Unit 7

SEGMENTED MEMORY
ANDI/O

7'2 UNIT SEVEN

CONTENTS
IDECOAUGHON -« vv s 00 smosess s wass o wse w0 e e s e S mpa S 7-3
TR OBJOBHYVES o vuns vawws ow v s m@p 6 0es 05 Sromis SEweR v 513 7-4
Unit Activity Guide . i ivs 56 e il snses sases mmiss ¥ aen va & 7-5
ERE PIOGTATS sis wmvvdn S bl 0 s v Mimmss Wil SEmin mmadd o4 wg 7-6
Intra And Intersegment Addressing 7-23
VO AAQESSIAE « sawns on vvva s swevi seeie swesi @ 9@ o9 5 7-30
EXPOmIIIeNt: <. s e nd 5o e fam sl Samss BREEs CnasE 1E DEh 0 8 7-36
LIt T ERamBEREIIN. ovcon cninin srmas s o b dat kv 4 ReEss 3 7-71
Examination ABSWEIS . wewes s s an s s sade oo amais it srewens s 7-73

Self-Review ADSWETS . .\ oy s e ss et oo sssiosiosssnansisisnnns 7-75

Segmented Memory and /O 7'3

INTRODUCTION

Unit 2 introduced you to the concept of COM and EXE program struc-
tures. Thereafter, all of the programming examples were limited to
COM-type programs. Because COM-type programs are a carry-over from
early generation microprocessors like the Intel 8080, they are limited
to a 64K area of memory. As a result, they are very easy to structure —
all of the segments lie within the same 64K of memory — and they
appear to be composed of one unique memory segment. Creating a pro-
gram composed of truly individual memory segments requires that you
use the EXE-type of program structure.

With this type of program, you can address all one megabyte (1MB)
of the memory locations accessible through the 8088/8086 MPU. Natur-
ally, the program structure is more complex than that of a COM pro-
gram. This unit will cover all of the details of writing various types
of EXE programs.

While on the subject of addressing all of memory, this unit will also
show you how to address the associated Input/Output (I/O) ports. While
most /O addressing is best handled through system interrupts, like
interrupt 21H function 9 (write character string), there will be times
when you must directly address a specific I/O port. For that reason,
we will describe both fixed port and variable port I/O addressing.

Use the “Unit Objectives” that follow to evaluate your progress. When
you successfully accomplish all of the objectives, you will have com-
pleted this Unit. You can use the “Unit Activity Guide” to help you
maintain a record of the sections that you complete.

7-4 | uniT seveN

UNIT OBJECTIVES

When you complete this Unit, you will be able to:

1.

Specify the align-type, the combine-type, and ‘class’ of a seg-
ment.

Use the intersegment (far) addressing instructions JMP, CALL,
and RET.

State the purpose of the assembler operators ASSUME, LABEL,
and “segment override.”

Define the following terms: segment, segment base address, logi-
cal address, physical address, fixed port, and variable port.

State the number of 8-bit /O ports available to the 8088/8086
MPU.

Use the fixed and variable port /O instructions IN and OUT.

Use the assembler directives COMMENT, PUBLIC, and EXTRN.

Segmented Memory and /O

UNIT ACTIVITY GUIDE

Begin Reading the Section on “EXE Programs.”

Complete Self-Review Questions 1-17.

Continue Reading the Section on “EXE Programs.”

Complete Self-Review Questions 18-31.

Read the Section on “Intra And Intersegment
Addressing.”

Complete Self-Review Questions 32-43.

Read the Section on “I/O Addressing.”

Complete Self-Review Questions 44-51.

Perform the Experiment.

Complete the Unit 7 Examination.

Check the Examination Answers.

Completion
Time

7-5

7'6 UNIT SEVEN

EXE PROGRAMS

Earlier, we said that the segment address locations in a program are
determined by the system DOS “program loader.” The loader identifies
what area of memory is available for program use, and then loads the
program into the bottom, or low address of that memory. Finally, the
loader stores the program starting address into the CS and IP registers.

In COM-type programs, the program loader also stores the Code Seg-
ment register contents in the DS, SS, and ES registers. That, however,
isn’t the case in EXE-type programs. You, as the programmer, must
load the segment registers as required by the program. To begin the
discussion of EXE programs, let’s review the basic structure of the pro-
gram.

Program Structure

Every EXE program must contain at least two segment areas: the stack
segment and the code segment. Once you’ve established the basic seg-
ments, you can add as many additional data, code, and stack segments
as necessary to run the program. Figure 7-1 is a simple example of
an EXE program. In addition to the stack and code segments, we've
added a data segment.

TITLE UNIT 7 -- PROGRAM 1 -- EXE PROGRAM STRUCTURE

¥
PROG_STACK SEGMENT STACK
DW 16 DUP (@FH) ;Set up stack area
TOP_OF_STACK LABEL WORD sIdentify top of stack for SP register
PROG_STACK ENDS

i
PROG_DATA SEGMENT

DATAL DB 16 DUP (@BH) ;Set up byte-sized data area
DATAZ DW 8 DUP (@BBH) 1Set up word-sized data area
PROG_DATA ENDS

i
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE, DS: PROG_DATA, SS: PROG_STACK

START: MOV AX,PROG_STACK ;Never load a segment register direct
MOV 55, AX ;Use an intermediate register
MOV SP,OFFSET TOP_OF _STACK ;Point to the top of stack
jimmediately after loading SS register
MOV AX,PROG_DATA ;Again, indirectly load the
MOV DS, AX ;segment register
MOV BL,DATAL ;Get the first byte of data
LEA BX, DATA2 jPoint to the first word of data
MOV DX, [BX] ;Get the first word of data
INT 3 jReturn to the debugger
¥
PROG_CODE ENDS
END START
Figure 7-1

EXE program structure.

Segmented Memory and /O 7'7

Every segment in an EXE program must be identified by a unique name
followed by the assembler directive SEGMENT. In the case of our stack
segment, the name is PROG_STACK. The argument STACK following
the SEGMENT directive identifies this segment as the stack segment
in the program. The end of the segment is identified by the segment
name followed by the ENDS directive.

Memory space is reserved for the stack by an assembler Define Word
directive. In this example, 16 words are initialized with the value
000FH. The end of the stack area is identified by the assembler directive
LABEL. This tells the assembler to associate the current address offset
with the name preceding the LABEL. The operator WORD completes
the identification by telling the assembler that the name relates to word-
sized values. Remember, the directive LABEL does not reserve a mem-
ory location, it simply points to it. The address offset associated with
the LABEL directive will be used to initialize the Stack Pointer register.

The program data segment is similar to the stack segment. its beginning
is identified by a unique name followed by the SEGMENT directive,
while its end is identified by the same unique name followed by the
ENDS directive. An EXE program doesn’t need a data segment. You
can place program data within the code segment, just as in a COM
program. Naturally, the combination of code and data must not exceed
the 64K size limitation of a program segment.

The last segment in our program is the code segment. As before, its
beginning and end are identified by a unique name followed by the
assembler directives SEGMENT and ENDS respectively. Unlike data,
all program code must reside within the code segment. In addition,
the cods segment must contain the assembler directive ASSUME.

Recall that the ASSUME directive is a promise to the assembler that
all code, data, and stack references will be made to the indicated seg-
ments. The ASSUME directive in the program in Figure 7-1 indicates
that all data is in the PROG.DATA segment, all code is in the
PROG_CODE segment, and all stack references must be made to the
PROG_STACK segment. Had the data resided within the code segment,
then all data references would be made to the code segment name.

Assuring the assembler that code and data reside in specific segments
doesn’t guarantee that the segment registers will be loaded with the
correct addresses. This must be handled by the program. The first five
instructions in our sample program load the segment registers.

7'8 UNIT SEVEN

The first instruction loads the base address of the stack segment into
the AX register. This is necessary, since there are no 8088/8086 instruc-
tions to directly load a segment register; hence, the intermediate step
of loading the AX register with the segment address value. The next
instruction then loads the Stack Segment register from the AX register.

The third instruction loads the Stack Pointer register with the offset
address to the top of the stack. Actually, the offset address points to
the first word beyond the last stack memory location. This is because
the Stack Pointer is always decremented one word before a value is
pushed into the stack. Placing the LABEL directive after the stack allo-
cation statement gives us that one-word offset for the Stack Pointer.

The next two instructions follow the same sequence as the first two.
The base address of the data segment is loaded into the AX register.
Then the AX register contents are moved into the Data Segment register.

The remaining program instructions simply move data from the data
segment into the MPU. They have nothing to do with segment register
initialization.

The program didn’t have to initialize the Code Segment register or the
Instruction Pointer. That process is handled by the DOS program loader.
For the same reason, the ORG 100H directive statement is not required
at the beginning of an EXE-type program.

The Extra Segment register was ignored in this sample EXE program
because it served no useful purpose. Generally, it is used to handle
unique data groups in large programs. A good example is the “string”
instruction where data is moved from a data segment pointed to by
the DS register to a second data segment pointed to by the ES register.
The Extra Segment register is initialized like the Data Segment register.

Segmented Memory and /0 7'9

Segment Addressing

The first unit in this course described how memory is addressed. The
segment register provides a 16-bit base address that points to the begin-
ning of the associated segment. The logical, or offset, address is then
added to the base to produce the physical address of the memory loca-
tion. In a COM-type program, all of the addresses are calculated from
the same base address, because all of the segment registers contain
the same address value. In an EXE-type program, each of the segment
base addresses can be different. As a result, the offset address to a
memory location in a COM-type program may not be the same as the
offset address in an EXE-type program. To see how that works, let’s
compare two similar programs.

Figure 7-2 shows a COM-type program that contains the same program
code, without the segment register initialization steps, and the same
data as the EXE-type program in Figure 7-1. Figure 7-3 compares the
memory segments for both programs. On the left is the COM program.
All of the segments share the same 64K block of memory. Because
of this, all offsets into the program are referenced from the same seg-
ment base address. The stack area was not defined, therefore it is auto-
matically located at the end of the 64K segment. Actually, the Stack
Pointer is shifted 16 bytes into the stack by the DOS program loader.

TITLE UNIT 7 -- PROGRAM 2 -- COM PROGRAM STRUCTURE
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS: COM_PROG, S5: COM_PROG

ORG 1004
START: MOV BL,DATAl ;Get the first byte of data
LEA BX,DATAZ ;Point to the first word of data
MOV DX, [BX] ;Get the first word of data
INT 3 jReturn to the debugger
i
DATA1 DB 16 DUP (@BH) ;5et up byte-sized data area
DATAZ DW 8 DUP (@BBH) ;Set up word-sized data area
3
COM_PROG ENDS
END START

Figure 7-2
COM program structure.

7"1 0 UNIT SEVEN

The right side of Figure 7-3 shows the memory arrangement for the
EXE program. Each program segment is treated as a separate memory
block, with a unique base address for each segment. Depending on
the size of a segment, it may occupy a separate 64K section of memory,
or it may overlap another segment. In this example, each segment re-
quires very little memory; therefore, the segments overlap. The “linker”
program determines the size of each segment and arranges the segments
so they occupy sequential bytes of memory. Early versions of the linker
program (Version 1.10 for instance) place the code segment first, fol-
lowed by the data segment, and finally the stack segment. Later versions
of the linker program (Version 2.00 for instance) place the stack segment
first, followed by the data segment, and finally the code segment.

After the program object code is linked, all of the offset address refer-
ences are fixed relative to the segment base addresses. However, the
segment base addresses are not fixed at this time. Each contains a value
relative to other segments. The DOS program loader assigns the actual
base address for each of the segments when it loads the program into
memory.

COM EXE
PROGRAM , PROGRAM
MEMORY [MEMORY
0A090H i
0A 190H 1P-0100 1P=0000 0A190H
v
g ol 0A180H
= -
el
A I_ o 0A1D0H
= -
(4]
= I ’ I 5P=0020 0ALFOH
vy
s ZEE
= |y v
< s = =
< w 3
= : » ot
Js P S— t‘i’ :‘:_C g
T 58 5 &84 =
o
1a080HL _ SPFFFO ’
1A 08FH oo
- 1A18FH
1ALAFH
. 1AL1CFH
Figure 7-3

Comparison of COM and EXE program segments.

Segmented Memory and I/O 7'1 1

When code or data is accessed in the EXE program, the offset is refer-
enced to the default segment register. That is, for code, the offset is
added to the contents of the Code Segment register; for data, the offset
is added to the Data segment register. The one, immediate, exception
to this rule involves indirect register addressing using the Base Pointer
register. Here, the default segment register is the Stack Segment register.
Data accessed by the BP register is, by default, in the stack segment.
That’s no problem in a COM program because all of the program seg-
ments reside in the same memory segment area. But in an EXE program,
you must make sure the data you are accessing was originally assigned
to the stack segment. One way around this potential problem of address-
ing the wrong segment area is with the segment override assembler
operator.

Overriding The Default Segment

When you begin writing complex programs, there will be times when
you need to use all of the base and pointer registers for indirect register
addressing into the data segment. Since the BP register defaults to the
stack segment, you must be able to tell the MPU that you actually wish
to address the data segment. This is handled by a segment override
assembler operator.

The segment override operator is a two-letter abbreviation of the seg-
ment register name followed by a colon. It tells the assembler that a
segment other than the default segment is to be used in: the instruction.
When the assembler sees the operator, it generates a byte of code that
identifies the specified segment register. That code is then used to tell
the MPU that the accompanying instruction will use the indicated seg-
ment register in place of the default segment register. The segment over-
ride operator takes the form:

Code Segment = CS:
Data Segment = DS:
Stack Segment = SS:
Extra Segment = ES:

To move a word of data from the data segment into the AX register
using the BP register in indirect register addressing, the instruction
will take the form:

MOV AX,DS:[BP] :Move usingdata segment override

7‘1 2 UNIT SEVEN

To reverse the operation, use the instruction:

MoV DS:[BP],AX ;Move using data segment override

In each case, the segment override operator precedes the instruction
operand that contains the offset, or effective address. Remember, any
time you address data that resides in a segment that is different than
the segment assumed by the assembler, you must use the segment over-
ride operator. If you forget, there is no way for the assembler to recog-
nize that an error exists. As a result, it will generate the code that
sends the MPU to the wrong memory segment, causing what could
be a fatal program error.

If the assembler recognizes that you are attempting to address data in
a segment that is not the default segment, it will automatically generate
the segment override code. Thus, if it sees the instruction:

MOV AX,DATAl ;DatainCSregister

and the assembler knows that DATA1 is located in the code segment,
it will precede the instruction code with the segment override code
for the code segment. When the MPU sees the segment override code,
it knows that the address offset to DATA1 is referenced to the Code
Segment register rather than the usual Data Segment register.

The segment override assembler operator gives you a way of telling
the MPU that data resides in a memory segment other than the normal,
or default, segment. Thus, any of the four segment registers can be
uced to point to data within memory. But what happens when data
resides in a memory segment that is not pointed to by a segment regis-

ter?

Segmented Memory and I/O 7'1 3

Changing Segments In Mid-Program

When you write a program, you use the ASSUME directive to tell the
assembler which segment registers point to specific memory segments.
If a segment register is not listed in an ASSUME directive statement,
the assembler assumes nothing about that segment register. For exam-
ple, in the following ASSUME directive statement:

ASSUME CS:PROG.CODE, SS: PROG_STACK

the assembler assumes that the DS and ES registers will not be used
by the program. Any data references will be made to the code segment
or the stack segment. Now if the program contained a data segment,
separate from the code and stack segments, that referenced:

DATAl DB 16 DUP (OBH)
DATAZ2 DW 8 DUP (OBBH)

the instructions:

MOV BL,DATAl ;Get first byte of data
LEA BX,DATA2 ;Get offset of array DATAZ

will be flagged as errors by the assembler because these data locations
can’t be reached using the “assumed” segment registers. However, if
you rewrite the instructions so that they contain a segment override
operator such as:

MOV BL,DS:DATAl ;Get firstbyteof data
LEA BX,DS:DATA2 ;Getoffset of array DATAR

the assembler will assemble the code properly. The assembler makes
the assumption that the DS register will contain the correct segment
base address. It’s up to you, as the programmer, to make sure the DS
register contains the base address of the segment that contains the data
being accessed, before the data is accessed.

In this example, we used the DS register as the segment override
operator. Because the assembler expected to use the DS register as the
base address for the data segment, no segment override code was gener-
ated. Had we used any of the other segment registers for the segment
override, the assembler would have generated the appropriate segment
code byte.

7-14 | uniT seven

Using a segment override assembler operator only affects the instruction
associated with that operator. The operator must be repeated for each
instruction that uses a segment register not defined by an ASSUME
directive statement.

The segment override assembler operator is convenient for identifying
a memory segment area for one or two instructions. But where many
instructions are involved, there is always a possibility you will forget
to use or use the wrong segment override. To make sure that doesn’t
happen, it's best to make a blanket change and let the assembler keep
track of the cegments. This blanket change is made with the ASSUME
directive.

You can use the ASSUME directive as often as you wish in a program.
Each time you use it, the assembler is given new directions as to what
segments are related to the segment registers. For example, the AS-
SUME directive statement:

ASSUME CS:PROG.CODE,DS:PROGDATA, SS:PROG.STACK

at the beginning of the code segment defines the segment to segment
register relationship for the CS, DS, and SS registers. Nothing is as-
sumed for the ES register. Now, when the assembler encounters the
ASSUME directive statement:

ASSUME ES:PROG_EXTRA

it begins associating all data in the segment PROG_EXTRA with the
segment base address in the ES register. However, the previous “as-
sumptions” have not changed. Shouid the assembler encounter a third
ASSUME directive statement:

ASSUME DS:PROGDATAZ2

the original “assumption” concerning the DS register is changed. Now
the DS register is associated with the data in the segment PROG_DATAZ2,
and not the data in the segment PROG_DATA.

A large amount of information has been presented in this section. Before
we describe how the segment attributes in an EXE program are deter-
mined, you should review the preceding material. Answer the following
questions. Then check your answers at the back of this Unit. If you
miss any of the questions, study the related material before you con-
tinue.

Segmented Memory and I/O 7'1 5

Self-Review Questions

1. A is a logical unit of memory that is 64K bytes
long.

2. Segments may be adjacent to each other but they must not over-
lap.

True/False

3. The assembler “assumes” that instructions and data are randomly
located throughout all of the segments of an EXE program.

True/False
4. Every EXE program must contain at least segment
areas.
5. Every segment must be identified by a name.
6. The argument must follow the stack SEG-

MENT directive so that the assembler knows which segment de-
fines the stack area in memory.

7. The assembler directive LABEL reserves a memory location.

True/False

8. The beginning of a segment is identified by the

directive.

9. The end of a segment is identified by the di-
rective.

10. The segment contains the ASSUME directive.

11. Before any memory operations are performed, the first instruc-
tions in an EXE program should be used to:

7-16 | uniT sEven

12.

13.

14.

15.

16.

17.

The Segment and
Pointer registers don’t have to be initialized by the program code.

A physical address in memory is determined by combining a seg-
ment address with a ad-
dress.

The linker arranges the code, data, and stack segments so that

the segment is first, the segment
is next, and the segment is last.
Data addressed by the register is, by de-

fault, within the stack segment.

You can override the assembler’s choice of segment register in
a memory operation with the assembler
operator.

You can change the assembler’s “assumptions” about a segment
with the directive.

NOTE: The Self-Review Answers are located at the end of this unit,
beginning on Page 7-75.

Segmented Memory and I/O 7‘1 7

Segment Attributes

In Unit 2, you learned that many different attributes can be assigned
to a segment. These attributes determine how multiple segments relate
to each other when they are linked and loaded into memory. Until
now, you haven't specified any segment attributes because the default
attributes were acceptable in your COM-type programs. With EXE-type
programs, the segment attributes are important.

Segment attributes can take three forms: align-type, combine-type, and
‘class-name’. These are shown in the expanded SEGMENT directive
statement:

<seg-name> SEGMENT <align-type> <combine-type> <‘class-name’>

You will recall that seg-name represents the unique name assigned
to each segment in the program. The term align-type specifies how
the program is to be linked and loaded into memory. There are four
align-types:

PARA — Is the default alignment that stands for paragraph
alignment. This specifies that the segment begins
on a paragraph boundary — the address is divisible
by 16. That is, the last four bits of the 20-bit phys-
ical address are zero.

PAGE — Specifies that the segment begins at any address
that is divisible by 256. In this case, the last eight
bits of the 20-bit physical address are zero. The
PAGE alignment is used to maintain code location
compatibility between 8080 assembly language pro-
grams and 8088/8086 assembly language programs.

WORD —Specifies that the segment begins at any even-
numbered address boundary. In this case, the last
bit in the 20-bit address is zero.

BYTE — Specifies that the segment begins at any address
boundary in memory.

7-18

UNIT SEVEN

Of the four, “paragraph” alignment is used most often. It insures that
every segment in the program begins with an offsei to the segment
base address of zero. However, it can cause the program to waste from
1 to 15 bytes of memory between segments. This will happen when
the preceding segment doesn’t “end” on a paragraph boundary. To
maintain alignment, the linker automatically fills-in the unused mem-
ory locations with zeros.

The “byte” alignment eliminates any wasted memory by allowing each
segment to be loaded “immediately” after the preceding segment. How-
ever, a byte alignment should only be used with programs written spe-
cifically for the 8088 MPU. While the 8086 MPU can work with byte-
aligned code, it is most efficient reading word-aligned code. For that
reason, “word” alignment is the best alignment for saving memory be-
tween segments when it comes to programs written specifically for the
8086 MPU.

The second segment attribute is combine-type. This attribute is used
to tell the linker how a segment should be combined with other seg-
ments of the same segment name. Until now, we have limited our dis-
cussion of the linker to how it arranges the code, data, and stack seg-
ments in a single program. The linker also allows you to “combine”
the object code of two or more programs to produce a single EXE pro-
gram. The advantage here is that you can write a number of simple
programs to handle specific tasks, and later combine the programs to
perform a complex task. We’ll describe the features of the linker in
more detail later in the course. For now, let’s continue with segment
attributes.

If no combine-type is specified for a segment, it is considered to be
non- combinable, or “private.” Thus, it will not be combined with any
other segments, even if they have the same segment name, such as
PROG.DATA. Private segments are loaded separately and remain sepa-
rate. While they may be physically adjacent to other segments within
memory, they are not "logically” continuous. Each private segment will
have its own segment base address, and all address offsets within the
segment will be from that base address. For that reason, you must be
very careful how you use private segments in combination with other
similar segments. Addressing them can be tricky. You must make sure
the program loads the appropriate segment register with the base ad-
dress value of the private segment before the program attempts to access
that segment. Until you become familiar with multiple-segment pro-

gramming, we suggest you avoid private segments.

Segmented Memory and I/O 7'1 9

Of more interest to you right now are the combine-type options, PUBLIC
and STACK. Public segments, with the same segment name, are com-
bined physically and logically. This effectively produces a single seg-
ment with a new base address and a length equal to the sum of the
lengths of all the combined segments. The address offsets into the com-
bined segments are then recalculated by the linker to accommodate
the new effective segment size.

Figure 7-4 shows the effect of combining three public data segments
that are part of three separate programs. Each has the common segment
name DATA. The left side of the figure shows the three individual
program segments prior to running the linker. Each has a unique seg-
ment base address, and the data within each segment has a unique
address offset from its respective base address. After linking, the pro-
gram has one DATA segment with a single base address, and each byte
of data has a new offset address referenced to that base address. This
is shown on the right side of the figure. The linker also makes sure
that all program references to the DATA segment use the correct seg-
ment base and offset address values. Although we used data to show
how segments are combined, the process applies to program code seg-
ments that have the same segment name.

DATA DATA

BASE OFFSET BASE OFFSET
09D2H 53 0000H 0A31H 53 0000H
Al 0001H Al 0001H
oF 0002H oF 0002H
o)) 0003H) 0003H
6D 0004H
DATA 78 0005H
09E4H 6D 0000H AC 0006H
78 0001H B3 0007H
AC 0002H 4 0008H
B3 0003H 9 0009H
12 000A H
DATA 38 000BH
09DAH 4 0000H AL 000CH
% 0001H BC 000D H

12 0002H

28 0003H

AA 0004H

BC 0005H

Figure 7-4

Combining PUBLIC segments.

7‘20 UNIT SEVEN

Combine-type STACK is similar to PUBLIC. It causes all stack segment:
with a common name to be combined physically as well as logically.
The linker also modifies all of the “end of stack label” references so
that they point to the end of the “combined” stack segments.

Although PUBLIC and STACK are the most often used combine-type
attributes, there are three other attributes that should be mentioned.
First is the combine-type COMMON. It specifies that all segments with
this attribute and the same segment name will be linked together. How-
ever, the length of the linked segment will equal the length of the
longest segment being combined. Thus, if three data segments with
lengths of 20H bytes, 10H bytes, and 5H bytes are combined using
the COMMON attribute, the resulting segment will only be 20H bytes
long. Therefore, you should only use this attribute when you are com-
bining data segments that will only be used as a “scratch pad” for
calculations during program execution. Initialized data may be lost
when the COMMON segments are combined.

The next combine-type attribute is MEMORY. As defined by Microsoft,
this combine-type causes the segment to be located above all other
segments being linked together. If several segments have the MEMORY
attribute, only the first one encountered by the linker is processed as
a MEMORY segment. All others are processed as COMMON segments.
in actual fact, all current linkers (including Version 1.10 and 2.00) treat
all MEMORY segments as PUBLIC segments.

The last combine-type attribute is AT <expression>. It specifies that
this segment is to be located at the 16-bit paragraph number (segment
base address) indicated in the “expression.” For example, if you specify
“AT OH” the segment begins at absolute, or physical, address 00000H.
However, the attribute cannot be used to force the loading of data within
that segment. Rather it is used to define, or identify, labels or variable
names at fixed offsets within fixed areas of memory. When we introduce
system interrupts, we will be using this combine type to point to ad-
dress values within the “interrupt vector table” in low memory.

Segmented Memory and /O 7'21

The last segment attribute is ‘class’. This entry in the SEGMENT direc-
tive statement is the name (enclosed in single quotes), or classification,
used to group segments when they are linked. It serves as a secondary
identifier to determine how the segments will be combined. For exam-
ple, suppose three programs are being linked, and each contains a code
SEGMENT directive statement such as:

PROG_.CODE SEGMENT PARA PUBLIC
PROG_.CODE SEGMENT PARA PUBLIC
PROG.CODE SEGMENT PARA PUBLIC

the three segments will be combined in the order listed. However, if
you add the ‘class’ attribute to two of the segments, such as:

PROG.CODE SEGMENT PARA PUBLIC ‘'FIRST'
PROG.CODE SEGMENT PARA PUBLIC
PROG.CODE SEGMENT PARA PUBLIC ‘'FIRST'’

the three segments will still be combined, but the order will be first
segment, third segment, and then second segment.

This completes the presentation on structuring the EXE program. The
next section will show you how to structure the EXE program code
to make use of multiple program segments. Before you proceed with
that section, complete the following Self-Review Questions.

7'22 UNIT SEVEN

Self-Review Questions

18.

19.

20.

21.

22,

23.

24,

25.

26.

27,

28.

29.

30.

31.

The default “align-type” attribute in a SEGMENT directive state-
ment is

Align-type specifies that the segment can begin
at any address that is divisible by 256.

Align-type specifies that the segment can begin
at any address that is divisible by 16.

Align-type specifies that the segment can begin
at any address in memory.

Align-type specifies that the segment can begin
at any even numbered address in memory.

The program uses the align-type attribute to de-
termine how the object program segments will be arranged in
memory

If a segment has no “combine-type” attribute, the segment is con-
sidered

The combine-type attribute determines both the physical as well
as the addressability of a segment.

Combine-type PUBLIC segments will be combined by the linker
if their segment are identical.

Combine-type _____________is similar to combine-type PUBLIC.

Three segments with combine-type COMMON and lengths of 5,
15, and 10 bytes will produce a segment _____ bytes long
when combined.

Combine-type MEMORY is treated like combine-type
by the linker. A

To specify the physical location of a label within memory, you
would use combine-type

A secondary segment identifier is the segment attribute

Segmented Memory and i/O 7"23

INTRA AND INTERSEGMENT ADDRESSING

Intrasegment and intersegment addressing refer to all forms of address-
ing that occur within program code. The instructions involved with
this type of addressing include jumps, calls, and return from calls. Spe-
cifically, intrasegment addressing is restricted to the 64K byte bound-
ary of a single code segment. Intersegment addressing, on the other
hand, relates to addressing between code segments. In the first case,
the only address variable is the offset added to the Instruction Pointer
to indicate the location of the next instruction. In the second case,
both the Instruction Pointer and the Code Segment register are changed
to locate the next instruction. How these variables are handled is the
subject of this section. We’ll begin our discussion with intrasegment
addressing.

Intrasegment Addressing

All of the COM programs you have written thus far have used the intra-
segment form of addressing. That is, the jump, call, and return from
call instructions have been restricted to a single segment, and all in-
struction references have been handled through the Instruction Pointer.
Most of the EXE programs that you will write will also restrict the
program code to one segment. Thus, the techniques you learned with
COM programs will also apply to these types of EXE programs.

Linking multiple EXE programs does present a problem. Although the
final “linked” program contains only one code segment, it can be com-
posed of two or more code segments. For that reason, both the assembler
and the linker must be informed of any references between code seg-
ments. This is handled through two assembler directives: PUBLIC and
EXTRN.

7-24 | uniT seven

The assembler directive PUBLIC is used to identify those labels or
names in a program segment that can be accessed by other program
segments. The directive statement takes the form:

PUBLIC <symbol>][,...]

where symbol is the label or name you wish to declare “public.” You
can declare as many symbols as you wish in one statement by separating
the symbols with a comma. After assembly, information about each
symbol is passed on to the linker for final determination of its effective
address within the linked program. For example, before the linker can
assist a call instruction assembled in one code segment in accessing
a subroutine assembled in a second code segment, the name of the
subroutine must be declared public:

PUBLIC DELAY.LOOP, COUNT
DELAY_LOOP:

MOV CX,0

LOOP DELAY_LOOP

RET
COUNT:

ADD AX,DATAl

MOV DATAL, AX

RET

In this case, two symbols have been made public. Each points to the
beginning of a subroutine.

Making a symbol public tells the linker that another “linked” segment
may try to access that symbol. The next step is to identify the instruc-
tion that will use the “public” symbol. This is handled by the assembler
directive EXTRN.

Recall that whenever a symbol is referenced in an instruction, it must
be defined elsewhere in the program. If the definition is missing, the
assembler generates an error message. The EXTRN directive tells the
assembler that the indicated symbol is located outside the current pro-
gram; any reference to that symbol should not be flagged as an error.
The directive statement takes the form:

EXTRN <symbol:type>(,...]

Segmented Memory and I/O

where symbol is the label or name you wish to declare as “external”
to the current program. Type must match the “symbol” that was de-
clared “public” in the external program. It can assume any of the follow-
ing attributes:

BYTE, WORD, or DOUBLEWORD — Refers to the definition
assigned to the “named” data.

NEAR or FAR — Refers to the “linked” location of the label
or procedure (to be covered later). If the label or procedure
resides in the same segment after linking, the attribute should
be NEAR. If, on the other hand, the label or procedure resides
in a different segment after linking, the attribute should be
FAR.

The assembler uses the symbol and type attributes to determine how
much code space should be reserved for the address information. The
linker then compares the PUBLIC symbol to the EXTRN symbol to cal-
culate the address values before it loads them into the program code.
The following is an example of how an EXTRN directive statement
can be used:

EXTRN COUNT:NEAR,DATAl:WORD
CALL COUNT
ADD AX,DATAl

The subroutine COUNT and the segment containing DATA1 are not
part of the current program. The EXTRN directive tells the assembler
that the two symbols will be available when the program is linked
with another program. The type NEAR indicates that the subroutine
COUNT will be in the same code segment as the call instruction, after
linking. Had the type been FAR, the subroutine would have been lo-
cated in a different code segment. The type WORD tells the assembler
that DATA1 is composed of one or more word-sized values.

Keeping all the code in one segment makes the addressing process sim-
pler. The three program transfer instruction operate just as they did
in your earlier COM programs. The only added wrinkle is the need
to identify all references external to the current program, and all public
symbols. While all public symbols don’t have to be used in a program,
all external references must have a matching public symbol, or the
program will fail to link properly.

7-25

7-26

UNIT SEVEN

Intersegment Addressing

Intrasegment addressing refers to the use of program transfer instruc-
tions within a code segment. Intersegment addressing refers to the use
of program transfer instructions between code segments. Often, these
types of instructions are called far instructions because not only do
they change the contents of the Instruction Pointer, they also change
the contents of the Code Segment register. This last part is necessary,
since the program is leaving one code segment and entering another.

Two situations can exist in a “far” jump. First, the jump occurs between
two segments within a single program. Second, the jump occurs be-
tween segments that exist in two separate programs prior to linking,
and remain as separate segments after linking. The second example
was mentioned earlier, but not fully described. The assembler directive
EXTRN is used to identify the symbol and its type (near or far) prior
to the jump instruction. Thus, a far jump could be coded:

EXTRN SUBF:FAR
JMP SUBF

where the jump target is SUBF and the type is “far.” From this informa-
tion, the assembler knows that the jump is a far jump. It automatically
reserves space in the program code for the new code segment base
address value and the offset address value to the subroutine SUBF.
When the program is linked, the linker determines the relative address
values for the segment and the offset into the segment. Finally, when
the program is loaded into memory, the absolute code segment address
is determined. Execute the instruction:

JMP SUBF

and the MPU loads the Instruction Pointer register with the offset ad-
dress value into the new segment. Then it loads the Code Segment
register with the base address of the new code segment. Finally, it exe-
cutes the instruction at the address pointed to by the CS and IP registers.

Segmented Memory and /O 7'27

A different method must be used when the far jump occurs within
a single program. In this case, we use the assembler operator PTR. In
addition to specifying operand size, as described in an earlier unit,
PTR can be used to specify operand distance. The instruction:

JMP FAR PTR SUBF

tells the assembler that the jump target is in another code segment.
As a result, the assembler will reserve code space for a segment base
address and a jump target offset address. As before, the linker will
calculate the relative offset and base addresses, and the program loader
will determine the absolute segment base address when the program
is loaded into memory.

When the far jump instruction is executed, the MPU loads the Instruc-
tion Pointer register with the offset address value into the new segment.
Then it loads the Code Segment register with the base address of the
new code segment. Finally, it executes the instruction at the address
pointed to by the CS and IP registers.

Far call instructions are constructed in the same manner as far jump
instructions. The EXTRN directive is used for intersegment calls to
external programs. The FAR PTR operator is used with intersegment
calls within the same program. The difference between the far jump
and the far call is that the far jump is final. There is no easy way
to return from a jump. Calls, on the other hand, save the return address
in the program stack.

Recall that when an intrasegment call is executed, the Instruction
Pointer register is updated so that it points to the next instruction in
the program. Then the contents of the register are saved in the stack.
Popping the address back into the Instruction Pointer with a return
instruction sends the MPU back to the instruction following the earlier
call instruction.

7-28

UNIT SEVEN

The same process holds true for intersegment calls. Only now, the con-
tents of the Code Segment register are pushed into the stack along with
the updated contents of the Instruction Pointer register. When the re-
turn from call instruction is executed at the end of the subroutine,
the first word in the stack is popped into the IP register, then the next
word in the stack is popped into the CS register. This returns the MPU
to the instruction following the earlier far call instruction. The only
difference between an intrasegment call and an intersegment (far) call
is the number of register address values that are saved in the stack.

The same holds true for the return from call instruction. An intraseg-
ment return pops the first word in the stack into the Instruction Pointer
register. An intersegment return from call pops the first word in the
stack into the Instruction Pointer register and the next word in the
stack into the Code Segment register.

Coding an intrasegment return, you simply use the mnemonic RET.
Coding an intersegment return isn’t quite that simple. MACRO-86 as-
sumes that the only time you will use a far return instruction is in
a “far procedure.” You wili learn in Unit 9 that procedures are a method
of structuring subroutines or other groups of code into convenient, de-
fined modules. A far procedure is accessed through a far call instruc-
tion. Thus, a return from a far procedure must be a far return. The
instruction mnemonic is still RET, but the assembler “knows” it must
generate the code for a far return. If you need to write the code for
a far return that isn’t in a far procedure, you must “fool” the assembler
into thinking the return is in a far procedure by writing a “dummy”
far procedure in this manner:

FAR PROC PROC FAR
RET
FAR_PROC ENDP

Like the segment directive, the procedure directive must be identified
by a unique name. We have chosen the name FAR PROC in this exam-
ple. The directive PROC identifies the beginning of the procedure. The
operator FAR specifies that this is a far procedure. The end of the proce-
dure is identified by the same name as in the beginning, and by the
directive ENDP. The instruction RET is the only instruction in the pro-
cedure, and it is treated as a far return by the assembler.

Segmented Memory and /O 7"29

Self-Review Questions

32. addressing is restricted to the 64K byte
boundary of a single code segment.

33. addressing relates to program transfer be-
tween code segments.

34. (COM-type programs use addressing.

35. The assembler directive is used to identify
those symbols in a program that can be accessed by other pro-
grams when they are linked.

36. The directive tells the assembler that the in-
dicated symbol is located outside of the current program.

37. The EXTRN directive identifies a symbol by its label or name
and by its

38. All external references must have a matching public symbol.

True/False

39. All public symbols must have a matching external reference.

True/False

40. A far juinp between segments in a single program is identified
by the assembler operator

41. A far call between segments of two programs that have been
linked is identified by the external directive type

42. When a far call is executed, the contents of the
register are pushed into the stack; then the contents

of the register are pushed into
the stack.

43. A “dummy” far procedure must be created in order to execute

an intrasegment return.,
True/False

7"30 UNIT SEVEN

I/0 ADDRESSING

Recall, from Unit 1, that data is moved into or out of the MPU through
/O ports. How those ports are accessed is subject of this section.

Port Structure

The /O ports are like memory. In fact, they share the MPU address
and data bus with memory, as shown in Figure 7-5. In this example
there are two memory sections, or devices, and one Interface Adapter.
The Interface Adapter is a form of data translation device that helps
the MPU communicate with the outside world. Thus, it is the Interface
Adapter that is actually connected to the bus and treated as the VO

port.

r]
—| MICRO- oM
PROCESSOR
CLOCK UNIT
{MPU)

N

' TEMPORARY | | o
Y MEMORY

| PERMANENT
MEMORY

A

INTERFACE | [*®
ADAPTER J

|
mﬁf*_oc_owm________@_\lfﬁ%ﬁ —

(170
DEVICE

Figure 7-5
Memory and I/O control,

Segmented Memory and I/O

From a programming point of view, it’s not important how the Interface
Adapter is connected to the microcomputer. Rather, the important con-
sideration is how the adapter is configured (using program code), and
how the adapter will respond to the MPU and the peripheral device.
One of the experiments in this unit will give you a chance to work
with an Interface Adapter common to both the Zenith and IBM micro-
computer, the 68A45 CRT (display) Controller. Although the CRTC is
actually part of the microcomputer, it is treated as an Interface Adapter
because it is addressed through an I/O port.

Because the memory and /O ports share the address and data bus,
there must be a way for the MPU to specify the group of devices being
accessed. This is handled by the IO/M (/O-Memory) control line from
the MPU. As the figure shows, each device is connected to the control
line. When the MPU is addressing memory, the control line is pulled
to a logic low level. This enables, or turns-on, the memory devices
and disables the I/O devices; data transfer can only occur between the
MPU and memory. By the same token, when the MPU is addressing
an /O port with the IN or OUT instruction, the IO/M control line is
forced high to disable memory and enable I/O. Now all data transfers
are between the MPU and the addressed I/O port.

Like memory, each /O port can accommodate 8-bit wide data. However,
the total number of ports is limited to 64K bytes. This is because all
/) port addressing is handled through a single 16-bit register.

The physical location of every port in the microcomputer is fixed by
the manufacturer. Unlike memory, you can’t change a port location
through a program. For that reason, if you decide to write data directly
to a particular port, you must know its exact location, or address.

7-31

7-32

UNIT SEVEN

Port Addressing

As a general rule, it is not a good idea to directly access an /O port.
The main reason for this rule is that you limit the portability of your
program. Remember, each manufacturer assigns a specific port address
to every function. The functions as well as the port address will vary
from one manufacturer to another. If you access a port directly in your
program, then you can’t use the program on a different microcomputer.
A program written for a Zenith microcomputer won’t run on an IBM
microcomputer, and vice versa. Therefore, the best way to access an
I/O port is through an MS-DOS or BIOS (basic input output system)
function like the many interrupt 21H functions we used earlier.

BIOS operation is similar to the MS-DOS functions we have been using
except that it is hardware specific. IBM's BIOS is completely different
from Zenith’s BIOS. A good example is the interrupt 10 function that
we used to clear the IBM display.

Naturally, there will be a few rare occasions when a DOS or BIOS
function just won't do what you require. That’s when you must use
direct I/O port addressing. The first step in addressing an I/O port is
to determine its location. Then you must determine what data is sup-
plied at the port — the value the port expects you to send, or the value
you can expect to read. All of this information can be found in the
“Technical Reference Manual” for your microcomputer. The last step
is to write the I/O instruction.

The 8088/8086 MPU uses two instructions to access an I/O port: IN
to input a value, and OUT to output a value. With either instruction,
the data is processed through the Accumulator register; for 8-bit values
use the AL register, and for 16-bit values use the AX register. Finally,
each instruction can be implemented in one of two ways. It may be
used with either a fixed port address or a variable port address.

Segmented Memory and /O 7"33

FIXED PORT

With fixed port addressing, the instruction is limited to the first 256
I/O port address locations. The term “fixed port” comes from the fact
that the port address is identified by an immediate value following
the instruction. For instance:

IN AX, 133
IN AL, 25
OUT 5DH, AX
OUT OD4H, AL

In the first two examples, the source operand is a fixed port address
and the destination operand is an Accumulator register. The next two
examples position the Accumulator contents in the source operand and
the port address in the destination operand.

When you are dealing with port addresses, it’s usually a good idea
to use symbols to represent the fixed value. This reduces the chance
of loading the wrong address in the instruction. It also makes the in-
struction easier to understand. As an example:

TEMP_IN EQU 3DH
TEMP_OUT EQU 4DH
INCREASE EQU 22
DECREASE EQU 77
LOW.TEMP EQU 55

START" IN AL, TEMP_IN
CMP AL,LOW_TEMP
JA REDUCE

MOV AL, INCREASE
OUT TEMP_OUT,. AL

JMP START

FEDUCE: MOV AL ,DECREASE
ouT TEMP_OUT, AL
JMP START

Here is a simple routine that monitors the temperature signal from a
peripheral device. To make the program easy to follow, we equated
all constants to meaningful symbols. The temperature is read at port
TEMP_IN and compared to a value. If the temperature is low, the control
signal to INCREASE the temperature is loaded into the AL register and
then sent to the TEMP_OUT port. Should the temperature be too high,
the control signal to DECREASE the temperature is loaded into the
AL register and then sent to the TEMP_OUT port. After each output,
the program loops back to the input instruction.

To access a port higher than 256 (0FFH), use the variable port address-
ing method.

7'34 UNIT SEVEN

VARIABLE PORT

With variable port addressing, you are not limited to a small range
of fixed port addresses. First, you can address all available port loca-
tions from 0000H to OFFFFH, Second, as the name implies, you can
change the port address at any time during program execution. This
is all possible because the port address is contained in the DX register.
Following are examples of addressing a variable port;

IN_PORT EQU OEF22H
MOV DX, IN.PORT

IN AX.DX
MOV DX, 12
IN AL,DX
OUT DX, AL
MOV DX,5555H
OUT DX, AX

In each IN or OUT instruction, the DX register contains the address
of the /O port. The three MOV instructions are included to show port
address values being loaded into the DX register.

As you can see, each port addressing type has its trade-offs. Fixed port
addressing doesn’t tie up the DX register. But then, its addressing range
is limited to the first 256 ports, and the address value is fixed at assem-
bly time. Variable port addressing gives you access to all of the ports,
and it allows you to change the port address during program run time.
However, it does restrict the program in how it uses the DX register.

Segmented Memory and I/O 7'35

Self-Review Questions

44, Memory is disabled and I/O is enabled by the

and instructions.

45. AnI/O portcanaccommodate bits of data.

46. The address of a port is defined as a constant.

47. The address of a port is pointed to by the contents
of the DX register.

48. Thereare ______ 8-bit fixed ports available to the 8088/8086
MPU.

49, The AH register can be used as the destination operand for an

IN instruction accessing an 8-bit port.
True/False

50. The source operand for an IN instruction that uses a fixed port
is always a/an value.

51. Both the fixed and the variable addressing methods can access

the first 256 /O port locations.
True/False

7'36 UNIT SEVEN

EXPERIMENT

EXE Programming and I/O

OBJECTIVES: 1. Demonstrate the differences between
EXFE and COM programs.

2. Demonstrate the process of linking
multiple EXE-type program object
files.

3. Demonstrate the various segment at-
tributes.

4. Demonstrate I/0.

Introduction

The EXE-type program allows you to escape the 64K byte boundary
of the COM-type program. However, you will find that there are trade-
offs between the two types of programs. The EXE-type program requires
more directives and code to accomplish the same job as a similar COM-
type program. On the other hand, the COM-type program is limited
in size to 64K of code and data. For a beginning programmer like your-
self, you can probably write all of your programs using the COM format.
There will come a time, though, when you will need the versatility
of an EXE-type program. This experiment will give you experience with
the EXE program format.

Once you've gained a foothold in constructing an EXE-type program,
we’'ll show you how the MPU communicates with a peripheral device.
Because of the surprising differences between the I/O structure of the
IBM and Zenith microcomputers, there is little opportunity to experi-
ment with similar I/O interfaces. This is not to say that they don’t use
similar interfaces, it's just that they take a unique approach to the way
the interfaces are used. The only common device is the CRT Controller
mentioned earlier in the unit. Therefore, the I/O portion of this experi-
ment will center on the CRTC. To begin, let's compare a COM-type
program with an EXE-type program that performs the same task.

Segmented Memory and I/O 7‘37

Procedure

1. Call up the editor and enter the program listed in Figure 7-6.
Assemble, link, and convert the program to a COM file. Now
delete the program EXE file. It’s always a good idea to delete
the EXE file that is generated in the process of making a COM
file. The file is of no value, and this eliminates the possibility
of executing it by mistake, at some later time.

TITLE EXPERIMENT 7 -- PROGRAM 1 -- COM PROGRAM STRUCTURE
COM_PROG SEGMENT
ASSUME CS:COM_PROG, DS:COM_PROG, SS: COM_PROG

ORG 1004
START: MOV BL,DATAL ;Get the first byte of dats
LEA BX,DATAZ ;Point to the first word of data
MoV DX, [BX1 ;Get the first word of data
INT 3 jReturn to the debugger
i
DATAL DB i& DUP (@BH) ;Set up byte-sized data area
DATA2 DM 8 DUP (@BBH) ;Set up word-sized data area
i
COM_PROG ENDS
END START

Figure 7-6
Typical COM-type program.

7-38

UNIT SEVEN

Call up the editor and enter the program listed in Figure 7-7.
Be sure to use a different program name. You will be comparing
this program with the one you wrote in the previous step. Assem-
ble, link, and try to convert the program to a COM file. Notice
that, this time, the linker didn’t display the message:

Warning: No STACK segment
There was 1 error detected.

This is because the program did indeed contain a STACK seg-
ment. On the other hand, the EXE2BIN program displayed the
message:

File cannot be converted

because the program contained too many segments. Examine the
disk directory. Notice that the EXE2BIN program didn’t even at-
tempt to create a COM file of your program.

TITLE EXPERIMENT 7 -- FROGRAM 2 -- EXE PROGRAM STRUCTURE

*
PROG_STACK SEGMENT STACK
DW 16 DUP (@FH) 1Set up stack area
TOP_OF _STACK LABEL WORD sIdentify top of stack for SP register
PROG_STACK ENDS

4

PROG_DATA SEGMENT

DATAL DB 8 DUP (GAAH) ;5et up byte-sized data area

DATAZ DW 8 DUP (@BBBBH) ;Set up word-sized data area

PROG_DATA ENDS

1

PROG_CODE SEGMENT
ASSUME CS:PROG_CODE,DS:PROG_DATA,SS:PROG_STACK

START: MOV AX,PROG_STACK j;Never Jjoad a segment register direct
MoV S5,AX yUse an intermediate register
MoV SP,OFFSET TOP_OF_STACK ;Point to the top of stack

;immediately after loading S5 register

MOV AX,PROG_DATA ;Again, indirectly load the

May DS, AX jsegment register

MOV BL,DATAL ;Get the first byte of data

LEA BX,DATAZ yPoint to the first word of data

MOV DX, [BX] 1Get the first word of data

INT 3 jReturn to the debugger
PROG_CODE ENDS

END START

Figure 7-7

Typical EXE-type program.

Segmented Memory and /O 7'39

Again, examine the directory. The COM file of your first program
contains bytes of code. This value is listed in the third
column of the directory display. The EXE file of your second
program contains bytes of code. The difference in size be-
tween the two files is about 600 bytes; and yet, the EXE file con-
tains only 29 more bytes of code and data than the COM file.
The difference lies in the size of what we call the “program
header.” An EXE file must supply more information about its
characteristics to the DOS program loader than a COM file.

Call up the debugger and load your EXE file. Now examine the
MPU registers by typing “R” and RETURN. The display generated
by your debugger will resemble Figure 7-8, although the segment
register values may be different. Recall that the contents of the
Code Segment register are fixed by the program loader. The other
registers must be loaded by the program. The first instruction
in your program moves the stack segment base address into the
AX register in preparation for moving the value into the Stack
Segment register. Notice that the value in the instruction matches
the value already in the SS register. That is because the debugger
has already loaded the SS register. This is an automatic function
of the debugger, since it must know where the stack is located
before it can execute any of its commands. For that same reason,
it has also determined the top of the stack area and loaded that
value into the Stack Pointer register.

DEBUG version 1,08
3R

AX=0000 BX=0000 CX=0050 DX=0000 SP=0020 BP=0000 S1=0000 DI1=0000
DS=0A@9 ES=0A09 SS=0AID CS=0A19 IP=00@0 NV UP DI PL NZ NA PO NC
OA19: 0000 BE1DOA MoV AX, GALD

>

Figure 7-8
Debugger register display.

7-40

UNIT SEVEN

Examine the program in memory. Use the debugger “D” command
followed by the contents of your CS register, a colon, and the
offset value 0000. For our program, we used the command
“D0A19:0000". This produced the display shown in Figure 7-9.
While your code segment base address was probably different,
your display should be similar to the figure. NOTE: If you don’t
see a display with the code followed by the data and stack areas,
you have a later version linker and debugger.

There are two general versions of linker and debugger. The first,
which we’ll call the early version, is supplied with system soft-
ware (DOS) with a version number in the “1” series (1.10, 1.25,
etc.). This version produced the display in Figure 7-9. The second
version, we'll call the late version. It is supplied with system
software in the ”2” series (2.02, 2.04, etc.).

>R
AX=0000 BX=0000 CX=004D DX=0000 SP=0020 BP=0000 SI=0000 DI=0000
DS=0A@Y ES=0A0Y SS=0AID CS=0A19 [P=0000 NV UP DI PL NZ NA PO NC

0A19: 0000 BE1DGA MOV AX,0ALD
YDOA19: 0000
©R19:0000 BB 1D @A SE DO BC 20 ¢0-BS 1B @A BE D8 BA IE 00 8...P< .B8...X..
0A19:10010 00 8D LE 08 @0 9A 00 90-1F OA 8B 17 CC 00 90 00 L.
0A19:0020 AA AA AA AA AA AA AA AA-DB BB BB BB BB BB BB BB #MMEk¥¥E¥;;isssss
@A19:9030 BB BB BB BB BB BB BB BB-00 00 00 00 00 00 00 00 ;33333 jerenssns
©A19:0040 OF 00 OF 00 OF 00 OF 00-OF 00 OF 0G0 OF 90 OF @0
PA19:0050 OF 00 OF 00 OF 00 OF 00-OF 00 OF 00 OF 00 OF G0s-
OALF:0060 BB OE 08 @0 E2 FE CB EA-1A 00 19 @A CC OF 89 46 N Lo P T
BA19:0070 F& 83 F8 FF 75 20 FF 76-0C 9A @A @0 1D @D 89 DF Vv.X.U .Viuuuuss -
2

Figure 7-9

Early version debugger display of registers and memory.

Segmented Memory and I/O 7'41

Late version software arranges the code, data, and stack segments
in a different order than early version software. This is shown
in Figure 7-10. Here the stack area is loaded into memory first,
followed by the data, and then the code. To examine your pro-
gram in memory, use the debugger command “D” followed by
the contents of your SS register, a colon, and the offset value
0000. For our program, we used the command “D0D29:0000".
While your stack segment base address was probably different,
your display should be similar to Figure 7-10.

_R
AX=0000 BX=0000 CX=0038 DX=0000 SP=0020 BP=0BCE SI=0BOB DI=0000
DS=0D19 ES=8D19 S5=0D29 CS=0D2D IP=000@ NV UP EI PL NZ NA PO NC

D201 0000 B8290D MOV AX, D29
-DAD29: 6006
0D29:0000 OF 00 OF 0@ OF @0 OF OO—-0OF 00 OF 00 OF 00 OF P9 covnvananans
0DZ9:0010 OF 0@ OF 00 OF 00 OF 00-OF 00 OF 00 OF 00 00 00 fesasanaas
©D29:0020 AR AA AA RA AA AA AA AA-BB BB BB BB BE BB BB BB *““*";;;;;;;;
©029;003¢ BB BB BE BB BB BB BE BB-00 00 00 00 00 00 @0 00 ;3iiiiijeereares
0D29:0040 BS 29 oD SE DO BC 20 00-BS 2B 0D 8E DB €A IE 00 8),..P< .3+..X A
0D29:0050 @0 6D iE 08 00 8B 17 CC-0L 50 BO FF S0 9A 04 02 L.Pe.P..
©D29:0050 BF OB A3 BE 13 Al 78 09-8B IE BE 13 89 47 03 A2 2.#>.!'x...). G"
0D29:007@ B85 OB FF @4 78 09 SD C3-55 8B EC 83 EC @E C7 @6 x.1CU.1.1.G.
Figure 7-10

Late version debugger display of registers and memory.

7'42 UNIT SEVEN

As a general rule, if you have early version software, always use
the code segment base address when you wish to view memory.
If you have late version software, use the stack segment base ad-
dress to view memory.

Depending on software version, the program code begins at ad-
dress offset 0000H or 0040H in the related figure and your dis-
play. The last byte is easy to identify because it contains the
code CC.

In both cases, the data segment begins at address offset 0020H
in the figure and in your display. Since the first byte of data
is always located at address offset zero in the data segment, what
value would you expect to find stored in the Data Segment regis-
ter after the program loads that register? ___ _H.

Again, depending of software version, the stack segment begins
at address offset 0000H or 0040H in the related figure and in
your display. We had you load the value 000FH in each word
of the stack to make the stack area easier to identify. Normally,
you would leave the contents uninitialized. On the other hand,
you will find that program debugging is easier if you start off
with a known value in each of the bytes. Note that, in the late
version software, the last word in the stack is zero, regardless
of what value you initialized it to in your program.

Notice that the Stack Pointer register contains the value 0020H.
It’s pointing at the first byte after the stack. The first time a value
is pushed into the stack, it will be decremented by two, and thus
point to the first word location in the stack.

The last two lines (beginning at address offset 0060) in your dis-
play and in the figure contain randocm data outside of the program
boundary.

Segmented Memory and I/0 7'43

Execute the first instruction by typing “T” and RETURN. The
AX register is loaded with the stack segment base address.

Execute the next instruction. The Stack Segment register is loaded
from the AX register. Do you notice anything strange in the dis-
play? The debugger appears to have jumped right over the instruc-
tion to load the Stack Pointer register. Actually, the instruction
was executed; the debugger single-step routine just had no control
over the execution.

This was caused by a feature of the 8088/8086 MPU. It’s a built-in
process that guarantees that the instruction immediately follow-
ing a "move segment register” instruction will be executed no
matter what or who is trying to interrupt the operation of the
MPU. It makes sure the program will always have a chance to
up-date the segment supporting (offset) register before some other
operation occurs. In the case of the stack segment, the supporting
register is the Stack Pointer register. Imagine what would happen
if the program was interrupted before the Stack Pointer register
was loaded. At best, the incorrect Stack Pointer contents would
point at an unused area of memory; at worst, data or code would
be overwritten and the program would fail. Be sure to always
load the segment supporting register (if it’s needed) immediately
after you load a segment register.

Execute the next instruction. The AX register is loaded with the
base address of the data segment. The BL register contains the
value . _H.

7-44 | uniT seven

10.

Execute the next instruction. The Data Segment register is loaded
with the contents of the AX register. The DS register contains
the value _ _ _ _H. Does this match the value you recorded in
step 57

Although the data segment is located at offset 0020H in your
display, it is assumed that the segment data is loaded into mem-
ory beginning at an offset of zero within the segment. Thus, the
value in the DS register is equal to the base address value for
the first segment in the program plus the offset in memory to
the data area. In Figure 7-9, the data segment base address turns
out to be 0A1BH. Recall from Unit 1 that when you add an offset
value to a segment value, you have to shift the segment value
four bits to the left. Adding 0A19H to 0020H:

Segment Value = 0A190H
Offset Value = 0040H
Physical Value = 0A1BOH

gives the physical address value 0A1BOH. Since we are assuming
an offset of zero, the least significant four bits in the 20-bit value
are cut off, leaving the segment base value 0A1BH, the value
loaded into the DS register.

The BL register now contains the value - _H. As before, the in-
struction immediately following a “move segment register” in-
struction is executed without hesitation on the part of the MPU.
The value at DATA1, in the data segment, was moved into the
BL register.

Execute the last two instructions. They simply load the effective
address of DATAZ2, in the data segment, into the BX register; and
then move the value at that offset address into the DX register
using register indirect addressing.

Segmented Memory and /O 7"45

11.

Again, display your program in memory. Use the debugger “D”
command followed by the contents of your CS register (early ver-
sion) or SS register (late version), a colon, and four zeros (to repre-
sent an offset of zero). Notice that zeros separate the code from
data and data from stack (in the early version display), and data
from code (in the late version display).

Recall that when the segment “align-type” attribute is not
specified, it is by default paragraph alignment. This means that
the last four bits of the 20-bit physical address are zero. As a
result, each line in your display begins on a paragraph boundary
(address offset 0, 10H, 20H, etc.). Any unused memory bytes be-
tween the end of one segment and the beginning of another are
assumed to be zero, hence the eight bytes of zeros following the
data segment. Had the deta segment contained only one byte of
data, there would be 15 bytes of unused memory between the
data segment and the stack (early) or code (late) segment. No
zeros are added after the last segment in the program.

7-46

UNIT SEVEN

Discussion

We recommend that you always use the default align-type “paragraph.”
This way you are sure how the code, data, and stack will be loaded
into memory. “Page” alignment gives mixed results. In early version
systems, only the code segment will be given page alignment. That
is, the data will begin on the next 256-byte boundary. The stack will
still start on the next paragraph boundary after the data. On the other
hand, late version systems will recognize page boundaries for all seg-
ments — the data segment will begin on the next 256-byte boundary
after the stack and the code segment will begin on the next 256-byte
bouncary after the data.

In the case of “word” alignment, the early systems will cause the data
segment to begin on the next word (even memory location) boundary
after the code. If the code ends at an odd memory location, the linker
will add a byte of zero to position the data at a word boundary. The
stack will still begin on the next paragraph boundary. Late version sys-
tems recognize word boundaries for all segments.

“Byte” alignment follows the general word alignment guidelines. The
one difference is that the next segment can begin at an odd memory
location as well as an even memory location.

If you wish to observe these different alignment characteristics, modify
the segment directives in your EXE program to match the desired align-
ment. Then assemble and link the program, and then load it into mem-
ory with the debugger. Examine the program in memory using the tech-
niques described earlier.

Segmented Memory and I/O 7'47

Procedure Continued

12. Exit the debugger and edit the ASM file of your EXE program
in the following manner. The ASSUME directive statement cur-

rently reads:

ASSUME CS:PROG.CODE,DS:PROGDATA, SS: PROG.STACK

Delete the data segment reference so that the directive reads:

ASSUME CS:PROG._CODE, SS:PROG.STACK

13. Assemble the program. Your assembler should display a message
similar to the message shown in Figure 7-11. Although your pro-
gram contains a data segment, the assembler “assumes” that it
does not exist. Hence the error generated by the two instructions
that address the data segment. Recall that there are two ways
to resolve this conflict: You can use a “segment override” prefix
code or you can insert a second ASSUME directive statement

identifying the data segment.

A:MASM P7-5;
The Microsoft MACRO Assembler
Version 1.7, Copyright (C) Microsoft Inc. 1981,82

900D BA IE 0000 R MOV BL,DATAIL
yte of data

Erropr — b8:Can’t reach with segment reg

0011 8D IE @0e8 R LEA BX,DATAZ
rst word of data

Erropr = 68:Can’t reach with segment reg

Warning Severe
Errors Errors
[’} 2

A:

Figure 7-11

1Get the first b

sPoint to the fi

Errors caused by missing data segment assume statement.

7'48 UNIT SEVEN

14, Refer to Figure 7-12 and re-edit your program as shown. Change
the line:

MOV BL,DATAl ;Get the first byteofdata
to read:

MOV BL,DS:DATAl ;Get the first byteofdata
following that line, add the line:

ASSUME DS:PROGDATA

TITLE EXPERIMENT 7 -- PROGRAM 4 -- LOCATING THE DATA SEGMENT

L]
PROG_STACK SEGMENT STACK
DW 16 DUP (@FH) 1Set up stack area
TOP_OF _STACK LABEL WORD ;Identify top of stack for SP register
PROG_STACK ENDS

t
PROG_DATA SEGMENT

DATA1 DB 8 DUP (@AAH) ;Set up byte-sized data area
DATAZ DW 8 DUP (@BBBBH) ;Set up word-sized data area
PROG_DATA ENDS

]

FROG_CODE SEGMENT
ASSUME CS:PROG_CODE, SS:PROG_STACK

START: MOV AX,PROG_STACK jNever load a segment register direct
MOV SS,AX ;Use an intermediate register
MoV SP,OFFSET TOP_OF_STACK jPoint to the top of stack

;immediately after loading SS register

MOV AX,PROG_DATA 3Again, indirectly load the

MOV DS, AX jseqment register
— MOV BL,DS: DATAL ;Get the first byte of data
—> ASSUME DS:PROG_DATA

LEA BX,DATAZ ;Point to the first word of data

MoV DX, [BX] ;Get tne first word of data

INT 3 ;Return to the debugger
PROG_CODE ENDS

END START

Figure 7-12

Locating the data segment.

Segmented Memory and I/O 7‘49

15.

Assemble the program. This time there are no errors. The error
is fixed by the segment override prefix code “DS:”. It tells the
assembler that DATA1 is located in the data segment. Note that
the code always precedes the operand symbol, whether it is the
source or destination operand. This is a one-time fix. That is,
it only affects the instruction where it is located.

The second fix involved a second ASSUME directive. Unlike the
segment override, it affects all of the data references that follow
the assume. In addition, it will supersede a preceding assumption

about the same segment register. For example, suppose the first
ASSUME directive read:

ASSUME CS:PROG_CODE,DS:PROG.OLD_DATA, SS:PROG_STACK

The assembler will make all data references to the segment named
PROG.OLD_DATA. When the assembler encounters a second
ASSUME directive that reads:

ASSUME DS:PROGDATA

all future data references will be made to the segment named
PROG.DATA.

If you wish to verify that your program code is properly assem-
bled, link the object file and single-step through the program
using the debugger.

7-50 | uniT seven

16.

Edit you EXE program’s ASM file one more time. Refer to Figure
7-13. Add the four new lines indicated by arrows numbered “0".
Then modify the two lines with arrows numbered “1". Now as-
semble the program, but DO NOT link it. Trying to link the pro-
gram will cause the linker to generate an error message stating
that it could not resolve an external reference (the call instruc-
tion).

TITLE EXPERIMENT 7 -- PROGRAM 5 -- GOING PUBLIC

1
PROG_STACK SEGMENT STACK
Di 16 DUP (@FH) ;Set up stack area
TOP_OF _STACK LABEL WORD sldentify top of stack for SP register
PROG_STACK ENDS

1
PROG_DATA SEGMENT

) ———— PUBLIC DATA2

DATAL DB 8 DUP (@AAH) ;Set up byte-sized data area
DATAZ DW 8 DUP (@BBBBH) ;Set up word-sized data area
PROG_DATA ENDS
H

) =—————> EXTRN COUNT_DOWN: NEAR

i
1 — PROG_CODE SEGMENT PUBLIC

ASSUME CS:PROG_CODE,SS:PROG_STACK
START: MOV AX,PROG_STACK jNever load a segment register direct
MOV S5, AX ;Use an intermediate register
MOV SP,0OFFSET TOP_OF_STACK ;Point to the top of stack
jimmediately after loading SS register
MOV AX,PROG_DATA jAgain, indirectly load the
MOV DS, AX ;segment register
MOV BL,DS:DATAL ;Get the first byte of data
ASSUME DS:PROG_DATA

LEA BX,DATA2 ;Point to the first word of data
0 —— CALL COUNT _DOMWN jRun the external subroutine
() =————> PUBLIC BEGIN
I ——=—BEGIN: MOV DX, [BX] ;Get the first word of data

INT 3 ;Return to the debugger

PROG_CODE ENDS
END START
Figure 7-13

Modifying the EXE program so that it can be linked with another EXE program.

Segmented Memory and I/O 7'51

17. Using a new program name, cal: up the editor and enter the pro-
gram listed in Figure 7-14. Assemble the program. This will be
linked to the previous program.

TITLE EXPERIMENT 7 -- PROGRAM 6 -- TIME DELAY SUBROUTINE
i

EXTRN DATA2:WORD, BEGIN: NEAR

]
PROG_CODE SEGMENT PUBLIC
ASSUME CS:PROG_CODE
PUBLIC COUNT_DOWN
COUNT_DOWN:
MOV CX,DS:DATA2
AGAIN: LOOP AGAIN

RET
P BEGIN
INT 3
PROG_CODE ENDS
END

Figure 7-14
External program to be linked with original EXE program.

7'52 UNIT SEVEN

Discussion

Before you link the two programs, let's examine their structure. The
six changes you made in the original EXE program allow it to communi-
cate with the program that will be linked to it. The first change made
the contents of DATA2 accessible to any linked program. The second
change specified that the label COUNT_DOWN was located in another
program that would be combined with this program. Notice that the
EXTRN directive is located outside of any segment area. This is impor-
tant. If you place it inside a segment, the assembler assumes that the
reference is to another program segment that will be combined with
its segment. Depending on how the program segments are linked, this
could cause an error. To make sure there is no chance of error, the
EXTRN directive should always be placed outside of any segment area
reference in a program. The third change in this program made the
code segment “public,” and thus combinable with any other public
code segment with the same name. The fourth change added an instruc-
tion that would send the MPU off to a subroutine located within a
linked program. Since this is a “near” call, the subroutine will have
to be linked to the code segment that contains the call. The fifth change
made the label BEGIN available to all linked programs. The last change
added the label BEGIN to the move instruction. This will be used as
a target for a jump from the linked program.

Your last program is a simple time delay that uses the value stored
at DATA2 as the count. Two external references are made in this pro-
gram. Notice that, as before, both references are made outside of the
segment area. The first tells the assembler that DATA2 is located in
an external program, and that it is a word-sized data reference. The
second tells the assembler that the label BEGIN is located in an external
program, but it will be a near reference after linking. The code segment
name matches the code segment name in the other program, and it
has the combine-type PUBLIC. Thus it will share the same segment
area with the other program. The ASSUME directive identifies the code
segment for the assembler. The PUBLIC directive makes the label
COUNT_DOWN accessible from external programs. The first instruction
will move the contents of DATA2 into the CX register. Segment override
“DS:” tells the assembler that the data will be addressed through the
Data Segment register. The jump instruction serves no useful function
other than to illustrate another external operation. We added the in-
struction:

INT 3

to the program to make it easier to identify the end of the program
code when you examined it with the debugger. Recall that the hexadeci-
mal code for that instruction is “CC”. Finally, notice that the argument

Segmented Memory and I/O 7‘53

“START” is missing from the END directive statement. This is impor-
tant. When you combine programs, only one of the programs can con-
tain an END directive argument that identifies the beginning of a “com-
bined” program. Additional arguments will cause a link error.

Figure 7-15 shows the listing of this program. There are a number of
areas of interest. First, the two-byte code for the move data instruction
is followed by four zeros and the letter “E”. The four zeros reserve
space in the program for the offset address of the data within the data
segment. The letter “E” tells the linker that it must identify the location
of the data at “link time” and fill in the appropriate offset value. This
also applies to the jump instruction.

The Microsoft MACRO Assembler
EXPERIMENT 7 -- PROGRAM & -- TIME DELAY SUBROUTINE

1

2

3

4

5

& @000
7

8

9 2000
10 0000
1 0004
12 0006
13 9007
14 000A
15 000B
1&

8B Q@E 0000 E

E2 FE

E9 @009 E

cc

The Microsoft MACRO Assembler

EXPERIMENT 7 -- PROGRAM & --

Segments and groups:

PROG_CODE. . .

Symbo1s:

AGAIN.
BEGIN.
COUNT_DOWN . .
DATAZ.

Warning Severe
Errors Errors
) ()

Name

= s o= =2 » W

Name

g |

05-11-84

TITLE EXPERIMENT 7 -- PROGRAM & -- TIME

DELAY SUBROUTINE

EXTRN DATA2:WORD, BEGIN: NEAR

PAGE 1-1

;

PROG_CODE SEGMENT PUBLIC
ASSUME CS:PROG_CODE
PUBLIC COUNT_DOWN

COUNT_DOWN:

HOV
LOOP
RET
JHP
INT
PROG_CODE ENDS
END

AGATIN:

05-11-84

TIME DELAY SUBROUTINE

Size

0008 PARA

Type

L NEAR
L NEAR
L NEAR
V WORD

@004
0000
2000
0000

Figure 7-15

align

Value

CX,DS1DATAZ
AGAIN

BEGIN
3

PAGE Symbols

combine class

PUBLIC

Attr

PROG_CODE
External

PROG_CODE
External

Source listing of the external program.

7-54 | uniT seven

Down ir the “symbols table,” the combine-type for the segment is iden-
tified as PUBLIC. Next, the label BEGIN is given a different kind of
attribute. Instead of a segment name (for its location), it’s given the
attribute “External.” This gives you two characteristics of the label.
First, it is not associated with a segment (no segment name). Second,
it indicates that the label is not located within this program. The label
COUNTDOWN is given an additional attribute “Global.” This is
another way of saying that the label is “public.” Because of the segment
name, you also know that it is located within the segment area called
PROG_CODE. Finally, the name DATA2 is given a type “V WORD.”
The “V” indicates that it is an unidentified variable, while “WORD"”
indicates it is a word-sized variable. The “External” attribute described
earlier also applies here.

Procedure Continued

18. First read this step. Then link the two programs you just assem-
bled. Use the following format:

LINK <file-name1> + <file-name2>;

where “file-name1” and “file-name2” represent the names of your
two programs without the “.OB]J” file extension. The “ +" symbol
tells the linker to combine the two files named. The semicolon
tells the linker to bypass any “link options.” Be sure to place
the original EXE program file-name first. This is considered the
“primary” program. The other program is considered a “support-
ing” program.You can link the programs in any order, but the
programs are easier to trace through the debugger when you link
the primary, or mair, program first.

The EXE file generated by the linker will have the name of the
first program in the list of programs to be linked. For example,
if the first program is called P7-7.0B]J, the linked program will
assume the name P7-7.EXE. Now link your two programs.

Segmented Memory and I/O 7'55

19.

Call up the debugger and load your program into memory.
Examine the registers — type “R” and RETURN — to determine
the code or stack segment address. Then display the memory area
that contains your program. Use the “D” command with the ap-
propriate segment address value. Remember: for an early system,
use the code segment base address; for a late system, use the
stack segment base address. If you have an early system, your
display will be similar to Figure 7-16. A late system will reverse
the stack and code values.

Examine your displayed code. The main program begins offset
0000H (early) or 0040H (late). It 2nds on the next line of displayed
code, with the hexadecimal value “CC”. Recall that this is the
code for the type 3 interrupt instruction. Because both programs
used the default align-type “paragraph,” the code from the second
program begins on the next line of displayed code: offset 0020H
(early) or 0060H (late). Again, the code ends with the hexadecimal
value “CC”.

The five memory locations that separate the two groups of code
are filled with zeros to maintain the paragraph alignment. They
are insignificant, since they are ignored by the program. However,
this does point out that you shouldn’t attempt to write code that
“flows” directly from one program to another. Use a jump or call
instruction to make the transition.

R

AX=0000 BX=0000 CX=0070 DX=0000 SP=0020 BEP=0000 SI-0000 DI=0000

DS=0A09 ES=0A09 SS=0AIE CS=0A19 IP=0006 NV UP DI PL NZ NA PO NC
0A19:0000 BB1EGA MoV AX,9ALE
YDOA19: 0000
@A19:0000 BS IE @A SE D0 BC 20 @0-BS IC OA BE D8 BA 1IE @@ 8...P< .B...X...
@A19:0010 ©0 8D IE @8 @0 E3 03 00-8B 17 CC @0 00 00 @0 @0h....L.....
BA19:0020 BB @E 08 @0 E2 FE C3 E9-EE FF CC 00 0@ 00 @0 0@b~Cin.L.....
9A19:0030 AA AA AA AA AA AA AR AA-BB BB BB BB BB BB BB BB ®HEHERRHE;.ososty
©A19:0040 BB BB BB BB BB BB BB BB-00 00 00 00 00 00 @0 00 ;3ii555iessannss
OA19:0050 OF 00 OF 00 OF 00 OF 00—OF 00 OF 00 OF 00 OF 00cvevenrns
0A19:0060 OF 0@ OF 00 OF 00 OF Q0-OF 00 OF 00 OF @0 OF @0covvvcnnunn
0A19:0070 B89 44 F& 8B 4b Fb 3B 46-FC 77 4C 48 89 46 F4 8B .Fv.FvjFiuwlH.Ft.
>

Figure 7-16

Debugger display of program from early version system DOS.

7-56 | uniT seven

20.

21.

22.

Single-step through the program up to the call instruction. The
Code Segment register contains the value - _ _ _H, the Instruction
Pointer register contains the value - _ _ _H, and the Stack Pointer
register contains the value _ _ _ _H. Execute the call instruction.
The Code Segment register contains the value _ _ _ _H, the Instruc-
tion Pointer register contains the value _ . - _H, and the Stack
Pointer register contains the value ____H.

