

It’s Only Skin Deep

y now, I’m sure you’ve seen our new outward

appearance and have probably frantically flipped

through the rest of the magazine looking for anything

else we may have mucked with. Not to worry. Our content

hasn’t changed one bit. We’ll continue to bring you the kinds of practical

hardware and software articles you’ve grown accustomed to.

Also new in this issue is the first of our quarterly special inserts called

Home Automation & Building Control. We start the section with an overview

of how the coax and telephone cable you probably already have in your

house can be used to network your AN equipment with your personal

computer. Author David Gaddis has authored numerous books and videos

on home automation and has been close to the industry for years.

Next, Steve gets back to basics with a look at how to make hard-wired

connections to the HCS II home control system. While the HCS is used as

an example, the ideas can be applied to most any home controller that

supports hard-wire connections.

From wires, we go to wireless and design a layout for a hand-held

infrared remote control. This one not only can be used to send commands to

AN equipment, but can send complete programming sequences to a whole-

house controller. Such a layout isn’t as easy as it first might seem.

Finally, turn your PC into a telephone attendant with a project that uses

the newest in digital answering machine technology. No longer will unwanted

telephone calls interrupt your dinner or evening entertainment.

On to our regular features, we kick off 1995 with a look at what’s

involved in rolling your own software simulator. There is no better way to get

to know the processor you’re using than to simulate its operation right down

to the last status flag.

Once you’ve moved the code onto the target hardware, what about a

technique that lets you get into the processors head using just one output

bit? Our next feature describes this nifty technique.

Back to simulation, what about using a financial spreadsheet to help

design a digital filter? It really does work and can be quite useful.

Finally, we wrap up our series on the ARM processor by covering

some software tools that ease code development for the chip.

Briefly looking at our columns, Ed continues his protected-land journey

by starting to learn how to juggle more than one task at once, Jeff develops

a micro-powered wake-up circuit for low-power data loggers, Tom checks

out the latest 8051 improvement dubbed the XA, and John implements a

simple bar-code reader.

CIRCUIT
CEU~~

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

EDITOR-IN-CHIEF
Ken Davidson

TECHNICAL EDITOR
Janice Marinelli

ENGINEERING STAFF
Jeff Bachiochi & Ed Nisley

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITOR
John Dybowski

NEW PRODUCTS EDITOR
Hat-v Weiner

ART DIRECTOR
Lisa Ferry

PUBLISHER
Daniel Rodrigues

PUBLISHER’S ASSISTANT
Sue Hodge

CIRCULATION COORDINATOR
Rose Mansella

CIRCULATION ASSISTANT
Barbara Maleski

CIRCULATION CONSULTANT
Gregory Spitzfaden

BUSINESS MANAGER
Jeannette Walters

ADVERTISING COORDINATOR
Dan Gorsky

CIRCUIT CELLAR INK, THE COMPUTER APPLICA-
TIONS JOURNAL (ISSN 0896.8985) is published
monthly by Clrcult Cellar Incorporated, 4 Park Street,

GRAPHIC ARTIST Suite 20. Vernon, CT 06066 (203) 875-2751. Second

Joseph Quinlan class postage paid at Vernon, CT and additional oflices.
One-year (12 issues) subscnptlon rate U.S.A. and pos-

PRODUCTION STAFF sessions$21.95,CanadaiMexico$31.95,allothercoun-

John Gorsky tries $49.95. All subscription orders payable in U.S.

James Soussounis lunds only, via international postal money order or
check drawn on U.S bank. Direct subscription orders

CONTRIBUTORS:
and subscrlptlon related questions to Circuit Cellar INK

Jon Elson
Subscriptions, P O.Box698. Holmes, PA 19043.9613

Tim McDonough
or call (800) 269.8301.

Frank Kuechmann
POSTMASTER: Please send address changes to Cir-
cuitCellarINK,CirculationDept , P O.Box698, Holmes,

Pellervo Kaskinen PA 19043.9613.

Cover photography by Barbara Swenson
PRINTED IN THE UNITED STATES

HAJAR ASSOCIATES NATIONAL ADVERTISING REPRESENTATIVES

NORTHEAST &
MID-ATLANTIC
Barbara Best
(908) 741-7744
Fax: (908) 741-6823

SOUTHEAST
Christa Collins
(305) 966-3939
Fax: (305) 985-8457

MIDWEST
Nanette Traetow
(708) 789-3080
Fax: (708) 789-3082

WEST COAST
Barbara Jones
& Shelley Rainey
(714) 540-3554
Fax: (714) 540-7103

C~rcuttCellarBBS--24Hrs.300/1200/2400/9600/14.4kbps,8 btts,nopanty. 1 stop bit,(203)871-1988;2400/

9600 bps Courier HST, (203) 871-0549

All programs and schematics in Circuit CellarlNKhave been carefully reviewed to ensure their performance
~s~naccordancewiththespecificationsdescribed,andprogramsarepostedontheCircuitCellarBBSloreledronic
trawler by subscribers.

C~rcu,tCellarlNKmakesna warrantiesandassumes no responslbillty or liability of any kindlorerrors in these
programs or schematcs or for the consequences 01 any such errors. Fudhermore. because of possible variation
in the quality and condition of malerlals and workmanship of reader-assembled projects, &curt Cellar INK
disclaims any responslblily for the safe and proper Iunction of reader-assembled prefects based upon or from
plans, descriptions, or mformabon publlshed in Circuit Cellar INK

Entlre contents copyright 0 1995 by Circuit Cellar Incorporated. All rights resenea. Reproduction 01 this
publicabon in whole or in pad wthout wtlen consent from Circuit Cellar Inc. is prohibited

2 Issue #54 January 1995 Circuit Cellar INK

1 4 Simulating Microprocessor Instructions in C
by David Rees-Thomas

2 0 No Emulator? Try a One-wire Debugger
by Hank Wallace

2 4 Using Spreadsheets to Simulate Digital Filters
by Steven Kubis

2 8 A RISC Designer’s New Right ARM
Writing Code for the ARM Processor
by Art Sobel

4 2 q Firmware Furnace
Journey to the Protected Land: Serious CISC Meets the Taskettes
Ed Nisley

5 0 q From the Bench
Getting By With Next to Nothing
Micro-power Wake-up Control
leff Bachiochi

5 7 SPECIAL SECTION:

Home Automation & Building Control

1 0 0 q Silicon Update
UFO Alert!
Tom Cantrell

1 0 8 q Embedded Techniques
Micros Behind Bars
Iohn Dybowski

Circuit Cellar INK Issue #54 January 1995 3

THE TROUBLE WITH SUPERCAPS At 25”C, the supercap provides a backup time of:
I have never seen a formula estimating how long a

supercap can back up NVRAM-which is surprising
given the amount of interest in this subject lately. If you
are going to design a supercap-backup system, you need
to know how long it can last. If you’ve decided to use
supercaps in your design, perhaps the following analysis
will change your mind.

Let’s compare the backup time of a 0.46-F supercap
with that of the CR1632 lithium battery rated at 120
mAh (Dallas Semiconductor uses this battery in the
popular NVRAM modules). The NVRAM used here will
be typical of that used for battery-backed applications.

If the data retention current of the RAM is 1 uA at
25°C and 12 uA at 70°C. The battery can thus sustain
the RAM contents at 25°C for:

At 7O”C, the backup time drops to 21.67 h! Yikes!
What’s gonna happen with the automated plant when
your controller goes down on a summer weekend?

Obviously, the decision to use supercaps for critical
system backup must be made with care. I like to use a
supercap as an emergency backup for the backup bat-
tery-a 3.3-F, 2.5-V cap is a good choice which supplies a
couple of hundred hours of secondary backup.

The following table should help put the relative
capacities of batteries and supercaps in perspective:

120 x lo-‘Ah
1~10-~A

= 120,000 h or 13.7yr

At 7O”C, the backup time drops to:

120 x 1 0-‘Ah
12 x 10-6A

= 10,OOOhor 1.4yr

A different approach must be taken with a capacitor
which uses a physical, rather than a chemical, process.
The trick is to view this problem on the atomic scale.
Since an ampere equals the flow of one coulomb per
second and a coulomb equals 6.24 x 10+lx e (electrons),
we know that an amp-hour amounts to a charge of (6.24
x 10+18 e/s) x 1 h x 3600 s/h or 2.25 x 1O+22 e.

The formula Q = CV relates the charge of a capacitor
in coulombs to its voltage. If the capacitor is charged to 4
V, it will hold 0.47 F x 4 V or 1.88 C of charge. If the
capacitor is allowed to discharge to 2 V, it will then hold
0.47 F x 2 V or 0.94 C of charge (the voltage range of 4-2
V is appropriate for the DS1210 nonvolatile controller
IC). During this 2-V drop, the capacitor is allowed to
source 1.88 C - 0.94 C = 0.94 C, which is atomically
equivalent to 5.86 x lo+‘* e.

To put things back on familiar ground, let’s convert
this into a milliamp-hour rating:

1 mAh= (6.24x 10”* e/s) x 1 hx36OOs/h =2,25x lo+l~ e

1000

Therefore, the capacitor supplies:

5.86x lO+“e
2.25 x 10’” e/mAh

= 0.26 mAh

Power Backup Time
Source C a p a c i t yValue Q25”C @4O”C @7O”C

CR1632 144F 120mAh 13.7 yrs. 5.7 yrs. 1 .l yrs.
supercap 0.47 F 0.26 mAh 10.8 days 4.5 days 21.6 h

Note the very large equivalent capacitance of the
batteries and the small equivalent capacity of capacitors.

Dale Nassar
Amite, LA

Contacting Circuit Cellar
We at the Computer Applications Journal encourage

communication between our readers and our staff, so have made
every effort to make contacting us easy. We prefer electronic
communications, but feel free to use any of the following:

Mail: Letters to the Editor may be sent to: Editor, The Computer
Applications Journal, 4 Park St., Vernon, CT 06066.

Phone: Direct all subscription inquiries to (800) 269-6301.
Contact our editorial offices at (203) 875-2199.

Fax: All faxes may be sent to (203) 872-2204.
BBS: All of our editors and regular authors frequent the Circuit

Cellar BBS and are available to answer questions. Call
(203) 871-l 988 with your modem (300-l 4.4k bps, 8Nl).

Internet: Electronic mail may also be sent to our editors and
regular authors via the Internet. To determine a particular
person’s Internet address, use their name as it appears in
the masthead or by-line, insert a period between their first
and last names, and append “@circellar.com” to the end.
For example, to send Internet E-mail to Jeff Bachiochi,
address it to jeff.bachiochi@circellar.com. For more
information, send E-mail to infoQcircellar.com.

6 Issue #54 January 1995 Circuit Cellar INK

Edited by Harv Weiner

486 EMBEDDED PC
Megatel has released a feature-

packed 80486 PC-compatible,
single-board computer.
The PC/II+i is packaged
ona 100x 100mmboard
and is available in either 9
a PC/104 or ISA bus-
compatible format with the
addition of Megatel’s adapter. -

Features available on the PCII+i
include either a 25 or 33.MHz, low-
power, Intel 80486 processor with up to 16 M
of user DRAM, 256 KB of BIOS flash EPROM, AT-
compatible BIOS, 2 MB of flash disk, a full 32-bit DRAM
data bus, and 8 KB of built-in cache with floating-point
units. Also on the board are a SCSI host adapter, floppy-
disk controller, S-VGA video and LCD controller, and
Ethernet interface. Standard I/O features include two
IBM-compatible RS-232 serial ports and one BIOS-
compatible RS-232 serial port, a general-purpose parallel
I/O port, real-time clock with battery backup, and the
16-bit ISA I/O bus. CMOS technology is used to reduce
power consumption to approximately 6 W and +5 V only.

s*-
resolution video modes. A complete legal
BIOS (in flash EPROM) that boots
standard versions of PC, MS, or Novell
DOS is provided. The PC/II+1 runs

opular PC software packages including
dows 3.1.

ull SCSI host adapter support includes a
SCSI-implemented AT hard-disk-drive controller

that provides up to 50% increase in hard-disk
performance over IDE. DOS and low-level formatting

are accomplished by a single program. Other SCSI
features include a full ASP1 shell interface including
drivers for popular CD-ROMs, magnetooptical drives,
and so on. Also included is SCSI-extension software,
which offers automatic adjustment of AUTOEX EC. BAT
and C 0 N F I G . SY S files, spanning capability, and a single-
install menu.

The PC/II+i sells for $895 in quantity.

Megatel Computer Corp.
Performance of the PC/II+i is increased by incorpo- 125 Wendell Ave. l Weston, ON l Canada M9N 3K9

rating the capacity for 16 MB of on-board memory. (416) 2452953 l Fax: (416) 245-6505

Aemory is tightly coupled, thus enhancing the operation
of the local cache. Chips & Technology’s 65530 Local

Bus S-VGA controller with up to 1 MB of video
RAM facilitates many of the higher-

#500

UNIVERSAL COMPUTER INTERFACE
Fisher Instruments introduces a universal computer interface providing design aid for engineers, experimenters,

and students. micro-LAB functions with virtually any computer using an RS-232 serial interface at 300-19,200 bps
with no handshaking required. micro-LAB enables a PC to power and control designs in any programming language.

The micro-LAB package includes a solderless bread-
board with a function generator that produces sine, square,
and triangular waveforms with a sweep input. The unit
features three crystal-controlled clock-frequency sources,
three 16-bit programmable counters, and one s-bit event
counter. Three A/D channels dedicated to DC measure-
ments, one A/D channel devoted to AC measurements, and
one g-bit D/A converter are on board. Two independent 8-
bit TTL-compatible input ports, two independent &bit
output ports, and a 300-mW audio amplifier with internal
speaker are also included. The unit measures 7.5” x 3.5” x
1.5“.

micro-LAB sells for $249.95 and includes sample
application programs, sample graphics drivers, RS-232
interconnecting cable, and a user’s manual. The Power Pack
(ELPAC WM.1 13TT) option is an additional $49.95 and a demo disk outlining micro-LAB’s capabilities is available
for $5.00.

Fisher Instruments
20611 E. Bothell-Everett Hwy., Ste. 232 l Bothell, WA 98012 l (206) 489-9153 l Fax: (206) 487-1528 #501

8 Issue #54 January 1995 Circuit Cellar INK

8051 DEBUGGER
ChipTools has released

Version 3.1 of Chipview-51, a
high-level debugger for 805 1 C
compilers. It is key compatible
with Borland’s Turbo Debugger,
and is available in three versions:
a high-performance simulator and
debugger, a high-level user
interface for Nohau’s EMUL5 l-
PC, and a ROM-monitor debugger.

With ChipView, the Turbo C programmer can
instantly debug code in the embedded-systems environ-
ment. ChipView presents over 14 different views of the
user’s program, including all of Turbo Debugger’s views.
It can display a C-level call stack, which shows nested
function calls along with their arguments.

The ChipView- simulator provides full support
for Dallas Semiconductor’s DS5000, DS5001, and high-
speed 8OC320. The user program can interact with real
on-chip and off-chip I/O, such as A/D converters, timers,
ports, or custom memory-mapped I/O. Remote I/O via
the PC’s COM ports lets the user attach real serial I/O

to the simulator. A quick I/O
window simulates a display
terminal for interactive I/O even
while the simulation engine is
running.

The ChipView ROM monitor
also features the quick I/O
window. The host-target serial I/O
link automatically time shares,
permitting the user program to
also use the serial port for I/O to

the display window or another serial device.
The ChipView- 1 Nohau emulator version provides

support for every production board and pod from Nohau.
The ChipView- 1 Version 3.1 simulator sells for

$795, the emulator version for $595, and the ROM-
monitor version for $795. A combo package is available
for $995. System requirements include an IBM AT or
compatible with 3 MB of RAM and a hard disk.

ChipTools
1232 Stavebank Rd. l Mississauga, ON Canada L5G 2V2
(905) 274-6244 l Fax: (905) 891-2715 #502

The BEST in ROM
emulation technology:

tl I Mbit
Cl IOOns
tl Price $295

ROMboy includes a 70 day,
no-risk money back guarantee!

Call Today - 600-776-6423

Grammar
Engine
Inc.

921 Eastwind Dr., Suite 122
Westerville, OH 4308 1
614/899-7878
Fax 614/899-7888

l-HATS RIGHTI $129.95 FOR A FULL FEATURED SINGLE
BOARD COMPUTER FROM THE COMPANY THAT-S BEEN
BUILDING SBC’S SINCE 1985. THIS BOARD
30MES READY TO USE
TEATURING THE NEW
30535 PROCESSOR
WHICH I S
BOSl CODE
COMPATIBLE.
ADD A KEYPAD
9ND AN LCD
DISPLAY AND YOU HAVE
9 STAND ALONE CONTROLLER WI
ANALOG AND DIGITAL I/O. OTHER FEATURES INCLUDE:

l UP To 24 PROGRAMMABLE DIGITAL I/O LINES
l 8 CHANNELS OF FAST 8/ 10 BIT A/D
* UP TO 4, 16 BIT TIMER/COUNTERS WITH PWM
l UP TO 3 RS232/485 SERIAL PORTS
l BACKLIT CAPABLE LCD INTERFACE
l OPTIONAL 20 KEY KEYPAD & INTERFACE
l 160K OF MEMORY SPACE, 64K INCLUDED
l 8061 ASSEMBLER h ROM MONITOR INCLUDED

EliMC, inc.
616-629-4525 Fax 4570110 BBS 529-5708
P.O. BOX 2042, CARBONDALE, IL 62602

#104
Circuit Cellar INK Issue #54 January 1995 9

IN-CIRCUIT EMULATOR
The Signum in-circuit emulator offers real-time,

transparent emulation for the entire Intel 80C 186 family
of microcontrollers, including the XL, EA, EB, and EC
versions. The USP-186 eases the development of the
software and hardware of embedded-controller products
in telecommunications, image processing, modems,
robotics, and other high-speed applications.

The USP-186 connects to any IBM 386/486-compat-
ible host computer via a serial port and users download
and upload programs at 115 kbps.

The emulator emulates at speeds up to 26 MHz and
comes equipped with 1 MB of overlay memory, which
may be enabled in 256-byte blocks. The trace-buffer
memory is 32,768 entries deep by 80 bits wide, has
filtering controls, and includes a real-time stamp with a
loo-i-is resolution.

With the USP-186, a user can debug a real-time
application without stopping the processor. With the aid
of dual-ported memory, the user can view and modify
program and data memory, define breakpoints, and
enable the trace buffer while the processor is running.

A special windowing interface with a mouse makes
the user interface fast and simple to use. An integrated
source-level debugger for C provides source-code line
stepping, local variable display, and support for all
variable types including nested structures and arrays.

The Signum USP- 186 In-Circuit Emulator is priced
from $7890 (20 MHz) to $8290 (26 MHz).

Signum Systems
171 E. Thousand Oaks Blvd., Ste. 202
Thousand Oaks, CA 91360
(805) 371-4608 l Fax: (805) 371-4610 #503

ENERGYMANAGEMENT
CONTROLLER

Microchip introduces a
device which reduces total
energy consumption by up
to 30% or more in a wide
variety of electrical product
applications. Typical
applications for the
MTE1122 Energy Manage-
ment Controller encompass
all residential, commercial,
and industrial equipment
which use fractional-
horsepower AC motors.
Potential applications
include water-filtration
systems, sump pumps,
refrigerators, cooling fans,
compressors, and air-
conditioning units.

The MTEl122 inte-
grates Microchip’s 8-bit
RISC-based PIC16/17
microcontroller technology
with proprietary power-
management firmware to
allow AC-induction-motor
applications to be more
energy efficient. This saves
energy costs by reducing
utility demand. The energy
consumed by the motor
more closely matches its
work.

The Energy Manage-
ment Controller operates by
digitally monitoring the

motor load and then
controlling power
consumption thousands
of times per second. Most
AC induction motors
require large currents
under light or even no-
load situations. The
unique algorithm in the
MTEl122 monitors the
AC signal and senses
when the motor is
consuming more power
than is required. The
device then modifies the
AC signal so the motor
can continue its rota-
tional speed with less
power.

The MTEl122 is
available in 18-pin PDIP
and SOIC packages and
features 5-V operation
and automatic power-on
reset. List price for the
MTE 1122 Controller
(PDIP version) is $7.49 in
lOOO-piece quantities.

Microchip Technology, Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
(602) 786-7200
Fax: (602) 899-9210

#504

l(1 Issue #54 January 1995 Circuit Cellar INK

NEWS
‘386EX EMULATOR than 100 ns. The performance analyzer quickly finds

Softaid has released an in-circuit emulator for Intel’s software bottlenecks.
‘386EX embedded processor. The UEM-386EX offers a Softaid’s development tools come with the UEM-
high-performance ‘386 development environment 386EX emulator and SLD for Windows. The emulator
operating under Windows at speeds of 25 MHz. gives firmware engineers the raw resources needed to

Real-time trace is included, overcoming a shortcom- debug an embedded system, while SLD provides a shell
ing found in many low-priced tools. Trace is essential for to debug C and assembly language code. All compilers
debugging interrupt and DMA-based code since stopping are supported.
the program at a breakpoint invariably corrupts the The UEM-386EX offers an upgrade path for develop-
integrity of the emulation. The UEM-386EX includes a ers switching from older ‘186 designs to the ‘386EX. A
4-KB trace buffer, generating views of the data as raw simple pod swap lets the UEM work with any version of
machine instructions, C source, the ‘186 and the ‘386EX. The

or intermixed C and disas- emulator covers the entire

sembled code. Triggers qualify embedded x86 family.

trace-data collection, limiting The UEM-386EX emulator

acquisition to events of inter- with SLD for Windows costs

est-all in real time. $9000.
The UEM-386EX comes

standard with an integral
performance analyzer that
monitors the time spent in up
to 255 routines simultaneously,
maintaining accuracy better

Softaid, Inc.
8310 Guilford Rd.
Columbia, MD 21046
(410) 290-7760
Fax: (410) 381-3253 #505

OVER I
MINT SOURCES
CMOS BASK CWIP

Micromint has a more efficient software-compatible suc-
cessorto the power-hungry Intel 8052AH-BASIC chip. The
80C52-BASIC chip was designed for industrial use and
operates beyond the limits of standard commercial-grade
chips. Micromint’s 80C52-BASIC chip is guaranteed to
operate flawlessly at DC to 12 MHz over the entire
industrial temperature range (-40°C to t85”C). Available in
40-pin DIP or PLCC

80C52-BASIC chip $19.00
OEM IOO-Qty. Price $12.00
BASIC-52 Prog. manual $15.00

4 PARK ST. l V E R N O N , Ci 0 6 0 6 6

f.

Integrated software development environment including an
editor with interactive error detection/correction.

Access to all hardware features from C.

Includes libraries for RS232 serial I/O and precision delays.

Efficient function invocation mechanism allowing call trees
deeper than the hardware stack.

Special built-in features such as bit variables optimized to
take advantage of unique hardware capabilities.

Interrupt and A/D built-in functions for the C71.

Easy to use high level constructs:

#include <PIClSC56.h>
#use Delay(Clock=20000000)
#use RS232(Baud=9600,Xmit=pin_l,RCV=pin_2)

main 0 (
printf("Press any key to begin\n") ;
f~~~:;~~l khz signal activated\n') ;
while ITRUE) I

out&it higli(pin_8) :
delay_iis(500) :
output_low(pin_S) :

I
delay_us(500);

1

PCB compiler $99 (all 5x chips)
PCM compiler $99 (‘64, ‘71, ‘84 chips)

Pre-paid shipping $5
COD shipping $10

CCS, PO Box 11191, Milwaukee WI 53211
414 -781 -2794 x30

Circuit Cellar INK Issue #54 January 1995 11

INTERMITTENT TESTING BY POWER-ON CYCLING
Power-on and intermittent failures can be easily

diagnosed with a new piece of test equipment from
MicroTools. Poe-it is intended to provide a one-step
solution to the problem of power-on testing.

Intermittent problems, caused by hardware and
software, often occur after a power up. The problems are
difficult to duplicate, and fixes are sometimes question-
able. Some intermittent problems include improper
hardware initialization, temperature-sensitive race
conditions, vibration-sensitive interconnects, noisy or
noise-susceptible power circuitry, unprotected interrupt
windows, and power-on system-test problems. Systems
may need to be tested for thousands of cycles before such
problems appear.

Pot-it can be used early in the design cycle to un-
cover such problems. Pot-it is designed around an 8051
family part and features two high-speed input counters
with 5-VDC inputs, one optically isolated 1030-VDC input, one 120-VAC Q 10-A cycled output, and one 5-A relay
contact. Its user interface consists of a l-line, I6-character LCD display, and 4-button keypad. A simple, menu-driven
interface sets on and off times of each output with a lo-ms resolution, resets input counters, starts and stops the test,
and lets cycle counters for all inputs and outputs be viewed.

Pot-it sells for $295.

MicroTools, Inc.
P.O. Box 624 l 714 Hopmeadow St., Ste. 14 l Simsbury, CT 06070 l (800) 651-6170 l Fax: (203) 651-0019 #506

CD-ROM
ACCELERATOR

A CD-ROM Accel-
erator, which makes CD-
ROM applications
perform as fast as if they
were running from a hard
drive, has been an-
nounced by Ballard
Synergy Corp. d-TimelO
V1.l sets a new “ease of
use” milestone for a CD-
ROM accelerator with a
Windows help program
that has full-motion
video.

When a quad-speed
CD-ROM is accelerated,
access times improve by
20 times (from 200 ms to
10 ms) and data transfer
rates by about 8 times.
Slower CD-ROM drives
see even more dramatic

improvements. Unlike
RAM caches for CD-ROM,
d-TimelO copies the critical
data from CD-ROM to the
hard disk. d-TimelO removes
all glitches and pauses from
multimedia sequences and
saves a fifth of a second for
each CD-ROM access.
Twenty-minute, CD-ROM
database searches are
reduced to one minute.

d-Timer0 uses state-of-
the-art, patent-pending
technology to make the CD-
ROM perform as fast as the
disk drive. As the CD-ROM
is used, d-Timelo automati-
cally updates the accelera-
tion file on the hard disk
with the contents of the
CD-ROM disks. Even if a
power failure occurs, all
information is retained

since it is on the hard drive.
d-TimelO can create a time
log containing the CD-ROM
sector IDS, which can be
used to re-create the exact
contents of the acceleration
file even on a different
machine. Time logs for over
60 titles are included on the
d-TimelO CD-ROM. By
using the time log for a
particular CD-ROM, the
slow access of the CD-ROM
can be avoided even for a
first-use application.

d-Timei features a
quick install, which uses
standard default values and
includes extensive on-line
help. It supports enhanced
IDE hard drives, Novell
DOS7, and 4DOS. The d-
Timei CD-ROM is required
only during installation.

d-Timelo is a pure
software solution, so
there are no switches to
set or hardware to plug
in. All that is necessary
is to decide how much
disk space to give the
accelerator file.

d-Timelo sells for
$69.95.

Ballard Synergy Corp.
10715 Silverdale Way,

Ste. 208
Silverdale, WA 98383
(206) 656-8070
Fax: (206) 656-8205

#507

-

12 Issue #54 January 1995 Circuit Cellar INK

UNIVERSAL DEVICE pull-down menus, a macro
PROGRAMMER facility for batch-file

Electronic Engineer- execution, and virtual
ing Tools has announced memory management to
a new Universal Device deal with very large files.
Programmer, which AllMax+ software reads
connects to a PC through output from most compilers
a parallel port or a high- in JEDEC formats such as
speed, parallel-interface CUPL, PALASM, OPAL,
card simply by using a and ABEL. It also includes
switch. AllMax+ is a test-vector capability,
software-expandable multiarray fuse-map editor, hardware, including the disk, and manual. Other
programmer that sup- DOS shell-handling utili- standard 48-pin ZIF socket, programming modules
ports a wide variety of ties, and file-format handler. minimizes additional and sockets are available.
programmable devices as Devices supported are adapter usage for regular
well as testing digital PLDs including AMD Mach DIP-type devices. Electronic Engineering
ICs, SRAM, and DRAM. family; bipolar PROMS; The AllMax+ package Tools, Inc.

AllMax+ interfaces EEPROMs up to 16 Mb; sells for $745.00. It includes 544 Weddell Dr., Ste. 6
with IBM-compatible microcontrollers such as the a 48-gold-pin ZIF-socket Sunnyvale, CA 94089
personal computers. The Microchip PIC series, programming module, (408) 734-8184
operating software Motorola MC68000, and universal-switching power Fax: (408) 734-8185
features a user-friendly Zilog 286 series; and serial supply (loo-250 VAC), 6’
interface that includes EEPROMs. The AllMax+ printer cable, installation #508

1
Odds are that some time during the day you
will stop for a traffic signal, look at a message
display or listen to a recorded announcement
controlled by a Micromint RTCl80. We’ve
shipped thousands of RTCl8Os to OEMs.
Check out why they chose the RTCl80 by
calling us for a data sheet and price list now.

MICROMINT, INC.
4 Park Street, Vernon, CT 06066
(203) 871-6170*Fax (203) 872-2204

in Europe: (44) 0285-658122ein Canada: (514) 336-9426*in Australia: (3) 467-7194*Distributor lnauiries Welcome

Circuit Cellar INK Issue #54 January 1995 13

FEATURES
Simulating
Microprocessor
Instructions in C

David Rees-Thomas

No Emulator? Try a
~ One-wire Debugger

Using Spreadsheets to
Simulate Digital Filters

A RISC Designer’s
New Right ARM

Simulating Microprocessor
Instructions in C

embedded control-

rmited budget, you need
every bit of inexpensive debugging
help you can get. EPROM and
EEPROM versions of your favorite
processor are great because they let
you test your code, fix it, and try again.
But, the burn-and-pray method of
debugging is inefficient at best and
downright frustrating much of the
time.

For example, suppose your project
has to use BCD (binary-coded decimal)
arithmetic. Your CPU doesn’t have a
DAA (decimal-adjust accumulator)
instruction, so you write a subroutine
to do the equivalent function. Can you
readily test all possible combinations
of input to that routine? If it doesn’t
work 100% the first time, how many
patches will it take to make it work?
How many E(E)PROMs will you have
to burn to be sure?

Here’s where a software simulator
can save hours of development time.
Running on a PC or Mac, the simula-
tor lets you step through your code
line by line, manipulate registers,
watch changes in memory, and
monitor the CPU’s flag bits, all with a
few keystrokes. Need a B EQ (branch if
equal) instead of a B N E (branch if not
equal) at address $FOC3 (that’s OFOC3h

14 Issue #54 January 1995 Circuit Cellar INK

Listing l--The target microprocessor’s insfruction set is represented by an array of structures containing
details about each instruction. Many high-/eve/ languages, including C, make building such an array very
intuitive and are wellsuited for use in developing a simulator.

a)
struct instruction {

char mnemonic[81;
int opcode;
int n-bytes;
int n-cycles:
int mode:
void(*fcn)O;

t;

/* opcode mnemonic in ASCII */
/* opcode in binary */
/* length in bytes */
/* machine (E) cycles */
/* code for addressing mode */
/* ptr to implementation fen */

b)
struct instruction instruct[l =

"lda ” , OxA6, 2, 2, 4, Ida /* implements LDA immediate*/

for you nonMotorolans)? Simply
change the contents of that location
from $26 to $27, and run your simula-
tion again. You can clean out a whole
handful of bugs like this in the time it
takes to erase one EPROM.

OK, that’s nice, but where can you
get a simulator cheap? There are lots
of good simulators out there if you can
afford them, but what can you do on a
limited budget? With a mainstream
controller like the 68HC11, you often
can find a freeware or shareware
simulator by searching the bulletin
boards.

On the other hand, there may not
be any simulator available for the
obscure Nominal Macro XYZ223 chip
in your latest project. If time is no
object, you might want to try writing
your own.

This article describes the approach
I used to develop a simulator for the
Motorola 6805 family of microcontrol-
lers.

SIMULATOR BASICS
In its simplest form, a simulator

lets you execute the functions typi-
cally found in the ROM-monitor
firmware on an evaluation board. You
can:

l examine and change memory
contents and CPU registers

l load a program into memory

l disassemble machine code in
memory

l execute machine instructions in
memory continuously or step by
step

l set break and watch points to
monitor program execution

You can implement the first three
simulator functions fairly easily in
any high-level language. An array of
bytes(unsigned charinC)can
represent the processor’s memory or I/
0 address space. Bytes and words
(unsigned int)canbeusedfor%and
16-bit CPU registers. Loading a
program is usually a fairly simple
matter of translating the S19 or Intel
hex file output by an assembler from
ASCII characters to binary and saving
the results in the correct elements of
the memory array.

READING INSTRUCT1ONS
Disassembly or regeneration of the

original assembler source code from
machine instructions is a somewhat
larger task. Each machine instruction
can be represented as a unique binary
or hexadecimal number stored in
memory. We can use that number as
an index into some sort of table and
then print out the corresponding
assembler mnemonic and operand.
The problem is that it’s hard to tell
what’s an opcode and what’s an

operand. For example, suppose the
three memory locations starting at
address $0400 (400 hex) each contain
the byte $A6:

0400 A6 A6 A6...

One of those bytes is the opcode or
machine code for a 6805 LDA (load
accumulator] instruction-but which
one?

As with all good questions, the
answer is “it depends.” If the CPU has
just been reset, and the reset vector
contains $0400, then the first A6 is the
opcode. The same applies if the CPU
has just completed execution of a
previous instruction. In both cases, the
CPU’s program counter (PC) contains
$0400, and the processor is ready to
fetch an opcode. The CPU then reads
the contents of $0400 and increments
the program counter.

What’s the next Ab!
Once again, it depends. Since the

processor has just completed an
opcode fetch, the meaning of the next
byte depends on how this machine
instruction is decoded by the CPU. In
the 6805 family, the load accumulator
can be represented by six different
opcodes: A6, B6, C6, D6, E6, and F6.
Each instruction puts one byte of data
into the accumulator. Where that byte
comes from (i.e., the effective address
of the byte) depends on which of the
six opcodes the CPU fetched.

In decoding a machine instruction,
the processor determines two things:
the actual operation to be performed
(load, add, or compare) and the
instruction’s addressing mode. From
the latter and, in some cases, the
contents of a CPU register, the
processor computes an effective
address. In our example, A6 represents
a load accumulator in the immediate
mode. The operand-the actual data
loaded into the accumulator-is in the
location immediately following the
opcode. The complete instruction is
two bytes long. The third A6 then
becomes the opcode of another LDA
instruction.

Getting back to our disassembler,
we can see that the table entry for
opcode number 166 ($Ab) might
contain the following items:

Circuit Cellar INK Issue #54 January 1995 15

l an assembler mnemonic string in
ASCII characters (LDA)

l the length of the instruction in bytes
(21

l a code to indicate addressing mode
(4-an arbitrary choice)

A table of 256 such entries covers the
entire 6805 opcode map including
illegal opcodes, which are values with
no corresponding machine instruction.
Members of the 6805 family share a
single-page 0pc0de map (i.e., every
opcode occupies a single byte). Other
processors such as the 68HCll or Z80
have a number of two-byte opcodes,
but the number of different values of
the extra byte or prebyte usually is
quite small.

Now, with a little bit of extra
effort, we can disassemble the se-
quence A6 A6 and print:

0400 A6 A6 LDA #$~6

If we encounter an illegal opcode we

can print any suitable indicator, such
as I LLOP or just ***:

0416 41 ***

EXECUTING INSTRUCTIONS
One thing a disassembler can’t do

is tell the difference between code and
data. $41 is not a legal 0pc0de for a
6805, but it is the ASCII value for an
“A”. A disassembler can identify a
complete instruction such as J M P
$0420. It can’t follow program flow, so
it doesn’t know enough to jump over
the character string “ABORT” starting
at $0416, say, and pick up again at
$0420. What we need is a way to
execute each instruction in turn, so we
can follow the program flow.

Simulating the execution of a
microprocessor instruction is not all
that difficult once you’ve built the
instruction table. We can break the
execution into a sequence of seven
steps:

1. Fetch the opcode from the memory
location defined by the contents of
the simulated program counter

2. Increment the PC
3. Determine the instruction’s adclress-

ing mode

16 Issue #54 January 1995 Circuit Cellar INK

Listing 2-a) The 7 da (1 function copies one byfe from simulated memory to the simulafed-accumulator
regisfer, setfing flag bits if the value of the byte is zero or negative. The where (1 function (see Listing 3)
determines the locafion in memory which contains the original data. b) The flag bifs (condition codes in
Motorolan) are implementedas I-bit fields in the shuclure CC. Flag bits generally reflect the resuttofthe
most recent/y executed instruction(s). The I bif, a Mororolan exception, is c/eared or set by specific
instructions to enable or disable CPU inferrupfs.

4
void ldacbyte opcode) i

word ea;

ea = where(opcode);
A = memory[eal;
/* location addressed
CC.N = (A & 0x80) ? 1
CC.Z = (A) ? 0 : 1;

b)
struct ccr {

unsigned int C: 1
unsigned int Z: 1
unsigned int N: 1
unsigned int I: 1
unsigned int H: 1

1 cc:

/* Load Accumulator
/* Effective Address

*/
"I

/* compute Effective Address */
/* load the accumulator from */

*/
0; /* set sign flag if MSB = 1 */

/* set zero flag if data = 0 */

/* Condition Code Register */
/* carry flag "I
/* zero flag */
/* negative (sign) */
/* interrupt mask *I
/* half-carry flag *I

4. Read the operand(s) if any and
compute an effective address (EA)

5. Increment the PC as required so that

locations that are affected by the

it points to the next instruction

instruction

6. Modify any registers and/or memory

7. Set or clear any condition code (flag)
bits that are affected by the instruc-
tion (carry, sign, zero, etc.)

An instruction table looks after the
first five steps. The last two require
you to write a set of what I call
i m p l e m e n t a t i o n func t i ons . E a c h
implementation function performs a
machine instruction by manipulating
the contents of the simulated registers,
memory, and condition codes. We
could write a separate function for
each opcode, but it’s simpler to lump
all of the variations of one instruction,
such as LDA, into a single routine.

I chose to implement my simula-
tor in C partly as a learning exercise
and partly because of some useful
features of the language. I’ve been
referring to an instruction table as a
basic part of the program. As you can
see in Listing la, a single entry in this
table is a structure of type i n s t r LI c -
t i on. The entire instruction table or

opcode map is represented by an array
of256 instructions(seeFigurelb).

I declared the CPU registers A
(accumulator), X (index register), PC
(program counter), and SP (stack
pointer) as global variables (u n s i g n e d
c h a r or i n t as appropriate).

You may have noticed some
additions to the original table entry.
The variable o p c od e just repeats the
position of a specific entry in the array,
but it adds readability and makes life a
bit easier later on. The number of
machine cycles that it takes to execute
an instruction is tracked with
n_cycl es (E cycles in Motorolan).
The pointer to the specific C function,
which actually implements the
instruction opcode, is the most
important. We’ll look at an example of
an implementation function shortly.

The first two steps in the execu-
tion of a microcontroller instruction
include fetching the opcode and
incrementing the program counter. We
can do that in one line of C:

opcode = memory[PC++l;

The value in the simulated program
counter PC (an unsigned int)
identifies the location of the next

instruction to execute. The contents of
that location (i.e., the opcode) then
becomes an index into the instruction
array. Each member of that array is a C
structure. So, for example, we can refer
to the addressing mode that corre-
sponds to a given opcode as i n s t r u c t
Copcodel.mode. Betteryet,allit
takes to execute an instruction is one
line:

instruct[opcodel.fcnO;

The work comes in writing the
implementation functions for each of
the microcontroller’s instructions. It’s
not difficult, but you have to keep
track of the details. Going back to my
earlier example, opcode A6 in a
Motorola 6805 leads us to an instruc-
tion array member that looks like this:

” LDA" , OxA6, 2, 2, 4, Ida

This instruction loads the accumulator
with the contents of the memory
location immediately following the
opcode. The hex value of the opcode is
A6. The instruction is 2 bytes long,
and it takes 2 clock cycles to execute.
Code 4, by my convention, indicates
the immediate addressing mode. 1 da is
the name of the C function performing
the simulated load-accumulator
instructions. The extra spaces follow-
ing the mnemonic LDA help to format
the output of the disassembler. Listing
2a shows the 1 d a -implementation
function.

In the listing, I define byte and
word asdatatypesof unsigned char
(g-bit) and unsigned i nt (16-bit),
respectively. The function w h e r e
(discussed in more detail later) com-
putes the effective address ea, which
in this case is the memory location
containing the data to be loaded into

Listing 3-The function where (I computes the memory address of the source or desfinafion in a data
(load, store, test, or modi&) instruction or the desfinafion of an absolute jump or jump-to subroutine. For a
conditional branch instruction, where (I returns a signed offset to be added to the contents of the program
counter if fhe condition is true. Specific bits in the instruction opcode determine the addressing mode (i.e.,
exact/y how the address compufation is to be performed).

word wherecbyte opcode) {
word temp;

/* compute effective address*/

switch (opcode>>4) { /* MS 4 bits is mode */
case 0x00: case 0x01: /* bit manipulation inst */
case 0x03: case OxOB: /* direct addressing */

return(memoryLPC++l); /* MS byte is always OO*/

case 0x02: /* relative branches */
return(sex(memory[PC++]I): /* return offset, not EA */

case 0x06: case OxOE: /* indexed. 8-bit offset */
return(X+memory[PC++l): /* follows op-code*/

case 0x07: case OxOF: /* indexed, zero offset*/
return(X); /* is l-byte instruction */

case OxOA: i* immediate mode*/
return(PC++): /* data follows op-code */

case OxOC: /* extended address*/
temp = memory[PC++l << 8: /* MS byte follows opcode */
return (temp + memory[PC++I); /* LS byte follows MS*/

case OxOD: /* indexed, 16.bit offset */
temp = memory[PC++1<<8; /* is 2 bytes after opcode */
return (X + temp + memoryCPC++I);

default:
return (OxFFFF);

the accumulator. The next line does
the actual loading of A.

WHAT ABOUT THE CPU FLAGS?
Motorola microcontroller instruc-

tions are much more likely to have an
effect on the flags or condition codes
than those of a Z80. Thus, every 6805
LDA instruction affects both the Z(ero)
and N(egative) flag bits according to
the value loaded.

I represented the condition-code
register as another structure-in this
case, a bit-field named CC (Listing 2b).
The last two lines of the 1 da function
implement this manipulation of the
flags:

if bit 7 of A is set,
then set the N flag,
else clear it;

if A equals 0 after the load,
then set the Z flag,
else clear it.

COMPUTING THE EFFECTIVE
ADDRESS

The w h e r e function used to
compute effective address is common
to most of the implementation
functions. The exceptions implement
instructions, such as COMA or C LRX,
which use the inherent addressing
mode. These instructions don’t require
a memory access other than the
opcode fetch. The current version of
w h e r e (Listing 3) takes advantage of
the fact that the addressing mode is
encoded in the most-significant four
bits of a 6805 opcode. All immediate-
mode instructions, for example, not
just LDA, have hex values starting with
$A.

The remaining L DA opcodes-$B6,
$C6, $D6, $E6, and $Fb-cover direct,
extended, and three varieties of
indexed addressing. Extended address-
ing is the most obvious. The complete
effective address is contained in the
two bytes following the opcode. Direct
addressing is similar, except that only
the least-significant byte of the
effective address follows the opcode.
The most-significant byte is always
$00. An indexed effective address is
formed by adding the contents of the X
register [8 bits wide) and an unsigned
offset. The offset may be zero, one, or

18 Issue #54 January 1995 Circuit Cellar INK

two bytes in length, depending on the
opcode.

One addressing mode is treated a
bit differently. Case 0x02 (relative
branches) returns a signed offset rather
than an effective address. It isn’t quite
as interesting as it looks, though. The
sex function merely sign-extends an
S-bit two’s complement offset to 16
bits. The branch-instruction-imple-
mentation functions add the result to
the current contents of the program
counter to give the location of the next
instruction.

CONCLUSION
This discussion should give you

enough information to start writing
your own microcontroller-simulation
package. I haven’t gone into details
about the user interface since that’s a
matter of personal preference. My
original version, written as a teaching
tool at the British Columbia Institute
of Technology, simply duplicated the
ROM-monitor interface on the
146805E2 boards used in the lab. With
a simulated on-chip timer and inter-
rupts generated from the PC keyboard,
the program helped several classes of
BCIT students to unravel the myster-
ies of microcontroller-instruction
execution.

A more recent revision simulating
the MC68HC05J2 enabled me to find a
bug in Motorola’s original documenta-
tion of the half-carry flag. If nothing
else, writing your own simulator gives
you new insight into the operation of
your favorite microcontroller. 0

David Rees-Thomas has a B.Sc. in
chemistry and math from Queen’s
University and a diploma in Electron-
ics Technology from Northern College
in Kirkland Lake, Ontario. For the last
ten years, he has been teaching at the
British Columbia Institute of Technol-
ogy in Burnaby, BC, where he special-
izes in microcontrollers and data
communications. David may be
reached at resd2215@bcit.bc.ca.

401 Very Useful
402 Moderately Useful
403 Not Useful

HUGE BUFFER
FAST SAMPLING

SCOPE AND LOGIC ANALYZER
C LIBRARY W/SOURCE AVAILABLE

POWERFUL FRONT PANEL SOFTWARE

$1799 - DSO-28204 (4K)
$2285 - DSO-28264 (64K)

DSO Channels
2 Ch. up to 100 MSa/s

1 Ch. at ,&I0 MSa/s
4K or 64K Samples/Ch
Cross Trigger with LA
125 MHz Bandwidth

Logic Analyzer Channels
8 Ch. up to 100 MHz
4K or 64K Sample&h
Cross Trigger with DSO

‘AL
;AL
:PROM
:EPROM _
-LASH
dICR0
‘IC
3tc..

Free software updates on BBS
Powerful menu driven software

up to 128 Channels
up to 400 MHz
up to 16K Samples/Channel
Variable Threshold Levels
8 External Clocks
16 Level Triggering
Pattern Generator Option

$799 - LA12100 (100 MHz, 24 Ch)
$1299 - LA32200 (200 MHz, 32 Ch)
$1699 - LA32400 (400 MHz, 32 Ch)
$2750 - LA64400 (400 MHz, 64 Ch)

Call (201)808-8990

I ac
Link Instruments
369 Passaic Ave, Suite 1 0 0 , Fairfield, N J 0 7 0 0 4 f a x : 8 0 8 - 8 7 8 6

HO8
Circuit Cellar INK Issue #54 January 1995 19

Hank Wallace

No Emulator? Try a
One-wire Debuaaer

JJ

t was 10 P.M.

and I was working
on an 805 1 product

that I had designed and
that a customer had requested some
software changes for. Unfortunately,
while making the changes, I intro-
duced a bug. Being an economically
paranoid designer, I had found a
function for every pin on the micro,
including the serial I/O. So, without an
emulator, I was rather blind bug-wise.

In the past when I got into this
situation, I have resorted to shifting
the data out serially on an idle micro-
processor I/O pin. On other occasions,
I have even hung the program in a loop
at a certain point and scoped the
address lines to see if the micro hit the
death point. None of these approaches
is very programmer friendly or produc-
tive. They require a lot of squinting in
dim light to visually capture a 1 -MHz
serial data burst on a nonstorage scope.

This frustration, however, pro-
duced an idea. I needed to expand my
crude serial debugging method with
some automation so it would be more
useful in systems without explicit
communication ability or an emulator.
No doubt, many users of single-chip
micros are in this situation.

