELAY, CAL DUMMY /TIME CONSUMING LOOP

20 DCD /DECREMENT COUNTER

12 7 28 - RTZ /EXIT TO CALLING RTN WHEN CNTR = @

an JMP RDELAY /OTHERVISE CONTINUE USING UP TIME

a2 HDELAY, LDI 161 /SET TIME LOOP COUNTER

29 NDA /TRIM TIME DELAY

20 NDA /TRIM TIME DELAY .

AL JMP RDELAY /GO USE UP MORE TIME

29 DUMMY, RET /SHORT RTN TO USE UP TIME

THE INFORMATION PRESENTED TO THIS POINT IN THE CHAPTER HAS BEEN CON-
CERNED WITH ILLUSTRATING TECHNIGQUES TO COORDINATE THE EXECUTION OF A
PROGRAM VWITH THE TIMING REQUIREMENT OF AN EXTERNAL DEVICE, THROUGH THE
METHOD OF PROVIDING TIME DELAYS, TO EFFECTIVELY *SLOW DOWN' THE EXECU-
TION OF A PROGRAM. HOVEVER, ANOTHER ASPECT OF REAL-TIME PROGRAMMING IN-
VWLVES ESSENTIALLY THE OPPOSITE OBJECTIVE. THAT IS TO OBTAIN MAXIMUM
SPEED OF OPERATION FROM A COMPUTER PROGRAM SO THAT 1T MAY HANDLE EVENTS
THAT MIGHT BE OCCURING QUITE RAPIDLY. THE BALANCE OF THIS CHAPTER WILL
PRESENT SEVERAE BASIC GUIDE LINES FOR “STREAMLINING" THE OPERATION OF A
PROGRAM TO OBTAIN MAXIMUM SPEED OF EXECUTION.

PERHAPS THE FIRST POINT TO PRESENT IS THAT THERE IS A COROLLARY BE-
TVEEN OBTAINING MAXIMUM OPERATING SPEED AND THE AMOUNT OF MEMORY REOUIR-
ED BY THE PROGRAM THAT MAY AT FIRST SEEM A LITTLE STRANGE. THAT 1S, AS
ONE ATTEMPTS TO PROGRAM AN 8808 SYSTEM TO EXECUTE A PROGRAM THAT WILL
PERFORM A FUNCTION IN A MINIMUM AMOUNT OF TIME, ONE GENERALLY WILL IN-
CREASE THE AMOUNT OF MEMORY NEEDED TO STORE THE OPERATING PROGRAM. THE

7 - 12

REASON FOR THIS RELATIONSHIP IS THAT STREAMLINING A PROGRAM GENERALLY
REQUIRES THE ELIMINATION OR REDUCTION IN THE USE OF *“LOOPS™ AND SUBROUT-
INES, WHICH, THE READER MAY RECALL, WERE EARLIER STRESSED FOR THEIR AB-
ILITY TO SAVE MEMORY STORAGE SPACE! '

TO ILLUSTRATE HOV THE ELIMINATION OF "LOOPS"” CAN DRAMATICALLY REDUCE
THE TIME REQUIRED TO EXECUTE A SPECIFIC FUNCTION, CONSIDER THE EXAMPLE
PRESENTED NEXT. IN THIS CASE, A PROGRAMMER NEEDS TO LOAD THREE CONSECU~
TIVE WORDS IN MEMORY WITH THE CONTENTS OF THE AGCUMULATOR IN AS LITTLE
TIME AS POSSIBLE. A ROUTINE USING A “LOOP" MIGHT BE AS SHOWN HERE:

32 LBl 003
28 AGAIN, LMA

20 INL

20 DCB
AKL/36 JFZ AGAIN

THE READER MAY EASILY CALCULATE THAT THE TOTAL TIME REQUIRED TO EXEC~-
UTE THE ABOVE LOOP WOULD BE 360 MICROSECONDS. A ROUTINE THAT DID NOT
USE A LOOP COULD BE EXECUTED IN ABOUT 1/3 THE TIME IN THIS PARTICULAR
CASE AS ILLUSTRATED NEXT:

28 LMA
20 INL
28 LMA
20 INL

28 LMA

THE "STRAIGHT™ ROUTINE ONLY REQUIRES 124 MICROSECONDS TO DO THE SAME
J0B. WHILE THE COROLLARY MENTIONED ABOVE MIGHT NOT SEEM EVIDENT WHEN
SUCH A SHORT LOOP IS INVOLVED, CONSIDER THE SAME CASE IF 20 LOCATIONS
IN MEMORY WERE TO BE LOADED WITH THE DATA IN THE ACCUMULATOR. ONE CAN
CALCULATE THAT THE LOOP METHOD WOULD ONLY REQUIRE 8 (DECIMAL) LOCATIONS
IN MEMORY FOR THE OPERATING PORTION OF THE PROGRAM AND WOULD EXECUTE
THE PROGRAM IN 2264 MICROSECONDS. ON THE OTHER HAND, THE *“STRAIGHT"
ROUTINE METHOD VWOULD REQUIRE SOME 39 LOCATIONS IN MEMORY FOR STORAGE OF
THE OPERATING PROGRAM, BUT THAT “STRAIGHT" ROUTINE WOULD BE EXECUTED IN
A MERE 940 MICROSECONDS.

THE ELIMINATION OF SUBROUTINES CAN ALSO GREATLY SPEED UP THE OPERA-
TION OF A CRITICAL PORTION OF A PROGRAM AS SHOWN BY THE FOLLOVING EXAM-
PLE. THE FOLLOWING "“SUBROUTINE" METHOD MIGHT BE USED AS PART OF A PRO-
GRAM THAT WAS TO RAPIDLY OUTPUT THE CONTENTS OF THE ACCUMULATOR AS A
SERIES OF OCTAL DIGITS. l.E., THE OUTPUT DEVICE WOULD ONLY RECEIVE THE
THREE LEAST SIGNIFICANT BITS IN THE ACCUMULATOR.

24 ouT X

A4 + 80 CAL ROTAND
24 ouUT X

AA + 88 CAL ROTAND
24 OouT X

16 HLT

'HEREvTHE'SBBBOUTINE “ROTAND" APPEARS AS:

20 ROTAND, RAR

20 RAR
29 RAR
20 RET

ONE CAN CALCULATE TMAT EXECUTING THE ABOVE “SUBROUTINED" PROGRAM WOULD

7 - 13

REQUIRE 336 MICROSECONDS. “THE "STRAIGHT" PROGRAM METHOD SHOWN BELOV ON-
LY REQUIRES 208 MICROSECONDS TO DO THE SAME FUNCTION.

24 ouUT X
20 RAR
20 RAR
20 RAR
24 ouT X
20 RAR
20 RAR
20 RAR
24 . 0UT X
16 HLT

WHIEE THE ABOVE EXAMPLE DOES NOT SUPPORT THE “MEMORY USAGE CORALL-~-
ARY" ONE CAN SEE THAT IF THE SUBROUTINE VERE SOMEVHAT LONGER - SAY IT
CONTAINED EIGHT OR NINE INSTRUCTIONS, THAT THE CORALLARY WOULD BE TRUE.