The Code Segment register value didn’t change, proving that both
program code groups reside within the same segment. The In-
struction Pointer register changed from 0015H to 0020H, the offset
address of the called instruction. Finally, the Stack Pointer regis-
ter was decremented by two, indicating that the single-word “call
return address” was stored in the stack. These three register
values show that the MPU executed an intrasegment program
transfer instruction.

Exit the debugger. Using the editor, change the EXTRN directive
in your main program from:

EXTRN COUNT_DOWN:NEAR
to:

EXTRN COUNT_DOWN:FAR
Assemble the program.

Now modify the external program with the editor. Change the
EXTRN directive from:

EXTRN DATAZ:WORD,BEGIN:NEAR
to:
EXTRN DATAZ2:WORD,BEGIN:FAR

Then delete the PUBLIC combine-type from the SEGMENT direc-
tive. It should now read:

PROG_CODE SEGMENT

This makes the segment private; so that when you link the two
programs, you will have two separate code segments. Normally,
this isn’t a good idea unless your code exceeds the 64K segment
boundary. Making a segment private only complicates a program.

Segmented Memory and I/O 7'57

Because this code segment is now considered a far segment, you
must code the return instruction for a far return from call. Recall
that you do this by creating a dummy “far procedure.” Make the
following changes to your program. Just before the RET instruc-
tion, add the beginning procedure directive:

DUMMY PROC FAR

Then just after the RET instruction, add the end procedure direc-
tive:

DUMMY ENDP

The return instruction will now assemble as a far return from
call.

Since we are dealing with “far” program transfer instructions,
there is one more change that should be made. Can you guess
what that is? The jump instruction is currently identified as a
“near” jump. To make it a “far” jump, you must add an assembler
pointer operator. Change the instruction:

JMP BEGIN
to:
JMP FAR PTR BEGIN

That completes the modification of your external program. As-
semble the program.

7-58 | uniT seven

Discussion

Figure 7-17 shows a listing of your external program. The code for
two instructions have changed. Originally, the code for the return from
call instruction was hexadecimal C3. Now that you have identified it
as a far return, its code is hexadecimal CB. The same is true for the
jump instruction. As a near jump, its code was hexadecimal E9 0000
E. As a far jump, its code is EA 0000 ---- E. The “EA” is the actual
jump instruction; “0000” is a temporary address offset that will be recal-
culated by the linker; and “----" is the target code segment base address
that will be determined by the program loader. As before, the ending
“E” identifies this as an external operation that must be supported by
the linker and loader. If you examine the main program listing, you
will see that the far call instruction is coded in a similar fashion. Far
program transfer instructions are the only way the Code Segment regis-
ter contents can be changed during program execution.

The “Symbols” table in Figure 7-17 shows three changes from before.
First, the code segment has no combine-type, making it a private seg-
ment. Second, the label BEGIN is now listed as a “far” label. Third,
a description of the symbol DUMMY has been added. It has a “type”
far procedure; a “value” of 0006 (begins with the sixth byte of code
in the program); and its "attributes” are that it is located within segment
PROG_CODE, and it is one byte long (Length = 0001).

Procedure Continued

23. Link the two programs you just assembled. Use the same format
you used earlier. Type “LINK <file-name1> + <file-name2>;"
and RETURN. Remember, “file-name1” and “file-name2” repre-
sent the names of your two programs without the “.OBJ” file ex-
tension. The “+ " symbol tells the linker to combine the two files
named. The semicolon tells the linker to bypass any “link op-
tions.” Be sure to place the main program file-name first.

As before, the EXE file generated by the linker will have the name
of the first program in the list of programs to be linked. For exam-
ple, if the first program is called P7-9.0B], the linked program
will assume the name P7-9.EXE.

Segmented Memory and I/O 7'59

The Microsoft MACRO Assembler
EXPERIMENT 7 —- PROGRAM 8 —- PRIVATE TIME DELAY SUBROUTINE

1

2

3

4

- 0000
&

7

8 0000
9 0000
10 2004
il 0006
12 0004
13 0007
14 0007
15 000C
16 000D
17

05-14-84 PAGE i-1

TITLE EXPERIMENT 7 -- PROGRAM 8 -- PRIV

ATE TIME DELAY SUBROUTINE

BB OE 0000 E
E2 FE

CB

EA 0000 —- E
cc

The Microsoft MACRO Assembler

EXPERIMENT 7

Segments and

PROG_CODE. .

Symbols:

AGAIN. . .
BEGIN., . .
COUNT_DOWN
DATAZ. . .
DUMMY. . .

-1

EXTRN DATAZ2: WORD, BEGIN:FAR

1
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE
PUBLIC COUNT_DOWN
COUNT_DOWN:
MOV CX,DS:DATA2
AGAIN: LOOP AGAIN
DUMMY PROC FAR
RET
DUMMY ENDP
MP FAR PTR BEGIN
INT 3
PROG_CODE ENDS
END

#5-14-84 PAGE Symbols

-- PROGRAM 8 — PRIVATE TIME DELAY SUBROUTINE

groups:

Name

Name

= = = o= s
a » 8 % &
" " o o= &
= s = s
= s = w
« = = = =
= .
= s = & w

- s & =

=0001

Warning Severe

Errors
@ "]

Errors

Size align combine class

@e0D PARA NONE

Tyoe Value Attr

L NEAR 0004 PROG_CODE

L FAR 0000 External

L NEAR @000 PROG_CODE

V WORD @060 External

F PROC 0806 PROG_CODE
Figure 7-17

Source listing of the external program after it is
changed to a private combine-type.

7-60

UNIT SEVEN

24.

SR

Call up the debugger and load your program into memory
Examine the registers — type “R” and RETURN — to determine
the code or stack segment address. Then display the memory area
that contains your program. Use the “D” command with the ap-
propriate segment address value. Remember: for an early system,
use the code segment base address; for a late system, use the
stack segment base address. If you have an early system, your
display will be similar to Figure 7-18. The main code segment
is followed by the data, then the stack, and finally the secondary,
or private, code last. A late system will arrange the segments
so the stack is first, data next, “main” code third, and secondary
code last. Although it appears that both code segments share the
same segment area in a late system, those of you who have a
late system will find that isn’t true. Each code segment has its
own segment base address.

AX=000@ BX=0000 Cx=005D0 DX=0000 SP=0020 BP=000@ SI-0000 DI=0000
DS=0A0T ES=0R07 SS5=0A1D (S=0A19 IP=0000 NV UP DI PL NZ NA PO NC

0Al9
>DeA
oA19
9AL9
9A19
BA1T
0ALT
BALY
OR19
6A1T
>

25.

10000 B81DOA MoV AX,9A1D

19: 0000

10000 BS 1D OA 8E D@ BC 20 00-BS 1B @A 8E D8 8A 1E @0 8...PC .8...X...
10010 @@ 8D 1E 05 00 9A 00 00-1F ©A 8B 17 CC @0 06 00 | PR
10020 AA AA AA AA AA AA AA AA-BE BB BB BE BB BE BB BB *#¥axiitkysssasss
;9030 BB BB BB BB BB BB BB BB-00 00 00 00 00 00 00 00 ;3355333 -cerenn-
10040 OF 00 OF 00 of 00 OF 00-0F 00 OF 00 OF @0 OF 00cconvevnss
10050 OF 00 OF 00 OF 0@ OF 00-OF @D OF 00 OF 00 OF 90c00usn
100640 BB OE 08 00 E2 FE CB EA-1A @@ 19 @A CC OF 89 46 b~Kj....L..F
10070 Fb4 83 FB FF 75 20 FF 76-0C 9A @A 0@ 1D 0D 89 DF v.X.U ‘Veeswuss _

Figure 7-18

Early system debugger display of combined program
with private code segment.

Examine your displayed code. The main program code begins
offset 0000H (early) or 0040H (late). In both cases, the secondary
program code begins at offset 0060H in the display. However,
when you execute the code, you will find that it actually begins
at address offset 0000H, with a new segment base address. Both
the main and secondary code segments end with the code for
a type 3 interrupt, hexadecimal CC. For the secondary code seg-
ment, this is at address offset 006CH in your display.

Single-step through the program up to the call instruction. The
Code Segment register contains the value . _ - _H, the Instruction
Pointer register contains the value _ _ _ _H, and the Stack Pointer
register contains the value _ - _ _H. Execute the call instruction.
The Code Segment register contains the value _ _ _ _H, the Instruc-
tion Pointer register contains the value _ _ _ _H, and the Stack
Pointer register contains the value . ___H.

Segmented Memory and /O 7'61

26.

27.

28.

29

This time, the Code Segment register value changed, proving that
the program code groups reside within different segments. The
Instruction Pointer register changed from 0015H to 0000H, the
offset address of the called instruction within the new code seg-
ment. Finally, the Stack Pointer register was decremented by four,
indicating that a doublewcrd “call return address” was stored
in the stack — the old CS register value and the old IP register
value. The fact that all three register values changed shows that
the MPU executed an intersegment program transfer instruction.

Single-step to the loop instruction. The CX register contains the
value _ _ _ _H. This is the value stored at DATA2. Single-step
one more time. The CX register contains the value - __ _H.

The CX register holds the loop count. When the loop instruction
was executed, the CX register was decremented and the MPU
iooped back to the loop instruction.

We want you to execute the return from call instruction. To save
tim=, change the loop count to 0001H. Type “RCX"” and RETURN.
The debugger will respond with the specified register name and
its current contents. Type the value you want the register to con-
tain “0001” and RETURN.

Single-step one more time. The last loop instruction has executed
and the debugger is pointing at the return instruction. Depending
on the system, the debugger display of the return instruction
mnemonic is different. Early systems will display:

RET L
while late systems will display:

RETF

In both cases, the debugger is indicating a far return.

Examine the memory area that contains your program. Use the
“D” command with the appropriate segment address value. Re-
member: for an early system, use the code segment base address;
for a late system, use the stack segment base address. Notice that
the stack area contains a number of words of data. Recall that
the debugger uses the program stack to temporarily store data.
However, it always makes sure that any program data that is
pushed into the stack is at the top of the stack. Thus, the Stack
Pointer is always pointing at the “program” top of stack and not
the top of stack being used by the debugger.

7'62 UNIT SEVEN

30.

31.

The first word that is stored in the stack is the original Code
Segment register contents. The next word in the stack is the origi-
nal Instruction Pointer contents. Thus, when the return from call
instruction is executed, you can expect the CS register to be
loaded with the value - _ _ H and the IP register to be loaded
with the value ____H.

Before you execute the return from call instruction, record the
following register values:

Code Segment register ____H
Instruction Pointer register ____H
Stack Pointer register __ __H

Execute the return instruction. Record the following register
values:

Code Segment register ___ H
Instruction Pointer register ____H
Stack Pointer register - ___.H

The MPU is now pointing at the instruction following the original
call instruction in the main program. Do the CS and IP register
values match the values you recorded in Step 297 If they don’t,
you weren’t looking at the top of the stack, or you forgot that
words are stored in memory low byte first. You can’t re-examine
the stack. As soon as the MPU popped the data from the stack,
the debugger filled-in the empty area with its own data. It knows
what part of the stack is available through the Stack Pointer. With
the Stack Pointer pointing at offset 0020H, the debugger will use
the stack area beginning with offset 0019H. The important point
to remember is that the Stack Pointer will always point at the
last word your program pushed into the stack.

The last instruction we want you to examine is the far jump in
the external program. Since we don’t know the code segment
base address for your program, we're going to let your program
load the CS register for you. First, change the contents of your
Instruction Pointer to the offset address of the call instruction.
Type “RIP” (register Instruction Pointer) and RETURN. Then
enter the value “0015” and RETURN. Finally, single-step through
the call instruction.

Segmented Memory and I/O 7'63

Now that the CS register is set, load the offset address of the
jump instruction into the Instruction Pointer. Type “RIP” and
RETURN. Then enter the value “0007” and RETURN. Display
the instruction by typing “R” and RETURN. The code for the
far jump instruction is five bytes long. The first byte is the actual
jump code that is decoded by the MPU. The next two bytes con-
tain the offset address to the jump target. The last two bytes con-
tain the segment base address to the “far” code segment. When
the jump is executed, the Instruction Pointer and Code Segment
registers are loaded with the values contained in the instruction
code. These values should be:

Code Segment register ___ _H
Instruction Pointer register ._ . _H

Execute the instruction. Do the values match?
Discussion

This portion of the experiment has presented the important areas you
should understand in order to write EXE-type programs. We didn’t pro-
vide examples of every variation described in the text. However, with
the information provided in this unit and your system reference manu-
als, you should be able to handle every programming situation.

It should be apparent by now that there are traae-offs between COM
and EXE programs. EXE programs give you more control over the pro-
gram design, but they also add to the complexity of the program. COM
programs are not quite as versatile, but they are more compact and
easily written. These trade-offs will, to some extent, dictate which pro-
gram-type you will use. If you still don’t feel confident with the EXE
style program, don’t worry, we will be using it often throughout the
remainder of the course.

The last part of the experiment will introduce you to the concept of
direct data I/0. Because of the way every manufacturer treats I/O in
his microcomputer, a graphic demonstration is difficult. A majority
of the I/O operations are very similar between IBM and ZENITH, but
the application is quite different. Rather than fill the experiment with
product and model exceptions, we’ll limit the example to the CRT Con-
troller interface.

7'64 UNIT SEVEN

TITLE EXPERIMENT 7 -- PROGRAM 9 -- 1/0

:)

PROG_STACK SEGMENT STACK
DW 36 DUFP (@) ;5et up stack area, 80 bytes minimum

jto handle system interrupt

sIdentify top of stack for SP register

TOP_OF_STACK LABEL WORD

PROG_STACK ENDS

;
PROG_CODE SEGMENT PUBLIC
ASSUME CS:PROG_CODE, SS:PROG_STACK

1

3 XXXXXXXOOO000OENNONNENNOCONCEXXXXXXXXXXXXXAXXXXXXXXXXXXAXXAXAXXXXX
;Select the two register equate values that match your system. Right
jnow, the equate values for Zenith systems with bit mapped video are
jselected. For systems that use an IBM or IBM compatible video circuit
sboard, place a semicolon in front of each of the two Zenith equates,
sthen remove the semicolons from in front of the two IBM equates that
;match the board type in your system.

3
INDEX_REG EQU @DCH
DATA_REG EQU @DDH

;Zenith video register select port
3Zenith video register R&-R17 port

i
s INDEX_REG EQU @3B4H
;BATA_REG EQU @3BSH

3 IBM monochrome adapter circuit board
s IBM monochrome adapter circuit board

i

s INDEX_REG EQU @3D4H s IBM color/graphics adapter C.B.
;DATA_REG EQU @3DSH ;1IBM color/graphics adapter C.B.

3 KXXXX0OOO0000O0CNNOOONEENONNNOCEEXXXXXXXXXXXXXXXXXXXXXXAXXXXAAXXXXX
j

CUR_START EQU @AH sCursor start register address
;Cursor stop register address

CUR_STOP EGU @BH

]
START: MOV

AX,PROG_STACK jNever load a segment register direct
MOV S5, AX sUse an intermediate register
MOV SP,OFFSET TOP_OF_STACK ;Point to the top of stack
jimmediately after loading SS register

PUSH bs ;Save segment far return value

SUB AX,AX sZero AX register

PUSH AX ;Save offset of zero for far return
]

CALL CURSOR_STOP sPrepare CRTC for ending cursor line

MOV AL,07H sEnding cursor scan line

ouT DX, AL ;Write ending line to register
L]

CALL CURSOR_START ;Prepare CRTC for beginning cursor line
CURSOR_SIZE:

MOV CX,07H ;Cursor size loop count

MOV AL,01H ;Starting cursor scan line value
CHANGE: OUT DX, AL ;Write starting line to register

INC AL ;Make cursor one scan line smaller

MOV BX, @FFFFH ;Add some delay to see cursor change
DELAY: DEC BX ;Count down delay

JNZ DELAY ;1s delay done?

LOOP CHANGE ;Yes, change cursor size
1

MoV AH, @BH ;Keyboard status interrupt code

INT 21H ;Check status -- FF = key pressed

CNP AL, OFFH ;Key pressed?

JE STOP ;AL=FF, end program, otherwise continue

JMP CURSOR_SIZE 3Start all over again

Figure 7-19A

I/O program listing.

Segmented Memory and /O 7'65

Procedure Continued

32,

Exit the debugger, call up the editor, and enter the program listed
in Figure 7-19. The program is designed to run on any 16-bit
variation of Zenith, IBM, or IBM compatible microcomputer.
However, you must “configure” two areas of the program to match
your system. Right now, the program is configured to run on a
Zenith system using a bit mapped video display. Follow the pro-
gram directions for selecting the two appropriate /O port equate
directives (near the beginning of the program) and the appropriate
final cursor code (near the end of the program).

COMMENT~

Select the final cursor code that matches your system. Zenith bit
mapped video is currently active. To select the cursor code for any
IBM or IBM compatible system, place semicolons in front of the Zenith
lines, then remove the semicolons from in front of the IBM code lines.~

§
3 ZENITHZENITHZENI THZENI THZENI THZENI THZENI THZENI THZENITHZENITHZENITHZENI

STOP: WOV AL, 48H sZenith type cursor code to set flash
jrate and beginning cursor line number
ouT DX, AL sWrite code to cursor start register
CALL CURSOR_STOP ;Prepare the CRTC for cursor stop data
MOV AL,08H ;Ending cursor line number
ouT DX, AL sWrite code to cursor stop register

3 ZENITHZENITHZENI THZENI THZENI THZENI THZENI THZENI THZENI THZENI THZENITHZENI

i
3 IBHIBMIBHIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBMIBNI

;STOP: MOV AL, @6H ;IBM type cursor code
ouT DX, AL sWrite code to cursor stop register
, IBHIBHIH!IB!‘IIBHIBHIBHIBHIBHIBH!&IBH!MIBH!BHIBJ‘IIBHIBHIBHIBHIBHIBHIBHI
EIIT PROC FAR 3Set up far return and
RET sexit program gracefully
EXIT ENDP ;through built-in system interrupt

§

CURSOR_START:
MoV DX, INDEX_REG ;Address of register select port
MOV AL,CUR_START sAddress of cursor start register

ouT DX, AL ;Select the cursor start register
MOV DX,DATA_REG ;Address of register RO-R17 port
RET

i

CURSOR_STOP:

MOV DX, INDEX_REG ;Address of register select port
MOV AL,CUR_STOP ;Address of cursor stop register

out DX, AL ;Select the cursor stop register
MOV DX, DATA_REG ;Address of register RO-R17 port
RET
i
PROG_CODE ENDS
END START
Figure 7-19B

Continuation of the IO program listing.

7"‘66 UNIT SEVEN

33. Assemble and link the program. Execute the program by typing
the program name without the file extension EXE.

The program will display a new “cursor” symbol composed of
seven “scan lines.” After a momentary pause, the top line will
disappear. After another pause, the next line will disappear. This
will continue until there is only one line left, then the sequence
will repeat. To exit the program, press any of the alphanumeric,
symbol, or space keys. Control will be returned to the system,
the cursor will re:urn to its original configuration, and the key
that you pressed will be echoed on the display.

Discussion

In addition to illustrating I/O addressing, the program uses many of
the concepts presented earlier in the course. It also introduces a new
variation of interrupt 21H, a new method for exiting an EXE program,
and a new assembler directive, the COMMENT.

Because the program you entered is an EXE-type program, it had to
establish a program stack segment. Recall that when a program contains
a system interrupt, the stack should contain at least 80 memory word
locations to support the interrupt subroutines. Thus, the first part of
the program established an 80-word stack.

The program code segment began with a number of equate statements.
The first three pairs identified the two I/O port addresses for the 68A45
Cathode Ray Tube Controller (CRTC). The three pairs of addresses are
necessary because there are three possible system configurations, and
each system uses a different port address combination. Figure 7-20
shows why two ports are needed to address the CRTC.

Segmented Memory and I/O 7‘67

RT
”—OEO— INDEX REG

/@ PoRT| DATA REG

REGO
REG 1
REG 2
REG 3
REG 4
REG 5
REG 6
REG T
REG 8
REG 9
REG 10
REG 11
REG 12
REG 13
REG 14
REG 15
REG 16
REG 17

(OOOnOOO00o0oO000io

Figure 7-20
Simple diagram of the 68A45 CRT Controller programmer
accessible control registers.

The CRTC contains 20 programmer accessible registers. Eighteen of
these, Register 0 through Register 17, are used to control or provide
feedback from the display. In order to access any of these registers,
you first must identify the register. You do this by sending the register
number to the Index Register, through the I/O port assigned to that
register. The Index Register, in turn, enables the specified register for
a read or write. Now you can access the specified register through the
/O port assigned to the Data Register.

In your program, the two registers of interest are 10 and 11. These
control the characteristics of the display cursor. Register 10 identifies
the starting cursor scan line as well as the blink function. Register 11
identifies the ending scan line number. Therefore, if Register 10 con-
tains the value 01H and Register 11 contains the value 07H, the cursor
will be seven scan lines tall. If both contain the value 07H, the cursor
will contain one scan line. The last two program equate statements
identify the two cursor registers.

7-68

UNIT SEVEN

The first three program instructions are by now quite familiar. They
load the Stack Segment register and the Stack Pointer register. The
next three instructions, however, are quite new.

When an EXE program is loaded into memory, the program loader
places the “system return address” at a location that is identified by
the contents of the Data Segment register and offset value zero. This
information must be placed in the program stack before any other pro-
gram instructions are executed. At the end of the program, a far return
will be executed, and the information will be loaded into the CS and
IP registers. They will then point to the physical address of the monitor
subroutine that will return the MPU to the system.

Now that the registers are properly set up, the main program can begin.
The first step is to address the cursor stop register. A subroutine call
performs the furction. The subroutine is locatec at the end of the pro-
gram.

The first instruction loads the port address of the CRTC Index Register
into the DX register. Recall that variable port addressing, through the
DX register, is required for I/O addresses beyond the first 256. The
IBM addresses fit into this category. Next, the cursor stop register
number is loaded into the AL register. Then the AL register contents
are output to the port identified by the DX register. The CRTC Index
Register is now pointing to the cursor stop register. Next, the DX register
is loaded with the /O port address of the CRTC Data Register. The
CRTC is finally ready to receive the ending scan line number for the
cursor. The return instruction sends the MPU back to the instruction
following the call.

Here, the scan line number 07H is loaded into the AL register. Then
it is output to the /O port address pointed to by the DX register. The
ending scan line numbe- for the cursor is now loaded into the CRTC.
The next step is to load the starting scan line number.

As you could see in the display, the starting scan line number, and
thus the number of cursor scan lines, was continuously changing. This
is a simple process once the cursor start register in the CRTC is selected.
Again, the register selection is handled by a subroutine. The CUR-
SOR_START subroutine is identical to the CURSOR_STOP subroutine
except for the values loaded into the DX and AL registers. When it
is complete, the DX register is pointing to the CRTC Data Register and
the CRTC Index Register is pointing to the Cursor Start Register. The
next 13 steps control the size of the cursor and test for a keyboard
entry.

Segmented Memory and I/O 7'69

A small loop controls the cursor size. Since there are seven levels of
cursor size, the value 07H is loaded into the Count register. Then the
cursor starting value is loaded into the AL register and output to the
CRTC. Next, the AL register is incremented to reduce the cursor size
by one line. To make it possible to see the cursor change size, a short
delay is added to the cursor loop. The BX register is loaded with
OFFFFH, the register is decremented, and the value is tested for zero.
If it isn’t zero, BX is decremented again. As soon as it reaches zero,
the cursor loop continues, and the new cursor start value is output
to the CRTC.

After every cursor loop cycle, the keyboard is tested to see if you
pressed a key. This is how you exit the program. Interrupt 21H, function
0BH, tests the status of the keyboard. If a key has been pressed, the
interrupt will return the value OFFH to the AL register. If no key has
been pressed, the value 00H will be returned to the register.

The process begins by loading the AH register with the function number
O0BH. The interrupt is called. Then the AL register is compared with
the value OFFH to see if a key has been pressed. A match causes the
MPU to jump to the subroutine labeled STOP. Otherwise, the MPU
jumps back to the beginning of the cursor modification loop.

Two STOP subroutines were supplied with the program to accommo-
date the two cursor styles. In the case of IBM, the cursor start address
is set to line 06B. This produces a two-line cursor. No other changes
are necessary.

For Zenith, both the start and stop cursor line values must be changed.
First, the value 48H is output to the cursor start register in the CRTC.
This value sets the cursor start line value to line eight. It also enables
the cursor blink function. After the cursor start register is loaded, the
cursor stop register is addressed through the CURSOR_STOP sub-
routine. Then the line value 08H is loaded into the register. This sets
the cursor stop line value to line eight. As a result, the Zenith cursor
is a single blinking line.

You didn’t have to enable the IBM cursor blink function. This is because
it is controlled by system software, rather than through the CRTC.

The last part of the program is a far return. When the instruction is
executed, the return address to the system is popped from the stack
and loaded into the CS and IP registers. Always use this method to
exit an EXE-type program.

7‘70 UNIT SEVEN

One last point before we end this experiment. Two different methods
were used to add multiple line comments to the program. The first
has been used before. A semicolon is placed before each line to tell
the assembler that the line is for comments only. The second method
uses the assembler directive COMMENT to identify program comments.
Notice that we placed the symbol for a “tilde” {(horizontal S) im-
mediately after the directive. This identifies the beginning of the com-
ments. Another tilde is placed immediately after the comments to indi-
cate the end. You don’t have to use a tilde, any mark will do, but
you must use a symbol that is unique and won't be found within the
comments. The COMMENT directive is useful when you are writing
a long comment that may need to be edited. You don't have to worry
about placing a semicolon in front of each comment line. Placing bor-
ders around a comments section is optional. We used them to make
it easier for you to identify unique groups of code and data.

This completes the Experiment for Unit 7. If you anticipate a need
for accessing specific I/O ports within your system, now is a good time
for you to work a little more with I/O port addressing. Your technical
manual lists all of the I/O ports and gives a brief description of how
to use them. When you are finished, proceed to the Unit 7 Examination.

Segmented Memory and I/O 7'71

10.

UNIT 7 EXAMINATION

An EXE-type program must contain at least two segment areas.
They are the and segments.

Before you execute the code in an EXE-type program, you must
initializethe ___________ registers.

The default segment register for a data move operation in an EXE-
type programisthe _ Segment register.

You can move the stack segment base address value directly into
the SS register.

True/False

You are allowed a maximum of five ASSUME statements in an
EXE-type program.

True/False

The segment attribute specifies how a program is
to be linked and loaded into memory.

The segment attribute specifies how the various
segments are grouped within a program.

The segment attribute specifies how identically
named segments are arranged in a program.

Program transfer within a segment is called
addressing.

Program transfer from one segment to another is called
addressing.

7"72 UNIT SEVEN

11.

12.

13.

14.

15.

16.

17.

The assembler directive _________ identifies a symbol that is
available to an external program.

The assembler directive _______ identifies a symbol that will
be used by an external program.

The assembler directive —________ provides a convenient
means for entering long program descriptions.

Near call instructions push word(s) into the stack before

transferring to the target address.

Return instructions that are not part of a procedure are always
program transfer instructions.

Variable I/O port addresses must be stored inthe _______ register.

There are a maximum of fixed /O port locations
available to the 8088/8086 MPU.

Segmented Memory and I/O 7'73

EXAMINATION ANSWERS

1. An EXE-type program must contain at least two segment areas. They
are the Code and Stack segments.

2 Before you execute the code in an EXE-type program, you must
initialize the segment registers.

3. The default segment register for a data move operation in an EXE-
type program is the Data Segment register.

4. False. Before you can move the stack segment base address value
into the SS register, you must move the value into an intermediate
register such as the AX register.

5. False. You are allowed an unlimited number of ASSUME state-
ments in an EXE-type program.

6. The segment attribute align-type specifies how a program is to
be linked and loaded into memory.

7 The segment attribute combine-type specifies how the various
segments are grouped within a program.

8. The segment attribute 'class’ specifies how identically named seg-
ments are arranged in a program.

9. Program transfer within a segment is called intrasegment address-
ing.

10. Program transfer from one segment to another is called interseg-
ment addressing.

7-74

UNIT SEVEN

11.

12.

13.

14.

15.

16.

17.

The assembler directive PUBLIC identifies a symbol that is avail-
able to an external program.

The assembler directive EXTRN identifies a symbol that will be
used by an external program.

The assembler directive COMMENT provides a convenient means
for entering long program descriptions.

Near call instructions push one word into the stack before trans-
ferring to the target address.

Return instructions that are not part of a procedure are always
near program transfer instructions.

Variable I/O port addresses must be stored in the DX register.

There are a maximum of 256 fixed I/O port locations available
to the 8088/8086 MPU.

Segmented Memory and /O 7‘75

10.

11.

12.

13.

14.

15.

SELF-REVIEW ANSWERS

A segment is a logical unit of memory that is 64K bytes long.

False. Segments may be adjacent to each other and they can over-
lap.

False. The assembler “assumes” that instructions are located in
the code segment and data are located primarily in the data seg-
ment, although there are some exceptions in the case of data.

Every EXE program must contain at least two segment areas: code
and stack.

Every segment must be identified by a unique name.

The argument STACK must follow the stack SEGMENT directive
so that the assembler knows which segment defines the stack
area in memory.

False. The assembler directive LABEL only identifies a memory
location.

The beginning of a segment is identified by the SEGMENT direc-
tive.

The end of a segment is identified by the ENDS directive.
The code segment contains the ASSUME directive.

Before any memory operations are performed, the first instruc-
tions in an EXE program should be used to initialize the Stack
Segment register, the Stack Pointer register, and any data segment
register that wili be used by the program.

The Code Segment and Instruction Pointer registers don’t have
to be initialized by the program code.

A physical address in memory is determined by combining a seg-
ment base address with a logical, or offset, address.

An early version linker arranges the code, data, and stack seg-
ments so that the code segment is first, the data segment is next,
and the stack segment is last. Late version linkers place the stack
segment first, data segment next, and code segment last.

Data addressed by the Base Pointer register is, by default, within
the stack segment.

7‘76 UNIT SEVEN

16.

i b8

18.

19.

20.

21,

22.

23.

24.

25,

26.

27

28

29.

30.

You can override the assembler’s choice of segment register in
a memory operation with the segment override assembler
operator.

You can change the assembler’s “assumptions” about a segment
with the ASSUME directive.

The default “align-type” attribute in a SEGMENT directive state-
ment is PARA.

Align-type PAGE specifies that the segment can begin at any ad-
dress that is divisible by 256.

Align-type PARA specifies that the segment can begin at any ad-
dress that is divisible by 16.

Align-type BYTE specifies that the segment can begin at any ad-
dress in memory.

Align-type WORD specifies that the segment can begin at any
even numbered address in memory.

The linker program uses the align-type attribute to determine how
the object program segments will be arranged in memory.

If a segment has no “combine-type” attribute, the segment is con-
sidered private.

The combine-type attribute determines both the physical as wel!
as the logical addressability of a segment.

Combine-type PUBLIC segments will be combined by the linker
if their segment names are identical.

Combine-type STACK is similar to combine-type PUBLIC.

Three segments with combine-type COMMON and lengths of 5,

15, and 10 bytes will produce a segment 15 bytes long when
combined.

Combine-type MEMORY is treated like combine-type PUBLIC by
the linker.

To specify the physical location of a label within memory, you
would use combine-type AT <expression>.

Segmented Memory and I/O 7‘77

31,

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42,

A secondary segment identifier is the segment attribute ‘class’.

Intrasegment addressing is restricted to the 64K byte boundary
of a single code segment.

Intersegment addressing relates to program transfer between code
segments.

COM-type programs use intrasegment addressing.

The assembler directive PUBLIC is used to identify those symbols
in a program that can be accessed by other programs when they
are linked.

The EXTRN directive tells the assembler that the indicated sym-
bol is located outside of the current program.

The EXTRN directive identifies a symbol by its label or name
and by its type.

True. All external references must have a matching public sym-
bol.

False. All public symbols do not require a matching external re-
ference.

A far jump between segments in a single program is identified
by the assembler operator FAR PTR.

A far call between segments of two programs that have been
linked is identified by the external directive type FAR.

When a far call is executed, the contents of the Code Segment
register are pushed into the stack; then the contents of the Instruc-
tion Pointer register are pushed into the stack.

7-78 | uniT seven

43.

44,

45,

46,

47.

48.

49.

50.

51.

False. A “dummy” far procedure must be created in order to exe-
cute an intersegment return.

Memory is disabled and I/O is enabled by the IN and OUT instruc-
tions.

An I/O port can accommodate eight bits of data.
The address of a fixed port is defined as a constant.

The address of a variable port is pointed to by the contents of
the DX register.

There are 256 8-bit fixed ports available to the 8088/8086 MPU.

False. The AL register must be used as the destination operand
for an IN instruction accessing an 8-bit port.

The source operand for an IN instruction that uses a fixed port
is always an immediate value.

True. Both the fixed and the variable addressing methods can
access the first 256 I/O port locations.

LAASNI

Unit 8

INTERRUPTS AND STRINGS

8'2 UNIT EIGHT

CONTENTS

IBIPOdNGEION . . v oo on mimie wim msiminis o bme g v min wwis e i e ae svein 8-3
Unit Objectives . .. oov vttt e e 8-4
Unit Activity Guidettt e 8-5
IRLEITUPES oo wn sins va wssimien sommen on S0 w05 FoESE WS AYSS G5 ST 168 808 8-6
Striing OPETatONS: « s soovwns i awre s B w6 FEE GF R G S W VR 8-25
EXPEEIMBNE o o asveins vomns s s ion awsey o wes v v W S 8-43
Unit B Bxaminalion . o ses ex wewen veaes o ava ai eu €@ swesi os 8-73
Examination ANBWEIS: & vuv s vvwed i 9 s 90 an s aem ste e » 8-74

Self-ReVIEW ANSWETS & v vt ottt e et et e e e et 8-75%

Interrupts and Strings 8'3

INTRODUCTION

One of the most important functions of the MPU is interrupt handling.
Recall that an interrupt is a command to stop whatever is in progress
and perform another operation. Through the MPU, internal (program
related) as well as external (hardware related) interrupt commands
allow complete integration of the microcomputer system. Although we
have been using interrupts throughout this course, we haven’t fully
explained their function or operation. This unit will describe all of
the interrupts in detail.

After interrupts, there is only one major area of programming the 8088
MPU that we haven’t covered. That area is string handling. In this con-
text, a string is a group of consecutive memory locations that contain
some form of data. You will learn how to initialize a string, move a
string from one memory location to another, and test a string for a
specific value.

Use the “Unit Objectives” that follow to evaluate your progress. When
you can successfully accomplish all of the objectives, you will have
completed this Unit. You can use the “Unit Activity Guide” to keep
a record of those sections that you have completed.

8'4 UNIT EIGHT

UNIT OBJECTIVES

When you complete this Unit, you will be able to:

1.

10.

11.

12.

Define the following terms: Interrupt, interrupt request, non-
maskable interrupt, interrupt service routine, interrupt vector
(pointer) table, divide error, single step, handshaking, reset, DMA,
string, string operation, and string element.

Describe how the INTR, INTA, HOLD, HLDS, and NMI control
lines are used.

Use the following instructions in a program: INT, IRET, INTO,
CLI, STI, CLD, STD, REP, REPNE, REPNZ, REPE, REPZ, MOVS,
MOVSB, MOVSW, CMPS, CMPSB, CMPSW, SCAS, SCASB,
SCASW, LODS, LODSB, LODSW, STOS, STOSB, and STOSW.

Describe what occurs within the MPU during a typical interrupt.

State the purpose of the TF (Trap flag), IF (Interrupt flag), and
DF (Direction flag).

List the priority in which the 8088 MPU services internal and
external interrupts.

Name two basic types of interrupts.
State the contents of an interrupt vector, or pointer.
State the use for the single-step operation.

Name the two software interrupt instructions available with the
8088 MPU instruction set.

List the contents of the segment registers, IP register, Flag register,
and queue, after a reset.

State the use of the CX register in a string operation.

Interrupts and Strings 8'5

O O O O O O O

O O o gd

UNIT ACTIVITY GUIDE

Read the Section on “Interrupts.”

Complete Self-Review Questions 1-18.
Continue Reading the Section on “Interrupts.”
Complete Self-Review Questions 19-32.

Read the Section on “String Operations.”
Complete Self-Review Questions 33-47.

Continue Reading the Section on “String
Operations.”

Complete Self-Review Questions 48-59.
Perform the Experiment.
Complete the Unit 8 Examination.

Check the Examination Answers.

Completion
Time

8‘6 UNIT EIGHT

INTERRUPTS

In order to maintain full control of your microcomputer system, you
must have a way to halt program execution to service an internal micro-
computer function or allow a peripheral access toc the MPU. Otherwise,
a program, no matter how long, will run until it is finished. As a result,
important data from a peripheral may be lost. Program execution can
be stopped through the use of an interrupt. Now in order to understand
interrupts, you must be familiar with a number of terms. We will in-
troduce these terms first and then continue on with a more in-depth
description of interrupts.

Generally speaking, an interrupt is a temporary break in the normal
execution of a program, after which program execution proceeds at
the point of the break. The actions that the MPU takes in response
to an interrupt are called the interrupt service routine or the interrupt
routine. Responding to an interrupt is referred to as servicing an inter-
rupt. You might think of an interrupt routine as nothing more than
a “called” subroutine. When the MPU recognizes the interrupt, it jumps
to the area in memory that holds the subroutine to service the interrupt.

There are two basic types of interrupts: the external interrupt (gener-
ated cutside the MPU) and the internal interrupt (generated in response
to some occurrence within the MPU or program). Maskable and non-
maskable interrupts come under the general heading of external inter-
rupts. The maskable interrupt is one that can be “ignored” by the MPU.
Non-maskable interrupts, on the other hand, require an immediate re-
sponse, usually to some catastrophic system failure. Let’s see how and
why interrupts are used.

Internal Interrupts

As mentioned earlier, an internal interrupt is generated in a program
or when the MPU determines that some form of “problem” exists that
requires immediate service. Because each type of interrupt has its own
dedicated service routine, the MPU must know where that routine is
located within memory. In the case of the 8088 MPU, the physical
starting addresses for all of the interrupt service routines are stored
in the first 1K of memory.

Interrupts and Strings 8'7

INTERRUPT VECTOR TABLE

The dedicated area of memory that holds the starting address of all
of the interrupt service routines is called the interrupt vector table,
or interrupt pointer table. Figure 8-1 shows the table. Each address
value is called a vector, or pointer, and it is assigned a “Type” number.
The type numbers begin at physical address 00000H with type 0 and

proceed to type 255 at physical address 003FCH.

Each vector, or pointer, is composed of four bytes of data. The first
two bytes contain the Instruction Pointer offset address, while the next
two bytes contain the Code Segment base address of the interrupt
routine. When an interrupt is called, the MPU loads the IP and CS&
registers with the values found at the specified vector “type” address.

AVAILABLE
INTERRUPT
POINTERS
(224)

RESERVED
INTERRUPT <
POINTERS

(27)

DEDICATED
INTERRUPT
POINTERS
(5)

003FFH
[TYPE 255 POINTER: |
003FGH | (AVAILABLE)
~
T b'a}
TYPE 33 POINTER: __
00084H (AVAILABLE)
TYPE 32 POINTER: _|
. 00080H i (AVAILABLE)
(" 0007FH TYPE 31 POINTER: _|
T (RESERVED)
A A

TYPE 5 POINTER:

\L00014H (RESERVED)
e TYPE 4 POINTER:
00010H OVERFLOW
TYPE 3 POINTER: 1-BYTE
0000CH INT INSTRUCTION
TYPE 2 POINTER: _|
00008H NON-MASKABLE
1 POINTER: _|
00004H SINGLE-STEP
TYPE 0 POINTER:
(_0ooooH | DIVIDE ERROR

je——16 BITS —»]

Figure 8-1

Interrupt pointer table,

8'8 UNIT EIGHT

INTERRUPT TYPES

As you can see, there are 256 different interrupt vectors, or pointers.
The first five are dedicated. That is, these vectors are already used
for specific purposes. The next 27 vectors are considered to be reserved,
future 8088 MPU support integrated circuits may use any of these vec-
tors. To prevent future system compatibility problems, you should not
use these vectors. The last 224 vectors are available to you for program
support. Later, you will see how you can use these vector locations
with your own interrupt routines.

To get an idea of how the interrupt vector table is used, let's examine
a common interrupt that is generated when the MPU senses a problem.
The divide error interrupt occurs following the execution of a DIV
or IDIV instruction if the quotient is larger than the destination register.
For example, if you attempt to divide OFFFFH by 01H, the quotient
will be too large for the destination register, AL. Therefore, a divide
error interrupt will result.

When this occurs, the MPU automatically generates a type 0 interrupt.
The MPU first completes execution of the current instruction. Then
the current contents of the Flag register, the CS register, and the IP
register are pushed into the stack. The CS and IP registers are saved
just like any subroutine call operation. The Flag register is also saved,
because there is no telling how the “flags” will be altered by the inter-
rupt servicing routine.

With the registers saved, the new Code Segment and Instruction Pointer
register values are loaded. These values are found at the type 0 location
in the vector table. They point to the first instruction of the interrupt
routine.

Interrupt servicing now begins. The MPU executes the routine in the
same manner as any other subroutine. There is, however, one important
differsnce — the routine is ended with a new instruction. This is the
IRET (interrupt return) instruction. When the IRET instruction is exe-
cuted, the IP value, the CS value, and the Flag values are popped from
the stack and placed in their appropriate registers. Then program execu-
tion continues from the point of the interrupt.

All interrupts follow this same general pattern. Some occurrence, either
internal or external, generates an interrupt. The MPU responds by com-
pleting execution of the current instruction, executing the interrupt
service routine, and finally, continuing program execution.

Interrupts and Strings 8'9

Here's another example of an internal interrupt. A type 1 interrupt
is generated whenever the programmer needs to execute a single-step
procedure. The single-step procedure is designed to help the program-
mer correct, or debug, programs. In effect, when single step is im-
plemented, the MPU is directed to a subroutine after execution of each
instruction. This subroutine allows the programmer to examine all of
the registers within the MPU to determine if the program is functioning
as it should. The “Trace” routine in the debugger program operates
in this fashion. However, before we can explain how the single-step
interrupt works, we must take another look at the Flag register.

Figure 8-2 shows the 8088 Flag register. Note that there is a new flag
shown in the eighth bit location of the register. This is the TF or Trap
flag. Any time this flag is set, the MPU automatically generates a type
1 interrupt after the execution of an instruction. Therefore, this flag
must be set to use the single-step routine.

OF TF|SF|zF AF PF CF| FLAGS
16 1
Figure 8-2
The trap flag.

Since the Trap flag is not normally set, you must write a routine that
sets this flag. Because you cannot directly modify the contents of the
Flag register, the routine is more than just a simple single-instruction
operation. Our routine, shown below, first pushes the flags into the
stack. Then it moves the value of the Stack Pointer register into the
Base Pointer register. Remember, the BP register defaults to the stack
segment in register indirect addressing. Thus, we can now modify the
contents at the top of the stack — the Flag register value. The next
instruction ORs the high byte in the stack with 01H to set what will
become the TF bit of the Flag register. The last instruction pops the
value in the stack back into the Flag register. The Trap flag bit is now
set.

PUSHF ;Store the flags in the stack
MOV BP,SP :Get address of flags in stack
OR BYTE PTR [BP]+1,01H ;Set the Trap flag bit

POPF ;Retrieve the modified flags

8"1 0 UNIT EIGHT

As soon as the flags are popped back into the Flag register, the Trap
flag is ready to trigger an interrupt. The single-step interrupt, however,
is not generated until after the next instruction is executed. After the
next instruction is executed, a type 1 interrupt is generated. The Flag,
CS, and IP registers are pushed into the stack, and then the Trap flag
is cleared. This last step is necessary, or the single-step routine would
generate another type 1 interrupt.

The last instruction in the single-step routine is a return from interrupt
instruction. When it is executed, the IP, CS, and Flag values are popped
back into their respective registers. Popping the flags naturally returns
the Trap flag to its set condition. If you want to exit the single-step
process, the easiest method is to modify the Flag register value stored
in the stack while in the single-step routine. Simply AND the high
byte of the flag register value with OFEH. Then when the flags are
popped, the Trap flag will be cleared.

In addition to the two interrupts mentioned thus far, there are three
other dedicated interrupts. Type 2 is called a non-maskable interrupt.
This is a hardware-related interrupt that allows a peripheral device
to signal the MPU that it needs servicing. We’'ll describe this interrupt
when we cover external interrupts.

The last two interrupts are generated by instructions that you place
in the program. The type 3 interrupt is call a 1-byte interrupt instruc-
tion. It's also known as a breakpoint instruction. This 1s the instruction
you used with the debugger when you wanted to execute part of a
program and then stop. Breakpoints typically are inserted into programs
during debugging as a way of displaying registers, memory locations,
etc., at critical points in a program.

Although the breakpoint interrupt is an instruction, there is no
mnemonic for it. To use the instruction, you must insert the instruction
imachine code (0CCH) into the assembled machine code for the program.
Normally, you would let the debugger perform the operation. If you
wish to load the code yourself, use the NOP instruction at every location
you want to add a breakpoint. After the program is assembled, use
the debugger or a similar program to examine and change the NCP
machine code (90H) to the breakpoint code (0CCH).

Interrupts and Strings 8'1 1

Finally, the type 4 interrupt is called interrupt on overflow instruction.
This software interrupt has a mnemonic, INTO (interrupt on overflow).
This is a conditional interrupt. If the Overflow flag is clear, the instruc-
tion is ignored. On the other hand, if the Overflow flag is set, the type
4 interrupt is executed. As with every interrupt, the Flag, CS, and IP
register values are pushed into the stack before the CS and IP registers
are loaded with the vector address values.

By now, you should be wondering where these interrupt routines are
located. Depending on the system, most are located in ROM (read only
memory). When the microcomputer is switched on, it performs a
number of setup or housekeeping operations. One of these operations
involves loading the vector addresses of the various interrupt routines
into the interrupt vector table. However, not all of the default interrupts
may be supported by any one microcomputer. Check your Technical
Manual to determine which are supported. Depending on your needs
and your system, you may have to implement your own interrupt sup-
porting routine. Naturally, you will have to load the vector table with
the address of your interrupt routine.

This leads us to the last type of software interrupt instruction, the one
with which you are most familiar, INT <type> (interrupt at vector
type number). Recall that there are 224 available (not dedicated) address
locations in the interrupt vector table. MS-DOS uses many of these
interrupt locations to point to specific system routines. For example,
the instruction:

INT 33
is the same as
INT 21H

the interrupt you have been using to display data and exit a program,
among other things. When the MS-DOS system disk is “booted,” many
interrupt routines are loaded into RAM. Their addresses are also loaded
into the interrupt vector table. The DOS interrupts and function calls
are listed in the Appendix of the system owner’s manual. Each number
listed for an interrupt or function call represents an interrupt vector
table type number. Thus, you can examine an interrupt routine with
the debugger by first locating the vector address in the interrupt table.
Keep in mind that the type numbers listed in the DOS owner’s manual
are in hexadecimal.

8'1 2 UNIT EIGHT

You can also write special interrupt routines and use any of these inter-
rupt vectors as a pointer. This can be very useful when you want to
support a peripheral device with a unique interrupt service routine.
Because external interrupts also reference vector type numbers, you
can use a software interrupt to test the validity of a hardware supporting
interrupt. This saves you the trouble of prompting the external device
to generate the interrupt. We’ll describe external interrupts in the next
section.

Writing an interrupt routine is quite easy. You use the same format
you use when you write a called subroutine. The only difference is
that you end the routine with the IRET instruction instead of the RET
instruction. But then, how do you store the address of the routine in
the interrupt vector table?

SEGMENT ATTRIBUTE AT

Recall from Unit 7 that the segment combine-type attribute AT <expres-
sion> is used to specify the base address of a segment. However, the
attribute cannot be used to force the loading of data within that segment.
Rather it is used to define, or identify, labels or variable names at fixed
offsets within the segment area. You can use the attribute AT to fix
the base address of a data segment at address 0000H, and thus place
the interrupt vector table at offset zero. Then it's a simple matter to
locate any particular offset (vector location) within the table.

Figure 8-3 is an example of how you might initialize a vector address
in the interrupt table. The data segment is called VECTOR. Its base
address is fixed by the attribute AT OH in the segment directive. An
ORG directive is used to locate the vector “type” address. Recall that
each vector occupies four memory locations. Therefore, the first mem-
ory location can be identified by multiplying the type number by four.
In this example, the vector type number is 96. Identifying the address
with the argument 96*4 is much more meaningful than the argument
384, or 180H. Once the offset to the vector is established, the LABEL
directive is used to assign a name and type. Since word-sized address
values will be stored in the vector, the type is WORD. Notice that all
we've done is locate and identify the vector. We did not initialize the
memory locations. You must use program code to perform that function.

Interrupts and Strings 8' | 3

TITLE UNIT 8 -- PROGRAM 1 -- INITIALIZING AN INTERRUPT VECTOR ADDRESS

i
PROG_STACK SEGMENT STACK

W
TOP_OF_STACK

PROG_STACK ENDS

80H DUP (?)
LABEL WORD

;Set up stack area
sIdentify top of stack for SP register

L}
VECTCR SEGMENT AT oH

ORG
INT_96 LABEL
VECTOR ENDS

96%4 ;Point to vector location 94
WORD jIdentify vector 96

;
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE, DS: VECTOR, $$:PROG_STACK

START: MOV

i
SUB_INT:STC
IRET

i
PROG_CODE ENDS
END

AX,PROG_STACK ;Never load a segment register direct

$S, AX jUse an intermediate register

SP,OFFSET TOP_OF_STACK ;Point to the top of stack
jimmediately after loading SS register

AX, VECTOR sAgain, indirectly load the

DS, AX ;segment register

INT_96,0FFSET SUB_INT ;Store IP value in vector table

INT_96+2,SEG SUB_INT ;Store CS value in vector table

96 sExecute the software interrupt

3 jReturn to the debugger

;Set Carry flag

;Return from interrupt

START

Figure 8-3

Program using the interrupt vector table.

At the end of the code segment, we wrote a two-byte interrupt routine
called SUB_INT (subroutine interrupt). The IP and CS register address
values for this routine will be stored in vector 96 of the interrupt vector

table by the program. The sixth instruction in the program,

MOV INT_96,0FFSET SUB_INT

uses the operator OFFSET to store the address offset to the interrupt
routine in the first word of vector 96. This value will be loaded into
the IP register when the interrupt vector is called. The seventh instruc-

tion in the program,

MOV INT_96,SEG SUB_INT

;:Store CS value in vector table

;Store IP value in vector table

8‘1 4 UNIT EIGHT

uses a new operator SEG (segment) to identify the base address of the
segmant that contains a specified symbol. In this case, the symbol is
the sabroutine label SUB_INT. Since the subroutine is “assumed” to
reside in the current code segment, the instruction moves the base ad-
dress of the code segment into the second word of vector 96. This
value will be loaded into the CS register when the interrupt vector
is called. The eighth instruction in the program,

INT 96 ;Execute the software interrupt

calls interrupt vector 96, the vector you initialized with the two previ-
ous instructions.

Interrupts and Strings 8'1 5

Self-Review Questions

1. State a general definition of an interrupt.
2. The actions that the MPU takes in response to an interrupt are
called the routine or
routine.
3. Responding to an interrupt is referred to as

the interrupt.

4, The two basic types of interrupts are the

interrupt and the interrupt.
5. Under the general heading of external interrupts, there are the
interrupt and the
interrupt.

6. The is a list
of starting, or physical, addresses for the various interrupt
routines.

7. The first two bytes of each interrupt vector, or pointer, contain
the value, while
the next two bytes contain the
value.

8. Each interrupt routine must end with the
instruction.

9. A/An interrupt will result

after the execution of a DIV instruction if the quotient is too large
to fit in the destination register.

10. During operation, the MPU
is directed to a special subroutine after the execution of each
instruction.

8'1 6 UNIT EIGHT

11. State a use for the single step operation.

12. In order to use the single step operation, you must set the
flag.

13. The two software interrupt instructions that use an instruction
mnemonic are and

14. Describe what happens when the instruction INT 96 is executed.

15. The interrupt instruction will only be executed
if an overflow condition exists.

16. Segment attribute is used to define the base
address of a segment.

17. The assembler operator is used to identify the
segment base address of a symbol.

18, The segment combine-type attribute AT can be used to force the
loading of data within a segment.

True/False

NOTE: The Self-Review Answers are located at the end of this unit,
beginning on Page 8-75.

External Interrupts

The 8088 MPU has two external control lines that peripheral (I/0) de-
vices can use to indicate an interrupt. These are the INTR (Interrupt
Request) line and the NMI (Non-Maskable Interrupt) line. An input
on either of these lines generates its own type of interrupt and has
its own specific use. A high on the INTR line generates an interrupt
request, while a low-to-high transition on the NMI line generates a
non-maskable interrupt. Naturally, there is more to the process than
just pulling the lines high. Let’s begin with a look at the interrupt re-
quest.

INTERRUPT REQUEST

When the INTR line is high, a peripheral is making an interrupt request.
In effect, the interrupt request is a request for the MPU to temporarily
stop what it -s doing and take care of some business for the peripheral.

If an interrupt request is received by the MPU while the MPU is execut-
ing a program, the MPU completes the current instruction before it
services the interrupt. Now the interrupt request line is not latched
inside the MPU. That means the requesting device must hold the line
high until the MPU acknowledges the request. If the line goes low before
the MPU finishes executing the current instruction, the request will
be ignored.

The MPU indicates that it is ready to service the interrupt by pulsing
its INTA (Interrupt Acknowledge) line low. This line, from the MPU
to the peripheral device, is used for the ready reply from the MPU.
The procedure by which the MPU and the peripheral talk back and
forth to each other through the use of control lines is called handshak-
ing.

All interrupt requests that arrive at the MPU via the INTR line are
vectored interrupts, just like the internal interrupts. Thus, when the
MPU responds to an interrupt request, the peripheral must send the
MPU the interrupt vector type number. This transfer is handled by
the VO lines that connect the peripheral with the MPU. As you might
imagine, this type of interface is complex, and not easily handled by
a simple peripheral device. To reduce the complexity, most microcom-
puters that use the 8088 MPU also use a device called the 8259A Inter-
rupt Controller. This is a programmable device that can communicate
with a number of peripheral devices and coordinate their interrupt

Interrupts and Strings 8" 1 7

8'1 8 UNIT EIGHT

requests. It is programmed with the appropriate vector type numbers
and handshaking during system “boot.”

In the Zenith and IBM systems, all of the peripheral devices that would
normally use the INTR line are interfaced to the MPU through the Inter-
rupt Controller. When a particular device such as the disk drive re-
quests service, the Interrupt Controller is toggled by the peripheral
INTR line. The controller recognizes the peripheral and sends the ap-
propriate vector number to the MPU. The MPU, in turn, finishes the
instruction it is currently executing and then calls the specified inter-
rupt service routine. Once the routine is complete, the MPU returns
to what it was doing prior to the interrupt request. We will not go
into detail on how the Interrupt Controller operates or is programmed.
This is a function that is specific to the design of a microcomputer,
not an assembly language programming course.

While you basically have no control over the handling of external inter-
rupts, you can control whether the MPU will recognize an .external
interrupt request. This is very useful when the MPU is executing a
crucial operation or even servicir.g another more important interrupt.
The MPU can ignore an external interrupt request, but to understand
how it is done, we must go back to the Flag register again.

Figure 8-4 shows the 8088 MPU Flag register with another new flag.
This is the IF, or Interrupt flag. It is located in bit 9 of the register.
If the Interrupt flag is set, the interrupts from the various peripherals
are handled as described in the previous paragraphs. However, if the
flag is clear, the MPU will ignore all interrupt requests that arrive on
the INTR line.

OF IF | TF|sF|zF| |AF PF| |cF| FLAGS
16 1
Figure 8-4
The interrupt flag.

Therefore, if you have a routine or program that ycu do not want inter-
rupted, you merely clear this flag and you disable the incoming inter-
rupt requests. When the MPU is first turned on, this flag is clear. This
gives the MPU time to execute its startup routine before it has to process
interrupts.

Interrupts and Strings 8‘1 g

When the MPU services an interrupt request, it clears the Interrupt
flag as soon as it is done storing the Flag, CS, and IP registers. This
ensures that no other interrupt requests will interfere with the process-
ing of the current request. If there is a need to respond to the other
requests, make sure the service routine sets the Interrupt flag.

There are two instructions that let you control the condition of the
Interrupt flag. CLI (Clear Interrupt flag) is a single-byte instruction that
is used to clear the Interrupt flag. To set the Interrupt flag, use the
STI (Set Interrupt flag) instruction. Both are processor control instruc-
tions and do not need any operands.

NON-MASKABLE INTERRUPT

While you have the capability to enable or mask the INTR line, you
have no control over the NMI, or non-maskable interrupt, line. Any
low-to-high transition on this line is latched into the MPU. Then, as
soon as the MPU completes its current instruction, the interrupt is pro-
cessed. As we stated earlier, this type of interrupt should only be used
in situations where the system is about to fail. For instance, an interrupt
from a sensor on the MPU’s power supply might indicate that power
failure for the system is about to occur. Since this would have grave
consequences for the system, the input from this sensor should be con-
nected to the non-maskable interrupt line.

Because the non-maskable interrupt line is dedicated to one function,
it is given a dedicated vector type number. The non-maskable vector
number is type 2. The address values loaded into this vector are deter-
mined by the microcomputer manufacturer.

As you have probably gathered, the MPU is very systematic in its opera-
tion. Therefore, you would think that the MPU has some priorities for
handling both internal and external interrupts. Well, it does. They are
shown in Figure 8-5.

INTERRUPT PRIORITY
Divide error, INT, INTO highest
NMI
INTR
Single-step lowest
Figure 8-5

8088/8086 MPU interrupt priorities.

8-20 | uniTEigHT

Notice that the three internal interrupts (divide error, INT, and INTO)
have the highest priority. These are followed by the non-maskable inter-
rupt, the interrupt request, and finally, the single-step interrupt. If mul-
tiple interrupts arrive at the MPU at the same time, the MPU processes
them in this order.

THE INTERRUPT ROUTINE

As you know, the interrupt routine itself saves the Flag, CS, and IP
register values in the stack. But it is up to you to save the information
in any register that you may use during the interrupt routine. If you
are holding a value in the AX register and then wish to use the AX
register in the interrupt routine, be sure to store the current value before
you use the register. By the same token, once you have saved a value,
be sure to return it to the appropriate register before you terminate
the interrupt routine.

In the same vein, many of the system and DOS interrupts and function
calls use one or more registers to hold or transfer data. Follow the
directions given in the owner’s manual for each operation. When in
doubt, save all of the important registers before you execute an interrupt
instruction.

Reset

Program execution can be interrupted in another way — RESET. Al-
though not strictly defined as an interrupt, reset does indeed interrupt
the operation of the MPU. You use reset any time it is necessary to
restart the MPU. This may happen when an error in a program gets
you into a loop from which there is no exit, or a power fluctuation
can cause the MPU to lose data part way through a program. But no
matter what the situation, the reset routine always accomplishes the
same thing, it restarts the MPU.

You should, however, keep one point in mind. The reset we are describ-
ing is a hardware reset, where you actually toggle the RESET control
on the MPU. The MPU then performs the reset operation. But while
most manufacturers provide a hardware reset from the keyboard, the
IBM PC and many of its clones only provide a software reset. This
performs essentially the same operation as a hardware reset. The one
important exception is when the MPU “hangs-up” and won'’t respond
to any inputs. The only way to regain control in this case is to toggle

Interrupts and Strings 8'21

the RESET line. With IBM, that means switching the power off and
then switching it back on again. Naturally, any data stored in memory
is lost when power is lost. Now let’s look at the reset process.

When power is first applied to the 8088 MPU, it goes into a reset condi-
tion where it performs a routine that initializes the microcomputer sys-
tem. The initialization process loads the MPU registers with the values
it needs to communicate with the rest of the system. Then it calls a
subroutine in ROM that programs all of the internal functions necessary
for the microcomputer to communicate with the “outside world.” We
call this a “boot,” or “bootstrap,” routine. This same initialization proc-
ess is performed when you generate a reset. While a reset is in progress,
the MPU will not recognize an interrupt request or a non-maskable
interrupt. The reset routine has priority over all other routines because
the MPU cannot function properly until it has been initialized, or in
this case, reinitialized.

Upon initiation of a reset, the CS register is set to OFFFFH and the
IP is loaded with 0000H. This points to the boot routine in ROM. The
boot routine for both the 8088 and 8086 MPUs is always located at
physical address OFFFFOH. To make sure the first instruction in the
boot routine is the first instruction executed by the MPU, the instruction
queue is emptied. In addition to setting the CS register and clearing
the IP register, the MPU reset function clears the DS, ES, SS, and Flag
registers. Figure 8-6 shows the state of all registers within the MPU
that are initialized during a reset. All other registers contain random
values.

CPU COMPONENT CONTENT
FLAGS Clear
Instruction Pointer 0000H

CS Register FFFFH
DS Register 0000H

SS Register 0000H

ES Register 0000H
Queue Empty

Figure 8-6

MPU registers following a hardware reset.

8'22 UNIT EIGHT

DMA (Direct Memory Access)

In all of the interrupts discussed thus far, the MPU has acted as an
intermediary between a peripheral device and memory. The MPU
supervises the transfer of data to and from peripherals through the use
of the I/O instructions. Data comes from the I/O interface to the MPU
and then into memory. Information in memory is transferred first to
the MPU and then to the I/O interface.

Some peripheral devices, however, are capable of interfacing directly
with memory. These devices can perform their own data transfers with-
out the aid of the MPU. The process by which these devices communi-
cate directly with memory is called direct memory access (DMA).

In order for a device to communicate directly with memory, it must
have the “permission” of the MPU. To obtain that permission, the
peripheral must initiate a hold request. This is done by driving the
HOLD control line on the MPU high. When the MPU recognizes & hold
request, it finishes its current instruction. Then it acknowledges the
hold request by outputting a high on the hold acknowledge (HLDA)
control line.

Once the MPU acknowledges the hold request, the peripheral gains
direct access to the memory through the address and data bus. The
MPU releases control of the bus to the peripheral device until the direct
memory access is completed. When DMA is finished, the peripheral
device pulls the HOLD line low. The MPU responds by pulling the
HLDA line low. At this time, the MPU continues program execution
at the point of interruption.

You can think of a DMA operation as being similar to an interrupt
request. Only in this case, the MPU temporarily suspends operation
instead of calling an interrupt routine. The MPU doesn’t have to store
the flags, IP, or any other register in the stack, because it is not involved
in the DMA process. It simply grants memory access to the requesting
peripheral.

Interrupts and Strings 8'23

Self-Review Questions

19. The two control lines on the 8088 MPU that can be used to indi-
cate an external interrupt are the line and the
line.

20. Describe what occurs when a peripheral device requests an inter-
rupt on the INTR line, assuming the peripheral doesn’t require
an interrupt controiler.

21. The back-and-forth conversation between the MPU and
the peripheral over the INTR and INTA lines is called

22. Vectored interrupt routines wmust conclude with the
instruction.

23. If you want the MPU to “ignore” interrupt requests on the INTR
line, then the IF flag must be clear.

True/False
24, The. _ instruction is used to set the Interrupt flag.
25. The Interrupt flagis cleared bythe __________ instruction.

26. Even if the Interrupt flag is clear, the
interrupt will not be disabled.

27. In what order are internal and external interrupts serviced?

oo W

28. A is used any time it is necessary to re-
start or initialize the MPU.

8'24 UNIT EIGHT

29.

30.

31.

32.

What are the contents of the following after a reset has occurred?

Flag Register

IP Register

CS Register s
DS Register N —
ES Register

SS Register e

Queue

QEEDOO%E >

The process by which peripheral devices communicate directly
with the microcomputer’s memory is called

In order for a peripheral to obtain “permission” to perform a
direct memory access, it must initiate a hold request on the
control line.

The MPU responds to a hold request by outputting a high on
the control line.

Interrupts and Strings 8'25

STRING OPERATIONS

A string is a number of bytes or words that reside in sequential memory
locations. These bytes or words can represent ASCII characters,
numeric values for mathematical calculations, or inputs from peripher-
als. In fact, they can mean anything that you want them to mean. The
important point is that all of the items, or elements, in the string are
the same size (8- or 16-bit) and that they occupy successive memory
locations.

A string operation is an operation that is performed on each element
of a string. You can use a string operation to successively retrieve each
element of a string and compare it to a specific value. By the same
token, you can use a string operation to successively move every ele-
ment, or a number of elements, of a string from one area of memory
to another.

Figure 8-7 (Page 8-27) shows a simple program that moves a 100-byte
string from the segment SOURCE_DATA to the segment DEST_DATA.
The source string area is pointed to by the DS register, while the destina-
tion area for the string is pointed to by the ES register. The first seven
instructions set up the MPU segment registers. The next two instruc-
tions move the offset address of the source and destination memory
locations into the Base and Base Pointer registers respectively. Since
the program is using a simple loop to move each element of the string,
the loop count is stored in the Count register by the next instruction.
That completes register preparation for the string move.

The first instruction in the loop moves the first string element into
the AL register using register indirect addressing. The second instruc-
tion completes the move by transferring the element to a destination
memory location. Two instructions are required for the move because
the 8088 MPU cannot perform a direct memory to memory move opera-
tion. Notice that we used a segment override prefix in the second move
operation. This is necessary because the default segment register for
the Base Pointer is the Stack Segment. The next two instructions incre-
ment the Base and Base Pointer register contents to point to the next
element locations. Finally, the loop instruction decrements and tests
the Count register to determine if another loop is required.

8“26 UNIT EIGHT

At the end of the loop operation, the last instruction sends the MFU
back to the debugger. Notice that this instruction is the Break Point
interrupt described earlier. The target address stored at location Type
3 in the interrupt vector table is provided by the debugger program.
Therefore, in order for the MPU to return to the debugger program,
this string move program must be executed from the debugger. If you
just load and run the program, vector location Type 3 will contain
some random value. Then, when the instruction INT 3 is executed by
the program, the microcomputer will “crash.” That is, the MPU will
try to execute an instruction that doesn’t exist, with unpredictable re-
sults. When we tried this operation on our Zenith microcomputer, the
display printed the message “Wild interrupt.” On our IBM PC, the dis-
play went blank, the disk drive never switched off, and the keyboard
reset function had no effect. We had to switch system power off and
then back on to reset and reinitialize the MPU.

You can see from Figure 8-7, that it takes a number of instructions
to move a few bytes of data from one memory location to another.
The 8088 MPU, however, has a number of instructions that greaily
simplify this type of operation. These are the string instructions.

String Instructions

Loosely speaking, the program ir Figure 8-7 could be termed a string
operation because it is designed to move each element of a string from
one location in memory to another location. String instructions, either
alone or in combination with other string instructions, provide a much
shorter method of programming a string operation.

TITLE UNIT 8 -- PROGRAM 2 -- MOVING DATA

i
PROG_STACK SEGMENT STACK

DW
TOP_OF _STACK

PROG_STACK ENDS

80H DUP (?)
LABEL WORD

i
SOURCE_DATA SEGMENT

SOURCE DB

16@ DUP (@ABH)

SOURCE_DATA ENDS

DEST_DATA SEGMENT

DEST DB

DEST_DATA ENDS

100 DUP (7)

]
PROG_CODE SEGMENT
ASSUME CS1PROG_CODE, DS: SOURCE_DATA, ES: DEST_DATA, SS:PROG_STACK

START: MOV
Mav
MOV

MoV
MoV
MOV
MoV
LEA
LEA

PROG_COTE ENDS
END

AX,PROG_STACK
S5, AX

;Set up stack area
;I1dentify top of stack for SP register

jNever load a segment register direct
jUse an intermediate register

SP,OFFSET TOP_OF_STACK jPoint to the top of stack

AX, SOURCE_DATA
DS, AX
AX,DEST_DATA
ES, AX

BX, SOURCE

BP, DEST

CX, 100

AL, [BX]
ES:[BPI,AL
BX

BP
LOOP_MOV

3

START

jimmediately after loading SS register
sNext,indirectly load the

;Data Segment register

sFinally, indirectly load the

jExtra Segment register

1Get offset to souce data location
;Get offset to destination location
3Set loop count

3Get byte of source data

;Save byte of data at destination
;Point to next byte of source data
;Point to next destination location
;Check count repeat if necessary
sReturn to the debugger

Figure 8-7

String operation.

interrupts and Strings 8'27

8"28 UNIT EIGHT

Since we've given an example involving a string move, the next step
is to look at the same program using the string move instruction. Figure
8-8 shows the program. As you can see, there are a number of things
that have changed from the original program. First, the SI (Source
Index) and DI (Destination Index) registers are used as pointers instead
of the BX and BP registers. This is because all string instructions use
the Source Index register to point to the source of the string. In addi-
tion, all string instructions (that require a destination) use the Destina-
tion Index register to point to the string destination. In some instances,
the string source can be located within either the code, data, or stack
segments, but the string destination is always located within the extra
segment. As a general rule, it’s a good idea to always locate the source
string within the data segment. Ttis eliminates any possible confusion.

TITLE UNIT 8 -— PROGRAM 3 -- STRING MOVE OPERATION

)
PROG_STACK SEGMENT STACK
DW 8eH DUP (?) ;Set up stack area
TOP_OF _STACK LABEL WORD sIdentify top of stack for SP register
PROG_STACK ENDS

éDURCE_DATA SEGMENT
SOURCE DB 19090 DUP (QABH)
SOURCE_DATA ENDS

1]

DEST_DATA SEGHENT

DEST DB 100 DUP (?)
DEST_DATA ENDS

4
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE,DS:SOURCE_DATA,ES: DEST_DATA, S5: PROG_STACK
START: MOV AX,PROG_STACK ;Never load a segment register direct
Mov SS,AX ;Use an intermediate register
MOV SP,OFFSET TOP_OF_STACK ;Point to the top of stack
;immediately after Joading SS register
MOV AX,SOURCE_DATA ;Next,indirectly load the

MoV DS, AX ;Data Segment register

MoV AX,DEST_DATA ;Finally, indirectly load the

MoV ES,AX ;Extra Segment register

LEA SI,SOURCE ;Get offset to souce data location
LEA DI, DEST ;Get offset to destination location
MOV CX, 100 ;Set loop count

REP MOVS DEST,SOURCE j;Get byte of source data
sand save at destination, then
sauto-increment SI and DI, then
jdecrement count and test for zero,
3if not zero, repeat string move

INT 3 sReturn to the debugger
PROG_CODE ENDS
END START
Figure 8-8

Using a string move instruction.

Interrupts and Strings 8'29

As with the original program, it is still necessary to initialize the pointer
and count ragisters; only now, it’s SI, DI, and CX rather than BX,
BP, and CX. The big change is in the string move. Rather than a five-
instruction loop, the complete operation is handled by a single instruc-
tion, MOVS (Move String), and the instruction prefix REP (Repeat).

The REP string prefix code tells the MPU that the following string in-
struction should be repeated “count” times. The count is stored in the
CX register. After each string operation, the register is decremented
and tested for zero. The process will repeat until CX is zero, at which
time the loop is broken and the next instruction in the program is
executed. You must place a single character-space between the REP
prefix and the string instruction mnemonic.

The string instruction MOVS is a single-operation instruction that takes
a byte or word of data from the address pointed to by the SI register
and moves it to the address pointed to by the DI register. In effect,
this is a memory-to-memory move instruction. String instructions are
the only instructions in the 8088 MPU instruction set that allow that
type of data transfer. After the move is complete, the SI and DI registers
are incremented or decremented as determined by a bit in the Flag
register. We’ll describe that flag bit later in this section.

Data type (byte or word) is determined by the assembler when it
examines the source and destination operands of the instruction. A
word-to-byte or byte-to-word move is not allowed. The assembler also
determines whether or not the source and destination operand symbols
can be “reached” from your code segment. These are what you would
call “symbolic references.” You still must load the source and destina-
tion registers with the offset addresses of the respective string locations.
The string instruction will not do that for you.

A second variation of the move string instruction uses what we call
“anonymous” references, which take the form of a register indirect
move instruction. A typical instruction is:

REP MOVS ES:BYTE PTR [DI], [SI]

where the segment override prefix code tells the MPU that the data
pointed to by the DI register is in the extra segment. The assembler
operator BYTE PTR tells the assembler that it must generate the appro-
priate code for a byte move operation. Placing both the DI and Sl register
symbols within square brackets tells the assembler that both registers

8'30 UNIT EIGHT

are used for indirect addressing. If the SI register is located in a segment
other than the data segment, it also needs a segment override prefix
code, such as:

REP MOVS ES:BYTE PTR [DI],SS:[SI]

where the source string is located within the stack segmert.

Both of these anonymous instruction formats will only work with a
string operation. They will not work in a normal move instruction.

The assembler will accept either a symbolically referenced string in-
struction or an anonymously referenced string instruction. However,
the symbolically referenced instruction is the preferable method. This
allows the assembler to check tae addressability of the operands, and
verify the compatibility of the operand types.

As you can see, the anonymous string instruction would be rather com-
plex. The 8088 instruction set has resolved that problem with two other
move string instructions. They are MOVSB (Move String Byte) and
MOVSW (Move String Word). The operand type is specified in the
mnemonic of the instruction. Thus, the earlier move byte-sized string
instruction can be written:

REP MOVSB

With this instruction, the operar.ds are implied by the mnemonic. How-
ever, this implication forces you to place the source string in the data
segment and the destination area in the extra segment. Naturally, both
string elements should be byte-sized. Since the assembler has no way
to verify element sizes, it’s up to you.

Earlier we said that after each string move operation the SI and DI
registers are automatically incremented or decremented to point to the
next string location. Actually, after each byte-sized move, the SI and
DI registers are incremented or decremented once. After each word-
sized move, the SI and DI registers are incremented or decremented
twice.

Now that you understand the basic concepts of string instructions, and
specifically the move string instruction, let’s review the other string
instructions.

Interrupts and Strings 8'31

The CMPS (Compare String) instruction compares an element from one
string with an element from another string. Like the arithmetic compare
(CMP) instruction, neither string element is physically moved or altered
during a compare string operation. Only the six arithmetic flags in the
Flag register are affected. These include OF, SF, ZF, AF, PF, and CF.
The instruction takes the form:

CMPS SOURCE,DEST

where DEST and SOURCE are symbols for the effective address of the
two strings in memory. The effective address for the symaol SOURCE
is stored in the SI register, while the effective address for the symbol
DEST is stored in the DI register. CAUTION: The operand arrangement
in the CMPS instruction is just the opposite from the operand arrange-
ment in the MOVS instruction. Don’t confuse the struciure of the MOVS
instruction with the structure of the CMPS instruction! As before, the
operand types and their compatibility are determined by the assembler
from the source and destination data definition statements.

