MMD-2

Tutorial User’s Guide

00000000 E3L Inst 3 i wporated
Rev C

81 First Streset . Derb’ Corme ut 06418

MMD-2 TUTORIAL USER'S GUIDE

by John Bockelmann

@ Copyright E&L Instruments Inc.
July, 1981

Acknowledgements

This book would not have been possible without the editorial
assistance of Matt Veslocki, Keith Edmonds, David Levine and Susan
Carbone. Thanks are due to Jose Gonzales for some of the drawings,
and Marybeth Mikos for her help as we assembled the final document.
Also appreciated were the numerous suggestions and comments made
by others within E&L and in the field.

The Engineering Department,
E&L Instruments Inc.

WARNING

AhkEk kA Ak kA kA Ak kA Ak kA A A Ak kA A A kA A Ak Ak kAR Ak Ak ATk rkkkhk kA kR hkhhhhhkk

FEDERAL REGULATION (PART 15 OF FCC RULES) PROHIBITS THE USE OF

COMPUTING EQUIPMENT WHICH CREATES RADIO OR TV INTERFERENCE

TR IAAA AR AKX KA KA A A A A A A AR Ak hhkkhdrhk A dk A hkhk kb x o hkhhkhkhkdddhhd ke kdkkkhid

E & L Instruments specifically warns the user of this instrument
that it is intended for use in a classroom or laboratory environment
for the purpose of learning and experimentation. When building
experimental circuits, it may emit interference that will effect
radio and television reception and the user may be required to stop
operaton until the interference problem is corrected. Home use of
this equipment is discouraged since the likelihood of interference
is increased by the close proximity of neighbors.

Corrective measures:
Interference can be reduced by the following practices.

1) Install a commercially built RFI power filter in the power
line at the point where the cord enters the unit

2) Avoid long wires. They act as antenneas

3) If long wires must be used, use shielded cables or twisted
pairs which are properly grounded and terminated

8Q7-0018

TABLE OF CONTENTS

FHRRUERION . « vovms v v o ow 2 0 w4 4 Page
SECTION 1

BaSTC FEAEHFES o v o wom m v 8- 0 %5 o e smen s s Page
SECTION 2

Bazlc Feature Experiments v « o 5 5 ¢ 9 o0 o = % s = Page
SECTION 3

Avanced Featthres & « o o » s 5 5 = w8 $ %% v & & = Page
SECTION 4

Advanced Feature Experiments o .. Page
SECTION 5

Final Motes . . « « » & R e B R B Page
APPENDIX

POL R Cale TallE o it e b b e n e e e Page

15

36

a4

74

75

(Blank Page)

LMIPEOR T e

HOW TO USE THE MMD-2 MANUALS

Your MMD-2 is one of the most sophisticated microcomputer training and
development systems available. Using a combination of different manuals
aimed at different levels of understanding and different types of readers,
we have tried to describe the computer and its operating software (EXEC C)
as comprehensively as possible.

The manuals have been designed to support several different routes to
understanding the MMD-2 and how to use it. The choice of one of these depends
largely on your experience with microcomputer hardware and programming.

1.

If you are starting from scratch, the best approach is probably to use

the MMD-2 in conjunction with E & L's Technibooks V and VI, and the

MMD-2 manual entitled "USING THE MMD-2 WITH THE TECHNIBOOKS". Technibooks
V and VI are written around E & L's earlier MMD-1 trainer, but with minor
differences will work with the MMD-2. These differences are covered on a
chapter-by-chapter/step-by-step basis in "USING THE MMD-2 WITH THE
TECHNIBOOKS". You will also need the manual entitled "MMD-2 TUTORIAL
USER'S GUIDE", which replaces Chapter 4 of Technibook V.

If you've been through the Technibooks before with an MMD-1, you probably

should read the chapter comparing the MMD-1 and MMD-2 systems in the
manual entitled, "USING THE MMD-2 WITH THE TECHNIBOOKS", and go through the
“MMD-2 TUTORIAL USER'S GUIDE".

If you're fairly knowledgeable about micros but know nothing about the

MMD-1, you should probably just go through the "MMD-2 TUTORIAL USER'S
GUIDE".

If you're virtually expert with microprocessor systems, you might skip the
preliminaries and simply Took at the "MMD-2 QUICK REFERENCE MANUAL".

If what you want are the technical details, consult the "MMD-2 REFERENCE
MANUAL", together with the "MMD-2 EXEC C SOFTWARE LISTING" and the "MMD-2
SCHEMATICS".

The following is a 1list of manuais available for use with the MMD-2:

Using the MMD-2 with the Technibooks (Part No. 801-0192)

MMD-2 Schematics (Part No. 801-0205)
MMD-2 Tutorial User's Guide (Part No. 801-0213)
MMD-2 Reference Manual (Part No. 801-0228)
MMD-2 Source Listing (Part No. 801-0229)

MMD-2 Quick Reference Manual (Part No. 801-0230)

(Blank Page)

MMD-2 TUTORIAL USER'S GUIDE

Introduction

The MMD-2 wuser's quide is designed to help you become familiar with the
organization, function and operation of the MMD-2 computer system. Each major
section of the computer will be examined and its function described. Also
included are detailed instructions on the operation of the computer as well as
short programs which will help familiarize you with the computer.

This user's guide tells you about two things: How to use the MMD-2 for 8080A
machine language programming and how to use the various auxiliary functions of
the MMD-2. Therefore, in order to understand this user's guide and use it
effectively, it is essential that you have some knowledge of machine lanquage

(as this guide does not teach this subject). This guide assumes a knowledge
equivalent to that in the first three chapters of Technibook V (E & L Instruments
Part Number 345-1020).

This guide is organized using the following format. Section 1 explains the basic
structure and features of the computer. Section 2 provides you with a series of
experiments to help you become familiar with the operation of the computer.

Section 3 introduces you to the computer's more advanced feature. Section 4
includes experiments designed to demonstrate these features.

Objectives
When you have completed this guide, you should be familtar with the following:

1. You will have an understanding of the major sub-sections of the computer
how they interrelate to form a complete system.

2. You will be familiar with the general operation of the computer and
understand the functions available from the keypad and associated controls.

3. You will know how to interpret the output displays on the computer.
4. You will be able to enter, modify and run machine language programs.

5. You will understand how to interface the MMD-2 computer to an external
terminal and tape recorder.

6. You will be able to use the MMD-2 to program and verify EPROMs.

7. You will know how to use the breakpoints and step features to observe
program execution.

SECTION 1

THE BASIC FEATURES OF THE MMD-2

Introduction

The MMD-2 computer is an 8080A-based computer system. It is a complete, functional
computer capable of loading, stering, and running machine language programs.

These are programs written in machine language, the most elementary language the
computer understands. This chapter will introduce you to the MMD-2 computer's
functional components, systems and operating procedures. In using this guide,

it is assumed you have access to an MMD-2 computer, and that the computer is in
operating condition.

Objectives

When you have completed this section, you should be able to do the following:
1. List the different DC voltages needed to operate the computer. You will
know how much current is available at each voltage for external
experimental circuits you can connect to the computer.

2. Understand the capabilities provided by all the functions available on
both keypads.

3. Understand the function of the mode selector switch and reset push button.

4. Know how to read the seven-segment displays for address, data register
information and special command words.

5. Understand how to interpret the HALT, HOLD, and' INTE indicator LEDs.

6. Understand how to read the binary output LEDs for data and address
indications.

7. Describe the operation of each of the main sections of the computer, and
understand why they are part of the computer and how they interact with
the rest of the computer.

8. Know the difference between random access memory (RAM) and erasable
programmable read only memory (EPROM).

How the MMD-2 Computer is Used

The MMD-2 (Mini-Micro Designer-2) is a complete microcomputer system. It contains
keypads for data and control function entry, seven-segment displays for the
digplay of data, and twenty-four individual LEDs (light emitting diodes) arranged

as three parallel output ports (8 LEDs per port) used to display binary data.
(An output port is a section of the computer used for sending data to external
devices.) The computer has built-in solderless interfacing sockets, which
are used to provide convenient access to the signals produced by the MMD-2.
These signals are used for interfacing the computer to external circuits, and
are discussed in greater detail in E & L's Technibooks Volumes V and YI. Also
included are an EPROM programmer, a serial I/0 (input/output) port which is
used to connect the computer to a teletype or similar terminal device,and a
tape recorder interface which is used for saving and loading programs from
audio tape cassettes. You will find that it is much simpler to load a program
from tape rather than key it in by hand each time you wish to run it. Included
as well is an STD interface socket (STD is the designation of a particular bus used
in control applications, and is widely used in industry by many manufacturers).
The STD bus is used to connect the computer to other external devices. Each of
the connections on the STD interface has a specific signa1 from the computer
connected to it which is standardized so that devices using this 1nterface

will function with the MMD-2 computer.

The keypads Tocated on the bottom right corner of the computer are used for
entering programs and data. Additional uses of the keypads include: examining
and changing the computer's memory, executing a stored program, examining and
changing the contents of various user storage registers which simulate those
inside the microprocessor itself, setting breakpoints which are used in testing
the operation of a program, and loading and saving programs on tape. It is not
necessary that you understand the operation of the keypads at this time; each of
their functions will be explained later.

The RESET button can always be used to return control to you via the keypads. The
small eight-element DIP (Dual Inline Package) switch next to t“a keypad has
several uses. Switches one through four, labeled WEQO through WE3, are used to
write-protect the RAM. Write-protection means that after a program has been
entered into RAM, the computer cannot change (write into) the memory; it can

only read it. Switch five, labeled SPARE, has no defined function. Switch six,
labeled HEX/OCTAL, is used to select either hexadecimal or octal data entry and
display. Switch seven, labeled PUP/RESET, is used to change the function of the
RESET button. WUWhen switch seven is in the RESET position, the RESET button will
perform a system reset. A system RESET allows EXEC C to gain control of the
computer, update the displays and wait for input from the keypads. In the PUP
(Power UP) position, the EXEC C firmware will perform a complete power-on
initialization. The PUP performs all the functions of the RESET and also
initializes the USER REGISTERS (explained later) and performs other housekeeping
tasks needed to initialize the computer. The PUP is necessary in the event a
“user program accidently writes over the system RAM causing EXEC C to malfunction.
If this happens, switch seven is placed in the PUP position and the RESET button
is pressed. This will perform a complete initialization avoiding the need to

turn the computer off, which would destroy a user program in memory. Switch
eight, labeled EXEC/USER is used to control the function of output ports 0, 1 and
2. These ports consist of eight LEDs each. This switch controls whether the LEDs
are to be used as standard output ports displaying data which has been specifically
sent to the output port by a user program, or if they will be used to display

the binary information which corresponds to the data on the seven-segment displays
which is generated by the system-supplied firmware.

CPU

[
[.

| S W

L LLb
[
[

o .

Le el
LLLLL
Ll
i A
[N
celel
L LLL

I

LLLub

| I N
Lty
LtLLuL
LLLLL
Y S L
LL L
L LiL
| I W
LiL bLLL
[N I Y
e Ll
L Lot
| W Ny Ry Iy
Ll LLei
LLLLL
e bl
| S S W B
L Let
[N
L LLL
LLLLtL
L LLL
L LUL
LLLLL
[| Sy
[.
Lk LLL

1B +5 (A}
= GNDIA)
B 12V
u-12VIAY
o -5V

8 BAD
BAY
HBAZ
mBA3J

R BAd
| BAS
WBAu
®mBAT
®BAS
WEBAD
WBAID
mBAT
mEAT2
mBAI3
BBA A
mBA IS
mBRo
mBD1
mBn?2
W83
mBh4
mBRE
=806
meD7
HMEM R
®ACK
| NT

W READY
mINTE
L
mOUT
uMEM W
o WAIT
WRESET
=Ml

B HALT
EHLDA
" WR
mED_
= |0RL

M RESTART 7
BRESTART 3
WRESTARY 2
WAESTART |
WRESTARTO

L O O]

1C58

T4 zes
b
&

L1 1 T 1 1 1.1

o T |

® a3e7 Kcse
STD
BUS

INTERFACE

4

Gh Jsa +12A_12a I

ca9

7410532 iCS8

TALSITA IC59

L]

T1T 1T 1T 1T

S S

13

rRED)
14!.52!:

<30

B080AF

cas

¢t

STD
INTERFACE

C37 Cat

1IC17

L= &]

+

TAL 574

Aaa it 1 i

Po

T

®741508 1CE0

(=}]

I T

=4
&

-

T4L 5244

cod

T 1 3 1 i I il

. rrv 7T 1 ' .2

s

L b & 2 3 & L

e

1.L

D

L]

2 1 v L L L

) . -

L i i)

4 L i

1 1.1

L

® 5228

1%

The eight-element DIP switch functions 1ike eight individual SPST switches.

They are activated by pressing on the ends of the rockers to switch from one
position to the other. For example, to place the HEX/OCTAL switch into the

OCTAL position, press down on the right side of the switch.

Three additional LEDs are provided to monitor specific operating conditions of the
MMD-2 computer. When the HALT LED is on, it indicates that the computer has
executed a HALT (HLT) instruction and that the computer has stopped. The

easiest way to return from a halt is to press RESET. You could turn the computer
off and then on again, but your program will be lost by this method. HOLD is a
condition similar to the HALT condition in which the processor is stopped and

will remain inactive while the BUSRQ control Tine is held low (grounded). Releasing
the BUSRQ Tine will cause the processor to resume normal operations. When the
instruction "Enable-Interrupts" (EI) is executed, the ENABLE-INTERRUPTS (INTE)

LED will turn on.

These controls and indicators will be discussed in more detail later. On the
following pages there are pictures of the MMD-2 computer in which the functional
areas are displayed. FEach section has a specific purpose. You will gain an
understanding of each of the sections and how they function as you progress
through this chapter.

The Major Computer Blocks Are:

1. POWER SUPPLY. The computer power supply is located inside the chassis.
The computer is turned on by the switch on the back left hand side of the
chassis. It glows red when turned on. It has been located on the rear
of the MMD-2 to prevent accidentally turning the unit off. The power
supply converts the 115 or 230 VAC 1ine voltage coming into the computer
into the lower DC voltages needed to run the computer. These voltages
include +5 VDC at 3 amps of which 500 Ma is available for user
experiments. Also supplied are +12 and -12 VDC at 500 Ma of which
250 Ma is available for user experiments. A -5 VDC supply is derived
from the -12 VDC supply and is also available for experiments, although
its use reduces the 250 Ma available from the -12 VDC supply. There is
also a 26 VDC supply for programming EPROMS which is not available for
user experiments. Al1 power supply voltages are current limited and
short circuit protected. Regulation is within 5% on all supplies, except
the 26 VDC supply, which is within 2%.

2. STD INTERFACE. The STD interface is an industry standard interfacing
scheme for many different 8-bit computers. This interface standardizes
the physical and electrical aspects of modular 8-bit computer plug-in
circuit card systems. It provides an orderly interconnection scheme which
many manufacturers are currently using. This means that devices
manufactured by different companies which employ this STD bus structure
can be connected directly to the MMD-2. This feature provides easy
expansion of the computer system with additional memory or other special
devices used to extend the usefulness of the basic computer.

3. CENTRAL PROCESSING UNIT (CPU). This section is the "heart" of the computer.
The 8080A microprocessor and its system controller (8228) act as the
central clearinghouse for all information passing through the computer.
There are few functions not directly controlled by the CPU.

L I s g
CG asn

b1 s L A L M

SYSTEM CLOCK

v LI 11 L ISR FE N S W y DNRE, ST ¢
* *
B2 4 CH 74U S04 1C20

S T A S 06 8 3 00 30080
0700 00 100 1S BSE OO0 W O 00 9

i)

T rr Iy

P 2114
i o s
2114
-

14
O

T vr vt
S T W S .
L1 1 1T Y 1 1

T3 L T) 1

[l 0 B WS T]

]
w
w
S TEE SRS SRS VAED SN SR Sy ovend damke AN Seld SEEE SENS e
r a?
-
o
T 1

‘0
P

®cs

i . S
A4 i 3 1 i 1 i

2114
2114
2114

L L s A L A 1 1
L

| SLION S SIS (N

SYSTEM RAM USER RAM

CLOCK. The microprocessor's clock produces the timing pulses which keep
the entire computer operating in sequence. Clock signals are used to con-
trol the operation of the CPU chip, the timing of the serial 1/0 interface
sections and generally to provide standard timing pulses for all sections
of the computer to insure that all sections function in synchronization
with each other. The quartz crystal in the clock section has a frequency
of 6.75 megahertz (Mhz). This is used to control the 8224 clock generator
chip. This chip produces the actual clock frequency used by the 8080A
microprocessor. The 8224 chip provides two separate clock pulse trains
called phase one clock and phase two clock. The crvstal (XTAL)

frequency is divided by nine to produce an actual clock frequency of 750
kilohertz (Khz). The maximum clock frequency for which the 808CA
microprocessor is designed is 2 Mhz which would require an 18 Mhz crystal.
The MMD-2 computer is capable of operating at 2 MHz. The slower clock
rate was chosen to be compatible with the MMD-2 computer (the original
training computer produced by E & L Instruments, Inc.) and E & L's
Technibook series of tutorials.

