

Logic Selection Guide

First Half 2001

A Tradition of Design Solutions

LOGIC OVERVIEW	1
FOCUS ON THE HISTORY OF LOGIC	2
FUNCTIONAL INDEX	3
FUNCTIONAL CROSS-REFERENCE	4
DEVICE SELECTION GUIDE	5
PACKAGING AND SYMBOLIZATION INFORMATION	A
LOGIC PURCHASING TOOL/ALTERNATE SOURCES	В

LOGIC SELECTION GUIDE

FIRST HALF 2001

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated

CONTACTS/INFORMATION

TI HOME PAGE

http://www.ti.com

TI LOGIC HOME PAGE

http://www.ti.com/sc/logic

TI MILITARY SEMICONDUCTOR HOME PAGE

http://www.ti.com/sc/docs/military

PRODUCT INFORMATION CENTER

http://www.ti.com/ cgi-bin/sc/support.cgi

DATA SHEETS

http://www.ti.com/sc/logic

Texas Instruments offers a full spectrum of logic functions and technologies from the mature to the advanced, including bipolar, BiCMOS, and CMOS. TI's process technologies offer the logic performance and features required for modern logic designs, while maintaining support for more traditional logic products. TI's offerings include products in the following process technologies or device families:

- AC, ACT, AHC, AHCT, ALVC, AVC, FCT, HC, HCT, LV, LVC, TVC
- ABT, ABTE, ALB, ALVT, BCT, HSTL, LVT, SSTL, SSTV
- BTA, CBT, CBTLV, FB, FIFO, GTL, GTLP, JTAG, PCA
- ALS, AS, F, LS, S, TTL

TI offers specialized, advanced logic products that improve overall system performance and address design issues, including testability, low skew requirements, bus termination, memory drivers, and low-impedance drivers.

TI offers a wide variety of packaging options, including advanced surface-mount packaging in fine-pitch small-outline and ball-grid-array (BGA) packages. The newest package for logic is the MicroStar Junior™ very-thin, fine-pitch BGA. MicroStar Junior complements the MicroStar BGA™ package to deliver high performance and allows the designer to double input/output density in the same circuit-board area or reduce board area by one-half, compared to standard packaging technology.

For further information on TI logic families, refer to the list of current TI logic technical documentation provided in this preface. For an overview of TI logic, see Section 1. Section 2, *Focus on the History of Logic*, commemorates the 10th anniversary of the *Logic Selection Guide*. Sections 3, 4, and 5 contain a functional index, functional cross-reference, and device selection guide, respectively. These sections list the functions offered, package availability, and applicable literature numbers of data sheets. Appendix A includes additional information about packaging and symbolization. Appendix B provides a cross-reference to match other manufacturers' products to those of TI. Data sheets can be downloaded from the internet at http://www.ti.com or ordered through your local sales office or TI authorized distributor. Please see the back cover of this selection guide for additional information.

CURRENT TI LOGIC TECHNICAL DOCUMENTATION

Listed below is the current collection of TI logic technical documentation. These documents can be ordered through a TI representative or authorized distributor by referencing the appropriate literature number.

Document Li	terature Number
ABT Logic Advanced BiCMOS Technology Data Book (1997)	. SCBD002C
AC/ACT CMOS Logic Data Book (1997)	. SCAD001D
AHC/AHCT Logic Advanced High-Speed CMOS Data Book (April 2000)	. SCLD003B
AHC/AHCT Designer's Guide (February 2000)	. SCLA013D
ALS/AS Logic Data Book (1995)	. SDAD001C
ALVC Advanced Low-Voltage CMOS Data Book (June 1999)	. SCED006A
AVC Advanced Very-Low-Voltage CMOS Data Book (March 2000)	. SCED008B
BCT BiCMOS Bus-Interface Logic Data Book (1994)	. SCBD001B
Boundary-Scan Logic IEEE Std 1149.1 (JTAG) Data Book (1997)	. SCTD002A
IEEE Std 1149.1 (JTAG) Testability Primer (1997)	. SSYA002C
CBT (5-V) and CBTLV (3.3-V) Bus Switches Data Book (December 1998)	. SCDD001B
Design Considerations for Logic Products Application Book (1997)	. SDYA002
Design Considerations for Logic Products Application Book, Volume 2 (September 1999)	. SDYA018
Design Considerations for Logic Products Application Book, Volume 3 (December 2000)	. SDYA019
F Logic Data Book (1994)	. SDFD001B
GTL, BTL, and ETL Logic Data Book (1997)	. SCED004
GTL/GTLP Product Information (January 2000)	. SCED009
HC/HCT Logic High-Speed CMOS Data Book (1997)	. SCLD001D
LVC and LV Low-Voltage CMOS Logic Data Book (1998)	. SCBD152A
LVT Logic Low-Voltage Technology Data Book (1998)	. SCBD154
Mobile Computing Logic Solutions Data Book (July 1999)	. SCPD002
PC, Workstation, Server, and High-Speed Memory Interface Logic Solutions Data Book (July 1999)	. SCPD003
Semiconductor Group Package Outlines Reference Guide (1999)	

See www.ti.com/sc/logic for the most current data sheets.

TABLE OF CONTENTS

SECTIO	ON 1 - LOGIC OVERVIEW	1-1
	Welcome to the World of TI Logic	. 1–5
	Selecting a Logic Family	
	Product Life Cycle	. 1–7
	Family Performance Positioning	. 1–8
	Logic Vendor Partnerships	. 1–9
	Complete Low-Voltage Market Coverage and Standardization	
	3-V and 5-V TTL and CMOS Specifications	
	Interfacing Mixed Voltages	
	Special "Dual-Supply" Level Shifters	
	Bus-Hold Input Characteristics	
	Partial-Power-Down Applications	
	Power-Up 3-State/Hot Insertion	
	Live Insertion	
	Precharge Function Avoids Data Corruption	
	Damping Resistors	
	DOC™ Circuitry Provides the Best-Possible Signal Integrity Without Compromising Speed	
	DOC™ Circuitry Available With AVC	
	Advanced-Logic Feature List	
	Little Logic (Single Gate and Dual Gates)	
	Little-Logic Features	
	High-Performance Bus Solutions for System Connections	
	Every Bus Solution Is a Translator	
	Data Rate vs Transmission Length GTLP Is a High-Performance Backplane Translator	
	AVC – Advanced Very-Low-Voltage CMOS	
	CBT vs CBTLV	
	CBT/CBTLV Product Family	
	Packaging Options	
	Device Names and Package Designators	
	TI DSP-Related FIFO Products	
	TI FIFO Product and Technology Roadmap	
	Typical FIFO Applications and End Equipment	
	TI FIFOs Optimize System Performance	
	TI FIFO Web Resources	
SECTIO	ON 2 - FOCUS ON THE HISTORY OF LOGIC	2-1
	The Transistor	2_5
	The Integrated Circuit	
	The Logic Business Begins	
	Types of Logic	
	The Logic Time Line	
	TI Logic Today	
	What About Tomorrow?	
	Bibliography	

5	OT! OT! D ED /DT!			
	GTL, GTLP, FB+/BTL d Transceivers			
Boundary-	EE Std 1149.1 (JTAG Scan (JTAG) Bus Dev Scan (JTAG) Support	vices	 	3–6
Inverting E	s		 	3–7
Bus Excha	nge/Multiplexing Swit	ches	 	3–11
Binary Cou	unters		 	3–13
Decoders Multiplexe	ers, and Multiplexers erse		 	3–15 3–16
Asynchron	rst-Out Memories) ous FIFO Memories s FIFO Memories		 	3–18
D-Type Fli D-Type Fli	p-Flops (3-state) p-Flops (non 3-state) Flops		 	3–20 3–21
AND Gate NAND Gat AND-OR-I OR Gates NOR Gate Exclusive- Exclusive- Gate and I	es			3–22 3–23 3–24 3–25 3–25 3–25
D-Type La	tches (3-state)		 	3–27

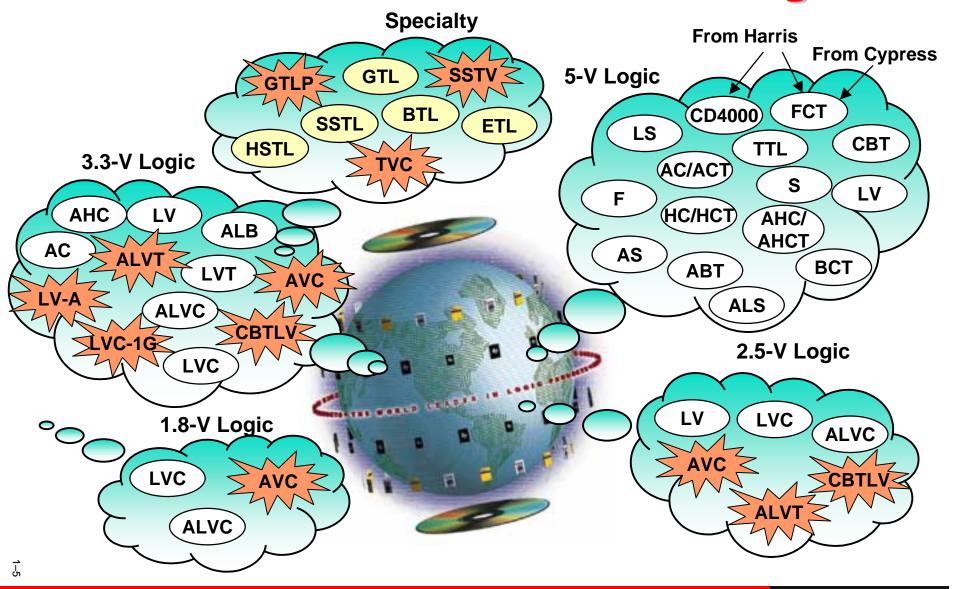
TABLE OF CONTENTS (continued)

SECTION 3 (continued)

Little Logic AND Gates NAND Gates OR Gates NOR Gates Exclusive-OR Gates D-Type Flip-Flops Inverters	3-28 3-29 3-29 3-29 3-29 3-29
Inverting Buffers and Drivers Noninverting Buffers and Drivers Standard Bus Switches	3–29 3–30
Memory Drivers and Transceivers (HSTL, SSTL, and SSTV) Buffers, Drivers, and Latches	
Registers	3–31
Specialty Logic Adders Arithmetic Logic Units Bus-Termination Arrays and Networks Comparators (identity) Comparators (magnitude) Digital Phase-Locked Loops (PLLs) Drivers/Multipliers ECL/TTL Functions Frequency Dividers/Timers Monostable Multivibrators Oscillators Parity Generators and Checkers Translation Voltage Clamps Voltage-Level Shifters	3-32 3-33 3-33 3-33 3-34 3-34 3-35 3-35 3-35
Transceivers	3–36 3–37
Universal Bus Functions Universal Bus Transceivers Universal Bus Drivers Universal Bus Exchangers	3–40 3–41

SECTION 4 - FUNCTIONAL CROSS-REFERENCE 4-1

SECTION 5 - DEVICE SELECTION GUIDE	5-1
ABT – Advanced BiCMOS Technology Logic	
ABTE/ETL – Advanced BiCMOS Technology/Enhanced Transceiver Logic	
AC/ACT – Advanced CMOS Logic	5–13
AHC/AHCT – Advanced High-Speed CMOS Logic	5–21
ALB – Advanced Low-Voltage BiCMOS Logic	5–27
ALS – Advanced Low-Power Schottky Logic	5–29
ALVC – Advanced Low-Voltage CMOS Technology Logic	5–35
ALVT – Advanced Low-Voltage BiCMOS Technology Logic	5–39
AS – Advanced Schottky Logic	5–41
AVC – Advanced Very-Low-Voltage CMOS Logic	5–45
BCT – BiCMOS Technology Logic	
64BCT – 64-Series BiCMOS Technology Logic	5–47
BTA – Bus-Termination Arrays	5–51
CBT – Crossbar Technology Logic	5–53
CBTLV – Low-Voltage Crossbar Technology Logic	
CD4000 – CMOS B-Series Integrated Circuits	5–59
74F – Fast Logic	
FB+/BTL – FutureBus+/Backplane Transceiver Logic	5–67
FCT – Fast CMOS TTL Logic	
FIFO – First-In, First-Out Memories	
GTL – Gunning Transceiver Logic	
GTLP – Gunning Transceiver Logic Plus	
HC/HCT – High-Speed CMOS Logic	
IEEE Std 1149.1 (JTAG) Boundary-Scan Logic	
Little Logic	
LS – Low-Power Schottky Logic	
LV – Low-Voltage CMOS Technology Logic	
LVC – Low-Voltage CMOS Technology Logic	
LVT – Low-Voltage BiCMOS Technology Logic	
PCA – I ² C Inter-Integrated Circuit Applications	
S – Schottky Logic	
SSTL/SSTV – Stub Series-Terminated Logic	
HSTL – High-Speed Transceiver Logic	
TTL – Transistor-Transistor Logic	
TVC – Translation Voltage Clamp Logic	5–135
APPENDIX A - PACKAGING AND SYMBOLIZATION INFORMATION	A-1
Device Names and Package Designators for TI Logic Products	A-5
Device Names and Package Designators	
for Logic Products Formerly Offered by Cypress Semiconductor	
Device Names and Package Designators for Logic Products Formerly Offered by Har	
Logic Symbolization Guidelines	
Moisture Sensitivity by Package	
Packaging Cross-Reference	A–17
ADDENDIY R - LOGIC DIDCHASING TOOL/ALTERNATE SOURCES	P-4


LOGIC OVERVIEW	1
FOCUS ON THE HISTORY OF LOGIC	2
FUNCTIONAL INDEX	3
FUNCTIONAL CROSS-REFERENCE	4
DEVICE SELECTION GUIDE	5
PACKAGING AND SYMBOLIZATION INFORMATION	A
LOGIC PURCHASING TOOL/ALTERNATE SOURCES	В

SECTION 1 LOGIC OVERVIEW

CONTENTS

Welcome to the World of TI Logic	1–5
Selecting a Logic Family	1–6
Product Life Cycle	1–7
Family Performance Positioning	1–8
Logic Vendor Partnerships	1–9
Complete Low-Voltage Market Coverage and Standardization	1–10
3-V and 5-V TTL and CMOS Specifications	1–11
Interfacing Mixed Voltages	1–12
Special "Dual-Supply" Level Shifters	1–13
Bus-Hold Input Characteristics	1–14
Partial-Power-Down Applications	1–15
Power-Up 3-State/Hot Insertion	1–16
Live Insertion	1–17
Precharge Function Avoids Data Corruption	1–18
Damping Resistors	1–19
DOC™ Circuitry Provides the Best-Possible Signal Integrity Without Compromising Speed	1–20
DOC™ Circuitry Available With AVC	1–21
Advanced-Logic Feature List	1–22
Little Logic (Single Gate and Dual Gates)	1–23
Little-Logic Features	1–24
High-Performance Bus Solutions for System Connections	1–25
Every Bus Solution Is a Translator	1–26
Data Rate vs Transmission Length	1–27
GTLP Is a High-Performance Backplane Translator	1–28
AVC – Advanced Very-Low-Voltage CMOS	1–29
CBT vs CBTLV	1–30
CBT/CBTLV Product Family	1–31
Packaging Options	1–32
Device Names and Package Designators	1–33
TI DSP-Related FIFO Products	1–34
TI FIFO Product and Technology Roadmap	1–35
Typical FIFO Applications and End Equipment	1–36
TI FIFOs Optimize System Performance	1–37
TLEIFO Web Resources	1–38

Welcome to the World of TI Logic

Selecting a Logic Family...

Designer Careabouts...

TI Offers...

Best Fit First

7

highest interest first

High Speed

CBT, CBTLV, AVC, ALB, ALVT, ALVC, ABT, LVT, AHC

- Critical Requirements: Slew Rate and Propagation Delay

High Drive

ALVT, LVT, ABT, ALB, ALVC, LVC, AVC † ...

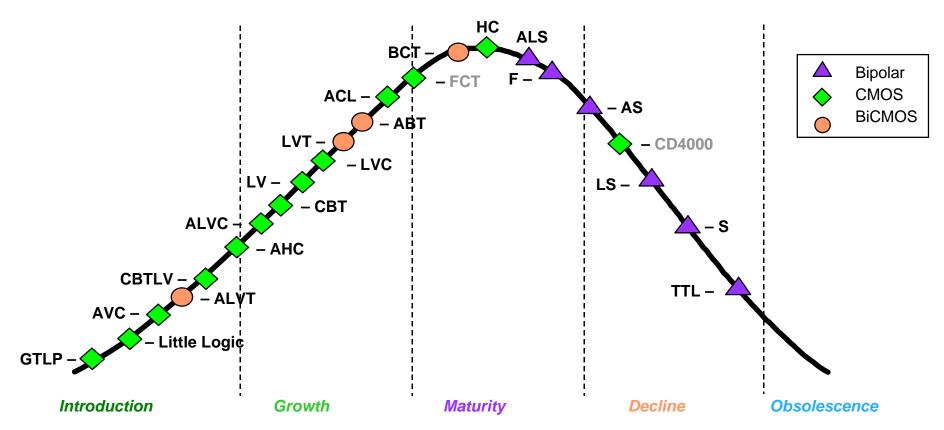
- Incident Wave Switching

CBT, CBTLV, LVC, AHC, ALVC, LV, AVC, ALVT, LVT...

- Migrate to Lower-Voltage Families

Ease of Use

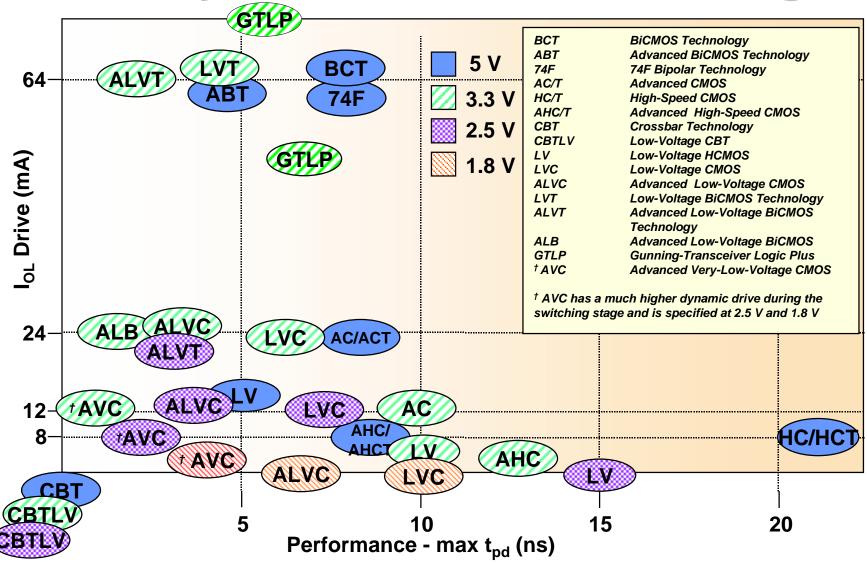
LVC, ALVT, LVT, AHC, AVC, LV, ABT, CBT, CBTLV...


- Bus Hold, 5-V Tolerance, I_{OFF}, Hot Insertion

[†]AVC products with DOC[™] increase dynamic drive during switching

DOC is a trademark of Texas Instruments.

Product Life Cycle



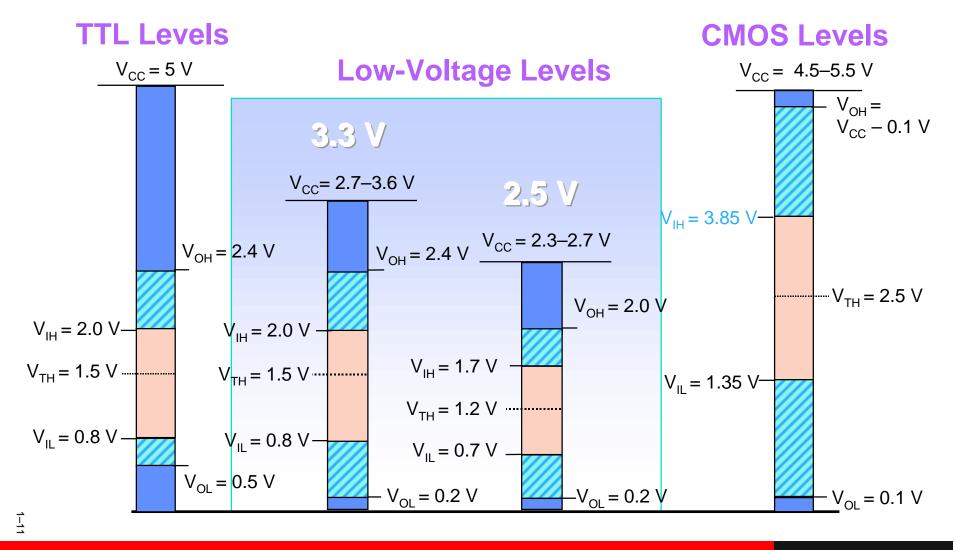
Investment levels for <u>new products</u> are at an all-time high. End-equipment requirements are accelerating new product introduction.

TI remains committed to be the last supplier in the older families.

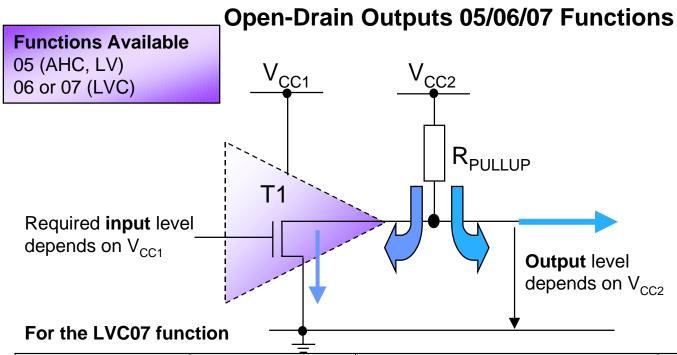
Family Performance Positioning

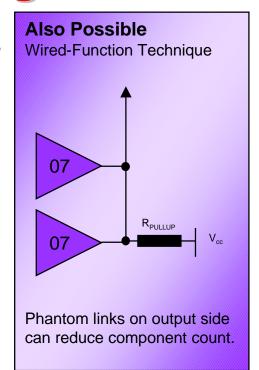
Logic Vendor Partnerships

Performance Range	TI	Philips	Hitachi	IDT	Toshiba	FSC	On
5-V high performance	ABT	ABT	ABT		ABT	ABT-C	
5-V low performance	AHC	AHC			VHC	VHC	VHC
3-V high performance	ALVT LVT ALVC	ALVT LVT ALVC	LVT	ALVC	VCX	LVT	VCX
3-V medium performance	LVC	LVC	LVC	LVC	LCX	LCX	LCX
3-V low performance	LV	LV	LV		LVQ	LVQ	LVQ
2.5-V high performance	AVC	AVC					



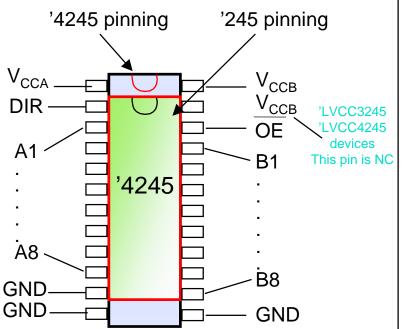
Complete Low-Voltage Market Coverage and Standardization


			Perfor	mance		
5 \	HC, LS, S, TTL	ACT, AHC, ALS, AS, 74F	ABT			
3 <	/// 0000	/// 000	/// 000 >>>	/// 000	777 000	777,000
က	AHC, LV	LVC	LVT	ALVC	ALVT	AVC
>		/// 0000 HHHH		/// 000 IIIII	//// DADAD	/// OKOKO
2.5		LVC		ALVC	ALVT	AVC
>		//// 0000 HHHI		//// 0000 HIIII		//// 0/0/0
2− ∞		LVC		ALVC		AVC
		7//	TI Philips	Hitachi IIIII	IDT	
<u>AHC</u>		LVC	<u>LVT</u>	<u>ALVC</u>	<u>ALVT</u>	AVC
	ns speed (5 V)	✓ 6.5-ns speed	✓ 4-ns speed	√3-ns speed	√2.4-ns speed	∠<2-ns speed
	• •	/ √ –24/24-mA drive		√-24/24-mA drive	√-32/64-mA drive	√-12/12-mA drive
	8-mA drive (5 V)		∠ Low (90 μA)	Ultra-low (40 μA)	` ' '	✓ Ultra-low (40 μA)
	4-mA drive (3.3 V	,	standby power	standby power	standby power	standby power
	or 3.3-V V_{CC}	✓3 WW sources	✓3 WW sources	✓3 WW sources	✓2 WW sources	✓2 WW sources
	input tolerant	✓Bus hold	✓ Bus hold	✓ Bus hold	✓ Bus hold	✓ Bus hold
√ 4 W	/W sources	✓5-V tolerant	√5-V tolerant		√5-V tolerant	✓3.3-V tolerant
		✓ Gate functions	✓ Hot insertion		✓ Hot insertion	✓ Partial power down
		✓ Partial power down			✓ Auto3-state	



3-V and 5-V TTL and CMOS Specifications

Interfacing Mixed Voltages



Supply voltage V _{CC1}	LVC07 understands	Pullup resistor may be connected to	Level conversion range
1.8 V	1.8-V levels	1.8 V, 2.5 V, 3.3 V, and 5 V	1.8 V -> 1.8 V-5.5 V
2.5 V	2.5-V levels	1.8 V, 2.5 V, 3.3 V, and 5 V	2.5 V -> 1.8 V-5.5 V
3.3 V	3.3-V levels	1.8 V, 2.5 V, 3.3 V, and 5 V	3.3 V -> 1.8 V-5.5 V
5 V	5-V levels	1.8 V, 2.5 V, 3.3 V, and 5 V	5 V -> 1.8 V-5.5 V

Special "Dual-Supply" Level Shifters

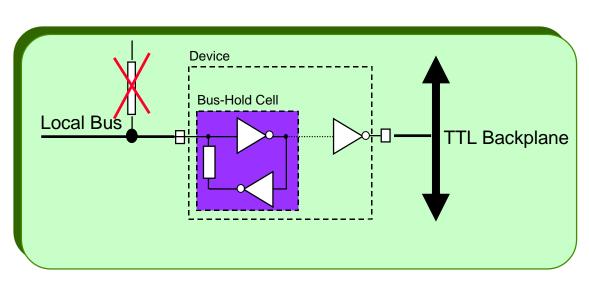
'LVC4245, 'LVCC3245, 'LVCC4245, and 'ALVC164245

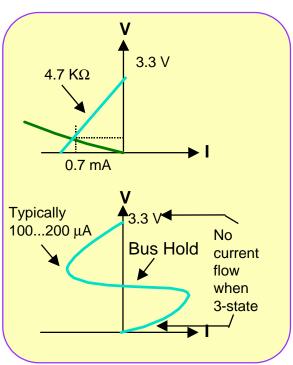
The 'ALVC164245 and 'LVC4245 have 5-V V_{CC} pins and 3.3-V V_{CC} pins.

The 'LVCC3245 and 'LVCC4245 have adjustable output voltages.

The 'LVCC3245 can have one side from 3 V to 5.5 V, while the other side is between 2.3 V and 3.6 V.

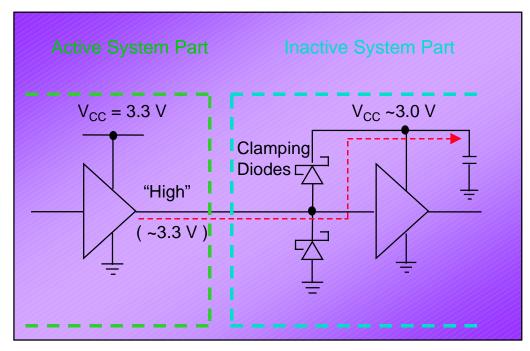
The 'LVCC4245 is fixed at 5 V. while the other side can be connected between 3.3 V and 5 V.

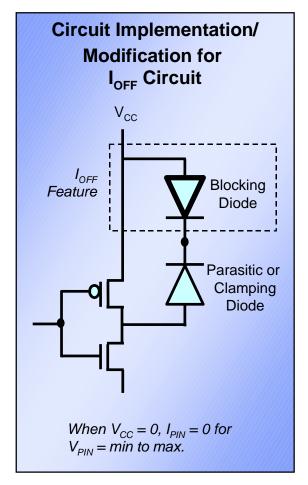

In this way, a full mixed-mode system can be designed.


-		_
1DIR 1		48 1OE
1B ₀ 2		47 1A ₀
1B ₁ 3		46 1A ₁
GND 4		45 GND
1B ₂ 5		44 1A ₂
1B ₃ 🙃		43 1A ₃
V_{CC_1} $\overline{7}$		42 V _{CC2}
1B₄ 8		$\frac{31}{41} 1 A_4$
1B ₅ 9		40 1A ₅
GND 10		39 GND
1B ₆ 11		38 1A ₆
1B ₇ 12		37 1A ₇
$2B_0 \boxed{13}$	'164245	$\frac{31}{36}$ $2A_0$
· ·		Ŭ
2B ₁ 14		35 2A ₁
GND 15		34 GND
2B ₂ 16		33 2A ₂
$2B_3^{17}$		32 2A ₃
V _{CC1} 18		31 V _{CC2}
2B ₄ 19		30 2A ₄
$2B_{5}^{-1}$ 20		29 2A ₅
GND 21		28] GŇD
2B ₆ 22		27 2A ₆
$2B_{7}$ 23		26 2A ₇
2D ₇ [24]		25 OE
		OL

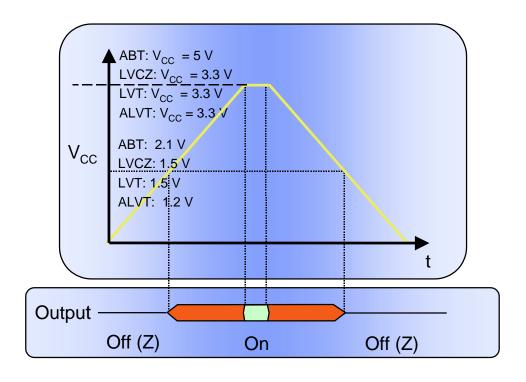
This solution is compatible with 3.3-V-only systems. Devices can be replaced later with 3.3-V parts without PCB redesign.

Bus-Hold Input Characteristics




- ★ Holds the last known state of the inputs
- ★ Provides ±74 µA of holding current at 0.8 V and 2.0 V
- ★ Bus hold current does <u>not</u> load the driving output at a valid logic level
- ★ Negligible input/output capacitance impact (0.5 pF)
- ★ Eliminates the need for external resistor on unused or floating I/O pins
- Reduces the number of passive components per board
- **★** Bus-hold nomenclature : SN74xxxHxxx; e.g., SN74LVCH245

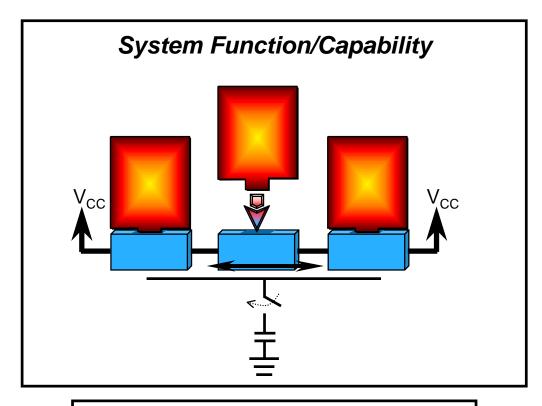
Partial-Power-Down Applications



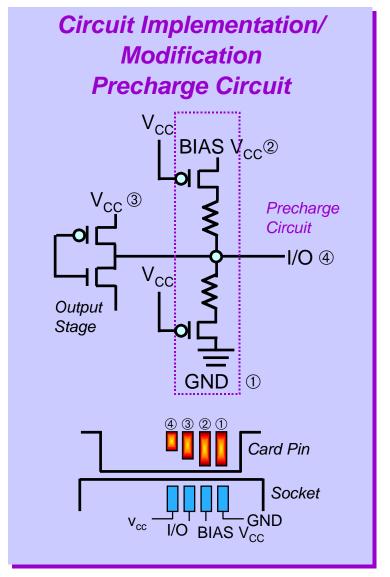
Logic Family I _{OFF} Specification							
GTL, ABT, LVT, ALVT	: ±100 μA						
GTLP	: ±30 μA						
LVC, AVC	: ±10 μA						
LV	: ±5 μA						

- ★ Unexpected device behavior during partial powering may cause system failure.
- ★ Input signals may source current via input clamping diodes of powered-down circuits.

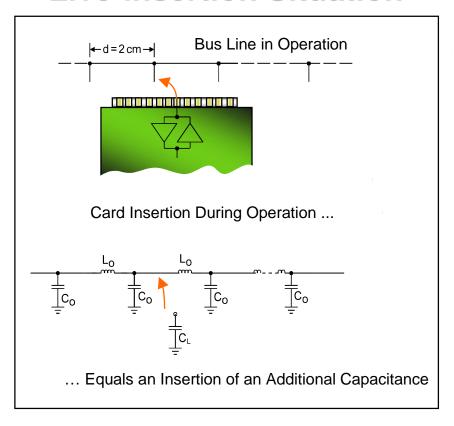
Power-Up 3-State/Hot Insertion

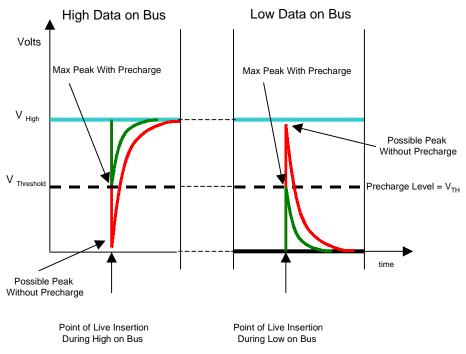


Tie external resistor from OE line to V_{CC}


- ★ OE follows V_{CC}, ensuring device remains in 3-state (Z) during power up/power down
 - See I_{OFF} and $I_{\text{OZ(PU/PD)}}$ on data sheet
- * Devices tested at ramp rates of 200 μ s/V–20 μ s/V

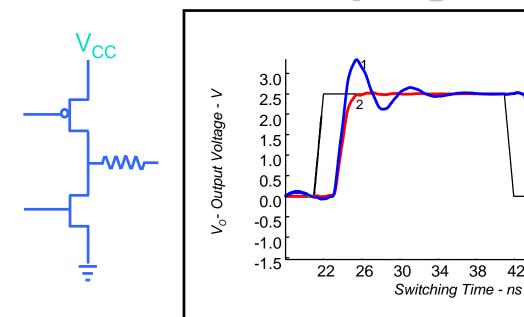
Live Insertion





Precharge Function Avoids Data Corruption (BIAS V_{cc})

Live-Insertion Situation


Possible Scenarios

• V_{BIAS} charges I/O capacitance up to threshold voltage

Damping Resistors

- Limits the current to reduce noise from undershoot or overshoot
- Aids in line termination (reducing ringing/line reflection to improve signal quality)

42

46

50

54

58

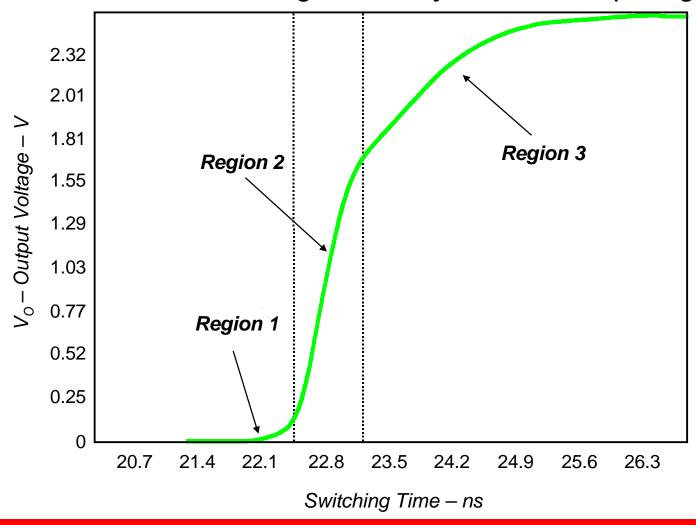
- Series resistor at output stage
- Short propagation delays and low power consumption
- Supports highest system performance and/or use of slower memories
- Reduces component count, board space, and mounting costs

Examples: 'ALVCH2245 'ALVCH162245 **'ALVCHR16245**

Extra "2" in device name indicates damping resistor on outputs only; "R" indicates both A and B ports.

1) ALVCH16827

2) ALVCH162827


(Advanced Low-Voltage CMOS Logic without series resistors)

(Advanced Low-Voltage CMOS

Logic with series resistors)

DOC[™] Circuitry Provides the Best-Possible Signal Integrity Without Compromising Speed

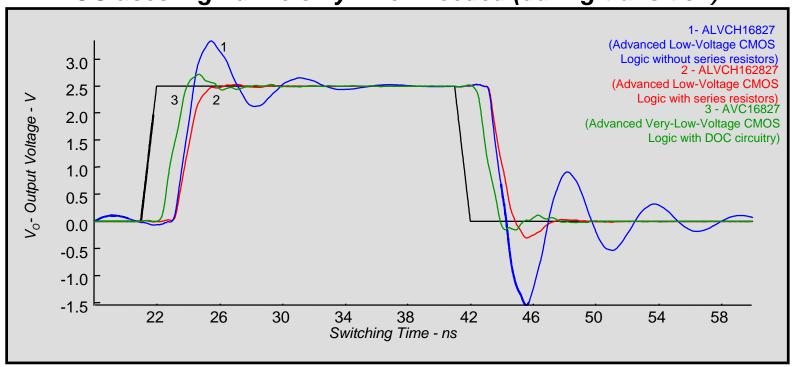
DOC uses high drive only when needed (during transition)

Region 1

 Low drive during steady state signal

Region 2

 Output impedance is dynamically lowered during signal transition to drive the line


Region 3:

 Output impedance is dynamically raised to reduce noisy signal overshoots and undershoots

DOC™ Circuitry Available With AVC

DOC uses high drive only when needed (during transition)

The DOC Circuit

Delivers high drive current to achieve maximum speed
Reduces overshoot and undershoot normally associated with fast edges
Eliminates the need for damping resistors

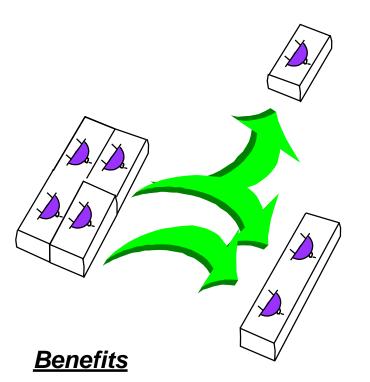
Output waveforms are taken driving a PC100 network load.

 $V_{CC} = 2.5 \text{ V}$ $T_{J} = 40^{\circ} \text{ C}$ Single bit switching

DOC is a trademark of Texas Instruments.

Advanced-Logic Feature List

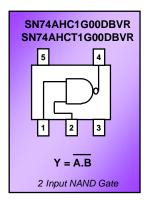
- Mixed-voltage-tolerant I/Os and level shifting LV, LVC, ALVC, LVT, ALVT, AVC, GTL, GTLP
 - Systems use mixed supply voltages and TLL or CMOS levels in many designs. Most advanced-logic families allow mixed-signal interfacing and provide level-shifting functions for certain mixed-voltage applications.
- Bus hold CBT[†], ABT[†], LVC[†], ALVC[†], LVT[†], ALVT, AVC[†], GTL, GTLP
 - Bus-hold circuitry in selected logic families helps solve the problem of floating inputs and eliminates the need for pullup or pulldown resistors by holding the last known state of the input. See I_{I(HOLD)} on data sheet.
- Partial power down I_{OFF} ABT, LV, LVC, LVT, ALVT, AVC, GTL, GTLP
 - I_{OFF} circuitry prevents the device from being damaged during hot insertion. See I_{OZPU}, I_{OZPD}, I_{OFF} specifications on data sheet.
- Power-up 3-state ABT, LVT, ALVT, LVC, GTLP
 - Power-up 3-state ensures valid output levels during power up and valid Z on the outputs during power down.
- ♦ BIAS V_{CC} GTLP, ABTE, FB, CBT, CBTLV, GTL (1655 only)
 - V_{BIAS} precharges I/O capacitance up to threshold voltage, preventing glitching of active data.
- Series damping resistors ABT[†], LVC[†], ALVC[†], LVT[†], ALVT[†]
 - Series damping resistors limit signal overshoot and undershoot by providing better impedance matching and line termination without the need for external resistors.
- **♦** DOC™ circuit AVC
 - The revolutionary DOC[™] circuitry automatically lowers circuit output impedance during signal transition and later raises it after signal transition to reduce noise.
- ◆ JTAG ACT, BCT, ABT, LVT

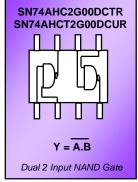

(†selected functions)

DOC is a trademark of Texas Instruments.

Little Logic (Single Gate and Dual Gates)

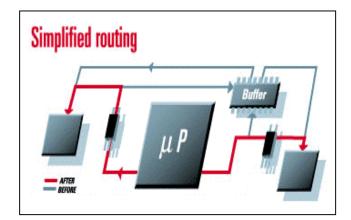
Principle

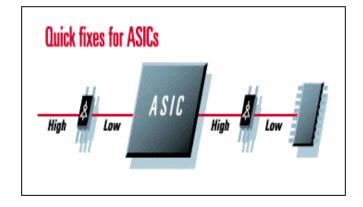

★ Small SOP-5 package


★ Reduced EMI noise

★ Enhances ASIC functionality.

★ Optimized PCB layout


Example

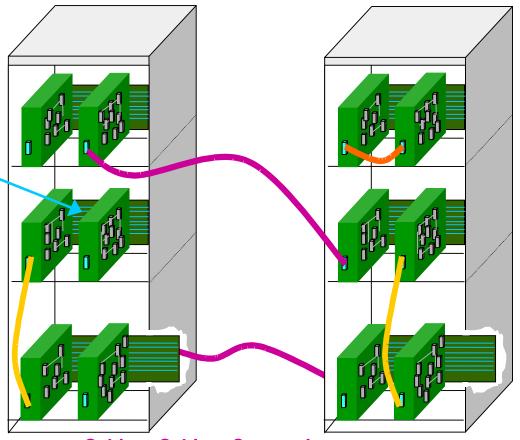


Less board space needed
Simplified routing
Better routing possibilities
Quick fixes

Application

Little-Logic Features

Family	Operating V _{cc}		l _{OFF} V _{in} Tol.	I _{OH} /I _{OL} (mA)			t _{pd} (ns, C _I = 50 pF)					
		OFF		1.8 V	2.5 V	3.3 V	5 V	1.5 V	1.8 V	2.5 V	3.3 V	5 V
AHC1G AHCT1G	2.0–5.5	No	Yes			4	8				11	7.5
LVC1G LVC2G	1.8–5.5	Yes	Yes	4	12	24	32		†8.5	†5.5	4	3.3
ALVC1G ALVC2G	1.5–3.6	Yes	Yes	6	18	24		†7.5	†6	†3.5	†2.5	
Competition												
TC7SH (VHC)	1.5–3.6	No	Yes			4	8				11	4.5
TC7SZ (LCX)	1.8–5.5	Yes	Yes		12	24	32		†9.5	†6.5	5	4.3
TC7SA (VCX)	1.8–3.6	Yes	Yes	6	18	24			†7	†4	†3	


† Symbol or red indicates C_i = 30 pF

High-Performance Bus Solutions for System Connections

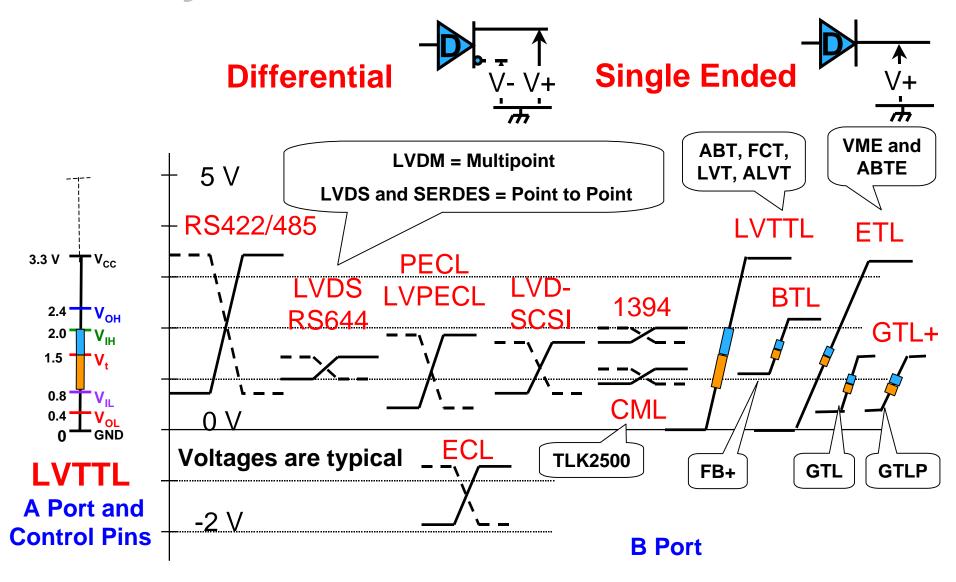
Card-Card Connection

Over backplane multipoint to multipoint, using GTLP, FB+, or VME single ended or LVDM differential

Card-Card Connection

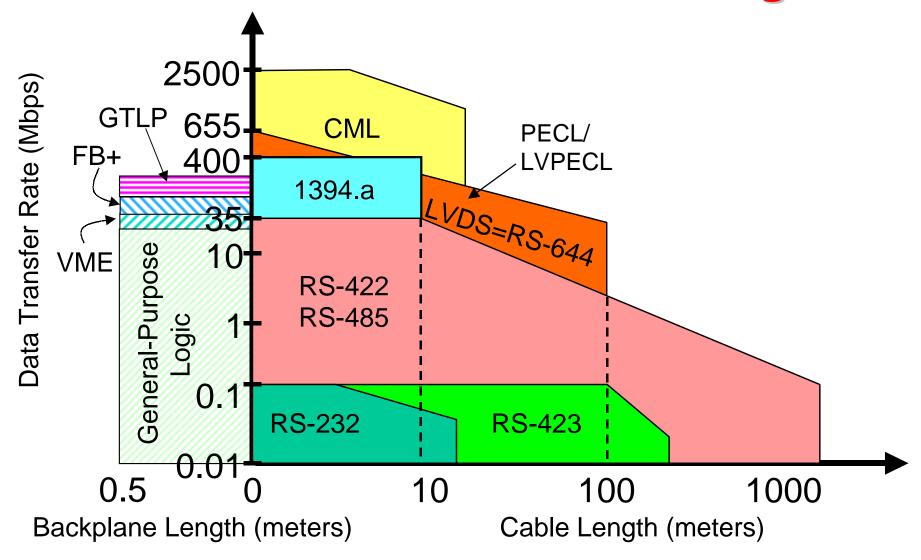
Point to point, using LVDS, SERDES (example: TLK2501 etc.)

Rack-Rack Connection

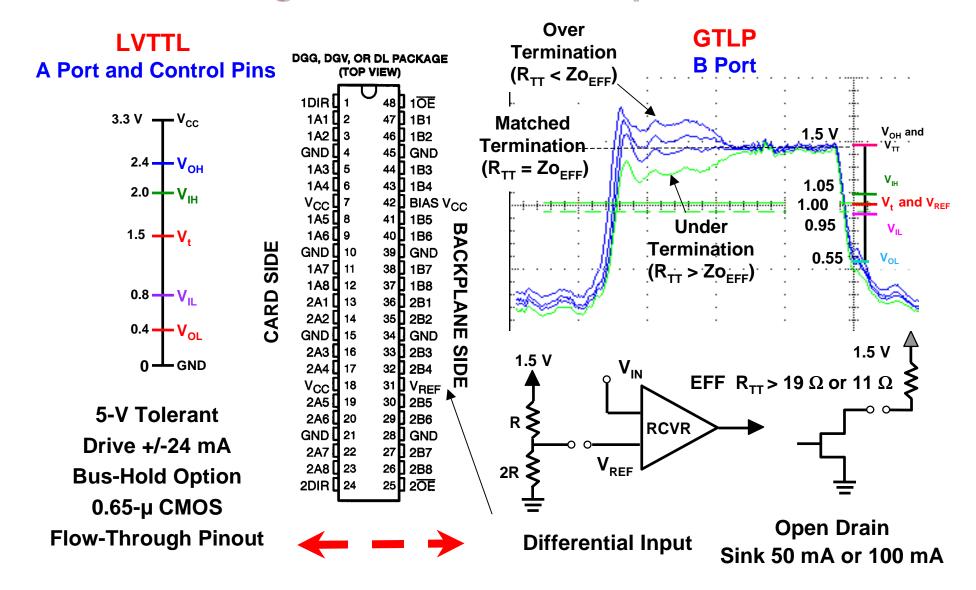

Point to point, using LVDS or PECL

Cabinet-Cabinet Connection

- Backplane to backplane with SERDES (example: TLK2500, etc.)
- Card to card with SERDES (example: TLK2501, etc.)



Every Bus Solution Is a Translator



Data Rate vs Transmission Length

GTLP Is a High-Performance Backplane Translator

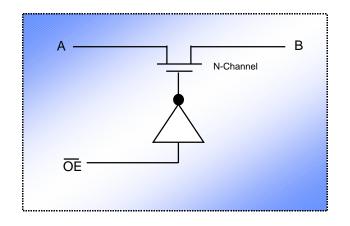
AVC – Advanced Very-Low-Voltage CMOS

Fastest Logic Family Available - Sub 2 ns Max tpd

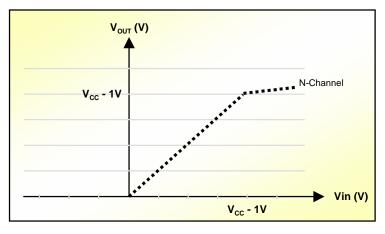
Features

- V_{CC} Specified at 3.3 V, 2.5 V, and 1.8 V
- 3.3-V I/O Tolerance
- Bus Hold
- I_{OFF} for Partial Power Down
 - ±10 µA
- Dynamic Drive Through DOC™ Circuit

Device	V _{cc}	Drive	T _{PD(MAX)}
SN74AVC16244	3.3 V	-12/12 mA (Static)	1.7 ns
SN74AVC16244	2.5 V	-8/8 mA (Static)	1.9 ns
SN74AVC16244	1.8 V	-4/4 mA (Static)	3.2 ns

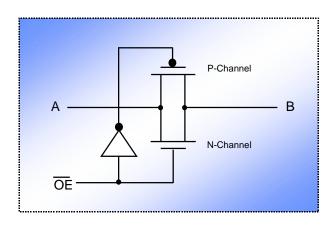

į

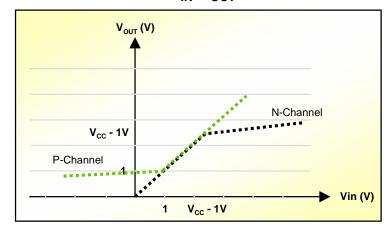
DOC is a trademark of Texas Instruments.



CBT vs CBTLV

CBT Circuit Diagram


CBT V_{IN}/V_{OUT} Graph

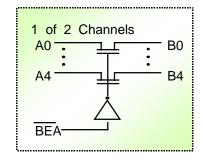

CBT Features

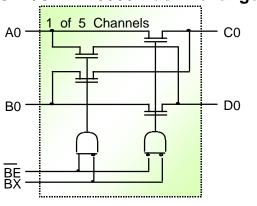
- Level shifting
 - SN74CBTDxxx
- Precharged outputs
 - SN74CBT6800

CBTLV Circuit Diagram

CBTLV V_{IN}/V_{OUT} Graph

CBTLV Features


- No level shifting
- Precharged outputs
 - SN74CBTLV16800


CBT/CBTLV Product Family

Extremely low propagation delays make crossbar switches an effective replacement for drivers and receivers in high-speed systems in which signal buffering is not required.

CBT/CBTLV3384 Bus Switch

CBT/CBTLV3383 Bus Exchanger

*Widebus and Shrink Widebus are trademarks of Texas Instruments.

What Are Bus Switches (CBT/CBTLV)?

- **★** Simple FET switches specified at 5 V (CBT) and 3.3 V, 2.5 V (CBTLV) **support easy bus communication between devices, i.e., memory and ASIC**
- * Near-zero propagation delay enables highest system speed
 - $t_{pd(MAX)}$ = 0.25 ns for both CBT and CBTLV
- * Very low power consumption makes them ideal for portable systems
 - $I_{CC(MAX)}$ = 50 μ A for CBT and $I_{CC(MAX)}$ = 20 μ A for CBTLV

Where Are CBT Switches Used?

- ★ Wide application: PCs, workstations, hard disk drives, bus boards, 5-V to 3-V translators, hot-card insertion, telecommunication equipment
- **★** CBTxxxx Functionally equivalent to QSxxxx
- **★** CBTLVxxxx Functionally equivalent to PI3Bxxxx

Which Package to Choose

- **★** Industry **standard pinouts** ('244, '245)
- **★ Fine-pitch packaging** (SOIC, SSOP,TSSOP,TVSOP, Widebus[™], Shrink Widebus[™]
- * Single bus switch SN74CBT/CBTLV1G125... NOW AVAILABLE!!!
- * CBT6800 and CBTLV16800 bus switch with precharged outputs available Literature
- **★ New CBT/CBTLV Selection Guide** (literature number SCDB002)
- * New CBT/CBTLV Data book (literature number SCDD001C)

Packaging Options

8 Bits

DW

8 Bits

DB

8 Bits

16/18 Bits Widebus™

DL

16/18 Bits Shrink Widebus™

DGG

16/18 Bits Widebus™

Area = 62 mm^2

PW

48-Pin SSOP

Ht. = 2.74 mm

 $LP = 0.635 \, mm$

Area = 171 mm^2

Area = 108 mm^2

DGV

20-Pin SOIC

Area = 137 mm^2 Ht. = 2.65 mm $LP = 1.27 \, mm$

20-Pin SSOP

Ht. = 2.0 mmLP = 0.65 mm 20-Pin TSSOP

Area = 46 mm^2 Ht. = 1.1 mm $LP = 0.65 \, mm$

48-Pin TSSOP

Ht. = 1.1 mmLP = 0.5 mm 48-Pin TVSOP

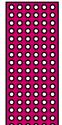
Area = 63 mm^2 Ht. = 1.2 mmLP = 0.4 mm

Single Gate

(Magnified 2.5X for detail)

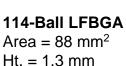
5-Pin SOT

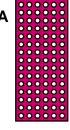
Area = 8.12 mm^2 Ht. = 1.2 mm $LP = 0.95 \, mm$



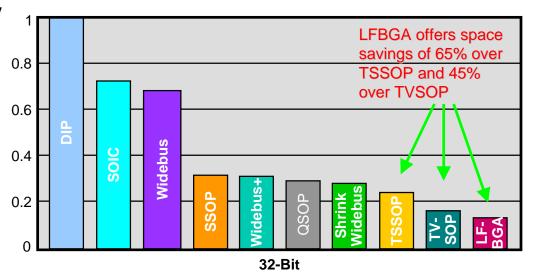
5-Pin SOT

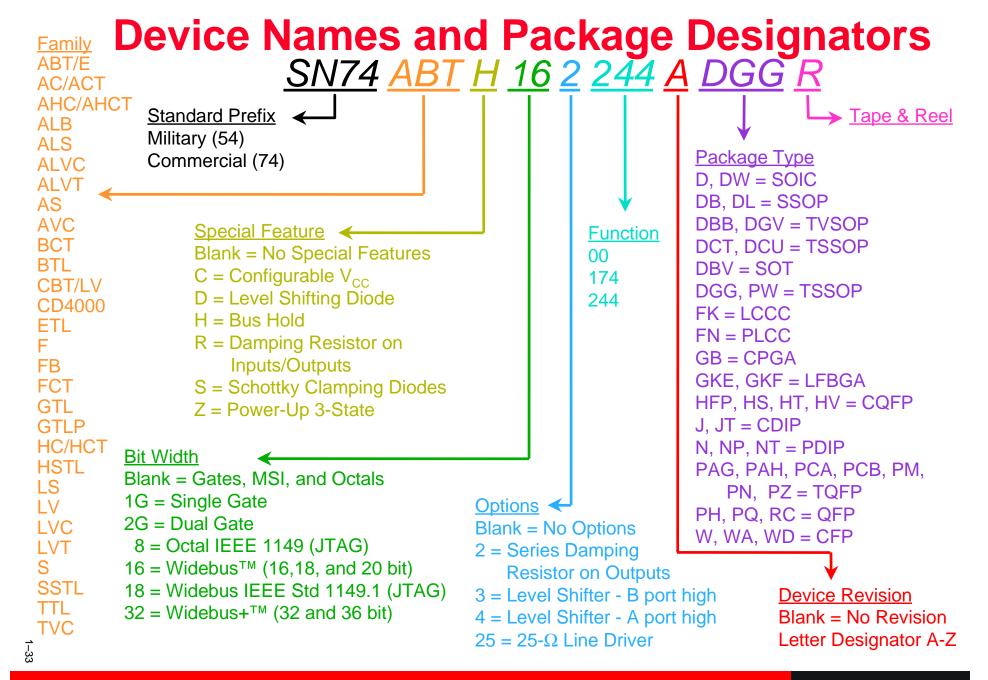
Area = 4.2 mm^2 Ht. = 1.0 mm $LP = 0.65 \, mm$


(TI package designators)


32-Bit Ball Grid Array

96-Ball LFBGA

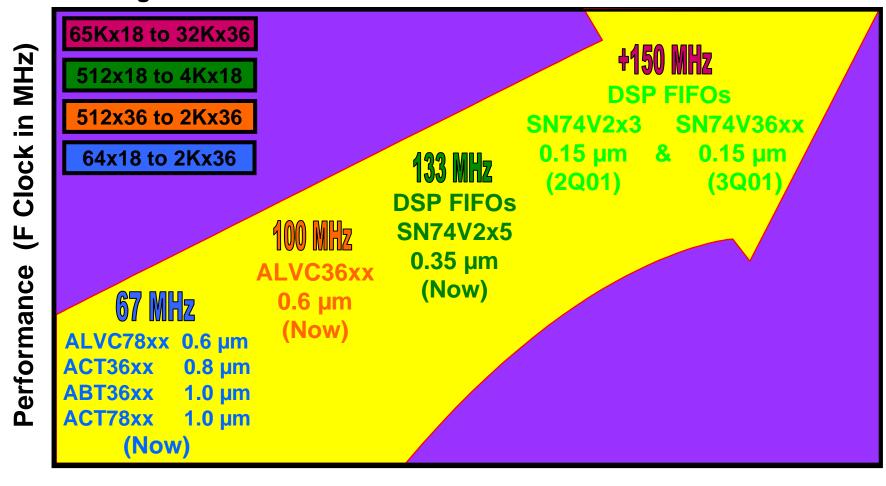

Area = 74.25 mm^2 Ht. = 1.3 mmLP = 0.8 mm



114-Ball LFBGA

LP = 0.8 mm

Widebus and Shrink Widebus are trademarks of Texas Instruments.


TI DSP-Related FIFO Products

- New TI FIFOs Offer a DSP Glueless Interface to Leading Edge TI DSPs
- TI Technology Leadership Creates World-Class FIFO Performance
- TI Manufacturing Excellence Ensures the Lowest Total Cost of Ownership

TI FIFO Product and Technology Roadmap

Configuration:

(Availability)

Typical FIFO Applications and End Equipment

Typical Applications:

Bus-to-Bus Speed Matching

Clock Synchronization

Data Acquisition

DSP Interface

Elastic Stores

I/O Buffering

Microprocessor Interface

Slip Buffers

Transmit Buffer

Typical End Equipment:

Accelerator Cards

ATM/SONET

Digital Signal Processing

Digital TV

Disk Drivers

Workstations

FDDI (Fiber Distr. Data)

Graphics Systems

High-End Computers

High-End Copiers

High-End Printers

Industrial Controls

LAN/WAN

Medical Imaging

Modems

Networking Systems

Parallel Processors

PBX (Private Branch Exch.)

PCMCIA Cards

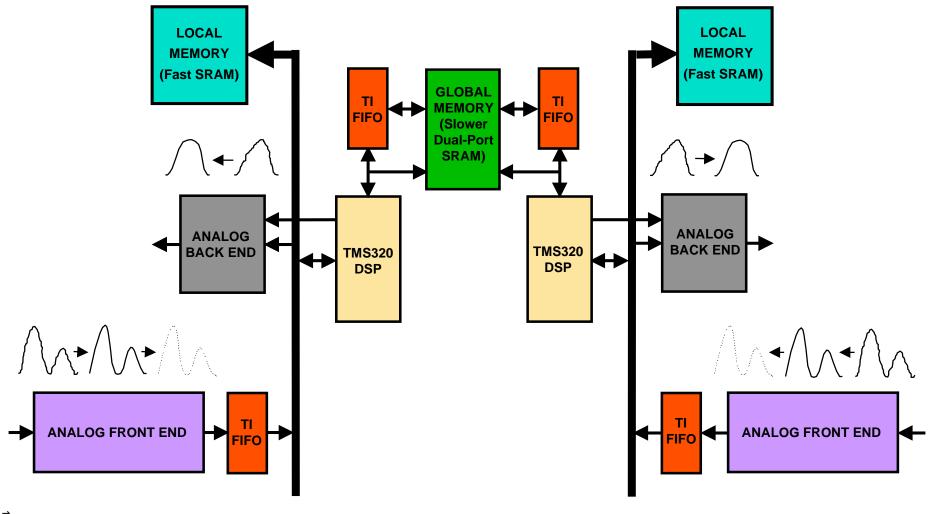
Routers

Scanners

SCSI Boards

Servers

Switches


Telecom Base Stations

Video Telecom

VME Boards

TI FIFOs Optimize System Performance

TI FIFO Web Resources

TI FIFO Website

- http://www.ti.com/sc/fifo
 - Order FIFO Sample Kit
 - Comprehensive FIFO Product Listing
 - TI FIFO Product Selection Guide
 - TI FIFO Cross-Reference Guide
 - TI DSP and FIFO-Related Application Reports
 - General FIFO Application Reports
- TI FIFO website also accessible from product menu on TI home page http://www.ti.com

LOGIC OVERVIEW	
FOCUS ON THE HISTORY OF LOGIC	2
FUNCTIONAL INDEX	3
FUNCTIONAL CROSS-REFERENCE	4
DEVICE SELECTION GUIDE	5
PACKAGING AND SYMBOLIZATION INFORMATION	A
LOGIC PURCHASING TOOL/ALTERNATE SOURCES	В

SECTION 2 FOCUS ON THE HISTORY OF LOGIC

CONTENTS

The Transistor	. 2–5
The Integrated Circuit	. 2–5
The Logic Business Begins	. 2–6
Types of Logic	
Гhe Logic Time Line	. 2–7
ΓI Logic Today	. 2–9
What About Tomorrow?	. 2–9
Bibliography	2-10

The Transistor

It is December 1947, and two researchers at Bell Telephone Laboratories, John Bardeen and Walter Brattain, have just demonstrated their invention to their team leader, William Shockley. Their invention is the first working transistor.

Fast-forward 11 years.

The Integrated Circuit

In a deserted laboratory at the brand-new Semiconductor Building owned by Texas Instruments, Jack Kilby first hits on the idea of the integrated circuit. In July 1958 most employees had left for mass vacation. Because Kilby was new to the company and didn't have much vacation, he stayed to man the lab.

What caused Kilby to think along the lines that eventually resulted in the integrated circuit? Like many inventors, he set out to solve a problem. In this case, the problem was called "the tyranny of numbers," where the interconnection of individual components offered too many potential points of failure.

For nearly all of the first 50 years of the 20th century, the electronics industry had been dominated by vacuum-tube technology. But vacuum tubes were unreliable, bulky, power-hungry, and hot. The invention of the transistor solved the problems of the vacuum tube. By comparison, transistors were tiny, more reliable, and longer lasting. They also produced less heat and used less power. The transistor inspired engineers to design increasingly complex electronic circuits and equipment containing hundreds or thousands of discrete components. But these components still had to be connected together to form complete circuits; hand wiring and soldering of thousands of components was expensive and time consuming. It also was unreliable; every soldered joint was a potential trouble source. The challenge was to find cost-effective, reliable ways to produce and interconnect these components.

One attempt at a solution was the Micro-Module program sponsored by the U.S. Army Signal Corps. The idea was to make all the components a uniform size and shape, with the wiring built in. The modules then could be snapped together to make circuits, eliminating the need for wiring the connections.

TI was working on the Micro-Module program when Kilby joined the company in 1958. Previous jobs had familiarized him with the "tyranny of numbers" problem facing the industry, but he doubted that the Micro-Module was the answer, as it did not address the basic problem of high component count in elaborate circuits.

Kilby began searching for an alternative, and during that search decided the only thing a semiconductor house could make cost effectively was a semiconductor. "Further thought led me to the conclusion that semiconductors were all that were really required, that resistors and capacitors, in particular, could be made from the same material as the active devices. I also realized that, since all of the components could be made of a single material, they could also be made in situ interconnected to form a complete circuit," Kilby wrote in a 1976 article titled *Invention of the IC*.

Kilby began to write and sketch his ideas in July 1958. By September, he was ready to demonstrate a working integrated circuit built on a piece of semiconductor material. Several executives, including former TI chairman Mark Shepherd, gathered on September 12, 1958. What they saw was a sliver of germanium, with protruding wires, glued to a glass slide. It was a rough device, but when Kilby pressed the switch, a sine wave appeared on the attached oscilloscope. His invention worked!

Kilby had made a big breakthrough. But while the U.S. Air Force showed some interest in TI's integrated circuit, industry reacted more skeptically. Indeed, the IC and its relative merits "provided much of the entertainment at major technical meetings over the next few years," Kilby wrote. Kilby received co-credit for the invention of the integrated circuit with Robert Noyce, who had been working separately at the time on a similar project at Fairchild. Noyce died in 1990. Kilby was later awarded a Nobel Prize in physics (October 2000) in part for this work.

The integrated circuit won acceptance in the military market through programs such as the first computer using silicon chips for the Air Force in 1961 and the Minuteman Missile in 1962. Recognizing the need for a "demonstration product" to speed widespread commercial adoption of the IC, former TI chairman Patrick E. Haggerty challenged Kilby to design a calculator as powerful as the large, electromechanical desktop models of the day, but small enough to fit in a coat pocket. The resulting electronic handheld calculator, of which Kilby is a co-inventor, successfully commercialized the integrated circuit.

The Logic Business Begins

Once the idea of the integrated circuit was developed, it was obvious that many standard and often-used circuits could be built into a single package, and several of these prepackaged modules or semiconductor networks could be connected to form useful and much more complicated circuits. Early standard circuits included logic functions; OR gates, AND gates, and flip-flops.

Types of Logic

The first commercially available IC made by TI (1959/1960) was the SN502 microelectronic binary flip-flop, a simple gate with mesa construction and wire interconnections at a sample quantity price of \$500 each. The first true catalog ICs were resistor-transistor logic (RTL) and series-51 resistor-capacitor-transistor logic (RCTL) devices, first available in 1960/1961, at a price of \$200 per unit. At hundreds of dollars per unit, the cost of these early integrated circuits was astronomical in today's terms.

Diode-transistor logic (DTL) was an evolutionary step in improving speed, power, and semiconductor yields. Transistor-transistor logic (TTL) was a direct result of this evolution. Many TTL "flavors" were developed to offer the right mix of speed and power demanded in the marketplace. High-speed (H) and low-power (L) series were variations on transistor gain and resistor values. Schottky (S or STTL) added Schottky diodes to increase speed by preventing transistor saturation. Further market-driven requirements for lower power; better reliability, smaller packages, and/or higher speeds, resulted in low-power Schottky (LS or LPS), advanced low-power Schottky (ALS), and advanced Schottky (AS). With the exception of the DTL, RTL, and L and H TTL families, these products are still available.

The development of complementary metal-oxide semiconductor (CMOS) technology began a new branch of logic families. As with the earlier bipolar logic, different families with different speeds and capabilities developed. High-speed CMOS (HC) led to advanced CMOS logic (ACL). This development, again market driven, gave improved speeds with low CMOS power requirements and greatly improved output noise. A mixture of CMOS and bipolar processes resulted in the BiCMOS technology using internal CMOS components and high-power bipolar outputs. Several different families evolved from the original BiCMOS processes. Development and evolution of logic continues today. TI offers a complete line of logic products in bipolar, BiCMOS, and CMOS technologies.

Logic products changed to meet the needs of the equipment in which they were used. First were the simple gates, then 4-bit-wide functions. The first 8-bit buses drove development of the various octal functions. Higher bandwidth and throughput drove the development of wider and wider bit widths; Widebus™ for 16-bit buses, Widebus+™ for 32-bit buses. Even wider bit widths are now available or in development. Similarly, one- and two-bit products in very small packages have reappeared for simple fixes or where only a single or a pair of functions are needed.

Similar changes are being made in the operating voltages and package types and sizes. At first, most logic operated at 5 volts. Now, much of the logic used is 3.3 volts, which, in combination with CMOS technologies, has dramatically improved transition times, noise margins, and total overall power needs. As power requirements are reduced and higher bit widths are used, packages change as well. The pin counts are higher, but the package sizes become smaller, allowing a far greater overall circuit density than ever before.

The Logic Time Line

- 1958 Jack Kilby invents the integrated circuit
- 1960 Resistor-Transistor Logic (RTL) introduced.
- 1961 Diode-Transistor Logic (DTL) introduced.
- 1964 Transistor-Transistor Logic (TTL) announced by TI.
- 1965 TI Sherman (Texas) plant opens to manufacture custom ICs for IBM.
- 1972 Low-power Schottky and Schottky (LS, S) announced by TI. ABACUS II (Alloy, Bond, Assembly Concept, Universal System) bonding equipment brought to production.
- 1975 Series 4000 CMOS technology introduced.
- 1980 High-Speed CMOS logic (HC/HCT) introduced.
- 1981 Advanced Low-Power Schottky and Advanced Schottky (ALS, AS) introduced by TI.
- 1983 HC/HCT product announced by TI.
- 1984 TI begins manufacture of **74F** product (TI nomenclature for FAST™ technology).
- 1985 Fast CMOS Technology (FCT) logic introduced.
- 1986 Advanced CMOS Logic (AC/ACT) with center-pin Vcc and grounds introduced by TI and Signetics.
- 1987 BiCMOS Technology (BCT) announced by TI.
- 1989 ACL Widebus, **S**hrink-**S**mall **O**utline **P**ackage (SSOP), and palladium lead finish introduced by TI (Pd replaces solder-dipped lead frames for fine-pitch packages and ultimately all logic packages).
- 1990 Advanced BiCMOS Technology (ABT) introduced by TI and Philips.
- 1992 ABT Widebus introduced by TI (Philips announces MultiByte version), Low-Voltage Technology (LVT) announced by TI, Thin Shrink Small-Outline Package (TSSOP) introduced by TI.