ANOTHER RULE OF THUMB TO APPLY TOWARDS DEVELOPING PROGRAMS TO OPER~
ATE IN A MINIMUM AMOUNT OF TIME IS TO DO AS MUCH WORK AS POSSIBLE WITH
CPU REGISTERS INSTEAD OF WITH MEMORY. FOR INSTANCE, SUPPOSE ONE HAD AN
INSTRUMENT INTERFACED TO A 8088 SYSTEM THAT PERIODICALLY NEEDED TO SEND
A SHORT "BURST" OF DATA TO THE COMPUTER FOR STORAGE. FOR TECHNICAL CON-
SIDERATIONS ASSUME THAT IT WAS DESIRED TO RECEIVE THE “BURST" AS RAPID-
LY AS POSSIBLE, AFTER WHICH THE COMPUTER WOULD HAVE SOME "IDLE" TIME TO
PROCESS THE DATA. ONE CAN READILY SEE BY THE FOLLOWING EXAMPLE THAT IT
VILL TAKE MUCH LESS TIME TO STORE, SAY FOUR “CHARACTERS" IN CPU REGIS-
TERS, THAN TO STORE THE SAME AMOUNT DIRECTLY IN MEMORY. A ROUTINE TO
STORE THE CHARACTERS DIRECTLY IN MEMORY WOULD REQUIRE:

3g INP X
28 LMA
20 INL
32 INP X
28 LMA
20 INL
32 INP X
28 LMA
20 INL
32 INP X
28 LMA

OR A TOTAL OF 300 MICROSECONDS. STORING THE DATA IN CPU REGISTERS WOULD
ONLY REQUIRE 216 MICROSECONDS USING THE FOLLOWING ROUTINE.

32 ‘ INP X
2@ LBA
32 INP X
20 LCA
32 INP X
20 LDA
32 INP X
20 ' LEA

THE FACTOR THAT MIGHT BE PARTICULARLY VALUABLE IN A "TIME-TIGHT" APPLI-
CATION 1S THAT EACH CHARACTER IN THE SECOND ROUTINE COULD BE ACCEPTED

AT $2 MICROSECOND INTERVALS 'VHILE THE FIRST ROUTINE COULD NOT ACCEPT THE
CHARACTERS AT A RATE FASTER THAN EVERY 88 MICROSECONDS. NATURALLY, THE
ABOVE EXAMPLE 1S STRICTLY LIMITED T0 THE CASE WHERE VERY SHORT “BURSTS"
ARE BEING HANDLED AS THERE ARE A LIMITED NUMBER OF CPU REGISTERS AVAIL-
ABLE IN WHICH TO STORE DATA. HOWEVER, THE PRINCIPLE CAN BE VALUABLE.

1

7T~ 14

THE CONCEPT OF UTILIZING CPU REGISTERS AS MUCH AS POSSIBLE CAN BE
EXTENDED TO A VARIETY OF APPLICATIONS BESIDES THE ONE ILLUSTRATED ABOVE.
FOR INSTANCE, 1T 1S OFTEN ADVANTAGEOUS TO SET UP CPU REGISTERS IN AD-
WANCE OF A "CRITICAL" TIME PERIOD IN ORDER TO STREAMLINE A PROGRAM DUR-
ING SELECTED OPERATING PERIODS. FOR INSTANCE, SUPPOSE ONE NEEDED TO IN-
PUT DATA AT A FAST RATE AND ALSO PERFORM SOME MANIPULATION OF THE DATA.
SUCH AS, PERFORM A TWO'S COMPLEMENT OPERATION ON THE DATA AND THEN DEPO-
SIT THE DATA IN MEMORY. ONE WAY TO DEVELOP THE ROUTINE WOULD BE AS FOL-
LOVS:

32 RECEIV, INP X

3e ND1 377

K} AD1 081

28 LMA

29 INL

A4/36 JFZ RECEILV

THE ABOVE ROUTINE COULD HAVE THE TIME FACTOR DECREASED BY ABOUT 12
PERCENT IF, PRIOR TO ENTERING THE "LOOP" (A NECESSARY EVIL IN THIS EX-
AMPLE BECAUSE A "LARGE"™ BLOCK OF DATA IS HYPOTHETICALLY BEING PROCESSED)
ONE FIRST SET CPU REGISTER “B™ TO CONTAIN *"377" AND CPU REGISTER "“C" TO
HOLD *@81.," AND USED THE ROUTINE SHOWN NEXT.

3g RECEIV, INP X

20 NDB
20 ADC
28 LMA
20 ~INL
44/36 ' JFZ RECEIV

A FEW CLOSING COMMENTS ON THE SUBJECT OF “STREAMLINING"™ REAL-TIME
PROGRAMS WOULD INCLUDE THE MENTION THAT IF “SUBROUTINES"™ ARE NECESSARY,
TO USE THOSE VALUABLE "RESTART" COMMANDS WHICH ONLY REQUIRE 20 MICRO-
SECONDS FOR AN EFFECTIVE “CALL" INSTEAD OF 44 MICROSECONDS. ADDITION~-
ALLY, THE PROGRAMMER SHOULD PAY STRICT ATTENTION TO OVER-ALL PROGRAM OR-
GANIZATION IN ORDER TO REDUCE TIME CONSUMING "QUVERHEAD" OPERATIONS, OR
AT LEAST TO DEFER SUCH OPERATIONS FOR EXECUTION DURING NON-CRITICAL TIME
PERIODS. :

FINALLY, REAL-TIME PROGRAMMING IS AN AREA WHERE THE CREATIVE PROG-
RAMMER CAN HAVE A LOT OF FUN. EXPERIMENT, LOOK FOR NEW METHODS TO SOLVE
A PARTICULAR PROBLEM - YOU MAY FIND A BETTER, FASTER WAY! SUCH AS:

HAVE THE FIRST INSTRUCTION OF THE ABOVE ROUTINE LOCATED AT THE ADD-
RESS OF RESTART LOCATION *X,* MODIFY THE ROUTINE AS ILLUSTRATED, AND CUT
ANOTHER 7 PERCENT OFF THE REQUIRED EXECUTION TIME OF THE ROUTINE!

32 INP X"
20 NDB
20 ADC
28 LMA
20 INL
12726 RTZ
20 RST "X»

7T-18

PROM PROGRAMMING CONSIDERATIONS

FOR READERS WHO MAY NOT BE FAMILIAR WITH THE ABBREVIATION, A "PROM"
IS A "PROGRAMMABLE READ-ONLY MEMORY"™ ELEMENT. A PROGRAMMABLE READ-ONLY
MEMORY ELEMENT IS AN ELECTRONIC DEVICE THAT CAN BE “PROGRAMMED™ WITH A
PROGRAM USING A SPECIAL INSTRUMENT SO THAT IT CONTAINS A “PERMANENT"
PROGRAM. SOME "PROM™ ELEMENTS CAN BE “ERASED"™ AND RE-PROGRAMMED BY US-
ING SPECIAL INSTRUMENTS WHICH ARE GENERALLY TOO EXPENSIVE FOR THE AVER=~
AGE USER TO HAVE READILY AVAILABLE., WHEN THE "PROGRAMS* IN SUCH ELE-
MENTS NEED TO BE CHANGED IT IS GENERALLY NECESSARY TO SEND THE DEVICE
BACK TO THE MANUFACTURER OR REPRESENTATIVE FOR PROCESSING.

THE KEY FEATURE THAT A “READ-ONLY MEMORY* ELEMENT HAS OVER A “RAM"
(READ AND WRITE MEMORY) DEVICE 1S THAT ONCE A PROGRAM HAS BEEN PLACED IN
A “ROM"™ IT 1S NON-VOLATILE, OR PERMANENT, A SEMI-CONDUCTOR "RAM™ DEVICE
WILL LOSE IT*S CONTENTS IF POWER IS REMOVED FROM THE DEVICEe. A "ROM"™
WILL RETAIN THE INFORMATION PLACED IN IT 1F POWER IS REMOVEDe THUS, THE
"ROM™ IS AN IDEAL MEMORY DEVICE IN WHICH TO STORE PROGRAMS THAT ARE PER~
MANENT IN NATURE OR THAT HAVE FREQUENT USE IN A SYSTEM WHERE POVER MAY
FREQUENTLY BE REMOVEDe IT ELIMINATES THE PROCESS OF HAVING TO *“LOAD"
PROGRAMS BACK INTO MEMORY WHEN A COMPUTER SYSTEM IS INITIALLY “POWERED-
UP" FOR A PERIOD OF OPERATION,

THE KEY DISADVANTAGE OF THE "ROM" 1S THAT THE COMPUTER CANNOT ALTER
THE CONTENTS OF THOSE MEMORY LOCATIONS ASSIGNED TO A "ROM“ DEVICE. THUS
ONE MUST TAKE SPECIAL PRECAUTIONS WHEN DESIGNING PROGRAMS THAT ARE TO
RESIDE IN A "ROM"™ DEVICE.

