

the art of writing programs that must deal with real-world

situations and must react in real time to a variety of external stimuli.

I then twisted the topic around and wondered, what about “program-

ming in real time?” An interesting idea to toss around. When you think about

the traditional programming process, you conjure thoughts of Twinkie-driven

late-night sessions banging at the keyboard (and banging your head against

the wall) trying to find an elusive bug that only affects one small facet of your

code. A short program run typically represents hours of effort.

My new idea elicits visions of a super programmer, hands poised over

the keyboard, ready to spit out reams of code in response to some real-

world stimuli to control a reaction as the action takes place.

Ludicrous? Perhaps not. Take the example of training a robot. You

manually direct it to perform some action and the robot dutifully records all

your actions. When you play back the “program,” the robot repeats the task

exactly as you trained it. In the strictest sense of the phrase, you just

programmed the robot in real time.

Moving back to reality, our first feature article this month delves into

one of the latest crazes in programming circles: object-oriented program-

ming. If you thought OOP’s usefulness was limited to windowing environ-

ments, think again. OOP is simply a methodology that is equally helpful in

generating solid embedded programs that run in real time.

Another misnomer in programming circles is that you can’t do

multitasking under MS-DOS. Using the parent-child technique described in

our second article, you can manage those pesky interrupts that often crash a

machine attempting to do two things at once.

Following up on last month’s modem introduction, Technical Editor

Michael Swattzendruber finished his Gemini modem with some actual

hardware.

In our columns, Ed adds some nonvolatile memory to the embedded

‘386SX project; Jeff looks at an old friend and breathes new life into its

limited existence; Tom explores a nifty new technology that directly stores

analog data without the digital middleman; John starts a pair of articles on

the mysteries of recharging batteries; and Russ pulls up patents covering

topics such as in-seat aircraft passenger flight information, encoding

information on a video signal, and an electronic still-video camera.

?r

CIRCUIT CELLAR F] ~~~~ ~

THE COMPUTER
APPLICATIONS
JOURNAL
FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

EDITOR-IN-CHIEF
I(en Davidson

TECHNICAL EDITOR
Michael Swartzendruber

RSSOCIATE EDITOR
Robert Rojas

ENGtNEERlNG STAFF
Jeff Bachiochi & Ed Nisley

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
John Dybowski & Russ Reiss

MEW PRODUCTS EDITOR
iarv Weiner

r(RT DIRECTOR
_isa Ferry

3RAPHIC ARTIST
Joseph Quinlan

ZONTRIBUTORS:
Jon Elson
rim McDonough
Frank Kuechmann
‘ellervo Kaskinen

>over Illustration by Bob Schuchman
‘RINTED IN THE UNITED STATES

PUBLISHER
Daniel Rodrigues

PUBLISHER’S ASSISTANT
Susan McGill

CIRCULATION COORDINATOR
Rose Mansella

CIRCULATION ASSISTANT
Barbara Maleski

CIRCULATION CONSULTANT
Gregory Spitzfaden

BUSINESS MANAGER
JeannetIe Walters

ADVERTISING COORDINATOR
Dan Gorsky

CIRCUIT CELLAR INK. THE COMPUTER APPLICA-
TIONS J O U R N A L (ISSN 0696-6965) is publIshed
monthly by Clrcult Cellar Incorporated. 4 Park Street,
Sulle 20. Vernon, CT 06066 (203) 675.2751. Second
~Iasspostagepa~datVernon. CTandaddibonaloffices.
One-year (12 issues) subscription rate US A. and pas-
sessions$21.95.CanadaiMex~co$31.95,allothercoun-
tnes $49.95. All subscrlptlon orders payable in US.
funds only, wa mternational postal money order or
check drawn on U.S. bank. D~recl subscrlpbon orders
and subwptlon related questions lo The Computer
Applications Journal Subscnptions. P.O. Box 7694,
Riverton, NJ 08077 01 call (609) 786-0409.
POSTMASTER. Please send address changes to The
Computer Applications Journal, Circulation Dept., P.O.
Box 7694, Rivetion, NJ 06077.

YAJAR ASSOCIATES NATIONAL ADVERTISING REPRESENTATIVES

UORTHEAST SOUTHEAST
Debra Andersen Christa Collins

WEST COAST
Barbara Jones

‘617) 769-8950
-ax: (617) 769-8982

HID-ATLANTIC
Barbara Best

(305) 966-3939
Fax: (305) 985-8457

MIDWEST
Nanette Traetow

& Shelley Rainey
(714) 540-3554
Fax: (714) 540-7103

908) 741-7744
-ax: (908) 741-6823

(708) 789-3080
Fax: (708) 789-3082

Circ”1tCellarBB5-24Hrs. 300/1200/2400/9600/14.4kbps,6b~ts, no panty 1 stopblt, (203)871-1966;2400/
9600 bps Courier HST. (203) 671.0549

All programs and schematics in Cwu,t Cellar INKhave been carefully wewed to ensure their perlormance
is~naccordancew~ththespec~l~cat~onsdescnbed,andprogramsareposledontheC~rcu~tCellarBBStorelectronic
transfer by subscribers

Circuft CeltarlNKmakes no warranties and as~“mes no responslblllty or lkabllltyofany kind for errors I” these
programs or schematics or for the consequences of any such errors Furthermore, because of possible variation
in the quality and condition of materials and workmanship 01 reader-assembled prefects, Cwlt Cellar INK
disclaims any responslbllty for the safe and proper luncbon of reader-assembled projects based upon or from
plans. descnptions, or information published in Circuit Cellar INK.

Entire contents copyright 0 1993 by Clrcult Cellar Incorporated. All rights reserved. Reproduction of th!s
publlcabon in whole or m palt wlthout written consent from Circuit Cellar Inc. is prohibited.

2 Issue #36 July 1993 The Computer Applications Journal

1 4 Object-oriented Programming in
Embedded Systems
by Mike Podanoffsky

2 6 PC Parent-Child Programming: A Path to
Multitasking Under DOS
by H. Bradford Thompson

3 8 High-speed Modem Basics: The Working Hardware
by Michael Swartzendruber

4 6 q Firmware Furnace
Memories are Made of This: The ‘386SX
Project Goes Nonvolatile
Ed Nisley

5 6 q From the Bench
Breathing Life into an Old Friend:
Revisiting the 28
Teff Bach&hi

6 2 q Silicon Update
Talking Chips
Tom Can trell

70 q Embedded Techniques
The Art of Battery Management
Tohn Dybowski

Ken Davidson
Code on the Fly

h
Reader’s INK

~ Letters to the Editor

New Product News
, edited by Harv Weiner 1-

~ Patent Talk

the Circuit Cellar BBS
conducted by
Ken Davidson

Steve’s Own INK
Steve Ciarcia

PC Clone $5,000

The Computer Applications Journal lssue#36 July1993 3

TEMPERATURE MONITORING week, and year; weather conditions; forecasted weather
Your article on Temperature Monitoring in the conditions; and knowledge of any special events pro-

February ‘93 issue of The Computer Applications Journal grammed
was outstanding. For a person like me who has spent *control operation of all heat/cooling systems on
many hours considering the same subject, the informa- site including monitoring and recording time active,
tion you presented was well received. heating/cooling fluid output and input temperatures,

Since you have helped me, let me try to make you rate of fluid flow, energy source, and rate of energy
see your project in a different light. The thoughts I am absorption
about to present are not solely about heating a solarium .compute heat transfer for each room, each wall (or
but about home automation. I am a member of EIA’s ceiling), and the building
CEBus Working Group putting the standard together. I *determine the heat/cooling supplied to the building
personally do not believe automating devices is what and compute power plant efficiencies
home automation is about. I doubt that such products *control ceiling fans and motorized window blinds
will ever sell to the American public. The reasons are so to support attaining the desired thermal profile
numerous and so subjective that it would really waste I have carefully left the definition of the Thermal
my time to list them and yours to read them. This letter Profile to your imagination. It can get as sophisticated as
is on home automation: a different viewpoint. one wishes. However, information on heat transfer,

The task you have undertaken is not stated as a goal. power plant efficiencies, and solar heating capability are
I have not read your prior articles but I surmise that, at numbers that every automated home should have. These
least initially, you wanted to add a solarium to your are valuable byproducts of the system described. They
home to enjoy a few of the benefits of Mother Nature indicate how well your systems are functioning, their
such as solar heating and unobstructed views of outdoor deficiencies, your home’s deficiencies, and also give
life in Connecticut. I’ve gone through the same thinking clear indication when they are failing. It is one form of
process but I haven’t had the guts to go as far as you. Integrated Diagnostics.

Like a living room, your apparent thinking has I am what Jeff Fisher referred to as an OOZ: an
focused on keeping the temperature at a constant 72” F. Object Oriented Zealot. He clearly pointed out that
This is as expected, but let me list some other require- CEBus was not completely object oriented. The type of
ments you could have added. They represent system- system I have described requires the application of
level requirements for a home automation system. object-oriented technology. I have built a model of a

The home has to be looked at as an entity. When hotel building in Las Vegas to demonstrate the ease of
initially designed by an architect, a complete thermal computing heat transfer. The model could be attached to
analysis was made to assure that the structure would building HVAC systems to provide control and history
provide a comfortable environment over the four seasons. information. That is the basis of my approach to home
Consideration was given to orientations on the building automation. All control of hardware originates in
site, shading, wall thickness, insulation, HVAC sizing, software models that capture the hardware functionality
window locations, colors of roof coverings, and so forth. and “know” how the hardware should respond to
The number of building parameters that come into play current operational conditions-and does just that.
is extensive. If a builder or an architect can do this, why CEBus is needed to send messages from node to
can’t that information be placed in a computer and that node in the home environment. These messages are seen
machine be used to manage the complete thermal by most as moving from device to device; from the
situation for the household? controller to the controlled. In the system that I visual-

This is what I want my Thermal Manager to do: ize, the messages move from software structure to
*know the thermal profile I wish for each room in software structure; from object to object. Control

the house software in the node determines how a node should
*continuously compute heat transfer to and from the function and does so.

room based on physical characteristics of the room, the I wish you well on your solarium project. There are
heat supplied or removed from the room by in-house more people out there trying to do the same type of
heat/cooling sources, and the heat transferred to or from thing than you probably realize.
the room due to condition of the outside environment

*follow the thermal profile based on sensor data that Frank Edden
provides actual temperatures; occupancy; time of day, The Workhouse, Huntington, N.Y.

6 Issue #36 July 1993 The Computer Applications Journal

EMBEDDED DEVELOPMENT ON A MAC would prefer to use their Macintosh to develop software
I just read “Steve’s Own INK” in the March issue. I controllers?

agree most vigorously with his article “PC Trials,” about
what a pain the PC is to set up and make run in the Fred Johnson
Windows environment. I have watched the pain of one Knoxville, III.
friend who tries to keep a dozen ‘386s running Windows
limping along in the local junior college. These comput- We, too, have noticed a distinct lack of microcontroller

ers are only used for instructing classes on DOS, word development tools designed to run on the Mac. Perhaps

processing, databases, and spreadsheets. one of our readers has more information that they’d be

I have another friend in the same college who keeps willing to share with us.-Editor

the Macintosh computer lab running. His Mac network
has a larger number of computers of tremendous variety. We Want to Hear from You
The interesting thing is, just like in the commercial
Steve cites, the Mac users have few problems.

We encourage our readers to write letters of praise,

Now for my question: I use Macintoshes for every-
condemnation, or suggestion to the editors of

thing I can in my business, but I have noticed a real lack the Computer Applications Journal. Send them to:

of cross-compilers and development systems that will
run on my Mac II. Much of the hardware that I would

The Computer Applications Journal

like to use is designed for the PC parallel port, not a nice letters to the Editor
serial port that I could use. How about an article on
what software and hardware is available for people who

4 Park Street
Vernon, CT 06066

stops her;

And the headaches, cold sweats and other symptoms associated
with debugging real-time embedded applications. Paradigm
DEBUG offers you choices: l Intel or NEC microprocessors
l Remote target or in-circuit emulator support l C, C++ and
assembler debugging l Borland, Microsoft and Intel compatibility.

Kickstart vour embedded system with the onlv debugger familv
to have it all. Give us a ’
call for Paradigm DEBUG
. before it’s too late!

~aa-iw-5a43
fbven ~OhdiOfU for Embedded c/c++ ~eVe@?rS PARADIGM: (607) 748-5966

FAX: (607) 748-5968
HO3

The Computer Applications Journal Issue #36 July 1993 7

Edited by Harv Weiner

C PROGRAMMABLE CONTROLLER additional help key. Keypad legends are easily custom-
The C-PLC, a C-Programmable Logic Controller ized. A full-duplex RS-232 port and RS-422/RS-485 port

from Z-World Engineering differs from other controllers are provided, and an expansion header
because it is programmed in C rather than ladder logic. allows connection to custom I/O
It is a self-contained unit, has both analog and expansion boards.
digital I/O, and includes a built-in keypad Z-World’s Dynamic C and a
and LCD. The unit is based on the special device-specific library
Zilog Z180 processor with a provide a powerful, easy-to-
6.144-MHz clock, pro- learn software development
grammable timers, time/ system for the C-PLC.
date clock, watchdog ‘9 Extensions for ladder
timer, power-fail detec- logic and function
tor, as well as EPROM, block programming
SRAM, EEPROM, and serial have been added to
ports. make it easy for

The C-PLC standard traditional PLC program-
features include six universal mers to make the transition to
inputs, each of which can be used as the C language. The interactive
a 0-lo-volt analog input (lo-bit compiler, editor, and debugger run on a
resolution), or as a digital input. Input
threshold and hysteresis values are The C-PLC controller, complete with metal
adjustable between 0 and 10 volts. One case, LCD display, keypad, power supply and documen-
input can receive a 20-mA current loop tation sells for $389. The controller board alone sells for
without an external resistor. Seven digital inputs can $289 and the Dynamic C software sells for $195.
accept voltages from -48 to +48 volts with the logic
threshold at 2.5 volts. Also included are two counters, a Z-World Engineering
precision analog input, two analog outputs, two relays, 1724 Picasso Ave.
ten lines each capable of driving inductive loads up to Davis, CA 95616
300 mA, and a lo-volt reference output. (916) 757-3737

The standard operator interface includes a 2-line by Fax: (916) 753-5141
20-character liquid crystal display and a 12-key keypad.
The interface features the ability to scan multiple menus #500
and change parameters with only five keys, plus one

ASM UTILITY LIBRARY
EMS Professional an indexed database which diagnostic, disassembler, The library sells for

Shareware is now f accompanies the library. disk I/O, DOS, driver, $59.50 on diskette or
shipping an updated When the programmer editor, environment, for- CD-ROM and has a 30-
version of its ASM needs to locate a particular mat, graphics, hardware, day money back guaran-
Utility Libryry. The new type of assembler product, interrupt, keyboard, lan- tee.
version has 3681 public they can find it quickly by guage interface, library,
domain and shareware vendor, name, type, or by lookup, math, memory, EMS Professional Software
products for professional using a free text search menu, mode, mouse, MS 4505 Buckhurst Ct.
assembler programmers. across descriptions. The Windows, network, OOP, Olney, MD 20832-1830
The products are com- library contains a variety patch, print, reference, (301) 924-3594
pressed onto nine 1.44M- of file types, including: screen, strings, toolkit, Fax: (301) 963-2708
byte disks or one CD- arrays, BIOS, code, commu- TSR, tutorial, utility,
ROM. All products in the nications, compression, video, XASM, and other #501
library are described in date/time, debugger, types.

8 Issue #36 July 1993 The Computer Applications Journal

8051~COMPATIBLE HIGH-SPEED
MICROCONTROLLER

Dallas Semiconductor has announced a new
microcontroller that is a drop-in replacement for the
ubiquitous 8051. The DSSOC320 High-speed Micro runs
at clock speeds up to 25 MHz and over 6 MIPS through-
put. With the High-speed Micro, older designs can be

updated without changing processor architecture,
software, or development tools.

The DS80C320 maintains full compatibility with
the original 805 1. It uses the same instruction set and is
pin-compatible with the 8OC3 1 and 8OC32. Any existing

software development tools, such as assemblers or
compilers, can still be used. In addition, the DS80C320’s
internal timers can be run at their old speed, allowing
real-time software to function correctly when the chip is
dropped into an existing design.

The DSSOC320 provides several extras in addition
to greater speed. These include a second full hardware
serial port, seven additional interrupts, a programmable
watchdog timer, and power-fail interrupt and reset. The
DS80C320 also provides dual data pointers (DPTRs) to
speed block data memory moves. It can also adjust the
speed of off-chip data memory access to between two
and nine machine cycles for flexibility in selecting
memory and peripherals.

Like any CMOS product, the DS80C320 draws less
power when run more slowly. Since it is more efficient
than a standard 805 1, it can do the same job running at
less than half the frequency. By simply changing the
crystal, a designer can reduce the power consumption of
an 8OC32 design, with no loss in performance, by using
the DS80C320.

The DS80C320 will be available in 40-pin plastic
DIP, 44-pin PLCC, and 44-pin PQFP. In large quantities,
the DS80C320 DIP package sells for $6.50.

Dallas Semiconductor
4401 South Beltwood Pkwy. l Dallas, TX 75244
(214) 450-0448 l Fax: (214) 450-0470 #502

TWO-AXIS SERVO MOTOR CONTROLLER z

A PC-compatible, two-axis servo motor controller
has been announced by JRA. The SERVO2 interface
plugs into any PC-compatible motherboard and provides
independent control over two motors. Feedback is
provided by an optical encoder on the motor shaft.

The controller operates in two modes. In position
mode, the user enters maximum motor speed in RPM
and final position in encoder counts. The motor shaft
will remain locked at this position until a new com-
mand is issued. In velocity mode, the user selects motor I

speed and direction. In either mode, motor velocity may be changed during the move.
Using JRA motors, the SERVO2 will accurately control speed from 0 to 2700 RPM with a position resolution of

0.17”. Motor movement is smooth and vibration free throughout the velocity range. The system offers an affordable,
low-vibration replacement for stepping motor systems in XY positioning and robotic applications.

The SERVO2 software allows the user to read motor position or velocity in real time, run both motors simulta-
neously, create motion sequences by entering motor velocity and destination, plot position versus time, and teach
moves via the keyboard. The software is written in Quick Basic and program listings are provided.

The SERVO2 controller is priced at $350 with manual and software.

JRA l 3602-l Partridge Path . Ann Arbor, Ml 48108 0 Voice/fax: (313) 973-0928 #503

The Computer Applications Journal Issue #36 July 1993 9

BI~~NEW~
ANALOG VOLTAGE MEASUREMENT VIA
PARALLEL PORT

The AD1010 from B&B Electronics allows an IBM PC or A
compatible computer to be connected to the outside world
using the computer’s parallel port. Its eight analog inputs
have a voltage range of -5 to +5 VDC, with a conversion
time of less than 5 us per channel. The speed, resolution,
and flexibility of this unit make the AD1010 ideal for
measuring voltages from lab experiments, potentiom-

1

eters, sensors, and various other devices.
The AD1010 can operate in three different modes:

single-ended, differential, and pseudo-differential. In single-
ended mode, the eight input channels are converted with respect to a

YTreference. In differential mode, the inputs are grouped in pairs. The voltages
of the inputs are converted with respect to the other input of the pair. In pseudo-
differential mode, all of the inputs are converted with respect to one input. Pseudo-
differential mode is helpful when there is a variable DC offset voltage applied to a group of
inputs.

The AD1010 requires a DC supply capable of providing IO-18 V at 50 mA. It features a resolution of 10 bits plus
a sign bit. The conversion time (lo-bit plus sign) is 4.4 us max and (8-bit) is 3.2 us max. Reference output voltage
error is 2%. The unit measures 3.8”~2.4”~0.9”.

The AD1010 comes with an instruction manual and diskette containing demonstration programs written in
Quick Basic, Pascal, and C. The demonstration programs can be used to test or monitor the ADIOlO. The source
code for these programs is included on the diskette, and the routines can easily be modified for a specific application.

B&B Electronics Manufacturing Co.
4000 Baker Rd. P.O. Box 1040 l Ottawa, IL 61350 l (815) 434-0846 l Fax: (815) 434-7094 #504

LOW-COST SINGLE-BOARD COMPUTER The monitor on the development board allows the
A single-board computer based on the Signetics designer to conveniently debug code in real time.

8OC552 microcontroller has been announced by HiTech Software drivers for keyboard scanning, LCD interface,
Equipment Corporation. The 552SBC is available in two and serial port communication are available as linkable
versions-a standard development board and an OEM assembly language code modules.
board. The development board includes a 552SBC with a

1-+
The 552SBC can be used with an Apple

debug monitor and documentation. p Macintosh, or an IBM PC/AT [or 100%
The 552SBC board includes an - c compatible) running DOS 2.0 or higher

8-channel, lo-bit ADC; two PWM , with a minimum of 5 12K bytes of
D/A outputs; 40 digital I/O lines; RAM. Any standard communication
and three independent RS-232 ’ package is required to download
outputs. Two of the serial ports
can be configured to use RS-422 or
RS-485 protocols by changing chips. 1
These peripherals are complemented
by a battery-backed, real-time clock and
up to 16K bits of EEPROM for storing
configuration information.

The four 28-pin JEDEC sockets have a
flexible GAL address decoding scheme. Two of the
sockets can be configured as bank-switched ROM areas
with simple GAL equation changes. One of the sockets
has battery back up ability through the DS1210 chip.

executable code.
The OEM version of the

552SBC single-board computer
sells for $149 in single quanti-

ties. The development version sells for
and includes the debug monitor and

ation. Both products are backed with a full
warranty and unlimited technical support.

HiTech Equipment Corp.
9400 Activity Rd. l San Diego, CA 92126
(619) 566-1892 l Fax: (619) 530-1458 #505

10 Issue #36 July 1993 The Computer Applications Journal

MOTION
CONTROL
DEVELOPER’S
KIT

The MC1400
Developer’s Kit
from Performance
Motion Devices
simplifies the task o
designing MC 1400.
based systems. The
MC1400 is a multiaxis,
DSP-based, motion control chip set that provides four
axes of servo control and includes advanced features
such as complex contouring, velocity feedforward, servo
filtering, and electronic gearing.

The MC1400 Developer’s Kit consists of an ISA-bus
compatible board and a software package that can
exercise all of the features of the MC1400. The kit can be
used as a platform to develop software for use with the
MC1400 chip set, or as a stand-alone MC1400 exerciser.

The PC board fits into a standard half-length board
slot and accepts four axes of incremental encoder inputs

with index pulses. Two types of motor drive signals are
provided: sign and magnitude outputs for use with PWM
amplifiers, and analog voltage signals for use with analog
amplifiers. The analog outputs are provided by on-board
D/A converters and are available with a 5-volt or a lo-
volt range. A generic eight-bit input port is also provided.

The software package has an easy-to-use, menu-
oriented interface. It provides direct low-level access to
all chip functions as well as convenient higher-level
routines to perform various integrated functions such as
trapezoidal moves and filter parameter changes. A
variety of C-source code libraries is also included.

Interfacing to external components is accomplished
through DB-15 and DB-25 connectors. With lo-volt D/A
converter output, the board requires an external 15.volt
supply; with 5-volt D/A converter output, the board is
self-powered by the ISA bus.

The MC1400 Developer’s Kit sells for $1495. The
MC1400 chip set is available for $99 in quantities of 100.

Performance Motion Devices
11 Carriage Dr. l Chelmsford, MA 01824
(508) 256-l 913 l Fax: (508) 256-0206 #I506

68xxx, 8Ox86,29k, 280
Embedded System Developers

IF Y O U U S E . . .
Debug/RT 80X86/X88
CV Tools 80X86/X88
SoftProbel386 803861486
MiniMON
XRAY
FreeForm
Quickfix
CMICE
Spectra

68xxx II
280
68xxx

) Unlimited breakpoints and memory mapping

B Trace file to record simulator session

Disassemblers

Then you need PROMICE. The innovative
emulator that recognizes all of these.

Call us today at l-800~PROMICE (776-6423)
for your free information packet.

I Automatic substitution of defined label names for all jumps an,
branches

B Automatic insertion of supplied comments and expressions

Grammar Engine Inc.
921 Eastwind Dr., Suite 122
Westerville, OH 4308 1
6141899-7878
Fax 614/899-7888

I

,

,

#105

Broad range of processor specific tools Intel. Motorola. .Zlog. RCA, Rockwell ,,,

All products require an IBM PC or compatible. MS DOS 2 1 or greater

Same day shipment VISA, MasterCard, Amet~can Express, and COD

Unlimited technical support Thousands of satisified customers worldwide

PseudoCorp
716 Thimble Shoals Blvd.
Newport News, VA 23606

(804) 873-1947 FAX:(804) 873-2154
BBS(804)873-4838

Cross-Development
Tools

from $50.00

Cross Assemblers
) Extensive arithmetic and logical operations

I Powerful macro substitution capability

B Unlimited include file capability

B Selectable Intel hex or Motorola hex object file format

Simulators
) Ten userdefinable screens

The Computer Applications Journal issue #36 July 1993 11

LOGIC ANALYZER
A low-cost, software-based logic analyzer has been announced by F&J Associates. Logic Analyser gives an instant

picture of what is happening. Run it, set a viewpoint, then move around in memory. The clock handler or any
program in memory can then be observed.

Logic Analyser supports all Intel CPUs up to and including the i486, and disassembles code which contains
standard and protected mode instructions. All orthogonal 32-bit address modes and all floating point instructions are
supported, including i486 embedded instructions. Code can be displayed in any combination of 16-bit and 32&t
address and operand sizes.

Logic Analyser’s general probe design allows generic events to be specified in Breakpoint, Tracepoint, and
Watchpoint commands. Logic Analyser uses debug hardware built into ‘386 and i486 processors to allow specifica-
tion of memory access breaks, input or output tracing, and interrupt watching. When all hard breaks are used, soft
breaks take over-there is no limit to the number that can be defined or set.

Standard debugging is also supported, so when a problem occurs, it can be readily solved. Breakpoints can be set,
and step or step over commands can be used to allow incremental execution. Event capture can be enabled and the
resulting history played back. Registers, stack, and data displays are format selectable in 16- and 32-bit forms.

Logic Analyser features overlapped or tiled windows to give full control of screen display. Logic Analyser also
features a Clone key which allows any window to be instantly cloned. This allows the ability to set up one or more
alternate viewers, tracers, logic analyzers, or symbol tables. Most tools are clonable and can be assigned to different
process threads data structures, or any object of interest.

Logic Analyser requires MS-DOS 3.1 or later, a standard 640K base memory or 1 MB of extended memory. It runs
with any IBM PC/XT, AT, PS/2 or compatible with 8086, 80286, 80386, or i486 CPU. Logic Analyser sells for $199.

F&J Associates 0 P.O. Box 62539 l Scarborough, Ontario l Canada Ml R 5G8 l (416) 438-2720 l Fax: (416) 438-8408 #507

The new high-performance software analyzer that
captures, time-stamps, and records software and hardwan
interrupts, DOS calls, BIOS interrupts, and user-defined
events in real-time for analysis of race conditions,
interrupt activity, and service times. CodeProbe gives you
the hard facts you need to fix the big one that stands
between system test and shipping your product.

;$X’ INT 21h INT 13h
DOS Call BIOS Call

INT 08h
Timer Tick

INT Oeh
Disk Interrupt

0000 0100 0200 0300 0400 0500 0600 0700 oioo

Figure 1. Defailed timestamping of C library fread() function call.

If CodeProbe can break-down a library function call into
its components (above), imagine how you’ll see context
switches, device interrupts, and other asynchronous code
Call t&v for free technical mecitkations!

I
“I , , ~~~ ~~-

GENERAL Tel 206.391.4285
SOFTWARE w Fox 206.557.0736

P.0. Box 2571, Redmond, WA 98073 BBS 206.557.4BBS
Qrlght (0 I993 Genetol lohwore, In All righh reserved General lofiwre, the GS logo, and bdeProbe ore trodemarkr of General lohwore, In1

#106

!

We offer a full line of low cost 8OC32 embedded
controllers and software tools which are ideal for
developing products, test fixtures and prototypes.

Features Include:
- Low power CMOS design
* Up to 60K of code space and up to 60K of data space
- 5 to 15 volt operation
- Small form factor (3.5” * 6.5”) with prototyping area
- System diskette includes application notes
* Start at $100

Available Options:
* Multifunction Board adds A/D, 24 110 lines and more!
* BASIC-52 or Monitor/Debugger in EPROM,
- C Compiler $100 or BASIC Compiler for $300

Iota Systems, Inc.
POB 8987 l Incline Village, NV 89452

PH: 702-831-6302 l FAX: 702 831-4629

Issue #36 July 1993 The Computer Applications Journal

PRINTER TESTER
A device that tests

and troubleshoots
standard parallel inter-
faces and dot matrix and
daisy wheel printers has
been announced by Sibex
Inc. The LP-1 Printer
Tester performs two
basic series of tests that
are designed to test the
communication and data
transfer capability
between the devices. A
built-in microprocessor
allows the LP-1 to test
printers, cables, and
interface boxes without
the need for a computer.

The LP- 1 verifies
that the printer is
receiving the correct
parallel data or com-

mands from the computer,
as well as verification that
the printer is issuing the
proper commands to the
computer.

The Printer Tester
attaches in-line between the
printer and computer and
performs two series of tests.
It monitors the communica-
tion between the computer
and the printer. The LP-1
displays (on LEDs) the line
status and pulses as they
change. High-speed signals
and pulses are latched or
stretched to make them
easily readable for trouble-
shooting. This test verifies
proper operation of the
computer interface, inter-
connect cabling, and the
printer output.

The second sequence
tests the printer’s ability to
generate text if it receives
the correct instructions.
The LP- 1 Printer Tester
incorporates a microproces-
sor which has been pro-
grammed to simulate a
computer output. In this
mode, the LP-1 causes the
printer to initially print
each character in the
alphabet and then print two
lines of preprogrammed
text. The test sequence will
repeat continuously until
stopped. This repeat tests
for intermittent problems
and provides sufficient time
for analysis of the pulsing
signals.

The LP-1 is housed in a
hand sized plastic case and

comes with male and
female DB-25 connec-
tors. An external 110
VAC power supply and
detailed instruction
manual are provided
with each unit. The LP-1
sells for $249.

Sibex, inc.
1040 Harbor Lake Dr.
Safety Harbor, FL 34695
(813) 726-4343
Fax: (813) 726-4434

#508

Th? Cimetfies Technology
D OBtt Solutron is a complete

mEcrocontroller network
c, (&AN) that supports the 6051,

68)1611,80186, and mmw

:
sorsi The
full

r> advantage of multiprocessor
modes built into

r>
microcontroller ser@al ports.
Our flexible software and
hardware allow devalopers to

il. vet
inexpensive master/slave
multkbyp embedded controller

l Up to 250 nodes
l S-bit CRC error checking with

1) + LOW network overhead and low
FInents
Ce card fa
:e code in

w the PC
ieluded

Combrebeusive documentation

_ ECHNOLOGY

’

120 West State Street, Ithaca, NY 14850

K1: (607) 273.5715 FAX: (607) 273.5712

#IO8

c-PLC
$289!

l New C Programmable miniature controller
l Seven 1 O-bit analog inputs
l Seven digital inputs
l 1 O-bit DAC: voltage or current output
l Twelve digital/relay driver outputs
. RS-232/RS-485 serial ports
. Enclosure with LCD/Keypad available
l Expansion bus for additional, low cost I/O
l Easy to use Dynamic CTM development software

only $195!

Z-World Engineering
1724 Picasso Ave., Davis, CA 95616

(916) 757-3737 Fax: (916) 753-5141
24 hr. Information Service: (916) 753-0618

(Call from your fax and request data sheet #24)

The Computer Applications Journal Issue #36 July 1993 1 3

FEATURES
Object-oriented
Programming in
Embedded Systems

Mike Podanoffsky

PC Parent-Child
Programming: a Path to
Multitasking Under DOS Object-oriented Programming

in Embedded Systems
High-speed Modem
Basics: the Working
Hardware

’ bject-oriented
r programming is

r more than just the
V newest technical jargon.

It is a well-organized way of viewing
programming which delivers, by my
criteria, the ability to break down
complex problems into smaller, more
manageable solutions.

Object-oriented programming
(OOP) is a programming concept. It is
an approach intended to clarify the
way you think about a problem.
Because of this, you can use object-
oriented concepts with any computer
language including C, assembler, or
BASIC. The OOP paradigm is not
limited to just languages like C++ or
Smalltalk, which have devoted
themselves to object construction
techniques.

