
������

�
�
�
�
�
�
�
�
�
�
�
�
�
	
	

�
�
�
�
�

�������
®

1 2 4 N O V E M B E R 2 0 0 0

	�����

���

���������

Debugging Wireless Devices

Design2K Winning Projects

Build a
PIC-Based SBC

TPU Programming Basics

T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

���

��
THE ENGINEERS

TECH-HELP
RESOURCE

Let us help keep your
project on track or sim-
plify your design deci-
sion. Put your tough
technical questions to the
ASK US team.

The ASK US research
staff of engineers has
been assembled to share
expertise with others.
The forum is a place
where engineers can
congregate to get some
tough questions an-
swered, or just browse
through the archived
Q&As to broaden their
own intelligence base.

★★

Test Your EQ
8 Additional Questions

RESOURCE LINKS
• Content-Address-

able Memory
Bob Paddock
• GPS Technology

Overview
• GPS Manufacturers
Rick Prescott

THE ETHERNET DEVELOPMENT BOARD

by Fred Eady
Part 1: Putting it all Together
Fred moves the Florida room online as he follows through on the recent
promise he made in the print version of Circuit Cellar to look at some simple,
valuable Ethernet hardware. He makes things easy with a step-by-step
process to get your Ethernet engine fully functional. This is part one of the
series, so look for his upcoming articles to round out the picture.

October 2000

UML IN A PRODUCT’S LIFE CYCLE
by Venu Kosuri
Intended to be an introduction to UML, this article focuses on illustrating how
to use its concepts in the development life cycle of a product. UML is a state-
of-the-art modeling methodology useful for real-time systems, so if you’re still

a beginner, Venu will guide you through to the end.

October 2000

A BETTER BATTERY CHARGER
by Thomas Richter
It seems logical that there would be a push for smaller, lightweight, high-
capacity batteries with today’s outcropping of all kinds of portable equipment.
Battery technology is making strides towards enhanced algorithms for faster
charging and minimal battery damage. In this article, Thomas looks at the next
generation of microcontrollers leading the way past the competition.

October 2000

EVERYTHING CHANGES—Using the Const Modifier
Lessons From the Trenches
by George Martin
Sometimes we have the knowledge, but don’t utilize all the tools we have
available to us. George looks at the forgotten modifier beyond char, int, long,
and float for writing code in C. Remember the often overlooked const qualifier?
Well, it can be used to ensure that the data won’t be modified during execu-
tion, eliminating unexpected changes.

October 2000

ANYGATE IN A STORM

Silicon Update Online
by Tom Cantrell
This month, Tom sets us afloat with Micrel’s SY55851U (Anygate). Rather than
letting you sink in a sea of ones and zeros, Anygate can act as a lifejacket of
sorts, making up for its lack of features with bipolar process and differential
signaling for fast action. Musing about his recent reports about ON
Semiconductor’s OneGate, Tom wonders about the future of gate delay, and
ultimately how high prices will climb.

October 2000

CIRCUIT CELLAR® Issue 124 November 2000 ������3www.circuitcellar.com

ISSUE
INSIDE124124

Wireless Devices
Handling Power Efficiency and Debugging
Brian Branson & David Gonzales

Simplified TPU Programming
Jeff Loeliger

A PIC17C44-Based Computer
Duane Perkins

Design2K Winners
edited by Rob Walker

Applications of PN Sequences
Tom Napier

Embedded Living
The “S” is for Speed
Breathe New Life into Your Z180 Designs
Mike Baptiste

I Silicon Update
eZ Does It
Tom Cantrell

I From the Bench
Megawatt Castles Made of Sand
Exploring the Solar Cell
Jeff Bachiochi

6

8

11

84

95

 96

12

20

34

56

62

68

74

78

Task Manager
Rob Walker

An International Blend

New Product News
edited by Rick Prescott

Reader I/O

Test Your EQ

Advertiser’s Index
December Preview

Priority Interrupt
Steve Ciarcia

Upgrade Math

EMBEDDED PC
40 Nouveau PC

edited by Rick Prescott

42 RPC Real-Time PCs
Debugging an FPGA Module
Finding the Right Test Case
Ingo Cyliax

48 APC Applied PCs
Rabbit Season
Part 3: Network Analysis
Fred Eady

6������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

TASK MANAGER

EDITORIAL DIRECTOR/PUBLISHER
Steve Ciarcia

MANAGING EDITOR
Rob Walker

TECHNICAL EDITORS
Jennifer Belmonte
Rachel Hill
Jennifer Huber

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Mike Baptiste Ingo Cyliax
Fred Eady George Martin
George Novacek

NEW PRODUCTS EDITORS
Harv Weiner
Rick Prescott

PROJECT EDITORS
Steve Bedford Bob Paddock
James Soussounis
David Tweed

ASSOCIATE PUBLISHER
Joyce Keil

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

CUSTOMER SERVICE
Elaine Johnston

ART DIRECTOR
KC Zienka

GRAPHIC DESIGNERS
Naomi Hoeger

Mary Turek

STAFF ENGINEERS
Jeff Bachiochi

Anthony Capasso
John Gorsky

QUIZ MASTER
David Tweed

EDITORIAL ADVISORY BOARD
Ingo Cyliax Norman Jackson

David Prutchi

Cover photograph Ron Meadows—Meadows Marketing
PRINTED IN THE UNITED STATES

For information on authorized reprints of articles,
contact Jeannette Ciarcia (860) 875-2199 or e-mail jciarcia@circuitcellar.com.

CONTACTING CIRCUIT CELLAR
SUBSCRIPTIONS:

INFORMATION: www.circuitcellar.com or subscribe@circuitcellar.com
TO SUBSCRIBE: (800) 269-6301, www.circuitcellar.com/subscribe.htm, or subscribe@circuitcellar.com
PROBLEMS: subscribe@circuitcellar.com

GENERAL INFORMATION:
TELEPHONE: (860) 875-2199 FAX: (860) 871-0411
INTERNET: info@circuitcellar.com, editor@circuitcellar.com, or www.circuitcellar.com
EDITORIAL OFFICES: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066

AUTHOR CONTACT:
E-MAIL: Author addresses (when available) included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) and Circuit Cellar Online are published
monthly by Circuit Cellar Incorporated, 4 Park Street, Suite 20, Vernon, CT 06066 (860) 875-2751. Periodical rates paid at Vernon,
CT and additional offices. One-year (12 issues) subscription rate USA and possessions $21.95, Canada/Mexico $31.95, all
other countries $49.95. Two-year (24 issues) subscription rate USA and possessions $39.95, Canada/Mexico $55, all other
countries $85. All subscription orders payable in U.S. funds only via VISA, MasterCard, international postal money order, or check
drawn on U.S. bank.
Direct subscription orders and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH
03755-5650 or call (800) 269-6301.
Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

ADVERTISING
ADVERTISING SALES REPRESENTATIVE

Kevin Dows Fax: (860) 871-0411
(860) 872-3064 E-mail: kevin.dows@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster Fax: (860) 871-0411
(860) 875-2199 E-mail: val.luster@circuitcellar.com

ADVERTISING CLERK Sally Collins

rob.walker@circuitcellar.com

An International Blend

t he way I see it, this issue will hit the news-
stands just in time for me to provide
some last minute voting advice for the readers

here in the U.S. Unfortunately, I follow politics just
about as closely as I follow the U.S. pole-vault team, that is, every four
years I manage to gain interest for a month or so.

This year it just so happened that the Olympic games were winding
down as the election fanfare was heating up (which event contains more
drama is debatable). But, I won’t carry on about the election woes of the
U.S., after all, the Circuit Cellar audience extends far beyond the territo-
ries of the U.S.

A recent check of our web site statistics shows that developers and
designers in almost 70 countries (outside the U.S.) have subscribed to
Circuit Cellar via the Internet (almost makes me want to vote for the
candidate who helped “invent” the Internet). If there was an awards
ceremony, we’d be listening to the Canadian national anthem and saying
thanks to our friends to the north.

Australia would easily take the silver medal with more than twice as
many online orders as the United Kingdom, which has the third highest
order rate. Just out of the medals would be Mexico with a few subscrip-
tions less than the U.K. However, until ordering a magazine subscription
over the Internet becomes an Olympic event, Canada, Australia, and the
U.K. will have to settle for bragging rights.

The international reach of Circuit Cellar doesn’t stop with online
subscription ordering. The Design2K contest sponsored by Philips turned
out to be one of the most far-reaching contests we’ve had. As with any
Circuit Cellar design contest, there was a variety of entries and you’ll find
the top projects starting on page 56 or on the Internet at
www.circuitcellar.com/design2k/winners. Almost half of the projects we
received for the Design2K contest were from outside of the U.S. With
such an international field of entries, it’s no wonder that eight different
countries are represented among the winners.

Congratulations to all of the winners in the Design2K contest and
thanks to all of you who submitted projects. More than one of the judges
commented on the fact that the number of great projects made the judg-
ing process more of a challenge than they had expected.

There’s no question that Philips did a great job of promoting and
supporting the contest, so thanks to Sarah Ward and Kevin Gardner for
keeping things running smoothly on their end.

Sure we’re still a long way from offering Circuit Cellar in the language
of your choice, but that doesn’t mean you can’t earn the respect of de-
signers and developers around the world. Take a look at page 7 and
finish your Z183 design by January 15 and you’ll be on your way to
winning international honor (and some prizes that are a lot more practical
than an Olympic medal).

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of reader-
assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or from
plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to build
things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to construct or
operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction. The reader
assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2000 by Circuit Cellar Incorporated. All rights reserved. Circuit Cellar and Circuit Cellar INK are registered trademarks of
Circuit Cellar Inc. Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

8 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

NEW PRODUCT NEWS
Edited by Rick Prescott

PALM COMPUTING DATA OFF-LOADING
The HandCar software for palm hand-helds can read and

launch HOBO and StowAway data loggers. Data from many
data loggers can be stored in the palm device and later off-
loaded to a PC for graphing, analysis, or exporting to other
programs. HandCar allows users to manage data loggers on
location using the palm device.

The software provides functions to verify logger opera-
tion, view current measurements, and check battery status
(for loggers that support this function). During launching,
the software synchronizes the data logger clock. HandCar
runs on the Palm III, Palm V, and Palm VII organizers. An
optional palm-to-PC interface can off-load data to a PC
without a docking station.

HandCar software costs $40.

Allison Technology Corp.
(281) 239-8500
Fax: (281) 239-8006
www.atcweb.com

LITHIUM-ION BATTERY CHARGER CONTROLLER
The MAX1737 is a standalone battery charger control-

ler for one to four lithium-ion cells. This device features
better than 0.8% battery-regulation voltage accuracy,
90% conversion efficiency, and a complete state machine
to safely control the charging sequence.

The step-down, switch-mode DC/DC converter uses a
small external dual N-channel FET as a power switch and
synchronous rectifier to provide several amperes of accu-
rate charging current and sustain
efficiency over a wide input volt-
age range. An internal voltage
regulator powers the IC, allowing
operation up to 28 V, and the
controllers, ability to work with a
duty cycle of up to 98% results in
low dropout voltage.

The controller regulates the
voltage setpoint and charging
current with two loops working
together to transition between
current regulation and voltage
regulation. To service the system
load during charging, an addi-
tional control loop monitors the
total current drawn from the
input source. This loop can lower
the charging current to prevent

overload of the input supply when the system load in-
creases, allowing the use of a low-cost wall adapter.

A built-in safety timer automatically terminates
charging after a selectable time limit is reached. Battery
temperature is monitored by an external thermistor to
prevent charging if the battery temperature is too high
or low. The chip charges near-dead cells if the battery
voltage is below 2 W per cell. Fast charge, full charge,

and fault conditions are indi-
cated via LEDs driven by open-
drain outputs.

The controller comes in a 28-
pin QSOP package and is speci-
fied for the extended industrial
temperature range (–40°C to 85°
C). Prices start at $2.85 for 1000.
A preassembled evaluation kit is
available.

Maxim Integrated Products
(408) 737-7600
(800) 998-8800
www.maxim-ic.com

www.atcweb.com
www.maxim-ic.com

CIRCUIT CELLAR® Issue 124 November 2000 9www.circuitcellar.com

MOTION CONTROLLERS FOR STEPPING MOTORS
With speed, programmable pulse and direction output,

and user-selectable profiling modes (S-curve, trapezoidal,
velocity contouring, electronic gearing), the Navigator
MC2500 is ideal for applications such as medical automa-
tion, materials handling, test equipment, and robotics.

Features include asymmetric acceleration and decel-
eration, on-the-fly velocity and acceleration changes,
trace capabilities for system performance checks and
diagnostics, and on-the-fly stall detection. The controller
provides multiple
breakpoints per axis to offer
precise sequencing and event
control by the application
program. It accepts feedback
from an incremental encoder
(up to 5 megacounts per
second) or from an absolute
encoder or resolver (up to
160 megacounts per second)
to read the current axis posi-
tion.

Input signals include two
limit switches (one for each

NEW PRODUCT NEWS
direction of travel) and one home indicator. One general-
purpose programmable input and output signal per axis
is provided. In addition, eight general-purpose analog (O
to 5 V) and 256 general-purpose discrete inputs/outputs
(16-bit wide) are available.

Consisting of two components, a 132-pin processor
and a low-pin logic device, the chipset allows off-loading
of resource-intensive motion control functions from the
host processor. The instruction set supports more than

130 commands, offering flexibility to
designers during application program-
ming.

Engineering samples are available.
Prices start at $46 in OEM quantities.
The Navigator Developer’s Kit is offered
for $995.

Performance Motion Devices, Inc.
(781) 674-9860
Fax: (781) 674-9861
www.pmdcorp.com

www.pmdcorp.com

CIRCUIT CELLAR® Issue 124 November 2000 ����11www.circuitcellar.com

READER I/O
THAT’S THE WAY I LIKE IT

Normally I don’t write to magazine editors, I just
show my support by continuing to buy. However,
after reading the September issue (122) I am moved
to write, and I have to say how great I thought this
issue was.

Specifically, there were a large number of com-
plete projects, spanning a whole range of subjects
and attractive to people with a range of skill-sets
and accomplishment. I know that putting together
each article involves a lot of work, and even more
work to get it together for each magazine issue. This
one was the best yet. Thank you.

Andrew Errington

SIMPLE AND EASY
Steve’s brief comments on the Napster fiasco in

your “Imputed Liability?” column (Circuit Cellar,
123) was one of the most logical and common-sense
treatments of the hoopla that I have seen, anywhere.

I’ve been a long time reader and as a kid followed
Steve’s articles on homebuilt weather stations and
such in BYTE, I appreciate his common-sense
approach to problems. It’s very refreshing these days
and I am glad that Circuit Cellar has retained this
philosophy. Keep it up! and thanks for the great
mag.

Jim Fitzgerald

A LITTLE HELP?
Does anyone have a schematic for a programmable
pushbutton code lock, hopefully using a PIC?

Jon Payne
jppayne@thepaynes.net

Although we don’t object to posting reader ques-
tions in this forum, the quickest answers to your
design questions may be available on the Circuit
Cellar newsgroups, which are accessible from our
homepage.

ALMOST, BUT NOT ENOUGH
After much anticipation, I received October’s

issue. My excitement of understanding and possibly
using the PCI bus was crushed. It seems the “Catch-

ing the PCI Bus” series has ended with just theory.
I hope Ingo will continue this series because I

have a strong desire to build a PCI card and have
been pursuing this on my own and I’m making many
mistakes.

I started with a Logitech ISA board and added a
daughter board so I could play with addressing and
the data bus on the ISA slot. Now, I would like to
make a PCI card. A guide would be immeasurably
valuable. Can someone direct me to a guide for
building a PCI card?

Trevor Pearce
tpearce@dwtunnel.com

NAVIGATING A DESIGN CONTEST
After reading Riccardo Rocca’s Design99 project

article, I think a great competition could be consid-
ered which uses Mr. Rocca’s chosen application
(autonomous GPS). I am thinking of something like
a San Francisco to Sydney race, sort of a cross
between around-the-world ballooning and engineer-
ing school robot wars.

Using dry hull designs and rigid airfoils, extreme
seaworthiness could be achieved with craft limited
in size to avoid creation of shipping hazards (say, 6
feet and 75 lbs max). A successful entry in this
competition would utilize inputs from many disci-
plines, from oceanography to applied engineering.

To make the completion of the race interesting, a
suitably small target would be designated as the
finish line. With on-board error-recovery and
telemetry provisions, a launch of these intrepid
creations might be something like NASA’s sending a
probe to mars.

Jeff Spellman

There are certainly some logistical problems that
would have to be overcome for a contest like this to
take place, but we thought it would interesting to
hear what Circuit Cellar readers have to say.

To get the variety of projects that are submitted
for Circuit Cellar design contests, the contests
generally specify a processor and not an entire
application. However, being a Circuit Cellar reader
means you can voice your opinion about the way
we do things. What kind of design contest would
interest you? Send comments or suggestions to:
contest.administrator@circuitcellar.com.

12 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

Handling Power Efficiency
and Debugging

a s the demand
for highly inte-

grated wireless solu-
tions continues to

increase, silicon providers respond
with a broad array of intellectual prop-
erty, increasingly dense technologies,
and an industry-wide focus on System-
on-Chip (SoC) design tools and integra-
tion methodologies. The trend towards
reducing the number of components in
these systems clearly has the advan-
tage of reducing cost, power consump-
tion, and manufacturing complexity.

On the other hand, product devel-
opers are left with the daunting task of
creating complex devices with increas-
ingly reduced visibility of subsystem
interaction. These devices use pro-
grammable microcontroller (MCU) and

digital signal processor (DSP) cores
coupled with embedded memories and
a myriad of peripheral modules on a
single chip. The proliferating market of
highly integrated systems obviously is
increasing the need for improved
methods of system validation.

SoC design methodologies for pro-
grammable cores now include static
debug blocks that may be used during
the early stages of product develop-
ment. By including additional debug-
related capability on-chip, suppliers
offer designers the ability to fully un-
derstand the behavior of a given sys-
tem, including validation of both
hardware and software architectures
and their interdependence. This is
essential for evaluating real-time
power consumption in Internet-ready
hand-held devices.

This article explores the issues
associated with developing power-
efficient hand-held wireless devices
and the necessary on-chip debug capa-
bility needed for rapid product devel-
opment. Debugging highly-integrated
multiple core systems on a single chip
will be discussed using the M-Core
M341 micro-RISC processor as an
example. We’ll also discuss an imple-
mentation of a real-time debug port
based on the IEEE Industry Standards
and Technology Organization (ISTO)
Nexus 5001 Forum specification.

To better appreciate the problems
of developing a low-power, high-per-
formance system, let’s look at a cellu-
lar handset. A digital cellular handset
can be partitioned into three main
sections (see Figure 1). The RF section
receives and transmits analog and
digital information; the analog

FEATURE
ARTICLE

Brian Branson
& David Gonzales

Facing the increasing
demand for inte-
grated wireless solu-
tions, debugging
capability and power
efficiency have be-
come crucial. Bran-
son and Gonzales
address these issues
as well as the idea of
global standards that
will make life easier.

Figure 1—This is
a block diagram
of the digital
cellular handset.

Keyboard

LCD display

Speaker

Microphone

Analog baseband and control

LCD driver

Voice
codec

Speaker
amplifier

Baseband
transceiver

RF
codec

QPSK
modulator

RF

RF section

Analog
section

Digital
section

RF
section

en en en

Power management

Wireless Devices

 CIRCUIT CELLAR® Issue 124 November 2000 13www.circuitcellar.com

baseband and control section handles
intermediate frequency conversion,
user interaction, and power control;
and the power management section
distributes and manages power to all
elements of the handset.

In first and second generation digi-
tal cellular solutions, overall baseband
power consumption is derived from
the combination of standby leakage
power, active power for time-based
protocol software stacks and data
(voice) transmission, and system event
power induced by an active page, call,
or other user-induced event (see Figure
2). The relative periods of standby and
active power can be calculated accu-
rately based on knowledge of the wire-
less protocol. Hence, standby power
consumption can be estimated via
leakage current information for a given
technology and the amount of time the
chip stays in this inactive mode.

Active power consumption is more
difficult to estimate. But, for repetitive
software stacks performing known
protocol functions, this too can be
accurately determined. Consider then
the problem of estimating and opti-
mizing on-chip power consumption
during user-induced events such as
WAP browsing, high-speed down/up
link transactions, or Motion Picture
and Entertainment Group (MPEG)
structured audio activity.

The embedded system contains all
the necessary capability to perform
these functions, even in parallel with
other events, but their behavior is less
deterministic. The software that is
written to handle this multitude of
system activity must be carefully opti-
mized to improve battery
life for a particular appli-
cation. Prior studies indi-
cate that the three main
blocks of the cellular hand-
set each consume 15 to 50
mA of current depending
on their states of activity
(see Table 1).

REAL-TIME ANALYSIS
Lab bench analysis of

prototype systems permits
conventional methods of
evaluation such as circuit
boards with logic analyzer

interfaces. Typically these boards
provide a means for initial powerup
and integration of software and hard-
ware modules. Each core in the
baseband processor chip is evaluated
individually in a static debug form;
each is put in a special mode of opera-
tion that checks its programmer model
register and memory while single-
stepping a test program (downloaded
from a host computer). After the sys-
tem passes the “smoke test” where
each processor exits reset and performs
initialization functions correctly, the
task of debugging the real-time kernel
and interrupt structures begins.

Debugging a real-time wireless
device traditionally requires a logic
analyzer monitoring an external bus
interface where at each clock cycle a
sample of bus activity is recorded. But,
this is expensive and physically impos-
sible for microcontrollers and DSPs
because they operate above 100 MHz.

When bus interfaces are not avail-
able, developers embed printf state-
ments at strategic points. So, data
needed is sent to a peripheral port and
retrieved by a host processor. The
information is minimal and creates
intrusive delays in the application. As
software layers became more complex,
this method became too time-consum-
ing. Now, microcontroller developers
are demanding reliable and cost-effec-
tive solutions from suppliers.

IEEE-ISTO NEXUS 5001 FORUM
During the past two years, a consor-

tium of companies has worked dili-
gently to address the issue of real-time
debugging of highly-embedded sys-
tems. The automotive, telecommuni-
cations, and network appliance
industries have driven this effort to
reduce time to market for new prod-
ucts. The consortium began with five
companies and has grown to more than
25 participating in the definition of a
specification, which is now governed
by the IEEE-ISTO Nexus 5001 Forum.
Current participants include Accurate
Technologies, Motorola, Embedded
System Products, Hitachi, Mitsubishi,
Hewlett Packard, Ashling
Microsystems, and more.

The IEEE-ISTO Nexus 5001
Forum’s goal is to define a common set
of microcontroller on-chip debug fea-
tures, protocols, pins, and interfaces to
external tools that can be used by real-
time embedded application develop-
ers. At this time, revision 1.0 of the
specification serves as the model for
future on-chip debug resources imple-
mented by silicon vendors.

The forum is comprised of four
groups. The business group constructs
and coordinates activities among the
companies involved. Companies in the
technical group create specifications
and coordinate technical activities
with the other groups. The third group

concentrates on valida-
tion. This bunch of
companies develops
verification methodol-
ogy for the architec-
tures and tools. The
final part of the forum
is the API group, which
is charged with devel-
oping abstraction lay-
ers and a software
interface for tools and
silicon. [1]

One major objective
of the forum is to help
development tool ven-

Table 1—Check out
the power consump-
tion numbers.

Task Digital power Analog power RF power

Network access 40 mA 20 mA 40 mA
Call service 20–30 mA 20 mA 50 mA
3G playback 35 mA 15 mA 20–30 mA

Figure 2—This demonstrates the characteristic power consumption for the cellular
handset.

Power

TX/
RX

System
event

Time

Time-based
active

Standby
leakage

14 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

dors more easily provide a standard set
of tools that may be used on a number
of embedded microcontrollers. In the
spirit of reusability, many semiconduc-
tor vendors have been recognized for
having debug ports and tool sets that
sufficiently address the static debug
requirements of their architectures.

Providing a cost-effective yet pow-
erful migration path to a standard set
of dynamic debug features is one of the
key goals of the forum. More than 70%
of leading embedded microcontroller
vendors have dedicated circuits and
pins that assist in new product devel-
opment based on the IEEE 1149.1 Joint
Test Action Group (JTAG) four-wire
serial interface.

 The JTAG pins and protocol help
developers with static debug method-
ologies in a master/slave mode, but
there are no means for the embedded
microcontroller to initiate real-time
information transfers to a host com-
puter. The Nexus standard addresses
this need with a scalable set of features
whereby existing debug blocks may be
used with an extensible auxiliary port.
The features associated
with this new auxiliary
port focus on real-time
transfer of information to
and from the embedded
microcontroller.

The Nexus 5001 Forum
has categorized static and
dynamic debug features
according to class levels to
address various levels of
development needs. These
classes provide a means for
implementing a scalable

debug architecture
that can address
different market
segment require-
ments. Also, it
should be noted that
when a product is in
development, you
want to have as
many debug features
as possible because
of constraints of
time to market.

After a device is
put into production,
however, it may not

be necessary or desirable to have all the
development features and pins. You may
save by implementing a scalable debug
port that meets only the requirements
needed for specific stages of the product
life cycle.

EMBEDDED PERFORMANCE
As stated, the heart of the cellular

handset is the baseband transceiver
that performs all computations rela-
tive to call service, Internet web
interaction, and handset control.
Figure 3 shows a block diagram of a
Motorola wireless baseband proces-
sor, including separate MCU and DSP
core complexes interfaced to sepa-
rate on-chip RAM and ROM memo-
ries and core-specific peripheral and
I/O functions.

In order to understand each core’s
operation and the way cores interact,
you should pin-out the internal core
buses to external pads, thus achieving
good visibility of core bus cycles.
However, because of the desire to
reduce I/O and package costs, this
becomes prohibitive. Nonetheless,

system hardware and software archi-
tects still desire a method of under-
standing stand-alone and integrated
core behavior.

WAP DEBUG
Rather than elaborate on the details

of the IEEE-ISTO Nexus 5001 specifi-
cation, we’re going to evaluate some of
the needs of debugging an Internet-
ready handset. The WAP architectural
specification focuses on optimizing for
efficient use of device resources. But
the task of providing a communica-
tions protocol as well as an Internet
protocol layer dictates that the RAM
be 1 to 4 MB and the flash ROM, which
holds the kernel, be 256 to 512 KB.

Because the number of external
accesses to RAM directly affects power
consumption, the microcontroller
engine must have an efficient instruc-
tion set, resident cache, and Memory
Management Unit (MMU) to reduce
external bus transactions. One of the
important power consumption goals is
to write the handset code so that it
efficiently uses the cache.

After the cache and MMU are en-
abled, the interaction of the core and
cache is no longer visible unless there
is a cacheable instruction or data miss
resulting in an external access to fill
the cache. This problem is aggravated
when you must debug code that exhib-
its abnormal behavior in real time or
there is a need to capture power mea-
surements when running specific code.

The M-Core M341 architecture
implements a Nexus 5001 port for
accessing user resources using a high-
speed output port to transmit real-
time program and data information.

The feature set of the Nexus 5001
port is from Class 3, pro-
viding static debug capa-
bility and real-time
process identification,
program trace, data trace,
and read/write access to
M-Core Local Bus (MLB)
resources. An efficient
mode of transmission
must be used so that real-
time 32-bit address and
data values are reported
through a 2- to 8-bit out-
put port (see Figure 4).

Nexus3

M-Core

Nexus2

DSP core

RAM ROM

Peripheral
interface

Peripheral
interface

RAM ROM

Shared
memoryM

U
X

I/O

I/O

I/O

I/O

I/O

External
memory
interface

Alternate
bus

masters

Peripheral bus

Program/data buses

Flash, burst flash
RAM, SDRAM

RX/TX data
LCD display,

etc.

Figure 3—The dual-core cellular handset baseband transceiver is shown
here.

Figure 4—Here’s the M-Core M341 processor with the Nexus 5001 debug port.

MMU

IEEE 1149

JT
A

G

O
nC

E M310
core

Virtual bus

16
-K

B
ca

ch
e

B
us

 c
on

tr
ol

MLB

DMA/
OTM

Message
decodeFIFOs

C
on

tr
ol

IEEE-ISTO
Nexus 5001
auxiliary port

JTAG control Gated virtual bus

16 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

APPLYING REAL-TIME
FEATURES

A set of data packets com-
monly referred to as public
messages in the Nexus 5001
specification has been defined
for efficient transfer of debug
information between the em-
bedded processor and a devel-
opment system. Public
messages consist of a transfer
code, or TCODE, source pro-
cessor identification number,
and the data associated with
the particular feature being
accomplished. The key ingre-
dient of public messages is
their efficiency, which means packets
may be variable in length depending on
the TCODE.

A JTAG serial interface controls
messaging capability. The interface
couples with a OnCE static debug
block and provides access to all Nexus
5001 registers on the M-Core M341
processor. Messaging is enabled prior
to deassertion of the reset pin so that
exit from reset can be monitored.