FOR INSTANCE, ONE CANNOT USE MEMORY ADDRESSES IN A ROM TO STORE TEM=-
PORARY POINTERS AND COUNTERS FOR A PROGRAM THAT NEEDS TO ALTER SUCH
POINTERS AND COUNTERS DURING THE PROGRAM®'S OPERATION - AND SIMILARLY ONE
CANNOT USE ANY SUCH LOCATIONS FOR ANY KIND OF TEMPORARY STORAGE OF DATA
OR OTHER “TEMPORARY*" INFORMATION, BECAUSE, AS JUST MENTIONED, THE COM-
PUTER VILL NOT BE ABLE TO “WRITE” THE INFORMATION INTO THE ROM!

THUS, IF A PROGRAM IS TO BE STORED IN A ROM, AND IT IS NECESSARY TO
USE POINTERS AND COUNTERS IN A PROGRAM (AS WILL CERTAINLY BE THE CASE IN
MANY APPLICATIONS) ONE SHOULD ARRANGE THE PROGRAM TO USE CPU REGISTERS
FOR THOSE PURPOSES, OR TO USE ADDRESSES IN MEMORY THAT WILL CONTAIN RAM
ELEMENTS,

A ROM ELEMENT CAN BE CONSIDERED AS A “HARDWARE™ MEMORY ELEMENT AND
AS SUCH, ONE OF THE FIRST MATTERS ONE SHOULD CONSIDER WHEN PLANNING ON
INSTALLING ROMS IN A COMPUTER SYSTEM, IS WHERE TO ASSIGN THE ROM ELE-
MENTS IN MEMORY, A GOOD RULE OF THUMB 1S TO PLACE SUCH ELEMENTS AT THE
UPPER EXTREME ADDRESSES AVAILABLE IN THE SYSTEMe FOR INSTANCE, IF ONE
HAS AN 8008 SYSTEM CAPABLE OF ADDRESSING UP TO 4 K OF MEMORY, (PAGES 00
THROUGH 17) IT WOULD BE ADVISABLE IN MOST CASES TO DEVELOP PROGRAMS FOR
ROM(S) THAT ARE ON PAGE 17, OR IF MORE PAGES ARE REQUIRED FOR ROMS, TO
WORK DOWNWARD FROM THAT ADDRESS. (MOST ROM AND PROM DEVICES CAN CONTAIN
256 EIGHT BIT WORDS - OR ONE "PAGE™ IN A TYPICAL 8808 SYSTEM.) THIS AL-
LOWS ALL ADDRESSES BELOW THE ROM ELEMENT(S) TO BE AVAILABLE AS ONE CON-
TINUOUS BLOCK OF “READ AND WRITE™ MEMORY WHICH IS GENERALLY A MORE CON-
VENIENT ARRANGEMENT THAN, SAY, STICKING A ROM ELEMENT ON PAGE 18 IN SUCH

A SYSTEM, THUS DIVIDING THE AVAILABLE ADDRESSES FOR RAM MEMORY INTO TWO
SEPARATE AREAS. ‘

ALTERNATIVELY, ONE MIGHT WANT TO CONSIDER PLACING ROM ELEMENTS AT
THE LOWEST AVAILABLE ADDRESSES FOR THE SYSTEM, AND LFAVING THE UPPER AD-
[IRESSES AVAILABLE AS ONE CONTINUOUS BLOCK FOR RAM ELEMENTS. HOWEVER,

=1

INLESS A SYSTEM 1S BEING DESIGNED TO SERVE AS A SPECIAL FUNCTION. DEVICE,
IT IS GENERALLY WISE TO NOT USE A ROM ON PAGE @0 IN AN 8088 SYSTEM AS IT
WILL OCCUPY ALL THE POSSIBLE “RESTART" (RST) INSTRUCTION LOCATIONS! THE
EXCEPTION TO THIS WOULD BE IF ONE DELIBERATELY WANTED TO HAVE “POWER-UP"™
ROUTINES THAT USED THE INTERRUPT FACILITY OF THE 8068 SYSTEM IN CONJUN-
CTION WITH A ROM TO AUTOMATICALLY GO TO A "RESTART" LOCATION. THE

“RST™ CLASS OF INSTRUCTIONS, WHICH USE THE SPECIAL LOCATIONS ON PAGE #£0,
ARE PARTICULARLY USEFUL COMMANDS WITH GENERAL PURPOSE APPLICATIONS, AS
DISCUSSED ELSEWHERE IN THIS MANUAL, AND ONE SHOULD CONSIDER THEIR GEN-
ERAL PURPOSE CAPABILITIES CAREFULLY BEFORE DECIDING TO RESTRICT THEM TO
A ROM APPLICATION.

THE TYPES OF PROGRAMS THAT ARE GENERALLY MOST SUITABLE FOR PLACE-
MENT ON ROMS INCLUDE ROUTINES TO ASSIST GETTING A SYSTEM "ON-LINE" IM-
MEDIATELY FOLLOWING POWER TURN=-ON, SUCH AS 1/0 ROUTINES AND *"PROGRAM
LOADERS," FREQUENTLY UTILIZED PROGRAMS THAT ONE MAY NOT WANT TO HAVE TO
BE BOTHERED LOADING EACH TIME A SYSTEM IS STARTEDo OR PROGRAMS FOR DEDI-
CATED APPLICATIONS.

FOR INSTANCE, A USER WITH A TELETYPE SYSTEM MIGHT WANT TO PUT A
STANDARD ROUTINE TO INPUT AND OUTPUT INFORMATION TO THE DEVICE (WHICH
COULD BE .CALLED BY GENERAL ROUTINES) AND POSSIBLY A "LOADER PROGRAM"
THAT WOULD ENABLE THE USER TO QUICKLY LOAD PROGRAMS INTO RAM MEMORY VIA
A PAPER TAPE READER, IN SUCH AN APPLICATION, ONE MIGHT ALSO HAVE SPACE
ON A PROM TO INCLUDE A SIMPLE PROGRAM THAT WOULD ENABLE ONE TO EXAMINE
AND MODIFY MEMORY LOCATIONS USING THE TELETYPE DEVICE. THUS, WHENEVER
POWER WAS APPLIED TO THE COMPUTER SYSTEM, ONE WOULD INSTANTLY BE IN A
POSITION TO “LOAD™ LARGER PROGRAMS INTO RAM MEMORY, OR TO IMMEDIATELY
USE THE TELETYPE TO PLACE INFORMATION INTO RAM MEMORY. WITHOUT A ROM,
THE USER WOULD HAVE TO USE MANUAL CONTROL METHODS TO *“LOAD* A "LOADER"™
PROGRAM OR OTHER ROUTINES INTO MEMORY. THE SAVINGS IN TIME ONE CAN ACH-
IEVE BY USING A ROM TO STORE "START-UP™ PROGRAMS OVER HAVING'fb USE PUR~
ELY MANUAL PROCEDURES CAN BE WELL WORTH THE COST OF A ROM OR PROM DE-
VICE.