Object-oriented code provides
some of the clearest, most modular,
and easiest-to-test code you’ll write.
001 provides this because of the way
in which the code is organized from
the start. As you read what OOP is
really all about, you’ll discover that
you may have already used some
object-oriented concepts before
without knowing it.

For most programmers, OOP
begins to work for them when they
begin to actually get a handle on the
code itself. 1’11 try to demonstrate OOP

14 Issue #36 July 1993 The Computer Applications Journal

int Greetingcint Message)

switch (Message 1 i
case HANG-UP:

StopGreetingO;
RewindGreetingO;
break:

case PHONE-ANSWER:
RewindGreetingc 1;
PlayGreetingO;
break:

Figure l--The behavior of the Greeting tape object is
encapsulated within fhe Greeting module.

concepts and ideas by explaining some
of the key concepts in terms of objects
(no pun intended) in the real world and
by developing an XMODEM program.

OBJECTS

method.

In OOP, you describe your
program in terms of objects. Objects
represent real-world components
which interact with each other. For
example, a CAR object moves about on
HIGHWAY objects and strikes TREE

objects. In OOP-speak, the behavior an
object exhibits is called the object’s

Take, for example, a telephone
answering machine. The objects in
this system are the incoming phone
line, the greeting tape, the message
recording and playback tape, and each
of the buttons that a user may press to
activate replay, rewind, and so forth.
Basically, anything that has a behavior
that must be modeled must be
represented as an object.

The INCOMING-PHONE-LINE object
detects the ring signal, answers the
phone, senses voice, and detects
hangup. The GREETING-TAPE object
models the behavioral requirements of
the greeting tape; namely, recording
and playing back an announcement.

Objects communicate with each
other by sending and receiving mes-
sages. The messages objects send to
each other can consist of anything, the
only limitation being their content
must meet the specific requirements
of your application. You can see how
messages can be coded in Figure 1,
which shows a simplified object
routine for handling the processing of a
phone greeting.

PHONE-LINE object detects the ring

In the telephone answering
machine example, when the INCOMING-

typedef struct 1

int fof:
int id;
int x, y;
int altitude:
int speed;
int x-heading;
int y-heading;
int z-heading;

/* friend or foe status */
/* plane's id for future ref. */
/* current location in grid */

/* x, y, and z headings */

I Plane:

Plane friend, foe: /* two planes */

int Flight (int message, Plane far * plane 1

switch (message 1 1
case UP:

++plane->z_heading;

case DOWN:
--plane->z_heading;

Figure 2-I he simple message handlfng for fkght m this hypothetical Highf Simulator example demonstrates OOP
principles.

signal and answers the phone, it sends
a “Play Greeting Tape” message to the
GREETING-TAPE object. In turn, the
GREETING -TAPE object sends a message to
the RECORD-TAPE object to begin
recording.

If, at any time during these
processes, the INCOMING-PHONE-LINE
object detects a hangup, it sends the
“hang up” message to all objects,
which perform cleanup behavior
appropriate to each of their methods.
The GREETING-TAPE object rewinds the
greeting tape and the RECORD-TAPE

object stops the recording. Every object
resets itself for the next message
instance.

While objects may communicate
with each other, they must not
interfere with each other’s internal
processes or structures. Therefore,
objects cannot change variables in data
structures or set global modes. An
object’s method is totally self con-
tained. You may, however, set vari-
ables and send them as a message to an
object.

This tenet is essential and an
important consideration in designing
true object-oriented systems. It is
important that an object and its
behavior be totally encapsulated.

All too often in traditional
programming, there has been a
tendency to develop a single routine
that behaves slightly differently
because of modes or states. OOP tries
to avoid this by developing objects
with a single and distinct behavior,
which means the message carries
modal or state-specific information for
which the object will have a single
response. Of course, you are still free
to break this rule and make your code
just as complex and as difficult to
understand as before. I can lead you to
the river, but I cannot make you drink,
as the saying goes.

WHERE’S THE BENEFIT?
How is the OOP model more

efficient than other programming
paradigms? The functionality of the
answering-machine objects is delin-
eated by function, that is, specific
objects handle specific functions.
There is no behavior in the answering
machine system that is not defined in

The Computer Applications Journal Issue #36 July 1993 15

some object. This differentiation leads
to cleaner code than code produced
using top-down design methods,
because to locate and correct any
problems in the system, you isolate
the problem to the object responsible
for that process and correct its behav-
ior or method. To test or debug an
object, you send it a message with
consistent content, and you are done
when the object returns the correct
response to that message.

The system created by your code
becomes more functional when there
is an introduction of a new object in
the system. There should not be
substantial changes in any existing
objects (if they are truly encapsulated)
since they and their message struc-
tures are not changed by the addition
of the new object. The only thing that
may change is the order of messages
flowing through the program, or the
addition of other valid message types.
In other words, just add the behavior of
the new object, define where and when
messages should be sent to it, and how
it responds to the calling object.

Listing l--Two objects make up the XMODEM data transfer program, one for reading and processing the
file (XmodemObjecf) and the other for performing the serial data communicafions (DataCommObjecf).

/* The Xmodem Protocol:

SENDER
command issued to send file

RECEIVER

(sender may send any text to
receiver including file size,
expected time to transmit,
or other info 1

command issued to
receive file

<- NAK
SOH 01 FE Data11281 CKSUM ->

<p ACK
SOH 02 FD DataC1281 CKSUM ->

<- ACK
SOH 03 FC Data[lOOl NULLLZOI CKSUM ->

<p ACK
EOT ->

<- ACK
*/

#include <dos.h>
#include <dir.h>
#include <stdio.h>
#include <string.h>

enum i
(continued)

j We’re SmalLWe’re Powerful,r And We’re
4i: MMT-188 El3

t
. 2 serial I/O ports
- 3 programmable parallel I/O

j - ?%g RAM/ROM capable

B

- powerfail detect interrupt
and reset

c

- counter-timers
- watch dog timer

“r-
- expansion connector

Cheaper. -

3 ALSOAVAIlABLE:Mh4T-ZI8O,MhW196,Mh4T-HCII,h4MT-EXP

i

“t
i

In fact, you’ll get the best product for about
half the price. If you’re interested in getting the

s
f

most out of your project, put the most into it.
For the least amount of money.

“; Call us today for complete data sheets, CPU
“, options, prices and availability.
e - Custbm Work
5 Welcome. Call or fax for
$ complete data sheets

::
2308 East Sixth Street

f
Brookings, SD 57006
Phone (605) 697- 8521
Fax (605) 697- 8109 wE

‘RE SM A L L B U T W E ’R E P O W E ‘RFUI

HARDWARE
Checkoutourcompleteline of DSP boards based on powerful
floating-point processors like the AT&T DSP32c (25 MFlops)
and the Analog Devices ADSP-21020 (75 MFlops). Several
analog interface modules are available. DSP boards start at just
$995.

SOFTWARE
W e have everything you need to do DSP software
development, including C compilers, assemblers, source-level
debuggers, algorithm development tools, and many example
programs. Data can be transferred between the DSP board and
host at up to 3 Mbytes/set with the host interface library (source
code included).

SOLUTIONS
Call our friendly, knowledgeable staff to discuss your
applications and we’ll show you how easy it is to take
advantage of DSP technology.

800-848-0436

Real- Time Multitasking with DOS
for Microsoft C, Borland C, Borland/Turbo Pascal

Develop Real-Time Multitasking Applications under MS-DOSwith RTKernel!
RTKernel is a professlonal, high-performance real-time multitasking kernel. It runs under MS-DOS and supports
Microsoft C, Borland Ctt, Borland/Turbo Pascal, and Stony Brook Pascal+. FiTKernel isalibrary you can link to your
application. It lets you run several C functions or Pascal procedures aspaq(lel tasks. RTKernel offers the following
advanced features:
- pie-emptlve, event-/ Interrupt-driven scheduling
~numberoftasksonlyI~m~tedbyava~lableRAM

*sup$rtsupt036COMports

* task-swltchtlmeofapprox 6pecs(33-MHz486)
(DqBoardandHostessboards)

* performance~s~ndependentofthenumberoftasks
‘fullsupportofNS16550UARTch1p

*useupto64pnor1tiestocontrolyourtasks
~supportsmathcoprocessorandemulator

*pr~ont~eschangeableatrun-time
-fast, Inter-networkcommumcation using
Novell’s IPX services

*time-slic~ngcan beactlvated *runsunderMS-DOS3.0to6 0, DR-DOS,
* programmablettmerlnterruptrate (0.1 to55ms)
a hIgh-resolution tlmerfortlmemeasurement (1 wet)

LANs, orwlthoutoperatlngsystem
bperform DOScallsfrom several tasks

*act~vateorsuspendtasksoutof~nterrupthan&rs
* programmableinterruptprlorlties

wIthout re-entrance problems

* Inter-taskcommuncatlonsusingsemaphores,
-supportsresldent mult&task~ngappllcat~ons(TSRs)
*runsWindowsorDOSExtendersasatask

mallboxes, and message-passing
*keyboard, harddisk, andfloppydiskidlettmes

*supportsCodeV~ewandTurboDebugger
* ROMable

usable byothertasks *fullsourcecodeavailable
* interrupt handlers for keyboard, COM ports,~and
networkinterruptsmcludedwlthsourcecode

*norun-timeroyalties
*freetechnicalsupportbyphoneorfax

RTKernel-C (MSC 6.017.018.0, BCtt 1.012.013.x) $495 (SourceCode:add$445)
RTKerneCPascal (TPIBP5.~16.017.0,SBP6.x) $ 4 4 5 (.SourceCode:add$375)
Forlnternationalorders. add$30forshlppingand handling
MasterCard,Vlsa,check, banktransfer, CODaccepted.

Karolinenstrasse 32 20357 Hamburg Germany
Professional Programming Tools

Phone +49-4C-437472.k~ +49-40-435196.CcmpuServe 100140,633

#112

C_tlwu_RyIM is the complete ROM development software tool kit.
It lets you run Microsoft. and Borland C and C++ programs on an
embedded 80x86 CPU without using DOS or a BIOS.
C_tfuw_RUM saves you money. There are no DOS or BIOS royalties
to Pay for your embedded systems.
C_thru_RUM is complete! It includes the following and much more:

*Supports Borland’s Turbo Debugger.
*Remote Code View style source level debugger.
l ROMable startup code brings CPU up from cold boot.
l ROMable library in source code.
*Flexible 80x86 Locator.

CGMPLETE PACKAGE ONLY $435. 3-Y MONEY GACK GUARANTEE.

What I

IS

C_thru_ROM?
ROM Your Borland or Microsoft C/C++Cocie.

#113

Changing the method-the code
that executes and thereby creates an
object’s behavior-should have less
impact on the overall program because
the code for an object is localized.
However, changing the messages an
object produces could have a serious
ripple effect since other objects would
have to be changed to understand how
to respond to the new message type.

Consider the telephone answering
machine example that I outlined
above. To implement a toll-call
savings feature where a machine
allows two rings if there are messages
waiting, but won’t answer for four
rings when there aren’t any messages
waiting (to save you money when you
call in for your messages] changes the
method of the INCOMING-PHONE-LINE
object, and only that object. As long as
the messages flowing in and out of the
INCOMING-PHONE-LINE object do not
change, this should be the only object
requiring any changes.

You can legitimately claim that
OOP itself doesn’t bring any advan-
tages that a well-structured program
wouldn’t have provided. Still, OOP
forces you to naturally develop a well-
delineated, concretely defined messag-
ing protocol and interobject interface
structure.

OOP is designed to create objects
once so you can reuse them in many
different programs, not unlike a
programming library. For example,
once you’ve developed a communica-
tions object, potentially you may reuse
it repeatedly just by sending it mes-
sages.

OBJECT DATABASE
I once wrote a database system

that stored documents that contained
both text and images. The entire
database access was an object. The
interface to the database was either a
“Store Element” or a “Retrieve .
Element” message together with a
pointer to an element, which was
either some text or an image.

The database itself was considered
the object which responded to store or
retrieve messages. The method used by
the DATABASE object to store elements
was fully encapsulated within DATABASE

object.

18 Issue #36 July 1993 The Computer Applications Journal

Listing l-continued

INITIALIZE = 1,
CONNECT,
TRANSFER,
DISCONNECT.
CANCEL,
I CommMessages;

enum I
ASCII = 0,
XMODEM = 1,
} ProtocolMessages:

enum i
ERR_NOERRORS = 0,
ERR_BADMESSAGE = 1
ERR_CANTCONNECT,
ERRPUSERHANGUP.
ERRPUSERCANCEL.
ERR-TIMEOUT,
I ErrorMessages;

typedef struct i
int file;
char far *filename:
char far *telephone:
char far *buffer;
int bufferlen;
int commPort;
int baudRate;
int parity:
int dataBits;
int stopBits;

I DataCommControl:

#define FAR_ADDRESS(s, p)
(void far *)((unsigned long)((unsigned lorIg)(

<< 16) + (unsigned long)((p)))

#define TimeOut(t, p)
(*Time (long)(t) > (long)(p)*18 1

static int maxerrorcount = 0:
static long far * far Time = FAR-ADDRESS(Ox0040, OxOO6C):

#define CONTROL-Z
#define OVERWRITE
#define MAXERRORS
#define OVRWRITIM
#define BLOCKSIZE
#define SENTIMOUT
#define TIMEOUT
#define SLEEP

26 /* control z *i
1 /* define for normal overwrite *I
10 /* max number of times to retry one block*/
10 /* time to pause (none if OVERWRITE) */
1'28 /* transmission block size */
80 /* timeout time in send */
99
30 /* timeout time in recv

/* Protocol characters used */
#define SOH 0x01 /* Start Of Header
#define STX 0x02 /* Start Of Text
#define EOT 0x04 /* End Of Transmission
#define ACK 0x06 /* ACKnowlege */
#define NAK 0x15 /* Negative AcKnowlege
#define CAN 0x18 /* Cancel

*/
*/
*/

*/
*/

#define DEBUG 1

/////////////////// Prototypes ll///llll/lllllllllll
char RecvChar(int port);
int SendChar(int port, char ch);

lcontinuedl

RELAV
INTERFACE
~~) ,_

(CONNECTS TO RS-231)

Input c&ff status of ralays, switches, WAC aquipment.
fharmosfafs. sawrify dawzas, smoke dstsctors and other
devices inctudtng k?flads and binary coded wt~ls.
Provides 32 status mputs (opt0 isolators sa!d separately).
TE-8 TEMPERATURE INPUT CDNVERStON ___....,. $49.95

- FULL TECHNICAL SUPPDRT...Pmvidsd over the
fele hone by our staff. EACH ORDER INCLUDES A
FR& DISU wrfn PRQGRAMMlfiG EXAMPLES IN
BASIC, C AND ASSEARBLY LANGUAGE. A detailed
tachnica1 reference manual is also included.

8 HIGH RUlABILITY...enginaered for continuous 24
hour industrial applications. All ICs socketed.

* Use v&h IBM and competibles, Tandy. A
most other eOmp@affi with RS-232 or R d

pie Mac and
-dti ports.

All standard baud rates and pmtowls may De used
(50 to 19,200 baud).
Uss our 800 number to order FREE lNFORMATlON

PACKET. Technical Information (614) 484-4470.

24 HOUR ORDER LINE (800) S42-TT14
VisaW+?,fercard-Amerii Elcprsss-COD

International 8 Dome&c FAX (614) 484-9656
Use for information, lachnical supfwt & wdars

ELECTRDWC SNERGY CONTROL, INC.
380 South Fiffh Bfreat, Suite 604

Calumbus, Ohio 43215

TheCompute
#I14

!r Applications Journal Issue #36 July 1993 19

When I first implemented the
DATABASE object, I didn’t have time to
write a complete database code with
indexing. I just needed to save objects
for subsequent retrieval. Initially, each
store message just created a DOS file
where the object, text, or image was
stored. Eventually, I went back and
changed the DATABASE object to a fully
functioning database. But the message
interface remained the same. Ah, the
beauty of fully encapsulated objects!

FLIGHT SIMULATOR
Let's continue our look at what

constitutes objects and messages.
Flight simulation is as interesting to
me as flight itself. A decent flight
simulation shows various views from
the cockpit and flight instruments
such as altimeters, compasses, fuel
gauges, flaps, and so forth. To write a
good object-oriented flight simulator,
each instrument gauge has to be a
clearly defined and independent object.
Each object, of course, will have to
have its own behavior.

One object is the plane itself. As
the PLANE object “flies,” it updates its
position represented as three coordi-
nates, x, y, and z (height), based on its
“speed” and rate of ascent. The PLANE

object receives several messages from a
variety of sources. It receives wind and
turbulence information, periodic time
information to update its position, and
keyboard messages. The person using
the keyboard acts as the pilot and
would use the keyboard to tilt the
plane left or right or pull the nose up
or down. These keyboard actions are
passed to the plane object as messages
to direct the flight path.

The instruments and gauges need
to represent the current state of the
flight. The PLANE object sends an
“update” message to all instruments
and controls. In turn, they each update
the graphical representations of their
instruments. Each instrument or gauge
has a different method and representa-
tion, but they all respond to the same
“update” message. Figure 2 shows a
trivial skeleton for a Flight Simulator.
It is meant to demonstrate OOP
principles.

Polymorphism is the term used to
describe the situation when different

Listing l-continued

int sendstringc int port, char far * string);
int sendbufferc int port, char far * buffer, int bufferlen);
int CancelTimedOutJob(DataCommControl far * DataComm):
int DataCommObject(int Message, DataCommControl far * DataComm);
int XmodemObject (int Message, DataCommControl far * DataComm):
int ParseCommandLine(int argv, char far * far *args,

DataCommControl far *DataComm);

char RecvCharCint port) i return NAK; 1
int SendChar(int port, char ch) i return ERR_NOERRORS; I

int sendstringcint port, char far * string)

int Err = ERR_NOERRORS:

while (*string)
if ((Err = SendCharcport, *string++)) != ERR_NOERRORS)

break;
return Err:

int sendbuffercint port, char far * buffer, int bufferleni

int Err = ERRRNOERRORS;

while (bufferlen- > 0)
if ((Err = SendCharcport, *buffer++)) != ERRRNOERRORS)

break;
return Err:

int CancelTimedOutJob(DataCommContro1 far * DataComm)

DataCommObject(CANCEL, DataComm);
return ERR-TIMEOUT;

int DataCommObjectCint Message, DataCommControl far * DataComm)

int Err = ERR_BADMESSAGE;
int port = DataCommm>commPort;
switch (Message)

case INITIALIZE:
return ERR_NOERRORS;

case CONNECT:
Err = sendstring (port, DataComm
#ifdef _error_connect_
if (status(port, . ..I != CONNECT
Err = ERRRCANTCONNECT;
#endif

break;
case TRANSFER:

Err =
sendbuffer(port.DataComm->buffer

break;
case CANCEL:

SendChar(port, CAN);
break;
case DISCONNECT:

Err = sendstring(port, "ATHO")
break:

>telephone);

DataCommm>bufferLen)

return Err;

int XmodemObject(int Message, DataCommControl far * DataComm)

20 lssue#36 July1993 The Computer Applications Journal

Listing l-continued

1
int i;
int Err = ERR_BADMESSAGE;
int port = DataComm->commPort;
int errorcount = 0;
char buffer[3 + 128 + 11;
switch (Message)

1
case XMODEM:
if ((Err=DataCommObject(CONNECT. DataComm))

== ERRRNOERRORS)
1

int blocknumber = 1:
int NotEndOfFile = TRUE:
long timeout;
char checksum;
int retry:
char far * readbuffer = &buffer[31;
char ch;
errorcount = 0;

//////ll////////l/////! wait for initial NAK ll/llllllllllllllll
timeout = *Time;
while (TRUE)
i

if (TimeOut(timeout, 80)) // 80 seconds max
return ERR-TIMEOUT;
ch = RecvChar(port);
if (ch == CAN)
return ERRRUSERCANCEL;
if (ch == NAK)
break:

t

///I send data blocks llllllllllllllllllll///////////
while (NotEndOfFile)
i

bufferLO = SOH:
buffer[l] = blocknumber;
buffer[Zl = -blocknumber;
NotEndOfFile = (read(DataCommm>file,

readbuffer, BLOCKSIZE) == BLOCKSIZE);
for (i = 0; i < BLOCKSIZE: ++i)

checksum += readbuffer[i]:
readbuffer[BLOCKSIZE + 11 = checksum:
DataComm->buffer = buffer:
DataComm->bufferLen = sizeof(buffer);
retry = TRUE;
while (retry)

1
Err =
DataCommObjectCTRANSFER, DataComm);
retry = FALSE:
if (Err != ERRRNOERRORS)
i

DataCommObject(CANCEL. DataComm);
return Err:

t
timeout = *Time:
while (TRUE)
i

if (TimeOut(timeout, 10))
// 10 seconds max

return CancelTimedOutJob(DataComm1:
ch = RecvChar(port);
if (ch == CAN)

return ERRRUSERCANCEL;
(continued)

(multiple) objects respond differently
to the same message. The word comes
from the Greek “poly” for multiple
and “morphism” for change. Another
example of a polymorphism is in
graphical applications such as
AutoCAD. When an object is resized,
the object is sent a “resize” message.
Each object responds to the same
message but in different ways because
a rectangle resizes and draws differ-
ently than a circle or a picture.

OOP IN DISTRIBUTED SYSTEMS
Distributed systems are especially

well suited for OOP techniques
because, by their very nature, distrib-
uted systems are message-based
systems. Distributed systems use
messages that are not unlike messages
passed between objects. A medical
equipment monitor system is one
example of a distributed system. One
machine is situated by a patient,
monitoring several vital signs while
another part of the system is at the
nurse’s station. They not only commu-
nicate with each other, but a failure to
receive periodic update information is
a signal to the nurse that the equip-
ment (or connection) may be faulty.

With an OOP design, the patient
monitor doesn’t care where it sends
messages. That is, it should be un-
aware of whether its messages are sent
between two object modules or
between machines physically dispar-
ate. Instead, it just treats the nurse’s
station as an object that it sends
messages to. In the early development
of the product, or during debugging,
there need not be physically a re-
motely connected nurse’s station-
only an object to receive and send
messages.

As the development evolves into
two physically separate (distributed)
systems, the method of the NURSE'S-
STATION object (which formerly was a
device or program that only emulated
the nurse’s station) evolves into a full-
featured component that communi-
cates with the monitoring station.
Furthermore, to make the system even
more modular, create the monitoring
station using two objects: a CONNECT-
T O-NURSE'SSTATION objectanda MONI-

TOR-PATIENT-STATION object.

The Computer Applications Journal lssue#36July 1 9 9 3 2 1

When distributing the objects, the
dynamics of the system change. Not
all debugging and performance issues
are resolved. For example, there are
now connect time, data communica-
tion performance, speed of data
transfer, and loss of data connection
issues introduced when physical data
communications is introduced. OOP
does not eliminate these physical
concerns.

INHERITANCE
One final OOP-speak term,

inheritance, refers to an object inherit-
ing the behavior [and messages) of
another object that is already defined.
This is a very commonly used tech-
nique within OOP programs and you
will no doubt use it where appropriate
even if you didn’t know the technique
had a name.

For example, suppose that several
buttons in a given problem behave in
exactly the same manner: when
pressed they will click and continue to
repeat the click until released. As each
button is held down, it increments or
decrements the value in a variable it
controls. For example, the volume or
channel control buttons on a televi-
sion remote control.

Now suppose you needed a button
that exhibits this kind of behavior, but
must also perform other functions.
One example might be a color-select
button which must change hue or
contrast.

Your obvious choice is to create a
HUE object in which you perform any
color change in response to the button
being down. The HUE object sends or
receives messages from its BUTTON
object that handles the tasks common
to all buttons. In this example the HUE

BUTTON inherits the behavior common
to all general buttons.

OBJECT-ORIENTED APPROACH
TO DATA COMMUNICATIONS

The original intent of this article
was to create an XMODEM data
transfer program using object-oriented
principles. The XMODEM data
transfer program should be given a
message that contains a telephone
number, a communication port’s
address, and a data file. The data

Listing l-continued

if (ch == NAK)

retry = (++errorcount <= 10):
if (!retry)

DataCommObject
(CANCEL, DataComm);
return Err:

break:

if (ch == ACK)
break:

t /; while retry
t // while not end of file.

///I send End Of Transmission ////l///////ll/////l
retry = 0;
errorcount = 0:
while (retry)

DataCommObject(EOT. DataComm);
timeout = *Time;
while (TRUE)

if (TimeOut(timeout, 10)) // 10 sets. max
return CancelTimedOutJob(DataComm1:

ch = RecvChar(port);
if (ch == NAK)
i

retry = (++errorcount <= 10)
break:

if (ch == ACK)
break:

break:
case DISCONNECT:

DataCommObject(DISCONNECT, DataComm):
break;

return Err:
t

ll//l/ll//////l/ll//////////////////////lllllllllllllllllll/llll
int ParseCommandLine(int argv, char far * far *args,

DataCommControl far *DataComm)

if (argv < 2) return FALSE;
else if ((DataComm->file = open(argsLl1, 0x8000)) == NULL)

return FALSE:
else i

if (argv > 3)
DataComm->telephone = args[Zl:
strupr(argsiargv-11):

if (strncmp(args[argv-11, "COM", 3) == 0)
DataComm->commPort = (args[argv-11[31 & OxOF) 1:

return TRUE:
t
/l//////llll/ll/llll

maincint argv, char far * far * args)
I

(continued)

22 lssue#36 July1993 The Computer Applications Journal

transfer then occurs unattended-but
not in the background.

The XMODEM protocol has been
around for over a decade and was
invented in order to transfer files
between computer systems over phone
lines. It was developed to overcome
some of the problems inherent with
data transfers that used modems such
as dropped bits, random characters
injected in the data stream through
noise, bursts of errors, and so forth.

Under the XMODEM protocol, a
file is transferred in blocks of 128
bytes preceded by a header and
followed by a checksum byte. Once
the block is sent, the program waits for
a return acknowledgment that the
block was received. If a Negative
Acknowledgment is returned, the
sender will retransmit the block.

The XMODEM protocol isn’t very
fast, nor is it absolutely error free. The
&bit checksum is sufficiently small so
that, statistically speaking, errors can
occur in the data stream that will
“fool” the checksum algorithm. The
protocol is slow because the latency
time waiting for an acknowledgment
is a large percentage of the 12%byte
block being transmitted.

WHAT ARE THE OBJECTS IN
DATA COMMUNICATIONS?

If this were rocket science it
would have been easy to visualize and
model real-world components. We
have a harder time, however, when we
cannot touch and feel the objects.
Recall that an object has to have and
exhibit a specific behavior and it
should be able to respond to and/or
send messages.

For our purposes, I’ll implement
the XMODEM data transfer program
(Listing 1) as two objects. One object,
the XMODEM object, will read and
process the file. The other object, the
DATA COMM object, will perform the
actual serial data communications. I’ll
refer to these objects as the Xmodem-

O b j e c t a n d t h e D a t a C o m m O b j e c t ,

respectively.
I’ll have to define each message

that will pass between these two
objects as well as their expected data.
The XmodemOb ject wil l rece ive a
message that is a command to transfer

Listing l-continued

int showHelp = 0;
DataCommControl DataComm;
printf("Xmodem Send Object-oriented Example.\n\n"):
if (!ParseCommandLine(argv, args, &DataComm))
i

printf("Sending: Sx filename [ATDT telephone/II [corn
portl\n");

printf("Receiving: Rx filename [comportl\n\n");
t

I else

printf("Sending file %s to %s on Com%c.\n",
args[ll+
(DataComm.telephone) && *(DataComm.telephone)
? DataComm.telephone : "<no phone>",
(DataComm.commPort+l) 1 '0');

XmodemObject(XMODEM, &DataComm);
XmodemObject(DISCONNECT, &DataComm);
close(DataComm.file);

a file through a specified comm port. and finally to terminate the connec-
T h e X m o d e m O b j e c t w i l l p a s s a tion with a hangup message.
command message to the Da t a Comm I further defined the interface to
Object that will cause the D a t a t h e D a t a C o m m O b j e c t a s a n i n t

CommObject to make a connection, (integer value) followed by a f a r
send individual XMODEM packets, pointer to da t a, as shown below:

Only $85 1 for iceMASTER-PE
The world’s most innovative emulator for members of the

8051 family is incredibly affordable. MetaLink’s unique

Advanced Emulation Technology (AET, potent pending) delivers

the best possible emulator value for engineers, consultants and

students.

AET is o revolutionary design architecture that provides more

features with 75% fewer components, smaller board space and

lower cost. Emulator and probe electronics are integroted in a

single package only 3” by 4”.

Metatink also delivers leading-edge customer service, including

a 30 day money back guarantee, 10 day trial for qualified

customers, rental plons and free technical support.

d Upto 40MHZOperotion s# SUPPORTS 8031/8032’S

w 64K Emulotion Code Memory an SUPPORTS 8XC751/8XC752’5

G 64K Extemol Ooto Memory %I Windowed User Interface

rl 128KHordworeBreokpoints I Seriollinkto Any PC
s* 16KTroceMemory w Metro Cross Assembler
r, Tronsporent Trace

(View Trote While Executing)

,* Built-In Self-Test

Call today for FREE DUHO DISK!

(800) METAICE (800) 63
MetalInk CarporatIon PO. Box 1329 Chandler, k 85244-l 329
Phone 1602) 9260797 FAX 1602) 926-l 198

i@21

The Computer Applications Journal Issue #36 July 1993 2 3

int DataCommObject (int Message,
v o i d f a r * D a t a) :

This is a convenient way to pass both
a command and data.

ERROR REPORTING
Finally, I need to cover the issue of

error messages. If the Data C omm
0 b j e c t cannot make the connection
because the comm port address is
wrong, or the data comm parameters
don’t match the port’s capabilities, or
the phone will not connect, then it
should generate a message indicating
an error. This message should be
reported back to the object that
i n v o k e d t h e D a t a C o m m O b j e c t .

I pass these errors back in the
function return value directly. This is
by far the easiest and most cost
effective method and is used in the
code provided with this article.

SUMMARY
I have been using OOP techniques

whenever I can. I find I can better
organize the functionality of my code
by using the OOP paradigm. A careful
study of the code in Listing 1 should
give you a better idea of how OOP can
be used in many embedded systems.

Finally, I’d like to leave you with
this thought: My dog loves to chase
cats and rabbits. I describe his behavior
to computer scientists as, “Don’t mind
the dog’s method, he’s object ori-
ented.” q

Mike Podanoffsky has spent the last
20 years as a software developer
building real-time systems, multiuser
networked databases, and language
compilers.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime” in this issue for
downloading and ordering infor-
mation.

401 Very Useful
402 Moderately Useful
403 Not Useful

Looking for the kernel that
makes app~cation debugging

both quicker and easier?

Look to KADAK for the AMX’” activities and timing effects.
real-time multitasking kernel featuring You’ll find AMX with Insight speeds
the Insight’” Debug Tool.

AMX and Insight cooperate with such
industry standard source level debuggers

,&WlK Eiz”;$;

asCodeView:” FreeForm:” Turbo Debugger’” yourproducts to market quicker than ever
and XRAY? But that’s just the start. - one good reason to count on KADAK.

With Insight, a single keystroke will
give you a full screen view of all your tasks, For a free Demo Disk - or to order the
timers, mailboxes, messages, semaphores AMX and InSight Man&for only $85~~ -
and event flags. Plus, the Insight Profiler contact us t&y. Phone: (604) 734-2796
will expose those unexpected task Fax: (604) 734-8114

Count on KADAK.
KADAK KADAK Products Ltd. Setring real-time stundard.s since 1978.

206-1847 West Broadway, Vancouver, BC, Canada, V6J lY5
AMX 1s a rrademrk of KADAK Products Ltd. All tradrnrarkrd names are the property of thctr resp+xt,vc owners.

Rental And 1 O-Day Trials Available
iceMASTER delivers jroductivity: easy to learn,
easy to use and fast!

Hyperlinked On-line help guides you through the
emulotion process.

iceMASTER is FAST! The 115.2K baud serial link
keeps ty
stondorB

icol download times to under 3 seconds using o
COMM port!

Brood support of derivative devices.
Flexible user interface: you con completely tonfig-
ure the windows for size, content, location and color.

Call today for FREE DEMO DISK! . .
Call today to ask about FREE8051 Macro Assembler!

Improved
User Interface

Features
iceMASTER is convenient! It connects easily to your
PC, requires no disassembly, nor does it take up any
exponsion slots. It works on any PC (DOSor OS/2),
Micro Channel or EISA. Even Laptops!

Supports source level debug (C and PL/M) and
source level trace. 4K trace buffer with odvonced
searching and filtering capabilities.