MONITORING PROGRAM FLOW
Program behavior includes changes

in the program counter because of
branching, jumping to subroutines, and
servicing interrupts and exceptions.
Analysis shows that 12 to 13% of in-
structions executed in a program are
change of flow. Therefore, it is not
necessary to report every instruction’s
address, rather only the change of flow.
Where you are relative to a reference

start address and where you
are heading when you change
program flow should follow
the source listing.

Three types of public mes-
sages provide program flow
behavior. Real-time operating
system (OS) debug must have a
means for reporting a process
ownership identifier. The
Ownership Trace Message
objective is to give the current
value of the data bus when a
process writes to a special
address (user base address).
This is where Nexus 5001
snoop logic comparators cap-

ture the data bus. Thus, whenever a
context switch of the OS occurs, a
process identifier may be transmitted
using the ownership trace message.
This is a key part of correlating vir-
tual-to-physical address maps of the
MMU while sending messages to the
source level debugger.

Branch trace messages report when
direct or indirect branch instructions
are executed. The difference in the

Photo 1—HIWave’s Hi-WARE debugger and the Tektronix TLA714 trace
buffer are shown here.

 CIRCUIT CELLAR® Issue 124 November 2000 17www.circuitcellar.com

messages is that during a direct branch,
the only information needed is the
number of instructions executed since
the last change of flow. A reference
address using a synchronization mes-
sage is normally transmitted to dis-
cover the program counter’s location.
After that occurs, all references are
made to that address until an indirect
change of flow occurs. This reduces the
number of bits transmitted in a mes-
sage. Indirect branch messages report
the number of instructions executed
since the last change of flow and the

address where the program counter is
jumping to, thus establishing a new
reference address.

If you need to report specific
memory accesses, the watchpoint
message does the job. This message
triggers hardware comparators and
complex access qualifiers that monitor
the M-Core virtual bus.

The idea is to set a watchpoint
trigger where a signal and message can
be transmitted. The message tells
which of the watchpoint triggers oc-
curred. This is especially valuable for

debugging variable writes. For ex-
ample, if you have a global variable
that is being modified by a number of
processes and you want to pinpoint
which of those processes is accessing
that variable, the watchpoint message
is the tool to use. This feature also
asserts an event pinout that may trig-
ger a logic analyzer to capture specific
public messages or peripheral signals.
For power analysis, you can use the
trigger to capture current measure-
ments at specific points in code or data
accesses that may be useful for pin-
pointing power-consuming hot spots.

MONITORING DATA VARIABLES
Trace messages provide a means for

reporting real-time data access to
memory locations. More data loads
and stores are reported than program
flow changes. Analysis indicates that as
much as 25% of instructions executed
in a program are data accesses.

Data messages report stack con-
tents, global and local variables, and
peripheral port accesses. To control
the number of data messages transmit-

Cellular handset

Nexus
connector JTAG 6 pins

Auxilary 7–13 pins

Emulation
controller

Logic
analyzer

Power
source/
monitor

HP
Tektronix

45–80 pin output

Ethernet

Host computer
integrated development
environment

Hi-WARE (HIWave)
Metrowerks (CodeWarrier)
SDS (single-step)

Motorola command converter

Figure 5—Here’s a real-time debug environment.

18 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

ted, data trace qualifiers in-
clude the access type (i.e.,
read and write or either) and a
start and stop address range.

If the data address and
access qualifiers are met, data
messages are generated and
sent to the debug port. This
narrows the window of
memory locations that may
initiate a data message.

Sending only the unique
portion of the data address
instead of the complete ad-
dress reduces the output
bandwidth requirement for
the debug port. Consequently,
a data trace message is recon-
structed relative to each prior
message using a synchroniza-
tion message as a starting
address.

REAL-TIME DATA
ACCESS

The M-Core M341 Nexus
Port provides access to the
MLB-mapped resources via
the JTAG port. A ready-for-
transfer pin (RDY) was added to in-
crease the transfer rate. Note that
calculations show that accesses to the
read/write data register allow for a
throughput of 1 MB on an M-Core
M341 microcontroller operating at a
50-MHz system clock.

Block transfers are possible with
only a single setup of read/write con-
trol and address registers. This permits
32-bit transfers in 38 JTAG clocks,
where each JTAG clock is half of the
system clock.

This capability significantly reduces
program and data load times and en-
ables you to examine arrays of
memory without stopping the applica-
tion. Data trace messages only report
data movement within a well-defined
data window, however, read/write
access permits accessing values asyn-
chronously. This feature is useful for
downloading new filter coefficients or
encryption keys when you are testing
communication protocols. Another
important use of this feature is the
retrieval of power data values that
may be built into the power manage-
ment unit of the handset.

DEBUG TOOL SUPPORT
Two important ingredients of a

successful reduction in development
time is on-chip circuits such as the
Nexus 5001 port and the develop-
ment tools that support the Nexus
interface. The Nexus 5001 specifica-
tion defines pins, connectors, and the
protocol for transferring messages to
and from the host computer. How-
ever, it is difficult to define stringent
rules for Nexus register sizes, bit posi-
tions, and other implementation-
specific details that may not suit
particular semiconductor vendors’
architectures. An application protocol
interface (API) that abstracts imple-
mentation details is the ideal solution
for tool vendors.

Figure 5 illustrates a lab debug envi-
ronment that uses an integrated soft-
ware tool set coupled with a logic
analyzer and power source/monitor for
complete handset development. The
emulation controller provides the
abstraction layer so that an API that
provides details of the emulation con-
troller-to-Nexus interface without
burdening the tool vendor may be

defined. An FPGA was added
to the emulation controller
that would reconstruct the
full message from the two
Nexus Port output pins to a
40-bit message with message
trigger signal. This improves
utilization of the logic
analyzer’s trace buffer.

Classic debuggers use a
load, arm, go scenario in
which the debugger starts the
target processor (s) running,
and then the debug environ-
ment is frozen until the target
processor reenters a debug or
interrogation mode. To fully
exploit the real-time debug
capabilities of the M341
Nexus Port, the debugger
must permit interrogation of
target resources as it executes
code in real time.

During initial development
of the M341 Nexus Port, a Hi-
WARE (HIWave) debugger was
interfaced to a Tektronix
TLA-714 logic analyzer
(Metrowerks, CodeWarrior,

and HP logic analyzers also support
Nexus). The HIWave debugger directly
interacts with the Tektronix logic
analyzer to arm its trace buffer for
message captures and later displays the
trace buffer contents within the
HIWave environment (see Photo 1).

Because the M341 processor has a
different instruction set and pro-
grammer’s model than the DSP56600
architecture, a dual-integrated envi-
ronment with split windows (one for
each processor) debugs the baseband
transceiver. One emulation controller
communicates with each processor
using the JTAG protocol. A semaphore
configuration in the dual debugger’s
control module regulates traffic to the
emulation controller so that there are
no message collisions when communi-
cating with either processor.

PENALTIES
The additional feature set of the

Nexus Port doesn’t come without
some die area and power penalty.
Therefore, during its implementation,
all sub-module clocks were gated off
for inactive circuitry and the message

Photo 2—Take a look at the M-Core M341 processor die.

 CIRCUIT CELLAR® Issue 124 November 2000 19www.circuitcellar.com

REFERENCE
[1] D. Gonzales, “Evaluation of a

New Evolution Port Using an M-
Core Architecture System,”
Motorola M-Core Technology
Center, Austin, TX.

SOURCES
M-Core M341 micro-RISC proces-

sor and OnCE static debug block
Motorola, Inc.
(847) 576-5000
Fax: (847) 576-5372
www.motorola.com

Debug specification
IEEE Industry Standards and Tech-

nology Organization:
Nexus 5001 Forum
(732) 981-3434
Fax: (732) 562-1571
www.ieee-isto.org/Nexus5001

Hi-WARE
HIWave Technologies, Inc.
www.hiwave.com

decode state machine and logic were
enabled/disabled via Nexus control.
Special consideration was given to the
message queues that reduce power.

The output port was made variable
width to accommodate a 2- or 8-bit
width. This is important from a devel-
opment perspective. During lab analy-
sis, the 8-bit port would be used
because there was room to add larger
connectors on the evaluation cards.
But when the handset ergonomics were
finalized and the high-density, double-
sided surface-mount board was used,
we decided that a reduced bandwidth
over the output port was feasible.

Overall, the Nexus Class 3 imple-
mentation was 7.5% of the M341 pro-
cessor area (see Photo 2). But
considering the size of the complete
baseband transceiver, it is small rela-
tive to the addition of on-chip memo-
ries and the DSP.

STRIVING TOWARD THE GOAL
Cellular-based products that inter-

act with the Internet are growing at a
phenomenal rate. The increase in fea-
tures will lead to more sophisticated
portable systems and challenge design-
ers to provide more features that con-
sume less power. Therefore, system
validation will play a more important
role in SoC design methodologies in
order to quicken time to market.

Significant effort is underway
throughout the electronics industry to
improve tools and methods for design-
ing complex embedded systems. The
IEEE-ISTO Nexus 5001 Forum is a
testament to this and demonstrates
that there is a dire need to standardize
a set of features, protocols, pins, inter-
faces, and tools for rapid development
of real-time microcontroller-based
products. Originally targeted for auto-
motive applications, the Nexus 5001
Forum has extended the scope of this
effort to encompass telecommunica-
tions, industrial, and portable hand-
held products. The problems of
real-time visibility and embedded
microcontrollers are similar if not
identical in most products.

Companies will have special cases
for solving specific design issues, so the
proposed global standard allows for
vendor-defined blocks for special fea-

Brian Branson is an M3 Core develop-
ment manager at the Motorola M-
Core/ColdFire Technology Center.
With Motorola for 15 years, Brian has
been involved with M-Core and
PowerPC microprocessor development
and product integration, as well as
fast static RAM and applications-
specific RAM designs. He earned a B.S.
in Electrical Engineering from Colo-
rado State University and holds eight
U.S. patents. You can reach him at
brian.branson@motorola.com.

David Gonzales is a senior member of
the design team at the Motorola M-
Core/ColdFire Technology Center.
During the past 22 years at Motorola
he has worked on 8-, 16-, and 32-bit
microcontrollers and DSPs. He earned
a B.S. in Computer Science from St.
Edwards University, Texas. He has
written more than 40 publications
about microcontrollers and holds two
patents. You can reach him at
david.gonzales@motorola.com.

tures, all addressed by a common pro-
tocol. The full specification may be
downloaded from www.ieee-isto.org/
Nexus5001/index.html. I

www.motorola.com
www.ieee-isto.org/Nexus5001
www.hiwave.com

20 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

Simplified TPU
Programming

FEATURE
ARTICLE

m
Have you ever
thought about using a
TPU but were dis-
couraged by the diffi-
culty? Have no fear,
Jeff’s here! Step by
step, Jeff explains the
TPU mysteries in de-
tail. After reading this
article, you’ll be ready
to tackle your own
custom functions.

any people
assume the

Motorola Time Pro-
cessor Unit (TPU) is

difficult to program. One of the rea-
sons is because it is usually described
in a hardware-oriented manner. This
often discourages people from even
trying to write custom functions that
could make the TPU a valuable tool.

In this article, I’ll use a different
approach. I’ll present the important
facts in a style more suited to program-
mers. I will not, however, ignore the
hardware, because it is fundamental to
TPU operation.

TPU OVERVIEW
The TPU is a real-time processor

optimized for fast complex I/O signals.
The TPU doesn’t need the CPU to
generate output signals or handle input
signals; therefore, it reduces loading
on the CPU. In standard microproces-

sors, the CPU controls the timer hard-
ware directly. But, the TPU sits be-
tween the CPU and timing hardware.

Traditionally, timers have fixed
functionality, but all TPU channels are
identical and can perform any timer
function. Another advantage is that the
TPU is fully programmable and not
just configurable. The TPU has its own
program memory to write programs.

The TPU is a memory-mapped
peripheral with an interface made up
of four parts. System Configuration
configures things that affect the
whole TPU, such as timebase and
interrupt configuration. The develop-
ment and test registers debug and test
the TPU. Channel controls configure
the way each channel works. And,
parameter RAM is used for communi-
cation between the CPU and TPU.

Every customer and application has
different timer requirements. Because
every TPU channel can run any timer
function, you can create any mixture
of timers. Enhancing the functions for
new requirements can be done in soft-
ware without changing hardware.

The TPU was designed to replace
custom ASIC hardware. This simplifies
the system hardware and reduces cost.

The TPU can generate a variety of
standard and custom input or output
functions. The first thing you should
do is check if the function you require
has already been written. If not, a cus-
tom function can be written using TPU
microcode. A list of all existing func-
tions is shown in Table 1. Custom
functions can take advantage of the
TPU’s aptitude for generating irregu-
lar, complex waveforms.

PROGRAMMING
There are many approaches to

learning a new programming architec-
ture. I’d like to start with the pro-

Jeff Loeliger

A

DIOB

SR

ERT

P

P_high P_low

Link

DEC

Chan_reg

Chan_DEC

15 0

7 0 7 0

7 4 3 0

Figure 1—You must understand the
TPU programmer model. The registers
represented by dotted lines are concat-
enated from other registers.

 CIRCUIT CELLAR® Issue 124 November 2000 21www.circuitcellar.com

awaiting channel. When programming
the LINK register, remember that it is
located in bits 4–7.

Register DEC (Decrementor) is a
special-purpose register that imple-
ments a unique solution for flow con-
trol. It can be used to repeat an
instruction a given number of times or
to return from a subroutine after a
given number of instructions. Repeat-
ing an instruction is useful because the
TPU can only shift 1 bit per instruc-
tion. The decrementor could be loaded
and the shift instruction repeated to
allow multiple variable bit shifts using
fewer instructions. Employing the
decrementor to return from a subrou-
tine is commonly used to send a link to
a block of channels (see Listing 1).

The starting channel is loaded into
Register P while the decrementor de-
termines the number of subsequent
channels to be accessed. After that
step, the LINK register sends the links
to the channels.

Register CHAN_REG (Channel
Register) is a special-purpose read/
write register that tells you which
channel’s hardware is being used. You
change to another timer channel’s
hardware with this register. So, a
function running on one channel can
control multiple TPU pins. Remem-

grammer’s model (see Figure 1). Each of
the registers shown in the model has a
specific and unique function.

Register A is a general-purpose
accumulator used for arithmetic opera-
tions. Register DIOB (data I/O buffer)
also is an accumulator register. In addi-
tion, it can be used as an index register
and can access parameter RAM.

Register SR (Shift Register) can be
used as a general-purpose accumulator
register and has a special feature allow-
ing a shift right by 1-bit operation.
Register ERT (Event Register Tempo-
rary) is a mailbox for transferring infor-
mation to and from the timer channel
hardware of each of the channels. The
timer channel value is automatically
copied to the ERT register every time
a new function state is entered. This
saves a couple of instructions in code
by not having to explicitly access the
channel hardware and load the ERT.

Register P (Preload) can be used as a
general-purpose accumulator and ac-
cess parameter RAM. This is the only
register that can be accessed as two 8-
bit registers, called P_high and P_low.

Register LINK is a special-purpose
4-bit register that enables a function
running on a TPU channel to pass a
signal to another TPU channel. This

Listing 1—This example uses the DEC_RETURN feature. The first half shows the sample code for
calling the LINK_CHAN subroutine underneath.

Table 1—Among the TPU functions, the “A” mask is designed for automotive users and the “G” mask is suitable for
general use. Some new functions were added to the TPU3.

Source Nickname Name

TPU “A” mask PPWA Period- /pulse-width accumulator
TPU “A” mask OC Output compare
TPU “A” mask SM Stepper motor
TPU “A” mask PSP Position-synchronized pulse
TPU “A” mask PMA/PMM Period measurement with addition/missing

 transition detect
TPU “A” mask ITC Input capture/transition counter
TPU “A” mask PWM Pulse width modulation
TPU “A” mask DIO Discrete input/output
TPU “A” mask SPWM Synchronized pulse width modulation
TPU “A” mask QDEC Quadrature dedode
TPU “G” mask PTA Programmable time accumulator
TPU “G” mask QOM Queued output match
TPU “G” mask TSM Table stepper motor
TPU “G” mask FQM Frequency measurement
TPU “G” mask UART Universal asynchronous receiver/transmitter
TPU “G” mask NITC New input capture/transition counter
TPU “G” mask COMM Multiphase motor commutation
TPU “G” mask HALLD Hall effect decode
TPU “G” mask MCPWM Multichannel PWM
TPU “G” mask FQD Fast quadrature decode
TPU3 mask SIOP Serial input/output port
TPU3 mask ID Identification
TPU3 mask RWTPIN Read/write timers and pin

��� ������� 	
� ��� �
�� ����� ��� ��������� ���� ��

��� � ���� 	
� ��

����� ����������� ������
���� ��� ��

����

��

��!"#$%&'"%�	���

��$(��%&�)*�	���+� �����������������������������������

��($,-#.�	��

��!("(/%,%"0�1�"%2-0,%"0�	����������������������������

������������������3���� �������������4����������������

���������������3���54� ����������������4��������������

��

���������� 	
��� ����� 	
� ������� 6� 788�
��� ����� 	
� ������� 6� 97�8�

��� ����� 	
� ������� 6� 97:8�
��� ����� 	
� ������� 6� 97;8�

��� ����� 	
� ������� 6� 97<8�
��� ����� 	
� ������� 6� 97=8�
��� ����� 	
� ������� 6� 97>8�

��� ����� 	
� ������� 6� 97?8�

powerful feature permits synchroniza-
tion of multiple TPU channels. For
example, if one channel calculates a
value required by another channel, a
signal can be passed to the second
channel indicating that the value has
been updated, thus, scheduling the

22 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

Table 2. Every function has its own
entry table that points to unique
states for that function.

TPU INSTRUCTION FORMATS
Basically, the TPU has five instruc-

tions. But, these are instruction for-
mats rather than actual instructions.
Each format allows you to execute
several instructions in parallel. This
is the key difference between normal
microprocessor instructions and the
microcode used by the TPU. When I
explain assembler syntax later, how
to achieve parallel operations will

become obvious. Table 3 states an
overview of the instruction formats
and parallel actions available.

The parallel operations performed
by each instruction format were cho-
sen to minimize the code. Because
every TPU instruction is executed in
two clock cycles, reducing code size
increases execution speed. The table
showing the instruction formats can
seem daunting because of the long list
of actions that can be performed in
parallel. To ease understanding, I’ll
explain the actions in greater detail.

Format 1 performs full arithmetic
operations including addition,
subtraction, and shift by 1 bit.
The addition and subtraction
can be performed using con-
stants 0, 1, $8000, or $FFFF.
The parameter RAM access
allows you to read or write to
any parameter RAM location.
Parameter RAM is the
memory shared by the TPU
and CPU. It passes variables
between the TPU and CPU.
The former also uses it for
local variable storage.

Listing 2—There are 16 entry points that must be defined for every TPU function. This can be done
in a minimum of five states.

Table 2—The first four entries are states
initiated by the host. The remaining 12
entries are states executed because of
conditions on the channel.

ber that the CHAN_REG register is
located in bits 4–7. The CHAN_REG
and DEC registers can be concat-
enated to form the 8-bit register
CHAN_DEC. The latter allows both
CHAN_REG and DEC to be accessed
in one instruction.

Now that you understand the regis-
ters, I’ll move on to programming style
and the TPU entry table. A key con-
cept in getting to know the TPU is
considering the functions as a set of
states with an associated entry table.
An entry table is similar to an inter-
rupt or exception table on a standard
microcontroller in that it tells the
TPU where to go when a service re-
quest is made.

There are four events that can cause
a service request. The CPU can initiate
an HSR (Host Service Request), an-
other channel can make a request by
issuing an LSR link (Link Service Re-
quest), and the channel hardware can
detect a capture on the input pin or a
match on the output pin (M/TSR,
Match/Transition Service Request).

When you start writing a new TPU
function, begin with a state transition
diagram. This may seem formal, but
it is the best way to efficiently map
the states to the TPU architecture.
The best way to make fast, efficient
TPU functions is to have the states
mapped directly to TPU entry points.
However, it is not always possible to
do this in cases where, for example,
there are more states than entry
points. The entry points are defined in
the TPU entry table exhibited in

Service requests Channel conditions
Entry Host request Link request Match/transition Pin state Software

points (HSR) (LSR) request (M/TSR) flag 0

0 01 X X 0 X
1 01 X X 1 X
2 10 X X X X
3 11 X X X X
4 00 0 1 0 0
5 00 0 1 0 1
6 00 0 1 1 0
7 00 0 1 1 1
8 00 1 0 0 0
9 00 1 0 0 1

10 00 1 0 1 0
11 00 1 0 1 1
12 00 1 1 0 0
13 00 1 1 0 1
14 00 1 1 1 0
15 00 1 1 1 1

�� ,���� ��� �� � ��� @� ������� 8� 1� �� ��
A��� @� ��� ����� ���� ��� ���4���5�����
����� �� �
8�� �� 8
��� ��
B�� 5C��
B�� ���
B�� ����8
B�
� D���� �� ������ ����� �� �E

�� ,���� ��� �� � ��� @� ������ :� ��
A��� @� ��� ����� ���� ��� ���4���5�����
����� �� �
��� �� 8
8�� ��
B�� 5C��
B�� ���
B�� ����8
B�
� D���� �� ������ ����� �� �E

�� ,���� ��� �� � ��� @� ������ ;� ��
A��� @� ��� ����� ���� ��� ���4���5�����
����� �� �
��� �� 8
��� ��
B�� 5C��
B�� ���
B�� ����8
B�
� D���� �� ������ ����� �� �E

�� ,���� ��� �� � ��� @� ������� <�?� ��
A��� @� ��� ����� ���� ��� ���4���5�����
����� �� �
8�� �� 8
8�� ��
8�� 5C��
��� ���
B�� ����8
B�
� D���� �� ������ ����� �� �E

�� ,���� ��� �� � ��� @� ������� ���=� ��

A��� @� ��� ����� ���� ��� ���4���5�����

����� �� �
8�� �� 8
8�� ��
��� 5C��
B�� ���
B�� ����8
B�

� D���� �� ������ ����� �� �E

 CIRCUIT CELLAR® Issue 124 November 2000 25www.circuitcellar.com

End the current state, as the name
suggests, allows the termination of the
current state. It also can enable the
operation of the decrementor.

As part of Format 2, each TPU
channel has three negate latches that
control its operation. The latches,
used to determine the required entry
in the entry point table, are Link Ser-
vice Latch (LSL), Match Recognition
Latch (MRL) and Transition Detect
Latch (TDL). When a latch is set, it
indicates that a service request has
been made. After the microcode ser-
vices the event, it must negate the
latch to show that the service request
is no longer required.

If using an input channel, channel
hardware control defines which edge
the hardware should detect. If using
an output channel, it sets the state of
an output pin and defines which state
should be driven after a match occurs.

Software flags allow you to set or
clear the two software flags in each
channel. Interrupt allows the TPU to
request an interrupt from the host
CPU and write MER copies the value
from the ERT register to the channel
hardware during an output function.

Here are the parts of Format 3. As
implied, conditional branch allows a
conditional branch to be performed.

While executing one instruction, the
TPU loads the next instruction. If the
first instruction was a branch, the

prefetch instruction nor-
mally would not be used,
causing the TPU to stall.
An interesting feature of
the TPU is that you con-
trol the flushing of the
prefetched instruction and
can prevent stalling.

Timebase selection
allows the definition of the
hardware channel as an
input or output. It allows
you to define which time-
base the hardware channel
will use. Channel hard-
ware service enables the
two signals from the chan-
nel hardware, MRL and
TDL, to request a service.

In Format 4, jump to
subroutine actions allows
an absolute jump to sub-
routine. As noted, a flush
can be performed for both
of these operations.

In Format 5, the arithmetic opera-
tion with immediate data action per-
forms addition, subtraction, as well as

Format Format overview Actions executable in parallel
1 Most commonly used format. It allows Full arithmetic operations

an arithmetic operation and a parameter Parameter RAM access
RAM access to occur in parallel. End the current state

2 The only format that can write to the output Arithmetic operations (limited shifting
channel hardware. All output functions and cannot latch condition codes)
must therefore use this format to set up Negate latches
matches on an output channel. Channel hardware control

Software flags
Interrupt
Write MER
End the current state

3 The only format that allows service Conditional branch
requests to be enabled by the channel Software flags
hardware for execution in the TPU. Channel hardware control

Time base selection
Channel hardware service enable

4 Allows modification of software flags Jump to subroutine
and access of parameter RAM. Software flags

Parameter RAM access
Negate link latch
End the current state

5 Allows an arithmetic operation with an Arithmetic operation with immediate data
8-bit immediate data value. Software flags

Interrupt
Negate link latch
End the current state

Table 3—The TPU Format table shows the five instruction formats available and the actions they can perform in parallel.

26 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

shift by 1 bit. The addition and sub-
traction can be performed with an 8-
bit immediate value.

TPU HARDWARE
One of the reasons why program-

ming the TPU seems difficult is that
you need to fully understand the TPU
hardware to program efficiently. This
can be true of all microprocessors,
especially for the TPU, because of the
amount of control the microcode al-
lows you to have over the hardware.
So now, let’s take a look at the five
main areas shown in the block dia-
gram in Figure 2.

The first area that needs to be ex-
plained is the microengine. This is
made up of two blocks, the execution
unit and the control store. The con-
trol store is the program memory for
the TPU. It supplies instructions to
the TPU from either the TPU’s inter-
nal ROM or from on-chip emulation
SRAM. The execution unit is the
TPU’s equivalent of the CPU in a
microprocessor. It is a simple unit
that executes an instruction every

two system clocks. It uses 32-bit fixed-
length instructions and has a single
instruction prefetch queue.

The second area to consider is the
timer channel, which is shown in
Figure 3. All 16 timer channels are
identical and each is associated with
its own pin. A unique feature of the
TPU, which is extremely powerful, is
that each channel uses a greater than
or equal to comparator. Normally,
timers only use an equal to compara-
tor, which can cause problems. If you
are trying to schedule an event close
to the current time, you may miss the
event and have to wait until the
timebase rolls over. This is not a
problem with a greater than or equal
to comparator (any event missed will
happen as soon as possible).

Programmers must adapt to refer-
ring to events as past or future. To
help, it is convenient to use a circle
that represents the full range of the
timebase. You can check this out in
Figure 4. With the comparator, the
future is defined as the period from
current time to current time plus

Listing 3—This is what a top-level ������� file should look like. It is good programming practice to list the
version and size of each function in the comments.

��

��,!'/0F2$�(0$��

�� /���� � ��� ��� ����� �� � ������� ������ �� ,!'� 5����
/#,-#.

$#.,"#���� � � ��

��

A� �� 8�

�� 0����� �� �B���� ��� ��G�� ������ ��� ����G������ ���������� ��
%�����������	� � � � � � ����
%����������	� � ����� ��������

�������

�.�����5� "�G 0�H�� ��
A�������� I������I ����������
� 7J�
�� !,(��� >; ��

A�������� IK�5���I ����������
� 7%�
�� L#/ ��� <� ��
A�������� I��5���I ����������
� 7&�
�� ,0/ ��� �8=��

A�������� I�K5���I ����������
� 7$�
�� JL/ ��� :8 ��
A�������� I�� ����I ����������
� 7)�
�� '(", ��� >? ��

A�������� I�������I ����������
� 7(�
�� .-,$ ��� ;=6��
A�������� I��55���I ����������
� � ��
�� $#// ��: =8 ��

A�������� I��������I ����������
� � ��
�� M(��& �������;8 ��
A�������� I5��N5���I ����������
� � ?�
�� /$!O/ �������;� ��

A�������� I�K����I ����������
� � >�
�� JL& �������<> ��

�� ������ �� �B���� � � : ��

���������������

���

��,#,(�����������=8=���

�� 6�
� .-,$� ��������� ����� ���� �-.F$M(.� ��4 �������� ,��� ��H�

��� ;=� ��������� ���� �-.F$M(.� ��4 ���������

 CIRCUIT CELLAR® Issue 124 November 2000 27www.circuitcellar.com

uler, and channels are scheduled in a
round-robin scheme to guarantee each
gets serviced. Each channel is as-
signed a priority level—high, medium,
or low (H, M, or L)—which is sched-
uled H-M-H-L-H-M-H. The scheduler
uses cooperative multitasking
whereby each channel must indicate
the end of its operation allowing an-
other channel to be scheduled.

The host interface is split into four
modules. These modules include
system configuration, development

support and test, channel control, and
parameter RAM. The system configu-
ration module configures everything
that affects the TPU, except the chan-
nels. The main things affected by this
module are the timebases and how
the TPU sends interrupt requests to
the host CPU.

The development support and test
module provides support for develop-
ing and debugging TPU microcode. It
allows the TPU to be put into emula-
tion mode, which lets microcode be
run from emulation RAM. The channel
control module configures and con-
trols the operation of each channel. It
allows the configuration of each chan-
nel by defining the function to be run
and the channel priority. It gives you
control of the channel by issuing host
service requests (HSR) and setting host
sequence registers (HSQR).

A host service request is a request
from the host CPU telling a TPU chan-
nel to perform a required task. There
are two host service request bits for
each channel (see Table 4), therefore
the CPU can request three different
types of service.