EPROM. This is the Erasable Programmable Read Only Memory, which con-
tains the operating system. The operating system is a program which
manitors the keypads and the mode selector switches and performs the
pre-defined functions assigned to the keypads. The operating system will
be discussed later. The program in this EPROM was developed by E & L
Instruments, Inc., and is called EXEC C. The remaining one or two sockets
in this section are spare, allowing an additional EPROM (or EPROMs) to

be installed as needed. The spare EPROM sockets allow you to add your
own programs to the system. '

Note that an identification tag covers the window area of the EPROM. If
you 1ift the cover paper, you will see the actual integrated circuit
chip. The cover is left in place to prevent ultraviolet 1light from
accidentally erasing the program stored inside the EPROM. Both 2708

and 2716 EPROMs can be used in the MMD-2; however, they cannot be inter-
mixed. The 2708 EPROM is an eight-bit by 1K device, while the 2716 is
an eight-bit by 2K device. This means that twice as much information
can be stored in the 2716 EPROM than in the 2708 EPROM. To select the
appropriate connections for 2708 or 2716 EPROMs, consult your Reference
Manual (E & L Part Number 801-0228).

RAM. These Random Access Memory (RAM) devices are the read/write memory
devices that will contain the programs you generate while using the MMD-2
computer. RAMs are also known as volatile memory, because when you turn
the trainer off, the programs contained in these devices are Tost. The
programs stored in the EPROM memory are not lost by power failure. The
first RAM section is labeled SYSTEM RAM and consists of two 256 by four-
bit devices which are connected to produce a "scratch pad" memory of

256 eight-bit words. This area is used by EXEC C and should not be
modified by the user. The next section, called USER RAM, consists of two
1K by four-bit RAMs, which provide you with 1024 eight-bit words of
storage for your programs. The last three sockets are provided for ex-
pansion to 4K (4096 eight-bit words) of user storage. Most MMD-2 units
will come from the factory compiete with all 4K of RAM in place.

b B S N T

Do

T 1 T T T

)1
o

Ct5

SERIAL I/0

) - -

01

33 o

P js2e7

CONTROL

p ETI Y L PR TO R gy BT
jcas an nz222 = 0K }m R8T
4N35 1T 53
4LsT4 ICS2
.
> T LT >.
L] T T
) I 1 L “ L J
» PRIORITY INTERRUPT
I Oans
B B y W il Y S .
] C De
¥ B CONTROL T Ty
i [* % 15 s
\C39
INTERRUPT CTTTTTT -
Pe
CQ &0 ol i MM e i | 5
3 P ® 7aLs74 IC30
; L 74154 iC32
ﬂ ;SN TS S L] [] -
o - -
¥ Do i
4 b o e e e i
g 3 b4 . -
U 21 rasaa icae B
wl =
0 : 2
u
B
3 [2T] .
i o
-|x L L
> 74L502
- -
,!. I I At i L) R Ry 2
«® = = f® L4
« L N - ey
®ra 508 iC3a ® aLs5244

130
R

IVAAIINT AVIdSIA/AYdATY

it L Lt s 0% % 3% £ 0 PoVORETQL

FIFP T R ETrT T T T T T T T FrF T TrTrord

3
1TVH Q
sz¥d
zmmmawxunt arm ket ol TSI
13534/4040) oo
1W130/%3 oo <4 H
WYS] o 1 L
TIM | oo 4 F
E3m [=) = b
1 | HH .. JOVH¥ILNI
03m | ITTD] o e S : “ ” pois llal \fql—ﬁ—m_o\
oow : 4 of @ “* G- QYVOgAIN
3 . ; L-3:2-}
vz3 —G T.ooE EL
O o o LI
 cz) evy =(GoL =
] . KT c&l.El.
e KT

@3

L L4 1 3 8}

°d [-1s) £sy

va ta ta 10

H 3 a 3 3 2
°0 S0 o €0 zo 10 vou
L] or¥ ez Lzu oTH sEH -

ovd ecH otu vCHy ICW
[1-1']

mm m o == Evy
. 85y

| — w._o) LZIINE

W G6C¥ LEY SCH CCH ity (13 1} n—.v.._..

i

| Sl o 1 I
0
-
[3

ik
)

;

i S S N A
*q

b R . €

) DL BN

10.

SERIAL 1/0. The MMD-2 computer has two basic methods of communicating
with external devices. These methods are called PARALLEL I/0 (which

will be discussed later) and SERIAL I/0. Many common I/0 devices, in-
cluding TTYs, CRT {cathode ray tube) terminals, tape recorders and printers
use serial I/0 techniques to interface with the computer. The MMD-2
provides two different types of electrical connections between the computer
and peripherals. The first type is called CURRENT LOOP and requires

that data signals from the computer be converted to the presence of a

20 Ma current or the absence of that current to represent logic 1 or

logic 0 signals. This signal is commonly used to interface with a
teletype. The other output signal, RS$-232, requires that the digital
signals from the computer be converted to a positive voltage level to
indicate a logic 1, and to a negative voltage level to indicate a Togic 0.
The MMD-2 uses +12 and -12 volts for this purpose. RS-232 is commonly
used in interfacing to CRT terminals or other devices located within about
10 feet of the computer. CURRENT LOOP can be used to send signals many
hundreds of feet. The serial I/0 section of the computer also has the
interface circuitry to convert digital signals to audio tones, which are
used to store data and programs on cassette tape. The audio conversion
conforms to the Kansas City Standard, which is one of several common
methods used to store data on audio cassette tape.

CONTROL. This section contains the circuits for input/output and memory
address- decoding; that is, these circuits take multiple address and
input/output lines and select a specific input port, output port or
memory address for reading or writing. The exact method used for address
decoding is unique to the MMD-2 and will be discussed in greater detail
in the chapter on advanced features.

PRIORITY INTERRUPT. This section of the computer cortains the 8214 priority
interrupt controller chip. This chip and its eight associated inputs are
used in processing interrupts. The techniques for interrupt handling will

be covered in the advanced features section.

KEYPAD AND DISPLAY INTERFACE. This section contains the circuits required

to decode the data and function keys of the keypad and the circuits- used
to encode the data for the seven-segment displays. This section also
contains the seven-segment displays. The transistors located above the
displays are called the display drivers. These circuits supply the drive
current needed by the displays. The displays are called "seven-segment
displays" because each display contains seven separate segments as shown
in the illustration captioned SEVEN-SEGMENT DISPLAYS (Page 10).
Each segment is independently driven, thus providing the capability to
construct the patterns of decimal digits and most alphabetic characters
accurately. However, to avoid confusion between certain digits and
alphabetic characters, such as B (£) and 8 (£), special “"codings"

are required. Figure 1 shows segment arrangements which are used with

the MMD-2. Note that the digits are the same for both octal and
hexadecimal. The unique interpretations are required for some alphabetical
characters. A complete character set for the seven-seagment displays is
provided in Appendix IV of the MMD-2 Reference Manual.(E & L Part Number
801-0228).

SEVEN-SEGMENT CHARACTER SET

Figure 1.

e O 0 Wiy

EEE-D, C050,8, " 0,~0 Or
1 o1 03 o4 2% a ar L ol
i o - v v ry L3 v O -

| = 3

SEVEN-SEGMENT DISPLAYS

10

11.

12.

13.

14.

INPUT PORT. This port is provided to allow the user a convenient method

of inputting data from external circuits to the computer. The port can

be used as an interface between circuits you construct and the computer.

PORT 0, PORT 1, PORT 2. These are the output ports which control the LEDs
located in three rows of eight on the lower left-hand side of the computer.
The eight connections from each output port are also available on the
solderless breadboarding strip on the left side of the computer. These
ports are used to send data from the computer to external circuits. When
the EXEC/USER switch is in the EXEC position, these LEDs show the
binary code for the numbers displayed on the seven-segment displays hy

the EXEC C firmware. The following is the format for this output:

* Port 1 indicates the upper 8 bits of the memory address. It is
blank in REGS and AUX mode.

* Port 0 indicates the lower 8 bits of the memory address. It is
blank in REGS and AUX mode.

* Port 2 indicates the 8-bit data word contained in the memory address.
It can also indicate the eight-bit data word displayed in REGS and
AUX modes.

You will notice that the output port LEDs do not change their values when
you change the HEX/OCTAL switch. This is because both hexadecimal and
octal are different methods of interpreting the same binary information.
When the EXEC/USER switch is in the USER position, the LEDs will not
change until data is specifically sent to them by your program. When the
instructions OUT 0, OUT 1 or OUT 2 are executed, ther data from the
accumulator in the microprocessor chip will be displayed on the selected
output port LEDs and the corresponding data will be available at the
electrical connections to the specified port on the solderless plug
strip. Note that the least significant bit ~is on the right and the
most significant bit is on the left. When all the LEDs are 1it, the
code indicated is 377 or FF, depending on which number base you are using,
octal or hex respectively.

EPROM PROGRAMMER. The EPROM programmer works in conjunction with EXEC C
to perform the functions necessary to program and test both 2708 and

2716 EPROMs. The EPROM programmer allows you to: verify that an EPROM
is erased, to actually program the EPROM, and to test to make sure that
the programming was successful. The EPROM programmer can be used when
you have written a program which you want to store on a permanent basis
for immediate use. It is much more convenient to store a program,
especially a long one, in EPROM rather than on tape. Loading a long
program from a tape takes time while accessing it from EPROM requires no
Toading.

FUNCTION KEYPAD. The Function Keypad specifies what functions EXEC € will
perform. The following text lists the various functions that are
available and explains their uses.

11

i L L | M STROBE

LL|@mour

1771
L [@mout
BOUT 15
mOuT 14
L |mour
WOUT 32
=OUT 11
mOUT
mout 877y
u(yT 86 P!
mQuT 85 0
mOUT 84 R
|a0uT A3 T
mouT 82 0
0UT 81
moutT EIBJ
mOUT 2771
BQUT 26
mOUT 25
= 0UT 24
|OouT 23

- o

wour 22
=mOUT 21
mouT 28
= N 98
N8I
N 82
m N 83
B N B4
wINBS
o IN 86
mIiNa7

e

I-—lJJD'ﬂ —qc'ﬂz—l

L]

-12B

0

EPROM
ROGRAMMER

74

e -

® L]
i L 1 L
-1 - - =
. & i 1
4} s L
e = = -
- B el b
L o o Pt
e - - et
e = | = e
] = s

NN .

Do

Al L L i
>.
T T T T TV

®qasts i1

T 1 T T 7Y

.‘ML 573

TALS 244 ICT

T
oﬁﬁ R0 Ri11 R12 R13

Ri4 RIS RIS ,‘l
$050 0505 0 00 Dz}
9 10 11 2 1) 14 ,J | - . (-

PR T U T

Pe

INPUT PORT a

T4LS244

L
TALSTS cs

ic8

o O T

2“17 RW R19 R20 R R22 R23 R24

050 S0DD 00D
” B 19 0 n 22 pal 24 3

v
OUTPUT PORT

12

L
INPUT PORT

EPROM PROGRAMMER

PREV--This is a decrement address function which selects the memory
address one position back from the address being displayed. Each time
the key is depressed, the new address and data are displayed. It also
selects the previous register in the REGS mode or the previous auxiliary
register in the AUX mode.

STORE--Writes (stores) the data entered from the data keys into the RAM
memory. It also stores data in the REGS and AUX modes. When STORE is
pressed, three dashes are displayed momentarily in the data display to
indicate the data was stored properly.

NEXT--This is an increment address function which selects the next
sequential memory address to either write or read data. The new address
and data are displayed. It also displays the next register in the REGS
mode or the next auxiliary register in the AUX mode.

STEP--This mode of operation enables you to see the sequence of instructions
as they are executed, and to have a clearer understanding of how your
program 1is functioning.

HIGH--This key is used to enter the high-order 8 bits of an address.
LOW--This key is used to enter the Tow-order 8 bits of an address.

GO--This key is used to initjate execution of a program. - When GO is
pressed, execution commences at the address specified.

CANCEL--This key is basically a "clear entry" which returns the displayed
data back to the original data if the STORE key has not been depressed.

The next three keys: MEM, REGS, AUX, change the entire behavior of the
computer. The keys can be considered mode selectors. Each mode of
operation incorporates a different set of functions.

MEM(Memory): This key selects the standard mode of operation in which
data can be written into or read from memory at the address specified
(displayed). Memory mode is the most common operation mode you will use.
This key is also used to return from REGS or AUX mode to MEM mode.

REGS (Register): This key selects Register Mode, in which data will be
written into or read from the specified (displayed) register. This

mode is used to display or alter the simulated internal registers in the
8080A microprocessor chip.

AUX (Auxiliary): This key selects the auxiliary mode. This mode is
used for storing information needed by the advanced features and will
be discussed in detail in the section on advanced features.

13

15,

The following keys are only active when the computer is in the auxiliary
mode:

LOAD: This key is used to read program information from a cassette tape
and place it in the computer's memory.

DUMP: The DUMP key is used to store programs on cassette tape for
Tater recall.

PROM: This key is used to program EPROMs inserted in the EPROM programmer

socket.

COPY: The COPY key is used to copy a block of memory from one location
to another.

OPTION: This key has many functions in connection with the AUX MODE.
These functions include setting memory addresses, the length of data to

be copied or moved, the type of EPROM to be programmed, the address

of the breakpoint, the function of the STEP key, and the BAUD rate

of the serial I/0 port. These functions will be discussed in detail later.

DATA KEYPAD. The data keypad allows you to enter numeric information.

When the HEX/OCTAL switch (switch number eight of the mode selector)

is in the OCTAL mode, the DATA INPUT keys zero through seven are usable
and are interpreted as octal digits. The remaining keys (eight through
F) will have no effect. When the HEX/OCTAL switch is in the HEX mode,
the DATA INPUT keys zero through F are useable and are interpreted as
hexadecimal digits.

[PREV STORE MEXT . STEF .

ooog gEB0
@@@- .MODUH?P%C%.
t=l=f=1=} BEEE
Gaas BEED
DATA INPUT KEYPAD FUNCTION INPUT XEYPAD

14

SECTION 2
BASIC FEATURE EXPERIMENTS

The experiments contained in this section are designed to help you become
familiar with the operation of the MMD-2 microcomputer. They will help you
understand the operation of the basic keypad functions and demonstrate how to
enter and run programs. A1l you will need to perform these experiments is the
MMD-2 microcomputer.

OBJECTIVES
1. To provide you with an understanding of the operation of the MMD-2
computer.
2. To help you become familiar with the functions available in the MEM
{Memory) Mode.
3. To demonstrate how to enter, correct and run machine language programs.
4. To gain familiarity with the way the MMD-2 displays data..

SUMMARY OF EXPERIMENTS IN THIS SECTION

1.

Demonstration of the initial operating condition of the computer when

it is turned on. The function of the HEX/OCTAL switch, EXEC/USER switch
and RESET button will be explained. Operation of the output port LEDs
and seven-segment displayswill also be demonstrated.

Operation of the DATA KEYPAD, and MEM KEY will be demonstrated.

Operation of the NEXT, PREV and STORE keys witl be demonstrated, as well
as the function of the MEMORY PROTECT (WEQO - WE4) switches.

The functions of the HIGH and LOW keys will be investigated to show how
they are used to access different memory locations.

A simple program will be entered into the computer's memory. The GO and
STEP keys will be used to run the program first at full speed and then
to execute it one step at a time.

The function of the REG MODE will be demonstrated. You will learn
how to view and alter the contents of the 8080A's internal reqisters
while stepping through the program.

15

EXEC B EXPERIMENTS

EXPERIMENT 1

The purpose of this experiment is to help you become familiar with the operation
of the following controls on the MMD-2: RESET, HEX/OCTAL and EXEC/USER. You will
also become familiar with the seven-segment displaysand the output port LEDs.

STEP 1.

STEP 2.

Set the MODE SELECTOR switches as follows: A1l switches(1-7) should be set

by pressing down on the RIGHT side of the switch, except for switch eight--
you should press on the LEFT side of this switch. This is considered

the NORMAL operating position. Switches one through four write

enable the RAM memory, switch five is not used, switch six sets the display

format to OCTAL, switch seven implements a normal system RESET, and switch 8
copies the seven-segment information in the output port LEDs.

Apply power to the MMD-2. You will note that the power switch (located
on the back panel) will glow red when the unit is operating. You
should see "EXEC READY" on the seven-segment displays, and the three
output ports will also have some of the LEDs 1it. The meaning of all
these lights will be explained as we go along.

Press the MEM key on the function keypad.

The binary outport port LEDs are arranged in the following order

Most Significant Least Siginifcant
Digit Digit
00 000 000 HI ADDRESS
00 000 000 LO ADDRESS
00 000 000 DATA

When the MMD-2 is turned on, the system begins to perform a program which
is in its EPROMs, and is called EXEC C. This program's initial job
includes a great many "housekeeping" functions, which set up the computer
and get it ready for your use. One of these functions is setting the
starting program address to the specific RAM location 003 000 (octal),

03 00 (hex). This address will be displayed on the seven-segment displays
and the output ports.

Question: What does the high address display equal?
Answer: The value is 003 (03 hex).

Question: What does the Tow address display equal?

Answer:. The value is 000 (00 hex).

16

MODE
JsELECTOR

jamma] wWED
o] wel
fom ein ip o | wWE2
oo | wes
CETT |COPARE)
D e sOCTAL
xR flpries RESET
O - gxEC/uSER

S1
CR2B

@) Iﬂg']HALT
OXT THOLD

cran 993 RO

OZ INTE

16A

SIER 3

STEP 4,

SIEP 5.

Question:

Answer:

What does the data display equal?

The data display can have any value. The address 003 00 (03 00
hex) is one location in the computer's RAM, and because the RAM
has not been preprogrammed, it can have any value when the com-
puter is turned on. It will be your job to replace the random
numbers in these memory Tocations with specific numbers which
will form your programs. '

Change the HEX/OCTAL switch to the HEX position by pressing down on the
left side of the switch.

Question:

Answer:

Did you observe any change in the displays?

No. The displays will change to the new number system after
another key is pressed.

Press RESET.