I needed to send out some trace-
point debug data, say, a few bytes, on
one I/O line and capture it on a PC for
display-this would enable me to view

critical system information. Of course,
the serial-transmission routine had to
be as small and unobtrusive as pos-
sible, transmitting data at whatever
rate was convenient. Also, the polarity
of the data had to be sensed by the PC
and corrected accordingly so a devel-
oper could probe the datastream at any
convenient point in the circuit.

SOLUTION OVERVIEW
After a lot of thrashing that night

between 10 P.M. and 3 A.M., a final
solution came out. The one-wire
debugger has the following features
and constraints:

l The target system shifts out its data
prefaced by an &bit unique word.
The value of this word is fixed at
A5h and gives clock and polarity
information to the PC program. (I
did this so another I/O line would
not be wasted for a clock signal.) An
example of the 805 1 routine is
shown in Listing 1.

l The target can shift out a variable
number of bytes and the PC figures
out the rest. It displays data
according to user specifications. In
contrast to asynchronous serial
data, there is no fixed-character
formatting. The user tells the PC
the length of the data burst.

l The data rate is not of much concern
as long as it is between 150 Hz and
12 kHz (depending on the data
length] and a 33-MHz ‘486 PC is
being used as a baseline receiver.
Although the PC adapts to the data
rate, it is important that the data
rate remain constant for the entire
burst.

l The data sense can be inverted or
true. Taking a cue from the polarity
of the received unique word, the PC
inverts the data if necessary.

. An output line that is typically static
should be used because the decod-
ing program is triggered by signal
edges. The data represents only a
quick disturbance to the output
line, and there are typically some
output lines in a system which
would not be harmed by a fast data
burst. For instance, the same
product also has some output lines
driving lamps which are typically in

20 Issue #54 January 1995 Circuit Cellar INK

one state. The
lamps don’t
respond to the data.

l The PC uses one of
its printer port’s
handshaking input
lines to read the
serial datastream at
TTL levels.

HARDWARE
CONFIGURATION

Figure 1 shows
the debugger’s hard-
ware arrangement. I
built a buffer out of a
4049 hex inverter to
isolate my embedded
system from the PC
just in case of target
meltdown, though
this is not absolutely

Figure l--The one-wire debugger requires just a moment of time on an otherwise occupied /IO bit on
the target system. The data is passed info a PC prinfer port, buffered by a 4049 (which is also
powered by the printer port), and the rest is software.

The 8051 routines
in Listing 1 are used
to dump data serially
to the PC. Notice that
interrupts are disabled
during data output to
ensure that the bit
period is constant and
not lengthened by

necessary if you can afford to toast
your PC. But, I know, I know, it’s 5
P.M., and the not-yet-working, trade-
show demo system ships at 6 P.M., and
the sales manager has been in your
face for a week-use wire and a DB-25!

all other similar widths in the bit-
stream, arriving at an average bit
duration. This duration is used to step
through the bitstream and convert the
samples to hard ones and zeros.

interrupt activity. You
may leave interrupts enabled if the bit
rate is low or the ISR execution time is
small. The port line used here is P1.5.
However, it should be changed to
accommodate your target system.

The input line at J2 is connected
to your target system’s temporary
serial-data output and Jl is connected
to the target’s ground. The DB-25, Pl,
connects to your PC’s parallel port.
Power for the flea-power 4049 is
derived from one of the PC’s parallel-
data output lines so the circuit can be
switched off when not in use. This
arrangement gives a high-impedance
probe input and the ability to drive a
few feet of cable without affecting the
target system. The rest is software.

Once the data is converted, the
unique word detector searches the data
and, if the unique word is found, the
remaining data is displayed. This
whole process takes a fraction of a
second, and after printing, the program
recycles for another data burst.

HOW IT WORKS
The PC program waits for a posi-

tive or negative edge in the data-
stream. It then samples data until the
buffer is full or until no edges are seen
for a while. The actual data samples
are not stored, but only the duration of
each high or low event. The program
scans the data for O-l-0 and 1-O-l noise
glitches and deletes them.

Entering RX ? displays a list of
command-line switches that the
decoding program understands. These
switches provide flexible formatting of
data output including base conver-
sions, byte, word, long integer, and
ASCII modes, as well as time stamp-
ing, printer-port selection, and beep-
on-decode alarm. If you need to run a
test for an extended time to catch an
infrequent bug, it will log data to a file.
As well, the program has a framework
for adding special formatting options
as needed. Note that the L option for
capturing data LSB first assumes that
only the data is LSB first. The unique
word must still be transmitted as A5h,
MSB first, or 5Ah LSB first.

The data is scanned again, looking Another option, -Z, is included to
for the smallest pulse width (assumed allow testing of RX. C running on
to be the width of one data bit). This another PC. It causes RX to send
smallest characteristic width always repeatedly a fixed, four-byte data-
appears in the unique word. With this stream such as 1 lh, 22h, 33h, 44h.
data bit width, the program averages This datastream enables you to judge

the speed performance
of RX on your PC
without having to run
any code in a target
system. The data is
emitted on pin 2 of
the PC’s DB-25
printer-port connec-
tor. That pin can be
connected to the
input of the hardware
buffer for testing.

The same is true for register usage.
The bit-delay constants may also be
adjusted for the master clock used in
your target to get a usable bit rate.
These routines are trivial to adapt to
other micros.

This system does not decode data
in real time, but rather buffers and
analyzes a batch of data. Information
learned about the latter part of a data
burst is used to process the earlier part,
something non-error-correcting, real-
time decoders normally do not do.

Decoding data in real time is a
more difficult problem. For bursty
messages like this, though, decoding
data offline provides simpler operation.
This system is not optimized for use
on noisy communications channels,
like radio. So, beware!

The source code for this project is
available on the Circuit Cellar BBS and
can be modified for your needs. For
instance, you may want to use other
display formats or automated testing.

SYSTEM CONSTRAINTS
This debug method is meant for

only short data bursts of just a few
bytes, not for major core dumps. Use
of longer bursts for light debugging of a

Circuit Cellar INK Issue #54 January 1995 21

target program seems unnecessary, but
other applications may benefit.

One potential problem with the
one-wire debugger is the timing drift
which occurs as the data is decoded. It
is caused by sampling granularity
effects in the averaging phase; a
decoder that adjusts its window during
decoding would improve the situation.
Another solution is to use a more
complex encoding scheme which
contains more clock information than
the NRZ (nonreturn to zero) format
used here. The FM format is such a
scheme and is similar to that used in
disk-drive data encoding. Encoding
another format into the target system
is, of course, more complicated. I ruled
it out for this project around 11:15 P.M .

As a result of the problematic
granularity, the decoder is overly
sensitive to the data pattern at high
data rates. For example, when decod-
ing the unique word and four zero
bytes, the only clock information
available is contained in the unique
word. By the time the decoder steps
out into the fourth byte, some errors

Listing l--The serial-debugging output roufines for the 8051 can be easily adapted for other micros.

;void debugcint data) /* passed in rO,r1 */
; This function serially sends a unique word followed
; by the contents of r0 and rl.
: 1
debug

mov c,P1.5 ; tmp=P1.5; /* save I/O bit state */
mov psw.5,c
clr IE.7 ; disable0: /* disable interrupts */
mov a,#Oa5h; shift_out(Oxai); /* send unique word */
acall shift-out
mov a,rO : shift-outcdata & Oxff): /* send data */
acall shift-out
mov a,rl ; shift-outcdata >> 8): /* send data */
acall shift-out
mov c,psw.i; P1.5=tmp; /* rest. I/O bit state */
mov P1.5,c
setb IE.7 ; enable0; /* enable interrupts */
acall bitdly ; bitdly0; /* interburst delay */
ret

bitdly mov rO,iilZO
LOO4 mov r1,#255
LOO3 djnz rl,L003

djnz rO,L004
ret

:I
;void shift_out(char data) /* passed in accumulator */
; This function shifts out the byte passed, MSB first. A time
; delay is performed here to set the bit duration and should be
; adjusted for the clock rate used in the target system. This

(continued)

REMOTE POWER CARD!3vEwoHs

8 CHAN ADC
DATA MVSITDN, SERVO ClJ_ AK40
Sa-TRESOUmONziioiZSAMPLERATE
S+!ARParrOFFANTlwASnLTEA
CRE4TE STEREO SMTEFI (YCC) FILES 95s
2 CHAN DACVolcE WI. MUSIC, ALARMS, ClLWXT
WTAESOUmON44hHZWFlJZRAlE
PMYSMWO/STEREOUMTERFiLES
-ASffifTALAllENuATORTw 7%

ws Box850MERR,MAcKNH 5 YEAR LIMITED WARRANTY
(508) 792 9507 FREE SHIPPING IN USA

I

#109
Issue #54 January 1995 Circuit Cellar INK

6 68HC08 8051/52
6 8 0 9 8080/8085 s-0

i;- 6 8 H C l l 8086/l 8 6 4

b

68HC16 8 0 9 6 1 1 9 6
Low Cost!! PC based cross development packages which .==Z,

include EVERYTHING you need to develop C and assembly
-= language software for your choice of CPU.

c

l MICRO-C compiler, optimizer, and related utilities. 1

7.‘ ’
Cross Assembler and related utilities.

-==a+ Hand coded (efficient ASM) standard library (source included).

-x
t Resident monitor/debugger 1 source included)*
+

6”u

Includes text editor, telecomm software and many other
utihties. ?I*

* 6XHC08 and 68HC16 kits do not include monitor/debugger. -=

d’

b

Each Kit: $99.95 + s&h (please specify CPU)
d

s-FtFdfAL!! Su/xr Devdoper’~ Ku >a
~,_ Includes all 8 kits above, plus additional assemblers for 6800,

680116803, and 6502. Reg. $400.00 NOW 5 300.00 A

6
iA.skjor SDK Specralj

_J

Dunfield Development Systems
P.O. Box 31044 Nepean, Ont. K2B 8%

CANADA
Tel/BBS: 613-256-5820 Fax: 613-256-5821 -=a_

Listing l-continued

; delay yields a bit rate of about 1800 bit/s with an 11.059.MHz
; crystal. Port P1.5 is used as the serial output line, and can
; be changed to suit your system.
:(
shift-out

mov r2,#8 ; i=8.
LOO1 ; do i

mov c,acc.7; P1.5=data & 0x80;
mov P1.5,c
rl a data<<=l;
mov r3,#255 i for (x=255: x!=O; x--I; /* bit delay */

LOO2 djnz r3,LOOZ; 1
djnz t-2,1001 ; while C--i != 0):
ret

:I

will already have accumulated.
Data may not be decoded properly if
the rate is too high. On my ‘486/33 PC
clone, this usability threshold is 1.5
kbps for 4-byte bursts, 3 kbps for 3-
byte bursts, 6 kbps for 2-byte bursts,
and 12 kbps for l-byte bursts. Thus, if
you need to blast out data quickly,
keep it short.

Also, the mere printing of data
takes time, and the receive software

does not scan for data while printing.
There is a finite dead time while
printing a data burst before the
receiver is reinitialized. This means
data bursts must be spaced apart in
time somewhat (say, 100 ms), depend-
ing on the print options selected. Oh
well, what did you expect for free?

NOT AN EMULATOR, BUT...
I hope the source code for this

project will make your 10 P.M. projects
run a little smoother. Having used this
technique, it still leaves me longing for
a real emulator. But, for infrequent
needs and a no-deep-pockets employer,
this one-wire debugger works wonder-
fully! *
Hank aallace is the owner of Atlantic
Quality Design, an embedded systems
hardware and software design firm
located in Rural Hall, North Carolina.
He can be contacted at (910) 377-2843
or hwallace@cybernetics.com.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime” in this issue for
downloading and ordering
information.

404 Very Useful
405 Moderately Useful
406 Not Useful

Steven Kubis

Using Spreadsheets to
Simulate Digital Filters

s a project for an
independent study

class, another student
and I were implementing

an IIR digital filter using a 68HCll
microcontroller. We used MATLAB to
design a second-order, low-pass IIR
filter. MATLAB generated the transfer
function that we implemented using
the 68HCll. When we tested the fil-
ter, we found the output was sporadic.

Obviously, something was wrong
with the filter, but we didn’t know
whether the problem was in the design
or the implementation. To success-
fully troubleshoot the filter, we first
had to verify that the design was
correct. If we could do this, then we
knew our problem was in the imple-
mentation, not the filter design.

Because it was a student project,
our method had to be inexpensive. We
decided to use a spreadsheet to
simulate and verify the filter design.

IMPLEMENTING THE FILTER
SIMULATION

We used Microsoft Excel for the
Macintosh to implement the simula-
tion. Any standard spreadsheet can be
used. However, to be most useful, it’s
best if the spreadsheet can plot graphs
directly on the worksheet (see Figure
1). To understand how the simulation
works, let’s first review digital filters.

Digital filters sample an input
signal and calculate the output value

at specific, constant time intervals.
The time between these intervals is
the period. The sampling frequency of
the filter is the reciprocal of the period.
The characteristics of digital filters are
based on the sampling frequency.

Spreadsheets work well for digital-
filter simulation because instead of
being periodic in time, they’re periodic
in position. Each row in the spread-
sheet can represent one sample of the
input signal and the resulting calcu-
lated output signal.

PARTS OF THE SPREADSHEET
The spreadsheet is composed of

six parts:

. sample column-serves as the
timebase for the simulated filter
and is used as a basis for the input
and output plot. The input signal
for the simulated filter is derived
using the sample column. For most
simulations, 100 data points are
adequate.

l input column-produces the simu-
lated-input signal for the filter. The
values in this column are computed
based on the sample column and
the values of the input signal
frequency and sampling frequency.
This is described in detail in the
next section.

l filtered column-contains the output
of the simulated filter based on the
input signal and the filter coeffi-
cients.

l signal and filter characteristics-
specify the input signal frequency
and the sampling frequency of the
filter. They also specify the input-
signal magnitude and any offset.

. filter coefficients-come from the
discrete-time transfer function used
to describe the digital filter. These
coefficients are used to calculate
the values in the filtered column.

l input and output plot-enables the
input signal and filtered output
signal to be viewed. The plot is
produced by plotting the values in
the input and filtered columns
versus the sample column.

PRODUCING THE INPUT SIGNAL
The input signal is the most

difficult part of the spreadsheet to

24 Issue #54 January 1995 Circuit Cellar INK

I
Input signal

r Output signal
Signal and filter
characteristics

Input and
output plot

signal and calculate

1 : 47 : 1 :

Filter
coefficients

Figure l--Microsoft Excel running on a Macintosh works well for filter simulation because if can display graphs of the data on the same screen as the spreadsheef itself.

implement. The input signal should be
periodic and have characteristics of
standard input signals (standard input
signals include sine, square, and
triangular waves). It also must
demonstrate the correct relationship
between the frequency of the input
signal and the sampling frequency.
Two basic calculations produce these
results.

references for the input and sampling
frequency, magnitude, and offset. Use

signals follow). Be sure to use absolute

a relative reference for the current
sample.

operation determines which half of the
period is currently being calculated

to the positive magnitude. The I F (1

(see Figure 3).

The sine wave is simulated using
the S I N () function found in standard
spreadsheets. The signal is scaled
based on the magnitude, rounded to
the nearest integer, and then offset:

The output of the filter is calcu-
lated from the difference equation for
the filter being simulated. The form of
the difference equation varies depend-
ing on the type of filter. When entering
the formula to compute the output,
you should use absolute references to
the filter coefficients. Using this
method, you have to write only one
formula, which can be copied to all
rows in the output column.

To be periodic, the number of
samples in one period of the input
signal must be calculated. This value
is determined by the ratio of the
sampling frequency and the input
frequency.

Samples Per Period= Sampling Frequency
Input Frequency

One cycle of the input signal must be
completed in this number of samples.

To correctly produce the input
signal, the current position in the
current period of the input signal must
also be determined, as shown in Figure
2. The position in the period (PP) is
calculated by:

PP = Current Sample %
Sampling Frequency

Input Frequency

where % is the modulus operator.
Based on these calculations, the
different input signals are produced
(descriptions of some standard input

PPx Zrr x InputFrequencyRound(SIN(~-
--I 1Samplmg Frequency

x Magmtude + Offset

The square wave is simulated
using the I F (1 operation and COS ()
function found in standard spread-
sheets. When the output of the COS (1
function is positive, the signal is the
magnitude plus the offset. When the
COS () function is negative, the signal
is the offset less the magnitude:

IF cos
i

PP x 2~ x Input Frequency
Sampling Frequency

> o THEN

Magnitude t Offset
ELSE

Offset -Magnitude

The triangle wave is simulated by
two parametric equations. The signal
starts at the positive magnitude and
decreases to the negative magnitude by
the middle of the period. In the second
half of the period, the signal starts at
the negative magnitude and increases

USING THE SPREADSHEET
This spreadsheet can be used to

simulate IIR filters, FIR filters, and

_ period of the input signal.

I

Figure 2-The current position in the current period of
the inpuf signal must be determined for the input signal
to be periodic. In this illustration, the value of the input
signal for the fourth of sixteen positions is calculated.

Circuit Cellar INK Issue #54 January 1995 25

Data Genie offers a full line of test & measure-
ment equipment that’s innovative, reliable and
very affordable. The “Express Series” of stand-
alone, non-PC based testers are the ultimate
in portability when running from either battery
or AC power. Data Genie products will be

.>1 setting thestandards for quality on the bench
or in the field for years to come.

l-IT-28 Ewess

The l-IT-28 is a very convenient way
of testing Logic IC’s and DRAM’s Tests
most TTL 74,CMOS40/45 and DRAM’s
4164-414000.44164-441000. lt c a n
also identify unknown IC numbers on
llL 74 and CMOS 40/45 series with the
‘Auto-Search’ feature.
$189.95

HT- 14 Express

The M-14 is one-to-one EPROM writer
with a super fast programming speed
that supports devices from 27328 to
27080. with eight selectable pro-
gramming algorithms and six pro-
gramming power (VPP) selections.
$289.95

P-300

The Data Genie P-300 is a useful device that allows you to quickly install add-
on cards or to test prototype circuits for your PC externally. Without having to
turn off your computer to install an add-on cards, the P-300 maintains com-
plete protection for your motherboard via the built-in current limit fuses.
$349.95

M I N G
M i c r o s y s t e m s
Division of MING P Cr P, INC,

17921 Rowland Street
City of Industry, CA 91748

TEL : (818) 912-7756
FAX : (818) 912-9598

Data Genie products are backed by a full
lyear limited factory warranty.

26 Issue #54 January 1995 Circuit Cellar INK

analog filters that have been converted
to discrete-time form. I suggest you
make a template for each type of filter
and input, then begin experimenting.
The description of three filters follow.
Use these filter designs to test your
templates.

The following equation is the
generalized transfer function for an IIR
filter of order q.

In Figure 4, we see what converting
this to a difference equation yields.
The value of the difference equation is
computed to produce the filter output.
When calculating the difference
equation, it’s a good idea to use as
many coefficients as the highest-order
filter needs. When simulating lower-
order filters, enter zeros for the higher-
order coefficients.

Note that the output is calculated
from the current input and previous
input and output values. For the filter
to be causal, you need to use zero as
the input for the samples prior to
sample 1. The number of these zero
samples depends on the order of the
filter you’re simulating. Also, when
you write the output formula, be sure
to use relative references to the
previous input and output values.

After you’ve created the template
for an IIR filter, try simulating the
filter shown in Figure 5a. This filter is
a second-order, low-pass, Butterworth
filter, designed using MATLAB for a
sampling frequency of 1000 Hz and a
cutoff frequency of 50 Hz.

The following is the generalized
transfer function for an FIR filter of
order 4.

H(Z)=a= a,+a,z~1+a2z-2+...+a,z~

Converting this to a difference equa-
tion yields:

y(n)=a+(n)+a,x(n-l)+...+a,x(n-q)

Again, it’s the difference equation
that’s calculated to produce the
output. The difference equation is
much simpler for a FIR filter, but FIR
filters must be of a much higher order
to have the desired characteristics.
This makes FIR filters less practical to

#llO

IFPI’? Sampling Frequency
2 x Input Frequency

Magnitude -
4 x Input Frequency x Magnitude

Sampling Frequency
Current sample % -

i
Sampling Frequency
2 x Input Frequency

+ Offset

ELSE
Frequency x Magnitude Sampling Frequency

Sampling FreE ~ 2 x Input Frequency ii1 + Offset

Figure 3-The formula to simulafe a triangle-wave input signal uses an I F(I operation fo determine which half of the period is
currently being calculated.

l unstable filters-add an
extra term to the denomi-
nator of the example IIR
filter. This will add an
unstable pole to the filter,
causing the output to
“explode.” (Fortunately,
in the simulation, this
just means extremely

simulate using a spreadsheet, though it nant frequency of 100 Hz, and the
can be done. output is the voltage across the resis-

After you’ve created the template tor. The filter’s transfer function is:
for the FIR filter, try simulating the 1fI

large output values, not

filter given in Figure 5b. This filter is a
tenth-order notch filter designed with

G (s) =
10+0.2533s+~

I y(n!=b~(n)+b,x(n-l)+...+b,x(n-q)-[a,y(n-l)+...+a,y(n-q)]
an I

Figure 4-A difference equation is used to calculate fhe output of an I/R filter of order q.

MATLAB for a sampling frequency of
1000 Hz. It has a center frequency of
125 Hz and a bandwidth of approxi-
mately 100 Hz.

Discretized using the trapezoid rule
and a 1 OOO-Hz sampling frequency, the
discrete-time form is:

Analog filters can be simulated if
they have been converted to a discrete-
time form. The trapezoid rule is a good
conversion to use to transform an
analog filter from continuous-time

4
a, = 1 .OOOO a, = - 1 . 5 6 1 0 a2 = 0.6414
b. = 0.0201 b, = 0.0402 b, = 0.0201

b)
a, = -0.0416 a, = - 0 . 1 8 8 6 a2 = - 0 . 0 8 5 2
a , = - 0 . 0 0 2 4 ad= 0.1268 as= 0.1809
as = 0 .1268 a, = - 0 . 0 0 2 4 a, = - 0 . 0 8 5 2
a , = - 0 . 1 8 8 6 a , , = - 0 . 0 4 1 6

Figure 5-Different kinds of filters-such as a second-
order, low-pass I/R filter (a) and a tenth-order, notch
f/R filter (b)-can be simulated by insen’ing different
coefficients.

form to discrete-time form. The
conversion is shown as:

2(2-l)
T(z+l)

where T is the sampling period. After
substituting for s in the continuous-
time form and selecting a sampling
period, simplify the expression and
find the difference equation. Typically,
the discretized transfer function has a
difference equation like an IIR filter.

As an example, try simulating the
filter shown in Figure 6. It has a reso-

H (Z) = 1 - z-2
56.66-91.322zm1+54.622z-’

You can use the template you created
for the IIR filter to verify the character-
istics of this analog filter.

EXPERIMENTATION
After your templates work

correctly, you can begin to experiment
with the items listed below:

l step response and settling time-
make a template with a unit step
input to view the step response and
estimated settling time.

l aliasing-watch for aliasing to occur
when the sampling frequency is too
low for the input signal.

l output signal quality-note that the
quality of the output signal de-
grades as the input signal ap-
proaches the sampling frequency.

Figure 6-One example of an analog filter that can be
simulated is a band-pass filter with a resonant center
frequency of 100 Hz. The output is across the resistor.

l noise-use the RAN 0 (1 function in
your spreadsheet to add simulated
noise to the input signal.

The only limits are the spreadsheet’s
capabilities and your own creativity.

CONCLUSION
Basic digital filters can be simu-

lated using a spreadsheet, a tool most
people already have. Once you’ve
created a set of templates, the simula-
tions are easy to use, flexible, accurate,
and best of all inexpensive.

Getting back to my original
problem, the spreadsheet simulation
showed that the filter design was
correct. The problem was in the
hardware. After some debugging, the
filter worked like the design. It was a
beneficial problem, though. Now my
colleague and I know that spreadsheets
aren’t just a financial tool. l&

Steven Kubis is currently a senior
technical writer with Great Plains
Software in Fargo, North Dakota. He
graduated in 1993 with a BSEE degree
from North Dakota State University.
He may be reached at skubisd
cogs.gps.com.

R. E. Ziemer, W. H. Tranter, and D.
R. Fannin, Signals and Systems:
Continuous and Discrete, New
York: Macmillan Publishing
Company, 1989.

The Student Edition of MATLAB
Reference Manual, Englewood
Cliffs: Prentice Hall, 1992.

407 Very Useful
408 Moderately Useful
409 Not Useful

Circuit Cellar INK Issue #54 January 1995 27

Art Sobel

A RISC Designer’s
New Right ARM
Writing Code for the ARM
Processor

4Fl ’ s you may
r recall, the ARM

V
processor first resided

on a plug-in, second-
processor board in the 6502-powered
BBC computer and relied on the host
computer to run the file system and
user interface.

The satellite board had a small
supervisor program called the Brazil
Monitor, which mediated communica-
tion with the host and enabled ARM
programs to pretend that they were on
the main computer. Operating system
calls were made with the software
interrupt (SW I) instruction, similar to
the way that the PC uses the I NT
instruction for DOS and BIOS calls.
The assembler and
compilers for the ARM
form the basis of the
current ARM toolkit.

In 1987, Acorn
made its first ARM-
based computers. It
extended the Brazil
Monitor and added all
the functionality of
the BBC host machine
including a BASIC I I

interpreter, equivalent Figure l--The basic sefup for developing ARM software uses a host compufer

BBC file system, and a
(PC or UNIX) to develop code and to operafe the debugger. Optionally a logic
analyzer is useful to monitor board operation. A ROM emulator downloads code

This new operating system was called
Arthur.

The newer versions of the ARM
operating system are called by the
more ordinary name of RISC-OS. In
typical, conservative software fashion,
RISC-OS retains all of the operating
system calls of the preceding program-
ming environments-Brazil, BBC, and
Arthur.

Unlike a DOS machine, Acorn
computers have both the BIOS func-
tions and the operating system in
ROM. The ROM also contains file
system support for floppies in Acorn
and DOS formats; IDE disk drivers;
drawing routines (similar to
QuickDraw and Display PostScript);
window, font, memory and task
managers; and BASIC interpreter and
editor.

Greater functionality can be added
through the use of modules which are
loaded from disk and reside in RAM.
Modules provide new SW I calls that
extend the operating system. This
method is similar to a TSR (terminate
and stay resident) program on a PC.
Plug-in boards also add their own
drivers and operating-system exten-
sions.

When the ARM600 was built in
1991, the first version of the cross-
development software was also
released. Currently, the ARM Cross-
Development Toolkit includes the
assembler, C compiler, linker, librar-
ies, and support utilities. The tools let
you develop, test, and refine embedded
ARM applications using a PC-compat-
ible computer or UNIX workstation.
The toolkit is distributed to developers
by most of the ARM licensees.

non __
on0 [--I ARM

development
board

desktop user interface. to Rbnlr sockets when building ROM images

2 8 Issue #54 January 1995 Circuit Cellar INK

Table l--This is fhe register assignment fhaf is
sfandard for C using the a rmcc compiler. When a
project uses mixed C and assembler, adhering to fhis
standard ensures fhaf code segments work together. In
genera/, assembler programs must preserve all
registers above R3, retrieve arguments, and return
values in fhe firsf four registers.

DEMON-ROM MONITOR
ARM also developed the DEMON

monitor and debugger program to
operate with their cross-development
toolkit. It was a direct descendant of
the Brazil Monitor, although it was
extensively rewritten and modularized
for easy porting. As I mentioned in the
last article, great care was taken to
ensure that DEMON worked the same
on the PIE ARM60 demo board and the
PID ARM600 development board.

Of course, DEMON has already
started to undergo a new round of
modifications. The trouble started
when the @/OS real-time kernel was
ported to the ARM. In its original
form, DEMON was useful in loading
and debugging single-threaded demo or
user programs. With a real-time
tasking kernel, it interfered with the
RTOS operation so that the two could
not function at the same time. Debug-
ging was very laborious. Geary
Chopoff rewrote the DEMON to be
compatible with the @Z/OS kernel,
and converted much of it to C.

GNU TOOLS-NOT UNIX OR
ANYTHING ELSE

GNU software tools from the
loosely organized and named free-
software foundation have been used by
many processor manufacturers as the
basis for their software development.
GNU has a C compiler, assembler,
linker, and debugger available from
many sources in both binary and
source code.

This past summer, work was done
to add to GNU the capability of
generating ARM code from C. GAS
(GNU Assembler) was also modified to
support ARM assembler text input and
standard object-format output.

APPLE NEWTON
Apple also uses the ARM cross-

development toolkit for Newton

Reg. Assign. Use

RO al arg. l/int. result/scr. reg.
Ri a2 arg. 2/scratch register
R2 a3 arg. S/scratch register
R3 a4 arg. 4/scratch register
R4 vl register variable
R5 v2 register variable
R6 v3 register variable
R7 v4 register variable
R8 v5 register variable
R9 sb/v6 static base/reg. variable
RlO sl/v7 stack limit/stack chunk

handle/reg. var.
Rll fp frame pointer
R12 ip low end of cur. stk frame
R13 sp scratch reg./new-sbininter-

link-unit calls
R14 Ir link address/scratch reg.
R15 pc programcounter

development. The toolkit runs in the
MPW (Mac Programmers Workbench)
environment and couples to the
Newton through the AppleTalk serial
port. The Newton OS is a unique
operating system with no relationship
to the Acorn OS.

For instance, data storage in the
Newton is not based on files, but on a
unified object structure which allows
any data to be accessed by any applica-
tion. Newtonians have gotten around
this by renaming files as “soups of
frames of objects.” Media-like flash
cards have become “collections of
soups.” Applications are organized
into hierarchies of “templates” that
contain descriptions of fields; graphic
objects, buttons, and attached scripts
(methods); and finally other templates.

The preferred Newton program-
ming language, NewtonScript, is an
object-oriented dynamic language in
which object binding is done on the fly
like SmallTalk and not statically like
C++. NewtonScript defines templates
and other kinds of data, and is used to
retrieve and store data, query the I/O
and touch screen, and call C and
assembler routines for special or
accelerated functions.

The Newton operating system also
supports preemptive multitasking and

Listing l--The C and corresponding assembler code for a simple “Hello WorFprogram illustrate a bit of
the ARM’s instruction set.

#include <stdio.h>
int maincint argc, char ** argv)
i
printf("Hello World \n");
return 0;

I

; hellow.lst generated by Norcroft ARM C vsn 4.50
1 00000000
2 00000000 AREA IC$$codel, CODE, READONLY
3 00000000 IxScodesegl
4 00000000
5 00000000 6D 61 69 6E DCB &6d,&61,&69,&6e
6 00000004 00 00 00 00 DCB &00,&00,&00,&00
7 00000008 FF000008 DCD &ff000008
8 oooooooc
9 oooooooc IMPORT printf

10 oooooooc EXPORT main
11 oooooooc main
12 OOOOOOOC ElAOCOOD MOV ip,sp
13 00000010 E92DD803 STMDB sp!,(al,aZ,fp,ip,lr,pci
14 00000014 E24CB004 SUB fp,ip,#4
15 00000018 E28F0008 ADD al,pc,#L000028-.-8
16 OOOOOOlC EBFFFFF7 BL printf
17 00000020 E3AOOOOO MOV al ,I/0
18 00000024 E91BA800 LDMDB fp,ifp,sp,pcl
19 00000028 1000028
20 00000028 48 65 6C 6C DCB "Hello World \n"
21 0000002C 6F 20 57 6F
22 00000030 72 6C 64 20
23 00000034 DA 00 00 00
24 00000038 AREA IC$$datal,DATA
25 00000000 Jx$datasegJ
26 00000000 END

CircuitCellar INK lssue#54 January1995 29

ARM DEVELOPMENT
Let’s take the standard program “Hello World” as a Examine [<exprl>[,[tl(expr2>11

short example (compiled with a r mc c): Registers [mode]

C:>armcc -1i -apes 3132bit -S hel1ow.s -0 hello.0 hel1ow.c

The command generates an assembly and object file for
us to look at. To get the assembly listing we assemble
the he1 1 OW. s file with:

Lo ad loads an image for debugging. < i ma g e f i 1 e > is
the filename of the image and <a r g ume n t s > are any
command line arguments expected by <imagefile>.

L i St examines memory contents in instruction,
hex, and character format. If “+” is specified, < ex p r 2 > is
a byte count.C:>armasm -ii hel1ow.s -1,ist hellow.lst

From the he1 1 ow . o file, we can get the executable file
(he 1 1 o w) by using the a r m 1 i n k program and the appro-
priate library file. As with most C compilers, the he 1 1 ow
file is quite large because of the inclusion of p r i n t f
from the library.

C:>armlink -0 hellow he1low.o Software/lib/armlib.321

Now we start the debugger.

C:>armsd hellow

The debugger displays a logon banner identifying critical
information. The list command can be used to display
the program. When you execute the program, the
program lists:

armsd: go
Hello World
Program terminated normally at PC = Ox00009f64
to024 Ox00009f64: OxefOOOOll : swi 0x11
armsd:

The most useful functions of the debugger are:

Load (imagefile) [<arguments>]
List [<exprl>[, [+l<exprZ>l]
Break ~<context>~<count>l~DO'I'l<command>;~'t'l[IF~expr>l]

B r e a k sets a breakpoint or, with no arguments
displayed, gives the breakpoint list. <count > specifies
the number of times the breakpoint must occur before
execution is halted or < ex p r > is tested. When the
optional ” I F" clause is specified, execution is only
halted when < exp r > evaluates to nonzero. If the optional
"DO" clause is specified, then the commands enclosed in
the braces are executed when program execution is
stopped because of the breakpoint. Code can step by
source program statements as directed. For instance, i n
directs it to step into calls, < c o LI n t > specifies the
number of statements or instructions to be stepped, and
<e x p r > specifies a condition which must evaluate to 0
before stepping stops.

Exami n e checks memory contents in hex and
character format. If the ‘I+” is specified, < e x p r 2 > gives a
byte count.

Re g i s t e r s displays the contents of ARM registers
RO-RI5 of the current mode and decodes the PSR. If a
mode is given, display the contents of those registers
which differ between the named and the current mode.

Although the debug support software is currently
command-line driven, it is being expanded into a full
GUI debugger called JumpStart, which should be avail-
able for the PC in early 1995.

memory protection using the MMU of Helios operates like UNIX with on ARM development boards after
the ARM610. Apple also uses the real-time extensions and has a POSIX recompiling. A version of Helios has
ARM in big-endian mode (byte 0 interface so that many programs already been ported to the PID. When
corresponds to D[3 1:24]) instead of the written for UNIX workstations work an SMC Ethernet board is added, the
Acorn-preferred little-endian mode. It
is not likely that this software will be
used by independent programmers for
their embedded applications since it is
entirely in ROM and not divided into
convenient OS and BIOS partitions. As
a final factor, Apple also strictly
controls who gets licenses for its
software.

HELIOS REAL-TIME OS
Real-time operating systems based

on Micro-kernel architecture are the
current rage. Fortunately, this type of
operating system has just been
announced by Perihellion Distributed
Software and is called HelioslARM.

load - User code
go - I

exit
break

Ext int

PID appears as a
UNIX node on a TCP/

Figure P--Within fhe main
module of C-DEMOIV, Level0
starts when fhe board comes
out of reset and initializes the
RAM and DEMON data
structures. The main program
operates as a loop, waifing for
communication from the host
computer through the driver
routine. This communication is
interrupted and acted on by the
RDI interpreter. lnterrupfs are
directed through the vector
module and then the handler,
which then redirects the
interrupt routine to user code.

30 Issue #54 January 1995 Circuit Cellar INK

Top of
RAM

1 0 0 0

OAOO

0000

OAOO

0 2 8 4

OOD4

0084

0 0 9 4

0 0 7 4

0 0 6 4

ooic

Km0000

Procee~or stacks

Breakpoint support

MPU vector area

FIQ vectors

IRQ vectors

Misc. support functions

Breakpoint vector area

MPU vector area

Flgure Z-C-DEMON expects a specific memow
organization. The MiW exception vectors are
preassigned by hardware. Breakpoint vectors are in the
fowesf page because of the use of direct PC loading.
Soft vector facilities, which can be reassigned by the
user, include processor stacks (one for each mode),
&bat variables, and the floating-point emulator.

IP network! This is sophisticated stuff
with a lot of bytes.

Although the first versions of
Helios for ARM have begun to ship,
work remains on the multithreaded
debugging environment. We expect
that Helios with the multithreaded
debugger will appear by June 1995 and
X Windows by Christmas.

At this time, Helios is too compli-
cated to be adequately covered in a
short article. I will cover it when it has
a specific implementation such as in
an ARM7500 embedded computer
board.

ARM SOFIWARE DEVELOPMENT
Figure 1 shows the typical develop-

ment setup used with a NPIE [VLSI’s
version of PIE) or PID board. As wi&
many embedded CPUs covered in
Circuit Cellar INK, there is no native
Development environment available
‘or the ARM (at least in the U.S.).
Program writing, compiling, and
assembling must be done on a separate
workstation or PC. The PC connects
:o the development board through a
serial port and a null-modem cable.

We’ve beefed up our well-respected
es featuring more capacity and
ower and searing speed of these

field-tested develooment tools vourself. Be readv to kick a little butt and rest
assured that Team’Paradigm is’here to back you’up.

The serial port can speed along at 38.4
kbps, but large programs still take a
while to download.

If the ROM is being debugged (as
when developing a new version of the
DEMON), the use of a ROM emulator
is highly recommended. The NPIE
operates out of a single l-Mb ROM,
while the PID requires four 256-Kb
ROMs to include the whole DEMON.
We have included a 32-bit logic-
analyzer port on the development
cards. When tracing the operation of a
new board or ROM, this can be a great
time saver. Both HP and Fluke logic
analyzers have been used.

After writing code in assembler or
C, the source is converted to ARM-
object format (AOF) using the ARM
assembler or C compiler. At this time,
syntax or typing errors such as dan-
gling labels are fixed. When mixing
assembler and C modules, the pro-

Listing Z-hterrupf handlers must be installed before fhey can be used by user code. The assembler
version (a) explicitly uses SW1 Ox 70 (InstallHandler soffware interrupt ca//) while the C version (b) uses a
call to a preassembled handler that then uses the same SW I call.

4
InstallHandler EQU 0x70

MOV al.#vecnum
LDR a2,1/0
LDR a3,=vecloc
SW1 InstallHandler
CMP a2,IjNlJLL
BEQ NotInstalled
LDR al,=NewLoc
STR a2,[all
LDR al,prevvec
STR a3.[all

;place vector num in r0
;place vector value in rl
;addr of int routine in r2
:install the new vector
;installed?
;if NULL, error
:save new vector lot
;then the previous
;vector for restoration
;when done

b)
retval = SWI_InstallHandler(Ox21, 0, vecloc);
if (retval.p2==NULL)

printf("Error: Unable to install");
NewLoc = retval.p2; /* save new vector lot */
prevvec = retval.p3: /* remember for restore */

ARM objects are linked together or debugger while binary format is used
grammer is encouraged to use a to any standard C library using with the EPROM programmer or ROM
common format for software called a r m 1 i n k. Linking resolves external emulator. The resultant executable
APCS (ARM Procedure Call Standard). references and outputs a variety of code can be tested with the a rm s d
Table 1 outlines some of the APCS formats. AIF (ARM interchange debugger either through software
standards. format) is used for loading through the emulation or testing on the target

.

H A L - 4
The HAL-4 kit is a complete battery-operated 4channel electroenceph-
alograph (EEG) which measures a mere G” x 7”. HAL is sensitive enough
to even distinguish different conscious states-between concentrated I ’
mental activity and pleasant daydreaming. HAL gathers all relevent alpha,
beta, and theta brainwave signals within the range of 4-20 Hz and presents
it in a serial digitized format that can be easily recorded or analyzed. HAL’s
operation is straightforward. It samples four channels of analog brainwave
data 64 times per second and transmits this digitized data serially to a PC
at 4800 bps. There, using a Fast Fourier Transform to determine frequncy,
amplitude, and phase components, the results are graphically displayed in
real time for each side of the brain. i

HAL-4 K I TNEW PA C K A G E P R I C E - $279 +SHIPPING
Contains HAL-4 PCB and all circuit components, source code on PC diskette,
serial connection cable, and four extra sets of disposable electrodes.

to order the HAL-4 Kit or to receive a catalog,
C A L L : (2 0 3) 8 7 5 2 7 5 1 O R F A X : (2 0 3) 8752204

C I R C U I T C E L L A R K I T S l 4 PA R K S T R E E T

S U I T E 1 2 l V E R N O N l C T 0 6 0 6 6

l The Circuit Cellar Hemispheric Activation Level detector is presented as an engineering example of
the design techniques used in acquiring brainwave signals. This Hemispheric Activation Level detector is
not a medically approved device, no medical claims are made for thts device, and it should not be used for
medical diagnostic purposes. Furthermore, safe use requres HAL be batten, ooerated onlyl

32 Issue #54 January 1995 Circuit Cellar INK

board. This process uncovers addi-
tional errors in design and coding.
After several such cycles, the code is
deemed adequate and shipped.

The ARM development sidebar
contains an overview of program
developmentusing armcc, armasm,

andarmlinkonthefamiliarhellow.
c program (shown in Listing 1).

THE C-DEMON
The C-DEMON is VLSI’s version of

ARM’s DEMON (Debug Monitor).
Although DEMON is written in

assembly, C-DEMON is mostly
written in C. Both interface to the
ARM debugger using RDP/RDI
(Remote Debug Protocol/Remote
Debug Interface) over a serial commu-
nications line using RS-232 at a default
speed of 9600 bps. This protocol is
buried inside the host-based a rms d
program so that the user only sees
intelligible commands. C-DEMON
offers either a command-line or
graphical debugger.

Figure 2 shows the relationship
between major functional blocks of the f

E “j

SWI m C Prototype and Descriotion
WriteC 0x00 void SWI_WriteC(int ch)

Write char ch to console

Write0

ReadC

DOS call: Display Character INT21 h ah=2h DL=character
0x02 void SWI_WriteO(char *cp)

Write null-terminated string to console
DOS call: PrintString INT21 h AH=9 DS:DX=character pointer

0x04 unsigned int SWI_ReadC(void)
Read char from console
DOS call: INT21 h AH=1 AL=returned character

CLI 0x05 void SWI_CLl(char *cp)
Pass string pointed at host’s CLI. No DOS equivalent

Exit 0x11 void SWI_Exit(void)
Done with program (or process)
Like DOS call: INT21, ah=31 h, terminate and stay resident
Monitor erases program when new one is loaded over it

EnablelNT 0x13 User program enables IRQ. DOS uses STI instruction
DisablelNT 0x14 User program disables IRQ. DOS uses CLI instruction
EnterOS 0x16 void SWI_EnterOS(void)

Enter SVC (supervisor) mode
GetErrno 0x60 unsigned int SWI_GetErrno(void)

Get value of cerrno> in r0

Clock
DOS Extended Error Info: INT 21 h AH=59h

0x61 unsigned int SWI_Clock(void)
Read the system clock
DOS call: INT 21 h AH=2Ch nearest equivalent

Time 0x63 unsigned int SWI_Time(void)
UNIX number of seconds since l/1/70

Remove 0x64 unsigned int SWI_Remove(char l cp)
Remove filename in ASCII format

Rename 0x65 unsigned int SWI_Rename(char *old, char *new)
Rename old to new (both ASCII) r0 and rl pointers

Open 0x66 unsigned int SWl_Open(char *fn,int mode)
Open filename in ASCII to mode - r0 pointer and rl mode

GetVector 0x67 void *SWI_GetVector(int vecnum)
Get the addr location of vecnum vector

Close 0x68 unsigned int SWI_Close(unsigned int handle)
Close file by handle - r0 has handle number

Write 0x69 unsigned int SWI_Write(unsigned int handle, char *buf, int num_bytes)
Write num_bytes from buf to file by handle

Read Ox6A unsigned int SWI_Read(unsigned int handle, char *buf, int num_bytes)
Read num_bytes from file by handle to buf

Seek 0x66 unsigned int SWI_Seek(unsigned int handle, unsigned int pos)
Move pointer into file by handle to location at pos

Flen Ox6C long int SWI_Flen(unsigned int handle)
Get file length of file by handle (or -1 if unable to)

ISTTY Ox6E int SWl_lsTTY(unsigned int handle)
Returns 1 if file is lTY, else return 0

TmpNam Ox6F unsigned int SWI_TmpNam(char l buf,int buflen)
Get temporary filename from OS

AIUALO

I

t:

3
*,

(C O N N E C TS TO ~~-232)

ADD16 A/D CONVERTER’(19 channel& blt)..$ g9.95
AIXMG A/O CONVERTER’ (8 channel/IO bi1).$124.90
Input voltage, amperage, pressure, energy usage,
hysticks and a wide variety of other types of analog
agnals. RS-42Z/RS-485 available (lengths to 4,000’).
Call for info on other AID configurations and 12 bit
converters (terminal block and cable sold separately).
ADDBE TEMPERATURE INTERFACE* (8 ch)..$l39.95
Includes term. block & 8 temp. sensors (-40’ to 146’ F).
STA-9 DIGITAL INTERFACE* (9 channel).........$99.95
Input on/off status of relays, switches, HVAC equipment,
security devices, smoke detectors, and other devices.
STA-9D TOUCH TONE INTERFACE* $ 134.90
Allows callers to select control functions from any phone.
PS-4 PORT SELECTOR (4 channels RS-422)....$79.95
Converts an W-232 port into 4 selectable W-422 ports.
CO-485 (RS-232 to AS-422/R%455 converter)......$44.95

‘EXPANDABLE...exoand VOW interface to control and
monitor up to 512 @lays, irp to 576 digital inputs, up to
128 analo
the PS-4, !z

Inputs or up to 128 temperature inputs using
X-16, ST.32 &AD-l6 expansion cards

FULL TECHNICAL SUPPORT...provided over the
telephone by our staff. Technical reference 8 disk
including test software & programming examples in
Basic, C and assembly are provided with each order.

HIGH RELIABILITY...engineered for continuous 24
hour industrial applications with 10 “ears of proven
performance in ihe energy manageinent field.

CONNECTS TO RS-232, RS-422 or RS-495...use with
IBM and compatibles, Mac and most computers. All
standard baud rates and protocols (50 to 19.200 baud).
Use our 600 number to order FREE INFORMATION

PACKET. Technical Information (614) 464.4470.

24 HOUR ORDER LINE (800) 842-7714
Visa-Mastercard-American Express-COD

lnternatlonal Ei Domestic FAX (614) 454-9656
Use for information, technical support & orders

ELECTRONIC ENERGY CONTROL, INC.
380 South Fifth Street, Suite 604

Columbus, Ohio 43215-5438
Figure 4--The user software communicates with the host through software interrupts as in the PC. Just a sample of
the available B/OS and OS functions are included in the SW list.

1
8,; ,:< .._,^. /I
#I12

Circuit Cellar INK Issue #54 January 1995 33

C-DEMON. Figure 3 shows the low-
memory map of the PID with some
detail on the areas used for the
DEMON monitor. The debug monitor
provides information on register
values, processor mode, and the state
of the memory locations. Through the
RDI-byte commands, you can read and
write a memory location, read and
write a register, read and write a
coprocessor’s register, or change the
mode or flags.

BREAKPOINTS
The DEMON would be useless

without a breakpoint. To set a break-
point, you must be able to change the
code at the location of the breakpoint.
Any location in RAM used for code
can have a breakpoint, but you should
not try to set one in a field of data
since only opcodes can be executed.