1993 – Low-Voltage CMOS Technology (LVC) logic, Low-Voltage CMOS Technology (LV) logic, and LVT Widebus introduced by TI.

1994 - Advanced Low Voltage CMOS Technology Widebus (ALVC) and Crossbar Technology (CBT) logic announced by TI.

1996 – Advanced High-Speed CMOS (AHC/AHCT) Advanced Low-Voltage Technology (ALVT) logic, and Thin Very-Small-Outline Package (TVSOP) introduced by TI.

1997 – Low-Voltage Crossbar Technology (CBTLV) and MicroStar BGA™ Low-Profile, Fine-Pitch BGA (LFBGA) package introduced by TI, Harris Semiconductor AC/ACT, CD4000, HC/HCT, and FCT products acquired by TI.

1998 - Gunning Transceiver Logic and Gunning Transceiver Logic Plus (GTL/GTLP) announced by TI.

1999 - Advanced Very-Low-Voltage CMOS (AVC) logic introduced by TI, Cypress FCT products acquired by TI.

2000 – MicroStar Junior™ BGA Very Fine-Pitch BGA (VFBGA) package introduced by TI.

This time line shows the growth and addition of different logic technology families. At the same time the families were evolving, the facilities to build them were changing. Initially, manufacture of logic products was spread across the TI worldwide wafer fabrication and assembly test sites, and the business was managed from Dallas. As the bipolar logic families grew, the wafer fab in Sherman began to source most of it. As wafer fab technology evolved, the Sherman fab became the oldest from a technology point of view, but used the stable processes to streamline the manufacturing flow. S-FAB became one of the most efficient and cost-effective wafer fabs in the world. Most of the logic business management and manufacturing support slowly migrated to Sherman, and today the TI Standard Linear & Logic (SLL) operation calls Sherman home.

Assembly and testing (AT) of TI logic products is in Malaysia and Mexico, with additional units built at other TI and selected subcontractor sites. The trend is to centralize the AT operations at a few very high-volume locations to ensure that per-unit costs are as low as possible.

TI Logic Today

TI is the world leader in logic products. The company offers thousands of different devices in 31 different bipolar, BiCMOS, and CMOS technology families and tens of different functions. TI continues to develop products to operate at lower and lower voltages, while maintaining support for 5 V and above. TI offers logic products designed to operate as low as 1.8 V and as high as 18 V.

The logic-packaging group continues the development of new large and small packages. Recent developments include the 96- and 114-pin thin very-fine-pitch ball grid array packages for 32-bit functions and the 5-pin small-outline transistor package for single gates. Additional capacity and package types will be added to assembly-test sites as market demand and developments warrant. Development of lead-free and reduced-lead packaging processes is continuing.

The Sherman wafer fabrication facility is adding established BiCMOS and CMOS processes, while maintaining needed bipolar and 5-volt capacity. These additions are allowing the introduction of products with lower operating voltages and power requirements to support the growing portable and mobile requirements from the personal computer/personal digital assistant (PC/PDA) and cellular products markets.

SLL has developed an Applications Support group to back up the TI Product Information Center. This group provides in-depth support for customers' logic issues and develops application reports and other support materials. In addition, TI continues to evaluate its competition and negotiate alternate source agreements to ensure a continuous source of supply for customers.

What About Tomorrow?

Logic is migrating from the bipolar and 5-volt products that have long been the standard. Operating voltages are moving lower and lower. Today, 3.3 volt is the norm; tomorrow it will be 2.5 volt or 1.8 volt or lower. SLL is creating products to fill that need. Packages will get smaller and smaller, while pin counts increase, allowing for higher component density and smaller end products. SLL is working with manufacturers to ensure that the newest packages remain assembly friendly.

TI has a long-standing reputation for quality, reliability, and service, and SLL intends to build on that reputation. SLL is your long-term logic supplier. Logic products are are obsoleted on a device-by-device basis when the marketplace shows that the need no longer exists, and customers are offered an opportunity to make needed end-of-life buys.

Please accept this special Ten-Year Anniversary Collector's Edition of the TI Logic Selection Guide. Our first edition was published in 1991, and the document has been published continuously since then. We look forward to another exciting ten years of logic and a Twenty-Year Anniversary Collector's Edition of the Logic Selection Guide.

Thank you for choosing TI Logic Products!

Bibliography

Information on the invention of the transistor was extracted from EE Times issue 978, October 30, 1997, *25th Anniversary, Electronics on the Threshold of the New Millennium*.

Information on Jack Kilby was taken from the recent announcement of his selection for the Nobel Prize in physics and http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml.

Other resources extensively used include the *Texas Instruments Electronics Series* published by McGraw-Hill Book Company, ©Texas Instruments, 1971, 1974.

LOGIC OVERVIEW	
FOCUS ON THE HISTORY OF LOGIC	2
FUNCTIONAL INDEX	3
FUNCTIONAL CROSS-REFERENCE	4
DEVICE SELECTION GUIDE	5
PACKAGING AND SYMBOLIZATION INFORMATION	A
LOGIC PURCHASING TOOL/ALTERNATE SOURCES	В

SECTION 3 FUNCTIONAL INDEX

CONTENTS

Backp	plane Logic (GTL, GTLP, FB+/BTL, and ABTE/ETL)	
Bound	dary-Scan IEEE Std 1149.1 (JTAG) Logic Boundary-Scan (JTAG) Bus Devices Boundary-Scan (JTAG) Support Devices	3–6
Buffers	s and Drivers Inverting Buffers and Drivers	3–7
Bus S	witches Bus Exchange/Multiplexing Switches Standard Bus Switches	3–11
Count	Binary Counters Decade Counters	3–13
Decod	ders, Encoders, and Multiplexers Decoders Multiplexers Priority Encoders	3–15 3–16
FIFOs	S (First-In, First-Out Memories) Asynchronous FIFO Memories Synchronous FIFO Memories	3–18
Flip-Fl	lops D-Type Flip-Flops (3-state) D-Type Flip-Flops (non 3-state) Other Flip-Flops	3–20 3–21
Gates	and Inverters AND Gates NAND Gates AND-OR-Invert Gates OR Gates NOR Gates Exclusive-OR Gates Exclusive-NOR Gates Gate and Delay Elements	3–22 3–23 3–24 3–24 3–25 3–25 3–25
	Invertors	2 26

CONTENTS (continued)

Latch	es	3–27
	D-Type Latches (3-state)	3–27
	Other Latches	3–28
Little I	Logic	3–28
	AND Gates	
	NAND Gates	
	OR Gates	
	NOR Gates	
	Exclusive-OR Gates	
	D-Type Flip-Flops	
	Inverters	
	Inverting Buffers and Drivers	
	Noninverting Buffers and Drivers	
	Standard Bus Switches	
Memo	ory Drivers and Transceivers (HSTL, SSTL, and SSTV)	
	Buffers, Drivers, and Latches	3–30
Regis	sters	3–31
	Registers	3–31
		0.00
Speci	ialty Logic	
	Adders	
	Arithmetic Logic Units	
	Bus-Termination Arrays and Networks	
	Comparators (identity)	
	Comparators (magnitude)	
	Digital Phase-Locked Loops (PLLs)	
	Drivers/Multipliers	
	ECL/TTL Functions	
	Frequency Dividers/Timers	
	Monostable Multivibrators	
	Oscillators	
	Parity Generators and Checkers	
	Translation Voltage Clamps	
	Voltage-Level Shifters	3–36
Trans	sceivers	3–36
	Parity Transceivers	3–36
	Registered Transceivers	
	Standard Transceivers	
- داما ا		
unive	ersal Bus Functions	
	Universal Bus Transceivers	
	Universal Bus Drivers	
	Universal Bus Exchangers	3–41

BACKPLANE LOGIC (GTL, GTLP, FB+/BTL, AND ABTE/ETL)

Drivers and Transceivers

DECCRIPTION	TYPE		TECHN	IOLOGY	
DESCRIPTION	ITPE	ABTE	FB	GTL	GTLP
1:6/1:2 GTLP-to-LVTTL Fanout Drivers	817				+
2-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers with Selectable Parity	1394				+
7-Bit TTL/BTL Transceivers (IEEE Std 1194.1)	2041		~		
8-Bit LVTTL-to-GTLP Bus Transceivers	306				+
8-Bit TTL/BTL Registered Transceivers (IEEE Std 1194.1)	2033		~		
8-Bit TTL/BTL Transceivers (IEEE Std 1194.1)	2040		~		
9-Bit TTL/BTL Address/Data Transceivers (IEEE Std 1194.1)	2031		~		
11-Bit Incident Wave Switching Bus Transceivers with 3-State and Open-Collector Outputs	16246	~			
16-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers	1645				+
16 Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers with Live Insertion	1655			~	
16 Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers	1655				+
16-Bit Incident Wave Switching Bus Transceivers with 3-State Outputs	16245	~			
16-Bit LVTTL-to-GTLP Bus Transceivers	16945				+
17-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers with Buffered Clock Outputs	16616			V	
17-Bit LVTTL-to-GTLP Universal Bus Transceivers with Buffered Clock	16916				*
17-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers with Buffered Clock	1616				+
17-Bit TTL/BTL Universal Storage Transceivers with Buffered Clock Lines (IEEE Std 1194.1)	1651		~		
17-Bit LVTTL/BTL Universal Storage Transceivers with Buffered Clock Lines (IEEE Std 1194.1)	1653		~		
18-Bit TTL/BTL Universal Storage Transceivers (IEEE Std 1194.1)	1650		~		
18-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers	1612				*
18-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers	16612			~	
18-Bit LVTTL-to-GTLP Universal Bus Transceivers	16612				~
18-Bit LVTTL-to-GTL/GTL+ Bus Transceivers	16622			V	
10-Dit EVITE-to-OTE OTET DUS HANSCHVEIS	16923			~	
18-Bit LVTTL-to-GTLP Universal Bus Transceivers	16912				+
32-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers	3245				+
32-Bit LVTTL-to-GTLP Bus Transceivers	32945				+

BOUNDARY-SCAN IEEE STD 1149.1 (JTAG) LOGIC

Boundary-Scan (JTAG) Bus Devices

DECODIDEION	OUTDUT	TVDE		TECHN	IOLOGY	
DESCRIPTION	OUTPUT	TYPE	ABT	ACT	ВСТ	LVT
Scan-Test Devices with Octal Transceivers	3S	8245	V		~	
Scan-Test Devices with 18-Bit Bus Transceivers		18245	V			
Scan-Test Devices with 18-Bit Inverting Bus Transceivers		18640	V			
		18646	V			V
Coop Tool Davisco with 10 Dit Transcalvers and Degisters	3S	182646	V			V
Scan-Test Devices with 18-Bit Transceivers and Registers	33	18652	V			V
		182652	V			V
		18502	V			V
Scan-Test Devices with 18-Bit Universal Bus Transceivers	3S	182502	V			V
Scan-rest Devices with 18-bit Universal Bus Transceivers	35	18512				V
		182512				V
		18504	V			V
Scan-Test Devices with 20-Bit Universal Bus Transceivers	3S	182504	V			V
		18514				V
Coop Tool Dayless with Oatel Duffers	3S	8240			~	
Scan-Test Devices with Octal Buffers	33	8244			~	
Coon Tool Davison with Ootel Due Transpairung and Degisters	20	8646	V			
Scan-Test Devices with Octal Bus Transceivers and Registers	3S	8652	V			
Scan-Test Devices with Octal D-Type Latches	3S	8373			~	
Scan-Test Devices with Octal D-Type Edge-Triggered Flip-Flops	3S	8374			V	
Coop Test Devises with Ostal Devistance Due Transcatives		8543	V			
Scan-Test Devices with Octal Registered Bus Transceivers		8952	V			

Boundary-Scan (JTAG) Support Devices

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY									
DESCRIPTION	OUTPUT	ITPE	ABT	ACT	BCT	LVT						
Embedded Test-Bus Controllers with 8-Bit Generic Host Interfaces	3S	8980				V						
Test-Bus Controllers IEEE Std 1149.1 (JTAG) TAP Masters with 16-Bit Generic Host Interfaces	3S	8990		V								
10-Bit Addressable Scan Ports Multidrop-Addressable IEEE Std 1149.1 (JTAG) TAP Transceivers		8996	V			V						
Scan-Path Linkers with 4-Bit Identification Buses Scan-Controlled IEEE Std 1149.1 (JTAG) TAP Concatenators	3S	8997		V								

FUNCTIONAL INDEX

BUFFERS AND DRIVERS

Inverting Buffers and Drivers

DECODIDATION	OUTDUT	TVDE											TECH	INOLOG	Υ										
DESCRIPTION	OUTPUT	TYPE	ABT	AC	ACT	AHC	AHCT	ALS	ALVC	ALVT	AS	ВСТ	64BCT	CD4K	F	FCT	GTLP	НС	НСТ	LS	LV	LVC	LVT	S	TTL
Single	OD	1G06																				~			
	3S	1G240																				+			
	OC	06																		~	+				~
	OD	06																				~			
Нех	OC	16																							~
TICK	3S	366																~							
	35	368																~	~	~					~
	OC	1005						~																	
Hex		4009												~											
Buffers/Converters		4049												~				~							
Hex Drivers		1004									~														
Hex Schmitt Triggers		40106												~											
Strobed Hex Inverters/Buffers	3S	4502												~											
		230									~														
		240	~	V•	V•	~	~	~			~	~			~	~		~	~	~	~	~	~	~	
Octal	3S	11240		~	~																				
Ociai		1244						~																	
		540	~	~	~	~	~	~				~				~		~	~	~	~	V	~		
	OC	756									~	~													
Octal with Input Pullup Resistors	3S	746						~																	
Octal Buffers and Line/MOS Drivers with Series Damping Resistors	3S	2240	~					~				>				~									
10 Dit	20	828																				~			
10 Bit	3S	29828						~																	
11-Bit Line/Memory Drivers	3S	5401	~																						
12-Bit Line/Memory Drivers	3S	5403	~																						

BUFFERS AND DRIVERS

Inverting Buffers and Drivers (continued)

DESCRIPTION	OUTDUT	TVDE											TECH	INOLOG	iΥ										
DESCRIPTION	OUTPUT	TYPE	ABT	AC	ACT	AHC	AHCT	ALS	ALVC	ALVT	AS	вст	64BCT	CD4K	F	FCT	GTLP	нс	нст	LS	LV	LVC	LVT	S	TTL
16 Bit	20	16240	~		~	~	~		~	~						+						~	~		
	3S	16540	~			~	~															~			
16 Bit with Series Damping Resistors	3S	162240														+						v	~		
GTLP-to-LVTTL 1-to-6 Fanout Drivers	3S	817															+								

Noninverting Buffers and Drivers

DECODIDATION	OUTDUT	TVDE											TE	CHNC	LOGY											
DESCRIPTION Single Bus Buffers Quad Bus Buffers Hex Buffers Hex Buffers/Converters Hex Buffers/Line Drivers	OUTPUT	TYPE	ABT	AC	ACT	AHC	AHCT	ALB	ALS	ALVC	ALVT	AS	AVC	ВСТ	64BCT	CD4K	F	FCT	НС	нст	LS	LV	LVC	LVT	S	TTL
	OD	1G07																					~			
Single Bus Buffers	20	1G125				~	~																+			
	3S	1G126				~	~																+			
Over d Davis Darffares	20	125	~			~	~			~				~	~		~		~	~	~	~	~	~		
Quad Bus Bullers	3S	126	~			~	~			~				~	~		~		~	~	~	+	~	~		
	OC	1035							~																	
Hex Buffers	3S	4503														~										
		4010														~										
		4050														~			~							
	3S	365																	~	~	~					
	35	367				~	~												~	~	~	~				~
Hex Buffers/	ОС	07																			~	~				~
	OD	07																					~			
		17																								~
	OC	35							~																	
Hex Drivers		1034							~			~														
Hex OR Gate Line Drivers		128																								~

Z	4
STRU	TE
JMEI	XAS
STN	

DESCRIPTION	OUTPUT	TYPE											TE	CHNO	OLOGY											
DESCRIPTION		TYPE	ABT	AC	ACT	AHC	AHCT	ALB	ALS	ALVC	ALVT	AS	AVC	BCT	64BCT	CD4K	F	FCT	НС	нст	LS	LV	LVC	LVT	S	Т
		241	~	~	~				~			~		~			~		~	~	~			~	~	
	3S	244	~	v •	v•	~	~		~	'		~		~	~		~	~	~	~	~	~	~	~	~	L
		1244							~																	L
Octal	CP/3S	11244		~	~																					L
	3S	541	~	~	~	~	~		~					~			~	~	~	~	~	~	~	~		L
	oc	757										~		~	~											┖
		760							~			~		~												╽
Octal with Series Damping	3S	2244	~											~			~	•					~			ļ
Resistors		25244												~	~								~			╽
Octal Buffers	3S	465																			~					╽
Octal Buffers and Line/MOS Drivers with Series Damping Resistors	3S	2241	~											~												
Octal Line Drivers/ MOS Drivers	3S	2541							~									~								Ī
	00	827	~															~					~			T
10 Bit	3S	29827							~					~												T
10 Bit with Series Damping Resistors	3S	2827	~											~				~								
11-Bit Line/Memory Drivers	3S	5400	~																							Ī
12-Bit Line/Memory Drivers	3S	5402	~																							T
		16241	~																					~		T
16 Bit	3S	16244	~	~	~	~	~	~		~	~		~					+					~	~		T
		16541	~		~	~	~																~	~		T
16 Bit with Series Damping Resistors	3S	162244	~							~	~							+					V	~		
16 Bit with Balanced Drive and Series Damping Resistors	3S	163244																+								
18 Bit	3S	16825	~		~					~																T

BUFFERS AND DRIVERS

Noninverting Buffers and Drivers (continued)

DESCRIPTION	QUITDUIT	T) (DE	TECHNOLOGY																							
DESCRIPTION	OUTPUT	TYPE	ABT	AC	ACT	AHC	AHCT	ALB	ALS	ALVC	ALVT	AS	AVC	BCT	64BCT	CD4K	F	FCT	НС	нст	LS	LV	LVC	LVT	S	TTL
18 Bit with Series Damping Resistors	3S	162825	~																							
20 Bit	3S	16827	~		~					~	~		~					+								
20 Bit with Series Damping Resistors	3S	162827	~							~	~															
20 Bit with Balanced Drive	3S	162827																+								
and Series Damping Resistors	33	163827																+								
1-Bit to 2-Bit Address Drivers	3S	162830								~																
1-Bit to 4-Bit	3S	16344								~																
Address Drivers	35	162344								~																
1-to-4 Address	3S	16831								~																
Registers/Drivers	33	16832								~																
32 Bit	3S	32244								~	~		~										~	~		
4-Segment Liquid Crystal Display Drivers		4054														~										

FUNCTIONAL INDEX

BUS SWITCHES

Bus Exchange/Multiplexing Switches

al 1-of-4 FET Multiplexers/Demultiplexers Bit 1-of-2 FET Multiplexers/Demultiplexers Bit FET Bus-Exchange Switches Bit 1-of-2 FET Multiplexers/Demultiplexers with Internal Pulldown Resistors Bit 1-of-3 FET Multiplexers/Demultiplexers nchronous 16-Bit 1-of-2 FET Multiplexers/Demultiplexers Bit 1-of-2 FET Multiplexers/Demultiplexers Bit 1-of-2 FET Multiplexers/Demultiplexers Bit 1-of-2 FET Multiplexers/Demultiplexers Bit 1-of-2 FET Multiplexers/Demultiplexers	TVDE	TECHNOLOGY				
DESCRIPTION	TYPE	CBT	CBTLV			
1-of-8 FET Multiplexers/Demultiplexers	3251	V	V			
Dual 1-of-4 FET Multiplexers/Demultiplexers	3253	V	V			
4-Bit 1-of-2 FET Multiplexers/Demultiplexers	3257	V	V			
10-Bit FET Bus-Exchange Switches	3383	V	V			
12 Dit 1 of 2 FFT Multiple constitution of Demonstrate constitution and Dulldown Designation	16292	V	V			
12-Bit 1-01-2 FET multiplexers/Demultiplexers with internal Pulldown Resistors	162292	V				
12-Bit 1-of-3 FET Multiplexers/Demultiplexers	16214	V				
Synchronous 16-Bit 1-of-2 FET Multiplexers/Demultiplexers	16232	V				
16-Bit 1-of-2 FET Multiplexers/Demultiplexers	16233	V				
16-Bit to 32-Bit FET Multiplexer/Demultiplexer Bus Switches	16390	V				
18-Bit FET Bus-Exchange Switches	16209	V				
24 Dit FFT Due Fyshenge Suitshee	16212	V	V			
24-Bit FET Bus-Exchange Switches	16213	V				
24 Di FFT Due Fushance Cuitabae with Cabattlu Diede Clamaine	16212	V				
24-Bit FET Bus-Exchange Switches with Schottky Diode Clamping	16213	V				

Standard Bus Switches

DECORPTION	TVDE	TECHNOLOGY												
DESCRIPTION	TYPE	CBT	CBTLV	CD4K	HC	НСТ	LV							
	1G66	+												
Single FET Bus Switches	1G125	V												
	1G384	V												
Single FET Bus Switches with Level Shifting	1G125	V												
Dual FET Bus Switches	3306	V												
Dual FET Bus Switches with Level Shifting	3306	V												
Dual FET Bus Switches with Schottky Diode Clamping	3306	V												
Quad Bilateral Switches	4016			~	~									
Quad Bilateral Switches	4066			~	~	~	~							
Quad FFT Dua Suitabas	3125	V	~											
Quad FET Bus Switches	3126	V	V											

BUS SWITCHES

Standard Bus Switches (continued)

DESCRIPTION	TYPE	TECHNOLOGY										
DESCRIPTION	ITPE	CBT	CBTLV	CD4K	HC	НСТ	LV					
4-Bit Analog Switches with Level Translation	4316				✓	V						
	3244	>										
Octal FET Bus Switches	3245	V	~									
	3345	V										
10-Bit FET Bus Switches	3384	V	~									
10-Dit FET Dus Switches	3861	>	~									
10-Bit FET Bus Switches with Internal Pulldown Resistors	3857		~									
10-Bit FET Bus Switches with Level Shifting	3861	V										
10-Bit FET Bus Switches with Precharged Outputs and Diode Clamping	6800	V										
10-Bit FET Bus Switches with Precharged Outputs and Active Clamp Undershoot Protection	6800	V										
10-Bit FET Bus Switches with Precharged Outputs for Live Insertion	6800	V										
10-Bit FET Bus Switches with Schottky Diode Clamping	3384	V										
16-Bit FET Bus Switches	16244	V										
16-Bit FET Bus Switches	16245	+										
16-Bit FET Bus Switches with Active Clamp Undershoot Protection	16245	+										
20-Bit FET Bus Switches	16210	V	~									
ZU-BILFET BUS SWIICHES	16861	V										
20-Bit FET Bus Switches with Active Clamp Undershoot Protection	16861	+										
20 Dit FFT Due Cuitebee with Level Chiffing	16210	V										
20-Bit FET Bus Switches with Level Shifting	16861	+										
20-Bit FET Bus Switches with Precharged Outputs	16800		~									
20-Bit FET Bus Switches with Series Damping Resistors	19861	+										
24-Bit FET Bus Switches	16211	V	~									
24-Bit FET Bus Switches with Bus Hold	16211	V										
24-Bit FET Bus Switches with Level Shifting	16211	V										
24-Bit FET Bus Switches with Schottky Diode Clamping	16211	V										
32-Bit FET Bus Switches with Active Clamp Undershoot Protection	32245	V										

FUNCTIONAL INDEX

COUNTERS

Binary Counters

DECODIDEION	TVDE						TE	CHNOLO	GY					
DESCRIPTION	TYPE	AC	ACT	ALS	AS	CD4K	F	FCT	НС	НСТ	LS	LV	S	TTL
Divide by 12	92										~			
4 Bit Ripple	93								~	~	~			
4 ы кирріе	293										~			
Dual 4 Bit	393								~	~	~			V
Dual 4 Bit Up	4520					~			~	~				
Presettable 4 Bit Up/Down	4516					~								
Presettable 4 Bit BCD Up/Down with Dual Clock and Reset	40193					~								
Presettable Synchronous 4 Bit Up/Down	191			V				V	~	V	~			
Presenable Synchronous 4 bit op/Down	193			~					~	~	~			V
Programmable 4 Bit with Asynchronous Clear	40161					~								
Synchronous 4 Bit	569			~										
	169			~	~		~				~			
Synchronous 4 Bit Up/Down	669										~			
	697										~			
Synchronous 4 Bit with Preset and Asynchronous Clear	161	~	~	~	~		~		~	~	~			
Synchronous 4 Bit with Preset and Synchronous Clear	163	~	~	~	~		~	~	~	~	~		~	
8-Bit Counters/Dividers with 1-of-8 Decoded Outputs	4022					~								
8 Bit with 3-State Output Registers	590								~		~			
8 Bit with Input Registers	592										~			
8 Bit with Input Registers and Parallel Counter Outputs	593										~			
9 Dit Synchronous Un/Down	867			~	~									
8 Bit Synchronous Up/Down	869			~	~									
8 Bit Presettable Synchronous Down	40103					~			~	~				
7-Stage Ripple-Carry Counters/Dividers	4024					~			~	~				
12-Stage Ripple-Carry Counters/Dividers	4040					~			~	~		~		
14 Stage Pipple Corp. Countered Dividers with Oscillators	4020					~			~	~				
14-Stage Ripple-Carry Counters/Dividers with Oscillators	4060					~			~	~				
21 Stage	4045					~								
Divide by N	4018					~								
Programmable Divide by N	4059					~			~					
Presettable Up/Down or BCD Decade	4029					~								

COUNTERS

Decade Counters

DECODIDEION	TVDE			TECHNOLOGY		
DESCRIPTION	TYPE	ALS	CD4K	НС	нст	LS
Divide by 2, Divide by 5	90					V
Dual Divide by 2, Divide by 5	390			V	V	V
Curabranava Praesttable PCD Ha/Davin	190			V		
Synchronous Presettable BCD Up/Down	192			V		
Counters/Dividers with 1-of-10 Decoded Outputs	4017		~	~		
Countered Delicere with December 7. Comment Display Outputs	4026		~			
Counters/Drivers with Decoded 7-Segment Display Outputs	4033		~			
BCD-to-Decimal Decoders	4028		~			
Presettable BCD Up/Down	4510		~			
Dual BCD Up	4518		~	V		
Programmable BCD Divide by N	4522		~			
2 Decade Synchronous Presettable BCD Down	40102		~			
Up-Down Counters/Latches/7-Segment Display Drivers	40110		~			
Presettable BCD-Type Up/Down with Dual Clock and Reset	40192		V			

DECODERS, ENCODERS, AND MULTIPLEXERS

Decoders

DESCRIPTION	OUTPUT	TYPE								TECH	HNOLO	GΥ							
	OUIFUI	IIFE	AC	ACT	AHC	AHCT	ALS	AS	BCT	CD4K	F	FCT	HC	HCT	LS	LV	LVC	S	TTL
		139	~	v •	~	~	~						~	~	~	~	~	~	
Dual 2-to-4 Line Decoders/Demultiplexers	СР	11139		~															
Dual 2-10-4 Line Decoders/Demailiplexers		155													~				
	OC	156					~								~				
Dual 2-Line to 4-Line Memory Decoders with On-Chip Supply-Voltage Monitors		2414							~										
Dual Binary 1-of-4 Decoders/Demultiplexers		4555								~									
		4556								~									
3-to-8 Line Decoders/Demultiplexers		238	~	~									~	~					
3-to-8 Line Inverting Decoders/Demultiplexers		138	v•	~	~	~	~	>			>	~	~	~	~	~	~	~	
	СР	11138	~																
3-to-8 Line Decoders/Demultiplexers		137					~						~	~					
with Address Latches		237											~	~					
BCD to 10 Line Decimal		42											~	~	~				
4-Bit Latch/4 to 16 Line		4514								~			~	~					
4-Dit Laterij4 to 10 Line		4515								~			~	~					
4-to-16 Line Decoders/Demultiplexers		154											~	~					~
4-to- to Line Decoders/Demailplexers	OC	159																	~
BCD-to-Decimal Decoders/Drivers	OC	45																	~
	00	145													~				~
PCD to 7 Segment Deceders/Drivers	OC	47													~				~
BCD to 7-Segment Decoders/Drivers	00	247													~				
BCD to 7-Segment Latches/Decoders/Drivers		4511								~			~	~					
BCD to 7-Segment LCD Decoders/Drivers with Display-Frequency Outputs		4055								~									
BCD to 7-Segment LCD Decoders/Drivers with Strobed Latch Function		4056								~									
BCD to 7-Segment Latches/Decoders/Drivers for LCDs		4543								~			~	~					

DECODERS, ENCODERS, AND MULTIPLEXERS

Multiplexers

DESCRIPTION	OUTPUT	TYPE								Т	ECHNO	LOGY								
DESCRIPTION	0011 01	1	ABT	AC	ACT	AHC	AHCT	ALS	AS	CD4K	F	FCT	НС	НСТ	LS	LV	LVC	PCA	S	TT
1-of-8 Analog Multiplexers/Demultiplexers		4051														~				
1-of-8 Analog Multiplexers/Demultiplexers with Logic Level Conversion		4051								~			~	~						
1-of-8 Analog Multiplexers/Demultiplexers with Latches		4351											~	~						
1-of-8 Data Selectors	3S	4512								~										
1-of-8 Data Selectors/Multiplexers		151		~	~			~	~		~		~	~	~				~	
1-01-8 Data Selectors/Multiplexers	3S	251		~				~			~		~	~	~					
1-of-8 Data Selectors/Multiplexers/Registers	3S	354 356											~	V						
1-of-8 Differential Analog Multiplexers/Demultiplexers		4097								~										
1-of-16 Analog Multiplexers/Demultiplexers		4067								~			~	~						Г
1-of-16 Data Selectors/Multiplexers		150																		~
1-of-16 Data Generators/Multiplexers	3S	250							~											Г
Dual 1 of 4 Date Colorters/Malkinson		153		~	~			~	~		~		~	~	~				~	Г
Dual 1-of-4 Data Selectors/Multiplexers	3S	253		~	~			~	~		~		~	~	~					Г
Dual 1-of-4 Analog Multiplexers/Demultiplexers		4052														~				Г
Dual 1-of-4 Analog Multiplexers/Demultiplexers with Logic Level Conversion		4052								~			~	~						
Dual 1-of-4 Analog Multiplexers/Demultiplexers with Latches		4352											~							
Triple 1-of-2 Analog Multiplexers/Demultiplexers		4053														~				Г
Triple 1-of-2 Analog Multiplexers/Demultiplexers with Logic Level Conversion		4053								~			~	~						
	3S	257		~	~			~	~		~	~	~	~	~		V		~	Г
Quad 1-of-2 Data Selectors/Multiplexers		258			~			~	~		~		~	~	~				~	Г
	CP/3S	11257		~	~															Г
Quad 1-of-2 Data Selectors/Multiplexers with Series Damping Resistors	3S	2257										~								
Over 12 to 1 Pate Calcutor Marking		157		~	~	~	~	~	~		~	~	~	~	~	~	~		~	Г
Quad 2-to-1 Data Selectors/Multiplexers	3S	40257								V										

Multiplexers (continued)

DESCRIPTION	OUTPUT	TYPE								T	ECHNO	LOGY								
DESCRIPTION	OUIPUI	ITPE	ABT	AC	ACT	AHC	AHCT	ALS	AS	CD4K	F	FCT	нс	нст	LS	LV	LVC	PCA	S	TTL
Quad 2-to-1 Data Selectors/Multiplexers		298							~						~					
with Storage		399										~			~					
Quad 2-to-4 Data Selectors/Multiplexers		158		~	~	~	~	~	~		~		~	~	~				~	
Hex 2-to-1 Universal Multiplexers	3S	857						~												
4-to-1 Multiplexers/Demultiplexers	3S	16460	~																	
Nonvolatile 5-Bit Registers with I ² C Interface		8550																~		

Priority Encoders

DESCRIPTION	OUTDUT	TVDE			TECHNOLOGY		
DESCRIPTION	OUTPUT	TYPE	CD4K	HC	НСТ	LS	TTL
		148		~		~	~
8 to 3 Line	3S	348				V	
		4532	V				
10 to 4 Line		147		V	~		
10 to 4 Line BCD		40147	V				

FIFOs (FIRST-IN, FIRST-OUT MEMORIES)

Asynchronous FIFO Memories

DECORPTION	OUTDUT	TVDE				TECHN	IOLOGY			
DESCRIPTION	OUTPUT	TYPE	ABT	ACT	ALS	ALVC	CD4K	НС	НСТ	S
16×4	3S	232			V					
10 × 4	33	40105					V	V	~	
		225								>
16 × 5	3S	229			V					
		233			V					
64 × 4	3S	236			V					
64×18	3S	7814		~						
64 × 18 3.3 V	3S	7814				V				
256 × 18	3S	7806		~						
256 × 18 3.3 V	3S	7806				V				
512 × 18	3S	7804		~						
512 × 18 3.3 V	3S	7804				V				
512 × 18 × 2 Bidirectional	3S	7820	V							
$1024 \times 9 \times 2$ Bidirectional	3S	2235		V						
1024 × 18	3S	7802		~						
2048 × 9	3S	7808		~						

TEXAS INSTRUMENTS

Synchronous FIFO Memories TECHNOLOGY DESCRIPTION OUTPUT TYPE ABT ACT ALVC LS 3S 224 16×4 2226 ~ $64 \times 1 \times 2$ Independent 3S 2227 ~ 3S 64×18 7813 3S $64 \times 183.3 \text{ V}$ 7813 1 3611 ~ 64×36 3S 3613 ~ 3612 V 3S 64 × 36 × 2 Bidirectional 3614 2228 ~ $256 \times 1 \times 2$ Independent 3S 2229 ~ 256×18 3S 7805 ~ $256 \times 183.3 \text{ V}$ 3S ~ 7805 3S $256 \times 36 \times 2$ Bidirectional 3622 ~ 3S 512×18 7803 ~ $512 \times 183.3 \text{ V}$ 3S 7803 1 3S $512 \times 18 \times 2$ Bidirectional 7819 ~ 3S 3631 512×36 ~ $512 \times 363.3 \text{ V}$ 3S 3631 ~ 3632 ~ $512 \times 36 \times 2$ Bidirectional 3S 3638 ~ 7811 ~ 1024×18 3S 7881 ~ 1024×36 3S 3641 ~ 3S 1 $1024 \times 363.3 \text{ V}$ 3641 2048×9 3S 7807 ~ 2048×18 3S 7882 ~ 3S 2048×36 3651 ~ $2048 \times 36 \ 3.3 \ V$ 3S 3651 ~

FLIP-FLOPS

D-Type Flip-Flops (3-state)

DESCRIPTION	OUTPUT	TYPE										TECHN	OLOGY									
	OUTPUT	ITPE	ABT	AC	ACT	AHC	AHCT	ALS	ALVC	ALVT	AS	AVC	ВСТ	F	FCT	НС	НСТ	LS	LV	LVC	LVT	S
Dual 4 Bit Edge Triggered	3S	874						~			~											
		876						~			~											
Quad	3S	173														~	~	~				
Octal Bus Interface	3S	825									~				~							
		29825											~									
	3S	374	~	~	✓•	~	~	~	~		~		~	~	~	~	~	~	~	~	~	~
	3S/CP	11374			~																	
Octal Edge Triggered		574	~	~	~	~	~	~			~		~	~	~	~	~		~	~	~	
Octal Lago Miggorda	3S	575						~			~											
	33	576						~			~											
		577						~														
Octal Edge Triggered Dual Rank	3S	4374									~											
Octal Edge Triggered		2374													~							
with Series Damping Resistors	3S	2574													~							
0.11		534	V	~	~			V			~					V	V					
Octal Inverting	3S	564		~	~			~							~	~	~					
		822													~							
0.00		823	~								~				~					~		
9 Bit Bus Interface	3S	824													~							
		29823						V														
10.000		821	~								~				~					~		
10 Bit Bus Interface	3S	29821						V					V									
10.00		16820							~													
10 Bit with Dual Outputs	3S	162820							~													
		16374	~	~	~	~	~		~	~		~			+					~	~	
16 Bit Edge Triggered	3S	162374							~						+						~	
		163374													+						~	
10 D"	20	16823	~		~				~						+							
18 Bit	3S	162823	~												+							

D-Type Flip-Flops (3-state) (continued)

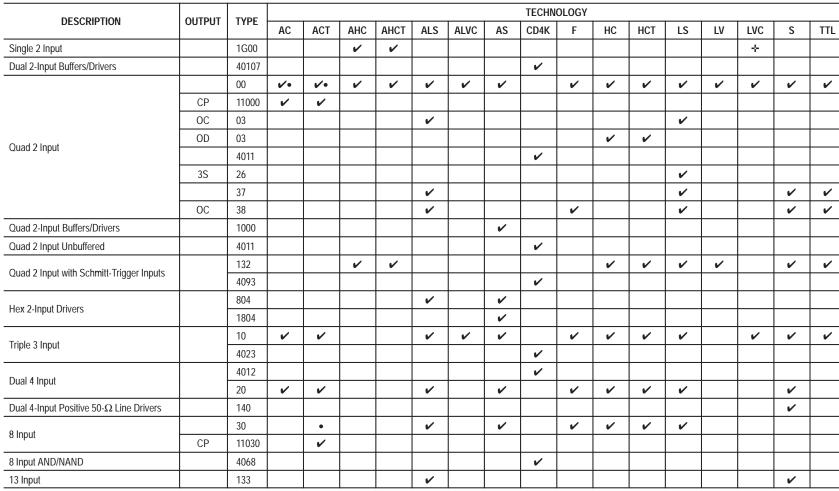
DESCRIPTION	OUTPUT	TYPE										TECHN	OLOGY									
DESCRIPTION	OUIPUI	ITPE	ABT	AC	ACT	AHC	AHCT	ALS	ALVC	ALVT	AS	AVC	вст	F	FCT	НС	нст	LS	LV	LVC	LVT	S
		16721							~													
30 D#	200	162721							~													
20 Bit	3S	16722										~										
		16821	~						~	~		+										
32 Bit Edge Triggered	3S	32374							~	~		~								~	~	

D-Type Flip-Flops (non 3-state)

DECODIDATION	OUTDUT	TVDE										1	ECHNO	OLOGY										
DESCRIPTION	OUTPUT	TYPE	ABT	AC	ACT	AHC	AHCT	ALS	ALVC	ALVT	AS	AVC	ВСТ	CD4K	F	FCT	НС	нст	LS	LV	LVC	LVT	S	TTL
Single Edge Triggered		1G79																			+			
Single Edge Triggered		1G80																			+			
		4013												~										
Dual		74		V•	V•	~	~	~			~				~		~	~	~	~	~		~	~
	СР	11074		~	~																			
		175		v•	~			~			~				V		~	~	V	~			~	~
Quad	СР	11175		~																				
		40175												~										
Have		174		~	~			~			~				V		~	~	V	~			~	
Hex		40174												~										
Hex with Enable		378																	~					
Octal		273	~	~	~	~	~	~								~	~	~	~	~		~		~
Octal with Enable		377	~												~	~	~	V	~					

Other Flip-Flops

DESCRIPTION	TYPE						TECHN	OLOGY					
DESCRIPTION	TYPE	AC	ACT	ALS	AS	CD4K	F	HC	НСТ	LS	LVC	S	TTL
Dual Edge-Triggered J-K Master-Slave	4027					~							
Dual Edga Triggared LV with Doost	73							~	~	~			
Dual Edge-Triggered J-K with Reset	107							~	~	~			~
Dual Edge-Triggered J-K with Set and Reset	112	~	~	~			~	~	~	~	~	~	
Dual Positive-Edge-Triggered J-K with Set and Reset	109	~	~	~	~		~	~	~	~			
Quad Edge-Triggered J-K	276												~


GATES AND INVERTERS

AND Gates

DESCRIPTION	OUTPUT	TYPE							TE	CHNOLO	GΥ						
DESCRIPTION	OUIPUI	ITPE	AC	ACT	AHC	AHCT	ALS	ALVC	AS	CD4K	F	НС	НСТ	LS	LV	LVC	S
Single 2 Input		1G08			~	~										+	
		08	V•	✓•	>	~	/	~	~		'	/	~	>	~	V	~
Quad 2 Input	CP	11008	V	V													
Quau 2 Input	OC	09					>							>			/
		4081								~							
Quad 2-Input Buffers/Drivers		1008							/								
Quad 2 Input with Schmitt-Trigger Inputs		7001										~					
Dual 4 Input		21					V		~		'	V	~	'			
Duai 4 input		4082								~							
Triple 3 Input		11	V•	~			~		~		'	>	~	>			
Triple 3 friput		4073			·					/		·					

NAND Gates

GATES AND INVERTERS

AND-OR-Invert Gates

DESCRIPTION	TYPE		TECHNOLOGY	
DESCRIPTION	ITPE	CD4K	LS	S
Dual 2 Mids 2 Input	51			· ·
Dual 2 Wide 2 Input	4085	V		
Dual 2 Wide 2 Input, 2 Wide 3 Input	51		V	
Expandable 4 Wide 2 Input	4086	V		
Expandable 8 Input	4048	V		

OR Gates

DESCRIPTION	OUTDUT	TVDE								TECHN	OLOGY							
DESCRIPTION	OUTPUT	TYPE	AC	ACT	AHC	AHCT	ALS	ALVC	AS	CD4K	F	HC	НСТ	LS	LV	LVC	S	TTL
Single 2 Input		1G32			~	~										+		
		32	V•	V•	~	~	>	~	>		/	~	~	~	~	~	>	~
Quad 2 Input	CP	11032	~	~														
		4071								~								
Quad 2-Input Buffers/Drivers		1032							~									
Quad 2 Input with Schmitt-Trigger Inputs		7032										~						
Hex 2-Input Drivers		832					~		~									
Dual 4 Input		4072								~								
Triple 3 Input		4075								~		~	~					

TEXAS INSTRUMENTS

NOR Gates

DECCRIPTION	OUTDUT	TVDE							TE	CHNOLO	GY						
DESCRIPTION	OUTPUT	TYPE	AC	ACT	AHC	AHCT	ALS	AS	CD4K	F	НС	НСТ	LS	LV	LVC	S	TTL
Single 2 Input		1G02			~	~									+		
		4001							~								
Quad 2 Input		02	~	~	>	~	V	>		~	~	V	V	~	V	~	~
	OC	33					~						V				
Quad 2 Input with Schmitt-Trigger Inputs		7002									~						
Quad 2 Input Unbuffered		4001							~								
Lloy 2 Input Privara		805					~	~									
Hex 2-Input Drivers		808						~									
Triale 2 Input		4025							~								
Triple 3 Input		27					~	~		~	~	~	~				
Dual 4 Input		4002							~		~						
Dual 4 Input with Strobe		25															~
Dual 5 Input		260								~							
8 Input NOR/OR		4078							~								

Exclusive-OR Gates

DESCRIPTION	OUTPUT	TVDE							TECHN	OLOGY						
DESCRIPTION	OUIPUI	TYPE	AC	ACT	AHC	AHCT	ALS	AS	CD4K	F	HC	НСТ	LS	LV	LVC	S
Single 2 Input		1G86			~	~									+	
		4030							~							
		4070							~							
Quad 2 Input		86	V•	~	~	~	~	~		~	~	~	~	~	~	~
	СР	11086	>					·								
	OC	136						·					~			

Exclusive-NOR Gates

DESCRIPTION	OUTPUT	TYPE		TECHNOLOGY	
DESCRIPTION	OUTPUT	ITPE	CD4K	HC	LS
	OC	266			V
Quad 2 langt	OD	266		V	
Quad 2 Input		4077	V		
		7266		V	

GATES AND INVERTERS

Gate and Delay Elements

DESCRIPTION	ТУРЕ		TECHNOLOGY	
DESCRIPTION	ITPE	CD4K	LS	TTL
Dual Unbuffered Complementary Pairs Plus Inverters	4007	✓		
Quad AND/OR Select Gates	4019	V		
Quad True/Complement Buffers	4041	V		
Quad Complementary-Output Elements	265			V
Hex Delay Elements for Generating Delay Lines	31		· ·	
Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND)	4572	V		

Inverters

DECODIDATION	OUTDUT	TVDE								TECHN	OLOGY							
DESCRIPTION	OUTPUT	TYPE	AC	ACT	AHC	AHCT	ALS	ALVC	AS	CD4K	F	HC	НСТ	LS	LV	LVC	S	TTL
Single		1G04			~	~										+		
Unbuffered Single		1GU04			~											~		
Single Schmitt Trigger		1G14			~	~										+		
		04	V•	V•	~	~	~	~	~		~	~	~	~	~	~	~	~
	CP	11004	~	~														
Нех	OC	05					~							~			~	~
	OD	05	~	~	~							~			~			
		4069								~								
Unbuffered Hex		U04			~							~			~	~		
Lloy Cohmitt Trigger		14	~	~	~	~		~				~	~	~	~	~		~
Hex Schmitt Trigger		19												~				

LATCHES

D-Type Latches (3-state)

DESCRIPTION	TYPE										TECHN	OLOGY									
DESCRIPTION	TYPE	ABT	AC	ACT	AHC	AHCT	ALS	ALVC	ALVT	AS	AVC	ВСТ	F	FCT	НС	HCT	LS	LV	LVC	LVT	S
Dual 4 Bit	873						~			~											
Octol Inverting Transporent	533	~	~	~			~			~					~	~					
Octal Inverting Transparent	563		~	~			~								~	~					
	373	~	~	V•	~	~	~	~		~		~	~	~	~	~	~	~	~	~	>
	11373			~																	
Octal Transparent	573	~	~	~	~	~	~			~		~	~	~	~	~		~	~	~	
	580						~														
	845						~														
Octol Transparent Dood Dook	666						~														
Octal Transparent Read Back	667						~														
Octal Transparent	2373												~	~							
with Series Damping Resistors	2573													~							
	843	~					~							~							
9 Bit Transparent	29843											~									
	844													~							
9 Bit Transparent Read Back	992						~														
	841	~					~			~				~					~		
10 Bit Transparent	29841						~														
	842													~							
12 Bit to 24 Bit Multiplexed	16260	~						~													
12 Bit to 24 Bit Multiplexed with Series Damping Resistors	162260	~						~													
	16373	~	~	~	~	~		~	~		~			+					~	~	
16 Bit Transparent	162373													+						~	
	163373													+							
18 Bit Transparent	16843	~																			
20 Dit Transparent	16841	~		~				~						+							
20 Bit Transparent	162841	~						~						+							
32 Bit Transparent	32373								~		~								~	~	

TEXAS INSTRUMENT

LATCHES

Other Latches

DECODIDATION	OUTDUT	TVDE			TECHNOLOGY		
DESCRIPTION	ОИТРИТ	TYPE	ALS	CD4K	HC	НСТ	LS
Dual 2 Bit Bistable Transparent		75			V	V	
Dual 4 Bit with Strobe	3S	4508		~			
4 Bit Bistable		75					~
4 Bit bistable		375					~
Quad Clocked D		4042		V			
Quad NAND R-S	3S	4044		~			
Quad NOR R-S	3S	4043		~			
Quad S-R		279					~
		259	V		V	V	~
8 Bit Addressable		4099		~			
		4724		~			
8 Bit D-Type Transparent Read-Back		990	V				
8 Bit Edge-Triggered Read-Back		996	V				
10 Bit D-Type Transparent Read-Back		994	V				

LITTLE LOGIC

AND Gates

DESCRIPTION	TYPE		TECHNOLOGY	
DESCRIPTION	ITPE	AHC	AHCT	LVC
Single 2 Input	1G08	V	V	+

NAND Gates

DESCRIPTION	TYPE		TECHNOLOGY	
DESCRIPTION	ITTPE	AHC	AHCT	LVC
Single 2 Input	1G00	~	V	+

TEXAS INSTRUMENTS

OR Gates

DESCRIPTION	TYPE		TECHNOLOGY	
DESCRIPTION	ITPE	AHC	AHCT	LVC
Single 2 Input	1G32	V	V	+

NOR Gates

DESCRIPTION	TYPE		TECHNOLOGY	
DESCRIPTION	ITPE	AHC	AHCT	LVC
Single 2 Input	1G02	~	V	+

Exclusive-OR Gates

DESCRIPTION	TVDE	TECHNOLOGY							
DESCRIPTION	TYPE -	AHC	AHCT	LVC					
Single 2 Input	1G86	✓	V	+					

D-Type Flip-Flops

DESCRIPTION	TYPE	TECHNOLOGY
DESCRIPTION	ITPE	LVC
Cinale Edge Triagered	1G79	*
Single Edge Triggered	1G80	÷

Inverters

DESCRIPTION	TYPE			
DESCRIPTION	IIFE	AHC	AHCT	LVC
Single	1G04	V	V	÷
Single	1GU04	V		V
Single Schmitt Trigger	1G14	V	V	÷

Inverting Buffers and Drivers

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY
DESCRIPTION	OUIPUI	TYPE	LVC
Single	OD	1G06	✓
Single	3S	1G240	*

Noninverting Buffers and Drivers

DESCRIPTION	OUTPUT	TYPE		TECHNOLOGY	
DESCRIPTION	OUIPUI	ITPE	AHC	AHCT	LVC
Single	OD	1G07			✓
Cingle Due Duffere	20	1G125	V	V	+
ingle Bus Buffers	3S	1G126	V	V	+

LITTLE LOGIC

Standard Bus Switches

DESCRIPTION	TYPE		TECHNOLOGY	
DESCRIPTION	ITPE	CBT	CBTLV	LVC
Single Bilaterial (Analog or Digital)	1G66			÷
	1G66	+		
Single FET	1G125	~	V	
	1G384	V		
Single FET with Level Shifting	1G125	V		

MEMORY DRIVERS AND TRANSCEIVERS (HSTL, SSTL, AND SSTV)

Buffers, Drivers, and Latches

DESCRIPTION	ОИТРИТ	TYPE	TECHNOLOGY						
DESCRIPTION	OUTPUT	ITPE	HSTL	SSTL	SSTV				
9-Bit to 18-Bit HSTL-to-LVTTL Memory Address Latches	3S	16918	V						
13-Bit to 26-Bit Registered Buffers with SSTL_2 Inputs and Outputs	3S	16859			+				
14-Bit Registered Buffers with SSTL_2 Inputs and Outputs	3S	16857		V	+				
14-Bit to 28-Bit HSTL-to-LVTTL Memory Address Latches		162822	V						
20-Bit SSTL_3 Interface Buffers	3S	16847		V					
20-Bit SSTL_3 Interface Universal Bus Drivers	3S	16837		V					

REGISTERS

Registers

DESCRIPTION	ОИТРИТ	TYPE							TEC	HNOLOG	ξY		HC HCT LS LV				
DESCRIPTION	OUTPUT	TYPE	AC	ACT	AHC	AHCT	ALS	ALVC	AS	CD4K	F	FCT	НС	нст	LS	LV	S
1-Bit to 4-Bit Address Registers/Drivers	3S	162831						~									<u> </u>
T-Dit to 4-Dit Address Registers/Differs	33	162832						~									
		194							~				~	~	~		
4 Bit Bidirectional Universal Shift		195											~				~
		40194								~							
4 Bit Cascadable Shift	3S	395													~		
4 Bit D-Type		4076								~							
4 Stage Parallel-In/Parallel-Out Shift		4035								~							
Dual 4 Stage Static Shift		4015								~			~				<u> </u>
4-by-4 Register Files	OC	170													~		
4-by-4 Register Files	3S	670											~	~	~		
Dual 16-by-4 Register Files	3S	870					~										
5 Bit Shift		96													~		
8 Bit Diagnostic Scan	3S	818										~					
8 Bit Multilevel Pipeline	3S	520										~					
8 Bit Serial In, Parallel Out Shift		164	~	~			~						~	~	~	~	
8 Bit Parallel In, Serial Out Shift with Gated Clock		165					~						~	~	~	~	
8 Bit Parallel In, Serial In, Serial Out Shift		166					~						~	~	~		
8 Bit Shift with Output Registers	OC	594			~	~							~		~	~	
o bit Stillt with Output Registers	00	599													~		
8 Bit Shift with 3-State Output Registers	3S	595			~	~							~		~	~	
8 Bit Shift with 3-State Output Latches	3S	596													~		
8 Bit Shift with Input Latches		597											~	~	~		
8 Bit Shift with Input Latches and 3-State Input/Output Ports	3S	598													~		
8 Bit Universal Shift/Storage	3S	299	~	~			~				>		~	~	~		
o bit Universal Still v Storage	33	323	~				~								~		
8 Stage Static Shift		4014								~							
o Staye Static Still		4021								V							
8-Stage Shift-and-Store Bus	3S	4094								~			~	~			
8-Stage Static Bidirectional Parallel-/Serial-Input/Output Bus		4034								~							

REGISTERS

Registers (continued)

DESCRIPTION	OUTDUT	TYPE							TEC	HNOLOG	Υ						
DESCRIPTION	OUTPUT	ITPE	AC	ACT	AHC	AHCT	ALS	ALVC	AS	CD4K	F	FCT	НС	НСТ	LS	LV	S
14 Dit Carial In/Out with 14 Dit Darallal Out Charge		673													~		
16 Bit Serial In/Out with 16-Bit Parallel-Out Storage		674													~		
64 Stage Static Shift		4031								~							
Dual 64 Stage Static Shift	3S	4517								~							

SPECIALTY LOGIC

Adders

DESCRIPTION	TYPE				TECHNOLOGY			
DESCRIPTION	ITPE	AC	ACT	F	HC	HCT	LS	S
9 Bit Binary Full with Fast Carry	283	V	~	~	~	V	V	~

Arithmetic Logic Units

DESCRIPTION	TYPE		TECHNOLOGY							
DESCRIPTION	ITPE	AS	LS	S						
Arithmetic Legic Unite/Function Congretors	181	V	~							
Arithmetic Logic Units/Function Generators	381			V						
Look-Ahead Carry Generators	182			✓						

Bus-Termination Arrays and Networks

DESCRIPTION	TVDE	TECHNOLOGY								
DESCRIPTION	TYPE	ACT	CD4K	F	S					
Dual 4-Bit Programmable Terminators	40117		V							
8-Bit Schottky Barrier Diode Bus-Termination Arrays	1056			V						
10-Bit Bus-Termination Networks with Bus Hold	1071	V								
12 Dit Cabattly, Parrier Diada Due Termination Arraya	1050				V					
12-Bit Schottky Barrier Diode Bus-Termination Arrays	1051				~					
16-Bit Bus-Termination Networks with Bus Hold	1073	V								
14 Dit Cabattly, Parrier Diada Dua Termination Arraya	1052				~					
16-Bit Schottky Barrier Diode Bus-Termination Arrays	1053				~					
16-Bit Schottky Barrier Diode R-C Bus-Termination Arrays	1016			V						

Comparators (identity)

DESCRIPTION	ОИТРИТ	TYPE	TECHNOLOGY			
	OUIFUI	ITPE	ALS	F		
8 Bit Identity (P = Q)		521	V	V		
8 Bit Identity (P = Q) with Input Pullup Resistors	OC	518	V			
8 Bit Identity $(\overline{P} = Q)$ with Input Pullup Resistors		520	V	~		
12 Bit Address		679	V			

Comparators (magnitude)

DESCRIPTION	TVDE	TECHNOLOGY									
	TYPE -	ALS	AS	CD4K	HC	НСТ	LS	S			
	85	ı'				V					
4 Bit	4063	1		V		'					
	4585	1		V		'					
	682	1			V	'	~				
0 D#	684	1			~	'	~				
8 Bit	688	~			~	~	~				
· · · · · · · · · · · · · · · · · · ·	885	1	V			'					

TEXAS INSTRUMENTS

SPECIALTY LOGIC

Digital Phase-Locked Loops (PLLs)

DESCRIPTION	TYPE	TECHNOLOGY									
	ITPE	ACT	CD4K	HC	НСТ	LS					
Digital PLLs	297	~		V	V	V					
PLLs with VCO	4046		~	V	V						
PLLs with VCO and Lock Detectors	7046			V	V						

Drivers/Multipliers

DESCRIPTION	TYPE	TECHNOLOGY				
	ITPE	CD4K	TTL			
4-Bit Binary Rate Multipliers	4089	V				
BCD Rate Multipliers	4527	V				
Synchronous 6-Bit Binary Rate Multipliers	97		V			

ECL/TTL Functions

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY
DESCRIPTION	OUTPUT	TIPE	ECL
Octal ECL-to-TTL Translators	3S	10KHT5541	V
Octal ECL-to-TTL Translators with Edge-Triggered D-Type Flip-Flops	3S	10KHT5574	V
Octal TTL-to-ECL Translators with Edge-Triggered D-Type Flip-Flops and Output Enable		10KHT5578	V
Octol TTL to ECL Translators with Output Enable		10KHT5542	V
Octal TTL-to-ECL Translators with Output Enable		10KHT5543	V

Frequency Dividers/Timers

DESCRIPTION	TYPE	TECHNOLOGY				
DESCRIPTION	''''	CD4K	LS			
24-Stage Frequency Dividers	4521	V				
Drogrammable Fraguency Dividere/Digital Timore	292		V			
Programmable Frequency Dividers/Digital Timers	294		V			
Dragrammable Timora	4536	V				
Programmable Timers	4541	V				

Monostable Multivibrators

DECORPTION	TVDE				TECHN	IOLOGY			
DESCRIPTION	TYPE	AHC	AHCT	CD4K	НС	НСТ	LS	LV	TTL
Low Power Monostable/Astable	4047			V					
Monostable Multivibrators with Schmitt-Trigger Inputs	121								~
Retriggerable	122						V		
Dual	4098			V					
Dual with Schmitt-Trigger Inputs	221				~	~	V	~	~
Dual Precision	14538			V					
Dual Date and with Deapt	123	V	V		V	~	V	~	~
Dual Retriggerable with Reset	423				V	~	V		
Dual Retriggerable Precision	4538				V	~			

Oscillators

DESCRIPTION	TYPE	TECHNOLOGY		
DESCRIPTION	ITPE	LS	S	
Single Crystal Controlled	321	~		
Cinale Voltage Controlled	624	~		
Single Voltage Controlled	628	~		
Dual Voltage Controlled	124		V	
Dual Voltage Controlled	629	V		

Parity Generators and Checkers

DESCRIPTION OF	OUTPUT	TYPE					TECHN	OLOGY				
DESCRIPTION	OUIPUI	ITPE	AC	ACT	ALS	AS	F	FCT	HC	HCT	LS	S
Dual 8 Bit Odd		480						~				
9 Bit Odd/Even		280	~	~	~	~	~		~	~	~	~
O Dit with Due Deiver Death, land 4/O days Death		286		•		~						
9 Bit with Bus-Driver Parity Input/Output Port	CP	11286		~								

TEXAS INSTRUMEN

SPECIALTY LOGIC

Translation Voltage Clamps

DESCRIPTION		TECHNOLOGY
DESCRIPTION	TYPE	TVC
10 Bit	3010	✓
22 Bit	16222	✓

Voltage-Level Shifters

DESCRIPTION	TYPE	TECHNOLOGY
DESCRIPTION	ITPE	CD4K
Quad Low to High		✓
Hex for TTL-to-CMOS or CMOS-to-CMOS Operation	4504	V

TRANSCEIVERS

Parity Transceivers

DESCRIPTION	OUTDUT	TVDE	TECHNOLOGY						
DESCRIPTION	OUTPUT	TYPE	ABT	ACT	ALS	F			
Octal with Parity Generators/Checkers	3S	657	~			~			
		833	~						
		29833			V				
8 Bit to 9 Bit		853	V						
		29854			V				
Dual 8 Bit to 9 Bit		16833	V						
Dual 8 Bit to 9 Bit		16853	V						
16 Bit with Parity Generators/Checkers	3S	16657	V	V					

DECODIDATION	OUTDUT	TVDE							TE	CHNOLO	GY						
DESCRIPTION	ОИТРИТ	TYPE	ABT	AC	ACT	ALS	ALVC	AS	AVC	ВСТ	F	FCT	HC	HCT	LS	LVC	L۱
		52										~					
		543	~		•					~	~	~				~	
		11543			~												
		561				~											
	3S	646	~	~	~							~	~	~	~	~	•
Octal		648				V		~							~		
		651	~														
		652	~	V•	~							~	~	~	V	~	,
		11652		~	~												
	00/00	653				V											
	OC/3S	654				~											
		2543										~					Т
Outstand the Control Demonstrate Development	20	2646										~					П
Octal with Series Damping Resistors	3S	2652										~					Т
		2952	~									~				~	
		16470	~														
		16543	~		~		~					+				~	
		162543										+					
		163543										+					Г
		16646	~		~		~		+			+				~	
		162646										+					Т
44.89		163646										+					T
16 Bit	3S	16651			~												Т
		16652	~	~	~							+				~	
		162652										+					T
		163652										+					T
		16952	V		~		~					+				~	
		162952										+					Т
		163952										+					T
		16524					~										\top
18 Bit	3S	16525					~										T
		162525					~										T
32 Bit	3S	32543	~														T
4 to 1 Multiplexed/Demultiplexed	3S	162460	V			1								1			T

TRANSCEIVERS

Standard Transceivers

DESCRIPTION	OUTPUT	TYPE											TECH	INOLO	GY										
DESCRIPTION	OUTPUT	ITPE	ABT	ABTE	AC	ACT	AHC	AHCT	ALB	ALS	ALVC	AS	AVC	ВСТ	64BCT	F	FCT	GTL	GTLP	НС	нст	LS	LV	LVC	LVT
2 Bit LVTTL to GTLP Adjustable Edge Rate with Selectable Parity	3S	1394																	*						
Quad	3S	243								~										~	~	~			
Quad Tridirectional	3S	442																				~			
7 Bit Bus Interface IEEE Std 1284	3S	1284				~																			
8 Bit LVTTL to GTLP	3S	306																	+						
		245	~		V•	V•	~	~		~	~	~		~	~	~	~			~	~	~	~	~	~
	3S	1245								~															
	33	11245			~	~																			
		620	~							~															
	OC	621								~															
		623	~		~	~				~				~		~	~			~	~	~			
Octal		638								~															
Octai	3S	639								~															
		640	~							~		~		~						~	~	~			<u> </u>
		1640								~															<u> </u>
	oc	641								~		~										~			<u> </u>
		642								~												~			<u> </u>
	3S	645								~		~								~	~	~			<u> </u>
	33	1645								~															<u> </u>
Octal with Series Damping Resistors	3S	2245	~													~	~							~	~
Octal Transceivers and Line/MOS Drivers with B-Port Series Damping Resistors	3S	2245	-											~											
Octal with Adjustable Output Voltage	3S	3245																						~	
Octal Dual Supply with Configurable Output Voltage	3S	4245																						~	

SS
ME
Z

DECCRIPTION	OUTDUT	TVDE											TECH	INOLO	GY										
DESCRIPTION	OUTPUT	TYPE	ABT	ABTE	AC	ACT	AHC	AHCT	ALB	ALS	ALVC	AS	AVC	вст	64BCT	F	FCT	GTL	GTLP	HC	НСТ	LS	LV	LVC	LV
Octal with 3.3-V to 5-V Shifters	3S	4245																						~	
		863	~																					~	
9 Bit	3S	29863								~				~											Г
		29864												~											
10 Bit	3S	861	~																					~	
11 Bit Incident Wave Switching	3S/OC	16246		~																					
		16245	~		~	~		~	~		~		~				+							~	~
16 Bit	3S	16623	~			~																			
		16640	~																						
16 Bit LVTTL to GTLP Adjustable Edge Rate	3S	1645								~									*						
16 Bit with Input/Output Series Damping Resistors	3S	16245																							
16 Bit Incident Wave Switching	3S	16245		~																					
16 Bit with		16245									~														
Series Damping	3S	162245	~														+							~	~
Resistors		163245															+								
16 Bit 3.3 V to 5 V Level Shifting	3S	164245									~														
16 Bit LVTTL to GTLP	3S	16945																	+						
18 Bit Bus Interface	3S	16863	~			~					~														
18 Bit		16622																~							
LVTTL to GTL/GTL+		16923																~							
19 Bit Bus Interface IEEE Std 1284		161284																					~	~	
20 Bit	3S	16861				~																			
25 Ω Octal	3S	25245	~											~	~										
20 22 Octd1	OC	25642												~											
32 Bit	3S	32245	~								~													~	~
32 Bit LVTTL to GTLP	3S	32945																	+						
32 Bit LVTTL to GTLP Adjustable Edge Rate	3S	3245																	+						

UNIVERSAL BUS FUNCTIONS

Universal Bus Transceivers

DESCRIPTION	ОИТРИТ	TYPE				TECHN	IOLOGY			
DESCRIPTION	OUIPUI	ITPE	ABT	ALVC	ALVT	FCT	GTL	GTLP	LVC	LVT
16 Bit LVTTL to GTL/GTL+ with Live Insertion		1655					V			
16 Bit LVTTL to GTLP Adjustable Edge Rate	3S	1655						+		
17 Bit LVTTL to GTLP Adjustable Edge Rate	3S	1616						+		
17 Bit LVTTL to GTL/GTL+		16616					~			
17 Bit LVTTL to GTLP with Buffered Clock	3S	16916						+		
		16500	V	~		+				V
		162500	V			+				
		163500				+				
		16501	V	~		+				~
18 Bit	3S	162501	V			+				
		163501				+				
		16600	✓	V						
		16601	✓	V	~					
		162601	V	~						
18 Bit with Parity Generators/Checkers	3S	16901		~					~	
18 Bit LVTTL to GTL/GTL+		16612					V			
18 Bit LVTTL to GTLP	3S	16612						V		
10 DIL LV I I L (U G I LP	33	16912						+		
18 Bit LVTTL to GTLP Adjustable Edge Rate	3S	1612						+		
32 Bit	3S	32501	V	V						+

Universal Bus Drivers

DESCRIPTION	OUTDUT	TVDF		TECHNOLOGY	
DESCRIPTION	OUTPUT	TYPE	ALVC	AVC	LVT
12 Bit with Parity Checker and Dual 3-State Outputs	3S	16903	v		
16 Bit	3S	16334	V	V	
10 DIL	33	162334	v		
		16834	✓	V	
10.02	20	162834	V		
18 Bit	3S	16835	V	V	V
		162835	V		
20 DH	20	16836			
20 Bit	3S	162836	V		

Universal Bus Exchangers

DESCRIPTION	OUTPUT	TVDE	TECH	NOLOGY
DESCRIPTION	OUTPUT	TYPE	ABT	ALVC
0 Dit 4 Doub	20	16409		V
9 Bit 4 Port	3S	162409		V
12 Bit to 24 Bit Multiplexed	3S	16271		V
		16269		V
12 Bit to 24 Bit Registered	3S	16270		V
		162268		V
16 Bit to 32 Bit with Byte Masks	3S	162280		V
16 Bit Tri-Port	3S	32316	~	
10 Dit to 24 Dit Dogistarad	3S	16282		V
18 Bit to 36 Bit Registered	35	162282		V
18 Bit Tri-Port	3S	32318	V	

LOGIC OVERVIEW	
FOCUS ON THE HISTORY OF LOGIC	2
FUNCTIONAL INDEX	3
FUNCTIONAL CROSS-REFERENCE	4
DEVICE SELECTION GUIDE	5
PACKAGING AND SYMBOLIZATION INFORMATION	A
LOGIC PURCHASING TOOL/ALTERNATE SOURCES	В

					/ Pro	oduct av	√ailabl	e in te	chnole	gy ind	icated	•	Produc	ct availab	le in rر	educe	d-nois	e adva	ınced '	CMOS	3 (110/	00 seri	ies)	*!	New p	product	. plann	ıed in !	techno	ology ir	ndicat	ed					
			BiC	CMOS			Γ		BIPC	OLAR					_	_	_	_	CI	MOS	_				_					_		OT	HER				
DEVICE	ABT	ALB	ALVT	BCT	64BCT	LVT	ALS	AS	L	LS	S	11	AC	ACT	АНС	АНСТ	ALVC	AVC	СВТ	CBTLV	CD4K	FCT	НС	нст	LV	TNC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
1G00			'	\perp		'	上			⊥_′	⊥_'	$\perp \!\!\! \perp \!\!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\!\! \perp \!\!\!\!\! \perp \!\!\!\!\! \perp \!\!\!\!\! \perp \!\!\!\!\! \perp \!\!\!\!\! \perp \!\!\!\!\!\!$		'	~	~	⊥_′	⊥_′	⊥_'	⊥_'	<u> </u>	'	⊥_′	⊥_'	⊥_′	+	⊥_'	L			\perp	'	\perp		<u> </u>	'	
1G02		\perp	'	\perp	\perp	<u> </u>	上	\perp		⊥_′	⊥_'	$\perp \! \! \perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			~	~	⊥_′	⊥_′	⊥_'	⊥_'	<u> </u>	'	⊥_′	<u></u>	⊥_′	+	⊥_'	L			\perp	'	\perp		⊥ '	'	
1G04			'	\perp		'	上			⊥_′	⊥_'	$\perp \! \! \perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			~	~	⊥_′	⊥_′	⊥_'	⊥'	<u> </u>	'	⊥_′	ַ וְ	⊥_′	+	⊥'				\perp	'	\perp	\perp	⊥ '	'	\perp
1GU04			'			'	\perp			<u>'</u>	'				~	\perp	<u></u> _'	'	<u> </u>	<u> </u>		'	<u></u> '	'	'	~	<u>'</u>	L				'			L	'	
1G06							L	L			[_'				'	'	Ĺ'	'		Ĺ'						~	Ĺ'										
1G07																										~											
1G08															~	~																					
1G14															~	~										+											
1G32															~	~										+											
1G66																			+							+											
1G79																										+											
1G80																										+											
1G86															~	~																					
1G125															~	~			~																		
1G126															~	~										+											
1G240																										+											
1G384	\Box						\vdash												~																		
00							~	~	~	~	~	~	v•	V •	~	~	~						~	~	~	~											
02	\Box						~	~	~	~	V	~	~	~	~	~							~	~	~	~			\Box								
03	\Box						~			~													~	~													
04							~	~	~	~	~	~	V•	V •	~	~	~						~	~	~	~											
U04							\vdash								~								~		~	~											
05	\Box						V			~	~	~	~	~	~								~		~												
06	\Box						\vdash			~		~														~			\Box								
07							\vdash	T		~		~														~									\vdash		
08				\dagger	\dagger	1	~	~	~	~	V		v.	V •	~	V	~						~	~	~	~					\dagger			T	\vdash	†	
09					\top		V	1		~	~																										
10	\Box				\top		1	~	~	~	~	~	~	~			~						~	~		~		一			+				\vdash		
11	\Box				\dagger	1	~	~	~	~			v ·	~									~	~							\dagger					†	
14	\vdash		+	+		+	T	+	+	V		1	V	~	V	V	~				\vdash	\vdash	V	~	~	~		\vdash				+	\vdash	+	\vdash	+	