Like the move string instruction, the compare string instruction nas
two “short” anoriymous instruction variations. They are CMPSB (Com-
pare String Byte} and CMPSW (Compare String Word). No operands
are used with these instructions.

The SCAS (Scan String) instruction is similar to the compare string
instruction with one exception. Instead of comparing one string with
another, it compares a string with the contents of the accumulator (AL
register for byte strings, AX register for word strings). The instruction
causes the six arithmetic flag bits in the Flag register to be updated,
but it does not alter the cortents of the string or the accumulator. The
scan string instruction uses the DI register to hold the effective address
of the string, not the SI register as you might think. Since the DI register
holds the effective address, the string must (by default) reside in the
extra segment. The instruction takes the form:

SCAS DEST

where DEST is the symbol for the effective address of the string. Notice
that the instruction uses a single operand, and that cperand identifies
the string. The assembler determines the appropriate accumulator regis-
ter from the string type (byte or word).

8-32 | uniTeiGHT

As with all string instructions, there are two short anonymous scan
string instructions. They are SCASB (Scan String Byte) and SCASW
(Scan String Word). No operands are used with these instructions.
NOTE: The symbolically referenced scan string instruction will not as-
semble properly with the early version of IBM’s MACRO-86. If you
have that assembler, use the short anonymous version of the scan string
instruction.

The next string instruction is LODS (Load String). It is used to transfer
a string element to either the AL or AX accumulator register, depending
on the string element type. Because the instruction is transferring a
string element into a register, it is normally not used in conjunction
with the REP prefix code. To do so would result in an overwrite of
the contents of the register. However, this instruction can be used to
reduce the complexity of a large program loop. It simplifies the loop
because the string addressing register is automatically incremented or
decremented after each execution of the instruction. This eliminates
the need for including an increment or decrement instruction in the
loop. The load string instruction takes the form:

LODS SOURCE

where SOURCE is the symbol for the effective address of the string
element. Again, the string instruction uses a single operand to identify
the string. But in this case, the string is a source operand. For that
reason, the string element must be addressed through the SI register.
The assembler identifies the appropriate accumulator register from the
string element type.

The load string instruction also comes in two short anonymous instruc-
tion forms. They are LODSB (Load String Byte) and LODSW (Load
String Word). No operands are used with these instructions.

The last string instruction, STOS (Store String), transfers the contents
of either the AL or AX register to the string element identified in the
instruction. The operand type is determined from the instruction
operand. This instruction, when used in conjunction with the REP

Interrupts and Strings 8'33

prefix code, provides a unique method for initializing a series of mem-

ory locations with a specific value. The instruction takes the form:

where DEST is the symbol for the effective address of the string element.
Here again the instruction uses a single operand to identify the string.
Note that this time the string is a source operand. For that reason,

STOS DEST

the string element must be addressed through the DI register.

The two short anonymous versions of the store string instruction are:
STOSB (Store String Byte) and STOSW (Store String Word). No

operands are used with either instruction.

Figure 8-9 summarizes the five string instructions.

MOVS/
MOVSB/MOVSW

CMPS/
CMPSB/CMPSW

SCAS/
SCASB/SCASW

LODS/
LODSB/LODSW
STOS/
STOSB/STOSW

Copy byte or word source string element to destination string
in memory

Compare byte or word destination string element to source
string element

Scan (compare) byte or word destination string element with
accumulator

Load byte or word source string element into accumulator

Store accumulator as element in destination string in mem-
ory

Figure 8-9
String instructions.

8'34 UNIT EIGHT

Self-Review Questions

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

A is a number of bytes or words that reside
in sequential memory locations.

Each item in a string can also be call=d an

An operation that is performed on each element of a string is
called a operation.

In a string operation, the number of times the operation is re-
peated is specified in the register.

The default segment for the destination string is the
segment.

The default general, or offset address, register that is used to point
to the memory location of the destination string is the
— . .Togister.

The default general, or offset address, register that is used to point
to the memory location of the source string is the
register.

A single move instruction can be used to transfer data from one
memory location to another.

True/False
The string prefix code : causes a string operation
to be repeated count times.
The instruction
MOVS DEST, SOURCE
is said to use a reference in determining

the source and destination string locations.

An anonymously referenced string instruction defaults to the
segment for determining the location of

the source string.

Interrupts and Strings 8'35

44,

45.

46.

47.

The SI and DI registers are incremented or decremented
after a word-sized string element is moved.

once/twice

If the source string is identified by the symbol SOUXCE and the
destination string is identified by the symbol DEST, write the
symbolically referenced instruction that will:

A. Move a byte string:

B. Compare an element in
two word strings:

C. Compare a word value to
a string element:

D. Store a byte string:

E. Load a word-sized string
element into the accumulator:

Write the short anonymous instruction that will fulfill each of
the following conditions:

A. Move a word string:
B. Compare an element in
two byte strings:
C. Compare a byte value to
a string element:
Store a word string;:
Load a byte-sized string
elament into the accumulator:

1 O

If the destination string element contains the value 42H and the
source string element contains the value 88H, indicate the condi-
tion of the following arithmetic flags after the instruction CMPSB
is executed:

Overflow flag

Sign flag

Zero flag

Auxiliary Carry flag
Parity flag

Carry flag

ARgnOWe

8-36 | uniTeiGHT

String Direction

Earlier, we said that each string instruction increments or decrements
the SI and/or DI registers after each operation. This automatic process
is performed so that the next element in the string can be identified.
Whether the register increments or decrements is determined by a bit
in the Flag register called the Direction Flag. Figure 8-10 shows the
Flag register with the new Direction flag bit identified by the arrow.
The flag is located in bit 11 of the Flag register.

of|or|iF |TF|sF|zF] |aF| [PF| |cF|FLAGS

16 1

Figure 8-10
The complete Flag register.

The Direction flag controls the direction that a string instruction will
take when it is implemented. In other words, the Direction flag deter-
mines whether the instruction will increment or decrement through
a string when it is executed. A zero in the Direction flag causes the
string instruction to automatically increment, while a one in the Direc-
tion flag causes the string instruction to automatically decrement during
each execution.

The status of the Direction flag is controlled by two instructions. To
set the flag, use the instruction STD (Set Direction). To clear the flag,
use the instruction CLD (Clear Direction). When the MPU is reset, all
of the Flag register bits are cleared. As a result, any string operation
performed immediately after a reset will automatically increment.

Interrupts and Strings 8“37

Repeat String Variations

All string instructions perform a single move or compare operation.
Since most string operations involve more than one string element,
the REP string prefix code is used quite often. To make your job of
programming a little easier, the 8088 instruction set includes two other
forms of the repeat string prefix: REPZ (Repeat while Zero) and REPNZ
(Repeat while Not Zero).

Both prefix codes differ from the REP prefix in that they are conditional
prefixes. These prefix codes not only decrement and test the count
in the CX register, they also test the Zero flag bit in the Flag register.
REPZ prefix will cause the string instruction to continue to loop until
the contents of the CX register are zero, or until the Zero flag is set.
On the other hand, the REPNZ prefix will cause the string instruction
to continue to loop until the contents of the CX register are zero, or
until the Zero flag is cleared. These prefix codes should only be used
with the compare string and scan string instructions, since these are
the only string instructions that affect the Zero flag.

‘The REPZ and REPNZ prefix codes have an alternate configuration.
They are REPE (Repeat while Equal) and REPNE (Repeat while Not
Equal). Both test the condition of the Zero flag. The REPE prefix oper-
ates just like the REPZ prefix, while the REPNE prefix operates just
like the REPNZ prefix. The reason for duplicate prefix codes follows
the reasoning given earlier in the course for the conditional loop in-
structions and conditional jump instructions. They offer “he program-
mer a different perspective on the same operation. If you are looking
for a zero condition, you would probably use the REPZ prefix code.
On the other hand, if you are looking for an equal condition, you would
use the REPE prefix code. In beth instances, you are checking the condi-
tion of the Zero flag.

Figure 8-11 summarizes the three repeat string prefix codes.

REP Repeat string operation
REPZ/REPE Repeat string operation while zero/equal

REPNZ/REPNE Repeat string operation while not zero/not equal

Figure 8-11

Repeat string prefix codes.

8‘38 UNIT EIGHT

Register Loading

As your programs increase in complexity, you will begin using many
different data segments to hold important arrays and strings. Loading
new segment and general register values to point (o those data segments
can use many bytes of program code. To reduce the amount of code
needed to load these registers, the 8088 MPU instruction set has two
unique instructions: LDS (Load Data Segment) and LES (Load Extra
Segment).

The LDS instruction is similar to :he LEA instruction. Only along with
loadirg the address offset of a symbol into a 16-bit general register,
it also loads the segment base address of that symbol into the Data
segment register. While any 16-bit general register can be used in the
operation, you will normally use a base or index register, since you
are setting-up the register for an indirect addressing operation. In the
case of a string move, you would naturally use the SI register as the
general register. The instruction takes the form:

LDS <general register>>,<address location>

where LDS is the instruction mnemonic; <general register> is the
16-bit general register that will receive the address offset value; and
<address location> is the offset address to a four-byte address value
that is stored in the current data segment. That four-byte address value
is the address of the string or data array that is located in the current
data segment, or some other data segment. Thus, before the LDS instruc-
tion can be used, the base and offset address it is to load into the
general and segment registers must be stored in memory. The best way
to handle this memory storage is through the Define Doubleword (DD)
assembler directive.

The DD assembler directive, when used in this manner, operates a little
differently than described in Unit 5. Rather then initialize or reserve
a four-byte memory location, it identifies and stores the base and offset
address of a symbol. The LDS instruction then uses the name associated
with the DD directive to load the address values. To get a better idea
of how the process operates, look at Figure 8-12.

Interrupts and Strings 8'39

TITLE UNIT 8 —— PROGRAM 4 -— USING LOAD SEGMENT REGISTER INSTRUCTIONS

1]
PROG_STACK SEGMENT STACK

DW 80H DUP (?)
TOP_OF_STACK LABEL WORD
PROG_STACK ENDS

;Set up stack area
jIdentify top of stack for SP register

i
PROG_DATA SEGMENT

DATAL DD SOURCE
DATA2 DD DEST
PROG_DATA ENDS

1

SOURCE_DATA SEGMENT

SOURCE DB 160 DUP (GABH)
SOURCE_DATA ENDS

|]

DEST_DATA SEGMENT

DEST DB 160 DUP ()
DEST_DATA ENDS

]
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE, DS: PROG_DATA, SS: PROG_STACK
START: MOV AX,PROG_STACK ;Never load a segment register direct
MOV 85, AX jUse an intermediate register
MOV SP,OFFSET TOP_OF_STACK jPoint to the top of stack
jimmediately after loading SS register
sNext,indirectly load the
jData Segment register
;Get extra segment and offset
yaddress to destipation location
;0et data segment and offset
jaddress to source data location
ASSUME DS:SOURCE_DATA,ES:DEST_DATA
MOV CX, 100 ;Set loop count
REP MOVS DEST,SOURCE ;Get byte of source data
jand save at destination, then
jauto-increment SI and DI, then
jdecrement count and test for zero,
;if not zero, repeat string move

MoV AX, PROG_DATA
MOV DS, AX
LES DI, DATA2

LDS SI,DATAI

INT 3 sReturn to the debugger
i
PROG_CODE ENDS

END START

Figure 8-12
String program using new segment loading instructions.

8'40 UNIT EIGHT

The figure is a repeat of the string program we described earlier, with
a few changes. First, a new data segment called PROG_DATA contains
two DD assembler directives. The first one causes the assembler to de-
termine the offset address and segment base address of the string
SOURCE. The two address values are then stored at the effective ad-
dress identified by the name DATA1. The offset address and segment
base address of the uninitialized string DEST is stored at DATA2.

The next program change is in the ASSUME directive. The “assumed”
data segment is now PROG_DATA. There is no assumed extra segment.
Naturally, the two instructions that load the initial value into the Extra
Segment have been deleted. The instructions that load the Data Segment
register now reference the PROG_DATA segment.

Up to this point, the program has identified the physical address of
the two strings in memory and set up the MPU registers. The next
two instructions prepare the MPU for the string transfer. The LES in-
struction operates just like the LDS instruction, except that it loads
the Extra Segment register rather than the Data segment register. Thus,
when the instruction

LES DI,DATAZR ;Get extra segment and offset
;address to destination location

is executed, the first word stored at DATA2 is moved into the DI regis-
ter. Then the second word stored at DATA2 is moved into the ES regis-
ter. When the instruction

LDS SI,DATAlL ;Get data segment and offset
;address to source data location

is executed, the first word stored at DATA1 is moved into the SI register.
Then the second word stored at DATA1 is moved into the DS register.
The MPU registers are now ready for the string transfer.

You may have noticed that the order of loading the SI and DI registers
is reversed from the earlier program. This is a subtle, but very important
point. Had we loaded the SI register and hence the DS register first
the LES instruction would have then loaded the wrong data into the
DI and ES registers. Remember, DATAZ2 is located in what the assembler
assumes is the current data segment. If you allow an instruction to
modify the contents of the DS register without informing the assembler,
the assembler will use the wrong address values when it assembles
the following instruction.

Interrupts and Strings 8"‘41

With the instructions to load the MPU registers with the correct string
address values arranged in the proper order, there is one more operation
to perform. The assembler must be told that the DS ana ES registers
now point to new memory segments. This is accomplished with a new
ASSUME directive. Thus, when the assembler assembles the remaining
program code, it will use the correct address values in the move string
instruction. Remember, always place an ASSUME airective im-
mediately after an instruction, or group of instructions, that change
a segment register value.

Both of the load segment register instructions in the program in Figure
8-12 used a symbolic reference to identify the location of the base and
offset address values. You could have also used an anonymous refer-
ence such as:

LES DI, [BX] ;Get extra segment and offset
:address to destination location

te identify the location of the base and offset address values stored
in memory. Naturally, you first would have to load the acdress offset,
to the memory location that contained those address values, into the
BX register.

8‘42 UNIT EIGHT

Self-Review Questions

48,

49,

50.

51.

52.

53.

54,

55.

56.

b7,

58.

59,

The contents of the . . __de-
termine the direction of a string operation.

If the Direction flag is set during a string operation. the SI and/or
DI registers will

increment/decrement
The instruction is used to clear the Direction
flag.
The __ instruction is used to set the Direction
flag.
The and _ string prefix

codes decrement the CX register, test the register for zero, and
check to see if the Zero flag is set.

The . and ___string prefix
codes decrement the CX ragister, test the register for zero, and
check to see if the Zero flag is clear.

T ____instruction is used to load the data seg-
ment register and a 16-hit general register.

The instruction is used to load the extra
segment register and a 16-bit general register.

When dealing with string operations, the 16-bit general register
that is loaded by the LES iastruction should be the
register.

The best way to load the base and offset address of a string in
memory is withthe ____assembler directive.

When the LDS and LES instructions are executed one after the
other, the R instru ction should be executed first.

You can only use symbolic references with the LDS and LES

instructions. .
True/False

Interrupts and Strings 8'43

EXPERIMENT

Software Interrupts and String Operations

OBJECTIVES: 1. Demonstrate the conditional interrupt
INTO.

2. Demonstrate a user-defined interrupt.

3. Demonstrate all of the string instruc-
tions.

4. Demonstrate the LDS and LES instruc-
tions.

Introduction

Your introduction to programming in MACRO-86 is nearly complete.
This experiment will demonstrate the MACRO-86 instruction set cover-
ing the areas of software interrupts and data strings. When you complete
this experiment, you will possess the skills needed to write an assembly
language program using MACRO-86. The last unit in the course will
clean up any loose ends in the areas of program structure, assembly
control, conditional assembly, and code macros — unique instructions
that you create from the standard MACRO-86 instruction set.

Procedure

1. Call up the editor and enter the program listed in Figure 8-13,
parts A, B, C, D, and E. Part A of the listing contains an optional
call instruction. If you have a Zenith microcomputer, load the
program as listed. If you have an IBM PC, or one of its clones,
place a semicolon in front of the CALL CLEAR_ZENITH instruc-
tion and remove the semicolon from in front of the CALL
CLEAR _IBM instruction. This is identical to the clear screen op-
eration you performed in an earlier experiment. The rest of the
program will function as written with either system.

8"44 UNIT EIGHT

TITLE EXPERIMENT 8 -— PROGRAM 1

i
PROG_STACK SEGMENT STACK

DW
TOP_OF _STACK
PROG_STACK ENDS

180H DUP (?)
LABEL WORD

i
PROG_DATA SEGMENT
'ENTER 1 TO 4 DIGIT HEX MULTIPLICAND ¢’ ;Data message

MULTI_MSG DB
MULT1 DB
DB
MULT2_MSG DB
MULT2 DB
DB
CLEAR_SCREEN DB

PRINT_UNDER DB
DB
DB
PRINT_OVER DB
DB
DB
DO_AGAIN DB
PROD_32_BIT DB
PROD_16_BIT DB
CR_LF_CODE DB
PROG_DATA ENDS

5
& DUP (@)

-~ SOFTWARE INTERRUPTS

;Set up stack area
;Identify top of stack for SP register

;Multiplicand storage area size
sbuffer initialized to zero

'ENTER 1 TO 4 DIGIT HEX MULTIPLIER 4’ ;Data message

S
& DUP (@)

jMultiplier storage area size
jbuffer initialized to zero

1BH,’E”,1BH,'H’,’$’ ;Code to clear screen and home

’NO OVERFLOW’
9DH, 0AH

jcursor on Zenith system
sNo overflow message
;Carriage return, line feed

*16-BIT PRODUCT = $’;Product size message

* OVERFLOW’
@DH, 0AH

;0verflow message
;CR, LF

’32-BIT PRODUCT = $’;Product size message
‘MULTIPLY TWO MORE NUMBERS? (Y or N) $’ ;Repeat message

4 DUP (@)
4 DUP (@)
@DH, 0AH, * $7

3
VECTOR SEGMENT AT @H

ORG
INT_4 LABEL

ORG
INT_96 LABEL
VECTOR ENDS

ax4
WORD
6*4
WORD

i
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE, DS: VECTOR,SS: PROG_STACK

START: MOV
MoV
MoV

PUSH
SUB
PUSH
MOV
MoV
MOV
MoV
MOV
MOV

MOV
MOV

AX,PROG_STACK

s, AX

;Reserve for high word of product
jReserve for low word of product
sCR, LF, and end message character

;Point to vector location 4
;Identify vector 4
sPoint to vector location 96
s Identify vector 96

;Never load a segment register direct
;Use an intermediate register

SP,OFFSET TOP_OF_STACK ;Point to the top of stack

DS

AX, AX

AX
AX,VECTOR
DS, AX

;immediately after loading SS register
;Save segment for return value

sZero the AX register

;Save offset of zero for far return
sAgain, indirectly load the

jsegment register

INT_4,0FFSET INTO_INT ;Store INTO IP in vector table
INT_4+2,SEG INTO_INT ;Store INTO CS in vector table
INT_96,0FFSET SUB_INT ;Store user IP in vector table
INT_96+2,SEG SUB_INT ;Store user CS in vector table
ASSUME DS:PROG_DATA

AX,PROG_DATA
DS, AX

;Indirectiy load the
ynew data segment base address

3 XXXXXOOOOOOOOOOOAXXXXXXKXXXXXXXXXUXXXXXXX XXX XXXKXKXXXXKKKX

CALL
H CALL

]
3 KXXXXXXXXXXXXXX

INPUT_NUMBER:
CALL
ML

CLEAR_ZENITH
CLEAR_IBM

sZenith clear screen routine
;IBM clear screen routine

XXXXXXXXXXXXXKAXAXKXAXXN KKK AKX K XXX XK RKKNAXKAKXKX AKX

GET_NUMBER
BX

;Execute number input routine
sMultiply the values

Figure 8-13A

Program to illustrate software interrupts.

interrupts and Strings 8‘45

i

EXIT PROC
RET

EXIT ENDP

i

CLEAR_ZENITH:
LEA

CALL
RET

3

CLEAR_IBM:
MOV
MOV
MOV
MOV
MOV
INT
MOV

MOV

FIRST: CALL

OUT_PROD
9%

PRINT_PRODUCT
QUIT

AL, 'Y
INPUT_NUMBER

FAR

DX, CLEAR_SCREEN

DISPLAY

AH, &
AL,0

X,

DX, 1956H
BH,7

10H

AH, 2

DX, @

BH, @
1eH

CR_LF

DX, MULT1_MSG
DISPLAY

DX, MULT1

AH, OAH

21H

CR_LF

DX, MULT2_MSG
DISPLAY

DX, MULT2

AH, 0AH

21H

CR_LF
SI,MULT142

DH, MULT1+1
AX, AX
ASCII_TO_HEX
AL, DL

DH

s Interrupt if product overflows AX reg.
;Print the product
;Software interrupt to display product

;Display the product routine

;End program response routine
jAnother number?

;No, get another number; Yes, quit

;Set up for far return and
;exit program gracefully
sthrough built-in system interrupt

1Subroutine to clear the screen and
yhome the cursor on a Zenith system
1Get the address of the code to
jclear screen and home cursor
;Output code to display

;Return from subroutine call

;Subroutine to clear the screen and
shome the cursor on an IBM PC

jLoad interrupt VIDEO_IO "scroll
jactive page up" command

sNumber of lines blanked at

jbottom of display window

;Address of first display byte
;Address of last display byte
sNormal display attributes

3Call video interrupt routine

sLoad interrupt VIDEO_IO "cursor
jposition” command

jCursor address location, make zero
;to home the cursor

sMake display page number zero
jCall video interrupt routine
jReturn from subroutine call

;Subroutine to input two hexadecimal
jnumbers up to four digits long
sCarriage return, line feed routine
;Load address of message string

;0utput code to display

jLoad address of memory buffer area
sBuffered keyboard input interrupt code
1Call the interrupt

sCarriage return, line feed routine
jLoad address of message string

;O0utput code to display

jLoad address of memory buffer area
;Buffered keyboard input interrupt code
;Call the interrupt

sCarriage return, line feed routine
jLoad address of first (high) byte of
sthe muptiplicand

;Get number byte count from buffer
;Zero the AX register

sConvert ASCII to hexadecimal value
iTransfer value to AX register
jMaintain count of bytes left in buffer

Figure 8-13B

Continuation of the program to illustrate

software interrupts.

8"46 UNIT EIGHT

NEXT: LEA

SECOND: CALL
ADD
DEC
cHP
JZ
MOV
SHL

JHP
DONE: RET

ASCI1_TO_HEX:

MOV
INC
CHpP
JA

AND

JMP
BIG: SUB

HEX_NUM: RET
;
INTO_INT:

PUSH
PUSH
LEA
CALL
POP
POP
IRET

i
SUB_INT:

PUSH
LEA
CALL
POP
IRET

§
PRINT_PRODUCT:

MOV
JNO
LEA

MOV
LOOP1: MOV

DH,@
NEXT
CL,4
AX, CL

FIRST
SI,MULT2+2

DH, MULT2+1
BX, BX
ASCI1_TO_HEX
BL,DL

DH

DH, @

DONE

CL, 4

BX, CL

SECOND

DL, [SI1
sl

DL, 40H
BIG

DL, OFH

HEX_NUM
oL, 37H

AX
DX

DX, PRINT_OVER
DISPLAY

DX

AX

AX

DX, PRINT_UNDER

DISPLAY
AX

BH, 0
SMALL 1

jLast byte?

;Yes, go to NEXT, otherwise continue
sMove shift count into register

;Shift the AX register left four bits
350 next hexadecimal value can be added
;Repeat process

jLoad address of first (high) byte of
sthe multiplier

;Get number byte count from buffer
jZero the BX register

;Convert ASCII to hexadecimal value
sTransfer value to BX register
sMaintain count of bytes left in buffer
jLast byte?

;Yes, go to DONE, otherwise continue
jMove shift count into register

;Shift the BX register left four bits
;50 next hexadecimal value can be added
;Repeat process

sReturn from subroutine call

;Subroutine to convert ASCII code

jto a hexadecimal value

3Get first byte of number

;Point to next byte

;Check for capital letter

3 1f capital letter, jump

;Otherwise mask high four bits of byte
sto get absolute hexadecimal value
;Bypass next instruction

;Change ASCII code for capital letter
;to absolute hexadecimal value
jReturn from subroutine call

;Subroutine to print the message that
;a multiplication overflow occurred
;Save the product low word

;Save the product high word

jAddress of overflow message

;Output code to display

sRetrieve the product high word
;Retrieve the product low word
jReturn from interrupt

;Subroutine to print the message that
sa multiplication overflow didn’t occur
;Save the product low word

jAddress of no overflow message

jOutput code to display

sRetrieve the product low word

jReturn from interrupt

;Subroutine to convert and display
sthe 16- or 32-bit product

;Clear register to use as a flag

;Go to 16-bit product storage routine

S1,PROD_32_BIT+3;Point to least significant byte in

CH,4
BL, DL

shigh word of 32-bit storage area
;Number of bytes to be saved
1Get first two hexadecimal digits

Figure 8-13C

Continuation of the program to illustrate

software interrupts.

Interrupts and Strings 8'47

CALL

SMALL1:
DOWNs

LOOP2:

ghEs pIZFFER

SHR

3

PRINT_VALUE:
cw
JE
LEA
CALL
JP
SMALL2: LEA
CALL
PRN_END: RET

;
HEX_TO_ASCII:

CALL
QUITI: MOV
IN

QUIT2:

CR_LF:

i
DISPLAY:

HEX_TO_ASCII
DOWN

cL,4

DX,CL

LOOP1

BH

CH, 4

;Convert and save hexadecimal digit
;Yes, jump to DOWN, otherwise continue
jLoad bit shift count in register
3Shift the hexadecimal digits right
jRepeat process

iFlag %o indicate a 16-bit product
jNumber of bytes to be saved

SI,PROD_1&_BIT+3;Point to least significant byte in

BL,AL
HEX_TO_ASCII
PRINT_VALUE
cL,4

AX,CL

LOOP2

BH, 1
SMALL2
DX,PROD_32_BIT
DISPLAY
PRN_END

DX, PROD_16_BIT
DISPLAY

BL, OFH

ASCII_NUM
BL,37H
SAVE

BL,30H
[SI131,BL
sl

CH, 0

DX, DO_AGAIN
DISPLAY
AH, 1

21H

AL, ’N’
QUIT2
ALY’
QUIT2

QUITY

DX, CR_LF_CODE
DISPLAY

;16-bit storage area

;Get first two hexadecimal digits
;Convert and save hexadecimal digit
;Yes, jump to PRINT_VALUE; No, continue
jLoad bit shift count in register
;Shift the hexadecimal digits right
jRepeat process

jRoutine to output product

1Is it a 16-bit product?

;Yes, jump to SMALL2; No, continue
;Get offset to 32-bit product
;Output code to display

;Exit routine

1Get offset to 16-bit product
;0utput code to display

sReturn from subroutine call

sSubroutine to convert a hexadecima)
;digit to ASCII and save it in memory
sMask the high digit

;Is hexadecimal digit a letter?

sNo, jump to ASCII_NUM

;Yes, convert it to ASCII

;Bypass next instruction

;Change hexadecimal number to ASCII
;Save the ASCII value in memory
;Point to next (higher) storage area
;Maintain count of bytes to save
jLast byte?

;Return from subroutine call

;Subroutine to let you exit or continue
jto multiply hexadecimal numbers

;Get offset to QUIT message

;0utput code to display

;Load examine keyboard interrupt code
jCall the interrupt

;Was capital N pressed?

;Yes, exit, No, continue

;Was capital Y pressed?

iYes, exit, No, continue

;Repeat process, check keyboard
;Return from subroutine call

;Subroutine to output a carriage return
jand line feed to the display

;0et offset to display control code
;0utput code to display

tReturn from subroutine call

;Subroutine to output code or a

Figure 8-13D
Continuation of the program to illustrate
software interrupts.

8'48 UNIT EIGHT

jmessage to the display. Data must
jend with the ‘$’ ASCII value

MOV AH, 9 jLoad output string interrupt code
INT 21H ;Call the interrupt to output string
RET sReturn from subroutine call
i
PROG_CODE ENDS
END START
Figure 8-13E

Last part of the program to illustrate software interrupts.

The program is designed to show you how a user-defined inter-
rupt and the MPU-defined interrupt on overflow software inter-
rupts can be used. Naturally, we could have provided you with
the basics for using these interrupts in a few bytes of code. How-
ever, we felt that this was a good opportunity to tie what you
have learned into a simple, yet comprehensive, program.

The program clears the display and requests an input of one to
four hexadecimal digits. After you enter a value and press the
RETURN key, the display requests a second hexadecimal value.
After you enter the second value and press the RETURN key,
the program multiplies the two numbers and determines if the
product is a 16- or 32-bit value. It then displays the product size
and the value. Finally, it asks whether or not you wish to multiply
two more numbers. If you do, type “Y” and the program will
start over. If you don’t, type “N” and the program will end. As
we said, we tried to keep the program simple. Therefore, you
can only multiply hexadecimal numbers. Also, you can only use
capital letters in any of your responses.

Assemble and link the program. Now execute the program by
typing the program name without the file extension. Try multiply-
ing a few numbers. As long as the product is less than 17 bits,
the program will display the message “NO OVERFLOW” followed
by the message “16-BIT PRODUCT = " and the value of the prod-
uct. If the product exceeds 16 bits, the program will display
the message “OVERFLOW” followed by the message “32-BIT
PRODUCT = " and the value of the product.

Interrupts and Strings 8'49

Discussion

The program is composed of four separate segments. The first is the
usual stack segment. We changed the size to 100H words to make sure
we had enough storage space for the interrupt routines and the multi-
level subroutine calls.

The primary data segment is called PROG_DATA. It contains all of
the display messages and the data storage areas. While most of it is
self-explanatory, there are a few interesting items. First, the program
is using a new data input interrupt. Instead of inputting a single charac-
ter from the keyboard, this interrupt allows you to input any number
of characters. The character storage area, or buffer, is composed of three
parts. The first part is a byte-sized value that specifies the number
of characters that can be stored. You or the program must store a value
in this location prior to execution of the interrupt. The second part
is a byte-sized location that indicates the number of characters stored
after the interrupt has executed. The third part is the actual buffer area
that will hold the character string. In addition to the actual storage
area, the buffer needs one additional byte to store the carriage return
code used to indicate the end of the character string.

In your program, there are two buffers to hold the multiplicand and
the multiplier. These are called MULT1 and MULT2 respectively. Be-
cause each buffer will be storing up to four characters, the first byte
in each contains the value five (four characters and the carriage return
code). The next buffer define byte statement initializes six bytes of
storage space for each buffer. The first byte is used to store the character
count, the next four bytes are used to store the characters, and the
last byte is used to store the carriage return code.

8'50 UNIT EIGHT

To see how the buffer works, assume that the interrupt is called and
the hexadecimal value 35 is entered through the keyboard. The inter-
rupt is terminated when the RETURN key is pressed. The buffer is
shown in Figure 8-14A. If the interrupt is called a second time, and
the hexadecimal value EC47 is entered followed by a RETURN, the
buffer would contain the data shown in Figure 8-14B.

HIGH HIGH
MEMORY MEMORY
(Vo v Vo o
_ CARRIAGE
R RETURN
- 37 ASCII 7
CARRIAGE
oD AETURN 34 ASCII 4
35 ASCII 5 43 ASCII C
33 ASCII 3 45 ASCII E
CHARACTER 6d CHARACTER
o2 COUNT COUNT
BUFFER BUFFER
05 SIZE 03 SIZE
¥ o) g 0 o) (¥ o
LOW LOW
MEMORY MEMORY
Figure 8-14

Storing character string in a memory buffer.

In Part A, the first value is 05, the buffer size. It must be loaded prior
to executing the interrupt. The next value is 02, the number of charac-
ters stored in the buffer. The interrupt routine counts the number of
characters stored in the buffer and places the value in the second byte
location. Notice that the code for a carriage return is not counted as
a character. This is followed by the the two values stored through the
keyboard. They are always stored in their ASCII form. The last value
is the ASCII code for a carriage return. The two remaining memory
locations are undefined.

Interrupts and Strings 8‘51

In Part B, four values are stored in the buffer; the character count is
04, and the buffer is full. If you try to enter more than the specified
number of characters, they will be ignored by the interrupt routine.
In this example, the maximum number of characters is four, with the
fifth buffer location reserved for the carriage return code.

The product generated by the program is stored at memory location
PROD_32_BIT or PROD_16_BIT. These locations are arranged so that
the 32-bit product can share the 16-bit storage area. This saves memory.

Every display line is followed by a carriage return and line feed. The
code for this operation is identified by the name CR_LF_CODE. It is
located immediately after the product storage area. Thus, when the
product is displayed, the display cursor is immediately shifted to the
left side of the display and down one line. Many of the other display
lines also use this code. A subroutine in the program handles the opera-
tion. Two messages that don’t use this code are PRINT_UNDER and
PRINT_OVER. Since they must display a message on two lines, they
have their own carriage return, line fead code.

The next data segment is called VECTOR. It is used to identify the
interrupt vector locations for the two software interrupts. Because this
segment uses the segment combine type AT, no data can be initialized
within the segment. This is handled by the program code.

Pregram code begins in its normal manner. The Stack Segment register
and Stack Pointer registers are loaded with the appropriate values. The
next three instructions then save the current Data Segment register
value and an offset value of zero in the stack. This information will
be used by the program at termination, as described in the last experi-
ment.

The next two instructions load the base address of the segment VECTOR
into the DS register. Then the next four instructions load the offset
and base address for the two program interrupt subroutines into the
appropriate interrupt vector table locations. Here we use a new assem-
bler operator called SEG for segment base address. When the assembler
encounters the operator SEG followed by a label, it determines what
segment contains the label and its segment base address. That base
address is then moved into the destination operand. In your program,
the offset address for the interrupt on overflow supporting subroutine

8'52 UNIT EIGHT

is moved into interrupt vector location type 4. Then the code segment
base address for the subroutine is moved into the second word of the
type four vector table. The process is repeated for the supporting sub-
routine for the user interrupt 96. When you are using a software inter-
rupt in a program, make sure you pick a vector type that is not being
used for some other purpose by the system. Refer to the owner’s manual
or technical reference manual for your system to determine which vec-
tor types are free.

After the interrupt vectors are loaded, the program changes data seg-
ments. The ASSUME statement tells the assembler of the change. How-
ever, the program must make the change by loading the new segment
base address into the DS register.

You should be familiar with the next two call instructions and their
supporting subroutines. They were described in the last experiment.
You selected one or the other to clear the display on your microcomput-
er. The subroutines are located in Figure 8-13B, right after the main
program instructions.

The last two instructions in Figure 8-13A retrieve the numbers to be
multiplied and multiply the numbers. The subroutine GET_NUMBER
performs three basic operations: it asks you for the numbers, it stores
the numbers, and it translates the numbers so they can be multiplied.
The subroutine is fourd after the CLEAR _IBM subroutine in Figure
8-13B.

The first instruction in the subroutine GET_NUMBER is a good illustra-
tion of subroutine nesting, as described in Unit 4. The instruction is
part of the subroutine GET_NUMBER. It calls a second subroutine
called CR_LF. This can be found at the bottom of Figure 8-13D. The
subroutine CR_LF sends the code for a carriage return and line feed
to the display. However, the actual transfer of code is handled by a
third subroutine called DISPLAY. This subroutine is found im-
mediately after the CR_LF subroutine. It loads the AH register with
the interrupt command to send a character string to the display. Then
it executes the interrupt, another level of subroutine nesting. Thus,
you have at least four levels of subroutine nesting to support one in-
struction, and possibly more through the display interrupt itself.

Interrupts and Strings 8‘53

After the carriage return, line feed instruction, the effective address
of the first message to input a number is loaded into the DX register.
The message is then displayed through the DISPLAY subroutine. Then
the effective address for the multiplicand buffer is loaded into the DX
register. This is the buffer we described earlier. With the address of
the buffer in the DX register, the AH register is loaded with the interrupt
command to input a character string from the keyboard. Finally, the
interrupt is called.

The interrupt routine monitors the keyboard. Each time a key is pressed,
the key character is echoed to the display, and the ASCII code for the
key is stored in the buffer. This will continue until the buffer is full
or the RETURN key is pressed, again as described earlier.

At the completion of the interrupt, the next instruction calls the sub-
routine to generate a carriage return and line feed. The next six instruc-
tions repeat the process to retrieve and store the multiplier value. The
two values to be multiplied are stored in memory as two sets of ASCII
codes. The rest of the instructions in the subroutine GET_NUMBER
convert the ASCII code to hexadecimal characters and store them in
the AX and BX registers. The AX register receives the multiplicand
and the BX register receives the multiplier.

The first instruction loads the effective address of the first byte of the
multiplicand into the SI register. This will serve as a pointer to the
ASCII code in the buffer. Recall that the first ASCII byte is located
in the third byte of the memory buffer, hence the source operand
MULT?1 + 2 in the instruction.

The next instruction loads the effective address of the buffer character
count into the DH register. This will serve as a loop count in the conver-
sion and transfer of the multiplicand. Recall that the keyboard input
interrupt routine keeps track of the number of characters that are stored
in the buffer and stores that count in the second byte of the memory
buffer. For that reason, the source operand in this instruction is
MULT1 +1.

The last instruction prior to the conversion loop zeros the AX register.
This makes sure that you can enter a one, two, or three hex-character
value and not worry about the most significant bits in the register affect-
ing the register value.

8'54 UNIT EIGHT

To begin the conversion, the ASCIL_TO_HEX subroutine is called. The
subroutine is located near the middle of Figure 8-13C. It moves the
ASCII code pointed to by the SI register into the DL register. The SI
register is then incremented to point to the next ASCII code. The code
is compared with 40H to determine if it is a capital letter. If the code
is a number, the upper half-byte is masked, leaving a single-digit deci-
mal number. If the code is a capital letter, 37H is subtracted from the
code, leaving a single-digit hexadecimal number (letter). That com-
pletes the routine, and the MPU returns to the GET_NUMBER sub-

. routine.

The contents of the DL register are added to the AL register. Then
the DH register is decremented to indicate one character converted.
Starting at the top of Figure 8-13C, the DH register is compared with
zero to see if the last character has been converted. If not, the CL register
is loaded with a count of four. That count is used in the next instruction
to shift the contents of the AX register left four bits. This makes room
in the register for the next character conversion. Finally, the conversion
process is repeated.

When the last ASCII code for the multiplicand has been converted,
the program jumps down to the instructions that convert the multiplier
ASCII code. These begin at the label NEXT. These are identical to the
previous conversion instructions, except that they load the converted
hexadecimal values into the BX register. When this conversion is com-
plete, the MPU is sent back to the main program; specifically, the last
instruction at the bottom of Figure 8-13A. That instruction multiplies
the contents of the AX register by the BX register. The product is stored
in the AX register or both the AX and DX registers, depending on the
size of the product.

The next instruction, at the top of Figure 8-13B, is a software interrupt.
If the product was greater than 16 bits, a type 4 interrupt will be exe-
cuted. The MPU will save the current Flag, CS, and IP register contents.
Then it will load the IP and CS register values stored at location type
4 in the interrupt vector. These values will send the MPU to the sub-
routine labeled INTO_INT. It can be found near the middle of Figure
8-13C. The routine simply displays the message:

OVERFLOW
32-BIT PRODUCT =

Interrupts and Strings 8'55

Notice that both the AX and DX registers are temporarily saved in the
stack. This is because both registers are involved in displaying the mes-
sage, and the product must be preserved. The return from interrupt
instruction restores the IP, CS, and Flag register values originally stored
by the interrupt. This returns the MPU to the main program

If the INTO instruction was executed, the following conditional jump
instruction will cause the next instruction to be bypassed. If there was
no product overflow, both the INTO and conditional jump instructions
will be ignored and the INT 96 instruction will be executed.

This is a user-defined interrupt. When executed, it stores the Flag, CS,
and IP register contents in the stack. Then it moves the values at loca-
tion type 96 in the interrupt vector table into the IP and CS registers.
These values will send the MPU to the subroutine labeled SUB_INT,
near the bottom of Figure 8-13C. The routine displays the message:

NO OVERFLOW
16-BIT PRODUCT =

Notice that only the AX register is saved on the stack. That is because
the product didn’t exceed the capacity of the AX register. Returning
from the interrupt, the IP, CS, and Flag registers are restored, and the
next instruction in the main program is executed. This calls the sub-
routine PRINT_PRODUCT.

This subroutine is located near the bottom of Figure 8-13C. It is used
to convert the hexadecimal product into individual ASCII characters
and store the characters in memory. The first instruction zeros the BH
register. The register will be used as a flag to indicate whether a 16-
or 32-bit product was saved. The following conditional jump tests for
an overflow. If no overflow occurred, the 32-bit product conversion
is ignored. If there was an overflow, the SI register is loaded with the
effective address of the 32-bit storage area plus three.

The routine converts each hexadecimal half-byte in the DX register
to its ASCII equivalent and stores the code in memory. Because the
conversion begins with the least significant half-byte, storage must
begin at the fourth byte location in memory.

8‘56 UNIT EIGHT

After the CH register is loaded with the number of bytes to be saved,
the conversion process begins with the low byte of the DX register
being moved into the BL register. Then, beginning at the top of Figure
8-13D, the HEX_TO_ASCII conversion subroutine is called. This can
be found near the middle of Figure 8-13D.

The conversion routine is similar to the earlier ASCII-to-hexadecimal
conversion routine. First, the upper half of the BL register is masked
to isolate the first half-byte. Then the contents are compared to 40H
to determine whether the value is a decimal number or a hexadecimal
letter. If it is a letter, 37H is added to the register to produce the appro-
priate ASCII letter code. If it is a number, 30H is added to the register
to produce the appropriate ASCII number code. The ASCII code is then
saved in memory.

The SI register is incremented to point to the next storage area, and
the CH register is decremented to keep track of the number of characters
saved. Finally, the CH register is tested to see if the DX register conver-
sion is done. Before any conditional operations are performed, the MPU
is returned to the calling routine. If the CH register is zero, the 16-bit
conversion is begun; otherwise, the CL register is loaded with the shift
count 4. Then the contents of the DX register are shifted four bits to
the right so that the next half-byte can be converted, and the process
is repeated.

Had the product contained less than 17 bits, the subroutine would have
branched to the instruction at label SMALL1. This instruction incre-
ments the BH register to indicate a 16-bit product. The following group
of instructions convert the contents of the AX register to ASCII charac-
ters. If a 32-bit product is being converted, the increment BH instruction
will be bypassed.

The 16-bit product conversion begins at label DOWN. It is identical
to the 32-bit conversion except that the contents of the AX, rather than
the DX, register are converted. When the last half-byte is converted,
the subroutine branches to label PRINT _VALUE.

The BH register is tested for one. If there is a match, the 16-bit product
is displayed. If there is no match, the 32-bit product is displayed. Since
the 16-bit storage location is immediately after the 32-bit storage

Interrupts and Strings 8'57

location, both values will be displayed when the 32-bit display instruc-
tions are executed. After the product is displayed, the MPU returns
to the main program, where the QUIT subroutine is called. This sub-
routine can be found near the bottom of Figure 8-13D.

First the repeat question is displayed. Then the interrupt code to input
a keyboard character is loaded into the AH register. The interrupt is
called, and the MPU waits for an input. When a character is received,
it is echoed on the display and the value is stored in the AL register.
The AL register contents are tested for the ASCII code of the letter
“N”. If there is a match, the routine is ended. If there is no match,
the register is tested for the ASCII code of the letter “Y”. Again, the
routine is ended if there is a match. If there is no match, the keyboard
is again tested. This will continue until there is a match.

When a match occurs, the main program tests the AL register for the
ASCII code of the letter “Y”. If there is a match, the MPU branches
back to label INPUT_NUMBER and the program repeats. If there is
no match, the program is terminated. Remember from the last experi-
ment, that to terminate an EXE program you need a far return. This
is handled by the program code:

EXIT PROC FAR
RET
EXIT ENDP

Before you proceed with the next program, you may wish to try your
hand at programming. Try expanding the power of this program. You
might give it the capability to use both upper- and lowercase letters.
You might change the input from hexadecimal to decimal. Finally, you
might include the ability to add, subtract, and divide two numbers.
You have the basic program structure to build upon. While some of
the suggested changes won't be easy, making them will be a good learn-
ing experience.

The rest of the programs in this experiment won’t be as complex as
the first. Their sole function is to illustrate the operation of the string
instructions. The first of the “string” programs uses the move string
instruction.

8'58 UNIT EIGHT

Procedure Continued

3.

Call up your editor and enter the program listed in Figure 8-15.

TITLE EXPERIMENT 8 -— PROGRAM 2 -- MOVING DATA
PROG_STACK SEGMENT STACK
D 80H DUP (7) ;Set up stack area
TOP_OF_STACK LABEL WORD ;Identify top of stack for SP register
PROG_STACK ENDS

1]

PROG_DATA SEGMENT

DATA1 DD SOURCE ;Determine physical address of SOURCE
DATAZ DD DEST ;Determine physical address of DEST
PROG_DATA ENDS

i
SOURCE_DATA SEGMENT

SOURCE DE "This is a string that will be transferred from ’
DB ODH, 8AH
DB ‘the source area to the destination area of memory.$’

SOURCE_DATA ENDS

DEST_DATA SEGMENT
DEST DB 106 DUP (0)
DEST_DATA ENDS

¥
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE, DS: PROG_DATA, $S:PROG_STACK
START: MOV AX,PROG_STACK jNever load a segment register direct
MoV SS,AX jUse an intermediate register
NOP ;No operation to allow observation of
snext instruction when single-stepping
MOV SP,OFFSET TOP_OF_STACK ;Faint to the top of stack
;immediately after loading SS register
MOV AX,PROG_DATA ;Next,indirectly load the

MoV Ds,AX jData Segment register

NOP jAnother no operation for observation

LES DI,DATAZ ;Get extra segment and offset
;address to destination location

LDS S1,DATAL sGet data segment and offset

;address to source data location
ASSUME DS:SOURCE_DATA,ES:DEST_DATA

MOV CX, 100 ;Set loop count
REP MOVS DEST,SOURCE ;Move the string
INT 3 ;Return to the debugger

;
PROG_CODE ENDS
END START

Figure 8-15
Program using the move string instruction.

Interrupts and Strings 8'59

This program is a simple illustration of a string move operation.
It uses three data segments to hold address information, a source
string, and a destination string storage area. We had you add a
no operation (do nothing) instruction after each segment register
move instruction so you could see the next “useful” instruction
while single-stepping through the program.

Assemble and link your program.

Call up the debugger and load your program. Single-step through
the program up to the LES DI,DATAZ2 instructior. The DS register
now contains the base address of the PROG_DATA segment.
Examine that segment — type “D<DS register contents>:0900"
and RETURN. The base address for the SOURCE_DATA segment
is _ _ _ _H. The base address for the DEST_DATA segment
is — — _ _H. Remember, the assembler directive Define Double-
word tells the assembler/linker to identify both the offset and
base address of the directive argument.

Verify the address values recorded in step 5 by single-stepping
through the next two instructions. The DS and ES registers should
now contain the values you recorded. Examine the DEST_DATA
segment. It should contain 100 bytes of zeros (actually 112 bytes
because of the “paragraph boundary” segment attribute). Examine
the SOURCE_DATA segment. It should contain the character
string you entered with the program.

Examine the MPU registers — type “R” and RETURN. The SI
register contains the value _ _ _ _H and the DI register contains
the value _ _ _ _H. Single step through the next instruction.
The CX register contains the value _ _ _ _H. Now single step
three more times. After each single-step operation, record the in-
formation in the following blanks.

Step1— DF =_.
CX=____H.
SI =____H.
PE = o H,L

IR &= . H,

8"60 UNIT EIGHT

Step2—DF =_.
CX = HL
SI =____H.
DI =__ __H.
P = H
Step 3— DF =_.
CX s H.
SI =___ _H.
I = . H;
IP =____H.

Finally, run the remaining portion of the program — type “G”
and RETURN. Record the contents of the following registers.

(2, W SR .
SI =___ _H.
DIl = H.

8. Examine the DEST_DATA segment. You should see the message
originally stored in the SOURCE_DATA segment.

Discussion

Using the load extra segment, load data segment, and move string in-
structions reduces what could be a complex program into a simple
program. The whole operation, including the load CX register instruc-
tion, required only five instructions and one ASSUME statement. Proba-
bly the only problem you will have when using string instructions is
remembering to add an ASSUME statement every time you change the
contents of either the Data or Extra Segment register.

When you single-stepped through the move string instruction in step
7, the REP prefix made sure that the move operation was repeated as
long as the CX register contained a value other than zero. Each time
the instruction was executed, the CX register was decremented by one
and the SI and DI registers were incremented by one. The CX register
is used by the instruction to keep track of the number of moves. The
SI and DI registers were incremented by one because the instruction
was moving a byte value rather than a word value. The two registers

Interrupts and Strings 8'61

were incremented, rather than decremented, because the Direction flag
was clear (register display showed direction code UP). Had the Direc-
tion flag been set, the registers would have decremented.

After you ran the program to completion, the CX register containad
zero, and both the SI and DI registers contained 0064H, the original
CX register value. When you examined the DEST_DATA segment, you
found the message originally stored in the SOURCE_DATA segment.

The program you just executed used “symbolic” references to specify

the source and destination operands. The next program will perform
the same operation using “anonymous” references.

Procedure Continued

9. Exit the debugger. Then call up your editor and modify your move
string program as follows:

A. Change the instruction

MOV CX, 100 ;:Set loop count
to read
MOV CX,50 ;:Set loop count

B. Change the instruction

REP MOVS DEST,SOURCE :Move the string
to read
REP MOVSW ;Move the string

10. Assemble and link the program.

11. Call up the debugger and load your program. Single step up to
the move count instruction. You should observe the same results
as those obtained in steps 5 and 6 of the previous “Procedure.”
Examine the SOURCE_DATA segment. It should contain the mes-
sage. Examine the DEST_DATA segment. It should contain zeros.

8'62 UNIT EIGHT

12. Singie step once. The CX register is loaded with the value 32H.
Now single step one more time. The SI and DI registers are incre-
mented twice. Why would that happen?

13. Run the program — type “G” and RETURN. Examine the
DEST_DATA segment. You should again find the message copied
to that segment.

Discussion

Wiih the program modified, it now transfers the message one word
at a time. Because words are being transferred, the SI and DI registers
are incremented twice for each move operation. You had to halve the
value moved into the CX register because the transfer rate was doubled.

Because you used an anonymous string move instruction in the pro-
gram, you were able to use a “move word” instruction with byte-sized
data. This is not a good programming practice. There are too many
opportunities for program failure. If you must use an anonymous in-
struction, make sure the instruction data type matches the data type
assigned to the source and/or destination memory location. Now lets
look at the compare and scan string instructions.

Procedure Continued

14. Exit the debugger. Then call up the editor and load your move
string program. Now refer to Figure 8-16 and insert the instruc-
tions listed between the two rows of Xs into your program at
the location shown. You will use these instructions to examine
the operation of the compare and scan string instructions.

15. Assemble and link your program.

16. Call up the debugger and load your program. Use the Go com-
mand with a break point to run your program up to the
first new instruction — type “G001C” and RETURN. Both the
SOURCE _-DATA and DEST DATA segments now contain the
program message.

Interrupts and Strings 8"63

TITLE EXPERIMENT 8 -- PROGRAM 4 -- USING COMPARE AND SCAN STRING

L]
PROG_STACK SEGMENT STACK
D 8@H DUP (?) ;Set up stack area
TOP_OF_STACK LABEL WORD sIdentify top of stack for SP register
PROG_STACK ENDS

i
PROG_DATA SEGMENT

DATAL DD SOURCE ;Determine physical address of SOURCE
DATAZ DD DEST sDetermine physical address of DEST
FROG_DATA ENDS
¥
SOURCE_DATA SEGMENT
SOURCE DB 'This is a string that will be transferred from ’

DB ©DH, 8AH

DB ‘the source area to the destination area of memory.$’

SOURCE_DATA ENDS

¥

DEST_DATA SEGMENT

DEST DB 100 DUP (0)
DEST_DATA ENDS

]
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE, DS: PROG_DATA, 55: PROG_STACK

START: MOV AX,PROG_STACK ;Never load a segment register direct
HOV §S,AX jUse an intermediate register
NOP sNo operation to allow observation of
jnext instruction when single-stepping
MOV SP,OFFSET TOP_OF_STACK j;Point to the top of stack
jimmediately after loading SS register
MOV AX,PROG_DATA iNext,indirectly load the
HOV DS, AX jData Segment register
NOP sAnother no operation for observation
LES DI, DATA2 jGet extra segment and offset
;address to destination location
LDS SI,DATAL ;Get data segment and offset
jaddress to source data location
ASSUME DS:SOURCE_DATA,ES:DEST_DATA
MOV CX,50 ;Set loop count
REP MOVSW ;Move the string
3 000000000N00ONN0OOANEENNNCEEKXXXNOOENNNXXXNONNOEKRXNKNNNNNKXX
LEA §1,SOURCE ;Get source offset address
LEA DI, DEST ;Get destipnation offset address
MoV CXx, 100 jLoad string length
MOV BYTE PTR [SIJ+@&FH,’X’ ;Store odd character in message
REPE CMPS SOURCE,DEST j;Check string accuracy
LEA DI,DEST jGet destination offset address
MOV CX, 100 ;Load string length
HOV AL,’g’ jLoad character to be located (scanned)
REPNE SCASB ;Look for character ‘g’
3 X0000000000N00O0NNOOCNAEENNNNNCONNNONONOCONNCNNNNNNKXXXX XXX XXXXXXXXX
INT 3 sReturn to the debugger
}
PROG_CODE ENDS
END START
Figure 8-16

Program to show the operation of the compare and scan
string instructions.

8‘64 UNIT EIGHT

17.

18.

19.

20.

21.

Single step through the next three instructions. Both the SI and
DI registers are again loaded with the effective address of the
message in their respective segments. The CX register is loaded
with the message length.

Examine offset address 000FH in the SOURCE_DATA segment
(type “D<Data Segment register contents>:0000" and RETURN).
It contains the value 67H, which is the ASCII code for the letter
“g". Single step through the next instruction. This loads the ASCII
code for the letter “X” into the SOURCE_DATA segment memory
location pointed to by the effective address in the SI register plus
O0FH. Examine offset address 000FH in the SOURCE_DATA seg-
ment one more time. It now contains 58H, the ASCII code for
the letter “X”. Record the following register information.

ZF =_,

CX=____H.
SI =__ __ _H.
DI =____H.

Single step through the compare string instruction one time. Re-
cord the following register information.

ZF =_.

CX =____H.
SI =i H.
DI =... . _H.

Continue to single step through the string compare until the string
repeat loop ends. Record the following register information.

ZF =_.

CX=____H
Sl = H
D =i e M

Again examine the SOURCE_DATA segment. The character “X”
is located in the byte position. Does that
match the value stored in the SI and DI registers?

Interrupts and Strings 8'65

22,

23,

24,

25,

Single step through the next three instructions. Again, the DI re-
gister is loaded with the effective address of the message in the
DEST_DATA segment and the CX register is loaded with the mes-
sage length. Finally, the AL register is loaded with the ASCII
code for the character “g”. Record the following register informa-
tion.

ZF =_.

CX =____H.
SI =l
DI =____H.

Single step through the scan string byte instruction one time.
Record the following register information.

ZF =_.

CX=____H.
SI =___ _H.
1)) N S f

Continue to single step through the string scan until the string
repeat loop ends. Record the following information.

ZF =_.

CX =____H.
Sl =____H.
DI =__ ___H.

Again examine the DEST_DATA segment. The character “g” is
located in the byte position. Does that match
the value stored in the DI register?

8-66

UNIT EIGHT

Discussion

The program you just executed showed the operation of the compare
string and scan string instructions. The first part of the program simply
transferred the message in the SOURCE_DATA segment into the
DEST_DATA segment so that you could perform the compare and scan
string operations. The first three instructions that you single-stepped
through returned the CX, SI, and DI registers to their original values
in preparation for the next string operation. Finally, to give an odd
character for the compare string operation to locate, the character “X”
is stored in the sixteenth byte position of the message in the
SOURCE_DATA segment.

Prior to executing the compare string instruction, the Zero flag was
clear. After the instruction was executed, the Zero flag was set, the
CX register was decremented, and the SI and DI registers were incre-
mented. As long as the Zero flag remained set, the repeat while equal
prefix code caused the MPU to loop back to the compare string instruc-
tion. The loop ended when the Zero flag was cleared. At that point,
the SI and DI registers contained the value 10H, indicating the sixteenth
byte position contained the odd character. Keep in mind, however,
that if you wish to use the count in the SI or DI register as an offset
value to locate the odd character, you must subtract one from the count.
Remember, the MPU begins counting from zero. Thus, the sixteenth
byte position has an offset of OFH from the first byte position.

The scan string portion of the program operated in essentially the same
manner as the compare string portion. Only in this case, the message
in the DEST_DATA segment was compared to the contents of the AL
register. The scan string operation was allowed to repeat as long as
the Zero flag remained clear (repeat not equal). The loop ended when
the character “g" was identified. Again, the contents of the DI register
(10H) indicated that the character was located in the sixteenth byte
position. As before, one should be subtracted from that value to give
the true character offset of 0OFH.

The last program you will write illustrates the load string instruction,
the store string instruction, and the two Direction flag control instruc-
tions.

Interrupts and Strings 8'67

Procedure Continued

26.

Exit the debugger. Then call up the editor and load your string
program one more time. Delete the

DEST DB 100 DUP (0)

statement, and all of the iastructions after the ASSUME state-
ment:

ASSUME DS:SOURCE_DATA,ES:DEST_DATA

Refer to Figure 8-17 and add the assembler directive LABEL state-
ment and the EQU statement, inside the two lines of Xs, to the
SOURCE_DATA segment as shown. Then add the Define Byte
statement and the LABEL statement, inside the two lines of Xs,
to the DEST_DATA segment as shown. Finally, add the eight
instructions, inside the two lines of Xs, to the PROG_CODE seg-
ment as shown.

The statement
SOURCEl LABEL BYTE

identifies the next memory location after the message character
string. This is used by the EQU statement

MESSAGE_SIZE EQU OFFSET SOURCEl — OFFSET SOURCE

to calculate the length of the character string. Subiracting one
offset from the other gives you the number of bytes in the string.
This can be very useful when you are dealing with a number
of character strings and must make sure you have the exact count.
To prevent forward reference problems, the equate statement
should be positioned after the defined data areas and before you
use the “equated” symbol in another statement or instruction.
In addition, be sure to position the equate statement inside a
program segment area as we did in this program.

8'68 UNIT EIGHT

TITLE EXPERIMENT 8 -- PROGRAM 5 -~ LOAD, STORE, AND FLAG STRINGS

L
PROG_STACK SEGMENT STACK
DW 80H DUP (?) ;5et up stack area
TOP_OF_STACK LABEL WORD ;Identify top of stack for SP register
PROG_STACK ENDS

;
PROG_DATA SEGMENT

DATA1 DD SOURCE ;Determine physical address of SOURCE
DATAZ DD DEST sDetermine physical address of DEST
PROG_DATA ENDS
SOURCE_DATA SEGMENT
SOURCE DB 'This is a string that will be transferred from ’

DB @DH, 9AH

DB 'the source area to the destination area of memory.$’

£ XXXXXXXX00O00000NNCNOONCONONNNEXEXXXXXXXXAXXXXXKXXXXXXXXXXXXXXXXXXX
SOURCE! LABEL BYTE

MESSAGE _SIZE EQU OFFSET SOURCE! - OFFSET SOURCE

D99 005 585009089800 50000080800005390090090008000388000388998995¢99999¢¢
SOURCE_DATA ENDS

]

DEST_DATA SEGMENT

OO0 XX KX KKXXXXXXXXXKXKKXXKXXXXXXKKXXXXXXXXKKXXXXXXXXK XX KXXX
DEST DB MESSAGE_SIZE DUP ()

DEST! LABEL BYTE

XXX XXX XXX XXXXXXXKKXXXXXXXXXXXXKKXXXXXXXXKKKKXXXXXXKXXXXXXXXXKKXKXXX
DEST_DATA ENDS

PROG_CODE SEGMENT
ASSUME CS:PROG_CODE,DS:PROG_DATA, SS:PROG_STACK

START: MOV AX,PROG_STACK jNever load a segment register direct
MOV S5, AX sUse an intermediate register

NOP ;No operation to allow observation of
snext instruction when sin¢le-stepping
MoV SP,OFFSET TOP_OF_STACK ;Point to the top of stack
;immediately after loading SS register
MoV AX,PROG_DATA jNext,indirectly load the
MoV DS, AX yData Segment register
NOP sAnother no operation for observation
LES DI,DATAZ ;Get extra segment and offset
1address to destination location
LDS SI,DATAL ;Get data segment and offset

jaddress to source data location
ASSUME DS:SOURCE_DATA,ES:DEST_DATA
3 XX0000O000OO0OC00OCOCC0NO0ON0OOOONCONOOOCNNXXXXXXXXXXXXXXXXXXXXXXXXXX
LEA DI,DESTI-1 ;0ffset to last byte of destination
MOV CX,MESSAGE_SIZE ;Get message size
;to use as a repeat count

REPEAT: CLD ;Clear DF to increment source register
LODS SOURCE ;Move source byte to AL register
STD ;Set DF to decrement destination reg.
STO0S DEST ;Move AL reg. contents to destination
LOOP REPEAT iRepeat string move message size times
INT 3 sReturn to the debugger

§ XOOOOCONOEKXXXXXXXXXXXXXXXXXXXXAXXXXAXKAXXKXK XXX XKXXAR XXX KK KXNXX

3
PROG_CODE ENDS
END START

Figure 8-17

Program illustrating the remaining string instructions.

Interrupts and Strings 8‘69

27.

28.

29.

30.

The statement
DEST DB MESSAGE_SIZE DUP (0)

uses the equated symbol to define the size of the character string
storage area. The statement

DEST1 LABEL BYTE

will be used by the program to identify the end of the storage
area. We’ll describe the new program instructions later.

Assemble and link the program.

Call up the debugger and load your program. Use the Go com-
mand with a break point to run your program up to the first
new instruction — type “G0017” and RETURN. Now examine
the DEST_DATA segment to verify that it is filled with zeros.
The program will use the load string and store string instructions
to move the message stored in the SOURCE_DATA segment into
the DEST_DATA segment.

Single step through the first instruction. The DI register contains
the value _ _ _ _H. To keep things interesting, the program will
store the message backward in memory. This instruction loads
the effective address of the last storage location into the DI regis-
ter. The assembler directive statement

DEST1 LABEL BYTE

identifies the location of the first byte after the message storage
area. By taking the effective address of that label and subtracting
one, you have the effective address of the last byte in the storage
area. Thus, the effective address 63H is stored in the DI register.
The effective address for the SOURCE_DATA segment message
was stored earlier in the SI register by the load data segment
instruction.

Single step through the next instruction. The CX register contains
the value _ _ _ _H. Here we have a new method for loading
the size of a character string. Instead of counting the characters
in the string, we use the equate statement described earlier to
load the string size in the Count register. The count, as in the
previous programs, is 64H.

8"70 UNIT EIGHT

31.

32.

33.

34.

35.

36.

37.

38.

Single step through the next instruction. The Direction flag is

Single step through the next instruction. The AL register contains
the value _ _H and the Sl register contains the value __ _ _H.

Single step through the next instruction. The Direction flag is

Single step through the next instruction. The DI register contains
the value __ _ _H.

Single step through the next instruction. The CX register contains
the value _ _ _ _H. Because the Count register is not zero, the

MPU has branched back to the clear Direction flag instruction.

Single step through the next instruction. The Direction flag is

Continue to single step through the program loop a couple of
times and compare the results with the previous five steps. Then
run the program to completion — type “G” and RETURN. The
SI register contains the value _ _ _ _H and the DI register con-
tains the value — _ _ _H.

Examine the DEST_DATA segment. Notice that the message was
transferred front-to-back.

Interrupts and Strings 8"71

Discussion

Your program essentially duplicated the operation performed by the
move string instruction. However, it gave you the opportunity to ob-
serve the operation of the LODS, STOS, CLD, and STD instructions.
As each character was moved out of the SOURCE_DATA segment and
into the AL register, the SI register was incremented. Then when the
character was moved from the AL register into the DEST_DATA seg-
ment, the DI register was decremented. The state of the Direction flag
determined register direction (increment or decrement).

Neither string instruction affected the contents of the CX register. This
will only happen when the repeat prefix code is used with a string
instruction. In this program the CX register was decremented by the
loop instruction.

This completes the Experiment for Unit 8. Proceed to the Unit 8 Exami-
nation.

8'72 UNIT EIGHT

Interrupts and Strings 8'73

There are two types of interrupts:

and

Describe what happens during a typical interrupt.

UNIT 8 EXAMINATION

A form of interrupt that is used to restart or initialize the MPU
1s called a

Write the instruction mnemonic and, if necessary, the prefix code

that will:

A.

Compare two byte strings until two like
values are found, or the contents of the CX
register is zero.

Move a string of words into memory.

Com:pare the elements of a string with the
contents of the AL register and stop execu-
tion when the contents of the CX register
are zero, or a value different from the
contents of the AL register is found.

Load a word of a string into the AX register.

Storz the contents of the AX register into a
memory location.

8-74 | uniTeigHT

EXAMINATION ANSWERS

There are two types of interrupts: external and internal.

During a typical interrupt, the MPU completes the execution of
the current instruction, pushes the contents of the CS, IP, and
Flag registers into the stack, and retrieves the IP and CS register
values from the interrupt vector table. After the interrupt is ser-
viced, the Flag, IP, and CS register values are popped from the
stack, and program execution continues from the point of the
interrupt.

A form of interrupt that is used to restart or initialize the MPU
is called a reset.

A.

Compare two byte strings until two like
values are found, or the contents of the
CX register is zero.

Move a string of words into memory.

Compare the elements of a string with
the contents of the AL register and stop
execution when the contents of the CX
register are zero, or a value different
from the contents of the AL register is
found.

Load a word of a string into the AX reg-
ister.

Store the contents of the AX register
into a memory location.

REPNE CMPSB

REP MOVSW

REPZ SCASB

LODSW

STOSW

Interrupts and Strings 8"75

10.

11.

12.

13.

SELF-REVIEW ANSWERS

Generally speaking, an interrupt is a temporary break in the nor-
mal execution of a program; after which, program execution re-
sumes at the point of the break.

The actions that the MPU takes in response to an interrupt are
called the interrupt service routine or interrupt routine.

Responding to an interrupt is referred to as servicing the inter-
rupt.

The two basic types of interrupts are the internal interrupt and
the external interrupt.

Under the general heading of external interrupts, there are the
maskable interrupt and the non-maskable interrupt.

The interrupt vector table, or interrupt pointer table, is a list
of starting, or physical, addresses for the various interrupt
routines.

The first two bytes of each interrupt vector, or pointer, contain
the Instruction Pointer value, while the next two bytes contain
the Code Segment value.

Each interrupt routine must end with the IRET (interrupt return)
instruction.

A divide error interrupt will result after the execution of a DIV
instruction if the quotient is too large to fit in the destination

register.

During single step operation, the MPU is directed to a special
subroutine after the execution of each instruction.

Single step operation can be used to help debug a program.

In order to use the single step operation, you must set the Trap
flag.

The two software interrupt instructions that use an instruction
mnemonic are INT (interrupt) and INTO (interrupt on overflow).

8'76 UNIT EIGHT

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25,

When the instruction INT 96 is executed, a type 96 interrupt
is generated. The contents of the Flag, CS, and IP registers are
pushed into the stack. Then the physical address of the interrupt
routine, found at the address indicated in the type 96 vector,
is loaded into the CS and IP registers.

The interrupt instruction INTO will only be executed if an over-
flow condition exists.

Segment attribute AT is used to define the base address of a seg-
ment.

The assembler operator SEG (segment) is used to identify the
segment base address of a symbol.

False. While the segment combine-type attribute AT is used to
specify the base address of a segment, no data can be initialized
within that segment; only symbols may be identified.

The two control lines on the 8088 MPU that can be used to indi-
cate an external interrupt are the INTR line and the NMI line.

When a peripheral device requests an interrupt on the INTR line,
the MPU finishes executing the current instruction, stores the
contents of the Flag, CS, and IP registers in the stack, and then
generates an interrupt acknowledge. At that time, the peripheral
device places the interrupt pointer number on the data bus so
that the MPU “knows” which interrupt routine to execute.

The back-and-forth conversation between the MPU and the
peripheral over the INTR and INTA lines is called handshaking.

Vectored interrupt routines must conclude with the IRET instruc-
tion.

True. If you want the MPU to “ignore” interrupt requests on the
INTR line, then the IF flag must be clear.

The STI instruction is used to set the Interrupt flag.

The Interrupt flag is cleared by the CLI instruction.

Interrupts and Strings 8'77

26.

27.

28.

29,

30.

31.

32.

33.

34.

35.

36.

Even if the Interrupt flag is clear, the Non-Maskable (NMI) inter-
rupt will not be disabled.

In what order are internal and external interrupts serviced?

A. DivideError, INT, and INTO.
B. NMI

C. INTR.

D. Single Step.

A reset is used any time it is necessary to restart or initialize
the MPU.

What are the contents of the following, after a reset has occurred?

A. Flag Register 0000H
B. IP Register 0000H
C. CS Register OFFFFH
D. DS Register 0000H
E. ESRegister 0000H
F. SSRegister 0000H
G. Queue Empty

The process by which peripheral devices communicate directly
with the microcomputer’s memory is called Direct Memory Ac-
cess (DMA).

In order for a peripheral to obtain “permission” to perform a di-
rect memory access, it must initiate a hold request on the HOLD

control line.

The MPU responds to a hold request by outputting a high on
the HLDA control line.

A string is a number of bytes or words that reside in sequential
memory locations.

Each item in a string can also be called an element.

An operation that is performed on each element of a string is
called a string operation.

In a string operation, the number of times the operation is re-
peated is specified in the CX, or Count, register.

8'78 UNIT EIGHT

37.

38.

39.

40.

41.

42.

43.

44.

45.

The default segment for the destination string is the extra seg-
ment.

The default general, or offset address, register that is used to point
to the memory location of the destination string is the DI, or
Destination Index, register.

The default general, or offset address, register that is used to point
to the memory location of the source string is the SI, or Source
Index, register.

False. Only a move string instruction can be used to transfer data
from one memory location to another.

The string prefix code REP, or repeat string, causes a string opera-
tion to be repeated count times.

The instruction
MOVS DEST, SOURCE

is said to use a symbolic reference in determining the source
and destination string locations.

An anonymously referenced string instruction defaults to the data
segment for determining the location of the source string.

The SI and DI registers are incremented or decremented twice
after a word-sized string element is moved.

If the source string is identified by the symbol SOURCE and the
destination string is identified by the symbol DEST, write the
symbolically referenced instruction that will:

A. Move a byte string: REP MOVS DEST,SOURCE
B. Compare an element in
two word strings: CMPS SOURCE,DEST
C. Compare a word value to
a string element: SCAS DEST
D. Store a byte string: REP STOS DEST

E. Load a word-sized string
element into the accumulator: LODS SOURCE

Interrupts and Strings 8'79

46.

47.

48.

49,

50.

51.

Write the short anonymous instruction that will fulfill each of
the following conditions:

0
B

o

Move a word string: REP MOVSW
Compare an element in

two byte strings: CMPSB
Compare a byte value to

a string element: SCASB

Store a word string: REP STOSW

Load a byte-sized string
element into the accumulator: LODSB

If the destination string element contains the value 42H and the
source string element contains the value 88H, the CMPSB instruc-
tion will subtract the destination value from the source value,
giving the result 46H. This value is then used by the MPU to
set or clear the six arithmetic flag bits. The flag conditions are

as follows:

A. Overflow flag: Set because there was a borrow from the most
significant source bit, but no borrow into the most significant
source bit.

B. Sign flag: Cleared because the most significant result bit was
cleared, indicating a positive result.

C. Zero flag: Cleared because the result was not zero.

D. Auxiliary Carry flag: Cleared because there was no auxiliary
carry during the subtraction.

E. Parity flag: Cleared because there was an odd number of one-
bits in the result.

F. Carry flag: Cleared because there was no borrow into the

most significant source bit.

The contents of the Direction flag determine the direction of a
string operation.

If the Direction flag is set during a string operation, the SI and/or
DI registers will decrement.

The CLD instruction is used to clear the direction flag.

The STD instruction is used to set the direction flag.

8-80 | unTeiGHT

52.

53.

54,

55.

56.

57.

58.

59.

The REPE and REPZ string prefix codes decrement the CX regis-
ter, test the register for zero, and check to see if the Zero flag
is set.

The REPNE and REPNZ string prefix codes decrement the CX
register, test the register for zero, and check to see if the Zero
flag is clear.

The LDS instruction is used to load the data segment register
and a 16-bit general register.

The LES instruction is used to load the extra segment register
and a 16-bit general register.

When dealing with string operations, the 16-bit general register
that is loaded by the LES instruction should be the DI, or Destina-
tion Index register.

The best way to load the base and offset address of a string in
memory is with the DD, or Define Doubleword assembler direc-
tive.

When the LDS and LES instructions are executed one after the
other, the LES instruction should be executed first, to make sure
it retrieves the correct values from the data segment before the
data segment reference is possibly changed.

False. You can use both symbolic and anonymous references with
the LDS and LES instructions.

LAASNI

Unit 9

CODE MACROS
AND OTHER INTERESTING
MACRO-86 FEATURES

UNIT NINE

CONTENTS
ToDARCEION. ..« siis v wen il Fa e Fasas samAS T aE o3 S0 55 Vered b 9-3
Unit Objectivest i e it et 9-4
Dl Aetieity GidB oo on vmwes vesm vuven s ews s i o estes 9-5
ProGadares 5 s snaen s so s <oFeE eaen SNEEHE ¥ BBE 6 Ve § 9-6
The Group DIXsCHVE scmes s omn venan vssos be 5w s oo 9-15
Conditional Directivesc.iiiuriiinninennnnennn 9-20
Miacro Diractives and ODEEaLOTS .« vvvis won v s i aases viv s 9-32
Assembler Listing Directivesooiuiiiiniiininnnnn. 9-54
EXDOTIRANE o0 covs 58 Bl 2@ SHE B B 118 B B8 58 BEADS S 9-64
Unit 9 Examinationc.ueuiinonnnnnnnninnnnnnnns 9-83
Examinationn ANSWEIS .. we siv v auve i siaie oo aaie s amsienss v aess 9-85

Self-ReVIeW ADSWEIS . ¢ it s oie o sia's se sials die aisia als &6 nisis aib o 9-87

Code Macros and Other Interesting Macro-86 Features 9"3

INTRODUCTION

You now have the mental tools to write and assemble a detailed pro-
gram using MACRO-86. There are, however, certain functions and fea-
tures of MACRO-86 that can make the job of programming a little easier.
While you may never need to use these items, you should be aware
of how they work. This can be very important if you are trying to under-
stand a program listing that uses all of the power of MACRO-86.