HOWVEVER, A USER WHO DESIRED TO DEVELOP SUCH A PACKAGE FOR STORAGE
ON A ROM DEVICE WOULD HAVE TO BE PARTICULARLY CAREFUL WHEN DEVELOPING
THE TELETYPE 1/0 ROUTINE 1F SUCH A ROUTINE REQUIRED "REAL-TIME PROGRAM~
MING™ CONSIDERATIONS, SUCH AS A “TIMING LOOP."™ FOR INSTANCE, THE READ-
FR WHO HAS READ THE PREVIOUS CHAPTER WILL REALIZE THAT IF THE COMPUTER
PROGRAM ITSELF WILL CONTROL THE ACTUAL OPERATION OF A DEVICE SUCH AS A
TELETYPE MACHINE, AND “TIMING LOOPS*™ ARE ESTABLISHED TO CONTROL THE PRE-
CISE TIME AT WHICH EVENTS WILL OCCUR, THAT THE ACTUAL TIMING REQUIRED
TO PROPERLY OPERATE A DEVICE VILL BE A FUNCTION OF THE DEVICE BEING CON-
TROLLED AS WELL AS THE TIMING IN THE COMPUTER ITSELF, AND THAT THE AC-
CURACY AT WHICH SUCH TIMING MUST BE MAINTAINED. IS A FUNCTION OF THE AC-
CURACY OF THE TIMING IN THE COMPUTER SYSTEM AND THE DEVICE ITSELF. THIS
ACCURACY MAY VARY BETWEEN DIFFERENT UNITS. . IF A FIXED "TIMING LOOP™ WAS
PROGRAMMED INTO A "PROM™ AND AT SOME LATER DATE THE EXTERNAL DEVICE VWAS
REPLACED WITH A DIFFERENT ONE, OR THE TIMING OF THE COMPUTER WAS ADJUST-
D, THE ORIGINAL “TIMING LOOP* MIGHT BE MADE INVALID. THUS, IN SUCH AN
APPLICATION, IT MIGHT BE WISE TO PLACE THE ACTUAL "DATA™ VALUE THAT IS
TO CONTROL THE “TIMING LOOP*™ IN A "RAM™ LOCATION AND HAVE THE PROGRAM IN
THE PROM ACCESS THAT VALUE, WHICH WOULD BE MANUALLY INSERTED BY THE OP-
ERATOR, RATHER THAN HAVING THE VALUE BE "FIXED"” IN THE PROM., THE FOL-
~LOVING TWO SUBROUTINES WILL HELP CLARIFY THE POINT.

PROM PROGRAM WITH A “FIXED" TIMING LOOP VALUE '

TIME, LDI 100 /SET TIMING LOOP COUNTER

8 - 2

TIMER, CAL DUMMY /DELAY SUBROUTINE
DCD /DECREMENT TIMING LOOP COUNTER
RTZ /EXIT SUBROUTINE WHEN TIME DELAY DONE
JMP TIMER /O0THERWISE CONTINUE TIMING LOOP

PROM PROGRAM WITH CAPABILITY TO ALTER TIMING LOOP VALUE

TIME, LHI XXX /SET POINTER TO *RAM"™ LOCATION WHERE
LLI YYY /TIMING LOOP COUNTER VALUE STORED
LDM /SET TIMING LOOP COUNTER VALUE
TIMERs oo /SAME AS ABOVE ROUTINE

THE SECOND ROUTINE ILLUSTRATED ABOVE ASSUMES THAT THE CPU MEMORY
POINTER REGISTERS WILL BE SET UP TO POINT TO A LOCATION IN RAM MEMORY
WHERE THE ACTUAL *“LOOP COUNTER™ VALUE WILL HAVE BEEN PLACED BY THE OP-
ERATORe WHILE THE METHOD NECESSITATES THE OPERATOR HAVING TO SET THE
PROPER VALUE INTO RAM MEMORY BEFORE USING THE PROGRAM STORED ON THE ROM,
IT AVOIDS THE PROBLEM OF HAVING A "USELESS" PROGRAM IN THE PROM IF A
TIMING VALUE MUST BE ALTERED AT SOME FUTURE DATEe. 'IT SHOULD BE APPARENT
THAT THI1S KIND OF SCHEME CAN BE APPLIED TO ANY SIMILAR SITUATION WHERE A
*WALUE" USED BY A PROGRAM MIGHT CONCEIVABLY NEED TO BE ALTERED.

IF, FOR SOME REASON, ONE DID NOT WANT TO HAVE TO DEDICATE A LOCATION
IN RAM MEMORY FOR A “VARIABLE™ VALUE IN SUCH A ROUTINE - THERE IS STILL
ANOTHER TRICK THAT CAN “SAVE™ THE DAY IN SUCH A SITUATION. THE OPERATOR
COULD MANUALLY LOAD THE D" REGISTER IN THE CPU PRIOR TO USINGE THE ABOVE
TYPE OF SUBROUTINE (OR HAVE AN EXTERNAL ROUTINE IN RAM MEMORY PERFORM
THE SAME FUNCTION BEFORE USING THE ROUTINE), IN WHICH CASE ONE COULD EL~
IMINATE THE PORTION OF THE ABOVE ROUTINE LABELED "TIME" AND SIMPLY USE
THAT PORTION LABELED "TIMER." :

A GOOD RULE OF THUMB TO APPLY WHEN CONSIDERING THE USE OF ROM IN A
SYSTEM IS TO TAILOR THE PROGRAM FOR COMPACTNESSes AFTER ALL, THE MORE
ROUTINES OR SUBROUTINES ONE CAN STORE ON A PROM, THE MORE USEFUL THE DE-
VICE VILL BE. MAKE EVERY EFFORT TO SAVE MEMORY SPACE BY JUDICIOUS USE
OF SUBROUTINING, WITH MULTIPLE ENTRY POINTS IF APPLICABLE, AND BY USE OF
PROGRAM LOOPS. AN EARLIER CHAPTER STRESSED THE CONCEPT AND PROVIDED
GUIDELINES AND FORMULAS FOR CALCULATING WHEN SUCH TECHNIQUES ARE APPLI-
CABLE., ONE SHOULD FIGURE ON SPENDING SOME EXTRA TIME WHEN DEVELOPING
PROGRAMS TO BE STORED ON ROMS IN ORDER TO LOOK AT WAYS TO SAVE MEMORY
SPACEe TRY TO USE EVERY AVAILABLE LOCATION ON A PROM = AFTER ALL, ANY
UINUSED LOCATIONS WILL BE “PERMANENTLY"™ WASTED. IF ONE FINDS ONE HAS
SOME ROOM LEFT IN A PROM AFTER ONE HAS PLACED THE PROGRAMS REQUIRED TO
BE ON THE DEVICE FOR A PARTICULAR APPLICATION, CONSIDER THE POSSIBILITY
OF "TUCKING IN™ A FEW SMALL ROUTINES THAT WOULD HAVE GENERAL USEFULNESS.
SUCH ROUTINES AS “SWITCH,* "ADV,*™ AND "CNTDWN™ WHICH WERE PRESENTED AND
USED FREQUENTLY IN EXAMPLES THROUGH-OUT TH1S MANUAL ARE TYPICAL KINDS OF
GENERALLY USEFUL SUBROUTINES THAT ONE MIGHT CONSIDER HAVING ON A ROM
RATHER THAN "WASTING"™ ANY LOCATIONS. THESE TYPES OF ROUTINES WOULD THEN
ALWAYS BE AVAILABLE IN THE SYSTEM FOR USE BY PROGRAMS RESIDING IN RAM,

ABOVE ALL, HOWEVER, ONCE ONE HAS DEVELOPED ROUTINES FOR A PROM, ONE
SHOULD THOROUGHLY TEST AND CHECK THE PROGRAM(S) TO MAKE SURE THEY ARE
- ABSOLUTELY OPERATING AS INTENDEDe AFTER ALL, IT IS A BIT COSTLY TO MAKE
A “PROGRAM PATCH™ ON A READ-ONLY MEMORY ELEMENT!