To set breakpoints, C-DEMON
takes advantage of the ARM instruc-
tion set, which allows the program
counter or R15 to be set to an immedi-
ate value. Developers of ARM were
familiar with the 6502 from MOSTEK,
which had a range of instructions that
reference a zero page. With the MOV
pc,#immediate,wehaveasimilar
structure which can be used for
operating system calls. The immediate
value becomes a pointer to the range of
0x000-OxOFF or 0x000-Ox3FC when
the immediate is shifted left by four.
By judicious partitioning, you can
assign pointers to vectors that accom-
plish a breakpoint with a single
instruction.

With PID interrupt handlers, both
the basic FIQ and IRQ exception
vectors can be replaced. But most
times, it is the particular subevent
which generated the FIQ or IRQ that
we wish to observe. The PID has eight
events associated with the FIQ and
another eight with the IRQ. These
events correspond to the 8-bit FIQ and
IRQ status registers in the INTWT
PGA. There are two tables set up in

IRQ vectors and
FIQ vectors. When initialized, they
point to a do-nothing-return location.

For the interrupt to do work, it
must be hooked to the start location of
your program’s interrupt handler. You
can do this by:

34 issue #54 January 1995 Circuit Cellar INK

vC/OS TASK STATES
A task is a separately executing thread with defined code, data, and

stack. Several tasks may share the same code and possibly the same data,
but they can never share the same stack. As Figure I shows, tasks in PC/OS
may be in six states.

Figure I-h the pC/OS kernel, a//
task code is loaded, but is wa,, t01 eve*’
dormant until created. The kernel Delay task
runs the highesf priorify task that

WAITING DELAYED RUNNING

is ready. Running tasks can call
delays or wait for an event
(semaphore or queue). Interrupts

J

may change the highest priority

Task d&;IICre;r ?& @;f

DORMANT -or delete READY lNiERR”PiEO
though the timer or interrupts.
The scheduler then reassigns the

00

highest priority status.
Task deleted

A Dormant task is in memory, has been linked, but is not currently
assigned a priority or to a task control block (TCB).

A task is Ready after it has been created. It is assigned a TCP, a stack, a
data area, and a priority.

A task is Running when the CPU is executing its code.
A task may be Interrupted when the CPU responds to an interrupt. The

task may be suspended (returned to Ready with a context switch) if the
interrupt changes the states of other, higher-priority tasks to Ready.

The task may be Delayed if it makes a delay for N ticks by calling
OSTa s kDe 1 ay (1. After N ticks of the clock, the task is returned to the
Ready and may run if it has the highest priority.

A task may be in a Wait state if it is waiting for a message, semaphore,
or queue. Inherent in the design of PC/OS is a timeout for the Wait state.
When a timeout is enabled, the task returns to the ready state with a return
value that indicates that an error has occurred.

Tasks are made known to the PC/OS kernel with the OSTa s kC r e a t e (1
call. They are deleted or put back into a Dormant state with the
OSTa s kDe1 () call. Each task has a unique priority. Altogether, there are 64
priorities and a maximum of 63 tasks (The lowest priority task is preas-
signed to the N U L L task). Since tasks may change priority with the
0 ST a s k C h a n g e P r i o () call, a full complement of 63 tasks would be
inflexible.

A Semaphore is a signed integer which initializes to a positive integer
or 0 before use. A positive value indicates the size of a resource while a
negative value indicates how many tasks are waiting. Semaphores are
created by 0 S S emC r e a t e (), which returns its Event pointer or “handle.” A
task that is waiting for the semaphore calls OS SemPen d (1. If the count
value is positive, it decrements it and returns. If the value is 0 or negative, it
decrements the counter and places the caller in a waiting list for the
semaphore. It also may place the calling task in the wait state with a
timeout value. A semaphore is signaled by calling 0 S S em P o s t (1. The
semaphore count is incremented. If the semaphore count is negative, then
the waiting task with the highest priority is placed in the Ready state and
its timeout value is zeroed. There is no delete semaphore call.

In PC/OS, a message is passed through a Mailbox, which is really a
pointer value. Mailboxes are created through OSM boxC r e a t e () which
returns an Event pointer. If a task wants the message, it calls OSM box
Pen d (1. This call returns the message pointer and changes it to a N U L L. If
the pointer is already N U L L, then the calling task is placed in Wait with a
timeout. To post a message, a task calls OSM box PO s t () . If the mailbox is

already full, it returns with an error. If there are tasks waiting on the
mailbox, it sends it to the highest priority task, making it Ready, and resets
the mailbox to N U L 1. There is no delete mailbox call.

Queues are similar to mailboxes, but they also allow for a definable set
of items to be posted and used in FIFO fashion. With 0 S QC r e a t e (), a task
allocates an Event and an array of pointers to the Queue storage area. A
task that desires an item from the Queue calls 0 S 0 Pen d (1. If there are any
available items, then the first one in the FIFO is popped off and returned. If
the Queue is empty, then the caller is placed in Wait until there is some-
thing in the Queue or a timeout occurs. To place an item on the Queue,
OS0 P o s t (1 is called. If the Queue is full, then the call returns with an
error. There is no delete Queue call.

1. ensuring the event vector you wish
to use is disabled before changing it,

2. calculating the vector number you
need, and

3. using SW I 0x70 to install the
vector.

Figure 4 gives a list of many of the
DEMON system calls and Listing 2
offers a prototype of interrupt-vector
installation in both assembler and C.
In C-DEMON, the entire RDI/RDP
protocol is handled by ma i n-p r g (1,

which is reached after board initializa-
tion.

The RDI/RDP protocol operates in
a half-duplex mode-one side is always
waiting for the other. On reset, DE-
MON sends an “I’m alive” banner and
waits for the host to respond with the
program. When it gets to the forever
loop in ma i n-p r g, the exchange is:

1. DEMON waits for a host command
2. DEMON interprets the command
3. DEMON goes back to step 1

This mode readily lends itself to
the polled I/O method, which is how
D R I V E R . C is configured. I recommend
the polled I/O method so you can
debug interrupt-driven routines with
DEMON configured for polled I/O.
You can turn all interrupts off and still
communicate with DEMON. So, if
your program forgets to enable inter-
rupts, you can examine the flags and
see that this is so.

RETARGETING C-DEMON
Assuming your target’s architecture

is similar to the PID and that you do
not need to rebuild the libraries
providedbyARM(armlib.321 or
a rml i b .32b), there are still some
constraints:

l RAM must be configurable to low
memory (starting at 0x00000000).
This can be accomplished through
direct physical addressing as in the
PID or by use of the MMU virtual-to-
physical remapping facilities.

l default starting location of a tran-
sient program is 0x00008000 (32 KB)

ARM Powered Single Board Computer
32 Bit ARM RISC with “FLAT” SVGA Video

Call for more information, a Programmer’s Manual or Application Schematics

The Pixel Press video display processor is a complete video display subsystem in a 3 x 5 x 5 inch
module. A flexible parallel interface allows connection to a Centronics Port, Parallel Port or directlv to
a Processor Bus. bn board firmware can access external user hardware for embedded applications.
Additional on board hardware includes a watch dog timer, voltage monitor, 4M bit EPROM, 256K
Bytes Processor DRAM, 512K Bytes Frame Buffer and a Debug/Serial port. The debug port operates
as either an RS-232 serial (TTL Level) port or supports direct connection of a PC-AT style keyboard.
Various video output devices are supported including CRT (CGA, VGA & SVGA), EL and AM-LCD.
With video timing provided via FPGA, other display modes are easily supported. Power requirements
vary with display options. Typical power is 700ma at 5 Volts.

Resolution to 1024 x 768 Non-Interlaced Library code available “Royalty Free”

Tools include C and Assembly Application notes for Ethernet and SCSI

ROM support for many graphic primitives Custom hardware & software assistance

Mounts to chassis or Printed Circuit Board ROM based debug Monitor

Anyone with experience in programming Intel 80x86 processors will find ARM assembly language a
pleasant experience. With 14 general purpose registers and a flat memory address space
programmers can manipulate 32 bit word, 8 bit bytes and pointers with extreme ease. No Selectors,
No Segments, Just Plain Flat. A powerful barrel shifter is great for graphics. Conditional instructions
and flag control keep jumps to a minimum and the processor pipeline full. A powerfull Co-Processor
interface can accelerate performance in custom hardware applications.

#113

Applied Data Systems, Inc. - 409A East Preston St. - Baltimore MD USA
Tel: l-41 o-576-0335 Fax: 1-41 o-576-0338 Toll Free: l-800-541 -2003

Circuit Cellar INK Issue #54 January 1995 35

The header files G LO BA L-H . S and
D R I V E R . H have the equates and
defines to modify your target. The file
D R I V E R . C needs a serial driver for the
GetByte and PutByte routinesGet
the serial routines working first.
Although the timer is not needed at
first, it will be missed by programs like
D H RY (Dhrystone example program) or
the PC/OS real-time kernel, which
tracks time. If you elect to add a driver
file (such as an assembly-level driver),
be sure to modify the MAKE F I L E so
that it is properly linked in.

Start with the simple stuff such as
anewserialdriverandTimerINT0
(make it a NULL function). If you can
put this in ROM and it works, great!
Next, do the timer. When you have
both the serial port and timer running,
it’s time for your additions to the
DEMON. In this case, a two-step
process of testing it in RAM and then
ROM should reduce the development
cycle.

The full source code for the C-
DEMON is included in the standard
software release from VLSI and is on
the Circuit Cellar BBS. The rest is left
to your imagination.

A MAJOR PORTING PROJECT
The PC/OS real-time kernel was

converted from 80186 to the ARM as
an exercise to validate the ARM and
its development environment under
real-time constraints. This effort led
to the radical rewriting of the DE-
MON.

PC/OS is compiled separately and
then linked into the user application
to add real-time functionality. It does
not need to be reinvented for each
project. However, the current ARM
PC/OS implementation should be
thought of as a work in progress.
Those who are interested should read
PC/OS: The Real-Time Kernel and
study both the 80186 and ARM code
available from the Circuit Cellar BBS
or VLSI.

PC/OS supports a small range of
basic elements necessary for the
operation of a real-time environment:
tasks, semaphores, messages, and
queues. Tasks are defined in a preset
number of tusk-control blocks (TCBS)
and the other three have a common

Listing 3-The C code to staff multitasking for the 80186 and ARM6 calls an assembly routine called
_OSS t a r t H i g h Rdy, which loads the processor registers with those from the highest priority runable
task. Differences in the instruction consfrucfion of the two versions of this assembly routine are evident in the
fool/owing examples.

void OSStart(void)

UBYTE y, x, p;
'* Find highest priority's task priority number */
y = OSUnMapTbl[OSRdyGrpl:
x = OSUnMapTbl[OSRdyTbl[yll:
p = (y << 3) + x;

* Point to highest prio task ready to run */
OSTCBHighRdy = OSTCBPrioTbl[p];
OSRunning = 1:
OSStartHighRdyO: /* unload stack and start running */

/* -0SStartHighRdy 801861 version */
-0SStartHighRdy PROC FAR

MOV AX, DGROUP
MOV DS, AX
MOV AX, WORD PTR DS:_OSTCBHighRdy+Z
MOV DX, WORD PTR DS:_OSTCBHighRdy
MOV WORD PTR DS:-OSTCBCur+Z, AX
MOV WORD PTR DS:_OSTCBCur, DX
LES BX, DWORD PTR DS:_OSTCBHighRdy
MOV SP, ES:[BXl
MOV SS, ES:[BX+Zl
POP DS
POP ES
POPA
IRET

_OSStartHighRdy ENDP

void OSStartHighRdy(void)-ARM version
Start the task with the highest priority

OSStartHighRdy LDR aZ,=OSTCBCur ;point at current context
LDR al,=OSTCBHighRdy ;TCB of highest prior.
LDR al,[all ;highest task ready to run
STR al,[aZl ;make it the current
LDR a3,[all ;temp place sp in a3

; Start Next Context
LDMIA a3!,iali ;get mode and PSR
MSR CPSR,al :restore the PSR (and mode)
MOV sp,a3 :put stack pointer in sp
LDMIA sp!,lal-ip,lr,pcl ;restore regs

Listing 4-This Ccode illustrates the use of OS_ENTER_CRI TICAL i i and OS_EXI T_
CR I T I CA L i 1 in pC/OS. OS T i me0 T y delays the current task. If fhis code is moved to supervisor mode,
fhenfhecallsfo OS_ENTER_CRITICALO andOS_EXIT_CRI TICALO maybeeliminated.

void OSTimeDly(uint ticks)

if (ticks > 011
OS~ENTER_CRITICALO; /* Disable Interrupts */

/* suspend the current task */
if ((OSRdyTbl[OSTCBCur->OSTCBYl &= -OSTCBCur->OSTCBBitX)==O)

OSRdyGrp &= -OSTCBCur->OSTCBBitY;/* then group not ready */

OSTCBCurm>OSTCBDly = ticks:/ * load number of ticks in TCB */
OS_EXIT~CRITICALO:
OSSchedO; /* find a new task to run */

36 Issue #54 January 1995 Circuit Cellar INK

data structure called an event-control

block (Events). These also have a
predefined number. Interrupts are
special tasks initiated by the hardware
and which may or may not interact
with other tasks. The PC/OS sidebar
briefly describes uC/OS features.

Table 2-A rough
comparison of the
80186 and ARM
architectores shows
only minor ovedaps.

WHAT TO DO?
Like many programs of this type,

@Z/OS is a mixture of assembler and
C. Of course, the assembler portion
needs to be reinvented. The C part of
the code is also susceptible to change
because of severe architectural
differences between the parts. To port
a program from the 8086 family, of
which the 80186 is a member, the first
thing to do is to compare some of the
salient features of the two CPUs (see
Table 2).

Data structures are the first to be
converted since they define the details
of the programs that must deal with
them. Because of the difficulty the
ARM has with 16-bit variables, it is
often better to lengthen them to 32
bits rather than go through all the
pain of jockeying packed 16-bit
numbers.

ARM pointers are also converted to
32 bits (8086 far pointers have the
same number of bits). The first data
structure to be converted is the task-
stack image. The 80186 task image
was built to take advantage of a
combination of POP ES, POPA, and
I RET instructions. The ARM’s task
image uses the structure from a Lo ad
Mu 1 t i p 1 e instruction in which most
of the registers are restored in one
i n s t r u c t i o n .

The two important data struc-
tures-the task image and task control
block-are offered in Tables 3 and 4.

TCB STRUCTURE
Because of the ARM preference for

32-bit quantities, the TCB is modified,
even though 4-byte quantities could
have been packed into a word. How
these structures are used is best
illustrated by the PC/OS call
OSStart (1, which starts the
multitasking kernel by starting the
highest-priority task. Listing 3 gives
the C code followed by the 80186 and
ARM assembler support codes.

Item 80186 ARM

Word Size 1618 bits 32l8 bits
Address Range 64-KB off. + l-MB seg. 4-GB linear
Number of Regs 8 + 4 segment regs 16 + 15 overlapping regs
Supervisor Modes None FIQ, IRQ, Abort
Instruction Size l-7 bytes 4 bytes

Description 80186 (large mem) size ARM size Description

Data Area

Code Area

Status Word 8
CS:IP Restored
by IRET

Registers are
restored by
POPA

POP ES

Offset of Data
Segment of Data

(
offset of Cc&
Segment of Code

I

PSW
IP (PC)
c s
Ax
CX
DX

K
BP
SI
DI
ES <- stk ptr

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

R15-PC 32 = Code Pointer
RlCLR 32
R12 32
Rll 32
RlO 32
R9 32
R8 32
R7 32
R6 32
R5 32
R4 32
R3 32
R2 32
Rl 32
RO 32 = Data Pointer
PSR 32
R13 32 <- stk ptr

Total 16 items 17 items

RO-R15 restored

%MFD SP!, [RO-R12, LR, PC)

Table 3-Comparing the stored processor state for the 80186 and the ARM6 shows the number of ifems to be about
the same. However, the ARM6 registers are 32 bits wide versus the 80786's 76 bifs.

Listing 5-The 9 es t . c.program is a good example of programming with DEMON and @/OS.

int main (void)
1

ret3parm retval:
int idCNUM_TASKSI, j;

union gp 1
unsigned char *b:
unsigned int *w;

1 p:
p.b = (unsigned char *) IOBase:

for (j=O; j<NUMMTASKS; j++) /* generate the IDS */
id[jl = (int)'l' + j: /* create an ID we can see */

OSInit.0; I* needed by UC/OS */
DispSem = OSSemCreateCl); /* Display semaphore */
pQecb = OSDCreateCCvoid **)Qmsg, QDEPTH): /* queue */
j=O;
OSTaskCreate~TaskEmptyFill,&idCjl,&TaskStkCjlCTASKSTKSIZEl.j+l~;
j + + ;

OSTaskCreate~TaskEmptyFill,&id[jl,&TaskStkCjllTASKSTKSIZEl.j+l~;
j + + ;

OSTaskCreate~TaskEmptyFill.&id[jl.&TaskStkCjl~TASK_STK_SIZEl,j+l~;
j + + ;

OSTaskCreate(TaskFil1. &id[jl. &TaskStkCjlCTASK_STK_SIZEI, j+l);
j + + ;

OSTaskCreate~IdleTask,&pZERO,&TaskStk~jl~TASK_STK~SIZEl, j+l);

SWI_WriteO("\nHooking into the CDEMON's PANIC button...\O");

/* Now HOOK the DEMON's PANIC button to UC/OS */
/* PANIC is bit position 7 in IRO

(vecnum = IRQbitvector+bitl = 0x20 + 7)*/
retval = SWI_InstallHandler(Ox27, 0. PanicIRCl);
if (retval.p2 == NULL)

SWI_WriteO("\nError: Unable to install PANIC handler.\n")
if (retval.pl != 0x27)

SWI_WritebC"\nError: vecnum is NOT Ox27.\n");
(continued)

Altl
tions rr
that the
modes
more c(
functio
structu
withou
OS-EN-
sensitil
CRITIC

In tl
transla
enable)
Althou
cannot
direct11
system
interru
interru

The
SW1 ca
ARM r
R14 to
a looki
reques’
OS-EN
EXIT_
around
the fur
examp
proces:
transit
call.

The
involv
functic
Mode I
The in
autom
instruc
OS-EN
functic

PUTT
Inc

ARM 1
qtest
This p
progra
well a:
to proc
host’s
and ar
rupt S(

In
view c
The PI

38 Issue #Ii4 January 1995 Circuit Cellar INK

Although the simple ARM instruc-
tions make code easier to read, the fact
that the ARM does have processor
modes makes some PC/OS functions
more complicated. Whenever a @/OS
function requires access to private data
structures that must be completed
without interruption, the C code calls
OS_ENTER_CRITICALO. Afterthe
sensitive code is finished, 0 S-E X I T_
CRITICAL iscalled.

In the 80186, these are simply
translated to C L I (clear interrupt
enable) and ST I (set interrupt enable).
Although in user mode the ARM
cannot change the interrupt enables
directly, it can through an operating
system call. Thus, SW I OX 14 (disable
interrupts) and SW I 0 x 13 (enable
interrupts) are used.

The process of going through the
SW I call takes many cycles, as the
ARM must save user registers, back up
R14 to find the SW I code, run through
a lookup table, and then do the
request. Many PC/OS functions call
OS_ENTER_CRITICALO andOS_
EXIT_CRITICALO andplacethem
around their user code to accomplish
the function. Listing 4 offers an
example of delaying a task. Thus, the
processor may go through a mode
transition up to four times for each
call.

The next step in porting PC/OS
involves a major rewrite. All OS
functions will be placed in Supervisor
Mode and operated from SW I calls.
The interrupt enable (for IRQ) will be
automatically turned off after a SW I
instruction, obviating the need for the
OS-ENTER- and OS_EXIT_CRITICAL
functions.

PUTTING IT ALL TOGETHER
Included in the BBS distribution for

ARM @/OS is a program called
q t e s t . c, part of which is in Listing 5.
This program gives a good example of
programming with the DEMON API as
well as the PC/OS kernel. In addition
to producing a colorful display on the
host’s screen, Qt. e s t creates four tasks
and an idle task as well as two inter-
rupt service routines.

In Listing 5, ma i n (1 gives an over-
view of the task-initialization process.
The program creates a semaphore with

Listing 5-continued

/* Now HOOK the DEMON's TIMER to UC/OS */
/*(p.b + IROM) = 0: /* stop the TIMER interrupt */
/* TIMER is bit position 1 in IRQ

(vecnum = IRQbitvector+bitl = 0x20 + 1) */
retval = SWI~InstallHandler(Ox21, 0, Timer_IRQ);
if (retval.pZ == NULL)

SWI_WriteO("\nError: Unable to install handler.\n");
if (retval.pl != 0x21)

SWI_WriteO("\nError: vecnum is NOT OxZl.\n");
prev_hand = retval.p3:
(p.b + IRQM) = TimerIT; / restart the TIMER interrupt */
SWI_WriteO("\nDoing an OSStartO\n\n\O");
OSStartO; /* start the pandemonium */

1

/*Panic-IRQ * When the PANIC button is pushed, issue a message*/
void Panic_IRQ(void)
I
union gp 1

unsigned char *b;
unsigned int *w;

1 p:

p.b = (unsigned char *) IOBase:
(p.b + IRQRST) = Panic: / reset any PANIC interrupt */
SWI_WriteO(CYAN);
SWI_WriteO("***OUCH***\O");

i
(continued)

Mountain-30

Mountain-40

Mountain-5 10

TMS320C4x

W H I T E M O U N T A I N D S P
131 D W Highway, Suite 433

l Phone (603) 883.2430

115
Circuit Cellar INK Issue #54 January 1995 39

Listing Ccontinued

/* Timer_IRQ * Timer interrupt routine */
void Timer_IRQ(void)
1
union gp i unsigned char *b:

unsigned int *w;
1 p;

p.b = (unsigned char *) IOBase;
(p.b + IRQRST) = TimerIT; / reset Timer interrupt */

SaveCtxO; /* Save the USER context */
OSTimeTickO; /* do UC/OS tick routine */
RestoreCtxO; /* Restore the USER context */

a count of 1 and a queue with a depth
of 32 items. It then creates five tasks,
three of which have the same code and
arecalled TaskEmptyFill. Italso
creates TaskFill and IdleTask.
Tas kEmptyFi 11 alternately empties
and fills the queue, while Ta s k F i 1 1
only fills it. The idle task prints dots
on the screen. The program connects
the PID Panic button to the Panic ISR
usingtheSWI_InstallHandlersys-
tern call. It then hooks up to the pC/
OS Timer ISR with the same call. The
last call before pandemonium breaks
outisthepC/OSOSStartO.Ihope
your code is more useful!

INSTRUCTION SET EMULATION
The previous example of converting

PC/OS was aided by the availability of
the source code. Converting a piece of
code originally written for another
processor when we have the source
code can be very tedious. It is possible
to do some of this more automatically

by writing macros that directly
translate code into ARM assembler.

With the 68000, Marco Graziano
did just that and converted the sieve
(of Eratosthenes) program into ARM
code. Even though the 68k registers
were kept in memory, the PID was
able to beat a 68020 in this bench-
mark. The use of macros, however,
causes massive code growth. Besides,
often the source code is unavailable, so
you only have the binary machine
code.

To solve this problem, the old code
can run on a machine-code emulator.
Such a tactic is used by Acorn to run
80x86 PC code. A similar program
called SoftPC runs 80x86 code on a
Macintosh or Sun.

FUTURE ARM DEVELOPMENTS
Nothing in the IC and electronics

business is static, especially in the
world of VLSI (generic) and RISC
processors. The ARM-based product

Item 80186 size ARM s ize Description

OSTCBStkPtr far * 16+16 Pointer 32
OSTCBStat ubyte 8 uint 32
OSTCBPrio ubyte 8 uint 32
OSTCBDly uword 16 uint 32
OSTCBX ubyte 8 uint 32
O S T C B Y ubyte 8 uint 32
OSTCBBitX ubyte 8 uint 32
OSTCBBitY ubyte 8 uint 32
l OSTCBEventPtr Pointer 16 Pointer 32
‘OSTCBNext Pointer 16 Pointer 32
‘OSTCBPrev Pointer 16 Pointer 32

‘OSTCBStkPts points to the bottom of either task structure

Pointer-to-task stack image
Task status
Task priority
Timeout for delay or wait
Priority byte bit position
Priority group bit position
Precalculated bit mask
Precalculated bit mask
Pointer to Event Control Block
Pointer to next TCB
Pointer to previous TCB

Table 4--The ARIW~ version of the @/OS task-control-block (TCS) strucfure has a larger item size due to fhe larger
word size in the ARMG.

line will be enhanced with faster and
more capable processors as well as
whole systems on a chip. When these
are mature, I would be happy to inform
you as readers of Circuit Cellar INK
about the products and how you can
use them for your own projects.

In the meantime though, you can
get started on the ARM processor
using the cross-development toolkit
for building ARM-based projects. With
this toolkit, you can write, link, and
debug code including C and assembly.
Large software projects, including a
port of UNIX, have been developed
with this environment. I have also
presented the DEMON board-level
debugger and the small, but useful
@/OS real-time kernel. I trust this
material helps you make progress on
your ARM-based projects. q

I would like to thank the software tool
developers at ARM Ltd., especially
Marco Graziano, Geary Chopoff, and
[aime Smith, for their help with the
software used in this article.

Art Sobel is the hardware applications
manager for embedded products at
VLSI Technology. He has spent 24
years in Silicon Valley designing disk
drive electronics, disk drive control-
lers, laser interferometers, laser printer
controllers, many controller chips, and
speech synthesizers. He can be
reached at sobel_a@vlsi.com.

van Someren, Alex, and Carol
Atack, The ARM RISC Chip: A
Programmer’s Reference Manual.
Addison-Wesley (1993 J, ISBN O-
201-40695-O.

Labrosse, Jean L. F_IC/OS: The Real-
Time Kernel. R & D Publications,
(1992), ISBN 0-13-031352-l.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime” in this issue for
downloading and ordering
information.

40 issue #54 January 1995 Circuit Cellar INK

VLSI Technology
8375 River Pkwy.
Tempe, AZ 85284
(602) 753-6373
Fax: (602) 753-6001
tom.schild@tempe.vlsi.com

Other suppliers of ARM processors,
software, PIE boards, and informa-
tion:

GEC Plessey Semiconductors
1500 Green Hills Rd.
Scotts Valley, CA 95066
(408) 4382900
Fax: (408) 438-5576

Cheney Manor
Swindon
Wiltshire
United Kingdom SN2 2QW
(0793) 518-000
Fax: (0793) 518-411

Sharp Microelectronics
5700 NW Pacific Rim Blvd.
Camas, WA 98607
(206) 834-2500

Other ARM board suppliers:
Applied Data Systems, Inc.
409A East Preston St.
Baltimore MD 21202
(410) 576-0335
Fax: (410) 576-0338

ARM software suppliers:
Perihelion Distributed Software
The Maltings, Shepton Mallet
Somerset, UK BA4 5QE
(0749) 344-345
Fax: (0749) 344-977
pds@perihelion.co.uk

RISC-OS
Acorn Computers Ltd.
Acorn House
Vision Park, Histon
Cambridge, UK CB4 4AE
(0223) 254-222
Fax: (0223) 254-262
customer.services.@acorn.co.uk

410 Very Useful
411 Moderately Useful
412 Not Useful

PIG1 6C5x/l6Cxx Real-time Emulators
Introducing RICE16 and RICExx-Juniors, real-time in-circuit
emulators for the PlC16C5x and PIC16Cxx family microcontrollers:

affordable, feature-filled development systems from
’ 4uqgested Retail for lJ.5. only $599 *

RICE16 Features:

Real-time Emulation to 2OMHz for
16&x and 1OMHz for 16&x
PC-Hosted via Parallel Port
Support; all oscillator type5

8K Program Memory
8K by 24-bit real-time Trace Buffer

Source Level Debugging
Unlimited Breakpoints
External Trigger Break with either

“AND/OR” with Breakpoints

Emulators for 16C71/84/64
available now!

Trigger Outputs on any Address Range n Support 16C71,16C84 and 16C64 with

12 External Logic Probes Optional Probe Cards
User-Selectable Internal Clock from n Comes Complete with TA5M16 Macro
40 frequencies or External Clock Assembler, Emulation 5oftware, Power
Single ‘Step, Multiple Step, To Cursor, Adapter, Parallel Adapter Cable and
5tep over Call, Return to Caller, etc. User’s Guide
On-line Assembler for patch instruction n 30-day Money Back Guarantee

Easy-to-use windowed software l Made in the USA.

RICE-xx Junior series
RICE-xx “Junior” series emulators support; PIC16C5x family, PlC16C71, PIC16C84

or PIC16C64. They offer the same real-time features of RICE16 with the
respective probe cards less real-time trace capture. Price starts at $599.

PIG Gang Programmers
Advanced Transdata Corp. a1150 offers PRODUCTION QUALITY
gang programmers for the different PIC microcontrollera,.

n Stand-alone COW mode from a master device n PC-hosted mode

for single unit programming n High throughput n Checksum verification
on master device n Code protection n Verify at 4.5V and 5% n Each
program cycle includes blank check, program and verify eight devices
n Price5 start at $599

PGMlGG: for EC% family PGM47: for 16C71/84 PGM17G: for 171X?

Call [2141980-2960 today for our new catalog.
ForRICE16.ZIPandotherproductdemos,callourB65at(214)900-0067.

Advanced Transdata Corporation Tel (214) 9804960
14330 Midway Road, Suite 120. Dallas. Texae 75244 Fax (214) 980-2937

#116
Circuit Cellar INK Issue #54 January 1995 41

DEPARTMENTS
Firmware Furnace

Ed Nisley

From the Bench

Silicon Update

Embedded Techniques

ConnecTime

Journey to the Protected
Land: Serious CISC
Meets the Taskettes

RISC proponents

80386 is not the avatar of
CISC architectural complexity.
Baroque, yes; barnacle-encrusted, yes;
the most intricate, no. My vote goes to
a certain (mercifully canceled] main-
frame that sported, among other
oddities, a PAA instruction-Perform
Alternate Architecture. Now that was

a complex instruction!
This month we’ll pop the top on

multitasking, arguably the most
intricate area of this unabashedly CISC
CPU. The ‘386SX leaves us little
choice because desirable features such
as Virtual 86 mode, paged memory,
and exception handling depend on
tasks. Exploring the most prominent
peaks of this region will take several
months even with crampons.

The code this month includes
StrFormat,asprintfO clonewhich
produces formatted output. You may
find it helpful as a lightweight nu-
meric converter in applications that
don’t need full-bore ANSI compliance.

THE SIGHT OF TWO TASKS
SWAPPING

Simply put, a task is what the
CPU does when it’s running a pro-

42 Issue #54 January 1995 Circuit Cellar INK

Listing l--After initializing the hardware and&ware, the FFTS code enfers an idle loop, now grandly
called the Kern e 7 (hey, if’s a sfarf). On each iferafion, the code updates and displays a loop counfer,
pulses a parallel porf bit, and calls the dispatcher roufine to execufe a task switch.

@@KernelIdle:
MOV EAX,[StatusCtrl : use high word of count
SHR EAX,lG
CALL UtilByteToLEDs,EAX
INC [StatusCtrl ; ready for next iteration

MOV ED X ,SYNC_ADDR ; send a blip
IN AL DX
OR AL Olh
OUT DX AL
AND AL NOT Olh
OUT DX AL
CALL TaskDispatch ; do the task switch
JMP @@KernelIdle ; and repeat forever!

gram. Multitasking is just switching
from one program to another, preserv-
ing the state of the first program, and
then loading the second. Switching
rapidly enough between programs
gives the illusion of making progress
everywhere at once. The sham is
successful only because the CPU is
quicker than the eye.

In the 80386 architecture, a
program’s entire state resides in a task
state segment (TSS) when the CPU is
not running it. The TSS holds the
general and segment registers, current
instruction address, stack location, and
other familiar values. There are also,
as we will see, a few unfamiliar items.

Each TSS, being a segment, must
have a descriptor in the global descrip-
tor table (GDT); the selector corre-
sponding to the GDT entry uniquely
identifies the task. The CPU’s task
register (TR) holds the TSS selector of
the current task. During a task switch,

the CPU stores the program state in
the TSS pointed to by the TR.

Rather than deploying a real-time
multitasking kernel, I’ll start off with
the minimum-two trivial tasks that
swap control back and forth. Bitasking
taskettes require much of the same
setup and overhead as multitasking big
tasks while omitting the complexity
that obscures essential details.

Listing 1 shows the first taskette:
the same FFTS idle loop, familiar from
previous columns, is now grandly
called the Kernel task. This endless
loop updates a counter, blips a parallel
port bit, and calls the task dispatcher
to switch to the other taskette before
branching back to its start. Prior to
this loop, the FFTS code performs the
start-up functions described last
month, initializes the hardware, and
prepares a TSS for each taskette.

The other taskette, called
Demo Task in Listing 2, loops endlessly

Listing 2-This fask gains control whenever the FFTS kernel does a task switch. If a/so pulses a (different)
parallel port bit and calls the task dispafcher. The dispafcher preserves fhe caller’s registers, eliminating fhe
need to reload E DX in the loop.

PROC DemoTask

MOV EDX,SYNC_ADDR : this is preserved forever
@Again:

IN AL,DX : send a blip
OR AL,OZh
OUT DX,AL
AND AL,NOT 02h
OUT DX,AL
CALL TaskDispatch ; do the task switch
JMP @@Again ; and repeat
ENDP DemoTask

while blipping a different parallel port
bit. It calls the same task dispatcher
function to return control to the
kernel taskette. A pulsing port bit is
the only indication we have that this
taskette is running.

Listing 3 presents a complete,
albeit stripped-down, task dispatcher
forthetaskettes. ThisTaskPtr isa
48-bit FAR pointer holding the TSS
selector of the current task. Next
Ta s kP t r holds the selector of the next
task to be executed. Obviously, with
only two tasks, it’s also the selector for
the previous task.

If 4%bit pointers seem excessive,
bear in mind that they’re just the 32.
bit, protected-mode equivalent of real-
mode FAR pointers. Sixteen of those
bits hold the PM segment selector,
which must be a TSS in the GDT. The
remaining 32 bits are an offset within
a segment that may span 4 GB. In this
case, strangely enough, the offset will
always be zero because the CPU gets
the actual branch target from the TSS.

TaskDispatchswaps theseg-
ment selector portions of the two
pointers, sets a parallel port bit, then
executes an indirect J M P through
T h i s T a s k P t r. The task switch occurs
during this single instruction, saving
the current CPU state in the outgoing
TSS and loading the new state from
the incoming TSS. The first few
instructions after the jump in the new
task turn the port bit off and return.

The scope traces in Photo 1 show
those three chunks of code at work.
The two taskettes produce the pulses
in the top two traces. The bottom
trace is the task dispatcher’s output.
That 16.ps pulse marked by the timing
cursors is the indirect J M P doing the
task switch!

It bears emphasis: the JMP
instruction marked by those pulses is

the task switch. The CPU executes
one instruction with one explicit
memory operand, stores dozens of
bytes in one TSS, reads a similar block
from another TSS, while loading and
validating all the segment selectors,
memory references, TSS contents, and
so forth and so on. The J M P occurs in
one task and the next instruction is in
another.

Serious CISC, indeed!

Circuit Cellar INK Issue #54 January 1995 4 3

THE UNITED STATES
OF TASKING

The setup for those single-

Listing 3-An indirecf JMP instruction petiorms a ‘386 task switch when the memory location ho/ding fhe
target address has a task’s JSS selector. The JMP target in this code alternates between the two JSS
selecfors corresponding to fhe two faskeffes. The B L register is restored from the incoming task’s JSS and

instruction task switches requires will change even though it’s not explicit/y reloaded!

considerably more effort than execut-
ing them. The TSSs and their descrip- PROC TaskDispatch

tors must coordinate correctly with
USES EAX,EBX,EDX

each other and their own code, data, swap the task pointers
and stack segments. In the general MOV AX,IThisTaskPtr.Segl

case, getting this right can be a XCHG AX,[NextTaskPtr.Segl

nightmarishly complex, ummm, task. MOV [ThisTaskPtr.Segl,AX

Figure 1 shows the simplified _ do the task switch
storage layout we’ll use for the next STR BX : get current task register
few months. The TSS descriptors begin MOV EDX,SYNC_ADDRZ : show it on LPTP

at GDT_TSS_BASE in the GDT. Each MOV AL,BL
OUT DX,AL

TSS descriptor is followed by the MOV EDX,SYNC_ADDR ; mark the start in the old task
task’s LDT descriptor, although we IN AL,DX

don’t need or use LDTs this month. OR AL,04h

A TSS descriptor specifies a task OUT DX,AL

state segment, allowing the CPU to JMP [FWORD PTR ThisTaskPtrl ; shazam!
perform task switches into and out of
that task. Attempting to load a TSS IN AL,DX ; mark the end in the new task

descriptor into any CPU segment
AND AL,NOT 04h
OUT DX,AL

register other than the TR causes an MOV EDX,SYNC_ADDRP : show new task
immediate protection exception. You MOV AL,BL ; . . . BL restored from the TSS

cannot read or write a TSS using its OUT DX,AL

descriptor, even though the descriptor return to the new task
includes the segment’s starting address RET
and length. You must initialize TSS ENDP TaskDispatch

fields through a separate data segment
descriptor.

The general solution requires a different approach by arranging all the ES : ED I at the start of the correspond-
unique segment descriptor called a TSSs in an array starting at address ing TSS. An assembly language ST RUC
data alias for each TSS. That descrip- OOI30000 covered by a single data gives easy access to the fields within
tor gives you read and write access to descriptor called GDT_TSS_AL I AS. The each TSS.
the TSS, and when you’re done, you
discard the alias. I took a slightly

task-creation code converts each task
selector into an array index, then aims

co. 00s 20. oy/ fi STOP

: I !' ;
:...;...I.....l. I... . ..i.......

I :I
;........i~.........i........./........./.........ii

I I iI.
t1 = 8.000u5 tz = 24 .oous At = 16.00~s l/At = 62.50kHz

Photo 1 -The indirecf JMP performing a ‘386 protected-mode task switch is unlike any JMP you’ve seen before.
The two tasks produce the pulses in the first two traces. The task dispatcher routine sets the bottom trace high just
before fhe task-switching JMP and low immediate/y afterward. The pulse is 16 ps long; the JMP itself requires about
15 ps or 500 clock cycles at 33 MHz!

Listing 4 presents the definition of
those TSS fields. There are three major
sections: the machine state between
offset 0 and IOMapBase, an optional
data area, and the I/O permission
bitmap at the end of the segment.
Because the machine state is the only
required part, the smallest possible
TSS is a mere 68h (104 decimal] bytes
long.

Many of the two-byte fields, such
as the segment registers, are padded
with two bytes of binary zeros to
preserve double-word alignment.
While it is tempting to fit user data
into these niches, the Intel dot
specifically reserves them by mandat-
ing zero fill. Disturb not the reserved
areas!

For our present purpose, the
essential part of the machine state
begins with E I P and ends with the GS
field.The BackLink, StackPtr, CR3,

44 Issue #54 January 1995 Circuit Cellar INK

LDTSel,TrapEnable, and IOMapBase
fields aren’t needed for our taskettes.
They remain present, however, and
must be zero-filled to prevent the CPU
from acting on them, as there is no
way to do a partial task switch.

The optional data area in our TSS
structure holds two items. A 32-byte
character string identifies the task in
readable ASCII for use by the TSS
dump routine. The task’s local
descriptor table (LDT) has room for 16
descriptors, although it simply soaks
up space this month.

The I/O permission bitmap must
begin within 64 KB at the start of the
TSS because the IOMapBase field is
only 16 bits long. The ISA bus I/O
address space has 1024 ports, each
corresponding to a single map bit. Our
bitmap thus occupies 128 bytes and, as
with the LDT, simply soaks up space
until we need it in a few months.

The code in Listing 5 sets up the
TSS descriptor and fills the key TSS
fields for the DemoTa s k function
shown in Listing 2. The descriptor
must contain the TSS’s linear base

Task-demo

GDT_TSS_BASE

1000f

GDT_TSS_ALIAS

f0060 _

TSS for demo task

TSS for kernel task

TSS
array

Figure l-FFTS arranges fhe task state segments (X’S) in an array starting at address 00130000. The correspond-
ing descriptors in the GDT begin at GD T_ TSS_BA SE (selector 1000) and occupy every other descriptor entry. In
later columns, each task’s LDT descriptor will follow ifs ES descripfor. The GD T_ T.SSA L IA 5 descriptor
(selecfor 0060) provides read-wife data access to the TSS array.

address rather than its offset within
the GDT_TSS_ALIAS segmentThe
starting CS : E I P values are simply the
GDT_CODE segment and the offset of
DemoTas k's first instruction.

The SS : ES P fields must point to
an area large enough to hold Demo -
Ta s k's stack. Rather than define a
completely new stack segment, I split
the (overly large) existing stack in half

and set S S : ES P to the top of the lower
half. That division allocates about 28
KB of stack to each task and, with
interrupts disabled, gives new meaning
to the old saw “Nothing exceeds like
excess.”

The remaining segment-register
fields contain the same values as the
Kernel taskette.DemoTask and
Ke r n e 1 can share segments because

pmEasy is a complete protected mode envi-
ronment for embedded systems. It initiates
protected mode and provides an application
loader, trap handler, error handler, memory
manager, debugger support, screen writes
and more. pmEasy is integrated with low-
cost 16- and 32-bit development tools from
Microsoft, Borland, Periscope, and others.

Why struggle developing your own
protected mode environment? pmEasy
lets you focus on your application.

BUY AND TRY 30 day money-back guarantee

MICRO DIGITAL INC
D e v e l o p e r o f l-800-366-2491
Cypress, CA, USA FAX 714-691-2363 VISA, MC, AMEX

Use one of our embedded
controllers to save time und
money. They are ideal for
developing products, test
fixtures and prototypes.

We offer a complete lin;“>f
cont ro l le r boards
software tools for the 8051
a n d 87C751 fami l ies o f
microcontrollers. Complete

R
ackages are available to
e lp you develop your

projects.

Features:
l Breadboard area
l Flexible I/O arrangement
l Powerful controller BASIC

for the 87C752 or 8OC32

Ph: (702) 83 I-6302
Fax: (702) 83 l-4629

Iota Systems, Inc.
POB 8987 l Incline Village, NV

89452-8987

#118
Circuit Cellar INK Issue #54 January 1995 45

they’re harmless. The casual approach
suffices for this month’s taskettes and
fails miserably in the general case.
Next month, we’ll install fire walls
between the tasks at the cost of
considerably more setup code.

Figure 2 displays the contents of
both TSSs before the first task switch.
All the Kern e 1 TSS fields are zero
because the CPU stores its current
state during the first task switch. Only
the essential DemoTa s k TSS fields are
nonzero. You can see the value of the
name field to identify those otherwise
anonymous hexits!

TIME ENOUGH FOR TASKING
According to the data book, a

‘386SX indirect J M P task switch
requires 328 cycles or 10 ps at 33
MHz. The 16-p pulses shown in
Photo 1 include 1 ps to create the
output pulse and 15 ps for the task
switch itself. That’s about 500 CPU
cycles.

An experiment with my system’s
CMOS configuration settings sheds
some light on those 170 extra cycles.
One additional read wait state adds 60
cycles, one additional write wait state
adds 17, and both together add 82.
Given the resolution of reading a
scope, if the system board imposes a
few wait states even when set for “0
W/S,” the mystery is solved.

Can this be so! Beats me! As with
most clones, the exact function of the
BIOS setup options isn’t particularly
well documented.

In any event, those additional
cycles indicate that the CPU makes
about 80 memory accesses during each
task switch. That’s in rough agreement
with the number of registers and
values in Listing 4. The CPU must
store the current task state in one TSS
before reading the new task state from
another. Underneath that activity, the
‘386SX bus interface unit cracks each
32-bit access into two 16-bit bus
transactions. The memory gets more
exercise than may be evident at first
glance.

The CPU saves all the registers
regardless of whether the tasks
actually use them. Even though we
don’t have full intertask fire walls in
place, you can see how the CPU can

:- CPU-defined fields
BackLink D W ?,O ; previous TSS selector
StackPtrO FULLPTR {I ; SS:ESP for CPL 0

DW 0
StackPtrl FULLPTR {I : SS:ESP for CPL 1

DW 0
StackPtrZ FULLPTR it ; SS:ESP for CPL 2

DW 0
CR3 DO ? ; paging setup
EIP DD ?
EFLAGS DD ?
EAX DD ?
ECX DD ?
EDX DD ?
EBX DD ?
ESP DD ?
EBP DD ?
ES1 DD ?
ED1 DD ?
ES DW ?,O
cs DW ?,O
ss DW ?,O
DS DW ?,O
FS DW ?,O
GS DW ?,O
LDTSel DW ?,O ; LDT selector
TrapEnable DW ? ; O=not, 1 trap on start
IOMapBase DW ? : OFFSET IOMap if used, else 0

;- custom fields for FFTS task management
the CPU knows nothing of these, so they're not
changed automagically

Listing 4-This assembler sfrusfure defines the layout of a task state segmenf (JSS). The ‘386% CPU
stores ifs regisfers in the currenf task’s JSS during a task switch, then loads fhem from the new task’s JSS.
When a task isn’f acfive, the JSS confains all of the CPU state required to resume if. The data between
IOMapBase and IOMap is optional; FFJS stores the task’s name and the LDJin that spot.

STRUC TSS

TASKNAME-SIZE = 31 : longest possible name

TaskName D B TASKNAMEPSIZE DUP (?I ; room for the string
DB 0 ; ensure a terminator

;- LDT for this task's private code and data

TASKLDTPSIZE = 16 : number of LDT entries

TaskLDT DD TASKLDTPSIZE DUP (?) ; @byte slots

:- I/O permission bitmap, 0 = enabled, 1 = disabled
we only cover the first 1024 ports used in ISA bus systems

IOMap DB 128 DUP (?I ; all I/O ports, 8 per byte
IOMapEnd D B ? ; must be FF

ALIGN 4 ; put next value on DWORD boundary
ENDS TSS

enforce considerable protection when
it’s needed. The downside is that you
get all of the overhead regardless of
how little isolation you actually need.

RISC proponents point out that
task switching need not be so complex
and, instead, should use a sequence of
simple, fast, cheap instructions. Even

the Intel manuals suggest some
systems can use the overall ‘386SX
TSS layout with a subroutine that
saves only a small subset of the full
machine state. Of course, you can’t
use both approaches in the same
system without considerable fore-
thought because an incomplete or

46 lssue#54 January1995 Circuit Cellar INK

invalid TSS will cause a protection
exception.

The CISC approach is faster than
the exact same operations carried out
by a subroutine because the CPU
fetches and decodes only a single
instruction. The RISC technique is
faster if you save fewer registers and
perform fewer protection checks. If
you need a balance point somewhere
between those extremes for your
system, fire up your scope and logic
analyzer. For obvious reasons, I will
use the full-bore ‘386SX approach for
FFTS.

A particular problem with CISC
task switching occurs in embedded-
control systems requiring very fast
interrupt response. Because the task
switch is one looonnng uninterrupt-
able instruction, there may be 15 ps or
more before the CPU can respond to
an IRQ. Practical operating systems
wrap additional uninterruptable code
around the switch, which means the
actual delay may depend more on the
code than the CPU hardware.

Now that you have the Big
Picture, let’s take a closer look at the
events surrounding a single task
switch.

MAKING THE SWITCH
TheTaskDispatchcodein

Listing 3 looks just like an ordinary
function. The US ES directive generates
hidden code to save the registers on
the stack when the routine gets
control and restores them before it
executes the RET instruction. All this
is quite standard, save for one fact: the
stack at the end of the routine isn’t the
same as the stack at the beginning.