There also are two host sequence
bits per channel. These are flags writ-
ten by the CPU and read by the TPU.
The parameter RAM has two purposes,
it allows the host CPU to communi-
cate with the TPU and it is where the
TPU keeps its local variables. Param-
eter RAM is made up of 100 16-bit
locations. Each channel on the TPU
has six parameter RAM locations
associated with it (except channels 14
and 15, which have eight).

$8000 counts. Similarly, the past is
defined as current time to current
time minus $7FFF.

The only disadvantage of using a
greater than or equal to comparator is
that it reduces the size of your time-
base by 1 bit. On the TPU, the time-
base is effectively 15 bits. You can
only schedule events $8000 counts
from the current time, not $FFFF like
with an equal only comparator.

The capture signal blocks a match
signal with the Timer Channel (see
Figure 3). Because there’s one result
register for each channel, only one
value can be stored per channel. The
capture block ensures that if a match
occurs after a capture, the match
value does not overwrite the capture
value. The match value is written by
the program, so it doesn’t have to be
stored in the channel’s result register.
The capture value, however, comes
from an external event and would be
lost if the register is overwritten.

The next area is the scheduler.
This block is responsible for schedul-
ing each of the channels and is, in
effect, an RTOS. There are three prior-
ity levels associated with the sched-

Listing 4—Here’s a simple TPU microcode example that shows the addition of two numbers and the
storing of their result in parameter RAM.

A5�� �� ((� � I� 58I�� � �
�(� ��� �� ������ � ��� ��� ���I�� 4�� �

�����������������������5�� ���((����������

A5�� ��)� � � I� 5�I�

A5�� �� $� � � I� 5:I�

��

��%.,"*���5�	��%P��(&&����������������������

��

��0,(,%
0��%.,%"%&	�08����������������������

��

��!"%�#(&�!("(/%,%"�	�((��������������������

��

��%.,%"�OM%.�	��� �
����� 8
����������������

��

�� ($,-#.� 	� � (��� �� �5��� � ((� 1�)� �������

��������� ���������$�����

��

A��� @� ��� ����� ���� ��� ����4���5�����
����� �� �
��� �� 8
��� ��
B�� 5C��
B�� ���
B�� ����8
B�

 �5� �� Q�� R((�

 �5� ���4� Q�� R)�

������	
���6����4�

 �5� �� �S� R$�
��������

Figure 2—The TPU block diagram shows the five main blocks of the TPU.

Control and data

H
os

t i
nt

er
fa

ce

System
configuration

Devolopment
support and test

Channel
control

Parameter
RAM

Host
interface

Scheduler

Microengine

Control
store

Execution
unit

Data

Control

C
h
a
n
n
e
l

TCR1

TCR2

Service requests
Timer

channels
Control

Channel 0
Channel 1

Channel 15

T2CLK

28 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

A5�� ��M-2M,-/%���������I� 58I�

A5�� ��!%"-#&�����������I� 5�I�

A5�� �� .%P,�"-0-.2�%&2%� I� 5:I�

��

��%.,"*���5�	��%P:�-.-,�����������������������������������

��

��0,(,%
0��%.,%"%&	�08������������������������������������

��

��($,-#.�	��������� ��������������������������������������

��������������B�� �������������5��1���� ������� �5��� ����

��������������B�����������������5�������������������������

��

A��� @���� ����� �����������4���5�����

������� �
����� 8
�����
B��5C��
B�����
B������8
B�

 �5���Q��R!%"-#&�

�������4��	
�����5�����

�������� �������� ��������������,$"���

����	
���������������������
���������H���������������

����	
���N�����������������
�� �G��������N������B��5������

���4���5�� ����������������
����4���5������� G���� �K�������

 �5������4�Q��RM-2M,-/%�

��������	
�� ��6��������������
�������������B�� ������������

 �5������S�R.%P,�"-0-.2�%&2%��
���� ��G������

������� �	
��� �6���4���������
�������������B����������������

������N ����5� � ���
���������B���������5���

����5 ���������������������
����������������������

������������������

���

��%.,"*���5�	��%P:�M-2M����������������������������������

���

��0,(,%
0��%.,%"%&	�0������������������������������������

���

��($,-#.�	��������������B�� �������������5��������� ������� �5��� ���

��������������B�����������������5������������������������

���

A��� @���� ����� �����������4���5�����

������� �
8���� 8
8����
B��5C��
������
�������8
B�

 �5���Q��R!%"-#&�

��������	
�� ��6��������������
�������������B�� ������������

 �5������S�R.%P,�"-0-.2�%&2%��
���� ��G������

 �5�����4�Q��RM-2M,-/%�

������� �	
�� �6���4����������
�������������B����������������

������N ����5� � ���
���������B���������5���

����	
���N� ���
���B�������� �G��������N��

����5 ���������������������
����������������������
������������������

���

��%.,"*���5�	��%P:��#O�����������������������������������

���

��0,(,%
0��%.,%"%&	�0:�����������������������������������

���

��($,-#.�	��������������B�� �������������5�����

��� ������� �5��� �����

��������������B�����������������5������������������������

���

A��� @���� ����� �����������4���5�����
������� �
8���� 8
8����
B��5C��
������
8������8
B�

 �5���Q��R.%P,�"-0-.2�%&2%�

������� �	
��� ���������������
��������B����������������
������N ����5� � ���
���������B���������5���

����	
������ ���
���B�������� �G������������

����5 ���������������������
����������������������
������������������

Listing 5—The TPU microcode for a function to produce a PWM output waveform is listed here.

 CIRCUIT CELLAR® Issue 124 November 2000 29www.circuitcellar.com

Each channel uses its dedicated
RAM area to store the local variables
of the function running on it. The
function running on each channel can
access all parameter RAM, enabling
exchange of data among channels.

The goal of writing TPU functions
is to make them able to run on any
channel. Because the functions run-
ning on the TPU channels must coor-

dinate parameter RAM usage, each
channel should write only to its own
dedicated area. The function running
on each channel, however, can access
all of the parameter RAM.

The next parts of the block dia-
gram are the timebases. The TPU has
two 16-bit timebases called TCR1 and
TCR2. TCR1 is driven by the system
clock and can be one quarter as fast as

A5�� ��"-0-.2�%&2%��I� 58I�

A5�� ��M-2M,-/%�����I� 5�I�

���

��%.,"*���5�	��%P;�-.-,��

���

��0,(,%
0��%.,%"%&	�08���

���

��($,-#.�	�$������ ��

���
A��� @���� ����� �����������4���5�����
������� �
����� 8
�����
B��5C��
B�����
B������8
B�

�����������������4��	
����5��������
��������� �������� �������������,$"����
��������������������	
���N���������
��N������ � �������������
�������������������4���5�� ��������
�����4�������� �� �K��������

��������������������5 ����������������������
�����������������������
��������������������

���

��%.,"*���5�	��%P;�0,(",���

���

��0,(,%
0��%.,%"%&	�0��

���

��($,-#.�	�0�� �� �������������5������� �5��� �"(/���������������������

�����������$������ �������������N������ �������������������������������

���
A��� @���� ����� �����������4���5�����
������� �
8���� 8
8����
B��5C��
������
�������8
B�

������������������	
�� �����������
���� �� �������������5������� �5��� �"(/��
�������� �5��������S�R"-0-.2�%&2%�

��������������������	
��������N���
�������� ����������������������������������
����������������������������������
������������� ���������

��������������������

���

��%.,"*���5�	��%P;�%.&���

���

��0,(,%
0��%.,%"%&	�0:���

���

��($,-#.�	�2������������������5��

�����������$����������������5��������� ������� �5��� �"(/��������������

�����������$������ �������������N������ � �����������������������������

�����������"�K��������� �������������$!'������������������������������

���

A��� @���� ����� �����������4���5�����

������� �
8���� 8
8����
B��5C��
������
8������8
B�
 �5���Q��R"-0-.2�%&2%�

�������������������4�	
�� ����������
��������������������5��1��������������5���
�������� �5��������4��S�RM-2M,-/%���
���� ���������5������� �5��� �"(/��

�������������������	
���N���������
�������� ����������������������������������

����������������������������������
������������� ���������
����������������������� ����������
����� ���������$!'��

��������������������

Listing 6—Here’s the TPU microcode for a function to measure the high time of an input signal.

30 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

the system clock. TCR2 can be
derived from the system clock,
clocked by an external source,
or operate in gated mode.

ASSEMBLER SYNTAX
The TPU assembler syntax

is a mixture of normal micro-
controller syntax and Pascal.
The difference in writing TPU
programs is that several in-
structions assemble as one
microinstruction:

������	
���6����4�

 �5���S�� 5��

��������

A semicolon separates instruc-
tions and a period signifies the end of
a microinstruction. Another differ-
ence is that each instruction starts
with an identifier to let you know
which part of the TPU hardware the
instruction uses.

To support the different versions of
the TPU and configure functions, the
TPU assembler uses commands
known as assembler directives. These
directives are like instructions, but do
not produce code. Three of the six
assembler directives used by the TPU
are required for TPU programming.

The TPU supports a simple form of
macro substitution with the ������
directive:

A5�� ��M-2M�,-/%�T� 58U�

A5�� ��(�T� 5�U�

A5�� ��!%"-#&�T� 5;U�

This directive normally used to give
the parameter RAM values a meaning-
ful name.

The ���	�
 directive is the most
complicated and most important.
This directive defines the entry table
for a given function. All entries for a
function must be defined using the
���	�
 directive to prevent an error
during assembly (see Listing 2).

Finally, the �����
�� directive
enables the inclusion of source code
from another file. This directive usu-
ally creates a complete set of TPU
functions from several single function
files. Normally, there will be one top-
level ����
�� file that contains every
�����
�� directive.

In addition, the top-level ����
��
file contains two microinstructions
that are commonly referred to as the

standard end instructions. To
save space, the standard end
functions are only put in
memory once, and then refer-
enced by all functions; this
saves inclusion in every func-
tion. The top-level �������
file for the standard TPUG
mask set is shown in Listing 3.

TPU TOOLS
No programmable processor

is useful without tools to sup-
port it. The most important
tool is the asembler. For the
TPU, there are three choices.
The first two are Motorola’s
TPUMASM V. 3.33, available

Past

Future

$8000

$0000

Current timebase count

Figure 4—This is a graphical representation of the greater
than or equal to comparator. The circle represents one
complete cycle of the timebase.

free on the Motorola
web site, and TPU-
MASM V. 4.04 sold by
Motorola and TAS,
available as source code
under the GNU license.
Neither supports the
TPU2 nor TPU3. But,
future versions of TAS
are planned to support
both. And, a previous
compiled version of
TAS for Windows 95/98
and WindowsNT is
available on the ’Net.

Two debuggers are
available for the TPU.
An unsupported, DOS-
based debugger called

TPUBUG is free from the Motorola
web site. And, as part of the
Lauterbach tools, there is debug sup-
port for the TPU3 on the MPC555.

The simulator is the last tool.
There is one simulator available for
the TPU from Ashware. This product
provides full development support for
all TPU versions.

WRITING FUNCTIONS
You made it this far, now you can

get to the fun part of actually writing
functions. I wrote three functions to
give you a taste of TPU programming,
including a simple function, an output
function, and an input function.

The first function you’ll write will
simply add two numbers from param-
eter RAM and put the result in a third
location (A + B = C). This function is
shown in Listing 4. Notice that in the
entry directive, one parameter load
operation can be specified. In this
example, the P register is loaded with
the value A. The first instruction
loads the B value into the DIOB regis-
ter and the second instruction per-
forms the addition, writes the result
to the C parameter, and ends the
state. Hence, the second instruction
has three instructions within one
microinstruction.

All three can be done in one micro-
instruction because the TPU does the
addition first, the write to parameter
RAM second, and the end instruction
last. The TPU follows this combina-
tion of instructions in this order no

Figure 3—Two of the 16 channels are shown here.

ERT

Capture

Compare

Pin

Channel 0

TDL

MRL

Match

Edge detect

Capture

Compare

Pin

Channel 15

TDL

MRL

Match

Edge detect

32 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

Jeff Loeliger is a senior staff engineer in
the Advanced Vehicle Systems Divi-
sion at Motorola SPS, Europe. With
more than twelve years of experience
in microcontrollers, he has become a
recognized expert on the Motorola
TPU. You may reach him at
jeff.loeliger@motorola.com.

matter how they are written. For clar-
ity, it’s helpful to write the instruc-
tions in the order they are executed by
the TPU.

The next function produces a PWM
output waveform (see Listing 5). This
is made up of three states—initializa-
tion, PWM_high, and PWM_low. The
initialization state configures the
channel and sets up the first edge. The
PWM_high state calculates the falling
edge time, the next rising edge time,
and sets up the next falling edge. The
PWM_low state uses the previously
calculated value and sets up the next
rising edge. As stated, with timer
channels, you can only schedule
events $8000 in the future, so values
used must be less than $8000.

Listing 6 shows the input function
that measures the high time of an input
signal. Initialization, start, and end are
the function’s states. The initialization
state configures the channel and sets
up the input edge detection. The start
state is entered when a rising edge is
detected. It saves the time of the edge
and configures the channel to look for
the falling edge. The end state calcu-
lates the length of the high time, writes
it to parameter RAM, and sends an
interrupt request to the host CPU.

CHALLENGE
As you expected, the TPU is com-

plicated, and powerful when mastered.
I hope this article interested you
enough to write more complex and
useful functions. My examples are
basic, but you may try making the
edges configurable using the host
sequence bits, adding noise immu-
nity, making the TPU handle error
conditions, or making the functions
work with values greater than $8000.

It is your challenge now. Happy
programming!I

SOFTWARE
The source code for the example
functions is available on the Circuit
Cellar web site.

SOURCES
TPU tools
Motorola, Inc.
(800) 521-6274
(512) 328-2268
Fax: (512) 895-4465
www.mot-sps.com

TAS
TPU Assembler
www.loeliger.freesever.co.uk

TPU debugger
Lauterbach, Inc.
(508) 303-6812
Fax: (508) 303-6813
www.lauterbach.com

TPU simulator
Ashware, Inc.
(503) 553-0271
Fax: (508) 553-0547
www.ashware.com

Host Service
Request bits

(HSR) Resulting action

00 No host service request
01 Host service request 1
10 Host service request 2
11 Host service request 3

Table 4—This shows the decoding of the Host
Service Request bits. The host CPU can request
three different service requests.

REFERENCES
J. DiBartolomeo, “TPU: A
Coprocessor for Timing Func-
tion,” Circuit Cellar 102–105,
1999.

J. Loeliger, “RC Servo Control via
TPU,” Circuit Cellar Online,
December, 1999.

“Time Processor Unit Macro As-
sembler Reference Manual,”
Motorola, Inc., TPUMASMREF/
D2, 1994.

“Time Processor Unit,” Motorola,
Inc., TPURM/AD, 1990.

M. Bannoura and A. Dyson, TPU
Microcode for Beginners, AMT
Publishing, Australia, 1998.

R. Soja, “Inside Motorola’s TPU,”
Doctor Dobbs Journal, December,
1996.

www.mot-sps.com
www.loeliger.freesever.co.uk
www.lauterbach.com
www.ashware.com

34������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

A PIC17C44-Based
Computer

According to the
market, single-board
computers and PIC
microcontrollers
don’t mix. But, it
would be nice,
wouldn’t it? If you
agree, tune in, be-
cause Duane found
the right mixture so
we can execute
from external RAM.

s ingle-board
computers that use

PIC microcontrollers
are not readily available,

partly because all except the top-of-
the-line PIC17Cxx microcontrollers do
not allow execution from external
memory. This precludes execution
from RAM, which means that a pro-
gram cannot be downloaded and ex-
ecuted. However, the PIC17Cxx
microcontrollers can be configured for
a microprocessor or extended
microcontroller mode, much like the
Motorola 68HC11, which greatly fa-
cilitates program development. In this
article, I’ll explain how to build a
PIC17C44-based computer that can be
programmed to execute from external
RAM. I call it the SBC17C44.

Although the SBC17C44 is designed
around the PIC17C44, any of the
PIC17Cxx microcontrollers with 8-KB
or smaller program memory can be
used. There are two boards, the
motherboard and daughterboard. The
motherboard includes the external
memory, address latch, and device
selection decoder. The daughterboard
provides the device interfaces, includ-
ing RS-232/422/485 serial I/O level
conversion, an LCD, a keypad, and a
piezo buzzer. It also includes the power
supply. The boards are large with wide

traces, making it possible to etch the
boards at home using the simplest
possible tools and materials.

THE MOTHERBOARD
The motherboard features a 16-bit

address bus, 16-bit data bus, 8 KB of
external program memory (ROM or
RAM), and 8 KB of data memory (RAM)
(see Figure 1). A 34-pin header provides
access to the low-order 8 bits of the
address bus and data bus, 10 I/O pins,
five chip-select lines for external de-
vices, and the OE and WR lines. A 6-pin
header provides for connection to a
serial I/O level converter.

The three high-order bits of the
address bus are used to select the
memory chips or external devices.
2000:3FFF selects the 16-bit program
memory; 4000:5FFF selects the 8-bit
data memory. 6000:7FFF, 8000:9FFF,
A000:BFFF, C000:DFFF, and
E000:FFFF activate CS3, CS4, CS5,
CS6, and CS7, respectively.

J1 provides power from a 5-V sup-
ply. You can connect a reset button to
the third and forth terminals. J2 is a 34-
pin header that connects the
motherboard to a daughterboard. It
provides connections to the buses, I/O
lines, and control lines as discussed
above. J3 is a 6-pin header used to con-
nect to J5 or J7 on the daughterboard
for serial I/O level conversion.

THE CLOCK OSCILLATOR
A crystal or ceramic resonator can

clock U1 or a pulse train can be applied
to OSC1 (pin 14 of U1). A 3-pin SIP
socket is provided for Y1. If a ceramic
resonator with integral capacitors is
used, C10 and C11 should not be used.

The frequency can be 33 MHz or
lower, however it must not be above
25 MHz if EPROM is used for external
program memory. Use 70-ns SRAM for
higher frequencies.

PORT ASSIGNMENTS
 The PIC17C44 has five ports with a

total of 33 I/O pins. Note that a pin is
specified herein as RX<N>, where X is
the port designation letter and N is the
bit designation of the pin. RX<M:N>
designates a range of pins, where M is
the high bit and N is the low bit. Most
pins can be configured dynamically

FEATURE
ARTICLE

Duane Perkins

 CIRCUIT CELLAR® Issue 124 November 2000 ������35www.circuitcellar.com

under program control as inputs or
outputs. Many pins have alternative
uses that are invoked by configuration
bits in internal memory or in various
control registers.

Port A is 6 bits (2 bits are required
for serial I/O). Port B is 8 bits—each is
available for input or output. Port C
has 8 bits used for the low-order ad-
dress/data bus. Port D has 8 bits used
for the high-order address/data bus.
And lastly, Port E has 3 bits (ALE, OE,
and WR).

RA<1:0> can be interrupt or data
inputs. RA<3:2> are Schmitt Trigger
inputs or high-current, open-drain
outputs. RA<4> is the serial TX line
and RA<5> is the serial RX line; these
can be general-purpose inputs if serial
I/O is not used. RB<7:0> can
be used in accordance with
the Microchip specs.

In microprocessor or
extended microcontroller
modes, RC<7:0> is used as
the low-order address/data
bus and RD<7:0> for the
high-order address/data bus.
These multiplexed pins
drive the address latch when
a TABLRD or TABLWT
instruction is executed.
These are available for input
or output.

In these modes, RE<2:0>
is used for the ALE, OE, and
WR lines. ALE (active high)
activates the address latch.
OE (active low) signals the
memory chips and external
devices to drive the data
bus. And, WR (active low)
signals the memory chips or
external devices to write
the data on the data bus
(read and put data on the
bus when high). And again,
in microcontroller mode,
these are available for input
or output.

Lastly, U2 decodes
RA<15:13> and pulls one of
its outputs low.

MEMORY
Each of the three

memory sockets will accept
a 28-pin, 8-KB memory chip.

These can be static RAM (6264) or
EPROM (2764). An address in the range
0000:1FFF is the range of the PIC’s
internal program memory. U5 and U6
are selected by an address in the range
2000:3FFF. And, the final memory
socket, U7, is selected by an address in
the range 4000:5FFF. Note that using
RAM chips in all three sockets allows a
program to be downloaded and ex-
ecuted in the extended microcontroller
mode.

The SBC17C44 operates in the ex-
tended microcontroller mode. In this
mode, the program code can reside in
both internal and external memory.

The internal program memory is
ROM. During program development, it
is convenient to have a program loader

and commonly used functions in inter-
nal memory. The application program
can be downloaded to RAM and can
call the commonly used functions,
avoiding the need to assemble or link
them every time the application pro-
gram is changed.

The PIC17C44 has a 16-bit instruc-
tion code size and 16-bit buses for
fetching instructions. To fetch instruc-
tions from external memory requires a
16-bit address latch that’s imple-
mented on the motherboard by U2 and
U3. RE0/ (ALE) is the address latch
enable line, which is pulsed low during
every instruction cycle.

If an instruction is fetched from a
location in the range 2000:3FFF, the
latched address selects a word in U5

and U6. U2 decodes bits
15:13 and pulls V1 low, thus
enabling U5 and U6 via the
CE pins. /OE is low, thus
enabling U4 and U5 via the
OE pins to put the instruc-
tion word on the AD bus.

And, note that /WR re-
mains high so that the R/W
pins are high and the
memory is read rather than
written. These control sig-
nals from Port E are present
on every instruction cycle
irrespective of the address.

TABLRD AND TABLWR
The TABLRD and

TABLWR instructions allow
external memory to be read
or written. The loader in
internal memory writes
downloaded program code to
external memory. Data
memory in U7 can be read or
written. These instructions
use the address latch to de-
termine the address of the
instruction word or data
byte by latching an address
held in a 16-bit SFR pair
called the table pointer
(TABLPTRH and TBLPTRL).

The instruction, or data,
is read into or written from
another SFR pair called the
table latch (TABLATH and
TABLATL). Sixteen-bit data
can be read from internal orFigure 1—Take a look at the motherboard schematic.

36������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

6000–7FFF CS3 Available
8000–9FFF CS4 Available
A000–BFFF CS5 LCD (lines 1 and 2 of 4 × 40 LCD)
C000–DFFF CS6 Lines 3 and 4 of 4 × 40 LCD
E000–FFFF CS7 Keypad or piezo buzzer

Table 1—Here are the
device selection address
range assignments.

external program memory, but should
not be written by the application code.
It should be used only for constants
that are coded in the source program.

THE DAUGHTERBOARD
The daughterboard consists of four

independent sections that can be sepa-
rated for mounting (see Figures 2 and
3). These are the power supply, the RS-
232 level converter, the RS-422/485
level converter, and the keypad/LCD/
piezo buzzer interface.

J1 pins 1 and 4 provide for power
and ground from J13. Pin 2 connects to
an open-collector transistor that can
drive a piezo buzzer. An active-low
interrupt request can connect to pin 3.

J2 is a 34-pin header that connects
to the motherboard. J3, a 16-pin
header, connects to an LCD. Note that

rupt request by the PIC17C44. RA3 is
an input used as the RS line for the
LCD and also clears the CS7 and WR
latches when pulsed low.

One of the CS lines will pulse low
when a TABLRD or TABLWR instruc-
tion is executed with an address in the
range 6000:FFFF. The WR line pulses
low when a TABLWR instruction is
executed. OE pulses low during every
instruction cycle, but is not used. The
low-order bytes of the address bus
(RA<7:0>) and the address/data bus
(RAD<7:0>) are not used.

THE LATCHES
Device selection is accomplished by

executing a TABLRD or TABLWR
instruction (see Table 1). RA<15:13>
are decoded to pull one of the CS lines
low for 1 Tcy.

There are three latches for CS5,
CS6, and CS7, and one for WR. Select-
ing CS5 or CS6 clears the CS7 latch.
To clear the CS5 and CS6 latches,
select CS7. To clear the CS5 and CS6
latches without setting the CS7 latch,
hold RA3 low.

the pinout is the mirror image of the
LCD pinout so that a matching 16-pin
header connector can be used on the
solder side of the LCD board.

The 9-pin header that connects to a
matrix keypad is J4. The pinout prob-
ably will not match that of your key-
pad. J5 and J7 are 6-pin headers to
connect one of the level converters to
J3 on the motherboard.

Next is J6, a DB-9 connector for RS-
232 serial I/O. J8 is a 5-pin header for
RS-422/485 serial I/O.

And, J9 selects RS-422 (jumper pins
1 and 2) or RS-485 (jumper pins 2 and
3). Finally, J10 and J11 can be jumpered
to bias the line in a mark state when
using RS-485.

RB<7:0> are used as the data bus for
the LCD and keypad. RA0 is an output
that can be used as an active-high inter-

 CIRCUIT CELLAR® Issue 124 November 2000 ������37www.circuitcellar.com

The WR latch is set when any
TABLWR instruction is executed. The
CS7 latch can be cleared by pulling
RA3 low (level activated). The WR
latch can be cleared by pulsing RA3
low (edge triggered). In addition, RA3 is
also used as the register selection line
for the LCD.

CS5 or CS6, which are latched in
U2, select the LCD. Only one can be
selected at any given time and abso-
lutely must be cleared before the other
can be set. U2B selects E0 and U2A
selects E1. WR is latched in U3A. RS is
the state of the RA3 pin.

When reading, the LCD drives the
data on Port B. And when writing, the
data must be on Port B. U1 (PIC12C50
8A) polls for either selection. When
either goes high, it enables the LCD.
When writing, U1 pulses E0 or E1 high
according to the selection latch out-
puts, then waits for both latch outputs
to go low before it resumes polling for
either high. When reading, it sets and
holds E0 or E1 high until both latch
outputs are low, then resumes polling
for either high.

The PIC-
17C44 should
be programmed
to delay long
enough to allow
the PIC-
12C508A to
execute the
instruction
sequence required for the LCD opera-
tion before changing the RW latch or
the data bus.

The keypad decoder (U4) is selected
by CS7, which is latched in U3B. U4
drives the data on Port B. After reading
the data, U3B must be cleared by puls-
ing RA3 low so that the data output
lines of U4 return to hi-Z. When CS7 is
selected by a TABLRWR instruction,
an open-collector transistor activates
the piezo buzzer. Before executing
either a TABLRD or TABLWR instruc-
tion, RA3 must be set high and
RB<7:0> must be hi-Z. Pulse RA3 low
to deselect CS7. When a key is pressed
on the keypad, the DA output of U4
goes high, setting RA0 high. You can
program this to invoke an interrupt.

THE PIC12C508A
A PIC12C508A is shipped with a

calibration constant in ROM at 0x1FF,
coded as a MOVLW instruction. Before
erasing a new PIC12C508A, read the
program memory with a PIC program-
mer and note the hex value of the low-
order byte of the code at 0x1FF.

The PIC12C508A must be config-
ured for an internal 4-MHz RC oscilla-
tor. Although the frequency is not
exactly 4 MHz, it is close if the calibra-
tion constant is stored in OSCCAL.

MAKING THE PC BOARDS
The first step in construction is to

make the PC boards. You need a nega-
tive for each side of the two boards.
You can make your own with Kepro

Model Code Program Data External
memory memory program memory

Small 1 ≤2 Kb ≤8 Kb Yes
Compact 2 ≤2 Kb >8 Kb No
Medium 3 >2 Kb ≤8 Kb Yes
Large 4 >2 Kb >8 Kb No

Table 2—Here are the memory model designations.

38������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

RF-2024 reversing film
or can have them made
at a photo shop that
makes lithographic nega-
tives. You can download
the artwork from the
Circuit Cellar web site.

Download all
���������� files to a
printer (files can’t be
displayed or printed by
Windows). To make
your own copies, use
transparency film for
��	
�������–
��	
��
����. If you’re
not making negatives,
print the files on paper.

You will need two-
sided photosensitized
boards, such as Kepro
S2-712G. Registration is
critical during exposure.
Using a wooden board as
a base, place a blank PC
board on the base and
one of the negatives on top of the
board, emulsion side down, so that the
pattern is within the borders of the
board. Using a sharp awl, mark the
board at one of the two registration
hole pads marked with crosses and
remove the negative. Then, with a no.
60 bit, drill the board at the mark.

Remove the debris and again place
the negative on the board and use a
plastic-headed bulletin board tack to
hold it in place. Mark the board at the
other registration hole pad and the two
mounting hole pads at the opposite
edge and drill the registration hole.
Place the negative on the board and
hold it in place with two tacks. Put a
clean sheet of glass on top of the nega-
tive to hold it in contact with the
board, with the edge against the tacks.
Expose the board according to the
directions for the material used. Then,
remove the glass and negative, flip the
board over, and repeat the process with
the other negative, making sure the
emulsion side is down.

Enlarge the two holes to 5/16” and
drill 5/16” holes where previously
marked at the other two corners. Place
1/4” 6–32 machine screws in the holes
and secure them with machine nuts.
This allows the developer and etchant

to flow under the board. Develop, etch,
and tin the board, then remove the
machine screws. Use a no. 60 bit to
drill holes through all pads. If you want
to mount the auxiliary boards sepa-
rately, use a hacksaw to cut the boards
apart along the guidelines.