CREATIVE PROGRAMMING CONCEPTS

ONCE ONE HAS BECOME FAMILIAR WITH THE FUNDAMENTAL ASPECTS OF MACH-
INE LANGUAGE PROGRAMMINGe. ONCE ONE IS FAMILIAR VWITH THE MNEMONICS THAT
REPRESENT THE MACKINE LANGUAGE COMMANDS AND CAN MENTALLY THINK OF THE
FUNCTIONS THAT THOSE MNEMONICS REPRESENT, ONCE ONE HAS LEARNED HOW TO
FORMALIZE AND PLAN OUT A PROGRAM, UNDERSTANDS FLOW CHARTING, AND MEMORY
ALLOCATION OR MAPPINGe ONCE ONE HAS HAD SOME PRACTICE AT DEVELOPING AL~
GORITHMS AND COMBINING SMALLER ALGORITHMS INTO FULL SIZED PROGRAMS BY
SUBROUTINING, ONCE ONE 1S FAMILIAR WITH SETTING UP POINTERS, COUNTERS,
FORMING PROGRAM LOOPS, UTILIZING BIT "MASKS."™ ONCE ONE KAS A "FEEL"
FOR ORBANIZING DATA FOR TABLES, AND UNDERSTANDS HOW DATA CAN BE SORTED.
ONCE ONE UNDERSTANDS HOW MATHEMATICAL INFORMATION MAY BE PROCESSED BY
THE COMPUTER, AND, ONCE ONE KNOWS HOW TO GET DATA INTO AND OUT OF THE
CPU FROM AND TO SOME EXTERNAL. DEVICESe 1leEes ONCE ONE HAS SPENT A LIT~-
TLE TIME STUDYING THE ASPECTS OF MACHINE LANGUAGE PROGRAMMING A COMPUT=-
FR « AS ONE WILL HAVE DONE BY READING (AND HOPEFULLY LEARNING!) THE
INFORMATION PRESENTED IN THE PRECEEDING SECTIONS OF THIS MANUALe THEN,
ONE SHOULD BE IN A POSITION TO UNDERSTAND AND APPRECIATE THE TRUE POTe
EINTIAL OF A DIGITAL COMPUTER WHEN IT*S POWER IS UNLEASHED UNDER THE
AUSPICES .OF A CREATIVE PROGRAMMER, THEN, IS WHEN ONE CAN REALLY START
HAVING FUN CREATING AND DEVELOPING COMPLETELY ORIGINAL PROGRAMS T0O PER=
FORM MYRIADS OF PERSONALLY DESIRED FUNCTIONS, THIS 1S THE POINT AT
WHICH ONE MAY TAKE A “BROAD VIEW™ OF THE IMMENSE CAPABILITY OF THE MACH=-
INE BY STANDIN@ BACK AND PONDERING SOME “SCENES* MUCH THE WAY AN ARTIST
WOULD PONDER A BLANK CANVAS BEFORE STARTING TO PAINT A “CONCEPT®™ OR “IM~
ABE"” THAT EXISTED PURELY IN THE ARTIST*S MIND, THE DISCUSSION THAT FOL~
LOWS MERELY PRESENTS SOME WAYS IN WHICH TO VIEW THE CAPABILITY OF A DIGe
. 1TAL COMPUTERe SOME POINTS OF VIEW THAT MAY HELP PROGRAMMER®S APPROACH
PROGRAMMING TASKS WITH CREATIVITY. NO GREAT “MAGIC™ 1S CLAIMED FOR THE
IDEAS PRESENTED, NO GUARANTEE 1S MADE THAT THE POINTS OF VIEVW WILL IN-
SPIRE EVERYONE TO GREATER PROGRAMMING CREATIVITY OR ABILITY. BUT, IT IS
KNOWN THAT THE V1EWS PRESENTED HAVE HELPED AT LEAST ONE PROGRAMMER TO
CREATE COUNTLESS PROGRAMS, SOME OF WHICH OTHERS HAD CLAIMED “COULDN'T BE
DONE ON A SMALL MACHINE,™ AND SOLVE NUMEROUS PROGRAMMING PROBLEMS, WHILE
HAVING A LOT OF FUN - AND QUITE OFTEN SAVING A LOT OF TIME! THUS, THE
IDEAS VWILL BE PRESENTED IN THE HOPES THAT PERHAPS A FEW OTHERS WILL BEN=-
EFIT A LITTLE, OR A LOT, .

IT MUST BE ADMITTED THAT TO SOME READERS THE CONCEPTS DISCUSSED. IN
THIS SECTION MIGHT SEEM “TRIVIAL™ AT FIRST GLANCE., PERHAPS THE REASON
" SOME PEOPLE INITIALLY SEE THE CONCEPTS AS TRIVIAL 1S BECAUSE THEY ARE
PROFOUNDLY BROAD AND TO SOME LUCKY PEOPLE, PERHAPS, INSTINCTIVELY OB~
VIOUSe HOVEVER, MOST READERS WILL PROBABLY FIND THE CONCEPTS *“GROW*
AS ONE DOES MORE AND MORE PROGRAMMING, UNTIL ONE DAY, THE READER "DISe
COVERS*™ A PROFOUNDLY *SIMPLE™ WAY TO HANDLE A PROGRAMMING PROBLEM BASED
ON A VARIATION OF ONE SORT OR ANOTHER OF THE CONCEPTS PRESENTED IN THIS
SECTION. :

FOR WHAT THEY ARE WORTH, THE CONCEPTS TO BE PRESENTED WILL BE DISe
CUSSED IN THREE PARTS,

THE ONE DIMENSIONAL VIEW

THE UNDERLYING PRINCIPAL IN THIS ENTIRE DISCUSSION ON CREATIVE PROe
GRAMMING IS TO LEAVE OUT THE DETAILS OF THE OPERATION OF THE CPU AND
IT*S ASSOCIATED REBISTERS, IT IS KNOWN THAT TRE CPU AND THE ASSOCIATED

9 -1

REGISTERS CAN DO A WHOLE HOST OF SPECIFIC OPERATIONS ~ MATHEMATICAL, BO~
OLEAN 1L0GIC, EXECUTE CONDITIONAL BRANCHES AND WHATEVER, THESE FUNCTIONS
WILL BE TAKEN FOR GRANTED IN THE FOLLOWING DISCUSSIONe WHAT 1S IMPOR=-
TANT IN THE PRESENT SITUATION IS TO REALIZE THAT THE POWER OF THE COMPUe
TER IS IN IT*S MEMORY, THE CPU OBTAINS IT*S INSTRUCTIONS FROM MEMORY,
AND THE CPU IS ABLE TO MANIPULATE INFORMATION IN MEMORY, THE CPU IS
ABLE TO ACCESS A PARTICULAR WORD IN MEMORY, IN THE CASE OF AN 8008 SYSe
TEM, BY POINTING TO THE “ADDRESS™ USING THE *H & L* REGISTERS, FOR EACH
SPECIFIC *ADDRESS™ THERE IS A “SPECIFIC WORD IN MEMORY"™ THAT CONTAINS
EIGHT BINARY BITS,.

ONE WAY TO VIEW THE ORGANIZATION OF MEMORY IS TO THINK OF MEMORY
AS BEING ONE LONG LINE OF WORDS = STACKED ONE AFTER THE OTHER, IN FACT,
THIS IS THE WAY VIRTUALLY ANY MACHINE LANGUAGE PROGRAMMER FIRST STARTS
THINKING OF MEMORY BECAUSE OF THE SIMPLE WAY IN WHICHK EACH MEMORY AD~
DRESS CORRESPONDS TO A WORD IN MEMORY « AND MEMORY ADDRESSES ARE SIMPLY
A SERIES OF CONSECUTIVE NUMBERS,

EREEREEREREEEREEEREREREEREER R RE
% ADDR # "N*™ # MEM WORD # "“N*™ =
EREREEEEEREELEEEE SRR EE R SRR GRS
w ADDR # N¢l & MEM WORD # N+l =
SRR EREREEEERER R SRR R R R RRRk PR RRR
% ADDR # Ne¢2 # MEM WORD # N¢2 %=
SEREREREREBEEE B EEEEEXREERREEE R R
® [] L] [[]