Question:
Question:
Question:

Answers:

What does the high address display equal?
What does the low address display equal?
What does the data display equal?

We observed the high address displayed 03., the low address
displayed 00. We observed a hex number with two digits in
the data display. This hex number will have the same binary
value that the previous octal number had before RESET was
pressed.

Look at the output port LEDs; some of the LEDs will be 1it in Ports 1

and 2.

Question:
Question:

Question:

Question:

Answer:

Answer:

Answer:

Mark which LEDs are 1it in Port 1: 00 000 000 (LSB).

Mark which LEDs are 1it in Port 0: 00 000 000 (LSB).

Mark which LEDs are 1it in Port 2: 00 000 000 (LSB).

Do the values indicated in the output port LEDs agree with
the hex values indicated by the seven-segment displays?

Port 1 is the HI address, Port 0 is the LO address and Port 2
is the DATA address.

Port 1 is 00 000 O11. The number "1" indicates the LED is 1it,
representing a logic one. The number "0" indicates a logic
zero, with the LED off.

Port 0--00 000 000.

Port 2--The value displayed here will depend on what value
data is stored in lecation 03 00 H.

17

STEP 6.

STEP ¥

STEP 8.

Answer: The seven-segment displays only encode the binary data to make
it more readable. The values indicated on the output port
LEDs and the seven-segment displays should agree.

Return the HEX/OCTAL switch to the OCTAL position and press RESET.

Question: Did the seven-segment displayschange?

Answer: Yes, we observed that the display is again indicating octal
values.

Question: Did the output port LEDs change?

Answer: No. the binary values are constant; HEX and OCTAL are alternate
ways of displaying the same binary numbers,

Change the position of the EXEC/USER switch to USER by pressing down on the
right side of the switch. Press RESET.

Question: What change in the output port LEDs did you observe?

Answer: A1l the LEDs are off. Now the output port LEDs are under user
program control and will only display numbers when specifically
instructed to do so by a program you write.

Return the EXEC/USER switch to the EXEC position.

EXPERIMENT 2

This experiment will demonstrate the operation of the DATA KEYPAD and the MEM key.

STEP 1.

STEP 2.

STEP 3.

STEP 4.

Set switches to their normal starting positions and turn the MMD-2 com-
puter off. Then wait two seconds; turn the computer on.

Press the MEM key on the FUNCTION INPUT keypad. The MEM key selects
the MEMORY mode of operation. This enables you to read/write data into
the computer's RAM,

Press the 0 key on the DATA INPUT KEYPAD three (3) times.

Question: Describe what happened to the seven-segment displaysand the
output port 2's LEDs.

Answer: We observed that each time the zero key was pressed an
additional zero appeared in the data display and the corresponding
LEDs when off on Port 2.

Press the 3 key, then press the 2 key, then press the 7 key.

Question: What number is displayed in the data display?

18

NUESTION: What is the binary code displayed in Port 2? 00 000 000.

Answers: We observed the number 327 on the data display, and Port 2
looked 1ike this: 11 010 111. "The LEDs indicate the binary
code represented by the octal value 327.

You have now selected one byte of data which could be entered into the
system's memory.

STEP 5. Change the HEX/OCTAL switch to the HEX position and press RESET. You are
now ready to enter code in the HEX mode.

STEP 6. Press the DATA keys D, 7.

Question: What number is displayed in the seven-segment displays,and what
is the pattern of the LEDs on Port 27 00 000 000.

Answer: We observed the values D 7 on the data display, and the LED
pattern lTooked Tike this: 11 010 111. This is the same
pattern displayed when we entered 327 in octal. Remember,
whichever method you use to enter data (hex or octal) the
result is an identical binary bit pattern for the data.

STEP 7. Return the HEX/OCTAL switch to the OCTAL position.
STEP 8. Press the DATA INPUT keys 4, 1, 3 (in that order).

Question: What is the code displayed on the seven-segment displays,and
on output Port 2? 00 000 000.

Question: Why is the number on the seven-segment displaysand on Port 2
different than what you entered?

Answers: We observed the number 013 on the seven-segment display, and the
following pattern of LEDs were 1it on Port 2: 00 001 011.

A complete octal digit requires 3 bits. In an eight-bit computer,
the eight bits are broken down into two groups of three bits each,
leaving two bits left over to form an octal digit. Using 2 bits,
the only octal numbers you can generate are 0, 1, 2 and 3. The
numbers between 400 and 777 require 9 bits. Since this is an 8-bit
system, the ninth(or most significant bit) is lost. You cannot
enter the octal codes for numbers between 400 and 777.

EXPERIMENT 3

This experiment will help you become familiar with the process of storing data
into the system's memory, how to view that memory, and how that memory protect
switches function.

STEP 1. Verify that all mode selector switches are in the normal positions and
apply power to the system.

19

STEP 2.

STEF 3.

STEP 4.

STEP 5,

STEP 6.

BIEP 7

STEP 8.

STEP 9.

STEP 10.

STEP 11.

Press the MEM key on the FUNCTION INPUT KEYPAD to place the computer
into the MEMORY mode.

Enter the digits 257 on the DATA KEYPAD.

Depress the STORE key on the FUNCTION INPUT KEYPAD.

Question: What numbers are displayed on the seven-segment displays?
Answer: We observed the numbers 003 000 257.

Pressing the STORE key actually entered the value 257 (AF hex) into the
system's memory at location 003 000. When the STORE key was pressed,
the DATA display momentarily flashed three dashes to confirm that the
data was properly stored. If the data was not stored (for example, if
you attempt to store data where there is no memory) then (NOT. STORED)
will be displayed on the seven-segment displays.

Press the NEXT key on the FUNCTION INPUT KEYPAD.

Question: What do the seven-segment displaysindicate now?

Answer: We observed 003 001 ?7?. The value in the data display is any
random number, because we haven't stored any number in that
location.

Enter the number 074 on the DATA INPUT KEYPAD. Press STORE. This pro-
cedure will enter the number 074 into memory location 003 001.

Press NEXT to increment the memory address.

In a similar manner, enter the numbers 323, 002, 303, 001 003, by enterina
the number and pressing STORE, NEXT. At this point, you have entered a short
program into the system's memory.

Question: What final values are displayed on the seven-segment displays?
Answer: We saw 003 007 7?77,

In this step we will use the PREV key on the FUNCTION INPUT KEYPAD to
review the data stored in memory. Press PREV.

Question: What do the seven-segment displays show?

Answer: We saw the number 003 006 003. This shows the address of the Tast
memory location our program used, 003 006, and the value of the
data storedthere, 003.

Each time you press the PREV key, you should see the address value decrease

by one, and the data byte stored at that location. Press the PREV key

six (6) times. At this point, you should be back at location 003 000.

Press PREV one more time,

Question: What number will be displayed in the address section?

20

Answer: We observed 002 377 ???, which is the next lower address and
the data in the system's memory.

STEP 12. Press the NEXT key on the FUNCTION INPUT KEYPAD.
Question: What does the display show now?
Answer: The display indicates the number 003 000 257.

STEP 13. Press the NEXT key several times and verify that each time it is pressed,
the address is incremented by one and the data display shows the data
stored in that location.

The PREV and NEXT keys provide you with an easy method for looking through
a program to check that data was entered properly or to view a section of
the program. If you discover an error while looking through your program,
enter the correct code and then press STORE. The new data will replace
the old data.

STEP 14. Turn the system off for about ten seconds and then turn it back on. Look
through your program starting at 003 000,

Question: What values are stored in the locations 003 000 to 003 0067
Question: What happened to your program?

Answers: The values stored where your program was are now random values.
Your program was lost when power was removed from the system.

STEP 15. Change the HEX/OCTAL switch to HEX and press RESET.
Question: What does the display show?

Answer: The display shows 02.00. ??. Note: ?? represents the hex
code corresponding to the value stored at location 03 00.

STEP 16. Enter the following codes by first entering the numbers on the DATA
INPUT KEYPAD and then pressing STCRE, NEXT: AF, 3C, D3, 02, C3, 01, 03.
You have entered the same program as before using HEX notation instead
of OCTAL. Press PREV until the address is 03 00 and verify that each
‘byte in the data display is correct.

STEP 17. Return the HEX/OCTAL switch to the OCTAL position and press RESET.

STEP 18. Using NEXT, look through the program and verify that the octal values
are the same as were entered previously.

Question: If you find a difference between these octal values and the
ones you originally entered, what could be a cause of the
difference.

Answer: Possibly you entered one or more digits incorrectly. It is

most important that you use care in entering programs. One
small error will prevent the program from functioning properly.

21

STEP 19.
STEP 20.

STEP 21.

STEP 22.

Press RESET.

Press down on the left side of the first write protect switch labeled WEO
to write protect the first 1K of RAM. The purpose of these four switches
is to prevent the microprocessor from writing any data into memory. Write
protecting prevents the accidental erasure of your program through a
programming error. One possible error is your program writing useless data
over itself. Write protection is used from time to time to protect a
program entered into memory which hasn't been "debugged" (corrected).
Debugging is the process of checking and testing a program to verify

that it is functioning correctly. Write protect will not protect a
program from erasure if the computer is turned off; it only protects

from accidental writing of data by the processor.

Using the STORE key, enter 000.

Question: What did you observe in the display?

Answer: We observed (NOT.STORED). When the memory is write protected,
it is impossible to store new values. It is possible, however,
to restore the value already at a memory location.

Each memory protect switch protects a group 1024 memory locations.

SWITCH MEMORY PROTECTED (OCTAL) MEMORY PROTECTED(HEX)

WEO 000 000 - 003 377 00 00 - 03 FF
WET 004 000 - 007 377 04 00 - 07 FF
WE2 010 000 - 013 377 08 00 - 0B FF
WE3 014 000 - 017 377 0C 00 - OF FF

The message (NOT.STORED) will also be displayed if you try to store data
in non-existent memory or different data in EPROM memory.

Return switch WEQO to its former position.

EXPERIMENT 4

The purpose of this lab is to demonstrate the function of the HIGH and LOW keys.

The HIGH and LOW keys are another address selection method rather than starting

from 003 000 and pressing NEXT or PREV to go to the desired address. If you have to
move more than a very few addresses, these methods become tedious at best.

The MMD-2, as well as most other 8-bit computers, 1is capable of directly addressing
65,536 different memory locations. The range is from 000 000 to 377 377 (00 00 to
FF FF HEX). To address this range, the microprocessor needs 16 bits of address

data. Usually, this data is in the form of two eight-bit bytes, which are treated
as one 16-bit word by the system. The MMD-2 allows us to enter an address from the

22

keypads using the HIGH and LOW keys. The HIGH key enters the eight most significant
bits of the address, and the LOW key enters the eight least significant bits.

STEP 1. Make sure that all the switches on the system are set in the normal
positions and apply power to the computer.

STEP 2. Enter the number 002 (02 HEX) from the DATA INPUT KEYPAD.
STEP 3. Press HIGH on the FUNCTION KEYPAD.

Question: What change did you see in the display?
STEP 4. Enter the number 100 (40 HEX) from the DATA INPUT KEYPAD.
STEP 5. Press LOW on the FUNCTION KEYPAD.

Question: What change did you see in the display?

Answers: After pressing HIGH, we saw the HIGH section of the address
display change from 003 (03 HEX) to 002 (02 HEX). There was
a change in the number in the DATA display, but this is just
random data. When we pressed LOW, the Tow section of the
address display changed to 100 (40 Hex). The data display
will again display the random number stored at the address
002 100 (02 40 hex).

STEP 6. Using the STORE and NEXT keys, enter the following numbers starting at
location 002 100 (02 40 hex): 000 001 002 003 004 005 (01 02 03 04 05
hex) in sequential locations.

STEP 7. Return to your starting address 002 100 (02 40 hex) using the procedure
outlined in steps 2 through 5. Look at the output port LEDs. In Port O
you should see 00 000 010, Port 1 should be 01 000 000 and Port 2 should
be 00 000 000. The ports again display the equivalent binary data
represented by the seven-segment displays. Use the NEXT key to examine
the memory locations where you stored the numbers. While you examine
the memory locations, look at the output ports to verify that they are
changing and displaying the same numbers as the display.

Question: Were the numbers stored properly?
Answer: We observed the correct numbers. The technique of using the
HIGH and LOW keys to specify an address allows the programmer
the flexibility to go to any memory location in the computer's
memory conveniently.
STEP 8. Press RESET.
Question: What happened to the address display?

Answer: The display returned to 003 000 (03 00 hex).

23

STEP 9. Change the HEX/OCTAL switch to the HEX position and press RESET.

STEP 10. Set up the number 3F, using the DATA INPUT KEYPAD.

STEP 11. Press HIGH.

STEP 12. Set up the number 00, wusing the DATA INPUT KEYPAD.

STEP 13. Press Low.
Question: What number is displayed on the address display?
Question: What number is displayed on the data display?

Answers: We observed the numbers 3F 00 on the address display, and an
FF on the data display. Look at the output ports. The LEDs
on Ports 0 and 1 are the binary values for the address display
(00 111 111, 00 000 000). Port 2 has the binary value of
the data displayed on it (11 111 111). You will note that all
the LEDs are on. This is the normal indication you will see
whenever you try to display nonexistent memory. In the MMD-2,
only a small portion of the total address space actually has
memory devices (RAM or EPROM) installed. The rest of the
address space is available for future expansion through the
use of the STD BUS and external memory cards.

STEP 14. Return the HEX/OCTAL switch to the OCTAL position.

EXPERIMENT 5

In this lab you will enter a small program and observe how it operates both while
running at full speed and stepping through it one step at a time. The SINGLE STEP
KEY is a very useful for debugging your proarams. When you run a program at full
speed, it is difficult to find a mistake. Using the single step key, you can

run the program one instruction at a time and see exactly what is happening.

The STEP key allows a user to execute a program in the MMD-2 which simulates the
execution of all 8080 instructions, with the exception of the HALT instruction,
which when executed performs a true HALT function. The software single stepper

is quite different from the hardware single stepper described in Technibook Vol.V,
Chapter 11, Experiment 5. The software single step is more useful debugging soft-
ware, than the hardware single step, which is commonly used in testing computer
hardware.

PROGRAM

ADDRESS CODE LABELS INSTRUCTION OPERAND COMMENTS

003 000 257 XRA A ;CLEAR THE ACCUMULATOR
003 001 323 LOOP: ouT sOUTPUT TO DATA PORT 2
003 002 002 002

003 003 074 INR A s INCREMENT A REGISTER
003 004 303 JMP sG0 BACK AND DO IT AGAIN
003 005 001 LOOP

003 006 003 --
24

This 1isting is called an ASSEMBLY LISTING, and is the standard format used to
describe an assembly language program. The first two columns contain the address
of the instruction. The next column is the numeric value of the instruction.
NOTE: An instruction can be 1, 2 or 3 bytes in length. The next column is
reserved for program labels. This column may be empty. The next column contains
any operand or address needed by the instruction. This column may be empty. The
last column provides the programmer with a running commentary of what the program
is doing and what is the function of each instruction.

Entering a Program

Up to now, we have been entering data into the system, but we have not actually
entered and run a program,

STEP 1. Change the EXEC/USER switch to USER.
STEP 2. Press RESET.

Question: What change has taken place in the output port LEDs?

Answer: A11 the LEDs have gone off. The ports are now controlled by
the user's program.

STEP 3. Store the number 257 (AF hex) into the RAM memory at location 003
000 (03 00 hex).

Question: How do you store the number?
Question: How do you increment to the next memory location?

Answers: To store the number, press STORE. To advance to the next
memory location, press NEXT.

STEP 4. Enter the following numbers sequentially into memory starting at
location 003 001 (03 01 hex): 323, 002, 074, 303, 001, 003 (C3, 02, 3C,
€3, 01, 03 hex).

STEP 5. Verify the program. Using the HIGH and LOW keys, set the computer to
the beginning of the program {location 003, 000; 03 00 hex}. It is good
practice to step through a newly entered program to verify that the
data was entered correctly. To verify the program you just entered:

STEP 6. Does the DATA display equal 257 (AF hex)?

STEP 7. Press NEXT.
Question: Does the DATA display equal 323 (D3 hex)?
STEP 8. Press NEXT.

Question: Does the DATA display equal 002 (02 hex)?

25

STEP 9.

STEP 10.

STEP 11.

STEP 12.

Press NEXT.
Question:

Press NEXT.

Question:

Does the DATA display equal 074 {3C hex)?

Does the DATA display equal 303 (C3 hex)?

Press NEXT.

Question:
Press NEXT.

Question:

Answers:

Does the DATA display equal 001 (01 hex)?

Does the DATA display equal 003 (03 hex)?

If any of the above answers was NO, you have a code entry
error. To correct a code entry error, you have several
options available to get to the address that contains the
error.

THese include:

-Depressing the NEXT key to advance to the address of the
incorrect data.

-Depressing the PREV key to back up to the address of the
incorrect data.

-Selecting the HIGH and LOW address code of the address of
the incorrect data.

NOTE: 1If the address to be selected has the same high-order
address (i.e., 003, 03 hex) you only have to select the Tow
order address byte. For example, to change the code at
address 003 002 (03 02 hex) to read 001 (01 hex) instead of
002 (02 hex) perform the following two steps:

STEP 13. Enter 002 (02 hex), press LOW.

Question:

Answer:

What do the displays read now?
003 002 002 (03 02 02 hex).

STEP 14. Enter 001 (01 hex), press STORE.

You have now replaced the data 002 (02 hex) with the data 001 (01 hex).

Return the data to 002 (02 hex) using the same process.

It should be mentioned that this method for correcting a program works as long as
you are only exchanging one byte for another. If you have accidently left a byte
out of your program, the method for correcting it is more complex. To accomplish
this, you have to go to the address where the missing byte has to be stored and

enter the byte.