Next, solder the feedthrough con-
ductors. Use 24-gauge bare tinned-
copper wire. Be careful not to solder a
conductor in a pad intended for a com-
ponent lead. Feedthroughs always
connect traces on both sides of the
board, but some pads are intended for
component leads. Because none of the
feedthroughs are under a component,
they can be soldered after the compo-
nents. However, that approach is more
difficult. Be sure to make good solder
connections, because poor connections
can be difficult to trace.

After that, solder the components
starting with the smallest and proceed-
ing according to size, again avoiding
bridges. Do not solder ICs directly to
the board, instead, use sockets. For
development purposes, it is advanta-
geous to use a ZIF socket for U1. I
recommend the JDR Microdevices 40-
6554-10 socket. Remove the rosin with
acetone. Do not immerse the board;
use a small brush and let the acetone

drip off the edge.
When you’re finished,
check for solder
bridges and
unsoldered pads.

TESTING THE
BOARDS

When testing, con-
nect power to J12 on
the daughterboard and
test for 5 V on J13.
Check for shorts
across pins 1 and 2 of
J1 on both boards.
Also, connect J13 to J1
on both boards. Con-
nect J2 on both boards
with a 34-wire ribbon
cable with header
connectors.

With no chips in
any of the sockets,
test for proper volt-
ages as follows. Check
for 5 V on the 5-V pins

and on other pins connected to 5 V (see
Figures 1–3). Then, connect the posi-
tive lead of a voltmeter to 5 V and use
the negative lead to check for a ground
on the GND pins (see tables) and other
pins connected to ground (see figures).

Program a PIC from ������������.
Install U1 and Y1 in their sockets on
the motherboard, but no other chips.
Apply power and check for about 2.5 V
on in 20. Ports B, C, D, and E should be
counting. In addition, check for about
2.5 V on all pins of all sockets where
these signals should appear. An oscillo-
scope should show a pulse train on all
these pins, doubling in period with
each higher bit of each port.

Next, install the other chips in their
sockets on the motherboard. Program a
PIC from ����������. When power is
applied, all bytes of all three memory
chips will be written and verified. Port
B’s bits all should output a square wave
at decreasing frequency as probed from
low to high order (use a voltmeter).

RA<2> should pulse low at a fre-
quency of 14 Hz with a 20-MHz crystal
in Y1. If a failure occurs, the program
will freeze and RB<7:0> will output the
bits read. And RA<2> will be high if
program memory failed or low if data
memory failed. Also note that RA<3>

Figure 2—The LCD/keypad/piezo buzzer circuit is shown here.

 CIRCUIT CELLAR® Issue 124 November 2000 ������39www.circuitcellar.com

will be pulled to ground if the low-
order byte failed. If that doesn’t occur,
RA<3> will be hi-Z.

Program a PIC from �����������.
The CS lines (pins 6, 8, 10, 12, and 14
of J2) will go low sequentially for one
program cycle (Fosc/4).

You must assemble the program for
the PIC12C508A from �
����������,
but first change the calibration con-
stant to what you just determined.
Program PIC12C508A from �
������
���� and install it and the other chips
in their sockets on the daughterboard.
Then, run additional tests using the
supplied ���� and���� source code
files following the next instructions.

THE SOFTWARE
Programs can be assembled for in-

ternal or external program memory. A
program to run in external memory
requires a program in internal memory
with code at the reset vector (zero)
where execution starts. This code can
be as simple as a branch (���� or 	���)

to code in external
memory, but be sure to set
������� to a range of 20–
3Fh before the branch
instruction.

If any interrupts are to
be enabled, appropriate
code beginning at the in-
terrupt vector is also re-
quired. It is convenient to
program a PIC17C44 with
������������, which
provides a program loader,
interrupt service code, and
a number of commonly
used functions that can be
called by the application.

A program assembled
for internal memory can
include ������������.
This includes initialization
code and a few functions.
Interrupt code also will be
included if service is de-
fined prior to the #include
line (see Table 2).

The model defaults to
small if not defined before
������������ code. RAM
at 2000:3FFF can be used
for data if the compact or
large model is specified.
Program code can reside in

external program memory if the small
or medium model is specified.

A program coded for external
memory can include ������������.
������ must be defined as 0 if inter-
rupts are not enabled or with the label
of the interrupt service if interrupts are
enabled. The label “main” must be
included as the entry point of the ap-
plication code. “Endcode” must pre-
cede the end line. See �����������
and ��������� for examples. See
����������� for more information. I

Duane Perkins is a self-taught engineer
who has made computers and elec-
tronics his avocation since retiring in
1980. In recent years, he has special-
ized in PIC microcontrollers. You may
reach Duane at dmperkins@
compuserve.com.

Figure 3—This schematic shows the serial I/O level converter
and power supply.

SOFTWARE
The software is available on the
Circuit Cellar web site.

40 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

NOUVEAUPC Edited by Rick Prescott

SLIM-LINE PANEL PC
The PPC-102T is a Panel PC for web-based kiosks, ATMs,

patient monitoring, and control panel applications. Intended
for systems integrators and OEMs, the system can be bundled
with a configured Windows CE image and a Windows CE 2.12
full license version to speed development time for integrating
it into other products.

The unit comes with a 10.4” TFT LCD, Pentium MMX,
Cyrix or AMD processor, solid-state disk, socket for another
DiskOnChip flash memory disk, onboard Ethernet, internal
and external hard disk ports, and 32 MB of RAM. All other
ports for audio, keyboard, mouse, and serial or parallel periph-
erals are included. A touchscreen is optional. The unit comes
in a 13.5” × 10.4” × 2.4” fireproof industrial plastic case.

With Windows CE installed, the PPC-102T costs approxi-
mately $2000 in OEM quantities.

Advantech Technologies, Inc.
(800) 866-6008
(949) 789-7178
Fax: (949) 789-7179
www.advantech.com/

SERVER APPLIANCES
The low-profile Little Dragon series supports Intel

Pentium III processors up to 700 MHz as well as eco-
nomical Intel Celeron processors. Components include
an Intel chipset and an Intel 82559 fast Ethernet control-
ler.

The Little Dragon series initial offering includes 1U
and 2U units in bare-bones or full-system configurations.
The 1U design is 1.75” high and includes one full-length

PC1 slot and three drive bays. The 2U is 3.5” high and
includes two full-length PC1 slots and four drive bays.

The compact design of the server appliance allows
for more systems per rack. Its steel case was designed
to meet the needs of high-density installations that
require quick service access and mounting options
typically needed by ISPs and application service pro-
viders (ASPS).

The Little Dragon fits open-frame or enclosed cabi-
net-style racks. It is ideal for applica-
tions where high packaging density,
performance, easy operation, and
quick exchangeability are required.

Evaluation units of the 1U (bare-
bones configuration) cost $399.

ITOX, Inc.
(732) 390-2815
Fax: (732) 390-2817
www.itox.com

www.itox.com
http://www.advantech.com/

42������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

EPC
REAL-TIME PCs

Ingo Cyliax

Debugging an FPGA
Module

It’s a good thing
Ingo enjoys problem
solving because
seeking out a test
condition this time is
crucial, not to men-
tion rummaging for
old manuals and
having a bit of pa-
tience along the
way. It’s all in the
name of debugging.

Finding the Right Test Case

i ’m a problem
solver at heart.

This fact about my-
self actually took me a

long time to discover. One of the rea-
sons it never occurred to me was be-
cause it used to frustrate me to work
on things that don’t operate properly.
What I didn’t realize at the time was
that this frustration can also be the
necessary energy needed to facilitate
the process. Also, I’m much more pa-
tient these days.

So, let’s dig into a problem I’ve been
working on. The hardest thing about it
was tracking down a test condition
that exhibits the problem. In a sense,
finding a good test case is the trick to
effective problem solving. It helps
narrow the scope of the problem.

REPLICATE AND ANALYZE
The system I’m debugging is an

application for a client who’s using an
FPGA-based I/O board to enhance the
real-time performance of their system.
I won’t go into detail about the actual
project, but the problem had to do
with not being able to successfully load
the FPGA on the I/O module. Of
course, this problem appeared to be
nondeterministic at first. The board

would sometimes load, but not every
time. What’s worse, it would work fine
in a seemingly identical test system
that the client provided for me to help
identify the problem.

The client was using a Windows 95-
based environment to test the applica-
tion. Of course, when they sent me the
files to download to the FPGA module,
it would work fine on my system. Fur-
thermore, when they took the board
from one system to another, it would
experience no problems. Obviously,
there was something peculiar about the
actual system that made it fail.

The system was a PC/104-based
Pentium module that had to run from a
power supply through a PC/104-based
DC/DC power converter. The FPGA
module would plug into this stack and
run a custom design to perform what-
ever function it needed. Because this
was the system they were having
trouble with, they sent me one of their
spare systems so that I could try to
replicate the problem and analyze it.

When the system arrived and I
started to hook it up, I discovered a
small gotcha. It uses 2.5″ disk drive
cables (2.5″ drives are laptop disk
drives). Luckily I had some on hand to
install. The test setup uses a Win-
dows95 environment to load the appli-
cation. After loading a Windows95
environment on a spare 2.5″ disk drive
and installing their design files on it, I
was ready to begin testing.

It worked! Well, the download to
the FPGA worked, but their design and
related test program did not. But, the
diagnostic program that comes with
the FPGA modules loaded and ran fine.

One of their engineers told me this
wasn’t as far as their system goes. It
fails when trying to load the FPGA
design. I wasn’t able to duplicate the
problem they were seeing. What now?

They got the download to work
when the disk cache was turned off.
This is done with the ���������	
	
program/driver under DOS. ��������
� turns the read cache on for drive C
and ����������
 turns the cache off.

I tried various combinations in DOS
mode and under Windows and was
finally able to replicate this behavior.
At first I had the disk cache off and
that’s why the loads worked reliably.

 CIRCUIT CELLAR® Issue 124 November 2000 ������43www.circuitcellar.com

Listing 1—Take a look at the FPGA programming chain.

��
������	
��
�
���	���
	�
������
������

����

������
��	����
����
���� !
��������	
"##$%"###%
&���' 	���
(�
	��

����

��� 	���
"##$��)��*
+
	
,�'�
����
-���
�.%
"###
�
��������	
�
����
����

��

���

/�����
&0(
��121��
3
�����1����%4��45556

/��
�
��121��
3
�����1����%4�45556

/�����
������1����57
��	���1�"57

8

/������
&0(
����1957

/�����

 � ���

/�����
&:;<=
�����	�1
	����%4 ���	
	�

���
����>�457
��	�� �157
/�����

��	��	�1�%��?�! $��57 ��
�������� �
���
���
��

@ �	
���
��'���
	�
��� �
��
�
����1"����57

/�����
&:;<=
�����	�1
	����%4 ���	
	�

���
� 	 >�457
��	�� �157

/�����

��

���
	��
� 	
��
@����11�
3
��	
"
#1��5523
�"56

/�����
&:;<=
�����	�1
	����%4A��!4%�57

/�����
@����121����	�1��5
B
�!$�55

7
��	��	�1�%��57

8

/�����
&:;<=
�����	�1
	����%4
��	
� 	 >�457
��	�� �157
/�����
���

ROLL UP THE SLEEVES
This was strange indeed. Up until

that point, I suspected that the prob-
lem might have been related to bus
loading and the fact that the CPU mod-
ule uses 3.3-V signaling on the PC/104

bus. PC/104 uses TTL-based signaling
levels, but a 3.3-V signaling level
should work with most 5-V TTL or
CMOS devices.

This theory of mine was put to rest
with a quick look at the datasheets of

the FPGA and PLD used on the FPGA
module to make sure that VIL/VIHO
thresholds were OK.

Another theory was that there may
have been an I/O address conflict. The
FPGA module uses 16-bit I/O address-
ing and a write to a 16-bit decoded
address as the signal to the module to
reset and reinitiate the FPGAs. Naive
I/O modules might use only 12 bits of
address decoding (0x000–0x3ff), so
there’s a small chance that there will
be a conflict if the addresses of such an
I/O board or resources repeat through-
out the 64-KB address space. But be-
cause I was able to control its behavior
by turning the disk cache on and off,
this was probably not the case.

It was time to roll up my sleeves. I
needed to get the logic analyzer out
and try to capture what was going on
with the bus. This would tell me
whether there was an I/O conflict or a
signaling level issue.

Logic analyzers are amazing ma-
chines, but can be tricky to use. In the
hands of an experienced engineer they
can be a valuable tool. Of course, I still
have a lot to learn about using logic
analyzers, because there are still op-
tions and modes I haven’t explored.

If you’re unfamiliar with what a
logic analyzer does, I’ll give you a short
description. Think of a logic analyzer
as a digital recorder. There are usually
several digital inputs. They usually
come in a 16-bit set. A “pod” inter-
faces a set of test probes to a ribbon
cable that goes into the logic analyzer.
The pod has inputs for the digital sig-
nals, as well as ground connections and
one or more clock inputs. Each pod
usually has about 16 data bits.

The logic analyzer usually uses one
of the clocks on the pods to sample the
inputs. This way it can sample the data
synchronously to the device under test
(DUT). Synchronous sampling is im-
portant because you need to have a
view of the DUT just like other com-
ponents on the device. In the case of a
processor, it will also sample all of its
inputs synchronously to a bus clock.

The logic analyzer records the data
it samples from the pods into its
memory. When the memory is full or
an acquisition runs, the analyzer stops.
You can display the memory in several

44������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

���
/�����
&0(
/�������
C	�����D
/������
���
����
���
����1�5

��
�����
����
�7
6
����EF	
!%�7

�
3
�
�
"���7

��
���'��	
	�
�
���
��

!
3
����E157

@����1"56

�
3
����E157

��11�
�
!5
D
�5

��� E7

8

��	���
7
8
/�����
/�����
���

Listing 3—Here’s the implementation for ���������	.

different ways. One way is to look at it
as a timing diagram. This makes it easy
to examine things like bus or commu-
nication protocols. Another mode is
state analysis. Here the data is dis-
played as a hex or binary one line at a
time. It looks like a listing. State
analysis is useful if you’re tracing soft-
ware and want to look at the actual
data going back and forth on the bus.

However, because the logic
analyzer’s memory is fast, it is also
small (usually around 4-KB or 8-KB
words). This is not enough memory to
record something like bus transaction
information. At 8 MHz, 4 KB of
memory will fill up in 512 µs.

TRIGGER A START OR STOP
To aid in looking for problems, logic

analyzers have sophisticated triggers. A
trigger allows you to program a condi-
tion based on the inputs that will start
or stop data acquisition. For example,
you can set up a trigger to look for a
write to a certain address or range of
addresses. Some analyzers even let you
set up sequential conditions. This
could be a complex series of events,
like when an interrupt and a write to a
certain address occurs.

Triggers, like I said, are used to
either start or stop an acquisition run.
Typically, the trigger is in the middle
of the buffer, but it can be programmed
to be either at the end or the beginning.
The middle is convenient if you want
to look at the conditions around a
trigger event. The analyzer would
collect data and read it into the buffer
in an FIFO order. When the trigger
occurs, it will read another half buffer
of data and, voilà, you have the data
leading up to the condition that caused
the trigger.

The analyzer I was using also has
some conditional timing information.
You can specify conditions based on
whether or not a glitch has occurred. A
glitch is a logic transition that is
shorter than the clock rate.

Analyzers can do glitch captures
down to a nanosecond time range.
Glitches and edges can be detected
relative to time constraints. For ex-
ample, you can tell it to trigger on
events like if a setup time was too long
or too short for a specification.

This is where I started. I first set up
the analyzer to look for I/O accesses on
the PC/104 bus that maps to the I/O
module. The analyzer was programmed
to look for the following addresses:

0x0270–0x0271—configuration data
(wr), status (rd)

0xaa70–0xaa71—reconfigure (wr),
nop (rd)

I needed to look for timing viola-
tions. On a fast machine, sometimes
bus timing on the ISAbus or PC/104 is
violated. So, I checked that the read
and write pulses to the board were long
enough to register with the FPGA on
the board. This checked out OK.

In the next test, I programmed the
analyzer to look for any accesses to the
FPGA module and let the system go

through several reboot cycles with the
cache on and off. The only time the
board was being accessed was when I
ran the program to configure the
FPGA. Although this was not conclu-
sive, at least it looked like none of the
plug-n-play or PCI bus devices were
being mapped at the module addresses.

My logic analyzer also lets me pro-
gram the logic threshold levels for the
inputs. This allows me to check for
minimum TTL levels that the bus has
to transmit in order to be TTL-com-
patible. This turned out to be OK, too.

HEAD SCRATCHING
Because I wasn’t sure what was hap-

pening to the FPGA when it didn’t
program correctly while disk caching
was on, I decided to start looking at the
FPGA in more detail.

� � �
/�����
 &0(
/������
 �
����
�
 � � � � 1 � 5

��	
 �7
6

��
�����
 ����
 G�����
7
G�����

 3
 ��"7
@����1G�����
��5
 7

8
/ � � � � �
/ � � � � �
� � �

Listing 2—This is the �������	 function ported to DOS.

 CIRCUIT CELLAR® Issue 124 November 2000 ������45www.circuitcellar.com

The FPGA programming chain looks
like the one shown in Listing 1. The
lead FPGA is set up to program in asyn-
chronous peripheral mode. In this
mode, it will use chip selects and look
like a chip on a bus. The chip selects
are provided by a PLD on the module
that acts like an address decoder.

The address decoder generates the
chip selects for configuration accesses
to the lower address. During a read, the
FPGA will provide a status bit on D7
of the address bus. This bit will be a
one if the FPGA is ready to receive a
configuration word.

The PLD also decodes the program
pulse *PROG. When the higher address
is accessed with a write, a *PROG
pulse is generated to all of the FPGAs,
which causes them to go into a
reconfiguration cycle.

But there also is the *INIT signal,
which is shared among FPGAs. This
signal is used to retard the configura-
tion process. After the FPGA receives
the *PROG pulse, it will tri-state all of
the outputs that aren’t being used for
configuration and clear the SRAM
memory used to store the configura-
tion data. As this is taking place, the
*INIT signal stays low and the FPGA is
catatonic and doesn’t respond to status
reads. Also, if the signal is held low
externally, the FPGA will wait until
the signal has been released before
progressing to the configuration down-
load phase.

So, the *INIT signal makes sure that
all of the FPGAs that are in a configura-
tion data chain are synchronized and
ready to receive configuration data at
the same time. This is necessary be-
cause FPGAs with different sizes take
different amounts of time to clear the
memory. A large FPGA takes longer
than a smaller-capacity FPGA. The
time is specified in the data book.

Armed with this knowledge, I added
the *PROG and *INIT signals to the
logic analyzer inputs and captured
some traces using the start of program-
ming (i.e., the write that causes the
*PROG pulse).

I captured the *INIT and *PROG
timing and compared them to the
datasheet to make sure that the
*PROG pulse met the minimum pulse
width (which it did). I also had to make

sure that the *INIT pulse would re-
lease, indicating that the FPGAs are
ready to start configuring.

It turned out that the latter
deninitely was a problem. Because I
was using state analysis, the buffer
would fill up before the *INIT line
went high. Remember how I deter-
mined that a 4-KB buffer would fill up
in 512 µs? The FPGA types used on the
boards may take up to 1 ms to clear
their memory, therefore I couldn’t
capture this event in one buffer.

Luckily, my analyzer also has a
timing mode. In this mode, it doesn’t
sample at each clock tick, but records
the transition time of each signal. For
data that is slow (less than 100 MHz)
and does not change, the buffer will be
able to hold more time than in state
mode. In this case, I was able to capture
the *INIT signal at about 600 µs.

OK, so the timing checked out. At
this point, I programmed the logic
analyzer to look for any configuration
data writes to the module while the

46������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

*INIT was still low, indicating that the
board wasn’t ready to accept the data.
This turned out to be it! When the disk
cache is on, the first configuration
write happens at about 400 µs, which is
before the *INIT signal goes high.
Without the disk cache, the first write
comes in more than 1 ms. Gotcha! It’s a
software problem.

I verified that the problem didn’t
exist under Linux. The first configura-
tion write came 10 ms after the pro-
gram pulse, which is safe. Linux always
has its disk cache on by default.

Well, I guess that could be seen as
both good news and bad news. The
good news was that, because I’m the
designer of the module, I was glad it
wasn’t a hardware problem with the
board or a compatibility problem with
the CPU card. Hardware problems are
usually expensive because you have to
fix PLDs and swap them (or worse,
make PCB changes and run a new batch
of boards).

The bad news, however, was that
I’m also the person who wrote the
software to configure the module. So

the hardware guy in me was pointing
the finger at the software guy, but in
this case I wore both hats.

SOFTWARE GUY RETURNS
The configuration program was

written in C originally to run under
Linux (or POSIX-style RTOS). Remem-
ber I mentioned that it ran fine under
Linux? Because several of my clients
want to run or develop under DOS or
Windows, this program has been
ported to run as a DOS command line
application that can also run under
Windows in 16-bit mode. This was
done using an old version of the
Microsoft C compiler (V. 5.0), and was
initially seen as a quick fix.

Because the problem is in the initial-
ization phase of the FPGA, let’s look at
the code segment that’s responsible for
this. Check out the code segment in
Listing 1. The program opens the con-
figuration data file in binary mode. For
the DOS version, you have to look at
all the define blocks that are outlined
using the DOS constant. Then, after
opening the file successfully, the pro-

gram sends the program pulse to put
the FPGAs on the module into the
configuration state.

It waits 10,000 µs, or 10 ms, for the
FPGAs to clear the configuration
memory. It then reads the first configu-
ration word using the �	������ func-
tion from the configuration file. Then
it checks the status register of the
FPGA and waits for the ready bit (D7)
to be high before proceeding to write
the configuration data.

When I first looked at this problem,
I must have stared at this section of
code for what seemed like forever.
After learning what the timing prob-
lem was, it was easy to see what was
happening. When the disk cache was
on, the first read from the configura-
tion files took less time than when the
cache was off. This meant that
���		��� was not working properly
because the delay was always shorter
than the specified 10 ms.

���		��� is implented using system
calls under Linux and many Unix-like
systems. Under Linux this call is not a
real-time quality of service, because it

 CIRCUIT CELLAR® Issue 124 November 2000 ������47www.circuitcellar.com

Ingo Cyliax is the Sr. Hardware
Engineer at Derivation Systems Inc.
(DSI) where he designs and builds
embedded systems and hardware
components. DSI is the leader in
formally synthesized FPGA cores and
specializes in embedded Java technol-
ogy. Ingo has been writing on various
topics ranging from real-time operat-
ing systems to nuts-and-bolts hard-
ware issues for several years.

guarantees that the calling process will
sleep for at least the specified amount
of time. It may be a bit longer, but
that’s alright for this application. How-
ever, when the program was ported to
DOS, the call was implemented as a
busy loop (see Listing 2).

Now the problem was clear. On a
faster processor, an uncalibrated delay
loop will run faster than on a slow
processor. The complication was that,
on this particular processor, there was
a threshold effect with the file system
speed. With a slower file system access
(i.e., when the cache is off), the speed
was slow enough to work. On a slower
processor, it would work regardless of
the file system access time.

Well, the fix was easy in concept,
but tricky in practice. Isn’t that always
the case? It has been about two years
since I last compiled this program for
DOS. The machine I used doesn’t exist
anymore so I didn’t have a copy of the
ancient Microsoft C compiler needed
to get it up and running. The Visual
C++ development system, although
capable of compiling command line
code, doesn’t have the libraries I
needed to make it run in regular DOS.
And I didn’t have the patience (even
though I said I have more these days) to
trudge through all of the Microsoft
disks looking for the proper SDK or
DDK to add to the libraries, even if
they do exist somewhere. Tracking
down hard disks that contained an old
installation of the V. 5.0 compiler also
proved to be a daunting task, taking up
a couple of afternoons.

When the compiler was found and
installed on my current Windows sys-
tem, I was able to compile the program
to its old glory and verify that it was
working just as poorly as before. But
now I had to track down some old
library documentation to find out
what calls I could use under DOS to
implement the ���		��� call. I found
some old manuals scattered in a box in
my closet that suggested using the
������� call. The implementation for
�����		��� now looks like Listing 3.

The call ������� returns the num-
ber of milliseconds that have elapsed. I
tested it under a couple of versions of
DOS and in Windows95 and 98 and it
seemed reliable. �����		��� now

converts microseconds to milliseconds
and calls �������, comparing the
elapsed time until the time has ex-
pired. Although the timing resolution
is coarser than under Linux, it’s conser-
vative. Besides, the timing resolution
for ���		��� under Linux also is
coarsely implemented.

I then verified the new version of
the loader on several systems and used
the logic analyzer to ensure that the
timing was consistent.

Several lessons can be learned from
these trials. Besides the obvious knowl-
edge of not exhaustively testing your
code after porting it, there’s the lesson
that even software folks should learn
to use a logic analyzer. It’s an invalu-
able tool for tracking down funky tim-
ing and flaky behavior.

Another lesson you can take from
this is to never throw away old soft-
ware or disk drives. You never know
what you’re going to need. I will copy
all of my disk drives to CD-ROMs as
soon as possible so I’ll have an archive.
Also, it’s not a bad idea to keep old
documentation. I couldn’t find the

documentation I needed on Microsoft’s
web site, and was glad I held on to my
old manuals because my memory of
the contents has long been flushed out.

I’m not sure what to do with the old
manuals. I’d like to scan and store them
on CD-ROMs as well, but this could be
time-consuming. Perhaps I’ll borrow
one of those auto-feeding scanners for
future use. I

SOURCE
Compiler
Microsoft Corp.
(425) 882-8080
www.microsoft.com

www.microsoft.com

48������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

EPC
Applied PCs

Fred Eady

Rabbit Season

Rabbit season isn’t
over yet, as Fred
continues with his
series. This Rabbit’s
been through the
briar patch and
back, hiding along
the way. But, in this
next installment he
eventually leads us
into the clear blue
sky.

hings have been
harey around the

Florida room since
the last time we shared

carrot bits together. I thought I was
going to have to call in Marvin the
Martian (one more character intent on
destroying Bugs) to take care of this
situation. Marvin didn’t have to use his
“space modulator” on the Rabbit, but
he should’ve used it on me! I’ll tell you
about that later, but right now the
Rabbit Semiconductor-based Ethernet
project is ARPing and echoing data.

FLUSHING A RABBIT…
What I mean by this is the hunting

kind of “flush.” As you already know
from previous installments
on this subject, real-life
rabbits like to think they
can become invisible by
being still. Well, electronic
rabbits don’t fall too far
from the tree. Photo 1
shows my quick and nasty
Rabbit development board-
to-embedded Ethernet card
interface. I simply added
some double-row headers
that came with the Rabbit
Development Kit to the
monkey board and put wire
between the CS8900
Ethernet IC and the Rabbit’s
I/O pins. When I plugged the

t

Part 3: Network Analysis

Rabbit-controlled Ethernet board into
the Florida room’s 192.168.1.0
Ethernet segment, nothing happened.
Maybe there is something to this
invisible stuff.

Remember a rock group called The
Tubes? They wrote a song that
warned, “Don’t fall in love” (you
never know when things could
change). Last month I gave the same
advice in the caption for Listing 1. To
paraphrase, don’t fall in love with it
because it might not stay the same.
I’ve often heard such advice given to
other bands because musical styles are
always shifting. Looking at the new
Listing 1, it seems that we (The Tubes
and I) were right. The code did change.
I didn’t trash the array idea, just
improved it. After days of chasing a
wild rabbit around the Florida room, I
decided to apply logic and a powerful
network analysis tool to the Ethernet-
IP-ARP-UDP data structures.

Starting at the top of Listing 1 you
find your user-assigned Rabbit IP and
MAC definitions. In today’s
competitive world, part of the MAC
address should always be determined
and assigned by the IEEE. You won’t be
working with external vendors here, so
“RABBIT” will be your MAC address.
Using a readable name rather than
obscure hexadecimal numbers will
make things easier when you examine
the packet dumps later. The only
restriction on the content of the
CS8900A-CQ MAC address is that the
very first bit must be 0. The “R” in
RABBIT equates to 0x52, so you’re OK

Photo 1—Wire wrap on the Rabbit end and solder techniques
using vias on the CS8900A-CQ end made the embedded Ethernet
board quickly intelligent.

 CIRCUIT CELLAR® Issue 124 November 2000 ������49www.circuitcellar.com

in that area. The CS8900A-CQ
individual address register holds the
Rabbit’s MAC address. For the
purposes of ARP, UDP, and IP, your
Rabbit IP address will be 192.168.1.3.

In Listing 1, the Ethernet packet
header bytes are aligned in memory
just as they occur physically. The first
word in the Ethernet packet header
area is reserved for the packet length.
This is provided by the CS8900A-CQ
and isn’t in the standard Ethernet
packet. Although not part of the
Ethernet transmission, it’s used in the
Ethernet data transmission process.