MehGnk Corporation PO Box 1329 Chondler,Az 85244-1329 Phone: (602) 9260797 FAX: (602) 926-1198 TELEX: 4998050MTlNK

#117
The Computer Applications Journal Issue #36 July 1993 25

H. Bradford Thompson

PC Parent-Child
Programming: A Path to
Multitasking Under DOS

uppose you want
to use a PC as an

instrument control-
ler, and the system

requirements involve keeping track of
time, collecting data, and simulta-
neously performing calculations on the
collected data. What’s the best bet for
an operating system? Is it OS/2, UNIX,
Windows, Desqview, or another? Well,
why not consider the most common of
all-Microsoft’s MS-DOS? You may
have heard, “DOS isn’t multitasking,”
but if an 8088 processor running under

DOS could walk and chew gum, it
would do both at once. More to the
point, an 8088 under DOS may be able
to run a program while it crunches
your data and operates your instru-
ment, and it could do each without
unduly slowing any of the others. Of
course, a more powerful 80x86 will do
the job equally well, just faster.

However, the daunting task of
setting up and debugging a specialized
multitasking system can be frustrat-
ing. But not long ago, I discovered the
power of the DOS parent-child
program structure, which can remove
a lot of the pain from the process. In
addition, it allows a developer to
divide the problem into separate
(smaller) problems, because it allows
the task to be divided between assem-
bly coded routines for the low-level
stuff, while the main program can still
be developed using standard, high-level
tools available for PCs. Curious? Hang
on and I’ll explain what it’s all about,
then provide a program framework and
finally an example.

DOS INTERRUPTS
The way to get DOS to do several

jobs at once is through interrupts.
That’s only natural since DOS com-
municates with both the system
hardware and any running programs
through interrupts. It even keeps track
of the time that way, as Bruce
Ackerman described in “High-Resolu-

Regular ht.
Handler

Figure l--The regular program execution flow through
an interrupt handler (Jeff) may be diverted to a substitute
handler (right). Optional paths are shown with the dotted
lines: the substitute may return control direct/y or may use
the regular handler, and return from the regular handler
may then be direct or through the subsfitute.

2 6 Issue #36 July 1993 The Computer Applications Journal

Listing l-Assembler macros may be used to substitute interrupt handlers and to restore the original
paths when done.

SET_INT.INC
; Macros to set and restore interrupt vectors.
; Set Interrupt Vector, saving old vector for later replacement.
; Assumes new vector is in present code segment.

iSetIntVector MACRO Int No, New Int, Old Vet
; InttNo is the number of the interrupt to be redirected.

: New_Int is the location of the new interrupt handler.
; It is assumed that the handler is in the code segment where
; the macro is used.

: Old_Vec is a four-byte space where the old interrupt vector
: is saved.

mov ax, 3500h + IntLNo ; Get old int. vector using
int 21h ; DOS function 35h
mov word ptr Old_Vec[Ol,bx; and save it
mov word ptr Old_Vec[El,es
mov dx,cs ; Put interrupt segment
mov ds.dx ; (= code segment) in ds.
mov dx.offset New_Int : put int offset in dx,
mov ax.2500h + Int_No : Install new vector using
int 21h ; DOS function 35h

endm

; Reset Interrupt Vector ~~ companion to _SetIntVector

_ResetIntVector MACRO Int_No, Old_Vec
lds dx, dword ptr Old_Vec :Put back old int. vector
mov ax, 2500h + Int_No
int 21h

endm

tion Timing on a PC” (Circuit Cellar from the main program long enough to
INK, Dec. ‘91/Jan. ‘92, issue 24). A update the system tick count. I’ll adapt
hardware interrupt, Int 08h, is gener- Ackerman’s fast-timer for use as an
ated on each “clock tick,” which example for my framework program.
normally happen at a rate of 18 times a Keyboard input to a PC also
second, and the processor is diverted occurs through interrupts. The

keyboard produces an
interrupt (Int 09h) to

CALL: INT 21 h, with registers:
Reoister Contents

store each keypress

AX 4800 (Function number) (and release). A second
ES:BX Address of parameter block kind of interrupt, a
DS:DX Address of program name string software interrupt, is

then used to unload
Parameter block:

Offset Contents the keyboard buffer;
o-1 Segment of environment block [0] see Chris Ciarcia’s
2-5 Address of command tail “Software at the Hard-
6-l 3 Addresses of file control blocks

[FFh, FFh, FFh, FFh]
ware Level” (Circuit

Command tail: Cellar INK, June/July

Offset Contents 1991, issue 21).
0 Length (n) of tail text in bytes The neat thing
l - n Tail text about all of this is we
n+l 13h (CR) as terminator

can divert any DOS
[] indicates values to insert for default results. interrupt for our own

purposes, as long as

Figure 2-A child process is invoked by Int 21h function 4Bh and is named we’re willing to accept
EXEC. The call a/so includes a parameter block and a command tail. the consequences. DOS

even provides (through an interrupt, of
course) functions to help us do this.
But like all powerful tools, interrupt
diversion can really mess things up if
they’re not handled right. We need to
be sure to provide for the job the
interrupt normally does, as well as any
additional tasks we want done, and
then restore the state of the system
when we’re done.

The second requirement is crucial,
and can really make things go wrong if
it is not properly done. Imagine what
happens if you’ve told DOS that on
each keystroke or clock tick, it should
jump to a location (that you think is)
inside your program; if your program is
not present at that location, or your
program bombs and goes back to DOS
without removing the jump, every
thing may appear normal (since your
jumped-to code may still be in
memory), but as soon as you try to
load anything new, the diverted
interrupt will jump to some unpredict-
able place in a new program and try to
execute whatever “instructions” it
finds there! A runaway printer or a
frozen machine are common results,
but this kind of scenario can make
your worst “PC crash fears” possible.

HOW INTERRUPT DIVERSION
WORKS

Let’s see what happens during an
interrupt. As I noted, interrupts can be
triggered by hardware or software. The
keyboard and the clock-tick interrupts,
Int 09h and Int 08h described above,
are examples of hardware interrupts. A
program gets keyboard-buffer contents
with a software interrupt, specifically
Int 16h. For either type of interrupt,
the same series of events occurs:

aThe current program location is
saved, in a subroutine fashion, to allow
a safe return from the interrupt.

*The four-byte address of the
appropriate interrupt handler is
obtained from a jump table stored in
low memory. This address is called the
interrupt vector.

l The interrupt handler (the code
at the address specified by the vector)
is executed.

aThe handler issues an I RET,
causing a return via the address that
was stacked in the first step.

The Computer Applications Journal Issue #36 July 1993 27

Child <cl

DOS -

Program Segment
Prefix

JMP /nit

Data
. .

Child: Do EXEC
Cleanup code

Return’& DOS

Init:
Setup code

%iP Ch;ld

Figure 3-The arrows show program flow through the structure of the parent
program framework. Memory from location /nit: on is released before the child
program is called. Data is placed at fixed location l&h where child program
routines can find it.

To substitute our own task, we
simply substitute our own interrupt
vector in the jump table. We could do
this directly, but that’s risky-suppose
we’re in the middle of changing an
interrupt vector when that interrupt
occurs? DOS makes life simpler and
safer by providing two functions to do
the job for us. How these functions are
used is shown in the first assembler
macro in Listing 1.

This macro also saves the old
interrupt vector. We will need this
when we reset things when we’re
done; the second macro in Listing I is
the one responsible for that task.
Besides, we may still want to use the
old interrupt handler, but just add our
own code to it. After doing our thing,
we simply jump to the old handler,
where its I RET instruction returns it
neatly back to the main program. Or,
the return can be made through the
substitute handler rather than direct.
Program flow for the modified vector
interrupt handler is shown in Figure 1,
with dashed lines showing optional
routes.

THREE WAYS TO SET ‘EM UP
A straightforward approach to

interrupt diversion is to do it within
your main program. The program must
also provide foolproof restoration
when done. This means taking into
account irregular exits as well as
normal exits, including exits via break
keys (Ctrl-Break or Ctrl-C). Any error-

induced exits must
also be provided for,
particularly during
debugging, unless
the user of your
program loves
rebooting their
machine.

An alternative
is to set up the
diversions with a
TSR (Terminate-
and-Stay-Resident)
program triggered
by a hot key. The
advantage here is
that the TSR code,
once installed,
remains in memory
and can be invoked

through program calls and DOS
prompts. The disadvantage is the TSR
remains in memory, taking up space
and doing its thing, until something is
done to remove or disable it.

A third choice is the parent-child
program launching structure. A
program, called the parent, installs the
interrupt diversions and then calls up
the main program as a child process. A
child process can be passed command-
line arguments just like any other
program. The advantage to this
approach is when the child is done,
control is returned to the parent rather

than to DOS. The parent can then do
whatever cleanup is required (sound
familiar?). Breaks during a child
program need no special treatment
since control just goes back to the
parent. Many “bombs” in the child
processes will also return neatly to the
parent, which is very helpful during
debugging. Of course, the parent
program stays in memory while the
child runs. This is not as big a draw-
back as it might seem. Parent pro-
grams don’t have to be very big. The
prototype parent described below takes
less than one kilobyte of memory.

The parent-child scheme is a neat
one for the interface developer. All the
hardware stuff can be built into the
parent, written for efficiency in
assembler code, and tested with a
simple child program. After the bugs
are out of the parent, child programs to
handle the interface-related issues can
be written in any convenient high-
level language. If you work out
hardware systems for others who write
their own analysis programs, you can
let them write and fiddle with the
child programs.

HOW TO CALL YOUR CHILD
A child process is invoked by

(surprise!) an interrupt call, specifically
function 4Bh of interrupt 21h. This is
called the E X EC function. The rules for

Listing 2-The parent program framework. Compare this /isting with Figure 2. Code to implement any
specific application is placed at [A] through [D].

:i/ [A 1 Template for Parent Program
;# for construction of programs that install interrupts, etc.//
;I/ for use in child programs. Stuff in ##ii borders should be ii
;# replaced by appropriate code for the specific application.11
;ii In this place write the program title, etc.
:I/ Template designed for the Microsoft MASM assembler; f
:ii tested w/MASM 6.0 ii
.NoList
Include Set_Int.Inc
.List

model tiny
:8086

; Start:
Go to one-time code that does the nitty-gritty, then
return here for clean-up and sign-off.

lparent segment
assume cs:_parent, ds:_parent :Tell MASM about

; segment registers
org 100h

(continued)

28 Issue #36 July 1993 The Computer Applications Journal

Listing P-continued

start:
jmp init :go do setup in over-write area

; [Then return to child-execution segment]

; Fix location to allow this info to be found by a child program,
; via parent address in the child PSP. Allows up to 4-bit jmp
; address so child process can work with any future version of
; this routine.

org 105h
;# [B I Parent Data
;# First goes data, etc., that child routine needs to find. //
;# Here place interrupt handlers, vectors, etc. i/
stackptr DW 0 ;Space for stack ptr during DOS EXECUTE
; Data for EXEC DOS call:
;file path buffer for EXEC DOS call. Also holds command tail
file-path db82h dup (0)

: EXECUTE parameter block-for EXECUTE DOS call
par_blk dw 0 :environment segment-use 0
tailoff dw 0 ;command tail
tailseg dw ? :pointer

dd -1 :FCB pointers
dd 1

: Error message

F;
EQU Odh
EQU Oah

XFailedMsg db cr,lf
db 'Failed to find and execute child program'
db cr,lf,'$'

; Local stack
stackk dw 64 dup (0)
stackend dw 0
;====================== Run the child process ====================
;Returns here from init procedure
child: int 21h ;start the child process
;Clean things up:

mov ax,cs
mov ss,ax ;Restore stack seg and pointer
mov sp,cs:stackptr ;lost in Child routine call.
mov cl, 0 ;tentatively. no error
jnc pexit :Did it go OK? If yes, exit
mov cl, 2 :No. Set exit DOS errorlevel 2
mov dx,offset XFailedMsg
mov ah,9 :DOS string write,
int 21H :error message

pexit:
;i/ [c 1
;i/ Restore vectors and other things that init routine changed//
;i/ Note: Stack ptr need not be restored, DOS does it on exit #
eexit:

mov ah, 4Ch :Exit to DOS
mov al,cl ; errorlevel:
int 21h ; 0 if Child executed

; 1 if no command line arg
; 2 if execution failed

.==
; Initialization code: Used once, then released for use by child

init:
assume cs:_parent, ds:_parent
mov sp,offset cs:stackend :initialize stack ptr.

; Get program from command string
mov si, 80h ;String source is PSP lot 80h
mov di, offset file-path

;Destination is file-path buffer
lodsb ;lst byte of src is byte-count

(continued)

how the EX EC function works are
given in Figure 2. The mechanics for
how this function can be put to work
to suit our purposes will be better
understood after reviewing the listing
for the prototype. A place to start is to
write out the DOS command-line that
would be used to call up the child
program, such as:

C:>PATH\CHILDPGM.EXT with
some args

Now parse this command line to
divide it into a program-name part
(PATH\CHILDPGM.EXT) and a
command tail (with some args). Each
of these parts is stored separately, and
has its own rules. Register pair DS:DX
contains, in DOS (segment:offset)
form, the location of the program
name. The name may include a DOS
path. The child program name must
end in .EXE or .COM followed by a
zero byte. Don’t omit the extension.
While a DOS command-line call will
find a program if you omit the .EXE or
.COM, the EX EC function will not.

The command tail is stored
differently. The register pair ES:BX
contains the location of a “parameter
block,” and this in turn contains the
location of the command tail. Ahead of
the tail is a single byte containing the
length of the tail string. Following the
tail is a carriage return character
(ASCII 13h). The carriage return is not
included in the length count. Thus our
example tail would be, in assembler
notation:

db 14, 'with some args', 13h

The parameter block contains
three other pointers to areas we can
define for the child program: the
environment block and two file
control blocks. We will give these
default values, shown in the brackets.
In particular, putting a zero in the
environment pointer tells DOS to pass
the child the same environment the
parent got.

Our sample parent program will
read these child command parts from
its own command line. If the com-
mand line to invoke the child program
from a DOS command line were:

The Computer Applications Journal lssue#36 J u l y 1 9 9 3 2 9

d:>path\CHILDPGM with
some args

then the command line to start the
same program as a child should be:

d:>PARENT path\CHILDPGM.EXE
with some args

Note that the command-line entry is
made including the .EXE extension,
and is followed by the command tail.

A PARENT PROGRAM
FRAMEWORK

Now I’m ready to describe how to
make a prototype parent program. The
minimum tasks such a program must
perform are laid out below:

(1) Fill child process program name
and command tail from parent
command line.

(2) Divert interrupts and do any
other application-specific setup.

(3) Assign memory for use by child
process.

(4) Call child via EXEC Function.
(5) Put things back as they were

(i.e., undo step 2).

I’ve described all of these, except
for number 3-assign memory for the
child. When the parent (or any pro-
gram) is called, DOS generously
assigns it all the memory available. A
parent must release what it doesn’t
need. In order to give the child every
byte we can, I’ll release not only the
memory not occupied by the parent,
but also the space the parent uses only
once, before the child is called. This
takes a little extra planning, but it
means I don’t need to squeeze and
skimp on setup code. The memory
layout of the parent is shown in Figure
3. At the DOS entry location, relative
address 1 OOh, there’s an immediate
jump to location I n i t : to perform the
set up, after which we jump to
C h i 1 d : , which is the location of the
call to the child program. Memory
from I n i t : can be released after the
code has been processed.

The data area has been placed
immediately after the J M P I n i t
statement. This fixes its location so
the child process can find it. I skipped

Listing 2-continued

cmp al. 0 ;Check for a zero count
jz abort ;Quit if no argument
mov cl, al ;Put count in cl
xor ch,ch ;clear high byte

firstin:
lodsb :Get char. from command line
cmp al.ZOh :discard any leading space
jne argl_c
loop firstin

argl_in:
lodsb :Get char. from command line
cal, 20h ;Check against space
je argl-done

argl_c:
stosb :Store it in file-path name
loop argl_in
jmp asc-z ;Skip if loop ended due to count

argl_done: ;Loop ended due to space
dec cl ; so count it but don't copy it

asc_z:
xor al,al ;Store a zero to terminate
stosb ; the ASCIIZ string

; === Define the new command-tail buffer & put the rest there ===
mov tailoff, di ;Fill in tail-pointer from di
mov al,cl :First the count
stosb
inc cl ;Add one so we'll copy the cr
rep movsb ;Now copy string with term. cr

;I/ [D 1
:# Write code to redirect interrupt vectors & do any other : il
system setup. Changes made here should be unmade by code at : I/
:i/ [c 1. "Old" interrupt vectors should be stored at [B 1. ; ii
: ======== Release all possible memory for use by child ========
mem-kept EQU (offset cs:init-offset cs:start+lOfh)/lOh

mov bx, mem_kept ;This is size to be kept/pars
mov ax,cs
mov es,ax ;Segment for release reference
mov ax.4aOOh ;DOS release-memory function
int 21h

; ================ Set up j-0 run the child process ---------_____
:Preserve stack pointer!

mov cs:stackptr,sp ;DOS EXEC Interrupt loses it!
mov tailseg,cs ;Command-tail segment for ptr.

;get pointers for DOS function:
mov dx,offset file-path

;child process name/path
mov bx,offset par_blk

;child process par. block
mov ax,4bOOh ;Set for DOS "EXECUTE" function
jmp child ;Leave once-only code, go to

;child-process call location.
:====Error routine for missing command-line Child program name====
abort:

mov dx, offset NoArgMsg
mov ah,9 :Quitting - no valid argument
int 21h : on DOS command line
mov cl.1 ;Errorlevel 1 on pgm exit
jmp eexit

; Error message text:
NoArgMsgdb cr,lf

db 'No valid argument on DOS command line.'
db cr,lf,cr,lf,'$'

-parent ends
end start

30 Issue+/36 July1993 The Computer Applications Journal

ADDING SUBPROGRAM OBJECT MODULES TO PROGRAMS

For FORTRAN, the module FT FU N C . 0 B J is combined
with the parent by simply listing it on the compiler
command line:

FASTIMER QB.EXE FASTEST /LTEST

The line items in this example are, from left to right, the
parent program, QuickBASIC, the test program, and the

FL MAINPGM.FOR FTFUNC.OBJ Quick Library name preceded by the switch / L. If you
plan to make a stand-alone program, you should also

To include an assembly coded routine in QuickBASIC is make a regular library. A one-file library is very quickly
a little more involved, and described pretty briefly in the made with Microsoft’s library manager L I B, which also
manuals. I’ll run through the steps for our test program. comes with QuickBASIC:
A routine to be used within QB must be part of a “Quick
Library,” conventional extension . 0 LB. A Quick Library LIB TEST.LIB+FTFUNC;
TEST.QLBcanbemadeby:

All this works just fine when it works. However,
LINK /C! FTFUNC.OBJ, TEST.QLB,, BQLB45.LIB QuickBASIC has five paths to set, and they all matter.

There’s a “Set Paths” submenu on the Options pull-
This is shown for version 4.5, thus the name down menu within QB. The time to get all the paths
BQ LB45. L I B. Be sure to use the version of Microsoft right is well spent. This will create or update a file
L I N K that comes with your QuickBASIC! The Quick QB . I N I in your default directory; check that this file did
library is then included on the command line, which now get written. Note that QuickBASIC looks for each file in
looks like: the default directory before using one of these paths.

forward five bytes, although the J M P
only needs three. If I ever design a
parent that uses S-byte jumps, I won’t
have to rewrite any of the child
program subroutines.

Listing 2 shows my parent
framework. Code for specific applica-
tions gets inserted at four locations,
marked [A I to [D I. I’ve described
some of the finicky details in com-
ments. The framework can be com-
piled and tested as-is; it doesn’t do
much, but can be tested and used as a
proof of concept.

Below is a simple QuickBASIC
program called COPY CAT. BAS, which
just prints out its own command-line
arguments.

C$ = COMMAND$
PRINT "Copycat says: "; C$
END

When C 0 PY CAT is compiled and run,
its output is:

C:>COPYCAT Meow
Copycat says: MEOW

The following shows the same com-
piled program being run as a child,
verifying that PARENT passes along the
rest of the command line when it calls
COPYCAT.

C:>PARENT COPYCAT Meow
Copycat Says: MEOW

An intriguing wrinkle to parent-child
method is shown below:

C:>PARENT \QB45\QB.EXE
COPYCAT /CMD meow

Copycat Says: MEOW

where the parent can use the Quick-
BASIC “programming environment”
(Q B . E X E) as its child! After QB loads
itself and the COPY CAT text, pressing
the Run key produces the output
shown. I haven’t tried this experiment
with other programming environ-
ments, but I suspect most of them will
work just as well. As a result, a child
program being prepared to run in
compiled form can be written, tested,
and debugged within a modern,
convenient programming frame.

THE FAST TIMER PARENT
Listing 3 contains the patches

needed to build a parent program for
the fast-timer technique that was first
described by Ackerman. At the start of
the patch in section [B I are two words
(four bytes) reserved at location 105h
for a counter. The first, t i c k-1 o, will
be incremented approximately 18
times per second. Each time t i c k-1 o

overflows (almost exactly once an
hour), t i c k-h i is incremented. An
overflow from t i c k-h i will occur
some time in the eighth year.

The counter routine in the Patch
section 1 B I is our substitute handler
for DOS interrupt lCh, which is a
secondary DOS timer interrupt. The
instructions that divert calls on ICh
are shown in the patch section [D],
which is executed when the parent
starts. We also need to change the
mode of the PC’s timer-that’s the job
of the remaining code in section [D I.
Finally, patch section 1 C I is executed
on return from the child, and it
contains the steps needed to undo
what’s done in section [D 1 and turn
over a “clean” PC to the next program.

COMMUNICATING WITH
YOUR CHILD

The final part of our fast-timer
package is a pair of subroutines that
can be called in a child program to read
the DOS clock and add to the data in
t i c k-1 o and t i c k-h i if necessary.
How does such a routine find these
values? When writing or compiling a
program, we don’t know just where in
memory it will be at run time. If we
want to pass data between parent and
child, the child needs a way to find its
parent. The DOS program loader

The Computer Applications Journal Issue #36 July 1993 31

Listing I-Pafches for f&timer example. [A] through (D] should be inserted at the marked Bcafions in
Listing 2.

:[A1 Fast-Timer Parent Program
: Sets up fast clock for child process, allowing timing with psec.
; res. using PC clock. Built on HBT's standard Parent Framework.
:[Bl Tick Data

org 105h
tick-lo dw 0 ;count buffer
tick-hi dw 0
; New tick-count handler:

assume ds:nothing ;forbid use of ds (contents unknown)
new-int-lc:

inc cs:tick-lo
jnz New-11 ;skip next instruction
inc cs:tick-hi ;unless count overflowed

New-il:
jmp dword ptr cs:old-vec_lc

old_vec-lc DD [?I
; [c] ==---___=====Put back the old time-tick vector =============

ResetIntVector lch, old-vet-lc
Restore 8253 chip mode and tick-rate

mov al,036h ;Reset 8253 chip
out 43h,al ; control register ~~ mode 3
xor al,al
out 40h,al ; count to 1OOOOh
out 40h

: [D] ==~~~_--===========Set 8253 mode and rate ==================
mov al,034h
out 43h,al ; control register: mode 2
xor al,al
out 40h,al ; count to 1OOOOH
out 40h,al

; ~ Install new old time-tick vector, save old one
_SetIntVector lch, new-int-lc, old-vet-lc

conveniently places the parent two instructions after J 0 reset it to
location in the initial IOOh-byte block point at J 1, shortening all subsequent
of the child program, called its Pro- FTimercalls.Therestof FTimeruses
gram Segment Prefix or PSP. There’s a Ackerman’s technique to fetch the
DOS function to find a program’s own DOS clock count as the least-signifi-
PSI’. Finally, once we’ve found the cant two bytes of a four-byte integer,
parent, we know the location of its and gets lo-t i c k from the parent as
data area, since we carefully placed the most-significant bytes. It also
this at parent address 105h. fetches hi _t i c k and squirrels it away.

My routines for doing this are
shown in Listing 4. They can be called
from Microsoft assembler, FORTRAN,
or QuickBASIC (other languages
should work as well, but these are the
ones I’ve tested). Near the start of
FTimer, between labels JO and Jl, is
a section that finds the parent tick-
count locations. A call to Int 21h,
Function 62h returns the child’s PSP
location, which in turn serves as a bast
to fetch the parent location. The
parent’s base address is then stored for
future use, so this code section only
needs to be executed once. The
instruction JMP WORD PTR JPtr
provides a switch: the pointer J P t r
originally points at J 0, but the first

For many applications, the one-
hour time range of FT i me r will be
enough. If not, a call to FTi me r may
be followed by one to FT i me r H i ,
which fetches the last saved hi _t i c k
value. In both FORTRAN and Quick-
BASIC, these routines are used as
functions. They have no arguments,
and so avoid one source of pitfalls in
interlanguage programming. A simple
QuickBASIC demonstration program
is shown in Listing 5. I’ve included a
function that translates the time into
seconds. Combining a subprogram
object module with a main program is
straightforward in FORTRAN, but a
little tricky in QuickBASIC. Instruc-
tions for doing both are in the sidebar.

SOLID STATE DISK - $135”
% Card 2 Disk Emulator

EPROM,FLASH and/orSRAM
Program/Erase FLASH On-Board
1M Total, Either Drive Bootable

#I118

The Computer Applications Journal Issue #36 July 1993 33

25MHZ 386DX CPU - $695”
Compact AT/Bus or Stand Alone

In-Board SVGA, IDE, FDC, 2 Se&-Par
FLASH&RAM Drives to 2.5M

Cache to 128K, DRAM to 48M

TURBO XT
w/FLASH DISK - $266”
To 2 FLASH Drives, 1M Total

DRAM to 2 M
Pgm/Erase FLASH On-Board

CMOS Surface Mount, 4.2” x 6.7”
2 Ser/l Par, Watchdog Timer

411 Tempustech VMAX products are
PC Bus Compatible. Made in the

J.S.A., 30 Day Money Back Guarantee
*QTY 1, Qty breaks start at 5 pieces.

TEMPUSTECH, INC.
TEL: (800) 634-0701
FAX: (813) 643-4981

:ax for
ast response!

295 Airport Road
Naples, FL 33942

PROSPECTS
Now that I’ve shown you how the

parent-child structure works, let’s take
a look at some things that can be done
with it. First of all, I’ve barely
scratched what can be done with the
timer interrupts, Int 08h and 1Ch.
Parent routines could be modified to
acquire data from an instrument on
every DOS clock tick. The frequency
of DOS “ticks” could be changed to
provide more frequent sampling. The
method for doing this was also
described by Ackerman, and earlier by
C. Claff in BYTE (1986 IBM Extra
Issue, p. 254). The handler can place
the data in buffers for later use by an
ongoing program. That program can,
if you like, set flags to direct and
control the data-gathering process on
the fly.

I would like to share one of my
experiences as an example of how
speeding up the “tick” can be put to
good use. I once built a program that
logged signals from a bank of 144
phototransistors and also watched an
ADC output, by using Int 08h sped up
to 146 ticks per second on an ~-MHZ
PC/AT-level machine. The main
program, written in FORTRAN, could
retrieve data as needed and wring out
the results in real time. This approach
to the data acquisition process slowed
the main program down by less than
10%.

The interrupts most commonly
diverted are those for the keyboard,
namely Int 09h and 16h. All “hot-key”
add-on programs grab these. You can
roll your own here too, and in some
cases you may need to. Available hot-
key programs can clash with a given
application since almost every applica-
tion program handles keyboard input
differently. Diverting these interrupts
within a parent program can be used to
add a hot key to the QuickBASIC
programming environment. Doing so
let me lay down templates for WHILE
and FOR loops, IF-ELSE structures,
and the like. By the way, if you do
adapt Ciarcia’s code, be sure to add
traps for enhanced-keyboard func-
tions-Int 16h functions 10h and 1 lh.
Apparently these can be handled just
the same as functions OOh and Olh,
respectively.

Listing 4-Fasf-timer functions. These should be linked to child programs to implemenf the fast timer that
is set up by the parent.

; Fast Timer Function ~- These functions, used with program
; FASTIME, return the time to a BASIC or FORTRAN program,in
; internal timer pulses, frequency 1.1931817 MHz.
.8086
_FTFunc_TEXT SEGMENT BYTE PUBLIC 'CODE'
_FTFunc_TEXT ENDS
; Function FTimer
; No arguments. Returns the current time in units of l/1.19318
; microseconds, in DX (high 16 bits) and AX (low 16 bits).
: QuickBASIC:
; DECLARE FUNCTION FTimer&.
; The four-byte result is an unsigned integer, and overflows at
; 1 hr. If read as signed 4-byte integer, the count goes from
; 0 to 2,147,483,647 and then from -2,147.483,648 to -1. then
; overflows and repeats. The overflow causes a second counter
; to be incremented, providing an additional two bytes of total
; count. The overflow count is read by FTimerHi& if needed.
_FTFunc-TEXT SEGMENT

PUBLIC FTimer
FTimer PROC FAR

push bp :Microsoft Standard Entry
mov bp,sp
push es
JMP WORD PTR JPtr ;To JO the first time, then Jl

: The code between JO and Jl is executed on the first entry,
; bypassed on later calls. It finds and saves the segment of
; the parent program, so that the tick recorded there can be
: used as the most significant part of the value.
JO:

jl:

chk-hi

ft-ret

mov
mov
mov
int
mov
mov
mov

ax, jptr+Z
jptr. ax
ax.6200h
21h
es,bx
ax.es:16h
parent-seg,ax

mov es,parent_seg
mov bx.es:105h
mov cx,es:107h
mov al,06h
out 43h,al
in al,40h
mov ah,al
in al,40h
xchg al.ah
not ax
inc ax
mov dx,es:105h
cmp bx,dx
je ft_ret
cmp ax,8000h
jb chk-hi
mov dx.bx

cmp
jne
mov
add

bx,Offffh
ft-ret
cx,es:107h
cx.dx

mov
POP
mov
POP

hi_count,cx
es
sp,bp
bp

;reset to skip this next time

;"get PSP" DOS call

;put psp seg in es
;get parent PSP seg
;and save it

:get initial tick reading
and tick overflow

;latch the count value
; read LS byte

;read MS byte
;swap
;complement/increment, to
; change count-down to count-up
;get present tick reading
;check whether lo-tick changed
;if it didn't change, we're ok;
;if it did, decide which to use.
: count small: use second
; count large: use first

:hi-tick ok unless
lo-tick overflowed.

;if so get present value
and perhaps subtract 1
[dx is either 0 or -11

;save hi-tick

;Standard exit.

34 Issue #36 July 1993 The Computer Applications Journal

Listing 4-confinued

ret
FTimer ENDP

_ _
: Function FTimerHi
; No arguments. Returns the overflow (high count) is AX. This
; function is meaningful only after a call to FTimer -- the
; value returned is the high tick count at the time of
; FTimer call.
; QuickBASIC: DECLARE FUNCTION FTimerHi%
; The count returned is an unsigned integer. Each high count
; is worth one hour.

PUBLIC FTimerHi
FTimerHi PROC FAR

mov ax,hi_count ;retrieve the high count.
ret

FTimerHi ENDP
JPtr DW 2 0 ;"switch", starts at JO

DW Jl ; inserted in JPtr on first call
parent_seg DW 0 ;segment of start of parent pgm.
hi-count DW 0
_FTFunc_TEXT ENDS

END

Listing 5-Fast-timer QuickBASlC demo program. The function FTime# returns the time in seconds as a
double-precision floating point number.

’ Simple Demo Program for the routines FTIMrR and FTIMCRHI

DECLARE FUNCTION FTimeii 0
DECLARE SUB WaitForKey 0
DECLARE FUNCTION FTIMER& ’ I These functions must be in
DECLARE FUNCTION FTIMERHI% ’ I a loaded Ouick Librarv
CONST ClockRate =
CONST FullCount =
CLS
DO

PRINT : PRINT
Tlii = FTimeii
PRINT USING 0

1193180# ' IBM PC Timer tick rate, Hz
4294967296# ’ 2^32 ~- 4-byte full count

"Hit a key to start timer": WaitForKey

Started at iiiiiii~i~i~.iiiiii~~iiii sec."; Tlii
PRINT "Hit a key to stop timer": WaitForKey
T2# = FTime#
PRINT USING ’ Stopprd at iiiiiiiiii~~.iiiiiiiii~i~ sec. ": 7211;
PRIN-r USING ’ E 1 a psed : i/ii#i~iiii. ####iii/ set " : T2ii Tlii

LOOP
END
FUNCTION FTimeii
’ Function to convert time from Fast Timer subroutine FTimer& into
’ a double-precision real value in seconds. Negative values are
’ converted to the appropriate unsigned-integer positive values,
’ and overflow counts obtained from the function FTimerHi"/,.