Next, you have to reenter the remainder of your program, because

the remainder of the program now has to be shifted one higher memory location to

26

make room for the missing byte. The problem beccmes even more complex if you have
accidentally omitted a program step when you originally coded your program. If that
has occurred, then all jump and call instructions in the program will have to be
checked and the addresses possibly recalculated. This type of problem is generally
minimized through the use of a program called an ASSEMBLER, which automatically
makes this type of address change to correct for modification of the program.

STEP 15. You will now execute the program you have entered and verified. This pro-
gram is a simple routine which counts in binary and displays the binary
number on output Port 2.

Question: What is the starting address for this program?
Answer: 003 000 (03 00 hex).

Question: The easiest method to get to this address would be to press
the button. Two additional methods would be to
key Low or depress the key.

Answer: RESET, 000, PREV (until you arrive at the starting address).
STEP 16. Press RESET GO.
Question: Describe what happened.

Answer: (003.000.G0) was displayed and output Port 2 shows all LEDs
glowing. The program is counting in binary and displaying
the numbers on Port 2. The values are changing too rapidly
for you to see the individual numbers.

Question: How do you terminate the operation of the program?

Answer: Press RESET. Pressing RESET will always terminate the operation
of any program and restart EXEC C. Your program will still
be stored in the computer and can be executed again by
pressing GO.

If you are using the system in the HEX mode of operation, the steps followed
to enter and run a program are the same. The only difference is that the HEX/OCTAL
switch will be in the HEX position.

To actually see how a program functions, the system has a single step key which
gives you the opportunity of running your program one instruction at a time. To
experiment with the SINGLE STEP key, we will use the same program we have
already entered.

STEP 17. Press RESET. The display should show 003 000 257 (03 00 AF hex), which
is the first instruction in the program.

STEP 18. Press STEP.
Question: What is indicated on the displays?
Answer: The displaysindicate 003 001 323 (03 01 D3 hex). The first
instruction, XRA A, 257 (AF hex) was performed. This
instruction is one method of putting the value zero in the

27

STEP 19.

STEP 20.

STEP 21.

STEP 22.

STEP 23.

system's accumulator.
Press STEP.
Question: What happened to the display?

Answer: Now the display indicates 003 003 074 (03 03 3C hex). The
instruction QUT 2, 323 002 (D3 02 hex) was performed. This
instruction took the value in the accumulator and displayed it
on output Port 2's LEDs. Since there was a zero in the
accumulator, all the LEDs remain off.

Press STEP.
Question: What does the display indicate now?

Answer: The display indicates 003 004 303 (03 04 C3 hex). The
instruction INR A, 074 (3C hex) was performed. This instruction
adds one to the accumulator.

Question: What value will be in the accumulator?

Answer: 001 (01 hex).

Press STEP.

Question: What does the display indicate?

Answer: We saw the value 003 001 323 (03 01 D3 hex). The system
- executed the JMP LOOP, 303 001 003 (C3 01 03 hex) instruction.

This instruction caused the computer to jump from location
003 004 (03 04 hex) to the location 003 001 (03 01 hex).

Press STEP.

Question: What does the display indicate?

Answer: The display indicates 003 003 074 (03 03 3C hex).
Question: What does Port 2 indicate?

Answer: The least significant bit on Port 2 is 1it. Again the value
of the accumulator (now 001, 01 hex) has been moved to the
output port and displayed.

Continue to press the STEP key. Each time you go completely through the
program, the value indicated on output Port 2 will increase by one. This
program is an example of an infinite loop, because the program will con-
tinue doing the same thing as long as it is allowed to run.

When you are using the STEP key, it is important to make sure that you

are executing a valid 8080 instruction. The STEP key will not execute any
of the undefined opcodes. These opcodes are: 010, 020, 030, 040, 050, 060,
070, 313, 331, 335, 355, 375 (08, 10, 18, 20, 28, 30, 38, CB, D9, DD, ED,
FD hex}. If you attempt to execute any of these codes, the seven-segment
displayswill have the address of the undefined instruction and the data

28

display will show (ERR.). A second important point is to make sure
that you do not execute the second or third byte of a multi-byte
instruction or a stored data byte. In this case, the STEP program will
execute the data byte as if it were an instruction with unpredictable
results.

You will now change the previous program. This program will be Jonger
than the last program and is more complex, consisting of a main routine
and a subroutine. The program will operate like the last one; however,

we will add a subroutine called DELAY. The purpose of this routine is
simply to waste time. Each time the program enters the DELAY routine, the
system will waste 10 milliseconds (msec) by executing a series of in-
structions in a loop. After the subroutine has been executed, the

routine will jump back to the main program and continue.

MAIN PROGRAM

003 000 257 XRA A ;CLEAR ACCUMULATOR

003 001 323 LOCP: ouT ;OUTPUT TO PORT

003 002 002 002 ;NUMBER 2

003 003 074 INR A 3 INCREMENT REGISTER A
003 004 315 CALL ;G0 TO SUBROUTINE

003 005 030 DELAY ;L0 SUBROUTINE ADDRESS
003 006 003 - ;HI SUBROUTINE ADDRESS
003 007 303 JMP ;JUMP TO LOOP

003 010 001 LooP ;L0 JUMP ADDRESS

003 011 003 -- ;HI JUMP ADDRESS

TIME DELAY SUBROUTINE

003 030 365 DELAY: PUSH PSW ;STORE THE A REGISTER AND FLAGS
;ON THE STACK

003 031 325 PUSH D ;STORE THE D&E REGISTER PAIR ON
sTHE STACK

003 032 021 LXI D ;ENTER THE FOLLOWING DATA IN THE
;D&E REGISTER PAIR

003 033 046 -- sLOAD THE E REGISTER WITH 046

003 034 001 -- ;LOAD THE D REGISTER WITH 001

003 035 033 LOOPER: DCX D ;DECREMENT D&E BY ONE.

003 036 172 MOV A,D ;MOVE THE CONTENTS OF REGISTER D
;T0 THE ACCUMULATOR

003 037 263 ORA E ;LOGICALLY OR THE CONTENTS OF
;REGISTER E WITH THE ACCUMULATOR

003 040 302 JINZ ;IF D&E NOT EQUAL TO 0 GO BACK

29

003 041 035 LOOPER ;7O LOW-ORDER ADDRESS

003 042 003 -- sHIGH-ORDER ADDRESS
003 043 321 POP D ;RESTORE D&E TO ORIGINAL VALUE
003 044 361 POP PSW ;RESTORE THE A REGISTER AND
s FLAGS
003 045 311 RET ;G0 BACK TO MAIN PROGRAM

Question: What is the starting address of the main program?
Answer: 003 000 (03 00 hex).
Question: What is the starting address of the time delay subroutine?
Answer: 003 030 (03 18 hex).
You will now enter and execute the program. We will delete the specific
steps required to enter the program. This will be the way you will
enter programs during the rest of the course. If you are not sure now
to enter the program, review Experiment 3.

STEP 24. Select the main program starting address 003 000 (03 00 hex).

STEP 25. Enter the following code:

HI L0 OCTAL HI LO HEX

003 000 257 03 00 AF
001 323 01 D3
002 002 02 02
003 074 03 3C
004 315 04 CD
005 030 05 18
006 003 06 03
007 303 07 C3
010 001 08 01
011 003 09 03

STEP 26. Select the starting address of the subroutine 003 030 (03 18 hex).

30

STEP 27.

STEP 28.

S1EP 29,

STEP 30.

STEP 371.

STEP 32.

Enter the following program:

HI L0 OCTAL HI LO HEX

003 030 365 03 18 F5
031 325 19 D5
032 021 1A 11
033 046 1B 26
034 001 1C 01
035 033 1D 1B
036 172 1E 7A
037 263 1F B3
040 302 20 c2
041 035 21 1D
042 003 22 03
043 321 23 D1
044 361 24 F1
045 311 25 €9

Look through the program and subroutine to verify that they were entered
properly.

Select the main program starting address 003 000 {03 00 hex) and execute
the program by pressing GO.

Question: What is happening to the LEDs on Port 27
Answer: We observed the LEDs incrementing in the binary counting

pattern. If you didn't observe this result, check your
program and subroutine to make sure that it was entered
correctly.

To change the delay time of the LEDs, modify the contents of address
location 003 034 (03 1C hex). Decreasing this number reduces the delay
while increasing this number increases the delay.

Question: If the number at location 003 034 (03 1C hex) were changed
from 001 to 010 (01 to 08 hex), will the LEDs count
faster or slower?

Answer: The LEDs will count slower because we have increased the
time delay between counts.

Press RESET and use the HIGH and LOW keys to go to the beginning of the
subroutine, 003 030 (03 18 hex).

Press STEP several times.

Question: Are you still in the subroutine, or did you return to the
main program?

31

Answer: We observed that after pressing the STEP key many times, we
were still in the subroutine.

Question: How many times would you have to press STEP to completely execute
the subroutine?

Answer: We calculated it would take 1164 presses to completely execute
the subroutine! The next experiment will demonstrate a
method for avoiding this problem.

At this point, you should have an understanding of how to enter data and programs
into the MMD-2. You should know how to verify the data you entered, how to go
to different addresses in the computer, how to run a program at full speed,

and how to run a program one step at a time.

EXPERIMENT 6

The purpose of this experiment is to help you become familiar with the REGS FUNCTION.
The REGS function, in conjunction with the STEP key, form the basis of a good system
for debugging programs. The REGS function allows you to view the values stored

in the internal registers of the 8080 microprocessor chip. Registers are used

to temporarily store values during the execution of a program. Registers can

also be used to 'control the operation of a program. The values in these registers
cannot be viewed after each program step, unless a program is available which will
show you the values that would be in the registers. The MMD-2 includes special
software called a "debugger"”, which will -allow you to view the processor's in-
ternal registers and change the values stored there. This procedure is commonly
used in testing aprogram to verify that it is working properly.

We will use the following short program to demonstrate the operation of the REGS
function of the computer:

003 000 076 MVI A sMOVE THE NEXT BYTE TO THE
3ACCUMULATOR

003 001 010 --

003 002 075 LOOP: DCR A sDECREMENT A BY ONE

003 003 303 JMP ;D0 IT AGAIN

003 004 002 LOOP ;LOW HALF OF ADDRESS

003 005 003 -— sHIGH HALF OF ADDRESS

STEP 1. Enter the following program into memory, starting at address 003 000
(03 00 hex).

HI LO OCTAL HI L0 HEX
003 000 076 03 00 3E
001 010 01 08
002 075 02 3D
003 303 03 c3
004 002 04 02
005 003 05 03

32

The program will load a number 010 {03 hex) into the A register.
Next, the program will decrement the A register by one and jump
back to the decrement instruction. The program is again an
infinite loop and will continue until YOU stop it. The REGS key
will allow you to see the contents of the various registers in
the microprocessor. The REG KEY selects the REG MODE,

STEP 2. Press RESET to bring the computer back to the beginning of the program.

STEP 3. Press REGS. The display should now read (REG A. 000). Each time you
press the NEXT key, the next successive register and its contents will
be displayed. The order of these registers is A, B, C, D, E, H, L, SH,
SL, FL. (repeat}. The SH and SL registers are the high and low bytes of
the stack pointer register and FL will display the flag register.

Flag Byte Assignments

STEP 4. Press NEXT to verify the order of registers to be displayed. When you
reach the A register again, stop.

STEP 5. Press STEP. The A register should show 010 (08 hex) as the data because
the first step in the program loads that number into the A register.

STEP 6. Press STEP. When you depress STEP, the A register was decremented by one.
Question: What is the contents of the A register now?
Answer: 007 (07 hex). The A register has been decremented by one.

STEP 7. Continue to press the STEP key. On every other press of the key, the A
register will be decremented by one. Notice that the A register will
change from 000 to 377 (00 to FF hex) and will continue to count down.
The program will continue to run in this Toop until you stop it,
because the system is not testing for any special contidion, such as a
zero value in the accumulator or a negative number (sign). NOTE: 'In
this case the zero condition would occur when the number in the accumulator
changed from 001 to 000 (01 to 00 hex) and the negative number (sign)
would occur at the 000 to 377 (00 to FF hex) change. These conditions
are called FLAGS. Flags can be tested using different instructions;
on the basis of the flag tested, the system can take different courses
of action. For more information about FLAGS, consult Technibook Vol. VI,
Unit 23.

STEP 8. Press RESET, press REGs. Place the EXEC/USER switch in the EXEC position.
STEP 9. Press STEP until the A register attains the value 001 (01 hex).

STEP 10. Press NEXT until the FL register is being displayed. Look at Port 2.
You will see the binary representation of the microprocessor's flags.
Look at the seventh LED from the right. This LED indicates the condition
of the ZERO FLAG. The LED is off because the value in the accumulator
is NOT ZERO.

33

STEP 11.

STEP 12.

Press STEP twice.

Question: What happened to the ZERO FLAG LED?

Answer: The LED went on, indicating that the value in the accumulator

is now zero.

Press STEP twice.

Question: What changes did you observe in the LEDs in Port 27

Answer: LED 7 went off, indicating that the accumulator has a non-zero

number in it and that the SIGN FLAG LED 8 went on indicating
a negative number. {You will also see the AUX CARRY, LED 5,
change from ON to OFF.) In computers, negative numbers are
indicated by having the most signigicant bit set to a one.
Codes between 200 and 377 (80 and FF hex) therefore are
considered to be negative numbers.

Besides being able to view the values in the internal registers of the
8080A microprocessor, you also have the ability to change these registers.
This function is useful if you are stepping through a loop which repeats
many times and you wish to get to the end of the loop rapidly. For
example, consider the following change in the previous program:

003 000 076 MVI A ;MOVE THE NEXT BYTE TO THE
; ACCUMULATOR
003 001 377 --
003 002 075 LOOP: DCR A ; DECREMENT A BY ONE
003 003 302 JINZ ;KEEP DECREMENTING UNTIL A=0
003 004 002 LOOP ;ADDRESS TO
003 005 003 -- 3JUMP TO
003 006 166 HLT sHALT, DUMMY INSTRUCTION IN

;PLACE OF ADDITIONAL PROGRAM

You will note that the JMP instruction has been replaced by a JNZ
instruction, which will execute while the zero flag is not set (off)
indicating that the accumulator has anumber in it which 1s non-zero.
When the accumulator's value goes to zero, the program will not jump

to LOOP, but will execute the HLT dinstruction instead. To test this
program to verify that it functions correctly, you have two options.
First, you could step through the loop until the A register counted down
from 377 to 0 (FF to 00 hex), which would take a considerable amount
of time. The other approach is to step through the loop once or twice
to verify that the loop is functioning, then change the value in the A
register to 001 (01 hex) and then step through the program to see if
the exit from the Toop operates correctly. This method takes Tless time
and provides the same information as the first method.

34

STEP 13. Change the byte at location 003 003 from 303 to 302. Change the byte
at Tocation 003 008 to 166. Change the byte at location 003 001 from
001 to 377. Press RESET, GO.

Question: What happened when you pressed GO?
Answer: We observed that the HALT LED turned on immediately. To
actually see what is occurring in this program you have
to use the STEP KEY.
STEP 15. Reset the computer and enter the REGS MODE. Press STEP several times.
Question: What did you observe happening to the value of the A register?

Answer: We observed that the values started at 377 (FF hex) and counted
down 376 (FE hex), 375 (FD hex), etc.

STEP 16. Enter the value 001 (01 hex) and press STORE.
Question: What change did you see in the display?

Answer: We saw the value in the A register change from 375 to 001
(FD to O1 hex).

STEP 17. Press STEP twice.
Question: What changes occurred?

Answer: We -observed the value in the A register change from 001 to
00 (01 to 00 hex).

STEP 18. Press STEP twice.
Question: What change occurred?
Answer: We observed the HALT LED turn on indicating the program did not
execute the JHZ instruction since the value in the accumulator

is zero. The program skipped that instruction and executed
the next instruction, which was the HLT 166 (76 hex) instruction.

You can use the DELAY subroutine for additional practice using STEP and REG modes.
You may want to enter different values in the DE register pair and observe their
effect on the loop.

At this point you have been introduced to the basic functions of the MMD-2 computer.
You now have an understanding of how to enter and test your programs.

35

SECTION 3
THE ADVANCED FEATURES OF THE MMD-2

Introduction

In addition to the basic features discussed in the previous section, the MMD-2
microcomputer includes advanced features designed to make the computer more
versatile. The CASSETTE INTERFACE permits storage of programs on magnetic tape
for later re-use. Program development is facilitated by storing programs on tape
from one session to the next, because the time needed to enter the program

each time is eliminated. Saving a program on tape also avoids having to re-enter
it after a power failure or program "wipe out".

An EPROM PROGRAMMER is available. This device is used to "pop" (store) a program
into either 2708 or 2716 EPROMs. This feature is useful when you have a program
which is going to. be used many times, cor if you want a program available whenever
the computer is turned on. For instance, EXEC C is stored in EPROM and is used
each time the computer is activated.

Another advanced feature is the TELETYPE INTERFACE. The teletype interface is
used to connect a teletype (or similar terminal) to the MMD-2. Terminals are
necessary if you are using a high-level language, such as BASIC.

An additional feature is the DYNAMIC ADDRESSING SYSTEM, which allows the user
to relocate RAM and EPROM memory conveniently. This feature is automatically
used during the start-up sequence. It can be used to simplify the develcpment
of programs which will run in EPROM. The specific techniques for memory re-
location will be discussed in Section 4.