[] [] ® [] [}
SREERREEREEEEREREEREREER SRR R RPN
% ADDR # N+X & MEM WORD # Ne¢X =
SHERERE R RS EREEEEEEE RS EREERE R

THUS ONE CAN CONSIDER MEMORY AS SIMPLY BEING ONE LONG STRING OF LOCe
ATIONS THAT MAY BE FILLED WITH WHATEVER INFORMATION !S DESIRED IN A SERe
IAL SEQUENCEe IF ONE WERE TO FILL EACK MEMORY WORD WITH A “CODE"™ THAT
SYMBOLIZED A LETTER OR DIGIT, OR PUNCTUATION SYMBOL, ONE COULD PROCEED
T0 FILL A "“STRING™ OF MEMORY LOCATIONS WITH ENGLISH (OR FRENCHs, OR GER~
MAN, OR WHATEVER) WORDS, AND G0 ON TO FORM SENTENCES, AND BY USING OTHER
CODESs TO SEPARATE SENTENCES INTO PARAGRAPHS,

N 0 W SPACE b¢ S
ADDR N ADDR Nel ADDR Ne2 ADDR N+3 ADDR N+4 ADDR Ne5
OR, ONE COULD PLACE MATHEMATICAL VALUES IN MEMORY LOCATIONS, SEPA=
RATE THOSE VALUES BY “OPERATOR® SYMBOLSs AND PROCESS “COLUMNS™ OF MATH-

EIMATICAL DATAe (ASSUMING IN THIS STRICT CASE THAT THE VALUES WERE SMALL
ENOUGK TO BE STORED IN ONE MEMORY WORD,)

ADDR N ¢ +100
ADDR Nel ¢ MINUS
ADDR Ne2 ¢ - 50
ADDR Ne3 ¢ EQUAL

OR, THE CONTENTS OF MEMORY WORDS MAY BE USED TO SYMBOLIZE JUST ABOUT
ANY ABSTRACT ITEM THAT THE PROGRAMMER MIGHT DESIRE, THE PROGRAMMER NEED

Y -2

SIMPLY FORM A CODE THAT THE PROGRAMMER DESIRES TO HAVE SYMBOLIZE SOMEe
THING. ‘ .

ADDR N ¢ SYMBOL FOR *“APPLES*®
ADDR N+l &8¢ SYMBOL FOR "“PEARS*™
ADDR N¢2 ¢ SYMBOL FOR “BANANAS"™
ADDR N¢3 ¢ SYMBOL FOR “CHERRIES"™
ADDR N3 ¢ SYMBOL FOR “LEMONS*™
ADDR Ne4 ¢ SYMBOL FOR *“BELLS*™

THE READER SHOULD REALIZE HERE, THAT THE CONCEPT BEING PRESENTED IS
CONCENTRATING ON HOW MEMORY IS UTILIZED FOR HANDLING "DATA"™ OR INFORe
MATION: IT IS TAKEN FOR GRANTED THAT A PORTION OF MEMORY WILL BE USED
TR THE ACTUAL OPERATING PROGRAM THAT *CONTROLS* THE MANIPULATION OF THE
MEMORY THAT 1S BEING USED FOR THE "DATA." THUS, IN THE ABOVE EXAMPLES
ONE MUST REALIZE THAT AN "OPERATING PROGRAM™ VILL PLACE THE CODES FOR
LETTERS OR DIGITS, PUNCTUATION MARKS, SPACES, AND SO FORTH, AND PERFORM
WHATEVER PROCESSING IS DESIRED, AN OPERATING PROGRAM WILL TAKE THE VAL~
UES GIVEN IN THE MATHEMATICAL EXAMPLE AND “INTERPRET®" THE SYMBOLS AND
PERFORM THE DESIRED FUNCTIONS. AND, AN OPERATING PROGRAM IN THE THIRD
EXAMPLE WOULD RECOGNIZE A PARTICULAR CODE TO MEAN “APPLES®™ AND PRINT OR
DISPLAY THE ENTIRE WORD (OR PICTURE!) WHEN 1T INTERPRETED THAT CODE,

THE PRIMARY POINT BEING MADE IS THAT THE DATA IS ORGANIZED AS A LONG
"LINE” OF INFORMATION., THAT LINE OF INFORMATION CAN BE ARBITRARILY
SPLIT UP INTO MANY PARTS AND PIECES OF THE LINE BE CONSIDERED AS FORMING
ONE PARTICULAR SECTION, AS IN THE CASE WHEN ONE "ENGLISH WORD™ IS FORMED
FROM A SERIES OF “LETTERS+" THE LONG LINE 1S SIMPLY FORMED, AND LOCA~-
TIONS ALONG THE LINE ARE MARKED, BY A "MEMORY ADDRESS."™

HOWEVER, AND TH!S THE CREATIVE PROGRAMMER SHOULD TAKE PARTICULAR
NOTE OF, THE FACT THAT LOCATIONS ARE MARKED ALONG THE LINE BY “MEMORY
ADDRESSES™ CAN BE TRANSFORMED BY THE PROGRAMMER SO THAT MEMORY ADDRESe
SES ESSENTIALLY STAND FOR ANY ARBITRARILY ASSIGNED “MARKER."” 1IN OTHKER
WORDS, TO THE PROGRAMMER, MEMORY ADDRESS NUMBER “N* CAN CORRESPOND TO
TIME *T,* OR DISTANCE "D,™ OR POINT *Z.,” THUS, ONE CAN STOREs SAY,

THE VALUE OF THE AMPLITUDE OF A S1GNAL AT TIME *T™ IN ONE LOCATION, THE
VALUE AT TIME T ¢ T* IN THE NEXT LOCATION, THE VALUE AT TIME T ¢ 2T* IN
THE NEXT LOCATIONe. FURTHERMORE, IT SHOULD BE APPARENT TKAT T* CAN BE
“SCALED"™ AS DESIRED BY APPROPRIATE PROGRAMMING SO THAT T°® REPRESENTS ONE
MICROSECOND, OR MILLISECOND, OR SECONDs, OR A YEAR!

FURTHERMORE, ONE CAN ACTUALLY G0 BEYOND THE POINT. OF CONSIDERING
THE LOCATIONS TO BE A LONG STRAIGHT LINE, BY CONSIDERING THE POSSIBILITY
OF MANIPULATING THE LINE OF LOCATIONS AS A PIECE OF STRINGes ONE CAN
FIGURATIVELY *CUT®™ THE PIECE OF "STRING™ AT ANY DESIRED LOCATION AND
FORM THE “STRING™ INTO A "RING"™ OR "CIRCLE.* THIS IS EASILY ACCOMPLISHe=
ED BY SIMPLY HRAVING THE “MEMORY ADDRESS POINTER™ GO BACK TO LOCATION
*N" WHEN IT REACHES LOCATION *N ¢ X" CONSIDER THE POSSIBILITY OF DO=-
ING SUCK AN OPERATION WITH THREE SECTIONS OF THE LINE AND USING THE
TECHNIQUE TO SIMULATE A “ONE ARMED BANDIT™ MACHINES

ADDR N APPLE ADDR NeXel PEAR ADDR N+2Xe¢l BANANA
ADDR N¢1 PEAR ADDR NeXe2 BANANA ADDR Ne2Xe2 LEMON
ADDR Ne2 CHERRY ADDR Be¢X+3 LEMON ADDR Ne2Xe3 APPLE
ADDR N+3 BANANA ADDR N+X+4 BELL ADDR N+2X44 BELL
ADDR Ne¢4 LEMON ADDR N+X+5 CHERRY ADDR Ne2X+5 PEAR
ADDR N+X BELL ADDR N+X¢6 APPLE ADDR N+¢2X+6 CHERRY

ONE COULD DEVELOP ALGORITHMS TO *SPIN™ THE MEMORY POINTER AROUND.EACH
*RING™ AND RANDOMLY COME TO A STOP AT A LOCATION WITHIN EACH RING. THE
RESULTS OF THE EVENTS IN ALL THREE “RINGS*" COULD THEN BE PROCESSED TO
DETERMINE WHETHER ONE “HIT A JACKPOT™ OR MISSED, THE DETAILS OF SUCK A
PROGRAM VILL BE LEFT TO THE CREATIVE PROGRAMMER, BUT THE CONCEPT OF HOW.
" ONE COULD APPROACH SUCH A SIMULATION PROJECT 1S HOPEFULLY CLEAR,