Tl# = FTIMER& 'RPad the timer
IF Tl# < D THEN Tl# = Tlii + FullCount 'Convert val. to +
Tlii = Tlii + I211 * FullCount 'Add any overflow
FTime# = Tl# / C1ockRat.P 'Convert to seconds

FND FUNCTION
SlJB WaitForKey
’ This routine flushes thP keyboard bluffer, thrn waits for a
’ keystroke. An ESC stops the program. Any other normal keystroke
’ continues.

DO: X$ = INKEY$: ILOOP WHILE X$ <> V0 'Clean out buffer
DO: X$ = INKEY$: LOOP WHILt XB = no 'Wait for first key
IF X$ = CHR$(27) THEN SYSTEM 'Use ESC key to stop

END SUB

Parent programs can perform
many useful purposes. One that I built
for a college instructional network
runs a sequence of “children” with
each child able to control what other
child gets to run next, provides a buffer
for inter-program data exchanges, and
maintains a legally required security
record in a campus network environ-
ment.

ARE PARENT PROGRAMS PROUD
OF THEIR CHILDREN?

I hope you too will find the
parent-child program structure a
powerful and versatile tool. Perhaps a
more developed parent-child environ-
ment can provide other useful func-
tions in the realm of virus detection,
additional run-time controls such as
passwords to individual programs, and
so forth. Let me know if you discover
any interesting uses, possibilities, or
quirks to this method of launching
executables.

For those of you with a yen to go
beyond the scope of what I presented
here, the best source I know for
practical information on DOS is “The
DOS Programmer’s Reference,” second
edition, by Terry Dettmann and Jim
Kyle, published by Que Corporation in
1989. This book contains lots of data
on DOS interrupts and the E X EC
function. a

Brad Thompson holds a Ph.D. from
Michigan State University. He works
on computer instrument interfaces
and instructional program systems at
Gustavus Adolphus College, Saint
Peter, Minn., where he is Scholar in
Residence in chemistry and physics.

Software for this article is avail-
able from the Circuit Cellar RRS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime” in this issue for
downloading and ordering infor-
mation.

404 Very Useful
405 Moderately Useful
406 Not Useful

The Computer Applications Journal issue #36 July 1993 35

High-speed
Modem
Basics: The
Working
Hardware

A CLOSE LOOK AT THE DAA
The DAA is the main interface

between the modem and the telephone
company (telco). The DAA’s primary
purpose is to provide necessary isola-
tion (up to 1500 volts, so your equip-
ment won’t damage the telco’s equip-
ment and a lightning hit on the telco
line won’t blow up your end) without
distorting or otherwise affecting the
analog data stream. The DAA also
performs all telco-related functions
such as taking the line off hook,
detecting ring signals, and doing 2-wire
to 4-wire conversion.

Many times DAAs are imple-
mented using discrete components, but

Michael Swartzendruber

0 ast month I
explained some of

the common standards
that relate to modems and

also showed what gains in throughput
and performance state-of-the-art
modems are trying to achieve. The
purpose of that discussion was to take
some of the mystery away from this
very deep pile of jargon. This month I
am going to step away from the
abstract and get down to some hard-
ware by building the Gemini project. I
will also take a close look at the way
the Gemini works.

There are two primary vendor
technologies that come together to
create the core of the Gemini modem:
Exar and Cermetek. Exar is an estab-
lished provider of modem technologies
and offers a wide variety of modem
chip sets. Cermetek specializes in
hybrid assemblies. Among their key
offerings are fully integrated “single-
socket modems” and Data Access
Arrangements (DAA).

I chose the Cermetek hybrid DAA for
a few key reasons:

*Simplified circuitry design
(replacing several discretes with one
component) made the prototype easier
to build and the circuit board easier to
lay out.

l To simplify any future dealings
with regulatory agencies, I chose to
include the Cermetek DAA in my
design since it meets or exceeds all
regulations for a DAA (see last
month’s issue for a list of these
requirements). This saves me the step
of having to prove the compliance of
the DAA in the Gemini.

*The simplification of the analog
circuit (especially in the realm of
isolation between the Gemini and the
telco) took away my worries of
connecting my prototype to the telco
(the last thing I needed was to upset
those guys).

~TO make it easier for others
building the Gemini who might have
concerns very similar to my own.

THE CERMETEK DAA
Working with the Cermetek 18 17

is a snap. The device runs on a simple
5volt supply and has two control lines
and two signal lines. The control lines
consist of Off Hook (high true) and
Ring Indicator (low true pulses). The
Off Hook pin is an input to the DAA
that the modem controls. Taking this
line high causes the DAA to indicate
to the telco that the phone is “off the
hook.” The Ring Indicator is an output
that will pulse low for the duration of
the ring signal from the telco (typically
two seconds) and will return to the
high state between rings (typically four
seconds). The resistor (RlS) and the
capacitor (C47) that are connected to
the Ring Indicator pin of the DAA are
used to produce a ring envelope from
the Ring Indicator signal.

The DAA also has XMIT and RCV
pins for use with analog signals from
and to the modem. The XMIT pin is an
input to the DAA and accepts the
analog data stream from the modem.
This pin must he AC,coupled to the
modem’s transmitter. The RCV pin is
the converse of the XMIT and is used
to forward analog data from the telco
to the modem. This pin should also be