Or is it?
When Ke r n e 1 ‘s idle loop calls

Tas kDi spatch for the first time, the
CAL L instruction uses the stack
defined by the startup code. The saved
registers and return address appear
near the top of the stack segment
between 00122000 and 0012FFFF. The
stack is ready for a normal return, but
that’s not what happens.

TaskDispatch swaps ThisTask-
Ptr and NextTaskPtr, placing
DemoTas k's TSSselectorin This-
T a s k P t r. It J M Ps indirectly through
that pointer causing a task switch. The

Listing CThis code creates a ES descriptor with the TA.SK_DEMO selector and a TSS for the second
taskette. The TSS descriptors begin at GD T_ TSSBA S E in the GDT and the segments themselves are
arrayed starting at GD T_ TX-A i I AS. For simplicity, the code, data, and constant segments are shared
befween the two taskeffes, and SS: ESP points to an unused part of the original FFTS stack segment The
St r NCopy function copies a name string into the TSS’S name field where it identifies the task.

TSSPPTR EQU
MOV

<(TSS PTR ES:EDI)> ; shorthand notation
EDI,((TASK_DEMO-GDT_TSS_BASE)/TSS_DESCSTEP) * \
TSS_SPACING ; offset addr of TSS in data

CALL
ADD
MOV
CALL

MemGetDescBase,GDT_TSS_ALIAS,GDT_GDT_ALIAS
EAX,EDI ; linear + offset in segment
EDX,EAX ; EDX = linear address of TSS
MemSetDescriptor.TASK_DEMO,GDT_GDT_ALIAS, \
EDX, SIZE TSS, ACCpTASK32, 0

LEA
CALL

EAX,CTSS_PTR.TaskNamel ; get string addr
StrNCopy,GDT_TSS_ALIAS,EAX,TASKNAMESIZE, \
GDT_CONST,OFFSET DemoName

MOV [TSS_PTR.CSl,GDT_CODE : aim at start of task
MOV CTSS_PTR.EIPl,OFFSET DemoTask

MOV
MOV
LSL
SHR
SUB
MOV
MOV
MOV
CALL

EAX,GDT_STACK ; split the stack area in half
ITSS_PTR.SSl,AX
EAX,EAX
EAX,l
EAX,3 ; leave top dword alone
[TSS_PTR.ESPl,EAX
[TSS_PTR.DSl,GDT_DATA ; set up remaining segs
ITSS_PTR.FSl,GDT_CONST
TaskDumpTSS,TASK_DEMO

current CPU state includes S S : ES P,
locating the stack, and C S : E I P,
identifying the next instruction. In
this case, even though the instruction
was a branch, the CPU stores the
address of the instruction immediately
after the J M P, not the actual indirect
target address, in Ke r n e 1 ‘s TSS.

The CPU registers now fill from
DemoTa s k's TSS. As you saw in
Listing 5, DemoTa s k's stack occupies
the lower part of the stack segment at
about 00129000. That stack has
nothing in it yet, so a return would be
disastrous.

The DemoTas k TSS also supplies
the address of the first instruction the
CPU should execute after the task
switch. The C S : E I P fields stored in
Listing 5 aim the CPU at the start of
the DemoT a s k procedure in Listing 2.
That task-switching JMP finds the
address of the target instruction in the
TSS selector, which is why the 32-bit
OffsetaddressinThisTaskPtr is
always zero.

The DemoTas k code has no special
setup, merely loading the E D X register
and beginning an endless loop. After a

few instructions, the CPU calls
TaskDi spatch and once again saves
the registers and return address on a
stack, this time near 00129000.

Now the magic happens.
The task dispatcher swaps

ThisTaskPtr and NextTaskPtr
again, restoring Ke r n e 1 ‘s TSS selector
toThisTaskPtr.Thetaskswitch
restores all of Ke r n e 1 's registers
includingSS:ESPandCS:EIP.The
first instruction executed in the
Ke r n e 1 task is the one immediately
following the task-switching J M P in
TaskDispatch. The Kernel code
picks up where it left off, twiddles the
port bits, and executes the RET using
the return address and registers stored
on the stack it set up before the first
task switch.

As far as Kern e 1 can tell, it
entered TaskDi spatch and exited
normally because the CPU hid all of
the task-switching hocus pocus inside
the J M P instruction. If you prepared
the TSS fields and selectors correctly,
the task switches will be transparent
to the users. If you screw up, you get a
protection exception.

48 Issue #54 January 1995 Circuit Cellar INK

Following the
CPU’s E I P register
duringTaskDispatch
reveals no discontinu-
ity during the second
task switch. Execution
proceeds smoothly
through the indirect
JMP just as though it
didn’t exist, even
though the CS register
changes to reflect the
new TSS. If you can
keep that straight in
your head, you’ll do
well at this multitask-

__

TSS Sel=lOOO Base=00130000 Name [FFTS Kernel1
Backlink=OOOO LDT=OOOO
CS:EIP=0000:00000000 EFLAGS=00000000 CR3=00000000
SS:ESP=0000:00000000 EBP=00000000 IOMap=OOOO Trap=0000

DS=OOOO ES=0000 FS=OOOO GS=OOOO
EAX=00000000 EBX=00000000 ECX=00000000 EDX=00000000
EDI= ESI=00000000

SS:ESP O/OOOO:OOOOOOOO 1/0000:00000000 2/0000:00000000

TSS Sel=lOlO Base=00130200 Name [Demo Task1
Backlink=OOOO LDT=OOOO
CS:EIP=0030:00001794 EFLAGS=00000000 CR3=00000000
SS:ESP=0028:00006FFC EBP=00000000 IOMap=OOOO Trap=0000

DS=0018 ES=0000 FS=OOZO GS=OOOO
EAX=00000000 EBX=00000000 ECX=00000000 EDX=00000000
EDI= ESI=00000000

SS:ESP O/OOOO:OOOOOOOO 1/0000:00000000 2/0000:00000000

gure 2--Even affer they’re set up for the firs? task switch, the two Task State Segmenfs (JSS)
contain mosffy zeros. The first JSS requires less inifializafion because it will receive the CPU sfafe
during the first task switch. The second TSS must contain valid CS : E I P and SS: ES P fields.
The selectors for these segments reside in the GDJ.

ing stufi.
The process

continues when
Kernel calls TaskDispatch again.
The J M P instruction switches back to
DemoTa s k, which returns from its
versionof TaskDispatch usingits
own stack. Because neither task can
see the other’s stack, there is no way
to return from an incomplete call or
restore the wrong registers. No trace of
either task shows up in the other’s
stack, which should be enforced by
placing them in their own nonoverlap-
ping segments.

You’ve probably read articles
describing how to pull off this stunt in
real mode. No matter how elaborate
the code, it always boils down to a few
key lines, typically in assembler, that
swap the stacks. In protected mode, all
that trickery collapses into one in-
struction because the CPU is on your
side.. .as long as what you want to do
matches that CISC silicon, of course.

Now that we have the taskettes
under control, let’s look at the decep-
tively mundane task of displaying
readable values on the serial port, VGA
screen, and LCD panel.

FORMATTING THE FIELDS
The TSS dumps in Figure 2 were

produced by a simple s p r i n t f (1
clone I wrote to make formatted
output easier. Although St r F o r m a t
doesn’t include all the bells and
whistles, it can display decimal and
hex numbers, ASCII characters, and C-
style strings. You control the output
field width, value alignment, and zero
or blank fill. That’s enough for now.

One 32.bit protected-mode gotcha
will hit you in the knees when you
pass segment information on the
stack. In 16-bit mode, the CPU pushes
constants as lh-bit values. In 32-bit
mode, it extends them to a full 32-bit
value.

In either mode, the CPU pushes
segment registers as 16-bit quantities;
it does not pad them to 32 bits to
maintain D W 0 R D stack alignment. If
you are simply saving and restoring
segment registers around a function
call, this is no big deal. If you are
passing parameters to a function, it
can kill you.

Here’s the catch. St r Fo rma t must
know the size of each value on the
stack so it can step through them. The
default size is four bytes, as you might
expect, which will not work with
PUSH DS. Inthatcase, StrFormat
will step halfway through the next
parameter on the stack when it
increments its internal pointer by four
bytes.

The ANSI-standard-library
s p r i n t f (1 format string includes
several size specifiers. I implemented
the h specifier to identify lh-bit
quantities. Therefore, the format string
“%x” processes a 32.bit-stack entry
and “%hx” handles a 16.bit entry.

The catch comes when you use
the same format string in two places.
Suppose you push either a segment
register (PUSH DS) or the correspond-
ing constant-segment selector (PUSH
GDT_DATA). In the first case, the stack

gains a 16-bit segment
register and, in the
other, it gets a 32-bit
constant that’s numeri-
cally equal to the
segment register.
Regardless of whether
you use “%04x” or
“%04hx”, you lose in
one case or the other.

This problem is not
uniqueto StrFormat.
Any function that
expects a segment value
must know whether the
stack will hold a W 0 RD or
a DWORD quantity.
What’s actually there
depends on how you

phrase the CALL instruction.
TASM sports a PROCDESC directive

that specifies the size of procedure
arguments and enables simple type
checking for procedure calls. Regretta-
bly, P RO C D ES C doesn’t work as
documented and the bugs render it
useless. I guess it’s another one of
those neat features that might, just
possibly, be cleaned up in the next
release. Until then, be careful.

RELEASE NOTES
The code this month creates two

TSSs and dumps their contents to the
serial port using St r Fo r ma t It then
enters an endless loop switching
between the tasks while displaying a
count on the FDB’s LEDs. You can
view the relative times on your system
by watching the three low-order bits of
LPTl on a scope.

Next month we’ll introduce
several more taskettes, activate their
LDTs, and start some memory man-
agement. q

Ed Nisley, as Nisley Micro Engineer-
ing, makes small computers do
amazing things. He’s also a member of
the Computer Applications [ournal’s
engineering staff. You may reach him
at ed.nisley@circellar.com or
74065.1363@compuserve.com.

413 Very Useful
414 Moderately Useful
415 Not Useful

Circuit Cellar INK Issue #54 January 1995 49

Getting By
With Next
To Nothing

Micro-power
Wake-up
Control

Jeff Bachiochi

lthough many
micros can with-

into power-down
or sleep modes, current

savings is never quite what you wish.
Dwindling to 10 mA sounds good until
you do the math for extended hours of
use. At 8766 hours per year, it would
require an 8%Ah battery to operate the
task (discounting battery shelf life). In
a real data-logging situation, the
logging task often takes less time than
it does to reset the processor.

Why keep the whole system
powered, even in a so-called low-power
or sleep mode, when significant
savings can be obtained by switching
the system off between tasks?

There are a few issues I would like
to examine here: power-supply control,
quiescent current, power-on reset
timing, and dead timing.

ON/OFF REGULATION
Back in INK 22, I introduced the

Toko linear regulator with integrated

on and off control. Today Toko’s line
has expanded into a complete selection
of these regulators from 2.0 V to 5.0 V,
which can supply up to 100 mA of
output current.

Other manufacturers are now
offering various configurations of
logic-switched regulators. For instance,
Linear Technology, Sharp, and Seiko
offer linear regulators. Maxim has a
switched-capacitive, step-up regulator.
Linear and Maxim both present
switching-style regulators. [Note this
is not a complete list by any means. It
just includes the parts I’ve used.)

Most regulators have fairly large
off-state quiescent currents, restricted
input-voltage levels, or small output
capability, which makes them poor
choices for this circuit. Instead, I want
the perfect regulator-no off-state
quiescent current, a wide range of
input voltage, capable of infinite
current, and costing under a buck.

OK, I’m willing to give in a little.
Let’s say it has to run off an RC-

style NiCd pack, a camcorder battery,
or a small gel cell and be capable of up
to 1-A output current at 5 V. A 7805 or
low-dropout 2940-5 fits these criteria,
but it isn’t logic controlled. If you refer
back to Steve’s article in INK 15,
you’ll see that the input voltage to the
linear regulator can be switched on
and off with a few additional transis-
tors providing logic-level control and
very little operational current in the
off state.

Sharp’s PQO5RAl is a linear low-
dropout regulator with a logic state

Photo l--The micro-powered wake-up controller fifs neat/y inside a small case. A sing/e connector on the boffom is
used to exchange information with the outside world.

50 Issue #54 January 1995 Circuit Cellar Ink

“000000’
,,oooooo,---

Reset
duration

Mode Time

Reset Dur. 1 0
50 ms 0 0

100 ms 0150 ms :,
200 ms : 1

Mode 1 0

t/10 0 0
t 0
tx10 A
ext. int. i 1

Time 1 0
second 0 0

minute 0hour :,
day : 1

Figure l--Three sets ofjumpers inside the power
controller are used to configure the unit’s reset durabon,
timing mode, and time interval. For example, puffing
jumpers belwen pins 1 & 2, 5 & 6, and 9 & 10 would
select a 150-ms reset pulse and would tell the unit fo
awaken every 10 hours.

controlled on/off. Not only will this
device regulate with an input as low as
5.5 V or as high as 35 V, but it can also
supply a full 1 A of current, not to
mention the standard over-current and
thermal cutoffs. Inthe off state, it
requires less than 1 uA of quiescent
current.

I guess manufacturers do listen to
us after all.

DEAD CURRENTS
Off-state quiescent currents alone

will not make this periodic kick-start
regulator successful. Some circuitry
must remain active to provide the
wake-up signal. I wanted this circuitry
to use a timebase with a wide variety
of useful periodic timings. This is
generally not the case with a simple
oscillator or divider. You might get 1,
2,4, 8, 16,32, 64 seconds and beyond,
but I don’t consider this universally
handy. Instead, I’d prefer a second,
minute, hour, and day as the units or
maybe even a wake-up on external
interrupt.

To solve for these broad require-
ments, I’ll explore using a small PIC
processor in a slow, low-power mode.

A 32.76%kHz crystal gives the slowest
stable timebase I know of and is easily
divided into useful pieces. The only
trouble with slowing down the PIG’s
clock is that the number of execution
cycles per second also decreases. (I’ll
get into more on this latency problem
later.) To reduce current consumption
even more, the PIC is run at reduced
voltage while the external system is
dead.

This brings up another problem.
We need a regulator for the PIC.
Maximum voltage in LP mode is 6.0 V
(min = 2.5 V). This regulator must
have ultralow quiescent voltage (it’s
on all the time). However, it doesn’t
have to supply much current (except to
the PIC). A zener diode would require
a few milliamps of current whereas a
standard regulator takes 100 mA. Enter
the micro-power regulators like
Seiko’s S8 1233PG. Although operating
current is about 3 uA, it supplies more
than 10 mA at 3.3 V.

I chose a 3.3-V regulator so I could
add a Schottky diode drop to the PIC
and still end up with greater than the
minimal 2.5 V. A second Schottky is
added from the switched regulator’s 5-
V output. When the 5-V regulator is
switched on, the PIC is then powered
by 5 V and is logic-level compatible
(more on this later).

ON/OFF DEAD TIME
For the periodic dead timings, I

want those nice round increments: 1
second, 1 minute, 1 hour, and 1 day.
To put some meat on the bones, I
added “times 10” and “divide by 10”
selections. This gives 100 millisec-
onds, 1, 6, and 10 seconds, 1, 6, and 10
minutes, 1, 2.4, and 10 hours, and 1
and 10 days. (Although 100 ms could
be too short a time period depending
on the reset and task-execution times,
I left it in anyway.)

When the dead time times out, the
5-V regulator is turned on. When the
task completes, the task raises an
output bit designated as the off
control. This bit signals the PIC to
remove the power and enter another
dead cycle. This arrangement keeps
the power to the task on for the
shortest possible time, thereby
providing real current savings.

set up ports
A=xxxx1OOO
B=11111111

RTCC=prescale/32
CLEAR RTCC

-I

tables
R_TIME=R_TABLE
TmTIME=T_TABLE
SmTIME=SmTABLE
MmTIME=M_TABLE

H_TIME=H_TABLE, and
D TIME=D TABLE

Reset RESET
pin, set ‘RESET

_ pm, and set
. the reset done

Figure 2a--The main control loop flowchart consists of
power on, reset, andpower off.

Circuit Cellar Ink Issue #54 January 1995 51

MICROPROCESSOR RESET
Many microprocessors use

an RC time constant to delay
program execution until power
has been established and the
oscillator is running. These
timings are generally longer
than necessary just to be safe
when using wide-tolerance
parts. The task can often be
completely executed in less time
than the RC’s time constant. So,
tighter control of the micro’s
reset could save valuable full-
current operating time.

Two of the PIG’s pins are
used as RESET and complemen-
tary *RESET outputs. The reset
duration is jumper selectable
from 50 to 200 us in 50.us
increments. This flexibility
gives different reset timing
depending on the microproces-
sor and power-supply slew rate.
You need to know the minimal
reset time for your external
system to take full advantage of
one of these PIC outputs.

Dee S-TIME=59

Set S-TIME=59 -

USER SELECTIONS
Three sets of jumpers help

make user selections simple [see
Figure 1). The first set chooses a
dead-time period. The second
selects the mode of the dead
time. The final set selects the
reset time period. An installed
jumper presents a logic 0 to the
chip, while a removed jumper
allows the input to be pulled to
a logic 1.

The only odd-ball setting

Dee D-TIME,
Set

H_TIME=23, -
M_TIME=59,

and S-TIME=59

occurs when the mode equals
Il. This is an external interrupt
mode and wakes the dead 0BI
system only when INT is high
or l INT is low. These input pins
are not actual interrupt pins on
the PIC, but are polled in a tight
loop of three 2-cycle instruc-

Figure ZD--A slue loop frr the power-controller flowchap keeps tabs on
the dead time.

tions. Although under 750 us (with the with a clearing of all registers and the
PIC running at 32.768 kHz), it is a far
cry from the 1.5 us possible when the

proper setup for the twelve I/O bits of
port A and B. The nybble port, A, uses

processor is running at 8 MHz. the first three bits (pins) as outputs

configured for a dead time, the
RTCC is read and R-T I ME is adjusted
as described above. In addition, the
time and mode bits point to one of
twelve positions in each of five tables.
These tables hold the appropriate
timing values for all the possible
selections from %O second to 10 days.
(The special case where time equals

GO WITH THE FLOW
(RESET, *RESET, and ON) along with
a fourth as an input (OFF).

The flowchart in Figure 2 follows
this simple code. Initialization begins

Port B uses all bits as inputs (INT,
l INT, TIMEO, TIMEl, MODEO,

MODEl, RESETO, and RE-
SETl). The PIG’s on-chip timer,
the RTCC, is set for a prescale
of 32. Using a 32.768-kHz
crystal gives you an instruction
time of 122.0703125 us or 4 x
‘%2768. Factoring in the prescaler
gives an RTCC tick of 3.90625
ms or 32 x 122.0703125 us. The
RTCC register counts from 0 to
255 (eight bits) which is 1
second or 256 x 3.90625 ms. A
nice round number, eh? And, if
we don’t change the RTCC, the
overall timing should remain as
accurate as the crystal without
having to pay much attention
to the number of instruction
cycles.

The main loop starts by
raising the ON and RESET pins.
This turns on the regulator and
holds RESET high and *RESET
low. The configuration is read
to determine whether the
branch to take is wake-up (set
time) or external input (inter-
rupt). The reset time is read
from a four-place RpTA 6 L E
based on the configuration
jumpers connected to the
RESET0 and RESET1 input
pins.

If the mode bits are
configured for external inter-
rupt, the RTCC is read, and this
number is added to the reset
time (R-T I ME). When the
RTCC reaches this count,
RESET is lowered and ‘RESET
is raised. The external system is
now out of reset and can
proceed with its task. When
done, it signals the PIC by
raising the OFF line. The PIC
now waits indefinitely for
either a low on *INT or a high
on INT.

If the mode bits are

52 Issue t64January1995 Circuit Cellar Ink

Listing l--This BASIC-52 program monitors the femperature and storage position of delicate “malarkey”
during shipment and then indicates the end of the task.

10 A = XBY(ZOOOH)*256 + XBY(2001H)
20 B = (255.XBY(2002H))*256 + (255.XBY(2003H))
30 IF (A<>B) THEN GOT0 170: REM Error so leave
40 IF (A>7FFEH) THEN GOT0 170: REM Out of space so leave
50 XBY(A) = XBY(OEOOOH): REM Sample ADC and store
60 A = A+1
70 XBY(A) = PORTl.OR.OCOH: REM Sample tilt and store
80 A = A+1
90 B = INT(A/256)
100 XBY(2000H) = B
110 B = 255-B
120 XBY(2002H) = B
130 B = A-(256*INT(A/256))
140 XBY(2001H) = B
150 B = 255-B
160 XBY(2003H) = B
170 PORT1 = PORTl.OR.80H: REM Set bit 7 high for OFF signal
180 GOT0 170

‘/lo s adjusts T-T I ME for fractions of a
second just like R-T I ME.)

The timing loop starts by check-
ing for an off signal sent by the
external system when it finishes with
its task. If done, the ON and RESET
pins are lowered, and the task-done
flag is set. Next, the reset timing is
checked. If it is done, RESET is
lowered, *RESET is raised, and the
reset-done flag is set. Finally, the dead
time is checked. Ordinarily, all
registers (seconds through days) are
checked once a second for 0. If all are
0, the dead-timeout flag is set. The
special case of C-T I ME equalling zero
indicates fractions of a second and
flags the processor to check only the
fractional portion. If any of the timing
registers is not 0, they are all adjusted
each time through the timing loop
(once per second] like a digital clock
counting backwards.

Note that I could have used a total
number of seconds for each time
period instead of a seconds, minutes,
hours, and days format. Using just
seconds would save one register, a
bunch of code space for tables, and the
complexity of decrementing multiple
values (i.e., 60 s, 24 h). But, while
simulating and debugging, I like to see
the registers showing me the actual
time remaining and not just some
abstract total number of seconds. If
that makes me an immoral program-
mer, so be it.

Once all the flags are set, the
timing loop is finished. Control jumps
back to the main loop.

TEST CASE
Let’s say we have this case of

malarkey which needs to remain under

40°F. This volatile stuff spoils if it is
not stored upright. The task processor
shipped along with the malarkey
samples the ambient temperature and
tilt of the case to ensure the require-
ments are met by the delivery com-
pany. The journey takes two months.
Logs, taken once every 10 minutes,
account for over 14,000 samples.

Each sample consists of two
bytes-one for temperature and one for
tilt. The temperature is measured
using a silicon temperature sensor.
The sensor’s output is 10 mV per
Fahrenheit degree. An &bit, O-l-V A/D
converter registers O-100°F in less than
0.5-F” increments (plenty of accuracy).

The tilt sensors take six bits-one
for each side the case can be left on. By
setting the upper two bits of the tilt
sample high, the two sampled bytes
can be discerned because the upper bit
of the temperature should never be
high (unless the temperature exceeds
50°F).

Listing 1 offers a short program
written in BASIC-52 which checks
NVRAM for a legal address (stored

/ PRECISION FRAME GRABBER ’

1the CXlOtprecision video frame I
grabber for OEM, industrial and scientific

applications. With sampling jitter of only +3 nS
and video noise less than one ISB, ImageNation
breaks new ground in imaging price/perfor-
mance. The CXlOO is a rugged, low power, ISA
board featuring rock solid, crystal controlled
timing and all digital video synchronization.
A Software developers will appreciate the simple
software interface, extensive C library and clear
documentation. The CxlOO is a software com-
patible, drop-in replacement for our very
popular Cortex I frame grabber. A Call today
for complete specihations and volume pricing.

ImageNation Corporation
Vision Requires Imagination

800-366-9131

FOR ONLY $495*
- CXlOO FEATURES -

. Crystal Controlled Image Accuracy

. Memory Mapped, Dual-Ported Video RAM

. Programmable Offset and Gain

. Input, Output and Overlay LU’I’s
n Resolution of 5 12x486 or Four Images

of 256x243 (CCIR 512x512 & 256x256)
. Monochrome, 8 Bit, Real Tie Frame Grabs
. Graphics Overlay on Live or Still Images**
. External Trigger Input
. RGB or B&W, 30 Hz Interlaced Display
. NTSUPAL Auto Detect, Auto Switch
. VCR and Resettable Camera Compatible
. Power Down Capability
. BNC or RCA Connectors
n Built-In Software Protection**
.63 Function C Library with Source Code
. Text & Graphic Library with Source Code
. Windows DLL, Examples and Utilities
. Software also available free on our BBS
. Image File Formats: GIF, TIFF, BMP, PIC,

PCX,TGA and WPG
** THESE OPnOVS AWlABLE AT EXTRA UXT

* 5495 1SDOhfESTIC,OEMSINGLEUNlTPRIC!i

P.O. BOX 276 BBAVIRTON, OR 97075 USA PHONE (503) 641.7408 FAX (503) 643-2458 BBS (503) 626-7763 I

#120
Circuit Cellar Ink Issue #54 January 1995 5 3

both as address and
complement for secur-
ity’s sake) before taking
any samples. After
storing the samples, the
address pointer (and its
complement) is updated
for the next sample. The
OFF pin is raised signal-
ing the PIC to drop
power.

The RS reset time of
my RTC52 is 55 ms. The
task execution is 88 ms. I
save little by using the
PIG’s RESET output pin
(however, the minimal
reset time necessary for
the RTC52 is about 20
ms). Current consump-
tion during this period is
101 mA, which is about
39 uAh per sample (task).
At 14,400 samples, that’s
0.56 Ah of battery
current needed for the
external system.

The dead-timer
circuitry shown in Figure
3 requires 25 uA of
current. Since it will be
running 24 hours per day
for the 60 days, it
requires 36 mAh of
battery current.

CONCLUSION
Figure J-The micro-powered wake-up controller is based on a P/C running at 32.768 M/z. A PQ05RA 1 low-dropout regulator helps
keep power use fo a minimum.

If you work out all the calcula-
tions, 720 Ah is required to run the
external system for 60 days. In sleep
mode, the external processor alone
would require over 14 Ah. Either
power usage is unacceptable for
battery-powered systems.

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035
(408) 432-1900
Fax: (408) 434-0507

1150 Ringwood Ct.
San Jose, CA 95131
(408) 433-3208
Fax: (408) 433-3214

But, with a little periodic stimu-
lus, this power consumption can be
reduced to a comfortable level of less
than 0.6 Ah-all this from a system
which normally requires 0.1 A of
current for each hour it’s used. q

Maxim Integrated Products
120 San Gabriel Dr.
Sunnyvale, CA 94086
(408) 737-7600
Fax: (408) 737-7194

Sharp Electronics Corp.
Microelectronics Group
5700 NW Pacific Rim Blvd., Ste. 20
Camas, WA 98607
(206) 834-2500
Fax: (206) 834-8903

Toko America, Inc.
1250 Feehanville Dr.
Mount Prospect, IL 60056
(708) 297-0070
Fax: (708) 699-7864

leff Bachiochi (pronounced “BAH-key-
AH-key”) is an electrical engineer on
the Computer Applications /ournal’s
engineering staff. His background
includes product design and manufac-
turing. He may be reached at
jeff. bachiochi@circellar.com.

Microchip Technology, Inc.
2355 W. Chandler Blvd.
Chandler, AZ 85224-6199
(602) 786-720
Fax: (602) 899-9210

Seiko Instruments, Inc.
Semiconductor Products Group

416 Very Useful
417 Moderately Useful
418 Not Useful

54 Issue #54 January 1995 Circuit Cellar Ink

HOME AU1J;OMATION
Building,C:on~~~rol

ultimedia Home Networks

HCS Hard-wire Control: Back to Basics

,JANI\RY 199s 59

or many years, custom
audio and video installers
have created whole-houseEl entertainment systems for
the rich and famous. Dur-
ing the last few decades,
the cost of these systems
fell within reach of an av-

erage millionaire, but it still remained above
the resources of most middle-class families.

As multimedia emerges into the home,
many people have learned that they can now
watch television shows or listen to a CD from
their computer. But, this is only scratching
the surface. How would you like to create a
first-class, whole-house entertainment sys-
tem based on your multimedia computer
and on a budget you can afford?

With a few small additions. you can
have VCRs or laser-disc players in other
rooms display on your multimedia computer.
You can also see, hear, and control the CD-
ROM in your multimedia computrr from
any television in your home. You can even
create a video-intercom system that lets you
see and hear users from other rooms in your
house through a multimedia computer or
television. You can install these features in
an afternoon using existing cable.

To understand your options, letk first
take a look at what’s going on today. Those
who install or use entertainment systems in
homes are involved with one of three possi-
bil i t ies: distr ibuted. central ized, or
networked entertainment. Understanding
these three possibilities can help you with
future decisions.

DISTRIBCTED EXTERT_4lNMEN’l
Once upon a time, the home’s entrrtain-

ment system was limited to a singlr antenna
or cable connection to the one radio or telr-
vision located in the living room. Then,
someone bought televisions for other rooms,
connected them to the incoming source
through splitters and cable, and crratrd
what we call a distributed entertainment
system (see Figure 1).

In this concept,.coax cable is used to
distribute the incoming entertainment sig-
nals to output devices (televisions) in any OI

all rooms. With the aid of a video adapter.
multimedia computers can be addrd to the
list of output devices, so you can watch Star
Trek on your computer. Whilr it represents
a step up from an old-fashioned, singlc-out-
Ict system, it still falls short of man! of the
features and adrantagrs that are available.

60 ,JANUARY 1995

Multimedia
Home Networks
CENTRdLlZED ENTERTZINMENT

For only a few 810 thousand. many
custom audio and video dealers will install
a centralized entertainment system in your
home. In this environment (see Figure 2).
one room in the home is selrrtod as the en-
tertainment rrnler where a variety of
entertainment products arc installed.

ITsing distribution amplifiers. miles 01
special-purpose wiring. and remote speak-
crs, this system broadcasts the source in the
entertainment center through the home. In
other words. a CD playing in the entrrtain-
ment room can be listened to while in any
other room in the home. You could compare
this system to an older mainframe computer
where you would pay a ton of money to have
all the processing done in one location.

Compared to a simple distributed sys-
tem. a centralized entertainment syslem
provides a lot of features. With the addition
of wall-mounted volume controls, infrared
repeaters. and more wires. the user can even
control the entertainment equipment from
remote rooms.

IIowever, dislribution is still limited to
thr rquipment in the entertainment renlrr.
Remote users hale to acrehs the CD in the
player of the cntertainmrnt room. Further-
more, rooms (‘an end up H ith several sets of
speakers. One set of speakers is dedicated
to the housr-diatl.ibutiorl system I+ hile an-
o t h e r SPI is 11srci bj t h e m u l t i m e d i a
computer or other audio and video equip-
ment in that room.

The third system is often rclferred to
as networked entertainment or home net-
m:orlEing (see Figure 3). In this en\ ironment,
the output from your computer and enter-
tainmc~nl devicfls ran ,e d i s t r i b u t e d
throughout the home. The user can arress
any of the derives I’rom XIV room.

In manv homes. the Miring is
aIrcad\ in pIarc h a networked en-
trrtainmrnt svs(rm. You ran use the

llAVlD GADDIS

Forget rewiring. Use your ex-

isting coax cable system to

create a first-class, whole-

house entertainment system

that includes a multimedia com-

puter and is on a budget you

can afford.

same coaxial cable that distri hutcs the
entcrtainmcnt signals from thr out-
side world. In simplr terms. T-0 u
connect the output of your computer
and entertainment de\ ices to the
cable and then tune the receivers in
other rooms to the channel that tiis-
plays the derice y-au Hant to access.

In addition to proriding gwater
control and flexibilily. this concept
is easier to install and costs less than
a ccnlralizcd entrrlainment s\stein.

711 srt it up. you can start with your

prehcnt dislributcd svstrm and adci a

few new components.
T,et; take a closer look at this

SI stem.

COMPI-TERIZEI) TEI,E\‘ISlOK
Multimedia computers can be

added to a distributed entertainment
system ,V adding a ~ideoadapter card
to your computer and attaching the
cable srstem to thr F connector on thr
T-idea-adapter card. This setup lets
you watch any trlevision show on VOUI~

cahlr from the computer.
The software that comes with the

video adapter also offers certain con-
trols. You can resize the picture and
mo\c it into a corner (you h’t have
to miss vour favor&e shah while work-
ing in other applications), or use a
caplure command to freeze a frame.
Captured frames can he imported into
olher software where thrv ran he ma-
nipulated and used.

RROADC-ASTlI\G SICX\lS
The video-adapter manufactur-

ers are proud of the fact that \‘CRs
and ridro camcras can he attached IO

their board as an input device. How
wer, if you follow their general
instrur(ions. vou usually haw to re-
locate !~our \;CR or video camera to a
location near the computer. They
never’ poinl out that vou can connect
the \;CX to the cable so vou can watch
VCR-pla)rd movies on !-our compute,
or anv other television in the home.

?o do this, howrber. there are
limitations to overcome. ‘I’hr outputs
of most entertainmrnt tic\ ices such
as !-our VCH are usually designed by

the manufacturer to be limited to ei-
ther television channels 3 and 4 or

line-level audio and Giro (NTSC). Ob-

Ep

lz!azl
CD/Laser Disc

Dust Amp
mm~___,_
Modulator

El
Speaker

I
IBal

CD/Laser Disc

D~sl Amp

Modulator

Speaker

viousl!. if multiplr de\-ices are broadcast-
ing simultanrously. theI- cannot use thr same. ”
frequent M ithout thv signals intrrfering
with each other.

For example. if YOU c~onnc~cted thr out-
put of your VCR directI\; to Ihe cable, it
would intrrfere F+ ith channels 3 or 4 alread!
there. ‘I’hr telw isions and computrrs would
receive a mess.

Prrhaps someda!. manufactur
ers will offw a M ider selection of

outputs for entertainment products. For now,
this condition can be addressed bv the usr
of a derire kno\c n as a modulator: A modu-
lator, picturrd in Photo 1, is a small
elrc,tronic de\-ice that receirrs a signal most
enIertainment dekes output. The modula-
tor changes the signal’s frequency so that
the tir\ ice’s output can br broadcast in an-
other channel.

n!- connecting a modulator to the au-

dio and 1 ideo outputs of your VCK (or anv

J.ANI!ARY 1995 61

Television

a
El

c1u B
Computer

VCR

Ima
CD/Laser Disc

Dist. Amp
mm,_,___,_
MOdUl&X

I3
Speaker

other rntrrtainment d&x), the signal com-
ing out of thr modulator van hc tuned to an
unused channrl hetwen 2 and 120. You ran
then connect the modulator’s output to the
cable svstcm H ithout intc~rfcwnce.

Suppose you arc’ c.onnected to a cahlr
cstem which prop i&s programming WI the

first 50 tc~lcvision channels. and vou own a
VCR anti a laser-disc player loralrd in tlif-
ferent rooms. ~Iodulators (‘an hc wnnec~tetl
to each of the devices, tuned for output as

c,hannels 52 and 54. thrn r~wm-
netted t o thr cahlr svstem. Aon,
from vow computer or an, tcle~ i-

“The wall socket of the future.” Popular Mechanics, September ‘94

“The system is the first pre-wiring system that prepares the home for the
future CEBus products.” Home Theater, April ‘94

“The Tee-System - a wiring backbone developed to accommodate the
growing digital communications needs of the home.” m, Nov. ‘94

“Wiring up for telecommuting -tomorrow’s technology.” Interiors, Nov. ‘94

“The US Tee-System - wiring at its best.” Electronic House, Nov. ‘93

List of Top 50 most popular products featured in 1993. Builder, Dec. ‘93

The experts agree, homes should be Tee-wired now,
Call todav for more information.

470 South Pearl Street 1_8dO-836-2312 Canandaigua,NY 1 4 4 2 4

I

sion in the home. vou can ac’ct‘ss all
thr regular cable channrls and rrcri\r
a program from the VCR on rhanncl
5 2 or \tatch a laser-disc movie: hv
changing to rharmel 54.

SEI,EC’L’IRC A MODl’LSI’OR
Modulators are arailahle with

srrrral options and stvles. The\ are
arailahle for connection to one. two,
or three input tir\iccs and range in
price from S40 to S650. The I~WSI-
cosl modulators arc designed for nmno
or a single-audio channel. Thrl are
ideal for such things as ritieo cameras,
N hich only use one audio channel.

Howver, for distributing your
VCR or laser-disc mories. JOLI ma!
want to opt for a stereo modulator.
which includes both Icft and right
audio channels. Many also inc:lu& a
digital readout tiispla! ing the output
channels on thr front panel. Lnlter
cost models do not inrlutic~ this op-
tion. One of the most significant
cwlsitleratinns inrolmti with the se-
lec~tion of a modulator is bawd OII the
ne& of the avstrm.

Drtermi&q the t! pe of modu-
lator >ou nwd requires a somcw hat
historical prrspwti\e. 11 long time
ago. the FCC allotted fryurnries for
tliffwcwt telrvision channels. 2t tha t
time. 55.25-211.25 MIIz was cowid-
cwd \cr.y high frryurnr! (VHI;) and
all of thr networks acre covered 1)~
rhannrls 2-13. ‘I’hrk then allotted the
hands itith of 211.%-471.25 MHz for
other sw\ icw such as ham radio and
air-traffic control. \\ hen the FCC
nec~tictl more trlevision channels, t hrv
atiticd channels l,$-69 in thr ultra
h i g h frequenr~ (LHF) r a n g e nl
4X.25-801.25 MHz.

B.hrn cahlc companies dwidrd
1 hty wanted more than 69 rhanncls.
they squr~cwd channels rhowr IO-

grther i n thr handwidth t!pirall!-
rcw:r\rd for ham radios or air-traffic:
cwulrol. Is a result. antenna?; receiw

thr channels from 14 and higher on a

62 JAW,4RY 1995 #201

tuw that is o n WUL cwrnputcr.

sc:wen anti cvu\c~~ts it to t hc ma-

log output of \ot11’ I&\ isiori scwen.

‘I%(~ output Irm~u I his l~oard goes to
a standard KC1 \ i&o jack, M hich
(‘ai hc corin(v~Icd lo the input of-
\ou gu(~~srd il-a modufatoi:

11’ thcr.cs is an audio output on
\ow L idco aclaplf~r, wu c a n con-

rircl it to Ilic~ rriotiulator~ a l s o .
:llthough most \ i&o a(1apter.s do

ml irdude audio-output jacks, >ou
can use the audio output of the
sound c,ard that is a~ailahl~~ on niosl multi-
rned ia cwniputws.

\ftw you tuncx thr rnodt~la~o~~ to ?our~

desiwd ou tpu t c:hannc~l. you can watch and

listen to that wulputcr florn an! trim iaion
(OI. other mu Itim& cornplltr~s) irl the home

h! selrcting the cornputw’s c~trarrrrrl.

I2ow that >ou (‘au SW and hew the CD-

fiOM f~~~nl an\ tclr~ ision in the horrrr~. the
chiItiwn c’au hrw~sc~ I hr rnc~yclofwtiia
thrwugh thcil tt,lc\ isions. 01. cm they? 110~

do thr\ srlcct subjr~cts h~JrrJ the nl(mus o n

their tulle\ isiorrs?
Llau! n1anufaac.t UIYE ;IIY w o r k i n g on

t h a t enc. FUI UIY~ tclm isions anti cvrllputr~s

inc~ludr built-in hard#aw that t~uahl~~s 1h~rl1

IO c~orrlrrlunirate with each othrr thrwugh the

c~;d)lc 01’ e\ tw t hwugh thr poMcr.-line wives

the! are pluggrti into. Inlong t titw debt~f-
opments. Intel an t i blicwsol’t ar*t \\ovking

M i th other nI;ulut21c,tu~c:I.s IO de\ isr a svs-

tt%nI that w i l l tJ(b intduwti as ;I homes
wt \\or.k some tirnra in t hc l’u t uw.

‘Ihdak \OII (‘a11 11% moth tJOWd t hal.
i s a!;iifabfe anti knoM11 ;1s au ir~frtrred re-

wiwr 6oc1d ‘l’h~~ hods aw de~igntd to
iwri~ (’ iiil’~;iwti signals I’voni a 51iiall. hdiitl-
held wmotc~ WI~IIWI t h;rl irrc~llrties ;I keyhoard

and I~IOUS~~ huttons. This hand- held c~nablw

!Oll t0 W11tIY~~ \OUI’ rWm~Jllt~l~ lYIllOtd\.

~lo\cc\c~~, inl’r.arwi trchnologv has lim-
lat ions. IIit’Iwcd wrriotes must Iw fwintd
aI the wwi~tx must haw a11 unobstrwtd
path lo the Iwcbi\cx~‘, ,‘iw limittd to il larigc

of’ apf”‘““in1atd\ ?A’. anti do not I’uiict ion

MI’11 in tiiwc,t sunl i t contiit ions (i.tl..

sola~iuriis or outdooI3). Sinw t hv (~hifdrvii

iiw in ot liw IwJnis I’rwii the cwrrifJutt~1: I ht.1

need to use an iril’r2rwf wpeater. to (‘;ir’~\
the signals ~I~III the rcrnotr to the computt~c

111l’rarcd rvpeater~s function just like
thrir namr implies. On one rd. thw IT-

wiw an inl’rwwf signal. .-Zt t hr other end.

thw qroduce a similar. infrxrti signal. So.
thr irrl’varwl rwri~ PI‘ in thr c~hiltirwr’s rwom
is conrrec~trd to an inf’rwd cmittcr in the
cwmfnrtwY5 ~wm. k hen thr c~hiltlrrrr uw t hr

wrnotts in their. IY~OII~S. thr wfwater. system
cwr~irs that output into the ot hw r~Jom to

c,ontr.ol the cwrnfJul~~r:

I llf’l~alwi lr~[JcYll~Ts rYnllmonl\ ,I%'

an! of thaw nwlhot~s to tr.;lnsmit sig-

nals into ot hvi. rworns. Sorw of I he

siniplt5l Iqwatws usr* HI; to Iixiismil

signals. ‘l’hc inl’rxrwi rvc~t~i\c~r~ in OIW

1’00m inc~lutlvs a I’ildiO t i~aiisniillc~i~ t hilt
scwds signals up to 150’ and t hwugh
HaI Is. -\ rwiio rwr’i\(‘r 011 t Iw 01 hci. twtl

pick\ uf) thv rxdio signals Ili~~ii ivpiw-

a~ailaldc as attachments to an infra-
rwi remote 01’ as talrle-top devicxx.

I’rwlbssional audio arid \ i&o in-

stallions ol’lrn us? IOM -voltqy wires,
u hich UC similar to telephone wirrs
anti pro\ idc a gwat rwwrw for thr
USC ol’ inf’rwed wpeatws. ‘I’hr wives
a n d RI-45 jack titw:r&d \tith the
dual-wax system aw i&al I’or. t h i s .
Khrn installed, you ~a11 plug inf’r.a-

rwl rweiww into jacks in an? or all
i~ooms anti plug inl’rarwl crrrittws into
jacks in thta mor11s H ith devices J-W
uant to cwntrd. _Iltrrn;ili~ely. you wri
support t h r uw ol’ an inf’rarwl IV’-
peattar system with an unused pair of
telephonr M ire, 01’ JOU can custom
install 10~ -voltage widng to supporl

this wpeater:
.~nolher method to tiistrihute

inl’r2wd cornmantis lwtwccn r’ooms
uses the same coaxial cahlc carying
the telm ision signals. This rrrrt hod IP-
quiws special splittc~~ic~orrrhir~rr
de\ ices to add and extract the inf’ra-
rwl signals to anti frorr~ the cable in
each ~wm. If VW choose this method.
most amplific~s and headends are not

yet tirsigncd lo fxiss infr2rwl signals.

You nwd to install tiny jumper cables

xound them.

Zl)l)lrK VIDEO c \ZIE:l~1S

\\ hen t hc doo~~lwll rings. Inany

fwoplc c~hoow to gt1 to t hr door to WC

bt ho ih t hr. Some srcwity wrnpa-

nivs like to install cixpclnsi\c \ i&o
r’;lmew ant1 cwnnwt thorn to c’xpen-

Spectrum chart-NTSC

I UHF I
Off-air
band

Oft-air
band

OfMf
band

Off-air
band

2.4.6 7.9Il.13 14..17..20..23..26..*~..~*..~~..~,..~~..~7..~~..~~..~~~..~~..~~..~~...6~

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 600 650

I III II
VHF mid VHF SUPER HYPER ULTRA
low band high band band band

214.6 W-11-13
14.16.18.20.22 23.25.*7.29.31d935.~7yMu13~46~~~”~~”~~~,164-67”7~73”76”7~”**”~~”~~~,-94”97”100”103”1055”108”111”114”117”120

Off-W 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 600 650

Off-air
band I bkd I

HYPER
band I

sivr, special-purpose video monitors. You can
do it that way, hut here’s another solution.
Install an inexpensive video camera at the

Video cameras (often knor+ n as CCTV)
are now as small as pocket pagers. They arc

door that legs you SW the visitor on your

availahle for both indoor and outdoor in-

televisions.

stallations, and the cost has fallen to a few
hundred dollars. They are designed for prr-

manent mounting on a wall. or they can he
set on top of a television, shelf, or t~omputer.
Some manufacturers also build cameras into
multimedia computers and household items
such as lamps, clocks, and mirrors.

You can mount one of these ramrras al
the front door and use a modulator 1.0 cow

trol the output so that it ran be viewed as a
television channel. lTow when the doorbell
rings, you simply change to the front-door
channel and you can see and hear the visi-
tor. Of course, the visitor cannot SW or hear
you in this situation. However. there are
other devices available that enable vou to
pick up a nrarh! trlrphone or activate the
telephone soft Marc on your computer. H!
these methods, vou could greet your visitor
through a speaker attat.hrd to the doorhell.
Similar cameras platwl war lhr hackyard,
pools, spas, or garagrs cnahlc you lo \itw

those areas as Nell.

INSTALLING FIXF:J) VJDEO CAMEK 4S
Temporary or portable video t~ameras

are often used in rooms that are su 1)jec.t to

66 JANUARY 1995

rwiecoral ing. On I htx ollwr hand. your I’roiil

door ib Ii kel\ to wmairl i 11 I h(* same lot,al ion
as are IIW bat~k\artl and SW imming lwol. I:or

B hrii c itko cameras are installed in
I’iwd loc~a(ions. th

t htw loc~ations. vou can iiisbll a t’amera in

ere art st~~twl opt ions foi

Ihc Miring. II’ il is wn~tviitwt, !ou could

a fixrd and l~c~rrnancwt position.

l)l;lcY~ I ht, rnotlulalor iitwh~ illltl tWnrltY~l il

IO the cal)lt~. I IoM(~\w. man! lwoplv lwt+r IO

install lhc ~iiodulnlors for I’ixul c;lmrr;is in

;i stv iw wnlcr or rlosrl H il h 01 hw dikl r-

I)ution equipnit~nl swli as Ilic twix ht~adt~iitl

and aniplifit~rs.

‘I’hr m o d u l a t o r i s

I hrn cwunwtetl to
t hr rahlr H here it
i s inslalled insidr
thts WI’\ iw wnlcr.
The UT%: audio
and b idtw \+ ires aw

iv n I’rorn I htw l o

the t~amera.
Most vi d et)

r;init~r;~s nerd ;I

pair of low-\oltagcl

wirrs IO hring in DC collage from thr
pnurr supplv, and they use standard
2TSC audio/\ ideo cable (often H ith
IK4 jacks) to ctinduct the sound and
J)icture. Video cables are preferred
Iwcause they art’ Iwtter s h i e l d e d
against intc&renw. Iii some cases.
Ie\eI 4e or 5 low-voltage wircxs are usc~d
for thr audio and \ idrn transmission.

But, tncr long runs or nrar high-
pnb+c>r wirrs ni nthrr po\tcr
ccIuipmrn(. lhrq can pick tip inlrr-
I’wrncr. You can run the \ idro wires

parallel to the lowvoltage wires pou-
cring the camera, but avoid running
the rideo cables parallel to power M ir-
ing. If you must cross over power
\+ ires, try to do so at right angles.