The only way to make the

embedded Rabbit Ethernet visible to
its counterpart in an IP sense is to
issue an ARP request and make the
Rabbit twitch. If the Rabbit Ethernet
electronics receive the ARP request
and the IP address matches your long-
eared friend’s address of 192.168.1.3,
the Rabbit will certainly go into
motion. In this case, a twitch is really
an ARP reply. After the Rabbit senses
and replies to the ARP request
directed at its IP address, it is no longer
invisible and other rabbit hunters can
take pot shots at it on the network.

An ARP packet consists of the
Ethernet packet header followed by 28
bytes of control information and
sender/receiver MAC and IP addresses.
A UDP message or UDP datagram is
composed of the Ethernet packet
header, the IP packet header, the UDP
packet header, and the actual data. If
you look closely at Listing 1, you’ll
find that the IP data area

(����������	�
) consists of the
UDP packet header and UDP data
area (�����������	�
). The
actual data in the UDP datagram
is found in the UDP data area,
which turns out to be a subset of
the IP data area.

SNIFF OUT THE RABBIT
Before I get into the software

details of acknowledging ARP
requests, I’d like to explain why
Marvin should’ve zapped me with
his ray gun.

The ARP routines went
together easily, as did the initial IP

receive routines. I put
together a simple VB6
Winsock program to send data
to the embedded Ethernet
board and then assembled the
necessary software logic and
Dynamic C routines to return
(or echo) the incoming UDP
datagram to the sender. I went
through three days asking
myself, “Why the heck won’t
this thing answer?”, and then
decided to run the code line
by line to double-check the
math and bit manipulations
with my HP-16C.

Using the Dynamic C
debug facility to verify or defy

my HP-16C hand calculations, I finally
traced the problem to a miscal-
culation of the IP and UDP checksums.
A few hours later, I had the IP
checksum problem rectified. I applied
the same logic to the UDP checksum
calculation and assumed (first mistake)
that the UDP numbers were crunching
correctly, too.

Another day passed and I was
desperate for this invisible Rabbit
to show itself. By now, I had
stomped all over the briar patch. I
was beginning to think the
CS8900A-CQ IC was dead or the
code I wrote killed the Rabbit. In
any case, this project was starting
to leave a bad taste in my mouth. I
needed a tool to diagnose the
Ethernet pieces my embedded
Ethernet board was rejecting. It
was time to break out the
SNIFFER.

From here on I will be showing

you screen shots of captured real-time
Ethernet packets, thanks to Network
Associates’ SNIFFER. For those of you
who are not familiar with SNIFFER,
it’s basically a PC, SNIFFER software,
and a special NIC (Network Interface
Card) that plugs into an Ethernet
segment and monitors all of the traffic
on the segment. In addition, the
SNIFFER software breaks the packets
down into their smallest parts and
automatically identifies them to you as
well. Using the special SNIFFER-
approved NIC, I can also show you
details at the physical wire level. Thus,
I can generate and respond to Ethernet
packets with the CS8900A-CQ/Rabbit
2000 IC combination and capture all of
the transactions with the SNIFFER for
later viewing and analysis. To
summarize, what I see on the Rabbit’s
Ethernet segment is exactly what you
see.

As it turns out, I was inserting a
couple of 16-bit values that I should
not have into my UDP checksum
calculation. Photo 2 is the SNIFFER

Photo 2—This is really nice! Notice that checksum is
highlighted and so is the checksum word in the packet
dump area. And now you know why I used “RABBIT” as
the MAC address.

Photo 4—This is pretty simple stuff masking some
complex logic. All you do is place Bill’s Winsock control
on the form and fill in the blanks and suddenly you’re
sending packets!

Photo 3—In this view the ARP cache is empty. By typing
“ARP” without switches, you get additional details on other ARP
switches that may be useful to you.

50������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

view that pointed out
my bad UDP checksum.
After I saw that
message, I knew exactly
where to look for rabbit
fur in the snow. Because
I’m on the subject of
bogus checksums, let’s
look at how the IP and
UDP checksums are
derived.

BOUNCING A CHECK
The first gotcha I ran

into was that I defined
the checksum variable
as an integer. After all, the IP checksum
is defined as a 16-bit sum of the parts
with a one’s complement twist. In
actuality, the checksum variable ended
up being a long (32-bit) variable. The
trick to doing it right is to add any bits
above the 16-bit line back to the lower
16 bits before complementing. Listing
2 is the IP checksum code snippet I cut
from the �����
������� function.

The first order of business is to clear
the checksum fields that came with the
received packet. After they are cleared,
the IP header checksum is calculated
by totaling the following 16-bit words
in the IP header:

IP Version/header length (byte) and
IP Type of service (byte)
IP Packet length
IP Datagram IDIP fragment offset
IP Time to live (byte) and
IP Protocol (byte)
IP Source address
IP Destination address

Any value beyond 16 bits is then
added back into the lower 16 bits and

the total is complemented. For
instance, suppose the total resulted in
0x294C0. The raw un-complemented
checksum would become 0x94C2. The
complemented and final checksum
would then be 0x663D, which is placed
in the IP checksum field defined as
��
�������
��
����� and ��
���
����
��
������� in your Dynamic
C Rabbit Ethernet driver code.

The UDP checksum is calculated
in the same fashion, but the trip takes
a turn or two in the process. Again,
the first order of business is to clear
the existing UDP checksum field. The
checksum calculation then proceeds
as follows:

IP Source address
IP Destination address
IP Protocol (one byte only)
UDP Length

Now, here’s where things get a
little tricky. The above total is added
to the total beginning at the UDP
source port field and continues for the
length of the UDP packet. The weird

Photo 5—As if the SNIFFER
folks weren’t making it easy
enough, they went ahead and
color-coordinated everything too.
Placing the cursor on a byte in
the dump highlights its descrip-
tion, and vice versa. Photo 6—
The MAC address really stands
out in the carrot field.

 CIRCUIT CELLAR® Issue 124 November 2000 ������51www.circuitcellar.com

Listing 1—The key to this whole thing is understanding how all of the headers work with each other to
define the protocols and deliver the data.

� � ��������� ��		
�� ���
�

� � ���
��� ���� ��		
����
�� �������
��� �

� ��������
�� ���������� ���� �� ������� �	�����

� � � � � � � � � � ! � �����"#� $%#�#� $��
�� &����""� '()
� � � � � � � � � � ' ! � * ��"�%$��� $%#�#� $��
�� &����""� '+*
� � � � � � � � � �) ! ' ��#,���� $%#�#� $��
�� &����""� '
� � � � � � � � � � - ! - ���$.�#,� $%#�#� $��
�� &����""� -

��� ���
��� ���� ��		
���� �*� 	
�� ��
� ���/��
0��
���

�� ��
1��

 � � � �
 �
 � � �

��� ��
��
�� ���� 2��� �������� ��� ����3���� �������

� � � � � � � � 4 & % ! 5) ��� �
� � � � � � � � 4 & % ' ! � ' ��� �
� � � � � � � � 4 & %) ! �) ��� 	
� � � � � � � � 4 & % - ! �) ��� 	
� � � � � � � � 4 & % � ! � (���

� � � � � � � � 4 & % 5 ! 5 � ��� �

��� /
�	�
� ���
����
���

%,&�� �&%6�#7) �*89
%,&�� �&::�#;��7�89
%,&�� �&::�#;4&%7+89
%,&�� "<&����7+89
.�"�=���� ��#
�>��%$4��=>.��?��=#,>�&%6�#?��>�&%6�##@��>��#.��;%$��9

.�"�=���� ��#
��&���?>��&���,>���&#&?>���&#&,>%,�%6".4;�>%,�%6".4;
9

.�"�=���� ��#� �"A�&#&?>�"A�&#&,>�&%6�#?��?>�&%6�#?��,9

.�"�=���� ��#� �&%6�#"#&#."?>�&%6�#"#&#.",>�&%6�#?��;��9

.�"�=���� ��#
:"#&#>!>@>B>�$�#&;�&#&>��;�$�#;&���>��;�$�#;�&#&>#�4�9

.�"�=���� ?$�=� %,�%6".4>%,�%6".4#�4�9

��� ��������� ���C��� ������

� � � � � � � ? � � ; � ! ��#,�"� �"� �$�� �&%6�#�&=�
� � � � � � � ? � � ;
 ! '
� � � � � � � 4 & % ; � � " ; � !) ���#,����#� ��"#��&#�$�� 2��� &����""
� � � � � � � 4 & % ; � � " ;
 ! -
� � � � � � � 4 & % ; � � " ' ; � ! � ���#,����#� ��"#��&#�$�� 2��� &����""
� � � � � � � 4 & % ; � � " ' ;
 ! 5
� � � � � � � 4 & % ; � � ") ; � ! + ���#,����#� ��"#��&#�$�� 2��� &����""
� � � � � � � 4 & % ; � � ") ;
 ! D
� � � � � � � 4 & % ; " � % ; � ! * ���#,����#� "$.�%�� 2��� &����""
� � � � � � � 4 & % ; " � % ;
 ! (
� � � � � � � 4 & % ; " � % ' ; � ! � ���#,����#� "$.�%�� 2��� &����""
� � � � � � � 4 & % ; " � % ' ;
 ! 	
� � � � � � � 4 & % ; " � %) ; � ! � ���#,����#� "$.�%�� 2��� &����""
� � � � � � � 4 & % ; " � %) ;
 ! �
� � � � � � � # @ � � ; � ! � ���&%6�#� #@��
� � � � � � � # @ � � ;
 ! �� ��� ���� ���C��
�������� � &��;�&%6�#;#@�� ! * +
� � � � � � � & � ; � � " � ; ? � � !)�� � ��&��� ��"�$�"�� ��&4�� ?��=#,
� � � � � � � & � ; , < ; # @ � � ! ' ��,&��<&��� #@��
� � � � � � � & � ; � � $ # $; # @ � � ! ') ����$#$%$?� #@��
� � � � � � � & � ; , < ; ? � � ! ' � ��,&��<&��� &����""� ?��=#,
� � � � � � � & � ; � � $ # $; ? � � ! ' 5 ����$#$%$?� &����""� ?��=#,
� � � � � � � & � ; $ � � � ! ' + ������ $���&#�$�

� � �'E��A.�"#>�)E���?@�
� � � � � � � & � ; " � � � ; , < & � � ! ' * � � " � � � � � "
,&��<&��� &����""

 (Continued)

52������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

thing about it is that the UDP length
field gets counted twice. As you can
see from Listing 2, when the words and
bytes are totaled, the same 16-bit
checksum is converted to a 16-bit
version just like I did with the IP.

THE ART OF ARP
Now that we have a SNIFFER to

seek out Ethernet problems, let’s turn
our attention to interpreting the data
provided via the CS8900A-CQ elec-
tronics. To make interpreting the Dy-
namic C Ethernet code easier, I’ve
prefixed PacketPage register offsets
with PPO (PacketPage Offset).
PacketPage ports are all prefixed with
PPP, so �����
���� is the line con-
trol register. Each PPO is defined by
its offset. In the case of �����
����,
its PacketPage offset is 0x112. This is
all laid out in the complete listing
available on the Circuit Cellar web
site. The offsets can be found in the
CS8900A-CQ datasheet.

Listing 3 is the receive-event han-
dler. I included a snippet at the top of
Listing 3 that I took from the
CS8900A-CQ startup and initializa-
tion routines. Notice that the Receiver
Control Register (��������) has been
loaded with bits that allow individual
MAC addresses (������� !"�#) and
broadcast addresses (������$�#%&�#)
to pass through the CS8900A-CQ and
be accepted for scrutiny by the
Rabbit’s code.

The first four bytes the Rabbit sees
are two bytes of packet status that you
won’t use and two bytes of packet
length information that you will use.
After storing the packet length data in
the first word of your Ethernet packet
array, you then proceed to get all of the
bytes that make up the Ethernet packet
using the packet length you received
earlier. The result is an array the size of
a packet length containing the Ethernet
MAC addresses and ARP, or IP packets
that match your layout of header
memory definitions. How did you
know to get this particular Ethernet
packet? In this scenario, the answer is
based on ARP. Let’s define the players.

As you know, each IP-addressable
machine on a network is called a host.
Your network consists of two active
hosts and a passive monitor, the

SNIFFER. Each host on your network
and the SNIFFER are physically
connected to a small 4-port NETGEAR
10BaseT Ethernet hub. The PC host is a
WIN98 desktop running a Visual Basic
Winsock application that simply sends
a “CIRCUIT CELLAR” message to the
Rabbit-controlled Ethernet module.
The PC host’s VB program knows that
the Rabbit is at 192.168.1.3. The PC is
located at 192.168.1.1. In your
example code, after the Rabbit receives
the UDP message from the PC, it
immediately echoes the message back
to the sender. As expected, the VB6
code is a piece of cake (see Photo 3).

When every player is powered on
and no communications activity has
been initiated by any host, the PC’s
ARP cache is empty. That means
there are no stored IP addresses
mapped to any stored MAC addresses
that the PC host knows about. I is-
sued the #�'�(� command as shown
in Photo 4. The F & switch in the ARP
command displays current ARP en-
tries by interrogating the host’s cur-
rent protocol data. Because there’s no
Dynamic C code to implement an ARP

cache on the Rabbit side, and none to
enable the Rabbit’s Ethernet engine to
generate an ARP request, you can
safely assume that the Rabbit and
CS8900A-CQ are equally as IP/MAC
dumb as the PC at this point.

Now, everything is set. The next
move is to start the SNIFFER in
capture mode so you can see all of the
events from the instant you click on
the VB Winsock application’s “Send
UDP Packet” button, until the message
is bounced back by the embedded
Ethernet carrot chopper.

Turn your attention to the
SNIFFER shot in Photo 5. That simple
mouse click on the VB form generated
four Ethernet events. The first event
was an ARP request, which was
generated by the PC host. The
SNIFFER has made this easy to figure
out. Without going into thorough
detail, the topmost frame of Photo 5
tells you the MAC address of the
sender (0x00E0292998E0). It also
informs you that the packet is a
broadcast. Not only is this a
broadcast, but it’s also an ARP request
looking for the MAC address of the

Listing 1—continued

� � � � � � � & � ; " � � � ; � � & � � ! ' � ��"�����"�
�� &����""
� � � � � � � & � ; # & � = ; , < & � � !)) ��#&�=�#� ,&��<&��� &����""
� � � � � � � & � ; # & � = ; � � & � � !) * ��#&�=�#�
�� &����""

���
�� ���C��� ������
� � � � � � � � � ; � � $ # $; � % 4 � ! ' ��
�2�� ��$#$%$?� #@��
� � � � � � � � � ; � � $ # $; # % � ! + ������ ��$#$%$?� #@��
� � � � � � � � � ; � � $ # $; . � � ! ' ' ������ ��$#$%$?� #@��
� � � � � � � � � ; G � � , � � ; ? � � ! ' ��
�� G��"�$�� &��

� � � ,�&���� ?��=#,
� � � � � � � � � ; # $ " ! ' ' ��
�� #@��� $�� "��G�%�
� � � � � � � � � ; � & % 6 � # ; ? � � ! ') ��
�� �&%6�#� ?��=#,
� � � � � � � � � ; � = � & 4 ; � � ! ' � ��
�� �&#&=�&4�
�
� � � � � � � � � ; � � & = ; $ � � " � # ! ' + ��
�� ��&=4��#� $��"�#
� � � � � � � � � ; # # ? ! ' * ��
�� #�4�� #$� ?�G�
� � � � � � � � � ; � � $ # $ % $? ! ' (��
�� ��$#$%$?
�������� ��;%,�%6".4 ! ' � ��
�� ,�&���� %,�%6".4
� � � � � � � � � ; " � % ; & � � ! ' � ��
�� "$.�%�� &����""
�������� ��;��";&�� !) ��
�� ��"#��&#�$�� &����""
� � � � � � � � � ; � & # & ; : � = � � !) � ��
�� �&#&� &��&

������ ������
� � � � � � � . � � ; � % , $; � $ � # ! D
� � � � � � � . � � ; " � % ; � $ � # � � ; � & # & ; : � = � � � ������ "$.�%�� �$�#
� � � � � � � . � � ; � � " ; � $ � # .��;"�%;�$�#� H�)

� � ������ ��"#��&#�$�� �$�#
� � � � � � � . � � ; ? � � .��;��";�$�#� H)

� � ������ ,�&���� &��� �&#&� ?��=#,
� � � � � � � . � � ; % , � % 6 " . 4 .��;?��� H�)� � � � � � � ������ %,�%6".4
� � � � � � � . � � ; � & # & ; : � = � � .��;%,�%6".4� H�)� � ������ �&#&� &��&

 CIRCUIT CELLAR® Issue 124 November 2000 ������53www.circuitcellar.com

Listing 2—After you know what the fields and their offsets mean, it all falls logically into place.
Suddenly the mist lifts and you find yourself in Ethernet land.

)) '��*+�,%-.��/-& !+

��
����012
3����012�452����6��
�������
��
�������01�1127

��
����0
��
��������
����������������
��44�8�9���
������������2

��
����0
��
��������
���������
������
��44�8�9
��
���������
������
����2

��
����0
��
��������
��������	��������44�8�9

��
��������	����������2

��
����0
��
��������
�������3��	��33�����44�8�9

��
�������3��	��33�������2

��
����0
��
��������
������������44�8�9���
������������
����2

��
����0
��
��������
���������
������44�8�9���
���������
��������2

��
����0
��
��������
���������
�����5��44�8�9

��
���������
�����:��2

��
����0
��
��������
����������������44�8�9���
������������������2

��
����0
��
��������
���������������5��44�8�9

��
���������������:��2

��
��������0
��
�����;;��<2

��
����0
��
�����
��
��������2

��
��������0
��
�����=�1�1111>>>>2

��
����0?
��
��������2

��
�����*0�
��
�����=�1�1111>>11��;;�82

��
������0
��
�����=�1�111111>>2
��
�������
��
�����0
��
�����*2

��
�������
��
�������0
��
������2

))-"'��*+�,%-.��/-& !+
�����
	��0���
����������
��44�8�9���
����������
����2

��
����01�112

3����012�452����6��
��������
��
�������01�1127

��
����0
��
��������
���������
������44�8�9���
���������
��������2

��
����0
��
��������
���������
�����5��44�8�9

��
���������
�����:��2

��
����0
��
��������
����������������44�8�9���
������������������2

��
����0
��
��������
���������������5��44�8�9
��
���������������:��2

��
����0
��
�������
������������
���2

��
����0
��
��������
����������
��44�8�9���
����������
����2
�01�112

��6

��
����0
��
��������
����������
���������44�8�9
��
����������
�����������2

���2

���2

@@�����
	��2
@@�����
	��2

7A����������
	���B0�1�2

��
��������0
��
�����;;��<2

��
����0
��
�����
��
��������2

��
��������0
��
�����=�1�1111>>>>2

��
����0?
��
��������2

��
�����*0�
��
�����=�1�1111>>11��;;�82

��
������0
��
�����=�1�111111>>2
��
��������
��
�����0
��
�����*2
� �
��������
��
�������0
��
������2

and, thus, invisible.
To our Rabbit, the ARP request was

like a shotgun blast that came too close
for comfort. Our invisible electronic
fur ball was forced to twitch and, thus,
return the MAC information requested
by the PC’s ARP request. The SNIFFER
shot in Photo 6 speaks for itself. At the
DLC level, you see the SMC 9432TX
NIC MAC address (0x00E0292998E0)
and a new source MAC address
RABBIT, or 0x524142424954. Notice
that the Rabbit sent this ARP reply and
the destination is the information that
arrived from the source machine that
issued the ARP request. The Rabbit is
on the run, as you can see from the
ASCII equivalent of the Rabbit’s MAC
address in the Ethernet header and the
ARP packet. The CS8900A-CQ
automatically adds padding to the
packet to meet the minimum length
requirements. In this case, the
SNIFFER points out that the frame
needed 18 more bytes to be legal.

Looking again at Listing 3, you can
see the Dynamic C code getting the
bytes into an array and then checking
the incoming packet’s fields in an
attempt to identify what type of
protocol the packet contains. ARP
packets are fairly straightforward and
if any of the checks fail under case
0x0806, it means the packet doesn’t
match. Because it’s useless, it is
subsequently discarded.

RABBITS HATE SHOTGUNS…
Especially when they’re double-

barreled! The ARP request and
resulting reply by the Rabbit enabled
the host station on the PC to zero in
with barrel number two. Check out
Photo 6 again and note that Event 3
does not contain any references to
MAC addresses. That’s because the
Rabbit’s IP address and MAC address
have been assimilated by the PC’s
Winsock functions and placed in the
PC’s ARP cache (see Photo 7). Also,
0x0800 in the type field denotes the
third packet as an IP packet. IP
packets use IP addresses. The IP layer
depends on the DLC layer to handle
the physical NIC-to-NIC addressing.

If this were a real hunting trip, the
next shot fired by the VB Winsock
application would put Bugs in the

owner of IP address 192.168.1.3.
Looking at Listing 1 in the Ethernet

header area, it’s obvious that the DLC
(Data Link Control) header area in the
SNIFFER shot is actually the Ethernet
header. Hopping over to the ARP area
of the SNIFFER ARP shot, you
quickly see that everything is known
except the MAC address of the target

host. Finally, the bottom SNIFFER
window gives the bit-bangers in the
audience something interesting to look
at. Note the series of 0xFFs (indicating
a broadcast) in the MAC destination
fields of the SNIFFER dump. Also,
notice that you don’t see the word
“RABBIT” in the ASCII part of the
dump. That’s because our rabbit is still

54������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

Listing 3— It doesn’t take much to kick start the CS8900, but after you get it started it drives like a fine sports
car.

))��
������C�������%8D11
��A����������
����E��
������1$#%+&�2
��A��������&������E&�������>"F�2
��A�����������3	E���3	��F�/,� +�2
��A�������������E�������F�/,�#�9������� !"�#�9

������$�#%&�#�2
��A��������&��3	E&��3	�#��� +�2
))���
�����+��
��*�
����
�������
������2
�������
�������6
"#&# !2
G�'��� �'""�E='""�%����AE�����&�"���1���2
��������2
��
����1�0��
����������2
G�'��� �'""�E='""�%����AE�����&�"���1�2
��������2
��
������0��
����������2
G�'��� �'""�E='""�%����AE�����&�"���1���2
��������2
��
�����
�0����������2
��
����1�0��
�����
�2
G�'��� �'""�E='""�%����AE�����&�"���1�2
��������2
��
�����
�0����������2
��
������0��
�����
�2
��
�����
0��
�����
��44�8�9���
�����
�2
��
�����
��
�0���
�����
2
�052
��6

G�'��� �'""�E='""�%����AE�����&�"���1�2
��������2
��
������0����������2
���2
@@��
�����
2
G�'��� �'""�E='""�%����AE������&�"���1����2
��������2
��
������0����������2
���2
@@��
�����
2
7A�������
�����
�B0�1�2

��
����H��0���
�����H���*��44�8�9���
�����H������2
�A��
����
����H���6

����1�181<I
����
����A�H����2
�3�������
�
�����6���
����������27

�����6������27
�3�������
�
�����6���
����A��
��27

�����6������27
�3�������
�
�����6���
���������
��27

�����6������27
�3�������
�
�����6���
�����J������27

�����6������27
�3�������
�
�����6���
���������27

�����6������27
�3�������
�
�����6���
������5��27

�����6������27

�3�������
�
�����6���
������:��27
�����6������27

�3�������
�
�����6���
������K��27
�����6������27

����H���������2

����1�1811I

�����
�������2

��3����I
��������
�����2

7
7

 CIRCUIT CELLAR® Issue 124 November 2000 ������55www.circuitcellar.com

Photo 9—According to the SNIFFER timestamp,
this message was transmitted and echoed back in
.031 seconds.

Fred Eady has more than 20 years of
experience as a systems engineer. He
has worked with computers and com-
munication systems large and small,
simple and complex. His forte is em-
bedded-systems design and communi-
cations. Fred may be reached at
fred@edtp.com.

boiling pot. Event 3 of
Photo 6 shows you
that the host station
at 192.168.1.1 (PC/VB
application) sent a
UDP datagram to the
host station at
192.168.1.3 (the
carrot chopper). The
standard echo port is
UDP destination Port
7, therefore, to answer
any incoming echo
requests, the Rabbit must know what
port to listen on. The first define
statement under the Rabbit code //
UDP header in Listing 1 sets the Rabbit
listening port number, and the
incoming destination port field from a
remote host is verified in the Rabbit’s
����H��������� function of your
Rabbit C code. In Photo 6, Event 3, the
source port is, of course, the UDP port
used by the VB Winsock program
running on the PC host. A quick look at
Photo 3 shows that the L$�
��M115
instruction is a blood relative of the S
= 5002 source port definition shown by
the SNIFFER. At this point, if the code
is right and the checksums are
calculated correctly, the Rabbit has no

Photo 7—And, the shotgun is
still loaded. Photo 8—I used
an easy-to-read data package
here. The idea is to convey to
you where the data really is.

other alternative than to echo the
message in the UDP datagram. Photo 8
is the SNIFFER view and Photo 9 is the
VB host view after the dust settles. The
good news is that our fast cotton-tailed
friend is electronic and bounces back
just like the rabbits you knock over in
an amusement park shooting gallery.

THAT’S ALL, FOLKS
In addition to echoing characters,

you now have the knowledge that will
enable you to send hexadecimal values
within Ethernet packets that can be
interpreted as commands to force your
Rabbit to perform via the Ethernet.
What you do currently with serial and
parallel ports can also be done with the
Ethernet port because now you know
that Ethernet isn’t complicated, it’s
embedded. I

�����������	��
����
�������	�����	���

��������
� � � � � � �

The DDSGEN is a full-featured DDS-based generator that can generate sinusoidal and square signals from 0–120 MHz with a resolution
of up to 0.001 Hz. The DDSGEN supports a variety of modulation modes (AM, FM, PM, shaped keying, FSK, PSK), as well as wobbulation

(programmed jitter). The DDSGEN can also be extended by daughter boards to implement a full-featured Arbitrary Signal Generator (ARB) and
pulse generator. And last but not least, its cost is reasonable. The DDSGEN is primarily built around an AD9852 DDS chip from Analog Devices and is

controlled by a pair of Philips 87LPC764 microcontrollers (one main, one dedicated to the user interface).

The DDSGEN features include:

• onboard user interface (2 × 16 LCD, keyboard, rotary encoder)
• all functions can be remotely controlled through a RS-232 connection

• 300-MHz internal clock frequency, standard 100-ppm stability or OVCXO based 3 ppm option
• 0 to 120 MHz output frequency with 0.001 Hz resolution from 0 to 999 KHz and 1-Hz resolution from 1 MHz to 120 MHz
• sinusoidal output from 0 to ±3 V, 12-bit resolution, programmable offset of 0–3 V
• low jitter squarewave output, 3.3- and 5-V compatible
• fully digital AM, FM, PM (amplitude, frequency, and phase modulation) up to 5 KHz with programmable depth, 10-bit resolution; internal modulation generator option
• shaped keying (0 to 100% amplitude modulation based on a digital signal), with programmable slope rate
• digital ramped FSK (Frequency Shift Keying) between any two frequencies; immediate or programmable change rate
• digital ramped PSK (Phase Shift Keying) between any two phases (resolution 12 bits); immediate or programmable change rate
• linear wobbulation between any two frequencies, programmable repetition rate
• 0- to 30-MHz clock with 0.001-Hz resolution, 12-bit amplitude resolution, 1 × 8k-word signal or 8 × 1k-word signals. Serial download of the

waveforms through the RS-232 port to an onboard EEPROM
• future optional pulse generator: 10-ns maximum resolution, 24-bit length register/32-bit repetition

register
• optional high-precision 3-ppm OVCXO system clock
• future optional ARB (Arbitrary Signal Generator)

The software for the DDSGEN is mainly written in C, thanks to the freeware SDCC-optimizing
cross-compiler. The dynamic structure of the DDSGEN embedded software is of the classic (but
field-proven) interrupt driven variety. After initialization, a main program manages the user interface
and stores in a shared RAM buffer all parameters that need to be loaded into the DDS chip.

An interrupt routine, executed each time the DDS chip asks for new values (usually every 200 µs),
executes an A/D conversion of the external modulation input and recalculates the frequency and
amplitude (and/or phase if a modulation is requested) on the fly and uploads the modified param-
eters into the DDS chip.

������
Robert Lacoste

Chaville, France
robert_lacoste@yahoo.fr

	
��

�������������
�����
��
�����
��
���
������

�������������������

�����������

��������
� � � � � � �

���	
�	

Paul Kiedrowski

Fort Worth, TX
kiedro@swbell.net

�����������

�����������

A common practice for automatic scoring of multiple-choice quizzes or tests is to use a commercially available system based on a desktop card reader
machine, which requires that students mark their answers on preprinted forms of specific size and layout. This method is relatively expensive because of the
cost of equipment and score cards, and therefore is usually used only for critical testing.

In most cases, because only one centralized scoring machine is available to the teacher, it is not located in the classroom where it would offer the most
convenience. Perhaps more importantly, the most useful time to evaluate test results would be immediately afterwards so that teachers could promptly give
feedback and discuss the most commonly missed questions. This is especially desirable for periodic quizzes where the intent is to allow the teacher to quickly
gauge the classroom’s learning progress.