38 Issue #36 July 1993 The Computer Applications Journal

DTE
Interface

Ll<

-Serial RS232
-148811469

*Parallel Bus
-XR-16C450 UART

27256 XR-2443 XR-2402A XR-2401

~~~y++-q< >mz>m

55256

TSOIATtF
Commands

XR-2321

w
+ F S K

Modem

EbiS
212A
103

V.23
v.21

Figure l--The front end of the XR-2400 chip set is responsible for taking in the analog data stream and extracting digital data, where it gets passed along via the control bus to
the XR-2443 for V.42bis compression.

AC coupled to the modem’s receiver into the telco from the modem and Gemini schematic on the page that
circuit. surge protection. These components illustrates the telco connection.

The application note for the DAA are not required, but can be a nice
makes some very specific recommen- enhancement-especially if you are THE EXAR CORE
dations regarding the layout of circuit going to go through EMI/RFI testing. The core of the Gemini modem
traces connecting to, or passing close I added the optional surge protec- consists of the XR-2400 chip set and a
to, the DAA. Most of these recommen-
dations are made to enhance the odds
that your design will pass FCC (or
other agency) testing. I was not able to
comply with them on the prototype
(although I did my best), but I did
comply with them for the circuit board
I designed for the Gemini.

Among the recommenda-
tions are some specific to the
distance between traces
(especially those on the telco
side of the device). The tip and
ring traces must be separated
from each other by 0.1 inch
and from all other traces by
0.2 inches. In addition, the tip
and ring traces must have a
nominal width of 20 mils.
Furthermore, these traces
should be kept as short as
possible and should be laid
out to prevent signal coupling
to any nearby traces. Other
recommendations for power
supply bypassing are included,
but many of these are not
exceptionally different from
normally applied design rules
for any integrated device. The
application note also includes
information concerning ways
to minimize EMI/RFI injected

tion circuit that they recommend. The small amount of supporting glue logic.
surge protection circuit consists of a The chip set contains three primary
250.volt  varistor (Dl ) and series devices: the XR-2400, XR-2402A,  and
resistors (R6, R26) between the telco XR-2443.
network and the surge protector. This The XR-2400 is a DSP-based
small (and completely optional) circuit modem signal processor and provides
enhancement can be seen on the V.22bis  modulation and demodulation

functions. The XR-2402A is a
high-performance V.22bis  AFE
(Analog Front End) which
provides a whole slew of
functionality. Finally, the XR-
2443 is a microcontroller with
the V.42bis  compression
algorithm (among other
things) built right in. A block
diagram of the chip set as it
relates to the Gemini is in
Figure 1.

Photo l--Thanks to a dedicated chip set, the bulk of the modem functions are
done in just a few big chips. Gone are the days of lots of touchy analog
electronics inside modems.

The front end of the
modem has the responsibility
of accepting the analog data
stream and extracting the
digital data contained on the
carrier wave. It must also
accept digital data from the
“rest of the modem” and
modulate that data onto the
carrier for telco network
transmission. In short, the
front end of the modem
provides the modulation and
the demodulation services.

The Computer Applications Journal Issue #36  July 1993 39



PXC

TXC

:--:

Figure 2%-The front end is composed of the XR-2401  and XR-2402,  both of which exchange and process data informafion  before sending if to  the XR-2443 and the DAA.

Figure Ja-At  the core of the Gemini modem is the X9443,  a custom-programmed 8031 processor.

4 0 Issue #36 July 1993 The Computer Applications Journal



Although the XR-2402A is the AFE
used in the Gemini, it is also involved
in almost everything that goes on in
the modem.

The 2402 contains the A/D and
D/A converters. As you might expect,
the D/A converter is used to create
analog signals for injection into the
telco, while the A/D accepts analog
signals from the telco for further
processing by other devices in the
modem. Before the signal from the
telco is presented to the ADC on the
AFE, it passes through a programmable
gain amplifier (PGA). The gain of this

amplifier is set by an AGC and control
circuitry (used to control the PGA)
that resides in the XR-2401.

The 2402 and the 2401 are a
tightly knit pair. The output from the
ADC on the 2402 is fed into several
functional blocks on the 2401. Among
these blocks is a timing recovery filter,
the output of which feeds back to the
2402 and drives a phase-locked loop
whose output is then fed back into the
2401 to control the input switches to
the adaptive equalization circuit in the
240 1. To further complement the data
reception functions, the output of the

I don’t want to find out how I can save a lot of money using
ROM-DOS 5 instead of MS-DOS@ in our 80x86 product line.
I don’t care if ROM-DOS 5 iscompatible with MS-DOS 5 but
costs much less. I like spending much more than I have to.
It makes me feel like a philanthropist and besides Microsoft@
probably needs the money more than I do anyway.

LIYes, I want to know the facts about ROM-DOS 5.
Please send rni information and a free bootable demo disk to
try with my software.

In the U.S.A.CallTollFreel-800-221-6630
or fax this coupon to (206) 435-0253.

Name

Company

city State

Phone FaX

zip

! 307 N. OLYMPIC. SUITE 201 l ARLINGTON. WA 98223 USA l 12061435-8086  l FAX: (2061435-0253 1

descrambler (this generates the CRC)
in the 2401 is fed back to a synchro-
nous-to-asynchronous converter in the
2402. The output of this block is fed
back into the demultiplexer block of
the 240 1. The data transmission (from
the modem to the telco) goes through
both devices in a similar manner.
When data arrives from the modem to
be transmitted to the telco, it is fed to
the async-to-sync  converter in the
2402. The output from this converter
is fed into the scrambler (generates the
CRC) along with the data that is
bound for the telco. A block diagram
showing how these two devices are
connected is shown in Figure 2.

In addition to serving as the DAA
signal gateway, the AFE controls the
amplitude of the signal that is used to
drive the speaker during call progress
monitoring. The 2402 also has status
bits that can be read by the host
microcontroller to indicate carrier
detect and normal energy reception
(high and low band). Low-band
detection is used to indicate dial, busy,
and ring-back tones. The speaker
control functions (including mode and
volume) reside in a register in the
2402.

The 2402 also serves as the
control point between the front end
and the microcontroller. The chip is
accessed from the microcontroller like
a memory address; it has the intelli-
gence to recognize commands that
belong to the 2401 and will forward
them to that device. The 2402 will
also forward status and data informa-
tion in both directions between the
2401 and the microcontroller. When-
ever the 2402 receives data bound for
the 2401, it generates an interrupt to
the 2401. The ISR in the 2401 locates
the information (data or command)
and acts on it appropriately.

The 2401 contains a register that
determines its mode of operation,
which include idle mode, DTMF
mode, or, if engaged in a data transfer,
which modulation method to use (FSK
or DPSK). The 2401 contains a DTMF
generator that is controlled by the host
microcontroller. The output of the
generator is completely dependent on
the data written to the 2401 while it is
in DTMF mode.

The Computer Applications Journal Issue #36 July 1993 4 1



Figure 3b-Most  of the modern funcfionality  is contained wifhin  three custom chips that are closely linked and work
hand in hand

THE BRAINS
The XR-2443 processor is really

just an 8051 that contains a custom-
masked ROM designed by Exar. If you
look closely at the circuit consisting of
U13, UIO, U12, Ull, and U5, you can
see “just another 8031” single-board
computer. The 2443 ROM provides
command control over the 240 1 and
the 2402 by translating AT and MNP
commands into commands specific to
the operation of the chips. The actual
commands (AT and MNP) reside in the
EEPROM installed in the modem. This
makes evolution of the AT and MNP
command sets possible without
requiring changes to the 2443 ROM.
The firmware supplied by Exar
provides full AT and MNP command
set compatibility.

For those who want to go the extra
mile, Exar also provides a fully
decoded memory map of the EPROM
and the RAM, the address ranges used
by the Exar-supplied firmware, all the
interrupts used in their firmware, and

a full list of the entry points used in
their firmware along their hexadecimal
addresses. They provide this detailed
level of documentation to simplify
the effort required in creating value-
added software for their core technol-

ogy.
In summary, Exar provides

everything you need to make an off-
the-shelf modem through a straight
application of their technology. They
also give you all the information
necessary to extend their firmware to
create a superset of what they bring to
the table. The biggest advantage to
using the 2443, though, is the fact that
it contains pretested code that imple-
ments MNP levels 2-5 as well as V.42
and V.42bis.

DESIGNING WITH THE EXAR
CHIP SET

The data and applications notes
for the Exar chip set make some very
specific recommendations for layout of
components and traces. One of the

4 2
#122

Issue #36 July 1993 The Computer Applications Journal



Udd
9

052
D 5 4
D 5 6
058
057
D 5 5
D 5 3

DATA
D51_ _ _ _ _ _ _ .

BUS--- ““I

DFIB-DA7

ADDRESS
BUS

PART

u 4

+5u DGND

2 0 I0

* NOTE DGND - digital  ground

OH
HS

1 CD
I I I I D5R

L CTS
I I I

DTR I I
TXD

Figure 3c--The  74HC374  lakh  holds the status bits for both the serialpofl  and the front-panel LEDs.  The 74HC244  simply  provides drive current for the LEDs

points they emphasize is that digital
ground and analog ground should be
kept separate up to the point where
they enter the power supply. Obvi-
ously, the better your ground plane,
the better off this circuit will be. In
addition, they stipulate that the 2402A
should be as close to the DAA as
possible to keep these traces short.
The traces carrying the analog KX and
TX signals should be kept as far away
from digital signals as possible. They
also recommend lots of bypass caps,
which should be mounted as close to
the power pins as is possible.

WHAT ABOUT THE REST?
In order to make the core chips

happy, the Gemini also includes a
handful of support logic. The final
schematic is shown in Figure 3.

The RS-232 interface level shifting
is accomplished with ordinary 1488s
and 1489s. I could have used
MAX232s,  but since I needed negative
supply voltages for U15 and U19
anyway, I was able to save some
money and board space.

and made active, and up to three

U3 (an XL-93C4G)  is a 1024-bit

phone numbers.

serial EEPROM that is used to store
interesting things like user-defined
power-up settings, two additional user-
definable settings that can be recalled

THE LONG AND THE SHORT OF IT

half duplex) support to the modem.
While neither standard is used much
in the U.S., European users might find
them handy.

But, after exploring some of the

So there you have it. As you can
see, thcrc  is not much magic going on

inner workings of modems by building

inside a modem these days. With the
increasing amount of integration-
especially analog integration such as

the Gemini, I wonder if maybe the

that found in the 2401, the 2402, and
the Cermetek  DAA-products of

term “modem” has outlived its

increasing complexity can be created
from readily available components.

usefulness. Sure, these devices still

Implementing precooked microcon-

perform basic modulation and de-

trollers (those with masked ROMs
such as the 2443) is another way to get
more products to market in short order
because they allow you to leverage off
the work already done and packaged in
the component.

Just for good measure, I also
included the XR-2321 in the Gemini.

U6 acts as little more than an
address decoder. It has two outputs

This single-chip modem is not re-

that are enabled on converse states of
Al4 and A15. Jumper JMPl selects
which of these strobe signals will be

quired at all for the Gemini to operate

used to clock U5. When U5 is clocked,

in most of its modes. I threw it in to

it forwards the data on the data bus to
its output side. Therefore, U5 is an

add V.21 (300 bps) and V.23 (1200 bps,

output port in relation to the XR-2443
microcontroller. The data on the
output side of U5 is used as an input to
U4, which drives status LEDs.  The
outputs of U5 also go to the D-type
connector (the RS-232 port) to give
status information to the PC.

The Computer Applications Journal Issue #36 July 1993 4 3



Flgure 36-Various  mterkxe  elements fnclude the HS-232 level  shifters (1488/1489), the UAA (CH1817),  and the speaker ampMier  (LM386)

CIRCUIT CELLAR KITS
Sonar Ranging Experimenter’s Kit

EEG Biofeedback Brainwave Analyzer
Targeting + Ranging + Machine Vision

The Circuit Cellar TIOl  Ultrasonic Sonar Ranger is based on the
The HAL-4 kit is a complete battery-oper- sonar ranging circuitry from the Polaroid SX-70 camera system. The

ated $-channel  electroencephalograph (EEG)  which TIOI  and the original SX-70 have similar performance but the TIOI  Sonar
measures a mere 6”x7’.  HAL is sensitive enough Ranger requires far less support circuitry and interface hardware.
to even distinguish different conscious states- The TIOl  ranging kit consists of a Polaroid 50-kHz,  300-V electro-
between concentrated mental activity and pleas- static transducer and ultrasonic ranging electronics board made by Texas
ant daydreaming. HAL gathers all relevent alpha, Instruments. Sonar Ranger measures ranges of 1.2 inches to 35 feet, has a

beta, and theta brainwave TTL output when operated on 5V, and easily connects to a parallel
signals within the range of printer port.
4-20 Hz and presents it in a
serial digitized format that TIOl Sonar Ranger kit. . . . . . . . . . .$79.00 PIUS shipping
can be easily recorded or *
analyzed.

HAL’s operation is
CHECK OUT THE NEW CIRCUIT CELLAR

Strdi$ifforwara.  ?t sam$esfour channels of analog brainwave data 64 HOME CONTROL SYSTEM
times per second and transmits this digitized data serially to a PC at 4800
bps. There, using a Fast Fourier Transform to determine frequency,
amplitude, and phase components, the results are graphically displayed
in real time for each side of the brain.

HAL-4 kit . . . . . . . . . .$179.00  plus shipping

+ Expnndahle K&work + Trainable IR Interface

+ Digital and Analog l/O + Remott Displays

+ X- 10 Interface

Call and ask about the HCS II

l The CXcud  Cellar Hemispheric Actwat~w Level detector IS presented as an engwwng  example of the To order the products shown or to receive a catalog,
design technfques used in acquiring bralnwave signals. This Hemispher!c Activation  Level detector IS not a
medically  approved dewce, no medlcal clams are made lor thts dewce,  and it should not be used for call: (203) 875-2751 or fax: (203) 872-2204
medical dlagnostlc  purposes Furthermore, safe use requires that HAL be baitery  operated onlyl

Circuit Cellar Kits l 4 Park Street l Suite 12 l Vernon, CT 06066

#123
44 Issue #36 July 1993 The Computer Applications Journal



+9u
UR2

VDD  UDDD

LPI7805

A LIIN4002  K
n

1 CR8 +
N OUT 3

+
J 5  -’

__C32 + c 3 3
MN 2 2 0 0 u F 2.2uF  “0.luF 2 “2.2uF 0.  luF

+
J S

%

__ c2s

K lN4002 Fc *. 2 2 0 0 u F
1
7

m
CR9

- 9 u uss VSSD

k NOTE & - dioltal  ground
** B y p a s s  ca.ps  f o r  u13, UlS.  a n d  UlS are 4.7uF tantalums

*
* a n a l o g  ground B y p a s s  caps f o r  e v e r y t h i n g  e l s e  WC mylar  o r  c e r a m i c

Figure 3e--The  power supply  secfion  produces ?9 V and i5 V. Analog and digifal  power and analog and digital ground are tied fogefher af single points at the power supply.

modulation, but when you stop to
consider everything else they do, I
think elevating their title to a “com-
munications coprocessor” wouldn’t be
out of line. From now on, I think I’ll
have a little more respect for the work
that goes into making those LEDs
blink on my modem as I talk to my
friends in Cyberspace. q

Michael Swartzendruber is an engi-
neer with experience in network and

Exar Corp.
P.O. Box 49007
2222 Qume Dr.
San Jose, CA 95161.9007
(408) 434-6400

communications design and Windows
and Macintosh programming. He is
also a Technical Editor for the Com-
puter Applications lournal.

Cermetek Microelectronics, Inc.
1308 Borregas Ave.
Sunnyvale, CA 94089
(408) 752-5000
Fax: (408) 752-5004

Special thanks to the people at Exar
for supporting me during this project.
Their help was top notch.

407 Very Useful
408 Moderately Useful
409 Not Useful

EXPRESS CIRCUITS
MANUFACTURERS OF PROTOTYPE PRINTED CIRCUITS FROM YOUR CAD DESIGNS

TURN AROUND TIMES AVAILABLE FROM 24 HRS - 2 WEEKS

Special Support For:

l TANGO.PCB
l TANGO SERIES II
l TANGO PLUS
l PROTEL AUTOTRAX
l PROTEL EASYTRAX
l smARTWORK

l FULL TIME MODEM

l GERBER PHOTO PLOTTING

WE CAN NOW WORK FROM
YOUR EXISTING ARTWORK BY
SCANNING. CALL FOR
DETAILS!

l HiWIRE-Plus
l HiWIRE  II
l EE DESIGNER I
l EE DESIGNER III
l ALL GERBER FORMATS

Express
0

Circuits
1150 Foster Street l f?O.  Box 58

Industrial Park Road
Wilkesboro, NC 28697

Quotes:
l-800-426-5396

Phone: (919) 667-2100
Fax: (919) 667-0487

#I 24
The Computer Applications Journal Issue #36 July 1993



DEPARTMENTS
Firmware Furnace

Ed Nisley

From the Bench

Silicon Update

Embedded Techniques

Patent Talk

ConnecTime

Memories Are Made
of This: The ‘386SX
Project Goes Nonvolatile

ack in February
I pointed out that

“doing firmware” for
the ‘386SX project

didn’t require an EPROM because the
BIOS has all the code you need to boot
a program from disk. That approach
has served us well, but some applica-
tions just cry out for a smidge of non-
rotating storage.

Compared to the confines of an
803 1 system, the megabyte of address
space in a PC (we’ll ignore protected
mode’s 16 MB or more for now) seems
limitless. As it turns out, though,
there isn’t that much space left for our
EPROM, and a whole 64K bytes of free
space may be hard to come by.

I’ll start by reviewing the PC’s
memory layout, explore ISA bus
memory timing, then describe the
circuitry needed to add an EPROM or
EEPROM to the Firmware Develop-
ment Board. With the hardware in
place, a little firmware will let us load
a program into the system so it
becomes a part of the BIOS and runs
whenever the PC starts up.

WHERE DOES MEMORY
COME FROM?

PC’s memory organization pays
homage to The Original IBM PC and

46 Issue #36  July 1993 The Computer Applications Journal



this late date is quibble about the
details because the Big Picture is
thickly encrusted with compatibility
barnacles and impervious to change.
Figure 1 shows the major divisions in
the first megabyte of storage.

its 8088 CPU. The best we can do at Figure l--The first
megabyte of PC memory
serves many different
functions defined both by
the B/OS  and by
convention. You should
think long and hard about
compatibility problems
before you devote a chunk
of address space to aThe first and largest chunk is the

(in)famous 640K-byte  block devoted to nonstandard use!

user programs and data. If your real-
mode application requires contiguous
RAM, this is as good as it gets. While
there are ways to extend this block,
none are particularly attractive. Early PCs sported an empty EPROM

The system board BIOS may
occupy either 64K bytes starting at
FOOOO or 128K bytes starting at EOOOO.

Address Ranae
00000-9FFFF
AOOOO-BFFFF
COOOO-C7FFF
C6000-CFFFF
DOOOO-DFFFF
EOOOO-EFFFF
FOOOO-FFFFF

Size
640K
126K
32K
32K
64K
64K
64K

I!lfE
RAM
Video RAM
Video ROM
ROM or RAM
ROM or RAM
ROM or RAM
ROM

Function
Programs & data
Video buffers
BIOS Extension
BIOS Extension
BIOS Extension
BIOS Extension
System BIOS

RAM to small buffers and scratchpads.

I/O cards may include ordinary
RAM in addition to the EPROM, but
the cramped address space restricts

The video-RAM buffers occupy
128K bytes starting at AOOOO.  The old
CGA card freed the space below B8000
to get 736K bytes of contiguous user
RAM, but the VGA’s 128K bytes of
buffer renders that trick essentially
useless. Although a VGA in CGA
mode can release the space below
B8000, simply changing back to VGA
mode will lock up the system.

Of course, if your application
doesn’t use video, you can yank the
card and devote the address space to
whatever you’d like. The Bad News is
you can never, ever, install a video
card. That seems a shame given the
utility of built-in, BIOS-supported,
standard video, but it’s your call..

socket or two on the system board, but
relentless cost reduction eliminated
that nicety in short order. If your PC
doesn’t have BIOS code at EOOOO you
can use that address space for your
own purposes.

Some I/O cards-notably video
adapters, exotic hard disk controllers,
and network adapters-include
EPROMs that modify, extend, or
replace some system board BIOS
functions. The BIOS scans the 128K
bytes of address space between COO00
and EOOOO to find these EPROMs and
execute their startup code during
power-on initialization. Fortunately
for us this entire process is well
defined and essentially magic free.

The history of LIMS EMS cards shows
what can be done when you’re desper-
ate for more RAM: bank-switching 32
mega-bytes of storage through a 64-
kilobyte slot isn’t pretty, but it was
the only way to do it when it needed
doing.

Embedded applications have more
freedom to chop up the lower 640K
bytes, so, when we need huge buffers,
they need not fit between the video
buffers and the system BIOS. Some
applications can make use of the vast
extent of RAM beyond the lower
megabyte, even when running in real
mode, and we’ll look at that later.

The Firmware Development Card
will include either 8K bytes or 32K

Figure 2-Adding an EPROM to the Firmware Development Board involves jusf  some buffers and a decoder.

The Computer Applications Journal Issue #36 July 1993 4 7



a)

Address

+ 69ns ++ 509 ns min k
min

\

-SMemR

+ 30 ns max +

Data

b)

/ Valid Data to CPU

+436  ns --, +O+
max mm

Address ><
\
/

f- 200 ns max+
-CE - - ,

\

+ 55 ns +
max

Data

4 200 ns max _
4-b

0 ns
min

Figure 3-a) Signals and timing involved in an &bit  ISA
bus memory read access are compafible  with cards
designed for the original IBM PC and are painfully slow
by contemporary standards. b) Timings show the read
cycle for a 200-1~s  28C64A  EEPROM, but they are
typical of EPROMs as well. The bus buffers shown in
the schematic truncate the rather long maximum data
hold time.

bytes of storage mapped into the PC’s
address space between C8000 and
CFFFF. While the decoding circuitry
allows you to plunk it at any other
address in the first megabyte, I think
you can see why the actual choices are
rather restricted.

Before we link up with the BIOS,
though, we must get the memory
running.. .

CONFRONTING THE ISA SLOWS
Not only do ISA bus barnacles

determine the memory layout, they
also set the memory access time.
You’ve probably noticed that high-end
PCs now sport “local bus” connectors
for memory and high-bandwidth I/O..
after this column, you’ll know why.

Figure 2 shows the falling-off-a-log
simple circuitry needed to put an
EPROM on the Firmware Develop-
ment Board. The ‘LS245 buffers isolate
the bus data and control lines, the
F521 activates the EPROM’s -CE input
when the CPU reads or writes a byte
in the desired address range, and the
EPROM holds the data.

The tradeoff for this simplicity is,
as usual, performance. Because the
EPROM is only eight bits wide, the
CPU must fetch one byte at a time.
The ISA bus defaults to the same
achingly slow six-cycle 720 ns access
for memory as it does for I/O, with the
results shown in Photo 1.

Figure 3a shows ISA bus timings
for an &bit memory access and Figure
3b show typical access times for a 200-
ns EPROM or EEPROM. It’s easy to
see that the data will be ready long
before the end of the bus cycle, so I
won’t go through the same analysis as
I did with the I/O ports.

It seems obvious that we need to
reduce the bus cycle time, but appear-
ances can be deceiving.

There are two ways to speed up
ISA bus memory accesses. You can use
a pair of EPROMs (or a pricey 16-bit

48
#125

Issue #36 July 1993 The Computer Applications Journal



Listing l--This test/q uses a single REP LODSB inskucfion  to readthe  entire 32KEPROM  address
space. The  elapsed loop time, measured either by stopwatch or oscilloscope, gives a good indication of how
fast the ISA bus can handle memory accesses.

RAMSize  = 0x8000; /* repeat for 32K block */
RAMSeg  = NV-SEGMENT;
Counter = 0;
while (!chkchO)  i

outp(SYNC_ADDR,OxOl); /* scope sync */
asm 1

MOV CX,RAMSize set up count
PUSH DS
MOV AX,RAMSeg set up address
MOV DS,AX
XOR SI,SI
REP
LODSB
POP DS

\
outp(SYNC_ADDR,OxOO);
/* show count on FDB LEDs */
outpw(LED_ADDR,-ByteToSegsCCounter));
++Counter;

I

part) to provide 16.bit  accesses and add
circuitry to activate -MEMCS16  to get
three-cycle memory accesses. If that
isn’t good enough, you can attempt to
activate SRDY fast enough to get a
two-cycle access, but Solari’s book is
replete with cautions and compatibil-
ity hazards.

It turns out, though, that there is a
better way that not only makes the
bus access time irrelevant, but doesn’t
involve any extra hardware. The
“ROM shadowing” feature of most
current system boards copies the
EPROM contents into RAM, disables
the EPROM, maps the RAM to the

The BIOS does all the copying and
remapping during the power-on reset
sequence, so by the time your code
gets control, the EPROM is out of the
picture. The system board circuitry
runs much faster than the ISA bus, so
operations that depend on EPROM
data get a corresponding boost.

Listing 1 shows a section of
MEMTEST. C that reads the 32K block of
storage with REP LODSB in a tight
loop. It takes 33 ms per loop with
shadowing disabled, or about 960 ns
per LO D S 6. Enabling ROM shadowing
cuts the loop to 7.3 ms, or about 210
ns per L 0 D S B. Simple division: ROM
shadowing reduces the elapsed loop
time by about 80%.

Even if you could get a “no-wait-
state” ISA bus interface running, it
would still take 240 ns just for the bus
access. To judge from my logic ana-
lyzer traces, each REP LODS B adds two

EPROM’s address range, and write- bus cycles to the minimum required to
protects it. Poof: fast EPROM made fetch the data, so even an optimized
possible by cheap RAM! interface would take 480 ns per byte.

Contrary to popular opinion, this There you have it: a four-chip,
shadowing has nothing to do with the warp speed, no hassle EPROM storage
magic made possible by the 386 CPU’s system for your embedded system.
protected-mode memory management Ain’t science grand?
hardware. It’s entirely a function of the The MEMTEST. C program has the
system board LSI hardware, so your test routines I used to get the memory
programs continue to run in real mode. working, including a hex file with 32K
The relocation hardware may chop up bytes of pseudorandom numbers from
the memory above the first megabyte Micro-C’s r a nd ( 1 function. Burn
enough that protected mode operating PSR32K.HEXintoa27256EPROMand
systems have trouble using it, but run MEMTEST to read and verify it...
that’s a completely separate design that should give you confidence that
issue. your circuit works!

BUS DATA

BUS FtDDRESS

U33
28C64A

BUSCONTRoLS

Part Power Rsf erence

U16 Pin 14 Pin 7

U31 Pin 14 Pin 7

u33 Pin 2 8 pin 14
+ I

INSTILL  JUMPER TO W RI T E-P RO T E C T  EEPROM

Figure 4-Using an EPROM (28C64A) as opposed to an EPROM (27256) requires less park, which allows  for some extra space on the Firmware Development Board.

The Computer ApplicationsJournal Issue #36 July 1993 49



Photo l--The logic analyzer  trace shows what
happens when the CPU reads a single EPROM byte.
The access begins with the rising edge of BALE and
ends six BCLK cycles later when -SMemR  goes high.

WRITING TO EEPROM
There are times, however, when

an EPROM is not the right hammer for
the job. Whether you have frequent
code changes, need nonvolatile data
logging storage, or just don’t want to
hassle with an EPROM programmer,
an EEPROM may solve your problem.

EEPROMs  come in several
different flavors, but for our purposes
they’re all pretty much alike. I’ll use
the Microchip 28C64A 8K-byte
EEPROM as an example because it’s
readily available from the usual mail-
order sources. Feel free to use some-
thing else, but remember the address
space limits before you spring for a
megabyte part!

Figure 4 shows the changes needed
to put a 28C64A in place of the 27256
EPROM. Because the EEPROM has
only 8K bytes, the CPU will see four
identical copies in the 32K-byte
address range decoded by the F52 1
comparator. You can add SA14 and
SA13 to the comparator or just ignore
the ghosts, which is what I did in the
code for this column.

As shown in Figure 3b, reading an
EEPROM is just like reading an
EPROM: the data is ready in plenty of
time. There are no special tricks
needed to get data from the part.

Writing, on the other hand, is
more complex because the EEPROM
requires up to 1 ms (that’s 1000
microseconds, one million nanosec-
onds, or about 63 miles on Admiral
Hopper’s scale) to erase and reprogram
each byte. The 28C64A,  as with all
useful EEPROMs,  has internal latch
and timing circuitry to relieve the
CPU of the details, but it cannot
accept a new byte until the previous
write cycle is completed.

If you have other things to do, you
can ignore the EEPROM for at least a
millisecond after each write; the
timers on the Firmware Development
Board are ideal for measuring this kind
of delay. However, the 28C64A
includes a polling mode that signals

Listing 2-Writing  a byte info the 28C64A  is easy, buf you must then poll the chip unfil  the write cycle  is
complefe,  which can fake up fo one millisecond. The code must also include error handling for timeouts and
defective parts. Note that this  will work perfectly wifh a standard static RAM in place of the 28C64A,  which is
a good way to debug the code without using up the EEPROM’s  limifed number of write  cycles.

for (RAMAddr  = 0x0000: RAMAddr != 0x2000; ++RAMAddr) j
PRSData = peek(PRSSegment,RAMAddr);
outp(SYNCpADDR,OxOl); /* mark the write */
poke(NV-SEGMENT.RAMAddr,PRSData); /* start it */
if (SetAlarm(0x0000,0x27lO,&Alarm))  i /* error after 10 ms */

putstr("Cannot  set BIOS timeout!\n"):
break:

I
do 1

TestData  = peek(NV_SEGMENT,RAMAddr);
1 while ((0x0080  & (PRSData  A TestData)) && !Alarm);
if (Alarm) 1

printf("Timout  programming %04x to %02x, is %OZx\n".
RAMAddr,PRSData,TestData);

if (MAX-ERRORS < ++ErrorCounter)  1
putstr("Too many errors, giving up\n");
break;

1
1
TestData  = peek(NV_SEGMENT,RAMAddr);
if (TestData  != PRSData)  1

printf("Cannot  program %04x to %02x, is %OZx\n",
RAMAddr,PRSData,TestData);

if (MAX-ERRORS < ++ErrorCounter)  {
putstr("Too many errors, giving up\n"):
break:

I
I
if (CancelAlarm(0x0000.OxZ7lO,&Alarm))  /

putstr("Cannot  cancel BIOS timeout!\n"):
break;

1
outp(SYNC_ADDR,OxOO):
outpw(LED_ADDR,-ByteToSegs(HI(RAMAddr)));

I

50 lssue#36  July1993 The Computer Applications Journal



Offset Contents

0000 55

0001 AA

0002 xx

0003-4 EB 01

0005 ss

0006.. code

Definition

First signature byte

Second signature byte

Overall length in 512-byte  units

JMP SHORT $t3 (to 0006)

Checksum

BIOS extension code

Figure 5-  The B/OS  examines the start of each ZK block between CO000
and EOOOD  for B/OS  exfension  code. If the first two bytes contain a valid
signature and the block checksums to zero, the B/OS  executes a FAR CALL
to offset 0003 so the extension can initialize itself. On/y  the signature, length
byte, and valid code at offset 0003 are required; the structure of the code
block is not specified. The diskette EEPROM loader described in this column
assumes that the checksum is located at offset 0005.

when the write cycle is finished: if
you read the address you just wrote,
the chip inverts bit 7 while it’s busy.
Bits O-6 are undefined, so you must
masl<  them off before comparing the
bytes.

Typical writes are much faster
than 1 ms, so you can save a consider-
able amount of time by monitoring the
status. M EMT EST's EEPKOM program-
ming loop taltes about four seconds to
write all SK bytes, so the average time
is well under 500 ps.

Listing 2 shows how
this worlts.  After writing
the byte using Micro-C’s
po ke ( 1 function, the
code sets up a IO-ms
timeout and enters a
loop waiting for bit 7 to
match the poke ( I’d bit.
After the exclusive OR
returns zero (or after the
timeout), the code
checlts  for errors before
continuing with the
next byte.

Note that you need
one additional read after the 28C64A
reports that it’s not busy, as the data
may not be valid immediately after bit
7 changes.

The 28C64A  EEPKOM has much
the same pinout as an 8K-byte static
RAM and I strongly recommend  that
you use a RAM instead of an EEPKOM
until you are entirely sure your
hardware and code are up to par. The
28C64A specs say it is good for lOa

write cycles, but that w&s out to
perhaps ten seconds at full throttle.

For example, one of M EMT EST's
routines is a tight write loop so you
can look at the control signals on a
scope. This will slaughter an innocent
28C64A  in short order, so be careful
what’s in the socket.

Pin 26 is +CE2  on 8K RAMS, but
is not connected on 28C64As  so you
can simply wire it high. Pin 1 is the
28C64A’s  -Busy output, but it’s not
connected in 8K-byte RAMS  so you
don’t have to worry about it, either.
The process is similar for 32K-byte
EEPROMs  lilte the 28C2.56, but do
match up the data sheets before doing
anything silly.

Being able to program an EEPROM
in the system is an advantage, but it’s
distressingly easy to clobber your
precious code or data with an errant
write. If you plan to use an EEPROM
as a programmerless EPROM, the
jumper and gates shown in Figure 4
provide simple, manual write protec-
tion.

Even if (you think) your code is
completely under control, other
routines may write into “your”

The BCC52 controller continues to be
Micromint’s best selling single-board com-
puter. Its cost-effective architecture needs
only a power supply and terminal to become
a complete development system or single-
board solution in an end-use system. The
BCC52 is programmable in BASIC-52. (a
fast, full floating point interpreted BASIC). or
assembly language.

The BCC52 contains five RAM/ROM
sockets, an “intelligent” 27641128 EPROM
programmer, three 8-bit  parallel ports, an
auto-baud rate detect serial console port, a serial printer port, and much more.

PROCESSOR
* 8OC52  8.bit  CMOS processor w/BASIC-52
*Three  16.bll  counlerlt~mers
’ SIX interi”pls
* Much morel

INpUTlOUrpUT
* Console RS232 autobaud detect
* Line  pr,nter RS 232
* Three 8.bll  parallel ports
* EXPANDABLE1

MEMORY
* Compatfble with 12 BCC expansion boards

*48K  RAM’ROM. expandable
* FIW on-board memory sockets
* ElIher 8K or i6K EPROM

BCC52 Controller board with BASIC 52 and SK RAM $ 1 8 9 . 0 0  Single  Qty
BCC52C Low-power CMOS vers~o”  01 the BCC52 $ 1 9 9 . 0 0

BCC51 I 4o‘C  to 185  C nduslrlal  temperature version $294 .00
BCC52CX Low-power CMOS expanded BCC52 wr3EK  RAM $259 .00

CALL FOR OEM PRICING

p& MICROMINT, INC. 4ParkStreet,Vernon,CT06066
n Europe  (44)  0285-658122  *I” Canada (5141336  9426 *n Ausiraira  (02) 888.6401
Distrrbutor  inqumes Welcome’

1 7 9 2 1  R o w l a n d  S t r e e t
C i ty  o f  Indust ry ,  CA 91748

T e c h n i c a l  S u p p o r t : VISA
(818) 912-9864 MASTERCARD

*DluwuwuNG-.-IIL and DISCOVER

_ l-800-669-4406

’
R C - 9 9  RF Transmi t te r  & R e c e i v e r  S e t

(300MHz.  12 bit address or 6 address & 4 data.)

‘93 SPRING CATALOG
IC’s:

DRAM memory.
Holtek  Encoder 1 Decoder IC’s.

Radio Communications:
Motorola Spirit Radios.

Digital Voice Modules.
RF Transmitters / Receivers. I

Security:
Auto Alarms and Accessories
X-IO Home Security  Accessories
Infrareds.

Tools:
Soldering Irons.
EPROM Erasers.
Fluke DMM.
IC Testers.
Industrial PC.
EPROM Programmers.
Ultrasonic Measuring Device

Prototyping PCB’s:
Full hne  of Syntax PCB s.

Batteries:
Alkaline
Ni-Cad.
Sealed Lead Acid. Pocket PC Ref for Sl44p
Button Cell

#119

The Computer Applications Journal Issue #36 July 1993 51



Listing 3-The  ROMSCANprogram  mimics the B/OS  signature search through the address space between
CO000  and E0000. It displays the header for valid extensions, which will  he/p you identify a vacant spof  for
the Firmware Development Board’s nonvolatile memory.

BaseSeg  = OxCOOO;
Bdseoffset = 0x0000;

do /
BlockFlag = peekw(BaseSeg,BaseOffset);
BlockSize = peek(BaseSeg,BaseOffset+ZI;
if ((OxAA55  == BlockFlag) / ( SHOWALL)  (

printf("%04x %04x %04x %02x ((,
BaseSeg,BaseOffset,BlockFlag,BlockSire);

if (OxAA55  == BlockFlag)  (
TestAddr = BaseOffset:
Ci-1eckSum  = 0;
for (BlockSize *= 0x0200; BlockSize;  -BlockSize)  {

Checksum += peek(BaseSeg,TestAddr++):
1
printf("%OZx  OK!\n",CheckSum):

1
else i

putstr("-\n");
I

1
BaseOffset += 0x0200;
if (!BaseOffset) 1

BaseSeg  += 0x1000;

t while  ((BaseSeg  < OxEOOO)  1)
((BaseSeg  == OxEOOO)  && !BaseOffset)):

WHY are our cross

compilers so inexpensive???

Because we ghle them away free!
We base our cross compilers on the GNU C/C++ compiler from the
Free Software Foundation. We provide you with one year of
support*, and give you a ready-to-run cross compiler with complete
source for DOS, Windows, OS/2 2.0 or UNIX for $495 per year.
Or, get the extended support package for $895, which includes
GNU Emacs and make, the CVS and RCS source code control
utilities, and the T@ typesetting system. Targets include i386,
i860,  i960,  Motorola 680x0, 683xx and 88000, MIPS and Spare.

Hundred Acre Consulting
5301 Longley  LaneSuite D-144,RenoNV89511

800) 245-2885 +l -702-829-9700

address space. For some reason the
BIOS setup code in my ‘386SX writes
AA every 2K bytes or so throughout
the address range: an unprotected
EEPROM won’t survive a reconfigura-
tion.

Installing the write protect jumper
forces the EEPROM’s  -WE line high,
so any writes will simply fail. M EM
TEST's loop reports a timeout error
after 10 ms, but any other code will
simply conclude that the EEPROM is
an unchanging ROM.. .which is
exactly what we want.

In next month’s column, I’ll add a
software-controlled write-protect bit
for the battery backed RAM, but a
manual jumper is enough for now.
That circuitry will need an HCT32,
which is why I used it here.. .it won’t
go to waste!

THE BIOS CONNECTION
Now that the Firmware Develop-

ment Board has a smidge of nonvola-
tile memory, we can bolt code onto
the System Board BIOS to run after
each hardware reset. This opens the
door to “diskless systems” that boot
with no mechanical motion.

Actually, given the limited space
available (what can you do in 32K
bytes these days?], it’s more likely that
the (E)EPROM will hold key hardware
interface routines rather than the
whole embedded application. The rest
of the code can be on diskette or, with
a little ingenuity that I’ll get into in a
few issues, be downloaded through the
serial port as needed.

In any event, we’ll start small:
once again the end result will be a few
blinking LEDs.. .but the weight of
knowledge behind them should make
you feel good!

As I mentioned earlier, the BIOS
scans through the memory between
COO00 and EOOOO on power up to find
BIOS extensions. It’s looking for the
distinctive signature shown in Figure
5: 55 and AA bytes on a 2K-byte
boundary with a valid checksum over
the block of storage specified by the
length byte.

Listing 3 shows how the search
works. I wrote ROMSCAN. C to examine
my system’s address space so I knew
where to put the Firmware Develop-

#127
Issue #36 July 1993 The Computer Applications Journal



4

Address

+ 89 ns -)4
min

>(

509 ns min
30 ns max

\/

-SMemW

Data

25 ns min
4 k

( Valid Data from CPU ><

b)

Address

+ 10 ns -)+ 100 ns min b
min

X X

I b- 5 0 n s m i n  ‘4

Figure 6-a) ISA  bus memory write accesses are similar to reads. Note that fhe data  may not be valid for quite a
while after the reading edge of -SMemW,  so the destination must rely on the trailing edge for precise liming. b) The
write cyc/e  for a 28C64A  EEPROM  is essentially identical to a standard RAM, but the EEPROM  cannot accept more
data for about a millisecond. This timins  diauram shows the signals for the first part of the process; fhe  ark/e  text
describes how the firmware detects the endbf  the cyc/e.

ment Board’s nonvolatile memory. It
turned out that the only BIOS exten-
sion was a 32K EPROM on the VGA
card at COOO:OOOO, but your system
may have other ROMs on other cards.

ROMSCAN cannot identify anything
that isn’t a ROM, so if your system
includes EMS cards, network adapters,
or other oddities [you aren’t doing this
on your real PC, are you?) it won’t
show their RAM buffers or other
ROMs. On the other hand, neither can
the BIOS, so we’re even.

When the BIOS finds a valid
extension, it does a FAR CALL to the
instruction starting at offset 0003. It is
your responsibility to put the first byte
of your routine at that address! When
your code is done initializing itself, it
should return control to the BIOS with
a RETF (far return) instruction. The
BIOS then seeks out other extensions
and, after calling all of them, it
continues with the normal disk boot
process.

The length byte counts in units of
512 bytes starting from offset 0000, so
a length of 02 indicates a 1024-byte
block. If your routine is only 800 bytes

long you must still use a length code
of 02. An 8K-byte EEPROM with a
single extension will use a length code
of 10.