CREATJK A VIDEO INTERCOM
LXng the same setup as you do

to see people at your front door, you
can see and hear a person in specific
rooms. If vou set up several rooms,
you can create your 0M n video intcr-
corn system that works through YOUI
computers and televisions.

For example, say Dad is watch-
ing t&vision in the living room and
Junior is working at the computer in
the library. W-hen Junior needs help
with his homework, he can switch on
the living-room rhanncl and see and
hear Dad on his computer. Using his
remote control and the infrared-re-
peater system, Junior then changes
Ilad’s teloision to the library chan-
m-1 (using the picture-in-picture if
akailablr). \OT+ they can set and hear
each other. And, if Dad wants to look
at Junior’s homework, Dad just

changes his television to the computer chan-
nel.

If the computer has a built-in camera,
you may only need to add a modulator to
get that room into your video intercom sys-
tem. In the living room, family room,
kitchen, and bedrooms, you can us;, CCTV
camera and a modulator. As you might imag-
ine, there may be times when you don’t want
your children to watch what you are doing
in the bedroom from their televisions or
computers. Of course, you could throw a
bathrobe over the camera, but you may want
to include a toggle switch that turns the cam-
era or modulator off.

Many people prefer to install fixed cam-
eras inside the rooms because it makes a
cleaner installation when the wiring can be
hidden inside the walls. However, since vnu
may want to change the camera location
when you rearrange furniture. many indoor
cameras are installed as temporary fixtures.
As a temporary fixture, you can place the
camera on top of a lelevision or compuler
or you can stick it to the surface of
a wall with screws, adhesive, or
Velcro. In temporary installations,
thr modulator is oftrn placed on a

shelf or behind other equipment, and then
connected to the nearest cable outlet. 4s you
might guess, you can get greater flexibility
from this concept if you have several cablr
outlets in the room. Multiple room outlets
are recommendrd in new construction or rc-
modeling projects.

.A COST 4NALYSIS
A4ssuming that you already have all of

the computers and televisions that you need,
what would you expect to pay for a com-
plete home netwnrk such as this? The final
analysis is going to differ from home to homr
depending on many variables.

Rut, let’s look at an avrrage est imatc.
You can use your existing cable. If vou

opt for the dual-coax system with headmd,
the parts cost about $1,200 for an 8-outlet
system in a 2,500-square-foot home. Because
larger homrs require more wire. add 25~ for
each additional square foot of vour home
size, and add $10 for each additional out-
let. If you want it installrd by a contractor.
double the cost of the materials.

The video card that allows vour com-
puter to receive television channels adds
S350 for a high-resolution model. The VG.4.

C:>everything.
you.need.to.know.

@home.automation.assn
Join the one association
dedicated to serving the

fast-growing home automation
industry - the Home Automation

Association (HAA).
HAA is expanding the market for home
automation products and services with its
new Gxwmer Understandihg Ptrqram (8.
HAA includes all protocol developers,
manufacturers of PC-based systems, and
other major industry players. HAA mem-
bers get the latest bottom-line news.
Make sure you’re in the loop. Join today.

contact.HAA.today
Internet:

75250_1275@compuserve_com
Voice: 202/223-9669

#203

ORDERS

1202 Montclair Drive
Pasadena, MD 21122

x-10 SALE THIS MONTH ONLY

“SEND A FRlEND

HELP 410-437-418
FAX 410-437-3757

LAMP, WALL SWITCH 6 APPLIANCE MODULES$119!DO AUTOMATIC DRAPERY OPENER
RC55OO KEYCHAIN REMOTE 6 SASS $19 COMPLETE SYSTEM KIT $349

PI?511 FLOOD LIGHT MOTION DETECTOR $38 swoa*drsL
SD533 SUNDOWNER 112 INCREDBLE SOFTWARE UPGRADE FOI
PA5599 PERSONAL ASSISTANCE CONSOL $95 X-IO CP29aP $49.95
SC531 ALARM BASE (WHILE THEY LAST) $45 EASIER TO UPGRADE 6 SUNRISE/SJF*

PANASONIC HYBRID TELEPHONE SYSTEM

KX-T30810 3 CO LINES. S EXTENSIONS. 3 INTERCOM PATHS, FLEXIBLE KEY ASSIGNMENTS
K&T7030 LCD DISPLAY, SPEAKER PHONE, MUTE KEY. “OLD KEY, REDIAL KEY, CONF. KEY...
VXT7020 SPEAKER PHONE, MUTE KEY. HOLD KEY. REDIAL KEY, CONF. KEY. FWDfDND KEY..,
-A S459
“EVENT CONTROL SYSTEM” W ,T ALL SOFTWARE $250
ENERLOGIC 14OOe W,LATEST SO”WARE $345

WHY BUY A COPY WHEN THE ORlGlNAL IS THlS AFFORDABLE?

SEND A FRIEND AND RECEIVE 5% OF THEIR FIRST ORDER IN CREDIT
DEALERS WRITE OR FAX ON COMPANY LETTERHEAD

KTSC card and modulator that converts
)our compulrr output to a telrrision rhan-
nel mav add S400, and the infrared board
and remolr control for that computer adds
another S500. So, computer upgrades can
total S1.250.

You should include a good quality ste-
reo modulator with each VCR, CD. and
laser-disc player. .Assuming a typical homr
has five stereo modulators at a cost of $500
each, this adds another $2.500 to the total.

To SW the front door. swimming pool,
and garage OII your telerisions, vou ran use
thrrr cameras and a 3-outlet mono modula-
lor (usuall\ installed in a wryice center).
This option adds about $1,100 for black-
and-white cameras or S1.850 for color.

For the video intercom. each WI in-
cludes a camera, mono modulator, and toggle
switch costs about S500 for black and M bile
or 6800 for rolor. Assuming that you M-ant
one in each of four bedrooms, two liring
areas. a library and kitchen, it will take eight
sets or $4,000 for black and I+-bite and
$6,400 for color.

Special thanks to L,S ?&c and Multiplex Tech-
nology for providing the photographs.

David Gaddis is president ofllome Systems
Zptwork in Edmnnd, Oklahoma. He authored
Ilnderstanding & Installing Home Syslrms
and How To Automate Your Home. IIe is
presently developing a television series
called Intelligent Home, which will also be
available on video tape and CDR0.W. He
may be reached at (405) 30-0718.

Dual-coax sustems:
Molex, Inc.
2222 WIlington Ct.
Lisle, IL 60532
(708) 527-4238
Fax: (708) 512-8639

IIS Tee
470 Pearl St.
Canadaigua. UY 14424
(716) 396-9680
Fax: (716) 385-6627

CCTV cameras, modulators, infrared
rcpeatcrs, doorbell intercoms. and in-
frarrd rrmotrs for computers:

Home iutomation Labs
105 Hembree Park Dr., Ste. II

l~oswell. GA 30076
(404) 442-0240
Fax: (404) 410-1122

Home Control Concepts
9520-108 Padgett St.
San Diego, CA 92126
(619) 693-8887
Fax: (619) 693-8892

Home Automation Systems
151 Kalmus Dr.. Ste. MB
Costa Mesa. CA 92626
(714) 708-0610
Fax: (714) 708-0614

Home Automation and Security
286 Ridgrdale -1~.
East IIano\er, NJ 07936
(201) 887-1117
Fax: (201) 887-5170

Video and L%.4-UTSC adapters:
Your local computer store.

11 R S I
419 Very Useful
420 Moderately Useful
421 Not Useful

Let’s Work Together.
Networking provides access to a world of resources, and Home
Systems Network offers a world of resources to those who are
interested in home automation. Check it out.

+ Are you looking for information?
Obtain unbiased information about how to install and
use all types of home automation systems from our
books and Intelligent Home video tape series.

l Are you looking to identify sources?
Call our toll free number for a list of sources for any
type of home automation dealers, products, or
services.

+ Are you looking for marketing assistance?
List your products and services in the Home Systems
Network database and let us tell the world about them
through our books, video tapes, television shows and
referral services.

HOME SYSTEMS NETWORK RO. BOX 3006 EDMOND, OK 73083 (800) 808-07 18

68 J,ANUAKY 1 9 9 5
MIS

got an intrresling
lrttrr lasl \teek
from a long-time
HCS II user. He
started oul by tell-
ing me hoM he had
added X- 10 control
of his pool pump,

attic fan. house ventilation system.
and mosl lights. He had motion de-
trclors, float-level sensors. door
contacts. and so on ronnrcted as HCS
inputs. He had the ADC rrgistering
various temperatures and wrn moni-
toring the battery-charging circuit.
T,ikr the real Circuit Cellar. there
wasn’t much you could do around
there Ihat would go undetected.

He even joked about the fact thal
hc almost wrote me once to complain
about the HCS’s “bad something.”
,Apparently he was monitoring and
recording the run time on his oil
burner and comparing usage and de-
liveries to compute Ihe cost and
performance. The HCS record sug-
gestrd thal he was using about 200
gallons per hour during one wek!

In truth, I would expect some-
one to w-rite a letter to me about an
HCS that logicall? concluded that
heating his house cosls more than the
average shopping mall.

Healizing too Ihat this was a little
strange. he anal? zed the options. BAs
there a leak? Was the oil man deliver-

ing less than the invoirc record? Kerr
these someone else’s dcli\erl- bills?
There’s the oil going?

Logicall\ speaking, burning 200
gallons in one hour would cause a
house mcltdo\c II. Forget that. Ewn at
the corrcr(rate of 1.7 gal/h, surc,l\
he’d notice an oil burner that ran 118
hours out of a 168 hour MW~. The
onlv logical ronrlusion \tas that ei-
ther the drlirer~ and consumption
records ww fla\trd or some oil was
not making it to the burner.

It’s amazing what you can do with
an KS al hand. IIndauntrd. he sim
pl!- changed Ihr XPIMS cods for a
few of the things he alrrad~- had 011

the s\stem. He rraimed a n oulsidr
rnoti;n-c.ontrollrci flood light (with
the flood lighl unscrewed) to point at
the oil-tank fill pipe. Kith a piwr 01
bubblr gum stuck over the daylight

HCS Hard-wire
Control:
Back to Basics

sensor, the detector 110~ Marked day or night,
sending an X-10 rode whenerer it sensed
motion. If hc was home, the HCS rang a
chime so he could go watch. If he was out,

the IICS turned on the power to his
ramcordcr, M hich was aimed through a \+in-
dow at thr filler pipe.

To make a long stay short, the oil was
being delirered properlv and his oil burner
was running at normal consumption. The
loss was evrntually attributed to a dis-
gruntled neighbor who Has using a 40-foot
how to siphon the oil into his own tank.
Gotcha!

So much for the Sleuth 101 class. My
wason for describing this caper is not to
point out new uses for thr IICS so much as
it is to demonstratr the knowledge level of
the user imohed.

Applying real home control takes
brains. I~nf’ortunatelq; within an expanding
universe of knowledge, it is impossible for
an! one person to knojc r\er! thing. Espr-
cially when it comrs 10 c o m p u t e r s anti

applications. rxpcrtisc is becoming quite di-
I~IW. and some of us are jusl hardware types
Iorever.

The real danger comes from guy like
me uho know a little about a lot of Ihings.
\\ hrn I am in charge of drtrrmining the
Ic\cl of documentation for complicated 5~s.
terns. sometimes 1 havr a (rndenq to ignore
being explicit about simple technical facts
that seem so obvious that “surrl~- the user
must already knoti .”

Considering I hr expertise of the guy I
just dcwrihrd. especialI!- using his IICS 10
catch a t hiel’. I was floored \vhcn at 1 he end
of his correspondrnw hr askrd me
ahv a siren and 12-1 I’lashing-xe-
non light he bought I’rom Radio

STEVE CIARCIA

The HCS II accomplishes lots of goals-

ease of use, energy savings, security,

and automation. Hut, you’ve got to

know how to make connections to real-

world devices for it to be effective.

For this, Steve takes us back to the

basics, reminding us of how to do fun-

damental hard-wired connections.

J,AWARY 1995 69

Shack didn’t seem to work
when connected to the BIJF-
Term outputs.

Obviously, in our deter-
mination to protect the TTL
I/O of the supervisory ron-
troller, we hadn’t been
explicit enough about the
use of direct drivers and
huffered receivers. Virtually

closes, it forces that output off. The
BUF-Term inputs ran therefore ac-
commodate both contact closures and
wide-range voltage inputs.

Since virtually all the input scn-
sors, switches, and de\-ices used on the
HCS employ isolated contact closures,
there is little concern that input con-
trol interfaces like the RUF-Term are
common grounded. For commercial

all of his output controls Figure 1: Thr BIF-Tw~ hod uscs a ,-~mm~n KS-232 reeker (qhown zchr- applications or assorted discrete volt-

were X-10; he hadn’t used maticall~) to protwt the HCS inuuts to GO V. age inputs not sharing a common

any direct-wired outputs. To
ask why a BUF-Term output can’t directly
control a high-current device like a sirrn
implies that he views these lines to be in
the same category as an X-10 control. Rut,
they are quite the opposite.

pumps, bells, indicator lights, door contacts.
ground, a 24-channel. optoisolatrd in-
put interface called the IDI- is
assailable. Designed primarily for com-
mercial usr with SpectraSense 2000
(scr sidebar for details), the IDI- re-
quires a BUF50 I /O-expans ion
adapter to use it with the HCS 11 or
HCS II-DX. Since noncommercial ap-
plications rarely need isolated inputs.
I won’t discuss them furthrr hrrc.

I can only presume that a mere state-
ment of specification is not enough for some.
People learn to use hardware best through
example and application. Only through con-
crete example do you learn the nuances of
inductive loads, snubber networks, transient
suppression, line losses, peak currents, and
so on. Because nobody can be an expert in
cvrrvt hing, many readers may not have ex-
perience in directly control]& real-world
de\ ices. I shouldn’t presume anything.

In an attempt to fill the void, I’m going
back to basics. From the HCSk digital I/O
connector out, I’ll try to explain the ramifi-
cations of real-world connection. Also,
because I hare received many inquiries
about adding a watchdog timer to the HCS,
I’ll address how to do that too.

IUTERFACING 101
vith no expansion boards added, the

basic HCS II and the HCS II-DX configura-
tion has three forms of onboard control I/O:
8-channel ilDC, RS-485 network. and 24
bits of parallel l/O. Thr parallel I/O comes
from an 82C55 PPI configured for 16 in-
puts and 8 outputs.

ClilOS TTT, is rirtuallv never used bv
itself as an external-control connection br-
cause i t is extremely susrrptiblc to
out-of-spec voltages and transients. CMOS
TTL has a basic voltage range of O-5 V and
is only guaranteed to drive about 1 mA of
load. In addition. any voltage greater than
7 V or less than -0.7 i’ is usually quite le-
thal.

Unless these ports are used to connect
to other TTl,-compatible logic, they- nrcd
special protection and amplification whrn
connected to external real-world drvirrs likr

70 ,JANL4RY 1995

and switchrs. The function of the BUF-Term
board and other HCS parallel interface
boards is to provide that combination of
protection and power.

The term used when providing protrr-
tion to an input is called bufering. On the
BLF-Term board, wr usr a common RS-232-
to-TTL rrceiver as the input buffer. Shown
schematically in Figure 1, the MC1489
(SA75189A) chip can withstand an input
range of +30 V while conperting it to a O-5-
V. TTL-compatible output. Considering the
discrete resistors, diodes, and transistors
required to devise similar security. thr 1489
provides ronsidrrablr protection at nomi-
nal cost. For an HCS oprrating on 12 6: these
buffrrs rasily protrrt thr system from re-
I-ersrd connrctions, shorts, and so on.

The exprrssion buff-
ered inputs t y p i c a l l y
implies voltage-activated
inputs. As such, dry-contact
closures such as motion dr-
tectors, switchrs. and door
contacts, which produce no
voltage, won’t work directly.
This extra feature is ef-
fected by adding a pull-up
resistor on each input to
force all open inputs on.
Then a contact closure
across onr of thesr inputs

b)

OK, now you know not to usr
TTT, by itself, and you know that thr
input buffering on the BUF-Term of-
fers both voltage protection and a
currrnt source for contact-closure in-
puts. With the exception of people
who make three turns around an arc
Helder between the door contact
switch and the BUF-Term input, thrsr
connections are rrmarkablv foolproof.

SIREN

B U F - T e r m i

OUNTS lights and appliances connected via X-10
Many HCS users. who want to modules. Yes, Ihe HCS does support both

control things, primarily think of X-10 transmission and reception, hut it also

controls devices via direct, hard-wired out-
puts as well.

When connrcted to a BUF-Term board,
the IICSk CVlOS TTL output port is con-
ve r t ed i n to r i gh t 50-V-compatible,
DC-driver outputs. Depending on the cur-
rrnts involved, these drivers can power
indicator lights, beepers. small motors, and
relays.

Whether you use hard-wired connec-
lions or X-10 is ultimately an issue of control
reliability. Whether you can use the BIJF-
Term’s driver outputs directly or add large
relays deprnds on how much current is be-
ing switched. How you negotiate between
these issues depends on your control meth-
odology.

In XPRESS. the HCS can employ ei-
t he r open - o r c lo sed - loop con t ro l
methodology. In an open-loop system, you
merely issue a control command and pre-
sume that it happens. In a closed-loop

50-Pin
Ribbon Cable

dINPUTS

PA4 Y PA3

Ribbon Cable G'""

External
+12 U D C

JANUARY 1995 71

system, you issue the
command and a return
signal verifies the conse-
quences of carrying out
that command.

Of course, there is
no black-and-white di-
v-iding line for choosing
between methodologies.
Each control case re-
quires a value judgment.
The real issue is the ro-
bustness of the control
connection and the im-
portance of the control
event.

If vou just want to
turn on a table lamp
when someone enters a
room, a simple open-loop
command triggered
from a motion detector
suffices. IJsing an X-10
lamp module makes the
control output both easy
and wireless.

The downside to X-
10 is that it is neither
robust nor 100% de-
pendable. We probably
wouldn’t care if an X- 10
controlled light came on accidentally or not
at all-a situation that can occur. In my opin-
ion, this is why X-10, when used by itself,
should be reserved for noncritical situations.

Eventually, you’ll want to use your IICS
to control something important. If instead
of a motion detector and table lamp our con-
trol involves a pump motor and a pair of
float switches, the consequences could be
different.

First, you cannel presume when you
send an X-10 command that it actually gets
there! X-10 transmissions are easily
trampled by vacuum cleaners, oil-burner
transformers, fluorescent lights, and other
high-EM1 generators. Just because you com-
mand appliance module E5 on doesn’t mean
the pump attached to it actually v+ill turn
on. An even worse condition might be that
the on command worked, but the off com-
mand didn’t. Leaving a dry pump running
is not desirable.

K8

NO
COM
NC

NO
COM
NC

NO
COM
NC

NO
COM
NC

NO
COM
NC

NO
corl
NC

NO
COM
NC

NO
COM
NC

Even closing the loop by sending back
a “pump on or off” signal only makes X-10
slightly more dependable. interference that
inhibited the initial command may persist.
Sometimes X-10 codes just don’t get there.

For important outputs, direct hard-
wired control is the preferred method. X-IO
is inexpensive, but a hard-wired relay di-
rectly controlling the pump is a surer
connection. Because a hard-wired connec-
tion is also more robust, a closed-loop on/
off confirmation is less needed since thrrr

is virtually 100% activation surely.
llsing directwired control, the pump
should turn on and off infallibly.

Once you’ve made the decision
to use direct hard-wire control. the
onlv issue is the interface connection_
itself. The HI11:-Term gives yoo eight

72 JANUARY 1995

outputs. These outputs are rondi-
tioned through the [,.U1,2803A
IMington array driver shown in Fig-
urc 2. Each output can sink 175 111.4
at 50 V when all are in use. You can
sink 500 mh if only one is being used.

Pleasr note that 1 have referred
to thrsr dri,crs as sinking. not .sour‘c-
ing. currc~nt. The UNI,2803A has an
open-c-ollector inverted output. In
XPRESS, w-hen you command output
5 on, that output lima is pulled to
ground through the driver. The load
(indicator light, relay. buzzer, etc.) is
connrrtcd between the positive side
of a common source voltage and the
dribcxr’s output line (each output can
have a diffcrcnt source roltagr pro-
vided they all share a common
ground). When the driver turns on, it
acts like a switch on the hottom of
the load, completing the circuit path
to ground. The only limitation, as I
said, is how much current cm bc
pulled to ground.

The siren and xenon flasher
mentioned earlier take 3 _A and 1 A
at 12 V, respertivelv. Since thcv are
well above the peak SOO-mh driber
rating. it should bc easily understood
why n&her can bc connected directly
to thr BIiF-Term.

To accommodate greater load
rurrcnts. WC add relays. The HL!l+‘-

Term output can be used to drive a
relay coil, and that relay’s contacts
control the load. The typical, low-
cost relay has a rating of 3 A at 28

VDC and 2 A at 240 VAC (resistive load)
with coil currents of 40-60 mA. Control-
ling the siren is merely a matter of adding a
small relay. Controlling a water pump rc-
quires a larger relay, perhaps 8-10 A. As long
as the coil current fits within the 2803A
drive spec, there is no difference in the con-
nection. hate that higher coil voltages
require less current. If you draw too much
current with a 5-V coil, switch to a 12-V
device.

PACKAGED SOLUTIOM
1 don’t want you to think we left you

entirely on your own. The configuration of
the HCS and BlJF-Term is meant to be eco-
nomical. The BUF-Term was designed so that
you could easily add an external relav when
required. However. if you ultimately have
to add eight relays for your application, you
might be asking why we just didn’t do it in
the first place.

New products from r!f&f$z
he organizers of Habitech, The Home Systems Trade and Training Show

Know the market!
The Business of Home Automation will address the market
on home systems for those who plan on becoming a dealer/
installer, or are already a manufacturer or home builder.

%l:zness
Automation Applications and markets.

- Some of the systems covered in this report are HVAC,
IpIA9 advanced controllers, entertainment, in- home networks,

basic controllers, and lighting.

X-IO LTD.
Myth 81 Reality

Comprehend the structure!
X- 10 technology has been around so long, many think they
know all of its capabilities. For the first time, a comprehensive
report on X- 10 Ltd. is available, explaining not only its corporate

~ structure, but also its technology.

Call for special pre-published prices. (800) 7274711

Zoming in 1995 . . . HabltechEl5 ;z
Mark your calendars now!
The third annual Habitech, Trade & Training Show will be held __ ,~.:l:~~:-:::“::“~.~~~~~~~~~~~.
May 1 T-20, 1995 in Atlanta, Georgia. Contact Judy Bren&mihl ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘) i~,468Pi *, wxs,-,~ >*‘*

arr*.*s& *q&e, &*p* i i
it (800) 727-5711 for more information.

JANUARY 1995 73

GND-
53

IN
GND
54

IN
GND
J5

IN
GND GND
56 514

IN IN
GND GND
57 515

IN IN
GND GND
JB 516

IN IN
I J

PORT A&B INPUTS

Actually, we do (see Photo 1).
Figure 3 is the schematic of the
Relay BUF-Term board. It COII-

nects to the HCSb PPI the same
way as the straight BUF-Term
and has 16 buffered inputs. In-
stead of open-collector drivers,
this board has eight SPDT relays
with the ratings I’ve stated. A si-
ren or xenon flash is easily
accommodated by the 3-A con-
tacts. An additional advantage of
the Relay BCF-Term is that all
inputs and outputs have LED sta-
tus indicators.

While the BIJF-Term is
more economical, the Relay BIJF-
Term offers easier o u t p u t c o n t r o l . riced more than 2 A, you cao use the ROB4 IICS-CON’I’KOLl,ED ilUDl0
Mechanical relay contacts don’t care about
polarity or whether you are switching ,4C
or DC current. If our oil-burner guy had
the Helay BUF-Term, his siren and flasher
would have been easily accommodated, even
though he wouldn’t have known exactly why.

There is also another alternative if you
only need a few relays. Especially when you

adapter board (see Photo 2). Shown sche- After making the cast for HCS-
matically in Figure 4, the ROB4 is a controlled relays based OII their
4-channel. high-power relay adaptw board. improved reliability okcr X- 10 in
The ROB4’s relays arr rated for 10 A at 240 critical situations, perhaps a more en-
VAC. Each relay is indi\ idually controlled lightening example might make a
by a BLF-Term drilrr output. The ROB4 better rrc:orr~mcntiation.
also provides awitch-selectable polarity and 1 was in one of those audiophile
I,ED status indicators. shops recently ordering something.

74 JANUARY 1995

b
HCS RS-485 network

SPDT relays’ Speaker locations

Rear deck & pond

OUT (46)

DMX 6-disc 1 5 0 w Living room & kitchen
digital audio receiver CD player receiver/amplifier OUT (47)

Audio out
Ant L R L R CD in Aux in

t

R L R L SpLeakRers
A

OUT (48)
Cable TV - 0 Solarium

4
0 :

OUT (49)

L R

OUT (50)

OUT (51)
Bedroom

Circuit Cellar “IDI- board or Relay-BUF-Term

Dur ing the conversation. they mrn-
tioned installing a whole-house
stereo-speaker SW-itching system as
part of a large home-theater installa-
tion. The switcher was an off-the-shelf
commercial unit. which used uall-

mounted. push-button panels in various
rooms. The panels activate the system, make
the audio selection. and set volume. It defi-
nitelv sounded like a fine installation, but
1 nrarlv choked when thrv said it cost
s 14,000.

Nit a minute. Play a little music?
Switch a few speakers? Fourteen grand? Uo
way! Hang a few relays on the HCS and 1’11
bet we can do it for a couple hundred easy.

BCll, don’t hold me to the price, but
adding automated audio control to your HCS

+u
R3
270 Q RLYI

External 2 5 0 m.sec
02

LED1
5 1c

2N3906 <,

+--
R e s e t

o

R e l a y c o n t a c t s
computar r e s e t

l 1

+u $7805 RS
fktlvltr u2

2 2 0 -u I FD?
---<-

rtt.PClnr co,, ,“alent)
+12u ND OUT 3 - +A-e032N3g06

2
+$;i UF

JANARY 1995 75

is a rclativlv tril-ial hardware exercise and
costs considerable lrss than $14.000.

The humorous consequence of install-
ing such a system is rerealing, however. 1
can save $1000 a year on computerized
HMC control. call the HCS and find out
uhen the last car came in thr driveway OI

make the house look complete17 liwd in
while wr’re away All this description goes
in OIW car’ and out the other with most
people. If I mention that the stereo follows
mc from room to room, it’s suddrnlq- like
that E.F. Hutton commercial. E\crybody
prrks up and listens. Perhaps I’ve been con-
ccnl rating on the M rong end of home control.

If onlv for a short time, perhaps now
we hare e&yone’s attention. Figure 5 is the
block diagram of the Circuit Cellar IICS-
controlled speaker-switching system. I
installrd dedicated audio components for
this svstem which arc not shared M ith other

listing 1: This Gmple XIWSS p gI 0 rdm toggks an output bit about onw pw s~~md

If Timer(O)=off then
Timer(O)=on

End

If HCS_Heartbeat=off AND Timer(O)>=1 then
HCS-Heartbeat=on; Timer(O)=on

End

If HCS-Heartbeat=on AND Timer(O)>=1 then
HCS-Heartbeat=off; Timer(O)=on

End

functions. 1 drdicated srstcm has the ben-
cfit o f aluay ha\-ing a predictahlr
configuration (nobody messing with the
knobs).

It basicall! consists of a 150-W stereo
rec:ri\er which is connected through four
pairs of SPD’I relay (one for each left and
right channel) IO speakers throughout the

house and on the outside deck (mow
speakers could be addrd. but I didn’t
havr an! reason to). The relay board
is an 1110-24 24.relay expansion
board. I used this large rrla! board
because 1 also slritch a number of si-
rens and sounding devices through it
as well. You could usr the eight re-

80C52-SWSIC

2 ” (WTTERY

HEARTBEAT IN

C POWER ON

7406 LCY, YI

PI.7 5b.A RESET ’ RED ItiS

I / -

76 ,JAN1;.4KY 1995

la>s on a Rela, RLF-Term board if
>~OLI were just sw-itching audio.

Audio sou~ws come from either
a 6-disc CD pla\er. integral F\l tuner,
or a 3@channel, cable-company sup-
plied, digital-audio receirer callrd
Digi ta l .Llusic h’xpress (UMX). The
audio sourws and the rcvivrr ran all
br infrawd remote controlled.

($-ration is straightforuard. An
MCIR-Liuk (the I ICS infrared rc-
mote-control s? nthesizer) is trained

with the codes for the DnlX converter,
CD pla!er. and FM tuner. TO use the
s,stem. the HCS turns on the receiver
and sources. sets an input channel
(CD. DMX. or I:M), sets the wlume,
and sclrcts a speaker. Since I ha\r
motion detectors (‘1 cry\+ hcrc. sprak-
rrs can easily bc sclcctcd Hhcre\rr
molion is delected. You can jusl lea\e
them on after that or switch off a
room if no molion is sensed for half
an hour or so. A1llcrnati\el~, ?ou c:ould
use infrared recei\crs in other areas
and control the svstem manuallv OI

I sperif’ically chose an Implifier that
could handle a low impedanw of 2 . W bile
the long connecting wires offer somr rcsis-
tiw protection. it is possible to have four

sets of speakers on at one time and a mar-
ginal amplifirr might clip the signal. Since
I don’t wen dctc~ct an audio-lr\el change
uhcn ant additional speaker sets kick in.
the amplifier apparently has more than
enough headroom.

I use a separate amplifier and speaker
set for the Circuit Cellar itself. In the rr-
lay-switched systmm, all speakers are at the
same rolume. Hecausr of the lavout of my
contemporar?;-stl;lecl homr, this is in fact
adxmtagrous. Howwcr, J+ ith the Circuit Ccl-
lx being audio isolated from the rest ol’ the
house, lhc easiest May to have independent
\olunic control is to use a separate amp. An
X-10 appliance module turns the amplifier
on and off.

FinalIT: having an HCS-wntrolled au-
dio system offers a new dimension to a
securit! system. Consider queuing sound
effects or a kodo drums Cl) the next time
sumeune pulls into the drirwav M-hen thr

hare the HCS set up listening areas. alarm is set!

SpectraSense 2000
The SpcctraScnsr 2000 is an all-in-one home and light-industrial control

s\stcm designed for easy installation and maintenance. Four or fire of the more
popular IICS compor~rr~ts Her-e combined onto a single board ard put into a
hea\!-dut! s1ee1 enclosure to take the guesswork out of connecting together
separate subqsterns. This programmable building control system managc~s houw-
hold circuits. appliances. and H\AC systems cithrr dirrrtlt or remotely The
sytrm can be integrated with building control and security sbstems such as
HL.llC controls, autornatcd cahrs and dampers. securit, qstems and alarms,
multimedia entertainment scstcms. and I irtuallq an! other building-automa-
lion producl.

The SprctraSense 2000 offers a wide rarirty of adva~wd control features.
You can:

l use the board without a dedicated PC connection
l directly connect up to 24 contact closure-tvpc inputs
l directly connect up to 24~ buffered outputs
l directly; connect up to 8 analog scusors (temperature. humiditv. light lerel,

etc.) using 8-. lo-, or 12.bit resolution and gains of 1. 2, 4, or b
0 enjoy 23+-a\ X-10 po\hcr-lint coulrol
l gcwrate, r&be. and monitor telephone calls using a D’fkll~ phone interface
l connect up to 31 network expansion modules over a single twisted pair up to

4000’ awa!
l dircctl! plug in other expansion modules such as roicr output and additional

digital Ii0
. program with XPRESS control hguagr using a PC-compatible computer

e
0
0

umms i
WHUORK i
releases intelligent Home, a @
series of video tapes for @
home automation dealers
and installers.

:

0

Living with an intelligent :
Home introduces the concept ,
of home automation and
includes: 0

0
l a tour of an intelligent home ,
l a cost vs. savings analysis
l options and features

,

available
0
0

emmmmmmmmmmmmm@

e
0
0
0
e
0
0
e
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
a
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
e
0
0
0
0
0
0
@
0
0mmmmmmmmmmmmmm

Lighting Controls, Volume II, :
delves into the intricacies of 0
lighting control. The topics 0
covered: 0
l installation of various 0

switches, receptacles, @
remote controls, and 0
sensors #

l wiring in existing home 0
environments 0

l coping with multiple power l
standards 0

0
Upcoming videos in this 0

series will be released every :
30-60 days. They will present ,
such topics as:
l security systems 0

l entertainment and 0

communications
0

l energy management
0

l windows, doors, and gates
0

l plumbing and outdoor
,

@
systems @

Home
#
0

Sy8temr 0
0

networh 0
P.O. Box 3006 0

Edmond, OK 73083 :
Tel (800) 808-0718 :

#207 ,JANUiRY 1995 77

W-.4TCHUOG TIMERS
An HCS installation is a classic case of

“hurry up and slow do\c-n.” The HCS oper-
ates at a million instructions per second,
analyzing a static situation 0111: to conclude
it should logically do nothing. Lntil an event
occurs or the static condition changes, not
much happens. Of course, when that event
occurs, y-ou want instant action. You don’t
want to find out that the system has gone
south when control is most needed.

_4utomalically monitoring an electronic
system for basic operating integrity can be
as simple as an added test routine or as com-
plex as N_4Sc\‘s triple-redundant hardware
and logical arbitration. The degree of auto-
matic testing is predicated on the complexity
of the systems being controlled and the ne-
cessit!- for their control maintenance.

X’hile WC might use the HCS to mess
with the HV4C a little. this hardly qualifies
as life support. ln a basic HCS installation,
it is reasonable for us to conclude that if it
executes properly for one routine, it’s oper-
ating properly- for all (presuming good code).
If we write a routine that maintains an ob-
serrable, repetitious pattern, then if that
pattern stops, we know something adverse
must hare happened. Frequentl!; simply re-
setting the machine is the solution.

5; typically call the repeatable pattern
a hcwrtbeal. The circuit that monitors the
regularit!- and timing of the beat is called a
uutchdog. Because we configure them pri-
marilJ- to look for any heartbeat within a
measured time rather than a particular pe-
riodic ~areform, watchdog timer is a more
appropriate term.

Figure 6 shows a watchdog-timer cir-
cuit using a _K\X691 (see Photo 3). U’hile
you could glue it dire+ on the HCS pro-
cessor board (without the relay and
isolators), 1 chose to assemble the unit as an
offboard watchdog. The uatchdog function
is enabled by actirit!- on pin 11. If left open
or high. Ihe watchdog does nothing. The (‘a-
paritor on pin 7 sets the watchdog period.
Here, the period is set for 6 seconds.

Within XPRESS, >mou can \+ rite a simple
independent program that blinks an output
LED about once per second (see Listing 1).
The heartbeat is one of the BLF-Term out-
puls. 4s long as something happens on that
line within 6 s. the ‘691 will clear and Ilatch
again. If it limes out, the relay closrs caus-
ing an 1fCS reset.

The reset relav contacts are best con-
nected across the reset push button or reset

78 JANCARY 1995

100 REM Watchdog Time-Rev. 1.0
105 REM Bit0 Pulse in, Bit1 Power Monitor
110 REM Bit2 Reset Once Switch, Bit3 Enable Switch
115 REM Bit4 N/A, Bit5 Hold Indicator
120 REM Bit6 Pulse Indicator, Bit7 Reset Relay
130 REM
200 REM Setup constants
205 N=30 : REM N=Timeout in seconds
210 VAL=O
220 REM
225 REM
300 REM Check Bit3 Enable switch
305 A=PORTl : REM Read switch input bit
310 PORT1=31 : BsA.AND.8
320 IF B=8 THEN PRINT"Switch off" :GOTO 305
325 REM Continue if enabled
327 PRINT"Switch on"
330 REM
400 CLOCK1
410 Time=0 : REM Start second timer
420 A=PORTl : REM Read heartbeat input
425 PORT1=95 : REM Turn on port1 bit6
430 PULSE=A.AND.l ; SWl=A.AND.8
435 IF PULSE=VAL THEN GOT0 460
437 IF PULSE<>VAL THEN VAL=PULSE
440 IF SW1=8 THEN GOT0 305
445 IF TIME>=N THEN GOT0 500
447 PORT1=31 : PRINT" Pulse"
450 GOT0 410
455 REM
460 PORT1=31 : PRINT"No Pulse", TIME
465 IF SWl=8 THEN GOT0 305
470 IF TIME>=N THEN GOT0 500
480 GOT0 420
490 REM
500 REM Watchdog Timeout
510 PRINT "Timeout"
520 A=PORTl
522 C=A.AND.Z
525 IF C=2 THEN GOT0 305
530 TIME=0 : REM Reset pulse for 3 seconds
540 PORT1=255 : PRINT"Reset Pulse on"
550 IF TIME<3 THEN GOT0 540
560 PORT1=159 : PRINT"Reset Pulse off"
570 TIME=0
580 REM
600 A=PORTl : C=A.AND.4
605 IF C=O THEN PRINT"Holding" : PORT1=63 : GOT0 600
610 GOT0 305

header on the HCS. Because there are buff-
ers brtwwn the procwsor reset pin and the
reset line on the expansion bus, attaching
the relay contacts there does not reset the
system unless these buffers arc removed.

If the circuit in Figure 6 is a watchdog.
then the circuit in Figure 7 is a watch ken-
nel (see Photo 4). It does the same basic
function-waits for activity and pounds on
reset-but it offers significantly more pro-
grammability and user-controlled options.

First, this unit is not a single chip.
Instead. it is a complete RTC52
80C52-BASIC computer pro-

grammed to synthesize ‘691 func-
lions.

Without arguing how to protect
the computer that’s protecting the
computer, let’s just sa>~ that it’s bat-
terq-backed, ruggedizrd, and has its
ow-n watchdog. The reason I went to
the more elaborate circuit is that as 1
expand my HCS svstem. timing be-
comes relative to ;he workload. If 1
use a network I/O module to proTide
the heartbeat $ then the programming
is executing through the processor,
through the network communication

lines, a11d then
through the link itself.
Y o u c~ould call it ;I
twm po u rid check.
Once)ou irr\olve thr
network. however. you
havr to contend M ith
&law ah other links
arc Serb iced.

One of the other
c~oriipoundiiig cwnsid-
c~rations iii a m o w
cxpantitd IICS system
is the txffbcr of power
outages. \V hilt my sys-
lcrn is battc~ry-backtd
I hroughout, no1 every-
thing cwntrolltd is.
‘I’hw arr I\to srts 01
resc:t ronlads so one
set can go to othrlr sys-
terns that also need
rcw~lirig. I)uririg ;I powtar oulagc~. I
hold off the watchdog function. After
po\ccr rclurns and is slable, 1 hit I’(‘-
set to swchrtmizc~ c\rrvthing again.

I,i&ing 2 cwrrtair;s t h r USSIC
de for my Maldl kennel. ‘I’hc P R I NT
statemc~iits arc simply for tcsling. 411
the l,LDs simply let this watchdog
know thr system is working.

For some proplr~. I htx basks xc
boring. For others, they arc a rewla-
tioii. For t hr awragr IICS owner. I
prcwrrt this xtic~lr as no(hing mow
than ;I rwnintiw I hal homc~ con I rwl
irrrohes physical cwnntdons at WIIW
poinl and thr I KS has ;I corrsitlwablr
number of oplions’availahlr~. ;\ilaaltw
of the suhjcd thrn is mcwly ;t hltd
of detc~rrniiialion anti riiitici~staritling.

Slew Cinrcia is a71 electro71ic.s engi-

71eer and co771putw c.onsultant with KY-

prrierbce in process m7&wl, digilnl

de~sign, a71dyroduct dwelop771ent. Ike

nmy he reached at strw.ciurrirr@
circelln7xrr77a.

1 SOUHCE I
‘I’he follo\ring are akailahle from

Circuit Cellar, Inc.
4’ Park St.
Vernon. Cl’ 06066
(203) 875-2751
Fax: (203) 872-2204
Internet: sales@circellar.t:om

HOW4R6X: Industrial high-current
relay oulput hoard $199

HCS-RRUF-1 K: HCS r-clay buffer

board kit with 16 input buffers
anti 8 output relays $169

IDI-24: 24 input optoisolators for the
IICS . $239

IDO-24: 24 output days for the
IICS . 5349

11 R S I
422 Very Useful
423 Moderately Useful
424 Not Useful

#2OEl JA,\IIJARY 1995 79

t didn’t happen all
at once. No. That
would have been too
easy. It had to take
months to gradually
manifest and scv-
era1 more weeks for
me to become aware

that something wasn’t right. 1 should
have seen it coming. The warning
signs were all there: reduced output,
lack of stability, even the inputs
seemed wrong.

Then one black day. I finally
realized what had happened. The
design had seized up. Stuck, stopped,
halted. No, I’m not talking about hard-
ware or software-the design itself
was hung. Or, to be more precise. the
designer was stuck. Me, the self-pro-
fessed expert of elegance. was
defeated, done in by a common foe:
creeping featurism.

1 learned an important lesson
that day. When the same person does
both the specification of features and
the design of a project, a runaway
feedback loop can develop that re-
sults in more features than it is
possible to cram into the design. It’s
the old “it’s hard to say no to your-
self” routine. and it goes somrthing
like this. You say to yourself,
“Wouldn’t it be neat if it did this?”
And, then you answer, “Yeah, that
would be cool!” Voila, another fea-
ture is added.

We’ve all had a good laugh over
marketing requirement documents.
and routinely recite the 100 1 ways to
kill an unreasonable feature request.
Hut, we’re just not masochistic enough
to use them on ourselves. Or, at least,
1 wasn’t.

So, what did I do? I got help. 1
talked to other people about the vari-
ous features and ranked them in order
of desirability. Then I restarted the
design, taking the features in order.
It soon became clear where to draw
the line.

You might have guessed by now
that the design I’m talking about is a
user interface. How many times havse
you heard someone complain about
how hard it is to program a VCK? Hut,
do they ever say how it could be
improved? Whenever someone savs

A Different Set
of House Keys
Making the Most of a
Small Keyboard

JEFF FISHER

Designing a hand-held IR remote for

doing general-purpose home auto-

mation is no small feat. Jeff discusses

the design issues involved, presents

some options, and settles on.a set of

features for the “ultimate” remote.

that to me, I draw six buttons and a seven-
srgmrnt display on a piece of paper. “Co
ahead,” 1 say, “Just how would you do it?”

THE PROHIXM
I had a similar problem on a much

larger scale: if it’s hard to make a VCR that’s
easy to program, imagine designing
a user intrrface for something that
controls an entire house!

JANUARY 1995 81

Home automation is all about control-
remote control, automated control, unified

control. Beyond that, home automation is a
very personal thing. What individuals want
controlled and how they prefer to wield
control is unique to each, person.

Some people prefer table-top buttons.
others want wall-mounted switches, and a
few like telephone interfaces. But, the most
popular method of control is the wireless,
hand-held remote control. (You may insert
the appropriate gorilla grunts here. It’s a
myth, you know, that virility is directlv
related to the number of buttons on a re-
mote control. Virility is related to how
many things a remote can operate!)

I was designing the ultimate remote
control (see Photo 1). I wanted users to he
able to:

l use the remote control like a universal
remote which controls a TV, stereo. VCR.
and so on. (The remote control transmits
RF to a console. The console actually does
the infrared emitting.)

l send simple X-10 commands from the
remote to control other appliances. (Again,
the base actually transmits the X- 10 com-
mands.)

l execute complex programs with a single-
button press

l choose which keys would perform which
functions

l program complex functions through the
remote. (1 was trying to cater to the arm-
chair programmer.)

How in the world could I cram all this into
a small keyboard? Ever1 w-ith sophisticated
users. it was difficult figuring out.

Sure, it’s easier to write big hairy
programs on a PC and download them to
your whole-house controller. Rut. it turns
OUI that most user needs are not complrx-
merely numerous and impossible to identify
all at once. Why force the user to go boot up
a PC, connect the controller, load the pro-
gram, and so on when there are theore&&
enough keys on the remote to do it from an
easy chair? Besides, not everyhod y has a PC
available at all times.

After consulting with my colleagues,
we boiled down our needs into these re-
quirements. We wanted:

l user-assignable keys which enable users IO
set the system up so that single-use kcvs
would issue infrared commands (working

BANK 1

0 BANK 2

0 BANK 3

Fyi n r-j

[7oio

q n u ’ t l

,jus~ like a universal rrmote control) OI
run their programs.

l punch-in numbers (Me call them Ilk) ;lnd
the abilitv to select one of a dozen func-

0 TV
0 VCR

l C A T ”

G
AUX

F!!Sloocl

lIlotlu

0000

lions IO opwate 011 these 11)s. ‘I’o do

this, tie nccdrd a xaq to drl’iue the

11)s using infrared codc~s, X-10 ad-

dresses, programs. or groups of
other 11)s.

l let the user define programs from

the remole. This was the hardest

part IO design. The programs were
written in Common AApplic2tion
Language (C)Z1 J, part of theCF:Bus
specification, and we had identi-
fied o\er fifty functions that the
user could acct35.

l theability torun programs basedon

.

cxtrrnal e\ ents such as rrccired X-
10 codes and spcxcificd times.

to allow multiple mappings of keys
so that users could change their
layout OII the fly. arid so multiple
remote controls could have differ-
ent mappings.

During thr design, we tried a 101
of differc~nt ideas. learned a lot about
cmb~,ddeti-svstr,rn user interl’acrs. and
rcenmoreabout I he pcoplr that use-
and complain-about them.

II’ you arc doing a prqjrct that
has more l’unrtions than you want IO

pro\ ide individual keys for, here are
a few ideas that ma?- bc helpful.

8.2 JANUARY 1995

llO\\ 411NY KEYS?
You should hare enough indi-

\ idual keys that the uswcan pt~r*fo~m
the most ~~OIIII~OII operations \+ ith a
minimum of keystrokes. This III(‘;IIIS

asinglc k~,!-strokrfoi.commallds pith
no argymicnts. (-Arguments are usu-
alI\ numhe~~ssuchas times, addwsses,
etc.) If a command rcyuiws one argu-
mrnt. makesuw t1ra1 just thvnumbrrs
anti the command nerd to hc ctntewd.
If ;I cwmmantl takes multiple aqp-
~rwnts. a single key should hc uwd to
scparatc~ the arpments.

Let’s say that you identif! six
commonI\ used commands. and that
each command c:an haw zero or more

iiurnrr~ir (decimal) arguments. Y 011
nred ;I keyboard t+ith ton digit kevs,
six command kccs. a11 cmter key to
scpratr argumrnts. and p~ohablv ;I
cw~c:rl key-that’s at least rightwn
key. \\ e’l I look later. at ;L 111or(’ awu-

ratr ~-a>~ to estimate t hr number of
kr\-s vou’ll need.” ”

But. the keyboard dots not haw
to ha\ (a a separate key for each fum-
tion. Calculator manufacturel~s ha\ e

been doubling up kcqs I’or >exs. LKgning
such ;I user intwface ma! sw111 simple-if
\ou’\e never done it. SUIY, the I’irm~aw is
stl.aightfo~war,tl. Hut. drsigning thr lavout
can frJ~ YOUI’ Irwin! I’\ c hccn thew.. .

The pwhlem is.oddly enough. ton n1nc.h
I’xcdom. A sixteewbutton kq board h a s
65,536 possihlc I’mwktvtrwke opxtions!
Kefow 40~1 slart assigning ktw. you must
impose wmc order to the kt~!lw&i. 1L’r’ll
look at ae\eral tried anti trues way to get ;I

lot IIIOW functions out of oath key, \(hilt
still imposing enough 01~dcr lhal all t’unc-
tions wmain accessible.