The first item that we will cover is the procedure. Recall that you used
a FAR procedure to exit an EXE-type program. Procedures perform a
useful task by providing more structure to a program. You will learn
to use both NEAR and FAR procedures.

Next you will study groups. These are special directives that allow
you to gather segments under a single symbol for specific coding tech-
niques.

Following groups, you will learn how to use the conditional assembly
directives. These give you the power to set up program subsections
that will only assemble when certain conditions exist.

Then, you will learn how to create your own unique program instruc-
tions. These special instructions are called code macros. While they
resemble a program subroutine, they have many additional features.

The last part of the unit will cover the assembler listing directives.
While not directly related to the actual assembly of a program, they
do control how the program listing is presented both on the display
and in a printout.

Use the “Unit Objectives” that follow to evaluate your progress. When
you can successfully accomplish all of the objectives, you will have
completed this Unit. You can use the “Unit Activity Guide” to keep
a record of those sections that you have completed.

9"4 UNIT NINE

UNIT OBJECTIVES

When you complete this Unit, you will be able to:

1. Define the following directives: PROC, ENDP, GROUP, IF (and
its derivatives), ELSE, ENDIF, MACRO, ENDM, EXITM, LOCAL,
PURGE, REPT, IRP, IRPC, PAGE, SUBTTL, %0OUT, .LIST, .XLIST,
.SFCOND, .LFCOND, .XALL, .LALL, and .SALL.

A Describe the macro operators: &, <>, ;;, !, and %.

Code Macros and Other Interesting Macro-86 Features 9'5

O o o o &g o o

00 O

O O 0O O 0O 0O

UNIT ACTIVITY GUIDE

Kead the Section on “Procedures.”

Complete Self-Review Questions 1-9.

Read the Section on “The Group Directive.”
Complete Self-Review Questions 10-15.

Read the Section on “Conditional Directives.”
Complete Self-Review Questions 16-31.

Begin Reading the Section on “Macro Directives and
Operators.”

Complete Self-Review Questions 32-40.

Continue Reading the Section on “Macro Directives
and Operators.”

Complete Self-Review Questions 41-48.

Read the Section on “Assembler Listing Directives.”
Complete Self-Review Questions 49-61.

Perform the Experiment.

Complete the Unit 9 Examination.

Check the Examination Answers.

Completion
Time

9'6 UNIT N!NE

PROCEDURES

Procedures are sophisticated forms of subroutines. They add a more
identifiable framework to a program. That is, they rigidly define the
beginning and end of a subroutine. Because of this rigid structure, they
are an aid for constructing “good” program code. And as you learned
in Unit 7, they are also necessary if you wish to gracefully exit an
EXE-type program. We’'ll begin our description of procedures with a
look at their structure.

Structure

The structure of a procedure is similar to the structure of a segment.
That is, its beginning and its end must be defined with an assembler
directive. The typical structure takes the form

<proc-name> PROC <type>
;procedure code

RET
<proc-name> ENDP

Code Macros and Other Interesting Macro-86 Features 9“7

where <proc-name> is a name unique to the program, and <type>
is the type of procedure: NEAR or FAR. If no type is specified, the
default type is NEAR. The directive PROC identifies the procedure
beginning. When a procedure is “called,” the procedure name is used
to identify the procedure location. Program execution then begins at
the first instruction within the procedure. The directive ENDP identifies
the end of a procedure for the assembler. It plays no part in program
execution.

Notice that we included a RET instruction within the procedure struc-
ture. Every procedure should have at least one return instruction; it
is, after all, a subroutine. The assembler uses the procedure “type”
to determine whether the return instruction is coded for a NEAR return
or a FAR return. The assembler also uses the procedure type to deter-
mine the coding (NEAR or FAR) for the “calling” instruction.

Calling A Procedure

When you call a NEAR procedure, the contents of the Instruction
Pointer are pushed into the stack, and the effective address of the proce-
dure is loaded into the IP register. This procedure address is also the
address of the first instruction in the procedure. The procedure return
instruction will pop only the IP register contents because the assembler
has given it the same type (NEAR) as the procedure.

UNIT NINE

The Microsoft MACRO Assembler 07-17-84 PAGE -1
UNIT 9 -- PROGRAM 1 -- CALLING A NEAR PROCEDURE

1 TITLE UNIT 9 -- PROGRAM | -- CALLING A
NEAR PROCEDURE

£ i

3 0000 PROG_STACK SEGMENT STACK

4 0000 S (DW 80 DUP (@)

] 0000

b]

7

8 00A0 TOP_OF_STACK LABEL WORD

9 00A0 PROG_STACK ENDS

10 3

11 0000 PROG_CODE SEGMENT

12 ASSUME CS:PROG_CODE, $S:PROG_STA
CK

13 0000 B8 ----R START: MOV AX,PROG_STACK

14 2003 BE DO MOV 85, AX

15 9005 BC 00R0 R MOV SP,OFFSET TOP_OF_STACK

16 0008 EB @eeC R CALL COUNT_DOWN

17 000B CC INT 3

18 H

19 oo0eC COUNT_DOWN PROC NEAR

20 @0oC B9 BBBB MOV CX, @BBBBH

21 Q00F E2 FE AGAIN: LOOP AGAIN

22 ee11 C3 RET

23 0012 COUNT_DOWN ENDP

24 :

25 0012 PROG_CODE ENDS

26 END START

The Microsoft MACRO Assembler 07-17-84 PAGE Symbols

-1
UNIT 9 -- PROGRAM | -- CALLING A NEAR PROCEDURE

Segments and groups:

Name Size align combine clase
PROGCODE. & » « w 5 & 5 & = = 0012 PARA NONE
PROG_STACK « & & 4w o s o 0 o 3 & 00h PARA STACK
Symbols:
Name Type Value Attr
AGAIN. & i v 5 6 & s 9 & W e L NEAR 000F PROG_CODE
COUNT DOWN + « v+« + v v v » & N PROC @8eC PROG_CODE Lenath
=0005
START. . = o « & R R S L NEAR 0000 PROG_CODE
TOP OF STACK « ¢ v o« o s s s & L WORD @@Rd PROG_STACK
Warning Severe
Errors Errors
@ @ .
Figure 9-1

Assembler listing of a program that uses
a NEAR procedure.

Code Macros and Other Interesting Macro-86 Features 9'9

Figure 9-1 is an assembler listing of a simple program that uses a proce-
dure to identify a subroutine. Comments have been left out of the pro-
gram to make it easier to read. Program lines 1 through 15 contain
the standard segment and register initialization code. The procedure
is called by the instruction on line 16.

The procedure COUNT_DOWN is listed on lines 19 through 25. It is
a simple time delay. The count register is loaded with the value
0BBBBH,; then it is decremented by the loop instruction. The following
return from call instruction causes a branch back to the main program.
Because the procedure was given a type NEAR, the return instruction
isalso a type NEAR. The program ends with a type 3 interrupt.

Following the program listing is the standard symbols listing. Notice
that COUNT_DOWN has a “Type” N PROC (NEAR procedure), it begins
at offset 000CH (Value), it is located in the PROG_CODE segment (Attri-
bute), and it contains six bytes of code (Length = 0006H).

Calling a FAR procedure causes the contents of the CS and IP registers
to be pushed into the stack. Again, the procedure address is the same
address as the first instruction in the procedure. When the return from
call instruction in the procedure is executed, the IP and CS values
are popped from the stack, and the program continues execution from
that location.

9'1 0 _ UNIT NINE

Figure 9-2 is an assembler listing of a program that performs the same
operation as the program in Figure 9-1. Only this time, we are dealing
with a FAR procedure call. To accomplish this task, the procedure
was pulled from the main code segment and placed in a separate (pri-
vate) code segment. This segment, called FAR_CODE, is listed on lines
11 through 18. In addition to the SEGMENT and ENDS directives, we
have added an ASSUME directive to tell the assembler that it is dealing
with a different code segment. The only other change is the type FAR
replacing the previous type NEAR in the PROC directive. Notice that
the “secondary” code segment precedes the “main” code segment. This
is necessary to prevent any forward reference problems during assem-
bly. Always use this arrangement when you must use an intersegment
FAR procedure.

Compare the two procedure call instructions. In Figure 9-1, the program
code contains the instruction opcode for a NEAR call and the two-byte
address offset. Recall that the letter “R” following the code is a flag
for the linker to indicate that it might be necessary to adjust the address
offset during linking. In Figure 9-2, the program code contains the in-
struction opcode for a FAR call, the two-byte address offset, and four
dashes. The dashes indicate that the “called” segment base address
must be calculated by the linker.

The program listed in Figure 9-2 is typical of a program with more
than one code segment and no external references. If you wish to link
one or more external programs to your main program, use the EXTRN
and PUBLIC directives described in Unit 7. They operate in the same
manner whether your programs contain procedures or not.

The two examples of calling a procedure used the procedure name
to determine the address of the first instruction in the procedure. You
can also call any label within a procedure. However, if the label is
within a FAR procedure, you must declare that label a FAR label using
the LABEL directive. Labels within a NEAR procedure are, by default,
NEAR.

The programs in Figures 9-1 and 9-2 used a type 3 interrupt to end
the program. However, as you know, this only works when you are
using the debugger or another program that supports a type 3 interrupt.
A normal exit for an EXE-type program is through a FAR return. Earlier,
you used a “dummy” FAR procedure to provide that return. Now that
you understand what a procedure is, we’ll show you the proper method
for setting up a FAR return.

Code Macros and Other Interesting Macro-86 Features 9'1 1

The Microsoft MACRO Assembler @7-17-84 PAGE 1-1
UNIT 9 -~ PROGRAM 2 -- CALLING A FAR PROCEDURE

1 TITLE UNIT 9 -—— PROGRAM 2 -- CALLING A
FAR PROCEDURE

2 ;

3 @000 PROG_STACK SEGMENT STACK

4 009 50 [DW 8@ DUP (@)

5 2000

&]

7

g POA0 TOP_OF _STACK LABEL WORD

9 Q0A0 PROG_STACK ENDS

10 .

11 0000 FAR_CODE SEGMENT

12 ASSUME CS:FAR_CODE

13 0000 COUNT_DOWN PROC FAR

14 9000 B9 BEBE MOV CX,eBBBBH

15 0003 E2 FE AGAIN: LOOP AGAIN

16 0005 CEB RET

17 0006 COUNT_DOWN ENDP

18 0004 FAR_CODE ENDS

19 '

20 2000 PROG_CODE SEGMENT

21 ASSUME CS:PROG_CODE, $S:PROG_STA
CK

22 9000 B8 --— R START: MOV AX,PROG_STACK

23 9003 3E De MOV S5, AX

24 0005 BC 00AQ R MOV SP,OFFSET TOP_OF_STACK

25 0008 9A 0000 --—— R CALL COUNT_DOWN

26 @oeDd CcC INT 3

27 @0eE FROG_CODE ENDS

28 END START

The Microsoft MACRO Assembler 87-17-84 PAGE Symbols

=1
UNIT 9 -- PROGRAM 2 -- CALLING A FAR PROCEDURE

Segments and groups:

Name Size align combine class
FARCODE & « aw o w i o 5 50w s 0006 PARA NONE
PROGCODE. . + = » s o « = = « « Q00E PARA NONE
PROG STACK « « o ¢ & o & = wiw & 00h0 PARA STACK
Symbols:

Name Type Value Attr
AGAIN. . v+ s & ¢ ¢ 4 o o 4 s o« L NEAR 0093 FAR_CODE
COUNT DOWN . . - v v s = v v & & F PROC 0000 FAR_CODE Length

=0006

START. o im0 e wi s = im0 & & L NEAR 0000 PROG_CODE
TOP.OF STACK o « & v w a w4 = » L WORD @eAo PROG_STACK

Warning Severe

Errors Errors Figure 9-2

g g Assembler listing of a program that uses
a FAR procedure.

9'1 2 UNIT NINE

TITLE UNIT 9 -- PROGRAM 3 -- PROPER EXE PROGRAM STRUCTURE

L)
PROG_STACK SEGMENT STACK
Dk 30 DLP (8) 1Set up stack area
TOF_OF_STACK LABEL WORD sIdentify top of stack for SP register
PROG_STACK ENDS

1
PROG_CODE SEGMENT
ASSUME CS5:PROG_CODE, SS:PROG_STACK
START PROC FAR
MoV AX,PROG_STACK j;Never load a segment register direct

MOV 35, AX iUse an intermediate register

MoV SP,OFFSET TOP_OF_STACK j;Point to the top of stack
PUSH Ds ;Save segment for return value

SUB AX,AX ;Zero the AX register

PUSH AX ;Save offset of zero for far return

1
yProgram code area

i
RET sExit the program
START ENDP
PROG_CODE ENDS
END START
Figure 9-3

EXE program structure for a proper program termination.

Figure 9-3 shows the basic structure for a “proper” EXE-type program.
We have left the data segment out of the program to keep it simple.
After the Stack Segment and Stack Pointer registers are loaded, the
current contents of the Data Segment register and an offset address
value of zero are pushed into the stack. Recall that these values are
used as the program exit address. Just make sure that when you execute
the FAR return at the end of the program, that these values are the
next words to be popped from the stack. That is, whenever you push
an address or data into the stack, make sure you pop it back out of
the stack before you terminate the program.

Nested and In-Line Procedures

Every procedure is essentially a subroutine. From this generalization,
it follows that you can treat each procedure as a subroutine. Therefore,
you should assume that every procedure can be accessed through one
or more labeis, and that every procedure will contain one or more return
instructions that have the same type (NEAR or FAR) as the procedure.

Code Macros and Other Interesting Macro-86 Features 9'1 3

Like subroutines, procedures arz normally accessed through a call in-
struction. In addition, other procedures can be called through a proce-
dure. Thus, procedures can be nested. The only limit to the level of
nesting is the size of the stack.

In addition to the call instruction, a procedure can be accessed through
a jump instruction. Naturally, a jump is a one-way operation. The return
address is not saved in the stack. We suggest you not use a jump to
access a procedure.

One other method for accessing a procedure is through an “in-line”
process. All this means is that the procedure is part of a consecutive
string of instructions. Rather than branch to the procedure, the proce-
dure is part of the instruction sequence. Figure 9-4 shows a portion
of a program that contains a simple in-line procedure. Rather than serve
as a subroutine that is called, this procedure is a process that you might
have pulled from a library of often used processes. Of course, this pro-
cess could also contain a number of conditional instructions that would
allow it to be used as a subroutine to support another area of the pro-
gram, The point is, that you don’t always have to branch to a procedure.

MoV AX, DATAI
MOV BX,DATAZ
AVERAGE PROC NEAR

MoV DX, AX

ADD DX, BX

RCR DX, 1
AVERAGE ENDP

MOV DX, DATA3

Figure 9-4
Example of an in-line procedure.

9'1 4 UNIT NINE

Self-Review Questions

1.

Procedures have a rigid

The beginning of a procedure is identified by the directive

The end of a procedure is identified by the directive

Every procedure should contain at least one
instruction.

A____ (type) procedure is used to define the main code
section of an EXE program.

The procedure return instruction type is determined by the proce-
dure

The EXE-type program termination address is determined by

pushing the original contents of the seg-
ment register and the address offset into
the stack.
The best way to access a procedure iswitha _____in-
struction.

Procedures can be nested any number of times, as long as there
is room on the stack for all of the return addresses.

True/False

NOTE: The Self-Review Answers are located at the end of this unit,
beginning on Page 9-87.

Code Macros and Other Interesting Macro-86 Features 9'1 5

THE GROUP DIRECTIVE

The GROUP directive allows you to gather any number of program
segments into one identifiable collection. This has the advantage that
you can then address any location within that group using a single
base address. A side benefit is that your program will only need one
ASSUME statement, since all address references are made from a single
base value. There is, however, one restriction. The group size cannot
exceed 64K bytes of memory.

The assembler does not check the group size to determine if it is too
large, that job is handled by the linker. This is only natural since you
may be linking one or more external files with the main program, and
they may share the same group. If the group size exceeds 64K bytes,
the linker will react in one of several ways. Early versions will appear
to pause a minute or so during the linking process, while they try to
link the files. IBM's version 1.10 will then complete the operation and
create an EXE file. However, any group data that exceeds 64K bytes
is lost — the program will not run properly. Zenith’s version 1.10 will
do the same thing, only their linker will print the message:

Fatal Error:
Out of space on run file

This tells you that the EXE file is not valid. With either version, you
wind up with a bad EXE file on your disk. For link version 2.00 and
later, the linker will not generate an EXE file if the group size exceeds
64K bytes. Zenith’s linker will also tell you there was a problem by
printing the message:

Out of space on run file

9-16

UNIT NINE

Structure

A GROUP directive statement is structured in the following manner:
<group-name> GROUP <[seg-name],],...]>
where:
<group-name>
is a unique name that you have assigned to the group,
GROUP
is the assembler directive, and
<[seg-namel,[,...]>

refers to the names of the segments being combined in the group. The
arrangement of the segment names in the directive does not necessarily
control the order of the segments when they are linked. This is a func-
tion of the linker; and as you learned earlier, there are differences be-
tween linkers.

Program Uses

A GROUP directive is generally used to combine the stack and data
segments of a program. However, it can be used to combine all of the
segments. If you do this, you in effect create a form of COM-type pro-
gram. All of the individual segments appear as one (all use the same
segment base address), yet the program has the characteristics of an
EXE-type program. Naturally, you aren't trying to create a COM-type
program with the GROUP directive. You are using the directive to re-
duce the complexity of addressing many different segments.

Figure 9-5 shows a program where the stack and data segments are
combined in a group and the code segment is separate. The group is
called DATA__ GROUP. Notice that the directive is at the top of the
program. It can be placed at any point in the program listing as long

Code Macros and Other Interesting Macro-86 Features 9'1 7

TITLE UNIT 9 —— PROGRAM 5 -- GROUPING SEGMENTS
)
DATA_GROUP GROUP PROG_STACK,PROG_DATA, SOURCE_DATA,DEST_DATA

L)
PROG_STACK SEGMENT STACK
DW 80 DUP (@) ;Set up stack area
TOP_OF_STACK LABEL WORD ;Identify top of stack for 5P register
PROG_STACK ENDS

PROG_DATA SEGMENT PUBLIC
DATA DB 14 DUP (@AAH)
PROG_DATA ENDS

SOURCE_DATA SEGMENT PUBLIC
SOURCE DB 'THIS 15 A SOURCE CHARACTER STRINGS’
SOURCE_DATA ENDS

i

DEST_DATA SEGMENT PUBLIC
DEST DB 35 DUP (@)
DEST_DATA ENDS

4
PROG_CODE SEGMENT

ASSUME CS:PROG_CODE, DS: DATA_GROUP,ES: DATA_GROUP,SS: DATA_GROUP
START PROC FAR

MOV AX,DATA_GROUP ;Use the base address of the GROUP to

MOV S5, AX ;load the Stack Segment register

MoV SP,OFFSET DATA_GROUP:TOP_OF _STACK ;Point to stack top
PUSH Ds ;Save segment for far return value
SUB AX, AX ;Zero the AX register

PUSH AX ;Save offset of zero for far return
MOV AX,DATA_GROUF ;Again use the GROUP base address
MOV DS, AX ;to load the remaining

MOV ES,AX isegment base addresses

]
jProgram code arez

3
RET ;Exit the program
START ENDP
PROG_CODE ENDS
END START
Figure 9-5

Program using the GROUP directive.

as it is outside of any SEGMENT/ENDS directive pair. However, the
GROUP directive must precede any SEGMENT directive that is part
of the group or any program reference to the group. Finally, a program

can contain more than one group.

Following the GROUP directive are the stack and three data segments
that form the group. When a segment is made part of a group, it must
be a PUBLIC (a stack is considered PUBLIC) segment. Any attempt

to “group” a PRIVATE segment will generate an assembly error.

9'18 UNIT NINE

The ASSUME directive reflects the program segment group. While code
is assumed to reside in the PROG_CODE segment, the stack and pro-
gram data are assumed to reside in the group DATA_GROUP. When
a group of segments is formed, all address references are made from
the base address of the group.

This concept is illustrated in three of the program instructions. The
first and seventh instructions move the base address of the group into
the AX register. That value is then stored in all of the segment registers
except the Code Segment. The third instruction in the program loads
the Stack Pointer register with the offset to the end of the stack. A
special “group override” operator tells the assembler that the base refer-
ence for the offset is the group name. Had you used the common instruc-
tion

MOV SP,OFFSET TOP_OF_STACK

the offset value would have been calculated from the beginning of the
stack segment, and that may not be the beginning of the group. There-
fore, you must use a group override operator when you reference an
offset value within a group. That operator is the group name followed
by a colon. Here are a few more examples of where the group override
operator should be used. The symbol AVERAGE represents an instruc-
tion label, the symbol DATA represents a byte of data, and all code
and data reside within the group PROG_ GROUP.

DW PROG_GROUP : AVERAGE

DD PROG_GROUP: AVERAGE

MOV DI,OFFSET PROG_GROUP:DATA
MOV BX,OFFSET PROG_GROUP:AVERAGE

When vou use a DW directive to load the offset address of a label,
the OFFSET operator is implied by the directive. Thus, when you use
the group override to obtain the correct offset, you don’t have to include
the operator OFFSET. When you use the group override with the DD
directive, the group base address and the offset from that address is
loaded into memory. In either case, if you forget to use the group over-
ride, the assembler will calculate the offsets from the segment base
address rather than the group base address. The next two instructions
determine the offset address value from the group base address. Again,
if you forget the group override, the offset will be calculated using
the segment base address.

Code Macros and Other Interesting Macro-86 Features 9‘1 9

Self-Review Questions

10. The purpose of the GROUP directive is:

11. The maximum size of a group is bytes.

12. Group size is checked by the
13. Your program contains the following segments:
PROG_STACK

PROG_DATA
PROG_CODE

Write a GROUP directive statement that will combine all of the
program segments into one group called PGROUP.

14. Write the ASSUME directive statement for the program in ques-
tion 13. The Extra Segment register will not be used by the pro-
gram.

15. Write the instruction that will load the Stack Pointer register for
the program in question 13. The end of the stack is identified
by the LABEL directive:

TOP_OF_STACK LABEL WORD

9'20 UNIT NINE

CONDITIONAL DIRECTIVES

Conditional directives are assembler instructions that specify whether
a section of a program should be assembled or not. This allows you
to design blocks of code for different program situations which are
then assembled or not assembled depending on certain conditions. For
instance, you could set up a test to determine if the program must
run on an IBM or a Zenith microcomputer. If it is to be an IBM, only
the code for IBM operation will be assembled; the Zenith code will
be ignored. By controlling which code is assembled, you can write
program source code to cover every possible situation, yet keep the
size of the operating program as small as possible.

There are ten conditional directive types. However, all of them follow
the same basic format. Therefore, we will begin their description by
looking at the general structure of an IF-ENDIF directive.

Structure

A conditional directive identifies a block of code or data by enclosing
the block within a directive pair much like the PROC-ENDP directive
pair. In the case of the conditional directive, its structure takes the
form

IFxxxx [argument, expression, or symbol]

ENDIF

where IFxxxx is one of ten conditional “IF” variations that identify
the beginning of the conditional block, and the conditional test. The
[argument, expression, or symbol] establishes the parameter that is
tested. ENDIF identifies the end of the conditional block. If the condi-
tion is met (tests true), the code or data within the directive pair is
assembled. If the condition is not met, the code or data is not assembled.

Code Macros and Other Interesting Macro-86 Features 9‘21

Any [argument, expression, or symbol] used in a conditional directive
must be known on pass one of the assembly operation. Recall that
MACRO-86 is a two-pass assembler. During pass one, it builds a symbol
table and calculates how much code will be generated. It does not gener-
ate object code. On pass two, the assembler uses the values defined
in pass one to generate the object code. Definitions of references are
checked against the pass one value, which is in the symbol table. There-
fore, if the [argument, expression, or symbol] cannot be determined
during pass one, because of a forward reference, the assembler will
not know if the conditional ccde or data should be assembled. The
assembler will know during pass two, but by that time, it's too late,
and an assembly error is generated.

Conditional directives can be nested. However, each IFxxxx must have

a matching ENDIF to terminate the condition. Following is a general

example of how two conditional directives could be nested within a
third.

[Fxxxx [argument, expression, or symbol]
[Fxxxx [argument, expression, or symbol]
[Fxxxx [argument, expression, or symbol]
;ENDIF
;ENDIF

ENDIF

Keep in mind that, before a nested conditional directive can be acces-
sed, the higher level condition must test true. In our example, the third
conditional directive will only be tested if the first two test true. If
the second tests false, its code or data will be ignored, and with it,
the third. Conditional directives can be nested up to 255 levels.

9'22 UNIT NINE

IF Variations

There are ten different forms of the IFxxxx-ENDIF directive. Each will
be described in this section.

IF [expression] If the expression evaluates to a monzero, the code or
data within the conditional block will be assembled. The expression
must be an absolute value (constant). Following are acceptable exam-
ples of specifying an absolute value:

COUNT EQU 1

IF COUNT

;CODE OR DATA

ENDIF

IF COUNT + OFFFFH

;CODE OR DATA

ENDIF

IF 5

:CODE ORDATA

ENDIF
With COUNT equated to one, the first conditional will test true. The
second conditional is a little more tricky. It shows that you can
arithmetically modify the equated value with a constant. However, the
constant cannot exceed hexadecimal FFFF. The result of the arithmetic
operation can exceed hexadecimal FFFF, but then only the least signifi-
cant 16 bits will be evaluated by the conditional directive. In the second
conditional, the absolute value is hexadecimal 10000. Since only the
16 least significant bits are evaluated, and they equal zero, the test
is false. The block of code or data will not assemble. The last condi-

tional used the constant 5 as the expression. Since it is not zero, the
condition will test true.

Code Macros and Other Interesting Macro-86 Features 9"23

TITLE UNIT 9 —- PROGRAM & —— IF-ENDIF

1
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE

;
IBM EQU 1 i1 = True,
ZENITH EQU %] 30 = False
;
START PROC FAR
;
IF 1M
CALL DISPLAY1
ENDIF
IF ZENITH
CALL DISFLAY2
ENDIF
;
RET ;Exit program
IF 1BM
DISPLAY1:
NOP
RET
ENDIF
IF ZENITH
DISPLAY2:
NOP
RET
ENDIF
START ENDP
PROG_CODE ENDS
END START
Figure 9-6

Program using the condition IF-ENDIF directive pair.

Figure 9-6 shows how the IF conditional could be used in a program.
The program doesn’t actually do anything. It simply illustrates a pro-
cess. The symbol IBM is equated to one and the symbol ZENITH is
equated to zero. These values will determine which conditional blocks
of code will be assembled.

9‘24 UNIT NINE

The Microsoft MACRO Assembler 07-25-84 PAGE 1-1
UNIT 9 -- PROGRAM & -- IF-ENDIF

1 TITLE UNIT 9 -- PROGRAM & -- IF-ENDIF
2 H
3 0000 PROG_CODE SEGMENT
4 ASSUME CS:PROG_CODE
S i
b = gool IBM EQU 1 31 = True,
7 = 0000 ZENITH EQU @ 3@ = False
8 H
9 0000 START PROC FAR
10 1
11 IF 1BM
12 9000 EB 0004 R CALL DISPLAY1
13 ENDIF
14 H
15 ENDIF
16 H
17 9003 CB RET sExit program
18 H
19 IF 1BM
20 0004 DISPLAY1:
21 0004 90 NOP
22 @005 CB RET
23 ENDIF
24 H
V] ENDIF
26 H
27 0005 START ENDP
28 0004 PROG_CODE ENDS
29 END START
Figure 9-7

Assembler listing of the program in Figure 9-6.

Now look at Figure 9-7. This is the assembier listing of the program
in Figure 9-6. The two IF IBM conditional directives tested true, while
the two IF ZENITH conditionals tested false. As a result, only the code
within the two IF IBM conditional blocks was assemblzd. The IF and
ENDIF directives played no part in the actual program.

Notice that only the ENDIF directives of the unassembled conditional
blocks remain in the listing. These are supplied by the assembler to
show where the original unassembled blocks were located. Again, they
play no part in the assembled program.

Code Macros and Other Interesting Macro-86 Features 9'25

By now, it should be apparent that the conditional directive 1s very
useful when you write a program taat must be easily modified to run
under different conditions. Had we used conditional directives in our
earlier display program, it would have been a simple matter of changing
two equate statements to accommodate either a Zenith or IBM system.
The remaining conditional directives expand the possibilities.

IFE [expression] If the expression evaluates to zero, the code or data
within the conditional block are assembled. This is just the opposite
of the IF [expression] directive.

IF1 This is called a “pass one conditional.” There is no expression.
Rather, this conditional is enabled during pass one of the assembler.
Any statements within the conditional block are processed at that time.
For instance, you could place an INCLUDE directive statement within
the conditional block. Then, during pass one, any included files would
be read into the program. However, the included data cannot contain
any code that needs to be assembled. The IF1 directive would prevent
assembly during pass two of the assembly process.

Using an INCLUDE directive within a pass one conditional can be very
handy for transferring a library of record or structure templates into
the program. The template is read during pass one. Then the record
or structure data is processed by the assembler during pass two. This
can speed up the assembly operation because the included file is not
opened and reread during pass two. That operation isn’t necessary be-
cause there is nothing to assemble.

If you look at the assembler listing of a program with a pass one condi-
tional, you will only find the ENDIF directive. This is because the con-
ditional tested false during pass two of the assembly operation. As be-
fore, a false conditional is ignored by the assembler, and only the ENDIF
directive remains to show its original location in the program.

IF2 This is called a “pass two conditional.” It performs the same func-
tion as the pass one conditional, except that it is enabled during pass
two of the assembler. One handy use for this conditional is that it
lets you display a message during pass two of the assembler. When
you assemble a long program, it can be reassuring to see a message
that tells you the assembler has completed the first pass.

9'26 UNIT NINE

However, to display that message you need a special directive —
%O0UT. This tells the assembler to display the characters following the
directive. A typical conditional message could be written:

IF2
FOUT PASS 1 OF THE ASSEMBLY OPERATION IS COMPLETE
ENDIF

The assembler will display the message
PASS 1 OF THE ASSEMBLY OPERATION IS COMPLETE

when it begins pass two of the assembly operation. You can enter a
message line up to the length of the program line. To enter more than
one line, begin each line with the directive %OUT. Naturally, you can
also use the %OUT directive with the pass one conditional directive
to display a message at the beginning of the assembly operation. If
you use the %OUT directive outside of a conditional directive, its mes-
sage will be displayed twice — once during pass one and once during
pass two.

IFDEF [symbol] If the symbol has been defined in the program, or has
been declared External, the code or data in the conditional block are
assembled.

IFNDEF [symbol] If the symbol has not been defined in the program,
and has not been declared External, the code or data in tae conditional
block are assembled.

Both of these “defined symbol” conditionals are similar to the IF and
IFE conditionals. However, instead of testing an expression for a zero
or nonzero condition, they look for the existence or nonexistence of
a symbol.

Code Macros and Other Interesting Macro-86 Features 9'27

IFB [<argument>] If the argument is blank (none given), or null (two
angle brackets with nothing in between), the code or data in the condi-
tional block are assembled. Angle brackets must be placed around the
argument.

IFNB [<argument>] If the argument is not blank, the code or data
in the conditional block are assembled. Again, the angle brackets must
be placed around the argument.

Normally, the conditionals IFB and IFNB are used within macro code
blocks. The argument following IFB or IFNB is typically a “dummy
symbol.” When the macro is called, the dummy is replaced by a “param-
eter” passed by the macro call. If the macro does not specify a parame-
ter, the argument is null. Dummy symbols, parameters, and macros
will be described in the next section.

IFIDN [<argumentl>,<argument2>] If the string in argument one
equals the string in argument two, the code or data in the conditional
block are assembled. The arguments are separated by a comma. Angle
brackets must be placed around each argument.

IFDIF [<argument1>,<argument2>>] If the string in argument one is
different from the string in argument two, the code or data in the condi-
tional block are assembled. Again, each argument is enclosed by angle
brackets and both are separated by a comma.

Like the “if blank or not blank” conditionals, IFIDN and IFDIF are nor-
mally used inside a macro code block. In this case, each argument
is usually represented by a dummy symbol. When the macro is called,
both arguments are replaced by parameters passed by the macro. De-
pending on the conditional directive and the parameters passed, the
conditional block will be assembled or ignored.

9'28 UNIT NINE

The ELSE Directive

Each of the conditional IF directives has a complement. For instance,
the complement to the “if blank™ conditional is “if not blank.” Quite
often, when you are testing a condition, you want some action taken
if the condition is not met. One way to accomplish this is to write
the desired conditional block, and then write a complement conditional
block. The ELSE directive gives you another option. It allows you to
combine a block of alternate code or data with the original code or
data. Then if the IF condition tests true, the related code or data are
assembled. On the other hand, if the condition tests false, the code
or data related to the ELSE directive are assembled.

Following is an example of how a conditional with an ELSE directive
could be arranged.

IFxxxx [argument, expression, or symbol]
ELSE

ENDIF

During assembly, the assembler evaluates the IFxxxx directive. If it
tests true, the code or data between the IFxxxx and ELSE are assembled.
If it tests false, the code or data between the ELSE and ENDIF are assem-
bled. Note that only one ELSE directive can be used between every
IFxxxx-ENDIF directive pair.

Figure 9-8 shows the program from Figure 9-6 using the ELSE directive
to handle alternate mode assembly. There are only two conditional
blocks in this program. The first one states that if the expression IBM
is a nonzero, assemble the instruction that calls DISPLAY1. If IBM

Code Macros and Other Interesting Macro-86 Features 9'29

TITLE UNIT 9 -- PROGRAM 7 —— ELSE

PROG_CODE SEGMENT
ASSUME CS:PROG_CODE

1
IBM EQU
ZENITH EQU

3
START PROC

ENDIF
i
RET

¥

IF
DISPLAY2:

NOP

RET

ELSE
DISPLAY1:

NOP

RET

ENDIF

i
START ENDP

PROG_CODE ENDS

END

1 HD 1
o

True,
False

won

FAR

IBM
DISPLAYL

DISPLAYZ

1Exit program

ZENITH

START

Figure 9-8

Program to illustrate the ELSE directive.

equates to zero, assemble the instruction that calls DISPLAY2. The sec-
ond block states that if the expression ZENITH is a nonzero, assemble
the next two instructions. If ZENITH equates to zero, assemble the two
instructions following the directive ELSE.

9'30 _ UNIT NINE

The Microsoft MACRO Assembler 07-25-84 PAGE -1
UNIT 9 -- PROGRAM 7 —— ELSE

i TITLE UNIT 9 -- PROGRAM 7 -- ELSE
B i
3 ©000 PROG_CODE SEGMENT
4 ASSUME CS:PROG_CODE
S i
& = 9901 1BM EQU 1 11 = True,
7 = 0000 ZENITH EQU @ 1@ = False
8 3
9 0000 START PROC FAR
10 H
11 IF IBM
12 0000 EB 0004 R CALL DISPLAY!
13 ENDIF
14 3
15 0003 (B RET sExit program
16 s
17 ELSE
18 0004 DISPLAYI:
19 0004 90 NOP
20 0005 CB RET
21 ENDIF
22 .
23 0006 START ENDP
24 0006 PROG_CODE ENDS
25 END START
Figure 9-9

Assembler listing of the program in Figure 9-8.

Now look at the assembler listing of the program in Figure 9-9. Because
IBM equated to a nonzero, the instruction calling DISPLAY1 was assem-
bled. The “else” portion of the conditional block was not assembled
or even listed. In the second conditional block, ZENITH equated to
zero. Therefcre, the “else” portion was assembled and listed. The IF
ZENITH portion was not listed.

Self-Review Questions

16. Conditional directives are:

17. The beginning of a conditional directive is identified by the
directive.

Code Macros and Other Interesting Macro-86 Features 9‘31

18.

19.

20.

21.

22.

23.

24,

25.

26.

27,

28.

29.

30.

31.

The end of a conditional directive is identified by the directive

Conditional directives can be nested.

TruefFalse
An directive will evaluate true if its ex-
pression is a nonzero.
An directive will evaluate true if its ex-
pression is a zero.
An directive is enabled during pass one
of the assembler.
An directive is enabled during pass two
of the assembler.
An d rective will evaluate true if its sym-
bol has been defined in the program.
An directive will evaluate true if its sym-
bol has not been declared External.
An directive will evaluate true if it has
anull argument.
An directive will evaluate true if it con-
tains an argument.
An directive will evaluate true if the

string in argument one equals the string in argument two.

An directive will evaluate true if the
string in argument one does not equal the string in argument
two.

The directive can be used to displav a
message during program assembly.

The directive allows an alternate condi-
tional block to be assembled if the specified condition is not met.

9‘32 UNIT NINE

MACRO DIRECTIVES AND OPERATORS

A macro is a programming tool that allows you to generate or repeat
a sequence of code or data anywhere within a program. The basic code
or data is arranged in template form, much like a Structure. And like
a Structure, the macro template is duplicated and expanded with a
set of parameters that are provided by the program “macro call.” Unlike
Structures, however, macros can be nested so that one may call another,
and that may call another, and so on. Before a macro can be called,
or initialized, you must first define the macro and establish what param-
eters are required.

Macro Definition

The macro is a form of “blueprint.” It shows the assembler how to
arrange the code or data when the macro is called. Following is the
general format for a macro template.

<name> MACRO <dummy list>
;code or data
ENDM

The beginning of the template is identified by a macro directive state-
ment. The <name> is a unique name assigned to the macro. This name
will be used to identify the macro when it is called from the program.
The MACRO directive tells the assembler that the following code or
data is part of a macro template. The <dummy list> is a list of what
we call “dummy parameters.” They identify undefined parameters
within the macro template. Each dummy parameter within the dummy
list is either separated by a comma or enclosed by angle brackets, de-
pending on type of macro. Each dummy is treated as a symbol within
the macro template. Therefore you must observe all of the rules for
writing a symbol when you specify a dummy.

When the macro is called, the dummy parameters are replaced by real
parameters. These can take the form of text, data, program symbols,
or register names. In some instances, the dummy parameter may be

Code Macros and Other Interesting Macro-86 Features 9'33

replaced by a constant that determines the number of times a macro
is duplicated. The number of dummies used in a template is limited
only to the length of the directive statement line.

Following the macro directive statement is the body of the template.
It contains the code or data that will be assembled into the program
when the macro is called. It can also contain special comments, other
assembler directives and operators, any of the macro operators, and
additional macro directives.

The end of the macro template is identified by the directive ENDM
(end macro). Every macro directive statement must have a matching
ENDM directive. A missing ENDM will generate an assembly error.

Following is an example of how a macro template could be written.

STORE MACRO XX, YY, 22
MOV AX, XX
ADD AX,YY
MOV ZZ,AX
ENDM

The template name is STORE, the macro directive is MACRO, and there
are three dummy parameters in the “dummy list.” These match the
dummy parameters used in the body of the template. When this
template is called, the three dummy parameters will be replaced by
defined parameters. The next section will describe the macro call and
use this template as an example.

Calling A Macro

There are two distinct steps in using a macro. In the first step, the
macro template is constructed. The second step is the macro call. This
occurs when the assembler encounters the macro name in the body
of the program. The assembler then substitutes the macro template with
its defined parameters in place of the macro call instruction. The assem-
bler performs the macro substitution before it assembles the program
code.

9'34 UNIT NINE

A macro call takes the form
<name> [<parameter>,...]

where <name> is the name of the macro template, and
[<parameter>,...] is the list of defined parameters that are passed to
the template. Remember, a parameter replaces a dummy parameter on
a one-for-one basis. The order of replacement is determined by the
dummy list and the parameter list. For example, if the macro definition
statement is

HOST MACRO DUMMY1,DUMMYZ, DUMMY3

and the macro call is

HOST AX,DATA.5

then register name AX will replace every reference tc DUMMY1 in
the template body; symbol DATA will replace every reference to
DUMMY?2 in the template; and constant 5 will replace every reference
to DUMMY 3 in the template.

The number of parameters is limited only to the length of the macro
call line. If you pass more parameters than there are dummy parameters
in the template, the extras will be ignored by the assembler. On the
other hand, if you pass fewer parameters than there are dummy parame-
ters, the undefined dummy parameters will become nulls (blanks). If
you enter more than one parameter, they must be separated by commas,
spaces, or tabs (we will use commas in our examples).

In the instance where an individual parameter contains multiple items
that are separated by commas, you can identify the parameter by placing
angle brackets around the items. For example, the assembler would
assume that the macro call

TOTAL 3,5,9,4,6

contains five individual parameters, while the macro call

TOTAL <3,5,9>,4,6

Code Macros and Other Interesting Macro-86 “eatures 9'35

contains three parameters. Although the angle brackets identify the be-
ginning and end of a parameter, you still have to separate it from the
other parameters with a comma, space, or tab.

Before you can use a macro call, you must define the macro. We’ll
use the earlier template:

STORE MACRO XX,YY,ZZ
MOV AX XX
ADD AX,YY
MOV ZZ,AX
ENDM

If you then enter the macro call statement

STORE TEMP, 32 ,DATA

the assembler will generate the program instructions

MOV AX,TEMP
ADD AX,32
MOV DATA, AX

using the macro template and the parameters passed by the macro call.

Other Macro Directives

There are three other macro directives that can be used to support a
MACRO directive statement: REPT, IRP, and IRPC. They are actually
different forms of a “repeat macro” directive. In addition to supporting
the MACRO directive, these repeat macros can be used as individual
macros. Rather than being called from a program, the “stand alone”
repeat macro is immediately assembled when it is encountered by the
assembler. Let's begin with the REPT (repeat) macro.

9'36 UNIT NINE

The REPT (repeat) macro directive is used to repeat its macro template
the number of times specified in the macro directive statement. A REPT
macro is used to generate a block of data. The macro can be nested
within a MACRO, or it can stand alone. As a nested macro, it usually
takes the form:

<name> MACRO <dummy list>

REPT <expression>

ENDM ;For repeat macro
ENDM ;For main macro

Notice that just like the MACRO directive, each REPT macro directive
must have a matching ENDM to terminate the macro template. When
the REPT macro is not nested, it will take the form:

REPT <expression>

ENDM

The REPT macro does not have a name. It doesn't need a name because
it is not called. Remember,it is assembled as soon as it is encountered
by the assembler. Following is an example of a REPT macro.

DATA EQU 0
REPT 7
DB DATA

ENDM

Code Macros and Other Interesting Macro-86 Features 9"‘37

At some point in the program, prior to the REPT macro, the symbol
DATA is equated to zero. The REPT directive is followed by the expres-
sion seven. This indicates that the following template will be repeated
seven times. When the program is assembled, the repeat macro will

generate seven bytes of code, each containing the value equated to
DATA, zero.

While this is a convenient way to generate common data bytes, the
assembler directive DUP is easier. The real power of the repeat directive
is in its abili‘y to modify the data as it is being generated. Here is

an example.
DATA EQU 0
REPT i d
DATA = DATA + 1
DB DATA
ENDM

Again DATA is equated to zero and the REPT directive contains the
expression seven. Following the directive is a “data statement.” The
statement says, in effect, for each use of the constant DATA add one
to the previous value. The equals sign has the same meaning as the
assembler EQU directive. In fact, you can substitute one for the other
in a program. However, we suggest that you use the EQU directive
to equate a value in your program, and the equal sign to equate a value
ina REPT direc:ive.

9-38 | uniTnine

The Microsoft MACRO Assembler

UNIT 9 -- PROGRAM 8 -- REPEAT

1

2

3

4 0000

S

&

7 0000

g

? = 0000
10

11

12

13

14

15 = 0ol
16 0000 01
17 = 0002
8 0001 02
19 = 0003
20 0002 @3
21 = 0004
22 0003 04
23 = @085
24 0004 05
2! = 9006
26 @005 06
27 = 0007
28 0006 07
29

30 0007 CB
31

32 8008

33]

34

The Microsoft MACRO Assembler

97~

30-84

PAGE 1-1

TITLE UNIT 9 -- PROGRAM 8 -- REPEAT

LLALL

i
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE

UNIT 9 -- PROGRAM 8 -- REPEAT

Segments and groups:
Name
PROG CODE. . + » « & =« . .
Symbols:
Name

BATA v o ¢ o v o o » s =

START, v & ¢ & % v & 4w & @

Warning Severe
Errors Errors
0 ")

i
START PROC
i
DATA EQU
)
REPT
DATA = DATA +
DB
ENDM
+ DATA = DATA +
+ DB
+ DATA DATA +
+ DB
+ DATA = DATA +
+ DB
+ DATA = DATA +
+ DB
+ DATA = DATA +
DB
+ DATA = DATA +
+ DB
+ DATA = DATA +
+ DB
i
RET
START ENDP
PROG_CODE ENDS
END
@7-30-84
-1
Size align
e 0008 PARA
Type Value
— Number @807
i i F PROC 0000
=0008
Figure 9-10

FAR
)

7
DATA

1
DATA

DATA
DATA
DATA
DATA
DATA

DATA

START

PAGE Symbols

combine class

NONE

Attr

PROG_CODE

Assembler listing of a program showing the
REPT macro directive,

Length

Code Macros and Other Interesting Macro-86 Features 9'39

Figure 9-10 shows the assembler listing for the preceding REPT direc-
tive. Notice that for each operation of the REPT directive, the symbol
DATA is redefined according to the data statement following the direc-
tive. Thus, for the first repeat, DATA is equal to one; and for the last
repeat, DATA is equal to seven. This is supported in the “Symbols”
table, at the bottom of the figure, where DATA has a “Type” “Number”
and a “Value” of seven. The “Symbols” table always shows the last
value assigned to a symbol.

Each listing line that is created by a MACRO directive, or any of the
repeat macro directives contains a “plus” symbol. The symhbol precedes
the text portion of the listing. This is provided to help you locate macros
in your program.

At the beginning of the program, we added the assembler directive
.LALL. This tells the assembler to list all of the macro data. Without
the “list all” directive, the program portion of the assembler listing
would have looked like the listing in Figure 9-11. There, only the data
that is actually assembled is listed. This default condition leaves out
all of the macro information that is not part of the program. If you
need to look at all of the macro information, use the .LALL directive.
If you don't need the detail, leave out the directive.

The Microsoft MACRO Assembler 07-30-84 PAGE -1
UNIT 9 -- PROGRAM 8 —— REPEAT

1 TITLE UNIT 9 -- PROGRAM 8 -- REPEAT

2 ;

3 0000 PROG_CODE SEGMENT

4 ASSUME CS:PROG_CODE

5 i

6 0000 START PROC FAR

7 §

8 = 0000 DATH EQU 0

9 i

10 REFT 7

11 DATA = DATA + 1

12 DB DATA

13 ENDM

14 0000 01 DB DATA

15 0001 02 . DB DATA

16 0002 03 + DB DATA

17 0003 04 + DB DATA

18 0004 @5 + DB DATA

19 0005 06 + DB DATA

20 0006 07 4 DB DATA

21 3

22 #9007 CB RET

23 H

24 0008 START ENDP

25 2008 PROG_CODE ENDS

26 END START
Figure 9-11

Assembler listing of the program from Figure 9-10 without
the “list all” assembler directive.

9-40 | uniTnine

The IRP (indefinite repeat) directive is a second form of macro repeat
directive. Rather than repeat, or augment and repeat a constant like
the REPT directive, IRP replaces a “dummy” within its template with
one or more parameters. Following is the format for an IRP directive
template.

IRP <dummy>,[<parameters>]

ENDM

The <dummy> is a symbol that identifies every location in the
template that will receive a parameter. An IRP directive template can
only contain one unique dummy symbol, although that symbol can
be repeated as many times as you wish. The [<parameters>] are all
of the parameters that will be passed to the template dummy. Parame-
ters can be any legal symbol, string, numeric, or character constant.
They must be enclosed by a pair of angle brackets. The number of
parameters determines the number of times the templa-e is repeated.
For example, the template

IRP DATA,<1,2,3>

DB DATA

DB 0OAH

DB DATA,5DH, DATA
ENDM

will cause the assembler to generate the equivalent code

DB B

DB OAH

DB 1,5DH, 1
DB 2

DB OAH

DB 2,5DH, 2
DB 3

DB OAH

DB 3,5DH,3

Code Macros and Other Interesting Macro-86 Features 9'41

There are three parameters. Therefore, the template is repeated three
times. Each time the template is repeated, each template dummy is
replaced with the appropriate parameter.

As with the REPT directive, the IRP directive can be nested in a
MACRO. Beirg nested in a MACRO allows the MACRO parameter to
be passed onto the IRP parameter. Thus, the previous IRP template
could have been written

NUMBERS MACRO COUNT
IRP DATA, <COUNT=
DB DATA
DB OAH
DB DATA, 5DH, DATA
ENDM
ENDM

When the mac-o is called with the statement

NUMBERS <1,2,3>

the assembler will produce the equivalent code

DB 1

DB OAH

DB 1,5DH, 1
DB 2

DB QAH

DB 2,5DH,2
DB 3

DB OAH

DB 3,5DH, 3

This occurred because the parameter <1,2,3> in the macro call was
passed to the dummy parameter COUNT in the MACRO template
NUMBERS. Since the IRP macro directive statement is considered part
of the MACRO template, the parameter <1,2,3> was passed on to the
IRP macro template. From there, the parameters were loaded into the
dummy locations in the IRP template.

9'42 UNIT NINE

The last repeat macro directive is IRPC (indefinite repeat character).
It is identical to the IRP macro directive with one exception, the param-
eters consist of a string of characters that are not separated by commas.
Angle brackets around the parameter string are optional. Normally the
brackets are left out to distinguish this macro directive from the IRP
macro directive. The IRPC macro template is repeated for each character
in the parameter. The macro template

IRPC X, 123456
DB X
ENDM

will produce the data

DB
DB
DB
DB
DB
DB

oIS I N V2 Y A& T

when it is assembled. If a character other than a decimal number is
used in the parameter, that character must be defined prior to the macro.
For example,

E EQU 55

F EQU 6

G EQU 17
IRPC W,EFG
DB W
ENDM

will produce the data

DB 37H
DB 6
DB 11H

when it is assembled. If the three equate statements were missing, the
assembler would generate an error statement each time it tried to trans-
late one of the template parameters.

Code Macros and Other Interesting Macro-86 Features 9‘43

Self-Review Questions

32. A is a programming tool that allows you
to generate or repeat a sequence of code or data within a program.

33. The directive tells the assembler that the
following code or data is part of a macro template.

34. The directive identifies the end of a
macro template.

35. A macro is used by a macro call to iden-
tify a macro template.

36. A macro call contains one or more that
are passed to the called macro template.

37. An individual parameter that contains many items separated by
commas is identified by enclosing the items with a pair of

38. The macro directive is used to repeat its
macro template the number of times specified in the macro direc-
tive statement.

39. The macro directive is used to replace
a dummy parameter within its template with one or more parame-
ters. The parameters are separated by commas and enclosed with
angle brackets.

40. The macro directive is used to replace
a dummy parameter within its template with one or more parame-
ters. The parameters consist of a string of characters not separated
by commas and not enclosed with angle brackets.

9'44 | UNIT NINE

The Conditional Macro

There will be times when you don’t want a macro to be fully assembled.
That is, when a specific condition is met, you want macro assembly
to stop. This job is handled by the macro directive EXITM (exit macro).
EXITM stops macro expansion from the point where it is encountered.
Normally, EXITM is used after a conditional (IFxxxx) directive, to hide
the macro until the right conditions exist. For example, consider the
repeat macro template:

COUNT EQU 200

X EQU 0
REPT COUNT
X =X+1
DB X
ENDM

The REPT directive will force the assembler to generate a block of 200
defined bytes with ascending values. Now suppose you wanted the
data generation to stop after a specific number of bytes had been
created. You could add a conditional ENDM to the template to test
the data, as follows:

COUNT EQU 200
X EQU 0O
HALT EQU 10

REPT COUNT

X=X+ 1

DB X
IFE X — RALT
EXITM
ENDIF

ENDM

Again, the repeat count is 200 and the “dummy"” X has an initial value
of zero. The assembler will expand the macro template, generating as-
cending byte values until the value of X minus the value of the constant
HALT equals zero (in this example, when X equals ten). At that time,
the conditional directive will test true and “uncover” the EXITM direc-
tive. When the assembler sees the EXITM directive, it will stop template
expansion.

Code Macros and Other Interesting Macro-86 Features 9'45

If the EXITM directive is encountered within a “nested macro,” the
assembler will stop expanding that macro and continue with the next
outer level macro. That is because the EXITM directive only affects
the expansion of the template that contains the directive.

You may have noticed in the preceding macro template, that the nested
conditional template statements were offset from the macro template
statements. This was done to make it easier to identify the nested
template. You can do the same thing when you nest macros.

Macro Support Directives

Two other macro directives support the macro assembler operation.
Those directives are PURGE and LOCAL. The PURGE directive, as you
might guess, is used to delete a macro template from a program. As
you become more experienced in your programming, you will probably
begin building a library of “include files” that contain many macros.
When you include a file of macros in a program, you may not need
all of the macros in that file. Rather than build a new file to accommo-
date the program, it's much simpler to use the PURGE directive to
delete any unnecessary macros. The PURGE directive statement takes
the form

PURGE [<macro-name>,...]

where PURGE is the directive and <macro-name> is the name of the
macro template to be deleted. Multiple macro names are separated by
commas.

The LOCAL directive is used to create unique names or labels within
a macro expansion. To see why that may be necessary, consider the
macro template

TEST MACRO COUNT
ONE DB 5
TWO DW COUNT
THREE:
SUB AX, AX
ADD AX,TWO
CMP AX,L 20
JNE THREE
ENDM

9'46 UNIT NINE

It defines three bytes of data, and then tests part of that data with
a simple four-instruction routine. When the macro is called, the dummy
COUNT is replaced with a constant. The assembler uses the two names
and the label to determine the offset address for the data and the jump
target. Now what do you suppose will happen if the macro is called
a second time? The assembler will generate an error message for each
name or label indicating that it has been redefined. That is, each symbol
is pointing at two different offset address locations. The LOCAL direc-
tive eliminates the problem of multiple symbol definition within a
macro; it forces the assembler to create a unique symbol for each occur-
rence during assembly. The names and labels created by the LOCAL
directive take the form ??nnnn, and range from 770000 to ??FFFF.

The directive takes the form
LOCAL [<macro-symbol>,...]

where LOCAL is the directive, and <macro-symbol> identifies every
symbol used within the macro. The symbols are separated by commas.
The LOCAL directive statement must be positioned immediately after
the macro definition statement. That also means no comments can be
placed between the two directive statements.

Figure 9-12 is an assembler listing that shows how the LOCAL directive
could be used. The template we just described is called three times.
In the first expansion, the symbols range from ?70000 to ?70002; in
the second, from ??0003 to ??70005; and in the third, from ?70006 to
??0008. The symbols for each template expansion are unique. If more
than one template with symbols is called in a progrem, the symbols
remain unique because the assembler keeps track of what symbols have
been created in its symbol table.

Code Macros and Other Interesting Macro-86 Features 9'47

The Microsoft MACRO Assembler 98-01-84 PAGE 1=1
UNIT 9 ~- PROGRAM 9 -— LOCAL

1 TITLE UNIT 9 —- FROGRAM 9 -- LOCAL

2 LALL

3 i

4 0000 PROG_CODE SEGMENT

5 ASSUME CS:PROG_CODE

& i

7 0000 START PROC FAR

8 3

9 TEST MACRO COUNT

10 LOCAL ONE, TWO, THREE

11 ONE DB 5

12 TWO DW COUNT

13 THREE: SUB AX,AX

14 ADD AX, TWO

15 CMP AX,20

16 JNE THREE

17 ENDM

18 H

19 TEST 5

20 0000 05 + 770000 DB S

21 0001 ©00S + 270001 DW 5

22 0003 2B Co + 770002: SUB AX, AX

23 0005 2E: 03 06 0001 R - ADD AX, 770001

24 000A 3D 0014 + CMP AX, 20

25 000D 75 F4 - JNE 270002

26 TEST 10

27 000F 05 + 770003 DB 5

28 0010 000A + 770004 DH 10

29 0012 2B CO + 770005: SUB AX, AX

30 0014 2E: 03 06 0010 R + ADD AX, 770004

31 0019 3D 0014 + CMP AX, 20

32 @01C 75 F4 + JNE 270005

33 TEST 20

34 @O1E @5 + 770006 DB 5

35 001F 0014 + 770007 DM 20

36 0621 2B Co + 770008: SUB AX, PX

37 0023 2E: 03 046 @01F R + ADD AX, 270007

38 0028 3D 0014 + CMP AX,20

39 0028 75 F4 + JNE 270008

49 H

41 @e20 CB RET

42 H

43 002 START ENDP

44 002E PROG_CODE ENDS

45 END START
Figure 9-12

Assembler listing of a program that uses the directive
LOCAL in a macro.

9'48 UNIT NINE

Special Macro Operators

Five special macro cperators give you additional capabilities for defin-
ing a macro The macro operators are:

& <> 5! 9

& The ampersand is used to concatenate text or symbols. During the
course of expanding a macro, you may wish to control the form that
a symbol, command, or portion of text takes. Previously, you could
only do this by replacing a dummy with a parameter. The dummy,
however, had to stand alone; it couldn’t be part of “nondummy” text.
For example, if you wrote the symbol

DATAX

and X was the dummy, the assembler would treat the symbol as a
symbol, and not as a symbol with a dummy. The ampersand lets you
identify the dummy within text. Changing the symbol to

DATA&X

tells the assembler that the symbol contains a dummy. You must place
the ampersand between the text and dummy; or if you are using two
dummies, between the dummies. The assembler then determines what
is text or dummy during the macro expansion. As an example, consider
the following macro template.

TEST MACRO X,Y,Z2

TIME&X MOV AX,BX

X&DATA DB ¥

X&Z DB 5
ENDM

The macro template TEST contains three dummies. When it is called
by the instruction

TEST A,10,COUNT

the assembler expansion of the macro will look like

TIMEA MOV AX, BX
ADATA DB 10
ACOUNT DB 5

Code Macros and Other Interesting Macro-86 Features 9'49

Here we have modified data and symbols. You can also modify the
instruction mnemonics and operands. The following macro template
is a good example.

TEST MACRO X,Y.,Z
MOV A&X,K B&X
CMP A&X,Y
J&Z STOP

Now if the template is expanded through the macro call

TEST H,COUNT,NE

the assembler generates the instructions

MOV AH,BH
CMP AH, COUNT
JNE STOP

In the instance where you have a nested macro that is being passed
a parameter from the next outer macro, you must use two ampersands
to identify the nested macro dummy. For example, consider the macro
template

TEST MACRO X
IRP Z,<1,2 3>
X&&Z DB 2
ENDM
ENDM

The dummy X is being used to pass a parameter to the nested indefinite
repeat macro. When the macro call

TEST DATA

is assembled, the following action occurs. First the parameter DATA
is passed to the nested macro, leaving an intermediate macro

IRP Z,<1,2,3>
DATA&Z DB Z
ENDM

Then the intermediate macro is expanded to give

DATAL DB 1
DATAZ2 DB 2
DATA3 DB 3

9'50 UNIT NINE

When you write a nested macro, you must try to visualize how each
macro will affect the next nested macro. In our example, the first macro
passed the parameter DATA to the nested macro. When the pass was
completed, the dummy and its identifying ampersand were replaced
with the parameter. Remember, a parameter always replaces a dummy/
ampersand pair during macro expansion. The second ampersand re-
mained after the intermediate step to identify the IRP macro dummy.
In very complex macros, where nesting is involved, you must supply
as many ampersands as there are levels of nesting.

<> You learned earlier that angle brackets must be used with some
macros. Angle brackets tell the macro assembler that any text, even
if it includes commas, should be treated as a single literal character
or term for replacement purposes. For example, the semicolon inside
angle brackets <;> becomes a character, not the indicator that a com-
ment follows. Like the ampersand, one set of angle brackets is removed
each time the parameter is used in a macro. Therefore, when using
nested macros, you need to supply as many sets of angle brackets
around parameters as there are levels of nesting.

i3 Recall that under the default listing condition, only the code and
data actually assembled through a macro call is listed. If the .LALL
directive is added to the program, all of the macro expansion data is
supplied. The same conditions also apply to any comments within a
macro template. Under default listing, the comments are not listed.
If the .LALL directive is added to the program, the comments are listed.

There will be times when you wish to list all of the macro expansion
data, but not the accompanying comments. To hide comments that
would normally be listed after the .LALL directive, precede each com-
ment line with two semicolons rather than the normal single semicolon.
Keep in mind, however, that this feature will only work with the
MACRO directive, or with a “repeat” directive that is nested within
a MACRO directive.

Code Macros and Other Interesting Macro-86 Features 9‘51

! The exclamation point is used in a macro call to tell the assembler
that the following character is entered literally. Thus,

L]
is equivalent to
<;>

In both instances, the semicolon is treated as a literal character.

% The percent sign is used only in a macro call to convert the expres-
sion that follows it (usually a symbol) to a number in the current radix.
During macro expansion, the number derived from converting the ex-
pression is substituted for the dummy. Using the percent sign allows
a macro to be called by a value. (Usually, a macro call is a call by
reference to text.) The expression following the percent sign must
evaluate to a (non-relocatable) constant. The following macro template
and macro call will show you how the percent sign could be used,
and a different method for calling a macro.

Y EQU 0

TEST MACRO X
REPT X
Y=Y+ 1
CHECK ZY
ENDM
ENDM

CHECK MACRO Z
ERR&Z DB 'ERROR&Z'
ENDM

9-52 | uniTniNe

This template actually consists of two separate macro templates; one
is named TEST, and the other is named CHECK. Let's look at the
template named CHECK. It uses the MACRO directive, and the dummy
parameter is Z. When the macro is called, the name and contents of
the define byte directive will be modified through the dummy parame-
ter Z. In both instances, the dummy parameter is identified by the macro
operator ampersand.

The other template, TEST, also uses the MACRO directive. Its single
dummy parameter is X. The parameter that is passed to this macro
will also be passed to the dummy expression in the repeat macro nested
in the template. Recall that the dummy expression following a REPT
macro directive is used to specify the number of times the macro is
repeated. The only instruction in the repeat macro is a macro call.
It is used to call the macro template CHECK. The parameter that is
passed to the template by this call is %Y. Placing the percent sign
in front of the Y tells the assembler that it should use the current
value of Y, rather than the literal character, to expand the macro
CHECK. The constant Y is defined as zero. The repeat macro is set
up so that each expansion of the macro will add one to the original
value of Y. When the macro TEST is called by the macro call

TEST 3

the following steps occur. First, the parameter three is passed through
the macro dummy parameter X to the nested repeat macro. This deter-
mines the number of times the macro is repeated. Next, one is added
to the current value of Y (0+1=1). Then, the macro CHECK is called.
The parameter one is used to expand that macro. This produces the
assembler data statement

ERR1 DB 'ERROR 1'

The repeat macro operation is repeated two more times, producing the
assembler data statements

ERR2 DB 'ERRORZ'
ERRZ DB 'ERROR3J'

Keep in mind that these percent sign features apply only when they
are used with macro calls. Outside of a macro call, the percent sign
is treated as a simple character or as part of an assembler directive,
as in the case of the directive %OUT, described earlier.

Code Macros and Other Interesting Macro-86 Features 9'53

Self-Review Questions

41. The macro directive is used to end a con-
ditional macro operation.

42. The macro directive is used to delete un-
wanted macro templates from a program.

43. The macro directive is used to create
unique names or labels within a macro expansion.

44. The macro operator is used to concate-
nate text or symbols during macro expansion.

45. The macro operator angle brackets can be used to create a

character.
46. Two are used to hide a macro comment
in an assembler listing.
47. The macro operator is used to identify
a literal character.
48. The macro operator is used in a macro

call to convert the expression that follows it into a number.

9'54 UNIT NINE

ASSEMBLER LISTING DIRECTIVES

The assembler listing directives perform two functions: program format
control and program listing control. The format directives allow you
to control the page layout. This includes page headings, page breaks,
and the length and width of the page. The listing directives “turn on”
or “turn off” the listing of all or part of the assembled file.

Format Directives

There are three format directives: PAGE, TITLE, and SUBTTL. The
PAGE directive is used to control the length and width of the assembler
listing page, the way the pages are numbered, and any page breaks.
The TITLE directive is used to specify the title of a program and the
major heading of each listing page. The SUBTTL directive is used to
specify program subsection titles and the subheading of each listing

page.
PAGE

The PAGE (page format) directive determines the structure of a listing
page. Generally it is used to set up a listing to accommodate the charac-
teristics of a printer. It also allows you to control when the listing
for one page ends and another begins. This can be very useful for struc-
turing the program listing for easier reading. Finally, the PAGE directive
can be used to control how the pages are numbered.

Recall from earlier program listings that every page begins with the
assembler name, the program assembly date, and a page count. The
page count is composed of two numbers separated by a hyphen. The
number on the left is the major page number; it has always been one.
The number on the right is the minor page number; it increments for
every new page in the listing.

Code Macros and Other Interesting Macro-86 Features 9'55

When the assembler encounters the PAGE directive with no argument,
it will stop the current listing at that point and begin a new page.
This is called a page break. The minor page number will be incre-
mented by one, while the major page number will not change. Figure
9-13 shows how the PAGE directive can affect the listing. Notice that
the first ten lines of the listing are on page 1-1, and the remaining
nine lines are on page 1-2. The PAGE directive is on the first listing
line of the new page.

The Microsoft MACRO Assembler 98-046-84 PAGE 1-1
UNIT 9 -- PROGRAM 10 -- PAGE

1 TITLE UNIT 9 -- PROGRAM 1@ -- PAGE
2 ;
3 6000 PROG_CODE SEGMENT
4 ASSUME CS:PROG_CODE
S 3
[0000 START PROC FAR
7 H
8 ;
9 ;
10 H
The Microsoft MACRO Assembler 08-04-84 PAGE 1-2

UNIT 9 — PROGRAM 1@ -- PAGE

11 PAGE
12
13
14
15 0008 CB RET

16 H

17 0001 START ENDP

18 0001 PROG_CODE ENDS

19 END START

Figure 9-13
Assembler listing using the PAGE directive.

9'56 UNIT NINE

The Microsoft MACRO Assembler 98-06-84 PAGE 1-1
UNIT 9 -- PROGRAM 11 -- PAGE+

1 TITLE UNIT ¢ -- PROGRAM 11 -- PAGE+
2 ;
3 0000 PROG_CODE SEGMENT
4 ASSUME CS:PROG_CODE
S ;
6 0000 START PROC FAR
7 f
8 H
9 ;
19 H
The Microsoft MACRO Assembler 08-04-84 PAGE 2-1

UNIT 9 -- PROGRAM 11 -- PAGE+

11 PAGE+

12 :

13 :

14 :

15 0000 CB RET

16 3

17 0001 START ENDP

18 0001 PROG_CODE ENDS

19 END START
Figure 9-14

Assembler listing using the PAGE + directive.

There will be times when you want to start a new listing page, and
at the same time, increment the major page number. For this, you use
the PAGE directive followed by a plus sign (PAGE+). Figure 9-14
shows how the listing is affected by the directive. Each time the assem-
bler encounters the directive PAGE +: it begins a new listing page, the
major page number is incremented, and the minor page number is reset
to one. The minor page number will continue to increment for each
new listing page, but the major page number will stay at the value
established by the last PAGE + directive. The only way to increment
the major page number is with another PAGE + directive.

The last area controlled by the PAGE directive is the length and width
of a page listing. The directive takes the form

PAGE <length>,<width>

Code Macros and Other Interesting Macro-86 Features 9'57

In this arrangement, the PAGE directive does not cause a page break.
The argument <length> specifies the number of lines that will be
printed on a page. More precisely, it determines the number of lines
the microcomputer will send before it sends a form feed character.
A form feed character is an ASCII code (0CH) that tells the printer
to begin a new page. Naturally, the printer must be set up to accommo-
date a page listing. If the listing length is 40, and the printer is set
up for 88 lines to a page, each listing will only fill about half a page.
You can use any length value within the range of 10 to 255 lines. The
default length is 58 lines per page — an ideal length for a printer set
up for a 66-line page.

The argument <width> specifies the number of characters that will
be printed on a listing line. This is the maximum line width. If a line
exceeds the specified width, the assembler will automatically continue
the line on the next line in the listing. We call this operation word
wrap. Keep in mind, however, that a listing line is actually composed
of two parts: the assembler generated code and the source statement.
Because there are two parts to a listing line, word wrap can occur in
either part. Figure 9-15 is an example.

The Microsoft MACRO Assembler 08-07-84 PAGE 1-1
UNIT 9 -- PROGRAM 12 -— PAGE CLENGTHI,[WITDTH] DISPLAY SIZE

1 PAGE 58,80

2 TITLE UNIT 9 —— PROGRAM 12 -- PAGE [LEN
GTH1,[WITDTHI DISPLAY SIZE

3 i

4 2000 PROG_CODE SEGMENT

5 ASSUME CS:PROG_CODE

& .

7 2000 START PROC FAR

8 .

9 0000 41 42 43 44 45 46 DATA DB * ABCDEFGHI JKLMNOPQRSTUV
WXyz’

16 47 48 49 4A 4B AC

1 4D 4E 4F S0 51 52

12 53 54 55 S5 57 58

13 59 SA

14 ;

15 @01A CB RET

16]

17 001B START ENDP

18 001B PROG_CODE ENDS

19 END START
Figure 9-15

Assembler listing to show how line width is controlled.

9'58 UNIT NINE

The first line of the program contains the PAGE directive. The first
number in the directive statement is the listing page length; the second
number is the listing line width. To keep the figure simple, we used
the normal default values for length and width.

Line nine of the listing contains a define byte statement. Because the
line is longer than 80 characters, it wraps around to the next line. How-
ever, the extra characters are not continued at the left end of the next
line as you might expect, they are offset 33 spaces. This is because
the first 32 character locations of each listing line are reserved for the
program line numbers, code, and deta. To make it easier for you to
determine when a source statement is wrapped around to the next line,
the extra line is not given a line number in the listing.

The code and data portion of the listing also wraps around to the next
line. In this case, the wrap occurs at character location 32. The next
line then begins at character location 10. This offset is used to keep
the code and data out of the line number and memory address columns.

You can use any width value within the range of 60 to 132 characters
to determine the width of a listing line. The default width is 80 charac-
ters. This was chosen to match the number of characters that could
be displayed by the microcomputer. You should use a width that
matches the width of your printer. Remember, if the width exceeds
80 characters, you won’t be able to see the complete listing on your
computer display.

Code Macros and Other Interesting Macro-86 Features 9'59

Early versions of the assembler (1.00, 1.07, etc.) do not handle the as-
sembler listing properly if you specify a page size that exceeds the
default values. Shorter lengths and widths will list properly. Later ver-
sions of the assembler properly handle any page size, up to the
maximum length and width.

TITLE

The directive TITLE (program title) was described earlier in the course.
Since you have been using it in most of your programs, you should
understand how it works. Therefore, we won'’t repeat the description.

SUBTTL

The directive SUBTTL (program subtitle) allows you to identify sec-
tions of a program with a title related to that section. After a subtitle
is identified by the assembler, it is displayed on the line following
the program title, at the top of each succeeding page of the program
listing. The directive takes the form

SUBTTL <text>

where SUBTTL is the directive and <text> is the subtitle that will
be listed at the top of the page. The text can contain up to 60 characters.

9'60 UNIT NINE

The Microsoft MACRO Assembler 98-07-84 PAGE i-1
UNIT 9 -~ PROGRAM 13 -- SUBTITLES

1 TITLE UNIT 9 -- PROGRAM 13 -- SUBTITLES
< :

3 0000 PROG_CODE SEGMENT

4 ASSUME CS:PROG_CODE
S H

& 0000 START PROC FAR

7 3

8 ;

7 i

10 SUBTTL %®%SUBTITLE #1#%:
The Microsoft MACRO Assembler 98-07-84 PAGE 1-2

UNIT 9 -- PROGRAM 13 —-- SUBTITLES

#ERSUBTITLE Hikes

11 PAGE

12 3

13 i

14 3

15 SUBTTL #*#*SUBTITLE #2%%*
The Microsoft MACRO Assembler 08-07-84 FAGE 2-1

UNIT 9 -- PROGRAM 13 -- SUBTITLES

16
17
18
19
20
21
22

*#HHSUBTITLE #2%#

PAGE+
;
0000 CB RET
0001 START ENDP
0001 PROG_CODE ENDS
END START
Figure 9-16

Assembler listing to show how subtitles are presented.

Code Macros and Other Interesting Macro-86 Features

Any number of SUBTTL directives can be used in a program. Each
time the assembler encounters the SUBTTL directive. it replaces the
text from the previous subtitle with the text from the latest subtitle.
Keep in mind that the text will be displayed on the next page of the
program listing. Therefore, if you want to identify a program section
with a subtitle, it's a good idea to place the directive prior to a listing
“page break.” Then arrange the listing so that the identified program
section begins on the next page. Depending on the complexity of your
program, you could use the basic PAGE directive to force a page break,
or you could use the PAGE+ directive to force the page break and
increment the major page number. Figure 9-16 shows an example of
each.

Once a subtitle is “turned on” it can only be “turned off” by entering
the SUBTTL directive without any text. Naturally, a new subtitle will
replace the previous subtitle in a list ng.

Listing Control Directives

The listing control directives let you determine what part of the assem-
bly listing will be saved in the listing file. They can be used to hide
parts of a program listing to save disk space, or they can be used to
reveal areas of a program that are normally hidden.

%0UT

The %O0UT (display message) directive was described earlier. It is used
to display one or more messages during the assembly process. By em-
bedding a message with the %OUT directive in your program, you can
follow the assembly process for very long programs. The directive is
formated

%0UT <text>

Where <text> represents the message to be displayed. The message
will be displayed on both passes of the assembler. If you wish to display
the message only once, use one of the canditional directives described
earlier.

9-61

9'62 UNIT NINE

.LIST/.XLIST

The .LIST and .XLIST directives are used to enable or suppress the
listing of all source statements, code, and data. The default condition
is .LIST. That is, all program source statements, code, and data are
saved in the assembler source listing. When the assembler encounters
the .XLIST directive, it will stop generating a listing. The .LIST direc-
tive is used after the .XLIST directive to turn the assembler listing back
on. These directives are handy if you wish to list a portion of a program
and ignore the rest.

XALL/.LALL/.SALL

The .XALL, .LALL, and .SALL directives are used to control the listing
of macros. The default directive is .XALL. It causes the source state-
ments, code, and data to be listed, but suppresses the listing of any
source lines that do not generate code or data.