The checksum covers the entire
block, but the BIOS does not care
where you put the checksum byte
itself. As long as the (length x 512)
bytes starting at offset 0000 add up to
zero, the BIOS is happy. The code for
this column puts the checksum in
offset 0005 just after a short jump, but
that is entirely my convention.

Listing 4 shows a simple BIOS
extension with two useless functions.
If the low-order DIP switch on the
Firmware Development Board is ON,
it blinks the LEDs forever to indicate
that it’s in control. If the switch is
OFF, it turns on both decimal points
and returns to the BIOS to continue
the normal boot sequence.

Before loading this into the
(EJEPROM, we must compute the
checksum. I modified the diskette boot
loader from issue 3 1 to perform both
functions on a system with the
Firmware Development Board in-
stalled. After reading the file from

200 MSa/S sampling rate

PC-BASED INSTRUMENT

2 Analog channels

8 Digital channels (8ch. logic analyzer

125MHz Single shot Bandwidth

4K samples/channel (analog & digital:

1599 - DSO-28 100
1999 -DSO-28200

pz Lnp;;;Ee
included

* up to 128 channels
- up to 400 MHz
a 16K samples/channel
0 Variable threshold
* 8 External clocks
e 16 level triggering

$799 - IA12100 (100 MHz,24 Ch)  Price is Complete
$1299 - LA32200 (200  MHz,32 Ch)  Pods and Software

‘AL
3AL
f PROM
:EPROM
‘LASH
NCR0

5ns PALS
$475

4 MEG EPROM (8 & 16 bit)
22V 10 & 26CV 12 GALS
Free software updates on BBS

,^ S 299 (8 Socket:

Up to 1 MEG EPROMS

/ Call ( 2 0 1) 808-8990
(6 Link Computer Graphics, Inc.

369 Passaic Ave. Sulk  100, Falrfteld.  NJ 07004 fax: 606-6766

#128
The Computer Applications Journal Issue #36  July 1993 53



diskette as usual, LOADEXT writes it
into the EEPROM, computes the
checksum, and stuffs that into offset
0005.

Once LOADEXT is finished, install
the write-protect jumper, pop the
diskette, and hit the reset button to
start your new BIOS extension.. .it’s
that easy!

One gotcha that is painfully
obvious in retrospect: if your code
doesn’t fill a multiple of 512 bytes, the
checksum must include whatever junk
is in the last block. You cannot
compute the sum on just your code,
because the length byte includes more
than that. Listing 5 shows the code
needed to figure the EEPROM
checksum.

For EPROMs, of course, the
unprogrammed bytes are FF, so you
can compute the checksum correctly
without actually having to handle
those bytes one by one. In fact,
because the hex file doesn’t include
the unprogrammed bytes, you’ll have
to use the length to figure out how
many FFs the BIOS will include in its
calculations.

BIOS EXTENSION HINTS & TIPS
Much of the Firmware Develop-

ment Board’s hardware will be sup-
ported by BIOS-like routines in the
nonvolatile memory we just got
working, but that code will appear in
separate columns after we get the
hardware thrashed out. Many of you
are champing at the bit, though, so I’ll
hit the high spots here.

First of all, I don’t think it’s
practical to write BIOS extensions in
C. After all, we have a pile of stuff to
fit into a very small bag.. this is a job
for assembler code! While I’m sure it’s
possible to modify the Micro-C startup
code to run from the EEPROM, it
requires Small model and some
additional code. Dave’s comments in
the startup code files should be helpful
if you want to try it.

The code in COM files produced
by PC linkers starts at offset 0100, but
the BIOS extensions must begin at
offset 0. Probably the easiest way to
relocate the code is to subtract 0010
from the CS register and use an
indirect branch to increment IP by

0100. For example, the byte at C800:
0003 is also located at C7FO:0103. It’s
the same trick I used in the boot sector
loaders, so check there to see how it
works.

The BIOS calls all of the exten-
sions after it’s set up all of the inter-
rupt vectors but before it attempts to

Any RAM needed by the EEPROM

boot from diskette. Your initialization

code must be in the lower 640K and
you must ensure that the routines
don’t step on each other’s storage.

code can hook any interrupts that it

Remember that the DOS memory

will need to regain control later on:

allocation routines don’t exist! The
BIOS keeps track of the memory size,
so you can allocate space by reducing

timer ticks, serial ports, whatever.

that number. In effect, your data will
lie beyond the end of memory, but
only because you’ve moved the “Dead
End” sign up a few feet.

In particular, Int I9h is called after
all the extensions are initialized to
handle the disk boot load. If you
capture Int 19h, your code regains
control just before the BIOS expects to
boot from the diskette.. .so you can
boot from, say, a program loaded over
the serial port.

According to my references Int
18h is not supported on all clones, as it
was originally used to start good old
IBM Cassette BASIC. I’ll give it a try,

Int 18h,  on the other hand, is

but some BIOS spelunking on your

supposed to be called after Int 19h
concludes that there are no bootable

own system is in order to be sure it

diskettes or hard disks. By capturing
this interrupt, you have the option of
booting from diskette to update the

works the way you want.

firmware (for example) while running
without a diskette the majority of the
time.

Listing 4--BIOS  extensions normally do somefhing  useful, but this is just a demonsfrafion.  If the low-order
DIP switch is ON if will  ‘lock  up” and blink  the LEDs  forever. If fhe switch is OFF if will  turn on fhe LED
decimal points and return to the B/OS  to continue fhe normal boof sequence.

CODESEG
STARTUPCODE

DB
DB
DB

MainEntry:

Booter:

Onward:
Reshow:

Waitl:

Wait2:

JMP
DB

MOV
IN
MOV

TEST
JZ

MOV
NOT
OUT

RETF

MOV
OUT

MOV
LOOP

MOV
OUT
MOV
LOOP
JMP

055h
OAAh

SHORT Booter
OOOh

DX,SW_ADDR
AX,DX
DX,LED__ADDR

AL,Olh
Onward

AX,08080h
AX
DX.AX

AX,OFFFFh
DX.AX

cx.0
Wditl

AX,OOOOOh
DX,AX
cx,o
WAait.2
Reshow

; signature

; length in units of 512 bytes

; force two-byte jump
; zero checksum until loaded

; should we run?

: set up for display

; low switch ON?
; zero is yes, so stay here

; show we were here

; just decimal po

; and return to BI

: all LEDs go off

; all LEDs go on

; continue forever

nts!

OS!

5 4 issue #36 July 1993 The Computer Applications Journal



Listing 5-The B/OS extension checksum includes everyfhing  in the defined block. This routine, taken from
the LOADEXT boot sector EPROM loader, computes the checksum based on the extension’s code plus
whatever is in fhe last block beyond the end of fhe code. If writes fhe result at offsef  0005 in the EPROM,
which must be a zero in the disk file.

MOV AX,EEP_SEG
MOV DS,AX
XOR SI,SI
MOV AL,[DS:OOOZhl  ;
MOV AH,0
MOV 6X,512
MUL BX
MOV CX,AX
MOV BH.0

MakeCSum:
LODSB
SUB BH,AL
LOOP MakeCSum

aim at EEPROM

beginning of block
pick up length code

set high byte
convert to bytes
,.. in AX
set up for loop
set up checksum

pick up data byte
tick checksum
over entire block

MOV AL,BH set up checksum
MOV DI,00005h ,.. address
CALL WriteEEP do it

RELEASE NOTES
The code on the BBS this month

includes the source and hex files for
everything you’ve seen here, as well as
modifications to the F I RMDEV . H and
.ASM files mentioned in the past. The
EEPROM boot loader and EXTDEMO
BIOS extension are written with

Borland’s TASM, but everything else is
in Micro-C.

Be careful with diskettes contain-
ing the LOAD E XT boot loader, because,
unlike BOOTSECT  from issue 31, they
require a Firmware Development
Board. If you boot them in an ordinary
system, it will seem to hang without

any error indication. It won’t damage
anything, but it can be pretty scary.

By the time you read this, we
should be settled in North Carolina. I

hope all my machinery makes it
through the move! @

Ed Nisley, as Nisley Micro Engineer-
ing, makes small computers do
amazing things. He’s also a member of

the Computer Applications /ownal’s
engineering staff. You may reach him
on CompuServe at 74065,1363 or
through the Circuit Cellar BBS.

Software for this article is avail-
able from the Circuit Cellar BBS
and on Software On Disk for this
issue. Please see the end of
“ConnecTime”  in this issue for
downloading and ordering infor-
mation.

410 Very Useful
411 Moderately Useful
412 Not Useful

CIRCUIT CELLAR PROJECT FILE
SPECIAL SUBSCRIBER OFFER

t
'

r

For u lImited tiime on/y!
1
TOP projects from the Circuit Cellar Design Contest ’

NEW projects & tutorials

Something for every interest

Order both volumes and save! (regularly $11.95”  each)

VISA, MasterCard,  or International Postal Money
Order (U.S. funds drawn on U.S. bank only)

Circuit Cellar Proiect  File
4 Park Street
Vernon, CT 06066

Tel: (203) 875-2 199 /
Fax: (203) 872-2204

kcludes  domestic delwry  Please add $6 per  copy for delivery to Canada/Mexxo  via U.S.
Mail; add $8 per copy for other non-US.  addresses via U.S. Marl

#l

, ntrodsciflg:PacketVievf

d Use your own PC and
Ethernetnetwork
adapter (in most cases)

$ ProgrammableFiltersforCaptureand  Display

r CustomProtocolDecoderscan  bedevelopedwithCor  Assembler

d 24-Hour BBS and 6 Months Free Software Updates

r SerialViewComingSoon!  ForSLlPand  PPPProtocolAnalysis

KlosTechnologies,  Inc.
604 Daniel Webster Hi hway, Merrimack New HampshireOJOS4
Voice: (603)424-830%  FAX: (603)424-93bO  BBS: (603)429-0032

The Computer Applications Journal Issue #36 July 1993 55



Breathing
New Life
Into an Old
Hlend:
I I 1.1Kevlsltlng
the 28

Jeff Bachiochi

0 onight the space
shuttle Discovery

is once again keeping
its silent vigil over the

Earth, circling once every 93 minutes.
A hydrogen valve sensor on one of the
liquid-fuel engines refused to signal a
closure, scrubbing the launch set for
last night. These 1:30 A.M. launches are
unaccommodating for us first shifters.

I view the “NASA Select” broad-
casts on Satcom F2R, Transponder 13.
It is offered to all cable systems
without charge, though few of them
actually carry it. Twenty-four-hour
pre-to-post flight coverage preempts
the normal four-hour blocks of
educational science-oriented program-
ming. This flight, STS-56, is investi-
gating both ozone depletion and solar
flare activity.

No, this is not an infomercial.
However, I do strongly believe that the

U.S. would not have today’s level of
technology if we hadn’t invested in the
space program 30 years ago. And it
would be a serious mistake to stop
investing now (soap box mode off).

The “red crew” is preparing to
exercise the robot manipulator arm, as
my telephone starts ringing. I decide to
let it ring. “One of the kids will pick it
up,” I think to myself. The ringing
eventually stops. As I refocus my
attention on the live shot of the Earth
taken through the shuttle bay window,
I’m handed the portable phone.

“Hello,” I mumble while staring
at the view of the Earth from above.
“This is Johnson Space Center calling.
Is this Jeff Bachiochi?” Surprised by
this unlikely statement, I stammer
“Huh. What? Yes! Wait, who is this
really?” The caller assured me he was
from Houston and explained how he
had called directory assistance starting
with Circuit Cellar’s office exchange
and then continued to call neighboring
exchanges in a spiral pattern until he
located me. Well, he had my attention.

“We’ve got a serious problem here
and if we can’t solve it this weekend,
we want to fly you down to Houston
on Monday morning.” I felt the strain
in his voice. “I want you to talk to the
project engineer.”

For the next 30 minutes we
discussed the system they were
developing for use on Space Station
Freedom. It had been about ten years

Photo l--The processor adapter consists of a 40.pin component carrier wired to a 40.pin socket Stranded wire was
used in an attempt to  avoid breakage when the pieces are flexed.

5 6 Issue #36  July 1993 The Computer Applications Journal



&CT04 I I t -  YTIL3
L_c ucc

G2

+51
Ti I I I I T

. :
10 RX

, , , , r____‘____________;  4* ,
0 P1.0,PI.0 I

a P1.l,I
I I I I ‘Lucc P3.6W

P 1 . l
0 P1.2,P1.2 . I

8 P 1 . 3 ,P I . 3
3 P1.4,P 1 . 4
0 P1.5,PI.5 . I

e P1.6,P 1 . 6 /

* P 1 . 7 ,P1.7 ,

RESET I _J

P3.0I

P3.1k
P 3 . 2 I

0 *INTl,P3.3 . F38

P 3 . 4
*

; O;:y
I--

P3.S .
i

1 TOUT,P 3 . 6
8 OUTZ,

I’
_^ ‘PO.O p1.7: AD7/j

‘- ECI
ALE 8. ALE

P3.7 . i

XTALL 4
XTALl --:

uss I
2 0  ;

\

~t3728MHz

: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~
iThese connect ions  i
: not “ocess.scY
j
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ic0nfigurat10n

I i chip carrier
i 8052 socket ' /

Figure l--The  inferface  circuit adapter requires some extra g/ue  logic and a 40-pin chip carrier plugged into a 40.pin DIP IC socket.

since I had worked at any length with
that system, which was based on the
Zilog 28671. Fortified with a barrage
of diagnostic tests to perform and
signal points to investigate, we parted
phone lines. I assured them I would be
around most of the weekend if they
needed to confer again.

STILL CRAZY AFTER ALL THESE
YEARS

The Zilog 28671 is part of the Z8
family of processors. Masked into the
part is a 2K tiny BASIC interpreter. As
a subset of Dartmouth BASIC, 28
BASIC/Debug allows the user to easily
examine and modify any memory
location or I/O port as well as do bit
manipulation and logical operations.
For faster execution, machine language
routines can be called from BASIC as
subroutines or functions.

Unlike some of the newer micros,
the 28671 can operate without
external RAM. Programs using few
variables can share the internal stack
space for variable storage, which saves
real estate and parts cost. If external
RAM is available, it is automatically
used for variable storage.

The Z8 family of microcontrollers
dates back to the late ’70s and boasts
both 2K and 4K, maskable  ROM and
protopack parts. The protopack parts
actually accept an EPROM piggyback
style as opposed to a windowed
programmable part, making it much
easier to use. The preprogrammed part,
the 28671, incorporates “Tiny BA-
SIC,” which in those days opened a
whole new world for hardware junkies.
Imagine being able to test out your I/O
without having to sit down with an
assembler.

Along with the introduction of an
expandable microcontroller system
based on the 28671 (one of Steve’s
early BYTE projects), another program-
ming language was gaining momen-
tum: Forth. Back in those days, we
were crazy enough to try just about
anything, including developing and
masking a 28 with a Forth compiler
(based on the Forth-79 standard); 4K
Forth anyone!

I’ve always liked the Z8 because of
its register-oriented architecture. The
internal register file consists of 124
general-purpose registers, 16 CPU and
peripheral control registers, and 4 I/O

registers, each eight bits wide. Any of
the general-purpose registers can be
used as an accumulator, address
pointer, index, data, or stack register (a
very flexible arrangement). Using
register pointers and working register
groups allows for fast context switch-
ing and shorter instruction formats.

USED 2K RAMS
That first 28 system made used

two 2K RAM chips, and, like my first
16K TRS-80 Model 1, at the time I
thought I would never use all that
RAM. But now, having rekindled my
interests in the 28, I was having
second thoughts about pulling out that
system again with its memory limita-
tions. What I really needed was to slip
that processor into a newer chassis.

THE HOUSE THAT JACK BUILT
I like recycling. Why can’t I reuse

an existing design but with different
components? I mean, not new parts in
a new design, but different parts in an
unmodified, preexisting design? Con-
fused? Well, hang on a second, and I’ll
try to clear it up for you. Remember
the RTC52 and I/O boards I presented

The Computer Applications Journal Issue #36 July 1993 5 7



+
-
l

I
AND
GO@ (math.  lang. call)
GOSUB
GOT0
IF
INPUT
LET
LIST
NEW
PRINT
REM
RETURN
RUN
STOP
THEN
USR (x)
USR (X,Y)
USR (X,Y>Z)

! (store) >=
# (sharp) >IN
#>
’ (tick) $(fetch)
+ AGAIN
+! ALLOT
+LOOP AND
, (comma) BASE
_ BEGIN
” (dot-quote-space) BLK

b= C,
l+ C!
2 C@
DROP : CASE

C-MOVE
<# COLD
< COMPILE
BUILDS<nuII> CONSTANT
= COUNT

CR H.
CREATE HERE
D+ HOLD
D. I
DABS IF
DIGIT IMMEDIATE
DLITERAL J
DNEGATE KEY
DO LEAVE
DOES> LITERAL
DROP LOOP
DUP MIN
ELSE NEGATE
EMIT NUMBER
ENDCASE OF
EXECUTE OR
EXPECT OVER
FIND PAD
FORGET QUIT

R> (R-FROM)
REPEAT
ROT
S->D
SIGN
SMUDGE
SPACE
SWAP
THEN
TYPE
U*
U/
UNTIL
WHILE
WORD
XOR
[ (left bracket)
] (right bracket)

Figure P-The 2K Tiny BASlC implements a//  of the most useful BASE  commands (left).  Incredible,  the 4K Forfh implements four times as many commands (right) in on/y twice
the space. Program execution is also much faster.

in “From the Bench” in the April/May
‘89 issue of Circuit Cellar INK! I’ve
used these boards over and over again
since then. Well, let’s just pull out that
old 8OC52  processor and pop in the
Z...er, wait. That won’t work-at least
not yet anyway.

Refer to Figure 1 to see how you
can make an adapter to retrofit your
RTC.52 (or any other 803 I-based
system) for use with a Z8 processor.
You can make this interface circuit fit
in the same space occupied by one 40.
pin chip by using stacked sockets to
hold the “translation circuit.” To do
this, start with a 40-pin  chip carrier
plugged into a 40.pin DIP IC socket
(this way they will remain aligned
with one another). Drill a l/8-inch
hole centered between the rows of pins
at each end of the socket. Now
separate the socket and carrier from
each other. Two short #4 nylon
standoffs are used to hold the socket
(which the Z8 will plug into) above the
carrier (which plugs into the 803 1
socket on the circuit board). All the
interfacing circuitry is sandwiched
between the carrier and the socket.
The finished interface circuit adapter
appears in Photo 1.

Three inverters and two AND
gates are needed to transform the Z8’s
output signals into those which
closely correspond to those of the

super glued upside down to the top
surface of the chip carrier. I stuck
small labels on to their exposed bellies
to identify which was which and
where pin 1 was located. Simple tricks
like this one tend to greatly improve
your chances for continued sanity later
on. I used wire-wrap wire to connect
the appropriate pins of the glue-logic
chips to the pin-leads on the chip
carrier, but when wiring the “straight
through” connections between the
carrier and the DIP socket, I selected
the smallest size stranded wire I could
find. This method improved the
flexibility between the two parts
which would be opened and closed a

number of times like a book while I
was testing this rig. I did not want
brittle connections to cause me grief.

To make swapping even simpler,
the Z8671’s DIP socket has a 7.3728.
MHz crystal tied directly to it. The
crystal on the RTC board is not used
to drive the 28 and those pins are left
unconnected.

USE THE FORCE
The ROM (BASIC/Debug and

Forth) versions of these parts read
address %FFFD on reset to determine
the console data rate. This value can
be read from the EPROM or an I/O
port depending on which is mapped

Listing l--The 28671 BASIC/Debug chip contains an internal ZK tiny BASE  interpreter that speeds
program development.

1 REM BNAMEIZ8I  BSOURCE
10 PRINT "Print prime numbers between 1 and ???"
20 INPUT N : REM Get Maximum Number
30 GOSUB  100
40 PRINT “End of run"
50 STOP
100 X = 0 : REM Initialize Number
110 X = X+1 : REM Next Number
120 Z = 0 : REM Reset PRIME Flag
130 Y = 1 : REM Initialize Check
140 Y = Y+l : REM Next Check
150 IF Y >= X THEN GOT0 180
160 IF X = (X/Y)*Y  THEN Z = 1
170 GOT0 140
180 IF Z = 0 THEN PRINT X: M is a prime number"
190 IF X < N THEN GOT0 110
200 RETURN

58 Issue #36  July 1993 The Computer Applications Journal



Listing 2-The BAST04THprognm automatically converts a ZB BASIC/Debug program into Z8 Forfh,
making the BASIC-to-Forlh  transition a bit smoother.

***************************************************************

1 REM $NAMEIZ8/  $SOURCE
***************************************************************

(assorted initialization code omitted for clarity)

***************************************************************
10 PRINT "Print prime numbers between 1 and ???"
***************************************************************

: aab
’ Print prime numbers between 1 and ???"

.CR ;
***************************************************************
20 INPUT N : REM Get Maximum Number
******************************~~~~~~~~~~~~~~~******************

Variable vN
: sac vN #IN
( Get Maximum Number)

***t*****C***********X*****X********t***~~~~~~~~~~~~~~~~~~~~~~~

30 GOSUB  100
**************************X***************************~~*******~~~

Variable aac0
: aad bptr @ aac0 @ bptr ! :

***********,*****************************************~*********
40 PRINT "Fnd of run"
***X*****X*****X*****************x******~~~~~~~~~~~~~~~~~~~~~~~

: aae
" End of run"

.CR ;
X**************************************************************
50 STOP
***************************************************************

: aaf 2 endr ! ;
****************t**********************************************
100 X = 0 : REM Initialize Number
*************************************t***********************
10 aac0  !
Variable VX
: aag 0 VX !
( Initialize Number)

**************t************************************************
110 X = X+1 : REM Next Number
***************************************************************

: aah VX 8 1 + VX !
( Next Number)

***i***********************************************************
120 7 = 0 : REM Reset PRIME Flag
***************************************************************
Variable vZ

: aai 0 VZ !
( Reset PRTMF tlag)

ii**i*******************~~*************************************
110 Y 1 : RFM !nitiali/e  Check
***************x****x*****x*************~~~~~~~~~*~~~~~*~~~~~~~

Variable VY
: ddj 1 VY !
( Initialize Check)

**********t********************+*********************************
140 Y = Y+l : REM Next Check
**f************************************************************

: aak VY @ 1 + VY !
lcontinuedJ

8051 SBC
AT A NEW
LOW P R I C E
We are proud to offer our standard
8031SBC-10  Single Board Computer
at a new, low price - just $79 per unit
or as low as $49 each for quantity pur-
chases. An 8031 with two JEDEC
sockets,  one RS232, 5V regulator,
expansion connector. Optional second
serial port, 80C31 or 32.

At $149, our 552SBC-10  has the price
and features you need right now! It’s an
8051 core processor with an eight chan-
nel, lo-bit AID, two PWM outputs, cap-
ture/compare registers, one RS232, four
JEDEC memory sockets, and more digital
I/O. And we didn’t stop there! You can
add options like two more
RS232/422/485 ports, 24 more digital
I/O ports, Real-Time Clock, EEPROM,
and battery-backup for clock and RAM
right on board. Start with the Develop-
ment board; it has all the peripherals
plus a debug monitor for only $349.
Download and debug your code right on
the SBC, then move to the OEM board
above for your production needs. We
also do custom design work - call for our
reasonable prices.

New 8051 Family
Emulator Support
O u r  DrylCE P lus  p roduc t  has  been
expanded to include support  for  the
Siemens 8OC537.  The base emulation unit
is still only $299, with the 8OC537  pod
priced at $199. Other 8051 family proces-
sors supported are 8031/32, 8OC31/32,
8751152, 87C5li52,  8OC154,  8OC451,
8OC535,  8OC552/562,  8OC652,  a n d
80C51FA,B,C.  Each of these pods is
priced at $149. Where else can you get an
emulator with this much power and flexi-
bility for only $448 complete?

Our original stand-alone 8031 ICE is still
priced at $199. Though not as flexible as
t h e  DrylCE P l u s , i t  of fers excel lent
price/performance for learning or the
occasional job need.

HiTech  Equipment Corp

m ~~~~zF+%&

(619)566-1892

#130
The Computer Applications Journal Issue #36  July 1993 59



into the system at that address. Since I
was only ever going to use the proces-
sor at 9600 bps, I cheated! If no device
is enabled at address %FFFD, nothing
drives the bus and it floats. This is
read back as an indeterminate value,
unless a little force is used. By tying
Dl high and DO and D2 low with 1Ok
pull-up and pull-down resistors, the
undriven bus will look like xxxxxO10
(9600 bps] at any undriven address.

28 FORTH DEVELOPMENT ON
YOUR PC

Working with Forth on the Z8 is
as easy as working with BASIC/Debug:
just connect a terminal and type (or
download) your program. For those
who like to do their developing on the
PC, the Z8FORTH  program is designed
to run as a Forth processor under MS-
DOS. The program is fine for some
code development, but loses its
usefulness when you need to handle
hardware I/O (which isn’t supported by
the simulator).

A list of the keywords for these
languages is shown in Figure 2. If you
are a bit shy about learning a new (or
old) language, don’t fret. The
BAST04TH  translator, also an MS-DOS
program, shows you how it’s done.
Taking either a BASIC file or keyboard
input, the BAST04TH  translator will
display each line of BASIC and its
translated counterpart. Let’s look at a
simple program and its conversion and
compare execution speeds of the two
programs run on the same system. To
get an idea of what you feed into the
BAST04TH  translator, see the BASIC
program shown in Listing 1. To see
what the translator creates from that
program, take a look at the code in
Listing 2.

I played no tricks, did no smart
coding; it’s just straightforward code
using as many BASIC/Debug state-
ments as necessary. The translated
code, minus the commented BASIC
lines, was about 2K, whereas the
BASIC/Debug code was around 500
bytes. The BASIC routine took 2 17
seconds to check for primes between 1
and 100. The Forth code did the same
job in 170 seconds with the same RTC
system, same crystal, and at the same
baud rate as the BASIC processor.

Listing 2-continued

( Next Check)

***************************************************************
150 IF Y >= X THEN GOT0 180
***************************************************************

Variable aakl
: aal vY @ VX @ >=
IF aakl @ bptr !
THEN :

***************************************************************
160 IF X = (X/Y)*Y  THEN Z = 1
***************************************************************

: aam VX @ vX @ vY @ I vY @ * =
IF 1 vz !
THEN ;

***************************************************************
170 GOT0 140
***************************************************************

: aan 18 bptr ! ;
********************************f*************************
180 IF Z = 0 THEN PRINT X: " is a prime number"
***************************************************************
26 aakl !
: aao vZ @ 0 =
IF VX @ .
II

'CR
is a prime number"

THEN ;
***************************************************************
190 IF X < N THEN GOT0 110
*************************************xx************************

: aap VX @ vN @ >= 0=
IF 12 bptr !
THEN ;

***************************************************************
200 RETURN
***************************************************************

: aaq bptr ! ;

HAPPY LANDINGS
While we can’t necessarily teach

old processors new tricks, we can
provide them a larger field in which to
play. Zilog, on the other hand, contin-
ues enlarging its family of 28 proces-
sors. They begin with 18-pin DIPS  and
extend up through 84-pin PLCC parts
(complete with internal DSP), but I’ll
leave some of these parts for another
day.

Meanwhile, Discovery lands safely
at Cape Kennedy, bringing back with it
huge amounts of data from the Atlas 2
and Spartan Freeflying Payload
Satellite. I’m going to need some sleep
real soon now; the next flight is
scheduled to launch next weekend. I
can only hope I’m not needed in
Houston. ,@

Special thanks to Steve (Forth)
Chalmer (wherever you are).

/eff Bachiochi (pronounced “BAH-key-
AH-key) is an electrical engineer on
the Computer Applications [ournal’s
engineering staff. His background
includes product design and manufac-
turing.

Micromint, Inc.
4 Park St.
Vernon, CT 06066
(203) 871-6170

2867 1 BASIC/Debug
Processor . . . . . . . . . . . $25.00

Zilog Z8 Technical Manual $20.00
28 Forth Processor . . . . . . . . . . . . . . . $19.00

413 Very Useful
414 Moderately Useful
415 Not Useful

60 lssue#36Juiy1993 The Computer  Applications Journal



Talking
Chips

Tom Cantrell

emcmher  when?
It must’ve heen  the

was chip-giddy, and
everything seemed possible. Then
some diabolical dashboard designers
decided that drivers would appreciate
nagging robotic mothers-in-law.

“The door is ajar.. .The  door is
ajar.. .The door is ajar.. ”

The door is not a @#$%  jar! If it
were, I wouldn’t be making these  giant
car payments! And furthermore, it
would keep its mouth shut!

Thankfully, this “feature” has
long since disappeared.

However, it really isn’t fair to
criticize the whole concept of voice
output just because of one inappropri-
ate use. That would be the high-tech
equivalent of killing the messcngcr
because you don’t like the message.

Indeed, if we observe the prime
directive that all sound-emitting
gadgets should have a volume control
(lest wires be cut as they were on
many of those gabby  cars], then I can
think of a number of applications that
might benefit from vocalization.
Generally, they arc the applications in
which it is inconvenient, or even
dangerous, to rely on the operator to
read a visual display.

For instance, consider the long-
awaited air-collision avoidance
system. A visual indicator would
simply add yet another flashing light
and set of dials to the already over-
crowded instrument panel. While, in
contrast, a voice solution that directly
issued the command to “Pull up!
You’re about to crash,” would cer-
tainly be recognized hy the pilot.
Which plane would you rather  fly on?

Another sensible application
would he a speaking hazardous-gas
detector. When crawling around
underground it can be rather inconve-
nient to have to keep looking up from
your task to check a visual display. Or,
in other cases, it just might he too dark
to see it. One definition of “sinking
feeling” might be, having heen
distracted for a minute or two, glanc-
ing at the visual display on the
detector only to see it says “RIP.”

On the more mundane front, there
are plenty of times when I’m trying to
probe a particularly messy rat’s nest of
cabling that I would like an audio
output on a VOM or oscilloscope.

If you promise  to design responsi-
bly (remember the prime directive), I’ll
fill you in on a unique technology that
allows you to add voice input and
output to your application with just a
handful of components.

YEAH, DAST THE TICKET
Traditionally, a digital voice I/O

system uses an ADC to convert the
audio for storage in digital memory;
the recorded audio is then played back
via a DAC. Along the way, both  input
and output sections need amplification
and filtering. The addition of a DSP, an
MPU, or a dedicated IC allows com-
pression of the digitized audio to a
degree depending on cost and quality
constraints. For instance, an ADPCM
(Adaptive Delta Pulse Code Modula-
tion) chip can compress telephone-
grade speech hy a factor of two with
little loss of quality.

Now, thanks to DAST technology
from Information Storage  Devices, it’s
possible to shrink the entire voice I/O
function into a single, easy-to-use,
low-cost chip.

DAST stands for “Direct Analog
Storage Technology” which, as the
name implies, dispenses with the A/D
and D/A converters by using a simple
method of directly reading (“playing
hack”) and writing (“recording”)
analog information. Cleverly, it does
so using standard EEPROM technol-
ogy. This makes the parts easy to
manufacture, which increases  yields
and in turn leads to lower cost.

Conventional EEPROiMs store
hinary  data by blasting a charge

62 Issue #36 July 1993 The Computer Applications Journal



Figure I-fnformabon  IS stored  MI  fhe ISDIOlGA  m fts  or,g,nal  analog form, e/!mlnating  fhe need for digifal  converfers.

through a thin oxide layer onto a cell voltage matches the sampled input of DAST storage is nearly equivalent
floating gate. However, the DAST as signaled by the voltage comparator. to eight bits of digital storage.
concept exploits the fact that the When the comparator voltage and the Of course there are tradeoffs. If
floating gate can store intermediate cell voltages match, the sampled data there weren’t, with an 8: 1 cost advan-
levels of charge, not just a 1 or 0. is considered written into that cell. tage, ISD would surely be the lead-

The DAST write process works as
follows: An analog voltage is sampled
by the device. This analog voltage is
stored in a sample-and-hold capacitor
and is fed to one input of a voltage
comparator. Then, in a closed-loop
fashion, a series of small write pulses
incrementally increases the voltage on
the floating gate. The voltage level of
the gate is fed to the other input of the
voltage comparator. The incremental
writes continue until the EEPROM

A benefit of the DAST scheme is
that it is impervious to variations
between cells. Writing the same
voltage level to two unmatched cells
may require different numbers of write
pulses, but both will end up storing
the same voltage level because of the
comparator feedback loop.

each DAST cell can store 230 distinct
voltage levels. In other words, one cell

Across the range of O-2.75 V, 1%

mV resolution is possible. This means

ing-if not the only-chip company in
the world. While such “multistate”
techniques (which incidentally have

1s and OS. However, the technology is

long been used in such chips as 80x87
math coprocessors  featuring a-level
microcode) are predicted to overcome

a good fit with the requirements of

future density limits of VLSI, for now
the extra write circuitry, variable write
time, and speed/accuracy tradeoffs rule
out DAST as a generic replacement for

1016W1020FI
ISDIBIEA Ucc

0

I J
7

+

ucco :
"0.luF "0.luF ch 22°F

e
CHIP ENABLE

ucc , MIC REF

R3
10k

1 I.

+
_ ELECTRET  MICROPHONE

T ,c4 T

I 22uF

T

Figure i!- I he playback-only schemabc  /wolves  /me more than a handful of capaafors, ressfors, a mcrophone, speaker, and of course the /SD vofce chp

The Computer Applications Journal Issue #36 July 1993 6 3



2 7
DE25

R3
18k

+5o+
+

5PEF)KER

lure  3-Adding some intelligence to the setup (MI the form of the Parallax .LMS/C  Stamp)  allows  you to record new
messages info the L!XllOxxA  chip.

low-cost voice I/O, a market directly
targeted by the ISDlOlGA.

ELOQUENT SILICON
As shown in Figure 1, the

ISDlOlGA  surrounds a 128K DAST
EEPROM array with all the messy
analog stuff-amps, filters, and so on-
in a single package. For this discus-
sion, I’ll break the functions down into
four basic areas-analog input, address,
control, and analog output.

On the input side, the MIC and
MIC REF signals are AC coupled to the
chip from a typical electret micro-
phone (such as Radio Shack P/N 270-
090). Otherwise, only a biasing resistor
is required, although an extra RC
network to provide power supply
decoupling may be useful to help
reduce noise.

The output from the microphone
preamp then takes a detour off-chip
[ANA OUT). This pin is normally
connected back to ANA IN through a
capacitor and feeds the on-chip
amplifier. The capacitor simulta-
neously acts as a filter and as a
coupling capacitor. This admittedly
strange looking setup is intentional-it
allows you to substitute a direct
analog input for the microphone and
the extra capacitor serves as another
pole for the filter.

The input also features automatic
gain control (AGC) which handles
varying sound levels (i.e., whispers vs.
shouts) while maximizing dynamic

range and minimizing distortion. An
RC network connected to the AGC pin
determines the attack and hold
characteristics of the gain control.

The antialiasing filter is designed
to limit the input frequency to less
than the Nyquist limit. The passband
depends on the sampling clock. For the
‘1016A,  which packs 16 seconds of
audio into the 128K DAST array, the
sampling rate is 8 kHz,  so the cutoff
frequency for the filter is set at 3.4
kHz.  ISD also offers a ‘10 12A which
features 12 seconds of storage. The
sampling clock for the ‘1012 is faster
than the ‘1016 and has a higher pass-
band. The third chip in the ISD line up
is the ‘1020A. This chip offers a

sampling clock slower than the ‘10 16,
and it runs with a lower passband.

Speaking of the sampling clock,
it’s no easy feat to generate an accurate
clock without a crystal or any external
tuning discretes.  However, it is
important that the clock be rather
precise since variations of as little as a
few percent are easily detectable by
listeners. The on-chip clock generator
is trimmed at the factory for accuracy
within 1.5% of spec. The sampling
clock is also stable to within 0.5% of
spec  over the operating temperature
and voltages for the device.

The “analog transceivers” block,
in Figure 1, hides some complexity
mandated by the slow j 10.ms) write-
time of the EEPROM. Since the
EEPROM can only be written to at a
lOO-Hz  rate, and the sampling clock is
8 kHz,  two sets of 8-kbit input buffers
(80x100 = 8 kbit) are used in a ping-
pong fashion as write buffers. While
samples are being written to EEPROM
from one buffer, the next sample is
accumulating in the other one.

For addressing purposes (via AO-
A7),  samples are grouped into 100.ms
fragments-which is the smallest
accessible unit of sound. Thus, the
‘1016A stores audio from addresses O-
159 in the 256-byte  address space.
Addresses 192-255 (A6 and A7 high)
are reserved for programming various
“operational modes” that are most
appropriate for push-button (nondirect
addressing) applications.

Photo 1-A solderless  breadboard and BASlC  Stamp processor board make experimenting with the LSD  voice chips
easy.

64 Issue #36  July 1993 The Computer Applications Journal



Listing l--The  Parallax BASlC  Stamp includes a very useful BASIC  language on a very small board. A test
setup to allow recording of messages on the LSD voice chips  can be programmed very quick/y.

'A simple ISD1016A  recorder
’ using the Parallax BASIC Stamp
'Define variables, pins & constants.
'bO-b4 are byte registers

symbol msg-num=bO message number ($30-86f)  from host
symbol msg_addr=bl address of message in ISD 1016A
symbol msg-len=bZ length of message in 0.1.sec.  increments
symbol reps=b3 repeat previous message reps times
symbol count=b4 message length loop counter
symbol pd=O PIC pin 0 output to ISDlOlGA  PD
symbol rxd=l PIC pin 1 serial input from host
symbol duration=100 0.1.second message increment (ms)
symbol gap=250 gap between repeated messages (ms)

dirs=$fd 'make pins 0,2-7  output, 1 input
pins=1 'PD high power down the ISDlOlGA

loop:
SERIN  rxd,N2400,msg_num 'wait for msg_num from hn?t
IF msg_num < $30 THEN loop'valid range is "0" ($:30) to
IF msg_num > $6f THEN loop' “0” (86f)
msg-num = msg-num $30 'if valid then shift to O-$3f
IF msg-num > $f THEN play 'if not 0-$f. then play msg

FOR reps = 0 TO msg-num 'if O-$f
GOSUB  playrec 'then repeat previous ms
PAUSE gap '1 to 16 times with gap

NEXT reps 'in between

GOT0 loop 'wait for next msg-num

play:
msg_num = msg-num $10 'shift msg-num to O-$lf
msg_len = 0 'default if msg_num not in table

'look up msg_addr and msg_len corresponding to msg_num
'msg-addr  specified in 0.4.second increments
'msg-len  specified in 0.1.second increments
'multiple LOOKUP statements are used so they fit on the screen

LOOKUP msg~num,(0,1,2,3,4,5,6,7,8,9),msg~addr
LOOKUP msg~num,(4,4,4,4,4,4,4,4,4,4),msg~len

IF msg-len <> 0 THEN out
msg-num = msg_num 10

LOOKUP msg~num,~I0,ll,l2,13,14,15,16,17,18,19),msg_addr
LOOKUP msg~num,(4,4,4,4,4,4,4,4,4,4),msg~len

IF msg-len  <> 0 THEN out
msg-num = msg-num 10

LOOKUP msg_num,~20,21,22,23,24,25,26,27,28.29~,msg~addr
LOOKUP msg_num,(4,4,4,4,4,4,4,4,4,4),msglen

IF msg_len <> 0 THEN out
msg-num = msg-num 10

LOOKUP msg_num,(30,31,32,33,34,35,36,37,38,39,O~,msg~addr
LOOKUP msg_num,(4,4,4,4,4,4,4,4,4,4,16O),msg_len

IF msg_len  = 0 THEN loop 'msg_num  was not in table-ignore

out:
lcontinuedJ

The New Shape
of

Embedded PCs
The amazing CMF8680

cpuModuleTM is the first complete
100% PC-compatible

PC1104  single board computer
measuring only 3.6” by 3.8”!

W 16-bit, 14 MHz PC/ChipTM
n CGA/LCD controller
n 2M DRAM
W ROM-DOS kernel
n bootable 1 M solid-state disk
W configuration EEPROM
n 16-bit  IDE controller & floppy interface
n PCMCIA interface
n two K-232, one RS-485 & parallel port
W XT keyboard & speaker port
W watchdog timer
n +5 volts only operation

Designed for low power applications,
the CMF8680  draws one watt of power,
which drops to 350 milliwatts in sleep
mode, 125 milliwatts in suspend mode.
Free utility software lets your
application bootfrom ROM!

RTD also offers a complete line of
PC/l 04 peripherals for expansion:

W 1.8” hard drive & PCMCIA carriers
W 12- & 14-bit data acquisition modules
n opto-22 & digital I/O modules
W VGA CRT/LCD interface

For more information:
call, write or fax us today!

Place your order now and receive a
CM102 PCMClA  carrier module

FREE!

Real Time Devices, Inc.
P.O. Box 906

State College, PA 16804
(814) 234-8087 n Fax: (814) 234-5218

#131

The Computer Applications Journal Issue #36 July 1993 65



S A V E
5zzzsm&

S U B S C R I B E  T O D A Y  T O

12 ISSUES FOR ONLY

W R I T T E N

BYENGINEERS
FOR ENGINEERS!

63: HA N D S-O N

H A R D W A R E  P R O J E C T S

IX AD V A N C E D

A P P L I C A T I O N S

::I TE C H N O L O G Y

T U T O R I A L S

To TAKE ADVANTAGE OF
ALL THIS TECHNOLOGY,

JUST FILL OUT THE
SUBSCRIPTION CARD ON
PAGE 16 OF THIS ISSUE

AND

YOUR ORDER!‘< ,/’ _ ,; ’ \’ L ; / \_-
OR MAIL TO:

T HE C O M P U T E R

A P P L I C A T I O N S  J O U R N A L

P.O. Box 7694
R I V E R T O N, N J  0 8 0 7 7 - 8 7 9 4

‘Price good in U.S. only. CanadaMexico  $31.95,
all other foreign $49.95. U.S. funds drawn on US.
banks on/y.

Listing l-continued

msg_addr = msggaddr*4 'set bits A5-A0  to A7-A2