But. hack to thr basics. Kc* NVL’C de-
signing il wmote wntwl for a I+ holehouw
controller. A remote wntwl is nothing mow
than ;1 M iwlvss kc\ board-the s;ltnv pwh-
lems appl?. Much oi thr time. this kr! board
(e\en though it transmits HI’) works like
>-our inf i2red i*c~rriolc cwiitrol. So. it ntwieti
enough keys to makr ;I dcwnt ‘1’1’ rcamote. In
another* mode. thr usw could cbrrter. wbi-
trar.il!- complex wmmands i n t o the
kevboard. B-c nccdcd numeric
kr& 10-15 function kc!s. a 1’~
s\ntax kws. and smne ke\s that
\tould Ivt us a~ess mow esotwic

I-

SHIFT
+

fuwtions. Thirlt -I\co is 3 niw round (albeit

nri~d~)~~uml~c~~~.Thi~l~-luok~~~salsosr~c~ri~t~~~
adequatr for. 311 irrl’r2rcd wnrotc~ cwntrvl.

If you hare ITWW functions thau \ou
haye key. yu (XII pro\ itle diffewnt rrrodc*s

Hands-on info for
CEBus automation.

Written by
CEBus expert
Gruyson
Evans and
published

TheL

Installer’s
Reference Guide

by Parks
Associates,
the manual
contains
easy-to-use
instructions, E to CEBusm
including L
graphics and
diagrams.

CEBus is a registered trademark of the
Electronic Industries Association

Uses the CEBusa standard!
This manual provides detailed instruction on the backbone
wiring that will interconnect the electronic home of the 90s.

For installers of all types, and all applications.
Emphasizes CEBus and its application for security,
entertainment, lighting, telecommunications, and energy
management. Designed for on-site use, with clear, easy-to-
use instructions, including graphics and diagrams. It
reveals “insider” information on how to wire for current
and future automation products and services.

Available now!
The Installer’s Reference Guide to
CEBus is $69.95. To order, call
Parks Associates at (2 14) 490- 1113, PARKS
or toll free (800) 727-5711. ASSt3UATES

#210 JANURY 1995 83

or “banks” for the kew (SW Figure la).
Similar to thr caps-lock kep on a computc~l
kevboard. you reser\e one-key that prrma-
nentl! switches thrmcaningof the remaining
key. Just as the caps-lock kc!- has an asso-
ciated I,ED. \ou should pro\ ide an indicator
that shows the current bank setting. Altw
nat i\ elv. a5 Figure 1 h sho\c s. yu can reserve
one ke\ 10 se1ec.1 each of the poai ble hanks.
‘This usrs more kevs, hut wsurc’s that othri
hanks are ne\cr ;nore than a single ke!-
stroke a\\-a~-.

To simulate at least thrw infrarrd
rcrnotr controllers. me nwdrd three hanks
of simple single-function keJ-s. The user
could program each key to issue an infrared
codeorexrcute a storec~program. Our fourth
hank pro\ idrti a more cornplrx set ol’ keys

f’or programming anti other multikr!strokr

opwatiolis which we callrti the -lux hank.

Rather than reserve four kr!s to srlect thr
hank, \te usd one ko asa hank-w itch kr\.
Each press ad\ancec the current hank hq
one. ‘Turning on one of four LEl)s shows the
current bank.

On this rrmo~e. usrrs would likcl~
Iea~c the keyboard in one of the infrareii
simulator hanks most of the time. If theI-
wanted to perform some quick ~~~IIIIMII~ in
the -\ux hank. Ihe, would:

1. I,ook at thr hank indicator.
2. Press the bank kc! up to three limes
3. Perform the operation
4. Change hack to the original hank

So. one ke\ is resrr\ed in all banks that
temporarily- switches the remote to the %ux
hank (ser Figure 2). :lux hank cwmmantis
arc structured M ith a definitr ending so thr
user can press the Zux ke! in an> hank and
t\ pe in one Aux bank command. Then. the
krt~hoard relrrts back to Ihe prcriousl\
srlectrd hank.

This functionalitr has the additional
advantage of making thr dowmenta~ion
easirr to write. Instead of ha\ing to M rite
“Make wrr the kcvhoard is in the -\ux hank
(SW the proc,edure on page xx.), then press
‘I’ ‘On..” !ou f21i wile “Press ‘Aux’ ‘1’
‘On’.” Mind you. dofwiientation woulfl also
be simple if vou used a separate key to srlec.(
each bank.

-\nolher way to get double duty out ol
earh ke? is with a shift key (see Figure 3).
IIowr~cr. thr shift key ma! only be appro-
priatc for some hanks. On a standard
keyboard. the shift kty must he hrltl dwn

Line Number of... Description Count

1 Common function keys Various 14
2 Digit keys 0 through 9 10
3 Syntax keys Enter, Begin, End, Var 4
4 Shift keys Shift 1
5 Keys common to all shift states Cancel 1
6 Bank change keys Bank 1
7 Keys common to all banks Aux 1

Total 32

I+ bile \ou press another kc). ‘I‘his t?;pr of
shift ker is usually a little morr expensiw
to implrmrnt and. on small kc\ pads. is not
usuallyc.rgononlicallv sound.Thus. the shift
kry on nonstandard kr!-hoards is usuall,
in~plemrn~rd as a separate kev press. It
srems that mosl proplr ha\ r grown used lo
this I+ ilh calculators anti similar de\-ices.

You can also hale double-shift ke\s.
\there the usrr presses the shift krl- twice
hefore the function hey. This gijcs more
functionality \+hilr noi u s i n g any ox(ra
kt‘y. ‘An alternative to thr double-shift key
is a second shift kc!. M! calwla~or act uallv
has thrw shift krqs: brown. red. and v hith.
Lrgentis ahow the othw keys are printed in

these colors.
Often. an indication of the shift statr is

pro\idrd. If the shift lie>- is pressrd inad-
lertenll!. prcs\ing iI a srrond (or third)
tinw cancels the shift. MC that the shift
modr automatic~all\ turns off H ith thr next
kc\ press. (1 shift that stals actirc until
ranrelt~d is more like bank selrction civ
srribcd ahove.) The shift kr! (s) might onI\
h~~ol”‘~“lional in cfdain hanks.so \ou don’t
havrl to givcl up thvse ke! s in other banks.

Bcrausc of a rich programming lan-
guagc~. we ended up with mow than 64
functions and numrrals nrcded in the Aux
bank (see Figure 1). IX e opted for the shift-
anti douhlr-shift-ke!- mclhod of acwssing
thrse functions. We pun some things in the
lux bank as unshifted key: number keys:
s> ntax kr>s such as cwter, brgin. end, and
cancel: the i;hift key: and the most common
function keys. Ke plaved thr lessfrrquentl?
used func,tion key in the shifted \rrsion 01
the krls. anti rarely used functions in thr
douhl&hift slots. So what if the Hitvise
ExcluG\e Or is three kostrokes a~av?

Ccneral users H0n.t f.are bf,causfl
they ne\ er USC it. and hackrrs will
app;wGntr that it’s there at all!

One Iwson MC learned thr hard
~+-a\ : makr sure \ our chancel or clear
kc\ works in all shift states and that
it resets the shift state. Otherwise,
the user doesn’t harr a foolproof way
to get the kevboard hack in a knon n
state. .

Ke also found out IWO things
ahout peoplr I erws keyboards:

1. People are always terrified that
thry are going to press the wrong
button and wipe everything out.

2. Peoplr are always pressing the
M rong huttons and M iping ever\
thing out!

(:It least one thing about user intcr-
faces is consistent!) 5-e combatted
this prohlem in thrw ways:

1. 1-e made the key that modified
the setup, shifted kec-s. That way,
it would he more difficult to acci-
dentall!- modif?- the setup.

2. 1 e added a wrap to lock all func-
tiorls that modif\ the setup. Once
locked. the usercould not modify
the setup \tithoul first entering a
password.

3. \!.r removed an> possihilit!. ewn
with a password. that a kc\ board
ke\- press could invoke the
~‘ni”enior~- clear” function. Q’r fi-
nally decided to make this
self-destruct function require the
user 10 insrrt a special plug in the
rear of the unit. Ke thought about
doing a “hold this kev down for ten
sec~nndswhilepo~eringnn theunit”
kind of thing. But, we enrisionrd
someone sitting on the remote con-
trol during a powrr outage, the
power comes hack on and....

84 JdNJtlRY 1995

Herd this advice: make it difficult to
changr setup parameters and nr~arly
impossihlr to clear or resc~ all the
parameters at once. Your users will
appreriatr it (in the long run) and

your technical support p~oplr will

apprvxialr it at all times.

W-bile the maxi-mega-remote is
f i n e f o r t h r p o w e r - c r a v i n g
twhnoliterate and a\ rragv fi\-e-year-
old. a large portion of thr population
rrmains kyboard challenged. For
thtsr folks. we provide a tcnhutton
rrnmte. Uo hanks. no shifts. and you

can’t write programs on it. Rul you
can (from thr other remote) set up
each ke\ to run any program or infra-
red code.

CdLClIL.ATl~G KEY COlJN’l
llwr’s how you can calculate the

numhrr of kevs vou need. If \ ou ha\ c. ”

multiple hanks. do the calwlation sepa-
rately on each hank. Thr dcwriptions and
counts in Table 1 rrprrsrnt our specific:
implementalion.

Gilen the ahove numbers, vou c a n
then determine ho\+ many shiftcad keys you
ha\-r: to work with. Simpl? add lines 1. 2, 3,
and 7.

Total shift functions a\-ailahle =
I,1 + L2 + L3 + L7

In our case. there arc 29 total shift func-
tions.

To get the total numhrr of functions
availablr,multiplythisnumherh~thrnum-
her of shift states you will support (1 for
single shift. 2 for a double shift, etc.) and
add line 1.

Total functions a\ ailahlr =
((Ll + I.2 + I,3 + L7) * Shift states) + Ll

Bank switch key

V, VCR & CATV banks

Temporary bank switch key

Bank switch key

In our case. using onlb a singlr shift would
allw 43 functions. wrhich is not rnough. 9
double shift, however. pro\ idrs 72 func-
tions.

COIIIM.AUI) FORMAT
You ma>- he asking !-ourself I+ hat sy-

tax keys are and why you need them. II
you’re really astute, you’re also pondering
the rrlativr mrrits of prefix-versus-postfix
notation.

Suppose I want IO turn on light number
five. (I could assign this function to one of
the programmable keys hut, for this discus-
sion, assume we’re doing things “manually.“)
In prefix notation. 1 press:

5 On

Since the arguments are entrrrd before the
command. the system can execute the com-
mand when I press On. If I also want light
seven on. I press:

5 Enter 7 On

Howe,er, if 1 use a postfix notalion. I press:

On 5 Enter 7 End

As you can see. the postfix notation inrolves
an extra keystroke.

WThich notation is lwtter? 1 performed
an informal surwy of both pcoplr and prod-
ucts and discovered the following:

l ‘ikerage pcoplr are pretty much ewnl~
split on their prrfrrrnre. Programmer
types (being particularly unarrrage when
it romes to e\-aluating technology) tend to
prefer postfix.

l Products are also evenly split. (For wery
prrfix user interface, I found a postfix
version.) dmazinglv. some user interfaces
don’t srrm to br bne way or the other.
The) are a hodgepodge of random svn-
taxes!

1 also learned that r\rryonr had a
prcfrrrnrr. one way or the other, and upon
such strong fwlings have trulv nasty wars
hecn fought. 1 urge you to get this issue
behind you as quick17 as possihlr.

I don’t \(ant to hr accused of starting
any religious Icars hrrr, but let me throw in
my two cents’ worth. .Utrr a \-er!- lively
drhatr. m!-design groupdecidcd that prefix
notation was more appropriatr for what we

,JANI;ARY 1995 85

call irnrrirdiatr. one-funclion commands.
Since the most frequently used commands
invol\ cone kevstroke for the argument and
one for the command. sa\ ing an extra End
keystroke is significant.

But. sinw most programmers pwfclr
postfix notation, w optrd to use postfix I’m
programming. (Actually-. wc Meren’t given
much choice since C-\l, is a postfix-bawd
language.) nut. w discw wed an elegant
\+a~ to allow prefix notation for singlr coni-
mantis! In its quest for trrwness, CII,
introduce thv concept of ;L “default COI~I-
mand.” I f argu111e11ts are rIlcwntfTcd

without ;I pwwding cwrrrmand. the dt~f’ault
c~~r~ma~d is c>xwutcvi on t how argumcn ts.

Our t~lcgant contribution inrol\ 1’s two
stctps:

1. IVe dc~fined the default command as
“currcwt group.” This c~ommand sin@!
stores ils arguments for future referrncc.

2. B.e pro\ ideti that man! commands, whcln
rxewtcd with no arguments. use thr
stowd wrrcmt gwup as their arguments.

The t~ser (‘a11 IIOM type argurncnts, follo~cd
b>- ;I cwrnr~~~~d. and 1 he c~onlmanti (‘xcc’u tes

011 ~hosr arguments--exact1\ like prefix no-
talion. The programming s t ructure .
howerw. remains univt~rsall!- postfix.

W hethcr the uwrs appreciate, this dr-
sign construct rtmains to hc seen. I{? thv
~+a\, C1L rcallv \+orks quitts wrll as both a
ustar iiilc~l’ac:t~and a ~~og~amniiliglanguagc!

I t’s somc~t imw hard to hcliew it came oul of
a c:ornniittw.

IItasigning the lavout and s) nlax of a
cxmpl~~x kr! board user interfaw is ulti-
riialrl> all about priorities. You hale to
dvc,idtx M t1ic.h fc~atures a~‘(’ rnwt important
and rcwguizc~ that Iw+important I’eatuws
ma) no t make i t into the I’inal thign.
Sin~ilarlv, you have lo ask I+ hicrh functions
art’ most important. t ,ws-important fuw-
t i o n s (‘a11 he relvgatc~ti t o obsc,urcl
multikrv-slroke positions.

Thrrc is a definite scyut~nw to Ia>-ing
WI kr!-s on a keyboard. Failuw to follow
this sequenw can result in a hopeless mess.

First. !-ou must ha\ c a firm undrr-

standing of t hc com~nand sptax

! ou u isti to implrment. (B riting
out m;111\ mrnplrs SWIIIS to hv the

best w-ay to test and desrrihe com-
mand syntax.) \crxt , you riced todcfine
any bank switch. temporary bank
switch, and shift ke,s you will be. .
using. Go ahead and assign the key if
you can since thcsc will be among the
most uwd keys. Then, >-ou can assign
any syntax kr\s such as the Enter
and Cancrl kc!. Only when all this is
dam: cm yu assign the other keys.

1 got bogged down becauw I
hadn’t applied an! priorities ad be-
c a u s e 1 didn’t h a r e t h i s dwign
scyuenw spellt~d out. 4ou that ?ou
know all the pitfalls. it’s wur turn.

.Jyff Fisher is president of HomeTech
Solutions, a home automation manu-
fkturer and retailer in San .Jose,
Califiorrtia. He may be reached at
(408) 257-4406 or 31431.3343@
compuser~e.com.

1 1 R S I
425 Very Useful
426 Moderately Useful
427 Not Useful

Find out how you can
add intelligence to any

home, at a cost that’s
within your budget.

LIVING WITH AN
INTELLIGENT HOME
will change the way you live

Written by David Gaddis,
author of Understanding &
Installing Home Systems

This VHS video cassette
retails for $24.95 plus $5 s&h.

It is being offered to
Circuit CeIZar INK subscribers

for only $17.95
plus $4 s& h (U.S.)

ORDER TODAY!
Don’t let this exciting

technology opportunity
pass you by!

Circuit Cellar, Inc.
4 Park St. l Vernon, CT 06066
Tel: (203) 875-2751
Fax: (203) 872-2204

ou kno\c Itic I’iw

d r i l l . YOU’IV just

sldrtcd 3 nio\-iv on

thtb VCR and lhv

]JhoIic~ ri rigs. S hou Id

I or shou Id I not

auswcr iI, Paul the

tap o r ’ tcl it roll

autt hop t o disposc~ 01’ Ihc call

quickly? Is it ;ln inlp()l.I;lnI ball ~‘IWIU
a I’ric,nti or wtaIiw or jusl ;iuolhc~i

arrno~ing call from Llt~gatLIIIh offcv

IrIg 111~’ a tJrc~aptJro~cd ~~rcdil

rartt...again?

II\(w if you haw a Ielq~horu~ am

5wtviug niachinc~ (and Ihvse daqs, who

doc~i’l?). y slit1 cd up being dis-

trac%ed by I hc r inging tdioncx. ‘\l’lt,r

OIW hunttd yars ol’ Ii\ iug with Ihc

tett~phone, iI’ ;isIounding t o t h i n k

h o w IiIlle Ihc basic. opxtiou h a s

c~hangc+tht~ phone rings, WC ;insw(‘i

i t . It’s the h u m a n tyuivatcnt ol’ a

nonmaskabte inlcr~upt (go on. just lry

to iport* that ringing phouc,).

So, as you rt~sI;lrI t hc VCR at’tcv

Ictting the MvgaHank I.c,t,lc~sc~riIaticc,

Ihal y o u tion’~ want anot her cvtlit

c;ud. thank pou, yuur mind w;rnd~s

from lhr movic~ as you twndw this
pdtcm ol’ lhc tc4tphont~. You 111 ink,

“ll’ I llild a gatlgt~t t h a t cYJlltll b(‘l’(Y‘ll

my ~11s. tikc a roictl-mail sys~crn. I

wou tdn’l bc inlcrrupttd 11nt~5s I tic

cdl w a s urgcv~t. ‘l’hr gadgt4 coutd

s h u n t off’ soticilors-“ti~t(~r~i~~k(~l~~i~s

lxT”S 9 now’-ad IWC~ t,assw0lYts tiw

friclntis so t hry could grl I hrough tli-

rc~c~lty. tt c~outd tJtb I’UII wil h a t’(:.”

01’ course it sounds grcaI. ,As I hc

lIlO\lP rcg;lrnr your allt~lllloll, you

only wish that somt~one would make

DSI’ ‘I’0 ‘1’111: I~tIsc1Jt~:
White I’iipping through the t~agw

of’ a Iklttas Scrrlic.onduc,lo~ data book.

we c;1mv XI*OSS ;I chip IhaL rou Id ma kc

such a system possible. ‘l’hc IX521 32/z
Digital Answrring Machincl t’roct*ssor

f’rorn t)attas Srrliic,orlttuc.to~ is ;i st)c*-

&I-puysv ISI’ w i th a vvry 11sc4uI

mix of ftMurc3. tl is c:atIatJtr of \oircx

(‘oIll]JrWslon aIll 1 ttcc~oIritJrc~ssioii.

INTtF tit+rtion and gc~ncral ion, call-

~JIYJ~WSS Ionc: gcmv-ation. and il’ I haI
wwtw’I enough. it can also make mu-

sic (on a timilctt scale. anyway).

Computer,
Get That Phone

A PC-based Voice-telephone
Interface

OI’ I~oursc. you pay for all I his cqd~it-

ily wilh c~onit~t~~xily of 0ptWlion. ‘t’hc chip

h a s IWO maiu inIer(rcrs: a t’(:M port t ha t

~WIIII~~~~I~ IO a Mq)honc~ COt)K to IIYII~‘~~I

tligiIizcvt \oicr data al thv slandartt ralc 01

6/E ktJ]Js (8 bils per samt,tta X 8k samtdcs

]“T scYwd) and a conltuYwYl Ihta (Cl)) pwl

lhal exchanp c~om]Jrc~sscd voice data, WIIP

111 ;I I1 d s. a II d operaling s t a t u s w i t h a

r~~ic~ro]J~~oc~c~ssoI~.

‘I’his arlictc~ ot’frrs an c~xam]Jlc of lhc

21321*s tJasic, h;irdwarr anti software design.

You can use I his informalion as the IJasis 01

~norc c~om]Jtt~x dtbsigrls inrtuding lhr “‘li~lt~-

tJ]iOli~ ponds (;a&#”]JrcWnld in the

inlroduc~tioIi.

t$ul, ICI’S start with the hardwarc~ tit,-

scriptiori tdotv wf’ get inltvupld Iby the

tdiont~ agai 11.

‘I’trr harttwarc~ is divided inlo I W O SK-

lion-one analog and lhr other ttigilat. ‘t’hc

21324/COtM~ corntJination s i t s t~clwcc~n

I hc two stdions wil h analog voict~ on one

side anti digitally c~om]Jrcsscd voice on l hc

OI hvr. ‘t’hc aualog stv:I ion pro\ ides the Ielc-

phone-limb inlr~rt’art~ and auxiliary analog

c~n~~cc~~ious. The digital stv.Iion trovitlt~s tht:

inIcdac~c~ t)c~Lwec~n I he I’(: ISA bus and t hc

2132/L

l:igurr I rov(v3 I hv ISA bus inltdac~c~

inc.1 ml i ng I hc ram IJid Cl) purl I iming anti

inlt,I.riJtIl-gc~ti~r~lioIi circuitry. FigurIs tJrc’-

Wnls a sc~tlc~lrl;llic~ ol’ thcx ~lld(J~

SCTI ion, 21.322. and KM port-Iin-

i rig hadfiai~v.

ROBERT M. LUZENSKI 8 JACK IVEY

Robert and Jack dream of viewing a

movie free of telemarketing interrup

tions. With the new DS2132A Digital

Answering Machine Processor, the re-

alization of such a dream is much

closer.

,JANIJARY 1995 87

ISA BIJS IYTEKFACE
The PC ISA bus interfare provides par-

allel ports for communication with the
2132A and control of’ the IIAA. In addition,
it provides the necessary timing signals for
the CT) and PCM ports and an interrupt sig-
nal, which an be set to one of three IHQ
lines on thr bus. The p~&~l ports and timer
arc I/O mapped with a DIP switch to select
the base address.

l/O drroding for the ISA bus must deal
with the 10 least -significant address lines
(A0-A9), the l/O read (IOR) and write (IOW)
lines. and the address-enable lint (AEN). A
74LS85 derodes the base address by com-
paring A5-A8 with the DIP-switch settings.
A9 must br high for decoding to occur. The
output from the address decoding enables ;I
74LS138, which decodes ,A2-84. AEN must
also be low to enable the ‘138. This prevrnts
actuation of the chip-select lines when a
UMA cycle occurs on the bus. The resulting
chip selects enable the 82C55 parallel l/O
chip ad the 82C54 timer.

88 ,JhWARY 1995

Parallel I/O using the 82655 is straight-
forward enough. The hardest part is looking
up which of the 192 operaling modes to SC’-
lrct, and we’ve already done that for you.
The three &bit ports on Ihe chip (A, H, and
C) arc all byte-wise conl’igurable as rither
inputs or outputs. Port C ran also be split
so that half the port pins are inputs and half
outputs. In our design, port A controls the
21324 and is configured ;1s an output port.
A single bit of port I3 is used as XI input
from the 2132A. so port II is configured ;LS
an input port. Port C is dedicated 10 sup-
porting the I)AA and is operated in the split
mode.

Well-behaved PC ISA bus boards do 1101

make strange noises on powrrup, take the
phone line off-hook anti scream nonsense
into it. or generatr interrupts without soft-
ware loaded to handle them. To make OUI
board well-behaved, we ensure that the

2132A is held in reset and the in-

terrupt line is disabled when the
system is firs1 powered up.

TIMING IS EVERY’l’llIi%G
Both the PCM and Cl) ports re-

quire frame sync and clerk signals to
ronlrol their operation. The signals
arc rrfrrrcd to as P C M F S a n d
PCMCLK in the case of the PCM port.
and CDFS ad CDCI,K for t hr CD
port. The basic: timing for the Cl) port
can be SWII in Figure 3.

Each frame ronsists o f cycle
CDCLK w i t h CDFS

by eight cycles of CDCI,K trailsfer
 data (or command/slatus). CL)

p o r t a l t e r n a t e l y togglrs

frame. ‘I’hr

this port is less complicated than the

both directions simultaneously,
wilhout any e f f o r t o n

the part of the software.
The data sheet indicates that the

Frarnc~ Sync and Clock pins from hot h

k’,-$ I i
A * Energy Mkagement

Security &d Alarm

Coorinated ‘=
H o m e T h e a t e r _

Coordinatzd Lighting

Monitorin: and Data
i*lj~ _,,, “ir ,,,, n‘L”.., Collection

Get all these capabilities and *
more with the Circuit Cellar ”
HCS II. Call, write, or FAX us
for a brochure. Available as- *
sembled or as a kit.

,JANUARY 1995 89

C D C L K

C D F S

LSB MSB

C D O U T

CDIN
are

I I I /
Notes: -Actual timing depends on interrupt routine code.

-Either CDOUT or CDIN is active during a frame, not both.
-D7 (MSB) bit on CDOUT is “short,” ending with falling edge of CDCLK

prwta shou Id 1~ tird to@ tier. Howr:vc~r, in Ml1z I’CMCI,K is grwwattvi ty the i’4I,SIC,I

actual prwtiw thr signals do not haw lo hr set up to tii\iclra \/ICI,K hy eight. ‘I’hc I’CMFS

tied togrthr~r as long as a ftw siriiplrl rcquir~r- signal is gr~rwrated with a 74~l.S74 that has

merits arc IIWI. These recpirrmr~n~s art’ I he pCVl(I ,K and Cl 1% as inpuls, as s~~ggc~stcd

I’CVICLK I’rcyt~~r~~~y m u s t he grc~a~cr than i n the I)allas Sr~mir~orrtlur~~or~ ;rpplic,at i o n

lhr CLXXK frquency and that the I’CMFS note orr (:01)I<C inlt~rfac~irig. Thv rirsign en-

anti CDFS must or~wr M ithin 2.0 ps of twh suws l iming rr~c~uirr~riir~nl~ for lhr~ I’CblI’S

triggcwci t>\ MI:!? W h e n 1 hc inter.-

rrrp1 IWII irw rxr~cwlw, il c:onIr~o~s the

cxc~harrge of data with the CI) p o r t

bv driving CI)(II,K and e i t h e r Mrit-

ing to the Cl)OlV l i ne or wading

fr~trm IIW CIIIN lint. The routinr~ also

lo@+ CIws/I1~Q CT >Ti lo rYW~l CDFS

other. ii11 application note a\ailahlr I’rwn arc salisfitd. anti I HQ during ;he transfr~r.

I)allas Scrrrir~ondur~tor tic%-

scrilws lhc F r a m e Sync anti

Clock rryuiwments o f both

ports in grwler~tietai~ than the

tiala sheet, and ah shahs how

l o cY~rlrlec~l sew%ll CODECS
P C M C L K

hni varh~s r11a11uI’acIuwr3.

Fo I OUI h o a r d , lhr

ClXI,K f'rcyucncy i s drtrr-

nrinrd ty IS4 bus liming anti
M F S

low-le\rl software, and the

frame-svnc rcquiremrnt i s

guarantwti by 11w hardww

&sign. The software sets up
P C M F S

the 82C54 timer to genr~ra~r~ /
an 8-klIz Waster !‘r-amc Sync

(MFS) signal from the 16.0- P C M O U T
HI-Z j

Mllz I/laster Clock (MCI,K)
I

driving the 2132.4. The VFS

signal (hen drives srparatc cir.- I

wits lo (rigger both CDFS and PCMIN
Don’t care

PCMFS .
or HI-Z ,

Figure S is a block dia-

g r a m t h a t illuslrales the

gcwwt ion and dislri bution 01

lhrsr timing signals. The 2.0-

90 ,JANUAKY 1995

Our design has two audio inputs
and two audio outputs. with the in-
puts coming from a microphone or thr
phonr linr (through the DA.4). and thr
outputs going to a sprakrr or thr
phone linr (again through rhr D,Ih).

221 first glanrc, it seems that
some s\titching is required for the
inputs. Howver, since the microphone
input is intended to record prompts
and mewqys when thr phone is not
in use, only onr of the inputs is rx-
pectrd to br artire at a time. T h i s
allows the two inputs to hr summrd
instead of switrhrd, saving some hard-
warr and softwarr.

The CODEC has tMo output pins,
which can he used as either a single

16.0 MHz
Oscillator

+

JCDFS and IRQN pulse width depend
on interrupt routine code

Divide by 8
74LS161

PCMCLK PCMCLK
) 2.0 MHz

2.0 MHz sq. wave

I f Sq. wave

CDFWIRQ ‘ENA IRQN
8.0 kHz
pthe’

tliffrrrntial outpul or a s IMO srparalr
ground-rrfrlrllcrd outputs. IVr usrd thr lat-

trr mrthod IO pro\ idr individual outputs fol

hot h t hr D 1’1 and sprakrr. Thr CODEC out-

pul purporls lo hr a pw+rr output. but it
ran onI\ dr*i\r a ZWO- load. R bile

this is iine for the IN-1 XMI’I’ in-

put. it is not so good for the sprakrr.

As a rrsult. w addrd thr l,M386

audio amplifier srt for a gain of 20, tvhich
nicely drives an 8- sprakrr.

The input to thr CODEC is an unrom-

rnittrtl up-amp with pins fnr Ihe output and
inwrting input, and thr nonin\rrting input
tied to ground. This allws the gain to be
rontrollrd \tith thr input and feedback re-
sisters. II also enables more than one signal
to lxx mixed using ;I summing junction.

w Memory mapped variables

n In-line assembly language
option

m Compile time switch to select
805 l/803 1 or 805.Y8032 CPUs

w Compatible with any RAM
or ROM memory mapping

w Runs up to 50 times faster than
the MCS BASIC-52 interpreter.

w Includes Binary Technology’s
SXA51 cross-assembler
& hex file manip. util.

H Extensive documentation

H Tutorial included

w Runs on IBM-PC/XT or
compa tibile

w Compatible with all 8051 variants

n BXCSl $295.

508-369-9556
FAX 508-369-9549

Binary Technology, Inc.
P.O. Box 541 l Carlisle, MA 01741

#213 ,JANI:ARY 1995 91

CD port toggle

CDFS

CDOUT
warn DS2132A

to PC bus

\\e took advantage of this capability to
sum the microphone and I)i1A4 signals. 4u-
dio from tither source is amplified a n d

digitized h! the CODEC. The input resistor
network is set up so the microphone has a
maximum gain of 20 ad the DA1:l a maxi-
mum gain of 10. .4dditionally. pots on the
input and output lines allot+ fine tuning of
the various gains. and if needed, microphone
pow-e~~ is supplied through the middle ter-
minal of thr stereo plug.

THE II-4RD Vv..4Y IS 0111~ IIOBBY
Sonic basic precautions are required

when combining digital and analog circuits
in a single svstem, esprciall! if it will be
inside a PC. An amazing \arieQ- of amusing
\tarbles, whistles. and bagpipe sounds find
their ww into analog circuity if you’re not
careful. Thosr of us who spend most of our
time in the digital world (or worst. softwarr)
alwaw ha\r to find this out the hard KIT-.

urok iding clean power and ground gors
a long \tay toward eliminating most of thr
problems. To that end. or ignore the +5-V
regulated power coming from the PC bus.
lnstcad. we power all the analog circuitr,
from an onboard +5-V regulator attached to
the +12-V PC bus supply: This eliminates
the SO-m\ or more of ripple and hash caused
by the switching transients from ICs. hard
drives. and the like.

Addilionall~-. we pro\ idr separate ana-
log and digital return (ground) paths. which
helps prc\rnt digital-switching transients
from creating a noiw lollage on relati\rl\
small analog signals such as the microphone
input. .4nalog and digital grounds are con-
nected at onl! one point. IVe sprinkled
0.01~FF b! pass capacitors around the digi-

92 JANLARY 1995

tall&. keeping them close to the chips. anti

making sure that the larger chips and clock
oscillator got their vcrv own.

Finally, you mav notice that thr MOP’
(niclal oxide varistor) connections appear to
violate the separation of grounds principlr.
This is because the MOVs need to bc COII-

netted to a chassis ground point, such as
the board’s metal bracket. The good new is
that this minor violation doesn’t seem to add
mv noise IO the circuit.

DS2132 A OPElL~TlOU
The softwarr accompanying this article

pro\ ides a low-lr\rl interface to the hard-
ware. This intrrface is intended to WIW as

a foundation for PC-cwntrolled voice
applications. Most details involved in
communicating with the 2132,4 have
been handled. leal~ing the application
software with the less-demanding task
of operating on a funclional lerel.
K’r’ll describe the routines in the low-
level interface shortly, but first let’s
look at how to operate this beast.

Internally. the 2132;1 has two
data paths, one for recording and the
other for playback. The record path
takes in digitized data from the KM
port and compresses it for output on
the CD port. The pIa!-back path takes
in compressed data from the CD port
and uncompressrs it for output on the
KM port.

Roth paths habe a gain block that
can be controllrd with commands to
the 2132i1. and only one of the paths
can operate at a time. A loop-back
mode is available. which takrs digi-
tized data from the record path and
inserts it in the playback path. replac-
ing anrthing that would otherwise be
coming from the plal back channel.
The loop-back path includes both thr
record and plavback-gain blocks. and
has no effect 011 1 he record channel.

CD PORT TKOO-STEP
Compared to the KM port, the

CD port is fairly complicated. The

MSB LSB
7 6 5 4 3 2 1 0

DDV=O CDFA DDV FCTD L4 L3 L2 Ll LO

I I

4 4 Fax Calling Tone Detect
O=llOOHz Tone Absent
l=l 1OOHz Tone Present

DTMF Digit Valid
O=DTMF Digit not detected; Bits O-4 are Energy Level Field

DDV=l CDFA DDV FCTD 0 D3 D2 Dl DO

DTMF Digit Valid
l=DTMF Digit detected; Bits O-3 are DTMF Field

Compressed Data Frame Alert
Record Mode: O=Next CD Port Output will be a Status Byte

1 =Next CD Port Output WIII be a Compressed Data Byte
Playback Mode: O=Next CD Port Input Interrupted as a Command Byte

1 =Next CD Port Input Interrupted as a Compressed Data Byte
Tone Generation or Idle: Always 0

PCM port inerrlv trans-
fers tligitizc4 data hack
anti forth, hut the CD
port mixes command.
status. and digitized
data bytes on the same
port. In addition, un-
like the PCM port,
which works in both di-
rections at thr sanw
time, t h r C D port
tog&s brt\zeen input
and output uith each
successive pu l s e o f
CDFS. This aignifi-
cantIT- complicates
operation of the port.
requiring the software
to go to some troublr to
keep it all sorted out.
Figurr 6 illustrates the
basic operation of the
CD port.

b) Record Command Bytes
Record Commands Record Gain Settinas
21 4:l Compression Rate (16 kbps) 4A-40 +30 dB through 0 dB (in 3 dB steps)
23 8:l Compression Rate (8 kbps) 5F-56 -3 dB through -30 dB (in 3 dB steps)
25 4:l Compression Rate (Silence Compression) Silence Threshold Settinas
27 8:l Compression Rate (Silence Compression) 10-l F -50 dBm through -11 dBm (step size varies)

c) Playback Command Bytes
Plavback Commands Plavback Gain Settinas
20 4:l Compression Rate (DTMF Echo Cancellation Off) 6A-60 +30 dB through 0 dB (in 3 dB steps)
22 8:l Compression Rate (DTMF Echo Cancellation Off) 7F-76 -3 dB through -30 dB (in 3 dB steps)
28 4:l Compression Rate (DTMF Echo Cancellation On)
2A 8:l Compression Rate (DTMF Echo Cancellation On)

d) Tone Generation Command Bytes
DTMF Tones Call Progress Tones
80 DTMF 0 (941+1336 Hz) 90 Dial Tone (350+440 Hz)
81 DTMF 1 (697+1209 Hz) 91 Ringing Tone (480+440 Hz)
82 DTMF 2 (697+1336 Hz) 92 Busy Tone (480+620 Hz)
83 DTMF 3 (697+1477 Hz)
84 DTMF 4 (770+1209 Hz) Musical Tones
85 DTMF 5 (770+1336 Hz) B4-BA Musical Note A (440 Hz) through G (784 Hz)
86 DTMF 6 (770+1477 Hz) BB Musical Note A one octave higher (880 Hz)
87 DTMF 7 (852+1209 Hz) BC Musical Note B one octave higher (988 Hz)
88 DTMF 8 (852+1336 Hz) 94-9A Bright Musical Note A (440+1320 Hz) through G (784+2352 Hz)
89 DTMFS (852+1477 Hz) 9B Bright Musical Note A one octave higher (880+2640 Hz)
8A DTMF A (697+1633 Hz) 9C Bright Musical Note B one octave higher (988+2974 Hz)
8B DTMF B (770+1633 Hz)
8C DTMF C (852+1633 Hz) Other Tones
8D DTMF D (941+1633 Hz) 93 400-Hz Tone
8E DTMF * (941+1209 Hz) 9E 1004-Hz Tone
8F DTMF # (941+1477 Hz) 9D 1400-Hz Tone

There are thrrr
types of data bytes com-
municated over thr CD
port. Command bytes
are inputs to thr port
and tell the 213212 11 hat
to do. Status bytes are outputs and
proride status information from t hc
2132.L Finally. compressrd data bytes
can go in either dirrrtion and con-
tain the actual compressed Toice data.

a) Operational Command Bytes
Mode Control Commands Special Mode Commands
00 No Update 08 Enter Loopback Mode
FF No Update 09 Exit Loopback Mode
BE Idle 04 Enter Power-Down Mode

05 Exit Power-Down Mode

CO41MAUD BYTES
‘&.hilc thcrc are OWI 100 indi-

vidual command b!-tes. they can 1)~
rlassifird inlo four basic groupings.
Operational wmmantls control t hc
basic: 111ot1rs of thfl 2132A1. Tour-gen-
eration wmmands dirccl the 2132 -\
to output any of a sclrrlion of tones
through t hc pla! back path. Thr chip
inchulrs all sixleen DTWF tones, SW-
era1 call-progress tones. arid a
selection of musical notes. Record
commands control the gain and si-
lcnce threshold of thr record path and
select the wmprrssion ralr and si-
lence compression opt ions. Playback
commands control thr gain of the

pla! back path. designate thr comprrssion
rate of thr data. anti select the DTMF ccho-
cancellation option. Tablc 1 prokidcs a
summaw of aI-ailablc command b\ I PS.

The format of the status b\tr is illus-
tratwl in Figure 7. Thr status b!-te actually
pwforins t ~0 separate func,tionq, tleprntiing
OII Ihr ~alur of the DT\11~ Digit Valid bit
(DD6: bit 6). Uormallv thr DDL bit is SCI to

0 and the lo\zclr 5 l;it5 of the status l)!lr
pro\-itir an intliration of I hr cnrrg! Ir\t4 of
thr incoming \oirr signal. The intrrprrta-

tion of the cncrg! -Itb\rl field (I,()-L4) is
S~O~~II in Table 2.

IIowr\rr. if a valid DTMF tone is re-
wiwd. 1 hrn DDV brcomes a I and the Lowry
4 bits of the status byte are intwprc+tl as
Ihe DTMF firhi (DO-D3) with bit d set to 0.
The Fax Calling ‘Ihnc~ I)rtrrt bit

(P’C’I’I). bit 5) indicalrs \+ hen a fax-
c~alling tonr is rrcri\cd. F a x

machinw adhering to ITIT-T Recommrnda-
lion T.30 transmit an llOO-Hz tone for 0.5
5 erer!- 3.5 s to itlentif!- a n i n c o m i n g
nonvoice call to the rw%er. Thr soft Isalp
can use this information to haudle a fax call
appropriatc’l\:

Final]\-. thr Comprrssed Data Frame
Alrrt bit (dDF.4. bit 7) indiratrs that a com-
prvwd data b, tr is nreded or will follo\c.

This alrrt is us&l during rerording and play-
back. It is described in greater detail in thf,
sect ions covering those motirs.

lising c~ommanrl bqtrs \tith the 2132.4
is rrllati\c4v simplr. Wilh the exception of
thr yo-l prlatr command (OOHIFFH). all

cwmmands need to br srnl only once to br-
cwrnr rffrcti\e. Thr record, playback, and
tom-gerirration commands continue to op-
erate until another such cwmmand or thr
Idle wmmantl (BEH) is sent. Thr various srl-

ting cwmmantls (rrrordiplaqback g a i n .

,JANLARY 1995 93

Received
L4 L3 L2 Ll LO Enerav Level
0 0 0 0 0 c-48 dBm,
0 0 0 1 0 -45 dBm,
0 0 1 0 0 -42 dBm,
0 0 1 0 1 -39 dBm,
0 0 1 1 0 -36 dBm,
0 0 1 1 1 -33 dBm,
0 1 0 0 0 -30 dBm,
0 1 0 0 1 -27 dBm,
0 1 0 1 0 -24 dBm,
0 1 0 1 1 -21 dBm,
0 1 1 0 0 -18 dBm,
0 1 1 0 1 -15 dBm,
0 1 1 1 0 -12 dBm,
0 1 1 1 1 -9 dBm,
1 0 0 0 0 -6 dBm,
1 0 0 0 1 -3 dBm,
1 0 0 1 0 0 dBm,
1 0 0 1 1 +3 dBm,
1 0 1 0 0 +6 dBm,
1 0 1 0 1 +9 dBm,

Thv tlasiclst t\pr of c~ommancls to use

;II’O 111~. lone-gcanrixt ion c:onimands. Figure
8 she\+\ the clxchange of command and sta-
tus h\ tes ncv~icd to grncra~r tones on the
pla!bark channel. ‘I’hr 2132-A starts genre
sting ;I tone ~-hen it receivrs the t o n r
cY~lllrIlalld. bl’pdale colllrrlalld~ (‘ill1 h e

used to cwnt~~~l thr Icngth, and an Itilr (WIII-

mad vnds thr torw. That’s all thtw is lo it.

Inu)KD WDE
In rewrti mode. thr 2132A c’orn-

prowar digitized \oiw tiala l’rom the PCM
port and outputs it to the CI) port. The
c~xrhangr ol’ wmmand~ and clala on th

CI) port arcs showI in Figure 9. The WI;1
bit in t1w status h!lc> intiic.atrs wh~~ii ;1

c~onilw~sd data h\ le is wad\.

Yt hvn ClWZ is 1. the nixt output
f’rarw I'ron~ the% 2132.4 is ;1 cwmprcssrtl
data h\ te rather than a status hvtcx. OIIW

wcwrding slarls using on(’ of’ the I’OLII

wroid cwIIIIIIarId tI\ tcs. lo-l pciatc (‘oni-
niailds ran hr sent to cvrit inur rrcortling
;IS long as r~eedeti. The gain cm be con-

and adjusting thra gain accordingly using the
rrc.ord-gain-brtling cwrimantls. Krcortiing
stops by sding an Idlr c-ommand.

COWRl~SSlON R4TES
The 21324 can compress 64 khps of

Loire data at fixed ratios of either 4:l or
8: 1. rwulting in ciala ratrs of 16 or 8 kbps.
Thew data rates ran he rrduccd errn fur-
thw by applying I he siI(~nrr-comprc~ssion
option avai lablr u ith rtwrti rommantis 251-1
and 2.31.

Silent compression Harks by rrplac-
ing signals \thich fall below a silence
I hrc~sholti M il h a codr in the cwnpressetl
datastrwm rrpwwnt ing the prriod of si-
lence. This results in a lowrr data rate
hcwusc thr silrnw rocltx is shorter than the
tiigitizcd data it rrplaws. Un special rffort
is rquiretl for playback of data recnrdcd
with siltbnw c~nmpression. Thr samr play-
hark command controls normal ant i
~ilriicc,-c,omprrss~(l data.

IYe will not go into &tail about how to
srt the thrwhohl valw since it is transpar-
rn t lo thr lowhvl softwarr i n t e r f a c e
prrsentrd in this articlr. In fact. a careful
rwti of 11w data shrrt dors not supple much
enlightr~nment on thrb topic of siIrnw cnn-
prrssion either.

The onlv hint of information is con-
tained in the “Command H!-te Options”
tahlr which lists all thr c.ommand bytes
;I\ ailahl(~. ‘I’hcw you find ref&rwe to re-
cortling al 1 ariou$ rates with curious name+
such as premium. intermediate. i;tandard.
a n d rxtendrtl. Stantlard arid extcwlrd are

thr recording mode5 that use dvncc wm-
prrssion. The! wmr attached lo t h e
numbers 0.8 kbps and 4.9 kbps. and therein

lies a stork.
‘I’hr ke!- to using silent cnmprrs-

sion to rrduce data rates is grtting the
proper wtting of thr silence thrcsh-
old. For bcs~ recording qualitv. the
1 hrrshold should br set actiwlv, hased
on thr twrrgy Id of the rrcordrd
signal as intiicatrd in the status byte.
lZ11 algorithm to accomplish this &sk

must balancr a multidimensional
problem involving data rate. sound
quality, and algorithm complrxitq to
arrive at a useful setting for thr si-
lcncr thrrshold.

An application note from Dallas
.Smlirnnductor &scribing thr silent-
compression option characterizes
normal speech as having 20-40X si-
Irnrc, depending on the speaker. Thr
9.8 and 4.9-kbps numbers in the data
sheet result from silrncr compression
of just a notch under 40%. Since the
actual data rate deprnds on the sct-
ting of thr threshold and the rontrnt
of the signal itself. the unqualified
claim to the most f;l\orablr cnmpres-
sion rates is a hit mislrading.

That said. the application nntr
on silence compression does contain
a detailed anal>-sis of the threshold
problem, including a solution with C
source code. IX; lravc it to the more
adrenturnus to experiment with si-
lenw cnmpwssion and to see ho\+ dl
they strike thr balance brtMwn data
rate, sound quality. and CPr cylrs.

PI > 4Y BAXK VOW
For plarbark mode. the soft Hare

sends t hr c;mprrsseti data to I he CD

CD port tone

CDFS

I

Repeat to extend tone

7

I

/

I /

CDIN

CD ~ort record

CDFS

CDOUT

CDIN

Note: At 4:l compression, CDFA always equals 1, and status alternates with data
Note: At 8:l compression, CDFA equals 1 every third status, followed by data

porl. The 2132A uncomprrsscs 1 hr
Dada and sends it along to the KM
port. Figurr 10 shows the operation
of the Cl) port in playback mode. In
this case. the Cl)FA bit indicates
H hen the 2132A nerds another com-
pressed data byte. Thr rompr~sard
byte must be sent in place of a roni-
mand byte in thr frame immediately
following t hr stat us byte.

There are four commands for playback,
two at each of thr a\ailahlr compression
ratios. The rhoire involves WI’MF echo can-
rellation. Strangely. this is anothrr arca
where the data sheet is silent, but an appli-
ration note fills in the blanks left by the
data sheet. Yotahlv, we find that
echo ranccllalion is very important
if you wanI to use voice prompts
rq II i ri ng DTM F responses.

FiiUlT 8: Vl’hPn wcording. a status byte with CDFA

wt to I indicates that the next CD port output

frame contains a romprwwd data bytr rather than

i, status bvtr.

DTMF EC110 CANCELLATION
The frequency content of normal

speech is capable oE setting off the DTMF
detector in the 2132,4. You can easily
SW this by monitoring the status byte
whilr recording your own voice. The
1WV bit goes true every so often, indi-
cating that a DTW tone was detected
in your speech. If the voice energy re-
flrcted back to the input by the phone
line happens to contain the proper frc-

quencies, it triggers a false indication of a
DTMF digit in the status byte.