The .LALL directive causes all macro source statements, code, and data
to be listed. This was described earlier under macros. To return to
the default condition after using the .LALL directive, use the .XALL
directive. The .SALL directive is used to suppress all listing of macro
code, data, or source statements. This is similar to the .XLIST directive
except that it only affects macros.

.LFCOND/.SFCOND

The .LFCOND and .SFCOND directives are used to control the listing
of false conditional expressions. The default directive is .SFCOND. It
causes all conditional expressions that evaluate as false to be sup-
pressed by the assembler. To turn on the listing of false conditional
expressions, use the .LFCOND directive. To return to the default condi-
tion, use the .SFCOND directive.

Code Macros and Other Interesting Macro-86 Features 9'63

Self-Review Questions

49. Write the directive that will cause a page break and increment
the major page number.

50. Write the directive that will cause a page break and increment
the minor page number.

51. Write the directive that will set the page length to 80 and the
page width to 132,

52. The characters following the directive
are used by the assembler to determine every page heading in
the assembler listing.

53. The characters following the directive
are used by the assembler to determine the secondary page head-
ing in the assembler listing.

54, To display a message during an assembly operation, precede the
message with the directive in the pro-
gram source listing.

55. To suppress an assembler listing, use the
directive.

56. To “turn on” an assembler listing, use the
directive.

57. To suppress the listing of any source lines in a macro that do
not generate code or data, use the _ direc-
tive.

58. To “turn on” the complete listing in a macro, use the
directive.

59. Tosuppressthe complete listing in a macro,usethe
directive.

60. To suppress the listing of any false conditional expressions, use
the directive.

61. To “turn on” the listing of any false conditional expressions, use
the directive.

9-64

UNIT NINE

EXPERIMENT

Loose Ends

OBJECTIVES: 1. Demonstrate the GROUP and PROCE-
DURE directives.

ts

Demonstrate how the conditional di-
rectives can be used in a program.

3. Demonstrate the features of code mac-
ros.

4. Demonstrate the assembler listing di-
rectives.

Introduction

This experiment will complete your introduction to programming in
MACRO-86 assembly language. We call this experiment “Loose Ends”
because it presents many features of MACRO-86 that most programmers
will never use. However, these features are significant, and a course
in MACRO-86 programming would not be complete without illustrating
their operation.

Procedure

1. Call up the editor and enter the program listed in Figure 9-17.
Then assemble and link the program.

This program shows you how the GROUP and PROCEDURE di-
rectives can be used. The stack, data, and code segments for the
main part of the program are clustered under A_GROUP. A sec-
ond code segment is in B_GROUP. The main program code is
part of far procedure START. This allows you to exit the program
with a FAR return. Two call instructions access a near procedure
(ADDUP) in the code segment of A_GROUP, and a far procedure
(COUNT_DOWN) in the code segment of B_GROUP.

Code Macros and Other Interesting Macro-86 Features 9"65

TITLE EXPERIMENT 9 -- PROGRAM | -- PROCEDURES AND GROUPS
3
A_GROUP GROUF PROG_STACK, PROG_DATF,PROG_CODE

FROG_STACK SEGMENT STACK

D 86 DUP (@)
TOP_OF_STACK ~ LABEL WORD
PROG_STACK ENDS

1Set up stack area
;ldentify top of stack for SP register

1]

PROG_DATA SEGMENT PUBLIC
DATA DB 0
PROG_DATA ENDS

1]
PROG_CODE SEGMENT FUELIC
ASSUME CS:A_GROUP,D5:A_GROUF, S5:A_GROUP
COUNT EGU 5@
START PROC FAR

MoV AX,A_GROUP sUse the GROUP base address to

MOV 25, AX ;i0ad the Stack Segment register

MOV P,OFFSET A_GROUP: TOF_OF _STACK ;Foint to top of stack

PUSH Ds 15ave segment for FAR return value

SUB AX, AX sZero the AX register

PUSH AX ;Save offset of zero for far return

MOV AX,A_GROUP ;Use the GROUP base address to

MOV D&, AX ; load the Data Segment register

NOF ;Al1low next i1nstruction to be visible

swhen single-stepping in debugger

DO_AGAIN:

CALL FAR PTR COUNT_DOWN;Create a short time delay

CALL ADDUF sCount the number of time delays

CcHP A_GROUP:DATA,COUNT; Is the count finished?

JNE DO_AGAIN ;NO, repeat - YES, quit

RET ;=x1t the program

START ENDP

)

ADDUP PROC NEAR
INC A_GROUP:DATA
RET

ADDUF ENDF

PROG_CODE ENDS

1
B_GROUF GROUF FAR_CODE

FAR_CODE SEGMENT PUBLIC
ASSUME CS:B_GROUP
COUNT_UOWN PROC FAR
MOV CX, OREBBH
AGAIN: LOOP AGAIN
RET
COUNT_DOWN ENDP
FAR_CODE ENDS

]

;Begin a near procedure
;Add one to memory location DATA
sReturn from a near procedure

;Begin a far procedure

15et up a delay leop count
sLoop until count is zero
;Return from a far procedure

END

START

Figure 9-17

Program showing how groups and procedures can be used.

9'66 UNIT NINE

Load the EXE file for your program into the debugger. Examine
the MPU registers. Record the following register values.

Code Segment SR . |
Data Segment S,
Stack Segment ____H.
Stack Pointer SR,

Right now, the only register that cor:tains the base address for
A_GROUP is CS. The Stack Pointer register points to what is
currently the top of the stack. This will change when you begin
executing program code.

Single-step to the first call instruction. Record the following regis-
ter values.

Code Segment YOI . |
Data Segment S|
Stack Segment PESS |, |
Stack Pointer —_ __H.

Now the registers have the correct program values. All three seg-
ment registers contain the base address for A_GROUP, and the
Stack Pointer register points to the current top of the program
stack. The stack also contains the FAR return address for program
termination.

Single-step through the call instruction. The CS register now con-
tains the value — _ _ _H. This is the base address for the code
segment in B_GROUP.

When you entered the program listing in step one, you may have
wondered about the assembler operator FAR PTR in this call in-
struction. The operator was needed -o tell the assembler how
many bytes to reserve for the target address of the call. We didn’t
use the operator in our earlier example of a far procedure because
the target label preceded the call instruction — there was no for-
ward reference. The operator was needed in this program because
of the forward reference to the target label.

Code Macros and Other Interesting Macro-86 Features 9'67

10.

11.

The next three instructions form a short time delay loop. You
can single-step through the loop OBBBBH times, or you can let
the debugger do it for you. When you are ready to complete the
loop, type “G0005” and RETURN. This tells the debugger to exe-
cute the program instructions down to the instruction at offset
address 0005H. After a slight pause, the debugger will display
the FAR return instruction.

Single-step through the return instruction. The CS register now

contains the value _ _ __ _H. This is the base address for the
main program code segment. The IP register contains the value
S

Single-step through the call instruction. This instruction calls
the near procedure ADDUP. The IP register contains the value
— — — _H. Calls to near procedures update the IP register, but
not the CS register. Calls to far procedures update both.

Before you single-step through the increment instruction,
examine the memory location pointed to by the instruction. Type
“D” (and the four numbers located in the source operand of the
instruction) and RETURN. The first byte in the memory display
contains the value _ _H.

Single-step through the increment instruction. It adds one to the
memory location DATA. Previously, all of your programs incre-
mented a register. We incremented a memory location just to
show you that it will work. Notice that the program used the
group override operator to identify the base address of the data
segment. The compare instruction also uses that operator.

Examine the memory location that you just incremented. Does
it contain the value one?

Single-step through the next three instructions. The return from
call instruction is executed, the data in memory location DATA
is compared to the value 50 (COUNT equated to 50), and the
jump if not equal instruction is taken (DATA does not equal 50).
This puts the MPU back at the FAR call instruction. The sequence
will repeat until DATA equals 50.

9'68 UNIT NINE

12.

13.

14.

15.

16.

17.

18.

Now run the program to completion — type “G” and return. The
program will take a few seconds to execute. When it is finished,
the debugger will print the message:

Program terminated mormally

Examine the DATA memory location one more time. It should
contain the value 32H (decimal 50).

Exit the debugger. Then call up your editor and modify your pro-
gram as follows:

A. Just before the A_GROUP group statement, add the listing
directive .XLIST.

B. Just before the B_GROUP group statement, add the listing
directive .LIST.

Assemble the program. Then examine the assembler listing.
You should see the program title, the .LIST directive, and the
rest of the assembler listing of the program, beginning with the
B_GROUP group statement. Remember, the default listing direc-
tive is .LIST. This is “turned off” by the .XLIST directive. To
turn the listing back on, use the .LIST directive.

Call up your editor and enter the program listed in Figure 9-18.
This program will be used to show you how the conditional direc-
tives affect the assembly of a program.

Assemble the program. Did the assembler display four messages?

The first message in your program should have been displayed
twice, once for each pass of tae assembler. The next two messages
should have been displayed once. Their display is controlled by
the conditionals IF1 and IF2.

Examine the program listing. The only define byte statement to
be assembled is DATA2. Do you understand why?

Code Macros and Other Interesting Macro-86 Features 9'69

TITLE EXPERIMENT 9 -- PROGRAM 2 -- CONDITIONALS
)
.LFCOND

;.ULIT THIS MESSAGE WILL BE DISPLAYED TWICE

£

IF1

70UT THIS MESSAGE WILL BE DISPLAYED ON THE FIRST ASSEMBLER PASS
ENDIF

i
IF2

70UT THIS MESSAGE WILL BE DISPLAYED ON THE SECOND ASSEMBLER PASS
ENDIF

3
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE

i
COUNT EQU @
TEST EQU @

L)
START PROC FaR

IFDEF TEST
IF COUNT
DATAL DB 'FIRST’
ENDIF
L]
IF COUNT + 5
DATAZ DB " SECOND’
ENDIF
ENDIF

-

IFNDEF TEST
IFE COUNT + 5

DATA3 DB *THIRD’
ELSE
DATA4 DB *FOURTE
ENDIF
ENDIF
1)
RET
START ENDP
PROG_CODE ENDS
END START
Figure 9-18

Program showing how conditional directives can be used.

9'70 UNIT NINE

Discussion

The main part of the program contains two sets of nested conditional
directives. Depending on the status of the symbol TEST, either the first
or second set of conditionals are assembled. Since TEST has been de-
fined, the conditional IFDEF TEST tests true. This allows the next two
conditionals to be tested. The first conditional, [F COUNT, tests false
because COUNT is zero — DATAT1 is not assembled. The second condi-
tional, IFE COUNT, tests true. Therefore, DATA2 is assembled. Because
TEST has been defined, the conditional IFNDEf TEST tests false. As
a result, the nested conditionals following IFNDEF are not tested or
assembled.

Procedure Continued

19. Call up your editor and delete the equate statement
TEST EQU O
from your program.

20. Assemble the program. Then examine the assembler listing. The
only define byte directive to be assembled is DATA4.

Discussion

With the symbol TEST missing from the program, the IFDEF TEST
conditional tests false, and its nested conditionals are not tested or
assembled. On the other hand, IFNDEF TEST tests true, allowing its
nested conditionals to be tested. Conditional IFE COUNT + 5 tests

Code Macros and Other Interesting Macro-86 Features 9‘71

false because the value of COUNT plus five does not equal zero —
define byte DATA3 is not assembled. This causes the ELSE conditional
to test true — define byte DATA4 is assembled.

Procedure Continued

21. Call up your editor and change the .LFCOND directive to
.SFCOND.

22. Assemble your program. Notice that all four assembler messages
are displayed. Now examine ‘he assembler listing. Is the display
what you expected to see?

Discussion

The .SFCOND directive suppressed the listing of all false conditionals.
The first of these was the IF1 conditional. It tested true on the first
pass of the assembler and its message was printed. On the second pass,
it tested false. Since the listing is generated from the second pass, it
was not displayed. Only the ENDIF directive remained to show its origi-
nal location.

The second conditional to be suppressed was IFDEF TEST. Its ENDIF
directive remains to show its original location. Because IFDEF TEST
tested false, its nested conditionals were never tested by the assembler.
As aresult, they are completely suppressed by the .SFCOND directive.

The last conditional and its related data statement to be suppressed
is [FE COUNT + 5.

9-72 | uniTNiNE

Procedure Continued

23.

Call up your editor and enter the program listed in Figure 9-19.
This is the first of the programs that will be used to show you
how the macro directives and their operators affect the assembly

of a program.

24. Assemble the program. Now examine the assembler listing.
TITLE EXPERIMENT 9 -- PROGRAM 3 -- MACROS |
;

-LALL
j
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE
i
START FROC FAR
;
TEST MACRO X,Y,Z
ONE DM X
THO: SUB AX,AX
ADD AX, ONE
cHP AX, Y
JZ TWO
ENDM
;
TEST 5,10,NE
' RET
START ENDP
PROG_CODE ENDS
END START
Figure 9-19
The first macro prograrr.
Discussion

The macro template contains three dummy parameters. These are re-

placed by parameters supplied by the macro call

TEST 5,10,NE

The assembler expanded the macro template, and assembled the code
and data. This expansion is identified by plus signs in the listing. Notice
that the macro operator “&” caused the assembler to replace the dummy
“Z” with text characters “NE” to produce the instruction mnemonic

JNE.

Code Macros and Other Interesting Macro-86 Features 9"‘73

Procedure Continued

25. Call up your editor and add the macro directive statement

TEST 5.5.E

pointed to by the atrow in Figure 9-20. Do not add the macro
directive statement

LOCAL ONE,TWO

at this time.

26. Assemble the program. One simple macro call generated ten as-
sembly errors. Why do you think that happened?

TITLE EXPERIMENT 9 -- PROGRAM 4 -- MACROS 2
i

.LALL

PROG_CODE SEGMENT
ASSUME CS:PROG_CODE

3
START PROC FAR

;
TEST MACRO X,Y,Z
————> LOCAL OMNE,TWO
X

ONE Db
TWO: SUB AX, AX
ADD AX, ONE
cMP AX, Y
J&Z THO
ENDM
;
TEST 5,10,ME
—>TEST 5,5,E
H
RET
START ENDP
PROG_CODE ENDS
END START
Figure 9-20

Macro program expanded with the LOCAL directive.

Discussion

The program now contains two macro calls that expand the same macro
template. This produces two sets of code and data with the same sym-
bols. The assembly errors were generated because the symbols defined
more than one memory location.

9-74 | unnine

Procedure Continued

27. Call up your editor and add the macro directive statement

LOCAL ONE, TWO
pointed to by the arrow in Figure 9-20.

28. Assemble the program. Examine the assembler listing. All of the
assembly errors have been corrected by the LOCAL directive. It
has also created a unique symbol for each symbol in each macro
expansion.

29. Call up your editor and delete the LOCAL directive statement
and the macro call, pointed to by arrows in Figure 9-20, from
your program. Refer to Figure 9-21 and add the define byte direc-
tive pointed to by an arrow. Then modify the macro statement
and macro call, pointed to by arrows, as shown.

30. Assemble the program. Examine the assembler listing.

TITLE EXPERIMENT 9 -- PROGRAM 5 - MACROS 3
TLALL

]
PROG_CODE SEGMENT
ASSUME C5:PROG_CODE

i
START PROC FAR

1
—> TEST MACRO X,Y,Z,U,v
—>7ERO DB UV
ONE oW X
TWO: SUB AX, AX
ADD AX, ONE

CMP AX, Y
Jsz TWO
ENDM

—> TEST 5,10,NE,!;,<COUNT>

RET
START ENDP
PROG_CODE ENDS
END START
Figure 9-

Macro program with literal macro operators added.

Code Macros and Other Interesting Macro-86 Features 9'75

Discussion

Both the semicolon and the word COUNT were treated as literal charac-
ters in the macro expansion. The dummy parameters “U” and “V” were
identified with an ampersand in the define byte statement. Without
the ampersand, the two parameters would not have been used.

Procedure Continued

31. Call up your ecitor with your program. Delete the macro template
and the macro call. Then add the equate statement, macro
template, and macro call in Figure 9-22.

32. Assemble the program. Exam:ne the assembler listing.

TITLE EXPERIMENT 9 -- PROGRAM & -- MACROS 4

.LALL

j
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE

i
START PROC FAR

1

X EU o
TEST MACRO Z
REPT 2
X=X +1
DB X
ENDM
ENDM
TesT 3
' RET
START ENDP
PROG_CODE ENDS
END START
Figure 9-22

Macro program using the repeat directive.

9'76 UNIT NINE

Discussion

The macro call TEST passes the parameter “3” to the repeat macro
nested in the macro template TEST. The expression “X” is originally
equated to the value zero. Each time the define byte statement in the
macro is repeated, the value of “X” is incremented. That incremented
value becomes part of the program machine code. The incrementing
process is shown in the listing because of the listing directive .LALL
(list all). Now lets see how the listing is changed when .LALL is re-
moved from the program.

Procedure Continued

33.

34.

35.

36.

37.

38.

Call up your editor and delete the directive .LALL.

Assemble the program. Examine the assembler listing. Now the
only part of the macro listing that is displayed are the three define
byte statements that generate machine code. This is equivalent
to using the .XALL directive.

Call up your editor and add the .SALL directive where the .LALL
directive was originally located in your program.

Assemble the program. Examine the assembler listing. The macro
template and macro call are listed, but all of the macro expansion
has been suppressed.

Call up your editor and modify your program as shown in Figure
9-23. First replace the .SALL directive with the .LALL directive.
Then add the conditional directive statement and the ENDIF di-
rective. These changes are pointed to by arrows. You might want
to offset the repeat macro template one tab to make the nesting
levels clear, as shown in the figure.

Assemble the program. Examine the assembler listing.

Code Macros and Other Interesting Macro-86 Featureil 9-77

TITLE EXPERIMENT 9 -- PROGRAM 7 -- MACROS 5
i
—>.LALL
;
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE

3
START FROC FAR

X EQU @
TesT MACRO Z
» [FNB {Z>
REPT z
X=X+1
0B X
ENDM
» ENDIF
ENDM
1]
TEST 3
i
RET
START ENDP
PROG_CODE ENDS
END START
Figure 9-23

Macro program using conditional expansion.

Discussion

The conditional directive tests the parameter passed by the macro call.
As long as the parameter is not blank, the conditional will test true,
and the nested macro will be expanded. In this example, the test was
true, and the repeat macro was allowed to create three defined bytes
using the passed parameter. If the parameter is blank, the macro will
not be expanded. Let’s see what will happen if the parameter is blank.

9'78 UNIT NINE

Procedure Continued

39. Call up your editor and change the macro call statement in your
program to read:

TEST <>

40. Assemble the program. Examine the assembler listing,.

Discussion

The parameter passed by the macro call was blank (null). Because of
that, the conditional tested false, and the macro repeat was not assem-
bled. The ENDIF directive was listed because that was all that was
left in the macro template after the conditional tested false.

You may have noticed earlier that when the repeat macro was ex-
panded, no symbols were assigned to the define byte statements. That’s
because you can’t concatenate a value directly to text with the amper-
sand operator. If you want to assign a symbol to data in a macro repeat,
you must use the repeat macro call method described in the section
“Other Macro Directives.” Let’s try an examgle.

Procedure Continued

41. Call up your editor and modify your program as shown in Figure
9-24. First, delete the conditional directive statement and the
ENDIF directive. Then, change the macro call statement back to:

TEST 3

Next, replace the define byte statement, in the repeat macro, to
the macro call statement:

CHANGE ZX
Finally, add the macro template CHANGE after the macro
template TEST. These modifications are pointed to by arrows in

the figure.

42. Assemble the program. Examine the assembler listing.

Code Macros and Other Interesting Macro-86 Features 9'79

TITLE EXPERIMENT 9 -- PROGRAM 8 -- MACROS 6

LALL

i
PROG CODE SEGMENT
ASSUME CS:PROG_CODE

§
START PROC FAR

]

X EGU)
TEST MACRO 2
REPT L
X=X +1
» CHANGE 7.X
ENDM
ENDM
L)
—» CHANGE MACRO Y
—> DATAYY DB Y
— == e3> ENDM

i
=3 TEST 3

RET
START ENDP
PROG_CODE ENDS

END START

Figure 9-24
Macro program using a nested repeat macro call.

Discussion

Macro call TEST passes the parameter three to macro template TEST.
This value is used to determine the number of times the repeat macro
is repeated. Each time it is repeated, the macro call CHANGE is exe-
cuted. The percent sign in front of the macro call parameter “Y” tells
the assembler that it will be passing a variable represented by “Y” in-
stead of text to the called macro template CHANGE. That variable then
replaces each dummy parameter “Y” in the macro template. The result
of this macro expansion is the creation of three define byte statements
with a unique symbol for each.

Because the IRP and IRPC macro directives are similar in function,
we'll only give you an example of one, the IRP macro directive.

9'80 UNIT NINE

Procedure Continued

43. Call up your editor and delete the equate statement, the two
macro templates, and the macro call in your program. Then add
the macro template and macro call shown in Figure 9-25.

TITLE EXPERIMENT 9 -- PROGRAM 9 —— MACROS 7
LALL
;
PROG_CODE SEGMENT
ASSUME CS:PROG_CODE
i
START PROC FAR
;
LAST MACRO X
IRP Z2,1,2,3>
Xz DB z
ENDM
ENDM

3
LAST DATA

RET
START ENDP
PROG_CODE ENDS

END START

Figure 9-25

Macro program using an indefinite repeat macra.

44. Assemble the program. Examine the assembler listing.

Description

Notice that two ampersands are used in the define byte symbol of the
macro template. When the macro is called, the parameter DATA is
substituted for the dummy parameter “X” and the first ampersand is
“consumed.” This is shown in the intermediate step of the macro ex-
pansion. The second ampersand is consumed when a repeat directive

parameter replaces the repeat dummy parameter in the define byte sym-
bol.

The last part of this experiment will covar the PAGE and SUBTTL
directives.

Cede Macros and Other Interesting Macro-86 Features 9'81

Procedure Continued

45, Call up your editor, with your last program, and enter the direc-
tive PAGE before the program line

START PROC FAR

before the program line

LAST DATA

and before the program line

START ENDP

46. Assemble the program. Examine the assembler listing. Notice that
a page break occurs before each PAGE directive, the major page
number doesn’t change, and the minor page number increments
for each new page.

47. Call up your editor and add a plus sign after the second PAGE
directive in your program. Then add the directive statement

SUBTTL ***MACRO EXPANSION***
before the PAGE + directive.

48. Assemble the program. Examine the assembler listing. This time
the major page number on the third page has incremented to two
and the minor page number has reset to one. In addition, the
third page has the subtitle

MACRO EXPANSION

centered under the program title line. The fourth page’s major
page number remains at two, while the minor page number has
incremented to two. The fourth page also has the subtitle

=*MACRO EXPANSION*

49. Call up your editor and add the directive SUBTTL before the
last PAGE directive in your program.

9-82

UNIT NINE

50.

51

52.

Assemble the program. Examine the assembler listing. This time
the subtitle is not listed on the fourth page. It was “turned off”
by the SUBTTL directive with no text.

Call up your editor and delete the three page directives and the
two subtitle directives. Then enter the page directive

PAGE 10,60
before the TITLE directive statement.

Assemble the program. Examine the assembler listing. The source
listing portion of the display is 20 characters shorter than before.
As a result, many of the lines wrap around. The page length is
nine lines. You specified ter lines; why do you think there are
only nine lines displayed? The tenth line holds the “form feed”
character. Since this is not a printable character, you can only
see nine lines. For that same reason, there are only 59 characters
on a line. The sixtieth character is the nonprintable carriage re-
turn character.

If you have an early version assembler (1.00, 1.07, etc.) you can't
specify a listing size that exceeds the default values. However,
if you have a later version, you might try cifferent listing values
to see how the display is handled. Add a long comment line
or extend the title to 60 characters, to see the effect.

If you have a printer, try printing the listing to see what size
best fits your needs. Naturally, the early version assemblers will
limit what you can do to your page format.

This completes the Experiment for Unit 9. Proceed to the Unit 9 Exami-
nation.

Code Macros and Other Interesting Macro-86 Features 9“83

10.

11.

12.

13.

14.

15.

UNIT 9 EXAMINATION

A procedure defines the beginning and end of a

A procedure can have a “type” or

A type procedure is used to set up the exit to
the system (return) from an EXE program.

The directive allows you to gather the segments
of a program under one segment base address value.

The code or data following a conditional directive will be assem-
bled if the condition being tested tests

Every conditional operation must be ended with the
directive.

The IF directive will test true if the expression is

The IFE directive will test true if the expression is

The IF1 directive will test true on the
pass of the assembler.

The IF2 directive will test true on the
pass of the assembler.

The directive will test true if its symbol has
been defined.

The directive will test true if its argument is
not blank.
The directive will test true if string argument

one is different from string argument two.

The directive is used as an alternative at as-
sembly time to a false conditional.

The directive is a programming tool that allows
you to generate or repeat a sequence of code or data within a
program.

9-84 | unimnine

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

A macro call is used to pass one or more
to a macro template.

A repeat macro directive can take one of three forms:
; ; OF

The indefinite repeat macro cirective that requires angle brackets
around its parameters is

The exit directive for a conditional is

The directive eliminates the problem of mul-
tiple symbol definition when a macro template is expanded more
than once.

The macro operator is used to concate-
nate text or symbols within a macro expansion.

The minor page number is incremented after a page break gener-
ated by the directive.

The minor page number is reset to one after a page break gener-
ated by the directive.

The length and width of an assembler listing page listing is deter-
mined by the directive.

If a subtitle is specified on the third line of a program, the first
time it will be used is on the page of
the program listing.

To “turn off” the listing of a program, use the
directive.

To “turn off” the listing of a false conditional, use the
directive.

To “turn off” the listing of a macro expansion, use the
directive.

Code Macros and Other Interesting Macro-86 Features 9'85

10.

11.

12,

13.

14.

15.

EXAMINATION ANSWERS

A procedure defines the beginning and end of a subroutine or
program segment.

A procedure can have a “type” NEAR or FAR.

A type FAR procedure is used to set up the exit to the system
(return) from an EXE program.

The GROUP directive allows you to gather the segments of a
program under one segment base address value.

The code or data following a conditional directive will be assem-
bled if the condition being tested tests true.

Every conditional operation must be ended with the ENDIF direc-
tive.

The IF directive will test true if the expression is nonzero.
The IFE directive will test true if the expression is zero.
The [F1 directive will test true on the first pass of the assembler.

The IF2 directive will test true on the second pass of the assem-
bler.

The IFDEF directive will test true if its symbol has been defined.
The IFNB directive will test true if its argument is not blank.

The IFDIF directive will test true if string argument one is differ-
ent from string argument two.

The ELSE directive is used as an alternative at assembly time
to a false conditional.

The MACRO directive is a programming tool that allows you to
generate or repeat a sequence of code or data within a program.

9-86

UNIT NINE

16.

1.7;

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

A macro call is used to pass one or more parameters to a macro
template.

A repeat macro directive can take one of three forms: REPT, IRP,
or IRPC.

The indefinite repeat macro directive that requires angle brackets
around its parameters is IRP.

The exit directive for a conditional is EXITM.

The LOCAL directive eliminates the problem of multiple symbol
definition when a macro template is expanded more than once.

The macro operator ampersand is used to concatenate text or
symbols within a macro expar.sion.

The minor page number is incremented after a page break gener-
ated by the PAGE directive.

The minor page number is reset to one after a page break gener-
ated by the PAGE + directive.

The length and width of an assembler listing page listing is deter-
mined by the PAGE directive.

If a subtitle is specified on the third line cf a program, the first
time it will be used is on the second page of the program listing.

To “turn off” the listing of a program, use the .XLIST directive.

To “turn off” the listing of a false conditional, use the .SFCOND
directive.

To “turn off” the listing of a macro expansion, use the .SALL
directive.

Code Macros and Other Interesting Macro-86 Features 9'87

10.

11.

12.

13.

SELF-REVIEW ANSWERS

Procedures have a rigid structure.
The beginning of a procedure is identified by the directive PROC.
The end of a procedure is identified by the directive ENDP.

Every procedure should contain at least one RET (return) instruc-
tion.

A FAR procedure is used to define the main code section of an
EXE program.

The procedure return instruction type is determined by the proce-
dure type.

The EXE-type program termination address is determined by
pushing the original contents of the Data segment register and
the address offset zero into the stack.

The best way to access a procedure is with a call instruction.

True. Procedures can be nested any number of times, as long
as there is room on the stack for all of the return addresses.

The GROUP directive allows you to gather any number of pro-
gram segments into one identifiable collection and reference the
data or code in the segments to a single base address value.

The maximum size of a group is 64K bytes.

Group size is checked by the linker.

Your program contains the following segments:
PROG_STACK

PROG_DATA
PROG_CODE

Write a GROUP directive statement that will combine all of the
program segments into one group called PGROUP.

PGROUP GROUP PROG_STACK,PROG_DATA,PROG_CODE

9"88 UNIT NINE

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Write the ASSUME directive statement for the program in ques-
tion 13. The Extra Segment register will not be used by the pro-
gram.

ASSUME CS:PGROUP,DS:PGROUP,SS:PGROUP

Write the instruction that will load the Steck Pointer register for
the program in question 13. The end of the stack is identified
by the LABEL directive:

TOP_OF_STACK LABEL WORD

MOV SP,OFFSET PGROUP:TOP_OF_STACK

Conditional directives are assembler instructions that specify
whether a section of a program should be assembled or not.

The beginning of a conditional directive is identified by the
IFxxxx directive.

The end of a conditional directive is identified by the directive
ENDIF.

True. Conditional directives can be nested up to 255 levels.

An IF directive will evaluate true if its expression is a nonzero.

An IFE directive will evaluate true if its expression is a zero.
An IF1 directive is enabled during pass one of the assembler.
An IF2 directive is enabled during pass two of the assembler.

An IFDEF directive will evaluate true if its symbol has been de-
fined in the program.

An IFNDEF directive will evaluate true if its symbol has not been
declared External.

An IFB directive will evaluate true if it has a null argument.

An IFNB directive will evaluate true if it contains an argument.

Code Macros and Other Interesting Macro-86 Features 9"89

28.

29.

30.

31.

32,

33.

34.

35.

36.

37.

38.

39.

40.

An IFIDN directive will evaluate true if the string in argument
one equals the string in argument two.

An IFDIF directive will evaluate true if the string in argument
one does not equal the string in argument two.

The %OUT directive can be used to display a message during
program assembly.

The ELSE directive allows an alternate conditional block to be
assembled if the specified condition is not met.

A macro is a programming tool that allows you to generate or
repeat a sequence of code or data within a program.

The directive MACRO tells the assembler that the following code
or data is part of a macro template.

The directive ENDM identifies the end of a macro template.

A macro name is used by a macro call to identify a macro
template.

A macro call contains one or more parameters that are passed
to the called macro template.

An individual parameter that contains many items separated by
commas is iden:ified by enclosing the items with a pair of angle
brackets.

The REPT (repeat) macro directive is used to repeat its macro
template the number of times specified in the macro directive
statement.

The IRP (indefinite repeat) macro directive is used to replace
a dummy parameter within its template with one or more parame-
ters. The parameters are separated by commas and enclosed with
angle brackets.

The IRPC (indefinite repeat character) macro directive is used
to replace a dummy parameter within its template with one or
more parameters. The parameters consist of a string of characters
not separated by commas and nct enclosed with angle brackets.

9-90 | uniTnine

41.

42.

43.

44,

45,

46.

47.

48.

49,

50.

The EXITM (exit macro) macro directive :s used to end a condi-
tional macro operation.

The PURGE macro directive is used to delete unwanted macro
templates from a program.

The LOCAL macro directive is used to create unique names or
labels within a macro expansion.

The macro operator & (ampersand) is used to concatenate text
or symbols during macro expansion.

The macro operator angle brackets can be used to create a literal
character.

Two semicolons are used to hide a macro comment in an assem-
bler listing.

The macro operator ! (exclamation point) is used to identify a
literal character.

The macro operator % (percent sign) is used in a macro call to
convert the expression that follows it into a number.

The directive that will cause a page break and increment the
major page number is

PAGE +

The directive that will cause a page break and increment the
minor page number is

PAGE

Code Macros and Other Interesting Macro-86 Features 9‘91

51.

52,

53.

54.

55.

56.

57.

58.

59.

60.

61.

The directive that will set the page length to 80 and the page
width to 132 is

PAGE 80,132

The characters following the directive TITLE are used by the as-
sembler to determine every page heading in the assembler listing,

The characters following the directive SUBTTL are used by the
assembler to determine the secondary page heading in the assem-

bler listing.

To display a message during an assembly operation, precede the
message with the directive %OUT in the program source listing.

To suppress an assemn-bler listing, use the .XLIST directive.
To “turn on" an assembler listing, use the .LIST directive.

To suppress the listing of any source lines in a macro that do
not generate code or data, use the .XALL directive.

To “turn on” the complete listing in a macro, use the .LALL direc-
tive.

To suppress the complete listing in a macro, use the .SALL direc-
tive.

To suppress the listing of any false conditional expressions, use
the .SFCOND diractive.

To “turn on” the listing of any false conditional expressions, use
the .LFCOND directive.

LAASNI

Appendix A
NUMBER SYSTEMS DATA

A"'2 APPENDIX A

DECIMAL NUMBER SYSTEM

A basic distinguishing feature of a number system is its base or radix. The
base indicates the number of characters or digits used to represent quan-
tities in that number system. The decimal number system has a base or
radix of 10 because we use the ten digits 0 through 9 to represent
quantities. When a number system is used where the base is not known, a
subscript is used to show the base. For example, the number 4603, is
derived from a number system with a base of 10.

Positional Notation The decimal number system is positional or
weighted. This means each digit position in a number carries a particular
weight which determines the magnitude of that number. Each position
has a weight determined by some power of the number system base, in
this case 10. The positional weights are 10° (units)*, 10" (tens), 102
(hundreds), etc. Refer to Figure 1 for a condensed listing of powers of 10.

10° =1

10' = 10

10* = 100

10* = 1,000
10* = 10,000
10* = 100,000

10® = 1,000,000

107 = 10,000,000
10®* = 100,000.000
10° = 1,000,000,000

Figure 1
Condensed listing of powers of 10.

*Any number with an exponent of zero is equal to one.

Appendix A A'S

We evaluate the total quantity of a number by considering the specific
digits and the weights of their positions. For example, the decimal
number 4603 is written in the shorthand notation with which we are all
familiar. This number can also be expressed with positional notation.

(4 X 10%) + (6 X 10%) + (0 X 10") + (3 X 10°% =
(4 X 1000) + (6 X 100) + (0 X 10) + (3 x 1) =
4000 + 600 + 0 + 3 = 4603,

To determine the value of a number, multiply each digit by the weight of
its position and add the results.

Fractional Numbers So far, only integer or whole numbers have been
discussed. An integer is any of the natural numbers, the negatives of these
numbers, or zero (that is, 0, 1, 4, 7, etc.). Thus, an integer represents a
whole or complete number. But, it is often necessary to express quantities
in terms of fractional parts of a whole number.

Decimal fractions are numbers whose positions have weights that are
negative powers of ten such as 107! = li_ = 0.1, 107? = 1—[%
= 0.01, etc.

Figure 2 provides a condensed listing of negative powers of 10 (decimal
fractions).

107" = = 0.
10 !
1072 = - = 0.01
100 ’
1073 = 3 = 0.001
1000 '
1 i 2
104 = —— = 0.0001 g
10,000 Condensed listing of negative
powers of 10.
1
107 = ———— = 0.
100,000 G000
. 1
10 = = 0.000001

1,000,000

A‘4 APPENDIX A

A radix point (decimal point for base 10 numbers) separates the integer
and fractional parts of a number. The integer or whole portion is to the
left of the decimal point and has positicnal weights of units, tens, hun-
dreds, etc. The fractional part of the number is to the right of the decimal
point and has positional weights of tenths, hundredths, thousandths, etc.
To illustrate this, the decimal number 278.94 can be written with posi-
tional notation as shown below.

(2 x 108 + (7 x 10") + (8 X 10% + (9 x 107') + (4 X 107%) =
(2 X 100) + (7 x 10) + (8 x 1) + (9 x 1/10) + (4 x 1/100) =
200 + 70 + 8 + 0.9 + 0.04 = 278.94,,

In this example, the left-most digit (2 x 10?) is the most significant digit
or MSD because it carries the greatest weight in determining the value of
the number. Theright-most digit, called the least significant digit or LSD,
has the lowest weight in determining the value of the number.

Appendix A A'5

BINARY NUMBER SYSTEM

The simplest number system that uses positional notation is the binary
number system. As the name implies, a binary system contains only two
elements or states. In a number system this is expressed as a base of 2,
using the digits 0 and 1. These two digits have the same basic value as 0
and 1 in the decimal number system.

Positional Notation

As with the decimal number system, each bit (digit) position of a binary
number carries a particular weight which determines the magnitude of
that number. The weight of each position is determined by some power of
the number system base (in this example 2). To evaluate the total quantity
of anumber, consider the specific bits and the weights of their positions.
(Refer to Figure 3 for a condensed listing of powers of 2.) For example, the
binary number 110101 can be written with positional notation as follows:

(1 X2 +(1x29+(0x2%+(1x2%)+(0x2)+(1x29

To determine the decimal value of the binary number 110101, multiply
each bit by its positional weight and add the results.

(1 x32) +(1x16) + (0 x8) +(1x4)+(0x2)+(1x%x1)=
32+ 16+ 0+4+ 0+ 1=53,,

20=1,, 2% = 64,

2V =2, 27 =128,

2t = 4, 28 = 256,,

23 = 8, 2% = 512,,

2¢ = 16, 210 = 1024,

25 = 32,, 211 = 2048,,
Figure 3

Condensed listing of powers of 2.

A'6 APPENDIX A

Fractional binary numbers are expressed as negative powers of 2. Figure 4
provides a condensed listing of negative powers of 2. In positional nota-

tion, the binary number 0.

1101 can be expressed as follows:

(1 X2+ [1%X2°%+(0x29% + (1 %27

To determine the decimal value of the binary number 0.1101, multiply

each bit by its positional

weight and add the results.

(1 x1/2) + (1 x 1/4) + (0 x 1/8) + (1 X 1/16) =

0.5 + 0.25 +

0 + 0.0625 = 0.8125,

In the binary number system, the radix point is called the binary point.

271

2-2

2—6

2-7

1
= —'2— = 0.510
1
= 4—‘ . 0.25|0
1
= —— = 0.125
8 10
= 1 = 0.0625
- 16 * 10
= 1 = 0.03125
BT : o
1
= __64 = 0.015625,,
= ——1 = 0.0078125
C 128 o
= 1 = 0.00390625
256 y =
Figure 4

Condensed listing of negative
powers of 2.

Appendix A A'7

Converting Between the Binary and Decimal
Number Systems

Binary to Decimal To convert a binary number into its decimal equiva-
lent, add together the weights of the positions in the number where
binary 1's occur. The weights of the integer and fractional positions are
indicated below.

INTEGER FRACTIONAL

f 2725252 20| 2*] 2*] 2° 271] 2% 23] %

3y 128|644 [32[16]8 | 4] 2] 1 5].25].125
Binary Point

As an example, convert the binary number 1010 into its decimal equiva-
lent. The right-most bit, called the least significant bit or LSB, has the
lowest integer weight of 2°=1. The left-most bit is the most significant bit
(MSB) because it carries the greatest weight in determining the value of
the number. In this example, it has a weight of 2°=8. To evaluate the
number, add together the weights of the positions where binary 1's

appear. In this example, 1's occur in the 2% and 2' positions. The decimal
equivalent is ten.

Binary Number 1 0 1 0
Position Weights ~ 2° 2? 2 2e
Decimal Equivalent
8 + 0 + 2 + 0 — 101n

Decimal to Binary A decimal integer number can be converted to a
different base or radix through successive divisions by the desired base.
To convert a decimal integer number to its binary equivalent, succes-
sively divide the number by 2 and note the remainders. When you divide
by 2, the remainder will always be 1 or 0.

The remainders form the equivalent binary number.

A"B APPENDIX A

As an example, the decimal number 25 is converted into its binary
equivalent.

25 + 2 = 12 with remainder 1 -— LSB
12 -2 =6 0
6 +-2=3 0
3+2=1 1
1+2=0 1 --— MSB

Divide the decimal number by 2 and note the remainder. Then divide the
quotient by 2 and again note the remainder. Then divide the quotient by 2
and again note the remainder. Continue this division process until 0
results. Then collect remainders beginning with the last or most signifi-
cant bit (MSB) and proceed to the first or least significant bit (LSB). The
number 11001, = 25,,. Notice that the remainders are collected in the
reverse order. That is, the first remainder becomes the least significant
bit, while the last remainder becomes the most significant bit.

NOTE: Do not attempt to use a calculator to perform this conversion. It
would only supply you with confusing results.

To convert a decimal fraction to a different base or radix, multiply the
fraction successively by the desired base and record any integers pro-
duced by the multiplication as an overflow. For example, to convert the
decimal fraction 0.3125 into its binary equivalent, multiply repeatedly by
2.

0.3125 X 2 = 0.625 = 0.625 witk overflow 0 =— MSB
0.6250 x 2 = 1.250 = 0.250 1
0.2500 X 2 = 0.500 = 0.500 0
0.5000 x 2 = 1.000 =0 1 -— LSB

These multiplications will result in numbers with a 1 or 0 in the units
position (the position to the left of the decimal point). By recording the
value of the units position, you can construct the equivalent binary
fraction. This units position value is called the “‘overflow.” Therefore,
when 0.3125 is multiplied by 2, the overflow is 0. This becomes the most
significant bit (MSB) of the binary equivalent fraction. Then 0.625 is
multiplied by 2. Since the product is 1.25, the overflow is 1. When there is
an overflow of 1, it is effectively subtracted from the product when the
value, is recorded. Therefore, only 0.25 is multiplied by 2 in the next
multiplication process. This method continues until an overflow with no
fraction results. It is important to note that you can not always obtain 0
when you multiply by 2. Therefore, you should only continue the conver-

Appendix A

sion process to the precision you desire. Collect the conversion over-
flows beginning at the radix (binary) point with the MSB and proceed
to the LSB. This is the same order in which the overflows were produc-

ed. The number 0.0101; = 0.31254,.

If the decimal number contains both an integer and fraction, you must
separate the integer and fraction using the decimal point as the break
point. Then perform the appropriate conversion process on each number
portion. After you convert the binary integer and binary fraction, recom-
bine them. For example, the decimal number 14.375 is converted into its

binary equivalent.

14.375,, = 14,0 + 0.375,,

14+2=7
7+2=3
3+2=1
1+2=0
14,, = 1110,

0.375 X 2 = 0.75 = 0.75
0.750 x 2 = 1.50 = 0.50
0.500 X2 =1.00=0

[0.375,, = 0.011,]

with remainder ¢ <« LSB

with overflow

1

1

1 <« MSB
0 - MSB
1

1 - LSB

14.375,5 = 14,5 + 0.375;,0 = 1110, + 0.011, = 1110.011,.

A-9

A'1 0 APPENDIX A

HEXADECIMAL NUMBER SYSTEM

Hexadecimal is another number system that is often used with micro-
processors. As the name implies, hexadecimal has a base (radix) of 16,,. It
uses the digits 0 through 9 and the letters A through F.

The letters are used because it is necessary to represent 16,, different
values with a single digit for each value. Therefore, the letters A through
F are used to represent the number values 10,, through 15,,. The follow-
ing discussion will compare the decimal number system with the
hexadecimal number system.

All of the numbers are of equal value between systems (0,5 = 0,4, 3,0 = 3,
9,0 = 946, etc.). For numbers greater than 9, this relationship exists: 10,, =
Ass, 115 = Byg, 12,0 = Cyg, 1349 = Dy, 1440 = Ey6, and 15,, = Fyg. Using
letters in counting may appear awkward until you become familiar with
the system. Figure 8 illustrates the relationship between decimal,
hexadecimal, and binary integers, while Figure 9 illustrates the relation-
ship between decimal, hexadecimal, and binary fractions.

Appendix A A'1 1

DECIMAL HEXADECIMAL BINARY
0 0 0
1 1 1
2 2 10
3 3 11
4 1 100
5 5 101
6 6 110
7 7 111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 G 1100
13 D 1101
14 E 1110
15 F 1111
16 10 10000

Figure 8

Sample comparison of decimal,
hexadecimal, and binary integers.

DECIMAL HEXADECIMAL BINARY
0.00390625 0.01 0.00000001
0.0078125 0.02 0.0000001
0.01171875 0.03 0.00000011
0.015625 0.04 0.000001
0.01953125 0.05 0.00000101
0.0234375 0.06 0.0000011
0.02734375 0.07 0.00000111
0.03125 0.08 0.00001
0.03515625 0.09 0.00001001
0.0390625 0.0A 0.0000101
0.04296875 0.0B 0.00001011
0.046875 0.0C 0.00011
0.05078125 0.0D 0.00001101
0.0546875 0.0E 0.0000111
0.05859375 0.0F 0.00001111
Figure 9

Sample comparison of decimal,

hexadecimal, and binary fractions.

A"1 2 APPENDIX A

As with the previous number systems, each digit position of a hexadeci-
mal number carries a positional weight which determines the magnitude
of that number. The weight of each position is determined by some power
of the number system base (in this example, 16,,). The total quantity ofa
number can be evaluated by considering the specific digits and the
weights of their positions. (Refer to Figure 10 for a condensed listing of
powers of 16,,.) For example, the hexadecimal number E5D7.A3 can be
written with positional notation as follows:

(E X 16%) + (5 X 162) + (D X 16') + (7 X 16°) + (A X 167') + (3 X 167%)

The decimal value of the hexadecimal number E5D7.A3 is determined by
multiplying each digit by its positional weight and adding the results. As
with the previous number systems, the radix (hexadecimal) point sepa-
rates the integer from the fractional part of the number.

(14 X 4096) + (5 X 256) + (13 X 16) + (7 X 1) + (10 X 1/16) + (3 X 1/256) =
57344 + 1280 + 208 + 7 + 0.625 + 0.01171875 =
58839.63671875,,

1
164 = —— = (.
65536 0.0000152587890625,,
1
16_3 — ——— T
2096 0.000244140625,,
1
BE = ==
555 0.00390625,,
1
167! = 18 = 0.0625,
16, = 16
256,, = 16%
409610 = 163
65536,, = 16*
1048576,, = 163
16777216, = 168
Figure 10

Condensed listing of powers of 16.

Appendix A A'1 3

Conversion From Decimal to Hexadecimal

Decimal to hexadecimal conversion is accomplished in the same manner
as decimal to binary, but with a base number of 16,,. As an example, the
decimal number 156 is converted into its hexadecimal equivalent.

Il

156 + 16 = 9 with remainder 12 = C =+ LSD
9+-16=0 9=9 =— MSD

Divide the decimal number by 16, and note the remainder. If the remain-
der exceeds 9, convert the 2-digit number to its hexadecimal equivalent
(12,, = Cin this example). Then divide the quotient by 16 and again note
the remainder. Continue dividing until a quotient of 0 results. Then
collect the remainders beginning with the last or most significant digit
(MSD) and proceed to the first or least significant digit (LSD). The
number 9C,; = 156,,. NOTE: The letter H after a number is sometimes
used to indicate hexadecimal.

To convert a decimal fraction to a hexadecimal fraction, multiply the
fraction successively by 16,, (hexadecimal base). As an example the
decimal fraction 0.78125 is converted into its hexadecimal equivalent.

Il

0.5 with overflow 12 =C = MSD
8 = LSD

0.78125 X 16 = 12.5
0.50000 X 16 = 8.0=10 8

Multiply the decimal by 16,,. If the product exceeds one, subtract the
integer (overflow) from the product. If the “overflow” exceeds 9, con-
vert the 2-digit number to its hexadecimal equivalent. Then multiply
the product fraction by 16,9 and again note any overflow. Continue
multiplying until an overflow, with 0 for a fraction, results. Remember,
you can not always obtain 0 when you multiply by 16. Therefore, you
should only continue the conversion to the precision you desire. Collect
the conversion overflows beginning at the radix point with the MSD
and proceed to the LSD. The number 0.C8,5 = 0.78125,,.

A' 1 4 APPENDIX A

As shown in this section, conversion of an integer from decimal to
hexadecimal requires a different technique than for conversion of a
fraction. Therefore, when you convert a hexadecimal number composed
of an integer and a fraction, you must separate the integer and fraction,
then perform the appropriate operation on each. After you convert them,
you must recombine the integer and fraction. For example, the decimal
number 124.78125 is converted into its hexadecimal equivalent.

124.78125,, = 124, + 0.78125,,

124 + 16 =7 with remainder 12 = C =— LSD
7+16=0 7 =7 -— MSD

124, = 7C;

0.78125 x 16 = 12.5 = 0.5 overflow 12 =C - MSD

0.50000 X 16 = 8.0 =0 8=8 ==— LSD

kj.?alzsm = 0.C8,

124.78125]0 o 124") + 078125|0 = ?CIG + O.CBIG e 7C-CB|6

First separate the decimal integer and fraction. Then convert the integer
and fraction to hexadecimal.

Finally, recombine the integer and fraction.

Appendix A A'1 5

Converting Between the Hexadecimal and
Binary Number Systems

The hexadecimal number system is an excellent shorthand form to ex-
press large binary quantities. Figures 8 and 9 illustrate the relationship
between hexadecimal and binary integers and fractions.

As you know, four bits of a kinary number exactly equal 16,, value
combinations. Therefore, you can represent a 4-bit binary number with a
1-digit hexadecimal number:

1101, =(1X2%) +(1x2) +(0x2) +(1x2%=8+4+0+1=13,, = D

Because of this relationship, converting binary to hexadecimal is simple
and straightforward. For example, binary number 10110110 is converted
into its hexadecimal equivalent.

10110110,
REWRITE AS

MSK /LSB

1011 0110
YIELDS

To convert a binary number to hexadecimal, first separate the number
into groups containing four bits, beginning with the least significant bit.
Then convert each 4-bit group into its hexadecimal equivalent. Don't
forget to use letter digits as required. This gives you a hexadecimal
number equal in value to the binary number.

A'1 6 APPENDIX A

Binary fractions can also be converted to their hexadecimal equivalents
using the same process, with one exception; the binary bits are separated
into groups of four, beginning with the most significant bit (at the radix
point). For example, the binary fraction 0.01011011 is converted into its
hexadecimal equivalent.

0.01011011,
REWRITE AS
MS LSB

0.0101 1011
YIELDS
0.5B 6

Again, you must separate the binary number into groups of four, begin-
ning with the radix point. Then convert each 4-bit group into its hexadec-

imal equivalent. This gives you a hexadecimal number equal in value to
the binary number.

As with octal to binary conversions, you may add zeros to fill out the
binary number for calculation. However, when you add zeros to a binary
integer, place them to the left of the MSB. In a binary fraction, zeros are
placed to the right of the LSB. Never, under any circumstances, move the
radix to perform conversions.

Appendix A A'1 7

Now, a binary number containing both an integer and a fraction
(110110101.01110111) will be converted into its hexadecimal equiva-
lent.

110110101.01110111,
KEWRITE AS
MSB LSB

0001 1071 0101.0111 0111
YIELDS
1B5.77 4

The integer part of the number is separated into groups of four, beginning
at the radix point. Note that three zeros were added to the third group to
complete the group. The fractional part of the number is separated into
groups of four, beginning at the radix point. (No zeros were needed to
complete the fractional groups.) The integer and fractional 4-bit groups
are then converted to hexadecimal. The number 110110101.01110111, =
1B5.77,4. Never shift the radix point in order to form 4-bit groups.

Converting hexadecimal to binary is just the opposite of the previous
process; simply convert each hexadecimal number into its 4-bit binary
equivalent. For example, convert the hexadecimal number 8F.41 into its
binary equivalent.

8F.41,
YIELDS
MSB LSB

1000 1111.0100 0001

REWRITE AS
10001111.01000001,

Convert each hexadecimal digit into a 4-bit binary number. Then con-
dense the 4-bit groups to form the binary value equal to the hexadecimal
value. The number 8F.41,, = 10001111.01000001,.

A" 1 8 APPENDIX A

BINARY CODES

Converting a decimal number into its binary equivalent is called “cod-
ing.” A decimal number is expressed as a binary code or binary number.
The binary number system, as discussed, is known as the pure binary
code. This name distinguishes it from other types of binary codes. This
section will discuss some of the other types of binary codes used in
computers.

Binary Coded Decimal

It is difficult to quickly glance at a binary number and recognize its
decimal equivalent. For example, the binary number 1010011 represents
the decimal number 83. However, within a few minutes, using the proce-
dures described earlier, you could readily calculate its decimal value.
The amount of time it takes to convert or recognize a binary number
quantity is a distinct disadvantage in working with this code despite the
numerous hardware advantages. Engineers recognized this problem
early and developed a special form of birary code that was more compat-
ible with the decimal system. This special compromise code is known as
binary coded decimal (BCD). The BCD code combines some of the charac-
teristics of both the binary and decimal number systems.

Appendix A A‘1 9

8421 BCD Code The BCD code is a system of representing the decimal
digits 0 through 9 with a 4-bit binary code. This BCD code uses the
standard 8421 position weighting system of the pure binary code. The
standard 8421 BCD code and the decimal equivalents and binary are
shown in Figure 11. As with the pure binary code, you can convert the
BCD numbers into their decimal equivalents by simply adding together
the weights of the bit positions whereby the binary 1’s occur. Note, how-
ever, that there are only ten possible valid 4-bit code arrangements. The
4-bit binary numbers representing the decimal numbers 10 through 15 are

invalid in the BCD system.

DECIMALYJ 8421 BCD | BINARY
0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 0101
6 0110 0110
7 0111 0111
8 1000 1000
9 1001 1001
10 0001 0000 1010
11 0001 0001 1011
12 0001 0010 1100
13 0001 0011 1101
14 0001 0100 1110
15 0001 0101 1111

Figure 11

Codes.

A'2O APPENDIX A

To represent a decimal number in BCD notation, substitute the appro-
priate 4-bit code for each decimal digit. For example, the decimal integer
834 in BCD would be 1000 0011 0100. Each decimal digit is represented
by its equivalent 8421 4-bit code. A space is left between each 4-bit group
to avoid confusing the BCD format with the pure binary code. This
method of representation also applies to decimal fractions. For example,
the decimal fraction 0.764 would be 0.0111 0110 0100 in BCD. Again,
each decimal digit is represented by its equivalent 8421 4-bit code, with a
space between each group.

The BCD code simplifies the man-machine interface but it is less efficient
than the pure binary code. It takes more bits to represent a given decimal
number in BCD than it does with pure binary notation. For example, the
decimal number 83 in pure binary form is 1010011. In BCD code the
decimal number 83 is written as 1000 0011.

Decimal-to-BCD conversion is simple and straightforward. However,
binary-to-BCD conversion is not direct. An intermediate conversion to
decimal must be performed first. For example, the binary number
1011.01 is converted into its BCD equivalent.

First the binary number is converted to decimal.
1011.01, = (1 X2%3) + (0 X 2?) + (1 x2)+ (1 X299 +(0x27) +(1x27¥

=8+0+2+1+0+ 0.25
11.25,,

Then the decimal result is converted to BCD.
11.25,, = 0001 0001.0010 0101
To convert from BCD to binary, the previous operation is reversed. For

example, the BCD number 1001 ¢110.0110 00100101 is converted into its
binary equivalent.

appendixA | A-21

First, the BCD number is converted to decimal.
1001 0110.0110 0010 0101 = 96.625,,

Then the decimal result is converted to binary.
96.625,, = 96,, + 0.625,,

96 + 2 = 48 with remainder 0 -— LSB
48 -2 =24
24 -2 =12
12 +2 =6
+ 2 =3
+2=1
+ 2=

== 0 0 00

- W o

-— MSB

9610 = 11000002

1.25 = 0.25 with overflow 1 =— MSB
0.50 0.50 0
1.00 =0 1 «— LSB

0.625 X 2
0.250 X 2
0.500 x 2

1]

1l

0.62510 = 0.1012

96.625,, = 96,, + 0.625,, = 1100000, + 0.101; = 1100000.101,

Therefore:
1001 0110.0110 0010 0101 = 96.625,, = 1100000.101,

Because the intermediate decimal number contains both an integer and
fraction, each number portion is converted as described under “Binary
Number System.” The binary su:n (integer plus fraction) 1100000.101 is
equivalent to the BCD number 1001 0110.0110 0010 0101.

A'22 APPENDIX A

Alphanumeric Codes

Several binary codes are called alphanumeric codes because they are
used to represent characters as well as numbers. The most common of
these codes, ASCII, will be discussed here.

ASCII Code The American Standard Code for Information Interchange
commonly referred to as ASCII, is a special form of binary code that is
widely used in microprocessors and data communications equipment.
ASCII is binary code that is used in transferring data between micro-
processors and their peripheral devices, and in communicating data by
radio and telephone. A 7-bit code called full ASCII can be represented by
27 =128 different characters. In addition to the characters and numbers
generated by 6-bit ASCII, 7-bit ASCII contains lower-case letters of the
alphabet, and additional characters for punctuation and control. The
7-bit ASCII code is shown in Figure 12.

coumn | o @[1@ 2] 3 | 4 ls 1 &] v
oW et rs$ 000 oor | oo | o | 100 | 10 | mo |
. NUL | DLE | SP | o @ | P \ p
1 0001 SOH | DCI ! | A Q H q
2 0010 stx|pcz | © | 2 | B | R | b | «

3 0011 ETX [DC3 | # 3 c S ¢ s
4 0100 EOT | DC4 $ 4 D T d l
: 0101 ENQ | NAK | % 5 E U ¢ u
6 0110 ACK | SYN & 6 E \Y { v
7 0111 BEIL. | ETB ' 7 G W g w
8 1000 BS | CAN | | 8 H| X | h X
g 1001 HT |EM |) 9 | 1 Yy | y
10 1010 LF |[SuB | = :] Z | 3 i
" 1011 VT |[ESC | + : K | k {
12 1100 FF FS , < L \ | !
13 1101 CR | GS = = M | m }
L 1110 SO | RS _ > N AP ~
15 m sI | US / » o | —%| o | DEL
Figure 12

Table of 7-bit American Standard Code
for Information Interchange.

Appendix A A"23

NOT

(1)

(2)

(3)

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT

LF
VT
FF
CR
SO
SI

SP

ES:

Depending on the machine using this code, the symbol may be a
circumflex, an up-arrow, or a horizontal parenthetical mark.

Depending on the machine using this code, the symbol may be an
underline, a back-arrow, or a heart.

Explanation of special control functions in columns 0, 1, 2, ard 7.

Null DLE Data Link Escape

Start of Heading DC1 Device Control 1

Start of Text DC2 Device Control 2

End of Text DC3 Device Control 3

End of Transmission DC4 Device Control 4
Enquiry NAK Negative Acknowledge
Acknowledge SYN Synchronous Idle

Bell (audible signal) ETB End of Transmission Block
Backspace CAN Cancel

Horizontal Tabulation EM End of Medium
(punched card skip) SUB Substitute

Line Feed ESC Escape

Vertical Tabulation FS File Separator

Form Feed GS Group Separator
Carriage Return RS Record Separator

Shift Out usS Unit Separator

Shift In DEL Delete

Space (blank)

Figure 12

(Continued.)

A‘24 APPENDIX A

The 7-bit ASCII code for each number, letter or control function is made
up of a 4-bit group and a 3-bit group. Figure 13 shows the arrangement of
these two groups and the numbering sequence. The 4-bit group is on the
right and bit 1 is the LSB. Note how these groups are arranged in rows and
columns in Figure 12.

4-BIT GROUP

E&esaaz:

‘_\’_—_J
3-BIT GROUP

Figure 13
ASCII code word format.

To determine the ASCII code for a given number letter or control opera-
tion, locate that item in the table. Then use the 3- and 4-bit codes
associated with the row and column in which the item is located. For ex-
ample, the ASCII code for the letter L is 1001100. It is located in column 4,
row 12. The most significant 3-bit group is 100, while the least significant
4-bit group is 1100. When 6-bit ASCII is used, the 3-bit group is reduced to
a 2-bit group as shown in Figure 14.

In 7-bit ASCII code, an eighth bit is often used as a parity or check bit to
determine if the data (character) has been transmitted correctly. The
value of this bit is determined by the type of parity desired. Even parity
means the sum of all the 1 bits, including the parity bit, is an even
number. For example, if G is the character transmitted, the ASCII code is
1000111. Since four 1’s are in the code, the parity bit is 0. The 8-bit code
would be written 01000111.

Odd Parity means the sum of all the 1 bits, including the parity bit, is an
odd number. If the ASCII code for G was transmitted with odd parity, the
binary representation would be 11000111.

Appendix A | A-25

COLUMN

o [1 [2] 3

ROW oS 55[5 | n 00 01
0 tﬁl SP®| 0 @ P
1 0001 ! 1 A | Q
e 0010 2 B R
3 0011 # 3 C S
4 0100 $ 4 D T
5 0101 Do 5 E U
6 0110 & 6 F \%
7 0111 7 G w
8 1000 (8 H X
9 1001) 9 I Y
10 1010 .] Z
n 1011 + : K [
12 1100 , < L \
13 1101 i = M |
14 1110 > i s
15 1 / 2 o | =2

NOTES:

Figure 14

Table of 6-bit American Standard Code
for Information Interchange.

(1) Depending on the machine using this code, the symbol may be a

circumflex, an up-arrow, or a horizontal parenthetical mark.

(2) Depending on the machine using this code, the symbol may be an

underline, a back-arrow, or a heart.

(3) SP — Space (blank) for machine control.

Appendix B
MACHINE CODING INSTRUCTIONS

Data supplied courtesy of

8‘2 APPENDIX B

HARDWARE REFERENCE INFORMATION

Machine Instruction Encoding and
Decoding

Writing a MOV instruction in ASM-86 in the
form:

MOV destination,source

will cause the assembler to generate 1 of 28 pos-
sible forms of the MOV machine instruction. A
programmer rarely needs to know the details of
machine instruction formats or encoding. An
exception may occur during debugging when it
may be necessary to monitor instructions fetched
on the bus, read unformatted memory dumps,
etc. This section provides the information
necessary to translate or decode an 8086 or 8088
machine instruction.

To pack instructions into memory as densely as
possible, the 8086 and 8088 CPUs utilize an effi-
cient coding technique. Machine instructions vary
from one to six bytes in length. One-byte instruc-
tions, which generally operate on single registers
or flags, are simple to identily. The keys to
decoding longer instructions are in the first two
bytes. The format of these bytes can vary, but
most instructions follow the format shown in
figure 4-20.

The first six bits of a multibyte instruction
generally contain an opcode that identifies the
basic instruction type: ADD, XOR, etc. The
following bit, called the D field, generally
specifies the ‘‘direction'” of the operation: 1 = the
REG field in the second byte identifies the
destination operand, 0 = the REG field identifies
the source operand. The W field distinguishes
between byte and word operations: 0 = byte, | =
word.

One of three additional single-bit fields, S, V or
Z, appears in some instruction formats. S is u§ed
in conjunction with W to indicate sign extension

Mnemonics ¢ Intel, 1978

4-18

appendixe | B-3

HARDWARE REFERENCE INFORMATION

of immediate fields in arithmetic instructions. V the zero flag in conditional repeat and loop
distinguishes between single- and variable-bit instructions. All sirgle-bit field settings are sum-
shifts and rotates. Z is used as a compare bit with marized in table 4-7,
BYTE 1 BYTE2 BYTE3 BYTE4 BYTES BYTEG
e R R R I R e s SESEE S L 1
I | | | |
LOW DISP/DATA | HIGH DISP/DATA | LOW DATA | HIGH DATA |
|
1

OPCODE DW‘P\OD REG | R/M | |

REGISTER OPERAND/EXTENSION OF OPCODE
REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH

WORD/BYTE OPERATION
DIRECTION ISTO REGISTER/DIRECTION IS FROM REGISTER
OPERATION (INSTRUCTION) CODE

Figure 4-20. Typical 8086/8088 Machine Instruction Format

Table 4-7. Single-Bit Field Encoding

Field Value ’ Function
s 0 No sign extension
1 Sign extend 8-bit immediate data to 16 bits if W=1
0 Instruction operates on byte data
w :
1 Instruction operates on word data
D 0 Instruction source is:specified in REG field
1 Instruction destination is specified in REG field
v 0 Shift/rotate count is one
1 Shift/rotate count is specified in CL register
7 0 Repeat/loop while zero flag is clear
1 Repeat/loop while zero flag is set

4-19

B-4 | apPenDixB

HARDWARE REFERENCE INFORMATION

The second byte of the instruction usually iden-
tifies the instruction’s operands. The MOD
(mode) field indicates whether one of the
operands is in memory or whether both operands
are registers (see table 4-8). The REG (register)
field identifies a register that is one of the instruc-
tion operands (see table 4-9). In a number of
instructions, chiefly the immediate-to-memory
variety, REG is used as an extension of the
opcode to identify the type of operation. The
encoding of the R/M (register/memory) field (see
table 4-10) depends on how the mode field is set.
If MOD = 11 (register-to-register mode), then
R/M identifies the second register operand. If
MOD selects memory mode, then R/M indicates
how the effective address of the memory operand
is to be calculated. Effective address calculation
is covered in detail in section 2.8.

Bytes 3 through 6 of an instruction are optional
fields that usually contain the displacement value
of 2 memory operand and/or the actual value of
an immediate constant operand.

Table 4-8. MOD (Mode) Field Encoding

CODE EXPLANATION

00 Memory Mode, no displacement
follows*

0 Memory Mode, 8-bit
displacement follows

10 Memory Mode, 16-bit
displacement follows

1 Register Moce (no
displacement)

*Exceptwhen R/M =110, then 16-bit
displacement follows

Table 4-9. REG (Register) Field Encoding

REG wW=0 wW=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH 1
111 BH DI

There may be one or two displacement bytes; the
language translators generate one byte whenever
possible. The MOD field indicates how many
displacement bytes are present. Following Intel
convention, if the displacement is two byltes, the
most-significant byte is stored second in the
instruction. If the displacement is only a single
byte, the 8086 or 8088 automatical'y sign-extends
this quantity to 16-bits before using the informa-
tion in further address calculations. Immediate
values always follow any displacement values that
may be present. The second byte of a two-byte
immediate value is the most significant.

Table 4-12 lists the instruction encodings for all
8086/8088 instructions. This table can be used to
predict the machine encoding of any ASM-86
instruction. Table 4-13 lists the B8086/8088
machine instructions in order by the binary value
of their first byte. This table can be used to
decode any machine instruction from its binary
representation. Table 4-11 is a key to the
abbreviations used in tables 4-12 and 4-13. Table
4-14 is a more compact instruction decoding
guide.

Table 4-10. R/M (Register/Memory) Field Encoding

MOD=11 EFFECTIVE ADDRESS CALCULATION

R/M wW=0 W=1 R/M MOD =00 MOD =01 MOD=10
000 AL AX 000 | (BX)+(Sl) (BX)+(S!) + D8 (BX)+(Sl)+ D16
001 CL CX 001 | (BX)+(DI) (BX)+(Dl)+ D8 (BX)+(Dl)+D1€
010 DL DX 010 | (BP)+(SI) (BP)+(SI) + D8 (BP)+(SI) + D16
011 BL BX 011 | (BP)+(DI) (BP)+(DI) + D8 (BP)+ (DI)+ D16
100 AH SP 100 | (SI) (S1)+ D8 (Sl)+ D16

101 CH BP 101 | (D) (DI)+ 08 (DI)+ D16

110 DH Sl 110 | DIRECT ADDRESS (BP)+D8 (BP)+ D16

m BH DI 111 | (BX) (BX)+ D8 (BX)+D16

4-20

Appendix B B"5

HARDWARE REFERENCE INFORMATION

Table 4-11. Key to Machine Instruction Encoding anc Decoding

IDENTIFIER EXPLANATION

MOD Mode field; described in this chapter.

REG Reqister field; described in this chapter.

RIM Register/Memory field; described in this chapter,

SR Segment register code: 00=ES, 01=CS, 10=SS, 11=DS.

Ww,5,D,V, 2 Single-bit instruction fields; described in this chapter.

DATA-8 8-bit immediate constant.

DATA-SX 8-bit immediate value that is automatically sign-extended to 16-bits
before use.

DATA-LO Low-order byte of 16-bit immediate constant.

DATA-HI High-order byte of 16-bit immediate constant.

(DISP-LO) Low-order byte of optional 8- or 16-bit unsigned displacement; MOD
indicates if present.

(DISP-HI) High-order byte of optional 16-bit unsigned displacement; MOD
indicates if present.

IP-LO Low-order byte of new IP value.

IP-HI High-order byte of new IP value

CS-LO Low-order byte of new CS value.

CS-HI High-order byte of new CS value.

IP-INC8 8-bit signed increment to instruction pointer.

IP-INC-LO Low-order byte of signed 16-bit instruction pointer increment.

IP-INC-HI High-order byte of signed 16-bit instruction pointer increment.

ADDR-LO Low-order byte of direct address (oftset) of memory operand; EA not
calculated.

ADDR-HI High-order byte of direct address (offset) of memory operand; EA not
calculated.

— Bits may contain any value.

XXX First 3 bits of ESC opcode.

YYY Second 3 bits of ESC opcode.

REGS B-bit general register operand.

REG16 16-bit general register operand.

MEM8 8-bit memory operand (any addressing mode).

MEM16 16-bit memory operand (any addressing mode).

IMMEDS B-bit immediate operand.

IMMED16 16-bit immediate operand.

SEGREG Segment register operand.

DEST-STR8 Byte string addressed by DI.

4-21

B'e APPENDIX B

HARDWARE REFERENCE INFORMATION

Table 4-11. Key to Machine Instruction Encoding and Decoding (Cont’d.)

IDENTIFIER EXPLANATION
SRC-STR8 Byte string addressed by Sl.
DEST-STR16 Word string addressed by DI.
SRC-STR16 Word string addressed by Si.
SHORT-LABEL Label within +127 bytes of instruction.
NEAR-PROC Procedure in current code segment.
FAR-PROC Procedure in another code segment.
NEAR-LABEL Label in current code segment but farther than —128 to +127 bytes
from instruction.
FAR-LABEL Label in another code segment.
SOURCE-TABLE XLAT translation table addressed by BX.
OPCODE ESC opcode operand.
SOURCE ESC register or memory operand.
Table 4-12. 8086 Instruction Encoding
DATA TRANSFER
MOV = Movs: TOS543210 TBS543210 78543270 TeEH543210 TES543210 Te5432170
Ragisterimemory to/lrom ragister 1000100 w |mod reg tim (DISP-LO) (DISP-HI}
immeadiate to register/ memory 110001 w |mod O 00 rim {DISP-LO) (DISP-HI) data detailw - 1
immadiste to ragisier 1011w oreg aata dataiiw=1
Mimory to accumulator 1010000 w addr-lo addr-hi
Accumuiator 1o memory 1010001 w adgr-io addrhi
Registar/memory 10 sagment regisies 1000110 | med O SR rim {DISP-LO) (DISP-HI}
Segment regisier to regiaterimamory 10001100 |med 0 SR rim {DISP-LO) (DISP-HI}
PUSH = Push:
Register/memaory T1T11717 801y [mod 110 tim (DISP-LO) (DISP-HI)
Regisier 01010 eg
Segmant register GO0yt 1o
POP = Pop:
Feglater/memory 1000 Y11 |mod 00O rim (DISP-LO) (DISP-HI
Register 01011 reg
Segmant ragistar 000 reg 1 11

Mnemonics & Intel, 1978

4-22

Appendix B

HARDWARE REFERENCE INFORMATION

DATA TRANSFER (Coni'd.|
XCHG = Exchange:
Haul}lel memaory with legi“el’

Regiater with accumuiatar

IN = Input from:
Fixed port

Vanabie port

OUT = Oulput 1o

Fixed port

Wanable port

XLAT = Transiate byle 1o AL
LEA - Load EA 10 register
LDS = Load poinier 1o DS
LES = Load pointer 0 ES
LAHF = Load AH wiln flags
SAHF = Store AH into ltags
PUSHF = Push llags

POPF = Pop llags

ARITHMETIC

ADD - Add;

Aeg/mamary wilh register 1o aithar
immadiate to regiater/mamory

Iimmadians 1o accumulalon

ADC = Add with carry:
Aag/mamary wilh regiatar to sithar
Immediate 10 ragistar/ mamary

Immadiate lo sccumulator

INC = Increment:
Reglater/mamory
Register

AAA = ASCI adjust for add

DAA = Dacimal adjust for add

Table 4-12. 8086 Instruction Encoding (Cont’d.)

TEE43210

Ta643210

Tea543210

TA543210 TES5432'0 785432710

1000011 w | mod reg flm {DISP-LO) {DISP-H1)
1001 0 reg

111001 0w DaTa-8

TR0 0w

111007V w DATAE

111011 1w

11610131

100601101 | mod reg r'm 1DISP.LO) (DISP-HI
11000101 | mog reg tim IMSPLD) \DISP-HY
110001700 (| mod rag oM IDISP.LO) (DISP-HI
LI T I A |

ooy 110

rogcrvio0

EEEREE X

000000 dw | mod rag rim ICISP-LO} ADISP-HI)
100000sw | mod 000 tim IDISP-LO) (DISP-HI) data datads w 1
0000010 w data data il wr!

0001 00dw | mod reg rim (DISP-LO) (DISP-HI)
100000sw (mod 0 1 0 rim (DISP-LO) {DISP-HI) dats data it §: w=01
000101 Dw data dals it w=1

1TV1 1111w |[mod 000 rim (DISP-LO} [DISP-HI)

01000 reg

pe1101 11

po1001 1

4-23

Mnemonics © Intel, 1978

B-7

B-8 | arrenpixB

HARDWARE REFERENCE INFORMATION

Table 4-12. 8086 Instruction Encoding (Cont’d.)

ARITHMETIC (Cont'd.)