To answer the above needs, a new scoring device was developed based on the Philips 87LPC764 microprocessor. The QuizWiz uses a single reflective opto-
sensor to perform the scanning detection process. To preserve battery power, the opto-sensor LED is only active when QuizWiz is pressed against the paper,
which depresses a mechanical switch located on the bottom.

Normal battery current is about 25 mA when all circuits are operating, 15 mA when not
scanning, and 20 µA during shutdown. Using three AAA batteries in series, with a typical capacity
of 1000 mAh, a teacher can score approximately 100 quizzes for 30 students (i.e., 3000 scans).

QuizWiz uses a simple 3-chip design (processor, 5-V converter, and RS-232 interface). The
87LPC764 is a good match for the required features, and all of its pins and most of its features
are used in this project. To minimize cost further, no external crystal is required, because the
processor conveniently includes an internal 6-MHz RC oscillator.

For access to quiz scoring details in real time, as they are scanned, the user may connect a PC
to the QuizWiz using a standard RS-232 serial port connection at 9600 bps. The QuizWiz
automatically detects the presence of the serial port connection, and power usage is reduced
when not connected. When the serial port is connected, the PC will receive the results of each
quiz as they are scanned and completed. The questions that are wrong will be reported as well. A
standard terminal emulator program can be used on the PC, and the results can be copied and
pasted into other programs.

���
�����������
���
Robert Morrison

Star, ID
rdm@boi.hp.com

The Musical Instrument Digital Interface (MIDI) is the RS-232 of the musical world. However, much like RS-232, MIDI has its downside. If something doesn’t
work, it’s difficult to find out why. The InLine MIDI Monitor was designed to quickly diagnose problems unique to the MIDI environment. The monitor looks like a
cable that plugs into a MIDI port and displays the status of the line. The device can be battery powered for quick debugging while on the road, or run from a wall
transformer to provide continuous MIDI line monitoring during a performance.

As an amateur classical pianist and synthesizer player, I have a MIDI-compatible piano and MIDI-compatible synthesizer equipment. My biggest nightmare is
beginning a solo performance by playing a dramatic opening chord and hearing no sound, except for the clunk of the synth keys. All too often, a cheap MIDI cable
prevents data from getting from the keyboard to the rackmount synthesizer box. What’s worse is that I will have to check many things before determining the
problem. Is it an incorrect channel setting of the keyboard or synth? An amplifier or mixer line cable that didn’t get plugged in? Maybe a bad MIDI cable?

The MIDI protocol allows every note or other command to be assigned to one of 16 channels, so if there is a channel mismatch between the keyboard and
the synth, no sound will occur. Wouldn’t it be nice if I could be reassured that the connections were all working so I could concentrate on the performance?
That’s why I designed the InLine MIDI Monitor—an unobtrusive, battery-powered, 87LPC762-controlled monitor that provides visual information about the MIDI
connection.

The InLine MIDI Monitor checks for several things and provides its status on a small 5 × 7 LED array. The MIDI Monitor checks for receiver connectivity,
active messages, channel information, and note integrity/noise. Because MIDI is a current loop, if the receiving end of the cable is not properly connected, it is
easy to detect—this verifies that the rackmount synthesizer is actually present (cable is connected). That may not sound like a big deal, but unless you’ve done

time as a band roadie, you don’t know what a rat’s nest of cables are involved in an instrument setup, and might not realize
how easy it is to leave some cables unconnected or connected to the wrong device.

The MIDI Monitor will also check for channel settings. This is one of the most common goofs in making sure that MIDI
instruments are talking to each other. I will set the keyboard to transmit on channels 0 and 1, but set the synthesizer to
receive on channels 1 and 2! If I’m lucky, I will figure it out quickly, hunt down the MIDI channel configuration for both the
keyboard and the synth and set them to match.

To solve the problem, the MIDI Monitor will display (in slow sequence) the active channels on the line so I can verify
that the transmitting device is functioning and what channels it is sending on. It will also watch for the MIDI active
messages that are sent periodically, and display an idle status (IDL) if no keyboard activity is occurring (it displays
inactive status (IA) if there are no MIDI active messages at all). With such a powerful tool checking the MIDI cable
connection, I can rest easy and concentrate on the performance!

	
��

�������������
�����
��

����
��
���
������

�������������������

��������
The TV Timer is a low-cost channel control designed for use in the
hospital and hospitality industries, or any situation where access to
specific television channels needs to be controlled. Existing solutions such as set-top
decoder boxes or scramblers provide functionality but can be quite expensive. The TV
Timer has an on-screen status display, is operated via a custom infrared remote control,
is self-contained within the television, and best of all, only costs about $40 to build. The
TV Timer allows access control of “pay” channels while allowing transparent access to
free programming.

��
 �
�
��!�������
"
�����������������
To obtain an accurate likeness, a sculptor must utilize some form of reference material.
Photographs are the most widely used reference material, but they offer a limited
dimensional perspective and can cause distractions when the artist looks away from the
sculpture to study the photograph. However, by joining a rotary table mechanism and a
slide projector, the rotary table actuated slide projector provides a continuously correct
three-dimensional perspective of a slide-projected image to the sculpture in progress.

�#����
$%���
The Geo-Mite is a small microprocessor-controlled vibration alarm
system. It uses a sensor that was developed to perform acoustic surveying for the oil
industry. This sensor can detect small vibrations and generate an output voltage propor-
tional to the vibration. The Geo-Mite converts this output to a binary condition and then
counts the number of these vibrations occurring each second. This level of vibration is
displayed on an LED bar graph on the front of the Geo-Mite. If this level exceeds a
programmable threshold, the Geo-Mite will sound an alarm and send an X-10 On
command to a selected device. The unit also can operate without the X-10 interface and
function as a simple audible vibration alarm.

�

����&
��
�!���'���
With the ever increasing performance of microelectronics,
the home user and small entrepreneur cannot afford to keep
pace with the need for special test equipment. Getting all of today’s new microcontrollers
to operate and execute code often requires a means of being able to view the relative
timing of different signals in a system to get it going. With the requirement for high-speed
clocking and configurable settings, the heart of this eight-channel serial interface ana-
lyzer is a CPLD from Lattice Semiconductor. These devices are extremely fast, which
results in a system that can sample a high-speed bus. All signal acquisition is achieved
by hardware and thus the microcontroller is free to handle the interfacing, setup, and
control functions.

"�

���������(������
Lionel Theunissen
Brisbane, Australia

Nathon Van Noy
& Mark Patterson

Provo, UT

David Penrose
Bedford, NH

Michael Kroon
Horsnby Heights,

Australia

	
��

�������������
��������#
�
��
�
��
�����
��
���
������

�������������������

	��!�
����)"*�+����
The FPGA on a Rope board and device driver provide a simple method to quickly configure and control
 a user-definable FPGA connected to a Windows 98 PC through a USB port. The design consists of the USBFPGA hardware
(printed circuit board), and a Windows 98 compatible WDM device driver. An example application and FPGA template design are
included to demonstrate the control and status functions of the USBFPGA device. These functions allow you to develop custom
applications that communicate with your defined FPGA hardware via the USB port.

"���
���
SatPoint is a portable satellite tracking device with an illuminated pointer that gives specific location
information. By connecting the unit to a PC via RS-232, it can download up to 100 satellite passes and data that may span
several days. The data is stored in nonvolatile memory so the unit can be turned on and off as needed without having to reload
the tracking data. The PC sends the current date and time to SatPoint at the beginning of the data set. SatPoint sets its internal
date and time and maintains that information automatically so that it is ready to track real-time at any time. Pushbuttons and a
two-line by 20-character LCD interact with the operator and allow the selection of various modes of operation.

�#��,���$"��
�
The Yard-Stick is a tool for the landscape planner, builder, architect, accident investigation professional,
or anyone who needs to measure and record the outline of an irregular area. The device combines the familiar rolling wheel
measuring instrument with an accurate digital compass, internal memory, display, processor, and RS-232 interface. The resulting
tool can measure and record the outline of multiple areas, measure distances and direction between these areas, and then
transfer this information to a PC for display and calculation. This information can then be used to produce both graphical and
textual description of the scene. This data can be overlaid on photographic information to produce a complete record of the area.

)��������+�

������%�������������'
The clock and message display presents the date, time, and an optional user-defined message in a
scrolling marquee fashion. A large 320-LED display continuously scrolls the date, time, and user message across the display
using a dot-matrix font. Bright LEDs and a large 8 × 8 font make the display easily readable from far away. The pushbuttons
on the front of the clock allow for easy setup and changes. The clock is based on the 60-Hz AC commercial power grid for
timekeeping accuracy and uses a “super cap” instead of batteries for backup.

�#����
$"����'
The Geo-Sentry is a programmable real-time event recording and display system. It interrogates
a series of small seismic sensors to detect foot or vehicle traffic. The system is designed to monitor these sensors and send X-10
commands when the level of activity from a sensor indicates that a person is walking in the area or that a vehicle is moving in the
driveway. By associating a different X-10 command sequence and On time with each sensor, the outdoor lighting near the
driveway and house can follow a person’s movement. This adds safety for the walker and security for the homeowner.

-��
��
��
$&��
The Electronic-Lab enables educational personnel to simulate analog and digital practice exercises
with real devices. It provides the mounting surface for practices, the power source for the circuits, two signal generators, a
clock generator, a 16-bit word generator, an I2C bus controller, a frequency meter, an oscilloscope for up to eight analog
inputs, an oscilloscope for up to 16 digital inputs, and a 16-bit pattern detector. With the practice handbooks that are included,
instructors can make the best use of PC resources to teach the student and to generate, monitor, and register the signals, as
well as verify fixed-function SSI/MSI integrated circuits and programmable logic devices.

Kenneth Trussell
Sandersville, GA

David Penrose
Bedford, NH

Chuck Cateora
Aurora, CO

Mariano Barron Ruiz &
Javier Martinez Perez

Zaldibar, Spain

David Penrose
Bedford, NH

	
��

�������������
��������#
�
��
�
��
�����
��
���
������

�������������������

Michael DeVault
Penfield, NY

%�
#�����’����
#
�����
This project is a sophisticated optical tachometer that uses a
PhilipsP87LPC764 as the only integrated circuit. Because tachometer
signals are relatively low frequency, it uses a reciprocal counting scheme
whereby the frequency (and thus rotational speed) is calculated from the
time it takes to receive an integral number of input pulse edges. This
allows an update rate that usually is in the 2 Hz range with 1 RPM
resolution.

Spehro Pefhany
Toronto, Canada — speff@interlog.com

-��'�!��������
The Easy Altimeter is an inexpensive altimeter project that also includes
a thermometer and barometer. The altimeter has a resolution of about 1
m and calculates data faster than most GPS units, making it practical for
outdoor hobbies such as hiking or biking. It can store up to 10 hours of
data, which then can be downloaded to a PC.

Radek Vaclavik
Roznov Pud Radhostem — radek.vaclavik@onsemi.com

�+$������%�
#����'��������
��!���'���
Machinery vibration analysis is used to routinely check the health of
machinery and also to understand the cause of vibration. Vibration is
often a symptom of an internal defect and can be an early predictor of
developing defects. This low-cost 51LPC-based data acquisition system
can be used with a portable PC to read vibration signals (acquired from
an accelerometer). The signals are then plotted, saved, and analyzed
using Fast Fourier Transform algorithms.

Ariel Quezada
Cochabamba, Bolivia — ari_quezada@yahoo.es

(���#���
�
Controlled by a simple user interface of one LED and four pushbutton
switches, the Weathermon incorporates several Dallas 1-Wire bus
devices to implement three weather sensors. The Weathermon reads
the ambient temperature, wind direction, and wind speed data from a
weather station assembly and displays the processed weather data as
text on a video monitor or television receiver.

Peter Ampt
Victoria, Australia — pampt@alphalink.com.au

�#��*��$*�����.�)"*��
�/�+�������
The Bit-Banger implements a USB to I2C (single master) bridge, as well
as some general purpose I/O, which is accessible via USB through a set
of API calls. The design is intended to be used with a series of I2C
feature boards to provide a simple method for engineers to access a
variety of functions (e.g., an LCD interface, digital I/O, 7-segment
displays, keypads, or ADCs) through a USB interface, using a simple set
of function calls (API).

Michael DeVault
Penfield, NY — michael@devasys.com

/�+$%%/
Developing an embedded system can be fun. Doing it twice is called
experience. Redeveloping the same kind of software over and over is a
waste of time and money, not to mention that it can get boring. The I2C-
MMI is a dedicated a low-cost preprogrammed chip that directly handles
all the elements of a classic user interface, is fully reusable, communi-
cates with the host micro through a standard nondedicated I2C bus, and
can offload as many functions as possible from the main micro.

Robert Lacoste
Chaville, France — robert_lacoste@yahoo.fr

"��
��"#�0��!��
�1�
����"������
�
The Stick Shift Auto Racing Simulator is a modification to a commercially
available steering wheel joystick interface that provides a realistic auto
racing environment for computer, yet requires no special modifications to
the computer game. The addition of a clutch pedal and a stick shift
assembly allows the player to experience an engine stall or grinding
gears, just like you would in a standard transmission automobile.

Robert Morrison
Star, ID — rdm@boi.hp.com

/�+�%���
The I2C Menu is an I2C interfaced unit for simple and flexible menu-type
selection, including the ability to write application-specific text to the LCD
module. The project uses a 2 × 16 LCD, a buzzer, backlight control,
contrast regulation, two soft keys, and two scroll keys. To save applica-
tion code space, the menu structure and setup values for the unit can be
preloaded into the EEPROM.

Robert Klingbeil
Midrand, South Africa — klaxe@mweb.co.za

"��
���+�

�
The Strobe Clock is a pen-sized pocket clock that displays the time with
the wave of the wand by using LEDs aligned in a vertical column. By
turning the LEDs on or off at the proper positions, any number of
characters can be displayed. Using only five LEDs, it achieves a vertical
resolution of five and an unlimited horizontal resolution.

Mircea Hossu
Mississauga, Canada — mhossu@hotmail.com

1�+�1���

Using the Micrel single-chip RF receiver, this R/C radio and receiver
provides an inexpensive "throwaway" product for the increasingly
popular class of micro R/C airplanes, which are flown the length of a
typical front yard or large living room. The whole device (with the
receiver) costs under $5 to manufacture in any kind of quantity. This is
a welcome improvement from the $150 or so that it costs for conven-
tional high-power four channel radios that are currently used for micro
aircraft.

Mark Antonelli
Oxnard, CA — jamesc@venturalink.net

�2/1���1/3-�(/44-1"
	
��

�������������
��������#
�
����
��
�����
��
���
������

�������������������

62 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

Applications of PN
Sequences

FEATURE
ARTICLE

o
This month, Tom
takes us into the
world of testing data
transmission sys-
tems. He says his
subject, ideal pseudo-
random number se-
quences, proved
“infinitely intriguing,”
so get ready for some
very interesting infor-
mation.

ne of the para-
doxical constructs

of electronics can be
generated with just a shift

register and an exclusive OR gate.
With the right connections, a shift
register having N stages can generate a
sequence of ones and zeros that repeats
every 2N – 1 bits. Apart from this rep-
etition, the sequence passes every
standard test for randomness. This
makes it the ideal test input for data
transmission systems.

Pseudo-random number (PN) se-
quences are widely used in electronic
devices where an apparently random
but actually predictable signal is re-
quired. The PN sequence emulates all
possible normal data inputs, but be-
cause an exact copy of it can be inde-
pendently generated at the receiver,
any discrepancies between the input
and output can be immediately de-
tected. This is the basis of so-called Bit
Error Rate Testers (BERTs), which
detect bit errors occurring in data
transmission.

Another use is to make a data signal
more random. A binary datastream can
be exclusive ORed with a PN sequence
before transmission. This may be done
to make interception more difficult, to
eliminate long strings of ones and zeros
that might disrupt the receiving equip-
ment, or to spread the data spectrum
over a wider band. In spread spectrum
systems such as ubiquitous GPS re-
ceivers, PN sequences phase modulate
the carrier frequency.

All these applications depend on the
receiving equipment being able to
generate a matching PN sequence to
remove the encoding applied at the
transmitter. If the same bit sequence is
exclusive ORed twice with a data
signal, the result is the original data.
There is a tricky way of doing this.

PN sequences also have uses in
analog systems. If a digital PN se-
quence is low-pass filtered, the result
is a good approximation of Gaussuan
analog noise. Such noise has many
advantages over that generated by
conventional methods. Because the
input signal is digital, the output
amplitude is well-defined. Low-pass
filtering a normal noise source re-
duces its amplitude in proportion to
the square root of the filter band-
width. With digitally generated noise,
changing the clock rate changes the
noise bandwidth without affecting the
amplitude. This makes it easier to
generate test signals having a well-
defined signal-to-noise ratio.

Classically generating analog noise
from a PN sequence gave a noise band-
width about 5% of the clock rate, a
few megahertz at most. Some years ago
a product I was designing needed a
source of fixed amplitude Gaussian
noise with a bandwidth up to 100
MHz. By using a FIR filter to compen-
sate for the roll-off of the PN se-
quence spectrum, I came up with a
noise generator with a useful band-
width of 50% of the clock rate. One

Tom Napier

Figure 1—A five-
stage shift
register and an
exclusive OR
gate generate a
31-bit pseudo-
random se-
quence.

PN data
output

Clock
input

 CIRCUIT CELLAR® Issue 124 November 2000 63www.circuitcellar.com

digital circuit board
replaced a boxful of
analog noise generators,
filters, amplifiers, and
RMS level meters. (This
design was granted a U.S.
patent.)

PROPERTIES OF PN
SEQUENCES

Here are some of the
fascinating properties of
PN sequences. First,
ones and zeros occur in
almost equal numbers.
Why almost? Well, the
complete cycle of bits
contains an odd num-
ber, there is always one
more 1 bit than 0 bits. With a long
enough sequence, this discrepancy
becomes irrelevant; whichever bit you
look at, the next bit is almost equally
likely to be a one or zero. If you look at
groups of successive bits, all possible
patterns occur equally as often. This
means that you can convert groups of
bits into analog form and get a ran-
dom voltage that takes all possible
values equally often.

A particular case of this “window”
property arises when you look at the
complete shift register. In the course of
2N – 1 clock periods, this cycles
through all possible N-bit states ex-
cept the all-zeros state. Each state is
equal to, say, a right shift of the last
state, except that one bit is shifted out
and is replaced by a new bit. The new
bit is the exclusive OR of the bit
shifted out coupled with another bit of
the shift register. And because there
are 2N – 1 distinct states, a PN shift
register is sometimes used as a pulse
counter, or clock divider.

A PN sequence has a perfect
autocorrelation function. If you exclu-
sive OR two identical time-shifted PN
sequences and compute the average,
you get a negligible output unless the
time shift is zero. This makes PN en-
coded data suitable for measuring the
time delay in a signal path. By shifting
the reference sequence until you get a
match, you can tell how far away the
transmitter is even if the received
signal is noisy. There is a range ambi-
guity if the time delay is longer than

the sequence, but this rarely matters
because there is no limit to the length
of the PN sequence you can use.

Another interesting property is
that when you exclusive OR a PN
sequence with a delayed version of
itself, you get an identical sequence
with yet a different delay. It is easy to
tap a time delayed datastream if you
need a delay shorter than the shift
register length. However, you can
generate a sequence delayed by any
number of clocks up to the 2N – 1
length of the cycle. All you need is to
exclusive OR the right set of shift
register bits.

I used this property to generate
effectively uncorrelated sequences
without extra hardware by tapping
into the same sequence at points mil-
lions of bits apart. I found an algo-
rithm to compute the correct set of
taps for any given delay, but I’m un-
able to find an algorithm that trans-
lates taps into time delays, other than
by brute cycling through the se-
quence. Does anyone know of one?

BUILDING A PN GENERATOR
I presented an oversimplification of

the PN sequence generator’s construc-
tion. Not all 2N – 1 sequences can be
generated by exclusive ORing the
outputs from two shift register stages.
For some values of N, more than two
stages must be exclusive ORed to gen-
erate the maximum length sequence.
For a given N, there are usually sev-
eral combinations of taps that generate

different maximal
length sequences.
In some cases these
are time reversals
of each other.
When testing
equipment, you
must be sure which
sequence was used
at the transmitting
end.

With telemetry
there is a tendency
to standardize
easily generated
sequence lengths,
partly because a
shift register can be
clocked faster

when only one gate delay is needed.
Table 1 lists the sequences shorter
than 224, which can be generated with a
two-input exclusive OR gate. In each
case, the inputs of the exclusive OR
gate are connected to both the last
shift register stage being used and the
stage given by the tap number (count-
ing from the input end). The output of
the exclusive OR gate goes to the shift
register’s input pin.

Figure 1 shows the five-stage shift
register, which generates the 31-bit
sequence:

1000010101110110001111100110100

The 74HC164 8-bit shift register
makes a convenient building block for
experimenting with PN sequences.

When a PN generator is turned on,
the shift register must be loaded with a
nonzero value, otherwise it will gener-
ate zeros forever. When operating, it
generates an all-ones pattern once per
cycle. This can be used to synchronize
other equipment, such as an oscillo-
scope, to the data pattern.

In practice, it is better to detect the
N – 1 zeros state, which also occurs
only once per cycle. Detecting this
state is easy when the shift register is
constructed from ECL parts, because
you can use the wired OR capability of
ECL to make a negative AND gate.

In other logic families, the easiest
solution is to use an up counter,
which is reset by any one. This
counter reaches its N – 1 state only

Figure 2—Two shift registers (one with feedback and one without) randomize and standardize a
binary signal.

Encoded data
output

Clock
input

Plain data
input

Recovered data
output

Clock
input

Encoded
data input

 CIRCUIT CELLAR® Issue 124 November 2000 65www.circuitcellar.com

when N – 1 zeros occur. The same
counter can test for N zeros, the
“hung” state, and restart the shift
register if it occurs. In one applica-
tion, I combined the sync and restart
functions by parallel loading the shift
register with the next valid state
every time the sync state was
reached, thus anticipating any all-
zeros state. [1]

Having modulated a datastream by
a PN sequence, you might imagine that
synchronizing the decoding sequence
at the receiver would be a tough job.
However, you only have to feed the
data into a shift register that has an
exclusive OR gate connected to the
same taps as in the transmitter (with
no feedback). The output from an ex-
clusive OR gate connected to this
signal and to the input will then be
the original data.

Figure 2 shows the transmitter and
receiver connections using the same
five-stage register as Figure 1. There is
one disadvantage. Because each out-
put bit is the exclusive OR of three
input bits, any bit error generated in

transmission will cause three output
bits to be in error.

BIT ERROR RATE TESTING
One major application of PN se-

quences is the measurement of bit
errors in data transmission systems.
This is done either to confirm that the
equipment meets the maker’s specifi-
cation or to monitor its performance

to detect potential failures. The job is
simple if the equipment can be taken
off-line for testing. A suitable PN
sequence is supplied in place of the
usual data source. The data recovered
at the other end of the system is com-
pared with the original PN sequence
and any discrepancies are noted.

If the equipment must be tested in
operation, then either PN data must be
injected in an unused channel or some
regularity of the data (e.g., a frame
synchronization pattern) must be used
to detect errors.

A BERT generates a binary data-
stream at a user-selected clock rate.
The data pattern can be selected from
several PN sequence lengths. There are
many ways of formatting binary data.
These range from non-return to zero
through bi-phase code, which carries
it’s own clock, to modified-Miller
encoding, which minimizes the signal’s
mean DC component.

The output amplitude also can be
switched to conform to various stan-
dard levels. Some specialized BERTs
also generate the framing information

Table 1—The shift register taps for maximal length
sequences are listed here.

Stages Tap Length

2 1 3
3 1 7
4 1 15
5 2 31
6 1 63
7 1 127
9 4 511

10 3 102
11 2 2047
15 1 32767
17 3 131071
18 7 262143
20 3 1048575
21 2 2097151
22 1 4194303
23 5 8388607

66 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

���� ����	
 ���
��� �
��� �
����
�

����� ����	��� ��
��� �
������� ��� ���

��� ����	��� ��
�� ���� � � ��!� ���� !������

��"� ��#	$ ��
�%&� ��� �'�

(��#� ����	
 �(��� ��!� ����)��&� �
������� ���

��� *	$ ���
��� %���'� ���

����� ����	��� ��
��� (��� �+�!+�

��� *	$ ��
�� %���'

��� ��#	
 ��&���� %���'� � ��� �
����
�

��� ����	
 ����!�
�
�
,� ���� �&���

Listing 1—This code fragment for a PIC16C57 uses two 8-bit registers, low and high, to emulate a 15-stage
shift register. TOP = 6, the farthest left bit in the shift register. TAP = 0, the other input to the XOR operation.
This code is general. It can be extended to any shift register length and tap position by using more registers
and changing TAP and TOP as required.

divided by the number of bits received
and displayed as the bit error rate.

The input and output can get out of
sync. For example, equipment under
test may drop one bit. Because of the
autocorrelation property of the PN
sequence, such a bit slip results in an
immediate change in the detected
error rate to close to 50%. This alerts
the BERT of the need to synchronize
to the input signal again.

Error rate testing can be a slow
business. Because of the random nature

there are few enough bit errors, an
error-free sequence longer than the
generating shift register occurs often.
This seed is detected by counting
output zeros and is transferred to a
second shift register. There it gener-
ates a clean and completely indepen-
dent PN sequence that acts as a
reference for the input signal.

Any discrepancy is a bit error and
is counted. After some fixed number
of input bits have been received, the
error count is stopped. The result is

required when testing packet-switched
networks and telephone systems.

A BERT contains a receiving, decod-
ing, and error counting section that
works at the same clock rate but is
otherwise independent of the transmit-
ter section. Sometimes both ends of a
transmission path are at the same loca-
tion and a single BERT can both trans-
mit and receive data. More often the
input and output are many miles apart
and two BERTs are used.

LOCKING TO THE DATA
The receive section of the BERT has

two mechanisms to handle transmis-
sion time delays. It can synchronize to
the clock phase of the input signal and
it can synchronize to the PN data pat-
tern. A BERT may be used to measure
error rates as high as 20% so it needs a
more sophisticated synchronization
system than just explained. However,
the essentials are the same.

Because in a BERT the data is a raw
PN sequence, passing the incoming
data through a decoding shift register
should generate all ones or all zeros. If

 CIRCUIT CELLAR® Issue 124 November 2000 67www.circuitcellar.com

REFERENCE
[1] Tom Napier “Ideas for Design
520: Self-Starting Data Generator,”
Electronic Design, July 24, 1995.

of bit errors, the accuracy of an error
count is roughly the reciprocal of the
square root of the total count. To mea-
sure the true error rate to about 10%,
you need to wait for 100 errors to
occur. Because the test specification
may require the error rate to be less
than one in a billion bits, a full-scale
error test may take weeks. At 64 kbps,
for example, 100 errors will accumu-
late in 18 days.

For completeness I’ll mention the
mathematical notation commonly
used to specify the taps on a shift regis-
ter. A set of taps is listed as a polyno-
mial expression where the exponents
of a delay operator (x) specify which
taps are exclusive ORed to generate
the new input.

The input itself is often denoted as 1,
so a polynomial such as x5 + x2 + 1 repre-
sents the taps on the five-stage shift
register of Figure 1. The plus signs repre-
sent the exclusive OR operator (e.g., xn +
xn = 0). Right and left shifting is repre-
sented by multiplying and dividing the
expression by x. With this notation, you
can prove all kinds of neat results.

SOFTWARE EMULATION
To build a PN data generator, you

don’t need a hardware shift register.
Even the tiniest computer chips can
handle shift and exclusive OR func-
tions and, thus, emulate a hardware
generator, albeit at a lower speed.

I’ve programmed PIC chips to
generate an FM signal modulated by
an external data input. It’s easy to
add a PN data generator for self-test.
I’ve even built a 64-kbps BERT using
a 16C57 chip. This generates both
127- and 32767-bit test patterns
using the same algorithm, only the
address in the index register changes.
Listing 1 shows a code fragment that
can generate almost any length of PN
sequence.

DISPLAYING PN DATA
Short PN sequences fit on one line

of a scope trace and can highlight prob-
lems such as baseline shift. If the scope
is synchronized to the bit clock rate
rather than to the data pattern, it will
display an eye pattern. This will reveal
whether the transmission path has too

little bandwidth or too much noise or
phase shift to transmit reliable data.
This is a valuable tool for adjusting
data filters and equalizers to optimize
the signal-to-noise ratio.

What I’ve discussed here this
month merely scratches the surface of
the theory and application of PN se-
quences. They are to electronics what
the Mandelbrot set is to mathematics,
simple to generate yet infinitely in-
triguing. I

Tom Napier was a principal engineer
in the Signal Recovery Group of the
Aydin Corporation for eight years.
There he developed better ways of
receiving signals from a spacecraft and
designed a BERT with a built-in noise
generator to test data receivers. Now,
he is a consultant and writer.

68������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

The “S” is for Speed

EMBEDDED
LIVING

Mike Baptiste

Whether your design
needs a few soft-
ware tweaks or more
extensive change,
upgrading to the
’S180 will put you in
the fast lane. Mike
shows us that it’s a
valuable addition to
the Z180 family, one
that makes HCS-II
users smile.

f you keep up
with the latest

happenings at Zilog,
you probably think you

picked up a 1999 issue of Circuit Cel-
lar (Zilog released the Z8S180 CPU
over a year ago). However, this column
is timely because I recently upgraded
the HCS-II controller to use the new
Z8S180 CPU, and Circuit Cellar’s
Driven to Design Contest is based on
the Z180 core. I’m going to stray from
my home automation focus, but fear
not, it’s only temporary.

The Z8S180 is an enhanced Z180
core offering faster execution, more
robust serial UARTs, more efficient
DMA, more power-saving modes, and
lower EMI. Before ordering some for
your existing Z180 designs, read on.
This upgrade may not be as easy as
popping out your old Z180 and putting
in an ’S180, especially if you want to
get the most out of your upgrade.

UNDER THE HOOD
The ’S180 adds a few new elements

to the existing Z180 feature set. For
example, it expands the number of

Breathe New Life into Your
Z180 Designs

i

power-down modes available for appli-
cations requiring power conservation.
The new Standby mode effectively
shuts down all of the CPU (including
the oscillator) until an external Reset,
bus request (BUSREQ), or interrupt is
received. This total shutdown reduces
power consumption to approximately
50 µA for the CPU.

Because the oscillator is turned off,
exiting Standby mode requires time
for the oscillator to stabilize. The
’S180 will wait 217 clock cycles before
resuming operation. The recovery
signal must remain asserted for all of
the recovery time or the device will
stay in Standby mode. This can be in
several milliseconds, even at 20 MHz!

If the long recovery time is an issue
and your design uses an external oscil-
lator device, the ’S180 allows you to
enter a quick recovery Standby. This
only takes 64 clock cycles to recover
the system.

The other power-saving mode is
Idle. This keeps the oscillator running
to allow for a quick recovery, but turns
off Clkout so any other parts in your
design tied to Clkout will stop, thus
reducing overall power consumption.

The ’S180 adds an option to reduce
the internal oscillator drive, which can
reduce EMI. The default oscillator
drive is already reduced by 30% com-
pared to the Z180. If you enable this
option (bit 6 of the Clock Multiplier
Register (0x1E)), remember that the
reduction is in addition to the 30%
reduction in the default drive. If you
have a series resistor in your oscillator,
you may want to remove it as a result
of the reduced default drive.

The I/O pins are now auto-latches,
which can prevent excessive supply
currents because of floating inputs. By
using a latch circuit on each pin, the
state of an input is maintained, even if
the external source is removed. The
same applies when an output is turned
off using /OE. The state will be main-
tained, but the pin state will be over-
ridden by any external assertion
because the auto-latches are weak (i.e.,
maximum of 10 µA of leakage current).

One problem you may encounter is
if a pin is pulled to ground via a pull-
down resistor. If the auto-latch is
latched high (VDD) when the signal is

 CIRCUIT CELLAR® Issue 124 November 2000 ������69www.circuitcellar.com

three wait states at 9.216 MHz for I/O,
I could only increase them to four with
the ’S180.

I needed six to keep the timing the
same, so I feared I wouldn’t be able to
double the internal speed. However,
extensive onsite testing showed four
wait states would be tolerable with the
existing peripheral set. Of course, as
Murphy’s Law would have it, a few
users with many I/O cards (and thus, a
heavily loaded bus) have reported
some instability, which was resolved
by upgrading the 74LSxx glue logic to
the faster 74Fxx family.

Doubling the clock speed of any
program will probably require a num-
ber of software changes. If your system
uses a real-time OS like the HCS-II,
you’ll have to tweak the low-level
code. Hopefully your RTOS utilizes a
ticks variable, which specifies the
number of clock ticks per unit of time.
If it does, it can just be doubled and
your OS timing should stay the same.
If it doesn’t, the changes can be trickier
and, because they are such low-level
changes, the risk increases.

The other timing issue is delay
loops. I usually try not to hardcode
timers in the code, but sometimes it
happens anyway. The toughest part of
this upgrade was going through all 200
pages of the HCS-II firmware and
tracking down all the delay loops that
were time-critical. Changing them
usually meant doubling the timer de-
lay value, which was easy. However,
finding them was tricky. Thank good-
ness the code was well commented!

SUBTLE SERIAL
The ’S180 contains some subtle

enhancements to the two onboard
serial ports (ASCI0/1). The ports now

removed (i.e., in a tri-state situation),
the input may not flip to GND. This
occurs if the external pull-down is not
strong enough and the auto-latch and
external pull-down then form a voltage
divider. See the Resources for informa-
tion on ensuring that pull-downs are
strong enough. The Z8S180 errata
states that pull-down resistors must be
no weaker than 15 kΩ to ensure that
they can overpower the auto-latch.

The ’S180 also enhances the DMA
support by allowing the DMA channels
to be linked. This reduces the involve-
ment of the CPU during DMA transfers
and allows for faster data transfer. If
the DMA channels are tied to the same
high-speed device, you can switch
between them. While one channel is
busy getting data, you can program the
next buffer address and byte count into
the inactive DMA channel without
waiting for the first transfer to finish.

When the current transfer is over,
the CPU automatically switches to the
inactive channel and immediately
starts the transfer that’s already pro-
grammed. In effect, you can set up the
second transfer anytime during the
first transfer instead of having to inter-
rupt the CPU after the first transfer to
set up the second.

By now you’re probably wondering
why you started to read this. So far the
improvements are pretty tame. But I
like to save the best for last.

SPEED BOOST
The Z180 CPU uses an internal

clock divider that takes the oscillator
frequency and divides it in half. Just
like yesterday’s PCs, the operating
frequency of your device may not be
enough for today’s needs. That was the
case with the HCS-II.

A number of users had large control
programs for their HCS-II, and running
these would cause the HCS-II to slow
down because XPRESS programs are
essentially one big loop of IF state-
ments. The interrupt-driven, second-
based timers would become less
accurate because the CPU was
swamped with stuff to do (program
evaluation, network traffic, etc).

The HCS-II boards have 18.432-
MHz crystals, so they run at 9.216
MHz internally. I needed a simple way

to boost the perfor-
mance of new and exist-
ing HCS-II boards. This
meant no hardware
changes beyond chip
swapping.

The ’S180 CPU can
operate at full-oscillator
frequency or at the
original half frequency
if you don’t want to
change the internal
operating speed. It also
can use a clock multiplier so you can
double the external oscillator fre-
quency. In my case, doubling the fre-
quency by eliminating the divider was
the ticket. The ’S180 cannot go beyond
33 MHz internally so I couldn’t use the
clock doubler even if I wanted to. But
the clock doubler comes in handy for
devices with slow oscillators (i.e., less
than 16 MHz) and even in new designs
so that cheaper, low-frequency crystals
can be used.

Doubling the clock speed of the
HCS-II was going to help a lot. But it
wouldn’t be as easy as dropping in the
’S180. The existing hardware and soft-
ware would need to be altered. The
HCS-II was designed at a time when
static RAM that was faster than 100 ns
was too expensive. The firmware used
a single wait state for memory access,
which further slowed down execution
speed, but also allowed slower, less
expensive RAM chips to be used.

Note that to remove the wait state
at 18.432 MHz, I had to replace the
RAM and EPROM with devices that
were at least as fast as 100 ns or more.
Because inexpensive 70-ns chips are
available, I decided to go with these to
provide a comfortable timing margin
(though the 70-ns DIP RAM can be
hard to come by as a result of supply
shortages). I had to replace the EPROM
anyway because of software changes,
so adding a couple of RAM chips to the
upgrade was not a big deal.

When increasing system speed, one
area of concern is the response time of
I/O devices. The ’S180 allows up to
four wait states for I/O, just like the
Z180. If you double the internal clock,
your I/O will be twice as fast, unless
you can double the I/O wait states.
Because the HCS-II was already at

Table 1—The new ’S180 CPU adds a number of new control registers
to handle the new added features. These registers default to values
that make the ’S180 act just like a Z180.

Register name Hex address

ASCI0 extension control (AXEXT0) 12h
ASCI1 extension control (ASEXT1) 13h
ASCI0 time constant low 1Ah
ASCI0 time constant high 1Bh
ASCI1 time constant low 1Ch
ASCI1 time constant high 1Dh
Clock multiplier 1Eh
CPU control register 1Fh
DMA I/O address register Ch 1B 2Dh

70������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

have a better baud rate generator
(BRG) that will allow data transfer
rates up to 512 kbps. The Z180-style
BRG is still available if you don’t need
the faster BRG speeds.

The transmit and receive FIFO
buffers have been doubled. These FIFO
buffers sit between the data access
registers (TDRx and RDRx) and the
shift registers. Each serial port has a
receive FIFO buffer that can store four
characters before an overflow occurs.
The transmit buffer now has a two-
character FIFO.

The expanded FIFOs can boost
communication performance because
your program can use fewer interrupts
to service a serial I/O operation. Be-
cause the FIFOs are “under” the data
access registers, it probably appears
that these changes won’t affect your
current code. You might think you’d
only have to change your code if you
want to reduce the interrupt interval
in your serial routine.

However, if your device uses an RS-
485 network, the bigger transmit
buffer will probably cause problems.
Chances are your code waits 1.04 ms

after the last character is loaded into
the shift register (not the TDRx regis-
ter), and then turns off the RS-485
transmit enable line. However, because
the transmit buffer is now two charac-
ters deep, you’ll have to wait twice as
long to disable the RS-485 transmit
drivers to give the double FIFO a
chance to empty.

A common symptom of this prob-
lem is that your network packets seem
to drop their last character or the last
character is corrupted. Because this
delay loop needs to be accurate, the
HCS-II disables interrupts during the
delay, which is now 2.08 ms. I wish
there was an interrupt flag indicating
when the shift register was empty
because that’s a lot of wasted CPU
time in a multiple task system. Of
course, Microchip PICs are the same
way, so Zilog is not alone in the un-
friendly RS-485 camp.

WHOOPS!
There are a few things the ’S180

does that you may not expect. These
are covered in an errata published by
Zilog in 1999.

X
TA

L

E
X

TA
L

*R
E

S
E

T

*R
D

*W
R

*M
1

*M
R

E
Q

*I
O

R
Q

*H
A

LT

*W
A

IT

*B
U

S
R

E
Q

*B
U

S
A

C
K

*R
F

S
H

S
T

E *N
M

I

*I
N

T
0

*I
N

T
1

*I
N

T
2

*DREQ1

*TEND1

TXA0

CKA0, *DREQ0

RXA0

*RTS0

*CTS0

*DCD0

TXA1

CKA1,*TENDO

RXA1

VDD

VSS

D7-D0

Data
buffer

Address
buffer

A19-A0

MMU
Asynchronous

SCI
(channel 1)

Asynchronous
SCI

(channel 1)

DMACs
(2)

Clocked
serial I/O

port

16-bit
programmable
reload timers

(2)

Timing
generator

PHI

A18/TOUT

TXS

RXS/*CTS1

CKS

A
dd

re
ss

 b
us

 (
16

-b
it)

D
at

a
bu

s
(8

-b
it)

Bus state control Interrupt

CPU

Figure 1—Here’s the functional block diagram of the Z8S180. There’s not much different here because the
enhancements are inside.

72������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

Mike Baptiste earned a B.S. in Com-
puter Systems Engineering from
Rensselaer in 1992. After a seven-year
“hiatus” working for a large telecom-
munications company, he returned to
his roots working with embedded
processors in home automation. He
can be reached at baptiste@cc-
concepts.com.

The first issue relates to the RXS/
CTS1 input for the second ASCI port.
Though not explicitly stated, it ap-
pears that this pin is not connected
internally, or a problem with the RXS/
CTS1 input multiplexer prevents it
from being properly read. Thus, the
RXS/CTS1 input will always read as a
0 (via bit 5 of the CNTLB1 register
when bit 2 of STAT1 is set to 1).

If your device relies on CTS1 for
handshaking, you will have to reroute
it to an unused input. Of course, if you
rely on CTS1 to automatically hand-
shake serial transmission, you’ll have
to change your code because CTS1 = 1
prevents Transmit Data Register
Empty (TDRE) from going high when
the transmit buffer is ready for more
data. You’ll simply have to add an
extra software check for the new CTS1
input instead of relying on the CPU to
do it for you internally via TDRE.

Another change is how the ’S180
handles receive overruns. The Z180
ASCIs will resume serial reception
after an overrun as soon as the soft-
ware reads a received character. The
’S180 disables ASCI reception after an
overrun and it can only be enabled
again by writing a 0 to the ERF bit in
the CNTLA register.

This difference can have drastic
results in upgraded systems for obvi-
ous reasons. If, for some reason, your
device allowed incoming data to over-
run, the worst case would be to have
corrupted data at that point in time.
Now, your device will stop receiving
data! Of course, this ensures that your
device will have a robust serial error
handling routine. That’s a good thing,
but only if you’re prepared to do the
programming for it.

WRAP UP
The ’S180 is a nice addition to the

Z180 family. Moving to an ’S180 can
be as simple as a few software tweaks,
though some situations may require
more substantial changes. At the very
least, you’ll want to review the new
registers to see if you need to set any
(see Table 1). But, you may be able to
get away with the default values.

Upgrading the HCS-II with the
’S180 CPU had a dramatic effect.
XPRESS second timers were much

more accurate because interrupt delays
were reduced. Even though the RS-485
network stayed at 9600 bps, the serial
performance improved. The HCS-II
can send out the next network packet
must faster after it finishes receiving
and processing data from a previous
query. You could see it speed up by
simply watching the traffic on a serial
terminal. The packets were going out
with less lag time between them.
XPRESS programs run faster, which
means that inputs can be sensed faster.

An XPRESS program is just a big
loop of IF statements. Since I doubled
the clock and eliminated the memory
wait state, the XPRESS program loops
much faster, so input state changes are
sensed earlier. This was observed by
toggling an output (which drove an
LED) on every XPRESS loop. Com-
bined with a large XPRESS program,
the LED would blink noticeably.

The upgrade is a hit with HCS-II
users because all they had to do was
replace the RAM, EPROM, CPU, and a
few logic chips. Your situation may
vary, but the upgrade shows that a chip
like the ’S180 can extend the life of
existing designs and give customers a
better sense of your product’s value.I

RESOURCES
Migrating from Z80180 to Z8S180,
Zilog, Inc., www.zilog.com/pdfs/
z180/migrate.pdf.

Z8S180/Z8L180 Product Specifica-
tion, Zilog, Inc., www.zilog.com/
pdfs/z180/.

SOURCE
Z8S180 CPU
Zilog, Inc
(408) 558-8500
Fax: (408) 558-8300
www.zilog.com

www.zilog.com

74 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

i sometimes
receive letters from

readers:

I too have watched, waited, and
wondered what Zilog will do next. I
have been in this industry for more
than 20 years and seen my share of
smoke and mirrors. The eZ80 and the
TCP/IP stack appear to be just so
much smoke and mirrors. The Zilog
reps and factory people have told me
that they have absolutely no idea
what the eZ80 is, when it will be
available, or what it does.

One of the Zilog Application Engi-
neers told me marketing puts
that “stuff” on the web. Just
thought you might let me
know if Zilog gave you the
impression that this product
will ever be released and
that the TCP/IP stack won’t
be some brain-dead stack
that we see on other micro-
controller products.

I think if the product is
real, the stack is free, and
the parts work, Zilog could
sell a ton of them.

Keep up the great col-
umns.
Regards,
Jeff

eZ Does It

SILICON
UPDATE

Tom Cantrell

Years
ago,
Zilog
went toe
to toe

with the heavyweights,
taking its knocks, but
still swingin’. Result:
the single-chip suc-
cessor to the es-
teemed Z80, proof that
underdogs can rise
in Rocky style.

It’s true that I have a soft spot in my
heart for Zilog. It goes all the way back
25 years to two guys (Faggin and
Ungermann), hunched over a living
room table, who had the audacity to
take on mighty Intel and Motorola.
They didn’t know it couldn’t be done,
so they just did it! I like that.

Of course, as the underdog, Zilog
got knocked around and, yes, man-
aged to trip on their shoelaces more
than a few times. Though bloodied,
they never went down for the count
or threw in the towel. I like that too.

Nevertheless, I try not to let nos-
talgia and emotion cloud my judg-
ment. The fact is, given their
tumultuous history, Jeff’s skepticism
is astute and more than justified.

My reply to him was that he is
right. The ball is in Zilog’s court to
live up to the promises. The jury’s
still out, but there’s no doubt that
Franklin is a heavy hitter and Zilog
has executed some interesting moves
(like buying Seattle Silicon and Pro-
duction Languages). As for eZ80, I’ve
met living, breathing engineers who
are working on it, and I’ve seen inter-
nal specs that are arguably beyond
those of a mere marketing exercise.

My response went on to say that if
and when Zilog delivers a chip that
works and a free (or low-cost) high-
quality TCP/IP stack, it will defi-
nitely be worth a look. Until then,
the saga continues.

It’s been almost a year since the
new Zilog started talking about a
successor to the venerable Z80. It’s

Photo 1—Real engineers with real eZ80s (left to right): Mario Visperas,
Test Development Engineer, with eZ80 8" wafers; Albert Le, Test
Development Engineer, with a tray of eZ80 chips; Danny Chi, eZ80
Business Line Manager, with an eZ80 ATE load board; Adam
Tucholski, Applications Engineer, with a prototype eZ80 EV board.

 CIRCUIT CELLAR® Issue 124 November 2000 75www.circuitcellar.com

time for Zilog to give the PR depart-
ment a rest and let their silicon do the
talking (see Photo 1).

ONCE MORE, WITH FEELING
The challenge for the eZ80 is to add

enough whizzy stuff to excite custom-
ers and keep up with the Joneses with-
out losing the essence of the
predecessor’s popularity.

Consider the new Volkswagen
Beetle, which represents a successful
upgrade strategy. VW retained the
unique, quirky, fun feeling of the
original Bug which still makes me
smile when I see one, new or old.

My first car, a hand-me-down ’63
Beetle, was unique, quirky, and fun too.
Unfortunately, it also had a motor
more befitting a lawnmower, a rubber-
band shifter, a heater that wouldn’t do
these days, and the list goes on. This
just won’t do today. That’s why you
can get a new Beetle with 150 HP!

But don’t overdo it because it’s
easy to go one feature too far and lose
touch with whatever made the origi-
nal product successful. The line (be-
yond which, an upgrade path becomes
an upgrade cliff in the customers’
eyes) isn’t always obvious.

The New Coke fiasco is a classic
(pardon the pun) example of an up-
grade gone awry. Apparently, the
major feature of Coke isn’t just what
it tastes like (New Coke was proven
preferable by scientific taste tests),
but also the fact that consumers seem
to like knowing that it’s exactly the
same as the Coke they had yesterday.

OLD AND NEW
Zilog did a good job of balancing

the past and future with the eZ80, but
judge for yourself (see Figure 1).

From a historical perspective, the
eZ80 retains critical links with the
Z80, most notably binary object code
compatibility. Not that you can plug
in your old ROMs (initialization and
timing details differ), but this defi-
nitely lends a warm and fuzzy feeling
for designers who are already familiar
with the Z80. This is a wise move
because upgrade strategies that re-
quire the use of translators just never
seem to cut it.

But like that 150-horsepower
Beetle, the eZ80 has a turbo motor.
With a three-stage pipeline design
targeting 50 MHz and beyond, Zilog
claims four times the throughput of a
Z80 running at the same clock rate.
That puts the eZ80 in rather exclusive
company with high-performance 8-
and 16-bit chips, presuming the exter-
nal program memory can deliver the
goods (i.e., fast access time). Do note
that the internal RAM offers single-
cycle access and can be used for both
code and data.

Because external program memory
is required, the eZ80 has four chip
select outputs, each independently
programmable as memory (on 64-KB
boundaries) or I/O (on 16-byte bound-
aries), with 0 to 7 wait states.

Sure, the architecture is long in the
tooth, but isn’t that the case with
other popular 8-bit chips like the ’51,
68xx, and PIC? Actually, a Z80 re-
fresher highlights the fact that it has
aged gracefully and still stacks up
well against old and new competitors.

CISCy? Yes, indeed, but not any
stranger than most of the other popu-
lar 8-bit chips. I’d say it’s one of the
easier chips to program in assembler
and also reasonably well-suited for C.
For instance, there’s a real stack and
ways to get to it,
unlike lesser chips
that cramp your
style with a tiny
fixed stack just for
return addresses.

Similarly, the Z80’s relatively so-
phisticated multimode interrupt
scheme is carried forward. Look close
enough and you can discern the fore-
shadowing of your highfalutin PC’s
interrupt scheme, which goes all the
way back to the 8080 and Z80 days. In
addition to the simple-minded fixed
vectoring of most MCUs, the eZ80 also
supports external vector or instruction
fetch, enabling dynamic and adaptive
interrupt service.

PECK-O-PERIPHS
Part of the Z80’s popularity had less

to do with the CPU and more to do
with the other peripheral chips you
could buy to work with it, such as the
SIO (serial I/O), CTC (counter/timer),
PIO (parallel I/O), and so forth. The
eZ80, like the ’180 before it, packs the
equivalent of yesterday’s multi-chip
Z80 board onto a single chip.

The eZ80 has 32 pins available for
I/O. These are shown in Figure 2 orga-
nized as four 8-bit ports (Ports A–D).
Notice that while there is an *NMI
(Non-Maskable Interrupt) pin, there
aren’t any regular *INT requests. This
seems odd.

It turns out that taking advantage
of the aforementioned vectored inter-
rupt scheme, every one of the 32 I/O
pins can serve as an interrupt request,
with programmable edge or level
sense and polarity. Each pin has its
own vector for instant response, far
faster than figuring it out in software.

Two of the ports (C and D) serve
optional double-duty as serial I/O for
the rapid-fire UZI (Universal Zilog
Interface). This is an improvement
over the simpler UARTs of the SIO
and ’180. You can check out this im-
provement in Figure 4.

Table 1—A 24-
bit Z80? Why
ask why? Just
do it!

Figure 1—At first glance,
the eZ80 looks like a typical
high-integration 8-bit micro,
but there are plenty of
surprises under the hood.

eZ80 core Zilog Debug
Interface (ZDI)

Chip select
waitstate generator

Six programmable
reload timer counters

MACC
32-bits

general-
purpose I/O

Watchdog
timer

Two universal
Zilog

interfaces

Two-
channel DMA

controller

Bus
controller

1-KB
RAM

8-KB
RAM

A’ F’
B’
D’

C’
E’

H’ L’

BCU’
DEU’
HLU’

A F
B
D

C
E

H L

BCU
DEU
HLU

Main register set

Alternate register set

I R MBASE

IX
IY

SPS
SPL
PC

76 Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

100-pin QFP

P
H

I
/B

U
S

R
E

Q
G

N
D

P
W

R
PA

7
PA

6
PA

5
PA

4
PA

3
PA

2
PA

1
PA

0
/B

U
S

A
C

K
E

X
TA

L
X

TA
L

G
N

D
P

W
R

P
D

7/
/R

I0
P

D
6/

/D
C

D
0

P
D

5/
/D

T
R

0
P

D
4/

/D
T

R
0

P
D

3/
/S

S
0/

/C
T

S
0

P
D

2/
S

C
K

0/
/R

T
S

0
P

D
1/

M
O

S
I0

/R
xD

0/
S

D
A

0
P

D
0/

M
IS

O
0/

T
xD

0/
S

C
L0

TEST
PC7//RI1
PC6//DCD1
PC5//DSR1
PC4//DTR1
PC3//SS1//CTS1
PC2/SCK1//RTS1
PC1/MOSI1/RxD1/SDA1
PC0/MISO1/TxD1/SCL1
GND
PWR
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
ZDA
/ZCL
/RESET
/IORQ
/INSTRD
/HALT

A
14

A
15

P
W

R
G

N
D

A
16

A
17

A
18

A
19

A
20

A
21

A
22

A
23

P
W

R
G

N
D D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

P
W

R
G

N
D

/N
M

I

/MREQ
/WR
/RD

/CS0
/CS1
/CS2
/CS3
PWR
GND

A0
A1
A2
A3
A4
A5
A6
A7

PWR
GND

A8
A9

A10
A11
A12
A13

10
0 90 80 76 75

70

60

51

50403026

25

20

10

1

BEYOND 64 KB
So far, I’ve described a kind of Z80

on steroids, which is pretty cool but
doesn’t really stand out from the
crowd. To up the ante and excitement
level, the eZ80 goes a bit (make that 16
MB) further.

Traditionally, 8-bit chips have been
held within a 64-KB barrier. Yes, there
are all manner of hack-arounds, from
a simple page register to the fancy
MMU on the Z180, but all require
juggling 64-KB chunks within the
larger address space. It can work if
your program and data are easily parti-
tioned, but if not, it can get pretty
ugly. Conventional wisdom says you
should probably go with a chip that
has a true 32-bit programming model.

For those of you who can get by
with the 64-KB chunk approach, the
eZ80 includes a simple 8-bit page regis-
ter (MBASE) for the high-order address
bits (A16–A23). At reset, MBASE is
zeroed so the eZ80 comes up like the
good-old 64-KB Z80.

I originally reported that the eZ80
would include the ’180 MMU, but
that’s not the way it turned out. On
reflection, it’s no great loss because,
for all its 1-MB bluster, the ’180 was
still a 64-KB chip under the hood.

Instead, Zilog came up with a
clever scheme for going beyond 64 KB,
and the short and sweet of it is that
the eZ80 is really a 24-bit processor!

It’s quite simple. There’s an ADL
(Address and Data Long) bit, and
when it’s set, anything a regular Z80
does with 16 bits, the eZ80 does with
24 (see Table 1). The 16-bit registers
of the Z80 (BC, DE, HL, IX, IY, and
the PC) become 24-bit registers, and
there’s an extra 24-bit stack pointer
(SPL) in addition to the historical 16-
bit one (was called SP, now SPS).

The ADL bit can’t be toggled by
software because it instantly changes
the interpretation of the PC (i.e.,
MBASE plus 16-bit PC versus true 24-
bit PC). Instead, ADL is controlled by
appending a suffix to all instructions
that change the PC, including JP,
CALL, RET, and RST.

Similarly, instruction suffixes de-
fine whether a memory address or
immediate data is 16 or 24 bits, and
whether the operation is performed on

The UART, a clone of the NS16550
found in PCs, is high-end compared to
those found on most micros, incorpo-
rating 16-byte transmit and receive
FIFOs, break generation and detection,
complete error detection (parity, over-
run, and framing), and a full comple-
ment of modem control lines.

These days, clocked serial ports are
all the rage, extremely handy for
small carry-on items such as an
EEPROM. The UZI supports both
popular standards, I2C and SPI, with a
programmable selection of phase,
polarity, and pin assignment.

There’s also a dedicated clocked
serial interface for debug known as
ZDI (Zilog Debug Interface). With
debug features such as memory and
register modify, single-step,
breakpoints, and more, this is one
more example of the trend towards
built-in minimal pin count debugging.

On the timer/counter front, the
eZ80 incorporates simple 16-bit units,
making up for a lack of sophistication
(i.e., no dedicated pins, PWM modes,
etc.) with quantity (six channels) and
speed (up to half the system clock).
Each timer has its own prescaler
(clock divided by 2, 4, 8, or 16) and
interrupt vector.

There’s also a dedicated watchdog
timer with four programmable
timeout periods—218, 222, 225, or 227

system clock cycles. Timeout can be
programmed to generate either a RE-
SET or *NMI. At RESET, the watch-
dog comes up disabled and, after
embedded, stays that way until the
next RESET. Note that writing A5h
followed by 5Ah to a register keeps
the watchdog at bay.

Finally, there’s a two-channel DMA
controller, another big-ticket item you
won’t find on many MCUs. It offers
two modes of operation, burst (full
block transferred after bus is acquired)
and cycle-steal (control relinquished
back to the CPU between bytes).

I could tell from the documenta-
tion that the DMAC does not have
any external requests and only sup-
ports memory-to-memory transfers,
not memory-to-I/O. This rules out use
with internal I/O functions, most
notably the UZI, and calls for a bit of
cleverness when designing in an exter-
nal I/O chip. For example, a DMA-
targeted I/O chip must be memory-
mapped, not I/O-mapped. You can
fake an external DMA request line for
burst transfers using an interrupt on
one of the PIO pins.

Figure 2—With traditional non-muxed address and data,
four 8-bit ports, and all the usual control signals, the eZ80
will feel like home to Z80 fans.

 CIRCUIT CELLAR® Issue 124 November 2000 77www.circuitcellar.com

upgrade. Toss in a TCP/IP stack and
soft modem or Ethernet and you’d
have a nifty embedded web gadget.
The true “beyond 64-KB” capabilities
offered by the 24-bit ADL scheme
make for some intriguing possibilities
on the software front as well.

CAPTAIN COMEBACK?
Even though eZ80 silicon actually

exists, I’d say it’s too soon to pop the
bubbly. It could be a long road getting
from the lab to the warehouse.