			BiCl	MOS					BIPC	LAR									CI	/IOS												ОТН	IER				
DEVICE	ABT	ALB	ALVT	BCT	64BCT	IVI	ALS	AS	ш	LS	S	Π	AC	ACT	AHC	АНСТ	ALVC	AVC	CBT	СВТLV	CD4K	FCT	НС	НСТ	^	LVC	TVC	ABTE	FB	FIFO	СТ	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
16						<u> </u>						~										_											_				-
17												~																									
19										~																											
20							~	~	~	~	~		~	~									~	~													
21							~	~	~	~													~	~													
25												~																									
26										~																											
27							~	~	~	~													~	~													
30							~	~	~	~				•									V	~													
31										~																											
32							~	~	~	~	~	~	v ·	v ·	~	~	~						~	~	~	~		П									
33							~			~																											
35							~																														
37							~			~	~	~																									
38							~		~	~	~	~																									
42										~													~	~													
45												~																									
47										~		~																									
51										~	~																										
52																						~															
73										~													~	~													
74							~	~	~	~	~	~	v •	v •	~	~							~	~	~	~											
75										~													~	~													
85										~	~												~	~													
86							~	~	~	~	~		v ·	~	~	~							~	~	~	~											
90										~																											
92										~																											
93										~													~	~													
96										~																											
97												~																									
107										~		~											V	~													

			BiCl	MOS					BIPO	DLAR									CI	MOS												OTI	HER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ш	LS	S	II.	AC	ACT	AHC	AHCT	ALVC	AVC	СВТ	CBTLV	CD4K	FCT	오	нст	LV.	TNC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
109			_			-	V	~	~	V			V	1		Ť						_	~	~			Ċ	Ė			Ť					, , , , , , , , , , , , , , , , , , ,	
112							~		~	~	~		~	~									~	~		~		П									
121							П					~																									
122							Г			~																		Г									
123							Г			~		~			~	~							~	~	~			Г									
124							П				~																										
125	~			~	~	~	П		~	~					~	~	~						~	~	~	~		Г									
126	~			~	~	+	Г		~	~					V	~	~						~	~	~	~		Г									
128							П					~																									
132							П			~	~	~			~	~							~	~	~			Г									
133							~				~																	Г									
136							Г			~																		Г									
137							~																~	~													
138							~	~	~	~	~		v ·	~	~	~						~	~	~	~	~											
139							~			~	~		~	V •	~	V							~	~	~	~											
140											~																										
145							П			~		~																Г									
147							П																V	~				Г									
148							Г			~		~											~					Г									
150												~																									
151							~	~	~	~	~		~	~									~	~				Г									
153							~	~	~	~	~		~	~									~	~				Г									
154												~											~	~													
155										~																											
156							~			~																		Г									
157							~	~	~	~	~		~	~	~	V						~	~	~		~		Г									
158							~	~	~	~	~		~	~	~	~							~	~													
159												~																									
161							~	~	~	~			~	~									~	~													
163							~	~	~	~	~		~	~								~	~	~													
164							~			~			~	~									~	~	~												

			BiC	MOS					BIPC	LAR									CI	/IOS												ОТІ	HER				
DEVICE	ABT	ALB	ALVT	BCT	64BCT	 	ALS	AS	L	LS	S	ī	AC	ACT	AHC	AHCT	ALVC	AVC	CBT	CBTLV	CD4K	FCT	웃	НСТ	ΓΛ	LVC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
165	Ì	_	_	<u> </u>	<u> </u>	-	V	_	一	~	, , , , , , , , , , , , , , , , , , ,				<u> </u>		<u> </u>)	_	-	~	~	~				_	_	Ŭ		_	,	_	-0,	- O,
166							V			~													~	~													
169							~	~	~	~																											
170										~																											
173										~													~	~													
174							~	~	~	~	~		~	~									~	~	~												
175							~	~	~	~	~	~	V •	~									~	~	~												
181								~		~																											
182											~																										
190																							~														
191							~			~												/	~	~													
192																							~														
193							~			~		~											~	~													
194								~		~													~	~													
195											1												~														<u></u>
221										~		1											~	~	~												
224																														~							
225											~																										<u> </u>
229																														~							<u> </u>
230								~																													<u> </u>
232																														~							<u> </u>
233																														~							<u> </u>
236																														~							<u> </u>
237																							~	~													<u> </u>
238						_							~	~									~	~													<u> </u>
240	~			~		~	~	~	~	~	~		v •	··	~	~						~	~	~	~	~											<u> </u>
241	~			~		~	~	~	~	~	~		~	~									~	~													<u> </u>
243							~			~													~	~													<u> </u>
_244	~			~	~	~	~	~	~	~	~		v •	··	~	~	~					~	~	~	~	~											<u> </u>
245	~			~	~	~	~	~	~	~			v •	··	~	~	~	~				~	~	~	~	~											
247										'																											<u></u>

	BiCMOS							BIPOLAR						CMOS													OTHER										
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ш	LS	S	Ę	AC	ACT	AHC	AHCT	ALVC	AVC	СВТ	CBTLV	CD4K	FCT	오	HCT	Δ	TNC	TVC	ABTE	89	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
250						-		V														_											_			<u> </u>	<u> </u>
251							~		~	~			~										~	~													
253							~	~	~	~			~	~									~	~													
257							~		~	~	~		v •	V.								~	~	~		~											
258							~	~	~	~				~									~	~													
259							~			~													~	~													
260							П		~		~																										
265												~																									
266										~													~														
273	~					~	~			~		~	~	~	~	~						~	~	~	~												
276												~																									
279										~																											
280							~	~	~	~	~		~	~									~	~													
283									~	~	~		~	~									~	~													
286								~						•																							
292										~																											
293										~																											
294							П			~																											
297										~				~									~	~													
298								~		~																											
299							~		~	~			~	~									~	~													
306							П																									+					
321										~																											
323							~						~																								
348										~																											
354							Г																V	~													
356																								~													
365										~													~	~													
366							Г																V														
367										~		~			~	~							~	~	~												
368										~		~											V	~													

0				BiC	MOS					BIPC	LAR									CI	/IOS												OTH	IER				
	DEVICE	ABT	ALB	ALVT	BCT	64BCT	LVT	ALS	AS	L	LS	S	πг	AC	ACT	АНС	АНСТ	ALVC	AVC	CBT	CBTLV	CD4K	FCT	НС	НСТ	ΓΛ	TNC	TVC	ABTE	FB	FIFO	СТL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
	373	V			~	Ť	~	V	~	~	~	V		V	v.	V	V	V					~	~	~	~	~		\Box			Ť					-,	<u> </u>
	374	~			V		V	~	~	~	~	~		~	v •	~	~	~					~	~	~	~	~											
	375										~																											
	377	~								~	~												>	~	~													
	378										~																											
	381											~																										
	390										~													~	~													
	393										~		~											~	~													
	395										~																											
	399										~												~															
	423										~													~	~													
	442										'																											
	465										~																											
	480																						>															
	518							~																														
ı	520							~		~													>															
	521							~		~																												
	533	~						~	~					~	~									~	~													
	534	~						~	~					~	~									~	~													
	540	~			~		~	~			~			~	~	~	~						~	~	~	~	~											
	541	~			~		~	~		~	~			~	~	~	~						~	~	~	~	~											
	543	~			~		~			~					•								>				~											
ĺ	561							~																														
	563							~						~	~									~	~													
	564							~						~	~								>	~	~													
	569							~																														
	573	~			~		~	~	~	~				~	~	~	~						~	~	~	~	~											
	574	~			~		~	~	~	~				~	~	~	~						~	~	~	~	~											
	575							~	~																													
	576							~	~																													
	577							~																														
	577							<u> </u>																														

			BiCI	MOS					BIPC	DLAR									CI	MOS												OTI	HER				
DEVICE	ABT	ALB	ALVT	BCT	64BCT	LVT	ALS		L	LS	S	П	AC	ACT	AHC	АНСТ	ALVC	AVC	CBT	CBTLV	CD4K	FCT	위	НСТ	\ 	TNC	TVC	ABTE	B.	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
580				_			V									-															_			<u> </u>			<u></u>
590										~													~														
592										~																											$\overline{}$
593										~																											
594										~					~	~							~		~												
595										~					~	~							~		~												
596										~																											
597										~													~	~													
598										~																											
599										~																											
620	~						~																														
621							~																														
623	~			~			~		~	~			~	~								~	~	~													
624										~																										<u> </u>	<u> </u>
628										~																										<u> </u>	<u> </u>
629										~																										<u> </u>	<u> </u>
638							~	~																												Ш'	<u> </u>
639							~																													<u> </u>	<u> </u>
640	~			~			~	~		~													~	~												<u> </u>	<u> </u>
641							~	~		~																										<u> </u>	<u> </u>
642							~			~																										Ĺ_′	<u> </u>
645							~	~		~													~	~											_	Ш'	<u> </u>
646	~					~				~			~	~								~	~	~		~									<u> </u>	<u></u> —'	<u> </u>
648							~	~		~																										Ш'	<u> </u>
651	~																																		_	Ш'	<u> </u>
652	~					~	~			~			~	V •								~	~	~		~									_	<u></u> —'	<u> </u>
653							~																													<u></u> —'	<u> </u>
654							~																													Ш'	<u> </u>
657	~							$oxed{}$	~			Ш																							<u> </u>	<u></u> —′	<u> </u>
666							~	$oxed{}$																											<u> </u>	<u></u> —′	<u> </u>
667							~																													<u> </u>	

			BiCI	MOS					BIPO	OLAR	!								CN	/IOS												OTH	IER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ш	LS	S	Ш	AC	ACT	АНС	АНСТ	ALVC	AVC	CBT	CBTLV	CD4K	FCT	НС	НСТ	LV	TNC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
669	Ш									~																											
670										~													~	~													
673										~																											
674										~																											
679							~																														
682										~													~														
684										~													~														
688							~			~													~	~													
697										~																											
746							~																														
756				~				~																													
757				~	~			~																													
760				~			~	~																													
804							~	~																													
805							~	~																													
808								~																													
817																																+					
818																						~															
821	~							~														~				~											
822																						~															
823	~							~														~				~											
824																						~															
825								~														~															
827	~																					~				~											
828																										~											
832							~	~																													
833	~						ĺ																														
841	~						~	~														~				~											
842																						~															
843	~						~															~															
844						1	1		1													~															1

			BiCl	MOS					BIPO	DLAR									CI	MOS												OTI	HER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ш	LS	S	П	AC	ACT	AHC	AHCT	ALVC	AVC	CBT	CBTLV	CD4K	FCT	HC	НСТ	LV	TNC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
845	Ť			_		-	V			_						Ť			Ť	Ť		_		-			<u> </u>	Ì		_		Ŭ	_	Ť		,	<u> </u>
853	~						Ī																														
857							~																					Г									
861	~																									~		Г									
863	~																									~											
867							~	~																													
869							~	~																				Г									
870							~																														
873							~	~																													
874							~	~																													
876							~	~																				Г									
885								~																													
990							~																														
992							~																					Г									
994							~																					Г									
996							~																					Г									
1000								~																				Г									
1004							~	~																				Г									
1005							~																					Г									
1008								~																													
1016							Г		~																			Г									
1032							Г	~																				Г									
1034							~	~																													
1035							~																														
1050							Г				~																	Г									
1051							П				~																	Г									
1052							ĺ				~																										
1053											~																										
1056									~																												
1071							ĺ							~																							
1073														~																							

			BiC	MOS					BIPO	LAR									CI	/IOS												OTI	IER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	F	ΓS	S	Щ	AC	ACT	АНС	AHCT	ALVC	AVC	CBT	CBTLV	CD4K	FCT	ЭН	нст	ΓΛ	LVC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
1244							~																														
1245							~																														
1284														~																							
1394																																+					
1612																																+					
1616																																+					
1640							~																														
1645							~																									+					
1650																													~								
1651																													~								
1653																													~								
1655																															~	+					
1804								~																													
2031																													~								
2033																													~								
2040																													~								
2041																													~								
2226																														~							
2227																														~							
2228																														~							
2229																														/							
2235																														~							
2240	~			~			~															~															
2241	~			~																																	
2244	~			~					~													~				~											
2245	~			~		~			~													~				~											
2257																						~															
2373									~													~															
2374																						~															
2414				~																																	
2541							~															~															

			BiCI	VIOS					BIPC	DLAR									CI	MOS												OTI	HER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ш	LS	S	П	AC	ACT	AHC	АНСТ	ALVC	AVC	СВТ	CBTLV	CD4K	FCT	유	НСТ	Δ.	TNC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
2543				_		_	Ė			_						Ì			Ť	Ť		~									J		_	<u> </u>		<u> </u>	_ <u></u>
2573																						~															
2574																						~															
2646																						~															<u> </u>
2652																						~															
2827	~			~																		~															
2952	~					~																~				~											<u> </u>
3010																											~										
3125																			~	~																	
3126																			~	~																	
3244																			~																		<u> </u>
3245																			~	~						~						÷					
3251																			~	~																	<u> </u>
3253																			~	~																	<u> </u>
3257																			~	~																	
3306																			~																		
3345																			~																		
3383																			~	~																	
3384																			~	~																	
3611																														~							
3612																														~							
3613																														~							
3614																														~							
3622																														~							1
3631																														~							
3632																														~							1
3638																														~							1
3641																														~							1
3651																														~							1
3857																				~																	1
3861																			~	~															П		1

			BiC	vios					BIPO	DLAR									CI	MOS												OTH	HER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ш	LS	S	II.	AC	ACT	AHC	АНСТ	ALVC	AVC	CBT	CBTLV	CD4K	FCT	НС	НСТ	2	LVC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
4001												М									~											_					1
4002																					~		~														
4007																					~																
4009																					~																
4010																					~																
4011																					~																
4012																					~																
4013																					~																
4014																					~																
4015																					~		~														
4016												П									~		~														
4017																					~		~														
4018												П									~																
4019																					~																
4020																					~		~	~													
4021																					~																
4022																					~																
4023																					~																
4024																					~		~	~													
4025																					~																
4026																					~																
4027																					~																
4028												П									~																
4029																					~																
4030												П									~																
4031												П									~																
4033												П									~																
4034												П									~																
4035												П									~							П									
4040												П									~		~	~	~												
4041												П									~							П									

			BiCl	MOS					BIPO	DLAR									CI	MOS												OTH	IER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ш	LS	S	П	AC	ACT	AHC	AHCT	ALVC	AVC	СВТ	CBTLV	CD4K	FCT	ЭH	НСТ	2	LVC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
4042																					~																
4043																					~																
4044																					~																
4045																					~																
4046																					~		~	~													
4047																					~																
4048																					~																
4049																					~		~														
4050																					~		~														
4051																					~		~	~	~												
4052																					~		~	~	~												
4053																					~		~	~	~												
4054																					~																
4055																					~																
4056																					~																
4059																					~		~														
4060																					~		~	~													
4063																					~																
4066																					~		~	~	~												
4067																					~		~	~													
4068																					~																
4069																					~																
4070																					~																
4071																					~																
4072																					~																
4073																					~																
4075																					~		~	~													
4076																					~																
4077																					~																
4078																					~																
4081							ĺ														~																

DEVICE			BiCl	MOS					BIPO	DLAR									CI	VIOS												OTI	IER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ь	LS	S	П	AC	ACT	АНС	АНСТ	ALVC	AVC	CBT	CBTLV	CD4K	FCT	ЭH	НСТ	IV.	LVC	TVC	ABTE	FB	FIFO	GTL	СТГР	HSTL	JTAG	PCA	SSTL	SSTV
4082																					~																
4085																					~																
4086																					~																
4089																					~																
4093																					~																
4094																					~		~	~													
4097																					~																
4098							П														~																
4099																					~																
4245																										~											
4316																							~	~													
4351																							~	~													
4352							Г																~														
4374								~																													
4502																					~																
4503							Г														~																
4504																					~																
4508							Г														~																
4510							Г														~																
4511							Г														~		~	~													
4512																					~																
4514																					~		~	~													
4515																					~		~														
4516																					~																
4517																					~																
4518																					~		~														
4520																					~		~	~													
4521																					~																
4522																					~																
4527																					~																
4532																					~																

			BiCl	VIOS			Г		BIPO	DLAR									CI	MOS												OTI	HER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ш	LS	S	П	AC	ACT	АНС	АНСТ	ALVC	AVC	CBT	CBTLV	CD4K	FCT	HC	НСТ	LV	TNC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
4536				_		-	Ė			 						Ì			Ť	Ť	~	-		_			Ė			_		Ŭ	_	Ť		0,	<u>"</u>
4538																							~	~													
4541																					~																
4543																					~		~	~													
4555																					~																
4556																					~																
4572																					~																
4585																					~																
4724																					~																
5400	~																																				
5401	~																																				
5402	~																																				
5403	~																																				
6800																			~																		
7001																							~														
7002																							~														
7032																							~														
7046																							~	~													
7266																							~														
7802																														~							
7803																														~							
7804																														~							
7805																														~							
7806																														~							
7807																														~							
7808																														~							
7811																														~							
7813																														~							
7814																														~							
7819																														~							
7820																														~							

4				BiC	MOS					BIPC	LAR									CI	/IOS												OTH	IER				
	DEVICE	ABT	ALB	ALVT	BCT	64BCT	LVT	ALS	AS	4	ΓS	S	П	AC	ACT	АНС	AHCT	ALVC	AVC	CBT	CBTLV	CD4K	FCT	НС	НСТ	ΓΛ	LVC	TVC	ABTE	FB	FIFO	П	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
	7881																														~							
	7882																														~							
	8240																																		~			
	8244																																		~			
1	8245																																		~			
	8373																																		~			
	8374																																		~			
1	8543																																		~			
	8550																																			~		
1	8646																																		~			
	8652																																		~			
1	8952																																		~			
	8980																																		~			
	8990																																		~			
	8996																																		~			
	8997																																		~			
	11000													~	~																							
	11004													~	~																							
1	11008													~	~																							
ľ	11030														~																							
	11032													~	~																							
	11074													~	~																							
	11086													~																								
	11138													~																								
	11139														~																							
	11175													~																								
	11240													~	~																							
	11244													~	~																							
	11245													~	~																							
	11257													~	~																							
	11286														~																							

			BiCl	MOS					BIPC	LAR									CI	MOS												OTH	HER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ш	LS	S	П	AC	ACT	AHC	AHCT	ALVC	AVC	СВТ	CBTLV	CD4K	FCT	НС	НСТ	\ \	TAC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
11373														~																							
11374														~																							
11543														~																							
11652														~																							
14538																					~																
16209																			~																		
16210																			~	~																	
16211																			~	~																	
16212																			~	~																	
16213																			~																		
16214																			~																		
16222																											~										
16232																			~																		
16233																			~																		
16240	~		~			~								~	V	~	~					+				~											
16241	~					~																															
16244	~	~	~			~							~	~	~	~	~	~	~			+				~											
16245	~	~				~							~	~		~	~	~	+			+				~		~									
16246																												~									
16260	~																~																				
16269																	~	~																			
16270																	~																				
16271																	~																				
16282																	~																				
16292																			~	~																	
16334																	~	+																			
16344																	~																				
16373	~		~			~							~	~	~	~	~	~				+				~											
16374	~		~			~							~	~	~	V	~	~				+				~											
16390																			~																		
16409																	~																				

DEVIC		BICMOS BIPOLAR																		CI	/IOS												OTH	IER				
DEVIC	E	ABT	ALB	ALVT	BCT	64BCT	LVT	ALS	AS	ъ	LS	s	ī	AC	ACT	АНС	AHCT	ALVC	AVC	CBT	СВТLV	CD4K	FCT	오	НСТ	A	LVC	TVC	ABTE	FB	FIFO	GTL	дПЭ	HSTL	JTAG	PCA	SSTL	SSTV
16460		/																																				
16470	١	/																																				
16500	١	/					~											~					+															
16501	٦,	/					~											~					+															
16524	Т																	~																				
16525	Т																	~																				
16540	١	/														V	~										~											
16541	١	/					~								~	~	~										~											
16543	١	/					~								~			~					*				~											
16600	١,	/																~																		\neg		
16601	١	/		~														~																				
16612	Т																															~	~					
16616	Т																															~						
16622	T																															~						
16623	٦,	/													~																							
16640	١	/																																				
16646	١	/					~								~			~	+				+				~											
16651	Т														~																							
16652	١	/					~							~	~								+				~											
16657	١	/													~																							
16721																		~																				
16722																			~																			
16800																					>																	
16820																		~																				
16821	١	/		~														~																				
16823	1	/													~			~					*													\neg		
16825	١	/													~			~																				
16827	\top			/											~			~	~				*													\neg		
16831																		~																		\neg		
16832																		~																				
16833	١,	/																																				

			BiCl	MOS					BIPO	DLAR									CI	MOS												OTI	HER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ш	LS	S	П	AC	ACT	AHC	AHCT	ALVC	AVC	СВТ	CBTLV	CD4K	FCT	HC	НСТ	LV.	LVC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
16834																	~	~									Ċ										
16835						~											~	~																			
16837																																				~	
16841	~													~			~					+															$\overline{}$
16843	~																																				
16847																																				~	
16853	~																																				
16857																																				~	+
16859																																					+
16861														~					~																		
16863	~													~			~																				
16901																	~									~											
16903																	~																				
16912																																+					
16916																																+					
16918																																	~				
16923																															~						
16945																																+					
16952	~					V								~			~					+				~											
18245																																		~			
18502																																		~			
18504																																		~			
18512																																		~			
18514																																		~			
18640																																		~			
18646																																		~			
18652																																		~			
25244				~	~																																
25245	~			~	~																																
25642				~																																	
29821				~			~																														

1	BICMOS BIPOLAR																		CI	/IOS												OTI	IER				
DEVICE	ABT	ALB	ALVT	BCT	64BCT	LVT	ALS	AS	ш	ΓS	S	П	AC	ACT	АНС	АНСТ	ALVC	AVC	CBT	СВТLV	CD4K	FCT	ЭН	НСТ	ΓΛ	TAC	TVC	ABTE	FB	FIFO	GTL	СТГР	HSTL	JTAG	PCA	SSTL	SSTV
29823							~																														
29825				~																																	
29827				~			~																														
29828							~																														
29833							~																														
29841							~																														
29843				~																																	
29854							~																														
29863				~			~																														
29864				~																																	
32244			~			~											~									~											
32245	~					~											~		~							~											
32316	~																																				
32318	~																																				
32373			~			~																				~											
32374			~			~											~									~											
32501	~					+											~																				
32543	~																																				
32945																																+					
40102																					~																
40103																					~		~	~													
40105																														>							
40106																					/																
40107																					~																
40109																					~																
40110																					~																
40117																					~																
40147																					~																
40161																					~																
40174																					>																
40175																					/																

			BiCl	MOS					BIPC	DLAR									CI	MOS												OTH	HER				
DEVICE	ABT	ALB	ALVT	ВСТ	64BCT	LVT	ALS	AS	ь	LS	S	П	AC	ACT	AHC	АНСТ	ALVC	AVC	СВТ	CBTLV	CD4K	FCT	유	НСТ	^	TNC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
40192						-															~	_						Ì								, , , , , , , , , , , , , , , , , , ,	<u> </u>
40193																					~																
40194																					~																Γ
40257																					~																
161284																									~	~											
162240						~																+															Г
162241						~																															\Box
162244	~		~			~											~					+				~											
162245	~					~																+				~											
162260	~																~																				
162268																	~																				
162280																	~																				
162282																	~																				
162292																			~																		
162334																	~																				
162344																	~																				
162373						~																+															
162374						~											~					+															
162409																	~																				
162460	~																																				
162500	~																					+															
162501	~																					+															
162525																	~																				
162541						~																															
162543																						+															
162601	~																~																				
162646																						+															
162652																						+															
162721																	~																				
162820																	~																				
162822																																	>				

	BICMOS BIPOLAR																		CI	MOS												OTH	HER				
DEVICE	ABT	ALB	ALVT	BCT	64BCT	LVT	ALS	AS	ш	LS	S	πг	AC	ACT	AHC	AHCT	ALVC	AVC	CBT	CBTLV	CD4K	FCT	НС	НСТ	LV	LVC	TVC	ABTE	FB	FIFO	GTL	GTLP	HSTL	JTAG	PCA	SSTL	SSTV
162823	~																					+															
162825	~																																				
162827	~		>														~					+															
162830																	~																				
162831																	~																				
162832																	~																				
162834																	~																				
162835																	~																				
162836																	~																				
162841	~																~					+															
162952																						+															
163244																						+															
163245																						+															
163373																						+															
163374																						+															
163500																						+															
163501																						+															
163543																						+															
163646																						+															
163652																						+															
163827																						+															
163952																						+														Ш	
164245																	~																			Ш	
182502																																		~			
182504																																		~			
182512																																		~			
182646																																		~			
182652																																		~			

LOGIC OVERVIEW	
FOCUS ON THE HISTORY OF LOGIC	2
FUNCTIONAL INDEX	3
FUNCTIONAL CROSS-REFERENCE	4
DEVICE SELECTION GUIDE	5
PACKAGING AND SYMBOLIZATION INFORMATION	A
LOGIC PURCHASING TOOLS/ALTERNATE SOURCES	В

SECTION 5 DEVICE SELECTION GUIDE

CONTENTS

ABT – Advanced BiCMOS Technology Logic	5–5
ABTE/ETL – Advanced BiCMOS Technology/Enhanced Transceiver Logic	5–11
AC/ACT – Advanced CMOS Logic	5–13
AHC/AHCT – Advanced High-Speed CMOS Logic	5–21
ALB – Advanced Low-Voltage BiCMOS Logic	5–27
ALS – Advanced Low-Power Schottky Logic	5–29
ALVC – Advanced Low-Voltage CMOS Technology Logic	5–35
ALVT – Advanced Low-Voltage BiCMOS Technology Logic	5–39
AS – Advanced Schottky Logic	5–41
AVC – Advanced Very-Low-Voltage CMOS Logic	5–45
BCT – BiCMOS Technology Logic	5–47
64BCT – 64-Series BiCMOS Technology Logic	5–47
BTA – Bus-Termination Arrays	5–51
CBT – Crossbar Technology Logic	5–53
CBTLV – Low-Voltage Crossbar Technology Logic	5–57
CD4000 – CMOS B-Series Integrated Circuits	5–59
74F – Fast Logic	5–63
FB+/BTL – FutureBus+/Backplane Transceiver Logic	5–67
FCT – Fast CMOS TTL Logic	5–69
FIFO – First-In, First-Out Memories	5–77
GTL – Gunning Transceiver Logic	5–81
GTLP – Gunning Transceiver Logic Plus	5–83
HC/HCT – High-Speed CMOS Logic	5–87
IEEE Std 1149.1 (JTAG) Boundary-Scan Logic	5–97
Little Logic	5–101
LS – Low-Power Schottky Logic	5–105
LV – Low-Voltage CMOS Technology Logic	5–111
LVC – Low-Voltage CMOS Technology Logic	5–115
LVT – Low-Voltage BiCMOS Technology Logic	5–119
PCA – I ² C Inter-Integrated Circuit Applications	
S – Schottky Logic	
SSTL/SSTV – Stub Series-Terminated Logic	5–129
HSTL – High-Speed Transceiver Logic	
TTL – Transistor-Transistor Logic	
TVC – Translation Voltage Clamp Logic	5–135

ABT

Advanced BiCMOS Technology Logic

The ABT family, Tl's second-generation family of BiCMOS bus-interface products, is manufactured using a 0.8- μ BiCMOS process. It provides high drive up to 64 mA and propagation delays in the 5-ns range, while maintaining very low power consumption. ABT products are well suited for live-insertion applications with an $I_{\mbox{off}}$ specification of 0.1 mA and power-up 3-state (PU3S) circuitry.

The ABT family offers series-damping-resistor options where reduced transmission-line effects are required. Special ABT parts that provide high-current drive (180 mA) for use with 25- Ω transmission lines also are offered. Advanced bus functions, such as universal bus transceivers (UBTTM) emulate a wide variety of bus-interface functions. Multiplexing options for memory interleaving and bus upsizing or downsizing also are provided.

The ABT devices can be purchased in octal, Widebus™, or Widebus+™. The Widebus and Widebus+ packages feature higher performance with reduced noise and flow-through pinout for easier board layout. Widebus+ devices offer input bus-hold circuitry to eliminate the need for external pullup resistors for floating inputs.

See www.ti.com/sc/logic for the most current data sheets.

ABT

	NO.					AVA	ILABILI	TY			LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	QFP	SOIC	SSOP	TQFP	TSSOP	TVSOP	REFERENCE
SN74ABT125	14	Quad Bus Buffers with 3-State Outputs	~	~		~	~		~		SCBS182
SN74ABT126	14	Quad Bus Buffers with 3-State Outputs		~		~	~		~		SCBS183
SN74ABT240A	20	Octal Buffers/Drivers with 3-State Outputs	~	~		~	~		~		SCBS098
SN74ABT241	20	Octal Buffers/Drivers with 3-State Outputs	~								SCBS184
SN74ABT241A	20	Octal Buffers/Drivers with 3-State Outputs		~		~	~		~		SCBS184
SN54ABT244	20	Octal Buffers and Line Drivers with 3-State Outputs	~								SCBS099
SN74ABT244A	20	Octal Buffers and Line Drivers with 3-State Outputs		~		~	~		~		SCBS099
SN74ABT245A	20	Octal Bus Transceivers with 3-State Outputs	~								SCBS081
SN74ABT245B	20	Octal Bus Transceivers with 3-State Outputs		~		~	~		~	~	SCBS081
SN74ABTH245	20	Octal Bus Transceivers with 3-State Outputs	~	~		~	~		~	~	SCBS663
SN74ABT273	20	Octal D-Type Flip-Flops with Clear	~	~		~	~		~		SCBS185
SN74ABT373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~		~	~		~		SCBS155
SN54ABT374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	~								SCBS111
SN74ABT374A	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs		~		~	~		~		SCBS111
SN74ABT377	20	Octal D-Type Flip-Flops with Enable	~								SCBS156
SN74ABT377A	20	Octal D-Type Flip-Flops with Enable	~	~		~	~		V		SCBS156
SN74ABT533	20	Octal Inverting Transparent Latches with 3-State Outputs	~								SCBS186
SN74ABT533A	20	Octal Inverting Transparent Latches with 3-State Outputs	~	~		~	~		~		SCBS186
SN74ABT534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	~								SCBS187
SN74ABT534A	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	~	~		~	~		~		SCBS187
SN74ABT540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs		~		~	~				SCBS188
SN54ABT541	20	Octal Buffers and Line Drivers with 3-State Outputs	~								SCBS093
SN74ABT541B	20	Octal Buffers and Line Drivers with 3-State Outputs		~		~	~		V		SCBS093
SN74ABT543	24	Octal Registered Transceivers with 3-State Outputs	~								SCAS422
SN74ABT543A	24	Octal Registered Transceivers with 3-State Outputs	~	~		~	~		~		SCBS157
SN74ABT573	20	Octal Transparent D-Type Latches with 3-State Outputs	~								SCBS190
SN74ABT573A	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~		~	~		~		SCBS190
SN54ABT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~								SCBS191
SN74ABT574A	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~		~	~		~		SCBS191
SN74ABT620	20	Octal Bus Transceivers with 3-State Outputs		~		~	~				SCBS113
SN74ABT623	20	Octal Bus Transceivers with 3-State Outputs	~	~		~	~		~		SCBS114

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins

NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only) PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins = 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit) D = $\frac{1}{8}$ /14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

ABT

DELUCE	NO.	DECODIDATION				AVA	ILABIL	ITY			LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	QFP	SOIC	SSOP	TQFP	TSSOP	TVSOP	REFERENCE
SN74ABT640	20	Octal Bus Transceivers with 3-State Outputs		~		~	~		~		SCBS104
SN74ABT646A	24	Octal Registered Bus Transceivers with 3-State Outputs	~	~		~	~		~	~	SCBS069
SN74ABT651	24	Octal Bus Transceivers and Registers with 3-State Outputs		~		~	~				SCBS083
SN74ABT652A	24	Octal Bus Transceivers and Registers with 3-State Outputs	~	~		~	~				SCBS072
SN74ABT657A	24	Octal Bus Transceivers with Parity Generators/Checkers and 3-State Outputs		~		~	~				SCBS192
SN54ABT821	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs	~								SCBS193
SN74ABT821A	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs	~	~		~	~				SCBS193
SN74ABT823	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs	~	~		~	~				SCBS158
SN74ABT827	24	10-Bit Buffers/Drivers with 3-State Outputs	~	~		~	~		~		SCBS159
SN74ABT833	24	8-Bit to 9-Bit Parity Bus Transceivers	~	~		~					SCBS195
SN74ABT841	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs	~								SCBS196
SN74ABT841A	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs		~		~	~				SCBS196
SN74ABT843	24	9-Bit Bus-Interface D-Type Latches with 3-State Outputs	~	~		~	~		~		SCBS197
SN74ABT853	24	8-Bit to 9-Bit Parity Bus Transceivers	~	~		~	~		~		SCBS198
SN74ABT861	24	10-Bit Transceivers with 3-State Outputs		~		~					SCBS199
SN74ABT863	24	9-Bit Bus Transceivers with 3-State Outputs		~		~	~				SCBS201
SN74ABT2240A	20	Octal Buffers and Line/MOS Drivers with Series Damping Resistors and 3-State Outputs	~	~		~	~		~		SCBS232
SN74ABT2241	20	Octal Buffers and Line/MOS Drivers with Series Damping Resistors and 3-State Outputs		~		~	~		~		SCBS233
SN74ABT2244A	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs	~	~		~	~		~		SCBS106
SN74ABT2245	20	Octal Transceivers and Line MOS Drivers with Series Damping Resistors and 3-State Outputs	~	~		~	~		~		SCBS234
SN74ABTR2245	20	Octal Transceivers and Line MOS Drivers with Series Damping Resistors and 3-State Outputs		~		~	~		~	~	SCBS680
SN74ABT2827	24	10-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs		~		~					SCBS648
SN74ABT2952A	24	Octal Bus Transceivers and Registers with 3-State Outputs	~	~		~	~				SCBS203
SN74ABT5400A	28	11-Bit Line/Memory Drivers with 3-State Outputs				~					SCBS661
SN74ABT5401	28	11-Bit Line/Memory Drivers with 3-State Outputs				~					SCBS235
SN74ABT5402A	28	12-Bit Line/Memory Drivers with 3-State Outputs				~					SCBS660
SN74ABT5403	28	12-Bit Line/Memory Drivers with 3-State Outputs				~					SCBS236
SN74ABT16240A	48	16-Bit Buffers/Drivers with 3-State Outputs	~				~		~	·	SCBS095
SN74ABT16241A	48	16-Bit Buffers/Drivers with 3-State Outputs	~				·		~	V	SCBS096
SN74ABT16244A	48	16-Bit Buffers/Drivers with 3-State Outputs					~		~	·	SCBS073
SN74ABTH16244	48	16-Bit Buffers/Drivers with 3-State Outputs	V				~		~		SCBS677
SN74ABT16245A	48	16-Bit Bus Transceivers with 3-State Outputs					·		~	·	SCBS300
SN74ABTH16245	48	16-Bit Bus Transceivers with 3-State Outputs	~				~		·	~	SCBS662
SN74ABTH16260	56	12-Bit to 24-Bit Multiplexed D-Type Latches with 3-State Outputs	~				~				SCBS204
SN74ABT16373A	48	16-Bit Transparent D-Type Latches with 3-State Outputs	V				~		~		SCBS160
SN74ABT16374A	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~				~		~		SCBS205

ABT

DEVICE	NO. PINS	DESCRIPTION	MIL	PDIP	QFP	AVA SOIC	ILABILI SSOP	TY TQFP	TSSOP	TVSOP	LITERATURE REFERENCE
SN74ABTH16460	56	4-to-1 Multiplexed/Demultiplexed Transceivers with 3-State Outputs	2			-	<i>v</i>		<i>V</i>		SCBS207
SN74ABT16470	56	16-Bit Registered Transceivers with 3-State Outputs					~		~		SCBS085
SN74ABT16500B	56	18-Bit Universal Bus Transceivers with 3-State Outputs					~		~		SCBS057
SN74ABT16501	56	18-Bit Universal Bus Transceivers with 3-State Outputs					~		~		SCBS086
SN74ABT16540A	48	16-Bit Buffers/Drivers with 3-State Outputs					~		~	~	SCBS208
SN74ABT16541A	48	16-Bit Buffers/Drivers with 3-State Outputs					~		~	~	SCBS118
SN74ABT16543	56	16-Bit Registered Transceivers with 3-State Outputs	~				~		~		SCBS087
SN74ABT16600	56	18-Bit Universal Bus Transceivers with 3-State Outputs					~		~		SCBS209
SN74ABT16601	56	18-Bit Universal Bus Transceivers with 3-State Outputs	~				~		~		SCBS210
SN74ABT16623	48	16-Bit Bus Transceivers with 3-State Outputs					~		~		SCBS211
SN74ABT16640	48	16-Bit Bus Transceivers with 3-State Outputs	~				~		~		SCBS107
SN74ABT16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs	~				~		~		SCBS212
SN74ABT16652	56	16-Bit Bus Transceivers and Registers with 3-State Outputs	~				~				SCBS215
SN74ABT16657	56	16-Bit Transceivers with Parity Generators/Checkers and 3-State Outputs					~		~		SCBS103
SN74ABT16821	56	20-Bit D-Type Flip-Flops with 3-State Outputs					~		~		SCBS216
SN74ABT16823	56	18-Bit D-Type Flip-Flops with 3-State Outputs	~				~		~		SCBS217
SN74ABTH16823	56	18-Bit D-Type Flip-Flops with 3-State Outputs					~		~		SCBS664
SN74ABT16825	56	18-Bit Buffers/Drivers with 3-State Outputs					~				SCBS218
SN74ABT16827	56	20-Bit Buffers/Drivers with 3-State Outputs					~				SCBS220
SN74ABT16833	56	Dual 8-Bit to 9-Bit Parity Bus Transceivers					~		~		SCBS097
SN74ABT16841	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs	~				~				SCBS222
SN74ABT16843	56	18-Bit Bus-Interface D-Type Latches with 3-State Outputs					~		~		SCBS223
SN74ABT16853	56	Dual 8-Bit to 9-Bit Parity Bus Transceivers					~		~		SCBS153
SN74ABT16863	56	18-Bit Bus-Interface Transceivers with 3-State Outputs					~				SCBS225
SN74ABT16952	56	16-Bit Registered Transceivers with 3-State Outputs	~				~		~		SCBS082
SN74ABTH25245	24	25-Ω Octal Bus Transceivers with 3-State Outputs		~		~					SCBS251
SN74ABTH32245	100	32-Bit Bus Transceivers with 3-State Outputs						~			SCBS228
SN74ABTH32316	80	16-Bit Tri-Port Universal Bus Exchangers	~		~						SCBS179
SN74ABTH32318	80	18-Bit Tri-Port Universal Bus Exchangers			~						SCBS180
SN74ABTH32501	100	32-Bit Universal Bus Transceivers with 3-State Outputs						~			SCBS229
SN74ABTH32543	100	32-Bit Registered Bus Transceivers with 3-State Outputs						~			SCBS230
SN74ABT162244	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs	~				~		~	~	SCBS238
SN74ABT162245	48	16-Bit Bus Transceivers with Series Damping Resistors and 3-State Outputs	~				~		~		SCBS239
SN74ABTH162245	48	16-Bit Bus Transceivers with Series Damping Resistors and 3-State Outputs					~		~	~	SCBS712
SN74ABTH162260	56	12-Bit to 24-Bit Multiplexed D-Type Latches with Series Damping Resistors and 3-State Outputs					~				SCBS240
SN74ABTH162460	56	4-to-1 Multiplexed/Demultiplexed Registered Transceivers with 3-State Outputs					~		~		SCBS241
SN74ABT162500	56	18-Bit Universal Bus Transceivers with 3-State Outputs					~				SCBS242
SN74ABT162501	56	18-Bit Universal Bus Transceivers with 3-State Outputs					~		~		SCBS243
SN74ABT162601	56	18-Bit Universal Bus Transceivers with 3-State Outputs	~				~		~		SCBS247

ABT

DEVICE	NO.	DESCRIPTION				AVA	ILABILI	TY			LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	QFP	SOIC	SSOP	TQFP	TSSOP	TVSOP	REFERENCE
SN74ABT162823A	56	18-Bit Bus-Interface Flip-Flops with 3-State Outputs					~		~		SCBS666
SN74ABT162825	56	18-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs					~				SCBS474
SN74ABT162827A	56	20-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs					~		~		SCBS248
SN74ABT162841	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs					~		V		SCBS665

ABTE/ETL

Advanced BiCMOS Technology/ Enhanced Transceiver Logic

ABTE, with wide noise margin ETL logic levels on the A port, is backward compatible with existing LVTTL/TTL logic. ABTE devices support the ANSI/VITA 1-1994 specification (VME64) with tight tolerances for transition times and skew. ABTE is manufactured using the 0.8- μ BiCMOS process and provides A-port drive levels up to 90 mA for incident-wave switching. B-port features include bus-hold circuitry eliminating the need for external pullup resistors and 25- Ω series output resistors to dampen signal reflections. Other features include a V_{CC} BIAS pin and internal pullup resistors on control pins for live-insertion protection.

The VMEbus International Trade Association (VITA) established a task group in 1997 to specify a synchronous protocol to double data transfer rates to 320 Mbytes/s or more. The new specification, 2eSST (double-edge source synchronous transfers), is based on the asynchronous 2eVME protocol.

Sustained data rates of 1 Gbyte/s, more then ten times faster than traditional VME64 backplanes with single-edge signaling, are possible by taking advantage of 2eSST's use of both edges of each VMEbus clock and the 21-slot VME320 star-configuration backplane.

TI, in conjunction with VITA, is designing a device to support the 2eSST protocol.

See www.ti.com/sc/logic for the most current data sheets and additional information on this new device.

ABTE/ETL

DEVICE	NO.	DESCRIPTION	А	VAILAB	LITY	LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	SSOP	TSSOP	REFERENCE
SN74ABTE16245	48	16-Bit Incident-Wave-Switching Bus Transceivers with 3-State Outputs	~	~	~	SCBS226
SN74ABTE16246	48	11-Bit Incident-Wave-Switching Bus Transceivers with 3-State and Open-Collector Outputs		~	~	SCBS227

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only) PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins

PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package)

DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

AC/ACT Advanced CMOS Logic

TI offers a full family of advanced CMOS logic with a wide range of AC/ACT devices for low-power and medium- to high-speed applications. Products acquired from Harris Semiconductor provide many additional functions. Over 160 AC and ACT device types are available, including gates, latches, flip-flops, buffers/drivers, counters, multiplexers, transceivers, and registered transceivers. The AC/ACT family is a reliable, low-power logic family with 24-mA output current drive at 5-V V_{CC} (AC/ACT) and 12-mA output current drive 3.3-V V_{CC} (AC only).

The family includes standard end-pin products and center-pin V_{CC} and ground-configuration products with output-edge control (OEC^{TM}) circuitry. The OEC circuitry, available only with the center-pin products, helps reduce simultaneous switching noise associated with high-speed logic. The center-pin products include 16-, 18-, and 20-bit bus-interface functions packaged in 48- and 56-pin shrink small-outline package (SSOP) and thin shrink small-outline package (TSSOP). These packages allow the designer to double functionality in the same circuit board area or reduce the circuit board area by one-half.

The AC family offers CMOS inputs and outputs while the ACT family offers TTL inputs with CMOS outputs.

See www.ti.com/sc/logic for the most current data sheets.

AC

	NO.			А	VAILAE	BILITY		LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	REFERENCE
CD74AC00	14	Quad 2-Input NAND Gates	V	~	~			SCHS223
SN74AC00	14	Quad 2-Input NAND Gates	~	~	~	V	V	SCAS524
CD74AC02	14	Quad 2-Input NOR Gates	~	~	~			SCHS224
CD74AC04	14	Hex Inverters	~	~	~			SCHS225
SN74AC04	14	Hex Inverters	~	~	~	~	~	SCAS519
CD74AC05	14	Hex Inverters with Open-Drain Outputs	~	~	~			SCHS225
CD74AC08	14	Quad 2-Input AND Gates	V	~	~			SCHS226
SN74AC08	14	Quad 2-Input AND Gates	~	~	~	~	~	SCAS536
CD74AC10	14	Triple 3-Input NAND Gates		~	~			SCHS227
SN74AC10	14	Triple 3-Input NAND Gates	~	~	~	~	~	SCAS529
SN74AC11	14	Triple 3-Input AND Gates	~	~	~	~	~	SCAS532
CD74AC14	14	Hex Schmitt-Trigger Inverters		~	~			SCHS228
SN74AC14	14	Hex Schmitt-Trigger Inverters	~	~	~	~	~	SCAS522
CD74AC20	14	Dual 4-Input NAND Gates	~	~	~			SCHS229
CD74AC32	14	Quad 2-Input OR Gates	~	~	~			SCHS230
SN74AC32	14	Quad 2-Input OR Gates	~	~	~	~	~	SCAS528
CD74AC74	14	Dual D-Type Flip-Flops with Set and Reset	~	~	~			SCHS231
SN74AC74	14	Dual D-Type Flip-Flops with Set and Reset	~	~	~	~	~	SCAS521
CD74AC86	14	Quad 2-Input Exclusive-OR Gates		~	~			SCHS232
SN74AC86	14	Quad 2-Input Exclusive-OR Gates	V	~	~	~	~	SCAS533
CD74AC109	16	Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset	~	~	~			SCHS282
CD74AC112	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	~	~	~			SCHS233
CD74AC138	16	3-to-8 Line Inverting Decoders/Demultiplexers	~	~	~			SCHS234
CD74AC139	16	Dual 2-to-4 Line Decoders/Demultiplexers	~	~	~			SCHS235
CD74AC151	16	1-of-8 Data Selectors/Multiplexers		~	~			SCHS236
CD74AC153	16	Dual 1-of-4 Data Selectors/Multiplexers	V	~	~			SCHS237
CD74AC157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	~	~	~			SCHS283
CD74AC158	16	Quad 2-to-4 Line Data Selectors/Multiplexers			~			SCHS283
CD74AC161	16	Synchronous 4-Bit Binary Counters	~	~	~			SCHS239
CD74AC163	16	Synchronous 4-Bit Binary Counters	~	~	~			SCHS284
CD74AC164	14	8-Bit Serial-In, Parallel-Out Shift Registers	~	~	~			SCHS240
CD74AC174	16	Hex D-Type Flip-Flops with Clear		~	~			SCHS241
CD74AC175	16	Quad D-Type Flip-Flops with Clear			~			SCHS242
CD74AC238	16	3-to-8 Line Decoders/Demultiplexers			~			SCHS234
CD74AC240	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~			SCHS287

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins = 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

See Appendix A for package information on CD54/74AC devices.

AC

DEMOE				Δ.	/AII AE	III ITV		LITEDATURE
DEVICE I	NO. Pins	DESCRIPTION	MIL	PDIP	VAILAE SOIC	SSOP	TSSOP	LITERATURE REFERENCE
SN74AC240	20	Octal Buffers/Drivers with 3-State Outputs	~	<u> </u>	V	V	V	SCAS512
CD74AC241	20	Octal Buffers/Drivers with 3-State Outputs	·	<u> </u>				SCHS287
SN74AC241	20	Octal Buffers/Drivers with 3-State Outputs		~	~	~	·	SCAS513
CD74AC244	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~			SCHS244
SN74AC244	20	Octal Buffers and Line Drivers with 3-State Outputs	· ·	~	~			SCAS514
CD74AC245	20	Octal Bus Transceivers with 3-State Outputs	~	~	~	V		SCHS245
SN74AC245	20	Octal Bus Transceivers with 3-State Outputs	~	~	~	~	~	SCAS461
CD74AC251	16	1-of-8 Data Selectors/Multiplexers with 3-State Outputs			~			SCHS246
CD74AC253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs			~			SCHS247
CD74AC257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	~	~	~			SCHS248
CD74AC273	20	Octal D-Type Flip-Flops with Clear	~	~	~			SCHS249
CD74AC280	14	9-Bit Odd/Even Parity Generators/Checkers	~	~	~			SCHS250
CD74AC283	16	9-Bit Binary Full Adders with Fast Carry	~	~	~			SCHS251
CD74AC299	20	8-Bit Universal Shift/Storage Registers	~		~			SCHS288
CD74AC323	20	8-Bit Universal Shift/Storage Registers			~			SCHS288
CD74AC373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~			SCHS289
SN74AC373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~	~	~	SCAS540
CD74AC374	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~			SCHS290
SN74AC374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	~	~	~	~	V	SCAS543
SN74AC533	20	Octal Inverting Transparent Latches with 3-State Outputs		~	~	~	~	SCAS555
CD74AC534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs			~			SCHS290
SN74AC534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs		~	~	~	~	SCAS554
CD74AC540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs			~			SCHS285
CD74AC541	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~			SCHS285
CD74AC563	20	Octal Inverting Transparent Latches with 3-State Outputs		~				SCHS291
SN74AC563	20	Octal Inverting Transparent Latches with 3-State Outputs		~	~	~	~	SCAS552
SN74AC564	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs		~	~	~	~	SCAS551
CD74AC573	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~			SCHS291
SN74AC573	20	Octal Transparent D-Type Latches with 3-State Outputs		~	~	~	~	SCAS542
CD74AC574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~			SCHS292
SN74AC574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~	~	~	SCAS541
CD74AC623	20	Octal Bus Transceivers with 3-State Outputs		~				SCHS286
CD74AC646	24	Octal Registered Bus Transceivers with 3-State Outputs			~			SCHS293
CD74AC652	24	Octal Bus Transceivers and Registers with 3-State Outputs			~			SCHS294
74AC11000	16	Quad 2-Input NAND Gates		~	~			SCLS054
74AC11004	20	Hex Inverters		~	~			SCHS033
74AC11008	16	Quad 2-Input AND Gates		~	~		V	SCAS014
74AC11032	16	Quad 2-Input OR Gates		~	~			SCAS007
74AC11074	14	Dual D-Type Flip-Flops with Set and Reset		~	~	~	V	SCAS499
74AC11086	16	Quad 2-Input Exclusive-OR Gates		~	~			SCAS081
74AC11138	16	3-to-8 Line Inverting Decoders/Demultiplexers		~	~		~	SCAS042
74AC11175	20	Quad D-Type Flip-Flops with Clear		~	~			SCAS090
74AC11240	24	Octal Buffers/Drivers with 3-State Outputs		~	~	~		SCAS448
74AC11244	24	Octal Buffers and Line Drivers with 3-State Outputs		V	~	~	~	SCAS171

AC

DEVICE	NO. Pins	DESCRIPTION		A		LITERATURE		
			MIL	PDIP	SOIC	SSOP	TSSOP	REFERENCE
74AC11245	24	Octal Bus Transceivers with 3-State Outputs		~	~			SCAS010
74AC11257	20	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		~	~	~	~	SCAS049
74AC16244	48	16-Bit Buffers/Drivers with 3-State Outputs				~		SCAS120
74AC16245	48	16-Bit Bus Transceivers with 3-State Outputs				~		SCAS235
74AC16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs				~		SCAS121
74AC16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Output				~		SCAS123
74AC16652	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				~		SCAS242

ACT

DEMOE	NO.	PERMITTION		AVAILABILITY				LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	REFERENCE
CD74ACT00	14	Quad 2-Input NAND Gates	~	~	~			SCHS223
SN74ACT00	14	Quad 2-Input NAND Gates	~	~	~	~	~	SCAS523
CD74ACT02	14	Quad 2-Input NOR Gates	~	~	~			SCHS224
CD74ACT04	14	Hex Inverters	~	~	~			SCHS225
SN74ACT04	14	Hex Inverters	~	~	~	~	~	SCAS518
CD74ACT05	14	Hex Inverters with Open-Drain Outputs	~	~	~			SCHS225
CD74ACT08	14	Quad 2-Input AND Gates	~	~	~			SCHS226
SN74ACT08	14	Quad 2-Input AND Gates	~	~	~	~	~	SCAS535
CD74ACT10	14	Triple 3-Input NAND Gates		~	~			SCHS227
SN74ACT10	14	Triple 3-Input NAND Gates	~	~	~	~	~	SCAS526
SN74ACT11	14	Triple 3-Input AND Gates	~	~	~	~	~	SCAS531
CD74ACT14	14	Hex Schmitt-Trigger Inverters		~	~			SCHS228
SN74ACT14	14	Hex Schmitt-Trigger Inverters	~	~	~	~	~	SCAS557
CD74ACT20	14	Dual 4-Input NAND Gates	~	~	~			SCHS229
CD74ACT32	14	Quad 2-Input OR Gates	~	~	~			SCHS230
SN74ACT32	14	Quad 2-Input OR Gates	~	~	~	~	~	SCAS530
CD74ACT74	14	Dual D-Type Flip-Flops with Set and Reset	~	~	~			SCHS231
SN74ACT74	14	Dual D-Type Flip-Flops with Set and Reset	~	~	~	~	~	SCAS520
CD74ACT86	14	Quad 2-Input Exclusive-OR Gates	~	~	~			SCHS232
SN74ACT86	14	Quad 2-Input Exclusive-OR Gates	~	~	~	~	V	SCAS534
CD74ACT109	16	Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset	~	~	~			SCHS233
CD74ACT112	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	~		~			SCHS233
CD74ACT138	16	3-to-8 Line Inverting Decoders/Demultiplexers	~	~	~			SCHS234
CD74ACT139	16	Dual 2-to-4 Line Decoders/Demultiplexers	~	~	~			SCHS235
CD74ACT151	16	1-of-8 Data Selectors/Multiplexers	~		~			SCHS236
CD74ACT153	16	Dual 1-of-4 Data Selectors/Multiplexers	~	~	~			SCHS237
CD74ACT157	16	Quad 2-to-4 Line Data Selectors/Multiplexers		~	~			SCHS238
CD74ACT158	16	Quad 2-to-4 Line Data Selectors/Multiplexers			~			SCHS238
CD74ACT161	16	Synchronous 4-Bit Binary Counters	~	~	~			SCHS284
CD74ACT163	16	Synchronous 4-Bit Binary Counters	~	~	~			SCHS284
CD74ACT164	14	8-Bit Serial-In, Parallel-Out Shift Registers	~	~	~			SCHS240
CD74ACT174	16	Hex D-Type Flip-Flops with Clear	~	~	~			SCHS241
CD74ACT175	16	Quad D-Type Flip-Flops with Clear		~	~			SCHS242
CD74ACT238	16	3-to-8 Line Decoders/Demultiplexers		~				SCHS234
CD74ACT240	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~			SCHS244

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins

NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins = 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = 8/14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package)

DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

See Appendix A for package information on CD54/74ACT devices.

ACT

DEVICE	NO. PINS	DESCRIPTION			VAILAE		TOCOD	LITERATURE REFERENCE
CN744 OT040		0.110.4 /0.1 /0.1 /0.1 /0.1	MIL	PDIP	SOIC	SSOP	TSSOP	
SN74ACT240	20	Octal Buffers/Drivers with 3-State Outputs						SCAS515
CD74ACT241	20	Octal Buffers/Drivers with 3-State Outputs	<u> </u>	<u> </u>	V			SCHS287
SN74ACT241	20	Octal Buffers/Drivers with 3-State Outputs				~	<i>'</i>	SCAS516
CD74ACT244	20	Octal Buffers and Line Drivers with 3-State Outputs						SCHS287
SN74ACT244	20	Octal Buffers and Line Drivers with 3-State Outputs						SCAS517
CD74ACT245	20	Octal Bus Transceivers with 3-State Outputs			<u> </u>			SCHS245
SN74ACT245	20	Octal Bus Transceivers with 3-State Outputs	~					SCAS452
CD74ACT253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs	~	~	~			SCHS247
CD74ACT257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	~	~	~			SCHS248
CD74ACT258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs			~			SCHS248
CD74ACT273	20	Octal D-Type Flip-Flops with Clear	~	~	~			SCHS249
CD74ACT280	14	9-Bit Odd/Even Parity Generators/Checkers	~	~	~			SCHS250
CD74ACT283	16	9-Bit Binary Full Adders with Fast Carry	~	~				SCHS251
CD74ACT297	16	Digital Phase-Locked Loops			~			SCHS297
CD74ACT299	20	8-Bit Universal Shift/Storage Registers	~		~			SCHS288
CD74ACT373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~			SCHS289
SN74ACT373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~	V	'	SCAS544
CD74ACT374	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~			SCHS290
SN74ACT374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	~	~	~	~	~	SCAS539
SN74ACT533	20	Octal Inverting Transparent Latches with 3-State Outputs	~	~	~	V	~	SCAS553
SN74ACT534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	~	~	~	~	V	SCAS556
CD74ACT540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	~	~	~			SCHS285
CD74ACT541	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~	~		SCHS285
SN74ACT563	20	Octal Inverting Transparent Latches with 3-State Outputs		~	~	~	~	SCAS550
SN74ACT564	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs		~	~	~	V	SCAS549
CD74ACT573	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~			SCHS291
SN74ACT573	20	Octal Transparent D-Type Latches with 3-State Outputs	~	V	~	V	V	SCAS538
CD74ACT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~			SCHS292
SN74ACT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		V	~	~	·	SCAS537
CD74ACT623	20	Octal Bus Transceivers with 3-State Outputs	~		~			SCHS286
CD74ACT646	24	Octal Registered Bus Transceivers with 3-State Outputs		V	~			SCHS293
CD74ACT652	24	Octal Bus Transceivers and Registers with 3-State Outputs		V	~			SCHS294
SN74ACT1071	14	10-Bit Bus Termination Networks with Bus Hold			~		-	SCAS192
SN74ACT1073	20	16-Bit Bus Termination Networks with Bus Hold			~			SCAS193
SN74ACT1284	20	7-Bit Bus-Interfaces with 3-State Outputs			~			SCAS459
74ACT11000	16	Quad 2-Input NAND Gates		~	~			SCAS002
74ACT11000	20	Hex Inverters		~	~	~		SCAS002 SCAS215
74ACT11004 74ACT11008	16	Quad 2-Input AND Gates		~	~			SCAS013
74ACT11000 74ACT11030	14	8-Input NAND Gates		~	<u> </u>			SCLS050
74ACT11030	16	Quad 2-Input OR Gates		~	~			SCAS008
74ACT11032 74ACT11074	14	Dual D-Type Flip-Flops with Set and Reset		~	~	~		SCAS498
74ACT11074 74ACT11139		Dual 2-to-4 Line Decoders/Demultiplexers		•	<u> </u>			SCAS498 SCAS175
	16 24	·			<u> </u>			SCAS175 SCAS210
74ACT11240		Octal Buffers/Drivers with 3-State Outputs Octal Buffers and Line Drivers with 3-State Outputs		<u> </u>		-	.,	
74ACT11244	24	Octal Buffers and Line Drivers with 3-State Outputs			~			SCAS006

ACT

	NO.			Δ	VAILAE	RII ITV		LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	REFERENCE
74ACT11245	24	Octal Bus Transceivers with 3-State Outputs		~	~	V	V	SCAS031
74ACT11257	20	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		~	~	~		SCAS053
74ACT11286	14	9-Bit Parity Generators/Checkers with Bus-Driver Parity I/O Port		~	~			SCAS069
74ACT11373	24	Octal Transparent D-Type Latches with 3-State Outputs		~	~	~		SCAS015
74ACT11374	24	Octal Transparent D-Type Latches with 3-State Outputs		~	~			SCAS217
74ACT11543	28	Octal Registered Transceivers with 3-State Outputs			~			SCAS136
74ACT11652	28	Octal Bus Transceivers and Registers with 3-State Outputs			~			SCAS087
74ACT16240	48	16-Bit Buffers/Drivers with 3-State Outputs	~			~		SCAS137
74ACT16244	48	16-Bit Buffers/Drivers with 3-State Outputs	~			~	~	SCAS116
74ACT16245	48	16-Bit Bus Transceivers with 3-State Outputs	~			~	~	SCAS097
74ACT16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs	~			~		SCAS122
74ACT16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Output	~			~		SCAS124
74ACT16541	48	16-Bit Buffers/Drivers with 3-State Outputs				~		SCAS208
74ACT16543	56	16-Bit Registered Transceivers with 3-State Outputs				~	~	SCAS126
74ACT16623	48	16-Bit Bus Transceivers with 3-State Outputs				~		SCAS152
74ACT16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				~		SCAS127
74ACT16651	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				~		SCAS449
74ACT16652	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				~		SCAS128
74ACT16657	56	16-Bit Transceivers with Parity Generators/Checkers and 3-State Outputs				~		SCAS164
74ACT16823	56	18-Bit D-Type Flip-Flops with 3-State Outputs				~		SCAS160
74ACT16825	56	18-Bit Buffers/Drivers with 3-State Outputs				~		SCAS155
74ACT16827	56	20-Bit Buffers/Drivers with 3-State Outputs				~		SCAS163
74ACT16841	56	20-Bit Bus Interface D-Type Latches with 3-State Outputs				~		SCAS174
74ACT16861	56	20-Bit Bus Transceivers with 3-State Outputs				~		SCAS197
74ACT16863	56	18-Bit Bus Interface Transceivers with 3-State Outputs				~		SCAS162
74ACT16952	56	16-Bit Registered Transceivers with 3-State Outputs				~		SCAS159

AHC/AHCT

Advanced High-Speed CMOS Logic

The AHC/AHCT logic family provides a natural migration path for HCMOS users who need more speed in low-power, low-noise, and low-drive applications. The AHC logic family consists of basic gates, octals, and 16-bit Widebus™ functions. TI also offers single-gate solutions, designated with 1G in the device name.

Performance characteristics of the AHC family are:

- Speed Typical propagation delays of 5.2 ns (octals), about three times faster than HC devices. AHC devices are the quick and quiet solution at 5-V V_{CC} for higher-speed operation.
- Low noise The AHC family allows designers to combine the low-noise characteristics of HCMOS devices with today's performance levels, without the overshoot and undershoot problems typical of higher-drive devices required to get AHC speeds.
- Low power The AHC family CMOS technology exhibits low power consumption (40-mA max static current, one-half that of HCMOS).
- Drive Output-drive current is ±8 mA at 5-V V_{CC} (AHC/AHCT) and ±4 mA at 3.3-V V_{CC} (AHC only).
- The AHC family offers CMOS inputs and outputs, while the AHCT family offers TTL inputs with CMOS outputs.
- Packaging AHC devices are available in small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), plastic dual in-line package (PDIP), thin shrink small-outline package (TSSOP), thin very small-outline package (TVSOP), and 5-pin small-outline transistor (SOT) package. Selected AHC devices are available in military versions (SN54AHCxx).

Using TI products offers several business advantages:

 Competitive advantage – AHC and competitors' VHC devices have equivalent specifications; therefore, AHC devices are drop-in replacements offering alternate sources. With TI's production capacity, delivery performance, and competitive prices, AHC devices are among the most economical, easy-to-use, and easy-to-get logic products.

AHC

DEVICE	NO. PINS	DESCRIPTION	MIL	PDIP	SOIC	AVAILA SOT	BILITY SSOP	TSSOP	TVSOP	LITERATURE REFERENCE
SN74AHC1G00	5	Single 2-Input NAND Gates	IVIIL	PUIP	3010	V	3301	1330F	17305	SCLS313
SN74AHC1G02		Single-2-Input NOR Gates				~				SCLS342
SN74AHC1G04	5	Single Inverters				~				SCLS318
SN74AHC1GU04	5	Single Inverters				~				SCLS343
SN74AHC1G08	5	Single 2-Input AND Gates				~				SCLS314
SN74AHC1G14	5	Single Schmitt-Trigger Inverters				~				SCLS321
SN74AHC1G32	5	Single 2-Input OR Gates				~				SCLS317
SN74AHC1G86	5	Single 2-Input Exclusive-OR Gates				~				SCLS323
SN74AHC1G125	5	Single Bus Buffers with 3-State Outputs				~				SCLS377
SN74AHC1G126	5	Single Bus Buffers with 3-State Outputs				~				SCLS379
SN74AHC00	14	Quad 2-Input NAND Gates	V	~	~		~	V	V	SCLS227
SN74AHC02	14	Quad 2-Input NOR Gates	~	~	~		V	V	V	SCLS254
SN74AHC04	14	Hex Inverters	~	~	~		V	V	V	SCLS231
SN74AHCU04	14	Hex Unbuffered Inverters	V	~	~		~	V	V	SCLS234
SN74AHC05	14	Hex Inverters with Open-Drain Outputs		~	~		~	~	~	SCLS357
SN74AHC08	14	Quad 2-Input AND Gates	~	~	~		~	V	~	SCLS236
SN74AHC14	14	Hex Schmitt-Trigger Inverters	V	~	~		~	V	~	SCLS238
SN74AHC32	14	Quad 2-Input OR Gates	~	~	~		~	~	~	SCLS247
SN74AHC74	14	Dual D-Type Flip-Flops with Set and Reset	V	~	~		~	~	~	SCLS255
SN74AHC86	14	Quad 2-Input Exclusive-OR Gates	V	~	~		~	~	~	SCLS249
SN74AHC123A	16	Dual Retriggerable Monostable Multivibrators with Reset	V	~	~		~	~	~	SCLS352
SN74AHC125	14	Quad Bus Buffers with 3-State Outputs	~	~	~		~	V	~	SCLS256
SN74AHC126	14	Quad Bus Buffers with 3-State Outputs	~	~	~		~	~	~	SCLS257
SN74AHC132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs		~	~		~	~	~	SCLS365
SN74AHC138	16	3-to-8 Line Inverting Decoders/Demultiplexers	V	~	~		~	~	~	SCLS258
SN74AHC139	16	Dual 2-to-4 Line Decoders/Demultiplexers		~	~		~	~	~	SCLS259
SN74AHC157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	V	~	~		~	~	~	SCLS345
SN74AHC158	16	Quad 2-to-4 Line Data Selectors/Multiplexers		~	~		~	~	~	SCLS346
SN74AHC240	20	Octal Buffers/Drivers with 3-State Outputs	V	~	~		~	~	~	SCLS251
SN74AHC244	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~		~	~	~	SCLS226
SN74AHC245	20	Octal Bus Transceivers with 3-State Outputs	V	~	~		~	~	~	SCLS230
SN74AHC273	20	Octal D-Type Flip-Flops with Clear	V	~	~		~	~	~	SCLS376
SN74AHC367	16	Hex Buffers/Line Drivers with 3-State Outputs	~	~	~		~	~	~	SCLS424
SN74AHC373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~		~	~	~	SCLS235
SN74AHC374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	~	~	~		~	~	~	SCLS240

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins = 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

AHC

DEVICE	NO. PINS	DESCRIPTION	MIL	PDIP	SOIC	VAILA SOT	BILITY SSOP	TSSOP	TVSOP	LITERATURE REFERENCE
SN74AHC540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	V	V	~		~	~	V	SCLS260
SN74AHC541	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~		~	~	~	SCLS261
SN74AHC573	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~		~	~	~	SCLS242
SN74AHC574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~		~	~	~	SCLS244
SN74AHC594	16	8-Bit Shift Registers with Output Registers		~	~		~	~		SCLS423
SN74AHC595	16	8-Bit Shift Registers with 3-State Output Registers		~	~		~	~		SCLS373
SN74AHC16240	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~	SCLS326
SN74AHC16244	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~	SCLS327
SN74AHC16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs					~	~	~	SCLS329
SN74AHC16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs					~	~	~	SCLS330
SN74AHC16540	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~	SCLS331
SN74AHC16541	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~	SCLS332

AHCT

DEVICE	NO.	DESCRIPTION			ı	WAILA	BILITY			LITERATURE
	PINS	DESCRIPTION	MIL	PDIP	SOIC	SOT	SSOP	TSSOP	TVSOP	REFERENCE
SN74AHCT1G00	5	Single 2-Input NAND Gates				~				SCLS316
SN74AHCT1G02	5	Single-2-Input NOR Gates				~				SCLS341
SN74AHCT1G04	5	Single Inverters				~				SCLS319
SN74AHCT1G08	5	Single 2-Input AND Gates				~				SCLS315
SN74AHCT1G14	5	Single Schmitt-Trigger Inverters				~				SCLS322
SN74AHCT1G32	5	Single 2-Input OR Gates				~				SCLS320
SN74AHCT1G86	5	Single 2-Input Exclusive-OR Gates				~				SCLS324
SN74AHCT1G125	5	Single Bus Buffers with 3-State Outputs				~				SCLS378
SN74AHCT1G126	5	Single Bus Buffers with 3-State Outputs				~				SCLS380
SN74AHCT00	14	Quad 2-Input NAND Gates	~	~	~		~	~	~	SCLS229
SN74AHCT02	14	Quad 2-Input NOR Gates	~	~	~		~	~	~	SCLS262
SN74AHCT04	14	Hex Inverters	~	~	~		~	~	~	SCLS232
SN74AHCT08	14	Quad 2-Input AND Gates	~	~	~		~	~	~	SCLS237
SN74AHCT14	14	Hex Schmitt-Trigger Inverters	V	~	~		~	~	~	SCLS246
SN74AHCT32	14	Quad 2-Input OR Gates	~	~	~		~	~	~	SCLS248
SN74AHCT74	14	Dual D-Type Flip-Flops with Set and Reset	~	~	~		~	~	~	SCLS263
SN74AHCT86	14	Quad 2-Input Exclusive-OR Gates	~	~	~		~	~	~	SCLS250
SN74AHCT123A	16	Dual Retriggerable Monostable Multivibrators with Reset	~	~	~		V	V	V	SCLS420
SN74AHCT125	14	Quad Bus Buffers with 3-State Outputs	~	~	~		~	~	~	SCLS264
SN74AHCT126	14	Quad Bus Buffers with 3-State Outputs	~	~	~		V	V	V	SCLS265
SN74AHCT132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs		~	~		~	~	V	SCLS366
SN74AHCT138	16	3-to-8 Line Inverting Decoders/Demultiplexers	~	~	~		~	~	~	SCLS266
SN74AHCT139	16	Dual 2-to-4 Line Decoders/Demultiplexers	~	~	~		~	~	~	SCLS267
SN74AHCT157	16	Quad 2-to-4 Line Data Selectors/Multiplexers		~	~		~	~	~	SCLS347
SN74AHCT158	16	Quad 2-to-4 Line Data Selectors/Multiplexers		~	~		V	V	V	SCLS348
SN74AHCT240	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~		V	V		SCLS252
SN74AHCT244	20	Octal Buffers and Line Drivers with 3-State Outputs	V	~	~		~	~	~	SCLS228
SN74AHCT245	20	Octal Bus Transceivers with 3-State Outputs	V	~	~		~	~	~	SCLS233
SN74AHCT273	20	Octal D-Type Flip-Flops with Clear		~	~		~	~	~	SCLS375
SN74AHCT367	16	Hex Buffers/Line Drivers with 3-State Outputs		V	~		~	~	~	SCLS418
SN74AHCT373	20	Octal Transparent D-Type Latches with 3-State Outputs	V	~	~		~	~		SCLS139
SN74AHCT374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	V	~	~		~	~	~	SCLS241
SN74AHCT540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	V	~	~		~	~	~	SCLS268
SN74AHCT541	20	Octal Buffers and Line Drivers with 3-State Outputs	· /	~	~		~	~		SCLS269
SN74AHCT573	20	Octal Transparent D-Type Latches with 3-State Outputs	· ·	~	~		-	~	~	SCLS243
		the ending the second sections and any								

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins

NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins = 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

AHCT

DEVICE	NO.	DESCRIPTION			Α	VAILA	BILITY			LITERATURE
DEVIOL	PINS	DESCRIPTION	MIL	PDIP	SOIC	SOT	SSOP	TSSOP	TVSOP	REFERENCE
SN74AHCT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~		~	V	V	SCLS245
SN74AHCT594	16	8-Bit Shift Registers with Output Registers		~	~		~	~		SCLS417
SN74AHCT595	16	8-Bit Shift Registers with 3-State Output Registers		~	~		~	~		SCLS374
SN74AHCT16240	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~	SCLS333
SN74AHCT16244	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~	SCLS334
SN74AHCT16245	48	16-Bit Bus Transceivers with 3-State Outputs					~	~	~	SCLS335
SN74AHCT16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs					~	~	~	SCLS336
SN74AHCT16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs					~	V	~	SCLS337
SN74AHCT16540	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~	SCLS338
SN74AHCT16541	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~	SCLS339

ALB

Advanced Low-Voltage BiCMOS Logic

The specially designed 3.3-V ALB family uses $0.6-\mu$ BiCMOS process technology for bus-interface functions. ALB provides 25-mA drive at 3.3 V with maximum propagation delays of 2.2 ns, making it one of Tl's fastest logic families. The inputs have clamping diodes to limit overshoot and undershoot.