SUB = Sublract TAS543210 78543210 76543210 TES43210 7543210 TeS543210
Regimemory and register 1o sither O0V0t0adw | mod reg rim IDISP-LDY {DISP-HI)

Immediate from register/ memory V00000 sw [mod ¥ O 1 rim (DISP-LO (DISP-HI) data data it 5: wedl
immedaie from accumulator o101 0w dala data il w=1

5BB = Subtrect with barrow:

Reg/memory and register 1o either CO00YI0dw | mod reg +im (DISP-LO} (DISP-HI)
immediate from ragisier/meamory 100000 sw [mod 01 1 rim (DISP-LO) (DISP-HI) data dataf 85 we 01
tmmediale lrom accumulalor coDt1T1L1IOw dala dataifw 1

DEC Decrymant:

Ragiate: imeamory PET I w | mog 00 1 rfm !L’;ISP-LDI | (DISP-HI} :|
Register 0100 reg

NEQ Change sign 111101 w [med 011 eim I (DISP-LOY l (DISP-HI} l
CMP = Compare:

Registar/mamory and ragisier Go0Yv110dw | mod reg rim 1DISP-LOY (DISP-HI
Immeadiale wilh register!memory 1000003 w |[mod 1 % 1 rim (DISP-LO) (DISP-HIy data] datails:w 1 7
Immadiate with accumulator D01 1110w data

AAS ASCH adjust for subtract porir v

DAS Decimal adjust for subiract gor1ot 1Ly

MUL Eultiply funsigred) 111101 ' w [mod 1 0 0 t/m (DISP.LO) (DISP-HI)
IMUL Imteper mullipiy {signed} 1117101 w | mod V01 orim IDISP-LO) (DISP-HY

AAM ASCI adjust lor multiply 11010700 (00001 DYD [DISP-LD) (SP.HI

DIV Divide (unsigned) 111101Vt w|modt YD rim {DISP-LO) (DISP-HI

1DV Interar divide (signed) 111710V w|mod 111 ¢im (DISP-LO) (DISP-HI)]
AAD ASCI adjust lor divide 110v0101 00000V D0YD (DISP-LON (DISP-HI

CBW Converl byla to word to011000

CWD Convert word 10 double word too01100

Logic

NOT invart T1110%v1w [mod Ot 0 rim IDISP-LOY [DISP-HI}
SHL/SAL Shilt lonical fanthmatc lefl V101 00vw [mod 1 00 rim (SP-LOY 1DISP-HI}

SHR Shilt logical nght 110100vw |[mod 1 0 tim {DISP-LOY IDISP.HI

SAR Shift arithmane nght 110100vw [mod 1 1 1 rim iDISP-LO) (DASP-HI)

ROL Aotate laft 1T10100vw [mod 000 rim (DISP-LO) (DISP-HI)

Mnemonies ' Intel, 1878 4-24

Appendix8 | B-9

HARDWARE REFERENCE INFORMATION

LOGIC (Cont'd)

RORA Rotale nght
ACL Rotata through carry llag el

RACR Rolate through cary nght

AND = And:
Reg/memary with ragistar 10 aithar
Immadiale 1o ragister/memary

immediate 10 accumulator

TEST = And function ta liags no resull:

Registari mamary and regisiar

Immediate 3313 and reqister/mamory

data and ac

OR = Or:
Regimamary and register to aither
Immeadiata to register i memary

Immadiate to accumulator

XOR = Exclusive or:
Reg/mamary and regiater 1o eithar
Immeaiate to register! mamary

Immadiate (o accumulatar

STRING MAMIPULATION
REP = Repoat

MOVYS = Move bytelword
CMPS = Compare byte/wora
SCAS = Scan byle/word
LODS = Load byte/wd lo ALIAX

ETDS = Stor byte/wd from ALIA

Table 4-12. 8086 Instruction Encoding (Cont’d.)

TES543210

TE543210

TE543210

Teas543210

TES&3210

Tas543210

11018 0vw |med 00 1 rim (DISP-LOY (OISP.HI) J

110100 vw Lmod 0 3 0 ¢im (DISP-LOY [DISP-HI} |

110100vw |[mod 01 1 ¢im (DISP-LO) [DISP-HI}
| 021000dw |mod reg Tim (DISP-LDY [DISP-HI}
| 1000000 w [mod + 0 & rim IDISP-LOY [DISP-HI} data data il w=1
|GUI00!0\! data datailw 1

Q0g100dw |mod reg rim (DISP.LO} (DSP-HI

11100Vt w | mod D OO rim (DISP-LO} (DISP-HI) data anta it wet —l
1010100 w data

D00010dw |mod reg rim IISP-LOY [DISP-HI)

1000000w |[mod O 0 1 rim (DISP-LO) (DISP-HI) data data il we=1
Q0G0 V0w data anta il wet

0011 00adw |mod reg rim (DHSP-LOY (DISP-HI)

0011010 w date (DISP-LOY (DISP-HI) data data il w=1
0OV EIO1 0w date data if w=1

LI I B B I
10100010 w
1010011 w
1010111 w
10101 10w
1010101 w

4-25

Mnamonics © Intel, 1978

B-10 | APPENDIX B

HARDWARE REFERENCE INFORMATION

Table 4-12. 8086 Instruction Encoding (Cont’d.)

CONTROL TRANSFER

CALL = Calt TeS4a31210 TA543210 TES43210 TES542210 TES543210 TEBA3ZIO
Drrect wilhin sagment L\ 1101000 IFUINCLD IFANC-HL
Indirect within segmeant 1111171711 |moa @1 0 tim {DISP-LO) IDISP-HHJ
Directinlersegmant 1001010 1P-ig IP-hi
CSo CS-hi |
Indiract intaraegment 11111141 (mod 000 i-fm (DISP-LOY {DISP-HI| —|

JUP = Unconditional Jump:

Direct within sagmani T1101001 l IP-INC-LD 1P INC-HI

Direct within sagment-short 1110101] IP-INCE
Indiract within segment 1111111 (mod 10D Him {DISP-LOY [DISP-HI) |
Direct intersagmant 1110170110 IPg P
CS4o €8
indiract Interaegmaent t‘ P11 Y1 mod VDY oMM [DSP-LOY {DISP-HI}

RET = Return from CALL:

Within segment 11000011

Within seg adding Immed to SP 110000170 dmalz-lo —[dnla-hi j
intarangmant 1100101}

Intersagmant adding Immediale io SP Tt1001001 0 dula-lo data-hi ‘
JE/JZw Jump on equalizero 1110100 IP-INCE

JLAINGE = Jump on less!not grasiar or egual g1111100 IP-INCE |

JLE/JNG = Jump on less or aqualinol greatar [IR IR I B B B N) IPANGE

JB/JNAE = Jumpon below/nolaboveorequal (0111001 0 IPINCE

JBE/JNA=Jump on below or aqualinclabove (011 % 011 D IPINCE

JP/IPE m Jump on parity/ parity aven !0 17171701 I}—l IPANCE

JO = Jump on overflow g11v0000 L IP-ANCE

J§ = Jumgp on sign 01111000 IP-INC3

JHE/INI = Jump on rot #qualinot zer 1130101 IPANCE

JNL/JGE = Jump on not less/ greater or equal 1Y 13 01 IPANCE
JNLE/JG = Jumpon not less or equaligreater (0 1 1 111 11 IP-INCS

INB/JAE = Jumponnol below/aboveorequal (0 11 1 00 1 1 IP-INCS
JNBE/JA=Jumponnotbalownrequaliabove | 0 11 1 01 11 IP-INCS

JNP/IPO = Jump on not par par ogd 0111101 IPANCE

JNO = Jump on nol overfiow B1110001 IP4NCE

Mnemonics © Intel, 1878 4-26

Appendixs | B-11

HARDWARE REFERENCE INFORMATION

CONTROL TRANSFER (Cont'd.)
RET = Raturn from CALL:
JNS = Jump on nat sign

LOOP=Loop CX timas

LOOPZ/LOOPE = Loop while zerolequal | L

LOOPNZ/LOOPNE = Loop whila nat zeraiequal | 1 |

JCXZ = Jump on CX rerg

INT = Interrupl:

Type specihea

Typeld

INTO = Interrupi on overllow

IRET =Interrup! ralurn

PROCESSOR CONTROL
CLC = Claar carry

CMC =Complemant cary
STC = Setcarry

CLD =Cloar directon
STD =Sel direction

CLI- Ciear interrup!
STlmSet intarrupt

HLT = Halt

WAIT = Wat
ESC=Escape (loexlernal devicel
LOCK w Bus lock prafix

SEGMENT = Ovarride prefix

Table 4-12. 8086 Instruction Encoding (Cont’d.)

Tes543210

TEs543210

I'.lll]iﬂu‘ 1P INCE |

ll\lﬂuﬂ‘ﬁ P CH |

I 1
100001 IP-INCE
"oco0000 IF-INCE

f

P reno IP-LeC8

['Innlloj DATA-E

t1o001100

l1\00|l|0

f——

11111000
L ————
T1r101 00

1111000

TrT1riv00

I'Illlllu\

t1111010

111%v01

11110100

10T

Tes543210

Tesa43210

11011 xax

modyyyrim

IDISP-LOY)

(DISP-HI

Trrino00
—

001 reg 110

Table 4-13. Machine Instruction Decoding Guide

Tas541210

TeEs5412140

1STBYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
00 0000 0000 | MOD REG R/M | (DISP-LO),{DISP-HI) ADD REG8/MEM8,REGS8
01 0000 0001 (MOD REGR/M | (DISP-LO),(DISP-HI) ADD REG16/MEM16,REG16
02 0000 0010 | MODREGR/M [(DISP-LO),(DISP-HI) ADD REGS8,REG8/MEMS
03 0000 0011 | MODREGR/M | (DISP-LO),(DISP-HI) ADD REG16,REG16/MEM16
04 0000 0100 [DATA-8 ADD AL,IMMEDS8
05 0000 0101 | DATA-LO DATA-HI ADD AX,IMMED16
06 0000 0110 PUSH ES
07 0000 0111 POP ES

4-27

Mnemonics © Intel, 1978

B"1 2 APPENDIX B

HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

08 0000 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) OR REG8/MEMB8, REGS

09 0000 1001 | MODREG R/M | (DISP-LO),(DISP-HI) OR REG16/MEM16,REG16

0A 0000 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) OR REG8,REG8/MEMB

0B 0000 1011 | MOD REG R/M | (DISP-LO),(DISP-HI) OR REG16,REG16/MEM16

ocC 0000 1100 | DATA-8 OR AL,IMMEDS

0D 0000 1101 | DATA-LO DATA-HI OR AX,IMMED16

0E 0000 1110 PUSH CS

0F 0000 1111 (not used)

10 0001 0000 | MOD REG R/M | (DISP-LO),(DISP-HI) ADC REGB/MEMBS,REGS

" 0001 0001 | MOD REG R/M | (DISP-LO),(DISP-HI) ADC REG16/MEM16,REG16

12 0001 0010 | MOD REG R/M | (DISP-LO),(DISP-HI) ADC REG8,REG8/MEMS

13 0001 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) ADC REG16,REG16/MEM16

14 0001 0100 | DATA-8 ADC AL,IMMEDS

15 0001 0101 | DATA-LO DATA-HI ADC AX,IMMED16

16 0001 0110 PUSH Ss

17 0001 0111 POP SS

18 0001 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG8/MEMB,REGS

19 0001 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG16/MEM16,REG16

1A 0001 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) SBB REGS8,REG8/MEM8

1B 0001 1011 | MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG16,REG16/MEM16

1C 0001 1100 | DATA-8 SBB AL,IMMEDS

1D 0001 1101 | DATA-LO DATA-HI SBB AX,IMMED16

1E 0001 1110 PUSH DS

1F 0001 1111 POP DS

20 0010 0000 | MOD REG R/M | (DISP-LO),(DISP-HI) AND REG8/MEMB8,REGS

21 0010 0001 [MOD REG R/M | (DISP-LO),(DISP-HI} AND REG16/MEM16,REG16

22 0010 0010 | MOD REG R/M | (DISP-LO),(DISP-HI) AND REG8,REG8B/MEM8

23 0010 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) AND REG16,REG16/MEM16

24 0010 0100 [DATA-8 AND AL,IMMEDS

25 0010 0101 | DATA-LO DATA-HI AND AX,IMMED16

26 0010 0110 ES: (segment override
prefix)

27 0010 0111 DAA

28 0010 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) suB REG8/MEM8,REGS

29 0010 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) SuB REG16/MEM16,REG16

2A 0010 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) suB REG8,REG8/MEMS

2B 0010 1011 | MOD REG R/M | (DISP-LO,(DISP-HI) SuB REG16,REG16/MEM16

2C 0010 1100 [DATA-E SuB AL,IMMED8

2D 0010 1101 | DATA-LO DATA-HI sSuB AX.IMMED16

2E 0010 1110 CS: (segment overrida
prefix)

2F 0010 1111 DAS

30 0011 0000 | MOD REG R/M | (DISP-LO),{DISP-HI) XOR REG8/MEMS8,REGS

A 0011 0001 | MOD REG R/M | (DISP-LO),(DISP-HI) XOR REG16/MEM16,REG16

32 0011 0010 | MOD REG R/M | (DISP-LO),(DISP-HI) XOR REGS8,REG8/MEMS8

33 0011 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) XOR REG16,REG16/MEM16

34 0011 0100 | DATA-8 XOR AL,IMMEDS8

35 0011 0101 | DATA-LO DATA-HI XOR AX,IMMED16

36 0011 0110 SS: (segment override
prefix)

Mnemonics © Intel, 1978

4-28

Appendix B B"1 3

HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1STBYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
37 0011 0110 AAA
38 0011 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG8/MEMB,REGS
39 0011 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG16/MEM16,REG16
3A 0011 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REGB,REG8/MEM8
3B 0011 1011 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG16,REG16/MEM16
3C 0011 1100 | DATA-8 CMP AL,IMMEDS
3D 0011 1101 | DATA-LO DATA-HI CMP AX,IMMED16
3E 0011 1110 DS: (segment override
prefix)
3F 0011 111 AAS
40 0100 0000 INC AX
1 0100 0001 INC CX
42 0100 0010 INC DX
43 0100 0011 INC BX
44 0100 0100 INC SP
45 0100 0101 INC BP
46 0100 0110 INC Sl
47 0100 0111 INC DI
48 0100 1000 DEC AX
49 0100 1001 DEC CX
4A 0100 1010 DEC DX
4B 0100 1011 DEC BX
4C 0100 1100 DEC SP
4D 0100 1101 DEC BP
4E 0100 1110 DEC Sl
4F 0100 1M DEC DI
50 0101 0000 PUSH AX
51 0101 0001 PUSH CX
52 0101 0010 PUSH DX
53 0101 0011 PUSH BX
54 0101 0100 PUSH SP
55 0101 0101 PUSH BP
56 0101 0110 PUSH Sl
57 0101 0111 PUSH DI
58 0101 1000 POP AX
59 0101 1001 POP CX
5A 0101 1010 POP DX
58 0101 1011 POP BX
5C 0101 1100 POP SP
5D 0101 1101 POP BP
5E 0101 1110 POP Si
5F 0101 1111 POP DI
60 0110 0000 (not used)
61 0110 0001 (not used)
62 0110 0010 (not used)
63 0110 0011 (not used)
64 0110 0100 (not used)
65 0110 0101 (not used)
66 0110 0110 (not used)
67 0110 0111 (not used)

4-29

Mnemonics © Intel, 1978

B-14

DATA-LO,DATA-HI

APPENDIX B
HARDWARE REFERENCE INFORMATION
Table 4-13. Machine Instruction Decoding Guide (Cont’'d.)
1ST BYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

68 0110 1000 (not used)

69 0110 1001 {not used)

6A 0110 1010 (not used)

68 0110 1011 (not used)

6C 0110 1100 {not used)

6D 0110 1101 {not used)

6E 0110 1110 (not used)

6F 0110 1111 (not used)

70 0111 0000 [IP-INC8 JO SHORT-LABEL

71 0111 0001 [IP-INC8 JNO SHORT-LABEL

72 0111 0010 |IP-INC8 JB/JNAE/ SHORT-LABEL

JC
73 0111 0011 |IP-INC8 JNB/JAE/ SHORT-LABEL
JNC

74 0111 0100 [IP-INC8 JE/JZ SHORT-LABEL

75 0111 0101 [IP-INC8 JNE/JNZ SHORT-LABEL

76 0111 0110 [IP-INC8 JBE/JNA SHORT-LABEL

77 0111 0111 |IP-INC8 JNBE/JA SHORT-LABEL

78 0111 1000 | IP-INC8 JS SHORT-LABEL

79 0111 1001 [IP-INC8 JNS SHORT-LABEL

7TA 0111 1010 [IP-INC8 JP/JPE SHORT-LABEL

7B 0111 1011 |IP-INC8 JNP/JPO SHORT-LABEL

7C 0111 1100 [IP-INC8 JL/JNGE SHORT-LABEL

D 0111 1101 |IP-INC8 JNL/JGE SHORT-LABEL

7E 0111 1110 [IP-INC8 JLE/JNG SHORT-LABEL

7F 0111 1111 [IP-INC8 JNLE/JG SHORT-LABEL

80 1000 0000 | MOD 000 R/M | (DISP-LO),(DISP-HI), ADD REGS/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD 001 R/M | (DISP-LO),(DISP-HI), OR REG8/MEMB8,IMMEDS8
DATA-8

80 1000 0000 | MODO10R/M | (DISP-LO),(DISP-HI), ADC REGB8/MEMB,IMMEDS8
DATA-8

80 1000 0000 | MOD 011 R/M | (DISP-LO),(DISP-HI), SBB REGB/MEMB8,IMMEDS8
DATA-8

80 1000 0000 | MOD 100 R/M | (DISP-LO),(DISP-HI), AND REG8/MEMS8,IMMEDS8
DATA-8

80 1000 0000 {MOD 101 R/M | (DISP-LO),(DISP-HI), sSuB REG8/MEMS,IMMEDS
DATA-8

80 1000 0000 { MOD 110 R/M | (DISP-LO),(DISP-HI), XOR REG8/MEMS,IMMEDS
DATA-8

B0 1000 0000 |MOD 111 R/IM | (DISP-LO),(DISP-HI), CMP REG8/MEMS8,IMMEDS8
DATA-8

81 1000 0001 |MOD0OD0 R/M | (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 | MOD 001 R/M | (DISP-LO),(DISP-HI), OR REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 | MOD 010 R/M | (DISP-LO),(DISP-HI), ADC REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 | MODO011 R/IM | (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMED16

Mnemonics & Intel, 1978

4-30

Appendix B 8‘1 5

HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide (Cont'd.)

1STBYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

81 1000 0001 |MOD100R/M (DISP-LO),(DISP-HI), AND REG16/MEM16,IMMED16
DATA-LO DATA-HI

81 1000 0001 | MOD 101 R/M | (DISP-LO),(DISP-HI), SuUB REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 | MOD 110R/M | (DISP-LO),(DISP-HI), XOR REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 | MOD 111 R/M | (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED16
DATA-LO,DATA-HI

B2 1000 0010 | MODOOOR/M (DISP-LO),(DISP-HI), ADD REG8/MEMS,IMMEDS
DATA-8

82 1000 0010 | MOD 001 R/IM (not used)

82 1000 0010 | MODO10R/M | (DISP-LO),(DISP-HI), ADC REG8/MEMS8,IMMEDS
DATA-8

82 1000 0010 | MOD 011 R/IM (DISP-LO),(DISP-HI), SBB REG8/MEMS8,IMMEDS
DATA-8

B2 1000 0010 | MOD 100 R/M (not used)

B2 1000 0010 | MOD 101 R/M | (DISP-LO),(DISP-HI), suB REGS8/MEMS,IMMEDS
DATA-8

82 1000 0010 | MOD110R/M (not used)

82 1000 0010 | MOD 111 R/IM | (DISP-LO),(DISP-HI), CMP REG8/MEMS8,IMMEDS
DATA-8

83 1000 0011 | MODO0OR/M (DISP-LO),(DISP-HI), ADD REG16/MEM16, IMMEDS
DATA-SX

B3 1000 0011 | MOD 001 R/M (not used)

83 1000 0011 | MODO10R/M (DISP-LO), (DISP-HI), ADC REG16/MEM16,IMMEDS8
DATA-SX

83 1000 0011 | MOD 011 R/M | (DISP-LO),(DISP-HI), sBB REG16/MEM16,IMMEDS
DATA-SX

83 1000 0011 | MOD 100 R/M (not used)

83 1000 0011 | MOD 101 R/M | (DISP-LO),(DISP-HI), suB REG16/MEM16,IMMEDS8
DATA-SX

83 1000 0011 | MOD110R/M (not used)

83 1000 0011 | MOD 111 R/IM | (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMEDS
DATA-SX

84 1000 0100 | MOD REG R/M | (DISP-LO),(DISP-HI) TEST REG8/MEMB8,REGS

85 1000 0101 | MOD REG R/M | (DISP-LO),(DISP-HI) TEST REG16/MEM16,REG16

86 1000 0110 | MOD REG R/M | (DISP-LO),(DISP-HI) XCHG REGS,REG8/MEMS

87 1000 0111 | MOD REG R/M | (DISP-LO),(DISP-HI) XCHG REG16,REG16/MEM16

88 1000 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) MOV REG8/MEMB8,REGS

B9 1000 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) MOV REG16/MEM16/REG16

8A 1000 1010 | MOD REGR/M | (DISP-LO),(DISP-HI) MOV REGS,REG8/MEMS8

8B 1000 1011 | MOD REG R/M | (DISP-LO),(DISP-HI) MOV REG16,REG16/MEM16

8C 1000 1100 | MODOSRR/M | (DISP-LO),(DISP-HI) MOV REG16/MEM16, SEGREG

8C 1000 1100 | MOD1-R/M (not used)

8D 1000 1101 | MOD REG R/M | (DISP-LO),(DISP-HI) LEA REG16,MEM16

8E 1000 1110 | MODOSR R/M | (DISP-LO),(DISP-HI) MOV SEGREG,REG16/MEM16

8E 1000 1110 | MOD 1—-R/M (not used)

BF 1000 1111 | MOD 000 R/M | (DISP-LO),(DISP-HI) POP REG16/MEM16

8F 1000 1111 [MOD 001 R/M (not used)

8F 1000 1111 | MOD 010 R/M (not used)

4-31

Mnemonics ¢ Intel, 1978

B'1 6 APPENDIX B

HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
BF 1000 1111 |[MODO11R/M (not used)
BF |1000 1111 | MOD 100 R/M (not used)
8F |1000 1111 |MOD101 R/M (not used)
8F 1000 1111 {MOD 110 R/M (not used)
8F |1000 1111 |[MOD111R/M {not used)
90 1001 0000 NOP {exchange AX,AX)
91 1001 0001 XCHG AX,CX
92 1001 0010 XCHG AX.DX
93 [1001 OOM XCHG AX,BX
94 1001 0100 XCHG AX,SP
85 [1001 0101 XCHG AX,BP
96 |1001 0110 XCHG AX,SI
97 1001 0111 XCHG AX,DI
98 |1001 1000 CBW
99 1001 1001 CWD
9A | 1001 1010 | DISP-LO DISP-HI,SEG-LO, CALL FAR. _PROC
SEG-HI
98 |1001 1011 WAIT
8C |1001 1100 PUSHF
9D |1001 1101 POPF
9 (1001 1110 SAHF
9F [1001 1111 LAHF
A0 (1010 0000 | ADDR-LO ADDR-HI MOV AL,MEM8
Al 1010 0001 { ADDR-LO ADDR-HI MOV AX,MEM16
A2 |1010 0010 | ADDR-LO ADDR-HI MOV MEMB, AL
A3 |1010 0011 | ADDR-LO ADDR-HI MOV MEM16,AL
A4 11010 0100 MOVS DEST-STR8,SRC-STR8
A5 |1010 0101 MOVS DEST-STR16,SRC-STR16
A6 |1010 0110 CMPS DEST-STR8,SRC-STR8
A7 |1010 01N CMPS DEST-STR16,SRC-STR16
AB |1010 1000 | DATA-8 TEST AL,IMMEDS
A9 (1010 1001 [DATA-LO DATA-HI TEST AX,IMMED16
AA |1010 1010 STOS DEST-STR8
AB 1010 10M STOS DEST-STR16
AC |1010 1100 LODS SRC-STR8
AD [1010 1101 LODS SRC-STR16
AE 1010 1110 SCAS DEST-STR8
AF |1010 1111 SCAS DEST-STR16
B0 |1011 0000 | DATA-8 MOV AL, IMMEDS8
B1 1011 0001 | DATA-8 MOV CL,IMMEDS8
B2 [1011 0010 [DATA-8 MoV DL,IMMEDS8
B3 |[1011 1011 | DATA-8 MOV BL,IMMEDS8
B4 |1011 0100 | DATA-8 Mov AH,IMMED8
B5 |1011 0101 | DATA-8 MoV CH,IMMEDS
B6 |1011 0110 | DATA-8 MoV DH,IMMEDS
B7 |1011 0111 | DATA-B MOV BH,IMMEDS8
B8 1011 1000 | DATA-LO DATA-HI MoV AX,IMMED16
B9 |1011 1001 | DATA-LO DATA-HI MOV CX,IMMED16
BA |1011 1010 | DATA-LO DATA-HI MOV DX,IMMED16
BB 11011 1011 [DATA-LO DATA-HI MOV BX,IMMED16

Mnamonics £ Intel, 1878

4-32

Appendix | B-17

HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1STBYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
BC | 1011 1100 | DATA-LO DATA-HI MOV SP,IMMED16
BD 1011 1101 | DATA-LO DATA-HI MOV BP,IMMED16
BE | 1011 1110 | DATA-LO DATA-HI MOV S1,IMMED16
BF 1011 1111 | DATA-LO DATA-HI MOV DI,IMMED16
Cco 1100 0000 (not used)

Cc1 1100 0001 (not used)

C2 | 1100 0010 |DATA-LO DATA-HI RET IMMED16 (intraseg)

C3 | 1100 0011 RET (intrasegment)

C4 1100 0100 {MOD REG R/M | (DISP-LO),(DISP-HI) LES REG16,MEM16

C5 | 1100 0101 |MOD REG R/M | (DISP-LO),(DISP-HI) LDS REG16, MEM16

C6 | 1100 0110 |MODOO0OR/M | (DISP-LO),(DISP-HI), MOV MEMS8,IMMEDS8
DATA-8

Cé 1100 0110 {MOD 001 R/M (not used)

Cé6 1100 0110 | MODO010R/M {not used)

C6 1100 0110 | MOD 011 R/M (not used)

Cé 1100 0110 |[MOD 100 R/M (not used)

Cé 1100 0110 |[MOD 101 R/M (not used)

C6 1100 0110 | MOD110R/M (not used)

C6 1100 0110 [MOD 111 R/M (not used)

c7 1100 0111 {MODOOOR/M | (DISP-LO),(DISP-HI), MOV MEM16,IMMED16
DATA-LO,DATA-HI

c7 1100 0111 [MOD 001 R/M (not used)

c7 1100 0111 |MODO10R/M (not used)

c7 1100 0111 |[MOD 011 R/M (not used)

C7 1100 0111 [MOD 100 R/M (not used)

c7 1100 0111 [MOD 101 R/M (not used)

C7 1100 0111 |MOD 110R/M (not used)

C7 1100 0111 |MOD 111 R/M (not used

cs 1100 1000 (not used)

Cc9 1100 1001 (not used)

CA 1100 1010 [DATA-LO DATA-HI RET IMMED16 (intersegment)

CB | 1100 1011 RET {intersegment)

cc 1100 1100 INT 3

CD | 1100 1101 | DATA-8 INT IMMEDS

CE 1100 1110 INTO

CF | 1100 1111 IRET

Do 1101 0000 (MOD 000 R/M | (DISP-LO),(DISP-HI) ROL REG8/MEMS,1

DO 1101 0000 | MOD 001 R/M (DISP-LO),(DISP-HI) ROR REGB/MEMS,1

DO | 1101 0000 | MODO10R/M | (DISP-LO),(DISP-HI) RCL REG8/MEMS8,1

DO | 1101 0000 |MODO11R/M | (DISP-LO),(DISP-HI) RCR REGS/MEMS, 1

DO | 1101 0000 | MOD100R/M | (DISP-LO),(DISP-HI) SAL/SHL REG8/MEMS,1

Do 1101 0000 | MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG8/MEMB,1

Do 1101 0000 | MOD 110 R/M (not used)

DO 1101 0000 |MOD 111 R/M | (DISP-LO),(DISP-HI) SAR REGS8/MEMS, 1

D1 1101 0001 | MODOOOR/M (DISP-LO),(DISP-HI) ROL REG16/MEM16,1

D1 1101 0001 |MOD 001 R/M (DISP-LO),(DISP-HI) ROR REG16/MEM16,1

D1 1101 0001 | MODO10R/M (DISP-LO),(DISP-HI) RCL REG16/MEM16,1

D1 1101 0001 |[MOD 011 R/M | (DISP-LO),(DISP-HI) RCR REG16/MEM16,1

D1 1101 0001 | MOD 100 R/M (DISP-LO),(DISP-HI) SAL/SHL REG16/MEM186,1

4-33

Mnemonics <€ Intel, 1978

B'1 8 APPENDIX B

HARDWARE REFERENCE INFORMATION

Table 4-13, Machine Instruction Decoding Guide (Cont’d.)

1STBYTE
HEX BINARY | 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
D1 1101 0001 |MOD 101 R/IM | (DISP-LO),(DISP-HI) SHR REG16/MEM16.1
D1 1101 0001 |MOD110R/M (noi used)
D1 1101 0001 [MOD 111 R/M (DISP-LO),(DISP-HI) SAR REG16/MEM16,1
D2 1101 0010 | MOD 000 R/M | (DISP-LO),(DISP-HI) ROL REG8/MEMS,CL
D2 1101 0010 [MOD 001 R/M | (DISP-LO),(DISP-HI) ROR REG8/MEMS8,CL
D2 1101 0010 [MOD 010 R/M | (DISP-LO),(DISP-HI) RCL REG8/MEMS8,CL
D2 1101 0010 |[MOD 011 R/M | (DISP-LO),(DISP-HI) RCR REGB/MEMS,CL
D2 1101 0010 |MOD 100 R/M | (DISP-LO),(DISP-HI) SAL/SHL REGB/MEMS,CL
D2 1101 0010 | MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG8/MEMS,CL
D2 1101 0010 | MOD 110 R/M (not used)
D2 1101 0010 |[MOD 111 R/M | (DISP-LO),(DISP-HI) SAR REG8/MEMS,CL
D3 1101 0011 | MOD 000 R/M | (DISP-LO),(DISP-HI) ROL REG16/MEM16,CL
D3 1101 0011 [MOD 001 R/M | (DISP-LO),(DISP-HI) ROR REG16/MEM16,CL
D3 1101 0011 | MODO010R/M | (DISP-LO),(DISP-HI) RCL REG16/MEM16,CL
D3 1101 0011 |{MODO11 R/M (DISP-LO),(DISP-HI) RCR REG16/MEM16,CL
D3 1101 0011 |MOD 100 R/M | (DISP-LO),(DISP-HI) SAL/SHL REG16/MEM16,CL
D3 1101 0011 |[MOD 101 R/M (DISP-LO),(DISP-H1) SHR REG16/MEM16,CL
D3 1101 0011 |MOD110R/M (not used)
D3 1101 0011 |MOD111 R/M | (DISP-LO),(DISP-HI) SAR REG16/MEM16,CL
D4 1101 0100 | 00001010 AAM
D5 1101 0101 | 00001010 AAD
D6 1101 0110 (not used)
D7 1101 0111 XLAT SOURCE-TABLE
D8 1101 1000 | MOD 000 R/M
1XXX | MOD YYY R/M | (DISP-LO), (DISP-HI) ESC CPCODE,SOURCE
DF 1101 1111 |[MOD 111 R/M
EO 1110 0000 | IP-INC-8 LOOPNE/ SHORT-LABEL
LOOPNZ
E1 1110 0001 |IP-INC-8 LOOPE/ SHORT-LABEL
LOOPZ
E2 1110 0010 | IP-INC-8 LOQP SHORT-LABEL
E3 1110 0011 | IP-INC-8 JCXZ SHORT-LABEL
E4 1110 0100 | DATA-8 IN AL,IMMEDS
E5 1110 0101 | DATA-8 IN AX,IMMEDS8
E6 1110 0110 | DATA-8 ouT AL, IMMEDS8
E7 1110 0111 | DATA-8 ouT AX,IMMED8
EB8 1110 1000 | IP-INC-LO IP-INC-HI CALL NEAR-PROC
E9 1110 1001 | IP-INC-LO IP-INC-HI JMP NEAR-LABEL
EA | 1110 1010 |IP-LO IP-HI,CS-LO,CS-HI JMP FAR-LABEL
EB | 1110 1011 |IP-INC8 JMP SHORT-LABEL
EC | 1110 1100 IN AL,DX
ED | 1110 1101 IN AX,DX
EE | 1110 1110 ouTt AL.DX
EF 1110 111 ouT AX,DX
FO 1111 0000 LOCK (prefix)
F1 1111 0001 (not used)
F2 1111 0010 REPNE/REPNZ
F3 1111 0011 REP/REPE/REPZ
F4 1111 0100 HLT
F5 1111 0101 CMC

Mnemonics © Intel,

are

4-34

HARDWARE REFERENCE INFORMATION

Appendix B _ B'1 g

Table 4-13. Machine Instruction Decoding Guide (Cont'd.)

1STBYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

F6 1111 0110 |[MOD QOO R/M (DISP-LO),(DISP-HI), TEST REG8/MEMB8,IMMEDS
DATA-8

F6 1111 0110 [MOD 001 R/M (not used)

F6 1111 0110 IMODO10R/M (DISP-LO) (DISP-HI) NOT REG8/MEMB

F6 1111 0110 |MOD 011 R/M (DISP-LO),(DISP-HI) NEG REGB/MEMS8

F6 1111 0110 | MOD 100 R/M (DISP-LO),(DISP-HI) MUL REG8/MEMS8

F6 1111 0110 |MOD 101 R/M (DISP-LO),(DISP-HI) IMUL REGB/MEMS8

F6 1111 0110 (MOD 110 R/M (DISP-LO),(DISP-HI) DIV REG8/MEMS8

F6 1111 0110 |[MOD 111 R/M (DISP-LO),(DISP-HI) IDIV REG8/MEMB8

F7 1111 0111 |MODO0MI RIM (DISP-LO),(DISP-HI), TEST REG16/MEM16,IMMED16
DATA-LO,DATA-HI

F7 1111 0111 |MOD 001 R/M (not used)

F7 1111 0111 |MOD 010 R/M (DISP-LO),(DISP-HI) NOT REG16/MEM16

F7 1111 0111 ([MODO11 R/M (DISP-LO),(DISP-HI) NEG REG16/MEM16

F7 1111 0111 |MOD 100 R/M (DISP-LO),(DISP-HI) MUL REG16/MEM16

F7 1111 0111 |MOD 101 R/IM (DISP-LO),(DISP-HI) IMUL REG16/MEM16

F7 1111 0111 |MOD 110 R/M (DISP-LO),(DISP-HI) DIV REG16/MEM16

F7 1111 0111 |[MOD 111 R/M (DISP-LO),(DISP-HI) IDIV REG16/MEM16

F8 1111 1000 CLC

F9 1111 1001 STC

FA 1111 1010 cL!

FB 1111 1011 STl

FC 1111 1100 CLD

FD 1111 1101 STD

FE 1111 1110 |[MOD 000 R/M | (DISP-LO),(DISP-HI) INC REG8/MEM8

FE 1111 1110 |[MOD 001 R/M | (DISP-LO),(DISP-HI) DEC REG8/MEM8

FE 1111 1110 [MOD 010 R/M (not used)

FE 1111 1110 |MOD 011 R/IM (not used)

FE 1111 1110 |MOD 100 R/M (not used)

FE 1111 1110 |MOD 101 R/IM {not used)

FE 1111 1110 |{MOD 110R/M (not used)

FE 1111 110 |MOD 111 R/IM (not used)

FF 1111 1111 |MOD OO0 R/M (DISP-LO),(DISP-HI) INC MEMI16

FF 1111 1111 |MOD 001 R/M {DISP-LO),(DISP-HI) DEC MEM16

FF 1111 1111 |[MODO1OR/M (DISP-LO),(DISP-HI) CALL REG16/MEM16 (intra)

FF 1111 1111 |[MOD 011 R/M | (DISP-LO),(DISP-HI) CALL MEM16 (intersegment)

FF 1111 1111 |[MOD100R/M (DISP-LO),(DISP-HI) JMP REG16/MEM16 (intra)

FF | 1111 1111 |MOD101 R/M | (DISP-LO),(DISP-HI) JMP MEM16 (intersegment)

FF 1111 1111 |[MOD110R/M (DISP-LO),(DISP-HI) PUSH MEM16

FF 1111 1111 |[MOD 111 R/M (not used)

4-35

Mnamonics

) Intel, 1978

B-20

APPENDIX B
HARDWARE REFERENCE INFORMATION
Table 4-14. Machine Instruction Encoding Matrix
Lo
Hi 0 I ? 3 4 5 5 1 8 [} A] T 0 3 F
1] ADD ADD ADD ADD ADD ADD PUSH POP OR OR OR 0R OR OR PUSH
bteim |wteim | bteim | wirim | baa w13 ES ES biom | wihr/m|bLom | wirim b Wi cs
1 ADC ADC ADC ADC ADC ADC PUSH POP SBB 5BB SBB 5BB 588 SB8 PUSH POP
plefm | wte/m | bliim | wteim b w1 55 §S btefm |wliim] bhrim | wihe/m b wi 0s DS
? AND AND AND AND AlD AND SEG DAA SUB sus SUB Sug SUB SuB SEG DAS
bloim [wirim | boe/m | wir/m b Wi ES bleim [wirim | bbrfm | wirim bi wi cs
] X0R X0R XO0R x0R X0DR X0R SEG AAA CMP CMmP Cmp CMP CMP CMP SEG AAS
birim | wliim| brerim | wieim b | w.l 58 bleim | wirim | blr/m | wlrim b wi 0s
4 INC INC INC INC INC ‘ INC INC INC DEC DEC DEC DEC OEC DEC OEC OEC
AX Cx DX BX 5P 8P S 1] AX Cx Dx BX SP BP SI [+ D
§ PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH POP POP POP POP POF POP POP POP
AX Cx 0x 8x SP BP Sl o AX CX Dx BX SP BP St 1 Ll
L]
T JB/ JNB/ JE/ INEV JBE/ JINBE/ Jp! INPY JL/ JINL/ JLE/ JNLE/
O | N0 T nae | ume |z | Nz | na | Tua S L NS e | ueo | nee | ek | NG | a6
§ | Immed | Immed | Immed | Immed | TEST | TEST | XCHG | XCHG MOV | MOV | MOV | MOV | MOV | | ., Mov | POP
brim | wem | brim | iso/m | boim | weim | beim | we/m bleim | whiim | bi/m | wieim | sefr/m seeim | rim
I} XCHG XCHG XCHG XCHG XCHG XCHG XCHG XCHG CALL
AX oxX DX BY 5p 8P sl ol cew cwo g .WAIT PUSHF | POPF SAHF LAHF
A MoV MOV MoV MOV TEST TEST
it] PPl (%) P T ot MOVS | MOVS | CMPS | CMPS bis wla | STOS | STOS | LODS | LODS | SCAS | SCAS
L] MOy MOV MOV MOV MOV MoV MOV MOV MOV MOV MOV MoV MOV MOV MOV MOV
‘v~ AL |1 -CL|1~DL|v~-BL |1 ~AH|+=CH i -DOH| -BH +—AX|i—=CX|i-DX| —BX |+ ~-5P | i -BP| 1 -5 |+-D
C RET MOV MOV RET. RET INT INT
L 11+5P) RET LES LDS baeim | witim 1.0-5P) I Type 3 | (Anyl INTO IRET
] Shift Shift Shift Shitt ESC ESC ESC ESC ESC ESC ESC ESC
b w b.v W AN AN e 0 1 2 3 4 3 6 7
E | LOOPNZ/ | LOOPZ/ LOOP Xz IN N our ouT CALL JMP IMP JMP N IN out out
LOOPNE | LOOPE b w b w d d 1.d s1.d b v.W vb v,
F REP Grp 1 Grp 1 Grp 2 Grp2
Lock REP i HLT CMC ortm | Wi CI._C STC CLi sn CLD STD | brim | wom
wheis
mod[Jiim | 000 o1 010 o1 100 L] 10 11
immed | ADD [ac | sse | awp [sus | xom | cwe
Swit__ | ROL | AOR | RCL | RCA | SHU/SAL [SHR | — | SAR
Gep i TEST - NOT NEG WUL | ML Div 1o
Gip2 INC | DEC CALL CALL JWFP JHP PUSH -
o 1 o g
b « byle operation m « memory
d = direct rim = EA is second byte
1= 1rom CPU reg si = short intrassgment
i = immediate Sr = segment register
1a = immed. to accum 1= 1o CPU reg
id = indirect v = variable
is = immed. byte. sign ext w = word operation
| = long ¢ intersegment 2= 2010
Mnemonics = itel, 1978

4-36

Appendix C
COMPUTER ARITHMETIC

C"2 | APPENDIXC

BINARY ARITHMETIC

A number system can be used to perform two basic operations: addition
and subtraction. But by using addition and subtraction, you can then
perform multiplication, division, and any other numerical operation. For
simplicity, we will use decimal arithmetic as a guide.

Binary Addition

Binary addition is performed somewhat like decimal addition. If two
decimal numbers, 56719,, and 31863,, for example, are added together,
the sum 88582,, is obtained. You can analyze the details of this operation
in the following manner.

NOTE: In the following explanations, the term “first col-
umn’’ refers to the first column of figures you work with in
the problem — the column on the right (9, 3, and 2 in the
following example). The term ‘‘second column’ refers to
the second column you work with, etc.

Carry: 00101

Addend: 56719
Augend: + 31863
Sum: 88582

Adding the first column, decimal numbers 9 and 3, gives the sum of 12.
This is expressed in the sum as the digit 2 with a carry of 1. The carry is
then added to the next column. Adding the second column decimal
numbers 1 and 6, and the carry from the first column, 1, gives the sum of
8, with no carry. This process continues until all of the columns (includ-
ing carries) have been added. The sum represents the numeric value of
the addend and the augend. (The addend is the number to b® added to
another number, while the augend is the number to which the addend is
added.)

Appendix C C'3

When you add two binary numbers, you perform the same operation. The
example below summarizes the four rules of addition with binary num-
bers.

1. 0+0 =0
2. 0++1 =1
3. 1+1 = 0 with a carry of 1
4. 1+1+1 =1 witha carry of 1

To illustrate the process of binary addition, let’s add 1101, to 1101,.

Carry: 1101
Addend: 1101,
Augend: + 1101,
Sum: ~ 11010,

In the first column, 1 plus 1 equals 0 with a carry of 1 to the second col-
umn. This agrees with rule 3.

In the second column, 0 plus 0 equals 0 with no carry. The carry from the
first column is added to this. Thus, 0 plus 1 equals 1 with no carry. These
two additions in the second column give a total sum of 1 with a carry of 0.
Rules 1 and 2 were used to obtain the sum.

In column three, 1 plus 1 equals 0 with a carry of 1. To this sum. the
second column isadded. This yields a third column sum of 0 with a carry
of 1 to column four. Rules 3 and 1 were used to obtain the sum.

In column four, 1 plus 1 equals 0 with a carry of 1. To this sum, the third
column carry is added. This yields a fourth column sum of 1 with a carry
to the fifth column. Rule 4 allows you to add three binary 1's and obtain 1
with a carry of 1.

In column five, there is no addend or augend. Therefore, you can assume
rule 2 and add the carry to obtain the sum of 1. Thus, the sum of 1101, plus
1101, equals 11010,. You can verify this by converting the binary num-
bers to decimal numbers.

C'4 I APPENDIXC

Now study the following two examples of binary addition, where
10001111, is added to 10110101, and 111011, is added to 11001100,.

Carry: 10111111

Addend: 10110101,
Augend: + 10001111,
Sum: 7101000100,
Carry: 11111000

Addend: 11001100,
Augend: + 00111011,
Sum: ~100000111,

When a microprocessor adds binary numbers, 8-bit numbers are gener-
ally used. As shown in the last example, two zeros were added after the
MSB of the augend to produce an 8-bit number. After addition,a 1 in the
ninth bit is represented as the ‘‘carry” bit by the microprocessor.

Binary Subtraction

Binary subtraction is performed exactly like decimal subtraction. There-
fore, before you attempt binary subtraction, you should reexamine deci-
mal subtraction. You know that in decimal arithmetic, if 5486 is sub-
tracted from 8303, the difference, 2817 is obtained.

Minuend after borrow 7 12 9 13
Minuend: 8 30 3
Subtrahend: - 5 48 6
Difference: 2 81 7

Because the digit 6 in the subtrahend is larger than the digit 3 in the
minuend, a 1 is borrowed from the next high-order digit in the minuend.
If that digit is a 0, as in this example, 1 is borrowed from the next
high-order digit that contains a number other than 0. That digit is re-
duced by 1 (from 3 to 2 in our example) and the digits skipped in the
minuend are given the value 9. This is equivalent to removing 1 from 30
with the result of 29, as in our example. In the decimal system, the digit
borrowed has the value of 10. Therefore, the minuend digit now has the
value 13, and 6 from 13 equals 7.

Appendix C I C'5

In the second column, 8 from 9 equals 1. Since the subtrahend is larger
than the minuend in the third column, 1 is borrowed from the next
higher-order digit. This raises the minuend value from 2 to 12, and 4 from
12 equals 8. In the fourth column, the minuend was reduced from 8 to 7
because of the previous borrow, and 5 from 7 equals 2.

Whenever 1 is borrowed from a higher-order digit. the borrow is equal in
value to the radix or base of the number system. As you know, theradix or
base of the decimal number system is 10, and the radix or base in the
binary system is 2. Therefore, a borrow in the decimal number system
equals 10, while a borrow in the binary number system equals 2.

When you subtract one binary number from another, you use the same
method described for decimal subtraction. This is summarized by the
following for binary subtraction.

I

o = = O
|

0
0
1
1

i WS =
|
= O = O

with a borrow of 1.

To illustrate the process of binary subtraction, let’s subtract 1101, from
11011,.

Minuend after borrow: U 16 10 1 1
Minuend: 1 1 011
Subtrahend: - 1 101
Difference: 1 110

The “minuend after borrow” now shows the value of each minuend digit
after a borrow occurs. Remember that binary 10 equals decimal 2.

In the first column, 1 from 1 equals 0 (rule 2). Then, 0 from 1 in the second
column equals 1 (rule 3). In the third column, 1 from 0 requires a borrow
from the fourth column. Thus, 1 from 10 equals 1 (rule4). The minuend in
the fourth column is now 0, from the previous borrow. Therefore, a
borrow is required from the fifth column, so that 1 from 10 in the fourth
column equals 1 (rule 4). Because of the previous borrow, the minuend in
the fifth column is now 0 and the subtrahend is 0 (nonexistent), so that 0
from 0 equals 0 (rule 1). The 0 in the fifth column is not shown in the
difference because it is not a significant bit. Thus, the difference between
11011, and 1101, is 1119,. You can verify this by converting the birary
number to a decimal number and subtracting.

C'G APPENDIX C

As a further example of binary subtraction, subtract 00100101, from
11000100,, as shown below. Then proceed to the next example and
subtract 10111010, from 11101110,.

Minuend after borrow: 1 0 1 1 110 1 10
Minuend: 171 00 0 10 O
Subtrahend: -0 0 1 0 O 10 1
Difference: 1 0 0 1 © 11 1
Minuend after borrow: 0 01010 1 1 1 O
Minuend: 11 1 01 1 1 0
Subtrahend: -1 0 1 11 01 0
Difference: 00 1 10 1 0 O

When a borrow is required in the minuend, 1 is obtained from the next
high-order bit that contains a 1. That bit then becomes 0, and all bits
skipped (0 value bits) are given the value of 1. This is equivalent to
removing 1 from 1000, with the result of 0111,.

As with binary addition, microprocessors generally subtract with 8-bit
number groups. In the previous example, the answer contained only six
significant bits, but two 0 bits were added to maintain the 8-bit grouping.
This would also hold true for the minuend and subtrahend.

Binary Multiplication

Multiplication is a short method of adding a number to itself as many
times asit is specified by the multiplier. However, if you were to multiply
324,, by 233,, you would probably use the following method.

Multiplicand: 324
Multiplier: X 223
First partial product: 972
Second partial product: 648
Third partial product: 648
Carry: 0121
Final product: T72252

Using the short form of multiplication, you multiply the multiplicand by
each digit of the multiplier and then sum the partial products to obtain
the final product. Note that, for convenience, the additive carries are set
down under the partial products rather than over them as in normal
addition.

Appendix C | C'7

Binary multiplication follows the same general principles as decimal
multiplication. However, with only two possible multiplier bits (1 or 0),
binary multiplication is a much simpler process. The example below lists
the rules of binary multiplication. These rules will be used to multiply
1111, by 1101,.

1. 0x0=0

2, 0x1=0

3. 1xXx0=0

4, 1 x1=1
Multiplicand: 1111
Multiplier: x 1101
First partial product: 1111
Second partial product: 0000
Carry: 0000
Sum of partial products: 1111
Third partial product: 1111
Carry: 111100
Sum of partial products: 1001011
Fourth partial product: 1111
Carry: 1111000
Final product: 11000011

As with decimal multiplication, you multiply the multiplicand by each
bit in the multiplier and add the partial sums. First you multiply 1111, by
the least significant multiplier bit (1) and set down the partial product so
the least significant bit (LSB) is under the multiplier bit. Then you
multiply the multiplicand by the next multiplier bit (0) and set down the
partial product so the LSB is under the multiplier bit. Now that there are
two partial products, they should be added. Although it is possible toadd
more then two binary numbers, keeping track of multiple carries may
become confusing. Therefore, for these examples, add only two partial
products at a time.

Notice that the first partial product is identical to the multiplicand. The
second partial product is all zeros. Since the binary number system
contains only ones and zeros, the partial product will always equal either
the multiplicand or zero. Because of this, you can obtain the third partial
product by copying the multiplicand. Begin with the LSB under the third
multiplier bit. Add this value to the previous partial sum. Now obtain the
fourth partial product by copying the multiplicand. Begin with the LSB
under the fourth multiplier bit. Add this value to the previous partial
sum. This is the final product. Again, you can verify the result by convert-
ing the binary numbers to decimal.

C'B APPENDIXC

Reexamine the illustration for the previous multiplication exarr ple and
you will notice that binary multiplication is a process of shift and add.
For each 1 bit in the multiplier you copy down the multiplicand, begin-
ning with the LSB under the bit. You can ignore any zeros in the multi-
plier. But do not make the mistake of setting down the mult.plicand
under the 0 bit.

Tomake sure you fully understand binary multiplication, multiply 1001,
by 1100, and then multiply 1101, by 1111,.

Multiplicand: 1001
Multiplier: x 1100
First partial product: 0000
Second partial product: 0000
Carry: 0000
Sum of partial products: 00000
Third partial product: 1001
Carry: 00000
Sum of partial products: 100100
Fourth partial product: 1001
Carry: 000000
Final product: 1101100
Multiplicand: 1101
Multiplier: x 1111
First partial product: 1101
Second partial product: 1101
Carry: ~ 11000
Sum of partial products: 100111
Third partial product: 1101
Carry: ~ 100100
Sum of partial products: 1011011
Fourth partial product: 1101
Carry: 1111000

Final product: 11000011

Appendix C C'g

In the first of these examples, the two zeros in the multiplier were in-
cluded in the multiplication process. This was to insure that the multip-
licand was copied down under the proper multiplier bits. The multiplica-
tion process could have been represented in this manner:

Multiplicand: 1001
Multiplier: X 1100
Third partial proauct: 100100
Fourth partial preduct: 1001
Carry: 000000
Final product: 1101100

Remember, just as in decimal multiplication, you must keep track of any
zeros by setting a zero in the product under the 0 bit in the multiplier.
This is very important when the zero occupies the LSB.

C'1 0 APPENDIX C

Binary Division

Division is the reverse of multiplication. Therefore, it is a procedure for
determining how many times one number can be subtracted from
another. The process you are probably familiar with is called “long”
division. If you were to divide decimal 181 by 45, you would obtain the
quotient, 4-1/45, as follows:

004 Quotient
Divisor 45 /181 Dividend

180

T Remainder

Using long aivision, you would examine the most significant digit in the
dividend and determine if the divisor was smaller in value. In this
example, the divisor is larger, so the quotient is zero. Next, you examine
the two most significant digits, and here again, the divisor is larger, so the
quotient is again zero. Finally, you examine the whole dividend and
discover it is approximately four times the divisor value. Therefore, you
give the quotient a value of 4. Next, you subtract the product of 45 and 4
(180) from the dividend. The difference of 1 represents a fraction of the
divisor. This fraction is added to the quotient to produce the correct
answer of 4-1/45.

Binary division is performed in a similar manner. However, binary divi-
sion is a simpler process since the number base is two rather than ten.
First, let's divide 100011, by 101,.

000111 Quotient
Divisor: 101 J100011 Dividend

101 l
11 Remainder

101
10 Remainder
101
o0 Remainder

Using long division, you examine the dividend beginning with the MSB
and determine the number of bits required to exceed the value of the
divisor. When you find this value, place a 1 in the quotient and subtract
the divisor from the selected dividend value. Then carry the next least
significant bit in the dividend down to the remainder. If you can subtract

Appendix C C"1 1

the divisor from the new remainder, place a 1 in the quotient. Then
subtract the divisor from the remainder and carry the next least signific-
antbitin the dividend (LSB in this example) down totheremainder. If the
divisor can be subtracted from the new remainder, place a 1 in the
quotient and subtract the divisor from the remainder. Continue the pro-
cess until all of the dividend bits have been carried down. Then express
any remainder as a fraction of the divisor in the quotient. Thus, 100011,
divided by 101, equals 111,. You can verify the answer by converting the
binary numbers to decimal.

To make sure you fully understand binary division, work out the follow-
ing examples of long division. Divide 101000, by 1000, and then divide
100111, by 110,.

000101 Quotient
Divisor 1000 _J101000 Dividend
1000
10 Remainder
1000
0 Remainder

000110.1 Quotient
Divisor 110 _/100111.0 Dividend

110
111 Remainder
1104
11 Remainder
110
) Remainder

In the second example, the quotient was not a whole number, but rather a
whole number plus a fraction (remainder divided by the divisor). The
answer 110—11/110 is correct. You could have left the answer in this
form or, as in the example, continue the division process until the re-
mainder was zero. This is made possible by adding a sufficient number of
zeros after the binary point to permit division by the divisor. In the
previous example, only one zero was added after the binary point. As in
the decimal number system, adding zeros after the binary point, in the
binary number system, will not affect the value of the number. Note that
some numbers cannot be solved in this manner (e.g., decimal 1/3).

C'1 2 APPENDIX C

Representing Negative Numbers

Until now, we have been examining binary arithmetic using unsigned
numbers. However, when you perform some arithmetic operations with a
microprocessor, you must be able to express both positive and negative
(signed) numbers. Over the years, three methods have been developed for
representing signed numbers. Of these, only one method has survived.
The two older methods will be briefly examined first, followed by the sys-
tem that is used today.

SIGN AND MAGNITUDE

Using this system, a binary number contained both the sign (+ or —)and
the value of the number. Therefore, positive and negative values were
expressed as follows:

+45,, = 0 0101101
Signh (MSB) Magnitude

/

/

-45, = 1 0101101

The MSB of the binary number indicated the sign, while the remaining
bits contained the value of the number. As you can see, a zero sign bit
indicated a positive value, while a one sign bit indicated a negative value.

While this method of representing negative numbers may seem logical,
its popularity was short lived. Because it required complex and slow
arithmetic circuitry, it was abandoned long before microprocessors were
invented.

Appendix C 0'1 3

ONE'S COMPLEMENT

Another method of representing negative numbers became popularinthe
early days of computers. It was called the one’s complement method.
Using this system, positive numbers were represented in the same way as
in the sign-magnitude system. That is, the MSB in any number was
considered to be a sign bit. A sign bit of 0 represented positive. Using
8-bit numbers, positive values were represented like this:

+4,y = 00000100
179 = /0 0010001
+127,0= 0 1111111
Sign Bit (MSB) Binary Value

Negative numbers were represented by the one’s complement of the
positive value. The one's complement of a number is formed by changing
all the 0'sto 1's and all the 1's to 0's. As shown above, +4,, is represented
as 0 0000100. By changing all 0’s to 1's and all 1's to 0's, the representa-
tion for —4,, was formed. In this case:

_410 = _L 11119112

Notice that all the bits, including the sign bit, were inverted. In the same
way:

Il

17, = 1 1101110,

=127 = 1 0000000,
The one’s complement method is not used for representing signed num-

bers in microprocessors, but if you need to find the one’s complement of a
number, simply change all the 0’s to 1’s and all the 1's to 0’s.

C-14 | appenpixc

Figure 1 shows an interesting relationship. In the first column, 8-bit
patterns of 0’s and 1’s are shown. The second column shows the decimal
number that each pattern represents if you consider the pattern to be an
unsigned binary number. Notice that an 8-bit pattern can represent un-
signed numbers between 0 and 255,,.

BIT UNSIGNED 1's
PATTERN BINARY COMPLEMENT
00000000 0 +0
00000001 1 +7%
00000010 2 +2
00000011 3 +3
01111100 124 +124
01111101 125 +125
01111110 126 +126
01111111 127 +127
10000000 128 —-127
10000001 129 -126
10000010 130 —125
10000011 131 —-124
11111100 252 -3
11111101 253 -2
11111110 254 =]
11111111 255 -0
Figure 1

Table of bit pattern values for unsigned binary numbers and
1's complemeni numbers.

The third column shows the decimal number that each pattern represents
if you consider the pattern to be a one's complement binary number.
Notice that the range of numbers is from —127,, to +127,,. Notice also
that there are two representations of zero. The pattern 0000 0000, repre-
sents +0 while its one’s complement (1111 1111,) represents —0.

Appendix C C'1 5

TWO'S COMPLEMENT

The method used to represent signed numbers in microprocessors is
called two’s complement. In this system, positive numbers are rep-
resented just as they were with the sign-and-magnitude method and the
one’s complement method. That is, it uses the same bit pattern for all
positive values up to +127,,. However, negative numbers are rep-
resented as the two’s complement of positive numbers.

The two’s complement of a number is formed by taking the one’s com-
plement and then adding 1. For example, if you work with 8-bit numbers
and use the two’s complement system, +4,, is represented by 00000100,.
Tofind —4,,, you must take the two's complement of this number. You do
this by first taking the one’s complement, which is 11111011,. Next, add
1 to form the two's complement:

11111011,
+ 1

11111100,
Thus, the two’'s complement representation of —4,, is 11111100,.

To be sure you have the idea, look at a second example. How do you ex-
press —17,, as an 8-bit two’s complement number? Start with binary rep-
resentation of +17,,, which is 00010001,. Take the one’s complement by
changing all the 0’s to 1’s and 1's to 0's. Thus, the one’s complement of
+17,, 18 11101110,. Next find the two’s complement by adding 1:

11101110,
+ 1

11101111,

C-16 | aprenDIXC

Figure 2 compares unsigned two’s complement and one’s complement
numbers. Several 8-bit patterns are shown in the left column, while the
other three columns show the decimal number represented by these

patterns.

BIT UNSIGNED 2’s 1's
PATTERN BINARY COMPLEMENT | COMPLEMENT
00000000 0 0 +0
00000001 1 +1 +1
00000010 2 +2 +2
00000011 3 +3 +3
01111100 124 +124 +124
01111101 125 +125 +125
01111110 126 +126 +126
01111111 127 +127 +127
10000000 128 -128 —127
10000001 129 —-127 -126
10000010 130 —126 ~125
10000011 131 =125 —124
11111100 252 -4 -3
11111101 253 -3 -2
11111110 254 —2 -1
11111111 255 -1 -0

Figure 2

Table of bit pattern values for unsigned binary,
2's complement and 1's complement numbers.

Appendix C C'1 7

Notice that the range of 8-bit two’'s complement numbers is from —128,,
to +127,,. Notice also that there is only one representation for 0.

If this table included all 256,, possible 8-bit patterns, you could look up
any pattern to see what number it represents. The patterns that have 0 as
their MSB are easy to determine without a table (the pattern represents
the binary number directly). But what decimal number is represented by
the two's complement number 111100117 You should know that this
represents some negative number because the MSB is a 1.

Actually, you can determine the value very easily by taking the two'’s
complement to find the equivalent positive number. Remember, you find
thetwo’s complement by taking the one’s complement and adding 1. The
one's complement is 0000110GC,. Thus, the two's complement is:

00001100,
+ 1
00001101, or +13,,

Since the two's complement of 11110011, represents +13,,, then
11110011, must equal —13,,.

C"1 8 APPENDIXC

TWO’S COMPLEMENT ARITHMETIC

In the previous discussion you saw that signed numbers are represented
in microprocessors in two's complement form. Now you will see why.

In digital electronic devices, such as computers, simple circuits cost less
and operate faster than more complex ones. Two's complement numbers
are used with arithmetic because they allow the simplest, cheapest, and
fastest circuits.

A characteristic of the two's complement system is that both signed and
unsigned numbers can be added by the same circuit. For example, sup-
pose you wish to add the unsigned numbers 132,, and 14,,. The addition
would look like this:

Addend: 10000100 132y,
Augend: 00001110 + 14,
Sum: 10010010 146,

As you know, the microprocessor has an ALU circuit that can add un-
signed binary numbers in this manner. The adder of the ALU is designed
so that when the bit pattern 10000100, appears at one input and
00001110, appears at the other, the bit pattern 10010010, appears at the
output.

The question arises, ‘“‘How does the ALU know that the bit patterns at the
inputs represent unsigned numbers and not two’s complement num-
bers?”’ The answer is simple, *‘it doesn’t!”

The ALU always adds as if the inputs were unsigned binary numbers.
Nevertheless, it still produces the correct sum even if the inputs are
signed two’s complement numbers.

Look at the example given above. If you assume that the inputs are two’s
complement signed numbers, then the addend, augend, and sum are:

Addend: 10000100, —124,,
Augend: 00001110, + 14,
Sum: 10010010, —110,,

Appendix C C'1 9

Notice that the bit patterns are the same. Only the meaning of the bit
patterns have changed. In the first example, we assumed that the bit
patterns represented unsigned numbers and the adder produced the
proper unsigned result. In the second example, we assumed that the bit
patterns represented signed numbers. Again, the adder produced the
proper signed result.

This proves a very important point. The adder in the ALU always adds bit
patterns as if they are unsigned numbers. It is our interpretation of these
bit patterns that decides if unsigned or signed numbers are indicated. The
advantage of two’s complement is that the bit patterns can be interpreted
either way. This allows us to work with either signed or unsigned num-
bers without requiring different circuits for each.

Two's complement arithmetic also simplifies the arithmetic logic unit in
another way. All microprocessors have a subtract instruction. Thus, the
ALU must be able to subtract one number from another. However, if this
required a separate subtraction circuit, the ALU would be more complex
and costly. Fortunately, two’s complement arithmetic allows the ALU to
subtract using an adder circuit. That is, the MPU uses the same circuit to
add and subtract.

The MPU subtracts by a binary addition process. To see how this works, it
may be helpful to look at a similar process with the decimal number
system. The decimal equivalent of two's complement is called ten's
complement. Since you are more familiar with the decimal number
system, let’s briefly examine ten's complement arithmetic.

C'20 I APPENDIX C

Ten’s Complement Arithmetic

An easy way to illustrate ten's complement is to consider an analogy.
Visualize an automobile odometer or mileage indicator. Generally, this is
a 6-digit device that indicates mileage between 00,000.0 and 99,999.9
miles. Let's ignore the tenths digit and concentrate on the other five.

In an automobile, the odometer generally operates in only one direction,
forward. However, consider what happens if it is turned backwards
instead. Starting at +3 miles, the count would proceed backwards as
follows:

00,003
00,002
00,001
00,000
99,999
99,998
99,997
etc.

It is easy to visualize that 99,999 represents —1 mile. Also 99,998 repre-
sents —2 miles: 99,997 represents —3 miles; etc. This is how signed
numbers are represented in ten’s complement form.

Once you accept this system for representing positive and negative num-
bers, you can perform arithmetic with these signed numbers. For exam-
ple, if you add +3 and —2, the result is +1. Using the system developed
above, +3 is represented by 00003 while —2 is represented by 99,998.
Thus, the addition looks like this:

00003 +3
+ 99998 =2
100001 +1

Discard final carry

If you now discard the final carry on the left side of the sum, the answer is
00001, the representation of +1. You can also find the ten’s complement
of a digit by subtracting the digit from ten. For example, the ten’s com-
plement of 6 is 4 since 10 — 6 = 4. To complement a number containing
more than one digit, raise ten to a power equal to the total number of
digits, then subtract the number from it. As an example, to obtain the ten’s

Appendix CJ C'21

complement of 654, first raise ten to the third power since there are three
digits in the number. Then subtract 654 from the result.

100 = 1000
—654
346

Thus, the ten’'s complement of 654,, is 346,,.
Once you find the ten’s complement, you can subtract one number from

another by an indirect method using only addition. Most of us have
learned to subtract like this:

Minuend: 973
Subtrahend: —654
Difference: 319

However, you canarrive at the same answer by using ten's complement of
the subtrahend and adding. Recall that the ten's complement of 654, is
346,,. Let’s compare these two methods of subtraction:

STANDARD METHOD TEN’S COMPLEMENT METHOD

Minuend 973 973 Minuend
Subtrahend -654 +346 Ten’s complement of Subtrahend
Difference 319 1319 Difference

Discard final carry

Notice that when you use the ten's complement method, the answer is too
large, by 1000,,. However, you can still arrive at the correct answer by
simply discarding the final carry.

While the ten’s complement method of subtraction works, it is not readily
used because it is more complex than the standard method. In fact, it does
not eliminate subtraction entirely since the ten’s complement itself is
found by subtraction.

The binary equivalent of ten's complement is two’s complement. It over-
comes the disadvantage of ten’s complement in that the two’s comple-
ment can be formed without any subtraction at all. Recall that you can
form the two's complement of a binary number by changing all the 0’s to
1'sand all the 1'sto0’s and then adding. Let’s examine two’s complement
arithmetic in more detail.

C'22 APPENDIX C

Two’s Complement Subtraction

As in ten’s complemen: arithmetic, you can form the two's complement
by subtracting from a power of the base or radix (two). However, because
the MPU cannot subtract directly, it uses the method given earlier for
finding the two's complement. Once the two’s complement is formed, the
MPU can subtract indirectly by adding the two’'s complement of the
subtrahend to the minuend.

To illustrate this point, observe the following two ways of subtracting
26,, from 69,,. The two numbers are expressed as they would app=ar to an
8-bit microprocessor. The standard method of subtraction looks like this:

Minuend 01000101, 69
Subtrahend -00011010, —26
Difference 00101011, 43

While this method works fine on paper, it's of little use to the micro-
processor since the MPU has no subtraction circuitry. However, the MPU
can still perform subtraction by the indirect method of adding the two’s
complement of the subtrahend to the minuend:

Minuend 01000161
Two's complement of Subtrahend +11100110
Difference 100101011

Discard final carry

This illustrates a major reason for using the two's complement system to
represent signed numbers. It allows the MPU to subtract and add with the
same circuit.

How microprocessors subtract is of little importance to the people who
use them. Most microprocessors have a subtract instruction. This instruc-
tion is used like any other, without regard for how the operation is
implemented internally. When the subtract instruction is implemented,
the MPU automatically takes care of operations like complementing the
subtrahend, adding, and discarding the carry. The procedure has been
explained here so you can appreciate the importance of two’s comple-
ment arithmetic.

Appendix C C-23

Arithmetic With Signed Numbers

There are many applications in which the microprocessor must work
with signed numbers. In these cases, signed numbers are represented in
two’s complement form. While this greatly simplifies the circuitry of the
MPU, it places an extra burden on the user. The programmer must ensure
that all signed numbers are entered into the microprocessor in two's
complement form. Also, the resulting data produced by the MPU may be
in two's complement form. Here's how an 8-bit MPU handles signed
numbers.

ADDING POSITIVE NUMBERS

Assume that the MPU is to add the two positive numbers +7 and +3.
Since an 8-bit MPU is assumed, the arithmetic operation looks like this:

00000111 +7
+ 00000011 +3
00001010 +10

The sign bits are underlined. Remember, with signed numbers, the MSB
is the sign bit. A 0 represents ““+’" and a 1 represents a “‘—."” In this
example, you added +7 and +3 to form a sum of +10,,. You know that all
three numbers are positive since the MSB’s are all 0’s.

While the operation seems straightforward enough, it is easy to make an
error when adding positive numbers. Remember, the highest 8-bit posi-
tive number you can represent in two's complement form is +127,,. If the
sum exceeds this value, an error occurs. For example, suppose you
attempt toadd +65,,to +67,,. The MPU adds the numbers as if they were
unsigned binary:

01000001
+ 01000011
10000100

If the answer is interpreted as a two's complement number, an error has
occurred. You have added two positive numbers and yet the answer
appears to be negative since the MSB of the sum is 1. This is called two’s
complement overflow. It occurs when the sum exceeds +127,,. Many
microprocessors have a way of detecting this condition, which we will
discuss later.

C'24 APPENDIX C

ADDING POSITIVE AND NEGATIVE NUMBERS

The real advantage of the two's complement system is best illustrated
when you add numbers with unlike signs. For example, assume that an
8-bit microprocessor is to add +7 and —3. Remember, since these are
signed numbers, they must be represented in two's complement form.
That is, +7 is represented as 00000111, while —3 is represented as
11111101,. If these two numbers are added, the sum will be:

Addend 00000111 (+7)
Augend + 11111101 + (—3)
Sum 10000010C (+4)

Discard final carry

Notice that the sum is correct if you ignore the final carry bit. Keep in
mind that the MPU adds the two numbers as if they were unsigned binary
numbers. It is merely our interpretation of the answer that makes the
system work for signed numbers.

The system also works when the negative number is larger. For example,
when —9 is added to +8 the result should be —1. Remember, the signed
numbers must be represented in two's complement form:

Addend 11110111 (—9)
Augend + 00001000 + (+8)
Sum 11111111 (—1)

Notice that the sum is the two’s complement representation for —1.

Appendix C C‘25

ADDING NEGATIVE NUMBERS

The final case involves two negative numbers. If both numbers are nega-
tive, then the sum should alsc be negative.

For example, suppose the MPU is toadd —3 to —4. Obviously, the result
should be —7. The two signed numbers musl be represented in two'’s
compiement form. That is, —3 must be represented as 11111101, while
—4 must be represented as 11111100,. The MPU adds these two bit
patterns as if they were unsigned binary numbers. Thus the resul* is:

Addend 11111101 (-3)
Augend + 11111100 +(—4)
Sum 111111001 (—=7)

Discard final carry
Once again, the answer is correct if you ignore the fina! carry bit,

When you add two negative numbers, you must remember the capacity of
the MPU. The largest negative number that can be represented by 8 bits is
—128,,. If the sum exceeds this value, the sum will appear to be in error.
For example, suppose you add —120,, to —18,.

10001000 (—120)
+ 11101110 + (- 18)
101110110 (—138)

\

Ignore carry

Sign bit

Notice that the sign bit in the sum is 0, representing a positive number.
Thus, the MPU has added two negative numbers and has produced a
positive result. This apparent error is caused by exceeding the 8-bit
capacity of the microprocessor. This is another example of two's com-
plement overflow.

C'26 APPENDIX C

BOOLEAN OPERATIONS

Along with the basic mathematical processes examined earlier, the mi-
croprocessor can manipulate binary numbers logically. This system was
conceived using the theorems developed by mathematician George
Boole. As a result, this branch of binary mathematics is given the name
Boolean Algebra. In this section, the Boolean operations performed by the
microprocessor will be examined. A more detailed description of Boo-
lean Algebra is provided in the Heathkit/Zenith Education Systems
course titled “Digital Techniques.”

AND Operation

The AND function produces the logical product of two or more logic vari-
ables. That is, the logic product of an AND operation is logic 1 if all of the
variable inputs are logic 1. If any of the variable inputs are logic 0, the logi-
cal product is 0. This process can be represented by the formula (A«B =C)
where A and B represent input variables (logic 1 or 0) and C represents the
output or logical product of the AND operation. The AND function is de-
signated by a dot between variables. Do not confuse it with the mathemat-
ical multiplication sign.

Figure 3 is a “truth table” for a 2-variable AND function. The 1's and 0’s
represent all of the possible logic combinations. Thus, you can see that
the AND function is a sort of “all-or-nothing” operation. Unless all the
input variables are logic 1, the output logic cannot be logic 1.

INPUTS OUTPUT

A B C

0 0 0

0 1 0

1 0 0

1 1 1]
Figure 3

Truth table for a two-variable AND function.

Appendix C C'27

When the microprocessor implements the logic AND operation, one 8-bit
binary number is ANDed with a second 8-bit binary number. Refer to the
example below for an illustration of this process.

8-BIT 8-BIT RESULTS OF
NUMBER NUMBER AND OPERATION

MSB 1 J 1 1 MSB
0 . 0 = 0
0 s 1 = 0
1 . 0 = 0
1 ’ 1 = 1
0 ¢ 1 = 0
1 . 0 = 0
LSB 0 . 0 = 0 LSB

Although more than two logic variables can be ANDed together, the
microprocessor operates on only two variables at a time. Now try one
more example of the AND operation. AND 10011101 with 11000110.

MSB

Il

1

[= R = =T
e« o

(= R SO o B o T = S S Y

Il il |

o= 0000 =

LSB

C'28 | APPENDIX C

OR Operation

The OR function (more precisely, inclusive OR) produces the logical sum
of two or more logic variables. That is, the logical sum of an OR operation
is logic 1 if either input is logic 1. The logic sum is 0 if ALL of the input
variables are logic 0. This process can be represented by the formula
(A+B=C) where A and B represent input variables and C represents the
output or logical sum of the OR operation. The OR function is designated
by a plus sign, or in some cases, a circle dot(, between the variables. Do
not confuse the plus sign with the mathematical add sign.

Figure 4 is a “truth table” for a 2-variable OR function. The 1’s and 0’s
represent all of the possible logic combinations. Thus, you can see that
the OR function is a sort of “either or both” operation. If either or both
input variables are logic 1, the output must be logic 1.

INPUTS OUTPUT
A B C
0 0 0
0 1 1
1 0 1
1 1 1
Figure 4

Truth table for a two-variable OR function.

When the microprocessor implements the logic OR operation, one 8-bit
binary number is ORed with a second 8-bit binary number. This process
can be seen in the example given below.

8-BIT 8-BIT RESULTS OF
NUMBER NUMBER OR OPERATION

MSB 1 + 1 = 1 MSB
0 + 0 = 0
0 #+ 1 = 1
1 + 0 = 1
1 + 1 = 1
0 + 1 = 1
1 + 0 = 1
LSB 0 + 0 = 0

Appendix C I C"29

As with the AND function, two or more logic variables can be ORed
together. However, the microprocessor operates only on two variables at
a time. Now try one more example of the OR operation. OR 10011101,
with 11000101,.

