
What is the AS8 assembler?
As8 is a simple assembler for an Intel 8008 microprocessor. It uses the original (old) mnemonics, unlike
the 8080-like mnemonics of later compilers. It is written as a single ANSI-c source file, so should
compile on any computer that has a C compiler.

How to run it:
To run it, the program is called from a command-line interpreter, such as a DOS window on an
Windows computer. If you have an assembly file named "test.asm" you could simply call the program
as...

as8 test

and the program will open the file called "test.asm", assemble it, write the output list file into "test.lst"
and write an intel hex output file called "test.hex".

More specifically, the program usage is...

Usage: as8 [options] infile
 where is assembly code file, extension defaults to .asm
 and options include...
 -v verbose output
 -nl no list file (default is to make .lst file.)
 -d debug assembler (extra output)
 -bin makes output binary ROM file, otherwise intel hex
 -octal makes unidentified 3-digit numbers octal (default decimal)
 -single makes .lst file single byte per line, otherwise 3/line.
 -markascii makes highest bit in ascii bytes a one (mark).

where "infile" can have ".asm" specified, or just the base name of the file, with ".asm" inferred. The
options are..

 -v A verbose output, with lots of information, and tells what it is doing as it processes each line.
This is mostly debugging information, and won't be very helpful to most users, unless the program
isn't working quite right for you.

 -nl No list, do not make a "*.lst" list file. By default, a list file is made which shows the details of
the assembly and machine codes.

 -d Turns on extra debug information. This is mostly if the program isn't working right, and won't
be useful to most users.

 -bin This makes the output file a "*.bin" which will be a binary 16K file of each assembled byte.
If you don't want the whole 16K, change the program yourself, or have a post-processor program
pull out the portion you want. By default, and Intel-Hex format ASCII file is generated, which is
a fairly obsolete ASCII file that specifies addresses, and then data that follows at that address.
Historically, most EPROM writers expected Intel-Hex format files, which are documented well on
internet file format sites.

 -octal makes any 3-digit number interpreted as Octal. By default, any number starting with zero is
interpreted as octal (like "045") but starting with a non-zero will be decimal (like "255" or "14").
But if this this option is specified, any 3-digit number, even if it starts with a non-zero, will be
interpreted as an octal representation (this is how many old 8008 assemblers worked, and is

Page 1 of 3AS8 User's Manual

3/3/2011http://www.compusaur.com/Mark8files/as8.html

needed for SCELBAL.)
 -single makes the list file just have a single vertical line of the code bytes. For example, if a

"jump" instruction is assembled, that line will generate 3 separate bytes. By default, all 3 bytes
will be listed on a single listfile line. But if this option is specified, each output line in the listfile
will have just one byte. Assembly code lines like "DATA" statements may still generate multiple
lines in the list file if they generate over 3 bytes. In general, this option is helpful if long programs
will be manually entered on a front panel, as all bytes and data will be in a long vertical list, at the
expense of somewhat longer files.

 -markascii makes any ASCII letter in a "data" statement be assembled so that the highest order
bit (128) is set (marked.) This is required for SCELBAL. I believe this type of ASCII convention
was popular with PDP-8 computers by Digital Equipment Corporation, but of course is now
obsolete.

Input File Format
The program takes an assembly code ascii file full of lines of code and comments. Where ever the ';' or
'\' character is seen, the rest of the line is considered a comment. The general format of the line is as
follows:

label: opcode argument(s)

where "label:" is optional, if not included in a line, at least one white space character (a space or a tab is
reasonable) before the opcode. Several pseudo-ops are available:

 ORG set the address of the current code to the argument.
 EQU requires a label before it, and sets the label to the following argument.
 DATA specifies some number of bytes are to be inserted at the current location. the argument can

be a list of numbers ("2,4,6,8,232") or a character string ("ENTER THE DATA") or to just define
space an asterisk followed by a decimal number will reserve some number of bytes ("*32" will
just reserve 32 bytes.)

 CPU requires an argument of "8008" or "i8008" or an error will occur. This pseudo-op is not
required or recommended, but here for cross-compatibility with some other assemblers.

 END is not required, but typically signifies the end of the code in some assembly programs.

The opcodes or mnemonics are mostly 3-letter, and are as specified by early 8008 documents. It should
be noted that after Intel came out with the 8080 microprocessor, they created slightly different opcodes
for the 8008 to make the assembly code a bit more similar (and somewhat interchangeable.)

Number Specifications
Numbers in the assembler may be specified in many ways.

A multiple digit number which does not start with zero is interpreted as a decimal number (unless the
octal option is set, in which case any 3-digit number will be considered octal, even if it doesn't start with
a zero.

A multiple digit number which starts with a zero is always interpreted as an octal number.

A number which starts with "0x" (like "0xFF" or "0x1F3") will be read as a hexadecimal number.

Page 2 of 3AS8 User's Manual

3/3/2011http://www.compusaur.com/Mark8files/as8.html

A string of ones and zeros followed by a "B" will be interpreted as a binary number (like "01001011B").

Arithmetic/Operations
An argument can include simple arithmetic which will be interpreted from left to right. "LOC*2+1"
would be valid if "LOC" is a valid defined label. Up to 4 arguments can be separated by 3 operands
("+","-","*", or "/").

The operand "\HB\" can precede an argument/label, and returns the high-byte of the value. Similarly, the
operand "\LB\" can precede an argument/label, and returns the lower-byte of the value. These are useful
for loading the "H" register with the high-byte of an address, and the "L" register with the low-byte.

Just as "\HB\" and "\LB\" can separate the high-order-byte and low-order-byte of a number, the "#" sign
will attach them. This is commonly need in "ORG" statements where the high and low bytes are known,
but must be placed into a single number (example "START: ORG 001#0120" is helpful when we work
with octal numbers (common with the 8008) and it's not obvious how to combine them directly ("ORG
001*0400+120" would do the same thing, but is not as straightforward.)

More about DATA
As mentioned, the "DATA" pseudoop will either define numeric values to be inserted into the program,
or reserve some number of bytes in the program. A list of comma delimited arguments may have up to
12 such arguments. They can be simple numbers (interpreted as above) or labels, or mathematic
expressions, as mentioned above. More than 12 on a line, however, generates an error.

If the "DATA" statement has a string a few escape/control symbols are allowed, such as "HELLO\n"
which will place a newline at the end of the string. The allowed sequences are "\n", "\t" or "\0" at this
point. Other numbers will require a following DATA statment with numeric values specifically entered.

If the "DATA" statement is followed by a '*' and then a number, this number will be interpreted as
decimal, and reserve that number of bytes.

But How Do I use it?
Okay, the best way to learn this assembler is to look at example input files. Look at the "SCELBAL"
source code or the "memtst.asm" code file. That's the best way to figure out what's allowed and not.

About Me:
I'm a vintage computer hobbyist, have very little free time. If you have questions or suggestions, email
me, but realize I may be hard to get a hold of. If you're persistent, I tend to reply. You can email me at
tejones777 at (use the at sign) aol.com. If I don't respond, I may just be swamped, but don't give up if
you really need something.

Page 3 of 3AS8 User's Manual

3/3/2011http://www.compusaur.com/Mark8files/as8.html