However it turns out, I think the
eZ80 folks should be congratulated.
The design has style, flair, and dare I
say, soul that harkens back to the
damn-the-torpedo days of glory. It’s
also got all the horsepower and fea-
tures of the latest and greatest.

Not to get too overwrought about
it, but I’d say the eZ80 could mark a
renewal of leadership by Zilog. If all
goes well, at the least, the eZ80 will
let Zilog take some skeletons out of
the closet and bury them for good!

Captain Zilog may be an old-timer
in silicon years, but he isn’t giving up
or holding back. I like that. I

Tom Cantrell has been working on
chip, board, and systems design and
marketing for several years. You may
reach him by e-mail at
tom.cantrell@circuitcellar.com.

SOURCE
eZ80 8-bit microprocessor
Zilog, Inc.
(408) 558-8500
Fax: (408) 558-8300

DataX<15:0>
AddrX<7:0>

RDY

DataY<15:0>
AddrY<7:0>

RDY

16-bit input
controller

16-bit input
controller

16-bit
input

16-bit
input

16 × 16 multiplier

40-bit adder

Accumulator A Accumulator B

Register logic and control logic

DataOut<7:0>
DataIn<7:0>

IORDb
IOWRb

Addr<3:0>
Resetb
MACInt
SysClk

Figure 3—Soft-modem anyone? With a single-cycle MAC
unit, that’s one of the obvious DSP-like eZ80 applications.

Figure 4—The eZ80 UZI (Universal Zilog Interface)
shoots bits in three popular serial formats.

System address data bus

Registers Baud rate generator

SPI I2C UART

Chip pins

16- or 24-bit data, or both. For ex-
ample, the Z80 instruction �� ��,
(����) loads 16 bits into register pair
rr from the 16-bit address nnnn. On
the eZ80, there are four permutations:

• ���������, (����)—16-bit data at
16-bit address (same as Z80)

• ���������, (������)—16-bit data at
24-bit address

• ���������, (����)—24-bit data at
16-bit address

• ���������, (������)—24-bit data at
24-bit address

The instruction suffixes generate
prefix bytes. Fortunately, the Z80 has
four defacto spare op-codes in the
form of instructions like ���	
	 (i.e.,
load a register with itself). In the un-
likely case that the eZ80 assembler
encounters one of these instructions,
it generates a warning and replaces it
with a regular NOP.

The prefix bytes work at all times,
independent of the ADL setting. An
assembler pseudo-op, ����
������
����������,�tells the assembler
which kind of code to generate. The
documentation observes that, “The
programmer is, of course, responsible
for ensuring that this source-file set-
ting matches the state of the hardware
ADL mode bit when the code is ex-
ecuted.” Read it and heed it.

It’s straightforward if your software
is either 64-KB and Z80 mode or 24-
bit mode in its entirety (i.e., ADL is
either 0 or 1, but never changes). It
gets more complicated if the software
includes both types (i.e., ADL changes
state during operation), as would be
the case when combining legacy code
with new code. There is a mixed ADL
bit, instructions to tweak it, and a set
of rules to follow, mainly related to

which stack pointer (SPL or SPS) to
use and how much (two or three
bytes) to stack and unstack. If you
just want to drop in a self-con-
tained legacy routine, it may in-
volve little more than tweaking a
single RET instruction to restore
the caller’s ADL state. I advise
against going overboard with
mixed mode because it’s easy to
get tripped up by spaghetti code
(e.g., multiple exits) and dueling
stacks.

MAC ACK
At the beginning of this article,

the eZ80 was an 8-bit chip. Now
you’ve discovered that it’s really 24
bits. Hmm….

Well, hold on to your hats. Thanks
to a built-in Multiply and Accumulate
unit (MAC), the eZ80 is really 32 bits,
or 40 bits for that matter. In fact, it’s
not just a processor, it’s also a DSP.

The MAC, as shown in Figure 3,
consists of twin 256 × 16 X and Y
RAMs feeding a multiplier with a 32-
bit result added to a 40-bit accumula-
tor, all in a single clock cycle. This
new Beetle burns rubber!

The X and Y RAMs are dual-ported
for connection to the eZ80 core as a
block of memory that is 1 KB.

Also note that control of the MAC
is in the hands of a set of 16 I/O regis-
ters that define the calculation to be
performed (i.e., X and Y addresses and
length) and hold the accumulator
initial value and result.

Actually, there are two complete
sets of MAC registers that operate in
a ping-pong fashion, allowing software
to set up the next calculation while
the current one is in progress, hiding
the overhead. Making things even
faster and easier, there’s a new variant
(OTI2R) of the traditional block I/O
instruction that increments both the
memory and I/O address. Just set up
pointers to a 16-byte calculation de-
scriptor in memory and the MAC I/O
base address and blast away.

All things considered, the eZ80 is
quite interesting, don’t you think? Of
course, this first chip is presumably
only the start, but it’s fun to specu-
late. A bunch of on-chip, high-speed
flash memory is the most obvious

78������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

FROM THE
BENCH

Jeff Bachiochi

Megawatt
Castles Made
of Sand

Nature
brings out
the best
in Jeff. It
also

brings out the best in
energy production.
Could the key ingredi-
ent for boundless
amounts of energy be
in the sandcastles of
children?

wouldn’t mind
living by the ocean.

I have fond memories
of vacations at the shore.

I still enjoy reading a good book and
sitting for hours in the sunshine while
listening to the seagulls. The endless
rush of saltiness foaming along the
shore is soothing to the soul.

I can walk at water’s edge for miles,
especially after a storm (see Photo 1).
That’s when the ocean throws back the
treasures it has collected. My children
have inherited my fascination with
creating sand sculptures, fully realizing
that when they return the next day,
nature will have wiped the canvas
clean.

i

As a child, I had no idea that my
castles were made out of the second
most abundant element on earth. Nor
could I have envisioned that the tech-
nologies of today would be based on
the same substance and could poten-
tially be the answer to our reliance on
fossil fuels.

PHOTOELECTRIC EFFECT
Isaac Newton’s Law of Conserva-

tion of Energy states that “energy can
neither be created nor destroyed.”
Solar power can’t be described as the
creation of electrical energy from the
sun. Solar power uses a photoelectric
cell’s ability to change the sun’s ener-
getic photons into electron-hole pairs
that can be drained as electrical en-
ergy. The sun’s energy supplies virtu-
ally all of the energy that powers the
earth’s ecology. The majority of this
energy is in the visible portion of the
electromagnetic spectrum. Photons
are particles of the sun’s energy. Pho-
tons traveling at different wavelengths
have different amounts of energy,
which is measured in electron volts
(eV). The energy level of photons in
the entire spectrum of sunlight spans
from infrared (energy level of ~0.5 eV)
to ultraviolet (energy level of ~2.9 eV).
Is it coincidence that the binding
energy on an electron to its nucleus in
an atom is on the order of 1 eV?

ATOMS
We know that all matter on earth

is made of atoms. For the basis of this
discussion I will only talk about three

Photovoltaic timeline

1839 Discovery of PV effect by Edmond Becquerel
1873 Selenium as a PV ~ 1% efficient
1918 First single silicon crystal grown
1954 Cadmium as a PV, efficiency of PV silicon up to 6%
1955 First commercial PV product (cost of energy $1500/W)
1958 First PV-powered satellite (Vanguard I, 8-year life)
1960 Laboratory efficiency up to 14%
1972 Nigerian village receives PV system for educational TV
1979 Arizona’s Papago Indian Reservation receives 3.5-kW village system
1980 Utah’s Natural Bridges National Monument receives a 105.6-kW system
1982 Worldwide production exceeds 9.3 MW
1983 Laboratory efficiency up to 18%
1991 Solar Energy Research Institute becomes U.S. Department of Energy’s

 National Renewable Energy Laboratory (NREL)
1993 NREL opens Solar Energy Research Facility
1995 Laboratory efficiency up to ~21%
1996 DoE announces National Center for Photovoltaics

Table 1—Man’s study of the PV effect dates back more than 150 years!

Exploring the Solar Cell

CIRCUIT CELLAR® Issue 124 November 2000 ������79www.circuitcellar.com

of the basic particles that make up an
atom. Protons (positively charged par-
ticles) and neutrons (uncharged par-
ticles) form the nucleus and the
majority of the mass of all atoms. Or-
biting around the nucleus are electrons
(negatively charged particles). Al-
though the particles of atoms can have
charges, they are neutral in charge as a
unit because the number of electrons
equals the number of protons, and the
equal and opposite charges cancel each
other out. Because there is a difference
in charge between the protons (in the
nucleus) and the electrons flying free,
they are captured (attracted) in an orbit
around the nucleus. An orbiting
electron’s distance from the nucleus is
dependent on the energy of the elec-
tron. As the energy level of the elec-
tron goes up, its orbit is further from
the nucleus. However, electrons are
fixed into orbits (energy level zones)
forming shells. Each orbit can only
hold a maximum number of electrons
in each shell (i.e., 2-8-18-32). Addition-
ally, each shell can have groups of elec-
trons in sub-orbits, but that won’t be
part of this discussion.

The atomic number is the quantity
of protons in each atom of that par-
ticular element. Atoms have no
charge, therefore there must be an
electron orbiting for every proton in
the nucleus. When there are eight
electrons orbiting in the outermost
shell (or two if we’re talking about the
elements with a single shell), the
element is happy because this is a
stable condition. When this condition

doesn’t exist, atoms lose, gain, or share
electrons trying to satisfy the stable
condition.

SILICON
The silicon atom has an atomic

number of 14. The 14 electrons orbit
the nucleus in three levels, or shells.
The first shell is complete with only
two electrons. The second shell is
complete with eight electrons. The
third and outer shell has four elec-
trons. It would like to have eight elec-
trons (or none). If each silicon atom
shares electrons with four other at-
oms, its outer shell becomes content
and a pure silicon crystalline structure
is formed. (I wanted to make a 3-D
model of a silicon crystal to help me
visualize the structure, but the
graphic shown in Figure 1 [1] was
much better than any of my gumdrop
and toothpick sculptures.)

The sharing of electrons is called
covalent bonding. If an atom is con-
tent, then it’s a bad conductor because
there are no free electrons to travel
through the element. The traveling of
electrons through the element is
called the current flow.

If silicon is a bad conductor, how
can it be made to support current flow?
This can be accomplished by adding
impurities (either atoms with fewer or
more electrons in their outer shell) to
the silicon without affecting the crys-
talline structure.

Boron has only three electrons in its
outer shell. When Boron is added
(doped) into a silicon crystal, there are
areas where the covalent bonding is
incomplete. Because the Boron atom
has only three electrons, there remains
an empty slot where an electron bond
would normally be in the silicon crys-
tal. This slightly unhappy state creates
free holes, and thus, is a better conduc-
tor. This lack of electrons (one for
every Boron atom) designates the sub-
stance as a p-type material.

Phosphorus, on the other hand, has
five electrons in its outer shell. When
silicon is doped with phosphorus, there
are areas where an extra electron is
hanging out that’s not needed for the
covalent bonding of the silicon crystal.
Again, this unhappy state is caused by
free electrons, creating a better con-
ductor. These extra electrons (one for
every Phosphorus atom) designate the
substance as an n-type material. The
n-type and p-type materials carry no
negative or positive charge at this
time because all the atoms have an
electron for every proton.

When the two materials are joined,
the free electrons from the n-type
material are drawn across the junction
into the material with a lack of elec-
trons (or an abundance of holes), and

Photo 1—Recreation for the masses. Both the raw
and refined states of silicon give us pleasure. Will
silicon also provide the key ingredient for unlimited
energy production?

Figure 1—Each silicon atom has a link (shown as a
strut between balls) with four additional atoms.
Notice the nonrandom pattern of the silicon crystal-
line structure.

Figure 2—I plotted the output voltage (along the X
axis) verses the output current (along the Y axis) to
get an idea of where the sweet spot of the solar
array is. At either ends of the graph, available power
drops off quickly. The highest power output is at the
center of the graph.

500

400

300

200

100

0

0 5 10 15 20

<1W

>1W

>2W

>3W

>2W

>1W

<1W

mA

V

80������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

Figure 3—Unlike the space shuttle, which uses fuel cells for energy, the International Space Station gets
its power from PV modules. Space Station Freedom has the advantage of converting photons from the sun
without the absorption losses of our atmosphere.

they have filled in each other’s defi-
ciencies. In this area, the material is
less conductive because there are no
mobile charge carriers (holes or elec-

trons). At equilibrium, the transition
region, which spans the junction, has a
charge or potential across it. The n-
type material has lost electrons to the
p-type material and now has an imbal-
ance of protons to electrons (fewer
electrons), so it becomes positively
charged. At the same time, the p-type
material has taken on some electrons
from the n-type material and now has
an imbalance of protons to electrons
(fewer protons than electrons), so it
becomes negatively charged.

If you take a battery or current
source and apply its potential across a
p-type material, current (holes) will
flow from the battery’s positive side
through the p-type material and back
into the battery’s negative side (holes
being the majority carrier in the p-
type material). The same will happen
across n-type material (in this case,
the electrons are the majority carrier).
The polarity doesn’t matter with ei-
ther of these materials on their own.

When the pn junction is estab-
lished, things change. The pn junction
is considered forward biased if the

vice versa. This creates a barrier at the
junction of the two materials, a transi-
tion region if you will, where there are
no extra holes or electrons because

82������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

negative side of the battery is con-
nected to the n-type material and the
positive side of the battery is con-
nected to the p-type material. When
forward biased, electrons flow into the
n-type connection and up to the tran-
sition region where there is a defi-
ciency of electrons (positive charge).
Meanwhile, holes are flowing into the
p-type connection filling in a defi-
ciency of holes (negative charge). This
reduces the potential across the bar-
rier to allow electrons and holes
across it.

If the battery connections to the
junction are reversed, it’s considered
reversed biased. In this case, electrons
flow into the p-type connection and
are repelled by an abundance of elec-
trons (negative charge).

At the same time, holes are flow-
ing into the n-type connection and are
repelled by an abundance of holes
(positive charge). And this increases
the potential across the barrier, pre-
venting the flow of electrons and
holes across it.

BAND GAP ENERGY
For an electron to break out of its

shell and be free of its nucleus bonding,
it must gain energy. The amount of
energy is measured in electron volts
(about 1.1 eV for silicon). An external
battery can supply this energy, or it
may come from the sun.

Photon particles (photonic energy
from the sun) of the visible part of the
electromagnetic spectrum are at differ-
ent energy levels. If a photon entering
your pn material has sufficient energy
(more than 1.1 eV in silicon), it will jar
an electron free of its bond. The free
electron, or hole, gets drawn across the
junction creating a current flow into an
externally-connected device. The eV
current product is power. The opti-
mum eV for a cell is 1.4 eV. With a
higher eV, fewer photons from the
sun’s energy have sufficient energy to
free electrons; this limits current
flow, reducing the maximum poten-
tial power. Below 1.4 eV, more free
electrons are knocked loose, but the
potential across the cell is also re-
duced along with the maximum po-
tential power. So, how does light get
into a diode junction?

Photo 2—This PV array is made up of 35 quarter-round solar cells connected in series. It can produce
300 mA of current to charge a 12-V battery. Over the period of one day, that could add up to a few amp
hours.

CIRCUIT CELLAR® Issue 124 November 2000 ������83www.circuitcellar.com

SOLAR CELL MAKE UP
Materials are used to maximize

absorption of photons and minimize
their reflection and recombination in
order to maximize the electron con-
duction through the junction. The
grown monocrystalline silicon has the
highest energy conversion factor of
any solar cell. It’s also the most ex-
pensive to produce. Grown crystals
are sliced into wafers. The wafers are
doped with the appropriate substances
to create the p-type and n-type areas
within the wafer. However, covering
the layers with metal to create an
electrical connection for current flow
also covers the surface where light
needs to penetrate. To allow some
light to enter, holes must be placed in
the metal surface at least on one side.
A grid pattern (or screen) of metal is
used to minimize the shadowing as
much as possible (see Photo 2).

AMORPHOUS SILICON
Amorphous silicon doesn’t form a

crystalline structure and has dangling
bonds where another atom would nor-
mally be attached. Hydrogen is used to
plug up these bonds by sharing an elec-
tron with the silicon. In this material,
an intrinsic layer (of un-doped amor-
phous silicon) is sandwiched between
the ultra-thin p-type outer layer and
the thin n-type inner layer and the eV
field extends through the p-i-n layers
to induce electron movement.

POLYCRYSTALLINE THIN FILMS
Thin film technology, a spin-off of

the semiconductor industry, is much
easier to manufacture. This doesn’t
require the growing slicing and treating
of a crystalline ingot to produce a
homojunction (same base material used
in both doped layers). Thin film mate-
rials are deposited in thin layers on a
glass or plastic substrate and produce
a heterojunction (different base mate-
rial used in each layer). These include
amorphous silicon, gallium arsenide,
copper indium diselenide, or cadmium
telluride. Creating solar cells with
multiple layers (each uses material
with different band gap potential) is
an attempt to capture more than the
pitiful 15–25% of photon energy in a
silicon cell (up to 35%).

Thin films can’t be doped to form n-
type and p-type layers. Instead it uses
the layering of different materials to
provide the extra electrons (or holes).
The top windowed n-type layer must
be thin enough and have a band gap of
more than 2.8 eV to let through all of
the available light. The lower absorb-
ing p-type layer must have high absorp-
tion (for high current) and a suitable
band gap (for high voltage) and be a few
microns in thickness.

When Gallium arsenide (GaAs) is
used for manufacturing solar cells, it
has the advantage of having an opti-
mum band gap of 1.43 eV, although the
higher power conversion comes with
higher costs. GaAs withstands high
temperatures, allowing it to work
with concentrators.

A concentrator is a system where
sunlight is gathered from a large area
and focused on the solar cell, increasing
light intensity and heat. GaAs cells
need only be a few microns thick. They
are also resistant to radiation damage.

Tradeoffs for today’s solar cells are:

• Monocrystalline (single crystal
cell)—excellent conversion (~14%)
with high manufacturing costs.
• Polycrystalline—good conversion
(~12%) with lower production costs.
• Amorphous—fair conversion (~9%)
with the lowest production cost and
shorter life span.

SOLAR CELL LOSES
Why are solar cells so inefficient?

First of all, ~55% of the light energy is
wasted. Photons with less energy than
the band gap voltage won’t be able to
free an electron. Those photons with a
greater amount of energy will give up
what’s needed and carry off the remain-
ing energy. The materials used in
manufacturing the cell will waste
another large chunk of energy along
with the cover glass coating and the
contact grid (used in the crystalline
silicon cell).

You can expect a maximum inten-
sity of about 1 kW/m2 from the sun.
Those photons actually hitting a solar
cell can be reflected, absorbed, or pass
right through the substance. Cells are
specified under a standard set of con-
ditions: when the source is at 45° to

the surface and the temperature equals
25° C, the insolation (measure of light
energy per area) equals some number of
watts per square meter.

PV power is normally reduced with
higher temperatures (~0.5% for each
degree C), however this doesn’t affect
the expected lifetime of the solar cell.
Increasing the latitude places more of
the atmosphere in the solar energy’s
path, so a PV unit in Arizona will pro-
duce ~50% more power than the same
one in Massachusetts.

Solar cells are most often used in
parallel to increase current and in se-
ries to increase voltage. The connec-
tion of multiple cells forms an array.
Even arrays of cells can be connected
both in parallel and in series to form
larger PV modules.

Plotting the voltage and current
output of a cell demonstrates the rela-
tionship between eV and current.
Open-circuit measurement of a PV cell
has a maximum voltage (~0.5 V) and
minimum current (0 V). Short circuit
measurement of a PV cell would have
minimum voltage and maximum cur-
rent. This graph shows how the cell
will perform under different load con-
ditions. Figure 2 is a graph I plotted
from the solar cell array. Photo 2 il-
lustrates how the surface conductors
reduce the overall transparent area of
a photovoltaic cell.

ORIENTATION AND SYSTEM SIZE
For those of us who are living in the

Northern Hemisphere, the best fixed
orientation of solar modules for maxi-
mum absorption year-round is south
facing at an angle equal to the area’s
latitude. Many solar systems (including
those for solar hot water) track the
sun’s position to absorb maximum
radiation throughout the day. As they
say in real estate, it’s “location, loca-
tion, location.” The same goes for the
placement of solar cells because the
shading of even one cell in an array or
module can cut its output in half.

For those of you who are interested
in solar power for your home, it’s best
to check meteorological data and
household demand to determine a
worst-case scenario (average intensity
in your area and peak usage in your
home). Realizing that the sun is not

84������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

Problem 2—If you put two identical nonpolarized capacitors
back-to-back as shown, the overall capacitance is half of one of
the capacitors.

If you put two electrolytic capacitors back-to-back with parallel
diodes as shown below, what is the overall capacitance?

Problem 3—One way to sense DC current is to wrap an
iron core around a wire, cut a gap into it and put a Hall-effect
sensor in the gap, as shown below. However, Hall-effect sen-
sors are notoriously temperature-sensitive and nonlinear.
What’s a simple way to deal with these issues?

Problem 1—The following circuit is used to read a tilt
sensor that is implemented as a differential capacitor—when the
sensor is tilted, C1 increases while C2 decreases (or vice-
versa). Both capacitors vary between 4 and 30 pF.

The voltage differential between points A and B varies with the
position of the sensor. How would you analyze the operation of
this circuit? Problem 4—OK, so you got a real deal on a used Bridgeport

milling machine, and just got it set up in your shop. However, you
just noticed that the motor on it requires 3-phase power, and all
you have in your neighborhood is single-phase power. Is there
anything simple you can do, short of trying to find a new single-
phase motor that will fit the Bridgeport?

�������� ����	� ��������	�
��������� ����	�

What’s your EQ?—The answers and 4
additional questions and answers are
posted at www.circuitcellar.com.

You may contact the quizmasters
at eq@circuitcellar.com.

8 more EQ

questions

each month in

Circuit Cellar Online

see pg. 2

10 V
1MHz

1000 pF

D1

D2

1000 pF

C1 C2
D3

D4

B

A

current

field

Hall-effect
device in gap

Output
+

-

DC in

+

-

Jeff Bachiochi (pronounced“BAH-key-
AH-key”) is an electrical engineer on
Circuit Cellar’s engineering staff. His
background includes product design
and manufacturing. He may be
reached at jeff.bachiochi@
circuitcellar.com.

out 24 hours a day brings up the ques-
tion of storage. Deep-cycle batteries
store energy for when you can’t draw
directly off of the PV system. Al-
though many appliances run off low
voltage DC, they are made to run
from an AC source. So, unless you rip
out the power supply from these ap-
pliances, they will not run on the DC
available from the PV system. You
have the choice of altering your appli-
ances or altering your power source.
DC to AC converters can change your
DC battery source into usable AC
(just like the battery backup unit on
your PC.) Lead acid batteries are most
widely used for storage, but can be
discharged to only 40–50% and
NiCads, although more expensive, can
be totally discharged. Today’s charge
controller provides the best charging
characteristics for whatever battery
style you might choose to use. How-
ever, you must be prepared for some
big numbers because today’s cost for a
PV system without batteries is around
$9 per watt. Of course, the cost
shrinks as the production goes up.

Stay tuned next month when I dis-
cuss how solar cells helped keep me
online while spending the week com-
muning with nature. Also, for a photo-
voltaic timeline, see Table 1.

THE FINAL FRONTIER
The best possible place for PV cells

is not on earth. Because the atmosphere
plays a large part in how much solar
energy falls on a PV cell, you’d be
better off without it (as far as convert-
ing photons into free electrons). For
this reason, the International Space
Station (ISS) shown in Figure 3 will
have an advantage in PV conversion
over ground-based PV systems. Above
our atmosphere, photonic energy is
allowed to fall directly on the PV cell
without losing energy to the atmo-
sphere. Space Station Freedom’s elec-
tric power systems (EPS) use PV arrays
and NiH2 (nickel/hydrogen) batteries.
Orbiting the earth, the ISS spends
about one third of each 97 min. behind
earth’s shadow. Because PV arrays
won’t produce energy in the shadows,
the onboard batteries store and release

energy to assure station power 24
hours a day, 7 days a week.

Although it only produces about 2
kW of power at this stage of construc-
tion, when fully assembled in ~2006,
ISS will be capable of producing 110
kW of PV power, using about 250,000
solar cells. To maximize energy con-
version, each of the main PV arrays
will tilt or rotate to track the sun.
This is enough energy for 55 average
households. Covering more area than
a football field, the ISS will be easily
seen from earth as it passes overhead.
The majority of this area will be the
PV arrays, as shown in Photo 2. I

REFERENCE
[1] M. Winter, WebElements,
 www.webelements.com.

96������� Issue 124 November 2000 CIRCUIT CELLAR® www.circuitcellar.com

uying a PC has always been confusing. I guess we can credit the combination of massive marketing efforts and
bloated operating systems for conditioning us to think that we have to upgrade our PC every 12–18 months. We’ve

had at least seven generations from the venerable old PC, to the ’286, ’386, ’486, PI, PII, PIII, and soon the P4. That’s
not counting competing brands and same-generation clock speed increases.

Don’t get me wrong, for CPU-speed fanatics who design video processing software, a 5% increase in processing speed is worth getting
excited about. They’re also willing to pay virtually any price to get it. If you are a CPU-junkie (I’m a car fanatic so I’m not throwing rocks), forget
everything I say here and enjoy the rest of the magazine. For the rest of us, however, it might be worth a little price-performance calculation.

Last week we needed to buy three more desktop systems for the office. They weren’t for server applications or anything strenuous, they
were simple office desktops tied to the in-house LAN for doing word processing, spreadsheets, and a little web surfing (DSL through the
LAN). Unfortunately for the staff, I asked what we needed and got involved rather than just saying go buy them.

There was a time when increased performance was a necessity just to keep up with software feature-creep. I remember my first
Windows machine. It was a ’486DX-25 running Windows 3.0. I had upgraded from ’386SX-16 running DOS. According to the Dhrystone
MIPS comparison of these machines, the ’486 was 9.3 times faster. I had a few different ’486 versions before I got my first Pentium, a
Gateway P90. The P90 was benchmarked as 5.6 times faster than the ’486DX-25 (52 times faster than the ’386).

I can definitely say that the P90 was faster, but certainly not 50 times faster on the latest versions of the same software. Word ran a
couple times faster. Of course, it was moving a lot more megabytes of feature-bloat now. And strangely, it also seemed there was now a
hard drive access with virtually every keystroke. As with most of that generation, it had to run faster just to stay even.

It took buying my first PII before I started seeing some real horsepower. As for the PCs I’ve had since, I only remember gradual
improvements. The truth of the matter is that CPUs today might contain millions of transistors but, most of the time (and for most of us) they
are executing wait loops. The average PC’s “useable performance” peaked a while ago. For the mainstream office/small business user of
today there is little benefit to endless increases in CPU power. The bottlenecks in PC performance these days are virtually never with CPU
speed. Ninety percent of the time we sit in front of our monitor, waiting for something to happen.

Even with high-bandwidth Internet connections, I doubt a 1-GHz PIII loads a webpage any faster than one running at 500 MHz. The time
taken for opening and closing documents probably won’t change either. It typically isn’t the CPU’s fault. Disk drive accesses and reads are
enormously slow when compared to a CPU’s capability for processing that data. Although SDRAM and large caches provide the structure for
a fast system, inefficient software with too much downward compatibility and operating system resource hogs (like Windows) can negate it.

Deciding what system to buy for the office involved a little re-education. Basically, if you aren’t ready for an overkill PIII box (or soon the
P4), the only Intel-specific alternative these days is the Celeron. Back when I bought an early PII machine I remember checking out the
Celeron. The media described the Celeron as having zero L2 cache and it being a “brain-dead PII.”

If that was the history, why was I now seeing so many high-speed Celeron machines offered next to the PIIIs? Well, apparently Intel got
the message and they put the 128-MB L2 cache back in and increased its clock speed too. As for being brain-dead—not anymore.

A quick search on “processor benchmarks” provided a little more education about today’s market. I’m always looking for a cost-effective
solution. It’s even better if it turns out to be a bargain. The Intel CPUmark 99 benchmark data gave a value of 45.1 for a 700-MHz Celeron
and 63.0 for a Pentium III. That says the PIII is only 40% faster than a Celeron for the same clock speed.

Before I get tons of mail about my crummy math and that I’ve overlooked things like branch prediction architectures, RISC versus CISC,
and an in-depth discussion about integrated caches, this isn’t scientific. I consider this to be a minimum resolution comparison at best.
There’s also the fact that most Celeron systems are 600–700 MHz and PIIIs are being packaged increasingly at 800 MHz and faster with
larger hard drives and lots of extras in the box.

Nonetheless, for a simple Office 97 application where the CPU spends most of its time waiting for the user, the choice seemed clearer
than I originally thought. Where I live, an 800-MHz PIII system sells for well over $1000. At the same place, a 600-MHz Celeron system is
less than $500. Considering the expense of some of the other things I’ve bought in life, people who know me might laugh that I’m going to

such extreme consideration over a few bucks. I simply smile back. It’s not the savings. It’s the thrill of the hunt!

PRIORITY INTERRUPT

steve.ciarcia@circuitcellar.com

Upgrade Math

b