SRR o S WA T o T Y

s s R R . Sl ol

= O = O 00 =k =
I

I = e R R an

Exclusive OR Operation

The Exclusive OR (EOR or XOR) function performs a logical test for
“equality” between two logic variables. That is, if two variable inputs are
equal (both logic 1 or 0), the output or result of the EOR operation is logic
0. If the inputs are not equal (one is logic 1, the other logic 0), the output is
logic 1. This can be represented by the formula (A @ B = C) where A and
B represent input variables and C represents the output or result. The
EOR function is designated by a circled plus sign between the variables.

Figure 5 is a “truth table” for the EOR function. The 1’s and 0’s represent
all of the possible logic combinations. You can see that the EOR function
is a sort of “either but not both” operation. Hence, either input can be
logic 1 or logic 0, but not both, for a logic 1 output.

INPUTS OUTPUT
A B C
0 0 0
0 1 1
1 0 1
1 1 0
Figure 5

Truth table for a two-variable EOR function.

When the microprocessor implements the logic EOR operation, one 8-bit
binary number is exclusively ORed with a second 8-bit binary number.
This process is shown in the following example.

C'30 APPENDIXC

8-BIT 8-BIT RESULTS OF
NUMBER NUMBER EOR OPERATION

MSB MSB

L = B o N s B e B

SICICICICICICIS,

[e B == = W == B
|

O = =0 = =00

LSB LSB

Now try one more example of the EOR operation. EOR 10011101, with
11000101,.

1® 1 = 0MSB
0®1 =
0@ 0
10 =
1®0
1@ 1
0®o0 =
1®1 =

Il

]
[T e T e T S O e B SO e

LSB

Invert Operation

I NPUT OUTPUT

The invert operation performs a direct complement of a single input vari-

able. That is, a logic 1 input will produce a logic 0 output and a logic 0 A A

input will produce a logic 1 output. This process is represented by the] 0

“truth table” shown in Figure 6. 0 1
Figure 6

Truth table for an INVERT function.

Note that the complement of A is A. The bar above the A indicates that A
has been inverted, and is read “‘not A."” Conversely, the complement of A
is A.

When the microprocessor implements the logic invert operation, the
8-bit binary number is complemented. This operation isalso known as 1’s
complement. Thus, the complement of 11010110, is 00101001,. As with
the previous logic operations, the invert function operates on each indi-
vidual bit of the 8-bit number.

Appendix D
INSTRUCTION SET

Instruction set data supplied
courtesy of Intel Corporation.
Modifications made to reflect
instruction coding unique to
MACRO-86.

D-2 | aprenoixo

REFERENCES

FOR INSTRUCTION SET REF

REF

Key to following Instruction Set Reference Pages

IDENTIFIER USEDIN EXPLANATION
destination data transfer, A register or memory location that may contain data
bit manipulation operated on by the instruction, and which receives (is
replaced by) the result of the operation.
source data transfer, A register, memory location or immediate value that is

source-table

target

short-label

accumulator

port

source-string

dest-string

count

interrupt-type

optional-pop-value

external-opcode

arithmetic,

bit manipulation
XLAT

JMP, CALL
cond. transfer,
iteration control
IN,.OUT

IN.OUT

string ops.

siring ops.

shifts, rotates

INT

RET

ESC

used in the operation, but is not altered by the
instruction,

Name of memory translation table addressed by
register BX.

A label to which control is to be translerred directly. or
a register or memory location whose content is the
address of the location to which control is to be
transferred indirectly.

A label to which control is to be conditionally
transterred; must lie within =128 to +127 bytes of the
first byte ol the next instruction.

Register AX for word transfers, AL for bytes

An /O port number: specified as an immediate value ol
0-255, or register DX (which contains port number in
range 0-64k)

Name of a string in memory that 1s addressed by
register Sl; used only to identify string as byte or word
and specify segment override, it any This string is
used in the operation. but is not altered

Name of string in memory that is addressed by register
DI; used only to identity string as byte or word. This
string receives (is replaced by) the resull of the
operation.

Specities number of bits to shift or rotate:; written as
immediate value 1 or regisler CL (which contains the
count in the range 0-255).

Immediate value of 0-255 identilying interrupt pointer
number

Number of bytes (0-64k. ordinarily an even number) to
discard from stack.

Immediate value (0-63) thatis encoded in the instruction
for use by an external processor

Appendix D

REF

REFERENCES
FOR INSTRUCTION SET

Key to Operand Types
IDENTIFIER EXPLANATION
{no operands) | No operands are written
register An 8- or 16-bit general register
reg 16 An 16-bit general register
seg-reg A segment register
accumulator Register AX or AL
immediate A constant in the range
0-FFFFH
immed8 A constantin the range 0-FFH
memory An 8- or 16-bit memory
location'"
memaB An B8-bit memory location'
mem16 A 16-bit memory location'!

source-table
source-string
dest-string
DX
short-label
near-label
tar-label
near-proc
far-proc

memptri6

memptr32

regptrié

repeat

Name of 256-byte
table

Name of string addressed by
register S|

Name of string, addressed by
register DI

Register DX

A label within -128 to +127
bytes of the end of the
instruction

A label in
segment

A label
segment

A procedure in current code
segment

A procedure in another code
segment

A word containing the offset of
the location in the current code
segment to which control is to
be transferred!"

A doubleword containing the
offset and the segmen! base
address of the location in
another code segment to
which control is to be trans-
ferred™

A 1B-bit eneral register
containing the offset of the
location in the current code
segment to which control is to
be transferred

A string instruction
prefix

translate

current code

in another code

repeat

¥5 14 11 12 11 M0 #

FIDF[IF |[TF|SF{IF AF

) LI
PRl |CF

L =

REF

CARRY

PARITY
AUXILIARY CARRY
ZERD

SIGH

TRAP

DIRECTION
OVERFLOW

Effective Address Calculation Time

EACOMPONENTS CLOCKS*
Displacement Only 6
Base or Index Only (BX,BP,SI,D1) 5
Displacement

- 9
Base or Index (BX,BP,SI,DI)
Base BP+ DI, BX +Si 7
+
Index BP +SI, BX+DI 8
Displacement BP + DI+ DISP 1
+ BX+SI+DISP
Base
- BP + S+ DISP 12
Index BX + DI+ DISP

" Any

addressing mode—direct,

register

indirect, based, indexed, or based indexed—
may be used (see section 2.8).

*Add 2 clocks for segment override

D-3

D"4 | APPENDIX D

REF

REFERENCES
FOR INSTRUCTION SET

““reg’’ Field Bit Assignments:

16-Bit (w = 1) 8-Bit (w = 0) Segment
000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 S| 110 DH
| 111 DI 111 BH

““mod’’ Field Bit Assignments:

Imod xxx 1/m|

REF

| mom Displacement
L |

00 |DISP=0*, disp-low and disp-high are absent
01 | DISP =disp-low sign-extended to 16-bits, disp-high is absent
10 | DISP = disp-high:-disp-low

11 |r/mistreatedasa'‘reg’ field

““r/m’”’ Field Bit Assignments:

r/m

Oper-and Address

000
001
010
011
100
101
110
111

(BX) + (SI) + DISP
(BX) + (D!) + DISP
(BP) + (SI) + DISP
(BP) + (DI) + DISP
(SI) + DISP
(DI) + DISP
(BP) + DISP
(BX) + DISP

DISP follows 2nd byte of instruction (before data if required).

*exceptif mod =00and r/m =110 then EA = disp-high: disp-low.

Appendix D | D"‘5

AAA ASCII ADJUST AAA

FOR ADDITION
Operation: Flags Affected:
if ((AL) & OFH) > 9 or (AF) = 1 then AF, GF.
(AL) < (AL) + 6 OF, PF, XF, ZF undefined
(AH) < (AH) + 1
(AF) <1
(CF) « (AF)
(AL) < (AL) & OFH
Description:

AAA (ASCII Adjust for Addition) changes
the contents of register AL to a valid unpacked
decimal number; the high-order half-byte is
zeroed. AAA updates AF and CF; the content
of OF, PF, SF and ZF is undefined following
execution of AAA.

Encoding:

100110111 |

AAA Operands Clocks | Transfers|Bytes| AAA Coding Example

(no operands) 4 — 1 AAA

D'G l APPENDIX D

AAD EdRbwision ~ AAD

Operation: Flags Affected:

(AL) < (AH) * OAH + (AL) PF, SF, ZF.)

(AH) <0 AF, CF, OF undefined
Description:
AAD (ASCIl Adjust for Division) modifies for the subsequent D1V to produce the correct
the numerator in AL before dividing two valid result. The quotient is returned in AL, and the
unpacked decimal operands so that the quo- remainder is returned in AH; both high-order

tient produced by the division will be a valid half-bytes are zeroed. AAD updates PF, SF
unpacked decimal number. AH must be zero and ZF; the content of AF, CF and OF is
undefined following execution of AAD.

Encoding:

11010101]00001010

AAD Operands Clocks | Transfers|Bytes| AAD Coding Example
(no operands) 60 — 2 |AAD

Appendix D | D-7

ASCII ADJUST

AAM

AAM

FOR MULTIPLY

Operation: Flags Affected:
(AH) - (AL) / OAH PF, SF, ZF.
(AL) ~ (AL) % OAH AF, CF, OF undefined
Description:

AAM (ASCII Adjust for Multiply) corrects
the result of a previous multiplication of two
valid unpacked decimal operands. A valid 2-
digit unpacked decimal number is derived
from the content of AH and AL and is

Encoding:

(11010100 [00001010 |

returned to AH and AL. The high-order half-
bytes of the multiplied operands must have
been OH for AAM to produce a correct result.
A AM updates PF, SF and ZF; the content of
AF, CF and OF is undefined following execu-
tion of AAM,

AAM Operands Clocks

Transfers|Bytes|AAM Coding Example

(no operands) 83

1 [|AAM

D-8 | APPENDIX D

ASCII ADJUST
AAS FOR SUBTRACTION AAS

Operation: Flags Affected:
if (AL) & OFH) > 9 or (AF) =1 then AF, CF.
(AL) = (AL)-6 OF, PF, SF, ZF undefined
(AH) < (AH) -1
(AF) < 1
(CF) < (AF)

(AL) ~ (AL) & OFH

Description:
AAS (ASCII Adjust for Subtraction) corrects register AL). AAS changes the content of AL
the result of a previous subtraction of two to a valid unpacked decimal number; the high-

valid unpacked decimal operands (the destina- order half-byte is zeroed. AAS updates AF
tion operand must have been specified as and CF; the content of OF, PF, SF and ZF is
undefined following execution of AAS.

Encoding:

[00111111 |

AAS Operands Clocks | Transfers|Bytes| AAS Coding Example

(no operands) 4 — 1 |AAS

Appendix D | D‘g

ADC ADDWITHCARRY ADC

Operation: Flags Affected:
if (CF) =1 then (DEST) « (LSRC) AF, CF, OF, PF, SF, ZF
+ (RSRC) + 1

else (DEST) « (LSRC) + (RSRC)

Description:

ADC destination, source

ADC (Add with Carry) sums the operands,
which may be bytes or words, adds one if CF 1¢
set and replaces the destination operand with
the result. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADC updates AF, CF, OF, PF, SF and
ZF. Since ADC incorporates a carry from a
previous operation, it can be used to write
routines to add numbers longer than 16 bits.

D"1 0 | APPENDIXD

ADC ADDWITHCARRY ADC

Encoding:

Memory or Register Operand with Register Operand:

|000100dw [modregr/m |

if d =1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand:

1100000sw [mod010r/m]| data [data if s:w=01|

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

10001010w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RGRC = data, DEST = AX

ADC Operands Clocks* |Transfers|Bytes| ADC Coding Examples
register, register 3 — 2 |ADCAX, SI
register, memory 9(13)+ EA 1 2-4 | ADCDX, BETA|[SI]
memory, register 16(24) + EA 2 2-4 | ADC ALPHA [BX+ Sl], DI
register, immediate 4 - 3-4 | ADC BX, 256
memory, immediate 17(25)+ EA| 2 3-6 | ADC GAMMA, 30H
accumulator, immediate 4 — 2-3 | ADCAL,5

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D | D'1 1

ADD ADDITION ADD

Operation: Flags Affected:
(DEST) « (LSRC) + (RSRC) AF, CF, OF, PF, SF, ZF
Description:

ADD destination,source

The sum of the two operands, which may be
bytes or words, replaces the destination
operand. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADD updates AF, CF, OF, PF, SF and
ZF.

D'1 2 I APPENDIX D

ADD ADDITION ADD

Encoding:

Memory or Register Operand with Register Operand:

[000000dw [modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[100000sw [mod000r/m]| data data if s:w=01]
LSRC = EA, RSRC = data, DEST =EA

Immediate Operand to Accumulator:

|oooo010w| data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

ADD Operands Clocks* |Transfers|Bytes| ADD Coding Examples
register, register 3 — 2 |ADDCX, DX
register, memory 9(13)+ EA 1 2-4 | ADD DI, [BX].ALPHA
memory, register 16(24) + EA 2 2-4 | ADDTEMP,CL
register, immediate 4 - 3-4 |ADDCL,2
memory; immediate 17(25)+ EA 2 3-6 |ADDALPHA, 2
accumulator, immediate 4 - 2-3 | ADD AX, 200

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-13

Appendix D

AND AND LOGICAL AND

Operation: Flags Affected:
(DEST) « (LSRC) & (RSRC) CF, OF, PF, SF, ZF.
(CF)~—0 AF undefined
(OF) <0

Description:

AND destination,source

AND performs the logical “and” of the (wo
operands (byte or word) and returns the result
to the destination operand. A bit in the result
is set if both corresponding bits of the original
operands are set; otherwise the bit is cleared.

D'1 4 | APPENDIX D

AND AND LOGICAL AND

Encoding:

Memory or Register Operand with Register Operand:

1001000dw [modregr/m]

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC =REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod100r/m| data | dataifw=1 |
LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

[o010010w]| data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

AND Operands Clocks* |Transfers|Bytes| AND Coding Examples
register, register 3 — 2 |ANDAL,BL
register, memory 9(13)+ EA 1 2-4 |ANDCX, FLAG_WORD
memory, register 16(24) + EA 2 2-4 |AND ASCII [DI], AL
register, immediate 4 - 3-4 |AND CX, OFOH
memory, immediate 17(25)+ EA 2 3-6 |ANDBETA, 01H
accumulator, immediate 4 — 2-3 | AND AX, 01010000B

“b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D | D'1 5

CALL

Operation:

if Inter-Segment then
(SP) « (SP) -2
((SP)+1:(SP)) < (CS)
(CS) < SEG

(SP) < (SP)-2

((SP)+1:(SP)) « (IP)

(IP) < DEST

Description:

CALL procedure-name

CALL activates an out-of-line procedure, sav-
ing information on the stack to permit a RET
(return) instruction in the procedure to
transfer control back to the instruction follow-
ing the CALL. The assembler generates a dif-
ferent type of CALL instruction depending on
whether the programmer has defined the pro-
cedure name as NEAR or FAR. For control to
return properly, the type of CALL instruction
must match the type of RET instruction that
exits from the procedure. (The potential for a
mismatch exists if the procedure and the
CALL are contained in separately assembled
programs.) Different forms of the CALL
instruction allow the address of the target pro-
cedure to be obtained from the instruction
itself (direct CALL) or from a memory loca-
tion or register referenced by the instruction
(indirect CALL). In the following descrip-
tions, bear in mind that the processor auto-
matically adjusts IP to point to the next
instruction to be executed before saving it on
the stack.

For an intrasegment direct CALL, SP (the
stack pointer) is decremented by two and IP is
pushed onto the stack. The target procedure’s
relative displacement (up to =#32k) from
the CALL instruction is then added to the
instruction pointer. This CALL instruction

CALL PROCEDURE

CALL

Flags Affected:

None

form is ‘‘self-relative’” and appropriate for
position-independent (dynamically relocat-
able) routines in which the CALL and its
target are moved together in the same segment.

An intrasegment indirect CALL may be made
through memory or a register. SP is decre-
mented by two; IP is pushed onto the stack.
The target procedure offset is obtained from
the memory word or 16-bit general register
referenced in the instruction and replaces IP.

For an intersegment direct CALL, SP is decre-
mented by two, and CS is pushed onto the
stack. CS is replaced by the segment word con-
tained in the instruction. SP again is
decremented by two. IP is pushed onto the
stack and replaced by the offset word in the
instruction.

For an intersegment indirect CALL (which
only may be made through memory), SP is
decremented by two, and CS is pushed onto
the stack. CS is then replaced by the content of
the second word of the doubleword memory
pointer referenced by the instruction. SP again
is decremented by two, and IP is pushed onto
the stack and replaced by the content of the
first word of the doubleword pointer refer-
enced by the instruction.

D-16

APPENDIX D

CALL CALLPROCEDURE (CALL

Encoding:

Intra-segment direct:

[11101000 | disp-low [disp-high |

DEST = (EA)

Intra-Segment Indirect:

[11111111 [mod 010r/m]|
DEST = (IP) + disp

Inter-Segment Direct:

[10011010 | offsetlow | offset-high |

| seg-low | seg-high |

DEST = offset, SEG = seg

Inter-Segment Indirect:

[11111111 [mod011r/m|

DEST = (EA), SEG = (EA + 2)

CALL Operands | Clocks* |Tranfers | Bytes |CALL Coding Examples
near-proc 19(23) 1 3 |CALLNEAR__PROC
far-proc 28(36) . 5 |CALLFAR_PROC
memptr 16 21(29) + EA 2 2-4 |CALL PROC__TABLE [SI]
regptr 16 16(24) 1 2 CALL AX

memptr 32 37(57)+ EA 4 2-4 |CALL [BX].TASK [SI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D | D'1 7

CBW comgaT CBW

Operation: Flags Affected:

if (AL) < 80H then (AH) < 0 else (AH) << FFH None

Description:

CBW (Convert Byte to Word) extends the sign
of the byte in register AL throughout register
AH. CBW does not affect any flags. CBW can
be used to produce a double-length (word)
dividend from a byte prior to performing byte
division,

Encoding:

10011000 |

CBW Operands Clocks | Transfers| Bytes| CBW Coding Example

(no operands) 2 — 1 |[cBwW

D'1 8 l APPENDIX D

CLC CLEAR CARRY CLC

Operation: Flags Affected:
(CF) <0 CF
Description:

CLC (Clear Carry flag) zeroes the carry flag
(CF) and affects no other flags. It (and CMC
and STC) is useful in conjunction with the
RCL and RCR instructions.

Encoding:
(11111000 |

| CLC Operands Clocks | Transfers|Bytes|CLC Coding Example

(no operands) 2 = 1 CLC

ppencix | D-19

CLD CLEARF?_IE(ECTION CLD

Operation: Flags Affected:
(DF)«<0 DF
Description:

CLD (Clear Direction flag) zeroes DF causing
the string instructions (o auto-increment the Sl
and/or DI index registers. CLD does not
affect any other flags.

Encoding:

[11111100 |

CLD Operands Clocks | Transfers|Bytes|CLD Coding Example

(no operands) 2 — 1 |CLD

D‘20 | APPENDIX D

CLEAR INTERRUPT-
CLI ENABLE FLAG CLI

Operation: Flags Affected:
(IF)<0 IF
Description:

CLI1 (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an exlernal
interrupt request that appears on the INTR
line; in other words maskable interrupts are
disabled. A non-maskable interrupt appearing
on the NMI line, however, is honored, as is a
software interrupt. CLI does not affect any
other flags.

Encoding:

[11111010]

CLI Operands Clocks | Transfers Bytes|CLI Coding Example

(no operands) 2 — 1 |CLI

Appendix D | D'21

CMC COMPLEMENT cCMC

CARRY FLAG

Operation: Flags Affected:
if (CF) =0 then (CF) « 1 else (CF) « 0 CF

Description:

CMC (Complement Carry flag) ‘“‘toggles’ CF
10 its opposite state and affects no other flags.

Encoding:

11110101]

CMC Operands Clocks | Transfers|Bytes|CMC Coding Example

(no operands) 2 —_ 1 |CMC

D-22 | aprenoo

CMP COMPARE CMP

Operation: Flags Affected:
(LSRC) - (RSRC) AF, CF, OF, PF, SF, ZF
Description:

CMP destination,source

CMP (Compare) subtracts the source from the SF and ZF. The comparison reflected in the

destination, which may be bytes or words, but flags is that of the destination to the source. If
does not return the result. The operands are a CMP instruction is followed by a JG (jump
unchanged, but the flags are updated and can if greater) instruction, for example, the jump
be tested by a subsequent conditional jump is taken if the destination operand is greater

instruction. CMP updates AF, CF, OF, PF, than the source operana.

apponcix0 | D-23

CMP COMPARE CMP

Encoding:

Memory or Register Operand with Register Operand:

[001110dw |modregr/m |

ifd=1then LSRC = REG, RSRC = EA
else LSRC = EA, RSRC = REG

Immediate Operand with Memory or Register Operand:

[100000sw [mod111r/m| data [dataif s:w=01]

LSRC = EA, RSRC = data

Immediate Operand with Accumulator:

|0011110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data
else LSRC = AX, RSRC = data

CMP Operands Clocks* |Transfers|Bytes| CMP Coding Examples
register, register 3 - 2 | CMPBX, CX
register, memory 9(13)+ EA — 2-4 |CMP DH, ALPHA
memory, register 9(13)+ EA - 2-4 |CMP[BP] + 2, SI
register, immediate J — 3-4 |CMPBL, 02H
memory, immediate 10(14) + EA — 3-6 g)héﬂg [BX].RADAR [DI],

420H

accumulator, immediate 4 — 2-3 |CMP AL, 000100008

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-24 | APPENDIX D

CMPS

Operation:

(LSRC) - (RSRC)
if (DF) = 0 then
(Sl) < (Sl) + DELTA
(DI) ~ (DIy + DELTA
else
(SI) < (SI) - DELTA
(DI) < (DI) - DELTA

Description:

CMPS destination-string, source-string

CMPS (Compare String) subtracts the destina-
tion byte or word (addressed by DI) from the
source byte or word (addressed by SI). CMPS
affects the flags but does not alter either
operand, updates SI and DI to point to the
next string element and updates, AF, CF, OF,
PF, SF and ZF to reflect the relationship of the
destination element to the source element. For
example, if a JG (Jump if Greater) instruction
follows CMPS, the jump is taken if the des-

Encoding:

|1010011w|

COMPARE STRING
(BYTE OR WORD)

CMPS

Flags Affected:

AF, CF, OF, PF, SF, ZF

lination element is greater than the source
element. If CMPS is prefixed with REPE or
REPZ, the operation is interrupted as ‘‘com-
pare while not end-of-string (CX not zero) and
strings are equal (ZF = 1).”” If CMPS is
preceded by REPNE or REPNZ, the operation
is interrupted as *‘compare while not end-of-
string (CX not zero) and strings are not equal
(ZF = 0).” Thus, CMPS can be used to find
matching or differing string elements.

if w =0 then LSRC = (Sl), RSRC = (DI), DELTA = 1
else LSRC = (Sl)+ 1:(Sl), RSRC = (DI)+ 1:(DI), DELTA = 2

CMPS Operands Clocks* |Transfers | Bytes | CMPS CodingExamples |
dest-string, source-string 22(30) 2 1 |CMPS BUFF1, BUFF2
(repeat) dest-string, source-string | 9+22(30)/rep | 2/rep 1 |REPCOMPS ID, KEY

"b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D | D"25

CMPSB

Operation:

(LSRC) - (RSRC)

if (DF) =0 then
(Sl) < (Sl) + DELTA
(D) < (DI) + DELTA

else
(8) — (S)-DELTA
(DI) = (DI)- DELTA

Description:

CMPSB (Compare String Byte) subtracts the
destination byte (addressed by DI) from the
source byte (addressed by SI). CMPSB affects
the flags but does not alter either operand,
updates SI and DI to point to the next string
element and updates, AF, CF, OF, PF, SF and
ZF to reflect the relationship of the destina-
tion element to the source element. For
example, if a JG (Jump if Greater) instruction
follows CMPSB, the jump is taken if the

Encoding:

110100110 |

LSRC = (SI), RSRC = (DI), DELTA =1

COMPARE
STRING BYTE

CMPSB

Flags Affected:

AF, CF, OF, PF, SF, ZF

destination element is greater than the source
element. If CMPSB is prefixed with REPE or
REPZ, the operation is interrupted as “com-
pare while not end-of-string (CX not zero)
and strings are equal (ZF = 1).” If CMPSB is
preceded by REPNE or REPNZ, the operation
is interrupted as “compare while not end-of-
string (CX not zero) and strings are not equal
(ZF = 0).” Thus, CMPSB can be used to find
matching or differing string elements.

CMPSB Operands | Clocks |Transfers |Bytes | CMPSB Coding Examples
(NO OPERANDS) 22 2 1 CMPSB
(NOOPERANDS) |9 + 22/rep| 2/rep 1 REP COMPSB

D'26 | APPENDIX D

CMPSW

Operation:

(LSRC) - (RSRC)
if (DF)=0then
(Sl) < (SI) + DELTA
(DIy < (D) + DELTA
else
(S1) <= (SI)-DELTA
(D) < (DI) - DELTA

Description:

CMPSW (Compare String Word) subtracts
the destination word (addressed by DI) from
the source word (addressed by SI). CMPSW
affects the flags but does not alter either
operand, updates SI and DI to point to the
next string element and updates, AF, CF, OF,
PF, SF and ZF to reflect the relationship of
the destination element to the source ele-
ment. For example, if a JG (Jump if Greater)
instruction follows CMPSW, the jump is
taken if the destination element is greater

Encoding:

[10100111]

COMPARE
STRING WORD

CMPSW

Flags Affected:
AF, CF, OF, PF, SF, ZF

than the source element. If CMPSW is pre-
fixed with REPE or REPZ, the operation is in-
terrupted as “compare while not end-of-
string (CX not zero) and strings are equal (ZF
= 1).” If CMPSW is preceded by REPNE or
REPNZ, the operation is interrupted as “com-
pare while not end-of-string (CX not zero)
and strings are not equal (ZF = 0).” Thus,
CMPSW can be used to find matching or dif-
fering string elements.

LSRC = (SI) +1:(Sl), RSRC = (DI) +1:(D1), DELTA =2

CMPSW Operands | Clocks | Transfers | Bytes | CMPSW Coding Examples
(NO OPERANDS) 30 2 1 CMPSW
(NOOPERANDS) |9 + 30/rep| 2/rep 1 | REPCOMPSW

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D | D'27

CONVERT WORD
Cwb TO DOUBLEWORD CwD

Operation: Flags Affected:
if (AX) < 8000H then (DX) « 0 None
eise (DX) < FFFFH

Description:

CWD (Convert Word to Doubleword) extends
the sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to
performing word division.

Encoding:

[10011001 |

CWD Operands Clocks | Transfers|Bytes|CWD Coding Example

(no operands) 5 — 1 CWD

D"28 | APPENDIX D

DECIMAL ADJUST
DAA FOR ADDITION DAA

Operation: Flags Affected:
if (AL) & OFH) > 9 or (AF) =1 then AF, CF, PF, SF, ZF
(}A\%g - SIAL) + 6 OF undefined
(-

if (AL) > 9FH or (CF) =1 then
(AL) = (AL) + 60H
(CF) <1

Description:

DAA (Decimal Adjust for Addition) corrects
the result of previously adding two valid
packed decimal operands (the destination
operand must have been register AL), DAA
changes the content of AL to a pair of valid
packed decimal digits. 1t updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAA.

Encoding:

100100111 |

DAA Operands Clocks | Transfers|Bytes| DAA Coding Example

L(no operands) 4 — 1 DAA

Appendix D | D-29

DECIMAL ADJUST
DAS FOR SUBTRACTION DAS

Operation: Flags Affected:
if ((AL) & OFH) > 9 or (AF) =1 then AF, CF, PF, SF, ZF.
EQ%{—%AL)-B OF undefined

if (AL) > 9FH or (CF) =1 then
(AL) < (AL) - 60OH
(CF) <1

Description:

DAS (Decimal Adjust for Subtraction) cor-
rects the result of a previous subtraction of
two valid packed decimal operands (the desti-
nation operand must have been specified as
register AL). DAS changes the content of AL
1o a pair of valid packed decimal digits. DAS
updates AF, CF, PF, SF and ZF; the content
of OF is undefined following execution of
DAS.

Encoding:

100101111 |

DAS Operands Clocks | Transfers|Bytes | DAS Coding Example

(no operands) 4 — 1 |DAS

D"30 | APPENDIX D

DEC

Operation:

(DEST) < (DEST) -1

Description:

DECREMENT

DEC

Flags Affected:

AF, OF, PF, SF, ZF

DEC (Decrement) subtracis one from the
destination operand. The operand may be a
byte or a word and is treated as an unsigned
binary number (see AAA and DAA). DEC
updates AF, OF, PF, SF and ZF; it does not

affect CF.

Encoding:

Memory or Register Operand:

[1111111w [mod001r/m]

DEST=EA

Register Operand:

| 01001 reg |

DEST =REG

DEC Operands Clocks* |Transfers|Bytes|DEC Coding Example
regle 2 — 1 |DECAX
reg8 3 — 2 |DECAL
memory 15(23)+ EA 2 2-4 |DEC ARRAY [SI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

sopenaix | D-31

DIV

Operation:

(temp) < (NUMR)

if (temp) / (DIVR) > MAX then the
following, in sequence
(QUO), EM) undefined
(SP)‘— SP) 2
((SP)+1:(SP)) < FLAGS
(IF) <0

(TFY<0

(SP) < (SP)-2

((SP)+1:(SP)) < (CS)

(CS) < (2) i.e., the contents of
memory locations 2and 3

(SP) «~ (SP)-2

((SP)+1:(SP)) < (IP)

(IP) < (0)i.e., the contents of
locations 0 and 1

else

(QUO) « (temp) / (DIVR), where
/ is unsigned division

(REM) = (temp) % (DIVR) where
% is unsigned modulo

Description:

DIV source

DIV (divide) performs an unsigned division of
the accumulator (and its extension) by the
source operand. If the source operand is a
byte, it is divided into the double-length divi-
dend assumed to be in registers AL and AH.
The single-length quotient is returned in AL,
and the single-length remainder is returned in
AH. If the source operand is a word, it is
divided into the double-length dividend in
registers AX and DX. The single-length quo-

DIVIDE

DIV

Flags Affected:

AF, CF, OF, PF, SF, ZF undefined

tient is returned in AX, and the single-length
remainder is returned in DX. If the quotient
exceeds the capacity of its destination register
(FFH for byte source, FFFFFH for word
source), as when division by zero is attempied,
a type O interrupt is generated, and the quo-
tient and remainder are undefined. Non-
integral quotients are truncated Lo integers.
The content of AF, CF, OF, PF, SF and ZF is
undefined following execution of DIV.

D-32 l APPENDIX D

DIV DIVIDE DIV

Encoding:

[1111011w [mod110r/m|

if w=0then NUMR = AX, DIVR = EA, QUO = AL, REM = AH, MAX = FFH
else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = FFFFH

_I DIV Operands Clocks* |Transfers|Bytes|DIV Coding Example

reg8 80-90 — 2 |DIVCL

regi6 144-162 — 2 |DIVBX

mema8 (86-96) + EA 1 2-4 |DIV ALPHA
mem16 (154-172) + EA 1 2-4 |DIVTABLE [S]]

"b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

appencic0 | D-33

ESC ESCAPE ESC

Operation: Flags Affected:
if mod # 11 then data bus <~ (EA) None
Description:

The ESC (Escape) instruction provides a
mechanism by which other processors
(coprocessors) may receive their instructions
from the 8086 or 8088 instruction stream and
make use of the 8086 or 8088 addressing
modes. The CPU (8086 or 8088) does a no
operation (NOP) for the ESC instruction other
than 1o access a memory operand and place it

on the bus.
Encoding:
| 11011x | modxr/m |
ESC Operands Clocks* | Transfers|Bytes|ESC Coding Example
immediate, memory | 8(12)+EA 1 2-4 |ESC6,ARRAY [SI]
immediate, register 2 — 2 |ESC20,AL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D"34 l APPENDIX D

HLT HALT HLT

Operation: Flags Affected:

None None
Description:
HLT (Halt) causes the 8086, 8088 to enter the receipt of a maskable interrupt request on
halt state. The processor leaves the halt state INTR. HLT does not affect any flags. 1t may
upon activation of the RESET line, upon be used as an alternative to an endless software
receipt of a non-maskable interrupt request on loop in situations where a program must wait

NMI, or, if interrupts are enabled, upon for an interrupt.

Encoding:
[11110100 |

HLT Operands Clocks | Transfers|Bytes| HLT Coding Example

(no operands) 2 — 1 |HLT

sopencicd | D-35

IDIV

Operation:

(temp) < (NUMR)

if (temp) / (DIVR) > 0and (temp)
! (DIVR) > MAX

or (temp) / (DIVR) < 0 and (temp)
[(DIVR) <0-MAX-1then
(QUO), {HEM) undefined

(SP) « (SP) - 2
((SP)+1:(SP)) <~ FLAGS
(IF) =0

(TF) <0

(SP) < (SP) -2

((SP)+1:(SP)) < (CS)

(CS) + (2)

(SP) « (SP) -

((SP)+1:(SP)) < (IP)

(1P) < (0)

else

(QUO) + (temp) / (DIVR), where
| is signed division

(REM) « (temp) % (DIVR) where
% is signed modulo

Description:

IDIV source

IDIV (Integer Divide) performs a signed divi-
sion of the accumulator (and its extension) by
the source operand. If the source operand is a
byte, it is divided into the double-length divi-
dend assumed to be in registers AL and AH;
the single-length quotient is returned in AL,
and the single-length remainder is returned in
AH. For byte integer division, the maximum
positive quotient is +127 (7FH) and the
minimum negative quotient is —127 (81H). If
the source operand is a word, it is divided into
the double-length dividend in registers AX and
DX; the single-length quotient is returned in

INTEGER DIVIDE

IDIV

Flags Affected:

AF, CF, OF, PF, SF, ZF undefined

AX, and the single-length remainder is
returned in DX. For word integer division, the
maximum positive quotient is +32,767
(7FFFH) and the minimum negative quotient
is —32,767 (8001H). If the quotient is positive
and exceeds the maximum, or is negative and
is less than the minimum, the quotient and
remainder are undefined, and a type O inter-
rupt is generated. In particular, this occurs if
division by 0 is attempted. Nonintegral quo-
tients are truncated (toward 0) to integers, and
the remainder has the same sign as the divi-
dend. The content of AF, CF, OF, PF, SF and
ZF is undefined following IDIV.

D-36 | aprenomo

IDIV

Encoding:

INTEGER DIVIDE IDIV

11111011w [mod111r/m]|

ifw=0then NUMR = AX, DIVR=EA, QUO = AL, REM = AH, MAX = 7FH
else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = 7FFFH

IDIV Operands Clocks* Transfers | Bytes | IDIV Coding Example

regd 101-112 — 2 |IDIVBL

regl16 165-184 — 2 IDIV CX

mem8 (107-118) + EA 1 2-4 |IDIV DIVISOR _BYTE [SI]
mem16 (175-194) + EA 1 2-4 |IDIV [BX].DIVISOR__WORD

‘b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

sppendix0 | D-37

IMUL

Operation:

(DEST) «= (LSRC) * (RSRC) where
* is signed multiply

if (ext) = sign-extension of (LOW)
then (CF) < 0

else (CF) < 1;

(OF) < (CF)

Description:

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-
length result is returned in AH and AL. If the
source is a word, then it is multiplied by
register AX, and the double-length result is
returned in registers DX and AX. If the upper

Encoding:

[1111011w [mod101r/m]|

INTEGER MULTIPLY

IMUL

Flags Affected:

CF, OF
AF, PF, SF, ZF undefined

half of the result (AH for byte source, BX for
word source) is not the sign extension of the
lower half of the result, CF and OF are set;
otherwise they are cleared. When CF and OF
are set, they indicate that AH or DX contains
significant digits of the result. The content of
AF, PF, SF and ZF is undefined following exe-
cution of IMUL .

if w=0then LSRC = AL, RSRC = EA, DEST = AH, EXT = AH, LOW = AL
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX, LOW = AX

IMUL Operands | Clocks* | Transfers|Bytes|IMUL Coding Example

reg8 80-98 - 2 |[IMULCL

regi6 128-154 - 2 [IMULBX

mem8 (86-104) + EA 1 2-4 |IMUL RATE_BYTE

mem16 (138-164) + EA 1 2-4 | IMUL RATE_WORD [BP +DlI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-38 | appenomo

IN

Operation:
(DEST) < (SRC)

Description:

IN accumulator, port

IN transfers a byte or a word from an input
port to the AL register or the AX register,

respectively. The port number may be speci-

fied either with an immediate byte constant,
allowing access to ports numbered O through

Encoding:
Fixed Port:
[1110010w |

port |

INPUT BYTE OR WORD

if w=0then SRC = port, DEST = AL
else SRC = port+ 1:port, DEST = AX

Variable Port:

[1110110w |

if w=0then SRC = (DX), DEST = AL
else SRC = (DX)+1:(DX), DEST = AX

IN

Flags Affected:

None

255, or with a number previously placed in the
DX register, allowing variable access (by
changing the value in DX) to ports numbered
from 0 through 65,535.

IN Operands Clocks* | Transfers|Bytes|IN Coding Example
accumulator, immed8 | 10(14) 1 2 |IN AL,OFFEAH
accumulator, DX 8(12) 1 1 IN AX, DX

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

sepencix | D-39

INC INCREMENT INC

Operation: Flags Affected:
(DEST) « (DEST) + 1 AF, OF, PF, SF, ZF

Description:

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number
(sce AAA and DAA). INC updates AF, OF,
PF, SF and ZF; it does not affect CF,

Encoding:

Memory or Register Operand:

[1111111w [mod 000 r/m|
DEST=EA

Register Operand:

| 01000reg |
DEST = REG

INC Operands Clocks* |Transfers| Bytes|INC Coding Example

regi6 2 — 1 [INCCX
reg8 3 — 2 |INCBL
memory 15(23) + EA 2 2-4 | INC ALPHA [DI +BX]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-40 | aerenono

INT

Operation:

(SP) « (SP) -2
((SP)+1:(SP)) ~
(IF) <0

(TF) <0
(SP) < (SP) -2
((SP)+1:(SP)) ~ (CS)
(CS) < (TYPE*4 + 2)
(SP) « SP) 2
“SP)+1 SPD“UP)
(IP) < (TYPE * 4)

FLAGS

Description:

INT interrupt-type

INT (Interrupt) activates the interrupt pro-
cedure specified by the interupt-type operand.
INT decrements the stack pointer by two,
pushes the flags onto the stack, and clears the
trap (TF) and interrupt-enable (IF) flags to
disable single-step and maskable interrupts.
The flags are stored in the format used by the
PUSHF instruction. SP is decremented again
by two, and the CS register is pushed onto the
stack. The address of the interrupt pointer is
calculated by multiplying interrupt-type by
four; the second word of the interrupt pointer
replaces CS. SP again is decremented by two,
and IP is pushed onto the stack and is replaced

INTERRUPT

INT

Flags Affected:
IF, TF

by the first word of the interrupt pointer. If
interrupt-type = 3, the assembler generates a
short (1 byte) form of the instruction, known
as the breakpoint interrupt.

Software interrupts can be used as ‘“*supervisor
calls,”” i.e., requests for service from an
operating system. A different interrupt-type
can be used for each type of service that the
operating system could supply for an applica-
tion program. Software interrupts also may be
used to check out interrupt service procedures
written for hardware-initiated interrupts.

Appendix D | D-41

INT

Encoding:

INTERRUPT

[1100110v | typeifv=1 |

ifv=0then TYPE=3

else TYPE = type

INT

INT Operands Clocks* | Transfers|Bytes |INT Coding Example
immed38 (type = 3) 52(72) 5 1 |INT3
immeds8 (type # 3) 51(71) 5 2 |INT67

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D'42 I APPENDIXD

INTO

Operation:

if (OF) =1 then
(SP) « (SP)-2
((SP)+1:(SP)) < FLAGS
(IF) <0

(TF) <0

(SP) <« (SP)-2
((SP)+1:(SP)) « (CS)
(CS) < (12H)
(SP) ~ (SP) -2

((SP) +1:(SP)) « (IP)
(IP) < (10H)

Description:

INTO (Interrupt on Overflow) generates a
software interrupt if the overflow flag (OF) is
sel; otherwise control proceeds to the follow-
ing instruction without activating an interrupt
procedure. INTO addresses the target inter-
rupt procedure (its type is 4) through the inter-

INTERRUPT ON
OVERFLOW

INTO

Flags Affected:

None

rupt pointer at location 10H; it ciears the TF
and IF flags and otherwise operates like INT.
INTO may be written following an arithmetic
or logical operation to activate an interrupt
procedure if overflow occurs.

Encoding:

|11001110]

INTO Operands | Clocks* |Transfers|Bytes|INTO Coding Example
(no operands) 53(73) or 4 1 |INTO

“b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D

IRET

Operation:

INTERRUPT RETURN

IRET

Flags Affected:

(IP) < ((SP)+1:(SP)) All
(SP) + (SP) + 2
(CS) — ((SP)+1:(SP))
(SP) < (SP) + 2
FLAGS « ((SP) + 1:(SP))
(SP) < (SP) + 2
Description:
IRET (Interrupt Return) transfers control
back to the point of interruption by popping
IP, CS and the flags from the stack. IRET thus
affects all flags by restoring them to previously
saved values. IRET is used to exit any inter-
rupt procedure, whether activated by hard-
ware or software.
Encoding:
1 ‘I_{Ej 111
s
IRET Operands | Clocks* | Transfers|Bytes|IRET Coding Example
(no operands) 32(44) X i 1 IRET

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-43

D'44 I APPENDIX D

JA JUMP ON ABOVE JA
JUMP ON NOT BELOW
JNBE JUMPONNOTBELOW JNBE
Operation: Flags Affected:
if (CF) & (ZF) =0 then None
(IP) < (IP) + disp (sign-extended

to 16-bits)

Description:

Jump on Above (JA)/Jump on Not Below or
Equal (JNBE) transfers control to the target
operand (1P + displacement). If the conditions
(CF and ZF = 0) are above/not below or equal
to the tested value.

Encoding:

101110111 [disp

JA/JNBE Operands | Clocks | Transfers|Bytes|JA Coding Example

short-label 16or4 — 2 |JAABOVE

JNBE Coding Example

JNBE ABOVE

Appendix D | D'45

JAE UROUAROVE JAE

JNB JUMPONNOTBELOW JNB

Operation: Flags Affected:
if (CF)=0then None
(IP) = (IP) + disp (sign-extended
to 16-bits)
Description:

JAE (Jump on Above or Equal)/JNB (Jump
on Not Below) transfers control to the target
operand (IP + displacement) if the condition
(CF =0) is above or equal/not below the tested
value.

Encoding:

(01110011 | disp |

JAE/JNB Operands | Clocks | Transfers| Bytes| JAE Coding Example
short-label 16ord — 2 |JAE ABOVE_EQUAL

D'46 | APPENDIX D

JB JUMP ON BELOW JB

INAE Jutonnes, — JNAE

Operation: Flags Affected:
if (CF) =1 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JB (Jump on Below)/JNAE (Jump on Not
Above or Equal) transfers control to the target
operand (IP + displacement) if the condition
(CF = 1) is below/not above or equal to the
tested value.

Encoding:

101110010 | disp |

JB/JNAE Operands | Clocks | Transfers |Bytes|JB Coding Example
short-label 16 or 4 — 2 |(JBBELOW

sopenaxo | D-47

JBE
JNA

Operation:

IF (CF) or (ZF) =1 then

OR EQUAL

JUMP ON
NOT ABOVE

Flags Affected:

None

(IP)=(IP) + disp (sign-extended

to 16-bits)

Description:

JBE (Jump on Below or Equal)/JNA (Jump
on Not Above) transfers control to the target
operand (IP + displacement) if the conditions
(CF or ZF = 1) are below or equal/or not

above the tested conditions.

Encoding:

[01110110] disp |

JUMP ON BELOW JBE

JNA

JBE/JNA Operands

Clocks

Transfers

Bytes

JNA Coding Example

short-label

16o0r4

JNANOT_ABOVE

D-48 | apeenomo

JC

JUMP ON CARRY

JC

Operation: Flags Affected:
if (CF)=1THEN None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JC (Jump on Carry) transfers control to the
target operand (1P + displacement) on the con-
dition CF = 1.
Encoding:
101110010 | disp |
JC Operands | Clocks | Transfers | Bytes | JC Coding Example
short-label 16or4 — 2 JC CARRY__SET

appenix0 | D-49

JCXZ

Operation:
it (CX) =0 then

JUMP IF CX

JCXZ

REGISTER ZERO

Flags Affected:

None

(IP) < (IP) + disp (sign-extended

to 16-bits)

Description:

JCXZ short-label

JCXZ (Jump if CX Zero) transfers control to
the target operand if CX is 0. This instruction
is useful at the beginning of a loop to bypass
the loop if CX has a zero value, i.e., 1o execuie

the loop zero times.

Encoding:

111100011 | disp

JCXZ Operands Clocks | Transfers|Bytes|JCXZ Coding Example
short-label 18o0r6 — 2 |[JCXZCOUNT__DONE

D-50 | apPenDiXD

JE JUMP ON EQUAL JE
JZ JUMP ON ZERO JZ

Operation: Flags Affected:
if (ZF)=1then None
(IP) « (IP) + disp (sign-extended
to 16-bits)
Description:

JE (Jump on Equal)/JZ (Jump on Zero)
transfers control to the target operand (1P +
displacement) if the condition (ZF = 1) is
equal/zero on the tested value.

Encoding:

[01110100 | disp |

JE/JZ Operands Clocks | Transfers|Bytes|JZ Coding Example

short-label 16or4 — 2 |[(JZZERO

sopenaixD | D-51

JG JUMP ON GREATER JG
JNLE JUMP ON NOT JNLE

LESS OR EQUAL
Operation: Flags Affected:
if (SF) = (OF)) & ((ZF) = 0) then None
(IP) <= (IP) + disp (sign-extended
to 16-bits)
Description:

JG (Jump on Greater Than)/JNLE (Jump on
Not Less Than or Equal) transfers control to
the target operand (IP + displacement) if the
conditions ((SF XOR OF) or ZF = 0) are
greater than/not less than or equal to the
tested value.

Encoding:

[01111111] disp |

JG/JNLE Operands | Clocks | Transfers|Bytes|JG Coding Example
short-label 16or4 — 2 |JGGREATER

D'52 I APPENDIXD

JUMP ON GREATER
JGE OR EQUAL JGE

JNL JUMPONNOTLESS JNL

Operation: Flags Affected:
if (SF) = (OF) 0 then None
(IP) = (IP) + disp (sign-extended
to 16-bits)
Description:
JGE (Jump on Greater Than or Equal)/JNL
(Jump on Not Less Than) transfers control Lo
the target operand (IP + displacement) if the
condition (SF XOR OF = 0) is greater than or
equal/not less than the tested value.
Encoding:
(01111101 | disp |
JGE/JNL Operands | Clocks | Transfers|Bytes|JGE Coding Example
short-label 16o0r4 — 2 |JGEGREATER.__EQUAL

apponcix0 | D-53

JL JUMP ON LESS JL

JNGE G Rég'll\'nEpROONRNE%TUAL JNGE

Operation: Flags Affected:
it (SF) # (OF) then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JL (Jump on Less Thar)/INGE (Jump on Not
Greater Than or Equal), transfers control to
the target operand :f the condition (SF XOR
OF = 1) is less than/not greater than or equal
to the tested value.

Encoding:

[01111100 | disp |

JL/JNGE Operands | Clocks | Transfers|Bytes|JL Coding Example
short-label 16or4 — 2 |JLLESS

D'54 I APPENDIXD

JLE o JLE

JNG JUMPONNOTGREATER JNG

Operation: Flags Affected:
it ((SF) # (OF)) or ((ZF) = 1) then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JLE (Jump on Less Than or Equal to)/IJNG
(Jump on Not Greater Than) transfers control
to the target operand (IP + displacement) if
the conditions tested ((SF XOR OF)or ZF = 1)
are less than or equal to/not greater than the
tested value.

Encoding:

(01111110 | disp |

JLE/JNG Operands Clocks | Transfers|Bytes| JNG Coding Example
short-label 16 0r4 — 2 |JNG NOT_GREATER

Appendix D

JMP JUMPUNCGNDITIONALLY JMP

Operation:

if Inter-Segment then (CS) +~ SEG
(IP) « DEST

Description:

JMP target

JMP unconditionally transfers control to the
target location. Unlike a CALL instruction,
JMP does not save any information on the
stack; no return to the instruction following
the JMP is expected. Like CALL, the address
of the target operand may be obtained from
the instruction itself (direct JMP), or from
memory or a register referenced by the instruc-
tion (indirect JIMP).

An intrasegment direct JMP changes the
instruction pointer by adding the relative
displacement of the target from the JMP
instruction. If the assembler can determine
that the target is within 127 bytes of the JMP,
it automatically generates a two-byte instruc-
tion form called a SHORT JMP; otherwise, it
generates a NEAR JMP that can address a
target within £32k. Intrasegment direct JMPS
arc self-relative and appropriate in position-

Flags Affected:
None
independent (dynamically relocatable)

routines in which the JMP and its target are
moved together in the same segment.

An intrasegment indirect JMP may be made
either through memory or a 16-bit general
register. In the first case, the word content
referenced by the instruction replaces the
instruction pointer. In the second case, the
new IP value is taken from the register named
in the instruction.

An intersegment direct JMP replaces [P and
CS with values contained in the instruction.

An intersegment indirect JMP may be made
only through memory. The first word of the
doubleword pointer referenced by the instruc-
tion replaces IP and the second word replaces
CS.

D-55

D'56 I APPENDIX D

JMP JUMPUNCONDITIONALLY JMP

Encoding:

Intra-Segment Direct:

[11101001 | disp-low | disp-high |
DEST = (IP) + disp

Intra-Segment Direct Short:

111101011 | disp |
DEST = (IP) + disp sign extended to 16-bits

Intra-Segment Indirect:

11111111 [mod100r/m]
DEST = (EA)

Inter-Segment Direct:

11101010 | offset-low | offset-high |

| seg-low | seg-high |
DEST = offset, SEG = seg

Inter-Segment Indirect:

11111111 [mod101r/m]|
DEST = (EA), SEG = (EA + 2)

JMP Operands | Clocks | Transfers | Bytes | JMP Coding Example

short-label 15 — 2 [JMPSHORT

near-label 15 - 3 JMP WITHIN_SEGMENT
far-label 15 — 5 JMP FAR_LABEL
memptri6 18+ EA —_ 2-4 JMP EBX].TARGET
regptri6 1 — 2 JMP CX

memptr32 24+ EA 2-4 | JMP OTHER.SEG [SI]

Appendix D | D'57

JNC JUMPONNOTCARRY JNC

Operation: Flags Affected:
if (CF) =0 THEN None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JNC (Jump on Not Carry) transfers control to
the target operand (IP + displacement) on the

condition CF =0,

Encoding:

[01110011 [disp

JNC Operands | Clocks | Transfers | Bytes

JNC Coding Example

short-label 160r4 —_ 2

JNC NO__CARRY

D-58 | aprenoixo

JNE JUMPONNOTEQUAL JNE
JNZ JUMPONNOTZERO JNZ

Operation:
if (ZF) =0then

(IP) < (IP) + disp (sign-extended

to 16-bits)

Description:

JNE (Jump on Not Equal to)/ INZ (Jump on
Not Zero) transfers control to the target
operand (IP + displacement) if the condition

tested (ZF = 0) is true.

Encoding:

|0111_01_91_| disp [

None

Flags Affected:

JNE/JNZ Operands

Clocks | Transfers

Bytes

JNE Coding Example

short-label

16or4

JNE NOT_EQUAL

popena | D-59

JNO

Operation:

if (OF) = 0 then

JUMP ON NOT

OVERFLOW
Flags Affected:

None

(IP) < (IP) + disp (sign-extended

to 16-bits)

Description:

JNO (Jump on Not Overflow) transfers con-
trol to the target operand (1P + displacement)
if the condition tested (OF =0) is true.

JNO

Encoding:
[o1110001 | |
JNO Operands Clocks | Transfers|Bytes|JNO Coding Example
short-label 16or4 — 2 |JNONO__OVERFLOW

D-60 | appenoixo

JNS JUMP ON NOT SIGN JNS

Operation: Flags Affected:
if (SF)=0then None
(IP) « (IP) + disp (sign-extended
to 16-bits)
Description:

JNS (Jump on Not Sign) transfers control to
the target operand (IP + displacement) when
the tested condition (SF = 0) is true.

Encoding:
101111001 | disp |
JNS Operands Clocks | Transfers| Bytes|JNS Coding Example

short-label 16 or4 — 2 |JNSPOSITIVE

ppencix | D-61

JNP JUMPONNOTPARITY JNP
JPO JUMPONPARITYODD JPO

Operation: Flags Affected:
if (PF) =0 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JNP (Jump on Not Parity)/JPO (Jump on
Parity Odd) transfers control 1o the target
operand if the condition tested (PF = 0) is true.
Encoding:
101111011 | disp |
JNP/JPO Operands Clocks | Transfers| Bytes| JPO Coding Example
short-label 16 ord — 2 |[JPOODD__PARITY

D-62 | aepenoixo

JO JUMP ON OVERFLOW JO

Operation: Flags Affected:
if (OF)=1then None
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

JO (Jump on Overflow) transfers control to
the target operand (IP + displacement) if the
tested condition (OF = 1) is true.

Encoding:
[01110000 | disp
JO Operands Clocks | Transfers| Bytes|JO Coding Example

short-label 16 or 4 — 2 |JOSIGNED__OVERFLOW

sppenaxo | D-63

JP JUMP ON PARITY JP
JPE JUMPONPARITY EQUAL JPE

Operation: Flags Affected:
if (PF) =1 then None
(IP) = (IP) + disp (sign-extended
to 16-bits)
Description:

JP (Jump on Parity)/JPE (Jump on Parity
Equal) transfers control to the target operand
(1P + displacement) if the condition tested (PF
= 1)is true.

Encoding:

|01111010 | disp |

JP/JPE Operands Clocks | Transfers|Bytes|JPE Coding Example

short-label 16or4 — 2 |JPEEVEN__PARITY

D-64

APPENDIX D

JS

JUMP ON SIGN

JS

Operation: Flags Affected:
if (SF) =1 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JS (Jump on Sign) transfers control to the
target operand (IP + displacement) if the
tested condition (SF = 1) is true.
Encoding:
[01111000] disp |
JS Operands Clocks | Transfers|Bytes|JS Coding Example
short-label 16or4 — 2 |JSNEGATIVE

appencix0 | D-65

LAHF Loaparaistens LAHF

Operation: Flags Affected:
(AH) < (SF):(ZF):X:(AF):X:(PF):X:(CF) None
Description:

LAHF (load register AH from flags) copies
SF, ZF, AF, PF and CF (the 8080/8085 flags)
into bits 7, 6, 4, 2 and 0, respectively, of
register AH. The content of bits §, 3 and 1 is
unuefined; the flags themselves are not
affected. LAHF is provided primarily for con-
verting 8080/808S5 assembly language pro-
grams to run on an 8086 or 8088.

Encoding:

[10011111 |

LAHF Operands Clocks | Transfers |Bytes|LAHF Coding Example

(no operands) 4 — 1 LAHF

D-66 | arrenomo

LDS LOADPOINTERUSINGDS | DS

Operation:

(REG) +~ (EA)
(DS) « (EA + 2)

Description:

LDS destination,source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand,
which must be a memory operand, to the des-
tination operand and register DS. The offset
word of the pointer is transferred to the des-
tination operand, which may be any 16-bit
general register. The segment word of the

Encoding:

111000101 [modregr/m |

if mod =11 then undefined operation

Flags Affected:

None

pointer is transferred to register DS. Specify-
ing SI as the destination operand is a conve-
nient way Lo prepare to process a source string
that is not in the current data segment (string
instructions assume that the source string is
localed in the current data segment and that Sl
contains the offset of the string).

LDS Operands Clocks

Transfers | Bytes|LDS Coding Example

24+ EA

reg16, mem32

2 2-4 |LDS SI,DATA.SEG [DI]

Appendix D | D-67

LOAD EFFECTIVE
LEA ADDRESS LEA

Operation: Flags Affected:

(REG) < EA None
Description:
LEA destination,source
LEA (load effective address) transfers the off- register. LEA does not affect any flags. The
set of the source operand (rather than its XLAT and string instructions assume that cer-
value) to the destination operand. The source lain registers point to operands; LEA can be
operand must be a memory operand, and the used to load these registers (e.g., loading BX
destination operand must be a 16-bit general with the address of the translate table used by

the XLAT instruction).

Encoding:

110001101 [modregr/m |

if mod =11 then undefined operation

LEA Operands Clocks | Transfers|Bytes|LEA Coding Example
reg16, mem16 2+EA — 2-4 |LEABX,[BP+DlI]

D'GB ' APPENDIX D

LES LOADPOINTERUSINGES |ES

Operation:

(REG) < (EA)
(ES) — (EA + 2)

Description:

LES destination,source

LES (load pointer using ES) transfers a 32-bit
pointer variable from the source operand,
which musi be a memory operand, to the des-
tination operand and register ES. The offset
word of the pointer is transferred to the des-
tination operand, which may be any 16-bit
general register. The segment word of the

Encoding:

[11000100 [modregr/m]

if mod =11 then undefined operation

Flags Affected:

None

pointer is transferred to register ES. Specifying
DI as the destination operand is a convenient
way to prepare to process a destination string
that is not in the current extra segment. (The
destination string must be located in the extra
segment, and DI must contain the offset of the
string.)

LES Operands Clocks

Transfers |Bytes|LES Coding Example

regi6, mema32 24+ EA

2-4 |LES DI,[BX].TEXT_ BUFF

appendix0 | D-69

LOCK LOCK THE BUS LOCK

Operation:

None

Description:

LOCK is a one-byte prefix that causes the 8088
(configured in maximum mode) to assert its
bus LOCK signal while the following instruc-
tion executes. LOCK does not affect any flags.

The instruction most useful in this context is
an exchange register with memory. A simple
software lock may be implemented with the
following code sequence:

Encoding:

(11110000 |

Flags Affected:

None
Check: MOV ALY sel AL to 1 (implies lacked)
LOCK XCHG Sema AL testand set lock
TEST AL.AL :setflags based on AL
INZ Check .retry it lock already set
MOV Sema,l .clear the lock when done

The LOCK prefix may be combined with the
segment override and/or REP prefixes.

LOCK Operands | Clocks | Transfers|Bytes | LOCK Coding Example

(no operands) 2

1 LOCK XCHG FLAG,AL

D'70 l APPENDIX D

LODS

LOAD STRING

LODS

(BYTE OR WORD)

Operation:

(DEST) < (SRC)
if (DF) =0 then (SI) = (S1) + DELTA
else (Sl) « (S1)-DELTA

Description:

LODS source-string

LODS (Load String) transfers the byte or word
string element addressed by SI to register AL
or AX, and updates SI to point to the next ele-
ment in the string. This instruction is not ordi-
narily repeated since the accumulator would be

Encoding:

[1010110w |

Flags Affected:

None

overwritten by each repetition, and only the
last element would be retained. However,
LODS is very useful in software loops as part
of a more complex string function built up
from string primitives and other instructions.

if w=0then SRC = (Sl), DEST = AL, DELTA =1
else SRC = (Sl)+1:(S!), DEST = AX, DELTA =2

LODS Operands Clocks*

Transfers |Bytes|LODS Coding Example

source-string 12(16)
(repeat) source-string |9+ 13(17)/rep

1/rep 1

1 |LODS CUSTOMER_ NAME
REP LODS NAME

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D I D-71

LODSB LOA

Operation:

(DEST) < (SRC)

D STRING
BYTE

LODSB

Flags Affected:

None

it (DF) =0 then (SI) « (SI) + DELTA
else (SI) « (SI) - DELTA

Description:

LODSB (Load String Byte) transfers the byte
string element addressed by SI to register AL,
and updates SI to point to the next element in
the string. This instruction is not ordinarily

last element would be retained. However,
LODSB is very useful in software loops as
part of a more complex string function built
up from string primitives and other instruc-

repeated since the accumulator would be tions.
overwritten by each repetition, and only the
Encoding:
110101100 |
SRC = (Sl), DEST = AL, DELTA=1
LODSB Operands | Clocks |Transfers |Bytes | LODSB Coding Examples
(NO OPERANDS) 12 1 1 LODSB
(NOOPERANDS) |9 + 13/rep| 1/rep 1 REPLODSB

D‘72 | APPENDIXD

LODSW LOAD STRING

LODSW

WORD

Operation:

(DEST) «— (SRC)
if (DF) =0 then (SI) « (S1) + DELTA
else (Sl) « (SI) - DELTA

Description:

LODSW (Load String Word) transfers the
word string element addressed by Sl to regis-
ter AX, and updates SI to point to the next ele-
ment in the string. This instruction is not or-
dinarily repeated since the acuumulator
would be overwritten by each repetition, and

Encoding:

[1010110w |

Flags Affected:

None

only the last element would be retained.
However, LODSW is very useful in software
loops as part of a more complex string func-
tion built up from string primitives and other
instructions.

SRC = (Sl)+1:(Sl), DEST = AX, DELTA =2

LODSW Operands | Clocks |Transfers | Bytes | LODSW Coding Examples
(NO OPERANDS) 16 1 1 LODSW
(NOOPERANDS) |9+ 17/rep| 1/rep 1 REP LODSW

aopenac0 | D-73

LOOP LOOP LOOP

Operation: Flags Affected:

(CX) <= (CX) -1 None
if (CX) #0then
(IP) — (IP) + disp (sign-extended
to 16-bits)

Description:

LOOP short-label

LOOP decrements CX by 1 and transfers con-
trol to the target operand if CX is not 0;
otherwise the instruction following LOOP is
executed.

Encoding:

[11100010 | disp |

LOOP Operands Clocks | Transfers|Bytes|LOOP Coding Example
short-label 17/5 — 2 |LOOP AGAIN

D-74 | sepenoixo

LOOPE LOOPWHILE | OOPE

LOOPZ LOGPWHILE | OOPZ

Operation: Flags Affected:

(CX) ~ (CX) -1 None
if (ZF) =1and (CX) # 0 then
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

LOOPE/LOQOPZ short-label

LOOPE and LOOPZ (Loop While Equal and
Loop While Zero) are different mnemonics for
the same instruction (similar to the REPE and
REPZ repeat prefixes). CX is decremented by
1, and control is transferred to the target
operand if CX is not 0 and if ZF is seq;
otherwise the instruction following LOOPE/
LOOPZ is executed.

Encoding:

11100001 | disp

l LOOPE/LOOPZ Operands | Clocks | Transfers | Bytes| LOOPE Coding Example

short-label 18 orb — 2 |LOOPE AGAIN

sppencix0 | D-75

LOOPNZ LOOPWHILE | QOPNZ

LOOPNE LOOPWHILE | OOPNE

Operation: Flags Affected:

(CX) < (CX) -1 None
if (ZF) =0 and (CX) # 0 then
(IP) = (IP) + disp (sign-extended
to 16-bits)

Description:

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not
Equal and Loop While Not Zero) are also
synonvms for the same instruction. CX is
decremented by 1, and control is transferred to
the target operand if CX is not O and if ZF is
clear; otherwise the next sequential instruction
is executed.

Encoding:

[11100000 | disp

LOOPNE/LOOPNZ Operands|Clocks| Transfers| Bytes| LOOPNE Coding Example

short-label 190r5 — 2 LOOPNE AGAIN

D‘76 | APPENDIX D

MOV MOVE (BYTEORWORD) MOV

Operation: Flags Affected:
(DEST) + (SRC) None
Description:

MOV dastination,source

MOVE transfers a byte or a word from the
source operand to the destination operand.

Encoding:

Memory or Register Operand to/from Register Operand:

[100010dw [modregr/m |

ifd=1then SRC =EA, DEST = REG
else SRC=REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1100011w [mod000r/m| data | dataifw=1 |
SRC = data, DEST = EA

Immediate Operand to Register:

[1011wreg | data | dataifw=1 |
SRC =data, DEST = REG

sopendixD | D-77

MOV MOVE (BYTEORWORD) MOV

Encoding:

Memory Operand to Accumulator:

|1010000w | addr-low [addr-high |

if w=0then SRC = addr, DEST=AL
else SRC = addr+ 1:addr, DEST = AX

Accumulator to Memory Operand:

|1010001w | addr-low | addr-high |

if w=0then SRC = AL, DEST = addr
else SRC = AX, DEST = addr + 1:addr

Memory or Register Operand to Segment Register:

10001110 |mod0regr/m]
if reg # 01 then SRC = EA, DEST = REG
else undefined operation

Segment Register to Memory or Register Operand:

10001100 [mod0regr/m|
SRC = REG,DEST =EA

MOV Operands Clocks* |Transfers|Bytes| MOV Coding Example

3 |MOV ARRAY [SI], AL
3 |MOVAX, TEMP_RESULT
2 [MOV AX,CX

memory, accumulator| 10(14)
accumulator, memory 10(14)

register, register 2
register, memory 8(12) + EA 2-4 | MOV BP, STACK_TOP
memory, register 9(13) + EA 2-4 | MOV COUNT [DI], CX
register, immediate 4 2-3 |[MOVCL, 2

3-6 | MOV MASK [BX+ Sl], 2CH

1

1

1

1
memory, immediate |10(14)+ EA 1
2 -

1
1

seg-reg, reg16 MOV ES, CX

seg-reg, mem16 8(12) + EA 2-4 | MOV DS, SEGMENT__BASE
regi16, seg-reg 2 2 |MOVBP,SS

memory, seg-reg 9(13)+ EA 2-4 |MOV [BX],SEG__SAVE, CS

"b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-78 | areenomo

MOVS MOVESTRING MOVS

Operation: Flags Affected:

(DEST) < (SRC) None
if (DF) =0then

(SI) < (Sl) + DELTA

(DI) <= (DI) + DELTA
else

(S1) « (SI) - DELTA

(DI) < (DI) - DELTA

Description:

MOVS destination-string, source-string

MOVS (Move Siring) transfers a byie or a
word from the source string (addressed by SI)
to the destination string (addressed by DI) and
updates S1 and DI to point to the next string
element. When used in conjunction with REP,
MOVS performs a memory-to-memory block
transfer.

Encoding:

[1010010w|

if w=0then SRC = (Sl), DEST = AL, DELTA =1
else SRC = (SI) + 1:(Sl), DEST = AX, DELTA =2

MOVS Operands Clocks* | Transfers|Bytes| MOVS Coding Example

dest-string, source-string 18(26) 2 1 MOVS LINE_ _EDIT. _DATA
(repeat) dest-string, source-string| 9+17(25)/ rep| 2irep 1 REP MOVS SCREEN, BUFFER

*b(w): where b denotes the number of clock cycles for byte operands and w denotes the
number of clock cycles for word operands.

appencix0 | D-79

MOVSB MOVESTANG MOVSB

Operation: Flags Affected:

(DEST) « (SRC) None

if (DF) =0 then
(Sl) = (SI) + DELTA
(D) < (DI) + DELTA
else
(Sl) — (SI) - DELTA
(DI) < (DI) - DELTA

Description:

MOVSB (Move String Byte) transfers a byte from the
source string (addressed by SI) to the destination
string (addressed by DI) and updates SI and DI to
point to the next string element. When used in con-
junction with REP, MOVSB performs a memory-to-
memory block transfer.

Encoding:

[10100100 |

SRC =(SI), DEST = AL, DELTA =1

MOVSB Operands | Clocks |[Transfers |[Bytes| MOVSB Coding Examples

(NO OPERANDS) 18 2 1 MOVSB
(NOOPERANDS) (9 + 17/rep| 2/rep 1 REP MOVSB

D'BO I APPENDIXD

MOVSW MOVESTRING MOVSW
WORD
Operation: Flags Affected:
(DEST) < (SRC) None
if (DF) =0 then
(Sl) = (SI) + DELTA
(DI) < (DI) + DELTA
else

(S1) — (SI) - DELTA
(DI) — (DI) - DELTA

Description:

MOVSW (Move String Word) transfers a
word from the source string (addressed by SI)
to the destination string (addressed by DI)
and updates SI and DI to point to the next
string element. When used in conjunction
with REP, MOVSW performs a memory-to-
memory block transfer.

Encoding:

|10100101 |

SRC = (8!) + 1:(Sl), DEST = AX, DELTA =2

MOVSW Operands | Clocks |Transfers |[Bytes| MOVSW Coding Examples
(NO OPERANDS) 26 2 1 MOVSW
(NOOPERANDS) |9 + 25/rep| 2/rep 1 REP MOVSW

Appendix D I D'81

MUL

Operation:

(DES) + (LSRC) * (RSRC), where *
is unsigned multiply

it (EXT)=0then (CF)<«0

else (CF) — 1;

(OF) < (CF)

Description:

MUL source

MUL (Multiply) performs an unsigned multi-
plication of the source operand and the accum-
ulator. If the source is a byte, then it is
multiplied by register AL, and the double-
length result is returned in AH and AL. If the
source operand is a word, then it is multiplied
by register AX, and the double-length result is
returned in registers DX and AX. The oper-

Encoding:

11111011w [mod100r/m|

MULTIPLY

MUL

Flags Affected:

CF, OF.
AF, PF, SF, ZF undefined

ands are treated as unsigned binary numbers
(see AAM). [f the upper half of the result (AH
for byte source, DX for word source) is non-
zero, CF and OF are set; otherwise they are
cleared. When CF and OF are set, they indi-
cate that AH or DX contains significant digits
of the result. The content of AF, PF, SF and
ZF is undefined following execution of MUL.

if w=0then LSRC = AL, RSRC = EA, DEST = AX, EXT = AH
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX

MUL Operands Clocks* Transfers| Bytes| MUL Coding Example
regd 70-77 — 2 |MULBL

reg16 118-113 — 2 |MULCX

mema8 (76-83) + EA 1 2-4 |[MUL MONTH [SI
mem16 (128-143) + EA 1 2-4 ([MUL BAUD__RATE

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-82 | aepenoio

NEG

Operation:

(EA) < SRC-(EA)
(EA) - (EA) + 1 (affecting flags)

Description:

NEG destination

NEG (Negate) subtracts the destination
operand, which may be a byte or a word, from
0 and returns the result 1o the destination. This
forms the two's complement of the number.
effectively reversing the sign of an integer. If
the operand 1s zero, its sign is not changed.

Encoding:

[1111011w [mod011r/m]|

if w=0then SRC = FFH
else SRC = FFFFH

NEGATE

NEG

Flags Affected:

AF, CF, OF, PF, SF, ZF

Attempting to negate a byte containing —128
or a word containing —32.768 causes no
change to the operand and sets OF, NEG
updates AF, CF, OF, PF, SF and ZF. CF is
always set except when the operand is zero, in
which case it is cleared.

NEG Operands | Clocks* | Transfers | Bytes | NEG Coding Example
register 3 2 NEG AL
memory 16(24) + EA 2-4 NEG MULTIPLIER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

appencix0 | D-83

NOP

NO OPERATION

NOP

Operation: Flags Affected:
None None
Description:
NOP
NOP (No Operation) causes the CPU to do
nothing. NOP does not affect any flags.
Encoding:
[10010000 |
NOP Operands | Clocks | Transfers | Bytes | NOP Coding Example
(no operands) 3 — 1 NOP

D'84 | APPENDIXD

NOT LOGICAL NOT NOT

Operation: Flags Affected:
(EA) < SRC - (EA) None

Description:

NOT destination

NOT inverts the bits (forms the one's comple-
ment) of the byte or word operand.

Encoding:

11111011w [mod010r/m|

if w=0then SRC =FFH
else SRC = FFFFH

NOT Operands | Clocks* |Transfers | Bytes | NOT Coding Example

register 3 — — NOT AX
memory 16(24) + EA 2 — NOT CHARACTER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D | D-85

OR LOGICAL OR OR

Operation: Flags Affected:
(DEST) « (LSRC) OR (RSRC) CF, OF, PF, SF, ZF.
(CF)«0 AF undefined
(OF) <0

Description:

OR destination, source

OR performs the logical “*inclusive or’” of the
two operands (byte or word) and returns the
result to the destination operand. A bit in the
result is set if either or both corresponding bits
in the original operands are set; otherwise the
result bit is cleared.

D‘86 | APPENDIX D

OR LOGICAL OR OR

Encoding:

Memory or Register Operand with Register Operand:

1000010dw [modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Ilmmediate Operand to Memory or Register Operand:

[1000000w [mod001r/m| data | dataifw=1 |
LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

[0000110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

OR Operands Clocks* |Transfers|Bytes|OR Coding Example
register, register 3 — 2 |ORAL,BL
register, memory 9(13)+EA 1 2-4 |ORDX, PORT__ID [DI|
memory, register 16(24) + EA 2 2-4 |ORFLAG__BYTE,CL
accumulator, immediate 4 — 2-3 |OR AL, 01101100B
register, immediate 4 — 3-4 |ORCX,01H
| memory, immediate 17(25)+ EA 2 3-6 |OR[BX].CMD_WORD,0CFH

*b{w): where b denotes the number of clock cycles for byte operands and w

denotes the number of clock cycles for word operands.

Appendix D | D-87

ouT OUTPUT ouT

Operation: Flags Affected:

(DEST) < (SRC) None
Description:
OUT port,accumulator
OUT 1ransfers a byte or a word from the AL 255, or with a number previously placed in
register or the AX register, respectively. to an register DX, allowing variable access (by
output port. The port number may be speci- changing the value in DX) to ports numbered
fied either with an immediate byte constant, from 0 through 65,535.

allowing access to ports numbered 0 through

Encoding:

Fixed Port:

[1110011w] port |

if w=0then SRC= AL, DEST = port
else SRC = AX, DEST = port+1:port

Variable Port:

[1110111w]|

itfw=0then SRC = AL, DEST = (DX)
else SRC = AX, DEST = (DX) +1:(DX)

OUT Operands Clocks* | Transfers | Bytes | OUT Coding Example

immed8, accumulator | 10(14) 1 2 OUT 44, AX
DX, accumulator 8(12) 1 1 OUT DX, AL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-88 | arvenoo

POP POP POP

Operation: Flags Affected:
(DEST) < ((SP)+1:(SP)) None
(SP) < (SP)+2

Description:

POP destination

POP transfers the word at the current top of
stack (pointed to by SP) to the destination
operand, and then increments SP by two 10
point (o the new top of stack. POP can be used
1o move temporary variables from the stack to
regisiers or memaory.