The AUX MODE nrovides the user with several options to enhance the operation

of the computer. Included are: a BREAKPOINT which can be used in debugging
programs, software control of the SINGLE STEP function to include a MULTI-STEPPER
option, and selection of BAUD RATE for the serial interface.

The final advanced feature is the STD BUS INTERFACE. This interface is used to
connect STD BUS accessories to the MMD-2.

Objectives
To introduce you to the MMD-2's advanced features and how they function.

To provide a general understanding of how these advanced features will aid in
program development.

To understand the memory maps of the computer and how they can be changed by
alternate hardware decoding.

36

To provide a general understanding of the EPROM programmer.

To understand the function of the tape recorder interface for saving and loading
programs.

To introduce the serial communications port, including its electrical specifica-
tion and operating modes.

To introduce the concept of breakpoints and how they are used in software debugging.

To introduce the multi-stepper function and how it is used for viewing program
execution.

General Description of the Advanced Features

1. Memory Decoding and Readdressing.

The MMD-2 microcomputer has the ability to dynamically alter the location
of RAM and EPROM memory. Three different memory maps are available under
software control. Map 1 is automatically selected when the computer is
first turned on or when RESET is pressed. In this map, the EPROM

memory is mapped into the address space 000 000 (00 00 hex) through

037 377 (1F FF hex) if the computer is using 2716 EPROMs, or from

000 000 (00 00 hex) through 017 377 { OFE FF hex) if 2708 EPROMs are used.
In Map 1, RAM memory is located from 330 000 (D8 00 hex) to 347 377

(E7 FF hex) in the 2716 version, and from 330 000 (D8 00 hex) to

347 377 (E7 FF hex) in the 2708 version.

When the computer is first turned on or reset, the microprocessor begins
executing the instructions in EPROM starting at address 000 000. One of
the first operations performed is to enable Map 2. Memory Map 2 swaps

the EPROM and RAM memory. This map locates the RAM memory at 000 000

and the EPROM is relocated to high memory (see memory maps for specific
addresses). This is the standard map which you will normally use. Map 3
allows you to swap EPROM 3 with the first 1K block of RAM in a 2708

system or with the first 2K of RAM in a 2716 system. This feature per-
mits you to develop a program starting at address 000 000 with the
computer in its normal operating mode (Map 2) and then pop the program

into EPROM. After your program has been stored in EPROM, you can verify
its operation by enabling Map 3. This will swap the RAM memory starting
at 000 000 with the EPROM located in socket 3. You will then be able to
check out the operation of the program stored in EPROM. This feature

will be of particular interest to people developing process control pro-
grams which generally reside in EPROM starting at address 000 000.

You can enable any of the memory maps by executing the following instructions:
IN 5 enables Map 1, IN 6 enables MAP 2 and IN 7 enables Map 3. You also
have the ability to deselect any or all of the on-board memory and use
external memory devices. The instruction OUT 7 with bit 0 high deselects
(turns off) the user RAM and OUT 7 with bit 1 high will deselect the
EPROM. The SYSTEM RAM can be deselected by executing an OUT 5 with bit 3
set high. The ability to change the configuration of the memory in the
computer significantly increases the flexibility of the system and enhances

37

Octal

375

374

350
344
340
334
330

!
040

030

020

010

000

MMD-2 MEMORY MAP (2716 Version)
(Decoder PROMs Labeled A06-B06)

-Hole- -Hole-
375
Scratchpad (1/4K) Scratchpad (1/ 4K)
374
-Hole-
370
PROM 3 (2K)
-Hole-
360
PROM 2 (2K)
350 :
RAM 3 (1K)
PROM 1 (2K)
RAM 2 (1K) |
- 340
RAM 1 (1K)
RAM 0 (1K) PROM P (2K)
330
-Hole-
PROM 3 (2K))
~Hole- i
PROM 2 (2K) i
320 §
RAM 3 (1K) |
PROM 1 (2K) 014 \
RAM 2 (1K) 5
010+ }
RAM 1 1K) ;
PROM P (2K) 004 —
RAM 0 (1K)
uuo .

38

375
374
370
364

360 :

350

340

330

020
014
010

000

Hex
-Hole-
Fd
Scratchpad (1/4K)
Fc
-Hole-
F&
RAM 1 (1K)
Fé
RAM B (1K)
FO
PROM 2 (2X)
E8
PROM 1 (2K}
EO
PROM 0 (2k) |
dd
-Hole- g
10
RAM 3 (1K)
Oc
RAM 2 (1K)
08
PROM 3 (2K) |
1 00

Octal

315 —

374 —

350 o
344 —
340 —
334 —
330 —

02l
014 —
alg —
004 —
000 —

MMD-2 MEMORY MAP (2708 Version)

(Decoder PROMs Labeled AD7-B07)

MAP 1
(IN 005 or RESET)
-Hole-
Scratchpad (1/4K)
-Hole-
RAM 3 (1K)
RAM 2 (1K)
RAM 1 (1K)
RAM 0O (1K)
-Hole-~
PROM 3 (1K)
PROM 2 (1K)
PROM 1 (1K)
PROM O (1K)

e

——— -

MAP 2
(IN 006)

-Hole-

Scratchpad (1/4K)

-Hole-

PROM 3 (1K)

PROM 2 (1K)

PROM 1 (1K)

PROM O (1K)

-Hole-
RAM 3 (1K)
1
RAM 2 (1K) g
RAM 1 (1K)
RAM Q (1K)

39

-

- -

-

—————

MAP 3
LIN 007)
_ ‘Hex
-Hole-
Fd
Scratchpad {1/4K),
;Fc
-Hole- E
IE8
RAM O (1K)
: F4
PROM 2 (1K)
'ER
PROM 1 (1K) |
‘de
PROM O (1K)
-d8
i
-Hole- @
“10
RAM 3 (1K) !
.0C
RAM 2 (1K) |
108
RAM 1 (1K)
. (i04
PROM 3 1K)
— oo

C?2

C1

EQUIVALENT FUNCTION OF DECODER PROM

1 of 3

MAP 3

Decoder

BA15
BAIO

—>p MAP 1

TP R
b
h

o
11N il
O s N W

40

its ability to operate with different memory requirements. For example,
if your computer is equipped with E & L BASIC, available as an accessory
from E & L Instruments, Inc., memory Maps 1 and 2 will be different from
those supplied with EXEC C. (See memory maps on preceding pages.)
Address decoding is accomplished using 256x4 fused T1ink type PROMs.

Since the memory is made up of 1K blocks, just the HIGH order 6 bits of
the address code from the microcomputer are used. These signals are
connected to the LOW order address Tines of the decoder PROMs. The two
most significant address lines are connected to the map control signals
C1 and C2. These signals can have the values 01, 10, or 11, depending
on which map is enabled. The value 00 is not decoded. The states of

C1 and €2 are determined by a three-line to two-line multiplexer circuit,
which takes the map control commands IN 5, IN 6 or IN 7, and generates
the C1 and €2 signals needed to enable one of the maps. Each map
consists of a 65-byte region in each PROM. One PROM is used to select
the RAM devices and the other selects the EPROM devices according to

the data stored_in the MAP PROMs. {See Function of Decoder Diagram on
following page.) :

The PROMs are factory-programmed to meet the map and location assignments
shown in the memory maps. These PROMs cannot be reprogrammed. If your
requirements differ from the standard maps, it will be necessary for you
to procure additional PROMs and program them to fit your requirements.
Specific information about the map PROMs can be found in the Reference
Manual, Section 2, Theory of Operation--Hardware, Map Selector Circuitry.

Software and User EPROMs, 2708 and 2716 Operation.

The basic sottware supplied with the MMD-2 microcomputer is called

EXEC C. This program provides you with an operating system and several
subroutines which can be called from your program to perform basic input
and output functions. The source for EXEC C is supplied in the Source
Listingswith some of the user callable subroutines marked. The basic
MMD-2 computer is equipped with 2716 EPROMs installed in the first two
sockets. The last two sockets are available for your use. NOTE: You
cannot mix 2708 and 2716 EPROMs. You must have the same type of EPROM
in each socket. If you switch from one variety to the other, you will
have to change the jumpers Tocated above the EPROM sockets (refer to
the Reference Manual, Appendix III). If you're popping EPROMs, there's
another header block which has to be positioned correctly, depending on
the type of EPROM being programmed. This header block is located next
to the socket in the EPROM PROGRAMMER area.

EPROM Programmer.

The EPROM programmer is a peripheral device directly accessed by the
computer, EXEC C contains routines designed to facilitate the pro-
gramming and testing functions. An EPROM can be given the CLEAR TEST.
This test verifies that the EPROM has been erased properly and all bit
positions contain ones. EXEC C has the POPPING sequence. This is
basically a copy operation, where the specified block of memory is trans-
ferred, one byte at a time, to the EPROM. While the data is available
to the EPROM PROGRAMMER, the computer turns on a programming pulse of
26 VDC for a specified length of time, which stores (programs) the byte
in the EPROM. The programming sequences are different for the two

types of EPROMs. The proper programming sequence is selected by storing

41

the EPROM type in the PROM auxiliary register. This procedure will be
explained fully in the next chapter. Programming takes about three

minutes for a 2708 EPROM, and 1.75 minutes for a 2716 EPROM. EXEC C can
perform a DUPLICATION TEST to verify that the data has been stored correctly.
You can program either type EPROM by placing the header block in the correct
position and telling EXEC C which type of EPROM is in the programmer's
socket. Specific instructions for programming will be given in the next
section.

Cassette Interface.

The cassette interface is another peripheral which has been provided to
make the computer more useful. This device will write blocks of memory
to a cassette tape recorder or read blocks from the recorder and store
them in the computer's RAM memory. If you have written a program you
wish to save on tape to use at a later time, you would use the DUMP
command to store your program. The LOAD command will take your program
and relead it back into memory at the same memory locations where it
was originally.

Teletype Interface.

The MMD-2 contains the necessary hardware and software to interface the
computer to a teletype or CRT-type terminal. Both types of terminals
communicate with the computer via a serial communications port. This
port converts a byte of information from the microprocessor into a
string of data bits, including a start bit, the data bits, an optional
parity bit and stop bit (or bits). The conversion from a parallel data
byte -into a serial data string can be done using hardware or software.
The MMD-2 uses the latter technique. The conversion and timing are per-
formed by subroutines in EXEC C. These subroutines are available for use
in your software. Terminals are designed to accept data at certain
speeds called BAUD RATES. EXEC C is designed to provide the BAUD RATES
110, 150, 300, 600 and 1200. These BAUD RATES can be selected using the
AUX function BAUD in EXEC C, or directly under your software's control.
These techniques will be explained in the next section. After the
parailel to serial conversion has taken place, another conversion of

the signal has to occur before the data can be transmitted to the
terminal. The TTL logic levels must be converted to either a 20 Ma cur-
rent signal or an RS-232 voltage signal. The MMD-2 has both available
at the terminal block Tocated along the top of the computer. The choice
of which interface to use is determined by the terminal to be connected
to the computer. Teletypes are generally current loop devices, while
CRT terminals can be either current loop or RS-232. The one disadvantage
of RS-232 is that the terminal cannot be Tocated more than a few feet
from the computer, while current loop allows a much greater separation.

Data can be transmitted in either direction using this interface, but only
in one direction at a time. In other words, you cannot be typing on the
terminal and have the computer transmitting other information to the
terminal at the same time.

42

6. Breakpoint.

The MMD-2 computer provides you with one breakpoint, which is used in
software debugging. When a breakpoint is used, the programmer inserts
it in the program at a locatian where he wants the program execution
to be interrupted and return control to EXEC C. When the program
reaches the breakpoint, the display will show (BREAK PT.1), indicating
that EXEC C is again in control. You can then look at the stored
registers, view the program, reset the breakpoint to a different location,
or single step through the selected portion of the program. Using the
breakpoint allows you to control the execution of a program for the
purpose of testing selected portions of the program conveniently. The
breakpoint cannot be used with programs stored in EPROM memory.

7. Step.

The single step key has a multistep function accessed through the AUX
MODE register STEP, which will control the rate the single step key

will execute instructions when it is held down. Speeds from about one
instruction every three seconds to several hundred instructions per
second are available. Information on how to use the multi-step function
is in Section 4.

8. SID Bus.

The STD BUS interface provided on the side of the MMD-2 allows the user
to interface a wide variety of devices with the computer. The STD bus
is provided on the MMD-2 computer to give you the capability for
developing and testing STD circuit cards. The STD bus is commonly used
in process control computers. The MMD-2 computer provides the hardware
and software to conveniently test and develop these cards. The MMD-2
can also be used to verify the operation of the STD-based cards by
plugging them into the computer and running diagnostic programs to
check their operation. The STD signals are also available on the
solderless plug strips on the MMD-2 for easy monitoring.

This combination of advanced features, in addition to the basic operating features
of the MMD-2,provide you with a versatile but easy-to-use computer system
for educational and developmental work.

43

SECTION 4
ADVANCED FEATURE EXPERIMENTS

Introduction

The advanced features allow you a great deal of flexibility in using the MMD-2
computer. These features in EXEC C are accessed using the AUX key. The five
keys: COPY, LOAD, DUMP, PROM and OPTION become operational when you press AUX.
In addition, the PREV, STORE, NEXT and CANCEL keys function in the same manner
as in the memory or register modes. Depressing the AUX key places the MMD-2 in
the auxiliary mode. By depressing the NEXT key, the user can walk through the
parameter registers needed by the auxiliary functions in the same manner you
walk through the 8080's internal registers in the REG mode. The AUX registers,
however, are not hardware registers in the 8080 microprocessor, but storage
Tocations used to save the parameters you enter. The following functions can be
performed after you have entered the required data into the AUX FUNCTION registers.
These functions will be described completely later on in the experiments.

LOAD. This function loads programs from cassette tape to memory. There are no
variables to set when this function is used. The program is transferred from the
cassette recorder and placed in its original memory locations. The LOAD command
transfers in increments of one block (256 bytes) startina on page boundaries.

DUMP. The DUMP command permits the saving of programs on tape. You have to pro-
vide the high address where you wish to begin saving the memory and the Tength in
blocks. This information is stored in the appropriate AUX REGISTERS.

PROM. This key is used to program EPROMs. It is capable of performing any or all
of three different functions selected by you and stored in the AUX registers. The
functions are: CLEAR TEST (used to test for a blank EPROM), POP PROM (used to
program the EPROM), and DUPLICATION TEST (to test that the EPROM was successfully
programmed). These functions are selected in the AUX mode, along with the high
address byte where the source code starts and the type of EPROM to program or test.

COPY. The COPY function allows the duplication of data from one location in
memory to a different location. To use this function, you must provide the SOQURCE
address, DESTINATION address and the number of BLOCKS to copy.

OPTION. This key displays the options associates with each AUX register. Each
time the OPTION key is pressed, the next option for that particular register is
displayed.

In addition to these functions, parameters for the following operations are stored
in the auxiliary registers: BREAKPOINT ADDRESS, MULTI-STEP RATE, BAUD RATE and
MEMORY MAP SELECTION. These functions will be demonstrated in the experiments
Tater on in this text.

a4

An additional advanced feature included in the MMD-2 computer is the on-board real
time clock and priority interrupt controller circuitry. This device will accept
interrupts from the real time clock, the keypad logic, serial input or from
external interrupts.

Objectives

To help you understand how the auxiliary features are used.
To provide you with experiments which demonstrate the operation of these features.

Demonstrate how these features may facilitate your use of the computer.

Summary of the Experiments

Experiment 1 is designed to introduce you to the AUXILIARY REGISTERS and OPTION
KEY, and how they are used to store data in the auxiliary registers.

Experiment 2 introduces you to the CASSETTE TAPE INTERFACE and how it is used
to Toad and dump information to a tape.

Experiment 3 demonstrates the operation of the EPROM PROGRAMMER for programming
2708 EPROMs.

Experiment 4 demonstrates the operation of the EPROM PROGRAMMER for programming
2716 EPROMs.

Experiment 5 introduces you to the MEMORY MAP and how it can be altered.

Experiment 6 demonstrates how the SERIAL INTERFACE is interfaced to a terminal
and how to change the BAUD RATE of the interface.

Experiment 7 demonstrates how to use the SERIAL PORI driver software for
transmitting information to and from a terminal connected to the MMD-2.

Experiment 8 introduces you to the COPY function.

Experiment 9 provides information on changing EPROMs and ADDRESS DECODERS.

Experiment 10 demonstrates the operation of the MULTI-STEP option for controlling
program execution.

Experiment 11 demonstrates the operation of the on-board priority interrupt con-
troiler. Program segments are included to demonstrate the keyboard interrupt
signal and the on-board real time clock interrupt.

Experiment 12 demonstrates the use of the BREAKPOINT for debugging software and
controlling program execution.

45

EXPERIMENT 1

The purpose of this experiment is to help you become familiar with the Auxiliary
Mode Registers. These registers store data needed by the AUX functions. In this
experiment you will walk through the different registers and store variables in
each register.

A1l auxiliary registers will be used in this experiment.

STEP 1. Turn on your MMD-2 microcomputer and press AUX. At this point, you are
viewing the first AUX register. The display should read: (BR1 HI. OFF;.
This is the breakpoint high address register. It is used by the break-
point routine. The high half of the breakpoint address is stored here.

STEP 2. Press OPTION.

Question: wWnhat does' the display indicate?

Answer: We saw the OFF change to 000 (00 hex). At this point, you
can enter and store the high memory address needed by the
breakpoint function.

STEP 3. Enter 100 (40 hex) and press STORE. The value 100 (40 hex) has been
stored in the BR1 HI register. NOTE: In order to actually save any
data in an AUX register, you MUST press STORE.

STEP 4. Press OPTION.
Question: What does the display indicate?