The LI’I’MF echo cancellation feature
avoids this by muting the playback when a
DTMF tone is detected. If the JITMF tone
goes away when the playback is muted, then
the playback is the cause of the DTMF tone
detection. The playback continues, although
it will be muted until the DTMF tone passes.
On the other hand, if the DTMF tone per-

*Temperature boards: w/l 6 temp. sensors $239 1

both brds: - 40°F to 14@F, w/true s&i l/O

*Digital I/O ISA cards: 46 I/O ports
96 l/O ports

192 110 ports

-Infrared transmitter 8 receiver pair
connect to PC w/digital l/O, 16 commands

l CPort ISA Serial Board WI true 16550’s
coml-coma & irq’s 2,3,4,5,10,11,12,15

l 4-Servo controller board w/ true serial l/O

*Programmers X-10 Library for C
lOO+ functions, w/cable(PC to TW523)

*Picture-In-Picture box w/TV Tuner
*Electronic Drapery Control use WI X-l 0

*Keyboard Multiplexer: 2 KBD’s into 1 PC
chainable to allow multiple KBD’s on 1 PC!

*Fax-On-Demand w/Voice Mail: SW & HW
requires 286 or above w/harddisk and DOS

*Windows NT TelcomFAX Personal SW
-Windows NT TelcomFAX Server SW
-Windows NT Modem Pooling Software

Manv more comwter items availabl

XE
$249

$89

$129

tas
$95

$129

$495

$795

‘e!

Get Your Copy of The
Best Source of Home
Automation Products

Largest Selection of Home Automation products in the World

Call 24hrs for Free 64 page Color Catalog

800~SMART-HOME
(800-762-7846)

Hundreds of hard-to-find home automation and wireless control
products. Computer control of your home, security systems, sur-
veillance cameras, infra red audio/video control, HVAC, pet care
automation, wiring.supplies and much more

H O M E AUTOMATiON SY S T E M S, IN C.
151 Kalmus Dr., Ste M6 Costa Mesa, CA 92626
Questions 714-708-0610 Fax 714-708-0614

JANUARY 1995 95

CD pot-l playback

CDFS

CDOUT

CDIN

Note: At 4:l compression, CDFA equals 1 every other status, and commands alternate with data
Note: At 8:i compression, CDFA equals 1 every fourth status, and three commands are followed by one data

sists when the playback is muted, it is con-
sidered valid and the voice playback
continues to be muted. allowing the soft-
ware to act on the DTMF tone.

SOFTWARE

synchronization with the help of the inter-
rupt routine. Di sabl eVoi ce, on fhe other
hand, cleans up the system by shutting down
t h e i n t e r r u p t hardwarp and 2132A,
uninstalling the interrupt handler, and
reinitializing some of the global variables.

Now that we know just what’s involved
in operating the 2132A. we can take a closer
look at the software that helps make it hap-
pen. The detailed interface specification for
the low-level software module is summarized
in Table 3. The actual assembly lan-
guage implementation uses the Pascal
calling convention. Also provided are a
definition module for Modula-2 and a
header file for C.

To communicate with the CD port, the
software must get in sync with the input
and output toggling of the port. En a bl e
Voi ce and the interrupt routine work
together to accomplish this. Once Ena bl e

V o i c e gets the interrupt
routine and timer ready to
go, it releases the 2132A re-
set line and sets CDFS/IRQ
*ENA to true. The 2132A
comes out of reset and goes
into idle mode, and the in-
terrupt routine executes on
the next frame sync.

In idle mode, the CD port toggles
between input and output with each
successive frame. The CDIN line has
a pullup on it so the 2132A reads FFH
as a command. Since FFH is the No-
Update command, the 2132A remains
idle until the software gets in sync and
starts sending commands. In addition,
the status byte output by the port has
the CDFA bit set to zero-this is key
to the whole process.

The routines fall into three catego-
ries: operational control, buffer
handling, and hardware control. In ad-
dition to these routines, there is one
more very important player hidden just
below them and out of view of the ap-
plication software. That player is the
interrupt routine. This routine is set
off by the master-frame sync once each
frame, and it directly handles commu-
nications with the CD port.

OPERATIONAL CONTROL
ROUTINES

The first group of operational con-
trolroutinesconsistsof EnableVoice
and Di sabl eVoice. These two per-
form initialization and shutdown of the
system. Enabl eVoi ce installs the in-
terrupt routine and initializes the
82C55, 82C54, and 2132-A hardware.
It also initializes the global variables
used by the software, including all the
buffers, and performs the CD-port I/O

96 ,JAANUARY 1995

~iglll?? lo: CDFA SPY to 1 during

playhack indicates that the next Cl)

[)ort input frame will he intcrpretrd

as a romprrssrd data hvtr rathrr

than a command byte.

Operational Control Routines
Start-up/Shut-down Control

EnableVoice: initializes and enables operation of the 2132A and interrupt routine
DisableVoice: disables operation of the 2132A and interrupt routine

Mode Control
PlayEnabled: returns TRUE if the software is set to the Playback mode
SetPlayState: sets Playback mode for the software on or off
EnablePlay: sets Playback mode on
DisablePlay: sets Playback mode off

Buffer Handling Routines
Record Buffer

RecDataReady: returns TRUE if data/status have been received and are available
RecBufferReset: clears the receive buffer, deleting any data/status bytes in the buffer
ReadRecData: returns a data/status byte from the receive buffer if buffer is not empty

Playback Buffer
PlayDataWaiting: returns TRUE if the playback buffer is not empty
PlayBufReset: clears the playback buffer, deleting any unsent data bytes
SetDefaultPtay: sets the default compressed data byte
WritePlayData: places a compressed data byte in the playback buffer

Command Buffer
CommandWaiting: returns TRUE if the command buffer is not empty
CommandBufReset: clears the command buffer, deleting any unsent command bytes
SetDefaultCommand: sets the default command byte
WriteCommand: places a command byte in the command buffer

Hardware Control Routines
DAA Control

DAAControl: sets the OFFHK line of the DAA on or off
DAAStatus: returns the current status of the OFFHK, RI, and PSQ lines of the DAA

Table 3: A summary of the low-lclc4 sol’t*arr intrrfaw. drscrihing each of thr routinrs provided.

To get in sync with the 2132A. the in-
terrupt routine reads the CD port on each
frame following a reset, and checks for the
CDFA bit set to zero. For an input frame,
the 2132A is not driving the CDOUT line,
but is being held high by a pull-up resistor.
This causes the software to read a 1 for bit
7 and to conclude that the current frame is
an input frame.

However, for an output frame, the
2132A outputs a status byte on CDOUT with
the CDFA bit set to 0. The software detects
the 0, which signals the current frame as an
output frame. The interrupt routine indi-
catesthisto EnableVoice,whichiswaiting
for verif icat ion o n t h e s y n c - u p .
En a b 1 e V o i c e then finishes initialization,
allowing normal operations to begin on the
next frame. The interrupt routine only
makes a finite number of attempts at the
sync-up, and then reports a failure to
En a b 1 e V o i c e if the attempt counter
reaches zero. This allows Enabl eVoi ce to
clean up and exit gracefully if the sync-up
fails, indicating the failure to the applica-
tion program.

The other operational routines control
how the software handles the CDFA bit of
the status byte during normal operation. In
our earlier discussion of the CD port, we
showed how the CDFA bit is handled differ-
ently depending on whether the 2132A is
in record or playback mode.

In developing the interface for the low-
level software, we had a choice of how to
handle this moding. We could have made the
low-level routines interpret the commands
sent to the 21328 and switch to the proper
mode based on those commands. This choice
adds complexity to the low-level software,
but relieves the application software of any
concerns with the hardware.

The other option requires the applica-
tion software to inform the low-level software
of which mode to be in. We chose this
method to reduce the complexity of the low-
level software without placing an undue
burden on the application software.

The routines simply modify or read the
value of a global variable in the low-level
module. This variable is used by the inter-
rupt routine to decide how to handle the
CDFA bit of the status byte. These routines
do not send any commands to the 2132A,
they merely control the operating mode of
the software. Sending commands to the
2132A is the responsibility of the applica-
tion program. I,isting 1 provides examples

of how to properly use these routines in an
application program in conjunction with
commands sent to the 21328 using the com-
mand-buffer routines.

RUFFER-HANDLING ROUTINES
There are three groups of buffer-han-

dling routines to manage the flow of
compressed data, st,atus, and commands be-
tween the 21328 and the application

software. Each group of routines
represents one of the buffers. The
record buffer handles compressed
data and status bytes read from the

CD port by the interrupt routine.
When the 21328 is in playback, tone-
generation, or idle mode, this buffer
contains status bytes only.

However, in record mode, the
buffer contains interleaved com-
pressed data and status bytes in the
same order they are read from the CD
port. This requires the application
program to exercise some care to en-
sure that it keeps track of which bytes
are status and which are compressed
data. For example while in idle mode,
as long as you know that you’re start-

98 .lANUARY 1995 #216

CONS7
NolJpdateCmd = 0;
IdleCmd = OBEH;
Record8tolCmd = 23H;
Playback8tolCmd = ZOH;
PlaybackOff = FALSE;
BlankPlaybackData = 0:

(* Initialization *)
DisablePlay;
SetDefaultCommand(NoUpdateCmd 1;
WriteCommand(IdleCmd , cmdOK 1;

(* Record Example *)
SetPlayState(PlaybackOff 1;
WriteCommandi Record8tolCmd , cmdOK);
REPEAT

ReadRecData(recdata , rdOK 1;

UNTIL DoneRecording;
WriteCommand(IdleCmd , cmdOK 1;

(* Playback Example *)
IF NOT PlayEnabled THEN EnablePlay END;
SetDefaultPlay(BlankPlaybackData 1;
WriteCommand(Play8tolCmd , cmdOK 1;
REPEAT

WritePlayDatac playdata , wrOK);

UNTIL DonePlaying;
WriteCommand(IdleCmd 1;
DisablePlay;

The other two huff&s are Gni-
l a r . ‘I’hrl prrform the same hasit
functions for c:iI her oulgoing con-
prrssrd data or command lytrs. Both
handle Iqtcls going from t hf. applira-
tion software to the CT) port. Thr
pla+~k bu ffw handles c~m~presscd
data srnt from the application to the
2132-\ for pla$ack. The command
huffw prrforms a similar function for
cwnmanti hates.

H ~RUW;‘~RE-CONTHOI, ROUWWS
Thr D-&l has twn control inputs

anti two status outputs in addition to

thv analog cwnnrctions. Thr OFFHK input
c~mt rols thr phoncb linr: selling it to trwr
takrs the trlrphoncl line off-hook so cxlla (‘a11
ho gcneratrd or answwetl. The “RI s ta tus
output indicates uhrn ;I ring signal is de-
tccted on the lincl.

‘I’hr other tuo signals need a bit mow
explanation. F(XZ rrgulations rcyuirr that
data or rtwndcd-voicr c,alls have a two-.scv
and “hilling delay” after thr line is takctn
off-hook and during M hirh the line must he
krpt quiet. No~~rnal \oiw rally do not rquirr
thia d&y. The IMA can automatidly per-
form the &lay if thr *D/b input (I> for data,
1; for voice) is held low. 111 this case, the
D,2 L\ squelches the XMIT line for Iwo SN-

antis after bring c~ommandrd
off-hook with the &FHK input.

Othrr FCC requirernrnts limit

thr output le\d that Ihe DA:1 (‘an put on
t hr liw during data calls. W hrn *I)/\ is IOM.
thr 11.2 A squrlrhes the X)1411T signal if If,\-
els arr too high. ‘I’hc PSQ output indiratrs
when XMI’I’ i.s squrlrhrd. rithcr for the hill-
ing &lay or for rxcwding thr output hrls.
‘l‘hr apphration softvarr should monitor the
PSQ Ggnal when in the playback motlr and
adjust the path gain. if ncrdrti.

‘I’hcre arc t\+o 1)4A routint~s in the low

ltvl softwart~. Onr is ustd to witrol the
Ol:Fl IK input IO t hc I>1 .A. alloy ing the ap-
pliat ion to take t hc phone linr off-hook. The
othrr routinr rrturns thr rurrtwt value of
thr OFFHK line and the t\+o status outputs.
*RI and PSQ. Sinrr the 1) \ ‘1 II~LISI be WI

for data to comply \+ith I:(X requiwrn~nts.
the *D/l’ line is not tiirrctlv c~ontrollalde.
Tnstd. it is srt IO thr propw \alur b> the
E n a b 1 e V o i c e mu tinrl.

CLOSTNUC; COMWATS
We started thr journal? toward the

“Tdrphonr B’nndrr Gadget” 1)~ putting thtl
21324 on a PC IS.4 bus fxd r\ith cwough
hardware to hook it up to the telrphnnr nrt-
work and enough low-l(~\rl softMaw to take
C’;IW of most of the mty &tails in making
this cwmplrx chip go. Throw in some appli-
cat ion softwwe anti the basic system is
capablr of anvthing from a sirnplr amswr-
ing machine to a cnmplrx voice-messaging
sytem with horns-control rapabilitv added
fhi~ good measurt~.

U’it h a littlc mow hardwaw OII the ana-

log sidr anti thr right software. it roultl scr\e
as a sort of miniPB_X with loire mcauing
and the ability to s(w’en calls. Then. the
phone would onl> ring if the drr has ;I
password (no IIIOW telemarkrters).

\\‘hat do !ou want your ‘li+phonr Borg-
der Gadget to dfJ?

11 R S I
428 Very Useful
428 Moderately Useful
430 Nat Useful

JANCAKY 1 9 9 5 9 9

UFO Alert!

Tom Cantrell

ere’s a secret for

wonderous widget

coming!
It might be wise to raise your head

from your bench or CRT and take a
look around. Oh yes, the UFOs look
like your old friends, but that NM1 pin
is a dead giveaway. Something strange
is going on.

The UFO-masters say they are
here to serve you. But, as in the old
Twilight Zone episode, do they mean
to help you with your next design or
dish you up for lunch?

Never fear, as your intrepid
reporter, I’m ready to dissect these
aliens and decide if they’re friend or
foe.

WHERE NO ‘51 HAS
GONE BEFORE

Lest you think I’ve turned tabloid
(hey, UFO headlines work for them], I
should explain that UFO stands for
Unidentified Fifty-One and refers to
brand new versions of that venerable
people’s micro, the 8051. Both Intel
and Philips have UFOs on the launch
pad, and the countdown is starting.
This month, we’ll take a look at
Philips’ UFO, which they call XA.

Sure, half a dozen or so suppliers
offer more ‘5 1 derivatives than you can
shake a stick at. But until now, most
spinoffs have been created by simply
altering I/O functions or boosting the
clock rate. The CPU core remains
unchanged since its ancient (i.e., late
’70s) invention by Intel.

Despite the ‘5 l’s popularity, it is
definitely getting long in the tooth.
Not exactly an elegant architecture to

begin with, historic quirks look
evermore glaring in the harsh light of
competitors’ modern offerings.

With the S-bit market rocketing
past at 1B units a year, Intel and
Philips faced an “ante up or fold ‘em”
situation with the ‘5 1. They either had
to significantly upgrade the part or
watch it die at the hands of new
contenders.

Accepting the challenge means
embarking on the primrose upgrade
path. Though blazed by other chips of
yore, the path still has many forks and
obstacles for the unwary.

A basic decision at the outset is
just what flavor of compatibility to
offer. Sure, marketing will sell the new
part as compatible no matter what, but
there are some serious technical
decisions to be made.

One of the most important is
whether to preserve object-code
compatibility (i.e., whether the chip
can run old binaries or whether the
source must be reassembled or
compiled).

A decision to abandon binary
compatibility is not to be taken
lightly. First, there’s the matter of
customers digging through file cabi-
nets and stacks of old floppies to
resurrect the source. Then, everyone
has to update their tool chests, not just
with the new compiler and assembler,
but also all the other stuff-emulators,
debuggers, monitors, and so on.
Finally, the updated software is likely
to need retuning either to take advan-
tage of new features or to deal with
timing differences between the old and
new CPUs.

However, the latter issue of
retuning is also an argument for
abandoning the past. PC programmers
have learned to insulate their programs
from CPU speed differences and, on
the desktop, the goal is to do things
faster anyway.

But, embedded control programs
are a different story. First, even if an
effort is made (often not or only half-
heartedly) to write timing-independent
software, it’s almost invariable that a
few gotchas will pop up. Second,
unlike the PC, unconstrained applica-
tion speed up is not necessarily good.
Nobody complains if their spreadsheet

100 Issue #54 January 1995 Circuit Cellar INK

External
memory/SFR interface

interface) Datamemory I* ES k

Power
control 1 PCON t

RST

4-4

ALUw
Figure l--Though not as obvious as a third eye, the 16-M ALU, extended PSW, and segment registers (CS, ES, and DS) distinguish the XA from the ‘51 it impersonates.

recalculates 50% faster, but how about
a turbocharged pacemaker? Sounds
like a rush for the patient-to a
lawyer, that is.

The argument that the source has
to be modified in any case helps make
the decision to foresake binary com-
patibility less daunting, but it isn’t
pivotal. The main reason to move
onward is that it is very difficult to
make a lot of progress if you’re saddled
down with old baggage.

Let’s follow the path chosen by
the XA and see where it leads. Along
the way, we’ll see how it avoids the
hazards and dead ends that tripped up
the original ‘5 1.

INVASION OF THE CHIP
SNATCHERS

The UFOs try to pass themselves
off as regular &bit chips, but scratch
beneath a thin marketing veneer and
you’ll see a 16-bit ALU, register set,
and bus interface [see Figure 1).

Looking further, it quickly
becomes apparent that the XA is a ‘5 1

in little more than name. The XA does offered at the dawn of the PC age) have
not share binary or even assembly- a right to be concerned. You remember
language-source compatibility with how programs would expand and slow
the ‘5 1. Instead, ‘5 1 assembly source down with lots of weird instructions
must be translated to XA source and inserted hither and yon to scramble
then reassembled. flag bits and translate odd opcodes.

Those of you who remember the
dubious record of previous translators
(notably the 8080 to 8086 translators

Thankfully, the XA translation
scheme appears much cleaner. The XA
adopts a ‘5 1 superset mentality in

Mnemonic Usaae

MOV, MOVC, MOVS, MOVX, LEA, XCH,
PUSH, POP, PUSHU, POPU

ADD, ADDS, ADDC, SUB, SUBB
MULU.b, MULU.w, MUL.w, DIVU.b, DIVU.w,

DIVU.d, DIV.w, D1V.d
RR, WC, RL, RLC, LSR, ASR, ASL, NORM
CLR, SETB, MOV, ANL, ORL
JB, JBC, JNB, JNZ, JZ, DJNZ, CJNE
BOV, BNV, BPL, BCC, BCS, BEQ, BNE, BG,

BGE, BGT, BL, BLE, BLT, BMI
AND, OR, XOR
JMP, FJMP, CALL, FCALL, BR
RET, RETI
SEXT, NEG, CPL, DA
BKPT, TRAP#, RESET
NOP

Data Movement

Add and Subtract
Multiply and Divide

Shifts and Rotates
Bit Operations
Conditional Jumps and Calls
Conditional Branches

Boolean Functions
Unconditional Jumps, Calls, and Branches
Return from subroutines and interrupts
Sign Extend, Negate, Compl., Decimal Adj.
Exceptions
No Operation

Table l-The XA instruction set is a superset of fhe ‘51

Circuit Cellar INK Issue #54 January 1995 101

‘51
(MSW WB)

CY AC FO RSI RSO OV - P

B

1 DPH DPL

SP

R7

R6E-lR5

R4

R3

“‘II
I I

PSWH SM TM - - IM3 IM2 IMI IMO

PSWL C ‘AC’ _ RSI'RSO' V ’ N ’ Z

‘XA

R7

R6

R5

R4

System stack pointer

R3

R2

Rl

RO

R3H : R3L 1

R2H / R2L

Figure P-The XA eliminates the ‘51 accumulafor, data-pointer, and stack-pointer bottlenecks

which instructions, registers, memory,
flags, and so on encompass their ‘5 1
counterparts, making conversion
straightforward. Notably, almost all
‘51 instructions translate 1 for 1 to XA

instructions (the XA instruction set is
shown in Table 1). The only exception
is the rarely used XC H D (a 4-bit nybble
swapper), which must be replaced with
a multiinstruction sequence.

While the debate over instruction
sets is never ending, I think most agree
that fast instructions are better than
slow ones. The ‘5 l’s leisurely perfor-
mance (a whopping 12 clocks per
instruction) is boosted by a factor of 3
to 4 times in the XA.

Figure 2 compares the XA and ‘5 1
register sets. Right off the bat you’ll
notice that the registers are 16 bits
wide rather than 8 bits as in the ‘5 1.

The eight registers are byte (low and
high) or word addressable. In fact, for
some operations (shifts, multiplies,
and divides) certain register pairs (RO/
1, R2/3, R4/5, and R6/7) can even be
accessed as 32 bits. As in the ‘5 1, four
banks of registers are provided.

With a general-purpose register
set, the XA dispenses with the ‘51’s

dreaded accumulator (A&B) and
memory (DPTR) bottlenecks. Speaking

of memory bottlenecks, the S-bit stack
pointer (SF’) of the ‘5 1 is extended to 16
bits in the XA. Larger stack space, not
to mention the ability to easily access
and manipulate it (i.e., R7 can be used
as an index register) should help ease
the pain of long-suffering ‘51 compiler
writers.

Indeed, the XA offers two stack
pointers in support of a new user- and
system-mode protection scheme.
Exceptions push the state onto the
system stack, leaving the user stack
free for application software. Note that
the stack on the XA grows down (like
almost every other CPU) instead of up
as on the ‘51.

The XA extends the bytewide ‘5 1
PSW to 16 bits (PSWH and PSWL). The
lower half corresponds closely to the
‘5 1 with matching and auxiliary carry,
overflow, and register-bank select
flags. The XA dispatches with the ‘51’s
general-purpose flags (PSW.5 and
PSW.l) and parity (P) flag in favor of an
N (negative sign bit) and Z (zero) flags.
To avoid flag shuffling, a ‘5 l-compat-
ible version of PSWL is made available
for backward compatibility.

The ‘5 1 got by without a Z flag by
performing compare-and-branch
functions in a single operation, which
makes sense given that only the
accumulator (ACC) could be compared
against it. Since the XA dispenses with
the accumulator bottleneck altogether
(i.e., you can compare lots of different
things, not just the accumulator), a Z
bit was called for.

The upper half of the XA PSW
contains the user and supervisor bit
(the PSWH can only be accessed in
supervisor mode), a trace bit (causes an
exception after each instruction-good
for a debugger), and four bits that
define the level of the current task-
supporting software (and I imagine in
the future, hardware) prioritization.

LOST IN ADDRESS SPACE
Having dealt ably with the ‘5 l’s

programming singularities, the XA
designers turned their attention to the
“64K problem.” Actually, on the ‘5 1,
it’s a “64K code + 64K data” problem.
However, since many designs overlap
the two spaces, it’s still a problem
j 128K isn’t enough either).

Being about the last 64K chip in
the world to face the issue, the XA

S S E L E S W E N RGSEG RSSEG R4SEG RBSEG RPSEG RlSEG

Segment
DS B-bit segment

identifier
registers

R3
16-bit segment offset

I I I

*
Complete

+ 1

24-bit memory
address

Figure 3-Unlike the k86, the XA segment scheme appends (not adds) the segment fo the 16-M offset. Segment
references are assigned to registers (via SSEL), rather than implied by instructions.

102 Issue #54 January 1995 Circuit Cellar INK

designers were able to learn from the
good, bad, and ugly of previous
approaches. The resulting segment
scheme relies on code, data, and extra
(CS, DS, and ES) segment registers to
boost address space to 16 MB (24 bits).

The use of the word “segment,”
not to mention the naming convention
(CS, etc.), is likely causing distress for
those of you who haven’t yet learned
to love the similarly nomenclatured
‘x86 scheme. Lest you contemplate
suicide by soldering iron, I’m pleased
to report that the XA scheme is really
quite simple and effective. As in the
‘x86, the segment registers point a 16-
bit address into the larger address
space, but the similarity ends there.

As shown in Figure 3, note how
the 8-bit segment register contents are
merely appended to the front of the 16-

bit address as opposed to the shift&add
of the ‘x86. Besides alleviating the
confusion of keeping track of where
you are, a notable byproduct is that a
given physical memory location is
accessible via one, and only one,
segment value.

All pages:
reserved f o r
SFRs

!JJ:::~
Bit addresses
200h through 3FFh

Bit-addressable
SFRs (64 bytes)

Figure 4- The SFR space, bit- and byte-addressable as in the ‘51, is replicated in each 64-KB page for speedy access.

For example, address 123456H can The worst part about the ‘x86
only be addressed if the segment scheme is the way segment-register
register contains 12H. In conjunction usage is implied by instructions
with the system and user protection (loosely and arbitrarily, critics would
scheme (the segment registers can only say). Not to worry, though, since if you
be programmed in system mode], it don’t like (or can’t remember) the
provides a fairly bulletproof way to implication, just use a segment-
keep tasks from interfering with each override prefix (subject, of course, to
other. its own arcane rules and restrictions).

The BCC52 controller continues to be
Micromint’s best selling single-board com-
puter. Its cost-effective architecture needs
only a power supply and terminal to become
a complete development system or single-
board solution in an end-use system. The
BCC52 is programmable in BASIC-52, (a
fast, full floating point interpreted BASIC), or
assembly language.

The BCC52 contains five RAM/ROM
sockets, an “intelligent” 2764/128 EPROM
programmer, three 8-bit parallel ports, an
auto-baud rate detect serial console port, a serial printer port, and much more.

PROCESSOR
’ 8OC52 8.bit CMOS processar w/BASIC-52
*Three 16.btt counteritlmers
*SIX Interrupts
*Much morel

tN,M/OUT,WT
* Console RS232 - autobaud detect
. LIIE pmter RS-232
-Three S-bil parallel ports
. EXPANDABLE!

* Compabble with 12 BCC expansion boards

B C C 5 2 Controller board with BASIC-52 and SK RAM $1 89.00 Srngle Qry.
BCC52C Low-power CMOS verwn of the BCC52 $199 .00
BCC521 -40°C to 185°C lndustrlal temperature version $ 2 9 4 . 0 0
BCCSPCX Low-power CMOS, expanded BCC52 wi32K RAM $ 2 5 9 . 0 0

CALL FOR OEM PRICING

n MlC,ROMlN1, I NC. 4 Park Street, Vernon, CT 06066
,n Europe. (44) 0285-658122. R Canada: (514) 336.9426. ,n Ausfrakx (3) 467.7194
Dfstribufor Inqwks Welcome!

#123

Our C-programmaxkriature controllers are ideal as the
brains for control applications, data acquisition, and test
and measurement. Features include digital I/O to 400 lines,
RDCS, DACS, relays, solenoid drivers, ~s232/Rs485, battery-
backed RAM, clock, watchdog, LCDS, keypads, enclosures
and more. Use our simple, yet powerful, Dynamic CTM de-
velopment system ($195 integrated editor, compiler and
debugger) for quick project completion!

#119
Circuit Cellar INK issue #54 January 1995 1 0 3

By contrast, the XA ties segments
to registers, not instructions, and lets
the programmer explicitly make the
assignment. A programmable configu-
ration register (SSEL) defines which
segment is to be associated with each
register (RO-R6; R7, the stack pointer,
is always referenced via DS). Thus,
segment selection has nothing to do
with which instruction is executing,
only which register is being accessed.

The XA, like the ‘51, defines SFRs
(Special Function Registers) as the
mechanism to access control and
status registers, I/O ports, and so on.
Also like the ‘5 1, these are mapped
into a directly addressable (and only
directly addressable) block of the
address space. For instant accessibility
at all times, the XA l-KB SFR space
(boosted from 128 bytes in the ‘51) is
replicated in each 64-KB bank (see
Figure 4).

Note the interesting provision for
off-chip SFRs which would seem to
support coprocessorlike connection to
internal hardware as well as a no-
muss, no-fuss way to migrate an

Figure 5-With the I
registers and on-chip RAM
and SFRs, 128 bytes are
bit accessible. The XA
architecture allows for 16
registers (R&f/15) though
on/y 8 (R&R7 needed for
compatibility) may be
offered on a particular chip.

Bit space Overlaps bytes..

Start End Type Start End

0 - OFFh Registers RO - R15

1OOh - 1FFh Direct RAM 2 0 h - 3 F h

200h .---+ 3FFh On-chip SFRs 400h -43Fh

external peripheral function onto a
higher integration derivative.

A popular feature, retained from
the ‘5 1 (no choice really, given the
translatability constraint), is bit
addressing. The 1024 bit addresses
(like SFRs, a factor of eight expansion
over the ‘5 1) are mapped into the
register file, on-chip RAM, and SFRs
(see Figure 5). So, bit-banging these hot
spots is quick and easy.

WE INTERRUPT THIS PROGRAM
The ‘5 l’s somewhat feeble

interrupt scheme has been put out of
its misery in the XA.

As shown in Figure 6, the XA
defines a 64.entry (256-byte) vector
table which specifies a handler address

e W O R L D ’ S S M A L L E S T
e
8
b Embedded PC witha#c
r) Flea ting Point,
I
uII

4

Ethernet & Super
6*
1

VGA Only 4”~ 4”

486~~ and Flash are rqstered trademarks of Intel Corp.
as are PC, AT of IBM, megatel of Meg&l Computer (1986) Carp (416)245-2953

es*** * u 1 * Q + c t e Q. r* 0 * *r bi
125 Wendell Ave. l Weston, Ont. l M9N 3K9 l Fax. (416) 245-6505

and initial PSW. Note that the 16.bit
handler address requires all handlers to
be located so they start in the first 64
KB of memory (i.e., CS=O).

The event interrupts come from
on-chip peripherals or external pins
and cover the entire subject as far as a
‘51 is concerned.

The XA goes further by defining a
TRAP (O-15) instruction which is a
handy way to implement an RTOS call
since it provides a way (the only way)
for user software to request system-
level protected services.

Finally, an exception mechanism
is provided to deal with gotchas like
divide by 0, stack overflow, the
previously mentioned Trace exception,
and so on. One notable improvement
is Exception 16 (the highest priority)
which is NMI. Yes, the XA has a real
nonmaskable interrupt which, unlike
the ‘5 1, doesn’t depend on trusted
software (an oxymoron, yes?) to
remain diligent.

Whatever the source, in response
to an interrupt, the XA stacks 6 bytes
of information on the system stack as
shown in Figure 7. This is quite
different than the ‘5 1, which pushes
only 16 bits of PC. The XA designers
had to automatically stack PSW to
make the protection and trace stuff
work.

A similar 16. versus 24-bit
question concerns the size of the PC
address pushed and popped for calls
and returns. Small and/or translated
programs may prefer to see 16-bit
addresses as on the ‘5 1 while new,
larger applications want all 24 bits.
The XA designers decided the best
choice was not to make a choice. So,
they put in a configuration bit that lets
you have it your way.

DOWN TO EARTH
Perhaps to avoid architecture

shock among loyal ‘5 1 customers, the

#I24
Issue #54 January 1995 Circuit Cellar INK

OlOOh

80h

40h

0
Code memory

Figure g--The XA
adopts a table-based
vector scheme
supporting up to 64
inferrupfs including /IO
events, TRAP
instructions, and
exceptions.

XA presents a deceptively familiar face
to the outside world.

The comforting complement of
standard ‘5 1 on-chip I/O (UART,
timers, etc.) remains largely un-
changed, though there are some
helpful upgrades. The UART now
offers error detection (framing, over-
run, etc.) while the timers are up-
graded with programmable timebase
(CPU clock divided by 4, 16, or 64).
The I/O ports supplement the ‘5 l’s
quasi-bidirectional mode with push-
pull, open-collector, and high-imped-
ance options. In general, the changes
are software transparent and likely call
for only minor programmer attention.

The bus interface is equally
customary, featuring well-known ‘5 1
signals like ALE, PSEN’, RD*, WR’,
EA*, and so on. One new addition is
WRH* (Write High), which is used to

write the upper byte of the data bus
when the XA is in 16-bit bus mode.
Note that an RDH’ signal isn’t needed
since the XA ignores the unnecessary
byte when making a byte access to a
lh-bit bus.

While the XA can freely access
bytes in either 8- or 16.bit bus mode,
16.bit word accesses must start at an
even address in either mode. If you
were wondering, this explains why the
24-bit address is padded to 32 bits
when stacked in response to an
interrupt.

The XA also retains the familiar
multiplexed address and data bus of
the ‘51 with a slight twist. Figure 8
shows a typical (at first glance)
connection to an &bit peripheral. But,
note how the data is multiplexed
starting at A4, leaving the lower four
address lines demultiplexed. The

6 - b y t e s
Low-order 16 bits of PC

qm Before interrupt

0x00 j PC (hi-byte)

PSW
*F\A f t e r

ti

Figure 7-While the ‘51 stacks on/y a 1Bbit PC in response fo an interrupf, the XA also stacks the high PC and2-
byte PS W. Note that padding the high PC preserves word alignment.

NEW Data
Acquisition
Catalog
Covers expanded
low cost line.

NEW 120 page catalog for PC, VME,
and Qbus data acquisition. Plus infor-
mative application notes regarding
anti-alias filtering, signal condition-
ing, and more.

NEW Software:
LabVIEW @, LabWindows@,
Snap-MasterTM, and more

NEW Low Cost I/O Boards

NEW Industrial PCs

NEW Isolated Analog and
Digital Industrial I/O

New from the inventors of
plug-in data acquisition.

Call, fax, or mail for your
free copy today.

ADAC
American Data Acquisition Corporation
70 Tower Office Park, Woburn, MA 01801
Phone: (800) 648-6589 Fax: (617) 938-6553

#125
Circuit Cellar INK Issue #54 January 1995 105

Replace Four
Conventional PC/l 04

Modules with
One SuperXT’”

ZMF8680 cpuModule’”
mbedded PC/XT Controller witt
Intelligent Power Management

I PC/XT compatibility with 286 emulation
I14 MHz, 16-bit 8086 CPU
I +5V only; 1.6W at 14.3 MHz, 1 W at 7.2 MHz
I Intelligent sleep modes, 0.1 W in Suspend
I ROM-DOS and RTD enhanced BIOS
I Compatible with MS-DOS & real-time

operating systems
I 1 M bootable Solid State Disk & free software
I4K-bit configuration EEPROM (2K for user)
I2M on-board DRAM
I IDE &floppy interfaces
I CGA CRT/LCD controller
I Two RS-232 ports, one RS-485 port
I Parallel, XT keyboard & speaker ports
I Optional X-Y keypad scanning/PCMCIA

interface
I Watchdog timer & real-time clock

Ixpand This Or Any PC/l 04 System
with the

CM1 06 Super VGA
Controller utilityModule’”

I Mono/color STN & TFT flat panel support
I Simultaneous CRT & LCD operation
I Resolution to 1024 x 768 pixels
I Displays up to 256 colors I%Z

ipeed Product Development with the
IS8680 Development System
our DS8680 includes the CMF8680, CM102
.eypad scanning/PCMCIA, CM104 with 1.8”
15MB hard drive, CM106 SVGA controller &
lM5406 12-bit, 100 kHz dataModuleTM in an
enclosure with external power supply, 3.5”
floppy, keyboard, keypad, TB50 terminal

Board, SIGNAL*VIEWTM, SIGNAL*MATHTM,
\IIS-DOS, SSD software & rtdLinxTM for just

$2950.
For more information on our PC/104 and

ISA bus products, call today.

Real Time Devices USA
!OO Innovation Blvd. l P.O. Box 906

State College, PA 16803 USA
(814) 234-8087 / Fax: (814) 234-5218
tTD Europa . RTD Scandinavia
ial Time Devices is a founder of the PC1104 Consortium

primary intention is to
support high-speed
burst access (e.g.,
DRAM page mode) of
up to 16 sequential
bytes of code without
requiring an ALE cycle.
It also means that an
address latch may not
be required if the only
external ICs are simple
peripherals since they
typically demand just a
couple of address lines.

Another quirk of
the ‘51 was the lack of a

ALE

A4DO-
AilD7

XA

A4-All
E-bit
peripheral
device

DO -D7

A3-A0
:A12 -A19)

Figure E--The XA bus interface is quite like the ‘51, except the lowest
address bits aren’t multiplexed.

WAIT line. Maybe at the time, the stopper to the otherwise simple idea of
designers were safe in assuming other boosting the clock rate. Ironically,
chips would have no trouble keeping while adding the WAIT line, the XA
up. Unfortunately, that decision designers largely eliminated the need
haunts ‘5 1 -derivative suppliers to this for it by including an on-chip wait and
day, serving as pretty much a show bus-cycle timing generator.

Listing l--Existing ‘51 code easily converts to the XA. Notice the assignment of ‘51 registers (e.g., A, B) to
XA registers (e.g., R41, R4H) for emulation purposes.

:StepCal c a l c u l a t e s a t r i p p o i n t v a l u e f o r m o t o r m o v e m e n t b a s e d
;on a percent of pointer full scale (O-100%)
:Call with target value in A. Returns result in A and StepResult.

StepCal: MOV Temp2,A ;Save step target for later use
MOV B,#Steplow ;Get low byte of step increment
MUL AB ;Multiply this by the step target
MOV StepResult,B ;Save high byte as partial result
MOV Temp1.A ;Save low byte to use for rounding

MOV A,TempZ ;Get back the step target
MOV B,#St.epHigh ;Get high byte of step increment
MUL AB : and multiply the two

ADD A.StepResult ;Add the two partial results
JNB Templ.7,Exit ;Least significant. byte > 80h?
INC A ;If so, round up the final result

Exit: ADD A,#MotorBot ;Add in the 0 step displacement
MOV StepResult,A ;Save final step target
RET

StepCal: MOV TempZ,R4L ;Save step target for later use
MOV R4L,#Steplow :Get low byte of step increment
MULU.b R4,R4H :Multiply this by the step target
MOV StepResult,R4H ;Save high byte as partial result
MOV Templ.R4L ;Save low byte to use for rounding

MOV R4L,Temp2 ;Get back the step target
MOV R4H,#StepHigh ;Get high byte of step increment
MUL R4,R4H ; and multiply the two

ADD R4L,StepResult ;Add the two partial results
JNB Templ.7,Exit ;Least significant byte > 80h?
INC R4L,#l ;If so, round up the final result

Exit: ADD R4L,#MotorBot ;Add in the 0 step displacement.
MOV StepResult,R4 ;Save final step target
RET

106
#126

Issue #54 January 1995 Circuit Cellar INK

BACK TO THE FUTURE
The XA claim of ‘5 1 compatibility

is arguably credible. As shown in
Listing 1 and Table 2, ‘51 code trans-
lates reasonably. Sure, there’s some
code expansion (note the NOP inser-
tions since branch targets must be
word aligned), but it’s more than offset
by a nearly four-times increase in
speed.

While a code fragment looks nice,

For instance, the change in stack
formats is likely to trip up code that
indirectly (i.e., not via PUSH and POP)
messes with the stack. Meanwhile, the
instruction-size difference will wreak
havoc with programs that rely on
instructions to fit in a certain area or
branches to have a certain reach (a
jump table might have both problems).
Also, watch out for PC-relative
accesses (e.g., @MOVC @A+PC) since the

I caution that a translation exercise XA’s PC likely won’t be pointing to
can get tricky deep in the bowels of a the same place the ‘5 l’s PC does.
bizarre program. Besides the previously Your choice with the XA is to
mentioned timing differences, there translate old programs or write new
are a whole host of gotchas to watch ones, but not both. I suppose it would
out for. be possible to try to mix-and-match

8OC51 XA
Statistic code translation Comments

Code bytes 28 40 one NOP added for branch
alignment on XA

Clocks to execute 300 78 includes XA prefetch queue analysis,
raw execution is 66 clocks

Time to execute Q 20 MHz 15 lJs 3.9 lJs a nearly 4-times improvement without
any optimization

Table P--The XA executes the routine very quickly, even though the amount of code does grow slightly in
translation.

‘5 1 and XA code, but I suspect it’s very
ugly, if not impossible. Why not just
bite the bullet and go all the way with
XA? Thanks to the easy programmer’s
model, high performance, and the
familar-yet-improved bus and I/O, I
suspect most ‘5 1 users will welcome a
close encounter with this UFO. q

Tom Cantrell has been an engineer in
Silicon Valley for more than ten years
working on chip, board and systems
design and marketing. He can be
reached at (510) 657-0264 or by fax at
(510) 657-5441.

Philips Semiconductors
8 11 East Arques Ave.
Sunnyvale, CA 94088-3409
Attn: Mike Thompson
(408) 991-5207

431 Very Useful
432 Moderately Useful
433 Not Useful

NEW! UNIVERSAL DALLAS
DEVELOPMENT SYSTEM from $199!

l It’s a complete 8051-family single board computer!
l One board accommodates any 40 DIP DS5000,40 SIMM

DS2250,40 SIMM, DS2252, or 72 SIMM DS2251, 8051
superset processor! Snap one out, snap another in.

l Programs via PC serial port. Program lock & encrypt.
l LCD interface, keypad decoder, RS232 serial port, 8-bit

ADC, four relay driver outputs, four buffered inputs.
l Power with 5VDC regulated or 6-13 VDC unregulated
l Large prototyping area, processor pins routed to headers
* Optional enclosures, keypads, LCDs, everything you need
l 6051 Pro BASIC Compiler w/50+ Dallas keywords $399

SYSTRONIX@ TEL: 801.534.1017 FAX: 801.534.1019
555 South 300 East, Salt Lake City, UT, USA 84111

3%DIGIT LCD PANEL METER
-Available now at an unheard of

priceof$l5pluss&h
N e w ! N o t s u r p l u s !

I- 2.72 in-l

S p e c i f i c a t i o n s : f10.‘25 in
Maximum input: +199.9 mV

additional ranges provided through
external resistor dividers

Display: 3%digit LCD, 0.5 in. figure height,
jumper-selectable decimal point

Conversion: Dual slope conversion, 2-3
readings per sec.

Input Impedance: > 1 OOM ohm
Power: 9-12 VDC Q 1 mA DC

Circuit Cellar, Inc.
4 Park Street, Suite 12, Vernon, CT 06066
Tel: (203) 875-2751 Fax: (203) 872-2204

#127
Circuit Cellar INK Issue #54 January 1995

Micros
Behind Bars

John Dybowski

n last month’s
column, I looked at

a number of media
that are commonly

employed in the field of Auto ID with
a special emphasis on bar code. I
touched on everything from the giant
bar codes on rail cars, which move past
xenon scanners, to two-dimensional
wonders, which look more like
artwork than encoded information.
The range of complexity spanning the
various symbologies collectively called
bar codes is quite expansive.

And, as I pointed out last time,
that range of complexity hinges on the
fact that the industry is centered pri-

Interleaved Two of Five exist side by
side with such fiendishly complex
multidimensional representations as
VeriCode. Simply put, these older
codes are kept around because they
still serve their purpose well.

With the emphasis on technology
being especially strong in the com-
puter field, it’s too easy to forget what
pays the bills. Auto ID represents
many technical fields pressed to serve
the industrial and financial sectors.
The bottom line is results, and many
of these applications do just fine with
a moderate dose of technology.

To those technology zealots who
question how processors like the 8051
and 6805 not only survive but prosper,
the answer is simple. They reliably
provide useful services at low cost. In
fact, 805 l-class processors offer more
performance than is needed for many
applications. Bar-code readers are an
example of this type of commodity.

CODE 39
Code 39 is a bar-code symbology

with a full alphanumeric character set.
A unique start/stop code (*) and seven
special characters (- $ / + % and
space) are also included in the charac-

marily around economic rather than ter set. The name 39 is derived from
technological concerns. Because of this its code structure of three wide ele-
practical focus, many of the older, ments out of a total of nine. These
simpler symbologies are still used nine elements are composed of five
heavily to this day. Codes such as bars and four spaces.

Char. Pattern Bars Spaces Char. Pattern Bars Spaces

1 mm n m~10001 0100 M m m n n n 11000 0001
2 mm n m m o l o o l 0100 N n n m n m 00101 0001
3 m m n n n 11000 0100 0 m n m n n 10100 0001
4 mm ~mmoolol 0100 P n m w n n 01100 0001
5 m n m n n 10100 0100 Q n M r n r n m 00011 0001
6 n - - n n 01100 0100 R m n n m n 10010 0001
7 rnB n ~~ooo11 0100 S n m n m n 01010 0001
8 m n n m n 10010 0100 T n n m m n 00110 0001
9 n m n m n 01010 0100 U m n n n m 10001 1000
0 mm m~moollo 0100 V n m n n m 01001 1000
A m n n n m 10001 0010 W m m n n n 11000 1000
B n - m ~~01001 0010 X n n m n m 00101 1000
c m m n n n 11000 0010 Y m n m n n 10100 1000
D n m- ~~00101 0010 Z n m m n n 01100 1000
E - n - n n 10100 0010 - n mm-m 00011 1000
F n m m n W 01100 0010 m w n m n 10010 1000
G n Bm ~~00011 0010 SPkE n - n m n 01010 1000
H - n n - n 10010 0010 * n n m m n 00110 1000

I n m n m n 01010 0010 $ n n n I n 00000 1110
J n n - - n 00110 0010 I n n n n n 00000 1101
K - n n w m 10001 0001 + n n n n n 00000 1011
L w m n w m 01001 0001 % n n n n n 00000 0111

Table l--The Code 39 encodable character set consisfs of 10 numeric digits, 26 alphabetic characters, and 8
special characters.

108 Issue #54 January1995 Circuit Cellar INK

Unlike some of the other more
awkward bar codes, Code 39 uses only
two element widths. These are usually
simply described as narrow and wide.
Using the normal convention, a nar-
row bar or narrow space is called the x
dimension. All x dimensions must be
of equal size within the symbol. The
dimension of wide bars and spaces is a
multiple of x. This ratio can vary
within certain proportional limits but,

minimum intercharacter width is the
x dimension and the maximum is 3x.

Combining the desirable discrete
attribute with a fixed structure (3 wide
elements out of 9) results in code that
is classified as self-checking. With this
feature, the possibility of a missed
decode is much less likely since a
substitution error can only occur if
two or more elements are misinter-
preted. This could happen, for ex-

Intercharacter

r 7gaps

once selected, must remain
consistent throughout the
symbol. Generally, a wide-to-
narrow ratio in the range of
2:I to 3:I is acceptable for
most Code-39 symbols.

The combination of nar-
row and wide elements in a
Code-39 character always
consists of six narrow and
three wide elements. A space Figure l-Each Code-39 character is represented by five bars and four
is included between charac- intervening spaces. This symbol represets fhe character “A’:

ters as a separator. No infor-
mation is contained in the space; it
functions only to delimit the char-
acters from each other.

A special code (an ASCII *) is
defined as a start/stop character. The
purpose of this code is to identify the
leading and trailing ends of a bar-code
symbol. The bar-space pattern of this
code is unique and allows the symbol
to be bidirectionally scanned.

ample, if a spot on a narrow bar lined
up with a void on a wide bar and the
resulting pattern turned out to be a
legal-character depiction.

Table 1 shows the Code-39 char-
acter assignments for all available
codes. Note how the last four codes in
the table “don’t fit” the established
coding pattern. Interestingly, if you
take away these nonconforming char-
acters you end up with 39 characters.
Rumor has it that these 39 characters
composed the original character set
and are the basis for the Code-39
name. Whatever the case, Figure 1
offers an example of how
to decode a Code-39 char-
acter “A”.

Another benefit of discrete codes
is that they are well matched to
certain printing processes. Some types
of printers can maintain very tight
resolution between elements within a
character but are unable to maintain
such accuracy in the space between
characters. Obviously, these printers
are fixed-font devices in which each
character code is fully formed. This
ensures that tolerances are held tightly
within each character. The space
between characters is dependent on
the printer’s mechanical motion and
therefore less precise.