D-89

Appendix D

POP POP POP

Encoding:

Memory or Register Operand:

110001111 |[mod000r/m]|
DEST = EA

Register Operand:

| 01011reg |

DEST = REG

Segment Register:

|000reg111]

if reg # 01 then DEST = REG
else undefined operation

POP Operands Clocks* | Transfers | Bytes | POP Coding Example

register 12 1 1 POP DX
seg-reg (CS illegal) 12 1 1 POP DS
memory 25+ EA 2 2-4 | POP PARAMETER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-90 [apperoo

POPF

Operation:

Flags — ((SP) + 1:(SP))
(SP) ~ (SP) + 2

Description:

POPF

POPF transfers specific bits from the word at
the current top of stack (pointed to by register
SP) into the 8086/8088 flags, replacing
whatever values the flags previously contained
(see figure 2-32). SP is then incremented by
two to point to the new top of stack. PUSHF

POP FLAGS

POPF

Flags Affected:

All

and POPF allow a procedure to save and
restore a calling program's flags. They also
allow a program to change the setting of TF
(there is no instruction for updating this flag
directly). The change is accomplished by
pushing the flags, altering bit 8 of the memory-
image and then popping the flags.

Encoding:

10011100 |

POPF Operands | Clocks | Transfers | Bytes | POPF Coding Example
(no operands) 12 1 1 POPF

D-91

Appendix D

PUSH PURH PUSH

Operation: Flags Affected:

(SP) ~ (SP) - 2 None
((SP)+1:(SP)) « (SRC)

Description:

PUSH source

PUSH decrements SP (the stack pointer) by
two and then tranfers a word from the source
operand to the top of stack now pointed to by
SP. PUSH often is used to place parameters
on the stack before calling a procedure; more
generally, it is the basic means of storing tem-
porary data on the stack.

D-92 | sppenoixo

PUSH

Encoding:

PUSH

Memory or Register Operand:

11111111 [mod110r/m]

SRC=EA

Register Operand:

| 01010reg |

SRC = REG

Segment Register:

[000reg110]|
SRC = REG

PUSH

PUSH Operands | Clocks | Transfers | Bytes | PUSH Coding Example
register 15 1 1 PUSH SI

seg-reg (CS legal) 14 1 1 PUSH ES

memory 24+ EA 2 2-4 |PUSHRETURN_ CODE [SI]

D-93

Appendix D

PUSHF PUSHFLAGS PUSHF

Operation: Flags Affected:

(SP) ~ (SP)-2 None
((SP)+1:(SP)) « Flags

Description:

PUSHF

PUSHF decrements SP (the stack pointer) by
two and then transfers all flags to the word at
the top of stack pointed to by SP. The flags
themselves are not affected.

Encoding:

110011101 |

PUSHF Operands | Clocks | Transfers | Bytes | PUSHF Coding Example
(no operands) 14 1 1 PUSHF

D'g4 | APPENDIX D

ROTATE THROUGH
RCL CARRY LEFT

Operation: Flags Affected:

(temp) < COUNT CF, OF
do while (temp) # 0
(tmpcf) < (CF)
(CF) < high-order bit of (EA)
(EA) ~ (EA) * 2 + (tmpcf)
(temp) « (temp) -1
it COUNT =1then
if high-order bit of (EA) # (CF)
then (OF) ~ 1
else (OF) «<=0
else (OF) undefined

Description:

RCL destination,count

RCL (Rotate through Carry Left) rotates the
bits in the byte or word destination operand 1o
the left by the number of bits specified in the
count operand. The carry flag (CF) is treated
as “‘part of’’ the destination operand; that is,
its value 1s rotated into the low-order bit of the
destination, and itself is replaced by the high-
order bit of the destination.

RCL

appenaixD | D-05

ROTATE THROUGH
RCL CARRY LEFT RCL

Encoding:

[110100vw [mod010r/m

ifv=0then COUNT =1
alse COUNT = (CL)

RCL Operands! Clocks* Transfers|Bytes RCL Coding Example

register 1, 2 — 2 |RCLCX,1

register, CL 8 + 4/bit — 2 |RCLAL,CL

memory, 1 15(23) + EA 2 2-4 |RCL ALPHA, 1
memory, CL 20(28) + EA + 4/bit 2 2-4 |RCL [BP].PARAM,CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D'gﬁ I APPENDIX D

RCR ROTATE THROUGH RCR

CARRY RIGHT
Operation: Flags Affected:
(temp) < COUNT CF, OF
do while (temp) # 0
(tmpcf) < (CF)

(CF) ~ low-order bit of (EA)
(EA) « (EA) / 2
high-order bit of (EA) « (tmpcf)
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) < 1
else (OF) <0
else (OF) undefined

Description:

RCR destination,count
RCR (Rotate through Carry Right) operates

exactly like RCL except that the bits are
rotated right instead of lefr.

Encoding:

[110100vw [mod011r/m|

if v=0then COUNT =1
else COUNT = (CL)

RCR Operands Clocks Transfers Bytes RCR Coding Example
register, 1 2 — 2 |RCRBX,1

register, CL 8 +4/bit — 2 |RCRBL,CL

memory, 1 15(23)+ EA 2 2-4 |RCR [BX].STATUS, 1
memory, CL 20(28) + EA + 4/Dbit 2 2-4 |RCR ARRAY [DI], CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D | D-97

REP REPEAT REP

REPE/REPZ REPE/REPZ

REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ

REPEAT WHILE NOT EQUAL/

REPEAT WHILE NOT ZERO
Operation: Flags Affected:
do while (CX) # 0 None

service pending interrupt (if
any) execute primitive string
operation in succeeding byte
(CX) < (CX) -1
if primitive operation is CMPB,
CMPW, SCAB, or SCAW and
(ZF) # z then exit from
while loop

D'98 I APPENDIXD

REP
REPE/REPZ

REPEAT

REP
REPE/REPZ

REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ
REPEAT WHILE NOT EQUAL/
REPEAT WHILE NOT ZERO

Description:

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While
Zero, Repeat While Not Equal and Repeat
While Not Zero are mnemonics for two forms
of the prefix byte that controls subsequent
string instruction repetition. The different
mnemonics are provided to improve program
clarity. The repeat prefixes do not affect the
flaas.

REP is used in conjunction with the MOVS
(Move String) and STOS (Store String)
instructions and is interpreted as “‘repeat while
not end-of-string’” (CX not 0). REPE and
REPZ operate identically and are physically
the same prefix byte as REP. These instruc-
zions are used with the CMPS (Compare
String) and SCAS (Scan String) instructions
and require ZF (posted by these instructions)
to be set before initiating the next repetition.
REPNE and REPNZ are mnemonics for the
same prefix byte. These instructions function
the same as REPE and REPZ except that the
zero flag must be cleared or the repetition is
terminated. ZF does not need to be initial-
ized before executing the repeated string
instruction.

Repeated string sequences are interruptable;
the processor will recognize the interrupt
before processing the next string element.
System interrupt processing is not affected in
any way. Upon return from the interrupt, the
repeated operation is resumed from the point
of interruption. However, execution does not
resume properly if a second or third prefix
(i.e., segment override or LOCK) has been
specified in addition to any of the repeal
prefixes. At interrupt time, the processor
“remembers’’ only the prefix that immediately
precedes the string instruction. After returning
from the interrupt, processing resumes, but
any additional prefixes specified are not in
effect. If more than one prefix must be used
with a string instruction, interrupts may be
disabled for the duration of the repeated exe-
cution. However, this will not prevent a non-
maskable interrupt from being recognized.
Also, the time that the system is unable to
respond to interrupts may be unacceptable if
long strings are being processed.

popencixo | D-99

REP REPEAT REP

REPE/REPZ REPE/REPZ
REPEAT WHILE EQUAL/

REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ
REPEAT WHILE NOT EQUAL/

REPEAT WHILE NOT ZERO
Encoding:
11111001z
REP Operands Clocks| Transfers | Bytes | REP Coding Example
(no operands) 2 = 1 REP MOVS DEST, SRCE

| REPE/REPZ Operands |Clocks | Transfers | Bytes | REPE Coding Example

(no operands) 2 — 1 REPE CMPS DATA, KEY

REPNE/REPNZ Operands | Clocks | Transfers | Bytes | REPNE Coding Example

(no operands) 2 — 1 REPNE SCAS INPUT__LINE

D-100 [aprenoixo

RET

Operation:

(IP) < ((SP)=1:(SP))

(SP) < (SP) + 2

if Inter-Segment then
(CS) < ((SP)+1:(SP))
(SP) < (SP) + 2

if Add Immediate to Stack Pointer
then (SP) < (SP) + data

Description:

RET optional-pop-value

RET (Return transfers control from a pro-
cedure back to the instruction following the
CALL that activated the procedure. The
assembler generates an intrasegment RET if
the programmer has defined the procedure
NEAR, or an intersegment RET if the pro-
cedure has been defined as FAR. RET pops
the word at the top of the stack (pointed to by
register SP) into the instruction pointer ‘and

RETURN

RET

Flags Affected:

None

increments SP by two. If RET is intersegment,
the word at the new top of stack is popped into
the CS register, and SP is again incremented
by two. If an optional pop value has been
specified, RET adds that value to SP. This
feature may be used to discard parameters
pushed onto the stack before the execution of
the CALL instruction.

sppenac | D-101

RET

Encoding:

Intra-Segment:

11000011 |

RETURN

RET

Intra-Segment and Add Immediate to Stack Pointer:

11000010 | data-low

| data-high |

Inter-Segment:

| 11001011 |

Inter-Segment and Add Immediate to Stack Pointer:

11001010 | data-low | data-high |

RET Operands Clocks | Transfers | Bytes | RET Coding Example
(intra-segment, no pop) 20 1 1 RET
(intra-segment, pop) 24 1 3 RET 4
(inter-segment, no pop) 32 2 1 RET
(inter-segment, pop) 3 2 3 RET 2

D-102 | sepenomo

ROL ROTATE LEFT ROL

Operation: Flags Affected:

(temp) < COUNT CF, OF
do while (temp) # 0

(CF) « high-order bit of (EA)

(EA) = (EA) * 2 + (CF)

(temp) « (temp) -1
it COUNT =1then

if high-order bit of (EA) # (CF)

then (OF) «~ 1

else (OF) <0

else (OF) undefined

Description:

ROL destination,count
ROL (Rotate Left) rotates the destination byte

or word left by the number of bits specified in
the count operand.

Encoding:

[110100vw [mod000r/m]

if v=0then COUNT =1
else COUNT =(CL)

ROL Operands Clocks* Transfers| Bytes | ROL Coding Example
register, 1 2 — 2 | ROLBX,1

register, CL 8+4/bit - 2 |ROLDI,CL

memory, 1 15(23)+EA 2 2-4 | ROL FLAG__BYTE [DI], 1
memory, CL 20(28) + EA + 4/bit 2 2-4 | ROL ALPHA, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

aspenico | D-103

ROR ROTATE RIGHT ROR

Operation: Flags Affected:

(temp) « COUNT CF, OF
do while (temp) #0
(CF) < low-order bit of (EA)
(EA)~ (EA) / 2
high-order bit of (EA) « (CF)
(temp) « (temp) - 1
it COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <=1
else (OF) <0
else (OF) undefined

Description:

ROR destination,count
ROR (Rotate Right) operates similar to ROL

except that the bits in the destination byte or
word are rotated right instead of left.

Encoding:

[110100vw [mod001r/m]

ifv=0then COUNT =1
else COUNT = (CL)

ROR Operand Clocks* Transfers | Bytes | ROR Coding Example
register, 1 2 — 2 | RORAL,1

register, CL 8+ 4/bit - 2 ROR BX, CL

memory, 1 15(23) + EA 2 2-4 [RORPORT_STATUS, 1
memory, CL | 20(28) + EA +4/bit 2 2-4 [RORCMD__WORD, CL

‘b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D‘1 04 | APPENDIX D

SAHF STORERESISTERAH SAHF

Operation: Flags Affected:
(SF):(ZF):X:(AF):X:(PF):X:(CF) « (AH) AF, CF, PF, SF, ZF

Description:

SAHF

SAHEF (store register AH into flags) transfers
hits 7, 6, 4, 2 and 0 from register AH into SF,
ZF, AF, PF and CF, respectively, replacing
whatever values these flags previously had.
OF, DF, IF and TF are not affected. This
instruction is provided for 8080/8085
compatibility.

Encoding:

110011110 |

SAHF Operands | Clocks | Transfers | Bytes | SAHF Coding Example

(no operands) 4 — 1 SAHF

Appendix D l D'1 05

SAL SHIFT ARITHMETIC LEFT
SHL SHIFTLOGICAL LEFT

Operation: Flags Affected:
(temEl — COUNT CF, OF, PF, SF, ZF.
ile (temp)#0 AF undefined
(CF) « high order bit of (EA)
(EA) < (EA) * 2

(temp) ~ (temp) -1
if COUNT =1 then
if high-order bit of (EA) # (CE)
then (OF) « 1
else (OF) <0
else (OF) undefined

Description:

SHL/SAL destination,count

SHL and SAL (Shift Logical Left and Shift
Arithmetic Left) perform the same operation
and arec physically the same instruction. The
destination byte or word is shifted left by the
number of bits specified in the count operand.
Zeros are shifted in on the right. If the sign bit
retains its original value, then OF is cleared.

SAL
SHL

D-106 | APPENDIX D

SAL SHIFTARITHMETICLEFT SAL
SHL SHIFTLOGICALLEFT SHL

Encoding:

|110100vw [mod100r/m|

if v=0then COUNT =1
else COUNT =(CL)

SAL/SHL Operands Clocks* Transfers| Bytes| SAL/SHLCoding Example
register, 1 2 - 2 |SALAH,1

register, CL 8+4/bit — 2 |SHLDI,CL

memory, 1 15(23)+ EA 2 2-4 |SHL [BX].OVERDRAW, 1
memory, CL 20(28) + EA + 4/bit 2 2-4 |SAL STORE__COUNT, CL

*blw): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D

SAR

Operation:

(temp) < COUNT
do while (temp) #0
(CF) ~ low-order bit of (EA)
(EA) < (EA) / 2, where / is
equivalent to signed division,
rounding down
(temp) ~ (temp) - 1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <1
else (OF) <0
else (OF) -0

Description:

SAR destination,count

SAR (Shift Arithmetic Right) shifts the bits in
the destination operand (byte or word) to the
right by the number of bits specified in the
count operand. Bits equal to the original high-
order (sign) bit are shifted in on the left,
preserving the sign of the original value. Note
that SAR does not produce the same result as
the dividend of an ‘‘equivalent”’ IDIV instruc-

SHIFT ARITHMETIC
RIGHT

Flags Affected:

SAR

CF, OF, PF, SF, ZF.
AF undefined

tion if the destination operand is negative and
1-bits are shifted out. For example, shifting =5
right by one bit yields —3, while integer divi-
sion —5 by 2 yields —2. The difference in the
instructions is that IDIV truncates all numbers
toward zero, while SAR truncates positive
numbers toward zero and negative numbers
toward negative infinity.

D-107

D'1 08 | APPENDIX D

SAR SHIFT ARITHMETIC SAR

RIGHT

Encoding:

(110100vw |mod1 11r/m

if v=0then COUNT =1

else COUNT = (CL)
SAR Operands Clocks* Transters| Bytes | SAR Coding Example
register, 1 2 — 2 [SARDX,1
register, CL 8+4/bit — 2 |SARDI, CL
memory, 1 15(23) + EA 2 2-4 |SARN__BLOCKS, 1
memory, CL 20(28) + EA + 4/bit 2 2-4 [SARN_ BLOCKS, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

Appendix D

SBB

Operation:

if (CF) =1 then (DEST) = (LSRC) -
(RSRC) -1
else (DEST) « (LSRC) - (RSRC)

Description:

SBB destination, source

SBB (Subtract with Borrow) subtracts the
source from the destination, subtracts one if
CF is set, and returns the result to the destina-
tion operand. Both operands may be bytes or
words. Both operands may be signed or

SUBTRACT WITH
BORROW

Flags Affected:

SBB

AF, CF, OF, PF, SF, ZF

unsigned binary numbers (see AAS and DAS).
SBB updates AF, CF, OF, PF, SF, and ZF.
Since it incorporates a borrow from a
previous operation, SBB may be used to write
routines that subtract numbers longer than 16
bits.

D'1 10 I APPENDIX D

SUBTRACT WITH
SBB RacT Y SBB

Encoding:

Memory or Register Operand and Register Operand:

[000110dw [modregr/m]

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC=REG, DEST=EA

Immediate Operand from Memory or Register Operand:

[100000sw [mod011r/m| data |data if s:w=01]|
LSRC = EA, RSRC = data, DEST =EA

Immediate Operand from Accumulator:

[0001110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

SBB Operands Clocks* |Transfers|Bytes| SBB Coding Example
register, register 3 — 2 |[SBBBX,CX
register, memory 9(13)+ EA 1 2-4 [SBB DI, [BX].PAYMENT
memory, register 16(24)+ EA 2 2-4 [SBB BALANCE, AX
accumulator, immediate 4 — 2-3 |SBBAX,2
register, immediate 4 — 3-4 [SBBCL,1
memory, immediate 17(25) + EA 2 3-6 |SBBCOUNT [SI], 10

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

sopenao | D-111

SCAS

Operation:

(LSRC) - RSRC)

SCAN (BYTE OR
WORD) STRING

Flags Affected:

AF, CF, OF, PF, SF, ZF

if (DF)=0then (Dl) <« (DI) + DELTA
else (DI) < (DI)- DELTA

Description:

SCAS destination-string

SCAS (Scan String) subtracts the destination
string element (byte or word) addressed by DI
from the content of AL (byte string) or AX
(word string) and updates the flags, but does
not alter the destination string or the accum-
ulator, SCAS also updates DI to point to the
next string element and AF, CF, OF, PF, SF
and ZF to reflect the relationship of the scan
value in AL/AX to the string element. If

Encoding:

(1010111 w |

SCAS

SCAS is prefixed with REPE or REPZ, the
operation is interpreted as ‘‘scan while not
end-of-string (CX not 0) and string-element =
scan-value (ZF = 1).”" This form may be used
to scan for departure from a given value. If
SCAS is prefixed with REPNE or REPNZ, the
operation is interpreted as ‘‘scan while not
end-of-string (CX not 0) and string-element is
not equal to scan-value (ZF = 0)."" This form

may be used to locate a value in a string.

ifw=0then LSRC=AL, RSRC = (DIl), DELTA =1
else LSRC = AX, RSRC = (DI)+1:(Dl), DELTA =2

SCAS Operands Clocks* Transfers | Bytes | SCAS Coding Example
dest-string 15(19) 1 1 SCAS INPUT__LINE
(repeat) dest-string | 9+15(19)/rep | 1/rep 1 REPNE SCAS BUFFER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D'1 1 2 | APPENDIX D

SCASB

Operation:

(LSRC) - RSRC)
if (DF) = 0 then (DI) «— (DI) + DELTA
else (DI) « (DI) - DELTA

Description:

SCASB (Scan Byte String) subtracts the desti-
nation string element addressed by DI from
the content of AL and updates the flags, but
does not alter the destination string or the
accumulator. SCASB also updates DI to point
to the next string element and AF, CF, OF, PF,
SF and ZF to reflect the relationship of the
scan value in AL to the string element. If
SCASB is prefixed with REPE or REPZ, the
operation is interpreted as “scan while not

Encoding:

(10101110 |

LSRC = AL, RSRC = (DI), DELTA = 1

SCAN BYTE
STRING

SCASB

Flags Affected:
AF, CF, OF, PF, SF, ZF

end-of-string (CX not 0) and string-element
= scan-value (ZF = 1).” This form may be
used to scan for departure from a given value.
If SCASB is prefixed with REPNE or REPNZ,
the operation is interpreted as “scan while
not end-of-string (CX not 0) and string-
element is not equal to scan-value (ZF = 0).”
This form may be used to locate a value in a
string.

SCASBOperands | Clocks |Transfers | Bytes | SCASB Coding Examples
(NO OPERANDS) 15 1 1 SCASB
(NOOPERANDS) |9+ 15/rep| 1/rep 1 REPNE SCASB

sopenaico | D-113

SCASW SCANWORD

Operation:

(LSRC) - RSRC)
if (DF)=0then (DI) < (DI) + DELTA
else (DI) < (DI)- DELTA

Description:

SCASW (Scan Word String) subtracts the
destination string element addressed by DI
from the content of AX and updates the flags,
but does not alter the destination string or the
accumulator. SCASW also updates DI to
point to the next string element and AF, CF,
OF, PF, SF and ZF to reflect the relationship
of the scan value in AX to the string element.
If SCASW is prefixed with REPE or REPZ, the
operation is interpreted as “scan while not

Encoding:

[10101111]

SCASW

Flags Affected:
AF, CF, OF, PF, SF, ZF

end-of-string (CX not 0) and string-element
= scan-value (ZF = 1).” This form may be
used to scan for departure from a given value.
If SCASW is prefixed with REPNE or REPNZ,
the operation is interpreted as “scan while
not end-of-string (CX not 0) and string-
element is not equal to scan-value (ZF = 0).”
This form may be used to locate a value in a
string.

LSRC = AX, RSRC = (DI)+1:(Dl), DELTA =2

SCASWOperands | Clocks |Transfers |Bytes | SCASW Coding Examples
(NOOPERANDS) 19 1 1 SCASW
(NOOPERANDS) |9+ 19/rep| 1/rep 1 REPNE SCASW

D-114 l APPENDIX D

SHR SHIFTLOGICAL RIGHT

Operation: Flags Affected:
(temp) <= COUNT CF, OF, PF, SF, ZF.
do while (temp) #0 AF undefined

CF) < low-order bit of (EA
(EA) < (EA) | 2, where [is
equivalent to unsigned
division
(temp) « (temp) -1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) « 1
else (OF) <0
else (OF) undefined

Description:

SHR destination,source

SHR (Shift Logical Right) shifts the bits in the
destination operand (byte or word) to the right
by the number of bits specified in the count
operand. Zeros are shifted in on the left. If the
sign bit retains its original value, then OF is
cleared.

SHR

apponcix0 | D-115

SHR SHIFTLOGICALRIGHT SHR

Encoding:

[110100vw [mod101r/m]

if v=0then COUNT =1
else COUNT = (CL)

SHR Operands Clocks* Transfers | Bytes| SHR Coding Example

register, 1 2 — 2 |SHRSI 1

register, CL 8+ 4/bit — 2 |SHRSI, CL

memory, 1 15(23) + EA 2 2-4 |SHRID_BYTE [SI+BX], 1
memory, CL 20(28) + EA + 4/ bit 2 2-4 |SHRINPUT_WORD, CL

‘b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D"1 16 I APPENDIXD

STC SET CARRY STC
Operation: Flags Affected:
(CF) —1 CF
Description:
STC

STC (Set Carry flag) sets CF to | and affects
no other flags.

Encoding:

111111001 |

STC Operands | Clocks | Transfers

Bytes

STC Coding Example

(no operands) 2 -

STC

appenaixD | D-117

STD SETDIRECTIONFLAG STD

Operation: Flags Affected:
(DF) <1 DF

Description:

STD

STD (Set Direction flag) sets DF to 1 causing
the string instructions to auto-decrement the
SI and/or DI index registers. STD does not
affect any other flags.

Encoding:

[11111101 |

Timing: 2 clocks

STD Operands | Clocks | Transfers | Bytes | STD Coding Example

(no operands) 2 — 1 STD

D‘1 18 I APPENDIX D

SET INTERRUPT-
STI ENABLE FLAG ST

Operation: Flags Affected:
(IF) 1 IF
Description:

STI (Set Interrupt-enable flag) sets IF to 1,
enabling processor recognition of maskable
interrupt requests appearing on the INTR line.
Note however, that a pending interrupt will
not actually be recognized until the instruction
following STI has executed. STI does not
affect any other flags.

Encoding:

(11111011 |

STl Operands | Clocks | Transfers | Bytes | STl Coding Example

(no operands) 2 - 1 STI

D-119

Appendix D

STOS *Yoroystring STOS

Operation: Flags Affected:

(DEST) < (SRC) None
if (DF) =0 then (DI) < (DI) + DELTA
else (DI) < (DI) - DELTA

Description:

STOS destination-string

STOS (Store String) transfers a byte or word
from register AL or AX to the string element
addressed by DI and updates DI to point to the
next location in the string. As a repeated
operation, STOS provides a convenient way
to initialize a string to a constant value (e.g., to
blank out a print line).

Encoding:

(1010101 w]|

if w=0then SRC = AL, DEST = (DI), DELTA =1
else SRC = AX, DEST = (D) +1:(Dl), DELTA=2

STOS Operands Clocks* Transfers | Bytes | STOS Coding Example
dest-string 11(15) 1 1 STOS PRINT__LINE
(repeat) dest-string | 9+10(14)/rep 1/rep 1 REP STOS DISPLAY

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-120 ' APPENDIX D

STOSB STOREBYTE

STRING
Operation: Flags Affected:

(DEST) + (SRC)
if (DF) = 0 then (DI) < (DI) + DELTA
else (DI) < (DI) - DELTA

Description:

STOSB (Store Byte String) transfers a byte
from register AL to the string element ad-
dressed by DI and updates DI to point to the
next location in the string. As a repeated op-
eration, STOSB provides a convenient way to
initialize a string to a constant value (e.g., to
blank out a print line).

Encoding:

(10101010 |

SRC=.L,DEST=(DI), DELTA =1

None

STOSB

STOSB Operands | Clocks |Transfers

Bytes

STOSB Coding Examples

(NO OPERANDS) 11 1
(NOOPERANDS) |9 + 10/rep| 1/rep

STOSB
REPSTOSB

Appendix D D'1 21

STOSW STOREWORD STOSW

STRING
Operation: Flags Affected:

(DEST) -+ (SRC) None
if (DF) =0 then (DI) < (DI) + DELTA
else (DI) < (DI) -DELTA

Description:

STOSW (Store Word String) transfers a byte
from register AX to the string element ad-
dressed by DI and updates DI to point to the
next location in the string. As a repeated op-
eration, STOSW provides a convenient way
to initialize a string to a constant value (e.g.,
to blank out a print line).

Encoding:

10101011 |
SRC = AX, DEST = (DI) +1:(DI), DELTA = 2

STOSW Operands | Clocks |Transfers |Bytes | STOSW Coding Examples

(NO OPERANDS) 15 1 1 STOSW
(NOOPERANDS) |9 + 14/rep| 1/rep 1 REP STOSW

D-122 | aprenoixo

SUB SUBTRACT SUB

Operation: Flags Affected:
(DEST) < (LSRC) - (RSRC) AF, CF, OF, PF, SF, ZF
Description:

SUB destination, source

The source operand is subtracted from the
destination operand, and the result replaces
the destination operand. The operands may be
bytes or words. Both operands may be signed
or unsigned binary numbers (see AAS and
DAS). SUB updates AF, CF, OF, PF, SF and
ZF.

Appendix D

SUB SUBTRACT SUB

Encoding:

Memory or Register Operand and Register Operand:

001010dw | modregr/m |

ifd =1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC = REG, DEST =EA

Immediate Operand from Memory or Register Operand:

[100000sw [mod101r/m| data [dataif s:w=01]
LSRC = EA, RSRC = data, DEST = EA

Immediate Operand from Accumulator:

[0010110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC =data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

SUB Operands Clocks* |Transfers|Bytes|SUB Coding Example
register, register 3 — 2 |SUBCX, BX
register, memory 9(13) +EA 1 2-4 |SUB DX, MATH_TOTAL [SI]
memory, register 16(24)+ EA 2 2-4 |SUB[BP + 2],CL
accumulator, immediate 4 — 2-3 [SUBAL,10
register, immediate 4 — 3-4 |SUB S|, 5280
memory, immediate 17(25) + EA 2 3-6 |SUB [BP].BALANCE, 1000

*b{w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

D-123

D-124 I APPENDIX D

TEST TEST TEST

Operation: Flags Affected:
(LSRC) & (RSRC) CF, OF, PF, SF, ZF.
(CF)+0 AF undefined
(OF) <0

Description:

TEST destination, source

TEST performs the logical **and’’ of the two
operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand
is changed. If a TEST instruction is followed
by a JNZ (jump if not zero) instruction, the
jump will be taken if there are any correspond-
ing 1-bits in both operands.

D-125

Appendix D

TEST

Encoding:

TEST

TEST

Memory or Register Operand with Register Operand:

[1000010w [modregr/m |

LSRC = REG, RSRC =

EA

Immediate Operand with Memory or Register Operand:

[1111011w [mod000r/m]|

data

| dataifw=1 |

LSRC = EA, RSRC = data

Immediate Operand with Accumulator:

[1010100w | data

| dataif w=1 |

if w=0then LSRC = AL, RSRC = data
else LSRC = AX, RSRC = data

TEST Operands Clocks |[Transfers|Bytes |TEST Coding Example
register, register 3 —_ 2 |TESTSI, DI
register, memory 9(13)+ EA 1 2-4 |TEST SI, END__COUNT
accumulator, immediate 4 — 2-3 |TESTAL, 00100000B
register, immediate 5 — 3-4 |TEST BX, 0CC4H
memory, immediate 11+EA - 3-6 |TESTRETURN_CODE, 01H

D“1 26 | APPENDIXD

WAIT

Operation:

None

Description:

WAIT

WAIT

Flags Affected:

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does

not affect any flags.

Encoding:

[10011011 |

None

WAIT Operands

Clocks

Transfers

Bytes

WAIT Coding Example

(no operands)

3+5n

WAIT

spponcix | D-127

XCHG EXCHANGE XCHG

Operation:

(temp) < (DEST)
(DEST) - (SRC)
(SRC) + (temp)

Description:

XCHG destination, source

XCHG (exchange) switches the contents of the
source and destination (byte or word)
operands. When used in conjunction with the
LOCK prefix, XCHG can test and set a sema-
phore that controls access 1o a resource shared
by multiple processors (see section 2.5).

Flags Affected:

None

D'1 28 I APPENDIX D

XCHG

Encoding:

EXCHANGE

XCHG

Memory or Register Operand with Register Operand:

[1000011w [modregr/m]

SRC = EA, DEST = REG

Register Operand with Accumulator:

[10010reg |

SRC = REG, DEST = AX

XCHG Operands W Clocks*

Transfers

XCHG Coding Example

accumulator, reg16
memory, register
register, register

3
17(25)+ EA
4

2

XCHG AX, BX
XCHG SEMAPHORE, AX
XCHG AL, BL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

appsnio | D-129

XLAT

Operation:
AL < ((BX) + (AL)

Description:

XLAT transiate-table

XLAT (translate) replaces a byte in the AL
reg.ster with a byte from a 256-byte, user-
coded translation table. Register BX s
assumed to point to the beginning of the table.
The byte in AL is used as an index into the
table and 1s replaced by the byte at the offset in
the table corresponding to AL’s binary value.

Encoding:

[11010111 |

TRANSLATE

XLAT

Flags Affected:

None

The first byte in the table has an offset of 0.
For example, if AL contains 5H, and the sixth
element of the translation table contains 33H,
then AL will contain 33H following the
instruction. XLAT is useful for translating
characters from one code to another, the
classic example being ASCII to EBCDIC or
the reverse.

XLAT Operands | Clocks

Transfers

Bytes | XLAT Coding Example

source-table 11 1

1 XLAT ASCII__TAB

D-130 | aerenoxo

XOR EXCLUSIVE OR XOR

Operation: Flags Affected:
(DEST) - (LSRC) XOR (RSRC) CF, OF, PF, SF, ZF.
(CF) -0 AF undefined
(OF) « 0

Description:

XOR destination,source

XOR (Exclusive Or) performs the logical
“exclusive or’ of the two operands and
returns the result to the destination operand. A
bit in the result is set if the corresponding bits
of the original operands contain opposite
values (one is set, the other is cleared); other-
wise the result bit is cleared.

Appendix D | D-131

XOR EXCLUSIVE OR XOR

Encoding:

Memory or Register Operand with Register Operand:

1001100dw | modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST=EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod110r/m| data | dataifw=1 |

LSRC = EA, RSRC =data, DEST = EA

Immediate Operand to Accumulator:

10011010w | data | dataifw=1 |

ifw=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

XOR Operands Clocks* |Transfers | Bytes | XOR Coding Example
register, register 3 — 2 | XORCX, BX
register, memory 9(13)+ EA 1 2-4 | XORCL, MASK_BYTE
memory, register 16(24) + EA 2 2-4 | XOR ALPHA [SI], DX
accumulator, immediate 4 - 2-3 | XOR AL, 01000010B
register, immediate 4 - 3-4 | XOR SI, 00C2H
memory, immediate 17(25)+ EA 2 3-6 | XOR RETURN__CODE, 0D2H

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

A

Add (+) Operator, 2-33
Addition Instructions, 6-17
ALU, 1-18

Argument, 2-15

Arithmetic Instructions, 6-12
Arithmetic Logic Unit, 1-18
Arithmetic Operators, 2-33
Array, 5-6

ASCII Table, 2-19, 6-22
Assembler Directive, 2-6, 14
Assembly Language, 2-11
Assembly Language Listing, 2-7
ASSUME Directive, 2-39, 7-13
Auxiliary Carry Flag, 3-22

B

Base Address, 7-9

Base Pointer Register, 1-30, 7-11
Based Addressing, 5-40

Based Index Addressing, 5-45
Binary Code, 2-11

Bit, 1-10

Bit Manipulation Instructions, 6-44
Breakpoint Interrupt Instruction, 8-10

Buffer, 5-38

Bus, 1-9

Bus Cycle, 1-33

Bus Interface Unit, 1-18

Byte, 1-10
C
CALL, 4-9, 24

Call Instruction, 4-6, 23
Carry Flag, 3-21
Central Processing Unit, 1-7

INDEX

Character String, 2-21
Clock, 1-9

Clock Cycle, 1-33

Code Segment, 1-29
Command File, 2-8
Comments, 2-12, 15
Compare Instruction, 3-28
Conditional Directive, 9-20
Conditional Jump Table, 3-24
Conditional Jump, 3-20, 25
Conditional Loop, 3-36
Conditional Macro, 9-44
Count register, 3-33

CPU, 1-7

CX Register, 3-33

D

Data Register, 1-17

Data Segment, 1-30

Data Transfer Instructions, 6-7
DB Directive, 2-17, 5-8, 8-39
Default Register Table, 1-21
Delimiter, 2-12

Destination Index, 1-30
Destination Operand, 1-36, 2-27
Direct Jump, 3-17

Direct Memory Access, 8-22
Direct Memory Addressing, 2-29
Direction Flag, 8-36

Directive Statement, 2-14
Directive, 2-6

Displacement, 3-19

Divide (/) Operator, 2-34
Divide Error Interrupt, 8-8
Division Instructions, 6-40
Doubleword, 1-11

DQ Directive, 5-8

DT Directive, 5-8

DW Directive, 2-22, 5-8

I-2 | inpEx

E I

Editor, 2-7 /O Addressing, 7-30
Effective Address, 1-30 I/O Devices, 1-9

Element, 5-12 I/O Port, 1-9

ELSE Directive, 9-28 I/O Port Addressing, 7-32
END directive, 2-23 I/O Port Structure, 7-30
ENDIF Directive, 9-20 IF Directive, 9-22

ENDM Directive, 9-32 IF1 Directive, 9-25

ENDP Directive, 7-28 [F2 Directive, 9-25

ENDS Directive, 2-39 IFB Directive, 9-27

EQU Directive, 2-16 IFDEF Directive, 9-26
EXE Program Structure, 7-6 IFDIF Directive, 9-27
EXE2BIN, 2-8 IFE Directive, 9-25
Executable File, 2-8 IFIDN Directive, 9-27
Execution Unit, 1-17 IFNB Directive, 9-27
External Interrupts, 8-17 IFNDEF Directive, 9-26
Extra Segment, 1-30 Immediate Operand, 1-36, 2-26
EXTRN Directive, 7-24 INCLUDE Directive, 4-36

Include File Format, 4-37
Indexed Addressing, 5-44

F Indirect Jump, 3-19

Inherent Control, 2-26
Far Call, 7-27 Input, 1-9, 7-30
Far Jump, 7-26 Instruction Coding, 1-34
Field, 5-12, 31, 33 Instruction Pointer, 1-19
File Extension, 2-7 Instruction Queue, 1-19
Fixed Port Addressing, 7-33 Instruction Set, 1-34, 2-12, D-1
Flag Register, 1-21, 3-20 Instruction Statement, 2-11
Flowchart, 3-6 Integer Numbers, 6-37, 41
Flowchart Symbols, 3-7 Interface Adapter, 1-9

Internal Interrupts, 8-6
Interrupt Flag, 8-18

G Interrupt On Overflow Instruction, 8-11
Interrupt Priority Table, 8-19

General Register, 1-17, 20 Interrupt Request, 8-17

GROUP Directive, 9-15 Interrupt Type 0, 6-40

Interrupt Type 1, 8-9
Interrupt Type 2, 8-10

H Interrupt Type 3, 8-10

Interrupt Type 4, 8-11
Handshaking, 8-17 Interrupt Types, 8-8
Hardware Reset, 8-20 Interrupt Vector Table, 8-7
HLT Instruction, 2-26 Interrupts, 8-6

Hold Request, 8-22 Intersegment, 5-3

INDEX |'3

Intrasegment Addressing, 7-23, 26
Intrasegment, 3-17, 5-3

IRP Macro Directive, 9-40

IRPC Macro Directive, 9-42

J

JMP Instruction, 3-18

Jump Conditional, 3-20, 25
Jump Direct, 3-17

Jump Indirect, 3-19

Jump Instruction Table, 3-24
Jump Instructions, 3-16
Jump Unconditional, 3-17

L

Label, 2-11

LABEL Directive, 4-14
LALL Directive, 9-39, 62
LFCOND Directive, 9-62
Linker, 2-8

LIST Directive, 9-62
LOCAL Directive, 9-45
Logical Address, 1-26, 30, 7-9
Logical Instructions, 6-44
Loop Conditional, 3-36
Loop Unconditional, 3-33
Loops, 3-32

M

Machine Code, 1-10, 34, 2-11
Machine Language, 2-11
Macro Call, 9-33

Macro Definition, 9-32
MACRO Directive, 9-32
Macro Operator !, 9-51
Macro Operator %, 9-51
Macro Operator &, 9-48
Macro Operator ;;, 9-50

Macro Operator <>, 9-50
MASK Operator, 5-31, 33
Memory, 1-9

Memory Length, 1-24

Memory Operand, 2-29
Memory Segmentation, 1-25
Memory Width, 1-23
Microcomputer Language, 1-10
Microcomputer, 1-7
Microprocessing Unit, 1-7
Mnemonic, 2-11

MOD Operator, 2-35

MPU, 1-7

Multiplication Instructions, 6-36
Multiply (*) Operator, 2-34

N

Name, 2-14
Non-Maskable Interrupt, 8-10. 19
NOP Instruction, 2-26

0

Object File, 2-7

Offset Address, 2-15
OFFSET Operator, 4-14
Opcode, 1-35, 2-12
Operands, 2-12
Operation Code, 1-35
ORG Directive, 2-15
Output, 1-9, 7-30
Overflow Flag, 3-23
9%OUT Directive, 9-26, 61

P

Packed Decimal, 6-12, 26, 34
PAGE Directive, 9-54

Parity Flag, 3-21

Physical Address, 1-26, 7-9

I'4 INDEX

Pointer Table, 8-7

Pop Instructions, 4-19
Port Addressing, 7-32
PROC Directive, 7-28, 9-6
Procedure Call, 9-10
Procedure Nesting, 9-12
Procedure, 7-28, 9-6
Processor Control, 2-26
Program Organization, 3-6
Program Segmentation, 2-38
Pseudo-Opcode, 2-15

PTR Operator, 2-30
PURGE Directive, 9-45
PUBLIC Directive, 7-24
Push Instructions, 4-15

R

RADIX Directive, 2-26
RAM, 1-24

Record Access, 5-29
RECORD Directive, 5-23
Record Initialization, 5-26
Record Template, 5-23
Record Width, 5-33

Register Indirect Addressing, 5-35

Register Loading, 8-38
Register Operand, 2-28
Relocatable Code, 2-8, 38

Remainder (MOD) Operator, 2-35
Repeat String Instruction Table, 8-37

Repeat String Prefix, 8-29, 37
REPT Macro Directive, 9-35
Reserved Word, 2-13, 39
Reset, 8-20

RET Instruction,4-9, 25

Return From Interrupt Instruction, 8-8

Return Instruction, 4-9, 26
ROM, 1-24

Rotate Instructions, 6-50
Run File, 2-8

S

SALL Directive, 9-62

SEG Operator, 8-13

Segment, 1-25

Segment Addressing, 7-9
Segment Align-Type, 7-17
Segment Attribute AT, 8-12
Segment Attributes, 7-17
Segment Combine-Type, 7-18
SEGMENT Directive, 2-38

Segment Override Prefix, 2-40, 7-11

SFCOND Directive, 9-62
Shift Instructions, 6-48

Shift Operator, 2-35

Sign Flag, 3-22

Single-Step Interrupt, 8-9
Source Code, 2-7

Source Operand, 1-36, 2-27
Source Program, 2-7

Stack Pointer Register, 4-16
Stack Segment, 1-30, 2-8
Stack, 4-11

Stored Program Concept, 1-10
String Direction, 8-36

String Instruction Table, 8-33
String Instructions, 8-26
String Operations, 8-25
String, 8-25

STRUC Directive, 5-12
Structure Access, 5-19
Structure Initialization, 5-13
Structure Template, 5-12
Subroutine Call, 4-6
Subroutine Nesting, 4-32
Subtract (—) Operator, 2-34
Subtraction Instructions, 6-33
SUBTTL Directive, 9-59
Symbol, 2-15

Symbolic Link, 2-40
Symbolic Notation, 2-6

INDEX I"5

T

Target, 3-17
TITLE Directive, 9-59
Trap Flag, 8-9

U
Unconditional Jump, 3-17

Unconditional Loop, 3-33
Unpacked Decimal, 6-12, 18, 33, 42

Vv

Variable Port Addressing, 7-34
Variable, 2-15
Vector Table, 8-7

W

Word, 1-10

X
XALL Directive, 9-62
XLIST Directive, 9-62
Z

Zero Flag, 3-22

	Macro_86_Assembly_Lamguage_Vol_2_Page_001
	Macro_86_Assembly_Lamguage_Vol_2_Page_002
	Macro_86_Assembly_Lamguage_Vol_2_Page_003
	Macro_86_Assembly_Lamguage_Vol_2_Page_004
	Macro_86_Assembly_Lamguage_Vol_2_Page_005
	Macro_86_Assembly_Lamguage_Vol_2_Page_006
	Macro_86_Assembly_Lamguage_Vol_2_Page_007
	Macro_86_Assembly_Lamguage_Vol_2_Page_008
	Macro_86_Assembly_Lamguage_Vol_2_Page_009
	Macro_86_Assembly_Lamguage_Vol_2_Page_010
	Macro_86_Assembly_Lamguage_Vol_2_Page_011
	Macro_86_Assembly_Lamguage_Vol_2_Page_012
	Macro_86_Assembly_Lamguage_Vol_2_Page_013
	Macro_86_Assembly_Lamguage_Vol_2_Page_014
	Macro_86_Assembly_Lamguage_Vol_2_Page_015
	Macro_86_Assembly_Lamguage_Vol_2_Page_016
	Macro_86_Assembly_Lamguage_Vol_2_Page_017
	Macro_86_Assembly_Lamguage_Vol_2_Page_018
	Macro_86_Assembly_Lamguage_Vol_2_Page_019
	Macro_86_Assembly_Lamguage_Vol_2_Page_020
	Macro_86_Assembly_Lamguage_Vol_2_Page_021
	Macro_86_Assembly_Lamguage_Vol_2_Page_022
	Macro_86_Assembly_Lamguage_Vol_2_Page_023
	Macro_86_Assembly_Lamguage_Vol_2_Page_024
	Macro_86_Assembly_Lamguage_Vol_2_Page_025
	Macro_86_Assembly_Lamguage_Vol_2_Page_026
	Macro_86_Assembly_Lamguage_Vol_2_Page_027
	Macro_86_Assembly_Lamguage_Vol_2_Page_028
	Macro_86_Assembly_Lamguage_Vol_2_Page_029
	Macro_86_Assembly_Lamguage_Vol_2_Page_030
	Macro_86_Assembly_Lamguage_Vol_2_Page_031
	Macro_86_Assembly_Lamguage_Vol_2_Page_032
	Macro_86_Assembly_Lamguage_Vol_2_Page_033
	Macro_86_Assembly_Lamguage_Vol_2_Page_034
	Macro_86_Assembly_Lamguage_Vol_2_Page_035
	Macro_86_Assembly_Lamguage_Vol_2_Page_036
	Macro_86_Assembly_Lamguage_Vol_2_Page_037
	Macro_86_Assembly_Lamguage_Vol_2_Page_038
	Macro_86_Assembly_Lamguage_Vol_2_Page_039
	Macro_86_Assembly_Lamguage_Vol_2_Page_040
	Macro_86_Assembly_Lamguage_Vol_2_Page_041
	Macro_86_Assembly_Lamguage_Vol_2_Page_042
	Macro_86_Assembly_Lamguage_Vol_2_Page_043
	Macro_86_Assembly_Lamguage_Vol_2_Page_044
	Macro_86_Assembly_Lamguage_Vol_2_Page_045
	Macro_86_Assembly_Lamguage_Vol_2_Page_046
	Macro_86_Assembly_Lamguage_Vol_2_Page_047
	Macro_86_Assembly_Lamguage_Vol_2_Page_048
	Macro_86_Assembly_Lamguage_Vol_2_Page_049
	Macro_86_Assembly_Lamguage_Vol_2_Page_050
	Macro_86_Assembly_Lamguage_Vol_2_Page_051
	Macro_86_Assembly_Lamguage_Vol_2_Page_052
	Macro_86_Assembly_Lamguage_Vol_2_Page_053
	Macro_86_Assembly_Lamguage_Vol_2_Page_054
	Macro_86_Assembly_Lamguage_Vol_2_Page_055
	Macro_86_Assembly_Lamguage_Vol_2_Page_056
	Macro_86_Assembly_Lamguage_Vol_2_Page_057
	Macro_86_Assembly_Lamguage_Vol_2_Page_058
	Macro_86_Assembly_Lamguage_Vol_2_Page_059
	Macro_86_Assembly_Lamguage_Vol_2_Page_060
	Macro_86_Assembly_Lamguage_Vol_2_Page_061
	Macro_86_Assembly_Lamguage_Vol_2_Page_062
	Macro_86_Assembly_Lamguage_Vol_2_Page_063
	Macro_86_Assembly_Lamguage_Vol_2_Page_064
	Macro_86_Assembly_Lamguage_Vol_2_Page_065
	Macro_86_Assembly_Lamguage_Vol_2_Page_066
	Macro_86_Assembly_Lamguage_Vol_2_Page_067
	Macro_86_Assembly_Lamguage_Vol_2_Page_068
	Macro_86_Assembly_Lamguage_Vol_2_Page_069
	Macro_86_Assembly_Lamguage_Vol_2_Page_070
	Macro_86_Assembly_Lamguage_Vol_2_Page_071
	Macro_86_Assembly_Lamguage_Vol_2_Page_072
	Macro_86_Assembly_Lamguage_Vol_2_Page_073
	Macro_86_Assembly_Lamguage_Vol_2_Page_074
	Macro_86_Assembly_Lamguage_Vol_2_Page_075
	Macro_86_Assembly_Lamguage_Vol_2_Page_076
	Macro_86_Assembly_Lamguage_Vol_2_Page_077
	Macro_86_Assembly_Lamguage_Vol_2_Page_078
	Macro_86_Assembly_Lamguage_Vol_2_Page_079
	Macro_86_Assembly_Lamguage_Vol_2_Page_080
	Macro_86_Assembly_Lamguage_Vol_2_Page_081
	Macro_86_Assembly_Lamguage_Vol_2_Page_082
	Macro_86_Assembly_Lamguage_Vol_2_Page_083
	Macro_86_Assembly_Lamguage_Vol_2_Page_084
	Macro_86_Assembly_Lamguage_Vol_2_Page_085
	Macro_86_Assembly_Lamguage_Vol_2_Page_086
	Macro_86_Assembly_Lamguage_Vol_2_Page_087
	Macro_86_Assembly_Lamguage_Vol_2_Page_088
	Macro_86_Assembly_Lamguage_Vol_2_Page_089
	Macro_86_Assembly_Lamguage_Vol_2_Page_090
	Macro_86_Assembly_Lamguage_Vol_2_Page_091
	Macro_86_Assembly_Lamguage_Vol_2_Page_092
	Macro_86_Assembly_Lamguage_Vol_2_Page_093
	Macro_86_Assembly_Lamguage_Vol_2_Page_094
	Macro_86_Assembly_Lamguage_Vol_2_Page_095
	Macro_86_Assembly_Lamguage_Vol_2_Page_096
	Macro_86_Assembly_Lamguage_Vol_2_Page_097
	Macro_86_Assembly_Lamguage_Vol_2_Page_098
	Macro_86_Assembly_Lamguage_Vol_2_Page_099
	Macro_86_Assembly_Lamguage_Vol_2_Page_100
	Macro_86_Assembly_Lamguage_Vol_2_Page_101
	Macro_86_Assembly_Lamguage_Vol_2_Page_102
	Macro_86_Assembly_Lamguage_Vol_2_Page_103
	Macro_86_Assembly_Lamguage_Vol_2_Page_104
	Macro_86_Assembly_Lamguage_Vol_2_Page_105
	Macro_86_Assembly_Lamguage_Vol_2_Page_106
	Macro_86_Assembly_Lamguage_Vol_2_Page_107
	Macro_86_Assembly_Lamguage_Vol_2_Page_108
	Macro_86_Assembly_Lamguage_Vol_2_Page_109
	Macro_86_Assembly_Lamguage_Vol_2_Page_110
	Macro_86_Assembly_Lamguage_Vol_2_Page_111
	Macro_86_Assembly_Lamguage_Vol_2_Page_112
	Macro_86_Assembly_Lamguage_Vol_2_Page_113
	Macro_86_Assembly_Lamguage_Vol_2_Page_114
	Macro_86_Assembly_Lamguage_Vol_2_Page_115
	Macro_86_Assembly_Lamguage_Vol_2_Page_116
	Macro_86_Assembly_Lamguage_Vol_2_Page_117
	Macro_86_Assembly_Lamguage_Vol_2_Page_118
	Macro_86_Assembly_Lamguage_Vol_2_Page_119
	Macro_86_Assembly_Lamguage_Vol_2_Page_120
	Macro_86_Assembly_Lamguage_Vol_2_Page_121
	Macro_86_Assembly_Lamguage_Vol_2_Page_122
	Macro_86_Assembly_Lamguage_Vol_2_Page_123
	Macro_86_Assembly_Lamguage_Vol_2_Page_124
	Macro_86_Assembly_Lamguage_Vol_2_Page_125
	Macro_86_Assembly_Lamguage_Vol_2_Page_126
	Macro_86_Assembly_Lamguage_Vol_2_Page_127
	Macro_86_Assembly_Lamguage_Vol_2_Page_128
	Macro_86_Assembly_Lamguage_Vol_2_Page_129
	Macro_86_Assembly_Lamguage_Vol_2_Page_130
	Macro_86_Assembly_Lamguage_Vol_2_Page_131
	Macro_86_Assembly_Lamguage_Vol_2_Page_132
	Macro_86_Assembly_Lamguage_Vol_2_Page_133
	Macro_86_Assembly_Lamguage_Vol_2_Page_134
	Macro_86_Assembly_Lamguage_Vol_2_Page_135
	Macro_86_Assembly_Lamguage_Vol_2_Page_136
	Macro_86_Assembly_Lamguage_Vol_2_Page_137
	Macro_86_Assembly_Lamguage_Vol_2_Page_138
	Macro_86_Assembly_Lamguage_Vol_2_Page_139
	Macro_86_Assembly_Lamguage_Vol_2_Page_140
	Macro_86_Assembly_Lamguage_Vol_2_Page_141
	Macro_86_Assembly_Lamguage_Vol_2_Page_142
	Macro_86_Assembly_Lamguage_Vol_2_Page_143
	Macro_86_Assembly_Lamguage_Vol_2_Page_144
	Macro_86_Assembly_Lamguage_Vol_2_Page_145
	Macro_86_Assembly_Lamguage_Vol_2_Page_146
	Macro_86_Assembly_Lamguage_Vol_2_Page_147
	Macro_86_Assembly_Lamguage_Vol_2_Page_148
	Macro_86_Assembly_Lamguage_Vol_2_Page_149
	Macro_86_Assembly_Lamguage_Vol_2_Page_150
	Macro_86_Assembly_Lamguage_Vol_2_Page_151
	Macro_86_Assembly_Lamguage_Vol_2_Page_152
	Macro_86_Assembly_Lamguage_Vol_2_Page_153
	Macro_86_Assembly_Lamguage_Vol_2_Page_154
	Macro_86_Assembly_Lamguage_Vol_2_Page_155
	Macro_86_Assembly_Lamguage_Vol_2_Page_156
	Macro_86_Assembly_Lamguage_Vol_2_Page_157
	Macro_86_Assembly_Lamguage_Vol_2_Page_158
	Macro_86_Assembly_Lamguage_Vol_2_Page_159
	Macro_86_Assembly_Lamguage_Vol_2_Page_160
	Macro_86_Assembly_Lamguage_Vol_2_Page_161
	Macro_86_Assembly_Lamguage_Vol_2_Page_162
	Macro_86_Assembly_Lamguage_Vol_2_Page_163
	Macro_86_Assembly_Lamguage_Vol_2_Page_164
	Macro_86_Assembly_Lamguage_Vol_2_Page_165
	Macro_86_Assembly_Lamguage_Vol_2_Page_166
	Macro_86_Assembly_Lamguage_Vol_2_Page_167
	Macro_86_Assembly_Lamguage_Vol_2_Page_168
	Macro_86_Assembly_Lamguage_Vol_2_Page_169
	Macro_86_Assembly_Lamguage_Vol_2_Page_170
	Macro_86_Assembly_Lamguage_Vol_2_Page_171
	Macro_86_Assembly_Lamguage_Vol_2_Page_172
	Macro_86_Assembly_Lamguage_Vol_2_Page_173
	Macro_86_Assembly_Lamguage_Vol_2_Page_174
	Macro_86_Assembly_Lamguage_Vol_2_Page_175
	Macro_86_Assembly_Lamguage_Vol_2_Page_176
	Macro_86_Assembly_Lamguage_Vol_2_Page_177
	Macro_86_Assembly_Lamguage_Vol_2_Page_178
	Macro_86_Assembly_Lamguage_Vol_2_Page_179
	Macro_86_Assembly_Lamguage_Vol_2_Page_180
	Macro_86_Assembly_Lamguage_Vol_2_Page_181
	Macro_86_Assembly_Lamguage_Vol_2_Page_182
	Macro_86_Assembly_Lamguage_Vol_2_Page_183
	Macro_86_Assembly_Lamguage_Vol_2_Page_184
	Macro_86_Assembly_Lamguage_Vol_2_Page_185
	Macro_86_Assembly_Lamguage_Vol_2_Page_186
	Macro_86_Assembly_Lamguage_Vol_2_Page_187
	Macro_86_Assembly_Lamguage_Vol_2_Page_188
	Macro_86_Assembly_Lamguage_Vol_2_Page_189
	Macro_86_Assembly_Lamguage_Vol_2_Page_190
	Macro_86_Assembly_Lamguage_Vol_2_Page_191
	Macro_86_Assembly_Lamguage_Vol_2_Page_192
	Macro_86_Assembly_Lamguage_Vol_2_Page_193
	Macro_86_Assembly_Lamguage_Vol_2_Page_194
	Macro_86_Assembly_Lamguage_Vol_2_Page_195
	Macro_86_Assembly_Lamguage_Vol_2_Page_196
	Macro_86_Assembly_Lamguage_Vol_2_Page_197
	Macro_86_Assembly_Lamguage_Vol_2_Page_198
	Macro_86_Assembly_Lamguage_Vol_2_Page_199
	Macro_86_Assembly_Lamguage_Vol_2_Page_200
	Macro_86_Assembly_Lamguage_Vol_2_Page_201
	Macro_86_Assembly_Lamguage_Vol_2_Page_202
	Macro_86_Assembly_Lamguage_Vol_2_Page_203
	Macro_86_Assembly_Lamguage_Vol_2_Page_204
	Macro_86_Assembly_Lamguage_Vol_2_Page_205
	Macro_86_Assembly_Lamguage_Vol_2_Page_206
	Macro_86_Assembly_Lamguage_Vol_2_Page_207
	Macro_86_Assembly_Lamguage_Vol_2_Page_208
	Macro_86_Assembly_Lamguage_Vol_2_Page_209
	Macro_86_Assembly_Lamguage_Vol_2_Page_210
	Macro_86_Assembly_Lamguage_Vol_2_Page_211
	Macro_86_Assembly_Lamguage_Vol_2_Page_212
	Macro_86_Assembly_Lamguage_Vol_2_Page_213
	Macro_86_Assembly_Lamguage_Vol_2_Page_214
	Macro_86_Assembly_Lamguage_Vol_2_Page_215
	Macro_86_Assembly_Lamguage_Vol_2_Page_216
	Macro_86_Assembly_Lamguage_Vol_2_Page_217
	Macro_86_Assembly_Lamguage_Vol_2_Page_218
	Macro_86_Assembly_Lamguage_Vol_2_Page_219
	Macro_86_Assembly_Lamguage_Vol_2_Page_220
	Macro_86_Assembly_Lamguage_Vol_2_Page_221
	Macro_86_Assembly_Lamguage_Vol_2_Page_222
	Macro_86_Assembly_Lamguage_Vol_2_Page_223
	Macro_86_Assembly_Lamguage_Vol_2_Page_224
	Macro_86_Assembly_Lamguage_Vol_2_Page_225
	Macro_86_Assembly_Lamguage_Vol_2_Page_226
	Macro_86_Assembly_Lamguage_Vol_2_Page_227
	Macro_86_Assembly_Lamguage_Vol_2_Page_228
	Macro_86_Assembly_Lamguage_Vol_2_Page_229
	Macro_86_Assembly_Lamguage_Vol_2_Page_230
	Macro_86_Assembly_Lamguage_Vol_2_Page_231
	Macro_86_Assembly_Lamguage_Vol_2_Page_232
	Macro_86_Assembly_Lamguage_Vol_2_Page_233
	Macro_86_Assembly_Lamguage_Vol_2_Page_234
	Macro_86_Assembly_Lamguage_Vol_2_Page_235
	Macro_86_Assembly_Lamguage_Vol_2_Page_236
	Macro_86_Assembly_Lamguage_Vol_2_Page_237
	Macro_86_Assembly_Lamguage_Vol_2_Page_238
	Macro_86_Assembly_Lamguage_Vol_2_Page_239
	Macro_86_Assembly_Lamguage_Vol_2_Page_240
	Macro_86_Assembly_Lamguage_Vol_2_Page_241
	Macro_86_Assembly_Lamguage_Vol_2_Page_242
	Macro_86_Assembly_Lamguage_Vol_2_Page_243
	Macro_86_Assembly_Lamguage_Vol_2_Page_244
	Macro_86_Assembly_Lamguage_Vol_2_Page_245
	Macro_86_Assembly_Lamguage_Vol_2_Page_246
	Macro_86_Assembly_Lamguage_Vol_2_Page_247
	Macro_86_Assembly_Lamguage_Vol_2_Page_248
	Macro_86_Assembly_Lamguage_Vol_2_Page_249
	Macro_86_Assembly_Lamguage_Vol_2_Page_250
	Macro_86_Assembly_Lamguage_Vol_2_Page_251
	Macro_86_Assembly_Lamguage_Vol_2_Page_252
	Macro_86_Assembly_Lamguage_Vol_2_Page_253
	Macro_86_Assembly_Lamguage_Vol_2_Page_254
	Macro_86_Assembly_Lamguage_Vol_2_Page_255
	Macro_86_Assembly_Lamguage_Vol_2_Page_256
	Macro_86_Assembly_Lamguage_Vol_2_Page_257
	Macro_86_Assembly_Lamguage_Vol_2_Page_258
	Macro_86_Assembly_Lamguage_Vol_2_Page_259
	Macro_86_Assembly_Lamguage_Vol_2_Page_260
	Macro_86_Assembly_Lamguage_Vol_2_Page_261
	Macro_86_Assembly_Lamguage_Vol_2_Page_262
	Macro_86_Assembly_Lamguage_Vol_2_Page_263
	Macro_86_Assembly_Lamguage_Vol_2_Page_264
	Macro_86_Assembly_Lamguage_Vol_2_Page_265
	Macro_86_Assembly_Lamguage_Vol_2_Page_266
	Macro_86_Assembly_Lamguage_Vol_2_Page_267
	Macro_86_Assembly_Lamguage_Vol_2_Page_268
	Macro_86_Assembly_Lamguage_Vol_2_Page_269
	Macro_86_Assembly_Lamguage_Vol_2_Page_270
	Macro_86_Assembly_Lamguage_Vol_2_Page_271
	Macro_86_Assembly_Lamguage_Vol_2_Page_272
	Macro_86_Assembly_Lamguage_Vol_2_Page_273
	Macro_86_Assembly_Lamguage_Vol_2_Page_274
	Macro_86_Assembly_Lamguage_Vol_2_Page_275
	Macro_86_Assembly_Lamguage_Vol_2_Page_276
	Macro_86_Assembly_Lamguage_Vol_2_Page_277
	Macro_86_Assembly_Lamguage_Vol_2_Page_278
	Macro_86_Assembly_Lamguage_Vol_2_Page_279
	Macro_86_Assembly_Lamguage_Vol_2_Page_280
	Macro_86_Assembly_Lamguage_Vol_2_Page_281
	Macro_86_Assembly_Lamguage_Vol_2_Page_282
	Macro_86_Assembly_Lamguage_Vol_2_Page_283
	Macro_86_Assembly_Lamguage_Vol_2_Page_284
	Macro_86_Assembly_Lamguage_Vol_2_Page_285
	Macro_86_Assembly_Lamguage_Vol_2_Page_286
	Macro_86_Assembly_Lamguage_Vol_2_Page_287
	Macro_86_Assembly_Lamguage_Vol_2_Page_288
	Macro_86_Assembly_Lamguage_Vol_2_Page_289
	Macro_86_Assembly_Lamguage_Vol_2_Page_290
	Macro_86_Assembly_Lamguage_Vol_2_Page_291
	Macro_86_Assembly_Lamguage_Vol_2_Page_292
	Macro_86_Assembly_Lamguage_Vol_2_Page_293
	Macro_86_Assembly_Lamguage_Vol_2_Page_294
	Macro_86_Assembly_Lamguage_Vol_2_Page_295
	Macro_86_Assembly_Lamguage_Vol_2_Page_296
	Macro_86_Assembly_Lamguage_Vol_2_Page_297
	Macro_86_Assembly_Lamguage_Vol_2_Page_298
	Macro_86_Assembly_Lamguage_Vol_2_Page_299
	Macro_86_Assembly_Lamguage_Vol_2_Page_300
	Macro_86_Assembly_Lamguage_Vol_2_Page_301
	Macro_86_Assembly_Lamguage_Vol_2_Page_302
	Macro_86_Assembly_Lamguage_Vol_2_Page_303
	Macro_86_Assembly_Lamguage_Vol_2_Page_304
	Macro_86_Assembly_Lamguage_Vol_2_Page_305
	Macro_86_Assembly_Lamguage_Vol_2_Page_306
	Macro_86_Assembly_Lamguage_Vol_2_Page_307
	Macro_86_Assembly_Lamguage_Vol_2_Page_308
	Macro_86_Assembly_Lamguage_Vol_2_Page_309
	Macro_86_Assembly_Lamguage_Vol_2_Page_310
	Macro_86_Assembly_Lamguage_Vol_2_Page_311
	Macro_86_Assembly_Lamguage_Vol_2_Page_312
	Macro_86_Assembly_Lamguage_Vol_2_Page_313
	Macro_86_Assembly_Lamguage_Vol_2_Page_314
	Macro_86_Assembly_Lamguage_Vol_2_Page_315
	Macro_86_Assembly_Lamguage_Vol_2_Page_316
	Macro_86_Assembly_Lamguage_Vol_2_Page_317
	Macro_86_Assembly_Lamguage_Vol_2_Page_318
	Macro_86_Assembly_Lamguage_Vol_2_Page_319
	Macro_86_Assembly_Lamguage_Vol_2_Page_320
	Macro_86_Assembly_Lamguage_Vol_2_Page_321
	Macro_86_Assembly_Lamguage_Vol_2_Page_322
	Macro_86_Assembly_Lamguage_Vol_2_Page_323
	Macro_86_Assembly_Lamguage_Vol_2_Page_324
	Macro_86_Assembly_Lamguage_Vol_2_Page_325
	Macro_86_Assembly_Lamguage_Vol_2_Page_326
	Macro_86_Assembly_Lamguage_Vol_2_Page_327
	Macro_86_Assembly_Lamguage_Vol_2_Page_328
	Macro_86_Assembly_Lamguage_Vol_2_Page_329
	Macro_86_Assembly_Lamguage_Vol_2_Page_330
	Macro_86_Assembly_Lamguage_Vol_2_Page_331
	Macro_86_Assembly_Lamguage_Vol_2_Page_332
	Macro_86_Assembly_Lamguage_Vol_2_Page_333
	Macro_86_Assembly_Lamguage_Vol_2_Page_334
	Macro_86_Assembly_Lamguage_Vol_2_Page_335
	Macro_86_Assembly_Lamguage_Vol_2_Page_336
	Macro_86_Assembly_Lamguage_Vol_2_Page_337
	Macro_86_Assembly_Lamguage_Vol_2_Page_338
	Macro_86_Assembly_Lamguage_Vol_2_Page_339
	Macro_86_Assembly_Lamguage_Vol_2_Page_340
	Macro_86_Assembly_Lamguage_Vol_2_Page_341
	Macro_86_Assembly_Lamguage_Vol_2_Page_342
	Macro_86_Assembly_Lamguage_Vol_2_Page_343
	Macro_86_Assembly_Lamguage_Vol_2_Page_344
	Macro_86_Assembly_Lamguage_Vol_2_Page_345
	Macro_86_Assembly_Lamguage_Vol_2_Page_346
	Macro_86_Assembly_Lamguage_Vol_2_Page_347
	Macro_86_Assembly_Lamguage_Vol_2_Page_348
	Macro_86_Assembly_Lamguage_Vol_2_Page_349
	Macro_86_Assembly_Lamguage_Vol_2_Page_350
	Macro_86_Assembly_Lamguage_Vol_2_Page_351
	Macro_86_Assembly_Lamguage_Vol_2_Page_352
	Macro_86_Assembly_Lamguage_Vol_2_Page_353
	Macro_86_Assembly_Lamguage_Vol_2_Page_354
	Macro_86_Assembly_Lamguage_Vol_2_Page_355
	Macro_86_Assembly_Lamguage_Vol_2_Page_356
	Macro_86_Assembly_Lamguage_Vol_2_Page_357
	Macro_86_Assembly_Lamguage_Vol_2_Page_358
	Macro_86_Assembly_Lamguage_Vol_2_Page_359
	Macro_86_Assembly_Lamguage_Vol_2_Page_360
	Macro_86_Assembly_Lamguage_Vol_2_Page_361
	Macro_86_Assembly_Lamguage_Vol_2_Page_362
	Macro_86_Assembly_Lamguage_Vol_2_Page_363
	Macro_86_Assembly_Lamguage_Vol_2_Page_364
	Macro_86_Assembly_Lamguage_Vol_2_Page_365
	Macro_86_Assembly_Lamguage_Vol_2_Page_366
	Macro_86_Assembly_Lamguage_Vol_2_Page_367
	Macro_86_Assembly_Lamguage_Vol_2_Page_368
	Macro_86_Assembly_Lamguage_Vol_2_Page_369
	Macro_86_Assembly_Lamguage_Vol_2_Page_370
	Macro_86_Assembly_Lamguage_Vol_2_Page_371
	Macro_86_Assembly_Lamguage_Vol_2_Page_372
	Macro_86_Assembly_Lamguage_Vol_2_Page_373
	Macro_86_Assembly_Lamguage_Vol_2_Page_374
	Macro_86_Assembly_Lamguage_Vol_2_Page_375
	Macro_86_Assembly_Lamguage_Vol_2_Page_376
	Macro_86_Assembly_Lamguage_Vol_2_Page_377
	Macro_86_Assembly_Lamguage_Vol_2_Page_378
	Macro_86_Assembly_Lamguage_Vol_2_Page_379
	Macro_86_Assembly_Lamguage_Vol_2_Page_380
	Macro_86_Assembly_Lamguage_Vol_2_Page_381
	Macro_86_Assembly_Lamguage_Vol_2_Page_382
	Macro_86_Assembly_Lamguage_Vol_2_Page_383
	Macro_86_Assembly_Lamguage_Vol_2_Page_384
	Macro_86_Assembly_Lamguage_Vol_2_Page_385
	Macro_86_Assembly_Lamguage_Vol_2_Page_386
	Macro_86_Assembly_Lamguage_Vol_2_Page_387
	Macro_86_Assembly_Lamguage_Vol_2_Page_388
	Macro_86_Assembly_Lamguage_Vol_2_Page_389
	Macro_86_Assembly_Lamguage_Vol_2_Page_390
	Macro_86_Assembly_Lamguage_Vol_2_Page_391
	Macro_86_Assembly_Lamguage_Vol_2_Page_392
	Macro_86_Assembly_Lamguage_Vol_2_Page_393
	Macro_86_Assembly_Lamguage_Vol_2_Page_394
	Macro_86_Assembly_Lamguage_Vol_2_Page_395
	Macro_86_Assembly_Lamguage_Vol_2_Page_396
	Macro_86_Assembly_Lamguage_Vol_2_Page_397
	Macro_86_Assembly_Lamguage_Vol_2_Page_398
	Macro_86_Assembly_Lamguage_Vol_2_Page_399
	Macro_86_Assembly_Lamguage_Vol_2_Page_400
	Macro_86_Assembly_Lamguage_Vol_2_Page_401
	Macro_86_Assembly_Lamguage_Vol_2_Page_402
	Macro_86_Assembly_Lamguage_Vol_2_Page_403
	Macro_86_Assembly_Lamguage_Vol_2_Page_404
	Macro_86_Assembly_Lamguage_Vol_2_Page_405
	Macro_86_Assembly_Lamguage_Vol_2_Page_406
	Macro_86_Assembly_Lamguage_Vol_2_Page_407
	Macro_86_Assembly_Lamguage_Vol_2_Page_408
	Macro_86_Assembly_Lamguage_Vol_2_Page_409
	Macro_86_Assembly_Lamguage_Vol_2_Page_410
	Macro_86_Assembly_Lamguage_Vol_2_Page_411
	Macro_86_Assembly_Lamguage_Vol_2_Page_412
	Macro_86_Assembly_Lamguage_Vol_2_Page_413
	Macro_86_Assembly_Lamguage_Vol_2_Page_414
	Macro_86_Assembly_Lamguage_Vol_2_Page_415
	Macro_86_Assembly_Lamguage_Vol_2_Page_416
	Macro_86_Assembly_Lamguage_Vol_2_Page_417
	Macro_86_Assembly_Lamguage_Vol_2_Page_418
	Macro_86_Assembly_Lamguage_Vol_2_Page_419
	Macro_86_Assembly_Lamguage_Vol_2_Page_420
	Macro_86_Assembly_Lamguage_Vol_2_Page_421
	Macro_86_Assembly_Lamguage_Vol_2_Page_422
	Macro_86_Assembly_Lamguage_Vol_2_Page_423
	Macro_86_Assembly_Lamguage_Vol_2_Page_424
	Macro_86_Assembly_Lamguage_Vol_2_Page_425
	Macro_86_Assembly_Lamguage_Vol_2_Page_426
	Macro_86_Assembly_Lamguage_Vol_2_Page_427
	Macro_86_Assembly_Lamguage_Vol_2_Page_428
	Macro_86_Assembly_Lamguage_Vol_2_Page_429
	Macro_86_Assembly_Lamguage_Vol_2_Page_430
	Macro_86_Assembly_Lamguage_Vol_2_Page_431
	Macro_86_Assembly_Lamguage_Vol_2_Page_432
	Macro_86_Assembly_Lamguage_Vol_2_Page_433
	Macro_86_Assembly_Lamguage_Vol_2_Page_434
	Macro_86_Assembly_Lamguage_Vol_2_Page_435
	Macro_86_Assembly_Lamguage_Vol_2_Page_436
	Macro_86_Assembly_Lamguage_Vol_2_Page_437
	Macro_86_Assembly_Lamguage_Vol_2_Page_438
	Macro_86_Assembly_Lamguage_Vol_2_Page_439
	Macro_86_Assembly_Lamguage_Vol_2_Page_440
	Macro_86_Assembly_Lamguage_Vol_2_Page_441
	Macro_86_Assembly_Lamguage_Vol_2_Page_442
	Macro_86_Assembly_Lamguage_Vol_2_Page_443
	Macro_86_Assembly_Lamguage_Vol_2_Page_444
	Macro_86_Assembly_Lamguage_Vol_2_Page_445
	Macro_86_Assembly_Lamguage_Vol_2_Page_446
	Macro_86_Assembly_Lamguage_Vol_2_Page_447
	Macro_86_Assembly_Lamguage_Vol_2_Page_448
	Macro_86_Assembly_Lamguage_Vol_2_Page_449
	Macro_86_Assembly_Lamguage_Vol_2_Page_450
	Macro_86_Assembly_Lamguage_Vol_2_Page_451
	Macro_86_Assembly_Lamguage_Vol_2_Page_452
	Macro_86_Assembly_Lamguage_Vol_2_Page_453
	Macro_86_Assembly_Lamguage_Vol_2_Page_454
	Macro_86_Assembly_Lamguage_Vol_2_Page_455
	Macro_86_Assembly_Lamguage_Vol_2_Page_456
	Macro_86_Assembly_Lamguage_Vol_2_Page_457
	Macro_86_Assembly_Lamguage_Vol_2_Page_458
	Macro_86_Assembly_Lamguage_Vol_2_Page_459
	Macro_86_Assembly_Lamguage_Vol_2_Page_460
	Macro_86_Assembly_Lamguage_Vol_2_Page_461
	Macro_86_Assembly_Lamguage_Vol_2_Page_462
	Macro_86_Assembly_Lamguage_Vol_2_Page_463
	Macro_86_Assembly_Lamguage_Vol_2_Page_464
	Macro_86_Assembly_Lamguage_Vol_2_Page_465
	Macro_86_Assembly_Lamguage_Vol_2_Page_466
	Macro_86_Assembly_Lamguage_Vol_2_Page_467
	Macro_86_Assembly_Lamguage_Vol_2_Page_468
	Macro_86_Assembly_Lamguage_Vol_2_Page_469
	Macro_86_Assembly_Lamguage_Vol_2_Page_470
	Macro_86_Assembly_Lamguage_Vol_2_Page_471
	Macro_86_Assembly_Lamguage_Vol_2_Page_472