The ALB family currently is available in two functions with Widebus[™] and Shrink Widebus[™] footprints, with advanced packaging options such as shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), and thin very small-outline package (TVSOP).

ALB

DEVICE	NO.	DESCRIPTION	AV	'AILABIL	ITY	LITERATURE
DEVICE	PINS	DESCRIFTION	SSOP	TSSOP	TVSOP	REFERENCE
SN74ALB16244	48	16-Bit Buffers/Drivers with 3-State Outputs	~	~	~	SCBS647
SN74ALB16245	48	16-Bit Bus Transceivers with 3-State Outputs	~	~	~	SCBS678

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only)

PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins

= 80 pins PN

PCA, PZ = 100 pins (FB only)
PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package)

DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

ALS

Advanced Low-Power Schottky Logic

The ALS family provides over 140 bipolar logic functions.

This family, combined with the AS family, can be used to optimize systems through performance budgeting. By using AS in speed-critical paths and ALS where speed is less critical, designers can optimize speed and power performance in bipolar designs.

The ALS family includes gates, flip-flops, counters, drivers, transceivers, registered transceivers, readback latches, clock drivers, register files, and multiplexers.

ALS

SN74ALSD0A	DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT	Y SSOP	LITERATURE REFERENCE
SN74ALS03B	SN74ALS00A	14	Quad 2-Input NAND Gates	~	~	~	~	SDAS187
SN74ALS04B	SN74ALS02A	14	Quad 2-Input NOR Gates	~	~	~		SDAS111
SN74ALS05A 14 Hex Inverters with Open-Collector Outputs ✓ ✓ ✓ ✓ ✓ ✓ SDAS191 SN74ALS08 14 Quad 2-Input AND Gates ✓ ✓ ✓ ✓ ✓ ✓ ✓ SDAS084 SN74ALS10A 14 Triple 3-Input AND Gates ✓ ✓ ✓ ✓ SDAS002 SN74ALS20A 14 Dual 4-Input NAND Gates ✓ ✓ ✓ SDAS008 SN74ALS21A 14 Dual 4-Input NAND Gates ✓ ✓ ✓ SDAS085 SN74ALS21A 14 Dual 4-Input NAND Gates ✓ ✓ ✓ SDAS085 SN74ALS21A 14 Dual 4-Input NAND Gates ✓ ✓ ✓ SDAS018 SN74ALS3A 14 Planut NAND Gates ✓ ✓ ✓ SDAS013 SN74ALS3BA 14 Quad 2-Input NAND Gates ✓ ✓ ✓ SDAS013 SN74ALS3BA 14 Haw On-Inverters with Open-Collector Outputs ✓ ✓ SD	SN74ALS03B	14	Quad 2-Input NAND Gates with Open-Collector Outputs	~	~	~		SDAS013
SN74ALS08	SN74ALS04B	14	Hex Inverters	~	~	~	~	SDAS063
SN74AL509 14 Quad 2-Input AND Gates with Open-Collector Outputs V V V SDA5084 SN74AL510A 14 Triple 3-Input AND Gates V V V SDA5002 SN74AL510A 14 Triple 3-Input AND Gates V V V SDA5092 SN74AL520A 14 Dual 4-Input AND Gates V V V SDA5192 SN74AL521A 14 Dual 4-Input NAD Gates V V V SDA5085 SN74AL521A 14 Triple 3-Input NOR Gates V V SDA5112 SN74AL530A 14 8-Input NAND Gates V V SDA5010 SN74AL533A 14 Quad 2-Input NOR Gates V V SDA5033 SN74AL533A 14 Hex Non-Inverters with Open-Collector Outputs V V SDA5031 SN74AL533A 14 Quad 2-Input NAND Gates V V SDA5195 SN74AL53BB 14 Quad 2-Input NAND Gates V V SDA5195 SN74	SN74ALS05A	14	Hex Inverters with Open-Collector Outputs	~	~	~	~	SDAS190
SN74AL510A	SN74ALS08	14	Quad 2-Input AND Gates	~	~	~		SDAS191
SN74ALS11A 14 Triple 3-Input AND Gates ✓ ✓ ✓ SDAS099 SN74ALS20A 14 Dual 4-Input NAND Gates ✓ ✓ ✓ SDAS192 SN74ALS21A 14 Dual 4-Input NAND Gates ✓ ✓ ✓ SDAS085 SN74ALS27A 14 Triple 3-Input NAND Gates ✓ ✓ ✓ SDAS112 SN74ALS30A 14 8-Input NAND Gates ✓ ✓ SDAS010 SN74ALS33A 14 Quad 2-Input NAD Gates ✓ ✓ SDAS034 SN74ALS33A 14 Quad 2-Input NAND Gates ✓ ✓ SDAS011 SN74ALS37A 14 Quad 2-Input NAND Gates ✓ ✓ SDAS1195 SN74ALS37A 14 Quad 2-Input NAND Gates ✓ ✓ SDAS195 SN74ALS38B 14 Quad 2-Input NAND Gates ✓ ✓ SDAS196 SN74ALS38B 14 Quad 2-Input NAND Gates ✓ ✓ SDAS195 SN74ALS38B 16 Dual Positive-Edge-	SN74ALS09	14	Quad 2-Input AND Gates with Open-Collector Outputs	~	~	~		SDAS084
SN74ALS20A	SN74ALS10A	14	Triple 3-Input NAND Gates	V	~	~		SDAS002
SN74ALS21A 14 Dual 4-Input AND Gates V V V SDAS085 SN74ALS27A 14 Triple 3-Input NOR Gates V V V SDAS012 SN74ALS30A 14 8-Input NAND Gates V V V SDAS010 SN74ALS32 14 Quad 2-Input NOR Gates V V V SDAS013 SN74ALS33A 14 Hex Non-Inverters with Open-Collector Outputs V V SDAS013 SN74ALS35A 14 Hex Non-Inverters with Open-Collector Outputs V V SDAS011 SN74ALS37A 14 Quad 2-Input NAND Gates V V SDAS195 SN74ALS38B 14 Quad 2-Input NAND Gates V V SDAS196 SN74ALS366 14 Quad 2-Input Exclusive-OR Gate V V SDAS006 SN74ALS109A 16 Dual Positive-Edge-Triggered J-K Flip-Flops with Set and Reset V V SDAS198 SN74ALS109A 16 Dual Positive-Edge-Triggered J-K Flip-Flops with Set and Reset V V <td>SN74ALS11A</td> <td>14</td> <td>Triple 3-Input AND Gates</td> <td>~</td> <td>~</td> <td>~</td> <td></td> <td>SDAS009</td>	SN74ALS11A	14	Triple 3-Input AND Gates	~	~	~		SDAS009
SN74ALS27A 14 Triple 3-Input NOR Gates V V V SDAS112 SN74ALS30A 14 8-Input NAND Gates V V V V SDAS010 SN74ALS32 14 Quad 2-Input OR Gates V V V SDAS034 SN74ALS33A 14 Quad 2-Input NOR Gates V V V SDAS034 SN74ALS35A 14 Hex Non-Inverters with Open-Collector Outputs V V V SDAS034 SN74ALS37A 14 Quad 2-Input NAND Gates V V V SDAS195 SN74ALS38B 14 Quad 2-Input NAND Gates V V V SDAS196 SN74ALS4A 14 Dual D-Type Flip-Flops with Set and Reset V V V SDAS196 SN74ALS109A 16 Dual Positive-Edge-Triggered J-K Flip-Flops with Set and Reset V V V SDAS198 SN74ALS1333 16 13-Input NAND Gates V V V SDAS202 SN74ALS1334 16	SN74ALS20A	14	Dual 4-Input NAND Gates	~	~	~		SDAS192
SN74ALS30A	SN74ALS21A	14	Dual 4-Input AND Gates	~	~	~		SDAS085
SN74ALS32 14 Quad 2-Input OR Gates V V V V V SDAS113 SN74ALS33A 14 Quad 2-Input NOR Gates V V V SDAS034 SN74ALS35A 14 Hex Non-Inverters with Open-Collector Outputs V V V SDAS195 SN74ALS37A 14 Quad 2-Input NAND Gates V V V SDAS195 SN74ALS38B 14 Quad 2-Input Exclusive-OR Gate V V V SDAS143 SN74ALS66 14 Quad 2-Input Exclusive-OR Gate V V V SDAS006 SN74ALS109A 16 Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset V V SDAS198 SN74ALS112A 16 Dual Negative-Edge-Triggered J-K Flip Flops with Set and Reset V V SDAS198 SN74ALS133a 16 3-Input NAND Gates V V SDAS209 SN74ALS133a 16 3-Input NAND Gates V V V SDAS202 SN74ALS133a 16	SN74ALS27A	14	Triple 3-Input NOR Gates	~	~	~		SDAS112
SN74ALS33A 14 Quad 2-Input NOR Gates V V SDAS034 SN74ALS35A 14 Hex Non-Inverters with Open-Collector Outputs V V SDAS011 SN74ALS37A 14 Quad 2-Input NAND Gates V V V SDAS195 SN74ALS38B 14 Quad 2-Input NAND Gates V V V SDAS196 SN74ALS74A 14 Dual D-Type Flip-Flops with Set and Reset V V V SDAS143 SN74ALS109A 16 Dual Positive-Edge-Triggered J-K Flip-Flops with Set and Reset V V SDAS198 SN74ALS112A 16 Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset V V SDAS198 SN74ALS1133 16 13-Input NAND Gates V V SDAS209 SN74ALS137A 16 3-to-8 Line Inverting Decoders/Demultiplexers with Address Latches V V SDAS203 SN74ALS138A 16 3-to-8 Line Inverting Decoders/Demultiplexers V V SDAS205 SN74ALS1515 16 Dual 2-to-4 Line Decoder	SN74ALS30A	14	8-Input NAND Gates	~	~	~		SDAS010
SN74ALS35A 14 Hex Non-Inverters with Open-Collector Outputs V V SDAS011 SN74ALS37A 14 Quad 2-Input NAND Gates V V V V V SDAS195 SN74ALS38B 14 Quad 2-Input NAND Gates V V V V SDAS196 SN74ALS74A 14 Dual D-Type Flip-Flops with Set and Reset V V V SDAS143 SN74ALS366 14 Quad 2-Input Exclusive-OR Gate V V V SDAS006 SN74ALS109A 16 Dual Positive-Edge-Triggered J-K Flip-Flops with Set and Reset V V V SDAS198 SN74ALS112A 16 Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset V V V SDAS198 SN74ALS1133 16 13-Input NAND Gates V V V SDAS202 SN74ALS137A 16 3-to-8 Line Inverting Decoders/Demultiplexers V V V SDAS203 SN74ALS138A 16 3-to-8 Line Inverting Decoders/Demultiplexers V <	SN74ALS32	14	Quad 2-Input OR Gates	~	~	~		SDAS113
SN74ALS37A 14 Quad 2-Input NAND Gates	SN74ALS33A	14	Quad 2-Input NOR Gates	~	~	~		SDAS034
SN74ALS38B 14 Quad 2-Input NAND Gates V V V V V SDAS196 SN74ALS74A 14 Dual D-Type Flip-Flops with Set and Reset V V V SDAS143 SN74ALS86 14 Quad 2-Input Exclusive-OR Gate V V V SDAS108 SN74ALS109A 16 Dual Positive-Edge-Triggered J-K Flip-Flops with Set and Reset V V V SDAS198 SN74ALS112A 16 Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset V V V SDAS199 SN74ALS133 16 13-Input NAND Gates V V V SDAS202 SN74ALS133A 16 3-to-8 Line Decoders/Demultiplexers with Address Latches V V V SDAS203 SN74ALS138A 16 3-to-8 Line Inverting Decoders/Demultiplexers V V V SDAS205 SN74ALS139 16 Dual 2-to-4 Line Decoders/Demultiplexers V V V SDAS204 SN74ALS153 16 Dual 1-of-4 Data Selectors/Multiplexers V V V SDAS205 SN74ALS156 16 <td>SN74ALS35A</td> <td>14</td> <td>Hex Non-Inverters with Open-Collector Outputs</td> <td></td> <td>~</td> <td>~</td> <td></td> <td>SDAS011</td>	SN74ALS35A	14	Hex Non-Inverters with Open-Collector Outputs		~	~		SDAS011
SN74ALS74A 14 Dual D-Type Flip-Flops with Set and Reset	SN74ALS37A	14	Quad 2-Input NAND Gates	~	~	~		SDAS195
SN74ALS86 14 Quad 2-Input Exclusive-OR Gate	SN74ALS38B	14	Quad 2-Input NAND Gates	~	~	~		SDAS196
SN74ALS109A16Dual Positive-Edge-Triggered J-K Flip Flops with Set and ResetVVSDAS198SN74ALS112A16Dual Negative-Edge-Triggered J-K Flip-Flops with Set and ResetVVSDAS199SN74ALS1331613-Input NAND GatesVVSDAS202SN74ALS137A163-to-8 Line Decoders/Demultiplexers with Address LatchesVVSDAS203SN74ALS138A163-to-8 Line Inverting Decoders/DemultiplexersVVVSDAS203SN74ALS13916Dual 2-to-4 Line Decoders/DemultiplexersVVVSDAS204SN74ALS151161-of-8 Data Selectors/MultiplexersVVVSDAS205SN74ALS15316Dual 1-of-4 Data Selectors/MultiplexersVVVSDAS206SN74ALS15616Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector OutputsVVSDAS099SN74ALS157A16Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS15816Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS161B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVVSDAS055	SN74ALS74A	14	Dual D-Type Flip-Flops with Set and Reset	~	~	~		SDAS143
SN74ALS112A16Dual Negative-Edge-Triggered J-K Flip-Flops with Set and ResetVVSDAS199SN74ALS1331613-Input NAND GatesVVSDAS202SN74ALS137A163-to-8 Line Decoders/Demultiplexers with Address LatchesVVSDAS203SN74ALS138A163-to-8 Line Inverting Decoders/DemultiplexersVVSDAS055SN74ALS13916Dual 2-to-4 Line Decoders/DemultiplexersVVVSDAS204SN74ALS151161-of-8 Data Selectors/MultiplexersVVVSDAS205SN74ALS15316Dual 1-of-4 Data Selectors/MultiplexersVVVSDAS206SN74ALS15616Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector OutputsVVSDAS099SN74ALS157A16Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS15816Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS15816Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS161B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVSDAS159	SN74ALS86	14	Quad 2-Input Exclusive-OR Gate	~	~	~		SDAS006
SN74ALS133 16 13-Input NAND Gates V V V V V SDAS202 SN74ALS137A 16 3-to-8 Line Decoders/Demultiplexers with Address Latches V V V SDAS203 SN74ALS138A 16 3-to-8 Line Inverting Decoders/Demultiplexers V V V SDAS055 SN74ALS139 16 Dual 2-to-4 Line Decoders/Demultiplexers V V V SDAS204 SN74ALS151 16 1-of-8 Data Selectors/Multiplexers V V V SDAS205 SN74ALS153 16 Dual 1-of-4 Data Selectors/Multiplexers V V V SDAS206 SN74ALS156 16 Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector Outputs V V V SDAS099 SN74ALS157A 16 Quad 2-to-4 Line Data Selectors/Multiplexers V V V SDAS081 SN74ALS158 16 Quad 2-to-4 Line Data Selectors/Multiplexers V V V V SDAS081 SN74ALS161B 16 Synchronous 4-Bit Bina	SN74ALS109A	16	Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset	~	~	~		SDAS198
SN74ALS137A163-to-8 Line Decoders/Demultiplexers with Address LatchesVVSDAS203SN74ALS138A163-to-8 Line Inverting Decoders/DemultiplexersVVVSDAS055SN74ALS13916Dual 2-to-4 Line Decoders/DemultiplexersVVVSDAS204SN74ALS151161-of-8 Data Selectors/MultiplexersVVVSDAS205SN74ALS15316Dual 1-of-4 Data Selectors/MultiplexersVVVSDAS206SN74ALS15616Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector OutputsVVSDAS099SN74ALS157A16Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS15816Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS161B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS163B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVVSDAS059	SN74ALS112A	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	~	~	~		SDAS199
SN74ALS138A163-to-8 Line Inverting Decoders/DemultiplexersVVVSDAS055SN74ALS13916Dual 2-to-4 Line Decoders/DemultiplexersVVVSDAS204SN74ALS151161-of-8 Data Selectors/MultiplexersVVVSDAS205SN74ALS15316Dual 1-of-4 Data Selectors/MultiplexersVVVSDAS206SN74ALS15616Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector OutputsVVSDAS099SN74ALS157A16Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS15816Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS161B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS163B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVVSDAS059	SN74ALS133	16	13-Input NAND Gates	~	~	~		SDAS202
SN74ALS13916Dual 2-to-4 Line Decoders/DemultiplexersVVVSDAS204SN74ALS151161-of-8 Data Selectors/MultiplexersVVVSDAS205SN74ALS15316Dual 1-of-4 Data Selectors/MultiplexersVVVSDAS206SN74ALS15616Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector OutputsVVSDAS099SN74ALS157A16Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS15816Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS161B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS163B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVVSDAS159	SN74ALS137A	16	3-to-8 Line Decoders/Demultiplexers with Address Latches	~	~	~		SDAS203
SN74ALS151161-of-8 Data Selectors/MultiplexersVVVSDAS205SN74ALS15316Dual 1-of-4 Data Selectors/MultiplexersVVVSDAS206SN74ALS15616Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector OutputsVVSDAS099SN74ALS157A16Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS15816Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS161B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS163B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVVSDAS159	SN74ALS138A	16	3-to-8 Line Inverting Decoders/Demultiplexers	~	~	~		SDAS055
SN74ALS153 16 Dual 1-of-4 Data Selectors/Multiplexers	SN74ALS139	16	Dual 2-to-4 Line Decoders/Demultiplexers	~	~	~		SDAS204
SN74ALS15616Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector OutputsVVSDAS099SN74ALS157A16Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS15816Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS161B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS163B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVSDAS159	SN74ALS151	16	1-of-8 Data Selectors/Multiplexers	~	~	~		SDAS205
SN74ALS157A16Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS15816Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS161B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS163B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVSDAS159	SN74ALS153	16	Dual 1-of-4 Data Selectors/Multiplexers	~	~	~		SDAS206
SN74ALS15816Quad 2-to-4 Line Data Selectors/MultiplexersVVVSDAS081SN74ALS161B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS163B16Synchronous 4-Bit Binary CountersVVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVVSDAS159	SN74ALS156	16	Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector Outputs		~	~		SDAS099
SN74ALS161B16Synchronous 4-Bit Binary CountersVVVSDAS024SN74ALS163B16Synchronous 4-Bit Binary CountersVVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVVSDAS159	SN74ALS157A	16	Quad 2-to-4 Line Data Selectors/Multiplexers	~	~	~		SDAS081
SN74ALS163B16Synchronous 4-Bit Binary CountersVVVVSDAS024SN74ALS164A148-Bit Serial-In, Parallel-Out Shift RegistersVVVSDAS159	SN74ALS158	16	Quad 2-to-4 Line Data Selectors/Multiplexers	~	~	~		SDAS081
SN74ALS164A 14 8-Bit Serial-In, Parallel-Out Shift Registers SDAS159	SN74ALS161B	16	Synchronous 4-Bit Binary Counters	~	~	~		SDAS024
	SN74ALS163B	16	Synchronous 4-Bit Binary Counters	~	~	~	~	SDAS024
	SN74ALS164A	14	8-Bit Serial-In, Parallel-Out Shift Registers		~	~		SDAS159
on medical in out of the registers	SN74ALS165	16	8-Bit Parallel-In, Serial-Out Shift Registers	~	~	~		SDAS157

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins = 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

ALS

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT	Y SSOP	LITERATURE REFERENCE
SN74ALS166	16	8-Bit Parallel-Load Shift Registers		~	~	~	SDAS156
SN74ALS169B	16	Synchronous 4-Bit Up/Down Binary Counters		~	~		SDAS125
SN74ALS174	16	Hex D-Type Flip-Flops with Clear	~	~	~		SDAS207
SN74ALS175	16	Quad D-Type Flip-Flops with Clear	~	~	~		SDAS207
SN74ALS191A	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	~	~	~		SDAS210
SN54ALS193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	~				Call
SN74ALS193A	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	~	~	~		SDAS211
SN74ALS240A	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~		SDAS214
SN74ALS240A-1	20	Octal Buffers/Drivers with 3-State Outputs		~	~		SDAS214
SN74ALS241C	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~		SDAS153
SN74ALS243A	14	Quad Bus-Transceivers with 3-State Outputs	~	~	~		SDAS069
SN74ALS244C	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~	~	SDAS142
SN74ALS244C-1	20	Octal Buffers and Line Drivers with 3-State Outputs		~	~		SDAS142
SN74ALS245A	20	Octal Bus Transceivers with 3-State Outputs	~	~	~	~	SDAS272
SN74ALS245A-1	20	Octal Bus Transceivers with 3-State Outputs		~	~		SDAS272
SN74ALS251	16	1-of-8 Data Selectors/Multiplexers with 3-State Outputs	~	~	~		SDAS215
SN74ALS253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs	~	~	~		SDAS216
SN74ALS257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	~				SDAS124
SN74ALS257A	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		~	~		SDAS124
SN74ALS258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	~				SDAS124
SN74ALS258A	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		~	~		SDAS124
SN74ALS259	16	8-Bit Addressable Latches	~	~	~		SDAS217
SN74ALS273	20	Octal D-Type Flip-Flops with Clear	~	~	~		SDAS218
SN74ALS280	14	9-Bit Odd/Even Parity Generators/Checkers		~	~		SDAS038
SN74ALS299	20	8-Bit Universal Shift/Storage Registers	~	~	~		SDAS220
SN74ALS323	20	8-Bit Universal Shift/Storage Registers	~	~	~		SDAS267
SN74ALS373	20	Octal Transparent D-Type Latches with 3-State Outputs	~				SDAS083
SN74ALS373A	20	Octal Transparent D-Type Latches with 3-State Outputs	,	~	~	~	SDAS083
SN74ALS374A	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	~	~	~	~	SDAS167
SN74ALS518	20	8-Bit Identity Comparators (P = Q) with Open-Collector Outputs and Input Pullup Resistors		~	~		SDAS224
SN74ALS520	20	8-Bit Identity Comparators (P = Q) with Input Pullup Resistors	~	~	~		SDAS224
SN74ALS521	20	8-Bit Identity Comparators (P = Q)		~	~		SDAS224
SN74ALS533A	20	Octal Inverting Transparent Latches with 3-State Outputs		~	~		SDAS270
SN74ALS534A	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	~	~	~		SDAS168
SN74ALS540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs		~	~		SDAS025
SN74ALS540-1	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs		~	~		SDAS025
SN74ALS541	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~	~	SDAS025
SN74ALS541-1	20	Octal Buffers and Line Drivers with 3-State Outputs		~	~		SDAS025
SN74ALS561A	20	Octal Bus Transceivers and Registers with 3-State Outputs	~	~	~		SDAS225
SN74ALS563B	20	Octal Inverting Transparent Latches with 3-State Outputs	~	~	~		SDAS163
SN74ALS564B	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	~	~	~		SDAS164
SN74ALS569A	20	Synchronous 4-Bit Binary Counter with 3-State Outputs	~	~	~		SDAS229
SN74ALS573C	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~	~	SDAS048
SN74ALS574B	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~		SDAS165

ALS

SNYALSSTÄR 24 Octal Edge-Triggered D-Type File-Floes with 3-State Outputs v v v SDASSTÄR SNYALSSTÄR 20 Octal Edge-Triggered D-Type File-Floes with 3-State Outputs v v v v v v v v SDASSTÄR SNYALSSTÄR 20 Octal D-Type Transparent Latches with 3-State Outputs v v v v SDASSTÄR SNYALSSTÄR 20 Octal D-Type Transparent Latches with 3-State Outputs v v v SDASSZÄR SNYALSSTÄR 20 Octal Bus Transcolvers with 3-State Outputs v v SDASSZÄR SNYALSSTÄR 20 Octal Bus Transcolvers with 3-State Outputs v v SDASSZÄR SNYALSSÄR 20 Octal Bus Transcolvers with 3-State Outputs v v SDASSZÄR SNYALSSÄR 20 Octal Bus Transcolvers with 3-State Outputs v v SDASSZÄR SNYALSSÄR 20 Octal Bus Transcolvers with 3-State Outputs v v v SDASSZÄR SNYALSSÄR 20	DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT SOIC	LITERATURE REFERENCE
SN74ALSS77A 24 Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs ✓ ✓ SDAS06S SN74ALSS6BBB 20 Cotal D-Type Transparent Latches with 3-State Outputs ✓ ✓ SDAS277 SN74ALSS6DBA 20 Octal Bus Transceivers with Spatial Outputs ✓ ✓ SDAS226 SN74ALSS61A 20 Octal Bus Transceivers with Spatial Outputs ✓ ✓ SDAS226 SN74ALSS61A 20 Octal Bus Transceivers with 3-State Outputs ✓ ✓ SDAS226 SN74ALSS63BA 20 Octal Bus Transceivers with 3-State Outputs ✓ ✓ SDAS212 SN74ALSS63BA 20 Octal Bus Transceivers with 3-State Outputs ✓ ✓ SDAS123 SN74ALSS64BB 20 Octal Bus Transceivers with 3-State Outputs ✓ ✓ SDAS122 SN74ALSS64BB 20 Octal Bus Transceivers with 3-State Outputs ✓ ✓ SDAS122 SN74ALSS64BB 20 Octal Bus Transceivers with Open-Collector Outputs ✓ ✓ SDAS303 SN74ALSS64BB 20 Octal Bus Tr	SN74ALS575A	24	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	~	SDAS165
SN74ALSS80BB 20 Octal D-Type Transparent Latches with 3 State Outputs V V SDAS275 SN74ALSS20DA 20 Octal Bus Transcebers with Open-Collector Outputs V V SDAS276 SN74ALSS21A 20 Octal Bus Transcebers with Open-Collector Outputs V V SDAS276 SN74ALSS21A 20 Octal Bus Transcebers with Open-Collector Outputs V V SDAS226 SN74ALSS3BA 20 Octal Bus Transcebers with 3 State Outputs V V SDAS123 SN74ALSS3BA 20 Octal Bus Transcebers with 3 State Outputs V V SDAS123 SN74ALSS3BA 20 Octal Bus Transcebers with 3 State Outputs V V SDAS123 SN74ALSS6BBA 20 Octal Bus Transcebers with 3 State Outputs V V SDAS123 SN74ALSS6BBA 20 Octal Bus Transcebers with 3 State Outputs V V SDAS302 SN74ALSS6BBA 20 Octal Bus Transcebers with 3 State Outputs V V SDAS303 SN74ALSS6BBA 20 Octal Bus Transcebers with	SN74ALS576B	20		V	~	~	SDAS065
SN74ALS620A 20 Octal Bus Transceivers with 3 State Outputs V V SDAS226 SN74ALS621A 20 Octal Bus Transceivers with Open-Collector Outputs V V SDAS226 SN74ALS621A 20 Octal Bus Transceivers with Open-Collector Outputs V V SDAS226 SN74ALS623A 20 Octal Bus Transceivers with 3-State Outputs V V SDAS226 SN74ALS63BA 20 Octal Bus Transceivers with 3-State Outputs V V SDAS123 SN74ALS63BA 20 Octal Bus Transceivers with 3-State Outputs V V SDAS123 SN74ALS64BA 20 Octal Bus Transceivers with 3-State Outputs V V SDAS122 SN74ALS64BA 20 Octal Bus Transceivers with 3-State Outputs V V SDAS300 SN74ALS64BA 20 Octal Bus Transceivers with Open-Collector Outputs V V SDAS300 SN74ALS64BA 20 Octal Bus Transceivers with Open-Collector Outputs V V SDAS300 SN74ALS64BA 20 Octal Bus Transceivers wit	SN74ALS577A	24	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	~	SDAS065
SNT4ALS621A 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5226 SNT4ALS623A 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5226 SNT4ALS63BA 20 Octal Bus Transceivers with 3-State Outputs V V SDA5273 SNT4ALS63BA 20 Octal Bus Transceivers with 3-State Outputs V V SDA5123 SNT4ALS63BA 20 Octal Bus Transceivers with 3-State Outputs V V SDA5123 SNT4ALS63BA 20 Octal Bus Transceivers with 3-State Outputs V V SDA5123 SNT4ALS64BA 20 Octal Bus Transceivers with 3-State Outputs V V SDA5122 SNT4ALS64BA 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5303 SNT4ALS64BA 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5303 SNT4ALS64BA 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5303 SNT4ALS64BA 20 Octal Bus Transceiv	SN74ALS580B	20	Octal D-Type Transparent Latches with 3-State Outputs	~	~	~	SDAS277
SN74ALS627A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5226 SN74ALS623A-2 20 Octal Bus Transceivers with S-State Outputs V V SDA5226 SN74ALS63BA-2 20 Octal Bus Transceivers with S-State Outputs V V SDA5123 SN74ALS63BA-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5123 SN74ALS640B-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5122 SN74ALS640B-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5122 SN74ALS640B-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5302 SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS641A-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5303 SN74ALS641A-1 20 Octal Bus T	SN74ALS620A	20	Octal Bus Transceivers with 3-State Outputs		~	~	SDAS226
SN74ALS623A 20 Octal Bus Transceivers with 3-State Outputs V V SDA5226 SN74ALS63BA 20 Octal Bus Transceivers with 3-State Outputs V V SDA5123 SN74ALS63BA 20 Octal Bus Transceivers with 3-State Outputs V V SDA5123 SN74ALS63BA 20 Octal Bus Transceivers with 3-State Outputs V V C SDA5122 SN74ALS64BB 20 Octal Bus Transceivers with 3-State Outputs V V C SDA5122 SN74ALS64BB 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5303 SN74ALS64DA 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS64DA 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS64DA 20 Octal Bus Transceivers with Open-Collector Outputs V V V SDA5303 SN74ALS64DA 20 Octal Bus Transceivers with 3-State Outputs V V V SDA5202 <td< td=""><td>SN74ALS621A</td><td>20</td><td>Octal Bus Transceivers with Open-Collector Outputs</td><td></td><td>~</td><td>~</td><td>SDAS226</td></td<>	SN74ALS621A	20	Octal Bus Transceivers with Open-Collector Outputs		~	~	SDAS226
SN74ALS638A 20 Cotal Bus Transceivers with 3-State Outputs V V SDA5123 SN74ALS638A-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5123 SN74ALS639A 20 Octal Bus Transceivers with 3-State Outputs V V SDA5122 SN74ALS640B-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5122 SN74ALS640B-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS642A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5208 SN74ALS643A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5208 SN74ALS643A-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5227 SN74ALS643A-1 20 O	SN74ALS621A-1	20	Octal Bus Transceivers with Open-Collector Outputs		~	~	SDAS226
SN74ALS63BA-1 20 Cotal Bus Transceivers with 3-State Outputs V V SDA5123 SN74ALS639A 20 Octal Bus Transceivers with 3-State Outputs V V SDA5123 SN74ALS640B 20 Octal Bus Transceivers with 3-State Outputs V V SDA5122 SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS642A 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS645A-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5300 SN74ALS646A-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5300 SN74ALS64B-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5208 SN74ALS64B-1 24 Octal Bus Tr	SN74ALS623A	20	Octal Bus Transceivers with 3-State Outputs		~	~	SDAS226
SNYALS639A 20 Odal Bus Transceivers with 3-State Outputs V V V SDAS122 SNYALS640BB- 20 Odal Bus Transceivers with 3-State Outputs V V V SDAS122 SNYALS640B-1 20 Odal Bus Transceivers with 3-State Outputs V V SDAS303 SNYALS641A-1 20 Odal Bus Transceivers with Open-Collector Outputs V V SDAS303 SNYALS641A-1 20 Odal Bus Transceivers with Open-Collector Outputs V V SDAS303 SNYALS642A-1 20 Odal Bus Transceivers with Open-Collector Outputs V V SDAS303 SNYALS642A-1 20 Odal Bus Transceivers with Open-Collector Outputs V V SDAS303 SNYALS643A-1 20 Odal Bus Transceivers with 3-State Outputs V V SDAS303 SNYALS643A-1 20 Odal Bus Transceivers with 3-State Outputs V V V SDAS303 SNYALS643A-1 24 Odal Bus Transceivers with 5-State Outputs V V V SDAS303 S	SN74ALS638A	20	Octal Bus Transceivers with 3-State Outputs		~	~	SDAS123
SN74ALS6408 20 Octal Bus Transceivers with 3-State Outputs V V V SDA5122 SN74ALS6401A 20 Octal Bus Transceivers with 3-State Outputs V V C SDA5303 SN74ALS641A 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS642A 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS642A 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS645A 20 Octal Bus Transceivers with 3-State Outputs V V C SDA5309 SN74ALS645A 20 Octal Bus Transceivers with 3-State Outputs V V C SDA5278 SN74ALS645A 20 Octal Bus Transceivers with 3-State Outputs V V C SDA5306 SN74ALS645A 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDA5066 SN74ALS645 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V </td <td>SN74ALS638A-1</td> <td>20</td> <td>Octal Bus Transceivers with 3-State Outputs</td> <td></td> <td>~</td> <td>~</td> <td>SDAS123</td>	SN74ALS638A-1	20	Octal Bus Transceivers with 3-State Outputs		~	~	SDAS123
SN74ALS640B-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5303 SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5303 SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS642A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDA5300 SN74ALS642A-1 20 Octal Bus Transceivers with 3-State Outputs V V V SDA5278 SN74ALS645A-1 20 Octal Bus Transceivers with 3-State Outputs V V DSA5278 SN74ALS645A-1 20 Octal Bus Transceivers with 3-State Outputs V V SDA5278 SN74ALS645A-1 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDA5278 SN74ALS664A-2 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDA52626 SN74ALS664-1 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V	SN74ALS639A	20	Octal Bus Transceivers with 3-State Outputs		~	~	SDAS123
SN74ALS641A 20 Octal Bus Transceivers with Open-Collector Outputs V V SDAS300 SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDAS300 SN74ALS642A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDAS300 SN74ALS642A-1 20 Octal Bus Transceivers with 3-State Outputs V V SDAS203 SN74ALS645A 20 Octal Bus Transceivers with 3-State Outputs V V V SDAS278 SN74ALS645A 20 Octal Bus Transceivers with 3-State Outputs V V V SDAS278 SN74ALS645A 24 Octal Bus Transceivers with 3-State Outputs V V V SDAS065 SN74ALS663 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS066 SN74ALS663 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS227 SN74ALS6667 24 B-BILD Type Transparent Read-Back Latches with 3-State Outputs V <td< td=""><td>SN74ALS640B</td><td>20</td><td>Octal Bus Transceivers with 3-State Outputs</td><td>~</td><td>~</td><td>~</td><td>SDAS122</td></td<>	SN74ALS640B	20	Octal Bus Transceivers with 3-State Outputs	~	~	~	SDAS122
SN74ALS641A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDAS300 SN74ALS642A 20 Octal Bus Transceivers with Open-Collector Outputs V V SDAS300 SN74ALS642A-1 20 Octal Bus Transceivers with Open-Collector Outputs V V SDAS278 SN74ALS645A-2 20 Octal Bus Transceivers with 3-State Outputs V V SDAS278 SN74ALS645A-1 20 Octal Bus Transceivers with 3-State Outputs V V SDAS278 SN74ALS648A-1 20 Octal Bus Transceivers with 3-State Outputs V V SDAS278 SN74ALS653-3 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS266 SN74ALS654-3 24 Octal Bus Transparent Read-Back Latches with 3-State Outputs V V SDAS227 SN74ALS666-0 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS228 SN74ALS676-0 20 12-Bit Address Comparators V V V SDAS228	SN74ALS640B-1	20	Octal Bus Transceivers with 3-State Outputs		~	~	SDAS122
SN74ALS642A 20 Octal Bus Transceivers with Open-Collector Outputs v v SDAS300 SN74ALS642A-1 20 Octal Bus Transceivers with Open-Collector Outputs v v v SDAS303 SN74ALS645A-1 20 Octal Bus Transceivers with 3-State Outputs v v v v sDAS278 SN74ALS645A-1 20 Octal Bus Transceivers with 3-State Outputs v v v v SDAS303 SN74ALS645A-1 21 Octal Bus Transceivers with 3-State Outputs v v v SDAS0303 SN74ALS653-1 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs v v SDAS066 SN74ALS665-1 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs v v SDAS0227 SN74ALS666-1 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs v v v v D SDAS0227 SN74ALS667-2-2 12-Bit Address Comparators v v v v SDAS023 SN74AL	SN74ALS641A	20	Octal Bus Transceivers with Open-Collector Outputs		~	~	SDAS300
SN74ALS642A-1 20 Octal Bus Transceivers with Open-Collector Outputs v v v sDAS308 SN74ALS645A-1 20 Octal Bus Transceivers with 3-State Outputs v v v v sDAS278 SN74ALS64BA-1 20 Octal Bus Transceivers with 3-State Outputs v v v v sDAS203 SN74ALS64BA-1 20 Octal Bus Transceivers with 3-State Outputs v v v sDAS036 SN74ALS65BA-1 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs v v sDAS036 SN74ALS65B-1 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs v v SDAS066 SN74ALS66B-1 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs v v v SDAS022 SN74ALS66B-1 20 12-Bit Address Comparators v v v v v DSDAS023 SN74ALS68B-1 20 12-Bit Address Comparators v v v v DSDAS023	SN74ALS641A-1	20	Octal Bus Transceivers with Open-Collector Outputs		~	~	SDAS300
SN74ALS645A 20 Octal Bus Transceivers with 3-State Outputs V V V SDAS278 SN74ALS645A-1 20 Octal Registered Bus Transceivers with 3-State Outputs V V V SDAS278 SN74ALS645A-2 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V V SDAS069 SN74ALS65A-3 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS066 SN74ALS66A-3 24 Bill D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS027 SN74ALS66A-3 24 Bill D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS0227 SN74ALS66A-3 20 12-Bit Address Comparators V V V SDAS0227 SN74ALS66B-3 20 12-Bit Address Comparators V V V SDAS0228 SN74ALS66B-3 20 12-Bit Address Comparators V V V SDAS0232 SN74ALS66B-3 20 12-Bit Address Comparators V	SN74ALS642A	20	Octal Bus Transceivers with Open-Collector Outputs		~	~	SDAS300
SN74ALS645A-1 20 Octal Bus Transceivers with 3-State Outputs V V SDAS278 SN74ALS648A 24 Octal Registered Bus Transceivers with 3-State Outputs V V CDAS039 SN74ALS653 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS066 SN74ALS664 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS066 SN74ALS666 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS227 SN74ALS667 20 12-Bit Address Comparators Description And State Outputs V V SDAS227 SN74ALS680 20 8-Bit Magnitude Comparators V V SDAS032 SN74ALS680 20 0-Ctal Buffers and Line Drivers with Open-Collector Outputs V V V SDAS022 SN74ALS8040 20 Octal Buffers and Line Drivers with Open-Collector Outputs V V V SDAS032 SN74ALS8040 20 Hex 2-Input NOR Drivers V V	SN74ALS642A-1	20	Octal Bus Transceivers with Open-Collector Outputs		~	~	SDAS300
SN74ALS648A 24 Octal Registered Bus Transceivers with 3-State Outputs V V V SDAS039 SN74ALS653 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS066 SN74ALS654 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS027 SN74ALS666 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS227 SN74ALS667 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS022 SN74ALS679 20 12-Bit Address Comparators V V SDAS023 SN74ALS680 20 8-Bit Magnitude Comparators V V SDAS022 SN74ALS760 20 Octal Buffers and Line Drivers with Input Pullup Resistors and 3-State Outputs V V SDAS023 SN74ALS760 20 Octal Buffers and Line Drivers with Open-Collector Outputs V V V SDAS022 SN74ALS8040 20 Hex 2-Input NoR Drivers V V V </td <td>SN74ALS645A</td> <td>20</td> <td>Octal Bus Transceivers with 3-State Outputs</td> <td>~</td> <td>~</td> <td>~</td> <td>SDAS278</td>	SN74ALS645A	20	Octal Bus Transceivers with 3-State Outputs	~	~	~	SDAS278
SN74ALS653 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS066 SN74ALS654 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS066 SN74ALS666 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS227 SN74ALS667 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS023 SN74ALS679 20 12-Bit Address Comparators V V V SDAS023 SN74ALS688 20 8-Bit Magnitude Comparators V V V SDAS023 SN74ALS760 20 Octal Buffers and Line Drivers with Open-Collector Outputs V V V SDAS022 SN74ALS760 20 Octal Buffers and Line Drivers with Open-Collector Outputs V V V SDAS022 SN74ALS8040 20 Hex 2-Input NOR Drivers with Open-Collector Outputs V V V SDAS022 SN74ALS8041 20 Hex 2-Input NOR Drivers with Open-Collector Outp	SN74ALS645A-1	20	Octal Bus Transceivers with 3-State Outputs		~	~	SDAS278
SN74ALS654 24 Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs V V SDAS066 SN74ALS666 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS227 SN74ALS667 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS022 SN74ALS679 20 12-Bit Address Comparators V V V SDAS033 SN74ALS688 20 8-Bit Magnitude Comparators V V V SDAS022 SN74ALS760 20 Octal Buffers and Line Drivers with Open-Collector Outputs V V SDAS022 SN74ALS8040 20 Hex 2-Input NAND Drivers V V V SDAS022 SN74ALS805A 20 Hex 2-Input NAND Drivers V V V SDAS023 SN74ALS805A 20 Hex 2-Input OR Drivers V V V SDAS023 SN74ALS8123 24 10-Bit Bus-Interface D-Type Latches with 3-State Outputs V V SDAS033 SN74A	SN74ALS648A	24	Octal Registered Bus Transceivers with 3-State Outputs	~	~	~	SDAS039
SN74ALS666 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS227 SN74ALS667 24 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS227 SN74ALS679 20 12-Bit Address Comparators V V V SDAS033 SN74ALS688 20 8-Bit Magnitude Comparators V V V SDAS0228 SN74ALS760 20 Octal Buffers and Line Drivers with Open-Collector Outputs V V V SDAS052 SN74ALS8040 20 Hex 2-Input NAND Drivers V V V V SDAS022 SN74ALS805A 20 Hex 2-Input NAND Drivers V V V V SDAS023 SN74ALS805A 20 Hex 2-Input NARD Drivers V V V V V SDAS023 SN74ALS805A 20 Hex 2-Input NARD Drivers V V V V DAS023 SN74ALS805A 20 Hex 2-Input NARD Drivers M V <	SN74ALS653	24	Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs		~	~	SDAS066
SN74ALS667 24 8-BIL D-Type Transparent Read-Back Latches with 3-State Outputs ✓ ✓ SDAS227 SN74ALS679 20 12-Bit Address Comparators ✓ ✓ ✓ SDAS030 SN74ALS688 20 8-Bit Magnitude Comparators ✓ ✓ ✓ SDAS022 SN74ALS746 20 Octal Buffers and Line Drivers with Open-Collector Outputs ✓ ✓ SDAS032 SN74ALS804A 20 Hex 2-Input NAND Drivers ✓ ✓ ✓ SDAS022 SN74ALS805A 20 Hex 2-Input NOR Drivers ✓ ✓ ✓ SDAS023 SN74ALS832A 20 Hex 2-Input OR Drivers ✓ ✓ ✓ SDAS033 SN74ALS841 24 10-Bit Bus-Interface D-Type Latches with 3-State Outputs ✓ ✓ SDAS039 SN74ALS843 24 9-Bit Bus-Interface D-Type Latches with 3-State Outputs ✓ ✓ SDAS233 SN74ALS845 24 8-Bit Bus-Interface D-Type Latches with 3-State Outputs ✓ ✓ SDAS131 SN74ALS867A 24	SN74ALS654	24	Octal Bus Transceivers and Registers with Open-Collector and 3-State Outputs		~	~	SDAS066
SN74ALS679 20 12-Bit Address Comparators V V V SDAS003 SN74ALS688 20 8-Bit Magnitude Comparators V V V V SDAS228 SN74ALS746 20 Octal Buffers and Line Drivers with Input Pullup Resistors and 3-State Outputs V V SDAS052 SN74ALS804A 20 Hex 2-Input NAND Drivers V V V SDAS022 SN74ALS805A 20 Hex 2-Input NAND Drivers V V V SDAS023 SN74ALS805A 20 Hex 2-Input OR Drivers V V V SDAS033 SN74ALS832A 20 Hex 2-Input OR Drivers V V V SDAS033 SN74ALS841 24 10-Bit Bus-Interface D-Type Latches with 3-State Outputs V V V SDAS033 SN74ALS845 24 8-Bit Bus-Interface D-Type Latches with 3-State Outputs V V SDAS133 SN74ALS867A 24 Bex 2-to-1 Universal Multiplexers with 3-State Outputs V V SDAS115 <t< td=""><td>SN74ALS666</td><td>24</td><td>8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs</td><td></td><td>~</td><td>~</td><td>SDAS227</td></t<>	SN74ALS666	24	8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs		~	~	SDAS227
SN74ALS688 20 8-Bit Magnitude Comparators V V V V V SDAS228 SN74ALS746 20 Octal Buffers and Line Drivers with Input Pullup Resistors and 3-State Outputs V V V SDAS022 SN74ALS760 20 Octal Buffers and Line Drivers with Open-Collector Outputs V V V SDAS022 SN74ALS804A 20 Hex 2-Input NAND Drivers V V V SDAS023 SN74ALS805A 20 Hex 2-Input OR Drivers V V V SDAS023 SN74ALS832A 20 Hex 2-Input OR Drivers V V V SDAS017 SN74ALS841 24 10-Bit Bus-Interface D-Type Latches with 3-State Outputs V V V SDAS032 SN74ALS843 24 9-Bit Bus-Interface D-Type Latches with 3-State Outputs V V SDAS232 SN74ALS845 24 8-Bit Up/Down Counters V V V SDAS170 SN74ALS867A 24 Synchronous 8-Bit Up/Down Counters V V	SN74ALS667	24	8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs		~	~	SDAS227
SN74ALS746 20 Octal Buffers and Line Drivers with Input Pullup Resistors and 3-State Outputs V V SDAS052 SN74ALS760 20 Octal Buffers and Line Drivers with Open-Collector Outputs V V V SDAS141 SN74ALS804A 20 Hex 2-Input NAND Drivers V V V V SDAS023 SN74ALS805A 20 Hex 2-Input NOR Drivers V V V V SDAS033 SN74ALS832A 20 Hex 2-Input NOR Drivers V V V SDAS017 SN74ALS841 24 10-Bit Bus-Interface D-Type Latches with 3-State Outputs V V V SDAS039 SN74ALS845 24 8-Bit Bus-Interface D-Type Latches with 3-State Outputs V V V SDAS132 SN74ALS845 24 Bernterface D-Type Latches with 3-State Outputs V V V SDAS170 SN74ALS867A 24 Synchronous 8-Bit Up/Down Counters V V V SDAS115 SN74ALS870 24 Dual 16-by-4 Register Files V	SN74ALS679	20	12-Bit Address Comparators		~	~	SDAS003
SN74ALS760 20 Octal Buffers and Line Drivers with Open-Collector Outputs V V SDAS141 SN74ALS804A 20 Hex 2-Input NAND Drivers V V V SDAS022 SN74ALS805A 20 Hex 2-Input NOR Drivers V V V V SDAS023 SN74ALS832A 20 Hex 2-Input OR Drivers V V V SDAS017 SN74ALS841 24 10-Bit Bus-Interface D-Type Latches with 3-State Outputs V V SDAS029 SN74ALS843 24 9-Bit Bus-Interface D-Type Latches with 3-State Outputs V V SDAS232 SN74ALS845 24 8-Bit Bus-Interface D-Type Latches with 3-State Outputs V V SDAS133 SN74ALS8767 24 Hex 2-to-1 Universal Multiplexers with 3-State Outputs V V SDAS170 SN74ALS869 24 Synchronous 8-Bit Up/Down Counters V V SDAS135 SN74ALS870 24 Dual 16-by-4 Register Files V V SDAS045 SN74ALS876A 24 Dual 4	SN74ALS688	20	8-Bit Magnitude Comparators	~	~	~	SDAS228
SN74ALS804A 20 Hex 2-Input NAND Drivers V V V V V SDAS023 SN74ALS805A 20 Hex 2-Input NOR Drivers V V V V V V SDAS013 SN74ALS832A 20 Hex 2-Input OR Drivers V V V V SDAS017 SN74ALS841 24 10-Bit Bus-Interface D-Type Latches with 3-State Outputs V V V SDAS028 SN74ALS843 24 9-Bit Bus-Interface D-Type Latches with 3-State Outputs V V V SDAS232 SN74ALS845 24 8-Bit Bus-Interface D-Type Latches with 3-State Outputs V V V SDAS170 SN74ALS876 24 Hex 2-to-1 Universal Multiplexers with 3-State Outputs V V V SDAS170 SN74ALS867A 24 Synchronous 8-Bit Up/Down Counters V V V SDAS115 SN74ALS879 24 Dual 1-6-by-4 Register Files V V V SDAS036 SN74ALS876A 24 Du	SN74ALS746	20	Octal Buffers and Line Drivers with Input Pullup Resistors and 3-State Outputs		~	~	SDAS052
SN74ALS805A 20 Hex 2-Input NOR Drivers V V V V V SDAS023 SN74ALS832A 20 Hex 2-Input OR Drivers V V V V SDAS017 SN74ALS841 24 10-Bit Bus-Interface D-Type Latches with 3-State Outputs V V SDAS039 SN74ALS843 24 9-Bit Bus-Interface D-Type Latches with 3-State Outputs V V SDAS232 SN74ALS845 24 8-Bit Bus-Interface D-Type Latches with 3-State Outputs V V SDAS233 SN74ALS857 24 Hex 2-to-1 Universal Multiplexers with 3-State Outputs V V V SDAS170 SN74ALS867A 24 Synchronous 8-Bit Up/Down Counters V V SDAS115 SN74ALS879 24 Dual 16-by-4 Register Files V V SDAS036 SN74ALS873B 24 Dual 4-Bit D-Type Latches with 3-State Outputs V V V SDAS061 SN74ALS876A 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs V V V	SN74ALS760	20	Octal Buffers and Line Drivers with Open-Collector Outputs		~	~	SDAS141
SN74ALS832A20Hex 2-Input OR DriversVVSDAS017SN74ALS8412410-Bit Bus-Interface D-Type Latches with 3-State OutputsVVSDAS059SN74ALS843249-Bit Bus-Interface D-Type Latches with 3-State OutputsVVSDAS232SN74ALS845248-Bit Bus-Interface D-Type Latches with 3-State OutputsVVSDAS233SN74ALS85724Hex 2-to-1 Universal Multiplexers with 3-State OutputsVVVSDAS170SN74ALS867A24Synchronous 8-Bit Up/Down CountersVVSDAS115SN74ALS86924Synchronous 8-Bit Up/Down CountersVVSDAS115SN74ALS87024Dual 16-by-4 Register FilesVVSDAS139SN74ALS873B24Dual 4-Bit D-Type Latches with 3-State OutputsVVVSDAS036SN74ALS874B24Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State OutputsVVVSDAS061SN74ALS876A24Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State OutputsVVVSDAS027SN74ALS990208-Bit D-Type Transparent Read-Back LatchesVVSDAS027SN74ALS992249-Bit D-Type Transparent Read-Back Latches with 3-State OutputsVVSDAS028	SN74ALS804A	20	Hex 2-Input NAND Drivers	~	~	~	SDAS022
SN74ALS8412410-Bit Bus-Interface D-Type Latches with 3-State OutputsVVSDAS059SN74ALS843249-Bit Bus-Interface D-Type Latches with 3-State OutputsVVSDAS232SN74ALS845248-Bit Bus-Interface D-Type Latches with 3-State OutputsVVSDAS233SN74ALS85724Hex 2-to-1 Universal Multiplexers with 3-State OutputsVVSDAS170SN74ALS867A24Synchronous 8-Bit Up/Down CountersVVSDAS115SN74ALS86924Synchronous 8-Bit Up/Down CountersVVSDAS115SN74ALS87024Dual 16-by-4 Register FilesVVSDAS139SN74ALS873B24Dual 4-Bit D-Type Latches with 3-State OutputsVVSDAS036SN74ALS874B24Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State OutputsVVSDAS061SN74ALS876A24Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State OutputsVVSDAS027SN74ALS990208-Bit D-Type Transparent Read-Back LatchesVVSDAS027SN74ALS992249-Bit D-Type Transparent Read-Back Latches with 3-State OutputsVVSDAS028	SN74ALS805A	20	Hex 2-Input NOR Drivers	~	~	~	SDAS023
SN74ALS843 24 9-Bit Bus-Interface D-Type Latches with 3-State Outputs	SN74ALS832A	20	Hex 2-Input OR Drivers	~	~	~	SDAS017
SN74ALS845 24 8-Bit Bus-Interface D-Type Latches with 3-State Outputs	SN74ALS841	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs		~	~	SDAS059
SN74ALS857 24 Hex 2-to-1 Universal Multiplexers with 3-State Outputs SN74ALS867A 24 Synchronous 8-Bit Up/Down Counters SN74ALS869 24 Synchronous 8-Bit Up/Down Counters SN74ALS870 24 Dual 16-by-4 Register Files SN74ALS873B 24 Dual 4-Bit D-Type Latches with 3-State Outputs SN74ALS874B 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs SN74ALS876A 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs SN74ALS876A 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs SN74ALS876A 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs SN74ALS890 20 8-Bit D-Type Transparent Read-Back Latches SN74ALS990 20 8-Bit D-Type Transparent Read-Back Latches with 3-State Outputs SN74ALS992 24 9-Bit D-Type Transparent Read-Back Latches with 3-State Outputs	SN74ALS843	24	9-Bit Bus-Interface D-Type Latches with 3-State Outputs		~	~	SDAS232
SN74ALS867A 24 Synchronous 8-Bit Up/Down Counters V V SDAS115 SN74ALS869 24 Synchronous 8-Bit Up/Down Counters V V SDAS115 SN74ALS870 24 Dual 16-by-4 Register Files V V SDAS139 SN74ALS873B 24 Dual 4-Bit D-Type Latches with 3-State Outputs V V V SDAS036 SN74ALS874B 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs V V SDAS061 SN74ALS876A 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs V V SDAS061 SN74ALS990 20 8-Bit D-Type Transparent Read-Back Latches V V SDAS027 SN74ALS992 24 9-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS028	SN74ALS845	24	8-Bit Bus-Interface D-Type Latches with 3-State Outputs		~	~	SDAS233
SN74ALS869 24 Synchronous 8-Bit Up/Down Counters V V SDAS115 SN74ALS870 24 Dual 16-by-4 Register Files V V SDAS139 SN74ALS873B 24 Dual 4-Bit D-Type Latches with 3-State Outputs V V V SDAS036 SN74ALS874B 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs V V SDAS061 SN74ALS876A 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs V V SDAS061 SN74ALS990 20 8-Bit D-Type Transparent Read-Back Latches V V SDAS027 SN74ALS992 24 9-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS028	SN74ALS857	24	Hex 2-to-1 Universal Multiplexers with 3-State Outputs	~	~	~	SDAS170
SN74ALS870 24 Dual 16-by-4 Register Files	SN74ALS867A	24	Synchronous 8-Bit Up/Down Counters		~	~	SDAS115
SN74ALS873B 24 Dual 4-Bit D-Type Latches with 3-State Outputs SN74ALS874B 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs V V SDAS061 SN74ALS876A 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs V V SDAS061 SN74ALS876A 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs V V SDAS061 SN74ALS990 20 8-Bit D-Type Transparent Read-Back Latches SN74ALS992 24 9-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS027	SN74ALS869	24	Synchronous 8-Bit Up/Down Counters		~	~	SDAS115
SN74ALS874B24Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State OutputsVVSDAS061SN74ALS876A24Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State OutputsVVSDAS061SN74ALS990208-Bit D-Type Transparent Read-Back LatchesVVSDAS027SN74ALS992249-Bit D-Type Transparent Read-Back Latches with 3-State OutputsVVSDAS028	SN74ALS870	24	Dual 16-by-4 Register Files		~	~	SDAS139
SN74ALS876A 24 Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs SN74ALS990 20 8-Bit D-Type Transparent Read-Back Latches SN74ALS992 24 9-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V V SDAS027	SN74ALS873B	24	Dual 4-Bit D-Type Latches with 3-State Outputs	V	~	~	SDAS036
SN74ALS990208-Bit D-Type Transparent Read-Back LatchesVVSDAS027SN74ALS992249-Bit D-Type Transparent Read-Back Latches with 3-State OutputsVVSDAS028	SN74ALS874B	24	Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	V	~	~	SDAS061
SN74ALS992 24 9-Bit D-Type Transparent Read-Back Latches with 3-State Outputs V SDAS028	SN74ALS876A	24	Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	~	SDAS061
	SN74ALS990	20	8-Bit D-Type Transparent Read-Back Latches		~	~	SDAS027
SN74ALS994 24 10-Bit D-Type Transparent Read-Back Latches V V SDAS237	SN74ALS992	24	9-Bit D-Type Transparent Read-Back Latches with 3-State Outputs		~	~	SDAS028
	SN74ALS994	24	10-Bit D-Type Transparent Read-Back Latches		~	~	SDAS237

ALS

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT SOIC	Y SSOP	LITERATURE REFERENCE
SN74ALS996	24	8-Bit Edge-Triggered Read-Back Latches	~	~	~		SDAS098
SN74ALS996-1	24	8-Bit Edge-Triggered Read-Back Latches		~	~		SDAS098
SN74ALS1004	14	Hex Inverting Drivers		~	~		SDAS074
SN74ALS1005	14	Hex Inverting Buffers with Open-Collector Outputs	~	~	~		SDAS240
SN74ALS1034	14	Hex Drivers	~	~	~		SDAS053
SN74ALS1035	14	Hex Non-Inverting Buffers with Open-Collector Outputs	~	~	~		SDAS243
SN74ALS1244A	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~		SDAS186
SN74ALS1245A	20	Octal Bus Transceivers with 3-State Outputs	~	~	~		SDAS245
SN74ALS1640A	20	Octal Bus Transceivers with 3-State Outputs		~			SDAS246
SN74ALS1645A	20	Octal Bus Transceivers with 3-State Outputs	~	~	~		SDAS246
SN74ALS2240	20	Octal Buffers and Line/MOS Drivers with 3-State Outputs and Series Damping Resistors	~	~	~		SDAS268
SN74ALS2541	20	Octal Line Driver/MOS Drivers with 3-State Outputs	~	~	~		SDAS273
SN74ALS29821	24	10-Bit Bus Interface Flip-Flops with 3-State Outputs	~	~	~		SDAS145
SN74ALS29823	24	9-Bit Bus Interface Flip-Flops with 3-State Outputs	~	~	~		SDAS146
SN74ALS29827	24	10-Bit Buffers/Drivers with 3-State Outputs		~	~		SDAS095
SN74ALS29828	24	10-Bit Buffers/Drivers with 3-State Outputs		~	~		SDAS095
SN74ALS29833	24	8-Bit to 9-Bit Parity Bus Transceivers		~	~		SDAS119
SN74ALS29841	24	10-Bit D-Type Bus-Interface Latches with 3-State Outputs		~	~		SDAS149
SN74ALS29854	24	8-Bit to 9-Bit Parity Bus Transceivers		~	~		SDAS118
SN74ALS29863	24	9-Bit Bus Transceivers with 3-State Outputs		~	~		SDAS096

ALVC

Advanced Low-Voltage CMOS Technology Logic

One of the highest-performance 3.3-V bus-interface families is the ALVC family. These specially designed 3-V products are processed in 0.6- μ CMOS technology, with typical propagation delays of less than 3 ns, current drive of 24 mA, and static current of 40 μ A for bus-interface functions. ALVC devices have input bus-hold cells to eliminate the need for external pullup resistors for floating inputs. With over 90 WidebusTM and Widebus+TM devices with series damping resistors and gates and octals on the roadmap, ALVC quickly is becoming the industry standard for many 3.3-V logic applications. The family also features innovative functions that make it ideal for memory interleaving, multiplexing, and interfacing to SDRAMs.

Selected devices in the ALVC family are offered in Widebus footprints with all of the advanced packaging, such as shrink small-outline package (SSOP) and thin shrink small-outline package (TSSOP).

Selected ALVC devices are offered in the MicroStar BGA™ (LFBGA) package. Other devices are offered in the small-outline integrated circuit (SOIC) package, SSOP, TSSOP, and thin very small-outline package (TVSOP).

ALVC

DEVICE	NO.	DESCRIPTION				VAILAB				LITERATUR
	PINS		LFBGA	PDIP	SOIC	SSOP	TSSOP	TVSOP	VFBGA	REFERENC
Gates and Octals										
SN74ALVC00	14	Quad 2-Input NAND Gates			~			~		SCES115
SN74ALVC04	14	Hex Inverters			~		'	~		SCES117
SN74ALVC08	14	Quad 2-Input AND Gates			~		<u> </u>	~		SCES101
SN74ALVC10	14	Triple 3-Input NAND Gates			~		~	~		SCES106
SN74ALVC14	14	Hex Schmitt-Trigger Inverters			~	~	~	~	_	SCES107
SN74ALVC32	14	Quad 2-Input OR Gates			~		'	~		SCES108
SN74ALVC125	14	Quad Bus Buffers with 3-State Outputs			~		~	~		SCES110
SN74ALVC126	14	Quad Bus Buffers with 3-State Outputs			~		~	~		SCES111
SN74ALVC244	20	Octal Buffers and Line Drivers with 3-State Outputs			~		~	~		SCES188
SN74ALVCH244	20	Octal Buffers and Line Drivers with 3-State Outputs			~		~	~		SCES112
SN74ALVC245	20	Octal Bus Transceivers with 3-State Outputs			~		~	~		SCES271
SN74ALVCH245	20	Octal Bus Transceivers with 3-State Outputs			~		~	V		SCES119
SN74ALVCH373	20	Octal Transparent D-Type Latches with 3-State Outputs			~		V	V		SCES116
SN74ALVCH374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	~	/	~	~		SCES118
Widebus™ Devices										
SN74ALVCH16240	48	16-Bit Buffers/Drivers with 3-State Outputs				V	V			SCES045
SN74ALVC16244A	48	16-Bit Buffers/Drivers with 3-State Outputs				V	V			SCAS250
SN74ALVCH16244	48	16-Bit Buffers/Drivers with 3-State Outputs				V	V	V	V	SCES014
SN74ALVCH16245	48	16-Bit Bus Transceivers with 3-State Outputs				V	V	V	V	SCAS015
SN74ALVCHR16245	48	16-Bit Bus Transceivers with 3-State Outputs				~	·		~	SCES064
SN74ALVCH16260	56	12-Bit to 24-Bit Multiplexed D-Type Latches with 3-State Outputs				v	~			SCES046
SN74ALVCH16269	56	12-Bit to 24-Bit Registered Bus Exchangers with 3-State Outputs				~	~			SCES019
SN74ALVCHR16269A	56	12-Bit to 24-Bit Registered Bus Exchangers with 3-State Outputs				v	~	~		SCES050
SN74ALVCH16270	56	12-Bit to 24-Bit Registered Bus Exchangers with 3-State Outputs				~	~			SCES028
SN74ALVCH16271	56	12-Bit to 24-Bit Multiplexed Bus Exchangers with 3-State Outputs				~	~			SCES017
SN74ALVCH16282	80	18-Bit to 36-Bit Registered Bus Exchangers with 3-State Outputs						~		SCES036
SN74ALVC16334	48	16-Bit Universal Bus Drivers with 3-State Outputs				~	~	V		SCES128
SN74ALVCH16334	48	16-Bit Universal Bus Drivers with 3-State Outputs				~		·		SCES090

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins

NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier)

FN = 20/28/44/68/84 pins QFP (quad flatpack)

RC = 52 pins (FB only)

PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins

PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package)

DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

ALVC

DEVICE	NO.	DESCRIPTION			ΑV	/AILAB	ILITY			LITERATURI
DEVICE	PINS	DESCRIPTION	LFBGA	PDIP	SOIC	SSOP	TSSOP	TVSOP	VFBGA	REFERENCE
SN74ALVCH16344	56	1-Bit to 4-Bit Address Drivers with 3-State Outputs				~	~			SCES054
SN74ALVCH16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs				~	~		~	SCES020
SN74ALVCH16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Output				~	~		~	SCES021
SN74ALVCH16409	56	9-Bit 4-Port Universal Bus Exchangers with 3-State Outputs				•	~			SCES022
SN74ALVCHR16409	56	9-Bit 4-Port Universal Bus Exchangers with 3-State Outputs				~	~			SCES056
SN74ALVCH16500	56	18-Bit Universal Bus Transceivers with 3-State Outputs				~	~			SCES023
SN74ALVCH16501	56	18-Bit Universal Bus Transceivers with 3-State Outputs				~	~			SCES024
SN74ALVCH16524	56	18-Bit Registered Bus Transceivers with 3-State Outputs				~	~			SCES080
SN74ALVCH16525	56	18-Bit Registered Bus Transceivers with 3-State Outputs				~	~			SCES059
SN74ALVCH16543	56	16-Bit Registered Transceivers with 3-State Outputs				~	~			SCES025
SN74ALVCH16600	56	18-Bit Universal Bus Transceivers with 3-State Outputs				~	~			SCES030
SN74ALVCH16601	56	18-Bit Universal Bus Transceivers with 3-State Outputs				~	~			SCES027
SN74ALVCHR16601	56	18-Bit Universal Bus Transceivers with 3-State Outputs				~	~			SCES123
SN74ALVCH16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				~	~	~		SCES032
SN74ALVCH16721	56	20-Bit D-Type Flip-Flops with 3-State Outputs				~	~	~		SCES052
SN74ALVCH16820	56	10-Bit D-Type Flip-Flops with Dual Outputs and 3-State Outputs				~	~			SCES035
SN74ALVCH16821	56	20-Bit D-Type Flip-Flops with 3-State Outputs				~	~			SCES037
SN74ALVCH16823	56	18-Bit D-Type Flip-Flops with 3-State Outputs				~	V			SCES038
SN74ALVCH16825	56	18-Bit Buffers/Drivers with 3-State Outputs				~	~			SCES039
SN74ALVCH16827	56	20-Bit Buffers/Drivers with 3-State Outputs				~	~			SCES041
SN74ALVCH16831	80	1-to-4 Address Registers/Drivers with 3-State Outputs						~		SCES083
SN74ALVCH16832	64	1-to-4 Address Registers/Drivers with 3-State Outputs					~			SCES098
SN74ALVC16834	56	18-Bit Universal Bus Drivers with 3-State Outputs				~	/	~	V	SCES140
SN74ALVC16835	56	18-Bit Universal Bus Drivers with 3-State Outputs				~	~	~	~	SCES125
SN74ALVCH16835	56	18-Bit Universal Bus Drivers with 3-State Outputs				~	~	~	~	SCES053
SN74ALVCH16841	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs				~	V			SCES043
SN74ALVCH16863	56	18-Bit Bus-Interface Transceivers with 3-State Outputs				~	~			SCES060
SN74ALVCH16901	64	18-Bit Universal Bus Transceivers with Parity Generators/Checkers					~			SCES010
SN74ALVCH16903	56	12-Bit Universal Bus Drivers with Parity Checker and Dual 3-State Outputs				~	~	~		SCES095
SN74ALVCH16952	56	16-Bit Registered Transceivers with 3-State Outputs				~	V	V		SCES011
Widebus+™ Devices										
SN74ALVCH32244	96	32-Bit Buffers/Drivers with 3-State Outputs	~							SCES281
SN74ALVCH32245	96	32-Bit Bus Transceivers with 3-State Outputs	~							SCES282
SN74ALVCH32374	96	32-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~							SCES283

ALVC

DEVICE	NO. Pins	DESCRIPTION	LFBGA	PDIP	A\ SOIC	/AILAB SSOP	ILITY TSSOP	TVSOP	VFBGA	LITERATURE REFERENCE
Widebus™ Devices Wit	h Series	Damping Resistors								
SN74ALVCH162244	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				~	~			SCES065
SN74ALVCH162260	56	12-Bit to 24-Bit Multiplexed D-Type Latches with Series Damping Resistors and 3-State Outputs				~	~			SCES570
SN74ALVCH162268	56	12-Bit to 24-Bit Registered Bus Exchangers with 3-State Outputs				~	V			SCES018
SN74ALVCHG162280	80	16-Bit to 32-Bit Bus Exchangers with Byte Masks and 3-State Outputs						~		SCES093
SN74ALVCHG162282	80	18-Bit to 36-Bit Registered Bus Exchangers with 3-State Outputs						~		SCES094
SN74ALVC162334	48	16-Bit Universal Bus Drivers with 3-State Outputs				~	~	V		SCES127
SN74ALVCH162334	48	16-Bit Universal Bus Drivers with 3-State Outputs				~	V	V		SCES120
SN74ALVCH162344	56	1-Bit to 4-Bit Address Drivers with 3-State Outputs				~	~	~		SCES085
SN74ALVCH162374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				~	~			SCES092
SN74ALVCH162409	56	9-Bit 4-Port Universal Bus Exchangers with 3-State Outputs				~				SCES189
SN74ALVCH162525	56	18-Bit Registered Transceivers with 3-State Outputs				~	~			SCES058
SN74ALVCH162601	56	18-Bit Universal Bus Transceivers with 3-State Outputs				~	·			SCES026
SN74ALVCH162721	56	20-Bit Flip-Flops with 3-State Outputs				~	V			SCES055
SN74ALVCH162820	56	10-Bit Flip-Flops with Dual Outputs and 3-State Outputs				~	~			SCES012
SN74ALVCH162827	56	20-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				~	~	~		SCES013
SN74ALVCH162830	80	1-Bit to 2-Bit Address Drivers with 3-State Outputs						V		SCES082
SN74ALVCHS162830	80	1-Bit to 2-Bit Address Drivers with 3-State Outputs						V		SCES097
SN74ALVC162831	80	1-Bit to 4-Bit Address Registors/Drivers with 3-State Outputs						~		SCES605
SN74ALVCH162831	80	1-Bit to 4-Bit Address Registers/Drivers with 3-State Outputs						~		SCES084
SN74ALVCH162832	64	1-Bit to 4-Bit Address Registers/Drivers with 3-State Outputs					~			SCES588
SN74ALVC162834	56	18-Bit Universal Bus Drivers with 3-State Outputs				~	V	V		SCES172
SN74ALVC162835	56	18-Bit Universal Bus Drivers with 3-State Outputs				~	~	~		SCES126
SN74ALVCH162835	56	18-Bit Universal Bus Drivers with 3-State Outputs				~	~	~		SCES121
SN74ALVC162836	56	20-Bit Universal Bus Drivers with 3-State Outputs				~	~	V		SCES129
SN74ALVCH162836	56	20-Bit Universal Bus Drivers with 3-State Outputs				~	'	V		SCES122
SN74ALVCH162841	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs				~	V			SCES088
Widebus™ Devices Wit	h Level	Shifter								
SN74ALVC164245	48	16-Bit 3.3-V to-5-V Level-Shifting Transceivers with 3-State Outputs				~	~			SCES416

ALVT

Advanced Low-Voltage BiCMOS Technology Logic

ALVT is a 5-V tolerant, 3.3-V and 2.5-V product using $0.6-\mu$ BiCMOS technology for advanced bus-interface functions. ALVT provides superior performance, up to 28% speed improvement compared to similar LVT at 3.3 V, current drive of 64 mA, and pin-for-pin compatibility with existing ABT and LVT families.