Answer: We observed the 100 (40 hex) was replaced by OFF, the other
option for this register. Pressing STORE will eliminate the
100 and store OFF in the register. Do not press STORE.

STEP 5. Press NEXT. The display should read (BR1 LO. 000).

STEP 6. This register is used to store the low half of the breakpoint address.
NOTE: if the BR1 HI option is OFF, the BR1 LO c¢cption will also be off.
You cannot store only one-half of an address; data must be stored in
both registers to activate the breakpoint.

STEP 7. Press STORE. You have now stored 000 as the low half of the breakpoint
address. Pressing OPTION would change the 000 to OFF, which could be
restored to deactivate the breakpoint. NOTE: By storing the option
OFF in either BR1 registers, OFF is stored in both registers.

STEP 8. Press NEXT. The display will indicate (STEP. OFF). This register
stores a value which controls how fast the single stepper will execute
instructions if the STEP key is held down.

46

STEP 9.

STEP 10.

STEP 11.

STEP 12.

STEP 13.

STEP 14.

STEP 15,

STEP 16.

STEP 17.

STEP 18.

STEP 1389.

STEP 20.

Press OPTION. The OFF will change to 000, the fastest speed. Enter the
value 100 (40 hex). Press STORE.

Press NEXT. The display should read (SRC HI. OFF). This is the source
register which is used with the LOAD, PROM and COPY functions. The high

half of the data source address is stored here. (There is no Tow half; it is
assumed to be OOO.?

Press OPTION.
Question: What does the display indicate?

Answer: We saw the OFF change to 000 (00 hex). At this point, you can
enter and store the source memory address needed by the COPY,
PRCM and DUMP functions.

Enter 100 (40 hex) and press STORE. The value 100 (40 hex) has been
stored in the SRC HI register.

Press NEXT. The display should read (DES HI. OFF). This is the destina-
tion register. It is used only by the COPY function to store the high
address of the data's destination.

Press OPTION. You will see the OFF change to 000 (00 hex). You can now
enter a destination address and store it.

Enter and store the value 300 (CO hex) using the STORE key. You have now saved
the destination address for the copy function. Pressing OPTION will

again restore OFF to the display. The value 300 (CO hex), however, will

remain in the register unless STORE is pressed.

Press NEXT. The display should read (LEN HI. OFF). This register stores
the length of the data in blocks. It is used with the COPY and DUMP
functions.

Enter a length of 010 (08 hex) in the same manner as Steps 4 through 7.
Press NEXT. The display should read (CLR TST. OFF.). This is the first
register associated with the EPROM function. This test checks the EPROM
for all ones (blank).

Press OPTION. The OFF should change to ON indicating the test has been
selected. Pressing OPTION will toggle between OFF and ON.

Select the test by pressing STORE while ON is displayed.

47

STEP

STEP 22,
STEP 23.

STEP 24,

STEP

STEP 2b.
STEP 27.

STEP 28.
STEP 28.

STEP 30.

STEP 31.

STEP

21. Press NEXT. The display should read (POP PRM. OFF). Pressing OPTION will

22
23

24

25,

2b
27

28
29

30

31

STEP 33.

STEP 34.

)

34

toggle between OFF and ON. This function will program the EPROM if it
is ON.

Select ON by pressing STORE.

Press NEXT. The display should read (DUP TST. OFF). This test is performed
after an EPROM has been programmed to verify that it was programmed
accurately. Pressing OPTION will cause the display to toggle from OFF to ON.

Store the ON condition as you did in previous steps.

Press NEXT. The display should read (PROM. 2708). Pressing the OPTION
key will toggle the display between 2708 and 2716. This register selects
which variety of EPROM you are going to program.

Select 2716 by pressing STORE as before.

Press NEXT. The display should indicate (MEM MAP. RAM). This option
allows you to select either Memory Map 2 or Memory Map 3. These faps
swap the first 2K of RAM memory with the Tast 2716 EPROM socket, or the
first 1K of RAM with the last 2708 EPROM socket, depending on which type
of EPROM you are using. This feature is used when you have to run a
program stored in EPROM which has a starting address of 000 000 (00 00
hex). Pressing the OPTION key will change the RAM to ROM indicating Map 3
will be enabled when STORE is pressed.

Store ROM as before.

Press NEXT. The display should indicate (BAUD., 300). This is the
default baud rate for the serial output port.

Press OPTION five (5) times.

Question: What did you observe?

Answer: We observed the value change from 300 to 600, 1200, 110, 150
and back to 300 BAUD. Each number represents a speed which
data will be transmitted over the serial port.

Press OPTION.

2. Press STORE. You now have stored the BAUD RATE 600.

Press NEXT. The display should return to the original register (BR1 HI.)
and the value displayed should be 100 (40 hex).

Press NEXT to step through the registers. As you step through the registers,
you should see the values you stored using the OPTION and STORE keys:

BR1 HI 100 (40 hex), BR! LO. 000, STEP. 100 (40 hex), SRC HI. 100 (40 hex),
DES HI. 300 (CO hex), LEN HI. 010 (08 hex), CLR TST. ON, POP PRM. ON,

DUP TST. ON, PROM. 2716, MEM MAP. ROM, BAUD. 600.

48

STEP 35. Press PREV. You will note that you now are examining the registers in
the reverse order. This function operates in the same manner as PREV
did in the REG mode.

At this point, you should have an understanding of how to change and store
information in the auxiliary registers, and how the OPTION and STORE keys function.

EXPERIMENT 2

The purpose of this experiment is to help you become familiar with the CASSETTE
interface for LOADing and DUMPing information to and from a tape recorder. You
will use the AUX function to store the necessary parameters for the DUMP command.
Tou will also learn how to reload your program from tape.

The DUMP command uses the SOURCE HI and LENGTH auxiliary registers.
The LOAD command uses no auxiliary registers.

STEP 1. In this step, you will enter the program which blinks the LEDs on Port 2.
(See Experiment 5, Section 2). First, power down the MMD-2 to reset all tlie

AUX mode reaisters to the OFF state, then power back on. Enter the following
code, starting at address 003 000 (03 00 ng

HI LO INSTRUCTION HI LO INSTRUCTION
ADDRESS ADDRESS BYTE ADDRESS ADDRESS BYTE
003 000 257 03 00 AF
001 323 01 D3
002 002 02 02
003 074 03 3C
004 315 04 CD
005 030 05 18
006 003 06 03
007 303 07 C3
010 001 08 01
011 003 09 03

49

Enter the following code at 003 030 (03 18 hex):

HI LO INSTRUCTION HI LO INSTRUCTION

ADDRESS ADDRESS BYTE ADDRESS ADDRESS BYTE
003 030 365 03 18 F5
031 325 19 D5

032 021 1A 11

033 046 1B 26

034 001 1C 01

035 033 1D 1B

036 172 1E 7A

037 263 1F B3

040 302 20 c2

041 035 21 1D

042 003 22 03

043 321 23 D1

044 361 24 F1

045 311 25 €9

STEP 2. Press RESET, Go. The LEDs‘in output Port 2 should be counting. If not,
check your program for errors and correct them.

STEP 3. Press RESET, AUX, DUMP,

Question: What happened?

Answer: We observed the display change to (STATE. OFF). This message
will be displayed if either the SOURCE, LENGTH or both of
these auxiliary registers have been left in the OFF state.
Before you can DUMP to tape, both the SOURCE and LENGTH
registers must have data stored in them. If vou gat the
display STATE. OFF, press CANCEL to display the previousliv
displayed data. At this point, enter the missing data in tne
appropriate register.

STEP 4. You are now ready to store the necessary values in the AUXILIARY registers
needed to DUMP your program to cassette tape.

STEP 5. Press NEXT three (3) times. The display should read SRC HI OFF.
STEP 6. Press OPTION, the OFF will change to 000.

50

STEP 7. Enter the high half of the program's starting address. Programs are
dumped starting on page boundaries; i.e., in this example, the memory
starting from 003 000 (03 00 hex) will be recorded on tape. The value
you should enter is 003. Remember to press STORE after entering the
number, or it will not be retained in the register.

STEP 8. Press NEXT two (2) times to advance to the LENGTH register. Press OPTION
to change the OFF to 000. At this point, you will enter the number of
256-byte blocks to be DUMPED to the tape. Since the program you entered
is less than one block in length, you should enter and store 001 to
save one block of memory on the cassette recorder.

STEP 9. Make sure that the cassette recorder has been properly connected to the
computer with the RED jack connected to the MIC (input) and the BLACK
jack to the EAR (output) on the recorder. The other end of the cable is
connected to the six-pin connector on the upper right hand corner of the
MMD-2. Start the recorder in the RECORD mode and wait a few seconds

to go past the leader.

STEP 10. Press DUMP. The display should display (DUMPING..). The MMD-2 is now
recording the block of memory on the cassette tape. When the display
reads (DUMP DONE), stop the recorder. Your program has been stored on
tape. Generally, it is a good practice to dump your program more than
once. This procedure is called backing up and is done to provide you
with additional copies of your program. Sometimes, tape can be damaged
and a program lost. Having backup copies will help prevent the loss of
your programs. To record another copy of your program,it is necessary
only to leave the recorder running and press DUMP a second time.

ltn
—r
e

. Turn the MMD-2 off for five (5) seconds.
Question: What has happened to your program in the computer?

Answer: Turning off the computer destroys any information stored in
RAM memory.

STEP 12. Press AUX, then LOAD keys. Displays should read (LOADING...). At this
point, rewind the tape and press the PLAY key on the recorder to start
the tape. When the display reads (003 TO 004) stop the recorder and
rewind the tape. During the time the program is loading, you will hear
some sound coming from the recorder. The recording technique uses audio
tones to store data on the tape. If the sound stops and the display
doesn't indicate 003 TO 004, stop the recorder, press RESET, press AUX,
rewind the tape, and try again. This happens when the data is not
read correctly from the tape. The numbers which appear after a
successful load indicate the beginning and end HIGH addresses of the
recorded data. In this case, the display indicates we loaded one block,
from 003 HIGH to 004 HIGH.

STEP 13. Press the CANCEL key and then the MEM key. You have now exited the
AUXILIARY mode and are in the MEMORY mode.

51

STEP 14. Press GO.
Question: What did you observe?

Answer: We observed the LEDs on Port 2 counting as before. We have
successfully stored and reloaded a program using cassette tape.

The tape interface can be used to save any amount of memory by just providing the
high half of the start address and the number of blocks to be saved on tape.

EXPERIMENT 3

The purpose of this experiment is to help you become familiar with the EPROM pro-
grammer. To perform this experiment, you will need a 2708 EPROM (not supplied).
You may also need facilities to erase the EPROM. There are several commercial
ultra-violet EPROM erasers available.

WARNING: DO NOT LOOK AT THE ULTRA-VIOLET LIGHT OR ATTEMPT TO BYPASS THE SAFETY
INTERLOCKS ON THE EPROM ERASER! TO DO SO CAN RESULT IN SERIQUS EYE
INJURIES.

The PROM PROGRAMMER function uses the following AUXILIARY REGISTERS: SRC HI.,
CLR TST., POP PRM., DUP TST., PROM.,

STEP 1. Open the EPROM PROGRAMMER SOCKET by turning the bottom screw 1/4 turn to the left:
' With the MMD-2 off, insert a 2708 EPROM in the EPROM PROSRAMMER socket.
MAKE SURE THAT IT IS INSERTED CORRECTLY WITH PIN ONE IN THE UPPER
LEFT HAND CORNER. If you insert the EPROM incorrectlv, it will be
destroyed. Make sure that the header block is insertea in the proper
direction with 2708 on top. After you have inserted the EPROM, be sure to turn
the small screw on the bottom of the socket 1/4 turn to the right.
STEP 2. Turn on the MMD-2 and press AUX. NOTE: When the computer is turned on,
the PROM register will contain 2708.

STEP 3. Press NEXT six (6) times to get to the CLEAR TEST register. Press
OPTION and STORE to turn on the CLEAR TEST. The display should
read: (CLR TST. ON).

STEP 4. Press the PROM key. The display should read (ONES GOOD). 1If the
display reads (ONES BAD), the EPROM in the socket is not blank. If this
happens, you will have to erase the EPROM or use one which is blank.

STEP 5. Press the CANCEL key. Press OPTION and STORE to turn off the CLEAR
1EST.)

STEP 6. Press NEXT. The display should read {POP PRM. OFF). Press OPTION and
STORE to turn on the EPROM POP function. The display should change
from POP PRM. OFF to POR PRM. ON.

STEP 7. Press the PREV four (4) times to go to the SOURCE REGISTER. Press OPTION
and enter the high address of the starting location of the data to be
popped into the EPROM. Enter the value 330 (D8 hex) and press STORE.

We will use the starting address of the first EXEC C EPROM for our data.

52

STEP 8. Turn on the programming voltage switch in the EPROM PROGRAMMER area
by sliding it to the right.

STEP 9. Press the PROM key.
Question: What do you observe on the display and the LED output ports?

Answer: We observed (POPPING...) in the display and activity in the
output port LEDs. It will take approximately 3.5 minutes to
program the EPROM,

STEP 10. When the display reads (POP DONE), turn the programming voltage switch off.
At this point, you have programmed the EPROM. The final part of the
procedure is to test the EPROM to verify that it was programmed correctly.
NOTE: Turn POP PRM register off first!

STEP 11. Press the CANCEL key. Press NEXT four times. This will bring you back
to the POP PROM register. Press OPTION, STORE to turn this register off.

STEP 12. Press the CANCEL key. Press NEXT . This will bring you to _
the DUP TST register. Press OPTION, STORE to turn on the duplication test.
The display should read (DUP TST. ON).

STEP 13. Press the PROM key. The display should read (DATA GOOD). This indicates
that the EPROM was programmed successfully. If the display indicated
(DATA BAD) it means that the EPROM has not been correctly programmed.
You will have to erase the EPROM and try the experiment again.

It is possible to include all three programming options in one operation

by turning all three options ON, storing the HIGH memory address of the
data in the SRC HI register and then pressing PROM. The computer will
perform each command in order. Testing the EPROM, programming and verifying
it. If the EPROM fails the ONES TEST, the sequence will stop without
performing the other functions.

As with the DUMP function, if the SOURCE register is in the OFF state,
neither the POP PRM. function or the DUP TST function will operate.
The display will show STATE OFF, and the function will be aborted.

The PROM programmer makes no test for the proper EPROM in the programming
socket during any programming function. It is up to you to verify that
the proper EPROM is in the socket, that the header is inserted properly
and that the PROM auxiliary register has the proper EPROM type stored.

EXPERIMENT 4--Programming 2716 EPROMs

The purpose of this experiment is to help you become familiar with the technique
for programming 2716 EPROMs. To perform this experiment, you will need a 2716
EPROM (not supplied) and an EPROM eraser.

The AUXILIARY REGISTERS needed for this experiment are: SRC HI., CLR TST.,
POP PRM., DUP TST., PROM.

53

STEP 1. With the MMD-2 turned off, insert the EPROM in the socket in the pro-
gramming area and position the header block with 2716 on tcp to con-
figure the programmer for the 2716 EPROM. Make sure that the EPRCM is
inserted properly with pin one in the upper left hand corner. Failure
to insert the EPROM properly will result in its destruction.

STEP 2. Turn the MMD-2 on and press AUX. In this experiment, we will set all of
the EPROM parameters at once and allow the entire programming sequence
to progress automatically.

STEP 3. Enter the high byte of the starting location in the SRC HI. register.
We will again use 330 (D8 hex) as our source.

STEP 4. Press NEXT until the CLEAR TEST register is displayed and store "ON"
in the register.

STEP 5. Press NEXT and store "ON" in the POP PROM register.

STEP 6. In the same manner, store "ON" in the DUP TEST register.

STEP 7. Press NEXT and store 2716 in the PROM register.

STEP 8. Make sure that the PROGRAMMING VOLTAGE is on by sliding it to the right.
1f you forget to turn this switch on, the EPROM will not be programmed.

STEP 9. Press PROM, At this time, the MMD-2 will perform the three functions you
selected. The sequence is: VERIFY ONES to make sure the EPROM is erased,
POP PROM by programming the data into the EPROM (it will take approximately
1.75 minutes for programming), and DUPLICATE TEST to verify that the
programming sequence is terminated.

STEP 10Q. After the EPROM has been programmed, turn off the PROGRAMMING VOLTAGE
TO PREVENT ACCIDENTAL PROGRAMMING.

As in the previous experiment, EXEC C makes no test for the proper EPROM 1in the
programming socket, or if the header has been inserted correctly, or if the
proper EPROM type has been stored in the PROM register. EXEC C does check that
the SRC HI register has an address stored in it. If not, the display will show
STATE OFF, and the PROM programming sequence will be aborted after the ONES TEST.

At this point, you should understand how to program both 2716 and 2708 EPROMs.

It is important to understand that the MMD-2 is designed to program the entire
EPROM. You cannot program only a section of an EPROM,

EXPERIMENT 5--Memory Map

The purpose of this experiment is to demonstrate how to swap the first 2K of RAM
memory with the last 2K of EPROM memory (if 2716 EPROMs are being used), or the
first 1K of RAM with the last 1K of EPROM in systems using 2708 EPROMs. This
feature is useful when you have a program Tocated in EPROM which is designed to
execute in the first 1 or 2K of memory.

54

This experiment uses the MEM MAP. register.

STEP 1. Store several bytes of zeros, starting at location 000 000. You will use
this as a reference to verify that the memory has been swapped with
the EPROM.

STEP 2. Press AUX. Press NEXT until you are at the register MEM MAP. RAM.

STEP 3. Press OPTION, STORE. The display should now indicate (MEM MAP. ROM).
You have now swapped the first 1 or 2K of RAM and the last EPROM socket
by enabling Map 3.