FINALLY, TO TAKE THE “ONE DIMENSION" VIEW A LITTLE FURTHER, ONE CAN
@ DOWN TO THE "BIT"™ LEVEL, SINCE A MEMORY WORD IN AN 8088 SYSTEM AC~
TUALLY CONSIST OF 8 INDIVIDUAL *BITS,” ONE COULD CONSIDER MEMORY TO BE
A LONG LINE OF "™1°S" AND "3°S," EACH MEMORY LOCATION CONTAINS EIGHT
BITS AND BY USING CONSECUTIVE MEMORY LOCATIONS ONE CAN BUILD UP LONG
“STRINGS™ OF BITSe AGAIN, THE “STRING™ CAN BE "BROKEN™ AT ANY DESIRED
POINT AND MANIPULATED AS DESIRED, THIS TECHNIQUE CAN BE USEDs SAY, TO
SIMULATE A HUGE *SHIFT REGISTER® (USING ROTATE INSTRUCTIONS) OR TO RE~
PRESENT AN EVENT OCCURING, OR NOT OCCURING AT POINTS IN TIME, OR AT DIS~
TANCES ALONG A LINE. IN THIS VIEW, A BIT IS "ADDRESSED™ AS BEING AT A
SPECIFIC *"POSITION™ WITHIN A SPECIFIC *MEMORY ADDRESS LOCATION.,* WHILE
THE PROGRAMMING “OVERHEAD"™ TO MANIPULATE SUCH “DATA"™ WILL GENERALLY BE
MORE COMPLICATED THAN THE CASE WHERE ENTIRE MEMORY “WORDS* ARE USED TO
REPRESENT A *SYMBOL™ OR PIECE OF DATA, ONE CAN SEE THAT THE BASIC CON-
CEPT OF CONSIDERING ALl BITS IN MEMORY AS BEING FORMED OF ONE CONTINUOUS
“LINE™ OF ONES AND ZEROS IS A VALID, AND OFTEN USEFUL IMAGE,

THE TWO DIMENSIONAL VIEWV

THE CONCEPT OF VIEWING MEMORY AS A TWO DIMENSIONAL PLANE WILL BE
STARTED BY CONSIDERING AN IMAGE AT THE BIT LEVEL, '

ADDR N ® ADDR Ne+X¢l = ADDR Ne¢2Xel

ADDR N

~000000000000O0OD0000O =
~O=00000000~D00000O =0 m
~0O0O=O00DO0000=O=~0000O0=0O -
—~DO00=0000=000=000 =000 =
~ 0000 =O0Om=00000~0=0000 —
—~—00000=00000000=00000 -
~-000O0O=00000O=0000O~0000 -
—~O00O0OmOO00DO0O0O=O0000 =000 -
~-OO0O=mO0000000OROO00000 =0 w
~Om00000000=0000000 =0~
e OOOOQ vttt st 4 o ot b0 e 0 OO OO o e
—~O= 0000000000000 mO =
~O0OO0mO0O0O0000O0O=O00000 =00 —
—~00O0=000000O=0O0000 =000 m
—~000O0OmOO00O0O0OmOO000O~00O0O0 -
~-00000=00000C0O=0OO000O0 ~
" 0000 O~ m OO0 mOmOOOO -
~O0O0~O000OROO0ROO00O~000 -
~O00=O000000~0OmO00000O=00 w
~OmOO0O00000ORO0O000C0 mO w
~00000000D00000000O000 =
Gt Pubt (ub Qub (ub Qub Gub 00 PuS Qub Pt Gut (et Gt Db b Qub (ub Gud Puib Pud Pt

ADDR NeX

-
o
o
X

NeX =

D
=)
=]
=)

Ne2X % ADDR

=
*
w
>

THE ABOVE DIAGRAM ILLUSTRATES AN IMAGE CREATED BY THE STATUS OF THE

9 -4

BITS IN A “PLANE"” OF MEMORY, THE “PLANE WAS ESTABLISHED BY ESSENTIAL~
LY TAKING "LINES™ OF MEMORY ADDRESSES (AS PRESENTED IN THE “ONE DIMEN~-
SIONAL V1IEW*) AND PLACING THEM ALONGSIDE ONE ANOTHER TO FORM A SURFACE
OR “PLANE.™ THIS CONVENTION WOULD BE ESTABLISHED BY THE MANNER IN WHICH
THE PROGRAMMER MANIPULATED THE MEMORY POINTER IN THE CPU., IN THE ABOVE
ILLUSTRATION THE *PLANE" 1S ESTABLISHED AT THE MOST FUNDAMENTAL (AND
COMPLEX) LEVEL AND BITS WITHIN EACHK WORD ARE MANIPULATEDes AS MAY BE 0B~
SERVED IN THE ABOVE DIAGRAM, ONE CAN VIEW AND MANIPULATE BITS IN MEMORY
SO AS TO FORM "PICTURES*™ OR "DIAGRAMS." THE ABOVE REPRESENTS A RECT=
ANGLE, A DIAMOND, AND A CROSS AS AN IMAGE MADE UP OF APPROPRIATE ONES
AND ZEROS IN SELECTED BIT POSITIONSe ONE COULD THUS MANIPULATE PORTIONS
OF MEMORY TO REPRESENT “PICTURESe™ (OR CHARTS, GRAPHS, PLOTS!) THE DE=-
GREE OF DETAIL WHICH ONE CAN OBTAIN BY SUCH MANIPULATIONS IS A FUNCTION
OF HOW MANY *“BITS"™ ARE USED TO REPRESENT A GIVEN "AREA™ OF A REAL (OR
PROPOSED "REAL") OBJECTe THE ABOVE EXAMPLE PRESENTS ALL KINDS OF POSSI~
BILITIES FOR THE CREATIVE PROGRAMMER, ONE CAN USE SUCH TECHNIQUES TO
FORM "MODELS,*™ CREATE PATTERNS, AND SO FORTH,

IN FACT, GOING THE OTHER WAY SO TO SPEAK, THAT 1S FROM HAVING THE
COMPUTER GENERATE PATTERNS OR OBJECTS, ONE CAN ALSO TAKE THE TWO DIMEN~
SIONAL CONCEPT AND APPLY. IT TOWARDS HAVING THE COMPUTER RECOGNIZE OB~
JECTS BY ‘“PROJECTING™ THEIR SHAPE OR FORM AS A SIMILAR IMAGE OF ONES
AND ZEROS IN MEMORY,

MUCH RESEARCH 1S CURRENTLY BEING CONDUCTED TOWARDS DEVELOPING ALGO~
RITHMS THAT CAN RECOGNIZE “OBJECTSe™ ONE APPROACH THAT IS BEING STUDIED
IS AN INTERESTING APPLICATION OF THE TWO DIMENSIONAL CONCEPTe A "PICe~
TURE™ OF AN "OBJECT™ 1S “MAPPED" INTO MEMORY WITH *1°S%™ BEING USED TO
REPRESENT THE AREA OCCUPIED BY THE “OBJECT®™ AND *0°S* FOR AREAS *"0UT~
SIDE+" THEN, THE COMPUTER 1S *“TRAINED"™ TO IDENTI!FY OBJECTS BY USING AL~
@RITHMS BASED ON A "NEIGHBORING BITS* SCHEME. IN THIS MANNER, THE COM~
PUTER DETERMINES HOWV MANY *@°*S* SURROUND A "1%* AND PERFORMS CALCULATIONS
TO FIND THE “OUTLINE™ AND SHAPE OF THE OBJECTe THESE FINDINGS ARE THEN
COUPLED WITH COMPLEX ALGORITHMS TO ATTEMPT TO IDENTIFY THE OBJECT FROM A
"CLASS"™ OF POSSIBILITIES.