ALVT operates at LVTTL signal levels in telecom and networking high-performance system point-to-point or distributed-load backplane applications. ALVT is an excellent migration path from ABT or LVT.

Performance characteristics of the ALVT family include:

- 3.3-V or 2.5-V operation with 5-V tolerant I/O capability for use in a mixed-voltage environment
- Speed Provides high performance with up to 28% speed improvement over LVT.
- Drive Provides up to 64 mA of drive at 3.3-V V_{CC} and 24 mA at 2.5-V V_{CC}, yet consumes less than 330 μW of standby power.

Additional features include:

- Live insertion ALVT devices incorporate I_{off} and power-up 3-state (PU3S) circuitry to protect the devices in live-insertion applications and make them ideally suited for hot-insertion applications. I_{off} prevents the devices from being damaged during partial power down, and PU3S forces the outputs to the high-impedance state during power up and power down.
- Bus hold Eliminates floating inputs by holding them at the last valid logic state, eliminating the need for external pullup and pulldown resistors.
- Damping-resistor option TI implements series damping resistors on selected devices, reducing overshoot and undershoot, matching line impedance, and minimizing ringing.
- Packaging ALVT devices are available in shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), and thin very small-outline package (TVSOP), with selected devices offered in MicroStar BGA™ (LFBGA) packages.

ALVT

DELHOE	NO.	propping		A۱	/AILABIL	.ITY		LITERATURE
DEVICE	PINS	DESCRIPTION	LFBGA	SSOP	TSSOP	TVSOP	VFBGA	REFERENCE
SN74ALVTH16240	48	16-Bit Buffers/Drivers with 3-State Outputs		~	V	~		SCES138
SN74ALVTH16244	48	16-Bit Buffers/Drivers with 3-State Outputs		~	V	~	~	SCES070
SN74ALVTH16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs		~	~	~		SCES067
SN74ALVTH16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	~	~	~	SCES068
SN74ALVTH16601	56	18-Bit Universal Bus Transceivers with 3-State Outputs		~	~	~		SCES143
SN74ALVTH16821	56	20-Bit D-Type Flip-Flops with 3-State Outputs		~	V	~		SCES078
SN74ALVTH16827	56	20-Bit Buffers/Drivers with 3-State Outputs		~	~	V		SCES076
SN74ALVTH32244	96	32-Bit Buffers/Drivers with 3-State Outputs	V					SCES279
SN74ALVTH32373	96	32-Bit Transparent D-Type Latches with 3-State Outputs	V					SCES322
SN74ALVTH32374	96	32-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	V					SCES280
SN74ALVTH162244	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs		~	~	~		SCES074
SN74ALVTH162827	56	20-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs		~	V	~		SCES079

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

AS

Advanced Schottky Logic

The AS family of high-performance bipolar logic includes over 70 functions that offer high drive capabilities.

This family, combined with the ALS family, can be used to optimize system speed and power through performance budgeting where BiCMOS logic is used. By using AS in speed-critical paths and ALS where speed is less critical, designers can optimize speed and power performance.

The AS family includes gates, flip-flops, counters, drivers, transceivers, registered transceivers, readback latches, clock drivers, register files, and multiplexers.

AS

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT	Y SSOP	LITERATURE REFERENCE
SN74AS00	14	Quad 2-Input NAND Gates	V	~	~		SDAS187
SN74AS02	14	Quad 2-Input NOR Gates	V	~	~	-	SDAS111
SN74AS04	14	Hex Inverters	·	~	~		SDAS063
SN74AS08	14	Quad 2-Input AND Gates	V	~	~		SDAS191
SN74AS10	14	Triple 3-Input NAND Gates	V	~	~		SDAS002
SN74AS11	14	Triple 3-Input AND Gates	V	~	~		SDAS009
SN74AS20	14	Dual 4-Input NAND Gates	V	~	~		SDAS192
SN74AS21	14	Dual 4-Input AND Gates		~	~		SDAS085
SN74AS27	14	Triple 3-Input NOR Gates	V	~	~		SDAS112
SN74AS30	14	8-Input NAND Gates	V	~	~		SDAS010
SN74AS32	14	Quad 2-Input OR Gates	V	~	~	~	SDAS113
SN74AS74A	14	Dual D-Type Flip-Flops with Set and Reset	V	~	~		SDAS143
SN74AS86A	14	Quad 2-Input Exclusive-OR Gates	V	~	~		SDAS006
SN74AS109A	16	Dual Positive-Edge-Triggered J-K Flip-Flops with Set and Reset	V	~	~		SDAS198
SN74AS138	16	3-to-8 Line Inverting Decoders/Demultiplexers	V	~	~		SDAS055
SN74AS151	16	1-of-8 Data Selectors/Multiplexers		~	~		SDAS205
SN74AS153	16	Dual 1-of-4 Data Selectors/Multiplexers		~	~		SDAS206
SN74AS157	16	Quad 2-to-4 Line Data Selectors/Multiplexers		~	~		SDAS081
SN74AS158	16	Quad 2-to-4 Line Data Selectors/Multiplexers		~	~		SDAS081
SN74AS161	16	Synchronous 4-Bit Binary Counters	V	~	~		SDAS024
SN74AS163	16	Synchronous 4-Bit Binary Counters	V	~	~		SDAS024
SN74AS169A	16	Synchronous 4-Bit Up/Down Binary Counters	V	~	~		SDAS125
SN74AS174	16	Hex D-Type Flip-Flops with Clear	V	~	~		SDAS207
SN74AS175B	16	Quad D-Type Flip-Flops with Clear	V	~	~		SDAS207
SN74AS181A	24	Arithmetic Logic Units/Function Generators	V	~	~		SDAS209
SN74AS194	16	4-Bit Bidirectional Universal Shift Registers	V	~	~		SDAS212
SN74AS230A	20	Octal Buffers/Drivers with 3-State Outputs		~	~		SDAS213
SN74AS240A	20	Octal Buffers/Drivers with 3-State Outputs	V	~	~		SDAS214
SN74AS241A	20	Octal Buffers/Drivers with 3-State Outputs	V	~	~		SDAS153
SN74AS244A	20	Octal Buffers and Line Drivers with 3-State Outputs	V	~	~		SDAS142
SN74AS245	20	Octal Bus Transceivers with 3-State Outputs	V	~	~		SDAS272
SN74AS250A	24	1-of-16 Data Generators/Multiplexers with 3-State Outputs	~	~	~		SDAS137
SN74AS253A	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs		~	~		SDAS216
SN74AS257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		~	~		SDAS124
SN74AS258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		~	~		SDAS124

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins

NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins = 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins

DBB = 80 pins

SOT (small-outline transistor)

AS

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILITY SOIC SSOP	LITERATURE REFERENCE
SN74AS280	14	9-Bit Odd/Even Parity Generators/Checkers	(~	V	SDAS038
SN74AS286	14	9-Bit Parity Generators/Checkers with Bus-Driver Parity I/O Port	· ·	~	V	SDAS050
SN74AS298A	16	Quad 2-Input Multiplexers with Storage		~	V	SDAS219
SN74AS373	20	Octal Transparent D-Type Latches with 3-State Outputs	✓	~	~	SDAS083
SN74AS374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	V	~	V	SDAS167
SN74AS533A	20	Octal Inverting Transparent Latches with 3-State Outputs		~	V	SDAS270
SN74AS534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs		~	V	SDAS168
SN74AS573A	20	Octal D-Type Transparent Latches with 3-State Outputs	V	~	V	SDAS048
SN74AS574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	V	~	V	SDAS165
SN74AS575	24	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	V	~	V	SDAS165
SN74AS576	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	V	~	V	SDAS065
SN74AS640	20	Octal Bus Transceivers with 3-State Outputs	V	~	V	SDAS122
SN74AS641	20	Octal Bus Transceivers with Open-Collector Outputs		~	V	SDAS300
SN74AS645	20	Octal Bus Transceivers with 3-State Outputs	V	~	V	SDAS278
SN74AS648	24	Octal Registered Bus Transceivers with 3-State Outputs		~	~	SDAS039
SN74AS756	20	Octal Buffers and Line Drivers with Open-Collector Outputs	✓	~	~	SDAS040
SN74AS757	20	Octal Buffers and Line Drivers with Open-Collector Outputs		~	V	SDAS040
SN74AS760	20	Octal Buffers and Line Drivers with Open-Collector Outputs	✓	~	V	SDAS141
SN74AS804B	20	Hex 2-Input NAND Drivers	✓	~	V	SDAS022
SN74AS805B	20	Hex 2-Input NOR Drivers	V	~	V	SDAS023
SN74AS808B	20	Hex 2-Input NOR Drivers	✓	~	V	SDAS018
SN74AS821A	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs	✓	~	V	SDAS230
SN74AS823A	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs	✓	~	V	SDAS231
SN74AS825A	24	8-Bit Bus-Interface Flip-Flops with 3-State Outputs	✓	~	V	SDAS020
SN74AS832B	20	Hex 2-Input OR Drivers	V	~	V	SDAS017
SN74AS841A	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs		~	V	SDAS059
SN74AS867	24	Synchronous 8-Bit Up/Down Counters	✓	~	V	SDAS115
SN74AS869	24	Synchronous 8-Bit Up/Down Counters	V	~	~	SDAS115
SN74AS873A	24	Dual 4-Bit D-Type Latches with 3-State Outputs	✓	~	~	SDAS036
SN74AS874	24	Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	V	SDAS061
SN74AS876	24	Dual 4-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	V	SDAS061
SN74AS885	24	8-Bit Magnitude Comparators	V	~	V	SDAS236
SN74AS1000A	14	Quad 2-Input NAND Buffers/Drivers	V	~	V	SDAS056
SN74AS1004A	14	Hex Inverting Drivers	V	~	·	SDAS074
SN74AS1008A	14	Quad 2-Input AND Buffers/Drivers		~	V	SDAS071
SN74AS1032A	14	Quad 2-Input OR Buffers/Drivers	V	~	V	SDAS072
SN74AS1034A	14	Hex Drivers	V	~	V	SDAS053
SN74AS1804	20	Hex 2-Input NAND Drivers		~		SDAS042
SN74AS4374B	20	Octal Edge-Triggered D-Type Dual-Rank Flip-Flops with 3-State Outputs		~	✓	SDAS109

AVC

Advanced Very-Low-Voltage CMOS Logic

TI's new AVC logic family provides designers the tools to create advanced high-speed systems with propagation delays of less than 2 ns. Though optimized for 2.5-V systems, AVC logic supports operating voltages between 1.2 V and 3.6 V. The AVC family features TI's Dynamic Output Control (DOC™) circuitry, which dynamically lowers circuit output impedance during signal transition for fast rise and fall times, and then raises the impedance after signal transmission to reduce ringing.

Trends in digital electronics design emphasize lower power consumption, lower supply voltages, faster operating speeds, smaller timing budgets, and heavier loads. Many designs are making the transition from 3.3 V to 2.5 V with bus speeds increasing beyond 100 MHz. Signal integrity need not be compromised to meet these design requirements. TI's AVC family is designed to meet the needs of these high-speed, low-voltage systems, including next-generation high-performance workstations, PCs, networking servers, and telecommunications switching equipment.

Key features:

- Sub-2-ns maximum t_{pd} at 2.5 V for AVC16245
- Designed for next-generation, high-performance PCs, workstations, and servers
- DOC circuitry enhances high-speed, low-noise operation
- Supports mixed-voltage systems
- Optimized for 2.5 V; operable from 1.2 V to 3.6 V
- Bus-hold feature eliminates need for external resistors on unused input pins.
- I_{off} supports partial power down.

AVC

DEMOE	NO.	DECODIDATION	Α\	/AILABIL	ITY	LITERATURE
DEVICE	PINS	DESCRIPTION	TSSOP	TVSOP	VFBGA	REFERENCE
SN74AVC16244	48	16-Bit Buffers/Drivers with 3-State Outputs	V	~	~	SCES150
SN74AVC16245	48	16-Bit Bus Transceivers with 3-State Outputs	V	~		SCES142
SN74AVC16334	48	16-Bit Universal Bus Drivers with 3-State Outputs	✓	~		SCES154
SN74AVC16334A	48	16-Bit Universal Bus Drivers with 3-State Outputs	+	+		Call
SN74AVC16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs	V	~	~	SCES156
SN74AVC16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	V	~	~	SCES158
SN74AVC16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs	+	+		SCES181
SN74AVC16722	64	20-Bit D-Type Flip-Flops with 3-State Outputs	V			SCES166
SN74AVC16827	56	20-Bit Buffers/Drivers with 3-State Outputs	V	~		SCES176
SN74AVC16834	56	18-Bit Universal Bus Drivers with 3-State Outputs	V	~		SCES183
SN74AVC16835	56	18-Bit Universal Bus Drivers with 3-State Outputs	V	~		SCES168

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins

PN = 80 pins PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only) **SOIC** (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

BCTBiCMOS Technology Logic

BCT is a family of 8-, 9-, and 10-bit drivers, latches, transceivers, and registered transceivers. Designed specifically for bus-interface applications, BCT offers TTL I/O with high speeds, 64-mA output drive, and very low power in the disabled mode. Over 50 BCT functions are in production.

The BCT25xxx series of fast, high-drive bus-interface functions provides incident-wave switching required by large backplane applications. Designed specifically to ensure incident-wave switching down to 25 Ω , these low-impedance driver devices can maximize the speed and reliability of heavily loaded systems. Each device of this series delivers 188 mA of I_{OL} drive current.

Also included in TI's BCT family are devices with series damping resistors to reduce overshoot and undershoot that can occur in memory-driving applications.

See www.ti.com/sc/logic for the most current data sheets.

64BCT

64-Series BiCMOS Technology Logic

The 64BCT family offers all the features found in TI's standard BCT family. In addition, the family is characterized for operation from -40°C to 85°C and incorporates circuitry to protect the device in live-insertion applications.

BCT

DEVICE	NO.	DESCRIPTION			ABILIT	Υ	LITERATURE	
DEVICE	PINS	DESCRIF HOW	MIL	PDIP	SOIC	SSOP	REFERENCE	
SN74BCT125A	14	Quad Bus Buffers with 3-State Outputs	~	~	~		SCBS032	
SN74BCT126A	14	Quad Bus Buffers with 3-State Outputs	~	~	~		SCBS252	
SN74BCT240	20	Octal Buffers/Drivers with 3-State Outputs	'	~	~	~	SCBS004	
SN74BCT241	20	Octal Buffers/Drivers with 3-State Outputs	'	~	~		SCBS005	
SN74BCT244	20	Octal Buffers and Line Drivers with 3-State Outputs	'	~	~	~	SCBS006	
SN74BCT245	20	Octal Bus Transceivers with 3-State Outputs	V	~	~	~	SCBS013	
SN74BCT373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~	~	SCBS016	
SN74BCT374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~		SCBS019	
SN74BCT540A	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	~	~	~		SCBS012	
SN74BCT541A	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~		SCBS011	
SN74BCT543	24	Octal Registered Transceivers with 3-State Outputs	~	~	~		SCBS026	
SN74BCT573	20	Octal Transparent D-Type Latches with 3-State Outputs	V	~	~		SCBS071	
SN74BCT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	V	~	~	~	SCBS074	
SN74BCT623	20	Octal Bus Transceivers with 3-State Outputs	~	~	~		SCBS020	
SN74BCT640	20	Octal Bus Transceivers with 3-State Outputs	~	~	~		SCBS025	
SN74BCT756	20	Octal Buffers and Line Drivers with Open-Collector Outputs		~	~		SCBS056	
SN74BCT757	20	Octal Buffers and Line Drivers with Open-Collector Outputs		~	~		SCBS041	
SN74BCT760	20	Octal Buffers and Line Drivers with Open-Collector Outputs	~	~	~		SCBS034	
SN74BCT2240	20	Octal Buffers and Line/MOS Drivers with 3-State Outputs and Series Damping Resistors	~	~	~	V	SCBS030	
SN74BCT2241	20	Octal Buffers and Line/MOS Drivers with Series Damping Resistors and 3-State Outputs		~	~		SCBS035	
SN74BCT2244	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs	~	~	~		SCBS017	
SN74BCT2245	20	Octal Transceivers and Line MOS Drivers with Series Damping Resistors and 3-State Outputs		~	~	V	SCBS102	
SN74BCT2414	20	Dual 2-Line to 4-Line Memory Decoders with On-Chip Supply-Voltage Monitor		~	~		SCBS059	
SN74BCT2827C	24	10-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs		~	~		SCBS007	
SN74BCT25244	24	$25-\Omega$ Octal Buffers/Drivers with 3-State Outputs		~	~		SCBS064	
SN74BCT25245	24	25-Ω Octal Bus Transceivers with 3-State Outputs		~	~		SCBS053	
SN74BCT25642	24	25-Ω Octal Bus Transceivers with Open-Collector Outputs		~	~		SCBS047	
SN74BCT29821	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs		~	~		SCBS021	
SN74BCT29825	24	Octal Bus Interface Flip-Flops with 3-State Outputs		~	~		SCBS075	
SN74BCT29827B	24	10-Bit Buffers/Drivers with 3-State Outputs		~	~		SCBS008	
SN74BCT29843	24	9-Bit D-Type Bus-Interface Latches with 3-State Outputs		~	~		SCBS256	
SN74BCT29863B	24	9-Bit Bus Transceivers with 3-State Outputs		~	~		SCBS015	
SN74BCT29864B	24	9-Bit Bus Transceivers with 3-State Outputs		~	~		SCBS010	

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier)

FN = 20/28/44/68/84 pins QFP (quad flatpack)

RC = 52 pins (FB only) PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins = 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package)

DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

64BCT

DEVICE	NO.	DESCRIPTION	AVAILA	BILITY	LITERATURE
DEVICE	PINS	DESCRIPTION	PDIP	SOIC	REFERENCE
SN64BCT125A	14	Quad Bus Buffers with 3-State Outputs	V	~	SCBS052
SN64BCT126A	14	Quad Bus Buffers with 3-State Outputs	V	~	SCBS051
SN64BCT244	20	Octal Buffers and Line Drivers with 3-State Outputs	V	~	SCBS027
SN64BCT245	20	Octal Bus Transceivers with 3-State Outputs	V	~	SCBS040
SN64BCT757	20	Octal Buffers and Line Drivers with Open-Collector Outputs	V	~	SCBS479
SN64BCT25244	24	$25-\Omega$ Octal Buffers/Drivers with 3-State Outputs	V	~	SCBS477
SN64BCT25245	24	25-Ω Octal Bus Transceivers with 3-State Outputs	·	V	SCBS060

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = 8/14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

BTA

Bus-Termination Arrays

TI's BTA family offers a space-saving, efficient, and effective solution to bus-termination requirements. In high-speed digital systems with long transmission lines, reflecting waves on the line can cause voltage undershoots and overshoots that lead to malfunctions at the driven input. A BTA is a series of diodes that clamps a signal on a bus or any other signal trace using high-frequency logic to limit overshoot and undershoot problems.

BTA

DEVICE	NO. E PINS DESCRIPTION			<i>P</i>	LITERATURE REFERENCE			
SN74F1016	20	16-Bit Schottky Barrier Diode R-C Bus-Termination Arrays			~		3	SDFS093
SN74S1050	16	12-Bit Schottky Barrier Diode Bus-Termination Arrays		~	~			SDLS015
SN74S1051	16	12-Bit Schottky Barrier Diode Bus-Termination Arrays		~	~			SDLS018
SN74S1052	20	16-Bit Schottky Barrier Diode Bus-Termination Arrays		~	~			SDLS016
SN74S1053	20	16-Bit Schottky Barrier Diode Bus-Termination Arrays		~	~	~		SDLS017
SN74F1056	16	8-Bit Schottky Barrier Diode Bus-Termination Arrays			~			SDFS085
SN74ACT1071	14	10-Bit Bus Termination Networks with Bus-Hold Function			~			SCAS192
SN74ACT1073	20	16-Bit Bus Termination Networks with Bus-Hold Function			~			SCAS193
CD40117B	14	Programmable Dual 4-Bit Terminators	~	~			V	SCHS101

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

INSTRUMENTS

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

CBT

Crossbar Technology Logic

Power and speed are two primary concerns in today's computing market. CBT can address these issues in bus-interface applications. CBT enables a bus-interface device to function as a very fast bus switch, effectively isolating buses when the switch is open and offering very little propagation delay when the switch is closed. These devices can function as high-speed bus interfaces between computer-system components, such as the central processing unit (CPU) and memory. CBT devices also can be used as 5-V to 3.3-V translators, allowing designers to mix 5-V or 3.3-V components in the same system.

The CBT devices are available in advanced packaging, such as the shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), and thin very small-outline package (TVSOP) for reduced board area.

CBT

	NO.					AVA	ILABILI	ΤΥ			LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	LFBGA	SOIC	SOT	SSOP	TSSOP	TVSOP	VFBGA	REFERENCE
SN74CBT1G66	5	Single FET Bus Switches				+					SCDS110
SN74CBT1G125	5	Single FET Bus Switches				~					SCDS046
SN74CBTD1G125	5	Single FET Bus Switches with Level Shifting				~					SCDS063
SN74CBT1G384	5	Single FET Bus Switches				~					SCDS065
SN74CBT3125	14/16	Quad FET Bus Switches			~		~	~	~		SCDS021
SN74CBT3126	14/16	Quad FET Bus Switches			~		~	~	~		SCDS020
SN74CBT3244	20	Octal FET Bus Switches			~		~	~	~		SCDS001
SN74CBT3245A	20	Octal FET Bus Switches			~		~	~	~		SCDS002
SN74CBT3251	16	1-of-8 FET Multiplexers/Demultiplexers			~		~	~			SCDS019
SN74CBT3253	16	Dual 1-of-4 FET Multiplexers/Demultiplexers			~		~	~			SCDS018
SN74CBT3257	16	4-Bit 1-of-2 FET Multiplexers/Demultiplexers			~		~	~			SCDS017
SN74CBT3306	8	Dual FET Bus Switches			~			~			SCDS016
SN74CBTD3306	8	Dual FET Bus Switches with Level Shifting			~			~			SCDS030
SN74CBTS3306	8	Dual FET Bus Switches with Schottky Diode Clamping			~			~			SCDS029
SN74CBT3345	20	8-Bit FET Bus Switches			~		~	~	V		SCDS027
SN74CBT3383	24	10-Bit FET Bus-Exchange Switches	V		~		~	~	~		SCDS003
CYBUS3384	24	10-Bit FET Bus Switches			~		~				SCDS103
SN74CBT3384A	24	10-Bit FET Bus Switches			~		~	~	~		SCDS004
SN74CBTD3384	24	10-Bit FET Bus Switches with Level Shifting			~		~	~	~		SCDS025
SN74CBTS3384	24	10-Bit FET Bus Switches with Schottky Diode Clamping			~		~	~	~		SCDS024
SN74CBT3861	24	10-Bit FET Bus Switches			~		~	~	V		SCDS061
SN74CBTD3861	24	10-Bit FET Bus Switches with Level Shifting			~		~	~	~		SCDS084
SN74CBT6800A	24	10-Bit FET Bus Switches with Precharged Outputs for Live Insertion					~	~	~		SCDS005
SN74CBTK6800	24	10-Bit FET Bus Switches with Precharged Outputs and Active-Clamp Undershoot-Protection Circuit			~		~	~	~		SCDS107
SN74CBTS6800	24	10-Bit FET Bus Switches with Precharged Outputs and Diode Clamping			~		~	~	~		SCDS102
SN74CBT16209A	48	18-Bit FET Bus-Exchange Switches	V				~	~	V		SCDS006
SN74CBT16210	48	20-Bit FET Bus Switches					V	V	~		SCDS033
SN74CBTD16210	48	20-Bit FET Bus Switches					~	~	~		SCDS049
SN74CBT16211A	56	24-Bit FET Bus Switches					V	V	~		SCDS028
SN74CBTD16211	56	24-Bit FET Bus Switches with Level Shifting					V	V	~		SCDS048
SN74CBTH16211	56	24-Bit FET Bus Switches with Bus Hold					V	V	~		SCDS062
SN74CBTS16211	56	24-Bit FET Bus Switches with Schottky Diode Clamping					V	V	V		SCDS050

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins

= 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package)

DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

CBT

	NO.		availability							LITERATURE	
DEVICE	PINS	DESCRIPTION	MIL	LFBGA	SOIC	SOT	SSOP	TSSOP	TVSOP	VFBGA	REFERENCE
SN74CBT16212A	56	24-Bit FET Bus-Exchange Switches	~				~	~	~		SCDS007
SN74CBTS16212	56	24-Bit FET Bus-Exchange Switches with Schottky Diode Clamping					~	~	~		SCDS036
SN74CBT16213	56	24-Bit FET Bus-Exchange Switches					~	~			SCDS026
SN74CBT16214	56	12-Bit 1-of-3 FET Multiplexers/Demultiplexers					~	~			SCDS008
SN74CBT16232	56	Synchronous 16-Bit 1-of-2 FET Multiplexers/Demultiplexers					~	~			SCDS009
SN74CBT16233	56	16-Bit 1-of-2 FET Multiplexers/Demultiplexers					~	~	~		SCDS010
SN74CBT16244	48	16-Bit FET Bus Switches	~				~	~	~		SCDS031
SN74CBT16245	48	16-Bit FET Bus Switches					+	+	+		SCDS070
SN74CBTK16245	48	16-Bit FET Bus Switches with Active-Clamp Undershoot-Protection Circuit					+	+	+		SCDS105
SN74CBT16292	56	12-Bit 1-of-2 FET Multiplexers/Demultiplexers with Internal Pulldown Resistors					~	~	~		SCDS053
SN74CBT16390	56	16-Bit to 32-Bit FET Multiplexer/Demultiplexer Bus Switches					~	~	~		SCDS035
SN74CBT16861	48	20-Bit FET Bus Switches					~	~	~	+	SCDS068
SN74CBTD16861	48	20-Bit FET Bus Switches with Level Shifting					+	+			SCDS069
SN74CBTK16861	48	20-Bit FET Bus Switches with Active-Clamp Undershoot-Protection Circuit					+	+	+		SCDS108
SN74CBTR16861	48	20-Bit FET Bus Switches with Series Damping Resistors					+	+			SCDS078
SN74CBT32245	96	32-Bit FET Bus Switches		~							SCDS104
SN74CBTK32245	96	32-Bit FET Bus Switches with Active-Clamp Undershoot-Protection Circuit		*							SCDS106
SN74CBT162292	56	12-Bit 1-of-2 Multiplexers/Demultiplexers with Internal Pulldown Resistors					~	~	~		SCDS052
SN74CBT162292A	56	12-Bit 1-of-2 Multiplexers/Demultiplexers with Internal Pulldown Resistors					+	+	+		Call

CBTLV

Low-Voltage Crossbar Technology Logic

TI developed the SN74CBTLV family of 3.3-V bus switches to complement its existing SN74CBT family of 5-V bus switches. TI was the first to offer these devices, designed for 3.3-V, in its continuing drive to provide low-voltage solutions.

CBTLV devices can be used in multiprocessor systems as fast bus connections, bus-exchange switches for crossbar systems, ping-pong memory connections, or bus-byte swapping. They also can be used to replace relays, improving connect/disconnect speed and eliminating relay-reliability problems. The CBTLV family, designed to operate at 3.3 V, furthers the goal of an integrated system operating with LVTTL voltages.

The CBTLV devices are available in industry-leading packaging options, such as the shrink small-outline package (SSOP), thin small-outline package (TSSOP), and thin very small-outline package (TVSOP) for reduced board area.

See www.ti.com/sc/logic for the most current data sheets.

CBTLV

DEL II OE	NO.	PERSONAL		Α	VAILAB	ILITY		LITERATURE
DEVICE	PINS	DESCRIPTION	SOIC	SOT	SSOP	TSSOP	TVSOP	REFERENCE
SN74CBTLV1G125	5	Single FET Bus Switches		~				SCDS057
SN74CBTLV3125	14/16	Quad FET Bus Switches	~		~	~	~	SCDS037
SN74CBTLV3126	14/16	Quad FET Bus Switches	~		~	~	~	SCDS038
SN74CBTLV3245A	20	Octal FET Bus Switches	~			~	~	SCDS034
SN74CBTLV3251	16	1-of-8 FET Multiplexers/Demultiplexers	~		~	~	~	SCDS054
SN74CBTLV3253	16	Dual 1-of-4 FET Multiplexers/Demultiplexers	~		~	~	~	SCDS039
SN74CBTLV3257	16	4-Bit 1-of-2 FET Multiplexers/Demultiplexers	~		~	~	~	SCDS040
SN74CBTLV3383	24	10-Bit FET Bus-Exchange Switches	~		~	~	~	SCDS047
SN74CBTLV3384	24	10-Bit FET Bus Switches	~		~	~	~	SCDS059
SN74CBTLV3857	24	10-Bit FET Bus Switches with Internal Pulldown Resistors	V		~	V	~	SCDS085
SN74CBTLV3861	24	10-Bit FET Bus Switches	~			~	~	SCDS041
SN74CBTLV16210	48	20-Bit FET Bus Switches			~	~	~	SCDS042
SN74CBTLV16211	56	24-Bit FET Bus Switches			~	~	~	SCDS043
SN74CBTLV16212	56	24-Bit FET Bus-Exchange Switches			~	~	~	SCDS044
SN74CBTLV16292	56	12-Bit 1-of-2 FET Multiplexers/Demultiplexers with Internal Pulldown Resistors			V	~	~	SCDS055
SN74CBTLVR16292	56	12-Bit 1-of-2 FET Multiplexers/Demultiplexers with Internal Pulldown Resistors			v	V		SCDS056
SN74CBTLV16800	48	20-Bit FET Bus Switches with Precharged Outputs			~	~	V	SCDS045

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins

NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only)

PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

CD4000 CMOS B-Series Integrated Circuits

The CD4000 family is a CMOS B series of devices with a maximum dc supply-voltage rating of 20 V. The family has a large number of functions, including analog switches, monostable multivibrators, level converters, counters, timers, display drivers, phase-locked loops (PLLs), and other functions. The wide operating voltage range of this family allows use of the CD4000 products in varied applications, including instrumentation, control, and communications.

Key features:

- Wide variety of functions
- High noise immunity
- Low power consumption
- Propagation delay time similar to LSTTL products
- 5-, 10-, and 15-V parametric ratings
- High fanout, typically 10
- Excellent temperature stability

TI's CD4000 products were acquired from Harris Semiconductor in December 1998.

See www.ti.com/sc/logic for the most current data sheets.

CD4000

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT	Y TSSOP	LITERATURE REFERENCE
CD4001B	14	Quad 2-Input NOR Gates	~	~	~	~	SCHS015
CD4001UB	14	Quad 2-Input Unbuffered NOR Gates	~	~	~		SCHS016
CD4002B	14	Dual 4-Input NOR Gates	~	~		~	SCHS015
CD4007UB	14	Dual Unbuffered Complementary Pairs Plus Inverter	~	~	~	~	SCHS018
CD4009UB	16	Hex Inverting Buffers/Converters	~	~		~	SCHS020
CD4010B	16	Hex Buffers/Converters		~		V	SCHS020
CD4010UB	16	Hex Buffers/Converters	~				Call
CD4011B	14	Quad 2-Input NAND Gates	V	~	~	~	SCHS021
CD4011UB	14	Quad 2-Input Unbuffered NAND Gates	~	~	~	~	SCHS022
CD4012B	14	Dual 4-Input NAND Gates	~	~	~	~	SCHS021
CD4013B	14	Dual D-Type Flip-Flops	~	~	~	~	SCHS023
CD4014B	16	8-Stage Static Shift Registers	~	~		~	SCHS024
CD4015B	16	Dual 4-Stage Static Shift Registers	~	~		~	SCHS025
CD4016B	14	Quad Bilateral Switches	~	~	~	~	SCHS026
CD4017B	16	Decade Counter/Divider with 1-of-10 Decoded Outputs	V	~		~	SCHS027
CD4018B	16	Divide-by-N Counters	V	~		~	SCHS028
CD4019B	16	Quad AND/OR Select Gates	V	~		V	SCHS029
CD4020B	16	12-Stage Ripple-Carry Binary Counters/Dividers	V	~		V	SCHS030
CD4021B	16	8-Stage Static Shift Registers	~	~		~	SCHS024
CD4022B	16	Octal Counters/Dividers with 1-of-8 Decoded Outputs	~	~		~	SCHS027
CD4023B	14	Triple 3-Input NAND Gates	V	~	~	~	SCHS021
CD4024B	14	7-Stage Ripple-Carry Binary Counters/Dividers	V	~	~	~	SCHS030
CD4025B	14	Triple 3-Input NOR Gates	~	~	~	~	SCHS015
CD4026B	16	Decade Counters/Drivers with Decoded 7-Segment Display Outputs	~	~		~	SCHS031
CD4027B	16	Dual J-K Master-Slave Flip-Flops	~	~	~	~	SCHS032
CD4028B	16	BCD-to-Decimal Decoders	~	~		~	SCHS033
CD4029B	16	Presettable Up/Down Binary or BCD-Decade Counters	V	~		~	SCHS034
CD4030B	14	Quad Exclusive-OR Gates	~	~	~	~	SCHS035
CD4031B	16	64-Stage Static Shift Registers	~	~		~	SCHS036
CD4033B	16	Decade Counters/Drivers with Decoded 7-Segment Display Outputs	~	~		~	SCHS031
CD4034B	24	8-Stage Static Bidirectional Parallel/Serial Input/Output Bus Registers	V	~			SCHS037
CD4035B	16	4-Stage Parallel-In/Parallel-Out Shift Registers	V	~		~	SCHS038
CD4040B	16	12-Stage Ripple-Carry Binary Counters/Dividers	V	~		~	SCHS030
CD4041UB	14	Quad True/Complement Buffers	V	~		~	SCHS039
CD4042B	16	Quad Clocked D Latches	~	~	~	~	SCHS040
CD4043B	16	Quad NOR R/S Latches with 3-State Outputs	~	~	~	~	SCHS041
CD4044B	16	Quad NAND R/S Latches with 3-State Outputs	~	~	~	~	SCHS041
CD4045B	16	21-Stage Counters	~	~			SCHS042
CD4046B	16	Micropower Phase-Locked Loops with VCO	~	~		~	SCHS043
CD4047B	14	Low-Power Monostable/Astable Multivibrators	~	~		V	SCHS044

commercial package description and availability

schedule

 See Appendix A for package information.

CD4000

DEVICE	NO.	DESCRIPTION		AVAIL	.ABILI1	Υ	LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	TSSOP	REFERENCE
CD4048B	16	Multifunction Expandable 8-Input Gates	V	~			SCHS045
CD4049UB	16	Hex Buffers/Converters	V	~	~	~	SCHS046
CD4050B	16	Hex Buffers/Converters	V	~	~	~	SCHS046
CD4051B	16	8-Channel Analog Multiplexers/Demultiplexers with Logic-Level Conversion	V	~	~	~	SCHS047
CD4052B	16	Dual 4-Channel Analog Multiplexers/Demultiplexers with Logic-Level Conversion	V	~	~	~	SCHS047
CD4053B	16	Triple 2-Channel Analog Multiplexers/Demultiplexers with Logic-Level Conversion	V	~	~	'	SCHS047
CD4054B	16	4-Segment Liquid Crystal Display Drivers	V	~		~	SCHS048
CD4055B	16	BCD to 7-Segment Liquid Crystal Decoders/Drivers with Display-Frequency Output	V	~		~	SCHS048
CD4056B	16	BCD to 7-Segment Liquid Crystal Decoders/Drivers with Strobed Latch Function	V	~		~	SCHS048
CD4059A	24	Programmable Divide-by-N Counters	✓	~			SCHS109
CD4060B	16	14-Stage Binary-Ripple Counters/Dividers and Oscillator	✓	~		~	SCHS049
CD4063B	16	4-Bit Magnitude Comparators	✓	~		~	SCHS050
CD4066B	14	Quad Bilateral Switches	✓	~	~	~	SCHS051
CD4067B	24	Single 16-Channel Analog Multiplexers/Demultiplexers	V	~			SCHS052
CD4068B	14	8-Input NAND/AND Gates	V	~		~	SCHS053
CD4069UB	14	Hex Inverters	V	~	~	~	SCHS054
CD4070B	14	Quad Exclusive-OR Gates	V	~	~	~	SCHS055
CD4071B	14	Quad 2-Input OR Gates	✓	~	~	V	SCHS056
CD4072B	14	Dual 4-Input OR Gates	V	~		~	SCHS056
CD4073B	14	Triple 3-Input AND Gates	·	~	~	V	SCHS057
CD4075B	14	Triple 3-Input OR Gates	·	~	~	~	SCHS056
CD4076B	16	4-Bit D-Type Registers	·	~		V	SCHS058
CD4077B	14	Quad Exclusive-NOR Gates	·	~	~	~	SCHS055
CD4078B	14	8-Input NOR/OR Gates	✓	~	~	~	SCHS059
CD4081B	14	Quad 2-Input AND Gates	V	~	~	V	SCHS057
CD4082B	14	Dual 4-Input AND Gates	·	~		V	SCHS057
CD4085B	14	Dual 2-Wide 2-Input AND-OR-Invert Gates	V	~		V	SCHS060
CD4086B	14	Expandable 4-Wide 2-Input AND-OR-Invert Gates	V	~		V	SCHS061
CD4089B	16	4-Bit Binary Rate Multipliers	V	~		·	SCHS062
CD4093B	14	Quad 2-Input NAND Schmitt Triggers	· ·	~	~	~	SCHS115
CD4094B	16	8-Stage Shift-and-Store Bus Registers	V	~		~	SCHS063
CD4097B	24	Differential 8-Channel Analog Multiplexers/Demultiplexers	· ·	~			SCHS052
CD4098B	16	Dual Monostable Multivibrators	· ·	~		~	SCHS065
CD4099B	16	8-Bit Addressable Latches	· ·	~		~	SCHS066
CD4502B	16	Strobed Hex Inverters/Buffers	· ·	~		~	SCHS067
CD4503B	16	Hex Buffers		~		~	SCHS068
CD4504B	16	Hex Voltage-Level Shifters for TTL-to-CMOS or CMOS-to-CMOS Operation	· ·	~			SCHS069
CD4508B	24	Dual 4-Bit Latches	· ·	~			SCHS070
CD4510B	16	Presettable BCD Up/Down Counters	· ·	~			SCHS071
CD4511B	16	BCD to 7-Segment Latch Decoder Drivers		~			SCHS072
CD4512B	16	8-Channel Data Selectors	· ·	·		~	SCHS073
CD4514B	24	4-Bit Latches/4-to-16 Line Decoders		~			SCHS074
CD4515B	24	4-Bit Latches/4-to-16 Line Decoders			~		SCHS074
CD4516B	16	Presettable Binary Up/Down Counters		~			SCHS071

CD4000

DEVICE DIVISE PINS DESCRIPTION MIL POIP SOIC TSSOP REFERENCE CD45178 16 Dual Actsage Static Shift Registers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SCHS075 CD45188 16 Dual BICD Up Counters ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SCHS076 CD45208 16 Dual Binary Up Counters ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SCHS078 CD45218 16 Programmable BCD Dividers ✓ ✓ ✓ ✓ ✓ ✓ ✓ SCHS079 CD45228 16 Programmable BCD Divide-by-N Counters ✓ ✓ ✓ ✓ ✓ ✓ ✓ SCHS080 CD45228 16 BCD Rate Multipliers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SCHS080 CD45228 16 BCD Rate Multipliers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ SCHS080 CD45228 16 BCD Rate Multipliers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ < SCHS080 CD45328 16 Programmable Timers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ < SCHS080 CD45438 16 Programmable Timers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ < SCHS080 CD45438 16 BCD to 7-Segment Latches/Decoders/Demultiplexers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ < SCHS080 CD45438 16 BCD to 7-Segment Latches/Decoders/Demultiplexers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ < SCHS080 CD45528 16		NO.			AVAI	LABILI	ГҮ	LITERATURE
CD4518B 16 Dual BCD Up Counters ✓ ✓ ✓ SCHS076 CD4520B 16 Dual Binary Up Counters ✓ ✓ ✓ SCHS076 CD4521B 16 24-Stage Frequency Dividers ✓ ✓ ✓ SCHS078 CD4522B 16 Programmable BCD Divide-by-N Counters ✓ ✓ SCHS079 CD4522B 16 BCD Rate Multipliers ✓ ✓ SCHS080 CD4532B 16 BCB Rate Multipliers ✓ ✓ SCHS080 CD4532B 16 BCB Rate Multipliers ✓ ✓ SCHS080 CD4536B 16 Programmable Timers ✓ ✓ ✓ SCHS082 CD4541B 14 Programmable Timers ✓ ✓ ✓ SCHS085 CD4541B 14 Programmable Timers ✓ ✓ SCHS085 CD4548B 16 Dual Binary 1-of-4 Decoders/Demultiplexers ✓ ✓ SCHS087 CD4555B 16 Dual Binary 1-of-4 De	DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	TSSOP	REFERENCE
CD4520B 16 Dual Binary Up Counters V V SCHS076 CD4521B 16 24-Stage Frequency Dividers V V V SCHS078 CD4522B 16 Programmable ECD Divide-by-N Counters V V SCHS079 CD4527B 16 BCD Rate Multipliers V V V SCHS080 CD4532B 16 B-RIP Infority Encoders V V V SCHS082 CD4532B 16 Programmable Timers V V V SCHS082 CD4536B 16 Programmable Timers V V V SCHS083 CD4541B 14 Programmable Timers V V SCHS085 CD4543B 16 BCD to 7-Segment Laches/Decoders/Drivers for Liquid-Crystal Displays V V SCHS085 CD4545B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 CD455EB 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087	CD4517B	16	Dual 64-Stage Static Shift Registers	V	~			SCHS075
CD4521B 16 24-Stage Frequency Dividers V V SCHS078 CD4522B 16 Programmable BCD Divide-by-N Counters V V SCHS079 CD4522B 16 B-Bit Priority Encoders V V V SCHS080 CD4532B 16 8-Bit Priority Encoders V V V SCHS082 CD4536B 16 Programmable Timers V V V SCHS082 CD4541B 14 Programmable Timers V V V SCHS088 CD4541B 16 BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays V V SCHS086 CD4545B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 CD455BB 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 CD455BB 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 CD455BB 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 <td>CD4518B</td> <td>16</td> <td>Dual BCD Up Counters</td> <td>✓</td> <td>~</td> <td></td> <td>~</td> <td>SCHS076</td>	CD4518B	16	Dual BCD Up Counters	✓	~		~	SCHS076
CD452ZB 16 Programmable BCD Divide-by-N Counters V CD4527B 16 BCD Rate Multipliers V V SCHS080 CD453ZB 16 B-Bil Priority Encoders V V V SCHS082 CD453ZB 16 B-Bil Priority Encoders V V V SCHS082 CD4543B 16 Programmable Timers V V V SCHS085 CD4543B 16 BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays V V SCHS085 CD4543B 16 BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays V V SCHS086 CD4555B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 CD4556B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 CD4556B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 CD4552BB 16 Hex Gates (4 Inverters, 2-Input NAND) V V SCHS097 CD4752BB </td <td>CD4520B</td> <td>16</td> <td>Dual Binary Up Counters</td> <td>V</td> <td>~</td> <td></td> <td>V</td> <td>SCHS076</td>	CD4520B	16	Dual Binary Up Counters	V	~		V	SCHS076
CD4527B 16 BCD Rate Multipliers V V SCHS080 CD4532B 16 8-Bit Priority Encoders V V V SCHS082 CD4536B 16 Programmable Timers V V V V SCHS083 CD4541B 14 Programmable Timers V V V V SCHS086 CD4541B 14 Programmable Timers V V V SCHS086 CD4543B 16 BCD to 7-Segment Latches/Decoders/Demultiplexers V V V SCHS087 CD4555B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 CD4572UB 16 Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND) V V SCHS089 CD4572UB 16 Hex Gates (4 Inverters, 2-Input NAND) V V SCHS090 CD4174BB 16 B.Bit Addressable Latches V V SCHS092 CD4174BB 16 B.Bit Addressable Latches V V V	CD4521B	16	24-Stage Frequency Dividers	V	~		V	SCHS078
CD4532B 16 B-Bit Priority Encoders V V V SCHS082 CD4536B 16 Programmable Timers V V V V SCHS083 CD4541B 14 Programmable Timers V V V V SCHS085 CD4543B 16 BCD to 7-Segment Latches/Decoders/Demultiplexers V V V SCHS086 CD4555B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V V SCHS087 CD4572UB 16 Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND) V V SCHS097 CD4752UB 16 Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND) V V SCHS097 CD452BB 16 Hex Gates (4 Inverters, 2-Input NAND) V V SCHS092 CD452BB 16 Belit Addressable Latches V V SCHS092 CD4152BB 16 Belit Addressable Latches V V SCHS093 CD40102B 16 2-Decade BCD Presettable Synchronous Down Counters <td>CD4522B</td> <td>16</td> <td>Programmable BCD Divide-by-N Counters</td> <td>✓</td> <td>~</td> <td></td> <td></td> <td>SCHS079</td>	CD4522B	16	Programmable BCD Divide-by-N Counters	✓	~			SCHS079
CD4536B 16 Programmable Timers V V V V V SCHS083 CD4541B 14 Programmable Timers V V V V V V V V V SCHS085 CD4543B 16 BCD to 7-Segment Latches/Decoders/Demultiplexers V V V SCHS087 CD4555B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V V SCHS087 CD4572UB 16 Hex Gates (4 Inverters, 2-Input NAND) V V SCHS087 CD4572UB 16 4-Bit Magnitude Comparators V V SCHS090 CD452BB 16 4-Bit Magnitude Comparators V V SCHS090 CD4724B 16 Bit Addressable Latches V V SCHS092 CD4724B 16 Dual-Precision Monostable Multivibrators V V SCHS093 CD40102B 16 2-Decade BCD Presetlable Synchronous Down Counters V V SCHS095 CD40102B 16 2-Bit Binary Presetlable Synchronous Down Counters V V SCHS	CD4527B	16	BCD Rate Multipliers	✓	~			SCHS080
CD4541B 14 Programmable Timers V V V V V SCHS085 CD4543B 16 BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays V V V SCHS086 CD4555B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V V SCHS087 CD4572UB 16 Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND) V V SCHS090 CD4572UB 16 Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND) V V SCHS090 CD4572UB 16 Hex Gates (4 Inverters, 2-Input NAND) V V SCHS090 CD4724B 16 B-Bit Addressable Latches V V SCHS091 CD4724B 16 8-Bit Bindery Presentable Synchronous Down Counters V V SCHS092 CD41012B 16 2-Decade BCD Presentable Synchronous Down Counters V V SCHS095 CD40102B 16 2-Decade BCD Presentable Synchronous Down Counters V V SCHS095 CD40103B 16 </td <td>CD4532B</td> <td>16</td> <td>8-Bit Priority Encoders</td> <td>✓</td> <td>~</td> <td></td> <td>V</td> <td>SCHS082</td>	CD4532B	16	8-Bit Priority Encoders	✓	~		V	SCHS082
CD45438 16 BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays V V SCHS086 CD45558 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 CD45568 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V SCHS087 CD4572UB 16 Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND) V V SCHS090 CD4585B 16 4-Bit Magnitude Comparators V V SCHS091 CD4724B 16 8-Bit Addressable Latches V V SCHS092 CD41453BB 16 Dual-Precision Monostable Multivibrators V V SCHS093 CD40102B 16 2-Decade BCD Presettable Synchronous Down Counters V V SCHS095 CD40103B 16 8-Bit Binary Presettable Synchronous Down Counters V V SCHS095 CD40106B 14 Hex Schmilt Triggers V V SCHS096 CD40107B 8 Dual 2-Input NAND Buffers/Drivers V V SCHS099 CD40107B 16 Decade Up-Down Counters/Latches/T-Segment Display Driver	CD4536B	16	Programmable Timers	✓	~		~	SCHS083
CD4555B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V V SCHS087 CD4556B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V V SCHS087 CD4572UB 16 Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND) V V V SCHS090 CD4585B 16 4-Bit Magnitude Comparators V V V SCHS091 CD4724B 16 8-Bit Addressable Latches V V V SCHS092 CD14538B 16 Dual-Precision Monostable Multivibrators V V V SCHS093 CD40102B 16 2-Decade BCD Presettable Synchronous Down Counters V V V SCHS095 CD40103B 16 8-Bit Binary Presettable Synchronous Down Counters V V V SCHS095 CD40106B 14 Hex Schmitt Triggers V V V SCHS095 CD40107B 8 Dual 2-Input NAND Buffers/Drivers V V V SCHS096 <td< td=""><td>CD4541B</td><td>14</td><td>Programmable Timers</td><td>✓</td><td>~</td><td>~</td><td>~</td><td>SCHS085</td></td<>	CD4541B	14	Programmable Timers	✓	~	~	~	SCHS085
CD4556B 16 Dual Binary 1-of-4 Decoders/Demultiplexers V V V SCHS087 CD4572UB 16 Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND) V V V SCHS090 CD4585B 16 4-Bit Magnitude Comparators V V V SCHS091 CD4724B 16 8-Bit Addressable Latches V V V SCHS092 CD14538B 16 Dual-Precision Monostable Multivibrators V V V SCHS093 CD40102B 16 2-Decade BCD Presettable Synchronous Down Counters V V V SCHS095 CD40103B 16 8-Bit Binary Presettable Synchronous Down Counters V V V SCHS095 CD40108B 14 Hex Schmitt Triggers V V V SCHS095 CD40107B 8 Dual 2-Input NAND Buffers/Drivers V V V SCHS097 CD40107B 16 Quad Low- to High-Voltage Level Shifters V V V SCHS098	CD4543B	16	BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays	·	~		~	SCHS086
CD4572UB 16 Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND) V V V SCHS090 CD4585B 16 4-Bit Magnitude Comparators V V V SCHS091 CD4724B 16 8-Bit Addressable Latches V V SCHS092 CD14538B 16 Dual-Precision Monostable Multivibrators V V V SCHS093 CD40102B 16 2-Decade BCD Presettable Synchronous Down Counters V V V SCHS095 CD40103B 16 8-Bit Binary Presettable Synchronous Down Counters V V SCHS095 CD40106B 14 Hex Schmitt Triggers V V SCHS095 CD40107B 8 Dual 2-Input NAND Buffers/Drivers V V SCHS097 CD40107B 16 Quad Low- to High-Voltage Level Shifters V V SCHS098 CD40110B 16 Decade Up-Down Counters/Latches/7-Segment Display Drivers V V SCHS099 CD40117B 14 Programmable Dual 4-Bit Terminators <td< td=""><td>CD4555B</td><td>16</td><td>Dual Binary 1-of-4 Decoders/Demultiplexers</td><td>✓</td><td>~</td><td></td><td>'</td><td>SCHS087</td></td<>	CD4555B	16	Dual Binary 1-of-4 Decoders/Demultiplexers	✓	~		'	SCHS087
CD4585B 16 4-Bit Magnitude Comparators V V SCHS091 CD4724B 16 8-Bit Addressable Latches V V V SCHS092 CD14538B 16 Dual-Precision Monostable Multivibrators V V V SCHS093 CD40102B 16 2-Decade BCD Presettable Synchronous Down Counters V V V SCHS095 CD40103B 16 8-Bit Binary Presettable Synchronous Down Counters V V V SCHS095 CD40106B 14 Hex Schmitt Triggers V V V SCHS096 CD40107B 8 Dual 2-Input NAND Buffers/Drivers V V V SCHS097 CD40107B 16 Quad Low- to High-Voltage Level Shifters V V V SCHS097 CD40109B 16 Quad Low- to High-Voltage Level Shifters V V SCHS098 CD40117B 14 Programmable Dual 4-Bit Terminators V V V SCHS100 CD4017B 16 10-Line t	CD4556B	16	Dual Binary 1-of-4 Decoders/Demultiplexers	✓	~			SCHS087
CD4724B168-Bit Addressable LatchesVVSCHS092CD14538B16Dual-Precision Monostable MultivibratorsVVVSCHS093CD40102B162-Decade BCD Presettable Synchronous Down CountersVVVSCHS095CD40103B168-Bit Binary Presettable Synchronous Down CountersVVVSCHS095CD40106B14Hex Schmitt TriggersVVVSCHS096CD40107B8Dual 2-Input NAND Buffers/DriversVVVSCHS097CD40109B16Quad Low- to High-Voltage Level ShiftersVVVSCHS098CD40110B16Decade Up-Down Counters/Latches/7-Segment Display DriversVVVSCHS099CD40117B14Programmable Dual 4-Bit TerminatorsVVVSCHS100CD40147B1610-Line to 4-Line BCD Priority EncodersVVVSCHS102CD40174B16Programmable 4-Bit Binary Counters with Asynchronous ClearVVVSCHS103CD40175B16Quad D-Type Flip-FlopsVVVSCHS105CD40192B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVVSCHS106CD40193B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVVSCHS106CD40194B164-Bit Bidirectional Universal Shift RegistersVVSCHS106	CD4572UB	16	Hex Gates (4 Inverters, 2-Input NOR, 2-Input NAND)	✓	~		V	SCHS090
CD14538B16Dual-Precision Monostable MultivibratorsVVSCHS093CD40102B162-Decade BCD Presettable Synchronous Down CountersVVSCHS095CD40103B168-Bit Binary Presettable Synchronous Down CountersVVVSCHS095CD40106B14Hex Schmitt TriggersVVVSCHS096CD40107B8Dual 2-Input NAND Buffers/DriversVVVSCHS097CD40109B16Quad Low- to High-Voltage Level ShiftersVVVSCHS098CD40110B16Decade Up-Down Counters/Latches/7-Segment Display DriversVVSCHS099CD40117B14Programmable Dual 4-Bit TerminatorsVVVSCHS100CD40147B1610-Line to 4-Line BCD Priority EncodersVVVSCHS102CD40161B16Programmable 4-Bit Binary Counters with Asynchronous ClearVVVSCHS103CD40174B16Hex D-Type Flip-FlopsVVVSCHS105CD40175B16Quad D-Type Flip-FlopsVVVSCHS105CD40192B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVVSCHS106CD40193B164-Bit Bidirectional Universal Shift RegistersVVVSCHS106	CD4585B	16	4-Bit Magnitude Comparators	·	~		V	SCHS091
CD40102B162-Decade BCD Presettable Synchronous Down CountersVVSCHS095CD40103B168-Bit Binary Presettable Synchronous Down CountersVVVSCHS095CD40106B14Hex Schmitt TriggersVVVSCHS096CD40107B8Dual 2-Input NAND Buffers/DriversVVVSCHS097CD40109B16Quad Low- to High-Voltage Level ShiftersVVVSCHS098CD40110B16Decade Up-Down Counters/Latches/7-Segment Display DriversVVSCHS099CD40117B14Programmable Dual 4-Bit TerminatorsVVVSCHS100CD40147B1610-Line to 4-Line BCD Priority EncodersVVVSCHS102CD40161B16Programmable 4-Bit Binary Counters with Asynchronous ClearVVVSCHS103CD40174B16Hex D-Type Flip-FlopsVVVSCHS104CD40175B16Quad D-Type Flip-FlopsVVVSCHS106CD40192B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVVSCHS106CD40193B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVVSCHS106CD40194B164-Bit Bidirectional Universal Shift RegistersVVVSCHS106	CD4724B	16	8-Bit Addressable Latches	·	~			SCHS092
CD40103B 16 8-Bit Binary Presettable Synchronous Down Counters V V V SCHS095 CD40106B 14 Hex Schmitt Triggers V V V V SCHS096 CD40107B 8 Dual 2-Input NAND Buffers/Drivers V V V SCHS097 CD40109B 16 Quad Low- to High-Voltage Level Shifters V V V SCHS098 CD40110B 16 Decade Up-Down Counters/Latches/7-Segment Display Drivers V V V SCHS099 CD40117B 14 Programmable Dual 4-Bit Terminators V V V SCHS100 CD40147B 16 10-Line to 4-Line BCD Priority Encoders V V V SCHS102 CD40147B 16 Programmable 4-Bit Binary Counters with Asynchronous Clear V V V SCHS103 CD40174B 16 Hex D-Type Flip-Flops V V V SCHS104 CD40175B 16 Quad D-Type Flip-Flops V V V SCHS106	CD14538B	16	Dual-Precision Monostable Multivibrators	V	~		V	SCHS093
CD40106B 14 Hex Schmitt Triggers V V V V V V SCHS096 CD40107B 8 Dual 2-Input NAND Buffers/Drivers V V V V SCHS097 CD40109B 16 Quad Low- to High-Voltage Level Shifters V V V SCHS098 CD40110B 16 Decade Up-Down Counters/Latches/7-Segment Display Drivers V V V SCHS099 CD40117B 14 Programmable Dual 4-Bit Terminators V V V SCHS100 CD40147B 16 10-Line to 4-Line BCD Priority Encoders V V V SCHS102 CD40161B 16 Programmable 4-Bit Binary Counters with Asynchronous Clear V V V SCHS103 CD40174B 16 Hex D-Type Flip-Flops V V V SCHS104 CD40175B 16 Quad D-Type Flip-Flops V V V SCHS105 CD40192B 16 Presettable BCD-Type Up/Down Counters with Dual Clock and Reset V	CD40102B	16	2-Decade BCD Presettable Synchronous Down Counters	V	~		V	SCHS095
CD40107B 8 Dual 2-Input NAND Buffers/Drivers V V V SCHS097 CD40109B 16 Quad Low- to High-Voltage Level Shifters V V V SCHS098 CD40110B 16 Decade Up-Down Counters/Latches/7-Segment Display Drivers V V SCHS099 CD40117B 14 Programmable Dual 4-Bit Terminators V V V SCHS100 CD40147B 16 10-Line to 4-Line BCD Priority Encoders V V V SCHS102 CD40161B 16 Programmable 4-Bit Binary Counters with Asynchronous Clear V V V SCHS103 CD40174B 16 Hex D-Type Flip-Flops V V V SCHS104 CD40175B 16 Quad D-Type Flip-Flops V V V SCHS105 CD40192B 16 Presettable BCD-Type Up/Down Counters with Dual Clock and Reset V V V SCHS106 CD40194B 16 4-Bit Bidirectional Universal Shift Registers V V SCHS107	CD40103B	16	8-Bit Binary Presettable Synchronous Down Counters	V	~		V	SCHS095
CD40109B16Quad Low- to High-Voltage Level ShiftersVVSCHS098CD40110B16Decade Up-Down Counters/Latches/7-Segment Display DriversVVSCHS099CD40117B14Programmable Dual 4-Bit TerminatorsVVSCHS100CD40147B1610-Line to 4-Line BCD Priority EncodersVVSCHS102CD40161B16Programmable 4-Bit Binary Counters with Asynchronous ClearVVSCHS103CD40174B16Hex D-Type Flip-FlopsVVSCHS104CD40175B16Quad D-Type Flip-FlopsVVSCHS105CD40192B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVVSCHS106CD40193B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVSCHS106CD40194B164-Bit Bidirectional Universal Shift RegistersVVSCHS107	CD40106B	14	Hex Schmitt Triggers	✓	~	~	V	SCHS096
CD40110B16Decade Up-Down Counters/Latches/7-Segment Display DriversVVSCHS099CD40117B14Programmable Dual 4-Bit TerminatorsVVSCHS100CD40147B1610-Line to 4-Line BCD Priority EncodersVVSCHS102CD40161B16Programmable 4-Bit Binary Counters with Asynchronous ClearVVSCHS103CD40174B16Hex D-Type Flip-FlopsVVSCHS104CD40175B16Quad D-Type Flip-FlopsVVSCHS105CD40192B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVSCHS106CD40193B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVSCHS106CD40194B164-Bit Bidirectional Universal Shift RegistersVVSCHS107	CD40107B	8	Dual 2-Input NAND Buffers/Drivers	✓	~		V	SCHS097
CD40117B 14 Programmable Dual 4-Bit Terminators V V V SCHS100 CD40147B 16 10-Line to 4-Line BCD Priority Encoders V V V SCHS102 CD40161B 16 Programmable 4-Bit Binary Counters with Asynchronous Clear V V V SCHS103 CD40174B 16 Hex D-Type Flip-Flops V V V SCHS104 CD40175B 16 Quad D-Type Flip-Flops V V V SCHS105 CD40192B 16 Presettable BCD-Type Up/Down Counters with Dual Clock and Reset V V V SCHS106 CD40193B 16 Presettable BCD-Type Up/Down Counters with Dual Clock and Reset V V V SCHS106 CD40194B 16 4-Bit Bidirectional Universal Shift Registers V V SCHS107	CD40109B	16	Quad Low- to High-Voltage Level Shifters	·	~		V	SCHS098
CD40147B 16 10-Line to 4-Line BCD Priority Encoders V V V SCHS102 CD40161B 16 Programmable 4-Bit Binary Counters with Asynchronous Clear V V V SCHS103 CD40174B 16 Hex D-Type Flip-Flops V V V SCHS104 CD40175B 16 Quad D-Type Flip-Flops V V V SCHS105 CD40192B 16 Presettable BCD-Type Up/Down Counters with Dual Clock and Reset V V V SCHS106 CD40193B 16 Presettable BCD-Type Up/Down Counters with Dual Clock and Reset V V V SCHS106 CD40194B 16 4-Bit Bidirectional Universal Shift Registers V V SCHS107	CD40110B	16	Decade Up-Down Counters/Latches/7-Segment Display Drivers	·	~			SCHS099
CD40161B16Programmable 4-Bit Binary Counters with Asynchronous ClearVVSCHS103CD40174B16Hex D-Type Flip-FlopsVVSCHS104CD40175B16Quad D-Type Flip-FlopsVVSCHS105CD40192B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVSCHS106CD40193B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVSCHS106CD40194B164-Bit Bidirectional Universal Shift RegistersVVSCHS107	CD40117B	14	Programmable Dual 4-Bit Terminators	✓	~		~	SCHS100
CD40174B 16 Hex D-Type Flip-Flops V V SCHS104 CD40175B 16 Quad D-Type Flip-Flops V V V SCHS105 CD40192B 16 Presettable BCD-Type Up/Down Counters with Dual Clock and Reset V V V SCHS106 CD40193B 16 Presettable BCD-Type Up/Down Counters with Dual Clock and Reset V V V SCHS106 CD40194B 16 4-Bit Bidirectional Universal Shift Registers V V SCHS107	CD40147B	16	10-Line to 4-Line BCD Priority Encoders	✓	~		'	SCHS102
CD40175B16Quad D-Type Flip-FlopsVVSCHS105CD40192B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVSCHS106CD40193B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVVSCHS106CD40194B164-Bit Bidirectional Universal Shift RegistersVVSCHS107	CD40161B	16	Programmable 4-Bit Binary Counters with Asynchronous Clear	✓	~		'	SCHS103
CD40192B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVSCHS106CD40193B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVVSCHS106CD40194B164-Bit Bidirectional Universal Shift RegistersVVSCHS107	CD40174B	16	Hex D-Type Flip-Flops	✓	~		V	SCHS104
CD40193B16Presettable BCD-Type Up/Down Counters with Dual Clock and ResetVVSCHS106CD40194B164-Bit Bidirectional Universal Shift RegistersVVSCHS107	CD40175B	16	Quad D-Type Flip-Flops	·	~		~	SCHS105
CD40194B 16 4-Bit Bidirectional Universal Shift Registers V SCHS107	CD40192B	16	Presettable BCD-Type Up/Down Counters with Dual Clock and Reset	·	~		~	SCHS106
	CD40193B	16	Presettable BCD-Type Up/Down Counters with Dual Clock and Reset	·	~		~	SCHS106
CD40257B 16 Quad 2-Line to 1-Line Data Selectors/Multiplexers	CD40194B	16	4-Bit Bidirectional Universal Shift Registers		~		~	SCHS107
	CD40257B	16	Quad 2-Line to 1-Line Data Selectors/Multiplexers	✓	~		~	SCHS108

74FFast Logic

74F logic is a general-purpose family of high-speed advanced bipolar logic. TI provides over 50 functions in the 74F family, including gates, buffers/drivers, bus transceivers, flip-flops, latches, counters, multiplexers, and demultiplexers.

See www.ti.com/sc/logic for the most current data sheets.

74F

DEVICE	NO. Pins	DESCRIPTION	MIL	AVAIL PDIP	ABILIT SOIC	Y SSOP	LITERATURE REFERENCE
SN74F00	14	Quad 2-Input NAND Gates	V	~	~		SDFS035
SN74F02	14	Quad 2-Input NOR Gates	V	~	~		SDFS036
SN74F04	14	Hex Inverters	~	~	~		SDFS037
SN74F08	14	Quad 2-Input AND Gates		~	~	~	SDFS038
SN74F10	14	Triple 3-Input NAND Gates	V	~	~		SDFS039
SN74F11	14	Triple 3-Input AND Gates	~	~	~		SDFS040
SN74F20	14	Dual 4-Input NAND Gates	~	~	~		SDFS041
SN74F21	14	Dual 4-Input AND Gates		~	~		SDFS006
SN74F27	14	Triple 3-Input NOR Gates	~	~	~		SDFS042
SN74F30	14	8-Input NAND Gates	~	V	~		SDFS043
SN74F32	14	Quad 2-Input OR Gates	~	~	~		SDFS044
SN74F38	14	Quad 2-Input NAND Gates	~	V	~		SDFS013
SN74F74	14	Dual D-Type Flip-Flops with Set and Reset	V	~	~		SDFS046
SN74F86	14	Quad 2-Input Exclusive-OR Gates		~	~		SDFS019
SN74F109	16	Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset	~	V	~		SDFS047
SN74F112	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset		V	~		SDFS048
SN74F125	14	Quad Bus Buffers with 3-State Outputs		~	~		SDFS016
SN74F126	14	Quad Bus Buffers with 3-State Outputs		V	~		SDFS017
SN74F138	16	3-to-8 Line Inverting Decoders/Demultiplexers	~	~	~		SDFS051
SN74F151B	16	1-of-8 Data Selectors/Multiplexers		~	~		SDFS023
SN74F153	16	Dual 1-of-4 Data Selectors/Multiplexers	~	V	~		SDFS052
SN74F157A	16	Quad 2-to-4 Line Data Selectors/Multiplexers	V	~	~		SDFS053
SN74F158A	16	Quad 2-to-4 Line Data Selectors/Multiplexers		~	~		SDFS054
SN74F161A	16	Synchronous 4-Bit Binary Counters		V	~		SDFS056
SN74F163A	16	Synchronous 4-Bit Binary Counters		~	~		SDFS088
SN74F169	16	Synchronous 4-Bit Up/Down Binary Counters		~	~		SDFS089
SN74F174A	16	Hex D-Type Flip-Flops with Clear		V	~		SDFS029
SN74F175	16	Quad D-Type Flip-Flops with Clear		~	~		SDFS058
SN74F240	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~	~	SDFS061
SN74F241	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~		SDFS090
SN74F244	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~	~	SDFS063
SN74F245	20	Octal Bus Transceivers with 3-State Outputs	~	~	~	~	SDFS010
SN74F251B	16	1-of-8 Data Selectors/Multiplexers with 3-State Outputs		~	~		SDFS066
SN74F253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs		~	~		SDFS064
SN74F257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		V	~		SDFS065

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

74F

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT	Y SSOP	LITERATURE REFERENCE
SN74F258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		V	~		SDFS067
SN74F260	14	Dual 5-Input NOR Gates		~	~		SDFS012
SN74F280B	14	9-Bit Odd/Even Parity Generators/Checkers		~	~		SDFS008
SN74F283	16	9-Bit Binary Full Adders with Fast Carry	V	~	~		SDFS069
SN74F299	20	8-Bit Universal Shift/Storage Registers		~	~		SDFS071
SN74F373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~	~	SDFS076
SN74F374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	V	~	~	~	SDFS077
SN74F377A	20	Octal D-Type Flip-Flops with Enable		~	~		SDFS018
SN74F520	20	8-Bit Identity Comparators $(P = Q)$ with Input Pullup Resistors		~	~		SDFS081
SN74F521	20	8-Bit Identity Comparators (P = Q)	V	~	~		SDFS091
SN74F541	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~		SDFS021
SN74F543	24	Octal Registered Transceivers with 3-State Outputs		~	~	~	SDFS025
SN74F573	20	Octal Transparent D-Type Latches with 3-State Outputs		~	~		SDFS011
SN74F574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	~		SDFS005
SN74F623	20	Octal Bus Transceivers with 3-State Outputs	V	~	~		SDFS087
SN74F657	24	Octal Bus Transceivers with Parity Generators/Checkers and 3-State Outputs		~	~		SDFS027
SN74F1016	20	16-Bit Schottky Barrier Diode R-C Bus-Termination Arrays			~		SDFS093
SN74F1056	16	8-Bit Schottky Barrier Diode Bus-Termination Arrays			~		SDFS085
SN74F2244	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs		~	~	~	SDFS095
SN74F2245	20	Octal Bus Transceivers with Series Damping Resistors and 3-State Outputs		~	~	~	SDFS099
SN74F2373	20	25-Ω Octal Transparent D-Type Latches with 3-State Outputs		~	V	~	SDFS100

FB+/BTL FutureBus+/ Backplane Transceiver Logic

The FB+ series of devices is designed for use in double-terminated high-speed bus applications and is fully compatible with IEEE Std 896-1991 (FutureBus+) and IEEE Std 1194.1-1991 (BTL). These transceivers are available in 7-, 8-, 9-, and 18-bit versions for 5-V CMOS or TTL-to-BTL and BTL-to-TTL translations. Other features include BTL drive up to 100 mA, low (5 pF to 6 pF maximum) B-port C_{io} , t_{pd} performance below 5 ns, and B-port BIAS V_{CC} pins for live insertion.