msg_addr = msggaddrll 'set bit PD high
GOSUB  playrec 'play or record
GOT0 loop 'wait for next msggnum

’ Play or record message at msg_addr for msgglen*duration  ms
playrec:

PINS = msggaddr 'set A6-A2,PD  high
LOW pd 'power up
FOR count = 1 to msgglen

PAUSE duration 'wait for msg_len*duration  ms
NEXT count
HIGH pd 'power down
RETURN

Control over the operation of this
chip is quite simple. When PD (Power
Down) is asserted, the ‘1016A  con-
sumes a miserly 1 uA (typical)-not
surprising since the EEPROM array
needs no power to retain its contents.
After deasserting PD, the chip starts
up and is ready for action within 20 ms
or so.

ASCII Code Voice
@ oh (zero)

Once powered up, whenever CE*
is asserted, the addresses are latched
and a playback or record cycle (depend-
ing on the state of the P/R’ pin)
commences. A recording continues
until CE* goes high at which point the
‘1016A  inserts an EOM (end of
message) marker in the data space. For
playback, a simple pulse on CE’ will
play the entire content of the ad-
dressed message until the EOM
marker is encountered. At this point
the EOM’ pin pulses low and playback
stops. Alternatively, if CE* is held
low, playback will continue through
the EOM markers. In either the
playback or record mode of the chip,
once the device reaches the end of
storage (i.e., address 1601,  the EOM’
pin will go low and stay there until a
PD cycle resets the chip. The latter
feature is useful for cascading multiple
‘10 16As  using the “cascade operation
mode” in which EOM*  from the first
chip drives CE* from the next and so
on.

The only other control signal is
XCLK, which as its name implies,
offers the option of externally clocking
the chip. Before you get all excited

d n e
two

three
four
five
six

seven
eight
nine
ten

eleven
twelve
thirteen
fourteen
fifteen
sixteen

seventeen
eighteen
nineteen
twenty
thirty
forty
fifty
sixty

seventy
eighty
ninety

hundred
k

mega
giga
pica
nano
micro
milli

point
ohms
volts
amps

(play whole chip)

_.
imagining strange uses, keep in mind klgure  4--The  ISDlOlGA will hold up fo 16 seconds of

that it is mainly intended for test
audio, plenty to sfore fhe 40 phrases necessary to build

purposes or perhaps to generate a more
a faking  WM.  Each phrase is accessed from wifhin  fhe
SAW  Stamp  program by an ASCll  character.

66 Issue #36 July 1993 The Computer Applications Journal



NC 1

NC 2
NC 3

NC 4

NC 5

NC 6
NC 7
NC a
NC 9

NC 10
NC 11

Vsso 12
VSSA 13

SP+ 14

DIP

2%  VCCD
27 REC
26 NC

25 RECLED

24 PLAYE

23 PLAYL
22 NC

21 ANAOUT

20 ANA IN

19 AGC

la MIC  R E F

17 MIC
‘ 6  VCCA
15 SP-

A0 1

Al 2
A2 3

A3 4

A4 5

A5 6
NC 7

NC a
A6 9

A7 10

NC 11

V SSD ‘ 2
V SSA  13
SP+ 14

DlPiSOlC

2a V,,,
27 REC

26 XCLK

25 RECLED

24 PLAYE

23 PLAYL

22 NC
21 ANAOUT

20 ANA IN

19 AGC
la  M I C  R E F

17 MIC
‘6  VCCA

15 SP-

AOiMO  1 2a V,,,
Al/Ml 2 27 P/i

A2IM2 3 26 XCLK

A3/M3 4 25 EOM

A4lM4 5 24 PD

A5lM5 6 23 ‘%

A6lM6 7 22 OVF

A7 a 21 ANAOUT

A8 9 20 ANA IN

A9 10 19 AGC

AUXIN 11 ia Mic R E F

Vsso ‘ 2 17 MIC

V SSA  ‘3 ‘6 VC C A

SP+ 14 15 SP-

DIP and SOIC

playback and record setup. Believe me,
putting audio in an application doesn’t
get much simpler than this.

It also doesn’t get any less expen-
sive since the ‘1016A is only $6.64
(1000s). Keep an eye out for the 20.
second variant (‘1020A) at your local
Radio Shack. Their version is the
ISD 1000 priced at $17.99 each, where
it is stocked as part number 276-1325.

Feeling the urge to wire something
up, I decided to design a simple
subsystem that would accept a
“message number” via an RS-232 link
and then play or record that message.
The design combines the ‘1016A with
the new Parallax PIC-based BASIC
Stamp computer (Figure 3 shows the
schematic and Photo 1 shows the
project). Other than these two key LSIs

precise clock. The range of clock rates
supported is not that wide since it is
bounded on the low end by droop in
the sampled analog inputs and on the
high end by EEPROM write time.
Since you probably won’t be using it,
remember to ground it lest you find, as
I did, that leaving it open results in
erratic operation (or better put, a bad
case of chip laryngitis).

For playback, the analog output is
fed through an internal smoothing
filter (which is actually the anti-
aliasing filter during record mode
serving double duty) and amplifier for
output at the SP+ and SP- pins. The
amplifier output is about 50 mW and
can directly drive a 16-ohm speaker.
You can use an easier-to-find &ohm
speaker simply by inserting an appro-
priate resistor (e.g., 8-10 ohms) in
series with the SP- pin.

Experienced ‘1016A  users report
that it is important to use a boxed
speaker, not just one hanging in the
breeze, for best sound quality. Such a
setup is loud enough to hear across the
room, but further amplification will be
required for high-ambient noise levels
or for public address applications. As a
convenience, an AUX IN pin is
provided to take advantage of the on-
chip amplifier when it isn’t being used
for playback. Whatever signal is seen
at the AUX IN pin is passed through to
the speaker outputs when the chip is
not playing back a message.

Putting a system together involves
little more than a handful of parts.
Figure 2 shows the schematic of a
minimal, nonaddressing (i.e., the

CALL OR FAX
TODAY FOR MORE Technical SoZ’tions
INFORMATION ON
ME EEO8 AND OUR
COMPLETE LINE OF
EPROM EMULATORS!

PO BOX 462101
GARLAND, TX 7!5046-2101

#132
The Computer Applications Journal Issue #36 July 1993 6 7



and an off-the-shelf 8-ohm speaker, the
additional component count was just a
PLAY/RECORD jumper, and a few

However, I did have to make some
compromises since the Stamp only

resistors and capacitors.

offers eight I/O lines when a complete
interface would call for thirteen
(twelve for the ‘IOIbA and one for the
RS-232) lines.

Given that the RS-232 line and the
CE’ line of the ‘1016 were required,
and needing to trim five lines from the
I/O budget, I quickly decided that the
least-significant address bits could go
since 0.1 -second message address
resolution was overkill for me. By
grounding A0 and Al, I settled on 0.4-
second minimum address resolution.
This decision trimmed two lines from
the requirement. The next decision
was to ignore EOM* by handling
message length in software-three
down, and two to go. Okay, I can gain
one more line if I use a jumper, or a
switch, for selecting the play/record
mode. Four down, one to go. But, I did
want to use PD to minimize power,

allowing the whole gizmo to run off of
the Stamp’s battery and regulator, so I

Mildly discouraged, I stared at the

had to keep that one. Yes, as usual, I

ISD data sheet, and by reading the
application note again I found a

ended up one line short.

solution. It turns out that CE* really
isn’t required. Instead, it can be
grounded and PD alone used to initiate
record and playback cycles. Great!
Now I have enough lines on the Stamp
to make this idea possible!

The Stamp program (Listing 1)
accepts a byte from the host and
interprets it as a message number
which is played or recorded according
to the state of the ‘1016A P/R* pin.
Using the SERIN command, the Stamp
waits for a message number from the
host and decodes it as a new message
($40-$6F)  or repeat count ($30-$3F  = 1
to 16 repeats). Using the novel
LOOKUP instruction, the message
number is translated to a message
address (in 0.4-s increments) and a
length (0. l-s increments) and the
command is issued to the ‘1016A for

the appropriate length of time. Since
EOM’ isn’t used in this design, the
only difference between playback and
recording is the state of the P/R* pin.

The number and length of mes-
sages is defined by the LOOKUP table.
In this example, I went the talking
DVM route and recorded forty 0.4.
second messages listed in Figure 4.
Sending, for example, the string
“B\VHd@Gcg”  will speak the phrase
“two hundred forty-eight point oh
seven milli amps.” Notice how the
last message code, the “h” command,
plays the whole chip back, which
makes it sound like that guy in
commercials that talks really fast. You
could relax the pace using the 20-
second chip (‘1020A) and stretch each
message length to 0.5 seconds by
changing the “duration” constant in
the program from 100 to 125.

Notice the shortcuts I took with
the microphone input (compare Figure
2 with Figure 3) such as grounding the
AGC pin thus fixing the preamp
output at maximum gain. I experi-
mented with the AGC, but found it

ECAL Universal Product Information
ECAL is a complete assembly-language development system that provides all the tools needed to assemble, link,
load. run. and debue vour  oroiect  for over 170 orocessors.  Bv using  user-editable control files. the ECAL

Assembly Language -’ ’ ’

macroassembler  in its full configuration can handle4-,  E-. 16.. or 32.bit microprocessors  with unsurpassed speed
and consistency.

Using the familiar DOS-based text windows. you can edit, assemble, set breakpoints. trace execution,
- I watch registers and I/O. and communicate with your  target’s serial port in separate closable windows. If you

prefer to;se other tools, with a few keystrokes, BCAL  ill  incorporate your previous work into its consistent
l)evelopment  System andintuitiveenvironment.

The free ECAL evaluation program features all of the ECAL tools for all of the
Ordering Information supported micros, giving you a true sampling of ECAL development cycle (source and

b Alternative to Real-Time Emulator * 05-0200-010  ECAL OAS object length limited).

F Support for 805 1,8096,  and 186 n 05.0200-020  ECAL with EPROM Emulator VAILSiliconToolssellsandsupportsECALandcan  bundleECAL  withadditional

n 05.0200.XXX  ECAL Single Processor hardware and software to satisfy your need for economical project development tools.

F Support for 170t additional processors
b Us& control of syntax and i&ructions
b Extremely fast assembly-2 Kbyteslsec
b Integrated split-screen editor or command-line

assembly supported
b Integrated linker/loader
b Instruction trace and I/O windows
b Monitor and RS-232 corn. windows
b Single micro processor versions available
b Optional EPROM emulator and programmer
b Source-level debugger

Contact
Vail Silicon Tools

vailTT  01 692-A S. Military Trail
\ Deerfield Beach. FL 33442

Tel: (305) 570-5;80
Fax: (305) 428-1811Silicon Tools

68 Issue #36  July 1993 The Computer Applications Journal



disconcerting for short messages
(messages in the 0.4-0.8-second  range)
since the gain didn’t have time to
stabilize. The only component that
seemed to have a dramatic effect on
recording quality was the 22-pF low-
frequency bypass capacitor.

Even with my simplified design,
I’d say the results I achieved back up
ISD claims of “telephone grade” audio.
Messages were loud and clear but there
was a slight hiss (both likely due to
grounding AGC). Since the volume
was surprisingly high, I implemented a
home-brew “low-pass filter” by
sticking the speaker in a cardboard
box. The result was much mellower,
but still quite clear.

Remember, mainly “playback”
applications (i.e., factory vs. field
programmed ones) can achieve higher
quality by recording and editing with
audio gear (including a sound-card-
equipped PC) and using the ANA IN
pin for programming. For best results,
consider the official ISD evaluation
unit/programmer-the ESOOlB, which
sells for a reasonable $299.

THE LONG AND SHORT OF IT
ISD expects to fill out the lineup

shortly with both shorter and longer
duration parts. For pinout  information
on these parts, see Figure 5.

So, don’t hesitate to take advan-
tage of these unique talking chips;
just make sure they mind their
manners. q

But for those of you who want to Tom Cantrell has been an engineer in

play with parts right now, you may Silicon Valley for more than ten years

want to play with what’s already working on chip, board, and systems

shipping. The 64K ISD1100/1200 design and marketing. He can be

series offers 8-12.second  capacity (8- reached at (510) 657-0264 or by fax at

5.3-kHz sampling rate) at only $5.78 (510) 657-5441.

(1000s). The major difference between
the 1100 and 1200 is the latter sup-
ports direct addressing while the
former doesn’t.

Expected shortly are members of
the ISD2500 family. These devices will
feature a 480K DAST array-nearly
four times the capacity of the ‘1016~
These chips will be priced to go
($14.94/1000s),  and will store from 45
seconds to 2 minutes of audio depend-
ing on the sampling rate [e.g., 60

Information Storage Devices, Inc.
2841 Junction Ave.
San Jose, CA 95134

Parallax, Inc.
6359 Auburn Blvd., Suite C
Citrus Heights, CA 95621
(916) 7218217
Fax: (916) 721-1905
BBS: (916) 721-9607

‘IOlbA, with the addition of two more
address lines and an OVF’ pin that
facilitates cascading.

416 Very Useful
417 Moderately Useful
418 Not Useful

MOVE OVER INTEL
MICROMINT SOURCES
8OC52 CMOS BASIC CHIP

Micromint has a more efficient software-compatible
successor to the power-hungry Intel 8052AH-BASIC
chip. The 80C52-BASIC  chip was designed for indus-
trial use and operates beyond the limits of standard
commercial-grade chips. Micromint’s 80C52-BASIC
chip is guaranteed to operate flawlessly at DC to
12 MHz over the entire industrial temperature range
(-40°C to t85”C).  Available in 40-pin DIP or PLCC

80C52-BASIC chip
OEM IOO-Qty. Price
BASIC-52 Prog. manual

$25.00
$14.50
$15.00

MICROMINT, INC.
4 PARK ST., VERNON, CT 06066
TO ORDER CALL

1~800~6353355

The Computer Applications Journal Issue #36  July 1993 6 9



The Art of
Battery
Management John Dybowski

to embed all the

it’s time to consider your options for
power supplies. Hopefully, if you
decide to embed the power source as
well, you will pause and give serious
consideration to some of the outlying
functions associated with this deci-
sion. Sometimes you can get away
with just a rechargeable battery, a
diode, and a resistor. Often you will
need more functionality than this
simplistic approach can provide. Each
battery system can be as unique as
the product it is supposed to power,
and the choice of a battery system
often has implications beyond just
providing a source of power to your
product.

Too many battery-powered
instruments rely on extremely primi-
tive forms of battery management:
You know the battery needs charging
when the device stops operating; you
know you have to replace the battery
when it can’t hold a charge anymore.
How’s that for a system that promotes
happy users?

As an example, consider the case
of the weekend camcorder-jockey.
Following the usual charging interval,
he snaps the battery pack into the
camera. The battery indicator shows
all systems are go. The awareness that
this indicator means next to nothing
may eventually surface, because after
ten minutes the low-battery light
comes on. Obviously there’s some-
thing wrong here. If this person is
lucky enough to know someone who is
familiar with electronics, he probably
could persuade them to look at the

offending battery. With some luck (and
several discharges followed by slugs of
charging current) the battery may
come back to life-then again, maybe
not.

This intolerable state of affairs is
very inconvenient at best and as a rule
usually happens at the worst possible
time. Most people feel that given the
cost of modern consumer gadgets, they
should be designed properly to begin
with. “Properly designed” means
different things to different people but
even the most undemanding want to
know when the battery is on its way
out.

Now, the battle for the decent
battery supply has usually been fought
incrementally and has commonly been
conducted based on product perfcr-
mance  and product differentiation. For
example, designer A decides to use a
battery to power his product. Designer
B did one better and uses a recharge-
able battery, only he was a cheapskate
and used a diode and a resistor for the
charger. Designer A notices designer
B’s shortcoming and came back with a
better constant-current charger.
Designer B has a bright idea and
strikes back with a two-stage fast
charger and provides three LEDs  that
presumably show the amount of
battery capacity that is available.
Designer C was watching designer A
and designer B and decides to enter the
game. His solution to everything is
putting bigger cells in his aftermarket
battery on the assumption that bigger
is better.

To an extent, this progression is a
case study in the natural evolution of
products and cannot be considered
unreasonable. But your perspective
still boils down to where you draw the
line on what can be called a good
product. This is especially true in the
very vital power source because
shortcomings in the supply are
immediately perceptible. The heat is
on to provide better battery supply
systems since electronics have evolved
to such a degree of miniaturization
that the battery is usually the bulkiest
and heaviest component in the system.
The customers have their expectations
when it comes to battery-operated gear
and they are merciless. Rightly so,

70 Issue #36  July 1993 The Computer Applications Journal



since they know their needs and they
expect you to know them too!

It’s not adequate to keep increas-
ing the battery size just because more
capacity is needed. There’s no place in
today’s market for battery status
indicators that tell you the battery just
went flat. A brute force mentality and
slipshod design practices seem to be
finally dropping out of vogue.

The design of electronic systems
that consider battery operation
alleviates this problem somewhat. The
rules for designing for low power are as
follows: apply low-voltage CMOS
circuitry, use selective power control
to various electrical subsystems, and
place more emphasis on thoughtfully
designed power supplies.

Attention is now being focused on
the battery side of the equation also.
These changes involve the develop-
ment of new battery chemistries, the
improvement of older ones, compre-
hensive battery charging and condi-
tioning regimes, and the accurate
gauging of the actual usable battery
capacity.

Combining intelligence in the
battery management strategy and a
sound power management approach in
the electronics along with one of the
newer battery technologies, such as
Nickel-Metal Hydride, can yield truly
impressive results. The consequence 01
such an approach is evidenced by the
level of performance attained by
notebook computers and pocket
cellular phones. I’ll be covering battery
management and conditioning tech-
niques in due time. However, it’s
unavoidable to recap some battery
basics before I do so.

COMMON CHEMISTRY

Amp hours (or milliamp hours) is
the unit of measure used to describe
the battery’s storage capacity. The C
rate is defined as the rate of amps (or
milliamps) equal to the capacity rating
of the battery. The use of this capacity
yardstick (along with its multiples and
fractions) serves to expedite the
discussion of different types of batter-
ies and a range of battery sizes.

Three popular battery technolo- This battery storage capacity is
gies in common use are Nickel- dependent on the discharge rate. When
Cadmium, Nickel-Metal Hydride, and the energy is withdrawn from the
Lead Acid. Each has its specific uses battery at a faster rate, there will be
based on size, energy density, and, less effective capacity. That is, the
perhaps most importantly, cost. I’m usable capacity is time dependent and
sure most users of NiCds would be because of this, a known discharge rate
more than happy to step up to NiMH must be implied to properly describe
batteries, but often cost is a deterrent battery performance. NiCd and NiMH
to their doing so. Rechargeable cell capacity is usually specified at a
batteries are differentiated by several five-hour discharge rate. Because of
key parameters such as storage this consistency, published capacities
capacity, nominal voltage, cutoff for these types of cells generally

+ CHARGE INPUT

FULLY
DISCHARGED

METHOD OF
CHARGE RATE

CHARGING MULTIPLES OF ; RECHARGE CHARGE

C-RATE , FRF;;EoF  TIME’ (HOURS) CONTROL

STANDARD
0.05c c/20 36-46
OlC C/l 0 1640 NOT REQUIRED
0.2c c/5 7-9

QUICK 0.25C c/4 5-7
0.33c  : c/3 4-5

NOT REQUIRED

C C 1.2
FAST 2c 2c 0.6

4c 4c 0.3
REQUIRED

TRICKLE 0.024 1c ; C/5&C/l 0 Used for maintaining charge of a
fully charged battery

‘RECHARGE TIME = STANDARD TIME TO FULLY CHARGE A COMPLETELY DISCHARGED BATTERY AT 23” C

Figure l--The classic Nickel-Cadmium fast-charge profile (top) shows a characteristic bump and slight drop in
voltage when fhe cell is fully charged. This V may be used to sense full charge. NiCd cells are typical/y charged
using one of four methods (bottom), each of which has its uses.

voltage, and maximum tolerated rate
of charge.

correlate among the different manufac-
turers. Since the five-hour rate is
almost universally used, it is seldom
given in the battery specifications. The
same is not true of lead acid batteries.
Due to the dissimilar applications for
lead acid batteries, the capacity ratings
are given for different rates of dis-
charge.

Generally, lead acid batteries can
be categorized into three broad
divisions according to their usage:
standby, cyclic, and motor starting.
Batteries used in standby service are
usually held on a trickle charge for
long periods of time and may be called
upon to deliver power for periods
ranging from several hours to several
days. Examples of this type of service
would be backup power for emergency
lighting systems or electronic equip-
ment. Batteries in cyclic operation can
supply power for several hours before
charging is required. Cyclic operation
would be characterized by cordless

The Computer Applications Journal Issue #36 July 1993 71



a)
CELL VOLTAGE

__ CELL TEMPERATURE

I

0 50 100 150
CHARGE RETURNED (% OF PREVIOUS DISCHARGE)

b)

PRESSURE

- T E M P E R A T U R E

TIME

Figure 2-a) The typical reelationship  of cell voltage, pressure, and femperature  during constant-current charging.
6) The fypical  relationship of cell current, pressure, and temperature during constant-voltage charging.

power tools. Motor starting applica-
tions require high peak currents that
may discharge the battery over a
period of a few seconds.

Because of these different uses,
lead acid batteries are rated based on
their expected application. Batteries
intended for standby usage are gener-
ally rated at a 20-hour  discharge rate.
Cyclic batteries are usually specified at
an 8 or IO-hour rate. The nature of
motor start and other short duration
high discharge applications dictates
that the l-hour rate be applied for
these. In all these cases, the discharge
rates are clearly stated in the battery
specifications.

Nominal voltage is another
important restriction which deter-
mines how many cells are required to
achieve the total desired battery
voltage. NiCd and NiMH cells nomi-
nally supply 1.2 volts whereas a lead
acid cell produces 2 volts.

The terminal voltage decreases as
charge is withdrawn from a battery.
The cutoff voltage is the minimum
voltage the battery can be taken down

to before cell damage occurs. This
voltage varies among the various
battery compositions. It’s important to
note that the cutoff voltage determines
the amount of energy that can be
drawn from the battery. Should you
have a situation where the device that
is operating from the battery cannot
function down to the cutoff voltage, all
of the battery’s useful energy will not
be depleted. To determine the amount
of energy that can be drawn from the
battery in such applications, you must
consult the discharge curves that plot
terminal voltage versus discharge rate
versus time.

Charging is accomplished by
applying a current of proper polarity to
the battery. This can be a pure DC
current or can contain a significant
ripple component. This ripple gener-
ally results from the use of a rudimen-
tary half-wave or full-wave rectifier
which represents the baseline of
battery charger schemes. The situation
can (and should) get more complex.

Constant voltage or constant
current charging illustrate two

variations that are frequently applied
to deliver energy faster to batteries.
With higher charge rates, a variety of
feedback techniques can be used to
determine the point at which the
charging current is to be reduced.
Many forms of temperature sensing,
voltage sensing, or current sensing (or
combinations of any and all of these)
are used in this regard. This reduction
in charging current becomes necessary
to prevent damage to the battery and is
not only dependent on the battery
chemistry but on the specified charg-
ing capabilities of the batteries. NiCd
batteries, for example, can be obtained
with capabilities that can be defined as
Standard Charge, Quick Charge, or
Fast Charge.

Overcharge is the continued
charging of a battery after the battery
has reached its maximum state of
charge. Batteries are designed to
handle continuous overcharge at their
cell specification rate. This rate is the
determining factor that indicates when
charge control is required to drop the
charging current down to a lower rate.
The Standard Charge, Quick Charge,
and Fast Charge NiCds that I men-
tioned not only have different restric-
tions on their maximum charge rates
but also on the amount of continuous
overcharge they can handle.

NICKEL CADMIUM BATTERIES
Perhaps the most widely used

rechargeable battery chemistry, NiCd
batteries have become the established
battery system for many applications.
Possessing excellent high-drain
discharge capabilities and cycle life
characteristics of 500 to 1000 cycles
along with decent self-discharge
properties, NiCd batteries are used for
everything from cordless power tools
to memory backup applications.
Although NiCd batteries use a fairly
stable technology, performance
improvements continue to be made. A
600.mAH capacity from an AA cell
was typical a couple of years ago and
now you can get 850.mAH  capacity at
a reasonable cost and from the same
size battery.

Several different charging schemes
are commonly applied to NiCd
batteries. Naturally, the method used

72 Issue #36 July 1993 The Computer Applications Journal



determines the complexity of the
charging circuit; constant-current
methods are generally preferred.
Furthermore, different types of
batteries are produced that are specifi-
cally designed to tolerate higher
charging rates or that have the capabil-
ity of operating at higher temperatures.
Some of these allow simple charging
circuits whereas others require some
form of charge control that will fall
back to a lower rate of charge once a
full charge is attained.

Detection of a full charge condi-
tion is often based on the ramp in
heating that occurs at the end of
charge cycle. This condition can be
sensed by directly monitoring the
battery temperature using a sensor
housed in the battery. This method is
not without problems since the
temperature sensor will usually
contact only one or two cells, leaving
the remainder out of the picture.

A popular derivative of tempera-
ture sensing is the negative delta
voltage method. This voltage phenom-
enon occurs at the end of charge cycle
following a steady increase in voltage
when a battery’s temperature increase
causes a decrease in internal resistance
that, in turn, results in a drop in
voltage. Since all the cells have a say
in the charge termination decision,
this proves to be a reliable indication
of the overall state of charge of the
battery. Figure 1 illustrates this
voltage profile and also contains some
pertinent figures on the various charge
rates that are commonly used for the
different NiCd battery types.

When a NiCd battery is charged, a
small amount of energy goes into
converting active materials into an
unusable form. Charge acceptance is
the term used in describing the general
charging effectiveness. This defines
the charging efficiency and the amount
of discharge capacity that can be put
into the battery.

NiCd batteries accept deliverable
charge at different rates depending
upon factors such as the state of charge
of the battery, charge rate, and tem-
perature. Battery history, which refers
to the type of usage the battery has
been subjected to, also figures in the
charge acceptance criteria.

#136

NEW 8031 FAMILY PRODUCTS from RIGEL
FUZZY-LOGIC CONTROL CODE GENERATOR
FLASH (Fuzzy-Logic Applications Software Helper) generates MCS-51 language
subroutines to perform fuzzy-logic control tasks from a high-level description of
fuzzy rules written with linguistic variables. An extensive tutorial and illustrative
examples are provided. ($100.)

R-5355 / READS TRAINER
READS (Rigel’s Embedded
Applications Development System) and
the R-535J board constitute a complete
hardware/software development and
debugging system in one user-friendly
menu-driven environment which runs
on an IBM PC host. Programs in the
MCS-51 language may be written,
edited, assembled, downloaded and
debugged without leaving the
integrated environment. The R-535J
board uses the powerful 8OC535
microcontroller. R-535J I READS with
User’s Guide on disk and example
programs is priced at $150, $130 as a kit.

8031 FAMILY MICROCONTROLLERS EXPERIMENTER’S GUIDE
This 300+ page textbook covers the MCS-51 assembly language, using the on-chip
facilities of the 8031 family microcontrollers, and software I hardware experiments.
Programming nuggets are given for each instruction and each operating mode of
the family. Features of the SAB80C535  are highlighted. ($30.)

RIGEL CORPORATION

PO BOX 90040, GAINESVILLE FL, 32607 (904)373-4629

#137
The Computer Applications Journal Issue #36 July 1993 73



TEMP
CHG

CCMD

DCMD

DVEN

T M ,  TM2

+ +

Vcc

I I

Timing
Control LTF

Check

-
4- t

f
0

r
-

“,zrs:
.

State
Machine -

-

c
Discharge

Control

TCO

TS

SNS

BAT

MCV

+ + I
DIS MOD Vss

Pin Connections Pin Names

CCMD

DCMD

DVEN

TM1

TM2

TS

BAT

Vss

V c c

DIS

MOD

CHG

TEMP

MCV

TCO

SNS

CCMD Charge command/select
DCMD Discharge command
DVEN V enable/disable
TM I Timer mode select 1
TM2 Timer mode select 2
TS Temperature sense
BAT Battery voltage

Vss System ground

SNS Sense resistor input
TCO Temperature cutoff
MCV Maximum voltage
TEMP Temperature status output
CHG Charging status output
MOD Charge current control
DIS Discharge control

V c c 5.OV+lO% power

Figure 3-The Benchmarq bq2003 can be used to monitor and control the charging of numerous kinds of
rechargeable batteries. The chip handles one-, two-,  and three-stage charging and has outputs that directly drives
1ED.s  to show the current status.

Both the charge efficiency and the
actual capacity of a NiCd battery are
reduced when charged at high tem-
peratures compared with those charged
at room temperature. A couple of
examples will help to put this in
concrete terms, with a cell tempera-
ture of 45°C and a charge input of
200% of nominal capacity, no more
than 70% of nominal capacity will be
attained. Capacity levels become
adversely affected with increasing
temperatures. With a battery tempera-
ture of 60°C and a charge input of
200%, the actual battery capacity will
be no more than 45%. Charging the
same battery at temperatures ranging
0-25”C, the charge acceptance is much
better, and a charge input of 160%
would yield 100% capacity.

enhanced by rates higher than 0.1 C for
battery types that can accept charging
at higher rates. Using a fast-charge
battery, charging it at 1 C approaches
100% of nominal capacity at an input
of 120%.

NICKEL METAL HYDRIDE
BAllEWES

Charge rates also influence charge
acceptance. Charge rates below 0.0X
will not allow the battery to ever
achieve its full capability. Efficiency is

NiMH batteries offer a significant When considering which charge
increase in power density over NiCd method to use for this kind of battery,
batteries. This increase comes at a you must give attention to the time
significant cost, however, since these available for charging, the temperature
are about twice the price of a NiCd extremes the battery will operate
battery of the same size. Looking again under, the number of cells required,
at a modern AA NiCd battery which is and the way the battery will be used.
available with a capacity of 850 mAH, As with the other battery chemistries,
a NiMH battery of the same size there are alternate methods that can be
typically has a capacity of 1200 mAH. selected for charging lead acid batter-
These batteries are finding uses in ies. Constant-voltage charging is often
applications where longer run time is a used and is usually considered the
key competitive feature and where the conventional charging method for
battery price represents a relatively charging lead acid batteries. Constant
small portion of the product cost. current, taper current, and other

Although there are some important
differences to consider, NiMH  batter-
ies perform in a similar manner to
NiCd batteries.

Generally, the same charge
method used for NiCd batteries can
also be used for NiMH  batteries,
although certain control limits may
have to be changed to ensure proper
operation of two-stage chargers. The
most notable difference between the
charging characteristics of these two
batteries is the lack of a pronounced
decline in cell voltage (negative delta
voltage) at peak charge. If you decide
to use a voltage-sensing system to
charge NiMH batteries, you would be
wise to carefully evaluate the perti-
nent circuit parameters. It might not
be a bad idea to dismiss a voltage-
monitoring approach completely and
instead consider using a temperature-
profile cutoff method instead.

Service life is also similar between
NiCd and NiMH  batteries, although
self-discharge is presently still slightly
higher and the NiMH  battery is not
quite up to the high discharge capabili-
ties of the NiCd.

LEAD ACID BATTERIES
Lead acid batteries find uses in

many of the same application areas
served by NiCd batteries. Starved
electrolyte sealed lead batteries are one
of the more advanced forms of lead
batteries in use today. With low self-
discharge characteristics and a
lifecycle approaching ten years under
float conditions, this battery chemistry
has obviously continued to evolve
along with the other technologies that
I’ve already described.

7 4 Issue #36 July 1993 The Computer Applications Journal



?CIXTIAT/386  Users!

variations may also be used with good
results.

Using constant-voltage charging,
the charger holds a uniform voltage
regardless of the battery’s state of
charge. Here, the charging current
varies depending on the difference of
potential between the input voltage
and the battery voltage, thus the
battery will draw greater current when
it is at a discharged state. As charging
continues, the battery voltage rises and
the charge current diminishes. Current
limiting is not required for many types
of lead acid batteries using this
charging method. Constant voltage
charging can be used for fast charging
as well as in float charge applications.
Since lead acid batteries have low
internal resistance, high currents-up
to 4C--will  flow into a discharged
battery if the current is not limited by
the charger’s current supply.

As a result of the large current
flow involved, up to 70% of the
previous charge may be returned in the
first 30 minutes of charging. In this
case, though, as the battery voltage
increases quickly, the resulting
reduction in potential difference
causes the current to drop off signifi-
cantly. As a result, although the
battery regains a significant portion of
the charge quickly, a prolonged period
will elapse before a full charge is
realized.

A typical float maintenance
voltage would be in the range of 2.30-
2.40 volts per cell. If you wanted to
recharge a battery in 2-16 hours, then
2.45-2.50 volts per cell would be
required. Anyhow, it’s not a good idea
to drive a source voltage over 2.40
volts per cell into the battery once a
full state of charge is attained.

When applying fast constant-
voltage charging schemes, you must
reduce the charge rate when the
battery becomes fully charged. This
condition could be handled by sensing
the current decay when the battery
was almost fully charged and then
switching to a lower constant-voltage
level. A simpler method would be to
just time the duration during which
the high constant voltage was applied
before dropping to a reduced constant-
voltage float level.

Finally, higher battery tempera-
tures increase the chemical reactions
taking place in the battery. Because of
this increase, less charging voltage is
required to fully charge the battery at
high temperatures in a given length of
time. On the other hand, it takes a
higher voltage to fully charge a battery
at low temperatures in the same
amount of time. In either case, when
operating in the temperature range of
5-45”,  it’s generally not necessary to
worry about changing the charging
voltage. However, when operating out
of this range, a negative temperature
coefficient from 2.5 mV to 3 mV per
degree Celcius  is recommended.

DIRECT
CONNECT
A time-cutting
approach to
pkig-in  data

n acauisition

Constant-current charging is, in
many applications, the best means of
restoring battery capacity quickly
without adversely affecting battery
life. This charging method is especially
effective when several cells or batter-
ies are charged in series. The idea
behind constant current charging is to
apply a uniform current to the battery
regardless of the battery voltage (the
state of charge). Overcharging lead acid
batteries does become an area of
concern when the constant current
charging method is applied.

Save  volttable project time with ADAC’s
DIRECT CONNECT’” data acquisition
modules. FREE DIRECTVIEW” Board
Tutorial and Data Acquisition software
means a shorter learning curve and
quicker results. CALL FOR A FREE COPY
Thermocouple 8 Channel
A/D Board $650

At a low state of charge, lead acid
batteries are tolerant of high charge
rates. As full charge is approached,
manufacturers recommend cutting
back the charge rate to prevent
unpleasant situations such as venting
of internal gasses. If you’re charging at
rates below 1 C, then you most likely
can get away with just a simple single-
stage charger. Charge acceptance of
lead acid batteries is good at low
constant current rates. Charging at a
0.01 C rate, charge acceptance is about
90% at 25°C throughout most of the
charging period. Although charging at
such low rates will extend the battery
life, realize that the recovery time for a
dead battery can be up to 100 hours at
such low current levels.

l Direct Connection to Thermocouple
wires and shields

-0d”C  resolution
*Software selection of J,K,T,R,S,&B

Strain Ga
8

e 8 Channel
A/D Boar $795

l Direct Connection to 3 & 4 wire
Strain Gages

l 1 pstrain  resolution
*Quarter. Half & Full brid e completion
l On-board excitation vo tage7

If battery capacity must be
recovered quickly, a two-stage con-
stant-current charger makes the most
sense. When the battery is at a low
state of charge, hit it with a reasonably
high current falling back to a trickle
current when the battery approaches a
state of full charge. The voltage across

RTD 8 Channel
A/D Board $795

l Direct Connection to 4-wire  RTDs
l 0.02” C res., 100 ohm platinum
l 1 mA current source per channel

Hi h Resolution 8M6 Channel
%A/ Board $895
l 16 bit A/D resolution
: FMkF throughput (50 kHz option]
-....

-8 lines digital I/O
-3 channel counter/timer

Multifunction 8/16 Channel
A/D Board $595

l 12 bit A/D resolution
025 kHz throughput
l DMA, Prog Gain
l 8 lines digital l/O
-3 channel counter/timer

Many other models available, Call:

I-800-648-6589

70 Tower Office Park, Woburn, MA 01801
FAX (617) 938-6553 TEL (617) 935-6668

#138
The Computer Applications Journal Issue #36  July 1993 75



lead acid batteries is a pretty good
indication of the state of charge. When
charged at constant current, there is a
definite voltage increase as the battery
becomes 90% charged. Voltage sensing
is a convenient and simple method of
detecting when a high charge rate
should be cut back. Use a level of
about 2.50-2.65  volts when charging at
a 0.1 C rate to terminate fast charging
and switch to a trickle level of about
0.002C. Figure 2 shows some of the
charging attributes using constant-
voltage and constant-current methods.

FAST CHARGE HELP
Some of you have probably

concluded by now that the proper care
and feeding of rechargeable batteries is
no small feat. This is particularly true
when it comes to fast charging,
especially with NiCd or NiMH
batteries. The situation is made more
difficult when employing sophisticated
capacity determination techniques to
conclude the fast charge portion of the
sequence. The whole thing is made
more intricate by the fact that you will

most likely want to employ auxiliary
cutoff mechanisms to prevent battery
destruction if the primary charge
determination method fails. Further-
more, it would be wise to detect an
out-of-spec battery temperature and
then to withhold the application of the
charging current until the battery was
at an acceptable temperature. Finally,
secondary conditioning functions such
as discharge before charge are very
useful to help extract maximum
battery capacity and should be consid-
ered if you’re crafting a deluxe battery
management system.

Previously, such functions were
only attainable using a microcontroller
with an analog-to-digital converter, a
power source (usually constant
current), various switching transistors,
and a small pile of discrete compo-
nents. The most costly ingredient-
and most difficult to get right, of
course-was the firmware. Consider-
ing the amount of work involved in
such a design undertaking, it’s not
surprising that many people found that
a resistor and diode didn’t look so bad

after all. Luckily, things change for the
better sometimes. Dedicated ICs are
available now that perform all the