SUCH PROGRAMS ARE OF COURSE QUITE COMPLEX AND THE DETAILS OF SUCH
MANIPULATIONS ARE SOMEWHAT ESOTERICe BUT, THE IDEA IS INTRIGUEING AND
CAN PROVIDE FERTILIZATION FOR THE CREATIVE PROGRAMMER®S IMAGINATION,

TAKING THE TWO DIMENSIONAL VIEW TO THE MEMORY WORD LEVEL IS PERHAPS
A BIT LESS COMPLICATED (IT ISt IT 1S?) THAN CONSIDERING IT AT THE BIT
LEVELe, 1IN THIS CASE, ONE NEEDS ONLY ENVISION A "PLANE™ OF MEMORY WORDS
WHICH CAN CONTAIN CODES FOR LETTERS, NUMBERS, SYMBOLS OR ACTUAL MATHE=-
MATICAL VALUESe THE READER HAS ALREADY SEEN EXAMPLES OF PROGRAMS THAT
COULD BE CONSIDERED AS TWO DIMENSIONAL IN ORGANIZATIONe ONE FOR IN-
STANCE, WAS DESCRIBED IN CHAPTER FOUR IN THE PRESENTATION OF THE NAMES
SORTING PROGRAM. ' THERE, LINES OF NAMES WERE FORMED "ONE BENEATH THE
OTHER®™ IN ORDER TO MAKE THE SORT ROUTINE EASIER TO PROGRAMe ONE MIGHT
REVIEW THE DIAGRAM SHOWING THE SAMPLE NAMES STORED IN MEMORY AS THEY REe
lATE TO THE MEMORY ADDRESSES, WHICH WAS PRESENTED NEAR THE END OF CHAPTe
ER FOUR,

THE PROGRAMMER IS AGAIN REMINDED THAT AS IN THE ONE DIMENSIONAL
VIEW, THE MEMORY ADDRESSES THAT FORM THE “X" AND "Y™ BOUNDARIES OF A
TWO DIMENSIONAL MEMORY PLANE CAN ACTUALLY BE THOUGHT OF AS ARBITRARY
WNITS = SUCH AS TIME, FREQUENCY, OR DISTANCE, AND THE PROGRAMMER ALSO
HAS THE FREEDOM TO *SCALE™ BOTHR THE “X% AND “Y% BOUNDARIES BY APPROP-
RIATE SOFTWAREs, THE NEXT ILLUSTRATION SHOWS HOW AN “ALTITUDE MAP™ OF
A GEOGRAPHICAL AREA MIGHT BE STORED IN A "PLANE" OF MEMORY.

9«5

N NeX Ne2X Ne3X Ne4X NeSX Ne6X

N 060 265 978 875 074 o780 @64 560 YDS
Nel 261 876 @84 283 888 @76 870 488 YDS
 Ne2 862 278 288 898 = 996 291 882 300 YDS
N+3 262 278 290 182 101 @89 872 200 YDS
N+4 @55 270 875 253 047 863 839 ' 100 YDS
Ne(X=l) 840 235 020 010 211 009 008 @ YDS

@ YDS 100 YDS 200 YDS 300 YDS 408 YDS 588 YDS 680 YDS

IN THE ABOVE ILLUSTRATION EACH MEMORY LOCATION CONTAINS A VALUE
THAT REPRESENTS THE ELEVATION OF A PIECE OF LANDe THE TOP AND LEFT SIDE
OF THE ILLUSTRATION SHOWS THE ACTUAL MEMORY ADDRESSES IN THE COMPUTER
WHILE THE BOTTOM AND RIGHT SIDE ILLUSTRATE THAT EACH “ADDRESS™ ACTUALLY
STANDS FOR *100 YARDS DISTANCEe.*™ IT SHOULD BE APPARENT THAT THE ELe
EVATION FACTORS COULD BE, INSTEAD, INCHES OF RAINVWATER, OR A TEMPERATURE
PROFILE FOR THE AREA, OR, AS PREVIOUSLY MENTIONED, THAT THE *“YARDS" CAN
BE ALMOST ANYTHING ELSE THE PROGRAMMER MIGHT DESIRE TO DEFINE.

AS A FINAL EXAMPLE OF THE TWO DIMENSIONAL CONCEPT, THE READER WILL
BE LEFT VITH THE FOLLOVING DIAGRAM < WHICH HOPEFULLY WILL ENCOURAGE ONE
TO CONSIDER THE POSSIBILITIES FOR MUCH MORE COMPLEX *“BOARD GAMESt™

N NeXel Ne2Xel
_ - *®
N X * 0 *® X Ne2Xel
* *
LB R REEREEEEEEEEEREERERE R K
= *
Nel (4]] X, » 0 Ne2X+2
. ® *®
EREEEERRREEREREREREE R R SR B RN
]]
NeX (4] - X * X N+3X
*® -
NeX Ne2X N+3X

FINALLY, THE READER WILL BE REMINDED, THAT IN A MANNER SIMILAR TO
FORMING A "RING™ AS DISCUSSED IN THE ONE DIMENSIONAL VIEW, ONE CAN ALSO

CONSIDER FORMING A "CYLINDER"™ OUT OF A “PLANE" WITH INTERESTING RAMI=-
FICATIONS?!

THE THREE DIMENSIONAL VIEW

IT SHOULD NOV BE APPARENT THAT IF ONE CAN SET UP MEMORY LOCATIONS
BY APPROPRIATE ADDRESSING TO REPRESENT "LINES™ AND “PLANES,* ONE CAN EXe
TEND THE PRINCIPLE OUT TO THE “THIRD DIMENSION™ TO FORM *CUBES"™ OF MEM=-
ORYe THERE ARE MANY INTERESTING POSSIBILITIES WHEN MEMORY IS VIEWED IN

9 = 6

THIS MANNER., ONE CAN PLOT THREE DIMENSIONAL GRAPHS OR VECTORS. -ONE CAN
APPROACH MANY TYPES OF “MODELING™ AND MANIPULATE SUCH MODELS SO AS TO
OBTAIN DIFFERENT *“CROSS=SECTIONAL™ VIEVS,

AS IN THE CASE OF THE ONE AND TWO DIMENSIONAL IMAGES, THE PROGRAM-
MER CAN SUBSTITUTE C(EFFECTIVELY) MEMORY ADDRESSES FOR SCALE FACTORS, NOW
ALONG THREE AX1Ss AND, AS IN THE PREVIOUS EXAMPLES, ONE CAN TAKE SUCH
MANIPULATIONS DOWN TO THE BIT LEVEL IF DESIRED.

THE DIAGRAM BELOW PRESENTS AN IMAGE OF MEMORY WHEN VIEWED AS A THREE
DIMENSIONAL VORKING AREA,

/
N] }
/
N+4 x X /
X //
N+2 X /
X 1
N+3 X X /
: /«—J(J(ﬁsx)
: ——— +6X
N+X /.{— 2(N+6X)
- (N+6X)

N+X N+2X N+3X N+4X N+5X N+6X

IT IS HOPED, THAT BY THIS TIME, THE READER HAS RECEIVED SUFFICIENT
INFORMATION ON THE PRACTICAL ASPECTS OF MACHINE LANGUAGE PROGRAMMING
FROM THE PRECEEDING CHAPTERS, AND THAT THIS CONCLUDING CHAPTER HAS PRO-
VIDED SOME STIMULATING CONCEPTS, SO THAT THE READER MAY GO ON TO DE-
VELOP PROGRAMS THAT WILL BE OF PARTICULAR VALUE TO THE INDIVIDUAL. 1IT
IS ALSO HOPED THAT THOSE WHO HAVE BEEN INTRODUCED TO THE SUBJECT BY THI1S
MANUAL, WILL FIND MACHINE LANGUAGE PROGRAMMING AN EXCITING, ENJOYABLE,
AND IN AS MANY VAYS AS POSSIBLE, A REVARDING ENDEAVORY

	0001
	0002
	001
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	8-01
	8-02
	8-03
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07