One device, the 18-bit 'FB1653, offers 5-V CMOS, TTL- or LVTTL-to-BTL and BTL-to-LVTTL translations.

See www.ti.com/sc/logic for the most current data sheets.

FB+/BTL

DEVICE	NO. PINS	DESCRIPTION	AV MIL	AILAB I QFP	ILITY TQFP	LITERATURE REFERENCE
SN74FB1650	100	18-Bit TTL/BTL Universal Storage Transceivers			~	SCBS178
SN74FB1651	100	17-Bit TTL/BTL Universal Storage Transceivers with Buffered Clock Lines			~	SCBS177
SN74FB1653	100	17-Bit LVTTL/BTL Universal Storage Transceivers with Buffered Clock Lines			~	SCBS702
SN74FB2031	52	9-Bit TTL/BTL Address/Data Transceivers	~	~		SCBS176
SN74FB2033A	52	8-Bit TTL/BTL Registered Transceivers	~	~		SCBS174
SN74FB2033K	52	8-Bit TTL/BTL Registered Transceivers		~		SCBS472
SN74FB2040	52	8-Bit TTL/BTL Transceivers	'	~		SCBS173
SN74FB2041A	52	7-Bit TTL/BTL Transceivers		V		SCBS172

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package)

DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

FCTFast CMOS TTL Logic

The FCT product family is designed for high-current-drive bus-interface applications. The FCT family is fabricated using a CMOS 6- μ m technology to provide up to 40-mA or 64-mA current sink capability, with typical propagation delays of 5 ns (CD74FCT245). The family is optimized to operate at 5 V and is pin-function compatible with most standard bipolar and CMOS logic families.

The FCT family of devices has several features for efficient bus interfacing. The family does not have input or output diodes to V_{CC} , and most FCT devices have 3-state outputs. Bus noise is minimized with 1-V, or less, typical ground bounce (V_{OID} , 5-V V_{CC} , 25°C) and limited output voltage swing (3.5-V typical).

The FCT family includes 8-, 9-, and 10-bit bus-interface devices.

Key features:

- 5-V operation
- 5-ns typical propagation delay (CD74FCT245)
- Low quiescent power consumption
- 1-V typical V_{olp}

TI's FCT family was acquired from Harris Semiconductor in December 1998.

See www.ti.com/sc/logic for the most current data sheets.

FCT

	NO			٨	VAILAE	DII ITV		LITEDATURE
DEVICE	NO. Pins	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	LITERATURE REFERENCE
CY29FCT52CT	24	Octal Registered Transceivers with 3-State Outputs			V	~		SCCS010
CY74FCT138AT	16	1-of-8 Decoders			~	~		SCCS013
CY74FCT138CT	16	1-of-8 Decoders			~	~		SCCS013
CY74FCT138T	16	1-of-8 Decoders				~		SCCS013
CY74FCT157AT	16	Quad 2-Input Multiplexers			~	~		SCCS014
CY74FCT157CT	16	Quad 2-Input Multiplexers			~	~		SCCS014
CY74FCT163CT	16	Synchronous 4-Bit Binary Counters			~	~		SCCS015
CY74FCT163T	16	Synchronous 4-Bit Binary Counters	· /					SCCS015
CY74FCT191AT	16	Presettable Synchronous 4-Bit Up/Down Binary Counters			~			SCCS016
CY74FCT191CT	16	Presettable Synchronous 4-Bit Up/Down Binary Counters			~	~		SCCS016
CD74FCT240	20	Octal Buffers/Drivers with 3-State Outputs		~	~			SCHS270
CY74FCT240AT	20	Octal Buffers/Drivers with 3-State Outputs	·		~	~		SCCS017
CY74FCT240CT	20	Octal Buffers/Drivers with 3-State Outputs			~	~		SCCS017
CY74FCT240T	20	Octal Buffers/Drivers with 3-State Outputs			~	~		SCCS017
CD74FCT244	20	Octal Buffers and Line Drivers with 3-State Outputs		~	~			SCHS270
CD74FCT244AT	20	Octal Buffers and Line Drivers with 3-State Outputs		~				SCHS270
CY74FCT244AT	20	Octal Buffers and Line Drivers with 3-State Outputs	·	~	~			SCCS017
CY74FCT244CT	20	Octal Buffers and Line Drivers with 3-State Outputs	·		~	~		SCCS017
CY74FCT244DT	20	Octal Buffers and Line Drivers with 3-State Outputs			~	~		SCCS017
CY74FCT244T	20	Octal Buffers and Line Drivers with 3-State Outputs	·		~	~		SCCS017
CD74FCT245	20	Octal Bus Transceivers with 3-State Outputs		~	~			SCHS271
CY74FCT245AT	20	Octal Bus Transceivers with 3-State Outputs	·	~	~	~		SCCS018
CY74FCT245CT	20	Octal Bus Transceivers with 3-State Outputs	V		~	~		SCCS018
CY74FCT245DT	20	Octal Bus Transceivers with 3-State Outputs				~		SCCS018
CY74FCT245T	20	Octal Bus Transceivers with 3-State Outputs	V		~	~		SCCS018
CY74FCT257AT	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs				~		SCCS019
CY74FCT257CT	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs			~	~		SCCS019
CY74FCT257T	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs				~		SCCS019
CD74FCT273	20	Octal D-Type Flip-Flops with Clear		~	~			SCHS254
CY74FCT273AT	20	Octal D-Type Flip-Flops with Clear	~		~	~		SCCS020
CY74FCT273CT	20	Octal D-Type Flip-Flops with Clear			~	~		SCCS020
CY74FCT273T	20	Octal D-Type Flip-Flops with Clear			~	~		SCCS020
CD74FCT373	20	Octal Transparent D-Type Latches with 3-State Outputs		~	~			SCHS272
CY74FCT373AT	20	Octal Transparent D-Type Latches with 3-State Outputs	V		~	~		SCCS021
CY74FCT373CT	20	Octal Transparent D-Type Latches with 3-State Outputs			~	~		SCCS021
CY74FCT373T	20	Octal Transparent D-Type Latches with 3-State Outputs			~			SCCS021
CD74FCT374	20	Octal Transparent D-Type Latches with 3-State Outputs		~	~			SCHS256
CY74FCT374AT	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~	~		SCCS022
CY74FCT374CT	20	Octal Transparent D-Type Latches with 3-State Outputs	V		~	~		SCCS022
CY74FCT374T	20	Octal Transparent D-Type Latches with 3-State Outputs	~		~	~		SCCS022
CY74FCT377AT	20	Octal D-Type Flip-Flops with Enable			~	~		SCCS023

commercial package description and availability

schedule

 See Appendix A for package information.

	NO			٨	VAILAE	DII ITV		LITEDATURE
DEVICE	NO. Pins	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	LITERATURE REFERENCE
CY74FCT377CT	20	Octal D-Type Flip-Flops with Enable	· · · · · · · · · · · · · · · · · · ·	1 5 11	V	V	10001	SCCS023
CY74FCT377T	20	Octal D-Type Flip-Flops with Enable				~		SCCS023
CY74FCT399AT	16	Quad 2-Input Multiplexers with Storage			~			SCCS024
CY74FCT399CT	16	Quad 2-Input Multiplexers with Storage			~		-	SCCS024
CY74FCT480AT	24	Dual 8-Bit Parity Generators/Checkers		~		V	-	SCCS025
CY74FCT480BT	24	Dual 8-Bit Parity Generators/Checkers	· ·	~	~	V		SCCS025
CY29FCT520AT	24	8-Bit Multi-Level Pipeline Registers		~	~			SCCS011
CY29FCT520BT	24	8-Bit Multi-Level Pipeline Registers			~			SCCS011
CY29FCT520CT	24	8-Bit Multi-Level Pipeline Registers			~			SCCS011
CD74FCT540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs		~	~			SCHS257
CY74FCT540CT	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs				V		SCCS029
CD74FCT541	20	Octal Buffers and Line Drivers with 3-State Outputs		~	~			SCHS257
CY74FCT541AT	20	Octal Buffers and Line Drivers with 3-State Outputs		~	~	V		SCCS029
CY74FCT541CT	20	Octal Buffers and Line Drivers with 3-State Outputs			~	~		SCCS029
CY74FCT541T	20	Octal Buffers and Line Drivers with 3-State Outputs			~			SCCS029
CD74FCT543	24	Octal Registered Transceivers with 3-State Outputs		~	~			SCHS258
CY74FCT543AT	24	Octal Registered Transceivers with 3-State Outputs			~	~		SCCS030
CY74FCT543CT	24	Octal Registered Transceivers with 3-State Outputs			~	~		SCCS030
CY74FCT543T	24	Octal Registered Transceivers with 3-State Outputs	V		~	~		SCCS030
CD74FCT564	20	Octal Inverting D-Type Flip-Flops with 3-State Outputs		~	~			SCHS259
CD74FCT573	20	Octal Transparent D-Type Latches with 3-State Outputs		~	~	~		SCHS260
CD74FCT573AT	20	Octal Transparent D-Type Latches with 3-State Outputs		~				SCHS260
CY74FCT573AT	20	Octal Transparent D-Type Latches with 3-State Outputs		~	~	~		SCCS021
CY74FCT573CT	20	Octal Transparent D-Type Latches with 3-State Outputs			~	~		SCCS021
CY74FCT573T	20	Octal Transparent D-Type Latches with 3-State Outputs			~	~		SCCS021
CD74FCT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	~			SCHS259
CY74FCT574AT	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	✓		~	~		SCCS022
CY74FCT574CT	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs			~	~		SCCS022
CY74FCT574T	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs			~	~		SCCS022
CD74FCT623	20	Octal Bus Transceivers with 3-State Outputs			~			SCHS296
CY74FCT646AT	24	Octal Registered Bus Transceivers with 3-State Outputs			~	~		SCCS031
CY74FCT646CT	24	Octal Registered Bus Transceivers with 3-State Outputs	V		~	~		SCCS031
CY74FCT646T	24	Octal Registered Bus Transceivers with 3-State Outputs			~	~		SCCS031
CY74FCT652AT	24	Octal Bus Transceivers and Registers with 3-State Outputs			~	~		SCCS032
CY74FCT652CT	24	Octal Bus Transceivers and Registers with 3-State Outputs			~	~		SCCS032
CY74FCT652T	24	Octal Bus Transceivers and Registers with 3-State Outputs				~		SCCS032
CY29FCT818AT	24	Diagnostic Scan Registers						SCCS012
CY29FCT818CT	24	Diagnostic Scan Registers		~	~	~		SCCS012
CD74FCT821A	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs		~	~			SCHS264
CY74FCT821AT	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs						SCCS033
CY74FCT821BT	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs		~	~			SCCS033
CY74FCT821CT	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs			~	~		SCCS033
CD74FCT822A	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs		~				SCHS264
CD74FCT823A	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs		~				SCHS265
CY74FCT823AT	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs		~	~	~		SCCS033

	NO.			Δ	VAILAE	BILITY		LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	REFERENCE
CY74FCT823BT	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs		_				SCCS033
CY74FCT823CT	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs			~	~		SCCS033
CD74FCT824A	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs		~				SCHS265
CY74FCT825CT	24	8-Bit Bus-Interface Flip-Flops with 3-State Outputs				~	-	SCCS033
CY74FCT827AT	24	10-Bit Buffers/Drivers with 3-State Outputs			~	V		SCCS034
CY74FCT827CT	24	10-Bit Buffers/Drivers with 3-State Outputs			~	~		SCCS034
CD74FCT841A	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs		~	~			SCHS266
CY74FCT841AT	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs	~		~			SCCS035
CY74FCT841BT	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs		~				SCCS035
CY74FCT841CT	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs			~	~		SCCS035
CD74FCT842A	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs			~			SCHS267
CD74FCT843A	24	9-Bit Bus-Interface D-Type Latches with 3-State Outputs			~			SCHS267
CD74FCT844A	24	9-Bit Transparent Latches with 3-State Outputs		~				SCHS295
CY74FCT2240AT	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs				~		SCCS036
CY74FCT2240CT	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			~	~		SCCS036
CY74FCT2240T	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			~			SCCS036
CY74FCT2244AT	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			~	~		SCCS036
CY74FCT2244CT	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			~	~		SCCS036
CY74FCT2244CT	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			~	~		SCCS036
CY74FCT2244T	20	Octal Bus Transceivers with Series Damping Resistors and 3-State Outputs			~	~		SCCS037
CY74FCT2245AT	20	Octal Bus Transceivers with Series Damping Resistors and 3-State Outputs			<u> </u>	~		SCCS037
CY74FCT2245CT	20				~	~		SCCS037
CY/4FC122451	20	Octal Bus Transceivers with Series Damping Resistors and 3-State Outputs						3003037
CY74FCT2257AT	16	Quad 1-of-2 Data Selectors/Multiplexers with Series Damping Resistors and 3-State Outputs				~		SCCS038
CY74FCT2257CT	16	Quad 1-of-2 Data Selectors/Multiplexers with Series Damping Resistors and 3-State Outputs			•	~		SCCS038
CY74FCT2373AT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs				~		SCCS039
CY74FCT2373CT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			~	~		SCCS039
CY74FCT2373T	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs				~		SCCS039
CY74FCT2374AT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			~	~		SCCS040
CY74FCT2374CT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			~	~		SCCS040
CY74FCT2374T	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			~			SCCS040
CY74FCT2541AT	20	Octal Line Drivers/MOS Drivers with 3-State Outputs			~	~		SCCS041
CY74FCT2541CT	20	Octal Line Drivers/MOS Drivers with 3-State Outputs			~	~		SCCS041
CY74FCT2541T	20	Octal Line Drivers/MOS Drivers with 3-State Outputs			~	~		SCCS041
CY74FCT2543AT	24	Octal Registered Transceivers with Series Damping Resistors and 3-State Outputs			~	~		SCCS042
CY74FCT2543CT	24	Octal Registered Transceivers with Series Damping Resistors and 3-State Outputs			~	~		SCCS042
CY74FCT2543T	24	Octal Registered Transceivers with Series Damping Resistors and 3-State Outputs				v		SCCS042

DEVICE	NO. Pins	DESCRIPTION	MIL	A PDIP	VAILAE SOIC	SILITY SSOP	TSSOP	LITERATURE REFERENCE
CY74FCT2573AT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs				~		SCCS039
CY74FCT2573CT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			~	~		SCCS039
CY74FCT2573T	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			~			SCCS039
CY74FCT2574AT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			~	~		SCCS040
CY74FCT2574CT	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			~	~		SCCS040
CY74FCT2574T	20	Octal Transparent D-Type Latches with Series Damping Resistors and 3-State Outputs			~			SCCS040
CY74FCT2646AT	24	Octal Registered Bus Transceivers with Series Damping Resistors and 3-State Outputs				~		SCCS043
CY74FCT2646CT	24	Octal Registered Bus Transceivers with Series Damping Resistors and 3-State Outputs				~		SCCS043
CY74FCT2652AT	24	Octal Bus Transceivers and Registers with Series Damping Resistors and 3-State Outputs				V		SCCS044
CY74FCT2652CT	24	Octal Bus Transceivers and Registers with Series Damping Resistors and 3-State Outputs				~		SCCS044
CY74FCT2827AT	24	10-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				~		SCCS045
CY74FCT2827CT	24	10-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				~		SCCS045
CD74FCT2952A	24	Octal Bus Transceivers and Registers with 3-State Outputs			~			SCBS720
CY74FCT16240AT	48	16-Bit Buffers/Drivers with 3-State Outputs				+		SCCS027
CY74FCT16240ET	48	16-Bit Buffers/Drivers with 3-State Outputs				+		SCCS027
CY74FCT16244AT	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS028
CY74FCT16244CT	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS028
CY74FCT16244ET	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS028
CY74FCT16244T	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS028
CY74FCT16245AT	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS026
CY74FCT16245CT	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS026
CY74FCT16245ET	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS026
CY74FCT16245T	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS026
CY74FCT16373AT	48	16-Bit Transparent D-Type Latches with 3-State Outputs				+	+	SCCS054
CY74FCT16373CT	48	16-Bit Transparent D-Type Latches with 3-State Outputs				+	+	SCCS054
CY74FCT16373ET	48	16-Bit Transparent D-Type Latches with 3-State Outputs				+	+	SCCS054
CY74FCT16374AT	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				+	+	SCCS055
CY74FCT16374CT	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				+	+	SCCS055
CY74FCT16374ET	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				+	+	SCCS055
CY74FCT16374T	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				+		SCCS055
CY74FCT16500CT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+	+	SCCS056
CY74FCT16501AT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+		SCCS057
CY74FCT16501ET	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+	+	SCCS057
CY74FCT16543AT	56	16-Bit Registered Transceivers with 3-State Outputs					+	SCCS059
CY74FCT16543CT	56	16-Bit Registered Transceivers with 3-State Outputs				+		SCCS059
CY74FCT16543ET	56	16-Bit Registered Transceivers with 3-State Outputs				+	+	SCCS059
CY74FCT16543T	56	16-Bit Registered Transceivers with 3-State Outputs				+		SCCS059

DEVICE	NO. PINS	DESCRIPTION			VAILAE			LITERATURE
			MIL	PDIP	SOIC	SSOP	TSSOP	REFERENCE
CY74FCT16646AT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				*		SCCS060
CY74FCT16646CT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+		SCCS060
CY74FCT16646ET	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				*		SCCS060
CY74FCT16646T	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+		SCCS060
CY74FCT16652AT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+		SCCS061
CY74FCT16652CT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+		SCCS061
CY74FCT16652ET	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+	+	SCCS061
CY74FCT16823AT	56	18-Bit D-Type Flip-Flops with 3-State Outputs					+	SCCS062
CY74FCT16823CT	56	18-Bit D-Type Flip-Flops with 3-State Outputs				+	+	SCCS062
CY74FCT16823ET	56	18-Bit D-Type Flip-Flops with 3-State Outputs				+	+	SCCS062
CY74FCT16827AT	56	20-Bit Buffers/Drivers with 3-State Outputs				+		SCCS064
CY74FCT16827CT	56	20-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS064
CY74FCT16827ET	56	20-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS064
CY74FCT16841AT	56	20-Bit Bu- Interface D-Type Latches with 3-State Outputs				+		SCCS067
CY74FCT16841CT	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs				+		SCCS067
CY74FCT16952AT	56	16-Bit Registered Transceivers with 3-State Outputs				+		SCCS065
CY74FCT16952CT	56	16-Bit Registered Transceivers with 3-State Outputs					+	SCCS065
CY74FCT16952ET	56	16-Bit Registered Transceivers with 3-State Outputs				+		SCCS065
CY74FCT162240CT	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS027
CY74FCT162240ET	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS027
CY74FCT162244AT	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS028
CY74FCT162244CT	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS028
CY74FCT162244ET	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS028
CY74FCT162244T	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS028
CY74FCT162H244AT	48	16-Bit Buffers/Drivers with Bus Hold and 3-State Outputs					+	SCCS028
CY74FCT162H244CT	48	16-Bit Buffers/Drivers with Bus Hold and 3-State Outputs				+		SCCS028
CY74FCT162H244ET	48	16-Bit Buffers/Drivers with Bus Hold and 3-State Outputs				+	+	SCCS028
CY74FCT162245AT	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS026
CY74FCT162245CT	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS026
CY74FCT162245ET	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS026
CY74FCT162245T	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS026
CY74FCT162H245AT	48	16-Bit Bus Transceivers with Bus Hold and 3-State Outputs				+	+	SCCS026
CY74FCT162H245CT	48	16-Bit Bus Transceivers with Bus Hold and 3-State Outputs				+	+	SCCS026
CY74FCT162H245ET	48	16-Bit Bus Transceivers with Bus Hold and 3-State Outputs				+	+	SCCS026
CY74FCT162373AT	48	16-Bit Transparent D-Type Latches with 3-State Outputs				+	+	SCCS054
CY74FCT162373CT	48	16-Bit Transparent D-Type Latches with 3-State Outputs				+	+	SCCS054
CY74FCT162373ET	48	16-Bit Transparent D-Type Latches with 3-State Outputs				+	+	SCCS054
CY74FCT162374AT	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				+	+	SCCS055
CY74FCT162374CT	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				+	+	SCCS055
CY74FCT162374ET	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				+	+	SCCS055
CY74FCT162374T	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				+	-	SCCS055
CY74FCT162500AT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+		SCCS056
CY74FCT162500CT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+		SCCS056
CY74FCT162501AT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+	+	SCCS057
CY74FCT162501CT	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+	+	SCCS057
						•		

	NO.			Δ	VAILAE	RII ITY		LITERATURE
DEVICE	PINS	DESCRIPTION	MIL		SOIC		TSSOP	REFERENCE
CY74FCT162501ET	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+	+	SCCS057
CY74FCT162H501CT	56	18-Bit Universal Bus Transceivers with Bus Hold and 3-State Outputs				+	+	SCCS057
CY74FCT162H501ET	56	18-Bit Universal Bus Transceivers with Bus Hold and 3-State Outputs				+	+	SCCS057
CY74FCT162543AT	56	16-Bit Registered Transceivers with 3-State Outputs					+	SCCS059
CY74FCT162543CT	56	16-Bit Registered Transceivers with 3-State Outputs				+	+	SCCS059
CY74FCT162543ET	56	16-Bit Registered Transceivers with 3-State Outputs				+	+	SCCS059
CY74FCT162543T	56	16-Bit Registered Transceivers with 3-State Outputs				+		SCCS059
CY74FCT162H543CT	56	16-Bit Registered Transceivers with Bus Hold and 3-State Outputs					+	SCCS059
CY74FCT162646AT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+	+	SCCS060
CY74FCT162646CT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+	+	SCCS060
CY74FCT162646ET	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+	+	SCCS060
CY74FCT162652AT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+		SCCS061
CY74FCT162652CT	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+	+	SCCS061
CY74FCT162652ET	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+	+	SCCS061
CY74FCT162823AT	56	18-Bit D-Type Flip-Flops with 3-State Outputs					+	SCCS062
CY74FCT162823CT	56	18-Bit D-Type Flip-Flops with 3-State Outputs				+	+	SCCS062
CY74FCT162823ET	56	18-Bit D-Type Flip-Flops with 3-State Outputs				+	+	SCCS062
CY74FCT162827AT	56	20-Bit Buffers/Drivers with 3-State Outputs				+		SCCS064
CY74FCT162827BT	56	20-Bit Buffers/Drivers with 3-State Outputs				+		SCCS064
CY74FCT162827CT	56	20-Bit Buffers/Drivers with 3-State Outputs					+	SCCS064
CY74FCT162827ET	56	20-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS064
CY74FCT162841CT	56	20-Bit Bus-Interface D-Type Latches with 3-State Outputs				+	+	SCCS067
CY74FCT162952AT	56	16-Bit Registered Transceivers with 3-State Outputs					+	SCCS065
CY74FCT162952BT	56	16-Bit Registered Transceivers with 3-State Outputs				+		SCCS065
CY74FCT162952ET	56	16-Bit Registered Transceivers with 3-State Outputs				+		SCCS065
CY74FCT162H952AT	56	16-Bit Registered Transceivers with Bus Hold and 3-State Outputs					+	SCCS065
CY74FCT162H952CT	56	16-Bit Registered Transceivers with Bus Hold and 3-State Outputs				+		SCCS065
CY74FCT162H952ET	56	16-Bit Registered Transceivers with Bus Hold and 3-State Outputs					+	SCCS065
CY74FCT163244A	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS046
CY74FCT163244C	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	SCCS046
CY74FCT163H244C	48	16-Bit Buffers/Drivers with Bus Hold and 3-State Outputs				+	+	SCCS046
CY74FCT163245A	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS051
CY74FCT163245C	48	16-Bit Bus Transceivers with 3-State Outputs				+	+	SCCS051
CY74FCT163H245A	48	16-Bit Bus Transceivers with Bus Hold and 3-State Outputs				+		SCCS051
CY74FCT163H245C	48	16-Bit Bus Transceivers with Bus Hold and 3-State Outputs				+	+	SCCS051
CY74FCT163373C	48	16-Bit Transparent D-Type Latches with 3-State Outputs				+	+	SCCS053
CY74FCT163374A	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs					+	SCCS050
CY74FCT163374C	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs				+	+	SCCS050
CY74FCT163H374C	48	16-Bit Edge-Triggered D-Type Flip-Flops with Bus Hold and 3-State Outputs				+	+	SCCS050
CY74FCT163500A	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+		SCCS066
CY74FCT163500C	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+	+	SCCS066
CY74FCT163501C	56	18-Bit Universal Bus Transceivers with 3-State Outputs				+	+	SCCS047
CY74FCT163H501C	56	18-Bit Universal Bus Transceivers with Bus Hold and 3-State Outputs				+	+	SCCS047
CY74FCT163543A	56	16-Bit Registered Transceivers with 3-State Outputs				+		SCCS063
CY74FCT163543C	56	16-Bit Registered Transceivers with 3-State Outputs				+	+	SCCS063

DEVICE	NO.	DESCRIPTION		А	VAILAE	BILITY		LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	REFERENCE
CY74FCT163646C	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+	+	SCCS058
CY74FCT163652A	56	16-Bit Bus Transceivers and Registers with 3-State Outputs					+	SCCS052
CY74FCT163652C	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				+	+	SCCS052
CY74FCT163827A	56	20-Bit Buffers/Drivers with 3-State Outputs				+		SCCS049
CY74FCT163827C	56	20-Bit Buffers/Drivers with 3-State Outputs				+		SCCS049
CY74FCT163952C	56	16-Bit Registered Transceivers with 3-State Outputs				+	+	SCCS048
CY74FCT163H952C	56	16-Bit Registered Transceivers with Bus Hold and 3-State Outputs				+	+	SCCS048

FIFO

First-In, First-Out Memories

Today's competitive environment creates a constant need for greater system performance. One common method to optimize system performance involves the use of a first in, first out (FIFO) memory to eliminate the data bottlenecks common between digital signal processors (DSPs), high-speed processors, industry-standard buses, memory devices, and analog front ends (AFEs). TI offers a wide range of FIFO devices designed for use in a variety of systems including real-time DSP applications, telecommunications, internetworking, instrumentation, and high-bandwidth computing. TI's high-performance FIFO products provide the speed and features necessary to enhance your system's performance.

Visit the TI FIFO home page at http://www.ti.com/sc/fifo for a comprehensive overview of TI's FIFO product line, new product releases, data sheets, application reports, and pricing.

FIFOs

DEVICE	NO.	CLOCK	DECODIDATION			A۱	/AILABI	ILITY			LITERATURE
DEVICE	PINS	(MHz)	DESCRIPTION	MIL	PDIP	SOIC	SSOP	PLCC	QFP	TQFP	REFERENCE
36-Bit Synchrono	ous FIFOs										
SN74ABT3611	132, 120	67	64 × 36, 5-V Synchronous FIFOs						~	~	SCBS127
SN74ABT3613	132, 120	67	64 × 36, 5-V Synchronous FIFO						~	~	SCBS128
SN74ABT3612	132, 120	67	64 × 36 × 2, 5-V Synchronous Bidirectional FIFOs						~	~	SCBS129
SN74ABT3614	132, 120	67	64 × 36 × 2, 5-V Synchronous Bidirectional FIFOs	~					~	~	SCBS126
SN74ACT3622	132, 120	67	$256 \times 36 \times 2$, 5-V Synchronous Bidirectional FIFOs						~	~	SCAS247
SN74ACT3631	132, 120	67	512 × 36, 5-V Synchronous FIFOs						~	~	SCAS246
SN74ACT3632	132, 120	67	$512 \times 36 \times 2$, 5-V Synchronous Bidirectional FIFOs	~					~	~	SCAS224
SN74ACT3641	132, 120	67	1K × 36, 5-V Synchronous FIFOs	~					~	~	SCAS338
SN74ACT3651	132, 120	67	2K × 36, 5-V Synchronous FIFOs						~	~	SCAS439
SN74ALVC3631	132, 120	100	512 × 36, 3.3–V Synchronous FIFOs						~	~	SDMS025
SN74ALVC3641	132, 120	100	1K × 36, 3.3-V Synchronous FIFOs						~	~	SDMS025
SN74ALVC3651	132, 120	100	2K × 36, 3.3-V Synchronous FIFOs						~	~	SDMS025
32-Bit Synchrono	ous FIFOs										
SN74ACT3638	132, 120	67	$512 \times 32 \times 2$, 5-V Synchronous Bidirectional FIFOs						~	~	SCAS228
18-Bit Synchrono	ous FIFOs										
SN74ACT7813	56	67	64 × 18, 5-V Synchronous FIFOs				~				SCAS199
SN74ACT7805	56	67	256 × 18, 5-V Synchronous FIFOs				~				SCAS201
SN74ACT7803	56	67	512 × 18, 5-V Synchronous FIFOs				~				SCAS191
SN74ABT7819	80	100	512 × 18 × 2, 5-V Synchronous Bidirectional FIFOs	~					~	~	SCBS125
SN74ACT7811	68, 80	67	1K × 18, 5-V Synchronous FIFOs	~				~		~	SCAS151
SN74ACT7881	68, 80	67	1K × 18, 5-V Synchronous FIFOs	~				~		~	SCAS227
SN74ACT7882	68, 80	67	2K × 18, 5-V Synchronous FIFOs					~		~	SCAS445
SN74ALVC7813	56	50	64 × 18, 3.3-V Synchronous FIFOs				~				SCAS594
SN74ALVC7805	56	50	256 × 18, 3.3-V Synchronous FIFOs				~				SCAS593
SN74ALVC7803	56	50	512 × 18, 3.3-V Synchronous FIFOs								SCAS436

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier)

FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFOs only)

PQ = 100/132 pins (FIFOs only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins

= 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFOs only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package)

DBQ = 16/20/24 pins

SSOP (shrink small-outline package)

DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

FIFOs

DEVICE	NO.	CLOCK	DESCRIPTION			A۱	/AILABI	LITY			LITERATURE
DEVICE	PINS	(MHz)	DESCRIPTION	MIL	PDIP	SOIC	SSOP	PLCC	QFP	TQFP	REFERENCE
18-Bit Asynchron	nous FIFOs										
SN74ACT7814	56	50	64 × 18, 5-V Asynchronous FIFOs				~				SCAS209
SN74ACT7806	56	50	256 × 18, 5V Asynchronous FIFOs				~				SCAS438
SN74ACT7804	56	50	512 × 18, 5-V Asynchronous FIFOs				~				SCAS204
SN74ABT7820	80	67	$512 \times 18 \times 2$, 5-V Asynchronous Bidirectional FIFOs	~					~	~	SCAS206
SN74ACT7802	80	40	1K × 18, 5-V Asynchronous FIFOs					~		~	SCAS187
SN74ALVC7814	56	40	64 × 18, 3.3-V Asynchronous FIFOs				~				SCAS592
SN74ALVC7806	56	40	256 × 18, 3.3-V Asynchronous FIFOs				~				SCAS591
SN74ALVC7804	56	40	512 × 18, 3.3-V Asynchronous FIFOs				~				SCAS437
9-Bit FIFOs											
SN74ACT2235	44, 64	50	$1K \times 9 \times 2$, 5-V Asynchronous Bidirectional FIFOs					~		~	SCAS148
SN74ACT7807	44, 64	67	2K × 9, 5-V Synchronous FIFOs					V		~	SCAS200
SN74ACT7808	44, 64	50	2K × 9, 5-V Asynchronous FIFOs					~		~	SCAS205
1-Bit Telecommu	nication FIF	Os									
SN74ACT2226	24	22	64 × 1 × 2, 5-V Independent Synchronous FIFOs			~					SCAS219
SN74ACT2227	28	60	64 × 1 × 2, 5-V Independent Synchronous FIFOs			~					SCAS220
SN74ACT2228	24	22	$256 \times 1 \times 2$, 5-V Independent Synchronous FIFOs			~					SCAS219
SN74ACT2229	28	60	$256 \times 1 \times 2$, 5-V Independent Synchronous FIFOs			~					SCAS220
Mature Products											
SN74LS224A	16	10	16 × 4, 5-V Synchronous FIFOs	~	~						SDLS023
SN74ALS232B	16, 16, 20	40	16 × 4, 5-V Asynchronous FIFOs		~	~		~			SCAS251
SN74ALS236	16	30	16 × 4, 5-V Asynchronous FIFOs		~						SDAS107
CD40105B	16	3	16 × 4, 5-V Asynchronous FIFOs	~	~						SCHS096
CD74HC40105	16	12	16 × 4, 5-V Asynchronous FIFOs	~	~	~					SCHS222
CD74HCT40105	16	12	16 × 4, 5-V Asynchronous FIFOs	~	~	~					SCHS222
SN74S225	20	10	16 × 5, 5-V Asynchronous FIFOs		~						SDLS207
SN74ALS229B	20	40	16 × 5, 5-V Asynchronous FIFOs		~	~					SDAS090
									-		

GTL

Gunning Transceiver Logic

GTL devices are high-speed transceivers operating at LVTTL logic levels on the card and at GTL/GTL+ signal levels on the bus. The devices are designed with faster edge rates for applications in which the backplane length/number of slots is limited, and hot insertion is not a requirement. GTL devices are best suited for use in point-to-point applications or in lightly loaded backplanes. The devices operate at the JEDEC JESD8-3 GTL or at the higher threshold-voltage/lower noise-margin GTL+ signal levels. Use GTLP devices in applications that require a slower edge rate, as in 21-slot backplanes.

GTL family features:

- 3.3-V or 3.3-/5-V V_{CC} operation with 5-V-tolerant LVTTL I/Os (except 'GTL1655) permits the devices to act as 5-V CMOS/TTL or 3.3-V LVTTL-to-GTL+/GTL and GTL+/GTL-to-3.3-V LVTTL translators.
- Output edge control (OEC™) reduces line reflections, electromagnetic interference (EMI), and improves overall signal integrity.
- B-port drive of 50 mA and 100 mA ('GTL1655 only) allows the designer flexibility in matching the device to the application.
- I_{off} circuitry prevents damage during partial power-down situations.
- Power-up 3-state (PU3S) and BIAS V_{CC} circuitry ('GTL1655 only) permit true live-insertion capability.
- Bus-hold circuitry (A port only) eliminates floating inputs by holding them
 at the last valid logic state. No external pullup or pulldown resistors are
 needed for unused or undriven inputs, which reduces power, cost, and
 board layout time. There is no bus-hold circuitry on the B port (GTL/GTL+
 side) because this would defeat the purpose of the open-drain output that
 takes on the high-impedance state to allow the bus to be pulled to the logic
 high state via the termination resistors.

See http://www.ti.com/sc/gtl for further information. TI provides a wide range of design assistance, including application support, application reports, free samples, demonstration backplane, and HSPICE/IBIS simulation models.

GTL

DEVICE	NO. PINS	DESCRIPTION	<i>A</i> MIL	VAILAB SSOP	ILITY TSSOP	LITERATURE REFERENCE
SN74GTL1655	64	16-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers with Live Insertion			V	SCBS696
SN74GTL16612	56	18-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers	~	~	~	SCBS480
SN74GTL16616	56	17-Bit LVTTL-to-GTL/GTL+ Universal Bus Transceivers with Buffered Clock Outputs		~	~	SCBS481
SN74GTL16622A	64	18-Bit LVTTL-to-GTL/GTL+ Registered Bus Transceivers			~	SCBS673
SN74GTL16923	64	18-Bit LVTTL-to-GTL/GTL+ Registered Bus Transceivers			~	SCBS674

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only) PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins

PN = 80 pins PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only) **SOIC** (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

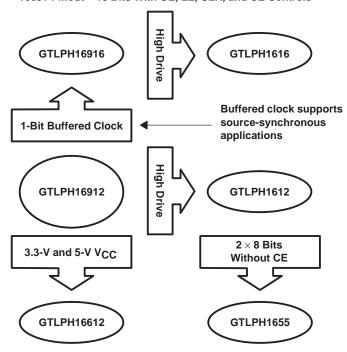
GTLP

Gunning Transceiver Logic Plus

GTLP devices are high-speed CMOS transceivers specifically designed for heavily loaded parallel backplane applications. The reduced output swing (<1 V), reduced input threshold levels, differential input, and output edge control OEC™ and TI-OPC™ overshoot protection circuitry on the GTLP rising and falling edges reduces EMI and improves overall signal integrity, allowing higher backplane clock frequencies. This increases the bandwidth for manufacturers developing improved data-communication solutions.

GTLP solves high-performance parallel backplane designers' needs:

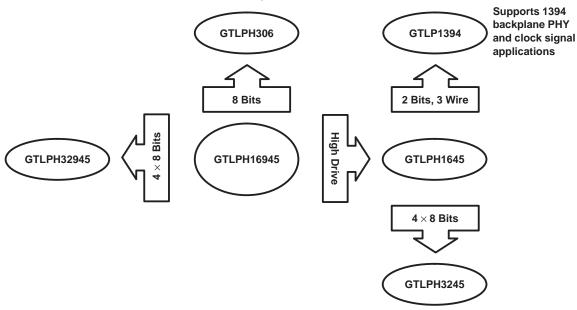
- Offers higher backplane speeds (60 MHz to 160 MHz) for increased data-throughput requirements, lower EMI, and lower power consumption.
- I_{off}, power-up 3-state (PU3S), and BIAS V_{CC} circuitry support true live-insertion capability for easy internal precharging of the backplane I/O pins for applications in which active backplane data cannot be suspended or disturbed during card insertion or removal.
- Compatible with existing parallel backplane technologies, GTLP provides an alternative to more complex serial technologies.


GTLP family features:

- 3.3-V V_{CC} with 5-V-tolerant LVTTL I/Os permits GTLP devices to act as 5-V CMOS, TTL, or LVTTL-to-GTLP and GTLP-to-LVTTL or TTL translators.
- A-port (LVTTL side) balanced drive of ±24 mA
- B-port (GTLP side) open drain sinks either 50 mA or 100 mA of current, allowing the designer flexibility in matching the best device to backplane length, slot spacing, and termination resistance.
- Edge-rate control (ERC) circuitry allows either fast or slow edge rates.
- One-third the static power consumption of BiCMOS logic devices
- A-port bus-hold circuitry (GTLPH only) eliminates floating inputs by holding them at the last valid logic state.

See http://www.ti.com/sc/gtlp for further information. TI provides a wide range of design assistance, including application reports and support, free samples, demonstration backplane, and HSPICE/IBIS simulation models.

Migration Path From GTLPH16912


MEDIUM-DRIVE UNIVERSAL BUS TRANSCEIVER '16601 Pinout – 18 Bits With OE, LE, CLK, and CE Controls

Migration Path From GTLPH16945

MEDIUM-DRIVE BUS TRANSCEIVER

'16245 Pinout – 2×8 Bits With Separate DIR and OE Controls

GTLP

	NO.				AVAIL	ABILITY			LITERATURE
DEVICE	PINS	DESCRIPTION	LFBGA	SOIC	SSOP	TSSOP	TVSOP	VFBGA	REFERENCE
SN74GTLPH306	24	8-Bit LVTTL-to-GTLP Bus Transceivers		+		+	+		SCES284
SN74GTLP817	24	GTLP-to-LVTTL 1-to-6 Fanout Drivers		+		+	+		SCES285
SN74GTLP1394	16	2-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers with Selectable Parity		+		+	+		SCES286
SN74GTLPH1612	64	18-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers				+			SCES287
SN74GTLPH1616	64	17-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers with Buffered Clock				+			Call
SN74GTLPH1645	56	16-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers				+	+	+	SCES290
SN74GTLPH1655	64	16-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Universal Bus Transceivers				+			SCES294
SN74GTLPH3245	114	32-Bit LVTTL-to-GTLP Adjustable-Edge-Rate Bus Transceivers	+						SCES291
SN74GTLPH16612	56	18-Bit LVTTL to GTLP Universal Bus Transceivers			~	~			SCES326
SN74GTLPH16912	56	18-Bit LVTTL-to-GTLP Universal Bus Transceivers				+	+		SCES288
SN74GTLPH16916	56	17-Bit LVTTL-to-GTLP Universal Bus Transceivers with Buffered Clock				+	*		Call
SN74GTLPH16945	48	16-Bit LVTTL-to-GTLP Bus Transceivers				+	+	+	SCES292
SN74GTLPH32945	96	32-Bit LVTTL-to-GTLP Bus Transceivers	+						SCES293

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins

NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier)

FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only)

PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM

= 64 pins PN

= 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = 8/14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package)

DBQ = 16/20/24 pins

SSOP (shrink small-outline package)

DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins

DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

SN74GTLP1394

Specifically designed for use with the Texas Instruments TSB14C01A 1394 backplane layer controller family to transmit 1394 backplane serial bus across parallel backplanes

- The 1394 backplane serial bus plays a supportive role in backplane systems, providing a means for diagnostics. system enhancement, and peripheral monitoring.
- High-performance, multi-slot, parallel-backplane-optimized GTLP edge rates easily support data transfer rates of 25 Mbps (S25), 50 Mbps (\$50), and 100 Mbps (\$100).
- GTLP vs LVDS solutions
 - Single-chip solution
 - Easier to implement
- GTLP vs BTL/FB+ solutions
 - Better signal integrity
 - More cost effective
 - Less power consumption

Vcc

OEAB

8.0

0.4

• V,,

⊥ GND

LVTTL

 \mathbf{V}_{OL}

A1

SN74GTLP1394 main features include: 3.3 V -

- LVTTL to GTLP bidirectional translator
- High GTLP drive (100 mA)
- TI-OPCTM overshoot protection circuitry
- BIAS V_{CC} supports true live insertion.
- 3.3-V V_{CC} with 5-V tolerance
- \$3.75 in lots of 1000
- 16-pin SOIC (D & DR), TSSOP (PWR), and TVSOP (DGVR) packages

www.ti.com/sc/1394

www.ti.com/sc/qtlp

12 B2

11 GND

10**[**] V_{REF}

0.55

GTLP

HC/HCTHigh-Speed CMOS Logic

TI offers a full family of HC/HCT devices for low-power, medium- to low-speed applications. The recent addition of products acquired from Harris Semiconductor has added a wide range of additional functions. Over 250 HC and HCT device types are available, including gates, latches, flip-flops, buffers/drivers, counters, multiplexers, transceivers, and registered transceivers. The HC/HCT family is a popular, reliable logic family with 6-mA output current drive at 5-V V_{CC} (HC/HCT) and 20- μ A output current drive 3.3-V V_{CC} (HC only).

While HCMOS can be used in most new designs, TI recommends Advanced High-Speed CMOS (AHC) as a reliable and effortless migration path from the HC family. AHC delivers the same low noise as HC, with half the static power consumption of HC, at a competitive price.

The HC family offers CMOS inputs and outputs, while the HCT family offers TTL inputs with CMOS outputs.

See www.ti.com/sc/logic for the most current data sheets.

HC

DEVICE	NO.	DESCRIPTION		A	VAILAE	BILITY		LITERATURE
DEVICE	PINS	DESCRIFTION	MIL	PDIP	SOIC	SSOP	TSSOP	REFERENCE
CD74HC00	14	Quad 2-Input NAND Gates	~	~	~		,	SCHS116
SN74HC00	14	Quad 2-Input NAND Gates	'	~	~		~	SCLS181
CD74HC02	14	Quad 2-Input NOR Gates	~	~	~			SCHS125
SN74HC02	14	Quad 2-Input NOR Gates	'	~	~	~	~	SCLS076
CD74HC03	14	Quad 2-Input NAND Gates with Open-Drain Outputs	'	~	~			SCHS126
SN74HC03	14	Quad 2-Input NAND Gates with Open-Drain Outputs	V	~	~			SCLS077
CD74HC04	14	Hex Inverters	~	~	~			SCHS117
SN74HC04	14	Hex Inverters	~	~	~		~	SCLS078
CD74HCU04	14	Hex Unbuffered Inverters	~	~	~			SCHS127
SN74HCU04	14	Hex Unbuffered Inverters	V	~	~	~	~	SCLS079
SN74HC05	14	Hex Inverters with Open-Drain Outputs	V	~	~			SCLS080
CD74HC08	14	Quad 2-Input AND Gates	~	~	~			SCHS118
SN74HC08	14	Quad 2-Input AND Gates	~	~	~		~	SCLS081
CD74HC10	14	Triple 3-Input NAND Gates	~	~	~			SCHS128
SN74HC10	14	Triple 3-Input NAND Gates	~	~	~			SCLS083
CD74HC11	14	Triple 3-Input AND Gates	~	~	~			SCHS273
SN74HC11	14	Triple 3-Input AND Gates	~	~	~			SCLS084
CD74HC14	14	Hex Schmitt-Trigger Inverters	V	~	~			SCHS129
SN74HC14	14	Hex Schmitt-Trigger Inverters	~	~	~		~	SCLS085
CD74HC20	14	Dual 4-Input NAND Gates	V	~	~			SCHS130
SN74HC20	14	Dual 4-Input NAND Gates	V	~	~			SCLS086
CD74HC21	14	Dual 4-Input AND Gates	~	~	~			SCHS131
SN74HC21	14	Dual 4-Input AND Gates	V	~	~			SCLS087
CD74HC27	14	Triple 3-Input NOR Gates	V	~	~			SCHS132
SN74HC27	14	Triple 3-Input NOR Gates	~	~	~			SCLS088
CD74HC30	14	8-Input NAND Gates	V	~	~		V	SCHS121
CD74HC32	14	Quad 2-Input OR Gates	V	~	~			SCHS274
SN74HC32	14	Quad 2-Input OR Gates	~	~	~	V	V	SCLS200
CD74HC42	16	4-Line BCD-to-10-Line Decimal Decoders	V	~	~			SCHS133
SN74HC42	16	4-Line BCD-to-10-Line Decimal Decoders	V	~	~			SCLS091
CD74HC73	14	Dual J-K Edge-Triggered Flip-Flops with Reset	~	~	~			SCHS134
CD74HC74	14	Dual D-Type Flip-Flops with Set and Reset	~	~	~			SCHS124
SN74HC74	14	Dual D-Type Flip-Flops with Set and Reset	~	~	~	~	~	SCLS094
CD74HC75	16	Dual 2-Bit Bistable Transparent Latches	~	~	~		~	SCHS135
CD74HC85	16	4-Bit Magnitude Comparators	~	~	~		~	SCHS136

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now 🛨 = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only)
PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)

PAH = 52 pins
PAG = 64 pins (FB only)
PM = 64 pins

PN = 80 pins PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only) **SOIC** (small-outline integrated circuit)

D = 8/14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package)
DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins

DGV = 14/16/20/24/48/ DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

See Appendix A for package information on CD54/74HC devices.

HC

DE1.00=	NO.	DECODINE (A)		A	VAILAE	BILITY		LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	REFERENCE
CD74HC86	14	Quad 2-Input Exclusive-OR Gates	V	~	~			SCHS137
SN74HC86	14	Quad 2-Input Exclusive-OR Gates	~	~	~		~	SCLS100
CD74HC93	14	4-Bit Binary Ripple Counters		~	~			SCHS138
CD74HC107	14	Dual Negative-Edge-Triggered J-K Flip-Flops with Reset	V	~	~			SCHS139
CD74HC109	16	Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset	~	~	~			SCHS140
SN74HC109	16	Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset	~	~	~			SCLS098
CD74HC112	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	~	~	~			SCHS141
SN74HC112	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	/	~	~			SCLS099
CD74HC123	16	Dual Retriggerable Monostable Multivibrators with Reset	V	~	~			SCHS142
CD74HC125	14	Quad Bus Buffers with 3-State Outputs	V	~	~			SCHS143
SN74HC125	14	Quad Bus Buffers with 3-State Outputs	V	~	~	~		SCLS104
CD74HC126	14	Quad Bus Buffers with 3-State Outputs	V	~	~			SCHS144
SN74HC126	14	Quad Bus Buffers with 3-State Outputs	V	~	~	~		SCLS103
CD74HC132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	~	~	~			SCHS145
SN74HC132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	V	~	~	~	~	SCLS034
CD74HC137	16	3-to-8 Line Decoders/Demultiplexers with Address Latches		~				SCHS146
CD74HC138	16	3-to-8 Line Inverting Decoders/Demultiplexers	V	~	~			SCHS147
SN74HC138	16	3-to-8 Line Inverting Decoders/Demultiplexers	V	~	~	~	~	SCLS107
CD74HC139	16	Dual 2-to-4 Line Decoders/Demultiplexers	~	~	~			SCHS148
SN74HC139	16	Dual 2-to-4 Line Decoders/Demultiplexers	~	~	~		~	SCLS108
CD74HC147	16	10-to-4 Line Priority Encoders	~	~	~			SCHS149
SN74HC148	16	8-to-3 Line Priority Encoders	~	~	~			SCLS109
CD74HC151	16	1-of-8 Data Selectors/Multiplexers	~	~	~			SCHS150
SN74HC151	16	1-of-8 Data Selectors/Multiplexers	V	~	~			SCLS110
CD74HC153	16	Dual 1-of-4 Data Selectors/Multiplexers	· ·	~	~			SCHS151
SN74HC153	16	Dual 1-of-4 Data Selectors/Multiplexers	~	~	~			SCLS112
CD74HC154	24	4-to-16 Line Decoders/Demultiplexers	~	~	~			SCHS152
CD74HC157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	V	~	~			SCHS153
SN74HC157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	V	~	~			SCLS113
CD74HC158	16	Quad 2-to-4 Line Data Selectors/Multiplexers	V	~	~			SCHS153
SN74HC158	16	Quad 2-to-4 Line Data Selectors/Multiplexers	V	~	~			SCLS296
CD74HC161	16	Synchronous 4-Bit Binary Counters	~	~	~			SCHS154
SN74HC161	16	Synchronous 4-Bit Binary Counters	V	~	~			SCLS297
CD74HC163	16	Synchronous 4-Bit Binary Counters	~	~	~			SCHS154
SN74HC163	16	Synchronous 4-Bit Binary Counters	~	~	~			SCLS298
CD74HC164	14	8-Bit Serial-In, Parallel-Out Shift Registers	~	~	~			SCHS155
SN74HC164	14	8-Bit Serial-In, Parallel-Out Shift Registers	~	~	~			SCLS115
CD74HC165	16	8-Bit Parallel-In, Serial-Out Shift Registers	~	~	~			SCHS156
SN74HC165	16	8-Bit Parallel-In, Serial-Out Shift Registers	~	~	~		~	SCLS116
CD74HC166	16	8-Bit Parallel-Load Shift Registers	~	~	~			SCHS157
SN74HC166	16	8-Bit Parallel-Load Shift Registers	·	~	~			SCLS117
CD74HC173	16	Quad D-Type Flip-Flops with 3-State Outputs	V	~	~			SCHS158
CD74HC174	16	Hex D-Type Flip-Flops with Clear	V	~	~			SCHS159
SN74HC174	16	Hex D-Type Flip-Flops with Clear	V	~	~			SCLS119

HC

						IT./		LITEDATURE
DEVICE	NO. Pins	DESCRIPTION	MIL	PDIP	VAILAE SOIC	SSOP	TSSOP	LITERATURE REFERENCE
CD74HC175	16	Quad D-Type Flip-Flops with Clear	VIIL	PDIP ✓	V	33UP	1330P	SCHS160
SN74HC175	16	Quad D-Type Flip-Flops with Clear		<u> </u>	<u> </u>			SCLS299
CD74HC190	16	Presettable Synchronous 4-Bit Up/Down BCD Decade Counters		~				SCHS275
CD74HC191	16	Presettable Synchronous 4-Bit Up/Down Binary Counters			V			SCHS162
SN74HC191	16	Presettable Synchronous 4-Bit Up/Down Binary Counters		~	~			SCLS121
CD74HC192	16	BCD Presettable Synchronous 4-Bit Up/Down Decade Counters		~				SCHS163
CD74HC193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters		~	~			SCHS163
SN74HC193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters		~	~			SCLS122
CD74HC194	16	4-Bit Bidirectional Universal Shift Registers		~	· ·			SCHS164
CD74HC195	16	4-Bit Parallel Access Shift Registers		~	· ·			SCHS165
CD74HC221	16	Dual Monostable Multivibrators with Schmitt-Trigger Inputs		~	~			SCHS166
CD74HC237	16	3-to-8 Line Decoders/Demultiplexers with Address Latches	~	~	~			SCHS146
CD74HC238	16	3-to-8 Line Decoders/Demultiplexers	~	~	~			SCHS147
CD74HC240	20	Octal Buffers/Drivers with 3-State Outputs	· ·	~	~			SCHS167
SN74HC240	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~		~	SCLS128
SN74HC240A	20	Octal Buffers/Drivers with 3-State Outputs		~			~	Call
CD74HC241	20	Octal Buffers/Drivers with 3-State Outputs		~	~			SCHS167
SN74HC241	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~			SCLS300
CD74HC243	14	Quad Bus-Transceivers with 3-State Outputs	~	~	~			SCHS168
CD74HC244	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~			SCHS167
SN74HC244	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~	~	~	SCLS130
CD74HC245	20	Octal Bus Transceivers with 3-State Outputs	~	~	~			SCHS119
SN74HC245	20	Octal Bus Transceivers with 3-State Outputs	~	~	~	~	~	SCLS131
CD74HC251	16	1-of-8 Data Selectors/Multiplexers with 3-State Outputs	~	~	~			SCHS169
SN74HC251	16	1-of-8 Data Selectors/Multiplexers with 3-State Outputs	~	~	~	~		SCLS132
CD74HC253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs		~	~			SCHS170
SN74HC253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs	~	~	~	~		SCLS133
CD74HC257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	~	~	~			SCHS171
SN74HC257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	~	~	~		~	SCLS224
CD74HC258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs			~			SCHS276
SN74HC258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		~	~			SCLS224
CD74HC259	16	8-Bit Addressable Latches	~	~	~			SCHS173
SN74HC259	16	8-Bit Addressable Latches	~	~	~		~	SCLS134
SN74HC266	14	Quad 2-Input Exclusive-NOR Gates with Open-Drain Outputs		~	~			SCLS135
CD74HC273	20	Octal D-Type Flip-Flops with Clear	~	~	~			SCHS174
SN74HC273	20	Octal D-Type Flip-Flops with Clear	~	~	~	~	~	SCLS136
CD74HC280	14	9-Bit Odd/Even Parity Generators/Checkers	~	~	~			SCHS175
CD74HC283	16	9-Bit Binary Full Adders with Fast Carry	~	~	~			SCHS176
CD74HC297	16	Digital Phase-Locked Loops	~	~				SCHS177
CD74HC299	20	8-Bit Universal Shift/Storage Registers	~	~	~			SCHS178
CD74HC354	20	8-Line to 1-Line Data Selectors/Multiplexers/Registers	~	~				SCHS179
CD74HC365	16	Hex Buffers/Line Drivers with 3-State Outputs	~	~	~			SCHS180
SN74HC365	16	Hex Buffers/Line Drivers with 3-State Outputs	~	~	~			SCLS308
CD74HC366	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs	~	~	~			SCHS180

HC

DEVICE	NO. Pins	DESCRIPTION			VAILAE			LITERATURE REFERENCE
	;		MIL	PDIP	SOIC	SSOP	TSSOP	_
CD74HC367	16	Hex Buffers/Line Drivers with 3-State Outputs						SCHS181
SN74HC367	16	Hex Buffers/Line Drivers with 3-State Outputs			<i>V</i>			SCLS309
CD74HC368	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs			~			SCHS181
SN74HC368	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs		~	~			SCLS310
CD74HC373	20	Octal Transparent D-Type Latches with 3-State Outputs			~			SCHS182
SN74HC373	20	Octal Transparent D-Type Latches with 3-State Outputs			~	~		SCLS140
CD74HC374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs						SCHS183
SN74HC374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs						SCLS141
CD74HC377	20	Octal D-Type Flip-Flops with Enable	~	~	~			SCHS184
SN74HC377	20	Octal D-Type Flip-Flops with Enable	~	~	~			SCLS307
CD74HC390	16	Dual 4-Bit Decade Counters		~	~			SCHS185
CD74HC393	14	Dual 4-Bit Binary Counters	~	~	~			SCHS186
SN74HC393	14	Dual 4-Bit Binary Counters		~	~	~	,	SCLS143
CD74HC423	16	Dual Retriggerable Monostable Multivibrators with Reset		~	~			SCHS142
CD74HC533	20	Octal Inverting Transparent Latches with 3-State Outputs	~	~				SCHS187
CD74HC534	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	~	~				SCHS188
CD74HC540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	~	~	~			SCHS189
SN74HC540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	~	~	~			SCLS007
CD74HC541	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~			SCHS189
SN74HC541	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~	~	~	SCLS305
CD74HC563	20	Octal Inverting Transparent Latches with 3-State Outputs	~	~	~			SCHS187
SN74HC563	20	Octal Inverting Transparent Latches with 3-State Outputs		~	~			SCLS145
CD74HC564	20	Octal D-Type Inverting Flip-Flops with 3-State Outputs	~	~	~			SCHS188
CD74HC573	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~			SCHS182
SN74HC573A	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~		~	SCLS147
CD74HC574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~			SCHS183
SN74HC574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~		V	SCLS148
SN74HC590A	16	8-Bit Binary Counters with 3-State Output Registers	~	~	~			SCLS039
SN74HC594	16	8-Bit Shift Registers with Output Registers		~	~			SCLS040
SN74HC595	16	8-Bit Shift Registers with 3-State Output Registers	V	V	~			SCLS041
CD74HC597	16	8-Bit Shift Registers with Input Latches	V	V	~			SCHS191
SN74HC623	20	Octal Bus Transceivers with 3-State Outputs		~	~			SCLS149
CD74HC640	20	Octal Bus Transceivers with 3-State Outputs	~	~	~			SCHS192
SN74HC640	20	Octal Bus Transceivers with 3-State Outputs	~	~	~			SCLS303
SN74HC645	20	Octal Bus Transceivers with 3-State Outputs	~	~	~			SCLS304
CD74HC646	24	Octal Registered Bus Transceivers with 3-State Outputs	~	~	~			SCHS193
SN74HC646	24	Octal Registered Bus Transceivers with 3-State Outputs		~	~			SCLS150
CD74HC652	24	Octal Bus Transceivers and Registers with 3-State Outputs		~				SCHS194
SN74HC652	24	Octal Bus Transceivers and Registers with 3-State Outputs		~	~			SCLS151
CD74HC670	16	4-by-4 Register Files with 3-State Outputs	~	~	~			SCHS195
SN74HC682	20	8-Bit Magnitude Comparators		~	·			SCLS018
SN74HC684	20	8-Bit Magnitude Comparators			~			SCLS340
CD74HC688	20	8-Bit Magnitude Comparators	·	·	~			SCHS196
SN74HC688	20	8-Bit Magnitude Comparators	·	·	~			SCLS010
JIV/411C000	20	o-bit magnitude Comparators	•	•			•	3013010

HC

	NO.			A	VAILAE	BILITY		LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	REFERENCE
CD74HC4002	14	Dual 4-Input NOR Gates	~	~	~		V	SCHS197
CD74HC4015	16	Dual 4-Stage Static Shift Registers	~	~	~			SCHS198
CD74HC4016	14	Quad Bilateral Switches		~	~			SCHS199
CD74HC4017	16	Decade Counters/Dividers with 1-of-10 Decoded Outputs	~	~	~		~	SCHS200
CD74HC4020	16	12-Stage Ripple-Carry Binary Counters/Dividers	~	~	~			SCHS201
SN74HC4020	16	12-Stage Ripple-Carry Binary Counters/Dividers	~	~	~			SCLS158
CD74HC4024	14	7-Stage Ripple-Carry Binary Counters/Dividers	~	~	~		~	SCHS202
CD74HC4040	16	12-Stage Ripple-Carry Binary Counters/Dividers	~	~	~			SCHS203
SN74HC4040	16	12-Stage Ripple-Carry Binary Counters/Dividers	~	~	~	~	~	SCLS160
CD74HC4046A	16	Micropower Phase-Locked Loops with VCO	~	~	~		~	SCHS204
CD74HC4049	16	Hex Buffers/Converters	~	~	~		~	SCHS205
CD74HC4050	16	Hex Buffers/Converters	~	~	~		V	SCHS205
CD74HC4051	16	8-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	~	~	~		~	SCHS122
CD74HC4052	16	Dual 4-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	~	~	~			SCHS122
CD74HC4053	16	Triple 2-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	~	~	~		V	SCHS122
CD74HC4059	24	Programmable Divide-by-N Counters	~	~	~			SCHS206
CD74HC4060	16	14-Stage Binary-Ripple Counters/Dividers and Oscillators	~	~	~			SCHS207
SN74HC4060	16	14-Stage Binary-Ripple Counters/Dividers and Oscillators		~	~			SCLS161
CD74HC4066	14	Quad Bilateral Switches	~	~	~			SCHS208
SN74HC4066	14	Quad Bilateral Switches		~	~	~	~	SCLS325
CD74HC4067	24	Single 16-Channel Analog Multiplexers/Demultiplexers	~	~	~	~		SCHS209
CD74HC4075	14	Triple 3-Input OR Gates	~	~	~		~	SCHS210
CD74HC4094	16	8-Stage Shift-and-Store Bus Registers	~	~	~		~	SCHS211
CD74HC4316	16	Quad Analog Switches with Level Translation	~	~	~		~	SCHS212
CD74HC4351	20	Analog 1-of-8 Multiplexers/Demultiplexers with Latch	~	~	~			SCHS213
CD74HC4352	20	Analog Dual 1-of-4 Multiplexers/Demultiplexers with Latch	~	~				SCHS213
CD74HC4511	16	BCD to 7-Segment Latch Decoder Drivers	~	~	~		~	SCHS214
CD74HC4514	24	4-Bit Latches/4-to-16 Line Decoders	~	~	~			SCHS215
CD74HC4515	24	4-Bit Latches/4-to-16 Line Decoders	~	~	~			SCHS215
CD74HC4518	16	Dual BCD Up Counters		~				SCHS216
CD74HC4520	16	Dual Binary Up Counters	~	~	~			SCHS216
CD74HC4538	16	Dual Retriggerable Precision Monostable Multivibrators	~	~	~		~	SCHS123
CD74HC4543	16	BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays		~				SCHS217
SN74HC7001	14	Quad 2-Input AND Gates with Schmitt-Trigger Inputs		~	~			SCLS035
SN74HC7002	14	Quad 2-Input NOR Gates with Schmitt-Trigger Inputs		~	~			SCLS033
SN74HC7032	14	Quad 2-Input OR Gates with Schmitt-Trigger Inputs		~	~			SCLS036
CD74HC7046A	16	Phase-Locked Loops with VCO and Lock Detector		~	~			SCHS218
CD74HC7266	14	Quad 2-Input Exclusive NOR Gates	V	~	~			SCHS219
CD74HC40103	16	8-Bit Binary Presettable Synchronous Down Counters	~	'	V			SCHS221

HCT

	NO.				AVA	ILABILI'	ΤΥ		LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	TVSOP	REFERENCE
CD74HCT00	14	Quad 2-Input NAND Gates	~	~	~				SCHS116
SN74HCT00	14	Quad 2-Input NAND Gates		~	~		V		SCLS062
CD74HCT02	14	Quad 2-Input NOR Gates	~	~	~				SCHS125
SN74HCT02	14	Quad 2-Input NOR Gates		~	~				SCLS065
CD74HCT03	14	Quad 2-Input NAND Gates with Open-Drain Outputs	~	~	~				SCHS126
CD74HCT04	14	Hex Inverters	V	~	~				SCHS117
SN74HCT04	14	Hex Inverters	V	~	~		~		SCLS042
CD74HCT08	14	Quad 2-Input AND Gates	V	~	~				SCHS118
SN74HCT08	14	Quad 2-Input AND Gates		~	~	~	~		SCLS063
CD74HCT10	14	Triple 3-Input NAND Gates	V	~	~				SCHS128
CD74HCT11	14	Triple 3-Input AND Gates	~	~	~				SCHS273
CD74HCT14	14	Hex Schmitt-Trigger Inverters	~	~	~				SCHS129
SN74HCT14	14	Hex Schmitt-Trigger Inverters	~	~	~	~	V	~	SCLS225
CD74HCT20	14	Dual 4-Input NAND Gates	V	~	~				SCHS130
CD74HCT21	14	Dual 4-Input AND Gates		~	~				SCHS131
CD74HCT27	14	Triple 3-Input NOR Gates	~	~	~				SCHS132
CD74HCT30	14	8-Input NAND Gates	~	~	~				SCHS121
CD74HCT32	14	Quad 2-Input OR Gates	~	~	~				SCHS274
SN74HCT32	14	Quad 2-Input OR Gates		~	~	~	V		SCLS064
CD74HCT42	16	4-Line BCD-to-10-Line Decimal Decoders	~	~					SCHS133
CD74HCT73	14	Dual J-K Edge-Triggered Flip-Flops with Reset		~	~				SCHS134
CD74HCT74	14	Dual D-Type Flip-Flops with Set and Reset	V	~	~				SCHS124
SN74HCT74	14	Dual D-Type Flip-Flops with Set and Reset		~	~				SCLS169
SN74HCT74A	14	Dual D-Type Flip-Flops with Set and Reset		~		~	~		Call
CD74HC75	16	Dual 2-Bit Bistable Transparent Latches	~	~	~				SCHS135
CD74HCT85	16	4-Bit Magnitude Comparators	~	~	~				SCHS136
CD74HCT86	14	Quad 2-Input Exclusive-OR Gates	~	~	~				SCHS137
CD74HCT93	14	4-Bit Binary Ripple Counters		~					SCHS138
CD74HCT107	14	Dual Negative-Edge-Triggered J-K Flip-Flops with Reset		~					SCHS139
CD74HCT109	16	Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset	V	~	~				SCHS140
CD74HCT112	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	V	~					SCHS141
CD74HCT123	16	Dual Retriggerable Monostable Multivibrators with Reset	~	~	~				SCHS142
CD74HCT125	14	Quad Bus Buffers with 3-State Outputs	V	~	~				SCHS143
SN74HCT125	14	Quad Bus Buffers with 3-State Outputs		~	~				SCLS069
CD74HCT126	14	Quad Bus Buffers with 3-State Outputs		~	~				SCHS144

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)

PAH = 52 pins
PAG = 64 pins (FB only)
PM = 64 pins
PN = 80 pins

PN = 80 pins PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only) **SOIC** (small-outline integrated circuit)

D = 8/14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package)
DB = 14/16/20/24/28/30/38 pins
DBQ = 16/20/24

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins

DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

See Appendix A for package information on CD54/74HCT devices.