STEP 4. Press MEM to exit from the AUX mode.

STEP 5. Examine the memory starting at location 000 000.

Question: What values did you see stored at the locations you had
previously stored zeros?

Answer: We observed the value 377 (FF hex) 1in these locations. In our
MMD-2, the last EPROM socket is empty and nonexistent memory
is displayed as 377 (FF hex). If you have an EPROM in the last
socket, the code you will see at location 000 000 will be the
code stored in that EPROM.

STEP 6. xamine the memory at location 360 000 (FO 00 hex) if you are using 2716
EPROMs. If you are using 2708 EPROMs, examine 344 000 (E4 00 hex).

Question: What values did you observe in the first few bytes of memory?

Answer: We observed the zeros we had previously stored at location 000
000.

The memory map will stay in the last map you put it in, even if you press

RESET. You can only change the memory map by changing the MEM MAP register

(or turning the MMD-2 off and then on; or doing a PUP RESET which is

described later).

EXPERIMENT 6--Setting Teletype Parameters

The purpose of this experiment is to help you become familiar with the serial
interface. You will Tearn how to select the proper baud rate for communication

with your terminal. Baud rate refers to the speed with which characters are transmitted
to and recefved from an external terminal connected to the MMD-2. The higher the

baud rate, the more rapidly characters will be transmitted. EXEC C can transmit

data at standard rates including: 110, 150, 300, 600 and 1200 BAUD. To determine

the proper baud rate for your terminal, you will have to consult the owner's

manual. Most CRT terminals have selectable baud rates, while TTY terminals are

fixed at 110 baud. The default rate for the MMD-2 is 300 baud. The other rates

are available by changing the value of the BAUD auxiliary register.

This program will be used to demonstrate the effects of BAUD RATE changes on
terminal operation.

55

003 000 041 020 003 START: LXI H,MSG ;POINTER TQ MESSAGE

003 003 176 LOOP: MOV A M ;GET CHARACTER

003 004 376 000 CPI O ;END OF MESSAGE

003 006 312 000 003 JZ START ;00 IT AGAIN

003 011 315 141 343 CALL TTYOUT ;OUTPUT ROUTINE

003 014 043 INX H ;BUMP POINTER

003 015 303 003 003 JMP LOOP ;GO GET NEXT CHARACTER

003 020 115 115 104 MSG: DB 'MMD-2', 012Q,015Q,0 ;MESSAGE 0 = OCTAL

003 023 055 062 012

003 026 015 000
END

The program will continually print the message 'MMD-2' on the terminal connected
to the serial port.

To perform this experiment, you will need a serial terminal with selectable baud
rate capability. You will also need a cable which will connect your terminal to
the MMD-2 computer {not supplied). The cable will need a connector on one end

to match the connector on the terminal. This connector can be wired for either
RS-232 or CURRENT LOOP operation. Your choice of interface will be determined by
the terminal you are going to connect to the MMD-2. The MMD-2 can interface using
either CURRENT LOOP or RS-232 signals. The cable should be connected to the MMD-2
terminal strip along the upper right hand side of the unit. If your terminal

is using the CURRENT LOOP interface, you will have to connect four wires to the
computer. The IN wires will come from the keyboard of your terminal, and the

OUT wires will go to the terminal's printer connections. Proper polarity

should be observed for correct operation. If you are using the RS-232 interface,
you will only have to connect three wires: GROUND, IN, OUT. The IN wire

comes from your terminal's keyboard and the OUT wire goes to the printer con-
nection. You will also have to install the proper jumper connection located to
the right of the terminal strip. Connect a short piece of solid #22 gauge wire
between the pin marked "C" and either RS-232 or CURRENT LOOP, depending on

which interface you have selected.

When these connections have been properly made, the computer will be ready to
communicate with your terminal.

This experiment uses the BAUD register.

STEP 1. Enter the following program in memory, starting at location 003 000.
(Program starts on following page.)

o
I ST GISERIAL lﬂ somz P
B8 3 2 Qo
5 F':@ %2 C“,?S

MMD-2 SERIAL COMMUNICATIONS TERMINAL STRIP ANDE JUMPER AREA

56

HI L0 INSTRUCTION HI Lo INSTRUCTION

ADDRESS _ ADDRESS BYTE ADDRESS _ ADDRESS BYTE
003 000 041 03 00 21
001 020 01 10
002 003 02 03
003 176 03 7E
004 376 04 FE
005 000 05 00
006 312 06 CA
007 000 07 00
010 003 08 03
011 315 09 cD
012 141 0A 61
013 343 0B E3
014 043 oc 23
015 303 0D c3
016 003 OF 03
017 003 OF 03
020 115 10 4D
021 115 11 4D
022 104 12 a4
023 055 13 2D
024 062 14 32
025 012 15 0A
026 015 16 0D
027 000 17 00

STEP 2. If your terminal has selectable BAUD rates, follow the instructions and
set it to 300 BAUD. If this BAUD RATE is not available, set it to a
BAUD RATE which is available on the MMD-2.

STEP 3. Press AUX. Press NEXT to advance to the BAUD register.

STEP 4. Press OPTION until the BAUD rate you have selected for the terminal is
displayed.

STEP 5. Press STORE to save the new rate.
STEP 6. Connect your terminal to the MMD-2. Press RESET, GO.
Question: What did you observe?

Answer: We observed the terminal printing 'MMD-2' over and over.

57

STER 7.

Press RESET to stop the computer. The program is another example of an
infinite loop.

You may wish to experiment with this program by changing the message printed or
by adding a delay Toop to slow down the printing speed. You may also wish to
only print the message once or print it a specific number of times.

STEF 8,

STEP ‘9.

STEP 1.

STEP 11.
STEP 12.

STEP 13.

At this point, select a different BAUD RATE with which to output data

to the terminal. Make sure that you choose a rate which your terminal

can accept. For our terminal, an ADM 3A, we selected 1200 BAUD. Set your
terminal for the baud rate you selected.

Press AUX. You should be at the BAUD register. Using the OPTION key,
select the BAUD rate the terminal has been set to and store the

new value.

Press RESET, GO.

Question: What did you observe on the terminal?

Answer: We observed the same message being printed at a higher speed.

The speed you observe will be determined by the baud rate
you selected. The higher the baud rate, the faster the
characters will be displayed.

Press RESET.

Change the BAUD rate to a different value by pressing AUX, then OPTION,
STORE.

Run the same program. This time, the baud rate of the terminal does not
match the baud rate stored in the MMD-2.

Question: What did you observe on the terminal?
Answer: We observed the terminal was printing random characters,

"garbage". For proper operation, the baud rate of the
computer MUST match that of the terminal.

At this point, you should understand the techniques for changing the baud rate of
the MMD-2 computer. You should also be familiar with the methods for connecting
a terminal to the computer.

EXPERIMENT 7--Performing TTY I/0

The purpose of this experiment is to help you understand the techniques for per-
forming console input/output using a terminal and the TTY I/0 routines in EXEC C.
You will probably use these routines if you write programs requiring data entry
from the terminal's keyboard, or if you have to print results on the terminal's

display.

58

You will now enter a program which will accept an input from the keyboard, then

print the character on the terminal.

halt.
termina

If a RETURN is pressed, the program will

Generally, most input routines will define a character which is used to
te the input loop. The return character is commonly used; however, any
character not needed for data entry can be used.

003 000 315 042 343
003 003 376 015

003 005 312 016 003
003 010 315 141 343
003 013 303 000 003
003 016 166

START:

DONE:

END

CALL TTY IN
CPI/015

JZ DONE
CALL TTYOUT
JMP START
HLT

sGET A CHARACTER

;TEST FOR CARRIAGE RETURN
JEXIT LOOP

;PRINT CHARACTER

;00 IT AGAIN

3END OF PROGRAM

This experiment uses the BAUD register only, if the terminal you connect to the
MMD-2 uses a BAUD rate different from the default value of 300 BAUD. If you
have to change the BAUD rate, follow the steps outlined in Experiment 6,

Enter the tollowing program, starting at location 003 000.

STEP 1.

HI L0 INSTRUCTION
ADDRESS ADDRESS BYTE
003 000 315
001 042
002 343
003 376
004 015
005 312
006 016
007 003
010 315
011 141
012 343
013 303
014 000
015 003
016 166

HI LC INSTRUCTION
ADDRESS ADDRESS BYTE
03 00 CD
01 22
02 E3
03 FE
04 0D
05 CA
07 OF
08 03
09 CD
DA 61
0B E3
0cC €3
0D 00
OE 03
OF 76

59

STEP 2. Make sure that the terminal has been properly connected to the MMD-2, and
that the BAUD rate of the computer matches the terminal's BAUD rate.

STEP 3. Run the program. Type some characters on the keyboard.

Question: What happened?

Answer: We observed the characters being printed on the terminal screen.

As long as the program is running, you will be able to type
and see the characters on the screen. This is another example
of a program that loops.

STEP 4. Press the RETURN key.

Question: What did you observe on the MMD-2?

Answer: We observed the HALT LED 1it on the computer. The HALT
instruction generally will not be used in a program; however,
we are using it to simulate the next section of the program
which might, for instance, process the data returned to
the computer from the terminal.

At this point, you should know how to get data from an external terminal and how
to print data on the terminal. Remember, the code for the character to be
printed must be a valid ASCII code (see Appendix for ASCII table), and it must
be in the A register when TTYOUT is called. The character typed on the keyboard
will be an ASCII character and will be in the A register when the program
returns from the TTYIN routine.

EXPERIMENT 8--Setting Copy Parameters

The purpose of this experiment is to help you become familiar with the technique
of setting memory copy parameters. This technique is used when you are going to
copy a block of memory from one location to another location. For example, if
you want to make a patch (change) in the code stored in an EPROM, you can copy
the contents of the EPROM down to location 000 000, make the patch and then use
the PROM routines to pop a new EPROM using the copied code.

This experiment uses the SRC HI., DES HI., LEN HI. registers.

STEP 1. Press AUX to place the MMD-2 in the AUXILIARY MODE. Press NEXT to advance

to the SRC HI register. Store the value 330 (D8 hex) by pressing OPTION,
the value, STORE.

STEP 2. Press NEXT. You should see (DES HI. OFF). Store the value 000 in this
register using the same technique.

STEP 3. Press NEXT. You should see (LEN HI. OFF). Store the value 020 (10 hex)
in this register.

STEP 4. Press COPY.

60

STER 5.

STEP 6.

STEP 7.

STEP 8.

Question: What did you observe?

Answer: We observed the display change to (BLOCKS 020) (BLOCKS 10)hex.
This means that 20 (octal) 256-byte blocks were copied
beginning with location 330 000 (D8 00 hex), to Tocation
000 000.

Press RESET and then display memory Tocation 000 000. Copy the values
of the first five bytes,starting with location 000 000Q.

Display the location 330 000 (D8 00 hex). Copy the first five bytes
starting at that location.

Question: Are the values in agreement?

Answer: We observed the same values in both Tocations indicating that

the memory was copied.

Press AUX. Enter the following values in the appropriate registers:
SRC HI. 330 (D8 hex), DES HI. 000 (00 hex}, LEN HI. 050 (28 hex).

Press COPY.
Question: What happened?
Answer: We observed the display indicated BLOCKS with the number

counting. After about one second, the display changed to
(NOT STORED), indicating that the copy operation was
unsuccessful. We were attempting to copy a larger block of
memory than there was space to receive, and EXEC C will not
allow that. The message NOT STORED indicates that an
attempt to store data into nonexistent memory or EPROM was
attempted. If any or all of the registers used by the COPY
function are in the OFF state, when COPY is pressed the
display will change to STATE OFF. At this point, you will
have to press CANCEL to restore the display and enter the
proper information in the register which is off before you
can use the COPY function.

At this point, you should know how to copy blocks of memory from one Tocation
to another.

EXPERIMENT 9--Mounting New Decoder and Program PROMs

The purpose of this experiment is to make you aware of the procedure for changing
the DECODER PROMs and PROGRAM PROMs on the MMD-2 computer.

From time to time, you may have to change the on-board EPROMs to run a different

61

program, for example, BASIC {available as an accessory from E & L Instruments,
Inc.). To do this, you have to remove the EPROMs as well as the DECODER PROMs.
When removing these devices, it is important to have the MMD-2 turned off. These
devices are mounted in zero insertion force sockets. To remove these devices,
turn the screw located on the socket to release the chip. At this point, the

chip can be Tifted out easily. When inserting the new chips, make sure that they
are installed in the correct socket and that all pins are inserted properly.

After the new chips have been installed, turn on the MMD-2 and verify the operation
of the new program. Remember, you must change both the EPROMs and the DECODER
PROMs .

EXPERIMENT 10

The purpose of this experiment is to demonstrate the mylti-step option. This
feature permits continuous execution of instructions as long as the STEP key is
pressed. The speed with which instructions are executed is controlled by the value
stored in the STEP auxiliary register. The slowest speed executes one instruction
every two seconds and the highest speed executes several hundred instructions per
second. Both single step and multi-step execute instructions identically. The
multi-step provides you with a convenient method for stepping through a Tong sub-
routine or loop without having to press the STEP key many times.

We will use the time delay subroutine to demonstrate the operation of the multi-
step function.

HI LO INSTRUCTION MNEMONIC DESCRIPTION
ADDRESS ADDRESS BYTE
003 819]4] 315 CALL ;CALL TIME DELAY
001 277 TIMOUT
002 000
003 166 HLT ;STOP PROGRAM
000 277 365 TIMOUT PUSH PSW ;SAVE REGISTERS
300 325 PUSH D
301 021 LXI D ;LOAD WITH VALUE TO
DECREMENT
302 046 046
303 001 001
304 033 MORE DCX sJUMP IN THIS LOOP
UNTIL D&E ARE
3ZERO
305 172 MOV A,D
306 263 ORA E
307 302 JNZ
310 304 MORE
311 000 0
312 321 POP D sRESTORE REGISTERS
313 361 POP PSW
314 311 RET

62

This experiment uses the STEP register.

STEP 1. Enter the following code:

HI LO INSTRUCTION HI L0 INSTRUCTION

ADDRESS ADDRESS BYTE ADDRESS ADDRESS BYTE
003 000 315 03 00 CD
001 277 01 bf

002 000 02 00

003 166 03 76

000 277 365 00 BF F5
300 325 co D5

301 021 C1 11

302 046 cz2 26

303 001 C3 01

304 033 c4 1B

305 17 €5 7A

306 263 C6 B3

307 302 €7 c2

310 304 €8 Cc4

311 000 €9 00

312 azl CA D1

313 361 CB F1

314 311 cC C9

STEP 2. Press AUX and NEXT to advance to the (STEP. OFF) register.

STEP 3. Enter 001 and store in the usual! manner

STEP 4. Press MEM. At this point, you are ready to execute the program. The pro-
gram will call the time delay subroutine and then loop in the routine.
When the program returns from the subroutine, the computer will halt. Enter
003 High, 000 Low.

STEP 5. Press STEP and hold the key down.
Question: What happened?

Answer: We observed that the display changed once every two seconds,
indicating the execution of a program step. The STEP function
will continue-to execute instructions at this rate as long as
the key remains pressed, or until the STEP function attempts
to execute an undefined op code, which will result in the
display showing the address of the erroneous instruction

63

STEP 6.
STEP 7.

STEP 8.

STEP 9.

STEP 10,
alEP 1L,

STEP 12

STEP 13.

STEP 14.

STEP 15,

and (ERR), or it will stop single stepping if it single steps
a HLT instruction (166).

Press AUX. You should be at the STEP register.
Enter the value 300 (CO hex) and store it.
Press RESET to return to the program.

Press and hold the STEP key.

Question: What does the display indicate?

Answer: We observed that the multistepper is executing instructions
at a rate of about 2 instructions per second.

Press AUX, enter the value 350 (EB hex) in the STEP register.

Return to your program and press and hold the STEP key to execute several
instructions.

Question: What change did you observe in the rate the instructions were
exeduted?

Answer: We observed the instructions were being executed at an
approximate rate of 4 per second.

Using the same technique, enter the value 365 (F5 hex) into the STEP
register.

Press RESET and hold the STEP key to execute the program adgain.
Question: What did you observe in the display?

Answer: We observed the display executing instructions at a rate of
about 15 per second. As the number stored in the step register
increased in value, the speed of the multistepper increases.
The speed increase is not linear, but follows a log function
where the greatest change in rate occurs at the high end of
the range. Also, the speed range starts at 001 and continues
to 377 and then 000, which is the highest speed.

At location 000 277 (000 BF hex) enter the value 331 (D9 hex). This
is an undefined instruction code.

Press RESET to return to your program.

Press and hold the STEP key.
Question: What did the display change to?

Answer: We observed the display execute the first instruction (CALL

TIMOUT), then the display indicated 000 277 ERR (00 BF ERR hex).
The STEP function will not execute an undefined op code.

64

At this point, you should be able to use both the single step and the milti-step
functions of the MMD-2 computer to slowly run a program so you can see what is
happening. The ability to execute a program one instruction at a time is a very
valuable tool for testing program operation.

EXPERIMENT 11

The purpose of this experiment is to introduce you to the operation of the on-board
priority interrupt controller. The system has on-board interrupts for the real
time clock, keypad input and serial data input. This experiment will demonstrate
the proper code to initialize the interrupt controller and how to use the real

time clock and keypad interrupts. The serial data input interrupt circuit will
generate an interrupt at the start of a received character. This interrupt is

only reliable at 110 BAUD. Higher BAUD rates cause erratic decoding of the input
character due to timing problems. For additional information in interrupts. con-
sult TECHNIBOOK Volume VI, Chapter 23,

The first program segment uses the on-board real time clock to generate an
interrupt at the line frequency, which is gptimes per second (60 Hz). FEach time
the interrupting signal occurs, the computer branches to the interrupt handler
routine which, in this case, increments a counter and displays the result. The
instructions, MVI A,010, OUT 006, are used to initialize the priority interrupt
controller. For additional information about this device, consult the Reference
Manual (Appendix I, 8214).