functions I just mentioned and cost
just a few bucks. There are a lot to
select from, but I found the bq2003
fast charge IC from Benchmarq  to be
truly one of the better parts on the
market.

Usable as an efficient switched-
mode constant-current source, the
bq2003  can operate as a frequency-
modulated controller for charging
current. Alternatively, the bq2003 can
be used with a transistor or SCR to
gate an external current source,
usually in a pass configuration.
Monitoring of temperature, voltage,
and time throughout the fast charge
cycle allows termination of fast
charging using delta temperature/delta
time, negative delta voltage, maxi-
mum temperature, maximum time, or
maximum voltage. Delta temperature/
delta time and/or negative delta
voltage are generally used to make the
decision of when to cut off the fast
charge to NiCd batteries. When used

Does your big-company mzketing
Steve Ciarcia and the Ciarcia Design Works staff may have the solution.

department come up with more ideas
We have a team of accomplished programmers and engineers ready to

than the engineering department can
design products or solve tricky engineering problems. Whether you

cope with? Are you a small company
need an on-line solution for a unrque problem, a product for a startup

that can’t afford a full-time engineer-
venture, or just  experienced consulting. the Ciarcia Design Works is

ing staff for once-in-a-while designs?
ready to work with you. Just fax me your problem and we’ll be in touch.

Remember...a Ciarcia design works!

Call (203) 875-2 199 Fax (203) 87.58786

7 6 Issue #36 July 1993 The Computer Applications Journal



with NiMH  batteries, the delta
temperature/delta time method proves
to be a very reliable fast charge
termination method. Requiring a
single thermistor to monitor the rate
of increase of temperature for con-
tacted cells, this method is more
efficient than a typical two-thermistor
arrangement. Such an arrangement,
used in the standard delta temperature
method, uses one thermistor at the
battery and a second to monitor the
ambient temperature. For safety,
backup termination based on absolute
temperature, maximum time, and
maximum cell voltage is available.

Configurable as a one-stage, two-
stage, or three-stage charger, the
bq2003  provides the level of sophisti-
cation required to suit the particular
application. Two-stage charging
consists of an initial fast charge
followed by a continuous trickle
charge that is set by an external
current limiting resistor. With three-
stage charging, the initial fast charge is
followed by a topping off charge at one
eighth the rate of the fast charge rate.

Following this interval, an externally
controlled trickle charge of about
0.025C can be applied as a minimal
charge sustaining level.

The discharge before charge
feature is switch selectable and
provides for automatic discharge of the
battery to a nominal one volt per cell.
Once this level is reached, the fast
charge is automatically started.
Discharge before charge provides
conditioning services useful to prevent
the dreaded memory effect that
commonly afflicts NiCd batteries and
to provide capacity calibration capa-
bilities.

Direct LED control is provided on-
chip to show charge status conditions
such as charge pending, discharge, fast
charge in progress, charge complete,
and charge aborted. Figure 3 depicts
the pinout of the bq2003 fast-charge
IC.

ALL CHARGED UP AND READY
TO GO

Next month I’ll apply the bq2003
to some real charging tasks and wrap

things up with a discussion of battery
conditioning. I’ll also present a
complete, although somewhat intimi-
dating, battery management circuit
based on a chip that possesses even
more capabilities than the highly
integrated bq2003.  Until then, hold
off on those resistor and diode charg-
ers. q

{ohn  Dybowski is an engineer in-
volved in the design and manufacture
of hardware and software for indus-
trial data collection and communica-
tions equipment.

Benchmarq  Microelectronics, Inc.
2611 West Grove Drive, Suite 109
Carrollton, Texas 75006
(214) 407-0011

419 Very Useful
420 Moderately Useful
421 Not Useful

- 1 & 2 Year Warranty
* TechnIcal  Support by phone
. 30 day Money Back Guarantee
l FREE software upgrades available via BBS
l Demo SW via BBS (EMZODEMO.EXE)  (PBlODEMO.EXE)
l E(e)proms  2716 8 megabit, 16 bit 27210-27240,27C400  & 27C800,
l Flash 28F256-28FO20,  (29C256-29COlO  (EMP-20 only))
l Micros 8741A,  42A, 42AH,  48,49,48H,  49H. 55,87C51,87C51FX,  87C751,752
l GAL, PLO from NS, Lattice, AMD-16V8,  2OV8,  22VlO (EMP-20 only)

~

(Monday-Friday, 8 am-5 pm PST)

#139

The Computer Applications Journal Issue #36 July 1993 7 7







be stored as well on the same tape. While mention is made Again in the computer video area, Abstract 5 from
of permitting the VCR to be used as a mass storage device, Personal Computer Cameras Inc. makes your PC into an
one could also envision this technique being used to store electronic still-video camera. Their novelty in this patent
time-stamp data or other timely information related to the seems to stem from compression and decompression of the
recorded video information. Applications in security and video image and its compatibility with standard PCs,
manufacturing rapidly suggest themselves. specifically IBMs (or compatibles) and the Apple Macintosh.

Patent Number
Issue Date

Inventor(s)
State/Country

US References

US Class

Title

Abstract

5,oi 9,914
1991 05 28

Dropsy, Patrick J.
FRX

3 1 , 8 6 3  4,138,694 4,380,047 4,530,048 4,575,773 4,752,833 4,812,920 4,819,059

3581310 3581335 358/l 2 360132 360133.1

System for recording and/or transmitting binary information at a high data rate via known means for
recording and/or transmitting video information, and for decoding the digital data

A method and an apparatus encode and decode binary signals representative of digital information onto or
from a high-frequency carrier wave. The carrier wave replaces the chrominance signal of a composite video
signal. Encoding and decoding of the binary signals are by phase modulation and demodulation of the
carrier wave. The method and apparatus allow simultaneous transmission of both the binary signals and the
monochrome portion of the composite video signal. The apparatus can be configured to serve as an
interface between a minicomputer and a composite video recorder, so that the composite video recorder
can be used as a mass storage peripheral.

Patent Number 5,138,459
Issue Date 19920811

Inventor(s)
State/Country
Assignee

US References

US Class

Title Electronic still video camera with direct personal computer (PC) compatible digital format output

Roberts, Marc K.; Chikosky, Matthew A.; Speasl, Jerry A.
VA
Personal Computer Cameras, Inc

4,074,324 4,131,919 4,302,776 4,456,931 4,571,638 4,614,977 4,758,883 4,803,554 4,829,383
4,837,628 4,847,677 4,903,132 4,905,092 4,963,986 4,972,266

3581209 358/l 40 358193 3581903

An electronic still camera comprising a lens, shutter, and exposure control system, a focus and range
control circuit, a solid state imaging device incorporating a Charge Couple Device (CCD) through which an
image is focused, a digital control unit through which timing and control of an image for electronic process-
ing is accomplished, an Analog-to-Digital (A/D) converter circuit to convert the analog picture signals into
their digital equivalents, a pixel buffer for collecting a complete row of an image’s digital equivalent, a frame
buffer for collecting all rows of an image’s digital equivalent, and a selectively adjustable digital image
compression and decompression algorithm that compresses the size of a digital image and selectively
formats the compressed digital image to a compatible format for either the IBM Personal Computer and
related architectures or the Apple Macintosh PC architecture as selected by the operator so that the digital
image can be directly read into most word processing, desktop publishing, and database software pack-
ages including means for executing the appropriate selected decompression algorithm; and a memory
input/output interface that provides both temporary storage of the digital image and controls the transmis-
sion and interface with a standard Personal Computer (PC) memory storage device such as a digital
diskette. The digital diskette is removable inserted into the housing of the camera prior top use in recording
digital image data.

82 Issue #36  July 1993 The Computer Applications Journal



Regardless of where this particular patent fits, I do believe it
is only a matter of time before digital still-video takes its
place in our everyday life.

My professional involvement with touch-input indus-
trial display systems leads me to closely monitor new
developments in this area. Abstract 6 presents a novel way
for a user to interact with a video display by using his finger
as a pointing device. This Digital Equipment Corp. patent
apparently involves electronically capturing an image of the
user’s finger and the background field to which he is
pointing. It does not seem to be limited to pointing to a
computer display screen, and in fact might work as well or
better if he were pointing to a large control console. The
device uses some fancy image processing and pattern
matching techniques for extracting various responses from
the image. From all this, the location of “blolss,”  object
edges, lines, and terminated line segments are identified.
Finally, the position of a pointing object such as a finger is
recognized from all this and is used to “direct an applica-
tion program in a most natural way without the distraction
of manipulating a data input device.”

Finally, a method of correlating recorded video and
textual information is presented in Abstract 7. This “video
transcript retriever” would permit text to be searched for in
a computer transcript. It then links this text to the position
on the video recording where these words were recorded,

many diverse applications for such a device. Certainly,
educational and courtroom applications come quickly to
mind. But if one had an adequate speech-to-text conversion
mechanism available also, then any type of videotape
recording could be processed to produce a computer-
searchable document that, in turn, could be used to index,
access and retrieve the corresponding video information. q

Russ Reiss holds a Ph.D. in EEICS and has been active in
electronics for over 25 years as industry consultant,
designer, college professor, entrepreneur, and company
president. Using microprocessors since their inception, he
has incorporated them into scores of custom devices and
new products. He may be reached on the Circuit Cellar
BBS or on CompuServe as 70054,1663.

Patent abstracts appearing in this column are from the
Automated Patent Searching (APS) database from:

MicroPatent
25 Science Park
New Haven, CT 065 11

(203) 786-5500  or (800) 648-6787

and then accesses that spot on the videotape. There are 422 Very Useful 423 Moderately Useful 424 Not Useful

Patent Number
Issue Date

Inventor(s)
State/Country
Assignee

US References

US Class

Title

Abstract

5,168,531
1992 12 01

Sigel, Claude
c o
Digital Equipment Corporation

3,701,095 4,468,694 4,783,833 4,884,225 4,905,296 5,014,327 5,059,959

382148 382142 382116 3401709

Real-time recognition of pointing information from video

An occurrence of a predefined object in an image is recognized by receiving image data, convolving the
image data with a set of predefined functions to analyze the image data into occurrences of predefined
elementary features, and examining the occurrences for an occurrence of a predefined combination of the
elementary features that is characteristic of the predefined object. Preferably the image data are convolved
directly with a first predefined function to determine blob responses, and a second predefined function to
determine ganglia responses indicating edges of objects. Then the ganglia responses are convolved with a
third predefined function to determine simple responses indicating lines in the image, and the simple
responses are combined with the ganglia responses to determine complex responses indicating terminated
line segments in the image. A pointing finger, for example, is recognized from the combination of a blob
response and a complex response. The method, for example, permits a data input terminal to recognize in
real time the presence, position, and orientation of a pointing finger, to eliminate the need for data input
devices such as “mice” or “joysticks.” Therefore a user can direct an application program in the most natural
way, without the distraction of manipulating a data input device.

The Computer Applications Journal Issue #36 July 1993 83



Patent Number
Issue Date

Inventor(s)
State/Country

US References

US Class

Title

Abstract

5172,281
1992 12 15

Ardis, Patrick M.; Markovich, Marko R.; Thompson, Kevin W.
TN

4,641,203 4,924,387 4,941 ,125

360172.2 360/33.1  3641409 369/l 4

Vrdeo transcript retriever

A video transcript retriever includes a control unit. a control interface, a tape unit, and a display unit. The
control unit includes a control computer having a software package consisting of control software, text
software, and edit software. The control software has the capacity to permit simultaneous operation of both
the test software, which is capable of storing and searching voluminous documents, and the edit software,
which has the capacity to operate the tape unit with precision. The text software is capable of performing a
search function that at any time can provide the exact location of a specific passage within the searched
document in terms of page and line. The edit software has the capacity to provide at any time the timecode
number prerecorded on the videotape that corresponds to a specific passage. The process for locating and
retrieving specific information on a videotape includes the steps of striping the videotape by assigning a
numerical address for every one-thirtieth (l/30) of a second segment of the videotape; indexing the words
written in a computer transcript to the words spoken on the videotape by assigning a timecode number to
both the computer transcript and the videotape segment where each question/answer passage begins; and
instructing the tape unit to shuttle to a precise tape location determined by the timecode  numerical address
located during the search of the computer transcript.

w

w

w Compatible with any RAM
or ROM memory  mapping

Runs up to 50 times faster than
the MCS BASIC-52 interpreter.

Includes Binary Technology’sn

Memory mapped variables

In-line assembly language
option

Compile time switch to select
805 l/803  1 or 8052/8032  CPUs

SXA51  cross-assembler
& hex file manip.  util.

n Extensive documentation

n Tutorial included

n Runs on IBM-PC/XT or
compatibile

H Compatible with all 8051 variants

n BXC51  $295.

508-369-9556
FAX 508-369-9549

Binary Technology, Inc.
P.O. Box 541 l Carlisle, MA 01741

At last!
Real time industrial control for your P.C.

under Windows TM or DOS TM

The I/O Bits
Machine Programming System

1/O Bits is the innovative software using icon base
programming that turns any IBM PC compatible into
powerful real time controller for mechanisms an
machines.

l Intuitive “flow diagram” style programming
using easy-to-understand icons

l Program your machine without ladder
diagrams or coding.

l Test machine operation in minutes or hours
l Full function industrial control elements
l On-line help with examples and tutorials
l Use the printer port and get 17 I/O lines for

free.

I/O Bits for the parallel port. $99.
I/O Bits for Mechanisms $499.

Position Sensitive Robots, Haverhill, MA
508-521-9580 voice, 508-521-9584 fax.

#134

84 Issue #36 July 1993 The Computer Applications Journal



The Circuit Cellar BBS
300112001240019600114.4k  bps
24 hours/7 days a week
(203) 871-198~Four incoming lines
Vernon, Connecticut

This month in ConnecTime,  we stat-t off with a discussion of
grounding issues and noise. How many times have you attributed a
problem to noise?

Next, we talk about the best way to make a homemade
accelerometer. It turns out to require more mechanical than electrical
skills.

Third is a thread about winding matching transformers for an RF
power amplifier. We don’t often stray into high-frequency analog
design, so there are some interesting tidbits in this one.

Finally, there are many methods for defecting the zero crossing
of an AC signal. Which is the right way for you?

To ground or not to ground

Msg#:l2665
From: RONALD HORNER To: BOARD DESIGNERS

I have 280 controller board that I built and I am not
sure if I should ground the chassis of the enclosure to the
same ground as on the 5-V supply or the DC 5-V power
supply? I have been told that all grounds should be com-
mon, but I wonder if some isolation of the 5-V supply
should be considered to prevent noise from entering the
system?

Msg#:12749
From: ED NISLEY To: RONALD HORNER

I think the answer is “it depends”-how’s that for
advice?

From a safety standpoint you want the enclosure
connected to earth ground so it cannot become “hot” if it’s
shorted to a power supply. If any of your connectors use the
enclosure as the common side, you want it connected to the
logic ground to minimize the noise injected into the inputs.
ESD and EM1 considerations tell you to keep all signal
currents off of the enclosure, but connect it to the power
supply common so it shields the circuitry.

You pay your money and you take your options.. .but
leaving the enclosure floating is a bad idea on all sides!

Msg#:l3049
From: RONALD HORNER To: ED NISLEY

Yes, I always ground the enclosure to earth ground or
the same ground on the neutral/ground of a 120-V side, but

the low voltage? Shouldn’t the 5-V ground not be part of the
enclosure ground?

Msg#:l2811
From: JAMES MEYER To: RONALD HORNER

If you are going to make connections to the outside
world, the best way is with optically isolated I/O modules.
If you do that, then there is no necessity to ground the
supply to any part of the chassis.

Msg#:l3050
From: RONALD HORNER To: JAMES MEYER

Right, that’s what I believe in for absolute integrity!

Msg#:l3171
From: ED NISLEY To: RONALD HORNER

To ground or not, that is the question!
I know I’ve had trouble with widgets on my desk that

came about because they were not referred to power line
ground. After I added a few clip leads here and there, the
mysteries Went Away.

Betcha Pellervo has some cogent observations on this
topic dating back to when he did something involving
kiloamperes and megavolts! Come in, Pellervo.. .

Msg#:13186
From: RONALD HORNER To: ED NISLEY

You know, I don’t believe that ground is really ground.
I mean, in my experience “ground” is only an antenna to
draw in more noise. I like isolation. Absolute isolation
using fiber optics, optical encoders, isolation transformers,
and the like. Everybody has their theories on the stuff, but
for me it’s always trouble.

Msg#:13425
From: ED NISLEY To: RONALD HORNER

Yeah, Steve’s opinion on isolation is that a laser diode
across the driveway beats a half-inch copper ground strap
any day...

Msg#:l3691
From: PELLERVO KASKINEN To: RONALD HORNER

The unfortunate side effect of the term “grounding” is
that several people expect a connection to a ground rod to

The Computer Applications Journal lssue#36  July 1993 85



solve all their interference problems. That simply is not
possible. Maybe a term such as “return path” would be
more appropriate. Even then, you have to realize there are
different mechanisms of noise coupling. All of that, of
course, is covered by a gentleman named Maxwell (which
coverage, by the way, was the basis for Einstein and his
grand achievement).

Frankly, any and all signals are referenced to SOME-
THING. If you use an optocoupler, your reference is closer
to the place where you need your signal, but the reference is
still physically there. Now, generally the difficulties people
have with “grounding” is because their signals run through
too long, or mixed, paths or there are more signals than the
one of importance to you in the common path (the
“ground”). If you can make a truly zero impedance (not only
resistance] for your “ground,” there would be no interfcr-
ence. In real life, you cannot defeat inductance in any
physical length of wire, whatever thickness, so you are
bound to get voltage drops along the length of it. If you
happen to have two of the wires, to establish an indepen-
dent reference, you start seeing the signals and interference.

The different types of noise coupling that I have been
dealing with are direct voltage drop in common runs,
capacitive coupling to nearby high-impedance circuits, and
inductive coupling between parallel wires or wire loops.
You might add a radiated signal (i.e., your “antenna”], but
that is just a generalized case of the inductive and capaci-
tive coupling mechanisms. And the remedies are slightly
different depending on the MAIN mechanism of coupling.

Electrostatic (capacitive) coupling is combated with
increased distance, either physically or by shielding, and/or
changed impedance levels at the receiving side.

Electromagnetic coupling is reduced by reducing the
loop size. The traditional use of twisted pairs is the prime
example. It is effective for both the transmitting and for the
receiving side. Your use of optocouplers works also partly
on this principle, reducing the loop size. Another way is to
reorient some of the wire runs. Make the signal line run
across the noisy line rather than along with it.

As far as the common grounding rules go, they are not
necessarily optimum for some signal situations, but they
are necessary for the safety. There is another loop or return
path that is mandatory. In fact, your desire to separate your
signals (“not grounding”) is one way of reducing the
coupling through a shared path. The power line grounding
efficiency varies greatly and the resistance is always large
enough to cause problems to the unwary.

Basically, use common sense for selecting the points of
signal common and do some experimentation, like Ed
suggested, with clip leads and you may find a point that
pretty much counterbalances the stray signals your power
supply and other necessities cause. Once you have found a

86 Issue #36 July 1993 The Computer Applications Journal

good point, you may be able to use that until you make
some (almost any) changes to your circuit.

Msg#:l4009
From: RONALD HORNER To: PELLERVO KASKINEN

Thanks for the info. What you said pretty much sums
up what I know and suspected. I’ll be doing more research
on this. The main problem I have had is one of credibility!
Noise appears to be both a hidden problem for machines
that don’t work, but it is also used as an excuse for bad
programming or a bad design. So, I am starting to gather
some written material from professionals on their studies
and experiences to use as a wedge between the truth and
the fairy tales.

Msg#:l4041
From: RUSS REISS To: RONALD HORNER

Wow! You struck a sensitive nerve with that remark!
While it’s commonplace for programmers and engineers to
point fingers, one at the hardware and the other at the
program, it seems they BOTH love to blame “noise” for any
problem that cannot be identified within a short time! I
have seen precious few cases of true noise problems, and
those that have appeared were usually the result of poor
engineering practices by neophyte designers. Your compen-
dium could be a real service to newcomers on how to do it
right!

As a postscript, while sometimes necessary to get a
product out the door, I don’t see “software filtering” as a
cure-all solution to inadequate hardware design, either.

Accelerometers

Msg#:13013
From: STEPHEN PHILLIPS To: ALL USERS

I would like to use a strain gauge as an accelerometer.
The sensitivity would have to be high (for my ignorance of
these devices, I could be wrong). Since f = ELI and the mass I
intend to use is 1 gram, this would mean a strain gauge at
least capable of sensing CC I/lOOOth  of a Newton. I do not
expect a force grater than 1 N ever being placed on the
strain gauges (however, you never know].

I would like to use these to detect sudden (i.e., erratic)
changes in the stability of a model airplane. I intend to
process these changes by comparing them with some preset
tolerance. A computer will decide what action is necessary.
Since the moment of inertia is large enough, the computer
would not need to be fast since a resolution of <l/both of a
second goes beyond the timing of pulses to standard
hobbyist servos.



Msg#:l3051
From: TOM MAIER To: STEPHEN PHILLIPS

A home-brewed sensor could be made from a piezo
crystal taken from a buzzer:

Mass

I Pie20  I

Surface that moves

This could be used as an accelerometer for a single axis.
You might have to electrically filter out some of the
resonant vibrations that will be coming out of it also.

Increasing and decreasing the mass will change its
sensitivity.

Msg#:l3336
From: STEPHEN PHILLIPS To: TOM MAIER

Hadn’t thought of cheap piezo elements. I need to
measure fairly small changes. I was planning on converting
the output into a PWM signal for a small computer to
process. The output of the sensor goes to a sample-and-hold
circuit. Then that reference is converted to a PWM signal
that is read by a computer, which of COURSE converts it
into some value that has meaning to the computer.

Any way of projecting the sensitivity? Trial and error, I
suppose. What I want to do is use a small computer to
stabilize a model plane that is inherently unstable.

Msg#:l3687
From: PELLERVO KASKINEN To: STEPHEN PHILLIPS

Using strain gauges for an accelerometer is mainly an
exercise in handiwork. You need to build either a mem-
brane or a reed that is anchored at one end (rim, in case of
the membrane) and has your mass attached to the other end
or center. There has to be enough room for the strain gauge
elements to be glued to opposite sides of the flexing
member. Thereby they become elongated/compressed with
any deflection of the support member and a half-bridge or a
full-bridge circuit can be used to measure the relative
difference.

The strain gauges that I have used were capable of
producing up to 10% change in resistance before failure,
provided the glue was equally good. You could count on
reaching over 1 %, but don’t need that much with good
amplifiers, even with DC coupling. I recommend an OP-27.
When I did use the strain gauges more often, I had a
commercial AC excitation bridge instrument. But I have
done or seen some pretty good DC-coupled units as well.
One of them even used a frequency-modulation principle to
send the strain indication from a moving shaft via radio.

The key issue is selection of your materials. Too thin a

membrane appears to give a high sensitivity, but loses some
of it because the strain gauges on the opposite sides are not
affected as much as they would be if attached to a thicker
membrane with the same flexing. Also note that if you
anchor two ends of a reed solidly, then the center moves
very little under a transversal force. If you can, use only one
anchored end. Otherwise, you better make some pivoting
help (i.e., convolutions). The strain gauges should be
mounted as close to the maximum BENDING position as
possible. In the single-end reed case, it is as close to the
fixed mounting as possible. Run the connection leads away
from the mounting.

So, pick up some shim stock, probably about 0.004” to
0.006” stainless steel would be a good starting point. Cut it
to the width of the strain gauges and anchor one end of a
longer-than-your-final-target piece. Attach your mass to
different positions and start shaking the construct. Try to
evaluate the amount of deflection resulting. Cut the strip
shorter. Is it still flexing OK? If yes, cut it more until you
have reached the smallest practical size that seems to do
the job. Then glue the strain gauges in place with good
epoxy (probably requires the regular 24hour cure variety).

For the final implementation, you probably don’t need
to worry about excessive deflection, but if you do, just put
mechanical stops on each side of the free end at suitable
distances.

I hope this is not too cryptic without a picture. Just
don’t have time to do any ASCII graphics.

Msgkl3752
From: JAMES MEYER To: PELLERVO KASKINEN

The only thing I would add to your excellent tutorial is
a word about resonance. Homemade accelerometers often
suffer from insufficient damping. Putting a strain gauge on a
piece of springy shim stock is asking for a big resonant
response at some frequency. Murphy says that that response
*will* be in the center of the range of signals that you’re
trying to measure. 8.)

The cures are varied. Most often involving some sort of
added semiviscous material. Testing and curing those
resonances is partly responsible for the cost of commercial
accelerometers.

RF transformers

Msg#:13318
From: TERRY NORRIS To: ALL USERS

As part of my continuing training as “Jack of All
Trades, Master of None,” I have recently been given the
simple task of building an RF power amplifier. Luckily, I

The Computer Applications Journal lssue#36  July1993 87



found a schematic for exactly what I need. Alas I don’t
know how to build the matching transformer.

Book description:

Tl: 20 turns 30.ohm coax cable, #30 bifilar on
micrometals T-50-6 toroid.

T2: 1 turn of two 50-ohm  coax cables in parallel
through two balun cores stackpole #57-9130.  po=125.

Msg#:l3451
From: JAMES MEYER To: TERRY NORRIS

First, get all the parts you’ll need. Check out some ham
radio magazine advertisements.

Tl uses ordinary enamel insulated “magnet” wire.
Bifilar means to take two (bi) wires (filar) long enough to
make 20 turns and twist them together with about one or
two twists per inch. Take the twisted wires and wind them
20 times through the toroid. Space the turns out to fill the
toroid. If you use wires of different colors, it will make
identifying the windings easier. The start and end of each
winding is important when the connections are made. My
guess is the starts are on one side of your drawing and the
ends are on the other.

T2 is a bit more complicated. In fact, I can’t help you
there without a little more info. Try another message with
a drawing for T2.

Msgk13679
From: TERRY NORRIS To: JAMES MEYER

Alas, the schematic symbol for T2 is the same as Tl.
Also, I was thinking about the word bifilar wound. Isn’t
that the winding technique on noninductive wirewound
resistors?

Msg#:  13748

In that case, just use the description of Tl and change

From: JAMES MEYER To: TERRY NORRIS

the number of turns.

No. It isn’t. “Bifilar” simply means “two wires.”
Usually side by side, and wound at the same time.

If T2 is shown on the schematic exactly like Tl, then
the author must not have been using the coax as anything
other than large-diameter wire. By that I mean the shield
and center conductor at each end of the cable must have
been connected together.

Msgkl3940
From: RUSS REISS To: TERRY NORRIS

You seem to be having problems with the meaning/
construction of these “transmission line transformers,”
particularly T2, which uses coax as the transmission line.

First off, there are a few good books on the subject, if
you should like to become an “expert.” The “bible” is Jerry
Sevick’s  “Transmission Line Transformers” published by
ARRL. Then there are the many excellent/practical/
readable books by Doug DeMaw which address this and
solid-state RF amplifiers in great PRACTICAL detail. I
suggest his “Practical RF Design Manual” published by
Prentice-Hall.

But let’s take a look at your transformer. If you, for a
moment, reverse the “input” and “output” and feed a signal
into the OUT/GND terminals, you can see that it is
impressed across the lower inductor. Due to the phasing of
the two windings and the transformer action, a similar
voltage should be coupled to the upper coil in such phase
that it ADDS to the applied signal producing twice as much
voltage at what you have shown as the “input” terminal
(with respect to ground). Due to conservation of power (if
there were no losses), twice the voltage must mean there is
half the current. So the impedance is 2V/O.51  or four times
what it looks like on the right-hand side. Thus (using your
I/O specification], we can consider this a I:4 impedance
ratio matching transformer (or 4: I going the other way from
out to in). You can use it in either direction, it doesn’t
matter...just  depends on your application and if you are
stepping UP or DOWN the impedances.

The design of these transformers is not critical unless
you are looking for optimum power transfer, very wide band

Now, what about the transmission line? Doesn’t
matter much if it is bifilar (parallel wire) line or coax. The
bifilar approach does not REQUIRE that the wire be
twisted. That makes it more convenient to work with and
somewhat lowers the characteristic impedance of the
transmission line it represents. Coax comes in only some
characteristic impedances, and 50 ohms is very common.
Since, for T2, they wanted 25-ohm  coax, they simply
paralleled two pieces of coax, connecting inside to inside
and outside to outside at each end, and then consider it a
SINGLE piece of 25.ohm coax. You could also buy and use
25-ohm  coax such as Microdot #260-4118-000. If you
choose to use paralleled 50-ohm  cable, I suggest RG- 174-U
for low-power applications. Just be VERY careful when
soldering to it (that you don’t melt the inner insulation and
short inside to outside], and consider a dab of RTV at the
ends to both seal it against moisture and to strain-relieve
the end where it is often subject to stress, If you use bifilar
wire, you can expect rough characteristic impedances of
around 30 ohms for #30 wire and 60 ohms for #32 wire.

88 issue #36 July 1993 The Computer Applications Journal



operation, and so forth. Typically, the characteristic
impedance of the cable used is equal to the square root of
the in/out impedances. My guess is your circuit is matching
12.5 ohms to 50 ohms, which would require the use of 25.
ohm coax (sqrt[  12.5 * 501).  But these have been built with
widely different cable and still work well. What you want is
a line length that is short compared to a wavelength at the
highest frequency it will pass, and yet sufficient inductance
(due to number of turns and the core permeability) to block
circulating currents at the lowest frequency of interest. But
again, I say it’s NOT critical!

Hope that gives you something to get started with.
There are a wide variety of these transformers-in both
unbalanced or balanced form at both input and output. The
widely mentioned BALUN transformer is a BALanced to
UNbalanced  form of these, and may have 1: 1 or other
transformation ratio, as required.

Msg#:l3972
From: RUSS REISS To: TERRY NORRIS

In my other message I forgot to answer what is perhaps
your biggest question with respect to using coax in a
transmission line transformer. How do you connect the
coax!? Well, if you followed my discussion there, you see
that it doesn’t really matter what the transmission line is-
parallel wires or coax. In either case, there are TWO wires
and they are wound “bifillarly” through the core. In the
case of coax, one wire is the outer conductor, while the
other is the inner conductor. So, to get the phasing correct,
you will need to connect the inner conductor at one end of
the coax to the outer conductor at the other end AFTER
winding it through the core.

Zero-crossing detectors

Msg#:ll433
From: GREG PRICE To: ALL USERS

Any ideas out there on a simple circuit to detect the
zero-crossing point of the AC signal so I can switch a
nonlatching relay on and keep it on until a control signal
(8255 buffered) goes low. Thought about an AND gate with
a flip-flop or a PAL. I am sure this has been done many
times and many ways. Any help would be appreciated.

Msg#:ll877
From: JOHN CONDE To: GREG PRICE

Well, the easiest way I know of to detect the zero cross
would be with a zero-crossing detector chip (3059 or 3079, if
memory serves). This will output a pulse when the signal
crosses zero (in either direction). The pulse can gate an SCR

which will keep your relay on. Turning it off is another
problem; the simplest would be to have the control signal
supply the current to the relay (through the SCR), then
when the signal went low, the SCR would turn off and the
relay would drop out. Of course, if the control signal can’t
supply enough current, you can have it control a transistor
that will. Hope this helps.

Msg#:ll889
From: PELLERVO KASKINEN To: GREG PRICE

First, get a zero-crossing signal as a narrow pulse. Then
feed it into the clock input of a D-latch or make one out of
a pair of 3-input  NAND gates. One input on each for data, a
second one for the cross connection, and the third one tied
together for the clock.

I used an optocoupler to provide the basic zero detec-
tion, or actually the signal polarity detection. I fed the
output to an XOR directly to one input and through a O.l-
ms RC time constant filter to the other input. Got 0.1 -ms
narrow pulses on every zero crossing.

Msg#:ll915
From: LARRY G NELSON SR To: GREG PRICE

How about a Motorola MOC3011  or similar. These are
optoisolators with zero-crossing detect and triac  output.
Not sure the exact part number you would want, but this
could be the ticket for what you are looking for.

We invite you call the Circuit Cellar BBS and exchange
messages and files with other Circuit Cellar readers. It is
available 24 hours a day and may be reached at (203) 871-
1988. Set your modem for 8 data bits, 1 stop bit, no parity,
and 300, 1200,2400,  9600, or 14.4k  bps.

Software for the articles in this and past issues of The
Computer Applications Iournal may be downloaded from
the Circuit Cellar BBS free of charge. For those unable to
download files, the software is also available on one 360K
IBM PC-format disk for only $12.

To order Software on Disk, send check or money order
to: The Computer Applications Journal, Software On Disk,
P.O. Box 772, Vernon, CT 06066, or use your VISA or
Mastercard and call (203) 8752199. Be sure to specify the
issue number of each disk you order. Please add $3 for
shipping outside the U.S.

425 Very Useful 426 Moderately Useful 427 Not Useful

The Computer Applications Journal Issue #36 July 1993 89



hile I don’t claim to be any sort of an economist, I still can’t help but think of world events in terms of

mathematics. I guess my math professors would be proud of me for that. One “formula” I have been attempting

V to understand lately is the following set of relationships and what they mean:

Consumer willingness to purchase and their satisfaction is inversely proportional to computer pricing. Computer pricing trends are

inversely proportional to profit margins. Consumer satisfaction is proportional to profit margins. The derivative of reduced computer

pricing is increased consumer performance expectations. Increased consumer expectations has a direct linear relationship to a

vendors need to invest heavily in R&D, which is inversely related to quarterly profits. Companies driven by margins must raise prices

or cut costs.

Based on the first relationship, cost cutting is the only alternative for many. This means staff reductions or using lower-cost

materials. Lower-cost materials means lower quality (in some cases), which is inversely proportional to consumer satisfaction. Lower-

cost materials is inversely proportional to company profits? Lowered staff counts leads to lower morale. Lower morale is inversely

proportional to productivity. Lowered productivity is inversely proportional to company profits. What a no win situation!

As you can see, this is a complex set of relationships with many interrelated factors. Although I still haven’t found any unifying

factors that lead to a steady state or predictable response curve for the equations, I doubt anyone else has yet, either. Witness the

recent turmoil in the appliance (er, commodity) market for home computers. Tumbling prices, fallen kings, paradigms shifting as rapidly

as the Sahara sands, and former industry powerhouses crippled in the channel and bailing water. This state of affairs has got to have

the marketing and accounting departments quaking in their shoes.

I remember attending one seminar where it was said that if the car industry had advanced as rapidly as the computing industry,

you would be able to buy a car that was the size of a matchbox, went 500 miles an hour, and cost about a dollar. Car prices are going

up and things haven’t changed much. Computer prices are avalanching downward and performance is skyrocketing.

Dog eat dog is one thing, but an industry eating itself alive is quite another. Many pundits claim that the consumer is benefiting

from this chaos with more MIPS and computing power on their desk than most nations were able to afford as few as twenty years ago.

But I wonder, if many companies fall by the wayside, or simply give up, from this unbridled shake out...Will  the truly gifted

developers look for more peaceful pastures to explore, thus slowing the pace of innovation? Will this reduction of players in the

marketplace lead to a kind of Orwellian nightmare of one company providing the computing platforms. Imagine if the Post Office were

the ones in charge of computing development....price increases without a lot of performance gains. Not a pretty sight.

So are all of these signs indicative of a vibrant, exciting market? Or is this chaos a portent of things to come? Well, a lot of these

companies started out in garages. Maybe some of them will be back there again soon.

96 Issue #36  July 1993 The Computer Applications Journal