HCT

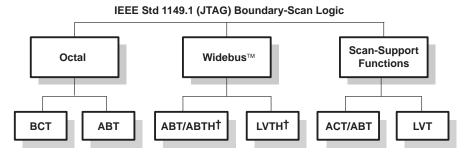
	NO.				AVA	ILABILI	TY		LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	TVSOP	REFERENCE
CD74HCT132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	V	~	~				SCHS145
CD74HCT137	16	3-to-8 Line Decoders/Demultiplexers with Address Latches		~	~				SCHS146
CD74HCT138	16	3-to-8 Line Inverting Decoders/Demultiplexers	~	~	~				SCHS147
SN74HCT138	16	3-to-8 Line Inverting Decoders/Demultiplexers	~	~	~		V		SCLS171
CD74HCT139	16	Dual 2-to-4 Line Decoders/Demultiplexers	~	~	~				SCHS148
SN74HCT139	16	Dual 2-to-4 Line Decoders/Demultiplexers		~	~	V	~		SCLS066
CD74HCT147	16	10-to-4 Line Priority Encoders		~					SCHS149
CD74HCT151	16	1-of-8 Data Selectors/Multiplexers	~	~	~				SCHS150
CD74HCT153	16	Dual 1-of-4 Data Selectors/Multiplexers	~	~	~				SCHS151
CD74HCT154	24	4-to-16 Line Decoders/Demultiplexers	~	~	~				SCHS152
CD74HCT157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	~	~	~				SCHS153
SN74HCT157	16	Quad 2-to-4 Line Data Selectors/Multiplexers		~	~				SCLS071
CD74HCT158	16	Quad 2-to-4 Line Data Selectors/Multiplexers	~	~					SCHS153
CD74HCT161	16	Synchronous 4-Bit Binary Counters	V	~	~				SCHS154
CD74HCT163	16	Synchronous 4-Bit Binary Counters	~	~	~				SCHS154
CD74HCT164	14	8-Bit Serial-In, Parallel-Out Shift Registers	~	~	~				SCHS155
CD74HCT165	16	8-Bit Parallel-In, Serial-Out Shift Registers	~	~	~				SCHS156
CD74HCT166	16	8-Bit Parallel-Load Shift Registers	~	~	~				SCHS157
CD74HCT173	16	Quad D-Type Flip-Flops with 3-State Outputs	~	~	~				SCHS158
CD74HCT174	16	Hex D-Type Flip-Flops with Clear	~	~	~				SCHS159
CD74HCT175	16	Quad D-Type Flip-Flops with Clear	V	~	~				SCHS160
CD74HCT191	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	V	~	~				SCHS162
CD74HCT193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	V	~					SCHS163
CD74HCT194	16	4-Bit Bidirectional Universal Shift Registers		~					SCHS164
CD74HCT221	16	Dual Monostable Multivibrators with Schmitt-Trigger Inputs		~	~				SCHS166
CD74HCT237	16	3-to-8 Line Decoders/Demultiplexers with Address Latches		~					SCHS146
CD74HCT238	16	3-to-8 Line Decoders/Demultiplexers	V	~	~				SCHS147
CD74HCT240	20	Octal Buffers/Drivers with 3-State Outputs	V	~	~				SCHS167
SN74HCT240	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~		~		SCLS174
CD74HCT241	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~				SCHS167
CD74HCT243	14	Quad Bus-Transceivers with 3-State Outputs	~	~	~				SCHS168
CD74HCT244	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~				SCHS167
SN74HCT244	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~	V	~		SCLS175
CD74HCT245	20	Octal Bus Transceivers with 3-State Outputs	~	~	~				SCHS119
SN74HCT245	20	Octal Bus Transceivers with 3-State Outputs	~	~	~	~	~		SCLS020
CD74HCT251	16	1-of-8 Data Selectors/Multiplexers with 3-State Outputs	~	~	~				SCHS169
CD74HCT253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs		~	~				SCHS170
CD74HCT257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	V	~	~				SCHS171
SN74HCT257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs		~	~				SCLS072
CD74HCT258	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	V	~					SCHS172
CD74HCT259	16	8-Bit Addressable Latches	V	~	~				SCHS173
CD74HCT273	20	Octal D-Type Flip-Flops with Clear	V	~	~				SCHS174
SN74HCT273	20	Octal D-Type Flip-Flops with Clear		~	~	~	~		SCLS068
CD74HCT280	14	9-Bit Odd/Even Parity Generators/Checkers	v	~					SCHS175

HCT

	NO.				AVA	ILABILI	TY		LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	SOIC	SSOP	TSSOP	TVSOP	REFERENCE
CD74HCT283	16	9-Bit Binary Full Adders with Fast Carry	~	~	~	2			SCHS176
CD74HCT297	16	Digital Phase-Locked Loops		~					SCHS177
CD74HCT299	20	8-Bit Universal Shift/Storage Registers	~	~	~				SCHS178
CD74HCT354	20	8-Line to 1-Line Data Selectors/Multiplexers/Registers		~					SCHS179
CD74HCT356	20	8-Line to 1-Line Data Selectors/Multiplexers/Registers		~	~				SCHS277
CD74HCT365	16	Hex Buffers/Line Drivers with 3-State Outputs	~	~	~				SCHS180
CD74HCT367	16	Hex Buffers/Line Drivers with 3-State Outputs	~	~	~				SCHS181
CD74HCT368	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs		~	~				SCHS181
CD74HCT373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~				SCHS182
SN74HCT373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~		~		SCLS009
CD74HCT374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~				SCHS183
SN74HCT374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~	~			SCLS005
CD74HCT377	20	Octal D-Type Flip-Flops with Enable	~	~	~				SCHS184
SN74HCT377	20	Octal D-Type Flip-Flops with Enable		~	~				SCLS067
CD74HCT390	16	Dual 4-Bit Decade Counters	~	~	~				SCHS185
CD74HCT393	14	Dual 4-Bit Binary Counters	~	~	~				SCHS186
CD74HCT423	16	Dual Retriggerable Monostable Multivibrators with Reset	~	~	~				SCHS142
CD74HCT533	20	Octal Inverting Transparent Latches with 3-State Outputs	~	~					SCHS187
CD74HCT534	20	Octal Inverting D-Type Flip-Flops with 3-State Outputs	~	~					SCHS188
CD74HCT540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	~	~	~				SCHS189
SN74HCT540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs		~	~				SCLS008
CD74HCT541	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~				SCHS189
SN74HCT541	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~	V			SCLS306
CD74HCT563	20	Octal Inverting Transparent Latches with 3-State Outputs		~	~				SCHS187
CD74HCT564	20	Octal Inverting D-Type Flip-Flops with 3-State Outputs	~	~	~				SCHS188
CD74HCT573	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~				SCHS182
SN74HCT573	20	Octal Transparent D-Type Latches with 3-State Outputs		~	~				SCLS176
CD74HCT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~	~	~				SCHS183
SN74HCT574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	~		~		SCLS177
CD74HCT597	16	8-Bit Shift Registers with Input Latches		~	~				SCHS191
SN74HCT623	20	Octal Bus Transceivers with 3-State Outputs		~	~				SCLS016
CD74HCT640	20	Octal Bus Transceivers with 3-State Outputs	~	~	~				SCHS192
SN74HCT645	20	Octal Bus Transceivers with 3-State Outputs		~	~				SCLS019
CD74HCT646	24	Octal Registered Bus Transceivers with 3-State Outputs			~				SCHS278
SN74HCT646	24	Octal Registered Bus Transceivers with 3-State Outputs		~	~				SCLS178
CD74HCT652	24	Octal Bus Transceivers and Registers with 3-State Outputs			~				SCHS194
SN74HCT652	24	Octal Bus Transceivers and Registers with 3-State Outputs		~	~				SCLS179
CD74HCT670	16	4-by-4 Register Files with 3-State Outputs		~	~				SCHS195
CD74HCT688	20	8-Bit Magnitude Comparators	~	~	~				SCHS196
CD74HCT4020	16	12-Stage Ripple-Carry Binary Counters/Dividers	~	~	~				SCHS201
CD74HCT4024	14	7-Stage Ripple-Carry Binary Counters/Dividers	~		~				SCHS202
CD74HCT4040	16	12-Stage Ripple-Carry Binary Counters/Dividers	~	~	~				SCHS203
CD74HCT4046A	16	Micropower Phase-Locked Loops with VCO	~	~	~				SCHS204
CD74HCT4051	16	8-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	~	~	~				SCHS122

HCT

DEVICE	NO. PINS	DESCRIPTION	MIL	PDIP	AVA SOIC	ILABILI' SSOP	TY TSSOP	TVSOP	LITERATURE REFERENCE
CD74HCT4052	16	Dual 4-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion		~	~				SCHS122
CD74HCT4053	16	Triple 2-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion		~	~		~		SCHS122
CD74HCT4060	16	14-Stage Binary-Ripple Counters/Dividers and Oscillators	~	~	~				SCHS207
CD74HCT4066	14	Quad Bilateral Switches		~	~				SCHS208
CD74HCT4067	24	Single 16-Channel Analog Multiplexers/Demultiplexers			~				SCHS209
CD74HCT4075	14	Triple 3-Input OR Gates	~	~					SCHS210
CD74HCT4094	16	8-Stage Shift-and-Store Bus Registers		~	~				SCHS211
CD74HCT4316	16	Quad Analog Switches with Level Translation		~	~				SCHS212
CD74HCT4351	20	Analog 1-of-8 Multiplexers/Demultiplexers with Latch		~					SCHS213
CD74HCT4511	16	BCD to 7-Segment Latch Decoder Drivers		~					SCHS279
CD74HCT4514	24	4-Bit Latches/4-to-16 Line Decoders		~					SCHS280
CD74HCT4515	24	4-Bit Latches/4-to-16 Line Decoders		~					Call
CD74HCT4520	16	Dual Binary Up Counters		~	~				SCHS216
CD74HCT4538	16	Dual Retriggerable Precision Monostable Multivibrators	~	~	~				SCHS123
CD74HCT4543	16	BCD to 7-Segment Latches/Decoders/Drivers for Liquid-Crystal Displays		~					SCHS281
CD74HCT7046A	16	Phase-Locked Loops with VCO and Lock Detector		~	~				SCHS218
CD74HCT40103	16	8-Bit Binary Presettable Synchronous Down Counters		~	~				SCHS221


IEEE Std 1149.1 (JTAG) Boundary-Scan Logic

The IEEE Std 1149.1 (JTAG) boundary-scan logic family of octal, Widebus™, and scan-support functions incorporates circuitry that allows these devices and the electronic systems in which they are used to be tested without reliance on traditional probing techniques.

Bus-interface logic devices are available in BCT, ABT, and LVT technologies in 8-, 18-, and 20-bit options of the standard buffers, latches, and transceivers. The universal bus transceiver (UBT™), which can functionally replace 50+ standard bus-interface devices, is featured at Widebus widths (18 bits and 20 bits). Package options for these devices include plastic dual in-line package (PDIP), small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), and thin quad flatpack (TQFP). The scan-support functions include devices for controlling the test bus, performing at-speed functional testing, and partitioning the scan path into smaller, more manageable segments.

Over 40 devices, composed of a wide selection of BCT and ABT octals, ABT and LVT Widebus, and scan-support functions, are available. Bus-hold and series-damping-resistor features also are available.

See www.ti.com/sc/jtag for the most current data sheets.

† "H" indicates bus hold

TI IEEE Std 1149.1-Compliant Device Family and Function Cross-Reference

Octal Bus-Interface Logic With JTAG Test Access Port (TAP)

FUNCTION	PACKAGE	PINS	BITS	ABT	вн	R	ВСТ	вн	R
240	DW/NT	24	8				SN74BCT8240A	N	N
244	DW/NT	24	8				SN74BCT8244A	N	N
245	DW	24	8	SN74ABT8245	N	N	SN74BCT8245A	N	N
245	NT	24	8				SN74BCT8245A	N	N
373	DW/NT	24	8				SN74BCT8373A	N	N
374	DW/NT	24	8				SN74BCT8374A	N	N
543	DL/DW	28	8	SN74ABT8543	N	N			
646	DL/DW	28	8	SN74ABT8646	N	N			
652	DL/DW	28	8	SN74ABT8652	N	N			
952	DL/DW	28	8	SN74ABT8952	N	N			

TQFP Bus-Interface Logic With JTAG TAP

FUNCTION	PACKAGE	PINS	BITS	ABT	вн	R	LVT	ВН	R
16646	PM	64	2×9	SN74ABTH18646	Υ	Υ	SN74LVTH18646A	Υ	Υ
16652	PM	64	2×9	SN74ABTH18652	Υ	Υ	SN74LVTH18652A	Υ	Υ
16501	PM	64	2×9	SN74ABTH18502	Υ	Υ	SN74LVTH18502A	Υ	Υ
16601	PM	64	20	SN74ABTH18504	Υ	Υ	SN74LVTH18504A	Υ	Υ

Widebus™ Bus-Interface Logic With JTAG TAP

FUNCTION	PACKAGE	PINS	BITS	ABT	вн	R	LVT	вн	R
16245	DGG/DL	56	2×9	SN74ABT18245A	N	N			
16640	DGG/DL	56	2×9	SN74ABT18640	N	N			
16501	DGG	64	2×9				SN74LVTH18512	В	Υ
16601	DGG	64	20				SN74LVTH18514	Υ	Р

JTAG Scan-Support Products

FUNCTION	PACKAGE	PINS	ABT	ВН	R	ACT	вн	R	LVT	ВН	R
8980	DW	24	Embedded Test Bus Controller				SN74LVT8980	N	N		
8990	FN	44				SN74ACT8990	N	N	Test Bus Co	ntroller	
8996	DW/PW	24	SN74ABT8996	N	N	10-Bit Addressable	Scan F	orts	SN74LVT8996	N	N
8997	DW	28				SN74ACT8997	N	N	Scan Path	Linker	

B = both non-bus-hold and bus-hold version

BH = bus hold

N = no

P = preview

R = series-damping-resistor option

Y = yes

IEEE STD 1149.1 (JTAG) BOUNDARY-SCAN LOGIC

	NO.				A\	VAILAE	BILITY			LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	PDIP	PLCC	SOIC	SSOP	TQFP	TSSOP	REFERENCE
SN74BCT8240A	24	Scan Test Devices with Octal Buffers	~	~		~				SCBS067
SN74BCT8244A	24	Scan Test Devices with Octal Buffers	~	~		~				SCBS042
SN74ABT8245	24	Scan Test Devices with Octal Transceivers	~			~				SCBS124
SN74BCT8245A	24	Scan Test Devices with Octal Transceivers	~	~		~				SCBS043
SN74BCT8373A	24	Scan Test Devices with Octal D-Type Latches	~	~		~				SCBS044
SN74BCT8374A	24	Scan Test Devices with Octal Edge-Triggered D-Type Flip-Flops	~	~		~				SCBS045
SN74ABT8543	28	Scan Test Devices with Octal Registered Bus Transceivers	~			~	~			SCBS120
SN74ABT8646	28	Scan Test Devices with Octal Bus Transceivers and Registers	~			~	~			SCBS123
SN74ABT8652	28	Scan Test Devices with Octal Bus Transceivers and Registers	~			~	~			SCBS122
SN74ABT8952	28	Scan Test Devices with Octal Registered Bus Transceivers				~	~			SCBS121
SN74LVT8980	24	Scan Test Bus Controllers with 8-Bit Generic Host Interfaces	~			~				SCBS676
SN74ACT8990	44	Test Bus Controllers IEEE Std 1149.1 (JTAG) TAP Masters with 16-Bit Generic Host Interfaces	~		~					SCBS190
SN74ABT8996	24	10-Bit Addressable Scan Ports Multidrop-Addressable IEEE Std 1149.1 (JTAG) TAP Transceivers	~			~			~	SCBS489
SN74LVT8996	24	10-Bit Addressable Scan Ports Multidrop-Addressable IEEE Std 1149.1 (JTAG) TAP Transceivers				~			~	SCBS686
SN74ACT8997	28	Scan Path Linkers with 4-Bit Identification Buses Scan-Controlled IEEE Std 1149.1 (JTAG) TAP Concatenators	~			~				SCBS157
SN74ABT18245A	56	Scan Test Devices with 18-Bit Bus Transceivers	~				~		~	SCBS110
SN74ABT18502	64	Scan Test Devices with 18-Bit Universal Bus Transceivers	~					~		SCBS109
SN74ABTH18502A	64	Scan Test Devices with 18-Bit Universal Bus Transceivers	~					~		SCBS164
SN74LVTH18502A	64	Scan Test Devices with 18-Bit Universal Bus Transceivers	~					~		SCBS668
SN74ABT18504	64	Scan Test Devices with 20-Bit Universal Bus Transceivers	~					~		SCBS108
SN74ABTH18504A	64	Scan Test Devices with 20-Bit Universal Bus Transceivers						~		SCBS165
SN74LVTH18504A	64	Scan Test Devices with 20-Bit Universal Bus Transceivers						~		SCBS667
SN74LVT18512	64	Scan Test Devices with 18-Bit Universal Bus Transceivers							~	SCBS711
SN74LVTH18512	64	Scan Test Devices with 18-Bit Universal Bus Transceivers							~	SCBS671
SN74LVTH18514	64	Scan Test Devices with 20-Bit Universal Bus Transceivers							~	SCBS670
SN74ABT18640	56	Scan Test Devices with 18-Bit Inverting Bus Transceivers					~		~	SCBS267
SN74ABT18646	64	Scan Test Devices with 18-Bit Transceivers and Registers	~					~		SCBS131
SN74ABTH18646A	64	Scan Test Devices with 18-Bit Transceivers and Registers	V					~		SCBS166
SN74LVTH18646A	64	Scan Test Devices with 18-Bit Transceivers and Registers	V					~		SCBS311
SN74ABT18652	64	Scan Test Devices with 18-Bit Transceivers and Registers						~		SCBS132
SN74ABTH18652A	64	Scan Test Devices with 18-Bit Transceivers and Registers						V		SCBS167

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only) PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack) PAH = 52 pins PAG = 64 pins (FB only)

PM = 64 pins = 80 pins PNPCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only) SOIC (small-outline integrated circuit)

D = 8/14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins

DBB = 80 pins

SOT (small-outline transistor)

IEEE STD 1149.1 (JTAG) BOUNDARY-SCAN LOGIC

DEVICE	NO. PINS	DESCRIPTION	MIL	PDIP	A PLCC	VAILAE SOIC	BILITY SSOP	TQFP	TSSOP	LITERATURE REFERENCE
SN74LVTH18652A	64	Scan Test Devices with 18-Bit Transceivers and Registers						~		SCBS312
SN74ABTH182502A	64	Scan Test Devices with 18-Bit Universal Bus Transceivers						~		SCBS164
SN74LVTH182502A	64	Scan Test Devices with 18-Bit Universal Bus Transceivers						~		SCBS668
SN74ABTH182504A	64	Scan Test Devices with 20-Bit Universal Bus Transceivers						~		SCBS165
SN74LVTH182504A	64	Scan Test Devices with 20-Bit Universal Bus Transceivers						~		SCBS667
SN74LVTH182512	64	Scan Test Devices with 18-Bit Universal Bus Transceivers							~	SCBS671
SN74ABTH182646A	64	Scan Test Devices with 18-Bit Transceivers and Registers						~		SCBS166
SN74LVTH182646A	64	Scan Test Devices with 18-Bit Transceivers and Registers						~		SCBS311
SN74ABTH182652A	64	Scan Test Devices with 18-Bit Transceivers and Registers						~		SCBS167
SN74LVTH182652A	64	Scan Test Devices with 18-Bit Transceivers and Registers						~		SCBS312

Little Logic

TI's little-logic products are sized to meet smaller packaging needs in today's products. Designers needing to simplify board layout and routing can use little logic to aid in their design and cost-reduction efforts. With continued miniaturization of portable electronics, this product is the ideal choice for applications in which board area is limited.

Additionally, little-logic devices can be used to minimize the impact of ASIC design-error fixes by limiting the need for board redesign, enabling faster time to market and reduced costs.

Little-logic products are offered in the following technology families:

- LVC (low-voltage CMOS technology logic) with 1.65-V to 5-V V_{CC} operation and I_{off} circuitry
- AHC/AHCT (advanced high-speed CMOS logic) with 2-V to 5.5-V operation in CMOS- and TTL-compatible versions
- CBT/CBTD (crossbar technology logic) with 4.5-V to 5.5-V operation with output voltage translation with integrated level-shifting diode
- CBTLV (1G125)

Single gates are available in SOT 23-5 and SC-70 packages. Dual gates will be offered in SM-8 and US-8 packages.

See www.ti.com/sc/logic for the most current data sheets.

LITTLE LOGIC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY SOT	LITERATURE REFERENCE
SN74AHC1G00	5	Single 2-Input NAND Gates	V	SCLS313
SN74AHCT1G00	5	Single 2-Input NAND Gates	V	SCLS316
SN74LVC1G00	5	Single 2-Input NAND Gates	+	SCES212
SN74AHC1G02	5	Single-2-Input NOR Gates	~	SCLS342
SN74AHCT1G02	5	Single-2-Input NOR Gates	~	SCLS341
SN74LVC1G02	5	Single-2-Input NOR Gates	+	SCES213
SN74AHC1G04	5	Single Inverters	~	SCLS318
SN74AHC1GU04	5	Single Inverters	V	SCLS343
SN74LVC1G04	5	Single Inverters	+	SCES214
SN74LVC1GU04	5	Single Inverters	~	SCES215
SN74LVC1G06	5	Single Inverting Buffers/Drivers with Open-Drain Outputs	~	SCES295
SN74LVC1G07	5	Single Buffers/Drivers with Open-Drain Outputs	~	SCES296
SN74AHC1G08	5	Single 2-Input AND Gates	~	SCLS314
SN74AHCT1G08	5	Single 2-Input AND Gates	V	SCLS315
SN74LVC1G08	5	Single 2-Input AND Gates	+	SCES217
SN74AHC1G14	5	Single Schmitt-Trigger Inverters	V	SCLS321
SN74AHCT1G14	5	Single Schmitt-Trigger Inverters	V	SCLS322
SN74LVC1G14	5	Single Schmitt-Trigger Inverters	+	SCES218
SN74AHC1G32	5	Single 2-Input OR Gates	~	SCLS317
SN74AHCT1G32	5	Single 2-Input OR Gates	~	SCLS320
SN74LVC1G32A	5	Single 2-Input OR Gates	+	SCES135
SN74CBT1G66	5	Single FET Bus Switches	+	SCDS110
SN74LVC1G66	5	Single Bilateral Switches	+	SCES323
SN74LVC1G79	5	Single Edge-Triggered D-Type Flip-Flops	+	SCES220
SN74LVC1G80	5	Single Edge-Triggered D-Type Flip-Flops	+	SCES221
SN74AHC1G86	5	Single 2-Input Exclusive-OR Gates	~	SCLS323
SN74AHCT1G86	5	Single 2-Input Exclusive-OR Gates	V	SCLS324
SN74LVC1G86	5	Single 2-Input Exclusive-OR Gates	+	SCES222
SN74AHC1G125	5	Single Bus Buffers with 3-State Outputs	~	SCLS377
SN74AHCT1G125	5	Single Bus Buffers with 3-State Outputs	V	SCLS378
SN74CBT1G125	5	Single FET Bus Switches	V	SCDS046
SN74CBTD1G125	5	Single FET Bus Switches with Level Shifting	V	SCDS063
SN74CBTLV1G125	5	Single FET Bus Switches	V	SCDS057
SN74LVC1G125	5	Single Bus Buffers with 3-State Outputs	+	SCES223

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

LITTLE LOGIC

DEVICE	NO. PINS	DESCRIPTION	AVAILABILITY SOT	LITERATURE REFERENCE
SN74AHC1G126	5	Single Bus Buffers with 3-State Outputs	V	SCLS379
SN74AHCT1G126	5	Single Bus Buffers with 3-State Outputs	✓	SCLS380
SN74LVC1G126	5	Single Bus Buffers with 3-State Outputs	+	SCES224
SN74LVC1G240	5	Single Buffers/Drivers with 3-State Outputs	+	SCES305
SN74CBT1G384	5	Single FET Bus Switches	V	SCDS065

LS Low-Power Schottky Logic

With a wide array of functions, TI's LS family continues to offer replacement alternatives for mature systems. This classic line of devices was at the cutting edge of performance when introduced, and it continues to deliver excellent value for many of today's designs. As the world leader in logic products, TI is committed to being the last major supplier at every price-performance node.

See www.ti.com/sc/logic for the most current data sheets.

LS

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT		LITERATURE REFERENCE
SN74LS00	14	Quad 2-Input NAND Gates	~	~	~	~	SDLS025
SN74LS00	8	Quad 2-Input NAND Gates	~				SDLS026
SN74LS02	14	Quad 2-Input NOR Gates	~	~	~		SDLS027
SN74LS03	14	Quad 2-Input NAND Gates with Open-Collector Outputs	~	~	~		SDLS028
SN74LS04	14	Hex Inverters	~	~	~		SDLS029
SN74LS05	14	Hex Inverters with Open-Collector Outputs	~	~	~	~	SDLS030
SN74LS06	14	Hex Inverter Buffers/Drivers with Open-Collector Outputs	~	~	~	~	SDLS020
SN74LS07	14	Hex Buffers/Drivers with Open-Collector Outputs	~	~	~	~	SDLS021
SN74LS08	14	Quad 2-Input AND Gates	~	~	~	~	SDLS033
SN74LS09	14	Quad 2-Input AND Gates with Open-Collector Outputs	~	~	~		SDLS034
SN74LS10	14	Triple 3-Input NAND Gates	~	~	~		SDLS035
SN74LS11	14	Triple 3-Input AND Gates	~	~	~		SDLS131
SN74LS14	14	Hex Schmitt-Trigger Inverters	~	~	~	~	SDLS049
SN74LS19A	14	Hex Schmitt-Trigger Inverters		~	~		SDLS138
SN74LS20	14	Dual 4-Input NAND Gates	~	~	~		SDLS079
SN74LS21	14	Dual 4-Input AND Gates	~	~	~		SDLS139
SN74LS26	14	Quad 2-Input NAND Gates	~	~	~		SDLS087
SN74LS27	14	Triple 3-Input NOR Gates	~	~	~		SDLS089
SN74LS30	14	8-Input NAND Gates	~	~	~		SDLS099
SN74LS31	16	Hex Delay Elements for Generating Delay Lines	~	~	~		SDLS157
SN74LS32	14	Quad 2-Input OR Gates	~	~	~		SDLS100
SN74LS33	14	Quad 2-Input NOR Gates	~	~	~		SDLS101
SN74LS37	14	Quad 2-Input NAND Gates	~	~			SDLS103
SN74LS38	14	Quad 2-Input NAND Gates	~	~	~		SDLS105
SN74LS42	16	4-Line BCD to 10-Line Decimal Decoders	~	~	~		SDLS109
SN74LS47	16	BCD to 7-Segment Decoders/Drivers	~	~	~		SDLS111
SN74LS51	14	Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-Invert Gates	~	~	~		SDLS113
SN74LS73A	14	Dual J-K Edge-Triggered Flip-Flops with Reset	~	~	~		SDLS118
SN74LS74A	14	Dual D-Type Flip-Flops with Set and Reset	~	~	~		SDLS119
SN74LS75	16	4-Bit Bistable Latches	~	~	~		SDLS120
SN74LS85	16	4-Bit Magnitude Comparators	~	~	~		SDLS123
SN74LS86A	14	Quad 2-Input Exclusive-OR Gates	~	~	~		SDLS124
SN74LS90	14	Decade Counters	~	~	~		SDLS940
SN74LS92	14	Divide-by-12 Counters	~	~	~		SDLS940
SN74LS93	14	4-Bit Binary Counters	~	~	~		SDLS940

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins

NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier)

FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM

= 64 pins

= 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package)

DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins

DBB = 80 pins

SOT (small-outline transistor)

LS

SN74LS96 16 SBIS MIT Registers V V V SDIS98 SN74LS107A 16 Dual Register-Edge-Triggered J.K Flip-Flops with Set and Reset V V V SDIS93 SN74LS107A 16 Dual Register-Edge-Triggered J.K Flip-Flops with Set and Reset V V V SDIS93 SN74LS102A 16 Dual Negative-Edge-Triggered J.K Flip-Flops with Set and Reset V V V C SDIS93 SN74LS12A 16 Dual Register-Bidgered Monosable Multiwiderators with Reset V V V V SDIS94 SN74LS12A 16 Oual Bas Buffers with 3-State Outputs V V V V SDIS94 SN74LS13B 16 Oual 2 and Exclusive-ORC Glaries with Schrimit-Trigger Inputs V V V SDIS94 SN74LS13B 16 Oual 2 and Line Investing Decoders/Demultiplexers V V V V SDIS93 SN74LS15B 16 Oual 2 and Line Investing Decoders/Demultiplexers V V V SDIS935 <th< th=""><th>DEVICE</th><th>NO. PINS</th><th>DESCRIPTION</th><th>MIL</th><th>AVAIL PDIP</th><th>ABILIT</th><th>Y SSOP</th><th>LITERATURE REFERENCE</th></th<>	DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT	Y SSOP	LITERATURE REFERENCE
SN74LS109A 16 Dual Positive Edge-Triggered J x Flip Flops with Set and Reset v v v SDLS037 SN74LS122A 16 Dual Negative-Edge-Triggered J x Flip Flops with Set and Reset v v v SDLS043 SN74LS122A 16 Dual Retriggerable Monosable Multivibrators with Reset v v v SDLS043 SN74LS122A 14 Quad Dus Buffers with 3 Sales Outputs v v v SDLS043 SN74LS12A 14 Quad Dus Buffers with 3 Sales Outputs v v v SDLS044 SN74LS12A 14 Quad Exclusive-OR Gales with Open-Collector Outputs v v v SDLS047 SN74LS13A 14 Quad Exclusive-OR Gales with Open-Collector Outputs v v v SDLS048 SN74LS13B 16 3 all a Line metring Decorder Sommulpicores v v v SDLS048 SN74LS13B 16 Dual 2-to-4 Line Decorders Demulpipeores v v v v SDLS051 SN74LS13B 16 Dual 2-to-4 Line Decorders Demulpipeores v v v v SDLS053 SN74LS15B 16 Dual 2-to-4 Line Decorders Demulpipeores v v v v SDLS0553 SN74LS15B 16	SN74LS96	16	5-Bit Shift Registers	V	~	~		SDLS946
SN74LS112A 16 Dual Negative-Edge-Triggered J.K. Flip-Flops with Set and Reset V V V SDLS043 SN74LS122 14 Dual Entriggerable Monosable Multibularous V V V SDLS043 SN74LS125A 14 Quad Bus Buffers with 3 State Outputs V V V SDLS044 SN74LS126A 14 Quad Bus Buffers with 3 State Outputs V V V SDLS044 SN74LS13B 14 Quad 2-Input NAIN Gates with Schmidt-Trigger Inputs V V V SDLS044 SN74LS13B 16 3 Be a Line Inverting Decoders/Dremuliplexers V V V SDLS045 SN74LS13B 16 3 Be 3 Line Inverting Decoders/Dremuliplexers V V V SDLS051 SN74LS13B 16 Bo-Da-Decimal Decoders/Dremuliplexers V V V V SDLS053 SN74LS13B 16 Bo-Da-Decimal Decoders/Dremuliplexers V V V V SDLS053 SN74LS15B 16 Dual 1-A Line Decoders/Dremuliplexers	SN74LS107A	14	Dual Negative-Edge-Triggered J-K Flip-Flops with Reset	✓	~	~		SDLS036
SN74LS122 14 Retriggerable Monosiable Multivitariors with Reset V V V SDLS93 SN74LS123 16 Dual Retriggerable Monosiable Multivitariors with Reset V V V SDLS94 SN74LS126A 14 Coad Bas Buffers with 3-Slate Outputs V V V SDLS94 SN74LS126A 14 Coad Z-Input NAND Gales with Schmit-Trigger Inputs V V V SDLS94 SN74LS137B 16 3-to 8 Line Inverting Decoders/Demultiplexers V V V SDLS94B SN74LS138B 16 3-to 8 Line Inverting Decoders/Demultiplexers V V V SDLS95B SN74LS138B 16 8-to 1 Line Decoders/Demultiplexers V V V SDLS95B SN74LS158B 16 8-to 3 Line Decoders/Demultiplexers V V V SDLS95B SN74LS158B 16 10-del 2-to 1 Line Decoders/Demultiplexers V V V V SDLS95B SN74LS158C 16 Dual 2-to 4 Line Decoders/Demultiplexers V	SN74LS109A	16	Dual Positive-Edge-Triggered J-K Flip Flops with Set and Reset	✓	~	~		SDLS037
SN74LS123 16 Dual Retriggerable Monostable Multivibrators with Reset v v v v v SDLS0M4 SN74LS125A 14 Quad Bus Buffers with 3-Stale Outputs v v v v SDLS0M4 SN74LS13A 14 Quad 2-Input NAND Gates with Schmilt-Trigger Inputs v v v v v DISONA SN74LS13A 14 Quad Exclusive-OR Cates with Open-Collector Outputs v v v v v DISONA SN74LS13B 16 3 Line Priority Encoders Dismutiliplexers v v v v DISOSIA SN74LS13B 16 BCD-to-Decimal Decoders/Dismutiliplexers v v v v v DISOSIA SN74LS15B 16 Botal of 4 Data Selectors/Multiplexers v v v v v v DISOSIA SN74LS15B 16 Dual 2-to-4 Line Decoders/Demutiliplexers v v v v v DISOSIA SN74LS15B 16 Dual 2-to-	SN74LS112A	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	✓	~	~		SDLS011
SN74LS125A 14 Quad Bus Buffers with 3-State Outputs V V V V V SDLS044 SN74LS126A 14 Quad Bus Buffers with 3-State Outputs V SDLS014 SN74LS13B 16 3-10-8 Line inverting Decoders/Demultiplexers V V V V V SDLS015 SN74LS13B 16 BOLD-1 Control Decoders/Demultiplexers V V V SDLS055 SN74LS151 16 BOLD-1 Conders/Demultiplexers V V V V SDLS055 SN74LS1515 16 Dual -1-d Line Decoders/Demultiplexers with Open-Collector Outputs V V V SDLS056 SN74LS1516 16 Dual -1-d Line Decoders/Demultiplexers with Open-Collector Outputs	SN74LS122	14	Retriggerable Monostable Multivibrators		~	~		SDLS043
SN74LS126A 14 Quad Eutoral NaMD Cates with Schmidt-Trigger Inputs V SDLS041 SN74LS1383 16 Jaca Euch Line Decoders/Demultiplexers V V V V V SDLS051 SN74LS1384 16 BoD-De-Decimal Decoders/Demultiplexers V V V SDLS051 SN74LS1581 16 BoD-De-Decimal Decoders/Demultiplexers V V V V SDLS0563 SN74LS1553 16 Dual 1-04-Data Selectors/Multiplexers V V V V SDLS0565 SN74LS1553 16 Dual 2-to-1 Line Decoders/Demultiplexers V V V V SDLS0565 SN74LS1564 16 Dual 1-04-Data Selectors/Multiplexers	SN74LS123	16	Dual Retriggerable Monostable Multivibrators with Reset	V	~	~		SDLS043
SN74LS132 14 Ouad 2-Input NAND Gates with Schmilt-Trigger Inputs V V V V SDLS048 SN74LS136 16 Ouad Exclusive-OR Gates with Open-Collector Outputs V DISD051 SN74LS1518 16 BLO3-Line Priority Encoders V V V V V DISD054 SN74LS1518 16 Dual 1-of A Bata Selectors/Multiplexers V V V V V SDLS055 SN74LS1516 16 Dual 2-to 4 Line Decoders/Demultiplexers V V V V V SDLS057 SN74LS156 16 Dual 2-to 4 Line Decoders/Demultiplexers V V V V V SDLS058 <	SN74LS125A	14	Quad Bus Buffers with 3-State Outputs	V	~	~		SDLS044
SN74LS136 14 Ouad Exclusive-OR Gates with Open-Collector Outputs V V V V V SDLS0Ha SN74LS1388 16 3-to 8 Line Inverting Decoders/Demultiplexers V V V V SDLS0H3 SN74LS1398 16 BCD-to-Decimal Decoders/Demultiplexers V V V V V V V V V SDLS065 SN74LS1518 16 BCD-to-Decimal Decoders/Demultiplexers V V V V SDLS065 SN74LS1510 16 Detal 1-of-4 Data Selectors/Multiplexers V V V SDLS065 SN74LS1515 16 Dual 1-of-4 Data Selectors/Multiplexers V V V SDLS065 SN74LS1515 16 Dual 2-to-4 Line Decoders/Demultiplexers V V V SDLS065 SN74LS1516 16 Dual 2-to-4 Line Data Selectors/Multiplexers V V V V SDLS065 SN74LS1516 16 Dual 2-to-4 Line Data Selectors/Multiplexers V V	SN74LS126A	14	Quad Bus Buffers with 3-State Outputs		~	~		SDLS044
SN74LS138 16 3 to 8 Line Inverting Decoders/Demulliplexers V V V V SDLS013 SN74LS139A 16 Dual 2-to-4 Line Decoders/Demulliplexers V V V V V V V V V V V V V V V V V V V SDLS051 SN74LS151 16 Boal 3-Line Priority Encoders V V V V SDLS055 SN74LS151 16 Dual 1-bd-4 Data Selectors/Multiplexers V V V V SDLS055 SN74LS153 16 Dual 2-bd-4 Line Decoders/Demultiplexers with Open-Collector Outputs V V V SDLS055 SN74LS156 16 Dual 2-bd-4 Line Data Selectors/Multiplexers V V V V SDLS056 SN74LS156 16 Dual 2-bd-4 Line Data Selectors/Multiplexers V V V V SDLS056 SN74LS156 16 Bual 2-bd-4 Line Data Selectors/Multiplexers V V V <td>SN74LS132</td> <td>14</td> <td>Quad 2-Input NAND Gates with Schmitt-Trigger Inputs</td> <td>✓</td> <td>~</td> <td>~</td> <td></td> <td>SDLS047</td>	SN74LS132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	✓	~	~		SDLS047
SN74LS139A 16 Dual 2-to-4 Line Decoders/Demultiplexers V V V V SDLS051 SN74LS145 16 BCD-16-Decimal Decoders/Driver V V V V V SDLS051 SN74LS148 16 B-to-3 Line Priority Encoders V V V V V SDLS053 SN74LS153 16 Dual 1-to-4 Data Selectors/Multiplexers V V V V SDLS055 SN74LS156 16 Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector Outputs V V V SDLS057 SN74LS156 16 Dual 2-to-4 Line Data Selectors/Multiplexers with Open-Collector Outputs V V V SDLS058 SN74LS156 16 Dual 2-to-4 Line Data Selectors/Multiplexers V V V V SDLS057 SN74LS166 16 Dual 2-to-4 Line Data Selectors/Multiplexers V V V V V SDLS058 SN74LS166 16 Ball Parallel-Inserial-Out-Shift Registers V V V	SN74LS136	14	Quad Exclusive-OR Gates with Open-Collector Outputs	✓	~	~		SDLS048
SN74LS14S 16 BCD-to-Decimal Decoders/Driver V V V V V SDLS083 SN74LS148 16 8-to-3 Line Priority Encoders V V V V V V SDLS083 SN74LS151S 16 1-of-8 Data Selectors/Multiplexers V V V V V V SDLS055 SN74LS155A 16 Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector Outputs V V V SDLS057 SN74LS156 16 Dual 2-to-4 Line Deta Selectors/Multiplexers V V V SDLS058 SN74LS156A 16 Quad 2-to-4 Line Data Selectors/Multiplexers V V V SDLS058 SN74LS156A 16 Quad 2-to-4 Line Data Selectors/Multiplexers V V V SDLS058 SN74LS156A 16 Bual 2-to-4 Line Data Selectors/Multiplexers V V V SDLS068 SN74LS156A 16 Bell Serala Selectors/Multiplexers V V V SDLS068	SN74LS138	16	3-to-8 Line Inverting Decoders/Demultiplexers	✓	~	~		SDLS014
SN74LS188 16 8-to-3 Line Priority Encoders V V V V SDLS084 SN74LS1513 16 10-f8 Data Selectors/Multiplexers V V V V V SDLS055 SN74LS153A 16 Dual 1-of-4 Data Selectors/Multiplexers V V V V SDLS057 SN74LS155A 16 Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector Outputs V V V V SDLS057 SN74LS15B 16 Ouad 2-to-4 Line Data Selectors/Multiplexers V V V V SDLS068 SN74LS16B 16 Ouad 2-to-4 Line Data Selectors/Multiplexers V V V V SDLS068 SN74LS16B 16 Synchronous 4-Bit Binary Counters V V V SDLS060 SN74LS161A 16 Synchronous 4-Bit Binary Counters V V V V SDLS061 SN74LS161A 16 Bynchronous 4-Bit DynCovine Binary Counters V V V SDLS062 SN74LS	SN74LS139A	16	Dual 2-to-4 Line Decoders/Demultiplexers	V	~	~		SDLS013
SN74LS151 16 1-0f-8 Data Selectors/Multiplexers V V V V SDLS055 SN74LS153 16 Dual 1-0f-4 Data Selectors/Multiplexers V V V SDLS055 SN74LS155A 16 Dual 2-10f-4 Line Decoders/Demultiplexers with Open-Collector Outputs V V V SDLS057 SN74LS156 16 Dual 2-10f-4 Line Data Selectors/Multiplexers V V V SDLS058 SN74LS158 16 Quad 2-10f-4 Line Data Selectors/Multiplexers V V V SDLS068 SN74LS158 16 Quad 2-10f-4 Line Data Selectors/Multiplexers V V V V SDLS068 SN74LS163A 16 Synchronous 4-Bit Binary Counters V V V SDLS060 SN74LS164A 16 Bit Parallel-Load Shift Registers V V V SDLS062 SN74LS165A 16 Bit Parallel-Load Shift Registers V V V SDLS063 SN74LS16B 16 Synchronous 4-Bit Up/Down Binary Counters V <td>SN74LS145</td> <td>16</td> <td>BCD-to-Decimal Decoders/Driver</td> <td>V</td> <td>~</td> <td>~</td> <td></td> <td>SDLS051</td>	SN74LS145	16	BCD-to-Decimal Decoders/Driver	V	~	~		SDLS051
SN74LS153 16 Dual 1-of-4 Data Selectors/Multiplexers V V V V SDLS057 SN74LS155A 16 Dual 2-to-4 Line Decoders/Demultiplexers V V V V V SDLS057 SN74LS156 16 Dual 2-to-4 Line Data Selectors/Multiplexers V V V SDLS058 SN74LS157 16 Ouad 2-to-4 Line Data Selectors/Multiplexers V V V SDLS058 SN74LS151A 16 Ouad 2-to-4 Line Data Selectors/Multiplexers V V V SDLS068 SN74LS161A 16 Synchronous 4-Bit Binary Counters V V V SDLS060 SN74LS163A 16 Synchronous 4-Bit Binary Counters V V V SDLS061 SN74LS164A 14 8-Bit Parallel-Load Shift Registers V V V SDLS062 SN74LS164A 16 8-Bit Parallel-Load Shift Registers V V V SDLS063 SN74LS164B 16 Synchronous 4-Bit Up/Down Binary Counters V	SN74LS148	16	8-to-3 Line Priority Encoders	✓	~	~		SDLS053
SN74LS155A 16 Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector Outputs V V V SDLS057 SN74LS1576 16 Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector Outputs V DLS068 SN74LS1618 16 Ouad 2-to-4 Line Data Selectors/Multiplexers V V V V DSLS068 SN74LS161A 16 Synchronous 4-Bit Binary Counters V V V SDLS060 SN74LS164 14 8-Bit Serial-in, Parallel-Out Shift Registers V V V SDLS062 SN74LS165A 16 8-Bit Parallel-In, Serial-Out Shift Registers V V V V SDLS063 SN74LS176B 16 Synchronous 4-Bit Up/Down Binary Counters V V V V V V SDLS065 <td< td=""><td>SN74LS151</td><td>16</td><td>1-of-8 Data Selectors/Multiplexers</td><td>✓</td><td>~</td><td>~</td><td></td><td>SDLS054</td></td<>	SN74LS151	16	1-of-8 Data Selectors/Multiplexers	✓	~	~		SDLS054
SN74LS156 16 Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector Outputs V V V SDLS058 SN74LS157 16 Quad 2-to-4 Line Data Selectors/Multiplexers V V V V SDLS058 SN74LS158 16 Quad 2-to-4 Line Data Selectors/Multiplexers V V V V SDLS068 SN74LS161A 16 Synchronous 4-Bit Binary Counters V V V SDLS060 SN74LS163A 16 Synchronous 4-Bit Binary Counters V V V SDLS060 SN74LS164A 14 8-Bit Serial-In, Parallel-Out Shift Registers V V V SDLS062 SN74LS166A 16 8-Bit Parallel-Load Shift Registers V V V SDLS063 SN74LS166A 16 8-Bit Parallel-Load Shift Registers V V V SDLS063 SN74LS169B 16 Synchronous 4-Bit Up/Down Binary Counters V V V SDLS065 SN74LS170 16 4-by-4 Register Bip-Flops with Clear V	SN74LS153	16	Dual 1-of-4 Data Selectors/Multiplexers	✓	~	~		SDLS055
SN74LS157 16 Quad 2-to-4 Line Data Selectors/Multiplexers V V V V V SDLS058 SN74LS158 16 Quad 2-to-4 Line Data Selectors/Multiplexers V V V V V SDLS068 SN74LS161A 16 Synchronous 4-Bit Binary Counters V V V SDLS060 SN74LS163A 16 Synchronous 4-Bit Binary Counters V V V SDLS060 SN74LS164 14 8-Bit Parallel-In, Parallel-Out Shift Registers V V V SDLS062 SN74LS165A 16 8-Bit Parallel-In, Serial-Out Shift Registers V V V SDLS062 SN74LS169B 16 Synchronous 4-Bit Up/Down Binary Counters V V V SDLS063 SN74LS170 16 4-by-4 Register Files with Open-Collector Outputs V V V SDLS065 SN74LS173A 16 Quad D-Type Filp-Flops with Clear V V V SDLS068 SN74LS174 16 Hex D-Type Filp-Flops with Clear	SN74LS155A	16	Dual 2-to-4 Line Decoders/Demultiplexers	✓	~	~		SDLS057
SN74LS158 16 Quad 2-to-4 Line Data Selectors/Multiplexers V V V V V SDLS068 SN74LS161A 16 Synchronous 4-Bit Binary Counters V V V V V SDLS060 SN74LS163A 16 Synchronous 4-Bit Binary Counters V V V V SDLS060 SN74LS164 14 8-Bit Serial-In, Paralle-Out Shift Registers V V V SDLS062 SN74LS166A 16 8-Bit Paralle-Load Shift Registers V V V SDLS063 SN74LS176A 16 Synchronous 4-Bit Up/Down Binary Counters V V V SDLS063 SN74LS170 16 4-by-4 Register Files with Open-Collector Outputs V V V SDLS065 SN74LS173 16 Quad D-Type Flip-Flops with Clear V V V SDLS068 SN74LS174 16 Hex D-Type Flip-Flops with Clear V V V SDLS068 SN74LS181 24 Arithmetic Logic Units/Function Generato	SN74LS156	16	Dual 2-to-4 Line Decoders/Demultiplexers with Open-Collector Outputs	✓	~	~		SDLS057
SN74LS161A 16 Synchronous 4-Bit Binary Counters V DLS063 SN74LS166A 16 8-Bit Parallel-Load Shift Registers V V V V V DSLS063 SN74LS16A 16 Synchronous 4-Bit Up/Down Binary Counters V V V V DSLS063 SN74LS16B 16 Oyach Propose With Cleat on Outputs V V V DSLS065 SN74LS17A 16 Hex D-Type Flip-Flops with Clear V V V V SDLS068 SN74LS17B 16 Ouad D-Type Flip-Flops with Clear V V	SN74LS157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	✓	~	~		SDLS058
SN74LS163A 16 Synchronous 4-Bit Binary Counters V V V V V SDLS006 SN74LS164 14 8-Bit Serial-In, Parallel-Out Shift Registers V V V V SDLS062 SN74LS165A 16 8-Bit Parallel-In, Serial-Out Shift Registers V V V SDLS063 SN74LS166A 16 8-Bit Parallel-Load Shift Registers V V V SDLS063 SN74LS169B 16 Synchronous 4-Bit Up/Down Binary Counters V V V SDLS063 SN74LS170 16 4-by-4 Register Files with Open-Collector Outputs V V V SDLS065 SN74LS173 16 Quad D-Type Filp-Flops with Clear V V V SDLS068 SN74LS174 16 Hex D-Type Filp-Flops with Clear V V V SDLS068 SN74LS181 24 Arithmetic Logic Units/Function Generators V V V SDLS078 SN74LS181 16 Presettable Synchronous 4-Bit Up/Down Binary Counters	SN74LS158	16	Quad 2-to-4 Line Data Selectors/Multiplexers	✓	V	~		SDLS058
SN74LS164 14 8-Bit Serial-In, Parallel-Out Shift Registers V V V V SDLS062 SN74LS165A 16 8-Bit Parallel-In, Serial-Out Shift Registers V V V V SDLS062 SN74LS166A 16 8-Bit Parallel-Load Shift Registers V V V V SDLS063 SN74LS169B 16 Synchronous 4-Bit Up/Down Binary Counters V V V SDLS065 SN74LS170 16 4-by-4 Register Files with Open-Collector Outputs V V V SDLS065 SN74LS173 16 Quad D-Type Filp-Flops with 3-State Outputs V V V SDLS067 SN74LS174 16 Hex D-Type Filp-Flops with Clear V V V SDLS068 SN74LS175 16 Quad D-Type Filp-Flops with Clear V V V SDLS068 SN74LS181 24 Arithmetic Logic Units/Function Generators V V V SDLS073 SN74LS181 16 Presettable Synchronous 4-Bit Up/Down Binary Counters <td>SN74LS161A</td> <td>16</td> <td>Synchronous 4-Bit Binary Counters</td> <td>·</td> <td>V</td> <td>~</td> <td></td> <td>SDLS060</td>	SN74LS161A	16	Synchronous 4-Bit Binary Counters	·	V	~		SDLS060
SN74LS165A 16 8-Bit Parallel-In, Serial-Out Shift Registers V V V V SDLS002 SN74LS166A 16 8-Bit Parallel-Load Shift Registers V V V V SDLS003 SN74LS169B 16 Synchronous 4-Bit Up/Down Binary Counters V V V V SDLS045 SN74LS170 16 4-by-4 Register Files with Open-Collector Outputs V V V SDLS065 SN74LS173 16 Quad D-Type Filp-Flops with Clear V V V SDLS068 SN74LS174 16 Hex D-Type Filp-Flops with Clear V V V SDLS068 SN74LS181 24 Arithmetic Logic Units/Function Generators V V V SDLS068 SN74LS181 24 Arithmetic Logic Units/Function Generators V V V SDLS072 SN74LS191 16 Presettable Synchronous 4-Bit Up/Down Binary Counters V V V V SDLS073 SN74LS193 16 Presettable Synchronous 4-Bit U	SN74LS163A	16	Synchronous 4-Bit Binary Counters	✓	~	~		SDLS060
SN74LS166A 16 8-Bit Parallel-Load Shift Registers V DIS066 SN74LS173 16 Ouad D-Type Flip-Flops with Clear V V V V V SDLS068 SN74LS181 24 Arithmetic Logic Units/Function Generators V V V V SDLS068 SN74LS181 16 Presettable Synchronous 4-Bit Up/Down Binary Counters V V V SDLS072 SN74LS193 16 Presettable Synchronous 4-Bit Up/Down Binary Counters V	SN74LS164	14	8-Bit Serial-In, Parallel-Out Shift Registers	✓	~	~		SDLS061
SN74LS169B 16 Synchronous 4-Bit Up/Down Binary Counters V DLS068 SN74LS174 16 Hex D-Type Flip-Flops with Clear V V V V SDLS068 SN74LS175 16 Quad D-Type Flip-Flops with Clear V V V SDLS068 SN74LS181 24 Arithmetic Logic Units/Function Generators V V V SDLS078 SN74LS181 16 Presettable Synchronous 4-Bit Up/Down Binary Counters V V V SDLS072 SN74LS193 16 Presettable Synchronous 4-Bit Up/Down Binary Counters	SN74LS165A	16	8-Bit Parallel-In, Serial-Out Shift Registers	✓	~	~		SDLS062
SN74LS170 16 4-by-4 Register Files with Open-Collector Outputs v	SN74LS166A	16	8-Bit Parallel-Load Shift Registers	V	~	~		SDLS063
SN74LS173A 16 Quad D-Type Flip-Flops with 3-State Outputs V V V V SDLS068 SN74LS174 16 Hex D-Type Flip-Flops with Clear V V V V V SDLS068 SN74LS175 16 Quad D-Type Flip-Flops with Clear V V V V SDLS068 SN74LS181 24 Arithmetic Logic Units/Function Generators V V V V SDLS078 SN74LS191 16 Presettable Synchronous 4-Bit Up/Down Binary Counters V V V SDLS072 SN74LS193 16 Presettable Synchronous 4-Bit Up/Down Binary Counters V V V SDLS074 SN74LS193 16 Presettable Synchronous 4-Bit Up/Down Binary Counters V V V SDLS075 SN74LS241 16 Jual Monostable Multivibrators with Schmitt-Trigger Inputs V V V SDLS144 SN74LS240 20 Octal Buffers/Drivers with 3-State Outputs V V V SDLS144 SN74LS241 <	SN74LS169B	16	Synchronous 4-Bit Up/Down Binary Counters	✓	~	~		SDLS134
SN74LS17416Hex D-Type Flip-Flops with ClearVVVVSDLS068SN74LS17516Quad D-Type Flip-Flops with ClearVVVSDLS068SN74LS18124Arithmetic Logic Units/Function GeneratorsVVVSDLS136SN74LS19116Presettable Synchronous 4-Bit Up/Down Binary CountersVVVSDLS072SN74LS19316Presettable Synchronous 4-Bit Up/Down Binary CountersVVVSDLS074SN74LS194A164-Bit Bidirectional Universal Shift RegistersVVVSDLS075SN74LS22116Dual Monostable Multivibrators with Schmitt-Trigger InputsVVVSDLS213SN74LS24020Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24120Octal Buffers/Drivers with 3-State OutputsVVVSDLS145SN74LS24314Quad Bus-Transceivers with 3-State OutputsVVVSDLS145SN74LS24420Octal Buffers and Line Drivers with 3-State OutputsVVVSDLS146SN74LS24716BCD to 7-Segment Decoders/Drivers with Open-Collector OutputsVVVSDLS083SN74LS25116Dual 1-of-8 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085SN74LS25316Dual 1-of-4 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085	SN74LS170	16	4-by-4 Register Files with Open-Collector Outputs	✓	~	~		SDLS065
SN74LS17516Quad D-Type Flip-Flops with ClearVVVSDLS068SN74LS18124Arithmetic Logic Units/Function GeneratorsVVVSDLS136SN74LS19116Presettable Synchronous 4-Bit Up/Down Binary CountersVVVSDLS072SN74LS19316Presettable Synchronous 4-Bit Up/Down Binary CountersVVVSDLS074SN74LS194A164-Bit Bidirectional Universal Shift RegistersVVVSDLS075SN74LS22116Dual Monostable Multivibrators with Schmitt-Trigger InputsVVVSDLS132SN74LS24020Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24120Octal Buffers/Drivers with 3-State OutputsVVVSDLS145SN74LS24314Quad Bus-Transceivers with 3-State OutputsVVVSDLS144SN74LS24420Octal Buffers and Line Drivers with 3-State OutputsVVVSDLS145SN74LS24520Octal Bus Transceivers with 3-State OutputsVVVSDLS083SN74LS24716BCD to 7-Segment Decoders/Drivers with 3-State OutputsVVVSDLS085SN74LS251161-of-8 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085SN74LS25316Dual 1-of-4 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085	SN74LS173A	16	Quad D-Type Flip-Flops with 3-State Outputs	✓	~	~		SDLS067
SN74LS18124Arithmetic Logic Units/Function GeneratorsVVSDLS136SN74LS19116Presettable Synchronous 4-Bit Up/Down Binary CountersVVVSDLS072SN74LS19316Presettable Synchronous 4-Bit Up/Down Binary CountersVVVSDLS074SN74LS194A164-Bit Bidirectional Universal Shift RegistersVVVSDLS075SN74LS22116Dual Monostable Multivibrators with Schmitt-Trigger InputsVVVSDLS213SN74LS24020Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24120Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24314Quad Bus-Transceivers with 3-State OutputsVVVSDLS145SN74LS24420Octal Buffers and Line Drivers with 3-State OutputsVVVSDLS146SN74LS24520Octal Bus Transceivers with 3-State OutputsVVVSDLS045SN74LS24716BCD to 7-Segment Decoders/Drivers with Open-Collector OutputsVVVSDLS085SN74LS25316Dual 1-of-4 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085	SN74LS174	16	Hex D-Type Flip-Flops with Clear	✓	~	~		SDLS068
SN74LS19116Presettable Synchronous 4-Bit Up/Down Binary CountersVVVSDLS072SN74LS19316Presettable Synchronous 4-Bit Up/Down Binary CountersVVVSDLS074SN74LS194A164-Bit Bidirectional Universal Shift RegistersVVVSDLS075SN74LS22116Dual Monostable Multivibrators with Schmitt-Trigger InputsVVVSDLS213SN74LS24020Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24120Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24314Quad Bus-Transceivers with 3-State OutputsVVVSDLS145SN74LS24420Octal Buffers and Line Drivers with 3-State OutputsVVVSDLS144SN74LS24520Octal Bus Transceivers with 3-State OutputsVVVSDLS146SN74LS24716BCD to 7-Segment Decoders/Drivers with Open-Collector OutputsVVVSDLS085SN74LS251161-of-8 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085SN74LS25316Dual 1-of-4 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085	SN74LS175	16	Quad D-Type Flip-Flops with Clear	✓	~	~		SDLS068
SN74LS19316Presettable Synchronous 4-Bit Up/Down Binary CountersVVVSDLS074SN74LS194A164-Bit Bidirectional Universal Shift RegistersVVVSDLS075SN74LS22116Dual Monostable Multivibrators with Schmitt-Trigger InputsVVVSDLS213SN74LS24020Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24120Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24314Quad Bus-Transceivers with 3-State OutputsVVVSDLS145SN74LS24420Octal Buffers and Line Drivers with 3-State OutputsVVVSDLS144SN74LS24520Octal Bus Transceivers with 3-State OutputsVVVSDLS046SN74LS24716BCD to 7-Segment Decoders/Drivers with Open-Collector OutputsVVVSDLS083SN74LS251161-of-8 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085SN74LS25316Dual 1-of-4 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085	SN74LS181	24	Arithmetic Logic Units/Function Generators	V	~			SDLS136
SN74LS194A164-Bit Bidirectional Universal Shift RegistersVVVSDLS075SN74LS22116Dual Monostable Multivibrators with Schmitt-Trigger InputsVVVSDLS213SN74LS24020Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24120Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24314Quad Bus-Transceivers with 3-State OutputsVVVSDLS145SN74LS24420Octal Buffers and Line Drivers with 3-State OutputsVVVSDLS144SN74LS24520Octal Bus Transceivers with 3-State OutputsVVVSDLS146SN74LS24716BCD to 7-Segment Decoders/Drivers with Open-Collector OutputsVVVSDLS083SN74LS251161-of-8 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085SN74LS25316Dual 1-of-4 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085	SN74LS191	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	✓	~	~		SDLS072
SN74LS22116Dual Monostable Multivibrators with Schmitt-Trigger InputsVVVSDLS213SN74LS24020Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24120Octal Buffers/Drivers with 3-State OutputsVVVSDLS144SN74LS24314Quad Bus-Transceivers with 3-State OutputsVVVSDLS145SN74LS24420Octal Buffers and Line Drivers with 3-State OutputsVVVSDLS144SN74LS24520Octal Bus Transceivers with 3-State OutputsVVVSDLS146SN74LS24716BCD to 7-Segment Decoders/Drivers with Open-Collector OutputsVVVSDLS083SN74LS251161-of-8 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085SN74LS25316Dual 1-of-4 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS147	SN74LS193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters	✓	~	~		SDLS074
SN74LS240 20 Octal Buffers/Drivers with 3-State Outputs	SN74LS194A	16	4-Bit Bidirectional Universal Shift Registers	✓	~	~		SDLS075
SN74LS241 20 Octal Buffers/Drivers with 3-State Outputs V <	SN74LS221	16	Dual Monostable Multivibrators with Schmitt-Trigger Inputs	✓	~	~		SDLS213
SN74LS24314Quad Bus-Transceivers with 3-State OutputsVVVVSDLS145SN74LS24420Octal Buffers and Line Drivers with 3-State OutputsVVVVSDLS144SN74LS24520Octal Bus Transceivers with 3-State OutputsVVVVSDLS146SN74LS24716BCD to 7-Segment Decoders/Drivers with Open-Collector OutputsVVVSDLS083SN74LS251161-of-8 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS085SN74LS25316Dual 1-of-4 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS147	SN74LS240	20	Octal Buffers/Drivers with 3-State Outputs	✓	~	~		SDLS144
SN74LS244 20 Octal Buffers and Line Drivers with 3-State Outputs	SN74LS241	20	Octal Buffers/Drivers with 3-State Outputs	✓	~	~		SDLS144
SN74LS24520Octal Bus Transceivers with 3-State OutputsVVVVSDLS146SN74LS24716BCD to 7-Segment Decoders/Drivers with Open-Collector OutputsVVVSDLS083SN74LS251161-of-8 Data Selectors/Multiplexers with 3-State OutputsVVVVSDLS085SN74LS25316Dual 1-of-4 Data Selectors/Multiplexers with 3-State OutputsVVVSDLS147	SN74LS243	14	Quad Bus-Transceivers with 3-State Outputs	V	~	~	~	SDLS145
SN74LS247 16 BCD to 7-Segment Decoders/Drivers with Open-Collector Outputs	SN74LS244	20	Octal Buffers and Line Drivers with 3-State Outputs	✓	~	~	~	SDLS144
SN74LS251 16 1-of-8 Data Selectors/Multiplexers with 3-State Outputs	SN74LS245	20	Octal Bus Transceivers with 3-State Outputs	V	~	~	~	SDLS146
SN74LS253 16 Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs V V SDLS147	SN74LS247	16	BCD to 7-Segment Decoders/Drivers with Open-Collector Outputs		~	~		SDLS083
	SN74LS251	16	1-of-8 Data Selectors/Multiplexers with 3-State Outputs	V	~	~		SDLS085
SN74LS257B 16 Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs V V SDLS148	SN74LS253	16	Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs	V	~	~		SDLS147
	SN74LS257B	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	V	~	V		SDLS148

LS

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT SOIC	Y SSOP	LITERATURE REFERENCE
SN74LS258B	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	V	V	~		SDLS148
SN74LS259B	16	8-Bit Addressable Latches	~	~	~		SDLS086
SN74LS266	14	Quad 2-Input Exclusive-NOR Gates with Open-Collector Outputs	~	~	~		SDLS151
SN74LS273	20	Octal D-Type Flip-Flops with Clear	~	~	~		SDLS090
SN74LS279A	16	Quad S-R Latches	~	~	~		SDLS093
SN74LS280	14	9-Bit Odd/Even Parity Generators/Checkers	~	~	~		SDLS152
SN74LS283	16	9-Bit Binary Full Adders with Fast Carry	~	~	~		SDLS095
SN74LS292	16	Programmable Frequency Dividers/Digital Timers		~			SDLS153
SN74LS293	14	4-Bit Binary Counters	~	~	~		SDLS097
SN74LS294	16	Programmable Frequency Dividers/Digital Timers		~			SDLS153
SN74LS297	16	Digital Phase-Locked Loops		~			SDLS155
SN74LS298	16	Quad 2-Input Multiplexers with Storage	~	~	~		SDLS098
SN74LS299	20	8-Bit Universal Shift/Storage Registers	~	~	~		SDLS156
SN74LS321	16	Crystal-Controlled Oscillators	V	~			SDLS158
SN74LS348	16	8-Line to 3-Line Priority Encoders	V	V	~		SDLS161
SN74LS365A	16	Hex Buffers/Line Drivers with 3-State Outputs	~	~	~		SDLS102
SN74LS367A	16	Hex Buffers/Line Drivers with 3-State Outputs	~	~	~		SDLS102
SN74LS368A	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs	~	~	~		SDLS102
SN74LS373	20	Octal Transparent D-Type Latches with 3-State Outputs	V	~	~		SDLS165
SN74LS374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	V	~	~		SDLS165
SN74LS375	16	4-Bit Bistable Latches	~	~	~		SDLS166
SN74LS377	20	Octal D-Type Flip-Flops with Enable	V	V	~		SDLS167
SN74LS378	16	Hex D-Type Flip-Flops with Enable	V	V	~		SDLS167
SN74LS390	16	Dual 4-Bit Decade Counters	~	V	~		SDLS107
SN74LS393	14	Dual 4-Bit Binary Counters	V	V	~		SDLS107
SN74LS395A	16	4-Bit Cascadable Shift Registers with 3-State Outputs	V	V	~		SDLS172
SN74LS399	16	Quad 2-Input Multiplexers with Storage	V	V	~		SDLS174
SN74LS423	16	Dual Retriggerable Monostable Multivibrators with Reset		V	~		SDLS175
SN74LS442	20	Quad Tridirectional Bus Transceivers with 3-State Outputs		V			SDLS176
SN74LS465	20	Octal Buffers with 3-State Outputs		V	~		SDLS179
SN74LS540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	~	V	~		SDLS180
SN74LS541	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~		SDLS180
SN74LS590	16	8-Bit Binary Counters with 3-State Output Registers	~	~	~		SDLS003
SN74LS592	16	8-Bit Binary Counters with Input Registers	~	~	~		SDLS004
SN74LS593	20	8-Bit Binary Counters with Input Registers and 3-State I/O Ports	~	~	~		SDLS004
SN74LS594	16	8-Bit Shift Registers with Output Registers		~			SDLS005
SN74LS595	16	8-Bit Shift Registers with 3-State Output Registers	~	~	~		SDLS006
SN74LS596	16	8-Bit Shift Registers with 3-State Output Latches		~			SDLS006
SN74LS597	16	8-Bit Shift Registers with Input Latches	~	~	~		SDLS007
SN74LS598	20	8-Bit Shift Registers with Input Latches and 3-State I/O Ports	~	~	~		SDLS007
SN74LS599	16	8-Bit Shift Registers with Output Registers		~			SDLS005
SN74LS623	20	Octal Bus Transceivers with 3-State Outputs		~	~		SDLS185
SN74LS624	14	Single Voltage-Controlled Oscillators	~	~	~		SDLS186
SN74LS628	14	Single Voltage-Controlled Oscillators	~	~	~		SDLS186

LS

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT	Y SSOP	LITERATURE REFERENCE
SN74LS629	16	Dual Voltage-Controlled Oscillators	V	~	~		SDLS186
SN74LS640	20	Octal Bus Transceivers with 3-State Outputs	V	~	~		SDLS189
SN74LS640-1	20	Octal Bus Transceivers with 3-State Outputs		~	~		SDLS189
SN74LS641	20	Octal Bus Transceivers with Open-Collector Outputs		~	~		SDLS189
SN74LS641-1	20	Octal Bus Transceivers with Open-Collector Outputs		~	~		SDLS189
SN74LS642	20	Octal Bus Transceivers with Open-Collector Outputs		~	~		SDLS189
SN74LS642-1	20	Octal Bus Transceivers with Open-Collector Outputs		~	~		SDLS189
SN74LS645	20	Octal Bus Transceivers with 3-State Outputs	V	~	~		SDLS189
SN74LS645-1	20	Octal Bus Transceivers with 3-State Outputs		~	~		SDLS189
SN74LS646	24	Octal Registered Bus Transceivers with 3-State Outputs		~	~		SDLS190
SN74LS648	24	Octal Registered Bus Transceivers with 3-State Outputs		~	~		SDLS190
SN74LS652	24	Octal Bus Transceivers and Registers with 3-State Outputs		~	~		SDLS191
SN74LS669	16	Synchronous 4-Bit Up/Down Binary Counters	V	~	~		SDLS192
SN74LS670	16	4-by-4 Register Files with 3-State Outputs	V	~	~		SDLS193
SN74LS673	24	16-Bit Serial In/Out with 16-Bit Parallel-Out Storage Registers	V	~	~		SDLS195
SN74LS674	24	16-Bit Serial In/Out with 16-Bit Parallel-Out Storage Registers	V	~	~		SDLS195
SN74LS682	20	8-Bit Magnitude Comparators	~	~	~		SDLS008
SN74LS684	20	8-Bit Magnitude Comparators	~	~	~		SDLS008
SN74LS688	20	8-Bit Magnitude Comparators	~	~	~		SDLS008
SN74LS697	20	Synchronous 4-Bit Up/Down Binary Counters with Output Registers and Multiplexed 3-State Outputs	V	~	~		SDLS199

LV Low-Voltage CMOS Technology Logic

TI's entire LV family has been redesigned for better flexibility in your 3.3-V or 5-V system. New LV-A devices (e.g., 'LV00A, 'LV02A) have improved operating characteristics and new features, such as 5-V tolerance, faster performance, and partial power down.

The LV-A series of devices has expanded its voltage operation range (2-V to 5.5-V V $_{CC}$), while still having a static power consumption of only 20 μ A for both bus-interface and gate functions. The LV family now has propagation delays of 5.4 ns typical at 3.3 V (SN74LV244A) and provides 8 mA of current drive. With an I $_{Off}$ specification of only 5 μ A, these devices have the capability of partially powering down. In addition, the typical output V $_{OH}$ undershoot (V $_{OHV}$) has been improved to >2.3 V at 3.3-V V $_{CC}$ for quieter operation.

New key features:

- Support mixed-mode voltage operation on all ports
- I_{off} for partial power down
- 14 ns maximum at 3.3-V V_{CC} for buffers

The LV family is offered in the octal footprints with advanced packaging, such as small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), and thin shrink small-outline package (TSSOP).

See www.ti.com/sc/logic for the most current data sheets.

LV

DEVICE	NO.	DESCRIPTION		Α	VAILAB	ILITY		LITERATURE
DEVICE	PINS	PI	OIP SO	OIC	SSOP	TSSOP	TVSOP	REFERENCE
SN74LV00A	14	Quad 2-Input NAND Gates	•	/	~	~	~	SCLS389
SN74LV02A	14	Quad 2-Input NOR Gates	•	/	~	~	~	SCLS390
SN74LV04A	14	Hex Inverters	•	/	~	~	~	SCLS388
SN74LVU04A	14	Hex Unbuffered Inverters	•	/	~	~	~	SCES130
SN74LV05A	14	Hex Inverters with Open-Drain Outputs	•	/	~	~	~	SCLS391
SN74LV06A	14	Hex Inverter Buffers/Drivers with Open-Drain Outputs		ŀ	+	+	+	SCES336
SN74LV07A	14	Hex Buffers/Drivers with Open-Drain Outputs	•	/	~	~	~	SCES337
SN74LV08A	14	Quad 2-Input AND Gates	•	/	~	~	~	SCLS387
SN74LV14A	14	Hex Schmitt-Trigger Inverters	•	/	~	~	~	SCLS386
SN74LV32A	14	Quad 2-Input OR Gates	•	/	~	~	~	SCLS385
SN74LV74A	14	Dual D-Type Flip-Flops with Set and Reset	•	/	~	~	~	SCLS381
SN74LV86A	14	Quad 2-Input Exclusive-OR Gates	•	/	~	~	~	SCLS392
SN74LV123A	16	Dual Retriggerable Monostable Multivibrators with Reset	•	/	~	~	~	SCLS393
SN74LV125A	14	Quad Bus Buffers with 3-State Outputs	•	/		~	~	SCES124
SN74LV126A	14	Quad Bus Buffers with 3-State Outputs		(-	+	+	+	SCES131
SN74LV132A	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	•	/	~	~	~	SCLS394
SN74LV138A	16	3-to-8 Line Inverting Decoders/Demultiplexers	•	/	~	~	~	SCLS395
SN74LV139A	16	Dual 2-to-4 Line Decoders/Demultiplexers	•	/	~	~	~	SCLS396
SN74LV164A	14	8-Bit Serial-In, Parallel-Out Shift Registers	•	/	~	~	~	SCLS403
SN74LV165A	16	8-Bit Parallel-In, Serial-Out Shift Registers	•	/	~	~	~	SCLS402
SN74LV174A	16	Hex D-Type Flip-Flops with Clear	•	/	~	~	~	SCLS401
SN74LV175A	16	Quad D-Type Flip-Flops with Clear	•	/	~	~	~	SCLS400
SN74LV221A	16	Dual Monostable Multivibrators with Schmitt-Trigger Inputs	•	/	~	~	~	SCLS450
SN74LV240A	20	Octal Buffers/Drivers with 3-State Outputs	•	/	~	~	~	SCLS384
SN74LV244A	20	Octal Buffers and Line Drivers with 3-State Outputs	•	/	~	~	~	SCLS383
SN74LV245A	20	Octal Bus Transceivers with 3-State Outputs	•	/	~	~	~	SCLS382
SN74LV273A	20	Octal D-Type Flip-Flops with Clear	•	/	~	~	~	SCLS399
SN74LV367A	16	Hex Buffers/Line Drivers with 3-State Outputs	•	/	~	~	~	SCLS398
SN74LV373A	20	Octal Transparent D-Type Latches with 3-State Outputs	•	/	~	~	~	SCLS407
SN74LV374A	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	-	/	~	~	~	SCLS408
SN74LV540A	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs	•	/	~	~	~	SCLS409
SN74LV541A	20	Octal Buffers and Line Drivers with 3-State Outputs	•	/	~	~	~	SCLS410
SN74LV573A	20	Octal Transparent D-Type Latches with 3-State Outputs	-	/	~	~	~	SCLS411
SN74LV574A	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	-	/	~	~	~	SCLS412
SN74LV594A	16	8-Bit Shift Registers with Output Registers		/	~	~		SCLS413

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins

= 80 pins PNPCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only) **SOIC** (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins

DBB = 80 pins

SOT (small-outline transistor)

LV

DEVICE	NO.	DESCRIPTION		А	VAILAB	BILITY		LITERATURE
DEVICE	PINS	DESCRIPTION	PDIP	SOIC	SSOP	TSSOP	TVSOP	REFERENCE
SN74LV595A	16	8-Bit Shift Registers with 3-State Output Registers		~	~	~		SCLS414
SN74LV4040A	16	12-Stage Ripple-Carry Binary Counters/Dividers	~	~	~	~	~	SCES226
SN74LV4051A	16	8-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	~	~	~	~	~	SCLS428
SN74LV4052A	16	Dual 4-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	~	~	~	~	~	SCLS429
SN74LV4053A	16	Triple 2-Channel Analog Multiplexers/Demultiplexers with Logic Level Conversion	~	~	~	~	~	SCLS430
SN74LV4066A	14	Quad Bilateral Switches	~	~	~	~	~	SCLS427
SN74LV161284	48	19-Bit Bus Interfaces			~	V		SCLS426

LVC Low-Voltage CMOS Technology Logic

TI's LVC products are specially designed for 3-V power supplies.