003 000 227 SUB A ;CLEAR ACCUMULATOR

003 001 107 MOV B,A ;SAVE FOR INTERRUPT ROUTINE
003 002 076 010 LOOP: MVI A,010 ;SET UP CONTROLLER

003 004 323 006 QUT 006 ;INTERRUPT CONTROLLER PORT
003 006 373 El ;ENABLE INTERRUPTS

003 007 303 002 003 JMP LOOP sWAIT FOR AN INTERRUPT

Interrupt Service Routine

000 060 170 MOV A,B ;GET COUNTER VALUE

000 061 323 002 OUT 002 ;DISPLAY VALUE

000 O3 074 INR A ;BUMP COUNTER

000 064 107 MOV B,A ;SAVE FOR NEXT INTERRUPT

000 065 311 RET ;BACK TO MAIN ROUTINE
END

65

The second routine is used to demonstrate how an interrupt can be used to capture
data entered from the keypad. This routine also has the code needed to initialize
the interrupt controller. Every time a key is pressed, an interrupt is generated
and the keypad service routine is used to input the key code and display the

value on Port 2.

003 000 076 010 LOOP: MVI A,010 sSET UP INTERRUPT
;CONTROLLER

003 002 323 006 QuT 006 ;CONTROLLER STATUS PORT

003 004 373 EI sENABLE INTERRUPTS

003 005 303 000 003 JMP LOOP sWAIT FOR INTERRUPT

Interrupt Service Routine

000 050 076 100 MVI A,100Q ;5ET UP KEYPAD HANDLER
;CHIP

000 052 323 003 OuT 003 ;CONTROL PORT FOR 8279
;CHIP

000 054 333 004 IN 004 ;GET KEY PRESSED CODE

000 056 323 002 OuT 002 ;DISPLAY CODE ON PORT 2

000 060 311 RET ;BACK TO MAIN PROGRAM

END

This experiment uses no auxiliary registers.

STEP 1. Enter the following code for program one, the real time clock interrupt:

HI LO INSTRUCTION HI LO INSTRUCTION
ADDRESS ADDRESS BYTE ADDRESS ADDRESS BYTE
003 000 227 03 00 97
001 107 01 47
002 076 02 3E
003 010 03 08
004 323 04 D3
005 006 05 06
006 373 06 FB
007 303 07 C3
010 002 08 02
011 003 09 03

66

Then enter the following code for program for two, the interrupt service

routine:
HI LO INSTRUCTION HI LO INSTRUCTION
ADDRESS ADDRESS BYTE ADDRESS ADDRESS BYTE
000 060 170 00 30 78
061 323 31 D3
062 002 32 02
063 074 33 3C
064 107 34 47
065 311 35 C9
STEP 2. On the upper right hand corner of the system, locate the two pins con-
nected with the line labeled CLK. Make sure that a wire is connected
between these pins to connect the real time clock and the interrupt
controller.
STEP 3. EXECUTE the program starting at location 003 000 (03 00 hex).
Question: What did you observe?
Answer: First, we observed the green LED labeled INTE turn on. This
indicates that the 8080A has executed the EI instruction.
Each time a pulse from the real time clock was detected by
the interrupt controller, the program branched to the service
routine, the value in the B register was moved to the
accumultator, displayed on Port 2, incremented and restored
in the B register for the next interrupt. In actual practice,
the real time interrupt could be used to time external events,
maintain a time of day clock with appropraite software,
and other time-sensitive applications.
STEP 4. Enter the following code for the keyboard interrupt program:
HI LO INSTRUCTION HI LO INSTRUCTION
ADDRESS ADDRESS BYTE ADDRESS ADDRESS BYTE
003 000 076 03 00 3E
001 010 01 08
002 323 02 D3
003 006 03 06
004 373 04 FB
005 303 05 C3
006 000 06 00
007 003 07 63

67

Then enter the following code:

HI LO INSTRUCTION HI LO INSTRUCTION
ADDRESS ADDRESS BYTE ADDRESS ADDRESS BYTE
000 050 076 0o 28 3E
051 100 29 40
052 323 2A D3
053 003 2B 03
054 333 2C DB
055 004 2D 04
056 323 2E D3
057 002 2F 02
060 311 30 ¢9

STEP 5. Make sure the two pins with the 1ine marked KBRD are connected with a
short piece of wire.

STEP 6. Execute the program starting at location 003 000 (03 00 hex).(Again, the
the green LED labeled INTE should turn on.)

STEP 7. Press any keys on either keypad.

Question: What did you observe on Port 27

Answer: We observed the display changed with each key pressed. When a
key was pressed, the 8279 chip generated an interrupt signal
which caused the interrupt controller chip to transfer program
control from the main routine starting at location 003 000
to the interrupt service routine, starting at Tocation 000 050
(00 28 hex). This routine sent a command to the 8279 chip
to read the keypad and then input the key code from the chip.
That code was then sent to Port 2 for the display.

At this point, you should have an understanding of the interrupt controller and
how the on-board interrupts can be used. The interrupts for the keypads,

real time clock and serial input are defined on the MMD-2 while the other five
are available for user-defined interrupt signals from external devices.

EXPERIMENT 12

The purpose of this experiment is to introduce the concept of breakpoints, and how
they can be used in software debugging. Also, this experiment will provide you with
specific instructions for using the breakpoint provided in the system's software.
The specific restrictions associated with the use of this function will be discussed
and demonstrated.

Function of Breakpoints

Breakpoints are used by programmers to control a program being tested. A break-
point is established at an address in the program where the programmer wants to have
the debugging program, or monitor (in this case, EXEC C), regain control. When

the program reaches the breakpoint address, a jump back to EXEC C is performed,

the internal registers of the 8080A are saved and the programmer then has the
ability to view the registers, alter the registers' contents, single step the

68

program, modify the program, or set the breakpoint to a new address. The break-
point can also provide a convenient method for executing a loop in a program
without having to single step through it. For example, if the breakpoint is
placed in a loop, each time GO is pressed, the program will begin execution at

the instruction after the breakpoint. Each time the breakpoint is encountered,
program execution will halt and the programmer will have the option of viewing,
modifying or rerunning the program. The breakpoint is very useful for testing new
software, as it allows running the program in segments to more easily verify its
operation.

Limitations of Breakpoint Useage

The operation of the MMD-2 breakpoint has several limitations, which have to be
understood for its proper use.

The breakpoint operates by inserting a three-byte JMP instruction into the program
at the address selected for the breakpoint. When the breakpoint is encountered,
the program will execute a JMP to EXEC C.

Since this method of implementing the breakpoint is used, the breakpoint cannot
be directly used to debug EPROM programs or programs where the memory is write-
protected. This problem is encountered if you are going to run the program

using the GO key. However, if you use the multi-step option the breakpoint can
also be implemented in write-protected memory or EPROM. The program can be run
using the mylti-step function and it will respond to the breakpoint. An additional
problem is encountered if the breakpoint is to be inserted in the last memory
location before nonexistent memory, EPROM, or write-protected memory.

Since the breakpoint requires three bytes, the last two will not be stored, causing
the breakpoint to malfunction. This problem is again avoided if the multi-step
function is used in conjunction with the breakpoint, because the breakpoint jump

is not actually stored in the program. The single stepper compares the breakpoint
address against the address of the instruction currently being executed. If the
addresses match, EXEC C stops single steppina.

Another problem occurs if the breakpoint is inserted just before a data area

which will be used by the program. In this case, the breakpoint insertion will
change what is in the data area; or if the data area will be written into by

the program, the breakpoint jump instruction will be altered. The first situation
will cause a program error, because the exepcted data has been changed. The latter
will cause the breakpoint to jump to an undefined memory location. Another con-
sideration is that a breakpoint cannot be inserted into the second or third byte
of an instruction. To do so will alter the program under test and cause un-
predictable results. The breakpoint is inoperative in the single step mode.

If the multistep option is used, the breakpoint will function normally.

When RESET is pressed, the inserted breakpoint jump is removed and the original
code is restored. In normal operation, you should never see the jump instruction
EXEC C inserts to implement the breakpoint.

The program used to demonstrate the breakpoint will clear the accumulator, call
the standard delay routine, increment the accumulator, display the accumulator

69

value on Port 2, and jump back to the delay routine.

003 000 227 SUB A ;CLEAR ACCUMULATOR
003 001 315 277 000 LOOP: CALL DELAY ;TIME OUT ROUTINE
003 004 074 INR A ;BUMP COUNTER

003 005 323 00z QuT 002 ;DISPLAY COUNT

003 007 303 001 003 JMP LOOP ;D0 IT AGAIN

Delay Subroutine

000 277 365 TIMEOUT: PUSH PSW ;SAVE REGISTERS
000 300 325 PUSH D
000 301 021 046 001 LXI D,046 001 ;LOAD WITH VALUE TO
;DECREMENT
000 304 033 MORE: DCX D ;JUMP IN THIS LOOP
;UNTIL D&E ARE ZERO
000 305 172 MOV A,D ;TEST FOR END OF LOOP
000 306 263 ORA E
000 307 302 304 000 JNZ MORE
000 312 321 POP D 3RESTORE REGISTERS
000 313 361 POP PSk
000 314 311 RET
END

This experiment uses the BR1 HI., BR1 LO., and STEP registers.

STEP 1. Enter the following code starting at location 003 000 (03 00 hex):

HI L0 INSTRUCTION HI LO INSTRUCTION
BYTE BYTE BYTE BYTE BYTE BYTE
003 000 227 03 00 87

001 315 01 CD
002 277 02 BF
003 060 03 00
004 074 04 3C
005 323 05 D3
006 002 06 02
007 303 07 €3
010 001 08 01
011 003 09 03

70

Enter the following code at location 000 277 (00 BF hex):

HI LO INSTRUCTION
BYTE BYTE BYTE
00 BF F5
Co D5
Cl 11
€2 26
C3 01
C4 1B
C5 7A
Co B3
C7 C2
c8 C4
€9 00
CA D1
CB F1
cC C9

Question: What did you observe on Port 2?

We observed the LEDs counting in the binary pattern.

We will now insert a breakpoint into the program. In the BR1 HI..register,

store the value 003 (03 hex).

Remember to press STCRE.

You will see the value 000 in this register. Enter the
This is the address, 003 004 (03 04 hex) of

the INR instruction in the program.
to execute the program and stop at that instruction so we can view
the value in the accumulator.

Press GO.

What did you observe?

We will use the BREAKPOINT feature

We observed (BREAK PT.1) on the display.

HI LD INSTRUCTION
BYTE BYTE BYTE
000 277 365

-300 325
301 021
302 046
303 001
304 033
305 172
306 263
307 302
310 304
311 000
312 321
313 361
314 311
STEP 2. Press RESET, press GO.
Answer:
STEP 3. Press RESET, AUX.
STEP 4,
STEP 5. Press NEXT.
value 004 and store it.
STEP 6. Press RESET.
Question:
Answer:
STEP 7. Press MEM,
Question:

What did you observe?

71

STEP 8.

STEP 9.

STEP 10.

STEP 11.

STEP 12.
STEP 13.
STEP 14.

STEP 15.

Answer: We observed the address of the breakpoint (003 004) on the
display and the instruction 074 (3C hex).

Press REGS.

Question: What value is in the A register?

Answer: We observed the value 000 in the A register because the
instruction INR A has not yet been executed.

Press GO.

Press REGS.

Question: What is the value in the A register?

Answer: We observed the value 001. The program has been executed
one complete time and the value has been incremented.

Question: What value is displayed on Port 27
Answer: The value 001 is being displayed.
Press GO several times.

Question: What do you observe on Port 2?

Answer: Each time we pressed GO, we observed the binary value increase
by one indicating that the entire program has been executed
one time.

Press AUX. Press NEXT to advance to the STEP register.
Enter the value 377 (FF hex) and store it.

Press RESET, press and hold down the STEP key. The multi-step function
will execute the program one step at a time as long as the key is
pressed. You will note that it will take some time to step through
the time delay before actually encountering the breakpoint.

The use of the breakpoint in conjunction with the multi-step mode is
useful when you are debugging EPROM or write-protected memory. The
program will function in the normal manner when GO is pressed and any
breakpoint cannot be written into protected or EPROM memory. The use
of the multi-step function in conjunction with the breakpoint allows the
breakpointing of protected or EPROM memory.

If you do decide to press GO with a breakpoint set in EPROM, you will
need to do one Power UP (PUP) RESET (via the PUP/RESET switch) in
order to clear the breakpoint. (After you do the Power UP RESET,
return the PUP RESET switch to the RESET position.)

Using the switch Tabeled WEf, write-protect the first 1K of memory.
This memory contains the program and time delay subroutine. Press REGS.
Press NEXT to advance to the SH register. Enter the value 010 and STORE.

it.

72

STEP 16. Press RESET, then GO.
Question: What did you observe on the display and on Port 27

Answer: We observed that the display had the address 003 000 and GO
and Port 2 was counting in the binary pattern. The breakpoint
is inoperative.

STEP 17. Press RESET. Press and hold the STEP key.
Question: What did you observe?

Answer: We observed the display flickering for about 10 seconds and
then BREAK PT 1 was displayed. EXEC C will test for the break-
point address if the multi-step function is used to run the
program. While this feature won't ailow the running of the
program at full speed, it does allow the setting of breakpoints
in either ROM, RAM or protected memory. In most instances,
you will use the BREAKPOINT for debugging RAM memory where
you will be able to run the program at full speed.

The beakpoint is very useful for testing conditional jumps or calls. You can

set the breakpoint to the address of the jump or call to be tested and run the
program. When you encounter the breakpoint, viewing the FLAG register will show
whether the condition being tested is true or false. This information will

let you determine whether the jump or call will be executed. Using this technique
for running through a program, you will be able to follow the operation of the
program by setting selected breakpoints and viewing data at the breakpoint.

73

SECTION 5
FINAL NOTES

REMEMBER. ..

YOU CAN'T DAMAGE A COMPUTER THROUGH PROGRAMMING!

Do not be afraid to try any type of program using the MMD-2 computer. Entering

and running any program can have no effect on the computer jtself.

If you enter

a program incorrectly, or if the program you enter isn't constructed properly,
the only thing that can happen is that the program won't work. Nothing will
happen to the computer hardware.

However, you can damage the system through misuse or physical abuse. The
following precautions should be observed while using your computer:

*

Make sure that it is connected to the proper power source. Connection
to a DC power source or the improper line voltage will cause severe
damage to the unit.

Protect the components on the printed circuit board from coming in con-
tact with metallic objects, stray pieces of wire, coins, tools, etc.
These items can cause short circuits which can damage the computer.

Double check all connections to the STD interface and the solderless
breadboard connections. Improper connections to these areas of the
computer can cause electrical malfunction or damage to the computer.
Do not drop the computer.

Do not store or operate the computer in areas where the temperature is
excessively high or the atmosphere has corrosive elements in it.

Protect the computer from "dirty tricks". Since the entire computer is
exposed to allow you to see the actual computer, it is vulnerable to

people changing the chips on the computer or plugging them in backwards or

other types of vandalism. We feel that the advantage of having the com-
puter exposed so you can see all the sections and components which make
up the computer is a valuable asset. Hiding everything in a.box makes
the computer more mysterious and can make it somewhat intimidating to
the beginner.

Again, remember that if you are doing only programming, you cannot possibly

hurt the computer.

the possibility for electrical damage does exist and we ask you to be very
careful in making your connections to the computer.

74

If you are using the computer to interface an external circuit,

APPENDIX

ASC 11 CODE TABLE (With Parity Bits = 0)
DIGITS
OCTAL | HEX
o | os0 | 30
1| ot | 31
2 | os2 | 32
3| 063 | 33
4 | o064 | 34
5 { 065 | 35
6 | 066 | 36
7 | 067 | 37
g8 | 070 | 38
9 | 071 | 39
LETTERS
UPPER CASE OCTAL HEX HEX OCTAL LOWER CASE
A 101 41 61 141 a
B 102 42 62 142 b
C 103 43 63 143 c
D 104 44 64 144 d
E 105 45 65 145 e
F 106 46 66 146 f
G 107 47 67 147 g
H 110 48 68 150 h
I 111 49 69 151 i
J 12 4A 6A 152 j
K 113 48 68 153 k
§ 114 4c 6C 154 1
M 115 4D 6D 155 m
N 116 4E 6E 156 n
0 117 4F 6F 157 0
P 120 50 70 160 p
Q 121 51 71 161 q
R 122 52 72 162 r
) 123 53 73 163 s
T 124 54 74 164 t
U 125 55 75 165 u
v 126 56 76 166 v
W 127 57 77 167 W
X 130 58 78 170 X
Y 131 59 79 171 y
z 132 5A 7A 172 z

75

SYMBOLS

OCTAL HEX
! 041 21
" 042 22
043 23
$ 044 24
y 4 045 25
& 046 26
> 047 27
(050 28
} 051 29
s 052 2A
+ 053 2B
4 054 2C
- 055 2D
. 056 2E
/ 057 2F
s g72 3A
3 073 3B
< 074 3C
= 075 3D
> 076 3E
? 077 3F
@ 100 40
[133 5B
LY 134 5C
] 135 5D
A 136 5E
L 137 5F
b 140 60
¢ 173 7B
' 174 7C
} 175 7D
~ 176 7E

76