In addition to the bar-space pat-
tern that makes up a bar-code charac-

Code 39 is classified
as a discrete code since

Many methods exist for
converting a bar code’s optical
information to an electrical
form suitable for input into a
computer. In all cases, the
printed pattern of bars and
spaces is converted into a

binary bitstream as it is scanned
physically or by purely electrical
means. Since this data is transformed
into the time domain, the bar-code
processor must proceed by first
recording timing information relative
to each bar or space event.

Although some autoscanning
readers are very accurate in their
initial and absolute scan velocities,
this is not a requirement. The main
feature these devices offer is their
rapid repetitive scanning action.
Combined with a slight dither of the
light source, the same symbol can be
scanned numerous times through
slightly different paths until a good
read is recorded. This multiple
scanning illustrates the data redun-
dancy that is built into the vertical
dimension of a bar code.

This redundant data
can be used with a hand-
held scanner as well. In the
event of a decode failure,
the natural inclination is
to scan the label again. In
this case, it is highly
unlikely that the same part
of the label will be scanned
a second time.

Quiet Start “1 ” “A” stop Quiet
zone char char zone

7<

ter and the intercharacter gaps that
delimit these characters, there is one
more component to a bar-code label.
Bar code must be framed with areas
free of any printing on either side of
the “picket fence” pattern. This region
is referred to as the quiet zone.

Now, with this information we
can take the pattern of ones and zeros
to assemble a start code, some data
characters, and a stop code. Framing

this with the requisite quiet
zones results in a standard bar-
code label. These elements are
depicted in Figure 2.

HAND SCANNING

each encoded character is
capable of standing alone.
That is, the intercharacter
space (or gap) is not con-
sidered an integral part of
the character code and, as

I IllIll IllIll Ill Ill1
a result, enjoys somewhat Figure 24uief zones, starfkfop codes, and data codes constitute fhe elemenfs of a bar
loose tolerances. The code. The encoded information here is “iA”.

Some applications
require the use of noncon-
tact automatic scanners.

Circuit Cellar INK Issue #54 January 1995 109

The two-dimensional bar codes I
described last month certainly demand
this caliber of performance. More
conventional bar codes may also
dictate the use of such sophisticated
devices as well. For instance, more
complex devices must be used for
tracking materials on rapidly moving
conveyer belts, high-volume, point-of-
sale operations, and long-range, point-
and-shoot warehouse applications.
Since this is a field in which high and
low tech coexist side by side, dealing
with conventional bar code in unique
situations is possible.

Low-tech devices usually refer to
hand-held bar-code wands. Of course,
this distinction is purely relative and
does not imply that such devices suffer
from a lack of technological elegance.
The fact is, until recently, coercing a
clean stream of bits from a bar-code
front end required a significant effort
using optics and analog electronics.

The vagaries of these disciplines
have been brought in check as is
evident in modern, digital-output bar-
code wands. Bar-code wands operate
directly from a 5-V logic power supply
and output a digital representation of
the symbol being scanned. To facili-
tate an interface to a variety of
different decoders, the output stage
often uses an open-collector driver.

There are a number of parameters
that must be considered when specify-
ing the optical characteristics of a bar-
code wand. Luckily, industry standard-
ization has limited the number of
permutations. Briefly, the optical
wavelength can be centered in the
visible (red) or infrared spectrum. The
advantage of using visible light is that
if the bar-code label looks fine to you,
it should appear likewise to the wand.

The other thing you must be
concerned with is the optical aperture
size. A small spot size responds
accurately to bar edges, but also picks
up small spots and voids. Conversely,
if the spot size is larger than the
smallest bars and spaces, then the
wand will have difficulty resolving the
pattern. An aperture size about 0.8x
works well for most codes. Here again,
standardization limits the choices
between high resolution (6 mil) and
low resolution (10 mil).

110 Issue #54 January 1995 Circuit Cellar INb

Listing l--The five basic steps involved in decoding Code-39 can be implemented in C.

iipragma large code

/* Constants */
#define StartCode '*' /* Code 39 start code */
#define StopCode '*' /* Code 39 stop code */
#define NoSample 0 /* Sample count end mark */
#define NoCode 0 /* No-translate return code */
i/define NoDecode 0 / * No-decode return code */

/* Global variables */
unsigned int SampleData[ilZl;
unsigned int *SamplePtr;
unsigned int SampleCount:
unsigned char DecodeData1331;

/* Raw sample count buff */
I” Pntr into sample buff */
/* Number of samples */
/* ASCII decode buffer */

/* External references */
extern unsigned char Decode39(void) : I*
extern unsigned char DecodeChar(void); /*
extern void ReverseSamples(void1; /*

/* Code 39 decode routine */
unsigned char Decode39(void)

Main decode routine */
Bar to ASCII decode*/
Sample buff reversal */

unsigned char DecodeCount, DecodeByte:

SampleCount = 0;
while (SampleDatalSampleCountl != NoSample)

SampleCount++;

if (SampleCount < 27)
return NoDecode; /* Not enough samples */

SamplePtr = &SampleDataLOl;
if (DecodeChat- != StartCode) i /* Check start code */

ReverseSamplesO; /* Try reverse direction */
SamplePtr = &SampleData[Ol;
if (DecodeChat- != StartCode)

return NoDecode; /* Can't find start code */
i

/* Main decode loop */
DecodeCount = 0;
while ((*SamplePtr++ != NoSample) && ((DecodeByte =

DecodeChar- != NoCode)) i
if (DecodeByte != StopCode) /* Store data character */

DecodeData[DecodeCount++l = DecodeByte;
else 1

DecodeData LDecodeCountl = 0:
return DecodeCount-I; /* Stop code found */

return NoDecode; /* Unable to decode */

/* Generate ASCII character from bar/space pattern */
unsigned char DecodeChar(void)

static code unsigned char BarTable[41[251 = 1
~0,0,0,'7',0,'4','0',0,0,'2','9',0,'6',

0,0,0,0,'1', '8',0,'5',0,0,0,'3'i,
IO,O,O,'G',O,'D','J',O,O,'B','I',O,'F',

O,O,O,O,'A', 'H',O,'E',O,O,O,'C'l,
IO,O,O,'Q',O,'N','T',O,O,'L','S',O,'P',

O,O,O,O,'K',' R',O,'O',O,O,O,'M'l,
(O,O,O,'-',o,'x','*',o,o,'v',' ',O,'Z',

o,o,o,o,'v','.' ,o,'Y',o,o,o,'w'l
1;

(continued)

Listing l-continued

unsigned int *TempPtr, Threshold:
unsigned char Bars. Spaces, c;

/* Generate reference threshold */
TempPtr = SamplePtr;
Threshold = 0;
for (c = 0; c < 9; c++) 1

if ((*TempPtr) == NoSample)
return NoCode;

Threshold += *TempPtr++;

Threshold /= 8;
Bars = 0;
Spaces = 0;

/* Build binary bar/space image */
for (c = 0; c < 4; c++) 1

if (*SamplePtr++ > Threshold)
Bars /= 1;

Bars <<= 1;

if (*SamplePtr++ > Threshold)
Spaces I= 1;

Spaces <<= 1;

if (*SamplePtr++ > Threshold)
Bars I= 1;

Spaces >>= 1;
(continued)

SAMPLING
The first step to decoding a bar

code is acquiring the bar-space data.
More specifically, information describ-
ing the bar-space widths must be re-
corded. This sampling can be per-
formed in a number of different ways
and, as usual, the appropriate method
depends on what else is expected of
the system.

Dedicated implementations, in
which the system can dedicate all
processor resources to sampling, per-
mit the use of a simple software loop
for counting the bar-space durations.
Alternatively, it may be desirable to
give the processor assistance from a
hardware timer in lieu of using a soft-
ware-based timing loop. Both these
cases rely on the premise that the
system can somehow vector off to the
sample loop before too much of the
first bar is lost.

If it is possible that the system
may be off performing other tasks
when the bar-space data starts coming
in, then obviously the processor must
suspend these operations promptly or

F Good 5tuff 4
Bar Code Sensor

Battery Controllers
Clock/Calendars

Digital Power Drivers
DTMF & Phone Interfaces
Firmware Furnace Widgets
HCS-II Hard-to-find Parts

I’C Bus ICs
IR LEDs & Photodiodes

IR Data Link Parts
IR Remote Control

Laser Diode Controllers
Linear Hall Effect Sensor

Multiplexers & Crosspoints
Power Op Amp

Remote Temperature Sensor
Stepper Motor Drivers

Watchdogs & Power Monitors
8051 Information

and more!
Use a soldering iron? Get the parts!

UPS: Grou”dI2”d day $6.50/9.00 to 48 US states, COD add 54.50. PO Boxes and
Canadian addresses: $6 for USPS mail. Check, MO. or COD only; no credit cards,
no open POs. NC residents add 6% sales tax. Quantity discounts start at five pads.

Data sheets included with all parts.

Call/write/FAX for seriously tempting catalog...

Pure Uhobtainium
) Your unusual part5 source 4

13109 Old Creedmoor Road Raleigh NC 27613-7421
FAX/voice (919) 676-4525

T E C H N O L O G Y

The g-Bit Solution

The Cirnetrics Technology Y-Bit
Solution is a complete microcontroller
network @LAN) that supports the 805 1,
68HC11,8OCl R6EB/EC, and many other
popular processors. The 9-Bit S&ion
rakes full advantage of microprocessor
modes built in to microcontollers.
The 9-Bit Solution allows simple and
inexpensive development of master/slave
multidrop embedded controller networks.

* 8051, 68HCll. EOC186EB/EC compatible

- A full range of other processors
supported

* Up to 250 nodes

* 16 Bit CRC error checking with
sequence numbers

- Complete source code included

#128
Circuit Cellar INK Issue #54 January 1995 111

the first sample will be hopelessly
distorted. If this is the case, you can
use an interrupt to simply yank the
processor into a dedicated sample loop
where it stays until the sampling
phase completes.

If you’ve got to stay live while
servicing other real-time events, then
there’s no choice but to sample
completely under interrupt control.
This technique mandates the use of a
hardware timer that is stopped, read,
and rearmed every time an interrupt
event occurs. You must provide a
means of generating an interrupt on
each transition, and the interrupt
should be given high priority. Also,
most timer systems have the capabil-
ity of interrupting on terminal count.
This is exactly what you want to pull
you out of sampling after you’ve
entered the trailing quiet zone and
data transitions have ceased.

Some systems may have to deal
with real-time events that are more
critical in nature than the incoming
bar-code data. This situation can be
handled provided your processor has a
timer-capture system. In such a
system, the sample count is copied
into a capture register from a free-
running timer without stopping the
timer. This happens automatically
under control of a hardware pin that
can also be used to assert an interrupt
when a transition event occurs. The
processor has until the next event to
read the captured count before it is
overwritten, resulting in a sample loss.

Very accurate timing measure-
ments can be achieved using such a
system. Of course, the sample buffer
requires some manipulation to adjust
all samples to look like zero-referenced
up counts. Also, setting the proper
duration for the timer-overflow inter-
rupt requires additional overhead. (For
thoughts on general-purpose sampling
techniques, take a look at my column
in INK 30.)

For my sampling routine, I’m
taking advantage of the simplicity of
the dedicated software method,
although you’d seldom be able to use
such a primitive technique in a real-
world application. Since I’m primarily
interested in showing you how to
decode bar code, I won’t waste space

Listing l-continued

/* Now do lookup based on bar-space combination */
if (Bars > 24)

return NoCode;

switch (Spaces) /
case 0x4: return BarTable[Ol[Barsl; /* OlOOb */
case 0x2: return BarTable[lliBarsl: /* OOlOb */
case 0x1: return BarTable[PI[Barsl; /* OOOlb */
case 0x8: return BarTableL3liBarsl: /* 1OOOb */

/* 1llOb */case Oxe: 1
if (Bars == 0)

return '$';
break;

case Oxd: j
if (Bars == 0)

return '/';
break;

case Oxb /* 1Ollb */
if (Bars == 0)

return '+I;
break:

case 0x7
if (Bars == 0)

return '%';
break:

/* Olllb */

default: return NoCode;

/* Do sample buffer reve
void ReverseSamples(void

~sal *I

unsigned in *Ptrl, *PtrZ, Count, Temp;

Count = SampleCount-1;
Ptrl = &SampleData[Ol:
Ptr2 = &SampleData[Countl;

for (Count /= 2; Count != 0; Count--) i
Temp = *PtrZ:
*PtrZ-- = *Ptrl;
*Ptrl++ = Temp;

/* 1lOlb */

going into bar-code sampling in any
detail. For information purposes, let
me briefly describe the steps taken by
my rudimentary software sample loop.

Coming from an idle state, control
is transferred to the sample routine on
detection of a data transition (the first
bar). The routine now initializes some
general variables and starts increment-
ing a counter register until the data
line changes to the opposite polarity.
Once this change occurs, the count is
stored, the storage pointer incre-
mented, and the procedure begins all

over again. This cycle continues until
the counter reaches some terminal
value (due to lack of transitions) at
which point the trailing quiet zone is
recognized and the routine terminates.

Since the count interval is
referenced to the loop time, this
parameter can be tuned to accommo-
date the range of values which are
encountered. Assume a nominal x
dimension of 0.0X1”, a wide-to-narrow
ration of 311, and a 10x quiet zone. A
realistic scan rate would typically fall
in the range of 530“ per second.

112 Issue #54 January 1995 Circuit Cellar INK

To accommodate these param-
eters, the sample counter is 16 bits
wide. The sample loop time is set to
about 2.5 ps. Terminal count is
reached after an interval of 10 ms, and
in the absence of transitions, this is
the overflow count. To save space for
the decoding algorithm, the sample
routine listing is not presented here.
However, the BAR. Z I P archive is
available on the Circuit Cellar BBS and
contains this and related modules. (If
you do decide to examine the sampling
routine, remember that it is set up to
run on a 25MHz DS80C320.)

DECODING 39
In keeping with my goal of pro-

viding a simplified firmware presenta-
tion, I will demonstrate the essence of
Code 39’s decoding algorithm. This is
in fact an implementation of the logic
described in the Automatic Identifica-
tion Manufacturers (AIM) Reference
Decode Algorithm for USS-39.

At this point, it would be useful to
make a couple of general observations.
This decode algorithm presents the
basic steps for deciphering a Code-39
symbol. The underlying logic is sound,
but incomplete. As the AIM specifica-
tion points out, you would undoubt-
edly want to add secondary checks for
acceleration, intercharacter gap, and
absolute dimensions for any serious
application. You should also realize
that these secondary checks and
balances can generate as much code as
the algorithm. As a result, the logic of
the algorithm can become totally
obscured.

The other relevant issue falls
smack in the realm of advancing the
state of the art. It’s not unusual to
encounter bar-code labels that don’t
meet specifications. This may be due
to dimensional-tolerance problems,
poor print-contrast ratio, inadequate
quiet zone, and suchlike. If some
clever programmer comes up with a
superior algorithm which consistently
reads deficient labels (one that doesn’t
result in an increase of missed de-
codes, of course), this has an unsettling
effect on the status quo. These things
happen and illustrate the fact that
meeting the specification should be
just a starting point.

#129

Q How do you know you’re
l geffing fhe most from your

development tool purchase?

A Compare Avocet Systems
l with the competition.

n A Broad Line of High-Quality
Products at Competitive Prices

1 Free On-Line Technical Support
for Registered Users. No Voicemail!

n Attractive Multi-User Discount Prices &
Our “50%+” Educational Discount Plan

n Unconditional 30-Day
Money-Back-Guarantee

Now call the obvious choice!

SYSTEMS; INC.

The Best Source for Quality
Embedded System Tools

(800) 448-8500
(207) 236-9055 Fax (207) 236-6713

Semiconductor’s new 8051-compatible DSSOC320
With Its 2X clock speed [25MHz] end 3X cycle efficiency, an
instruction can execute in 160”s: a” 8051 equivalent speed

of 62.5MHz’!! Equally wnpress~ve is the T-l 28’s high-speed NVRAM
interface. Any of the 128K RAM may be programmed directly from a PC fde through the console:
eliminating EPROMs and associated tools. Program Development has “ever bee” faster or more
convenient, eve” with the finest EPROM emulator.The T-128 features PORT 0 btas and EA-select for
OS87C520 upgrade.

*Dallas Semiconductor’s ffi8oc320
l 3W% more efficient than tie 8051
*Three 1 &bit Timer/Caunters
*13 klt&wupts [6 Ext, 7 lntl
*A second 1 E-bit Data Pointer
9384 Bytes of internal RAM
*Programmable Watchdog
l Brownout Protectron
*Power-Fall Reset/interrupt
.PowerOn Reset
*Fully supported by Franklin C51

l Entire 128K Memory Map
populated with fasast NV?=tAM
[64K DATAt64K CODE)

‘All memory pmgrammed on-board
rPartmo”able as
ccGE,‘DATA/C3vERAHl
Gde !$ace IS W”te+=mtectable
Q.atwfheArt Data PTvtacbon

BASIC520
‘Modified BASG52 lntemreter IBASIC-
Now Fast Enough for N.&v Appl&ians

*Stack BASIC Pmgrams and Autorun
tiLL ASM Routines for Maximum Speed

M
*Three a-hi Parallel Ports
*Two Full-Duplex RS232 Serial Ports
*Decoded Device I/O Strobes
*SOPin Bus Connector

UPGRADE
l OS87C520 processor 133MHzl
.l”sn-uC00” cycle 121 ns
‘a.25 MIPS
l 8051 equivalent 82.5 MHz
*Internal 16K ROM/l K SRAM

Camps Rsady to Run
with pwsr adqterhble amrmbly.

Ineludas utility dishetts with
DETAILED TECHNICAL MI)IYUAl

$199 in OTV.

Circuit Cellar INK Issue #54 January 1995 113

Photo l--Running the fest code on a DS80C320 processor yields proper/y decoded data displayed on fhe LCD

The basic steps in decoding Code
39 are:

1) Confirm a leading quiet zone
2) For each character,

l measure and assign total character
width to S
l compute threshold, T = ?%
l build binary bit strings for bars and
spaces
l determine if the pattern matches a
valid character

3) If the first character is not a start/
stop code, reverse buffer and try
again

4) Read until valid start/stop code is
found [or until out of samples)

5) Perform secondary checks

These basic steps are implemented in
the source code contained in Listing 1.
This C implementation begins with
the main decode function called De -
code39. This function first counts the
number of samples and determines if
there are enough to continue. If the
minimum number of samples is avail-
able, the De CO d e C ha r function is
invoked. This function actually does
the work.

DecodeChar begins by summing
the nine samples that (presumably)
compose a character. A constant is
applied to this sum resulting in the
narrow- or wide-reference threshold.
The code sequentially compares the

character’s sample counts to this
threshold and builds a binary represen-
tation of the bars and spaces. Using the
binary-space pattern, a switch state-
ment is performed. The first four cases
handle the “normal” Code-39 charac-
ters and isolate ASCII code to the look-
up table.

The table is in the form of a two-
dimensional array that consists of 4
arrays of 25 elements each. Illegal
codes are denoted by null codes. The
four remaining “special” space
patterns are directly validated and
translated in the switch. The function
now terminates and returns either a
decoded ASCII code or an error code to
the caller.

At this point in Decode39, the
only valid character is a start code. If
anything other than a start code is
returned, the function assumes that
this may have been a reverse scan and
inverts the sample buffer. Following
this, the pattern-matching procedure is
performed again. If a start code is not
recognized this time, the function
terminates and indicates a no-decode
to the caller.

If a start code is found, then the
code falls through and indexes past the
intercharacter gap and invokes
De c o d e C h a r again. If a displayable
code is returned, it is placed into the
DecodeData array. An invalid code
causes the function to terminate

immediately and return indicating a
no-decode. Detection of a stop code
marks the completion of a good decode
sequence. In this case, a trailing null is
appended to the decoded data, and a
value indicating the number of
characters is returned to the caller.

DISCLAIM THIS
The functions I’ve presented all

work individually and together. As
evidence, Photo 1 shows the ec.32 SBC
serving as the test bed in developing
and testing the demonstration algo-
rithms. The apparent performance of
the system is actually quite good, and I
encountered no problems with the
system once I got the basic functions
operational.

Where my discomfort lies is in the
routines. I am well aware of the code’s
limitations, deficiencies, and omis-
sions. That’s not to say that I don’t
have a solid foundation on which to
build, but clearly, the code is not
finished.

From the user’s perspective, this is
not at all evident. At times like this, I
wonder what lurks under the hood of
some of the commercial software and
systems. At least when I give you a
weak algorithm, you get a disclaimer
up front. (&

/ohn Dybowski is an engineer in-
volved in the design and manufacture
of embedded controllers and commu-
nications equipment with a special
focus on portable and battery-oper-
ated instruments. He is also owner of
Mid-Tech Computing Devices. /ohn
may be reached at (203) 684-2442 or
at john.dybowski@circellar.com.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime” in this issue for
downloading and ordering
information.

434 Very Useful
435 Moderately Useful
436 Not Useful

114 Issue #54 January1995 Circuit Cellar INK

The Circuit Cellar BBS
300/l 200/240019600114.4k bps
24 hours/7 days a week
(203) 871-1988-Four incoming lines
Internet E-mail: sysop@circellar.com

With the start of our quarterly home automation inserts in this issue, I
thought it on/y appropriate to spend this month’s column dealing with
home automation threads from the BBS. In the first discussion, we
fake a look at some of the potential pitfalls in trying to add infelli-
gence to an HVAC system. While hot-water baseboard setups aren’t
particularly difficult to deal with, forced-air systems can be quite
tricky.

In the other thread, we tackle a problem that comes up all the
time in every on-line home automation forum I follow: flaky X-10
behavior. There is nothing cut and dry about power-line communica-
tions.

Fan control and HCS II

Msg#: 9252
From: DAVID WURMFELD To: KEN DAVIDSON

Is there a fan controller interface to the HSC II? I want
to control the speed of my forced (hot/cold) air system. I am
also looking for (digitally?) controlled air duct flapper
valves. Eventually I would like to “shut down” the A/C in
some rooms and not in others, so I would have to slow
down the one service fan so as to not overpressure the
reduced system. Any ideas for the “analog challenged”?

Msg#:ll727
From: BILL NEUKRANZ To: DAVID WURMFELD

I’d be careful about trying to control furnace fan speed.
Both your A/C and furnace units require good airflow to
operate within safe limits.

You’re correct to be concerned about pressure build up
when running a zoned HVAC system. You should also be
concerned about the liquid freon line getting too cold,
eventually causing A/C compressor failure. And, during
the heating season, you should be concerned about the
furnace heat exchanger getting too hot. I’m operating a five-
zone system for a 3400~square-foot home, with a single
HVAC unit, and have protection for all three of these
situations.

For the pressure, you can simply always run a “dump
zone.” That is, a zone that’s always open in addition to any
other zone. In my five-zone system, that would mean the
minimum number of zones open would be two. Another

technique is to install a bypass duct that starts at the same
point as all of your other ducts, and ends at the intake side
of the furnace blower. In the middle of this duct you install
a pressure valve. Adjust the valve such that it’s closed when
all zones are calling for air. I’m using the bypass valve
solution.

The bypass duct also helps protect the A/C compressor
by increasing air flow across the evaporator coil, keeping
the liquid freon line from getting too cold. Additionally, I
mounted a simple 45” temperature sensor switch directly
onto the freon line. The switch is interfaced into the zoning
controller. When the switch opens up at 45”, all air duct
flapper valves open, maximizing air flow.

For winter heating, I’ve had to use a dump zone in past
years. Otherwise, the furnace emergency-high-heat cutout
switch would operate. I wasn’t too interested in essentially
“modulating” the furnace using this emergency protection.
You’d have the same problem if you reduced fan speed
without correspondingly reducing burner operation. This
year, I have just finished installing a temperature sensor
into the plenum distribution area that supplies all of the
duct work. Once I figure out what is a safe temperature
level, I’ll program my controller to open up more zones
when it gets too hot.

Some other things I’m doing that may give you some
ideas for HVAC zoning:

1. I’m using balloons, not mechanical dampers, for
what you’re calling “flapper valves.” They’re very easy to
install, especially for retrofit situations (like if your house is
already built). I use an air pump to inflate or vacuum them.
Much less expensive that the mechanical dampers. I got the
equipment from Enerzone Co., in Dallas. All U.L. listed,
too.

2. Get yourself a good controller if you’re going to have
three or more zones. I’m using an Enerstat five-zone
controller. Works with heat pumps and forced air. Handles
multiple stages of cooling (our A/C unit is a two speed
unit). Also has digital inputs for unoccupied, high tempera-
ture limit, low temperature limit, and smoke alarm. I have
all of these inputs connected to my home controller (not an
HCS II, but performs similarly). The controller will make
sure you don’t overcycle the compressor, always have at
least one zone open, shuts down and opens balloons in case

Circuit Cellar INK Issue #54 January 1995 115

TIME
fire alarm interface goes high, and so forth. Again, U.L.
listed.

3. Put a PIR in each zone to sense room occupancy.
Connect them to home controller and program it so the
PIRs turn on and off the thermostats.

4. Install an analog temperature input from each zone
to the home controller, too (separate from HVAC thermo-
stats). Use this to program some maximum upper and
lower limits when the PIRs have the zone thermostats
turned off.

Msgkl3511
From: DAVID WURMFELD To: BILL NEUKRANZ

Thanks for the response, the balloons sound great. I
have an 1800~square-foot ranch where all the heating ducts
and heat exchanger is in the attic with easy access. I have a
Century 2000 oil-fired forced-hot-air system with parasitic
hot water. It is my intent to use the HCS II for control and
other house chores. Would you be so kind as to post the
address of the company that sells the balloons and inflators?
Thanks again for the information.

Msg#:l3767
From: BILL NEUKRANZ To: DAVID WURMFELD

The name and address of the company is

Enerzone Systems Corp
4103 Pecan Orchard La.
Parker, TX 75002
(214) 424-9808
Fax: (214) 424-8055

The fact that your furnace is in your attic makes the
project easy, and Enerzone balloon dampers make retrofit of
existing HVAC systems straightforward. You basically need
a balloon damper and solenoid air switch for each zone, a
pump, and a controller. For three or fewer zones, the
solenoids and controller can be purchased as an integrated
unit.

Ask Enerzone to send a catalog to you.
I’d be careful not to divide your home into too many

zones without really paying attention to air volumes,
pressure, noise (from higher air velocity), and furnace
overheating (fire] safety. For 1800 square feet, I’d recom-
mend no more than two or three zones.

Enerzone provides engineering services at no charge.
Send them a sketch of your ductwork superimposed over
your floor plan for recommendations. Include duct sizes and
BTU rating of your HVAC system.

I’d strongly recommend that you not attempt to
interface your HCS II directly to the furnace, or if you

decide to install zoning, interface directly to the air switch
solenoids. Instead, interface your HCS II to a dedicated
HVAC controller and let the controller handle all of the
complexities needed for safe operation.

The HVAC controller I’m using provides the time
delays needed for safe equipment operation, automatic heat-
cool changeover (you need the same feature in your thermo-
stats to take advantage of this], allows one thermostat to be
set for heating and another for cooling (essentially “time
slices” between furnace and A/C until all thermostats are
satisfied), anti-short-cycle protection, high- and low-
temperature alarm ports, smoke alarm port (shuts down
HVAC and simultaneously inflates all balloons), and
“unoccupied” port (ignore all thermostats).

Here are some ideas for what you can do with your
HCS II in the world of HVAC. I’ll illustrate with examples
of how I integrated my home automation (dedicated
processor made by HA1 and similar to an HCS II) and HVAC
(another dedicated processor, made by Enerstat) systems.

(I have five zones. The five thermostats are wired into
the HVAC controller. The controller outputs are connected
to the furnace, air conditioner, and the five air switch
solenoids. This basic setup will provide good energy savings
and eliminate hot/cold spots in house.)

You can use programmable thermostats to increase
energy savings. These work well if your schedule is always
the same each day.

Like most people, though, my schedule is randomly
different each day. So, I rely on a virtual “unoccupied
thermostat” that takes control of the HVAC controller
when I’m not home. I have a temperature sensor in the
middle of the house, wired into an HA1 analog input. This
is my “unoccupied” sensor. An HA1 output relay is con-
nected to the HVAC controller’s “unoccupied” port. Using
the HA1 security subsystem’s “Away” mode as a trigger
that no one is home, I programmed the HA1 to disable the
HVAC controller (via the “unoccupied” port) as long as the
temperature sensor readings are within a programmable
range. If the temperature falls outside of the range, then the
HVAC controller is enabled, allowing the controller to use
the five thermostats again.

Even when you’re home, your movements throughout
the house rarely mirror the temperature settings pro-
grammed into the five thermostats. So to maximize energy
savings and convenience, I have PIR sensors in each room.
These PIRs are connected to HA1 digital inputs. HA1 output
relays switch in or out each thermostat in sync with PIR
sensing. I have a 30-minute time delay set from the last
motion sensed before a thermostat is switched out. To
prevent a zone from getting too cold or hot, I have tempera-
ture sensors installed next to the thermostats. These

116 Issue #54 January 1995 Circuit Cellar INK

sensors are connected to HA1 analog inputs. I programmed
the HA1 controller to ignore a PIR and switch in a thermo-
stat if temperature readings go outside of a programmed
range.

For safety, I have an HAI-connected temperature sensor
in the furnace plenum. HA1 output relays are connected to
the HVAC controller’s high- and low-limit ports. If plenum
temperatures fall outside of a programmed range, the HVAC
controller will sequence through a series of steps, starting
with opening all balloon dampers, and ending with, if
necessary, total shutdown.

I also have another HA1 output relay connected to the
HVAC controller’s smoke port. I programmed the HA1 to
turn on this port if the HAI’s fire subsystem goes into alarm
(smoke/heat detector goes off or fire panic button pushed).
The HVAC controller will respond by shutting down the
furnace or A/C, and simultaneously inflating all balloon
dampers.

Msg#:l5771
From: DAVID WURMFELD To: BILL NEUKRANZ

Wow! Looks like I asked the right question at the right
time. I’ll take your advice and call the folks at Enerzone
Systems. Thanks again.

X-10 troubleshooting

Msg#: 7612
From: DAVID CUNNINGHAM To: KEN DAVIDSON

I have been pulling my hair out for weeks trying to get
a simple Radio Shack lighting circuit to not turn itself on.
The load is two 150-watt incandescent floodlights and the
controller is an RS timer. I have been using an identical
circuit elsewhere in the building with never a problem, but
on this particular light circuit, the light switch turns itself
on usually around the same time each day.

I have tried every house code, and have swapped the
two light switches. The problem is always in the same
circuit. I should mention that the timer does turn the
circuit on and off OK, but apparently something else is also
turning it on. When I remove one of the floodlights, the
problem seems to go away. But the other circuit that works
OK has about 450 watts of incandescent lights on it, so I
don’t see that the troublesome circuit is overloaded.

I hate to bother you with such a mundane problem, but
is there information available somewhere that would help

me troubleshoot this problem? Is there test equipment
made that lets one monitor for X-lo-type commands (or
noise that would act like a commandl? Thanks.

Msg#: 7617
From: KEN DAVIDSON To: DAVID CUNNINGHAM

There is often no explaining problems with X-10
setups. We’ve all had lamp and appliance modules that
work fine one day, then mysteriously stop working the
next. About all I can suggest is to make sure you have a
signal bridge installed in your breaker box to ensure the
signal makes it between the two hot sides. There is a signal
strength meter available from Leviton (you can get it from
most home automation places), but it’s very expensive and
not worthwhile for most homeowners.

One other option if you think noise is coming in from
outside is to add a filter to the main power feed coming into
your house. Such filters are available from most home
automation suppliers, but you *must* have it installed by a
licensed electrician. You can’t simply flip off a breaker and
work on a dead circuit to install it.

Msg#: 7817
From: DAVID CUNNINGHAM To: KEN DAVIDSON

I do have a signal bridge, but didn’t bother to install it.
When I started to put it in, I found that all the circuits I am
using are already on the same transformer phase. But
perhaps I’ll try it anyway because whatever is inside the
thing is apparently more than just a coupling capacitor.
There are both black and white wires to connect.

This problem is really strange. The setup will work for
a few days without any problem, then will turn itself on. I
manually turn it off and a few minutes later it is back on
again. It has never turned off by itself that I am aware of.
Thanks for the help. I’ll let you know if the bridge does any
good.

Msg#: 7821
From: LEE STOLLER To: DAVID CUNNINGHAM

Sorry to butt in but.. .do you perhaps have a neighbor
with an X-10 system that is using the same house code?
That certainly could cause interference like what you
describe..

Msg#: 7876
From: DAVID CUNNINGHAM To: LEE STOLLER

I don’t know, Lee, but I have tried practically every
house code and the problem persists. Also, I have a second
identical lighting switch on another circuit in the same
building which works fine. I have swapped switches so I
know it isn’t that. Oddly enough, the problem circuit will

Circuit Cellar INK Issue #54 January 1995 117

go for 1 to 3 days without acting up then turn itself on two
or three times each day for a few days. I keep thinking there
must be something wrong about the way the bad circuit is
wired-like a reversed black and white wire, or maybe a
ground fault. But I can’t find anything. All this is happening
in a small office building in which the wiring is in conduit
either above the drop ceiling or below ground. So it isn’t too
easy to trace it out.

Msgk 8045
From: LEE STOLLER To: DAVID CUNNINGHAM

Hmmmm.. .quite a mystery. You’ve eliminated the
possibility that a human being, unknown to you, is coming
into that office and turning the light on manually? Does
that office contain supplies that someone else might want
from time to time?

Msg#: 8055
From: DAVID CUNNINGHAM To: LEE STOLLER

Actually, if anyone wanted to break in here, I don’t
think they would bother with the office supplies or turn on
the rear entrance floodlights. Today I noticed that the light
turned itself on three times over a 45.minute period when I
kept my eye on it (and turned it off manually whenever I
saw it was on). I am increasingly convinced that there is
some sort of spurious signal on the line that is causing the
problem, and that it is either closer to or possibly in the
circuit which the problem switch is in (because the front
lights are never affected).

Do you know whether anything besides X-10 signals
can cause an interference? I seem to recall, for example,
that at one time there were intercoms that used the power
line. Or perhaps a security system is using it. I don’t think
it is another X-10 signal because changing the house code
does not help. But maybe some sort of broadband noise
within the same signaling frequency range is doing it. Any
ideas are greatly appreciated!

Msg#: 8366
From: LEE STOLLER To: DAVID CUNNINGHAM

Now the real can of worms opens.. .
There are zillions of RF generators out there! What you

heard about intercoms is correct. Some *do* use the same
sort of frequencies that the X-10 uses. There are also
possibilities in other things. Have you tried turning off
other devices in the building (except that troublesome light
circuit) and seeing if the thing still goes on? You have to
suspect everything. Fluorescent lights now use “energy
saving” ballasts that actually are switching power supplies
that can generate hash on the line. Computers use switch-
ing power supplies...ditto.

On another tack, what kind of controller are you using?
Are you sure it’s OK? Maybe it thinks the light is in
security mode (due to some internal fault) and is turning
the light on at random. Leave the light off and unplug the
controller. See if the light still comes on.

Msg#: 8391
From: JOHN HARTMAN To: DAVID CUNNINGHAM

My upstairs neighbor used to have a PC clone which
would turn on our X-IO dining room lights whenever he
booted from floppy. Changing house codes did help some-
what, but the problem persisted until upstairs got a hard
disk....

Dubious technology, X-10. I can’t imagine running
communications on power line without pretty hefty CRC
validation, and I can’t imagine that the PC upstairs gener-
ates the right CRC to turn the lights on. Doesn’t give me a
lot of confidence. On the other hand, my lights do what I

want MOST of the time. :-)

Msg#:l2909
From: CHRIS TYLKO To: DAVID CUNNINGHAM

I guess the two biggest problems with X-10 are:

1) Modules that do not turn on or off when they should,
and

2) Modules that turn on when they shouldn’t.

You’re referring to the latter, in which I, unfortunately,
have a lot of experience. The first thing you want to know
is whether the module is going on because of a valid signal.
There are cheap and not-so-cheap ways of determining this.
Change the module address, or plug the same module in
somewhere else. If you really want to know, use a TW523
with some inexpensive PC software such as that offered by
Baran Harper. This will allow you to monitor all signals
over whatever period of time you want and then save the
data to disk.

If your problem is not a valid signal, then something
down circuit from the module may be triggering it on, such
as a loose connection. The fact that you’re removing a light
bulb and it works OK suggests the filament in the bulb may
be damaged. As it vibrates it changes resistance enough so
the module thinks you’re flicking a switch and turning it on
locally. Modules let a very low current through the circuit
while it’s in the off state so it can sense such a switch
flicking (actually, it’s not true of all models; some specifi-
cally don’t work that way).

If that’s not it, then you may be suffering from “poor
quality power.” In my terrible experience, the transformer
feeding my house was faulty and saturated; the neutral was

118 Issue #54 January 1995 Circuit Cellar INK

not pure, most probably due to moisture in the oil which
causes small shorts. This is unnoticable to even sophisti-
cated line monitoring equipment. You see, for the X-10
system to work, it has to have a good neutral provided by
the transformer.

If your problem is only limited to one module in one
location, try checking to see that all connections from the
outlet back to the main panel are secure. Also check (or
have a certified electrician check) your main panel to make
sure everything is snug and tight.

Finally, noise (outside of the circuit) has to be really
bad to turn on a module; the X-10 binary address is VERY
specific and virtually nothing on the grid looks like it.

Msg#:l4905
From: DAVID CUNNINGHAM To: CHRIS TYLKO

I have been continuing the witch hunt for the cause of
the erratic turn-on on one of my X-10 light switches based
on some of the ideas you gave me. Thought you might be
interested in the results.

[l] I am suspicious that the timer/controller itself may
be responsible, because the light does not seem to go on on
those days when I unplug the controller. This is not a
definitive conclusion, because I have other things to do all
day than watch a light out back to see if it goes on.

[2] I also think the ambient noise level in the X-10
frequency band is very large and is due to the switching
power supplies used in the various PCs around the office.
Here are some interesting results I measured using a
Leviton X-10 coupler between a power strip and an oscillo-
scope. This coupler, from what I can determine, is some
sort of tuned circuit which provides excellent isolation of
the 60 Hz but couples frequencies around 100 kHz through.
(I first tried using a pair of 0.1 -uf caps, but they couple so
much 60 Hz through that the lOO-kHz stuff gets lost.) In all
cases below, the unit under test was plugged into the same
power strip as the coupler (and scope).

l Ambient level is about 5 mV peak
l ‘486 PC #l measured 10 mV peak
l ‘486 PC #2 measured 40 mV peak
l ‘486 PC #3 measured 15 mV peak

[3] At the same time, I noticed some very large spikes
at 120 Hz.

l Halogen light with dimmer measured 13 V peak
(26 V P-P).

l Coffee pot (warmer) measured 10 V peak
l Laser printer measured 75 mV peak

Remember, all of these measurements were made
through the X-10 coupler, so they represent the lOO-kHz
component of the actual noise or transient.

How does this compare with the timer’s control
voltage? If you plug the timer into the same power strip, it
outputs about 1.5 V peak (3.0 V p-p). But if it is plugged in
across the room into a separate circuit, it produces about
75-100-mV peak at the scope.

As you can see, the PCs contribute energy in the same
frequency band as the controller that approaches that of the
control signal in magnitude! What I would like to try now
is to add some power line filtering to the PCs that would
suppress this. Do you know if anyone makes such a thing
that can be simply plugged in?

Msg#:l9434
From: CHRIS TYLKO To: DAVID CUNNINGHAM

Very interesting! I tried to find my notes from two
years ago when I went through the “unwanted lights on,”
but unfortunately came up empty.

OK, the easy part. Filters are available; as a matter of
fact, Leviton has several different types which could
probably help trap out the noise. Your readings indicate a
lot of noise, and if I remember the (Leviton) X-10s were
specified to work with up to 5 mV. I do recall being told,
however, that noise on the lines could interfere with X-10
operation, but could not turn on a specific module.

This brings a source of help to mind. The X-10 people
were of no help whatsoever; Leviton people, on the other
hand, were extremely helpful. There was one fellow I spoke
to at their tech line who was great (sorry but I can’t find his
name anywhere). If you live in the States, in a reasonably
accessible area, and if you are using Leviton modules, they
may even come by to help you out if your problem is
“interesting enough.” Unfortunately, I live in Montreal, and
Leviton has no “X-10 qualified” people offering such help in
Canada. There is a U.S. tech line for Decora Electronic
Controls at 800-824-3005.

Msg#:22984
From: PELLERVO KASKINEN To: DAVID CUNNINGHAM

I do not have any X-10 equipment, so I may be off the
mark, but here is my understanding of your situation and
measurements.

The basic concept of X- 10 communications is suppos-
edly dependent on power line synchronization in such a
way that the short bursts of signal take place at the zero
crossing of the 60 Hz. This is a deliberate choice for both an
easy implementation -and_ because very few loads or
controllers cause noise bursts at this exact time. I’ll try to
elaborate on this load-caused noise aspect.

Circuit Cellar INK Issue #54 January1995 119

You get high-frequency noise when a load is switched
on or off. The worst noise generators are light dimmers and
similar devices that control power level on every half cycle
by phase control. In other words, the SCR or triac is turned
on at any point during the sine-wave cycle. For a simple
mental picture, let’s assume the load is very pure resistor
and we want about half the maximum power. So we set the
trigger to the peak of the sine wave. The load before the
trigger point sees zero supply voltage and within a micro-
second or less, it sees 160 V. The transient represents
anything up to about 1 MHz. Now, this is what the load
experiences. What happens elsewhere in line depends on
several small (and mandatory) details of noise filtering that
the manufacturer of the dimmer has included and also from
the impedances along the power line.

If we assume for simple calculations that the load
resistance is 16 ohms, our transient can also be expressed as
10 A. This 10-A transient has to come from somewhere. In
principle it comes all the way from the power plant, but in
practical terms, the line impedance does not allow such
high frequencies to travel the required multitude of miles.
There are capacitances, often deliberate power-factor-
correction capacitors, along the line. These inherent or
intentional capacitances are the source for the transient
currents. In fact, the dimmer itself contains some capacitors
within the noise filter. But they are not sufficient to provide
the whole 10 A, so some of it has to come from other
capacitances along your power wiring.

As any wire has some resistance and most definitely
some inductance, any traveling 10-A (or even smaller,
attenuated by the noise filter in the dimmer) transient
causes voltage spikes proportional to the residual current
and the impedance in the line from the “ideal” supply point
to any selected measuring point along the path. Just like
your 13-V peak. The saving grace for the X-10 system is
that this spike is (supposedly] outside the signal time
window.

I was talking in terms of a single transient. Now, if we
add the natural inductances in the load-the noise filter and
the line-we get ringing at a reduced frequency. Pulling
closer to the lOO-kHz band of X-10.. It still is outside of
the time window for X-10, which leads us to the question
can this or some other similar control actually hit the zero-
crossing point and penetrate (or at least overwhelm) the X-
10 receiver?

If the load is more inductive, the necessary triggering
points shift earlier. Or if we want the full output, we pull
the trigger point earlier. It is conceivable that we hit it all
the way back to the zero crossing, isn’t it? Well, the
controllers may not go quite that far and if they do, the
resulting transient is much smaller, because at that point

no voltage exists so a O-A transient results. Again, pretty
good for the X-10.

But wait a moment! We have only talked about the
starting of the load current. It also ends on every power-line
half cycle. Now, if we have just the right amount of
inductance in an otherwise resistive load and/or in the filter
and wiring, we can get a nice ringing where it really hurts.
The transients at this point are small, but like you point
out, so are the active signals.

Now, I don’t claim this is -the_ answer to your noise
issue, but you might consider running a few tests. Get one
of the commercial line filters, such as the Corcom VR
series, available from most of electronics distributors and at
least from Newark. Pick one with enough current rating for
the highest load you suspect as a source of the noise and
then wire your line to that appliance (or the dimmer]
through the filter. Repeat your scope measurements and/or
wait for the malfunctioning to happen or be eliminated.
Move the filter to the next suspect, until you have the full
picture. And please realize that the capacitances inside the
filter affect the whole line impedance distribution so that
the transients may not travel along the original path after
you have connected the filter, maybe even idle somewhere.
Just one of those small complications or “challenges.” :-)

We invite you call the Circuit Cellar BBS and exchange
messages and files with other Circuit Cellar readers. It is
available 24 hours a day and may be reached at (203) 871-
1988. Set your modem for 8 data bits, 1 stop bit, no parity,
and 300, 1200, 2400, 9600, or 14.4k bps. For information on
obtaining article software through the Internet, send E-
mail to info@circellar.com.

Software for the articles in this and past issues of
The Computer Applications lournal may be downloaded
from the Circuit Cellar BBS free of charge. For those
unable to download files, the software is also available
on one 360 KB IBM PC-format disk for only $12.

To order Software on Disk, send check or money
order to: The Computer Applications Journal, Software
On Disk, P.O. Box 772, Vernon, CT 06066, or use your
VISA or Mastercard and call (203) 875-2199. Be sure to
specify the issue number of each disk you order. Please
add $3 for shipping outside the U.S.

437 Very Useful 438 Moderately Useful 439 Not Useful

120 Issue #54 January 1995 Circuit Cellar INK

Hat Dance

0 hey say that the fun part of running a small business is that you never get bored doing the same thing.

One day, you’re making marketing decisions. The next you’re fulfilling that wish list.

Around this place, it can be a real hat dance. In the same day, I might wear the hats of copublisher, editorial

director, manufacturing, marketing, engineering manager, and line engineer I might decide on a range of issues from translating

Circuif Cellar INKinto Japanese, to what embedded control product to design for the next catalog, to allocating resources for a

widget, to arguing that pin 15 is “chip select” and not “data out” after digging through a data book.

Now, this doesn’t mean I get every hat. Surprisingly, in all these years, I have never played shipper or “faxel’-you know,

I’ve never physically sent a fax. I did have to drive my plow in to dig the place out once last winter, however. I guess that’s the

snowman hat.

It’s no secret that my favorite hat is still engineer. Of course, if you’re one of the other engineers around here, sometimes

my engineer hat gets considered the “impossible dream” hat.

For instance, after repeatedly coming across the same trade-journal ad for a popular new product that nobody else offers, I

decided that such exclusivity was more than I could take. On went the engineering hat and less than two minutes later, Jeff and I

were pouring over data books assessing the price-performance tradeoffs of making a superior product.

Unfortunately, the qualifications for wearing so many hats don’t isolate you from competing interests. My marketing hat

says, “Make it low cost and unique” while manufacturing pleads for reliability and ease of fabrication. Engineering says, “Cover all

the bases or we’ll have to do it again” while top management screams, “What the hell are you guys spending all this time and

money on?”

If I’m not careful, I find myself being about as efficient as a committee. The only saving grace is that I ultimately tend to say,

“Screw the cost. I want one to play with,” and things actually get built.

This latest venture is driving me to take on a wizard hat. Despite a plethora of data books offering fabulous technology in

Lilliputian packages, I am finding when I call for more details that today’s latest science is an alchemical combination of

vaporware and infinite lead times. It is taking true wizardry to mediate between the hats of purchasing and manufacturing to make

changes in a design already in process, never mind the task of conjuring from this piece of gold something customers can afford.

Lamentably, I have no appropriate hat, short of one with a few tasteless bites chewed out of it already, for revealing to Jeff

that the “committee” just changed the parts on the four-layer board he’s been laying out for the last week. And oh yeah, Jeff, the

whole thing still has to fit into less than a cubic inch!

128 Issue #54 January 1995 Circuit Cellar INK