The LVC family is a high-performance version with $0.8-\mu$ CMOS process technology, 24-mA current drive, and 6.5-ns maximum propagation delays for driver operations. The LVC family includes both bus-interface and gate functions, with 60 different functions planned.

The LVC family is offered in the octal and Widebus™ footprints, with all of the advanced packaging such as small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), very small-outline package (TVSOP), and selected devices in MicroStar BGA™ (LFBGA) packages.

All LVC devices are available with 5-V tolerant inputs and outputs.

An extensive line of single gates is planned in the LVC family.

See www.ti.com/sc/logic for the most current data sheets.

LVC

DEVICE	NO.	DESCRIPTION				AVA	LABILIT	Υ			LITERATURE
DEVICE	PINS	DESCRIPTION	LFBGA	PDIP	SOIC	SOT	SSOP	TSSOP	TVSOP	VFBGA	REFERENCE
SN74LVC1G00	5	Single 2-Input NAND Gates				+					SCES212
SN74LVC1G02	5	Single-2-Input NOR Gates				+					SCES213
SN74LVC1G04	5	Single Inverters				+					SCES214
SN74LVC1GU04	5	Single Inverters				~					SCES215
SN74LVC1G06	5	Single Inverting Buffers/Drivers with Open-Drain Outputs				~					SCES295
SN74LVC1G07	5	Single Buffers/Drivers with Open-Drain Outputs				~					SCES296
SN74LVC1G08	5	Single 2-Input AND Gates				+					SCES217
SN74LVC1G14	5	Single Schmitt-Trigger Inverters				+					SCES218
SN74LVC1G32A	5	Single 2-Input OR Gates				+					SCES135
SN74LVC1G66	5	Single Bilateral Switches				+					SCES323
SN74LVC1G79	5	Single Edge-Triggered D-Type Flip-Flops				+					SCES220
SN74LVC1G80	5	Single Edge-Triggered D-Type Flip-Flops				+					SCES221
SN74LVC1G86	5	Single 2-Input Exclusive-OR Gates				+					SCES222
SN74LVC1G125	5	Single Bus Buffers with 3-State Outputs				+					SCES223
SN74LVC1G126	5	Single Bus Buffers with 3-State Outputs				+					SCES224
SN74LVC1G240	5	Single Buffers/Drivers with 3-State Outputs				+					SCES305
SN74LVC00A	14	Quad 2-Input NAND Gates			~		~	~			SCAS279
SN74LVC02A	14	Quad 2-Input NOR Gates			~		~	~			SCAS280
SN74LVC04A	14	Hex Inverters			~		~	~	~		SCAS281
SN74LVCU04A	14	Hex Unbuffered Inverters			~		~	~			SCAS282
SN74LVC06A	14	Hex Inverter Buffers/Drivers with Open-Drain Outputs			~		~	~	~		SCAS596
SN74LVC07A	14	Hex Buffers/Drivers with Open-Drain Outputs			~		~	~	~		SCAS595
SN74LVC08A	14	Quad 2-Input AND Gates			~		~	~			SCAS283
SN74LVC10A	14	Triple 3-Input NAND Gates			~		~	~			SCAS284
SN74LVC14A	14	Hex Schmitt-Trigger Inverters			~		~	~			SCAS285
SN74LVC32A	14	Quad 2-Input OR Gates			~		~	~			SCAS286
SN74LVC74A	14	Dual D-Type Flip-Flops with Set and Reset			~		~	~			SCAS287
SN74LVC86A	14	Quad 2-Input Exclusive-OR Gates			~		~	~			SCAS288
SN74LVC112A	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset			~		~	~	~		SCAS289
SN74LVC125A	14	Quad Bus Buffers with 3-State Outputs			~		~	~			SCAS290
SN74LVC126A	14	Quad Bus Buffers with 3-State Outputs			~		~	~	~		SCAS339
SN74LVC138A	16	3-to-8 Line Inverting Decoders/Demultiplexers			~		~	~			SCAS291
SN74LVC139A	16	Dual 2-to-4 Line Decoders/Demultiplexers			~		~	V			SCAS341

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only) PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins = 80 pins PN

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins

DBQ = 16/20/24 DL = 28/48/56 pins TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

LVC

	NO.					AVAI	LABILI	Υ			LITERATURE
DEVICE	PINS	DESCRIPTION	LFBGA	PDIP	SOIC	SOT	SSOP	TSSOP	TVSOP	VFBGA	REFERENCE
SN74LVC157A	16	Quad 2-to-4 Line Data Selectors/Multiplexers	3		~		~	V			SCAS292
SN74LVC240A	20	Octal Buffers/Drivers with 3-State Outputs			~		~	~	~		SCAS293
SN74LVCZ240A	20	Octal Buffers/Drivers with 3-State Outputs		~	~		~	~	~		SCES273
SN74LVC244A	20	Octal Buffers and Line Drivers with 3-State Outputs		~	~		~	~	~		SCAS414
SN74LVCH244A	20	Octal Buffers and Line Drivers with 3-State Outputs			~		~	~	~		SCES009
SN74LVCZ244A	20	Octal Buffers and Line Drivers with 3-State Outputs		~	~		~	~			SCES274
SN74LVC245A	20	Octal Bus Transceivers with 3-State Outputs		~	~		~	~	~		SCAS218
SN74LVCH245A	20	Octal Bus Transceivers with 3-State Outputs			~		~	~	~		SCES008
SN74LVCZ245A	20	Octal Bus Transceivers with 3-State Outputs		~	~		~	~			SCES275
SN74LVC257A	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs			~		~	~			SCAS294
SN74LVC373A	20	Octal Transparent D-Type Latches with 3-State Outputs		~	~		~	~	~		SCAS295
SN74LVC374A	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	~		~	~	~		SCAS296
SN74LVC540A	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs			~		~	~	~		SCAS297
SN74LVC541A	20	Octal Buffers and Line Drivers with 3-State Outputs			~		~	~	~		SCAS298
SN74LVC543A	24	Octal Registered Transceivers with 3-State Outputs			~		~	~			SCAS299
SN74LVC573A	20	Octal Transparent D-Type Latches with 3-State Outputs		~	~		~	~	~		SCAS300
SN74LVC574A	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs		~	~		~	~	~		SCAS301
SN74LVC646A	24	Octal Registered Bus Transceivers with 3-State Outputs			~		~				SCAS302
SN74LVC652A	24	Octal Bus Transceivers and Registers with 3-State Outputs			~		v	~			SCAS303
SN74LVC821A	24	10-Bit Bus-Interface Flip-Flops with 3-State Outputs			~		~	~	~		SCAS304
SN74LVC823A	24	9-Bit Bus-Interface Flip-Flops with 3-State Outputs			~		~	~	~		SCAS305
SN74LVC827A	24	10-Bit Buffers/Drivers with 3-State Outputs			~		~	~	~		SCAS306
SN74LVC828A	24	10-Bit Buffers/Drivers with 3-State Outputs			~		~	~	~		SCAS347
SN74LVC841A	24	10-Bit Bus-Interface D-Type Latches with 3-State Outputs			~		~	~	~		SCAS307
SN74LVC861A	24	10-Bit Transceivers with 3-State Outputs			~		~	~	~		SCAS309
SN74LVC863A	24	9-Bit Bus Transceivers with 3-State Outputs			~		~	~	~		SCAS310
SN74LVC2244A	20	Octal Buffers/Line Drivers with Series Damping Resistors and 3-State Outputs			~		~	~	~		SCAS572
SN74LVCR2245A	20	Octal Bus Transceivers with Series Damping Resistors and 3-State Outputs			~		~	~	~		SCAS581
SN74LVC2952A	24	Octal Bus Transceivers and Registers with 3-State Outputs			~		~	~			SCAS311
SN74LVCC3245A	24	Octal Bus Transceivers with Adjustable Output Voltage and 3-State Outputs			~		~	~			SCAS585
SN74LVC4245A	24	Octal Bus Transceivers and 3.3-V to 5-V Shifters with 3-State Outputs			~		~	~			SCAS375
SN74LVCC4245A	24	Octal Dual-Supply Bus Transceivers with Configurable Output Voltage and 3-State Outputs			~		~	~			SCAS584

LVC

DEMOE	NO.	DECODIDATION				AVAII	ILABILITY				LITERATURE
DEVICE	PINS	DESCRIPTION	LFBGA	PDIP	SOIC	SOT	SSOP	TSSOP	TVSOP	VFBGA	REFERENCE
SN74LVCH16240A	48	16-Bit Buffers/Drivers with 3-State Outputs					~	V		,	SCAS566
SN74LVCZ16240A	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~			SCES276
SN74LVC16244A	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~	~	SCES061
SN74LVCH16244A	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~	~	SCAS313
SN74LVCZ16244A	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~			SCES277
SN74LVC16245A	48	16-Bit Bus Transceivers with 3-State Outputs					~	~	~		SCES062
SN74LVCH16245A	48	16-Bit Bus Transceivers with 3-State Outputs					~	V	~	~	SCES063
SN74LVCHR16245A	48	16-Bit Bus Transceivers with 3-State Outputs					~	~	~		SCAS582
SN74LVCZ16245A	48	16-Bit Bus Transceivers with 3-State Outputs					+				SCES278
SN74LVC16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs					~	V			SCAS315
SN74LVCH16373A	48	16-Bit Transparent D-Type Latches with 3-State Outputs					~	~	~	~	SCAS568
SN74LVC16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs					~	~			SCAS316
SN74LVCH16374A	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs					~	V	V	V	SCAS565
SN74LVCH16540A	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~		SCAS569
SN74LVCH16541A	48	16-Bit Buffers/Drivers with 3-State Outputs					~	~	~		SCAS567
SN74LVC16543	56	16-Bit Registered Transceivers with 3-State Outputs					~				Call
SN74LVCH16543A	56	16-Bit Registered Transceivers with 3-State Outputs					~	~	~		SCAS317
SN74LVC16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs					~				Call
SN74LVCH16646A	56	16-Bit Bus Transceivers and Registers with 3-State Outputs					~	~	~		SCAS318
SN74LVC16652	56	16-Bit Bus Transceivers and Registers with 3-State Outputs					~				Call
SN74LVCH16652A	56	16-Bit Bus Transceivers and Registers with 3-State Outputs					~	~	~		SCAS319
SN74LVCH16901	64	18-Bit Universal Bus Transceivers with Parity Generators/Checkers						~			SCES145
SN74LVCH16952A	56	16-Bit Registered Transceivers with 3-State Outputs					~	~	~		SCAS320
SN74LVC32244	96	32-Bit Buffers/Drivers with 3-State Outputs	V								SCES342
SN74LVCH32244A	96	32-Bit Buffers/Drivers with 3-State Outputs	V								SCAS617
SN74LVC32245	96	32-Bit Bus Transceivers with 3-State Outputs	+								SCES343
SN74LVCH32245A	96	32-Bit Bus Transceivers with 3-State Outputs	V								SCAS616
SN74LVCH32373A	96	32-Bit Transparent D-Type Latches with 3-State Outputs	~								SCAS618
SN74LVCH32374A	96	32-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	V								SCAS619
SN74LVC161284	48	19-Bit Bus Interfaces					~	~			SCAS583
SN74LVC162240	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs					~	~			Call
SN74LVCH162244A	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs					~	~	~		SCAS545
SN74LVCR162245	48	16-Bit Bus Transceivers with Series Damping Resistors and 3-State Outputs	,				~	~	,		SCES047

LVT

Low-Voltage BiCMOS Technology Logic

LVT is a 5-V tolerant, 3.3-V product using the latest $0.72-\mu$ BiCMOS technology with performance specifications ideal for workstation, networking, and telecommunications applications. LVT delivers 3.5-ns propagation delays at 3.3 V (28% faster than ABT at 5 V), current drive of 64 mA, and pin-for-pin compatibility with existing ABT families.

LVT operates at LVTTL signal levels in telecom and networking high-performance system point-to-point or distributed backplane applications. LVT is an excellent migration path from ABT.

In addition to popular octal and WidebusTM bus-interface devices, TI also offers the universal bus transceiver (UBTTM) and selected functions in Widebus+TM in this low-voltage family.

Performance characteristics of the LVT family are:

- 3.3-V operation with 5-V tolerant I/Os Permits use in a mixed-voltage environment.
- Speed Provides high-performance with maximum propagation delays of 3.5 ns at 3.3 V for buffers.
- Drive Provides up to 64 mA of drive at 3.3-V V_{CC}, yet consumes less than 330 μW of standby power.

Additional features include:

- Live insertion LVT devices incorporate I_{off} and power-up 3-state (PU3S) circuitry to protect the devices in live-insertion applications and make them ideally suited for hot-insertion applications. I_{off} prevents the devices from being damaged during partial power down, and PU3S forces the outputs to the high-impedance state during power up and power down.
- Bus hold Eliminates floating inputs by holding them at the last valid logic state. This eliminates the need for external pullup and pulldown resistors.
- Damping-resistor option TI implements series damping resistors on selected devices, which not only reduces overshoot and undershoot, but also matches the line impedance, minimizing ringing.
- Packaging LVT devices are available in small-outline integrated circuit (SOIC), shrink small-outline package (SSOP), thin shrink small-outline package (TSSOP), thin very small-outline package (TVSOP) (select devices), and selected devices in MicroStar BGA™ (LFBGA) package.

See www.ti.com/sc/logic for the most current data sheets.

LVT

	NO.				P	VAILAE	BILITY			LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	LFBGA	SOIC	SSOP	TSSOP	TVSOP	VFBGA	REFERENCE
LVT Octals (SN74L	VTxxx, SN	74LVTHxxx)								
SN74LVT125	14	Quad Bus Buffers with 3-State Outputs	V		~	~	~			SCBS133
SN74LVTH125	14	Quad Bus Buffers with 3-State Outputs			~	~	~	~		SCBS703
SN74LVTH126	14	Quad Bus Buffers with 3-State Outputs			~	~	~	~		SCBS746
SN74LVT240	20	Octal Buffers/Drivers with 3-State Outputs					~			Call
SN74LVT240A	20	Octal Buffers/Drivers with 3-State Outputs			~	~	~			SCBS134
SN74LVTH240	20	Octal Buffers/Drivers with 3-State Outputs			~	~	~			SCBS679
SN74LVTH241	20	Octal Buffers/Drivers with 3-State Outputs			~	~	V			SCAS352
SN74LVT244B	20	Octal Buffers and Line Drivers with 3-State Outputs			~	~	V			SCAS354
SN74LVTH244A	20	Octal Buffers and Line Drivers with 3-State Outputs	~		~	~	V			SCAS586
SN74LVT245B	20	Octal Bus Transceivers with 3-State Outputs			~	~	V			SCES004
SN74LVTH245A	20	Octal Bus Transceivers with 3-State Outputs	~		~	~	V			SCBS130
SN74LVTH273	20	Octal D-Type Flip-Flops with Clear			~	~	V			SCBS136
SN74LVTH373	20	Octal Transparent D-Type Latches with 3-State Outputs	~		~	~	V			SCBS689
SN74LVTH374	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~		~	~	V			SCBS683
SN74LVTH540	20	Inverting Octal Buffers and Line Drivers with 3-State Outputs			~	~	~			SCBS681
SN74LVTH541	20	Octal Buffers and Line Drivers with 3-State Outputs			~	~	~			SCBS682
SN74LVTH543	24	Octal Registered Transceivers with 3-State Outputs			~	~	V	~		SCBS704
SN74LVTH573	20	Octal Transparent D-Type Latches with 3-State Outputs	~		~	~	V			SCBS687
SN74LVTH574	20	Octal Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~		~	~	~			SCBS688
SN74LVTH646	24	Octal Registered Bus Transceivers with 3-State Outputs	~		~	~	~	~		SCBS705
SN74LVTH652	24	Octal Bus Transceivers and Registers with 3-State Outputs			~	~	V	~		SCBS706

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins = 80 pins PNPCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only) **SOIC** (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

LVT

DELVIOE	NO.	DESCRIPTION			A	VAILAE	BILITY			LITERATURE
DEVICE	PINS	DESCRIPTION	MIL	LFBGA	SOIC	SSOP	TSSOP	TVSOP	VFBGA	REFERENCE
LVT Widebus™ (SN	74LVTH1	бххх)								
SN74LVT16240	48	16-Bit Buffers/Drivers with 3-State Outputs				+	+	+		SCBS717
SN74LVTH16240	48	16-Bit Buffers/Drivers with 3-State Outputs				~	~			SCBS684
SN74LVTH16241	48	16-Bit Buffers/Drivers with 3-State Outputs				~	~			SCBS693
SN74LVT16244B	48	16-Bit Buffers/Drivers with 3-State Outputs				~	~	~	~	SCBS716
SN74LVTH16244A	48	16-Bit Buffers/Drivers with 3-State Outputs	~			~	~	~	~	SCBS142
SN74LVT16245B	48	16-Bit Bus Transceivers with 3-State Outputs				~	~	~	~	SCBS715
SN74LVTH16245A	48	16-Bit Bus Transceivers with 3-State Outputs	~			~	~	~	~	SCBS143
SN74LVTH16373	48	16-Bit Transparent D-Type Latches with 3-State Outputs	~			~	~		~	SCBS144
SN74LVTH16374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Output	~			~	~		~	SCBS145
SN74LVTH16500	56	18-Bit Universal Bus Transceivers with 3-State Outputs				~	~			SCBS701
SN74LVTH16501	56	18-Bit Universal Bus Transceivers with 3-State Outputs	~			~	~			SCBS700
SN74LVTH16541	48	16-Bit Buffers/Drivers with 3-State Outputs				~	~			SCBS691
SN74LVTH16543	56	16-Bit Registered Transceivers with 3-State Outputs				~	V			SCBS699
SN74LVTH16646	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				~	~			SCBS698
SN74LVTH16652	56	16-Bit Bus Transceivers and Registers with 3-State Outputs				~	~			SCBS150
SN74LVTH16835	56	18-Bit Universal Bus Drivers with 3-State Outputs				~	~			SCBS713
SN74LVTH16952	56	16-Bit Registered Transceivers with 3-State Outputs	~			~	~			SCBS697
LVT Widebus+™ (S	N74LVTH	132xxx)								
SN74LVT32244	96	32-Bit Buffers/Drivers with 3-State Outputs		V						SCBS748
SN74LVTH32244	96	32-Bit Buffers/Drivers with 3-State Outputs		V						SCBS749
SN74LVT32245	96	32-Bit Bus Transceivers with 3-State Outputs		+						Call
SN74LVTH32245	96	32-Bit Bus Transceivers with 3-State Outputs		V					,	SCBS750
SN74LVTH32373	96	32-Bit Transparent D-Type Latches with 3-State Outputs		·						SCBS751
SN74LVTH32374	96	32-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs		·						SCBS752
SN74LVTH32501	114	32-Bit Universal Bus Transceivers with 3-State Outputs		+						Call

LVT

DEVICE	NO. PINS	DESCRIPTION	MIL	LFBGA	SOIC	WAILAE SSOP	BILITY TSSOP	TVSOP	VFBGA	LITERATURE REFERENCE
LVT Octals/Widebus	LVT Octals/Widebus™ With Series Damping Resistors (SN74LVTH2xxx, SN74LVTH162xxx)									
SN74LVTH2245	20	Octal Bus Transceivers with Series Damping Resistors and 3-State Outputs			•	•	~	~		SCBS707
SN74LVTH2952	24	Octal Bus Transceivers and Registers with 3-State Outputs			~	~	~			SCBS710
SN74LVT162240	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				+	+	+		SCBS719
SN74LVTH162240	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				~	~			SCBS685
SN74LVTH162241	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				~	~			SCBS692
SN74LVT162244A	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs				+	+	+		SCBS718
SN74LVTH162244	48	16-Bit Buffers/Drivers with Series Damping Resistors and 3-State Outputs	~			~	~			SCBS258
SN74LVT162245A	48	16-Bit Bus Transceivers with Series Damping Resistors and 3-State Outputs				~	V	+		SCBS714
SN74LVTH162245	48	16-Bit Bus Transceivers with Series Damping Resistors and 3-State Outputs	~			~	~			SCBS260
SN74LVTH162373	48	16-Bit Transparent D-Type Latches with 3-State Outputs	V			~	~			SCBS261
SN74LVTH162374	48	16-Bit Edge-Triggered D-Type Flip-Flops with 3-State Outputs	~			~	~			SCBS262
SN74LVTH162541	48	16-Bit Buffers/Drivers with 3-State Outputs				~	V			SCBS690

PCAI²C Inter-Integrated Circuit Applications

The I^2C bus is a bidirectional two-wire bus for communicating between integrated circuits. The PCA and future PCF devices offered by TI are general-purpose logic to be used with the I^2C or system management (SM) bus protocols.

PCA

DEVICE	NO.	DECODIDATION	Α\	/AILABI	LITY	LITERATURE
DEVICE	PINS	DESCRIPTION	SOIC	SSOP	TSSOP	REFERENCE
PCA8550	16	Nonvolatile 5-Bit Registers with I ² C Interface	~	~	V	SCPS050

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only)

PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

S Schottky Logic

With a wide array of functions, TI's S family continues to offer replacement alternatives for mature systems. This classic line of devices was at the cutting edge of performance when introduced, and it continues to deliver excellent value for many of today's designs. As the world leader in logic products, TI is committed to being the last major supplier at every price-performance node.

See www.ti.com/sc/logic for the most current data sheets.

S

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT	Y SSOP	LITERATURE REFERENCE
SN74S00	14	Quad 2-Input NAND Gates	V	V	~		SDLS025
SN74S02	14	Quad 2-Input NOR Gates	V	~	~		SDLS027
SN74S04	14	Hex Inverters	~	~	~		SDLS029
SN74S05	14	Hex Inverters with Open-Collector Outputs	~	~	~		SDLS030
SN74S08	14	Quad 2-Input AND Gates	~	~	~		SDLS033
SN74S09	14	Quad 2-Input AND Gates with Open-Collector Outputs	~	~	~		SDLS034
SN74S10	14	Triple 3-Input NAND Gates	V	~	~		SDLS035
SN74S20	14	Dual 4-Input NAND Gates	V	~	~		SDLS079
SN74S32	14	Quad 2-Input OR Gates	V	~	~		SDLS100
SN74S37	14	Quad 2-Input NAND Gates	V	~	~		SDLS103
SN74S38	14	Quad 2-Input NAND Gates	V	~	~		SDLS105
SN74S51	14	Dual 2-Wide 2-Input AND-OR-Invert Gates	V	V	~		SDLS113
SN74S74	14	Dual D-Type Flip-Flops with Set and Reset	V	V	~		SDLS119
SN74S85	16	4-Bit Magnitude Comparators	~	V	~		SDLS123
SN74S86	14	Quad 2-Input Exclusive-OR Gates	~	V	~		SDLS124
SN74S112A	16	Dual Negative-Edge-Triggered J-K Flip-Flops with Set and Reset	~	V	~		SDLS011
SN74S124	16	Dual Voltage Controlled Oscillators	V	~	~		SDLS201
SN74S132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	~	V	~		SDLS047
SN74S133	16	13-Input NAND Gates	V	V	~		SDLS202
SN74S138A	16	3-to-8 Line Inverting Decoders/Demultiplexers	V	V	~		SDLS014
SN74S139A	16	Dual 2-to-4 Line Decoders/Demultiplexers	~	V	~		SDLS013
SN74S140	14	Dual 4-Input Positive-NAND 50-Ω Line Drivers	V	~	~		SDLS210
SN74S151	16	1-of-8 Data Selectors/Multiplexers	V	~	~		SDLS054
SN74S153	16	Dual 1-of-4 Data Selectors/Multiplexers	V	~			SDLS055
SN74S157	16	Quad 2-to-4 Line Data Selectors/Multiplexers	V	~	~		SDLS058
SN74S158	16	Quad 2-to-4 Line Data Selectors/Multiplexers	V	V	~		SDLS058
SN74S163	16	Synchronous 4-Bit Binary Counters	V	~			SDLS060
SN74S174	16	Hex D-Type Flip-Flops with Clear	V	~			SDLS068
SN74S175	16	Quad D-Type Flip-Flops with Clear	V	~	~		SDLS068
SN74S182	16	Look-Ahead Carry Generators	V	~			SDLS206
SN74S195	16	4-Bit Parallel Access Shift Registers	~	~	~		SDLS076
SN74S240	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~		SDLS144
SN74S241	20	Octal Buffers/Drivers with 3-State Outputs	~	~	~		SDLS144
SN74S244	20	Octal Buffers and Line Drivers with 3-State Outputs	~	~	~		SDLS144
SN74S257	16	Quad 1-of-2 Data Selectors/Multiplexers with 3-State Outputs	~	~	~		SDLS148

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only) PH = 80 pins (FIFO only) PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DEVICE	NO. PINS	DESCRIPTION	MIL	AVAIL PDIP	ABILIT	Y SSOP	LITERATURE REFERENCE
SN74S260	14	Dual 5-Input NOR Gates	V	~	~		SDLS208
SN74S280	14	9-Bit Odd/Even Parity Generators/Checkers	~	~			SDLS152
SN74S283	16	9-Bit Binary Full Adders with Fast Carry	~	~			SDLS095
SN74S373	20	Octal Transparent D-Type Latches with 3-State Outputs	~	~	~		SDLS165
SN74S374	20	Octal D-Type Edge-Triggered Flip-Flops with 3-State Outputs	~	~	~		SDLS165
SN74S381	20	Arithmetic Logic Units/Function Generators	~	~			SDLS168
SN74S1050	16	12-Bit Schottky Barrier Diode Bus-Termination Arrays		~	~		SDLS015
SN74S1051	16	12-Bit Schottky Barrier Diode Bus-Termination Arrays		~	~		SDLS018
SN74S1052	20	16-Bit Schottky Barrier Diode Bus-Termination Arrays		~	~		SDLS016
SN74S1053	20	16-Bit Schottky Barrier Diode Bus-Termination Arrays	Ť	~	~	~	SDLS017

SSTL/SSTVStub Series-Terminated Logic

The SSTL interface is the computer industry's leading choice for next-generation technology in high-speed memory subsystems, adopted by JESD8-8 and JESD8-9 and endorsed by major memory-module, workstation, and PC manufacturers.

TI's SSTL family is optimized for 3.3-V V_{CC} operation. The SSTV family is optimized for 2.5-V V_{CC} operation. The devices offered in the SSTL/SSTV families are ideal solutions for address/control bus buffering in high-performance double-data-rate (DDR) memory systems.

HSTLHigh-Speed Transceiver Logic

One of TI's low-voltage interface solutions is HSTL. HSTL devices accept a minimal differential input swing from 0.65 V to 0.85 V (nominally) with the outputs driving LVTTL levels. HSTL is ideally suited for driving an address bus to two banks of memory. The HSTL input levels follow JESD8-6.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

SSTL/SSTV/HSTL

DEVICE	NO. Pins	DESCRIPTION	AVAILABILITY TSSOP	LITERATURE REFERENCE
SSTL				
SN74SSTL16837A	64	20-Bit SSTL_3 Interface Universal Bus Drivers with 3-State Outputs	V	SCBS675
SN74SSTL16847	64	20-Bit SSTL_3 Interface Buffers with 3-State Outputs	V	SCBS709
SN74SSTL16857	48	14-Bit SSTL_2 Registered Buffers	✓	SCAS625
SSTV				
SN74SSTV16857	48	14-Bit Registered Buffers with SSTL_2 Inputs and Outputs	+	Call
SN74SSTV16859	64	13-Bit to 26-Bit Registered Buffers with SSTL_2 Inputs and Outputs	+	SCES297
HSTL				
SN74HSTL16918	48	9-Bit to 18-Bit HSTL-to-LVTTL Memory Address Latches	V	SCES096
SN74HSTL162822	64	14-Bit to 28-Bit HSTL-to-LVTTL Memory Address Latches	<i></i>	SCES091

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins

NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only) PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only)

PM = 64 pins

PN = 80 pins

PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only)

SOIC (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins

DW = 16/20/24/28 pins

QSOP (quarter-size outline package)

DBQ = 16/20/24 pins

SSOP (shrink small-outline package)

DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

TTLTransistor-Transistor Logic

With a wide array of functions, TI's TTL family continues to offer replacement alternatives for mature systems. This classic line of devices was at the cutting edge of performance when introduced, and it continues to deliver excellent value for many of today's designs. As the world leader in logic products, TI is committed to being the last major supplier at every price-performance node.

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

TTL

DEVICE NO.		DESCRIPTION		AILABI	LITY	LITERATURE
DEVICE	PINS	DESCRIE HOR	MIL	PDIP	SOIC	REFERENCI
SN7400	14	Quad 2-Input NAND Gates	~	~	~	SDLS025
SN7402	14	Quad 2-Input NOR Gates	'	~		SDLS027
SN7404	14	Hex Inverters	'	~	~	SDLS029
SN7405	14	Hex Inverters with Open-Collector Outputs	'	~	~	SDLS030
SN7406	14	Hex Inverter Buffers/Drivers with Open-Collector Outputs	V	~	~	SDLS031
SN7407	14	Hex Buffers/Drivers with Open-Collector Outputs	V	~	~	SDLS032
SN7410	14	Triple 3-Input NAND Gates	~	~		SDLS035
SN7414	14	Hex Schmitt-Trigger Inverters	~	~	~	SDLS049
SN7416	14	Hex Inverter Buffer/Drivers with Open-Collector Outputs	~	~	~	SDLS031
SN7417	14	Hex Buffers/Drivers with Open-Collector Outputs	V	~	~	SDLS032
SN7425	14	Dual 4-Input NOR Gates with Strobe	V	~		SDLS082
SN7432	14	Quad 2-Input OR Gates	V	~		SDLS100
SN7437	14	Quad 2-Input NAND Gates	V	~		SDLS103
SN7438	14	Quad 2-Input NAND Gates	V	~	~	SDLS105
SN7445	16	BCD-to-Decimal Decoders/Drivers	V	~		SDLS110
SN7447A	16	BCD to 7-Segment Decoders/Drivers	V	~		SDLS111
SN7474	14	Dual D-Type Flip-Flops with Set and Reset	V	~	~	SDLS119
SN7497	16	Synchronous 6-Bit Binary Rate Multipliers	V	~		SDLS130
SN74107	14	Dual Negative-Edge-Triggered J-K Flip-Flops with Reset	V	~		SDLS036
SN74121	14	Monostable Multivibrators with Schmitt-Trigger Inputs	·	~	~	SDLS042
SN74123	16	Dual Retriggerable Monostable Multivibrators with Reset		~		SDLS043
SN74128	14	Hex OR-Gate Line Drivers		~	~	SDLS045
SN74132	14	Quad 2-Input NAND Gates with Schmitt-Trigger Inputs	V	~		SDLS047
SN74145	16	BCD-to-Decimal Decoders/Drivers	V	~		SDLS051
SN74148	16	8-to-3 Line Priority Encoders	· ·	~		SDLS053
SN74150	24	1-of-16 Data Selectors/Multiplexers		~		SDLS054
SN74154	24	4-to-16 Line Decoders/Demultiplexers		~		SDLS056
SN74159	24	4-to-16 Line Decoders/Demultiplexers with Open-Collector Outputs		~		SDLS059
SN74175	16	Quad D-Type Flip-Flops with Clear		·		SDLS068
SN74193	16	Presettable Synchronous 4-Bit Up/Down Binary Counters		·		SDLS074
SN74221	16	Dual Monostable Multivibrators with Schmitt-Trigger Inputs	· ·	·		SDLS213
SN74265	16	Quad Complementary-Output Elements		~		SDLS088
SN74273	20	Octal D-Type Flip-Flops with Clear		~		SDLS090
SN74276	20	Quad J-K Flip-Flops		~	~	SDLS091
SN74367A	16	Hex Buffers/Line Drivers with 3-State Outputs		~	-	SDLS102
		ckage description and availability				0210102

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins

NT = 24/28 pins

schedule

✓ = Now + = Planned

FN = 20/28/44/68/84 pins

QFP (quad flatpack) RC = 52 pins (FB only) PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM = 64 pins PΝ = 80 pins

PCA, PZ = 100 pins (FB only)
PCB = 120 pins (FIFO only)

D = 8/14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24 DL = 28/48/56 pins

PW = 8/14/16/20/24/28 pins DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

DEVICE SELECTION GUIDE

TTL

DEVICE	NO.	DESCRIPTION	AV	AILABI	LITY	LITERATURE	
DEVICE	PINS	DESCRIPTION	MIL PDIP SOIC	REFERENCE			
SN74368A	16	Hex Inverting Buffers/Line Drivers with 3-State Outputs	~	~		SDLS102	
SN74393	14	Dual 4-Bit Binary Counters	~	~		SDLS107	

TVC

Translation Voltage Clamp Logic

TVC products are designed to protect components sensitive to high-state voltage-level overshoots.

New designs for PCs and other bus-oriented products require faster and lower-power devices built with advanced submicron semiconductor processes. Often, the I/Os of these devices are intolerant of high-state voltage levels on the communication buses used. The need for I/O protection became apparent for devices communicating with legacy buses, and the TVC family fills this need.

TVC devices offer an array of n-type metal-oxide semiconductor (NMOS) field-effect transistors (FETs) with the gates cascaded to a common gate input. TVC devices can be used as voltage limiters by connecting one of the FETs as a voltage reference transistor and the remainder as pass transistors. The low-voltage side of each pass transistor is limited to the voltage set by the reference transistor. All of the FETs in the array have essentially the same characteristics, so any one can be used as the reference transistor. Because the fabrication of the FETs is symmetrical, either port connection for each bit can be used as the low-voltage side, and the I/O signals are bidirectional through each FET.

Key features:

- No logic supply voltage required (no internal control logic)
- Used as voltage translators or voltage clamps
- 7-Ω on-state resistance with gate at 3.3 V
- Any FET can be used as the reference transistor.
- Direct interface with GTL+ levels
- Accept any I/O voltage from 0 to 5.5 V
- Flow-through pinout for ease of printed circuit board layout
- Minimum fabrication process transistor characteristic variations

See www.ti.com/sc/logic for the most current data sheets.

DEVICE SELECTION GUIDE

TVC

DEVICE	NO. PINS	FUNCTION	AVAILABILITY				LITERATURE	
DEVICE				SOIC	SSOP	TSSOP	TVSOP	REFERENCE
SN74TVC3010	24	10-Bit Translation Voltage Clamps		~	~	~	~	SCDS088
SN74TVC16222A	48	22-Bit Translation Voltage Clamps			~	~	~	SCDS087

commercial package description and availability

LFBGA (low-profile fine-pitch ball grid array)

GKE = 96 pins GKF = 114 pins

VFBGA (very-thin-profile fine-pitch ball grid array) GQL = 56 pins (also includes 48-pin functions)

PDIP (plastic dual-in-line package)

P = 8 pins N = 14/16/20 pins NT = 24/28 pins

schedule

✓ = Now + = Planned

PLCC (plastic leaded chip carrier) FN = 20/28/44/68/84 pins

QFP (quad flatpack)

RC = 52 pins (FB only) PH = 80 pins (FIFO only)

PQ = 100/132 pins (FIFO only)

TQFP (plastic thin quad flatpack)
PAH = 52 pins
PAG = 64 pins (FB only) PM

= 64 pins PN = 80 pins PCA, PZ = 100 pins (FB only) PCB = 120 pins (FIFO only) **SOIC** (small-outline integrated circuit)

D = $\frac{1}{8}$ /14/16 pins DW = 16/20/24/28 pins

QSOP (quarter-size outline package) DBQ = 16/20/24 pins

SSOP (shrink small-outline package) DB = 14/16/20/24/28/30/38 pins DBQ = 16/20/24

DL = 28/48/56 pins

TSSOP (thin shrink small-outline package)

PW = 8/14/16/20/24/28 pins

DGG = 48/56/64 pins

TVSOP (thin very small-outline package) DGV = 14/16/20/24/48/56 pins DBB = 80 pins

SOT (small-outline transistor)

DBV = 5 pins DCK = 5 pins

LOGIC OVERVIEW	
FOCUS ON THE HISTORY OF LOGIC	2
FUNCTIONAL INDEX	3
FUNCTIONAL CROSS-REFERENCE	4
DEVICE SELECTION GUIDE	5
PACKAGING AND SYMBOLIZATION INFORMATION	A
LOGIC PURCHASING TOOL/ALTERNATE SOURCES	В

APPENDIX A PACKAGING AND SYMBOLIZATION INFORMATION

CONTENTS

Device Names and Package Designators for TI Logic Products	. A–5
Device Names and Package Designators	
for Logic Products Formerly Offered by Cypress Semiconductor	. A–6
Device Names and Package Designators	
for Logic Products Formerly Offered by Harris Semiconductor	. A-7
Logic Symbolization Guidelines	. A–9
Moisture Sensitivity by Package	A-15
Packaging Cross-Reference	A-17

DEVICE NAMES AND PACKAGE DESIGNATORS FOR TI LOGIC PRODUCTS

Example:

1 Standard Prefix

Examples: SN – Standard Prefix

SNJ - Conforms to MIL-PRF-38535 (QML)

2 Temperature Range

Examples: 54 - Military

74 - Commercial

3 Family

Examples: Blank - Transistor-Transistor Logic

ABT – Advanced BiCMOS Technology ABTE/ETL – Advanced BiCMOS Technology/

Enhanced Transceiver Logic AC/ACT – Advanced CMOS Logic

AHC/AHCT - Advanced High-Speed CMOS Logic

ALB – Advanced Low-Voltage BiCMOS ALS – Advanced Low-Power Schottky Logic

ALVC - Advanced Low-Voltage CMOS Technology

AS - Advanced Schottky Logic

AVC – Advanced Very Low-Voltage CMOS Logic

BCT - BiCMOS Bus-Interface Technology

CBT - Crossbar Technology

CBTLV – Low-Voltage Crossbar Technology CD4000 – CMOS B-Series Integrated Circuits

F - F Logic

FB - Backplane Transceiver Logic/Futurebus+

FCT – Fast CMOS TTL Logic
GTL – Gunning Transceiver Logic
HC/HCT – High-Speed CMOS Logic
HSTL – High-Speed Transceiver Logic
LS – Low-Power Schottky Logic
LV – Low-Voltage CMOS Technology
LVC – Low-Voltage CMOS Technology
LVT – Low-Voltage BiCMOS Technology
PCA – I²C Inter-Integrated Circuit Applications

S - Schottky Logic

SSTL/SSTV – Stub Series-Terminated Logic TVC – Translation Voltage Clamp Logic

4 Special Features

Examples: Blank = No Special Features

C – Configurable V_{CC} (LVCC) D – Level-Shifting Diode (CBTD)

H – Bus Hold (ALVCH)

K – Undershoot-Protection Circuitry (CBTK)

R - Damping Resistor on Inputs/Outputs (LVCR)

S – Schottky Clamping Diode (CBTS)

Z – Power-Up 3-State (LVCZ)

5 Bit Width

Examples: Blank = Gates, MSI, and Octals

1G - Single Gate

8 – Octal IEEE 1149.1 (JTAG) 16 – Widebus™ (16, 18, and 20 bit) 18 – Widebus IEEE 1149.1 (JTAG) 32 – Widebus+™ (32 and 36 bit)

6 Options

Examples: Blank = No Options

2 - Series Damping Resistor on Outputs

4 – Level Shifter 25 – 25- Ω Line Driver

7 Function

Examples: 244 – Noninverting Buffer/Driver

374 - D-Type Flip-Flop

573 – D-Type Transparent Latch 640 – Inverting Transceiver

8 Device Revision

Examples: Blank = No Revision

Letter Designator A–Z

9 Packages

Commercial: D, DW - Small-Outline Integrated Circuit (SOIC)

DB, DL - Shrink Small-Outline Package (SSOP)

DBB, DGV - Thin Very Small-Outline Package (TVSOP)

DBQ - Quarter-Size Outline Package (QSOP)

DBV, DCK – Small-Outline Transistor Package (SOT)
DGG, PW – Thin Shrink Small-Outline Package (TSSOP)

FN – Plastic Leaded Chip Carrier (PLCC)

GKE, GKF - MicroStar BGA™ Low-Profile Fine-Pitch

Ball Grid Array (LFBGA)

GQL - MicroStar Junior BGA Very-Thin-Profile

Fine-Pitch Ball Grid Array (VFBGA)

N, NP, NT – Plastic Dual-In-Line Package (PDIP)

NS, PS – Small-Outline Package (SOP) PAG, PAH, PCA, PCB, PM, PN, PZ – Thin Quad Flatpack (TQFP)

PH, PQ, RC – Quad Flatpack (QFP)

Military: FK – Leadless Ceramic Chip Carrier (LCCC)

GB – Ceramic Pin Grid Array (CPGA)

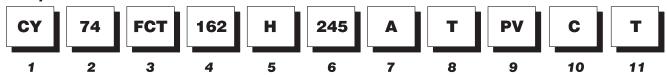
HFP, HS, HT, HV – Ceramic Quad Flatpack (CQFP) J, JT – Ceramic Dual-In-Line Package (CDIP) W, WA, WD – Ceramic Flatpack (CFP)

10 Tape and Reel

Devices in the DB and PW package types include the R designation for reeled product. Existing product inventory designated LE may remain, but all products are being converted to the R designation.

Examples: Old Nomenclature - SN74LVTxxxDBLE

New Nomenclature - SN74LVTxxxADBR


LE – Left Embossed (valid for DB and PW packages only)
R – Standard (valid for all surface-mount packages)

There is no functional difference between LE and R designated products, with respect to the carrier tape, cover tape, or reels used.

DEVICE NAMES AND PACKAGE DESIGNATORS FOR LOGIC PRODUCTS FORMERLY OFFERED BY CYPRESS SEMICONDUCTOR

CYFCT Nomenclature

Example:

1 Prefix Designation for Acquired Cypress FCT Logic

May be blank to accommodate 18-character limitation

2 Temperature Range

Examples: 54 – Military (–55°C to 125°C)

74 - Commercial/Industrial (-40°C to 85°C)

29 - Commercial/Industrial or Military (see data sheet)

3 Family

Example: FCT - FAST™ CMOS TTL Logic

4 16 or Greater Bit Width With Balanced Drive or 3.3-V Operation

Examples: Blank

16x - 16 or Greater Bit Width

With Balanced Drive or 3.3-V Operation 162 – Balanced Drive (series output resistors)

163 – 3.3 V

5 Bus Hold

Examples: Blank = No Bus Hold

 $\mbox{H}-\mbox{Bus Hold}$ (present only when preceded by $16\mbox{x}$

- see item 4)

6 Type Designation

16245

Up to Five Digits Examples: 245

es: 245 1652

7 Speed Grade

Examples: Blank = No Speed Grade

A R

С

D E

8 TTL or CMOS Outputs

Examples: Blank = CMOS Outputs

T - TTL Outputs

9 Packages

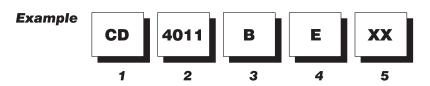
Examples: P – Plastic Dual-In-Line Package (PDIP) (N)

PA - Thin Shrink Small-Outline Package (TSSOP)

(DGG/G)

PV – Shrink Small-Outline Package (SSOP) (DL) Q – Quarter-Size Outline Package (QSOP) (DBQ) SO – Small-Outline Integrated Circuit (SOIC) (DL)

10 Processing


Example: C – Commercial Processing

11 Tape and Reel

Example: T – Tape and Reel Packing

DEVICE NAMES AND PACKAGE DESIGNATORS FOR LOGIC PRODUCTS FORMERLY OFFERED BY HARRIS SEMICONDUCTOR

CD4000 Nomenclature

- 1 Prefix Designation for Acquired Harris Digital Logic
- 2 Type Designation

Up to Five Digits

3 Supply Voltage

Examples: A – 12 V Maximum B – 18 V Maximum

UB - 18 V Maximum, Unbuffered

4 Packages

Examples: D – Ceramic Side-Brazed Dual-In-Line Package

(DIP)

E – Plastic DIP

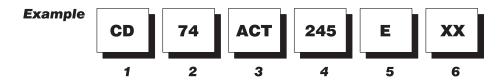
F - Ceramic DIP

K – Ceramic Flatpack M – Plastic Surface-Mount

Small-Outline Integrated Circuit (SOIC)

SM – Plastic Shrink SOIC (SSOP)

M96 – Reeled Plastic Surface-Mount SOIC SM96 – Reeled Plastic Shrink SOIC (SSOP)


5 High-Reliability Screening

Military Products Only

Examples: 3 – Noncompliant With MIL-STD-883, Class B

3A - Fully Compliant With MIL-STD-883, Class B

CDAC/CDACT Advanced CMOS and CDHC/CDHCT/CDHCU High-Speed CMOS Nomenclature

- 1 Prefix Designation for Acquired Harris Digital Logic
- 2 Temperature Range

Examples: 54 – Military (–55°C to 125°C) 74 – Commercial (0°C to 70°C)

3 Family

Examples: AC – Advanced CMOS Logic, CMOS Input Levels

ACT – Advanced CMOS Logic, TTL Input Levels HC – High-Speed CMOS Logic, CMOS Input Levels HCT – High-Speed CMOS Logic, TTL Input Levels HCU – High-Speed CMOS Logic, CMOS Input Levels,

Unbuffered

4 Type Designation

Up to Five Digits

5 Packages

Examples: E – Plastic Dual-In-Line Package (DIP)

EN - Plastic Slim-Line 24-Lead DIP

F - Ceramic DIP

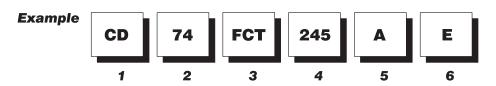
M - Plastic Surface-Mount

Small-Outline Integrated Circuit (SOIC)

SM - Plastic Shrink SOIC (SSOP)

M96 - Reeled Plastic Surface-Mount SOIC

SM96 - Reeled Plastic Shrink SOIC (SSOP)


6 High-Reliability Screening

Military Products Only

Example: 3A – Fully Compliant With MIL-STD-883

DEVICE NAMES AND PACKAGE DESIGNATORS FOR LOGIC PRODUCTS FORMERLY OFFERED BY HARRIS SEMICONDUCTOR

CDFCT Nomenclature

1 Prefix Designation for Acquired Harris Digital Logic

2 Temperature Range

Examples: $54 - Military (-55^{\circ}C \text{ to } 125^{\circ}C)$

74 – Commercial (0°C to 70°C)

3 Family

Example: FCT - Bus Interface, TTL Input Levels

4 Type Designation

Up to Five Digits

5 Speed Grade

Example: Blank or A – Standard Equivalent to FAST™

6 Packages

Examples: E – Plastic Dual-In-Line Package (DIP)

EN - Plastic Slim-Line 24-Lead DIP

F - Ceramic DIP

M - Plastic Surface-Mount

Small-Outline Integrated Circuit (SOIC)

SM – Plastic Shrink SOIC (SSOP)

M96 - Reeled Plastic Surface-Mount SOIC SM96 - Reeled Plastic Shrink SOIC (SSOP)

In the past, logic products had the complete device name on the package. It has become necessary to reduce the character count, as package types have become smaller and logic names longer. Information in the following tables is intended to help interpret TI's logic symbolization.

Table A-1 defines a "name rule" (A, B, or C) based on the type of package for a specific device. Each name rule differs in the number of characters that are symbolized on the package. Name rule A uses the complete, or fully qualified, device name. Name rules B and C include fewer characters, respectively. Table A-2 is a listing of the various logic products by name rule.

Example: Assume a 48-pin TVSOP with the symbolization VH***. Locate the 48-pin TVSOP (DGV) package in Table A-1, and find the name rule used (C). Proceed to Table A-2, and find VH*** in the *Name Rule C* column. The most complete device number, SN74ALVCH16***, is located in the *Name Rule A* column.

See the following information and Tables A-3 and A-4 for little-logic (PicoGate Logic and Microgate Logic) packages.

Table A-1. Name Rule Decision Tree

PACKAGE	NO. PINS	NAME RULE	PACKAGE DESIGNATOR
LFBGA	96	С	GKE
LIBOA	114	С	GKF
	8	Α	Р
PDIP	14, 16, 20	А	N
	24, 28	А	NP, NT
	28	А	FN
PLCC	44	В	FN
	68	А	FN
QSOP	16, 20, 24	В	DBQ
	8	С	D
SOIC	14, 16	В	D
	16, 20, 24, 28	В	DW
	52	В	RC
QFP	80	Α	PH
	100, 132	А	PQ
SOP	8	С	PS
30P	14, 16, 20, 24	В	NS
SSOP	14, 16, 20, 24, 28, 30, 38	С	DB
330P	28, 48, 56	В	DL
TOCOD	8, 14, 16, 20, 24, 28	С	PW
TSSOP	48, 56, 64	В	DGG
TVSOP	14, 16, 20, 24, 48, 56	С	DGV
TVSOP	80	В	DBB
	52	В	PAH
	64	В	PAG, PM
TQFP	80	В	PN
	100	В	PZ, PCA
	120	В	PCB
VFBGA	56	С	GQL

Table A-2. Typical Logic Package Symbolization Guidelines

NAME RULE A	NAME RULE B	NAME RULE C
74AC***	AC***	AC***
74AC11***	AC11***	AE***
74ACT***	ACT***	AD***
74ACT1***	ACT1***	AU***
74ACT11***	ACT11***	AT***
CD74HC***	HC***M	HJ***
CD74HCT***	HCT***M	HK***
CD74AC***	AC***M	HL***
CD74ACT***	ACT***M	HM***
SN64BCT***	DCT***	DT***
SN64BCT2***	DCT2***	DA***
SN64BCT25***	DCT25***	DC***
SN64BCT29***	DCT29***	DD***
SN74ABT***	ABT***	AB***
SN74ABT***-S	ABT***-S	AB***-S
SN74ABT16***	ABT16***	AH***
SN74ABT162***	ABT162***	AH2***
SN74ABT18***	ABT18***	AJ***
SN74ABT2***	ABT2***	AA***
SN74ABT5***	ABT5***	AF***
SN74ABT8***	ABT8***	AG***
SN74ABTE16***	ABTE16***	AN***
SN74ABTH***	ABTH***	AK***
SN74ABTH16***	ABTH16***	AM***
SN74ABTH162***	ABTH162***	AM2***
SN74ABTH18***	ABTH18***	AL***
SN74ABTR2***	ABTR2***	AR***
SN74AHC***	AHC***	HA***
SN74AHC16***	AHC16***	HE***
SN74AHCH16***	AHCH16***	HH***
SN74AHCT***	AHCT***	HB***
SN74AHCT16***	AHCT16***	HF***
SN74AHCTH16***	AHCTH16***	HG***
SN74AHCU***	AHCU***	HD***
SN74ALB16***	ALB16***	AV***
SN74ALS***	ALS***	G***
SN74ALVC***	ALVC***	VA***
SN74ALVC16***	ALVC16***	VC***
SN74ALVC162***	ALVC162***	VC2***
SN74ALVCH***	ALVCH***	VB***

NAME RULE A	NAME RULE B	NAME RULE C
SN74ALVCH16***	ALVCH16***	VH***
SN74ALVCH162***	ALVCH162***	VH2***
SN74ALVCH32***	ALVCH32***	ACH***
SN74ALVCHG16***	ALVCHG16***	VG***
SN74ALVCHG162***	ALVCHG162***	VG2***
SN74ALVCHR16***	ALVCHR16***	VR***
SN74ALVCHR162***	ALVCHR162***	VR2***
SN74ALVCHS162***	ALVCHS162***	VS2***
SN74ALVTH16***	ALVTH16***	VT***
SN74ALVTH162***	ALVTH162***	VT2***
SN74ALVTH32***	ALVTH32***	VL***
SN74AS***	AS***	AS***
SN74AS***	74AS*** †	AS***
SN74AVC***	AVC***	AVC***
SN74AVC16***	AVC16***	CVA***
SN74AVC32***	AVC32***	ACV***
SN74AVCH16***	AVCH16***	CVH***
SN74BCT***	BCT***	BT***
SN74BCT11***	BCT11***	BB***
SN74BCT2***	BCT2***	BA***
SN74BCT25***	BCT25***	BC***
SN74BCT29***	BCT29***	BD***
SN74BCT8***	BCT8***	BG***
SN74CBT***	CBT***	CT***
SN74CBT16***	CBT16***	CY***
SN74CBT3***	CBT3***	CU***
SN74CBT6***	CBT6***	CT6***
SN74CBTD***	CBTD***	CD***
SN74CBTD16***	CBTD16***	CYD***
SN74CBTD3***	CBTD3***	CC***
SN74CBTH16***	CBTH16***	CYH***
SN74CBTLV16***	CBTLV16***	CN***
SN74CBTLV3***	CBTLV3***	CL***
SN74CBTS***	CBTS***	CS***
SN74CBTS16***	CBTS16***	CYS***
SN74CBTS3***	CBTS3***	CR***
SN74F***	F***	F***
SN74F***	74F*** †	F***
SN74HC***	HC***	HC***
SN74HCT***	HCT***	HT***

[†] For NS package only

Table A-2. Typical Logic Package Symbolization Guidelines (continued)

NAME RULE A	NAME RULE B	NAME RULE C
SN74HCU***	HCU***	HU***
SN74LS***	LS***	LS***
SN74LS***	74LS*** †	LS***
SN74LV***	LV***	LV***
SN74LV***	74LV*** †	LV***
SN74LVC***	LVC***	LC***
SN74LVC16***	LVC16***	LD***
SN74LVC2***	LVC2***	LE***
SN74LVC4***	LVC4***	LJ***
SN74LVC8***	LVC8***	LC8***
SN74LVCC3***	LVCC3***	LH***
SN74LVCC4***	LVCC4***	LG***
SN74LVCH***	LVCH***	LCH***
SN74LVCH16***	LVCH16***	LDH***
SN74LVCH162***	LVCH162***	LN2***
SN74LVCH32***	LVCH32***	CH***
SN74LVCHR162***	LVCHR162***	LR2***
SN74LVCR2***	LVCR2***	LER***

NAME RULE A	NAME RULE B	NAME RULE C
SN74LVCU***	LVCU***	LCU***
SN74LVCZ***	LVCZ***	CV***
SN74LVCZ16***	LVCZ16***	CW***
SN74LVT***	LVT***	LX***
SN74LVT***-S	LVT***-S	LX***-S
SN74LVT162***	LVT162***	LZ***
SN74LVT18***	LVT18***	T18***
SN74LVT2***	LVT2***	LY***
SN74LVTH***	LVTH***	LXH***
SN74LVTH16***	LVTH16***	LL***
SN74LVTH162***	LVTH162***	LL2***
SN74LVTH2***	LVTH2***	LK***
SN74LVTR***	LVTR***	LXR***
SN74LVTT***	LVTT***	LXT***
SN74LVTZ***	LVTZ***	LXZ***
SN74LVU***	LVU***	LU***
SN74S***	S***	S***
SN74S***	74S*** †	S***

[†] For NS package only

DCK and DBV 5-Pin SOT Packages

The DCK (PicoGate Logic) and DBV (Microgate Logic) 5-pin packages are very small and have space for only three or four symbolization characters. The format of the characters is 1, 2, 4, or 1, 2, 3, 4 where:

PACKAGE	DCK	DBV	TABLE
Device technology	1	1	See Table A-3
Device function	2	2, 3	See Table A-4
Wafer fabrication/assembly test site code	3	4	

Tables A-3 and A-4 list the possible device technology and function codes for the 5-pin packages. In some cases, the tables may list a device technology or function that is not yet available. The wafer fabrication and assembly-test site is coded into the final character for both packages. Additional tracking information is coded into "dots" or marks adjacent to the device pins. For further information about a specific device, please contact your local field sales office or the TI Product Information Center.

PicoGate Logic

PicoGate Logic uses a three-character name rule. The first character denotes the technology family, the second character denotes device function, and the third character denotes a wafer fabrication and assembly-test facility combination (for internal tracking, here denoted by x).

Example: A PicoGate Logic device with a package code of BAx is an SN74AHCT1G00DBV.

Microgate Logic

Microgate Logic uses a four-character name rule. The first character denotes the technology family, the second and third characters denote device function, and the fourth character denotes a wafer fabrication and assembly-test facility combination (for internal tracking, here denoted by x).

Example: A Microgate Logic device with a package code of A02x is an SN74AHC1G02DCK.

Table A-3. Device Technology Codes

TECHNOLOGY	CODE
AHC	Α
AHCT	В
ALVC	G
CBT	S
CBTD	Р
LVC1G**A	L
LVC1G**B	С
CBTLV1G	V

Table A-4. Device Function Codes

FUNCTION	DCK	DBV
00	Α	00
02	В	02
04	С	04
05	5	05
06	Т	06
07	V	07
08	Е	08
125	М	25
126	N	26
132	Υ	3B
14	F	14
157		57
240	K	40
241		41
245		45
32	G	32
79	R	79
80	Х	80
86	Н	86
4066	L	
U04	D	U4

Table A-5 lists the moisture sensitivity of TI packages by level. Some packages differ in level by pin count. Where no pin count is shown, all packages of that type used in the assembly of logic products have the same moisture-sensitivity level.

Table A-5. Package Moisture Sensitivity by Levels

PACKAGE	LEVEL 1	LEVEL 2	LEVEL 2A	LEVEL 3	LEVEL 4
PLCC	FN (20/28)			FN (44/68)	
SOT	DBV (5) DCK (5)				
SOP	NS (14/16/20) PS (8)				
SOIC	D (8/14/16) DW (16/20/24/28)				
SSOP	DB (14/16/20/24/28/30/38) DBQ (16/20/24) DL (28/48/56)				
TSSOP	DGG (48/56/64) PW (8/14/16/20/24)				
TVSOP	DBB (80) DGV (14/16/20/24/48/56)				
QFP		RC (52)			
TQFP		PAG (64) PCA (100) PN (80) PZ (100)			PM (64)
MicroStar BGA				GKE (96) GKF (114)	
MicroStar Junior BGA			GQL (56)		

NOTES: 1. No current device packages are moisture-sensitivity levels 5 or 6.

TI's through-hole packages (N, NT) have not been tested per the JESD22-A112A/JESD22-A113A standards. Due to the nature of the through-hole PCB soldering process, the component package is shielded from the solder wave by the PC board and is not subjected to the higher reflow temperatures experienced by surface-mount components.

TI's through-hole component packages are classified as not moisture sensitive.

^{2.} Some device types in these packages may have different moisture-sensitivity levels than shown.

MOISTURE SENSITIVITY BY PACKAGE

The information in Table A-6 was derived using the test procedures in JESD22-A112A and JESD22-A113A. The *Floor Life* column lists the time that products can be exposed to the open air while in inventory or on the manufacturing floor. The worst-case environmental conditions are given. The *Soak Requirements* column lists the preconditioning, or soak, conditions used when testing to determine the floor-life exposure time.

Table A-6. Moisture-Sensitivity Levels (JESD22-A112A/JESD22-A113A)

	FLOOR L	IFE	SOAK REQ	UIREMENTS
LEVEL	CONDITIONS	TIME (hours)	CONDITIONS	TIME (hours)
1	≤ 30°C/90% RH	Unlimited	85°C/85% RH	168
2	≤ 30°C/60% RH	1 year	85°C/60% RH	168
2A	≤ 30°C/60% RH 4 weeks		30°C/60% RH	696
				X + Y = Z [†]
3	≤ 30°C/60% RH	168	30°C/60% RH	24 + 168 = 192
4	≤ 30°C/60% RH	72	30°C/60% RH	24 + 72 = 96
5	≤ 30°C/60% RH	24	30°C/60% RH	24 + 24 = 48
6	≤ 30°C/60% RH	6	30°C/60% RH	0 + 6 = 6

RH = Relative humidity

X = Default value of time between bake and bag. If the actual time exceeds this value, use the actual time and adjust the soak time (Z). For levels 3–6, X can be standardized at 24 hours as long as the actual time does not exceed this value.

Y = Floor life of package after it is removed from dry-pack bag

For more information, see:

Packaging Material Standards for Moisture-Sensitive Items, EIA Std EIA-583

Symbol and Labels for Moisture-Sensitive Devices, EIA/JEDEC Engineering Publication EIA/JEP113-B, May 1999

Guidelines for the Packing, Handling, and Repacking of Moisture-Sensitive Components, EIA/JEDEC Publication EIA/JEP124, December 1995

 $^{^{\}dagger}X + Y = Z$, where:

Z = Total soak time for the evaluation

PACKAGING CROSS-REFERENCE

Table A-7 is a packaging cross-reference for TI and other semiconductor manufacturing companies. If a specific alternate source agreement exists between TI and a particular company, the cell is shaded.

Table A-7. Logic Package Competitive Cross-Reference

						P/	ACKAG	iΕ				
PACKAGE TYPE	NO. PINS	TI	TI- ACQUIRED HARRIS	TI- ACQUIRED CYPRESS	FAIRCHILD	HITACHI	IDT	IDT- ACQUIRED QUALITY	ON (formerly Motorola)	PERICOM	PHILIPS	TOSHIBA
1 EDO 4	96	GKE	_	_			BF	_			GKE	
LFBGA	114	GKF	_				BF			NB	GKF	
	14	N	E	Р	N,P	DP	Р	Р	N	Р	N	Р
	16	N	Е	Р	Р	DP	Р	_	N	Р	N	
PDIP	20	N	Е	Р	Р	DP	Р	_	N	Р	N	
	24	NT	EN	Р	SP	DP	PT	Р	N	Р	N2	
	28	NT	_	Р	_	DP	PT	_		Р		
	14	D	М	S0	M,S	FP	DC	S1	D	W	D	FN
	16	D	М	S0	M,S	FP	DC	S1	D	W	D	FN
0010	16	DW	_	S0	_		SO	S0	DW	S		
SOIC	20	DW	М	S0	WM	FP	SO	S0	DW	S	DW	FW
	24	DW	М	S0	WM	FP	SO	S0	DW	S	DW	
	28	DW	_	S0		FP	SO	S0		S	DW	
	14	DB	_	_	SJ			_	SD	Н	DB	FS
	16	DB	SM	_	SJ			_	SD	Н	DB	FS
	16	DBQ	_	Q			Q	Q		Q		
	20	DB	SM	_	MSA		PY	_	SD	Н	DB	FS
	20	DBQ	_	Q	QSC		Q	Q		Q		
	24	DB	SM	Q	MSA	_	PY	_	SD	Н	DB	
SSOP	24	DBQ	_	Q	_	_	Q	Q		Q	_	
	28	DB	_	_			PY	_		Н	DB	
	30	DB	_	_	_			_			_	
	38	DB	_	_				_				
	28	DL	_	_	_			_				
	48	DL	_	PV	MEA		PV	PV		V	DL	
	56	DL	_	PV	MEA		PV	PV		V	DL	
	14	PW	_	_	MTC	TTP	_	_	DT	L	PW/DH	FS
	16	PW	_	_	MTC	TTP		_	DT	L	PW/DH	FS
	20	PW			MTC	TTP	PG	_	DT	L	PW/DH	FS
TSSOP	24	PW			MTC	TTP	PG	PA	DT	L	PW/DH	_
13308	28	PW	_	_	_	TTP	PG	_		L		_
	48	DGG	_	PA	MTD	TTP	PA	PA		А	DGG	FT
	56	DGG		PA	MTD	TTP	PA	PA		А	DGG	FT
	64	DGG	_	_		TTP						

PACKAGING CROSS-REFERENCE

Table A-7. Logic Package Competitive Cross-Reference (continued)

						P/	ACKAG	E				
PACKAGE TYPE	NO. PINS	ΤI	TI- ACQUIRED HARRIS	TI- ACQUIRED CYPRESS	FAIRCHILD	НІТАСНІ	IDT	IDT- ACQUIRED QUALITY	ON (formerly Motorola)	PERICOM	PHILIPS	TOSHIBA
	14	DGV	_	_	_	_	_	_	_	_	DGV	_
	16	DGV	_	_	_		_	_				_
	20	DGV	_	_			_					
TVSOP	24	DGV	_	_	_		_	_		_	_	
	48	DGV	_	_	_		PF†	Q1 [‡]		Κ§	_	
	56	DGV	_	_			PF [†]			K ₆		
	80	DBB	_	_		TTP	_	_		_	_	
VFBGA	56	GQL	_	_			_	_	_	_	_	
Single	5	DBV	_	_	P5	MPAK	_	_		_	_	F
Gate	5	DCK	_	_		CMPAK	_	_		_	DCK	FU
Dual	8	DCT	_	_		SSOP-8	_	_		_	_	FU
Gate	8	DCU	_	_			_	_	_	_	_	FK
Tape and Reel¶		R#	96	Т	Х	R	T/R	х	T1, T3, T4, R1, R2, RL	Х	-Т	EL

LEGEND:

TI and this company have an alternate source agreement.

[†] IDT has a TSSOP with similar specifications and lead pitch to TI's TVSOP package.
‡ Quality Semiconductor's QVSOP package has the same pitch but slightly different footprint than TI's TVSOP package.
§ Pericom has a QVSOP with similar specifications and lead pitch to TI's TVSOP package.

[¶] Tape and reel packaging is valid for surface-mount packages only. All orders must be for whole reels.

[#]LE = Left-embossed tape and reel may be seen with some DB and PW packages, however, the nomenclature is transitioning to R.

R = Standard tape and reel (required for DBB, DBV, and DGG; optional for D, DL, and DW packages)

Logic Devices

Tables A-8 through A-11 list the standard pack quantities, by package type, for tubes, reels, boxes, and trays, respectively.

Table A-8. Tube Quantities

		PIN COUNT										
	8	14	16	20	24	28	44	48	56	68		
DIP	50	25	25	20	15	13	N/A	N/A	N/A	N/A		
PLCC	N/A	N/A	N/A	46	N/A	37	26	N/A	N/A	18		
SOIC	75	50	40	25	25	20	N/A	N/A	N/A	N/A		
SSOP	N/A	N/A	NS	N/A	N/A	40	N/A	25	20	N/A		

NOTE 1: QSOP (DBQ) and EIAJ devices (DB, NS, PS, and PW packages) are not available in tubes.

Table A-9. Reel Quantities

		PACKAGE DESIGNATOR	UNITS PER REEL
EIAJ surface mount		DBR/DBLE, NSR/NSLE, PWR/PWLE	2000
LFBGA	96/114 pin	GKE, GKF	1000
PLCC	28 pin	FNR	750
FLCC	44 pin	FNR	500
QSOP	16/20/24 pin	DBQR	2500
SSOP	48/56 pin	DLR	1000
	14/16 pin	DR	2500
SOIC/SOP	Widebody 16 pin	DWR	2000
3010/30P	20/24 pin	DWR	2000
	28 pin	DWR	1000
TQFP	64 pin	PMR	1000
TSSOP	-	DGGR	2000

Table A-10. Box Quantities

		PACKAGE DESIGNATOR	UNITS PER BOX		
		N	1000		
DIP		NT	750		
		NP	700		
SOIC		D, DW	1000		
SSOP	48/56 pin	DL	1000		

PACKAGING CROSS-REFERENCE

Table A-11. Tray Quantities

		PACKAGE DESIGNATOR	UNITS PER TRAY
TQFP	64 pin	PM	160

LOGIC OVERVIEW	
FOCUS ON THE HISTORY OF LOGIC	2
FUNCTIONAL INDEX	3
FUNCTIONAL CROSS-REFERENCE	4
DEVICE SELECTION GUIDE	5
PACKAGING AND SYMBOLIZATION INFORMATION	A
LOGIC PURCHASING TOOL/ALTERNATE SOURCES	В

В

LOGIC PURCHASING TOOL/ALTERNATE SOURCES

Tables B-1 through B-4 list equivalent or similar product types for most logic families available in the industry, separated by voltage node and specialty logic. As the world leader in logic products, TI offers the broadest logic portfolio to meet your design needs.

Alternate sourcing agreements between TI and other companies are shown with shaded table cells. Crosshatched cells are used where the products are identical (or nearly identical). Cells with no background are used where the products are similar.

Table B-1. 5-V Logic

TI	FAIRCHILD	HITACHI	IDT	ON	PERICOM	PHILIPS	TOSHIBA
ABT	ABT	ABT				ABT	//ABT//
AC	AC//	///AC///		///AC///			AC
ACT	ACT//	//AÇT//		//ACT//			ACT
AHC	VHC			VHC		AHC	
AHCT	VHCT			VHCT		AHCT	
AHC1G	NC7S					HC1G	7SHU
AHCT1G							
ALS	/ALS//					//ALS//	
AS	//A\$//						
BCT	BCT			BC			BC
CBT/BUS	FST		FST, QS		PI5C		
CD4000	CD4000			MC14000			
F	///F///			/// / F///		///Æ///	
FCT			FCT		//fct//		
HC	HC	//HC///	1	HC		///HC///	HC
HCT	НСТ	//HCT///		нст//		/нст//	НСТ
LS	//\ <u>\</u> \\$///			/// <u>/</u> \\$///			
S	///s///						
TTL	171						

LEGEND:	
	TI and this company have an alternate source agreement
////	Same product but no alternate source agreement
NAME	Similar product and technology

LOGIC PURCHASING TOOL/ALTERNATE SOURCES

Table B-2. 3.3-V Logic

TI	FAIRCHILD	HITACHI	IDT	ON	PERICOM	PHILIPS	TOSHIBA
ALB							
ALVC	VCX	ALVC	ALVC	VCX	ALVC	ALVC	VCX
CBTLV			QS3VH		P13B		
LV	LVQ/LVX	LV		LVQ/LVX		LV	LVQ/LVX
LVC	LCX	LVC	LVC/ LCX	LCX	LCX/LPT	LVC	LCX
LVT	//\WT///	LVT				LVT	

LEGEND:	
	TI and this company have an alternate source agreement.
	Same product but no alternate source agreement
NAME	Similar product and technology

Table B-3. 2.5-V Logic

TI	PERICOM	PHILIPS
ALVT	ALVT	ALVT
AVC	AVC	AVC

LEGEND:	
	TI and this company have an alternate source agreement.
	Same product but no alternate source agreement
NAME	Similar product and technology

Table B-4. Specialty Logic

TI	FAIRCHILD	HITACHI	IDT	PERICOM	PHILIPS
ABTE	ETL/VME				
FB	DS				//FB///
GTL					GTL/
GTLP	GTLP/			GTLP/	
HSTL					
JTAG	SCAN		QS3J		
TVC					GTL
PCA					PCA//
SSTL		\$STL/			

		SSTL	(//\$\$/	<u>и//</u>
LEGEND:				
	TI and this cor	mpany have an	alternate source agree	men
	Same product	but no alternat	e source agreement	
NAME	Similar produc	ct and technolog	gy	